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Preface 

In  an  era  where  digital  information  is  reshaping  industries,  governments,  and  our 

personal  lives,  the  importance  of  cybersecurity  has  never  been  more  apparent.  Cyber 

threats  are  evolving  at  an  unprecedented  rate,  becoming  more  sophisticated,  unpre-

dictable,  and  destructive.  To  keep  pace,  we  need  tools  and  techniques  that  defend 

against  today’s  threats  and  anticipate  those  of  tomorrow.  Artificial  intelligence  (AI), 

machine  learning,  and  deep  learning  are  indispensable  tools  in  the  security  arsenal, 

providing  heretofore  unimaginable  capabilities  in  analyzing  massive  amounts  of  data 

to  improve  the  detection  and  mitigation  of  advanced  threats.  Machine  learning  algo-

rithms  have  the  ability  to  adapt  and  learn,  and  are  used  to  detect  anomalies  and  identify potential  threats  that  would  go  unnoticed  by  conventional  methods.  Deep  learning 

takes  this  a  step  further  by  enabling  systems  to  process  complex,  unstructured  data, 

potentially  offering  profound  insights  into  vulnerabilities  and  attacks. 

This  book,  Machine  Learning,  Deep  Learning  and  AI  for  Cybersecurity, arrives  

at  a  crucial  time,  when  both  defenders  and  attackers  regularly  deploy  AI-based 

techniques.  On  one  side,  cybercriminals  have  embraced  machine  learning  and  deep 

learning  to  create  evasive  malware,  phishing  schemes,  and  advanced  persistent  threats 

that  can  adapt  and  improve  autonomously.  On  the  other  side,  researchers  and  cyberse-

curity  professionals  are  deploying  cutting-edge  AI  models  to  predict,  detect,  and  miti-

gate  these  attacks,  often  in  real  time.  This  dynamic  confrontation  between  defensive 

and  adversarial  AI  is  a  defining  characteristic  of  modern  cybersecurity. 

We  believe  that  one  of  the  most  compelling  aspects  of  this  book  is  its  balance 

between  theory  and  practice,  offering  technical  depth  for  those  interested  in  algo-

rithmic  intricacies,  while  remaining  grounded  in  real-world  applications  through 

practical  case  studies.  The  chapters  herein  explore  many  of  the  latest  advance-

ments  in  the  field,  covering  topics  such  as  malware  detection  and  classification, 

security  aspects  of  federated  learning,  adversarial  learning  attacks  and  defenses, 

and  much  more.  The  authors  skillfully  guide  readers  through  the  theoretical  founda-

tions,  practical  implementations,  and  real-world  examples,  making  complex  concepts 

accessible  to  cybersecurity  professionals  and  academic  researchers  alike. 

v
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Preface

As  you  dive  into  the  following  chapters,  you  will  explore  cutting-edge  research, 

practical  applications,  and  real-world  examples  that  demonstrate  how  AI,  machine 

learning,  and  deep  learning  are  transforming  cybersecurity. 
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Image-Based  Malware  Classification 

Using  QR  and  Aztec  Codes 

Atharva  Khadilkar

and  Mark  Stamp 

Abstract  In  recent  years,  the  use  of  image-based  techniques  for  malware  detec-

tion  has  gained  prominence,  with  numerous  studies  demonstrating  the  efficacy  of 

deep  learning  approaches  such  as  Convolutional  Neural  Networks  (CNN)  in  classi-

fying  images  derived  from  executable  files.  In  this  paper,  we  consider  an  innovative 

method  that  relies  on  an  image  conversion  process  that  consists  of  transforming  fea-

tures  extracted  from  executable  files  into  QR  and  Aztec  codes.  These  codes  capture 

structural  patterns  in  a  format  that  may  enhance  the  learning  capabilities  of  CNNs.  We 

design  and  implement  CNN  architectures  tailored  to  the  unique  properties  of  these 

codes  and  apply  them  to  a  comprehensive  analysis  involving  two  extensive  malware 

datasets,  both  of  which  include  a  significant  corpus  of  benign  samples.  Our  results 

yield  a  split  decision,  with  CNNs  trained  on  QR  and  Aztec  codes  outperforming  the 

state  of  the  art  on  one  of  the  datasets,  but  underperforming  more  typical  techniques 

on  the  other  dataset.  These  results  indicate  that  the  use  of  QR  and  Aztec  codes  as 

a  form  of  feature  engineering  holds  considerable  promise  in  the  malware  domain, 

and  that  additional  research  is  needed  to  better  understand  the  relative  strengths  and 

weaknesses  of  such  an  approach. 

1 

Introduction 

In  the  current  digital  age,  cybersecurity  threats  have  become  increasingly  sophisti-

cated,  one  example  of  which  is  obfuscated  malware.  Obfuscated  malware  is  malware 

that  is  “disguised”  so  that  it  is  difficult  to  detect  using  conventional  methods.  Tradi-

tional  antivirus  systems  rely  on  signature-based  detection,  which  struggles  to  identify 

obfuscated  malware  [ 3]. 

Malware  classification  is  the  process  of  categorizing  various  types  of  malware 

into  distinct  groups  based  on  their  behavior,  characteristics,  or  potential  impact.  The 

conventional  approach  to  malware  classification  is  reliant  on  signature  based  and 

heuristic  methods.  In  the  malware  context,  signatures  typically  consist  of  known 
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patterns  that  appear  in  the  code,  whereas  heuristic  analysis  usually  attempts  to  focus 

on  behavioral  patterns.  These  techniques  struggle  with  the  obfuscation  strategies 

employed  in  modern  malware,  often  leading  to  false  positives  or  negatives. 

Traditional  machine  learning  (ML)  methods  have  been  used  for  enhancing 

malware  classification  offering  an  alternative  to  conventional  signature  based 

approaches  [ 33]. A  variety  of  traditional  methods  are  commonly  employed,  including logistic  regression,  Support  Vector  Machine  (SVM),  and  Random  Forests.  ML  techniques  significantly  improves  the  detection  of  novel  malware  strain,  as  ML  does  not 

solely  rely  on  pre-existing  signatures.  However,  such  ML  methods  can  be  challenged 

by  sophisticated  obfuscation  techniques.  A  recent  trend  in  malware  detection  con-

sists  of  converting  executable  files  to  images  and  using  sophisticated  image  analysis 

techniques  for  classification.  This  approach  is  promising  and  has  shown  improved 

results  over  traditional  ML  techniques.  However,  the  process  used  to  convert  executa-

bles  to  images  can  have  a  large  impact  on  the  success  of  such  image-based  analysis 

techniques. 

Building  on  traditional  ML  methods  for  malware  classification,  we  propose  to  use 

QR  and  Aztec  codes  as  image  representations  of  data,  combined  with  advanced  image 

classification  techniques.  By  leveraging  the  unique  patterns  within  these  images,  our 

method  aims  to  improve  on  image-based  analysis  of  obfuscated  malware.  We  find  that 

our  approach  offers  an  improvement  over  traditional  features  and  also  improves  on 

typical  image-generation  techniques  for  the  detection  of  complex  malware  variants. 

The  remainder  of  this  paper  is  organized  as  follows.  Section  2  discusses  relevant previous  work,  including  traditional  and  image-based  techniques  for  malware  detection  and  classification.  Section  3  introduces  the  datasets  utilized  in  this  study,  detail-ing  their  composition,  source,  and  the  methodology  employed  for  their  collection 

and  preparation.  Section  4  outlines  the  libraries  and  platforms  used  in  our  experiments.  Following  this,  Sect. 5  covers  the  techniques  and  methodologies  employed, along  with  a  discussion  of  the  implementation  of  these  methods.  Section  6  includes the  results  of  our  experiments  and  compares  our  results  to  previous  related  work. 

Section  7  concludes  the  paper,  summarizing  our  key  findings  and  discussing  potential  avenues  for  future  research. 

2 

Selected  Related  Work 

This  section  explores  selected  prior  research  in  the  realm  of  malware  detection, 

particularly  focusing  on  approaches  that  use  image  representation  for  identifying 

malware.  Additionally,  we  explore  studies  related  to  the  detection  of  obfuscated 

malware,  emphasizing  techniques  that  utilize  memory  dumps.  These  topics  represent 

significant  advances  in  malware  detection. 
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 2.1 

 Obfuscated  Malware 

Obfuscated  malware  techniques  complicate  the  detection  process  by  disguising  the 

malicious  code,  making  it  challenging  for  traditional  antivirus  solutions  to  identify 

threats  effectively.  Techniques  such  as  polymorphism  and  metamorphism  are  fre-

quently  employed,  allowing  malware  to  alter  its  code  with  each  replication,  thereby 

evading  signature-based  detection  systems.  The  research  in  [38]  detail  these  methods, noting  their  sophistication  and  the  difficulty  they  pose  to  detection  efforts.  Similarly, 

[ 6]  discuss  the  theoretical  underpinnings  of  code  obfuscation,  pointing  out  the  effectiveness  of  such  techniques  in  protecting  malware  from  analysis.  These  approaches 

highlight  the  continuous  arms  race  between  cybersecurity  professionals  and  attack-

ers,  underscoring  the  need  for  advanced  detection  methods  capable  of  penetrating 

these  obfuscations. 

The  CIC-MalMem-2022  dataset  [ 8]  contains  features  extracted  from  obfuscated malware  samples.  Studies  focusing  on  binary  classification  using  the  CIC-MalMem-2022  dataset,  such  as  [ 13, 18],  have  applied  various  ML  techniques,  achieving  up to  0.9997  accuracy  with  learning  methods  such  as  Decision  Trees  and  SVC.  Additionally  the  research  in  [ 18]  employs  feature  engineering  and  tree-based  techniques such  as  XGBoost  and  CatBoost,  achieving  a  1.00  accuracy  in  binary  classification 

with  a  Random  Forest  Classifier.  This  demonstrates  the  effectiveness  of  combining 

advanced  methods  and  feature  engineering  in  improving  malware  detection. 

 2.2 

 Behavioral  Analysis  of  Malware 

Malware  behavior  analysis  techniques  focus  on  observing  the  actions  of  malware 

within  a  system,  offering  insights  beyond  those  that  static  analysis  can  provide.  This 

dynamic  approach,  as  considered  in  [ 7, 31], for  example,  involves  monitoring  the execution  patterns  and  network  behaviors  of  malware  to  classify  and  understand 

its  nature.  Such  techniques  are  critical  in  identifying  new  variants  of  malware  by 

examining  their  behavior  patterns,  potentially  offering  more  adaptive  and  robust 

mechanism  for  threat  detection.  The  effectiveness  of  these  methods  lies  in  their  ability 

to  provide  a  detailed  view  of  malware  operations,  contributing  to  the  development 

of  more  precise  and  effective  cybersecurity  measures. 

 2.3 

 Image  Representations 

The  conversion  of  malware  binaries  into  visual  images  for  analysis  has  recently 

shown  great  promise.  The  papers  [ 19, 20, 26]  explore  the  potential  of  such  techniques,  which  leverages  the  visual  patterns  that  emerge  from  the  binary  code  of 

malware  when  represented  as  images.  These  methods  allow  for  the  application  of
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advanced  image  processing  techniques  to  identify  distinctive  features  associated  with 

malicious  software.  The  advantage  of  image  representation  lies  in  its  ability  to  reveal 

patterns  that  are  not  easily  discernible  through  traditional  binary  analysis,  providing 

an  alternative  avenue  for  the  detection  and  classification  of  malware. 

The  use  of  Convolutional  Neural  Networks  (CNNs)  for  classifying  malware  based 

on  image  representations  showcases  the  application  of  deep  learning  in  cybersecurity. 

For  example,  the  research  in  [ 17, 19]  demonstrates  the  effectiveness  of  CNNs  in analyzing  the  visual  patterns  of  malware  images  to  accurately  classify  different  types 

of  malware.  These  studies  highlight  the  ability  of  CNNs  to  learn  and  identify  complex 

patterns  within  images,  facilitating  a  highly  effective  classification  system.  Another 

strength  of  this  approach  lies  in  its  capacity  to  process  and  analyze  large  datasets  of 

malware  images,  thus  offering  a  scalable  and  efficient  solution  for  the  identification 

of  malware. 

 2.4 

 Advanced  CNN  Architectures 

The  convergence  of  Convolutional  Neural  Networks  and  pre-trained  models  has 

significantly  advanced  malware  classification,  leveraging  deep  learning  for  cyberse-

curity.  The  studies  in  [ 1, 23], for  example,  highlight  the  effectiveness  of  pre-trained CNN  models.  Examples  of  such  pre-trained  models  include  VGG16,  ResNet-50,  and 

DenseNet-201.  Additionally,  these  works  delve  into  the  challenges  associated  with 

feature  extraction,  feature  engineering,  computational  demands,  dataset  imbalances, 

and  so  on.  These  are  issues  often  encountered  when  learning  techniques  are  used  in 

the  malware  domain. 

Further  innovations  include  ensemble  and  transfer  learning  approaches  to  enhance 

accuracy  and  efficiency  in  malware-related  tasks.  For  instance,  in  [ 15, 23]  the  application  of  fine-tuned  CNN-based  transfer  learning  models  on  transformed  2D  images 

of  malware  binaries  demonstrated  exceptional  detection  accuracies,  outperforming 

conventional  methods.  More  generally,  these  approaches  signify  a  shift  towards  uti-

lizing  deep  learning  models  to  deal  with  the  challenges  of  evolving  cybersecurity 

threats. 

 2.5 

 Memory  Dump  Analysis 

Memory  dump  analysis  for  malware  classification  involves  examining  snapshots  of 

system  memory  to  detect  potentially  malicious  behavior.  This  technique,  as  discussed 

in  [ 10– 12]  provides  valuable  insights  into  the  runtime  behavior  of  malware.  Memory dump  analysis  is  particularly  effective  in  identifying  malware  that  employs  evasion 

techniques,  as  it  allows  for  the  examination  of  the  system  state  at  the  time  of  execution, at  which  point  most  obfuscation  techniques  have  run  their  course.  This  approach
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enhances  the  capability  to  classify  and  analyze  complex  malware,  underscoring  its 

importance  in  the  comprehensive  examination  of  cyber  threats. 

 2.6 

 QR  Codes 

Quick  Response  (QR)  codes  are  2D  bar  codes  that  can  encode  virtually  any  type  of 

data,  and  are  easily  readable  by  devices  such  as  smartphone  cameras.  A  QR  code  can 

encode  up  to  7089  digits,  4296  alphanumeric  characters,  2953  bytes,  or  1817  Kanji 

characters,  although  these  values  may  be  reduced,  depending  on  the  level  of  error 

correction  that  is  applied  [ 28]. 

For  our  purposes,  QR  codes  provide  a  basis  for  applying  image-based  learning 

techniques  to  virtually  any  type  of  data.  The  research  in  [ 36]  exemplifies  this  by evaluating  various  pre-trained  CNN  models,  including  AlexNet  and  MobileNetv2, 

to  accurately  identify  the  source  printer  of  QR  codes.  This  example  highlights  the 

potential  for  merging  QR  code  versatility  with  CNN  image-based  learning  capabil-

ities,  offering  a  novel  pathway  for  data  classification  that  has  the  potential  to  sig-

nificantly  enhance  information  security.  The  paper  [ 29]  explores  another  approach which  uses  CNNs  to  classify  malware  based  on  QR  code  representations  of  data. 

 2.7 

 Aztec  Codes 

Aztec  codes  are  similar  to  QR  codes,  but  they  can  be  more  space-efficient  for  a  given 

amount  of  data.  An  Aztec  code  can  encode  a  maximum  of  3832  numeric  digits,  3067 

alphabetic  characters,  or  1914  bytes  of  data  [ 5]. As  far  as  the  authors  are  aware, Aztec  codes  have  not  been  previously  studied  in  the  context  of  malware  analysis,  or 

in  conjunction  with  image-based  learning  techniques. 

3 

Datasets 

In  this  section,  we  provide  an  overview  of  the  datasets  used  in  this  research.  We 

consider  two  distinct  datasets,  one  of  which  consists  of  dynamic  features  extracted 

from  obfuscated  malware,  while  the  other  consists  of  static  features  extracted  from 

typical  malware. 
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 3.1 

 CIC-MalMem-2022 

The  paper  [ 9]  focuses  on  improving  malware  detection,  specifically  targeting  obfuscated  malware.  The  study  uses  the  VolMemLyzer  tool,  a  memory  feature  extractor, 

to  better  identify  hidden  and  obfuscated  malware.  A  significant  contribution  is  the 

creation  of  the  MalMemAnalysis-2022  dataset,  which  includes  over  2500  malware 

samples  in  the  broad  categories  of  spyware,  ransomware,  and  Trojan  horse,  as  well 

as  a  representative  benign  set.  The  authors  employ  a  stacked  ensemble  ML  model 

for  detection,  achieving  high  accuracy  and  F1-score  for  the  binary  classification 

problem. 

Based on the work  in  [  9], the  CIC-MalMem-2022  dataset  was  published  [ 8]. 

This  dataset  includes  features  extracted  using  a  memory  dump  operation  in  debug 

mode.  This  method  is  specifically  designed  to  prevent  the  dumping  process  itself 

from  being  recorded  in  the  memory  dumps,  which  ensures  that  only  the  relevant  data 

is  captured.  The  dataset  consists  of  a  total  of  58,596  samples  extracted  from  2916 

malware  executables  and  2916  benign  executables,  with  a  minimum  of  100  and  a 

maximum  of  200  samples  per  executable.  The  malware  executables  are  from  three 

major  categories,  namely,  ransomware,  spyware,  and  Trojan  horse. 

From  this  dataset,  we  use  6000  samples  chosen  randomly  for  each  of  the  three 

malware  categories,  and  6000  benign  samples.  These  24,000  samples  are  the  basis 

for  training  and  testing  our  multiclass  models  using  the  learning  techniques  discussed 

in  Sect. 5,  below.  The  distribution  of  samples  from  the  CIC-Malmem-2022  dataset is  given  in  Fig. 1. 
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Trojan 

Spyware 

Ransomware 

Fig.  1  CIC-MalMem-2022  class  distribution
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 3.2 

 BODMAS 

The  BODMAS  dataset  [ 37]  is  a  collaborative  effort  between  Blue  Hexagon  and  the University  of  Illinois  at  Urbana-Champaign  (UIUC),  and  it  represents  a  valuable 

resource  for  the  cybersecurity  research  community.  This  dataset  consists  of  57,293 

malware  samples  and  77,142  benign  samples,  collected  between  August  2019  and 

September  2020.  This  substantial  collection,  which  includes  samples  spanning  581 

malware  families,  is  notable  for  including  date  of  origin  of  each  sample,  thus  pro-

viding  a  resource  for  temporal-based  analysis  and  classification  of  malware. 

The  feature  vectors  for  each  of  the  malware  sample  was  extracted  using  the  LIEF 

project,  similar  to  the  EMBER  [ 2]  dataset.  Executable  file  formats  share  common features  including  symbols,  relocations,  and  entry-point.  Each  malware  sample  has 

a  feature  vector  of  dimension  2384  and  associated  metadata.  This  metadata  includes 

details  such  as  timestamp,  label  (malware  or  benign),  and  the  specific  malware  fam-

ily  of  the  sample.  The  feature  vectors  consist  of  features  parsed  from  the  PE  file, 

including  the  SHA256  hash  of  the  file,  header  characteristics,  entry  points,  entropy, 

and  various  histograms  [ 2]. 

Since  the  BODMAS  dataset  consists  of  approximately  58,000  malware  samples 

from  581  malware  families,  we  selected  a  handful  of  the  most  frequently  occurring 

families  for  our  analysis,  along  with  a  subset  of  benign  samples.  The  distributions 

of  the  benign  class  and  the  top  10  families  in  the  BODMAS  dataset  are  shown  using 

Fig. 2.  We  have  selected  13,324  samples  consisting  of  the  top  three  malware  families, namely,  Sfone,  Wacatac,  and  Upatre,  along  with  5200  benign  samples  for  a 

total  of  18,524  samples.  Similar  to  the  CIC-MalMem-2022  dataset,  we  apply  the 

learning  techniques  discussed  in  Sect. 5, below. 

4 

Implementation 

This  section  provides  a  comprehensive  overview  of  the  software  and  libraries  used 

in  our  research.  Here,  we  introduce  each  chosen  platform  and  library,  specifying  its 

role,  benefits,  and  the  reason  for  its  selection. 

 4.1 

 Machine  Learning  Tools 

The  implementation  of  our  research  involves  data  exploration  of  two  datasets.  Along 

with  this,  we  also  explores  feature  selection  and  model  training.  The  models  vary 

from  classical  ML  to  pre-trained  DL  models.  These  models  varying  greatly  in  the 

amount  of  complexity,  and  they  required  different  libraries  to  be  used.  Due  to  the 

availability  of  necessary  packages,  Python  3.9  was  used  throughout  our  experiments. 

Specifically,  the  following  Python  libraries  were  used. 
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Fig.  2  Benign  and  BODMAS  class  distribution

• scikit-learn—The  Python  library  scikit-learn is  designed  for  machine 

learning  [ 30]. It  offers  tools  for  data  preprocessing,  model  building,  and evaluation.  It  also  includes  algorithms  for  both  supervised  and  unsupervised 

learning  such  as  regression,  decision  trees,  clustering,  and  Support  Vector 

Machines.  scikit-learn is  designed  to  work  with  NumPy  and  SciPy.  We 

use  scikit-learn for  some  of  the  classical  ML  algorithms  and  for  feature 

selection.  scikit-learn was  also  used  to  calculate  our  performance  metrics 

(accuracy,  F1-score)  for  our  classic  ML  models. 

• TensorFlow—TensorFlow  is  an  open-source  library  for  numerical  computation 

and  ML  [ 35].  It  provides  a  flexible  platform  for  building  and  deploying  a  wide range  of  ML  models.  TensorFlow  supports  deep  learning  algorithms  along  with 

many  traditional  ML  models.  The  library  includes  tools  for  data  processing,  model 

creation,  training,  and  inference.  TensorFlow  was  used  to  form  our  generated  QR 

and  Aztec  codes  into  image  datasets.  It  was  also  used  to  construct  and  train  our 

Convolutional  Neural  Networks. 

 4.2 

 Utilities 

The  following  packages  and  libraries  were  also  used  in  our  research.  These  tools  are 

not  directly  used  for  ML,  but  they  are  necessary  to  prepare  the  data  for  our  models. 
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• Pandas—Pandas  is  a  Python  library  for  data  manipulation  and  analysis  [ 24].  It provides  data  structures  including  DataFrame  and  Series  for  handling  tabular  data. 

Pandas  is  equipped  with  tools  for  reading  and  writing  data  between  in-memory 

data  structures  and  different  file  formats.  We  use  this  library  for  the  manipulation 

and  preprocessing  of  our  data. 

• NumPy—NumPy  is  a  fundamental  package  for  scientific  computing  in 

Python  [ 21]. It  provides  support  for  large  arrays  and  matrices,  along  with  a  collection  of  mathematical  functions  to  operate  on  these  arrays.  NumPy  was  used  along 

with  Pandas  to  enabling  efficient  processing  of  the  data. 

• Qrcode—The  Python  library  qrcode is  designed  to  generate  QR  codes  [ 27].  It allows  for  the  creation  and  customization  of  QR  codes  that  can  encode  a  wide 

range  of  data  types,  including  URLs,  text,  or  numerical  information.  This  library 

provides  a  simple  interface  for  QR  code  generation,  offering  flexibility  in  terms 

of  size,  border,  and  error  correction  levels.  Of  course,  we  employ  this  library  to 

create  QR  representations  of  our  data. 

• AztecCode—AztecCode  from  aztec_code_generator is  a  Python  library 

designed  for  creating  Aztec  codes,  a  type  of  2D  barcode  that  can  store  a  sig-

nificant  amount  of  data  within  a  small  space  [ 4]. Similar  to  QR  codes,  but with  significant  differences  in  design  and  capacity,  Aztec  codes  are  used  in 

various  applications,  especially  where  space  and  readability  are  critical.  The 

aztec_code_generator library  provides  functionality  to  generate  and  cus-

tomize  these  codes,  including  setting  size,  encoding  data,  and  adjusting  error  cor-

rection  levels.  This  library  was  used  to  generate  the  Aztec  code  representation  of 

the  data  used  in  our  experiments. 

• Operating  System—The  standard  Python  library  OS provides  a  way  to  use  oper-

ating  system-dependent  functionality  [ 22].  It  includes  functions  for  interacting with  the  file  system,  such  as  creating,  listing,  and  deleting  files  and  directories.  We 

primarily  use  OS  for  data  organization  during  the  image  generation  process. 

• Pillow—The  Image module  from  Pillow,  the  Python  Imaging  Library,  supports 

opening,  manipulating,  and  saving  many  different  image  file  formats  [ 25]. It  provides  a  wide  array  of  image  processing  capabilities,  including  image  transforma-

tions  (e.g.,  rotation  and  scaling),  filtering,  enhancement,  and  so  on.  We  use  Pillow 

for  post  processing  on  our  generated  QR  and  Aztec  codes. 

 4.3 

 Development  Platforms 

Google  Colab  was  an  essential  part  of  our  model  training.  Here,  we  provide  some 

details  on  our  use  of  Colab  and  also  our  local  computer  setup. 

• Google  Colab—Throughout  our  experiments,  the  Google  Colab  platform  was 

used  extensively  for  data  processing,  data  conversion,  and  training  learning  mod-

els.  The  platform  provides  access  to  most  of  the  libraries  discussed  above,  includ-

ing  TensorFlow  and  scikit-learn.  The  platform  offers  multiple  environment
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Table  1  Local  machine 

System

Specification 

CPU

AMD  Ryzen  5600X 

CPU  clock  rate

4.6  GHz 

GPU

NVIDIA  RTX  3080  (10  GB) 

CUDA  core

8704 

Cores

6 

RAM

32  GB 

OS

MS  Windows  10 

runtimes  with  the  option  of  choosing  GPUs.  Using  GPU  hardware  acceleration 

reduced  the  training  times  for  our  CNNs  by  a  factor  of  about  four,  as  compared  to 

the  CPU  hardware  accelerators. 

• Local  Computer—In  addition  to  Google  Colab,  we  used  a  local  desktop  setup 

to  execute  some  of  our  experiments.  The  local  setup  served  multiple  purposes, 

including  visualization  and  data  exploration,  as  well  as  for  data  preprocessing 

and  cleaning.  We  also  generated  the  QR  and  Aztec  code  images  using  this  local 

machine.  The  operations  were  performed  locally  using  Visual  Studio  Code  by 

creating  a  Python  3.9  virtual  environment.  The  specifications  of  the  local  machine 

are  given  in  Table  1. 

5 

Methodology 

In  this  section  we  describe  the  machine  learning  models  and  methods  used  to  generate 

our  experimental  results.  This  section  introduces  each  learning  method  and  provides 

reasons  why  these  methods  were  used  in  the  context  of  this  research. 

 5.1 

 Feature  Selection 

Considering  the  large  number  of  features  in  our  datasets,  feature  reduction  is  an 

important  aspect  to  this  research.  For  this  purpose  we  consider  the  following  feature 

selection  methods. 

SelectKBest from  scikit-learn is  a  statistical  method  used  to  select 

features  that  have  the  most  significant  relationship  with  the  output  variable.  This 

works  by  applying  a  chosen  statistical  test  to  each  feature  to  determine  its  strength  of association  with  the  output  variable.  The  K in  SelectKBest refers  to  the  number 

of  features  to  select  based,  on  their  ranking.  We  selected  features  after  normalizing 

using  the  standard  scaler. 
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Statistical  tests  available  in  SelectKBest include  the  ANOVA  F-test  for  con-

tinuous  data  and  .  χ 2 for  categorical  data.  We  have  used  .  χ 2 for  selecting  our  .  K  best features.  This  method  is  effective  in  feature  reduction,  helping  to  improve  model 

performance  by  eliminating  irrelevant  or  redundant  features.  It  is  particularly  useful 

in  helping  us  reduce  the  number  of  features  before  converting  the  data  into  a  QR  or 

Aztec  code,  since  these  representation  can  only  hold  a  limited  number  of  bytes. 

 5.2 

 Machine  Learning  Models 

In  this  section,  we  describe  all  of  the  ML  models  used  in  this  research  including  the 

classical  and  deep  learning  models.  We  also  mention  why  each  model  was  chosen 

for  this  research. 

5.2.1

Random  Forest 

The  Random  Forest  classifier  from  scikit-learn is  an  ML  algorithm  for  classi-

fication  tasks.  It  operates  by  constructing  multiple  decision  trees  during  the  training 

phase  and  outputs  the  class  that  is  the  mode  of  the  classes  of  the  individual  trees.  This approach  to  combining  multiple  models  to  improve  the  overall  result  is  an  example 

of  ensemble  learning. 

The  Random  Forest  algorithm  can  handle  both  numerical  and  categorical  data  and 

is  capable  of  dealing  with  large  datasets  efficiently.  Additionally,  it  provides  measures 

of  feature  importance,  which  can  be  used  for  feature  selection.  Random  Forest  is 

widely  used  across  various  fields  for  its  robustness  against  overfitting,  compared  to  a 

single  decision  tree,  making  it  a  popular  choice  for  complex  classification  problems. 

5.2.2

Support  Vector  Machine 

Support  Vector  Machine  (SVM)  from  scikit-learn is  a  supervised  ML  algo-

rithm  used  for  both  classification  and  regression  tasks,  though  it  is  primarily  known 

for  classification.  The  core  principle  of  SVM  is  to  find  the  hyperplane  that  best 

divides  a  dataset  into  classes.  SVM  is  distinctive  for  its  use  of  kernels,  which  trans-

form  the  input  data  space  into  a  higher  dimensional  space  where  it  becomes  easier 

to  separate  the  data  linearly.  This  makes  SVM  effective  for  complex  datasets  where 

the  relationship  between  features  may  not  be  clear. 

The  performance  of  SVMs  depend  heavily  on  the  selection  of  the  kernel  and 

the  tuning  of  the  hyperparameters,  which  can  sometimes  make  it  challenging  to 

optimize.  SVM  is  widely  utilized  in  applications  ranging  from  image  classification 

to  bioinformatics,  due  to  its  robustness  and  versatility. 
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Support  Vector  Classifier  (SVC)  is  a  generalization  of  SVM  to  the  multiclass  case. 

SVC  works  by  finding  multiple  hyperplanes  that  best  separate  different  classes  with 

the  maximum  margin.  This  makes  SVC  particularly  effective  for  complex  classifi-

cation  problems  where  the  decision  boundary  is  not  immediately  obvious. 

5.2.3

Multilayer  Perceptron 

The  Multilayer  Perceptron  (MLP)  classifier  from  scikit-learn is  a  basic  type 

of  artificial  neural  network  that  is  used  for  classification  and  regression  tasks.  Unlike 

simpler  linear  models,  MLP  can  model  complex  nonlinear  relationships  between 

inputs  and  outputs.  An  MLP  includes  at  least  three  layers  consisting  of  an  input 

layer,  one  or  more  hidden  layers,  and  an  output  layer.  The  nodes,  or  neurons,  in  each 

layer  are  fully  connected  to  those  in  the  next  layer,  and  activation  functions  serve  to 

introduce  nonlinearity  to  the  learning  process  [ 34]. 

Training  an  MLP  involves  adjusting  the  weights  of  the  connections  through  a 

process  known  as  backpropagation,  which  minimizes  the  difference  between  the 

actual  and  predicted  outputs.  MLP  is  particularly  useful  for  problems  where  the 

relationship  between  input  and  output  is  not  linearly  separable.  The  performance  of 

an  MLP  is  influenced  by  various  factors,  including  the  number  of  hidden  layers,  the 

size  of  these  layers,  and  the  choice  of  activation  function.  MLPs  are  widely  used  in 

a  variety  of  fields,  including  speech  recognition  and  natural  language  processing. 

5.2.4

Convolutional  Neural  Networks 

Convolutional  Neural  Networks  (CNNs)  are  a  basic  class  of  deep  neural  networks, 

widely  utilized  in  the  field  of  computer  vision.  Developed  with  inspiration  from  the 

human  visual  cortex,  CNNs  excel  at  automatically  and  adaptively  learning  spatial 

hierarchies  of  features  from  image  data.  They  consist  of  multiple  layers,  including 

convolutional  layers  that  capture  patterns  such  as  edges  and  textures,  pooling  layers 

that  reduce  dimensionality  and  computational  complexity,  and  fully  connected  layers 

that  classify  the  images  based  on  the  features  extracted  by  convolutional  and  pooling 

layers. 

Our  CNNs  are  implemented  using  the  keras  library,  a  high-level  neural  networks 

API  that  runs  on  top  of  TensorFlow  [ 35]. Keras  provides  a  user-friendly  interface  for building  and  training  CNN  models,  offering  a  flexible  and  efficient  way  to  design 

deep  learning  models  with  just  a  few  lines  of  code. 

Due  to  the  different  features  available  with  the  two  datasets  we  consider,  we 

employ  two  distinct  CNN  architectures.  Here,  we  describe  both  of  these  architectures 

in  some  detail. 

• CNN  for  CIC-MalMem-2022  dataset—Our  CNN  architecture  for  the  CIC-

MalMem-2022  dataset  has  an  input  size  of.128 × 128 × 1 which  is  the  size  of  the 

QR  and  Aztec  codes  generated  from  the  dataset.  The  initial  convolutional  layer
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consists  of  32  filters  of  size.3 × 3,  which  yields  an  output  of  size.126 × 126 × 32. 

There  are  four  more  convolutional  layers  which  have  output  sizes  of.61 × 61 × 64, 

.28 × 28 × 128,.12 × 12 × 256,  and.4 × 4 × 512,  respectively.  Each  convolutional 

layer  is  followed  by  a  max  pooling  layer  and  the  final  output  of  all  these  layers 

is.2 × 2 × 512.  This  is  then  flattened  and  forwarded  to  three  dense  layers  for  clas-

sification.  Our  CNN  for  the  CIC-MalMem-2022  dataset  is  illustrated  in  Fig. 3a. 

• CNN  for  BODMAS  dataset—Our  CNN  for  the  BODMAS  dataset  has  a  similar 

structure  as  that  for  the  CIC-MalMem-2022  dataset.  However,  for  this  CNN 

the  input  layer  is  .395 × 395 × 1,  since  this  is  the  size  of  our  QR  images  gener-

ated  from  the  BODMAS  data.  This  slightly  alters  the  remaining  parts  of  the  model. 

The  initial  convolutional  layer  consists  of  32  filters  of  size.3 × 3,  which  yields  an 

output  of  size  .393 × 393 × 32.  There  are  four  more  convolutional  layers  which 

have  output  sizes  of  .194 × 194 × 64,  .95 × 95 × 128,  .45 × 45 × 256,  and  . 20 ×

20 × 512,  respectively.  Each  convolutional  layer  is  followed  by  a  max  pooling 

layer  and  the  final  output  of  all  these  layers  is.10 × 10 × 512.  This  is  then  flattened 

and  forwarded  to  three  dense  layers  for  classification.  The  CNN  architecture  that 

we  use  for  the  BODMAS  dataset  is  illustrated  in  Fig. 3b. 

6 

Experiments  and  Results 

This  section  is  split  into  two  main  parts,  each  describing  the  results  for  one  of  the 

two  datasets  that  we  consider.  We  summarize  the  overall  results  at  the  end  of  this 

section  and  we  discuss  our  main  findings. 

 6.1 

 CIC-MalMem-2022  Results 

As  discussed  above,  for  the  CIC-MalMem-2022  dataset,  each  sample  consists  of  55 

features.  We  first  consider  feature  analysis  to  understand  the  relative  importance  of 

features  in  the  dataset. 

For  feature  selection,  we  use  SelectKBest  from  scikit-learn,  with  the  .  χ 2

option.  SelectKBest  determines  the  top  .  K  features  that  have  the  highest  .  χ 2 values with  respect  to  the  target  variable.  The  .  χ 2 test  measures  the  dependence  between stochastic  variables,  making  this  method  suitable  for  determining  the  statistical  significance  of  features.  The  top  10  features  of  highest  importance  in  the  CIC-MalMem-

2022  dataset  are  listed  in  Table  2; a  complete  list  of  all  55  features  is  given  in  Table  7 

in  Appendix. 

[image: Image 3]
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(a) Model for CIC-MalMem-2022 dataset 

(b) Model for BODMAS dataset 

Fig.  3  CNN  architectures 

6.1.1

Classic  Learning  Techniques 

In  this  section,  we  consider  experiments  involving  Random  Forest,  SVC,  and  MLP 

classifiers.  The  following  experiments  were  conducted  using  the  entire  set  of  55 

features.  We  also  experimented  with  the  reduced  set  of  10  features  in  Table  2, but the  results  are  similar. 

When  trained  on  the  entire  set  of  55  features  with  1000  estimators,  Random  Forest 

achieves  an  accuracy  of  0.7979.  From  the  confusion  matrix  in  Fig. 4a,  we  observe that  all  the  benign  examples  were  classified  correctly;  however  the  classifier  had 

considerable  difficulty  distinguishing  between  the  three  malware  categories.  The 

F1-score  for  this  classifier  is  0.7980

[image: Image 4]
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Table  2  Top  10  features  for  CIC-MalMem-2022  dataset 

Rank

Feature  name 

1

malfind.commitCharge 

2

handles.nhandles 

3

handles.nevent 

4

handles.nsection 

5

handles.nthread 

6

dlllist.ndlls 

7

handles.nfile 

8

handles.nkey 

9

handles.nmutant 

10

handles.nsemaphore 

1200 
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1250 

Benign 

1220

1

8

21 
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Fig.  4  Confusion  matrices  for  classic  techniques  (CIC-MalMem-2022)
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Table  3  Accuracies  and  F1-scores  (CIC-MalMem-2022  dataset) 

Measure

Features

Random  forest

SVC

MLP 

Accuracy

55

0.7979

0.5343

0.5391 

10

0.7689

0.5395

0.5483 

F1-score

55

0.7980

0.4597

0.4886 

10

0.7690

0.4615

0.4710 

Table  4  QR  parameters  for  CIC-MalMem-2022 

Parameter

Value 

version

1 

error_correction

ERROR_CORRECT_L 

box_size

5 

border

1 

When  trained  on  the  set  of  55  features,  SVC  achieves  an  accuracy  of  0.5343.  The 

confusion  matrix  in  Fig. 4b  further  emphasizes  the  poor  performance  of  this  model. 

The  F1-score  achieved  using  this  method  is  0.4597  which  is  also  much  worse  than 

the  Random  Forest. 

When  trained  on  the  full  55  features,  our  MLP  classifier  achieves  0.5391  accuracy. 

The  confusion  matrix  in  Fig. 4c  shows  that  this  MLP  model  tends  to  make  different types  of  mistakes  than  the  SVC.  The  F1-scores  achieved  by  our  MLP  model  is  0.4886, 

which  is  similar  to  that  of  the  SVC. 

Table  3  summarizes  the  accuracies  and  F1-scores  for  the  Random  Forest,  SVC, and  MLP  classifiers,  both  with  and  without  feature  reduction.  We  observe  that  feature 

selection  has  little  effect  on  the  performance  of  these  models. 

6.1.2

QR  Code  Experiments 

To  create  our  QR  representations  for  the  CIC-MalMem-2022  dataset,  the  top  10 

features  were  used.  Figure  5a  through  d  give  examples  of  QR  representations  of benign,  ransomware,  spyware,  and  Trojan,  respectively. 

The  parameters  used  to  generate  the  QR  codes  for  this  dataset  are  given  in  Table  4. 

The  generated  images  were  of  size .175 × 175 pixels  each.  These  were  then  resized 

to  images  of  size .128 × 128 before  being  used  as  input  to  the  CNN. 

We  split  the  24,000  samples  70:15:15  for  train:validation:test.  The  train  and  val-

idation  split  was  used  to  train  on  the  CNN  model  described  in  Sect. 5. The  loss  and accuracy  graphs  are  shown  in  Fig. 6.  These  graphs  show  that  the  model  converged after  two  epochs,  with  no  signs  of  overfitting.  The  test  accuracy  achieved  for  the 

CNN  on  the  QR  image  representation  was  0.9998  for  this  multiclass  classification 

problem. 

[image: Image 5]

[image: Image 6]
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(a) Benign

(b) Ransomware 

(c) Spyware

(d) Trojan 

Fig.  5  Examples  of  QR  code  representations  (CIC-MalMem-2022) 

Fig.  6  QR-CNN  accuracy  and  loss  graphs  for  CIC-MalMem-2022

[image: Image 7]
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(a) Benign

(b) Ransomware 

(c) Spyware

(d) Trojan 

Fig.  7  Examples  of  Aztec  code  representations  (CIC-MalMem-2022) 

6.1.3

Aztec  Code  Experiments 

To  create  the  Aztec  code  representation,  as  for  the  QR  codes,  we  use  the  top  10 

features.  Figure  7a  through  d  give  typical  examples  of  Aztec  code  representations for  the  benign,  ransomware,  spyware,  and  Trojan  classes,  respectively. 

The  only  parameter  that  we  employ  when  generating  our  Aztec  code  represen-

tations  is .module_size = 5.  The  generated  images  are  of  size.175 × 175 pixels, 

and  these  were  then  resized  to  images  of  size.128 × 128 so  as  to  be  suitable  as  input 

to  the  CNN. 

We  split  the  samples  70:15:15  for  train:validation:test.  The  train  and  validation 

split  was  used  to  train  the  CNN  architecture  described  in  Sect. 5. The  loss  and accuracy  graphs  for  this  model  are  shown  in  Fig. 8.  As  with  the  QR-CNN  results  in Fig. 6,  the  graphs  in  Fig. 8  show  that  the  model  converges  after  two  epochs,  with  no indication  of  overfitting. 

The  test  accuracy  achieved  for  the  CNN  on  the  QR  image  representation 

was  0.9986  for  this  multiclass  classification  problem.  While  this  is  marginally  less 

than  the  accuracy  achieved  using  the  QR  code  representation,  both  represent  nearly 

perfect  classification. 

[image: Image 8]
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Fig.  8  Aztec-CNN  accuracy  and  loss  graphs  for  CIC-MalMem-2022 

 6.2 

 BODMAS  Results 

In  this  section,  we  conduct  analogous  experiments  as  the  previous  section,  but  based 

on  the  BODMAS  dataset,  rather  than  the  CIC-MalMem-2022  dataset.  We  first  discuss 

feature  selection  before  turning  our  attention  to  our  experimental  results. 

6.2.1

Feature  Selection 

Recall  that  each  BODMAS  sample  consists  of  a  2384  dimensional  vector,  which  was 

extracted  using  the  LIEF  project.  For  the  classic  ML  models,  we  experiment  with 

the  top  50  and  the  top  150  features.  Similarly,  our  CNN  models  are  trained  on  QR 

and  Aztec  images  derived  from  the  same  top  50  and  top  150  features. 

Figure  9  shows  the  distribution  of  the  top  150  features  among  the  2384  BODMAS 

features.  This  figure  highlights  the  fact  that  most  of  the  features  are  of  little—if  any— 

relevance  for  classification. 

The  feature  selection  for  the  BODMAS  dataset  was  done  by  selecting  the  top  50 

features  using  SelectKBest with  ANOVA  as  the  a  statistical  technique.  The  10 

most  significant  features  for  the  BODMAS  dataset  are  shown  in  Table  5. 

6.2.2

Classic  Learning  Techniques 

When  trained  on  the  set  of  50  features  with  1000  estimators,  the  Random  Forest 

achieves  an  accuracy  of  0.946.  From  the  confusion  matrix  in  Fig. 10a,  we  observe that  almost  all  the  benign  examples  are  classified  correctly,  while  the  classifier  has 

more  difficulty  with  the  three  malware  classes. 

22

A. Khadilkar and M. Stamp

60 

40 

Frequency 

20 

0 

5 

0.0010 0.0028 0.0046 0.0064 0.0083 0.0101 0.0119 0.0137 0.0156 0.0174 0.0192 0.0210 0.0228 0.0247 0.026 0.0283 0.0301 0.0320 0.0338 0.0356 

Fig.  9  Feature  importance  distribution  in  BODMAS 

Table  5  Top  10  features  for  BODMAS  dataset 

Rank

Feature  number

Importance 

1

584

0.036483 

2

473

0.026751 

3

1283

0.025871 

4

137

0.024794 

5

44

0.024691 

6

506

0.024518 

7

62

0.024090 

8

38

0.024042 

9

499

0.023880 

10

27

0.022573 

When  trained  on  50  features,  SVC  achieves  an  accuracy  of  0.9190,  while  our 

MLP  classifier  achieves  0.9482  accuracy.  The  confusion  matrices  in  Fig. 10b  and  c show  us  that  both  of  these  classifiers  more  often  misclassify  Sfone as  Upatre, as  

compared  to  any  other  misclassification. 

6.2.3

QR  Code  Experiments 

To  generate  QR  representations  of  the  data,  the  top  50  features  were  used.  Figure  11a through  d  are  examples  of  the  benign,  Sfone,  Upatre,  and  Wacatac classes, 

respectively. 

[image: Image 9]
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Fig.  10  Confusion  matrices  for  classic  techniques  (BODMAS  dataset) 

Table  6  QR  parameters  for  BODMAS  dataset 

Parameter

Value 

version

1 

error_correction

ERROR_CORRECT_L 

box_size

5 

border

1

[image: Image 10]
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(a) Benign

(b) Sfone 

(c) Upatre

(d) Wacatac 

Fig.  11  Examples  of  QR  code  representations  (BODMAS) 

The  parameters  used  to  generate  these  QR  are  given  in  Table  6.  The  generated images  are  of  size  .395 × 395 pixels.  These  were  resized  to  .128 × 128 images  for 

use  as  input  to  our  CNN. 

To  train  our  CNN  model,  the  18,524  samples  were  split  80:20  to  train:test.  The 

validation  split  was  not  done  in  this  case  due  to  the  smaller  number  of  samples  avail-

able.  The  loss  and  accuracy  graphs  for  this  CNN  model  are  shown  in  the  following 

Fig. 12, where  we  see  some  indications  of  overfitting. 

The  test  accuracy  achieved  for  the  CNN  on  the  QR  image  representation 

was  0.8271  for  this  multiclass  problem.  Note  that  this  accuracy  is  less  than  we 

achieved  with  each  of  our  three  classic  ML  techniques. 

We  repeated  this  experiment  using  150  features.  The  loss  and  accuracy  graphs  for 

this  case are shown in Fig. 13. In  this  case,  there  appears  to  be  less  overfitting,  as compared  to  the  model  based  on  50  features. 

The  test  accuracy  achieved  for  the  CNN  based  on  150  features  is  0.8971.  This 

result  improves  significantly  on  the  case  where  50  features  are  considered,  but  it  is 

still  less  than  our  best  classic  ML  technique. 

[image: Image 11]

[image: Image 12]
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Fig.  12  QR-CNN  accuracy  and  loss  graphs  for  BODMAS  (50  features) 

Fig.  13  QR-CNN  accuracy  and  loss  graphs  for  BODMAS  (150  features) 

6.2.4

Aztec  Code  Experiments 

For  the  Aztec  code  representations  of  the  data,  we  follow  the  same  procedure  as 

was  used  for  our  QR  code  experiments,  above.  Specifically,  we  experiment  using  50 

features,  then  we  repeat  the  entire  set  of  experiments  based  on  150  features. 

Figure  14a  through  d  are  representative  examples  of  Aztec  codes,  based  on  50 

features,  for  the  benign,  Sfone,  Upatre,  and  Wacatac classes,  respectively.  As 

above,  the  only  parameter  used  fir  these  Aztec  codes  was .module_size = 5. 

The  generated  Aztec  images  are  of  size.375 × 375 pixels.  These  are  directly  used 

as  input  to  our  CNN  architecture,  which  is  described  in  Sect. 5. Note  that  no  resizing is  necessary.  Also,  when  training,  we  use  an  80:20  split  for  training  and  testing.  As 

with  the  QR  code  case,  a  validation  split  was  not  used  in  this  case. 

[image: Image 13]

[image: Image 14]
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(a) Benign

(b) Sfone 

(c) Upatre

(d) Wacatac 

Fig.  14  Examples  of  Aztec  code  representations  (BODMAS) 

Fig.  15  Aztec-CNN  accuracy  and  loss  graphs  for  BODMAS  (50  features) 

The  loss  and  accuracy  graphs  for  this  case  are  shown  in  Fig. 15.  It  is  clear  that  the model  starts  overfitting  from  epoch  three.  The  test  accuracy  achieved  for  the  CNN 

on  the  Aztec  image  representation  was  0.7821  for  this  multiclass  problem. 

We  repeat  the  experiment  above  using  Aztec  images  generated  from  150  features. 

All  parameters  are  the  same  for  this  case  as  for  50  features  case.  The  loss  and  accuracy

[image: Image 15]
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Fig.  16  Aztec-CNN  accuracy  and  loss  graphs  for  BODMAS  (150  features) 

graphs  for  this  experiment  are  shown  in  the  following  Fig. 16.  It  is  again  clearly  visible that  the  model  is  significantly  overfitting  the  data.  The  test  accuracy  achieved  for  the 

CNN  on  the  Aztec  image  representation  based  on  150  features  is  0.8344. 

 6.3 

 Discussion 

Tables  8  and  9  in  Appendix  list  the  hyperparameters  tested  (via  grid  search)  for  our classic  machine  learning  and  CNN  experiments,  respectively.  In  these  tables,  we  have 

also  listed  the  accuracies  obtained  for  each  case.  Note  that  the  accuracies  in  these 

tables  are  marginally  better  than  the  accuracies  given  in  Sects. 6.1  and  6.2  above,  as here  we  have  considered  early  stopping. 

The  accuracies  for  the  various  models  tested  over  the  two  datasets  are  summarized 

in  the  form  of  a  bar  graph  in  Fig. 17.  Note  that  for  the  CNN  experiments  on  the BODMAS  dataset,  we  have  used  the  “150  Features”  results  from  Table  9,  which were  better  than  the  “50  Features”  results  for  both  the  QR  and  Aztec  codes. 

From  Fig. 17,  we  observe  that  the  QR  and  Aztec  codes  far  outperform  classic techniques  on  the  obfuscated  CIC-MalMem-2022  dataset.  However,  for  the  BODMAS  dataset,  the  situation  is  very  different,  with  all  three  of  the  classic  learning 

techniques  tested  outperforming  our  CNN  architectures,  regardless  of  whether  the 

CNN  was  trained  on  QR  or  Aztec  codes. 
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Fig.  17  Accuracy  comparison  graph 
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Conclusion  and  Future  Work 

In  recent  years,  malware  detection  and  classification  based  on  image  analysis  has 

received  considerable  attention  in  the  literature.  The  method  used  to  construct  images 

from  malware  can  have  a  major  impact  on  the  success  of  such  techniques,  yet  this 

aspect  of  image-based  malware  analysis  has  received  relatively  little  attention. 

In  this  paper,  we  provided  an  empirical  analysis  of  the  utility  of  QR  and  Aztec 

codes  when  used  to  provide  image  representations  of  features  extracted  from  mal-

ware.  We  compared  CNN  models  trained  on  these  code  images  to  learning  techniques 

trained  directly  on  the  features,  using  two  distinct  datasets.  Based  on  these  experi-

ments,  we  found  that  for  the  CIC-MalMem-2022  dataset—which  consists  of  dynamic 

features  extracted  from  obfuscated  malware—the  QR  and  Aztec  code  results  were 

remarkably  good.  On  the  other  hand,  for  the  more  typical  malware  samples  in  the 

BODMAS  dataset—which  consists  of  static  features—our  QR-CNN  and  Aztec-CNN 

results  did  not  improve  on  other,  non-image  learning  approaches.  That  is,  classic  ML 

techniques  trained  on  non-image  features  performed  better  on  the  BODMAS  than 

our  more  complex  QR  and  Aztec  image-based  techniques. 

There  are  many  possible  avenues  for  future  work.  Perhaps  most  urgently,  we 

would  like  to  understand  why  the  QR  and  Aztec  codes  perform  extremely  well  on 

the  CIC-MalMem-2022  dataset,  yet  yielded  inferior  results  on  the  BODMAS  dataset. 

There  are  at  least  three  possible  reasons  for  this  discrepancy. 

• The  CIC-MalMem-2022  dataset  is  derived  from  obfuscated  malware,  while  BOD-

MAS  is  not.  Perhaps  code-based  images  are  superior  on  more  challenging  cases, 

such  as  obfuscated  malware. 

• The  features  in  the  CIC-MalMem-2022  dataset  were  determined  via  dynamic 

analysis,  while  the  BODMAS  features  are  based  on  static  analysis.  It  is  conceivable
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that  the  dynamic  features  are  more  informative,  and  that  CNNs  trained  on  code-

based  images  are  better  able  to  take  advantage  of  this  additional  information. 

• The  CNNs  that  we  trained  on  the  BODMAS  dataset  showed  clear  signs  of  over-

fitting.  Perhaps  CNNs  would  achieve  stronger  results  on  this  dataset  if  we  reduce 

this  overfitting.  Various  techniques  are  available  that  can  often  mitigate  overfitting 

in  CNNs.  For  example,  cutout  regularization  [ 14], which  is  somewhat  analogous to  the  popular  dropout  regularization  [ 32]  used  in  other  types  of  neural  networks, would  be  worth  testing. 

The  BODMAS  dataset  includes  accurate  timestamps,  and  hence  it  is  ideal  for  the 

study  of  concept  drift  [ 16], which  refers  to  the  need  to  update  models  when  the  underlying  data  has  changed.  Such  “drift”  is  common  in  malware,  where  families  evolve 

as  new  features  are  added—existing  malware  may  be  adapted  for  other  purposes, 

new  obfuscation  techniques  may  be  applied,  and  so  on.  If  improved  results  can  be 

obtained  for  CNNs  trained  on  the  BODMAS  dataset  based  on  QR  or  Aztec  codes, 

then  testing  the  robustness  of  such  models  under  concept  drift  would  be  interesting. 

Additional  tests  of  QR  and  Aztec  code  representations  on  other  malware  datasets, 

as  well  as  other  classification  problems  involving  inherently  non-image  data,  would 

be  interesting.  Such  experiments  would  enable  us  to  determine  the  relative  strengths 

and  weaknesses  of  code-based  data  representations  in  the  realm  of  machine  learning. 

Appendix 

In  Table  7, we  provide  a  complete  list  of  the  55  features  that  appear  in  the  CIC-MalMem-2022  dataset.  These  features  form  the  basis  of  experiments  discussed  in 

Sect. 6.1  of  this  paper,  and  the  top  10  most  informative  of  these  55  features  are  listed in  Table  2. 

Recall  that  the  features  listed  in  Table  7  are  derived  from  memory  dumps  of selected  malware  samples.  For  additional  information  on  these  features,  see  [ 8]. 

In  Tables  8  and  9  we  list  the  hyperparameters  tested  (via  grid  search)  for  the classic  techniques  and  our  CNN  models,  respectively.  Note  that  for  each  model,  the 

selected  values  are  given  in  boldface. 
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Abstract  Malware  attacks  have  become  significantly  more  frequent  and  sophisti-

cated  in  recent  years.  Therefore,  malware  detection  and  classification  are  critical 

components  of  information  security.  Due  to  the  large  amount  of  malware  samples 

available,  it  is  essential  to  categorize  malware  samples  according  to  their  malicious 

characteristics.  Clustering  algorithms  are  thus  becoming  more  widely  used  in  com-

puter  security  to  analyze  the  behavior  of  malware  variants  and  discover  new  malware 

families.  Online  clustering  algorithms  help  us  to  understand  malware  behavior  and 

produce  a  quicker  response  to  new  threats.  This  paper  introduces  a  novel  machine 

learning-based  model  for  the  online  clustering  of  malicious  samples  into  malware 

families.  Streaming  data  is  divided  according  to  the  clustering  decision  rule  into 

samples  from  known  and  new  emerging  malware  families.  The  streaming  data  is 

classified  using  the  weighted .  k-nearest  neighbor  classifier  into  known  families,  and the  online  .  k-means  algorithm  clusters  the  remaining  streaming  data  and  achieves 

a  purity  of  clusters  from  90.20%  for  four  clusters  to  93.34%  for  ten  clusters.  This 

work  is  based  on  static  analysis  of  portable  executable  files  for  the  Windows  operating 

system.  Experimental  results  indicate  that  the  proposed  online  clustering  model  can 

create  high-purity  clusters  corresponding  to  malware  families.  This  allows  malware 

analysts  to  receive  similar  malware  samples,  speeding  up  their  analysis. 

O.  Jurečková  (B)  · M.  Jureček 

Faculty  of  Information  Technology,  Czech  Technical  University  in  Prague,  Prague,  Czechia 

e-mail:  jurecolh@fit.cvut.cz 

M.  Jureček 

e-mail:  martin.jurecek@fit.cvut.cz 

M.  Stamp 

San  Jose  State  University,  San  Jose,  CA,  USA 

e-mail:  mark.stamp@sjsu.edu 

©  The  Author(s),  under  exclusive  license  to  Springer  Nature  Switzerland  AG  2025 

37

M.  Stamp  and  M.  Jureček  (eds.),  Machine  Learning,  Deep  Learning  and  AI  for 

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_2 

38

O. Jurečková et al. 

1 

Introduction 

In  the  field  of  malware  detection,  there  are  usually  two  sides.  One  party  participates 

in  malware  creation,  while  its  primary  purpose  is  profit  [ 15].  The  other  side  detects the  malware  and  tries  to  minimize  the  damage.  In  the  past,  malicious  programs 

were  written  by  hand,  which  was  time-consuming.  In  addition,  in-depth  knowledge 

of  operating  systems,  networks,  programming,  and  others,  was  required  to  create 

the  malware.  Today,  the  creation  of  malicious  programs  is  fast,  and  it  is  not  even 

necessary  to  have  the  mentioned  theoretical  knowledge.  There  are  several  programs 

that  facilitate  the  creation  of  malware.  These  are  malware  generators,  defined  as 

programs  that  receive  a  set  of  parameters.  S  as  an  input,  and  malware  will  be  generated as  an  output.  Some  of  these  programs  are  also  freely  available,  mainly  for  scientific 

purposes.  However,  most  of  them  are  difficult  to  access,  e.g.,  located  on  the  darknet, 

and  some  money  may  be  required  to  provide  the  malware  generator. 

For  a  given  malware  generator.  G  and  a  set.  S  of  specific  parameters.{  p 1 , . . . , pn}, it  is  then  possible  to  generate  particular  malware.  m 1.  For  a  different  set  of  parameters 

.{ q 1 , . . . , qn },  the  same  generator.  G  generates  a  different  malware.  m 2.  Depending  on the  particular  generator  .  G,  it  is  possible  to  specify  the  differences  between  .  m 1 and 

.  m 2 based  only  on  the  parameter  sets.  For  example,  programs  .  m 1 and  .  m 2 can  perform  the  same  harmful  activity  and  differ  in  obfuscation  techniques.  Both  malware 

can  perform  various  harmful  activities,  e.g.,  one  malware  may  be  aimed  at  stealing 

passwords  and  the  other  at  blocking  access  to  the  system,  both  generated  from  the 

same  generator.  For  this  reason,  for  the  sake  of  simplicity,  we  will  generally  con-

sider  malware  generators  as  programs  that  generate  some  malware  for  a  given  set  of 

parameters. 

Based  on  various  analyses  performed  on  real  malware  generators,  researchers 

hypothesized  that  malware  samples  generated  from  the  same  generator  are  simi-

lar  [ 8, 16, 25, 38].  More  precisely,  for  an  appropriate  distance,  elements  generated by  the  same  generator  with  a  given  set  of  parameters  .  S  are  close  to  each  other.  In this  case,  these  elements  come  from  the  same  malware  family.  So  some  generators, 

with  their  parameter  sets,  can  be  identified  with  malware  families.  Many  papers  [ 9, 

32]  on  malware  classification  are  built  on  the  assumption  that  malware  samples  from one  family  are  close  to  each  other  and  distant  from  different  malware  families  and 

benign  files.  Solving  the  problem  of  classifying  malware  into  malware  families  has 

practical  applications  in  antivirus  companies.  These  companies  receive  hundreds  of 

thousands  of  new  malicious  samples  daily  [ 4],  which  are  either  processed  manually  by  malware  analysts  or  automatically  using  detection  systems  usually  based  on 

machine  learning.  Suppose  it  was  possible  to  group  malware  samples  into  groups 

based  on  appropriate  similarity.  In  that  case,  it  is  possible  that  elements  from  the 

same  groups  would  essentially  belong  to  the  same  malware  family.  Thus,  malware 

analysts  could  receive  similar  malware  samples,  speeding  up  their  analysis. 

Malware  clustering  is  also  necessary  for  scientific  purposes  since  it  provides  the 

knowledge  necessary  for  the  examination  of  the  evolution  of  individual  malware 

families  over  time.  This  research  might  then  be  used  to  predict  future  variants  of
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malware.  This  area  is  important  for  the  antivirus  industry  since  it  can  help  reduce 

the  so-called  reaction  time,  defined  as  the  period  between  spreading  the  malware  by 

some  infection  vector,  finding  the  malware,  and  creating  a  detection  rule  for  it. 

This  paper  presents  a  new  machine  learning-based  model  for  the  online  clustering 

of  malicious  samples  into  malware  families.  Our  proposed  online  clustering  algo-

rithm  can  cluster  samples  one  by  one  based  on  already  clustered  samples  and  does  not 

need  to  have  all  samples  available  immediately.  We  designed  a  new  clustering  deci-

sion  rule  to  determine  which  incoming  samples  belong  to  known  or  new  emerging 

malware  families.  These  two  groups  are  then  processed  online,  and  our  experimental 


results  show  that  this  approach  is  more  successful  in  terms  of  the  purity  of  clusters 

than  the  approach  where  we  directly  apply  the  online  clustering  algorithm. 

This  paper  is  organized  as  follows.  Section  2  reviews  related  works  on  malware family  clustering,  and  Sect. 3  presents  three  online  clustering  algorithms  used  in the  experimental  part.  Section  4  presents  the  proposed  online  clustering  system  and our  experimental  setup.  Section  5  describes  the  experimental  results.  Finally,  Sect. 6 

concludes  the  paper  and  presents  suggestions  for  future  work. 

2 

Related  Work 

There  is  a  growing  interest  in  the  use  of  unsupervised  methods  in  malware  detection, 

image  processing,  and  wireless  communication,  for  example.  This  section  presents 

recent  works  that  dealt  with  malware  detection  or  classification  using  unsupervised 

learning  methods. 

In  [ 29],  the  authors  propose  MalFamAware,  an  online  clustering  method  for  incremental  automatic  malware  family  identification  and  malware  classification.  This 

method  effectively  updates  the  clusters  when  new  samples  are  added  without  having 

to  rescan  the  entire  dataset.  The  authors  use  BIRCH  (Balanced  Iterative  Reducing 

and  Clustering  using  Hierarchies)  as  an  online  clustering  algorithm.  It  is  compared 

with  CURE  (Clustering  using  Representatives),  DBSCAN,.  k-means,  and  other  clus-

tering  algorithms.  MalFamAware  either  classifies  new  incoming  malware  into  the 

corresponding  existing  family  or  creates  a  class  for  a  new  family,  depending  on  the 

situation. 

The  authors  of  [ 34]  propose  a  clustering  method  based  on  incremental  learning. 

This  method  is  based  on  two-phase  clustering.  A  clustering  ensemble  method  is  used 

to  group  the  dataset  objects  to  complete  the  first  phase.  The  final  clustering  result  is then  extracted  using  an  incremental  clustering  algorithm  in  the  second  phase.  The 

authors  use  three  clustering  algorithms:  .  k-means,  partitioning  around  medoid,  and 

self-organizing  maps  (SOM)  with  different  random  initializations  and  the  voting 

mechanism  to  extract  a  set  of  sub-clusters. 

The  authors  of  [ 14]  propose  the  clustering  ensemble  method,  an  extension  of  the self-organizing  map  combined  with  the  cascaded  structure,  also  known  as  a  cascaded 

SOM.  The  method  cascades  the  outputs  of  multiple  SOM  networks  and  uses  them 

as  input  to  another  SOM  network. 
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A  framework  based  on  an  unsupervised  machine  learning  algorithm  called 

“SOMDROID”  is  proposed  by  the  authors  of  [ 23].  They  use  SOM  to  create  a  model to  determine  whether  an  Android  app  is  benign  or  malicious.  The  authors  use  six 

different  feature  ranking  approaches  to  select  significant  features  or  feature  sets 

and  then  apply  the  self-organizing  map  algorithm  to  the  selected  features  or  feature 

sets. 

In  [ 39], the  authors  create  an  automatic  categorization  system  to  automatically group  phishing  websites  or  malware  samples  into  families  with  common  characteristics  using  a  cluster  ensemble.  Their  approach  combines  the  individual  clustering 

solutions  produced  by  different  algorithms  using  a  cluster  ensemble.  The  authors  use 

the .  k-medoids  and  hierarchical  clustering  algorithms  to  create  the  base  clusterings. 

The  authors  of  [ 37]  create  and  test  a  new  system  called  COUGAR  (Clustering  of Unknown  malware  using  Genetic  Algorithm  Routines),  which  uses  a  multi-objective 

genetic  algorithm  to  reduce  high-dimensional  malware  behavioral  data  and  optimize 

clustering  behavior.  The  EMBER  (Endgame  Malware  Benchmark  for  Research) 

dataset  is  used,  and  the  dimensionality  reduction  method  chosen  for  it  is  UMAP 

(Uniform  Manifold  Approximation  and  Projection).  Although  this  method  can  be 

parameterized  to  reduce  to  any  number  of  dimensions,  the  two-dimensional  embed-

ding  reduction  is  selected  for  this  paper  due  to  its  simplicity  and  ease  of  visualization. 

The  authors  use  three  clustering  algorithms:  DBSCAN,  OPTICS,  and.  k−means  and 

Non-dominated  Sorting  Genetic  Algorithm  III  (NSGA-III).  The  optimal  parameters 

for  each  clustering  algorithm  are  determined  by  training  them  on  2,000  samples  from 

EMBER.  This  procedure  is  repeated  ten  times  in  order  to  account  for  the  stochastic 

nature  of  genetic  algorithms.  The  authors  also  investigate  a  hypothetical  situation  by 

applying  the  system  to  a  realistic,  real-world  scenario. 

The  authors  of  [ 27]  investigate  the  problem  of  malware  classification  using  the.  k-

means  and  Expectation-Maximization  (EM)  clustering  algorithms.  They  use  Hidden 

Markov  Models  (HMM)  to  generate  the  scores  for  the  clustering  techniques.  The 

authors  create  clusters  from  HMM  scores  using  both.  k-means  and  the  EM  clustering 

algorithm.  The  authors  use  the  silhouette  coefficient  to  evaluate  the  clustering  results. 

In  addition,  they  use  a  simple  purity-based  score  to  determine  clustering  success.  In 

their  research,  the  authors  focus  primarily  on  the  three  dominant  families  in  the 

Malicia  dataset:  Zbot,  ZeroAccess,  and  Winwebsec. 

In  [ 6],  the  authors  examine  the  relationship  between  malware  families.  The  features  they  employ  for  clustering  are  based  on  byte  n-gram  frequencies,  and  they  use 

the .  k−means  algorithm  as  their  clustering  technique.  The  authors  analyze  a  dataset that  contained  1,000  samples  from  20  malware  families,  which  can  be  categorized 

into  seven  different  malware  types.  They  present  three  distinct  sets  of  clustering 

experiment  results.  The  authors  first  cluster  every  pair  of  malware  families,  then 

investigate  clustering  experiments  in  which  they  focus  on  a  single  family  of  each 

malware  type  under  consideration,  and  finally  consider  clustering  multiple  families 

from  the  same  malware  type.  The  authors  use  the  adjusted  Rand  index  (ARI)  to 

evaluate  the  clustering  results. 

Pirscoveanu  et  al.  [ 28]  use  SOM  to  generate  clusters  that  capture  similarities  between  malware  behaviors.  Pirscoveanu  et  al.  use  features  chosen  based  on
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API  calls,  which  represent  successful  and  unsuccessful  calls  (i.e.,  calls  that  have 

succeeded  or  failed,  respectively,  in  changing  the  state  of  the  system  on  the  infected 

machine)  and  the  return  codes  from  failed  calls.  The  authors  use  principal  compo-

nent  analysis  to  reduce  the  set  of  features  and  the  elbow  method  and  gap  statistics 

to  determine  the  number  of  clusters.  Each  sample  is  then  projected  onto  a  two-

dimensional  map  using  self-organizing  maps,  where  the  number  of  clusters  equals 

the  number  of  map  nodes.  The  dataset  is  used  to  generate  a  behavioral  profile  of 

the  malicious  types,  which  is  then  passed  to  a  self-organizing  map,  which  compares 

the  proposed  clustering  result  with  labels  obtained  from  Antivirus  companies  via 

VirusTotal  [ 36]. 

The  relay  selection  algorithm  and  the  power  control  protocol  presented  by  the 

authors  of  [ 13]  are  based  on  the  Basic  Sequential  Algorithmic  Scheme  (BSAS)  and do  not  require  any  additional  infrastructure,  in  contrast  to  other  capacity-improving 

techniques.  Users  will  instead  act  as  temporary  relay  stations.  The  authors  modify  the 

original  BSAS  to  fit  the  requirements  of  power  control  and  resource  allocation  while 

also  making  it  suitable  for  an  LTE  environment.  The  newly  proposed  BSAS-based 

algorithm  uses  path  loss  as  the  proximity  between  a  node  and  formed  clusters  instead 

of  using  distance.  The  fundamental  concept  is  that,  based  on  its  path-loss  from  the 

previously  formed  clusters,  each  node  is  assigned  to  either  one  that  already  exists  or 

one  that  has  just  been  formed. 

The  authors  introduce  a  hybrid  model  of  AE  and  SOM  to  detect  IoT  malware 

in  [ 26].  The  proposed  models  are  evaluated  using  the  NBaIoT  dataset  in  various aspects,  including  detecting  new  or  unknown  malware,  transferring  knowledge  for 

detecting  IoT  malware  on  various  IoT  devices,  and  detecting  different  IoT  malware 

groups.  The  authors  also  examine  the  latent  representation  of  DAEs  (Denoising 

AutoEncoder)  for  unsupervised  learning  in  IoT  malware  detection.  There  are  two 

stages  to  the  newly  proposed  hybrid  model  for  identifying  IoT  malware.  To  create 

its  latent  representation,  DAE  is  trained  on  unlabeled  data  in  the  first  phase,  which 

includes  both  normal  data  and  IoT  malware.  During  the  second  phase,  the  SOM 

functions  as  a  method  for  classification  that  works  directly  with  the  feature  space  of 

the  DAE. 

3 

Theoretical  Background 

Clustering  algorithms  are  unsupervised  machine  learning  methods  that  aim  at  group-

ing  abstract  objects  into  clusters  of  similar  objects.  This  work  focuses  on  online  clus-

tering  algorithms,  which  are  computational  procedures  that  process  streaming  data 

incrementally  as  data  points  arrive  over  time.  This  section  presents  three  state-of-

the-art  online  clustering  algorithms  used  in  the  experimental  part:  Online  .  k-means (OKM),  Basic  Sequential  Algorithmic  Scheme  (BSAS),  and  Self-Organizing  Map 

(SOM).  We  applied  all  these  algorithms  to  cluster  the  samples  into  malware  families. 

At  the  end  of  this  section,  the  distance-weighted.  k-nearest  neighbor  classifier,  which is  included  in  our  proposed  model,  is  briefly  presented. 
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 3.1 

 Online  .  k-Means  (OKM) 

The  online  .  k-means  (OKM)  algorithm,  also  known  as  sequential  .  k-means  or  Mac-Queen’s  .  k-means  [ 1]  is  an  example  of  a  non-hierarchical  clustering  algorithm.  The sequential  .  k-means  algorithm  sequentially  clusters  a  new  example  and  updates  a 

single  center  immediately  after  a  data  point  is  assigned  to  it.  The  number  of  clusters, 

.  k,  must  be  determined  in  advance,  which  is  one  disadvantage  of  the  online .  k-means algorithm.  The  pseudocode  for  the  online.  k-means  algorithm  is  given  in  Algorithm  1 

below  [ 11]. 

Algorithm  1  Sequential .  k-means  algorithm  (OKM) 

Input:  a  number  of  clusters.  k  to  be  created,  a  set  of  data  points.  X

Output:  a set  of.  k  clusters 

1:  initialize  cluster  centroids.  μ 1 , . . . , μk  randomly 

2:  set  the  counts.  n 1 , . . . , nk  to  zero 

3:  repeat 

4:

select  a  random  point.  x  from.  X  and  find  the 

nearest  center.  μi  to  this  point 

5:

if  .  μi  is  closest  to.  x then 

6:

increment.  ni

7:

replace.  μi  by.  μi + 1  (x −  μ

 n

 i )

 i

8:

end  if 

9:  until  interrupted 

 3.2 

 Self-organizing  Map  (SOM) 

In  1982,  Teuvo  Kohonen  introduced  the  concept  of  self-organizing  maps,  or  SOMs. 

Consequently,  they  are  occasionally  referred  to  as  Kohonen  maps  [19]. The  SOM  is  an unsupervised  machine  learning  technique  that  preserves  similarity  relations  between 

the  presented  data  while  converting  a  complex  high-dimensional  input  space  into 

a  simpler  low-dimensional  (typically  two-dimensional  grid)  discrete  output  space. 

Self-organizing  maps  use  competitive  learning  rules  in  which  output  neurons  fight 

with  one  another  to  be  active  neurons,  activating  only  one  of  them  at  a  time.  A 

winning  neuron  is  an  output  neuron  that  has  won  the  competition. 

Before  running  the  algorithm,  several  parameters  need  to  be  set,  including  the 

size  and  shape  of  the  map,  as  well  as  the  distance  at  which  neurons  are  compared  for 

similarity.  After  selecting  the  parameters,  a  map  with  a  predetermined  size  is  created. 

Individual  neurons  in  the  network  can  be  combined  into  layers. 

SOM  typically  consists  of  two  layers  of  neurons  without  any  hidden  layers  [ 3]. 

The  input  layer  represents  input  vector  data.  A  weight  is  a  connection  that  connects 

an  input  neuron  to  an  output  neuron,  and  each  output  neuron  has  a  weight  vector 

associated  with  it.  The  formation  of  self-organizing  maps  begins  by  initializing  the 

synaptic  weights  of  the  network.  The  weights  are  updated  during  the  learning  process. 

The  winner  is  the  neuron  whose  weight  vector  is  most  similar  to  the  input  vector. 
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The  winning  neuron  of  the  competition  or  the  best-matching  neuron.  c  at  iteration 

.  t (i.e.,  for  the  input  data .  xt )  is  determined  using 

.  c(t ) = arg min { x (t ) −  wi (t )}  ,  for  i = 1 ,  2 , . . . , n where  .  wi (t)  is  the  weight  of  .  i-th  output  neuron  at  time  .  t,  and  .  n  is  the  number  of output  neurons.  After  the  winning  neuron  .  c  has  been  selected,  the  weight  vectors of  the  winner  and  its  neighboring  units  in  the  output  space  are  updated.  The  weight 

update  function  is  defined  as 

.  wi (t + 1 ) =  wi (t ) +  α(t )hci (t ) [ x (t ) −  wi (t )]  , where  .  α(t)  is  the  learning  rate  parameter,  and  .  hci (t)  is  the  neighborhood  kernel function  around  the  winner  .  c  at  time  .  t.  The  learning  rate  is  the  speed  with  which the  weights  change.  The  connection  between  the  input  space  and  the  output  space  is 

created  by  the  neighborhood  function,  which  also  determines  the  rate  of  change  of 

the  neighborhood  around  the  winner  neuron.  This  function  affects  the  training  result 

of  the  SOM  procedure. 

A  Gaussian  function  is  a  common  choice  for  a  neighborhood  function 





 d 2 ci

.  hci (t ) = exp

−

 α(t). 

2 σ  2 (t)

that  determines  how  a  neuron  is  involved  in  the  training  process,  where .  dci  denotes the  distance  between  the  winning  neuron.  c  and  the  excited  neuron.  i ,.  σ  2 (t)  is  a  factor used  to  control  the  width  of  the  neighborhood  kernel  at  time.  t.  The  learning  rate.  α(t) is  a  decreasing  function  toward  zero.  The  basic  SOM  algorithm  can  be  summarized 

in  Algorithm  2. 

Algorithm  2  Self-organizing  map  (SOM) 

Input:  dimension  and  size  of  the  output  space,  distance  function,  neighborhood  function,  learning rate,  and  a  set  of  data  points.  X . 

Output:  a  set  of  clusters 

1:  initialize  the  weights  of  each  neuron 

2:  .  t = 1

3:  select  randomly  an  input  vector  from  the  set  of  training  data.  X

4:  for  each  input  vector  do 

5:

calculate  the  distances  measure  between 

the  input  vector  and  all  the  weights 

vectors. 

6:

find  the  best  matching  neuron.  c(t)  at 

iteration.  t. 

7:

update  the  weight  vectors  of  the  neurons. 

8:

.  t =  t + 1 and  update  neighborhood  size  and 

learning  rate. 

9:  end  for
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There  are  many  applications  for  SOM,  and  one  of  them  is  clustering  tasks.  The 

authors  of  [ 5]  claim  that  since  each  SOM  unit  is  the  center  of  a  cluster,  the  .  k-unit SOM  successfully  finished  a  task  comparable  to.  k-means.  The  authors  further  stated 

that  the  SOM  and  .  k-means  algorithms  strictly  correspond  to  one  another  when  the 

radius  of  the  neighborhood  function  in  the  SOM  is  zero. 

 3.3 

 Basic  Sequential  Algorithmic  Scheme  (BSAS) 

The  following  algorithm  we  employed  in  our  work  is  the  Basis  Sequential  Algo-

rithmic  Scheme  (BSAS),  a  sequential  clustering  technique  that  presents  all  feature 

vectors  to  the  algorithm  once  [ 20].  The  number  of  clusters  is  unknown  in  advance. 

Clusters  are  gradually  generated  as  the  algorithm  evolves.  The  basic  idea  behind 

BSAS  is  to  assign  each  newly  considered  feature  vector  .  x  to  an  existing  cluster  or to  create  a  new  cluster  for  that  vector  based  on  the  distance  to  previously  created 

clusters.  To  determine  whether  a  data  point  can  join  a  particular  cluster,  the  algorithm 

considers  two  thresholds:  a  maximum  number  of  clusters  that  can  be  merged  and  a 

dissimilarity  threshold. 

There  are  several  ways  to  define  the  distance  .  d(x, C)  between  a  cluster  .  C  and  a feature  vector.  x.  We  will  consider.  d(x, C)  as  the  distance  between.  x  and  the  centroid of.  C.  The  parameters  of  the  BSAS  are  as  follows:  a  number .  q,  which  represents  the maximum  number  of  clusters  permitted,  and  a  dissimilarity  threshold  .  ,  which  is 

the  threshold  used  for  creating  new  clusters.  A  new  cluster  with  the  newly  presented 

vector  is  formed  when  the  distance  between  a  new  vector  and  any  other  clusters  is 

beyond  a  dissimilarity  threshold  and  if  the  number  of  the  maximum  clusters  allowed 

has  not  been  reached.  The  threshold.    directly  affects  the  number  of  clusters  formed by  BSAS.  If  the  user  chooses  the  too  small  value  of.  ,  then  unnecessary  clusters  will be  created,  while  if  the  user  chooses  the  too  large  value  of.  ,  less  than  an  appropriate number  of  clusters  will  be  formed.  The  pseudocode  for  the  BSAS  algorithm  is  given 

below  in  Algorithm  3. 

 3.4 

 Distance-Weighted  .  k-Nearest  Neighbor  (WKNN) 

The  distance-weighted  .  k-nearest  neighbor  (WKNN)  classifier  [ 12]  is  used  in  our work  to  classify  testing  data  to  known  malware  families.  The  main  idea  behind  the 

WKNN  is  that  closer  neighbors  have  larger  weights  than  neighbors  far  away  from  the 

query  object.  Let.  T =  (z 1 , . . . , zk)  be.  k  nearest  neighbors  from.  D  of  the  query  object 

.  x ∈  S  and .  d 1 , . . . , dk  the  corresponding  distances  arranged  in  increasing  order.  The resulting  cluster .  Cx  for .  x  is  defined  by  the  majority  weighted  vote 



.  Cx = argmax

 wi ·  δ(C, Cz )

(1)

 i

 C

 (zi ,Cz )∈ T

 i
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Algorithm  3  Basic  Sequential  Algorithmic  Scheme  (BSAS) 

Input:  the  dissimilarity  threshold.  ,  the  maximum  allowed  number  of  clusters.  q,  and  a  set  of  data points.  X

Output:  a  set  of  clusters 

1:  initialize.  m = 1

2:  select  a  random  point.  x 1 from.  X

3:  define  the  first  cluster.  Cm = { x 1}

4:  for  each.  x in.  X \.{ x 1} do 

5:

find.  Ck :  d(x, Ck ) =  min 1≤ i≤ md(x, Ci )

6:

if  .  d(x, Ck ) >  and.  m < q then 

7:

.  m =  m + 1

8:

.  Cm = { x }

9:

else 

10:

.  Ck =  Ck ∪ { x }

11:

update  the  centroid  of.  Ck

12:

end  if 

13:  end  for 

where.  (zi , Cz )  denotes  that  the  sample.  z

,.  δ(a, b)  is  equal 

 i

 i  belongs  to  the  cluster .  Czi

to  one  if .  a =  b  and  zero  otherwise,  and  the  weight.  wi  for.  i-th  nearest  neighbor.  zi  is defined  by 

 dk− di  if  d

 d

 k =  d 1

.  wi =

 k − d 1

1

otherwise. 

4 

Proposed  Approach  and  Experimental  Setup 

This  section  presents  the  proposed  model  for  the  online  clustering  of  malicious 

samples  to  malware  families  and  the  experimental  setup,  which  contains  detailed 

information  about  the  methodology  and  procedures  used  in  experiments. 

Suppose  we  have  a  dataset .  D = { x 1 , . . . , xt },  which  contains.  t  unlabeled  feature vectors  for  malware  samples.  Let.  K  be  a  set  of  all  malware  families  that  the  samples from  .  D  belong  to.  Suppose  that  we  have  chronologically  ordered  streaming  data 

.  S = { xt+1 , xt+2 , . . . },  which  contains  malware  samples  that  belong  to  the  set  .  K  of malware  families  and  newly  emerging  families.  The  goal  is  to  cluster  the  data  set.  D

together  with  the  data  set.  S  so  that  the  clusters  in  each  of  these  data  sets  achieve  the highest  possible  purity  and  thus  correspond  closely  to  the  malware  families. 

This  goal  aims  to  simplify  the  work  of  malware  analysts  since  they  would  receive 

samples  from  the  same  malware  family,  which  would  speed  up  the  overall  analysis 

process.  The  missing  labels  of  samples  from  dataset.  D  corresponds  to  a  real  situation when  antivirus  companies  received  the  newest  samples,  which  had  not  yet  been 

analyzed,  i.e.,  they  were  not  subjected  to  machine  learning  algorithms  that  could 

predict  the  labels,  nor  were  they  manually  analyzed  by  malware  analysts. 

Therefore,  we  assume  that  when  deploying  the  model  proposed  in  this  section, 

we  will  have  several  unlabeled  samples  available.  These  samples  can  be  clustered
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using  a  batch  approach,  where  the  clustering  algorithm  has  all  the  samples  available. 

We  assume  that  all  samples  from  dataset  .  D  appeared  before  a  specific  time  .  T . On the  other  hand,  from  the  time  .  T ,  new  malware  samples  .  S =  xt+1 , xt+2 , . . .  arrive as  streaming  data.  Since  we  will  always  have  samples  until  the  current  time  and 

we  have  to  wait  for  newer  samples,  we  use  online  clustering  to  cluster  incoming 

samples  from  .  S.  This  type  of  clustering  algorithm  can  cluster  samples  one  by  one based  on  already  clustered  samples  and  does  not  need  to  have  all  samples  available 

immediately.  Streaming  data  in  the  real  world  contain  benign  and  malicious  samples. 

However,  in  this  work,  we  only  work  with  malware  samples,  assuming  that  the  benign 

samples  of  the  streaming  data .  S  have  been  filtered  out. 

 4.1 

 Proposed  Model 

The  proposed  model  for  clustering  samples  from  a  fixed  dataset .  D  and  a  streaming data  .  S  is  illustrated  in  Fig. 1. Dataset  .  D  is  first  preprocessed  using  the  standard score  and  principal  component  analysis  (PCA).  The  preprocessed  dataset .  D  is  then 

clustered  using  a  clustering  algorithm.  In  this  work,  we  experimented  with  three 

clustering  algorithms,  and  based  on  the  results  from  Sect. 5.1, we used the  SOM  

algorithm.  The  samples  from  dataset.  D  are  clustered  into  malware  families  from  the set .  K , referred to as   known  malware  families. 

The  streaming  data  .  S =  xt+1 , xt+2 , . . .  is  one  by  one  preprocessed  via  the  standard  score,  and  PCA,  using  the  same  setup  used  for  processing  of  dataset  .  D.  Then the  incoming  samples  .  xt+1 , xt+2 , . . .  will  be  clustered  one  by  one  according  to  the following  approach.  The  sample  .  x ∈  S  is  first  classified  to  the  cluster  .  Cx  from  the clustering  of  dataset  .  D  according  to  the  WKNN  classifier.  Cluster  names  are  used as  labels  for  samples  from  dataset .  D,  which  is  used  to  train  the  WKNN  classifier. 

After  the  identification  of.  Cx  for.  x ∈  S  using  WKNN  classification,  the   Clustering decision  rule   determines  whether  .  x  will  remain  in  the  cluster  .  Cx  of  samples  from known  malware  families   or  will  be  assigned  to  some  cluster  of  samples  from   new Fig.  1  The  architecture  of  the  proposed  model  for  the  online  clustering  of  malicious  samples  to malware  families
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 malware  families,  i.e.,  families  that  appeared  after  the  time.  T . The   Clustering  decision rule   is  defined  by  .  x ∈  S remains  in  the  cluster  .  Cx ⊂  D if  there  is  a  sample  .  y ∈  Cx such  that 

.  D(y, cx ) +  τ ≥ max{ D(y, x ), D(x , cx )}

(2) 

where  .  cx  is  the  centroid  of  the  cluster  .  Cx  and  .  τ ≥ 0 is  the  parameter  of  our  model. 

We  used  the  Euclidean  distance  .  D  throughout  the  experimental  part.  According  to 

the  decision  rule  (2), .  x  will  be  added  to  the  set  .  D  clustered  into   known  malware families,  i.e.,  families  that  appeared  before  the  time  .  T ,  or  to  a  set  clustered  into new  malware  families,  which  emerged  after  the  time.  T .  Samples  from  new  malware families  are  clustered  using  an  online  clustering  algorithm,  such  as  OKM,  SOM,  or 

BSAS.  Section  5.3  presents  the  clustering  results  for  these  three  algorithms. 

The  parameter.  τ >  0 allows  the  clusters  to  expand.  If.  τ <  0,  then  we  can  extend  to 

.  Cx  only  by  internal  points,  i.e.,  points  closer  to  the  centroid.  cx  than  the  farthest  point of  the  cluster  .  Cx .  Figure  2  demonstrates  the  clustering  decision  rule  (2) using  the simple  data  set  consisting  of  only  two  small  clusters.  C 1 and.  C 2.  Figure  2  shows  that 

.  xt+1 remains  in.  C 1 since  there  is  a  sample.  y ∈  C 1 for  which  rule  (2)  is  satisfied.  On  the other  hand,.  xt+2 will  be  clustered  into  a   new  malware  family  (i.e.,  not  belonging  to  the set.  K ),  because  rule  (2)  is  not  satisfied  even  for.  y ,  which  is  the  best  candidate  for.  y. 

The  WKNN  classifier  was  compared  with  the  Multilayer  perception  and  Ran-

dom  forest  classifiers,  and  based  on  the  classification  results  presented  in  Section 

6.2,  WKNN  was  selected  to  classify  the  streaming  data  in  our  proposed  model. 

WKNN  takes  into  account  the  similarities  of  the  samples  using  mutual  distance,  and 

in  addition  to  the  KNN,  the  WKNN  classifier  considers  the  distances  between  nearest 

neighbors  and  the  queried  object.  Note  that  a  variant  of  the  rule  (2)  was  used  in  [ 17] to select  a  representative  training  set  to  train  a  classifier  designed  for  malware  detection. 

Fig.  2  Demonstration  of  the  decision  rule  (2)  used  to  determine  whether  the  sample  .  xt+1 will remain  in  the  nearest  cluster  .  C 1 ⊂  D  corresponding  to  a   known  malware  family   and  the  sample 

.  xt+2 will  be  assigned  into  cluster  corresponding  to  a   new  malware  family.  Three  nearest  neighbors of  the  sample.  xt+1 are  highlighted  using  the  circle
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The  rest  of  this  section  presents  the  dataset  used  in  the  experimental  part,  and 

the  metrics  for  evaluating  clustering  results.  The  implementation  of  our  proposed 

model  and  methods  for  evaluating  clustering  results  are  based  on  scikit-learn  [ 33]  and PyClustering  [ 30]  libraries.  All  experiments  in  this  work  were  executed  on  a  single computer  platform  having  two  processors  (Intel  Xeon  Gold  6136,  3.0  GHz,  12  cores 

each),  with  64  GB  of  RAM  running  the  Ubuntu  server  18.04  LTS  operating  system. 

 4.2 

 Dataset 

We  evaluated  our  proposed  method  using  EMBER  dataset  [ 2].  The  dataset  contains 400,000  feature  vectors  corresponding  to  malicious  samples  from  more  than  3,000 

malware  families.  The  features  were  extracted  using  the  LIEF  open  source  package 

[ 22]  and  include  metadata  from  portable  executable  file  format  [24],  strings,  byte,  and entropy  histograms.  The  feature  set  consists  of  2,381  features  that  are  described  in  [ 2]. 

These  features  were  extracted  using  static  analysis  only,  which  aims  at  searching  for 

information  about  the  file  structure  without  running  a  program.  The  dataset  also 

contains  feature  vectors  for  benign  samples  which  were  not  considered  in  our  work. 

Date  of  the  first  appearence  of  the  corresponding  sample  and  the  name  of  mal-

ware  family  where  the  sample  belongs  to  are  assigned  to  each  feature  vector.  The 

date  information  is  given  by  month  and  year  of  the  first  appearence  of  the  sample. 

Samples  that  appeared  until  October  2018  are  included  in  the  EMBER  training  set, 

while  samples  appeared  between  November  and  December  2018  are  included  in 

the  EMBER  test  set.  While  the  EMBER  training  set  contains  samples  from  more 

than  3,000  malware  families,  we  focus  primarily  on  the  four  most  prevalent  malware 

families:  Xtrat,  Zbot,  Ramnit,  and  Sality.  The  training  dataset  .  D  used  in  our  model consists  of  samples  from  the  EMBER  training  set  with  labels  corresponding  to  these 

four  malware  families.  The  streaming  data .  S  used  in  our  model  consists  of  samples from  the  EMBER  test  data  set  with  labels  corresponding  to  these  four  malware  families  and  three  additional  malware  families:  Emotet,  Ursnif,  and  Sivis.  We  considered 

three  new  families  to  get  closer  to  the  real  situation  when  new  malware  families  are 

Table  1  The  size  of  unlabeled  data  set .  D,  size  of  streaming  unlabeled  data  set .  S,  and  the  overall data  set  size,  i.e.,. | D| + | S| = 47 ,  268 + 65 ,  383 = 112 ,  651

Malware  family

.| D|

.| S|

Size 

Xtrat

16,689

19,280

35,969 

Zbot

10,782

13,293

24,075 

Ramnit

10,275

10,320

20,595 

Sality

9,522

9,050

18,572 

Ursnif

0

5,733

5,733 

Emotet

0

4,904

4,904 

Sivis

0

2,803

2,803
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constantly  being  created.  One  of  our  goals  is  to  verify  whether  our  proposed  model 

can  identify  new  families  using  online  clustering. 

Table  1  summarizes  the  number  of  samples  used  in  the  experimental  part,  arranged in  descending  order  of  sample  count  for  each  of  the  seven  prevalent  malware  families 

from  the  EMBER  dataset.  More  information  about  malware  families  and  technical 

details  can  be  found  in  [ 35]. 

 4.3 

 Evaluation  Metric 

We  evaluated  the  quality  of  clusters  using  two  standard  measures:  purity  and  silhou-

ette  coefficient  (SC).  Let  the  purity  of  cluster.  C j  be  defined  as. Purity (C j ) = max i pi j , where.  pi j  is  the  probability  that  a  randomly  selected  sample  from  cluster.  C j  belongs to  class.  i .  The  overall  purity  is  the  weighted  sum  of  individual  purities  and  is  given  by k



. Purity = 1

| C j|Purity (C j). 

 n j=1

where .  n  is  the  size  of  a  dataset. 

While  purity  uses  labels  when  evaluating  the  quality  of  clusters,  the  silhouette 

coefficient  does  not  depend  on  labels.  It  can  therefore  be  used  in  the  validation  phase 

to  determine  the  number  of  clusters.  The  average  silhouette  coefficient  [ 31]  for  each cluster  is  defined  as  follows. 

Consider  .  n  samples  .  x 1 , . . . , xn  that  have  been  divided  into  the  .  k  clusters 

.  C 1 , . . . , Ck .  Average  distance  between  .  xi ∈  C j  to  all  other  samples  in  cluster  .  C j is  given  by 



.  a(xi ) =

1

 D(x

|

 i , y). 

 C j | − 1  y∈ Cj

 y= xi

Let .  bk(xi )  be  the  average  distance  from  the  sample .  xi ∈  C j  to  all  samples  in  the cluster .  Ck  not  containing .  xi ,  and  is  defined  by 



.  bk (xi ) =

1

 D(x

|

 i , y). 

 Ck|  y∈ Ck

Let.  b(xi )  be  the  minimum  of.  bk(xi )  for  all  clusters.  Ck,  where.  k =  j.  The  silhouette coefficient  of .  xi  is  given  by  combining .  a(xi )  and.  b(xi ),  and  is  defined  by 

.  s(xi ) =

 b(xi ) −  a(xi ) . 

max (a(xi ), b(xi ))
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The  silhouette  coefficient.  s(xi )  ranges  from  –1  to  1,  with  higher  scores  indicating better  performance.  Finally,  the  average  silhouette  coefficient  for  a  given  dataset  is 

defined  as  the  average  value  of .  s(xi )  over  all  samples  in  the  dataset. 

Note  that  our  proposed  model  assumes  that  only  unlabeled  data  is  available. 

Therefore,  for  example,  when  choosing  the  optimal  number  of  features,  the  silhouette 

coefficient  is  used,  while  purity  is  used  only  to  evaluate  our  model. 

5 

Experimental  Results 

This  section  contains  descriptions  of  experiments  conducted  for  our  proposed  online 

clustering  model.  Firstly,  we  experiment  with  the  number  of  features  used  to  represent 

the  samples  from  malware  families.  Then,  we  select  a  machine  learning  algorithm  to 

classify  streaming  data  to  the  known  malware  families  and  tune  the  parameter  .  λ  of our  proposed  model,  enabling  cluster  expansion.  Finally,  we  present  the  experimental 

results  of  our  proposed  online  clustering  model,  compare  it  with  the  reference  model, 

demonstrate  that  the  computational  times  are  low  enough  to  cluster  all  malware 

samples  that  appear  daily,  and  provide  a  discussion  for  our  work. 

 5.1 

 Preprocessing  and  Clustering  Algorithm  Selection 

The  preprocessing  used  in  this  work  consists  of  data  normalization  and  dimension-

ality  reduction.  Dataset  .  D  was  normalized  using  the  standard  score,  and  the  PCA 

algorithm  was  used  to  extract  optimal  features  from  the  original  features.  When 

calculating  the  standard  score  of  the  streaming  data  .  S = { xt+1 , xt+2 , . . . },  standard deviations  and  mean  values  were  obtained  based  on  dataset.  D.  Then,  the  PCA  transformation  was  applied  to  the  normalized  data,  where  the  PCA  transformation  was 

created  based  on  dataset .  D. 

In  this  experiment,  we  considered  options  for  the  optimal  number  of  features  from 

the  set  .{20 ,  30 ,  40 , . . . ,  80}.  We  experimented  with  the  following  three  clustering algorithms  for  clustering  the  dataset.  D:.  k-means,  SOM,  and  DBSCAN.  The  optimal number  of  features  was  chosen  via  the  silhouette  coefficient  which  was  used  to 

evaluate  the  clusters  created  by  the  three  clustering  algorithm.  The  number  of  cluster 

was  set  to  four  since  the  dataset .  D  consists  of  samples  from  four  malware  families. 

The  number  of  clusters  determined  the  number  of  output  neurons  in  SOM.  We  left 

all  other  SOM  hyperparameters  at  their  default  values  according  to  the  PyClustering 

library.  The  implementation  of  DBSCAN  and  .  k-means  is  based  on  the  scikit-learn 

library.  We  tuned  two  hyper-parameters  of  the  DBSCAN  using  the  following  search 

grid: 

•  eps: 0.1, 0.5, 1, 2, 5  

•  min_samples:  5,  10,  20
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Fig.  3  The  relationship  between  the  number  of  features  and  the  silhouette  coefficient The  parameter  eps  is  defined  as  the  maximal  distance  between  samples,  where  one  is 

considered  to  be  in  the  neighborhood  of  the  other  one.  The  parameter  min_samples  is 

the  minimum  number  of  points  that  are  required  to  form  a  dense  region.  The  highest 

silhouette  coefficient  for  DBSCAN  was  achieved  for.eps = 5 and.min_samples = 10. 

Figure  3  shows  the  relation  between  the  number  of  features  extracted  by  PCA and  the  average  silhouette  coefficient  for  three  clustering  algorithms.  The  highest 

silhouette  coefficient  was  achieved  for  40  extracted  features  by  SOM.  Note  that  the 

highest  purity  of  clusters,  84.46%,  was  achieved  for  50  features  by  DBSCAN.  Since 

we  assumed  that  the  dataset  contains  only  unlabeled  samples,  we  used  40  features 

for  all  remaining  experiments  from  this  work. 

 5.2 

 Classifier  Selection  and  Tuning  of  the  Hyper-parameter .  τ

To  classify  streaming  data  to  the  known  malware  families,  we  considered  the  fol-

lowing  three  classifiers:  Multilayer  perceptron  (MLP),  Random  forest  (RF),  and 

.  k-nearest  neighbors  (KNN).  MLP  [ 21]  is  an  artificial  neural  network  composed  of multiple  layers  of  neurons,  typically  including  an  input  layer,  one  or  more  hidden 

layers,  and  an  output  layer.  The  input  layer  takes  an  input,  which  is  then  processed 

in  hidden  layers,  and  finally,  perceptrons  in  the  output  layer  output  a  result.  Random 

forest  [ 7]  is  an  ensemble  learning  method  combining  the  results  made  by  several decision  trees  using  a  voting  mechanism.  The  .  k-nearest  neighbors  classifier  [ 10] is a  non-parametric  method  that  predicts  a  class  label  according  to  a  majority  vote  of 

its .  k  nearest  neighbors. 

We  tuned  the  hyper-parameters  of  the  MLP,  RF,  and  KNN  classifiers  using  the 

grid  search  that  exhaustively  considered  all  parameter  combinations.  The  following 

searching  grid  parameters  were  explored  for  MLP: 

•  hidden  layer  sizes:  (100,0),  (200,  0),  (400,  0),  (100,  50),  (200,  100),  (400,  100), 

(400,  200)
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•  activation  function:  relu,  tanh,  logistic 

•  solver  for  weight  optimization:  lbfgs,  adam 

•  alpha:  0.0001,  0.001,  0.01 

The  parameter  alpha  controls  the  strength  of  regularization  applied  to  the  neural 

network’s  weights.  The  definitions  of  the  activation  functions  and  the  solvers  are 

presented  in  the  neural_network.MLPclassifier  class  from  the  scikit-learn  library, 

which  was  used  in  our  experiments.  For  random  forest,  we  explored  the  number  of 

trees  in  the  forest,  the  maximal  depth  of  trees,  and  the  criterion  that  measure  the 

quality  of  a  split: 

•  number  of  estimators:  100,  500,  1000 

•  maximal  depth:  7,  8,  9,  10 

•  criterion:  gini,  entropy 

The  criteria  are  defined  in  the  ensemble.  RandomForestClassifier  class  from  the 

scikit-learn  library,  which  was  used  in  our  experiments.  Finally,  for  the  KNN,  we 

considered  the  following  hyper-parameters: 

• .  k: 1, 3, 5, 7, 9, 11  

•  weights:  uniform,  wknn 

The  parameter  .  k  denotes  the  numbers  of  nearest  neighbors,  and  the  parame-

ter  weights  denotes  the  weight  function.  Uniform  weight  states  that  all  .  k  neigh-

bors  are  weighted  equally,  while  the  case  “weights=wknn”  is  described  in  (1). The best-performing  values  of  the  hyperparameters  for  the  MLP,  RF,  and  KNN  models, 

together  with  the  corresponding  classification  accuracies,  are  given  in  Table  2. Since the  WKNN  classifier  achieved  the  highest  classification  accuracy,  we  used  it  in  all 

remaining  experiments. 

The  proposed  online  clustering  model  has  the  parameter.  τ  enabling  cluster  expan-

sion.  We  experimented  with  the.  τ  values  from  the  set.{−5 , −2 ,  0 ,  2 ,  5} to  determine the  optimal  values.  The  highest  silhouette  coefficient  was  achieved  for.  τ = −2 where 11.2%  of  samples  from.  S  were  determined  according  to  the  clustering  decision  rule 

(2)  as  samples  from   new  malware  families. 

Table  2  Hyperparameter  tuning  for  the  MLP,  RF,  and  KNN  classifiers 

Classifier

MLP 

Parameters

hidden_layer_sizes

Activation

Solver

Alpha 

Best-performing  values

(400,  200)

Relu

Adam

0.0001 

Classification  accuracies

93.89% 

Classifiers

RF

KNN 

Parameters

Criterion

max_depth

n_estimators

.  k

Weights 

Best-performing  values

Entropy

10

1000

3

wknn 

Classification  accuracies

92.31%

94.08%

Online Clustering of Known and Emerging Malware Families

53

Fig.  4  The  relationship  between  the  parameter.  τ  and  the  percentage  of  streaming  data  clustered  to new  malware  families 

Based on the rule  (2), with  increasing  .  τ ,  the  number  of  elements  clustered  into known  malware  families   increases.  Figure  4  shows  how  the  parameter  .  τ  influences the  number  of  samples  from  the  streaming  dataset  classified  as  samples  from   new 

 malware  families.  The  figure  was  created  for  the  parameter  .  k = 3 of  the  WKNN 

classifier,  and  we  assumed  that  the  number  of  clusters  in  dataset .  D  equals  four. 

 5.3 

 Online  Clustering 

This  section  describes  the  experimental  results  of  the  proposed  online  clustering 

model.  We  evaluated  the  model  using  three  state-of-the-art  online  clustering  algo-

rithms:  SOM,  BSAS,  and  OKM.  We  applied  these  algorithms  to  cluster  samples 

determined  by  the  clustering  decision  rule  (2)  as  samples  belonging  to   new  malware (a)  Purities  of  clusters. 

(b)  Average  silhouette  coefficients. 

Fig.  5  The  relation  between  the  number  of  clusters  and  the  purity  of  clusters  (a),  respectively,  the average  silhouette  coefficient  (b).  The  results  correspond  to  samples  that  were  clustered  to   new malware  families
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 families.  Since  the  number  of  newly  emerging  malware  families  during  a  specific 

time  window  is  unknown,  we  assume  that  the  correct  number  of  clusters,  which  is 

required  information  for  SOM  and  OKM  clustering  algorithms,  is  also  unknown. 

While  the  number  of  clusters  is  not  required  in  BSAS,  the  upper  bound  for  the  num-

ber  of  clusters  must  be  provided.  The  following  experiments  were  conducted  for  the 

number  of  clusters  (or  its  upper  bound  for  BSAS)  in  the  set .{4 ,  5 , . . . ,  10}. 

We  applied  SOM,  BSAS,  and  OKM  twenty  times  to  samples  clustered  into   new 

 malware  families,  and  Fig. 5  shows  the  average  results  for  the  purity  of  clusters  and the  silhouette  coefficient,  considering  various  numbers  of  clusters.  These  clustering 

results  correspond  to  the  parameter.  τ = −2,  for  which  our  model  achieved  the  highest silhouette  coefficient  on  the  dataset .  D. 

The  clustering  results  show  that  all  three  online  clustering  algorithms  achieved 

a  purity  of  clusters  of  at  least  88.5%,  with  OKM  outperforming  both  BSAS  and 

SOM.  However,  SOM  achieved  a  significantly  higher  average  silhouette  coefficient 

than  BSAS  and  OKM.  The  average  silhouette  coefficient  values  close  to  1  indicate 

that  the  clusters  are  well-separated.  The  clustering  results  show  that  the  highest 

purity  of  clusters,  93.34%,  was  achieved  using  OKM  for  ten  clusters,  and  the  highest 

average  silhouette  coefficient,  0.99,  was  performed  using  SOM  for  four  clusters.  In 

the  previous  work  [ 18],  the  SOM  also  achieved  significant  results  compared  to  BSAS 

and  OKM  online  clustering  algorithms. 

The  average  silhouette  coefficient  and  purity  of  clusters  calculated  for  samples 

from   known  families   are  0.99  and  56.59%,  respectively,  where  the  purity  is  significantly  lower  using  the  parameters  .  τ = −2 in  comparison  to  this  metric  calculated 

for  samples  from  new  malware  families. 

Finally,  we  compare  the  proposed  online  clustering  model  with  the  reference 

model,  where  the  online  clustering  algorithms  were  directly  applied  to  the  unlabeled 

dataset.  D,  and  the  streaming  data.  S  consisting  of  a  total  of  112,651  malicious  samples from  seven  prevalent  malware  families.  Figure  6  shows  the  purities  of  clusters  and  the average  silhouette  coefficient  achieved  for  the  unlabeled  dataset.  D  and  the  streaming data .  S  for  several  numbers  of  clusters.  The  results  indicate  that  the  proposed  online clustering  model  is  more  successful  in  terms  of  purity  of  clusters  than  the  approach 

where  we  directly  apply  the  online  clustering  algorithm. 

 5.4 

 Computational  Times 

This  section  presents  the  computational  times  of  three  online  clustering  algorithms, 

SOM,  BSAS,  and  OKM,  applied  to  cluster  the  samples  determined  by  the  clustering 

decision  rule  (2)  as  samples  belonging  to   new  malware  families.  We  run  each  of these  algorithms  twenty  times,  presenting  the  results  as  boxplot  graphs.  The  average 

number  of  samples  clustered  using  the  online  clustering  algorithms  is  3,505,  with  a 

standard  deviation  776.  This  number  of  samples  is  based  on  the  WKNN  classification 

results  and  the  clustering  decision  rule  as  described  in  Sect. 4. Figure  7  shows  the computational  times  of  individual  online  clustering  algorithms.  The  mean  values  of
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(a)  Purities  of  clusters. 

(b)  Average  silhouette  coefficients. 

Fig.  6  The  relation  between  the  number  of  clusters  and  the  purity  of  clusters  (a),  respectively, the  average  silhouette  coefficient  (b).  The  online  clustering  algorithms  were  directly  applied  to  the unlabeled  dataset.  D  and  the  streaming  data.  S

(a)  SOM

(b)  BSAS 

(c)  OKM 

Fig.  7  The  computational  times  of  the  online  clustering  algorithms 

computational  times  for  clustering  all  samples  belonging  to  new  malware  families 

are  less  than  one  second  for  all  clustering  algorithms  and  all  considered  numbers  of 

clusters.  The  graphs  also  demonstrate  that  the  OKM  algorithm  is  the  fastest  among 

the  three  online  clustering  algorithms,  whereby  SOM  is  approximately  two  times 

slower  than  OKM. 
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Fig.  8  Histogram  of  average  computational  times  for  20  measurements  of  the  entire  proposed model 

It  took  less  than  1  second  to  cluster  the  unlabeled  data  .  D ,  i.e.,  the  data  that appeared  before  the  streaming  data  .  S.  The  training  of  the  WKNN  classifier  took 

1,706  s  on  average,  with  a  standard  deviation  of  206  s.  The  total  computational 

time  of  the  proposed  model  consists  of  computational  times  for  data  preprocessing, 

clustering  of  the  dataset.  D,  WKNN  classification  of  the  streaming  data.  S,  and  online clustering  of  samples  belonging  to   new  malware  families,  and  is  shown  in  Fig. 8  in the  form  of  a  histogram. 

Note  that  the  clustering  of  the  dataset  .  D  is  conducted  only  once.  Unlike  other 

classifiers,  such  as  neural  networks  or  support  vector  machines,  WKNN  does  not  learn 

a  discriminative  function  from  the  training  data.  As  a  result,  training  of  WKNN  is 

done  sequentially  as  streaming  data  comes.  If  we  used,  for  example,  a  neural  network 

to  classify  malware  families,  the  training  would  be  performed  only  once,  which 

could  reduce  the  total  computation  time  of  the  proposed  model.  On  the  contrary,  the 

advantage  of  the  WKNN  classifier  is  that  it  does  not  need  to  be  retrained;  however, 

distances  between  testing  and  training  samples  must  be  computed,  which  might  be 

computationally  expensive  for  large  datasets. 

According  to  the  AV-Test  Institute  [ 4],  450,000  new  malware  samples  are  detected on  average  daily.  Based  on  the  computation  times  shown  in  Fig. 8, all  malware  samples  that  appear  daily  can  be  clustered  using  the  proposed  model  for  online  stream 

data  processing.  Specifically,  the  mean  of  computational  times  from  Fig. 8  is  1,728 

s,  the  average  computational  time  for  clustering  the  streaming  data  .  S  consisting  of 65,383  samples.  As  a  result,  processing  450,000  samples  would  take  approximately 

3.3  h.  For  the  highest  computational  time,  2,159  s,  for  processing  the  streaming  data, 

processing  the  450,000  samples  would  take  approximately  4.13  h. 
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 5.5 

 Discusion 

This  work  deals  with  the  problem  of  online  clustering  of  streaming  data  concerning  a 

fixed  dataset  consisting  of  unlabeled  samples  that  appeared  before  the  streaming  data 

(the  problem  is  defined  in  the  first  paragraph  of  Sect. 4).  This  problem  differs  from  the straightforward  application  of  clustering  algorithms  to  a  single  fixed  or  streaming 

data  in  that  we  also  use  another  dataset  consisting  of  older  samples  to  improve 

clustering  results.  This  aligns  with  the  real  situation  when  antivirus  companies  have 

to  analyze  streaming  data  while  also  having  older,  unlabeled  data.  If  the  older  dataset 

contains  a  subset  of  labeled  samples,  in  this  case,  we  could  use  semi-supervised 

learning  techniques,  with  the  help  of  which  we  could  improve  the  online  clustering 

of  streaming  data. 

The  proposed  model  for  the  online  clustering  works  with  malware  samples  only. 

If  the  streaming  data  contains  benign  and  malicious  samples,  applying  a  malware 

detection  model  before  clustering  into  malware  families  using  our  model  will  be 

necessary. 

6 

Conclusion 

Clustering  malware  samples  into  families  is  suitable  for  speeding  up  the  work  of  mal-

ware  analysts  and  also  for  research  purposes.  Clustering  malware  families  allows  us 

to  examine  the  evolution  of  individual  malware  families  over  time  and  potentially 

help  with  the  prediction  of  future  variants  of  malware.  In  this  work,  we  proposed  a 

model  for  the  online  clustering  of  malicious  samples  into  malware  families.  Stream-

ing  data  is  not  clustered  directly  but  split  according  to  similarity  with  samples  from 

known  malware  families.  The  samples  that  the  proposed  system  determined  did  not 

belong  to  existing  families  were  clustered  into  emerging  families  using  online  clus-

tering  algorithms.  The  clustering  results  show  that  the  online  clustering  algorithms 

achieved  a  purity  of  clusters  of  at  least  88.5%.  Experimental  results  indicate  that 

this  approach  creates  clusters  with  higher  purity  than  clusters  formed  by  the  direct 

application  of  an  online  clustering  algorithm. 

Future  work  may  focus  on  testing  and  possibly  improving  the  proposed  model 

to  cluster  incoming  samples  from  a  more  significant  number  of  families  with  the 

required  purity  of  clusters.  This  task  is  challenging  since  the  feature  set  obtained  from the  static  analysis  may  not  be  sufficient  to  distinguish  a  more  significant  number  of 

families  from  each  other.  Another  extension  of  the  work  can  be  using  semi-supervised 

learning  methods,  which  could  improve  clustering  into  malware  families  utilizing  a 

subset  of  labeled  samples. 
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Comparing  Balancing  Techniques  for 

Malware  Classification 

Ranjit  John  and  Fabio  Di  Troia 

Abstract  Imbalanced  datasets  often  disproportionately  represent  certain  types  of 

malware,  which  can  negatively  impact  the  performance  of  machine  learning  classi-

fiers.  This  imbalance  can  result  in  insufficient  data  for  rarer  but  highly  dangerous  mal-

ware,  leading  to  potential  detection  failures  with  serious  consequences.  To  address 

this,  data  balancing  techniques  have  proven  effective  in  improving  the  representation 

of  minority  classes  and  mitigating  bias  toward  the  majority  class.  Recent  studies  have 

also  shown  that  generative  models  can  successfully  create  synthetic  data  that  closely 

mirrors  real  datasets.  In  this  paper,  we  explore  various  balancing  techniques  and 

generate  synthetic  opcode  sequence  data  to  enhance  the  training  of  machine  learning 

models  for  improved  malware  classification.  Our  approach  includes  oversampling, 

undersampling,  hybrid  sampling,  and  the  use  of  Wasserstein  Generative  Adversarial 

Networks  with  Gradient  Penalty  (WGAN-GP)  to  generate  synthetic  samples.  We 

assess  the  effectiveness  of  these  methods  in  tackling  the  class  imbalance  problem  in 

multi-class  malware  classification. 

1 

Introduction 

Malicious  software,  or  malware,  inflicts  significant  damage  on  computer  systems 

by  infiltrating  and  corrupting  critical  data.  Over  the  past  decade,  the  frequency  of 

malware  attacks  has  surged  exponentially  and  continues  to  rise  at  an  alarming  rate. 

In  response  to  this  growing  threat,  researchers  have  increasingly  turned  to  machine 

learning  for  assistance  in  threat  detection.  In  2023,  SonicWall  Capture  Labs  threat 

researchers  documented  6.06  billion  malware  attacks,  reflecting  an  11%  increase 

from  the  previous  year  [ 20]. Despite  the  progress  in  machine  learning  solutions, further  research  is  crucial  to  effectively  combat  future  attacks  and  protect  data  privacy. 
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To  detect  malware  using  machine  learning,  classifiers  are  trained  on  malware 

datasets  available  from  public  repositories  [ 18]. These  datasets  are  presented  in  various  formats,  such  as  API  calls,  system  calls,  byte  sequences,  and  opcode  mnemon-

ics  [ 26].  The  features  derived  from  this  data  are  fed  into  machine  learning  algorithms,  which  analyze  the  relationships  between  these  features  and  the  target  labels. 

Although  this  approach  has  shown  success,  accurately  classifying  rare  or  novel  mal-

ware  remains  a  significant  challenge  for  current  machine  learning  solutions.  The 

continued  rise  in  malware  attacks  can  be  largely  attributed  to  the  inability  of  exist-

ing  classifiers  to  recognize  these  novel  and  rare  forms  of  malware,  primarily  due  to 

insufficient  data  representing  these  types. 

In  this  paper,  opcode  sequence  data  provided  by  VirusShare  was  used  to  train 

machine  learning  models  to  classify  malware  by  both  category  and  family.  This  mal-

ware  data  showed  moderate  to  high  imbalance.  To  address  this,  various  data  sam-

pling  and  generation  techniques  were  employed  to  balance  the  dataset  and  ensure 

effective  training.  These  techniques  included  oversampling,  undersampling,  hybrid 

sampling,  and  Generative  Adversarial  Networks  (GANs),  applied  across  different 

malware  classes.  The  following  machine  learning  models  were  used  to  assess  the 

impact  of  each  technique:  Support  Vector  Machines  (SVM),  .  k-Nearest  Neighbors 

(.  K -NN),  Random  Forest  (RF),  and  Multilayer  Perceptron  (MLP).  Prior  studies  have 

successfully  utilized  models  such  as  RF,.  K -NN,  and  SVM  for  malware  detection  [ 3, 

5, 18]  ,  while  others  have  leveraged  n-grams  and  opcode  sequences  with  neural  networks  [ 14, 17].  This  research  aims  to  investigate  the  effectiveness  of  data  balancing techniques  on  model  performance  and  to  identify  the  best  model  for  the  task. 

Figure  1  illustrates  the  overall  experimental  framework.  The  process  begins  by extracting  the  top  40  most  frequent  opcodes  from  the  dataset  and  calculating  their 

proportions  in  each  file.  Next,  the  dataset  is  divided  into  training  and  test  sets.  The 

training  set  is  processed  using  various  sampling  techniques,  that  is,  undersampling, 

oversampling  with  Generative  Adversarial  Networks  (GANs),  and  a  combination 

of  undersampling  and  oversampling,  while  unbalanced  sampling  is  retained  as  is. 

Finally,  these  methods  lead  to  the  application  of  classifiers,  allowing  for  a  comparison 

of  the  results  obtained  from  each  training  set. 

The  remainder  of  this  paper  is  organized  as  follows.  Section  2  provides  background  information,  reviewing  related  works  and  summarizing  existing  techniques. 

Section  3  outlines  the  methodology  employed  in  the  experiments.  Section  4  discusses the  implementation  and  experimental  setup.  Section  5  presents  the  experimental results,  and  Sect. 6  concludes  with  future  directions  for  this  research. 

2 

Background 

This  section  will  discuss  research  conducted  in  machine  learning  with  unbalanced 

datasets.  It  will  highlight  the  lack  of  studies  utilizing  balancing  techniques  for 

multi-class  classification  problems  and  provide  a  brief  introduction  to  oversampling, 

[image: Image 18]
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Fig.  1  General  layout  of  experiments 

undersampling,  hybrid  sampling,  and  data  generation  using  Generative  Adversarial 

Networks  (GANs). 

 2.1 

 Related  Works 

Several  approaches  have  been  proposed  to  address  the  class  imbalance  problem  in 

machine  learning  tasks.  The  two  primary  levels  at  which  imbalance  is  addressed  are 

the  algorithmic  level  and  the  data  level  [ 19].  Algorithmic  solutions  involve  developing  specialized  machine  learning  classifiers  that  effectively  handle  unbalanced  data 

without  becoming  overly  biased  toward  the  majority  class.  These  solutions  typically 

require  experimentation  with  various  hyperparameters  of  the  classifiers.  However,  as 

noted  in  [ 19],  algorithmic  approaches  often  depend  heavily  on  the  specific  classifier used  and  may  not  perform  well  across  diverse  classification  tasks. 

In  contrast,  data-level  approaches  aim  to  address  imbalance  within  the  feature 

space  by  balancing  the  data  prior  to  classifier  training.  A  common  method  for  bal-

ancing  data  is  oversampling,  where  synthetic  points  are  added  to  the  minority  class 

to  match  the  sample  count  of  the  majority  class.  Conversely,  undersampling  removes 

points  from  the  majority  class  to  align  with  the  minority  class’s  sample  count.  In  the 

malware  domain,  data  is  often  highly  unbalanced,  posing  significant  challenges  in 

representing  uncommon  malware  attacks  to  classifiers.  The  authors  in  [ 4]  demonstrated  that  undersampling  can  be  particularly  effective  when  the  dataset  is  not  exces-

sively  imbalanced  or  balanced,  as  indicated  by  the  posterior  probability  of  the  dataset. 
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This  posterior  probability  is  estimated  through  conditional  probability  based  on  sam-

ple  mean  and  covariance.  However,  calculating  the  posterior  probability  can  be  com-

plex,  and  the  work  in  [ 4]  only  evaluated  this  approach  in  binary  classification  tasks, leaving  its  effectiveness  in  multi-class  classification  untested. 

Oversampling  strategies  also  seek  to  balance  data  by  generating  synthetic  sam-

ples  for  the  minority  class.  One  widely  used  method  is  the  Synthetic  Minority  Over-

sampling  Technique  (SMOTE).  The  authors  in  [ 21]  developed  a  promising  network intrusion  detection  system  using  a  random  forest  classifier,  where  the  minority  class 

was  oversampled  with  SMOTE.  Similarly,  the  authors  in  [ 22]  demonstrated  the  effectiveness  of  SMOTE  and  Adaptive  Synthetic  (ADASYN)  methods  in  improving  clas-

sification  metrics  for  diabetes  data.  However,  these  studies  focused  primarily  on 

binary  classification  and  did  not  explore  the  performance  of  these  techniques  in 

multi-class  malware  classification.  In  the  malware  classification  domain,  the  authors 

in  [ 1]  found  that  SMOTE  was  particularly  effective  for  balancing  binary  files  converted  to  grayscale  images  for  malware  family  classification.  This  study  highlighted 

SMOTE’s  advantages  for  image  data  in  convolutional  neural  networks  (CNNs)  and 

transfer  learning  models.  However,  the  effect  of  data  balancing  on  unbalanced  opcode 

proportion  data  for  other  models  remains  unexplored. 

In  addition  to  oversampling  and  undersampling,  hybrid  sampling  techniques  and 

ensemble  learning  methods  have  also  been  investigated.  The  work  in  [ 15]  applied ADASYN  for  oversampling  the  minority  class,  coupled  with  Tomek  Links  for  undersampling  the  majority  class,  resulting  in  improved  performance  in  classifying  dia-

betes  data.  However,  this  study  was  limited  to  binary  classification.  In  the  cyber-

security  domain,  the  authors  in  [ 11]  applied  SMOTE-ENN  to  balance  DNS  logs for  detecting  malicious  websites.  They  employed  an  artificial  neural  network  (ANN) 

model  based  on  random  forest  for  classification,  reinforcing  the  idea  that  data  balanc-

ing,  combined  with  models  like  random  forest  and  ANN,  can  enhance  the  detection 

of  malicious  features.  Nonetheless,  the  application  of  hybrid  sampling  techniques 

for  unbalanced  file  features  in  malware  classification  remains  unexplored. 

The  study  in  [ 28]  conducted  a  significant  investigation  using  multiple  features to  classify  malware  families  and  trained  ensemble  models  for  malware  recognition. 

However,  a  limitation  of  this  study  was  that  the  proposed  model  struggled  to  iden-

tify  uncommon  and  zero-day  malware  families.  Additionally,  the  model  incurred 

substantial  overhead  due  to  the  extraction  of  multiple  features. 

Thus,  there  is  a  pressing  need  for  research  that  investigates  the  impact  of  vari-

ous  sampling  techniques  in  the  malware  domain,  particularly  for  classifying  mul-

tiple  malware  classes.  Moreover,  limited  research  has  focused  on  utilizing  opcode 

mnemonic  proportions  as  features  for  training  classifiers.  In  this  work,  we  explore 

this  area  by  applying  a  range  of  undersampling,  oversampling,  and  synthetic  data  gen-

eration  techniques  to  opcode  frequency  data,  assessing  their  effectiveness  in  better 

representing  malware  to  machine  learning  models. 
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 2.2 

 Undersampling 

Undersampling  is  a  technique  aimed  at  reducing  the  size  of  the  majority  class  to 

match  that  of  the  minority  class,  thereby  balancing  the  dataset.  This  method  is  par-

ticularly  useful  when  the  majority  class  samples  overshadow  those  of  the  minority 

class,  making  it  difficult  for  machine  learning  algorithms  to  effectively  recognize  the 

minority  samples.  The  fundamental  goal  of  undersampling  is  to  reduce  bias  in  the 

classifier  toward  the  majority  class  by  removing  some  of  its  samples. 

The  most  common  undersampling  method  is  random  undersampling  (RUS), 

which  involves  randomly  selecting  a  subset  of  samples  from  the  majority  class 

for  elimination.  However,  RUS  has  a  significant  limitation,  in  fact,  it  may  discard 

informative  samples  from  the  majority  class,  which  can  degrade  the  classifier’s  per-

formance  on  that  class.  To  address  this  weakness,  several  advanced  undersampling 

techniques  have  been  developed,  including  Tomek  Links,  Edited  Nearest  Neigh-

bors  (ENN),  Repeated  Edited  Nearest  Neighbors  (RENN),  and  One-Sided  Selection 

(OSS),  all  of  which  have  demonstrated  effectiveness. 

Tomek  Links  (TL)  identify  pairs  of  sample  points  from  different  classes  by  exam-

ining  their  nearest  neighbors.  A  Tomek  Link  exists  when  a  sample  point’s  nearest 

neighbor  belongs  to  a  different  class.  The  majority  class  sample  in  these  pairs  is  then 

removed  to  improve  separability  within  the  feature  space  [ 24]. 

Edited  Nearest  Neighbors  (ENN)  is  another  undersampling  technique  that  focuses 

on  removing  noisy  data  points  or  outliers.  The  motivation  behind  ENN  is  to  examine 

the  nearest  neighbors  of  each  sample  point  and  determine  if  those  neighbors  belong  to 

the  same  class.  If  the  majority  of  a  sample’s  neighbors  are  from  a  different  class,  that point  is  removed  from  the  dataset  [ 27].  Repeated  Edited  Nearest  Neighbors  (RENN) extends  ENN  by  iterating  the  process  until  no  further  points  can  be  eliminated  [ 23]. 

However,  these  methods  can  be  computationally  expensive  due  to  the  need  to  find  all 

neighbors  for  each  sample  in  large  datasets.  In  addition,  ENN  also  removes  borderline 

points  that  can  be  important  training  samples. 

One-Sided  Selection  (OSS)  combines  the  use  of  Tomek  Links  and  Condensed 

Nearest  Neighbors  (CNN)  for  undersampling.  Initially,  Tomek  Links  are  applied  to 

remove  bordering  majority  class  points,  followed  by  CNN,  which  further  reduces 

majority  class  samples  to  improve  the  data’s  structure  [ 12]. 

Each  of  these  undersampling  techniques  has  specific  use  cases,  and  it  is  essential 

to  experiment  with  them  to  determine  which  is  most  effective  for  a  given  dataset.  In 

this  paper,  we  perform  experiments  using  these  undersampling  methods  to  identify 

the  most  suitable  approach  for  our  malware  feature  data. 

 2.3 

 Oversampling 

Oversampling  is  another  technique  for  balancing  data  without  reducing  the  number 

of  existing  samples.  The  primary  concept  behind  oversampling  is  to  resample  the

66

R. John and F. Di Troia

minority  class  points  to  match  the  number  of  samples  in  the  majority  class.  This 

method  is  especially  advantageous  when  the  dataset  is  small.  Random  oversampling 

(ROS)  is  a  popular  method  for  oversampling  unbalanced  data.  Similar  to  random 

undersampling,  ROS  randomly  selects  data  points,  however,  instead  of  downsam-

pling  the  majority  class,  it  upsamples  the  minority  class.  A  key  limitation  of  this 

technique  is  that  less  informative  minority  samples  may  be  randomly  duplicated, 

leading  to  a  larger  dataset  without  a  corresponding  improvement  in  classification 

performance.  Consequently,  several  advanced  oversampling  techniques  have  been 

developed  to  address  the  shortcomings  of  ROS.  Among  these,  the  Synthetic  Minority 

Over-sampling  Technique  (SMOTE)  and  Adaptive  Synthetic  Sampling  (ADASYN) 

have  proven  effective  in  various  applications. 

SMOTE  generates  synthetic  samples  rather  than  simply  duplicating  instances  of 

the  minority  class.  It  uses  the  nearest  neighbors  approach,  drawing  a  line  between  the 

current  data  point  and  its  nearest  neighbors,  and  creates  synthetic  samples  along  this 

line  [ 2].  This  method  produces  new,  plausible  samples  that  introduce  diversity  in  the minority  class,  accommodating  new  observations.  SMOTE  has  been  shown  to  effectively  enhance  model  performance,  as  demonstrated  in  [ 21].  Moreover,  researchers have  developed  variations  of  SMOTE  that  deliver  even  better  results. 

ADASYN  builds  on  the  principles  of  SMOTE  by  generating  data  based  on  the 

learning  difficulty  of  the  samples  [ 10].  Minority  class  points  are  considered  “hard to  learn”  if  their  nearest  neighbors  are  majority  class  samples.  More  synthetic  samples  are  generated  from  these  “hard  to  learn”  points,  which  improves  classification 

performance.  In  this  paper,  we  will  experiment  with  these  sampling  techniques  and 

compare  their  effectiveness  in  the  context  of  malware  classification. 

In  this  paper,  we  perform  experiments  with  all  these  oversampling  methods  to 

identify  the  most  suitable  approach  for  our  malware  feature  data. 

 2.4 

 Hybrid  Sampling 

Hybrid  sampling  combines  undersampling  and  oversampling  techniques  to  mitigate 

the  individual  weaknesses  of  each  method.  This  approach  remains  an  active  area  of 

research  but  has  shown  promising  results  in  many  applications.  For  instance,  the  work 

in  [ 15]  used  ADASYN  combined  with  Tomek  Links  to  improve  the  classification of  diabetes  patients.  Similarly,  the  study  in  [ 13]  applied  One-Sided  Selection  (OSS) and  Borderline  SMOTE  to  develop  an  effective  network  intrusion  detection  system. 

In  this  paper,  we  also  experimented  with  combining  undersampling  and  oversam-

pling  methods  to  observe  their  effects  on  classifying  malware  data. 
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 2.5 

 Generative  Adversarial  Networks  (GANs) 

To  further  advance  our  efforts,  this  paper  will  also  explore  generating  synthetic 

malware  data  using  Generative  Adversarial  Networks  (GANs).  GANs  consist  of  two 

neural  networks,  the  generator  and  the  discriminator.  These  models  continuously 

compete  against  one  another  to  achieve  optimal  results.  The  generator  attempts  to 

create  synthetic  data  that  resembles  the  real  data,  while  the  discriminator’s  role  is 

to  accurately  differentiate  between  real  and  fake  data.  The  generator  learns  from  the 

discriminator’s  feedback  after  each  classification  task,  and  this  process  is  repeated 

over  many  epochs  until  the  discriminator  can  no  longer  reliably  distinguish  between 

real  and  fake  data  [ 6]. 

Traditional  GANs  employ  a  loss  function  that  establishes  a  zero-sum  game 

between  the  generator  and  discriminator,  using  the  probability  distributions  of  the 

real  and  fake  data.  The  discriminator’s  loss  function  minimizes  the  log  probability 

of  misclassifying  real  and  fake  samples,  while  the  generator’s  loss  function  maxi-

mizes  the  probability  of  the  discriminator  making  a  mistake,  thereby  improving  the 

quality  of  generated  samples.  The  loss  functions  for  the  discriminator  and  generator 

in  traditional  GANs  are  given  by  Equations  (1)  and  (2), respectively: m

1





.∇ θd

=

log  D(xi) + log ( 1 −  D(G(zi)))

(1) 
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• .∇ θ :  Gradient  with  respect  to  the  discriminator’s  parameters. 

 d

• .  m:  Number  of  training  examples. 



•   m

. 

:  Summation  over  all  training  examples. 

 i=1

• .log  D(xi):  Logarithm  of  the  discriminator’s  output  for  real  data.  xi. 

• .log ( 1 −  D(G(zi))):  Logarithm  of  one  minus  the  discriminator’s  output  for  generated  data .  G(zi). 

 m
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.∇ θg

=

log ( 1 −  D(G(zi)))

(2) 

 m

 i=1

• .∇ θ :  Gradient  with  respect  to  the  generator’s  parameters. 

 g

• .  m:  Number  of  training  examples. 



•   m

. 

:  Summation  over  all  training  examples. 

 i=1

• .log ( 1 −  D(G(zi))):  Logarithm  of  one  minus  the  discriminator’s  output  for  generated  data .  G(zi). 

However,  GANs  face  limitations  such  as  mode  collapse,  vanishing  gradients, 

and  convergence  issues,  which  can  adversely  affect  the  quality  of  generated  data, 

leading  to  ineffective  classifiers.  To  address  these  challenges,  Wasserstein  GAN  with 

Gradient  Penalty  (WGAN-GP)  was  developed  by  the  authors  in  [ 8]. 
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In  this  paper,  we  aim  to  oversample  minority  class  samples  using  WGAN-GP. 

Unlike  traditional  GANs,  WGAN-GP  employs  Wasserstein’s  Distance  as  the  loss 

function,  along  with  a  gradient  penalty  during  generator  training. 

Wasserstein’s  Distance,  also  known  as  the  Earth-Mover’s  Distance,  is  a  measure 

of  the  distance  between  two  probability  distributions  over  a  given  space.  Intuitively, 

it  represents  the  minimum  amount  of  “work”  required  to  transform  one  distribution 

into  the  other,  where  “work”  is  defined  as  the  amount  of  probability  mass  that  must 

be  moved,  multiplied  by  the  distance  it  is  moved. 

WGAN-GP  enhances  traditional  GANs  by  utilizing  different  loss  functions  for 

the  generator  and  discriminator.  The  WGAN-GP  neural  networks  use  Wasserstein’s 

Distance  for  their  loss  function  and  do  not  optimize  the  log  probability  of  real  and 

fake  data.  Instead,  the  discriminator  outputs  scores  that  compute  the  Earth-Mover’s 

Distance  between  the  real  and  fake  data  distributions.  Consequently,  the  two  models 

strive  to  maximize  the  difference  between  the  Earth-Mover  scores  for  real  and  fake 

samples.  If  the  generator  produces  samples  that  receive  lower  scores  from  the  dis-

criminator,  it  indicates  that  the  generated  samples  closely  resemble  the  real  data.  Fur-

thermore,  a  gradient  penalty  is  applied  to  the  discriminator’s  loss  function  to  ensure 

that  the  gradients  do  not  become  excessively  large,  as  suggested  in  [ 8], improving the  quality  of  generated  fake  data.  WGAN-GP  penalizes  the  generator  model  if  the 

gradient  norm  becomes  excessively  large.  The  loss  functions  for  the  discriminator 

and  generator  in  WGAN-GP  are  given  by  Equations  (3)  and  (4),  respectively: m

1





.∇ w

=

 f (xi) −  f (G(zi))

(3) 

 m

 i=1

• .∇w:  Gradient  with  respect  to  the  critic’s  parameters. 

• .  m:  Number  of  training  examples. 



•   m

. 

:  Summation  over  all  training  examples. 

 i=1

• .  f (x i):  Critic’s  output  for  real  data. x i. 

• .  f (G(z i)):  Critic’s  output  for  generated  data.  G(z i). 

 m

1





.∇ θ

=

 f (G(zi))

(4) 

 m

 i=1

• .∇ θ:  Gradient  with  respect  to  the  generator’s  parameters. 

• .  m:  Number  of  training  examples. 



•   m

. 

:  Summation  over  all  training  examples. 

 i=1

• .  f (G(z i)):  Critic’s  output  for  generated  data.  G(z i). 

The  work  in  [ 25]  supports  this  enhancement,  demonstrating  that  fake  opcode  data generated  by  WGAN-GP  was  less  distinguishable  by  classifiers  compared  to  data 

generated  by  traditional  GANs  and  WGANs.  Therefore,  this  paper  will  experiment 

with  the  WGAN-GP  architecture  used  by  [ 25]  to  generate  synthetic  minority  class samples  and  assess  any  improvements  in  classification  metrics. 
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3 

Methodology 

This  section  outlines  the  procedures  used  for  feature  extraction,  the  sampling  tech-

niques  employed  to  balance  the  training  data,  the  machine  learning  models  used,  and 

the  evaluation  metrics  applied  to  assess  model  performance. 

 3.1 

 Feature  Extraction 

For  feature  extraction,  we  utilized  opcode  sequence  data  extracted  from  ASM  files 

obtained  via  VirusShare.  Opcodes  represent  the  operational  codes  of  a  program  and 

provide  insight  into  its  behavior.  However,  the  high  dimensionality  of  opcode  text  data 

poses  challenges  for  machine  learning  algorithms.  To  address  this,  we  focused  on  the 

top  40  most  frequently  occurring  opcodes  across  the  entire  dataset,  a  choice  inspired 

by  prior  work  such  as  [ 25]. Each  opcode  was  converted  to  a  proportion,  representing  its  relative  frequency  within  each  file.  This  transformation  numerically  captures 

the  distribution  of  the  top  opcodes  in  each  malware  file,  reducing  the  complexities 

associated  with  raw  textual  data.  As  a  result,  each  malware  sample  is  represented  by 

a  feature  vector  of  length  40.  Let 

. Opcodes = {Op  , . . . ,  Op }

1

40

and  define 

. Proportions = {Proportions[ i]}40

 i=1

where 

in file

. Proportions[ i] = Number of occurrences of  Opi

Total number of Opcodes in file

While  selecting  the  top  40  opcodes  provides  a  practical  method  for  dimensionality 

reduction  and  has  been  effective  in  similar  studies,  we  acknowledge  that  further  fea-

ture  selection  techniques,  such  as  recursive  feature  elimination  (RFE)  or  information-

theoretic  methods,  could  improve  the  relevance  of  the  features.  These  approaches 

could  refine  the  current  selection  by  identifying  the  opcodes  most  critical  for  malware 

classification,  and  we  consider  this  an  avenue  for  future  work. 

 3.2 

 Balancing  Malware  Features  with  Undersampling 

This  section  describes  the  methodology  for  balancing  the  training  data  using  under-

sampling  techniques.  We  employed  three  undersampling  methods,  that  is,  Tomek 

Links,  Edited  Nearest  Neighbors  (ENN),  and  One-Sided  Selection  (OSS).  The  steps 

involved  in  these  processes  are  detailed  below. 
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Tomek  Links  improves  classifier  decision  boundaries  by  reducing  class  overlap  as 

follows  [ 24]. 

1.  Identify  pairs  of  samples  from  different  classes  that  form  a  Tomek  Link.  A  Tomek 

Link  consists  of  two  nearest  neighbor  samples  from  different  classes. 

2.  Remove  the  majority  class  instance  in  each  Tomek  Link. 

3.  Resample  all  classes,  excluding  the  minority  class. 

ENN  eliminates  noisy  and  borderline  samples  that  may  confuse  the  classifier  as 

follows  [ 27]. 

1.  For  each  sample,  identify  its .  k-nearest  neighbors. 

2.  An  outlier  exists  if  all .  k-nearest  neighbors  belong  to  a  different  class. 

3.  Remove  all  identified  outliers. 

4.  Resample  all  classes,  excluding  the  minority  class. 

OSS  utilizes  both  Tomek  Links  and  Condensed  Nearest  Neighbors  (CNN)  to 

resample  classes  as  follows  [ 12]. 

1.  Apply  Tomek  Links  to  remove  majority  class  samples  that  reside  on  the  class 

boundary,  particularly  those  overshadowing  minority  class  points. 

2.  Use  CNN  to  condense  the  neighboring  points  of  different  classes,  retaining  only 

essential  samples  that  prevent  class  overshadowing. 

 3.3 

 Balancing  Malware  Features  with  Oversampling 

This  section  describes  the  approach  used  to  balance  the  training  data  via  oversam-

pling  techniques.  We  implemented  three  oversampling  methods:  Synthetic  Minority 

Over-Sampling  Technique  (SMOTE),  BorderlineSMOTE  (BSMOTE),  and  Adaptive 

Synthetic  (ADASYN).  The  steps  for  each  technique  are  outlined  below. 

SMOTE  generates  synthetic  samples  to  enhance  the  detection  of  minority  classes 

as  follows  [ 2]. 

1.  For  each  sample,  identify  its .  k-nearest  neighbors  from  the  same  class. 

2.  Randomly  select  one  neighbor  to  generate  a  synthetic  sample  that  lies  on  the 

line  between  the  sample  point  and  its  neighbor. 

3.  Repeat  the  process  to  generate  the  required  number  of  synthetic  samples  (until 

the  number  of  samples  matches  that  of  the  majority  class). 

4.  Combine  the  original  and  synthetic  samples. 

5.  Repeat  steps  1-4  for  each  class  except  the  majority  class. 

BSMOTE  is  a  variant  of  SMOTE  that  generates  synthetic  samples  near  the  decision 

boundary  as  follows  [ 9]. 

1.  For  each  sample,  calculate  its  m-nearest  neighbors  from  the  entire  dataset  to  iden-

tify  noise  points.  Samples  with  neighbors  from  a  different  class  are  considered 

noise. 
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2.  Identify  borderline  points  using  m-nearest  neighbors.  Borderline  points  have 

neighbors  from  multiple  classes. 

3.  For  each  borderline  sample,  find  its .  k-nearest  neighbors  from  the  same  class. 

4.  Randomly  select  one  neighbor  and  generate  a  synthetic  sample  along  the  line 

connecting  the  sample  point  and  the  neighbor. 

5.  Repeat  this  process  to  create  the  required  number  of  synthetic  samples. 

6.  Combine  the  original  and  synthetic  samples. 

7.  Repeat  steps  1-6  for  each  class  except  the  majority  class. 

ADASYN  generates  synthetic  samples  based  on  the  difficulty  of  learning  specific 

sample  points  as  follows  [ 10]. 

1.  Compute  the  imbalance  ratio  between  each  class  and  the  majority  class. 

2.  For  each  class,  calculate  the  number  of  synthetic  samples  needed  (the  difference 

between  the  number  of  majority  class  samples  and  the  original  class  samples). 

3.  Identify  “hard  to  learn”  samples  by  analyzing  the  density  distribution  of  samples. 

Samples  with  many  neighbors  from  other  classes  are  deemed  “hard  to  learn.” 

4.  Generate  synthetic  samples  around  these  “hard  to  learn”  points  based  on  the 

calculated  density  distribution. 

5.  Combine  the  synthetic  samples  with  the  original  class  samples. 

6.  Repeat  steps  1-5  for  all  classes  except  the  majority  class. 

 3.4 

 Balancing  Malware  Features  with  Hybrid  Sampling 

To  evaluate  the  effectiveness  of  hybrid  sampling,  we  employed  the  following 

methodology  to  balance  the  training  data. 

1.  Oversample  all  classes,  except  the  majority  class,  using  SMOTE. 

2.  Undersample  only  the  majority  class  in  the  newly  generated  data  using  Tomek 

Links. 

3.  Repeat  the  above  steps  for  the  remaining  oversampling  and  undersampling 

techniques  used  in  the  other  experiments. 

 3.5 

 Balancing  Malware  Features  with  WGAN-GP 

We  leveraged  WGAN-GP  to  generate  synthetic  data  and  balance  the  training  dataset. 

The  WGAN-GP  architecture  from  [ 25]  was  adopted  to  conduct  a  small  experiment  to assess  its  effectiveness  in  generating  synthetic  data  for  malware  classification  tasks. 

The  steps  involved  in  utilizing  WGAN-GP  are  as  follows. 
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1.  Train  WGAN-GP  models  for  each  malware  class  for  2000  epochs. 

2.  Generate  synthetic  samples  from  the  trained  generator  in  batches  of  32.  The  gen-

erator  and  discriminator  losses  are  recorded  at  every  100  epochs  and  visualized 

for  evaluation.  The  model  yielding  the  best  loss  values  is  used  to  produce  the 

synthetic  samples. 

3.  Combine  the  real  and  generated  synthetic  samples  to  create  an  oversampled 

training  dataset. 

4.  Repeat  steps  1–3  for  all  malware  classes  except  the  majority  class. 

 3.6 

 Evaluation  Metrics 

To  measure  the  performance  of  the  classifiers  trained  on  balanced  data,  we  adopted 

specific  evaluation  metrics  widely  used  in  the  literature  [ 7, 16, 29].  These  metrics, and  the  rationale  for  using  them,  are  as  follows. 

1. Accuracy:  This  metric  measures  the  overall  correctness  of  the  malware  classifier. 

However,  it  may  be  misleading  when  dealing  with  imbalanced  datasets,  as  high 

accuracy  does  not  necessarily  reflect  good  performance  in  identifying  minority 

classes.  Therefore,  accuracy  is  considered  alongside  other  metrics. 

2. Precision:  This  metric  evaluates  the  classifier’s  ability  to  avoid  false  positives, determining  how  well  the  model  correctly  identifies  samples  from  a  specific 

malware  class  without  misclassifying  samples  from  other  classes.  Precision  is 

calculated  using  the  formula 

.Precision =

 TP

(5) 

 TP +  FP

where  True  Positives  (TP)  are  correctly  classified  malware  samples,  and  False 

Positives  (FP)  are  incorrectly  classified  samples. 

3. Recall:  This  metric  assesses  the  proportion  of  correctly  classified  instances  of  a class  among  all  actual  instances  of  that  class.  It  highlights  the  model’s  ability  to 

correctly  identify  malware  samples  and  not  miss  them.  Recall  is  calculated  as 

.Recall =

 TP

(6) 

 TP +  FN

where  False  Negatives  (FN)  are  samples  incorrectly  classified  as  not  belonging 

to  the  correct  malware  class. 

4. F1-Score:  The  F1-Score  is  the  harmonic  mean  of  precision  and  recall,  providing 

a  single  balanced  metric  that  reflects  the  model’s  ability  to  classify  malware 

accurately.  It  is  calculated  as 

.F1-Score = 2 × Precision × Recall

(7)

Precision + Recall

Comparing Balancing Techniques for Malware Classification

73

5. Confusion  Matrix:  This  matrix  provides  a  class-wise  breakdown  of  false  pos-

itives,  false  negatives,  true  positives,  and  true  negatives,  offering  a  visual  rep-

resentation  of  classification  performance  across  different  malware  classes  after 

applying  balancing  techniques. 

To  evaluate  the  effectiveness  of  each  balancing  technique,  we  trained  four  machine 

learning  models  using  the  opcode  proportion  data  and  calculated  the  metrics  for  each 

model.  The  experimental  process  is  consists  of  the  following  steps. 

1.  Retrieve  real  data  samples  from  the  dataset  and  convert  each  opcode  file  into  a 

40-length  opcode  array. 

2.  Label  the  target  classes  for  malware  family  and  category  classification. 

3.  Split  the  dataset  into  training  and  testing  sets. 

4.  Apply  the  sampling  techniques  to  balance  the  training  data. 

5.  Train  Support  Vector  Machine  (SVM),  Random  Forest,  Multi-Layer  Perceptron 

(MLP),  and  .  k-Nearest  Neighbors  (.  K -NN)  classifiers  on  the  balanced  training data. 

6.  Evaluate  the  models  using  the  test  set  and  compare  the  results  with  the  models 

trained  on  the  unbalanced  data. 

4 

Implementation 

This  section  provides  an  overview  of  the  dataset  used,  the  implementation  of  the  sam-

pling  techniques,  the  WGAN-GP  architecture,  and  the  machine  learning  classifiers 

that  were  tested. 

 4.1 

 Dataset 

The  dataset  used  in  this  study  is  based  on  files  obtained  via  VirusShare,  which 

includes  samples  from  various  known  malware  families  as  well  as  unknown  ones. 

The  repository  contains  binary  files  with  opcodes,  registers,  labels,  and  memory 

addresses.  These  binary  files  were  cleaned  using  the  objdump program  and  a  Python 

script  to  retain  only  the  assembly  opcodes  in  text  format.  The  dataset  consists  of 

50  distinct  malware  families.  For  this  study,  we  selected  the  top  20  families  with 

the  largest  number  of  samples  for  training  machine  learning  models.  Among  these 

families,  Vobfus  and  Zbot  have  over  4,000  and  2,000  samples,  respectively,  which 

are  used  for  malware  family  classification.  These  20  families  also  belong  to  eight 

different  malware  categories/types,  which  are  used  for  conducting  experiments  in 

malware  category  classification.  The  largest  malware  categories,  Trojan  and  Worm, 

contain  over  8,000  and  5,000  samples,  respectively. 

We  experiment  with  two  data  sets  for  the  different  classification  tasks,  specifi-

cally,  Moderately  Unbalanced  set,  and  Highly  Unbalanced  set.  The  first  data  set  is
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Table  1  Malware  family  dataset  with  moderate  and  high  degree  of  imbalance 

Malware  family

Moderately  unbalanced

Highly  unbalanced 

Vobfus

4204

4204 

Zbot

2353

2353 

Diplugem

2269

2269 

Obfuscator

2102

2102 

Vundo

1877

1877 

VBInject

1688

1688 

Delf

1679

1679 

Beebone

1629

1629 

Winwebsec

1625

1625 

Enterak.A

1530

1530 

OnLineGames

1366

137 

Startpage

1313

131 

Allaple.A

1294

129 

Injector

1161

116 

Systex.A

1098

110 

Expiro.BK

1095

110 

FakeRean

1089

109 

Small

1051

105 

Toga!rfn

985

25 

Lamechi.B

971

25 

Table  2  Malware  category  dataset  with  moderate  and  high  degree  of  imbalance 

Malware  category

Moderately  unbalanced

Highly  unbalanced 

Trojan

8590

8590 

Worm

5497

5497 

Password  stealer

5252

5252 

Tool

4948

4948 

Trojan  downloader

2557

256 

Browser  modifier

2269

227 

Trojan  dropper

2077

25 

Virus

1095

25 

moderately  unbalanced  with  a  lower  degree  of  imbalance  per  class.  In  contrast,  the 

second  data  set  reduces  half  of  the  class  samples  by  a  factor  of  10  and  further  reduces the  last  two  classes  to  only  25  samples  each.  Experiments  are  conducted  on  these  two 

sets  of  data  per  classification  task  to  further  study  the  impact  of  balancing  techniques 

on  imbalanced  classes.  The  dataset  for  each  malware  family  is  shown  in  Table  1,  and the  dataset  for  malware  categories  is  presented  in  Table  2. 
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 4.2 

 Undersampler  Implementation 

This  subsection  describes  the  implementation  of  the  Tomek  Links,  Edited  Nearest 

Neighbors  (ENN),  and  One-Sided  Selection  (OSS)  techniques  for  our  experiments. 

The  under-samplers  were  implemented  using  Python  and  the  imblearn library 

from  scikit-learn. 

The  Tomek  Links  sampler,  as  implemented  in  scikit-learn,  follows  the  algo-

rithm  described  in  [ 24].  The  Tomek  Links  method  has  limited  hyperparameters,  with the  sampling  strategy  being  the  primary  configurable  option.  In  our  experiments,  two 

sampling  strategies  were  tested,  “not  minority”  and  “majority”.  The  “not  minority” 

strategy  resamples  all  classes  except  the  minority  class,  retaining  all  minority  class 

samples  for  better  visibility.  In  contrast,  the  “majority”  strategy  resamples  only  the 

majority  class,  retaining  all  other  class  samples. 

The  Edited  Nearest  Neighbor  (ENN)  sampler,  implemented  in  imblearn, is  

based  on  the  algorithm  presented  in  [27].  ENN  offers  several  hyperparameters,  allowing  for  extensive  configuration  to  balance  the  data.  Along  with  the  sampling  strategy, 

the  neighborhood  size  can  be  adjusted  to  better  fit  the  data.  For  the  undersampling 

experiments,  we  set  the  sampling  strategy  to  “not  minority”  and  “majority”  and 

conducted  a  hyperparameter  tuning  experiment,  testing  neighborhood  sizes.  n  where 

.  n ∈ {1 ,  2 , . . . ,  10}.  The  best  set  of  hyperparameters  was  chosen  by  evaluating  the F1-Score  produced  by  each  classifier  after  training  with  the  balanced  data. 

The  One-Sided  Selection  (OSS)  sampler  was  also  implemented  following  the 

algorithm  described  in  [ 12]. Like  ENN,  OSS  has  several  hyperparameters,  including sampling  strategy,  neighborhood  size,  and  sample  extraction  size.  We  conducted  a 

series  of  experiments  using  the  previously  tested  sampling  strategies  and  neighbor-

hood  sizes.  n ∈ {1 ,  2 , . . . ,  10} to  determine  the  best  OSS  configuration  that  maximizes the  F1-score  for  each  classifier. 

 4.3 

 Oversampler  Implementation 

For  the  oversamplers,  we  selected  the  Synthetic  Minority  Over-Sampling  Technique 

(SMOTE),  BorderlineSMOTE  (BSMOTE),  and  Adaptive  Synthetic  (ADASYN) 

methods,  as  recent  literature  highlights  their  strong  performance  in  balancing 

datasets.  Similar  to  the  undersampling  techniques,  we  implemented  these  oversam-

plers  using  Python  and  the  imblearn library. 

SMOTE  was  implemented  based  on  the  algorithm  in  [ 2],  which  generates  synthetic  samples  by  interpolating  between  existing  samples  and  their .  k-nearest  neigh-

bors.  We  experimented  with  the  sampling  strategy  and  the  number  of  neighbors  (.  k), where.  k ∈ {1 ,  2 , . . . ,  20},  to  find  the  best  configuration.  The  ’not  majority’  sampling strategy,  which  oversamples  all  classes  except  the  majority  class,  was  selected  to 

balance  the  class  distribution  while  retaining  the  original  majority  class  samples. 
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The  optimal  .  k  value  was  chosen  based  on  the  F1-score  performance  of  classifiers 

trained  on  the  SMOTE-balanced  data. 

BorderlineSMOTE  (BSMOTE)  follows  a  similar  implementation  as  SMOTE  but 

is  based  on  the  algorithm  in  [ 9]. BSMOTE  focuses  on  generating  synthetic  samples near  the  decision  boundary,  enhancing  the  classification  of  challenging  instances.  In 

addition  to  tuning.  k-neighbors,  we  tested  different  values  for  the  boundary  neighbors parameter.  m ∈ {1 ,  2 , . . . ,  20},  which  determines  whether  a  minority  sample  lies  near the  decision  boundary.  The  best  combination  of  .  k  and  .  m  was  selected  using  the F1-score  after  training  the  classifiers  on  BSMOTE-balanced  data. 

ADASYN,  implemented  as  per  [ 10], generates  synthetic  data  in  regions  where classifiers  struggle  the  most,  based  on  sample  density.  Like  SMOTE,  ADASYN  has 

two  tunable  hyperparameters:  the  sampling  strategy  and  the  number  of  neighbors 

(.  n),  where  .  n ∈ {1 ,  2 , . . . ,  20}.  The  ‘n_neighbors’  parameter  determines  how  many majority  class  neighbors  surround  a  minority  sample,  guiding  where  synthetic  samples  should  be  generated.  We  selected  the  optimal  .  n  based  on  the  F1-scores  from classifier  evaluations  on  ADASYN-balanced  datasets. 

 4.4 

 Hybrid  Sampling  Implementation 

In  the  hybrid  sampling  experiments,  we  combined  oversampling  and  undersampling 

methods  to  balance  the  training  data.  We  first  applied  the  oversamplers  with  their 

optimal  hyperparameters,  followed  by  undersampling  the  majority  class  using  the 

“majority”  sampling  strategy.  This  ensured  that  minority  classes  retained  their  over-

sampled  instances  while  eliminating  excess  samples  from  the  majority  class.  The 

final  configuration  for  each  classifier  was  determined  using  the  testing  set,  with  the 

best  strategy  identified  based  on  the  F1-score. 

 4.5 

 WGAN-GP  Implementation 

The  Wasserstein  GAN  with  Gradient  Penalty  (WGAN-GP)  was  implemented  fol-

lowing  the  architecture  outlined  in  [ 25].  Using  Python  and  TensorFlow,  we  created two  neural  networks  for  the  generator  and  discriminator.  The  Adam  optimizer,  with 

a  learning  rate  of  0.0001, .  β 1 = 0 .  5,  and.  β 2 = 0 .  9,  was  chosen  based  on  the  optimal performance  reported  in  [ 25].  The  WGAN-GP  model  was  trained  for  2000  epochs, leveraging  the  opcode  proportion  data  for  faster  learning.  Both  the  generator  and 

discriminator  utilized  1D  convolutional  layers,  which  had  been  shown  to  perform 

well  in  [ 25]  with  opcode  data. 

For  the  discriminator,  we  employed  hidden  layers  with  64,  128,  and  256  filters, 

all  using  a  filter  size  of  3.  Each  layer  used  “same”  padding,  maintaining  the  output 

size  equal  to  the  input  size,  and  LeakyReLU  activations  with  .  α = 0 .  2.  The  output
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layer  consisted  of  a  single  neuron,  representing  the  classification  decision  between 

real  and  fake  samples. 

The  generator  had  three  hidden  layers  with  filters  of  64,  32,  and  16,  each  followed 

by  a  batch  normalization  step  for  training  stability.  LeakyReLU  activations  with 

.  α = 0 .  2 were  applied  to  all  layers.  The  output  layer  was  a  fully  connected  dense layer  with  40  neurons  (sample  shape)  using  a  TanH  activation  function  to  scale  the 

output  between  [–1,  1].  Wasserstein  loss  was  computed  in  the  output  layer,  and 

gradient  penalties  were  applied  based  on  the  L2-norm  of  the  gradients. 

After  training,  the  generator  was  used  to  create  synthetic  samples  for  each  minority 

class,  which  were  then  added  to  the  original  data.  All  models  were  subsequently 

trained,  and  their  performance  metrics  were  computed. 

5 

Experiments  and  Results 

In  this  section,  we  present  the  findings  from  our  experiments  designed  to  evaluate 

the  performance  of  various  machine  learning  models  and  sampling  techniques  on  the 

classification  of  malware  families  and  categories.  The  results  are  organized  into  five 

subsections,  that  is,  baseline  test,  undersampling,  oversampling,  hybrid  sampling, 

and  WGAN-GP.  Each  subsection  provides  insights  into  the  effectiveness  of  different 

sampling  strategies  in  addressing  class  imbalance  in  malware  classification  tasks. 

 5.1 

 Baseline  Test  Results 

The  baseline  tests  evaluated  the  performance  of  four  models  (Random  Forest,  .  k-

NN,  SVM,  and  MLP)  on  the  unbalanced  data  for  classifying  malware  families  and 

categories.  The  unbalanced  dataset  was  split  80/20  for  training  and  testing,  preserving 

the  class  imbalance  proportion  in  both  sets.  The  best  parameter  configuration  for  each 

model  was  selected  using  the  GridSearchCV  library. 

The  average  precision,  recall,  F1-score,  and  accuracy  for  each  classifier  were 

recorded  as  baseline  metrics.  Tables  3  and  4  present  the  results  for  the  malware family  and  category  classification  tasks. 

The  consistent  performance  of  both  Random  Forest  and  .  k-Nearest  Neighbors 

(.  K -NN)  across  our  experiments  establishes  them  as  reliable  classifiers  for  malware prediction,  even  when  trained  on  unbalanced  datasets.  Their  robustness  suggests 

an  inherent  capability  to  handle  imbalanced  class  distributions  effectively.  In  con-

trast,  the  results  from  the  Support  Vector  Machine  (SVM)  and  Multilayer  Perceptron 

(MLP)  models  indicate  that  these  classifiers  may  require  more  distinct  or  separable 

training  data,  or  a  better  representation  of  minority  classes,  to  achieve  comparable 

performance. 
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Table  3  Unbalanced  malware  family  classification 

Model

Dataset

Precision

Recall

F1-Score

Accuracy 

SVM

Moderately 

0.8038

0.7309

0.7471

0.7542 

Unb. 

MLP

Moderately 

0.8168

0.8066

0.8064

0.8210 

Unb. 

.  K -NN

Moderately 

0.8733

0.8698

0.8697

0.8799 

Unb. 

RF

Moderately 

0.9236

0.9102

0.9143

0.9202 

Unb. 

SVM

Highly  Unb. 

0.5764

0.4921

0.5043

0.7652 

MLP

Highly  Unb. 

0.7984

0.6919

0.7134

0.8383 

.  K -NN

Highly  Unb. 

0.8088

0.7680

0.7787

0.8893 

RF

Highly  Unb. 

0.9468

0.8448

0.8774

0.9296 

Table  4  Unbalanced  malware  category  classification 

Model

Dataset

Precision

Recall

F1-Score

Accuracy 

SVM

moderately 

0.8461

0.8253

0.8332

0.8041 

Unb. 

MLP

moderately 

0.8971

0.8824

0.8877

0.8589 

Unb. 

.  K -NN

Moderately 

0.9206

0.9132

0.9164

0.8995 

Unb. 

RF

Moderately 

0.9500

0.9423

0.9457

0.9302 

Unb. 

SVM

Highly  Unb. 

0.5876

0.5373

0.5473

0.7895 

MLP

Highly  Unb. 

0.6423

0.6174

0.6280

0.8497 

.  K -NN

Highly  Unb. 

0.9050

0.8080

0.8212

0.8914 

RF

Highly  Unb. 

0.8334

0.7910

0.8073

0.9188 

 5.2 

 Undersampling  Results 

The  undersampling  experiments  aimed  to  identify  the  most  effective  strategies  for  use 

in  the  hybrid  sampling  experiments.  We  focused  on  three  undersampling  techniques, 

that  is,  Tomek  Links,  Edited  Nearest  Neighbors  (ENN),  and  One-Sided  Selection 

(OSS).  For  each  method,  we  varied  key  hyperparameters,  such  as  sampling  strategy 

and  neighborhood  sizes  (.  n ∈ {1 ,  2 , . . . ,  10}).  Specifically,  Tomek  Links  only  allowed experimentation  with  sampling  strategies  (resampling  the  majority  class  or  all  non-minority  classes),  while  ENN  and  OSS  also  included  variations  in  neighborhood  size. 

These  experiments  were  performed  on  both  malware  family  and  malware  category 

classification  tasks. 
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Table  5  Undersampling  results  for  malware  family  classification 

Model

Dataset

Precision

Recall

F1-Score

Accuracy 

SVM

Moderately 

0.8301

0.7954

0.8119

0.7835 

Unb. 

MLP

Moderately 

0.8505

0.8211

0.8346

0.8124 

Unb. 

KNN

Moderately 

0.8943

0.8875

0.8909

0.8774 

Unb. 

RF

Moderately 

0.9315

0.9157

0.9233

0.9287 

Unb. 

SVM

Highly  Unb. 

0.6342

0.5732

0.6032

0.7718 

MLP

Highly  Unb. 

0.8391

0.7741

0.8032

0.8523 

KNN

Highly  Unb. 

0.8765

0.8321

0.8547

0.8923 

RF

Highly  Unb. 

0.9587

0.8901

0.9236

0.9346 

Our  findings  indicate  that  the  most  effective  strategy  was  resampling  only  the 

majority  class.  This  approach  pruned  samples  from  the  majority  class  while  retaining 

the  distribution  of  minority  class  samples,  allowing  the  models  to  better  capture  class 

boundaries.  In  contrast,  resampling  all  classes  except  the  minority  class  diminished 

the  models’  performance  by  removing  critical  samples  from  non-majority  classes, 

making  it  harder  to  define  decision  boundaries.  Furthermore,  smaller  neighborhood 

sizes  yielded  better  results,  suggesting  a  more  focused  and  effective  removal  of  noisy 

or  redundant  data  points.  Larger  neighborhoods  often  pruned  too  many  useful  points, 

thus  harming  model  performance  by  eliminating  valuable  samples  that  delineate 

relationships  between  features  and  targets. 

Models  trained  on  moderately  unbalanced  data  exhibited  minimal  differences  in 

performance  compared  to  baseline  tests.  However,  undersampling  proved  particu-

larly  beneficial  for  highly  unbalanced  data,  where  all  models  saw  notable  improve-

ments,  especially  in  SVM  and  MLP.  For  malware  category  classification,  undersam-

pling  had  the  most  significant  impact,  reducing  class  imbalance  and  enhancing  the 

models’  ability  to  distinguish  between  categories.  Undersampling  the  majority  class 

improved  the  decision  boundaries  for  non-majority  classes,  allowing  MLP  to  learn 

better  representations  of  malware  families.  Despite  these  gains,  undersampling  alone 

was  not  sufficient  for  optimal  performance  and  should  be  combined  with  other  resam-

pling  strategies  for  improved  results.  Tables  5  and  6  present  the  results  for  the  best undersampling  configurations,  which  employed  the  ’majority’  sampling  strategy. 
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Table  6  Undersampling  results  for  malware  category  classification 

Model

Dataset

Precision

Recall

F1-Score

Accuracy 

SVM

Moderately 

0.8711

0.8427

0.8562

0.8123 

Unb. 

MLP

Moderately 

0.9115

0.8954

0.9034

0.8693 

Unb. 

KNN

Moderately 

0.9253

0.9146

0.9191

0.8971 

Unb. 

RF

Moderately 

0.9557

0.9479

0.9512

0.9354 

Unb. 

SVM

Highly  Unb. 

0.6501

0.6102

0.6293

0.7897 

MLP

Highly  Unb. 

0.7025

0.6801

0.6912

0.8491 

KNN

Highly  Unb. 

0.9067

0.8235

0.8612

0.8923 

RF

Highly  Unb. 

0.8103

0.7805

0.7943

0.9183 

 5.3 

 Oversampling  Results 

We  then  explored  oversampling  techniques,  including  SMOTE,  BorderlineSMOTE, 

and  ADASYN,  to  assess  their  impact  on  model  performance.  In  these  experiments, 

we  used  a  sampling  strategy  that  resampled  all  classes  except  the  majority  class, 

generating  synthetic  data  points  for  minority  classes.  The  number  of  neighbors 

(.  k ∈ {1 , . . . ,  20})  was  tested  for  each  technique,  alongside  the  hyperparameter  .  m in  BorderlineSMOTE  (.  m ∈ {1 , . . . ,  20}). 

For  moderately  mnbalanced  data,  ADASYN  and  SMOTE  yielded  the  best  results 

for  malware  family  classification,  while  BorderlineSMOTE  and  SMOTE  performed 

better  in  malware  category  classification.  Random  Forest  and  .  K -NN  emerged  as 

the  top  classifiers  in  both  experiments,  though  MLP  showed  the  most  improvement 

compared  to  baseline  results.  For  highly  unbalanced  data,  SMOTE  and  BorderlineS-

MOTE  were  particularly  effective  in  generating  synthetic  samples  for  both  classifi-

cation  tasks.  Random  Forest  and .  K -NN  remained  the  top  performers,  but  SVM  and 

MLP  showed  the  largest  performance  improvements  with  oversampling,  especially 

for  malware  family  classification. 

In  the  moderately  unbalanced  experiments,  the  Random  Forest  classifier,  when 

trained  on  data  balanced  using  ADASYN  with  9-nearest  neighbors,  achieved  the 

highest  F1-score  (0.9244)  and  accuracy  (0.9294),  representing  a  small  but  significant 

improvement.  .  K -NN  showed  even  larger  gains,  with  an  F1-score  of  0.8986  and 

accuracy  of  0.9061  using  ADASYN  with  19-nearest  neighbors.  Both  SVM  and  MLP 

saw  notable  performance  increases  with  SMOTE-sampled  data  (SVM:.  k = 9; MLP:  

.  k = 15),  benefiting  from  larger  neighborhood  sizes,  which  added  diversity  and  helped models  generalize  across  classes. 

For  the  highly  unbalanced  experiments,  the  Random  Forest  classifier  again  per-

formed  best,  using  BorderlineSMOTE  with  9-nearest  neighbors  (.  F 1 =  0.8872,  accu-

racy  =  0.9360).  .  K -NN  also  saw  substantial  improvements  with  BorderlineSMOTE
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Table  7  Oversampled  Malware  Family  Classification 

Model

Dataset

Precision

Recall

F1-Score

Accuracy 

SVM  + 

Moderately 

0.7989

0.7957

0.7872

0.7869 

SMOTE  (k  = 

Unb. 

15) 

MLP  + 

Moderately 

0.8744

0.8708

0.8706

0.8783 

SMOTE  (k  = 

Unb. 

9) 

KNN  + 

Moderately 

0.8951

0.9040

0.8986

0.9061 

ASADYN  (n 

Unb. 

=  19) 

RF  + 

Moderately 

0.9256

0.9241

0.9244

0.9294 

ADASYN  (n 

Unb. 

= 9)  

SVM  + 

Highly  Unb. 

0.7191

0.8075

0.7243

0.7955 

SMOTE  (k  = 

8) 

MLP  + 

Highly  Unb. 

0.7812

0.8364

0.7964

0.8881 

SMOTE  (k  = 

4) 

KNN  + 

Highly  Unb. 

0.8265

0.8267

0.8247

0.9100 

BSMOTE  (k, 

m  =  1,  7) 

RF  + 

Highly  Unb. 

0.9394

0.8670

0.8872

0.9360 

BSMOTE  (k, 

m  =  9,  17) 

and  1-nearest  neighbors.  Interestingly,  MLP  and  .  K -NN  models  favored  smaller 

neighborhood  sizes,  suggesting  that  these  models  perform  better  with  less  varia-

tion  among  synthetic  samples  in  highly  unbalanced  datasets.  On  the  other  hand, 

SVM  and  Random  Forest  benefited  from  larger  neighborhood  sizes,  likely  due  to 

their  ability  to  handle  more  diverse  synthetic  data,  which  aids  in  exploring  complex 

feature  spaces  and  defining  decision  boundaries.  Table  7  summarizes  the  results  for oversampling  techniques  applied  to  malware  family  classification. 

In  the  moderately  unbalanced’s  malware  category  classification  experiments, 

model  performance  improved  slightly  overall.  The  MLP  model  saw  the  greatest 

gains,  achieving  an  F1-score  of  0.9132  and  accuracy  of  0.8910,  indicating  that  over-

sampling  helped  MLP  learn  better  class  distinctions.  However,  .  K -NN,  SVM,  and 

Random  Forest  showed  only  modest  improvements,  suggesting  that  these  models 

were  already  capturing  the  relationships  within  the  moderately  unbalanced  data. 

Models  favored  smaller  neighborhood  sizes  in  this  context,  indicating  a  preference 

for  more  tightly  clustered  synthetic  data  points  that  reduce  class  overlap. 

In  the  highly  unbalanced’s  malware  category  classification  experiments,  over-

sampling  was  essential  to  achieving  significant  performance  gains  across  all  models, 

particularly  for  underrepresented  malware  categories  like  Virus  and  Trojan  Dropper. 
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Table  8  Oversampled  Malware  Category  Classification 

Model

Dataset

Precision

Recall

F1-Score

Accuracy 

SVM  + 

Moderately 

0.8373

0.8517

0.8418

0.8061 

SMOTE  (k  = 

Unb. 

5) 

MLP  + 

Moderately 

0.9128

0.9151

0.9132

0.8910 

SMOTE  (k  = 

Unb. 

6) 

KNN  + 

Moderately 

0.9148

0.9296

0.9218

0.9074 

SMOTE  (k  = 

Unb. 

5) 

RF  + 

Moderately 

0.9508

0.9515

0.9502

0.9346 

BSMOTE  (k, 

Unb. 

m  =  1,  3) 

SVM  + 

Highly  Unb. 

0.6049

0.7795

0.6429

0.7470 

BSMOTE  (k, 

m  =  3,  19) 

MLP  + 

Highly  Unb


0.8735

0.8409

0.8352

0.8769 

SMOTE  (k  = 

2) 

KNN  + 

Highly  Unb

0.8490

0.8563

0.8510

0.9001 

BSMOTE  (k, 

m  =  3,  17) 

RF  +  SMOTE  Highly  Unb

0.9558

0.8646

0.8929

0.9208 

(k  =  8) 

Models  trained  on  the  original  data  struggled  to  differentiate  these  classes,  but  over-

sampling  increased  the  F1-scores  and  recall  rates,  significantly  improving  their  clas-

sification  accuracy.  In  the  malware  family  classification  task,  all  models  performed 

better  with  oversampled  data,  but  .  K -NN  was  unable  to  learn  the  Toga!rfn  family, which  may  suggest  high  overlap  in  this  class’s  feature  space.  Similarly,  Random 

Forest,  SVM,  and  MLP  also  struggled  to  precisely  identify  this  family,  highlight-

ing  the  limits  of  oversampling  in  the  presence  of  high  feature  overlap.  Table  8  provide  detailed  results  for  the  best-performing  oversampling  configurations  in  malware 

category  classification. 

 5.4 

 Hybrid  Sampling  Results 

In  the  hybrid  sampling  experiments,  we  combined  various  sampling  strategies  to 

achieve  improved  classification  metrics.  For  each  oversampling  technique,  we  used 

the  best-performing  hyperparameter  values  for  the  number  of  neighbors,  then  applied 

undersampling  methods  to  the  oversampled  data  to  remove  redundant  points.  We 

conducted  three  tests  for  each  undersampling  method,  evaluating  different  sampling
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strategies-namely  “majority,”  “not  minority,”  and  “all”-alongside  neighborhood  size 

values  (.  n ∈ {1 ,  2 , . . . ,  10}). 

For  models  trained  on  moderately  unbalanced  data,  the  “majority”  sampling  strat-

egy,  which  undersamples  only  the  majority  class,  yielded  the  best  results  across  all 

models  and  classification  tasks.  For  both  malware  category  and  family  classification, 

the  Random  Forest  model  outperformed  others,  achieving  an  average  F1-score  of 

0.9503  and  an  accuracy  of  0.9357  for  category  classification  using  the  BorderlineS-

MOTE  +  TomekLinks  method.  When  using  the  ADASYN  +  TomekLinks  strategy, 

Random  Forest  classified  malware  families  with  an  average  F1-score  of  0.9239  and 

an  accuracy  of  0.9297,  improving  over  baseline  tests..  K -NN  followed  as  the  second-best  performer,  with  MLP  and  SVM  ranking  next.  Moreover,  hybrid  sampling  pro-

vided  the  most  significant  improvements  in  category  classification  for  most  mod-

els  compared  to  either  oversampled  or  undersampled  data  alone.  However,  despite 

hybrid  sampling  performing  well  for  the  MLP  and  SVM  models  in  moderately  unbal-

anced  data,  oversampling  still  produced  the  best  average  F1-score  for  malware  family 

classification  in  Moderately  Unbalanced. 

With  highly  unbalanced  data  ,  model  preferences  for  the  undersampling  strategy 

varied.  For  malware  category  classification,  Random  Forest  and  .  K -NN  favored  the 

“not  minority”  strategy,  while  MLP  and  SVM  performed  better  with  the  “major-

ity”  undersampling  strategy.  In  malware  family  classification,  RF,.  K -NN,  and  SVM 

showed  improved  results  with  the  “majority”  undersampling  approach,  whereas 

MLP  performed  better  using  the  “not  minority”  strategy.  The  Random  Forest  model 

achieved  the  best  results  in  both  classification  tasks  using  the  SMOTE  +  ENN  method 

for  category  classification  and  the  BorderlineSMOTE  +  TomekLinks  method  for  fam-

ily  classification.  Similarly,.  K -NN  ranked  second  in  performance,  followed  by  MLP 

and  SVM  across  all  classification  tasks.  Interestingly,  despite  the  degree  of  class 

imbalance,  MLP  consistently  performed  better  in  malware  family  and  category  clas-

sification  using  oversampled  data.  Tables  9  and  10  summarize  the  hybrid  sampling results  for  family  and  category  classification  across  both  datasets. 

A  class-by-class  analysis  reveals  that  hybrid  sampling  improved  the  representation 

of  minority  malware  classes  compared  to  baseline  tests.  This  effect  was  particularly 

pronounced  in  the  SVM  and  MLP  models,  where  more  samples  were  correctly  clas-

sified  with  fewer  false  negatives.  For  Random  Forest  and.  K -NN,  improvements  were 

less  noticeable  in  Moderately  Unbalanced,  showing  only  slight  reductions  in  false 

negatives  and  a  marginal  increase  in  F1-scores  per  family,  which  can  be  attributed  to 

these  models’  inherent  ability  to  handle  moderate  class  imbalance.  In  contrast,  Highly 

Unbalanced  exhibited  more  pronounced  improvements  due  to  the  higher  degree  of 

imbalance,  with  RF  and  .  K -NN  heavily  relying  on  hybrid  sampling  strategies  to 

classify  minority  classes  more  effectively. 

For  malware  category  classification,  all  models  showed  a  reduction  in  false  neg-

atives  after  training  on  hybrid-sampled  data.  For  Moderately  Unbalanced,  MLP 

achieved  a  41%  and  80%  reduction  in  false  negatives  for  the  Trojan  Downloader 

and  Virus,  respectively. 
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Table  9  Hybrid-Sampled  malware  family  classification 

Model

Dataset

Precision

Recall

F1-Score

Accuracy 

SVM  (SMOTE  +  Moderately 

0.7987

0.7956

0.7872

0.7968 

TomekLinks) 

Unb. 

MLP  (ADASYN  Moderately 

0.8671

0.8706

0.8678

0.8774 

+  OSS) 

Unb. 

.  K -NN 

Moderately 

0.8952

0.9040

0.8986

0.9061 

(ADASYN  + 

Unb. 

ENN) 

RF  (ADASYN  +  Moderately 

0.9242

0.9242

0.9239

0.9297 

TomekLinks) 

Unb. 

SVM  (SMOTE  +  Highly  Unb. 

0.7192

0.8076

0.7243

0.7957 

ENN) 

MLP  (ADASYN  Highly  Unb. 

0.7612

0.8158

0.7782

0.8629 

+  TL) 

.  K -NN  (BSMOTE  Highly  Unb. 

0.8252

0.8309

0.8257

0.9062 

+  ENN) 

RF  (BSMOTE  +  Highly  Unb. 

0.9523

0.8632

0.8905

0.9356 

TomekLinks) 

Table  10  Hybrid-sampled  malware  category  classification 

Model

Dataset

Precision

Recall

F1-Score

Accuracy 

SVM  (SMOTE  +  Moderately 

0.8373

0.8517

0.8418

0.8061 

TomekLinks) 

Unb. 

MLP  (SMOTE  +  Moderately 

0.9125

0.9160

0.9118

0.8851 

TomekLinks) 

Unb. 

.  K -NN 

(SMOTE  Moderately 

0.9190

0.9312

0.9248

0.9096 

+  TomekLinks) 

Unb. 

RF  (BSMOTE  +  Moderately 

0.9511

0.9510

0.9503

0.9357 

TomekLinks) 

Unb. 

SVM  (BSMOTE  Highly  Unb. 

0.6317

0.7799

0.6695

0.7446 

+  TomekLinks) 

MLP  (SMOTE  +  Highly  Unb. 

0.7798

0.8198

0.7937

0.8324 

TomekLinks) 

.  K -NN  (BSMOTE  Highly  Unb. 

0.8606

0.8543

0.8514

0.8971 

+  TomekLinks) 

RF  (SMOTE  +  Highly  Unb. 

0.9428

0.8743

0.9011

0.9035

ENN) 
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 5.5 

 WGAN-GP  Results 

To  further  pursue  data  balancing,  we  conduct  a  small  experiment  with  Genera-

tive  Adversarial  Networks,  specifically  the  Wasserstein  GAN  with  Gradient  Penalty 

(WGAN-GP),  to  oversample  the  moderately  unbalanced  training  data.  The  rationale 

for  using  WGAN-GP  is  its  ability  to  generate  high-quality  synthetic  data  that  can 

help  improve  model  performance,  particularly  for  underrepresented  classes. 

The  WGAN-GP  model  was  trained  on  a  Lenovo  Legion  7i  laptop  equipped  with 

an  NVIDIA  RTX  4070  GPU  and  a  13th  Gen  Intel  Core  i9-13900HX  CPU  with  32GB 

RAM.  Training  one  generator  model  for  2000  epochs  took  over  20  minutes,  which 

made  training  19  different  generator  models  per  malware  family  for  various  datasets 

impractical.  Therefore,  we  focused  our  experiments  on  classifying  the  8  malware 

categories  for  moderately  unbalanced  data. 

We  adjusted  our  training  data  to  fit  the  WGAN-GP  model’s  requirements  by 

scaling  the  real  sample  features  to  a  range  of  [–1,1].  This  normalization  was  pivotal  in ensuring  compatibility  with  the  WGAN-GP  architecture  used  by  [ 25].  We  conducted two  sets  of  experiments  to  oversample  the  non-majority  classes.  The  first  experiment 

involved  upsampling  each  non-majority  class  with  an  additional  10%  of  fake  data, 

while  the  second  experiment  increased  the  fake  data  to  20%.  The  real  and  fake 

samples  were  then  combined  to  train  the  four  ML  models. 

The  Random  Forest  and  .  K -NN  models  exhibited  metrics  similar  to  the  initial 

baseline  tests.  Notably,  the  Random  Forest  model  trained  with  10%  fake  data  for  the 

Password  Stealer,  Tool,  and  Trojan  Downloader  classes  outperformed  other  models. 

In  contrast,  both  SVM  and  MLP  models  experienced  significant  performance  deteri-

oration.  The  SVM  recorded  a  precision  and  recall  value  of  0  for  classifying  the  Virus 

(minority  class),  with  F1-scores  for  all  other  classes  well  below  the  baseline  tests.  The MLP  could  not  classify  any  non-majority  classes  and  had  a  27%  precision  and  100% 

recall  in  recognizing  the  Trojan  (majority  class).  This  substantial  decline  in  model 

performance  suggested  that  the  generated  fake  data  was  ineffective  in  conveying  the 

complexities  of  malware  categories  to  the  SVM  and  MLP  models. 

Upon  further  examination  of  the  actual  feature  values,  we  found  that  the  opcode 

data,  after  rescaling,  had  a  narrow  range  between  –0.95  and  –1.0,  leading  to  limited 

class  distinction.  The  minuscule  differences  in  these  values  posed  challenges  for 

models  like  SVM  and  MLP  in  learning  clear  decision  boundaries,  resulting  in  their 

decreased  performance  in  classifying  malware  categories.  In  contrast,  Random  Forest 

and.  K -NN  remained  unaffected,  indicating  their  robustness  against  this  type  of  data, as  they  employ  ensemble  techniques  and  local  neighborhood  voting. 

Tables  11  and  12  present  the  average  metrics  of  the  models  trained  using oversampled  WGAN-GP  fake  data. 

From  these  experiments,  we  can  derive  several  recommendations  for  improving 

the  oversampling  process  with  WGAN-GP.  Firstly,  future  studies  could  explore  not 

rescaling  real  and  fake  data  since  proportions  already  scale  between  {0,1}.  Secondly, 

investigating  the  activation  function  of  the  generator’s  output  layer  could  enable 

output  features  to  be  scaled  between  {0,1}.  Finally,  experimenting  with  the  learning
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Table  11  Malware  category  classification  metrics  using  10%  WGAN-GP  Fake  Data 

Model

Dataset

Precision

Recall

F1-Score

Accuracy 

SVM

Moderately 

0.6498

0.6012

0.6133

0.6807 

Unb. 

MLP

Moderately 

0.0333

0.1250

0.0525

0.2661 

Unb. 

.  K -NN

Moderately 

0.9204

0.9131

0.9163

0.8993 

Unb. 

RF

Moderately 

0.9511

0.9436

0.9469

0.9314 

Unb. 

Table  12  Malware  category  classification  metrics  using  20%  WGAN-GP  Fake  Data 

Model

Dataset

Precision

Recall

F1-Score

Accuracy 

SVM

Moderately 

0.6532

0.5735

0.5794

0.6522 

Unb. 

MLP

Moderately 

0.0333

0.1250

0.0525

0.2661 

Unb. 

.  K -NN

Moderately 

0.9202

0.9130

0.9161

0.8992 

Unb. 

RF

Moderately 

0.9496

0.9430

0.9458

0.9303 

Unb. 

rate  of  the  models  might  lead  to  faster  training  times  for  the  WGAN-GP  models  and 

yield  higher-quality  fake  data. 

 5.6 

 Comparison  of  the  Results 

Given  the  experiments  with  various  sampling  strategies,  this  section  summarizes 

and  compares  the  effectiveness  of  these  techniques  in  classifying  malware  across  the 

four  models.  We  compute  and  compare  the  best  average  F1-scores  of  each  model 

throughout  the  experiments  to  quantify  their  performances.  The  average  F1-Score 

was  chosen  because  it  considers  each  class’s  precision  and  recall  values  to  com-

pute  a  harmonic  mean,  providing  a  straightforward  comparison  of  the  models  while 

accounting  for  the  impact  of  false  positives  and  negatives. 

For  data  with  moderate  class  imbalance,  models  classified  malware  families  better 

when  oversampling  was  applied,  suggesting  that  synthetic  data  helped  better  repre-

sent  specific  families  by  providing  more  samples  highlighting  subtle  distinctions 

among  each  class.  However,  training  with  hybrid-sampled  data  proved  to  be  more 

effective  for  classifying  malware  categories.  The  SVM, .  K -NN,  and  Random  Forest

[image: Image 19]
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models  performed  better  with  this  technique,  while  the  MLP  performed  slightly  bet-

ter  with  oversampled  data.  Figures  2  and  3  show  a  graphical  comparison  of  the  best average  F1-scores  for  each  model  and  the  corresponding  sampling  strategy  used  to 

classify  malware  family  and  category  with  Moderately  Unbalanced. 

For  data  with  a  high  degree  of  imbalance,  most  models  preferred  hybrid-sampled 

data  regardless  of  the  classification  task.  Since  half  of  the  classes  in  Highly  Unbal-

anced  were  reduced  by  a  factor  of  10,  there  was  a  severe  skew  in  the  learning  process 

for  all  models.  In  this  case,  simply  oversampling  malware  data  was  insufficient  and 

could  lead  to  poor  generalization  of  underrepresented  malware  classes.  Hybrid  sam-

pling  mitigates  this  by  generating  synthetic  data  for  underrepresented  classes  while 

pruning  redundant  points  that  overwhelm  any  non-minority  class.  Only  the  MLP  per-

formed  better  using  oversampled  data  for  both  classification  tasks,  likely  due  to  its 

intricate  architecture,  which  relies  on  more  samples  to  accurately  represent  the  data 

and  extract  complex  relationships.  Figures  4  and  5  present  a  graphical  comparison  of the  best  average  F1-scores  for  each  model  and  the  corresponding  sampling  strategy 

to  classify  malware  family  and  category  using  Highly  Unbalanced. 

It  is  important  to  note  the  trade-offs  associated  with  different  sampling  strategies 

and  models.  All  sampling  and  hyperparameter  experiments  were  run  on  a  Google 

Colab  CPU  instance  with  a  virtual  machine  CPU  and  12GB  RAM.  While  under-

sampling  had  only  a  limited  effect  on  model  metrics,  it  was  the  fastest  method  for 

training  the  four  models,  taking  only  seconds.  The  hyperparameter  testing  time  for 

the  three  different  undersamplers  totaled  only  3  hours  per  classification  task.  In  con-

trast,  the  oversampling  and  hybrid  approaches  exhibited  varying  training  times  due 

to  the  additional  computation  required  for  generating  synthetic  points,  which  fluctu-

ated  depending  on  the  classification  task  and  the  number  of  hyperparameters  tested. 

Fig.  2  Comparison  of  sampling  strategies  for  moderately  unbalanced  malware  family  data

[image: Image 20]
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Fig.  3  Comparison  of  sampling  strategies  for  moderately  unbalanced  malware  category  data Fig.  4  Comparison  of  sampling  strategies  for  highly  unbalanced  malware  family  data 

Notably,  resampling  malware  category  data  was  faster  than  resampling  malware  fam-

ily  data,  as  the  samplers  had  to  consider  fewer  classes.  Oversampling  and  training 

the  models  for  malware  family  classification  took  seconds  to  minutes.  The  .  K -NN 

model  trained  in  seconds,  while  the  Random  Forest  model  required  up  to  1  minute. 

Conversely,  the  SVM  and  MLP  models  took  several  minutes  to  train  on  the  over-

sampled  data,  significantly  contributing  to  the  high  training  times,  especially  during 

hyperparameter  testing.  The  WGAN-GP  models  were  trained  on  a  local  machine 

with  a  GPU  to  avoid  exhausting  the  Google  Colab  free-tier  resources;  even  with  a

[image: Image 22]
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Fig.  5  Comparison  of  sampling  strategies  for  highly  unbalanced  malware  category  Data GPU,  training  for  2000  epochs  and  generating  fake  data  samples  took  over  20  minutes  per  class.  Consequently,  WGAN-GP  fake  data  was  only  tested  for  classifying 

malware  categories  on  Moderately  Unbalanced. 

Overall,  the  choice  of  sampling  strategy  and  data  generation  methods  depends  on 

various  factors  for  multi-class  malware  classification.  Data  characteristics,  available 

resources,  model  types,  and  time  constraints  will  influence  the  selection  of  a  particular 

method.  For  this  paper,  the  Random  Forest  model  with  oversampled  and  hybrid-

sampled  data  yielded  the  best  results  given  the  training  time  involved.  Its  individual 

training  time,  accuracy  levels,  and  inherent  ability  to  handle  imbalance  make  it  a 

robust  choice  for  malware  classification. 

6 

Conclusion  and  Future  Work 

In  this  work,  we  conducted  several  experiments  to  understand  how  different  data 

balancing  techniques  affect  the  classification  of  malware  using  datasets  with  mod-

erate  and  high  class  imbalance.  We  tested  undersampling  techniques  such  as  Tomek 

Links,  Edited  Nearest  Neighbors,  and  One-Sided  Selection  to  enhance  class  distinc-

tion  between  majority  and  minority  classes.  Additionally,  we  oversampled  data  using 

techniques  like  SMOTE,  BSMOTE,  ADASYN,  and  WGAN-GP  to  create  synthetic 

training  data  that  better  represents  non-majority  classes.  Finally,  we  combined  both 

oversampling  and  undersampling  to  generate  fake  samples  and  reduce  the  size  of  the 

majority  class  for  improved  class  representation. 

Our  results  indicate  that  classifying  malware  families  requires  more  synthetic 

data  when  the  dataset  is  moderately  unbalanced.  This  ensures  better  representation
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of  each  family  and  effectively  conveys  their  complexities  to  machine  learning  models. 

Similarly,  a  hybrid  sampling  approach  with  a  reduction  in  the  majority  class  is  more 

favorable  for  classifying  malware  categories,  as  it  captures  a  broader  relationship 

among  malware  and  defines  clearer  class  boundaries.  However,  in  cases  of  high 

class  imbalance,  hybrid  sampling  is  more  suitable  because  oversampling  alone  may 

not  mitigate  the  significant  influence  of  the  majority  class.  This  can  lead  to  poor 

generalization  and  reduced  performance  due  to  bias  and  overfitting. 

The  Random  Forest  classifier  outperformed  all  other  models  in  our  experiments, 

achieving  an  average  F1-score  of  0.924  in  classifying  families  and  0.950  in  classi-

fying  categories  under  moderate  class  imbalance.  It  maintained  an  average  F1-score 

of  0.891  for  classifying  families  and  0.901  for  classifying  categories  in  high  class 

imbalance  scenarios.  Furthermore,  Random  Forest  exhibited  training  times  of  just 

a  few  seconds,  regardless  of  data  size  or  type,  whereas  models  like  SVM  and  MLP 

required  several  minutes  for  training.  The  .  K -NN  classifier  had  the  fastest  training times  but  ranked  second  in  performance  for  malware  classification  tasks. 

Utilizing  WGAN-GP  to  oversample  malware  category  data  yielded  only  slight 

improvements  in  the  Random  Forest  model.  However,  the  performance  of  models 

like  SVM  and  MLP  deteriorated  significantly  due  to  the  generated  fake  data  lacking 

feature  variation,  which  was  compromised  during  the  rescaling  of  inputs  for  training 

the  WGAN-GP  neural  networks. 

For  future  studies,  researchers  can  explore  GANs  by  redesigning  the  WGAN-

GP  generator  and  discriminator  architectures  to  produce  more  varied  fake  opcode 

proportion  data.  Improvements  to  the  learning  rates  of  the  optimizers,  activation 

functions,  and  the  types  of  layers  in  WGAN-GP  models  can  further  enhance  the 

quality  of  training  data.  Additionally,  researchers  may  explore  different  features  for 

representing  malware  families  and  categories.  Opcode  proportion  data  captures  only 

one  aspect  of  a  malware  file;  therefore,  incorporating  features  such  as  API  calls, 

system  calls,  bytes,  or  a  combination  of  these  may  yield  better  representations  for 

training  future  classifiers. 
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Abstract  The  proliferation  of  malware  variants  poses  a  significant  challenges  to 

traditional  malware  detection  approaches,  such  as  signature-based  methods,  neces-

sitating  the  development  of  advanced  machine  learning  techniques.  In  this  research, 

we  present  a  novel  approach  based  on  a  hybrid  architecture  combining  features 

extracted  using  a  Hidden  Markov  Model  (HMM),  with  a  Convolutional  Neural  Net-

work  (CNN)  then  used  for  malware  classification.  Inspired  by  the  strong  results 

in  previous  work  using  an  HMM-Random  Forest  model,  we  propose  integrat-

ing  HMMs,  which  serve  to  capture  sequential  patterns  in  opcode  sequences,  with 

CNNs,  which  are  adept  at  extracting  hierarchical  features.  We  demonstrate  the  effec-

tiveness  of  our  approach  on  the  popular  Malicia  dataset,  and  we  obtain  superior 

performance,  as  compared  to  other  machine  learning  methods—our  results  sur-

pass  the  aforementioned  HMM-Random  Forest  model.  Our  findings  underscore  the 

potential  of  hybrid  HMM-CNN  architectures  in  bolstering  malware  classification 

capabilities,  offering  several  promising  avenues  for  further  research  in  the  field  of 

cybersecurity. 

1 

Introduction 

Malicious  software,  commonly  known  as  malware,  poses  a  significant  threat  to  com-

puter  systems  by  causing  damage  or  disruption.  Despite  advancements  in  cyberse-

curity,  malware  continues  to  present  a  formidable  challenge  in  the  digital  landscape. 

For  example,  ransomware  attacks  increased  by  84%  in  2023  as  compared  to  2022, 
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according  to  a  study  conducted  by  the  NCC  Group  [ 16].  This  escalating  trend underscores  the  urgent  need  for  improved  methods  of  detecting  and  categorizing 

malware. 

Traditional  signature-based  techniques,  as  employed  by  anti-virus  (AV)  applica-

tions  [ 41], entail  creating  signatures  consisting  of  patterns  extracted  from  malicious software  files.  However,  these  techniques  are  ineffective  against  previously-unknown 

malware  samples,  and  numerous  code  obfuscation  techniques  [ 44]  have  been  developed  that  can  defeat  signature  scans.  In  contrast,  heuristic  analysis  [ 4]  requires  careful  calibration  to  balance  threat  identification  with  excessive  false  positive  rates  on 

benign  code. 

Recognizing  the  limitations  of  these  conventional  methods,  researchers  have 

turned  to  machine  learning  paradigms  for  solutions.  In  this  regard,  static  and  dynamic 

features,  or  a  combination  of  the  two  [ 9], are  used  to  train  models  for  malware detection  and  classification.  Static  features  are  those  which  can  be  obtained  without 

executing  or  emulating  the  code,  while  dynamic  features  require  code  execution  or 

emulation.  In  general,  models  that  rely  on  static  features  are  more  efficient  as  such 

features  are  easy  to  extract  and  have  low  computation  complexity,  while  models  that 

use  dynamic  features  are  more  resistant  to  common  obfuscation  techniques.  In  our 

research,  we  only  consider  static  features. 

In  this  paper,  we  propose  a  novel  hybrid  machine  learning  technique,  termed 

HMM-CNN,  which  combines  the  sequential  insight  of  Hidden  Markov  Model 

(HMM)  [ 11]  with  the  spatial  awareness  of  Convolutional  Neural  Networks  (CNN). 

Specifically,  we  first  train  HMMs  on  opcode  sequences,  then  we  determine  the  hid-

den  state  sequences  from  the  trained  HMMs.  This  use  of  HMMs  can  be  viewed  as  a 

feature  engineering  step,  and  it  is  often  employed  in  the  field  of  Natural  Language 

Processing  (NLP),  but  we  are  not  aware  of  such  an  approach  having  been  previ-

ously  used  in  the  malware  domain.  Finally,  we  classify  malware  samples  into  their 

respective  families  based  on  these  HMM-generated  hidden  state  sequences  using  a 

CNN.  This  study  is  an  extension  of  our  prior  research  efforts  that  culminated  in  the 

development  of  the  HMM-Random  Forest  model  in  [ 23]. 

The  remainder  of  this  paper  is  organized  as  follows.  In  Sect. 2  we  present  relevant background  information  and  a  brief  introduction  to  the  learning  techniques  considered  in  our  research.  Section  3  presents  a  selective  survey  of  some  relevant  previous work.  Section  4  covers  our  experimental  design,  with  the  emphasis  on  our  proposed HMM-CNN  model,  and  we  provide  a  brief  description  of  the  dataset  used.  Section  5 

gives  our  experimental  results.  We  conclude  the  paper  with  Sect. 6, which  includes some  ideas  for  future  work. 

2 

Background 

In  this  section,  we  first  introduce  the  learning  techniques  that  appear  in  subsequent 

sections  of  this  paper.  Specifically,  we  discuss  Hidden  Markov  Models  and  Convo-

lutional  Neural  Networks. 
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 2.1 

 Hidden  Markov  Model 

Hidden  Markov  Models  (HMM)  [11]  can  be  described  as  statistical  Markov  models  in which  the  states  are  hidden.  An  HMM  can  be  represented  by  the  triple.  λ =  (A, B, π), where  .  A  is  the  state  transition  probability  matrix,  .  B  is  the  observation  probability  matrix,  and  .  π  is  the  initial  state  distribution.  A  series  of  observations,  denoted as  .  O,  are  available,  and  these  observations  are  probabilistically  related  to  the  hidden  states  sequence  .  X  via  the  .  B  matrix.  Figure  1  provides  a  high-level  view  of  an HMM. 

The  number  of  hidden  states  in  an  HMM  is  denoted  as  .  N  and  the  number  of 

unique  observation  symbols  is  denoted  as  .  M,  while  the  length  of  the  observation 

sequence  is  .  T .  Within  the  HMM  framework,  there  are  efficient  algorithms  to  solve three  problems  [ 38]. For  the  research  in  this  paper,  we  are  only  focused  on  the following  two  problems. 

1.  Given  a  model.  λ =  (A, B, π)  and  an  observation  sequence.  O,  we  can  determine the  optimal  hidden  state  sequence  corresponding  to.  O,  where  “optimal”  is  defined 

as  maximizing  the  expected  number  of  correct  states.  Note  that  this  implies  an 

HMM  is  an  Expectation  Maximization  (EM)  technique.  Also,  the  HMM  solution 

to  this  problem  differs,  in  general,  from  a  dynamic  program,  where  we  maximize 

with  respect  to  the  overall  path. 

2.  Given  an  observation  sequence  .  O  and  a  specified  number  of  hidden  states  .  N , we  can  train  an  HMM.  That  is,  we  can  determine  the  matrices  that  comprise  the 

model .  λ =  (A, B, π),  so  that.  P(O |  λ)  is  maximized. 

The  so-called  forward  algorithm  and  the  backward  algorithm  enable  an  efficient 

meet-in-the-middle  approach  to  solve  problem  1,  above  [ 2]. Typically,  the  Baum-Welch  re-estimation  algorithm,  which  is  a  hill  climb  technique,  is  used  to  train  an 

HMM  to  model  a  given  observation  sequence,  which  solves  problem  2, 

above. 

Fig.  1  Hidden  Markov  model
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 2.2 

 Convolutional  Neural  Network  (CNN) 

A  convolution  can  be  described  as  a  composite  function  that  computes  the  amount 

of  overlap  of  one  function  as  it  is  shifted  over  another  function.  In  case  of  discrete 

sequences .  x  and .  y,  the  convolution  is  denoted  as 

.  c =  x ∗  y

which  is  computed  as 



.  ck =

 xi yk− i . 

 i

Here,  .  ck  denotes  the  .  k th element  of  the  resulting  sequence  .  c  and  the  summation  is performed  over  all  indices  .  i  where  the  sequence  .  x  and  .  y  overlap.  The  term  .  yk− i represents  the  element  of  sequence  .  y,  shifted  by  .  k  positions.  Note  that  for  each position  .  k, the  value  .  ck  is  computed  by  summing  the  products  of  corresponding elements  of .  x  and  the  shifted  version  of .  y. 

CNNs  [ 30]  are  a  class  of  deep  neural  networks  that  applies  layers  of  convolution to  the  input  dataset  using  trainable  filters.  CNNs  use  a  unique  architecture  to  automatically  learn  and  extract  hierarchical  characteristics  from  data,  drawing  inspiration 

from  the  human  visual  system.  Hence,  they  are  particularly  useful  for  tasks  such  as 

feature  extraction,  object  detection,  and  image  classification.  Figure  2  illustrates  a convolution  applied  to  input  data  using  a  filter. 

In  addition  to  convolutional  layers,  our  CNNs  also  include  max-pooling  and  fully-

connected  layers.  Max  pooling  layers  consist  of  a  non-trainable,  fixed  filter,  which 

selects  the  maximum  value  within  non-overlapping  windows.  Pooling  layers  serve 

primarily  to  reduce  the  dimensionality  of  the  data.  Lastly,  an  activation  function  is 

applied  via  one  or  more  fully  connected  layers,  which  results  in  a  classification  based 

on  the  result.  Figure  3  illustrates  a  generic  CNN  architecture. 

Fig.  2  Convolution  using  filter

[image: Image 24]
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Fig.  3  Overview  of  CNN  architecture 

3 

Literature  Review 

There  has  been  a  vast  amount  of  previous  work  on  malware  classification  using  a 

wide  range  of  machine  learning  and  deep  learning  approaches.  This  section  discusses 

a  representative  sample  of  such  malware  classifications  techniques,  with  the  empha-

sis  on  research  that  is  most  closely  related  to  our  novel  NLP-inspired  HMM-CNN 

technique. 

 3.1 

 Malware  Classification  Using  HMM 

In  one  of  the  earliest  papers  in  this  genre,  Wong  and  Stamp  [ 42]  consider  HMMs for  the  detection  of  metamorphic  malware.  By  modern  standards,  they  considered  a 

very  small  sample  set,  but  they  were  able  to  distinguish  malware  from  benign  with 

high  accuracy,  clearly  indicating  the  viability  of  machine  learning  models  within  the 

malware  domain. 

Annachhatre  et  al.  [ 3]  train  multiple  HMMs  on  a  variety  of  metamorphic  malware samples.  Each  malware  sample  in  the  test  set  is  then  scored  against  all  models,  and 

the  samples  are  clustered  based  on  the  resulting  vector  of  scores.  They  were  able  to 

classify  the  malware  samples  into  their  respective  families  with  good  accuracy,  even 

for  families  that  were  not  included  in  the  training  set. 

In  [ 46], Zhao  et  al.,  explore  the  usage  of  complex  Gaussian  Mixture  Model-HMMs  (GMM-HMM)  for  malware  classification.  In  their  research,  GMM-HMMs 

produced  comparable  results  to  discrete  HMMs  based  on  opcode  sequence  features, 

and  showed  significant  improvement  over  discrete  HMMs  when  trained  on  entropy-

based  features. 

 3.2 

 Malware  Classification  Using  SVM 

Support  Vector  Machines  (SVM)  are  a  prominent  class  of  techniques  for  super-

vised  learning.  The  objective  of  the  SVM  algorithm  is  to  determine  an  optimal 

hyperplane—or  hyperplanes,  in  the  the  more  general  multiclass  case—that  can
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segregate  .  n-dimensional  space  into  classes.  The  decision  boundary  is  then  used  to classify  data  points  not  in  the  training  set.  In  [ 18],  Kruczkowski  et  al.,  trained  an SVM  on  malware  samples  and  achieved  a  cross-validation  accuracy  of  0.9398,  and 

an  F1-score  of  0.9552. 

Singh  et  al. [ 36]  also  use  SVMs  for  malware  classification.  They  trained  HMMs, computed  a  Simple  Substitution  Distance  (SSD)  score  based  on  the  classic  encryption 

technique  from  symmetric  cryptography,  and  also  computed  an  Opcode  Graph  Score 

(OGS).  Each  malware  sample  was  classified—using  an  SVM—based  on  its  vector 

of  these  three  scores.  While  the  individual  scores  generally  performing  poorly  in  a 

robustness  analysis,  the  SVM  results  were  significantly  more  robust,  indicating  the 

advantage  of  combining  multiple  scores  via  an  SVM. 

 3.3 

 Malware  Classification  Using  Random  Forest 

In  [ 12], Garcia  and  Muga  II  employ  an  approach  for  converting  a  binary  file  to  a  gray scale  image,  and  subsequently  use  a  Random  Forest  to  classify  malware  into  families, 

achieving  an  accuracy  of  0.9562.  Domenick  et  al. [ 25],  on  the  other  hand,  combine  a Random  Forest  with  Principal  Component  Analysis  (PCA)  [40]  and  Term  Frequency-Inverse  Document  Frequency  (TF-IDF)  [ 33]. The  model  based  on  a  Random  Forest and  PCA  outperformed  a  models  based  on  Logistic  Regression,  Decision  Trees,  and 

SVM  on  a  particular  dataset. 

 3.4 

 Malware  Classification  Using  RNN  and  LSTM 

A  Recurrent  Neural  Network  (RNN)  [ 10]  is  a  type  of  neural  network  designed  to  process  sequential  data  by  incorporating  feedback  connections.  This  gives  RNNs  a  form 

of  memory  that  is  lacking  in  feedforward  neural  networks.  However,  generic  RNNs 

are  subject  to  computational  issues,  including  vanishing  and  exploding  gradients, 

which  limit  their  utility.  Consequently,  various  specialized  RNN-based  architectures 

have  been  developed,  which  mitigate  some  of  the  issues  observed  in  plain  vanilla 

RNNs.  The  best-known  and  most  successful  of  these  specialized  RNN  architectures 

is  the  Long  Short-Term  Memory  (LSTM)  model. 

An  unsupervised  approach  involving  Echo  State  Networks  (ESNs)  [32]  and  RNNs for  a  “projection”  stage  to  extract  features  is  discussed  by  Pascanu  et  al. [ 31].  A standard  classifier  then  uses  these  extracted  features  to  detect  malicious  samples. 

Their  hybrid  model  with  the  best  performance  employed  ESN  for  the  recurrent  model, 

a  max  pooling  layer  for  nonlinear  sampling,  and  Logistic  Regression  for  the  final 

classification. 

Lu  [ 21], experimented  with  LSTMs  for  malware  classification.  First,  Word2Vec word  embedding  of  the  opcodes  were  generated  using  skip-gram  and  CBOW  models.  Subsequently,  a  two  stage  LSTM  model  was  used  for  malware  detection.  The
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two-stage  LSTM  model  is  composed  of  two  LSTM  layers  and  one  mean-pooling 

layer  to  obtain  feature  representations  of  malware  opcode  sequences.  An  average 

Area  under  the  ROC  Curve  (AUC)  [ 6]  of  0.987  was  achieved  for  malware  classification  on  a  modest-sized  dataset  consisting  of  969  malware  and  123  benign  samples. 

 3.5 

 Malware  Classification  Using  CNN 

Recently,  image-based  analysis  of  malware  has  been  the  focus  of  considerable 

research;  see  [ 5, 15, 29, 43],  for  examples.  Much  of  this  work  is  based  on  CNNs  [ 30]. 

A  CNN  is  a  type  of  neural  network  that  designed  to  efficiently  deal  with  data  that  is 

in  a  grid-like  layout  where  local  structure  dominates,  which  is  the  case  for  images. 

In  [ 17], Kalash  et  al.,  proposed  a  CNN-based  architecture,  called  M-CNN,  for  malware  classification.  The  architecture  of  M-CNN  is  based  on  the  VGG-16  [ 35],  and it  achieves  accuracies  of  0.9852  and  0.9997  on  the  popular  MalImg  [ 27]  dataset  and a  Microsoft  [ 24]  dataset,  respectively. 

4 

Methodology 

In  this  section,  we  first  introduce  the  dataset  used  in  our  experiments.  We  then  outline the  experimental  design  that  we  employ  for  the  results  presented  in  Sect. 5. 

 4.1 

 Dataset  and  Preprocessing 

As  in  [ 23], for  the  research  presented  here,  we  use  the  malware  samples  in  the  popular Malicia  dataset  [ 26]. This  dataset  includes  11,688  malware  binaries,  categorized into  48  different  malware  families.  The  binary  files  were  gathered  from  500  drive-by 

download  servers  over  a  period  of  11  months.  They  were  then  executed  in  a  virtualized 

environment  designed  to  capture  the  network  traffic  produced  by  the  malware  and 

to  take  a  screenshot  of  the  guest  VM  at  the  end  of  the  execution.  Windows  XP 

Service  Pack  3  was  used  as  the  guest  operating  system.  To  classify  the  binaries  into 

malware  families,  a  combination  of  automatic  clustering  techniques  and  an  analyst 

that  manually  refines  the  generic  labels  by  comparing  cluster  behaviors  against  public 

reports  were  employed. 

The  Malicia  dataset  is  highly  imbalanced  and  hence  we  remove  all  classes  with 

less  than  50  samples.  This  results  in  malware  samples  belonging  to  the  following 

seven  families. 

Zeroaccess

tries  to  steal  information,  and  it  can  also  cause  other  malicious  actions, 

such  as  downloading  additional  malware  or  opening  a  backdoor  [ 28]. 

100

R. Mehta et al. 

5000 

4360 

4000 

3000 

2136 

Samples  2000 

1305 

1000 

58 

74

68

53 

0 

Zbot 

Cridex 

arebot 

artHDD 

H

ZeroAccess 

Winwebsec 

Sm

ecurityShield 

S

Fig.  4  Malware  samples  per  family 

Winwebsec

is  a  Trojan  horse  that  attempts  to  install  additional  malicious  pro-

grams  [ 39]. 

SecurityShield

is  based  on  Winwebsec,  and  it  displays  fake  security  warnings  in 

an  attempt  to  get  the  user  to  pay  money  to  fix  the  nonexistent  issues  [ 34]. 

Zbot

is  a  Trojan  that  tries  to  steal  user  information.  It  spreads  by  attaching  exe-

cutable  files  to  spam  email  messages  [ 45]. 

Cridex

is  a  worm  that  installs  a  backdoor  that  can  then  be  used  to  download 

additional  malware  onto  a  system  [ 8]. 

SmartHDD

pretends  to  be  a  hard  drive  optimizer.  SmartHDD  finds  multiple 

nonexistent  issues,  and  attempts  to  convince  the  user  to  pay  money  to  “repair”  the 

hard  drive  [ 37]. 

Harebot

is  a  rootkit  that  opens  a  system  to  remote  attacks  of  various  types  [ 47]. 

The  number  of  samples  in  each  of  these  malware  families  is  shown  in  Fig. 4. 

 4.2 

 Experimental  Design 

The  first  step  in  our  experimental  design  is  to  disassemble  every  executable  file  in 

the  dataset  and  extract  mnemonic  opcode  sequences.  Next,  the  dataset  is  split  into 

train  and  test  sets.  For  all  of  our  experiments,  we  use  an  80:20  train-test  split,  i.e., 80%  of  the  samples  are  used  for  training,  while  20%  of  the  samples  are  reserved  for 

testing.  We  trained  the  models  used  in  this  research  on  a  PC,  with  the  specification
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Table  1  Relevant  hardware  and  software 

Item

Version 

Hardware

Chip

Apple  M1  Pro 

Cores

8 

Memory

16  GB 

Firmware  Version

8422.121.1 

Software

OS

macOS  Ventura 

Python

3.9.12 

NumPy

1.21.5 

Pandas

1.4.2 

Pickle

4.0 

Scikit  learn

1.0.2 

of  this  machine  shown  in  Table  1; the  software—including  operating  system,  and Python  packages  used—is  also  specified  in  Table  1. 

 4.3 

 Training  Methodology 

The  methodology  for  training  our  HMM-CNN  model  can  be  summarized  in  the 

following  six  steps. 

1.  Train  HMMs  on  opcode  sequences—This  step  consists  of  training  seven  different 

HMMs;  one  HMM  for  each  malware  family  discussed  in  Sect. 4.1,  above.  Each HMM  is  trained  using  only  the  opcode  sequences  of  samples  belonging  to  a  particular  family.  The  observation  sequence.  O  for  a  given  malware  family  is  obtained 

by  concatenating  the  observation  sequences  (i.e.,  mnemonic  opcode  sequences) 

extracted  from  training  samples  belonging  to  the  family.  When  training  these 

HMMs,  we  specify  the  number  of  hidden  states.  N ,  which  is  a  hyperparameter  of 

our  overall  system.  We  experiment  with  different  choices  for .  N . 

2.  Determine  the  feature  vector  for  each  sample—The  first  .  L  opcodes  of  a  given 

sample  are  fed  into  each  of  the  seven  trained  HMMs.  This  results  in  seven  hidden 

state  sequence  vectors  that  are  each  of  length  .  L.  We  concatenate  these  seven 

hidden  state  sequences  to  obtain  a  feature  vector  of  length .7 L.  The  length .  L  is  a hyperparameter  of  the  system,  and  hence  we  experiment  with  different  choices 

for .  L. 

3.  Scale  the  feature  vectors—Each  feature  vector  is  scaled  using  a  standard  scaler, 

that  is,  element  .  x  is  scaled  as  .  z =  (x −  μ)/σ ,  where  .  μ  is  the  mean  and  .  σ  is  the standard  deviation. 

4.  Generate  images  from  feature  vectors—Each  scaled  hidden  state  sequence 

obtained  in  the  previous  step  is  formed  into  a  square  matrix.  Since  each  vector  is 

√

√

of  length .7 L  these  square  matrices  are  of  size . 7 L ×  7 L.  These  matrices
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are  then  padded  with  zeros  at  the  edges  to  create  images  of  dimension.224 × 224. 

The  padding  is  applied  evenly  across  all  the  edges  to  maintain  the  symmetry. 

5.  Select  the  CNN  architecture—In  this  step,  a  popular  CNN  architecture  is  chosen  as 

a  base  model  for  our  HMM-CNN  architecture.  We  then  add  custom  classification 

layers  (as  discussed  below)  on  top  of  our  base  model  so  that  the  resulting  CNN  can 

classify  images  into  the  seven  malware  families.  We  treat  the  CNN  architecture 

as  a  hyperparameter  of  our  overall  model,  and  hence  we  experiment  with  several 

different  base  models. 

6.  Train  the  CNN  model—Lastly,  we  train  the  CNN  model  on  the  images  discussed 

above.  Of  course,  the  malware  family  to  which  an  image  belongs  serves  as  its  label. 

To  summarize,  we  train  an  HMM  for  each  family,  then  use  the  trained  HMMs  to  deter-

mine  the  hidden  state  sequences  corresponding  to  each  sample.  We  rearrange  these 

hidden  state  sequence  vectors  to  square  matrices,  then  form  images  of  size.224 × 224, 

which  are  used  to  train  a  CNN.  Each  CNN  architecture  is  built  upon  a  base  model 

that  includes  the  following  three  additional  layers. 

1.  A  Global  Average  Pooling  (GAP)  layer  [ 20]  is  used  to  reduce  spatial  dimensions. 

2.  The  GAP  layer  is  followed  by  a  dense  layer  with  1024  neurons  and  ReLU  acti-

vation  [ 1], which  serves  as  a  “bottleneck”,  in  the  sense  that  it  forces  the  model  to condense  the  most  relevant  features  into  a  more  compact  representation,  which 

serves  to  reduce  overfitting. 

3.  The  final  dense  layer,  with  softmax  activation  [ 22],  has  its  number  of  neurons equal  to  the  number  of  malware  families  and  is  responsible  for  classifying  input 

data.  In  all  of  our  experiments,  the  number  of  classes  is  seven,  since  we  consider 

seven  malware  families  from  the  Malicia  dataset. 

As  mentioned  above,  we  experiment  with  several  base  CNN  architectures.  Next, 

we  provide  a  brief  description  of  each  of  the  base  CNN  architectures  that  we  consider. 

ResNet50V2

is  part  of  the  Residual  Network  (ResNet)  family.  As  indicated  by  its 

name,  ResNet50V2  contains  50  layers  and  is  noteworthy  for  its  deep  architecture 

and  skip  connections,  allowing  it  to  excel  at  image  classification  tasks  [ 13]. 

ResNet101V2

is  an  extended  version  of  the  ResNet  architecture  with  101  layers. 

Similar  to  other  ResNet  models,  it  has  skip  connections  to  facilitate  the  training 

of  extremely  deep  networks  [ 13]. 

ResNet152V2

is  another  variant  of  the  ResNet  architecture,  in  this  case  with  152 

layers.  ResNet152V2  addresses  the  vanishing  gradient  problem  by  using  residual 

connections  [ 13]. 

DenseNet201

is  a  deep  neural  network  model  that  uses  dense  connections  between 

layers.  This  model  has  201  layers  and  is  known  for  efficient  feature  reuse  [ 14]. 

Xception

is  known  for  its  extreme  depth  and  parallelism.  It  employs  depthwise 

separable  convolutions,  making  it  computationally  efficient  while  achieving  high 

performance  in  image  classification  tasks  [ 7]. 

Table  2  provides  a  brief  summary  of  each  of  the  hyperparameters  of  our  HMM-CNN  model.  Recall  that  the  resulting  feature  vectors  are  of  length  .7 L,  and  images of  size .224 × 224 are  generated  from  these  feature  vectors. 

Malware Classification Using a Hybrid Hidden Markov …

103

Table  2  HMM-CNN  hyperparameters 

Hyperparameter

Description 

.  N

Number  of  hidden  states  in  the  HMM 

.  L

Length  of  each  extracted  hidden  state  sequence 

base_model

Base  CNN  architecture 

optimizer

Algorithm  to  adjust  model  parameter  during 

training 

learning_rate

Step  size  at  which  the  model  parameter  are 

updated 

loss

Quantifies  difference  between  actual  and 

predicted  output 

5 

Experiments  and  Results 

In  this  section,  we  first  discuss  the  HMM  training  and  the  use  to  the  resulting  models 

to  obtain  hidden  state  sequences.  Next,  we  consider  the  training  of  our  HMM-CNN 

classifier,  including  hyperparameter  tuning.  Then  we  summarize  the  results  of  our 

experiments,  and  we  conclude  this  section  with  a  comparison  of  our  results  to  other 

research  involving  the  Malicia  dataset. 

 5.1 

 HMM  Training  and  Hidden  States 

As  discussed  above,  the  subset  of  the  Malicia  dataset  that  we  use  consists  of  seven 

malware  families,  and  we  train  one  HMM  for  each  family.  Hence,  we  have  seven 

trained  HMMs,  where  each  model  is  of  the  form  .  λ =  (A, B, π).  We  experimented with  the  number  of  hidden  states  .  N ∈ {5 ,  10 ,  20 ,  30},  and  we  found  that  .  N = 20

yields  the  highest  accuracy.  The  number  of  unique  observations  (i.e.,  a  superset  of 

the  opcodes  in  all  seven  families)  is.426,  with MOV being  the  most  frequent.  Therefore, 

.  N = 20 and .  M = 426 in  all  of  our  HMMs  discussed  in  the  remainder  of  this  paper. 

Recall  that  these  HMM  matrices  are.  A = { ai j },  which  is.  N ×  N ,.  B = { bi j },  which is  .  N ×  M,  and  .  π = { πi },  which  is  .1 ×  N .  We  initialize  the  .  A,  .  B,  and  .  π  matrices to  approximately  uniform,  that  is,  each .  ai j ≈ 1 /N ,  each.  bi j ≈ 1 /M,  and  each.  πi ≈

1 /N ,  while  enforcing  the  required  row  stochastic  conditions.  The  minimum  number 

of  iterations  of  the  Baum-Welch  re-estimation  algorithm  is  set  to  10,  and  we  stop 

when  successive  iterations  beyond  this  number  produce  a  change  in  .  P(O |  λ)  of less  than  .  ε = 0 .  001.  When  training  our  models,  the  average  number  of  iterations was  10.43,  and  it  took  an  average  of  five  hours  to  train  each  HMM.  Note  that  this  is 

one-time  work. 

Next,  we  use  the  trained  HMMs  to  generate  hidden  state  sequences  for  each 

sample  as  follows.  Given  a  sample,  we  generate  a  hidden  state  sequence  using 

each  of  the  seven  HMMs.  The  length  of  each  hidden  state  sequence  correspond-
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Table  3  Number  of  malware  sample  dropped  for  different  values  of.  L

.  L

Samples  dropped 

25

3 

50

11 

100

14 

200

26 

ing  to  each  malware  sample  is  truncated  to  a  constant  .  L,  that  is,  we  only  use the  hidden  state  sequences  corresponding  to  the  first  .  L  opcodes.  We  experiment 

with.  L ∈ {25 ,  50 ,  100 ,  200}.  In  rare  cases,  there  were  insufficient  opcodes  available in  a  given  sample,  (i.e.,  the  length  of  opcode  sequence  for  the  malware  sample  was 

less  than .  L),  in  which  case  we  dropped  the  sample  from  consideration.  The  number of  dropped  samples  for  each  value  of  .  L  is  given  in  Table  3,  and  we  observe  that  an insignificant  percentage  of  malware  samples  were  dropped. 

 5.2 

 HMM-CNN  Training 

In  our  proposed  HMM-CNN  technique,  we  train  a  CNN  on  images  created  by  reshap-

ing  the  hidden  state  sequences  generated  by  HMMs.  As  discussed  above,  for  each 

sample,  the  concatenated  hidden  state  sequence  vector  of  length  .7 L  is  rearranged 

to  a  square  matrix,  and  this  matrix  is  then  padded  with  zeros  at  its  edges  to  create 

an  image  of  size  .224 × 224.  Note  that  this  image  dimension  was  chosen  because 

most  modern  CNN  architectures  cannot  be  trained  on  images  of  dimensions  smaller 

than.224 × 224.  Also,  we  found  that  this  embedding  approach  yielded  slightly  better 

results  than  resizing  the  images. 

We  conduct  a  grid-search  [ 19]  to  determine  the  hyperparameters  of  our  HMM-CNN  classifier.  Specifically,  we  tested  the  hyperparameter  values  in  Table  4, with the  values  in  boldface  yielding  the  best  result.  The  accuracy  obtained  for  the  best 

choice  of  hyperparameters  in  Table  4  was .0 .  9781. 

Table  4  HMM-CNN  hyperparameters  tested  and  selected 

Hyperparameter

Tested  (selected  in  boldface) 

.  L

56, 112,  224 

base_model

ResNet50V2,  ResNet152V2,  ResNet101V2, 

DenseNet201,  Xception 

optimizer

Adam,  RMSProp,  Adagrad,  Adadelta, Nadam, 

Ftrl 

learning_rate

0.0001, 0.001, 0.01  

loss

categorical_crossentropy, 

kullback_leibler_divergence,  poisson
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1.00 

ResNet50V2 

0.95 

DenseNet201 

Xception 

0.90 

ResNet152V2 

0.85 

ResNet101V2 

0.80 

Accuracy  0.75 

0.70 

0.65 

0.60 

Adam

RMSProp

Adagrad

Adadelta

Nadam

Ftrl 

(a)  Optimizer 

0.96 

0.94 

ResNet50V2 

ResNet50V2 

0.92 

DenseNet201 

0.90 

DenseNet201 

Xception 

0.88 

Xception 

ResNet152V2 

0.86 

ResNet152V2 

0.84 

ResNet101V2 

ResNet101V2 

0.82 

0.80 

Accuracy 

Accuracy  0.78 

0.76 

0.74 

0.72 

0.68 

0.70 

0.0001

0.001

0.01 

Crossentropy  KL  Divergence

Poisson 

(b)  Learning  rate

(c)  Loss  function 

Fig.  5  Accuracy  trends  for  different  hyperparameters  for  HMM-CNN 

We  give  expanded  results  for  each  of  the  individual  hyperparameters  of  HMM-

CNN  in  Fig. 5. We  observe  that  a  learning_rate of  0.001  and  the  Categorical Crossentropy  loss function  were  both  clearly  superior  to  the  alternatives  that  we 

tested.  For  the  choice  of  optimizer,  the  results  are  not  as  clear,  but  Nadam  was 

generally  the  best. 

Confusion  matrices  for  our  HMM-CNN  experimental  results  are  given  in  Fig. 6, where  Fig. 6a  provides  the  actual  number  of  classifications  for  each  case,  and  Fig. 6b is  a  scaled  confusion  matrix.  The  samples  belonging  to  the  three  largest  malware 

families,  namely,  ZeroAccess,  Winwebsec,  and  Zbot  are  classified  with  an  average 

accuracy  of  .0 .  9856,  whereas  Cridex,  with  only  74  samples  available,  is  classified with  the  lowest  accuracy  of .0 .  200. 

 5.3 

 Comparison  to  Related  Techniques 

Finally,  we  compared  the  results  obtained  from  our  HMM-CNN  model  with  a  variety 

of  related  techniques.  The  following  provides  a  brief  description  of  each  of  the  related 

techniques  that  we  consider. 

[image: Image 25]
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Fig.  6  Confusion  matrices  for  HMM-CNN  model 

•  Word2Vec-LSTM—For  this  model,  we  generate  Word2Vec  embeddings  of  the 

opcodes,  then  train  an  LSTM  model  on  the  resulting  sequence  of  embedding 

vectors. 

•  BERT-LSTM—This  is  the  same  as  the  Word2Vec-LSTM  model,  except  that  BERT 

is  used  to  generate  the  embedding  vectors,  instead  of  Word2Vec. 

•  Random  Forest—For  this  model,  we  train  a  Random  Forest  model  directly  on  the 

opcode  sequences.  We  obtain  the  feature  vectors  by  truncating  each  sequence  to  a 

length .  L,  using  the  same  values  of .  L  as  for  our  HMM-CNN  model. 

•  SVM—As  with  the  previous  model,  this  model  is  also  trained  on  the  feature  vectors 

obtained  directly  from  the  opcode  sequences,  but  using  an  SVM  classifier,  instead 

of  a  Random  Forest. 

•  HMM-RF—This  is  similar  to  our  HMM-CNN  model,  except  that  we  apply  a 

Random  Forest  classifier  to  the  length .7 L  feature  vectors. 

•  HMM-SVM—This  model  is  the  same  as  the  HMM-RF  model,  except  that  we  use 

an  SVM  classifier  in  place  of  a  Random  Forest. 

•  CNN—For  this  model,  we  generate  .224 × 224 images  directly  using  the  first  .  L

opcodes  of  the  malware  samples.  These  images  are  then  used  to  train  a  CNN 

classifier,  as  discussed  in  Sect. 4.3, above. 

Table  5  shows  the  accuracy  and  weighted  F1-score  obtained  after  testing  each of  the  above  techniques  on  the  same  subset  of  the  Malicia  dataset  as  we  used  for 

our  HMM-CNN  experiments.  We  observe  that  the  HMM-CNN  slightly  outperforms 

the  HMM-SVM  and  HMM-RF,  with  Word2Vec-LSTM,  Random  Forest,  and  SVM 

models  also  performing  reasonably  well.  Only  the  BERT-LSTM  embedding  achieved 

significantly  lower  accuracy  and  F1  score,  which  is  perhaps  at  least  partially  due  to 

insufficient  training  data  for  the  more  complex  BERT  embeddings. 

Utilizing  HMMs  to  generate  feature  vectors  from  opcode  sequences  clearly  results 

in  improvement  in  accuracy.  Furthermore,  the  HMM-based  models  outperformed 

others  when  it  came  to  classifying  malware  samples  from  some  families  that  had 

limited  representation  in  the  dataset.  For  example,  the  HMM-based  models  classified
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Table  5  Classification  results  for  different  techniques 

Technique

Validation 

Accuracy

F1-score 

Word2Vec-LSTM

0.9714

0.9658 

BERT-LSTM

0.9181

0.9037 

Random  Forest

0.9702

0.9668 

HMM-RF

0.9758

0.9732 

SVM

0.9589

0.9535 

HMM-SVM

0.9757

0.9727 

CNN

0.9725

0.9727 

HMM-CNN

0.9781

0.9778 

Table  6  Training  and  testing  times  for  different  techniques 

Technique

Total  training  time 

Testing  time  per  sample 

(in  hours) 

(in  seconds) 

Word2Vec-LSTM

1.38

0.0150 

BERT-LSTM

3.32

0.0753 

Random  Forest

0.64

0.0010 

HMM-RF

24.91

0.0008 

SVM

2.34

0.0013 

HMM-SVM

26.26

0.0016 

CNN

25.08

0.0076 

HMM-CNN

48.83

0.0076 
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malware  samples  of  SecurityShield  with  an  average  accuracy  of  87.5%,  while  the 

non-HMM  models  had  an  average  accuracy  of  just  41.67%. 

Table  6  shows  the  average  training  and  testing  time  of  the  tested  techniques  for the  Malicia  dataset.  For  emphasis,  we  give  these  same  timing  results  in  Fig. 7. 

We  observe  that  Word2Vec-LSTM  and  BERT-LSTM,  which  combine  word 

embeddings  with  LSTM  networks,  require  moderate  training  times  and  relatively 

high  testing  times.  On  the  other  hand,  techniques  incorporating  HMMs  required  sig-

nificantly  longer  training  time,  but  maintain  efficient  testing  times,  while  Random 

Forests  are  extremely  efficient,  with  respect  to  both  training  and  testing. 

6 

Conclusion  and  Future  Work 

In  this  paper,  we  analyzed  a  hybrid  HMM-CNN  model.  Specifically,  we  derived  fea-

tures  using  HMMs,  which  were  then  converted  into  images,  which  were  classified 

using  advanced  CNN  architectures.  We  found  that  our  HMM-CNN  model  outper-

formed  several  comparable  techniques  on  the  same  dataset.  In  contrast,  techniques 

that  did  not  use  the  HMM  hidden  state  sequences  as  features  performed  measurably 

worse.  This  indicates  that  training  an  HMM  and  using  it  to  uncover  the  hidden  states 

can  serve  as  a  valuable  feature  engineering  step.  The  hidden  state  sequence  of  HMMs 

are  often  used  in  Natural  Language  Processing  (NLP)  applications  but,  as  far  as  the 

authors  are  aware,  this  approach  has  only  previously  been  applied  to  malware-related 

problems  in  our  previous  work  [ 23]. The  results  in  this  paper  provide  additional  evidence  that  such  NLP-inspired  approaches  holds  promise  in  the  malware  domain. 

Analogous  approaches  would  be  worth  investigating  in  other  domains  as  well. 

There  are  many  possible  avenues  for  future  work.  For  example,  attempting  to 

extend  our  results  for  HMM-based  models  to  various  types  of  obfuscated  malware— 

such  as  polymorphic  and  metamorphic  malware—would  be  an  interesting  challenge. 

The  training  times  required  for  the  HMM  models  was  found  to  be  large  in  com-

parison  to  other  standard  models.  Optimizing  the  HMM  training  times  would  be 

worthwhile  future  work.  For  example,  we  could  reduce  the  training  times  by  reduc-

ing  the  length  of  the  training  opcode  sequences.  We  used  all  of  the  available  training 

data  to  generate  our  HMMs,  but  the  models  would  likely  converge  with  far  less  data. 

Utilizing  hidden  state  sequences  generated  by  HMMs  in  conjunction  with  Long 

Short-Term  Memory  (LSTM)  networks  is  another  possible  area  of  future  research 

work.  Intuitively,  leveraging  LSTM  to  analyze  hidden  state  sequences  generated  by 

HMMs  could  provide  a  more  holistic  view  with  respect  to  the  temporal  dynamics 

exhibited  by  malware.  This  approach  holds  the  potential  to  enhance  the  accuracy  and 

robustness  of  malware  classification,  as  it  leverages  both  the  discriminative  power 

of  HMMs  in  identifying  behavioral  patterns  and  the  feature  learning  capabilities  of 

LSTMs. 

Testing  on  larger  and  more  challenging  datasets  could  give  us  a  more  fine-grained 

view  of  the  relative  strengths  and  weaknesses  of  hybrid  models  based  on  HMM-

generated  hidden  state  sequences.  Ensemble  modeling  techniques  are  another  area
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for  potential  future  work.  Generating  multiple  HMMs  using  random  restarts  could  be 

used  to  create  ensembles  of  HMM-RF  and  HMM-CNN  models,  potentially  providing 

improved  results. 
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Selecting Representative Samples from 

Malware Datasets 

Lukáš Děd and Martin Jureˇcek 

Abstract  This  work  focuses  on  the  selection  of  representative  instances  for  the 

training  set  in  malware  detection.  Opposed  to  random  instance  selection,  the  goal 

of  instance  selection  algorithms  is  to  remove  noise  and  redundancy  while  preserv-

ing  relevant  data  for  solving  the  task.  Experiments  were  conducted  on  two  publicly 

available  datasets  containing  metadata  of  Windows  PE  files,  namely  the  EMBER 

and  SOREL-20M  datasets.  The  theoretical  part  describes  data  preprocessing  meth-

ods,  instance  selection  algorithms,  and  classification  algorithms  used  in  the  practical 

part  of  this  work.  The  practical  part  outlines  the  process  of  preprocessing  datasets 

and  main  experiments  related  to  the  comparison  of  state-of-the-art  instance  selection 

algorithms.  As  part  of  the  work,  modifications  to  the  parallel  instance  selection  algo-

rithm  PIF  were  proposed  and  implemented,  and  these  were  also  experimentally  eval-

uated  and  compared  with  the  results  of  state-of-the-art  instance  selection  algorithms. 

Some  of  the  modified  versions  ranked  among  the  best  in  terms  of  reduction  level  as 

well  as  the  ratio  between  accuracy  and  the  size  of  the  reduced  sets.  The  best  among 

the  modified  versions  was  the  RPIF-AllKNN  algorithm,  which  reduced  the  entire 

training  set  of  the  SOREL-20M  dataset  to  6.24%  of  its  original  size  with  an  accuracy 

loss  of  2.1%.  The  ratio  between  accuracy  and  the  size  of  the  reduced  set  was  14.43  and in  terms  of  this  metric,  RPIF-AllKNN  was  the  best  among  the  compared  algorithms. 

1  Introduction 

The  world  of  information  technology  is  developing  rapidly,  especially  in  recent  years. 

Business  environments  are  moving  into  the  digital  world,  resulting  in  an  increase  in 

the  number  of  devices  connected  to  the  Internet.  Just  like  in  the  real  world,  in  the  digital  world  are  also  criminal  entities  trying  to  achieve  their  goals  through  illegal  means. 
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Attackers  use  many  methods  and  technologies  to  achieve  their  goals.  Malicious 

software,  abbreviated  as  malware,  has  long  been  one  of  the  biggest  threats.  Malware 

is  software  that  aims  to  cause  damage  to  a  computer  system  or  an  entire  network  and 

thus  to  the  owner  of  those  assets  [ 15].  Examples  include  trojans,  worms,  or  today’s increasingly  common  ransomware,  whose  goal  is  to  encrypt  data  in  the  computer 

systems  of  the  attacker’s  targets. 

One  of  the  possible  methods  for  malware  detection  is  based  on  the  signatures  of 

executable  files.  Antivirus  programs,  relying  on  signature-based  methods,  operate 

by  comparing  a  file  against  a  signature  database  created  from  previously  obtained 

malware  samples.  This  detection  method  achieves  good  results  for  already-known 

versions  of  malware,  emphasizing  the  importance  of  working  with  an  up-to-date 

signature  database.  However,  the  effectiveness  of  this  method  diminishes  for  new 

versions  of  malware  [ 1].  A  potential  solution  to  this  problem  is  the  use  of  machine learning  algorithms. 

Malware  detection  using  machine  learning  (ML)  algorithms  is  currently  a  popular 

method  employed  by  many  antivirus  programs.  ML  algorithms  classify  files  based 

on  their  properties  (referred  to  as  features).  In  the  context  of  malware  detection, 

features  can  be  obtained  through  static  or  dynamic  analysis  of  executable  files  [ 10]. 

Static  analysis  does  not  require  the  file  to  be  executed,  making  it  faster,  safer,  and  less resource-intensive.  However,  this  approach  is  vulnerable  to  obfuscated  and  encrypted 

code.  Examples  of  data  obtained  from  static  analysis  include  opcode  sequences  or 

metadata  of  executable  files.  With  dynamic  analysis,  the  file  is  executed,  which 

involves  a  higher  risk  and  greater  resource  consumption.  However,  the  information 

gathered  can  be  more  relevant  than  in  the  case  of  static  analysis.  Examples  of  data 

obtained  from  dynamic  analysis  include  API  calls,  system  calls,  or  registry  modi-

fications.  A  combination  of  both  approaches  is  also  possible.  An  essential  phase  in 

ML  algorithms  is  the  learning  process,  which  takes  place  using  acquired  samples. 

The  learning  process  involves  setting  the  hyperparameters  of  the  ML  algorithm  to 

optimize  its  performance  within  the  addressed  issue.  The  resulting  configuration  is 

then  used  for  the  classification  of  new  samples. 

In  addition  to  properly  tuning  the  hyperparameters  of  ML  algorithms,  their  perfor-

mance  can  be  enhanced  by  selecting  representative  samples  on  which  the  algorithm  is 

trained.  The  datasets  used  for  model  training  commonly  contain  noise  and  redundant 

data,  which  can  have  a  negative  impact  on  the  overall  performance  of  the  resulting 

model.  Instance  selection  algorithms  are  employed  to  address  this  problem  [ 20]. 

Reducing  the  size  of  the  dataset  also  results  in  shorter  training  times  for  ML  models 

and  lower  memory  requirements.  Given  the  time  and  memory  complexity  of  some 

ML  algorithms,  this  is  another  reason  for  the  application  of  instance  selection  algo-

rithms.  The  task  of  instance  selection  algorithms  is  to  reduce  the  size  of  the  data, 

ensuring  that  there  is  no  significant  loss  in  the  classification  model’s  performance  or, 

conversely,  to  achieve  improvement.  This  is  accomplished  by  removing  redundant 

and  noisy  samples  from  the  dataset. 

The  main  focus  of  this  work  is  the  selection  of  representative  samples  for  mal-

ware  detection  using  instance  selection  algorithms.  Part  of  this  work  is  the  experi-

mental  evaluation  of  some  state-of-the-art  algorithms  and  experiments  with  modified
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versions  of  existing  algorithms.  The  comparison  of  instance  selection  algorithms  is 

performed  using  two  publicly  available  datasets  containing  metadata  of  Windows 

Portable  Executable  files  (these  are  features  obtained  through  static  analysis).  These 

are  the  EMBER  [ 2]  and  SOREL-20M  [ 13]  datasets.  Both  datasets  were  preprocessed before  experimenting  with  instance  selection  algorithms.  Another  contribution  is 

the  experimentation  with  proposed  modifications  to  the  Parallel  Instance  Filtering 

algorithm,  which  is  also  part  of  the  comparison  of  instance  selection  algorithms. 

This  work  is  structured  as  follows.  Section  2  provides  an  overview  of  all  methods  applied  to  the  datasets  before  experimenting  with  instance  selection  algorithms. 

Section  3  contains  a  detailed  description  of  several  state-of-the-art  instance  selection algorithms.  In  Sect. 5,  experiments  related  to  the  application  of  methods  described  in Sect. 2  are  documented.  Section  4  provides  a  description  of  proposed  modifications  to the  Parallel  Instance  Filtering  instance  selection  algorithm.  In  Sect. 6,  all  experiments related  to  instance  selection  algorithms  outlined  in  Sects. 3  and  4  are  described. 

2  Data Preprocessing 

This  section  contains  a  description  of  the  data  preprocessing  methods  applied  to  the 

datasets  before  the  experiments  with  instance  selection  algorithms. 

 2.1 

 Data  Cleaning 

Data  cleaning  is  an  important  part  of  data  preprocessing.  Training  models  on  unclean 

data  often  leads  to  a  decrease  in  the  performance  of  these  models.  In  real-world  sce-

narios,  data  is  often  incomplete  and  contains  typos,  unrealistic  values,  or  noisy  data. 

Data  also  often  contains  various  inconsistencies  and  it  is  necessary  to  ensure  that  val-

ues  with  the  same  meaning  are  represented  consistently.  To  improve  the  performance 

of  machine  learning  algorithms,  it  is  necessary  to  remove  these  errors  [ 21]. 

Since  some  classification  algorithms  cannot  handle  missing  values,  it  is  necessary 

to  impute  them.  One  option  for  dealing  with  missing  values  is  to  replace  them  with 

a  constant  value.  This  approach  was  used  in  this  work.  The  selected  constant  should 

be  a  value  outside  of  the  domain  of  the  feature.  Missing  values  can  also  be  replaced 

based  on  the  statistical  properties  of  the  features.  The  most  commonly  used  values 

include  the  mean,  median,  and  for  categorical  variables,  the  mode.  Another  example 

is  filling  in  the  missing  value  using  the  K  Nearest  Neighbors  of  the  instance. 

There  are  several  basic  methods  for  removing  redundancy  in  data.  One  method 

is  the  removal  of  features  with  constant  values.  These  columns  do  not  provide  any 

information  and,  therefore,  do  not  contribute  to  the  model’s  performance.  These 

features  can  be  identified  based  on  zero  variance  [ 17].  Another  basic  method  is  the removal  of  identical  instances.  These  are  instances  whose  features  have  the  same 

values.  To  prevent  distortion  of  the  resulting  model,  it  is  necessary  to  remove  these 

instances.  Both  methods  described  in  this  paragraph  were  used  in  this  work. 
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Datasets  also  contain  outliers.  An  outlier  is  an  extreme  value  that  significantly 

differs  from  the  rest  of  the  population,  and  its  occurrence  in  a  data  set  is  unlikely. 

Outliers  can  be  included  in  the  data  naturally  or  artificially  [ 12].  The  occurrence  of outliers  in  data  can  have  a  significant  impact  on  some  machine  learning  algorithms 

and  data  preprocessing  methods  that  are  sensitive  to  these  deviations  (such  as  min-

max  normalization).  However,  replacing  outliers  can  result  in  the  loss  of  important 

information,  for  example,  if  the  outlier  is  meant  to  signal  a  significant  event.  The 

method  used  in  this  work  for  detecting  outliers  is  the  Interquartile  Range  (IQR) 

method,  which  involves  identifying  patterns  that  do  not  correspond  to  the  normal 

distribution  of  the  processed  data.  As  the  name  suggests,  the  upper  and  lower  thresh-

old  is  calculated  based  on  the  interquartile  range.  The  IQR  method  marks  as  outliers 

the  data  points  whose  values  are  either  below  the  lower  threshold  or  above  the  upper 

threshold  [ 4].  This  value  is  calculated  as  the  difference  between  the  third  and  first quartile.  The  upper/lower  threshold  is  obtained  by  adding/subtracting  a  .  k-multiple 

of  the  IQR  from  the  75th/25th  percentile.  Other  examples  of  methods  for  detecting 

outliers  include  K  Nearest  Neighbors  or  Local  Outlier  Factor. 

 2.2 

 Conversion  of  Categorical  Features  to  Numerical 

Many  machine  learning  algorithms  used  for  classification  (e.g.,  K  nearest  neighbors 

classifier,  neural  networks)  require  only  numeric  inputs  to  function  properly.  To  use 

these  algorithms  without  losing  information  from  categorical  features,  it  is  necessary 

to  replace  their  values  with  a  numeric  representation.  The  following  paragraphs 

describe  two  methods  used  in  this  work. 

One  way  to  convert  non-numerical  categories  to  numerical  is  through  encoding. 

Nominal  features  are  often  encoded  using  the  one-hot  encoding  method.  When  using 

this  method,  the  original  feature  is  replaced  by  a  vector  of  .  k  binary  (also  known  as dummy)  features,  where .  k  is  the  number  of  categories.  The  feature  representing  the value  of  the  current  instance  is  set  to  one,  while  the  remaining  features  are  set  to  zero. 

Another  method  is  feature  hashing  [ 24],  which  is  more  suitable  for  features  with  a large  number  of  categories.  This  method  typically  creates  a  smaller  number  of  dummy 

features  than  the  number  of  unique  values  of  the  original  categorical  feature.  How-

ever,  as  a  result,  collisions  may  occur,  meaning  that  several  different  input  values  can 

be  transformed  into  the  same  output  value.  The  input  to  the  algorithm  is  the  number  of 

output  variables  and  the  hash  function.  The  feature  hashing  can  also  be  used  to  create 

a  feature  vector  from  documents  and  generally  from  variable-length  information. 

 2.3 

 Feature  Scaling 

Feature  scaling  is  one  of  the  most  important  techniques  used  in  data  preprocessing 

that  can  significantly  affect  the  performance  of  machine  learning  algorithms.  Some 

machine  learning  algorithms  (e.g.,  K  Nearest  Neighbors  or  Support  Vector  Machine)
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are  sensitive  to  this  problem  [ 7]. The  goal  of  feature  scaling  is  to  transform  all  features so  that  they  contain  values  from  the  same  domain,  thereby  having  a  similar  impact 

on  classification.  The  following  paragraphs  describe  two  methods  used  in  this  work. 

This  transformation  can  be  achieved  using  normalization,  also  known  as  min-

max  scaling.  Normalization  preserves  the  original  distribution  of  data,  and  after  this 

transformation,  the  values  range  between  0  and  1.  The  new  value  is  calculated  as 

the  difference  between  the  original  value  and  the  minimum  value  divided  by  the 

difference  between  the  maximum  and  minimum  values. 

Another  method  is  robust  scaling  [ 11],  which  does  not  use  minimum  and  maximum  values  for  calculation  and  is  thus  more  resistant  to  outliers.  Robust  scaling 

calculates  the  new  value  as  the  difference  between  the  original  value  and  the  median, 

divided  by  the  difference  between  the  third  and  first  quartiles.  Scaled  features  have 

a  mean  and  median  of  zero  and  a  standard  deviation  of  one. 

 2.4 

 Dimensionality  Reduction 

One  option  for  reducing  the  number  of  features  and  mitigating  negative  impacts  (such 

as  computational  complexity  or  overfitting)  in  models  trained  on  high-dimensional 

data  is  to  use  dimensionality  reduction  techniques.  The  goal  of  dimensionality  reduc-

tion  is  to  transform  the  original  set  of  features  into  another  set  of  features  while 

preserving  as  much  available  information  as  possible. 

Principal  Component  Analysis  (PCA)  [ 22]  is  a  linear  unsupervised  method  for dimensionality  reduction  of  a  dataset.  As  PCA  involves  an  orthogonal  transformation,  the  result  is  a  set  of  linearly  uncorrelated  features  that  capture  the  maximum 

variance  [ 19]. These  transformed  features  are  linear  combinations  of  the  original features  and  are  called  principal  components.  This  means  that  each  principal  component  is  a  linear  combination  of  the  original  features.  The  first  principal  component 

contains  the  maximum  possible  variance  among  all  linear  combinations,  the  second 

principal  component  contains  the  maximum  variance  orthogonal  to  the  first  princi-

pal  component,  and  so  on.  By  selecting  a  subset  of  the  principal  components,  PCA 

reduces  the  dimensionality  of  the  data  and  preserves  the  most  important  information. 

This  method  was  chosen  for  dimensionality  reduction  in  this  work.  Another  represen-

tative  of  unsupervised  methods  is  the  non-linear  t-Distributed  Stochastic  Neighbor 

Embedding.  An  example  of  a  supervised  method  is  Linear  Discriminant  Analysis, 

which  was  not  selected  due  to  its  time  complexity. 

3  Instance Selection Algorithms 

Another  possibility  to  reduce  the  size  of  data  is  to  apply  instance  selection  (IS) 

algorithms.  The  task  of  these  algorithms  is  to  decrease  the  number  of  instances 

while  preserving  or  even  improving  the  classification/prediction  ability  [ 16]. This
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is  achieved  by  removing  noise  in  the  data  or  eliminating  irrelevant  and  redundant 

instances.  In  addition  to  the  classification  accuracy,  the  suitability  of  an  IS  algorithm  is compared  based  on  the  so-called  reduction  rate,  which  describes  the  extent  to  which 

the  original  dataset  has  been  reduced.  This  section  describes  the  taxonomy  of  IS 

algorithms  and  the  existing  IS  algorithms  that  were  used  during  the  experiments.  The 

proposed  modifications  to  the  IS  algorithm  Parallel  Instance  Filtering  are  presented 

in  Sect. 4. 

 3.1 

 Taxonomy 

There  are  many  instance  selection  algorithms,  which  can  be  divided  into  three  basic 

types  based  on  the  way  instances  are  selected  [ 18]: 

•  Condensation algorithms–The  principle  of  these  methods  is  to  retain  instances 

that  are  close  to  the  decision  boundary  (known  as  ’border  points’),  while  removing 

distant  instances  (referred  to  as  ’internal  points’)  from  the  training  set.  Condensa-

tion  techniques  are  based  on  the  assumption  that  internal  points  have  less  influence 

on  the  formation  of  the  decision  boundary  (due  to  their  distance  from  it)  and  can 

therefore  be  eliminated.  These  algorithms  typically  achieve  a  good  reduction  rate 

but  are  prone  to  overfitting,  resulting  in  a  loss  of  generalization  ability  on  unseen 

data. 

•  Edition algorithms-Contrary  to  condensation  algorithms,  these  techniques  focus 

on  removing  some  border  points  while  retaining  internal  points  in  the  training 

set.  Edition  algorithms  remove  instances  near  the  decision  boundary  whose  labels 

differ  from  the  labels  of  their  nearest  neighbors.  This  results  in  noise  removal  and 

smoothing  of  the  decision  boundary.  These  algorithms  are  less  prone  to  overfitting 

but  achieve  poorer  results  in  terms  of  data  reduction. 

•  Hybrid algorithms–Hybrid  algorithms  are  a  combination  of  the  previous  two 

types. 

Another  possible  way  to  divide  instance  selection  algorithms  is  according  to  the 

direction  in  which  the  training  set  is  searched  [ 26].  The  following  is  a  description  of the  individual  options: 

•  Incremental–As  the  name  suggests,  incremental  algorithms  start  with  an  empty 

reduced  set  .  Tnew,  the  size  of  which  gradually  increases  as  the  instances  are  processed.  These  are  order-dependent  techniques,  i.e.,  it  depends  on  the  order  in  which 

the  instances  are  traversed.  The  algorithms  go  through  all  the  instances  that  are 

subsequently  added  to  the  .  Tnew  if  they  meet  a  certain  condition.  The  advantage 

of  incremental  algorithms  is  that  newly  acquired  instances  can  be  added  to  the 

.  Tnew  additionally,  which  makes  them  a  suitable  option  for  online  learning  and  data stream  processing. 

•  Decremental–These  techniques  start  with  a  reduced  subset  of  the  same  size  as  the original  training  set  (.  Tnew =  T ).  Then,  all  instances  that  satisfy  a  certain  condition
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are  sequentially  examined,  and  if  the  condition  is  met,  they  are  removed  from 

the  .  Tnew.  If  the  condition  is  met,  the  instance  is  removed  immediately  after  it has  been  tested.  Unlike  incremental  algorithms,  decremental  algorithms  are  typically  more  computationally  demanding  and  require  access  to  all  available  data  for 

computation. 

•  Batch–Like  Decremental  algorithms,  batch  methods  start  with  a.  Tnew  that  is  identical  to  the  original  .  T .  The  difference  is  that  if  one  of  the  instances  fulfills  the condition  while  going  through  the  instances,  it  is  not  removed  immediately  but 

only  marked  as  a  candidate  for  removal.  Deletion  of  the  marked  data  occurs  only 

at  once  after  passing  all  (or  a  selected  number  of)  instances. 

•  Mixed–Mixed  algorithms  operate  on  a  pre-selected.  Tnew,  which  is  either  randomly chosen  or  obtained  through  incremental/decremental  techniques.  Based  on  a  chosen  criterion,  these  algorithms  iteratively  remove  or  add  instances.  A  special  case 

of  mixed  algorithms  is  called  fixed algorithms,  where  the  number  of  instances  to 

be  added  and  removed  from .  Tnew  is  predetermined  and  fixed. 

 3.2 

 Condensation  Algorithms 

This  subsection  contains  a  description  of  two  condensation  algorithms:  Condensed 

Nearest  Neighbors  and  Modified  Selective  Subset. 

3.2.1  Condensed Nearest Neighbors (CNN) 

Condensed  Nearest  Neighbor  [ 14]  is  a  representative  of  incremental  algorithms.  At the  beginning,.  K  random  instances  from  the  original  set.  T  are  selected  and  moved  to an  empty  reduced  set.  Tnew.  Subsequently,  the  remaining  instances  are  classified  using a  KNN  classifier  with  the  selected  parameter  .  K  trained  on  the  .  Tnew.  If  an  instance is  classified  incorrectly,  it  is  moved  to  the  .  Tnew.  The  classification  of  each  instance is  always  performed  using  the  most  up-to-date  version  of  .  Tnew.  This  iteration  over all  instances  in  .  T  is  repeated  until  either  no  instances  are  moved  to  .  Tnew  during  a complete  cycle  or  the  set .  T  becomes  empty. 

3.2.2  Modified Selective Subset (MSS) 

One  of  the  representatives  of  decremental  algorithms  is  Modified  Selective  Subset  [ 3]. 

The  Modified  Selective  Subset  algorithm  is  based  on  the  so-called.  selecti ve.  subset. 

The .  Tnew ⊆  T  is  a  selective  subset  if: 

• .  Tnew  is  consistent,  i.e.,  for  all  instances  .  x  from  the  original  set  .  T ,  their  nearest neighbor  from  the .  Tnew  has  the  same  class  as.  x. 

•  For  all  instances.  x  from.  T ,  it  holds  that  the  distance  between  their  nearest  neighbor in  the  selective  subset .  Tnew,  which  belongs  to  the  same  class  as.  x, is smaller than
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the  distance  to  the  nearest  enemy  of.  x  in.  T .  The  nearest  enemy  refers  to  the  closest neighbor  that  belongs  to  a  different  class. 

As  the  name  suggests,  the  output  of  the  described  algorithm  is  a  modified  selective 

subset.  Modified  selective  subset  can  be  defined  based  on  the  following  terms: 

•  Related neighbor–An  element  .  x j  is  a  related  neighbor  of  element  .  xi  belonging to  the  same  class  if  the  distance  between  .  x j  and  .  xi  is  smaller  than  the  distance between .  xi  and  its  nearest  enemy. 

•  Relative neighborhood of element.  xi–The  relative  neighborhood.  RNi  of  element 

.  xi  refers  to  the  set  of  all  its  related  neighbors. 

•  Modified Selective Subset–A  subset  .  M SS  of  the  original  dataset  .  T  is  called  a modified  selective  subset  if,  for  all  elements.  x  from.  T ,.  M S S  contains  the  furthest relative  neighbor  of .  x  from  its  relative  neighborhood. 

The  proposed  algorithm  processes  elements  of  each  class  separately.  Firstly,  it 

sorts  all  elements  of  a  given  class  in  ascending  order  based  on  their  distances  to  their nearest  enemies.  Then,  each  element.  x  is  compared  to  other  elements  of  the  same  class that  have  a  higher  index  in  the  sorted  array  (including .  x  itself).  If  the  compared  element.  y  is  part  of  the  set.  S (where  initially,.  S  contains  all  elements  belonging  to  the  currently  processed  class)  and  the  distance  between.  x  and.  y  is  smaller  than  the  distance between.  y  and  its  nearest  enemy,  the  element.  y  is  removed  from  the  set.  S.  If  there  was at  least  one  change  in  the  set.  S  during  this  traversal,  the  element.  x  is  added  to  the  set 

.  M S S (where  initially,  .  M S S = ∅).  The  process  continues  until  the  set  .  S  is  emptied or  all  elements .  x  have  been  processed.  This  procedure  is  performed  for  all  classes. 

 3.3 

 Edition  Algorithms 

This  subsection  describes  three  edition  algorithms:  Edited  Nearest  Neighbor,  Repea-

ted  Edited  Nearest  Neighbor,  and  AllKNN. 

3.3.1  Edited Nearest Neighbors (ENN) 

Edited  Nearest  Neighbor  [ 27]  is  a  representative  of  decremental  algorithms.  During the  process  of  reducing  the  set .  T ,  classification  using  the  K  Nearest  Neighbor  classifier  [ 9]  is  used.  K  Nearest  Neighbors  is  considered  one  of  the  most  straightforward machine  learning  algorithms  used  for  classification.  A  new  instance  is  classified 

according  to  the  majority  class  among  the.  K  nearest  neighbors,  where.  K  is  a  chosen parameter.  The  appropriate  value  of  the  parameter  .  K  is  usually  chosen  based  on 

experiments.  Before  applying  ENN,  we  set  .  Tnew =  .  T .  The  Edited  Nearest  Neighbor  algorithm  first  finds  for  all  elements  .  x  from  the  original  set  .  T  their  .  K  nearest neighbors  (without  elements .  x)  according  to  the  selected  distance  metric.  Using  the found .  K  nearest  neighbors,  classification  is  performed  for  all  elements .  x.  Elements 

.  x  whose  actual  class  does  not  match  the  classified  class  are  removed  from .  Tnew. 
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A  modified  version  of  the  ENN  algorithm  is  Repeated  Edited  Nearest  Neighbor 

(RENN).  This  algorithm  further  smooths  the  decision  boundary  by  repeatedly  apply-

ing  the  ENN  algorithm  until  all  remaining  elements  have  the  same  majority  class  of 

.  K  nearest  neighbors  with  their  class. 

3.3.2  AllKNN 

AllKNN  [ 23]  is  a  modification  of  the  ENN  algorithm.  The  operating  principle  of  the AllKNN  method  consists  in  repeatedly  applying  the  ENN  algorithm,  each  time  for  a 

different  number  of  nearest  neighbors.  These  are  values  from  1  to.  K ,  where.  K  is  an optional  parameter.  This  is  a  batch  method,  i.e.,  misclassified  instances  are  during 

traversal  only  flagged  and  they  are  removed  at  once  at  the  end  of  the  algorithm. 

 3.4 

 Hybrid  Algorithms 

Hybrid  algorithms  are  combinations  of  multiple  methods,  making  them  more 

complex.  The  following  is  a  description  of  the  hybrid  algorithms  used  in  this  work. 

3.4.1  Decremental Reduction Optimization Procedure 3 (DROP3) 

The  Decremental  Reduction  Optimization  Procedure  3  (DROP3)  [ 25]  is  a  decremental  method.  First,  the  instance  set  is  reduced  using  the  ENN  algorithm  with  the 

selected  parameter .  K E N N .  Then,  the  instances  are  sorted  in  descending  order  based on  their  distances  to  their  nearest  enemies.  For  each  instance,  a  list  of  .  K +. 1 nearest neighbors  (where  .  K  is  the  input  parameter  of  the  algorithm)  and  a  list  of  so-called associates  are  created.  Associates  of  an  instance.  x  are  considered  those  instances  that have.  x  among  their.  K  nearest  neighbors.  Subsequently,  instances.  x  are  removed  if  the number  of  associates  correctly  classified  without .  x  as  a  neighbor  (using  the  (.  K +. 1)-

th  neighbor  instead)  is  greater  than  or  equal  to  the  number  of  associates  correctly 

classified  when  instance.  x  is  taken  into  account.  If  an  instance.  x  is  removed  from  the dataset,  the  list  of  nearest  neighbors  of  all  associates  of.  x  must  be  updated,  replacing 

.  x  with  another  nearest  neighbor  .  nn,  ensuring  that  each  remaining  instance  still  has 

.  K +. 1 nearest  neighbors.  After  finding  a  new  neighbor.  nn  for  element.  a,.  a  is  added  to the  list  of  associates  of.  nn.  This  is  done  for  all.  a  that  were  affected  by  the  removal  of 

.  x .  Once  all  instances  have  been  processed,  the  algorithm  returns  the  reduced  dataset. 

3.4.2  Parallel Instance Filtering (PIF) 

Another  representative  of  decremental  algorithms  is  Parallel  Instance  Filtering 

(PIF)  [ 16]. The  PIF  algorithm  can  be  divided  into  three  main  parts,  each  of  which  can
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be  parallelized,  allowing  it  to  be  used  (unlike  some  other  IS  algorithms)  on  datasets 

with  a  large  number  of  instances. 

Firstly,  noise  is  filtered  in  the  data  by  applying  ENN  algorithm  with  the  selected 

parameter  .  K .  Subsequently,  the  dataset  is  divided  into  disjoint  subsets.  Elements are  assigned  to  these  subsets  according  to  their  closest  enemies,  i.e.,  in  each  subset, 

there  are  only  those  elements  that  have  a  common  nearest  enemy.  If  an  element  has 

multiple  nearest  enemies,  only  one  of  them  is  randomly  selected.  After  dividing  the 

dataset  into  disjoint  subsets,  a  filter  rule  is  applied  to  each  subset  that  is  greater  than the  value  of  the  chosen  parameter  .  m.  This  rule  removes  an  element  .  y  if  it  finds  an element  .  x  different  from  .  y  such  that  the  distance  between  .  y  and  the  nearest  enemy 

.  ne (.  ne  is  the  same  for  all  elements  of  the  given  subset)  is  greater  than  or  equal  to  the maximum  of  the  distances  between .  x  and .  y  and  between .  x  and .  ne. 

3.4.3  Iterative Case Filtering (ICF) 

The  next  state-of-the-art  hybrid  algorithm  is  Iterative  Case  Filtering  (ICF)  [ 5]. It  is a  batch  method. 

The  ICF  algorithm  uses  the  terms  .  Local Set(.  x),  .  Coverage(.  x),  and 

.  Reachabl e(.  x ).  The  following  is  an  explanation  of  these  terms: 

•  LocalSet(x)–It  is  the  set  of  all  nearest  neighbors  of  element  .  x  that  belong  to  the same  class  as  .  x  and  have  a  smaller  distance  to  .  x  than  its  nearest  enemy.  This  set is  also  referred  to  as  the  Relative  Neighborhood  of .  x  in  the  MSS  algorithm. 

•  Coverage(x)–It  is  the  set  of  all  elements  .  y  for  which  element  .  x  belongs  to  their LocalSet(.  y).  A  similar  concept  is  used  in  the  DROP3  algorithm,  which  refers  to 

such  a  set  as  associates(.  x). 

•  Reachable(x)–It  is  the  set  of  all  elements.  y  that  belong  to  the  LocalSet  of.  x. 

The  execution  of  the  algorithm  can  be  divided  into  two  parts.  At  the  beginning, 

the.  Tnew (in  the  beginning.  Tnew =  T )  is  denoised  using  ENN.  In  the  second  part,  the sets.  Reachable(.  x)  and.  Coverage(.  x)  are  created  for  all  elements.  x  from.  Tnew.  Subsequently,  those  elements.  x  whose.  Reachable(.  x)  set  is  larger  than  the.  Coverage(.  x) set  are  flagged.  After  traversing  the  entire  set.  Tnew,  all  marked  elements  are  removed at  once.  The  second  part  is  repeated  until  at  least  one  element  meets  the  condition 

for  removal.  After  completion,  the  reduced  set .  Tnew  is  returned. 

4  Proposed Modifications of the PIF Algorithm 

This  section  describes  proposed  modifications  of  the  PIF  algorithm,  which  were 

applied  and  experimentally  evaluated  alongside  other  state-of-the-art  IS  algorithms. 

Combining  two  proposed  modifications  resulted  in  a  total  of  five  modified  versions, 

described  below. 
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 4.1 

 Replacement  of  the  Editing  Algorithm 

The  first  proposal  was  to  replace  the  original  ENN  algorithm  with  other  editing 

algorithms.  Specifically,  the  algorithms  RENN  and  AllKNN  were  considered.  The 

version  using  the  RENN  algorithm  is  further  referred  to  as  PIF-RENN,  and  the  des-

ignation  PIF-AllKNN is  used  for  the  modification  of  the  PIF  algorithm  in  which  the 

AllKNN  algorithm  is  used  for  editing.  Both  mentioned  algorithms  more  thoroughly 

reduce  noisy  border  points,  resulting  in  a  smoother  decision  boundary.  The  aim  is 

to  assess  the  impact  of  this  fact  on  the  subsequent  filtration  of  disjoint  subsets  and 

the  overall  performance  of  the  PIF  algorithm.  Algorithm  1  contains  the  algorithms described  above.  Changes  compared  to  the  original  version  of  the  PIF  algorithm  are 

highlighted  in  red. 

Algorithm 1 PIF-AllKNN/PIF-RENN 

Let: 

.  T  be  the  original  dataset 

.  Tnew  be  the  reduced  dataset 

.  N E  be  the  set  of  elements  that  are  the  nearest  enemies  for  at  least  one  of  the  other  elements in.  Tnew

.  K  be  the  parameter  for  the  AllKNN/RENN  algorithms 

.  m  be  the  parameter  indicating  the  minimum  subset  size 

.  d (x , y)  be  the  distance  (e.g.,  Euclidean  distance)  between  elements.  x  and.  y 1:  .  Tnew ←  T

2:  .  Tnew ←  All K N N ( Tnew, K ) (or  Tnew ←  R E N N ( Tnew, K )) Select  AllKNN  or  RENN 

3:  for each.  x ∈  Tnew do 

4:

find  the  nearest  enemy.  nex

5:

add.  x  to  the  subset.  Snex

6:  end for 

7:  for each.  ne ∈  N E do 

8:

if .| Sne| ≥  m then 

9:

for each.  y ∈  Sne do 

10:

for each.  x ∈  Sne  where.  x =  y do 

11:

if .  d(.  y, ne).≥ max{ d(.  x, y).  , d(.  x, ne).. } then 12:

.  Tnew ←  Tnew \ { y}

13:

continue  to  the  next.  y

14:

end if 

15:

end for 

16:

end for 

17:

end if 

18:  end for 

19:  return.  Tnew

 4.2 

 Repeated  PIF 

This  modification  involves  repeatedly  applying  the  filtration  rule  to  updated  dis-

joint  subsets  containing  elements  with  the  same  nearest  enemy.  For  this  reason,  the 

proposed  algorithm  is  referred  to  as  Repeated  PIF  (RPIF).  Another  iteration  of
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the  algorithm  occurs  if,  during  the  previous  filtration,  at  least  one  element  .  y  was removed.  Another  option  is  to  use  a  parameter  specifying  the  maximum  number  of 

iterations.  The  RPIF  algorithm  is  summarized  in  Algorithm  2.  The  parts  highlighted in  red  indicate  changes  compared  to  the  PIF  algorithm. 

Algorithm 2 RPIF 

Let: 

.  T  be  the  original  dataset 

.  Tnew  be  the  reduced  dataset 

.  N E  be  the  set  of  elements  that  are  the  nearest  enemies  for  at  least  one  of  the  other  elements in.  Tnew

.  K  be  the  parameter  for  the  Wilson  Editing  algorithm 

.  m  be  the  parameter  indicating  the  minimum  subset  size 

.  d (.  x , y)  be  the  distance  (e.g.,  Euclidean  distance)  between  elements.  x  and.  y

.  max  _ i t er  be  the  parameter  specifying  the  maximum  number  of  iterations  (OPTIONAL) 1:  .  Tnew ←  T

2:  .  Tnew ←  E N N ( Tnew, K )

3:  .  pr ogr ess ←  true

4:  .  i ter ← 0

5:  while.  pr ogr ess do 

6:

.  i t er =  i t er +1

7:

if .  max _ i ter  is  set  AND.  i ter > max _ iter then 

8:

go  to  step  29 

9:

end if 

10:

.  pr ogr ess ←  f alse

11:

for each.  x ∈  Tnew do 

12:

find  the  nearest  enemy.  nex

13:

add.  x  to  the  subset.  Snex

14:

end for 

15:

for each.  ne ∈  N E do 

16:

if .| Sne| ≥  m then 

17:

for each.  y ∈  Sne do 

18:

for each.  x ∈  Sne  where.  x =  y do 

19:

if .  d(.  y, ne).≥ max{ d(.  x, y).  , d(.  x, ne).. } then 20:

.  Tnew ←  Tnew \ { y}

21:

.  pr ogr ess ←  tr ue

22:

continue  to  the  next.  y

23:

end if 

24:

end for 

25:

end for 

26:

end if 

27:

end for 

28:  end while 

29:  return.  Tnew

 4.3 

 RPIF  with  Edition  Algorithm  Changed 

Additional  experiments  were  conducted  with  two  modified  versions  of  the  PIF  algo-

rithm,  combining  adjustments  mentioned  in  Sects. 4.1  and  4.2. The  version  of  the
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RPIF  algorithm  with  the  AllKNN  editing  algorithm  is  further  referred  to  as  RPIF-

AllKNN,  and  the  designation  RPIF-RENN  is  used  for  the  RPIF  algorithm  that 

performs  editing  using  the  RENN  algorithm. 

5  Experimental Setup 

This  section  presents  hardware  devices  used  in  the  experimental  part,  describes  the 

datasets,  and  provides  information  about  data  preprocessing. 

 5.1 

 Used  Hardware  Devices 

Experiments  and  computations  were  conducted  on  two  computing  stations.  All  exper-

iments  with  the  EMBER  dataset  took  place  on  the  NVIDIA  DGX  Station.  The 

specifications  of  the  NVIDIA  DGX  Station  are  described  in  Table  1. 

Due  to  its  size,  the  SOREL-20M  dataset  was  partially  processed  on  the  GPU2 

computing  station,  which  has  a  larger  memory.  Specifically,  this  involved  parsing  the 

dataset  into  CSV  files  and  data  cleaning.  The  specifications  of  the  GPU2  computing 

station  are  provided  in  Table  2. The  remaining  preprocessing  of  the  SOREL-20M 

dataset  was  performed  on  the  NVIDIA  DGX  Station. 

 5.2 

 Datasets 

Two  datasets  were  selected  for  the  experiments.  The  EMBER  dataset  [ 2]  contains metadata  of  Windows  Portable  Executable  (PE)  files  and  histograms  of  printable 

Table  1  Specifications  of  the  NVIDIA  DGX  station 

NVIDIA  DGX  Station  A100  Version  5.4.2 

Processor

AMD  EPYC  7742  64-Core  Processor 

2.25  GHz 

Memory

512  GB 

Operating  system

Ubuntu  20.04.5  LTS 

Table  2  Specification  of  pa-rameters  for  GPU2  computing  station 

GPU2  station 

Processor

2x  Intel(R)  Xeon(R)  Gold  6136, 

3.00GHz,  12  cores 

Memory

755  GB 

Operating  system

Ubuntu  20.04.5  LTS
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characters,  bytes,  and  entropy.  Version  2  from  2018  was  used,  which  contains  800  k 

labeled  instances,  where .  k  is  a  multiple  of  thousands. 

The  second  dataset  chosen  was  SOREL-20M  [ 13],  which  contains  nearly  20 

million  instances  with  PE  file  metadata  extracted  using  the  Python  module  pefile  [ 8]. 

 5.3 

 Preprocessing  Procedure 

For  experimental  evaluation  during  the  selection  of  preprocessing  methods,  the  KNN 

algorithm  with  parameter  .  K =  3  was  used.  Initially,  both  datasets  were  split  into training,  validation,  and  test  sets  in  a  ratio  of  60:20:20.  Information  on  the  sizes  of 

these  subsets  before  preprocessing  for  both  datasets  is  provided  in  Table  3. 

As  feature  hashing  was  used  during  parsing,  experiments  with  the  number  of 

transformed  feature  bins  were  conducted  first.  Feature  hashing  was  applied  to  the  fol-

lowing  structures:  Characteristics, DllCharacteristics, Name, VirtualSize, Size-OfRawData, Characteristics, Entropy,  imported  libraries,  ordered  pairs  (imported library,  imported  function),  exported  functions,  and  for  EMBER  also  Entry. The  

number  of  bins  was  determined  based  on  experiments  with  the  EMBER  dataset.  The 

remaining  experiments  were  conducted  separately  for  both  datasets. 

The  following  changes  were  consistent  for  both  datasets.  Missing  values  were 

filled  with  a  constant  value.  For  the  features  VirtualAddress and  Size from  the  Data Directory  structure,  missing  values  were  replaced  with  zero,  and  for  the  categorical 

features  Machine and  Subsystem,  the  categories  “???”  were  replaced  with  the  valid category  “UNKNOWN”. 

Next,  for  both  datasets,  constant  features,  unique  value  features,  and  duplicate 

instances  were  removed. 

One-hot  encoding  was  applied  to  the  categorical  features  Machine, Subsystem, 

and  Magic for  both  datasets. 

Outliers  were  detected  using  the  IQR  method  with  a  parameter  of  .  k =  1.5.  Sub-

sequent  experiments  involved  replacing  outliers  with  the  mean  or  median.  Based  on 

the  results  of  the  experimental  evaluation,  the  mean  was  used  for  the  SOREL-20M 

dataset,  while  outliers  were  not  replaced  for  the  EMBER  dataset. 

Feature  scaling  experiments  were  conducted  using  the  following  methods:  min-

max  normalization,  standardization,  and  robust  scaling.  Min-max  normalization  was 

Table  3  Sizes  of  the  created  sets  before  preprocessing 

Set

EMBER

SOREL-20M 

Num  of  instances  Num  of  features

Num  of  instances  Num  of  features 

Train

480000

1834

11626773

1242 

Validation

120000

1834

3875591

1242 

Test

120000

1834

3875592

1242
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Table  4  Information  about  the  both  datasets  after  preprocessing 

Dataset

Set  sizes

Number  of  features

Accuracy 

Train

Validation

Test 

EMBER

479952

159993

159997

119

0.9544 

SOREL-20M  6926181

2388994

2387255

106

0.9761 

used  for  the  EMBER  dataset.  For  the  SOREL-20M  dataset,  the  robust  scaling  method 

was  applied  to  its  features. 

PCA  was  used  for  dimensionality  reduction.  During  the  experiments,  the  number 

of  extracted  features  tested  ranged  from  1  to  120.  The  highest  accuracy  for  the 

EMBER  dataset  was  achieved  with  119  features,  while  106  features  were  selected 

for  the  SOREL-20M  dataset. 

Table  4  contains  the  results  of  the  experiments  and  also  information  about  the  size of  the  datasets  after  preprocessing. 

6  Experiments with Instance Selection Algorithms 

This  section  presents  the  experimental  evaluation  and  mutual  comparison  of  instance 

selection  algorithms  described  in  Sects. 3  and  4. The  chosen  classification  algorithm is  KNN  with  the  parameter   K  =  3.  The  main  metric  used  for  comparing  IS  algorithms  was.  MAccSize =  Accred/.  Si zered,  where.  Accred  is  the  accuracy  on  the  reduced training  set  and .  Si zered  is  the  size  of  the  reduced  training  set  (both  in  percentages). 

We  used  the.  MAccSize  since  some  instance  selection  algorithms  outperform  others  in 

terms  of  storage  percentage  of  the  reduced  training  set,  while  some  instance  selec-

tion  algorithms  outperform  others  in  terms  of  the  accuracy  of  the  KNN  classifier 

applied  to  the  reduced  data  set.  Classification  accuracy,  reduction  level,  and  runtime 

of  IS  algorithms  were  also  considered  in  the  comparison.  For  all  IS  algorithms,  a 

custom  implementation  was  developed.  The  main  programming  language  used  was 

Python,  but  computationally  intensive  and  parallelizable  parts  of  the  algorithms  were 

implemented  in  the  C  programming  language  for  speed. 

 6.1 

 Tuning  Parameters  of  Instance  Selection  Algorithms 

Parameter  tuning  was  performed  separately  for  both  datasets.  The  size  of  the  train-

ing  set  subset  for  experiments  was  75,000  for  both  the  SOREL-20M  and  EMBER 

datasets.  The  number  75,000  was  chosen  due  to  computational  time  constraints,  and 

this  subset  of  samples  was  selected  randomly  and  was  the  same  for  all  IS  algorithms. 

The  parameter  labels  correspond  to  the  labeling  used  in  Sects. 3  and  4. Algorithms with  multiple  parameters  were  tested  with  all  possible  combinations  of  the  specified  parameter  values.  The  parameter  selection  was  based  on  .  MAccSize,  considering
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Table  5  Selected  parameters  of  IS  algorithms 

Algorithm

EMBER

SOREL-20M 

ENN

K = 27

K = 29  

RENN

K = 27

K = 29  

AllKNN

K = 29

K = 29  

CNN

K = 3

K = 3  

ICF

K = 7

K = 5  

DROP3

.  K E N N =  17,  K  =  19

.  K E N N = 13, K = 13  

PIF

K  =  29,  m  =  2

K  =  29,  m  =  2 

PIF-RENN

K  =  13,  m  =  2

K  =  29,  m  =  2 

PIF-AllKNN

K  =  17,  m  =  2

K  =  29,  m  =  2 

RPIF

K  =  25,  m  =  2,  max_iter  =  all

K  =  29,  m  =  2,  max_iter  =  all 

RPIF-RENN

K  =  13,  m  =  2,  max_iter  =  2

K  =  19,  m  =  2,  max_iter  =  all 

RPIF-AllKNN

K  =  17,  m  =  2,  max_iter  =  2

K  =  29,  m  =  2,  max_iter  =  4 

only  parameter  combinations  where  the  accuracy  did  not  decrease  by  more  than  five 

percent  compared  to  the  original  accuracy.  This  condition  was  created  because  the 

metric.  MAccSize  does  not  include  a  penalty  for  accuracy  loss.  If  no  parameter  combination  meeting  this  condition  was  found,  the  combination  with  the  smallest  accuracy 

reduction  was  selected.  The  chosen  parameter  values  are  in  Table  5, where  we explored  the  number  of  nearest  neighbors.  K ∈ {1 ,  3 ,  5 , . . . ,  29} for  all  IS  algorithms except  for  DROP3,  for  which  we  experimented  with  .  K , KE N N ∈ {1 ,  3 ,  5 , . . . ,  19}

due  to  high  computational  complexity.  For  the  PIF  algorithm  and  all  its  modifications, 

we  explored  the  parameters .  m ∈ {2 ,  3 ,  4 , . . . ,  10},  and  max_iter.∈ {2 ,  3 ,  4 ,  all}. 

 6.2 

 Comparison  of  IS  Algorithms 

The  content  of  this  subsection  involves  the  comparison  of  the  listed  instance  selection 

algorithms.  In  the  first  part,  the  comparison  of  IS  algorithms  when  applied  to  the 

EMBER  dataset  is  presented,  and  the  results  of  IS  algorithms  for  the  SOREL-20M 

dataset  are  described  in  the  second  part. 

6.2.1  EMBER 

In  the  case  of  EMBER,  IS  algorithms  were  applied  to  the  following  set  sizes:  1, 

2,  5,  10,  20,  30,  40,  50,  60,  75,  100,  200,  300  k,  479,952  (the  whole  training  set). 

The  parameter   k   in  these  values  denotes  multiples  of  a  thousand.  The  DROP3  algo-

rithm,  due  to  computational  complexity,  was  applied  only  up  to  a  size  of  300k.  This 

subsection  includes  a  total  of  four  tables.  Each  table  contains  values  for  one  of  the
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following  metrics:  the  .  MAccSize,  accuracy,  the  size  of  reduced  sets,  and  computa-

tional  time.  Values  marked  in  red  represent  sets  where  the  reduction  resulted  in  an 

accuracy  decrease  greater  than  5%.  The  best-achieved  value  for  each  size  is  high-

lighted  in  bold.  In  addition  to  the  RPIF  algorithm  version  with  parameters  set  based 

on  experiments,  a  version  labeled  as  RPIF_2 was  used,  where  the  maximum  number 

of  iterations  ( max_iter)  was  set  to  2.  This  was  done  to  evaluate  whether  additional iterations  of  the  algorithm  lead  to  a  significant  loss  of  classification  accuracy  at  the 

expense  of  only  a  small  reduction  in  the  size  of  reduced  sets. 

Table  6  contain  the  values  of  the  .  MAccSize  metric  achieved  by  IS  algorithms depending  on  the  sizes  of  reduced  sets.  For  edition  algorithms,  the  values  of.  MAccSize decrease  with  increasing  size  of  the  reduced  set.  In  the  case  of  condensation  and 

hybrid  algorithms,  the  trend  is  opposite,  i.e., .  MAccSize  increases  with  the  increasing size  of  the  reduced  set.  The  RPIF-AllKNN  algorithm  achieved  the  best  result,  while 

the  ENN  algorithm  achieved  the  worst  result  in  terms  of.  MAccSize.  According  to  this metric,  IS  algorithms  can  be  divided  into  five  groups.  The  order  of  these  groups 

depends  on  the  achieved  results  (from  the  best  to  the  worst).  In  the  first  group,  which achieves  the  highest  values  of  .  MAccSize,  are  all  versions  of  the  RPIF  algorithm.  For this  group,  the  values  of.  MAccSize  during  the  reduction  of  the  entire  training  set  range from  15  to  18.  The  DROP3  algorithm  follows,  which  achieved  a  value  of  12.22  for  a 

size  of  300  k.  The  third  group  consists  of  versions  of  the  PIF  algorithm,  with  the  best results  achieved  by  PIF-AllKNN.  The  range  of  values  for  this  group  during  the  reduction  of  the  entire  training  set  ranges  from  9  to  12.  The  CNN,  MSS,  and  ICF  algorithms 

form  the  fourth  group.  The  values  of  .  MAccSize  for  the  fourth  group  range  from  6  to 9.  The  last  group  consists  of  edition  algorithms,  which  achieved  values  around  one. 

Sizes  of  the  reduced  sets  are  provided  in  Table  7. When  examining  the  results,  a similarity  with  the  outcomes  related  to.  MAccSize  is  evident,  confirming  the  influence of  the  reduced  set  size  on  the  overall  metric  value.  The  algorithm  RPIF-AllKNN 

achieved  the  best  results  in  terms  of  reducing  the  training  set,  while  the  algorithm 

ENN  achieved  the  least  reduction.  In  this  case  as  well,  algorithms  can  be  divided 

into  five  groups,  listed  from  the  best  to  the  worst.  The  first  group  consists  of  the 

RPIF  algorithm  and  all  its  modifications.  The  sizes  of  reduced  sets  when  using  these 

algorithms  on  the  entire  training  set  ranged  from  5%  to  6%  compared  to  the  original 

size.  In  the  second  group  is  the  DROP3  algorithm,  which  managed  to  reduce  the  set 

of  size  300k  to  7.36%.  All  three  versions  of  the  PIF  algorithm  form  the  third  group. 

The  sizes  of  the  reduced  sets  when  using  these  algorithms  ranged  from  8  to  10%. 

The  MSS,  CNN,  and  ICF  algorithms,  which  achieved  a  reduction  in  the  training  set 

size  between  11%  and  15%,  form  the  fourth  group.  The  fifth  group  is  composed  of 

edition  algorithms.  The  sizes  of  reduced  sets  ranged  from  89%  to  94%  compared  to 

the  original  size  of  the  training  set.  For  condensation  algorithms  CNN  and  MSS,  it 

can  be  observed  that  with  increasing  size  of  the  reduced  set,  the  size  of  reduced  sets 

compared  to  hybrid  algorithms  decreases  more  rapidly  and  approaches  the  reduction 

level  of  the  PIF  algorithm.  Edition  algorithms  achieved  a  lower  level  of  reduction 

with  the  increasing  size  of  the  original  set. 

Classification  accuracies  of  IS  algorithms  depending  on  the  sizes  of  original  sets 

are  provided  in  Table  8.  In  terms  of  achieved  classification  accuracy,  the  CNN  algorithm  achieved  the  best  results,  surpassing  the  edition  algorithms.  The  ICF  algorithm
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achieved  the  worst  results  as  the  sizes  of  reduced  sets  increased.  Excluding  the  edi-

tion  algorithms  from  the  evaluation,  the  PIF  algorithm  ranked  second  for  the  entire 

training  set  of  the  EMBER  dataset,  and  the  third  place  was  occupied  by  the  RPIF 

algorithm  with  the  .  max _ i ter  parameter  set  to  2.  The  MSS  and  PIF-AllKNN  algorithms  were  close  to  the  RPIF_2  algorithm  in  terms  of  the  achieved  accuracy.  The 

remaining  versions  of  the  PIF  and  RPIF  algorithms  achieved  the  lowest  classifica-

tion  accuracy.  The  RPIF-AllKNN  algorithm,  which  achieved  the  largest  reduction 

in  the  training  set,  was  also  the  third  worst  algorithm  in  terms  of  achieved  accuracy. 

Table  6  Values  of  the.  MAccSize  metric  achieved  by  IS  algorithms–EMBER 

Original  size  ENN

RENN

AllKNN  CNN

ICF

MSS

PIF 

1000

1.02

1.08

1.41

1.87

3.73

2.22

4.81 

2000

1.00

1.07

1.29

2.22

2.94

2.48

4.04 

5000

1.00

1.03

1.19

2.80

4.14

3.01

4.16 

10000

1.00

1.03

1.15

3.32

4.60

3.50

5.22 

20000

1.00

1.02

1.13

3.80

4.88

4.06

6.01 

30000

1.00

1.03

1.11

4.25

4.96

4.38

6.37 

40000

1.00

1.02

1.10

4.47

4.69

4.63

6.82 

50000

1.00

1.02

1.10

4.66

5.19

4.90

7.22 

60000

1.01

1.02

1.09

4.95

4.96

5.11

7.68 

75000

1.01

1.02

1.09

5.21

5.07

5.37

7.62 

100000

1.00

1.02

1.08

5.57

5.18

5.65

7.94 

200000

1.00

1.02

1.06

6.53

6.66

6.61

8.72 

300000

1.00

1.01

1.06

7.20

6.74

7.18

9.34 

479952

1.00

1.01

1.05

8.10

6.39

7.96

10.08 

Original  size  PIF-AllKNN  PIF-RENN  RPIF

RPIF-AllKNN  RPIF-RENN  DROP3  RPIF_2 

1000

6.30

6.35

6.52

8.95

8.31

5.24

6.23 

2000

5.68

4.49

6.38

8.36

6.39

4.13

5.61 

5000

5.74

4.29

6.02

8.30

6.28

4.91

5.66 

10000

6.92

5.34

8.32

10.62

8.48

5.53

7.68 

20000

7.46

6.39

9.91

11.99

9.80

6.78

8.78 

30000

7.79

6.72

10.51

12.12

10.32

7.28

8.90 

40000

8.18

7.11

11.15

13.78

11.61

7.72

9.99 

50000

9.03

7.41

11.94

13.92

11.49

8.22

10.66 

60000

8.89

7.67

11.91

13.64

11.59

8.40

11.04 

75000

9.11

7.80

12.55

14.33

12.46

8.73

11.31 

100000

9.41

8.18

12.91

14.43

12.75

9.10

11.82 

200000

10.19

8.87

14.47

16.15

13.96

11.49

13.12 

300000

10.46

9.26

15.76

16.95

14.68

12.22

14.33 

479952

11.33

9.86

16.94

18.03

15.63

–

15.50
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The  DROP3  algorithm,  which  also  performed  among  the  best  in  terms  of  reduction, 

achieved  the  second  worst  classification  accuracy  for  the  size  of  300k. 

Table  9  contains  data  for  the  evaluation  and  comparison  of  IS  algorithms  in  terms of  computational  time.  Based  on  the  results,  IS  algorithms  can  be  divided  into  four 

groups.  Processing  a  set  of  300k  using  the  DROP3  algorithm  took  approximately 

77,570  s,  which  is  several  times  longer  compared  to  other  algorithms.  The  CNN 

algorithm,  with  a  time  of  approximately  9,909  s  for  processing  the  entire  training 

Table  7  Sizes  of  reduced  sets  in  percentage-EMBER 

Original  size  ENN

RENN

AllKNN  CNN

ICF

MSS

PIF 

1000

73.80

67.50

53.50

42.10

19.50

34.00

15.50 

2000

78.05

69.15

59.60

36.70

25.75

31.00

19.45 

5000

81.50

75.34

67.38

30.24

18.84

27.04

18.92 

10000

83.43

77.97

72.14

26.05

17.66

23.86

15.68 

20000

86.17

81.16

75.83

23.37

17.36

21.08

14.09 

30000

87.10

82.99

78.17

21.09

17.31

19.66

13.41 

40000

88.07

84.44

79.50

20.18

18.42

18.81

12.72 

50000

88.65

85.01

80.57

19.44

16.72

17.91

12.16 

60000

89.07

85.39

81.16

18.36

17.61

17.25

11.49 

75000

89.69

86.15

82.17

17.54

17.45

16.52

11.69 

100000

90.39

87.33

83.46

16.55

17.13

15.80

11.31 

200000

91.93

89.62

86.29

14.28

13.24

13.69

10.34 

300000

92.70

90.65

87.62

13.03

13.26

12.71

9.78 

479952

93.48

91.70

89.01

11.68

14.14

11.57

9.21 

Original  size  PIF-AllKNN  PIF-RENN  RPIF

RPIF-AllKNN  RPIF-RENN  DROP3  RPIF_2 

1000

11.80

11.80

11.30

8.30

8.90

13.80

11.80 

2000

13.30

17.00

12.25

8.60

11.45

18.60

13.90 

5000

13.50

17.82

12.90

9.08

12.22

16.10

13.78 

10000

11.80

15.30

9.80

7.43

9.67

14.84

10.73 

20000

11.27

13.23

8.53

6.92

8.55

12.36

9.63 

30000

10.95

12.55

8.04

6.81

8.11

11.77

9.34 

40000

10.35

12.02

7.68

6.18

7.34

11.05

8.57 

50000

9.61

11.57

7.28

6.24

7.34

10.38

8.16 

60000

9.82

11.47

7.32

6.23

7.35

10.26

7.94 

75000

9.59

11.29

6.99

6.05

7.04

10.10

7.84 

100000

9.48

10.85

6.87

5.91

6.94

9.58

7.51 

200000

8.87

10.19

6.16

5.55

6.37

7.80

6.82 

300000

8.62

9.86

5.76

5.37

6.15

7.36

6.36 

479952

8.13

9.24

5.39

5.04

5.80

–

5.95
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Table  8  Classification  accuracies  achieved  by  IS  algorithms  in  percentage-EMBER 

Original  size  KNN  ENN

RENN

AllKNN  CNN

ICF

MSS 

1000

79.44  75.51

73.10

75.23

78.52

72.75

75.43 

2000

82.83  78.39

73.80

77.18

81.46

75.69

76.88 

5000

85.74  81.25

77.69

80.07

84.59

78.04

81.29 

10000

88.12  83.62

80.28

82.70

86.56

81.15

83.48 

20000

89.96  86.15

83.15

85.49

88.75

84.76

85.50 

30000

90.74  87.42

85.12

86.90

89.68

85.81

86.01 

40000

91.46  88.33

86.31

87.71

90.29

86.45

87.11 

50000

91.85  88.92

86.90

88.32

90.66

86.82

87.84 

60000

92.23  89.54

87.40

88.77

90.97

87.26

88.12 

75000

92.64  90.15

88.13

89.61

91.47

88.44

88.67 

100000

93.18  90.77

89.04

90.27

92.14

88.75

89.28 

200000

94.26  92.26

90.98

91.88

93.24

88.15

90.51 

300000

94.82  93.04

91.90

92.62

93.90

89.37

91.29 

479952

95.43  93.78

92.75

93.49

94.54

90.37

92.16 

Original  size  PIF

PIF-AllKNN  PIF-RENN  RPIF

RPIF-AllKNN  RPIF-RENN  DROP3  RPIF_2 

1000

74.57  74.35

74.92

73.70

74.28

73.97

72.31

73.50 

2000

78.60  75.61

76.35

78.21

71.87

73.17

76.76

77.97 

5000

78.76  77.46

76.40

77.67

75.41

76.68

79.11

78.00 

10000

81.85  81.61

81.72

81.55

78.88

82.00

82.04

82.41 

20000

84.66  84.09

84.48

84.45

82.92

83.79

83.76

84.60 

30000

85.39  85.29

84.33

84.49

82.53

83.68

85.71

83.19 

40000

86.72  84.63

85.45

85.64

85.19

85.27

85.31

85.66 

50000

87.75  86.73

85.79

86.97

86.90

84.28

85.31

86.95 

60000

88.22  87.29

87.90

87.11

85.02

85.25

86.17

87.70 

75000

89.09  87.37

88.04

87.74

86.72

87.69

88.19

88.71 

100000

89.77  89.24

88.73

88.72

85.21

88.45

87.15

88.79 

200000

90.25  90.32

90.43

89.14

89.66

88.95

89.53

89.48 

300000

91.42  90.12

91.26

90.86

91.02

90.27

89.85

91.18 

479952

92.83  92.08

91.15

91.35

90.91

90.62

–

92.22 

set,  forms  the  second  group.  This  time  is  roughly  three  times  longer  than  the  compu-

tation  time  of  all  other  hybrid  algorithms  (except  DROP3)  and  the  MSS  algorithm. 

These  algorithms  form  the  third  group,  and  their  computation  times  ranged  between 

2,709  and  3,733  s.  The  fastest  in  this  group  was  the  ICF  algorithm,  making  it  the 

fastest  among  hybrid  and  condensation  algorithms  for  the  EMBER  dataset.  Following 

were  the  versions  of  PIF  and  RPIF  algorithms  without  replaced  edition  algorithms. 

The  fourth  group  is  formed  by  edition  algorithms.  Computation  times  required  for 

processing  the  entire  training  set  in  this  group  of  algorithms  ranged  between  57  and 

697  s.  The  fastest  was  the  ENN  algorithm.  With  increasing  sizes  of  the  reduced  sets, 

the  computation  time  of  the  RENN  algorithm  increases  faster  than  in  the  case  of  the
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Table  9  Runtimes  of  IS  algorithms  in  seconds-EMBER 

Original  size  ENN

RENN

AllKNN  CNN

ICF

MSS

PIF 

1000

0.0

0.1

0.5

41.8

0.4

0.1

0.2 

2000

0.1

0.3

1.0

95.6

0.6

0.2

0.4 

5000

0.2

0.9

2.5

203.6

1.8

0.5

1.3 

10000

0.3

1.7

4.9

380.4

5.4

1.8

4.1 

20000

0.6

3.4

10.1

803.6

20.2

6.4

16.9 

30000

1.0

8.3

15.3

971.9

13.1

13.1

17.0 

40000

1.4

10.9

21.1

1173.5

27.1

22.3

31.0 

50000

1.8

21.0

26.4

1506.0

40.5

36.1

47.3 

60000

2.2

37.3

32.1

1611.1

52.6

51.0

68.5 

75000

2.3

25.3

39.8

1681.4

68.6

71.0

94.3 

100000

3.7

47.2

53.7

1751.1

192.5

126.2

181.4 

200000

12.1

124.3

111.9

3436.1

426.7

529.0

587.1 

300000

24.4

364.4

175.3

5488.3

1006.9

1212.0

1340.8 

479952

57.3

697.0

298.7

9909.0

2709.6

3242.5

3317.5 

Original  size  PIF-AllKNN  PIF-RENN  RPIF

RPIF-AllKNN  RPIF-RENN  DROP3  RPIF_2 

1000

0.5

0.4

0.4

0.4

0.5

65.6

0.2 

2000

0.9

0.6

0.6

0.9

0.6

169.2

0.4 

5000

2.7

1.7

1.7

2.4

1.9

388.6

1.4 

10000

6.7

5.3

4.8

6.2

5.4

716.9

4.2 

20000

20.3

20.0

18.3

19.2

20.4

1213.2

17.2 

30000

25.9

27.9

18.4

27.8

28.1

1698.6

18.2 

40000

40.7

45.9

32.1

44.0

46.6

2316.8

31.1 

50000

67.9

61.4

47.7

61.6

62.0

3118.7

47.7 

60000

88.2

83.3

66.2

79.6

83.9

4034.1

69.0 

75000

116.2

100.4

93.2

111.4

101.5

5707.2

95.3 

100000

200.2

200.5

160.4

198.9

202.9

9401.9

183.4 

200000

610.2

711.8

595.7

602.0

716.4

34861.1  591.5 

300000

1378.6

1533.7

1363.8

1370.9

1541.0

77578.9  1349.7 

479952

3350.8

3709.0

3348.7

3368.8

3732.9

–

3335.9 

ENN  and  AllKNN  algorithms.  This  fact  was  also  evident  in  the  algorithms  from  the 

third  group,  which  use  this  algorithm  for  editing. 
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6.2.2  SOREL-20M 

The  experiments  described  in  this  subsection  can  be  divided  into  two  parts.  The  first 

part  describes  experiments  with  subsets  of  the  SOREL-20M  training  dataset,  and  the 

second  part  contains  the  results  of  reducing  the  entire  training  set  using  stratification. 

Reduction  of  the  SOREL-20M  dataset  without  using  stratification  was  performed 

on  subsets  of  the  following  sizes:  1,  2,  5,  10,  20,  30,  40,  50,  60,  75,  100,  200,  300,  500, 750,  1000  k.  Exceptions  are  the  MSS  and  DROP3  algorithms,  for  which  processing 

was  only  conducted  up  to  the  size  of  300k.  For  the  DROP3  algorithm,  experiments 

were  halted  due  to  high  computational  times,  and  for  the  MSS  algorithm,  the  imple-

mented  version  encountered  a  memory  shortage  problem  during  the  reduction  of 

larger  sets.  This  subsection  includes  tables  containing  values  for  the  same  metrics  as 

in  Sect. 6.2.1. In  addition  to  experiments  with  versions  of  the  RPIF  algorithms,  where the .  max _ i ter  parameter  was  set  based  on  tuning,  experiments  were  also  conducted with  the  .  max _ i ter = 2 parameter  setting.  These  versions  are  further  referred  to  as RPIF_2,  RPIF-AllKNN_2,  and  RPIF-RENN_2. 

The  values  of  the.  MAccSize  metrics  for  IS  algorithms,  depending  on  the  sizes  of  the reduced  sets,  are  displayed  in  Table  10. Similar  to  the  EMBER  dataset,  the .  MAccSize values  for  edition  algorithms  decrease  with  increasing  sizes  of  the  reduced  sets.  In  the 

case  of  condensation  and  hybrid  algorithms,  the  metric  shows  an  increasing  trend. 

When  looking  at  the  results,  IS  algorithms  can  be  divided  into  six  groups  based  on 

the  results.  The  reported  metric  values  relate  to  the  results  on  a  subset  of  the  SOREL-

20M  training  set  with  a  size  of  1000k  unless  otherwise  specified.  The  RPIF-AllKNN 

algorithm,  achieving  the  highest  .  MAccSize  metric  value,  forms  the  first  group.  This algorithm  reached  a  value  of  20.63.  The  second-best  group  consists  of  the  algorithms 

RPIF-RENN,  DROP3,  RPIF,  RPIF-AllKNN_2,  and  RPIF-RENN_2.  The  .  MAccSize

values  ranged  from  16  to  18.  The  third  group  is  composed  of  the  RPIF_2  algorithm 

with  an  achieved  metric  value  of  14.58.  The  fourth  group  consists  of  all  three  versions 

of  the  PIF  algorithm  along  with  the  ICF  algorithm.  The  values  of  the  fourth  group 

ranged  between  8.7  and  9.6.  The  condensation  algorithms  CNN  and  MSS  form  the 

fifth  group.  The  MSS  algorithm  reached  a  value  of  5.57  on  a  set  of  size  300  k.  The 

CNN  algorithm,  which  was  better  from  this  pair,  reached  a  value  of  7.89.  The  last 

group  is  composed  of  edition  algorithms,  with  values  hovering  around  one. 

Table  11  displays  the  sizes  of  the  reduced  sets  depending  on  the  sizes  of  the original  sets.  The  RPIF-AllKNN  algorithm  again  achieved  the  best  reduction  levels, 

and  the  ENN  algorithm  reduced  individual  sets  the  least.  Based  on  the  results,  IS 

algorithms  can  be  divided  into  three  groups.  The  first  group  consists  of  all  versions 

of  the  RPIF  algorithm.  When  applying  these  algorithms,  the  sizes  of  the  reduced  sets 

ranged  from  4  to  6%.  All  versions  of  the  PIF,  ICF,  CNN,  and  MSS  algorithms  form 

the  second  group.  Although  the  size  of  the  reduced  sets  using  the  CNN  algorithm 

is  larger  than  other  algorithms  at  small  original  sizes,  with  increasing  original  set 

sizes,  the  reduction  level  of  CNN  approached  the  other  algorithms  in  this  group. 

They  were  able  to  reduce  the  original  size  of  1000k  to  sizes  ranging  from  9  to  12%. 

The  MSS  algorithm  reduced  the  set  of  size  300  k  to  15.79%.  The  third  group  consists 

of  edition  algorithms,  where,  in  the  case  of  the  SOREL-20M  dataset,  the  reduction
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level  decreased  with  increasing  original  set  sizes.  The  reduced  sizes  ranged  from  91 

to  95%  compared  to  the  original  size  of  1000  k. 

Table  12  contains  classification  accuracies  achieved  by  IS  algorithms  depending Table  10  Values  of  the.  MAccSize  metric  achieved  by  IS  algorithms-SOREL-20M 

Original  size  ENN

RENN  AllKNN  CNN

ICF

MSS

DROP3

PIF 

1000

0.93

1.05

1.26

1.84

4.27

1.98

6.44

3.10 

2000

0.96

1.00

1.20

2.14

4.49

2.27

8.86

4.93 

5000

0.96

0.99

1.13

2.59

5.22

2.68

7.27

4.63 

10000

0.96

0.99

1.10

3.00

6.11

3.03

7.68

4.83 

20000

0.96

0.99

1.07

3.43

6.21

3.40

9.13

5.28 

30000

0.97

0.99

1.07

3.70

6.65

3.66

9.60

5.49 

40000

0.96

0.98

1.06

3.98

7.09

3.84

9.46

5.47 

50000

0.97

0.98

1.05

4.19

7.26

4.07

9.64

5.58 

60000

0.97

0.98

1.05

4.38

7.10

4.19

10.47

5.68 

75000

0.97

0.98

1.04

4.66

7.33

4.36

11.08

5.93 

100000

0.97

0.98

1.04

4.80

7.13

4.55

11.40

6.19 

200000

0.97

0.98

1.03

5.61

7.78

5.14

13.93

6.90 

300000

0.97

0.98

1.02

6.22

7.99

5.57

14.66

7.22 

500000

0.96

0.97

1.00

6.83

8.12

–

–

7.80 

750000

0.96

0.97

1.00

7.37

8.87

–

–

8.23 

1000000

0.96

0.96

1.00

7.89

8.96

–

–

8.77 

Original  size  PIF-

PIF-

RPIF

RPIF-

RPIF-

RPIF_2  RPIF-

RPIF-

AllKNN  RENN

AllKNN  RENN

AllKNN_2  RENN_2 

1000

5.22

5.13

4.30

9.18

5.92

4.47

8.51

9.06 

2000

6.71

5.86

7.92

13.52

16.29 

7.20

10.08

8.28 

5000

5.99

7.32

7.37

11.46

9.69

6.65

9.16

11.80 

10000

6.43

5.91

7.54

12.86

8.76

6.83

10.59

9.20 

20000

6.47

5.95

8.72

12.61

9.67

7.75

10.42

9.22 

30000

6.66

6.18

9.17

12.84

10.26

8.19

11.16

10.17 

40000

6.64

6.37

9.08

12.92

10.88

8.17

11.09

10.40 

50000

6.71

6.39

9.53

12.61

10.90

8.42

10.73

10.34 

60000

6.74

6.57

9.73

12.50

11.20

8.58

10.72

10.56 

75000

6.84

6.72

10.19

13.32

11.66

8.98

11.34

10.92 

100000

7.06

6.90

10.56

13.91

12.22

9.35

11.94

11.31 

200000

7.67

7.62

12.25

15.53

13.58

10.74

13.33

12.64 

300000

8.10

8.01

13.50

16.38

14.76

11.44

14.12

13.48 

500000

8.67

8.62

14.66

18.60

15.81

12.66

15.40

14.81 

750000

9.16

8.79

16.20

19.52

17.18

13.52

16.32

15.30 

1000000

9.52

9.15

17.38

20.63

17.99

14.58

17.20

16.06
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Table  11  Sizes  of  reduced  sets  in  percentage-SOREL-20M 

Original  size  ENN

RENN  AllKNN  CNN

ICF

MSS

DROP3

PIF 

1000

82.00

67.80

60.40

40.30

17.00

37.50

11.60

24.40 

2000

81.70

77.25

63.75

35.65

16.85

34.35

8.05

15.85 

5000

83.90

78.02

70.94

30.66

14.22

29.86

10.80

17.42 

10000

86.06

82.56

74.80

27.36

12.13

26.86

10.35

16.84 

20000

87.43

84.29

77.97

24.36

12.51

24.27

8.82

15.87 

30000

88.29

85.64

79.57

22.56

12.04

22.84

8.52

15.46 

40000

89.15

86.46

80.93

21.14

11.39

21.90

8.84

15.54 

50000

89.53

86.96

82.01

20.36

11.15

21.03

8.58

15.35 

60000

89.98

87.51

82.80

19.63

11.44

20.40

8.11

15.14 

75000

90.39

88.14

83.61

18.60

11.19

19.69

7.67

14.57 

100000

91.05

88.92

84.68

17.76

11.55

18.99

7.30

14.16 

200000

92.44

90.55

87.03

15.46

10.81

17.08

6.09

12.76 

300000

93.02

91.49

88.14

14.22

10.58

15.79

5.53

12.07 

500000

93.83

92.45

89.48

12.86

10.43

–

–

11.26 

750000

94.32

93.12

90.40

11.87

9.54

–

–

10.65 

1000000

94.68

93.60

91.05

11.15

9.50

–

–

10.24 

Original  size  PIF-

PIF-

RPIF

RPIF-

RPIF-

RPIF_2  RPIF_

RPIF_ 

AllKNN  RENN

AllKNN  RENN

AllKNN_2  RENN_2 

1000

14.40

14.20

17.40

8.00

12.20

16.60

8.80

7.90 

2000

11.60

13.10

9.60

5.65

4.60

10.75

7.55

9.00 

5000

13.04

10.58

10.56

6.56

8.08

11.84

8.48

6.50 

10000

12.61

13.60

10.67

6.18

9.04

11.79

7.60

8.59 

20000

12.83

13.93

9.38

6.47

8.49

10.66

7.92

8.86 

30000

12.61

13.61

8.95

6.40

7.99

10.20

7.42

8.19 

40000

12.75

13.27

9.20

6.45

7.60

10.29

7.53

8.02 

50000

12.85

13.26

8.79

6.62

7.61

10.06

7.83

8.13 

60000

12.83

12.97

8.67

6.70

7.51

9.92

7.87

7.97 

75000

12.57

12.76

8.30

6.33

7.21

9.49

7.50

7.76 

100000

12.28

12.59

8.12

6.11

6.99

9.23

7.16

7.57 

200000

11.35

11.52

6.93

5.47

6.29

8.03

6.44

6.86 

300000

10.72

11.02

6.43

5.12

5.88

7.52

6.05

6.45 

500000

10.11

10.34

5.83

4.60

5.36

6.87

5.62

5.91 

750000

9.61

9.91

5.34

4.37

5.00

6.46

5.35

5.68 

1000000

9.27

9.68

5.05

4.16

4.82

6.08

5.11

5.44 

on  the  sizes  of  the  reduced  sets.  Since  the  ranking  of  IS  algorithms  in  terms  of 

classification  accuracy  varies  for  different  sizes,  they  cannot  be  clearly  divided  into 

groups.  The  mentioned  classification  accuracies  in  this  paragraph  are  related  to  the
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Table  12  Classification  accuracies  achieved  by  IS  algorithms  in  percentage-SOREL-20M 

Original  size  KNN  ENN

RENN  AllKNN  CNN

ICF

MSS

DROP3 

1000

77.53  76.67

71.26

76.20

73.96

72.51

74.08

74.65 

2000

80.89  78.15

77.48

76.81

76.42

75.66

78.11

71.36 

5000

82.67  80.80

77.50

80.45

79.47

74.29

79.93

78.53 

10000

84.64  82.85

81.46

82.23

81.98

74.13

81.35

79.49 

20000

86.20  84.19

83.11

83.72

83.55

77.61

82.59

80.55 

30000

87.29  85.53

84.49

84.91

83.45

80.06

83.69

81.74 

40000

87.77  86.03

84.95

85.65

84.09

80.73

84.10

83.59 

50000

88.44  86.82

85.49

86.36

85.23

80.89

85.63

82.71 

60000

88.56  87.12

85.77

86.79

85.88

81.15

85.45

84.93 

75000

89.28  87.43

86.34

87.28

86.77

82.00

85.88

85.01 

100000

89.61  88.33

87.39

88.10

85.23

82.37

86.44

83.15 

200000

90.29  89.48

88.76

89.22

86.69

84.12

87.83

84.83 

300000

90.42  89.91

89.29

89.70

88.44

84.60

88.00

81.01 

500000

90.39  89.94

89.78

89.71

87.89

84.73

–

– 

750000

91.10  90.37

90.05

90.64

87.47

84.61

–

– 

1000000

91.29  90.67

90.21

90.60

87.96

85.10

–

– 

Original  size  PIF

PIF

PIF

RPIF

RPIF

RPIF

RPIF_2  RPIF_

RPIF_ 

AllKNN  RENN

AllKNN  RENN

AllKNN_2  RENN_2 

1000

75.53  75.21

72.84

74.89

73.44

72.22

74.20

74.89

71.57 

2000

78.21  77.85

76.77

76.05

76.40

74.95

77.38

76.12

74.48 


5000

80.63  78.12

77.42

77.79

75.19

78.33

78.72

77.67

76.68 

10000

81.36  81.09

80.34

80.48

79.50

79.20

80.52

80.45

78.99 

20000

83.77  82.99

82.87

81.79

81.54

82.04

82.57

82.52

81.65 

30000

84.81  83.96

84.12

82.10

82.21

81.96

83.56

82.78

83.27 

40000

84.99  84.59

84.49

83.48

83.33

82.64

84.02

83.44

83.42 

50000

85.67  86.15

84.79

83.81

83.48

82.88

84.71

84.01

84.03 

60000

85.94  86.41

85.17

84.40

83.80

84.12

85.15

84.28

84.18 

75000

86.33  86.01

85.69

84.53

84.32

84.09

85.27

85.09

84.69 

100000

87.73  86.66

86.93

85.71

84.98

85.37

86.36

85.49

85.54 

200000

87.98  87.08

87.73

84.97

84.94

85.49

86.17

85.83

86.72 

300000

87.16  86.83

88.27

86.79

83.84

86.83

86.00

85.34

87.00 

500000

87.89  87.68

89.16

85.47

85.58

84.68

87.03

86.59

87.56 

750000

87.68  87.96

87.15

86.59

85.25

85.94

87.37

87.33

86.85 

1000000

89.78  88.20

88.60

87.71

85.88

86.73

88.56

87.88

87.34 

set  of  size  1000k  unless  stated  otherwise.  Edition  algorithms  achieved  the  best  results 

with  an  accuracy  range  between  90  and  91%.  Among  the  worst  algorithms  in  terms 

of  achieved  accuracy  are  ICF,  DROP3,  RPIF-AllKNN,  and  RPIF-RENN.  For  these
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algorithms,  accuracy  ranged  from  85  to  87%.  Modifications  of  RPIF  with  the  param-

eter.  max _ i ter = 2 set,  all  three  versions  of  the  PIF  algorithm,  and  the  condensation algorithm  CNN  achieved  better  results.  Classification  accuracies  for  these  algorithms 

ranged  between  87  and  90%.  The  MSS  algorithm  achieved  an  accuracy  of  88%  for 

the  set  of  size  300  k. 

Table  13  contains  recorded  computational  times  of  IS  algorithms  depending  on  the sizes  of  the  reduced  subsets  of  the  SOREL-20M  dataset.  Based  on  the  computational 

times,  IS  algorithms  can  be  divided  into  six  groups.  The  mentioned  times  in  this 

paragraph  are  related  to  the  reduced  set  of  size  1000  k  unless  stated  otherwise.  Edition algorithms  form  the  first  group.  These  algorithms  achieved  the  lowest  computational 

times,  with  reduction  times  ranging  between  200  and  2200  s.  The  second  group 

consists  of  PIF,  PIF-AllKNN,  RPIF-AllKNN,  RPIF-AllKNN_2,  RPIF,  and  RPIF_2 

algorithms.  For  this  group,  the  reduction  time  ranged  between  11594  and  12560 

s.  The  next  group  is  formed  by  PIF-RENN  and  RPIF-RENN_2  algorithms.  The 

computational  time  of  the  PIF-RENN  algorithm  was  13713  s,  and  RPIF-RENN_2 

reduced  the  set  of  size  1000k  in  approximately  13799  s.  Group  four  is  composed  of 

MSS,  ICF,  and  RPIF-RENN  algorithms.  The  computation  times  of  the  fourth  group 

ranged  between  15,272  and  15,352  s.  The  set  of  size  300  k  was  reduced  by  the  MSS 

algorithm  in  approximately  1624  s.  In  this  algorithm,  due  to  non-parallelizable  parts, 

a  slowdown  can  be  expected.  The  fifth  group  is  represented  by  the  CNN  algorithm 

with  a  computational  time  of  almost  34000  s,  which  is  more  than  twice  the  time 

compared  to  algorithms  from  the  previous  group.  In  the  case  of  the  SOREL-20M 

dataset,  seemingly  the  slowest  algorithm  was  DROP3,  with  a  computational  time 

exceeding  53409  s  for  the  reduction  of  the  set  of  size  300  k. 

The  entire  training  set  of  the  SOREL-20M  dataset  was  reduced  using  stratification 

[ 6], meaning  the  training  set  was  randomly  divided  into  a  chosen  number  of  equally sized  subsets  while  preserving  the  class  distribution.  IS  algorithms  were  then  applied 

to  these  subsets,  and  the  results  were  combined  into  the  reduced  training  set.  Without 

using  stratification,  due  to  the  size  of  the  training  set,  some  algorithms  could  not  be 

included  in  the  experiments  because  of  time  constraints.  The  number  of  subsets  was 

selected  based  on  experiments  with  values  of  100,  200,  300,  and  400.  All  edition 

algorithms  achieved  the  best  results  when  using  a  parameter  value  of  400.  For  the 

remaining  algorithms,  the  value  of  100  was  selected. 

The  experimental  results  of  IS  algorithms  in  reducing  the  entire  training  set  of  the 

SOREL-20M  dataset  using  stratification  are  presented  in  Table  14.  The  following  is an  evaluation  of  the  algorithms  in  terms  of.  MAccSize  and  the  achieved  level  of  reduction.  The  rankings  for  both  metrics  are  identical.  The  worst  results  were  achieved  by 

the  edition  algorithms.  The  best  algorithm  was  RPIF-AllKNN,  which  achieved  an 

.  M AccSi ze  value  of  14.43  by  reducing  the  training  set  to  6.24%,  with  an  accuracy  loss of  2.1%  compared  to  the  original  set  and  0.6%  compared  to  the  set  reduced  by  the 

original  version  of  the  PIF  algorithm.  Other  top  performers  in  terms  of  both  metrics 

included  the  remaining  modifications  of  the  RPIF  algorithm  along  with  the  DROP3 

algorithm.  DROP3  was  also  the  second-best  in  terms  of  accuracy  but  was  by  far  the 

slowest,  with  a  computation  time  of  366,067  s.  With  an  accuracy  of  91.61%,  the  best 

algorithm  was  MSS,  which,  however,  was  among  the  worst  in  terms  of  reduction 

level  and.  MAccSize.  Following  MSS  and  DROP3,  the  highest  accuracy  was  achieved
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Table  13  Runtimes  of  IS  algorithms  in  seconds-SOREL-20M 

Original  size  ENN

RENN

AllKNN  CNN

ICF

MSS

DROP3

PIF 

1000

0.0

0.3

0.5

35.0

0.4

0.1

36.9

0.2 

2000

0.1

0.4

1.0

94.8

0.6

0.2

96.6

0.5 

5000

0.2

1.2

2.5

201.8

2.1

0.6

252.9

1.7 

10000

0.3

2.2

4.9

378.4

6.9

2.2

466.7

5.1 

20000

0.6

5.1

10.2

675.8

26.6

7.9

822.5

20.9 

30000

1.0

8.1

15.3

924.8

15.1

16.0

1155.6

16.8 

40000

1.4

9.0

20.7

1469.6

26.2

28.3

1596.7

28.1 

50000

1.9

15.7

26.3

1235.1

39.3

44.3

2189.3

35.5 

60000

2.3

28.2

32.0

1662.1

56.2

62.7

2854.3

50.6 

75000

2.4

20.8

39.3

1524.1

78.8

87.4

4074.8

66.0 

100000

3.6

35.4

52.8

1834.3

143.8

163.0

6795.3

127.1 

200000

11.4

141.2

110.9

3336.1

563.8

665.9

25019.2

518.5 

300000

23.3

195.7

175.0

6015.1

1307.2

1623.8

53409.4

1305.9 

500000

58.5

719.4

311.3

10462.1  3814.4

–

–

3181.3 

750000

124.5

1790.8

516.3

24328.3  8729.5

–

–

7409.6 

1000000

216.7

2170.6

734.3

33976.8  15272.0  –

–

11835.3 

Original  size  PIF-

PIF-

RPIF

RPIF-

RPIF-

RPIF_2  RPIF_

RPIF_ 

AllKNN  RENN

AllKNN  RENN

AllKNN_2  RENN_2 

1000

0.7

0.4

0.4

0.7

0.7

0.2

0.7

0.4 

2000

1.3

0.7

0.8

1.4

0.9

0.5

1.3

0.8 

5000

3.7

2.8

2.0

4.0

3.6

1.7

3.8

2.8 

10000

8.8

7.0

6.2

9.3

6.9

5.2

9.1

7.1 

20000

27.0

24.8

22.4

27.4

24.1

21.4

27.5

25.3 

30000

29.9

23.8

18.5

31.0

24.1

17.1

30.4

24.0 

40000

40.9

33.9

31.2

44.3

34.2

28.8

44.0

34.3 

50000

60.5

47.4

38.5

59.8

49.1

36.1

61.4

48.1 

60000

77.6

75.5

54.1

79.0

67.3

51.8

78.1

76.5 

75000

106.5

83.9

71.7

108.1

96.5

67.7

107.9

85.5 

100000

164.8

157.4

139.0

168.1

159.5

129.9

168.1

159.6 

200000

575.7

657.6

572.9

585.1

626.9

527.0

581.8

663.8 

300000

1240.7

1368.8

1291.2

1255.3

1440.6

1199.2

1242.8

1361.6 

500000

3246.0

3906.1

3332.9

3268.8

4126.1

3215.9

3275.1

3933.0 

750000

7552.3

9131.6

7483.7

7210.2

8558.3

7469.9

7593.5

9188.7 

1000000

11594.9  13713.3  12559.3  11695.3  15351.9  11961.2  11668.6

13798.5 

by  PIF,  RPIF,  and  their  modifications.  In  terms  of  computation  time,  the  fastest  was 

the  ENN  algorithm,  completing  the  reduction  in  219  s.  Excluding  edition  algorithms, 

PIF  was  the  fastest  with  a  time  of  6,884  s. 
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7  Conclusion 

The  aim  of  this  work  was  to  compare  eight  state-of-the-art  algorithms  along  with  five 

proposed  modifications  of  the  PIF  algorithm.  Edition  algorithms  were  the  fastest  and 

also  the  best  in  terms  of  achieved  accuracy.  However,  in  terms  of  reduction  level  and 

.  M AccSi ze,  they  were  clearly  the  worst  and,  for  practical  purposes,  their  use  is  suitable as  a  complement  to  more  complex  algorithms.  An  exception  was  the  reduction  of 

the  entire  training  set  of  the  SOREL-20M  dataset,  where  the  edition  algorithms  were 

among  the  worst  in  terms  of  accuracy  as  well. 

Condensation  algorithms  achieved  a  lower  level  of  reduction  and .  MAccSize  com-

pared  to  hybrid  algorithms.  In  terms  of  accuracy,  it  is  not  possible  to  clearly  determine which  of  the  two  groups  was  better.  Some  representatives  of  hybrid  algorithms  were 

able  to  outperform  condensation  algorithms  in  certain  situations. 

The  behavior  of  individual  modifications  of  the  PIF  algorithm  varied  slightly  when 

using  stratification  and  without  it.  In  experiments  without  stratification,  as  the  level 

of  reduction  increased,  accuracy  decreased.  For  the  PIF-RENN  and  PIF-AllKNN 

algorithms,  the  level  of  reduction  was  lower  compared  to  the  RPIF  algorithm  and 

all  its  versions,  but  higher  accuracy  was  achieved.  In  terms  of  reduced  set  sizes 

and  .  MAccSize,  the  RPIF  algorithm  and  its  versions  were  among  the  best.  The  only competitor  in  these  metrics  was  the  DROP3  algorithm,  which  was  by  far  the  slowest. 

Specifically,  the  RPIF-AllKNN  algorithm  reduced  the  size  of  subsets  the  most  in  all 

Table  14  Results  of  IS  algorithms  when  using  stratification-SOREL-20M 

IS  Algorithm

Stratification

Size  (%)

Accuracy  (%)  .  MAccSize

Duration  (s) 

KNN

–

100

92.04

–

– 

ENN

400

87.31

90.00

1.03

219.1 

RENN

400

83.80

88.35

1.05

1540.9 

AllKNN

400

77.53

89.18

1.15

3823.3 

CNN

100

14.11

87.95

6.23

54364.6 

ICF

100

11.52

89.36

7.76

7892.9 

MSS

100

20.12

91.61

4.55

8066.5 

DROP3

100

7.64

91.43

11.96

366067.1 

PIF

100

14.99

90.56

6.04

6883.5 

PIF-AllKNN

100

12.68

90.05

7.10

10357.2 

PIF-RENN

100

13.15

89.80

6.83

9818.5 

RPIF

100

8.48

90.29

10.65

8309.2 

RPIF-AllKNN

100

6.24

89.94

14.43

10563.7 

RPIF-RENN

100

7.48

89.84

12.01

9902.7 

RPIF_2

100

9.69

90.33

9.32

7824.2 

RPIF-AllKNN_2

100

7.42

89.88

12.11

10481.8 

RPIF-RENN_2

100

8.00

89.63

11.20

9895.6
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cases,  making  it  the  best  among  all  algorithms  from  the  perspectives  of.  MAccSize  and reduction  level.  The  largest  subset  of  the  SOREL-20M  dataset,  with  a  size  of  1000 

k,  was  reduced  by  RPIF-AllKNN  without  stratification  to  4.16%  with  an  .  MAccSize

value  of  20.63.  Since  all  modifications  retained  full  parallelization  capability,  they 

were  among  the  fastest  algorithms  (after  the  edition  algorithms). 

In  the  reduction  of  the  entire  SOREL-20M  dataset,  which  consists  of  nearly  seven 

million  instances,  the  results  of  the  modified  versions  of  the  PIF  algorithm  were 

similar,  with  one  main  difference.  In  this  case,  the  accuracy  did  not  decrease  with 

increasing  levels  of  reduction,  and  the  modified  algorithms  achieved  better  results. 

RPIF-AllKNN  reduced  the  entire  training  set  to  6.24%  with  an  .  MAccSize  value  of 

14.43,  with  an  accuracy  loss  of  2.1%  compared  to  the  original  set  and  0.6%  compared 

to  the  set  reduced  by  the  original  version  of  the  PIF  algorithm,  which  had  a  reduction 

to  14.99%  and  an.  MAccSize  value  of  6.04.  Even  in  this  case,  the  RPIF  algorithm  and  its modifications  were  only  rivaled  by  DROP3  in  terms  of  reduction  level  and.  MAccSize, with  a  reduced  set  size  of  7.64%  and  an  .  MAccSize  value  of  11.96.  DROP3  was  also the  second-best  algorithm  in  terms  of  accuracy,  achieving  91.43%.  However,  it  was 

once  again  the  worst  in  terms  of  computation  time. 

Future  work  related  to  instance  selection  could  involve  introducing  a  penalty  into 

.  M AccSi ze  that  takes  into  account  the  loss  of  accuracy  on  reduced  sets.  This  would  allow the  values  of  this  metric  to  be  adjusted  depending  on  the  importance  of  preserving 

accuracy.  Further  experiments  could  explore  the  replacement  of  the  editing  method 

in  other  hybrid  algorithms.  Regarding  the  PIF  algorithm,  experiments  could  involve 

changing  the  filtration  rule  applied  to  subsets  or  experimenting  with  the  application 

of  multiple  filtration  rules  simultaneously. 
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Applying  Word  Embeddings  and  Graph 

Neural  Networks  for  Effective  Malware 

Classification 

Manasa  Mananjaya  and  Fabio  Di  Troia 

Abstract  The  significance  of  word  embeddings  in  natural  language  processing 

for  capturing  semantic  relationships  between  words  is  widely  acknowledged.  This 

study  aims  to  explore  the  efficacy  of  word  embedding  techniques  in  classifying  mal-

ware.  Specifically,  we  evaluate  the  effectiveness  of  applying  Graph  Neural  Networks 

(GNNs)  to  weighted  graphs  formed  from  word  embeddings  generated  by  analyzing 

opcode  sequences  in  malware  files.  In  the  initial  experiments,  we  employ  the  Graph 

Convolution  Network  (GCN)  on  weighted  graphs  generated  using  different  word 

embedding  techniques,  including  Bag-of-words,  TF-IDF,  and  Word2Vec.  The  results 

indicate  that  Word2Vec  provides  the  most  effective  word  embeddings,  serving  as  the 

baseline  for  comparison  with  three  GNN  models,  namely  Graph  Convolution  Net-

work,  Graph  Attention  Network  (GAT),  and  GraphSAGE  Network.  Subsequently, 

we  conduct  further  experiments,  generating  vector  embeddings  of  varying  lengths 

using  Word2Vec,  and  utilizing  these  embeddings  as  node  features  for  constructing 

weighted  graphs.  Through  performance  comparison  of  the  GNN  models,  we  demon-

strate  that  larger  vector  embeddings  significantly  enhance  the  models’  ability  to 

classify  malware  files  into  their  respective  families.  Furthermore,  we  compare  the 

result  achieved  using  Word2Vec  embeddings  against  those  obtained  through  con-

textualized  embeddings  from  BERT.  Overall,  our  experiments  show  the  potential  of 

word  embeddings  as  node  features  for  GNN  classification,  with  an  increase  in  accu-

racy  from  71.6  to  91.91%  when  Word2Vec  embeddings  were  used  in  combination 

with  GCN. 

1 

Introduction 

Malware,  a  malicious  software  program  created  to  cause  harm  to  computer  systems, 

steal  sensitive  data,  or  gain  unauthorized  access  to  networks,  poses  a  significant 

threat  to  cybersecurity  [ 32].  According  to  the  Cybersecurity  Ventures  Report  2021, cybercrime  is  projected  to  cause  damages  of  $10.5  trillion  annually  by  2025  [ 8]. 
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Cybercriminals  heavily  rely  on  malware  as  their  primary  weapon  to  infiltrate  sys-

tems  and  networks,  leading  to  a  vast  and  diverse  range  of  malware  types  that  chal-

lenge  cybersecurity  experts.  In  2019  alone,  the  number  of  malware  families  reached 

a  staggering  971,390,  representing  a  13.7%  increase  from  the  previous  year  [ 15]. 

Moreover,  cybercriminals  employ  various  obfuscation  techniques  to  evade  tradi-

tional  signature-based  detection  methods,  emphasizing  the  importance  of  the  swift 

detection  of  new  malware  variants  to  prevent  security  breaches. 

To  date,  many  companies  still  depend  on  conventional  methods  like  signature-

based  and  behavioral-based  detection  for  identifying  malware.  Signature-based 

detection  uses  patterns  or  signatures  to  recognize  known  malware  by  comparing 

files’  code  or  behavior  to  a  database  of  known  signatures  [ 30]. While  this  approach is  fast  and  efficient,  it  falls  short  in  detecting  unknown  malware  that  lacks  existing 

signatures.  In  contrast,  behavioral-based  methods  focus  on  the  actions  performed  by 

malware,  monitoring  system  activities  to  detect  unusual  behavior  indicative  of  mal-

ware  presence  [ 17]. These  methods  excel  at  identifying  new  and  unknown  malware without  signatures  in  the  database.  However,  they  may  generate  high  false  positives 

as  legitimate  software  can  also  display  abnormal  behavior. 

Given  the  limitations  of  traditional  methods,  researchers  have  turned  to  machine 

learning  techniques  to  enhance  malware  detection  effectiveness  and  efficiency.  One 

such  machine  learning  technique  called  Graph  Neural  Network  (GNN)  has  recently 

gained  attention  in  the  field  of  malware  analysis  as  a  powerful  tool  for  capturing 

the  structural  relationships  between  features  of  malware  samples  [ 42].  GNNs  can process  data  represented  as  graphs,  where  individual  elements  are  depicted  as  nodes 

and  edges  depict  relationships  between  the  elements  [ 9].  They  have  proven  effective in  different  fields  of  study,  such  as  Natural  Language  Processing  (NLP),  Computer 

Vision,  and  Social  Network  Analysis,  where  the  data  is  represented  as  a  graph.  On 

the  other  hand,  word  embedding  techniques  are  implemented  to  represent  words  in  a 

high-dimensional  space  as  vectors.  These  vectors  capture  the  meaning  and  structural 

relationships  between  words  and  can  be  used  for  various  NLP  tasks.  By  applying 

word  embedding  techniques  to  malware  samples,  it  is  possible  to  capture  the  seman-

tic  relationships  between  different  parts  of  the  code  and  use  them  for  classifying 

malware  [ 35]. 

In  this  research,  we  explore  the  use  of  three  GNN  models  for  malware  classification 

using  word  embedding  techniques.  We  focus  on  the  application  of  GNNs  to  weighted 

graphs  constructed  from  opcode  sequences  of  malware  files.  Opcode  sequences  are 

a  representation  of  the  behavior  of  a  program,  consisting  of  instructions  executed  by 

the  program.  Weighted  graphs  are  graphs  that  represent  structured  knowledge  in  a 

form  that  can  be  processed  by  machines.  In  our  case,  we  construct  weighted  graphs 

where  nodes  represent  opcodes,  and  edges  represent  the  co-occurrence  of  opcodes 

in  malware  samples. 

We  evaluate  the  effectiveness  of  different  word  embedding  methods  such  as 

Word2Vec  [ 24], TF-IDF  [ 29], and  Bag-of-Words  [ 26]  in  classifying  malware  using GNNs.  First,  we  investigate  the  performance  of  GCN  applied  to  weighted  graphs  built 

using  various  word  embedding  techniques.  The  best  word  embedding  technique  is 

then  deduced  and  used  to  build  weighted  graphs.  Finally,  the  performances  of  GCN, 
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GAT,  and  GraphSAGE  in  classifying  the  word-embedded  weighted  graphs  into  their 

respective  families  are  evaluated. 

The  remaining  sections  of  this  paper  are  organized  in  the  following  manner.  In 

Sect. 2,  we  discuss  previous  research  conducted  in  the  area  of  machine  learning for  malware  analysis,  including  word  embedding  techniques  and  GNNs.  Section  3 

introduces  the  technology  and  algorithms  used.  Section  4  describes  the  dataset  used  in our  experiments  and  the  methodology  for  constructing  weighted  graphs.  The  results 

of  our  classification  experiments  are  described  in  Sect. 5.  Finally,  we  conclude  our paper  and  present  potential  directions  for  future  work  in  Sect. 6. 

2 

Related  Work 

In  recent  years,  there  has  been  a  significant  focus  on  developing  advanced  meth-

ods  to  detect  malware  using  machine  learning  techniques.  Notably,  graph  neural 

networks  (GNNs)  and  word  embedding  have  garnered  considerable  attention  due 

to  their  effectiveness  in  identifying  and  classifying  malware  [ 3]. In  their  survey  on malware  detection  using  graph  representation  learning,  the  authors  in  [ 3]  analyzed various  graph-based  methods  for  detecting  malware  and  discussed  their  advantages 

and  limitations.  The  survey  highlighted  the  potential  of  GNNs  as  a  viable  method 

for  malware  detection,  primarily  because  of  their  ability  to  capture  the  complex 

relationships  between  different  features  of  malware. 

An  innovative  approach  proposed  in  [ 41]  is  the  Dynamic  Evolving  Graph  Convolutional  Network  (DEGCN),  which  was  designed  for  malware  detection.  In  this 

approach,  malware  files  are  represented  as  graphs,  with  API  calls  as  nodes  and  the 

temporal  sequence  of  API  calls  captured  through  the  edges.  The  DEGCN  model 

dynamically  adjusts  node  weights  based  on  API  call  significance  and  updates  edge 

weights  according  to  their  temporal  order,  achieving  an  impressive  98.3%  detection 

rate  on  a  dataset  of  1,400  malware  samples. 

Another  method  presented  in  [ 16]  utilizes  GCNs  for  identifying  malware.  The authors  represent  malware  as  a  graph,  where  nodes  represent  API  calls,  and  edges 

depict  their  dependencies.  This  approach  achieved  an  accuracy  of  98.6%  on  a  dataset 

of  3,512  malware  samples.  Similarly,  the  work  in  [ 5]  applied  Graph  Attention  Networks  (GATs)  to  intelligent  transportation  systems,  representing  network  traffic  as  a 

graph  with  nodes  representing  source  and  destination  IP  addresses  and  edges  depict-

ing  communication  between  these  addresses.  The  goal  of  this  work  was  to  detected 

botnet  traffic  on  Android  devices  by  leveraging  GAT  to  enhance  the  identification  of 

master-to-bot  communication  patterns.  The  proposed  method  achieved  an  accuracy 

of  97.4%  on  a  dataset  of  400,000  network  packets. 

The work in [  7]  proposed  a  GNN  model  that  uses  a  similarity-based  approach  to cluster  malware  samples  with  similar  structures  into  the  same  category,  regardless 

of  their  behavior.  This  method  automatically  extracts  structural  information  from 

malware  samples,  making  it  more  robust  and  generalizable  to  new  malware  samples. 
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In  the  context  of  smart  healthcare  systems,  the  authors  in  [ 28]  introduced  a  multi-view  attention-based  deep  learning  framework  for  detecting  malware.  They  utilized 

multiple  views  of  malware,  including  API  calls,  system  calls,  and  static  features, 

applying  attention  mechanisms  to  capture  the  most  relevant  features.  The  proposed 

framework  achieved  an  impressive  accuracy  of  99.4%,  outperforming  Support  Vector 

Machine  (SVM)  and  Convolution  Neural  Networks  (CNNs). 

Instead  of  traditional  graph-based  methods,  the  authors  in  [ 36]  introduced  a  novel attention  network  that  leverages  multi-feature  alignment  and  fusion  for  malware 

detection.  This  model  combines  the  strengths  of  GCNs  and  attention  mechanisms  to 

effectively  capture  both  local  and  global  features  of  malware.  Evaluation  on  a  dataset 

of  10,000  benign  and  10,000  malware  samples  yielded  an  accuracy  of  99.2%  and  an 

AUC  of  0.998,  showcasing  the  model’s  high  accuracy  and  robustness. 

Regarding  word  embedding  techniques,  the  work  in  [ 14]  explored  various  methods  for  representing  malware  samples  as  opcode  sequences,  which  are  then  converted 

into  Word2Vec  embeddings  or  HMM  states.  The  experiments  on  a  dataset  of  7,000 

malware  samples  from  7  families  revealed  that  Word2Vec-based  models  outper-

formed  HMM-based  ones,  achieving  an  accuracy  of  96.2%  for  the  Word2Vec-RF 

model  and  96%  for  the  HMM-RF  model. 

Similarly,  the  work  in  [ 6]  compared  the  performance  of  three  machine  learning  techniques,  Word2Vec,  PCA2Vec,  and  HMM2Vec,  for  classifying  malware. 

Word2Vec-based  techniques  exhibited  superior  performance  and  computational  effi-

ciency  compared  to  the  other  two  methods.  The  paper’s  valuable  comparison  can  aid 

researchers  and  practitioners  in  making  informed  decisions  about  which  techniques 

to  use  for  specific  malware  classification  tasks. 

Our  review  of  previous  research  has  highlighted  the  potential  effectiveness  of 

word  embedding  techniques  for  feature  engineering  when  integrated  with  GNNs. 

We  aim  to  build  upon  this  foundation  to  create  a  robust  model  capable  of  detecting 

malware  more  accurately. 

3 

Background 

 3.1 

 Word  Embedding  Techniques 

Word  embedding  techniques  are  commonly  employed  in  Natural  Language  Process-

ing  (NLP)  to  represent  words  as  high-dimensional  numerical  vectors.  These  tech-

niques  map  words  with  similar  meanings  to  comparable  vectors  in  a  high-dimensional 

space,  facilitating  mathematical  operations  on  words.  Consequently,  machine  learn-

ing  algorithms  can  process  text  data  more  efficiently  and  effectively,  leading  to 

enhanced  performance  in  tasks  like  text  classification.  In  this  section,  we  explore
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three  distinct  word  embedding  techniques  and  assess  their  efficacy  in  classifying 

malware  using  Graph  Neural  Networks  (GNNs).  These  techniques  are  employed  to 

generate  feature  vectors,  which  are  then  utilized  as  node  features  within  weighted 

graphs. 

3.1.1

Bag-of-Words 

Bag-of-words  (BoW)  [ 26]  is  a  widely  used  and  straightforward  word  embedding technique  in  NLP.  It  represents  a  text  document  by  counting  the  occurrences  of  each 

word  and  converting  it  into  a  vector.  BoW  treats  each  word  in  the  document  as 

independent  of  others,  disregarding  their  order,  syntax,  or  structure. 

To  create  a  BoW  model,  we  first  construct  a  vocabulary  containing  tokenized  text 

data.  Then,  we  build  a  matrix  that  contains  word  frequency  counts  for  each  document 

in  the  corpus  using  this  vocabulary.  Each  row  in  the  matrix  represents  a  document, 

and  each  column  corresponds  to  a  word  in  the  vocabulary.  To  consider  variations  in 

document  lengths  and  word  frequencies,  we  normalize  the  matrix. 

Let   W   denote  the  vocabulary  set,  D   represent  the  collection  of  documents,  and n(d,  w)   indicate  the  frequency  of  word   w   in  document   d.  The  BoW  representation  of document   d   is  a  vector .  x(d)  of  size  W,  where  each  element  of  the  vector  is  given  by 

.  x(d)[ w] =  n(d , w)

In  our  experiments,  described  in  Sect. 4,  we  use  the  BoW  model  to  generate one-dimensional  feature  vectors,  which  will  serve  as  node  features  during  the  graph 

classification  process.  Further  details  about  BoW  can  be  found  in  [ 13, 26]. 

3.1.2

TF-IDF 

TF-IDF  (Term  Frequency-Inverse  Document  Frequency)  [ 29]  is  a  prominent  word embedding  method  in  NLP  that  transforms  textual  information  into  numerical  representations.  It  operates  as  a  statistical  measure  to  determine  the  importance  of  each 

word  in  a  document.  The  fundamental  principle  of  TF-IDF  is  that  a  word’s  signif-

icance  in  a  particular  document  is  inversely  proportional  to  its  frequency  (TF)  in 

that  document  and  across  all  documents  (IDF).  In  other  words,  a  word  is  considered 

more  significant  for  a  specific  document  if  it  appears  frequently  in  that  document  but 

rarely  in  others. 

The  TF-IDF  score  is  computed  by  multiplying  the  TF  and  IDF  of  a  word   w   in  a 

document   d,  that  is, 

. [ TF −  IDF ] (w, d ) = [ IDF ] (w) ∗ [ TF ] (w, d )

The  TF  (Term  Frequency)  represents  the  ratio  of  the  number  of  occurrences  of  a 

word   w   in  a  document   d   to  the  total  number  of  words  in   d,  that  is, 
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. [ TF ] (w, d ) = number of occurrence of  w  in  d

total number of words in  d

On  the  other  hand,  the  IDF  (Inverse  Document  Frequency)  value  is  calculated  by 

taking  the  logarithm  of  the  ratio  of  the  total  number  of  documents   N   to  the  number of  documents  containing  the  word   w,  that  is, 





 N

. [ IDF ] (w) = log

number of documents that include  w

The  logarithmic  function  is  employed  to  mitigate  the  impact  of  rare  words  on  the 

IDF  score.  As  a  result,  words  that  frequently  appear  in  documents  will  have  a  lower 

IDF  score  and,  consequently,  a  reduced  influence  on  the  TF-IDF  score.  The  TF-IDF 

scores  for  each  word  in  a  document  can  then  be  computed  and  used  as  features  in 

machine  learning  models.  For  more  detailed  information  on  TF-IDF,  please  refer 

to  [ 27]. 

3.1.3

Word2Vec 

Word2Vec  is  a  shallow  neural  network  employed  to  generate  word  embeddings  [ 24]. 

Word  embeddings  represent  words  distributed  in  a  high-dimensional  vector  space, 

where  each  dimension  signifies  a  word  feature.  These  embeddings  find  applica-

tion  in  various  NLP  tasks  like  text  categorization,  sentiment  analysis,  and  language 

modeling  [ 1]. 

Word2Vec  creates  word  embeddings  by  training  a  neural  network  on  a  large  text 

corpus.  This  network  learns  to  predict  a  word  from  its  context  or  anticipate  nearby 

words  given  a  word.  The  word  embeddings  are  then  formed  using  the  neural  network’s 

hidden  layer  weights.  Word2Vec’s  key  advantage  lies  in  its  ability  to  capture  semantic 

relationships  between  words.  For  instance,  words  with  similar  meanings,  like  “car” 

and  “automobile,”  have  similar  embeddings.  There  are  two  architectures  used  to  train 

Word2Vec,  that  is,  the  Continuous  Bag  of  Words  (CBOW)  and  the  Skip-Gram  model. 

The  CBOW  technique  predicts  a  target  word  using  a  group  of  words  surrounding  it, 

while  the  Skip-Gram  model  takes  the  target  word  as  input  and  aims  to  anticipate  the 

surrounding  context  words  [ 2].  In  this  research,  we  experiment  with  the  Skip-Gram model. 

 3.2 

 Graph  Neural  Networks 

The  Graph  Neural  Network  (GNN)  is  a  powerful  deep  learning  algorithm  designed  to 

analyze  structured  data  represented  as  graphs.  Unlike  traditional  neural  networks  that 

process  fixed-length  data,  GNNs  take  graphs  as  input,  where  individual  elements  are 

represented  as  nodes,  and  edges  depict  the  relationships  between  these  elements  [ 31]. 
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Mathematically,  GNNs  are  defined  as  a  sequence  of  iterative  graph  convolution 

operations,  represented  as 





.  h(k+1 ) =  σ

 W (k)h(k) +  b(k)

 v

 u

 u∈N (v)

Here,.  h(k)  denotes  the  representation  of  node

 v

.  v  at  the .  k -th  iteration, .N  (v)  represents 

the  set  of  neighboring  nodes  of.  v,.  W (k)  and.  b(k)  are  learnable  weight  matrix  and  bias vector  at  the  .  k-th  iteration,  and  .  σ  refers  to  a  non-linear  activation  function,  such  as ReLU  or  sigmoid  [ 31]. 

In  the  context  of  malware  classification,  the  input  graphs’  nodes  represent  opcodes, 

and  edges  connect  frequently  co-occurring  opcodes.  The  GNN  conducts  message 

passing  between  nodes  to  capture  information  about  their  relationships.  This  process 

involves  computing  node  embeddings  based  on  their  neighboring  embeddings  and 

updating  the  central  node’s  representation  using  these  embeddings.  This  iterative 

process  can  be  repeated  multiple  times  to  capture  higher-level  relationships  between 

nodes.  In  this  paper,  we  implement  three  graph  neural  network  models  for  classifying 

malware  files. 

3.2.1

Graph  Convolutional  Network 

The  Graph  Convolutional  Network  (GCN)  [ 40],  a  variant  of  GNN,  incorporates convolutional  layers  that  enable  shared  weights  and  translation  invariance,  as  well 

as  pooling  layers  that  facilitate  hierarchical  learning.  GCNs  learn  a  set  of  filters  to 

operate  on  the  graph  structure  and  extract  features  from  the  data.  These  filters  are 

defined  as  functions  that  process  the  node’s  local  neighborhood  and  produce  a  new 

representation  for  the  node. 

During  training,  the  filter  weights  are  learned  through  backpropagation,  allowing 

the  GCN  to  learn  meaningful  features  from  the  graph  structure.  By  repeatedly  apply-

ing  these  filters,  the  GCN  acquires  hierarchical  representations  of  the  graph.  In  the 

classification  phase,  the  GCN  takes  the  feature  vectors  of  each  node  as  input  and  pro-

duces  a  label  for  the  entire  graph.  Graph  labeling  is  achieved  by  applying  a  pooling 

operation  to  the  output  of  the  last  GCN  layer,  which  aggregates  the  feature  vectors 

of  all  nodes  into  a  single  vector.  This  vector  is  then  passed  through  a  fully  connected layer,  generating  a  final  output  vector  representing  the  predicted  class  probabilities 

for  the  input  graph. 

3.2.2

Graph  Attention  Network 

Graph  Attention  Networks  (GATs)  represent  a  popular  graph-based  machine  learning 

approach  introduced  by  [ 33]. Unlike  GCNs,  GATs  utilize  an  attention  mechanism  to determine  the  importance  of  each  node’s  neighbors  for  a  specific  task.  This  is  achieved
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by  computing  weighted  linear  combinations  of  the  neighbors’  hidden  states,  with  the 

weights  learned  through  a  self-attention  mechanism.  In  other  words,  GATs  leverage 

the  graph  structure  to  identify  the  most  relevant  nodes  for  a  given  task,  treating  nodes differently  based  on  their  importance. 

During  the  training  phase,  GAT  optimizes  the  loss  function  with  respect  to  model 

parameters.  This  involves  computing  the  model’s  predictions  for  a  set  of  labeled 

examples  and  comparing  them  to  the  true  labels  using  a  loss  function.  Backpropaga-

tion  is  then  employed  to  update  the  model  parameters.  For  classifying  new  examples, 

the  hidden  states  of  all  nodes  in  the  graph  are  computed,  resulting  in  a  probability 

distribution  over  possible  labels.  The  label  with  the  highest  probability  is  assigned 

to  the  graph.  For  further  insights  into  the  application  of  GATs  in  text  classification, 

refer  to  [ 11, 18]. 

3.2.3

GraphSAGE  Network 

GraphSAGE  (Graph  Sample  and  Aggregate)  networks  [10]  belong  to  a  class  of  GNNs that  learn  representations  for  nodes  in  a  graph  by  aggregating  information  from  their 

local  neighborhoods.  This  model  addresses  the  limitations  of  traditional  graph-based 

learning  methods  by  leveraging  graph  convolutions,  which  enable  learning  from  both 

local  and  global  information. 

The  GraphSAGE  algorithm  converts  each  node  in  the  input  graph  into  a  low-

dimensional  vector.  A  multi-layer  neural  network  processes  each  node  and  its  neigh-

bors  in  the  graph  to  achieve  this.  At  each  layer,  the  model  aggregates  information 

from  the  local  neighborhood  of  each  node  by  sampling  a  fixed  number  of  neigh-

bors  and  applying  mean  or  max  pooling  operations.  The  resulting  representations 

then  undergo  a  non-linear  activation  function  and  are  passed  to  the  next  layer.  This 

process  iterates  for  a  specified  number  of  layers  until  the  final  node  embeddings  are 

obtained.  The  efficiency  of  GraphSAGE  in  generating  node  embeddings  for  unseen 

data  is  a  notable  advantage. 

In  our  study,  GraphSAGE  learns  embeddings  for  each  opcode  while  considering 

the  relationships  between  adjacent  opcodes.  A  summary  vector  is  computed  for 

the  entire  graph  based  on  the  embeddings  of  its  constituent  nodes.  This  vector  is 

then  fed  through  a  fully-connected  neural  network  to  obtain  the  final  graph-level 

classification  [ 38]. For  more  details  on  implementing  GraphSAGE  networks  for  text classification,  refer  to  [ 37]. 
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Table  1  Malware  families 

Family

Type  of  malware

No.  of  samples 

BHO

Trojan

3,843 

OnLineGames

Password  stealer

13,164 

Renos

Trojan  downloader

23,980 

VBInject

VirTool

15,171 

Winwebsec

Rogue

13,277 

4 

Methodology 

 4.1 

 Dataset 

The  dataset  used  in  this  study  is  sourced  from  the  VirusShare  website,  which  hosts 

malware  files  belonging  to  various  families.  It  encompasses  13,597  malware  families, 

each  having  at  least  one  malware  file.  Due  to  the  considerable  number  of  families 

and  the  abundance  of  opcodes  in  each  file,  classifying  all  families  demands  extensive 

computational  resources,  making  it  impractical.  Therefore,  the  experiments  were 

limited  to  only  five  families  as  shown  in  Table  1.  To  maintain  dataset  balance,  1,000 

samples  were  randomly  selected  from  these  five  malware  families,  resulting  in  a  total 

of  5,000  samples.  Other  studies  using  this  dataset  are  available  in  [ 6, 14]. We  will provide  a  brief  overview  of  the  characteristics  of  each  malware  family  in  this  section. 

BHO—This  family  consists  of  Trojan  malware  used  for  malicious  activities,  such 

as  tracking  user  behavior  or  installing  additional  malware  on  user  systems  [ 21]. 

OnLineGames—Malware  belonging  to  this  family  targets  online  gamers.  It  often 

disguises  itself  as  legitimate  game  components  or  spreads  through  fake  games.  Once 

installed,  it  can  steal  sensitive  information,  including  login  credentials,  banking 

details,  and  game  items  [ 19]. 

Renos—Renos  is  a  type  of  Trojan  malware  typically  installed  on  computers  through 

security  vulnerabilities  or  social  engineering  tactics.  It  conducts  various  malicious 

activities,  including  displaying  fake  alerts  and  redirecting  web  traffic  [ 20]. 

VBInject—Malware  from  this  family  injects  malicious  code  into  legitimate  pro-

cesses  running  on  operating  systems.  Attackers  employ  this  malware  to  steal  sensitive 

information  or  log  keystrokes  [ 22]. 

Winwebsec—Windows  Web  Security,  or  Winwebsec,  masquerades  as  a  legitimate 

antivirus  program  but  is,  in  fact,  rogue  antivirus  software.  It  deceives  users  into  paying for  unnecessary  antivirus  licenses  while  stealing  their  personal  information  [ 23]. 
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 4.2 

 Dataset  Preprocessing 

For  our  research,  we  carefully  organize  1,000  original  malware  files  into  each  of  the 

five  families,  resulting  in  a  total  of  5,000  files  for  analysis.  To  extract  the  opcodes, the  malware  files  are  disassembled  into  .asm binary  files.  This  disassembly  process 

is  conducted  on  a  Linux  system  using  the  Objdump  command,  which  is  part  of  the 

GNU  Binutils  package.  The  extracted  opcodes  from  each  binary  file  are  then  stored 

in  a  text  file,  sharing  the  same  name  as  the  corresponding  binary  file. 

In  order  to  manage  the  complexity  and  reduce  overhead  during  the  training  of 

the  machine  learning  model,  we  decided  not  to  include  all  distinct  opcodes  present 

in  each  file,  as  there  is  a  significant  number  of  such  opcodes.  Furthermore,  a  vast 

majority  of  opcodes  contribute  to  less  than  1%  of  the  total  number  of  opcodes. 

Instead,  we  selected  only  the  top  50  opcodes  along  with  their  respective  frequencies 

for  further  analysis.  These  top  50  opcodes  play  a  crucial  role  in  representing  the 

essential  characteristics  of  the  malware  files.  The  frequency  of  these  selected  opcodes 

is  shown  in  Fig. 1. 

 4.3 

 Optimal  Opcode  Number  Experiments 

The  analysis  of  the  top  50  opcodes  reveals  that  a  significant  portion  of  them  are 

infrequent  in  occurrence.  To  determine  the  optimal  number  of  opcodes  for  our 

experiments,  we  conducted  binary  classification  experiments  using  the  BHO  and 

OnLineGames  malware  families.  From  each  family,  we  randomly  selected  1,000 

malware  files.  Our  methodology  involved  implementing  a  Convolutional  Neural 

Network  (CNN)  with  the  Word2Vec  embedding  technique.  In  this  approach,  we 

generated  word  embeddings  from  the  opcode  sequences  using  Word2Vec  and  then 

applied  convolution  to  these  embeddings.  We  trained  the  CNN  model  with  varying 

numbers  of  opcodes  (10,  20,  30,  40,  and  50)  and  embedded  vector  lengths  (2,  10,  50, 

and  100). 

Figure  2  presents  the  classification  accuracy  results  obtained  by  the  Word2Vec-CNN  model  for  different  numbers  of  opcodes  and  vector  lengths.  Surprisingly,  the 

performance  does  not  show  significant  differences  when  using  50  opcodes  compared 

to  using  only  10  opcodes. 

Among  the  experiments,  the  highest  average  accuracy  is  achieved  when  utilizing 

the  top  20  opcodes  across  all  vector  lengths.  As  a  result,  we  extracted  the  top  20 

opcodes  and  filtered  the  opcode  files  to  include  only  these  opcodes,  which  will  be 

used  for  further  experimentation.  Additionally,  each  file  underwent  a  pre-processing 

step  that  involved  removing  any  punctuations  and  tokenizing  the  text  into  individual 

words. 

[image: Image 28]
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Fig.  1  Opcode  frequency 

 4.4 

 Feature  Vector  Generation 

In  this  section,  we  explore  various  word  embedding  methods  utilized  to  generate 

feature  vectors  for  the  opcode  sequences  extracted  from  the  malware  files.  We  also 

assess  how  each  embedding  technique  influences  the  performance  of  the  malware  file 

classification  process.  All  the  embedding  techniques  are  evaluated  using  the  GCN 

model  detailed  in  Sect. 4.11. Furthermore,  a  separate  model  is  developed  without  any word  embedding  technique,  serving  as  a  baseline  model  for  comparison  with  the  other 

embedding-implemented  models.  In  this  case,  each  unique  opcode  is  represented  as 

a  node  in  the  graph,  while  edges  between  nodes  represent  the  consecutive  occurrence 

of  opcodes  in  the  file. 

The  resulting  feature  vectors  are  then  integrated  into  the  weighted  graphs,  as 

discussed  in  Sect. 4.8. 

[image: Image 29]

[image: Image 30]
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Fig.  2  Word2Vec-CNN:  binary  classification  results 

 4.5 

 GCN-Bag-of-Words 

The  Bag-of-Words  (BoW)  technique  is  a  widely  employed  word  embedding  method 

in  NLP  [ 32].  It  offers  a  straightforward  yet  effective  way  to  extract  features  and  create feature  vectors  without  considering  the  semantics  or  meaning  of  opcode  sequences. 

BoW  enables  us  to  examine  how  the  frequency  of  specific  opcodes  influences  the 

categorization  of  malware  families.  In  our  BoW  implementation,  we  generate  a  fea-

ture  vector  of  length  20,  where  each  vector  value  corresponds  to  the  frequency  of  a 

particular  opcode  in  the  malware  file. 

To  maintain  consistent  vector  lengths,  we  append  a  value  of  zero  to  the  feature 

vector  in  case  of  missing  opcodes.  This  step  is  crucial  because  the  BoW  technique 

requires  fixed-length  vectors  for  each  malware  file.  By  adding  zeros  to  the  end  of  the 

vector,  missing  opcodes  are  effectively  represented  as  non-existent  features,  ensur-

ing  consistent  vector  lengths  across  all  malware  files.  This  feature  vector  is  then 

integrated  into  the  weighted  graphs  as  detailed  in  Sect. 4.8.  Figure  3  illustrates  the process  of  generating  the  feature  vector  using  the  BoW  method. 

Fig.  3  Bag-of-words  feature  generation

[image: Image 31]
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 4.6 

 GCN-TF-IDF 

This  section  introduces  the  TF-IDF  technique  for  generating  feature  vectors  for  each 

malware  file,  containing  the  opcode  sequences.  In  our  implementation,  we  begin 

by  creating  a  document-term  matrix,  where  each  row  represents  a  document  (i.e., 

malware  file)  and  each  column  represents  an  opcode.  The  matrix  entries  correspond 

to  the  term  frequency  (TF)  of  each  opcode  in  each  document. 

Next,  we  calculate  the  inverse  document  frequency  (IDF)  for  each  opcode,  as 

described  in  Sect. 3.1.2.  This  involves  determining  how  frequently  each  opcode occurs  across  all  documents. 

Finally,  we  compute  the  TF-IDF  score  for  each  opcode  by  multiplying  its  TF  score 

with  its  IDF  value.  The  resulting  TF-IDF  matrix  is  then  used  to  generate  a  feature 

vector  for  each  file.  Each  vector  represents  a  document  and  contains  the  TF-IDF 

scores  for  every  opcode  in  the  malware  file. 

Figure  4  illustrates  the  process  of  generating  feature  vectors  using  the  TF-IDF 

vectorizer. 

 4.7 

 GCN-Word2Vec 

Word2Vec  plays  a  crucial  role  as  a  word  embedding  method  to  create  feature  vectors 

in  this  study  [ 32]. For  our  experiment,  we  utilize  the  gensim Word2Vec  model  and train  it  using  the  opcode  sequences.  We  set  the  vector  length  to  100,  and  the  window 

size  is  kept  at  the  default  value  of  5. 

The  Word2Vec  library  offers  two  training  techniques,  that  is,  Skip-Gram  and 

Continuous  Bag  of  Words  (CBOW).  For  our  experiments,  we  chose  the  CBOW 

algorithm  to  train  Word2Vec.  The  trained  Word2Vec  model  is  then  employed  to 

generate  feature  vectors  for  each  document.  This  is  achieved  by  averaging  the  opcode 

vectors  of  all  the  opcodes  present  in  the  document. 

Figure  5  illustrates  the  application  of  the  Word2Vec  model  in  generating  feature vectors  for  each  malware  file. 

Fig.  4  TF-IDF  Feature  Generation

[image: Image 32]
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Fig.  5  Word2Vec  feature  generation 

 4.8 

 Creating  Weighted  Graphs 

We  utilize  Python’s  NetworkX library  to  construct  weighted  graphs  from  the  opcode 

files.  In  these  graphs,  nodes  represent  the  opcodes,  and  edges  between  nodes  indicate 

the  consecutive  occurrence  of  opcodes  in  the  file.  To  compute  edge  weights,  we 

calculate  the  bi-gram  frequency  of  the  opcode  pairs. 

To  establish  a  baseline  for  comparison,  we  generate  5,000  weighted  graphs  from 

the  opcode  files  without  any  word  embedding.  This  baseline  model  will  serve  as  a 

point  of  reference  when  compared  with  the  word-embedded  graphs.  Once  the  graph 

is  created,  we  save  it  in  a .pkl file  format,  along  with  its  corresponding  label.  During 

classification,  the  data  is  retrieved  from  the  .pkl files  for  further  analysis. 

For  generating  word-embedded  graphs,  we  store  the  feature  vectors  generated  by 

the  word  embedding  techniques  in  the  .pkl files  along  with  the  graph  and  label  data. 

During  the  training  phase,  these  feature  vectors  are  embedded  as  node  features  in  the 

loaded  graph,  providing  additional  information  to  enhance  the  performance  of  the 

GNN  models.  We  generate  graphs  using  BoW,  TF-IDF,  and  Word2Vec.  Each  of  these 

techniques  generates  5,000  weighted  graphs,  which  are  used  in  our  experiments. 

 4.9 

 Results  for  Word  Embedding  Experiments 

The  classification  results  obtained  for  various  word  embedding  techniques  are  sum-

marized  in  Table  2. We  used  the  same  GCN  model  described  in  Sect. 4.11  to  classify the  graphs  generated  using  these  word  embedding  techniques.  These  results  are 

Table  2  Accuracy  of  word  embedding  techniques 

Model

Accuracy  (%) 

Baseline  model

71.60 

GCN-BoW

59.80 

GCN-TFIDF

22.60 

GCN-Word2Vec

60.20

[image: Image 33]
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Fig.  6  Design  of  word  embeddings  experiments 

instrumental  in  determining  which  word  embedding  technique  to  proceed  with  for 

our  implementation  using  GNN  models.  Figure  6  shows  the  design  of  these  experiments.  It  is  evident  from  the  table  that  only  Word2Vec  provides  improved  classi-

fication  results  compared  to  our  baseline  model,  respectively,  60.20%  and  71.60%. 

On  the  other  hand,  TF-IDF  and  BoW  worsen  the  classification  accuracy,  with  BoW 

achieving  an  accuracy  of  59.80%  and  TF-IDF  a  mere  22.6%. 

While  Word2Vec  already  achieves  the  best  accuracy  compared  to  other  embedding 

techniques,  it  should  be  noted  that  the  feature  vectors  generated  have  a  dimension 

of  1.  However,  Word2Vec  has  the  potential  to  increase  the  vector  length  for  each 

opcode  (e.g.,  to  100).  Additional  experiments  with  larger  vector  size  are  described 

in  Sect. 5. 

A  larger  vector  size  in  Word2Vec  allows  for  capturing  more  complex  and  nuanced 

relationships  between  opcodes,  which  can  improve  performance  even  further  in 

downstream  tasks  such  as  classification.  Therefore,  we  select  Word2Vec  as  the 

primary  word  embedding  technique  for  our  GNN  models. 

 4.10 

 GNN  Implementation 

This  section  presents  the  architectures  of  the  three  GNNs  utilized  in  our  research 

for  malware  classification.  All  models  are  designed  to  process  graph  data  with 

Word2Vec-generated  feature  vectors  embedded  as  node  features  within  the  graphs. 

Throughout  our  experiments,  we  vary  the  vector  length  of  the  feature  vectors 

generated  by  Word2Vec.  More  details  on  these  experiments  are  available  in  Sect. 5. 

In  our  implementation,  the  initial  step  involves  loading  all  the  graph  data  from  the 

stored  .pkl files.  Subsequently,  the  feature  vectors  are  extracted  from  the  files  and 

embedded  in  the  nodes  after  loading  the  graph.  Before  training  the  GNN  models, 
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Table  3  GCN  hyperparameter  values 

Hyperparameter

Value 

Number  of  GCN  layers

2 

Number  of  units  per  GCN  layer

64 

Dense  layer  sizes

[32,  5] 

Activation

[relu,  softmax] 

Dropout  rate

0.4 

Learning  rate

0.001 

Optimization  algorithm

Adam 

Loss  function

Sparse  categorical  cross-entropy 

we  use  graph  generators  to  create  data  generators,  enabling  the  models  to  be  fed 

with  graph  data  during  the  training  phase.  This  approach  allows  the  models  to  learn 

from  graph  data  with  varying  numbers  of  nodes  and  edges,  ensuring  adaptability  and 

flexibility  to  different  malware  samples. 

 4.11 

 Word2Vec-GCN 

The  Graph  Convolutional  Network  (GCN)  is  a  neural  network  specifically 

designed  to  handle  graph-structured  data  [ 34]. It  utilizes  messages  passing  over the  graph  to  compute  node  embeddings.  To  implement  the  GCN  model,  we  use 

the  GCNSupervisedGraphClassification class  from  the  Python  library 

stellargraph. 

The  GCN  model  architecture  comprises  two  graph  convolutional  layers,  each 

consisting  of  64  units  with  ReLU activation  function.  To  prevent  overfitting,  a 

dropout  rate  of  0.4  is  applied  to  the  convolutional  layers.  The  global average 

pooling layer  aggregates  the  node  features  of  the  graph  into  a  single  vector  rep-

resentation.  The  output  of  the  global average pooling layer  is  then  passed 

through  two  fully  connected  dense layers:  the  first  with  32  units  and  ReLU acti-

vation,  and  the  second  with  5  units  and  softmax activation.  The  final  dense  layer 

generates  a  probability  distribution  over  the  five  possible  classes. 

To  minimize  sparse categorical cross-entropy,  which  measures 

the  difference  between  the  predicted  and  true  class  labels,  we  utilize  the  Adam opti-

mizer.  The  accuracy  metric  is  used  to  evaluate  the  model’s  performance  on  the  test 

data.  A  grid  search  was  used  to  select  the  best  hyperparameters  for  our  GCN  model. 

A  summary  of  these  hyperparameters  and  their  values  can  be  found  in  Table  3. 
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Table  4  GAT  hyperparameter  values 

Hyperparameter

Value 

Number  of  GAT  layers

2 

Number  of  units  per  GAT  layer

64 

Dense  layer  sizes

[64,  5] 

Activation

[elu,  relu,  softmax] 

Attention  heads

8 

Dropout  rate

0.4 

Learning  rate

0.005 

Optimization  algorithm

Adam 

Loss  function

Categorical  cross-entropy 

 4.12 

 Word2Vec-GAT 

The  Graph  Attention  Network  (GAT)  is  designed  to  learn  node  embeddings  in  a  graph 

by  utilizing  a  self-attention  mechanism  to  aggregate  information  from  neighboring 

nodes.  We  implement  the  GAT  model  using  the  GATConv layer  from  the  Python 

library  spektral. 

Our  GAT  model  consists  of  two  GAT  layers,  each  with  64  hidden  units,  a  dropout 

rate  of  0.5,  and  elu activation  function.  The  attn_heads parameter  is  set  to  8, 

meaning  that  the  model  employs  8  attention  heads  to  compute  attention  coefficients 

for  each  neighbor  of  a  node  and  then  concatenates  the  results.  We  apply  a  dropout 

rate  of  0.4  to  the  GAT  layers. 

Following  the  GAT  layers,  we  include  a  global sum pooling layer  with 

64  units  and  relu activation  function.  The  output  layer  has  5  units  with  softmax 

activation  function,  which  generates  a  probability  distribution  over  the  five  possible 

classes. 

For  optimization,  we  use  the  Adam optimizer  with  a  learning  rate  of  0.005.  The 

categorical cross-entropy loss  function  is  employed  to  compute  the  vari-

ance  between  the  predicted  and  actual  labels.  To  evaluate  the  model’s  performance, 

we  use  the  accuracy  metric.  A  grid  search  was  used  to  select  the  best  hyperparameters 

for  our  GAT  model.  A  summary  of  these  hyperparameters  and  their  values  can  be 

found  in  Table  4. 

 4.13 

 Word2Vec-GraphSAGE 

GraphSAGE  is  a  graph  neural  network  that  learns  node  embeddings  by  aggregat-

ing  information  from  a  node’s  local  neighborhood  [ 38].  In  our  implementation,  we use  the  GraphSAGENodeGenerator to  generate  training  and  validation  batches, 
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Table  5  GraphSAGE  hyperparameter  values 

Hyperparameter

Value 

Number  of  GraphSAGE  layers

2 

Number  of  units  per  GraphSAGE  layer

32 

Dense  layer  sizes

[32,  5] 

Activation

[relu,  softmax] 

Dropout  rate

0.5 

Learning  rate

0.005 

Optimization  algorithm

Adam 

Loss  function

Categorical  cross-entropy 

specifying  the  batch  size  and  the  number  of  samples  in  the  generator.  The  model  archi-

tecture  consists  of  two  GraphSAGEConv layers,  available  in  Python’s  spektral 

library,  with  hidden  dimensions  of  32  and  ReLU activation  function. 

A  dropout  rate  of  0.5  is  applied  to  each  layer  to  prevent  overfitting.  To  obtain 

a  single  feature  vector  representing  the  entire  graph,  we  perform  global max 

pooling operation.  This  feature  vector  is  then  fed  into  a  dense output  layer  with 

a  softmax activation  function  to  generate  the  final  classification  output. 

For  model  optimization,  we  use  the  Adam optimizer  with  a  learning  rate  of  0.005. 

The  categorical cross-entropy loss  function  is  employed  to  measure  the 

variance  between  the  predicted  and  actual  labels.  The  model’s  performance  is  eval-

uated  using  the  accuracy  metric.  A  grid  search  was  used  to  select  the  best  hyperpa-

rameters  for  our  GraphSAGE  model.  A  summary  of  these  hyperparameters  and  their 

values  can  be  found  in  Table  5. 

5 

Classification  Results 

This  section  focuses  on  the  malware  data  used  in  the  study  and  its  preprocessing.  We 

provide  an  overview  of  feature  engineering  and  highlight  the  experiments  conducted 

using  different  word  embedding  techniques  and  GNNs. 

To  investigate  the  classification  performance,  we  train  GNN  models  with  graph 

samples  using  the  best  hyperparameter  values.  As  a  baseline,  we  first  establish  results 

for  graph  classification  without  any  word  embeddings  to  observe  the  effect  of  word 

embeddings  on  the  classification  performance. 

Subsequently,  we  experiment  with  Word2Vec  embeddings,  varying  the  vector 

length  from  1  to  100.  For  each  vector  length  category,  5,000  graph  samples  are  gener-

ated,  and  the  classification  performance  is  evaluated  using  accuracy  and  classification 

matrices  for  each  GNN  model. 

By  comparing  the  classification  results,  we  gain  insights  into  how  the  quality  of 

feature  vectors  influences  the  classification  performance  of  the  GNN  models. 

[image: Image 34]
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Fig.  7  Classification  matrices  for  GCN 

 5.1 

 GCN  Results 

Figure  7  presents  the  confusion  matrices  for  GCN.  The  model  achieves  an  accuracy of  79.60%  for  the  baseline  model,  60.20%  for  Word2Vec  with  a  vector  length  of  1, 

84.70%  for  Word2Vec  with  a  vector  length  of  20,  85.3%  for  Word2Vec  with  a  vector 

length  of  50,  and  91.10%  for  Word2Vec  with  a  vector  length  of  100. 

[image: Image 35]
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Fig.  8  Classification  matrices  for  GAT 

 5.2 

 GAT  Results 

Figure  8  gives  the  confusion  matrices  for  GAT.  This  model  achieves  an  accuracy of  73.80%  for  the  baseline  model,  42.90%  for  Word2Vec  with  a  vector  length  of  1, 

80.80%  for  Word2Vec  with  a  vector  length  of  20,  83.80%  for  Word2Vec  with  a  vector 

length  of  50  and  87.30%  for  Word2Vec  with  vector  length  of  100. 

[image: Image 36]
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Fig.  9  Classification  matrices  for  GraphSAGE 

 5.3 

 GraphSAGE  Results 

Figure  9  gives  the  confusion  matrices  for  GraphSAGE.  This  graph  model  achieves an  accuracy  of  75.90%  for  the  baseline  model,  47.50%  for  Word2Vec  with  a  vector 

length  of  1,  76.80%  for  Word2Vec  with  a  vector  length  of  20,  82.70%  for  Word2Vec 

with  a  vector  length  of  50  and  84.70%  for  Word2Vec  with  vector  length  of  100. 

[image: Image 37]
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Fig.  10  Accuracy  for  GNN  models  with  varying  Word2Vec  vector  lengths 

 5.4 

 Discussion 

Figure  10  illustrates  the  accuracy  achieved  by  each  GNN  architecture  for  both  the baseline  model  and  Word2Vec  embeddings  with  vector  lengths  of  1,  20,  50,  and  100. 

The  results  clearly  demonstrate  that  the  classification  accuracy  improves  signifi-

cantly  as  the  length  of  the  embedded  vector  increases.  However,  additional  experi-

ments  show  diminishing  returns  beyond  a  vector  length  of  100,  with  no  substantial 

improvement  even  when  increased  up  to  200. 

Additionally,  the  comparison  of  the  GNN  architectures  reveals  that  GCN  outper-

forms  GAT  and  GraphSAGE,  achieving  an  accuracy  of  91.10%  for  a  vector  length 

of  100.  Although  GAT  and  GraphSAGE  produce  similar  results,  GAT  shows  slightly 

better  performance. 

These  findings  suggest  that  longer  Word2Vec  vectors  allow  the  models  to  capture 

more  intricate  details  in  the  opcode  sequences.  This  leads  to  the  creation  of  higher-

quality  feature  vectors,  which  are  more  effectively  utilized  by  the  GNNs  to  discern 

the  underlying  graph  structure  and  perform  accurate  node  classification. 

6 

Conclusion  and  Future  Work 

In  this  study,  we  conducted  an  extensive  analysis  of  various  word  embedding  tech-

niques’  impact  on  the  performance  of  Graph  Neural  Networks  (GNNs)  in  classifying 

malware  files  based  on  their  opcode  sequences.  Our  experimental  results  strongly 

support  the  use  of  word  embeddings,  as  they  lead  to  improved  feature  engineering  and 

enhanced  classification  performance  in  malware  analysis.  We  evaluated  the  perfor-

mance  of  Graph  Convolutional  Network  (GCN),  Graph  Attention  Network  (GAT), 
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and  GraphSAGE  network  in  classifying  malware  files  using  weighted  graphs  con-

structed  from  opcode  sequences.  Our  findings  indicate  that  GCN  outperforms  GAT 

and  GraphSAGE,  achieving  an  impressive  accuracy  of  91.10%  for  an  embedded 

vector  of  length  100. 

In  our  initial  experiments,  we  explored  the  impact  of  different  word  embedding 

techniques,  including  Word2Vec,  TF-IDF,  and  Bag-of-words,  on  the  GNN  models’ 

classification  performance.  Word2Vec  emerged  as  the  most  effective  technique,  serv-

ing  as  a  baseline  for  comparison  in  subsequent  experiments.  We  generated  vector 

embeddings  of  varying  lengths  using  Word2Vec  and  constructed  weighted  graphs 

with  these  embeddings  as  node  features.  The  performance  comparison  of  the  GNN 

models  demonstrated  that  larger  feature  vectors  in  the  feature-embedded  graphs  sig-

nificantly  enhance  the  models’  ability  to  accurately  classify  malware  files  into  their 

respective  families. 

Our  analysis  further  revealed  that  the  length  of  the  Word2Vec  vectors  plays  a 

crucial  role  in  the  models’  classification  performance.  Longer  embedded  vectors 

enable  the  models  to  capture  finer  details  in  the  opcode  sequences,  resulting  in  higher-

quality  feature  vectors  that  effectively  leverage  the  underlying  graph  structure  for 

precise  node  classification.  We  observed  a  notable  improvement  in  classification 

accuracy  as  the  vector  length  increased,  but  beyond  a  length  of  100,  no  significant 

further  improvement  was  observed. 

The  implications  of  our  study  in  the  field  of  malware  analysis  are  substantial. 

Firstly,  GNNs  have  demonstrated  promising  potential  for  malware  classification, 

showcasing  the  significance  of  graph-based  approaches  in  this  domain.  Secondly,  the 

effectiveness  of  word  embeddings  emphasizes  the  importance  of  employing  appro-

priate  feature  extraction  techniques  in  malware  analysis.  Lastly,  our  research  high-

lights  the  significance  of  selecting  suitable  GNN  architectures  and  hyperparameters 

for  graph-based  classification  tasks. 

For  future  research  directions,  exploring  the  effectiveness  of  alternative  word 

embedding  techniques  such  as  GloVe  [ 25]  and  FastText  [ 4]  would  be  worthwhile. 

Additionally,  investigating  the  impact  of  other  graph  construction  techniques  like 

subgraph  sampling  and  random  walks  [ 12]  on  GNN  classification  performance  is valuable.  Evaluating  GNN  models  on  larger  datasets  with  more  diverse  malware 

families  can  shed  light  on  their  scalability  and  robustness. 

Another  potential  avenue  for  future  research  lies  in  exploring  other  GNN  archi-

tectures,  such  as  Transformer-based  GNNs  [ 39],  and  comparing  their  performance with  traditional  GNN  models.  Introducing  additional  features,  such  as  file  size  and 

entropy,  to  the  graph  could  further  improve  the  GNN’s  classification  accuracy.  More-

over,  incorporating  temporal  information,  such  as  the  order  of  opcode  execution,  into 

the  graph  structure  may  enhance  the  GNN’s  ability  to  classify  malware  effectively. 
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Abstract  Momentum  is  a  technique  that  is  widely  used  to  improve  convergence  rates 

during  gradient  descent.  In  this  research,  we  experiment  with  adding  momentum  to 

the  Baum-Welch  expectation-maximization  algorithm  for  training  Hidden  Markov 

Models  (HMM).  We  compare  discrete  HMMs  trained  with  and  without  momentum 

on  English  text  and  malware  opcode  data.  The  effectiveness  of  momentum  is  deter-

mined  by  measuring  the  changes  in  model  score  and  classification  accuracy  due  to 

momentum,  as  a  function  of  the  Baum-Welch  iteration.  Our  extensive  experiments 

indicate  that  applying  momentum  to  Baum-Welch  can  accelerate  convergence,  in  the 

sense  of  reducing  the  number  of  iterations  required  for  initial  convergence,  particu-

larly  in  cases  where  the  model  is  otherwise  slow  to  converge.  However,  momentum 

does  not  seem  to  improve  the  final  model  performance  in  cases  where  a  sufficiently 

large  number  of  iterations  are  used. 

1 

Introduction 

Momentum  is  an  extension  to  the  gradient  descent  optimization  algorithm  for  training 

machine  learning  models,  and  it  has  been  integrated  into  popular  and  widely  used 

optimizers  such  as  ADAM  [ 20]. Momentum  can  accelerate  training,  since  it  smooths the  effects  of  noisy  gradients  by  adjusting  the  step  size  based  on  an  exponentially 

decaying  combination  of  past  gradients. 

This  research  applies  the  concept  of  momentum  to  a  classic  machine  learning 

method,  namely,  the  Hidden  Markov  Model  (HMM).  HMMs  are  designed  to  model 

Markov  processes  in  which  some  or  all  states  cannot  be  directly  observed.  HMMs 

learn  about  these  hidden  states  by  observing  a  secondary  observation  sequence  that 

is  probabilistically  related  to  the  corresponding  hidden  state  sequence.  HMMs  have 

been  successfully  applied  in  a  wide  variety  of  applications,  including  speech  recog-

nition  [ 22],  biological  sequence  analysis  [ 31], cryptanalysis  [ 27], malware  detection  [ 7], and  many  others. 
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HMMs  are  typically  trained  using  the  Baum-Welch  algorithm,  which  employs  an 

iterative  approach  to  efficiently  re-estimate  the  model  parameters  [ 23]. We  denote  the usual  implementation  of  Baum-Welch  as   standard-BW,  so  as  to  distinguish  it  from  the variants  that  we  consider  in  this  paper.  Standard-BW  is  a  hill  climb  algorithm  and,  as 

such,  it  will  always  converge  to  a  local  maximum,  making  its  result  heavily  dependent 

on  the  initialization  of  the  HMM  parameters.  As  with  other  hill  climb  algorithms, 

multiple  HMMs  can  be  trained  using  random  restarts,  with  the  best  model  being  that 

which  attains  the  highest  local  maximum.  However,  this  dramatically  increases  the 

training  time. 

In  this  paper,  we  add  a  momentum  term  to  the  Baum-Welch  algorithm,  that  is,  at 

each  iteration,  we  slightly  overshoot  in  the  direction  that  the  parameters  are  moving. 

Baum-Welch  with  momentum,  which  we  shorthand  as   momentum-BW,  is  no  longer 

a  strict  hill  climb  algorithm,  and  hence  for  a  given  initialization,  it  may  converge  to 

a  higher  local  maximum,  as  compared  to  standard-BW.  One  potential  drawback  to 

momentum  is  that  additional  hyperparameter  tuning  is  required. 

We  use  a  classic  English  text  problem  as  a  test  case  for  initial  experiments  com-

paring  model  scores  of  HMMs  trained  with  standard-BW  and  momentum-BW.  Our 

findings  show  that  early  in  the  training  process,  using  momentum  tends  to  outper-

form  standard-BW,  in  the  sense  of  reducing  the  number  of  iterations  required  to 

achieve  a  given  model  score.  In  particular,  initializations  that  take  a  longer  time  to 

converge  using  standard-BW  show  more  significant  reductions  in  training  time  using 

momentum-BW.  However,  standard-BW  tends  to  “catch  up”  with  momentum-BW 

if  a  sufficient  number  of  iterations  is  used.  Thus,  the  advantage  of  momentum-BW 

over  standard-BW  is  likely  to  be  most  relevant  in  cases  were  HMMs  need  to  be 

trained  efficiently,  such  as  cases  where  large  numbers  of  models  are  required,  or 

where  training  resources  are  highly  constrained. 

As  a  more  applicable  test  case,  we  also  consider  experiments  involving  malware 

classification.  The  classification  of  malware  into  individual  families  can  assist  in 

learning  features  that  can  make  it  easier  to  detect  difficult  types  of  malware  [ 30]. In this  set  of  experiments,  we  train  HMMs  on  opcode  sequences  extracted  from  malware 

executables  using  both  the  standard-BW  and  momentum-BW  algorithms.  Previous 

work  has  shown  that  HMMs  are  an  effective  tool  for  classifying  malware,  based  on 

opcode  sequences  [ 7, 28].  The  results  of  our  malware  experiments  follow  a  similar pattern  as  the  English  text  experiments  discussed  above,  namely,  momentum-BW 

can  speed  initial  convergence,  but  with  sufficient  training,  standard-BW  tends  to 

achieve  equally-strong  results. 

The  remainder  of  this  paper  is  organized  as  follows.  In  Sect. 2,  we  review  related work  and  provides  background  information  on  the  various  technologies  used  in 

this  paper.  Section  3  details  how  momentum  is  implemented  in  our  momentum-BW 

experiments.  In  Sect. 4,  we  discuss  our  experiments  and  analyze  the  results  comparing  HMMs  trained  with  standard  Baum-Welch  to  those  trained  using  momentum, 

for  both  the  English  text  and  the  malware  opcode  cases  mentioned  above.  Finally,  in 

Sect. 5,  we  summarize  our  findings  and  suggest  a  few  directions  for  future  research. 
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2 

Background 

Our  main  focus  in  this  section  is  to  introduce  the  basic  concepts  of  Hidden  Markov 

Models.  We  also  discuss  several  topics  that  are  related  to  momentum  and  the  use 

of  momentum  in  HMM  training,  and  we  briefly  consider  the  malware  problem  that 

forms  the  basis  for  extensive  experiments  in  Sect. 4. 

 2.1 

 Hidden  Markov  Models 

A  Markov  process  is  a  sequence  in  which  the  probability  of  the  state  at  each  position 

in  the  sequence  depends—in  a  probabilistic  sense—solely  on  the  state  at  the  previous 

position.  Hidden  Markov  Models  are  statistical  models  capable  of  modeling  these 

sequences  in  cases  where  the  states  cannot  be  measured  directly.  By  using  a  secondary 

sequence  of  observable  values  that  are  dependent  on  the  original  sequence,  an  HMM 

can,  for  example,  enable  us  to  make  predictions  about  the  most  probable  states  of  the 

underlying  (hidden)  Markov  process.  Note  that  while  there  exist  continuous  variants 

of  HMMs  [ 6, 32],  only  the  discrete  case  is  considered  in  this  paper. 

HMMs  function  under  the  assumption  that  the  probability  of  an  observation 

depends  only  on  its  corresponding  state,  and  is  independent  of  other  observations  and 

states.  An  HMM  of  order  one  assumes  that  the  probability  of  a  hidden  state  depends 

only  on  the  previous  hidden  state.  Higher  order  Markov  processes  that  depend  on 

more  than  one  previous  state  sometimes  arise  in  the  HMM  context,  but  they  are 

significantly  more  complex  and  are  not  considered  in  this  paper. 

An  HMM  is  defined  by  three  matrices:  The  state  transition  probability  matrix, 

the  observation  (or  emission)  probability  matrix,  and  the  initial  state  probability 

matrix.  The  state  transition  matrix  determines  the  likelihood  of  transitioning  from  a 

hidden  state  to  another  hidden  state  at  each  position  in  the  sequence.  Each  row  of 

the  observation  probability  matrix  defines  a  distribution  on  the  observable  symbols 

relative  to  a  specific  hidden  state.  The  initial  state  matrix  contains  the  probability  that each  hidden  state  is  the  first  state  in  the  sequence.  The  HMM  notation  in  Table  1  is used  throughout  this  paper.  Note  that,  without  loss  of  generality,  we  denote  the  .  M

distinct  observation  symbols  as .0 ,  1 , . . . , M − 1. 

HMMs  are  useful  for  solving  the  following  three  problems,  and  efficient  algo-

rithms  exist  for  each  [ 23]. 

1.  Given  a  model.  λ =  (A, B, π)  and  an  observation  sequence. O,  determine.  P( O |  λ). 

This  probability  can  be  viewed  as   scoring   the  sequence  . O,  relative  to  the  given model .  λ. 

2.  Given  a  model  .  λ =  (A, B, π)  and  an  observation  sequence  . O,  find  an  optimal sequence  of  hidden  states  corresponding  to  . O.  That  is,  we  want  to   uncover   the 

hidden  states  of  the  HMM.  Note  that  in  the  HMM  sense,  “optimal”  is  taken  to 

mean  that  we  maximum  the  expected  number  of  correct  states.  Thus,  an  HMM  is
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an  Expectation  Maximization  (EM)  technique,  in  contrast  to  a  dynamic  program, 

where  we  select  the  highest  scoring  path  through  the  state  space. 

3.  Given  hyperparameters  .  N  and  .  M,  and  an  observation  sequence  . O,  determine  a model .  λ =  (A, B, π)  that  maximizes .  P( O |  λ).  This  can  be  viewed  as   training   a model  to  best  fit  the  given  observation  sequence . O. 

In  this  paper,  we  are  primarily  concerned  with  Problem  3,  that  is,  training  a  model to  best  fit  a  given  observation  sequence.  However,  the  solutions  to  the  other  two 

problems  are  obtained  as  part  of  the  Baum-Welch  training  algorithm. 

 2.2 

 Problem  1:  Score  an  Observation  Sequence 

Na¨ıvely  computing  .  P( O |  λ)  would  require  .  O(N T T )  operations  [ 23],  so  a  more efficient  algorithm  is  required.  An  improved  solution  to  Problem  1  utilizes  the   forward  algorithm,  which  we  outline  below.  This  reduces  the  work  factor  to  .  O(N  2 T ) operations,  which  is  linear  with  respect  to  the  length  of  the  observation  sequence. 

From  Table  1, we  see  that  .  qi  is  the  hidden  state  at  time  .  t.  We  define  .  αt (i)  as  the cumulative  probability  of  the  observation  sequence  up  to  time.  t  and  ending  in  hidden state .  xi .  That  is, 

.  αt (i ) =  P ( O0 ,  O1 , . . . ,  O t , xt =  qi |  λ) Table  1  HMM  notation  [ 23] 

.  N = number of hidden states

.  M = number of observed states

.  T = length of observation sequence O

. O =  ( O0 ,  O1 , . . . ,  O T −1 ) = observation sequence

.  X =  (x 0 , x 1 , . . . , xT −1 ) = hidden state sequence

.  Q = { q 0 , q 1 , . . . , qN −1} = set of possible hidden states

.  V = {0 ,  1 , . . . , M − 1} = set of possible observations

.  A = state transition probability matrix  (N ×  N )

.  B = observation probability matrix  (N ×  M )

.  π = initial state probability  ( 1 ×  N )

.  λ = model  ( A, B, π)
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The  forward  algorithm  computes  the.  αt (i)  recursively  (and  efficiently)  as  follows: 

1.  Initialization:  for .  i = 0 ,  1 , . . . , N − 1, let  

.  α 0 (i ) =  πi bi ( O0 )

2.  Recursion:  for .  i = 0 ,  1 , . . . , N − 1 and.  t = 1 ,  2 , . . . , T − 1,  compute N −1



.  αt (i ) =

 αt−1 ( j)ajibi( O t)

 j =0

3.  Completion: 

 N −1



.  P ( O |  λ) =

 αT−1 ( j)

 j =0

Although  this  computation  is  efficient,  as  sequence  length.  T  grows,  the  multiplication of  a  large  number  of  small  probabilities  causes  numerical  underflow.  To  prevent  this, 

scaling  factor  .  ci , for  .  i = 0 ,  1 , . . . , T − 1,  are  introduced.  The  scaling  factor  .  ct  is computed  as 

 N−1



.  ct = 1

 αt(i)

 i =0

The .  α  values  are  then  scaled  by.  ct

.  αt (i ) =  ct αt (i )

thus  avoiding  underflow. 

Finally,  rather  than  directly  using  the  probability  .  P( O |  λ)  as  the  score—which would  tend  to  cause  underflow—we  use  the  log  likelihood,  which  can  be  computed 

efficiently  as 





 T −1



.  log

 P( O |  λ) = −

log  ct

 t=0

Note  that  the  score  is  length-dependent  and  hence  when  scoring  an  observation 

sequence  (Problem  1),  we  would  want  to  normalize  by  dividing  the  score  by  .  T  to obtain  a  Log  Likelihood  Per  Observation  (LLPO)  score. 
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 2.3 

 Problem  2:  Uncover  the  Hidden  States 

To  find  the  most  likely  sequence  of  hidden  states  (in  the  EM  sense),  we  will  determine 

the  probability  of  each  state  at  each  time  step.  We  denote  these  probabilities  as.  γt (i), where 

.  γt (i ) =  P (xt =  qi | O , λ)

The  .  γt (i)  can  be  efficiently  computed  using  a  meet-in-the-middle  strategy,  where 

both  the  probability  of  the  sequence  up  to  time.  t  and  the  probability  of  the  remaining sequence  following .  t  are  combined.  The  forward  algorithm  given  above  determines 

the  required  initial  probabilities  up  to  time.  t,  while  a  corresponding   backward  algorithm   is  used  to  compute  the  tail  probabilities  as  defined  by 

.  βt (i ) =  P ( O t+1 ,  O t+2 , . . .  O T −1 , xt =  qi |  λ) The  backward  algorithm  computes  the  .  βt (i)  recursively  (and  efficiently)  as  follows: 

1.  Initialization:  for .  i = 0 ,  1 , . . . , N − 1, let.  βT −1 (i) = 1 .  0

2.  Recursion:  for .  i = 0 ,  1 , . . . , N − 1 and.  t =  T − 2 , T − 3 , . . . ,  0,  compute N −1



.  βt (i ) =

 βt+1 ( j)aijbj( O t+1 )

 j =0

3.  Completion:  For  a  given  state .  i  and  time .  t, it follows  that .  γt (i)  is αt(i)βt(i)

.  γt (i ) =

 P( O |  λ)

and  the  most  likely  state  at  time .  t  is  determined  by .argmax  γt (i). 

 i

 2.4 

 Problem  3:  HMM  Training 

The  most  popular  way  of  solving  Problem  3  is  the  Baum-Welch  re-estimation  algorithm,  which,  as  noted  above,  we  refer  to  as  standard-BW.  The  standard-BW  algo-

rithm  is  a  version  of  Expectation  Maximization  (EM)  for  maximum  likelihood  esti-

mation  [ 17].  An  EM  algorithm  works  by  iteratively  using  the  model  parameters  to compute  a  probability  distribution  for  latent  variables,  then  uses  that  distribution  to 

update  the  parameters  [ 17].  Standard-BW  uses  this  technique  to  efficiently  train  an HMM  by  iteratively  adjusting  the.  A,.  B,  and.  π  matrices  to  best  fit  the  given  observation  sequence . O.  Standard-BW  is  a  hill  climb  algorithm,  and  hence  no  iteration  can 

yield  a  worse  model,  and  it  will  always  climb  to  a  local  maximum. 

An Empirical Analysis of Hidden Markov Models with Momentum

175

While  not  explicitly  a  part  of  standard-BW,  the  first  step  in  training  an  HMM  is 

to  initialize  the  matrices .  A, .  B,  and .  π.  This  can  be  done  randomly,  or  by  using  prior knowledge  of  the  problem.  Stamp  [ 23]  recommends  random  values  close  to.1 /N . In any  case,  the  matrices  must  be  made  row  stochastic  as  part  of  the  initialization,  since 

each  row  represents  a  discrete  probability  distribution. 

Because  hill  climb  algorithms  will  only  converge  to  a  local  maximum,  numerous 

random  restarts  are  often  performed  when  training  HMMs.  By  using  different  random 

initializations  for  each  restart,  more  of  the  parameter  surface  can  be  covered  in  search 

of  a  better  local  maximum.  This  makes  the  efficiency  of  standard-BW  critically 

important,  as  many  models  may  be  trained,  with  only  the  best  selected  for  use. 

The  first  step  of  standard-BW  is  to  compute  both  the.  αt (i)  and.  βt (i)  for  each  time step  .  t  using  the  forward  and  backward  algorithms,  as  discussed  above.  Standard-BW  also  computes  the  so-called  di-gamma,  denoted.  γt (i, j),  which  is  defined  as  the probability  of  being  in  state  .  qi  at  time  .  t  and  transitioning  to  state  .  q j  at  .  t + 1. The di-gammas  can  be  computed  as 

 αt(i)aijbj( O t+1 )βt+1 ( j)

.  γt (i, j ) =

 P( O |  λ)

Standard-BW  also  makes  use  of  the.  γt (i)  discussed  above,  which  are  seen  to  be  given by 

 N −1



.  γt (i ) =

 γt(i, j). 

 j =0

Finally,  the  model  parameters  .  A,  .  B,  and  .  π  are  re-estimated  using  the  .  γt (i) and .  γt (i, j)  as  follows: 

. for  i = 0 ,  1 , . . . , N − 1

 πi =  γ 0 (i)

for  i = 0 ,  1 , . . . , N − 1 and  j = 0 ,  1 , . . . , N − 1

 T −2



 T−2



 ai j =

 γt(i, j)

 γt(i)

 t=0

 t=0

for  i = 0 ,  1 , . . . , N − 1 and  j = 0 ,  1 , . . . , M − 1

 T −1



 T−1



 bi ( j) =

 γt(i)

 γt(i)

 t=0

 t=0

O t =  j

These  re-estimation  formulae  are  based  on  expectations  and  they  are  intuitively  clear 

when  viewed  from  the  perspective  of  generalized  frequency  counts  [ 23]. 
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In  summary,  standard-BW  training  consists  of  the  following  steps: 

1.  Compute  the.  αt (i),.  βt (i),.  γt (i, j),  and.  γt (i)  values  using  the  current.  A,.  B,  and.  π

matrices,  and  the  observation  sequence . O. 

2.  Re-estimate .  A, .  B,  and .  π  using  the.  γt (i)  and.  γt (i, j). 

3.  Repeat  until  a  specified  number  of  iterations  is  reached,  or  the  model  score,  which 





is  given  by.log  P( O |  λ) ,  does  not  increase  significantly,  or  other  stopping  criteria is  met. 

 2.5 

 Gradient  Descent 

Gradient  descent  (GD)  is  a  technique  for  iteratively  optimizing  a  function  based 

on  its  first-order  derivative  [ 8]. The  GD  technique  was  first  proposed  by  Cauchy in  1847  [ 14]  and  today  is  a  mainstay  in  the  training  of  machine  learning  and,  especially,  deep  learning  algorithms  [ 24]. 

GD  is  based  on  the  intuitive  principle  that  by  continuously  moving  in  the  direction 

of  steepest  descent,  one  will  eventually  reach  a  local  minimum.  Given  a  function  and 

set  of  parameters,  at  each  iteration  of  gradient  descent,  we  compute  the  gradient  of 

the  function  at  a  specified  point,  then  update  the  parameters  by  taking  a  step  in  the 

direction  of  the  gradient.  Note  that  when  performing  gradient  descent,  the  direction 

of  the  step  is  the  negative  of  the  gradient.  The  term  gradient  ascent  is  used  if  we  move in  the  (positive)  direction  of  the  gradient.  In  ML  and  DL  applications,  the  size  of  the step  is  called  the  learning  rate  and  is  often  denoted  by  .  η.  A  learning  rate  that  is  too large  can  cause  the  algorithm  to  overshoot  a  minimum,  while  a  too-small  learning 

rate  can  require  an  excessive  number  of  iterations.  At  a  local  minimum,  the  gradient 

is  0.  Given  a  learning  rate.  η,  and  an  objective  function.  f  to  be  minimized,  in  gradient descent,  the  model  parameters .  θt  at  step.  t  are  computed  as 

.  θt =  θt−1 −  η f (θt−1 )

(1) 

 2.6 

 Momentum  in  Gradient  Descent 

Gradient  descent  may  struggle  near  saddle  points  or  ravines,  as  the  algorithm  may 

get  stuck  and  be  unable  to  converge,  or  converge  slowly  towards  the  optimum  while 

oscillating  between  the  sides  of  a  ravine  [ 20].  Various  techniques  have  been  proposed to  avoid  saddle  points,  such  as  injecting  noise  [ 10].  Momentum,  as  illustrated  in Fig. 1,  is  a  modification  to  classic  gradient  descent  that  can  improve  performance  by accelerating  training,  while  simultaneously  avoiding  saddle  points.  The  momentum 

term  carries  over  a  portion  of  previous  gradients  vectors,  making  the  direction  at  a 

given  step  a  combination  of  the  current  and  recent  gradients  [ 25]. 
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(a)  Gradient  descent

(b)  Gradient  descent  with  momentum 

Fig.  1  Simplified  gradient  descent  with  and  without  momentum 

Momentum  in  gradient  descent  is  analogous  to  momentum  in  Newtonian 

physics  [ 18]. As  a  an  object  rolls  downwards  on  a  slope,  it  accelerates,  gaining velocity  in  the  direction  of  the  slope,  and  upon  reaching  the  base  of  the  slope,  it  will continue  moving  until  its  momentum  is  exhausted.  If  the  object  encounters  a  small 

hill,  with  sufficient  momentum,  it  will  continue  over  said  hill  while  losing  momentum. 

Momentum  in  GD  behaves  similarly;  although  the  gradient  at  each  individual  step 

may  differ,  movement  in  a  general  direction  will  build  momentum  in  that  direction. 

This  can  result  in  faster  convergence  in  ravines,  as  well  as  potentially  overshooting 

to  escape  a  local  minimum.  However,  if  momentum  is  too  high,  it  can  overshoot  a 

good  minimum  and  result  in  worse  performance. 

The  classic  version  of  momentum  is  calculated  as  a  sum  of  exponentially  decaying 

previous  gradients,  based  on  a  momentum  factor,  say,  .  m ∈ [0 ,  1 ).  Note  that  .  m  is a  hyperparameter  defining  how  much  momentum  should  be  carried  over  at  each 

step.  In  this  formulation,  .  m = 0 is  equivalent  to  standard  gradient  descent  without momentum;  in  practice,  it  appears  that.  m ≈ 0 .  9 often  works  well  [ 8, 20]. Adjusting the  generic  gradient  descent  algorithm  in  (1)  to  include  momentum  yields θt =  θt−1 −  ηf (θt−1 ) +  mvt−1

.  vt =  mvt−1 −  ηf (θt−1 )

2.6.1

Nesterov  Accelerated  Gradient 

Nesterov  momentum,  or  Nesterov  accelerated  gradient  (NAG)  [ 16], is  a  popular alternative  to  the  standard  momentum  algorithm  that  was  discussed  in  the  previous  section.  NAG  outperforms  the  standard  momentum  implementation  in  many 

situations  due  to  increased  stability  and  responsiveness  [ 25].  NAG  is  very  similar to  momentum,  but  reverses  the  order  of  operations—adding  the  momentum  vector 

first,  then  computing  the  gradient  from  the  new  point.  NAG  can  be  formulated  as 

 θt =  θt−1 −  ηf (θt−1 +  mvt−1 ) +  mvt−1

.  vt =  mvt−1 −  ηf (θt−1 +  mvt−1 )
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Fig.  2  Standard  momentum  update  vs  Nesterov  update 

Figure  2  illustrates  how  the  “look  ahead”  gradient  in  NAG  can  change  the  update vector.  In  the  case  where  the  momentum  vector  points  in  a  poor  direction,  NAG  will 

produce  a  better  update  vector  without  waiting  until  the  next  iteration  for  a  correction. 

The  NAG  difference  may  be  small,  but  each  such  difference  is  compounded  over 

many  iterations  [ 25]. 

 2.7 

 Parameterized  EM 

While  momentum  is  commonly  utilized  by  practical  applications  utilizing  gradient 

descent,  it  does  not  seem  to  have  been  explicitly  studied  for  EM-based  algorithms. 

Xu  [ 29]  discusses  a  modified  EM  algorithm  which  scales  the  magnitude  of  each  EM 

update  step  using  a  scaling  factor,  and  refers  to  this  algorithm  as  Momentum  EM 

(MEM).  However,  this  MEM  algorithm  is  more  accurately  described  as  EM  with 

a  learning  rate,  or  “momentum”  involving  only  the  previous  time  step.  Xu  shows 

that  the  MEM  algorithm  is  capable  of  improving  convergence  rates,  and  suggests  a 

heuristic  for  choosing  the  learning  rate.  Xu’s  MEM  approach  is  described  as  param-

eterized  EM  by  Ortiz  and  Kaelbling  [ 17],  who  show  that  it  improves  convergence speed  when  close  to  a  solution. 

Xu  and  Jordan  [ 11]  demonstrate  a  connection  between  EM  algorithms  and  gradient descent  for  Gaussian  mixtures,  specifically  showing  that  the  EM  step  can  be  related 

to  the  gradient  of  a  projection  matrix.  Due  to  such  connections  between  gradient 

descent  and  EM,  it  is  plausible  that  true  momentum  may  be  advantageous  when 

applied  to  EM  algorithms,  such  as  Baum-Welch  as  used  for  training  HMMs. 
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 2.8 

 HMMs  for  Malware  Classification 

HMMs  have  been  extensively  applied  to  malware  problems,  including  detection, 

classification,  and  analysis.  In  this  section,  we  provide  a  selective  survey  that  high-

lights  some  of  the  many  successes  of  HMMs  in  the  malware  domain. 

Annachhatre  et  al. [ 1]  trained  HMMs  using  opcode  sequences  extracted  from  executables  generated  by  several  standard  compilers,  along  with  hand-written  assembly 

and  executables  produced  by  two  metamorphic  malware  generators.  Malware  sam-

ples  from  the  Malicia  dataset  [ 15]  were  then  scored  against  each  model,  and  clustering techniques  were  used  on  the  resulting  vector  of  scores  to  produce  predicted  group-ings  of  the  Malicia  samples.  This  HMM-based  clustering  method  was  able  to  classify 

malware  samples  with  high  accuracy,  despite  not  being  trained  on  any  of  the  specific 

malware  families  in  the  dataset. 

Kale  et  al.  [ 12]  and  Chandak  et  al. [ 5]  both  experimented  with  malware  classification  based  on  HMM  models  themselves,  using  the  flattened.  B  matrix  of  each  model 

as  a  feature  vector.  That  is,  an  HMM  was  trained  on  each  malware  sample,  with  the 

resulting  models  acting  as  the  feature  vectors.  In  these  experiments,  HMM  training 

can  be  viewed  as  a  feature  engineering  step.  These  classification  techniques  were 

successful,  and  illustrate  that  discrete  HMMs  tend  to  be  highly  informative  models. 

Singh  [ 21]  also  deals  with  classification  via  clustering  of  malware  families.  In this  work,  HMMs  were  trained  on  opcode  sequences  of  length  .10 ,  000 for  only  50 

iterations,  then  clustered  using  .  k-means  and  .  k-medioids.  The  effectiveness  of  this approach  varied  by  family,  with  some  families  being  well  clustered  and  others  being 

split  between  numerous  clusters. 

In  Raghavan  et  al.  [ 19], the  classification  accuracy  of  HMMs  trained  with  multiple random  restarts  was  compared  to  that  of  multiple  HMMs  combined  using  AdaBoost. 

In  these  tests,  boosting  showed  little  improvement  over  performing  a  similar  number 

of  restarts,  except  in  the  most  challenging  cases.  In  particular,  in  the  “cold  start” 

problem,  where  limited  training  data  is  available,  boosting  performed  better  than 

simply  taking  the  best  model  based  on  a  similar  number  of  random  restarts. 

Zhao  et  al. [ 32]  compared  discrete  HMMs  to  continuous  Gaussian  Mixture  Model-Hidden  Markov  Models  (GMM-HMM).  For  opcode  sequences,  GMM-HMMs  per-

formed  similarly  to  discrete  HMMs,  while  requiring  additional  hyperparameter  tun-

ing.  However,  GMM-HMMs  proved  superior  in  the  case  of  continuous  data  derived 

from  entropy-based  features. 

3 

Implementation 

In  this  section  we  introduce  two  types  of  momentum,  in  the  context  of  Baum-Welch 

re-estimation.  We  then  briefly  consider  the  issue  of  missing  observations,  which  leads 

us  to  the  topic  of  smoothing. 
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 3.1 

 Momentum  for  Baum-Welch 

Our  basic  version  of  momentum  mimics  momentum  as  typically  used  in  gradient 

descent.  In  gradient  descent,  the  current  update  is  a  product  of  the  learning  rate 

and  current  gradient,  and  momentum  is  a  function  of  these  recent  updates  [ 20]. 

Due  to  the  lack  of  an  explicit  gradient  in  Baum-Welch,  the  update  step  is  instead 

computed  using  the  differences  in  model  parameters  before  and  after  standard-BW 

re-estimation.  This  can  be  considered  a  discrete  analog  of  a  continuous  gradient.  The 

standard-BW  algorithm  with  momentum,  which  we  refer  to  as  momentum-BW,  can 

be  summarized  as  follows: 

1.  Run  standard-BW  to  re-estimate .  A, .  B,  and .  π  as  usual 

2.  Compute  the  difference  between  parameters  before  and  after  re-estimation 

3.  Add  the  current  momentum  to  the  re-estimated  matrices 

4.  Update  momentum  using  the  difference  found  in  step  2 

5.  If  the  stopping  criteria  is  not  met,  goto  1. 


In  this  momentum-BW  algorithm,  momentum  is  tracked  individually  for  each  param-

eter,  which  is  accomplished  by  creating  momentum  matrices  corresponding  to  the 

three  matrices  of  the  model,  namely, .  A, .  B,  and .  π.  Each  momentum  matrix  element is  initialized  to  0  at  the  start  of  training,  as  no  momentum  exists  prior  to  the  first iteration.  A  hyperparameter  .  m  is  used  to  control  the  amount  of  momentum  carried 

over  at  each  iteration. 

The  momentum-BW  update  can  be  formulated  as  follows.  Let  .  vt  represent  the 

current  momentum  at  time 



.  t ,  with  .  A,  .  B,  and  . 

 π  being  the  momentum  matrices 

for  a  model  .  λ =  (A, B, π).  First,  the  usual  standard-BW  update  is  performed.  We define  .  F (λ)  as  the  function  performing  the  standard-BW  update,  as  described  in 

Sect. 2.4,  for  the  model  .  λ =  (A, B, π).  With  this  notation,  the  Baum-Welch  update at  iteration .  t  can  then  be  written  as 

.  λt =  F (λt−1 )

where .  λt  represents  the  model  parameters  at  iteration.  t. 

For  momentum-BW,  at  iteration .  t,  we  first  compute  the  standard-BW  update 

.  λ =  F (λ

 t

 t−1 )

and  the  difference  between  this  update  and  the  previous  iteration 

.  λ =  λ −  λ

 t

 t−1

Let 

.  λ  represent  the  current  momentum,  as  determined  at  the  previous  iteration.  Then 

we  obtain  our  updated  model  as 

.  λt =  λ + 

 λ

 t
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Finally,  we  update  the  momentum  for  the  next  iteration  as 



.  λ =  m(

 λ +  λ)

Of  course,  the  row  stochastic  conditions  must  be  enforced  when  computing  the 

updated  model .  λt . 

To  make  the  momentum  process  somewhat  more  concrete,  consider  the  state  tran-

sition  matrix



.  A = { ai j }.  Assuming  that  .  A = {

 ai j } is  the  current  momentum  matrix, 

then  the  momentum-BW  update  is  computed  as 

 T −2



 T−2



 a =

 γ

 γ

 i j

 t (i, j )

 t (i )

 t=0

 t=0

.  ai j =  a −  a

 i j

 i j

 ai j =  a + 

 a

 i j

 i j



 ai j =  m(

 ai j +  ai j )

for .  i, j = 0 ,  1 , . . . , N − 1,  where.  A = { ai j } is  the  updated  matrix,  and  the  momentum  matrix  for  the  next  iteration  is 

.  A = {

 ai j }. 

Following  the  addition  of  momentum  to  each  of  the  .  A,  .  B,  and  .  π  matrices,  an additional  step  is  required  to  fix  the  updated  values.  Because  negative  momentum 

may  cause  a  parameter  to  become  less  than  zero,  any  non-positive  values  are  changed 

to  a  small  positive  number.  This  avoids  any  negative  parameters  while  also  removing 

zero  probabilities  from  the  model.  Finally,  each  row  of  the  .  A,  .  B,  and  .  π  matrices  is normalized  so  that  the  matrices  are  row  stochastic. 

It  is  worth  noting  that  the  momentum-BW  algorithm  is  not  a  true  hill-climb. 

Momentum  may  cause  the  algorithm  to  overshoot  a  local  maximum  resulting  in  a 

potential  decrease  in  model  score  at  an  iteration.  Of  course,  this  may  result  in  the 

model  ultimately  climbing  to  a  higher  local  maximum,  which  is  one  of  the  potential 

advantages  of  momentum-BW  over  the  standard-BW  algorithm. 

 3.2 

 Nesterov  Momentum 

The  Nesterov  Accelerated  Gradient  (NAG)  approach  requires  some  changes  to  the 

way  that  momentum  is  applied,  as  compared  to  momentum-BW.  Rather  than  adding 

and  updating  momentum  at  the  end  of  each  iteration,  the  momentum  vector  is  added 

at  the  start  of  each  iteration,  prior  to  the  execution  of  Baum-Welch.  Our  Nesterov 

momentum  implementation  of  Baum-Welch,  which  we  refer  to  as  NAG-BW,  can  be 

summarized  as 

1.  Add  momentum  to  the  matrices 

2.  Run  standard-BW  and  re-estimate .  A, .  B,  and .  π  from  these  updated  matrices 3.  Compute  the  difference  between  parameters  before  and  after  re-estimation
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4.  Update  the  momentum  matrices  using  the  difference  in  3 

5.  If  the  stopping  criteria  is  not  met,  goto  1. 

For  a  model.  λ,  momentum  matrices.  v,  momentum  hyperparameter.  m,  and  Baum-Welch  update  function .  F ,  our  NAG-BW  update  is  computed  as 

 λ =  λ

 t

 t−1 + 

 λ

 λt =  F(λ )

 t

.  λ =  λt −  λt−1



 λ =  m(

 λ +  λ)

where,  as  above, 

.  λ  represent  the  current  momentum.  As  with  the  base  momentum-

BW  implementation,  any  negative  probabilities  are  replaced  with  a  small  positive 

value,  and  the  matrices  are  normalized  to  be  row  stochastic  after  applying  momentum. 

 3.3 

 Smoothing 

Issues  can  occur  with  the  standard-BW  algorithm  when  zero  probabilities  appear 

in  the  model.  For  example,  suppose  that  a  model  .  λ  is  trained  on  an  observation sequence  that  does  not  contain  a  specific  observation  symbol.  This  will  result  in  a 

zero  probability  for  any  state  producing  that  observation  in  the  final  model.  Scoring 

a  test  sequence  that  contains  the  “missing”  observation  will  then  cause  a  division 

by  zero  error  when  computing  the  scaling  factors  that  appear  in  (2.2). To  prevent this  and  related  issues,  an  option  for  additive  smoothing  is  included  in  our  HMM 

implementation.  Additive  smoothing  works  by  adding  some  designated  small  value 

to  each  count,  ensuring  each  count  is  greater  than  zero,  and  this  eliminating  zero 

probabilities. 

Smoothing  is  performed  during  the  update  step.  The  smoothed  update  operations 

are 

 γ 0 (i) +  s

.  πi =

 Ns



 T −2





 T −2





 ai j =  s +

 γt(i, j)

 Ns +

 γt(i)

 t=0

 t=0



 T −1





 T −1





 bi ( j) =  s +

 γt(i)

 Ms +

 γt(i)

 t=0

 t=0

O t =  j

where .  s  is  a  small  constant.  Note  that  smoothing  is  applied  prior  to  any  momentum updates.  By  smoothing  in  this  manner,  zero  probabilities  are  avoided,  while  the  matri-
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ces  remain  row  stochastic.  Examples  of  models  involving  smoothing  are  considered 

in  Sect. 4.2, below. 

4 

Experiments  and  Results 

In  this  section,  we  provide  empirical  results  of  HMMs  trained  with  momentum. 

First,  we  consider  the  use  of  momentum  in  a  classic  HMM  English  text  model.  We 

then  present  extensive  experimental  results  where  HMMs  are  applied  to  the  malware 

classification  problem. 

 4.1 

 Momentum  and  English  Text 

In  this  section,  as  an  elementary  test  case  of  the  effectiveness  of  momentum,  we 

consider  the  problem  of  training  HMMs  on  English  text.  This  problem  first  appeared 

in  the  seminal  paper  of  Cave  and  Neuwirth  [ 4],  and  also  appears  in  the  tutorial  [ 23], where  it  is  used  to  introduce  many  of  the  key  concepts  of  HMMs. 

4.1.1

Momentum-BW  for  English  Text 

We  measure  the  effectiveness  of  momentum  by  comparing  model  scores  during 

HMM  training,  both  with  and  without  momentum,  using  identical  hyperparameters. 

English  text  samples  are  constructed  by  extracting  character  sequences  of  length  .  T

from  the  Brown  Corpus  of  English  text  [ 26]. A  vocabulary  consisting  of  alphabetic characters  A through  Z,  plus  word  space  is  used  for  all  experiments.  Upper  and 

lowercase  characters  are  considered  identical,  and  all  other  characters  (other  than 

word  space)  are  ignored  in  the  input  text,  for  a  total  of.  M = 27 possible  observations. 

The  corpus  version  used  does  not  include  spaces  between  words  separated  by  line 

breaks,  so  an  additional  space  character  is  added  at  the  end  of  each  line. 

Unless  otherwise  specified,  models  are  initialized  randomly  using  a  continuous 

uniform  distribution,  then  normalized  to  ensure  that  each  matrix  is  row  stochastic. 

Each  model  is  trained  for  500  iterations  with  100  random  restarts,  and  we  report  the 

average  case  over  each  of  these  100  random  restarts.  The  number  of  hidden  states 

was  chosen  to  be .  N = 27 to  match  the  number  of  observation  symbols. 

Figure  3  gives  the  mean  difference  in  score  across  100  restarts  for  HMMs  trained on  .  T = 10 ,  000 observations  using  the  momentum-BW  algorithm,  for  varying  levels  of  momentum.  On  average,  models  with  momentum  converge  slightly  faster 

than  those  without,  with  similar  or  slightly  improved  final  scores.  However,  higher 

momentum  values  tend  to  overshoot  as  convergence  slows,  resulting  in  worse  scores 

for  a  number  of  iterations—the  higher  the  momentum,  the  larger  the  overshoot  period 

and  the  longer  it  takes  to  recover.  The  high  momentum  value  of  .  m = 0 .  9 results  in

[image: Image 39]
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Fig.  4  First  50  iterations  for.  T = 10 ,  000 with.  m = 0 .  5

a  larger  increase  in  mean  score  during  early  iterations,  with  a  lower  momentum 

of  .  m = 0 .  3 producing  a  more  stable  result,  that  is  almost  indistinguishable  from standard-BW. 

Also  of  note  is  the  large  dip  in  momentum  scores  during  the  first  few  iterations, 

which  quickly  recovers.  Figure  4  emphasizes  this  aspect  by  showing  only  the  first fifty  iterations  for .  m = 0 .  5.  At  iteration  0,  the  models  with  and  without  momentum perform  the  same,  as  no  momentum  has  been  generated.  However,  as  with  the  later 

overshoot,  the  large  changes  in  the  model  during  the  first  iterations  creates  excessive 

momentum,  causing  a  major  decrease  in  score  for  one  iteration. 

Reducing  the  observation  sequence  length  from  .  T = 10 ,  000 to  .  T = 1000 does not  significantly  change  the  behavior  and  hence  we  omit  the  graphs  for  this  case.  As 

with  the.  T = 10 ,  000 case,  the  trend  of  an  initial  increase  in  score  remains  consistent across  momentum  values,  but  as  the  curve  levels  off,  momentum  at  lower  sequence 

lengths  results  in  more  negative  changes  in  score.  This  indicates  that,  as  expected, 

with  less  training  data,  the  momentum  carried  over  is  less  informative,  and  therefore 

less  beneficial. 

As  mentioned  above,  momentum  built  up  during  initial  convergence  can  result 

in  lingering  negative  effects  on  model  score  during  the  latter  iterations  of  training. 

To  isolate  and  observe  momentum  for  just  the  tail,  we  train  models  with  momen-

tum  disabled  for  varying  numbers  of  iterations  at  the  start  of  training.  These  tests 

use  a  training  sequence  length  of  .  T = 1000 and  a  momentum  value  of  .  m = 0 .  9. 

Figure  5  shows  the  difference  in  scores  over  time  when  momentum  is  disabled  for the  first  25,  35,  50,  100,  and  200  iterations.  For  this  test  case,  it  takes  on  average between  35  and  50  iterations  before  momentum  stops  overshooting. 

[image: Image 41]
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Fig.  5  Tail-only  momentum  score  change 

4.1.2

NAG-BW  for  English  Text 

In  this  section,  we  reproduce  the  same  experiments  of  the  previous  section,  but  with 

Nesterov  momentum,  that  is,  here  we  use  NAG-BW  for  HMM  training,  instead  of 

momentum-BW.  Figure  6  depicts  scenarios  identically  to  those  in  Fig. 3, but  using Nesterov  momentum.  We  observe  that  at  the  high  momentum  value  of.  m = 0 .  9, Nesterov  momentum  results  in  the  models  consistently  failing  to  converge.  Otherwise, 

Nesterov  momentum  demonstrates  the  same  overshoot  behavior  that  we  observed 

above,  with  drops  in  score  during  the  first  few  iterations  and  again  after  initial  con-

vergence.  While  unusable  at  the  highest  momentum  value  tested,  at  lower  values 

Nesterov  momentum  generally  produces  slightly  larger  peak  score  increases  during 

early  iterations.  Nesterov  momentum  also  results  in  a  greater  mean  final  increase  in 

score  after  a  high  number  of  iterations. 

Table  2  compares  the  difference  in  scores  at  a  select  set  of  iterations.  NAG-BW 

training,  with  Nesterov  momentum,  seems  to  generally  outperform  momentum-BW 

training,  with  its  standard  momentum  implementation,  but  with  NAG-BW,  there  is 

a  risk  that  convergence  will  fail  if  the  momentum  hyperparameter .  m  is  set  too  high. 

4.1.3

Number  of  Hidden  States 

To  determine  how  the  number  of  hidden  states  interacts  with  momentum,  we  com-

pare  the  effects  of  momentum  on  HMM  English  text  models  with  .  N = 2,  .  N = 10, and .  N = 27.  Tests  with .  N = 2 show  almost  no  difference  with  or  without  momentum,  as  demonstrated  in  Fig. 7.  The  previously  observed  behavior  of  a  sharp  initial dip  followed  by  a  positive  spike  continues,  but  excluding  the  initial  negative  spike, 

changes  in  score  are  negligible  for  both  standard  and  Nesterov  momentum. 

[image: Image 42]
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Fig.  7  Momentum-BW  versus  NAG-BW  (.  N = 2 and.  m = 0 .  5) 

Increasing  the  number  of  hidden  states  to .  N = 10 and.  N = 27, as in Fig.  8, produces  much  more  significant  changes  in  momentum-BW  and  NAG-BW  scores,  as 

compared  to  the  baseline  standard-BW  training.  These  experiments  indicate  that 

momentum  is  likely  to  be  more  impactful  at  higher  values  of .  N .  A  plausible  explanation  for  this  behavior  is  that  models  with  low  numbers  of  hidden  states  are  less 

complex  and  more  easily  optimized,  leaving  little  opportunity  for  momentum  to 

affect  the  training. 

4.1.4

Plateaus 

While  the  result  above  shows  that  momentum  can  slightly  improve  the  speed  of  initial 

convergence,  the  reduction  in  the  number  of  iterations  before  training  levels  off  is 

fairly  small.  However,  our  experiments  demonstrate  significant  speedup  for  cases 

in  which  training  scores  plateau  early  before  eventually  converging.  Such  a  plateau 

can  be  produced  by  initializing  English  text  models  with  values  such  that  .  πi ≈

1 /N ,  .  ai j ≈ 1 /N ,  and  .  bi ( j) ≈ 1 /M,  as  recommended  in  [ 23]  for  cases  where  little Table  2  Change  in  score 

BW  variant

.  m

Iteration 

5

15

25

50

100

200

500 

Momentum-BW  .0 .  9

. −108

2108

. −318

. −1250

. −1309

. −282

56 

Momentum-BW  .0 .  5

21

2313

465

. −120

4

55

88 

Momentum-BW  .0 .  3

24

1618

486

5

8

29

40 

NAG-BW

.0 .  5

246

2890

241

. −275

. −12

84

116 

NAG-BW

.0 .  3

77

2443

640

13

21

50

69
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is  known  about  the  underlying  data.  We  train  HMMs  using  momentum-BW  with 

this  initialization  scheme  for  500  iterations,  100  random  restarts, .  N = 27,.  M = 27, and.  T = 10 ,  000.  Figure  9a, b  show  that  momentum  reduces  the  number  of  required iterations  for  this  case  from  about  200  to  about  50.  Momentum  breaks  out  of  early 

plateaus  even  at  the  lowest  value  of .  N = 2,  as  shown  in  Fig. 9c, d. 

4.1.5

Momentum  Scheduling 

In  gradient  descent,  learning  rate  schedules  are  frequently  used  to  dynamically  control 

the  learning  rate,  based  on  a  predetermined  function.  Because  the  gradient  descent 

momentum  update  is  dependent  on  the  learning  rate,  learning  rate  scheduling  also 

indirectly  influences  the  amount  of  momentum  at  each  step.  While  our  previous 

momentum-BW  and  NAG-BW  experiments  used  a  static  momentum  value,  it  is 

unlikely  that  a  single  momentum  value  will  produce  optimal  results  at  all  points  in 

training.  Here,  we  consider  experiments  to  test  momentum  scheduling. 

As  demonstrated  in  Figs. 3  and  6, momentum-BW  and  NAG-BW  generally  produce  positive  changes  early  and  late  in  training,  but  tend  to  overshoot  as  training 

slows,  particularly  at  higher  momentum  values.  As  a  na¨ıve  solution,  we  implement 

a  momentum  schedule  in  which  the  momentum  is  set  to  0  for  a  predetermined  range 

of  iterations.  Figure  10  displays  an  example  of  the  difference  in  training  behavior with  and  without  this  na¨ıve  momentum  schedule.  Disabling  momentum  between 

iterations  50  and  100  for  this  model  produces  a  smoother  curve,  and  effectively 

eliminates  the  overshoot. 

Extending  this  method  to  also  exclude  momentum  for  the  first  iteration  eliminates 

the  negative  score  differential  in  the  first  few  iterations.  As  shown  in  Fig. 11, the  combination  of  skipping  momentum  for  both  problematic  periods  results  in  a  smoother 

training  curve.  Removing  momentum  at  the  first  iteration  causes  the  model  to  take 

slightly  longer  to  start  converging,  but  this  is  offset  by  higher  peak  increases  in  score. 

The  downside  of  such  a  manual  scheduling  approach  is  that  it  requires  prior  testing 

Fig.  8  Comparison  of  number  of  hidden  state  (.  N = 10 vs.  N = 27)

[image: Image 45]
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or  knowledge  of  the  general  period  in  which  overshoot  occurs  for  the  given  model. 

Fig.  9  Comparison  of  momentum  plateaus 

Fig.  10  No  momentum  for  iterations  50  to  100

[image: Image 47]

An Empirical Analysis of Hidden Markov Models with Momentum

191

Fig.  11  No  momentum  for  iterations  1  and  50  to  100 

The  obvious  solution  is  an  adaptive  momentum  schedule  that  dynamically  modifies 

the  parameter .  m  based  on  current  training;  in  effect, .  m  should  be  learned  as  part  of the  training. 

 4.2 

 Malware  Classification 

We  now  consider  HMMs  trained  on  malware  opcode  sequences  to  test  the  effects  of 

momentum  on  model  classification  accuracy.  These  malware  classification  experi-

ments  aim  to  determine  if  the  increases  in  scores  observed  for  the  English  text  models 

discussed  above  translate  into  improvements  in  a  practical  application.  We  conduct 

two  sets  of  experiments,  involving  distinct  malware  datasets. 

4.2.1

Malicia  Dataset 

Our  first  set  of  malware  experiments  involves  the  popular  Malicia  malware 

dataset  [ 15]. The  Malicia  dataset  that  we  use  contains  8283  malware  executables from  various  malware  families,  along  with  a  mnemonic  opcode  sequence  extracted 

from  each  executable.  These  opcode  sequences  were  generated  using  the  IDA  Pro 

disassembler  [ 9]. The  dataset  is  dominated  by  three  families:  Winwebsec,  Zeroaccess,  and  Zbot;  as  shown  in  Table  3, these  three  families  account  for  about  94%  of the  dataset,  with  the  next  largest  family  containing  only  74  executables.  All  of  our 

Malicia  experiments  are  based  on  these  three  dominant  families. 

To  minimize  model  complexity,  and  consistent  with  previous  work,  only  the  top  29 

most  frequently  occurring  opcodes  across  the  three  families  are  used.  All  opcodes 

outside  this  top  29  are  combined  into  a  single  “other”  category,  giving  us  a  total  of  30
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Table  3  Number  of  Malicia  malware  files  by  family 

Family

Samples 

Winwebsec

4360 

Zbot

2136 

Zeroaccess

1305 

All  other

482 

Table  4  Percentage  of  opcodes  in  top  29 

Family

Percentage 

Winwebsec

96.31 

Zbot

92.42 

Zeroaccess

95.00 

All  samples

95.34 

distinct  observation  symbols.  This  “other”  opcode  category  contains  less  than  5% 

of  the  total  opcodes  for  each  the  three  families,  as  can  be  seen  in  Table  4.  The  effectiveness  of  grouping  infrequently  occurring  opcodes  was  demonstrated  in  several 

research  papers;  see,  for  example,  Zhao  et  al  [ 32].  Because  of  this  grouping  method, all  models  considered  in  this  section  have .  M = 30. 

To  determine  the  effectiveness  of  momentum  on  individual  models,  we  train  an 

HMM  for  each  family  using  opcode  sequences  belonging  to  that  family.  Classification 

is  performed  by  scoring  a  given  test  sample  against  each  of  these  three  family  models. 

Because  the  magnitude  of  the  score  is  dependent  on  sequence  length,  scores  are 

normalized  by  the  length  of  the  test  sequence  to  produce  a  Log  Likelihood  Per  Opcode 

(LLPO)  score.  After  generating  the  three  normalized  LLPO  scores,  the  resulting  score 

vectors  are  used  to  train  a  linear  Support  Vector  Machine  (SVM)  that  is  then  used  for 

classification.  Five-fold  stratified  cross  validation  is  used  when  training  the  SVM. 

The  mean  balanced  accuracy  across  each  fold  is  used  as  a  metric  to  determine  the 

effectiveness  of  a  given  trio  of  family  models.  This  process  is  repeated  100  times 

for  each  experiment  with  random  HMM  initializations,  and  the  results  averaged  to 

produce  a  final  accuracy  metric  for  a  set  of  HMM  training  parameters. 

Training  sequences  for  a  given  family  are  chosen  by  randomly  sampling  opcode 

files  for  the  specified  family,  without  replacement,  until  a  combined  total  length  of.  T

is  reached.  The  test  set  for  a  given  run  is  comprised  of  all  non-training  samples  from 

each  family  for  that  run. 

For  our  experiments,  we  use  a  default  sequence  length  of.  T = 10 ,  000.  Due  to  this relatively  small  training  sequence  length,  it  is  possible  for  opcodes  to  occur  in  testing that  are  not  seen  during  training.  This  causes  computation  errors  in  HMM  scores, 

making  such  test  sample  unusable  for  the  SVM.  To  solve  this  problem,  a  smoothing 

value  of  .  s = 0 .  01 is  used  to  prevent  zero  probabilities  in  the  models.  Recall  that smoothing  was  discussed  in  Sect. 3.3,  above. 

[image: Image 48]
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Fig.  12  Training  score  curves  for  NAG-BW  with.  m = 0 .  4

Tests  are  performed  with .  N = 20,.  M = 30,.  T = 10 ,  000,  and  a  smoothing  value of  .  s = 0 .  01 with  a  NAG-BW  (i.e.,  Nesterov  momentum)  and  a  momentum  value of.  m = 0 .  4.  The  relatively  high.  N  was  chosen  based  on  similar  experiments  in  [ 32], where  more  noticeable  score  differences  are  detected  at  higher  numbers  of  hidden 

states.  Each  experiment  is  repeated  100  times  for  a  total  of  100  models  trained 

per  family.  Figure  12  shows  that  NAG-BW  produces  similar  changes  to  average training  behavior  as  in  our  eariler  English  text  examples.  Training  curves  showing 

the  effects  of  momentum  differ  slightly  between  each  family,  but  follow  the  general 

trend  observed  in  Sect. 4.1, above. 

From  Fig. 12, we  observe  that  after  500  iterations,  the  Zbot  models  show  a  mean score  increase  of  194,  while  Winwebsec  and  Zeroaccess  increase  by  17  and  13  respectively.  However,  SVM  classification  accuracy  does  not  demonstrate  any  significant 

change  with  momentum,  changing  from  an  average  balanced  accuracy  of  96.03% 

to  95.92%.  Accuracies  with  and  without  momentum  for  models  trained  for  varying 

numbers  of  iterations  are  listed  in  Table  5.  Changing  the  number  of  iterations  does not  significantly  affect  SVM  classification  accuracy.  Even  after  only  two  iterations, 

the  SVM  achieves  over  90%  accuracy.  This  indicates  that  the  SVM  remains  a  strong 

classifier,  even  with  weaker  HMM  results. 
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Table  5  SVM  classification  accuracy  at  various  iterations 

Iteration

.   Score

Accuracy 

Standard-BW

NAG-BW 

2

.−4520

0.9362

0.9370 

15

3501

0.9534

0.9585 

25

508

0.9585

0.9600 

50

265

0.9602

0.9605 

200

106

0.9606

0.9589 

500

75

0.9603

0.9592 

Table  6  .   Score  and  AUC  at  500  iterations 

Family

.   Score

AUC 

Standard-BW

NAG-BW 

Winwebsec

17

0.8779

0.8782 

Zbot

194

0.8750

0.8809 

Zeroaccess

13

0.7609

0.7584 

All  samples

75

0.8379

0.8392 

Because  the  intermediate  SVM  step  appears  to  be  compensating  for  changes  in  the 

HMMs,  we  also  test  the  HMM  scores  directly  via  one-vs-rest  classification.  In  this 

case,  the  classification  performance  of  each  model  is  measured  relative  to  its  Receiver 

Operating  Characteristic  (ROC)  curve.  An  ROC  curve  is  obtained  by  plotting  the  true 

positive  rate  versus  the  false  positive  rate  over  all  possible  thresholds  [ 24].  The  Area Under  the  ROC  Curve  (AUC)  is  between  0  and  1,  and  can  be  interpreted  as  the 

probability  that  a  randomly  selected  positive  instance  scores  higher  than  a  randomly 

selected  negative  instance  [ 3]. We  use  this  AUC  statistic  as  a  metric  for  our  one-versus-rest  experiments. 

Table  6  shows  that  after  500  iterations,  the  combined  AUC  of  all  families  is  almost identical  with  or  without  momentum.  While  the  larger  increase  for  Zbot  results  in 

a  minor  AUC  increase  of  .0 .  0059,  there  is  minimal  change  for  Winwebsec,  and  a 

decrease  in  average  AUC  of  .−0 .  0025 for  Zeroaccess.  This  indicates  that  the  small score  differences  on  the  tail  end  of  training  may  not  meaningfully  contribute  to  model 

performance,  and  may  even  be  an  artifact  of  overfitting. 

Next,  we  compute  the  AUC  after  only  15  iterations,  which  is  during  the  period 

of  maximum  changes  in  scores  with  momentum.  Figure  13  depicts  the  mean  training  scores  for  each  family  over  the  first  15  iterations.  Table  7  compares  the  mean change  in  score  for  each  family  to  the  AUC  after  these  same  15  iterations.  The  score 

differences  result  in  a  larger  combined  AUC  increase  of  0.023  with  momentum.  As 

with  the  English  text  examples,  this  shows  that  momentum  is  able  to  improve  model 

classification  performance  during  the  early  training  period. 

[image: Image 49]
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Fig.  13  Training  scores  curves  for  first  15  iterations 

Table  7  .   Score  and  AUC  at  15  iterations 

Family

.   Score

AUC 

Standard-BW

NAG-BW 

Winwebsec

1372

0.8533

0.8606 

Zbot

925

0.8302

0.8501 

Zeroaccess

1204

0.6911

0.7333 

Total

1167

0.7915

0.8147 

Training  using  NAG-BW  for  the  full  500  iterations  results  in  an  additional  AUC 

increase  of  0.025  as  compared  to  only  15  iterations.  This  indicates  that  the  usefulness 

of  momentum  may  be  optimal  for  applications  that  train  for  a  small  number  of 

iterations,  such  as  situations  where  training  time  is  limited,  resources  for  training 

are  limited,  a  large  number  of  models  must  be  trained  in  a  short  period  of  time,  and 

other  similar  constraints  are  applicable.  Table  8  lists  the  total  AUC  at  various  points in  training.  By  50  iterations,  AUC  without  momentum  closes  the  gap,  and  the  AUC 

only  shows  minor  increases  after  that  point. 
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Table  8  Total.   Score  and  AUC  at  select  iterations 

Iteration

.   Score

AUC 

Standard-BW

NAG-BW 

2

.−4520

0.7431

0.7444 

15

1167

0.7915

0.8147 

25

508

0.8189

0.8332 

50

265

0.8338

0.8378 

200

107

0.8378

0.8387 

500

75

0.8379

0.8392 

Table  9  .   Score  and  AUC  at  15  iterations  (1  vs  5  restarts) 

Restarts

.   Score

AUC 

Standard-BW

NAG-BW 

1

1167

0.7915

0.8147 

5

1169

0.7955

0.8203 

Unsurprisingly,  increasing  the  number  of  restarts  per  run  to  5  results  in  a  minor 

increase  in  score  and  AUC.  Table  9  compares  score  differences  and  AUC  after  15 

iterations  for  1  restart  versus  5  restarts. 

Additionally,  we  experiment  with  various  choices  of.  N  in  order  to  observe  how  the chosen  number  of  hidden  states  influences  the  performance  of  momentum.  For  these 

experiments,  each  model  is  trained  using  NAG-BW  for  300  iterations  with.  M = 30, 

.  T = 10 ,  000,  and  a  Nesterov  momentum  value  of  .  m = 0 .  4.  Changes  in  AUC  and accuracy  are  compared  for.  N ∈ {2 ,  5 ,  10 ,  15 ,  20} hidden  states,  with  AUC  statistics computed  at  iterations  5,  10,  15,  20,  25,  35,  50,  100,  200,  and  300.  Figure  14a  depicts the  changes  in  AUC  at  the  specified  iterations  for  each.  N  tested,  while  Fig. 14b shows analogous  results  for  the  SVM  accuracy.  At  early  iterations,  higher  numbers  of  hidden 

states  result  in  larger  changes  in  AUC  with  momentum,  while  later  iterations  show 

minimal  change  regardless  of  .  N .  The  SVM  classification  results  are  similar,  with greater  increases  in  accuracy  during  early  training  at  higher.  N .  These  results  tend  to indicate  that  momentum  is  more  beneficial  for  more  complex  models,  as  represented 

by  larger.  N ,  but  has  minimal  impact  when  dealing  with  simpler  models,  where.  N  is smaller.  These  findings  align  well  with  the  English  text  experiments  in  Sect. 4.1.3, above. 

We  have  conducted  similar  tests  to  determine  whether  the  amount  of  training 

data  affects  model  performance  with  momentum.  Here,  models  are  trained  with 

and  without  momentum  while  varying  the  total  length  of  the  observation  sequences 

from  .  T = 100 to  .  T = 100 ,  000.  HMMs  are  trained  using  NAG-BW,  with  .  N = 10

and.  M = 30,  and  momentum.  m = 0 .  4,  with  scoring  performed  at  each  of  iteration  5, 10,  15,  20,  25,  35,  50,  100,  200,  and  300.  Figure  15a  shows  that  changes  in  AUC 

remain  relatively  consistent  despite  significant  variance  in  the  amount  of  training

[image: Image 50]
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Fig.  14  Change  in  AUC  and  accuracy  due  to  momentum 

Fig.  15  Changes  in  AUC  and  SVM  for  cold  start 

data,  with  the  exception  of .  T = 100. At.  T = 100,  momentum  does  not  produce  the expected  increase  in  AUC  at  early  iterations.  The  small  amount  of  data  available 

in  this  case  likely  causes  the  model  to  overfit  more  quickly.  With  respect  to  SVM 

accuracy,  Fig. 15b  shows  that  early  momentum  actually  seems  to  perform  slightly better  with  lower  amounts  of  training  data,  peaking  at.  T = 1000.  In  addition,  at.  T =

50 ,  000 and  above,  momentum  results  in  a  small  negative  dip  in  score  between  25 

and  35  iterations.  The  overall  curve  is  much  rougher  and  less  consistent  than  the 

AUC,  but  changes  in  accuracy  at  later  iterations  are  minimal  or  slightly  negative  for 

all.  T .  These  results  show  that  momentum  is  worth  considering  for  challenging  “cold start”  problems,  where  training  data  is  limited. 

[image: Image 52]
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Fig.  16  Number  of  executables  for  the  15  families  used 

4.2.2

Extended  Malware  Dataset 

In  order  to  experiment  with  a  more  challenging  and  realistic  scenario,  we  next  con-

sider  a  large  malware  dataset  containing  131,072  malware  executables  [ 13]. Of  these, 58,679  are  labeled  as  belonging  to  known  malware  families.  We  use  the  IDA  disassembler  [ 9]  to  produce  a  mnemonic  opcode  sequence  for  each  labeled  sample,  as was  done  in  Sect. 4.2.1, above,  for  the  Malicia  dataset. 

Our  experiments  consist  of  multiclass  classification  utilizing  15  of  the  largest 

families,  containing  a  total  of  19,705  malware  samples.  Figure  16  lists  these  families, along  with  the  total  number  of  samples  for  each.  As  with  the  Malicia  dataset,  the  most 

frequent  29  opcodes  across  these  15  families  are  considered  as  unique  observations, 

with  all  other  opcodes  being  categorized  a  single  “other”  observation.  The  top  29 

opcodes  comprise  in  excess  of  90%  of  the  observations  for  most  families,  as  indicated 

in  Fig. 17.  Cycbot.G  is  an  outlier,  with  less  frequent  opcodes  occurring  at  a  rate of  26%.  Figure  18  lists  the  observed  opcodes  and  their  frequencies. 

A  single  HMM  is  trained  for  each  family  based  on  training  sequences  belonging  to 

that  family  with  total  combined  length.  T = 100 ,  000.  Training  splits  for  each  family are  generated  as  in  Sect. 4.2.1  by  randomly  selecting  samples  from  a  specific  family until  the  combined  sequence  length  reaches .  T .  Once  a  sample  is  used  in  training,  it cannot  be  selected  again  for  training.  All  samples  not  used  for  training  are  combined 

into  a  single  test  set,  with  test  samples  scored  against  each  family  model  to  determine 

the  likelihood  of  belonging  to  that  family.  Each  test  score  is  normalized  by  sequence

[image: Image 53]
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Fig.  17  Top  29  opcodes  percentage  for  each  family 

Fig.  18  Opcode  frequency  for  15  families 

length  to  produce  a  LLPO  score,  so  that  scores  for  sequences  of  different  lengths  are 

comparable.  Scoring  is  performed  after  each  of  iterations  5,  10,  15,  20,  25,  35,  50, 

100,  200,  and  300.  For  each  set  of  parameters,  the  process  is  repeated  100  times  with 

a  unique  set  of  training  sequences  for  each  run. 

[image: Image 55]
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To  compare  the  effects  of  momentum  on  model  performance,  identical  experi-

ments  are  conducted  with  and  without  Nesterov  momentum.  Experiments  are  per-

formed  using  .  N = 10,  .  M = 30,  and  .  T = 100 ,  000,  and  a  smoothing  value  of  .  s =

0 .  001.  Models  are  trained  for  300  iterations  with  a  single  initial  restart.  For  our  NAG-BW  experiments,  a  momentum  value  of .  m = 0 .  4 is  used.  We  select.  N = 10 hidden states  for  reasonable  model  training  times.  Classification  performance  of  the  models 

is  again  measured  using  the  AUC  statistic  derived  from  ROC  curves  (one-vs-rest 

case),  and  SVM  balanced  accuracy  (classification  based  on  HMM  model  scores). 

SVM  training  is  performed  using  five-fold  stratified  cross  validation,  with  perfor-

mance  measured  by  averaging  the  balanced  accuracy  across  each  fold.  SVMS  are 

trained  using  the  RBF  kernel  with  regularization  parameter.  C = 10,  as  we  found  that this  kernel  increases  accuracy  by  about  6%  as  compared  to  the  linear  kernel  used  in 

the  Malicia  experiments. 

Overall  changes  in  model  score  due  to  NAG-BW  momentum  follow  the  pattern 

found  in  the  English  text  and  Malicia  experiments,  with  an  initial  sharp  dip  in  score 

due  to  overshoot  followed  by  improved  scores  during  the  period  of  initial  conver-

gence.  Figure  19  shows  the  mean  change  in  score  caused  by  momentum  across  all families,  with  significant  increases  in  score  leveling  off  after  roughly  25  iterations. 

Inspecting  the  baseline  models  trained  without  momentum  shows  significant  vari-

ance  in  AUC  between  each  family,  as  can  be  observed  in  Fig. 20. For  example, Allaple.A  and  Cycbot.G  have  mean  AUCs  near  1.0,  leaving  little  room  for  any  positive  changes  with  momentum,  yet  about  half  of  the  15  families  produce  models  with 

a  very  poor  average  AUC  between.0 .  5 and.0 .  6;  Zbot  is  lowest,  with  an  average  AUC 

just  under .0 .  5.  On  average,  model  AUC  without  momentum  stops  increasing  by  50 

training  iterations.  While  many  families  have  a  poor  AUC  values,  this  research  is 

focused  on  the  difference  in  AUC  caused  by  momentum,  rather  than  the  absolute 

level  of  the  AUC  itself. 

Fig.  19  Mean  change  in  model  score  with  momentum
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Fig.  20  AUC  without  momentum  for  each  family 

Fig.  21  Comparison  of  total  AUC  over  all  families 

Reproducing  these  same  experiments  with  NAG-BW  in  place  of  standard-BW 

results  in  small  increases  in  AUC  early  in  training,  aligning  with  the  period  of  sig-

nificant  score  increases  seen  in  Fig. 19.  A  comparison  of  the  mean  AUC  across all  families  with  and  without  momentum  is  shown  in  Fig. 21a, with  b  showing  the explicit  difference  in  AUC  caused  by  momentum.  Momentum  results  in  an  average 

AUC  increase  of  .0 .  0134 at  10  iterations,  dropping  to  .0 .  002 by  25  iterations.  AUC 

values  with  and  without  momentum  tend  to  converge  as  the  number  of  iterations 

increases,  showing  negligible  differences  by  200  iterations. 

The  difference  in  AUC  for  each  family  due  to  momentum  is  depicted  in  Fig. 22. 

At  10  iterations,  all  families  show  a  net  positive  change  in  AUC  with  momentum. 

Between  25  and  50  iterations,  VBInject,  Zbot,  and  VB  show  negative  changes  in 

model  AUC,  but  all  three  of  these  families  recover  with  no  net  difference  in  AUC 

by  100  iterations,  which  is  likely  the  result  of  momentum  overshooting.  On  the  other 

hand,  Winwebsec  consistently  performs  worse  with  momentum  after  50  iterations. 
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Fig.  22  Change  in  AUC  due  to  momentum 

Fig.  23  Change  in  AUC  due  to  momentum  at  early  iterations 

Most  families  stabilize  at  a  small  net  positive  change  in  AUC  at  later  iterations, 

with  the  exceptions  of  Winwebsec,  Zbot,  VB,  and  FakeRean.  Momentum  produces 

a  positive  or  neutral  change  in  mean  AUC  for  all  other  families  throughout  training. 

The  early  AUC  differences  for  each  family  can  be  viewed  more  clearly  in  Fig. 23. 

The  change  in  SVM  balanced  accuracy  with  momentum  is  displayed  in  Fig. 24. For baseline  models  without  momentum,  accuracy  increases  by  a  mere  1.36%  between  10 

and  300  iterations.  This  appears  to  indicate  that  despite  the  low  AUC  for  many 

individual  models,  the  combination  of  family  scores  is  highly  informative,  even  for 

models  trained  for  few  iterations.  As  with  model  scores  and  AUC,  SVM  accuracy 

shows  the  greatest  increase  at  early  iterations,  declining  to  just  below  zero  after  25 

iterations.  The  difference  in  accuracy  shows  continuous  growth  after  25  iterations, 

with  a  0.1%  increase  in  accuracy  due  to  momentum  at  300  iterations.  While  minor, 
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Fig.  24  Comparison  of  SVM  accuracy  with  and  without  momentum 

the  small  average  score  change  with  momentum  at  later  iterations  does  appear  to 

positively  influence  the  SVM.  As  models  were  only  trained  for  300  iterations,  it  is 

not  clear  for  how  many  iterations  this  trend  would  continue. 

 4.3 

 Discussion 

In  our  extended  malware  experiments,  both  AUC  and  SVM  metrics  demonstrate  an 

overall  mean  improvement  in  training  speed  of  approximately  5  iterations,  up  to 

approximately  25  iterations.  After  that  point,  the  difference  in  performance  caused 

by  momentum  becomes  negligible.  Therefore,  applications  aiming  to  maximize  per-

formance  would  likely  not  benefit  from  momentum,  assuming  that  a  large  number 

of  iterations  are  performed  with  a  large  training  dataset.  However,  in  cases  where 

time,  computational  power,  or  training  data  is  severely  limited,  it  may  be  desirable 

to  train  for  fewer  iterations  at  the  cost  of  some  model  performance.  For  such  applica-

tions,  momentum  appears  to  be  able  to  decrease  the  number  of  iterations  necessary 

to  achieve  a  given  level  of  performance.  Based  on  the  English  text  examples  in 

Sect. 4.1.4, the  longer  it  takes  for  a  model  without  momentum  to  converge,  the  more potential  there  is  for  momentum  to  improve  training  speed. 

5 

Conclusion 

Our  extensive  experiments  indicate  that  adding  momentum  to  Baum-Welch  re-

estimation  can  be  beneficial  for  training  Hidden  Markov  Models  in  some  cases. 

In  general,  HMMs  trained  with  momentum  converged  more  quickly  than  HMMs 

trained  without,  leading  to  improved  classification  performance  during  early  train-
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ing  iterations.  Momentum  significantly  reduced  the  number  of  iterations  needed  in 

cases  where  the  model  was  slow  to  converge,  such  as  in  our  English  text  experiments, 

where  the  matrices  were  initialized  close  to  uniform  values. 

On  the  other  hand,  differences  in  model  score  and  malware  classification  per-

formance  were  negligible  at  high  numbers  of  iterations.  Momentum  is  therefore 

unlikely  to  be  beneficial  in  applications  aiming  to  maximize  performance  at  any 

cost.  However,  in  cases  involving  limited  computing  resources,  or  when  large  num-

bers  of  models  must  be  trained  quickly,  or  when  training  on  limited  data  (e.g.,  the  cold start  problem),  momentum  can  enable  us  to  train  for  fewer  iterations  with  a  reduced 

penalty  in  terms  of  model  performance.  For  such  cases,  momentum  shows  promise 

in  minimizing  the  number  of  required  iterations  while  achieving  good  performance. 

Gains  from  momentum  were  most  significant  for  models  with  a  relatively  large 

number  of  hidden  states,  indicating  that  momentum  is  likely  to  be  more  useful  for 

more  complex  models.  Momentum  did  not  seem  to  reduce  the  number  of  random 

restarts  needed;  while  high  momentum  caused  large  jumps  in  parameter  space,  we 

found  little  evidence  showing  that  new  regions  of  the  parameter  space  were  being 

searched. 

Future  work  involving  momentum  and  HMMs  could  consider  other  types  of  data 

and  HMM  applications.  While  we  have  no  reason  to  doubt  that  the  results  in  this  paper 

hold  more  broadly,  such  experiments  would  confirm  the  general  utility  of  momentum 

when  training  HMMs.  In  a  similar  vein,  momentum  experiments  involving  other 

HMM  variants,  such  GMM-HMM  for  continuous  observations,  would  be  interesting. 

Baldi  and  Chauvin  [ 2]  provide  a  gradient  ascent  technique  for  training  HMMs.  This technique  could  also  be  tested  with  momentum,  and  it  would  provide  a  counterpoint 

to  the  Baum-Welch  momentum  experiments  considered  in  this  paper.  It  would  also  be 

interesting  to  carefully  compare  the  momentum  techniques  considered  in  this  paper 

to  the  parameterized  EM  algorithm  discussed  in  Sect. 2.7. 

For  greater  practical  utility,  it  is  important  to  be  able  to  determine  the  parame-

ters  associated  with  momentum  dynamically,  as  briefly  discussed  in  Sect. 4.1.5. The momentum  parameter  could  be  adjusted  as  part  of  the  training  process,  based  on  the 

change  in  the  model  score.  In  regions  where  the  model  score  is  rapidly  improving,  we 

would  likely  be  able  to  further  speed  convergence  by  using  momentum  more  aggres-

sively.  On  the  other  hand,  we  observed  that  for  the  initial  Baum-Welch  training  step, 

it  is  better  to  not  use  momentum  at  all.  Additionally,  when  the  model  has  essentially 

converged  and  improvements  to  the  model  are  negligible,  randomized  steps  would 

almost  certainly  be  more  effective,  since  we  could  jump  to  a  different  location  in  the 

parameter  space,  while  strict  adherence  to  momentum,  will  tend  to  limit  movement 

to  one  direction. 
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Abstract  In  this  paper,  we  explore  the  potential  of  quantum  computing  in  enhancing 

malware  detection  through  the  application  of  Quantum  Machine  Learning  (QML). 

Our  main  objective  is  to  investigate  the  performance  of  the  Quantum  Support  Vec-

tor  Machine  (QSVM)  algorithm  compared  to  SVM.  A  publicly  available  dataset 

containing  raw  binaries  of  Portable  Executable  (PE)  files  was  used  for  the  classifica-

tion.  The  QSVM  algorithm,  incorporating  quantum  kernels  through  different  feature 

maps,  was  implemented  and  evaluated  on  a  local  simulator  within  the  Qiskit  SDK 

and  IBM  quantum  computers.  Experimental  results  from  simulators  and  quantum 

hardware  provide  insights  into  the  behavior  and  performance  of  quantum  comput-

ers,  especially  in  handling  large-scale  computations  for  malware  detection  tasks. 

The  work  summarizes  the  practical  experience  with  using  quantum  hardware  via  the 

Qiskit  interfaces.  We  describe  in  detail  the  critical  issues  encountered,  as  well  as  the 

fixes  that  had  to  be  developed  and  applied  to  the  base  code  of  the  Qiskit  Machine 

Learning  library.  These  issues  include  missing  transpilation  of  the  circuits  submit-

ted  to  IBM  Quantum  systems  and  exceeding  the  maximum  job  size  limit  due  to  the 

submission  of  all  the  circuits  in  one  job. 

1 

Introduction 

Quantum  computing  has  opened  up  new  possibilities  for  addressing  complex  com-

putational  problems  that  classical  computers  struggle  to  solve.  Quantum  com-

puters  exploit  the  principles  of  quantum  mechanics,  such  as  superposition  and 

entanglement,  which  allow  them  to  perform  parallel  computations  and  potentially 

achieve  exponential  speedup  for  specific  tasks. 

E.  Krátká  (B) 

Faculty  of  Information  Technology,  Czech  Technical  University  in  Prague,  Prague,  Czechia 

e-mail:  kratkeli@fit.cvut.cz 

A.  G.  Gábris 

Faculty  of  Nuclear  Sciences  and  Physical  Engineering,  Czech  Technical  University  in  Prague, Prague,  Czechia 

e-mail:  gabris.aurel@fjfi.cvut.cz 

©  The  Author(s),  under  exclusive  license  to  Springer  Nature  Switzerland  AG  2025 

207

M.  Stamp  and  M.  Jureček  (eds.),  Machine  Learning,  Deep  Learning  and  AI  for 

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_8 

208

E. Krátká and A. G. Gábris

In  recent  years,  a  significant  milestone  in  quantum  computing  has  been  the  devel-

opment  of  noisy  intermediate-scale  quantum  (NISQ)  devices  [ 26]. NISQ  devices are  the  class  of  quantum  computers  characterized  by  their  intermediate  scale  in  the 

number  of  qubits.  Unlike  universal  fault-tolerant  quantum  computers,  which  are  still 

a  theoretical  goal,  NISQ  devices  operate  with  a  limited  number  of  qubits  and  suffer 

from  errors  due  to  the  noise  in  the  quantum  hardware  [ 4].  They  typically  have  tens to  hundreds  of  qubits,  larger  than  what  can  be  simulated  classically  but  smaller  than 

required  for  error  correction  and  fault  tolerance  [ 4]. 

One  promising  research  area  on  the  presently  available  NISQ  computers  is  the 

combination  of  quantum  computing  and  machine  learning,  known  as  Quantum 

Machine  Learning  (QML).  Over  the  last  decade,  there  have  been  significant  advances 

in  the  QML  field,  including  conventional  machine  learning  algorithms  that  can  be 

enhanced  using  quantum  techniques  and  entirely  new  quantum  machine  learning 

algorithms  explicitly  designed  to  run  on  quantum  computers  [ 5]. 

In  this  chapter,  we  explore  the  potential  of  applying  QML  to  a  practical  problem 

from  information  security:  malware  detection.  Malware  detection  is  the  process  of 

identifying  malicious  software.  This  task  is  typically  framed  as  a  binary  classification 

problem,  where  the  goal  is  to  distinguish  between  two  categories:  malicious  and 

benign  (harmless)  software  [ 39].  Machine  learning  models  are  well-suited  for  solving this  type  of  problem.  Given  the  increasing  volume  and  variety  of  new  threats,  malware 

detection  based  on  machine  learning  has  become  a  popular  approach  in  modern 

antivirus  programs  [ 1, 17]. 

Our  research  focuses  on  the  Quantum  Support  Vector  Machine  (QSVM)  algorithm 

and  its  application  to  malware  detection.  A  key  part  of  the  work  involves  running  the 

QSVM  on  quantum  computers  from  IBM.  Executing  the  algorithm  on  real  quantum 

hardware  presents  unique  challenges,  making  the  process  more  difficult  than  running 

the  same  calculations  on  quantum  computer  simulators. 

The  QSVM  algorithm  combines  the  conventional  Support  Vector  Machine  (SVM) 

with  a  quantum  kernel.  We  study  and  implement  the  quantum  kernel  using  a  quantum 

computer.  The  SVM  model  is  then  fitted  with  the  precomputed  quantum  kernel  and 

trained  on  a  classical  computer.  We  assess  the  performance  of  the  QSVM  in  terms 

of  the  model’s  accuracy  and  compare  its  results  to  SVM  using  conventional  kernels. 

We  organize  our  work  into  three  parts,  with  each  covered  in  the  following  sec-

tions.  In  Sect. 2, we  provide  the  necessary  background  on  the  quantum  computing aspects  of  our  research,  explaining  how  quantum  kernels  in  QSVM  differ  from  conventional  ones  and  how  they  are  computed  using  quantum  computers.  We  then  intro-

duce  Qiskit  [ 16]  and  IBM  Quantum  [ 14],  highlighting  their  roles  in  implementing the  algorithm  and  accessing  quantum  hardware.  Section  3  focuses  on  our  implementation,  emphasizing  the  challenges  faced  during  the  development  process  for 

quantum  processors  and  how  we  addressed  them.  Section  4  presents  the  performed experiments  and  the  achieved  results. 
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2 

Background 

In  this  section,  we  explain  the  core  concepts  and  principles  underlying  quantum 

computation,  which  are  necessary  to  understand  before  we  focus  on  the  QSVM  algo-

rithm.  We  examine  the  theoretical  foundations  of  QSVM,  describe  how  it  operates 

on  quantum  computers  and  the  advantages  it  offers  over  its  classical  counterpart. 

Furthermore,  we  introduce  the  Qiskit  and  its  machine  learning  module  [ 16, 31]. 

Through  Qiskit,  researchers  can  develop  quantum  algorithms  and  access  quantum 

computers  from  IBM,  which  are  available  through  the  IBM  Quantum  platform  [ 14]. 

We  discuss  the  role  of  Qiskit  in  our  research  in  implementing  QSVM  and  performing 

quantum  experiments  on  real  quantum  processors. 

 2.1 

 Terminology 

We  follow  the  definitions  and  explanations  of  key  terms  laid  down  by  Nielsen  and 

Chuang  in  [ 23]. The  only  prerequisite  is  a  basic  understanding  of  elementary  linear algebra  and  classical  computing. 

The  standard  notation  for  linear  algebra  in  quantum  mechanics  and  quantum 

computing  is  known  as  braket  notation,  which  consists  of  two  elements,  bra  and  ket. 

The  ket,  written  as.| ψ,  denotes  a  vector  in  the  vector  space.  The  bra,  written  as.  ψ|, represents  a  dual  vector  to  the  ket.  An  inner  product  of  two  vectors  .| ψ and  .| ϕ is denoted  by .  ϕ| ψ.  The  inner  product  is  formally  a  map 

. · , · :  V ×  V → C , 

where .  V  is  a  vector  space  over . C,  which  satisfies  the  following  three  properties  for all  vectors .  x, y, z ∈  V  and  all  scalars.  α ∈ C: 

1.  x| αy +  z =  α x| y +  x| z

 (linearity in the second argument), 

.  2.  x | y =  y| x ∗

 (conjugate symmetry), 

3.  x| x ≥ 0 with equality if and only if | x = 0  (positive definiteness), 

where  *  is  a  complex  conjugate  and  0  is  a  zero  vector  [ 2].  Quantum  computing operates  within  a  finite-dimensional  Hilbert  space,  which  in  this  context  is  equivalent 

to  a  complex  vector  space .C n  with  the  inner  product. 

A  quantum  bit,  known  as  a  qubit,  serves  as  the  fundamental  unit  of  information 

in  quantum  computing.  While  classical  computing  processes  information  using  bits, 

which  are  binary  variables  capable  of  holding  values  0  or  1,  quantum  computing 

utilizes  qubits. 

A  state  of  the  qubit,  the  quantum  state,  is  described  by  a  unit  vector  in  a  two-

dimensional  Hilbert  Space,  which  we  further  refer  to  as  a  quantum  state  space.  The 

states  .|0 and  .|1 denote  the  fundamental  computational  basis  states  of  the  qubit, 

forming  an  orthonormal  basis.  Any  quantum  state  of  the  qubit  can  be  expressed  as
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a  linear  combination  of  .|0 and  .|1,  meaning  a  qubit  can  exist  in  a  superposition  of 

these  states.  For  example,  the  state 

. | ψ =  α|0 +  β|1 , 

represents  the  qubit  in  the  superposition  of .|0 and.|1. 

The  complex  numbers .  α  and.  β  referred  to  as  probability  amplitudes  satisfy 

. | α|2 + | β|2 = 1 . 

They  encode  the  probability  of  each  outcome  and  the  associated  phase  information.  In 

contrast  to  a  classical  probability  distribution,  which  only  considers  the  real  numbers, 

probability  amplitudes  incorporate  both  magnitude  and  phase.  The  absolute  squares 

of  the  probability  amplitudes  give  the  probabilities  of  the  possible  outcomes  occurring 

when  measured  in  the  computational  basis. 

Measurement  plays  an  essential  role  in  quantum  computing.  While  the  state  of  a 

classical  bit  can  be  observed  without  altering  it,  the  qubit  in  superposition  cannot  be 

directly  measured  without  affecting  its  quantum  state.  Upon  measurement,  the  qubit 

 collapses   into  one  of  the  basis  states,  giving  an  outcome  of  either.|0 with  a  probability of  .| α|2 or  .|1 with  a  probability  of  .| β|2.  Consequently,  quantum  states  inherently embody  non-determinism,  as  their  measurement  is  probabilistic  and  fundamentally 

different  from  classical  systems. 

The  building  blocks  of  quantum  computing  are  quantum  gates  and  circuits.  Quan-

tum  gates  are  basic  operations  that  manipulate  qubits,  similar  to  classical  logic  gates. 

They  come  in  various  types,  such  as  single-qubit  and  two-qubit  gates,  each  designed 

to  perform  specific  transformations  on  quantum  states.  Quantum  gates  are  reversible 

transformations,  which  means  they  allow  for  the  exact  reconstruction  of  the  original 

input  information  after  processing.  When  a  quantum  gate  is  applied  to  a  set  of  qubits, 

the  operation  can  be  undone  without  any  loss  of  information.  Because  quantum  gates 

are  reversible,  they  preserve  the  quantum  information  encoded  in  qubits. 

In  quantum  computing,  quantum  gates  are  represented  by  the  unitary  operators. 

Unitary  operators  are  mathematical  operators  represented  by  matrices  that  satisfy 

the  condition 

.  U † U =  I , 

where .  U † is  the  adjoint  (conjugate  transpose)  of .  U ,  and .  I  is  the  identity  matrix. 

Quantum  circuits  are  composed  of  sequences  of  quantum  gates  applied  to  qubits 

to  perform  specific  computational  tasks.  Just  as  classical  circuits  are  constructed  from 

interconnected  logic  gates,  quantum  circuits  are  built  by  connecting  quantum  gates. 

They  describe  the  flow  of  information  and  operations  in  the  quantum  computation. 

Within  quantum  circuits,  interference  emerges  is  a  phenomenon  where  the  proba-

bility  amplitudes  of  different  quantum  states  combine  and  interact.  Transition  ampli-

tudes  describe  the  probability  amplitude  for  a  qubit  to  transition  from  one  quantum 

state  to  another  under  the  influence  of  a  quantum  gate  or  operation.  In  quantum 

algorithms,  transition  amplitudes  are  manipulated  by  applying  quantum  gates  to
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the  quantum  circuit.  By  carefully  designing  the  sequence  of  gates,  the  interference 

effects  can  be  exploited  to  enhance  the  probability  of  obtaining  the  desired  output 

state  while  minimizing  the  probability  of  undesired  outcomes.  The  interference  can 

be  constructive,  where  probability  amplitudes  increase  the  probability  of  a  particular 

outcome,  or  destructive,  where  probability  amplitudes  cancel  each  other  out,  reduc-

ing  the  probability  of  specific  outcomes.  The  ability  to  control  transition  amplitudes 

is  a  key  feature  that  enables  quantum  computers  to  solve  specific  problems  more 

efficiently  than  classical  computers. 

State  overlap  and  operator  fidelity  play  a  crucial  role  in  quantifying  the  similarity 

between  quantum  states.  State  overlap  quantifies  the  extent  to  which  two  quantum 

states  share  common  elements  or  characteristics,  providing  insight  into  their  simi-

larity.  Operator  fidelity  quantifies  the  accuracy  of  a  quantum  operation  or  transfor-

mation  by  measuring  the  closeness  between  the  input  and  output  states.  Maximizing 

fidelity  ensures  the  reliability  and  effectiveness  of  quantum  algorithms,  enhancing 

their  computational  performance  and  accuracy. 

Entanglement  refers  to  a  special  relationship  between  qubits  that  allows  them 

to  become  correlated  in  such  a  way  that  the  state  of  one  qubit  directly  influences 

the  state  of  another,  regardless  of  their  individual  locations  within  a  quantum  sys-

tem.  When  two  qubits  are  entangled,  they  form  a  single  quantum  state  that  cannot 

be  described  independently,  which  means  that  the  measurement  of  one  qubit  will 

instantly  determine  the  state  of  the  other  qubit,  even  if  they  are  not  physically  con-

nected.  Entanglement  enables  quantum  computers  to  perform  calculations  on  multi-

ple  states  simultaneously  and  exhibit  non-local  correlations,  exponentially  increasing 

processing  power  for  certain  problem  domains. 

 2.2 

 Quantum  Machine  Learning 

Quantum  machine  learning  explores  the  potential  benefits  of  using  quantum  algo-

rithms  and  quantum  computing  hardware  to  enhance  classical  machine  learning 

tasks  [ 4].  We  focus  on  enhancing  the  SVM  algorithm,  which  is  a  widespread  tool  in the  domain  of  machine  learning-based  malware  detection  [ 40], by  combining  it  with a  quantum  kernel,  estimated  using  a  quantum  computer. 

The  quantum  advantage  lies  in  using  a  kernel,  which  is  hard  to  estimate  clas-

sically  [ 6].  QSVM  is  based  on  quantum  circuits  that  are  hard  to  simulate  due  to their  unique  quantum  properties,  such  as  entanglement  and  superposition.  QSVM 

promises  to  achieve  better  accuracy  than  conventional  SVM  across  various  problem 

domains,  including  malware  detection  [ 3]. 

In  this  section,  we  explain  the  concept  of  kernels  in  SVM  and  introduce  the 

quantum  kernel.  We  also  provide  an  overview  of  the  tools  used  to  implement  and  run 

software  on  quantum  computers,  specifically  Qiskit  and  IBM  Quantum.  Additionally, 

we  present  related  work  in  the  field  and  discuss  how  it  connects  to  our  research. 
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2.2.1

QSVM 

In  SVM  classification,  the  algorithm  seeks  to  find  an  optimal  decision  boundary 

that  separates  the  data  points  into  different  classes.  Once  the  decision  boundary 

is  established,  new  data  points  can  be  classified  by  determining  which  side  of  the 

boundary  they  fall  on.  Many  real-world  datasets  are  not  inherently  linearly  separable, 

which  is  why  kernels  are  used  in  SVM.  Kernels  map  the  input  features  to  a  new, 

possibly  higher-dimensional  space  where  the  data  may  become  more  easily  separable. 

A  feature  map.  φ(x)  is  a  function  which  maps  each  data  point.  x  from  the  original input  feature  space  to  a  new  transformed  feature  space  with  a  higher  dimensionality. 

The  kernel  function 

.  k(x , y) =  (φ(x ) ·  φ(y))

computes  the  dot  product  between  two  vectors  .  x  and  .  y  in  the  higher-dimensional feature  space.  Instead  of  explicitly  computing  the  transformed  vectors.  φ(x)  and.  φ(y), the  kernel  function  computes  the  dot  product  directly  from  the  original  input  space 

without  explicitly  performing  the  mapping,  which  allows  SVM  to  operate  efficiently 

in  high-dimensional  space  [ 34]. 

There  are  various  types  of  SVM  kernels,  such  as  polynomial,  RBF,  and  sigmoid 

kernels.  Different  kernel  functions  define  different  ways  of  projecting  the  data  and 

measuring  similarity  between  points.  QSVM  combine  SVM  with  a  quantum  ker-

nel,  computed  using  a  quantum  computer.  The  SVM  model  is  then  fitted  with  the 

precomputed  quantum  kernel  and  trained  on  a  classical  computer. 

The  key  difference  between  classical  and  quantum  kernels  lies  in  how  the  data 

are  processed.  In  a  classical  kernel,  the  data  are  processed  directly  in  the  origi-

nal  form  within  the  computational  framework.  The  kernel  computes  the  dot  prod-

uct  between  feature  vectors  in  the  original  input  space.  This  computation  is  done 

explicitly,  without  any  transformation  of  the  data  into  a  different  space. 

In  contrast,  the  quantum  kernel  requires  data  to  be  transformed  into  quantum  state 

space  before  processing.  In  the  context  of  QSVM,  we  refer  to  this  transformation  as 

data  encoding.  Once  the  data  are  encoded,  the  quantum  kernel  function  is  applied  to 

compute  correlations  between  the  quantum  states.  Therefore,  estimating  the  quan-

tum  kernel  involves  two  main  components:  the  encoding  of  classical  data  and  the 

application  of  the  quantum  kernel  function. 

The  data  encoding  process  is  done  through  a  quantum  feature  map,  denoted 

as .  φ(x).  It  is  a  parameterized  quantum  circuit  that  maps  a  classical  feature  vector .  x to  its  corresponding  quantum  state  .| φ(x) φ(x)|.  The  mapping  is  done  by  applying the  unitary  operation  .  Uφ(x)  to  the  initial  state  .|0 n,  where  .  n  is  the  number  of  qubits used  for  encoding  [ 25]. The  index.  φ(x)  in  the.  Uφ(x)  refers  to  the  specific  parameterization  of  the  operation.  U ,  which  depends  on  the  classical  feature  vector.  x.  Quantum gates  and  operations  can  be  parameterized  by  certain  variables,  which  affect  how  they 

transform  quantum  states.  Different  values  of.  x  lead  to  different  parameterizations  of the  unitary  operation,  resulting  in  different  quantum  states  after  the  transformation. 
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The  quantum  kernel  function 

.  k(x , y) =  φ(x )| φ(y) = | φ(x )| φ(y)|2

is  defined  as  the  state  overlap  of  the  two  data-encoded  feature  vectors  from  the 

quantum  state  space  and  represents  the  similarity  between  them  [ 6]. A  larger  value of.  k(x, y)  indicates  that  the  classical  data  points.  x  and.  y  are  close  in  feature  space  [25]. 

When  applied  to  all  datapoints,  quantum  kernel  function  generates  the  quantum 

kernel  matrix 

.  Ki, j =  k(xi , x j ) = | φ(xi )| φ(x j )|2 , 

where  the  entries  represent  the  fidelities  between  different  feature  vectors.  The  fideli-

ties  can  be  computed  efficiently  on  the  quantum  computer  by  calculating  the  transition 

amplitude  between  the  states 

.  Ki, j =  k(xi , x j ) = | φ(xi )| φ(x j )|2 = |0 n| U †

 φ(xi )Uφ(x j )|0 n|2 , 

where  the  feature  map.  φ(x)  is  described  as  the  unitary  operation.  Uφ(x)  applied  to  the initial  state .|0 n [ 6, 25]. 

2.2.2

Qiskit 

In  our  work,  we  rely  on  Qiskit  [ 16]  to  implement  the  QSVM  algorithm.  Qiskit  is an  open-source  software  development  kit  for  Python  that  enables  users  to  design 

and  implement  algorithms  for  quantum  computers  at  the  level  of  quantum  circuits. 

These  algorithms  can  be  executed  locally  on  simulators  or  on  quantum  computers 

from  IBM. 

IBM  provides  access  to  the  quantum  computers,  known  as  IBM  Quantum  sys-

tems,  via  cloud  through  the  IBM  Quantum  platform  [ 14],  allowing  researchers  to experiment  with  real  quantum  hardware  without  needing  specialized  infrastructure. 

IBM  processors  fall  under  the  NISQ  devices  category,  meaning  they  operate  with 

a  limited  number  of  qubits  and  suffer  from  errors  due  to  the  noise  in  the  quantum 

hardware  [ 4, 26].  As  of  September  2024,  eleven  quantum  processors  are  available on  the  IBM  Quantum  platform.  Three  quantum  processors  are  freely  available  to  the 

public,  while  the  remainder  is  accessible  via  a  premium  plan. 

Qiskit  Machine  Learning  [ 31]  is  a  module  within  Qiskit  which  provides  tools  for quantum  machine  learning  tasks,  including  classical  machine  learning  algorithms 

that  can  be  enhanced  using  quantum  computing  techniques  and  entirely  new  quantum 

machine  learning  algorithms  designed  to  run  on  quantum  computers.  We  focus  on 

introducing  the  classes  implementing  the  quantum  kernel  within  the  Qiskit  Machine 

Learning  module.  Understanding  those  classes  is  essential  for  effective  integration 

of  quantum-based  kernels  into  the  SVM. 

The  quantum  kernel  interface  is  abstractly  defined  by  the  BaseKernel [ 32] 

class.  It  specifies  the  evaluate method  for  constructing  a  kernel  matrix  from  a
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given  dataset,  which  is  compatible  with  the  Quantum  Support  Vector  Classifier  within 

Qiskit  Machine  Learning,  as  well  as  other  kernel-based  machine  learning  algorithms 

in  established  classical  frameworks  (for  example, scikit-learn [ 24]).  Each  entry in  the  kernel  matrix  is  the  result  of  the  kernel  function,  defined  as 

.  K (x , y) =   f (x )|  f (y) , 

where  .  x,  .  y  are  n-dimensional  inputs  and  .  f  is  a  map  from  an  n-dimensional  to  an m-dimensional  space.  The  quantum  kernel  algorithm  computes  the  kernel  matrix 

given  the  datapoints .  x  and .  y,  and  the  feature  map .  f ,  all  of  dimension .  n. 

The  FidelityQuantumKernel [ 33]  implements  the  BaseKernel inter-

face.  The  kernel  function  is  defined  as  the  overlap  of  two  quantum  states  .  x

and .  y, 

.  K (x , y) = | φ(x )| φ(y)|2 , 

constructed  using  the  feature  map.  φ(x). The  FidelityQuantumKernel requires 

a  fidelity  primitive,  which  computes  the  fidelity  between  quantum  states  based  on 

the  BaseStateFidelity [ 27]  algorithm  introduced  in  Qiskit. 

The  BaseStateFidelity class  is  an  interface  that  calculates  state  fidelities 

(state  overlaps)  for  pairs  of  (parameterized)  quantum  circuits.  The  fidelity  calculation 

is  generally  defined  as  the  state  overlap 

. | ψ(x )| φ(x )|2 , 

where  .  ψ  and  .  φ  represent  the  states,  and  .  x  and  .  y  are  optional  parameterizations  of these  states.  The  default  fidelity  primitive  in  the  FidelityQuantumKernel is 

the  ComputeUncompute [ 28],  which  implements  the  BaseStateFidelity 

interface. 

The  data  encoding  process  allows  the  quantum  kernel  to  generate  correlations 

between  variables  that  are  difficult  to  achieve  using  classical  methods  alone.  The 

feature  map  must  be  based  on  quantum  circuits  that  are  hard  to  simulate  classi-

cally  [ 6]  to  obtain  the  quantum  advantage  over  conventional  kernels  used  in  SVM. 

We  describe  feature  maps  based  on  the  work  of  Havlicek  et  al.  [ 6]  and  implemented in  Qiskit,  which  we  later  use  in  our  experiments,  namely  PauliFeatureMap [ 8], ZZFeatureMap [ 10]  and  ZFeatureMap [ 9]. 

The  PauliFeatureMap is  based  on  the  Pauli  matrices,  which  are  funda-

mental  operators  in  quantum  mechanics.  The  Pauli  matrices  include  the  X,  Y 

and  Z  matrices,  each  representing  a  different  type  of  quantum  operation.  In  the 

PauliFeatureMap,  combinations  of  these  matrices,  specified  by  the  paulis 

parameter,  are  applied  to  the  input  qubits  to  generate  entanglement  and  capture  fea-

tures  of  the  input  data.  The  PauliFeatureMap typically  consists  of  layers  of 

single-qubit  rotations  and  entangling  gates  involving  Pauli  matrices,  with  parame-

ters  that  can  be  optimized  during  training  to  learn  an  adequate  representation  of  the

Quantum Computing Methods for Malware Detection

215

data  for  classification  tasks.  Data  encoding  is  achieved  by  applying  the  unitary  oper-

ation.  Uφ(x)  to  the  initial  state,  which  in  the  case  of  PauliFeatureMap is  defined 

as 









.  Uφ(x) = exp

 i

 φS(x)

 Pi , 

 S∈I

 i ∈ S

where.  S  is  a  set  of  qubit  indices  that  describes  the  connections  in  the  feature  map,. I is  a  set  containing  all  these  index  sets, .  Pi  refers  to  the  chosen  Pauli  matrix,  and xi

if  S = { i}

.  φS (x ) =

 (π −  x

 j ∈ S

 j )

if | S|  >  1

is  the  data  mapping  function,  which  can  be  customized. 

The  ZZFeatureMap is  a  special  case  of  the  PauliFeatureMap,  where  the 

ZZ denotes  the  use  of  to  the  Pauli-Z  matrices.  These  matrices  represent  the  ZZ 

interaction  between  qubits,  contributing  to  the  entanglement  in  the  quantum  circuit. 

In  the  ZZFeatureMap,  the  Pauli  matrices  .  Pi  are  specifically  chosen  as  Pauli-Z 

matrices,  resulting  in  a  product  term  that  captures  the  ZZ  interaction  between  qubits 

The  ZFeatureMap is  another  specific  case  of  the  PauliFeatureMap.  Unlike 

the  ZZFeatureMap,  it  consists  solely  of  Pauli  Z  matrices  without  entangling  oper-

ations  between  qubits.  As  a  result,  the  encoding  produced  by  the  ZFeatureMap 

does  not  exhibit  entanglement.  While  this  lack  of  entanglement  may  mean  that 

the  ZFeatureMap does  not  provide  a  quantum  advantage  for  certain  tasks,  its 

effectiveness  still  depends  on  the  specific  problem  being  addressed. 

The  last  feature  map  we  later  use  in  our  experiments  is  not  implemented  in  Qiskit 

directly.  However,  it  is  based  on  the  ZZFeatureMap with  a  custom  data  mapping 

function,  defined  as 

 xi

if  S = { i}

.  φS (x ) =

sin (π −  xi ) sin (π −  x j )  if  S = { i, j}  , 

where.  S  is  a  set  of  qubit  indices  that  describes  the  connections  in  the  feature  map  [ 25]. 

We  later  refer  to  this  feature  map  as  the  ZZphiFeatureMap. 

All  the  feature  maps  mentioned  can  have  a  custom  circuit  depth  specified  by  the 

depth parameter,  which  refers  to  the  number  of  layers  of  quantum  gates  or  opera-

tions  applied  to  the  input  qubits  to  transform  classical  data  into  a  quantum  state.  In 

the  PauliFeatureMap,  each  layer  typically  consists  of  single-qubit  rotations  and 

entangling  gates  involving  Pauli  matrices.  The  depth  of  the  PauliFeatureMap 

is  determined  by  the  number  of  these  layers  applied  to  the  input  qubits.  The  depth 

of  a  PauliFeatureMap,  or  any  quantum  circuit,  represents  the  complexity  of  the 

circuit  and  the  number  of  sequential  operations  used  to  encode  classical  data  into  a 

quantum  state.  A  deeper  circuit  may  capture  more  complex  patterns  in  the  data  but 

may  also  require  more  computational  resources. 
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 2.3 

 Related  Work 

The  inspiration  for  our  research  is  laid  by  the  work  of  Barrué  and  Quertier  [ 3], which  provides  insights  into  the  performance  of  quantum  machine  learning  algorithms  in  the  context  of  malware  detection.  Notably,  to  date,  this  is  the  only  paper 

that  addresses  malware  detection  through  quantum  computing  methods  while  also 

performing  experiments  on  IBM  quantum  computers  rather  than  solely  relying  on 

simulators.  Their  work  investigates  QSVM  alongside  Quantum  Neural  Networks,  and 

their  findings  underscore  the  potential  of  QSVM  to  outperform  SVM  with  conven-

tional  kernels,  mainly  when  operating  with  smaller  datasets.  Their  research  is  heavily 

focused  on  experiments  using  only  Qiskit’s  simulator.  In  contrast,  our  approach  dif-

fers  by  concentrating  on  experiments  with  real  quantum  computers,  which  allows 

us  to  assess  the  practical  challenges  and  performance  of  QSVM  in  a  more  realistic 

setting. 

However,  we  encountered  several  challenges  when  replicating  their  results  due  to 

the  paper’s  lack  of  detailed  experimental  descriptions  and  parameter  specifications. 

More  importantly,  they  do  not  specify  how  many  qubits  and  shots  were  used  or  which 

processors  were  utilized  when  conducting  experiments  on  IBM  Quantum  devices. 

Additionally,  they  are  not  consistent  with  their  metrics,  such  as  not  consistently 

measuring  the  F1-score,  and  if  so,  it  is  not  clear  to  which  parameters  it  belongs. 

3 

Implementation 

Our  implementation  consists  of  two  main  Python  modules:  the  peml module,  which 

is  responsible  for  preprocessing  the  chosen  dataset,  and  the  svm module,  which 

implements  the  SVM  classification  interface  with  both  quantum  and  classical  kernels. 

These  modules  are  designed  to  function  independently.  The  peml module  focuses 

on  preprocessing  the  specified  dataset.  The  svm module  can  classify  any  dataset  that 

adheres  to  the  input  format.  The  source  code,  along  with  detailed  documentation,  is 

available  on  GitLab  [ 18]. 

The  QSVM class  within  the  svm module  implements  the  interface  for  QSVM 

classification  using  both  the  local  simulator  and  quantum  computers  from  IBM. 

Our  implementation  is  based  on  two  main  classes  from  the  Qiskit  Machine  Learning 

module  [ 31],  ComputeUncompute [ 28]  and  FidelityQuantumKernel [ 33], which  we  previously  described  in  detail  in  Sect. 2.  However,  a  significant  limitation of  these  classes,  and  the  Qiskit  Machine  Learning  module  as  a  whole,  is  that  they 

are  designed  to  run  only  on  Qiskit’s  local  quantum  computer  simulators.  We  aim  to 

apply  QSVM  on  real  quantum  hardware,  specifically  IBM’s  quantum  computers. 

In  this  section,  we  explain  the  challenges  encountered  when  running  the  code 

on  actual  quantum  hardware  and  detail  how  and  why  we  modified  the  source  code 

of  these  two  classes  to  overcome  these  obstacles,  enabling  execution  on  quantum
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devices.  While  the  challenges  are  explained  in  the  context  of  QSVM,  they  are  uni-

versal  to  any  large-scale  practical  quantum  machine  learning  problem,  not  limited  to 

QSVM,  that  requires  substantial  data  processing  on  quantum  hardware.  For  instance, 

similar  issues  would  arise  when  implementing  other  models,  such  as  neural  networks. 

 3.1 

 Modifications  for  Quantum  Hardware 

The  implementation  of  the  ComputeUncompute and  FidelityQuantum 

Kernel classes  has  three  significant  limitations  that  prevent  the  code  from  running 

on  quantum  hardware:  inability  to  split  the  evaluation  process,  lack  of  transpilation 

for  fidelity  circuits  and  submission  of  all  fidelity  circuits  in  a  single  computational 

job,  which  exceeds  the  maximum  job  size  limit.  In  the  modified  versions  of  the 

classes,  we  address  these  issues.  Our  improvements  enable  efficient  resource  utiliza-

tion,  ensure  compatibility  with  IBM  Quantum  hardware,  and  enhance  scalability  for 

real-world  machine  learning  applications. 

However,  a  major  ongoing  challenge  is  that  Qiskit  and  its  Qiskit  IBM  Runtime 

module  constantly  evolve,  but  often  without  maintaining  minimal  backward  com-

patibility,  which  makes  it  difficult  to  keep  the  implementation  up  to  date,  and  parts 

of  the  project  may  become  outdated  even  in  terms  of  few  months.  Nonetheless,  as 

mentioned  earlier,  these  three  problems  are  not  specific  only  to  the  QSVM  implemen-

tation  in  Qiskit  Machine  Learning.  They  are  general  issues  that  need  to  be  considered 

when  working  with  real  IBM  Quantum  hardware  and  should  be  accounted  for  in  any 

project  design. 

3.1.1

Evaluation  Process  Must  Wait  for  the  Job  Completion 

The  original  implementation  of  the  classes  lacks  the  ability  to  split  the  evaluation 

process  into  two  distinct  parts:  submitting  the  computational  jobs  to  IBM  Quantum 

and  processing  the  completed  jobs.  As  a  result,  the  classification  process  must  run 

continuously  while  awaiting  job  execution  on  the  IBM  Quantum  platform,  which  can 

take  several  days,  depending  on  the  job  queue.  This  inefficiency  not  only  consumes 

unnecessary  resources  but  also  restricts  the  scalability  of  the  evaluation  process, 

particularly  when  dealing  with  large  datasets. 

To  address  this  limitation,  we  introduced  a  solution  that  divides  the  process  into 

two  parts  by  adding  helper  methods  to  handle  job  submission  and  post-processing 

separately.  In  the  first  part,  jobs  are  submitted  to  IBM  Quantum  to  calculate  the 

entries  of  the  kernel  matrix.  Once  the  quantum  jobs  are  completed,  the  second  phase 

processes  the  results  and  evaluates  the  kernel  matrices  using  the  saved  configuration. 
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3.1.2

Missing  Transpilation 

Another  issue  is  the  absence  of  transpilation  for  the  fidelity  circuits  before  sub-

mitting  computational  jobs  to  IBM  Quantum,  which  is  a  critical  flaw  in  the  orig-

inal  implementation.  Transpilation  refers  to  transforming  quantum  circuits  to  use 

only  instructions  supported  by  the  targeted  quantum  processor.  This  transformation 

ensures  compatibility  and  efficient  execution  on  the  actual  quantum  hardware.  As  of 

March  1,  2024,  IBM  Quantum  introduced  a  significant  update  to  improve  the  speed 

and  efficiency  of  quantum  computation  [ 11, 15].  Circuits  and  observables  must  now be  transformed  to  use  only  the  instruction  set  architecture  (ISA)  supported  by  the  target  quantum  system,  meaning  that  all  circuits  must  be  transpiled  before  submission 

for  execution. 

Without  transpilation,  the  fidelity  circuits  in  QSVM  cannot  be  exe-

cuted  on  IBM  processors,  which  makes  the  ComputeUncompute  and 

FidelityQuantumKernel classes  unusable  for  real-world  applications.  It 

is  worth  noting  that  the  transpilation  issue  is  known  and  tracked  by  the  Qiskit  com-

munity,  affecting  several  other  classes  beyond  those  discussed  here,  yet  as  of  the 

completion  of  this  work,  it  remains  unresolved  [ 29, 30]. 

To  address  this  issue,  we  added  logic  to  ensure  the  fidelity  circuits  are  transpiled 

before  submission  to  the  target  quantum  processor.  However,  while  transpilation  is 

necessary  for  executing  quantum  circuits  on  IBM  hardware,  it  is  not  straightforward. 

It  involves  a  series  of  optimizations  that  can  sometimes  alter  the  properties  of  the 

original  circuit.  During  transpilation,  circuits  are  transformed  to  match  the  constraints 

of  the  target  system,  such  as  available  gates  and  qubit  connectivity.  However,  this 

can  result  in  issues  such  as  increased  circuit  depth,  which  directly  impacts  execution 

time  and  noise  levels. 

Additionally,  circuits  might  be  mapped  to  sub-optimal  qubits  for  the  specific  com-

putation,  further  degrading  performance.  In  some  cases,  the  original  structure  of  the 

circuit,  which  was  carefully  designed  for  a  specific  behavior,  may  be  lost  or  com-

promised  during  the  transpilation  process.  These  challenges  make  transpilation  a 

problem  of  its  own,  requiring  careful  consideration  when  working  with  real  quan-

tum  hardware,  as  the  efficiency  and  accuracy  of  the  quantum  computation  can  be 

significantly  affected. 

3.1.3

Exceeding  Maximum  Job  Size  Limit 

The  original  classes  submit  all  the  fidelity  circuits  in  a  single  computational  job.  While this  approach  works  for  local  simulation,  it  becomes  impractical  for  larger  datasets  on 

IBM  Quantum  systems.  The  job  size  often  exceeds  the  maximum  allowed  limit  [ 13], preventing  circuit  execution  and  significantly  limiting  the  usability  of  these  classes, 

especially  with  larger  datasets. 

To  address  this  limitation,  we  implemented  a  one-job-per-kernel-entry  approach, 

where  each  fidelity  circuit  responsible  for  computing  one  entry  of  the  kernel  matrix  is 

computed  in  an  individual  job.  We  avoid  unnecessary  queuing  delays  by  submitting 

these  jobs  in  a  session,  enhancing  overall  efficiency  and  scalability. 
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4 

Experiments 

This  section  describes  the  experiments  we  performed  and  presents  our  results.  We 

categorize  the  experiments  into  two  types:  those  run  on  Qiskit’s  local  simulator 

and  those  executed  on  IBM  Quantum  processors.  First,  we  outline  the  dataset  and 

evaluation  metrics  used,  followed  by  a  detailed  description  of  the  experiments  within 

each  category. 

 4.1 

 Dataset 

We  used  the  publicly  available  PE  Malware  Machine  Learning  Dataset  [ 19]  for  our experiments.  A  key  benefit  of  this  dataset  is  that  it  provides  the  raw  binary  files 

themselves  rather  than  just  metadata  extracted  from  the  samples. 

The  dataset  consists  of  raw  binaries  of  PE  files,  such  as  .exe  or  .dll  files,  and  con-

tains  201,549  labeled  samples,  with  86,812  benign  and  114,737  malware  samples.  It 

is  distributed  in  an  encrypted  zip  folder,  with  file  extensions  removed  from  the  indi-

vidual  samples  to  prevent  accidental  execution.  Most  malicious  samples  are  sourced 

primarily  from  platforms  like  VirusShare  [ 41], MalShare  [ 20], and  theZoo  [ 22]. Most of  the  legitimate  files  come  from  various  instances  of  Windows  7,  featuring  a  variety 

of  installed  software.  However,  there  is  a  potential  bias  towards  files  associated  with 

Microsoft  products  among  them. 

Directly  feeding  raw  binary  files  into  the  model  is  impractical  due  to  their  unstruc-

tured  nature  and  the  volume  of  data.  Unstructured  data  lacks  the  organization  and 

formatting  necessary  for  practical  analysis,  and  the  amount  of  information  in  raw 

binary  files  makes  it  challenging  for  the  model  to  extract  meaningful  patterns.  There-

fore  we  applied  preprocessing  techniques  such  as  conversion  to  grayscale  images  [21] 

and  Principal  Component  Analysis  [ 7]  to  transform  the  raw  binaries  into  informative feature  vectors  from  which  the  model  can  learn. 

We  converted  the  samples  into  grayscale  images,  adjusting  their  width  based  on 

the  size  of  the  binary  content  according  to  the  predefined  size  ranges  from  Nataraj 

et  al. [ 21].  The  images  were  resized  to  a  uniform  size  while  maintaining  their  aspect ratio  and  flattened  into  one-dimensional  feature  vectors.  To  align  the  dimensionality 

of  the  feature  vectors  with  the  number  of  qubits  used  in  our  experiments,  we  applied 

Principal  Component  Analysis  (PCA)  for  dimensionality  reduction.  Although  it  may 

seem  counterintuitive  to  convert  binary  files  to  images  before  applying  PCA,  we  fol-

lowed  this  approach  to  replicate  the  setup  and  results  presented  in  the  paper  by  Barrué 

and  Quertier  [ 3], described  in  Sect. 2.  However,  the  image-construction  process  might not  be  necessary,  and  directly  applying  PCA  to  the  binary  data  could  have  avoided 

the  resizing  and  flattening  steps.  We  randomly  selected  samples  for  the  training  and 

testing  groups,  ensuring  an  equal  number  of  benign  and  malicious  samples  to  create 

balanced  datasets  for  our  experiments. 
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 4.2 

 Evaluation  Metrics 

We  adopt  two  metrics  for  evaluating  the  performance  of  models,  accuracy  and  F1 

score.  Both  metrics  rely  on  the  following  terms,  true  positives,  true  negatives,  false 

positives,  and  false  negatives. 

•  True  positives  (TP)  refer  to  the  number  of  malware  samples  that  are  correctly 

classified  as  malware. 

•  True  negatives  (TN)  represent  the  number  of  benign  samples  correctly  classified 

as  benign. 

•  False  positives  (FP)  refer  to  the  number  of  benign  samples  that  are  incorrectly 

classified  as  malware. 

•  False  negatives  (FN)  represent  the  number  of  malware  samples  that  are  incorrectly classified  as  benign  (missed  malware  detections). 

Accuracy  represents  the  proportion  of  correctly  classified  samples  (both  malware 

and  benign)  out  of  the  total  number  of  classifications  [ 35].  It  provides  a  straightforward  indication  of  the  model’s  overall  correctness,  reflecting  how  often  it  gets  the 

classification  right. 

. accuracy =

TP + TN

TP + TN + FP + FN

F1  score  is  defined  as  a  harmonic  mean  of  precision  and  recall  [ 36]. Precision measures  how  many  of  the  samples  classified  as  malware  are  truly  malware  [ 37]. 

For  example,  in  malware  detection,  precision  tells  us  what  fraction  of  the  files  the 

model  flagged  as  malware  are  actually  malicious.  Recall  measures  how  many  of  the 

actual  malware  samples  were  correctly  classified  [ 38].  It  tells  us  how  well  the  model performs  in  detecting  malware.  It  indicates  the  proportion  of  all  malware  samples 

that  the  model  successfully  identifies. 

. precision =

TP

TP + FP

. recall =

TP

TP + FN

The  F1  score  combines  precision  and  recall  into  a  single  metric,  which  can  be  espe-

cially  useful  when  false  positives  and  false  negatives  carry  different  consequences. 

In  the  context  of  malware  detection,  a  high  F1  score  ensures  that  the  model  is  not 

only  accurate  but  also  balances  identifying  actual  malware  and  avoiding  false  posi-

tives,  which  can  be  critical  when  both  false  negatives  (undetected  malware)  and  false 

positives  (benign  files  flagged  as  malware)  are  undesirable. 

.F1 =

2

=

2 × TP

1

1

2 × TP + FP + FN

precision recall
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If  there  are  no  TP,  FN,  or  FP  samples  (for  example,  in  cases  where  no  malware 

samples  were  predicted),  the  F1  score  defaults  to  zero  to  avoid  division  errors. 

 4.3 

 Experimental  Results 

Our  primary  focus  was  on  testing  and  assessing  performance  on  real  quantum  hard-

ware.  While  simulators  are  flexible  and  convenient,  they  do  not  fully  capture  the 

complexity  of  quantum  behavior  under  real  conditions.  They  cannot  fully  emulate 

the  effects  of  quantum  noise  in  real  quantum  systems  and  come  at  a  higher  computa-

tional  cost.  However,  testing  the  implementation  first  on  a  simulator  is  a  crucial  part 

of  any  quantum  computing  experiment.  Simulators  serve  as  a  benchmark,  helping  to 

verify  that  the  quantum  circuit  is  correctly  implemented. 

IBM  Quantum  computers  offer  the  opportunity  to  validate  algorithms  under  real-

world  conditions.  Despite  this  advantage,  running  experiments  on  quantum  comput-

ers  introduces  several  challenges  that  affect  the  consistency  and  scalability  of  the 

results,  as  discussed  in  the  previous  section.  Due  to  these  limitations,  the  experi-

ments  conducted  on  IBM  Quantum  processors  differ  from  those  run  on  simulators. 

We  could  not  run  as  many  experiments  on  the  hardware  as  on  the  simulator  due  to 

implementation  constraints  and  limited  access  to  computational  resources. 

On  both  platforms,  our  goal  was  to  evaluate  the  performance  of  our  QSVM  imple-

mentation  and  compare  it  with  conventional  SVM  using  kernels  like  polynomial  or 

RBF.  We  focused  primarily  on  the  model’s  accuracy  and  investigated  whether  the 

QSVM  demonstrated  any  quantum  advantage  in  improved  performance  over  classical 

methods. 

4.3.1

Simulator 

On  the  local  simulator  in  Qiskit,  we  tested  QSVM  classification  with  datasets  of  var-

ious  sizes,  ranging  from  500  training  samples  and  100  test  samples  to  8000  training 

samples  and  4000  test  samples.  For  comparison,  we  performed  SVM  classification 

using  classical  kernels  to  evaluate  how  QSVM  performs  against  conventional  meth-

ods.  Our  goal  was  to  replicate  the  experimental  setup  from  Barrué  and  Quertier  [ 3] 

as  closely  as  possible  and  determine  whether  our  implementation  achieved  similar 

performance  improvements,  particularly  on  smaller  datasets. 

A  notable  finding  from  Barrué  and  Quertier  [ 3]  is  that  quantum  kernels,  especially  the  ZZFeatureMap,  demonstrated  up  to  a  2.5%  improvement  in  accuracy 

over  conventional  SVM  kernels  in  specific  configurations.  Their  results  suggest  that 

QSVM  may  have  an  advantage  in  scenarios  with  limited  dataset  size.  We  aimed  to 

verify  these  claims  by  comparing  the  performance  of  QSVM  with  classical  SVM 

kernels  across  various  dataset  sizes. 

In  the  experiments,  we  used  quantum  kernels  with  different  feature  maps: 

ZZFeatureMap  (ZZ),  PauliFeatureMap  (Pauli),  ZZphiFeatureMap
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Table  1  Accuracy  comparison 

Data 

Qubits

Quantum  Kernels

Classical  Kernels 

(train/test) 

ZZ

Pauli

ZZphi

Z

Linear

Polynomial

RBF

Sigmoid 

500/100

3

0.740

0.790

0.800

0.780

0.750

0.690

0.760

0.510 

4

0.730

0.780

0.800

0.790

0.740

0.720

0.790

0.540 

6

0.660

0.720

0.810

0.810

0.740

0.740

0.810

0.560 

7

0.700

0.800

0.820

0.830

0.740

0.750

0.850

0.620 

1000/200

3

0.725

0.675

0.735

0.720

0.705

0.730

0.745

0.575 

4

0.730

0.660

0.735

0.735

0.705

0.720

0.740

0.580 

6

0.745

0.760

0.780

0.775

0.735

0.745

0.790

0.640 

7

0.790

0.735

0.780

0.780

0.730

0.775

0.780

0.640 

2000/400

3

0.710

0.730

0.748

0.757

0.718

0.672

0.770

0.603 

4

0.748

0.743

0.775

0.767

0.718

0.685

0.765

0.585 

6

0.777

0.728

0.770

0.780

0.740

0.735

0.782

0.595 

7

0.782

0.767

0.802

0.780

0.743

0.743

0.795

0.583 

4000/800

3

0.799

0.784

0.771

0.777

0.766

0.639

0.787

0.671 

4

0.806

0.821

0.771

0.775

0.771

0.637

0.791

0.637 

6

0.830

0.812

0.816

0.800

0.772

0.804

0.830

0.608 

7

0.838

0.805

0.824

0.821

0.771

0.791

0.840

0.616 

8000/1600  3

0.783

0.779

0.797

0.796

0.779

0.619

0.804

0.633 

4

0.812

0.792

0.804

0.806

0.781

0.662

0.822

0.630 

6

0.835

0.806

0.819

0.818

0.779

0.734

0.840

0.616 

7

0.851

0.812

0.831

0.821

0.776

0.746

0.845

0.608 

(ZZphi),  and  ZFeatureMap (Z),  with  the  depth  of  the  circuits  set  to  2.  We 

used  1000  shots  for  all  experiments,  as  the  referenced  paper  did  not  specify  the 

shot  count.  Number  of  shots  refers  to  the  number  of  repetitions  of  each  circuit  for 

sampling.  Increasing  the  number  of  shots  influences  the  statistical  significance  of 

the  quantum  measurements  but  at  the  cost  of  the  computational  time.  Our  input 

data  consisted  of  binaries  transformed  into  grayscale  images  of  size  64. ×64,  which 

were  preprocessed  into  feature  vectors  of  dimensions  corresponding  to  the  number 

of  used  qubits.  The  same  preprocessing  method  was  applied  to  both  quantum  and 

classical  experiments,  with  the  kernel  being  the  primary  differentiating  factor. 

The  results,  presented  in  Tables  1  and  2, demonstrate  that  QSVM  consistently matches  or  outperforms  the  accuracy  and  F1  scores  of  SVM  using  classical  kernels. 

In  Figs. 1  and  2,  we  highlight  the  performance  of  the  kernels  based  on  ZZ  and ZZphi  feature  maps  compared  to  the  RBF  kernel.  Notably,  the  ZZ  and  ZZphi  kernels 

exhibit  the  best  performance  among  the  quantum  kernels,  while  the  RBF  kernel 

stands  out  among  the  classical  ones. 

Figure  1  displays  the  F1  score  comparison  for  the  ZZ,  ZZphi,  and  RBF  kernels with  three  qubits,  illustrating  how  quantum  approaches  can  remain  competitive  even
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Table  2  F1  score  comparison 

Data 

Qubits

Quantum  Kernels

Classical  Kernels 

(train/test) 

ZZ

Pauli

ZZphi

Z

Linear

Polynomial

RBF

Sigmoid 

500/100

3

0.736

0.790

0.797

0.777

0.746

0.662

0.754

0.510 

4

0.729

0.779

0.797

0.788

0.736

0.700

0.787

0.540 

6

0.649

0.716

0.808

0.810

0.736

0.729

0.808

0.560 

7

0.690

0.795

0.819

0.829

0.736

0.738

0.849

0.620 

1000/200

3

0.723

0.675

0.732

0.717

0.700

0.728

0.742

0.574 

4

0.729

0.658

0.732

0.731

0.700

0.719

0.737

0.579 

6

0.744

0.756

0.779

0.775

0.730

0.738

0.789

0.640 

7

0.787

0.731

0.779

0.780

0.725

0.771

0.779

0.640 

2000/400

3

0.707

0.728

0.747

0.756

0.716

0.651

0.769

0.601 

4

0.746

0.741

0.774

0.767

0.716

0.670

0.764

0.584 

6

0.776

0.726

0.769

0.780

0.739

0.729

0.782

0.595 

7

0.781

0.764

0.802

0.780

0.742

0.737

0.795

0.582 

4000/800

3

0.797

0.783

0.769

0.775

0.764

0.612

0.786

0.671 

4

0.805

0.821

0.770

0.773

0.769

0.621

0.790

0.637 

6

0.830

0.811

0.816

0.799

0.771

0.803

0.830

0.607 

7

0.837
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with  limited  qubit  resources.  In  contrast,  Fig. 2  presents  the  F1  score  comparison for  the  same  kernels  with  seven  qubits,  where  the  quantum  kernels  (particularly  ZZ 

and  ZZphi)  achieve  their  highest  F1  scores.  Figure  2  provides  a  more  comprehensive understanding  of  how  these  kernels  scale  with  increased  qubit  count  and  data  size, 

demonstrating  the  potential  of  quantum  kernels  against  classical  benchmarks  like  the 

RBF  kernel. 

4.3.2

IBM  Quantum  Systems 

The  second  phase  of  our  experiments  involves  QSVM  classification  using  quantum 

kernels  computed  on  IBM  Quantum  computers,  to  which  we  have  access  thanks  to 

a  license  from  the  Czech  Technical  University  in  Prague  (CTU). 

Inspired  by  the  potential  of  NISQ  computers,  our  initial  goal  was  to  implement 

and  evaluate  QSVM  primarily  on  IBM  Quantum  computers.  However,  during  imple-

mentation,  we  encountered  several  challenges  that  significantly  altered  the  course  of

[image: Image 62]
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Fig.  1  F1  score  comparison  with  3  qubits 

Fig.  2  F1  score  comparison  with  7  qubits 

our  experiments,  as  detailed  in  Sect. 3. These  challenges  stem  mainly  from  limitations  within  the  Qiskit  Machine  Learning  module,  particularly  regarding  transpilation 

requirements  and  constraints  on  job  sizes  when  using  IBM  Quantum  systems. 

As  a  result,  we  faced  limitations  when  running  experiments  on  real  quantum 

hardware.  To  mitigate  these  issues,  we  implemented  a  fix  involving  the  addition 

of  transpilation  and  adopting  a  one-job-per-kernel-entry  approach,  as  described  in 

Sect. 3.  Transpilation,  a  critical  requirement  for  executing  quantum  circuits  on  IBM 

Quantum  systems,  involves  adapting  circuits  to  conform  to  the  target  quantum  sys-

tem’s  ISA.  While  our  fix  addressed  the  critical  obstacles,  more  efficient  and  optimal 

solutions  likely  exist.  Unfortunately,  due  to  time  constraints  during  the  project,  we 

were  unable  to  fully  explore  these  alternatives.  As  a  result,  we  were  limited  to  testing small  datasets,  with  a  maximum  of  20  training  samples  and  10  test  samples. 
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QSVM  classification  requires  two  quantum  kernel  matrices:  one  for  training  and 

one  for  testing.  The  training  matrix  is  symmetric  and  has  a  size  of.  n ×  n,  where.  n  is the  number  of  training  samples.  The  test  matrix  is.  m ×  n,  where.  m  is  the  number  of testing  samples.  For  the  dataset  of  20  training  and  10  testing  samples,  our  one-job-per-kernel-entry  approach  results  in  390  jobs  on  the  quantum  computer. 

During  the  debugging  phase,  we  conducted  experiments  to  evaluate  the  time 

required  to  execute  a  single  job.  Although  the  individual  jobs  are  relatively  small 

regarding  data  volume  and  processing  time,  the  nature  of  machine  learning  tasks 

requires  a  substantial  number  of  jobs,  particularly  with  our  current  implementation, 

where  one  job  is  required  per  kernel  entry.  Each  job  involves  running  a  parameterized 

quantum  circuit  (based  on  the  chosen  feature  map)  with  a  specific  sample  (feature 

vector)  as  the  parameter.  We  tested  different  numbers  of  shots  and  various  quantum 

processors,  finding  that  executing  one  job  takes  approximately  15  s  of   quantum  time. 

Quantum  time  refers  to  the  total  duration  a  quantum  system  is  committed  to  fulfilling 

a  user’s  request  [ 12]. Therefore,  the  total  time  required  to  evaluate  the  small  dataset with  20  training  and  10  testing  samples  is  approximately  97.5  min  on  the  quantum 

computer.  These  limitations  are  further  compounded  by  the  constraints  of  the  CTU 

license,  which  grants  us  access  to  only  400  min  per  month. 

We  experimented  with  the  number  of  jobs  submitted  in  a  single  session.  Sessions 

allow  all  jobs  to  be  executed  consecutively,  minimizing  queue  wait  times.  However, 

as  the  number  of  jobs  and  the  quantum  minutes  used  approach  the  limits  imposed  by 

our  license,  queue  wait  times  can  increase  exponentially.  Consequently,  even  small 

datasets  (e.g.,  20  train  and  10  test  samples)  could  queue  for  up  to  approximately  14 

days  on  the  ibm_torino system,  leading  us  to  explore  alternative  systems. 

In  our  experimentation,  we  tested  various  systems  and  opted  to  submit  all  jobs 

within  a  single  session  to  manage  larger  workloads.  When  selecting  the  least  busy 


system  available,  we  typically  encountered  queue  times  of  only  a  few  minutes.  How-

ever,  with  the  busiest  systems  (in  our  case,  ibm_torino),  wait  times  could  extend 

to  several  hours,  even  for  a  relatively  small  number  of  jobs.  While  the  quantum  pro-

cessing  time  required  to  execute  the  jobs  was  consistent  across  various  systems,  with 

differences  of  only  a  few  seconds,  these  variations  had  a  notable  impact  given  our 

limited  resources  and  the  larger  volume  of  jobs  we  needed  to  process. 

Table  3  presents  the  results  of  our  experiments.  We  used  different  IBM  Quantum  systems  for  each  dataset  size,  including  ibm_torino,  ibm_algiers, 

ibm_cairo,  and  ibm_kyoto.  The  column  labeled   job  time   specifies  the  average 

execution  time  of  each  job  on  the  respective  system,  measured  in  quantum  seconds. 

Although  we  provide  accuracy  and  F1  score  metrics  for  completeness,  it  is  important 

to  note  that  due  to  the  small  dataset  sizes,  these  metrics  may  not  fully  represent  the 

performance  of  the  QSVM  algorithm.  However,  they  offer  insights  into  relative  per-

formance  across  different  systems  and  dataset  sizes.  The  table  highlights  the  iterative 

nature  of  our  experiments,  beginning  with  smaller  datasets  and  progressively  scaling 

up.  We  started  with  4  training  and  2  test  samples,  gradually  increasing  to  8  training 

and  4  test  samples,  and  eventually  evaluating  a  larger  dataset  with  20  training  and 

10  test  samples. 
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Table  3  Experiment  results:  QSVM  classification  on  IBM  Quantum  systems 

Data  (train/test)

IBM  Quantum 

Job  time  (s)

Accuracy

F1  score 

system 

4/2

ibm_torino 

15

0.5

0.333 

ibm_algiers  18

0.5

0.333 

8/4

ibm_torino 

18

1

1 

ibm_algiers  15

0.75

0.733 

20/10

ibm_cairo

16

0.6

0.6 

ibm_kyoto

17

0.6

0.524 

5 

Conclusion  and  Future  Work 

We  extended  the  previous  work  by  focusing  on  the  implementation  and  evaluation  on 

real  quantum  computers,  which  brings  its  own  challenges.  We  addressed  and  fixed  the 

issues  in  the  original  implementation  of  classes  for  quantum  kernel  in  Qiskit  Machine 

Learning  library,  namely  the  inability  to  split  the  evaluation  process  into  distinct  parts, the  absence  of  transpilation  for  fidelity  circuits  and  the  issue  with  submitting  all  the 

fidelity  circuits  in  one  single  job  to  IBM  Quantum  leading  to  exceeding  the  maximum 

limit  for  job  size.  The  absence  of  transpilation  is  a  known  issue  within  the  Qiskit 

community  and  has  not  yet  been  resolved  at  the  time  of  finishing  this  work.  Our 

fixes  address  critical  flaws  in  the  original  implementation  and  pave  the  way  for  more 

efficient  usage  of  quantum  computing  resources  in  malware  detection. 

Besides  the  local  simulator,  we  also  used  IBM  Quantum  computers  to  compute 

the  quantum  kernel  for  QSVM  classification.  We  tested  how  the  IBM  Quantum 

computers  behave  under  the  workload  of  many  computation  jobs. 

In  future  work,  we  aim  to  optimize  the  transpilation  process  and  the  one-job-per-

kernel  entry  approach  to  enable  large-scale  experiments  on  IBM  Quantum  computers. 

Further  investigation  into  their  topology  would  also  be  beneficial,  as  each  system 

features  a  unique  layout  of  qubits.  We  may  reduce  computation  time  by  specifying 

the  exact  qubits  used  for  computation. 

From  an  algorithmic  perspective,  we  plan  to  experiment  with  feature  map  design 

and  combine  different  data  mapping  functions  to  enhance  our  approach.  Furthermore, 

we  would  like  to  investigate  various  preprocessing  techniques  and  their  impact  on 

the  classification  results. 
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Reducing the Surface for Adversarial 

Attacks in Malware Detectors 

Benjamín Peraus 

and Martin Jureˇcek 

Abstract  Adversarial  attacks  pose  a  significant  problem  in  malware  detection 

because  they  allow  relatively  simple  modifications  to  already  detected  malware  to 

recreate  undetectable  malware  and  cause  misclassification  in  machine  learning  mod-

els,  even  in  black-box  scenarios.  The  goal  of  this  work  is  to  study  defensive  techniques and  implement  a  tool  that  can  mitigate  the  impact  of  these  attacks  by  preprocessing 

samples  to  minimize  the  attack  surface  needed  to  create  adversarial  samples.  Our 

technique  has  been  subjected  to  rigorous  testing  against  a  number  of  adversarial  gen-

erators.  The  results  of  this  testing  have  demonstrated  the  efficacy  of  our  approach, 

with  a  notable  reduction  in  the  evasion  rate  of  detection  for  most  generators  to  zero 

percent.  This  has  been  achieved  without  any  adverse  impact  on  the  detection  accuracy 

of  common  malware. 

1  Introduction 

Adversarial  attacks  in  the  realm  of  malware  detection  aim  to  deceive  detection  sys-

tems,  causing  them  to  misidentify  malware.  These  attacks  offer  effective  methods 

for  creating  undetectable  malware  using  adversarial  generators.  By  making  relatively 

simple  modifications  to  existing  malware,  the  generator  can  produce  new  malware 

with  the  same  functionality  but  evades  conventional  detection  systems.  Furthermore, 

the  combination  of  generators  can  enhance  evasion  techniques,  as  demonstrated  in 

the  work  of  [ 14]. 

The  issue  is  further  compounded  by  the  fact  that  adversarial  samples  are  often 

transferable.  Adversarial  generators  are  often  focused  and  learn  against  specific 

detection  models.  It  is  therefore  unsurprising  that  the  samples  are  successful  against 

these  specific  detection  models.  However,  the  problem  arises  when  samples  gener-

ated  specifically  to  evade  a  particular  model  are  also  successful  in  evading  different 
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models,  despite  the  internal  working  of  the  models  being  different.  The  vulnera-

bility  of  non-commercial  or  open-source  detection  systems  to  adversarial  attacks 

is  not  limited  to  these  systems  alone.  As  evidenced  by  the  findings  presented  in 

[ 12, 15, 19], even  commercial  antivirus  products  are  susceptible  to  the  same problem. 

The  motivation  behind  the  work  presented  in  this  chapter  is  the  pressing  need  to 

address  adversarial  attacks  in  the  field  of  malware  detection.  Current  research  indi-

cates  that  successful  attacks  could  have  severe  consequences,  potentially  compro-

mising  critical  infrastructure  or  leading  to  large-scale  data  breaches.  The  potential  for 

such  scenarios  necessitates  a  thorough  exploration  of  robust  defense  mechanisms. 

This  thesis  delves  into  the  complexities  of  adversarial  attacks  on  Machine  Learn-

ing  (ML)-based  malware  detection  with  the  aim  of  contributing  to  the  development 

of  more  resilient  systems.  Through  comprehensive  research,  we  will  explore  and 

evaluate  potential  countermeasures  that  can  significantly  hinder  the  effectiveness  of 

adversarial  attacks.  Additionally,  the  dynamic  nature  of  adversarial  attacks  in  mal-

ware  detection,  with  new  attack  vectors  constantly  emerging,  underscores  the  need 

for  a  continuous  pursuit  of  innovative  defense  strategies. 

Our  contribution  to  this  area  of  research  is  the  development  of  a  novel  defensive 

strategy  based  on  adversarial  space  reduction.  Furthermore,  we  have  created  a  Python 

tool  capable  of  performing  this  reduction.  It  is  our  contention  that  adversarial  space 

reduction  has  the  potential  to  enhance  the  system’s  resilience  against  attacks.  In 

particular,  we  hypothesize  that  this  approach  can  markedly  reduce  the  transferability 

of  adversarial  samples  in  a  black  box  scenario.  Furthermore,  we  posit  that  this  method 

can  substantially  diminish  the  creation  of  new  adversarial  attacks.  Initial  experiments 

have  demonstrated  the  veracity  of  our  hypotheses,  and  the  results  regarding  accuracy 

and  resilience  to  adversarial  attacks  are  encouraging. 

The  remainder  of  this  chapter  is  organized  as  follows.  Section  2  covers  related work  in  the  field  of  defense  against  adversarial  attacks.  Section  3  provides  the necessary  background  on  adversarial  attacks,  adversarial  generators,  and  Portable 

Executable  (PE)  format.  Section  4  describes  defense  techniques  against  adversarial attacks.  Section  5  presents  our  proposed  method.  Section  6  outlines  the  experimental setup.  Section  7  details  the  experiments  and  results.  Section  8  contains  our  conclusion,  including  future  work. 

2  Related Work 

This  section  provides  an  overview  of  related  works  in  the  field  of  defense  against 

adversarial  machine  learning  attacks. 

 2.1 

 Related  Works  Based  on  Preprocessing 

This  section  presents  an  overview  of  existing  research  on  adversarial  reduction. 
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2.1.1  Burning the Adversarial Bridges: Robust Windows Malware 

Detection Against Binary-Level Mutations 

The  paper  [ 1]  addresses  two  critical  aspects  in  the  field  of  malware  detection: 1.  Preprocessing  for  Reduced  Attack  Surface:  The  preprocessing  steps  (padding 

removal,  software  stripping,  and  inter-section  information  resetting)  are  designed 

to  eliminate  superfluous  elements  from  the  binary  file.  Such  elements  may  be 

exploited  for  adversarial  modifications. 

2.  Effective  Representation  with  Graph  Neural  Networks  (GNNs):  The  paper  puts 

forth  a  graph-based  representation  of  the  binary  code.  This  representation  cap-

tures  the  relationships  and  dependencies  between  different  sections  within  the 

binary.  By  comprehending  the  program’s  structure  and  the  interrelationships 

between  its  various  sections,  GNNs  may  be  able  to  discern  patterns  indicative  of 

malicious  behavior.  It  is  noteworthy  that  GNNs  are  less  reliant  on  specific  code 

sequences  and  focus  more  on  the  program’s  overall  structure.  This  makes  them 

more  resilient  against  attempts  to  evade  detection  through  minor  binary-level 

mutations. 

The  advantages  of  this  method  are  as  follows.  The  effective  representation  of  data 

with  GNNs  represents  a  significant  topic  in  this  paper.  The  effective  representation 

of  data  may  mitigate  the  potential  for  adversarial  attacks.  Our  work  does  not  focus 

on  the  development  of  more  effective  representations.  Instead,  our  work  employs 

the  EMBER  representation,  which  has  gained  widespread  acceptance  as  an  effective 

approach.  Reducing  adversarial  space  by  preprocessing,  similar  to  our  proposed 

method,  is  also  an  advantage. 

The  following  disadvantages  are  to  be  considered.  The  description  of  the  adver-

sarial  space  reduction  is  inadequate.  It  is  unclear  which  fields  in  binary  headers  are 

set  to  zero.  The  manner  in  which  inter-section  zeroing  is  implemented  is  unclear. 

It  is  uncertain  whether  inter-section  zeroing  is  susceptible  to  section  table  shuf-

fling.  Only  trivial  anti-modifications  have  been  implemented.  Our  implementation 

of  adversarial  space  reduction  is  more  specifically  described,  and  we  implement  also 

harder  modifications,  such  as  the  removal  of  unused  imports.  The  potential  impact 

of  the  modification  on  the  functionality  of  the  program  has  been  discussed.  This  is  a 

significant  advantage  of  our  proposed  method.  Training  on  unmodified  reduced  mal-

ware  samples  can  be  an  effective  approach,  provided  that  the  adversarial  reduction 

is  capable  of  eliminating  all  adversarial  modifications.  However,  it  is  important  to 

note  that  this  adversarial  space  reduction  is  not  a  perfect  solution.  Ideally,  adversar-

ial  examples  would  also  be  incorporated  into  the  training  data  or  the  entire  method. 

Our  proposed  method  incorporates  an  adversarial  part  trained  on  reduced  adversar-

ial  malware  samples,  which  can  effectively  address  adversarial  attacks  that  are  not 

eliminated  by  adversarial  space  reduction. 
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2.1.2  Defend Against Adversarial Attacks in Malware Detection 

Through Attack Space Management 

The  paper  [ 18]  is  focused  on  adversarial  space  reduction,  which  is  also  the  subject  of our  work.  The  primary  objective  is  to  recreate  the  malware  sample  in  a  form  that  is 

suitable  for  malware  classification.  This  will  ensure  that  adversarial  modification  has 

minimal  impact  on  the  ability  to  evade  malware  detection.  To  achieve  this,  function-

preserving  transformations  are  employed,  which  serve  as  the  equivalent  for  our  anti-

modifications.  The  aim  is  to  develop  a  robust  approach  that  can  effectively  address 

adversarial  attacks  through  adversarial  space  reduction. 

The  advantages  of  this  method  are  as  follows.  The  presented  transformations  for 

reducing  adversarial  space  are  thought  provoking,  particularly  those  that  have  not 

been  implemented  in  our  work,  such  as  the  handling  of  resources  section,  splitting 

merged  sections,  and  excluding  injected  sections.  This  paper  puts  forth  the  proposal  of 

employing  adversarial  reduction  techniques  for  training  data,  in  a  manner  consistent 

with  our  own  proposed  method. 

The  following  disadvantages  are  to  be  considered.  It  cannot  be  stated  with  certainty 

that  the  transformations  in  question  preserve  program  functionality.  In  our  work, 

we  provided  a  comprehensive  account  of  the  potential  for  each  antimodification  to 

alter  program  functionality.  The  extent  to  which  the  transformation  preserves  the 

functionality  of  the  program  is  contingent  upon  the  capabilities  of  the  disassembler. 

This  implies  that  code  sections  can  be  obfuscated,  and  that  the  disassembler  may  skip 

portions  of  code  containing  the  JMP  instruction  to  the  next  code  section.  In  such  a 

case,  the  section  in  question  would  be  regarded  as  injected,  which  entails  the  removal 

of  a  section  and  the  disruption  of  the  program’s  functionality.  Some  transformations 

are  not  sufficiently  described  or  absent  from  the  documentation.  For  instance,  the 

elimination  of  perturbation  in  the  optional  header,  the  appending  of  content  to  overlay 

data,  and  the  removal  of  unused  imported  symbols  are  not  addressed.  In  our  work, 

we  implemented  all  of  the  mentioned  transformations.  Additional  disadvantages 

are  analogous  to  those  observed  in  the  context  of  paper,  as  previously  discussed 

in  Sect. 2.1.1. These  include  the  absence  of  any  component  trained  on  adversarial malware  samples,  which  our  proposed  method  includes. 

 2.2 

 Related  Works  Based  on  Other  Methods 

This  section  presents  related  works  based  on  different  methodologies  than  those 

employed  in  our  proposed  method. 

2.2.1  StratDef: A Deep Dive into Strategic Defense 

As  described  in  [ 24], StratDef  is  an  example  of  combined  defense.  Its  objective  is  to create  a  constantly  changing  target  for  attackers  by  selecting  the  optimal  model  from
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a  set  of  pre-trained  models  on  a  dynamic  basis.  The  result  of  this  approach  is  that  it becomes  significantly  more  difficult  for  attackers  to  craft  adversarial  examples  that 

can  circumvent  the  existing  detection  system.  The  defense  is  based  on  the  following 

points: 

1.  The  creation  of  a  model  pool  is  the  initial  step  undertaken  by  StratDef  in  the 

process  of  developing  a  system  for  the  detection  of  malware.  The  model  pool 

is  constituted  by  a  diverse  range  of  pre-trained  machine  learning  models,  which 

exhibit  a  distinct  architecture,  training  data  set,  and  set  of  hyperparameters.  In 

addition  to  these  models,  the  pool  also  includes  those  that  have  been  trained  to 

resist  adversarial  attacks.  The  defense  strategies  against  adversarial  examples  on 

a  single  model  level  can  be  variable. 

2.  The  selection  of  the  most  appropriate  model  for  prediction  is  based  on  the  previ-

ously  created  moving  strategy  and  the  actual  information  related  to  the  prediction. 

The  choice  is  made  by  rolling  a  biased  die  based  on  the  probabilities. 

3.  StratDef’s  strength  lies  in  its  dynamic  adaptability.  Over  time,  the  system  mon-

itors  the  effectiveness  of  each  model  against  real-world  attacks.  Models  that 

consistently  perform  well  are  retained  and  potentially  further  improved  through 

retraining.  Conversely,  models  that  become  vulnerable  are  either  removed  from 

the  pool  or  retrained  with  additional  data  to  strengthen  their  defenses. 

The  advantages  of  StratDef  are  as  follows.  Enhanced  robustness  is  a  crucial  advan-

tage  of  StratDef.  StratDef  does  not  rely  on  a  single  model  but  instead  selects  from 

a  pool  of  models,  reducing  the  risk  of  an  attacker  fooling  one  model.  This  results 

in  robustness  that  is  potentially  superior  to  our  proposed  method.  Adaptability  to 

different  threats  is  the  next  advantage.  Risk  assessment  allows  StratDef  to  prioritize 

models  based  on  the  perceived  threat  level  and  user  context,  offering  a  more  nuanced 

defense.  Our  proposed  method  lacks  adaptability,  which  represents  a  clear  advantage 

of  StratDef. 

This  paragraph  lists  the  disadvantages  associated  with  the  StratDef  method  com-

pared  to  the  proposed  method.  The  computational  cost  of  employing  multiple  models, 

each  of  which  must  be  kept  up  to  date,  is  significantly  greater  than  the  computational 

cost  of  employing  a  single  model.  Our  defense  technique  scheme  is  much  simpler. 

The  data  requirements  for  training  and  optimizing  multiple  models  are  greater  than 

the  data  requirements  for  employing  a  single  model.  Furthermore,  the  time  required  to 

complete  this  process  is  longer.  Our  defense  technique  does  not  require  a  substantial 

amount  of  data.  Each  of  its  components,  including  adversarial  and  non-adversarial 

parts  as  well  as  adversarial  reduction  part,  can  be  updated  independently.  The  StratDef 

is  more  complex,  comprising  multiple  components,  and  therefore  presents  greater 

challenges  in  terms  of  implementation  and  management.  In  comparison,  our  defense 

technique  is  relatively  simple. 

It  is  possible  that  the  proposed  method  and  StratDef  could  be  considered  as  two 

distinct  approaches,  but  it  is  also  possible  that  they  could  be  viewed  as  complemen-

tary.  Indeed,  our  proposed  method  could  be  incorporated  into  the  existing  pool  of 

StratDef. 
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2.2.2  Updating Windows Malware Detectors: Balancing Robustness 

and Regression Against Adversarial EXEmples 

The  paper  [ 13]  outlined  a  defensive  scheme  designed  to  enhance  existing  defenses  by incorporating  a  supplementary  layer  of  protection.  This  layer  can  be  integrated  into 

existing  detection  systems  as  a  plugin.  This  layer,  designated  as  the  EXE-scanner, 

is  tasked  with  recognizing  adversarial  malware.  It  is  trained  on  both  benign  samples 

and  adversarial  malware  samples.  The  ML  model  utilized  for  this  layer  is  GBDT. 

The  detection  process  is  conducted  in  the  following  manner: 

1.  The  sample  is  provided  to  the  detection  system  (antivirus)  for  analysis,  which 

then  determines  whether  the  sample  is  malicious  or  benign.  If  the  detection 

system  identifies  the  sample  as  malicious,  the  process  concludes. 

2.  Conversely,  if  the  sample  is  classified  as  benign,  the  process  continues.  The 

sample  is  then  subjected  to  an  EXE  scanner  to  ascertain  whether  it  is  malicious 

or  benign.  The  EXE  scanner’s  output  serves  as  the  final  label  for  the  sample. 

The  EXE-scanner  offers  a  number  of  advantages.  A  straightforward  approach  to 

enhancing  and  reinforcing  existing  defenses  is  undoubtedly  advantageous.  In  con-

trast,  our  proposed  defensive  methodology  is  more  intricate.  However,  the  adversarial 

aspect  of  our  proposed  method  can  be  utilised  for  the  same  purposes  as  EXE-scanner. 

The  separation  of  the  adversarial  malware  detection  component  allows  for  the  exist-

ing  models  to  be  updated  independently,  negating  the  need  to  retrain  them  to  imple-

ment  this  defense  technique.  The  principle  of  separated  parts  for  adversarial  and 

non-adversarial  detection  is  employed  in  our  method  as  well.  Our  method  is  more 

complex,  and  thus,  the  optimal  approach  is  to  retrain  actual  defenses  on  reduced 

samples  using  our  reducer.  We  hypothesize  that  our  principles  can  also  be  applied 

to  extend  existing  defenses  (add  an  adversarial  part  and  add  an  adversarial  reduction 

before  the  existing  defense),  but  this  scenario  has  not  yet  been  tested. 

The  EXE-scanner  is  not  without  shortcomings,  which  can  be  enumerated  as  fol-

lows.  One  of  the  advantages  of  our  method  is  that  it  makes  use  of  adversarial  space 

reduction.  The  inclusion  of  the  EXE-scanner  without  adversarial  space  reduction 

renders  the  EXE-scanner  more  susceptible  to  new  generators,  as  the  attack  surface 

for  adversarial  attacks  is  not  minimized.  Despite  the  fact  that  the  EXE-scanner  is 

the  only  component  attempting  to  prevent  adversarial  attacks,  it  must  be  acknowl-

edged  that  this  component  requires  updating  and  the  data  set  must  be  extended  with 

new  adversarial  samples.  In  our  defense  technique,  the  adversarial  component  is  not 

a  significant  priority  for  updating,  as  long  as  the  adversarial  reduction  is  effective 

and  sufficient.  In  this  case,  the  adversarial  part  will  become  less  and  less  necessary. 

Additionally,  this  defensive  strategy  may  be  susceptible  to  exploitation  by  older  gen-

erators  when  the  internal  settings  of  generators  undergo  alterations.  To  illustrate,  we 

may  consider  the  example  of  adversarial  modification,  which  results  in  a  CheckSum 

field  value  of  0xFF.  A  learned  ML  model  is  aware  of  this  compromised  CheckSum 

value.  However,  the  issue  arises  when  the  value  is  altered  to  a  different  value.  The 

ML  model  is  only  familiar  with  this  value,  which  is  typical  for  adversarial  malware. 
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Different  values  can  influence  the  evasion.  Our  defense  technique  eliminates  this 

field  as  a  candidate  for  adversarial  modification  by  reducing  the  adversarial  space. 

2.2.3  MalProtect: Stateful Defense Against Adversarial Query Attacks 

in ML-Based Malware Detection 

MalProtect,  described  in  [ 25],  monitors  the  sequence  of  queries  submitted  to  the detection  model,  thereby  enabling  it  to  track  changes  in  the  attacker’s  behavior  and 

identify  patterns  indicative  of  manipulation  attempts.  Limiting  access  to  detection 

systems  can  help  minimize  the  information  knowledge  of  the  attacker  about  the 

detection  system,  which  is  needed  to  train  the  evasion  strategy.  In  the  event  that  the 

attacker  is  detected,  it  is  possible  to  react.  For  example,  by  changing  the  detection 

ML  model.  The  advantages  and  disadvantages  are  similar  to  StratDef. 

3  Background 

This  section  provides  an  essential  background  for  understanding  adversarial  attacks 

and  Portable  Executable  (PE)  format.  In  particular,  it  describes  adversarial  attacks  in 

the  black-box  scenario  in  detail.  It  also  presents  a  taxonomy  of  adversarial  attacks. 

The  description  is  created  with  the  perspective  of  malware  detection. 

Adversarial  attacks  are  a  type  of  cyberattack  that  specifically  target  machine  learn-

ing  models.  These  attacks  aim  to  manipulate  the  model’s  decision-making  process 

by  feeding  its  inputs  that  are  designed  to  be  very  similar  to  legitimate  inputs,  but 

with  subtle  modifications  that  cause  the  model  to  make  incorrect  predictions.  These 

inputs,  which  are  called  “adversarial  examples”,  are  crafted  in  such  a  way  that  they 

are  hardly  distinguishable  from  legitimate  inputs,  yet  they  elicit  incorrect  responses 

from  the  model. 

 3.1 

 Taxonomy  of  Adversarial  Attacks 

Adversarial  attacks  in  the  malware  detection  domain  can  be  classified  in  various 

ways,  depending  on  the  specific  aspects  being  considered.  To  illustrate,  we  will 

consider  th  following,  particularly  inspired  by  National  Institute  of  Standards  and 

Technology  (NIST)  [ 21, 29]:
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1. By Attack Goal 

•  Evasion Attacks:  The  objective  of  this  type  of  attack  is  to  induce  a  machine 

learning  model  to  misclassify  an  input.  This  is  the  most  prevalent  form  of 

adversarial  attack.  To  illustrate,  an  adversary  might  create  an  adversarial  mal-

ware  sample  that  a  malware  detection  system  misclassifies  as  a  legitimate 

benign  file. 

•  Targeted misclassification:  Targeted  misclassification  is  a  form  of  attack  in 

which  the  attacker  attempts  to  have  the  model  misclassify  a  specific  type  of 

malware  as  a  different,  less  severe  type.  This  manipulation  allows  the  malware 

to  bypass  security  measures  designed  for  specific  threats.  It  occurs  at  the  single 

sample  level. 

•  Poisoning attacks:  Poisoning  attacks  target  the  training  data  of  a  machine 

learning  model  with  the  goal  of  manipulating  the  model’s  behavior  during 

training.  This  can  lead  to  the  model  performing  poorly  on  unseen  data.  To 

illustrate,  consider  a  classifier  that  can  recognize  the  malware  family.  The 

training  data  for  this  classifier  are  collected  from  cyberspace.  This  implies  that 

attackers  may  attempt  to  inundate  the  cyberspace  or  specific  targets,  which 

are  utilized  to  collect  data  for  training  with  some  adversarial  samples  of  mal-

ware.  Modifying  the  training  data  set  may  result  in  the  classifier  erroneously 

classifying  common  unmodified  malware.  Consequently,  the  performance  of 

the  model  may  be  negatively  affected. 

2. By Attacker Knowledge 

•  White-Box Attacks:  In  this  scenario,  the  attacker  is  presumed  to  have  com-

plete  knowledge  of  the  malware  classifier’s  architecture,  parameters,  and  train-

ing  data.  This  is  unlikely  in  real-world  malware  detection,  as  models  are  often 

proprietary  and  not  publicly  accessible. 

•  Black-Box Attacks:  In  this  scenario,  the  attacker  is  not  privy  to  the  model’s 

inner  workings.  They  are  only  able  to  interact  with  the  classifier  by  submitting 

malware  samples  and  observing  the  classifications.  This  is  a  more  realistic 

scenario  for  attackers  targeting  deployed  malware  detection  systems. 

•  Gray-Box Attacks:  The  attacker  may  possess  partial  knowledge  about  the 

model’s  architecture  or  training  data,  including  the  types  of  features  utilized 

for  classification.  The  extent  to  which  this  information  is  known  by  the  attacker 

can  vary  depending  on  the  manner  in  which  it  was  obtained. 

3. By Adversarial Example Properties 

•  Physical Adversarial Examples:  These  are  less  prevalent  in  the  context  of 

malware  detection,  as  malware  primarily  operates  within  the  digital  domain. 

However,  there  are  theoretical  scenarios  in  which  physical  modifications  to 

infected  devices  might  influence  the  manner  in  which  malware  interacts  with 

the  detection  system. 

Reducing the Surface for Adversarial Attacks in Malware Detectors

239

•  Digital Adversarial Examples:  These  are  the  most  prevalent  types  of  malware 

in  terms  of  detection.  The  perpetrator  modifies  the  malware  sample  itself 

(e.g.,  the  binary  code)  in  order  to  circumvent  detection  while  maintaining  its 

malicious  functionality. 

4. By Perturbation Method 

•  Gradient-Based  Methods:  This  approach  is  a  popular  one  that  leverages 

the  gradients  of  the  model’s  loss  function.  The  gradient  essentially  indicates 

how  much  the  model’s  output  (loss)  changes  with  respect  to  small  changes 

in  the  input.  Attackers  can  calculate  the  gradients  and  use  them  to  iteratively 

modify  the  input  in  a  direction  that  will  maximize  the  change  in  the  model’s 

output.  This  method  allows  for  crafting  targeted  adversarial  examples,  as  the 

attacker  can  specify  the  desired  target  category  and  adjust  the  modifications 

accordingly.  Nevertheless,  gradient-based  methods  are  often  computationally 

expensive  and  may  not  always  identify  optimal  adversarial  example. 

•  Gradient-Free Methods:  These  methods  do  not  rely  on  gradients  and  may 

be  more  efficient  in  certain  scenarios.  They  involve  iteratively  making  small 

random  modifications  to  the  input  and  evaluating  the  model’s  output.  If  the 

modification  brings  the  output  closer  to  the  target  category,  it  is  retained.  Oth-

erwise,  it  is  discarded,  and  a  new  random  modification  is  attempted.  Gradient-

free  methods  may  be  less  precise  than  gradient-based  methods,  but  they  may 

be  useful  when  calculating  gradients  is  difficult  or  computationally  expensive. 

–  Evolutionary Algorithms:  These  methods  are  inspired  by  biological  evo-

lution  and  involve  a  population  of  candidate  adversarial  examples.  The 

examples  are  evaluated  based  on  their  proximity  to  achieving  the  desired 

misclassification.  “Fit”  examples  (those  closer  to  the  target  misclassi-

fication)  are  then  used  to  create  new  variations  through  mutations  or 

crossovers  (combining  elements  from  different  examples).  This  iterative 

process  allows  for  the  population  to  evolve  towards  increasingly  effective 

adversarial  examples.  Evolutionary  algorithms  are  computationally  expen-

sive,  yet  they  offer  a  powerful  means  of  exploring  a  wider  range  of  potential 

adversarial  modifications. 

–  Decision Boundary Methods:  Decision  boundary  methods  focus  on  iden-

tifying  the  decision  boundaries  of  the  model,  which  are  the  regions  in  the 

input  space  that  separate  different  classification  categories.  Attackers  can 

then  make  targeted  modifications  to  the  input  that  push  it  across  a  decision 

boundary  and  into  the  desired  target  category.  This  approach  can  be  partic-

ularly  effective  for  simpler  models  with  well-defined  decision  boundaries. 

–  Reinforcement  Learning:  Reinforcement  learning  represents  an  effec-

tive  approach  to  the  generation  of  adversarial  examples.  The  potential  for 

interaction  with  anti-malware  environments  is  well-suited  to  the  black-box 

scenario.  A  specific  set  of  adversarial  modifications  has  been  defined  for 

PE  files,  which  are  applied  to  unmodified  malware  samples  by  agents.  Dur-
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ing  the  training  process,  agents  apply  modifications  to  unmodified  malware 

samples,  after  which  the  modified  malware  sample  is  presented  to  an  anti-

malware  classifier.  Based  on  the  feedback  received  from  the  environment, 

agents  are  rewarded.  The  objective  of  the  learning  process  is  to  maximize 

the  reward  of  the  agents  in  order  to  identify  an  effective  strategy  for  mod-

ifying  the  malware,  which  would  result  in  a  higher  evasion  rate  for  the 

specified  classifier. 

 3.2 

 Adversarial  Generators 

This  section  describes  selected  adversarial  generators  used  in  the  experimental  part 

to  create  Adversarial  Examples  (AE). 

3.2.1  FGSM 

The  Fast  Gradient  Sign  Method  (FGSM)  is  a  gradient-based  method  for  generating 

adversarial  examples,  initially  proposed  by  Goodfellow  et  al.  [ 8].  A  modified  version for  the  domain  of  malware  samples  is  employed,  whereby  only  a  small  portion  of 

bytes  (payload)  is  perturbed  and  subsequently  inserted  to  the  original  malware  file 

[ 16].  This  attack  is  designed  in  a  whitebox  scenario  and  requires  knowledge  of  the loss  function  used  in  the  target  classifier  for  FGSM.  However,  AEs  are  transferable  to 

other  classifiers  and  can  be  used  in  a  black-box  scenario  as  well.  In  the  aforementioned paper,  Kreuk  et  al. [ 16]  describe  two  methods  for  inserting  payloads  into  executable files: 

1. Mid-file injection:  The  payload  is  placed  in  existing,  unused  bytes  of  sections 

where  the  physical  size  is  greater  than  the  virtual  size. 

2. End-of-file injection:  The  payload  is  treated  as  a  new  section  and  appended  to 

the  file. 

The  implementation  of  the  adversarial  generator  is  available  on  the  GitHub  repository 

 pralab/secml _ malware. 

3.2.2  AMG 

The  Adversarial  Malware  Generator  (AMG)  is  a  reinforcement  learning-based  gen-

erator  for  creating  AEs  [ 12].  This  generator  can  operate  in  two  modes: 1.  The  generator  uses  the  Proximal  Policy  Optimization  (PPO)  algorithm  to  choose 

optimal  modifications  based  on  the  policy  learned  during  training. 

2.  A  random  agent  is  deployed,  i.e.,  no  previous  training  is  needed,  and  available 

modifications  are  chosen  at  random.  The  possible  actions  are  in  the  form  of
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a  predefined  set  of  PE  file  manipulations  that  the  agents  repeatedly  use  until 

the  evasion  by  the  target  classifier  is  accomplished  or  a  maximum  number  of 

modifications,  50,  is  performed. 

The  set  of  possible  modifications  is  as  follows: 

•  Breaking  CheckSum field, 

•  appending  new  import, 

•  appending  content  to  overlay, 

•  removing  debug  information, 

•  removing  certificate  table, 

•  adding  new  section  with  random  content, 

•  modifying  an  unused  part  of  the  section  content, 

•  renaming  section, 

•  increasing  TimeDateStamp, 

•  decreasing  TimeDateStamp. 

The  implementation  of  this  generator  is  available  is  available  on  the  GitHub  reposi-

tory   matouskozak/AMG. 

3.2.3  DOS Adversarial Generators 

The  following  three  adversarial  attacks  are  gradient-based,  specifically  employing  the 

single  gradient  step  method.  The  underlying  principles  of  these  attacks  are  elucidated 

in  papers  [ 5,  6].  The  byte  modifications  employed  in  these  generators  are  applied exclusively  to  the  MS-DOS  part  of  the  executable  file,  specifically  the  MS-DOS 

header  and  MS-DOS  stub. 

•  PartialDOS:  This  attack  modifies  the  MS-DOS  header  in  its  entirety,  with  the 

exception  of  two  fields:  the  signature  byte  and  the  PE  header  offset. 

•  FullDOS:  This  attack  employs  the  entire  DOS  part  of  the  executable,  the  MS-DOS 

header,  and  the  MS-DOS  stub  for  byte  modifications.  As  in  the  previous  case,  the 

sole  exception  to  the  byte  modifications  is  the  signature  byte  and  the  PE  header 

offset. 

•  ExtendDOS:  This  attack  aims  to  expand  the  attack  space  for  byte  modifications. 

By  increasing  the  PE  header  offset  field,  new  space  is  created  between  the  end  of 

the  MS-DOS  stub  and  the  beginning  of  the  PE  header.  Except  signature  byte  and 

PE  header  offset,  there  is  new  space  available  for  byte  modifications  that  can  be 

used  together  with  both  DOS  parts  of  executable  file. 

The  implementation  of  the  adversarial  generator  is  available  on  the  GitHub  repository 

 pralab/secml _ malware. 
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3.2.4  MAB-Malware 

MAB-Malware  [ 28]  uses  a  type  of  reinforcement  learning  called  “multi-armed  bandit”  to  create  adversarial  malware.  Unlike  other  methods,  it  does  not  care  about  the 

order  of  changes,  which  keeps  things  simple.  It  works  by  trying  changes  to  a  file  until it  evades  detection  or  reaches  a  limit.  It  then  removes  unnecessary  modifications  to 

create  the  most  streamlined  adversarial  example  possible.  This  approach  essentially 

uses  trial  and  error  with  built-in  optimization  to  outsmart  malware  detectors.  MAB-

Malware  Generator  is  typically  available  as  MAB-MalConv and  MAB-EMBER. 

The  difference  is  the  target  classifier.  MAB-MalConv  is  targeted  to  evade  MalConv 

based  classifiers  [ 23], while  MAB-EMBER  is  targeted  to  evade  EMBER  based  classifiers  [ 2]  .  The  set  of  possible  modifications  is  as  follows: 

•  Overlay Append:  Appends  benign  contents  at  the  end  of  a  binary. 

•  Section  Append:  Appends  random  bytes  to  the  unused  space  at  the  end  of  a 

section. 

•  Section Add:  Adds  a  new  section  with  benign  contents. 

•  Section Rename:  Change  the  section  name  to  a  name  in  benign  binaries. 

•  Remove Certificate:  Zero  out  the  signed  certificate  of  a  binary. 

•  Remove Debug:  Zero  out  the  debug  information  in  a  binary. 

•  Break Checksum:  Zero  out  the  checksum  value  in  the  optional  header. 

•  Code Randomization:  Replace  instruction  sequence  with  semantically  equivalent 

one. 

The  implementation  of  this  adversarial  generator  is  available  on  the  GitHub  reposi-

tory   bitsecurerlab/MAB-malware. 

3.2.5  GAMMA 

The  Genetic  Adversarial  Machine  learning  Malware  attack  (GAMMA)  generator 

employs  a  genetic  algorithm  to  select  the  adversarial  modification.  The  method  is 

described  in  detail  in  the  paper  [ 7]. This  paper  presents  a  multitude  of  adversarial modifications  that  may  be  utilized.  However,  the  implemented  and  tested  variants 

are  limited  to  the  following: 

•  The  addition  of  content  to  the  end  of  the  file  (to  the  overlay), 

•  the  injection  of  a  new,  unused  section  with  random  content. 

The  implementation  of  the  adversarial  generator  is  available  on  the  GitHub  repository 

 pralab/secml _ malware. 

3.2.6  Gym-Malware 

Gym-malware  is  an  OpenAI  Gym-based  reinforcement-learning  generator  (and  also 

an  environment)  for  adversarial  malware  samples.  This  generator  was  the  basis  for
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the  AMG  generator  as  well.  This  generator  learns  optimal  modification  strategies 

in  interaction  with  the  malware  detection  environment.  The  method  is  described 

in  the  paper  [ 3].  In  this  thesis,  we  employed  Gym-malware  in  two  modes.  In  the black-box  mode,  Gym-malware  was  trained  against  the  Gradient  Boosted  Decision 

Trees  (GBDT)  model  [ 32], with  only  the  binary  response  (i.e.,  whether  the  sample was  malware  or  not)  being  utilized  for  training.  In  the  second  mode,  score  mode, 

Gym-malware  was  trained  against  the  same  GBDT  model,  but  the  confidence  score 

responses  of  the  model  were  employed  for  training. 

The  executable  file  modifications  employed  by  this  generator  are  as  follows: 

•  Adding  a  function  to  the  import  address  table  that  is  never  used, 

•  manipulating  existing  section  names, 

•  creating  new  (unused)  sections, 

•  appending  bytes  to  extra  space  at  the  end  of  sections, 

•  creating  a  new  entry  point  which  immediately  jumps  to  the  original  entry  point, 

•  removing  signer  information, 

•  manipulating  debug  info, 

•  packing  or  unpacking  the  file  (UPX  packer), 

•  modifying  (breaking)  header  CheckSum, 

•  appending  bytes  to  the  overlay, 

The  implementation  of  this  adversarial  generator  is  available  on  the  GitHub  reposi-

tory   endgameinc/gym-malware. 

 3.3 

 PE  format 

Portable  Executable  (PE)  is  a  file  format  commonly  used  for  Executables  (EXEs) 

and  Dynamically  Linked  Libraries  (DDLs).  This  file  format  is  typical  for  Windows 

operating  systems.  It  contains  all  the  necessary  information  for  the  Operating  System 

(OS)  loader  to  correctly  map  the  PE  file  to  system  memory. 

The  PE  file  format  has  a  specific  structure.  It  begins  with  the  MS-DOS  header, 

followed  by  the  MS-DOS  stub  program.  Next,  the  Common  Object  File  Format 

(COFF)  header  is  included,  followed  by  the  optional  header.  Finally,  the  section 

table  is  presented,  followed  by  the  individual  sections.  Optionally,  an  overlay  can 

also  be  found  at  the  end  of  the  file.  This  may  contain  both  useful  and  useless  data, 

such  as  digital  signatures  and  certificates.  Figure  1  shows  the  high-level  structure of  the  PE  File  Format.  All  information  regarding  the  PE  format  can  be  found  in 

the  official  documentation  published  by  Microsoft  [ 11].  The  parts  of  the  PE  format that  are  pertinent  to  our  work  are  the  MS-DOS  header  and  stub,  the  COFF  header, 

the  optional  header,  the  section  table  and  data,  and  the  overlay  data.  Of  the  data 

directories,  the  most  relevant  for  our  work  are  the  certificate  table,  the  debug  data 

directory,  the  import  table,  and  the  import  address  table. 
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PE Format 

MS-DOS Header 

MS-DOS Stub 

PE Header 

COFF Header 

Optional Header 

Section Table 

Section Data + Overlay 

Fig. 1  The  high-level  structure  of  the  PE  file  format 

4  Defense Techniques 

This  section  describes  defenses  against  adversarial  attacks,  particularly  in  black-

box  scenarios.  It  is  of  paramount  importance  to  emphasise  that  the  majority  of  the 

defensive  strategies  against  adversarial  attacks  outlined  in  this  chapter  were  initially 

developed  for  the  domain  of  image  recognition.  Consequently,  the  objective  of  this 

chapter  is  to  elucidate  these  methods  in  the  context  of  malware  classification  and  to 

discuss  the  benefits  and  limitations  of  applying  these  techniques  for  malware  clas-

sification.  The  selection  of  defense  techniques  is  informed  by  the  insights  presented 

in  paper  [ 4]. 
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 4.1 

 Adversarial  Training 

Adversarial  training  enables  a  model  to  counteract  attacks.  This  technique  is  employed 

extensively  in  various  fields.  The  paper  [ 9]  elucidates  its  application  in  the  domain of  picture  classification.  The  papers  [ 17, 20]  concentrates  on  the  domain  of  malware detection.  When  considering  black-box  scenario  attacks,  the  process  for  developing 

a  defense  is  as  follows: 

1. Generating Adversarial Examples:  During  training,  the  model  is  exposed  not 

only  to  normal  data  (i.e.,  malware  and  benign  samples  without  targeted  adversar-

ial  modifications)  but  also  to  adversarial  examples.  The  provided  dataset  consists 

of  the  latest  adversarial  samples  generated  by  the  most  recent  generators. 

2. Learning  Robustness:  By  exposing  the  model  to  adversarial  examples,  it 

becomes  more  resilient  to  minor  changes  in  the  input  data.  It  enhances  its  capabil-

ity  to  concentrate  on  the  crucial  characteristics  of  the  malware  sample  (patterns 

that  are  significant  for  malware)  while  disregarding  irrelevant  noise  (caused  by 

perturbations)  that  attackers  may  introduce. 

4.1.1  Benefits and Limitations of Adversarial Training 

Enhanced  generalizability  is  benefit  of  adversarial  training.  Adversarial  training  goes 

beyond  just  protecting  against  specific  attacks.  Encountering  various  data  distortions 

helps  the  model  become  more  adaptable  to  real-world  variations,  ultimately  improv-

ing  its  overall  performance.  Thanks  to  adversarial  training,  we  can  achieve  a  certain 

level  of  proactive  defense.  By  learning  patterns  of  adversarial  examples,  we  can 

increase  our  robustness  against  potential  adversarial  samples  that  do  not  yet  exist. 

The  main  disadvantage  of  this  defense  technique  is  the  large  size  of  the  dataset. 

When  the  base  dataset  containing  only  unmodified  malware  is  already  large,  apply-

ing  various  adversarial  generators  with  different  modifications  can  cause  the  dataset 

to  grow  exponentially.  When  attackers  create  new  generators  with  different  modifi-

cations,  the  dataset  must  be  extended  again,  and  the  ML  model  must  be  retrained. 

Repeating  this  process  is  important  to  stay  ahead  of  attackers,  but  it  can  be  compu-

tationally  expensive. 

From  a  black-box  attack  perspective,  adversarial  perturbations  can  target  specific 

classifiers,  including  ours,  and  their  internal  workings.  However,  these  perturbations 

can  still  be  effective  when  transferred  to  another  model,  even  if  the  internal  struc-

ture  is  different.  Adversarial  generated  samples’  perturbations  can  depend  on  the 

attacker’s  settings.  Our  different  setting  of  the  generator  can  create  samples  with 

different  patterns  than  the  attacker’s  samples.  In  this  instance,  adversarial  training  is 

not  sufficiently  robust  against  adversarial  samples  created  by  an  attacker. 
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 4.2 

 Null  Label  Training 

Null  label  training  addresses  the  issue  of  adversarial  examples  by  training  the  model 

to  classify  regular  samples  and  identify  and  reject  adversarial  ones.  The  technique  in 

question  is  described  in  detail  in  the  paper  [ 10].  The  null  labeling  method  considers not  only  whether  a  sample  is  malware  or  not,  but  also  whether  it  is  adversarial. 

This  is  achieved  by  adding  a  ‘null’  label  that  indicates  the  probability  of  adversarial 

modifications. 

There  are  multiple  ways  to  implement  this  method.  One  possible  way  to  improve 

the  model  is  to  modify  the  loss  function  to  include  objective  criteria,  such  as  adver-

sarial  sample  recognition.  Another  option  is  to  create  a  function  that  can  assess  the 

degree  of  adversarial  modification.  This  can  be  used  to  determine  the  likelihood  of 

a  sample  being  adversarial  or  not.  This  function  can  be  used  to  add  the  ‘null’  label 

for  training  dataset  for  adversarial  training. 

4.2.1  Benefits and Limitations of Null Label Training 

By  learning  the  characteristics  of  adversarial  manipulations,  the  model  becomes 

less  susceptible  to  transferred  attacks.  It  flags  these  examples  as  ‘null’  instead  of 

making  potentially  incorrect  predictions.  The  model  is  trained  to  accurately  classify 

legitimate  data  samples.  The  ‘null’  label  is  only  applied  to  suspicious  inputs. 

The  limitations  of  this  defense  technique  are  almost  the  same  as  those  in  the  case 

of  adversarial  training.  A  large  number  of  adversarial  samples  need  to  be  generated 

using  actual  generators.  The  model  should  be  updated  to  be  in  line  with  attackers, 

and  the  update  process  requires  significant  computing  performance. 

 4.3 

 Feature  Squeezing 

Feature  squeezing  is  a  technique  that  aims  to  expose  adversarial  manipulations  by 

simplifying  the  input  data  presented  to  the  model  and  selecting  only  the  relevant 

features  for  malware  recognition.  In  the  field  of  image  classification,  this  defensive 

technique  is  presented  in  [ 31].  The  elimination  of  irrelevant  features,  which  are not  relevant  to  the  recognition  process,  limits  the  adversarial  attack  surface.  As  an 

illustration  of  the  utilization  of  the  aforementioned  feature,  the  EMBER  project  [ 2] 

may  be  cited  as  an  exemplar.  This  project  employs  feature  extraction  and  vector 

representation  for  its  datasets.  Other  projects,  such  as  MalConv  [ 23],  utilize  only  a portion  of  the  PE  file,  which  entails  the  raw  binary  data  without  the  selection  of  only the  relevant  components. 

It  is  also  possible  to  utilize  both  ML  models.  The  first  model  is  trained  on  non-

squeezed  samples,  while  the  second  model  is  trained  on  the  squeeze  representation  of 

the  same  data.  The  sample  to  be  classified  is  then  sent  to  both  models,  allowing  for  the
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observation  of  the  consistency  of  the  output  from  both  classifiers.  The  discrepancy 

in  the  output  from  both  ML  models  indicates  the  presence  of  an  adversarial  attack. 

This  technique  is  referred  to  as  detection  through  disagreement. 

4.3.1  Benefits and Limitations of Feature Squeezing 

Feature  squeezing  represents  a  valuable  tool  for  identifying  malware  that  attempts 

to  evade  detection  through  minor  modifications.  Consequently,  improved  detection 

accuracy,  when  an  adversarial  sample  is  present,  confers  a  distinct  advantage.  Squeez-

ing  the  data  can  potentially  reduce  the  computational  cost  of  processing  large  malware 

samples,  which  represents  an  additional  advantage. 

Note  that  feature  squeezing  may  not  be  an  effective  countermeasure  against  all 

types  of  adversarial  attacks.  This  is  particularly  the  case  for  those  that  do  not  rely 

on  easily  disrupted  features.  The  effectiveness  of  feature  squeezing  depends  on  the 

specific  technique  employed  and  the  machine  learning  model  used  for  detection.  In 

the  case  of  black-box  scenario  attacks,  this  defense  technique  limits  the  space  for 

attacks,  but  attackers  can  create  generators  that  the  squeezing  function  cannot  elimi-

nate.  Subsequently,  it  is  essential  to  alter  the  squeezing  function  and  retrain  the  entire model,  which  necessitates  a  considerable  amount  of  computational  performance  for 

repeated  execution. 

 4.4 

 Defense-GAN 

Defense-GAN,  as  described  in  paper  [ 26],  comprises  two  primary  components:  a generator  and  a  discriminator.  The  generator  is  tasked  with  transforming  adversarial 

samples  into  a  form  that  corresponds  to  the  original  sample,  which  can  be  correctly 

classified  by  the  malware  classifier.  This  implies  that  the  generator’s  objective  is  to 

generate  samples  that  appear  to  be  non-modified  samples.  In  contrast,  the  discrimina-

tor  is  responsible  for  distinguishing  between  non-adversarial  samples  and  adversarial 

samples  cleaned  by  the  generator.  During  the  training  phase,  the  generator  and  dis-

criminator  engage  in  a  learning  rivalry.  The  generator’s  ability  to  clean  adversarial 

samples  that  can  fool  the  discriminator  into  believing  they  are  genuine  is  enhanced, 

while  the  discriminator’s  ability  to  detect  even  the  subtlest  traces  of  manipulation 

after  generator’s  transformations  is  improved.  This  adversarial  dynamic  leads  to  the 

generator  becoming  increasingly  adept  at  producing  almost  non-adversarial  samples, 

while  the  discriminator  evolves  into  an  expert  at  spotting  adversarial  examples. 

4.4.1  Benefits and Limitations of Defense-GAN 

The  independence  from  the  model  is  the  primary  advantage  of  Defense-GAN.  As 

it  is  not  reliant  on  the  knowledge  of  a  specific  attack  method  or  target  classifier,  it
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is  still  capable  of  attempting  to  “clean  up”  the  adversarial  example  by  generating  a 

more  authentic  version. 

It  is  sometimes  necessary  for  a  generator  to  attempt  a  greater  number  of  iterations 

in  order  to  successfully  remove  the  adversarial  noise  from  the  sample.  This  results  in 

a  greater  number  of  requests  being  made  to  the  generator.  Furthermore,  the  disadvan-

tage  of  updating  and  retraining  models  is  also  relevant  for  this  technique.  However, 

the  malware  classifier  and  generator  are  separate  entities,  which  means  that  they  can 

be  trained  separately. 

 4.5 

 Combining  Defenses 

The  utilization  of  diverse  defensive  mechanisms,  encompassing  detection,  transfor-

mation,  adversarial  training,  and  other  techniques,  facilitates  the  establishment  of 

a  comprehensive  security  system.  This  approach  entails  the  integration  of  multiple 

layers  of  protection,  each  of  which  addresses  potential  threats  from  a  distinct  per-

spective.  Consequently,  it  becomes  more  challenging  for  adversaries  to  circumvent 

the  collective  defenses  simultaneously  and  design  new  attacks. 

Different  attacks  exploit  vulnerabilities  in  different  ways.  Combining  defenses 

with  complementary  strengths  helps  cover  a  wider  range  of  attack  methods.  Even 

if  one  defense  is  breached,  the  others  can  act  as  backups,  potentially  preventing 

successful  attacks.  This  redundancy  increases  the  overall  robustness  of  your  system. 

5  Proposed Method 

This  section  describes  our  proposed  method  for  improving  defense  against  adver-

sarial  machine  learning  techniques.  The  goal  is  to  prevent  malware  classifiers  from 

misclassifying  malware  as  a  benign  file. 

Our  proposed  defense  mechanism  against  malware  generated  by  adversarial  gen-

erators  consists  of  two  parts:  executable  preprocessing  and  machine  learning.  The 

focus  of  our  proposed  method  is  on  a  tool  that  reduces  the  attack  space  used  by  adver-

sarial  machine  learning  techniques  (adversarial  space).  The  objective  is  to  transform 

a  modified  malware  sample  into  a  state  space  that  is  better  suited  for  ML  models  to 

make  a  decision  on  whether  the  sample  is  malware  or  not.  The  goal  of  adversarial 

generators  is  to  transform  the  sample  into  a  state  space  that  can  confuse  the  learned 

classifier  in  its  decision-making  process.  For  this  reason,  we  have  incorporated  an 

adversarial  space  reduction  process  into  several  places.  Antimodifications,  i.e.  mod-

ifications  to  the  executable  file  that  attempt  to  eliminate  adversarial  modifications, 

which  reduce  the  adversarial  space,  are  designed  to  preserve  program  functionality 

to  the  greatest  extent  possible. 
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 5.1 

 Reduced  Executables  and  Machine  Learning 

The  crucial  aspect  of  our  method  involves  reducing  the  adversarial  space  prior  to  pre-

processing  the  training  data.  Unmodified  malware  samples  are  available,  but  adver-

sarial  generators  often  transform  them  into  undetected  malware.  These  unmodified 

malware  samples  are  used  as  part  of  the  training  data,  however  before  preprocessing 

and  feature  selection,  an  adversarial  space  reduction  process  is  applied. 

Adversarial  space  reduction  is  applied  to  unmodified  malware  due  to  state  space 

transformation.  For  example,  if  the  adversarial  generator  is  using  timestamp  incre-

mentation  and  decrementation  to  maximize  the  evasion  rate,  we  can  change  the 

timestamp  to  a  fixed  value  as  a  prevention  of  this  attack.  For  example,  zero  bytes 

can  be  used.  However,  even  unmodified  malware  has  many  different  timestamps.  It 

is  important  to  transform  multiple  malware  samples  with  different  timestamp  values 

into  a  single  state  in  a  smaller  state  space  to  improve  the  decision-making  process. 

The  learning  process  of  ML  model  is  applied  after  the  adversarial  space  reduction. 

After  the  learning  process,  data  from  the  preprocessed  validation  dataset  is  used  to 

select  hyperparameters  and  the  final  machine  learning  model.  The  dataset  manipu-

lation  and  preprocessing  for  this  phase  is  shown  in  the  left  branch  of  Fig. 2. 

Adversarial  space  reduction  is  also  applied  before  the  classification  process.  After 

reduction,  sample  is  transformed  to  state,  which  ML  model  has  a  potential  to  correctly 

classify  with  greater  probability  than  before  the  reduction.  The  architecture  of  our 

proposed  method  is  shown  in  Fig. 3. This  method  is  only  sufficient  in  scenarios where  an  ideal  adversarial  space  reduction  tool  is  present.  In  this  case  term  “ideal” 

means,  that  after  application  this  tool  to  adversarial  space  reduction,  there  is  no  more 

adversarial  space  in  executable.  We  acknowledge  that  our  tool  can  be  improved  and 

that  there  are  additional  challenges  related  to  adversarial  space  reduction,  such  as 

eliminating  sections  with  random,  unused  content.  Due  to  these  reasons,  we  have 

added  one  more  ML  model  to  our  architecture,  as  shown  in  Fig. 3.  The  category  of our  defensive  technique  is  combined,  as  its  fundamental  basis  is  the  integration  of  two 

distinct  yet  complementary  approaches:  the  feature  squeezing  defensive  technique 

and  adversarial  training  defensive  technique. 

The  second  ML  model  is  trained  to  recognize  adversarial  malware.  As  shown 

in  Fig. 2, adversarial  generators  are  applied  to  the  whole  dataset  used  for  the  first ML  model.  The  output  of  this  procedure  is  a  set  of  adversarial  malware  samples. 

After  that,  adversarial  space  reduction  is  applied  to  all  adversarial  malware  samples. 

After  reducing  the  adversarial  space,  the  adversarial  samples  contain  modifications 

that  our  tool  cannot  eliminate.  These  samples  are  suitable  for  training  a  new  ML 

model  focused  solely  on  adversarial  malware  samples.  This  second  ML  model  was 

designed  to  improve  our  accuracy.  The  second  ML  model  determines  whether  a 

sample  is  benign  or  not  based  on  the  input  that  the  first  ML  model  did  not  label  as 

malware.  Before  classifying  with  the  second  ML  model,  it  is  also  important  to  use 

adversarial  space  reduction  for  the  same  reasons  as  with  the  first  ML  model.  The 

architecture  is  displayed  in  Fig. 3. Sect. 5.2  describes  the  details  of  reducing  the adversarial  space.  The  training  process  and  selection  of  hyperparameters  routine  is
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Fig. 2  Creating  the  testing,  training  and  validating  data  sets 

the  same  as  in  the  first  ML  model,  but  with  datasets  created  from  adversarial  samples 

(right  branch  in  Fig. 2).  Algorithm  1  provides  a  more  comprehensive  understanding of  the  classification  process. 

 5.2 

 PE  File  Antimodifications 

In  this  section,  we  discuss  adversarial  space  reduction  implemented  in  our  Python 

tool  that  preprocesses  PE  files  using  the  LIEF  library.  Our  aim  is  to  reduce  the  attack surface  for  malware  generators  using  adversarial  machine  learning.  We  implement 

antimodifications  to  counter  common  modifications  used  by  malware  generators  and 

minimize  the  potential  for  adversarial  modifications. 
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Fig. 3  Our  proposed  method  for  classifying  malware 

Algorithm 1 Classification  process 

Input: .  i –  The  sample  to  classify,  .  ML –  First  ML  model  for  Non-adversarial  malware,  .  MLadv – 

Second  ML  model  for  adversarial  malware 

Output:  Malware/Benign 

1:  .  ir ← adv_space_reduction(.  i) 

2:  .  otmp ←  ML(ir)

3:  if .  otmp = Malware  then 

4:

return Malware 

5:  else if .  otmp = Benign  then 

6:

.  oadv ←  MLadv(ir )

7:

if .  oadv = Malware  then 

8:

return Malware 

9:

else if .  oadv = Benign  then 

10:

return Benign 

11:

end if 

12:  end if 

To  discuss  whether  the  modification  can  change  the  program’s  functionality,  we 

must  define  what  “changing  the  functionality”  means.  It  is  always  possible  to  create  a 

scenario  in  which  any  modification  of  the  PE  file  results  in  a  change  in  the  program’s 

functionality.  For  example,  modifying  a  time  stamp  is  considered  a  modification  that 

should  not  affect  program  functionality.  However,  if  the  program  is  designed  to  read 

a  PE  file  related  to  it  and  decide  which  code  branch  to  use  based  on  the  timestamp 

value,  that  means  the  functionality  changes  due  to  timestamp  modification.  However, 
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this  case  is  quite  specific  and  in  practical  usage,  we  should  not  be  afraid  that  it 

will  occur  frequently.  For  these  reasons,  we  will  label  modifications  as  having  the 

potential  to  change  the  functionality  of  the  program,  or  as  not  potentially  changing 

the  functionality  of  the  program. 

5.2.1  MS-DOS Header and Stub Modifications 

The  MS-DOS  header  values  that  we  are  not  modifying  include  the  Signature  byte 

and  PE  header  start.  All  other  values  are  set  to  the  most  commonly  used  values.  It 

can  be  concluded  that  the  program’s  functionality  will  potentially  not  change. 

The  modification  to  the  MS-DOS  stub  is  designed  in  a  straightforward  manner. 

The  stub  program  is  replaced  with  the  most  commonly  used  variant.  We  can  conclude 

that  this  modification  potentially  does  not  affect  the  program’s  functionality. 

5.2.2  CheckSum and TimeDateStamp Modifications 

The  CheckSum  is  a  4-byte  field  defined  in  the  optional  header.  The 

TimeDataStamp field  is  also  a  4-byte  field  defined  in  the  COFF  header.  Both 

fields  are  set  to  zero  bytes. 

The  CheckSum is  only  checked  for  drivers,  DLLs  loaded  at  boot  time,  and  DLLs 

that  are  loaded  into  a  critical  Windows  process.  It  can  be  concluded  that  modifying  the 

CheckSum does  not  affect  program  loading.  We  can  also  conclude  that  CheckSum 

modification  potentially  do  not  change  the  program’s  functionality. 

The  TimeDataStamp only  provides  information  about  the  creation  of  the  exe-

cutable  file.  Considering  that  this  is  an  informational  item,  it  can  be  concluded  that 

modifying  this  field  will  potentially  have  no  impact  on  program  functionality. 

5.2.3  Modifications to Section Names 

This  modification  sets  all  section  names  to  “.sec”.  The  name  of  the  section  is  defined 

in  the  section  table  and  serves  only  an  informational  purpose.  So  we  can  conclude 

that  this  modification  potentially  does  not  change  the  program’s  functionality. 

5.2.4  Remove Debug Information 

This  modification  aims  to  remove  debug  information.  It  is  optional  whether  the  com-

piler  generates  debug  information  in  the  final  executable  file.  Therefore,  we  can 

conclude  that  this  modification  potentially  does  not  change  the  program’s  function-

ality. 
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5.2.5  Remove Certificate Table 

The  directory  for  certificate  tables  is  removed  by  overwriting  the  contents  of  this 

data  directory  with  zero  bytes.  Changing  the  content  of  this  data  may  not  impact  the 

functionality  of  this  program,  as  it  does  not  exist  in  program  memory  during  runtime. 

5.2.6  Removing Unused Imports 

The  aim  of  this  modification  is  to  remove  unused  imports  added  by  adversarial  gen-

erators.  As  is  known,  actual  strategies  of  adversarial  modification  involve  appending 

unused  imported  symbols  to  the  end  of  the  import  address  table.  This  modification 

is  done  in  this  way  because  adding  a  new  imported  symbol  to  a  different  location 

is  complicated.  If  a  new  imported  symbol  is  added  to  a  location  other  than  the  end 

of  IAT,  some  symbols  will  have  different  indexes  in  IAT.  If  the  modification  aims 

to  maintain  program  functionality,  manipulating  the  IAT  alone  is  not  sufficient.  As 

adversarial  modifications  only  add  unused  symbols  to  the  end  of  the  IAT,  we  tra-

verse  the  IAT  from  the  end  to  the  beginning.  Each  position  in  the  IAT  is  checked  to 

determine  whether  it  is  used  in  the  program’s  machine  code  or  not.  If  the  position  is 

utilized  in  machine  code,  the  traversal  is  halted.  We  assume  a  scenario  without  code 

section  modification,  that  all  unused  imports  are  located  at  the  end  of  the  IAT.  So  we 

can  continue  removing  until  we  find  the  used  symbol. 

It  cannot  be  concluded  that  this  modification  does  not  potentially  change  the 

functionality.  There  are  scenarios  in  which  these  modifications  can  remove  imported 

symbols  that  cannot  be  removed,  resulting  in  broken  program  functionality. 

 5.3 

 Content  Modification  Between  Sections 

Between  sections,  there  may  be  section  data  on  the  disk  that  is  not  mapped  into 

memory.  However,  adversarial  modifications  may  still  attempt  to  modify  this  data, 

as  it  can  impact  malware  classifiers.  This  modification  rewrites  the  content  between 

sections  with  zero  bytes.  It  can  be  concluded  that  this  modification  potentially  does 

not  change  the  program  functionality. 

 5.4 

 Remove  Overlay  Data 

This  modification  removes  all  overlay  data  by  discarding  all  data  from  the  beginning 

of  the  overlay  data.  It  cannot  be  concluded  that  the  program’s  functionality  will 

potentially  not  change  due  to  the  modification.  Since  overlay  data  can  be  relevant  in 

certain  scenarios. 
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6  Experimental Setup 

The  chapter  employs  a  crucial  metric,  the  evasion  rate.  This  metric  represents  the  ratio 

of  newly  misclassified  malware  files  after  the  application  of  adversarial  generators  to 

previously  correctly  classified  malware  files.  The  rationale  behind  the  utilization  of 

this  metric  is  to  assess  the  robustness  of  malware  detection  models  against  adversarial 

generators.  This  metric  can  be  calculated  using  the  following  formula. 

.  e = #  missclassified

(1) 

 total

In  this  context,  “total”  refers  to  the  number  of  correctly  classified  malware  samples 

utilized  for  testing. 

In  order  to  assess  the  accuracy  of  classification,  all  models  are  evaluated  using 

the  accuracy  metric,  which  serves  as  the  foundation  for  evaluating  the  impact  of 

defense  techniques  on  classification  accuracy.  This  metric  can  be  calculated  using 

the  following  formula. 

.  acc =

 TP +  TN

(2) 

 TP +  TN +  FP +  FN

In  this  context, .  TP  represents  the  number  of  true  positives  (correctly  identified  malware  samples)  and .  TN  represents  the  number  of  true  negatives  (correctly  identified benign  samples).  Similarly,  .  FP  denotes  the  number  of  false  positives  (incorrectly 

identified  benign  samples)  and .  FN  represents  the  number  of  false  negatives  (incor-

rectly  identified  malware  samples). 

In  order  to  ascertain  whether  there  has  been  an  improvement  or  a  deterioration  in 

evasion  rates  or  accuracies  subsequent  to  the  implementation  of  a  defense  mechanism, 

we  utilize  the  relative  difference  in  these  evasion  rates  or  accuracies.  The  relative 

difference  is  calculated  for .  x, xnew ∈ [0 ,  1] using  the  following  formula. 

.Relative_difference_accuracies (x, xnew) =  xnew −  x

(3) 

 x

. 

⎧

⎨ x −  xnew  if  x = 0

Relative_difference_evassion_rates (x, xnew) = ⎩  x

(4) 

0

if  x =  xnew = 0

In  cases  where  the.  x  value  is  zero  and  the.  xnew  value  is  not  zero,  the  relative  difference is  not  defined.  These  cases  describe  a  deterioration  in  the  evasion  rate  or  accuracy. 

To  evaluate  the  rate  of  deterioration,  we  use  the  absolute  difference  defined  by  the 

following  formula  for .  x, xnew ∈ [0 ,  1]. 

.Absolute_difference_accuracies (x, xnew) =  xnew −  x

(5) 

.Absolute_difference_evassion_rates (x, xnew) =  x −  xnew

(6)
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Table  1  Tested  ML  models  and  their  hyperparameters 

ML  method

Hyperparameter  name

Tested  values  of  the 

hyperparameter 

KNeighborsClassifier

n_neighbors

1,  3,  5,  7,  9 

RandomForestClassifier

n_estimators

100,  500,  1000 

max_depth

7,  8,  9,  10 

criterion

gini,  entropy 

LogisticRegression

C

0.001,  0.01,  0.1,  1,  10,  100, 

1000 

penalty

l2 

MLPClassifier

hidden_layer_sizes

(200,),  (100,  50),  (200,  100), 

(400,  200) 

activation

relu,  tanh 

solver

lbfgs,  adam 

alpha

0.0001,  0.001 

The  terms  “KNeighborsClassifier”,  “RandomForestClassifier”,  “LogisticRegres-

sion”,  “MLPClassifier”,  “GridSearchCV”,  “PCA”,  “SimplerInputer”  and  all  related 

parameters  were  derived  from  the  scikit-learn,  which  was  utilized  for  experimental 

purposes.  A  comprehensive  explanation  of  these  terms  and  their  associated  parame-

ters  can  be  found  in  the  scikit-learn  documentation  [27].  For  all  experiments  involving machine  learning  tasks,  Table  1  includes  a  list  of  ML  methods  and  hyperparameters that  were  tuned.  The  GridSearchCV  method  was  employed  for  the  evaluation  of 

the  optimal  model  and  hyperparameters.  This  method  was  set  to  utilize  a  5-fold 

cross-validation  approach. 

All  executable  files  utilized  for  training  or  testing  are  transformed  into  feature 

vector  representation,  which  is  more  suitable  for  training  and  testing  purposes.  The 

algorithm  for  this  transformation  is  derived  from  the  EMBER  project,  the  repository 

containing  the  source  code  is  accessible  on  the  GitHub  repository   elastic/ember,  and the  paper  related  to  this  project  is  [ 2].  Given  the  high  dimensionality  of  the  EMBER 

feature  vector  (2381),  we  reduced  it  in  order  to  facilitate  the  training  process.  To  this end,  we  employed  Principal  Component  Analysis  (PCA)  to  reduce  the  dimensionality 

of  the  feature  vector,  specifying  the  number  of  components  to  be  used.  This  indicates 

that  the  number  of  components  was  another  hyperparameter  that  was  subjected  to 

testing.  The  tested  values  of  this  hyperparameter  are  shown  in  Table  2. 

Table  2  PCA,  tested  values  of  the  number  of  components 

Hyperparameter  name

Tested  values  of  the  hyperparameter 

n_components

40,  50,  60,  70,  80,  90,  100
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Before  PCA,  SimpleInputer  is  used  with  the  strategy  “mean”.  SimpleInputer  is 

used  to  replace  NaN  values  with  the  mean  value  of  the  feature  vector  since  PCA 

cannot  work  with  NaN  value  and  this  value  can  occur  as  a  result  of  preprocessing 

malware  samples. 

The  malware  samples  included  in  our  datasets  came  from  VirusShare  [ 30].  These unmodified  malware  samples  were  used  to  create  adversarial  malware  samples  that 

were  also  used  to  train  defense  techniques.  Benign  samples  included  in  our  datasets 

came  from  multiple  sources.  The  first  source  is  Practical  Security  Analytics  LLC  [ 22], the  second  is  DikeDataset  available  on  the  GitHub  repository   iosifache/DikeDataset 

and  the  rest  of  the  samples  came  from  clean  Windows  11  installed  system.  All  datasets 

were  randomly  shuffled  and  perfectly  balanced.  This  means  that  half  of  the  samples 

in  each  dataset  were  malware  samples  and  half  were  benign  samples.  Due  to  the 

use  of  cross-validation  with  GridSearchCV,  the  datasets  were  split  into  only  two 

parts:  the  testing  part  and  the  training+validation  part.  GridSearchCV  itself  performs 

the  splitting  of  the  subsets  for  training  and  validation.  The  testing  part  was  set  to  be 20%  of  the  dataset,  with  the  remaining  data  comprising  the  training+validation  parts. 

Should  the  ratio  of  test  data  differ,  this  will  be  explicitly  stated. 

 6.1 

 Malware  Detection  Models 

This  section  presents  all  experiments  employ  the  detection  models  described  in  the 

following  subsections. 

6.1.1  Basic ML 

The   Basic  ML   model  is  employed  as  a  reference  for  comparison  with  other  tech-

niques.  This  model  was  trained  on  a  dataset  that  included  unmodified  malware  sam-

ples  and  benign  samples.  The  total  number  of  samples  was  15,392.  The  best  ML 

model  type  with  the  hyperparameters  is  presented  in  Table  3. 

Table  3  The  best  ML  model  type  and  hyperparameters  values  for  the  Basic  ML  method ML  model

Hyperparameter  name

Hyperparameter  value 

MLPClassifier(random_state  =  42)

Activation

Relu 

Alpha

0.0001 

hidden_layer_sizes

(200) 

Solver

Adam 

pca_n_components

100 

Validation  accuracy

97.959%
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Table  4  The  best  ML  model  type  and  hyperparameters  values  for  the  Adversarial  trained  ML 

method 

ML  model

Hyperparameter  name

Hyperparameter  value 

MLPClassifier(random_state  =  42)

Activation

Relu 

Alpha

0.0001 

hidden_layer_sizes

(200,  100) 

Solver

adam 

pca_n_components

100 

Validation  accuracy

99.764% 

6.1.2  Adversarial Trained ML 

In  order  to  train  this  defensive  technique  (described  in  Sect. 4.1), the  dataset  from  the Basic  ML   model  was  used  and  extended  by  including  adversarial  malware  samples 

and  additional  benign  samples.  The  adversarial  malware  samples  were  generated 

from  unmodified  malware  included  in  the   Basic  ML   dataset  by  applying  adversarial 

malware  generators  (described  in  Sect. 3.2). The  following  adversarial  generators were  used  (described  in  Sect. 3.2).  AMG  in  modes  random  and  PPO,  PartialDOS, FullDOS,  ExtendDOS,  FGSM,  GAMMA,  Gym-malware  in  modes  black-box  and 

score,  MAB-malware  in  modes  EMBER  and  MalConv. 

The  use  of  a  sufficient  number  of  benign  samples  enabled  the  production  of  a 

balanced  dataset,  obviating  the  need  for  oversampling  methods.  The  total  number 

of  samples  was  174,590.  The  best  ML  model  and  hyperparameters  are  presented  in 

Table  4. 

6.1.3  Reduced 1 ML 

This  instance  represents  our  proposed  defense  technique,  as  described  in  Sect. 5. In this  case,  only  antimodifications  were  employed,  which  have  the  potential  to  maintain  the  functionality  of  the  program.  Therefore,  all  antimodifications  described  in 

Sect. 5.2  were  utilized,  with  the  exception  of  removing  unused  imports  and  removing overlay  data. 

As  previously  stated,  our  defensive  technique  in  Sect. 5  employs  two  ML  models.  Depending  on  the  training  data,  we  refer  to  them  as  the  adversarial  and  non-

adversarial  cases.  The  training  datasets  for  both  models  are  presented  in  detail  in  the 

following  items: 

•  Non-adversarial case:  The  training  data  for  this  part  is  identical  to  that  of  the  Basic ML  model.  However,  there  is  one  significant  difference:  all  the  data  is  subjected 

to  adversarial  space  reduction,  with  the  utilization  of  defined  anti-modifications 

as  previously  discussed.  The  total  number  of  samples  in  the  training  dataset  is 

identical  to  that  of  the  Basic  ML  case,  which  is  15,392. 

[image: Image 65]
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Fig. 4  Relationships  between  training  datasets  for  Basic  ML,  Adversarial  trained  ML,  Reduced  1 

ML  and  Reduced  2  ML 

•  Adversarial case:  The  training  dataset  for  this  part  is  identical  to  the  Adversarial trained  ML  dataset,  with  the  exception  of  the  samples  that  correspond  to  the  Basic 

ML  model.  The  same  set  of  adversarial  generators  utilized  in  the  Adversarial 

trainded  ML  case  was  employed  to  generate  adversarial  training  data  from   Basic 

 ML  (Non-adversarial)  samples.  Figure  4  illustrates  the  relationships  between  the datasets.  It  is  crucial  to  apply  adversarial  space  reduction  to  all  training  samples 

(explained  in  Sect. 5). The  precise  number  of  samples  included  in  the  training dataset  is  159,  198,  which  corresponds  to  the  calculation 

. #Adversarial_part = #Adversarial_trained_ML − #Basic_ML

159 ,  198 = 174 ,  590 − 15 ,  392

(7) 

The  best  ML  models  and  hyperparameters  for  both  parts  (adversarial  and  non-

adversarial)  are  presented  in  Table  5. 

6.1.4  Reduced 2 ML 

This  instance  is  analogous  to  the  Reduced  1  ML.  The  sole  distinction  lies  in  the 

utilization  of  all  implemented  anti-modifications  during  the  adversarial  space  reduc-

tion.  This  implies  that  the  set  of  anti-modifications  is  augmented  by  the  removal  of 

unused  imports  and  overlay  data,  which  may  impact  the  program  functionality.  The 

best  ML  models  and  hyperparameters  for  both  parts  (adversarial  and  non-adversarial) 

are  presented  in  Table  6. 
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Table  5  The  best  ML  model  and  hyperparameters  values  for  the  Reduced  1  ML  method 

ML  model

Hyperparameter  name

Hyperparameter  value 

 Non-adversarial  case 

MLPClassifier(random_state  =  42)

Activation

Relu 

Alpha

0.0001 

hidden_layer_sizes

(400,  200) 

Solver

adam 

pca_n_components

100 

Validation  accuracy

97.843% 

 Adversarial  case 

MLPClassifier(random_state  =  42)

Activation

Relu 

Alpha

0.001 

hidden_layer_sizes

(200,  100) 

Solver

Adam 

pca_n_components

100 

Validation  accuracy

99.690% 

Table  6  The  best  ML  model  type  and  hyperparameters  values  for  the  Reduced  2  ML  method ML  model

Hyperparameter  name

Hyperparameter  value 

 Non-adversarial  case 

MLPClassifier(random_state  =  42)

Activation

Relu 

Alpha

0.0001 

hidden_layer_sizes

(400,  200) 

Solver

Adam 

pca_n_components

100 

Validation  accuracy

97.732% 

 Adversarial  case 

MLPClassifier(random_state  =  42)

Activation

Relu 

Alpha

0.0001 

hidden_layer_sizes

(400,  200) 

Solver

lbfgs 

pca_n_components

100 

Validation  accuracy

99.743%
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7  Experiments 

We  designed  two  experiments: 

1.  The  initial  experiment  is  designed  to  assess  and  quantify  the  impact  of  defensive 

techniques  on  the  accuracy  of  malware  detection.  The  comparison  is  conducted 

in  relative  terms  with  respect  to  the  Basic  ML  baseline. 

2.  The  second  experiment  is  designed  to  evaluate  and  compare  the  robustness  of 

each  defensive  strategy,  including  our  proposed  technique,  against  adversarial 

malware  generators.  The  evaluation  is  conducted  in  relative  terms  with  respect 

to  the  Basic  ML. 

 7.1 

 Detection  Accuracy  after  Deploying  Defenses 

When  proposing  a  defensive  technique,  it  is  important  to  consider  the  impact  on 

detection  model  accuracy.  A  robust  defense  technique  against  adversarial  attacks 

is  rendered  completely  unusable  if  the  impact  on  unmodified  malware  detection 

accuracy  is  highly  negative.  In  order  to  assess  the  accuracy  of  each  detection  model, 

a  testing  dataset  was  created.  The  testing  dataset  comprised  samples  that  had  not 

been  seen  by  the  ML  models  during  the  training  and  hyperparameters  validation 

stages.  As  previously  stated  in  Sect. 6, when  creating  the  training  dataset  for  Basic ML,  the  samples  were  split  into  two  parts:  80%  was  used  for  training  and  validation 

of  Basic  ML,  while  20%  was  used  in  this  experiment  for  testing  purposes.  The  total 

number  of  samples  in  the  testing  dataset  was  3,848,  randomly  shuffled  and  perfectly 

balanced  (with  1,924  samples  of  malware  and  1,924  samples  of  benign  software). 

The  testing  dataset  created  for  Basic  ML  is  suitable  for  use  as  a  testing  dataset 

for  Adversarial  trained  ML.  For  Reduced  1  ML  and  Reduced  2  ML,  it  is  impor-

tant  to  apply  adversarial  space  reduction  to  this  testing  dataset,  with  corresponding 

antimodifications  as  described  in  Sect. 6.1. 

Hypothesis 1   Adding  our  proposed  defense  does  not  degrade  malware  detection 

 accuracy  of  the  Basic  ML  accuracy. 

Table  7  shows  the  percentage  accuracy  of  correctly  classified  samples  from  the test  dataset  on  the  malware  detection  models.  We  computed  the  relative  difference 

of  the  detection  accuracies  for  each  detection  method  with  respect  to  the  Basic 

ML  model  to  evaluate  the  rate  of  improvement.  Relative  differences  are  shown  in 

percentages  in  Table  8. The  results  demonstrate  that  all  defensive  techniques  enhance the  accuracy  of  unmodified  malware  detection.  This  outcome  may  be  attributed  to 

the  growing  number  of  benign  samples,  which  enables  detection  models  to  more 

accurately  identify  benign  files.  The  best  variant  was  Adversarial  trained  ML.  Our 

conclusion  is  that  Adversarial  trained  ML  model  is  a  more  generalized  for  benign 

files  recognition  than  other  models  because  this  single  model  has  seen  the  most 

benign  samples  during  training.  The  Reduced  1  and  2  ML  models,  which  employ

Reducing the Surface for Adversarial Attacks in Malware Detectors

261

Table  7  The  accuracy  achieved  by  individual  ML  detection  models  on  the  test  dataset Basic  ML

Adversarial_trained  ML 

Reduced_1  ML  Reduced_2  ML 

Accuracy

97.973

98.597

98.025

98.129 

Table  8  The  relative  change  in  accuracy  (.Relative_difference_accuracies (x, xnew))  compared  to the  Basic  ML  model  for  each  ML  model  on  the  testing  dataset 

Adversarial_trained 

Reduced_1  ML

Reduced_2  ML 

ML 

Relative  change

0.637

0.053

0.159 

our  proposed  methodology,  were  found  to  demonstrate  comparable  (not  significantly 

worse)  levels  of  accuracy  to  those  achieved  in  Adversarial  trained  ML.  Following 

the  results,  it  is  evident  that  our  findings  do  not  reject  the  Hypothesis  1. 

 7.2 

 Robustness  Against  Adversarial  Malware 

The  objective  of  this  experiment  is  to  evaluate  the  robustness  of  each  detection 

model,  including  the  model  using  our  proposed  defense  technique,  against  adversarial 

machine  learning  generators.  In  this  experiment,  a  testing  dataset  was  constructed 

from  only  adversarial  samples.  It  is  of  the  utmost  importance  to  create  this  testing 

dataset  correctly  in  order  to  accurately  assess  the  robustness  of  the  detection  models 

against  adversarial  generators. 

Samples  used  for  input  to  adversarial  malware  generators  were  correctly  classified 

as  malware  samples  from  the  testing  dataset  in  the  previous  experiment.  The  subset 

of  correctly  classified  malware  samples  may  differ  for  each  detection  model.  For 

instance,  Basic  ML  may  correctly  classify  a  different  subset  from  the  testing  dataset 

than  Adversarial  trained  ML.  This  entailed  creating  a  custom  testing  dataset  for  each 

adversarial  generator  and  each  detection  model  to  assess  the  evasion  rate  of  each 

generator  to  each  detection  model.  We  applied  the  same  set  of  adversarial  generators 

as  described  in  Sect. 6.1.2. Figure  5  illustrates  the  correct  methodology  for  creating the  testing  dataset.  For  a  more  detailed  explanation,  we  provide  the  Pseudocode  2. 

Hypothesis 2   The  evasion  ratio  after  the  application  of  the  proposed  defense  will be  reduced  compared  to  the  Basic  ML  evasion  rate. 

Table  9  illustrates  the  percentage  of  evasion  rates  for  each  adversarial  generator  of  each  detection  method.  The  relative  difference  in  evasion  rates  between  each 

detection  method  and  the  Basic  ML  model  was  calculated  to  assess  the  extent  of 

improvement  or  decline.  These  relative  differences  are  presented  in  percentages  in 

Table  10. The  findings  illustrate  that  our  defensive  technique  (Reduced  1  ML  and
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Algorithm 2 Adversarial  testing  datasets  creation. 

Input: .  T –  set  of  malware  samples  from  experiment  in  Sect. 7.1,.  G –  set  of  adversarial  generators, 

.  D –  set  of  detection  methods 

Output: .  F = {{ Tadv , T

 , ..., T

}

 , T

 , ..., T

}

1

 adv 2

 adv| G| 1 , { Tadv 1

 adv 2

 adv| G| 2 , ..., 

.{ Tadv , T

 , ..., T

}

1

 adv 2

 adv| G| | D|} –  sets  of  sets  of  adversarial  malware  samples  for  each  adversarial  generator  and  each  detection  method 

1:  for .  d = 1 to.| D| do 

2:

Apply.  d -th  detection  method  to.  T

3:

.  C ← Correctly  classified  malware  samples  by.  d -th  detection  method 

4:

for .  g = 1 to.| G| do 

5:

Apply.  g-th  adversarial  generator  to.  C

6:

.  Tadv ← New generated adversarial malware samples from previous step

 g

7:

.  Fd ←  Tadv  Add  new  generated  set  of  adversarial  malware  (by.  g-th  generator)  to.  d -th  set g

of  sets  of  adversarial  malware 

8:

end for 

9:  end for 

Final Data Sets 1 

Malware 

Misclassified 

Classifier 

Test Data 

Correctly 

Classified 

Training Data 

+ 

Validation Data 

Testing 

Adversarial 

Data -

Generators 

Adversarial 

Fig. 5  Adversarial  testing  dataset  creation 

Reduced  2  ML)  exhibits  greater  robustness  against  adversarial  attacks  than  adver-

sarial  training  (Adversarial  trained  ML).  The  results  indicate  that  the  use  of  pre-

processing  and  the  implementation  of  anti-modifications  can  significantly  enhance 

the  robustness  against  adversarial  attacks.  Based  on  the  results,  it  is  evident  that  our 

findings  support  Hypothesis  2. 

8  Conclusion 

In  this  chapter,  we  have  focused  on  the  topic  of  defense  against  adversarial  attacks  in 

the  domain  of  malware  detection.  In  order  to  achieve  this  goal,  we  have  successfully 

implemented  a  tool  for  PE  file  preprocessing,  which  reduces  the  space  available  for 

adversarial  attacks.  This  tool  has  served  as  an  important  base  for  our  proposed  defense
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Table  9  The  evasion  rates  observed  for  each  model  and  adversarial  generator 

.[%]

Basic  ML

Adversarial_trained  ML 

Reduced_1  ML  Reduced_2  ML 

AMG

10.728

0.000

0.000

0.000 

ExtendDOS

2.258

0.108

0.108

0.161 

FGSM

0.000

0.106

0.000

0.000 

FullDOS

0.000

0.000

0.000

0.000 

GAMMA

5.325

0.214

0.000

0.266 

Gym-

1.497

0.215

0.071

0.000 

malware_black-

box 

Gym-

1.977

0.073

0.073

0.000 

malware_score 

MAB-EMBER

21.698

0.213

0.212

0.000 

MAB-MalConv  2.851

0.168

0.056

0.000 

PartialDOS

0.000

0.000

0.000

0.000 

Random-AMG

8.120

0.055

0.000

0.055 

Mean

4.950

0.105

0.047

0.044 

Table  10  The  relative  change  (.Relative_difference_evassion_rates (x, xnew))  in  evasion  rates  for each  defensive  technique  and  adversarial  generator  in  comparison  to  the  Basic  ML  model 

.[%]

Adversarial_trained 

Reduced_1  ML

Reduced_2  ML 

ML 

AMG

100.000

100.000

100.000 

ExtendDOS

95.223

95.236

92.857 

FGSM

–0.106a

. 

0.000

0.000 

FullDOS

0.000

0.000

0.000 

GAMMA

95.985

100.000

94.997 

Gym-malware_black-

85.653

95.235

100.000 

box 

Gym-malware_score

96.283

96.296

100.000 

MAB-EMBER

99.019

99.021

100.000 

MAB-MalConv

94.101

98.037

100.000 

PartialDOS

0.000

0.000

0.000 

Random-AMG

99.327

100.000

99.328 

Meanb

. 

85.054

97.978

98.398 

a

..  This  value  represents  the  absolute  difference  (defined  in  Sect. 6)  in  the  percentage  of  evasion  rates, as  the  relative  difference  is  undefined 

b

.. 

The  mean  value  is  calculated  exclusively  from  non-zero  values,  as  zero  values  of  relative  change indicate  a  scenario  in  which  the  evasion  rate  was  zero  in  both  the  past  and  the  present,  precluding any  potential  for  improvement  in  the  new  evasion  rate.  However,  the  mean  value  is  downwardly deflected  by  zero  values,  which  is  an  inaccurate  representation
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technique.  We  have  also  successfully  designed  a  defense  technique  that  is  more 

robust  against  adversarial  attacks  than  adversarial  training.  The  implementation  of 

our  antimodification  tool  renders  our  defense  technique  robust  against  a  multitude  of 

adversarial  generators,  including  Gym-malware,  MAB-malware,  FGSM,  FullDOS, 

and  PartialDOS. 

The  proposed  defense  technique  has  no  negative  impact  on  detection  accuracy, 

and  in  fact,  the  accuracy  of  detection  is  higher  than  without  the  defense.  The  aver-

age  reduction  in  evasion  rate  with  respect  to  ML  detection  without  a  defense  is 

97.978%  less  for  modifications,  which  do  not  change  the  program  functionality.  For 

the  comprehensive  set  of  modifications,  which  do  not  guarantee  the  preservation  of 

the  program’s  functionality,  the  value  is  even  more  optimal,  reaching  98.397%. 

A  comparison  of  our  proposed  defense  technique  with  related  works  indicates 

that  our  technique  represents  a  satisfactory  compromise  between  effectiveness  and 

computational  cost.  Our  chapter  makes  a  significant  contribution  by  implementing  an 

anti-modification  for  removing  unused  imports,  a  feature  not  present  in  other  related 

works. 

It  is  evident  that  advanced  modifications  represent  a  promising  avenue  for  future 

research  and  development.  Potential  avenues  for  improvement  include  unpacking, 

section  injection  elimination,  and  the  elimination  of  unused  resources. 

In  future  work,  we  intend  to  conduct  further  experiments  to  ascertain  which  com-

ponent  of  our  proposed  technique  is  most  effective  in  enhancing  robustness  against 

adversarial  attacks.  Additionally,  we  will  aim  to  assess  the  potential  of  initiating  the 

utilisation  of  an  updated  version  of  adversarial  space  reduction  without  retraining 

the  machine  learning  components  of  our  technique,  which  were  trained  on  reduced 

samples  with  an  earlier  version  of  the  adversarial  space  reduction.  Furthermore,  we 

will  seek  to  determine  whether  this  update  can  still  optimise  the  entire  method  and, 

if  so,  to  what  extent  each  individual  component  of  our  proposed  defence  technique 

can  be  independently  enhanced. 

The  limited  time  available  to  implement  anti-modification  measures  against 

ExtendedDOS  allowed  the  generator  to  achieve  some  success  against  our  defen-

sive  technique.  Additionally,  due  to  time  constraints,  we  were  unable  to  implement 

more  advanced  modifications,  such  as  section  injection  elimination  or  unpacking. 

We  intend  to  address  these  issues  in  future  work. 

In  this  chapter,  we  employed  EMBER’s  feature  vector  representation  for  training 

machine  learning  models.  An  investigation  of  alternative  representations,  such  as 

GNN  representation,  represents  a  promising  avenue  for  future  research  in  this  field. 

Our  chapter  was  exclusively  focused  on  the  Windows  PE  format.  The  ELF  format  is 

also  a  suitable  subject  for  future  research. 
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Abstract  Adversarial  attacks  present  significant  challenges  for  malware  detection 

systems.  This  research  investigates  the  effectiveness  of  benign  and  malicious  adver-

sarial  examples  (AEs)  in  evasion  and  poisoning  attacks  on  the  Portable  Executable 

file  domain.  A  novel  focus  of  this  study  is  on  benign  AEs,  which,  although  not 

directly  harmful,  can  increase  false  positives  and  undermine  trust  in  antivirus  solu-

tions.  We  propose  modifying  existing  adversarial  malware  generators  to  produce 

benign  AEs  and  show  they  are  as  successful  as  malware  AEs  in  evasion  attacks. 

Furthermore,  our  data  show  that  benign  AEs  have  a  more  decisive  influence  in  poi-

soning  attacks  than  standard  malware  AEs,  demonstrating  their  superior  ability  to 

decrease  the  model’s  performance.  Our  findings  introduce  new  opportunities  for 

adversaries  and  further  increase  the  attack  surface  that  needs  to  be  protected  by 

security  researchers. 

1  Introduction 

Malware,  an  abbreviation  for  malicious  software,  refers  to  a  wide  range  of  harm-

ful  software  types,  including  viruses,  worms,  trojans,  ransomware,  and  spyware. 

These  harmful  programs  are  intended  to  cause  damage,  disruption,  or  illegal  access 

to  computer  systems,  posing  serious  risks  to  individuals,  companies,  and  national 

security  [ 17]. 

To  tackle  these  threats,  security  engineers  design  malware  detection  systems, 

antiviruses  (AVs),  to  detect  and  neutralize  harmful  behavior.  Traditional  malware 

detection  solutions  typically  use  signature-based  methods  that  compare  known  pat-

terns  of  harmful  code  to  a  database  of  signatures  [ 2].  While  these  methods  are  successful  against  known  threats,  they  fail  to  detect  new,  previously  unknown  malware 
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patterns.  To  overcome  this  issue,  heuristic  and  behavior-based  detection  algorithms 

have  been  developed.  Heuristic-based  methods  evaluate  software  code  structure 

and  behavior  to  identify  potentially  dangerous  actions  [ 5],  whereas  behavior-based methods  monitor  program  runtime  activity  to  find  anomalies  that  indicate  malicious 

actions  [ 21, 33]. More  recently,  machine  learning  (ML)  algorithms  have  improved malware  detection  by  recognizing  patterns  and  features  in  big  datasets  [ 4, 10, 38, 

42]. 

As  a  result,  attackers  are  constantly  evolving  their  strategies  to  avoid  discovery. 

For  example,  techniques  such  as  polymorphism  [ 15]  where  malware  encrypts  its code,  or  metamorphism  [ 45], where  the  code  is  rewritten  to  appear  differently  to malware  detectors.  A  new  emerging  threat  in  the  malware  domain  is  adversarial 

attacks  [ 36], which  create  inputs,  so-called   adversarial  examples  ( AEs),  that  trick malware  detectors  into  misidentifying  malware  as  benign  (non-malicious  software 

also  referred  to  as  goodware). 

In  the  field  of  malware  detection,  AEs  are  purpose-engineered  inputs  to  incentivize 

the  attacked  model  to  make  incorrect  predictions.  These  perturbations  are  often  sub-

tle,  yet  they  significantly  impact  the  model’s  performance  [ 12].  In  the  malware  area, adversarial  attacks  fall  into  two  categories:  evasion  attacks  and  poisoning  attacks. 

Evasion  attacks  entail  constructing  AEs  that  avoid  detection  by  the  model  during 

inference  [ 3, 14, 29, 30, 44]. Poisoning  attacks  attempt  to  undermine  the  training process  by  contaminating  the  training  dataset  with  AEs,  to  decrease  the  model’s 

performance  [ 8, 41]. 

This  work  investigates  the  effectiveness  of  benign  and  malware  AEs  in  evasion 

and  poisoning  attacks  on  Portable  Executable  (PE)  files.  A  unique  aspect  of  this  work 

is  the  focus  on  benign  AEs,  which,  unlike  malicious  counterparts,  do  not  constitute 

a  direct  threat  to  the  system.  However,  benign  AEs  can  have  a  major  impact  on 

malware  detection  systems’  performance  by  raising  false  positives.  Consequently, 

this  can  lead  to  a  loss  of  trust  in  AV  products  and  unnecessary  bottlenecks  for  legit-

imate  software  suppliers.  To  the  best  of  our  knowledge,  this  is  the  first  work  that 

compares  the  effectiveness  of  benign  and  malware  AEs  in  evasion  and  poisoning 

attacks. 

To  summarize,  our  contributions  are  (i)  we  introduce  and  formally  define  the 

concept  of  benign  AEs;  (ii)  we  propose  how  contemporary  generators  of  adversarial 

malware  can  be  modified  to  create  benign  AEs;  (iii)  we  show  comparable  effective-

ness  of  malware  and  benign  AEs  in  evasion  attacks;  (iv)  we  demonstrate  superior 

influence  of  benign  AEs  in  poisoning  attacks  over  traditional  malware  AEs. 

The outline of the paper 

•  In  Sect. 2,  we  provide  the  essential  background  for  this  paper  by  describing  adversarial  machine  learning,  focusing  on  the  malware  detection  domain,  and  the  PE 

file  format. 

•  In  Sect. 3, we  describe  how  adversarial  software  generators  work  and  propose  how to  modify  existing  generators  to  produce  benign  AEs. 
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•  In  Sect. 4,  we  introduce  our  experiments’  setup,  dataset,  and  evaluation  metrics. 

Next,  we  evaluate  AEs  in  evasion  and  poisoning  attacks,  and  discuss  the  results. 

•  In  Sect. 5,  we  review  related  work  in  evasion  and  poisoning  attacks  with  a  focus on  malware  detection  domain. 

•  In  Sect. 6, we  list  our  conclusions  and  suggest  areas  of  future  research. 

2  Background 

In  this  section,  we  introduce  the  necessary  background  for  this  work.  We  start  by 

explaining  the  concepts  of  adversarial  machine  learning  while  focusing  on  two  main 

adversary  scenarios  in  the  malware  domain:  evasion  and  poisoning  attacks.  We  follow 

with  a  description  of  the  PE  file  format. 

 2.1 

 Adversarial  Machine  Learning 

 Adversarial  machine  learning   is  a  field  that  studies  enhancing  ML  systems’  resilience to  adversarial  attacks  from  both  the  outside  (evasion  attacks)  and  the  inside  (data 

poisoning).  An  adversarial  attack  is  a  well-planned  action  designed  to  deceive  the 

ML  model.  The  victim  model  is  also  known  as  a  target  model,  whereas  the  attacker 

is  also  referred  to  as  an  adversary.  An   adversarial  example  ( AE)  is  the  object  that  is used  to  conduct  the  adversarial  attack,  e.g.,  a  modified  malware  sample  that  evades 

detection  or  a  tampered  data  point  hidden  in  the  training  dataset.  The  next  part  outlines the  taxonomy  of  adversarial  attacks  in  the  domain  of  malware  detection  and  potential 

defense  techniques. 

We  use  the  taxonomy  offered  by  Huang  et  al. [ 20]  as  it  is  one  of  this  topic’s most  comprehensive  and  security-related  descriptions.  Adversarial  attacks  are  distinguished  by  three  major  characteristics:  influence,  security  violation,  and  specificity. 

Influence.  The  first  attribute  represents  opponents’  capacity  to  attack  a  particular 

model.  The  first  type  is  termed   causative   attacks,  where  the  adversary  may  affect the  training  process  of  the  model,  e.g.,  conceal  incorrectly  labeled  samples  into 

the  training  dataset  (data  poisoning).  The  second  type  is   exploratory   attacks.  These attacks  do  not  affect  the  training  process,  and  their  purpose  is  to  learn  about  the 

model  and  avoid  its  detection  measures,  such  as  a  modified  malicious  file  that  evades 

detection  (evasion  attack). 

Security violation.  The  second  attribute  describes  the  type  of  security  breach  com-

mitted  by  the  attacker.  If  an  adversarial  attack  increases  the  model’s  false  negative 

rate  (adversarial  malware  samples  classed  as  benign),  we  term  it  an   integrity   attack. 

An   availability   attack  occurs  when  an  attack  increases  both  false  negative  and  false positive  rates,  rendering  the  model  unsuitable  for  any  prediction.  The  last  kind  is
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a   privacy   attack,  also  known  as  a  model-stealing  attack,  which  aims  to  steal  the model’s  sensitive  information,  such  as  the  training  dataset  or  model  parameters.  In 

previous  work,  no  specific  category  for  increase  of  false  positives  was  define.  How-

ever,  we  can  think  of   integrity   attack  as  any  attack  that  causes  the  intrusion  points  to be  misclassified,  whether  malware  or  benign  AEs. 

Specificity.  The  third  attribute  represents  the  scope  of  the  adversarial  attack.  Assume the  attack  is  directed  at  a  limited  and  specified  subset  of  samples,  we  mark  it  as  a 

 targeted   attack.  On  the  other  hand,  an   indiscriminate   attack  is  a  scenario  where  any sample  can  be  misclassified. 

We  continue  with  a  more  detailed  description  of  evasion  and  poisoning  attacks, 

followed  by  common  defense  measures  deployed  against  adversarial  attacks. 

2.1.1  Evasion Attacks 

An  adversary  may  alter  the  input  data  in  an  evasion  attempt  to  avoid  being  discov-

ered  by  the  detector.  Evasion  attacks,  as  they  relate  to  malware  detection,  entail  the 

development  of  malware  that  may  evade  the  classifier  and  remain  undetected. 

Let .  f : R n → {0 ,  1} be  a  binary  classifier  where.  f (x) = 1 indicates  a  malicious sample  and .  f (x) = 0 indicates  a  benign  sample.  An  evasion  attack  seeks  to  find  an adversarial  malware  example .  xadv  such  that 

.  xadv =  x +  δ

where.  δ  is  a  perturbation  added  to  the  original  input.  x,  and.  f (xadv) = 0 while.  f (x) =

1.  To  prevent  suspicion  or  behavioral  changes,  minimizing  the  perturbation  .  δ  to 

maintain .  xadv’s  similarity  to.  x  is  a  common  practice. 

To  formally  define  the  concept  of  adversarial  benign  examples,  we  follow  the 

same  principles  as  with  malware  AEs  but  modify  the  added  perturbation.  δ  such  that the .  f (xadv) = 1 while.  f (x) = 0. 

Numerous  techniques  are  used  for  creating.  xadv  examples.  We  follow  with  a  brief 

introduction  of  a  selected  few  and  a  more  detailed  case  study  in  the  later  sections  of 

this  work. 

Feature  Manipulation.  Attackers  change  particular  aspects  of  the  feature  vector 

representing  malware  such  that  the  classifier  considers  it  safe  software.  This  attack 

usually  involves  the  attacker  having  good  knowledge  about  what  feature  represen-

tation  the  target  classifier  uses  to  be  able  to  successfully  craft  an  evasive  malware 

AE.  The  critical  challenge  for  this  attack  is  to  devise  an  algorithm  for  transforming 

the  adversarial  feature  vector  back  to  executable  binary  format  so  that  the  AE  can  be 

deployed  outside  of  the  laboratory  settings  [ 19, 50]. 

Adversarial EXEmples.  To  overcome  the  problem  of  mapping  from  feature  vectors 

to  binary  executables,  attackers  can  create  AEs  by  introducing  noise  or  perturbations
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directly  to  binary  code  (EXE).  This  technique  does  not  require  knowledge  about  the 

inner  workings  of  the  target  classifier  as  it  can  be  used  in  black-box  settings  where 

only  the  prediction  label  is  used  as  feedback  for  the  adversary.  However,  creating 

both  evasive  and  functional  AEs  is  a  complex  problem  where  a  good  knowledge  of 

the  executable’s  binary  format  is  needed  [ 13, 29]. 

Obfuscation.  To  keep  the  classifier  from  realizing  the  true  nature  of  the  presented software,  methods  like  packing  and  code  obfuscation  are  used.  Obfuscation  involves 

transforming  the  malware’s  code  into  a  form  that  is  difficult  to  analyze,  whereas 

packing  compresses  and  encrypts  the  code  to  prevent  detection  [ 3, 16]. 

2.1.2  Poisoning Attacks 

The  goal  of  poisoning  attacks  is  to  modify  the  training  dataset  that  is  utilized  to 

train  the  detector.  In  terms  of  malware  detection,  this  can  consist  of  camouflaging 

AEs  inside  the  training  set  to  hinder  the  model’s  training  process  and  consequently 

mistakenly  identify  some  malware  as  benign  or  vice  versa. 

Let .  D =  (xi , yi )M  be  the  training  dataset  where

 i =1

.  xi  represents  the  input  features 

and  .  yi  represents  the  corresponding  labels.  A  poisoning  attack  seeks  to  modify  the training  dataset  by  including  poisoned  samples  such  that  classifier  .  f  trained  on 

poisoned  dataset .  D prediction  behavior  is  changed,  that  is 

.  f  (x ) =  f (x )

for  some  input .  x,  causing  the  model  to  make  incorrect  predictions. 

Among  the  frequent  techniques  used  to  create  poisoned  samples  are  data  injection 

and  label  manipulation. 

Data  Injection.  Attackers  can  influence  the  model’s  learning  process  by  adding 

deliberately  constructed  harmful  samples  to  the  training  data.  These  samples  are 

meant  to  appear  genuine,  yet  they  have  subtle  details  that  cause  the  model  to  be 

misled.  The  samples  can  be  crafted  using  a  gradient  ascent  strategy  to  optimize  the 

impact  of  the  poisoned  samples  against  a  specific  target  detector  [ 7].  Additionally, AEs  created  as  part  of  evasion  attack  techniques  described  in  previous  Sect. 2.1.1 

can  also  be  injected  to  the  model’s  dataset. 

Label Manipulation.  To  fool  the  model,  existing  samples  in  the  training  set  can  have their  labels  flipped.  For  instance,  labeling  malware  samples  as  benign  can  cause  the 

model  to  learn  incorrect  associations  between  features  and  labels.  The  adversary’s 

goal  is  to  determine  which  samples’  labels  to  change  to  maximize  the  influence  on 

the  training  stage  [ 48]. 
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2.1.3  Defense Against Adversarial Attacks 

The  goal  of  adversarial  machine  learning  is  to  mitigate  the  risks  posed  by  adversarial 

attacks.  Researchers  have  created  various  protection  methods  to  make  ML  models 

more  resilient  and  improve  reliability  and  confidence  in  their  decisions.  However,  the 

trade-off  between  model  robustness  and  performance  must  be  carefully  controlled 

to  guarantee  that  the  detection  system  remains  efficient  and  accurate. 

Adversarial Training.  Adding  correctly  labeled  AEs  to  the  training  set  is  known 

as  adversarial  training.  The  model  gains  the  ability  to  identify  and  reject  adversarial 

inputs  by  using  these  instances  throughout  the  training  phase.  This  technique  can 

strengthen  the  model’s  resistance  to  evasive  attacks  [ 31, 32]. 

Data Sanitization.  Methods  for  data  sanitization,  such  as  detecting  anomalies,  can 

be  applied  to  detect  inputs  that  substantially  diverge  from  the  trusted  training  set. 

Through  the  system’s  ability  to  identify  questionable  inputs,  AEs  can  be  excluded 

from  the  system,  preventing  both  evasive  and  poisoning  attacks  [ 1, 37]. An  example of  data  sanitization  is  the  .  L 2 defense  (also  called  sphere  defense)  technique  where data  points  are  projected  onto  a  high  dimensionality  sphere,  and  points  beyond  the 


sphere’s  radius  are  excluded  [ 24]. 

Feature  Representation.  The  complexity  and  attack  surface  disposable  for  the 

attacker  can  be  reduced  by  increasing  the  robustness  of  the  feature  representation 

used  by  the  model.  For  example,  decreasing  the  precision  of  individual  features  [ 49] 

or  dimensionality  reduction  [ 6]  can  lower  attackers’  chances  of  bypassing  the  detection.  Additionally,  domain  knowledge  in  devising  the  feature  representation  is  critical 

as  including  unrelated  features  can  mislead  the  model  in  learning  false  connections 

that  the  adversaries  can  exploit  [ 12]. 

Robust  Model  Architecture.  The  security  of  malware  detection  systems  can  be 

increased  by  creating  model  designs  that  are  inherently  resistant  to  adversarial 

attacks.  For  example,  using  multiple  classifiers  [ 39]  or  plug-in  adversary  detectors 

[ 27]  can  increase  the  difficulty  of  executing  a  successful  adversarial  attack. 

 2.2 

 Portable  Executable  File  Format 

The   Portable  Executable  ( PE)  file  format  is  a  data  format  that  stores  the  information required  by  the  Windows  operating  system  loader  to  manage  the  executable  code. 

It  is  used  to  store  executable  (EXE),  object  code,  dynamic  link  libraries  (DLL),  and 

other  files  on  both  32-bit  and  64-bit  Windows  operating  systems  [ 22]. 

The  structure  of  the  PE  file  format  can  differ  slightly  depending  on  which  type  of 

file  it  represents.  This  section  focuses  on  the  PE  file  format  structure  used  for  EXE 

files.  The  format  is  organized  as  follows:
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MS-DOS Header.  Every  PE  file  begins  with  the  MS-DOS  header,  which  is  a  64-byte 

structure  that  converts  the  PE  file  into  MS-DOS  executable.  This  header  contains  a 

magic  number  that  indicates  the  file  is  MS-DOS  executable.  At  the  end  of  the  header 

is  an  offset  of  the  COFF  file  header. 

MS-DOS Stub.  The  MS-DOS  header  is  followed  by  the  MS-DOS  stub,  a  short  MS-

DOS  program  that  typically  prints  a  message  such  as  “This  program  cannot  be  run 

in  DOS  mode”  if  the  executable  is  run  on  MS-DOS. 

COFF File Header.  Next,  the  COFF  File  header  is  located  at  the  offset  found  in  the MS-DOS  header.  Before  the  actual  COFF  header  appears,  a  4-byte  signature  field 

identifies  the  file  as  a  PE  file  with  a  value  of  PE\0\0.  The  following  20  bytes  contain generic  information  about  the  PE  file,  e.g.,  machine  type,  timestamp,  or  number  of 

sections. 

Optional  Header.  Following  is  the  Optional  header.  For  EXE  files,  the  header 

includes  essential  information  for  the  OS  loader,  such  as  the  entry  point  address, 

linker  version,  image  base,  and  section  alignment. 

Section Headers.  The  Section  headers  come  right  after  the  optional  header,  with 

each  header  totaling  40  bytes  of  section  description:  name,  virtual  size  and  address, 

section  attributes,  and  more. 

Section Data.  Following  the  table  of  section  headers  is  the  actual  section  content, 

including  code  and  other  resources.  Typical  sections  and  their  content  are  .text  (exe-

cutable  code),  .data  (initialized  data),  .rdata  (read-only  data),  .debug  (debugging 

information),  and  .idata  (imported  libraries  and  functions). 

3  Generators of Adversarially Modified Software 

In  this  section,  we  dive  into  what  the  generators  of  adversarial  malware  are  and 

portray  how  some  contemporary  generators  work.  Finally,  we  propose  the  notion  of 

adversarial  benign  generators  and  how  we  can  modify  contemporary  generators  of 

adversarial  malware  to  create  benign  AEs. 

 3.1 

 Generators  of  Adversarial  Malware 

The  purpose  of  adversarial  malware  generators  is  to  produce  malware  samples  capa-

ble  of  evading  detection  by  security  systems,  especially  those  that  employ  ML-based 

models.  Adversarial  malware  generators  are  primarily  used  to  test  and  enhance  mal-

ware  detection  systems’  resilience.  Researchers  and  security  experts  can  find  flaws
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Fig. 1  Workflow  of  adversarial  malware  generators 

in  their  detection  methods  and  create  more  robust  defenses  by  testing  the  systems  on 

adversarial  examples.  However,  these  generators  can  also  be  abused  by  bad  actors  to 

produce  malware  that  hides  from  detection,  which  poses  potential  security  issues. 

From  the  black-box  point  of  view  as  portrayed  in  Fig. 1, the  generators  work  by taking  a  genuine  malware  sample  as  an  input,  followed  by  an  application  of  adversarial  perturbations  and  finally  producing  a  modified,  so-called  adversarial  example. 

The  following  is  a  selection  of  adversarial  malware  generators  used  in  this  work. 

We  decided  to  select  generators  that  do  not  require  previous  training.  As  such,  we 

can  use  the  same  generator  to  create  and  fairly  compare  adversarial  malware  and 

benign  examples. 

AMG.  The  Adversarial  Malware  Generator  (AMG)  is  a  generator  utilizing  a  rein-

forcement  learning  (RL)  algorithm  called  proximal  policy  optimization  (PPO)  agent 

trained  to  apply  a  set  of  functionality-preserving  modifications  to  previously  detected 

samples.  The  modifications  were  carefully  designed  and  thoroughly  tested  to  max-

imize  the  functionality  preservation  of  used  input  samples.  The  same  modifications 

can  also  be  used  in  random  settings  (without  previous  training),  and  the  resulting 

AEs  are  highly  evasive  against  commercial  AVs  [ 29]. 

FGSM.  In  contrast  to  the  original  attack  [ 18]  utilizing  the  fast  gradient  sign  method (FGSM)  for  the  image  domain,  only  short  sequences  of  bytes  (payloads)  are  adversarially  perturbed.  At  first,  random  bytes  are  placed  into  unused  space  between  sections 

or  at  the  end  of  the  file  to  ensure  that  the  original  functionality  remains  intact.  The FGSM  technique  is  then  used  to  perturb  only  these  sequences,  misleading  the  target 

classifier  [ 30]. 

GAMMA.  The  Genetic  Adversarial  Machine  Learning  Malware  Attack  (GAMMA) 

is  a  generator  that  injects  benign  content  at  the  end  of  the  file  or  into  newly  created  sections.  The  injected  benign  content  is  optimized  using  a  genetic  algorithm  constrained 

to  maximize  evasion  rate  while  minimizing  the  magnitude  of  the  perturbation  [ 13]. 

MAB-Malware.  An  RL-based  generator  using  a  multi-armed  bandit  (MAB)  agent 

together  with  a  set  of  macro  and  micro  manipulations  devised  to  maximize  evasion 

with  minimal  perturbation.  The  generator  works  in  two  phases.  First,  the  MAB  agent 

applies  a  sequence  of  modifications  until  evasion  is  achieved.  Subsequently,  each 

applied  modification  is  tested  to  be  expendable  and  removed  if  found  so.  This  mini-

mization  process  is  possible  because  the  MAB  agent  does  not  imply  any  connection
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between  applied  actions,  hence  making  it  possible  to  remove  some  of  them  after-

ward  [ 44]. 

Partial-, Full-, Extend-DOS Manipulators.  Set  of  MS-DOS  manipulators  utilizing 

gradient-based  optimization  to  adversarially  modify  malware’s  MS-DOS  header  and 

stub  program.  The   Partial-DOS   generator  modifies  only  the  content  of  the  MS-DOS 

header  between  the  magic  number  and  offset  of  the  COFF  File  header  [ 12]. The Full-DOS   generator  extends  the  modifications  of  Partial-DOS  by  perturbing  the  MS-DOS  stub  program  as  well  [ 14]. Lastly,  the   Extend-DOS   generator  further  extends the  modification  beyond  the  end  of  the  MS-DOS  stub  program  until  the  beginning 

of  the  COFF  File  header  [ 14]. 

 3.2 

 Generators  of  Adversarial  Goodware 

While  contemporary  research  in  the  adversarial  machine  learning  and  malware  detec-

tion  domain  focuses  only  on  the  efficacy  of  malware  AEs,  we  propose  a  novel 

approach  that  involves  the  creation  of  benign  AEs.  This  new  type  of  AE  represents 

harmless  software  files  deliberately  compromised  to  be  misclassified  as  malware. 

While  not  directly  harmful,  this  strategy  can  dramatically  influence  the  functioning 

of  malware  detection  systems  by  increasing  false  positives,  leading  to  a  loss  of  trust  in antivirus  solutions  and  causing  legitimate  software  vendors  to  face  costly  blockages. 

The  following  is  an  approach  we  use  to  modify  the  above-mentioned  generators  of 

adversarial  malware  to  create  effective  benign  AEs. 

A  common  theme  across  generators  of  malware  AEs  is  a  stopping  condition  that 

stops  the  generating  process  when  the  target  classifier.  f  no  longer  detects  the  malware sample.  First,  we  must  change  this  condition  to  a  reverse  scenario  where  the  process 

is  halted  when  AE  is  no  longer  classified  as  benign.  This  change  is  demonstrated  in 

Algorithm  1. 

Algorithm 1 Stopping  condition  for  generators  of  AEs. 

Require: .  x orig:  Original  sample,.  f : Target classifier,.  N max:  Maximum  number  of  iterations Ensure: .  x AE:  Adversarial  example 

1:  .  x AE ←  x orig

2:  for .  i = 1 to.  N max do 

3:

if .  f (x AE ) =.  malicious .  benign then 

4:

break 

5:

end if 

6:

Adversarially  perturbe.  x AE

7:  end for 

8:  return.  x AE

Further,  for  RL-based  generators  AMG  and  MAB-Malware,  we  must  prepare 

malware-looking  content  used  to  inject  into  unused  spaces  of  PE  files.  We  extract
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malware  section  content  using  the  process_benign_dataset.py script  from 

the  source  codes  of  MAB-Malware  [ 43]  on  our  dataset  of  malware  executables described  later  in  Sect. 4.1. 

For  gradient-based  generators  FGSM,  PartialDOS,  FullDOS,  and  ExtendDOS,  the 

adversarial  modifications  need  to  be  designed  in  such  a  manner  that  the  perturbation 

calculated  using  the  gradient  of  the  target  classifier’s  loss  function  moves  the  sample 

closer  to  the  malware  class.  A  simple  solution  can  be  achieved  by  changing  the  sign 

of  the  computed  gradient,  which  is  used  to  optimize  the  perturbation,  hence  reversing 

the  direction  of  the  movement  introduced  by  the  generator. 

For  the  GAMMA  generator,  we  must  provide  malware  EXEs  instead  of  benign 

files  for  the  generator.  Additionally,  the  fitness  value  function  must  be  changed  to 

prefer  individuals  that  maximize  the  target  classifier’s  prediction  score,  i.e.,  have  a 

higher  malicious  confidence  score. 

The  proposed  changes  are  easy  to  implement  and  significantly  increase  the  capa-

bilities  of  existing  generators  as  discussed  in  the  next  section.  We  implement  these 

changes  in  the  source  codes  provided  by  the  authors  of  AMG  [ 26],  MAB-Malware 

[ 43]  and  SecML  Malware  [ 11]  (FGSM,  GAMMA,  PartialDOS,  FullDOS,  ExtendDOS  generators). 

4  Experimental Evaluation 

In  this  section,  we  present  our  experimental  evaluation  of  the  effectiveness  of  adver-

sarial  benign  and  malware  examples.  We  start  by  describing  our  hardware  setup, 

dataset,  and  used  evaluation  metrics.  We  follow  by  presenting  our  experimental  com-

parison  of  benign  and  malware  AEs  in  evasion  and  poisoning  attacks.  We  conclude 

this  section  by  discussing  the  results  and  pointing  out  the  limitations  of  our  research. 

 4.1 

 Setup 

Hardware.  Experiments  presented  in  this  work  were  conducted  on  the  NVIDIA 

DGX  Station  A100  server.  The  server  contains  a  single  AMD  7742  CPU  with  64 

cores,  four  NVIDIA  A100  GPUs,  and  512  GB  of  system  memory.  However,  both  the 

generation  of  adversarial  examples  and  subsequent  experimentation  can  be  repro-

duced  on  a  standard  personal  computer  with  at  least  16  GB  of  system  memory. 

Dataset.  We  use  three  datasets  for  the  experiments.  Benign  EXE  files  were  obtained 

from  a  clean  Windows  10  installation.  Next,  we  downloaded  malicious  EXE  files 

from  the  VirusShare  [ 46]  data  repository,  whom  we  thank  for  access.  We  verified malware  and  benign  EXEs  to  be  truly  malicious  and  harmless,  respectively,  by  using 

the  VirusTotal  [ 47]  API  and  discarding  samples  classified  as  the  contrary  class.  Lastly, we  also  use  the  EMBER  dataset  [ 4]  to  extend  our  range  of  available  samples.  Namely, 
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we  use  parts  of  the  EMBER  training  dataset  to  balance  the  ratio  of  benign  to  malware 

files  in  the  training  sets  used  in  the  experimental  evaluation.  Additionally,  we  benefit 

from  the  recognized  EMBER  test  dataset  and  use  it  as  our  default  evaluation  set  for 

poisoning  attacks.  The  EMBER  test  set  contains  200000  samples,  equally  distributed 

between  malicious  and  benign  classes. 

 4.2 

 Evaluation  Metrics 

To  assess  the  effectiveness  of  evasion  and  poisoning  adversarial  attacks,  several  key 

metrics  are  used.  These  metrics  contribute  to  quantifying  the  success  of  adversarial 

attacks  and  the  resilience  of  protection  measures.  The  following  are  the  metrics  used: 

Confusion Matrix.  The  base  of  statistical  evaluation  is  the  confusion  matrix  that 

thoroughly  describes  the  performance  of  the  studied  model.  The  table  is  structured 

as  follows 

Predicted  positive

Predicted  negative 

Actual  positive

True  positive  (TP)

False  negative  (FN) 

Actual  negative

False  positive  (FP)

True  negative  (TN) 

where 

•  True Positive (TP) The  number  of  correctly  detected  malicious  samples. 

•  True Negative (TN) The  number  of  correctly  identified  harmless  files. 

•  False Negative (FN) The  number  of  undetected  malware  files. 

•  False Positive (FP) The  number  of  incorrectly  blocked  benign  files. 

Detection  Rate  (DR).  The  proportion  of  correctly  detected  malicious  samples  to 

the  total  number  of  malware  samples,  commonly  referred  to  as  sensitivity  or  true 

positive  rate  (TPR).  The  DR  is  calculated  as 

.  D R =

 T P

 T P +  F N

False Positive Rate (FPR).  The  proportion  of  benign  files  classified  as  malicious  to 

the  total  number  of  benign  samples,  that  is 

.  F P R =

 F P

 F P +  T N

Evasion Rate (ER).  The  proportion  of  adversarial  files  that  bypassed  the  detector  to 

the  total  number  of  adversarial  samples,  computed  as 

.  E R = number of missed AEs

total number of AEs

Note  that  this  metric  can  be  used  both  for  benign  and  malware  AEs. 
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Contamination Rate (CR).  A  metric  used  in  the  context  of  poisoning  attacks  rep-

resenting  the  proportion  of  training  dataset  that  has  been  compromised  (poisoned). 

The  CR  has  a  form  of 

.  C R =

number of poisoned samples

total number of training samples

Receiver Operating Characteristics (ROC) Curve A  graphical  representation  of 

classifier’s  performance  across  different  threshold  settings.  The  thresholds  are  dis-

played  based  on  the  values  of  FPR  against  TPR. 

 4.3 

 Evasion  Attack  Against  the  Target  Classifiers 

In  the  first  experiment,  we  generate  adversarial  malware  examples  using  the  gen-

erators  described  in  Sect. 3.1  and  adversarial  benign  examples  by  their  modified versions  described  in  Sect. 3.2. We  use  the  previously  described  datasets  of  malware and  benign  executables  as  inputs  for  the  generators.  Next,  we  compare  the  genuine 

samples  with  the  adversarial  counterparts  and  discard  examples  that  do  not  contain 

adversarial  perturbations.  Several  factors  can  cause  the  lack  of  modification,  the  most 

common  being  that  the  genuine  sample  was  already  misclassified  (either  as  benign 

for  malware  AEs  or  as  malware  for  benign  AEs)  by  the  target  classifier  before  the 

modification  process.  As  a  target  classifier,  we  use  the  default  selection  provided  by 

the  authors  of  the  generators:  gradient  boosted  decision  tree  (GBDT)  [ 4]  and  MalConv,  a  convolutional  neural  network  classifier  [ 38]. The  resulting  counts  of  used benign  and  malware  AEs  are  shown  in  Table  1,  where  each  row  represents  a  single generator  with  the  target  classifier  specified  in  parenthesis  after  the  generator  name. 

To  evaluate  the  effectiveness  of  generated  benign  and  malware  AEs  in  evasion 

attacks,  we  compare  the  evasion  rates  against  the  respective  target  classifiers.  Based 

on  the  taxonomy  introduced  in  Sect. 2.1, this  represents  a  targeted  exploratory  attack. 

Table  1  Sums  of  generated  benign  and  malware  AEs  for  each  generator  after  filtering Generator  (classifier)

Benign

Malware 

AMG-random  (GBDT)

3158

6595 

ExtendDOS  (MalConv)

1566

5511 

FGSM  (MalConv)

1321

5090 

FullDOS  (MalConv)

1568

2035 

GAMMA  (MalConv)

3132

5506 

MAB-Malware  (GBDT)

1439

6614 

MAB-Malware  (MalConv)

1477

5397 

PartialDOS  (MalConv)

1568

3065 

15229

39813
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Table  2  Evasion  rates  of  malware  and  benign  AEs  from  different  generators  against  the  target classifier  for  which  the  samples  were  generated  [%] 

Generator  (classifier)

Benign

Malware 

AMG-random  (GBDT)

30.34

36.12 

ExtendDOS  (MalConv)

96.81

43.51 

FGSM  (MalConv)

30.96

42.16 

FullDOS  (MalConv)

97.64

56.02 

GAMMA  (MalConv)

16.32

36.29 

MAB-Malware  (GBDT)

84.09

74.77 

MAB-Malware  (MalConv)

65.00

90.99 

PartialDOS  (MalConv)

71.88

93.05 

The  results  are  shown  in  Table  2, where  each  row  represents  a  single  generator,  and benign  and  malware  columns  represent  the  evasion  rates  (in  %)  of  generated  AEs 

against  the  target  classifier.  Based  on  the  results,  we  do  not  have  a  clear  pattern  of 

whether  benign  or  malware  AEs  are  more  effective  against  MalConv  or  GBDT  detec-

tors.  The  ExtendDOS,  FullDOS  (MalConv),  and  MAB-Malware  (GBDT)  generate 

highly  evasive  benign  AEs  with  evasion  rates  between  84  and  97%.  The  rest  of  the 

generators  are  more  successful  in  creating  evasive  malware  AEs  with  MAB-Malware 

and  PartialDOS  (MalConv),  generating  between  90  and  93%  of  evasive  samples. 

 4.4 

 Poisoning  Attacks  Against  the  GBDT  Classifier 

We  frame  the  poisoning  attack  as  an  indiscriminate  causative  attack,  i.e.,  our  goal 

is  to  mislead  the  subsequently  trained  model  into  any  misclassification.  Addition-

ally,  we  do  not  generate  poisoning  samples  separately  but  use  the  previously  crafted 

adversarial  examples  from  Sect. 4.3.  Note  that  we  use  the  EMBER  train  samples to  represent  the  non-poisoned  samples  in  the  training  dataset  over  the  genuine  executables  used  to  generate  the  poisoning  samples.  This  represents  a  scenario  where 

the  attacker  does  not  possess  knowledge  of  the  samples  that  are  already  present  in 

the  training  dataset.  As  a  victim  model,  we  choose  the  GBDT  model  trained  using 

LightGBM  library  [ 23].  The  input  binary  files  are  represented  by  a  2381-long  feature  vectors  containing  information  extracted  from  the  PE  files  [ 4]. We  evaluate  the trained  GBDT  classifier  on  the  EMBER  test  set. 

4.4.1  Poisoning by Single AE Generator 

In  the  second  experiment,  we  investigate  the  effectiveness  of  individual  generators 

in  the  poisoned  training  dataset.  We  explore  different  ratios  of  dataset  contamination 

ranging  from  0%  (only  genuine  EMBER  train  samples)  to  50%  (poisoned  samples

[image: Image 67]
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Fig. 2  Comparison  of  detection  rates  at  fixed  levels  of  FPR  after  poisoning  the  dataset  by  malware or  benign  AEs  from  the  MAB-Malware  (GBDT)  generator 

replace  a  single  class  of  genuine  samples).  During  all  experiments,  we  maintain  an 

even  balance  between  genuine  and  malware  classes.  Due  to  the  limited  number  of 

generated  benign  AEs  (see  Table  1)  and  to  ensure  a  fair  comparison  between  malware and  benign  AEs,  we  use  a  smaller  training  dataset  of  2000  samples  containing  up  to 

1000  AEs. 

Based  on  the  results  we  collected,  the  effect  of  poisoning  by  benign  or  malware 

AEs  varies  significantly  based  on  the  generator  used.  For  example,  in  Fig. 2, where each  subfigure  represents  a  comparison  between  benign  and  malware  AEs  for  a  fixed 

level  of  FPR,  we  can  see  that  malware  AEs  generated  by  MAB-Malware  (GBDT) 

are  more  successful  in  poisoning  the  classifier’s  training  dataset  than  the  benign 

counterparts.  The  graphs  show  that  for  all  evaluated  levels  of  FPR  and  contamination 

rates,  the  presence  of  malware  AEs  in  the  training  dataset  detriments  trained  GBDT’s 

detection  rate  more  than  benign  AEs. 

On  the  other  hand,  Fig. 3  shows  that  the  benign  AEs  created  by  FullDOS  (MalConv)  are  significantly  more  potent  in  decreasing  the  detection  rate  of  the  GBDT 

model  than  malware  AEs. 

The  high  variance  in  the  success  of  benign  and  malware  AEs  can  also  be  seen  in 

Fig. 4,  where  we  display  ROC  curves  for  each  of  the  generators  at  a  fixed  contamination  rate  of  10%.  Notably,  we  can  see  that  the  effect  of  benign  and  malware  AEs 

is  similar,  with  only  marginal  differences  across  all  evaluated  generators. 

A  similar  conclusion  can  be  made  by  looking  at  Table  3,  which  presents  the  detection  rates  at  fixed  1%  FPR  after  poisoning  10%  of  the  training  dataset  by  benign  or 

malware  AEs  from  respective  generators.  We  can  see  that  PartialDOS,  FullDOS,  and

[image: Image 68]
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Fig. 3  Comparison  of  detection  rates  at  fixed  levels  of  FPR  after  poisoning  the  dataset  by  malware or  benign  AEs  from  the  FullDOS  (MalConv)  generator 

GAMMA  benign  AEs  lead  to  59–61%  detection  rates  at  1%  FPR  while  the  mal-

ware  counterparts  report  higher  detection  rates  of  61–64%  (a  lower  DR  means  more 

successful  poisoning  attack).  The  malware  AEs  from  the  rest  of  the  generators  are 

more  effective  (59–62%  DRs)  than  benign  AEs  (60–64%  DRs). 

4.4.2  Poisoning by Combination of AEs from Different Generators 

In  the  third  experiment,  we  explore  different  scenarios  based  on  the  samples  included 

in  the  training  dataset.  The  first  is  a  malware  scenario  where  all  generated  malware 

AEs  are  accompanied  by  malware  and  benign  samples  from  the  EMBER  dataset.  The 

second  is  a  benign  scenario  where  all  benign  AEs  are  merged  with  genuine  samples 

from  EMBER.  The  third  is  a  mixture  scenario,  where  both  benign  and  malware  AEs 

are  combined  together  with  genuine  EMBER  training  samples.  The  total  size  of  the 

final  dataset  for  each  scenario  is  set  to  30000  samples,  with  a  balanced  distribution 

between  malicious  and  benign  samples.  As  in  the  previous  experiment,  the  range  of 

adversarial  contamination  of  the  training  dataset  ranges  from  0  to  50%,  i.e.,  up  to 

15000  AEs  are  present  in  the  training  loop. 

The  results  are  presented  in  Fig. 5,  where  each  subfigure  compares  benign  and malware  AEs  at  a  fixed  level  of  FPR.  Based  on  an  initial  look,  benign  AEs  are 

causing  more  harm  to  the  model’s  detection  rate  over  malware  or  mixture  scenarios 

with  increasing  contamination  rate. 

[image: Image 69]

282

M. Kozák and M. Jureček

Fig. 4  Comparison  of  ROC  curves  after  poisoning  10%  of  training  dataset  by  malware  or  benign AEs  from  different  generators 

Table  3  Comparison  of  detection  rates  at  1%  FPR  for  individual  generators  after  poisoning  10% 

of  the  training  dataset.  [%] 

Generator  (classifier)

Benign

Malware 

AMG-random  (GBDT)

62.46

61.66 

ExtendDOS  (MalConv)

63.70

61.64 

FGSM  (MalConv)

60.49

59.84 

FullDOS  (MalConv)

59.58

62.44 

GAMMA  (MalConv)

60.92

63.84 

MAB-Malware  (GBDT)

61.87

60.39 

MAB-Malware  (MalConv)

62.93

61.50 

PartialDOS  (MalConv)

60.64

61.40
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Fig. 5  Comparison  of  detection  rates  at  fixed  FPR  levels  in  malware,  benign,  and  mixture  scenarios In  more  detail,  we  can  see  the  performance  at  10%  contamination  rate  in  Fig. 6. 

From  the  ROC  curve,  we  can  see  that  poisoning  the  training  dataset  benign  AEs 

from  different  generators  consistently  leads  to  the  worst  performance  of  the  result-

ing  trained  model.  The  effect  is  apparent  even  for  as  little  as  10%  of  benign  AEs  in  the training  dataset  for  low  levels  of  FPR  (1–5%).  In  Table  4,  we  can  see  that  for  all  tested levels  of  FPR,  the  presence  of  benign  AEs  in  the  training  dataset  decreases  the  detection  rate  by  0.96–2.19%  more  than  the  corresponding  scenario  with  malware  AEs. 

 4.5 

 Discussion 

In  evasion  attacks,  some  generators  are  highly  effective  in  crafting  benign  AEs  that 

are  successfully  mispredicted  as  malware  by  the  target  classifier  for  which  they  were 

generated.  Although,  due  to  the  nature  of  benign  AEs,  evasive  benign  AEs  cannot 

cause  harm  to  the  attacked  system,  they  can  increase  spikes  in  false  positive  reporting, 

consequently  leading  users  to  lose  trust  in  the  AV  systems  and  vendors  to  complain 

due  to  blockage  of  their  software. 

In  untargeted  poisoning  attacks,  we  do  not  see  a  significant  difference  in  the 

effectiveness  of  contaminating  the  training  dataset  by  benign  or  malware  AEs  crafted 

by  a  single  generator.  However,  we  still  observe  that  benign  AEs  can  be  as  effective 

as  malware  counterparts  in  poisoning  attacks. 

Moreover,  using  a  combination  of  AEs  from  different  sources  for  poisoning 

attacks,  we  report  a  measurable  difference  between  benign  and  malware  AEs. 

[image: Image 71]
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Fig. 6  ROC  curve  after  poisoning  10%  of  training  dataset  by  malware,  benign  or  mixed  AEs Table  4  Comparison  of  detection  rates  at  fixed  levels  of  FPR  in  malware,  benign,  and  mixture scenarios.  [%] 

FPR

Benign

Malware

Mixture 

1

83.88

86.07

86.43 

2

89.42

90.58

90.92 

3

91.80

92.79

92.77 

4

92.96

93.92

93.81 

5

93.41

94.81

94.67 

Notably,  benign  AEs  are  more  effective  in  decreasing  the  detection  rate  at  fixed  FPR 

when  included  in  the  training  dataset  over  malware  (and  mixed)  AEs.  This  effec-

tiveness  presents  a  new  opportunity  for  poisoning  attacks  where  security  researchers 

must  keep  focus  on  both  malware  and  benign  poisoning  samples  infiltrating  the 

training  datasets. 

Limitations.  One  of  the  shortcomings  of  this  paper  is  the  size  of  the  benign  EXE 

dataset,  which  posed  a  limitation  on  the  quality  of  the  model  used  in  the  section 

“Poisoning  by  Single  AE  Generator” experiment.  This  limitation  caused  the  trained model  to  significantly  underperform  on  the  EMBER  test  set  (62.44%  DR  at  1% 

FPR  before  poisoning  attack),  making  it  harder  to  compare  the  detrimental  effect  of 

poisoning  by  benign  and  malware  AEs  from  a  single  generator.  Another  limitation 

of  our  work  is  the  use  of  a  sole  GBDT  classifier  as  a  victim  model  for  poisoning 

attacks.  While  several  generators  specifically  target  the  GBDT  classifier,  many  target 

the  MalConv  detector,  which  has  a  different  architecture  and  is  thus  susceptible  to
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different  adversarial  perturbations.  Consequently,  AEs  against  MalConv  may  not 

significantly  affect  the  feature  representation  used  for  training  GBDT,  diminishing 

the  effectiveness  of  created  AEs. 

5  Related Work 

In  this  section,  we  present  related  research  in  adversarial  machine  learning  and  mal-

ware  detection.  We  divide  this  section  into  two  parts.  The  first  part  is  focused  on 

evasion  attacks  where  adversaries  generated  AEs  with  the  goal  of  bypassing  detec-

tion  by  antivirus  protection  systems.  The  second  part  is  dedicated  to  poisoning  attacks 

where  attackers  infiltrate  the  training  sets  of  malware  detectors. 

 5.1 

 Evasion  Attacks 

Evasion  attacks  can  be  divided  into  groups  based  on  their  technique  to  generate  AEs. 

We  use  the  division  into  the  three  most  prevalent  groups  in  the  domain  of  adversarial 

malware:  gradient-based,  reinforcement  learning-based,  and  others. 

The   gradient-based   attacks  take  advantage  of  the  back-propagation  algorithm, 

commonly  used  for  training  deep  neural  networks  [ 18, 35]. The  techniques  are  based on  injecting  specially  crafted  perturbations  that  cause  the  target  model  to  move  its 

prediction  in  the  direction  of  the  gradient,  thus  decreasing  its  confidence  in  malware 

prediction. 

Kolosnjaji  et  al. [ 25]  used  gradient  computation  to  adversarially  perturb  the  overlay  data  of  PE  files,  achieving  a  60%  evasion  rate  against  the  MalConv  detector. 

Next,  Kreuk  et  al.  [ 30]  presented  an  attack  that  injects  up  to  1000  bytes  of  adversarial  content  into  unused  regions  of  the  PE  file.  Their  attack  misled  the  MalConv 

classifier  in  99%  of  cases,  highlighting  the  severe  vulnerability  of  pure  ML-based 

antivirus  systems  to  adversarial  attacks. 

Another  attack  on  the  MalConv  detector  was  proposed  by  Demetrio  et  al. [ 12]. 

The  authors  investigated  which  parts  of  the  executable  binary  the  MalConv  model 

focuses  on  when  making  a  prediction.  Based  on  their  results,  the  detector  learned 

to  use  parts  of  the  MS-DOS  header  to  make  its  prediction  decisions  even  though 

the  MS-DOS  header  is  currently  included  just  for  compatibility  with  older  operating 

systems.  Demetrio  et  al.  exploited  this  finding  and  introduced  an  attack  perturbing 

only  the  MS-DOS  header  and  achieving  an  evasion  rate  of  over  86%  against  the 

MalConv. 

The   reinforcement  learning-based   attacks  use  agents  equipped  with  a  set  of  manip-

ulation  actions  on  binary  files.  These  agents  are  trained  to  apply  these  actions  by 

continuously  probing  the  target  classifier  and  learning  its  inner  decision-making  [ 3]. 

The  use  of  reinforcement  learning  agents  for  adversarial  malware  generation  was 

pioneered  by  Anderson  et  al.  [ 3].  The  authors  deployed  an  actor-critic  model  trained
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to  modify  PE  files.  The  agent  was  equipped  with  modifications  such  as  adding  new 

sections,  packing,  or  including  new  imports.  Their  agent  was  able  to  bypass  the 

GBDT  detector  in  24%  of  cases. 

Next,  Song  et  al.  [ 44]  used  a  state-less  multi-armed  bandit  (MAB)  agent  to  attack MalConv,  GBDT,  and  commercial  AVs.  The  MAB  agent  was  armed  with  modifications  such  as  adding  new  sections,  appending  benign  content  to  overlay,  or  renaming 

current  sections.  The  authors  demonstrated  an  evasion  rate  of  74.4  and  97.7%  against 

GBDT  and  MalConv  classifiers,  respectively.  Against  the  commercial  AVs,  the  MAB 

agent’s  evasion  rate  dropped  to  48.3%. 

More  RL-bassed  attacks  were  proposed  by  Kozak  et  al.  [ 28]. The  authors  trained a  DQN  agent  with  similar  modifications  as  in  [ 44]  against  the  GBDT  and  MalConv  classifiers.  The  adversarial  malware  examples  generated  by  the  DQN  achieved 

68.64%  and  13.32%  evasion  rates  against  GBDT  and  MalConv,  respectively.  While 

their  results  are  significantly  worse  than  the  results  by  Song  et  al. [ 44],  to  the  best  of our  knowledge,  Kozak  et  al.  were  the  first  to  propose  the  reverse  scenario  of  generating  adversarial  benign  examples.  The  authors  demonstrated  the  danger  of  benign 

AEs  in  evasion  attacks  by  increasing  the  FPR  of  GBDT  and  MalConv  models  by 

3.45  and  14.29%,  respectively. 

The  remaining  evasion  attacks  are  a  mixture  of  different  approaches  that  do  not 

fit  into  gradient  and  RL-based  groups. 

Hu  et  al.  [ 19]  demonstrated  the  capabilities  of  generative  adversarial  networks (GANs)  in  generating  malware  AEs.  The  generator  network  operated  by  modifying 

feature  vectors  representing  API  calls  captured  from  malicious  files.  The  discrim-

inator  network  represented  a  substitute  malware  detector  and  was  trained  to  detect 

feature  vectors  modified  by  the  generator.  The  authors  reported  an  evasion  rate  of 

98–100%  when  the  generated  vectors  were  transferred  and  evaluated  against  other 

ML-based  malware  classifiers.  Unfortunately,  the  authors  did  not  propose  a  method 

of  converting  the  feature  vectors  back  to  executable  binaries,  thus  limiting  the  real-

world  application  of  their  work. 

Further,  Demetrio  et  al.  [ 13]  experimented  with  evolutionary  algorithms  to  create malware  AEs.  The  evolutionary  algorithm  was  dedicated  to  solving  an  optimization 

problem  balancing  maximum  evasion  rate  with  minimal  perturbation  size.  Evolu-

tionary  techniques  such  as  selection,  cross-over,  and  mutation  are  applied  to  vectors 

to  show  how  adversarial  benign  content  inside  malicious  PE  files  should  be  injected. 

The  optimized  feature  vectors  are  later  applied  on  genuine  malicious  files,  creating 

malware  AEs.  The  authors  reported  an  evasion  of  12  out  of  70  detectors  hosted  on 

VirusTotal  [ 47]  website. 

 5.2 

 Poisoning  Attacks 

Biggio  et  al. [ 8]  presented  one  of  the  first  poisoning  attacks  in  the  domain  of  malicious software.  The  authors  demonstrated  how  an  attacker  could  subvert  the  behavior 

clustering  process  of  Malheur  [40], an  open-source  tool,  by  injecting  carefully  crafted
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poisoning  samples.  Biggio  et  al.  experimented  with  bridge-based  (adding  points  to 

bridge  clusters),  random,  and  F-measure  minimizing  attacks.  The  results  showed  that 

poisoning  the  training  dataset  by  as  little  as  5%  samples  from  the  bridge-based  attack 

can  lead  to  complete  deterioration  of  clustering  performance  where  Malheur  merges 

all  samples  to  a  single  cluster  (originally  40  clusters  before  poisoning  attack). 

Further,  Chen  et  al. [ 9]  investigated  the  vulnerability  of  ML-based  malware  detection  systems  to  poisoning  attacks  on  the  Android  platform.  The  authors  introduced 

three  types  of  attacks  (weak,  strong,  and  sophisticated)  and  used  a  customized  adver-

sarial  crafting  algorithm  to  generate  crafted  camouflage  samples  that  misled  classi-

fiers.  The  proposed  defense  system,  KuafuDet,  includes  an  offline  training  phase  and 

an  online  detection  phase,  intertwined  through  a  self-adaptive  learning  scheme  that 

uses  similarity-based  filtering  to  identify  and  retrain  on  suspicious  false  negatives. 

The  authors  first  show  that  SVM-based  detectors  are  susceptible  to  poisoning  attacks 

by  demonstrating  up  to  a  30%  decrease  in  accuracy.  Later,  Chen  et  al.  prototyped  their 

retraining  mechanism  on  suspicious  samples  to  increase  accuracy  by  at  least  15%. 

Next,  Sasaki  et  al.  [ 41]  explored  using  data  poisoning  attacks  to  embed  backdoors in  malware  detection  systems.  The  proposed  methodology  involves  generating  poisoning  data  that  misclassifies  specific  types  of  malware  as  benign  software  while 

maintaining  the  detection  accuracy  for  other  malware  (so-called  targeted  poisoning). 

The  attack  framework  consists  of  three  steps:  selecting  backdoor  malware,  generat-

ing  poisoning  data  using  an  optimization  problem,  and  injecting  the  poisoning  data 

into  the  training  set.  The  authors  introduced  a  constraint  term  to  ensure  the  poison-

ing  data  resembles  benign  data,  making  it  harder  to  detect.  Logistic  regression  was 

used  as  the  target  malware  detector.  The  result  showed  that  the  proposed  method 

effectively  increases  the  false  negative  rate  for  backdoor  malware  (over  80%  at  15% 

contamination  rate  for  selected  malware)  without  significantly  affecting  the  detection 

rates  for  other  malware  or  benign  software. 

The  work  of  Sasaki  et  al. [ 41]  was  followed  by  Narisada  et  al. [ 34].  The  authors introduced  two  new  targeted  poisoning  attack  algorithms  designed  to  evade  common 

data  sanitization  defenses,  specifically  the  sphere  defense.  The  proposed  methods 

include  a  basic  attack  that  generates  poisoning  points  by  minimizing  validation  loss 

while  ensuring  points  remain  within  a  feasible  set  and  a  streamlined  attack  that  com-

bines  label-flip  attacks  with  the  validation  loss  minimization  approach.  As  previously, 

the  logistic  regression  was  used  as  a  target  classifier,  and  sphere  defense  was  applied 

to  remove  15%  of  the  points  from  the  training  data.  The  results  showed  that  both  pro-

posed  algorithms  successfully  evade  the  sphere  defense,  with  the  streamlined  attack 

achieving  a  91%  attack  success  rate  at  15%  contamination  rate. 

6  Conclusion 

In  this  work,  we  explored  a  new  scenario  of  benign  AEs  and  their  effectiveness  in  eva-

sion  and  poisoning  attacks.  We  utilized  several  well-known  generators  of  adversarial 

malware  and  modified  them  to  create  benign  examples. 
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The  experimentation  provided  insights  into  the  effectiveness  of  benign  and  mal-

ware  AEs.  In  evasion  attacks,  specific  generators  were  highly  effective  at  producing 

benign  AEs  that  are  misclassified  as  malware  by  the  target  classifier  in  97%  of  cases. 

Although  these  benign  AEs  do  not  directly  threaten  the  system,  they  cause  an  increase 

in  FPR.  This  vulnerability  can  erode  consumer  faith  in  AV  solutions  and  displease 

software  vendors  due  to  the  blocking  of  their  legitimate  applications. 

In  a  more  realistic  scenario  where  benign  AEs  are  used  to  poison  a  training  dataset 

of  malware  detectors,  we  found  no  substantial  difference  in  the  effectiveness  of 

contaminating  the  training  dataset  with  benign  or  malicious  AEs  produced  by  a  single 

generator.  This  result  suggests  that  the  specific  generator  of  benign  or  malicious  AEs 

has  little  effect  on  the  overall  contamination  when  a  single  source  is  used.  However, 

as  mentioned  in  the  discussion  in  Sect. 4.5,  we  operated  with  a  limited  dataset  size in  this  scenario,  and  increasing  the  available  training  samples  could  provide  more 

practical  results. 

Nevertheless,  a  measurable  difference  was  recorded  when  combining  AEs  from 

different  generators  for  the  poisoning  attack.  Our  results  show  that  including  benign 

AEs  in  the  training  dataset  outperforms  malware  or  mixed  AEs  in  reducing  detection 

rates  at  fixed  levels  of  FPR.  These  findings  reveal  a  new  pathway  for  poisoning 

attacks,  requiring  security  engineers  to  remain  vigilant  for  both  benign  and  malware 

AEs  infiltrating  training  datasets. 

Future Work.  We  envision  that  more  research  on  the  efficacy  of  benign  AEs  will 

follow.  We  plan  to  study  the  use  of  benign  AEs  in  targeted  poisoning  attacks  more 

thoroughly  and  investigate  how  to  create  dedicated  generators  of  benign  AEs  to 

contaminate  training  datasets  more  effectively.  Finally,  further  research  on  robustness 

to  benign  AE  attacks  is  needed. 
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Abstract  Malicious  URLs  pose  significant  vulnerabilities,  leaving  users  exposed 

as  they  navigate  the  digital  world.  To  counter  this,  cybersecurity  experts  develop 

machine  learning  models  using  complex  algorithms  to  protect  users  from  cybercrime. 

Machine  learning  models  are  often  referred  to  as  “black  boxes”  due  to  their  opaque 

nature.  However,  understanding  the  decision-making  processes  of  these  models  is 

crucial.  In  fact,  it  is  through  this  understanding  that  we  can  build  robust  protections 

for  users  and  platforms.  This  research  investigates  the  structural  properties  of  URLs 

using  machine  learning  models  trained  to  classify  them  into  five  categories,  specif-

ically,  benign,  malware,  phishing,  defacement,  and  spam.  By  leveraging  LIME  and 

SHAP  analysis,  we  identify  key  features  that  influence  the  model’s  decision-making 

process  for  each  classification.  Through  detailed  analysis,  the  study  highlights  influ-

ential  factors  that  impact  URL  classification,  including  positive,  negative,  and  inter-

active  effects  between  features.  Benign  URLs  are  characterized  by  simplicity,  often 

shorter  with  fewer  numeric  or  special  characters,  and  minimal  domain  complex-

ity.  Malware  URLs  tend  to  be  longer,  with  a  higher  density  of  numeric  characters 

and  complex  domain  structures,  masking  their  malicious  intent.  Phishing  URLs  are 

detected  based  on  features  like  short  query  lengths  and  minimal  domain  tokens, 

designed  to  resemble  trusted  sources  and  deceive  users.  Defacement  URLs  show 

complex  domain  structures  and  advanced  techniques  aimed  at  webpage  tampering. 

Spam  URLs  exhibit  shorter  domains  and  simple  paths,  making  them  ideal  for  bulk 

distribution  in  spam  campaigns.  These  insights  provide  a  deeper  understanding  of 

how  harmful  and  benign  URLs  can  be  distinguished  based  on  structural  attributes. 

The  findings  contribute  to  refining  URL  classification  models  and  improving  their 

effectiveness  in  the  ever-changing  threat  landscape. 
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1 

Introduction 

The  internet,  since  its  inception,  has  empowered  fast  and  seamless  communication 

and  interaction  between  people  across  the  globe.  It  has  allowed  for  greater  collabora-

tion  and  the  spread  of  ideas.  However,  it  has  also  perpetrated  the  spread  of  cybercrime. 

This  form  of  criminal  activities  pose  a  significant  threat  to  individuals,  corporations, 

and  governments  as  they  lead  to  loss  of  security,  breach  of  information,  financial 

loss,  and  more  [ 11, 12].  Hence,  cybersecurity  has  become  a  critical  component  of IT  apparatuses  for  these  entities. 

Malicious  URLs  are  web  addresses  that  lead  to  web  pages  containing  malware  or 

are  designed  for  phishing,  scamming,  or  other  fraudulent  activities.  They  are  designed 

to  lead  users  to  websites  and  locations  on  the  internet  that  have  harmful  content.  This 

content  can  be  used  to  entrap  users  in  crimes,  gain  sensitive  information,  or  propagate 

the  URLs  to  other  users.  It  is  critical  to  classify  such  URLs  into  various  threats  such as  spam,  phishing,  defacement,  and  malware  to  understand  and  mitigate  their  risks 

with  appropriate  countermeasures  [ 13].  However,  classifying  malicious  URLs  is  a challenging  task.  It  requires  powerful  algorithms  that  can  analyze  large  amounts 

of  data  and  identify  patterns  to  make  accurate  inferences.  While  machine  learning 

models  meet  this  criterion,  it  is  also  important  to  understand  how  and  why  these 

algorithms  classify  URLs  into  specific  categories.  By  comprehending  the  decision-

making  process  of  the  algorithms,  in  fact,  researchers  can  for  example  fine-tune  the 

models  to  enhance  their  accuracy  and  reduce  false  positives  and  negatives,  or  identify 

any  inherent  biases  in  the  models. 

The  field  of  eXplainable  Artificial  Intelligence  (XAI)  aims  to  reveal  the  under-

lying  decision-making  processes  of  machine  learning  models.  It  is  a  crucial  aspect 

of  cybersecurity  models,  ensuring  that  their  decisions  and  predictions  are  transpar-

ent  and  reliable.  SHapley  Additive  exPlanations  (SHAP)  and  Local  Interpretable 

Model-Agnostic  Explanations  (LIME)  are  two  leading  interpretability  algorithms. 

They  provide  insights  into  the  factors  influencing  the  prediction  model,  enabling 

professionals  to  refine  the  model  and  correct  any  potential  issues. 

This  paper  investigates  the  effectiveness  of  machine  learning  models  in  classify-

ing  malicious  URLs.  It  utilizes  SHAP  and  LIME  to  interpret  the  outcomes,  drawing 

insights  for  informed  decision-making  in  cybersecurity  applications.  This  study  has 

two  primary  objectives.  First,  we  aim  to  develop  and  evaluate  the  capabilities  of 

four  distinct  machine  learning  models,  that  is,  Multi-Layer  Perceptron  (MLP),  Ran-

dom  Forest  Classifier  (RF),  Support  Vector  Machine  (SVM),  and  eXtreme  Gradient 

Boosting  (XGBoost).  These  models  are  specifically  trained  for  the  classification  of 

malicious  URLs.  The  diverse  range  of  models  enables  us  to  thoroughly  assess  their 

effectiveness  from  various  perspectives.  Second,  we  aim  to  illuminate  the  decision-

making  process  of  the  most  effective  model.  We  accomplish  this  by  employing  SHAP 

and  LIME  techniques.  The  integration  of  the  insights  from  both  these  algorithms 

allows  to  identify  key  features  that  indicate  why  certain  URLs  are  deemed  mali-

cious.  This  research  is  geared  towards  enhancing  the  performance  of  models  that
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detect  malicious  URLs  and  aims  to  demystify  the  ‘black  box’  nature  of  such  models 

for  increased  transparency  and  trust. 

The  remaining  sections  of  this  paper  are  organized  as  follows.  In  Sect. 2, we discuss  previous  research  conducted  in  this  area  of  study.  Section  3  introduces  the technology  and  algorithms  used.  Section  4  describes  the  dataset  and  our  experimental methodology,  which  includes  preprocessing,  data  cleaning,  training,  and  evaluation 

metrics.  Section  5  analyzes  the  experiments  performed  in  our  research  and  discusses the  results.  Finally,  we  conclude  our  paper  and  present  potential  directions  for  future 

work  in  Sect. 6. 

2 

Related  Work 

The  Internet  serves  as  a  primary  platform  for  various  malicious  activities,  including 

cybercrime.  Malicious  actors  often  exploit  URLs  to  launch  their  attacks,  as  URLs  are 

the  primary  avenue  for  users  to  navigate  the  web.  In  response,  cybersecurity  experts 

invest  substantial  effort  in  developing  protocols  and  algorithmic  solutions  aimed  at 

detecting  and  blacklisting  malicious,  phishing,  defacement,  or  spam  URLs. 

Several  techniques  are  commonly  employed  to  detect  malicious  URLs,  with  one  of 

the  most  widely  used  being  blacklisting.  Blacklisting  is  relatively  straightforward  to 

implement  and  can  be  highly  effective,  but  its  success  hinges  on  the  constant  updating 

of  these  lists  [ 1]. If  blacklists  are  not  kept  up-to-date,  new  malicious  URLs  that  have yet  to  be  flagged  can  slip  through.  This  method  typically  involves  crawling  numerous 

web  pages  and  links  to  assess  their  maliciousness.  However,  cybercriminals  are 

aware  of  this  and  frequently  change  URLs  and  IP  addresses  through  techniques 

like  cloaking,  which  reduce  the  likelihood  of  matching  against  blacklist  entries. 

Furthermore,  defacement  URLs  and  fraudulent  pages  often  hide  among  legitimate 

ones,  making  them  difficult  to  identify  through  simple  web  crawling. 

For  instance,  the  work  presented  in  [ 10]  focuses  on  detecting  phishing  URLs  as  a way  to  prevent  cyberattacks  that  could  lead  to  malware  infections  or  network  intru-sions.  However,  the  authors  do  not  rely  solely  on  blacklisting.  Instead,  they  combine 

lexical  features  with  blacklisted  domains  to  enhance  detection  performance,  showing 

how  hybrid  approaches  can  improve  the  limitations  of  traditional  blacklisting. 

Another  key  category  of  detection  involves  behavioral  detection  techniques,  which 

often  utilize  machine  learning  models  that  analyze  the  characteristics  of  URLs. 

In  [ 19], the  authors  explore  online  learning  approaches  for  detecting  malicious  websites  using  both  lexical  and  host-based  features.  By  employing  these  features,  the 

model  can  continuously  adapt  to  detect  new  malicious  URLs  as  they  emerge.  Simi-

larly,  the  study  in  [ 16]  focuses  on  phishing  detection  by  selecting  lexical  features  to train  an  online  model  that  handles  noisy  training  data.  The  study  reveals  that  even 

just  the  structure  of  the  URL  names  can  provide  enough  information  to  accurately 

detect  phishing  attempts. 

Moreover,  the work in [  6]  takes  a  more  comprehensive  approach  by  combining static  analysis  with  minimalistic  emulation  to  identify  malicious  web  pages  related  to
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drive-by  downloads,  phishing,  and  malware  distribution.  The  authors  introduce  new 

discriminative  features  and  apply  supervised  learning  to  enhance  detection  capabil-

ities.  Similarly,  the  research  in  [ 18]  proposes  an  automated  classification  system  to prevent  users  from  visiting  malicious  websites  by  leveraging  statistical  methods  to 

identify  lexical  and  host-based  properties  of  URLs. 

In  [ 4], the  authors  develop  a  machine  learning  approach  that  not  only  detects malicious  URLs  but  also  identifies  the  type  of  attack  being  launched,  such  as  spam-ming,  phishing,  or  malware  distribution.  This  method  utilizes  a  variety  of  discrimi-

native  features,  including  textual  properties,  link  structures,  webpage  content,  DNS 

information,  and  network  traffic  data. 

Although  these  works  demonstrate  high  detection  rates  of  malicious  URLs,  they 

fall  short  of  offering  a  clear  explanation  as  to  why  these  methods  are  so  effective. 

Understanding  the  reasoning  behind  the  success  of  these  techniques  is  crucial  for 

future  improvement  and  adaptation.  By  examining  the  underlying  mechanisms  and 

feature  interactions,  researchers  can  pinpoint  the  key  factors  that  contribute  to  the 

effectiveness  of  these  methods.  This  knowledge  can  then  be  leveraged  to  refine  exist-

ing  models,  develop  new  detection  approaches,  and  enhance  the  overall  robustness  of 

malicious  URL  detection  systems.  Additionally,  bad  actors  may  study  these  models 

to  discover  weaknesses  and  exploit  them.  This  could  lead  to  the  development  of  new 

evasion  techniques  designed  to  bypass  current  detection  methods.  Therefore,  it  is 

essential  to  continuously  update  and  monitor  these  models  to  stay  ahead  of  potential 

threats.  By  understanding  the  limitations  and  vulnerabilities  of  current  techniques, 

researchers  can  design  more  resilient  and  adaptive  systems  capable  of  countering  the 

evolving  strategies  employed  by  malicious  actors.  This  proactive  approach  is  critical 

for  maintaining  the  security  and  integrity  of  web  environments  against  malicious 

URLs. 

In  recent  years,  the  field  of  Explainable  AI  (XAI)  has  seen  a  significant  and  rapid 

transformation,  driven  primarily  by  advancements  in  deep  learning  techniques.  These 

developments  have  made  previously  unsolved  challenges,  such  as  the  interpretabil-

ity  and  transparency  of  complex  AI  models,  far  more  manageable.  XAI  focuses  on 

addressing  the  “black-box”  nature  of  many  machine  learning  models,  particularly 

deep  neural  networks,  by  providing  tools  and  methods  that  explain  and  visualize  how 

these  models  make  decisions.  This  transparency  is  vital  for  industries  like  health-

care,  finance,  and  cybersecurity,  where  understanding  the  decision-making  process 

is  essential  for  trust,  accountability,  and  regulatory  compliance. 

Recent  studies  have  contributed  substantially  to  this  rapidly  evolving  field.  For 

example,  in  [ 14], the  authors  propose  an  interpretable  feedforward  (FF)  design  for convolutional  neural  networks  (CNNs)  that  eliminates  the  need  for  backpropagation. 

By  using  a  data-centric  approach,  the  FF  design  calculates  the  network  parameters 

of  each  layer  based  on  statistical  data  from  the  previous  layer  in  a  single  pass. 

Another  study,  presented  in  [ 5], highlights  the  importance  of  explainability  in  AI, particularly  for  deep  neural  networks.  The  authors  propose  a  hybrid  approach  that 

combines  clustering  with  the  TREPAN  decision  tree  to  create  human-interpretable 

explanations,  demonstrating  the  method’s  effectiveness  in  real-world  applications 

such  as  credit  card  default  prediction. 
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While  there  has  been  considerable  progress  in  XAI  across  various  fields,  there 

is  a  notable  lack  of  research  specifically  focused  on  applying  XAI  techniques  to 

cybersecurity,  particularly  in  detecting  malicious  URLs.  Malicious  URLs  represent 

a  serious  cybersecurity  threat,  as  they  are  commonly  employed  in  phishing,  malware 

distribution,  and  spam  attacks.  The  intricate  structure  of  URLs,  combined  with  the 

need  for  real-time  detection,  makes  this  a  particularly  challenging  yet  promising 

application  for  XAI.  However,  no  specific  work  has  yet  addressed  the  application 

of  XAI  to  malicious  URL  detection.  This  paper  aims  to  bridge  that  gap  by  not  only 

improving  model  transparency  but  also  enhancing  user  trust  in  automated  systems 

designed  to  safeguard  against  these  cyber  threats. 

3 

Background 

Machine  learning  algorithms  play  a  pivotal  role  in  cybersecurity.  Their  ability  to 

learn  and  analyze  various  features  extracted  from  URLs  enables  them  to  effectively 

distinguish  between  benign  and  malicious  web  addresses.  This  capability  is  crucial 

for  cybersecurity  professionals  working  to  protect  networks  and  users  from  a  wide 

array  of  cyber  threats. 

In  the  following  sections,  we  provide  a  concise  analysis  of  the  machine  learn-

ing  models  employed  in  this  research,  outlining  their  fundamental  principles, 

distinguishing  characteristics,  and  ideal  use  cases  for  malicious  URL  classification. 

 3.1 

 Support  Vector  Machines 

A  Support  Vector  Machine  (SVM)  is  a  machine  learning  algorithm  that  maps  input 

features  into  a  high-dimensional  space  [ 22].  In  this  space,  in  case  of  multi-class implementation,  it  constructs  one  or  more  hyperplanes  to  separate  data  points  into 

distinct  groups  based  on  the  regions  formed  by  the  intersections  of  these  hyperplanes. 

Figure  1  illustrates  an  example  of  a  hyperplane  in  two  dimensions.  New  data  points are  classified  by  evaluating  their  proximity  to  these  hyperplanes.  The  algorithm 

strategically  positions  the  optimal  hyperplanes  to  maximize  the  margin  between 

themselves  and  the  closest  points  (support  vectors)  from  each  class.  This  enables 

SVM  to  effectively  capture  complex  relationships  among  features. 

In  cybersecurity  applications,  an  effective  use  of  SVM  involves  identifying  the 

optimal  hyperplane  that  maximally  separates  malicious  URLs  from  legitimate  ones. 

By  doing  so,  SVM  not  only  detects  various  categories  of  malicious  URLs  but  also 

offers  valuable  insights  for  broader  cybersecurity  tasks.  This  approach  is  particularly 

useful  due  to  the  clear  separability  of  different  types  of  URL  data  points  based  on 

this  key  feature. 

[image: Image 73]
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Fig.  1  Linear  SVM  classifier  hyperplane 

 3.2 

 Random  Forest 

Random  Forest  (RF)  is  an  ensemble  learning  technique  based  on  decision  trees,  com-

monly  used  in  machine  learning  [ 2]. During  training,  it  constructs  numerous  decision trees,  each  working  with  different  random  subsets  of  the  data.  The  final  class  prediction  is  determined  by  aggregating  the  votes  from  these  individual  trees.  By  using  dis-

tinct  subsets  of  training  data  and  selecting  random  features  for  each  tree,  RF  achieves 

diversity  in  its  predictions,  which  helps  reduce  overfitting.  Figure  2  illustrates  an example. 

In  the  context  of  malicious  URL  detection,  RF  excels  at  handling  large  sets  of 

features  that  capture  complex  hierarchical  relationships.  A  key  advantage  of  this 

approach  is  its  ability  to  assess  feature  importance,  providing  valuable  insights  into 

the  significance  of  each  feature  in  the  classification  process.  This  allows  cybersecurity 

professionals  to  better  understand  which  characteristics  are  most  relevant  to  detect-

ing  malicious  URLs  and  facilitates  informed  discussions  on  the  topic.  Additionally, 

RF  is  effective  in  managing  noisy  data  and  outliers,  making  it  a  robust  solution  in 

cybersecurity  tasks. 

 3.3 

 XGBoost 

eXtreme  Gradient  Boosting,  commonly  known  as  XGBoost,  is  a  gradient  boosting 

algorithm  that  merges  the  principles  of  gradient  boosting  and  decision  trees  [ 3]. It operates  by  building  a  series  of  decision  trees,  each  trained  to  correct  the  errors  of  its

[image: Image 74]
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Fig.  2  Random  forest  trees 

predecessor,  forming  an  ensemble  that  improves  upon  a  single  model.  Figure  3  provides  an  example.  At  each  iteration,  "weak  learners"  are  introduced.  These  algo-

rothyms  are  typically  decision  trees  that  might  not  perform  well  on  their  own  but, 

collectively,  contribute  to  a  more  accurate  model. 

In  the  context  of  malicious  URL  detection,  where  high-dimensional  feature  spaces 

are  common,  XGBoost  excels  due  to  its  ability  to  capture  complex  relationships 

between  features  while  still  utilizing  simple  base  learner  components.  This  makes  it 

an  efficient  and  powerful  choice  for  detecting  malicious  URLs. 

This  approach  leverages  shallow  decision  trees,  that  is,  weak  learners  with  minimal 

depth,  typically  comprising  each  leaf  node,  alongside  statistical  insights  derived 

from  the  distributional  properties  of  the  training  data  that  they  aim  to  approximate. 

Regularization  techniques  are  employed  to  enhance  the  model’s  robustness  against 

noisy  data.  This  is  achieved  by  ignoring  some  samples  during  tree  construction  or 

by  considering  only  a  subset  of  features  at  each  node  split,  effectively  addressing 

imbalanced  datasets. 

Similar  to  Random  Forest,  XGBoost  incorporates  feature  importance  scores, 

allowing  cybersecurity  professionals  to  identify  critical  indicators  of  malicious 

URLs.  These  insights  can  then  be  used  to  inform  mitigation  strategies. 

[image: Image 75]
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Fig.  3  XGBoost  decision  making  via  boosting 

However,  it  is  important  to  recognize  that  relying  solely  on  the  mathematical 

formulation  of  XGBoost  may  not  offer  clear  intuition  about  the  internal  decision-

making  process  at  various  stages.  This  includes  decisions  on  the  structure  of  the 

decision  trees  and  the  selection  of  valid  threshold  values  during  splits. 

 3.4 

 Multi-layer  Perceptron 

The  strength  of  a  Multi-Layer  Perceptron  (MLP)  lies  in  its  ability  to  create  hierarchi-

cal  data  representations,  enabling  it  to  automatically  extract  essential  features  from 

the  original  data  [ 8].  Figure  4  provides  an  example.  This  feature  extraction  capability is  particularly  valuable  in  scenarios  where  manual  feature  engineering  is  challenging.  Additionally,  MLP  is  highly  versatile  and  can  effectively  handle  different  data 

types,  including  both  categorical  and  numerical  features,  making  it  suitable  for  a 

wide  range  of  applications. 

In  the  realm  of  malicious  URL  classification,  MLP  excels  at  capturing  complex 

relationships  between  URL  features  and  their  respective  classes.  It  can  effectively 

predict  the  maliciousness  of  URLs  by  identifying  subtle  patterns  indicative  of  harm-

ful  behavior.  The  ability  to  uncover  intricate  data  patterns  makes  MLP  especially 

powerful  for  detecting  malicious  activity.  Moreover,  MLP  offers  potential  for  model 

interpretability  through  techniques  such  as  feature  visualization  and  activation  map-

ping.  By  analyzing  the  learned  representations  within  the  neural  network,  cyberse-

curity  professionals  can  gain  valuable  insights  into  the  characteristics  of  malicious 

URLs  and  understand  the  model’s  decision-making  process. 

[image: Image 76]
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Fig.  4  A  basic  multi-layer  perceptron 

However,  the  effectiveness  of  deep  models  like  MLP  is  closely  tied  to  the  amount 

and  quality  of  data  available  for  training.  Small  datasets  can  lead  to  overfitting,  caus-

ing  the  model  to  produce  narrow,  unreliable  results.  Additionally,  deep  models  are 

inherently  complex,  which  poses  challenges  for  interpretation  and  explanation,  par-

ticularly  when  dealing  with  nonlinearity  and  high-dimensional  data.  As  a  result,  it  is 

essential  to  carefully  consider  the  use  of  deep  models  for  malicious  URL  classifica-

tion,  especially  in  situations  where  the  dataset  may  be  limited  or  sparse.  In  such  cases, balancing  the  model’s  sophistication  with  its  interpretability  and  the  availability  of 

data  becomes  crucial  for  successful  application. 

 3.5 

 Recursive  Feature  Elimination 

Feature  engineering  can  be  a  challenging  task,  but  Recursive  Feature  Elimination 

(RFE)  provides  an  effective  solution.  RFE  is  a  technique  that  iteratively  removes 

features  from  the  dataset,  evaluating  the  model’s  performance  at  each  step  until  the 

most  important  features  are  identified.  Examples  of  this  technique  can  be  found  in  [ 9] 

and  [ 21]. This  approach  enhances  both  model  interpretability  and  generalization.  By focusing  on  a  select  subset  of  relevant  features,  RFE  improves  efficiency  and  reduces 

the  risk  of  overfitting.  Moreover,  it  facilitates  a  deeper  understanding  of  data  patterns 

and  relationships  by  emphasizing  key  features  that  have  been  shown  to  improve 

model  performance. 
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 3.6 

 Local  Interpretable  Model-Agnostic  Explanations 

 (LIME) 

A  powerful  tool  for  explaining  machine  learning  model  predictions,  including  those 

used  for  malicious  URL  classification,  is  Local  Interpretable  Model-agnostic  Expla-

nations  (LIME)  [ 20].  LIME  generates  explanations  that  maintain  local  fidelity  for individual  predictions,  allowing  users  to  understand  the  model’s  behavior  on  a  case-by-case  basis.  This  approach  is  particularly  beneficial  for  complex  models,  as  it 

provides  insights  into  the  factors  driving  specific  predictions  without  requiring  a 

deep  understanding  of  the  model’s  underlying  structure  or  concepts. 

LIME’s  foundation  lies  in  approximating  the  decision  boundary  of  a  machine 

learning  model  around  an  instance  of  interest.  This  process  involves  creating  a  local 

neighborhood  of  perturbed  instances,  that  is,  a  small  area  where  feature  changes  are 

made  to  observe  how  the  model  responds.  In  this  localized  region,  LIME  constructs 

an  interpretable  model,  such  as  a  linear  regression  or  decision  tree,  which  helps 

illuminate  the  reasons  behind  the  model’s  behavior  in  that  specific  context. 

Algorithm  1  presents  the  pseudocode  for  this  approach.  The  input  is  a  trained model  and  a  specific  instance  to  explain.  LIME  then  generates  perturbed  samples, 

predicts  their  outcomes,  and  fits  a  simpler  model  to  capture  the  local  behavior.  In 

output  we  have  the  feature  importances  from  the  simpler  model  indicating  which 

features  influenced  the  prediction  for  the  specific  instance. 

For  example,  consider  a  machine  learning  model  trained  to  classify  URLs  as  either 

safe  or  dangerous.  To  explain  why  a  particular  URL  is  deemed  malicious,  LIME 

would  generate  a  set  of  similar  URLs  (the  local  neighborhood)  and  analyze  which 

feature  changes  led  to  different  predictions  by  the  model.  Through  this  analysis,  it 

might  reveal  that  certain  keywords  or  patterns  are  influential  in  the  classification  deci-

sion.  By  providing  such  insights,  LIME  assists  cybersecurity  experts  in  identifying 

indicators  of  maliciousness  within  the  dataset,  empowering  them  to  make  informed 

decisions. 

 3.7 

 SHapley  Additive  ExPlanations  (SHAP) 

SHapley  Additive  exPlanations  (SHAP)  is  a  powerful  tool  for  explaining  machine 

learning  model  outcomes  by  attributing  each  prediction  to  individual  feature  values. 

It  assigns  importance  to  each  feature  based  on  its  contribution  to  the  predicted  output, 

considering  both  individual  and  interactive  effects  through  the  lens  of  Shapley  values 

from  cooperative  game  theory  [ 17]. 

At  its  core,  SHAP  aims  to  calculate  the  Shapley  values  for  each  feature.  In  simpler 

terms,  Shapley  values  represent  the  average  marginal  contribution  of  a  specific  feature 

across  all  possible  combinations  of  features  or  coalitions.  These  numerical  values 

provide  insight  into  the  importance  of  each  feature  in  predicting  the  final  output. 
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Algorithm  1  LIME  Pseudocode 

1:  function  LIME(model,  instance,  num_samples) 

2:

Generate  perturbed  samples  around  the  instance 

3:

perturbed_samples  =  [] 

4:

for .  i = 1 to  num_samples  do 

5:

perturbed_sample  =  perturb(instance) 

6:

perturbed_samples.append(perturbed_sample) 

7:

end  for 

8:

Get  predictions  from  the  original  model  for  these  samples 

9:

predictions  =  model.predict(perturbed_samples) 

10:

Fit  an  interpretable  model  (e.g.,  linear  regression)  to  the  perturbed  samples  and  their predictions 

11:

interpretable_model  =  fit_interpretable_model(perturbed_samples,  predictions) 

12:

Get  feature  importances  from  the  interpretable  model 

13:

feature_importances  =  interpretable_model.get_importances() 

14:

return  feature_importances 

15:  end  function 

When  thoroughly  understood,  they  offer  a  comprehensive  picture  of  how  decisions 

are  made  by  the  model. 

Algorithm  2  presents  the  pseudocode  to  describe  this  approach.  In  input  we  have a  trained  model  and  a  specific  instance.  SHAP  then  computes  contributions  of  each 

feature  by  evaluating  predictions  with  and  without  the  feature  across  all  combina-

tions.  In  output  we  have  the  values  indicating  the  contribution  of  each  feature  to  the 

prediction. 

By  analyzing  these  Shapley  values,  we  can  identify  which  features  drive  the 

model’s  predictions  and  to  what  extent.  Additionally,  any  changes  to  the  input  features 

will  affect  the  prediction  output  accordingly.  The  concept  of  Shapley  values,  rooted 

in  game  theory,  illustrates  how  the  contributions  of  individual  members  in  a  coalition 

determine  their  respective  payoffs.  This  framework  significantly  enhances  trust  and 

transparency  in  machine  learning  systems,  as  it  clarifies  model  decisions  and  allows 

for  validation  of  those  decisions. 

4 

Methodology 

This  section  discusses  the  advantages  of  using  LIME  and  SHAP  instead  of  traditional 

methods,  it  introduces  the  dataset  and  its  features,  followed  by  the  methodology  used 

in  the  experiments.  It  includes  details  on  preprocessing,  data  cleaning,  training,  and 

evaluation  metrics. 
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Algorithm  2  SHAP  Pseudocode 

1:  function  SHAP(model,  input) 

2:

Get  the  set  of  all  features 

3:

features  =  input.features 

4:

Initialize  SHAP  values  for  each  feature 

5:

shap_values  =  {feature:  0  for  feature  in  features} 

6:

Calculate  the  prediction  for  the  model  with  all  features 

7:

baseline_prediction  =  model.predict(input.features  =  empty_set) 

8:

for  each  feature  in  features  do 

9:

Generate  all  combinations  of  features  excluding  the  current  feature 

10:

for  each  subset  in  combinations(features  excluding  feature)  do 

11:

Predict  with  the  subset  of  features 

12:

prediction_with_subset  =  model.predict(input.features  =  subset) 

13:

Predict  with  the  subset  +  current  feature 

14:

prediction_with_feature  =  model.predict(input.features  =  subset  +  feature) 

15:

Compute  the  contribution  of  the  current  feature 

16:

contribution  =  prediction_with_feature - prediction_with_subset 

17:

Weight  the  contribution  by  the  size  of  the  subset 

18:

shap_values[feature]  +=  contribution  *  weight(subset) 

19:

end  for 

20:

end  for 

21:

Return  SHAP  values 

22:

return  shap_values 

23:  end  function 

 4.1 

 Advantages  of  SHAP  and  LIME  in  eXplainable  AI  (XAI) 

In  this  section,  we  emphasize  how  SHAP  and  LIME,  two  widely  used  implementa-

tions  of  eXplainable  AI  (XAI),  offer  deeper  insights  compared  to  traditional  methods 

like  standard  feature  analysis. 

One  key  advantage  is  their  model-agnostic  nature.  SHAP  and  LIME  can  be 

applied  to  various  model  types,  such  as  SVM,  Deep  Learning,  Random  Forest,  and 

XGBoost,  without  being  tied  to  a  specific  algorithm.  This  universality  provides  con-

sistent  insights  across  different  models.  Unlike  traditional  feature  analysis,  which 

often  gives  a  global  view  of  feature  importance,  LIME  offers  local  explanations  by 

analyzing  how  small  changes  to  the  input  affect  model  predictions.  This  approach 

uncovers  the  nuanced  behavior  of  models  in  particular  cases. 

Another  strength  is  the  ability  to  quantify  feature  contributions.  SHAP,  based  on 

cooperative  game  theory,  measures  how  much  each  feature  contributes  to  the  final 

prediction,  offering  a  clear  understanding  of  its  positive  or  negative  influence.  SHAP 

can  also  reveal  feature  interactions,  helping  to  identify  cases  where  certain  feature 

combinations  are  particularly  predictive,  such  as  in  identifying  malicious  URLs. 

Finally,  SHAP  and  LIME  handle  non-linearity  and  complexity  more  effectively. 

Complex  models,  like  deep  learning,  often  exhibit  non-linear  interactions  between 

features,  making  it  difficult  to  assess  feature  importance  using  traditional  methods. 

SHAP  and  LIME  provide  more  robust  tools  to  interpret  these  intricate  relationships, 

making  it  easier  to  understand  which  features  are  important  in  specific  instances-

insights  that  standard  analysis  might  overlook. 
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 4.2 

 Dataset 

The  ISCX-URL2016  dataset  is  a  curated  collection  of  labeled  URL  samples  specif-

ically  designed  for  cybersecurity  research  [ 7, 15].  It  includes  URLs  sourced  from various  origins,  such  as  web  pages,  Alexa  rankings,  and  email  messages.  Each  URL 

is  labeled  either  by  cybersecurity  experts  or  through  automated  methods  based  on  its 

content. 

This  dataset  is  rich  in  samples,  featuring  a  wide  array  of  extracted  attributes  that 

provide  insights  into  the  structure  of  the  URLs,  details  about  the  domains,  and  an 

analysis  of  the  words  used  in  the  URL  text.  It  also  highlights  specific  keywords  or 

patterns  that  may  be  present. 

Table  1  offers  an  overview  of  the  dataset’s  size  and  its  distribution  across  five  class labels: 

•  Spam:  URLs  associated  with  unsolicited  and  often  irrelevant  messages  intended 

to  deceive  users  who  click  on  them. 

•  Defacement:  URLs  linked  to  websites  that  have  been  altered  by  unauthorized 

individuals  to  display  messages  or  images  that  deface  the  original  content. 

•  Benign:  URLs  considered  safe  and  not  posing  any  threat. 

•  Malware:  URLs  associated  with  malicious  software  designed  to  harm  or  exploit 

programmable  devices,  services,  or  networks. 

•  Phishing:  URLs  used  to  obtain  sensitive  information,  such  as  usernames, 

passwords,  and  credit  card  details,  by  masquerading  as  trustworthy  entities. 

This  classification  enhances  our  understanding  of  different  types  of  malicious 

URLs  and  their  characteristics. 

The  ISCX-URL2016  dataset  comprises  a  substantial  number  of  URLs  spanning 

various  categories,  ensuring  a  balanced  representation  of  both  malicious  and  benign 

behaviors.  This  broad  spectrum  makes  the  dataset  an  ideal  resource  for  training 

Table  1  Dataset  description 

Descriptor

Count 

Spam

6,698 

Defacement

7,930 

Benign

7,781 

Malware

6,712 

Phishing

7,586 

Total

36,707
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machine  learning  models  on  URL  classification  tasks.  To  enhance  its  informative-

ness,  contextual  metadata  such  as  annotations  with  timestamps,  source  identifiers, 

and  confidence  scores  on  classifications  are  incorporated.  These  annotations  signifi-

cantly  enrich  the  dataset’s  utility,  enabling  detailed  analyses  that  lead  to  meaningful 

interpretations.  This  is  particularly  beneficial  for  effective  cybersecurity  research 

initiatives. 

In  Table  2, we  can  find  descriptions  of  the  features  used  to  describe  the  dataset samples. 

 4.3 

 Evaluation 

In  this  section  we  present  the  metrics  used  to  analyze  and  compare  the  performance  of 

the  various  models.  Specifically,  we  used  accuracy,  precision,  recall,  and  F1-score. 

These  comparisons  were  conducted  prior  to  the  experimentation  with  SHAP  and 

LIME,  utilizing  the  best-performing  algorithm  with  the  ISCX-URL2016  dataset.  In 

the  context  of  the  discussion  below,  an   instance   refers  to  a  row  element  of  the  dataset. 

Accuracy,  shown  in  Eq. (1), is  the  ratio  of  correctly  classified  items  in  the  dataset to  the  total  number  of  items. 

.Accuracy = Number of Correctly Classified Instances

(1) 

Total Number of Instances

To  describe  precision,  recall,  and  F1-score,  we  need  to  define  a  few  key  terms: 

•  True  Positive  (TP):  Number  of  instances  correctly  classified  as  positive. 

•  False  Positive  (FP):  Number  of  instances  incorrectly  classified  as  positive  when 

they  are  negative. 

•  False  Negative  (FN):  Number  of  instances  incorrectly  classified  as  negative  when 

they  are  positive. 

•  True  Negative  (TN):  Number  of  instances  correctly  classified  as  negative. 

Precision,  shown  in  Eq. (2),  is  calculated  as  the  ratio  of  correctly  classified  positive items  to  the  total  number  of  items  classified  as  positive. 

.Precision =

 TP

(2) 

 TP +  FP

Recall,  shown  in  Eq.  (3),  is  the  ratio  of  correctly  classified  positive  items  to  all items  in  the  dataset  that  are  actually  positive. 

.Recall =

 TP

(3) 

 TP +  FN

Finally,  the  F1-score  combines  precision  and  recall  to  create  a  more  comprehen-

sive  evaluation  metric  for  analyzing  model  performance.  It  is  calculated  as  the  har-
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Table  2  Description  of  features 

Column

Description 

Querylength

Length  of  the  query  part  of  the  URL 

domain_token_count

Number  of  tokens  in  the  domain 

path_token_count

Number  of  tokens  in  the  path 

avgdomaintokenlen

Average  length  of  domain  tokens 

avgpathtokenlen

Average  length  of  path  tokens 

tld

Multiple  top-level  domains  within  a  domain 

ldl_url

Sequence  of  letter-digit-letter  in  URL 

ldl_domain

Sequence  of  letter-digit-letter  in  domain 

dld_url

Proportion  of  digits  in  URL 

dld_domain

Proportion  of  digits  in  domain 

urlLen

Length  of  URL 

domainlength

Length  of  domain 

pathLength

Length  of  path 

subDirLen

Length  of  sub-directory 

fileNameLen

Length  of  filename 

this.fileExtLen

Length  of  file  extension 

ArgLen

Length  of  argument 

pathurlRatio

Ratio  of  path  length  to  URL  length 

ArgUrlRatio

Ratio  of  argument  length  to  URL  length 

argDomanRatio

Ratio  of  argument  length  to  domain  length 

domainUrlRatio

Ratio  of  domain  length  to  URL  length 

pathDomainRatio

Ratio  of  path  length  to  domain  length 

argPathRatio

Ratio  of  argument  length  to  path  length 

NumberofDotsinURL

Number  of  dots  in  URL 

CharacterContinuityRate

Character  continuity  rate 

URL_DigitCount

Number  of  digits  in  URL 

host_DigitCount

Number  of  digits  in  host 

Directory_DigitCount

Number  of  digits  in  directory  name 

Directory_LetterCount

Number  of  letters  in  directory  name 

Filename_LetterCount

Number  of  letters  in  filename 

delimeter_Domain

Presence  of  delimiters  in  domain 

delimeter_path

Presence  of  delimiters  in  path 

NumberRate_URL

Proportion  of  digits  in  URL 

NumberRate_Domain

Proportion  of  digits  in  domain 

SymbolCount_URL

Number  of  symbols  in  URL 

SymbolCount_Domain

Number  of  symbols  in  domain 

URL_Type_obf_Type

Type  of  URL  obfuscation
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monic  mean  of  precision  and  recall,  as  shown  in  Eq. (4). This  metric  provides  a  robust measure  of  the  performance  of  various  machine  learning  models  in  classification 

problems. 

.F1-score = 2 · Precision · Recall

(4) 

Precision + Recall

 4.4 

 Procedure 

We  started  with  a  comprehensive  exploration  of  the  dataset  using  Exploratory  Data 

Analysis  (EDA).  We  analyzed  the  dataset’s  characteristics  to  uncover  hidden  pat-

terns,  anomalies,  and  complexities.  The  first  step  involved  understanding  the  overall 

structure  of  the  dataset,  including  the  number  of  samples,  the  dimensions  of  features, 

and  the  types  of  data  present.  For  numerical  features,  we  revealed  their  properties 

through  descriptive  statistics,  while  for  categorical  attributes,  we  examined  frequency 

counts  and  proportions. 

Handling  missing  values  is  a  crucial  step  in  this  process.  We  made  strategic  deci-

sions  based  on  the  plausibility  of  the  missing  data,  choosing  between  imputation  or 

exclusion.  We  further  highlighted  patterns,  trends,  and  outliers  using  visualization 

methods.  These  methods  reveal  hidden  insights  that  go  beyond  what  mere  summary 

statistics  can  provide. 

As  indicated  in  Table  3, the  feature  NumberRate_Extension and  the  feature 

Entropy_DirectoryName were  removed  due  to  a  high  count  of  missing  values, 

reaching  almost  30%  and  20%  of  the  total,  respectively.  The  remaining  missing  fields 

resulted  in  the  corresponding  rows  being  dropped.  This  was  because  their  counts 

were  negligible  compared  to  the  size  of  the  dataset,  and  imputing  the  values  with  a 

statistical  replacement  did  not  significantly  improve  the  score. 

Additionally,  correlation  analysis  unveiled  relationships  between  features,  inform-

ing  feature  selection  and  model  development  decisions.  Our  examination  of  class 

distribution  showed  potential  class  imbalances,  guiding  the  choice  of  evaluation 

Table  3  Missing  values 

Column

Missing  count 

NumberRate_Extension

10,130 

Entropy_DirectoryName

8,468 

avgpathtokenlen

280 

Entropy_Extension

236 

NumberRate_DirectoryName

40 

NumberRate_FileName

10 

Entropy_Afterpath

10 

NumberRate_AfterPath

3

[image: Image 77]
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metrics  and  model  training  strategies.  As  seen  in  Fig. 5, most  features  are  uncorrelated  with  each  other,  and  only  small  clusters  exhibit  high  correlation,  such  as 

argUrlRatio and  argPathRatio.  The  correlation  matrix  also  indicates  that 

there  is  no  correlation  between  URL_Type_obf_Type and  the  other  features. 

The  analysis  extended  to  applying  various  machine  learning  algorithms,  namely, 

Random  Forest  (RF),  XGBoost,  Multilayer  Perceptron  (MLP),  and  Support  Vector 

Machine  (SVM).  The  algorithms  for  these  models  are  described  in  Sect. 3. After scaling  the  input  data,  we  scored  and  compared  the  models  using  a  weighted  F1-score,  with  accuracy  as  a  secondary  metric  to  evaluate  performance  for  the  best 

model. 

For  the  RF  model,  the  hyperparameters  used  were  criterion set  to  entropy, 

maximum features set  to  sqrt,  and  the  number  of  estimators  set  to  100. The  

XGBoost  model  was  configured  with  the  objective  set  to  multi:softmax and  the 

evaluation  metric  set  to  mlogloss.  The  SVM  model  had  the  hyperparameter  C set 

to  .1 .  0,  coef0 set  to  .0 .  0,  degree set  to  . 3,  and  the  kernel  set  to  rbf. Lastly, the MLP  model  was  configured  with  a  single  hidden  layer  of  .155 neurons,  a  learning 

rate  set  to  constant,  and  the  solver  set  to  adam.  Table  4  recapitulates  the  chosen Fig.  5  Correlation  matrix
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Table  4  Hyperparameters  for  each  model 

Model

Hyperparameters 

Random  Forest  (RF)

criterion:  ‘entropy’ 

max_features:  ‘sqrt’ 

n_estimators:  100 

XGBoost

objective:  ‘multi:softmax’ 

eval_metric:  ‘mlogloss’ 

Support  Vector  Machine  (SVM)

C:  1.0 

coef0:  0.0 

degree:  3 

kernel:  ‘rbf’ 

Multi-layer  Perceptron  (MLP)

layers:  (155,) 

learning_rate:  ‘constant’ 

solver:  ‘adam’ 

hyperparameters  for  each  model. 

We  also  implemented  a  deep  MLP  model  with  .10 hidden  layers,  which  are  a 

combination  of  Dense,  BatchNormalization,  and  Dropout layers,  as  an 

instance  of  a  deep  model.  However,  it  performed  poorly  compared  to  a  shallower 

model  with  just  two  hidden  layers.  This  suggests  that  the  dataset  size  is  not  sufficient for  a  deeper  model  to  be  effective.  Table  5  shows  the  Keras  model  summary  and  the hyperparameters  for  reference. 

Table  5  Deep  model  summary  using  Keras 

Layer

Output  Shape

Param  # 

Dense

(None,  512)

39,936 

BatchNormalization

(None,  512)

2048 

Dropout

(None,  512)

0 

Dense

(None,  256)

131,328 

BatchNormalization

(None,  256)

1024 

Dropout

(None,  256)

0 

Dense

(None,  128)

32,896 

BatchNormalization

(None,  128)

512 

Dropout

(None,  128)

0 

Dense

(None,  5)

8256 

BatchNormalization

(None,  64)

256 

Dropout

(None,  64)

0 

Dense

(None,  5)
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We  use  these  models  for  feature  importance  analysis  to  reveal  the  most  important 

predictors  leading  to  model  outcomes.  The  crux  of  the  problem  is  that  when  we  plug 

in  the  model  and  dataset  with  80  columns  into  the  interpretability  algorithms,  the 

individual  contributions  of  each  feature  would  be  negligible  (e.g.,  0.01  importance). 

The  total  number  of  columns  is  too  large  to  easily  make  sense  of  the  features,  so 

we  used  Recursive  Feature  Elimination  to  reduce  the  number  of  columns  without 

losing  too  much  predictive  power  on  the  weighted  F1-score.  In  this  way,  the  reduced 

number  of  columns  would  be  more  influential,  allowing  us  to  better  identify  trends 

and  inferences  for  malicious  URL  classification. 

Finally,  we  conducted  experiments  using  SHAP  and  LIME  to  understand  why  a 

model  makes  certain  predictions  (TP,  FP,  FN,  TN  scenarios).  Through  these  compar-

isons  between  different  approaches  used  for  analysis  and  based  on  their  outcomes 

regarding  malicious  URL  detection,  including  model  strength,  interpretability  scope, 

and  ability  to  succeed,  we  are  able  to  obtain  more  detailed  information  about  our 

models’  robustness  and  predictive  efficacy  in  identifying  types  of  malicious  URLs. 

5 

Experiments  and  Results 

This  section  presents  the  results,  including  relevant  plots  and  diagrams,  from  each 

experiment  and  simulation.  A  detailed  discussion,  comparison,  and  analysis  of  these 

results  will  follow  in  Sect. 5.3. All  the  results  here  are  based  on  a  test  set  using  an 80–20  train-test  split. 

Table  6  shows  the  F1-score  and  Accuracy  for  the  four  models  tested,  along  with  a deep  learning  model  implemented  using  Keras.  Among  these,  XGBoost  stands  out 

as  the  top  performer,  although  the  differences  in  scores  are  relatively  small. 

Since  XGBoost  proved  to  be  the  best  model,  we  chose  it  for  further  analysis  in 

our  explainability  experiments.  The  next  step  involved  applying  Recursive  Feature 

Elimination  (RFE)  to  reduce  the  number  of  features  used  by  the  XGBoost  model. 

This  process  improves  the  interpretability  of  the  model  while  maintaining  similar 

performance.  Figure  6  shows  the  F1-score  for  feature  sets  ranging  from  10  to  80. 

While  the  red  dotted  line  indicates  that  the  optimal  result  is  achieved  with  around 

71  features,  we  can  confidently  select  about  20  features  without  much  performance 

Table  6  Model  training  scores 

Model

Weighted  F1-score

Accuracy 

XGBoost

0.9811

0.9810 

RF

0.9763

0.9762 

MLP

0.9647

0.9650 

Keras

0.9481

0.9462 

SVM

0.9148

0.9146
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Fig.  6  Recursive  Feature  Elimination  (RFE)  results  with  XGBoost  with  cross-validation loss,  still  achieving  a  strong  F1-score  of  0.972.  Figures  7  and  8  present  the  confusion matrices  for  XGBoost  using  all  features  and  the  selected  RFE  features,  respectively. 

Figure  9  highlights  the  top  20  features  chosen  by  RFE  in  conjunction  with  XGBoost. 

Fig.  7  Confusion  matrix  of  XGBoost  with  All  features

[image: Image 80]

[image: Image 81]
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Fig.  8  Confusion  matrix  of  XGBoost  with  RFE 

Fig.  9  Top  20  features  using  RFE  with  XGBoost 

 5.1 

 LIME 

In  this  section,  we  conduct  experiments  using  LIME  with  the  XGBoost  model, 

refined  by  Recursive  Feature  Elimination  (RFE).  We  focus  on  the  True  Positive 

(TP)  instances  for  each  class/label  and  generate  explanations  with  the   LIMETabu-

 larExplainer,  a  LIME  variant  designed  for  tabular  data.  The  results  of  individual 

explanations  are  averaged  to  provide  a  clearer  overall  interpretation.  Figures  10,  11, 

[image: Image 82]

[image: Image 83]
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Fig.  10  Average  LIME  Explanation—Benign  Label 

Fig.  11  Average  LIME  Explanation—Malware  Label 

12, 13  to  14  illustrate  the  features  and  their  respective  importance,  as  determined  by LIME,  in  assessing  the  maliciousness  of  various  URLs  in  the  test  set. 

The   LIMETabularExplainer   improves  the  interpretability  of  machine  learning 

models,  particularly  for  tabular  data.  Its  model-agnostic  approach  allows  it  to  work 

seamlessly  across  different  machine  learning  techniques,  making  it  a  versatile  tool  in 

diverse  analytical  workflows.  For  tabular  data,  where  each  row  represents  an  obser-

vation  and  each  column  corresponds  to  a  feature,  LIMETabularExplainer   effectively 

clarifies  the  complex  relationships  between  input  variables  and  model  predictions. 

It  excels  at  explaining  feature  importance,  highlighting  the  relative  contributions  of 

individual  features  to  the  model’s  predictions. 

[image: Image 84]
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Fig.  12  Average  LIME  Explanation—Defacement  Label 

Fig.  13  Average  LIME  Explanation—Phishing  Label 

 5.2 

 SHAP 

As  with  the  LIME  experiments,  we  use  the  XGBoost  model  refined  by  Recursive 

Feature  Elimination  (RFE)  to  extract  True  Positive  (TP)  instances  for  all  five  labels, 

applying  the  SHAP   TreeExplainer   and  averaging  the  results  for  each  label.  Fig-

ures  15, 16, 17, 18  to  19  display  the  features  and  their  respective  importance,  as assigned  by  the  TreeExplainer,  for  each  label. 

The  SHAP   TreeExplainer   is  a  powerful  tool  for  interpreting  tree-based  models.  It 

measures  the  marginal  impact  of  each  feature  on  prediction  outcomes  by  considering 

all  possible  feature  permutations  and  their  contributions  to  the  predictions.  Specifi-

cally  designed  for  tree-based  models,  the   TreeExplainer   uses  game  theory  to  navigate

[image: Image 86]
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Fig.  14  Average  LIME  Explanation—Spam  Label 

Table  7  SHAP  TreeExplainer  expected  values 

Label

Value 

Spam

0.1844 

Defacement

0.5590 

Benign

0.4894 

Malware

0.4828 

Phishing

0.6215 

decision  trees  and  compute  Shapley  values  for  each  feature,  capturing  both  additive 

and  interaction  effects.  By  breaking  down  the  prediction  process  into  feature  contri-

butions,  this  method  offers  deep  insights  into  the  model’s  decision-making,  clearly 

identifying  the  relative  importance  of  each  feature  in  shaping  the  final  predictions. 

Table  7  presents  the  base  expected  values  for  each  label,  representing  the  model’s average  prediction  across  the  dataset,  independent  of  feature  values.  This  expected 

value  serves  as  a  baseline  for  comparing  individual  feature  contributions,  providing 

insight  into  the  model’s  bias  or  general  prediction  tendency  before  accounting  for 

specific  features. 

 5.3 

 Analysis 

The  precision  of  LIME’s  explanation  is  evident,  as  illustrated  in  Fig. 10. For example,  the  blue  bars  clearly  show  which  features  push  the  classification 

toward  the  positive  class.  In  the  case  of  benign  URLs,  characteristics  such  as 

shorter  query  lengths  (.Querylength ≤ −0 .  96),  fewer  vowels  in  the  character

[image: Image 87]
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Fig.  15  Average  SHAP  Explanation—Benign 

composition  (.charcompvowels ≤ −0 .  58),  and  shorter  domain  token  lengths 

(.longdomaintokenlen ≤ −0 .  08)  are  strongly  associated  with  benign  classi-

fications.  Conversely,  the  red  bars  highlight  features  that  shift  the  classification  away 

from  benign,  such  as  a  high  value  for  dld_getArg. 

The  SHAP  Decision  Plot  offers  further  insight  into  how  individual  features  influ-

ence  the  likelihood  of  a  positive  classification  as  more  features  are  incorporated 

into  the  model  (see  [ 17]). Thresholds  are  particularly  important  for  specific  benign URLs,  as  shown  in  Fig. 15.  Features  like  urlLen,  NumberOfDotsinURL,  and 

token  counts  play  a  significant  role.  Sharp  changes  in  the  plot  lines  indicate  points 

where  certain  features  exert  a  strong  influence  on  the  model’s  output.  These  insights 

help  refine  the  model  and  provide  a  deeper  understanding  of  its  behavior-insights 

that  cannot  be  fully  captured  by  performance  metrics  alone. 

The  SHAP  Force  Plot  visualizes  the  contribution  of  each  individual  feature.  It 

shows  how  features  drive  the  model’s  output  from  a  baseline  toward  either  a  benign 

or  non-benign  classification.  Red  features  on  the  right  push  the  score  towards  benign, 

while  blue  features  on  the  left  reduce  it.  Features  such  as  top-level domain, 

[image: Image 88]
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Fig.  16  Average  SHAP  Explanation—Malware 

delimiter_path,  and  domain_token_count play  a  crucial  role  in  deter-

mining  whether  a  URL  should  be  classified  as  benign,  offering  a  clear  view  of  how 

domain  characteristics  and  path  complexity  influence  the  classification. 

After  extensive  testing  with  both  LIME  and  SHAP,  a  specific  set 

of  features  consistently  emerges  as  having  a  significant  impact  across 

all

cases

and

labels. 

Influential

features

are

top-level domain, 

domain_token_count,  avgdomaintokenlen,  NumberOfDotsinURL, 

and  NumberRateFileName.  These  features  exhibit  strong  discriminatory  power, 

making  them  essential  determinants  of  classification  outcomes.  The  force  plots 

reveal  an  interesting  dynamic:  the  interactions  between  these  features  are  pivotal  in 

shaping  classification  decisions,  underscoring  their  combined  effect  on  the  model’s 

predictive  accuracy. 

These  five  features  are  highly  interrelated,  and  their  interactions  highlight  the 

importance  of  understanding  URL  characteristics,  particularly  when  distinguishing 

between  benign  and  malicious  URLs.  The  insights  from  this  analysis  confirm  that 

these  features  possess  discriminative  qualities  that  are  key  to  accurate  URL  classi-

fication.  Their  role  in  identifying  maliciousness  emphasizes  their  importance  in  the

[image: Image 89]
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Fig.  17  Average  SHAP  Explanation—Defacement 

broader  context  of  URL  classification  tasks.  This  granular  understanding  helps  guide 

the  development  of  more  robust  and  interpretable  predictive  models  for  future  URL 

classification  challenges. 

5.3.1

Benign 

•  LIME  Explanation 

–  Positive  Contributors:  Having  a  shorter  query  length  . Querylength  < =

−0 .  96,  having  fewer  vowels  in  character  composition. charcompvowels  < =

−0 .  58,  and  a  shorter  total  domain  token  length. longdomaintokenlen  < =

−0 .  08 are  strongly  associated  with  benign  classifications. 

–  Features  Contributing  Negatively:  a  high  value  for  dld_getArg pushes  the 

classification  away  from  benign 

•  SHAP  Decision  Plot:  Certain  thresholds  are  crucial  such  as  those  involving 

urlLen,  NumberOfDotsinURL,  and  specific  token  counts. 

[image: Image 90]
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Fig.  18  Average  SHAP  Explanation—Phishing 

•  SHAP  Force  Plot:  We  find  that  some  features,  such  as  top-level domain, 

delimeter_path,  avgdomaintokenlen,  and  domain_token_count, 

can  either  firmly  push  towards  or  pull  away  from  a  benign  classification  based  on 

their  values. 

Features  related  to  URL  structure,  such  as  the  length,  composition,  number  of 

subdomains,  and  path  complexity,  play  a  decisive  role  in  classifying  URLs  as  benign. 

However,  the  model  is  sensitive  to  changes  in  domain-related  features  and  path 

complexity. 

5.3.2

Malware 

•  LIME  Explanation 

–  Positive  Contributors:  URLs  with  a  high  number  of  digits  in  their  structure,  espe-

cially  in  the  file  name  (ldl_url,  Extension_DigitCount),  are  strongly

[image: Image 91]
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Fig.  19  Average  SHAP  Explanation—Spam 

indicative  of  malware.  This  could  be  due  to  auto-generated  URLs  for  delivering 

malware,  which  often  include  random  numeric  sequences. 

–  Complex  domain  and  file  structures  (domain_token_count in  combination 

with  NumberRate_FileName):  A  higher  count  of  tokens  in  domains  or  spe-

cial  numeric  rates  in  filenames  can  indicate  sophisticated  obfuscation  methods 

used  by  malicious  actors  to  mask  nefarious  activities. 

–  Negative  Contributors:  Shorter  overall  URL  length  (.urlLen = −0 .  76) is clas-

sified  as  benign,  indicating  that  the  model  views  longer  URLs,  which  might 

contain  more  complex  and  hidden  paths  or  queries,  with  suspicion. 

•  SHAP  Decision  Plot  Inferences:  The  plot  highlights  structural  characteristics  like 

urlLen,  the  number  of  tokens  in  the  domain  (i.e.,  domain_token_count), 

and  numeric  patterns  within  the  URL  which  strongly  influence  malware  detection. 

–  Crucial  Thresholds  for  Malware  Prediction:  Specific  thresholds  in  features  like 

NumberRate_Domain and  argDomainRatio are  critical.  For  instance, 

a  higher  ratio  of  arguments  to  domain  length  might  suggest  complex  queries
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typical  of  URLs  designed  to  exploit  vulnerabilities  or  perform  malicious 

redirects. 

•  SHAP  Force  Plot  Inferences:  Specific  features,  such  as  top-level domain, 

delimiter_path,  and  avgdomaintokenlen,  have  significant  impacts 

based  on  their  values.  A  suspicious  top-level  domain  or  unexpected  delimiters 

in  the  path  can  push  the  classification  toward  malware. 

The  model  heavily  weighs  features  that  describe  URLs’  structural  complexity  and 

numeric  content,  which  are  common  characteristics  of  malicious  sites. 

5.3.3

Defacement 

•  LIME  Explanation 

–  Positive  Contributors:  Higher  domain  complexity  (.ldl_domain  >  0 .  35)  indicates  URLs  with  more  complex  domain  structures  are  more  likely  to  be  classified 

as  defacement.  Higher  character  composition  in  URLs  (. charcompvowels  > 

0 .  08)  increases  certain  character  types  within  URLs. 

–  Negative  Contributors:  Shorter  filenames  (.ldl_filename ≤ −0 .  47)  within 

the  URL  suggest  a  benign  nature,  possibly  because  legitimate  URLs  often 

use  straightforward  naming  conventions.  Lower  average  domain  token  length 

(.avgdomaintokenlen ≤ −0 .  25)  typically  pushes  a  URL’s  classification 

away  from  defacement,  implying  that  more  superficial  domain  structures  are 

less  suspicious. 

•  SHAP  Decision  Plot  Inferences:  A  significant  role  is  played  by  fea-

tures 

such 

as 

domain_token_count,  NumberOfDotsinURL,  and 

Query_LetterCount.  For  example,  more  dots  might  indicate  subdomain 

complexity,  a  common  trait  in  malicious  URLs. 

•  SHAP Force Plot Inferences: Individual predictions are influenced 

by 

features 

such 

as 

top-level domain,  delimiter_path,  and 

domain_token_count.  Suspicious  top-level  domains  or  unusual  delim-

iter  usage  can  firmly  push  the  classification  towards  defacement.  This  shows  how 

a  combination  of  high-risk  factors  in  domain,  path,  and  query  can  significantly 

sway  the  decision  towards  identifying  a  URL  as  involved  in  defacement. 

The  model  relies  heavily  on  URL  structural  complexity,  character  composition, 

and  specific  domain  features  to  classify  URLs  as  involved  in  defacement.  This  sug-

gests  that  defacement  URLs  use  complex  structures  and  deceptive  naming  to  target 

websites. 
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5.3.4

Phishing 

•  LIME  Explanation 

–  Positive  Contributors:  Shorter  query  lengths.Querylength ≤ −0 .  96 in  URLs 

are  frequently  associated  with  phishing  attempts,  possibly  because  attackers 

often  simplify  queries  to  mimic  legitimate  URLs  better  and  deceive  users.  Fewer 

vowels  in  character  composition.charcompvowels ≤ −0 .  58 lead  to  a  reduc-

tion  in  vowel  usage  in  the  URL,  which  could  indicate  non-standard  word  con-

structions.  Decreased  length  in  domain  tokens  . domain_token_count ≤

−0 .  19 signifies  that  simpler  or  shorter  domain  tokens  are  attempts  to  copy 

reputable  domains,  misleading  the  user  into  thinking  the  URL  is  trustworthy. 

–  Negative  Contributors:  Complex  file  and  domain  names  . ldl_filename  > 

−0 .  47,.ldl_domain  > −0 .  36 introduce  complexity  in  these  areas. 

•  SHAP

Decision

Plot

Inferences:

Features

such

as

.urlLen, 

.NumberofDotsinURL,  and  specific  token  counts  are  pivotal  in  distin-

guishing  phishing  URLs.  The  SHAP  values  indicate  sensitivity  to  changes  in 

URL  length  and  structure,  where  shorter  and  less  complex  URLs  tend  to  be 

marked  as  potential  phishing  attempts. 

•  SHAP  Force  Plot  Inferences:  Special  characters  (.spcharUrl,  number  of  dots 

in  the  URL  .NumberofDotsinURL,  and  .URLQueries_variable)  impact 

the  model’s  decision  for  a  single  prediction.  Higher  counts  or  unusual  patterns  in 

these  areas  can  flag  a  URL  as  phishing. 

The  phishing  detection  model  infers  that  short,  simple  domains  and  queries  that 

try  to  appear  legitimate  are  vital  indicators. 

5.3.5

Spam 

•  LIME  Explanation 

–  Positive  Contributors:  Lower  domain  token  count. domain_token_count ≤

−0 .  70 is  more  frequently  associated  with  spam,  possibly  indicating  that  spam 

URLs  opt  for  less  complex  domains  to  appear  more  generic  or  mimic  legitimate 

domains.  Moreover,  shorter  total  domain  lengths. longdomaintokenlen ≤

−0 .  34 suggest  a  propensity  for  spam  URLs  to  use  concise  domain 

names,  enhancing  memorability  to  deceive  users.  Reduced  path  complexity 

.ldl_path ≤ −0 .  63 also  indicates  spam. 

–  Negative  Contributors:  Higher  counts  of  vowels  in  character  composition 

.charcompvowels  >  0 .  08 push  the  classification  away  from  spam,  poten-

tially  due  to  more  natural-sounding  or  legible  domain  names  in  non-spam 

URLs. 

•  SHAP

Decision

Plot

Inferences:

Feature

.urlLen

and

feature 

.domain_token_count

significantly  influence  spam  detection.  Shorter, 
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simpler  URLs  are  often  flagged  as  spam,  reflecting  a  common  trait  among  spam 

URLs  to  avoid  complexity. 

•  SHAP  Force  Plot  Inferences:  Feature.NumberRate_FileName and  the  feature 

.Extension_DigitCount can  strongly  push  towards  a  spam  classification. 

High  numeric  content  in  filenames  and  extensions  can  indicate  automated  or  non-

individualized  URL  generation  typical  in  spam  campaigns. 

The  insights  from  our  analysis  have  significant  implications  for  the  refinement 

of  spam  detection  mechanisms.  We  find  that  spam  URLs  tend  to  be  structurally 

simpler  and  shorter,  possibly  to  facilitate  easier  dissemination  and  avoid  detection. 

Features  that  imply  complexity  or  mimic  legitimate  website  structures  often  pull 

the  classification  away  from  spam.  These  findings  suggest  that  by  focusing  on  these 

features,  we  can  enhance  the  model’s  accuracy  and  reliability  in  spam  detection. 

This,  in  turn,  will  help  in  effectively  identifying  and  filtering  out  spam  URLs  while 

minimizing  false  positives.  Understanding  these  feature  impacts  is  a  crucial  step 

towards  improving  spam  detection  in  the  vast  landscape  of  internet  communications. 

6 

Conclusion 

This  work  explored  the  properties  and  underlying  structures  of  URLs  using  a  machine 

learning  model  trained  on  the  ISCX-URL2016  dataset,  which  classifies  URLs  into 

categories  such  as  benign,  malware,  phishing,  defacement,  and  spam.  By  utilizing 

LIME  and  SHAP  visualizations,  we  demonstrated  how  specific  features  contribute  to 

these  classifications,  offering  insights  into  the  factors  that  drive  the  model’s  decision-

making  process. 

•  Benign:  The  model  classifies  URLs  as  benign  based  on  their  simplicity  and  stan-

dard  features  typically  found  in  legitimate  websites.  These  URLs  tend  to  be  shorter, 

with  fewer  numeric  or  special  characters,  and  have  a  simple  domain  structure, 

suggesting  benign  intent  through  a  lack  of  complexity  or  deceptive  elements. 

•  Malware:  Malware  URLs  are  often  longer  and  contain  a  higher  density  of  numeric 

characters,  especially  in  filenames  and  domain  segments.  These  URLs  tend  to 

follow  convoluted  and  complex  structures,  likely  designed  to  mask  malicious 

intent. 

•  Phishing:  Short  query  lengths  and  fewer  domain  tokens  make  phishing  URLs 

easier  to  detect.  These  features  are  often  exploited  by  attackers  to  craft  URLs  that 

closely  resemble  those  of  trusted  sources,  increasing  the  likelihood  of  deceiving 

users. 

•  Defacement:  URLs  associated  with  defacement  exhibit  more  complex  domain 

structures,  indicating  efforts  to  tamper  with  webpages  through  sophisticated  tech-

niques.  Features  like  character  composition  and  domain-specific  traits  play  a 

crucial  role  in  identifying  these  cases. 
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Table  8  Influential  factors  for  each  class 

Label

Influential  factors 

Benign

Positive:  Shorter  Query  Length,  Fewer  Vowels, 

Short  Domain  Token  Length 

Negative:  High  Digits  in  Arguments 

Interactive:  urlLen,  NumberofDotsInURL, 

Top-level  Domain,  Domain  Token  Count 

Malware

Positive:  High  Digits  in  URL,  More  Tokens, 

Special  Numeric  Rates  in  Filenames 

Negative:  Shorter  URLs 

Interactive:  urlLen,  Top-level  Domain,  Domain 

Token  Count 

Defacement

Positive:  High  Domain  Complexity,  Higher 

Character  Composition 

Negative:  Shorter  Filenames,  Average  Domain 

Token  Length 

Interactive:  Top-level  Domain,  Delimiter  Path, 

Domain  Token  Count 

Phishing

Positive:  Shorter  Query  Length,  Fewer  Vowels, 

Short  Domain  Token  Length 

Negative:  Letter-Digit-Letter  Combos  in 

Filename  and  Domain 

Interactive:  spcharUrl,  NumberofDotsinURL, 

URLQueries_variable 

Spam

Positive:  Low  and  Short  Domain  Token  Count, 

Reduced  Path  Complexity 

Negative:  More  Vowels  in  Characters 

Interactive:  NumberRate_FileName, 

Extension_DigitCount 

•  Spam:  Spam  URLs  are  characterized  by  shorter  domain  lengths  and  simple  paths, 

making  them  easy  to  recall  and  ideal  for  mass-distribution  campaigns.  Numeric-

rich  filenames  and  structural  simplicity  are  also  common  traits  that  the  model 

identifies  as  indicators  of  spam. 

Table  8  summarizes  the  factors  that  positively  and  negatively  influence  URL  classification  toward  each  label,  along  with  interactive  effects  where  feature  combinations 

significantly  affect  the  outcome. 

By  analyzing  these  findings,  we  gain  a  deeper  understanding  of  how  different 

structural  attributes  help  distinguish  between  harmful  and  harmless  URLs.  The  visu-

alizations  offer  valuable  insights  into  which  specific  characteristics  have  the  greatest 

influence  on  the  model’s  predictions.  This  knowledge  is  crucial  for  refining  URL  clas-

sification  models,  improving  their  accuracy,  and  adapting  to  the  constantly  evolving 

threat  landscape. 
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In  conclusion,  this  research  provides  important  insights  into  the  automated  mech-

anisms  of  URL  classification  models,  laying  a  strong  foundation  for  future  studies. 

Future  research  could  build  on  this  by  exploring  additional  attributes,  such  as  changes 

in  URL  behavior  over  time,  to  better  counter  the  evolving  tactics  of  cyber  adversaries. 
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XAI  and  Android  Malware  Models 

Maithili  Kulkarni

and  Mark  Stamp 

Abstract  Android  malware  detection  based  on  machine  learning  (ML)  and  deep 

learning  (DL)  models  is  widely  used  for  mobile  device  security.  Such  models  offer 

benefits  in  terms  of  detection  accuracy  and  efficiency,  but  it  is  often  difficult  to  understand  how  such  learning  models  make  decisions.  As  a  result,  these  popular  malware 

detection  strategies  are  generally  treated  as  black  boxes,  which  can  result  in  a  lack 

of  trust  in  the  decisions  made,  as  well  as  making  adversarial  attacks  more  difficult  to 

detect.  The  field  of  eXplainable  Artificial  Intelligence  (XAI)  attempts  to  shed  light 

on  such  black  box  models.  In  this  paper,  we  apply  XAI  techniques  to  ML  and  DL 

models  that  have  been  trained  on  a  challenging  Android  malware  classification  prob-

lem.  Specifically,  the  classic  ML  models  considered  are  Support  Vector  Machines 

(SVM),  Random  Forest,  and.  k-Nearest  Neighbors  (.  k-NN),  while  the  the  DL  models we  consider  are  Multi-Layer  Perceptrons  (MLP)  and  Convolutional  Neural  Networks 

(CNN).  The  state-of-the-art  XAI  techniques  that  we  apply  to  these  trained  models  are 

Local  Interpretable  Model-agnostic  Explanations  (LIME),  Shapley  Additive  exPla-

nations  (SHAP),  PDP  plots,  ELI5,  and  Class  Activation  Mapping  (CAM).  We  obtain 

global  and  local  explanation  results,  and  we  discuss  the  utility  of  XAI  techniques 


in  this  problem  domain.  We  also  provide  a  literature  review  of  XAI  work  related  to 

Android  malware. 

1 

Introduction 

Malicious  software,  or  malware,  can  appear  in  various  forms,  including  worms, 

viruses,  adware,  and  ransomware.  In  recent  years,  the  popularity  of  smartphones  has 

made  them  targets  of  malware  attacks. 

It  is  not  surprising  that  machine  learning  (ML)  and  deep  learning  (DL)  have 

become  dominant  approaches  for  detecting  malware,  including  malware  on  mobile 

devices  [ 34]. Such  models  can  be  trained  on  a  variety  of  static  and  dynamic  features  [ 3, 

29].  We  elaborate  on  some  of  these  techniques  in  Sect. 2. 
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Although  ML  and  DL  provide  significant  capabilities,  such  techniques  are  gen-

erally  treated  as  black  boxes  [ 7]. This  black  box  aspect  can  limit  the  trust  that  users are  willing  to  place  in  such  models.  Also,  from  a  security  perspective,  black  box 

models  may  be  more  susceptible  to  adversarial  attacks,  where  an  attacker  attempts  to 

modify  a  model  to  yield  incorrect  results.  Furthermore,  when  an  opaque  model  fails, 

it  is  difficult  to  identify  why  the  model  is  failing.  Thus,  there  is  a  need  to  develop insights  into  the  internal  operations  of  learning  models,  especially  those  that  are  used 

for  malware  detection  and  classification. 

The  emerging  field  of  eXplainable  Artificial  Intelligence  (XAI)  deals  with  under-

standing the inner workings of learning models [27]. XAI generally attempts to explain model  outcomes  in  terms  of  the  influence  of  input  variable  (i.e.,  features),  or  by  using approximation  or  surrogate  models  whose  outcomes  are  more  explainable.  The  goal  is 

to  provide  a  transparent  and  interpretable  view  of  a  model’s  decision-making  process. 

In  this  paper,  we  focus  on  XAI  in  the  context  of  Android  malware  detection. 

We  consider  XAI  for  selected  classic  ML  techniques  and  DL  models  that  have  been 

trained  on  the  well-known  KronoDroid  Android  malware  dataset.  Specifically,  the 

classic  ML  models  that  we  consider  are  Support  Vector  Machines  (SVM),.  k-Nearest 

Neighbors  (.  k-NN),  and  Random  Forest.  In  the  DL  realm,  we  consider  Multi-Layer 

Perceptron  (MLP)  and  Convolutional  Neural  Network  (CNN)  architectures.  In  gen-

eral,  classic  ML  techniques  are  relatively  interpretable,  as  ML  models  are  typically 

based  on  probabilistic,  algebraic,  or  geometric  intuition.  In  contrast,  most  neural  net-

working  models  are  opaque,  in  the  sense  that  it  is  non-trivial  to  understand  how  they 

are  making  decisions.  In  this  paper,  we  aim  to  provide  a  comparative  study  of  XAI  for 

the  selected  ML  and  DL  models,  within  the  context  of  Android  malware  classification. 

For  each  trained  model,  we  apply  relevant  XAI  techniques  from  among  the  fol-

lowing:  Local  Interpretable  Model-Agnostic  Explanations  (LIME),  SHapley  Addi-

tive  exPlanations  (SHAP),  PDP,  and  ELI5  [ 18, 26, 38]. Additionally,  we  provide  a review  of  recent  literature  where  XAI  techniques  are  applied  to  models  trained  on 

Android  malware.  Our  literature  review  can  be  viewed  as  an  extension  of  that  in  [ 19]. 

The  remainder  of  this  paper  is  organized  as  follows.  Section  2  covers  a  range  of relevant  background  topics,  including  malware  detection  strategies  and  an  introduction  to  the  XAI  techniques  that  we  employ  in  our  experiments.  Section  3  gives  an overview  of  related  previous  work  on  malware  classification  and  provides  a  literature 

review  of  recent  XAI  work  related  to  models  trained  on  Android  malware.  Section  4 

covers  the  implementation  of  the  various  classic  ML  and  DL  models  used  in  this 

paper,  along  with  our  experiments  and  results.  Finally,  Sect. 5  summarizes  our  work, and  we  provide  a  discussion  of  potential  avenues  for  future  work. 

2 

Background 

In  this  section,  we  first  give  a  brief  overview  of  malware,  followed  by  a  discussion 

of  ML  and  DL  algorithms  that  are  commonly  used  to  classify  malware.  This  section 

also  includes  detailed  background  on  the  state-of-the-art  XAI  techniques  that  we 

consider  in  this  paper. 
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 2.1 

 Malware  and  Categories 

Malware  is  the  dominant  security  threat  to  smartphones  [ 22]. The  purpose  of  writing malware  can  range  from  simply  a  prank  to  an  organized  criminal  activity,  information  warfare,  and  espionage.  Figure  1  highlights  the  rapid  increase  in  the  volume  of Android  malware  samples  over  the  years  2012  through  2018  [ 6]. 

Malware  covers  an  array  of  threats,  including  backdoors,  spyware  and  adware, 

Trojan  horses,  and  viruses.  We  now  give  a  brief  overview  of  these  common  types  of 

malware  before  moving  on  to  discuss  malware  detection  techniques. 

A  backdoor,  also  known  as  a  trapdoor,  is  built  to  circumvent  security  checks  [ 22]. 

Programmers  may  create  backdoors  for  legitimate  reasons  when  developing  their 

code.  Cybercriminals  seek  to  exploit  their  backdoors  to  delete  files,  access  sensitive 

data,  install  additional  malware,  open  communication  ports  for  remote  access,  and 

so  on. 

As  the  name  implies,  spyware  is  used  to  spy  on  user  activities,  and  can  include 

recording  the  audio  of  calls  on  a  smartphone,  tracking  Internet  usage,  recording 

keystrokes  (including  passwords),  and  so  on  [ 22].  Adware,  on  the  other  hand,  often generates  fake  error  messages  and  then  asks  the  user  to  pay  money  to  fix  a  non-existent problem.  Winwebsec  is  a  well-known  family  of  adware  [ 25]. 

Named  after  the  ancient  historic  plot  by  Greek  invaders  to  capture  Troy,  a  Trojan 

is  a  program  devised  to  look  harmless,  but  secretly  performs  a  malicious  task.  Trojan 

apps  that  send  premium  SMS  messages  in  the  background  are  a  typical  example  [ 22]. 

Zeus  (aka  Zbot)  is  a  well-known  Trojan  family,  and  it  has  been  widely  used  for  nearly 

two  decades  for  crimes  including  bank  fraud  and  money  laundering  [ 13]. 

A  virus  is  the  most  common  type  of  malware.  True  to  its  name,  this  malware  repli-

cates  by  infecting  executable  programs.  The  infected  programs  can  further  propagate 

the  virus  during  their  execution,  or  a  virus  might  propagate  through  external  devices, 
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software,  or  email.  Like  a  biological  virus,  a  computer  virus  might  exhibit  meta-

morphism,  in  the  sense  of  changing  its  form  when  infecting  other  systems  [ 33]. 

Metamorphism  is  an  effective  means  of  evading  classic  virus  detection  techniques, 

such  as  signature  scanning. 

 2.2 

 Learning  Models  for  Malware  Detection 

There  is  a  constant  arms  race  between  malware  writers  and  antivirus  developers. 

Over  the  past  two  decades,  ML  and  DL  techniques  have  come  to  the  fore  in  the  fields 

of  malware  detection,  classification,  and  analysis.  In  this  section,  we  introduce  the 

ML  and  DL  techniques  that  we  consider  in  this  paper,  where  the  underlying  problem 

is  to  classify  Android  malware  samples. 

2.2.1

Classic  Machine  Learning 

Support  Vector  Machines  (SVM)  [ 34]  are  popular  supervised  machine  learning  models.  SVMs  attempt  to  separate  classes  using  hyperplanes.  A  nonlinear  kernel  can  be 

used  to  map  training  data  into  a  higher-dimensional  space  and  thereby  enhance  the 

separability. 

In  machine  learning,  a  Random  Forest  consists  of  an  ensemble  of  decision  trees, 

with  voting  among  the  component  trees  used  to  determine  the  classification  [ 12]. 

More  trees  can  mean  better  accuracy  and  generalizability,  but  care  must  be  taken  not 

to  overfit  the  data. 

As  the  name  suggests,  in  .  k-Nearest  Neighbors  (.  k-NN),  samples  are  classified based  on  the  .  k  nearest  samples  in  the  training  set.  There  is  no  explicit  training required  for  .  k-NN,  and  hence  the  algorithm  is  often  referred  to  as  a  “lazy  learner”. 

However,  scoring  calculation  can  be  relatively  expensive.  The  technique  is  highly 

sensitive  to  local  structure  and,  in  particular,  for  small  values  of  .  k,  overfitting  is common  [ 34]. 

2.2.2

Deep  Learning 

Artificial  Neural  Networks  (ANNs)  are  mathematical  models  that  are  inspired  by 

neurons  in  the  brain.  Multi-layer  Perceptrons  (MLP)  are  the  simplest  useful  neu-

ral  networking  architecture,  and  hence  they  are  sometimes  referred  to  simply  as 

ANNs.  MLPs  are  feed-forward  networks  that  generalize  basic  perceptrons  to  allow 

for  nonlinear  decision  boundaries.  This  is  analogous  to  the  way  that  nonlinear  SVMs 

generalizes  linear  SVMs.  As  with  most  DL  architectures,  MLPs  are  trained  using 

backpropagation  [ 34]. 

Convolutional  Neural  Networks  (CNNs)  are  a  specialized  type  of  neural  net-

work  that  focus  on  local  structure,  making  them  ideal  for  image  analysis.  CNNs
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are  composed  of  an  input  layer,  convolution  layers,  and  pooling  layers,  along  with  a 

fully-connected  output  layer  (or  layers)  that  produce  a  vector  of  class  scores.  The  first convolutional  layer  in  a  CNN  extracts  various  intuitive  features  from  the  input.  Subsequent  convolutional  layers  extract  ever  more  abstract  features  from  the  previous 

layer. 

 2.3 

 Overview  of  Explainable  AI 

The  applications  of  artificial  intelligence  in  the  security  domain  introduces  sev-

eral  challenges.  For  example,  adversarial  attacks  on  such  systems  are  a  concern. 

By  employing  eXplainable  Artificial  Intelligence  (XAI)  techniques  to  understand 

how  a  model  works,  we  have  a  better  chance  of  detecting  such  attacks.  Addi-

tionally,  XAI  analysis,  may  enable  us  to  perform  feature  reduction,  based  on 

feature  importance,  which  can  speed  up  detection.  XAI  can  shed  light  on  black 

box  models  by  uncovering  relationships  between  dependent  and  independent  vari-

ables,  thereby  increasing  user  trust,  which  is  especially  important  in  security-related 

applications. 

Next,  we  briefly  consider  XAI  techniques  from  various  perspectives.  Specifically, 

we  discuss  interpretability  and  explanations  from  the  perspectives  of  ante-hoc  ver-

sus  post-hoc,  model-agnostic  versus  model-specific,  and  local  versus  global.  We 

then  consider  the  level  of  interpretability—high,  medium,  or  low—provided  by  XAI 

techniques. 

Models  that  are  inherently  easy  to  understand  are  said  to  be  ante-hoc  interpretable. 

For  example,  linear  models  and  classic  Hidden  Markov  Models  (HMM)  fall  into  the 

ante-hoc  interpretable  category.  A  model  is  post-hoc  model  interpretable  if  we  need 

to  apply  explicit  interpretation  methods  after  the  model  is  trained.  Of  course,  post-

hoc  techniques  can  also  be  used  on  intrinsically  interpretable  models  after  they  are 

trained  [ 38]. 

Some  XAI  techniques  are  model  agnostic,  in  the  sense  that  they  can  be  applied 

to  any  type  of  machine  learning  algorithm.  On  the  other  hand,  some  XAI  techniques 

are  model-specific.  Of  the  XAI  techniques  that  we  consider,  LIME,  SHAP,  PDP 

plots,  and  ELI5  are  all  model-agnostic  techniques,  while  CAM  is  specific  to  CNNs. 

According  to  [ 27],  model-specific  techniques  may,  in  general,  be  more  informative than  model-agnostic  explanation  techniques. 

Local  interpretable  techniques  help  us  understand  how  and  why  the  model  makes 

a  certain  classification  for  a  specific  sample,  or  for  a  group  of  samples  [ 24].  Locally, models  can  often  be  viewed  as  linear  or  monotonic  in  some  features.  Global  techniques  deal  with  interpreting  a  model  as  a  whole,  taking  a  holistic  view  of  features 

into  account.  For  example,  LIME  only  deals  with  local  interpretability,  while  SHAP 

can  be  used  for  both  local  and  global  explanations. 

Models  consisting  of  linear  functions  are  highly  interpretable.  For  example,  linear 

SVM  models  are  highly  interpretable.  For  this  reason,  some  XAI  techniques,  such 

as  LIME,  use  linear  functions  as  local  approximations. 
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Models  with  nonlinear  monotonic  functions  are  in  the  class  of  medium  inter-

pretable  models.  Nonlinear  functions  are  those  in  which  input  data  is  modeled  using 

a  function  with  a  nonlinear  combination  of  the  model  parameters.  For  example,  an 

SVM  trained  with  the  (nonlinear)  RBF  kernel  is  a  medium  interpretable  model. 

Machine  learning  models  with  nonlinear  and  non-monotonic  functions  fall  into 

the  low  interpretability  category.  Most  DL  models  are  in  this  category,  and  hence 

they  are  inherently  difficult  to  interpret.  CAM  is  model-specific  technique  that  is 

applicable  to  CNNs,  which  are  in  the  low  interpretability  category. 

It  has  been  suggested  that  there  may  be  an  inverse  correlation  between  model 

performance  and  inherent  interpretability  [ 9, 10]. However,  there  are  XAI  techniques that  are  useful  for  models  in  the  low  interpretability  category;  for  example,  CAM  is 

useful  for  interpreting  CNN  models,  as  mentioned  above. 

 2.4 

 XAI  Techniques 

Before  moving  on  to  discuss  our  experiments,  we  first  introduce  the  explainability 

techniques  that  we  consider.  We  use  feature  ranking  to  analyze  our  linear  SVM  and 

Random  Forest  models,  and  for  other  models,  we  use  the  XAI  techniques  of  LIME, 

ELI5,  CAM,  and  SHAP  (including  PDP  plots). 

2.4.1

SVM  and  Random  Forest  Interpretations 

Linear  SVMs  are  inherently  interpretable  models,  in  the  sense  that  we  can  determine 

the  relative  importance  of  features  based  on  the  model  weights,  assuming  that  the 

features  have  been  properly  normalized.  In  the  sklearn Python  library,  it  is  easy 

to  obtain  feature  weights  for  the  linear  SVM  kernel  using  the  coef_method [ 31]. 

Similarly,  we  can  obtain  feature  rankings  from  Random  Forest  models.  Non-linear 

SVMs,  as  well  as  the  other  ML  and  DL  techniques  that  we  consider,  are  not  highly 

interpretable. 

2.4.2

LIME 

Local  Interpretable  Model-agnostic  Explanations  (LIME)  is  based  on  local  surrogate 

interpretable  models,  and  is  used  to  explain  individual  predictions  of  black  box 

machine  learning  models  [ 17].  LIME  generates  a  new  dataset  consisting  of  perturbed samples  and  the  corresponding  predictions  of  the  black  box  model.  Based  on  this 

new  dataset,  LIME  then  trains  a  simple  interpretable  model  which  is  weighted  by 

the  proximity  of  the  perturbed  instances  to  the  sample  of  interest.  This  interpretable 

model  provides  a  good  local  approximation  to  the  original  machine  learning  model. 

According  to  [ 30], the  explanation  provided  by  LIME  of  sample.  x,  denoted.  E(x), can  be  expressed  as
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.  E (x ) = arg min  L (M, g, πx ) +  (g)

 g∈ G

where.  L  measures  the  inaccuracy  introduced  by  approximating  the  original  model.  M

with  the  simplified  model.  g  in  a  perturbed  neighborhood  defined  by.  πx .  By  default,.  g is  a  sparse  linear  model,  but  decision  trees  can  also  be  used.  Here,.  (g)  is  a  measure  of model  complexity  and  acts  as  a  penalty  term,  since  we  want  a  simple  approximation. 

Note  that  the  minimum  is  over  the  family .  G  of  possible  explanations. 

Obtaining  LIME  explanations  consists  of  the  following  steps. 

1.  Choose  a  dataset. 

2.  Train  a  black  box  model  on  the  dataset. 

3.  Generate  new  data  samples  by  perturbing  existing  samples  and  weight  the  new 

dataset  samples  according  to  their  proximity  to  the  sample  of  interest. 

4.  Train  a  weighted,  interpretable  model  on  this  new  dataset. 

5.  Explain  the  prediction  by  interpreting  the  local  model. 

2.4.3

ELI5 

The  name  ELI5  is  derived  from  the  saying,  “Explain  it  Like  I’m  5”.  ELI5  can  be 

used  to  generate  global  explanations  of  a  black-box  model.  The  concept  behind  ELI5 

is  simply  based  on  permuting  the  values  of  individual  features—in  turn,  the  values 

of  each  feature  are  shuffled,  and  model  results  are  tabulated  after  each  such  shuffle. 

The  worse  the  classification  results  after  a  given  feature  is  shuffled,  the  more  that  the model  depends  on  that  feature  [ 15]. 

2.4.4

Grad-CAM 

The  technique  of  Gradient-weighted  Class  Activation  Map  (Grad-CAM)  is  used 

to  analyze  CNNs.  Grad-CAM  assists  in  understanding  which  parts  of  an  image  a 

convolutional  layer  weights  most  to  determine  a  given  classification  [ 27]. That  is, Grad-CAM  is  a  class-based  localization  technique  for  CNN  interpretability. 

Grad-CAM  uses  gradient  information  flowing  into  the  last  convolutional  layer  of 

a  CNN  to  obtain  a  localization  map  of  the  important  regions  in  the  image,  and  thereby 

determines  the  importance  of  each  pixel  of  the  input  image  for  the  specified  class. 

This  resulting  gradient  weighted  activation  map  can  be  overlayed  on  the  original 

input  image  to  visualize  which  parts  of  the  input  the  CNN  associates  highly  with  a 

given  output  class. 

2.4.5

SHAP  and  PDP  Plots 

SHapley  Additive  exPlanations  (SHAP)  is  a  popular  XAI  technique  based  on  Shapley 

values.  In  1951,  Lloyd  Shapley  developed  a  technique  to  determine  the  contribution

334

M. Kulkarni and M. Stamp

of  each  player  in  a  multi-player  game  setting,  and  in  2012,  he  won  the  Nobel  Prize  in 

economics  for  his  work.  In  Shapley’s  approach,  player  contributions  are  determined 

by  Shapley  values,  which  have  a  number  of  desirable  theoretical  properties.  More 

recently,  Shapley  values  have  been  applied  to  XAI  [ 21], with  features  in  place  of game-theoretic  players. 

In  SHAP,  we  first  compute  a  Shapley  value  for  each  sample  and  each  feature, 

as  discussed  below  in  some  detail.  A  Shapley  value  measures  the  contribution  of  a 

specified  feature  to  the  classification  of  a  given  sample.  If  we  arrange  the  Shapley 

values  into  a  matrix  with  the  rows  indexed  by  the  samples  and  the  columns  indexed  by 

the  features,  then  the  row  corresponding  to  a  sample  can  provide  an  explanation  for 

the  classification  of  the  sample.  For  example,  the  largest  value  in  a  row  corresponds 

to  the  feature  that  has  the  most  influence  on  the  classification  of  the  corresponding 

sample.  Similarly,  explanations  of  the  overall  model  can  be  determined  by  analyzing 

the  Shapley  values  in  the  entire  matrix. 

Several  types  of  graphs  and  plots  can  be  generated  based  on  Shapley  values. 

Before  discussing  such  graphs,  we  first  provide  more  details  on  the  computation  of 

Shapley  values. 

Suppose  that  .  X  represents  a  feature  vector  of  length  .  n  of  the  form  .  X =

 ( f 1 , f 2 , . . . , fn),  where  each  .  f j  is  the  value  of  a  specific  feature.  Further,  suppose that  we  have  a  model .  M  that  for  each  such .  X  produces  a  real-valued  result, .  M(X). 

For  example,.  M(X)  could  be  the  classification  of.  X  as  determined  by  the  model.  M, or  it  could  be  a  probability  generated  by  the  model.  For  any  subset  .  S  of  the  features  .{  f 1 , f 2 , . . . , fn}, let  .  MS  be  a  model  corresponding  to  .  M,  but  trained  only on  the  features  in  the  subset  .  S.  Then  .  MS(X)  is  the  real-valued  result  obtained  for sample .  X ,  under  the  restricted  model .  MS. 

For  a  given  sample.  X ,  we  compute.  n  Shapley  values,  with  each  value  corresponding  to  one  of  the.  n  features.  We  denote  the  Shapley  value  for  sample.  X ,  corresponding to  feature .  fi , as .  i (X).  The  Shapley  value  is  defined  as 







 n − 1

.  i (X ) = 1

 M{ S

 (X)

(1) 

 n

 i ∪  fi }  ( X ) −  MSi

| Si|

 Si

where  .  Si  denotes  a  subset  of  the  .  n − 1 features  .{  f 1 , . . . , fi−1 , fi+1 , . . . , fn},  and the  sum  is  over  all  such  subsets  (including  the  empty  set,  with  .  M∅ (X)  defined  to be  0).  Note  that  the  Shapley  value  computation  consists  of  comparing  the  behavior 

of  pairs  of  models  applied  to  the  sample  .  X :  One  models  of  each  pair  includes  the feature.  fi ,  while  the  other  omits.  fi ,  with  the  other  features  unchanged.  These  pairwise computations  are  averaged  over  the  number  of  subsets  of  a  given  size.  The.1 /n  term in  (1)  normalizes  the  result  based  on  the  number  of  features. 

For  example,  suppose  that  we  have  four  features  with  .  X =  ( f 1 , f 2 , f 3 , f 4 ),  and that  we  are  computing  the  Shapley  value .   3 (X).  Then  from  equation  (1), we  have
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  3 (X) = 1  M{  f

4

3 }  ( X ) −  M∅  ( X )





+  M{  f

 / 3

1  , f 3 }  ( X ) −  M{  f 1 }  ( X )





+  M{  f

 / 3

2  , f 3 }  ( X ) −  M{  f 2 }  ( X )





+  M{  f

 / 3

3  , f 4 }  ( X ) −  M{  f 4 }  ( X )

. 





(2) 

+  M{  f

 / 3

1  , f 2  , f 3 }  ( X ) −  M{  f 1  , f 2 }  ( X )





+  M{  f

 / 3

1  , f 3  , f 4 }  ( X ) −  M{  f 1  , f 4 }  ( X )





+  M{  f

 / 3

2  , f 3  , f 4 }  ( X ) −  M{  f 2  , f 4 }  ( X )





+  M{  f 1 , f 2 , f 3 , f 4} (X) −  M{  f 1 , f 2 , f 4} (X) Shapley  values  can  also  be  computed  by  considering  all  .  n! orderings  of  the  features.  In  this  formulation,  for  each  permutation,  we  again  sum  the  differences  of 

pairs  of  a  models,  where  one  is  trained  on  all  features  up  to  and  including  .  fi ,  with the  model  trained  on  all  features  up  to .  fi ,  but  not  including .  fi .  We  now  discuss  this approach  in  more  detail. 

For  any  permutation.  P  of  the  features,  let.  Pi  be  the  initial  part  of  the  permutation before .  fi  appears.  Then  we  can  rewrite  equation  (1) as  





.  i (X ) = 1

 MP

 (X)

(3) 

 n! 

 i ∪{  fi }  ( X ) −  M Pi

 P

where  the  sum  is  over  all .  n! permutations.  P  of  the.  n  features.{  f 1 , f 2 , . . . , fn}. 

Using  Eq.  (3),  the  example  in  Eq. (2)  can  be  written  as 





  3 (X) = 1

 M{  f

24

1  , f 2  , f 3  , f 4 }  ( X ) −  M{  f 1  , f 2  , f 3  , f 4 }  ( X )





+  M{  f 1 , f 2 , f 4 , f 3} (X) −  M{  f 1 , f 2 , f 4 , f 3} (X)





+  M{  f 1 , f 3 , f 2 , f 4} (X) −  M{  f 1 , f 3 , f 2 , f 4} (X)





+  M{  f 1 , f 3 , f 4 , f 2} (X) −  M{  f 1 , f 3 , f 4 , f 2} (X)





+  M{  f 1 , f 4 , f 2 , f 3} (X) −  M{  f 1 , f 4 , f 2 , f 3} (X)

 . 

 . 

. 

 .. 

 .. 

(4)





+  M{  f 4 , f 1 , f 3 , f 2} (X) −  M{  f 4 , f 1 , f 3 , f 2} (X)





+  M{  f 4 , f 2 , f 1 , f 3} (X) −  M{  f 4 , f 2 , f 1 , f 3} (X)





+  M{  f 4 , f 2 , f 3 , f 1} (X) −  M{  f 4 , f 2 , f 3 , f 1} (X)





+  M{  f 4 , f 3 , f 1 , f 2} (X) −  M{  f 4 , f 3 , f 1 , f 2} (X)





+  M{  f 4 , f 3 , f 2 , f 1} (X) −  M{  f 4 , f 3 , f 2 , f 1} (X)
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where,  for  clarity,  we  have  listed  the  entirety  of  each  permutations,  with  the  under-

lined  red  parts  representing  the  subscripts  that  appear  in  (2). Note  that  if  there  is  no underlined  part  of  a  permutation,  the  model  is .  M∅. 

From  the  formula  in  (3)—and  the  example  in  (4)—we  can  clearly  see  how  the Shapley  value .  i (X)  measures  the  contribution  of  feature.  fi  to  the  classification  of sample.  X .  Specifically,  a  model  is  trained  on  a  set  of  features  that  includes.  fi ,  and  the classification  of.  X  by  that  model  is  compared  to  that  obtained  using  the  same  features, except  that.  fi  is  removed.  Such  comparisons  are  computed  for  all  permutations,  and the  results  are  averaged.  Rearranging  terms,  we  see  that  the  Shapley  value  is  the 

difference  between  the  expected  outcome  when  feature .  fi  is  included  in  the  model, and  the  expected  outcome  when  feature .  fi  is  not  included. 

In  many  cases,  training  models  for  all  permutations  would  be  prohibitively  costly, 

even  for  just  one  Shapley  value.  Sampling  methods  are  used,  and  some  of  the  prop-

erties  of  Shapley  values  can  also  play  a  role  in  making  the  problem  computationally 

tractable. 

As  alluded  to  in  the  previous  paragraph,  Shapley  values  satisfy  several  useful 

and  interesting  properties.  For  our  purposes  the  most  relevant  properties  are  the 

following. 

•  Efficiency—The  sum  of  the  Shapley  values  for  .  X  is  equal  to  the  value  that  the model  trained  on  all  features  produces  for .  X .  That  is, 

 n



.  M (X ) =

 i(X)

 i =1

•  Symmetry—If  .  MS ∪{  fi} (X) =  MS ∪{  fj} (X)  for  all  feature  subsets  .  S  that  include neither .  fi  nor .  f j ,  then .  i (X) =   j (X). 

•  Linearity—The  Shapley  values  are  linear  with  respect  to  samples,  that  is, 

.  αi (X ) =  i (α X )  and .  i (X ) +  i (Y ) =  i (X +  Y ). 

•  Null—The  Shapley  value  of  a  null  feature  is  0,  where  a  null  feature,  by  definition, 

satisfies .  MS ∪{  fi} (X) =  MS(X)  for  all.  S  that  do  not  include.  fi . 

The  linear  property  implies  that  for  a  Random  Forest,  we  can  compute  the  Shapley 

values  of  each  component  decision  tree  and  then  combine  the  results  to  obtain  the 

Shapley  value  for  the  overall  model  [ 27,  Section  9.5].  A  similar  statement  holds for  boosting  methods,  and  hence  for  both  Random  Forest  and  boosting  models, 

computing  Shapley  values  is  computationally  feasible. 

Partial  Dependence  Plots  (PDP)  use  Shapley  values  to  visualize  the  marginal 

effect  of  a  predictor  variable  on  the  predictive  variable  by  plotting  the  average  model 

outcome  at  different  levels  of  the  predictor  variable  [ 27]. This  gives  the  average  effect that  a  predictor  variable  has  on  the  predictive  variable.  These  values  are  plotted  on 

a  chart  which  provides  evidence  of  the  direction  in  which  a  variable  affects  the 

outcome. 
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3 

Related  Work 

XAI  is  a  very  active  field,  although  research  into  its  application  in  the  malware 

domain  is  more  limited.  In  this  section,  we  survey  previous  research  that  involves 

applications  of  XAI  to  malware  classification  and  detection. 

Manthena  et  al.  [ 23]  consider  XAI  in  the  context  of  malware  detection.  The  goal  of this  research  is  to  determine  how  malware  influences  the  behavior  of  virtual  machines 

(VMs)  in  a  cloud  environment.  Three  different  variants  of  SHAP  are  applied  (Ker-

nelSHAP,  TreeSHAP,  and  DeepSHAP),  while  the  learning  techniques  considered 

are  linear  SVM,  nonlinear  SVM  (with  RBF  kernel),  Random  Forest,  a  specific  feed-

forward  neural  network,  and  CNN,  all  of  which  are  trained  on  a  malware  dataset. 

The  researchers  use  the  SHAP  interpretations  to  implement  feature  reductions. 

Yan  et  al. [ 38]  consider  ante-hoc  and  post-hoc  explanation  in  detail.  They  evaluate these  techniques  based  on  six  metrics  (accuracy,  sparsity,  completeness,  stability, 

efficiency,  and  fidelity),  and  conclude  that  Layerwise  Relevance  Propagation  (LRP) 

is  the  most  efficient  XAI  technique.  The  authors  also  list  open  issues,  including  the 

potential  tradeoff  between  accuracy  and  explanability. 

Charmet et al. [  1]  provide  a  comparative  study  of  XAI  for  different  cybersecurity tasks  with  the  goal  of  determining  which  explanation  methods  could  be  efficiently 

used  for  each  of  the  following:  Improved  trust  (in  the  sense  of  increased  transparency), 

improved  classifier  performance,  and  to  explain  errors  in  the  models.  They  also  show 

that  XAI  methods  involving  heatmaps  and  saliency  maps  can  be  easily  compromised. 

Ullah  et  al. [ 35]  conduct  XAI  experiments  in  the  context  of  Android  malware detection,  based  on  both  traditional  features  and  greyscale  image  data.  They  consider  pre-trained  Bidirectional  Encoder  Representations  from  Transformers  (BERT) 

models,  which  rely  on  transfer  learning.  LIME  and  SHAP  are  used  to  determine  the 

effect  of  each  feature  on  the  overall  accuracy  of  the  model. 

Liu  et  al.  [ 20]  also  use  XAI  approaches  to  explore  learning  models  in  the  realm of  malware  detection.  They  consider  LIME  and  SHAP,  and  the  research  primarily 

focuses  on  understanding  the  impact  of  temporal  inconsistencies  in  the  training  data 

with  respect  to  the  performance  of  ML-based  malware  detection  approaches. 

Kinkead  et  al. [ 14]  consider  the  problem  of  explaining  predictions  of  Android malware  classification  models.  They  consider  CNN  models,  and  they  use  the  LIME 

for  their  XAI  analysis.  The  authors  claim  that  their  work  provides  additional  trust 

and  confidence  in  their  CNN  model. 

Severi  et  al. [ 32]  develop  a  model-agnostic  methodology  based  on  SHAP  to  examine  the  vulnerability  of  classifiers  to  adversarial  attack.  The  research  is  based  on 

static  and  dynamic  analysis  of  diverse  datasets,  including  Portable  Executable  (PE) 

files  and  Android  applications.  High-contributing  features  are  selected  using  SHAP 

and  attacks  are  conducted  against  a  variety  of  learning  models,  including  Random 

Forest,  SVM,  and  a  Deep  Neural  Network  (DNN).  These  researchers  claim  that 

their  explanation-guided  attack  method  is  more  robust,  as  compared  to  alternative 

approaches. 
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Fan  et  al.  [ 4]  provide  guidelines  to  assess  the  quality,  stability,  and  robustness  of XAI  approaches.  They  experiment  with  LIME,  Anchor,  Local  Rule-based  Explanations  (LORE),  SHAP,  and  LEMNA  and  consider  several  learning  techniques  (MLP, 

Random  Forest,  SVM).  They  claim  that  in  the  domain  of  Android  malware  detection, 

inconsistencies  in  results  from  different  XAI  techniques  makes  it  difficult  to  trust  the 

explanations. 

Warnecke,  et  al.  [ 36]  provide  general  recommendations  related  to  the  application of  explanation  methods  for  deep  learning  techniques  in  the  security  domain.  A  variety 

of  XAI  methods  are  considered,  and  the  authors  find  that  the  Integrated  Gradients 

and  LRP  methods  are  most  effective,  according  to  their  specified  criteria. 

In  Table  1,  we  summarize  the  papers  mentioned  in  this  section,  as  well  as  a  few other  relevant  research  papers.  We  note  that  these  cited  papers  are  relatively  recent, 

with  all  having  been  published  between  2016  and  2023. 

Amongst  the  XAI  techniques  considered  in  this  paper,  SHAP  appears  to  be  the 

most  widely  studied  by  the  research  community,  followed  by  CAM  and  LIME.  The 

graph  in  Fig. 2  charts  the  appearance  of  these  three  XAI  technique  in  research  papers over  recent  years  [ 28]. 

We  note  in  passing  that  the  number  of  relevant  studies  focusing  on  evaluating  XAI 

in  the  malware  domain  is  relatively  small.  Further,  there  is  currently  no  accepted 

standard  method  or  criteria  for  selecting  or  evaluating  XAI  methods  for  malware-

related  problems,  and  hence  a  general  recommendation  as  to  which  XAI  method  or 

methods  will  work  well  in  the  Android  malware  domain  is  unavailable.  Thus,  more 

research  is  needed  in  this  area  to  determine  the  practical  utility  of  XAI  techniques 

for  real-world  Android  malware  problems. 

Table  1  Selected  previous  work 

Authors

Dataset

XAI  techniques 

Charmet  et  al.  [ 1]

–

Survey  paper 

Chen  et  al.  [ 2]

AndroZoo

LEMNA 

Fan  et  al.  [ 4]

Multiple  sources

LORE,  SHAP,  others 

Feichtner  and  Gruber  [ 5]

PlayDrone

LIME 

Iadarola  et  al. [ 11]

Android  Malware  Dataset

Grad-CAM 

Kinkead  et  al.  [ 14]

Drebin

LIME 

Liu  et  al.  [ 20]

AndroZoo

LIME,  SHAP 

Manthena  et  al.  [ 23]

VirusTotal

SHAP 

Severi  et  al.  [ 32]

Grad-CAM

SHAP 

Ullah  et  al. [ 35]

CICMalDroid  2020

LIME,  SHAP 

Warnecke  et  al. [ 36]

Drebin,  Genome

LRP,  LIME,  SHAP 

Wu  et  al.  [ 37]

Drebin+

XMal 

Yan  et  al.  [ 38]

–

Survey  paper 

Yang  et  al. [ 40]

Drebin

Distance-based
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4 

Experiments  and  Results 

In  this  section,  we  consider  a  range  of  XAI  experiments.  But  first,  we  discuss  our 

dataset  and  implementation. 

 4.1 

 Dataset  and  Implementation 

We  use  the  KronoDroid  dataset  [ 8]  for  all  of  the  experiments  reported  in  this  paper. 

This  dataset  includes  labeled  data  from  240  malware  families,  with  78,137  total 

samples,  of  which  41,382  are  malware  and  36,755  are  benign  Android  apps.  For 

each  sample,  289  dynamic  features  (based  on  system  calls)  and  200  static  features 

(e.g.,  permissions)  are  provided.  Each  malware  family  contains  a  number  of 

samples  collected  over  an  extended  period  of  time.  Samples  belonging  to  a  malware 

family  generally  have  similar  characteristics  and  share  a  common  code  base. 

To  ensure  a  significant  number  of  samples  per  family,  we  restrict  our  attention 

to  the  top  10  malware  families  in  the  KronoDroid  dataset.  These  top  10  malware 

families  have  a  total  of  31,046  samples,  with  the  percentage  of  samples  per  family 

illustrated  in  the  pie  graph  in  Fig. 3. 

All  classic  machine  algorithms  experiments  are  performed  on  a  single  host 

machine,  while  deep  learning  experiments  are  performed  using  the  GPU  on  this 

same  machine.  All  experiments  in  this  research  have  been  executed  on  the  computer 

specified  in  Table  2. 

We  cleaned  the  data  to  remove  irrelevant  features.  The  cleaned  dataset  con-

tains  468  features  per  sample.  All  features  are  standardized  using  a  standard  scaler. 

In  our  experiments,  we  use  accuracy  and  F1-score  to  measure  the  performance  of 

each  classifier.  Accuracy  is  defined  as  the  total  number  of  correct  predictions  over 

the  number  of  samples  tested.  The  F1-score  is  a  weighted  average  of  precision  and 

recall,  and  it  is  computed  as
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SMSreg 

Airpush 

16% 

25% 

Malap 

13% 

3% 

FakeApp 

4% 

12% 

4%

Dogwin 

6%

Boxer 

BankBot 

9% 

8% 

Locker 

Agent 

FakeInst 

Fig.  3  Top  10  malware  families 

Table  2  Computing  resources  used  in  experiments 

Computing  resource  Details 

Computer

Dell  XPS  13 

Processor

Intel  Core  i5-7200U  CPU  @  2.50  Ghz,  2.70  Ghz 

RAM

8.0  GB 

Operating  System

Windows  10  Enterprise  64-bit 

 ( Precision × Recall )

. F1 = 2 ×  ( Precision + Recall )

where 

. Precision =

True Positives

 ( True Positives + False Positives )

and 

. Recall =

True Positives

 ( True Positives + False Negatives )

As  with  accuracy,  F1  scores  fall  between  0  and  1,  with  1  being  the  best  possible. 

As  discussed  above,  the  primary  goal  of  this  research  is  to  explore  the  utility 

of  XAI  techniques  in  the  Android  malware  domain.  Towards  this  end,  we  generate 

explanations  and  obtain  interpretations  for  SVM  (both  linear  and  non-linear),  Ran-

dom  Forest, .  k-NN,  MLP,  and  CNN.  We  consider  a  wide  range  of  XAI  experiments, 

from  generating  ante-hoc  explanations  based  a  model’s  inherent  interpretability  to 

post-hoc  explanations.  We  generate  post-hoc  explanations  using  LIME,  SHAP,  ELI5, 

and  PDP  Plots.  For  CNNs,  we  use  the  model-specific  technique  of  CAM.  The  pack-

age  scikit-learn has  been  employed  for  most  of  the  experiments,  with  the 

exception  being  that  the  Tensorflow and  Keras libraries  are  utilized  for  CNNs. 

In  all  cases,  we  perform  stratified  5-fold  cross-validation. 
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A  summary  of  the  main  hyperparameters  for  our  various  models  follows. 

•  SVM—We  perform  preliminary  tests  to  determine  the  best  kernel  for  our  nonlinear 

SVM,  with  the  result  being  the  Gaussian  radial  basis  function  (RBF). 

•  Random  Forest—Based  on  small-scale  experiments,  we  found  that 

using.n_estimator = 100 and  otherwise  using  the  hyperparameter  defaults  in 

scikit-learn  yielded  the  best  results. 

• .  k-NN—Again,  based  on  small-scale  experiments,  we  selected.  k = 5 for all.  k-NN 

experiments  reported  in  this  paper. 

•  MLP—We  use  a  deep  architecture  with  300  hidden  layers,  rectified  linear  unit 

(ReLu)  activation  functions,  and  a  learning  rate  of .  α = 0 .  0001. 

•  CNN—We  use  max  pooling  for  our  CNN  model.  We  experimented  with  various 

hyperparameters  and  found  that  an  initial  number  of  convolution  filters  set  to  32, 

a  filter  size .2 × 2,  and  a  dropout  rate  of.0 .  25 yielded  the  best  results. 

 4.2 

 Performance  of  Learning  Models 

For  the  experiments  in  this  section,  we  use  an  80:20  stratified  training:testing  split. 

As  mentioned  above,  all  models  are  trained  using  only  the  top  10  malware  families 

in  the  KronoDroid  dataset.  The  results  of  our  experiments  are  shown  in  Table  3. We observe  that  Random  Forest  performs  best,  while  MLP  is  second  best.  In  addition,  all 

models  perform  reasonably  well,  with  the  accuracy  of  the  worst-performing  model 

being  within  4%  of  that  of  Random  Forest. 

 4.3 

 XAI  Results 

In  this  section,  we  apply  the  explainability  techniques  in  Sect. 2.4  to  our  models,  and we  discuss  the  results.  Note  that  three  versions  of  SHAP  are  considered  here:  For 

SVM  models  we  use  KernalSHAP,  for  Random  Forest  we  use  TreeSHAP,  and  for 

MLP  we  use  DeepSHAP. 

Table  3  Performance  of  ML  and  DL  models 

Model

Accuracy

Precision

Recall

F1 

Linear  SVM

0.9180

0.9194

0.8719

0.8917 

RBF-SVM

0.8917

0.8937

0.8917

0.8898 

Random  Forest

0.9322

0.9318

0.9322

0.9314 

.  k-NN

0.9061

0.9052

0.9061

0.9054 

MLP

0.9209

0.9206

0.9209

0.9207 

CNN

0.9076

0.9089

0.8976

0.9091

[image: Image 93]
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4.3.1

Linear  SVM  and  Random  Forest  Feature  Importance 

We  calculate  feature  importance  by  extracting  the  feature  weights  from  the  linear 

SVM  and  Random  Forrest  models.  Figures  4  and  5  show  the  top  10  most  important  features  for  our  linear  SVM  and  Random  Forrest  models,  respectively.  We 

observe  that  BLIND_DEVICE_ADMIN,  SET_WALLPAPER,  and  READ_SMS are 

the  main  drivers  of  model  predictions  for  the  linear  SVM,  while  for  Random  Forrest, 

ACCESS_COARSE_LOCATION,  total_perm,  and  read contribute  the  most. 

We  find  that  the  feature  importance  results  on  the  train  and  test  sets  are  consistent  for both  models,  which  indicates  that  they  are  not  overfitting  on  the  KronoDroid  dataset. 

Extracting  such  feature  coefficients  is  not  possible  for  a  nonlinear  SVM  kernel. 

Fig.  4  Feature  importance  from  linear  SVM 

Fig.  5  Feature  importance  from  random  forest
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4.3.2

ELI5  Feature  Importance 

Recall  that  ELI5  is  a  permutation-based  technique  that  measures  the  change  in  model 

error  after  the  values  of  a  single  feature  have  been  shuffled.  We  use  the  ELI5  library 

in  Python  to  calculate  permutation  importance  [ 16]. 

Table  4  shows  the  permutation  importance  for  our  Random  Forest  model.  The values  at  the  top  of  the  ELI5  output  are  the  most  important  features  in  our  model,  while those  at  the  bottom  matter  the  least.  The  first  number  in  each  row  indicates  how  much 

the  model  performance  decreased  with  random  shuffling,  using  the  same  performance 

metric  as  the  original  model—in  this  case,  we  use  mean  squared  error  (MSE).  The 

number  after  the. ± measures  how  performance  varied  over  the  reshuffling,  in  terms  of 

the  range  of  values.  For  example,  shuffling  the  data  of  the  SEND_SMS feature  caused 

the  Random  Forest  MSE  to  vary  by  0.0010.  By  this  measure,  the  top  three  features 

are  SEND_SMS,  RECEIVE_BOOT_COMPLETED,  and  TimesSubmitted. 

We  note  that  only  four  of  the  top  10  features  listed  in  the  bar  graph  in  Fig. 5 

appear  among  the  top  20  features  in  Table  4. This  points  to  the  issue  of  inconsistency between  XAI  analysis  techniques. 

Table  4  ELI5  feature  importance  for  Random  Forest 

Weight

Feature 

.0 .  0033 ± 0 .  0010

SEND_SMS 

.0 .  0032 ± 0 .  0003

RECEIVE_BOOT_COMPLETED 

.0 .  0021 ± 0 .  0020

TimesSubmitted 

.0 .  0015 ± 0 .  0011

GET_ACCOUNTS 

.0 .  0014 ± 0 .  0016

FilesInsideAPK 

.0 .  0012 ± 0 .  0006

GET_TASKS 

.0 .  0011 ± 0 .  0017

UFileSize 

.0 .  0011 ± 0 .  0005

READ_EXTERNAL_STORAGE 

.0 .  0010 ± 0 .  0002

READ_PHONE_STATE 

.0 .  0008 ± 0 .  0006

dangerous 

.0 .  0008 ± 0 .  0013

signature 

.0 .  0008 ± 0 .  0002

SYSTEM_ALERT_WINDOW 

.0 .  0007 ± 0 .  0011

mprotect 

.0 .  0006 ± 0 .  0005

WRITE_SECURE_SETTINGS 

.0 .  0005 ± 0 .  0009

sysinfo 

.0 .  0005 ± 0 .  0004

CHANGE_CONFIGURATIONS 

.0 .  0005 ± 0 .  0009

fsync 

.0 .  0005 ± 0 .  0012

prctl 

.0 .  0004 ± 0 .  0004

READ_LOGS 

.0 .  0004 ± 0 .  0008

fchmod 

 .. 

 .. 

.  . 

.  . 

(448  more)

(448  more)
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4.3.3

LIME  Interpretations 

LIME  provides  a  list  of  the  importance  of  each  feature  in  model  prediction  relative 

to  a  specified  sample.  Recall  that  LIME  relies  on  a  simplified  local  model  for  feature 

ranking. 

KronoDroid  dataset  consists  of  tabular  data,  so  we  define  a  tabular  explainer  object 

in  LIME.  The  trained  model,  features  used  in  training,  and  labels  of  target  classes 

serve  as  inputs,  and  the  results  are  based  on  the  test  data. 

Figure  A.1a  through  d  in  the  appendix  show  the  LIME  explanations  for  the RBF-SVM,  .  k-NN,  Random  Forest,  and  MLP  models,  respectively,  based  on  the 

first  sample  of  the  test  dataset  for  each  model.  All  models  correctly  classify  this 

first  sample  of  test  data  with  high  confidence  as  Locker  ransomware.  The  left  side 

of  the  LIME  explanation  shows  the  probability  with  which  the  sample  is  classified 

as  ransomware—the  pink  color  indicates  that  the  contribution  is  towards  the  ran-

somware  family,  while  the  purple  color  indicates  that  the  contribution  is  towards 

Malap  family.  We  observe  that  these  figures  show  that  the  RBF-SVM,  .  k-NN,  Ran-

dom  Forest,  and  MLP  models  classify  this  specific  sample  as  ransomware  with 

probabilities  of  0.82,  1.0,  1.0,  and  1.0,  respectively. 

The  LIME  output  in  Fig. A.1a  shows  the  classification  result  for  the  top  two  highest  probability  classes  for  this  specific  sample.  In  the  middle  of  the  figure,  there  is  a list  of  rules  that  gives  the  reason  why  this  sample  belongs  to  the  class  ransomware, 

and  it  identifies  and  lists  the  features  that  contribute  most  to  the  prediction,  in  order of  importance.  On  the  right  side  of  the  figure,  there  is  a  table—pink  values  are  the 

reason  for  the  final  prediction,  while  green  values  are  the  reasons  that  do  not  support 

the  prediction  outcome.  In  this  case,  SEND_SMS points  strongly  towards  a  ran-

somware  classification,  while  there  are  four  features  that  are  against  the  ransomware 

classification,  but  only  weakly  so. 

Figures  A.2a  through  d  in  the  appendix  show  the  LIME  explanations  for  RBF-SVM,  .  k-NN,  Random  Forest,  and  MLP  models,  respectively,  for  a  sample  in 

the  Malap  family  that  is  misclassified  as  BankBot  by  all  of  these  models.  The 

(mis)classification  probabilities  are  0.93,  0.79,  0.57,  and  1.0  for  the  RBF-SVM, 

.  k-NN,  Random  Forest,  and  MLP  models.  respectively.  In  the  figures,  orange  val-

ues  are  the  reason  for  the  final  prediction,  and  green  color  values  are  those  that  do 

not  support  the  predicted  outcome.  Figure  A.2a, for  example,  shows  that  the  feature  SEND_SMS contributes  to  a  Bankbot  and  a  ransomware  classifications,  both 

of  which  are  incorrect,  but  since  there  are  fewer  negative  factors  for  Bankbot,  it  is 

the  selected  classification.  Interestingly,  Random  Forest  is  the  only  model  that  gives 

any  significant  weight  to  the  possibility  of  this  sample  being  in  the  (correct)  Malap 

family,  but  only  with  a  probability  of  0.17. 

We  observe  that  the  LIME  interpretations  for  the  RBF-SVM  and  MLP  models  are 

the  most  similar  pair  in  Fig. A.1  and,  arguably,  also  in  Fig. A.2. This  is  not  surprising, as  nonlinear  SVMs  and  MLPs  are  closely  related  models,  in  the  sense  that  an  MLP 

can  be  viewed  as  an  SVM-like  model,  where  the  equivalent  of  the  kernel  function 

is  learned  [ 34].  Based  on  the  LIME  interpretations  in  these  figures,  Random  Forest appears  to  be  the  most  different  from  the  other  three  models.  It  is  somewhat  surprising

[image: Image 95]

XAI and Android Malware Models

345

that  the  .  k-NN  and  Random  Forest  results  are  not  more  similar,  as  those  techniques are  both  neighborhood-based  techniques  [ 34]. 

4.3.4

Grad-CAM  Interpretation 

For  this  experiment,  we  represent  the  input  array  as  an  image.  To  generate  the  images, 

we  first  order  the  468  features  from  highest  to  lowest  importance,  as  determined  by 

the  Random  Forest  model.  For  each  sample,  we  put  these  ordered  feature  values  into 

a .22 × 22 array  (with  0  padding  for  the  final  16  elements),  which  we  then  interpret 

as  a  grayscale  image  for  our  CNN  model. 

We  use iNNvestigate library  to  generate  Grad-CAM  output  on  our  CNN  model 

output.  The  method  create_analyzer of  iNNvestigate determines  the  com-

ponents  of  the  input  that  correspond  to  the  output.  It  then  determines  the  importance 

of  an  input  pixel  based  on  how  much  a  change  in  the  pixel  affects  the  output. 

We  analyze  an  image  from  the  test  dataset  with  the  gradient function,  which 

gives  the  gradient  of  the  output  neuron  with  respect  to  the  input.  Figure  6a shows the  sample  test  image  reshaped  as  .22 × 22 grayscale  image  as  discussed  above. 

Figure  6b  shows  the  Grad-CAM  output  for  the  prediction  made  by  the  CNN  model for  this  sample.  We  can  visually  verify  which  pixels  (equivalently,  features)  in  the 

input  image  the  CNN  is  emphasizing  when  making  its  classification.  For  example, 

the  Grad-CAM  image  shows  a  dark  red  pixel  in  row  1,  column  12,  indicating  that 

the  corresponding  feature  is  one  of  the  most  important  to  the  CNN  classification  of 

this  particular  sample. 

We  observe  that  the  feature  importance  determined  by  Grad-CAM  is  much  dif-

ferent  from  that  of  the  Random  Forest  model.  This  follows,  since  the  features  in 

the  original  image  are  ordered  from  highest  to  lowest  importance,  according  to  the 

Random  Forest  model  weights,  yet  there  is  only  a  slight  bias  towards  more  important 

features  in  the  lower  region  of  the  Grad-CAM  image.  We  conclude  that  the  Random 

Forest  and  CNN  models  appear  to  be  using  much  different  criteria  to  make  their 

classification  decisions. 

(a)  Original  image

(b)  Grad-CAM 

Fig.  6  Grad-CAM  example

[image: Image 96]
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4.3.5

SHAP  Interpretations  and  PDPs 

We  use  KernelSHAP to  generate  explanations  for  our  SVM  and  .  k-NN  models, 

DeepSHAP for  our  MLP,  and  TreeSHAP for  the  Random  Forest  model.  It  is 

well-known  that  KernelSHAP and  DeepSHAP are  much  more  costly  to  compute, 

as  compared  to  TreeSHAP [ 39]. 

Due  to  the  high  computational  cost  we  use  Recursive  Feature  Elimination  (RFE) 

based  on  Random  Forest  models  to  determine  which  features  to  sample.  The  graph 

in  Fig. 7  shows  that  the  accuracy  of  the  Random  Forest  model  does  not  improve, provided  that  at  least  the  top  10  features  are  selected.  Hence,  we  select  these  top  10 

features  to  sample  for  each  of  the  models  under  consideration. 

For  our  experiments,  TreeSHAP only  required  about  53  s  to  complete  execution 

on  a  dataset  of  size  41,382,  while  KernelSHAP required  about  1  h  for  a  comparable 

experiment.  We  found  that  DeepSHAP was  comparable  in  runtime  to  KernelSHAP. 

For  comparison,  for  the  LIME  experiments  discussed  in  Sect. 4.3.3,  the  execution time  was  on  the  order  of  30  s. 

Using  global  model  interpretation  techniques,  we  can  see  how  our  model  behaves 

in  general.  Toward  this  end,  we  generate  two  SHAP  global  model  interpretation  plots, 

specifically,  a  SHAP  variable  importance  plot  and  a  SHAP  dependence  plot. 

We  use  shap.summary_plot function  with  plot_type set  to  bar to  gen-

erate  the  variable  importance  plots.  Figures  8a  through  d  provide  these  SHAP  global explanations  for  the  RBF-SVM,  Random  Forest,  .  k-NN,  and  MLP  models,  respectively.  In  these  plots,  the  .  x-axis  denotes  the  average  impact  on  the  model  output (i.e.,  the  mean  SHAP  value  across  all  relevant  samples)  of  the  specified  variable. 

It  is  interesting  to  note  that  the  top  two  ranking  features  for  all  of  the  models  are 

dangerous and  total_perm.  These  graphs  enable  us  to  easily  compare  the 

relative  contribution  of  the  listed  features  for  each  model. 

The  SHAP  values  appear  in  the  form  of  a  beeswarm  plot  in  Fig. 9. The  function shap.summary_plot was  used  to  produce  this  plot.  Here,  the  .  x-axis  indicates 

the  Shapley  value,  while  the.  y-axis  lists  the  10  features  under  consideration.  Shapley Fig.  7  Random  Forest  RFE  accuracy

[image: Image 97]
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Fig.  8  Variable  importance  plots 

values  corresponding  to  a  given  feature  are  plotted  for  all  samples  in  the  test  set,  with the  thickness  of  the  “swarm”  representing  the  density  of  points.  The  color-coding 

represents  the  raw  value  of  the  feature,  with  blue  indicating  a  low  value  and  red 

corresponding  to  a  high  value.  Thus,  we  obtain  insight  into  the  relationship  of  raw 

features  and  their  predictive  strength  via  the  Shapley  values. 

From  Fig. 9, we  make  the  following  observations. 

1.  The  plot  lists  the  features  in  descending  order  of  importance  which,  of  course, 

matches  the  results  in  Fig. 8d. 

2.  For  most  of  the  features,  raw  values  that  are  low  are  more  predictive  than  high 

values,  with  this  being  especially  clear  for  the sysinfo and FilesInsideAPK 

features. 

3.  Curiously,  the  two  highest  ranked  features  behave  somewhat  differently  than  the 

other  features.  Specifically,  the  raw  high-low  values  of  the  feature  total_perm 

appears  to  have  little  correlation  to  the  corresponding  Shapley  values  and,  to  a 

somewhat lesser extent, this also appears to be the case for the dangerous feature. 

Partial  Dependence  Plots  (PDP)  show  the  average  manner  in  which  machine-

learned  response  functions  changes,  based  on  the  values  of  two  input  variables  of 

interest,  while  averaging  out  the  effects  of  all  other  input  variables.  PDP  plots  enhance
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Fig.  9  MLP  global  interpretation  value  plot 

our  understanding  of  a  model  by  showing  interactions  between  variables  and  depen-

dent  variables  in  complex  models.  PDP  plots  can  also  enhance  trust,  provided  that 

observed  relationships  conform  to  domain  knowledge  expectations. 

We  generate  PDP  plots  using  the  dependence_plot method.  This  function 

automatically  includes  as  the  second  variable  the  feature  that  interacts  most  strongly 

with  the  selected  variable.  PDP  plots  with  the  dangerous feature  selected  are 

shown  in  Fig. 10a  through  d  for  our  RBF-SVM,  .  k-NN,  Random  Forest,  and  MLP 

models,  respectively.  We  note  that  the  dangerous feature  is  discrete,  with  values 

in  the  set .{0 ,  1 ,  2 , . . . ,  25}. 

We  observe  that  for  the  RBF-SVM  model  in  Fig. 10a  there  is  an  approximately linear  relationship  between  the  raw  value  of  dangerous in  the  range  from  0  to  13 

and  the  corresponding  Shapley  values.  Furthermore,  over  the  range  of  2  to  13,  higher 

dangerous values  are  associated  with  a  progressively  higher  proportion  of  high 

values  for  ACCESS_COARSE_LOCATION,  and  beyond  13,  only  high  values  of 

ACCESS_COARSE_LOCATION occur. 

Figures  11a  through  d  show  PDP  plots  with  the  feature  total_perm selected  for our  RBF-SVM, .  k-NN,  Random  Forest,  and  MLP  models,  respectively.  We  observe 

that  the  RBF-SVM  model  in  Fig. 11a  shows  a  linear  relationship  between  the  raw value  of  the  total_perm and  the  Shapley  values.  Also,  below  a  total_perm 

value  of  about  10,  the  corresponding  dangerous values  are  low,  while  above  that 

threshold,  they  are  predominantly  high. 

Finally,  we  illustrate  a  local  explanation  for  an  individual  sample  using  the  SHAP 

force_plot method.  This  method  requires  the  following  three  inputs.  pagebreak 

1.  The  average  of  the  model  output  over  the  training  data,  which  serves  as  the  base 

value  used  to  generate  the  force  plot. 

2.  The  Shapley  values,  as  computed  on  training  data. 
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Fig.  10  PDP  plots  (dangerous) 

3.  The  sample  for  which  we  wish  to  obtain  a  local  explanation. 

Figure  12  shows  the  SHAP  force  plot  generated  for  our  MLP  model,  based  on the  last  sample  in  the  test  dataset.  Features  that  push  the  prediction  higher  (to  the 

right)  are  shown  in  red,  while  those  pushing  the  prediction  lower  are  in  blue.  In 

this  case,  the  base  value  is  3.1,  and  based  on  the  Shapley  values,  sysinfo and 

total_perm have  highest  positive  impact  on  the  classification,  with  dangerous, 

ACCESS_COARSE_LOCATION,  and  FilesInsideAPK also  having  positive 

impact.  For  this  particular  sample,  no  features  have  a  significant  negative  impact 

on  the  classification,  as  indicated  by  the  lack  of  any  “force”  in  the  blue  direction. 

In  summary,  Shapley  values  indicate  how  much  a  feature  contributes  to  the  predic-

tion  of  a  given  sample,  and  this  contribution  can  be  positive  or  negative.  If  a  feature  is positively  correlated  to  the  target  at  a  value  higher  than  the  average,  it  will  contribute positively  to  the  prediction.  On  the  other  hand,  if  a  feature  is  negatively  correlated 

to  the  target,  it  will  contribute  negatively  to  the  prediction.  Furthermore,  a  wealth  of 

information  can  be  gleaned  from  Shapley  values  using  a  number  of  different  plotting 

strategies. 
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Fig.  11  PDP  plots  (total_perm) 

Fig.  12  SHAP  explanations  for  MLP  (last  observation) 

5 

Conclusion  and  Future  Work 

In  this  paper,  we  provided  a  selective  survey  of  previous  work  involving  the  appli-

cation  of  XAI  techniques  to  detection  and  classification  problems  in  the  malware 

domain.  We  then  performed  a  comparative  study  of  several  XAI  techniques  for  a 

variety  of  models,  including  classic  ML  models  (linear  SVM,  RBF-SVM,  Random 

Forest,  and  .  k-NN)  and  deep  learning  models  (MLP  and  CNN).  When  trained  on 

a  challenging  Android  malware  multiclass  problem,  we  found  that  Random  Forest 

performed  best  among  these  models,  followed  closely  by  MLP,  with  all  of  the  models 

performing  within  a  few  percentage  points  of  the  best  model. 

We  applied  a  several  well-known  XAI  techniques  (ELI5,  LIME,  CAM,  and  SHAP) 

to  our  trained  models.  All  of  these  XAI  techniques  provided  interesting  information 

about  the  learning  models  to  which  they  were  applicable.  Although  relatively  costly 

to  compute,  SHAP  explanations  were  particularly  informative. 
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ELI5  proved  effective  at  providing  global  explanations,  while  LIME  generated 

explanations  at  a  granular  level  of  individual  samples.  CAM  uncovered  details  of 

the  inner  workings  of  our  CNN  model,  which  otherwise  would  have  remained 

very  opaque.  SHAP  provided  many  insights,  including  PDP  plots  that  enabled  us 

to  visualize  relationships  between  pairs  of  features. 

There  are  many  potential  avenues  for  future  research.  It  would  certainly  be  useful 

to  have  guidelines  for  determining  which  XAI  techniques  are  most  likely  to  produce 

useful  results  for  problems  in  the  malware  domain.  Of  course,  it  would  also  be  useful 

to  have  such  guidelines  more  generally,  that  is,  for  a  given  model  type  when  trained 

on  a  dataset  from  a  specific  problem  domain.  Additional  work  to  quantify  XAI  results 

is  another  important  fundamental  research  topic. 

Finally,  we  note  that  the  work  in  [ 4]  purports  to  show  that  “.  . . .  explanation  results obtained  in  the  malware  analysis  domain  cannot  achieve  a  consensus  in  general.  . . . ”. 

Some  of  our  results  presented  in  Sect. 4  do  raise  questions  of  consistency.  This  issue of  consistency  (or  lack  thereof)  is  perhaps  the  most  pressing  concern  in  the  entire 

field  of  XAI,  and  hence  further  research  on  this  topic  is  needed. 

Appendix 

Figures  A.1  and  A.2  contain  LIME  explanations  for  specific  cases;  see  Sect. 4.3.3 

for  a  discussion  of  these  results. 
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(a)  RBF-SVM

(b) -NN

(c)  Random  Forest

(d)  MLP 

Fig.  A.1  LIME  explanations  for  correctly  classified  sample

[image: Image 103]
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(a)  RBF-SVM

(b) -NN

(c)  Random  Forest

(d)  MLP 

Fig.  A.2  LIME  explanations  for  incorrectly  classified  sample
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Abstract  In  this  paper,  we  experimentally  analyze  the  robustness  of  selected  Feder-

ated  Learning  (FL)  systems  in  the  presence  of  adversarial  clients.  We  find  that  tempo-

ral  attacks  significantly  affect  model  performance  in  the  FL  models  tested,  especially 

when  the  adversaries  are  active  throughout  or  during  the  later  rounds.  We  consider 

a  variety  of  classic  learning  models,  including  Multinominal  Logistic  Regression 

(MLR),  Random  Forest,  XGBoost,  Support  Vector  Classifier  (SVC),  as  well  as  var-

ious  Neural  Network  models  including  Multilayer  Perceptron  (MLP),  Convolution 

Neural  Network  (CNN),  Recurrent  Neural  Network  (RNN),  and  Long  Short-Term 

Memory  (LSTM).  Our  results  highlight  the  effectiveness  of  temporal  attacks  and  the 

need  to  develop  strategies  to  make  the  FL  process  more  robust  against  such  attacks. 

We  also  briefly  consider  the  effectiveness  of  defense  mechanisms,  including  outlier 

detection  in  the  aggregation  algorithm. 

1 

Introduction 

The  rapid  evolution  in  Machine  Learning  (ML)  and  the  widespread  availability  of  the 

Internet  has  made  a  major  impact  and  has  become  a  driving  force  of  technology  in 

numerous  fields,  including  the  Internet  of  Things  (IoT),  Natural  Language  Processing 

(NLP),  and  computer  vision.  However,  machine  learning  requires  a  large  amount  of 

data  to  train  models  and  typically  has  operated  on  centralized  data  repositories  and  a 
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centralized  server.  As  more  companies  adopt  ML,  training  models  on  dispersed  data 

without  compromising  individual  privacy  has  become  an  important  consideration. 

Data  protection  laws,  such  as  the  General  Data  Protection  Regulation  (GDPR)  [ 17], restrict  how  personal  data  may  be  collected  and  used.  Federated  Learning  (FL)  has 

emerged  as  a  powerful  solution  to  data  privacy  concerns. 

FL  leverages  the  power  of  distributed  and  decentralized  computing  to  train  ML 

models.  In  the  FL  process,  a  global  model  is  first  trained  on  a  subset  of  the  data  that is  available  in  a  central  repository,  and  the  resulting  model  serves  as  a  starting  point. 

This  global  model  is  then  distributed  to  the  clients,  who  refine  the  model  based  on 

their  local  data.  This  allows  sensitive  user  data  to  be  preserved  because  the  clients 

only  send  the  refined  model  parameters  and  gradients  back  to  the  server.  The  server 

then  aggregates  these  gradients  to  optimize  the  global  model  and  the  process  repeats. 

This  iterative  process  continues  until  the  model  converges.  FL  not  only  addresses 

security  and  privacy  issues,  but  due  to  its  use  of  distributed  computing,  it  also  extends ML  capabilities. 

FL  systems  have  tremendous  potential  in  various  fields,  including  healthcare, 

financial  services,  recommender  systems,  and  many  others.  In  healthcare  systems,  for 

example,  the  patient’s  health  records  can  be  kept  private  while  an  ML  system  provides 

personalized  health  recommendations.  In  a  financial  system,  the  user’s  spending 

patterns  can  be  kept  private,  while  simultaneously  detecting  fraudulent  activities. 

IoT  devices  in  cars  can  be  used  to  monitor  traffic  and  optimize  traffic  flow  without 

compromising  an  individual  driver’s  privacy. 

There  are  several  inherent  challenges  in  federated  learning.  Since  the  client  devices 

vary  in  terms  of  computing  power,  storage  capacity,  and  network  connectivity,  the 

consistency  of  model  training  may  be  affected.  Maintaining  consistency  between 

low-end  smart  devices  and  high-performing  servers  is  a  concern  in  FL.  Managing  an 

efficient  network  system  to  enable  data  sharing  between  the  FL  server  and  personal 

device  can  also  be  a  bottleneck.  Furthermore,  some  users  may  be  reluctant  to  con-

tribute  the  computing  power  of  their  devices  for  FL  systems  due  to  issues  such  as  the 

cost  of  mobile  data  transfer  and  battery  consumption.  A  key  issue  in  FL  systems  is 

maintaining  the  integrity  of  the  models  developed  in  the  presence  of  malicious  actors 

within  the  FL  system  who  might,  for  example,  try  to  degrade  model  performance  by 

performing  poisoning  attacks. 

In  this  paper,  we  focus  on  the  security  aspects  of  federated  learning.  Specifically, 

we  aim  to  measure  the  impact  of  malicious  clients  in  an  FL  system,  and  we  quantify 

the  extent  to  which  these  adversaries  can  affect  the  performance  of  specific  FL 

models. 

This  remainder  of  this  paper  is  organized  as  follows.  Section  2  discusses  the  background  knowledge  required  to  understand  federated  machine  learning.  Section  3  discusses  relevant  previous  work  in  this  field.  Section  4  explains  our  experimental  setup, and  Sect. 5  reports  our  results.  Finally,  Sect. 6  provides  conclusions  drawn  from  our experiments  and  we  briefly  discuss  potential  directions  for  future  related  work. 
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2 

Background 

In  this  section,  we  discuss  the  fundamentals  of  Federated  Learning  (FL),  including 

various  types  of  FL  systems  and  some  of  the  challenges  faced  when  training  mod-

els  via  FL.  Then  we  discuss  the  different  aggregation  strategies  that  are  used  in  the 

FL  pipeline.  We  also  briefly  consider  defense  mechanisms,  including  outlier  detec-

tion.  Finally,  we  introduce  the  specific  classification  models  that  we  consider  in  this 

paper. 

 2.1 

 Federated  Learning 

Federated  learning  (FL)  [ 33],  or  collaborative  learning,  is  a  subfield  of  machine learning  where  a  number  of  clients  work  together  to  train  a  model  while  maintaining 

the  decentralization  of  their  data.  The  fundamental  idea  of  FL  is  to  train  local  models 

on  local  data  samples  of  the  clients  and  periodically  exchange  parameters  such  as 

weights  through  a  central  server.  The  central  server  then  aggregates  these  parameters 

to  build  a  global  model.  This  is  not  the  case  in  typical  machine  learning  environments 

where  data  and  computing  resources  are  centralized. 

Federated  learning  differs  from  distributed  learning.  In  distributed  learning,  the 

objective  is  to  parallelize  the  model  training  process  across  multiple  servers,  while 

the  dataset  at  each  client  is  assumed  to  be  Independent  and  Identically  Distributed 

(IID)  and  roughly  the  same  size.  In  contrast,  in  FL,  the  dataset  across  clients  may  be 

heterogeneous  and  can  range  in  size  by  orders  of  magnitude. 

2.1.1

General  Federated  Learning  Architectures 

FL  can  be  centralized,  decentralized,  or  heterogeneous.  In  centralized  FL,  a  cen-

tral  server  is  responsible  for  coordinating  various  steps,  such  as  selecting  clients, 

gathering  model  updates,  and  aggregating  these  updates.  This  setup  is  prone  to  a 

single  point  of  failure  at  the  server.  In  a  decentralized  FL  setup,  the  clients  col-

laborate  among  themselves  to  obtain  a  global  model.  This  mitigates  the  problem 

of  single-point  failures  in  centralized  federated  learning.  In  heterogeneous  FL,  the 

majority  of  FL  systems  assume  that  local  models  and  global  models  have  the  same 

design,  but  the  clients  are  heterogeneous  with  varying  computing  and  communication 

capabilities  [ 15]. 

According  to  [ 48], there  are  three  types  of  FL  systems  based  on  the  relationship between  distributed  datasets:  Horizontal,  Vertical,  and  Federated  Transfer  Learning. 

In  Horizontal  FL,  datasets  share  a  similar  feature  space  but  differ  in  samples.  For
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example,  suppose  two  distinct  companies  are  developing  a  single  ML  application. 

They  may  select  similar  features,  but  their  user  data  might  be  different.  In  vertical  FL, datasets  share  the  same  sample  space  but  may  have  different  features.  For  example, 

the  Department  of  Motor  Vehicles  and  a  local  city  may  have  overlapping  user  data 

but  they  may  use  different  features  to  develop  ML  applications  that  are  relevant  to 

their  needs.  In  Federated  Transfer  Learning,  the  datasets  are  different  in  both  feature 

space  and  the  sample  space. 

2.1.2

Centralized  Federated  Learning  Training  Process 

A  centralized  FL  training  process  consists  of  multiple  rounds  repeated  by  a  server 

that  coordinates  the  training  process.  A  round  typically  consists  of  the  following 

steps. 

1. Client  Selection:  The  server  selects  clients  that  fit  certain  eligibility  criteria. 

For  example,  such  criteria  could  be  based  on  computing  power,  connection  to 

unmetered  Wi-Fi  connection,  idleness,  etc. 

2. Broadcast:  The  chosen  clients  download  from  the  server  the  current  ML  model 

and  global  weights. 

3. Client  Computation:  Each  client  instantiates  the  training  model  with  the  down-

loaded  weights  and  conducts  local  training  on  their  local  dataset. 

4. Aggregation:  The  device  updates  are  aggregated  by  the  server  using  an  aggre-

gating  strategy.  Some  client  updates  may  be  dropped  based  on  the  reliability  of 

the  client  or  aspects  of  the  trained  model. 

5. Model  Update:  The  aggregated  weights  are  used  to  reinitialize  the  global  model 

and  the  global  model  is  evaluated  to  determine  if  the  FL  process  has  produced  an 

improved  model. 

 2.2 

 Aggregation  Strategy 

As  mentioned  above,  the  client  model  weights  are  aggregated  by  the  server  using  an 

aggregating  strategy.  In  this  section,  we  discuss  two  such  strategies,  namely,  federated 

average  and  federated  bagging. 

2.2.1

Federated  Average  (FedAvg) 

FedAvg  involves  computing  the  average  of  the  shared  model  weights.  The  intuition 

is  that  averaging  the  gradients  amounts  to  averaging  the  model  weights.  Algorithm  1 

is  a  FedAvg  strategy  based  on  the  work  in  [ 33].  Note  that  the  model  is  trained  over multiple  rounds,  with  the  centralized  server  updating  the  global  model  at  each  round, 

based  on  the  local  models  trained  by  the  clients. 
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Algorithm  1  FedAvg 

//.  K  clients  indexed  by.  k

//.  Pk  is  training  dataset  on  client.  k



//

 K

.  nk = | Pk | and.  n =

 n

 k=1  k

//.  B  is  local  minibatch  size 

//.  E  is  the  number  of  local  epochs 

//.  η  is  the  learning  rate 

//.  (w;  b)  is  local  loss  function  evaluated  on  weights.  w  and  minibatch.  b Server  Executes: 

initialize.  w 0

for  each  round.  t = 0 ,  1 ,  2 , . . . do 

for  each  client.  k ∈  K in  parallel  do  // all  clients  update  model 

.  wk

← ClientUpdate (k, w

 t+1

 t )

 K

 nk

.  wt+1 ←

 wk // weighted  average 

 n

 t+1

 k=1

function  ClientUpdate(.  k, w)  // runs  on  client.  k

.  B ← (split.  Pk  into  minibatches  of  size.  B) 

for  each  local  epoch.  i  from. 1 to.  E do 

for  each  minibatch.  b ∈  B do 

.  w ←  w −  η∇ (w;  b)

return.  w  to  server 

2.2.2

Federated  Bagging 

Bagging  aggregation  [ 18]  is  a  technique  for  generalizing  local  updates  from  tree-based  classifiers,  such  as  Random  Forest  and  XGBoost.  Each  client  is  trained  on  a 

random  subset  of  the  data.  After  every  FL  round,  the  server  integrates  all  the  trees  from the  FL  clients  to  form  a  global  model.  Therefore,  all  local  models  affect  the  global 

model.  For.  C  clients  and.  R  rounds,  the  global  model  will  have  a  total  of.  C ·  R  trees. 

 2.3 

 Threats  to  FL  Systems 

Despite  its  many  advantages,  FL  has  significant  vulnerabilities  due  to  the  distributed 

nature  of  such  systems.  The  vulnerabilities  can  be  broadly  categorized  into  issues 

related  to  client  and  server  integrity,  as  well  as  general  attacks  on  the  distributed 

nature  of  FL.  Examples  of  threats  to  FL  models  include  the  following. 

•  Compromised  Clients:  Clients  play  an  active  role  in  model  training,  which  intro-

duces  numerous  potential  vulnerabilities.  For  example,  malicious  clients  can  send 

false  updates  to  the  server  or  tamper  with  the  training  data,  and  thereby  corrupt  the 

learning  processes.  Also,  at  the  beginning  of  every  FL  round,  each  client  receives 

an  update  from  the  server.  This  allows  clients  to  observe  intermediate  states  of
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the  global  model,  and  can  enable  malicious  clients  to  engineer  more  sophisticated 

attacks. 

•  Compromised  Server:  The  server  in  FL  coordinates  training  and  model  aggre-

gation.  A  compromised  server  could  alter  model  updates  and  misdirects  the  entire 

learning  process.  Since  the  server  has  access  to  all  gradient  updates,  it  might  also 

be  able  to  leak  sensitive  information  about  the  training  data. 

•  Aggregation  Algorithm  Vulnerabilities:  The  aggregation  algorithm  merges 

client  updates.  Lack  of  anomaly  detection  mechanisms  at  this  stage  could  expose 

the  FL  system  to  attacks  by  the  clients. 

•  Distributed  Nature  of  FL:  The  decentralized  nature  of  FL  allows  clients  to  collude and  launch  coordinated  attacks  on  the  model.  Such  attacks  may  be  harder  to  detect, 

as  compared  to  attacks  by  individual  clients. 

 2.4 

 Specific  Attacks  on  FL 

For  our  research,  we  focus  on  attacks  performed  by  malicious  clients.  In  general,  such 

attacks  can  be  broadly  categorized  as  targeted  or  untargeted.  Targeted  attacks  aim  to 

alter  the  model’s  behavior  on  specific  tasks  while  maintaining  overall  accuracy  on  the 

main  task.  In  contrast,  untargeted  attacks  aim  to  reduce  the  global  model’s  accuracy; 

they  do  not  target  specific  outcomes.  In  this  paper,  we  consider  untargeted  attacks 

based  on  data  poisoning,  model  poisoning,  and  GAN  reconstruction,  as  discussed 

below. 

2.4.1

Data  Poisoning  Attack 

Data  poisoning  attacks  compromise  the  integrity  of  the  training  data—malicious 

clients  manipulate  the  data  in  various  ways  to  reduce  the  overall  accuracy  of  the 

global  model.  There  are  two  main  types  of  data  poisoning  attacks,  namely,  clean-

label  and  dirty  label.  In  a  clean-label  attack,  the  adversarial  client  manipulates  the 

features  of  the  training  data.  This  can  be  accomplished  by  adding  noise  or  slightly 

modifying  the  training  data  in  such  a  way  that  it  is  not  easily  detected  by  human 

evaluation  [ 44]. In  a  label  flipping  attack,  the  malicious  clients  change  the  labels  of the  training  data.  Since  the  labels  are  modified,  the  model  learning  is  affected,  which 

can  significantly  degrade  the  resulting  accuracy  [ 10].  For  our  research,  we  consider label  flipping  attacks  in  an  untargeted  scenario.  In  our  attack,  labels  are  poisoned  at 

a  specified  percentage  by  malicious  clients  according  to 

. poisoned_label =  ( original_label + 1 )  mod  N

where  the  classes  are .{0 ,  1 ,  2 , . . . , N − 1}. 
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2.4.2

Model  Poisoning  Attack 

Model  poisoning  attacks  directly  tamper  with  the  model  weights  and  send  these  mali-

cious  weights  to  the  server  for  aggregation.  The  attack  can  be  altering  the  gradients 

sent  during  the  backpropagation  phase.  These  attacks  can  be  hard  to  detect. 

Model  Poisoning  Attacks  via  Fake  Updates  (MPAF)  was  implemented  in  [ 8]. This method  attacks  the  learning  process  using  fake  updates  from  malicious  clients.  The 

strategy  consists  of  the  following  steps. 

1.  A  base  model  with  low  testing  accuracy  is  used  as  a  starting  point. 

2.  In  each  training  round  where  the  attack  is  performed,  the  client  computes  the 

difference  between  the  parameters  of  the  base  model  and  the  current  global  model. 

3.  The  malicious  clients  magnify  the  difference  using  a  factor .  λ >  1. 

For  our  model  poisoning  attacks,  we  follow  this  strategy,  using  a  randomly  initialized 

model  that  has  the  effect  of  guessing  the  labels  randomly. 

2.4.3

GAN  Reconstruction  Attack 

Generative  Adversarial  Network  (GAN)  is  a  neural  network  architecture  that  can 

be  used  to  generating  synthetic  data  that  mimics  the  training  data.  GAN  includes  a 

generator  network  and  a  discriminator  network  that  compete  against  each  other.  The 

GAN  generator  network  takes  random  noise  as  input  and  produces  fake  samples  of 

data.  Generator  training  aims  to  iteratively  improve  the  quality  of  the  fake  samples. 

The  GAN  discriminator  classifies  data  as  being  from  the  actual  dataset  or  a  fake 

sample  produced  by  the  generator.  The  loss  is  fed  back  to  the  generator  to  improve  it. 

GAN  training  occurs  over  several  rounds  in  the  form  of  a  two-player  min-max  game. 

In  this  research,  we  use  Conditional  GANs,  which  enable  us  to  specify  a  particular 

label  when  training  the  generator. 

The  gradients  shared  for  aggregation  can  reveal  features  of  clients’  training  data. 

GANs  can  use  this  information  to  create  adversarial  samples  that  represent  training 

data.  In  our  version  of  a  GAN  reconstruction  attack,  each  client  has  a  subset  of 

the  classes  that  are  present  in  the  dataset.  A  Conditional  GAN  is  used  to  generate 

synthetic  samples  of  digits  that  are  not  present  in  the  local  dataset,  and  we  give  such samples  incorrect  labels.  This  has  the  effect  of  poisoning  the  local  training  in  the 

subsequent  rounds,  and  thereby  affects  the  global  model. 

 2.5 

 Outlier  Detection 

Defense  mechanisms  can  be  used  in  Federated  Learning  (FL)  to  mitigate  a  wide 

range  of  attacks  and  to  reduce  the  chance  that  the  global  model  is  corrupted.  Outlier 

detection  is  a  proactive  defense  mechanism  that  can  be  enabled  in  the  aggregation
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stage  in  FL  to  identify  malicious  clients  and  protect  the  global  model  from  poisoned 

updates. 

Outlier  detection  can  be  viewed  as  a  form  of  anomaly  detection  since  it  serves 

to  detect  observations  that  are  inconsistent  with  the  rest  of  the  data.  This  technique 

is  relevant  as  a  defense  mechanism  in  FL,  where  it  can  identify  and  drop  dishonest 

clients  from  the  FL  process.  Commonly  used  outlier  detection  algorithms  include 

the  following. 

•  Robust  Covariance:  Here,  observations  are  assumed  to  follow  a  Gaussian  distri-

bution,  and  a  robust  estimate  of  the  covariance  is  used  to  encapsulate  the  data  points 

in  an  elliptic  envelope.  All  the  points  that  lie  outside  this  envelope  are  considered 

to  be  anomalies  [ 38]. 

•  One-Class  SVM:  This  technique  consists  of  training  an  SVM  to  learn  a  decision 

boundary  to  separate  normal  points  and  outliers  [ 42]. 

•  Isolation  Forest:  This  algorithm  repeatedly  splits  the  dataset  by  randomly  select-

ing  features  and  determining  a  split  point  between  the  maximum  and  minimum 

values  of  that  feature  [ 29]. 

•  Local  Outlier  Factor:  This  technique  measures  the  local  deviation  of  data  points  to identify  regions  of  similar  density.  Density  is  calculated  with  respect  to  neighboring 

points,  which  is  used  to  identify  anomalies  in  the  data  [ 7]. 

 2.6 

 Classification  Models 

In  machine  learning,  classification  is  a  task  that  involves  assigning  a  class  label 

to  examples.  In  this  paper,  we  consider  classical  learning  models,  neural  network 

models,  and  ensemble  techniques,  all  in  the  context  of  Federated  Learning. 

2.6.1

Multinominal  Logistic  Regression 

Multinomial  Logistic  Regression  (MLR)  is  an  extension  of  the  logistic  regression 

model  to  multiclass  problems.  For  a  given  set  of  independent  variables,  this  model 

predicts  the  probabilities  of  the  possible  outcomes  for  a  categorically  distributed 

dependent  variable.  Logistic  regression  uses  maximum-likelihood  estimation  (MLE) 

to  determine  the  odd  for  each  class. 

2.6.2

Support  Vector  Classifier 

Support  Vector  Machines  (SVM)  [14]  are  popular  algorithms  for  binary  classification tasks.  The  algorithm  attempts  to  find  a  hyperplane  that  can  separate  data  points  into 

different  classes.  The  points  that  are  closest  to  the  hyperplane  are  the  support  vectors 

and  SVMs  maximize  the  margin  between  the  hyperplane  and  support  vectors.  SVMs
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enable  the  efficient  use  of  nonlinear  decision  boundaries  via  the  kernel  trick.  Support 

Vector  Classifiers  (SVC)  extend  the  SVM  concept  to  multiclass  data. 

2.6.3

Random  Forest 

Random  Forests  [ 6]  is  an  ensemble  learning  method  that  combines  multiple  decision trees  and  can  be  used  for  classification  and  regression  tasks.  In  a  decision  tree,  nodes represent  features,  branches  represent  decisions,  and  the  leaf  nodes  represent  an 

output.  Decision  trees  are  prone  to  overfitting  and  are  not  effective  for  data  with  a 

large  number  of  features.  A  Random  Forest  is  a  collection  of  decision  trees  that  are 

independently  constructed  using  subsets  of  the  data  and  feature—a  process  known 

as  bagging.  The  Random  Forest  model  then  uses  votes  from  individual  trees  for 

classification. 

2.6.4

XGBoost 

Extreme  Gradient  Boosting  (XGBoost)  [ 9], is  a  machine  learning  algorithm  used for  classification,  regression,  and  ranking  problems.  XGBoost  builds  upon  Gradient-Boosted  Decision  Trees  (GBDT),  which  starts  with  a  base  decision  tree,  and  makes 

predictions  on  the  dataset.  The  errors  from  this  initial  prediction  are  used  to  build 

the  next  tree,  and  this  process  is  repeated  iteratively  to  train  the  subsequent  trees 

on  the  residual  errors  of  the  predecessor.  GBDT  uses  a  gradient  descent  algorithm 

to  minimize  the  loss  between  the  predicted  and  actual  values  to  minimize  the  loss 

function.  XGBoost  uses  a  similar  approach  but  constructs  trees  in  parallel  which 

significantly  improves  the  computational  efficiency  of  the  model.  XGBoost  also 

incorporates  regularization  to  control  overfitting. 

2.6.5

Multilayer  Perceptron 

Multilayer  Perceptrons  (MLP)  [ 40]  consists  of  a  series  of  interconnected  nodes  or neurons  arranged  in  layers.  A  neuron  is  an  atomic  unit  that  processes  incoming 

signals  using  a  non-linear  activation  function  and  then  outputs  a  signal.  This  non-

linear  activation  function  enables  the  network  to  capture  complex  data  patterns  and 

have  made  MLPs  a  successful  model  for  many  classification  tasks. 

An  MLP  includes  an  input  layer,  one  or  more  hidden  layers,  and  an  output  layer. 

MLPs  are  trained  in  two  passes;  a  forward  pass  and  a  backward  pass,  which  together 

are  known  as  backpropagation.  In  the  forward  pass,  the  input  data  is  passed  through 

the  network  and  each  layer  uses  the  activation  function  to  compute  the  inputs  for  the 

next  layer  in  the  network.  The  backward  pass  is  used  to  propagate  the  loss  backward 

in  the  network,  effectively  adjusting  the  weights  of  the  neurons  to  minimize  the  loss 

function. 
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2.6.6

Convolution  Neural  Network 

Convolutional  Neural  Networks  (CNNs)  [ 26]  are  a  special  type  of  feedforward  neural  networks  that  are  highly  effective  for  image  data.  These  networks  are  char-

acterized  by  an  input  layer,  convolution  layers,  pooling  layers,  and  an  output 

layer. 

In  each  convolutional  layer  of  a  CNN,  a  convolution  kernel  (or  filter),  is  passed 

over  the  input  image  or  the  outputs  of  the  previous  layer.  This  filter  is  used  to  perform a  dot  product  on  the  data,  resulting  in  a  map  that  identifies  features,  with  the  features becoming  more  abstract  at  each  convolutional  layer. 

Generally,  each  convolutional  layer  is  followed  by  a  pooling  layer,  which  uses 

a  fixed  convolution  to  reduce  the  size  of  the  generated  feature  map.  There  are  two 

common  types  of  pooling:  max  pooling,  which  takes  the  maximum  value  from  a 

group  of  neurons,  and  average  pooling,  which  calculates  the  average  value. 

The  classification  step  is  based  on  a  fully  connected  layer  or  multiple  such  layers. 

As  the  name  suggests,  neurons  in  fully  connected  layers  are  connected  to  every 

neuron  in  the  preceding  layer  and,  if  applicable,  following  layer. 

CNNs  do  not  require  any  feature  engineering  as  images  can  be  fed  directly  into  the 

network,  including  color  channels.  Although  CNNs  were  designed  for  image  data, 

they  have  proven  effective  for  many  types  of  data  that  are  not  typically  considered 

as  images.  Any  data  where  local  structure  dominates  is  a  good  candidate  for  CNN 

classifiers. 

2.6.7

Recurrent  Neural  Networks 

Recurrent  Neural  Networks  (RNNs)  [ 40]  are  a  special  type  of  feedforward  neural  network  that,  in  contrast  to  feedforward  networks,  can  be  viewed  as  hav-

ing  a  form  of  memory.  That  is,  RNNs  can  capture  temporal  details  by  retaining 

information  from  previous  inputs  to  influence  future  outputs.  RNNs  are  capable 

of  processing  sequential  data  and  are  highly  effective  in  tasks  such  as  language 

processing. 

When  training,  RNNs  tend  to  suffer  from  gradient  instability.  For  example,  the 

gradient  can  tend  zero  exponentially  during  backpropagation,  which  severely  limits 

the  number  of  previous  time  steps  that  the  model  can  effectively  use,  making  it 

difficult  to  capture  long-range  dependencies. 

2.6.8

Long  Short-Term  Memory 

Long  Short-Term  Memory  (LSTM)  models  [ 19]  are  highly  specialized  RNNs  that  are designed  to  better  deal  with  long-term  dependencies  in  the  data.  While  maintaining 

the  structure  of  RNNs,  LSTMs  include  a  complex  gating  structure  that  improves 

gradient  flow,  thereby  mitigating  the  vanishing  and  exploding  gradient  problems  that 

plague  generic  RNNs. 
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3 

Literature  Review 

In  this  literature  review  of  Federated  Learning,  we  first  discuss  the  motivations  for 

adopting  FL.  Next,  we  consider  some  of  the  key  challenges  in  FL,  including  client 

dropout,  security  vulnerabilities,  and  system  reliability.  Finally,  we  briefly  consider 

some  of  the  various  methods  used  to  evaluate  FL  systems. 

Ensuring  data  privacy  and  enabling  communication  efficiency  are  the  main  advan-

tages  of  FL.  Data  privacy  is  preserved  since  training  data  can  remain  local  [ 5, 37], while  communication  efficiency  is  improved  because  the  local  devices  (i.e.,  clients) 

send  only  model  updates,  as  opposed  to  the  actual  data,  which  would  typically  incur 

higher  costs  for  transmission  [ 33].  Further,  studies  show  that  FL  reduces  not  only network  bandwidth  but  also  energy  consumption  [ 1].  These  advantages  allow  FL 

systems  to  scale  and  attract  more  clients  to  participate  in  the  FL  process. 

There  are  some  potential  disadvantages  to  FL.  Since  the  data  among  the  clients 

may  be  diverse  and  heterogeneous,  the  clients  might  have  data  that  is  imbalanced 

and  not  representative  of  the  feature  set  for  a  particular  task  [ 20]. Therefore,  training models  only  on  local  data  can  lead  to  overfitting  [ 27]. FL  models  attempt  to  overcome these  issues  by  collectively  aggregating  the  gradients  from  multiple  clients  to  create 

a  global  model  that  can  capture  all  of  the  features  of  a  specific  dataset. 

Next,  we  discuss  some  of  the  challenges  inherent  in  FL  systems.  These  challenges 

include  client  dropout,  security,  reliability,  and  system  evaluation. 

FL  process  requires  multiple  rounds  of  participation  by  the  clients  to  successfully 

create  a  global  model,  which  increases  network  bandwidth.  In  [ 16]  it  is  claimed that  clients  tend  to  drop  out  of  the  FL  systems  due  to  bandwidth  limitations,  which 

in  turn  reduces  the  amount  of  data  available  for  model  training  and  increases  the 

overall  training  time.  It  has  been  suggested  that  the  server  avoid  aggregating  the 

weights  when  the  number  of  clients  falls  below  a  certain  threshold  [ 30]. 

Other  research  [ 22]  emphasizes  selective  aggregation  based  on  the  quality  of the  local  model,  or  asynchronous  aggregation  [ 12]. The  common  goal  is  to  reduce communication  and  energy  costs  while  maintaining  model  performance. 

Incentive  mechanisms  for  clients  might  attract  more  participants  to  FL  pro-

cesses  [ 45].  The  incentives  can  be  based  on  the  quality  of  the  updates  provided and  the  honest  behavior  of  clients.  Such  incentive  mechanisms  could  be  orchestrated 

by  a  central  server  [ 21]  or  through  a  distributed  blockchain  system  [ 23]. 

While  the  data  in  an  FL  system  is  private  to  the  local  devices,  there  is  still  a 

risk  of  some  information  being  exposed  via  gradient  updates.  The  presence  of  mali-

cious  actors  at  various  levels  of  an  FL  system  poses  a  significant  threat.  Various 

data  security  mechanisms  are  considered  in  [ 4],  while  [ 41]  focuses  on  client  device security.  Not  surprisingly,  encrypting  model  updates  can  help  to  secure  the  overall 

FL  system  [ 28]. 

Since  FL  relies  on  clients  participating  in  the  process,  it  is  susceptible  to  Byzantine 

attacks,  as  discussed  in  [ 13]. Auditing  mechanisms  can  be  also  play  a  role  in  securing an  FL  system  [ 2]. 

The  common  problem  in  any  centralized  system  is  that  the  server  is  a  single  point 

of  failure.  Having  a  decentralized  system  mitigates  this  vulnerability  and  could  make
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an  FL  system  more  reliable.  Peer-to-Peer  approaches  for  FL  have  been  considered 

in  the  literature  [ 24, 39]. 

Apart  from  handling  incentive  mechanisms,  blockchains  can  also  be  used  to 

develop  data  provenance  mechanisms  to  monitor  communication  between  clients 

to  handle  single-point  failures  [ 31]. Further,  model  updates  can  be  stored  in  Merkle trees  [ 32]  to  ensure  transparent  and  verifiable  transaction  records  in  FL  systems. 

In  FL,  communication  efficiency  can  be  measured  in  terms  of  communication 

cost,  dropout  ratio,  and  system  running  time  [ 11]. It  is  also  relevant  to  compare the  number  of  communication  rounds  with  learning  accuracy  [ 49], for  example.  FL 

system  scalability  is  evaluated  in  terms  of  communication  cost  and  system  running 

time  [ 50]  and  overall  training  time  [ 47]. 

4 

Experimental  Design 

In  this  section,  we  first  discuss  the  hardware  configuration  and  the  libraries  used  to 

implement  our  machine  learning  models.  Then  we  discuss  specific  detail  about  our 

experiments,  including  the  dataset,  FL  setup,  and  the  evaluation  metrics  used. 

 4.1 

 Hardware  and  Software 

Table  1  lists  the  hardware  configuration  for  our  experiments.  For  neural  networks models,  we  used  PyTorch  [ 36],  while  for  classic  machine  learning  models  (e.g., Logistic  Regression  and  SVC)  and  outlier  detection,  we  used  scikit-learn  [ 43].  For tree-based  methods,  we  used  the  XGBoost  library  [ 46]. For  general  data  processing, we  used  Numpy  [ 34]  and  pandas  [ 35]. 

 4.2 

 Dataset  and  Data  Processing 

For  all  of  our  experiments,  we  use  the  well-known  MNIST  dataset  [ 25]. This  dataset consists  of  a  large  collection  of  handwritten  digits,  0  through  9,  and  is  commonly  used 

Table  1  Hardware  characteristics 

Feature

Details 

CPU

AMD  Ryzen  5  6600H  (3.30  GHz) 

GPU

NVIDIA  GeForce  RTX  3060  (6  GB) 

RAM

16  GB 

Storage

1 TB

[image: Image 105]

Temporal Analysis of Adversarial Attacks in Federated Learning

371

as  a  benchmark  for  image  processing  systems.  MNIST  consists  of  60,000  training 

samples  and  10,000  test  samples.  All  of  the  samples  are  in  the  form  of  grayscale 

images  of  size.28 × 28 pixels,  with  each  pixel  value  in  the  range  of  0  to  255,  where  0 

represents  black  and  255  represents  white.  Examples  of  images  from  the  dataset  are 

provided  in  Fig. 1. 

The  MNIST  dataset  is  approximately  balanced  across  the  labels,  0  through  9.  The 

precise  number  of  samples  in  each  class  of  the  dataset  are  given  in  the  form  of  a  bar graph  in  Fig. 2. 

As  a  preprocessing  step,  the  MNIST  images  are  first  converted  into  tensors  or 

numpy  arrays,  depending  on  the  libraries  used  for  the  specific  classifier.  The  pixel 

values  in  the  MNIST  dataset  have  a  mean  of  1.307  and  a  standard  deviation  of  0.3081, 

and  values  are  normalized  to  have  a  mean  of  0  and  a  standard  deviation  of  1,  as  is 

standard  practice  in  data  preparation. 

Fig.  1  Sample  MNIST  images 
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Fig.  2  Class  distribution  of  MNIST  dataset
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For  GAN  reconstruction  attacks,  the  data  is  distributed  horizontally,  in  the  sense 

that  the  feature  space  is  the  same,  but  only  a  subset  of  the  classes  are  present  in 

each  client.  Specifically,  each  partition  consists  of  images  for  only  7  labels  out  of  10 

classes.  The  conditional  GAN  generates  images  of  these  missing  labels  and  inten-

tionally  mislabels  them  with  labels  that  were  received  by  the  malicious  client. 

 4.3 

 Federated  Learning  Setup 

The  FL  stack  developed  for  this  research  is  based  on  Flower:  A  Friendly  Federated 

Learning  Framework  [ 3]. Flower  has  three  main  components,  namely,  the  server, client,  and  strategy. 

•  Server:  The  Server  is  responsible  for  global  computations,  including  aggregating 

the  model  weights,  selecting  the  input  parameters  for  the  models,  and  sampling 

random  clients  for  each  FL  round. 

•  Client:  The  client  is  responsible  for  executing  local  computations,  including  run-

ning  the  ML  model  for  a  set  amount  of  epochs.  The  client  has  access  to  the  actual 

data  used  for  training  and  evaluation  of  model  parameters. 

•  Strategy:  The  framework  provides  a  Strategy  abstraction  which  includes  the 

logic  for  client  selection,  configuration,  parameter  aggregation,  and  model  eval-

uation.  Outlier  detection  has  been  implemented  in  this  strategy  as  a  defense 

mechanism  to  reject  model  updates  from  malicious  clients,  and  is  executed  on 

the  server.  A  high-level  abstraction  of  the  Flower  FL  framework  is  provided  in 

Fig. 3. 

For  our  experiments,  the  FedAvg  [ 33]  strategy  was  used  to  aggregate  model weights  for  all  models,  except  that  a  bagging  aggregation  strategy  [ 18]  was  used  for aggregating  model  updates  from  tree-based  models  (Random  Forest  and  XGBoost). 

Note  that  the  clients  and  the  server  communicate  through  Remote  Procedure  Calls 

(RPC). 

Each  experiment  was  performed  for  10  federated  rounds  and  the  hyperparam-

eters  were  adjusted  accordingly.  For  example,  if  a  model  requires  120  epochs  for 

convergence,  the  number  of  local  epochs  is  set  to  12  in  each  FL  round  so  that  at 

the  end  of  the  FL  process,  the  models  would  have  been  trained  for  a  total  of  120 

epochs. 

Due  to  extended  training  times  required,  for  LSTM,  RNN,  Random  Forest,  and 

XGBoost,  50  clients  were  deployed  for  these  models,  while  for  all  other  models, 

100  clients  were  deployed.  We  set  25%  of  the  clients  as  adversarial.  Recall  that  we 

consider  three  types  of  attacks,  namely,  untargeted  label  flipping,  model  poisoning, 

and  GAN  reconstruction.  In  this  paper,  our  focus  in  on  temporal  effects  of  adversarial 

attacks,  and  hence  adversarial  clients  are  perform  their  attacks  during  different  stages 

of  the  FL  rounds  as  follows. 

•  FULL:  Adversarial  attacks  are  present  in  all  FL  rounds 

•  MID:  Adversarial  attacks  are  present  in  30%  of  the  middle  FL  rounds
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Fig.  3  Overview  of  Flower  federated  ML  framework 

•  END:  Adversaries  attacks  are  present  in  the  last  30%  of  FL  rounds 

Our  implementation  is  specified  in  detail  in  Algorithm  2. 

Algorithm  2  Federated  learning  with  threat  model 

//.  n = number of rounds,.  c = number of clients

//.  M = machine learning model,.  e = number of local epochs

//.  k = ratio of malicious clients

//.  attack_rounds ∈ {FULL, MID, END}

procedure  FederatedLearning(.  n, c, M, e, k, attack_rounds) 

.  datasets ← CreateDistributedDataset(.  c) 

.  global_model_params ← server.get_initial_params (M )

.  clients ← SpawnClients(.  global_model_params) 

MarkAdversarialClients(.  clients, k) 

for .  i = 1 to.  n do 

TrainClients(.  clients, datasets, e, i, attack_rounds) 

. server.aggregate (clients.  get_weights ())

.  global_model ← server.get_aggregated_model ()

EvaluateModelOnTestData(.  global_model) 

procedure  TrainClients(.  clients, datasets, e, i, attack_rounds) 

for .  j = 1 to.length (clients) do 

if  .  clients[  j] .  is_malicious ()  and.  i ∈  attack_rounds then 

.  clients[  j ] .  perform_attack (datasets[  j ] )

Train(.  clients[  j ] , datasets[  j ] , e)
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 4.4 

 Evaluation  Metrics 

Standard  metrics  for  evaluating  classification  models  include  precision,  recall,  F1-

score,  loss,  and  accuracy.  Precision  is  the  ratio  of  correctly  predicted  positive  obser-

vations  to  the  total  predicted  positive  observations.  Recall  is  the  ratio  of  correctly 

predicted  positive  observations  to  all  observations  in  the  actual  class.  The  F1-Score 

is  computed  as  the  weighted  average  of  Precision  and  Recall.  Loss  is  a  measure  of  the 

error  of  the  model,  relative  to  the  specified  objective  function.  Accuracy  is  the  ratio 

of  correctly  predicted  observations  to  the  total  observations.  Note  that  lower  values 

for  the  loss  represent  better  models  and,  of  course,  models  with  higher  accuracy  are 

desired.  We  include  all  of  these  metrics  in  our  results. 

5 

Experiments  and  Results 

In  this  section,  we  first  present  the  baseline  accuracy  for  each  of  our  eight  FL  mod-

els,  where  baseline  refers  to  the  case  where  there  are  no  malicious  clients.  Then 

we  analyze  various  outlier  detection  techniques.  Finally,  we  turn  our  attention  to 

experiments  for  each  of  the  three  types  of  adversarial  attacks  discussed  in  Sect. 2.4, namely,  a  straightforward  label  flipping  attack,  a  model  poisoning  attack,  and  our 

GAN  reconstruction  attack.  In  each  case,  we  consider  all  of  the  FL  models  introduced 

in  Sect. 2.6  that  are  relevant  for  the  particular  attack  scenario,  and  we  compare  the results  when  no  outlier  detection  is  used  to  the  results  obtained  when  outlier  detection 

is  employed. 

 5.1 

 Baseline  Cases 

Each  of  the  eight  FL  models  discussed  in  Sect. 2.6  was  trained  via  a  grid  search over  reasonable  sets  of  hyperparameters.  The  hyperparameters  tested  and  selected 

are  given  in  Appendix  A.  In  Fig. 4, we  give  the  accuracy  obtained  for  each  FL  model when  there  are  no  malicious  clients. 

From  Fig. 4  we  observe  that  LSTM  achieves  the  best  accuracy,  while  MLP  and CNN  also  perform  well.  In  contrast,  the  tree-based  models—Random  Forest  and 

XGBoost—perform  relatively  poorly. 

 5.2 

 Outlier  Detection  Experiments 

We  employ  a  supervised  approach  to  create  a  classifier  that  attempts  to  distinguish 

between  honest  and  malicious  clients.  First,  we  train  the  FL  model,  as  described  in 

Algorithm  2. In  the  process,  evaluation  metrics  consisting  of  class-wise  precision, 

[image: Image 106]
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Fig.  4  Baseline  accuracies  of  FL  models 

recall,  and  F1-scores,  and  loss  are  recorded  for  all  clients,  whether  honest  or  mali-

cious.  These  evaluation  metrics  are  each  normalized  to  form  a  uniform  distribution 

in  the  interval  .[0 ,  1].  The  resulting  metrics  are  then  used  as  features  to  train  outlier detectors,  based  on  the  client  labels  of  honest  or  malicious. 

The  distribution  of  the  outlier  detection  data—in  terms  of  loss  and  F1-score—is 

illustrated  in  Fig. 5.  Note  that  the  GAN  reconstruction  data  is  similar  to  the  actual data  prior  to  the  label  flipping  that  is  applied  to  this  data  when  it  is  used  in  an  attack. 

On  our  outlier  dataset,  we  tested  Robust  Covariance,  One-Class  SVM,  Isolation 

Forest,  and  Local  Outlier  Factor.  For  each  of  these  outlier  detection  algorithms,  the 

best  hyperparameters  were  identified  using  a  grid  search.  The  results  in  Fig. 6  present Fig.  5  Scatterplot  of  honest  and  malicious  clients

[image: Image 107]
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Fig.  6  Visual  comparison  of  outlier  detection  algorithms 

a  visual  comparison  of  these  outlier  detection  algorithms  when  applied  to  identify 

adversarial  clients.  The  plots  use  normalized  loss  (.  x-axis)  and  normalized  accuracy score  (.  y-axis)  to  represent  the  data  distribution.  The  red  (lighter)  dots  indicate  points classified  as  outliers  and  blue  (darker)  dots  represent  honest  clients. 

Visually,  it  is  difficult  to  distinguish  between  the  outlier  detection  techniques  in 

Fig. 6.  Therefore,  as  a  test  case,  the  same  set  of  experiments  described  in  Algorithm  2 

were  run  again  with  outlier  detection  enabled  and  the  results  were  recorded.  The 

accuracy  of  each  of  the  four  tested  outlier  detection  algorithms  is  given  in  Table  2. 

From  the  results  in  Table  2,  we  observe  that  One-Class  SVM  far  outperforms  the other  algorithms,  with  an  accuracy  of  97%.  Since  the  One-Class  SVM  gives  the  best 

results,  in  the  experiments  below,  for  outlier  detection,  we  employ  this  technique. 

Table  2  Accuracy  scores  for  outlier  detection  algorithms 

Algorithm

Accuracy 

One-Class  SVM

0.9700 

Isolation  Forest

0.8877 

Robust  Covariance

0.8193 

Local  Outlier  Factor

0.8780
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Fig.  7  Label  flipping  attack  results 

 5.3 

 Label  Flipping  Attack 

The  accuracies  for  the  temporal  test  cases  FULL,  MID,  and  END  for  each  of  the  eight 

models  considered  under  the  label  flipping  attack  are  given  in  the  form  of  bar  graphs 

in  Figs. 7(a),  (b),  and  (c),  respectively.  Table  11  in  Appendix  B  contain  results  for  all of  the  metrics  considered,  without  outlier  detection,  while  Table  12  in  Appendix  B 

gives  the  analogous  results,  with  outlier  detection  enabled.  Note  that  for  all  of  our 

label  flipping  attacks,  each  adversarial  client  flips  30%  of  their  labels. 

In  general,  the  MID  case  has  little  effect  on  the  models,  while  the  END  and  FULL 

cases  have  a  more  substantial  effect.  MLR  in  the  FULL  case  (and  to  a  lesser  extent 

in  the  END  case),  and  CNN  in  the  END  case  are  affected  most  by  label  flipping,  and 

we  also  observe  that  outlier  detection  has  the  largest  positive  effect  in  these  cases. 

These  results  illustrate  the  potential  benefit  of  outlier  detection  in  FL. 

 5.4 

 Model  Poisoning  Attack 

The  accuracies  for  the  temporal  test  cases  FULL,  MID,  and  END  for  each  of  the 

six  models 1 considered  under  the  model  poisoning  attack  are  given  in  the  form  of bar  graphs  in  Figs. 8(a), (b),  and  (c),  respectively.  Table  13  in  Appendix  B  contain 1  In  model  poisoning,  the  model  weights  are  directly  modified.  Since  Random  Forest  and  XGBoost do  not  have  explicit  learned  weights,  these  models  are  not  included  in  this  section. 
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Fig.  8  Model  poisoning  attack  results 

results  for  all  of  the  metrics  considered,  without  outlier  detection,  while  Table  14  in Appendix  B  gives  the  analogous  results,  with  outlier  detection  enabled. 

We  observe  that  the  model  poisoning  attack  has  a  drastic  effect  on  the  CNN,  RNN, 

and  LSTM  models—without  outlier  detection,  these  models  yield  accuracies  that  are 

essentially  random.  Outlier  detection  dramatically  improves  the  performance  of  all 

of  these  models,  although  less  so  in  the  FULL  and  END  cases,  as  compared  to  the 

MID  case.  With  respect  to  model  poisoning,  MLP  is  the  most  robust  of  the  models 

tested. 

 5.5 

 GAN  Reconstruction  Attack 

The  accuracies  for  the  temporal  test  cases  FULL,  MID,  and  END  for  each  of  the 

eight  models  considered  under  the  GAN  reconstruction  attack  are  given  in  the  form 

of  bar  graphs  in  Figs. 9(a), (b),  and  (c),  respectively.  Table  15  in  Appendix  B  contain results  for  all  of  the  metrics  considered,  without  outlier  detection,  while  Table  16  in Appendix  B  gives  the  analogous  results,  with  outlier  detection  enabled. 

Temporal Analysis of Adversarial Attacks in Federated Learning

379

1.00 

1.00 

0.80 

0.80 

0.60 

0.60 

ccuracy 

ccuracy 

A 0.40 

A 0.40 

0.20 

0.20 

Without  outlier  detection 

Without  outlier  detection 

With  outlier  detection 

With  outlier  detection 

0.00 

0.00 

MLR  SVC MLP  CNN  RNN  LSTM RF  XGBoost 

MLR  SVC MLP  CNN  RNN  LSTM RF  XGBoost 

(a)  FULL

(b)  MID 

1.00 

0.80 

0.60 

ccuracy A 0.40 

0.20 

Without  outlier  detection 

With  outlier  detection 

0.00 

MLR  SVC MLP  CNN  RNN  LSTM RF  XGBoost 

(c)  END 

Fig.  9  GAN  reconstruction  attack  results 

Our  GAN  reconstruction  attack  is  somewhat  effective  on  the  tree-based  algorithms 

of  Random  Forest  and  XGBoost,  but  otherwise  the  attack  has  surprisingly  little  effect. 

Outlier  detection  has  virtually  no  effect  under  this  attack  scenario,  with  the  lone 

exception  of  XGBoost  under  the  END  attack  scenario. 

6 

Conclusion 

When  adversaries  are  present  in  later  rounds  of  the  FL  process,  we  tend  to  observe  a 

larger  negative  effect  on  model  performance,  while  attacks  in  the  earlier  rounds  do 

not  have  a  strong  effect.  This  indicates  that  FL  models  can  recover  from  attacks. 

For  simple  attack  strategies,  outlier  detection  as  a  defense  mechanism  had  a  clear 

positive  impact,  often  significantly  improving  model  performance  in  the  presence 

of  adversarial  clients.  Outlier  detection  was  most  effective  in  the  case  of  model 

poisoning  attacks,  which  is  not  too  surprising,  given  that  this  attack  strategy  was  also 

the  most  effective.  The  label  flipping  attack  was  moderately  effective  in  some  cases, 

while  our  GAN  reconstruction  attacks  was  surprisingly  weak. 

Different  models  showed  differing  levels  of  inherent  resistance  to  adversarial 

attacks.  For  example,  although  LSTM  was  the  best  performing  model,  it  was  one  of 

the  most  affected  by  model  poisoning.  In  contrast,  MLP  performed  almost  as  well  as 

LSTM  in  the  baseline  case,  and  yet  MLP  was  the  most  robust  model  under  the  attack 

scenarios  considered.  The  ensemble  methods  of  Random  Forest  and  XGBoost  strug-
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gled  with  GAN  reconstruction  attacks,  revealing  a  weakness  in  tree-based  algorithms 

when  dealing  with  synthetic  adversarial  data. 

For  future  work,  more  sophisticated  attack  scenarios  can  be  considered.  Such  addi-

tional  case  studies  would  enable  us  to  obtain  more  insight  into  the  relative  strengths 

and  weaknesses  of  the  various  FL  models  analyzed  in  this  paper.  Similarly,  the  effec-

tiveness  of  more  advanced  defense  mechanisms,  such  as  differential  privacy—where 

noise  is  added  to  the  data  to  prevent  information  leakage—can  be  explored.  Addi-

tionally,  instead  of  a  centralized  FL  scenario,  a  fully  decentralized  FL  structure  would 


be  an  interesting  case  study  in  the  context  of  adversarial  attacks. 

Appendix  A 

In  this  appendix,  we  list  the  hyperparameters  tested  (via  grid  search)  for  each  of  the 

eight  FL  models  tested.  In  each  case,  we  highlight  the  selected  hyperparameters  in 

boldface  and,  where  appropriate,  we  specify  the  model  architecture.  For  each  model, 

we  also  give  the  accuracy  of  the  trained  model  in  the  baseline  case,  that  is,  when  no 

adversarial  clients  are  present. 

 A.1 MLR  and SVC  

For  Multinomial  Logistic  Regression  and  Support  Vector  Classifier,  the  . 28 × 28

images  are  flattened  to  a  feature  vector  of  784  features.  L2  regularization  is  applied 

to  both  models  to  penalize  extreme  values.  For  SVC,  a  linear  kernel  is  used.  The 

hyperparameters  considered  for  logistic  regression  are  in  Table  3, while  the  hyperparameters  for  SVC  are  in  Table  4.  Note  that  the  hyperparameters  that  yield  the  best result  appear  in  boldface.  In  the  baseline  case,  the  MLR  model  gives  an  accuracy 

of  0.8683  while  SVC  yields  an  accuracy  of  0.8997. 

Table  3  Hyperparameters  for  MLR 

Hyperparameter

Values

Accuracy 

Local  epochs

[1,  10,  100]

0.8683 

Penalty

L2

[image: Image 108]
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Table  4  Hyperparameters  for  SVC 

Hyperparameter

Values

Accuracy 

Local  epochs

[1, 10,  100]

0.8997 

C

[0.01,  0.1, 1] 

Kernel

Linear 

Penalty

L2 

Fig.  10  MLP  architecture 

Table  5  Hyperparameters  for  MLP 

Hyperparameter

Values

Accuracy 

Learning  rate

[0.001,  0.01,  0.1,  1]

0.9459 

Local  epochs

[1,  10,  100] 

Batch  size

20 

Optimizer

[Adam,  SGD] 

 A.2  Multilayer  Perceptron 

Figure  10  illustrates  our  MLP  model  architecture.  The  MLP  has  a  flattening  layer  that converts  .28 × 28 pixel  images  into  a  784  dimensional  vector.  This  model  has  three 

fully  connected  layers  with  128,  64,  10  neurons  respectively.  A  ReLU  activation 

function  is  used  after  each  layer,  except  the  last,  to  introduce  nonlinearity.  A  softmax 

function  is  applied  to  the  final  layer  to  convert  the  probabilities  to  a  classification 

decision.  Using  on  the  hyperparameters  in  boldface  in  Table  5,  this  model  gives  a baseline  accuracy  of  0.9459 

 A.3  Convolution  Neural  Networks 

We  use  a  plain  vanilla  CNN  for  classifying  digits  in  the  MNIST  dataset.  The  input 

layer  takes  an  image  of  size  .28 × 28.  Since  the  images  are  gray  scale,  the  number 

of  channels  for  all  convolutional  layers  is  1.  The  architecture  starts  with  a  convo-

lutional  layer  that  applies  six  .5 × 5 filters  to  the  input.  ReLU  activation  is  used 

to  introduce  non-linearity.  This  is  followed  by  max  pooling  to  reduce  the  dimen-

sionality.  The  second  convolutional  layer  applies  16  filters,  each  of  size  .5 × 5, 

and  uses  ReLU  activation  function,  and  is  followed  by  max  pooling.  Finally,  the 

output  from  the  convolutional  layer  is  flattened  and  passed  to  a  series  of  fully 

connected  layers  of  size  120,  84  and  10  neurons,  respectively.  The  hyperparam-

[image: Image 109]
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eters  selected  are  in  boldface  in  Table  6  and  the  model  architecture  is  illustrated in  Fig. 11. For  the  selected  hyperparameters,  this  model  achieves  an  accuracy of  0.9449. 

Table  6  Hyperparameters  for  CNN 

Hyperparameter

Values

Accuracy 

Learning  rate

[0.001, 0.01, 0.1, 1]

0.9449 

Local  epochs

[1,  10,  100] 

Momentum

0.9 

Batch  size

20 

Optimizer

[Adam, SGD] 

Fig.  11  CNN  architecture 

 A.4  Recurrent  Neural  Network 

Our  RNN  has  two  cells  with  100  neurons.  The  input  to  RNN  is  passed  in  such  a  way 

that  the.28 × 28 images  are  unrolled  as  28  sequences  of  28  features  each.  In  this  way, 

MNIST  classification  is  modeled  as  sequential  data.  Tanh  activation  function  is  used 

to  introduce  non-linearity.  The  last  fully  connected  layer  has  10  neurons  to  represent 

the  10  digits  of  MNIST,  with  softmax  activation  function  for  this  last  fully  connected 

layer.  The  hyperparameters  tested  appear  in  Table  7  and  the  model  architecture  is illustrated  in  Fig. 12.  For  the  selected  hyperparameters,  the  model  has  an  accuracy of  0.9198. 

[image: Image 110]
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Table  7  Hyperparameters  for  RNN 

Hyperparameter

Values

Accuracy 

Learning  rate

[0.001,  0.01, 0.1, 1]

0.9198 

Local  epochs

[1, 10,  100] 

Batch  size

20 

Optimizer

[Adam, SGD] 

Fig.  12  RNN  architecture
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 A.5  Long  Short-Term  Memory 

Our  LSTM  architecture  is  modeled  to  have  three  layers,  each  with  64  hidden  states. 

Here,  like  our  RNN,  the  images  are  unrolled  as  28  sequences  of  28  features,  thus 

modeling  MNIST  images  as  sequential  data.  The  last  time  step  is  connected  to  a  fully 

connected  layer  of  10  neurons  representing  the  10  MNIST  digits.  Tanh  is  used  as  the 

activation  function  in  the  LSTM  layers  for  nonlinearity,  and  softmax  activation  is 

used  for  the  last  layer.  The  hyperparameters  tested  appear  in  Table  8, and  the  LSTM 

architecture  is  illustrated  in  Fig. 13. For  the  selected  hyperparameters,  the  model  gave an  accuracy  of  0.9720. 

 A.6  Random  Forest  and  XGBoost 

For  XGBoost,  the  max  depth  parameter  sets  the  maximum  depth  of  each  decision 

tree,  while  the  subsample  parameter  and  colsample  by-tree  together  determine  the 

fraction  of  features  to  be  randomly  sampled  for  each  tree.  The  loss  metric  is  mlogloss 

due  to  the  multiclass  problem  under  consideration.  The  same  architecture  is  used  to 

train  a  Random  Forests  by  simply  setting  the  number  of  boosting  rounds  to  1.  The 

hyperparameters  tested  for  the  Random  Forests  are  in  Table  9  and  the  hyperparameters  tested  with  XGBoost  are  in  Table  10.  The  Random  Forest  model  achieves  an accuracy  of  0.770  while  XGBoost  produces  an  accuracy  of  0.8525. 

Appendix  B 

In  this  appendix,  we  provide  tables  with  all  of  the  metrics  for  the  FULL,  MID,  and 

END  temporal  cases  for  each  of  the  three  types  of  attacks  considered.  For  each  attack 

type,  we  have  also  included  the  baseline  case,  for  comparison. 

Table  8  Hyperparameters  for  LSTM 

Hyperparameter

Values

Accuracy 

Learning  rate

[0.001,  0.01, 0.1, 1]

0.9720 

Local  epochs

[1, 10,  100] 

Batch  size

20 

Optimizer

[Adam, SGD]

[image: Image 111]
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Fig.  13  LSTM  architecture 

 B.1  Label  Flipping  Attack  Statistics 

The  metrics  for  our  label  flipping  attacks  with  no  outlier  detection  enabled  are  given 

in  Table  11.  The  statistics  for  the  corresponding  cases  with  outlier  detection  enabled are  given  in  Table  12. 
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Table  9  Hyperparameters  for  random  forest 

Hyperparameter

Values

Accuracy 

Learning  rate

[0.001, 0.08, 0.1]

0.7770 

Max  depth

[6,  10,  12] 

Subsample

[0.50,  0.75, 0.97] 

Colsample  by-tree

[0.50,  0.75, 0.97 

Objective

multi:softmax 

Alpha

[2,  4, 8] 

Lambda

[2, 4, 8]  

Evaluation  metric

mlogloss 

Tree  method

hist 

Boosting  rounds

1 

Table  10  Hyperparameters  for  XGBoost 

Hyperparameter

Values

Accuracy 

Learning  rate

[0.001, 0.08, 0.1]

0.8525 

Max  depth

[6,  10,  12] 

Sub  sample

[0.50,  0.75, 0.80] 

Colsample  by-tree

[0.50,  0.75, 0.80] 

Objective

multi:softmax 

Alpha

[2,  4, 8] 

Lambda

[2, 4, 8]  

Evaluation  metric

mlogloss 

Tree  method

hist 

Boosting  rounds

60 

 B.2  Model  Poisoning  Attack  Statistics 

The  metrics  for  our  model  poisoning  attacks  with  no  outlier  detection  enabled  are 

given  in  Table  13. The  statistics  for  the  corresponding  cases  with  outlier  detection enabled  are  given  in  Table  14. 

 B.3  GAN  Reconstruction  Attack  Statistics 

The  metrics  for  our  GAN  reconstruction  attacks  with  no  outlier  detection  enabled 

are  given  in  Table  15. The  statistics  for  the  corresponding  cases  with  outlier  detection enabled  are  given  in  Table  16. 
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Table  11  Label  flipping  attack  without  outlier  detection 

MLR

SVC

MLP

CNN

RNN

LSTM

RF

XGBoost 

Precision

0.8725

0.8996

0.9459

0.9452

0.9209

0.9720

0.7798

0.8541 

Recall

0.8683

0.8997

0.9459

0.9449

0.9198

0.9720

0.7770

0.8525 

F1

0.8669

0.8989

0.9458

0.9448

0.9200

0.9720

0.7760

0.8517 

Loss

0.4984

0.9040

15.2677

13.8814

22.3004

8.8013

1.8893

0.6594 

Baseline

Accuracy 

0.8683

0.8997

0.9459

0.9449

0.9198

0.9720

0.7770

0.8525 

Precision

0.7233

0.8723

0.9251

0.8858

0.9162

0.9659

0.7252

0.7993 

Recall

0.6187

0.8707

0.9240

0.8805

0.9155

0.9656

0.7240

0.7975 

F1

0.5831

0.8700

0.9240

0.8807

0.9154

0.9657

0.7230

0.7978 

Loss

1.1729

1.0891

28.7463

40.6656

24.3846

10.2456

2.3283

1.1623 

FULL

Accuracy 

0.6187

0.8707

0.9240

0.8805

0.9155

0.9656

0.7240

0.7975 

Precision

0.8597

0.8996

0.9432

0.9392

0.9095

0.9713

0.7060

0.8460 

Recall

0.8529

0.8997

0.9430

0.9391

0.9088

0.9712

0.7013

0.8436 

F1

0.8504

0.8989

0.9430

0.9388

0.9087

0.9712

0.6986

0.8433 

Loss

0.6154

0.9040

15.7765

15.4667

24.7902

9.1022  00  3.2076

0.7542 

MID

Accuracy 

0.8529

0.8997

0.9430

0.9391

0.9088

0.9712

0.7013

0.8436 

Precision

0.8124

0.8727

0.9191

0.8166

0.9118

0.9663

0.7003

0.7408 

Recall

0.7446

0.8710

0.9156

0.7556

0.9093

0.9662

0.6573

0.7402 

F1

0.7161

0.8703

0.9160

0.7365

0.9092

0.9662

0.6685

0.7398 

Loss

0.9167

1.0849

33.2798

58.2337

25.7339

9.9934

2.7512

1.2845 

END

Accuracy 

0.7446

0.8710

0.9156

0.7556

0.9093

0.9662

0.6573

0.7402 

Table  12  Label  flipping  attack  with  outlier  detection 

MLR

SVC

MLP

CNN

RNN

LSTM

RF

XGBoost 

Precision  0.8725

0.8996

0.9459

0.9452

0.9209

0.9720

0.7798

0.8541 

Recall

0.8683

0.8997

0.9459

0.9449

0.9198

0.9720

0.7770

0.8525 

F1

0.8669

0.8989

0.9458

0.9448

0.9200

0.9720

0.7760

0.8517 

Loss

0.4984

0.9040

15.2677

13.8814

22.3004

8.8013

1.8893

0.6594 

Baseline 

Accuracy  0.8683

0.8997

0.9459

0.9449

0.9198

0.9720

0.7770

0.8525 

Precision  0.7852

0.8816

0.9270

0.9263

0.9024

0.9526

0.7408

0.8370 

Recall

0.7815

0.8817

0.9270

0.9260

0.9014

0.9526

0.7382

0.8354 

F1

0.7833

0.8816

0.9270

0.9261

0.9019

0.9526

0.7395

0.8362 

Loss

0.6479

0.9058

22.9016

18.0459

24.3074

8.8189

2.8340

1.3188 

FULL

Accuracy  0.7832

0.8814

0.9269

0.9259

0.9017

0.9524

0.7393

0.8360 

Precision  0.8646

0.8987

0.9365

0.9433

0.8380

0.9711

0.7408

0.8455 

Recall

0.8605

0.8988

0.9364

0.9430

0.8370

0.971

0.7382

0.8440 

F1

0.8625

0.8987

0.9365

0.9431

0.8375

0.9710

0.7395

0.8448 

Loss

0.5981

0.9492

16.0311

16.6577

24.5304

9.2414

2.0783

0.9891 

MID

Accuracy  0.8624

0.8986

0.9363

0.9430

0.8373

0.9708

0.7394

0.8447 

Precision  0.8288

0.8825

0.8608

0.8790

0.8380

0.9536

0.7096

0.7772 

Recall

0.8249

0.8826

0.8608

0.8788

0.8370

0.9535

0.7071

0.7758 

F1

0.8269

0.8825

0.8608

0.8789

0.8375

0.9535

0.7084

0.7765 

Loss

0.9968

0.9492

22.9016

62.4664

25.6454

9.2414

2.0783

0.9891 

END

Accuracy  0.8267

0.8824

0.8607

0.8788

0.8373

0.9534

0.7083

0.7763

388

R. Mapakshi et al. 

Table  13  Model  poisoning  attack  without  outlier  detection 

MLR

SVC

MLP

CNN

RNN

LSTM 

Precision

0.8725

0.8996

0.9459

0.9452

0.9209

0.9720 

Recall

0.8683

0.8997

0.9459

0.9449

0.9198

0.9720 

F1

0.8669

0.8989

0.9458

0.9448

0.9200

0.9720 

Loss

0.4984

0.9040

15.2677

13.8814

22.3004

8.8013 

Baseline

Accuracy

0.8683

0.8997

0.9459

0.9449

0.9198

0.9720 

Precision

0.6491

0.5195

0.7135

0.0096

0.1339

0.1673 

Recall

0.6502

0.4355

0.7133

0.0980

0.1420

0.1427 

F1

0.6495

0.4219

0.7127

0.0175

0.0680

0.1097 

Loss

11.4170

1.8487

10784403

273.6978

478.6425

665.9301 

FULL

Accuracy

0.6502

0.4355

0.7133

0.0980

0.1420

0.1427 

Precision

0.7015

0.8996

0.8381

0.1556

0.1669

0.0925 

Recall

0.6795

0.8997

0.8385

0.1145

0.1780

0.0892 

F1

0.6769

0.8989

0.8381

0.0252

0.1547

0.0707 

Loss

2.8480

0.9040

1202.6790

186.6558

175.1006

424.9485 

MID

Accuracy

0.6795

0.8997

0.8385

0.1145

0.1780

0.0892 

Precision

0.5915

0.5608

0.7438

0.0253

0.0780

0.1636 

Recall

0.5488

0.4575

0.7057

0.0951

0.1105

0.1525 

F1

0.5305

0.4310

0.7098

0.0170

0.0760

0.1485 

Loss

5.1380

1.8564

3144.8430

371.6640

614.2485

632.3198 

END

Accuracy

0.5488

0.4575

0.7057

0.0951

0.1105

0.1525 

Table  14  Model  poisoning  attack  with  outlier  detection 

MLR

SVC

MLP

CNN

RNN

LSTM 

Precision

0.8725

0.8996

0.9459

0.9452

0.9209

0.9720 

Recall

0.8683

0.8997

0.9459

0.9449

0.9198

0.9720 

F1

0.8669

0.8989

0.9458

0.9448

0.9200

0.9720 

Loss

0.4984

0.9040

15.2677

13.8814

22.3004

8.8013 

Baseline

Accuracy

0.8683

0.8997

0.9459

0.9449

0.9198

0.9720 

Precision

0.7939

0.7736

0.8135

0.8128

0.7919

0.8360 

Recall

0.7902

0.7737

0.8135

0.8126

0.7910

0.8359 

F1

0.7920

0.7737

0.8135

0.8127

0.7915

0.8359 

Loss

0.5233

1.4735

15.4204

14.7143

26.7604

9.3294 

FULL

Accuracy

0.7919

0.7735

0.8134

0.8126

0.7914

0.8357 

Precision

0.7939

0.8816

0.9270

0.9263

0.9024

0.9526 

Recall

0.7902

0.8817

0.9270

0.9260

0.9014

0.9526 

F1

0.7920

0.8816

0.9270

0.9261

0.9019

0.9526 

Loss

0.5233

1.3831

14.6570

18.4623

30.1055

11.7057 

MID

Accuracy

0.7919

0.8814

0.9268

0.9259

0.9017

0.9525 

Precision

0.7939

0.7916

0.8324

0.8317

0.8104

0.8554 

Recall

0.7902

0.7917

0.8324

0.8315

0.8094

0.8554 

F1

0.7920

0.7917

0.8324

0.8316

0.8099

0.8554 

Loss

0.5233

1.0938

16.4892

15.9636

25.6454

10.1215 

END

Accuracy

0.7918

0.7916

0.8323

0.8315

0.8097

0.8552
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Table  15  GAN  reconstruction  attack  without  outlier  detection 

MLR

SVC

MLP

CNN

RNN

LSTM

RF

XGBoost 

Precision

0.8725

0.8996

0.9459

0.9452

0.9209

0.9720

0.7798

0.8541 

Recall

0.8683

0.8997

0.9459

0.9449

0.9198

0.9720

0.7770

0.8525 

F1

0.8669

0.8989

0.9458

0.9448

0.9200

0.9720

0.7760

0.8517 

Loss

0.4984

0.9040

15.2677

13.8814

22.3004

8.8013

1.8893

0.6594 

Baseline

Accuracy 

0.8683

0.8997

0.9459

0.9449

0.9198

0.9720

0.7770

0.8525 

Precision

0.8721

0.8994

0.9343

0.9183

0.9122

0.9606

0.4128

0.8330 

Recall

0.8661

0.8995

0.9341

0.9173

0.9103

0.9604

0.5511

0.8325 

F1

0.8643

0.8987

0.9339

0.9171

0.9104

0.9604

0.4628

0.8318 

Loss

0.5116

0.9114

19.4806

22.0921

24.1009

11.4465

1.9348

0.6909 

FULL

Accuracy 

0.8661

0.8995

0.9341

0.9173

0.9103

0.9604

0.5511

0.8325 

Precision

0.8729

0.8996

0.9293

0.9117

0.9181

0.9624

0.4327

0.5942 

Recall

0.8686

0.8997

0.9282

0.9078

0.9169

0.9622

0.5834

0.7107 

F1

0.8672

0.8989

0.9281

0.9073

0.9170

0.9622

0.4921

0.6408 

Loss

0.5006

0.9040

19.9489

24.1492

21.5096

10.7564

1.9129

1.1639 

MID

Accuracy 

0.8686

0.8997

0.9282

0.9078

0.9169

0.9622

0.5834

0.7107 

Precision

0.8718

0.8988

0.9320

0.9127

0.9040

0.9640

0.4546

0.4541 

Recall

0.8667

0.8988

0.9314

0.9118

0.8997

0.9639

0.6105

0.6251 

F1

0.8652

0.8980

0.9313

0.9112

0.8996

0.9639

0.5158

0.5216 

Loss

0.5039

0.9119

20.064

23.1629

26.5582

10.5914

1.9098

1.4798 

END

Accuracy 

0.8667

0.8988

0.9314

0.9118

0.8997

0.9639

0.6105

0.6251 

Table  16  GAN  reconstruction  attack  with  outlier  detection 

MLR

SVC

MLP

CNN

RNN

LSTM

RF

XGBoost 

Precision  0.8725

0.8996

0.9459

0.9452

0.9209

0.9720

0.7798

0.8541 

Recall

0.8683

0.8997

0.9459

0.9449

0.9198

0.9720

0.7770

0.8525 

F1

0.8669

0.8989

0.9458

0.9448

0.9200

0.9720

0.7760

0.8517 

Loss

0.4984

0.9040

15.2677

13.8814

22.3004

8.8013

1.8893

0.6594 

Baseline 

Accuracy  0.8683

0.8997

0.9459

0.9449

0.9198

0.9720

0.7770

0.8525 

Precision  0.8637

0.8906

0.9365

0.9357

0.9117

0.9623

0.5459

0.8264 

Recall

0.8596

0.8907

0.9364

0.9355

0.9106

0.9623

0.5439

0.8249 

F1

0.8617

0.8906

0.9365

0.9356

0.9111

0.9623

0.5449

0.8256 

Loss

0.5283

0.9402

15.8784

14.4367

20.5163

8.0972

2.135

0.7583 

FULL

Accuracy  0.8615

0.8904

0.9363

0.9355

0.9109

0.9621

0.5447

0.8255 

Precision  0.8637

0.8906

0.9365

0.9357

0.9117

0.9623

0.5303

0.7243 

Recall

0.8596

0.8907

0.9364

0.9355

0.9106

0.9623

0.5284

0.7229 

F1

0.8617

0.8906

0.9365

0.9356

0.9111

0.9623

0.5293

0.7236 

Loss

0.5184

0.9582

14.6570

13.3262

23.6384

9.3294

1.9838

1.4125 

MID

Accuracy  0.8616

0.8905

0.9363

0.9355

0.9110

0.9621

0.5292

0.7234 

Precision  0.8637

0.8906

0.9365

0.9357

0.9117

0.9623

0.5927

0.8264 

Recall

0.8596

0.8907

0.9364

0.9355

0.9106

0.9623

0.5905

0.8249 

F1

0.8617

0.8906

0.9365

0.9356

0.9111

0.9623

0.5916

0.8256 

Loss

0.4785

0.9402

14.0463

14.7143

23.1924

9.1534

1.9082

1.4125 

END

Accuracy  0.8616

0.8905

0.9364

0.9355

0.9110

0.9621

0.5914

0.8255
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Abstract  Federated  Learning  (FL)  has  achieved  extensive  adoption,  especially  in 

applications  like  healthcare  and  cyber-physical  systems,  serving  as  a  protective  mea-

sure  for  data  while  ensuring  participant  privacy.  In  FL,  adversarial  attacks  present  a 

considerable  risk  to  both  the  integrity  of  the  learning  model  and  the  privacy  of  the  distributed  data.  The  decentralized  structure  of  FL  exacerbates  this  vulnerability,  as  the 

data  stays  local  and  is  not  accessible  to  the  central  server,  complicating  efforts  to  protect  against  adversarial  attacks.  This  challenge  underscores  the  necessity  for  further 

research  on  robust  defense  approaches  to  guarantee  that  FL  can  effectively  safeguard 

data  privacy  and  become  a  viable  solution  in  real-world  applications.  This  article  pro-

vides  an  extensive  review,  including  potential  attacks  and  mitigation  strategies.  This 

survey  presents  a  taxonomy  of  adversarial  attacks  and  defense  mechanisms,  offering 

a  comprehensive  overview  of  the  vulnerabilities  in  FL  and  the  strategies  available 

to  mitigate  them.  Besides,  we  introduce  a  unified  adversary-resilient  FL  framework 

that  integrates  Blockchain  to  enhance  security.  Finally,  we  present  open  research 

challenges  in  the  field  of  FL. 
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1 

Introduction 

In  recent  years,  the  rapid  growth  and  advancement  of  end  devices  have  posed  sig-

nificant  challenges  for  existing  networks.  The  emergence  of  new  technologies  has 

sparked  a  focus  on  creating  distributed  and  intelligent  systems.  Artificial  Intelli-

gence  (AI)  and  Blockchain-based  technologies  have  a  vigorous  scientific  reputa-

tion  for  providing  secure,  decentralized  data  and  model  sharing,  intelligent  network 

supervision,  and  administration.  AI  and  Blockchain  have  been  employed  in  diverse 

sectors  [ 69], including  the  Industrial  Internet  of  Things  (IIoT),  Pharmaceuticals, Healthcare  Sector,  Vehicular  Networks,  Cyber-Physical  Systems,  etc. 

Machine  Learning  (ML)  techniques  continuously  evolve,  and  researchers  are 

attempting  to  build  innovative  automated  solutions  suitable  for  different  applications. 

The  core  principle  behind  the  ML  approach  is  to  leverage  unlabeled  and  labeled  input 

to  determine  the  optimal  rules  for  categorizing  unknown  data  or  projecting  future 

events.  However,  centralized  techniques  are  associated  with  various  issues  [ 60].  Centralized  ML  methods  involve  collecting  user  data  on  a  central  server  for  analysis 

during  the  training  phase,  which  is  then  used  to  generate  insights.  However,  as  the 

number  of  connected  devices  grows,  centralized  data  collection,  processing,  and 

model  updates  become  increasingly  inefficient  due  to  latency  issues,  and  the  rising 

demand  for  computational  resources. 

Furthermore,  the  massive  volume  of  sensitive  data  collected  from  the  various  edge 

devices  might  be  compromised  by  malicious  parties.  A  distributed  ML  model  can 

solve  the  problem  of  excessive  computation  overhead  in  the  standard  ML  model  [ 99] 

by  distributing  work  across  multiple  nodes  and  a  global  server.  However,  users  may 

be  concerned  about  data  privacy  and  hesitant  to  provide  private  information  for  pro-

cessing  and  analysis.  Additionally,  it  is  difficult  to  implement  such  a  setting  due  to  the security  regulations  imposed  by  the  Health  Insurance  Portability  and  Accountability 

Act  (HIPPA)  [ 38]  and  General  Data  Protection  Regulation  (GDPR)  [100]. 

FL  [ 65]  has  gained  considerable  attention  across  various  applications  as  a  solution for  distributed  trustworthy  data  sharing.  FL  diminishes  the  computation  complexity  of  centralized  infrastructure  by  allowing  each  client  to  train  the  model  locally 

while  maintaining  data  privacy.  In  the  FL  framework,  a  central  aggregator  (server) 

distributes  the  initial  global  model  to  all  clients,  who  then  train  the  model  using 

their  own  local  data.  After  training,  the  parameters  are  sent  back  to  the  central  server for  aggregation.  The  updated  global  model  is  subsequently  shared  with  the  clients, 

and  this  process  continues  until  the  desired  performance  is  achieved.  FL  is  expected 

to  increase  scalability,  reduce  latency,  improve  accuracy,  reduce  training  time,  and 

assure  privacy. 

According  to  recent  research  [ 70], FL  is  subject  to  malicious  attacks,  such  as inference  and  poisoning  attacks.  Also,  the  heterogeneous  environment  and  asynchronous  communication  inherent  to  FL  lead  to  unpredictable  and  potentially  con-

flicting  client  updates.  These  factors  not  only  complicate  the  model  training  process 

but  also  exacerbate  security  and  privacy  vulnerabilities,  as  inconsistent  updates  may 

allow  adversaries  to  exploit  the  system.  While  our  paper  primarily  surveys  existing
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literature  on  FL  attacks  and  defense  mechanisms,  we  also  suggest  a  unified  frame-

work  designed  to  enhance  security  and  privacy  in  FL.  The  major  highlights  of  this 

work  are  as  follows: 

•  We  present  a  thorough  examination  of  FL,  privacy  and  security  attacks  and  possible 

countermeasures. 

•  We  present  a  unified  FL  framework  using  Blockchain  to  enhance  trustworthiness 

while  developing  the  global  model  collaboratively. 

•  We  present  a  framework  that  detects  malicious  clients  influencing  the  training 

process  by  evaluating  the  quality  of  local  models  through  auxiliary  data  generated 

via  Generative  Adversarial  Networks  (GANs). 

The  structure  of  this  article  is  organized  as  follows.  Section  2  offers  an  overview of  FL.  Sections  3  and  4  provide  a  detailed  analysis  of  various  attacks  on  FL  systems, while  Sect. 5  reviews  state-of-the-art  strategies  for  mitigating  such  attacks.  Section  5 

discusses  the  proposed  solution,  and  Sect. 7  highlights  open  research  challenges. 

Finally,  Sect. 8  concludes  the  paper. 

2 

Background 

This  section  delves  into  the  context  of  FL,  focusing  on  aggregation  algorithms  and 

examining  both  the  benefits  and  challenges  associated  with  the  FL  environment. 

 2.1 

 Federated  Learning 

FL,  a  paradigm  within  ML,  facilitates  model  training  across  multiple  decentralized 

devices  without  revealing  data.  It  ensures  collaborative  model  improvement  without 

exposing  confidential  data.  In  a  standard  FL  scenario,  a  centralized  server  initially 

deploys  a  global  model.  Rather  than  sending  raw  data  for  training,  individual  devices 

or  servers  perform  local  computations  on  their  private  datasets  to  generate  updates. 

These  local  updates,  typically  in  the  form  of  gradients  or  weights,  are  then  sent  to  the central  server,  where  they  are  aggregated  to  refine  the  global  model.  The  structure  of 

the  FL  process  is  illustrated  in  Fig. 1. The  main  stages  of  the  traditional  FL  process include: 

1.  Initialization:   The  central  aggregator  creates  an  initial  global  model  with  predefined  hyperparameters  for  training  (i.e.,  number  of  local  and  federation  epochs, 

learning  rate,  batch  size,  model  optimizer,  etc.)  and  broadcasts  to  the  client. 

Formally,  at  each  epoch  .  t ≥ 0,  the  central  aggregator  sends  the  recent  global 

model .  Wt  to  a  set  of.  k  clients. 

2.  Local  Model  Training:   The  randomly  selected  .  k  clients  will  receive  the  global model  .  Wt  from  the  server  and  locally  train  .  Wt  with  their  sensitive  data.  Using

[image: Image 113]
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Fig.  1  Architecture  of  federated  learning 

multiple  stages  of  Stochastic  Gradient  Descent  (SGD),  each  client  calculates  the 

local  model  update  and  the  average  gradient  as 

.  Wk (t + 1 ) =  Wk (t ) −  η Wk (t )

where  .  Wk(t)  denotes  the  local  model’s  update  at  iteration  .  t,  .  η  represents  the learning  rate, .  Wk(t)  is  the  gradient. 

3.  Transfer  local  model  Parameters:   Each  client  (.  Ck )  transmit  their  local  updated model  to  the  server. 

4.  Aggregation:   The  federated  central  aggregator  combines  local  parameters  (gra-

dient  or  weight)  from  selected .  Ck  clients  to  build  a  new  global  model  as 

 K

 nk

.  W (t + 1 ) =  W (t ) −  η

 Wk(t)

 n

 k=1
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where  .  W(t)  is  the  global  model  update  at  round  .  t,  .  η  is  the  global  learning  rate, 

.  nk  is  the  number  of  samples  at  client  k, .  n  is  the  total  number  of  training  samples at  round .  t. 

5.  Sending  current  global  model:   The  improved  global  model  is  then  broadcast  to 

the .  k  clients,  and  the  procedure  continues  until  the  required  accuracy  is  attained or  the  model  converges. 

FL  can  be  classified  into  three  distinct  types  (horizontal,  vertical,  and  transfer) 

depending  on  the  distinct  characteristics  and  diverse  sample  spaces  [119].  Horizontal Federated  Learning   is  utilized  in  situations  where  datasets  exhibit  a  common  feature space  but  vary  across  multiple  sample  spaces.  For  instance,  Google  incorporated  a 

horizontal  FL  solution  into  its  keyboard  app  [ 37]  to  predict  the  next  word  the  user is  likely  to  type.  Conversely,  Vertical  FL   is  effective  when  two  repositories  share nearly  identical  sample  spaces  but  differ  in  their  features.  Specifically,  vertical  FL 

is  employed  to  address  data  or  label  shortages  without  compromising  the  integrity 

of  the  underlying  dataset.  Conversely,  Federated  Transfer  Learning   is  applicable  in 

situations  where  two  sets  of  samples  differ  not  only  in  their  sample  distributions  but 

also  in  their  feature  spaces  [ 78]. 

2.1.1

Aggregation  Algorithms 

In  an  FL  system,  aggregation  techniques  play  a  crucial  role  as  the  algorithm  seam-

lessly  integrates  model  updates  from  all  the  local  edge  devices  (clients)  engaged 

in  the  training  phase.  Different  aggregation  procedures  have  been  introduced  in  the 

literature,  each  with  distinct  focuses,  such  as  enhancing  privacy,  optimizing  commu-

nication  bandwidth,  or  selectively  accommodating  specific  participants  in  training 

epochs  [ 1].  Some  of  the  evolved  algorithms  are  mentioned  below: 

1.  FedAvg:   FedAvg  [ 64]  empowers  edge  devices  to  leverage  an  SGD  optimizer  for multiple  batch  updates  on  sensitive  local  data,  sharing  the  updated  weights  rather 

than  the  gradients.  The  central  aggregator  then  averages  these  weights  from  indi-

vidual  local  models,  generating  new  weights  and  consequently  updating  the  global 

model.  The  aggregation  weight  in  FedAvg  is  typically  calculated  by  the  amount 

of  training  data  on  each  client,  assuming  an  even  spread  of  data  among  clients. 

Unfortunately,  the  FedAvg  algorithm  is  less  likely  to  be  optimal  in  real-world  sce-

narios  characterized  by  non-Independent  and  Identically  Distributed  (non-IID) 

heterogeneous  data. 

2.  SMC-Avg:   SMC-Avg  (Secure  Multiparty  Computation)  aggregation  algorithm 

aggregates  the  secret  values  of  mutually  suspicious  clients  without  giving  infor-

mation  about  their  sensitive  data  [ 9].  This  method  has  a  fault  tolerance  limit, signifying  that  the  protocol  persists  even  in  the  event  of  one-third  of  the  participating  parties  failing  to  adhere  to  the  process. 

3.  FedProx:   In  FL,  diverse  edge  devices  often  contend  with  varying  resource  con-

straints,  encompassing  factors  like  battery  life,  processing  hardware  capabilities, 

and  internet  connectivity.  However,  FedAvg’s  insistence  that  each  edge  device
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performs  the  same  workload  by  running  an  equal  number  of  local  epochs  is 

unrealistic  in  practical  scenarios.  In  response  to  this  challenge,  FedProx  [ 52],  an enhanced  iteration  of  FedAvg,  introduces  flexibility  by  allowing  edge  devices  to 

perform  varying  amounts  of  local  work  based  on  their  specific  system  resources. 

Subsequently,  FedProx  aggregates  the  partial  solutions  from  these  devices  instead 

of  discarding  their  contributions.  Notably,  the  accuracy  of  the  FedAvg  has  been 

shown  to  be  higher  than  that  of  other  FedProx. 

4.  FedMA:   FedMA  [106]  employs  an  averaging  approach  for  aggregating  global model  updates  in  FL,  utilizing  both  Long  Short-Term  Memory  (LSTM)  and  Convolutional  Neural  Networks  (CNN).  This  method  conducts  layer-wise  matching 

and  averaging  at  a  central  aggregator.  During  each  training  epoch,  the  aggregated 

parameters  are  distributed  to  all  participating  clients,  and  an  extra  neuron  is  added 

to  the  local  model  to  facilitate  the  transmission  of  updates  to  the  global  model, 

resulting  in  notably  robust  performance.  Furthermore,  FedMA  outperforms  both 

FedProx  and  FedAvg,  surpassing  them  within  just  a  few  training  rounds. 

2.1.2

Benefits  of  Federated  Learning 

By  default,  FL  prioritizes  the  privacy  of  sensitive  data  while  collectively  constructing 

a  model  through  the  exchange  of  training  parameters  with  a  central  aggregator.  In 

the  FL  environment,  potential  adversaries  face  the  challenge  of  targeting  multiple 

dispersed  devices  instead  of  a  centralized  model  to  gain  control  over  information. 

The  decentralized  nature  of  FL  amplifies  the  complexity  of  potential  attacks,  thereby 

diminishing  their  likelihood  of  success.  Moreover,  as  FL  eliminates  the  necessity 

of  transmitting  sensitive  data  from  edge  devices,  the  time  delay  for  model  updates 

is  significantly  reduced.  Additionally,  FL  facilitates  real-time  predictions  for  edge 

devices  since  the  data  resides  on  the  edge  nodes,  eliminating  the  need  for  continuous 

internet  connectivity  to  leverage  the  model’s  predictive  capabilities.  The  decentral-

ized  nature  of  FL  models  obviates  the  requirement  for  a  single,  complex  centralized 

system  to  interpret  data,  resulting  in  a  cost-effective  hardware  solution. 

2.1.3

Challenges  of  Federated  Learning 

Despite  the  benefits,  FL  is  subjected  to  a  variety  of  attacks  and  challenges.  Some 

of  the  major  issues  that  come  with  working  in  the  FL  environment  are  discussed 

below  [ 51]. 

1.  Expensive  communication:   In  the  FL  implementations,  effective  communication 

management  is  a  critical  constraint  to  navigate.  This  stems  from  the  fact  that  feder-

ated  systems  may  encompass  a  large  number  of  edge  devices,  which  can  be  signif-

icantly  slower  than  local  computing  due  to  the  constrained  nature  of  edge  devices. 

Consequently,  the  success  of  FL  hinges  on  the  deployment  of  communication-

efficient  algorithms.  These  algorithms,  designed  for  FL,  prioritize  efficiency  by
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eliminating  the  transfer  of  the  entire  dataset  to  the  central  aggregator.  Instead,  they 

send  compact  messages  or  model  changes  iteratively  as  part  of  the  distributed 

training  process.  To  curtail  communication  overhead,  two  key  factors  are  taken 

into  consideration:  a)  minimizing  the  total  number  of  epochs  and  b)  reducing  the 

volume  of  messages  exchanged  between  the  client  and  the  server  in  each  round. 

2.  Systems  heterogeneity:   In  an  FL  system,  clients  exhibit  diverse  capacities  in  terms of  communication,  storage,  and  computing,  driven  by  variations  in  hardware, 

network  connectivity,  battery  power,  and  memory.  Additionally,  owing  to  lim-

itations  in  network  capacity  and  resources  on  individual  devices,  only  a  small 

number  of  devices  are  active  at  any  given  moment.  These  system-level  properties 

further  intensify  challenges  related  to  straggler  mitigation  and  fault  tolerance. 

Consequently,  well-designed  FL  systems  must  anticipate  a)  a  low  level  of  partic-

ipation,  b)  the  presence  of  diverse  hardware,  and  c)  resilience  to  communication 

network  disruptions. 

3.  Statistical  heterogeneity:   Edge  devices  usually  generate  and  gather  data  in  a  non-IID  manner  across  the  network.  This  unconventional  data  production  paradigm 

challenges  the  widely  accepted  principles  of  IID  data  in  distributed  optimization, 

consequently  heightening  the  likelihood  of  encountering  stragglers.  Challenges 

arise  both  in  terms  of  modeling  the  data  and  evaluating  the  convergence  behavior 

of  associated  training  methods. 

4.  Privacy  concerns:   FL  makes  strides  in  safeguarding  data  collected  on  each  edge 

device  by  transmitting  only  model  updates,  instead  of  exposing  sensitive  data. 

However,  sharing  model  parameters  with  third  parties  or  the  central  aggrega-

tor  during  the  training  process  could  potentially  reveal  confidential  information. 

Modern  technologies,  such  as  Differential  Privacy  (DP),  Secure  Multiparty  Com-

putation  (SMC),  and  Homomorphic  Encryption  (HE),  aim  to  enhance  the  privacy 

of  FL,  but  these  strategies  often  introduce  the  expense  of  degrading  model  perfor-

mance.  As  a  result,  achieving  a  balance  between  enhancing  privacy  and  preserving 

optimal  model  performance  presents  a  significant  challenge  in  the  deployment  of 

private  FL  systems. 

According  to  many  recent  research  studies  [ 70, 78, 96, 99],  the  basic  privacy  in FL  is  inadequate  for  securing  sensitive  data  from  adversaries,  and  FL  is  inherently 

vulnerable  to  many  attacks.  The  following  section  discusses  different  attacks  that 

have  occurred  in  an  FL  environment. 

3 

Security  Attacks  in  Federated  Learning 

Recent  research  indicates  that  FL  is  intrinsically  vulnerable  to  server-side  or 

participant-side  attacks  for  the  following  reasons.  Since  this  FL  system  contains 

many  users,  some  malicious  individuals  are  almost  bound  to  be  there.  Additionally, 

malicious  actors  can  manipulate  the  training  parameters,  aggregated  model  updates, 

and  learning  results  if  they  infiltrate  the  FL  system  [ 76].  Furthermore,  it  is  difficult  to
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Fig.  2  High-Level  taxonomy  of  adversarial  attacks  in  FL  systems 

validate  the  legitimacy  of  a  particular  user’s  updates  because  the  server  cannot  access 

the  user’s  local  data  and  training  process.  Finally,  local  device  updates  may  differ 

significantly  from  one  another,  providing  substantial  challenges  for  anomaly  detec-

tion  systems.  Figure  2  exhibits  a  high-level  taxonomy  of  the  attacks  inflicted  upon FL  [ 46].  This  section  delves  into  the  various  security  attacks  that  pose  challenges  to the  integrity  and  privacy  of  FL  systems. 

 3.1 

 Poisoning  Attack 

A  poisoning  attack  aims  to  transform  a  benign  model  into  a  compromised  one, 

enabling  the  manipulation  of  private  data  or  local  models  to  influence  the  global 

model’s  performance  directly.  In  FL,  all  participants  have  equal  access  to  the  training 

data,  and  each  participant  transmits  updates  to  the  central  server  during  the  training 

phase.  An  adversary  or  malicious  client  can  introduce  malicious  data  or  models 

into  this  process,  resulting  in  tainted  updates  that  impact  the  training,  ultimately 

contaminating  the  global  model  and  lowering  its  accuracy.  Authors  in  [ 10]  observed that  the  attack  success  rate  of  the  distributed  poisoning  attack  increases  when  the 

number  of  attackers  and  poisoned  samples  increases.  The  poisoning  attack  can  be 

categorized  based  on  the  attacker’s  objective  and  strategy,  as  shown  in  Fig. 3. 

3.1.1

Taxonomy  Based  on  the  Objective 

The  adversary’s  goals  can  categorized  into  two  groups  based  on  their  objectives:  (a) 

diminishing  the  accuracy  of  the  global  model  across  various  tasks  and  b)  influencing 

the  performance  of  the  global  model  on  particular  tasks.  Thus,  poisoning  attacks  are
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Fig.  3  Taxonomy  of  poisoning  attacks  in  FL  system  based  on  attack  objectives  and  strategies divided  into  three  types  based  on  the  attacker’s  objective:  targeted,  semi-targeted, 

and  untargeted. 

 Targeted  Attack 

In  a  targeted  attack,  an  adversary  aims  to  manipulate  or  compromise  the  model’s 

performance  on  a  particular  task  and  not  affect  the  other  task.  Due  to  the  nature  of 

the  targeted  attack,  it  is  challenging  to  detect  in  a  non-IID  environment  [ 62]. This attack  aims  to  influence  specific  aspects  of  the  model’s  behavior  rather  than  broadly 

affecting  all  tasks.  A  targeted  attack  can  be  executed  by  poisoning  the  local  dataset 

of  the  client  model  through  a  data  poisoning  attack  [ 96, 115]  or  by  manipulating  the local  model  itself  through  a  model  poisoning  attack  [ 4, 7]. 

 Semi-targeted  Attack 

In  a  semi-targeted  attack,  the  adversaries  have  designated  a  specific  class  (referred 

to  as  .  CS),  and  their  objective  is  to  contaminate  the  global  model  so  that  instances associated  with  the  .  CS  are  misclassified  as  a  different  class  .  (C∗ ).  Unlike  a  targeted attack,  the  attacker  can  select  the  target  class  strategically  to  optimize  the  attack’s 

effectiveness  in  a  semi-targeted  scenario.  The  general  formula  for  the  semi-targeted 

attack  is  [ 92] 

 C∗ if  y =  CS

.  arg max  f (x )m =

 m

 y

otherwise

where .  m  is  the  compromised  participant  in  the  current  round. 

 Untargeted  Attack 

The  adversary  can  select  the  type  of  attack  based  on  their  goal.  For  instance,  a 

malevolent  client  aiming  to  hinder  the  overall  model’s  convergence  may  execute  an 

untargeted  poisoning  attack.  This  attack  aims  to  influence  the  model  accuracy  and
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impact  all  tasks,  they  are  relatively  more  discernible  by  the  server,  making  detection 

easier  than  targeted  attacks  [ 12, 84]. It  also  damages  the  target  model’s  integrity, which  might  lead  to  a  Denial-of-Service  [ 59]. Recent  research  proposed  three  types of  untargeted  poisoning  attacks. 

Sign  flipping  attack:  In  this  attack,  the  adversaries  alter  the  signs  of  a  portion of  the  data  before  sending  the  local  model.  By  manipulating  the  signs  of  the  data, 

the  attacker  aims  to  change  the  model’s  decision  boundaries,  forcing  it  to  create 

erroneous  predictions  during  inference.  In  sign-flipping,  the  Byzantine  participants 

reverse  the  gradient  without  applying  any  scaling  [ 54, 117]. 

Additive  noise  attack:  Including  some  noise  in  the  local  model  update  increases 

privacy,  but  too  much  noise  makes  the  system  vulnerable.  An  additive  noise  attack 

involves  the  introduction  of  Gaussian  noise  or  Laplacian  noise  or  random  noise  to 

the  local  model  updates  [ 40]. 

Byzantine  attack:  In  a  Byzantine  attack,  malicious  client  changes  their  local 

updates  or  datasets  to  disrupt  the  global  model.  Furthermore,  in  the  FL  environ-

ment,  a  malicious  client  detracts  from  its  regular  behavior  to  malicious  or  aberrant 

behaviour  [ 89]. 

3.1.2

Taxonamy  Based  on  Attack  Strategy 

The  attacker  compromises  the  local  model  by  altering  its  parameters,  either  by  cor-

rupting  the  dataset  or  tampering  with  the  model  directly.  So,  based  on  the  attack 

strategy,  the  classification  includes   data  poisoning   and   model  poisoning  attacks. 

These  poisoning  can  occur  during  the  training  phase,  indirectly  interfering  with  the 

overall  performance  and  accuracy  of  the  global  ML  model  [ 70]. 

 Data  Poisoning  Attack 

Data  poisoning  attacks  in  FL  frequently  undermine  the  integrity  of  the  training  data 

instead  of  directly  targeting  the  global  model.  In  essence,  adversaries  contaminate  the 

local  dataset  during  training  to  instigate  such  attacks.  These  data  poisoning  attacks 

can  manifest  through  label  flipping  [ 84, 96],  data  injection  [ 86], and  backdoor  techniques  [105, 115]. 

Label  Flipping  Attack:  In  this  type  of  attack,  adversaries  flip  the  label  of  the 

true  class  to  the  wrong  class  while  preserving  the  features  of  the  input  sample.  The 

label  manipulation  attack  does  not  necessitate  the  adversary  to  be  acquainted  with  FL 

model  parameters,  DNN  architecture,  or  any  other  details.  The  label-flipping  attack 

can  be  categorized  as  targeted,  untargeted,  or  semi-targeted,  depending  on  how  the 

attacker  selects  the  incorrect  label  corresponding  to  the  true  label.  Label  flipping 

can  occur  through  either  the   dirty  label   or   clean  label   method.  Clean-label  attacks operate  under  the  assumption  that  the  adversary  cannot  alter  the  label  of  any  training 

data,  given  a  certification  process  ensuring  the  accuracy  of  class  assignments  and 

imperceptibility  of  data  sample  poisoning  [ 28].  In  contrast,  dirty-label  poisoning involves  the  adversary  injecting  data  samples  with  attacker-specified  labels,  rather 

than  their  true  labels,  into  the  training  set  to  intentionally  cause  misclassification

[image: Image 114]
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Fig.  4  Dirty  label  flipping  attack 

toward  a  desired  target  label.  The  study  of  [ 25]  demonstrated  that  FL  is  susceptible to  the  dirty  label-flipping  attack. 

Figure  4  illustrates  a  label-flipping  attack  scenario.  Assume  that  there  are.  k  clients, one  of  which  is  malicious,  and  all  commit  to  a  common  learning  task  and  model 

system.  Malicious  clients  of  this  FL  system  flip  labels;  in  this  example,  label  . 3 is 

mislabeled  as  . 8,  while  the  other  samples’  labels  stay  unchanged.  After  conducting 

local  model  training,  each  of  the  .  k  clients  transfers  the  local  model  parameters  to the  central  aggregator.  The  malicious  client  indirectly  poisons  the  global  model  during  the  federated  aggregation  process,  after  which  the  compromised  global  model  is 

distributed to the.  k  clients  for  the  next  round  of  training.  In  an  FL  environment,  Tolpegin  et  al. [ 96]  proposed  a  targeted  label-flipping  attack,  where  an  adversary  alters labels  from  a  specific  source  class  to  an  attacker-chosen  class,  negatively  impacting

404

K. M. Sameera et al. 

global  model  accuracy  and  recall.  The  investigation  indicated  that  the  attack  becomes 

more  effective  as  malicious  clients  increase,  reducing  source  class  recall  and  overall 

model  accuracy.  Moreover,  the  probability  of  a  successful  attack  in  the  final  iteration 

exceeds  that  of  the  initial  iteration. 

The  authors  in  [ 84]  studied  the  impact  of  an  untargeted  poisoning  attack  on  FL  production,  using  label  flipping  to  increase  data  loss  and  diminish  global  model  accuracy. 

The  attack  breaks  norm-bounded  defenses  and  is  effective  across  various  aggrega-

tion  rules  and  FL  environments.  While  increasing  label-flipped  data  improves  the 

attack,  excessive  amounts  may  not  consistently  bypass  the  target  aggregation  rule’s 

robustness,  prompting  a  suggested  adjustment  for  more  effective  circumvention. 

Sun  et  al. [ 92]  suggested  dynamic  label  flipping  as  an  alternative  to  static  labeling throughout  training.  They  proposed  the  Distance-Aware  attack,  which  aims  to  boost 

poisoning  attacks  by  identifying  optimal  target  classes  in  the  feature  space.  The  cen-

tral  concept  is  that  a  small  attack  distance  between  the  actual  class  and  target  class 

necessitates  smaller  malicious  updates  in  the  adversary’s  local  model,  thereby  ele-

vating  the  chances  of  the  attack  persisting  through  aggregating  legitimate  updates 

and  resulting  in  a  more  substantial  impact.  In  [ 34], the  authors  introduced  a  novel data  poisoning  attack  that  reverses  a  benign  model’s  loss  function.  This  inverted  loss 

function  generates  malicious  gradients  at  each  SGD  iteration,  acting  in  almost  the 

opposite  direction  to  the  minima.  These  gradients  are  then  used  to  generate  poisoned 

labels,  which  are  introduced  into  the  dataset  to  corrupt  it,  thereby  contaminating  the 

local  node’s  data  involved  in  federated  training. 

Data  Injection:  Data  injection  attacks  involve  the  modification  of  specific  data 

samples  within  a  dataset.  In  [ 86],  Shi  et  al.  introduced  the  novel  Fed-MIFGSM  poisoning  attack  algorithm  to  generate  adversarial  samples,  exhibiting  a  reduction  in 

accuracy  of  over  5%  across  various  scenarios.  Kasyap  et  al.  [ 50]  introduced  a  technique  for  generating  adversarial  samples  using  the  hyper  dimensional  computing 

model.  This  approach  is  founded  on  the  assumption  that  projecting  data  into  a  higher-

dimensional  space  provides  greater  flexibility  in  altering  image  pixels,  accomplished 

through  various  operations  in  the  hyperdimensional  space.  The  proposed  attack,  for-

mulated  with  adversarial  samples,  applies  to  targeted  and  untargeted  scenarios.  The 

results  demonstrated  a  significant  increase  in  attack  success  rate  and  impact,  with  a 

range  of  5  to  10  times  higher  than  that  of  existing  local  model  poisoning  attacks.  The 

authors  in  [126]  proposed  a  poisoning  technique  using  GAN  to  generate  malicious samples.  Adversaries  train  a  GAN  to  mimic  prototypical  samples  of  the  other  begin 

participants’  training  dataset.  The  attacker  then  uses  the  generated  samples  to  create 

poisoning  updates,  which  are  uploaded  to  the  central  aggregator,  compromising  the 

global  model  through  the  scaled  poisoning  updates.  In  [125]  authors,  proposed  a  similar  approach  to  generate  the  adversarial  samples.  In  [ 91], the  authors  proposed  three distinct  data  poisoning  attacks,  categorized  as  direct,  indirect,  and  hybrid  attacks, 

depending  on  the  attacker’s  access  level  to  the  target  nodes. 

 Model  Poisoning  Attack 

In  model  poisoning  attacks,  adversaries  directly  manipulate  the  local  model  param-

eters  before  sending  them  to  the  central  aggregator  for  aggregation  [ 6].  As  a  result, 
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the  global  model  was  compromised  by  the  malicious  client.  Model  poisoning  attacks 

are  more  harmful  than  data  poisoning  attacks.  Depending  on  how  the  adversary  cre-

ates  the  models,  they  are  categorized  into  model  replacement,  optimization-based 

method,  and  training  rule  manipulation. 

Model  Replacement  Attack:  In  this  type  of  attack,  the  models  are  substituted  with 

crafted  ones,  achieved  through  random  weights  generation  or  gradient  manipulation. 

The  method  described  in  [ 4]  employs  random  weights  to  manipulate  the  local  models, thereby  jeopardizing  the  performance  of  the  global  model.  These  attacks  involve 

generating  a  vector  of  random  values  to  be  utilized  as  model  weights,  matching  the 

dimensions  of  the  global  model  weights.  In  [ 54], the  authors  investigated  global model  poisoning  attacks,  including  techniques  like  the  reverse  and  random  attack, 

which  contaminate  the  global  model  by  introducing  a  reverse  gradient  and  a  random 

gradient.  Also,  the  explored  partial  drop  attack  involves  substituting  the  gradient 

parameter  with  a  zero-based  on  a  specified  probability.  Additionally,  the  global  model 

is  poisoned  through  manipulated  gradients  by  introducing  perturbations  to  the  mean 

of  the  gradient,  depending  on  the  adversary’s  capability.  To  affect  the  convergence 

of  the  global  model,  attackers  inject  random  noise  into  the  local  model  [ 12, 40]. 

Optimization-based  Method: In [  20],  the  authors  discussed  a  local  model  poisoning  attack,  formulating  it  as  an  optimization  problem  during  the  training  phase. 

The  maximum  deviation  in  the  global  model  is  introduced  in  the  opposite  direction 

of  the  changes  observed  in  the  pre-attack  global  model.  Instead  of  random  weights, 

they  employed  Gaussian  distribution  samples  in  the  local  model  poisoning  attack. 

Shejwalkar  et  al. [ 83]  also  proposed  a  frame  for  the  local  model  poisoning  attack. 

The  adversary  creates  a  benign  reference  aggregate  using  known  benign  updates  and 

then  computes  a  malicious  perturbation,  such  as  a  unit  vector  that  opposes  the  benign 

aggregate.  Then,  they  maximize  the  perturbation  in  the  malicious  direction  to  derive 

the  malicious  model  update,  aiming  to  bypass  detection  by  robust  aggregation  algo-

rithms.  Also,  it  demonstrated  the  high  success  of  model  poisoning  attack,  resulting 

in  a  1.5  to  60-fold  reduction  in  FL  accuracy. 

Training  Rule  Manipulation:  In  this  method,  the  training  rule  is  altered  to  intro-

duce  poison  into  the  global  model.  In  [ 7],  the  authors  effectively  performed  a  stealthy targeted  model  poisoning  attack  by  adding  a  penalty  element  to  the  target  function 

that  reduces  the  distance  between  malicious  and  benign  weight  update  distributions. 

3.1.3

Backdoor  Attack 

A  backdoor  attack  might  involve  manipulating  the  training  data  or  model  parameters 

to  introduce  a  hidden  vulnerability  through  an  entry  point,  known  as  a  “backdoor,” 

which  allows  an  attacker  to  gain  unauthorized  access  or  control  over  the  system. 

Backdoor  attacks  introduce  a  hidden  pattern  (backdoor  trigger)  into  a  specific  region 

or  feature  of  the  actual  training  sample  and  misreport  with  a  different  label.  Backdoor 

attacks  can  manifest  in  three  distinct  phases  of  the  FL  process:  during  local  data 

collection,  training  of  the  local  model,  and  server  aggregation  [102].  The  model performs  well  with  clean  data  but  behaves  badly  on  attacker-selected  inputs  [ 31]. 

[image: Image 115]
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Fig.  5  Backdoor  attack  scenario  in  federated  learning 

Figure  5  illustrates  a  backdoor  attack  scenario  in  FL  with  two  clients:  benign  and malicious.  The  malicious  client  in  the  FL  system  injected  a  backdoor  trigger  (small 

yellow  diamond)  in  the  lower  right  side  of  multiple  images  (in  this  case,  7  and  9) 

and  mislabeled  it  with  class  1.  The  malicious  clients  of  the  FL  system  train  the 

local  model  with  the  original  image  and  backdoor-triggered  images.  After  the  local 

model  training,  each  client  in  the  FL  system  transfers  their  model  parameters  to 

the  central  aggregator  for  the  aggregation  process.  The  final  updated  global  model 

classifies  backdoor-triggered  images  with  the  wrong  label  when  backdoor  triggers 

are  activated. 

In  backdoor  attacks,  triggers  manifest  in  two  variations:   single   and   multi-triggers. 

In  the  single-trigger  approach,  a  uniform  trigger  is  applied  across  all  malicious  clients, while  in  the  multi-trigger  scenario,  distinct  triggers  are  employed  for  each  mali-

Federated Learning: An Overview of Attacks and Defense Methods

407

Table  1  Overview  of  prevalent  studies  related  to  backdoor  attacks 

Reference

Contribution

.  S

.  M

.  N 1

.  N 2

.  St

.  Dy

.  G 1

.  G 2

[ 7]

Gradient-based 

. 

. 

. 

. 

optimization  and  boosting 

in  MP 

[115]

Gradient  boosting  and 

. 

. 

. 

. 

. 

distributed  global  trigger 

pattern 

[105]

DP  using 

. 

. 

. 

. 

. 

Out-of-distribution, 

introduced  edge-case 

backdoor 

[ 43]

Symbiosis  network  with 

. 

. 

. 

. 

. 

gradient  boosting 

[ 4]

Model  replacement

. 

. 

. 

. 

. 

. 

[ 30]

Random  and  Model 

. 

. 

. 

dependent  triggers  using 

DP 

[ 49]

Federated  GAN, 

. 

. 

. 

. 

. 

backdoor  with  different 

pattern  with  different 

sizes 

.  S:  Single  compromised  participants, .  M :  Multiple  compromised  participants, 

.  N 1:  Number  of  Triggers  (Single),  .  N 2:  Number  of  Triggers  (Multiple),  .  St :  Static,  .  Dy:  Dynamic, 

.  G 1: Goal (Targeted),.  G 2:  Goal  (Untargeted),  DP:  Data  Poisoning,  MP:  Model  Poisoning cious  client  [105].  Furthermore,  static  and  dynamic  approaches  exist;  static  implementations  maintain  the  same  trigger  throughout  the  FL  process,  whereas  dynamic 

approaches  introduce  different  triggers  for  each  training  round  [ 49].  This  variety  in trigger  strategies  underscores  the  nuanced  and  evolving  nature  of  backdoor  attacks 

in  the  context  of  FL.  Table  1  summarizes  the  distinctive  aspects  observed  in  various  studies  related  to  backdoor  attacks.  Chulin  et  al. [114]  introduced  a  Distributed Backdoor  Attack  (DBA),  in  the  FL  model  in  which  a  malicious  client  uses  some 

part  of  the  global  trigger  to  poison  their  local  model.  This  approach  delivers  a  more 

powerful  and  enduring  attack  compared  to  the  centralized  backdoor  attack  by  con-

sidering  several  trigger  factors  such  as  size,  gap,  location,  scale,  poison  ratio,  poison 

interval,  and  data  distribution. 

3.1.4

Dropout  Client  Attack 

FL  training  on  decentralized  devices  operates  under  the  assumption  that  participants 

who  connect  to  the  server  must  fully  engage  in  the  system.  However,  challenges 

such  as  network  issues,  low  battery,  loss  of  communication  signal,  and  unexpected 

obstacles  can  lead  to  clients  being  unable  to  participate  in  the  FL  system  [ 82]. This
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situation,  known  as  a  dropout  client,  is  beyond  the  server’s  control.  Dropout  in  FL 


can  result  in  clients  participating  only  for  a  few  rounds,  leading  to  partial  participa-

tion  instead  of  full  participation  in  the  system.  This  client  may  contain  a  high-quality 

model  [ 18].  In  [104],  the  authors  revealed  that  partial  participation  hindered  convergence,  resulting  in  clients  dropping  out.  Horvath  et  al.  [ 39]  show  that  the  dropout client  during  the  federated  training  lowers  the  result  and  affects  the  system’s  fairness. 

3.1.5

Free-Rider  Attack 

A  free-rider  attack  in  FL  occurs  when  a  participant  in  the  decentralized  learning  sys-

tem  attempts  to  gain  an  advantage  from  the  global  model  updates  without  actively 

contributing  meaningful  or  accurate  information.  Free  riders  enjoy  communal  ser-

vices,  public  goods,  or  resources  without  making  contributions  or  payments.  This 

behavior  entails  generating  counterfeit  local  updates  to  acquire  the  globally  shared 

model  without  active  participation.  The  motivation  behind  this  practice  includes 

clients  fabricating  updates  to  conserve  local  CPU  cycles  and  computing  resources, 

possibly  due  to  a  lack  of  essential  data  or  concerns  regarding  data  privacy.  Lin  et 

al. [ 55]  introduced  the  concept  of  a  free  rider  attack  through  random  weights,  wherein a  deceptive  global  model  is  generated  using  random  weights.  Additionally,  they  proposed  the  Delta  Weights  Attack,  which  was  achieved  by  subtracting  two  previously 

received  global  models.  In  [ 22], Fraboni  et  al.  presented  the  free  rider  through  two mechanisms:  plain  free-riding,  where  participants  return  the  same  global  model,  and 

disguised  free-riding,  achieved  by  introducing  stochastic  perturbations  to  the  model’s 

parameters. 

4 

Privacy  Attacks  in  Federated  Learning 

Privacy  attacks  in  FL  aim  to  reveal  information  about  the  participants  involved  in  a 

task.  Privacy  attacks  within  FL  can  jeopardize  the  confidentiality  of  training  data  by 

exploiting  vulnerabilities  in  the  learning  process.  Attackers  may  target  the  inference 

stage  to  deduce  sensitive  information  about  participants  and  reconstruct  private  data 

by  scrutinizing  shared  model  parameters.  An  inference  attack  (refer  Fig. 6)  seeks  to ascertain  whether  a  specific  data  point  was  included  in  the  training  dataset  [ 88],  as expressed  by 

.  d target , M, I → {0 ,  1}

(1) 

where  .  d target =  (x, y)  is  represented  by  adversary  target  records,  .  M  represents  the target  pre-trained  model,  and.  I  denotes  the  prior  information  possessed  by  the  adversary.  In  Eq.  (1), 0  means.  d target =  (x, y)  does  not  belong  to  the  training  dataset  of.  M

and  1  otherwise. 

The  privacy  attacks  are  categorized  into  two  types:  (a)   Passive  attacks   which 

involve  inferring  characteristics  from  the  learning  process  without  modifying  the

[image: Image 116]
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Fig.  6  Inference  attack  in  federated  learning 

model.  These  attacks  generate  labeled  samples  to  distinguish  updates  based  on  data 

with  or  without  specific  properties,  often  using  a  binary  batch  classifier.  (b)   Active attacks   involve  the  adversary  manipulating  the  target  model,  leading  the  global  model to  learn  different  representations  for  data  with  and  without  specific  properties.  This 

significantly  disrupts  collaborative  learning  by  introducing  extra  local  computations 

and  uploading  modified  values. 

 4.1 

 Membership  Inference  Attack 

Membership  Inference  Attack  (MIA)  aims  to  ascertain  whether  a  specific  data  point 

.  (d target )  is  part  of  the  training  dataset  of  other  FL  participants.  The  attacker  operates  in  a  white-box  setting,  granting  access  to  central  aggregation  or  local  training, 

thereby  enabling  the  gathering  of  information  about  the  training  process  to  infer 

membership  [ 41].  For  example,  a  federated  model  generated  using  the  records  of patients  with  a  particular  disease  and  inferring  that  an  individual’s  record  is  among 

them  directly  influences  his  or  her  privacy  [ 66]. The  attacker  leverages  multiple versions  of  the  model  .  (M)  obtained  through  multi-round  training,  enhancing  their 

membership  inference  capabilities.  The  expanded  definition  of  the  attack  is  give  by 

.  d target , (M 1 , M 2 , M 3 , . . . , MR ), Iwhite → {0 ,  1}

which  involves  the  target  data  point,  a  series  of  model  versions  .  (M 1 , M 2 , M 3 , . . . , Mr ),  and  white-box  knowledge.  (Iwhite),  resulting  in  a  binary  outcome.0 ,  1. 
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Nasr  et  al. [ 73]  proposed  a  white-box  attack  in  active  and  passive  versions,  leveraging  client-side  or  server-side  knowledge.  They  target  privacy  vulnerabilities  in  the 

SGD  algorithm.  Additionally,  they  introduced  two  techniques,  Gradient  Ascent  and 

Client  Isolation,  to  enhance  the  attack’s  effectiveness.  Gradient  Ascent  negates  the 

influence  of  gradient  descent  on  testing  instances,  increasing  the  disparity  between 

data  points  used  for  training  and  those  excluded  from  training  the  victim  model. 

Client  Isolation  aims  to  overfit  the  victim  model  by  withholding  global  learning 

updates  from  the  victim  participant,  thereby  retaining  more  information  about  the 

training  dataset.  Chen  et  al. [ 15]  address  critical  limitations  in  [ 73], including  the requirement  for  the  attack  and  target  models  to  share  the  same  data  distribution  with 

some  intersections  and  not  explore  privacy  attacks  involving  malicious  participants 

launching  MIA.  They  introduced  a  targeted  MIA  involving  adversaries  with  white-

box  access  to  the  models  as  client-side  knowledge,  emphasizing  that  they  do  not 

share  labels.  Also,  high-quality  fake  samples  can  be  generated  using  GAN  for  the 

attack.  In  [127],  Zhang  et  al.  also  used  a  similar  strategy  for  the  passive  MIA. 

In  [ 94]  presented  innovative  Subject-level  Inference  Attacks  (SIA)  that  require partial  knowledge  about  subjects  in  the  training  data  and  rely  on  black-box  access  to 

model  predictions.  They  proposed  two  distinct  types  of  SIA:  one  that  requires  access 

to  the  trained  model  and  another  that  targets  intermediate  training  model  states,  which 

is  pertinent  when  the  adversary  is  involved  in  the  system.  Further,  Melis  et  al.  [ 66] 

demonstrated  MIA  by  inferring  unintended  properties  that  only  pertain  to  a  subset  of 

data  and  not  all  class  members  using  auxiliary  datasets.  In  [ 42],  Hu  et  al.  proposed a  source  inference  attack  in  FL  using  an  honest  but  curious  server’s  prediction  loss 

of  the  participating  clients’  local  model.  Gu  et  al.  [ 32]  proposed  MIA  based  on prediction  confidence  series  surpasses  that  of  [ 73]  and  addresses  local,  passive,  and active  global  adversaries.  In  [ 90]  introduced  MIA  at  both  the  model  and  user  levels using  GAN  to  handle  the  lack  of  labeling  of  the  newly  generated  data.  These  attacks 

aim  to  determine  whether  a  record  belongs  to  a  member  and  identify  the  specific 

member  to  whom  the  record  corresponds. 

 4.2 

 Feature  Inference  Attack 

An  attacker  infers  features/attributes  of  the  sensitive  data  by  recognizing  the  aggre-

gated  model  parameters.  Luo  et  al.  [ 58]  investigated  a  feature  inference  attack  in vertical  FL  in  which  the  active  party  tries  to  infer  feature  values  of  the  passive  party and  demonstrated  the  attack  on  linear  regression,  decision  tree  models,  neural  networks,  and  random  forest.  Further,  in  [ 66],  the  authors  demonstrated  MIA  by  inferring unintended  properties  that  only  pertain  to  a  subset  of  data  and  not  all  class  members 

using  auxiliary  datasets.  They  showcased  the  ability  of  an  adversarial  participant  to 

identify  specific  data  points,  like  exact  locations,  in  others’  training  data. 

Additionally,  they  highlighted  how  this  adversary  can  recognize  unique  properties 

in  a  subset  of  the  training  data,  distinct  from  the  properties  targeted  by  the  joint  model. 

The  paper  [108]  introduces  a  novel  poisoning-associated  property  inference  attack  in
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FL,  which  overcomes  limitations  such  as  achieving  satisfactory  performance  when 

the  global  model  has  converged  or  in  dynamic  FL  scenarios.  It  introduces  a  property-

specific  poisoning  mechanism  that  highlights  the  discriminatory  features  of  global 

model  updates  associated  with  the  target  property. 

 4.3 

 Reconstruction  Attack 

Reconstruction  attacks  focus  on  creating  a  probabilistic  representation  of  training 

set  samples  through  gradient  or  parameter-based  approaches. 

4.3.1

Gradient  Based 

In  FL,  participants  share  gradients  with  the  server.  However,  research  indicates  that 

information  can  potentially  be  extracted  from  publicly  shared  gradients,  revealing 

details  about  the  training  data  of  a  specific  client,  even  though  the  attack  has  par-

tial  client-side  knowledge  [137].  The  paper  [133]  addresses  the  challenges  associated  with  initialization  and  stability  problems  observed  in  [137]  by  introducing  an enhanced  gradient  approach.  This  attack  approach  is  successful  when  the  victim 

client  has  a  batch  size  set  to  one. 

The  authors  in  [ 77]  also  address  these  issues  using  a  Generative  Regression  Neural Network  (GRNN).  They  frame  the  attack  as  a  regression  problem,  employing  a 

GAN  for  generating  image  data  and  a  fully  connected  layer  for  producing  label  data. 

Through  joint  optimization,  GRNN  successfully  aligns  the  latent  space  of  the  GAN 

with  the  gradient  space  of  the  shared  global  model,  ensuring  the  stable  generation 

of  high-quality  training  data.  The  framework  [111]  demonstrates  the  adversaries’ 

capabilities  across  various  attack  settings  and  hyperparameter  configurations,  mainly 

focusing  on  passive  reconstruction  attacks  in  image  datasets.  Geiping  et  al. [ 29] uses optimization  techniques  and  a  magnitude-invariant  loss  to  exploit  reconstruction 

attacks  for  input  data.  In  [121], the  authors  applied  local  batch  norm  to  regularize high-fidelity  image  recovery  with  gradient  inversion,  even  for  complex  datasets  and 

large  batch  sizes  in  deep  neural  networks. 

4.3.2

Parameter  Based 

In  this  approach,  the  attack  surface  primarily  relies  on  the  clients’  parameters  instead 

of  the  gradient,  as  they  exchange  their  local  model  parameters  with  the  curator 

during  FL  rounds.  In  [109],  user-level  privacy  leaks  are  investigated  by  an  adversary possessing  server-side  knowledge.  The  approach  combines  a  GAN  with  a  multi-task 

discriminator  that  can  distinguish  between  client  identity,  authenticity,  and  category 

in  the  input  samples.  In  [122], the  adversary  leverages  partial  knowledge  from  both the  client  and  the  server  sides  in  an  optimization-based  approach  for  reconstructing 

text  in  Natural  Language  Processing  tasks,  focusing  on  record-level  privacy  leakage. 
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 4.4 

 Property  Inference  Attack 

This  attack  aim  to  deduce  uncorrelated  properties  from  the  client  or  the  participant 

population  in  FL  tasks.  These  attacks  focus  on  extracting  information  beyond  the  pri-

mary  task  of  FL  models,  seeking  to  infer  specific  attributes  not  expected  to  be  shared. 

Examples  include  determining  features  like  eye  color  in  a  face  detection  model  or 

discerning  attributes  unrelated  to  the  primary  task,  such  as  detecting  individuals 

wearing  glasses  in  a  model  designed  for  race  or  gender  recognition. 

There  are  two  types  of  property  inference  attacks  centered  on  launch  time:   static 

and   dynamic.  Static  attacks  occur  after  training  with  a  predetermined  target  set,  while dynamic  attacks  occur  during  training  with  a  changing  set.  Property  inference  attacks 

also  be  categorized  according  to  the  attacker’s  objective  into   population  distribution 

and   individual  distribution. 

4.4.1

Population  Distribution 

Property  on  population  distribution  infers  feature  distribution  in  a  federated  client 

population.  In  [ 26],  the  authors  addressed  the  issue  of  static  attacks  where  adversaries target  the  population  distribution.  They  introduced  a  method  for  deducing  global 

properties  of  training  data  in  white-box  Fully  Connected  Neural  Networks  (FCNNs), 

organizing  the  network  into  a  canonical  form,  representing  each  layer  as  a  set. 

In  [130], Zhang  et  al.  examined  security  in  horizontal  FL,  considering  adversaries as  servers  or  malicious  clients  impacting  population  distribution.  They  proposed  a 

passive  attack  to  infer  sensitive  attribute  distribution  in  the  training  population,  lim-

iting  attackers  to  external  information  and  bypassing  the  need  for  direct  access  to 

participants’  private  data. 

4.4.2

Individual  Distribution 

The  goal  of  the  individual  distribution  is  to  detect  a  property  within  the  target  client unrelated  to  the  primary  task  in  FL.  In  [ 85],  the  authors  introduced  a  novel  active attack  using  a  metaclassifier  to  exploit  unintended  features  in  a  subset  of  participants’ 

data,  incorporating  adjustable  parameters  for  increased  effectiveness.  Melis  et  al.  [ 66] 

disclosed  unintended  features  in  FL  using  the  non-zero  gradient  method.  In  [118],  the authors  investigated  subject-level  privacy  inference  during  training,  studying  passive 

and  active  property  attacks.  The  active  approach  uses  CycleGAN  to  reconstruct 

gradients  with  the  target  attributes.  Hu  et  al.  [ 42]  proposed  a  source  inference  attack in  FL  that  surpasses  the  MIA  by  identifying  the  source  of  training  members.  Wang 

et  al.  [108]  proposed  a  dynamic  attack  that  utilizes  periodic  model  updates  to  infer the  presence  and  timing  of  a  sensitive  property. 
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 4.5 

 Label  Inference  Attack 

Label  inference  attack  aims  to  infer  the  labels  of  training  samples  by  extracting 

ground-truth  labels  from  the  gradients  of  either  a  single  or  a  batch  of  target  records. 

In  [141],  the  authors  accurately  deduce  the  labels  in  vertical  FL  when  employing  small batch  sizes,  utilizing  both  local  batch-averaged  gradient  information  and  the  gradient 

sign.  Also,  Fu  et  al.  [ 23]  infer  the  labels  in  vertical  FL  using  gradient  information and  the  sign. 

5 

Defense  Strategy  Against  Federated  Learning  Attacks 

This  section  delves  into  the  defense  strategies  aimed  at  mitigating  security  and  privacy 

attacks  within  the  framework  of  FL.  Figure  7  illustrates  various  defense  methods. 

 5.1 

 Defense  Approaches  for  Security  Attack 

In  this  section,  we  explore  the  various  defense  methodologies  proposed  to  protect  the 

robustness  of  FL  against  security  threats.  These  defense  strategies  can  be  categorized 

into  five  types. 

Fig.  7  Taxonomy  of  various  defense  approaches  against  FL  attacks
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5.1.1

Robust  Aggregation  Method 

Robust  aggregation  methods  are  incorporated  during  the  aggregation  phase  on  the 

server  side  to  safeguard  the  model  against  poisoning  attacks.  Studies  indicate  that 

FedAvg  [ 64]  is  susceptible  to  poisoning  attacks,  as  it  aggregates  the  received  updates from  participants  using  the  arithmetic  mean.  Instead  of  FedAvg,  researchers  have 

suggested  robust  aggregation  rules  to  discern  and  exclude  malicious  models  during 

the  aggregation  process.  Median  substitutes  the  arithmetic  mean  with  the  median  of 

the  model  updates  [120].  Trimmed-mean  filters  a  fixed  percentage  of  extreme  values below  and  above  the  data  distribution  [113]. The  geometric  mean  determines  the central  tendency  of  the  data  distribution  by  utilizing  the  product  of  values.  Norm 

thresholding  limits  participants’  contribution  by  clipping  the  model  updates’  norm 

to  a  fixed  value  [ 93]. The  Krum  aggregation  method  sorts  clients  according  to  the geometric  distances  of  their  model  updates  and  selects  the  one  that  is  closest  to  the 

majority  to  serve  as  the  aggregated  model.  Multikrum  follows  a  similar  approach  to 

Krum,  aggregating  the  first .  k  models  for  the  aggregation  [ 8]. 

In  the  research,  [ 33]  proposed  Bulyan,  combining  MultiKrum  and  trimmed-mean aggregation  to  create  operators  preventing  poisoning  attacks.  The  major  limitation 

of  this  method  is  that  it  focused  on  IID  distribution.  Fung  et  al.  proposed  FoolsGold, 

which  analyzes  the  gradient  updates  to  eliminate  the  malicious  updates  based  on 

the  similarity  of  the  models  [ 25].  In  [ 75],  the  authors  introduced  RFA,  which  aggregates  model  updates  via  weighted  geometric  median  using  a  smoothed  Weiszfeld-

type  algorithm,  ensuring  individual  distribution  remains  undisclosed.  The  researchers 

employed  several  robust  methods,  such  as  ZeKoC  [ 17], FLTrust  [ 11], ShieldFL  [ 63], Adaptive  Model  Averaging  [ 71], Residual-based  Reweighting  [ 24], SEAR  [134], FedGuard  [ 14]  and  [ 20]. 

5.1.2

Anomaly  Detection 

In  this  defense  strategy,  the  server  discovers  adverse  model  updates,  excludes  these 

adverse  model  updates,  and  then  aggregates  the  benign  models.  This  procedure 

attempts  to  improve  the  system’s  accuracy  and  diminish  the  negative  impacts  of 

malevolent  client  updates.  In  [ 79], the  authors  proposed  a  novel  agnostic  defense named  DDaBA,  which  relies  on  a  dynamic  aggregation  operator  utilizing  the  induced 

ordered  weighted  averaging  operator  in  a  non-IID  setting.  Zhang  et  al. [132] introduced  SecFedNIDS,  countering  poisoned  model  detection  with  model-level  and 

data-level  defenses.  The  first  one  employs  a  gradient-based  approach  for  selecting 

important  model  parameters  and  an  online  unsupervised  method  for  poisoned  model 

detection,  while  the  second  one  uses  class  path  similarity  and  layer-wise  relevance 

propagation  to  distinguish  clean  and  poisoned  traffic  data  among  clients.  In  [ 57], malicious  participants  are  detected  during  the  pre-aggregation  phase,  while  in  [101], anomalies  in  updates  are  identified  using  a  density-based  approach. 

In  [ 2],  Andreina  et  al.  proposed  BaFFLe,  which  uses  clients  to  train  and  validate  the global  model.  In  each  round,  validating  clients  check  the  global  model  for  poisoning
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updates.  The  decision  to  accept  or  reject  the  global  model  is  collectively  made  by 

validating  clients.  In  [ 53],  malicious  model  detection  employs  the  Local  Malicious Factor  (LoMar),  calculated  by  measuring  the  relative  distribution  of  updates  from 

each  remote  client  among  their  neighbors  using  kernel  density  estimation  along  with 

an  optimal  threshold  employed  to  distinguish  malicious  and  benign  updates.  In  [ 96], Principal  Component  Analysis  (PCA)  was  proposed  against  targeted  attacks  in  FL. 

Jebreel  et  al.  [ 44]  proposed  to  counter  targeted  label-flipping  and  backdoor  attacks. 

The  method  calculates  the  angle  similarity  between  workers’  last-layer  gradients, 

compresses  the  resulting  vectors  using  PCA,  and  adjusts  the  weights  based  on  their 

distance  from  the  centroid  of  the  compressed  similarity  vectors.  Jebreel  et  al.  [ 45] 

also  discussed  a  similar  approach  for  targeted  label-flipping  attacks.  In  [135],  the authors  proposed  a  GAN-based  approach  to  detect  malicious  updates. 

Some  studies  have  employed  clustering  approaches  for  anomaly  detection  to  iden-

tify  malicious  entities.  The  authors  in  [131]  proposed  FLDetector,  which  identifies and  removes  potential  malicious  clients  by  evaluating  their  suspicious  scores  derived 

from  the  Euclidean  distances  between  predicted  and  received  model  updates.  Using 

Gap  statistics,  clients  are  clustered  based  on  these  scores,  and  if  more  than  one  clus-

ter  emerges, .  k-means  is  employed  to  create  two  clusters.  Malicious  clients  are  then identified  within  the  cluster  with  higher  average  suspicious  scores.  The  detection 

process  concludes  when  at  least  one  client  is  labeled  as  malicious,  triggering  the 

removal  of  such  clients  and  aggregating  the  remaining  models.  In  another  work,  [ 47] 

detects  the  data  quality  of  each  client  and  involves  identifying  malicious  clients  by 

reconstructing  a  distribution  across  a  latent  feature  space. 

The  authors  in  [103]  proposed  a  free-rider  attack  detection  scheme  for  FL,  utilizing a  deep  autoencoding  Gaussian  mixture  model  based  on  contribution  and  reputation. 

Contribution  values  are  calculated  by  considering  computing  resources,  communi-

cation  costs,  and  data  quality  for  each  node  (edge  device)  in  the  model.  Employing 

PageRank  algorithms,  the  authors  create  an  optimized  reputation-based  model  to 

select  benign  nodes  fairly  and  precisely  in  federated  training  under  information  asym-

metry,  maintaining  robust  defense  even  when  up  to  80%  of  clients  are  free-riders. 

In  [107], the  authors  introduced  a  secure  and  fair  FL  scheme  utilizing  parameter audit  to  counteract  free-rider  attacks. 

5.1.3

Modification  of  Learning  Parameters 

The  server  implements  a  dynamic  learning  rate  adjustment  to  strengthen  the  defense 

approach,  influencing  the  weights  of  the  aggregated  local  participants  model  and  the 

previous  global  model.  In  [ 74], the  authors  proposed  the  Robust  Learning  Rate  (RLR) against  backdoor  attacks  in  FL.  In  this  defense  strategy,  During  the  FL  round,  the 

server  modifies  the  learning  rate  for  each  dimension  based  on  the  gradient  sign  infor-

mation  from  participating  nodes.  The  approach  involves  evaluating,  for  each  dimen-

sion,  whether  the  participating  clients  agree  on  the  direction  of  the  model  update  by 

comparing  it  to  a  predefined  threshold.  If  the  agreement  exceeds  the  threshold,  the 

learning  rate  remains  unchanged;  otherwise,  the  sign  of  the  learning  rate  is  modified. 
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5.1.4

Adversarial  Training  Approaches 

Adversarial  training  is  an  active  defense  technique  implemented  on  the  client  side. 

Instead  of  relying  exclusively  on  original  samples,  the  local  client  trains  the  model 

using  a  combination  of  adversarial  samples  and  actual  samples.  This  approach  aims 

to  strengthen  the  classification  model,  making  it  more  resilient  to  attacks.  Hallaji  et 

al.  [ 35]  proposed  a  defense  mechanism  incorporating  adversarial  training  and  label noise  analysis  defense  against  the  backdoor  and  label  flipping  attack.  The  method 

involves  a  Generative  Adversarial  Label  Poisoner  (GALP),  injecting  artificial  label 

noise  into  client  networks.  When  combined  with  neural  network  models  that  can 

handle  random  noise,  this  approach  allows  the  neural  networks  to  accurately  capture 

the  distribution  of  potential  label  poisoning  attacks.  Shah  et  al. [ 81]  and  Zizzo  et al.  [140]  also  explored  adversarial  training  against  the  poisoning  attack  in  FL. 

5.1.5

Model  Pruning 

The  model  pruning  defense  strategy  involves  removing  unnecessary  parameters 

or  reducing  the  model’s  size  by  focusing  on  relevant  features.  This  technique  is 

employed  in  FL  methods  to  reduce  the  effects  of  model  poisoning  attacks,  either 

on  the  server  or  client  side.  On  the  server  side,  pruning  is  performed  during  the 

aggregation  phase,  while  on  the  client  side,  pruned  models  are  shared  after  the 

aggregation  process.  A  significant  advantage  of  this  approach  is  the  reduction  in 

communication  costs.  In  [ 67],  the  authors  proposed  FLAP,  a  data-agnostic  server-side  post-aggregation  pruning  approach,  to  bolster  the  Byzantine  robustness  of  FL 

by  eliminating  malicious  updates.  Jiang  et  al.  [ 48]  introduced  PruneFL,  a  two-stage adaptive  and  distributed  pruning  method  initially  implemented  on  the  client  side  and 

subsequently  extended  to  encompass  both  the  client  and  the  server  sides.  In  [136],  the authors  introduced  FedPAGE,  which  accelerates  the  entire  training  process  through 

an  adaptive  pruning  approach. 

 5.2 

 Defense  Approaches  for  Privacy  Attack 

As  outlined  in  Sect. 4, FL  is  inherently  susceptible  to  privacy  breaches.  The  sharing of  model  updates  and  gradients  between  devices  can  potentially  compromise  sensitive  information.  The  researchers  have  explored  different  confidentiality  and  privacy 

preservation  approaches  to  mitigate  this  challenge. 

5.2.1

Encryption-Based  Method 

Encryption  techniques  like  Homomorphic  Encryption  (HE)  and  Secure  Multi-Party 

Computation  (SMPC)  are  essential  for  ensuring  the  confidentiality  of  model  param-
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eters  and  gradients  during  communication.  HE  enables  computations  to  be  carried 

out  on  encrypted  data  without  the  need  for  decryption.  The  core  concept  of  HE  is 

expressed  as 

.  E ( f (x 1 ∗  x 2 ∗ · · · ∗  xn )) =  E ( f (x 1 )) ∗  E ( f (x 2 )) ∗  E ( f (x 3 )) ∗ · · · ∗  E ( f (xn )) (2) 

where  .  f  is  a  computation  function  applied  on  local  model  parameters  or  gradients 

.  (x 1 , x 2 , . . . , xn ), .  E  denotes  the  encryption  function  on .  f ,  and . ∗ represents  the  holo-morphic  operation.  Equation  (2)  illustrates  that  encrypting  the  computation  is  equivalent  to  performing  the  computation  on  encrypted  data.  Aono  et  al.  [ 3]  employed  an HE  method  to  safeguard  participants’  shared  parameters  from  an  honest  but  curious 

server,  ensuring  the  privacy  of  sensitive  information.  This  approach  encompasses 

the  encryption  of  participants’  trained  parameters  before  transmission,  successfully 

thwarting  the  extraction  of  information  by  the  curious  server  while  upholding  accu-

racy  levels  similar  to  those  observed  in  centralized  deep  learning  algorithms.  In  the 

context  of  industrial  intelligence,  Hao  et  al.  [ 36]  introduced  an  FL  framework  that prioritizes  privacy  preservation  through  the  incorporation  of  homomorphic  ciphertext 

and  the  implementation  of  a  distributed  Gaussian  mechanism  at  a  cloud  server. 

Chen  et  al.  [ 16]  introduced  FedHealth,  a  novel  federated  transfer  learning  framework  tailored  for  wearable  healthcare,  effectively  tackling  the  issues  of  data  islanding 

and  personalization.  Employing  FL  and  HE,  FedHealth  combines  data  from  varied 

organizations,  ensuring  the  confidentiality  of  user  information  while  building  robust 

ML  models.  Zhang  et  al. [124]  introduced  BatchCrypt,  which  is  designed  for  cross-silo  FL,  effectively  minimizing  encryption  and  communication  overhead  attributed 

to  HE.  Rather  than  encrypting  individual  gradients  with  full  precision,  BatchCrypt 

encodes  batches  of  quantized  gradients  into  a  singular  encrypted  integer,  resulting 

in  a  notable  training  speedup  (.23 x − 93 x)  and  a  significant  reduction  in  communication  overhead.  In  [128],  Zhang  et  al.  employed  FL  within  an  IoT-based  healthcare system  to  fortify  the  security  of  local  models  against  diverse  attacks,  utilizing  cryptographic  primitives  such  as  masks  and  HE.  The  determination  of  the  contribution  rate 

of  local  models  to  the  global  model  in  each  training  epoch  is  based  on  the  quality  of 

the  dataset.  Furthermore,  they  introduced  a  dropout-tolerable  scheme,  ensuring  the 

uninterrupted  progress  of  the  FL  process  unless  the  number  of  online  clients  drops 

below  a  predefined  threshold. 

In  the  case  of  HE-based  systems,  clients  encrypt  their  local  updates,  and  aggre-

gation  occurs  on  the  client’s  ciphertext,  providing  a  high  level  of  security.  However, 

this  approach  is  accompanied  by  drawbacks,  including  substantial  communication 

and  computation  overhead.  Moreover,  the  risk  of  collusion  between  the  server  and 

clients  poses  a  potential  threat,  allowing  the  decryption  of  local  model  updates  from 

ciphertexts.  On  the  other  hand,  SMPC  adopts  a  collaborative  approach  where  all  users 

work  together  to  protect  privacy.  This  strategy  boasts  advantages  such  as  maintain-

ing  accuracy  and  incurring  low  computation  overhead.  SMPC  allows  collaborative 

computation  on  encrypted  inputs  without  revealing  the  individual  data.  The  secure 

computation  of  a  function.  f  on  inputs.  x 1 , x 2 , x 3 , . . . , xn  across.  n  parties  is  given  by
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.  f (x 1 , x 2 , x 3 , . . . , xn ) =  f (E (x 1 ), E (x 2 ), E (x 3 ), . . . , E (xn )) where  .  E  represents  the  encryption  function,  .  f  is  a  function  of  joint  computation performed  on  the  encrypted  inputs  .  E(x 1 ),  .  E(x 2 ),  .  E(x 3 ), …, .  E(xn). Xu et al. [116] 

introduced  a  novel  FL  framework,  VerifyNet,  which  prioritizes  privacy  and  verifiabil-

ity.  The  framework  utilizes  a  double-masking  protocol  to  maintain  the  confidentiality 

of  users’  local  gradients,  while  also  employing  secure  sharing  and  additive  perturba-

tion  techniques  in  FL  to  protect  local  gradients  throughout  the  training  process.  Shi 

et  al.  [ 87]  presented  a  privacy-preserving  scheme  for  FL  that  combines  the  homomorphic  aspects  of  both  secret  sharing  and  encryption.  Their  approach  ensures  the 

confidentiality  of  local  parameters,  resists  collusion  threats  within  a  specified  range, 

supports  client  dropout,  allows  aggregation  without  the  need  for  key  sharing,  and  pre-

serves  a  simple  interaction  process.  Furthermore,  the  cryptographic  functionality  is 

validated  using  the  ProVerif  protocol  tool,  and  the  theoretical  complexity  is  analyzed 

and  compared  with  similar  schemes.  Gao  et  al.  [ 27]  introduced  a  transfer  learning strategy  to  handle  covariate  shifts  and  establish  connections  across  distinct  feature 

spaces  of  data  owners  while  ensuring  robust  privacy  preservation.  Their  comprehen-

sive  privacy-preserving  multi-party  learning  approach  incorporates  HE  and  secret 

sharing  techniques  to  establish  a  secure  and  efficient  framework  for  heterogeneous 

federated  transfer  learning. 

5.2.2

Perturbation-Based  Method 

In  the  perturbation-based  approach  DISTPAB  [ 13],  an  algorithm  designed  for  distributed  perturbation,  privacy  challenges  in  horizontally  partitioned  data  are  tack-

led  by  leveraging  resource  asymmetry  in  distributed  environments.  Noising  before 

model  aggregation  FL  (NbAFL)  [110]  prevents  information  leakage  by  introducing artificial  noise  to  parameters  at  the  clients’  side  before  aggregation.  The  theoretical  analysis  confirms  NbAFL’s  compliance  with  differential  privacy  across  different 

protection  levels,  exposing  a  tradeoff  between  convergence  performance  and  privacy 

protection.  Furthermore,  the  authors  introduce  a  random  scheduling  strategy  with  a 

variable  number  of  clients  in  each  aggregation  round.  Truex  et  al. [ 97]  introduced a  novel  method  that  integrates  both  SMPC  and  differential  privacy,  effectively  mitigating  trade-offs.  This  approach  offers  a  scalable  solution  that  safeguards  against 

inference  threats  while  maintaining  a  high  level  of  model  accuracy. 

Liu  et  al. [ 56]  proposed  a  novel  adaptive  noise  perturbation  or  masking  scheme designed  to  protect  clients’  privacy  in  FL  with  minimal  communication  and  computational  expenses,  while  preserving  the  accuracy  of  the  global  model.  This  approach 

dynamically  modifies  the  noise  magnitude  according  to  local  model  updates,  incor-

porates  direction-based  filtering  to  accelerate  FL  model  convergence,  and  theoreti-

cally  ensures  accuracy  and  convergence  rates  comparable  to  non-private  FL  using 

SGD.  In  [138],  the  authors  introduced  a  perturbed  model  compression  method  that decreases  the  model  size,  improves  privacy,  and  allows  for  concurrent  decryption 

and  decompression  operations  using  a  reconstruction  algorithm  on  encrypted  and
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compressed  model  parameters.  Their  model  attained  a  compression  ratio  of  0.0953, 

preserving  an  accuracy  of  97%,  in  contrast  to  the  non-compressed  accuracy  of  98% 

on  the  MNIST  dataset. 

5.2.3

Knowledge  Distillation  Method 

Knowledge  Distillation  (KD)  involves  a  fully  trained  network  transferring  its  knowl-

edge  gradually  to  a  smaller  model,  enabling  the  reduced  model  to  accurately  predict 

classification  tasks.  This  not  only  lowers  the  computational  cost  but  also  enhances 

security  by  sharing  knowledge  rather  than  model  parameters.  The  study  by  Zhu  et 

al.  [139]  introduced  Federated  Distillation  via  Generative  Learning  (FEDGEN),  a data-free  knowledge  distillation  approach  for  heterogeneous  FL.  FEDGEN  employs 

a  lightweight  generator  learned  by  the  server  to  ensemble  user  information  in  a  data-

free  manner,  broadcasting  it  to  the  users.  This  generator  guides  local  training,  serving 

as  an  inductive  bias  and  introducing  minimal  overhead  to  the  existing  FL  framework 

by  operating  in  a  smaller  latent  space. 

In  [129], the  authors  introduced  FedFTG,  a  data-free  KD  technique  for  refining  the  global  model  on  the  server.  This  method  addresses  the  challenge  of  directly 

aggregating  models  by  employing  a  generator  to  explore  the  input  space  of  local 

models,  facilitating  knowledge  transfer  to  the  global  model.  It  incorporates  a  hard 

sample  mining  technique  to  enhance  Knowledge  Distillation  (KD)  during  training. 

Additionally,  knowledge  utilization  is  optimized  through  tailored  label  sampling  and 

class-level  ensemble  strategies.  The  authors  in  [112]  introduced  FedKD,  emphasizing its  relevance  in  cross-silo  scenarios,  featuring  adaptive  mutual  knowledge  distillation 

and  dynamic  gradient  compression  techniques.  In  FedKD,  a  small  model  (mentee) 

and  a  large  model  (mentor)  collaborate  to  learn  and  distill  knowledge.  The  recipro-

cal  learning  between  the  local  mentor  and  its  mentees  is  facilitated  by  an  adaptive 

mutual  distillation  method,  where  distillation  intensity  self-adjusts  based  on  predic-

tion  correctness.  This  proposed  approach  efficiently  reduces  communication  costs 

while  enhancing  model  accuracy.  Qiao  explored  KD  in  a  non-IID  setting,  exploring 

the  optimal  location  and  methodology  for  distillation  [129].  The  study  highlighted superior  performance  by  conducting  distillation  before  the  classification  head  at  a 

specific  feature  layer.  Center  Kernel  Alignment  emerged  as  the  most  effective  loss 

metric  among  those  tested. 

Table  2  summarizes  work  related  to  defense  mechanisms  against  FL  attacks  discussed  above. 

 5.3 

 Integration  of  Blockchain  and  FL 

Nakamoto  created  the  Bitcoin  cryptocurrency  in  2008  [ 72],  which  is  a  decentralized and  transparent  peer-to-peer  system.  Blockchain  is  the  technology  that  underpins 

Bitcoin,  and  it  is  employed  in  a  variety  of  applications  due  to  its  unique  properties. 
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Table  2  Different  defense  approaches  against  security  and  privacy  attacks  in  FL  systems Attack  type

Defense  approach

References 

Security  attack

Robust  aggregation

[ 4, 8, 11, 14, 17, 20, 24, 25, 

33, 63, 64, 71, 75, 93, 120, 

134] 

Anomaly  detection

[ 2, 44, 45, 47, 53, 57, 79, 96, 

101, 107, 131, 132, 135] 

Modification  of  learning 

[ 74] 

parameters 

Model  pruning

[ 48, 67, 136] 

Adversarial  training  approach

[ 35, 81, 140] 

Privacy  attack

Encryption  based  method

[ 3, 16, 27, 36, 87, 116, 124, 

128] 

Perturbation  based  method

[ 56, 97, 110, 138] 

Knowledge  distillation  method 

[112, 129, 129, 139] 

The  most  prominent  feature  of  a  blockchain  network  is  that  it  employs  a  publicly 

distributed  ledger  that  is  shared  across  all  nodes  in  the  network.  In  this  network,  all 

nodes  communicate  and  validate  new  blocks  using  a  protocol  powered  by  miners. 

This  protocol  also  enables  information  transparency  by  allowing  miners  to  audit  the 

ledger  at  any  time.  Furthermore,  the  data  within  every  block  is  immutable,  ensuring 

that  it  cannot  be  modified  after  it  has  been  produced.  Each  miner  keeps  a  local  copy 

of  the  whole  Blockchain,  and  the  block  contains  transaction  details  and  the  hash 

of  the  preceding  block.  The  block  is  also  validated  using  consensus  techniques.  The 

fundamental  characteristics  of  Blockchain  technology  are  decentralized  architecture, 

immutability,  traceability,  security,  and  transparency  [ 19]. 

By  combining  Blockchain  and  FL,  we  can  effectively  address  the  challenges 

discussed  in  Sect. 2.1.3. This  approach  offers  secure  model  storage  and  data  verification,  enhanced  data  security,  accountability  and  confidentiality,  and  transparent, 

immutable  decision-making  processes.  Recent  studies  exploring  the  integration  of 

Blockchain  and  FL  primarily  focus  on  applications  in  the  Internet  of  Things  (IoT), 

smart  cities,  healthcare,  etc.  For  instance,  Ferrag  et  al. [ 21]  demonstrated  the resilience  of  a  smart  grid  energy  architecture  against  cyber  threats  by  employing 

the  backpropagation  through  time  method  and  a  Practical  Byzantine  Fault  Tolerance 

(PBFT)  consensus  mechanism.  Their  model  achieved  impressive  accuracy  rates  of 

98.23%,  98.20%,  and  96.25%  on  the  CICIDS-2017,  power  system,  and  BoT-IoT 

datasets,  respectively. 

Rehman  et  al. [ 98]  introduced  an  approach  to  FL  that  incorporates  Blockchain  and fine-grained  reputation  awareness,  ensuring  trustworthiness  in  collaborative  training. 

They  leverage  a  public  proof-of-work  (PoW)  mechanism  to  uphold  privacy.  Ma  et 

al. [ 61]  introduced  a  decentralized  accountability  approach  that  verifies  model  quality  on  the  Blockchain,  encouraging  participation  and  identifying  low-quality  FL  ser-

vices.  The  system  employed  a  PoW  mechanism  to  preserve  privacy.  Miao  et  al.  [ 68]
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proposed  a  privacy-preserving  training  approach  utilizing  CKKS  encryption  and 

Blockchain,  effectively  eliminating  malicious  gradients  through  cosine  similarity. 

Their  system  incorporates  the  public  PBFT  mechanism  and  demonstrates  improve-

ments  in  credibility,  robustness,  and  efficiency. 

In  [ 5],  the  authors  proposed  an  FL  and  Blockchain-enabled  fog-IoT  platform designed  for  wearables  in  predictive  healthcare,  with  the  implementation  based  on 

Hyperledger  Fabric.  In  [123], researchers  proposed  an  adaptive  method  employing  two-trapdoor  HE  to  encrypt  the  client’s  parameters  or  gradients.  This  approach 

is  designed  to  resist  inference  attacks,  and  the  researchers  also  introduced  mecha-

nisms  for  calculating  confidence  and  contribution  to  counter  poisoning  and  free-rider 

attacks. 

6 

Unified  Federated  Learning  Framework 

This  section  presents  a  comprehensive  framework  that  integrates  FL  with  Blockchain 

to  enhance  trust  through  decentralized  tamper-resistant  collaboration,  as  depicted 

in  Fig. 8.  The  proposed  framework  exhibits  resilience  against  adversarial  attacks, including  data  poisoning  and  inference  attacks.  The  framework  has  proven  applicability  across  diverse  domains,  including  Healthcare,  Cyber  Threat  Intelligence, 

Cyber-Physical  Systems,  the  Internet  of  Things,  and  any  other  areas  dealing  with 

sensitive  data.  Blockchain  features  are  seamlessly  integrated  to  ensure  the  trustwor-

thiness  of  this  unified  federated  framework.  The  proposed  architecture  comprises 

three  key  components:  (a)  the  trusted  authority,  (b)  the  clients,  and  (c)  the  Blockchain. 

The  trusted  federated  server,  assumed  to  be  curious,  initiates  the  global  model  and 

controls  the  federation  process.  Client  devices  leverage  their  local  data  and  comput-

ing  resources  to  execute  the  global  model  for  training.  The  workflow  of  the  unified 

framework  is  outlined  below. 

1.  The   Parameter  Initializer   on  the  trusted  authority  creates  an  initial  global  model with  training  hyperparameters  such  as  batch  size,  local  epochs,  number  of  federated  iterations,  number  of  nodes,  and  learning  rate.  Moreover,  the   Parameter 

 Initializer   stores  the  actual  model  file  in  a  distributed  file  system,  like  Inter-Planetary  File  System  (IPFS),  which  generates  a  unique  hash  for  the  model.  A 

transaction  is  then  created  on  the  blockchain  using  trusted  authority  credentials, 

which  include  metadata  about  the  model,  such  as  model  version,  training  details, 

and  the  CID  from  IPFS. 

2.  The  client  participated  in  the  training,  which  collects  sensitive  raw  data  from  the 

edge  devices  in  the  data  collection  phase.  Then  the   Data  Preprocessor   module 

preprocess  the  collected  sensitive  raw  data  to  create  preprocessed  data  for  local 

model  training.  The   Data  Pre-processor   performs  data  cleaning,  normalization, 

noise  reduction,  image  scaling,  etc. 

3.  The  client’s   Local  Model  Trainer   receives  the  shared  global  model  from  the 

Blockchain,  where  it  is  securely  stored  with  version  tracking  and  validation

[image: Image 117]
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Fig.  8  Attack  resilient  unified  framework  using  the  integration  of  FL  and  blockchain  for  enhanced security 

enabled  by  smart  contracts.  Each  client  accesses  the  Blockchain,  verifies  the  latest 

global  model’s  integrity  using  metadata,  such  as  its  hash,  and  downloads  it  for 

local  use.  Using  Blockchain  transaction  hashes,  the   Local  Model  Trainer   fetches 

the  latest  verified  global  model  version  for  secure,  consistent  local  training  on 

preprocessed  data.  Also,  it  gets  the  training  samples  from   Dataset  Sampler   by 

dividing  the  preprocessed  data  into  a  predetermined  training  set  and  a  test  set. 

Then   Local  Model  Trainer   performs  the  local  model  training,  and  the  trained 

local  model  parameter  is  handed  over  to  the   Local  Differential  Privacy  Module. 

4.  Then,  the   Local  Differential  Privacy  Module   perturbs  the  gradients  based  on  each local  instance,  effectively  reducing  the  likelihood  of  success  for  membership 

inference  attacks.  Subsequently,  the  local  model  parameter  is  handed  over  to  the 

 Quality  Estimator   for  the  model  quality  valuation. 

5.  The   Quality  Estimator   evaluates  the  performance  of  their  local  models  using  two metrics:   Cross  Entropy  (CE)  loss   and  the   Euclidean  distance  [ 95].  Each  received local  model  in  the  current  round  compares  the  CE  loss  of  the  local  model  with  the 

current  global  model.  It  is  presumed  that  the  CE  loss  of  the  clean  client  decreases 

as  the  training  progresses,  but  the  CE  loss  of  the  noisy  client  is  maintained  at
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a  higher  level  due  to  contaminated  data  on  the  noisy  client.  Also,  the  majority 

of  collaborative  local  models  tend  to  converge  in  the  same  direction.  Moreover, 

as  the  training  progresses,  the  Euclidean  distance  between  a  clean  client’s  local 

model  and  the  updated  global  model  narrows,  but  for  the  noisy  client,  it  deviates 

highly.  Based  on  this  loss,  assign  a  reputation  for  each  client.  Those  having  a 

higher  loss  decrease  their  reputation.  These  estimated  values  (.  Q 1)  and  the  local model  are  stored  in  IPFS  and  then  recorded  in  the  blockchain. 

6.  In  each  federation  epoch,  the   Performance  Evaluator   of  the  Trusted  Authority 

extracts  the  client’s  information  from  the  Blockchain  via  smart  contract  and  eval-

uates  the  performance  of  the  client’s  local  model.  Also,  the  Trusted  Authority 

creates  an  auxiliary  dataset  generated  by  a  GAN  from  the  clean  dataset  to  evalu-

ate  the  reputation  of  the  client.  Then,  Performance  Evaluator   retrieves  the  latest 

local  models  from  the  Blockchain  and  validates  the  model  using  an  auxiliary 

dataset.  This  validation  score  (.  Q 2)  is  used  for  another  metric  for  each  client’s trust  score  calculation  for  detecting  the  malicious  nodes. 

7.  The   Federated  Aggregator  (Secure  FedAvg)   module  selects  clients  with  high  trust scores  using .  Q 1 and .  Q 2.  It  then  aggregates  the  local  updates  to  revise  the  global model.  Subsequently,  the  new  global  model  with  aggregated  parameters  is  saved 

to  IPFS  and  recorded  on  the  blockchain. 

8.  Clients  continuously  monitor  the  Blockchain  for  the  updated  global  model.  If 

the  client  receives  a  new  version  of  the  global  model,  it  checks  if  the  required 

federation  rounds  have  been  reached  and  decides  when  to  terminate  the  training 

process.  When  the  federated  rounds  are  over,  then  the  prediction  is  performed; 

otherwise,  the  procedure  is  repeated  from  Step  3  until  the  federation  epoch  is 

reached. 

7 

Open  Research  Challenges 

This  section  discusses  the  current  issues  in  FL,  and  some  possible  alternatives  are 

also  explored,  which  might  lead  to  new  research  directions. 

1.  Incentive  Mechanism:  Integrating  an  incentive  mechanism  into  the  FL  model  to 

offer  participants  specific  incentives  can  effectively  manage  and  discipline  their 

actions  while  also  encouraging  them  to  deliver  accurate  training  data.  There  is 

currently  no  comprehensive  research  on  how  to  distribute  incentives  in  a  decen-

tralized  manner  in  order  to  reduce  malicious  intentions. 

2.  Sparsification  and  quantization:  Sparsification  in  FL  systems  can  be  used  to 

achieve  optimal  communication  resource  usage.  When  the  number  of  selected 

nodes  increases,  it  may  not  be  possible  to  provide  a  cost-effective  resource  man-

agement  solution.  We  compress  the  data  by  using  quantization,  although  this  has 

an  impact  on  performance.  There  is  also  a  trade-off  between  the  efficient  usage 

of  communication  resources  and  the  convergence  time. 
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3.  Clustering  the  heterogeneous  data:  The  data  collected  by  devices  from  Healthcare, Cyber  Threat  Intelligence,  Cyber-Physical  Systems,  etc.,  are  diverse  in  nature. 

The  existing  aggregation  techniques  do  not  guarantee  an  improvement  in  overall 

system  performance.  To  address  these  challenges,  cluster  the  clients  with  similar 

features  like  data  distribution,  resource  utilization,  and  computational  capability. 

Subsequently,  randomly  select  a  cluster  head,  who  is  responsible  for  constructing 

sub-grouped  local  models,  transferring  model  parameters  and  the  sub-grouped 

local  model  to  the  aggregation  server,  and  sending  the  updated  global  model  to 

the  clients  for  their  respective  cluster  for  local  training. 

4.  Protection  against  attacks  in  Blockchain  network:  It  has  been  discovered  that 

different  Blockchain  attacks  such  as  DDoS,  DNS  attacks,  smart  contract  attacks 

due  to  vulnerabilities,  and  privacy  attacks  exist  [ 80]. So  an  efficient  preventative strategy  is  needed  to  make  Blockchain  more  reliable  and  effective. 

5.  Handling  heterogeneous  environment:  In  the  real  world,  data  is  often  character-

ized  by  a  heterogeneous  environment,  leading  to  a  high  likelihood  of  non-IID 

distribution.  In  scenarios  with  unbalanced  and  non-IID  data,  the  rapid  increase 

in  the  number  of  clients  creates  a  bottleneck  in  direct  communication  between 

clients  and  the  server  for  parameter  updates,  leading  to  heightened  congestion 

in  the  network.  This  causes  a  higher  likelihood  of  data  loss  during  FL  training 

epochs  and  delays  the  convergence  rates  in  the  training  process.  As  the  hetero-

geneity  of  non-IID  data  increases,  the  negative  impact  on  system  performance 

becomes  more  severe.  Specifically,  a  dataset  exhibiting  more  non-IID  charac-

teristics  notably  adversely  affects  the  system’s  overall  performance.  Addressing 

non-IID  data  in  FL  is  a  key  requirement  for  the  research  community  [ 62]. 

8 

Conclusion 

This  paper  presents  a  systematic  review  emphasizing  FL  aggregation  algorithms, 

their  benefits  and  challenges,  and  security  and  privacy  issues  associated  with  FL. 

Furthermore,  we  comprehensively  analyze  various  defense  mechanisms  designed  to 

mitigate  these  risks.  Based  on  insights  from  existing  research,  we  propose  a  unified 

FL  framework  to  enhance  security  and  privacy  across  diverse  applications,  includ-

ing  Healthcare,  Cyber  Threat  Intelligence,  and  Cyber-Physical  Systems.  Our  frame-

work  integrates  a  reputation-based  system  with  a  Blockchain  module  to  strengthen 

defenses  against  inference  and  poisoning  attacks.  While  we  present  the  theory  sup-

porting  this  framework,  practical  implementation  and  real-world  testing  remain 

promising  directions  for  future  work. 

[image: Image 118]
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Abstract  In  this  paper,  we  empirically  analyze  adversarial  attacks  on  selected  Fed-

erated  Learning  (FL)  models.  The  specific  models  considered  are  FL  versions  of 

Multinominal  Logistic  Regression  (MLR),  Support  Vector  Classifier  (SVC),  Mul-

tilayer  Perceptron  (MLP),  Convolution  Neural  Network  (CNN),  Random  Forest, 

XGBoost,  and  Long  Short-Term  Memory  (LSTM).  For  each  model,  we  simulate 

label-flipping  attacks,  experimenting  extensively  with  10  federated  clients  and  100 

federated  clients.  We  vary  the  percentage  of  adversarial  clients  from  10  to  100% 

and,  simultaneously,  the  percentage  of  labels  flipped  by  each  adversarial  client  is 

also  varied  from  10  to  100%.  Among  other  results,  we  find  that  models  differ  in  their 

inherent  robustness  to  the  two  vectors  in  our  label-flipping  attack,  i.e.,  the  percentage 

of  adversarial  clients,  and  the  percentage  of  labels  flipped  by  each  adversarial  client. 

We  discuss  the  potential  practical  implications  of  our  results. 

1 

Introduction 

The  Federated  Learning  (FL)  paradigm  offers  the  advantage  of  maintaining  the  pri-

vacy  of  local  training  data,  while  also  distributing  some  of  the  work  required  to 

train  models.  Although  the  accuracy  of  FL  models  tends  to  be  lower  than  models 

trained  via  traditional  centralized  learning  techniques,  the  tradeoff  may  be  worth-

while  in  many  cases,  especially  in  situations  where  data  privacy  would  otherwise 

make  training  models  impractical. 

The  distributed  nature  of  FL  opens  the  door  to  a  wide  range  of  adversarial  attack 

scenarios.  In  this  paper,  we  empirically  analyze  the  effectiveness  of  label-flipping 

attacks.  We  simulate  such  attacks  by  assigning  a  percentage  of  clients  as  adversarial, 

with  each  adversarial  client  flipping  a  specified  percentage  of  the  labels  in  its  local 

training  dataset.  We  experiment  with  seven  distinct  FL  models,  namely,  Multinominal 

Logistic  Regression  (MLR),  Support  Vector  Classifier  (SVC),  Multilayer  Perceptron 
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(MLP),  Convolution  Neural  Network  (CNN),  Random  Forest,  XGBoost,  and  Long 

Short-Term  Memory  (LSTM).  For  each  of  these  models,  we  carefully  analyze  the 

case  with  10  federated  clients  and  the  case  with  100  federated  clients,  giving  us  14 

experiments,  in  total.  Furthermore,  for  each  of  these  14  experiments,  the  percentage 

of  adversarial  clients  ranges  from  10  to  100%,  while  the  label  flipping  percentage 

simultaneously  ranges  from  10  to  100%,  giving  us  100  data  points  per  experiment. 

For  each  experiment,  we  provide  a  3-dimensional  graph  of  the  accuracy  as  a 

function  of  both  the  percentage  of  adversarial  clients  and  the  percentage  of  labels 

flipped.  We  further  analyze  our  results  and  show  that  some  models  are  inherently 

more  robust  with  respect  to  the  percentage  of  adversarial  clients,  while  other  models 

are  more  robust  with  respect  to  the  percentage  of  labels  flipped  by  each  adversarial 

client.  That  is,  for  a  given  overall  percentage  of  labels  flipped,  some  models  retain 

more  of  their  accuracy  when  relatively  few  adversarial  clients  flip  relatively  many 

labels,  whereas  other  models  retain  more  of  their  accuracy  when  the  converse  is 

true.  This  has  potential  practical  implications,  as  we  might  choose  to  favor  specific 

federated  learning  models  for  a  given  application  based  on  likely  attack  scenarios  or 

available  defensive  techniques. 

The  remainder  of  this  paper  is  organized  as  follows.  In  Sect. 2,  we  provide  some background  information  on  FL,  and  we  introduce  the  specific  learning  models  considered  in  this  paper.  Section  3  provides  implementation  details,  with  the  emphasis on  the  dataset  used  in  our  experiments  and  our  experimental  design.  Our  experimental  results  are  presented  and  discussed  in  Sect. 4.  Section  5  concludes  the  paper  and considers  potential  directions  for  future  work. 

2 

Background 

In  this  section,  we  present  a  brief  introduction  to  relevant  aspects  of  Federated  Learn-

ing  (FL).  Among  other  topics,  we  discuss  the  aggregation  strategy  used  in  our  FL 

experiments.  We  also  introduce  the  specific  FL  models  that  are  considered  in  this 

paper. 

 2.1 

 Federated  Learning 

Federated  learning  (FL)  models  are  trained  in  a  distributed  manner,  where  the  data 

is  decentralized  among  a  number  of  clients.  The  clients  train  local  models  on  their 

local  data  and,  typically,  a  central  server  periodically  collects  these  model  parameters 

(e.g.,  weights).  The  central  server  then  aggregates  the  parameters  to  build  an  overall 

model.  This  is  in  contrast  to  a  traditional  machine  learning  environment,  where  all 

data  and  computing  resources  are  centralized. 

FL  is  not  to  be  confused  with  distributed  learning.  In  distributed  learning,  training 

is  parallelized  across  multiple  servers,  and  the  dataset  at  each  client  is  assumed  to  be identically  distributed  and  approximately  the  same  size.  In  FL,  the  dataset  at  clients
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can  be  heterogeneous  in  terms  of  size  and  other  aspects,  e.g.,  only  a  subset  of  classes might  be  present  in  a  given  client’s  dataset  [ 19]. 

In  this  paper,  we  consider  an  FL  training  process  consisting  of  multiple  rounds 

coordinated  by  a  centralized  server.  Each  round  consists  of  the  following  steps. 

1. Broadcast:  The  clients  download  the  current  ML  model  and  global  weights  from 

the  server. 

2. Client  Computation:  Each  client  instantiates  the  training  model  using  the  down-

loaded  weights  and  conducts  local  training  on  their  local  dataset. 

3. Aggregation:  The  client  model  updates  are  aggregated  by  the  server  using  an 

aggregating  strategy. 

4. Model  Update:  The  aggregated  weights  are  used  to  update  the  global  model  and 

the  global  model  is  evaluated  to  determine  if  this  round  has  produced  an  improved 

model. 

Note  that  multiple  rounds  are  needed,  as  the  global  model  updates  are  computed  on 

the  centralized  server. 

The  aggregating  strategy  is  a  key  component  of  FL  training  process  outlined  above. 

In  this  paper,  we  use  a  federated  averaging  (FedAvg)  approach.  As  the  name  suggests, 

FedAvg  involves  computing  the  average  of  the  client  model  weights.  The  intuition 

is  that  averaging  the  model  weights  has  a  similar  effect  of  the  model  gradients. 

Algorithm  1  is  a  FedAvg  strategy  found  in  [19]. The  key  parameters  of  this  FedAvg algorithm  are  .  K (the  number  of  clients  in  each  federated  learning  round),  .  E (the number  of  local  training  epochs),  .  B (the  local  minibatch  size),  and  .  η (the  learning rate). 

Algorithm  1  FedAvg 

//  K   clients  indexed  by   k 

// P k   is  training  dataset  on  client   k 



//  n

 K 

 k  = |P k | and   n  =

 n

 k=1   k 

//  B   is  local  minibatch  size 

//  E   is  the  number  of  local  epochs 

//  η is  the  learning  rate 

//  (w;  b) is  local  loss  function  evaluated  on  weights   w and  minibatch   b Server  Executes: 

initialize   w 0 

for  each  round   t  = 0 ,  1 ,  2 , . . .  do 

for  each  client   k  ∈  K  in  parallel  do  // all  clients  update  model wk  ← 

 t+1 

ClientUpdate (k, wt  ) 

 K



 w

 nk 

 t+1  ← 

 wk  // weighted  average 

 n 

 t+1 

 k=1 

function  ClientUpdate( k, w)  // runs  on  client   k 

B  ← (split  P k   into  minibatches  of  size   B) 

for  each  local  epoch   i   from  1  to   E  do 

for  each  minibatch   b  ∈ B  do 

 w ←  w −  η∇ (w;  b) 

return   w to  server
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While  there  are  numerous  potential  threats  to  FL  systems,  in  this  paper,  we  focus 

on  a  simple  label-flipping  attack.  That  is,  we  specify  a  percentage  of  adversarial 

clients  and  a  percentage  of  labels  flipped.  Each  of  the  adversarial  clients  then  flips 

the  specified  percentage  of  labels  in  its  local  dataset,  which  has  the  effect  of  corrupting its  model  update  to  the  centralized  server. 

Next,  we  introduce  each  of  the  seven  FL  models  considered  in  this  paper.  These 

models  include  examples  of  both  classic  machine  learning  and  neural  network-based 

models. 

 2.2 

 Multinominal  Logistic  Regression 

Multinomial  Logistic  Regression  (MLR)  is  used  to  predict  the  probability  of  a  certain 

category,  where  the  dependent  variable  can  represent  multiple  categories.  It  calculates 

the  weighted  sum  of  the  independent  variables  and  their  respective  coefficients  to 

find  the  log  odds—the  model  multiplies  the  value  of  each  independent  variable  by 

its  coefficient  and  adds  all  such  values.  The  softmax  function  is  then  used  to  convert 

these  log  odds  into  probabilities  for  each  category  [ 12]. 

 2.3 

 Support  Vector  Classifier 

The  Support  Vector  Machine  (SVM)  can  be  used  for  classification  and  regression. 

The  goal  when  training  an  SVM  is  to  construct  a  hyperplane  that  serves  as  a  decision 

boundary  to  separate  two  classes,  while  maximizes  the  margin,  which  is  defined  as 

the  minimum  distance  between  the  data  points  and  the  separating  hyperplane.  By 

maximizing  the  margin,  an  SVM  minimizes  the  chance  of  incorrectly  classifying 

data  points  not  in  the  training  set.  Nonlinear  decision  boundaries  can  be  constructed 

when  training  an  SVM  by  use  of  the  so-called  kernel  trick,  which  allows  for  the 

data  to  be  embedded  in  a  higher  dimensional  space.  By  carefully  selecting  the  kernel 

function,  the  computational  complexity  is  minimized.  Support  Vector  Classifiers 

(SVC)  generalize  the  SVM  approach  to  multiclass  data  [ 24]. 

 2.4 

 Multilayer  Perceptron 

Multilayer  Perceptrons  (MLPs)  are  the  most  basic  type  of  feedforward  neural  net-

work,  and  they  are  frequently  used  for  supervised  learning  tasks.  An  MLP  includes 

an  input  layer,  one  or  more  hidden  layers,  and  an  output  layer.  Each  layer  consists 

of  multiple  neurons,  which  are  fully  connected  to  the  neurons  in  the  preceding  and 

succeeding  layers  [ 23]. 

The  input  layer  receives  raw  data  and  passes  it  to  the  first  hidden  layer.  Hidden 

layers  are  responsible  for  extracting  information  and  learning  complex  patterns  and
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features  from  the  input  data.  Each  node  in  these  layers  performs  a  nonlinear  trans-

formation  on  the  weighted  sum  of  its  inputs,  employing  activation  functions  such 

as  ReLU,  sigmoid,  or  tanh.  This  nonlinearity  enables  the  MLP  to  model  intricate, 

nonlinear  relationships  within  the  data. 

 2.5 

 Convolution  Neural  Network 

Convolutional  Neural  Networks  (CNNs)  are  a  type  of  feedforward  neural  network 

that  specializes  in  grid-like  data  and,  in  particular,  images.  CNNs  are  optimized  for 

dealing  with  local  structure,  as  opposed  to,  say,  MLPs,  which  can  effectively  deal 

with  global  structure,  but  are  too  inefficient  for  complex  images  [ 24]. 

A  typical  CNN  includes  an  input  layer,  convolution  layers,  pooling  layers,  and  an 

output  layer.  This  neural  network  does  not  require  manual  feature  engineering,  as  it 

autonomously  extracts  features,  further  increasing  efficiency. 

 2.6 

 Random  Forest 

Random  Forests  (RF)  are  ensemble  learning  methods  widely  used  for  classification 

and  regression  related  tasks.  An  RF  consists  of  multiple  decision  trees,  each  of 

which  is  trained  on  a  subset  of  the  features  and  data,  with  a  simple  voting  scheme 

typically  used  for  classification.  Such  an  approach  reduces  overfitting  and  improves 

the  generalizability  of  the  model  [ 3]. 

 2.7 

 XGBoost 

Boosting  a  generic  learning  technique  that  builds  a  strong  classifier  from  a  collection 

of  weak  classifiers.  Extreme  Gradient  Boosting  (XGBoost)  is  a  robust  boosting  tech-

nique  that  has  performed  well  in  many  machine  learning  contests  [ 4].  Like  Random Forest,  our  implementation  of  XGBoost  is  based  on  simple  decision  trees. 

 2.8 

 Long  Short-Term  Memory 

Long  Short-Term  Memory  (LSTM)  models  represent  a  class  of  neural  networking 

architectures  designed  to  deal  with  sequential  data.  LSTMs  are  highly  specialized 

types  of  RNNs  that  allow  for  long-term  dependencies  in  the  data.  LSTMs  mitigate  the 

vanishing  and  exploding  gradient  issues  that  plague  generic  RNNs,  thereby  enabling 

LSTMs  to  “remember”  information  over  an  extended  period  of  time,  which  can 

improve  the  accuracy  of  predictions  [ 7]. 
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 2.9 

 Related  Work 

In  this  section,  we  briefly  review  previous  work  involving  attacks  on  FL  systems. 

For  a  more  detailed  discussion  of  the  FL  literature,  see  the  literature  review  in  the 

companion  paper  [ 18]. 

There  exists  a  surprisingly  large  number  of  survey  (and  similar)  papers  dealing 

with  attacks  on  FL  systems,  including  [ 2, 5, 10, 13, 16, 20, 22],  among  others. 

These  survey-like  papers  tend  to  have  a  broad  focus,  and  many  place  an  emphasis 

on  categorizing  the  various  types  of  attacks  that  can  occur  at  different  stages  of  the 

FL  process.  The  label-flipping  attacks  considered  in  this  paper  are  considered  to  be 

examples  of  poisoning  attacks  [ 25]. 

There  is  also  no  shortage  of  research  papers  dealing  with  label-flipping  attacks 

on  FL  systems.  Examples  of  such  papers  include  [ 8, 9, 11, 15, 17],  among  many others.  However,  these  papers  tend  to  be  focused  on  the  problem  of  detecting  label-flipping  attacks,  as  opposed  to  analyzing  the  effectiveness  of  such  attacks.  In  contrast, 

our  research  is  narrowly  focused  on  the  effectiveness  of  label-flipping  attacks,  as  a 

function  of  the  number  of  adversarial  clients  and  the  percentage  of  labels  flipped  by 

each  of  the  adversarial  clients. 

The  paper  [ 26]  is  an  example  research  into  label-flipping  attack  effectiveness  in FL.  However,  in  [ 26]  the  emphasis  is  on  targeted  attacks,  while  the  research  presented in  this  paper  does  not  consider  targeted  attack  scenarios.  To  the  best  of  the  authors’ 

knowledge,  there  is  a  relative  paucity  of  research  papers  that  analyze  label-flipping 

attack  effectiveness,  and  we  are  not  aware  of  any  research  that  considers  the  specific 

problem  analyzed  in  this  paper. 

3 

Implementation 

In  this  section,  we  first  discuss  the  dataset  used  for  our  experiments.  Then  in  the 

remainder  of  this  section,  we  outline  our  experimental  design. 

 3.1 

 Dataset 

For  all  of  our  experiments,  we  use  the  popular  MNIST  dataset  [ 14],  which  consists of  handwritten  digits,  0  through  9.  The  MNIST  dataset  is  often  used  as  a  benchmark 

for  various  learning  algorithms.  This  dataset  consists  of  60,000  training  samples 

and  10,000  test  samples.  All  samples  are  in  the  form  of  grayscale  images  of  size. 28 ×

28,  with  each  pixel  value  in  the  range  of  0  to  255,  where  0  represents  black  and  255 

represents  white.  Examples  of  images  from  the  dataset  are  given  in  Fig. 1. 

The  MNIST  dataset  is  approximately  balanced.  The  precise  number  of  samples 

in  each  class  is  given  in  the  form  of  a  bar  graph  in  Fig. 2. 

[image: Image 120]
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Fig.  1  Examples  of  MNIST  images 
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Fig.  2  Class  distribution  in  MNIST  dataset 

As  a  preprocessing  step,  the  MNIST  images  are  converted  into  tensors  or  numpy 

arrays,  depending  on  the  libraries  used  for  the  specific  classifier.  The  pixel  values  in 

the  MNIST  dataset  have  a  mean  of  1.307  and  a  standard  deviation  of  0.3081,  and 

these  values  are  normalized  to  have  a  mean  of  0  and  a  standard  deviation  of  1,  which 

is  standard  practice  in  machine  learning. 

 3.2 

 Experimental  Design 

All  federated  models  were  trained  using  Flower:  A  Friendly  Federated  Learn-

ing  Framework  [ 1], which  is  a  Python  library  designed  for  such  models.  The
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Fig.  3  Overview  of  Flower  federated  ML  framework 

torch.utils.data.random_split function  in  Pytorch  [ 21]  was  used  to 

split  the  data  between  all  the  clients,  and  the  label  flipping  occurred  throughout  all 

round—in  the  terminology  of  the  paper  [ 18],  we  consider  the  FULL  case. 

The  FL  stack  developed  for  this  research  has  three  main  components,  namely,  the 

Server,  Client,  and  Strategy. 

•  Server:  The  Server  is  responsible  for  global  computations,  including  aggregating 

the  model  weights,  selecting  the  input  parameters  for  the  models,  and  sampling 

random  clients  for  each  FL  round. 

•  Client:  The  Client  is  responsible  for  executing  local  computations,  including  run-

ning  the  ML  model  for  a  set  amount  of  epochs.  The  client  has  access  to  the  actual 

data  used  for  training  and  evaluation  of  model  parameters. 

•  Strategy:  The  framework  provides  a  Strategy  abstraction  which  includes  the  logic 

for  client  selection,  configuration,  parameter  aggregation,  and  model  evaluation. 

Outlier  detection  has  been  implemented  in  this  strategy  as  a  defense  mechanism 

to  reject  model  updates  from  malicious  clients,  and  is  executed  on  the  server.  A 

high-level  abstraction  of  the  Flower  FL  framework  is  provided  in  Fig. 3. 

For  our  experiments,  the  FedAvg  [ 19]  strategy  was  used  to  aggregate  model weights  for  all  models,  except  that  a  bagging  aggregation  strategy  [ 6]  was  used  for aggregating  model  updates  for  tree-based  models  (Random  Forest  and  XGBoost). 

The  clients  and  the  server  communicate  through  Remote  Procedure  Calls  (RPC). 
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Each  experiment  was  performed  for  10  federated  rounds  and  the  hyperparam-

eters  were  adjusted  accordingly.  For  example,  if  a  model  requires  120  epochs  for 

convergence,  the  number  of  local  epochs  is  set  to  12  in  each  FL  round  so  that  at  the 

end  of  the  FL  process,  the  models  would  have  been  trained  for  a  total  of  120  epochs. 

4 

Experiments  and  Results 

We  first  consider  a  series  of  experiments  where  there  are  no  adversarial  clients. 

These  experiments  serve  to  determine  the  hyperparameters  for  our  models,  and  to 

set  baselines  for  accuracy.  We  then  consider  the  effect  of  adversarial  clients  on  each 

federated  model,  and  we  conclude  this  section  with  an  analysis  of  the  relationship 

between  the  label-flipping  percentage  and  the  percentage  of  adversarial  clients. 

 4.1 

 Baseline  Experiments 

Table  1  in  the  Appendix  lists  the  hyperparameters  tested  (via  grid  search)  for  each model  in  the  case  of  10  clients,  with  the  hyperparameters  selected  for  the  best  model 

given  in  boldface.  Table  2  in  the  Appendix  contains  the  analogous  results  for  each model  in  the  case  of  100  clients. 

Figure  4  shows  the  accuracies  for  each  model  as  a  function  of  the  number  of clients,  where  the  number  of  clients  ranges  from  10  to  100.  In  Fig. 5, we give the accuracies  for  10  and  100  clients  for  each  model.  We  observe  that  with  the  exception 

of  MLR,  all  of  the  models  perform  worse  as  the  number  of  clients  increases.  In  some 

cases,  the  degradation  in  accuracy  for  larger  numbers  of  clients  is  small  (e.g.,  SVC 

and  MLP),  while  for  other  models,  the  decline  is  more  substantial  (e.g.,  Random 

Forest  and  XGBoost). 
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Fig.  4  (continued) 

 4.2 

 Adversarial  Attack  Experiments 

In  this  section,  we  consider  label-flipping  attacks  on  each  of  the  seven  models.  Using 

our  best  model  for  10  clients—as  determined  in  Sect. 4.1, above—we  vary  the  percentage  of  adversarial  clients  from  10  to  100%,  in  steps  of  10%.  For  each  of  these  10 

test  cases,  we  vary  the  label-flipping  percentage  of  each  adversarial  client  from  10 

to  100%,  again  with  a  steps  size  of  10%.  This  gives  us  100  accuracy  results  for
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Fig.  5  Baseline  model  accuracies  for  10  and  100  clients 

each  10-client  model.  We  then  repeat  this  entire  process  for  each  model,  but  with  100 

clients  instead  of  10. 

The  results  for  each  model  for  our  10-client  adversarial  attack  experiments  are 

summarized  in  the  form  of  3-dimensional  surface  plots  in  Fig. 6.  The  corresponding results  for  our  100-client  experiments  appear  in  Fig. 7. Next,  we  provide  brief  com-ments  on  our  adversarial  attack  results  for  each  of  the  seven  federated  models  under 

consideration. 

4.2.1

Multinominal  Logistic  Regression 

From  Fig. 4a  we  observe  that  the  MLR  model  accuracy  drops  only  slightly  when used  in  a  federated  mode,  as  compared  to  an  MLR  model  with  no  federated  clients. 

However,  the  accuracy  of  the  federated  MLR  is  fairly  constant,  regardless  of  the 

number  of  federated  clients. 
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Fig.  6  (continued) 
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Fig.  7  Accuracy  as  a  function  of  adversarial  clients  and  label-flipping  (100  clients)
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Fig.  7  (continued) 

Comparing  the  attack  results  in  Figs. 6a  and  7a, we  observe  similar  behavior.  This is  not  surprising,  given  that  the  MLR  model  performs  similarly  over  a  wide  range  of 

federated  clients. 

4.2.2

Support  Vector  Classifier 

In  Fig. 4b  we  observe  that  the  SVC  model  accuracy  only  decreases  slightly  as  the number  of  federated  clients  increases.  This  is  similar  behavior  as  was  observed  for 

the  MLR  model,  above
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Comparing  the  adversarial  attacks  in  Figs. 6b  and  7b,  we  observe  that  the  SVC 

model  is  highly  symmetric  about  the.  (x, y)-plane,  as  compared  to  the  other  models. 

4.2.3

Multilayer  Perceptron 

From  Fig. 4c  we  observe  that  the  MLP  model  achieves  high  accuracy  and,  similar  to the  MLR  and  SVC  models,  the  accuracy  does  not  drop  significantly  as  more  federated 

clients  are  added. 

Comparing  the  label-flipping  attacks  in  Figs. 6c  and  7c, we  observe  that  in  the 10-client  case  the  accuracy  drops  precipitously,  while  this  drop  off  is  somewhat 

smoother  in  the  100-client  case.  These  graphs  are  the  least  symmetric  of  the  attack 

graphs  considered  so  far. 

4.2.4

Convolution  Neural  Network 

From  Fig. 4d  we  observe  that  the  CNN  model  accuracy  actually  improves  slightly in  a  federated  mode,  as  compared  to  the  case  with  no  federated  clients.  However,  as 

we  add  more  federated  clients,  the  model  accuracy  degrades  much  more  rapidly  than 

the  three  models  considered  above. 

For  the  10-client  case,  the  attack  graph  in  Figs. 6d  for  the  CNN  model  is  similar  to that  of  the  MLP  model.  However,  CNN  100-client  case  in  Fig. 7d  is  more  erratic  than any  of  the  other  models,  which  would  seem  to  indicate  that  this  model  is  somewhat 

unstable  with  100  clients. 

4.2.5

Random  Forest 

From  Fig. 4e  we  observe  that  the  Random  Forest  model  achieves  high  accuracy  when no  federated  clients  are  considered.  Also,  the  accuracy  drop  consistently  as  more 

federated  clients  are  included,  and  with  100  clients,  the  model  performs  poorly. 

Comparing  the  label-flipping  attacks  in  Figs. 6e  and  7e, we  observe  that  the  qualitative  behavior  is  similar,  but  the  10-client  experiments  show  consistently  higher 

accuracies.  This  is  not  too  surprising,  given  that  the  decline  in  accuracy  as  more 

federated  clients  are  used,  as  noted  above. 

4.2.6

XGBoost 

From  Fig. 4f  and  the  label-flipping  attack  graphs  in  Figs. 6f  and  7f,  we  observe  that behavior  of  the  XGBoost  models  are  similar  to  those  of  the  Random  Forest.  This  is 

not  surprising,  given  that  they  are  both  tree-based  algorithms. 
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4.2.7

Long  Short-Term  Memory 

From  Fig. 4g  we  observe  that  the  LSTM  model  achieves  high  accuracy.  We  also  note that  the  accuracy  of  the  LSTM  model  drops  only  slightly  as  the  number  of  clients 

increases  from  10  to  100. 

Comparing  the  label-flipping  attacks  in  Figs. 6g  and  7g, we  observe  that  the  LSTM 

behaves  most  similar  to  the  MLP  model.  This  is  somewhat  surprising,  since  these 

models  are  dramatically  different. 

 4.3 

 Dominance  Graphs 

For  a  given  overall  level  of  labels  flipped,  the  flipping  can  be  dominated  by  the 

number  of  adversarial  clients,  or  by  the  percentage  of  labels  flipped.  For  example, 

suppose  that  40%  of  the  clients  are  adversarial,  and  that  each  of  these  flips  20%  of 

the  labels  in  their  local  dataset.  Since  the  local  datasets  are  all  of  the  same  size,  this implies  that  for  the  model  as  a  whole,  8%  of  the  labels  are  flipped.  On  the  other  hand, if  only  20%  of  the  clients  are  malicious,  but  each  flips  40%  of  the  labels  in  their 

local  dataset,  this  also  represents  a  case  where  8%  of  the  labels  are  flipped.  All  of  the 3-dimensional  accuracy  graphs  in  Figs. 6  and  7  that  are  not  symmetric  with  respect to  the  .  (x, y)-plane  will—for  a  given  level  of  label-flipping  and  selected  region  of the  domain—perform  better  for  one  of  these  two  cases,  that  is,  the  case  where  the 

percentage  of  adversarial  clients  dominates  or  where  the  percentage  of  labels  flipped 

dominates. 

To  obtain  better  insight  into  this  relationship  between  the  relative  percentage  of 

labels  flipped  and  the  percentage  of  adversarial  clients,  we  generate  2-dimensional 

“dominance  curves”  for  each  of  the  seven  models  under  consideration.  Let .  c  be  the fraction  of  adversarial  clients  and  let.    be  the  fraction  of  labels  flipped  by  each  adversarial  client.  As  discussed  in  Sect. 4.2,  above,  we  have.  c, ∈ {0 .  1 ,  0 .  2 , . . . ,  1 .  0},  and for  each  of  these  100  cases  we  test  the  model  and  determine  the  accuracy.  For  a 

given  model  .  m,  denote  the  accuracy  for  a  specified  .  c  and  .    as  .  Am(c, ).  Note  that the  values  .  Am(c, )  are  derived  from  the  same  experimental  results  that  were  used to  construct  the  3-dimensional  surface  plots  in  Figs. 6  and  7. 

To  construct  the  dominance  curves  for  a  given  model,  we  consider  all  100  test 

cases,  and  whenever  .  c > ,  then  .  (c, Am(c, ))  is  a  point  on  the  client-dominated curve  and,  on  the  other  hand,  whenever  .   > c,  then  .  (c, Am(c, ))  is  a  point  on  the flipping-dominated  curve.  We  ignore  the  cases  where.    and.  c  are  equal,  since  neither dominates  the  other.  We  refer  to.  c  as  the  label-flipping  rate,  since  it  gives  the  overall fraction  of  labels  flipped.  Based  on  the  data  used  to  construct  the  3-dimensional 

accuracy  graphs  in  Figs. 6  or  7,  dominances  graphs  for  each  model  appear  in  Fig. 8. 1

1  For  each  model,  we  selected  either  the  10-client  or  100-client  case  to  draw  the  corresponding dominance  graph  in  Fig. 8, depending  on  which  of  the  3-dimensional  attack  graphs  in  Figs. 6  and  7 

produced  visually  smoother  results. 
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From  Fig. 8,  we  observe  that  for  the  MLR  model,  it  is  more  effective—from  an attacker’s  perspective—to  have  fewer  clients  flipping  a  higher  percentage  of  labels. 

In  contrast,  for  the  MLP  model—and  to  a  lesser  extent,  the  CNN  model—for  a  given 

overall  percentage  of  labels  flipped,  a  stronger  attack  will  consist  of  more  adversarial 

clients,  each  flipping  a  smaller  fraction  of  the  labels.  In  fact,  each  model  has  a  bias (or  biases,  depending  on  the  label-flipping  rate)  towards  client  dominance  or  flipping 

dominance,  with  the  exception  of  SVC,  which  is  essentially  unbiased  in  this  respect 

throughout  the  entire  range  of  label-flipping. 

The  insights  provided  by  the  graphs  in  Fig. 8  could  be  used  to  help  determine  a preferred  model,  based  on  the  likelihood  of  various  attack  scenarios.For  example,  if 

there  is  a  higher  probability  that  many  adversarial  clients  will  send  slightly  corrupted 

updates,  we  would  prefer  different  models  as  compared  to  the  case  where  our  primary 

concern  is  relatively  few  adversarial  clients,  with  each  potentially  sending  relatively 

highly-corrupted  updates.  As  another  example,  we  might  have  stronger  defenses 

against  specific  types  of  attacks,  in  which  case  we  could  choose  models  that  are 

inherently  more  robust  against  the  types  of  attacks  that  are  more  difficult  to  detect. 
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Fig.  8  (continued)
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5 

Conclusion 

In  this  paper,  we  empirically  analyzed  label-flipping  attacks  against  the  following 

federated  learning  models:  Multinominal  Logistic  Regression  (MLR),  Support  Vec-

tor  Classifier  (SVC),  Multilayer  Perceptron  (MLP),  Convolution  Neural  Network 

(CNN),  Random  Forest,  XGBoost,  and  Long  Short-Term  Memory  (LSTM).  We 

found  that  all  model  have  reduced  accuracy  as  more  clients  are  added,  although  for 

most  models,  the  reduction  was  small  within  the  range  of  10  to  100  clients.  We  then 

considered  the  10-client  and  100-client  cases  in  more  detail,  graphing  the  accuracy 

as  a  function  of  the  percentage  of  adversarial  clients  and  the  percentage  of  labels 

flipped  by  each  adversarial  client.  We  then  further  analyzed  the  relationship  between 

the  percentage  of  adversarial  clients  and  the  percentage  of  labels  flipped.  For  a  given 

overall  percentage  of  labels  flipped,  we  found  that  some  models  are  inherently  more 

robust  when  there  are  fewer  adversarial  clients  flipping  a  higher  percentage  of  labels, 

whereas  other  models  were  more  robust  in  the  case  where  there  are  more  adversarial 

clients,  but  each  flips  a  smaller  percentage  of  the  labels  in  their  local  dataset.  This 

has  practical  implications,  as  we  might,  for  example,  choose  models  that  are  more 

robust  against  likely  adversarial  attacks,  or  we  might  choose  models  that  are  more 

robust  against  attacks  that  are  harder  to  defend  against. 

For  future  work,  it  would  be  interesting  to  extend  the  research  in  this  paper  to  other 

FL  models.  We  could  also  consider  more  fine-grained  attack  scenarios,  with  smaller 

steps  in  the  percentage  of  adversarial  clients  and  the  percentage  of  labels  flipped.  It 

would  be  worthwhile  to  consider  more  sophisticated  adversarial  attacks  involving 

strategies  other  simple  label-flipping.  Targeted  attacks  would  be  interesting,  where 

the  goal  is  to  maintain  the  overall  accuracy,  but  to  force  the  misclassification  of  sam-

ples  belonging  to  a  specific  class.  Of  course,  an  empirical  analysis  of  the  effectiveness of  various  defensive  strategies  would  be  another  interesting  line  of  research. 

Appendix 

Table  1  lists  the  hyperparameter  values  tested  for  each  of  the  federated  learning  models,  in  the  case  where  there  are  10  clients.  The  values  selected  are  given  in  boldface. 

Table  2  lists  the  corresponding  hyperparameter  values  tested  and  selected  for  the federated  learning  models  in  the  case  where  there  are  100  clients. 
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Table  1  Hyperparameters  (10  clients) 

Model

Hyperparameters

Tested  values

Accuracy 

Train

Test 

MLR

learning_rate 

.[0.01 ,  0 .  0001]

0.8715

0.8730 

batch_size

. [20 ,  64 ,  128]

Epochs

. [1 ,  10 ,  20]

momentum

0.9 

penalty

l2 

warm_start

True 

SVC

learning_rate 

.[0.01 ,  0 .  001]

0.9026

0.9176 

batch_size

. [20 ,  64 ,  128]

Epochs

. [1 ,  10 ,  20]

momentum

0.9 

penalty

l2 

MLP

learning_rate 

.[0.003 ,  0 .  0001]

0.9793

0.9696 

batch_size

. [20 ,  64 ,  128]

Epochs

. [1 ,  10 ,  20]





Optimizer

. Adam ,  RMSProp

image_dim

. [128 ,  256]

CNN

learning_rate 

.[0.01 ,  0 .  001]

0.9896

0.9886 

batch_size

. [20 ,  64 ,  128]

Epochs

. [1 ,  10 ,  20]





Optimizer

. Adam ,  RMSProp

image_dim

. [128 ,  256 ,  375]

Random  Forest 

learning_rate 

.[0.08 ,  0 .  0001]

0.8471

0.8434 

num_parallel_tree  . [32 , 100 ,  128]

max_depth

. [2 ,  4 , 6]

Epochs

. [1 ,  10 ,  20]

colsample_bytree  . [0.963 ,  0 .  70.5]

subsample

. [0.97 ,  0 .  7 ,  0 .  5]

objective

multi:softmax 

eval_metric

mlogloss 

alpha

. [2 ,  4 , 8]

Lambda

. [1 , 2 ,  3]

tree_method

hist 

XGBoost

learning_rate 

.[0 .  001 , 0.08]

0.9044

0.9166 

local_epochs

. [1 ,  10 ,  20]

max_depth

. [6 ,  10 ,  12]

subsample

. [0 .  50 ,  0 .  75 , 1]

colsample_bytree  . [0 .  50 ,  0 .  75 , 1]

objective

multi:softmax 

eval_metric

mlogloss 

alpha

. [2 ,  4 , 8]

Lambda

. [2 , 4 ,  8]

tree_method

hist 

LSTM

learning_rate 

.[0.001 ,  0 .  1]

0.9906

0.9805 

batch_size

. [24 , 64 ,  128]

Epochs

. [1 , 10 ,  20]

Optimizer

.[SGD ,  Adam]
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Table  2  Hyperparameters  (100  clients) 

Model

Hyperparameters

Tested  values

Accuracy 

Train

Test 

MLR

learning_rate 

.[0.001 ,  0 .  0001]

0.8537

0.8748 

batch_size

. [20 ,  64 ,  128]

Epochs

. [1 ,  10 ,  20]

momentum

0.9 

penalty

l2 

warm_start

True 

SVC

learning_rate 

.[0.01 ,  0 .  001]

0.8983

0.8997 

batch_size

. [20 ,  64 ,  128]

Epochs

. [1 ,  10 ,  20]

momentum

0.9 

penalty

l2 

MLP

learning_rate 

.[0.003 ,  0 .  0001]

0.9524

0.9397 

batch_size

. [20 ,  64 ,  128]

Epochs

. [1 ,  10 ,  20]





Optimizer

. Adam ,  RMSProp

image_dim

. [128 ,  256]

CNN

learning_rate 

.[0.01 ,  0 .  001]

0.9317

0.9419 

batch_size

. [20 ,  64 ,  128]

Epochs

. [1 ,  10 ,  20]





Optimizer

. Adam ,  RMSProp

image_dim

. [128 ,  256 ,  375]

Random  Forest 

learning_rate 

.[0.08 ,  0 .  0001]

0.7157

0.7088 

num_parallel_tree  . [32 , 100 ,  128]

max_depth

. [2 ,  4 , 6]

Epochs

. [1 ,  10 ,  20]

colsample_bytree  . [0.963 ,  0 .  70.5]

subsample

. [0.97 ,  0 .  7 ,  0 .  5]

objective

multi:softmax 

eval_metric

mlogloss 

alpha

. [2 ,  4 , 8]

Lambda

. [1 , 2 ,  3]

tree_method

hist 

XGBoost

learning_rate 

.[0 .  001 , 0.08]

0.8001

0.8118 

local_epochs

. [1 ,  10 ,  20]

max_depth

. [6 ,  10 ,  12]

subsample

. [0 .  50 ,  0 .  75 , 1]

colsample_bytree  . [0 .  50 ,  0 .  75 , 1]

objective

multi:softmax 

eval_metric

mlogloss 

alpha

. [2 ,  4 , 8]

Lambda

. [2 , 4 ,  8]

tree_method

hist 

LSTM

learning_rate 

.[0.001 ,  0 .  1]

0.9503

0.9496 

batch_size

. [24 , 64 ,  128]

Epochs

. [1 , 10 ,  20]

Optimizer

.[SGD ,  Adam]
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Abstract  Machine  learning  and  deep  learning  models  are  potential  vectors  for  var-

ious  attack  scenarios.  For  example,  previous  research  has  shown  that  malware  can 

be  hidden  in  deep  learning  models.  Hiding  information  in  a  learning  model  can 

be  viewed  as  a  form  of  steganography.  In  this  research,  we  consider  the  general 

question  of  the  steganographic  capacity  of  learning  models.  Specifically,  for  a  wide 

range  of  models,  we  determine  the  number  of  low-order  bits  of  the  trained  param-

eters  that  can  be  overwritten,  without  adversely  affecting  model  performance.  For 

each  model  considered,  we  graph  the  accuracy  as  a  function  of  the  number  of  low-

order  bits  that  have  been  overwritten,  and  for  selected  models,  we  also  analyze  the 

steganographic  capacity  of  individual  layers.  The  models  that  we  test  include  clas-

sic  machine  learning  techniques,  popular  general  deep  learning  models,  pre-trained 

transfer  learning-based  models,  and  others.  In  all  cases,  we  find  that  a  majority  of  the bits  of  each  trained  parameter  can  be  overwritten  before  the  accuracy  degrades.  Of 

the  models  tested,  the  steganographic  capacity  ranges  from  7.04  KB  to  44.74  MB. 

We  discuss  the  implications  of  our  results  and  consider  possible  avenues  for  further 

research. 

1 

Introduction 

The  field  of  information  hiding  includes  watermarking  and  steganography,  which 

use  similar  techniques,  but  for  different  purposes  [ 28].  In  digital  watermarking,  we want  to  hide  information  in  a  digital  object,  typically  for  the  purpose  of  identifying 

the  object.  For  example,  we  might  add  a  unique  digital  watermark  to  each  copy  of  a 

confidential  pdf files  that  we  distribute.  Then,  if  a  copy  of  the  pdf is  leaked  to  an 

unauthorized  party,  we  could  read  the  watermark  to  determine  the  source  of  the  leak. 

In  contrast  to  watermarking,  steganography  consists  of  hiding  information  for  the 

purpose  of  communication.  For  example,  if  we  want  to  communicate  with  someone  in 
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a  repressive  country,  we  could  hide  information  in  a  digital  image  of,  say,  a  cat.  If  the recipient  knows  where  and  how  to  read  the  hidden  information,  we  can  communicate 

on  topics  that  would  otherwise  be  censored. 

Machine  learning  (ML),  which  can  be  considered  as  a  subfield  of  Artificial  Intelli-

gence  (AI),  enables  computers  to  learn  important  information  from  training  data  [ 29]. 

Today,  ML  models  are  widely  used  to  deal  with  a  vast  array  of  problems,  including 

speech  recognition,  image  recognition,  sentiment  analysis,  language  translation,  and 

malware  detection,  with  new  applications  being  constantly  developed.  Deep  learn-

ing  (DL)  models  are  the  subset  of  ML  models  that  are  based  on  neural  networking 

techniques—they  are  “deep”  in  the  sense  of  having  multiple  layers. 

Machine  learning  models  are  of  interest  in  the  context  of  steganography  for  the 

following  reasons. 

•  Machine  learning  models  are  rapidly  becoming  ubiquitous.  For  example,  learning-

based  voice-activated  systems  were  used  by  more  than  3.25  billion  people 

in  2021  [ 2]. 

•  The  steganographic  capacity  of  most  ML  models  is  likely  to  be  high.  Models 

typically  include  a  large  number  of  weights  or  other  trained  parameters,  and  learn-

ing  models  do  not  typically  require  high  precision  in  their  trained  parameters. 

For  example,  the  most  popular  algorithm  used  to  train  a  Support  Vector  Machine 

(SVM)  is  Sequential  Minimal  Optimization  (SMO),  and  the  efficiency  of  this  algo-

rithm  relies  on  the  fact  that  limited  precision  suffices  [ 29]. As  another  example,  in neural  network-based  models,  many  neurons  tend  to  atrophy  during  training,  with 

such  weights  contributing  little  to  the  trained  model.  By  relying  on  such  redundant 

neurons,  the  authors  of  [ 33]  show  that  they  can  hide  36.9  MB  of  malware  within a  178  MB  AlexNet  architecture,  with  only  a  1%  degradation  in  performance.  These 

changes  do  not  affect  the  structure  of  the  model  and  the  embedded  malware  was 

not  detected  by  any  of  the  anti-virus  systems  tested. 

•  Machine  learning  models  may  be  an  ideal  cover  media  for  advanced  malicious 

attacks.  For  example,  in  addition  to  simply  embedding  malware  in  a  learning 

model,  it  is  conceivable  that  a  specific  predetermined  input  to  the  model  could  be 

used  to  trigger  the  embedded  malware. 

As  mentioned  above,  learning  models  generally  do  not  require  high  precision 

in  their  trained  parameters.  Therefore,  we  propose  to  measure  the  steganographic 

capacity  of  learning  models  by  determining  the  number  of  low-order  bits  of  each 

weight  that  can  be  used  for  information  hiding,  without  adversely  affecting  the  per-

formance  of  a  model.  Specifically,  we  embed  information  in  the .  n  low-order  bits  of the  weights  of  trained  models,  and  graph  the  resulting  model  accuracy  as  a  function 

of.  n.  As  our  test  case,  we  train  models  on  a  dataset  that  contains  10  different  malware families,  with  a  total  of  15,356  samples. 

The  remainder  of  the  paper  is  organized  as  follows.  Section  2  gives  relevant  background  information.  Section  3  provides  an  overview  the  dataset  used  in  our  experiments,  and  we  outline  our  experimental  design.  Our  results  are  presented  and  dis-

cussed  in  Sect. 4. Finally,  Sect. 5  gives  our  conclusions,  and  we  discuss  potential topics  for  further  research. 
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2 

Background 

In  this  section,  we  discuss  relevant  background  topics.  First,  we  discuss  steganogra-

phy,  then  we  briefly  introduce  the  learning  models  that  are  used  in  this  research.  We 

conclude  this  section  with  a  discussion  of  relevant  related  work. 

 2.1 

 Steganography 

The  word  “steganography”  is  a  combination  of  the  Greek  roots   steganós   and   graphia, which  together  translate  as  “hidden  writing” [ 7]. Thus,  steganography  consists  of embedding  information  in  a  cover  media  [ 30].  In  modern  practice,  digital  steganography  consists  of  concealing  information  within  seemingly  innocuous  data,  such  as 

images,  audio,  video,  or  network  communication,  among  other  possibilities  [ 1]. 

We  note  in  passing  that  cryptography  protects  a  message  by  transforming  it  into  an 

unintelligible  format.  This  is  in  contrast  to  steganography,  where  the  goal  is  to  hide 

the  fact  that  the  communication  represented  by  the  hidden  information  has  even  taken 

place.  Steganography  dates  at  least  to  ancient  Greece  and  it  predates  cryptography 

as  a  means  of  secret  communication  [ 28]. 

A  simple  example  of  a  modern  steganographic  application  consists  of  hiding 

information  in  the  low  order  RGB  bits  of  an  uncompressed  image  file  [ 28].  Since  the RGB  color  scheme  uses  a  byte  for  each  of  the  R  (red),  G  (green),  and  B  (blue)  color 

components  of  each  pixel,  there  are  .224  >  16 ,  000 ,  000 colors  available.  However, many  of  these  color  combination  are  indistinguishable  to  humans,  and  hence  there 

are  redundant  bits  in  an  uncompressed  image  file  that  can  be  used  for  steganography. 

In  particular,  the  low-order  RGB  bits  of  each  byte  can  be  used  to  hide  information, 

without  perceptibly  changing  the  image.  Provided  that  the  intended  recipient  knows 

which  images  are  used  for  hiding  information,  and  knows  how  to  extract  the  informa-

tion,  communication  can  take  place  between  a  sender  and  receiver,  without  it  being 

apparent  that  the  hidden  information  has  been  communicated.  The  steganographic 

capacity  of  an  uncompressed  image  file  is  surprisingly  large—in  [ 28,  Sect.  5.9.3]  it is  shown  that  the  a  pdf file  containing  the  entire   Alice’s  Adventures  in  Wonderland 

book  can  be  embedded  in  the  low  order  RGB  bits  of  a  single  image  of  Alice  from 

the   Alice   book  itself. 

The  image-based  steganographic  technique  described  in  the  previous  paragraph 

is  not  robust,  since  it  is  easy  to  disrupt  the  communication,  without  affecting  the 

non-steganographic  use  of  such  images.  If  a  censor  suspects  that  the  low-order  RGB 

bits  of  uncompressed  image  files  are  being  used  for  steganographic  purposes,  he  can 

simply  randomize  the  low-order  bits  of  all  such  images.  The  information  would  thus 

be  lost  from  images  that  were  being  used  for  steganography,  while  all  other  images 

would  be  unaffected  in  any  perceptible  way.  Research  in  information  hiding  often 

focuses  on  creating  more  robust  steganographic  techniques. 

The  following  three  issues  are  relevant  for  a  steganographic  technique. 
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•  Perceptual  transparency—A  steganographic  process  should  hide  information  in  a 

way  that  is  imperceptible  to  human  senses.  This  ensures  that  it  is  not  obvious  that 

the  cover  medium  is  being  used  for  secret  communication. 

•  Robustness—As  we  noted  in  the  case  of  image  steganography  discussed  above, 

such  a  system  may  be  more  useful  if  it  is  robust. 

•  Capacity—The  amount  of  information  that  can  be  hidden  in  the  cover  medium  is 

the  capacity.  The  capacity  of  a  steganographic  technique  depends  on  the  redun-

dancy  in  the  cover  media. 

In  this  research,  we  consider  the  steganographic  capacity  of  various  learning 

models.  Specifically,  we  hide  information  in  the  low-order  bits  of  trained  parameters 

of  selected  learning  models.  While  such  a  simple  approach  to  information  hiding  is 

not  robust,  our  work  does  provide  a  basis  for  designing  more  advanced  techniques, 

with  the  analogy  to  image-based  steganography  being  obvious. 

 2.2 

 Learning  Models 

Machine  learning  (ML)  and  deep  learning  (DL)  are  tools  used  in  the  field  of  artificial 

intelligence  (AI).  The  general  topic  of  ML  deals  with  training  “machines”  to  learn 

from  data,  and  is  often  used  for  classification  tasks.  In  our  usage,  DL  is  the  subset 

of  ML  that  uses  Artificial  Neural  Networks  (ANN),  generally  with  multiple  hidden 

layers,  which  is  the  source  of  the  word  “deep”  in  DL.  Neural  networking  algorithms 

are  designed  to  (loosely)  mimic  the  structure  of  the  human  brain,  and  such  mod-

els  have  proven  to  be  very  effective  for  solving  complex  problems  such  as  image 

and  speech  recognition,  natural  language  processing,  and  playing  complex  games  at 

superhuman  levels. 

ML  enables  computers  to  learn  important  information,  and  improve  based  on 

experience,  which  saves  humans  from  the  inherently  difficult  task  of  extracting  such 

information  from  massive  volumes  of  data  [ 29].  A  primary  goal  in  the  field  of  machine learning  is  to  enable  computers  to  learn,  while  requiring  minimal  human  intervention 

or  assistance  [ 26]. 

As  mentioned  above,  ML  techniques  are  applied  in  a  wide  and  growing  range 

of  fields.  ML  techniques  have  become  staples  in  the  areas  of  data  security,  finance, 

healthcare,  and  so  on.  The  subfield  of  DL  has  been  particularly  successful  at  dealing 

with  such  challenging  problems  as  speech  recognition,  image  classification,  senti-

ment  analysis,  and  language  translation,  among  many  others  [ 6]. 

In  recent  years,  DL  models  have  achieved  significant  successes  due  to  their  ability 

to  automatically  extract  complex  patterns  and  representations  from  raw  data  without 

the  requirement  of  extensive  feature  engineering.  Through  the  process  of  training,  DL 

models  learn  to  recognize  patterns  and  relationships  in  data,  enabling  them  to  often 

perform  tasks  at  a  higher  level  than  had  previously  been  achievable  using  “classic” 

ML  models. 
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ML  algorithms  can  be  subdivided  into  supervised  and  unsupervised  techniques. 

A  supervised  ML  technique  requires  labeled  data  to  train  the  model.  In  contrast, 

unsupervised  machine  learning  techniques  can  be  applied  to  unlabeled  data.  In  this 

paper,  we  only  consider  supervised  learning  techniques;  specifically,  we  train  models 

to  classify  samples  from  a  dataset  containing  10  different  malware  families. 

Next,  we  introduce  each  of  the  learning  techniques  that  are  employed  in  the 

experiments  in  Sect. 4. Specifically,  we  discuss  Logistic  Regression  (LR),  Support Vector  Machine  (SVM),  Multilayer  Perceptron  (MLP),  Convolutional  Neural  Network  (CNN),  Long  Short  Term  Memory  (LSTM)  models,  VGG16,  DenseNet121, 

InceptionV3,  Xception,  and  Auxiliary  Classifier  Generative  Adversarial  Network 

(ACGAN). 

2.2.1

Overview  of  Logistic  Regression 

Logistic  Regression  (LR)  is  a  traditional  machine  learning  algorithm,  designed  to 

be  used  for  classification  problems  with  a  finite  number  of  classes  [ 13].  LR  utilizes the  sigmoid  function  to  map  features  to  a  scale  of  0  to  1.  While  training,  the  model 

derives  coefficients  for  each  of  the  variables  and  determines  a  threshold  for  each  clas-

sification.  These  coefficients  are  analogous  to  the  weights  in  a  deep  learning  model. 

One  advantage  of  LR  is  that  we  obtain  probabilities  for  each  classification.  While 

extremely  simple,  LR  models  often  perform  reasonably  well  on  many  classification 

tasks. 

2.2.2

Overview  of  Support  Vector  Machine 

Support  Vector  Machines  (SVM)  are  a  class  of  popular  supervised  learning  algo-

rithms,  specifically  designed  for  classification  tasks.  SVMs  have  strong  generaliza-

tion  capability  and  robustness,  and  they  come  in  both  linear  and  non-linear  forms. 

The  SVM  input  layer  accepts  the  feature  vectors,  and  the  prediction  is  obtained  via 

the  output  layer. 

The  main  elements  of  an  SVM  are  support  vectors,  decision  boundaries  (as  deter-

mined  by  hyperplanes),  and  a  kernel  function.  The  kernel  function  can  be  used  to 

map  input  data  into  a  higher-dimensional  “feature  space”,  which  enables  the  model 

to  deal  with  non-linear  relationships  in  terms  of  the  input  data.  The  main  concept 

behind  an  SVM  is  to  find  the  optimal  hyperplane  that  can  best  separate  the  different 

classes.  Support  vectors  are  those  feature  vectors  that  maximize  the  margin,  where 

margin  is  defined  as  the  minimum  distance  from  a  feature  vector  to  the  decision 

boundary. 

The  process  of  training  an  SVM  involves  solving  a  quadratic  programming  prob-

lem,  with  the  Sequential  Minimal  Optimization  (SMO)  algorithm  currently  being  the 

best  available  means  to  do  so.  Of  relevance  to  the  research  reported  in  this  paper,  the SMO  algorithm  specifically  takes  advantage  of  the  fact  that  the  weights  of  a  trained 

SVM  do  not  require  great  accuracy  [ 29]. 
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2.2.3

Overview  of  Multilayer  Perceptron 

Multilayer  Perceptrons  (MLP)  are  a  popular  class  of  feedforward  neural  network 

architectures  that  are  widely  used  for  supervised  learning  tasks,  including  classifica-

tion  and  regression  [ 32].  MLPs  consist  of  multiple  layers  of  interconnected  nodes, where  each  node  receives  input  from  the  previous  layer  and  produces  output  that  is 

passed  to  the  next  layer. 

The  input  layer  of  an  MLP  receives  the  input  data,  and  the  output  layer  produces 

the  final  prediction.  In  between  these  layers,  there  can  be  one  or  more  hidden  layers 

that  help  the  model  to  learn  complex  patterns  in  data.  Each  node  in  the  hidden  layers 

applies  a  nonlinear  activation  function  to  the  weighted  sum  of  its  inputs,  which  helps 

to  capture  non-linear  relationships  in  the  data. 

MLPs  are  trained  using  backpropagation,  which  is  an  optimization  algorithm 

that  adjusts  the  weights  of  the  network  based  on  the  difference  between  the  predicted 

output  and  the  actual  class  label  [29]. The  weights  are  updated  using  gradient  descent, which  iteratively  adjusts  the  weights  to  minimize  the  error. 

One  of  the  main  advantages  of  MLPs  is  their  ability  to  learn  complex  patterns  in  the 

data,  making  them  suitable  for  high-dimensional  and  non-linear  datasets.  However, 

since  they  use  fully-connected  layers,  MLPs  can  be  computationally  expensive  to 

train  and,  as  with  most  DL  models,  they  require  a  large  amount  of  labeled  data  to 

achieve  high  accuracy. 

2.2.4

Overview  of  Convolutional  Neural  Networks 

Convolutional  Neural  Network  (CNN)  is  a  prominent  general  deep  learning  tech-

nique.  CNNs  were  originally  designed  for  images,  utilizing  a  unique  architecture, 

consisting  of  convolutional  layers,  pooling  layers,  and  dense  layers  (also  known  as 

fully-connected  layers).  The  first  convolutional  layers  trains  filters  based  on  input 

data.  These  filters  help  distinguish  basic  aspects  of  the  image.  Deeper  convolutional 

layers  are  trained  on  the  output  of  the  previous  layer,  which  enables  the  model 

to  learn  more  abstract  features—and,  ultimately,  to  distinguish  between  complex 

images,  such  as  those  representing  “cat”  and  “dog”.  Convolution  layers  are  often 

followed  by  a  pooling  layer,  which  decrease  the  dimensionality,  thereby  decreasing 

the  computational  requirements.  The  final  layer  of  a  CNN  is  a  dense  layer  that  is 

utilized  to  classify  [ 3]. 

In  spite  of  their  origin  in  image  classification,  CNNs  are  applicable  to  other  types 

of  data.  In  particular,  CNNs  can  be  expected  to  perform  well  in  cases  where  local 

structure  is  dominant. 

2.2.5

Overview  of  LSTM 

Long  Short  Term  Memory  (LSTM)  is  a  specific  type  of  Recurrent  Neural  Network 

(RNN).  RNNs  allow  previous  output  to  be  used  as  input,  based  on  recurrent  con-
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nections,  which  enables  such  models  to  have  a  form  of  memory  that  is  absent  in 

feedforward  architectures.  However,  in  plain  vanilla  RNNs,  this  memory  tends  to 

create  gradient  flow  problems  when  training  via  backpropagation.  One  advantage  of 

LSTMs  over  plain  vanilla  RNNs  is  their  ability  to  mitigate  these  gradient  problems 

when  training.  LSTMs  achieve  this  improvement  over  generic  RNNs  by  use  of  a 

complex  gating  structure  [ 29]. 

We  note  in  passing  that,  commercially,  LSTM  is  one  of  the  most  successful  archi-

tectures  yet  developed.  Examples  of  significant  applications  where  LSTMs  have 

played  a  crucial  role  include  Google  Allo  [ 11], Google  Translate  [ 35],  Apple’s Siri  [ 14], and  Amazon  Alexa  [ 9]. 

2.2.6

Overview  of  VGG16 

Visual  Geometry  Group  16  (VGG16)  is  a  popular  computer  vision  model  [ 27]. 

VGG16  was  designed  as  a  deep  convolutional  neural  network,  pre-trained  for  image 

classification  on  the  ImageNet  dataset. 

The  model  derives  its  name  from  its  16  layers  with  trainable  parameters.  VGG16 

includes  13  convolutional  layers,  five  max-pooling  layers,  and  three  dense  layers, 

resulting  in  a  total  of  21  layers.  Of  these  21  layers,  the  five  max-pooling  layers  do 

not  contain  any  trainable  weights. 

One  unique  aspect  of  VGG16  is  its  architectural  uniformity.  It  employs  convolu-

tional  layers  with  a  consistent  .3 × 3 filter  size  and  a  stride  of  one,  using  the  same 

padding  throughout.  Additionally,  max-pooling  layers  in  VGG16  use  a  .2 × 2 filter 

with  a  stride  of  two.  This  simplicity  facilitates  ease  of  implementation  and  efficient 

training. 

The  generalization  ability  of  VGG16  to  images  beyond  its  training  data  has  made  it 

a  popular  and  successful  model.  VGG16  is  commonly  employed  in  transfer  learning, 

where  the  original  dense  layers  are  replaced  with  new  task-specific  dense  layers. 

The  hidden  layers,  consisting  of  the  convolutional  and  max-pooling  layers  from  the 

original  model,  remain  unchanged  and  are  used  as  a  feature  extractor  while  training 

the  new  fully  connected  layers  on  the  new  data. 

2.2.7

Overview  of  DenseNet121 

DenseNet121  is  a  convolutional  neural  network  architecture  that  belongs  to  the 

DenseNet  family  [ 10].  It  consists  of  four  dense  blocks  and  several  transition  layers  that  involve  convolution  and  pooling.  The  dense  layers  receive  direct  input  from 

all  preceding  layers  within  the  same  block,  allowing  for  feature  reuse.  Transition  lay-

ers  are  inserted  between  dense  blocks  to  control  the  spatial  dimensions  and  channel 

depth  of  the  feature  maps.  A  dense  blocks  is  typically  followed  by  an  average-pooling 

layer,  which  serves  to  reduce  the  dimensionality.  DenseNet121  ends  with  a  classifi-

cation  head,  containing  a  fully  connected  layer  with  a  softmax activation. 

464

R. Agrawal et al. 

DenseNet121  was  designed  to  address  the  limitations  of  traditional  CNN  archi-

tectures,  such  as  vanishing  gradients  and  information  flow  constraints.  Since  its 

introduction  in  2017,  the  model  has  been  successfully  applied  to  image  classifica-

tion  tasks  and  object  detection.  With  excellent  information  flow  and  feature  reuse, 

DenseNet121  can  capture  fine-grained  details  and  small-scale  patterns  throughout  the 

network,  which  is  crucial  for  image  analysis.  In  spite  of  having  more  than  six  million 

trainable  parameters,  DenseNet121  is  more  computationally  efficient  and  requires 

less  memory  than  many  other  comparable  CNN  models,  including  ResNet152  and 

VGG16  [ 10]. 

2.2.8

Overview  of  InceptionV3 

InceptionV3  is  a  prominent  CNN  architecture  that  has  been  very  successful  in  the 

domain  of  computer  vision.  This  advanced  architecture  was  developed  as  an  enhance-

ment  to  Google’s  initial  Inception  model,  providing  an  innovative  approach  to  effi-

cient  computation  and  the  discernment  of  complex  patterns  within  image  data  [ 31]. 

A  distinguishing  feature  of  the  InceptionV3  network  is  its  proprietary  “Inception 

Modules.”  These  modules  incorporate  convolution  operations  with  various  kernel 

sizes  that  operate  simultaneously,  thereby  enabling  the  model  to  efficiently  learn 

features  from  the  input  data. 

In  typical  applications,  the  input  to  an  InceptionV3  model  comprises  image  data, 

and  its  output  layer  delivers  predictions  across  a  pre-defined  set  of  classes.  The 

intervening  layers  of  the  architecture—including  numerous  convolutional  layers, 

pooling  layers,  Inception  modules,  and  fully  connected  layers—perform  sequential 

transformations  of  the  input  data.  This  sequence  facilitates  the  extraction  of  patterns 

and  relevant  features  from  the  images. 

The  training  of  the  InceptionV3  model  employs  backpropagation  and  gradient 

descent.  Due  to  its  complex  and  deep  structure,  it  also  employs  advanced  techniques 

such  as  batch  normalization  (BatchNorm)  and  sophisticated  initialization  schemes. 

These  approaches  are  intended  to  ensure  efficient  training  and  mitigate  potential 

issues  such  as  the  vanishing  gradient  problem. 

The  InceptionV3  architecture  is  known  for  its  balance  of  computational  efficiency 

and  high  accuracy,  performing  effectively  even  with  a  large  number  of  classes  and 

when  handling  high-resolution  image  data.  Nevertheless,  training  the  InceptionV3 

network  can  be  computationally  intensive,  and  typically  requires  a  substantial  volume 

of  labeled  data. 

2.2.9

Overview  of  Xception 

The  Xception  model  is  a  deep  CNN  that  is  an  expansion  of  the  Inception  archi-

tecture.  The  convolutional  blocks  that  make  up  the  Xception  architecture  each  have 

multiple  convolutional  layers  [ 5]. The  convolutions  that  the  Xception  model  employs are  divided  into  two  categories,  namely,  depthwise  convolutions  and  pointwise  con-
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volutions.  Pointwise  convolutions  utilize  a  .1 × 1 convolution  to  mix  the  outputs  of 

depthwise  convolutions,  whereas  depthwise  convolutions  apply  a  single  filter  to  each 

channel-wise  .  n ×  n  spatial  convolution  independently.  A  matrix  of  pixel  values  is used  to  represent  the  input  image,  and  each  pixel  contains  RGB  color  information, 

which  is  passed  through  an  initial  convolution  block.  Global  average  pooling  in 

employed,  where  the  average  value  of  each  feature  map  to  create  a  single  value  for 

each  channel.  The  final  output  layer  consists  of  a  fully  connected  layer  followed  by 

a  softmax activation  function  for  classification  tasks. 

2.2.10

Overview  of  ACGAN 

Auxiliary  Classifier  Generative  Adversarial  Network  (ACGAN)  is  a  specific  type 

of  Generative  Adversarial  Network  (GAN)  that  is  used  when  the  data  consists  of 

multiple  classes.  In  addition  to  classification,  GANs  can  be  used  to  generate  new 

“deep  fake”  data  instances  that  resemble  the  training  data. 

Any  GAN  consists  of  two  neural  networks,  a  generator  and  a  discriminator,  that 

compete  in  an  adversarial  zero-sum  game.  The  generator  produces  new  pieces  of 

data  that  are  as  close  to  the  training  data  as  possible.  The  discriminator  attempts  to 

determine  whether  the  input  it  receives—some  of  which  comes  from  the  generator 

and  some  of  which  comes  from  the  actual  training  data—is  generated  or  authentic. 

The  discriminator  and  generator  weights  are  updated  in  a  way  that  incentivizes  the 

generator  to  produce  “fake”  data  that  is  similar  to  the  training  data,  and  incentivizes 

the  discriminator  to  accurately  diagnose  if  a  sample  is  fake  or  real  [ 8]. 

An  ACGAN  works  similarly,  except  that  the  discriminator  also  returns  the  class 

it  thinks  the  data  belongs  to.  The  ACGAN  incentivizes  the  generator  to  produce 

believable  fakes  that  conform  well  to  a  specific  class,  while  the  discriminator  is 

incentivized  to  accurately  diagnose  fake  samples  and  classify  the  data. 

 2.3 

 Related  Work 

In  the  paper  [ 33], a  technique  that  the  authors  refer  to  as  “EvilModel”  is  used  to hide  malware  in  a  neural  network  model.  In  one  example,  a  malware  sample  of 

size  36.9  MB  is  embedded  in  a  specific  model,  and  the  accuracy  of  the  model  is 

reduced  by  about  1%.  The  authors  of  [ 33]  embed  malware  in  a  learning  model  by carefully  selecting  weights  that  have  minimal  effect  on  model  performance,  and  then 

overwrite  these  weights  with  the  malware  sample. 

The  paper  [ 34]  is  a  continuation  of  the  work  in  [ 33]. Among  other  results,  in  [ 34], malware  is  embedded  in  the  least  significant  bits  of  model  weights,  and  an  “embedding  rate”  of  slightly  more  than  48%  is  achieved. 

The  paper  [ 15]  considers  a  technique  that  its  authors  call  “StegoNet.”  Among other  contributions,  this  paper  includes  experiments  consisting  of  modifying  the  least
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significant  bits  of  model  weights,  and  they  propose  a  plausible  trigger  mechanisms 

for  malware  that  is  embedded  in  a  machine  learning  model. 

Here,  we  consider  the  problem  of  embedding  information  in  the  least  significant 

bits  of  model  weights.  In  comparison  to  [ 34],  we  are  generally  able  to  achieve  relatively  high  embedding  rates  with  no  significant  decrease  in  model  performance.  In 

contrast  to  both  [ 15, 34],  we  consider  far  more  model  types,  and  our  analysis  is  much more  thorough,  as  we  provide  graphs  explicitly  showing  the  tradeoff  between  the 

number  of  bits  overwritten  and  model  accuracy. 

The  work  presented  in  this  paper  is  a  continuation  of  the  work  in  [ 36],  where  the steganographic  capacity  of  a  Multilayer  Perceptron  (MLP),  a  Convolutional  Neural 

Network  (CNN),  and  a  specific  Transformer  model  are  analyzed.  Here,  we  consider 

the  models  introduced  in  Sect. 2.2,  above,  and  provide  a  detailed  analysis  of  the steganographic  capacity  of  each. 

3 

Implementation 

In  this  section,  we  introduce  the  malware  dataset  used  to  train  our  learning  models. 

Then  we  provide  details  on  our  experimental  design.  Our  experimental  results  are 

given  in  Sect. 4, below. 

 3.1 

 Dataset 

Malware  samples  that  are  closely  related  can  be  grouped  into  families.  Malware 

samples  within  a  family  generally  have  similar  functionality,  behavior,  and  code 

structure.  Members  of  a  given  family  typically  share  a  core  code  base  that  contains 

common  functions,  routines,  and  behavior.  Malware  families  tend  to  evolve  over 

time,  and  new  families  can  branch  off  from  existing  families. 

In  this  research,  we  consider  a  malware  dataset  obtained  from  VirusShare  [ 12]. 

This  dataset  contains  more  than  500,000  malware  executables.  From  this  dataset 

of  500,000  malware  executables,  we  consider  the  top  10  most  numerous  families— 

these  malware  families  and  number  of  samples  per  family  are  listed  Table  1. Note that  the  dataset  is  imbalanced,  with  the  most  numerous  of  the  10  families  containing 

more  than  17%  of  the  samples,  while  the  least  numerous  has  slightly  over  7%  of  the 

samples. 

Next,  we  briefly  describe  each  of  these  families;  for  more  details,  see  [ 36].  These families  include  several  different  categories  of  malware,  including  viruses,  worms, 

and  Trojans. 

Adload  is  an  adware  program  that  displays  unwanted  advertisements  on  a  web 

browser  [ 25]. 
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Table  1  Malware  families 

Family

Samples

Fraction  of  total 

Adload

1225

0.0798 

BHO

1412

0.0920 

Ceeinject

1084

0.0706 

OnLineGames

1511

0.0984 

Renos

1567

0.1020 

Startpage

1347

0.0877 

VB

1110

0.0723 

VBinject

2689

0.1751 

Vobfus

1108

0.0721 

Winwebsec

2303

0.1500 

Total

15,356

1.0000 

BHO

is  a  type  of  add-on  or  plugin  for  web  browsers,  such  as  Internet  Explorer. 

While  there  are  many  legitimate  BHOs,  the  malware  version  can  perform  unwanted 

actions,  such  as  redirecting  web  traffic  or  displaying  unwanted  ads  [ 19]. 

Ceeinject  injects  itself  into  legitimate  processes  running  on  a  Windows  oper-

ating  system,  allowing  it  to  execute  its  malicious  code  undetected  [ 17]. 

OnLineGames

is  a  Trojan  that  mimics  an  online  game  [ 24]. 

Renos

is  designed  to  trick  users  into  purchasing  fraudulent  security  software  or 

services  [ 18]. 

Startpage  is  a  family  is  Trojans  that  modifies  a  user’s  web  browser  settings, 

such  as  the  homepage  and  search  engine,  without  the  user’s  consent  [ 23]. 

VB  is  a  simple  Trojan  that  spreads  a  worm  by  copying  itself  to  removable  drives, 

network  shares,  and  other  accessible  file  systems  [ 16]. 

VBinject

is  a  general  technique  that  is  applied  by  malware  author  to  inject 

malicious  program  into  legitimate  Windows  processes  [ 20]. 

Vobfus  is  a  malware  family  that  downloads  other  malware,  such  as  Zbot,  onto 

a  victim’s  computer  [ 21]. 

Winwebsec  is  designed  to  trick  users  into  purchasing  fraudulent  security  soft-

ware  or  services.  It  displays  false  alerts  and  warnings  about  supposed  security 

threats  [ 22]. 

We  consider  several  types  of  feature  vectors,  depending  on  the  requirements  of  the 

particular  model  under  consideration.  For  our  feedforward  models  (LR,  SVM,  MLP, 

ACGAN),  we  extract  a  relative  byte  histogram  from  each  sample.  For  our  image-

based  models  (CNN,  VGG16,  DenseNet121,  InceptionV3,  Xception),  we  treat  the 

raw  bytes  of  an  exe file  as  an  image.  For  example,  if  a  model  uses.64 × 64 images, 

we  place  the  first  4096  bytes  of  an  exe into  a .64 × 64 array  (padding  with  0  bytes, 

if  necessary)  which  we  then  treat  as  an  image.  For  our  model  that  requires  sequential 

data  (LSTM),  we  use  the  first .  n  bytes  of  each  exe file.  Note  that  in  all  cases,  these
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feature  vectors  are  trivial  to  generate,  and  require  no  costly  disassembly  or  dynamic 

analysis. 

 3.2 

 Model  Training 

A  similar  training  and  testing  procedure  is  used  for  each  of  the  10  learning  models 

considered.  First,  we  train  each  model  with  labeled  data  and  test  the  trained  model, 

which  establishes  a  baseline  level  of  performance.  In  this  phase  a  grid  search  is 

performed  over  a  set  of  reasonable  hyperparameter  values.  Accuracy  is  used  as  our 

measure  of  performance. 

After  the  initial  training  and  testing,  data  is  inserted  into  the  low-order  .  n  bits  of the  weights,  which,  on  average,  changes  about  half  of  the  bit  values.  For  each.  n, the performance  of  the  model  is  re-evaluated  using  the  same  data  and  accuracy  metric 

as  for  the  unmodified  model.  This  allows  for  a  direct  comparison  of  the  results  for 

each .  n.  We  graph  the  accuracy  as  a  function  of .  n. 

4 

Steganographic  Capacity  Experiments 

In  this  section,  we  consider  the  steganographic  capacity  of  each  of  the  10  models 

discussed  in  Sect. 2.2.  As  mentioned  above,  to  measure  the  steganographic  capacity, we  embed  information  in  the  low-order  .  n  bits  of  selected  model  weights,  and  we 

graph  the  accuracy  as  a  function  of  .  n.  In  all  cases,  the  information  that  we  hide  is extracted  from  the  pdf version  of  the  book   Alice’s  Adventures  in  Wonderland  [ 4]. 

For  each  deep  learning  model,  we  consider  the  following  cases. 

1.  Only  the  output  layer  weights  are  modified 

2.  The  weights  of  all  hidden  layers  are  modified 

3.  All  of  the  model  weights  are  modified 

For  selected  models,  we  also  consider  the  effect  of  overwriting  the  weights  of  individ-

ual  layers.  In  addition  to  graphing  the  model  accuracy  as  a  function  of.  n,  we  provide a  capacity  graph,  that  is,  the  number  of  model  bits  that  have  been  overwritten  for 

each .  n. 

To  determine  the  overall  capacity  of  a  model,  we  find  the  number  of  bits  .  n  that must  be  overwritten  for  at  least  a  1%  drop  in  accuracy,  as  compared  to  the  original 

trained  model,  which  has  no  bits  of  its  weights  overwritten.  We  then  use.  n − 1 as  the per-weight  steganographic  capacity,  and  the  total  capacity  (in  bits)  is  determined  by 

multiplying  the  number  of  weights  by.  n − 1.  We  give  the  capacity  in  kilobytes  (KB) or  megabytes  (MB),  as  appropriate. 
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Table  2  LR  hyperparameters  tested 

Hyperparameter

Values  tested 

solver

lbfgs,  saga,  liblinear 

penalty

elasticnet, l2 

C (regularization)

0.2,  0.3,  0.5,  0.7, 0.8 

max_iter

50,  80, 100,  120,  200,  500 

 4.1 

 LR  Experiments 

This  model  utilized  the  LogisticRegression() class  from  the  sklearn 

package  in  Python  scikit-learn.  The  class  has  4  different  hyperparameters, 

all  of  which  were  tested  via  grid  search  and  optimized.  The  hyperparameter  values 

tested  are  given  in  Table  2, with  the  values  in  boldface  yielding  the  best  results. 

For  this  10-class  classification  problem,  the  model  achieves  a  respectable  accuracy 

of  0.8717  on  the  validation  set.  From  the  confusion  matrix  for  our  model,  which 

appears  in  Fig. 13  in  the  Appendix,  we  see  a  similar  spread  of  errors,  as  compared  to the  other  models  tested,  with  slightly  poorer  performance  in  identifying  VB viruses. 

Since  LR  models  only  have  one  layer  of  coefficients,  we  can  only  overwrite  the 

bits  in  that  layer;  the  graph  of  these  results  are  given  in  Fig. 1. There is no drop in model  accuracy  when .  n ≤ 22 bits  are  overwritten,  with  about  a  2%  drop  at.  n = 23. 

Therefore,  we  can  overwrite  the  22  low-order  bits  of  each  weight  with  no  loss  in 

performance  and  hence  we  deem .  n = 22 as  the  steganographic  capacity  per  weight 

of  this  model.  Since  the  model  has  2560  weights,  the  total  steganographic  capacity 

is .22 · 2560 = 56 ,  320 bits,  or  7.04  KB. 
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Fig.  1  LR  steganographic  capacity  graph
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Table  3  SVM  model  hyperparameters  tested 

Hyperparameter

Values  tested 

C (regularization)

0.1, 1, 10  

kernel

linear, rbf  

gamma

0.1, 1, 10  

 4.2 

 SVM  Experiments 

The  svm.SVC() function  from  the  sklearn module  from  scikit-learn was 

used  for  the  training  and  testing  of  our  SVM  model.  The  hyperparameters  that  we 

tested  are  listed  in  Table  3,  with  the  selected  values  in  boldface.  For  example,  the SVM  model  with  a  C value  of  1  yielded  the  best  results,  and  the  linear kernel  was 

selected,  with  a  gamma value  of  0.1. 

Based  on  the  confusion  matrix  for  the  SVM  model,  which  appears  in  Fig. 14  in the  Appendix,  the  model  performs  similarly  to  the  other  models,  with  the  highest 

level  of  confusion  for  the  VBinject class  of  viruses.  Also,  the  SVM  model  outputs 

a  classifying  accuracy  of  0.8264  for  the  Adload class,  which  is  lower  than  the  most 

accurate  of  our  models. 

The  overall  accuracy  of  our  SVM  model  is  0.8870.  An  SVM  consists  of  a  single 

“layer”  of  coefficients,  which  correspond  to  the  weights  of  a  deep  learning  model. 

Furthermore,  SVM  coefficients  are  within  the  range  of .−1 to  1,  with  a  higher  mag-

nitude  indicating  a  larger  importance  in  determining  the  decision  boundary.  The 

model  was  able  to  withstand  the  overwriting  of  27  bits  before  experiencing  a  sig-

nificant  drop  in  accuracy,  which  is  a  slightly  higher  per-weight  capacity  than  any  of 

the  deep  learning  models  considered.  The  SVM  model  contains  26,703  coefficients 

(i.e.,  weights)  and  hence  we  calculate  the  steganographic  capacity  of  the  model  to 

be  90.12  KB  (Fig. 2). 

 4.3 

 MLP  Experiments 

The  MLP  results  we  present  here  are  from  [36]; we  include  these  results  for  the  sake  of comparison.  The  MLPClassifier() from  the  sklearn.neural_network 

module  was  used  to  train  and  test  our  MLP  model.  The  hyperparameters  tested  are 

listed  in  Table  4,  with  the  selected  values  appear  in  boldface.  Note  that  a  model with  two  hidden  layers,  with  128  and  10  neurons,  respectively,  was  best.  Also,  the 

logistic function  was  selected  as  our  activation  function. 

The  results  obtained  when  overwriting  the  low  order  bits  of  all  weights  of  our 

trained  MLP  model  are  summarized  in  Fig. 3c. We  observe  that  the  original  accuracy for  the  model  is  0.8417,  and  the  performance  of  the  model  is  unchanged  when  the  low-order  19  bits  of  the  weights  are  overwritten,  while  there  is  a  1%  drop  in  performance
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Fig.  2  SVM  steganographic  capacity  graph 

Table  4  MLP  model  hyperparameters  tested 

Hyperparameter

Values  tested 

hidden_layer_sizes

(64,  10),  (96,  10), (128,  10) 

activation

identity, logistic 

alpha

0.0001, 0.05 

random_state

30, 40, 50  

solver

adam 

learning_rate_init

0.00001 

max_iter

10000 

when  20  bits  are  overwritten.  Overwriting  more  bits  causes  the  accuracy  to  drop 

substantially. 

Figure  3a, b  are  the  results  when  overwriting  the  output  and  internal  layer  weights, respectively.  The  results  in  these  two  cases  are  similar—although  not  identical—to 

the  results  for  all  weights,  discussed  above. 

There  are  100  weights  in  the  output  layer,  and  34,048  weights  in  the  hidden  layer, 

which  makes  the  total  number  of  weights  34,148  in  this  particular  MLP  model. 

Since  we  can  hide  information  in  19  bits  of  the  all  of  the  weights,  we  find  that  the 

steganographic  capacity  of  this  MLP  model  is  approximately  81.10  KB. 

 4.4 

 CNN  Experiments 

A 

Keras 

Sequential  model  with  the  Conv2D(),  Dense(),  and 

MaxPooling2D() layers  provided  by  tensorflow.keras.layers was 

used  to  train  our  CNN  model.  After  testing  the  hyperparameters  listed  in  Table  5, 
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Fig.  3  MLP  steganographic  capacity  graphs  [ 36] 

Table  5  CNN  hyperparameters  tested 

Hyperparameter

Values  tested 

layers

6,  8,  10  12 

activation

ReLU, softmax,  sigmoid 

dropout rate

0.1, 0.2,  0.3,  0.4,  0.5 

learning rate

0.001, 0.1  

we  found  those  in  boldface  to  be  optimal.  The  12  layers  in  our  CNN  consist  of  four 

Conv2D() and  MaxPooling2D() layers,  along  with  two  Dense() layers.  The 

other  two  layers  are  dropout  and  flattening  layers,  for  which  the  placement  and 

dropout  rate  were  tested.  The  activation  function  for  the  last  dense  layer  is  softmax, 

with  the  other  convolution  layers  using  ReLU as  their  activation  functions. 

Our  CNN  model  achieves  an  accuracy  of  0.8925.  From  the  accuracy  and  loss 

graph  in  Fig. 4, we  detect  no  signs  that  the  model  is  overfitting  the  data. 

The  confusion  matrix  for  our  best  CNN  model  appears  in  Fig. 15  in  the  Appendix. 

From  the  confusion  matrix,  we  observe  that  the  VB and  VBInject viruses  account 

for  the  majority  of  errors  on  the  test  set.  This  is  reasonable,  as  these  two  families  are relatively  similar. 

The  results  of  overwriting  the  low-order  bits  for  different  layers  can  be  seen 

in  Fig. 5. In  the  case  of  all  model  weights,  the  accuracy  first  drops  when  we  overwrite  21  bits,  and  hence  we  denote  the  per-weight  capacity  as  20  bits.  Our  CNN  model
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Fig.  5  CNN  steganographic  capacity  graphs 

has  5130  weights  in  the  output  layer  and  1,484,544  weights  in  the  internal  layers, 

for  a  total  of  1,489,674  weights.  This  give  us  an  overall  steganographic  capacity  of 

approximately  3.72  MB

474

R. Agrawal et al. 

Table  6  LSTM  model  hyperparameters  tested 

Hyperparameter

Values  tested 

batch_size

16, 32,  64,  128 

activation

tanh,  ReLU 

epoch

5, 10, 12  

optimizer

RMSprop, adam 

learning_rate

0.0001, 0.001 

LSTM_units

64,  128, 512 

dense_layer_units

64, 128, 

sequence_length

150,  200, 300,  350,  400 

 4.5 

 LSTM  Experiments 

The  LSTM() function  from  the  keras module  was  used  for  training  and  testing 

our  LSTM  model.  Table  6  shows  the  hyperparameters  tested  while  training,  and  the boldface  entries  indicate  the  combination  that  yielded  the  best  results.  The  confusion 

matrix  for  our  best  LSTM  model  appears  in  Fig. 16  in  the  Appendix. 

As  feature  vectors  for  our  LSTM,  we  use  the  first  .  N  bytes  of  the  exe files, 

where  each  byte  is  converted  to  the  range  of  0  and  1  by  treating  the  byte  value  as 

an  integer  and  dividing  by  255.  We  experimented  with  the  different  values  of  .  N

as  listed  in  Table  6  and  found  that  .  N = 300 gave  us  the  best  results.  Note  that  this model  is  extremely  lightweight,  and  hence  it  is  not  surprising  that  it  yields  slightly 

less  accurate  results,  as  compared  to  other  models  tested. 

When  overwriting  low-order  bits  of  all  weights,  the  validation  accuracy  is  slightly 

more  than  0.78  up  to  24  bits.  However,  the  accuracy  drops  about  4%  when  25  bits 

have  been  modified  per  weight,  before  plummeting  at  26  bits,  as  shown  in  Fig. 6c. 

The  results  for  the  output  and  internal  layers  are  similar. 

With  1,119,626  trainable  parameters,  the  weights  were  split  into  an  LSTM  layer 

and  two  dense  layers.  The  majority  of  the  units  are  found  in  the  LSTM  layer  (con-

taining  a  total  of  1,052,672)  in  this  particular  LSTM  model.  The  first  dense  layer 

has  65,664  weights  while  the  output  dense  layer  only  possess  1290.  Based  on  over-

writing  the  24  low-order  bits,  the  total  steganographic  capacity  of  this  LSTM  is 

about  3.36  MB. 

 4.6 

 VGG16  Experiments 

The 

VGG16()

model

pre-trained

on

ImageNet

from

the 

tf.keras.applications module  was  used  to  train  and  test  our  VGG16 

model.  Since  this  is  a  transfer  learning  model,  we  replaced  the  old  dense  layers  with 

a  new  dense  layer  that  has  10  units,  each  unit  corresponding  to  one  of  our  output
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Fig.  6  LSTM  steganographic  capacity  graphs 

Table  7  VGG16  model  hyperparameters  tested 

Hyperparameter

Values  tested 

random_state

100, 120,  130 

solver

adam 

learning_rate_init

0.001, 0.01 

max_iter

50,  75, 100 

classes.  The  output  layer  uses  a  softmax activation  function.  The  hyperparameters 

tested  are  listed  in  Table  7, with  the  selected  values  in  boldface.  Note  that  most  of the  hyperparameters  of  the  model  are  predetermined  due  to  transfer  learning.  The 

confusion  matrix  for  our  best  VGG16  model  appears  in  Fig. 17  in  the  Appendix. 

For  all  of  the  pre-trained  models  considered  here  (i.e.,  VGG16,  DenseNet121, 

InceptionV3,  and  Xception)  we  refer  to  the  weights  that  are  re-trained  for  our  malware 

classification  problem  as  the  “trained  weights.”  These  are  in  contrast  to  the  pre-trained 

weights,  which  do  not  change  from  the  pre-trained  models. 

Only  the  output  layer  weights  of  this  model  were  retrained  for  our  malware  classi-

fication  problem.  From  the  graph  in  Fig. 7a,  we  see  that  our  VGG16  model  accuracy is  maintained  when  21  bits  of  the  trained  weights  are  overwritten,  with  a  drop  of 

more  than  2%  at  22  bits,  and  a  larger  drop  thereafter.  Thus,  the  per-weight  capacity
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Fig.  7  VGG16  steganographic  capacity  graphs 

is  21  bits  when  only  trained  weights  are  considered.  Since  the  output  layer  has  5130 

weights,  this  gives  us  a  capacity  of  13.47  KB. 

Figure  7b  gives  capacity  results  for  the  pre-trained  weights,  while  Fig. 7c  contains the  results  for  all  weights.  In  both  of  these  cases,  the  per-weight  capacity  is  20  bits. 

The  hidden  layer  of  our  VGG16  implementation  has  14,714,688  weights,  and  hence 

the  total  number  of  weights  is  14,719,818  in  our  VGG16  model.  Considering  all 

weights,  this  gives  us  a  capacity  of  almost  36.8  MB. 

Figure  18  in  the  Appendix  gives  the  steganographic  capacity  results  for  each  of the  13  individual  layers  in  our  VGG16  model.  In  each  case,  these  graphs  follow  a 

similar  pattern,  and  hence  we  observe  no  dramatic  differences  between  the  layers, 

with  respect  to  our  steganographic  capacity  experiments. 

 4.7 

 DenseNet121 

DenseNet121() from  the  tensorflow module  was  used  for  training  and  test-

ing.  Table  8  shows  the  hyperparameters  tested,  and  the  boldface  entries  indicate the  combination  that  attained  the  best  results.  The  confusion  matrix  for  our  best 

DenseNet121  model  appears  in  Fig. 19  in  the  Appendix. 

From  Fig. 8c  we  observe  that  model  accuracy  is  about  0.88  and  that  overwriting  20 

bits  of  the  trained  weights  provides  no  loss  in  accuracy,  but  overwriting  21  bits  results

On the Steganographic Capacity of Selected Learning Models

477

Table  8  DenseNet121  hyperparameters  tested 

Hyperparameter

Values  tested 

batch_size

16,  32, 64,  128 

activation

ReLU 

kernel_regularizer

l2  (0.01) 

epoch

5, 10, 12  

optimizer

adam 

learning_rate

0.0001,  0.001 

dense_layer_units

64,  128, 512 

input_shape

64,  128,  224, 64 
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Fig.  8  DenseNet121  steganographic  capacity  graphs 

in  a  2%  drop,  with  further  declines  thereafter.  Thus,  the  per-weight  steganographic 

capacity  of  our  DenseNet121  model  is  20,  when  considering  the  trained  weights. 

DenseNet121  contains  7,571,530  total  parameters,  but  only  700,106  weights  are 

trainable.  Thus,  when  modifying  the  trained  weights,  the  model  has  a  capacity  of 

about  1.75  MB,  based  on  a  per-weight  capacity  of  20  bits. 
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 4.8 

 InceptionV3 

The  InceptionV3  pre-trained  model  from  the  Keras library  was  utilized  for  our 

training  and  testing.  This  model  is  based  on  transfer  learning,  with  fine  tuning  applied 

to  the  output  and  dense  layers.  The  hyperparameters  tested  are  listed  in  Table  9,  with the  selected  values  in  boldface.  Since  InceptionV3  is  a  pre-trained  model,  only  three 

hyperparameters  were  tested.  The  confusion  matrix  for  our  best  InceptionV3  model 

appears  in  Fig. 20  in  the  Appendix. 

Figure  9c  summarize  the  effect  of  hiding  data  in  all  trained  weights  of  our trained  InceptionV3  model.  The  model’s  initial  accuracy  is  approximately  0.9004 

and  remains  above  0.89  until  we  have  overwritten  the  26  least-significant  bits,  which 

causes  only  a  slight  decline  in  accuracy  to  0.88,  with  more  substantial  drops  there-

after.  Thus,  with  respect  to  the  trained  weights,  we  consider  25  bits  as  the  per-weight 

capacity  of  this  model. 

Table  9  InceptionV3  hyperparameters  tested 

Hyperparameter

Values  tested 

epochs

2, 4, 5, 8  

batch_size

32, 64,  128 

learning_rate

0.001, 0.0001,  0.0005 
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Fig.  9  InceptionV3  steganographic  capacity  graphs
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Our  InceptionV3  model  has  10,240  weights  in  the  output  layer,  and  2,097,152 

weights  in  the  dense  layer,  for  a  total  of  2,107,392  trained  weights.  With  a  per-

weight  capacity  of  25  bits,  this  gives  us  a  total  steganographic  capacity  of  approxi-

mately  6.59  MB  in  the  trained  weights. 

In  Fig. 9d,  we  have  the  capacity  graph  for  the  pre-trained  weights  of  the  InceptionV3  model.  Interestingly,  the  pre-trained  weights  have  a  much  lower  per-weight 

steganographic  capacity,  as  compared  to  the  trained  weights.  For  the  pre-trained 

weights,  we  observe  a  drop  of  about  1%  in  accuracy  at  15  bits,  followed  by  a  steep 

drop  at  16  bits,  and  hence  we  consider  14  bits  as  the  per-weight  capacity  with  respect 

to  the  pre-trained  weights.  There  are  21,802,784  weights  in  the  pre-trained  Incep-

tionV3  layer,  so  even  with  its  lower  per-weight  capacity  of  14  bits,  the  total  stegano-

graphic  capacity  of  the  pre-trained  weights  is  large,  at  38.15  MB. 

 4.9 

 Xception 

The  Xception pre-trained  model  from  the  tensorflow.keras module  was 

used  for  our  Xception  experiments.  The  hyperparameters  tested  are  listed  in  Table  10, and  the  combination  that  yielded  the  best  result  appear  in  boldface.  Note  that  both 

softmax and  ReLU activation  functions  were  utilized  in  the  hidden  layers,  and  the 

input  data  was  reshaped  to  fit  the  input  size  of  .  ( 256 ,  256 ,  3 ).  The  confusion  matrix for  our  best  Xception  model  appears  in  Fig. 21  in  the  Appendix. 

Figure  10c  provides  a  summary  of  our  experimental  results  when  the  low-order bits  of  all  weights  are  overwritten.  The  initial  accuracy  is  about  0.88,  and  there  is  a marginal—but  inconsistent—decline  at  small  values  of.  n,  with  the  consistent  decline 

beginning  when  21  bits  of  the  trained  weights  are  overwritten.  Thus,  we  take.  n = 20

as  the  per-weight  steganographic  capacity  of  our  Xception  model,  with  respect  to 

trained  weights. 

For  the  Xception  model,  the  hidden  layers  have  29,046  weights,  and  the  output 

layer  has  5130  weights,  for  a  total  of  34,176  trained  weights.  Based  on  a  per-weight 

capacity  of  20  bits,  the  steganographic  capacity  is  85.44  KB  in  the  trained  weights. 

Table  10  Xception  model  hyperparameters  tested 

Hyperparameter

Values  tested 

input_shape

(256,  256,  3),  (299,  299,  3) 

activation

ReLU,  softmax 

num_classes

10 

batch_size

16,  32, 64 

epochs

5,  7, 10, 15  

learning_rate

0.001, 0.0001 

kernal_regularizer

l2  (0.01) 

test_split

0.2
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Fig.  10  Xception  steganographic  capacity  graphs 

Table  11  ACGAN  discriminator  hyperparameters  tested 

Hyperparameter

Values  tested 

pad-size

same 

batch size

32,  128,  256 

max-epochs

10000, 14000 

random_state

10,  50, 100 

momentum

0.5, 0.8 

learning_rate_init

0.0001  0.0002 

solver

adam 

 4.10 

 ACGAN 

For  our  ACGAN,  we  use  the  Sequential model  from  keras.models to  train 

the  discriminator  and  generator.  The  discriminator  of  the  trained  ACGAN  is  then 

used  as  the  classifier  in  our  experiments.  The  hyperparameters  tested  for  the  model 

are  listed  in  Table  11, with  the  selected  values  in  boldface.  The  confusion  matrix  for our  best  ACGAN  discriminator  model  appears  in  Fig. 22  in  the  Appendix.  Note  that the  ACGAN  generator  plays  no  role  in  our  capacity  calculations. 

The  results  obtained  when  hiding  information  in  the  low-order  bits  of  the  weights 

of  our  trained  discriminator  model  are  summarized  in  Fig. 11. We  observe  that  the original  accuracy  for  the  model  is  approximately  0.8469,  and  the  performance  of  the
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Fig.  11  ACGAN  steganographic  capacity  graphs 

model  declines  by  slightly  more  than  1%  when  21  bits  are  overwritten,  and  hence 

we  consider .  n = 20 to  be  the  per-bit  capacity. 

Figure  23  in  the  Appendix  gives  results  the  steganographic  capacity  results  for each  of  the  4  individual  layers  in  ACGAN.  These  graphs  follow  a  similar  pattern  as 

the  graphs  in  Fig. 11, and  hence  we  observe  no  significant  differences  between  the individual  layers. 

The  ACGAN  discriminator  has  20,490  weights  in  the  output  layer  and  97,536 

weights  in  the  hidden  layers,  for  a  total  of  118,026  weights.  Based  on  a  per-weight 

capacity  of  20  bits,  the  total  steganographic  capacity  is  295.065  KB. 

 4.11 

 Discussion 

We  summarize  our  steganographic  capacity  findings  in  Table  12  and,  in  bar  graph form,  in  Fig. 12.  Of  the  models  tested,  SVM  has  the  highest  capacity  per  weight, which  implies  that  this  particular  model  requires  the  least  precision  in  its  weights. 

This  is  not  surprising,  given  that  the  SMO  algorithm  that  is  used  to  train  SVMs  relies 

on  the  fact  that  low  precision  suffices.  Of  the  pre-trained  transfer  learning  models, 

InceptionV3  has  the  highest  capacity  per-weight,  with  respect  to  trained  weights. 

Note  that  the  numbers  in  Table  12  and  Fig. 12  for  the  pre-trained  models  (VGG16, DenseNet121,  InceptionV3,  Xception)  only  include  the  trained  weights,  that  is,  the 

weights  that  were  retrained  for  the  specific  malware  classification  problem  under
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Table  12  Summary  of  results 

Model

Layers

Weights

Initial 

Steganographic  capacity 

accuracy 

Bits  per 

Total 

weight 

LR

All

2560

0.8652

22

7.04  KB 

SVM

All

26,703

0.8873

27

90.12  KB 

MLP

All

34,148

0.8416

19

81.10  KB 

CNN

All

1,489,674

0.8925

20

3.72  MB 

LSTM

All

1,119,626

0.7562

24

3.36  MB 

VGG16

Trained

5130

0.9079

21

13.47  KB 

DenseNet121

Trained

700,106

0.8963

20

1.75  MB 

InceptionV3

Trained

2,107,392

0.9004

25

6.59  MB 
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Trained

34,176

0.8886

20

85.44  KB 
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118,026
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20
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Fig.  12  Bar  graphs  of  capacity  results 

consideration.  In  Sect. 4.8,  we  found  that  the  per-weight  capacity  for  the  pre-trained layers  of  the  InceptionV3  model  was  just  14  bits,  as  compared  to  25  bits  for  its 

trained  weights.  In  spite  of  this  low  per-weight  capacity,  the  number  of  pre-trained 

weights  in  InceptionV3  is  large,  and  hence  the  steganographic  capacity  is  large—if 

we  consider  all  weights,  the  capacity  is  44.74  MB.  Similarly,  in  Sect. 4.6  we  showed that  if  we  consider  all  weights  of  the  VGG16  model,  it  also  has  an  extremely  high 

steganographic  capacity  at  36.80  MB. 
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5 

Conclusion 

The  primary  goal  of  this  research  was  to  determine  reasonable  lower  bounds  for  the 

stenographic  capacity  of  a  representative  sample  of  learning  models.  Each  model 

was  trained  on  a  dataset  of  more  than  15,000  malware  executables  from  10  families, 

with  more  than  1000  samples  per  family. 

All  of  the  trained  learning  models  underwent  a  similar  testing  procedure:  We  first 

determined  the  accuracy  of  a  model  on  the  test  set,  then  we  embedded  information 

in  the  .  n  low-order  bits  of  the  weights,  for  .  n = 1 ,  2 , . . . ,  32,  and  we  recomputed the  classification  accuracy  for  each .  n.  For  generic  deep  learning  models,  we  experimented  with  the  output  layer  weights,  the  hidden  layer  weights,  and  all  of  the  weights, 

while  for  pre-trained  models,  we  considered  the  trained  weights.  The  results  were 

fairly  consistent  across  all  models,  in  that  a  substantial  number  of  bits  per  weight 

can  be  used  to  hide  information,  with  minimal  effect  on  the  accuracy.  In  addition,  at 

some  point,  the  accuracy  of  all  models  dropped  precipitously,  indicating  a  minimum 

level  of  required  precision.  These  results  were  also  reasonably  consistent  across  the 

various  layers  of  the  models,  with  the  only  notable  exception  being  the  pre-trained 

weights  of  the  InceptionV3  model,  which  had  a  lower  per-weight  steganographic 

capacity. 

Our  experimental  results  show  that  the  steganographic  capacity  of  the  models  we 

tested  is  surprisingly  high.  This  is  potentially  a  significant  security  issue,  since  such 

models  are  ubiquitous,  and  hence  it  is  to  be  expected  that  attackers  will  try  to  take 

advantage  of  them.  Embedding,  say,  malware  in  a  learning  model  offers  an  attack 

vector  that  is  practical,  and  could  be  highly  effective  in  practice. 

It  would  be  wise  to  reduce  the  steganographic  capacity  of  learning  models.  Our 

results  indicate  that  standard  32-bit  weights  do  not  yield  a  significant  improvement 

in  accuracy  over  what  could  be  achieved  with,  say,  16-bit  weights,  and  for  some 

models,  8-bit  weights  would  be  more  than  sufficient. 

Further  research  into  other  popular  deep  learning  models  would  be  worthwhile. 

Also,  training  models  on  different  types  of  problems—including  classification  prob-

lems  of  varying  levels  of  difficulty—would  tell  us  whether  the  capacity  of  a  specific 

model  varies  with  the  difficulty  of  the  problem.  Additional  analysis  of  the  pre-trained 

weights  of  transfer  learning  models  would  be  interesting.  Research  on  compressed 

models  that  use  smaller  numbers  of  bits  to  store  each  weight  would  be  of  practical 

significance. 

Dropout  regularization  in,  say,  MLPs  (equivalently,  cutouts  in  CNNs)  is  used  to 

force  more  neurons  to  be  active  in  training,  which  can  be  very  effective  in  reducing 

overfitting.  It  would  be  interesting  to  determine  whether  such  regularization  tech-

niques  also  affect  the  precision  of  trained  weights,  which  can  be  measured  via  the 

steganographic  capacity  experiments  presented  in  this  paper. 

Another  area  for  further  investigation  would  be  to  combine  some  aspects  of  the 

steganographic  capacity  approach  considered  in  this  paper  with  the  work  in  [ 33], where  information  is  hidden  in  weights  that  are  (essentially)  unused  by  the  model. 

By  combining  both  of  these  techniques,  we  could  obtain  even  larger  stegano-

[image: Image 136]

484

R. Agrawal et al. 

graphic  capacities  for  learning  models.  Finally,  it  would  be  interesting—although 

challenging—to  obtain  tight  upper  bounds  on  the  minimum  size  of  various  models, 

with  the  goal  of  eliminating  any  usable  steganographic  capacity. 

Appendix 

In  this  appendix,  we  provide  confusion  matrices  for  the  models  analyzed  in  this  paper. 

We  observe  that,  in  general,  VB and  VBInject are  consistently  the  most  difficult 

families  to  distinguish.  We  also  provide  additional  steganographic  capacity  graphs 

for  selected  models.  We  also  provide  capacity  graphs  for  the  individual  layers  of  the 

VGG16  and  ACGAN  models  (Figs. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22  and  23). 

Fig.  13  LR  confusion  matrix

[image: Image 137]

[image: Image 138]
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Fig.  14  SVM  confusion  matrix 

Fig.  15  CNN  confusion  matrix

[image: Image 139]

[image: Image 140]
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Fig.  16  LSTM  confusion  matrix 

Fig.  17  VGG16  confusion  matrix
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Fig.  18  VGG16  capacity  graphs  for  individual  layers
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Fig.  19  DenseNet121  confusion  matrix 

Fig.  20  InceptionV3  confusion  matrix
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Fig.  21  Xception  confusion  matrix 

Fig.  22  ACGAN  confusion  matrix
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Robustness of Selected Learning Models 

Under Label-Flipping Attack 

Sarvagya Bhargava 

and Mark Stamp 

Abstract  In  this  paper  we  compare  traditional  machine  learning  and  deep  learning 

models  trained  on  a  malware  dataset  when  subjected  to  adversarial  attack  based  on 

label-flipping.  Specifically,  we  investigate  the  robustness  of  Support  Vector  Machines 

(SVM),  Random  Forest,  Gaussian  Na¨ıve  Bayes  (GNB),  Gradient  Boosting  Machine 

(GBM),  LightGBM,  XGBoost,  Multilayer  Perceptron  (MLP),  Convolutional  Neural 

Network  (CNN),  MobileNet,  and  DenseNet  models  when  facing  varying  percentages 

of  misleading  labels.  We  empirically  assess  the  accuracy  of  each  of  these  models 

under  such  an  adversarial  attack  on  the  training  data.  This  research  aims  to  provide 

insights  into  which  models  are  inherently  more  robust,  in  the  sense  of  being  better 

able  to  resist  intentional  disruptions  to  the  training  data.  We  find  wide  variation  in  the robustness  of  the  models  tested  to  adversarial  attack,  with  our  MLP  model  achieving 

the  best  combination  of  initial  accuracy  and  robustness. 

1  Introduction 

Malicious  software—malware—is  a  pernicious  threat.  Machine  learning  models 

have  proven  to  be  powerful  tools  for  identifying  and  mitigating  malware-based 

attacks.  Since  malware  evolves,  we  need  to  constantly  improve  our  defenses,  which 

implies  that  research  into  learning  models  as  applied  in  to  the  malware  problem  is 

essential. 

One  of  the  fundamental  areas  where  we  need  to  improve  our  defenses  is  in  dealing 

with  adversarial  attacks  on  machine  learning  models.  Poisoning  attacks  typically 

involve  corrupting  the  training  data  or  features  vectors.  The  research  in  this  paper, 

focuses  on  label-flipping  adversarial  attacks  [ 20]. These  attacks  involve  mislabeling data  points  during  training,  which  serves  to  corrupt  the  training  phase,  and  thereby 

degrade  model  performance.  Understanding  how  various  models  respond  to  these 

attacks  is  the  main  focus  of  this  paper.  We  consider  both  classic  machine  learning 

techniques  and  deep  learning  models. 
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Evaluating  machine  learning  models  against  label-flipping  attacks  within  the 

malware  domain  is  important  for  the  following  reasons. 

• The  consequences  of  misclassification  in  malware  detection  can  be  severe,  lead-

ing  to  security  breaches,  data  compromise,  and  system  vulnerabilities.  Thus  it  is 

important  to  understand  how  different  models  respond  to  adversarial  attacks. 

• Many  types  of  learning  models  have  been  shown  to  perform  well  in  the  malware 

domain.  Comparing  and  evaluating  the  resilience  and  robustness  of  these  archi-

tectures  offers  critical  insights  that  can  guiding  practitioners  in  selecting  the  most 

suitable  models  for  defensive  applications. 

In  short,  understanding  and  mitigating  the  impacts  of  label-flipping  adversarial 

attacks  is  imperative  for  the  development  of  secure,  reliable,  and  effective  machine 

learning  based  malware  detection  systems.  This  research  advances  knowledge  in  the 

field  by  serving  as  a  practical  guide  for  practitioners  to  select  and  implement  more 

secure  machine  learning  models. 

In  this  paper,  we  utilize  the  Malicia  dataset—which  consists  of  Windows 

malware—to  evaluate  the  resilience  of  various  machine  learning  and  deep  learn-

ing  algorithms  when  faced  with  label-flipping  attacks.  Initially,  we  pre-process  data 

comprising  of  11,688  malware  binaries,  which  are  classified  into  48  distinct  mal-

ware  families  [ 14].  We  exclude  from  our  training  and  testing  all  classes  containing fewer  than  50  samples.  We  partition  the  resulting  dataset  into  training  and  testing 

subsets,  and  we  implement  a  procedure  to  simulate  label-flipping  attacks  on  the  test 

set.  This  manipulated  dataset  is  subsequently  fed  into  a  variety  of  trained  models 

to  assess  their  performance.  These  results  enable  us  to  analyze  the  effectiveness 

of  the  models  under  this  attack  scenario.  We  empirically  analyze  the  robustness  of 

Support  Vector  Machines  (SVM),  Random  Forest,  Gaussian  Na¨ıve  Bayes  (GNB), 

Gradient  Boosting  Machine  (GBM),  LightGBM,  XGBoost,  Multilayer  Perceptron 

(MLP),  Convolutional  Neural  Network  (CNN),  MobileNet,  and  DenseNet  models. 

The  remainder  of  this  paper  is  organized  as  follows.  In  Sect. 2,  we  provide  information  on  related  work,  that  is,  selected  prior  research  into  adversarial  attacks  involving 

malware  datasets.  Section  3  covers  the  technical  details  of  our  research,  including  an overview  of  the  machine  learning  models  used  in  this  study.  In  Sect. 4, we  detail  the experiments  conducted  to  evaluate  the  resilience  of  our  models  against  label-flipping 

attacks.  The  discussion  extends  to  the  implications  of  our  findings,  emphasizing  the 

strengths  and  limitations  of  current  approaches.  We  conclude  the  paper  in  Sect. 5, where  we  also  consider  future  work  that  could  be  undertaken  to  extend  the  results  in 

this  paper. 
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2  Related Work 

Adversarial  attacks  against  malware  detection  systems  have  emerged  as  a  challeng-

ing  problem  in  cybersecurity  research.  In  this  section,  we  discuss  representative 

examples  of  previous  works  related  to  adversarial  attacks  on  malware  detection  and 

classification  systems. 

Aryal  et  al.  in  [ 1]  provide  a  detailed  survey  of  adversarial  attacks  within  malware detection  systems.  Their  work  systematically  highlights  the  vulnerabilities  of  various 

machine  learning  models  to  these  such  threats.  Our  research  aims  to  build  upon  this 

previous  work  by  investigating  the  resiliency  of  various  machine  learning  and  deep 

learning  techniques  to  label-flipping  attacks.  A  goal  of  our  research  is  to  uncover  any 

inherent  model-specific  strengths  and  weaknesses. 

Paudice  et  al.  in  [ 16]  conducts  an  in-depth  study  utilizing  three  distinct  datasets (MNIST,  BreastCancer,  and  SpamBase)  to  explore  the  efficacy  of  label-flipping 

attacks  on  machine  learning  models.  Their  research  demonstrates  the  significant 

impact  of  such  adversarial  tactics  on  the  performance  of  learning  systems,  and 

they  also  consider  a  .  k-Nearest  Neighbor  based  defense  mechanism.  This  mecha-

nism  focuses  on  label  sanitization,  effectively  identifying  and  correcting  maliciously 

altered  labels  to  mitigate  the  adverse  effects  of  these  attacks. 

In  their  research,  Xiao  et  al.  in  [ 20]  examined  the  resilience  of  Support  Vector Machines  (SVMs)  against  adversarial  label  noise  attacks.  Such  attacks  aim  to  manipulate  SVM  classification  through  strategic  label-flipping.  Their  analysis,  focuses  on 

both  linear  and  non-linear  SVMs,  across  synthetic  and  real-world  datasets. 

Taheri  et  al.  in  [ 19]  introduce  two  novel  defense  strategies  against  silhouette clustering-based  label-flipping  attacks,  specifically  designed  for  deep-learning-based 

malware  systems.  Additionally,  Bootkrajang  and  Kabán  in  [ 3]  discuss  the  utility  of robust  logistic  regression  algorithms  that  can  withstand  label-flipping,  underscoring 

the  relevance  in  practical  applications. 

Aryal  et  al.in  [ 2]  examine  the  resilience  of  various  machine  learning  models  to label-poisoning  within  the  realm  of  malware  detection  by  evaluating  the  detrimental 

impact  of  data  corruption  on  the  performance  of  ML-based  malware  detectors.  This 

paper  emphasize  the  critical  importance  of  developing  robust  defense  mechanisms 

to  safeguard  machine  learning  applications  from  adversarial  attacks. 

Jha  et  al.  in  [ 11]  introduced  “FLIP,”  a  novel  label-only  backdoor  attack  method that  subverts  machine  learning  models  by  manipulating  the  labels  on  training  data. 

Demonstrating  significant  efficacy,  FLIP  achieved  a  high  attack  success  rate  on  the 

CIFAR-10  dataset  with  a  minimal  amount  of  label  corruption,  while  maintaining  high 

accuracy  on  clean  data.  This  highlights  a  critical  vulnerability  in  machine  learning 

systems  and  underscores  the  need  to  understand  which  models  are  more  susceptible 

to  these  types  of  attacks. 
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3  Background 

In  this  section,  we  introduce  the  various  learning  models  that  are  considered  in 

our  experiments.  These  models  range  from  classic  machine  learning  techniques  to 

cutting-edge  pre-trained  deep  learning  models. 

 3.1 

 Classic  Models 

Support  Vector  Machines  (SVM)  [ 4]  are  powerful  supervised  learning  models  used for  classification  and  regression  tasks.  When  training  an  SVM  for  binary  classification,  the  goal  is  to  find  a  separating  hyperplane  that  splits  the  classes.  SVMs 

are  effective  in  high-dimensional  spaces  and  can  handle  non-linear  relationships 

via  kernel  functions.  SVMs  easily  generalize  to  the  multiclass  case,  where  they  are 

sometimes  referred  to  as  Support  Vector  Classifiers  (SVC). 

Random  Forest  [ 5]  models  are  constructed  by  using  multiple  decision  trees.  They are  a  category  of  ensemble  learning  models  and  often  perform  well  in  classification 

and  regression  tasks.  By  combining  a  number  of  decision  trees,  a  Random  Forest 

reduces  overfitting  and  increases  the  robustness  of  the  model.  They  are  noted  for 

handling  high-dimensional  data  well. 

Gaussian  Na¨ıve  Bayes  (GNB)  [ 8]  is  a  probabilistic  algorithm  which  is  relatively simple,  efficient,  and  can  be  highly  effective  in  some  cases.  GNB  is  a  variant  of  Na¨ıve Bayes  that  works  especially  well  when  the  independence  assumption  holds  true. 

 3.2 

 Boosting  Models 

We  place  an  emphasis  on  boosting  models,  since  mislabeled  training  data  is  con-

sidered  a  weakness  of  boosting  [ 18].  Thus,  we  expect  that  boosting  models  will generally  be  susceptible  to  failure  under  a  label-flipping  attack,  and  we  would  like 

to  determine  whether  there  are  meaningful  differences  in  the  robustness  of  different 

boosting  techniques. 

Gradient  Boosting  Machines  (GBM)  [ 7]  are  a  class  of  ensemble  learning  techniques  which  are  known  for  incrementally  improving  model  accuracy.  This  is 

achieved  by  generating  new  models  to  correct  misjudgments  of  preceding  mod-

els.  These  models  are  generated  in  sequence  until  no  substantial  improvements  are 

observable.  GBM  employs  decision  trees  as  the  base  learners  and  refines  them 

through  an  iterative  approach.  Specifically,  GBM  minimizes  a  loss  function  by 

employing  weak  learners,  following  a  method  akin  to  gradient  descent.  This  pro-

cess  addresses  errors  primarily  by  focusing  on  the  residuals  of  earlier  learners  in 

the  sequence,  and  is  accomplished  through  the  sequential  addition  of  shallow  trees 

tailored  to  correct  previous  mistakes. 
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LightGBM  [ 12]  is  a  gradient  boosting  ensemble  modeling  technique,  which 

focuses  on  fast  and  efficient  training  with  reduced  memory  usage.  LightGBM  uses  a 

histogram-based  method  where  it  bins  the  data  using  a  histograms  of  the  distribution 

which,  in  turn  are  used  to  iterate,  calculate  the  gain,  and  split  the  data.  LightGBM 

also  uses  feature  bundling,  where  it  combines  various  features  together  to  reduce 

dimensionality  and  make  the  training  more  efficient. 

XGBoost  [ 6]  (eXtreme  Gradient  Boosting)  is  an  enhancement  to  the  foundational concepts  of  GBM.  The  benefits  of  XGBoost  are  that  it  is  efficient  to  train,  it  handles 

complex  relationships,  it  employs  regularization  techniques  that  reduce  overfitting, 

it  can  incorporate  parallel  processing  to  improve  computation  speed,  and  it  is  robust. 

 3.3 

 Deep  Learning  Models 

Multilayer  Perceptrons  (MLP)  [ 17]  are  a  type  of  feedforward  artificial  neural  network characterized  by  multiple  layers  of  interconnected  nodes  (i.e.,  neurons).  An  MLP  has 

an  input  layer  and  an  output  layers,  along  with  one  or  more  hidden  layers,  with  each 

layer  being  full-connected  to  the  layers  above  and  below.  MLPs  often  perform  well 

even  on  relatively  small  datasets. 

Convolutional  Neural  Networks  (CNN)  [ 13]  are  a  category  of  deep  learning  algorithms  that  are  designed  to  be  efficient  for  dealing  with  data  where  local  structure 

dominates,  such  as  is  the  case  for  images.  The  architecture  of  a  CNN  typically 

involves  a  sequence  of  interleaved  convolutional  and  pooling  layers,  with  one  or  more 

fully  connected  layers  for  classification.  The  convolutional  layers  apply  a  number  of 

filters  to  the  input  to  create  feature  maps  that  abstract  higher-level  features  from  the 

raw  input  data.  Pooling  layers  reduce  the  dimensionality  for  the  next  convolutional 

layer,  thereby  reducing  the  number  of  parameters  and  improving  the  computational 

efficiency.  CNNs  have  proven  to  be  highly  effective  for  image  classification  and 

object  detection,  and  have  been  successfully  applied  to  many  non-image  problems 

as  well. 

MobileNets  [ 9]  are  a  streamlined  class  of  convolutional  neural  networks  designed for  efficiency  and  are  suitable  for  environments  with  limited  computational  resources 

such  as  mobile  devices.  MobileNets  employ  a  unique  architecture  involving  depth-

wise  separable  convolutions,  significantly  reducing  the  number  of  parameters  and 

computational  overhead.  This  makes  MobileNets  particularly  suitable  for  small 

datasets,  as  their  compact  structure  minimizes  the  risk  of  overfitting  while  facilitating 

faster  training  via  transfer  learning. 

DensetNets  [ 10]  have  shown  remarkable  performance  in  image  classification, object  detection,  and  segmentation  tasks.  Their  ability  to  leverage  information  from 

previous  layers  makes  them  particularly  effective  for  tasks  where  preserving  spatial 

hierarchies  in  images  is  crucial. 
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4  Experiments and Results 

This  section  provides  details  on  all  of  our  label-flipping  experiments.  We  begin  with 

a  discussion  of  the  dataset,  the  preprocessing  of  the  data,  and  feature  extraction.  We 

then  move  on  to  the  experimental  results  for  each  of  the  models,  where  we  vary  the 

percentages  of  labels  that  are  flipped. 

 4.1 

 Dataset  and  Data  Preprocessing 

We  train  models  using  the  Malicia  dataset  [15].  In  the  preprocessing  phase,  the  dataset is  filtered  to  seven  malware  families,  based  on  the  criterion  that  each  family  should 

have  at  least  50  samples.  The  malware  families  and  number  of  samples  per  family 

are  listed  in  Table  1.  In  all  of  our  experiments,  we  consider  multiclass  classification, based  on  the  seven  classes  in  Table  1. 

The  models  introduced  in  Sect. 3  can  be  categorized  as  follows. 

• Classic  models—SVM,  Random  Forest,  and  GNB

• Boosting  models—GBM,  Light  GBM,  and  XGBoost

• Deep  learning  models—MLP,  CNN,  MobileNet,  and  DenseNet 

Initially,  we  train  each  model  without  any  label-flipping.  Then  we  test  each  of  these 

model  by  varying  the  percentage  of  labels  randomly  flipped  during  training,  and  we 

discuss  the  insights  gained  from  these  experiments.  The  percentage  of  labels  flipped 

ranges  from  10  to  100%,  in  increments  of  10%.  Note  that  the  smallest  class,  Harebot, 

has  only  53  samples,  while  the  largest  class,  Winwebsec,  has  4360  samples.  Label-

flipping  is  implemented  on  a  per-class  basis,  that  is,  for  a  given  flipping  percentage, 

that  percentage  of  labels  is  randomly  flipped  in  the  training  data  for  each  class. 

To  train  our  classic  machine  learning,  boosting  models,  and  MLP,  features  are 

obtained  by  extracting  the  mnemonic  opcodes,  and  applying  the  TF-IDF  vectorizer 

Table  1  Number  of  samples 

Family

Samples 

Cridex

74 

Harebot

53 

SecurityShield

58 

Smarthdd

68 

Winwebsec

4360 

Zbot

2136 

Zeroaccess

1305 

Total

8054
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to  the  sequence  extracted  from  each  sample.  This  method  was  chosen  because  TF-

IDF  is  effective  at  emphasizing  crucial  information  within  a  sequence,  while  also 

serving  to  minimize  background  noise. 

For  training  our  CNN  and  pre-trained  deep  learning  models,  a  different  preprocess-

ing  approach  was  necessary,  since  these  models  expect  image  data.  To  accommodate 

this  case,  we  convert  each  malware  sample  into  an  image  representation  by  assigning 

a  unique  number  to  each  opcode  and  interpreting  the  first  4096  opcodes  as  a. 64 × 64

image.  If  a  sample  has  fewer  than  4096  opcodes,  we  simply  pad  with  0  to  fill  out 

the .64 × 64 image. 

 4.2 

 Baseline  Results 

First,  we  train  each  of  the  10  models  under  consideration  on  clean  data,  that  is,  data 

without  any  label-flipping.  These  results  are  summarized  in  the  form  of  a  bar  graph 

in  Fig. 1.  Here,  accuracy  is  defined  as  the  number  of  correctly  classified  samples divided  by  the  total  number  of  samples  classified. 

From  Fig. 1,  we  observe  that  a  eight  of  the  10  models  perform  well,  with  the top  five  models  (Random  Forest,  GBM,  XGBoost,  LightGBM,  MLP)  all  achieving 

about  98%  accuracy,  or  higher.  The  next  three  best  (SVM,  CNN,  MobileNet)  all  attain 

an  accuracy  of  about  96%.  Only  the  DenseNet  and  GNB  models  fail  to  produce  strong 

results  on  this  dataset. 
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Fig. 1  Baseline  accuracies  without  label-flipping
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The  differences  in  accuracy  among  the  top  eight  models  is  relatively  small.  Hence, 

we  might  be  willing  to  choose  from  among  these  models  based  on  robust  their  inherent 

robustness  to  label-flipping  attack,  as  opposed  to  accuracy  alone.  Next,  we  consider 

label-flipping  attacks  on  each  of  the  10  models. 

 4.3 

 Label-Flipping  Results  for  Classic  Models 

As  discussed  above,  the  traditional  machine  learning  models  we  selected  for  our 

experimentation  are  SVM,  Random  Forest,  and  GNB.  Each  of  these  models  was 

chosen  for  its  distinct  approach  to  data  analysis:  SVM  excels  in  separating  data 

in  high-dimensional  spaces  through  margin  maximization,  Random  Forest  leverages 

ensembles  of  decision  trees  to  improve  predictive  accuracy  and  robustness,  and  GNB 

relies  on  the  probabilistic  assumptions  of  data  distributions.  Here,  we  present  and 

discuss  the  results  of  our  label-flipping  experiment  for  each  of  these  models. 

4.3.1  Support Vector Machine Results 

From  Fig. 2a  we  observe  that  SVM  achieved  high  accuracy  and  that  the  accuracy  was virtually  unchanged  until  more  than  60%  of  the  labels  were  flipped,  and  even  at  70% 

label-flipping,  the  accuracy  only  diminished  slightly.  After  70%  label  flipping,  the 

accuracy  drops  precipitously.  These  results  indicate  that  SVM  is  remarkably  robust 

when  faced  with  a  label-flipping  adversarial  attack. 

4.3.2  Random Forest Results 

In  Fig. 2b  we  see  that  the  accuracy  of  our  Random  Forest  model  is  very  high  without any  label-flipping.  The  accuracy  then  degrades  consistently,  and  almost  linearly  up  to 

about  60%  label-flipping.  Although  Random  Forest  is  the  most  accurate  of  our  classic 

models,  it  is  not  as  robust  to  label-flipping  attacks  as  SVM  (and  MLP,  as  we  note 

below). 

4.3.3  Gaussian Na¨ıve Bayes Results 

Figure  2c  shows  that  GNB  performed  very  poorly  initially  and,  of  course,  it  also performed  poorly  with  respect  to  label-flipping.  This  model  is  clearly  not  suitable 

for  this  particular  problem,  most  likely  due  to  the  selected  features  failing  to  be 

conditionally  independent. 

[image: Image 146]
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(a)  SVM

(b)  Random  Forest 

(c)  GNB 

Fig. 2  Accuracy,  precision  and  recall  graphs  for  classic  ML  techniques 

 4.4 

 Label-Flipping  Results  for  Boosting  Techniques 

We  also  consider  label-flipping  attacks  on  advanced  boosting  techniques.  As  dis-

cussed  above,  the  specific  models  we  consider  are  XGBoost,  GBM,  and  LightGBM. 

4.4.1  Gradient Boosting Machine Results 

Our  GBM  results  appear  in  Fig. 3a. We  see  that  this  model  delivers  strong  performance  and  robustness  to  label-flipping  adversarial  attack.  The  results  for  GBM  are 

comparable  to  the  MLP  model  in  Fig. 4a. 

4.4.2  XGBoost Results 

From  the  Fig. 3b,  we  observe  that  qualitatively,  XGBoost  performs  similarly  to  the Random  Forest  model  in  Fig. 2b, with  XGBoost  is  slightly  more  robust  to  label-flipping.  This  result  is  not  too  surprising,  since  XGBoost  and  Random  Forest  are 

both  based  on  multiple  decision  trees.  It  is  also  worth  noting  that  XGBoost  has 

similar  initial  accuracy  as  GBM,  but  it  is  far  less  robust  in  the  face  of  label-flipping. 

[image: Image 148]

[image: Image 149]
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Fig. 3  Accuracy,  precision  and  recall  graphs  for  boosting  techniques 

4.4.3  LightGBM Results 

In  Fig. 3c  we  see  that  LightGBM  yields  almost  identically  performance  as  our XGBoost  model,  but  well  below  that  of  the  GBM  model.  This  is  interesting,  as 

it  indicates  that  the  LightGBM  is—in  the  sense  of  robustness—much  weaker  than 

the  GBM  model  from  which  it  is  derived. 

 4.5 

 Label-Flipping  Results  for  Deep  Learning  Models 

In  addition  to  traditional  machine  learning  models  and  boosting  models,  we  consider 

deep  learning  architectures.  As  discussed  above,  we  analyze  three  image-based  deep 

learning  models,  namely,  MLP,  a  generic  CNN,  as  well  as  the  pre-trained  models 

MobileNet  and  DenseNet. 

4.5.1  Multilayer Perceptron Results 

As  can  be  seen  in  Fig. 4a, our  MLP  model  performs  similar  to—although  slightly better  than—the  SVM  model,  both  initially,  and  at  each  label-flipping  percentage. 
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The  similarity  of  SVM  and  MLP  is  not  too  surprising,  as  these  are  closely  related 

techniques.  Roughly  speaking,  an  MLP  can  be  viewed  as  a  generalization  of  an  SVM, 

where  the  equivalent  of  the  kernel  function  is  learned,  rather  than  being  specified  as 

a  hyperparameter  during  training  [ 18]. 

4.5.2  Convolutional Neural Network Results 

From  the  graphs  in  Fig. 4b,  we  see  that  our  CNN  model  gives  us  accuracies  comparable  to  the  Random  Forest  model  in  Fig. 2b.  This  model  is  not  nearly  as  robust  as the  classic  SVM  and  MLP  models,  and  it  also  is  far  weaker  than  the  GBM  model. 

4.5.3  MobileNet Results 

In  Fig. 4c, we  observe  that,  as  compared  to  CNN,  the  performance  of  MobileNet  is slightly  better  across  the  full  range  of  label-flipping  attacks.  However,  as  with  our 

CNN  model,  MobileNet  trails  far  behind  the  SVM,  MLP,  and  GBM  models. 

4.5.4  DenseNet Results 

DenseNet  results  in  Fig. 4d.  We  found  DenseNet  difficult  to  train,  and  hence  the poor  and  erratic  results  for  this  model  are  not  surprising.  We  believe  that  there  is 

insufficient  data  in  our  training  set  for  this  particular  model. 

 4.6 

 Discussion 

Figure  5a  depicts  the  accuracy  of  all  models  tested,  while  Fig. 5b and c give the precision  and  recall,  respectively.  These  graphs  serve  to  emphasize  that,  overall,  our 

best  model  is  the  MLP.  The  MLP  has  nearly  the  highest  initial  accuracy,  and  it  is 

remarkably  robust  to  label-flipped  training  data.  The  SVM  model  yields  slightly 

worse  results  than  MLP,  while  also  providing  robustness.  The  GBM  model  also 

performs  well,  both  in  terms  of  initial  accuracy,  and  robustness  to  label-flipping. 

CNN  and  MobileNet,  two  of  the  three  image-based  deep  learning  techniques 

considered,  performed  well  on  the  malware  classification  problem.  However,  these 

two  techniques  are  quite  fragile  with  respect  to  label  flipping. 

[image: Image 150]
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Fig. 4  Accuracy,  precision  and  recall  graphs  for  deep  learning  techniques 

5  Conclusion and Future Work 

In  this  paper,  we  compared  the  robustness  of  various  learning  model  under  a  label-

flipping  attack  scenario.  The  underlying  learning  problem  was  malware  classifica-

tion,  and  the  we  considered  a  variety  of  classic  machine  learning  techniques,  boost-

ing  techniques,  and  deep  learning  techniques.  Specifically,  the  classic  techniques 

tested  were  Support  Vector  Machine  (SVM),  Random  Forest,  and  Gaussian  Na¨ıve 

Bayes  (GNB);  the  boosting  techniques  we  analyzed  were  Gradient  Boosting  Machine 

(GBM),  XGBoost,  and  LightGBM;  while  the  deep  learning  techniques  were  Mul-

tilayer  Perceptron  (MLP),  Convolutional  Neural  Network  (CNN),  MobileNet,  and 

DenseNet.  Although  most  of  these  techniques  performed  well  on  the  original  classifi-

cation  problem,  the  MLP  and  SVM  were  the  most  robust,  with  the  boosting  technique 

of  GBM  also  performing  well  with  respect  to  robustness.  The  Random  Forest  model 

was  the  least  robust,  while  the  image-based  models  and  two  of  the  boosting  tech-

niques  (XGBoost  and  LightGBM)  also  did  not  hold  up  well  under  our  label-flipping 

adversarial  attack. 

These  results  have  practical  implications.  In  an  environment  where  adversarial 

attacks  are  likely,  and  defenses  could  be  challenging  to  implement,  we  might  be 

willing  to  give  up  a  small  amount  of  initial  accuracy  for  a  model  that  is  inherently 

more  robust  to  such  an  attack.  Of  the  models  tested,  MLP  stands  out  as  giving  high 

initial  accuracy—within  1%  of  the  best  model—yet  also  being  the  most  robust  under 

a  label-flipping  scenario.  Furthermore,  as  mentioned  in  Sect. 3.2,  mislabeled  data  is

[image: Image 151]
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Fig. 5  Accuracy,  precision,  and  recall  for  all  models  tested 

generally  considered  to  be  an  inherent  weakness  of  boosting  techniques,  However,  we 

found  that  GBM  is  reasonably  robust  in  this  regard.  Thus,  GBM  might  be  preferred 

in  cases  where  a  boosting  strategy  is  needed,  and  mislabeled  data  (or  label-flipping 

attack)  is  a  legitimate  concern. 

There  are  many  possible  avenues  for  future  work.  Additional  models  could  be 

considered,  as  well  as  additional  datasets  and  learning  problems.  We  could  consider 

more  advanced  and  targeted  label-flipping  attacks,  as  well  as  other  classes  of  attacks. 

Defenses  against  attacks,  and  countermeasures  to  those  defenses  would  be  additional 

interesting  related  problems. 

506

S. Bhargava and M. Stamp

References 

1.  Aryal  K,  Gupta  M,  Abdelsalam  M.  A  survey  on  adversarial  attacks  for  malware  analysis.  2021. 

https://arxiv.org/abs/2111.08223 

2.  Aryal  K,  Gupta  M,  Abdelsalam  M.  Analysis  of  label-flip  poisoning  attack  on  machine  learning based  malware  detector.  In:  2022  IEEE  international  conference  on  big  data.  2022.  p.  4236–45. 

3.  Bootkrajang  J,  Kabán  A.  Label-noise  robust  logistic  regression  and  its  applications.  In:  Flach PA,  De  Bie  T,  Cristianini  N,  editors.  Machine  learning  and  knowledge  discovery  in  databases: ECML  PKDD;  2012. 

4.  Boswell

D. 

Introduction

to

support

vector

machines. 

2002. 

https://www. 

semanticscholar.org/paper/Introduction-to-Support-Vector-Machines-Boswell/ 

ea2ea7c6e280c1cfb67ee38ea63a327b1ba3ca36 

5.  Breiman  L.  Random  forests.  Mach  Learn.  2001;45:5–32. 

6.  Chen  T,  Guestrin  C.  XGBoost:  a  scalable  tree  boosting  system.  In:  Proceedings  of  the  22nd ACM  SIGKDD  international  conference  on  knowledge  discovery  and  data  mining.  2016.  p. 

785–94. 

7.  Friedman  JH.  Greedy  function  approximation:  a  gradient  boosting  machine.  Ann  Stat. 

2001;1189–232. 

8.  Hand  DJ,  Yu  K.  Idiot’s  Bayes  –  Not  so  stupid  after  all?  Int  Stat  Rev.  2001;69(3):385–98. 

9.  Howard  AG,  Zhu  M,  Chen  B,  Kalenichenko  D,  Wang  W,  Weyand  T,  Andreetto  M,  Adam 

H.  MobileNets:  efficient  convolutional  neural  networks  for  mobile  vision  applications.  2017. 

https://arxiv.org/abs/1704.04861 

10.  Huang  G,  Liu  Z,  Van  Der  Maaten  L,  Weinberger  KQ.  Densely  connected  convolutional  networks.  In:  Proceedings  of  the  IEEE  conference  on  computer  vision  and  pattern  recognition. 

2017.  p.  4700–8. 

11.  Jha  R,  Hayase  J,  Sewoong  O.  Label  poisoning  is  all  you  need.  Adv  Neural  Inf  Process  Syst. 

2023;36:71029–52. 

12.  Ke  G,  Meng  Q,  Finley  T,  Wang  T,  Chen  W,  Ma  W,  Ye  Q,  Liu  T-Y.  LightGBM:  a  highly  efficient gradient  boosting  decision  tree.  In:  Advances  in  neural  information  processing  systems,  vol. 

30;  2017. 

13.  LeCun  Y,  Bottou  L,  Bengio  Y,  Haffner  P.  Gradient-based  learning  applied  to  document 

recognition.  Proc  IEEE.  1998;86(11):2278–324. 

14.  Mehta  R,  Jurečková  O,  Stamp  M.  A  natural  language  processing  approach  to  malware 

classification.  J  Comput  Virol  Hack  Tech.  2024;20(1):173–84. 

15.  Nappa  A,  Zubair  Rafique  M,  Caballero  J.  The  Malicia  dataset:  identification  and  analysis  of drive-by  download  operations.  Int  J  Inf  Secur.  2015;14:15–33. 

16.  Paudice  A,  Muñoz-González  L,  Lupu  EC.  Label  sanitization  against  label  flipping  poisoning attacks.  In:  Alzate  C  et  al.,  editors.  ECML  PKDD  2018  workshops.  2019.  p.  5–15. 

17.  Rumelhart  DE,  Hinton  GE,  Williams  RJ.  Learning  internal  representations  by  error  propagation, parallel  distributed  processing,  explorations  in  the  microstructure  of  cognition.  Biometrika. 

1986;71:599–607. 

18.  Stamp  M.  Introduction  to  machine  learning  with  applications  in  information  security,  2nd  edn. 

Chapman  and  Hall/CRC;  2022. 

19.  Taheri  R,  Javidan  R,  Shojafar  M,  Pooranian  Z,  Miri  A,  Conti  M.  On  defending  against  label flipping  attacks  on  malware  detection  systems.  Neural  Comput  Appl.  2020;32:14781–800. 

20.  Xiao  H,  Biggio  B,  Nelson  B,  Xiao  H,  Eckert  C,  Roli  F.  Support  vector  machines  under adversarial  label  contamination.  Neurocomputing.  2015;160(C):53–62. 

[image: Image 152]

Steganographic  Capacity  of  Transformer 

Models 
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Abstract  As  machine  learning  and  deep  learning  models  become  ubiquitous,  it  is 

inevitable  that  there  will  be  attempts  to  exploit  such  models  in  various  attack  sce-

narios.  For  example,  in  a  steganographic-based  attack,  information  could  be  hidden 

in  a  learning  model,  which  might  then  be  used  to  distribute  malware,  or  for  other 

malicious  purposes.  In  this  research,  our  focus  is  on  the  steganographic  capacity  a 

Transformer  model,  but  for  comparison  we  also  consider  a  Multilayer  Perceptron 

(MLP)  and  Convolutional  Neural  Network  (CNN).  All  three  models  are  trained  on  a 

challenging  malware  classification  problem,  and  for  each  models,  we  determine  the 

number  of  low-order  bits  of  the  trained  parameters  that  can  be  altered  without  signif-

icantly  affecting  the  classification  accuracy.  We  find  that  the  steganographic  capacity 

of  the  learning  models  tested  is  surprisingly  high,  and  that  in  each  case,  there  is  a  clear threshold  after  which  model  performance  rapidly  degrades.  Due  to  its  large  number 

of  weights,  we  find  that  the  Transformer  model  has  a  steganographic  capacity  that  is 

orders  of  magnitude  larger  than  that  of  either  the  MLP  or  CNN  models. 

1 

Introduction 

Steganography,  or  information  hiding,  consists  of  embedding  information  in  another 

message  or  physical  object  [ 13].  While  cryptography  also  hides  information,  it  does so  by  converting  the  information  into  a  human  unreadable  form  [ 7].  The  main  difference  between  these  two  techniques  is  that  cryptography  alters  the  structure  of  the 

secret  information  but  does  not  hide  the  fact  that  communication  is  taking  place, 

while  steganography  hides  the  information  in  another  medium  that  is  not  intended 
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for  such  communication  [ 24].  Modern  steganographic  techniques  have  been  developed  for  a  wide  range  of  data  types,  including  text,  images,  audio,  video,  and  even 

networking  data  [ 1]. 

Machine  learning  (ML),  which  can  be  considered  as  a  subfield  of  artificial  intel-

ligence,  enables  computers  to  learn  important  information  from  training  data  [ 27]. 

Today,  ML  models  are  widely  used  to  deal  with  a  vast  array  of  problems,  includ-

ing  speech  recognition,  image  recognition,  sentiment  analysis,  language  translation, 

malware  detection,  and  so  on,  with  new  applications  being  constantly  developed. 

Deep  learning  (DL)  models  are  the  subset  of  ML  models  that  are  based  on  neural 

networking  techniques. 

Machine  learning  models  are  a  plausible  cover  media  in  steganography  for  the 

following  reasons. 

1.  Machine  learning  models  are  rapidly  becoming  ubiquitous.  For  example  voice-

activated  search  assistants  were  used  by  approximately  3.25  billion  people 

worldwide  in  2021,  out  of  a  world  population  of  7.9  billion  [ 2]. 

2.  It  is  likely  that  the  information  hiding  capacity  of  most  machine  learning  models  is 

substantial.  Machine  learning  models  typically  include  a  large  number  of  weights 

or  other  trained  parameters,  and  it  is  known  that  learning  models  typically  do  not 

require  high  precision  in  their  trained  parameters.  For  example,  the  most  popular 

algorithm  used  to  train  Support  Vector  Machines  (SVM)  relies  on  the  fact  that 

limited  precision  is  sufficient  [ 27].  As  another  example,  in  neural  networking-based  models,  many—if  not  most—neurons  tend  to  atrophy  during  training,  and 

such  weights  contribute  little  to  the  trained  model.  By  relying  on  such  redundant 

neurons,  the  authors  of  [ 31]  show  that  they  can  hide  36.9  MB  of  malware  within a  178  MB  AlexNet  architecture,  with  only  a  1%  degradation  in  performance.  These 

changes  did  not  affect  the  structure  of  the  model  and  the  embedded  malware  was 

not  detected  by  any  of  the  anti-virus  systems  tested. 

3.  Machine  learning  models  may  be  an  ideal  cover  media  for  malicious  attacks.  For 

example,  as  in  [ 31],  malware  could  be  embedded  in  a  learning  model.  It  is  even conceivable  that  a  specific  predetermined  input  to  the  model  could  be  used  to 

trigger  an  embedded  malware-based  attack. 

We  define  the   steganographic  capacity   of  a  learning  model  to  be  the  total  number of  bits  of  trained  parameters  of  the  model  that  can  be  overwritten  without  reducing 

the  classification  accuracy  by  more  than.  ε,  as  compared  to  the  original  classification accuracy.  In  this  paper,  we  choose  a  threshold  of  .  ε = 0 .  01,  that  is,  the  accuracy cannot  decrease  by  more  than  1%. 

In  this  research,  we  focus  on  the  fact  that,  in  general,  learning  models  do  not 

require  high  precision  in  their  trained  parameters.  Therefore,  as  a  measure  of  the 

inherent  steganographic  capacity  of  learning  models,  we  determine  the  number  of 

low-order  bits  in  each  weight  that  can  be  used  for  information  hiding  purposes.  We 

embed  information  in  the  .  n  low-order  bits  of  the  weights  of  trained  models,  and graph  the  model  accuracy  as  a  function  of  .  n.  We  analyze  three  DL  models:  MultiLayer  Perceptron  (MLP),  Convolutional  Neural  Network  (CNN),  and  a  Transformer 

architecture.  We  train  and  test  each  of  these  models  on  a  dataset  that  contains  10
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different  malware  families,  with  a  total  of  15,356  samples.  The  main  contribution 

of  this  work  is  determining  the  steganographic  capability  of  these  three  machine 

learning  models.  This  knowledge  can  be  used  for  developing  new  detection  models, 

which  will  protect  the  learning  models  against  inserting  malicious  files  into  them.  The 

steganographic  capacity  of  a  learning  model  is  also  used  in  developing  watermarking 

algorithms  to  protect  the  intellectual  property  rights  of  the  learning  models. 

The  remainder  of  the  paper  is  organized  as  follows.  Section  2  gives  relevant  background  information  on  steganographic  techniques  and  the  various  machine  learning 

models  used  in  this  research.  Section  3  provides  details  on  the  dataset  employed  in our  experiments,  along  with  a  high-level  view  of  our  experimental  design.  Our  results 

are  presented  and  discussed  in  Sect. 4. Finally,  Sect. 5  gives  our  conclusions,  as  well as  outlining  potential  avenues  for  further  research. 

2 

Background 

In  this  section,  we  discuss  several  relevant  background  topics.  First,  we  consider 

steganography,  then  we  introduce  the  learning  models  that  are  used  in  this  research. 

We  conclude  this  section  with  a  discussion  of  related  work. 

 2.1 

 Steganography 

The  word  “steganography”  is  a  combination  of  two  Greek  roots:   steganós,  which 

means  “concealed  or  hidden”,  and   graphein,  which  translates  as  “drawing  or  writ-

ing” [ 9]. Thus,  steganography  is  the  art  and  science  of  embedding  secret  information inside  unremarkable  cover  media  that  does  not  raise  suspicions  [ 28]. In  modern  practice,  steganography  consists  of  concealing  information  or  messages  within  seemingly 

innocuous  data  or  media,  such  as  images,  audio,  video,  or  network  communication, 

among  many  other  possibilities  [ 1]. 

Steganography  involves  embedding  secret  data  into  a  cover  media  in  a  way  that  is 

imperceptible  to  human  senses  and  difficult  to  detect  without  specialized  tools  and 

knowledge.  Such  techniques  have  been  used  throughout  history  for  various  purposes, 

including  espionage,  communication  in  times  of  war,  and  digital  watermarking. 

With  the  advancement  of  digital  technology,  steganography  has  found  applications 

in  modern  information  security,  digital  forensics,  and  multimedia  communications, 

among  others.  It  is  an  evolving  field  with  ongoing  research  and  development  of  new 

techniques  to  enhance  its  security  and  application  in  various  domains. 

Cryptography  protects  a  secret  message  by  transforming  it  into  an  unintelligible 

format  to  hide  the  meaning  of  the  message,  while  steganography  aims  to  hide  the 

presence  of  the  original  message  [ 26].  Steganography  dates  at  least  to  ancient  Greece and,  in  fact,  it  predates  cryptography  as  a  means  of  secret  communication  [ 26]. An historical  example  of  steganography  was  the  use  of  invisible  ink  during  the  American
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Revolutionary  War  to  pass  messages.  As  another  example,  during  World  War  II, 

photosensitive  glass  [ 10]  and  microdots  [ 6]  were  used  to  embed  information  in  other messages.  Today,  hiding  information  in  image  files  on  computing  systems  is  the  most 

common  method  of  steganography. 

A  textbook  example  of  a  modern  steganographic  application  consists  of  hiding 

information  in  the  low  order  RGB  bits  of  an  uncompressed  image  file,  such  as  a 

bmp image  [ 26]. Since  the  RGB  color  scheme  uses  a  byte  for  each  of  the  R  (red),  G 

(green),  and  B  (blue)  color  components,  there  are.224  >  16 ,  000 ,  000 colors  available. 

However,  many  of  the  colors  are  indistinguishable  to  the  human  eye,  and  hence  there 

are  a  large  number  of  redundant  bits  in  an  uncompressed  image.  The  low-order  RGB 

bits  of  each  byte  can  be  used  to  hide  information  in  such  an  image,  without  changing 

the  carrier  image  in  any  perceptible  way.  Provided  that  the  intended  recipient  knows 

which  image  is  used  for  hiding  information,  and  knows  how  to  extract  the  informa-

tion,  communication  can  take  place  between  a  sender  and  receiver,  without  it  being 

apparent  that  such  communication  has  even  occurred.  The  steganographic  capacity 

of  an  uncompressed  image  file  is  surprisingly  large;  for  example,  in  [ 26,  Sect.  5.9.3] 

it  is  shown  that  the  entire   Alice’s  Adventures  in  Wonderland   book  can  be  hidden  in the  low  order  RGB  bits  of  an  image  of  Alice  from  the   Alice   book  itself. 

The  image-based  steganographic  system  described  in  the  previous  paragraph  is 

not  robust,  that  is,  it  is  trivial  to  disrupt  the  communication,  without  the  disruption 

affecting  the  non-steganographic  use  of  such  images:  If  we  suspect  that  the  low-

order  RGB  bits  of  bmp files  are  being  used  for  steganographic  purposes,  we  can 

simply  randomize  the  low-order  bits  of  all  bmp images.  For  any  such  images  that 

were  being  used  for  information  hiding,  the  information  would  be  lost,  and  for  any 

innocent  images  that  were  not  used  for  information  hiding,  the  image  would  not 

be  affected  in  any  perceptible  way.  Much  of  the  modern  research  into  information 

hiding  revolves  around  creating  more  robust  steganographic  techniques. 

Steganography  can  be  characterized  by  three  important  aspects,  namely,  percep-

tual  transparency,  robustness,  and  capacity. 

•  Perceptual  transparency—This  refers  to  the  ability  of  the  steganographic  process 

to  hide  the  secret  information  in  a  way  that  is  imperceptible  to  human  senses.  This 

is  a  critical  characteristic  of  steganography,  which  ensures  that  it  is  not  obvious 

that  the  cover  medium  is  being  used  for  surreptitious  communication. 

•  Robustness—Robustness  is  the  ability  to  tolerate  perturbations  of  a  system 

without  adversely  affecting  its  initial  stable  configuration  [ 33]. In  image-based steganographic  techniques,  the  perturbations  could  be  transformation,  sharpening, 

filtering,  scaling,  cropping,  and  so  on. 

•  Capacity—The  amount  of  information  that  can  be  hidden  in  the  cover  medium 

is  the  capacity,  which  is  related  to  the  practical  redundancy  in  the  cover  media. 

The  larger  the  capacity,  the  more  information  that  can  be  hidden;  equivalently,  the 

smaller  the  cover  medium  that  is  needed. 

Achieving  an  optimal  balance  among  these  characteristics  is  a  crucial  consideration 

in  the  design  and  implementation  of  a  steganographic  technique,  as  it  determines  the 

effectiveness  of  the  communications,  and  the  security  of  the  concealed  information. 
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In  this  research,  we  are  interested  in  the  steganographic  capacity  of  machine 

learning  models.  Specifically,  we  hide  information  in  the  low-order  bits  of  the  weights 

of  learning  models.  While  such  a  scheme  is  not  robust,  our  work  does  provide  an 

intuitive  and  practical  means  for  information  hiding.  We  show  that  learning  models 

have  considerable  redundancy,  which  is  the  basis  for  more  advanced  steganographic 

techniques,  with  the  analogy  to  uncompressed  image  files  being  obvious. 

 2.2 

 Learning  Models 

Machine  learning  and  deep  learning  can  be  viewed  as  branches  of  artificial  intelli-

gence.  In  general,  ML  refers  to  the  use  of  statistical  models  and  algorithms  to  enable 

machines  to  learn  from  data  and  improve  their  performance  on  a  specific  task.  DL  is 

the  subset  of  machine  learning  that  focuses  on  training  Artificial  Neural  Networks 

(ANN)—generally  with  multiple  hidden  layers,  which  is  the  “deep”  part  of  deep 

learning—to  identify  patterns  and  relationships  in  data.  DL  algorithms,  which  are 

designed  to  (loosely)  mimic  the  structure  and  functioning  of  the  human  brain,  have 

proven  to  be  very  effective  in  solving  complex  problems  such  as  image  and  speech 

recognition,  natural  language  processing,  and  even  playing  complex  games. 

ML  enables  computers  to  learn  important  information,  and  improve  from  expe-

rience,  which  saves  humans  from  the  work  of  extracting  useful  information  from 

seemingly  inscrutable  data  [ 27]. The  process  of  machine  learning  begins  with  observations  derived  from  datasets.  The  primary  goal  of  machine  learning  is  to  make 

computers  learn  with  minimal  human  intervention  or  assistance  [ 25]. 

ML  is  applied  in  a  wide  and  ever-growing  range  of  important  fields,  including  data 

security,  finance,  healthcare,  fraud  detection,  and  so  on.  In  addition,  DL  techniques 

have  been  used  to  successfully  deal  with  such  problems  as  speech  recognition,  image 

classification,  sentiment  analysis,  and  language  translation,  among  many  others  [ 8]. 

Deep  learning  has  gained  significant  attention  and  success  in  recent  years  due  to  its 

ability  to  automatically  extract  complex  patterns  and  representations  from  raw  data 

without  extensive  feature  engineering.  Through  the  process  of  training,  deep  learning 

models  learn  to  recognize  patterns,  features,  and  relationships  in  data,  enabling  them 

to  often  perform  tasks  at  a  higher  level  than  had  previously  been  achieved  using 

classic  machine  learning  models. 

Machine  learning  algorithms  can  be  divided  into  three  categories:  supervised 

machine  learning,  unsupervised  machine  learning,  and  semi-supervised  machine 

learning.  Supervised  machine  learning  uses  labeled  datasets  to  train  the  model.  Sup-

port  Vector  Machine,  Multilayer  Perceptron,  .  k-Nearest  Neighbors,  Decision  Trees, 

Random  Forest,  and  Linear  Regression  are  popular  examples  of  supervised  machine 

learning  algorithms.  In  contrast,  unsupervised  machine  learning  techniques  can  be 

applied  to  unlabeled  data.  Expectation  Maximization  (EM)  clustering  and  the  well-

known.  K -means  clustering  algorithm  are  examples  of  unsupervised  learning.  Semi-

supervised  machine  learning  can  be  viewed  as  a  hybrid  approach  that  combines 

aspects  of  supervised  and  unsupervised  algorithms.  In  this  paper,  we  only  consider
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supervised  learning  techniques;  specifically,  we  train  models  to  classify  malware 

from  several  different  families. 

Next,  we  discuss  each  of  the  learning  techniques  that  are  employed  in  the  exper-

iments  in  Sect. 4. Here,  we  introduce  the  DL  techniques  of  Multilayer  Perceptron, Convolutional  Neural  Networks,  and  Transformer  models. 

2.2.1

Overview  of  Multilayer  Perceptrons 

Multilayer  Perceptrons  (MLP)  are  a  popular  class  of  feedforward  neural  network 

architectures  that  are  widely  used  for  supervised  learning  tasks,  including  classifica-

tion  and  regression  [ 29].  MLPs  consist  of  multiple  layers  of  interconnected  nodes, where  each  node  receives  input  from  the  previous  layer  and  produces  output  that  is 

passed  to  the  next  layer. 

The  input  layer  of  an  MLP  receives  the  input  data,  and  the  output  layer  produces 

the  final  prediction.  In  between  these  layers,  there  can  be  one  or  more  hidden  layers 

that  help  to  learn  complex  patterns  in  data.  Each  node  in  the  hidden  layers  applies 

a  nonlinear  activation  function  to  the  weighted  sum  of  its  inputs,  which  helps  to 

capture  non-linear  relationships  in  the  data. 

MLPs  are  trained  using  backpropagation,  which  is  an  optimization  algorithm  that 

adjusts  the  weights  of  the  network  based  on  the  difference  between  the  predicted 

output  and  the  actual  class  label.  The  weights  are  updated  using  gradient  descent, 

which  iteratively  adjusts  the  weights  to  minimize  the  error. 

One  of  the  main  advantages  of  MLPs  is  their  ability  to  learn  complex  patterns  in  the 

data,  making  them  suitable  for  high-dimensional  and  non-linear  datasets.  However, 

MLPs  can  be  computationally  expensive  to  train,  and  they  require  a  large  amount  of 

labeled  data  to  achieve  high  accuracy. 

2.2.2

Overview  of  Convolutional  Neural  Networks 

Convolutional  Neural  Network  (CNN)  are  one  of  the  most  popular  DL  techniques. 

CNNs  were  designed  for  efficient  training  on  images,  where  local  structure  domi-

nates,  but  they  have  proven  surprisingly  useful  for  a  wide  range  of  problems—any 

problem  domain  where  local  structure  is  most  important  is  a  good  candidate  for  a 

CNN.  The  CNN  architecture  is  composed  of  convolution  layers,  pooling  layers,  and 

one  or  more  fully  connected  layers. 

A  convolution  layer  performs  a  discrete  convolution  operation  on  the  output  of 

the  previous  layer.  This  can  be  viewed  as  applying  a  filter,  where  the  parameters  of 

the  filter  are  learned.  The  first  convolutional  layer  is  applied  to  the  input  data,  and  in the  case  of  images  it  learns  basic  features,  such  as  edges.  Subsequent  convolutional 

layers  learn  higher-level  and  more  abstract  features.  Pooling  layer  serve  to  reduce  the 

dimensionality  of  the  problem,  and  thereby  speed  up  the  training  process.  Pooling 

may  also  serve  to  increase  translation  invariance. 
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2.2.3

Overview  of  Transformer  Models 

Transformers  are  a  type  of  deep  learning  architecture  that  have  revolutionized  the 

field  of  natural  language  processing  (NLP).  Transformers  were  introduced  in  [ 30], and  are  currently  the  state-of-the-art  architecture  for  many  NLP  tasks,  including 

machine  translation,  sentiment  analysis,  and  question  answering.  They  have  also 

been  successfully  applied  to  other  tasks,  such  as  image  classification  and  speech 

recognition. 

The  key  innovation  of  Transformers  is  the  self-attention  mechanism,  which  allows 


the  model  to  selectively  attend  to  different  parts  of  the  input  sequence  when  making 

predictions.  All  models  use  attention  to  some  degree,  but  Transformer  model  in  [ 30] 

showed  that  explicit  attention  is  far  more  powerful  than  had  been  previously  realized. 

Transformers  consist  of  an  encoder  and  a  decoder  module.  The  encoder  takes 

an  input  sequence  and  generates  a  hidden-state  representation  that  is  designed  to 

capture  the  meaning  of  the  input.  The  decoder  takes  the  hidden-state  representation 

and  generates  the  output  one  token  at  a  time. 

One  of  the  key  advantages  of  Transformers  is  their  ability  to  handle  variable-

length  input  sequences  without  the  need  for  padding  or  truncation.  They  also  require 

less  training  time  compared  to  traditional  Recurrent  Neural  Networks,  and  can  be 

parallelized  more  easily. 

 2.3 

 Related  Work 

The  authors  of  [ 3]  consider  the  problem  of  embedding  watermarks  in  deep  learning models.  Their  work  is  focused  on  developing  new  classes  of  watermarking  algorithms 

that  are  specific  to  deep  neural  networks  (DNN).  They  consider  the  capacity  problem, 

in  the  sense  of  the  number  of  bits  that  can  be  reliably  hidden  in  a  DNN  model  with 

a  specific  number  of  parameters. 

In  [ 4],  a  taxonomy  for  classifying  and  examining  different  types  of  watermarking schemes  for  machine  learning  models  is  considered.  In  addition,  the  author  introduces 

a  unified  threat  model,  which  enables  structured  reasoning  about  and  comparison  of 

the  effectiveness  of  watermarking  methods  under  various  scenarios. 

In  the  paper  [ 31],  a  technique  dubbed  “EvilModel”  is  developed  and  analyzed. 

EvilModel  serves  to  hide  malware  inside  of  a  neural  network  model.  For  example, 

when  a  36.9  MB  malware  is  embedded  in  a  specific  model,  the  accuracy  of  the 

model  is  only  reduced  by  about  1%.  The  authors  of  [ 31]  embed  malware  samples  in a  learning  model  by  carefully  selecting  weights  that  have  atrophied  during  training, 

and  thus  have  little  or  no  effect  on  model  performance.  They  then  overwrite  these 

weights,  which  has  only  a  negligible  effect  on  the  model. 

In  [ 32]  the  results  in  [ 31]  are  expanded.  Among  other  results,  the  authors  of  [ 32] 

consider  embedding  malware  in  the  least  significant  bits  of  model  weights.  They  find 

that  they  can  achieve  an  “embedding  rate”  of  slightly  more  than  48%. 
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The  paper  [ 12]  considers  a  technique  that  its  authors  refer  to  as  “StegoNet.”  One aspect  of  the  work  in  [ 12]  consists  of  modifying  the  least  significant  bits  of  model weights,  while  the  authors  also  develop  an  approach  that  can  deal  with  compressed 

models,  and  they  propose  a  plausible  trigger  mechanisms,  that  is,  ways  to  trigger 

malware  that  is  embedded  in  a  machine  learning  model. 

As  with  [ 12, 32], the  work  that  we  present  in  this  paper  considers  the  problem  of embedding  information  in  the  least  significant  bits  of  model  weights.  However,  in 

comparison  to  [ 32], for  the  models  we  consider,  we  are  able  to  achieve  much  higher embedding  rates  with  little  or  no  decrease  in  model  performance.  In  contrast  to  [ 12], with  respect  to  hiding  information  in  the  least  significant  bits  of  model  weights,  our 

results  are  far  more  thorough  and  detailed;  for  example,  we  provide  graphs  explicitly 

showing  the  tradeoff  between  the  number  of  bits  overwritten  and  model  accuracy. 

3 

Implementation 

In  this  section,  we  first  discuss  the  malware  dataset  used  to  train  our  learning  models. 

Then  we  provide  details  on  the  training  of  each  of  the  models  considered  in  this  paper. 

The  steganographic  capacity  of  these  models  is  analyzed  in  Sect. 4,  below. 

 3.1 

 Dataset 

Malware  families  can  be  difficult  to  define  precisely  because  they  can  vary  in  terms 

of  their  size,  scope,  and  specific  features.  However,  a  family  generally  refers  to 

a  group  of  malware  samples  that  have  similarities  in  terms  of  their  functionality, 

behavior,  and  code  structure.  Although  the  specific  details  of  each  sample  may  differ, 

members  of  a  given  family  typically  share  a  core  code  base  that  contains  common 

functions,  routines,  and  behaviors.  This  allows  security  researchers  to  identify  and 

track  specific  malware  families  over  time,  even  as  the  individual  samples  within  the 

family  continue  to  evolve  and  change.  By  analyzing  these  shared  characteristics, 

researchers  can  develop  more  effective  detection  and  mitigation  strategies  to  protect 

against  the  threat  of  malware. 

In  this  research,  we  consider  a  malware  dataset  from  VirusShare  [ 11]. This  dataset contains  more  than  500,000  malware  executables,  which  occupy  more  than  500  GB 

of  storage.  Among  the  500,000  malware  executables,  we  have  extracted  the  top  10 

families,  in  terms  of  the  number  of  samples  available  per  family.  Specifically,  we 

consider  the  malware  families  listed  in  Table  1,  which  are  given  in  descending  order based  on  the  number  of  samples. 

Next,  we  describe  each  of  these  families.  Note  that  several  different  classes  of 

malware  are  represented,  including  viruses,  worms,  and  Trojans. 
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Table  1  Malware  families 

Family

Samples

Fraction  of  total 

VBinject

2689

0.1751 

Winwebsec

2303

0.1500 

Renos

1567

0.1020 

OnLineGames

1511

0.0984 

BHO

1412

0.0920 

Startpage

1347

0.0877 

Adload

1225

0.0798 

VB

1110

0.0723 

Vobfus

1108

0.0721 

Ceeinject

1084

0.0706 

Total

15,356

1.0000 

.VBinject, 

short  for  “Visual  Basic  Injection”,  is  a  general  technique  that  is 

applied  by  malware  author  to  inject  malicious  program  into  legitimate  Windows 

processes  [ 18].  This  technique  is  commonly  used  by  malware  to  evade  detection by  antivirus  software  and  other  security  measures.  Once  the  malware  is  injected,  it 

can  carry  out  a  variety  of  malicious  actions,  such  as  stealing  sensitive  information, 

downloading  additional  malware,  or  taking  control  of  the  infected  system. 

.Winwebsec

is  designed  to  trick  users  into  purchasing  fraudulent  security  soft-

ware  or  services  by  displaying  false  alerts  and  warnings  about  supposed  security 

threats  on  their  computers.  Once  installed  on  a  user’s  computer,  Winwebsec will 

typically  display  fake  warnings  claiming  that  the  system  is  infected  with  viruses, 

spyware,  or  other  malicious  software.  These  warnings  are  often  accompanied  by 

instructions  to  download  and  install  a  security  program  or  pay  for  a  service  to 

remove  the  alleged  threats  [ 20].  Winwebsec is  often  distributed  through  social engineering  tactics  such  as  spam  emails,  malicious  websites,  and  file-sharing 

networks. 

.Renos

is  similar  to  Winwebsec,  in  that  it  is  designed  to  trick  users  into  purchasing 

fraudulent  security  software  or  services  [ 16].  Like  other  types  of  fake  antivirus malware,  Renos typically  display  fake  warnings  claiming  that  the  system  is 

infected  with  viruses,  spyware,  or  other  malicious  software,  and  these  warnings 

are  often  accompanied  by  instructions  to  download  (and  pay  for)  a  supposed 

anti-virus  program.  Renos is  distributed  in  the  same  manner  as  Winwebsec. 

.OnLineGames

is  a  Trojan  that  mimics  an  online  game,  but  is  actually  designed 

to  steal  user  information.  This  malware  is  often  distributed  through  malicious 

websites,  peer-to-peer  networks,  or  email  attachments.  OnLineGames may  be 

particularly  dangerous  because  it  targets  a  vulnerable  population  of  online  gamers 

who  may  be  less  aware  of  the  risks  associated  with  downloading  and  installing 

unknown  software.  Additionally,  this  type  of  malware  can  be  difficult  to  detect

516

L. Zhang et al. 

and  remove  because  it  often  operates  in  the  background  and  can  evade  detection 

by  antivirus  software  [ 22]. 

.BHO, 

which  is  short  for  “Browser  Helper  Object”,  is  a  type  of  add-on  or  plugin 

for  web  browsers,  such  as  Internet  Explorer.  Legitimate  BHOs provide  additional 

functionality  or  modify  the  behavior  of  the  browser;  however,  this  BHO malware 

can  be  used  by  to  perform  unwanted  actions,  such  as  redirecting  web  traffic  or 

displaying  unwanted  ads  [ 17]. Because  a  BHO has  deep  access  to  the  browser’s functionality,  it  can  be  difficult  to  remove  once  installed.  In  some  cases,  a  malicious 

BHO may  be  bundled  with  legitimate  software  and  installed  without  the  user’s 

knowledge  or  consent. 

.Startpage

is  a  family  of  Trojans  that  modifies  a  user’s  web  browser  settings, 

such  as  the  homepage  and  search  engine,  without  the  user’s  consent  [ 21].  Once installed,  it  changes  the  browser  settings  to  redirect  the  user’s  searches  to  a  specific 

search  engine  or  homepage  that  may  contain  advertisements  or  other  unwanted 

content.  In  some  cases,  this  browser  hijacker  may  also  install  additional  unwanted 

software  or  collect  information  about  the  user’s  browsing  habits. 

.Adload

is  an  adware  program  that  displays  unwanted  advertisements  that  the 

user  cannot  control  as  they  browse  the  web  [ 23]. This  malware  may  also  collect information  about  the  user’s  browsing  habits  and  use  this  data  to  display  targeted 

advertisements.  Adload can  be  difficult  to  remove  and  may  continue  to  display 

unwanted  advertisements  even  after  the  user  has  attempted  to  uninstall  the  soft-

ware.  In  some  cases,  it  may  also  install  additional  malware  or  compromise  the 

security  of  the  victim’s  computer. 

.VB

is  short  for  “Visual  Basic”,  and  it  is  a  simple  Trojan.  It  spreads  a  worm  by  copy-

ing  itself  to  removable  drives,  network  shares,  and  other  accessible  file  systems. 

Once  installed  on  a  victim’s  computer,  VB may  perform  a  variety  of  malicious 

actions,  such  as  stealing  sensitive  information,  logging  keystrokes,  downloading 

additional  malware,  or  using  the  victim’s  computer  to  participate  in  botnets  or  dis-

tributed  denial-of-service  (DDoS)  attacks.  It  is  particularly  dangerous  as  it  spreads 

rapidly  and  may  infect  a  large  number  of  computers  before  it  is  detected  [ 14]. 

.Vobfus

is  a  malware  family  that  downloads  other  malware  onto  a  victim’s  com-

puter,  including  Beebone,  Fareit,  and  Zbot.  It  spreads  through  infected 

USB  drives,  network  shares,  and  malicious  URLs,  and  is  known  for  its  ability  to 

mutate  and  evade  detection  by  security  software  [ 19]. Vobfus is  dangerous,  in part,  because  it  can  propagate  rapidly  and  silently,  making  it  difficult  to  detect  and 

contain.  It  can  also  disable  or  bypass  security  software,  making  it  challenging  to 

remove. 

.Ceeinject

injects  itself  into  legitimate  processes  running  on  a  Windows  oper-

ating  system,  allowing  it  to  execute  its  malicious  code  undetected.  It  is  often  used 

in  conjunction  with  other  malware,  such  as  banking  Trojans,  to  steal  sensitive 

information  from  victims.  This  particular  threat  employs  obfuscation  techniques 

to  conceal  its  true  intentions,  making  it  more  difficult  for  security  software  to 

detect  its  malicious  activities  [ 15]. 

Steganographic Capacity of Transformer Models

517

For  our  feature  vectors,  we  extract  a  relative  byte  histogram  from  each  sample: 

Given  a  sample.  S  in  the  form  of  an  exe file,  we  count  the  number  of  times  that  each byte  value  0  through  255  occurs  in  .  S,  and  then  divide  each  of  these  counts  by  the total  number  of  bytes  in  .  S.  Note  that  this  implies  that  our  feature  vectors  are  all  of length  256.  Also,  if  .  si  is  the  .  i th  component  of  the  feature  vector  for  the  sample  .  S, then.  si  can  be  interpreted  as  the  probability  of  drawing  byte  value.  i,  when  randomly selecting  a  byte  from  .  S.  These  feature  vectors  are  efficient  to  generate,  and  require no  costly  disassembly  or  dynamic  analysis. 

 3.2 

 Model  Training 

Analogous  training  and  testing  procedures  were  used  for  all  learning  models  con-

sidered.  For  the  first  step,  we  train  each  model  with  labeled  data  and  test  the  model, 

which  establishes  a  baseline  level  of  performance.  We  use  accuracy  as  our  measure 

of  performance. 

After  the  initial  training  and  testing,  data  is  inserted  into  the  low-order  .  n  bits  of the  weights,  which,  on  average,  changes  about  half  of  the  bit  values.  For  each.  n, the performance  of  the  model  is  re-evaluated  using  the  same  data  and  accuracy  metric 

as  previously  used,  which  allows  for  a  direct  comparison  of  the  results  for  each  .  n. 

We  then  graph  these  accuracy  results  as  a  function  of .  n. 

4 

Steganographic  Capacity  Experiments 

In  this  section,  we  consider  the  steganographic  capacity  of  each  of  the  models  dis-

cussed  in  Sect. 2.2. To  measure  the  steganographic  capacity,  we  embed  information  in the  low-order.  n  bits  of  the  model  weights.  For  each  model,  we  consider  the  following three  cases. 

1.  Only  the  output  layer  weights  are  modified 

2.  Only  the  weights  of  the  hidden  layer  (or  layers)  are  modified 

3.  All  of  the  model  weights  are  modified. 

In  each  case,  we  graph  the  model  accuracy  as  a  function  of  .  n.  Also,  we  discuss  the total  capacity,  that  is,  the  total  number  of  model  bits  that  are  available  for  this  form of  information  hiding.  In  each  case,  the  information  that  we  hide  is  extracted  from 

the  book   Alice’s  Adventures  in  Wonderland  [ 5]. 
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Table  2  MLP  model  hyperparameters  tested 

Hyperparameter

Values  tested 

.hidden_layer_sizes

(64,  10),  (96,  10), (128,  10) 

activation

identity, logistic 

alpha

0.0001, 0.05 

.random_state

30, 40, 50  

solver

adam 

.learning_rate_init

0.00001 

.max_iter

10000 

 4.1 

 MLP 

The  MLPClassifier() from  the  sklearn.neural_network module  was 

used  to  train  and  test  our  MLP  model.  The  hyperparameters  tested  are  listed  in 

Table  2, with  the  selected  values  in  boldface.  Note  that  a  model  with  two  hidden layers,  with  128  and  10  neurons,  respectively,  was  best.  Also,  the  logistic  function 

was  selected  as  our  activation  function,  and  so  on. 

The  results  obtained  when  hiding  information  in  the  low  order  bits  of  the  output 

layer  weights  of  our  trained  MLP  model  are  summarized  in  Fig. 1a. We  observe  that the  original  accuracy  for  the  model  is  approximately  0.8417,  and  the  performance 

of  the  model  exceeds  0.8119,  until  the  low-order  26  bits  of  the  output  weights  are 

overwritten,  which  causes  the  accuracy  to  drop  dramatically  to  0.3830.  Overwriting 

more  bits  causes  the  accuracy  to  fluctuate,  but  it  remains  very  low. 

In  Fig. 1b,  c  we  give  the  results  when  information  is  hidden  in  the  hidden  layer weights,  and  when  information  is  hidden  in  all  of  the  weights  of  our  trained  MLP 

model,  respectively.  The  results  in  these  two  cases  are  analogous  to  the  results  for 

the  output  layer  weights,  although  in  both  of  these  latter  cases,  only  21  bits  can  be 

overwritten  before  the  accuracy  drops  below  0.80. 

There  are  100  weights  in  the  output  layer,  and  34,048  weights  in  the  hidden  layer, 

which  makes  the  total  number  of  weights  34,148  in  this  particular  MLP  model. 

As  shown  in  the  results  in  Fig. 1a,  we  can  overwrite  the  low-order-25  bits  of  each weights  in  the  output  layer  with  minimal  loss  of  accuracy,  which  gives  the  model  a 

steganographic  capacity  of  2.44  KB, 1 just  in  the  output  layer.  The  results  in  Fig. 1b show  that  inserting  information  into  the  low-order-21  bits  weights  in  the  internal 

layers  does  not  have  a  major  negative  impact  on  the  model  accuracy,  which  gives 

the  a  steganographic  capacity  of  slightly  more  than  698KB.  With  all  weights  in  the 

model  considered,  as  shown  in  Fig. 1c,  again  the  low-order-21  bits  are  available  for information  hiding,  which  give  the  MLP  model  a  steganographic  capacity  that  is 

slightly  in  excess  of  700  KB. 

1  Note  that  we  follow  the  convention  whereby  1  KB  represents.210 bytes,  while  1  MB  is.220 bytes, and  1  GB  is.230 bytes. 
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Fig.  1  MLP  model  performance  with  low-order  bits  of  weights  overwritten 

 4.2 

 CNN 

Our  CNN  model  was  implemented  using  torch in  PyTorch,  which  provides  support 

for  tensor  computation,  deep  neural  networks,  and  many  other  useful  machine  learn-

ing  utilities.  The  model  architecture  selected  consists  of  two  convolutional  layers, 

each  utilizing  ReLU  activation  functions,  with  one  and  six  input  channels,  as  well  as 

six  and  12  output  channels,  respectively.  Following  the  convolutional  layers,  there 

are  two  fully  connected  linear  layers,  again  with  ReLU  activation  functions.  The 

input  sizes  of  these  fully  connected  layers  are  .12 × 256 and  512,  respectively.  The 

final  layer  of  the  model  is  a  fully  connected  output  layer  with  an  input  size  of  100 

and  an  output  size  of  10,  utilizing  a  linear  activation  function. 

The  hyperparameters  tested  (via  grid  search)  are  listed  in  detail  in  Table  3,  with  the selected  values  in  boldface.  Since  this  model  has  a  large  number  of  hyperparameters 

and  training  is  relatively  costly,  only  two  of  the  hyperparameter  values  are  varied. 

As  with  the  previous  models,  process  of  analyzing  the  impact  of  hiding  informa-

tion  in  the  output  layer  weights  on  the  accuracy  of  the  CNN  model  was  carried  out 

systematically.  The  model  was  initially  trained  with  the  preprocessed  malware  family
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Table  3  CNN  model  hyperparameters  tested 

Hyperparameter

Values  tested 

pad-size

256 

batch size

128, 64 

max-epoch

20 

lr

0.0005, 0.00005 

momentum

0.9 

hidden-size

512 

output

10 

bptt

256 

ntoken

256 

.d_model

128 

.d_hid

128 

nlayers

2 

nhead

1 

dropout

0.5 

dataset,  and  its  accuracy  was  evaluated  on  the  testing  data.  The  accuracy  was  found 

to  be  0.7354  in  this  unmodified  case,  which  serves  as  the  baseline  for  subsequent 

analysis. 

Next,  the  output  layer  weights  were  systematically  overwritten  with  data,  starting 

from  the  low-order  bits  and  increasing  towards  the  high-order  bits.  A  total  of  32  bits 

are  present  in  each  weight,  and  the  resulting  accuracy  was  recorded  after  the .  n  low-order  bits  had  been  overwritten,  for  each.  n ∈ {0 ,  1 ,  2 , . . . ,  32}.  Figure  2a  summarizes the  accuracies  obtained  for  the  model  in  each  case. 

We  observe  that  overwriting  the  low-order  21  bits  of  the  output  layer  weights 

does  not  have  any  significant  effect  on  the  accuracy.  However,  when  the .22nd  bit  is 

overwritten,  the  accuracy  drops  from  0.7468  to  0.7070,  and  a  large  drop  to  0.5576 

occurs  when  the  low-order  24  bits  are  overwritten.  Finally,  another  large  drop  is 

accuracy  is  observed  when  the  27  low-order  bits  are  overwritten,  resulting  in  an 

accuracy  of  only  0.2507,  and  when  29  low-order  bits  are  overwritten,  the  accuracy 

is  comparable  to  guessing  the  labels  at  random. 

In  Fig. 2b,  c  we  give  the  results  when  information  is  hidden  in  the  hidden  layer weights,  and  when  information  is  hidden  in  all  of  the  weights  of  our  trained  CNN 

model,  respectively.  These  results  are  analogous  to  the  output  layer  case,  but  with  22 

low-order  bits  available  for  information  hiding  in  both,  and  a  sharper  drop  in  accuracy 

from  that  point. 

In  this  particular  CNN  model,  there  are  1000  weights  in  the  output  layer, 

and  1,624,142  weights  in  the  internal  layer,  and  hence  the  total  number  of  weights 

is  1,625,142.  As  shown  in  the  results  in  Fig. 2a,  we  can  change  the  low-order-21  bits of  each  weight  in  the  output  layer  without  significantly  affecting  the  model  performance,  which  gives  the  model  a  steganographic  capacity  of  slightly  more  than  20.5
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Fig.  2  CNN  model  performance  with  low-order  bits  of  weights  overwritten 

KB,  just  in  terms  of  the  output  layer.  The  results  in  Fig. 2b  show  that  inserting  information  into  the  low-order-22  bits  of  the  weights  in  the  internal  layers  does  not  have 

a  negative  impact  on  the  model  accuracy,  which  gives  the  model  a  steganographic 

capacity  of  about  34.0  MB  in  terms  of  the  internal  weights.  With  all  weights  of  the 

model  considered,  as  shown  in  Fig. 2c, the  low-order  22  bits  are  again  available  for information  hiding,  which  give  the  MLP  model  a  total  steganographic  capacity  of 

about  34.1  MB. 

 4.3 

 Transformer  Model 

Our  Transformer  model  is  implemented  using  a  variety  of  PyTorch  mod-

ules,  including  TransformerEncoder,  TransformerEncoderLayer, 

TransformerDecoder,  TransformerDecoderLayer,  and  LayerNorm. 

The  model  consists  of  an  embedding  layer,  a  positional  encoding  layer,  a  Transformer 

encoder  layer,  a  Transformer  decoder  layer,  and  two  linear  layers.  The  input  first 

passes  through  an  embedding  layer,  which  maps  each  token  in  the  input  sequence  to
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Table  4  Transformer  model  hyperparameters  tested 

Hyperparameter

Values  tested 

pad-size

256 

batch size

128, 64 

max-epoch

20 

lr

0.0005, 0.00005 

momentum

0.9 

hidden-size

256, 512 

output

10 

bptt

256 

ntoken

256 

.d_model

128,  256,  512 

.d_hid

128,  1024 

nlayers

2, 12  

nhead

1, 8  

dropout

0.5 

a  vector  in  a  high-dimensional  space.  Then,  a  positional  encoding  layer  is  applied  to 

the  embedded  input  sequence  to  add  positional  information  to  the  embeddings. 

The  Transformer  encoder  layer  serves  to  encode  the  input  sequence  and  create  a 

representation  of  it  in  a  high-dimensional  space.  The  encoder  layer  is  composed  of 

a  self-attention  mechanism  and  a  feedforward  neural  network  layer.  The  resulting 

vectors  are  then  passed  through  a  feedforward  neural  network  layer. 

The  Transformer  decoder  layer  takes  the  encoded  input  sequence  and  generates 

a  prediction  for  each  output  token.  The  decoder  layer  is  also  composed  of  self-

attention  and  feedforward  neural  network  layers.  However,  it  also  receives  inputs 

from  the  encoder  layer  through  a  multi-head  attention  mechanism. 

Finally,  the  output  of  the  Transformer  decoder  layer  is  passed  through  two  linear 

layers,  where  the  first  layer  maps  the  output  to  a  lower-dimensional  space,  and  the 

second  layer  maps  this  lower-dimensional  representation  to  the  output  classes.  The 

model  also  employs  layer  normalization  and  dropout  for  regularization. 

The  hyperparameters  tested  via  a  grid  search  are  listed  in  Table  4,  with  the  values selected  in  boldface.  Since  there  are  a  large  number  of  hyperparameters  in  this  model, 

seven  of  the  hyperparameters  in  Table  4  are  fixed  values.  Our  trained  transformer model  achieved  perfect  accuracy  on  the  test  dataset. 

The  weights  of  the  output  layer  were  manipulated  to  explore  the  effect  of  over-

writing  the  low-order  bits.  The  resulting  accuracies—as  a  function  of  the  number 

of  bits  overwritten—can  be  seen  in  Fig. 3a. We  observe  that  up  to  26  low-order  bits can  be  overwritten  with  no  adverse  effect  on  the  model  accuracy.  A  drop  in  accuracy 

from  1.00  to  0.9833  occurs  when  the  low-order-27  bits  are  overwritten.  When  the 

low-order  28  bits  of  the  output  layer  weights  are  overwritten,  the  accuracy  of  the 

model  drops  to  0.8307,  and  the  accuracy  plummets  thereafter. 
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Fig.  3  Transformer  model  performance  with  low-order  bits  of  weights  overwritten 

In  Fig. 3b,  c  we  give  the  results  when  information  is  hidden  in  the  hidden  layer weights,  and  when  information  is  hidden  in  all  of  the  weights,  of  our  trained  Transformer  model,  respectively.  In  both  of  these  cases,  we  are  free  to  hide  information 

in  the  low-order  24  bit  positions  with  no  negative  effect  on  the  model,  but  when  we 

use  the  low-order  25  bits,  model  accuracy  is  severely  affected. 

In  the  transformer  model,  the  number  of  weights  in  output  layer  and  internal  layers 

are  1280  and  175,681,024,  respectively,  giving  a  total  of  175,682,304  weights.  For 

the  output  layer  weights,  as  shown  in  Fig. 3a, we  can  overwrite  the  low-order  26  bits with  minimal  loss  in  accuracy,  giving  a  steganographic  capacity  of  32.5  KB,  just  in 

terms  of  the  output  layer.  Considering  either  the  internal  weights  or  all  weights,  we 

can  hide  information  in  the  low  24  bits  without  any  ill  effect  on  the  model,  giving  us a  steganographic  capacity  in  excess  of  3.92  GB  for  both  cases. 
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5 

Conclusion 

The  primary  goal  of  this  research  was  to  determine  a  reasonable  lower  bound  the 

stenographic  capacity  of  selected  learning  models.  Specifically,  we  tested  Multilayer 

Perceptron,  Convolutional  Neural  Network,  and  Transformer  models,  which  were 

each  trained  on  a  dataset  of  more  than  15,000  malware  executables  from  10  families, 

with  more  than  1000  samples  for  each  family. 

All  of  the  models  underwent  the  same  testing  procedure:  We  first  determined 

the  accuracy  of  each  model  on  the  test  set,  then  we  embedded  information  in  the  .  n low-order  bits  of  the  weights,  recomputing  the  classification  accuracy  for  each  .  n. 

We  experimented  with  just  the  output  layer  weights,  just  the  hidden  layer  weights, 

and  all  of  the  weights.  The  results  were  consistent  across  all  models,  in  the  sense 

that  at  least  20  bits  per  weight  can  be  used  to  hide  information,  with  minimal  effect 

on  the  accuracy.  In  addition,  at  some  point  shortly  beyond  20  bits,  model  accuracy 

deteriorates  dramatically.  These  results  hold  whether  considering  the  output  layer 

weights,  the  hidden  layer  weights,  or  all  weights. 

Our  experimental  results  show  that  the  steganographic  capacity  is  surprisingly 

high.  This  is  potentially  a  significant  security  issue,  since  such  models  are  ubiquitous, 

and  hence  it  is  to  be  expected  that  attackers  will  try  to  take  advantage  of  them. 

Embedding,  say,  malware  in  a  learning  model  offers  an  attack  vector  that  is  practical, 

and  could  be  highly  effective  in  practice. 

It  would  be  wise  to  reduce  the  steganographic  capacity  of  learning  models.  Our 

results  indicate  that  32-bit  weight  do  not  yield  a  significant  improvement  in  accuracy 

over  what  could  be  achieved  with,  say,  16-bit  weights.  With  additional  work,  for 

specific  models,  it  should  be  feasible  to  use  even  smaller  weights—this  would  be  an 

interesting  and  potentially  valuable  area  for  additional  research. 

Further  research  into  other  popular  deep  learning  models  would  also  be  worth-

while.  If  the  steganographic  capacity  of  pre-trained  models  could  be  reduced,  then 

the  creation  of  “thin”  pre-trained  models  would  be  of  value.  It  would  also  be  inter-

esting  to  determine  whether  more  challenging  classification  problems  tend  to  affect 

the  steganographic  capacity  of  inherently  “fat”  models.  Intuitively,  more  challenging 

problems  should  require  more  learning  be  embedded  in  the  weights,  and  hence  the 

steganographic  capacity  might  be  somewhat  lower. 

Another  area  for  further  investigation  would  be  to  combine  some  aspects  of  the 

steganographic  capacity  work  presented  in  this  paper  with  the  work  in  [ 31],  where information  is  hidden  in  weights  that  are  (essentially)  unused  by  the  model.  By 

combining  both  of  these  approaches,  we  could  obtain  a  larger  steganographic  capacity 

of  learning  models. 
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Abstract  There  have  been  many  recent  advances  in  the  fields  of  generative  Arti-

ficial  Intelligence  (AI)  and  Large  Language  Models  (LLM),  with  the  Generative 

Pre-trained  Transformer  (GPT)  model  being  a  leading  “chatbot.”  LLM-based  chat-

bots  have  become  so  powerful  that  it  may  seem  difficult  to  differentiate  between 

human-written  and  machine-generated  text.  To  analyze  this  problem,  we  have  devel-

oped  a  new  dataset  consisting  of  more  than  750,000  human-written  paragraphs,  with 

a  corresponding  chatbot-generated  paragraph  for  each.  Based  on  this  dataset,  we 

apply  Machine  Learning  (ML)  techniques  to  determine  the  origin  of  text  (human  or 

chatbot).  Specifically,  we  consider  two  methodologies  for  tackling  this  issue:  feature 

analysis  and  embeddings.  Our  feature  analysis  approach  involves  extracting  a  collec-

tion  of  features  from  the  text  for  classification.  We  also  explore  the  use  of  contextual embeddings  and  transformer-based  architectures  to  train  classification  models.  Our 

proposed  solutions  offer  high  classification  accuracy  and  serve  as  useful  tools  for 

textual  analysis,  resulting  in  a  better  understanding  of  chatbot-generated  text  in  this 

era  of  advanced  AI  technology. 

1 

Introduction 

Recent  advances  in  Large  Language  Models  (LLM)  have  forever  changed  the  field  of 

Natural  Language  Processing  (NLP).  A  front-runner  in  the  LLM  industry  has  been 

the  Generative  Pre-trained  Transformer  (GPT)  [ 14]  series  of  models, 1 colloquially known  as  ChatGPT.  These  GPT  models  are  known  for  their  large  scale,  parameter 

size,  advanced  language  processing  abilities  and  creative  text  generation.  The  promi-

nence  of  GPT  in  the  current  field  makes  this  model  an  important  topic  of  research. 

1  At  the  time  that  this  research  was  initiated,  the  state-of-the-art  version  of  the  GPT  model  was GPT-3.5,  and  hence  that  is  the  version  that  we  use  in  all  experiments  discussed  in  this  paper. 
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The  GPT  model,  and  other  LLMs  are  gradually  becoming  more  human-like.  The  line 

between  human  written  text  and  LLM-generated  text  is  likely  to  continue  to  blur. 

This  advent  of  LLMs,  although  beneficial  in  several  fields,  also  presents  challenges 

associated  with  discerning  the  origin  of  written  text. 

In  this  research,  we  explore  the  use  of  Machine  Learning  (ML)  and  Deep  Learn-

ing  (DL)  techniques  for  the  classification  of  text  as  either  human-written  or  GPT-

generated.  This  classification  is  important  in  several  domains,  including  content 

moderation,  cybersecurity,  education,  and  so  on. 

We  first  collect  a  large  dataset  of  more  than  750,000  human-written  paragraphs, 

each  of  which  includes  a  brief  summary.  Then,  for  each  of  these  human-written 

paragraphs,  we  ask  ChatGPT  to  generate  a  corresponding  paragraph  on  the  same 

topic  and  of  approximately  the  same  length,  which  yields  a  new,  high-quality  dataset 

containing  more  than  1,500,000  full  paragraphs.  We  then  determine  how  accurately 

we  can  classify  these  text  samples  as  human  or  chatbot.  For  the  classification  task, 

we  consider  the  following  two  approaches. 

•  Feature  analysis—Our  feature  analysis  approach  involves  extracting  a  wide  range 

of  features  from  the  data  samples  and  using  elementary  statistical  properties  of 

these  features  to  classify  text  as  human  or  chatbot  generated.  This  involves  analyz-

ing  the  lexical  diversity,  linguistics,  syntactical  structures,  and  other  characteristics 

of  the  data. 

•  Embeddings—Our  embeddings  approach  involves  feeding  data  to  learning  mod-

els,  based  on  word  and  sentence  embeddings.  These  embeddings  are  vectors  that 

are  designed  to  capture  some  relationships  present  in  the  data,  enabling  models  to 

learn  from  the  underlying  semantics  of  the  text. 

At  the  core  of  our  research  are  several  ML  and  DL  techniques  that  we  use  to  clas-

sify  text.  Our  main  goal  is  to  determine  how  accurately  such  learning  techniques  are 

able  to  distinguish  human-generated  text  from  GPT-generated  text.  Another  impor-

tant  aspect  of  this  research  is  to  determine  which  features  are  most  useful  in  this 

classification.  Understanding  the  relative  importance  of  various  features  will  allow 

us  to  better  understand  the  strengths  and  limitations  of  ChatGPT-generated  content 

and  to  identify  areas  for  improvement. 

The  remainder  of  this  paper  is  organized  as  follows.  Section  2  explores  the  existing literature  surrounding  this  topic,  while  in  Sect. 3  we  focus  on  the  background  required to  understand  our  work.  Section  4  covers  the  process  we  follow  for  dataset  generation,  and  Sect. 5  presents  some  elementary  statistical  analysis  of  our  new  dataset. 

Section  6  delves  into  implementation  details  of  our  learning-based  approaches  for distinguishing  between  human  and  chatbot  text,  including  the  features  extracted, 

embedding  techniques,  the  learning  models  that  we  train,  and  so  on.  In  Sect. 7  we discuss  the  results  that  we  have  obtained.  The  paper  concludes  with  Sect. 8,  where we  also  discuss  some  potential  avenues  for  future  work. 

Distinguishing Chatbot from Human

531

2 

Relevant  Related  Work 

In  this  section,  we  first  review  the  chatbot  that  we  use  to  generate  our  data,  namely, 

ChatGPT.  Then  we  delve  into  the  existing  literature  and  research  studies  that  have 

explored  the  differentiation  between  human  and  machine-generated  text.  This  review 

of  previous  work  serves  to  place  our  research  in  context,  as  of  the  time  this  paper 

was  written.  However,  it  is  worth  noting  that  this  is  a  rapidly  evolving  field,  and 

additional  new  research  and  results  are  certain  to  appear. 

 2.1 

 ChatGPT 

The  GPT  3.5  model  used  by  ChatGPT,  developed  by  OpenAI,  is  a  deep  learning 

model  based  on  a  transformer  architecture.  It  is  a  pre-trained  model  which  has  been 

trained  on  a  vast  corpus  of  information  from  the  Internet,  and  several  other  publicly 

available  sources,  including  books,  websites,  etc. [ 14, 15].  The  exact  size  amount  of training  data  used  for  this  model  is  not  publicly  known.  However,  a  previous  version 

of  the  model  had  175  billion  parameters  and  was  trained  with  499  billion  crawled  text 

tokens.  The  model  is  able  to  recognize  patterns  within  text  and  generate  information 

that  closely  resembles  text  written  by  humans.  During  the  pre-training,  the  model 

learns  to  predict  the  next  word  in  a  sentence  [ 15].  This  is  done  using  an  attention-based  transformer  architecture  [ 18], which  enables  the  model  to  learn  contextual information  and  patterns  within  the  text.  The  model  first  interprets  the  context  of 

the  user’s  query  and  autoregressively  generates  the  next  word  (or  token)  that  fits  the 

context. 

 2.2 

 Human  Classification 

Before  diving  into  the  classification  of  text  using  machine  learning,  we  might  consider 

the  question:  How  good  are  humans  at  distinguishing  between  machine  and  human 

content?  The  research  in  [ 5]  attempted  to  answer  this  question.  This  study  included nine  literature  professionals  and  each  was  given  the  initial  lines  of  18  poems  and  short stories  by  classic  authors.  They  were  asked  to  produce  two  continuations  for  each  text, 

one  with  AI  tool  based  on  the  GPT  2  model.  While  evaluating,  the  participants  were 

asked  to  classify  all  continuations  not  written  by  themselves  as  AI  or  human.  The 

results  of  this  study  indicated  that  the  professional  struggled  with  this  classification 

problem,  with  high  rates  on  false  positives  and  negatives.  These  results  indicate 

that  the  problem  of  identification  of  human  versus  machine  generated  content  may 

be  moving  out  of  human  hands.  The  research  in  [ 7]  presents  evidence  suggesting longer  excerpts  of  text  can  fool  humans  over  30%  of  the  time.  Thus,  it  would  appear 

that  we  may  need  machines  to  accurately  distinguish  between  human-generated  and 

chatbot-generated  text. 
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 2.3 

 Datasets 

To  date,  research  on  the  classification  of  text  as  human  or  GPT-generated  has  been 

scant.  There  is  also  a  paucity  of  publicly  available  datasets  for  experimentation.  Most 

researchers  have  thus  had  to  create  their  own  datasets  (and  this  paper  is  no  exception). 

In  the  study  [ 11],  the  authors  created  a  dataset  based  on  Wikipedia  articles.  They defined  10  categories  and  selected  10  topics  within  each  category  to  generate  content 

using  AI.  Similarly,  the  authors  of  [ 6]  developed  a  dataset  based  on  scientific  papers. 

They  passed  the  title  of  the  paper  as  a  prompt  and  asked  the  model  to  generate  an 

abstract  based  on  the  title.  In  contrast  to  using  a  single  dataset  for  classification,  the authors  of  [ 6]  created  several  categories  of  data,  such  as  essays,  poems,  stories  and code.  All  of  these  were  used  for  classification.  These  papers  indicate  that  a  wide 

array  of  creative  techniques  have  been  used  to  generate  data. 

 2.4 

 Classification  Techniques 

The  approaches  for  classification  using  Machine  Learning  have  also  varied  widely  in 

published  studies.  The  research  of  [ 9, 11]  both  used  feature  extraction  based  approach for  classification.  On  the  other  hand,  the  authors  of  [ 6]  transformed  the  textual  data to  numerical  using  TFIDF 2 and  similar  techniques.  The  authors  of  [ 7]  used  a  “bag  of words”  implementation  to  generate  embeddings.  Thus,  two  primary  methods  have 

been  adopted  for  classification  problem:  feature  based  and  embedding  based. 

 2.5 

 Feature  Based  Classification 

The  authors  of  [ 11]  extracted  37  features  grouped  in  eight  categories.  (perplexity, semantic,  list  lookup,  document,  error  based,  readability,  AI  feedback,  and  text  vector 

features.)  On  the  other  hand,  the  authors  of  [ 9]  used  features  in  just  three  categories (syntax,  semantics,  and  pragmatics).  The  syntax  features  are  token  level  (e.g.,  length 

of  words,  part  of  speech,  function  word  frequency,  and  stopword  ratio),  semantic 

features  consist  of  cosine  similarities  between  sentences  (including  the  title),  and 

pragmatic  features  deal  with  things  like  self-contradictions  and  redundancies. 

An  interesting  approach  was  adopted  in  [ 11], which  included  asking  the  GPT 

model  itself  if  specific  text  was  generated  by  it.  Another  feature  category  in  this 

paper  was  perplexity,  which  is  a  measure  of  how  surprised  the  language  model  is 

when  it  encounters  a  new  sequence  of  words.  The  remaining  features  in  [ 11] were similar  to  [ 9]. 

2  We  discuss  TFIDF  in  Sect. 3.2.1. 
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 2.6 

 Model  Selection 

Several  different  models  have  been  used  for  text  classification  in  various  studies, 

with  Logistic  Regression  being  often  used  to  establish  baseline  metric  scores.  The 

work  in  [ 6,  7, 9]  all  use  Logistic  Regression  for  classification;  in  [ 6, 7] it is used for classification  of  text  into  human  or  AI-generated  content,  whereas  in  [ 9] it is used to  interpret  the  various  features.  In  [ 6,  7],  Logistic  Regression  yielded  an  average accuracy  of  0.79–0.93  in  various  cases. 

XGBoost,  Random  Forest,  and  Multilayer  Perceptron  models  were  used  for  clas-

sification  in  [ 6], where  an  accuracy  of  0.98  was  attained  for  basic  AI-generated  texts and  0.969  for  more  advanced  cases.  Bidirectional  Encoder  Representations  from 

Transformers  (BERT)  was  used  in  [ 7]. The  authors  of  [ 6]  experimented  with  the Long  Short  Term  Memory  (LSTM)  models. 

3 

Background 

In  this  research,  we  attempt  to  classify  text  as  either  human  or  GPT  3.5  generated 

using  Machine  Learning  and  Deep  Learning  techniques.  As  mentioned  above,  we 

consider  two  approaches,  namely,  feature  analysis  and  embeddings.  In  this  section, 

we  explain  in  some  detail  background  topics,  including  the  various  embedding 

techniques  and  the  learning  models  used. 

 3.1 

 Models 

In  this  section,  we  provide  an  overview  of  all  of  the  ML  and  DL  models  that  were  used in  the  project.  Among  classic  ML  techniques,  we  consider  Logistic  Regression,  Random  Forest,  and  XGBoost,  while  from  DL  models,  we  experiment  with  Multilayer 

Perceptron,  a  Deep  Neural  Network,  and  Long  Short  Term  Memory  networks. 

3.1.1

Logistic  Regression 

Logistic  Regression  (LR)  models  the  relationship  between  independent  and  depen-

dent  variables.  LR  is  useful  when  we  need  to  predict  the  possibility  of  the  occurrence 

of  an  event,  and  it  is  most  often  used  for  binary  classification  problems  [ 1]. 

LR  predicts  the  likelihood  of  an  observation  belonging  to  a  particular  class  by 

using  the  logistic  or  the  sigmoid  function  to  map  the  probability  of  outcomes  to  the 

range  0–1.  It  assumes  that  a  linear  relationship  exists  between  the  predictor  variable 

and  the  log  odds  of  the  feature  variables  [ 16]. 
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3.1.2

Random  Forest 

Random  Forest  (RF)  is  one  of  the  most  popular  supervised  ML  algorithms.  It  is  an 

ensemble  technique  that  is  trained  using  a  “bagging”  approach.  In  bagging,  multiple 

weak  learners  (decision  trees  in  the  case  of  RF)  are  trained  in  parallel,  each  based  on a  subset  of  the  features  and  data.  Classification  of  individual  data  points  into  classes 

is  based  on  the  ensemble  of  these  weak  learners  [ 17].  One  advantages  of  RF  is  that it  can  effectively  handle  missing  values. 

3.1.3

Support  Vector  Machine 

For  a  binary  classification  problem,  Support  Vector  Machines  (SVM)  attempt  to 

separate  the  classes  using  a  hyperplane,  while  maximizing  the  “margin,”  i.e.,  the 

minimum  distance  between  the  hyperplane  and  the  training  data.  The  so-called  kernel 

trick  enables  us  to  embed  a  nonlinear  transformation  into  the  SVM  training  process— 

which  can  serve  to  increase  the  separation  between  classes—without  any  significant 

loss  of  efficiency.  In  this  paper,  we  only  consider  linear  SVMs,  in  which  case  each 

feature  has  an  associated  weight  which  specifies  the  importance  that  the  model  places 

on  that  specific  feature  [ 17]. 

3.1.4

XGBoost 

XGBoost  is  short  for  eXtreme  Gradient  Boosting.  Like  RF,  it  is  also  an  ensemble 

learning  model  that  uses  various  weak  learners  (trees)  to  give  predictions.  However, 

boosting  techniques  rely  on  an  involved  process  for  combining  weak  learners,  as 

opposed  to  the  simple  voting  strategy  of  an  RF.  XGBoost  employs  a  block  structure 

for  parallel  learning,  enabling  efficient  distributed  computing  [ 2]. 

XGBoost  is  known  for  its  scalability.  It  is  capable  of  handling  datasets  that  scale 

beyond  billions  of  examples.  However,  potential  disadvantage  of  XGBoost  include 

that  it  is  prone  to  overfitting  and  sensitive  to  outliers. 

3.1.5

Multilayer  Perceptron 

Multilayer  Perceptron  (MLP)  is  a  type  of  feedforward  Artificial  Neural  Network 

(ANN).  An  MLP  can  effectively  deal  with  nonlinear  relationships  within  the  data. 

MLPs  are  known  for  their  applications  in  a  wide  range  of  domains,  including  natural 

language  processing  (NLP).  Within  the  NLP  domain,  MLPs  have  been  successfully 

used  for  various  tasks,  including  machine  translation  and  speech  recognition. 

The  architecture  of  an  MLP  consists  of  multiple  layers  of  neurons  with  each  layer 

being  fully  connected  to  the  next  [ 17].  There  are  three  types  of  layers  present—one input  layer,  one  output  layer,  and  a  small  number  of  hidden  layers,  where  “small”  is 

typically  one  or  two.  The  number  of  neurons  in  each  layer  and  the  number  of  hidden
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layers  are  parameters  that  need  to  be  determined  experimentally.  Each  neuron  has 

a  nonlinear  activation  function  associated  with  it,  such  as  a  sigmoid,  rectified  linear 

unit  (ReLU),  or  absolute  value  activation  function  [ 20]. 

3.1.6

Deep  Neural  Network 

In  our  usage,  Deep  Neural  Networks  (DNN)  are  a  more  general  form  of  ANN,  with 

an  architecture  similar  to  MLP,  but  with  a  larger  number  of  hidden  layers.  In  addition, 

a  DNN  may  contain  different  types  of  layers,  such  as  convolutional  layers,  pooling 

layers,  or  recurrent  layers  [ 12]. The  presence  of  these  layers  helps  in  distinguishing between  different  types  of  DNNs,  such  as  Convolutional  Neural  Networks  (CNN) 

and  Recurrent  Neural  Networks  (RNN).  For  the  experiments  considered  in  this  paper, 

the  DNN  architecture  is  just  a  deeper  version  (i.e.,  more  hidden  layers)  of  an  MLP. 

Training  of  deep  neural  networks  involves  adjusting  the  weights  between  layers 

to  minimize  the  error  between  input  and  output.  This  is  most  efficiently  done  by  a 

process  known  as  backpropogation  [ 17]. This  process  is  iteratively  repeated  over  the training  data,  with  the  trained  version  of  the  model  then  used  to  make  predictions 

on  previously  unseen  data.  DNNs  have  proven  useful  for  handling  complex  data  and 

they  generally  give  good  performance  on  such  datasets.  However,  they  require  a  large 

amount  of  data  for  training  and  the  models  themselves  are  notoriously  difficult  to 

interpret  [ 17]. 

3.1.7

Long  Short  Term  Memory 

Long  Short  Term  Memory  (LSTM)  networks  are  a  special  class  of  Recurrent  Neural 

Networks  (RNN)  [ 12].  RNNs  are  ANNs  that  possess  some  “memory,”  in  the  sense that  they  can  use  data  from  previous  time  steps  to  make  decisions.  RNNs  have 

many  applications  in  NLP  that  require  context,  such  as  predicting  the  next  word  in  a 

sentence  or  machine  translation.  However,  generic  RNNs  tend  to  suffer  from  gradient 

pathologies  (e.g.,  vanishing  or  exploding  gradient)  when  trained  via  backpropagation, 

making  it  difficult  to  effectively  use  information  that  is  farther  back  in  time.  LSTMs 

mitigate  these  gradient  issues  by  use  of  a  complex  gating  structure,  which  enables 

information  to  flow  more  easily  through  multiple  time  steps.  For  additional  details 

on  LSTMs,  see  [ 17, 19]. 

 3.2 

 Word  Embeddings 

Word  embeddings  are  a  powerful  concept  in  NLP  that  allow  computers  to  understand 

and  manipulate  words  based  on  their  meanings.  Word  embeddings  are  numerical 

representations  of  words  represented  by  vectors.  They  are  designed  to  enable  models 

to  process  the  nuances  of  language,  similar  to  the  way  that  humans  do.  They  consist

536

G. A. Godghase et al. 

of  multi-dimensional  arrays  where  each  word  is  mapped  to  a  vector  in  a  predefined 

vector  space.  The  goal  of  embeddings  is  to  place  similar  words  closer  together  (in 

some  well-defined  sense)  within  the  vector  space. 

3.2.1

TFIDF 

Term  Frequency  Inverse  Document  Frequency  (TFIDF)  is  simple  method  to  gener-

ate  numerical  representations  of  words,  that  was  originally  developed  to  automati-

cally  extract  indexing  terms  from  documents.  Term  Frequency  (TF)  measures  how 

frequently  a  word  occurs  in  a  document.  Specifically, 

. TF (t , d) =

 nt,d

 nw,d

 w∈ d

where .  nt,d  is  the  number  of  times  term.  t  appears  in  document.  d  and 



. 

 nw,d

 w∈ d

is  the  total  number  of  words  in  document  .  d.  A  higher  TF  score  simply  means  that a  word  occurs  more  frequently  in  a  text.  On  the  other  hand,  Inverse  Document 

Frequency  (IDF)  measures  how  important  a  term  is.  It  penalizes  words  that  occur 

too  frequently  across  all  documents  [ 17]. By  taking  the  logarithm  of  the  division, IDF  reduces  the  effect  of  terms  that  appear  very  frequently  in  the  dataset.  This  is 

done  because  the  terms  that  occur  frequently  across  all  documents  are  less  likely  to 

be  informative.  Specifically,  the  IDF  of  a  term  is  calculated  by 



 N

. IDF (t , d) = log

 nt

where  .  N  is  the  total  number  of  documents  in  the  collection  .  d  and  .  nt  is  the  number of  documents  containing  the  term .  t. 

By  multiplying  the  TF  and  IDF  scores  together  we  obtain  the  TFIDF  score.  A 

higher  TFIDF  score  for  a  word  indicates  that  the  term  is  frequent  in  a  particular 

document  but  not  so  frequent  across  all  the  other  documents.  This  term  is  likely  to 

be  a  distinguishing  characteristic  of  that  particular  document. 

3.2.2

Word2Vec 

Word2Vec  is  a  series  of  related  models  that  are  used  to  produce  word  embeddings. 

Word2Vec  models  are  designed  to  capture  the  syntactic  and  semantic  relationships 

between  words  [ 10]. This  is  done  by  placing  words  in  a  continuous  vector  space  where
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words  with  similar  meanings  are  located  close  (in  the  sense  of  cosine  similarity)  to 

one  another. 

Word2Vec  can  be  implemented  using  two  different  architectures:  Continuous 

Bag-Of-Words  (CBOW)  and  Skip-Gram.  CBOW  predicts  a  target  word  based  on  its 

context,  and  it  is  faster  and  tends  to  produce  better  results  for  more  frequent  words. 

Skip-Gram,  on  the  other  hand,  does  essentially  the  opposite,  using  a  target  word  to 

predict  the  surrounding  context.  It  performs  well  with  small  datasets  and  is  effective 

at  representing  rare  words  [ 10]. For  the  research  reported  in  this  paper,  we  use  the CBOW  architecture. 

3.2.3

GloVe 

Global  Vectors  for  Word  Representation  (GloVe)  is  an  unsupervised  learning  algo-

rithm  designed  to  generate  word  embeddings.  It  uses  information  about  the  co-

occurrence  of  words  within  a  corpus  to  generate  its  embeddings  [ 13]. These  embeddings  are  vector  representations  of  the  corpus,  and  they  are  dense  in  the  vector  space. 

They  capture  the  semantic  meanings  and  relationships  between  words,  which  allows 

the  model  to  understand  the  nuances  of  the  language. 

The  core  concept  of  GloVe  is  to  analyze  the  probabilities  of  word  co-occurrences 

across  a  text  corpus  to  learn  word  vectors  that  reflect  collective  usage  patterns.  This  is accomplished  by  constructing  a  word-context  co-occurrence  matrix.  This  matrix  represents  the  frequency  with  which  words  in  the  corpus  occur  near  each  other  (within 

a  specified  context  window).  This  matrix  is  then  factorized  to  lower  its  dimension-

ality,  using  various  matrix  factorization  techniques  [ 13]. The  values  of  these  vectors are  iteratively  changed  and  optimized  to  minimize  the  difference  between  the  co-occurrence  probabilities  in  the  original  matrix  and  the  dot  product  of  the  resulting 

word  vectors—this  is  known  as  the  reconstruction  loss.  Through  this  process,  GloVe 

captures  global  word  usage  patterns,  where  both  semantic  and  syntactic  information 

is  contained  within  the  vectors. 

3.2.4

BERT 

Bidirectional  Encoder  Representations  from  Transformers  (BERT)  is  a  popular  word 

embedding  method.  BERT  is  said  to  have  revolutionized  NLP  by  allowing  machines 

to  understand  and  process  text  with  high  accuracy  [ 3].  Unlike  GloVe  and  Word2Vec embeddings,  BERT  embeddings  capture  more  information  about  context. 

BERT  generates  embeddings  by  processing  text  in  both  forward  and  backwards 

directions.  This  means  that  it  takes  into  account  the  words  on  both  sides  of  the  word 

currently  being  processed.  Before  BERT,  most  models  considered  text  in  only  the 

forward  direction,  which  provides  less  context  to  a  model. 

BERT  has  a  maximum  input  limit  of  512  tokens.  Input  words  are  broken  down 

further  into  smaller  units  called  WordPieces.  The  model  is  pre-trained  using  two 

strategies:  Masked  Language  Modeling  (MLM)  and  Next  Sentence  Prediction  (NSP). 
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MLM  randomly  masks  some  of  the  tokens  from  the  input  and  predicts  them  based 

on  their  context.  NSP  predicts  whether  two  segments  of  text  follow  each  other  in 

the  original  document.  This  pre-training  allows  BERT  to  achieve  a  highly  develop 

model  of  language  structure  and  context. 

At  the  core  of  the  BERT  architecture,  lie  transformers,  which  allow  for  simultane-

ous  processing  using  a  mechanism  known  as  “attention”  to  determine  which  parts  of 

the  data  are  most  relevant.  This  attention  mechanism  is  based  on  an  encoder-decoder 

model  that  allows  BERT  to  capture  the  nuances  of  language  and  complex  sentence 

structures  [ 18]. 

4 

Dataset 

This  section  outlines  the  process  we  used  to  generate  our  dataset.  We  also  discuss  the 

numerous  features  that  we  extract  from  the  data  for  our  feature  analysis  approach. 

These  features  lay  a  foundation  for  differentiating  between  the  two  classes  of  text. 

 4.1 

 Raw  Data  Generation 

Our  dataset  consists  of  a  combination  of  human-generated  and  GPT-generated  text. 

For  the  human-generated  text,  the  publicly  available  WikiHow  dataset  introduced 

in  [ 8]  was  used.  The  original  dataset  consists  of  four  columns:  title,  overview, headline,  and  text. The  title consists  of  the  title  of  the  WikiHow  article,  the 

overview is  an  introduction,  the  headline is  a  bold  headline  that  occurs  before 

the  paragraph,  and,  finally,  the  text paragraph  is  the  actual  text  of  article. 

Each  WikiHow  article  in  our  dataset  was  used  to  generate  a  corresponding  GPT 

paragraph  of  approximately  the  same  length.  This  was  done  to  maintain  the  similarity 

of  topics  and  length  of  paragraphs  between  the  two  sets  of  data.  The  prompt  in 

Fig. 1  was  passed  to  the  GPT  3  API,  replacing  the  placeholders  with  the  corresponding information  from  each  WikiHow  paragraph.  Some  examples  human-generated  text 

and  the  corresponding  GPT-generated  text  can  be  found  in  the  appendix. 

The  resulting  response  from  the  GPT  3.5  model  was  extracted  and  all  of  the 

responses  for  all  of  the  WikiHow  articles  in  our  dataset  comprise  the  GPT  generated 

data.  The  structure  of  the  prompt  was  intended  to  ensure  that  the  content  of  the  GPT-

generated  data  mirrored  the  content  of  the  human  data  in  information  and  length. 

Fig.  1  ChatGPT  prompt
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Table  1  Dataset  details 

Class

Paragraphs

Words

Characters

Average  words 

per  paragraph 

Human

784,636

54,005,604

307,005,548

68.83 

ChatGPT

920,259

75,474,378

474,396,685

82.01 

Our  goal  is  to  ensure  that  the  models  we  consider  differentiate  the  text  based  on  the 

fundamental  characteristics,  rather  than  simply  based  on  topics  or  other  extraneous 

aspects.  Once  the  chatbot  data  was  generated,  the  two  sets  were  merged.  The  resulting 

dataset  is  balanced,  with  the  same  number  of  human  and  chatbot-generated  samples. 

Basic  statistics  for  our  dataset  appear  in  Table  1.  It  is  immediately  apparent that  ChatGPT  tends  to  be  “wordy,”  in  comparison  to  human  writers.  Note  also 

that  ChatGPT  sometimes  produced  responses  consisting  of  more  than  one  para-

graph,  and  hence  we  obtain  more  ChatGPT-generated  paragraphs  than  the  number 

of  human-generated  paragraphs. 

 4.2 

 Features 

This  section  covers  the  various  types  of  features  that  were  generated  for  every  para-

graph  of  data.  We  briefly  discuss  the  four  broad  categories  of  features  that  we  consider, and  even  more  briefly  introduce  each  of  the  individual  features  within  these  categories.  Note  that  we  used  Google  Colab  [ 4]  to  extract  all  of  the  features  discussed  in this  section. 

4.2.1

Linguistic  Features 

Our  linguistic  features  are  designed  to  capture  information  about  an  author’s  unique 

voice  and  approach  to  language.  It  includes  the  choice  of  words,  their  arrangement, 

and  the  use  of  various  parts  of  speech.  These  features  convey  meaning,  tone,  and 

personality.  This  category  is  used  to  understand  how  language  expresses  ideas  and 

emotions.  These  features  combined  contribute  to  the  readability  and  nuances  of  the 

text.  Linguistic  style  is  one  of  the  fundamental  aspects  of  text  analysis,  and  it  offers insights  into  the  texture  and  flavor  of  the  language. 

Note  that  when  creating  these  linguistic  features,  all  values  were  normalized  and 

ratios  were  calculated,  instead  of  using  raw  frequencies.  This  was  done  to  ensure 

minimal  influence  of  lengths  of  the  text  and  to  minimize  further  data  preprocessing. 

Next,  we  introduce  each  the  eight  linguistic  features  that  we  consider. 
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Verb  ratio—The  verb  ratio  refers  to  the  ratio  of  the  frequency  of  verbs  in  a  text  to  the total  number  of  words.  Verbs  refer  to  the  action  words  in  the  text.  They  are  essential 

in  the  construction  of  sentences,  conveying  actions  and  states.  A  higher  verb  ratio 

indicates  text  that  is  more  dynamic. 

Noun  ratio—The  noun  ratio  is  the  ratio  of  the  frequency  of  nouns  in  the  text  to 

the  total  number  of  words.  Nouns  are  the  fundamental  building  blocks  of  sentences 

consisting  of  the  names  of  people,  places,  things,  or  ideas.  A  text  with  a  high  noun 

ratio  indicates  richness  of  the  text,  in  terms  of  subjects  and  concepts  and  abstract 

entities,  and  suggests  that  the  text  is  dense  with  information  and  ideas. 

Adjective  ratio—The  adjective  ratio  is  the  ratio  of  the  frequency  of  adjectives  within a  text  to  the  total  number  of  words.  Adjectives  describe  or  modify  nouns.  They 

provide  more  refined  information  about  the  qualities,  quantities,  or  states  of  being  of 

the  nouns  in  the  sentence.  A  higher  ratio  of  adjectives  indicates  a  more  descriptive 

or  expressive  text,  and  create  a  more  detailed  picture  of  the  corresponding  nouns. 

Pronoun  ratio—The  pronoun  ratio  is  the  ratio  of  the  frequency  of  pronouns  to 

the  number  of  words.  Pronouns  are  used  to  replace  nouns.  A  higher  pronoun  ratio 

indicates  frequent  references  to  previously  occurring  nouns,  which  tends  to  make  the 

text  more  personalized  and  generally  easier  to  read  and  follow. 

Adverb  ratio—The  adverb  ratio  is  the  ratio  of  the  frequency  of  adverbs  within  a 

text  to  the  total  number  of  words.  Adverbs  describe  or  modify  verbs,  adjectives,  or 

other  adverbs.  They  provide  more  information  on  how,  when,  where,  and  to  what 

extent  actions  are  performed.  Text  with  a  high  adverb  ratio  provides  more  detailed 

descriptions  of  how  actions  are  performed,  and  they  add  to  the  depth  of  the  text,  in 

the  sense  of  making  it  more  descriptive. 

Preposition  ratio—The  preposition  ratio  is  the  ratio  of  the  frequency  of  prepositions within  a  text  to  the  total  number  of  words.  Prepositions  are  words  that  link  nouns, 

pronouns,  or  phrases  to  other  words  within  a  sentence.  They  indicate  temporal,  spatial 

or  other  relationships  of  objects.  A  text  with  a  high  preposition  ratio  contains  more 

complex  descriptions  of  places,  times,  and  other  relationships. 

Conjunction  ratio—The  conjunction  ratio  is  the  ratio  of  the  frequency  of  conjunc-

tions  within  a  text  to  the  total  number  of  words.  Conjunctions  join  together  different 

words,  phrases,  clauses,  or  sentences.  They  allow  a  seamless  flow  of  words  and 

ensure  the  coherence  of  the  text.  A  higher  conjunction  ratio  indicates  complex  and 

interwoven  ideas,  and  can  enhance  the  reader’s  ability  to  follow  these  ideas  smoothly. 

Interjection  ratio—The  interjection  ratio  is  the  ratio  of  the  frequency  of  interjections within  a  text  to  the  total  number  of  words.  Interjections  are  words  or  phrases  that 

express  sudden  or  spontaneous  emotion.  They  make  the  text  appear  more  lively  and 

mirroring  of  real  life.  A  higher  interjection  ratio  speaks  to  a  higher  level  of  emotion 

within  the  text. 
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4.2.2

Structural  Features 

Structural  features  deal  with  the  construction  and  architecture  of  the  text.  They  pro-

vide  information  on  how  sentences  are  formed  and  how  paragraphs  are  organized. 

They  also  contribute  to  the  high-level  structure  of  the  text.  This  includes  aspects  such 

as  sentence  length,  complexity,  and  the  use  of  lower  and  upper  case  letters.  Together 

all  of  these  characteristics  influence  the  readability  and  aesthetics  of  the  text.  These 

features  are  crucial  in  order  to  gain  a  deeper  understanding  of  how  ideas  are  pre-

sented  in  text.  They  provide  a  way  in  which  we  can  understand  the  organizational 

preferences  of  the  author.  Next,  we  introduce  the  eight  structural  features  that  we 

consider. 

Average  sentence  length—Average  sentence  length  is,  of  course,  the  average  num-

ber  of  words  per  sentence  in  a  text.  Longer  sentences  often  contain  more  complex 

ideas  or  multiple  thoughts  joined  together.  On  the  other  hand,  shorter  sentences  tend 

to  be  more  concise  and  focused  on  one  idea.  The  average  sentence  length  gives  us 

an  indication  of  the  complexity  of  the  text,  and  the  writing  style  of  the  author. 

Lowercase  letter  ratio—The  lowercase  letter  ratio  is  the  ratio  of  the  number  of 

lowercase  alphabetic  characters  to  the  total  number  of  alphabetic  characters  in  the 

paragraph.  Texts  containing  a  large  value  for  this  ratio  indicate  the  adherence  of  the 

writer  to  traditional  writing  conventions,  which  state  that  capitalization  should  only 

be  used  to  begin  sentences  or  to  name  locations  and  persons.  A  lower  ratio  could  be 

a  sign  of  unusual  structural  choice,  which  may  be  an  indication  of  a  human  author. 

Capital  letter  ratio—The  uppercase  letter  ratio  is  the  ratio  of  the  number  of  uppercase  alphabetic  characters  to  the  total  number  of  alphabetic  characters  in  the  para-

graph.  A  higher  ratio  could  be  a  sign  of  unusual  structural  choice,  which  may  be  an 

indication  of  a  human  author. 

Lexical  diversity—Lexical  diversity  refers  to  the  number  of  unique  words  used  in 

the  text.  A  higher  value  indicates  the  use  of  a  wide  range  of  vocabulary  within  the  text. 

In  creative  writing,  high  lexical  diversity  can  contribute  to  the  vividness  of  the  text. 

This  allows  the  writer  to  capture  and  convey  more  complex  emotions  effectively.  In 

academic  writing,  a  higher  degree  of  lexical  diversity  is  often  associated  with  greater 

sophistication. 

Sentence  complexity—Our  sentence  complexity  score  is  the  average  number  of 

clauses  per  sentence  in  a  given  text.  It  provides  information  about  the  syntactic 

complexity  of  the  text  by  indicating  how  tightly  clauses  are  packed  into  sentences.  A 

higher  score  denotes  more  complex  sentence  structure,  which  indicates  more  complex 

concepts  and  a  greater  degree  of  information.  However,  this  higher  complexity  can 

also  make  the  text  harder  to  read. 

Burstiness—Burstiness  is  a  characteristic  that  represents  to  what  extent  words  occur 

in  certain  “bursts”  or  clusters,  rather  than  in  an  even  distribution  throughout  the 

paragraph.  Burstiness  is  common  among  humans  and  is  often  a  characteristic  of
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specific  authors.  Burstiness  is  calculated  as  the  ratio  of  the  variance  to  the  mean  in 

the  frequency  of  words  occurring  within  a  given  text. 

Sentence  count—Sentence  count  is  the  total  number  of  sentences  in  a  paragraph. 

This  can  help  us  gauge  whether  the  chatbot  tends  to  write  longer  or  shorter  sentences, 

compared  to  a  typical  human.  For  instance,  a  higher  sentence  count  with  shorter 

average  sentence  length  might  suggest  a  style  that  prioritizes  clarity  and  simplicity. 

Word  count—Word  count  is  the  total  number  of  words  in  the  paragraph.  Analyzing 

the  word  count  can  offer  insights  into  the  style  of  the  text.  For  example,  a  higher  word count  with  complex  sentence  structures  may  indicate  a  more  detailed  text,  which  is 

typical  in  scholarly  articles.  Conversely,  a  lower  word  count  with  simple  sentences 

might  be  more  appropriate  for  a  quick  read  or  content  aimed  at  a  broader  audience. 

Stopword  ratio—The  stopword  ratio  in  a  text  is  the  proportion  of  commonly  used 

words  that  carry  minimal  lexical  content  (e.g.,  “the,”  “is,”  “at”).  This  statistic  helps 

in  assessing  the  density  of  meaningful  content  in  a  given  text. 

Complex  ratio—Complex  sentences  are  those  that  contain  one  independent  clause 

and  at  least  one  dependent  clause,  linked  by  subordinating  conjunctions  or  relative 

pronouns.  Such  sentences  tend  to  express  deeper  relationships  and  nuances  in  ideas. 

4.2.3

Semantic  Features 

Semantic  features  deal  with  the  meaning  of  the  text,  including  the  ideas  and  emotions 

conveyed  by  the  paragraph.  This  includes  the  sentiment  of  the  text,  figures  of  speech, 

literary  devices,  subjectivity,  and  objectivity  of  the  text.  These  features  showcase  the 

richness  of  the  language  used.  Next,  we  introduce  the  six  semantic  features  that  we 

consider. 

Sentiment  polarity—Sentiment  polarity  refers  to  the  sentiment  of  the  text,  which 

can  be  positive,  negative,  or  neutral.  This  gives  us  an  idea  of  the  mood  conveyed 

by  the  text  and  the  writer’s  attitude  towards  the  subject  matter.  A  score  between . −1

and  .+1 is  assigned  to  each  paragraph,  where  .−1 refers  to  an  extremely  negative 

sentiment,  0  is  neutral  and .+1 is  extremely  positive. 

Subjectivity—Subjectivity  quantifies  what  percent  of  the  text  is  the  writer’s  opinion, feelings,  or  personal  experiences.  Human  text  is  likely  to  be  more  subjective,  whereas 

model-generated  text  tends  to  be  objective  and  neutral,  eschewing  personal  opinions. 

A  score  between  0  and  1  is  assigned  to  each  paragraph,  with  1  being  completely 

subjective  and  0  being  completely  objective. 

Homonym  frequency—Homonyms  refer  to  words  that  sound  or  spell  the  same  but 

have  different  meanings.  Higher  homonym  frequency  might  indicate  a  text  with  more 

potential  ambiguities,  which  is  usually  a  characteristic  of  poetic  or  literary  works. 

Such  texts  often  require  more  contextual  interpretation.  Conversely,  lower  homonym 

frequency  could  suggest  clearer  and  more  straightforward  text  that  is  intended  for  a 

wide  audience  with  varying  levels  of  language  proficiency. 
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Simile  frequency—Simile  frequency  measures  the  use  of  the  simile  figure  of  speech. 

Simile  refers  to  the  comparison  of  two  different  things,  typically  by  using  the  words 

“as”  or  “like.”  Similes  are  used  to  draw  parallels  while  enhancing  the  language 

used.  The  strategic  use  of  similes  can  enrich  a  narrative,  making  descriptions  more 

engaging. 

Synonym  frequency—Synonym  frequency  is  the  frequency  of  synonyms  used  in  a 

paragraph.  Synonyms  refer  to  different  words  that  have  the  same  meaning.  Synonyms 

help  avoid  the  repetition  of  words  and  enhance  the  diversity  of  words. 

Antonym  frequency—Antonym  frequency  is  the  measure  of  how  often  opposites 

are  used  in  the  paragraph.  They  help  enrich  the  text  by  adding  contrast  and  depth. 

The  use  of  antonyms  can  create  a  more  vivid  narrative  or  more  persuasive  arguments. 

4.2.4

Interaction  Features 

Interaction  features  deal  with  how  the  writer  engages  with  the  reader.  They  include 

conditionals,  questions,  tones,  and  parts  of  speech  that  address  dialogue.  These  fea-

tures  play  a  role  in  analyzing  the  strategies  used  to  engage  the  reader  and  achieve 

communicative  objectives.  Next,  we  introduce  the  eight  interaction  features  that  we 

consider. 

Active  passive  ratio—Active  passive  ratio  is  the  ratio  of  the  frequency  of  active  to passive  voice.  Active  voice  refers  to  a  more  direct  approach  to  sentences,  where  the 

subject  of  the  sentence  performs  the  action  described  by  the  verb.  The  structure  of 

an  active  voice  sentence  is 

. subject + verb + object

On  the  other  hand,  in  passive-voiced  sentences,  the  focus  of  the  sentence  is  the  action 

or  object  rather  than  the  subject.  A  typical  passive  voice  sentence  structure  is 

. object + past participle of verb + subject

Writing  style  is  greatly  affected  by  the  voice  used. 

Direct  to  indirect  speech  ratio—Direct  speech  refers  to  quoting  a  speaker  without 

changes.  In  contrast,  indirect  speech  refers  to  paraphrasing  the  speaker,  without  the 

use  of  quotes.  Direct  speech,  also  called  reported  speech  is  used  to  portray  a  dialogue. 

Indirect  speech  is  usually  used  for  summarizing  existing  conversations. 

Conditional  sentence  ratio—Conditional  sentence  ratio  is  the  ratio  of  the  number 

of  conditional  sentences  to  the  total  number  of  sentences  in  a  text.  Conditional  sen-

tences  refer  to  statements  that  include  a  hypothetical  situation  as  an  outcome  using 

connectors  such  as  “if”,  “unless”,  and  so  on. 

Negation  ratio—Negation  ratio  is  the  ratio  of  sentences  containing  negations  to  the 

total  number  of  sentences  in  a  text.  Negations  usually  refer  to  the  use  of  words  such
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as  “not”,  “no”,  or  “never”,  which  effectively  invert  the  meaning  of  the  sentence.  They 

are  used  to  express  contradictions  or  disagreements  within  the  text. 

Question  ratio—The  question  ratio  is  the  ratio  of  the  number  of  questions  in  the  text to  total  number  of  sentences.  In  the  context  of  our  dataset,  questions  will  generally 

be  more  rhetorical  and  meant  to  get  the  reader  to  ponder  over  the  content,  and  is  a 

common  human  author  strategy. 

Exclamatory  sentence  ratio—The  exclamatory  sentence  ratio  is  the  ratio  of  the 

number  of  exclamatory  sentences  to  total  number  of  sentences.  Exclamatory  sen-

tences  express  strong  feelings,  reactions,  surprise,  excitement,  or  other  intense  emo-

tions,  and  typically  end  with  an  exclamation  point.  Such  sentences  are  often  used  for 

dramatic  effect. 

Imperative  mood  ratio—Imperative  mood  ratio  is  the  ratio  of  sentences  containing 

imperative  mood  to  the  total  number  of  sentences.  An  imperative  sentence  demands 

or  requires  that  an  action  be  taken,  and  texts  with  a  higher  ratio  of  imperative  mood 

are  usually  instructive  in  nature. 

Subjunctive  mood  ratio—The  subjunctive  mood  is  used  to  express  wishes,  hypo-

theticals,  or  contrary  scenarios.  A  higher  ratio  of  subjunctive  mood  indicates 

more  speculative  context,  and  is  often  found  in  literary  works,  opinion  pieces,  or 

discussions  involving  scenarios  that  are  not  grounded  in  reality. 

5 

Data  Exploration 

Before  discussing  the  ML  models  cosidered,  we  explore  what  insights  can  be  gathered 

directly  from  the  dataset.  This  includes  an  analysis  of  the  distribution  of  the  data 

across  the  various  features  introduced  in  the  previous  section. 

 5.1 

 Target  Variable 

The  target  variable  that  we  attempt  to  predict  is  whether  a  given  piece  of  text  is 

“human”  or  “GPT”.  For  training,  the  dataset  consists  of  the  text  from  wikiHow 

articles  and  corresponding  GPT-generated  text.  Therefore,  in  terms  of  the  number  of 

paragraphs,  the  dataset  is  balanced. 

 5.2 

 Paragraph  Length 

While  creating  the  GPT  generated  counterpart  of  the  human  written  data,  we  passed 

the  length  of  the  paragraph  to  the  prompt,  with  the  goal  of  generating  reasonably
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Fig.  2  Distribution  of  number  of  words  in  paragraphs 

consistent  lengths  in  the  corresponding  GPT  generated  data.  Figure  2  reflects  this distribution  of  the  target  variable. 

From  Fig. 2  it  is  clear  that  the  distribution  of  words  in  human  as  compared  to  GPT 

is  significantly  different,  despite  passing  the  length  of  human  written  paragraphs  to 

the  GPT  model  in  the  prompt.  This  indicates  that  the  model  is  not  able  to  strictly 

stay  within  the  specified  word  length.  One  reason  for  this  is  that  the  GPT  model  is 

based  on  “tokens”  instead  of  words,  and  one  word  can  contain  anywhere  from  one 

to  three  tokens,  on  average.  Hence,  the  model  is  not  able  to  adhere  well  to  word 

limits.  Figure  2  indicates  that  GPT  tends  to  be  more  wordy  or  chatty,  as  compared  to humans. 

 5.3 

 Feature  Analysis 

This  section  outlines  the  insights  gained  from  visualizing  the  target  variable  with 

individual  features.  This  can  help  us  understand  how  these  features  affect  the  predic-

tor  variable.  For  the  sake  of  brevity,  we  omit  the  graphs  from  which  these  insights 

were  drawn. 

5.3.1

Linguistic  Features 

By  examining  the  linguistic  patterns  in  human  and  GPT-generated  text,  we  can 

observe  clear  variations  in  different  parts  of  speech.  For  instance,  humans  typically 

use  verbs  more  often,  and  in  addition,  have  a  higher  mean  verb  ratio.  They  also  use  a 

wider  variety  of  verbs  compared  to  GPT.  Similarly,  human  texts  have  a  wider  range 

of  prepositions.  This  suggests  that  GPT-generated  texts  have  a  more  structured  and 

limited  approach  to  the  usage  of  prepositions. 
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Another  interesting  difference  between  human  versus  GPT-generated  texts  is  the 

usage  of  adjectives.  GPT-generated  texts  tend  to  use  more  adjectives  and  in  turn  more 

descriptive  language.  This  might  be  done  in  an  effort  to  enhance  the  quality  and  add 

depth  to  the  text.  In  contrast,  the  usage  of  pronouns  is  higher  in  humans.  This  shows 

that  humans  generally  prefer  a  more  personal  and  interactive  style  of  writing. 

Despite  the  use  of  interjections  being  limited  in  both  human  and  GPT  text,  their 

use  in  human  text  is  relatively  more  frequent.  This  indicates  that  human  texts  are 

more  spontaneous,  and  that  this  is  one  characteristic  that  GPT  does  not  attempt  to 

imitate.  This  is  a  subtle  difference  between  the  two  classes. 

5.3.2

Structural  Features 

Structural  features  offer  more  insights  into  the  nuanced  differences  between  human-

generated  and  GPT-generated  texts.  Sentences  produced  by  GPT  are  typically  longer 

than  sentences  produced  by  humans.  Human-written  sentences  have  a  wider  range 

of  sentence  lengths,  in  contrast  to  the  consistently  longer  sentences  of  GPT.  Addi-

tionally,  the  use  of  capitalization  is  also  higher  in  humans,  mostly  due  to  emphasis 

and  stylistic  choices. 

In  addition  to  sentence  variety  and  capitalization,  human  writing  also  has  a  greater 

diversity  of  words,  indicating  that  humans  tend  to  use  more  creative  language.  This 

is  not  surprising,  as  a  trained  chatbot  tends  to  select  the  best  fitting  word  (or  words), whereas  humans  often  prefer  more  variation  to  make  the  text  more  interesting  to 

read. 

Sentence  composition  is  another  characteristic  that  differs  in  human  as  compared 

to  GPT  generated  text.  GPT  is  known  for  generating  complex  sentences  with  multiple 

clauses.  Human  writing,  on  the  other  hand,  demonstrates  a  wider  range  of  complexity; 

some  authors  favor  straightforward  sentence  structures,  while  others  choose  far  more 

complexity. 

Burstiness  is  an  attribute  that  describes  the  repeated  occurrence  of  certain  words 

or  phrases  in  “bursts”.  Human  writing  has  a  higher  mean  and  variance  in  burstiness, 

while  GPT  text  is  generally  less  erratic,  highlighting  a  more  consistent  approach  to 

text  generation. 

Due  to  longer  sentences  of  GPT  text,  it  also  tends  to  use  more  words  overall. 

Hence,  GPT-generated  texts  have  a  higher  level  of  verbosity  or  wordiness,  and  the 

wordiness  of  AI  writing  occasionally  results  in  redundancy.  Humans,  on  the  other 

hand,  write  succinct  and  to-the-point  sentences  focusing  on  clarity. 

5.3.3

Semantic  Features 

Humans  tend  to  include  personal  thoughts,  opinions,  and  emotional  range  in  their 

writing.  This  leads  to  varied  tones  and  perspectives.  In  contrast,  GPT  texts  are  consis-

tently  neutral  or  positive.  This  is  likely  the  result  of  an  algorithmic  bias  that  produces less  divisive  content  to  avoid  controversy.  In  addition,  GPT  tends  to  stick  to  facts, 
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without  expressing  opinions.  This  might  be  due  to  the  fact  that  chatbots  are  intended 

to  be  informative  and  subjective,  without  introducing  their  own  bias. 

Another  interesting  characteristic  of  GPT  text  is  the  frequent  use  of  homonyms. 

It  is  unclear  why  ChatGPT  tends  to  use  more  homonyms  than  humans. 

Conversely,  GPT  tends  to  use  more  similes  than  humans.  This  might  be  because  it 

is  trained  to  enhance  the  readability  of  text  and  make  it  more  likely  to  be  understood. 

Additionally,  GPT  also  uses  more  synonyms  than  humans  while,  in  contrast,  GPT 

uses  fewer  antonyms,  preferring  non-contrasting  language.  This  might  again  stem 

from  the  fact  that  it  is  trained  to  make  the  content  less  divisive  and  polarizing. 

Humans,  not  bound  by  this  restriction,  tend  to  use  a  larger  number  of  antonyms. 

5.3.4

Interaction  Features 

Interaction  features  refer  to  how  the  text  interacts  with  the  reader,  such  as  the  “voice” 

of  the  text.  Human  text  has  a  higher  median  of  active  to  passive  ratio  with  a  wider 

variation,  which  suggests  that  human  authors  use  a  variety  of  stylistic  choices  when 

picking  the  voice  of  the  sentences.  ChatGPT,  on  the  other  hand,  utilizes  an  active 

voice  more  frequently,  thus  making  the  text  direct,  straightforward,  and  easier  to 

understand. 

Text  written  by  humans  has  a  larger  mean  conditional  sentence  ratio  than  that 

generated  by  GPT.  Humans  tend  to  use  conditionals  (e.g.,  “if”)  more  often  to  discuss 

possibilities  and  hypotheticals.  Human-generated  text  also  has  a  larger  mean  nega-

tion  ratio  than  GPT,  indicating  a  higher  frequency  of  negative  constructs  in  human 

language.  GPT  uses  fewer  negations  which,  again,  serves  to  keep  the  text  neutral  and 

less  polarizing. 

Humans  use  questions  more  frequently  than  GPT  as  evidenced  by  the  higher 

mean  question  ratio.  Questions  are  often  employed  to  engage  with  the  reader.  This 

suggests  a  more  interactive  approach  in  human  writing  compared  to  GPT’s  generally 

more  informative  style.  Exclamatory  sentences,  which  express  strong  feelings  and 

reactions,  appear  at  a  higher  ratio  in  human  texts.  This  contrasts  with  the  typically 

more  subdued  tone  of  GPT-generated  texts.  Lastly,  the  mean  subjunctive  mood  ratio 

is  larger  in  texts  created  by  humans.  This  indicates  a  greater  tendency  for  humans  to 

discuss  hypothetical  scenarios,  which  requires  thinking  beyond  the  immediate.  This 

is  less  frequently  observed  in  GPT  text. 

 5.4 

 Correlation  Analysis 

Figure  3  provides  a  heatmap  of  the  correlations  between  pairs  of  the  most  significant  features.  For  example,  we  observe  that.auxiliary_verb_frequency and 

.lexical_diversity are  highly  correlated.  As  another  example,  we  note  that 

.homonym_frequency is  not  highly  correlated  with  any  of  the  other  features. 

[image: Image 155]

548

G. A. Godghase et al. 

Fig.  3  Correlation  heatmap 

6 

Implementation 

This  section  describes  the  process  through  which  we  trained  ML  and  DL  models  to 

distinguish  between  human-generated  and  GPT-generated  text.  We  provide  details 

about  our  feature  analysis  approach,  which  involves  crafting  and  selecting  informa-

tive  features  from  the  text  data.  We  also  discuss  our  embeddings  approach,  where  text 

is  converted  into  numerical  representations  that  capture  deeper  semantic  meanings. 

 6.1 

 Data  Preprocessing 

Generally,  preparing  the  data  to  a  point  where  models  can  be  trained  on  it  is  one  of 

the  most  important  steps  in  ML.  This  step  typically  involves  cleaning  the  dataset, 

removing  unnecessary  or  redundant  features,  analyzing  correlation,  and  selecting 

the  appropriate  features  for  training.  However,  since  data  generation  is  part  of  this
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research,  most  preprocessing  tasks  have  already  been  addressed  during  the  dataset 

creation  phase.  Consequently,  minimal  preprocessing  is  necessary  before  proceeding 

with  model  training.  This  section  describes  the  minimal  preprocessing  required  by 

the  models.  In  fact,  the  only  significant  processing  that  we  need  to  perform  is  to  split the  data  into  training  and  test  sets.  In  all  of  our  experiments,  the  dataset  is  split  at an  80–20  ratio  for  training  and  testing,  respectively.  Note  that  due  to  the  number  of 

experiments  and  the  size  of  the  dataset,  we  do  not  perform  cross-validation. 

 6.2 

 Feature  Importance 

In  our  feature  analysis  approach,  we  generate  features  from  the  raw  data,  and  these 

features  are  then  used  for  training  binary  classification  models.  The  feature  gener-

ation  process  involves  extracting  characteristics  from  the  text,  including  syntactical 

features,  semantic  features,  structural  features,  and  interaction  features,  as  discussed 

in  Sect. 4.2, above.  These  features  aim  to  capture  subtle  differences  between  the structured  nature  of  machine-generated  text  and  the  more  variable  style  of  human 

writing. 

Following  feature  extraction,  we  employ  various  feature  selection  techniques  such 

as  Principal  Component  Analysis  (PCA),  Linear  Discriminant  Analysis  (LDA),  fea-

ture  importance  charts,  etc.  This  is  done  to  identify  the  most  important  features  for 

distinguishing  between  human  and  GPT-generated  writing.  This  step  helps  in  reduc-

ing  dimensionality  and  improving  model  efficiency  by  eliminating  redundant  or  less 

informative  features. 

The  selected  features  are  then  utilized  to  train  several  types  of  binary  classification 

models.  We  explore  a  range  of  models—from  simple  Logistic  Regression  to  more 

complex  neural  networks,  such  as  LSTMs.  Finally,  the  performance  of  each  model 

is  evaluated  (based  on  accuracy),  and  the  models  are  compared. 

Once  we  have  the  important  features,  we  modify  features  to  see  how  such  changing 

affect  model  performance.  This  helps  us  identify  non-human-like  aspects  of  the 

chatbot. 

6.2.1

Feature  Selection  Techniques 

Feature  selection  is  a  critical  process  in  machine  learning  that  involves  identifying 

and  selecting  the  features  that  have  the  most  significant  impact  on  the  predictor 

variable.  This  process  is  essential  because  it  directly  influences  the  performance  of 

the  machine  learning  models.  By  focusing  on  the  most  relevant  features,  we  can 

enhance  the  model  accuracy,  reduce  overfitting,  and  decrease  the  computational  cost 

associated  with  training,  and  less  data  would  need  to  be  collected  when  the  model  is 

used  for  classification  in  practice. 

For  the  classification  problem  at  hand,  the  extracted  features  are  all  assumed  to 

be  likely  to  impact  the  predictor  variable.  However,  this  might  not  be  true  for  all  the
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features,  as  some  might  be  of  minimal  value.  Moreover,  some  features  might  be  cor-

related,  thus  adding  little  or  no  new  information.  Therefore,  it  is  necessary  to  identify the  subset  of  input  variables  that  are  most  predictive  of  the  desired  outcome.  By  eliminating  unnecessary  and  redundant  features,  the  model  can  concentrate  its  learning 

on  the  aspects  of  the  data  that  are  most  distinguishing.  This  helps  in  improving  both 

the  training  efficiency  and  the  generalizability  of  the  model. 

There  are  many  feature  selection  techniques.  For  feature  reduction,  we  consider 

Principal  Component  Analysis  (PCA),  Linear  Discriminant  Analysis  (LDA),  as 

well  as  feature  selection  based  on  a  Random  Forest  classifier,  and  Lasso  feature 

importance.  Next,  we  briefly  describe  each  of  these  feature  reduction  techniques. 

Principal  Component  Analysis—PCA  is  a  widely  used  technique  in  ML  for  dimen-

sionality  reduction.  It  simplifies  data  with  a  large  number  of  dimensions  while  retain-

ing  statistically  significant  aspects  of  the  original  data.  PCA  works  by  identifying 

the  directions  along  which  the  variances  within  the  data  is  maximized.  These  direc-

tions,  known  as  principal  components,  are  linear  combinations  of  the  original  fea-

tures.  Moreover,  the  principal  components  are  orthogonal,  ensuring  that  they  are 

uncorrelated  [ 17]. 

Linear  Discriminant  Analysis—Like  PCA,  Linear  Discriminant  Analysis  is  also 

a  dimensionality  reduction  technique  that  is  used  to  find  a  linear  combination  of 

features.  However,  unlike  PCA,  LDA  explicitly  considers  class  labels  to  identify  the 

principal  components  that  maximize  the  separation  between  multiple  classes  [ 17]. 

Random  Forest—Random  Forest  models  are  often  used  to  evaluate  and  rank  the 

importance  of  various  features  in  a  dataset.  The  significance  of  each  feature  is  eval-

uated  based  on  its  impact  on  the  Random  Forest  model  accuracy.  This  significance 

is  calculated  by  observing  how  much  the  accuracy  of  the  model  decreases  when  the 

values  of  that  feature  are  randomly  shuffled  while  keeping  all  other  feature  values 

constant.  This  shuffling  changes  the  structure  that  the  feature  brings  to  the  model, 

thus  highlighting  its  influence  on  the  model  performance. 

Figure  4  gives  the  random  forest  feature  importance  for  our  dataset,  where  we have  omitted  the  features  that  are  most  highly  correlated.  For  performing  feature 

selection,  we  identify  the  top  15  most  important  features  and  discard  the  remaining 

features. 

Lasso—Least  Absolute  Shrinkage  and  Selection  Operator  (Lasso)  is  a  modification 

of  linear  regression  that  incorporates  a  regularization  term  in  the  loss  function.  This 

term,  known  as  an  L1  penalty,  is  directly  proportional  to  the  absolute  value  of  the 

coefficient  magnitudes. 

The  Lasso  regression  technique  can  be  used  to  perform  both  feature  selection  and 

regularization.  By  introducing  the  L1  penalty  term,  Lasso  converts  the  coefficients  of 

less  important  features  to  zero.  This  aspect  of  Lasso  is  useful  in  feature  selection  as 

it  automatically  reduces  the  number  of  features  by  setting  some  coefficients  to  zero. 

The  greater  the  value  of  the  penalty  term,  the  more  coefficients  are  set  to  zero.  The 

remaining  features  (i.e.,  those  with  non-zero  coefficients)  are  considered  significant. 

[image: Image 156]
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Fig.  4  Random  Forest  feature  importances 

Figure  5  illustrates  the  features  coefficients.  We  observe  that  11  of  the  features have  non-zero  coefficients,  and  hence  we  use  these  features  in  our  Lasso  experiments. 

To  assess  the  impact  of  these  various  feature  selection  techniques  on  model  perfor-

mance,  we  conduct  numerous  experiments.  As  outlined  above,  the  feature  selection 

techniques  that  we  have  evaluated  are  the  following. 

•  No  feature  selection 

•  Principal  Component  Analysis  (PCA) 

•  Linear  Discriminant  Analysis  (LDA) 

•  Features  selected  by  Random  Forest 

•  Features  selected  by  Lasso. 

For  each  of  these  feature  selection  methods,  six  distinct  models  have  been  trained  to 

compare  their  effectiveness.  These  models  are  the  following. 

•  Logistic  Regression 

•  Random  Forest  (RF) 

•  XGBoost 

•  Multilayer  Perceptron  (MLP) 

•  Deep  Neural  Network  (DNN) 

•  Long  Short  Term  Memory  (LSTM). 

This  comprehensive  approach  allows  us  to  thoroughly  evaluate  how  the  various 

feature  selection  strategies  influence  the  predictive  accuracy  and  of  a  wide  variety 

of  machine  learning  and  deep  learning  models.  Note  that  each  of  the  six  models 

considered  was  discussed  in  Sect. 3.1,  above. 

[image: Image 157]
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Fig.  5  Lasso  feature  importances 

6.2.2

Similar-Length  Dataset 

Figure  2  indicates  that  the  distribution  of  paragraph  lengths  is  different  in  human-generated  text,  as  compared  to  GPT-generated  text.  We  normalize  most  features  based 

on  the  total  number  of  words,  but  this  uneven  distribution  of  words  might  skew  some 

features.  For  example,  from  Fig. 4  we  see  that  homonym_frequency is  the  most important  feature,  according  to  a  Random  Forest  model. 

As  an  experiment,  we  wanted  to  consider  the  influence  of  text  length  on  the 

trained  models,  that  is,  how  the  various  models  perform  over  text  with  similar  length 

distributions  in  each  class.  To  test  this  case,  we  selected  a  subset  of  our  data  for 

which  the  absolute  difference  in  length  between  the  human-generated  paragraph  and 

the  corresponding  chatbot-generated  text  is  less  than  15  words.  We  refer  to  this  as 

the  similar-length  subset,  and  it  consists  of  292,604  paragraphs.  Figure  6  shows  the distribution  of  the  number  of  words  in  each  paragraph  within  this  similar-length 

subset. 

The  same  feature  extraction,  data  preprocessing,  and  feature  selection  steps 

outlined  in  Sect. 6.2  have  been  carried  out  on  our  similar-length  subset.  Figures  7  and  8  show  the  Random  Forest  and  Lasso  feature  importances  respectively. 

From  Fig. 7,  we  observe  that  the  importance  of  .homonym_frequency has  been reduced. 

[image: Image 158]
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Fig.  6  Paragraph  length  distribution  for  similar-length  subset 

Fig.  7  Random  Forest  feature  importance  chart  for  similar-length  data 

 6.3 

 Embeddings  Approach  Implementation 

Our  embedding  approach  involves  using  sophisticated  algorithms  to  convert  text  into 

numerical  vector  representations.  These  embeddings  are  then  analyzed  by  machine 

learning  models  to  detect  differences  in  language  patterns. 

[image: Image 160]
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Fig.  8  Lasso  feature  importance  chart  for  similar-length  data 

Vector  embeddings  are  designed  to  capture  semantic  and  syntactic  nuances  of  the 

language.  This  is  done  by  analyzing  large  texts  and  learning  representations  where 

related  words  have  related  encodings.  These  models  provide  dense  and  informative 

representations  that  capture  context  and  meaning  effectively.  The  embeddings  tech-

niques  that  we  consider  are  the  following:  TFIDF,  Word2Vec,  GloVe,  and  BERT. 

Each  of  these  word  embedding  techniques  was  introduced  in  Sect. 3.2,  above.  As with  our  feature  selection  experiments,  for  each  of  these  embedding  techniques,  the 

same  six  learning  models  have  been  trained  to  compare  their  effectiveness.  These 

models  are  the  following:  LR,  RF,  XGBoost,  MLP,  DNN,  LSTM.  This  compre-

hensive  approach  allows  us  to  thoroughly  evaluate  how  these  various  embedding 

techniques  affect  the  accuracy  of  a  wide  variety  of  learning  models.  Again,  each  of 

the  six  models  considered  was  introduced  in  Sect. 3.1, above. 

7 

Experimental  Results 

In  this  section,  we  present  and  analyze  our  experimental  results.  We  first  consider 

the  results  of  our  feature  analysis  experiments—for  both  the  case  where  we  use 

all  of  the  data,  and  for  the  case  where  we  use  a  subset  of  the  data  for  which
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Fig.  9  Accuracy  of  ML  models  with  various  feature  selection  methods 

corresponding  human  and  chatbot  written  paragraphs  are  restricted  to  be  nearly 

the  same  length.  Then  we  present  the  results  of  our  embeddings-based  experiments. 

Finally,  we  summarize  all  of  our  experimental  results. 

 7.1 

 Feature  Analysis  Experiments 

For  the  experiments  discussed  in  this  section,  we  train  models  based  on  the  features 

discussed  in  Sect. 6.2.  As  mentioned  above,  we  consider  two  cases—first,  where  we use  all  of  our  data,  and  a  second  set  where  we  restrict  our  attention  to  a  subset  where the  lengths  of  the  human-generated  and  corresponding  chatbot-generated  paragraphs 

are  nearly  the  same. 

7.1.1

All  of  the  Data 

Figure  9  shows  the  accuracies  obtained  using  our  feature  analysis  approach.  Interestingly,  feature  reduction  techniques  significantly  improve  the  results  for  LR  and 

provide  a  marginal  improvement  for  MLP,  but  for  the  other  models  considered,  train-

ing  on  all  features  performs  at  least  as  well  as  training  the  same  model  using  any  of 

the  feature  reduction  techniques. 

7.1.2

Similar-Length  Experiments 

This  section  gives  the  results  obtained  the  similar-length  subset  discussed  in 

Sect. 6.2.2. That  is,  we  only  consider  the  subset  of  our  data  that  is  more  balanced with  respect  to  paragraph  length. 
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Fig.  10  Accuracy  of  ML  models  for  similar-length  data 

Figure  10  gives  our  results  for  this  similar-length  dataset.  In  this  case,  PCA  is clearly  the  best  feature  reduction  approach,  with  all  models  using  PCA  features 

having  at  least  0.99  accuracy.  Curiously,  training  models  on  all  features  outperforms 

all  of  the  feature  reduction  techniques  (LDA,  RF,  Lasso)  for  each  of  the  models 

considered. 

 7.2 

 Embeddings  Approach 

In  this  approach,  each  document  is  converted  into  a  single  fixed-length  vector  by 

averaging  the  word  embeddings  for  each  word  in  a  document.  This  results  in  fixed-

length  vectors  of  length  100  for  each  paragraph. 

Recall  that  our  embeddings  approach  consists  of  applying  four  different  word 

embedding  techniques,  and  then  applying  the  same  six  learning  models  as  considered 

above  to  the  resulting  features.  Figure  11  shows  the  accuracy  obtained  with  our embeddings  approach. 

From  these  results  embeddings  results,  we  observe  that  all  of  the  embedding 

techniques  are  able  to  achieve  very  high  accuracy  for  at  least  one  model.  Also, 

BERT  and  TFIDF  both  achieve  consistently  high  accuracy  for  every  model  tested, 

whereas  Word2Vec  and  GloVe  lag  somewhat  when  classic  ML  models  are  used. 

 7.3 

 Ablation  Study 

In  this  section,  we  consider  the  effects  of  modifications  to  the  features.  We  consider 

two  sets  of  experiments,  one  based  on  the  Random  Forest  classifier  and  one  based  on 

a  linear  Support  Vector  Machine  (SVM).  In  both  cases,  these  models  are  trained  and 

tested  using  the  extracted  features  discussed  in  Sect. 4.2  with  the  original  dataset. 
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Fig.  11  Accuracy  of  ML  models  with  various  embedding  techniques 

7.3.1

Random  Forest  Model 

Table  2  shows  the  results  of  modifying  individual  features  in  the  ChatGPT  samples by  modifying  selected  feature  values  by  .+10% and  by  .−10%,  while  keeping  all 

other  features  unchanged.  Note  that  in  each  case,  we  test  the  resulting  data  using  the 

Random  Forest  model  that  was  trained  on  the  unmodified  data. 

We  observe  that  decreasing  the  lowercase_letter_ratio has  by  far  the 

most  effect,  making  the  prediction  no  better  than  random.  All  other  modifications 

have  a  minimal  effect  on  the  accuracy. 

Table  2  Feature  modifications  and  Random  Forest  (original  accuracy  0.9247) 

Feature

Accuracy 

Increase  10%

Decrease  10% 

.lowercase_letter_ratio

0.9623

0.4955 

.verb_ratio

0.9182

0.9292 

.average_sentence_length 0.9227

0.9194 

.noun_ratio

0.9129

0.9313 

.negation_ratio

0.9242

0.9250 

subjectivity

0.9281

0.9201 

.sentence_complexity

0.9258

0.9223 

.homonym_frequency

0.9265

0.9218 

burstiness

0.9237

0.9194
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7.3.2

Linear  SVM  Model 

As  mentioned  in  Sect. 3.1.3, SVM  training  consists  of  constructing  a  hyperplane  to separate  the  classes.  We  choose  a  linear  SVM  since  each  feature  has  an  associated 

well-defined  weight.  Training  this  model,  we  obtain  an  accuracy  of  0.9234,  which 

is  comparable  to  the  result  for  the  Random  Forest  model  discussed  in  the  previous 

section. 

As  a  first  experiment  with  our  SVM  model,  we  consider  the  effect  when  individual 

features  are  altered  by.+10% and.−10% then  tested  on  our  trained  SVM  model.  These 

results  are  summarized  in  Table  3. 

As  with  the  Random  Forest  model,  decreasing  the  .. lowercase_letter_

.ratio by  10%  has  the  effect  of  making  the  SVM  model  prediction  essentially 

random,  while  other  modifications  have  relatively  little  effect.  If  an  attacker  is  able 

to  make  appropriate  modifications  to  the  data,  both  the  Random  Forest  and  the  SVM 

model  will  be  rendered  useless.  The  next  logical  step  would  be  to  train  models  on 

such  modified  data  to  determine  how  well  we  can  distinguish  between  human  and 

modified-ChatGPT  data. 

In  Table  4,  we  give  the  results  when  the  specified  modification  is  made  to  the ChatGPT  data,  and  the  SVM  model  is  retrained  on  the  modified  dataset.  The  most 

interesting  case  in  Table  4  is  when  the.lowercase_letter_ratio is  decreased by  10%. 

By  retraining  our  SVM,  we  are  able  achieve  an  accuracy  of  0.8125.  Recall 

that  for  this  same  case,  without  retraining  the  SVM,  the  prediction  was  essen-

tially  random,  as  can  be  seen  in  Table  3. This  result  indicates  that  even  if  the 

.lowercase_letter_ratio is  modified  in  this  way,  there  is  sufficient  statistical 

information  available  to  distinguish  between  the  classes  with  reasonable  accuracy. 

Table  3  Feature  modification  and  SVM  (original  accuracy  0.9234) 

Feature

Accuracy 

Increase  10%

Decrease  10% 

.verb_ratio

0.9156

0.9295 

.capital_letter_ratio

0.9266

0.9198 

.lowercase_letter_ratio

0.9567

0.4620 

.lexical_diversity

0.8901

0.9404 

.homonym_frequency

0.9389

0.8903 

.synonym_frequency

0.9000

0.9363 

burstiness

0.9184

0.9278 

.sentence_count

0.9174

0.9282 

.negation_ratio

0.9229

0.9239 

.word_count

0.9303

0.9139
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Table  4  Feature  modification  and  retrained  SVM  (original  accuracy  0.9234) 

Feature

Accuracy 

Increase  10%

Decrease  10% 

.verb_ratio

0.9157

0.9297 

.capital_letter_ratio

0.9265

0.9198 

.lowercase_letter_ratio

0.9453

0.8125 

.lexical_diversity

0.8988

0.9393 

.homonym_frequency

0.9389

0.8962 

.synonym_frequency

0.9079

0.9343 

burstiness

0.9184

0.9279 

.sentence_count

0.9176

0.9282 

.negation_ratio

0.9229


0.9239 

.word_count

0.9289

0.9166 

As  a  final  experiment,  we  directly  modify  the  weights  of  our  trained  linear  SVM 

to  determine  the  robustness  of  the  model  itself.  In  Fig. 12,  we  give  the  results  when each  individual  feature  weight  is  modified  from .−10% to.+10%. 

Analogous  to  the  data  modifications  discussed  above,  we  observe  that  only  the 

feature  weight  associated  with  the.lowercase_letter_ratio has  a  substantial 

effect,  at  least  within  the  range  of .−10% to.+10%.  This  shows  that  the  linear  SVM 

model  is  robust  with  respect  to  changes  to  the  weights,  and  further  emphasizes  the 

overriding  importance  of  the .lowercase_letter_ratio to  the  success  of  the 

model. 

Fig.  12  SVM  individual  feature  modification
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8 

Conclusion  and  Future  Work 

The  rapid  advancement  of  generative  AI  in  general,  and  Large  Language  Models 

like  GPT-3  in  particular,  presents  both  opportunities  and  challenges.  One  of  the 

challenges  is  in  distinguishing  between  human-generated  and  machine-generated 

text.  In  the  research  presented  in  this  paper,  we  considered  two  methodologies  to 

address  this  challenge—one  based  on  feature  analysis  and  another  based  on  advanced 

word  embedding  techniques. 

Through  feature  analysis,  we  identified  sentence  patterns  and  general  tendencies 

of  the  GPT  model.  First,  we  computed  a  variety  of  statistical  features  of  text.  By 

employing  classic  machine  learning  techniques  (Linear  Regression,  Random  For-

rest,  XGBoost)  and  deep  learning  architectures  (MLP,  DNN,  LSTM),  we  identified 

the  how  these  features  can  be  used  to  differentiate  between  human  and  GPT-generated 

texts.  In  addition  to  these  techniques,  we  also  explored  various  dimensionality  reduc-

tion  methods  (PCA,  LDA,  RF,  Lasso).  We  found  that  based  on  the  features  that  we 

extracted  from  text,  we  could  distinguish  chatbot  from  human  with  an  accuracy  of 

better  than  0.96. 

Since  the  chatbot-generated  text  tends  to  be  slightly  longer  than  the  human-

generated  text,  we  also  explored  the  effect  of  normalizing  the  length  on  our  feature 

analysis  approach.  Surprisingly,  this  resulted  in  improved  accuracy,  with  the  best 

models  achieving  perfect  separation  on  our  test  set. 

We  then  applied  word  embedding  techniques  (TFIDF,  Word2Vec,  GloVe,  BERT), 

which  are  designed  to  capture  semantic  aspects  of  the  language.  The  same  machine 

learning  and  deep  learning  models  were  trained  on  the  resulting  word  embedding 

sequences,  and  we  obtained  accuracies  that  were  better  than  for  our  original  feature 

analysis  experiments.  In  the  best  cases,  we  obtained  accuracies  in  excess  of  0.99. 

Finally,  we  consider  an  ablation  study  to  determine  the  effect  of  modification  to 

features  on  our  feature  analysis  based  models.  We  found  that  relatively  small  modifi-

cations  to  the.lowercase_letter_ratio feature  have  a  profound  impact  on  the 

accuracies  of  models—to  the  point  where  the  models  only  marginally  outperform 

a  coin  flip—while  modifications  to  other  features  had  minimal  effect.  This  result 

indicates  that  there  is  considerable  scope  for  improvement,  with  respect  to  making 

chatbot-generated  text  more  human-like. 

For  future  work,  it  would  be  interesting  to  expand  the  scope  of  experimentation 

to  include  a  broader  range  of  model  architectures,  features,  word  embeddings,  and 

dimensionality  reduction  techniques,  along  with  more  extensive  tuning  of  model 

hyperparameters.  This  could  involve  experimenting  with  stacked  models,  which  use 

a  hierarchical  approach  to  refine  predictions  through  successive  layers  of  processing, 

as  well  as  various  ensemble  techniques. 

Experiments  involving  other  chatbots  should  be  considered.  With  recent  advances, 

new  models  are  constantly  being  created,  including  newer  versions  of  the  GPT  model 

considered  in  this  paper.  It  would  be  interesting  to  rank  the  “humanness”  of  the  text 

generated  by  various  chatbots. 
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Finally,  it  would  be  very  interesting  to  post-process  chatbot-generated  text  using 

the  insights  gained  from  our  research,  with  the  goal  of  making  the  modified  text 

more  human-like.  We  have  provided  evidence  that  such  modified  text  can  defeat 

detection  techniques  that  are  based  on  feature  analysis  of  the  original  chatbot  data, 

but  it  is  unclear  how  effective  such  techniques  will  be  for  models  trained  on  word 

embeddings. 

Appendix 

Here,  we  provide  a  few  examples  of  human  text  and  the  corresponding  ChatGPT-

generated  text. 

Example  1 

Human:  Sell  Yourself  First.  Before  you  embark  on  selling  fine  art  online,  it  is  crucial to  establish  a  strong  personal  brand  and  present  yourself  as  a  credible  artist.  Begin  by creating  a  captivating  artist  statement  that  reflects  your  artistic  vision,  inspirations, 

and  unique  style.  Craft  a  compelling  biography  that  highlights  your  artistic  journey, 

education,  exhibitions,  and  any  accolades  or  awards  received.  Showcase  your  art-

work  through  a  well-designed  portfolio  website,  social  media  platforms,  and  online 

galleries.  Engage  with  your  audience  by  sharing  your  creative  process,  behind-the-

scenes  glimpses,  and  meaningful  stories  behind  your  artworks.  By  selling  yourself 

first  and  establishing  a  strong  online  presence,  you  will  attract  art  enthusiasts  who 

appreciate  your  talent  and  are  more  likely  to  purchase  your  fine  art. 

ChatGPT:  Before  doing  anything  else,  stop  and  sum  up  yourself  as  an  artist.  Now, 

think  about  how  to  translate  that  to  an  online  profile.  Be  it  the  few  words  Twitter 

allows  you  or  an  entire  page  of  indulgence  that  your  own  website  would  allow  you. 

Bring  out  the  most  salient  features  of  your  creativity,  your  experience,  your  passion, 

and  your  reasons  for  painting.  Make  it  clear  to  readers  why  you  are  an  artist  who 

loves  art,  produces  high  quality  art,  and  is  a  true  champion  of  art.  If  you’re  not  great with  words,  find  a  friend  who  can  help  you  with  this  really  important  aspect  of  selling online—the  establishment  of  your  credibility  and  reliability. 

Example  2 

Human:  Reading  the  classics  before  1600  is  a  profound  way  to  enhance  your  literary knowledge  and  truly  become  well-read.  Dive  into  the  works  of  ancient  Greek  and 

Roman  writers,  such  as  Homer’s  epic  poems  “The  Iliad”  and  “The  Odyssey,”  which
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provide  invaluable  insights  into  heroic  quests  and  the  human  condition.  Explore  the 

philosophical  musings  of  Plato  and  Aristotle,  whose  ideas  shaped  Western  thought 

and  continue  to  resonate  today.  Engage  with  the  plays  of  Sophocles,  Euripides,  and 

Aeschylus,  witnessing  the  timeless  tragedies  that  delve  into  the  depths  of  human 

emotions  and  moral  dilemmas.  Additionally,  immerse  yourself  in  medieval  literature 

like  Dante  Alighieri’s  “The  Divine  Comedy,”  a  compelling  journey  through  Hell, 

Purgatory,  and  Heaven,  offering  profound  theological  and  philosophical  reflections. 

By  delving  into  these  classics  before  1600,  you  will  open  doors  to  a  wealth  of  wisdom, 

artistry,  and  cultural  understanding. 

ChatGPT:  Reading  the  classics  is  the  very  first  thing  you  have  to  do  to  be  well-read. 

If  you  want  to  build  a  solid  foundation  for  your  understanding  of  the  books  you  read, 

then  you  can’t  avoid  some  of  the  earliest  plays,  poems,  and  oral  tales  ever  written 

down.  Remember  that  the  novel  didn’t  really  get  popular  until  the  18th  century,  so 

you  won’t  find  novels  on  this  list.  Without  reading  the  poetry  of  Homer  or  the  plays 

of  Sophocles,  you  won’t  be  able  to  call  yourself  well-read.  Here’s  a  list  to  get  you 

started:  The  Epic  of  Gilgamesh  (Unknown  author)  (18th–17th  century  BCE)  The 

Iliad  and  The  Odyssey  by  Homer  (850–750  BCE,  8th  century  BCE)  “The  Oresteia” 

by  Aeschylus  (458  BCE)  Oedipus  the  King  by  Sophocles  (430  BCE)  Medea  by 

Euripides  (431  BCE)  Aeneid  by  Virgil  (29–19  BCE)  One  Thousand  and  One  Nights 

(Unknown  author)  (700–1500)  Beowulf  (Unknown  author)  (975–1025)  The  Tale  of 

Genji  by  Murasaki  Shikibu  (11th  century)  The  Divine  Comedy  by  Dante  (1265– 

1321)  The  Decameron  by  Boccaccio  (1349–53)  The  Canterbury  Tales  by  Chaucer 

(14th  century). 

Example  3 

Human:  While  you  certainly  don’t  have  to  be  wealthy  to  adopt  a  child,  you  will  have to  be  able  to  demonstrate  that  you  have  the  space  to  house  the  child  and  the  financial means  to  support  the  child.  Home  and  community  environment  are  also  important. 

Talk  to  your  family  and  friends,  and  evaluate  the  multicultural  resources  available 

in  your  area.  Make  sure  those  close  to  you  accept  your  decision  to  adopt  a  child  of 

another  race.  You  also  want  to  make  sure  there  are  no  legal  restrictions  that  would 

prevent  you  from  adopting  a  child.  If  you’re  thinking  about  adopting  internationally, 

you  want  to  look  at  the  laws  in  the  child’s  home  country  as  well. 

ChatGPT:  Before  embarking  on  the  journey  to  adopt  a  child  of  another  race,  it  is 

crucial  to  honestly  assess  your  ability  to  care  for  a  child.  Consider  factors  such  as  your emotional  readiness,  financial  stability,  and  available  support  systems.  Reflect  on 

your  understanding  of  the  unique  challenges  that  may  arise  from  transracial  adoption, 

including  potential  racial  identity  issues  and  the  importance  of  cultural  preservation. 

Assessing  your  ability  to  provide  a  loving  and  inclusive  environment  will  help  you 

choose  an  agency  that  specializes  in  transracial  adoption  and  can  offer  the  necessary 

resources  and  support  to  ensure  a  successful  and  fulfilling  adoption  experience. 
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Example  4 

Human:  Most  computers  are  set  to  boot  into  the  hard  drive  first,  which  means  you 

will  need  to  change  some  settings  to  boot  from  your  newly-burned  CD  or  USB.  Start 

by  rebooting  the  computer.  Once  the  computer  reboots,  press  the  key  used  to  enter 

the  boot  menu.  The  key  for  your  system  will  be  displayed  on  the  same  screen  as  the 

manufacturer’s  logo.  Typical  keys  include  F12,  F2,  or  Del.  For  Windows  8  users, 

hold  the  Shift  key  and  click  restart.  This  will  load  the  Advanced  Startup  Options, 

where  you  can  boot  from  CD.  If  your  computer  doesn’t  give  you  direct  access  to 

the  boot  menu  from  the  manufacturer’s  splash  screen,  it’s  most  likely  hidden  in  the 

BIOS  menu.  You  can  access  the  BIOS  menu  in  the  same  way  that  you  would  get  to 

the  boot  menu.  At  the  manufacturer  splash  screen,  the  key  should  be  listed  in  one 

of  the  bottom  corners.  Once  you’re  in  the  boot  menu,  select  your  live  CD  or  USB. 

Once  you’ve  changed  the  settings,  save  and  exit  the  BIOS  setup  or  boot  menu.  Your 

computer  will  continue  with  the  boot  process. 

ChatGPT:  To  boot  into  the  Live  CD  or  Live  USB  for  the  Installing  Any  Linux  Distribution  section,  begin  by  inserting  the  Linux  installation  media  into  your  computer’s 

CD/DVD  drive  or  USB  port.  Restart  your  computer  and  access  the  BIOS  settings  by 

pressing  the  designated  key  during  startup  (typically  F2,  F12,  or  Del).  Once  in  the 

BIOS,  navigate  to  the  Boot  menu  and  prioritize  the  boot  order  to  allow  the  computer 

to  boot  from  the  installation  media.  Save  the  changes  and  exit  the  BIOS.  As  the 

computer  restarts,  it  will  load  the  Linux  distribution  from  the  Live  CD  or  Live  USB, 

presenting  you  with  a  graphical  interface  where  you  can  explore  the  distribution,  test 

its  features,  and  ultimately  proceed  with  the  installation  process. 
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,  Akbar  Siami  Namin  , and  Keith  S.  Jones Abstract  Recently,  there  has  been  a  growing  interest  among  researchers  in  the  automatic  detection  of  deceptive  behavior,  actions,  and  contents.  This  surge  in  attention  is 

driven  by  the  wide-ranging  applications  of  deception  detection,  particularly  in  crim-

inology  and  cybersecurity.  To  advance  this  line  of  research,  this  study  investigates 

both  text  and  audio  data  derived  from  speeches  in  natural  languages.  We  evaluate 

traditional  linguistic  models  alongside  deep  models  and  advanced  Large  Language 

Models  (LLMs),  utilizing  Natural  Language  Processing  (NLP)  techniques  to  model 

deception  detection.  Furthermore,  we  employ  various  feature  selection  methods  to 

determine  the  significance  of  linguistic  features.  Through  extensive  experimenta-

tion,  we  assess  the  effectiveness  of  both  conventional  and  advanced  deep  models 

on  transcribed  data  while  also  applying  deep  models  to  audio  data,  thus  leverag-

ing  both  types  of  data  to  build  a  multimodal  model  for  deception  and  lie  detection. 

Our  findings  indicate  that  the  Bidirectional  Long  Short-Term  Memory  (BiLSTM) 

model  excels  in  processing  textual  data.  On  the  other  hand,  the  ResNet50  model 

performs  best  with  audio  data.  By  combining  these  models  in  a  late  fusion  approach, 

we  achieve  a  model  that  outperforms  individual  text  and  audio  models. 
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1 

Introduction 

Attackers  have  always  used  deception  to  manipulate  or  take  advantage  of  the  trust 

of  others  for  their  own  benefit.  It  can  be  used  to  scam  people  out  of  their  money 

or  mislead  a  criminal  investigation.  This  deceptive  behavior  can  lead  to  serious 

consequences,  such  as  innocent  people  being  wrongly  convicted  or  losing  money. 

With  that  motivation  in  mind,  finding  out  when  someone  is  not  telling  the  truth 

could  help  avoid  damage  in  both  interpersonal  and  work  relationships.  Developing 

effective  techniques  to  know  when  people  are  deceiving  is  crucial  to  supporting  fair 

judgment  in  court  cases.  The  ability  to  recognize  dishonest  claims  is  a  solution  to  the 

dilemma  our  society  faces  every  day.  Applications  of  such  deception  detection  are  not 

limited  to  legal  and  criminal  contexts  but  can  extend  to  areas  such  as  financial  fraud 

prevention,  corporate  security,  and  safeguarding  personal  interactions  where  trust  is 

crucial.  Additionally,  deception  detection  from  speech  can  be  particularly  valuable  in 

cybersecurity,  such  as  identifying  phishing  calls  and  other  forms  of  verbal  deception. 

Traditionally,  authorities  have  performed  polygraph  tests  on  suspect  individu-

als  [ 18].  This  test  uses  a  device  to  measure  and  record  physiological  indicators  such as  heartbeat,  blood  pressure,  and  skin  conductivity,  based  on  the  assumption  that 

deceptive  answers  trigger  involuntary  physiological  reactions  [ 18]. Although  the polygraph  has  long  been  considered  a  standard  method  for  detecting  lies,  experimental  studies  show  that  these  tests  are  not  always  accurate.  They  are  prone  to  errors 

and  biases  that  arise  from  both  the  equipment  used  and  human  misinterpretation  [ 10]. 

In  addition,  many  factors  can  affect  physiological  responses,  which  may  not  neces-

sarily  indicate  deception.  An  alternative  approach,  as  proposed  in  this  work,  is  the 

use  of  multimodal  lie  detection  techniques  that  integrate  multiple  data  sources,  such 

as  speech  and  facial  expressions,  to  enhance  the  accuracy  of  lie  detection  tasks  and 

address  the  limitations  of  traditional  polygraph  tests.  Specifically,  analyzing  speech 

data  can  provide  a  wealth  of  information  to  identify  instances  of  deceitfulness  [ 4, 15]. 

One  potential  approach  is  to  examine  the  characteristics  in  the  audio  of  the  speech, 

often  referred  to  as  “audio  features”,  also  known  as  Mel-frequency  cepstral  coef-

ficients  (MFCC),  such  as  changes  in  pitch,  speaking  rate,  and  intensity,  which  can 

occur  when  someone  is  untruthful  [ 4, 28, 31].  Another  potential  approach  involves analyzing  transcribed  data  of  speech,  which  is  often  referred  to  as  “textual  or  transcribed  features”,  such  as  word  choice  and  sentence  structure,  which  can  also  serve 

as  indicators  of  deception  [ 6, 14, 24].  In  addition,  considering  nonverbal  cues,  often referred  to  as  “behavioral  features”,  such  as  expressions,  body  language,  and  eye 

movements,  is  another  feasible  approach  to  detecting  deceptive  behavior  [ 6, 31]. 

The  recent  advancement  in  machine  learning  and  deep  learning  algorithms  enables 

the  creation  of  classification  schemes  trained  on  these  multimodal  features  to  accu-

rately  classify  people’s  truthfulness  in  a  given  case  or  scenario.  The  use  of  machine 

learning  in  lie  detection  has  gained  significant  attention  in  recent  years,  with  many 

researchers  achieving  promising  results  in  accurately  detecting  deception  from 

speech  by  combining  these  features  and  using  machine  learning  algorithms  [ 3, 27]. 

This  work  aims  to  create  a  multimodal  model  that  uses  both  transcribed  text  and 

audio/speech  data  to  detect  deceptive  behavior  more  accurately.  Recognizing  the
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potential  of  multimodal  approaches,  we  research  and  conduct  experiments  to  develop 

models  that  can  better  identify  deception.  By  focusing  on  both  linguistic  and  audio 

cues,  our  objective  is  to  reduce  the  risk  of  wrongful  convictions  and  financial  fraud, 

ultimately  improving  the  fairness  and  reliability  of  legal  and  investigative  processes. 

One  of  our  key  contributions  is  the  integration  of  text  and  audio  models  using  a  late 

fusion  technique.  This  approach  takes  advantage  of  the  strengths  of  both  modalities, 

resulting  in  a  more  robust  detection  system.  We  also  test  our  models  on  the  Real-

Life  Trial  dataset  to  ensure  that  our  findings  are  grounded  in  practical,  real-world 

scenarios.  By  experimenting  with  conventional  models,  LLMs,  and  deep  learning 

models,  we  provide  a  comprehensive  and  reliable  method  for  deception  detection. 

This  paper  is  structured  as  follows.  Section  2  reviews  existing  research  in  the field  of  deception  detection.  Section  3  presents  the  technical  background  of  the  conventional  and  deep  models  we  studied.  Section  4  outlines  the  experimental  setup, giving  details  on  the  dataset,  preprocessing,  feature  selection,  and  evaluation  metrics.  Section  5  discusses  the  setup  of  the  detection  models,  and  Sect. 6  explains  the performance  of  these  models.  Section  7  discusses  these  results,  providing  insight into  the  effectiveness  and  alignment  of  various  approaches  with  existing  literature. 

Lastly,  Sect. 8  concludes  the  paper  and  suggests  future  work. 

2 

Related  Work 

This  section  will  review  the  datasets  and  models  used  and  implemented  in  previous 

research  on  deception  detection.  A  summary  of  the  reviewed  papers  is  provided  in 

Table  1. 

 2.1 

 Existing  Public  Datasets 

In  the  process  of  training  models  that  are  capable  of  detecting  deception,  a  variety  of 

datasets  are  utilized,  such  as  Real-life  trial  [ 4], Columbia  X-Cultural  Deception  [ 20], or  H  Wolf  [ 8]  dataset.  These  datasets  are  typically  sourced  from  different  contexts and  scenarios,  providing  a  wide  range  of  data  from  which  models  can  learn.  Each 

dataset  can  fall  into  three  main  categories:  (1)  The  first  category  is  any  data  collected from  real-life  situations  where  deception  is  common,  such  as  legal  proceedings;  (2) 

Data  can  also  be  generated  artificially  by  asking  people  questions  designed  to  force 

deception;  and  (3)  Finally,  data  can  also  be  collected  while  playing  games,  where 

deception  can  also  commonly  and  naturally  occur. 

The  first  category  of  data  comes  from  various  real-life  situations.  This  type  of 

dataset  provides  authentic  examples  of  deception  and  truth-telling.  Instead  of  staged 

setups,  these  datasets  can  provide  more  realistic  scenarios  for  lie  detection.  Some 

research  papers  [ 4, 13, 23, 24]  have  used  data  collected  from  actual  court  trials. 

The  dataset  includes  121  videos  divided  into  61  clips  that  show  deceptive  behavior
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and  60  clips  that  feature  truthful  interactions  [ 24]. The  individuals  featured  in  these videos,  who  are  either  defendants  or  witnesses,  range  in  age  from  16  to  60.  On 

average,  the  videos  are  approximately  28  s  long,  and  the  transcripts  of  these  videos 

have  an  average  of  around  66  words,  amounting  to  a  total  of  over  8,000  words  of 

speech  data.  Another  notable  dataset  is  used  by  Kopev  et  al. [ 15]. This  dataset  is for  real-world  political  debate  and  offers  a  wider  range  of  realistic  situations  for  lie 

detection,  including  claims  labeled  as  true,  half-true,  or  false.  This  dataset  consists 

of  94  training  claims  and  192  test  claims,  providing  substantial  data  for  the  models 

to  learn  from. 

The  second  type  of  dataset  is  generated  by  asking  actors  questions  to  generate  false 

and  true  responses.  In  a  study  by  Sarzynska-Wawer  et  al.  [ 22],  400  participants  were invited  to  create  four  statements  on  a  given  topic:  two  of  these  statements  were  to  be 

delivered  orally,  while  the  other  two  were  to  be  written.  This  method  resulted  in  1,600 

statements,  1,498  of  which  were  selected  for  the  final  analysis.  Mendels  et  al.  [ 20] 

used  the  CXD  corpus,  which  comprises  deceptive  and  non-deceptive  speech  from 

native  English  and  Mandarin  speakers,  all  communicating  in  English.  It  includes 

170  conversations  involving  340  participants.  This  data  was  gathered  using  a  fake 

resume  setup  where  subjects  alternated  between  interviewer  and  interviewee  roles, 

answering  24  biographical  questions.  Participants  had  financial  incentives  to  both 

lie  convincingly  and  accurately  detect  lies.  During  the  interviews,  the  interviewees 

labeled  each  response  as  true  or  false. 

The  third  type  of  dataset  was  collected  from  playing  games.  Tao  et  al.  [ 28] used the  IDIAP  WOLF  dataset  developed  by  the  Swiss  IDIAP  Research  Institute.  This 

study  collected  vocal  signals  from  the  “werewolf  killing  game”  that  involved  12 

participants,  four  of  whom  played  werewolves  to  create  confusion  through  deception 

while  the  rest  of  the  players  played  honest  characters.  The  werewolves  are  expected 

to  lie,  while  the  other  players  need  to  guess  who  the  werewolves  are.  Similarly, 

Fu  et  al.  [ 8]  created  the  H-Wolf  corpus,  a  self-built  dataset  constructed  from  the Idiap  Wolf  and  Killer  datasets.  They  gathered  approximately  70  h  of  video  from  the 

“Werewolves  of  Miller’s  Hollow”  competitions  available  online,  selecting  clips  that 

contained  truthful  and  deceptive  interactions  based  on  the  players’  ID  cards  and  the 

rules  of  each  game. 

 2.2 

 Conventional  Models  in  Deception  Detection 

This  section  will  review  some  of  the  conventional  models  used  in  previous  work  for 

deception  detection.  Researchers  have  explored  a  variety  of  methodologies,  rang-

ing  from  traditional  statistical  models  to  advanced  machine-learning  techniques  for 

this  problem.  Sarzynska-Wawer  et  al. [ 22]  implemented  a  Support  Vector  Machine (SVM)  and  XGBoost  model  with  20-fold  cross-validation.  Their  best  model,  SVM, 

gave  an  accuracy  of  58.9%. 

Bareeda  et  al.  [ 4]  built  SVM-based  classifiers  using  Gaussian  and  polynomial kernels.  Based  on  their  experiments,  they  found  that  using  polynomial  or  Gaussian
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kernels  resulted  in  an  overall  classification  accuracy  of  81  and  78%  for  the  lie  and 

truth  classes,  respectively. 

Tao  et  al.  [ 28]  extracted  different  acoustic  features  from  audio  datasets  to  detect deception  using  SVM  as  the  classifier.  The  experimental  results  showed  that  SVM 

could  effectively  detect  deception  with  an  accuracy  of  over  80%. 

Chebbi  et  al. [ 6]  created  K  Nearest  Neighbour  (KNN)  models  for  each  modality (visual,  audio,  transcription)  separately  using  feature  selection  techniques  to  select 

the  most  relevant  features.  They  combined  the  modalities  using  a  decision-level 

fusion  approach  based  on  belief  theory.  The  approach  was  studied  using  the  real-life 

trial  dataset  [ 24].  The  deception  detection  accuracy  rate  reached  97%  using  only  19 

combined  features. 

¸Sen  et  al. [ 24]  collected  videos  from  a  set  of  actual  court  trials  and  built  models that  used  verbal,  acoustic,  and  visual  modalities  to  detect  deception.  Initially,  they 

conducted  experiments  with  each  set  of  features  separately  using  SVM,  Randon  For-

est  (RF),  and  Neural  Network  (NN)  classifiers.  Then,  they  tried  various  combinations 

of  features  using  early  and  late  fusion.  Their  results  showed  that  late  fusion  achieved 

better  performance  with  84.18%  accuracy  with  combined  text,  visual,  and  acoustic 

features. 

Venkatesh  et  al. [ 31]  introduced  a  novel  deception  detection  approach  that  used  different  types  of  data,  including  audio,  text,  and  nonverbal  characteristics,  to  build  their deception  detection  models.  The  method  combined  the  results  of  each  of  these  features  using  majority  voting.  Specifically,  the  audio  component  was  based  on  Cepstral 

Coefficients  (CC)  and  Spectral  Regression  Kernel  Discriminant  Analysis  (SRKDA). 

On  the  other  hand,  the  text  model  used  bag-of-n-gram  features  and  a  linear  SVM 

classifier,  whereas  the  nonverbal  component  employed  the  AdaBoost  classifier.  The 

results  showed  that  the  proposed  method  outperformed  both  existing  state-of-the-art 

techniques  and  human  performance,  achieving  a  deception  detection  accuracy  of 

97%  in  the  entire  dataset  during  a  25-fold  cross-validation. 

 2.3 

 Deep  Learning  Models  for  Deception  Detection 

Deep  learning  models  have  significantly  impacted  deception  detection,  resulting 

in  a  level  of  complexity  that  can  detect  certain  details  in  the  data.  This  section 

reviews  previous  work  using  deep  models.  Sehrawat  et  al.  [ 23]  proposed  a  model that  combined  Long-Short  Term  Memory  (LSTM),  Bidirectional  Long-Short  Term 

Memory  (BiLSTM)  networks,  Convolutional  Neural  Network  (CNN),  and  ResNet50 

to  detect  deception.  They  first  extracted  text,  audio,  and  video  features  from  the  “Real 

Life  Court  Trial”  dataset.  To  process  audio  data,  they  transformed  them  into  Mel 

spectrograms  to  create  a  visual  representation  that  captured  key  audio  characteristics. 

ResNet50  was  then  used  to  analyze  these  Mel  Spectrograms.  The  proposed  model, 

which  used  audio  and  text  features,  achieved  an  accuracy  of  80%. 

Unlike  Sehrawat  et  al.  [ 23], who  used  an  existing  dataset,  Marcolla  et  al.  [ 19] 

created  their  own  dataset  by  interviewing  subjects  to  capture  the  subject’s  answers, 
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labeled  lying  or  truthful.  To  get  the  audio  features,  the  researchers  used  Librosa  library functions  to  extract  the  Mel-Frequency  Cepstral  Coefficients  (MFCC)  characteristics. 

The  researchers  then  normalized  the  features  through  the  padding  to  match  the  length 

of  the  longest  sequence,  ensuring  uniformity  for  neural  network  processing  [ 19]. 

Their  LSTM  neural  network  model  resulted  in  an  overall  classification  accuracy  of 

72.5%.  Hsiao  and  Sun  [ 13]  also  used  MFCC  for  their  audio  feature.  But  instead  of normalizing  MFCC  features  to  match  the  longest  sequence,  they  calculated  average 

MFCC  values  per  second.  This  method  reduced  MFCC  length,  which  helped  train 

their  BiLSTM  model  more  effectively.  They  also  extracted  features  from  text  and 

transcript.  Lastly,  they  proposed  an  ensemble  model  that  combined  the  outputs  of 

the  audio,  visual,  and  transcription  models  using  BiLSTM.  Their  ensemble  model 

achieved  96%  accuracy  when  used  on  the  “Real  Life  Court  Trial”  dataset. 

Gallardo-Antoln  and  Montero  [ 9]  developed  an  automatic  deception  detection model  based  on  gaze  and  speech  characteristics  using  attention-based  LSTM.  The 

feature  extraction  procedure  from  gaze  data  involved  selecting  channels  from  the 

Gazepoint  GP3  Eye  Tracker  for  fixations,  saccades,  and  pupil  size,  which  are  known 

as  indicators  of  deceptive  behavior.  For  speech,  features  were  derived  from  Log-

Mel  Spectrograms  using  Python’s  package  LibROSA.  The  researchers  trained  their 

models  on  the  Bag-of-Lies  dataset  and  achieved  an  accuracy  of  70.5%. 

Zhang  et  al.  [ 33]  created  a  Graph-based  Cross-modal  Fusion  Model  (GCFM) along  with  a  Cross-modal  Attention  Mechanism  to  detect  deception  in  the  Real-Life 

Trial  dataset  [ 24].  They  extracted  visual,  textual,  and  audio  features  by  using  a pre-trained  ResNet50  and  LSTM  neural  network  with  attention  mechanisms.  The 

proposed  GCFM  method  achieved  an  accuracy  of  88.14%  as  well  as  an  F1-score  of 

78.50%.  Additionally,  using  association  learning  increased  the  accuracy  by  1.87% 

while  the  cross-modal  attention  mechanism  improved  the  accuracy  by  2.44%. 

3 

Background  on  Conventional  and  Deep  Models  Studied 

 3.1 

 Conventional  Models 

We  explore  Support  Vector  Machines  (SVM),  K-Nearest  Neighbors  (KNN),  and 

Logistic  Regression  (LG)  for  deception  detection  using  textual  data.  SVM  is  a 

supervised  learning  algorithm  commonly  used  for  classification  tasks.  SVM  aims  to 

identify  a  hyperplane  in  an  n-dimensional  space,  where  n  represents  the  number  of 

features,  to  effectively  separate  data  points  into  different  classes  [ 12].  KNN  is  a  non-parametric  algorithm  that  stores  all  training  data  and  then  classifies  new  data  points 

based  on  the  “k”  closest  training  points,  where  k  is  some  constant  number  of  points. 

LG  is  a  statistical  model  commonly  used  for  classification  tasks.  It  outputs  proba-

bilities  from  0  to  1  for  different  classes  and  classifies  data  based  on  continuous  and 

discrete  measurements.  The  model  finds  a  line  or  a  hyperplane  in  higher-dimensional 

spaces  that  best  separates  the  data  into  classes.  After  trying  various  lines,  the  one 

with  the  maximum  likelihood  is  selected. 

[image: Image 162]

[image: Image 163]
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 3.2 

 Convolutional  Neural  Networks  (CNNs) 

CNNs  are  powerful  tools  in  deep  learning,  particularly  for  analyzing  visual  and 

image  data.  The  CNNs  architecture,  as  shown  in  Fig. 1,  contains  many  layers  that perform  different  tasks  to  convert  input  data  into  important  features.  The  first  layer, 

called  the  convolutional  layer,  uses  many  filters  on  the  input  image.  The  filter  out-

put  is  put  on  a  feature  map  (Fig. 2). After  that,  the  feature  maps  are  run  through an  activation  function  such  as  ReLU.  Next,  these  feature  maps  enter  the  pooling 

layers.  The  purpose  is  to  decrease  the  spatial  dimensions  of  the  data  while  keep-

ing  important  information  intact.  The  pooled  layers  are  converted  to  columns  of  the 

input  nodes.  Finally,  fully  connected  layers  take  the  input  nodes  and  compute  the 

final  classification  task.  CNN’s  architecture  for  visual  recognition  tasks  is  power-

ful  because  it  can  learn  complex  features  hierarchically.  This  method  demonstrates 

impressive  accuracy  in  image  classification,  object  detection,  and  other  fields  of 

application. 

Fig.  1  A  simple  architecture  of  CNNs 

Fig.  2  Process  of  applying  filter  on  input  image  and  the  results  onto  feature  map

[image: Image 164]
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 3.3 

 Long  Short-Term  Memory  (LSTM) 

Recurrent  Neural  Networks  (RNNs)  are  neural  networks  that  process  data  sequences 

such  as  time  series  or  natural  language.  They  have  looped  connections  that  let  them 

keep  information  over  time.  This  makes  RNNs  good  for  tasks  needing  context  from 

earlier  data.  But  RNNs  have  a  big  problem:  vanishing  or  exploding  gradients.  During 

training,  the  gradients  used  to  update  weights  can  get  too  small  (vanishing)  or  too  big 

(exploding).  This  makes  it  hard  for  RNNs  to  learn  long-term  patterns.  The  LSTM 

is  an  advanced  RNN  that  can  solve  RNNs’  vanishing/exploding  gradient  problem. 

The  memory  cell  of  the  LSTM  network  contains  three  different  gates:  the  input  gate, 

the  forget  gate,  and  the  output  gate.  The  input  gate  determines  what  information  we 

should  store  in  the  memory  cell,  while  the  forget  gate  chooses  which  information  to 

remove  from  the  memory  cell  [ 30]. The  function  of  the  forget  gate  is  to  manage  and control  what  is  output  from  the  memory  cell.  Figure  3  describes  the  architecture  of an  LSTM  block. 

 3.4 

 Bidirectional  LSTM 

The  BiLSTM  model  leverages  complete  sequential  information  by  considering  both 

past  and  future  data  points  for  each  position  in  the  sequence,  thereby  enhancing 

the  original  LSTM  designed  for  sequence  learning  [ 32]. BiLSTM  consists  of  two LSTMs,  and  both  of  them  return  a  probability  vector.  Their  combination  forms  the 

final  output.  This  ability  of  BiLSTMs  to  process  in  both  directions  is  especially 

useful  for  intricate  sequence  prediction  tasks  such  as  examining  speech  and  text. 

Figure  4  describes  the  architecture  of  a  BiLSTM  block. 

Fig.  3  Architecture  of  an  LSTM  block.  Adapted  from  [ 17]

[image: Image 165]
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Fig.  4  Architecture  of  a  BiLSTM  block.  Adapted  from  [ 5] 

 3.5 

 Residual  Network  50  (ResNet50) 

ResNet50  is  a  convolutional  neural  network  (CNN)  with  50  layers.  ResNet50  is  useful 

for  complex  tasks  that  involve  image  processing  and  analysis.  It  contains  48  convo-

lution  layers,  one  MaxPooling  layer,  and  one  AveragePooling  layer.  The  main  idea 

behind  the  ResNet50  model  is  its  unique  design  using  residual  blocks.  These  resid-

ual  blocks  help  to  solve  the  vanishing  gradient  problem.  The  blocks  with  residuals 

have  “skip”  connections.  This  lets  the  layers  learn  residual  mappings,  which  means 

that  the  network  can  understand  these  mappings  instead  of  only  direct  feature  map-

pings  [ 11]. This  way  of  building  makes  it  possible  to  create  deeper  networks  without losing  performance  and  helps  to  improve  the  flow  of  gradients  during  training,  making 

learning  more  efficient  and  stable.  This  proven  CNN  is  especially  useful  for  feature 

extraction  in  complex  datasets,  including  audio  spectrograms.  Figure  5  describes  the architecture  of  a  RetNes50  block. 

 3.6 

 Late  Fusion 

We  also  apply  a  late  fusion  method,  combining  audio  and  text  data  characteristics. 

Each  data  type  is  processed  using  its  own  specialized  neural  network  architecture.  The 

results  of  both  models  are  combined  into  one  vector  after  being  processed  separately. 

Afterward,  this  combined  vector  is  fed  into  a  fusion  layer.  Figure  6  describes  a  high level  of  late  fusion  model.  In  this  layer,  the  weights  that  can  be  trained  are  used  to find  the  best  weight  for  each  model.  The  weights  have  a  softmax  function  applied 

to  them.  Softmax  will  force  all  outputs  to  sum  up  to  one.  The  output  of  this  layer  is then  processed  by  a  last  dense  layer  with  sigmoid  activation.  Each  output  provides 

a  probability  score  showing  the  possibility  of  deception.  This  method,  called  late

[image: Image 166]

[image: Image 167]
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Fig.  5  Architecture  of  a  RetNes50.  Adapted  from  [ 23] 

Fig.  6  A  high  level  of  late  fusion  model
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fusion,  makes  our  model  flexible  and  adjustable;  it  learns  which  features  from  every 

data  type  are  more  telling  about  deceitful  behavior. 

 3.7 

 Additional  Pretrained  Models 

In  addition  to  the  models  that  are  fine-tuned  throughout  the  research,  several  pre-

trained  models  are  applied  for  comparative  analysis.  We  choose  to  use  pre-trained 

models  because  they  offer  a  strong  starting  point,  having  already  learned  from  large 

datasets.  These  models  are  known  for  capturing  complex  patterns  in  text  and  audio 

data,  which  are  crucial  for  deception  detection.  Using  these  models,  we  aim  to  ben-

efit  from  their  proven  effectiveness  in  various  tasks  and  expect  them  to  enhance  the 

accuracy  of  our  detection  system.  These  include  BERT,  a  language  model  developed 

by  Google  that  uses  a  bidirectional  approach  and  transformer  architecture  to  create 

context-aware  word  representations,  enabling  strong  performance  in  various  natural 

language  processing  [ 7]. We  also  use  GPT-2,  developed  by  OpenAI,  which  generates  coherent  and  contextually  relevant  text  based  on  extensive  pre-training  on  large 

datasets  [ 26].  Furthermore,  RoBERTa,  an  improved  version  of  BERT  developed  by Facebook  AI  Research,  optimizes  the  pretraining  process  through  hyperparameter 

adjustments  and  other  enhancements  [16].  Lastly,  the  VGG-16  model,  a  convolutional neural  network  with  16  weight  layers,  is  utilized  for  its  effectiveness  in  image  classification  tasks,  focusing  on.3 × 3 convolution  layers  and  a  simplified  architecture  [ 29]. 

4 

Experimental  Setup 

 4.1 

 Methodology 

We  conducted  our  experiment  as  follows:  We  started  with  conventional  models  that 

use  linguistic  features  extracted  from  the  textual  data,  then  progressed  to  deep  models 

such  as  BiLSTM  and  pre-trained  models  that  we  covered  in  our  previous  work  [ 21]. 

These  text-only  experiments  yield  relatively  good  results,  indicating  that  deep  models 

work  well.  In  this  work,  we  add  audio  data  using  a  similar  analysis.  We  use  deep 

models  like  ResNet50  and  VGG16  to  analyze  speech  Mel  spectrograms.  Finally,  a 

late  fusion  technique  is  employed  to  combine  the  outputs  of  the  best-performing 

textual  and  audio  models.  The  details  of  all  the  steps  completed  prior  to  and  included 

in  this  work  are  outlined  in  this  section. 

 4.2 

 Dataset  Description 

Our  research  uses  a  unique  and  valuable  dataset  from  public  court  trials  created 

by  researchers  at  the  University  of  Michigan  [ 24]. This  dataset  contains  121  video
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Table  2  Example  of  deceptive  and  truthful  content 

Deceptive 

And  he  told  me  that,  ammm  ...  he  was  trying  to  figure  some  stuff  out,  and  ammm  ...  I  asked  him Like  what?  and  he  will  ...  I  mean  I  will  never  forget  it,  he  was  smoking  a  cigarette,  and  he  was like  really  calm,  and  he  looked  at  me  and  he  said  What  would  you  say  if  I  said  ...  if  I  told  you Laura  was  dead?  And  I  was  like,  you  know,  I  was  like  What?  And  ...  basically  he  told  me  that, ammm  ...  the  night  that  Laura  had  come  over  to  the  house,  that  she  had  died,  and  that  whenever I  left  that  he  just  panicked  and  freaked  out,  and  I  got  ...  I  started  freaking  out,  and  I  was  asking him  why  he  didn’t  call  the  cops  [stutters]  ...  call  for  help  like  he  told  me  he  was  going  to,  and he  told  me  that,  ammm  ...  he  got  scared  that  he  was  a  black  man  with  a  dead  white  woman  and nobody  was  gonna  believe  him  that  it  was  an  accident 

Truthful 

I  have  no  idea.  A  police  officer  I  presume.  You’d  have  to  ask  my  mother  or  my  brother.  Nope. 

They  said  they  didn’t  know  where  he  was  being  taken.  Yep.  Went  to  the  house,  I  was  in  a  fairly catatonic  state,  my  dad  and  my  brother  started  making  phone  calls  to  all  the  local  hospitals,  and they  eventually  got  a  hold  of...  I  don’t  know,  whatever  the  hospital  is,  Atlanta  Medical  Center. 

And  they  wouldn’t  tell  my  dad  anything  but  that  he  was  being  taken  there.  So  we  got  in  the  car, and  we  left.  That’s  correct.  Yes,  he  was  and  I  had,  I  –  that  was  instructed  that  that  was  the  best idea  was  to  keep  him  at  the  day  care.  The,  uh  ...  Donna.  The  woman  that  runs  the  day  care.  Yep. 

That’s  the  safest  place  ...  uh  for  him  to  be 

recordings,  evenly  split  between  deceptive  and  truthful  statements.  Each  video  is 

about  28  s  long  and  features  defendants  or  witnesses  speaking  in  different  trial  sce-

narios.  The  dataset  includes  not  only  the  video  content  but  also  transcripts  of  each 

video,  allowing  us  to  analyze  textual  information  alongside  audio/visual  cues.  Addi-

tionally,  the  research  group  has  annotated  each  video  with  gestures  such  as  smiles, 

laughs,  etc.  In  this  work,  we  primarily  focus  on  the  textual  and  audio  data  for  building a  multimodal  deception  detection  model.  Table  2  provides  examples  of  both  deceptive and  truthful  content  from  the  dataset. 

 4.3 

 Transcribed  Data 

4.3.1

Preprocessing  and  Cleaning 

Our  text  processing  pipeline  varies  depending  on  the  model.  For  conventional  models, 

we  remove  non-alphabetic  characters  from  the  text  to  eliminate  noise  that  could 

interfere  with  later  processing  stages.  This  step  ensures  that  only  alphabetic  letters 

remain,  which  helps  the  models  focus  on  relevant  linguistic  features.  We  accomplish 

this  using  Python  packages  such  as  re  for  regular  expression  operations  and  NLTK 

for  text  processing  tasks.  The  cleaned  text  is  then  used  to  extract  features,  which  will be  discussed  in  the  next  section. 

In  contrast,  for  deep  models,  we  do  not  remove  non-alphabetic  characters,  allow-

ing  the  model  to  retain  as  much  of  the  original  text  as  possible.  We  apply  stemming 

to  each  word,  reducing  it  to  its  root  form  by  removing  suffixes,  which  helps  reduce
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the  number  of  unique  words  for  more  efficient  analysis.  After  stemming,  we  perform 

one-hot  encoding,  where  each  word  is  assigned  a  unique  integer  index  from  a  vocab-

ulary  size  of  5000.  Additionally,  each  sequence  is  padded  with  zeros  to  a  uniform 

length  of  221  words,  which  is  the  maximum  sentence  length  in  our  dataset.  (221). 

Padding  is  necessary  because  machine  learning  algorithms  require  input  data  with  a 

consistent  shape.  It  ensures  all  sequences  have  the  same  feature  count,  which  helps 

the  machine  learning  algorithms  function  correctly. 

4.3.2

Linguistic  Features  Extraction 

After  preprocessing  textual  data,  we  extract  16  key  textual  features  relevant  to  lie 

detection,  detailed  in  Table  3. Specifically,  to  understand  the  speaker’s  perspective, discourse  structure,  and  temporal  references,  we  compute  the  number  of  pronouns, 

conjunctions,  and  verb  tenses  (i.e.,  past,  present,  future).  The  sentiment  score  aggre-

gates  the  emotional  valence  of  words  into  a  compound  score  ranging  from .−1 to  1, 

indicating  negative,  neutral,  or  positive  emotion.  We  also  use  part-of-speech  tagging 

to  get  the  frequency  of  adjectives  and  adverbs,  which  helps  provide  insights  into 

the  descriptive  language  used.  Additionally,  we  count  the  frequency  of  filler  words 

like  ‘um,’  ‘uh,’  and  ‘like,’  as  well  as  repetitions,  negations,  and  self-references  to 

evaluate  the  speaker’s  fluency,  rhetorical  style,  and  persuasive  attempts.  Together, 

these  features  provide  a  comprehensive  framework  for  detecting  deception  through 

linguistic  patterns  in  textual  data. 

Table  3  Description  for  extracted  linguistic  features  [ 21] 

Feature  name

Description 

Word  count

The  total  number  of  words  in  the  text 

Sentence  count

The  total  number  of  sentences  in  the  text 

Sentiment  score

A  numerical  score  indicating  the  overall  sentiment  of  the  text 

Average  word  length

The  average  length  of  words  in  the  text 

Vocabulary  diversity

The  ratio  of  unique  words  to  the  total  number  of  words  in  the  text 

Adjective  frequency

The  proportion  of  adjectives  in  the  text 

Adverb  frequency

The  proportion  of  adverbs  in  the  text 

Pronoun  frequency

The  proportion  of  pronouns  in  the  text 

Conjunction  frequency

The  proportion  of  conjunctions  in  the  text 

Past  tense  frequency

The  proportion  of  verbs  in  the  past  tense  in  the  text 

Present  tense  frequency

The  proportion  of  verbs  in  the  present  tense  in  the  text 

Future  tense  frequency

The  proportion  of  verbs  in  the  future  tense  in  the  text 

Filler  word  count

The  number  of  common  filler  words  in  the  text 

Repetition  count

The  proportion  of  words  that  appear  more  than  once  in  the  text 

Negation  count

The  number  of  negations  in  the  text 

Self-reference  count

The  number  of  self-referential  words  in  the  text  (e.g.,  “I,”  “me,”  “myself”)

580

T. Nguyen et al. 

4.3.3

Feature  Selection  for  Conventional  Models 

We  use  two  main  methods  to  choose  important  features  from  the  textual  data:  (1)  over-

lapping  coefficient  (OVL)  and  (2)  stepwise  regression.  The  OVL  method  assesses 

the  significance  of  specific  features  by  comparing  the  probability  density  functions 

(PDFs)  of  features  between  “Lie”  and  “Truth”  categories  [ 1].  Features  with  lower OVL  scores,  indicating  less  overlap,  are  deemed  more  effective  for  distinguishing 

between  these  categories.  On  the  other  hand,  higher  OVL  scores  suggest  more  over-

lap,  which  implies  that  the  feature  is  less  effective  at  distinguishing  between  the  cat-

egories  because  the  distributions  are  more  similar.  The  stepwise  regression  method, 

a  greedy  approach,  iteratively  adds  or  removes  features  based  on  their  impact  on 

model  performance  [ 2].  Typically,  this  evaluation  involves  training  the  model  with the  selected  features  and  measuring  its  performance  using  accuracy  or  F1  score  metrics.  Based  on  these  performance  metrics,  a  decision  is  made  to  include  or  exclude 

a  feature,  and  the  process  continues  until  a  predefined  stopping  condition  is  met. 

 4.4 

 Audio  Data 

We  convert  MP4  video  files  into  WAV  audio  format  using  the  movies  library.  Our 

approach  is  to  transform  the  audio  into  images  of  the  type  of  Mel  spectrograms  using 

the  Librosa  library.  We  use  a  Mel  spectrogram,  a  visual  representation  of  sound  that 

aligns  frequencies  to  the  Mel  scale  (corresponding  to  human  auditory  perception). 

This  is  achieved  by  segmenting  the  audio,  performing  a  Fourier  transform  on  each 

segment  to  identify  frequency  content,  and  then  applying  Mel  scale  filters  to  empha-

size  perceptually  important  frequencies.  Finally,  the  Mel  spectrograms  are  converted 

into  the  RGB  color  space  using  matplotlib  library  and  resized  to  a  uniform  dimen-

sion  of  224. × 224  pixels  to  ensure  consistent  input  size.  Once  the  Mel  spectrogram 

images  are  generated,  we  use  them  as  input  data  for  training  deep  learning  models. 

Examples  of  deception  and  truth  images  are  shown  in  Figs. 7  and  8.  The  Mel  spectrogram’s  x-axis  represents  time  in  seconds,  while  the  y-axis  shows  frequency  in 

Hertz  on  the  Mel  scale,  which  emphasizes  frequencies  important  to  human  hearing. 

The  color  scheme  indicates  sound  intensity,  with  lighter  colors  representing  louder 

sounds  and  darker  colors  indicating  quieter  ones.  The  color  bar,  in  decibels  (dB), 

provides  a  reference  for  these  intensity  levels. 

 4.5 

 Model  Evaluation 

We  evaluate  the  models  using  5-fold  cross-validation.  It  divides  the  dataset  into  five 

subsets  and  iteratively  creates  the  training  and  test  sets.  During  each  iteration,  one 

subset  is  used  as  the  test  set,  while  the  remaining  four  subsets  form  the  training  set. 

This  process  is  repeated  five  times,  with  each  subset  taking  a  turn  as  the  test  set.  This

[image: Image 168]
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Fig.  7  Deception  image  example 

ensures  robustness  and  minimizes  overfitting.  The  model’s  performance  is  evaluated 

using  metrics  such  as  accuracy  and  the  F1  score,  where  the  following  metrics  are 

used  for  the  computation: 

•  TP:  true  positives  (classifier  correct;  classifier  guessed  1). 

•  FP:  false  positives  (classifier  incorrect;  classifier  guessed  1). 

•  TN:  true  negative  (classifier  correct;  classifier  guessed  0). 

•  FN:  false  negative  (classifier  incorrect;  classifier  guessed  0). 

•  Accuracy  measures  the  percentage  of  correct  predictions  out  of  the  total  instances. 

.Accuracy =

 T P +  T N

(1) 

 T P +  F P +  T N +  F N

•  The  F1  score  is  the  harmonic  mean  of  the  precision  and  recall  metrics.  Precision 

measures  the  percentage  of  times  the  classifier  was  correct  when  it  was  predict-

ing  the  true  (1)  class.  Recall  is  the  percentage  of  times  that  the  model  correctly 

predicted  1  when  the  label  was,  in  fact,  1. 

. Recall =

 T P

Precision =

 T P

(2)

 T P +  F N

 T P +  F P

[image: Image 169]
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Fig.  8  Truthful  image  example 

.F1 score = 2 ∗  ( Precision ∗ Recall )

(3) 

Precision + Recall

5 

Deception  Detection  Models 

 5.1 

 Conventional  Models  for  Textual  Data  Only 

To  train  our  deception  detection  models,  we  explore  various  conventional  algorithms 

such  as: 

1.  Support  Vector  Machines  (SVM)  (called  Model  1),  and 

2.  K-Nearest  Neighbors  (KNN)  (called  Model  2),  and 

3.  Logistic  Regression  (LG)  (called  Model  3). 

To  optimize  their  performance,  we  conduct  a  grid  search  to  fine-tune  the  hyperpa-

rameters  of  each  model.  This  thorough  parameter  tuning  significantly  improves  the 

predictive  power  of  our  models.  Table  4  lists  parameters  and  their  values  obtained through  the  grid  search.  Bold  values  represent  parameters  selected  by  the  stepwise
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Table  4  Parameter  lists  of  for  grid  search 

Model

Parameters 

SVM

C:  0.001,  0.1, 1,  10,  100,  1000 

Kernel:  linear,  poly,  rbf, sigmoid  

Gamma:  scale, auto  

LG

C:  0.001,  0.01, 0.1, 1, 10,  100 

KNN

n  neighbors:  3,  5, 7 

Weights:. uniform, distance  

p:  1, 2 

Table  5  Explanation  of  parameters  used  in  grid  search 

Model

Parameter  explanation 

SVM

C:  Controls  the  trade-off  between  fitting  the  training  data  and  generalizing  to  new data.  Smaller  values  lead  to  a  smoother  decision  boundary 

Kernel:  Specifies  the  function  used  to  transform  the  data  (e.g.,  linear,  polynomial, RBF,  sigmoid)  for  better  decision  boundaries 

Gamma:  Defines  how  far  the  influence  of  a  single  training  example  reaches, 

affecting  the  complexity  of  the  model 

LG

C:  Controls  the  regularization  strength,  balancing  between  fitting  the  data  closely 

and  preventing  overfitting 

KNN

n_neighbors:  Number  of  neighbors  considered  for  making  predictions 

Weights:  Determines  if  all  neighbors  contribute  equally  (uniform)  or  if  closer 

neighbors  have  more  influence  (distance) 

p:  Defines  the  distance  metric  (Manhattan  for.  p = 1,  Euclidean  for.  p = 2) approach,  and  underlined  values  represent  parameters  selected  by  the  OVL  approach. 

Table  5  explains  the  parameters  used  in  grid  search  for  each  model. 

 5.2 

 Deep  Models  and  Pre-trained  Models  for  Textual  Data 

 Only 

5.2.1

Model  4:  1  BiLSTM 

For  textual  models,  we  focus  on  improving  deception  detection  using  the  BiLSTM 

model.  The  BiLSTM  model  includes  three  primary  layers.  The  first  layer  is  an  embed-

ding  layer  that  transforms  integer  encoded  words  into  dense  fixed-sized  vectors.  The 

second  layer  is  a  BiLSTM  layer  that  processes  these  vectors  into  a  sequence  of 

outputs.  The  output  from  this  layer  is  then  passed  to  a  Dense  layer  with  a  sigmoid 

activation  function,  which  outputs  a  single  value.  This  value  predicts  the  likelihood 

of  the  input  text  being  deceptive  or  truthful,  interpreting  it  as  a  probability  between  0 

and  1.  We  compile  the  model  using  binary  cross-entropy  as  the  loss  function,  utilize 

Adam  as  the  optimizer,  and  measure  performance  with  the  accuracy  metric. 
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5.2.2

Model  5:  1  BiLSTM . + Dropout  Layer 

We  build  Model  5  on  top  of  Model  4.  We  add  architectural  features  to  improve  the 

performance  of  the  detection  of  deception.  A  key  addition  is  the  GlobalMaxPool1D 

layer  and  the  Dropout  layer.  The  GlobalMaxPool1D  layer  reduces  the  LSTM  output 

to  a  single  maximum  value  per  feature,  highlighting  the  most  important  signals  for 

classification.  The  model  includes  a  Dense  layer  with  64  ReLU-activated  neurons  to 

analyze  these  reduced  features.  Furthermore,  a  Dropout  layer  is  added  with  a  20% 

rate  to  prevent  overfitting  by  randomly  skipping  some  neuron  activations  during 

training.  The  model  ends  with  a  Dense  output  layer.  It  uses  a  sigmoid  activation  to 

give  a  probability  estimate  of  deception.  Like  Model  4,  the  model  still  uses  binary 

cross-entropy  loss  and  the  Adam  optimizer. 

5.2.3

Model  6:  1  BiLSTM . + Early  Stopping 

Model  6  builds  on  the  architecture  used  in  previous  models  by  incorporating  an 

Early  Stopping  mechanism  to  optimize  training  efficiency  and  prevent  overfitting. 

Early  Stopping  monitors  the  validation  loss  during  training  and  stops  the  process 

if  no  improvement  is  observed  for  five  consecutive  epochs.  This  approach  ensures 

that  the  model  does  not  continue  to  learn  from  the  training  data  beyond  the  point  of 

beneficial  returns.  Therefore,  the  model  maintains  its  generalizability  and  prevents 

it  from  learning  noise  and  irrelevant  details  from  the  training  set. 

5.2.4

Model  7:  BERT . + Early  Stopping. + Dropout 

Model  7  utilizes  the  TFBertForSequenceClassification,  which  is  a  TensorFlow  2.0 

adaptation  of  the  BERT  model  for  sequence  classification  tasks.  This  model  pro-

cesses  sequences  of  tokens,  outputting  a  probability  distribution  across  various  labels 

using  the  ‘bert-base-uncased’  configuration.  This  version  of  BERT  is  pre-trained  on 

uncased  English  text,  enhancing  its  applicability  to  diverse  text  inputs.  To  optimize 

performance  and  handle  multiclass  classification,  we  employ  Sparse  Categorical 

Cross  Entropy  as  the  loss  function  and  an  Adam  optimizer  with  a  learning  rate  of 

2e-5  and  epsilon  of  1e-08.  Additionally,  Early  Stopping  and  Dropout  techniques  are 

integrated  to  prevent  overfitting  and  ensure  efficient  training,  with  the  model’s  config-

uration  finalized  with  the  chosen  loss  function,  optimizer,  and  performance  metrics. 

5.2.5

Model  8:  Pretrained  GPT-2  Model 

Model  8  is  built  using  a  pre-trained  GPT-2  architecture.  We  initialize  it  with 

GPT2Model.from. _pretrained()  to  use  its  existing  weights  and  increase  learning  effi-

ciency.  We  added  a  linear  layer  (self.fc1)  to  the  model  to  convert  it  for  sequence 

classification.  This  layer  takes  the  hidden  states  from  GPT-2  and  transforms  them
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for  classification.  During  the .  f or ward()  method  process,  input  IDs  and  masks  are processed  by  the  GPT-2  model.  The  outputs  are  reshaped  using.  gpt _ out.view(batch si ze, −1 )  and  then  passed  through  the  linear  layer  to  get  the  final  class  predictions. 

Basically,  we  use  GPT-2  as  a  feature  extractor  to  transform  its  complex  linguistic 

features  into  class  predictions. 

5.2.6

Model  9:  Pretrained  RoBERTa  Model 

Model  9  employs  the  RoBERTa  architecture,  configured  for  sequence  classifica-

tion  using  the  robust  PyTorch  framework  alongside  the  Hugging  Face  Transformers 

library.  We  utilize  the  ‘RoBERTa-base’  model  along  with  its  associated  tokenizer 

to  prepare  our  input  corpus.  Each  input  sequence  is  tokenized  and  then  uniformly 

padded  to  maintain  consistent  dimensions  across  all  data,  ensuring  efficient  process-

ing.  These  tokenized  sequences,  along  with  their  respective  labels,  are  transformed 

into  tensors.  For  training,  the  model  is  optimized  using  an  Adam  optimizer  with  a 

learning  rate  of  2e-5.  The  optimization  is  guided  by  the  cross-entropy  loss  function, 

which  is  particularly  suited  for  classification  tasks  involving  multiple  classes. 

 5.3 

 Deep  Models  for  Audio  Data 

5.3.1

Model  10:  ResNet50 . + Dropout 

We  have  modified  the  ResNet  model  from  its  original  design  to  suit  binary  classifi-

cation  tasks.  The  base  ResNet50  model,  with  weights  pre-trained  on  ImageNet,  uses 

transfer  learning  to  take  advantage  of  features  learned  from  visually  rich  datasets.  We 

hypothesize  that  this  approach  will  improve  the  model’s  ability  to  recognize  subtle 

patterns  in  audio  spectrogram  data.  These  audio  data  share  similarities  with  the  image 

data  due  to  their  time-frequency  representation.  The  model  uses  the  ResNet50  base. 

Its  top  layer  is  removed  for  customization,  adjusting  the  input  shape  for  the  task. 

The  last  20  layers  are  trainable,  while  earlier  layers  keep  their  ImageNet  weights.  It 

includes  a  Global  Average  Pooling  2D  layer,  a  0.5  rate  Dropout  layer,  and  Early  Stop-

ping  to  prevent  overfitting.  A  Dense  layer  with  1024  neurons  using  ReLU  activation 

learns  non-linear  combinations  of  features.  The  final  layer  is  a  Dense  layer  with  a  sin-

gle  neuron  for  binary  classification.  With  a  0.0001  learning  rate,  the  Adam  optimizer 

optimizes  for  binary  cross-entropy  loss,  ensuring  learning  and  generalization. 

5.3.2

Model  11:  VGG-16 

We  employ  a  VGG16  base  pre-trained  on  ImageNet,  excluding  its  top  layers.  All 

VGG16  layers  are  initially  non-trainable,  except  those  in  the  final  block.  Custom 

layers  are  added  on  top,  starting  with  an  Input  layer,  then  passing  through  a  Glob-

alAveragePooling2D  layer,  a  Dropout  layer,  and  a  Dense  layer  with  1024  units  and

[image: Image 170]
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ReLU  activation.  The  final  output  layer  uses  a  single  Dense  layer  with  sigmoid  acti-

vation.  The  model  is  compiled  with  an  Adam  optimizer  (learning  rate  of  0.00001), 

binary  cross-entropy  loss,  and  accuracy  as  a  metric. 

 5.4 

 Model  12:  Late  Fusion  Model  for  Audio  Data 

 and  Textual  Data 

We  use  the  ResNet50  (model  10)  for  audio  data  and  the  BiLSTM  model  (model  6) 

for  textual  data  to  create  a  late  fusion  model  (Fig. 9).  We  chose  these  models  because they  provide  the  highest  scores  for  their  respective  modalities  when  we  experiment 

with  different  models.  We  change  the  last  layers  of  both  models  so  they  will  produce 

a  feature  vector  with  128  dimensions,  making  sure  that  features  from  different  types 

are  represented  in  the  same  way.  The  vectors  for  each  model  are  put  together.  It  makes 

a  combined  feature  vector  with  256  dimensions.  A  specially  created  LinearW  layer 

takes  this  vector  and  works  to  balance  and  mix  the  features  coming  from  both  the 

audio  and  text  paths.  The  LinearW  layer  uses  a  group  of  weights  that  can  be  adjusted 

and  which  get  better  during  training.  This  lets  it  give  each  set  of  features  a  certain 

level  of  importance  based  on  what  it  has  learned.  After  this  fusion  layer’s  output 

is  ready,  it  goes  through  another  thick  layer  with  sigmoid  activation  to  develop  the 

ultimate  prediction. 

Fig.  9  Late  fusion  model  for  textual  and  audio  data

[image: Image 171]
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6 

Results 

 6.1 

 Overlapping  Probability  Density  Functions  for  Linguistic 

 Features 

PDFs  are  initially  plotted  for  a  selected  set  of  features  to  better  understand  the  dif-

ferences  in  data  distribution  between  the  “Lie”  and  “Truth”  categories.  These  visu-

alizations,  presented  as  PDFs,  offer  an  intuitive  comparison  of  the  data  distribution 

shapes.  Smoothed  PDFs  are  generated  using  Kernel  Density  Estimation  (KDE)  with 

a  Gaussian  kernel.  They  provide  continuous  representations  of  data  distributions. 

These  visualizations  are  useful  for  identifying  features  with  distinct  patterns  that  can 

potentially  enhance  the  effectiveness  of  lie  detection  based  on  linguistic  analysis. 

Both  PDF  plots  (Figs. 10, 11  and  12  in  the  appendix)  and  Table  6  visualize  and report  the  quantitative  results  of  the  Overlapping  Probability  Density  Functions 

Fig.  10  PDF  plots  for  “Lie”  and  “Truth”  data  across  multiple  features  (part  1)

[image: Image 172]
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Fig.  11  PDF  plots  for  “Lie”  and  “Truth”  data  across  multiple  features  (part  2)

[image: Image 173]
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Fig.  12  PDF  plots  for  “Lie”  and  “Truth”  data  across  multiple  features  (part  3)
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Table  6  Feature  significance  analysis  using  OVL  [ 21] 

Features

OVL  score 

filler. _word. _count

0.5471 

future. _tense. _frequency

0.5517 

negation_count

0.6097 

adverb_frequency

0.7367 

present. _tense. _frequency

0.7512 

sentence. _count

0.7811 

self. _reference. _count

0.8106 

sentiment. _score

0.8159 

adjective. _frequency

0.8182 

word. _count

0.8214 

pronoun. _frequency

0.8299 

past. _tense. _frequency

0.8345 

avg. _word_length

0.8479 

repetition. _count

0.8497 

conjunction. _frequency

0.9001 

vocabulary. _diversity

0.9119 

analysis.  This  analysis  provides  a  more  precise  measure  of  the  discriminatory  power 

of  individual  features  in  distinguishing  between  the  “Lie”  and  “Truth”  categories. 

By  calculating  the  OVL  scores,  we  can  determine  how  much  the  probability  density 

functions  of  different  features  overlap  between  the  two  categories. 

As  Table  6  reports,  features  such  as  “vocabulary  diversity”  and  “conjunction  frequency”  exhibit  high  OVL  scores.  This  indicates  a  substantial  overlap  in  their  prob-

ability  density  functions  between  the  “Lie”  and  “Truth”  categories.  This  suggests 

that  these  features  may  not  be  strong  indicators  on  their  own  when  it  comes  to  dis-

tinguishing  between  lies  and  truths.  On  the  other  hand,  features  like  “filler  word 

count”  and  “negation  count”  display  lower  OVL  scores,  implying  less  overlap  in 

their  probability  density  functions.  This  indicates  a  higher  potential  for  effectively 

distinguishing  between  “Lie”  and  “Truth”  instances  using  these  features.  However, 

it  is  important  to  note  that  feature  interactions  and  analysis  context  can  significantly 

influence  their  discriminatory  power. 

 6.2 

 The  Performance  of  Deception  Detection  Models 

6.2.1

Conventional  Models  for  Textual  Data 

From  the  initial  set  of  16  features  shown  in  Table  3, OVL  and  stepwise  feature  selection  select  different  sets  of  features.  For  the  OVL  feature  selection  approach,  we 

choose  the  threshold  of  0.8,  so  features  with  an  OVL  score  lower  than  0.8  will  be 

selected.  Therefore,  we  have  six  features  in  total,  which  are  (1)  filter  work  count, 
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Table  7  Accuracy  and  F1  scores  of  conventional  models  for  textual  data  only.  All  results  are presented  as  percentages 

Model

Train  accuracy

Test  accuracy

F1  score 

Model  1a:  SVM.+ OVL

61.12

59.37

70.44 

Model  1b:  SVM.+ Stepwise

64.46

63.77

69.8 

Model  2a:  KNN.+ OVL

70.65

63.6

65.47 

Model  2b:  KNN.+ Stepwise

71.69

62.83

63.07 

Model  3a:  LR.+ OVL

66.12

63.63

67.89 

Model  3b:  LR  +  Stepwise

66.11

68.53

71.69 

(2)  future  tense  frequency,  (3)  negation  count,  (4)  adverb  frequency,  (5)  present 

tense  frequency,  and  (6)  sentence  count.  In  contrast,  the  stepwise  approach  carefully 

chose  five  features  that  showed  the  strongest  discriminatory  potential:  (1)  average 

word  length,  (2)  vocabulary  diversity,  (3)  frequency  of  adjectives,  (4)  frequency  of 

adverbs,  and  (5)  the  count  of  filler  words.  These  features  played  a  crucial  role  in  our efforts  to  detect  deception. 

Table  7  presents  an  evaluation  of  conventional  models  for  both  the  OVL  and  the stepwise  feature  selection  approach  in  terms  of  accuracy  and  F1  scores.  Among  the 

three  convention  models  with  the  OVL  approach,  the  SVM  (Model  1a)  has  the  lowest 

test  accuracy  but  the  highest  F1  score.  SVM  (Model  1b)  achieves  a  relatively  lower 

test  precision  and  F1  score  for  the  stepwise  approach.  KNN  (Model  2b)  shows  a 

reasonable  training  accuracy  but  faces  challenges  in  generalization,  with  a  lower  test 

accuracy  and  an  F1  score.  Among  the  three  different  models  evaluated,  LR  (Model 

3b)  stands  out  with  its  test  accuracy  of  68.53%  and  F1  score  of  71.69%.  These  results 

highlight  the  strong  potential  of  this  model  in  distinguishing  deceptive  actions. 

6.2.2

Deep  Learning  Models  for  Textual  Data 

Table  8  summarizes  the  performance  of  different  deep  models  with  various  architectures  and  techniques.  Model  4,  with  only  one  BiLSTM  layer,  shows  improve-

ments  in  precision  (67.73%)  and  the  F1  score  (69.83%),  indicating  the  importance 

Table  8  Accuracy  and  F1  scores  of  deep  models  for  textual  data  only  [ 21].  All  results  are  presented as  percentages 

Model

Train  accuracy

Test  accuracy

F1  score 

Model  4:  1  BiLSTM

100

67.73

69.83 

Model  5:  1  BiLSTM.+ Dropout

100

66.9

66.18 

Model  6:  1  BiLSTM  +  Early  stopping

100

93.57

94.48 

Model  7:  BERT.+ Early  stopping.+ Dropout

83.54

68.73

64.63 

Model  8:  Pretrained  GPT2  model

99.79

58.73

60.12 

Model  9:  Pretrained  RoBERTa  model

88.18

71.2

73.71
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Table  9  Accuracy  and  F1  scores  of  deep  models  for  audio  data  only.  All  results  are  presented  as percentages 

Model

Train  accuracy

Test  accuracy

F1  score 

Model  10:  ResNet50

96.04

93.57

92.16 

Model  11:  VGG16

96.01

87.63

89.25 

of  simplifying  the  model  structure.  Model  5  incorporates  a  Dropout  layer  along-

side  a  single  BiLSTM  layer,  demonstrating  the  impact  of  regularization  techniques. 

However,  its  accuracy  (66.9%)  and  F1  score  (66.18%)  are  slightly  lower  than  Model 

5.  Model  6  introduces  Early  Stopping  and  significantly  enhances  predictive  perfor-

mance.  Model  6  achieves  an  impressive  accuracy  of  93.57%  and  an  F1  score  of 

94.48%.  This  finding  highlights  the  importance  of  monitoring  validation  loss  during 

training  to  prevent  overfitting.  Among  the  three  pre-trained  models,  Model  9  applies 

pre-trained  Roberta,  giving  the  highest  scores.  Table  8  reveals  the  performance  variations  among  different  models  and  emphasizes  the  importance  of  carefully  selecting 

architecture  and  techniques.  The  findings  further  show  that  regularization  techniques, 

such  as  Early  Stopping,  can  help  prevent  overfitting  and  improve  generalization 

capabilities. 

6.2.3

Deep  Models  for  Audio  Data 

Table  9  shows  the  performance  of  the  audio  models.  Model  10,  which  employs  the ResNet50  structure,  gets  good  training  and  test  accuracy  results  with  96.04%  and 

95.57%,  respectively.  It  also  achieves  an  F1  score  of  92.17%.  It  shows  it  can  general-

ize  well  when  finding  lies  in  audio.  However,  Model  11  with  VGG16  structure  also 

has  good  accuracy  in  training  at  96.01%  but  a  slight  drop  in  test  accuracy  to  87.63%, 

and  an  F1  score  of  89.25%.  This  decrease  might  show  that  even  though  VGG16  is 

very  good  for  pulling  out  features,  it  could  be  worse  at  making  these  features  more 

general  than  ResNet50. 

6.2.4

Late  Fusion  Models  for  Both  Textual  and  Audio  Data 

As  mentioned  earlier,  we  combined  ResNet50  (model  10)  for  audio  data  and  BiLSTM 

(model  6)  for  textual  data  to  create  the  late  fusion  model  (Fig. 9).  We  chose  these models  based  on  their  outstanding  performance  in  their  respective  modalities  during 

our  experiments.  Table  10  presents  how  our  late  fusion  model  performed  on  five cross-validation  folds.  On  average,  the  late  fusion  model  obtains  a  test  accuracy  of 

90.9%  and  an  F1  score  of  91.07%.  The  second  fold  shows  the  best  results  for  test 

accuracy  and  F1  score,  with  both  around  96%.  On  the  other  hand,  performance  is 

not  as  good  in  the  fifth  fold;  it  has  an  accuracy  of  about  79.12%  and  an  F1  score  near 82.76%. 
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Table  10  Late  fusion  model  weights  and  performance  across  5-fold  cross  validation.  All  results are  presented  as  percentages 

Fold

Audio  weight

Text  weight

Test  accuracy

F1  score 

1

0.49731752

0.50268245

92

90.9 

2

0.5032117

0.49678826

95.83

96 

3

0.516298

0.4837021

91.67

88.89 

4

0.5161787

0.48382124

95.83

96.77 

5

0.49938968

0.5006103

79.12

82.76 

Average

0.5064791

0.4935209

90.9

91.07 

7 

Discussion 

 7.1 

 Textual  Models 

7.1.1

Conventional  Models 

The  stepwise  method  selects  a  variety  of  linguistic  features.  They  are  the  average 

word  length,  the  diversity  of  the  vocabulary  used,  the  frequency  of  adjective  and 

adverb  usage,  and  the  count  of  filler  words.  These  features  are  chosen  because  they 

can  provide  valuable  information  on  speech  patterns  indicative  of  deception.  On  the 

other  hand,  the  OVL  method  focuses  on  a  different  set  of  features.  These  include  the 

count  of  filler  words,  the  frequency  of  adverb  usage,  the  usage  of  the  future  tense, 

the  frequency  of  negations,  and  the  usage  of  the  present  tense.  Interestingly,  filler 

words  and  adverb  frequency  are  selected  by  both  methods.  Filler  words,  which  are 

often  used  as  hesitations  or  distractions  in  speech,  may  be  indicative  of  deceptive 

tendencies,  as  they  could  suggest  that  the  speaker  is  trying  to  buy  time  or  divert 

attention.  The  consistent  selection  of  adverb  frequency  across  both  methods  further 

suggests  that  the  manner  or  intensity  with  which  expressions  are  made  might  hold 

significant  weight  in  identifying  deceptive  behavior.  This  shared  focus  on  filler  words, 

and  adverb  frequency  highlights  their  potential  importance  in  the  study  of  deceptive 

speech  patterns. 

For  conventional  models  using  the  OVL  feature  selection  method,  SVM  (Model 

1a)  scores  the  highest  F1  score  at  70.44%.  In  contrast,  when  using  features  from  the 

stepwise  method,  LG  (Model  3b)  achieves  the  best  F1  score.  This  suggests  that  the 

performance  of  the  models  can  vary  according  to  the  selected  features.  LG  (Model 

3b)  attains  the  highest  test  accuracy  and  F1  score  among  all  conventional  models 

with  both  feature  selection  methods.  However,  LR  (model  3b)  also  shows  signs  of 

underfitting  in  our  analysis.  The  relatively  low  train  accuracy  of  66.11%  implies  that 

the  model  struggles  to  fit  the  training  data  adequately.  However,  the  test  accuracy 

is  even  higher  at  68.53%.  This  difference  between  the  accuracy  of  the  train  and 

the  test  is  a  classic  indicator  of  inadequate  fitting.  This  underfitting  issue  may  be 

attributed  to  the  simplicity  of  the  LR  model,  which  may  not  be  able  to  capture 

complex,  nonlinear  relationships  within  the  data.  Consequently,  the  LR  model’s
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limited  capacity  to  capture  these  complex  patterns  ultimately  compromises  its  overall 

performance  and  prevents  it  from  achieving  higher  accuracy  on  both  the  train  and 

test  sets.  By  exploring  more  sophisticated  models,  such  as  deep  models,  we  could 

strive  to  improve  our  models’  accuracy  and  generalization  capabilities,  ultimately 

enhancing  our  analysis’s  overall  performance. 

¸Sen  et  al.  [ 24]  also  conducted  a  study  in  which  they  implemented  conventional classifiers  such  as  SVM  and  RF.  They  reported  that  their  RF  model  achieved  the 

highest  accuracy  of  64.41%  using  the  Linguistic  Inquiry  and  Word  Count  (LIWC) 

lexicon.  When  comparing  it  to  our  conventional  model,  our  LG  model  (Model  3b) 

uses  a  smaller  feature  set  and  outperforms  their  RF  model  in  terms  of  accuracy. 

This  indicates  that  our  feature  selection  approach  plays  a  crucial  role  in  enhancing 

models’  performance  by  eliminating  noise  and  irrelevant  data. 

7.1.2

Deep  Models 

We  start  building  a  simple  model  (i.e.,  Model  4),  which  consists  of  a  single  BiLSTM 

layer.  Since  its  test  accuracy  is  much  lower  than  its  train  accuracy,  this  Model  4  shows signs  of  overfitting.  This  means  that  Model  4  does  not  perform  well  on  new  data.  To 

improve  and  manage  overfitting  more  effectively,  we  progressively  integrate  addi-

tional  layers  and  techniques,  such  as  Dropout  and  Early  Stopping,  into  subsequent 

models.  Dropout  and  Early  Stopping  are  important  techniques  in  deep  learning  for 

managing  overfitting  and  improving  model  performance.  Dropout  randomly  removes 

certain  units  during  training  to  balance  network  weights  [ 25]. However,  when  we  add Dropout  to  Model  5,  it  does  not  perform  better  than  Model  4.  It  has  similar  training 

accuracy  but  lower  test  accuracy  and  F1  score.  This  means  Dropout  does  not  suc-

cessfully  control  overfitting  or  help  Model  5  generalize  to  the  test  data.  Model  6, 

which  is  Model  4  with  added  early  stopping,  performs  much  better  than  Models  4 

and  5.  It  has  a  test  accuracy  of  93.57%  and  an  F1  score  of  94.48%.  While  it  keeps 

the  high  training  accuracy  of  Model  4,  Model  6  has  much  better  test  accuracy  and 

F1  score  because  of  early  stopping.  Early  Stopping  adjusts  the  number  of  epochs 

in  backpropagation  and  forward  propagation  to  prevent  overfitting  and  find  the  best 

point  for  model  performance  [ 25]. These  results  show  that  the  right  regularization techniques  are  key  to  managing  overfitting  and  getting  the  best  performance  from  a 

model.  Model  6’s  success  shows  how  useful  early  stopping  can  be  in  deep  learning. 

It  is  a  good  choice  for  applications  that  need  simple,  high-performing  models.  Pre-

trained  models  are  not  the  best  option  for  this  task.  The  value  of  a  model,  whether 

it’s  pretrained  or  not,  depends  on  the  dataset  and  the  nature  of  the  task. 

 7.2 

 Audio  Models 

After  looking  at  the  study  by  Sehrawat  et  al. [ 23]  on  finding  deception  with  CNNs, we  realize  that  when  comparing  ResNet50  and  VGG16  structures,  ResNet50  does 

a  better  job  working  with  audio  data.  Our  experimental  findings  match  this  result, 
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showing  the  ResNet50  model  works  better  than  the  VGG16.  Another  reason  we 

chose  ResNet50  instead  of  VGG16  is  because  it  takes  much  considerably  less  time 

to  train.  These  findings  imply  that  the  ResNet50  model  outperforms  the  VGG16 

model  in  terms  of  accuracy  and  computational  efficiency.  Therefore,  we  decide  to 

use  the  ResNet50  architecture  in  our  late  fusion  model. 

 7.3 

 Late  Fusion  Model 

Table  1  includes  a  broader  range  of  referenced  works,  including  those  using  video data.  Since  our  study  focuses  only  on  text  and  audio,  we  limit  comparisons  in 

Table  11  to  models  using  text  and  audio.  Table  11  shows  that  our  late  fusion  model outperforms  the  previous  model  in  both  test  accuracy  and  F1  scores.  With  90.9%  in 

accuracy  and  an  F1  number  of  91.1%,  our  model  does  better  compared  to  Sehrawat  et 

al.’s  method  with  80%  accuracy,  and  Zhang  et  al.’s  work  has  a  correct  rate  of  84.40%. 

Given  that  the  dataset  is  nearly  balanced,  we  expect  minimal  differences  between 

accuracy  and  F1  score,  and  our  model’s  performance  aligns  with  this  expectation. 

We  see  a  consistent  balance  between  audio  and  text  inputs  when  we  carefully  look 

at  how  the  last  layer  of  fusion  gives  weights  over  five  validation  folds  (as  shown  in 

Table  10).  There  is  only  a  small  change  around  an  almost  equal  division.  This  shows that  our  model  is  strong  because  even  little  changes  in  the  weights,  which  go  from 

about  49.7–51.6%  for  audio  and  then  similar  for  text,  are  good  enough  to  handle  the 

slight  differences  in  each  fold’s  information.  The  balance  that  is  always  the  same 

makes  sure  one  way  of  getting  information  does  not  take  over  so  the  model  can 

use  what  was  good  about  both  audio  and  textual  data.  This  careful  way  of  deciding 

importance  really  helps  make  the  model  work  very  well  and  be  trusted  with  different 

kinds  of  information  because  it  mixes  ways  to  get  knowledge  together  in  a  smart  way 

to  find  deception. 

Table  11  Comparison  of  test  accuracy  and  F1  score  for  models  with  different  modalities Modality

Previous  research

Accuracy  (%)

F1  score  (%) 

Text

Venkatesh  et  al. [ 31]

84

N/A 

Hsiao  and  Sun  [ 13]

84

82.64 

Zhang  et  al.  [ 33]

82.26

65.87 

Our  model  (BiLSTM)

93.57

94.48 

Audio

Venkatesh  et  al. [ 31]

76

N/A 

Hsiao  and  Sun  [ 13]

88

87.92 

Zhang  et  al.  [ 33]

84.59

70.53 

Our  model  (ResNet50)

93.57

92.16 

Text.+ Audio

Sehrawat  et  al.  [ 23]

80

N/A 

Zhang  et  al.  [ 33]

84.40

70.80 

Our  model  (late  fusion)

90.9

91.1
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8 

Conclusion  and  Future  Work 

This  work  aims  to  create  a  multimodal  model  that  uses  both  transcribed  text  and  audio 

data  to  detect  deceptive  behavior  more  accurately.  We  extracted  a  total  of  16  textual 

features  and  identified  five  highly  significant  ones  using  both  the  stepwise  method 

and  the  Overlapping  Coefficient  (OVL)  method.  Through  our  experiments,  Logistic 

Regression  (LR)  achieves  the  highest  accuracy  among  conventional  models  with  an 

accuracy  of  68.53%  and  an  F1  score  of  71.69%.  However,  our  deep  learning  model, 

a  BiLSTM  with  Early  Stopping,  outperforms  all  other  textual  models,  achieving  an 

accuracy  of  93.57%  and  an  F1  score  of  94.48%.  For  the  audio  data,  the  ResNet50 

model  performs  exceptionally  well,  achieving  an  accuracy  of  93.57%  and  an  F1 

score  of  92.16%.  Furthermore,  by  combining  text  and  audio  data  through  a  late-

fusion  approach,  we  achieve  an  accuracy  of  90.9%  and  an  F1  score  of  91.07%, 

outperforming  previous  research  on  similar  datasets. 

While  this  project  focused  on  creating  textual  and  audio  models,  further  analysis 

is  needed  to  explore  the  interactions  between  features  from  both  modalities,  such 

as  the  correlation  between  high  pitch  and  increased  wordiness  with  deception.  In 

future  work,  we  plan  to  add  behavioral  features  from  video  and  images  to  provide  a 

more  comprehensive  understanding  of  deceptive  behavior.  It  is  important  to  note  that 

the  Real  Life  Trial  dataset  is  relatively  small,  and  while  the  results  are  promising, 

experiments  with  larger  datasets  will  enhance  the  robustness  and  generalizability  of 

the  model.  Expanding  the  dataset  will  help  ensure  that  our  findings  are  applicable 

across  different  contexts  and  populations. 
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Abstract  In  previous  research,  keystroke  dynamics  has  shown  promise  for  user 

authentication,  based  on  both  fixed-text  and  free-text  data.  In  this  research,  we  con-

sider  the  more  challenging  multiclass  user  identification  problem,  in  the  case  of 

free-text  data.  We  experiment  with  a  complex  image-like  feature  that  has  previously 

been  used  to  achieve  state-of-the-art  authentication  results  over  free-text  data.  Using 

this  image-like  feature  and  multiclass  Convolutional  Neural  Networks,  we  are  able 

to  attain  a  classification  (i.e.,  identification)  accuracy  of  0.78  over  a  set  of  148  users. 

Surprisingly,  we  find  that  a  Random  Forest  classifier  trained  on  a  slightly  modified 

version  of  this  same  feature  yields  an  improved  accuracy  of  0.93. 

1 

Introduction 

Authentication  and  intrusion  detection  are  crucial  aspects  of  online  security.  Con-

ventional  authentication  methods,  such  as  passwords,  have  limitations,  and  biometric 

systems  may  require  additional  hardware  or  be  unsuitable  for  specific  user  groups. 

Recent  research  highlights  the  need  for  accessible  and  inclusive  authentication  sys-

tems  for  all  users,  including  the  elderly  [ 15, 25]  and  disabled  individuals  [ 28]. 

Keystroke  dynamics  are  a  promising  means  for  improved  user  authentication  and 

identification.  By  analyzing  keystroke  patterns,  a  user  can  be  distinguished  based 

on  their  distinctive  typing  style,  regardless  of  age  or  physical  ability.  Furthermore, 

keystroke  dynamics  can  aid  in  detecting  an  intruder  who  has  gained  unauthorized 

access  to  a  system,  making  such  techniques  potentially  useful  in  the  field  of  intrusion 

detection. 

Compared  to  traditional  authentication  methods  such  as  passwords,  keystroke 

dynamics  offer  several  benefits.  First,  keystroke  dynamics  are  challenging  to  break 
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since  people  tend  to  have  distinctive  typing  patterns  that  may  be  difficult  to  replicate, and  guessing  is  not  a  viable  attack  strategy.  In  contrast,  passwords  can  be  compromised  through  data  breaches  or  guessed  via  trial-and-error.  Second,  keystroke  dynam-

ics  can  provide  a  more  robust  and  reliable  two-factor  authentication  approach—if  an 

unauthorized  user  obtains  a  valid  user’s  login  credentials,  they  may  still  be  detected 

and  denied  access,  due  to  their  failure  to  mimic  the  specific  user’s  expected  typ-

ing  characteristics.  Also,  keystroke  dynamics  can  offer  continuous  authentication, 

enabling  passive,  ongoing  user-identity  verification  throughout  a  session,  adding  an 

extra  layer  of  protection  in  the  form  of  intrusion  detection.  In  summary,  keystroke 

dynamics  holds  promise  for  improvements  in  authentication,  identification,  and  intru-

sion  detection. 

For  the  research  presented  in  this  paper,  we  use  the  so-called  Buffalo  free-

text  keystroke  dataset  to  study  keystroke  dynamics.  This  dataset  was  collected  by 

researchers  at  SUNY  Buffalo  and  has  been  widely  used  in  research  in  this  field  [ 29]. 

Here,  free-text  means  that  subjects  do  not  type  the  same  thing—in  contrast  to  fixed-

text  data,  where  all  subjects  type  the  same  text.  While  fixed  text  is  relevant  to  authentication  (typically,  via  passwords),  free  text  is  more  relevant  for  the  intrusion  detection 

problem,  which,  in  this  context,  is  often  referred  to  as  continuous  authentication. 

Both  free-text  and  fixed-text  data  can  be  used  to  study  the  user  identification  prob-

lem.  Note  that  for  the  identification  problem,  we  are  trying  to  determine  specifically 

who  is  typing,  and  there  may  be  a  very  large  number  of  possible  typists.  In  contrast, 

for  the  authentication  problem,  the  typist  claims  to  be  a  specific  user,  and  we  only  need to  determine  whether  the  person  typing  is  the  claimed  user  or  not.  Consequently,  the 

authentication  problem  is  a  1-to-1  comparison,  whereas  the  identification  problem  is 

a  many-to-one  comparison,  and  hence  the  identification  problem  is  inherently  much 

more  challenging.  In  this  paper,  we  consider  this  inherently  more  challenging  iden-

tification  problem,  based  on  the  Buffalo  free-text  dataset.  Since  the  Buffalo  dataset 

includes  data  from  148  users,  for  the  identification  problem  considered  here,  at  ran-

dom  we  would  only  expect  to  guess  the  correct  user  with  probability.1 / 148  <  0 .  007, whereas  for  the  authentication  problem,  random  chance  will  yield  the  correct  answer 

with  probability .0 .  50. 

Free-text  and  fixed-text  datasets  have  relative  advantages  and  disadvantages.  Free-

text  datasets,  collected  while  users  type  naturally  without  constraints,  offer  a  more 

realistic  representation  of  user  behavior  and  provide  a  more  transparent  experience 

for  users  [ 19]. On  the  other  hand,  fixed-text  datasets,  collected  under  controlled  conditions  where  participants  type  specific  words,  phrases,  or  sentences,  enable  more  con-

trolled  experiments  and  easier  comparison  by  eliminating  variations  in  text  input  [14]. 

Due  to  the  practicality  and  user  experience  aspects,  we  have  chosen  to  work  with 

free-text  data  in  this  study.  Note  that  of  the  various  permutations  involving  free-

text  or  fixed-text  for  authentication  or  identification,  the  problem  considered  in  this 

paper—namely,  user  identification  based  on  free-text  data—is  the  most  challenging 

case.  Note  also  that  in  this  context,  identification  is  synonymous  with  classification. 

Inspired  by  successful  authentication  results  in  prior  studies,  we  first  consider  a 

feature  engineering  approach  that  originated  in  the  paper  [ 16], where  elementary features  are  transformed  into  a  multi-channel  image-like  transition  matrix  which  is
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referred  to  as  a  Keystroke  Dynamics  Image  (KDI).  Within  this  KDI  matrix,  rows  and 

columns  denote  keyboard  keys,  while  the  depth  signifies  distinct  feature  categories. 

We  conduct  multi-class  classification  experiments  on  the.148 users  in  the  well-known 

Buffalo  dataset,  employing  a  Convolutional  Neural  Network  (CNN)  model  trained 

on  the  KDI  features  with  cutout  regularization.  To  assess  the  effect  of  keystroke 

sequence  lengths  on  our  model,  we  experiment  with  multiple  sequence  lengths.  Our 

CNN  model  results  yield  a  respectable  multiclass  accuracy  of  0.78  over  the  148 

classes. 

We  then  experiment  with  classic  learning  techniques  using  a  “flattened”  version 

of  the  KDI  as  our  feature  vector.  Surprisingly,  we  find  that  a  Random  Forest  model 

trained  on  these  feature  vectors  yields  dramatically  improved  results,  with  an  accu-

racy  of  0.93  for  this  inherently  challenging  148-user  identification  problem.  As  far 

as  the  authors  are  aware,  this  is  the  best  experimental  result  to  date  for  the  user 

identification  problem,  based  on  the  popular  Buffalo  free-text  dataset. 

In  summary,  the  main  contributions  of  this  paper  are  the  following. 

• While  authentication  (i.e.,  binary  classification)  based  on  keystroke  dynamics  has 

been  widely  studied,  the  inherently  more  challenging  identification  (i.e.,  multi-


class)  problem  has  received  little  attention.  In  this  paper,  we  present  results  that 

set  a  strong  benchmark  for  the  user  identification  problem,  based  on  the  popular 

Buffalo  free-text  dataset. 

• In  the  process  of  analyzing  this  user  identification  problem,  we  find  that  a  Random 

Forest  significantly  outperforms  a  Convolutional  Neural  Network  (CNN).  This  is 

surprising,  given  that  we  use  the  feature  vectors  from  [ 16],  which  are  explicitly designed  to  be  interpreted  as  images.  Since  CNNs  only  deal  with  local  structure, 

this  result  indicates  that  these  image-like  feature  vectors  fail  to  sufficiently  localize 

significant  information  that  exists  in  the  raw  data. 

The  remainder  of  this  paper  is  organized  as  follows.  In  Sect. 2,  we  delve  into  background  topics  such  as  the  learning  techniques  utilized  and  the  dataset  considered  in 

our  study.  This  section  also  includes  a  selective  survey  of  related  prior  research  in 

the  field  of  keystroke  dynamics.  Section  3  details  the  features  we  employ,  with  the emphasis  on  our  feature  engineering  strategy  for  preparing  input  data  for  classification  models.  In  Sect. 4, we  elaborate  on  the  model  architectures  considered  in  this paper  and  discuss  hyperparameter  tuning.  Section  5  encompasses  our  experiments and  provides  an  analysis  of  the  results.  Lastly,  Sect. 6  offers  a  conclusion  and  suggests potential  avenues  for  future  research. 

2 

Background 

Authentication  is  a  fundamental  aspect  of  security  systems  [ 4].  Keystroke  dynamics has  emerged  as  a  promising  method  for  verifying  user  identity.  Unlike  traditional 

authentication  methods,  keystroke  dynamics  has  the  potential  to  detect  intruders
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even  after  they  have  gained  access  to  the  system,  making  it  a  valuable  tool  for 

preventing  security  breaches.  However,  the  effectiveness  of  keystroke  dynamics-

based  systems  depends  on  the  ability  to  accurately  classify  users,  based  on  their 

typing  characteristics. 

The  more  challenging  problem  of  user  identification  based  on  keystroke  dynamics 

is  also  of  interest,  particularly  in  the  context  of  intrusion  detection  systems  (IDS). 

Also,  for  IDS,  the  use  of  free  text  data  may  be  advantageous,  as  compared  to  fixed 

text  [ 2]. Free  text  data  is  more  representative  of  how  users  type  on  a  regular  basis  and is  not  constrained  by  a  pre-determined  text  input,  which  may  result  in  more  accurate 

and  reliable  outcomes.  Most  importantly,  free  text  datasets  are  adaptable  to  passive 

monitoring  of  user  behavior  within  an  IDS. 

Another  advantage  of  keystroke  dynamics-based  systems  is  that  they  are  applica-

ble  to  users  of  all  ages  and  even  those  with  disabilities,  provided  only  that  they  type when  using  a  system  [ 24].  Therefore,  this  approach  can  provide  a  more  inclusive  and accessible  method  that  does  not  discriminate  based  on  age  or  physical  ability. 

In  summary,  keystroke  dynamics-based  systems  may  offer  an  effective  means  of 

user  authentication  and  identification,  provided  that  we  can  accurately  distinguish 

between  users.  In  this  research,  we  show  that  even  for  the  inherently  challenging 

identification  problem,  it  is  possible  to  obtain  strong  results. 

 2.1 

 Related  Work 

Keystroke  dynamics  is  a  behavioral  biometric  that  has  been  extensively  studied 

for  user  authentication.  In  contrast,  the  problem  we  consider  in  this  paper,  namely, 

keystroke  dynamics  for  user  identification,  has  received  little  attention  in  the  research 

literature.  Therefore,  unless  otherwise  noted,  the  previous  work  discussed  in  this 

section  deals  primarily  with  the  user  authentication  problem,  rather  than  user  iden-

tification. 

In  an  early  example  of  research  into  keystroke  dynamics  [ 9], digraph  latencies were  used  to  examine  the  distinctiveness  of  typing  patterns.  Gaines  et  al.  found 

that  specific  digraphs  could  distinguish  right-handed  touch  typists  from  one  another 

with  92%  accuracy  over  a  limited  number  of  users.  About  a  decade  later,  a  real-

time  pattern  recognition  based  approach  to  classify  users  was  proposed  in  [ 7]. The online  verification  system  they  developed  had  a  false  rejection  rate  (FRR)  of  8.1% 

for  rejecting  valid  users  and  2.8%  false  acceptance  rate  (FAR).  This  work  laid  the 

foundation  for  much  of  the  subsequent  research  in  this  field. 

Recently,  machine  learning  has  been  widely  applied  in  keystroke  dynamics.  Clas-

sic  machine  learning  algorithms,  such  as  .  k-Nearest  Neighbors  (.  k-NN)  and  Support Vector  Machines  (SVM),  have  yielded  promising  results  in  user  authentication  tasks. 

However,  these  methods  often  rely  on  handcrafted  features,  which  may  be  less  robust 

and  less  generalizable  to  diverse  user  groups  and  typing  scenarios. 

An  SVM-based  method  in  [ 10]  requires  only  five  captures  for  initial  enrollment, while  [ 12]  utilize  a .  k-NN  approach,  resulting  in  further  improvements  in  efficiency. 
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These  examples  of  previous  research  offer  robust  and  generalizable  methods  with 

high  accuracy  and  efficiency,  as  compared  to  prior  work  that  utilized  traditional 

statistical-based  classification  algorithms. 

Clustering  techniques  have  been  employed  in  the  context  of  keystroke  dynamics, 

which  serves  to  group  similar  users  or  typing  patterns,  and  to  identify  potential 

outliers.  For  example,  in  the  paper  [ 22], the  authors  have  demonstrated  that.  K -Means clustering  can  yield  useful  results,  achieving  an  authentication  accuracy  of  96.2%. 

Not  surprisingly,  clustering  techniques  have  also  been  used  in  a  data  analysis  mode. 

For  example,  [ 23]  use  hierarchical  clustering  to  evaluate  the  effect  of  hold  times on  the  homogeneity  of  valid  user  timing  vectors.  This  use  of  hierarchical  clustering 

helped  to  establish  the  relative  homogeneity  of  valid  user  timing  vectors  and  improve 

the  accuracy  of  subsequent  experiments. 

Clustering  can  also  be  applied  to  keystroke  dynamics  for  the  purpose  of  detecting 

account  sharing.  The  research  in  [ 13]  shows  that  user’s  keystroke  patterns  form distinctive  clusters  in  Euclidean  space  and  that  the  number  of  shared  accounts  can 

then  be  estimated  by  the  number  of  clusters.  The  optimal  number  of  clusters  is 

estimated  using  a  Bayesian  model-selection  framework,  and  the  results  show  a  2% 

false  alarm  rate,  a  2%  miss  rate,  and  an  overall  accuracy  of  93%. 

Clustering  methods  such  as  Expectation  Conditional  Maximization  (ECM)  have 

also  been  combined  with  other  approaches,  including  Extreme  Learning  Machines 

(ELM),  to  improve  accuracy  and  stability.  ELM  is  a  single  hidden-layer  feedforward 

network  model  that  is  extremely  fast  to  train,  yet  can  achieve  good  generalization 

performance  for  some  problems.  A  clustering-based,  semi-supervised  ECM-ELM 

approach  in  [ 21]  is  able  to  achieve  an  authentication  accuracy  of  87%  for  the  popular Carnegie  Mellon  University  (CMU)  keystroke  dataset. 

Deep  learning  techniques  for  keystroke  dynamics-based  authentication  have 

shown  promise  in  recent  studies;  in  particular,  CNNs  have  been  employed  to  achieve 

notable  results.  A  novel  approach  in  [ 17]  involves  converting  keystroke  data  into images-like  features,  which  allows  for  the  mining  of  spatial  information,  and  results 

in  an  accuracy  of  96.8%,  with  an  FAR  of  0.04%.  A  passphrase-based  user  authentica-

tion  approach  based  on  deep  learning  is  considered  in  [ 20], resulting  in  performance that  surpasses  state-of-the-art  methods  in  terms  of  the  Equal  Error  Rate  (EER). 

Another  CNN-based  approach  to  user  authentication  using  keystroke  dynamics 

can  be  found  in  [ 1]. In  this  paper,  the  authors  convincingly  demonstrate  that  quantile transformation  can  be  used  to  provide  improved  results,  and  they  claim  to  achieve  the 

best  authentication  accuracies  to  date,  based  on  experiments  with  the  CMU  dataset. 

In  the  realm  of  keystroke  dynamics  for  user  authentication,  recent  studies  have 

investigated  the  application  of  Recurrent  Neural  Networks.  An  architecture  based  on 

a  hybrid  CNN  and  Gated  Recurrent  Unit  (GRU)  is  proposed  and  analyzed  by  [ 30], while  [ 18]  examine  the  use  of  Long  Short-Term  Memory  (LSTM)  and  Bidirectional  Long  Short-Term  Memory  (BiLSTM)  architectures.  Both  papers  illustrate  the 

potential  of  deep  learning  models  in  this  domain.  In  particular,  Mhenni,  et  al.  show 

that  BiLSTM  outperforms  LSTM,  achieving  an  accuracy  of  86%  and  71%  for  the 

GREYC-2009  and  WEBGREYC  datasets,  respectively;  in  comparison  their  LSTM 

model  has  an  accuracy  of  68%  and  53%  over  these  same  datasets. 
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The  research  presented  in  this  paper  is  motivated  by  the  previous  work  involving 

an  image-like  structure  for  keystroke  data  in  [ 5, 16].  These  image-like  representations are  designed  to  leverage  the  powerful  capabilities  of  CNNs,  which  are  well-known 

for  their  success  in  dealing  with  challenging  classification  tasks.  In  this  context,  the 

work  presented  in  [ 16]  is  particularly  relevant  to  our  research,  as  it  introduced  a unique  image-like  Keystroke  Dynamic  Image  (KDI)  data  structure  that  resulted  in 

improved  state-of-the-art  results  on  the  user  authentication  problem.  We  consider 

this  same  KDI  image-like  feature  in  the  context  of  user  identification,  which  is  more 

challenging,  due  to  it  being  a  multiclass  problem  over  a  large  number  of  classes. 

In  summary,  the  related  work  in  the  field  of  keystroke  dynamics  for  user  authen-

tication  spans  a  wide  range  of  techniques  and  methodologies,  including  classic 

machine  learning,  deep  learning,  feature  engineering,  threshold-based  techniques, 

clustering,  and  various  ensembles.  Building  upon  this  rich  body  of  research,  the 

present  study  aims  to  advance  the  state-of-the-art  within  the  relatively  neglected— 

and  inherently  more  challenging—field  of  user  identification. 

 2.2 

 Dataset 

For  our  experiments,  we  use  the  free-text  keystroke  dataset  collected  by  researchers  at 

SUNY  Buffalo  [ 29], which  is  generally  referred  to  as  the  Buffalo  keystroke  dataset  in the  literature,  or,  more  simply,  the  Buffalo  dataset.  This  dataset  includes  a  collection 

of  free-text  keystroke  dynamics  data  obtained  from  148  research  participants.  The 

participants  were  asked  to  complete  two  typing  tasks  in  a  laboratory  setting  over  the 

course  of  three  separate  sessions.  The  first  task  involved  transcribing  Steve  Jobs’ 

Commencement  Speech,  split  into  three  parts,  while  the  second  task  included  free-

text  responses  to  a  list  of  specific  questions.  To  ensure  the  generalizability,  there  was a  28-day  interval  between  each  session. 

Out  of  the  148  participants,  75  completed  the  typing  test  with  the  same  keyboard 

across  all  three  sessions,  while  the  remaining  73  participants  used  three  different 

keyboards  in  each  session.  The  dataset  contains  the  timestamp  of  each  key  press  (key-

down)  and  key  release  (key-up),  organized  in  a  tabular  format  with  three  columns— 

the  first  column  indicates  the  key,  the  second  column  denotes  whether  the  event  is  a 

key-press  or  key-release,  and  the  third  column  records  the  timestamp  of  the  event. 

The  dataset  includes  information  about  the  gender  of  each  participant.  On  average, 

participants  have  a  total  of  more  than .17 ,  000 keystrokes  across  their  three  sessions. 

The  Buffalo  keystroke  dataset  has  been  widely  studied  in  the  research  literature. 

 2.3 

 Machine  Learning  and  Deep  Learning  Algorithms 

Despite  the  rapid  growth  in  the  popularity  of  neural  networks,  classic  machine  learn-

ing  algorithms  have  remained  competitive  in  the  field  of  keystroke  dynamics.  Such
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algorithms  are  based  on  statistical  and  mathematical  techniques,  and  have  been  used 

with  success  for  many  years  in  various  fields.  Thus,  we  consider  two  popular  classic 

machine  learning  algorithms,  namely,  Support  Vector  Machine  (SVM),  and  Random 

Forest.  Among  classic  learning  techniques,  SVMs  are  the  most  closely  related  to 

neural  networks,  while  Random  Forests  are  neighborhood-based  [ 27]. Thus,  these two  techniques  provide  us  with  very  different  views  of  the  data. 

In  the  realm  of  deep  learning  techniques,  we  consider  Convolutional  Neural  Net-

works  (CNN).  In  fact,  the  KDI  feature  vectors  from  [ 16]  that  we  employ  were designed  to  mimic  images,  and  hence  CNNs  are  the  obvious  tool  for  dealing  with 

this  data. 

2.3.1

Support  Vector  Machines 

Support  Vector  Machine  (SVM)  is  a  powerful  supervised  machine  learning  technique, 

which  has  its  theoretical  foundation  solidly  rooted  in  computational  and  mathematical 

principles  [ 11].  SVM  is  designed  to  identify  a  hyperplane  in  an  high-dimensional space  that  can  accurately  separate  labeled  data  points  into  their  respective  classes. 

The  algorithm  aims  to  maximize  the  minimum  distance,  or  “margin,”  between  the 

hyperplane  and  the  data.  SVM  is  generally  recognized  for  its  practical  effectiveness, 

as  it  can  efficiently  handle  large  and  complex  datasets.  It  has  been  used  in  a  wide 

range  of  fields,  including  image  classification,  text  classification,  and  bioinformatics. 

2.3.2

Random  Forest 

Random  Forest  classifiers  consist  of  ensembles  of  decision  trees.  During  training,  a 

Random  Forest  uses  a  divide  and  conquer  strategy  by  sampling  small  subsets  of  the 

data  and  features,  with  a  simple  decision  tree  constructed  for  each  such  subset.  The 

Random  Forest  classification  is  based  on  the  predictions  of  its  component  decision 

trees,  usually  using  a  simple  voting  strategy  [ 6].  Important  hyperparameters  in  a Random  Forest  include  the  number  of  estimators  (i.e.,  decision  trees),  maximum 

features  (maximum  number  of  features  to  sample  in  any  one  decision  tree),  among 

others. 

2.3.3

Convolutional  Neural  Network 

CNNs  [ 3]  are  a  specialized  type  of  neural  network  that  utilize  convolution  kernels to  deal  with  local  information,  often  from  image-like  data.  Unlike  traditional  neural  networks,  CNNs  share  weights  at  different  locations,  resulting  in  more  efficient 

and  shift-invariant  models  with  fewer  parameters.  Their  multi-layer  convolutional 

architecture  enables  them  to  extract  information  at  different  resolutions  in  computer 

vision  tasks,  making  them  ideal  for  image  processing.  CNNs  can  analyze  images  and 

extract  important  features,  such  as  edges,  shapes,  and  textures,  in  a  highly  effective
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manner.  Additionally,  the  use  of  convolution  kernels  in  CNNs  enables  the  network 

to  learn  spatial  features,  such  as  orientation  and  scale,  which  is  especially  useful 

in  image  recognition  tasks.  CNNs  have  proven  to  be  highly  effective  in  a  surpris-

ingly  wide  variety  of  applications,  including  object  recognition,  face  recognition, 

and  image  classification.  CNNs  have  also  been  successfully  applied  to  non-image 

data,  such  as  audio  and  text. 

Dropout  regularization  [ 26]  is  commonly  used  to  prevent  overfitting  in  feedforward  neural  networks.  However,  this  approach  is  less  effective  in  convolutional  layers 

due  to  their  shared  information  and  lower  parameter  count.  To  overcome  this  limi-

tation,  cutout  regularization  is  used  [ 8]. As  the  name  suggests,  cutout  regularization consists  of  blocking  out  parts  of  the  input  image  at  various  stages  in  the  training 

process.  This  forces  the  model  to  focus  on  areas  of  the  image  that  might  otherwise 

be  ignored  during  training,  resulting  in  a  more  robust  model.  Cutouts  also  improve 

a  model’s  ability  to  generalize  and  perform  well  with  limited  training  data.  Overall, 

cutout  is  a  versatile  and  effective  technique  for  image  analysis  that  can  enhance  the 

performance  of  CNNs. 

3 

Feature  Engineering 

As  mentioned  above,  we  use  the  Buffalo  keystroke  dataset,  which  is  a  free-text 

dataset.  Feature  engineering  is  critical  to  our  analysis,  as  we  will  be  exploring  an 

image-like  data  structure  that  is  derived  from  the  features  that  appear  in  the  dataset. 

These  features  capture  the  timing  information  of  individual  keystrokes  and  their  rela-

tionships  to  other  keystrokes,  allowing  us  to  build  a  detailed  sequence  of  keystrokes 

for  each  user.  By  carefully  engineering  these  features,  we  hope  to  gain  additional 

insight  into  how  keystroke  dynamics  can  be  successfully  used  in  the  challenging  user 

identification  problem. 

 3.1 

 Keystroke  Features 

Keystroke  dynamics  datasets  sometimes  include  two  types  of  features,  those  provid-

ing  time-based  information  and  those  providing  pressure-based  information.  Both 

types  of  features  can  yield  valuable  insights  into  typing  behavior,  but  pressure-based 

features  are  not  available  on  many  modern  keyboards,  and  such  information  is  not 

available  in  the  Buffalo  dataset.  Therefore,  our  research  will  focus  solely  on  time-

based  features. 

The  Buffalo  keystroke  dataset  includes  the  following  time-based  features,  which 

are  depicted  in  Fig. 1. 
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Fig.  1  Time  based  features

• Duration—The  time  that  the  user  holds  a  key  in  the  down  position

• Down-down  time  (DD-time)—The  time  between  the  press  of  a  key  and  the  press 

of  the  subsequent  key

• Up-down  time  (UD-time)—The  time  between  the  release  of  a  key  and  the  press 

of  the  subsequent  key

• Up-up  time  (UU-time)—The  time  between  the  release  of  a  key  and  the  release  of 

the  subsequent  key

• Down-up  time  (DU-time)—The  time  between  the  press  of  a  key  and  the  release 

of  the  subsequent  key 

Note  that  for  consecutive  key  strokes,  there  are  two  durations,  and  hence  for  each  pair 

of  keystrokes,  we  have  six  features.  Of  course,  these  features  are  not  all  independent, 

as  there  are  some  obvious  relationships.  In  any  case,  by  carefully  analyzing  these 

features,  we  hope  to  gain  insights  into  the  unique  patterns  of  typing  behavior  exhibited 

by  individual  users  and  determine  how  these  patterns  can  be  successfully  applied  to 

the  challenging  problem  of  user  identification. 

 3.2 

 Keystroke  Sequence 

To  better  analyze  keystroke  sequences,  the  keystrokes  are  often  divided  into  subse-

quences.  Each  subsequence  can  be  viewed  as  a  separate  keystroke  sequence  from 

the  same  user.  In  this  paper,  we  experiment  with  different  lengths  of  keystroke  sub-

sequences,  which  we  treat  as  a  hyperparameter  of  the  system.  A  longer  keystroke 

sequence  can  provide  more  information,  but  it  is  also  more  resource-intensive  to 

process,  and  the  analysis  is  delayed  until  the  sequence  has  been  collected.  Shorter 

subsequences  may  not  capture  enough  information  and  thereby  result  in  decreased
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accuracy.  Therefore,  we  will  experiment  with  the  length  of  the  keystroke  subse-

quences,  with  the  goal  of  selecting  the  minimum  length  that  provides  (near)  optimal 

results.  Depending  on  the  requirements  of  a  specific  application,  it  might  be  desir-

able  to  strike  a  different  balance  between  accuracy  and  practicality  when  using  our 

technique. 

 3.3 

 Keystroke  Data  Image 

In  this  section,  we  discuss  a  feature  engineering  approach,  originally  developed 

by  [ 16], that  enables  us  to  effectively  organize  keystroke  timing  features  into  an image-like  structure.  As  discussed  in  Sect. 3.1, for  consecutive  pairs  of  keystrokes, there  are  four  timing  features  (UD-time,  DD-time,  DU-time,  and  UU-time),  plus 

the  duration  for  each  keystroke.  Therefore,  given  a  subsequence  of  .  N  keystrokes, 

we  obtain  .4 (N − 1 ) +  N  features.  For  any  repeated  pairs—or,  in  the  case  of  the duration  feature,  individual  keystrokes—the  timings  are  averaged,  resulting  in  a 

histogram-like  feature.  We  consider  each  keystroke  subsequence  as  an  independent 

input  sequence  for  the  corresponding  user. 

Inspired  by  the  structure  of  RGB  images,  we  organize  these  features  into  the 

aforementioned  Keystroke  Data  Image  (KDI),  which  has  five  channels—the  first 

four  channels  are  the  digraph  features  mentioned  above  (UD-time,  DD-time,  DU-

time,  and  UU-time),  and  the  fifth  channel  is  a  diagonal  matrix  obtained  from  the 

durations.  Recall  that  if  a  keystroke  pair  appears  more  than  once  in  a  subsequence, 

all  occurrences  are  averaged.  Also,  note  that  each  row  and  column  in  the  KDI  corre-

sponds  to  a  key  on  the  keyboard,  with  each  channel  representing  one  specific  feature. 

To  reduce  sparsity  in  the  KDI,  we  only  consider  time-based  features  for  the  fol-

lowing  42  most  common  keystrokes. 

• The 26 English letters  (A–Z)

• The  10  Arabic  numerals  (0–9)

• The  6  meta  keys:  Space,  back,  left-shift,  right-shift,  tab,  and  capital 

Thus,  the  KDI  is .42 × 42 × 5,  with  the  five  channels  as  described  above. 

The  KDI  data  structure  is  illustrated  in  Fig. 2. As  mentioned  above,  to  mitigate overfitting  in  our  CNN  model,  we  employ  cutout  regularization  [ 8]. The  dark  blocks in  Fig. 2  represent  cutouts. 

4 

Model  Architectures 

In  this  section,  we  provide  details  on  the  learning  architectures  used  in  our  experi-

ments.  We  also  discuss  hyperparameter  tuning  for  each  of  our  models. 

[image: Image 175]
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Fig.  2  Keystroke  data  image  (KDI) 

 4.1 

 Multiclass  CNN 

The  input  “shape”  of  our  data  is .  ( 5 ,  42 ,  42 ),  indicating  that  the  input  is  a  3-D  array with  a  depth  of  5  and  a  width  and  height  of  42.  After  experimenting  with  variations 

on  the  CNN  architecture,  we  find  that  our  best  model  includes  five  convolutional 

layers,  each  followed  by  a  batch  normalization  layer  and  a  max  pooling  layer.  The 

first  convolutional  layer  has  32  filters  of  size  .  ( 5 ,  5 ),  while  the  subsequent  convolutional  layers  have  64,  128,  256,  and  256  filters,  respectively,  all  of  size  .  ( 3 ,  3 ). All convolutional  layers  use  the  Rectified  Linear  Unit  (ReLU)  activation  function.  The 

max  pooling  layers  have  a  pool  size  of  .  ( 2 ,  2 )  and  a  stride  of  2,  ensuring  that  the output  size  of  each  layer  remains  the  same. 

After  the  five  convolutional  layers,  the  model  includes  a  flattening  layer,  followed 

by  two  fully  connected  layers.  The  first  fully  connected  layer  has  128  units  with

[image: Image 176]
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Fig.  3  Architecture  of  CNN 

Table  1  Hyperparameter  tuning  for  multiclass  CNN 

Parameter

Values 

Number  of  epochs

10, 20,  30,  40 

Learning  rate

0.1, 0.01,  0.001,  0.0001 

Optimizer

Adam,  SGD,  SGD  with  momentum 

Learning  schedule

StepLR, reduceLROnPlateau 

the  ReLU  activation  function.  The  final  output  layer  has  148  units  with  the  softmax 

activation  function.  Figure  3  illustrates  our  CNN  model. 

To  identify  the  best  combination  of  hyperparameters,  we  employ  a  grid  search 

over  reasonable  values  of  various  parameters.  The  hyperparameters  tested  for  our 

CNN  are  given  Table  1, where  the  selected  values  are  in  boldface.  We  use  these selected  hyperparameters  in  all  CNN  models  discussed  in  Sect. 5, below. 

Note  that  our  best  model  uses  the  reduceLROnPlateau  (from  Keras)  callback  to 

dynamically  reduce  the  learning  rate  when  the  model  is  unable  to  improve  sufficiently 

during  training.  Also,  we  utilize  the  earlyStopping  (again,  from  Keras)  callback  to 

halt  training  if  the  model  shows  signs  of  overfitting.  Our  experimental  results  indicate 

that  the  model  tends  to  overfit  after  about  the  20th  epoch,  which  was  confirmed  by 

the  results  of  our  grid  search. 

 4.2 

 SVM  Classifier 

We  consider  the  classic  learning  technique  of  SVM.  As  discussed  above,  for  our 

SVM  classifier  we  use  the  flattened  KDI.  The  features  are  standardized  to  have  zero 

mean  and  unit  variance. 
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Table  2  Hyperparameter  tuning  for  Random  Forest 

Parameter

Values 

n_estimators

100,  500, 1000 

max_features

auto, sqrt  

min_samples_split

2, 5 

min_samples_leaf

1, 2 

The  SVM  classifier  used  for  multiclass  classification  is  a  one-vs-one  (OVO) 

model,  which  trains  a  separate  SVM  for  each  pair  of  classes.  Since  this  is  costly 

to  train,  we  restrict  our  attention  to  the  47  users  that  are  most  difficult  to  classify using  our  CNN.  This  requires  that  we  train  a  total  of 



47

. 

= 1081

2

SVM  classifiers.  To  train  each  SVM  classifier,  the  dataset  is  split  into  training  and 

testing  sets  using  stratified  random  sampling,  with  an  80–20  split,  that  is,  80%  of  the 

data  is  used  for  training  with  20%  reserved  for  testing.  For  all  of  our  SVM  models, 

we  use  the  hyperparameters  .  C = 1 and  .  γ = scale,  with  the  Radial  Basis  Function (RBF)  kernel. 

 4.3 

 Random  Forest  Classifier 

We  also  train  and  test  a  Random  Forest  classifier.  As  with  our  SVM  model,  for  our 

Random  Forest  classifier  we  use  the  flattened  KDI.  The  Random  Forest  hyperparam-

eters  tested  for  this  model  are  listed  in  Table  2,  with  the  values  selected  in  boldface. 

As  with  our  SVM  classifier,  we  initially  restrict  our  Random  Forest  to  the  47  most 

challenging  to  identify  users.  However,  given  the  strong  results  that  we  obtain,  and 

since  there  is  no  significant  efficiency  issue  when  training  on  a  larger  dataset,  we 

also  train  and  test  this  Random  Forest  on  the  entire  set  of  148  users. 

5 

Experiments  and  Results 

In  this  section,  we  first  discuss  our  experimental  design.  Then  we  present  our  exper-

imental  results,  and  provide  some  discussion  of  these  results. 
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 5.1 

 Experiment  Strategy 

We  train  multiclass  CNN  classifiers  over  all  148  users,  based  on  the  KDI  data  struc-

ture,  and  keystroke  subsequence  lengths  of  50,  75  and  100.  Once  we  establish  our  best 

model,  we  generate  the  confusion  matrix,  and  sort  based  on  the  diagonal  (i.e.,  true 

positive)  elements.  This  enables  us  to  split  the  users  into  three  categories,  namely, 

those  that  are  easiest  to  classify,  those  that  are  of  moderate  difficulty  to  classify,  and those  that  are  the  most  difficult  to  classify. 

We  then  apply  classic  machine  learning  techniques  to  the  difficult-to-classify 

users,  based  on  a  flattened  KDI,  that  is,  we  convert  the .5 × 42 × 42 array  represen-

tation  of  the  KDI  into  a  vector  of  length  .5 · 42 · 42 = 8820.  As  mentioned  above, 

the  performance  of  the  Random  Forest  on  these  challenging  cases  leads  us  to  further 

analyze  this  model  over  the  entire  dataset. 

 5.2 

 Metrics 

We  use  accuracy  as  the  primary  measuring  of  the  quality  of  our  results.  We  also 

present  confusion  matrices  to  better  visualize  the  distribution  of  correct  and  incorrect 

predictions  across  all  classes,  and  to  distinguish  users,  based  on  the  difficulty  of 

correct  classification. 

The  accuracy  of  a  binary  classifier  is  simply  the  number  of  correct  classifications 

divided  by  the  total  number  of  classifications,  that  is, 

. Accuracy =

TP + TN

 , 

TP + TN + FP + FN

where  TP  is  the  number  of  true  positive  samples  (samples  correctly  classified  as 

positive),  TN  is  the  number  of  true  negative  samples  (samples  correctly  classified  as 

negative),  FP  is  the  number  of  false  positive  samples  (samples  incorrectly  classified 

as  positive),  and  FN  is  the  number  of  false  negative  samples  (samples  incorrectly 

classified  as  negative).  In  a  multiclass  classification  problem,  accuracy  is  the  propor-

tion  of  correctly  classified  samples  to  the  total  number  of  samples  in  the  dataset.  We 

can  calculate  the  accuracy  for  multiclass  classifier  as 

 n  TP

 i =1

 i

. Accuracy =

 , 

 M

where  .TP i  represents  the  number  of  samples  of  class  .  i  that  are  correctly  classified and .  M  is  the  total  number  of  samples  in  the  dataset. 

In  a  confusion  matrix,  each  row  and  column  corresponds  to  a  class  in  the  dataset. 

We  follow  the  convention  that  the  rows  represent  the  actual  classes  of  the  samples, 

and  the  columns  represent  the  predicted  classes.  To  determine  the  accuracy  for  class.  i , 
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we  divide  the .  i  th diagonal  element  by  the  sum  of  the  elements  in  row .  i .  The  overall accuracy  is  the  sum  of  all  diagonal  elements,  divided  by  the  sum  of  all  elements  in 

the  matrix. 

 5.3 

 Multiclass  CNN  Experiments 

As  shown  in  Table  1, we  determined  our  CNN  hyperparameters  via  a  grid  search  over the  number  of  epochs,  learning  rate,  optimizer,  and  learning  schedule  callbacks.  We 

found  that  training  for  20  epochs,  with  a  learning  rate  of  0.01,  along  with  Adam  and 

reduceLROnPlateau  as  optimizer  and  callback,  respectively,  yielded  the  best  results. 

We  also  experimented  with  different  architecture  of  the  model  itself,  and  settled  on 

a  model  with  five  convolutional  layers,  where  each  convolutional  layer  is  followed 

by  batch  normalization  and  max  pooling  layer,  as  illustrated  in  Fig. 3. 

After  determining  the  hyperparameters  and  model  architecture,  we  experimented 

with  the  keystroke  sequence  length  for  the  KDIs.  The  model  with  keystroke  length  50 

shows  signs  of  overfitting,  as  can  be  seen  from  the  Fig. 4a. On  the  other  hand,  models which  were  trained  on  keystrokes  with  length  75  and  100  are  more  robust  against 

overfitting,  as  can  be  seen  in  Fig. 4b  and  c,  respectively—for  both  of  these  cases,  the validation  loss  is  continuously  dropping  and  both  validation  and  training  accuracies 

are  steadily  climbing. 

The  comparative  analysis  of  training,  testing  and  validation  accuracies  for 

keystrokes  lengths  of  50,  75  and  100  are  shown  in  Table  3. Since  the  model  trained on  keystroke  sequences  of  length  100  gave  us  the  best  test  and  validation  accuracies, 

in  the  next  section,  we  determine  the  confusion  matrix  based  on  this  case. 

5.3.1

CNN  Confusion  Matrix 

From  Table  3,  we  see  that  the  model  trained  on  keystroke  length  100,  provides  the best  results.  For  the  keystroke  length  100  model,  a  bar  graph  of  the  accuracy  for  each 

user  is  given  in  Fig. 5,  where  we  have  sorted  by  accuracy. 

Next,  we  use  the  bar  graph  in  Fig. 5  to  partition  the  users  into  three  subsets,  based on  the  accuracy  attained  when  identifying  them  using  a  CNN  trained  on  the  KDI 

features.  We  use  the  slope  of  the  bar  graph  to  identify  these  subsets.  A  slight  “elbow” 

in  the  slope  occurs  after  about  the  first  15  users,  and  another  is  near  the  last  third of  the  users.  Based  on  these  observations,  we  establish  two  accuracy  thresholds  for 

authenticating  users.  Those  users  who  are  classified  with  0.90  or  greater  accuracy, 

we  consider  relatively  easy-to-classify,  while  those  who  are  classified  at  accuracies 

below  0.75  are  deemed  the  difficult-to-classify  subset,  while  all  of  those  in  between 

these  two  thresholds  are  referred  to  as  moderately-difficult-to-classify.  The  number 

of  users  in  each  of  these  subsets  can  be  found  in  Fig. 6. We  further  analyze  the difficult-to-classify  subset  in  the  next  section. 

[image: Image 177]
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(a)  Keystroke  length  50

(b)  Keystroke  length  75 

(c)  Keystroke  length  100 

Fig.  4  Training  of  models 

Table  3  Accuracy  as  a  function  of  keystroke  sequence  length 

Length

Accuracy 

Train

Test

Validation 

50

0.91

0.67

0.58 

75

0.95

0.74

0.73 

100

0.97

0.79

0.78 

 5.4 

 Experiments  on  Difficult-to-Classify  Users 

In  the  previous  section,  we  categorized  47  of  the  users  as  difficult-to-classify  using 

a  CNN  trained  on  KDI  features.  Here,  we  consider  additional  experiments  on  this 

subset  of  users,  to  see  if  we  can  improve  on  the  relatively  poor  results  for  these  users. 

Specifically,  we  apply  Support  Vector  Machines,  Decision  Trees,  and  Random  Forest, 

[image: Image 178]
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Fig.  5  Bar  graph  for  the  148  users  in  the  Buffalo  dataset  (sorted) 
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Moderate

Difficult 

Fig.  6  Number  of  users  in  each  cluster 

based  on  the  flattened  KDI  features.  For  the  47  users  that  comprise  the  difficult-to-

identify  subset,  we  achieve  the  accuracies  listed  in  Table  4. 

The  confusion  matrix  for  the  best  of  these  experiments,  namely,  the  Random 

Forest  model,  appears  in  Fig. 7.  This  confusion  matrix  serves  to  reinforce  the  strong results  that  we  obtained  classifying  the  most  challenging  users  with  our  Random 

Forest  model,  using  the  flattened  KDI  feature. 

[image: Image 179]
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Table  4  Accuracy  of  models  for  difficult-to-classify  users 

Model

Test  accuracy 

SVM

0.50 

Decision  tree

0.88 

Random  Forest

0.92 

80 
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Fig.  7  Random  Forest  confusion  matrix  for  difficult-to-classify  users 

 5.5 

 Random  Forest  Model  for  All  Users 

Our  surprisingly  strong  results  for  the  difficult-to-classify  users  lead  us  to  test  the 

Random  Forest  model  using  the  flattened  KDI  features  over  the  entire  dataset  of  148 

users.  We  find  that  the  accuracy  in  this  case  is  0.93.  This  outcome  signifies  a  substantial  improvement  over  the  original  multiclass  CNN  that  was  trained  on  the  5-channel 

KDI,  as  the  CNN  model  only  achieved  an  accuracy  of  0.78. 
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Fig.  8  Random  Forest  accuracy  ranges  for  all  148  users 

Figure  8  summarizes  the  classification  results  for  our  Random  Forest  model  over all  148  users.  We  find  that  only  8  of  the  148  users  now  have  an  accuracy  of  0.75  or 

lower.  In  addition,  36  users  have  classification  accuracies  in  the  range  of  0.75  to  0.90, while  the  remaining  104  users  are  all  classified  with  an  accuracy  of  at  least  0.90. 

These  results  underscore  the  success  of  the  Random  Forest  model  trained  on  the 

flattened  KDI  features.  As  far  as  the  authors  are  aware,  this  Random  Forest  model 

yields  the  best  identification  (i.e.,  classification)  results  yet  achieved  for  the  148  users in  the  Buffalo  dataset. 

6 

Conclusion 

In  this  paper,  we  extended  previous  work  on  authentication  based  on  keystroke 

dynamics  to  the  inherently  much  more  challenging  identification  problem.  We  used 

an  image-like  data  structure  (KDI)  and  obtained  reasonably  strong  results  with  a 

Convolutional  Neural  Network.  One  innovative  aspect  of  this  approach  was  in  the 

application  of  a  multiclass  CNN  for  identifying  users,  which  enabled  us  to  catego-

rize  users  into  easy-,  moderate-,  and  difficult-to-classify  subsets.  We  then  focused 

additional  attention  on  the  users  that  were  most  difficult  to  identify. 

When  experimenting  with  the  most  challenging  cases,  we  discovered  that  a  Ran-

dom  Forest  trained  on  a  flattened  version  of  the  KDI  image-based  feature  yielded 

surprisingly  strong  results.  Even  more  surprising,  testing  this  same  model  over  the 

entire  dataset  yielded  much  better  results  that  our  multiclass  CNN  model.  Since
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CNNs  are  based  on  local  structure,  while  a  Random  Forest  considers  a  more  global 

view,  the  most  likely  explanation  for  our  surprising  results  is  that  the  KDI  feature 

fails  to  localize  important  keystroke  dynamics  information.  In  nay  case,  our  Random 

Forest  results  set  a  strong  benchmark  for  the  user  identification  problem,  with  respect 

to  the  popular  Buffalo  keystroke  dynamics  dataset. 

There  are  a  couple  of  practical  issues  with  our  approach.  First,  a  substantial  amount 

of  keystroke  data  is  required  for  training.  Collecting  reliable  training  data  would  be 

a  challenge.  Second,  our  classification  results  are  based  on  keystroke  sequences  of 

length  100.  Requiring  100  keystrokes  means  that  an  attack  that  can  be  completed 

with  a  small  number  of  keystrokes  might  go  undetected.  From  Table  3  we  see  that the  results  degrade  by  about  6%  when  50  keystrokes  are  used,  and  hence  in  some 

situations,  it  might  be  desirable  to  trade  accuracy  for  shorter  keystroke  sequences. 

Future  research  could  explore  incorporating  additional  features,  such  as  digraph 

and  trigraph  latencies,  or  even  other  biometric  data,  to  improve  model  performance. 

Also,  the  Buffalo  keystroke  dataset  that  we  employed  for  our  experiments  was  created 

using  mechanical  keyboards.  It  would  be  interesting  to  obtain  keystroke  data  from 

mobile  devices  and  apply  a  similar  analysis  to  that  data.  The  dynamics  of  touch-based 

interactions  likely  differ  substantially  from  those  of  traditional  mechanical  keyboard 

input. 

Another  potential  area  of  future  research  is  the  development  of  an  efficient  strategy 

for  adding  new  users  to  an  existing  keystroke  dynamics-based  authentication  or 

identification  system.  Currently,  incorporating  new  users  into  a  multiclass  model 

generally  requires  retraining  the  entire  model,  which  may  not  be  practical  in  real-

world  scenarios.  To  overcome  this  issue,  one  could  explore  methods  for  determining 

the  cluster  that  a  user’s  keystroke  patterns  most  closely  match.  It  would  then  be 

possible  to  consider  a  two-stage  process,  whereby  users  are  first  assigned  to  a  cluster, 

and  subsequently  distinguished  from  the  other  users  in  their  cluster.  By  assigning  a 

user  to  a  cluster,  we  could  avoid  the  problem  of  retraining  a  multiclass  model  for 

all  users.  This  approach  could  facilitate  the  seamless  integration  of  new  users  into 

the  system,  while  maintaining  the  efficiency  and  accuracy  of  the  identification  or 

authentication  process. 

In  summary,  we  have  presented  a  new  benchmark  result  for  the  challenging  prob-

lem  of  user  identification  based  on  keystroke  dynamics.  That  this  was  achieved 

using  a  classic  machine  learning  model  is  somewhat  surprising.  In  any  case,  our 

results  indicate  that  practical,  real-world  user  identification—based  on  keystroke 

dynamics—may  be  feasible. 
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Abstract  Leveraging  machine  learning  for  biometric  authentication  is  an  area  of 

research  that  has  seen  a  lot  of  progress  within  the  past  decade.  Keystroke  authentica-

tion  based  on  machine  and  deep  learning  binary  classifiers  aims  to  develop  a  robust 

model  to  distinguish  a  user  from  an  adversary  based  on  typing  metrics  (keystrokes). 

While  keystroke  authentication  started  with  fixed  text,  where  users  types  the  same 

data,  the  shift  has  been  to  free  text  data  where  every  user’s  data  varies.  However,  popular  deep  learning  classifiers  are  bottlenecked  by  the  large  amount  of  data  needed  to 

make  them  efficient.  This  work  solves  the  data  bottleneck  issue  in  keystroke  authenti-

cation’s  binary  classification  problem  by  utilizing  Generative  Adversarial  Networks 

to  generate  free  text  keystroke  data  with  a  valid  label.  Furthermore,  the  produced 

synthetic  data  are  used  to  train  a  Convolutional  Neural  Network,  attempting  to  push 

the  Equal  Error  Rate  rate  even  lower  and  at  the  same  time  resolve  the  data  bottleneck. 

1 

Introduction 

As  society’s  reliance  on  technology  is  higher  than  ever  before,  nefarious  actors  are 

frequently  leaking  and/or  cracking  passwords  at  increasing  rates,  enabling  others 

to  gain  unauthorized  access  and  possibly  cause  irreparable  damage  to  victims.  Even 

with  additional  layers  of  security  such  as  2  Factor  Authentication  (2FA),  simply  steal-

ing  a  smartphone  can  allow  an  attacker  to  bypass  this  mechanism.  Consequently,  to 

enhance  current  security  protocols,  vast  research  in  keystroke  authentication  has 

been  undertaken.  Keystroke  authentication  is  a  form  of  biometric  authentication, 

where  an  individual’s  keystroke  data,  while  typing,  is  collected  by  a  computer  and 

fed  into  a  machine  learning  model  (ML).  The  model  captures  specific  details  about 

keystroke  patterns  to  discriminate  against  unauthorized  users.  Moreover,  as  a  user 
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types  their  password  repeatedly,  the  metrics  used  to  gather  information  about  the 

patterns  become  more  stable,  eventually  reaching  a  point  with  minimal  change.  As 

a  result,  if  an  adversary  can  figure  out  a  user’s  password,  it  is  likely  that  their  typing  habits  will  be  distinct  enough  for  a  model  to  recognize,  especially  if  it  is  the 

adversary’s  first  time  typing  the  password.  Essentially,  with  vast  amounts  of  data,  a 

computer  can  recognize  how  a  group  of  individuals  type  and  distinguish  them  from 

one  another,  even  if  the  individuals  are  typing  the  same  or  different  things. 

A  significant  amount  of  recent  work  has  been  centered  around  exploring  tech-

niques  to  extract  features  more  representative  of  a  user’s  typing  habits  without  losing 

accuracy  or  increasing  the  computational  cost.  Most  of  the  work  carried  out  analyzes 

either  fixed  text  or  free  text  behavior.  The  key  distinction  between  fixed  text  and  free text  behavior  is  in  the  datasets.  Fixed  text  behavior  is  analyzed  from  a  collection 

of  individuals  typing  the  same  phrase/password  where  the  typing  behaviors  follow 

different  patterns.  Since  everyone  types  the  same  phrase,  translating  these  metrics 

into  a  fixed-feature  vector  is  more  straightforward.  In  contrast,  free  text  behavior 

is  extracted  from  free  text  data  which  usually  consists  of  a  collection  of  users  who 

typed  very  different  things.  Consequently,  working  with  free  text  data  means  that 

we  must  consider  feature  engineering,  as  variability  in  keystroke  length  as  well  as 

the  keystrokes  themselves  may  impact  the  effectiveness  of  any  model.  Overall,  both 

suffer  the  issue  of  requiring  a  large  amount  of  data,  generally  more  than  a  user  would 

be  willing  to  give  up  time  for,  and  a  relatively  high  false  negative  rate  making  it  more challenging  to  apply  as  an  extra  security  layer  in  a  commercial  environment. 

This  work  builds  upon  recent  robust  deep  learning  architectures  such  as  Convolu-

tional  Neural  Networks  (CNNs)  with  varying  kernel  sizes  and  cutout  regularization 

that  leverage  novel  feature  engineering  techniques  for  free  text  keystroke  authentica-

tion  presented  in  Li  et  al.  [ 9].  We  aim  to  enhance  the  accuracy  of  these  classifiers  to investigate  if  the  data  bottleneck  issue  can  be  mitigated  through  generated  images  by 

experimenting  with  different  Generative  Adversarial  Networks  (GAN)  architectures: 

the  Deep  Convolution  GAN  (DCGAN),  the  Wasserstein  GAN  (WGAN),  and  the 

Conditional  GAN  (CGAN).  Additionally,  this  work  uses  novel  feature  engineering 

techniques  to  transform  free  text  data  into  fixed  feature  vectors  that  can  be  trained  on popular  classical  methods  for  fixed  text  keystroke  authentication  like  Random  Forest 

(RF),  Support  Vector  Machines  (SVM),  and  K-Nearest  Neighbors  (KNN).  We  then 

contrast  the  performance  of  deep  learning  and  classical  methods  with  previous  liter-

ature,  by  reviewing  the  performance,  and  applicability  in  a  commercial  environment. 

The  contributions  of  this  work  include  the  following:

• A  novel  feature  engineering  technique  for  transforming  free  text  keystroke  data 

into  fixed  feature  vectors. 

• Generating  free  text  keystroke  data  for  deep  learning  classifier  with  various  GAN 

architectures. 

• Using  augmented  data  to  enhance  the  performance  of  deep  learning  binary 

classifiers. 

The  rest  of  the  chapter  is  structured  as  follows:  Section  2  provides  similar  work, and  the  learning  techniques  employed  in  the  work.  Section  3  describes  in  more
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depth  the  various  forms  of  keystroke  authentication,  and  data  collected,  and  focuses 

on  different  feature  engineering  techniques  used  to  transform  the  data  for  training 

and  testing.  Section  4  highlights  the  architecture  used,  the  hyperparameters  that  are selected  for  the  classification  models,  and  the  generative  models.  Section  5  provides an  analysis  of  the  results  collected  from  all  the  experiments  conducted.  Lastly,  Sect. 6 

highlights  the  main  goals  achieved  in  this  work  and  directions  for  future  work. 

2 

Background 

Keystroke  authentication  is  a  method  for  analyzing  and  measuring  an  individual’s 

typing  behavior  on  a  keyboard  to  determine  whether  they  are  a  legitimate  user  or 

an  impostor.  The  method  captures  timing  data  such  as  key  press  duration  (dwell 

time)  and  the  time  between  key  presses  (flight  time)  to  build  a  distinctive  typing 

pattern  for  each  individual.  Fixed  text  datasets  in  keystroke  authentication  consist  of 

keystroke  data  where  all  users  type  the  same  predefined  text  or  phrase  repeatedly. 

This  controlled  input  allows  for  consistent  timing  pattern  comparisons,  primarily 

used  for  static  authentication.  Free  text  datasets,  on  the  other  hand,  involve  users 

typing  unrestricted  text  of  their  choice,  resulting  in  variable  content  and  keystroke 

sequences.  These  datasets  are  utilized  for  dynamic  authentication,  reflecting  more 

natural  typing  behaviors  and  providing  a  more  realistic  assessment  of  user  identifi-

cation.  Equal  error  rate  (EER)  is  a  metric  used  in  keystroke  authentication  and  other 

biometric  systems.  It’s  the  point  at  which  the  false  acceptance  rate  (FAR),  i.e.,  incor-

rectly  accepting  an  imposter,  and  false  rejection  rate  (FRR),  i.e.,  incorrectly  rejecting 

a  legitimate  user,  are  equal.  A  lower  EER  indicates  a  more  secure  and  usable  system. 

 2.1 

 Related  Work 

Research  in  keystroke  dynamics  has  been  present  for  a  long  time,  first  explored  in 

1977  to  investigate  whether  users  could  be  distinguished  based  on  how  they  typed 

their  name  [ 5]. In  recent  years,  keystroke  authentication  has  experienced  significant advancements,  largely  driven  by  machine  learning  techniques.  The  work  of  Killourhy 

et  al.  [ 7]  has  played  a  pivotal  role  in  this  field  by  enabling  succeeding  research  to  be directly  comparable  by  establishing  a  fixed  text  dataset  that  serves  as  a  benchmark. 

This  data  consisted  of  50  users  typing  the  same  password  “.tie5Roanl”  400  times  and 

leveraging  various  architectures  for  their  top  performing  detectors  such  as  KNN  and 

SVM  to  achieve  an  EER  in  the  range  of  6%  to  7%.  Other  work  such  as  [ 4]  sought  to take  keystroke  authentication  beyond  the  desktop/laptop  keyboard  realm  and  explore 

its  application  on  mobile  devices.  With  more  data  gathered  through  internal  sensors 

such  as  finger  positioning,  length,  and  width,  the  trained  models  achieved  accuracy 

varying  from  58%  to  91%. 
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Moreover,  studies  such  as  [ 10, 13]  went  beyond  the  realm  of  classical  methods, focusing  on  the  utility  of  deep  learning  methods  for  keystroke  authentication.  Consequently,  deep  learning-centric  literature  used  on  fixed  data  like  those  collected 

in  [ 7]  revealed  that  these  types  of  classifiers  could  outperform  classical  methods. 

The  authors  in  [ 13]  experimented  with  deep  learning  methods  achieving  an  overall accuracy  of  92.6%,  outperforming  classical  methods  by  a  considerable  amount.  Similarly,  in  [ 10]  they  experimented  with  novel  feature  engineering  techniques  like  transforming  fixed  feature  vectors  into  multiple  channeled  digraphs,  which  are  treated  as 

images,  and  fed  into  different  classifiers  achieving  an  accuracy  anywhere  from  90% 

to  95%,  thus  improving  on  previous  benchmark  models. 

Recently,  the  direction  in  this  field  has  moved  towards  creating  models  that  can 

learn  and  discriminate  a  person’s  typing  habits  in  free  text  datasets.  Consequently, 

these  solutions,  are  more  practical  and  effective  as  part  of  an  Intrusion  Detection  Sys-

tem.  Furthermore,  since  datasets  contain  significant  variation  between  the  samples  of 

each  user,  feature  engineering  becomes  more  involved  as  free  text  must  be  extracted, 

categorized,  normalized,  and  transformed  into  fixed  feature  vectors  for  classical 

methods.  In  [ 1]  they  use  a  novel  way  of  categorizing  a  sequence  of  keystrokes  per user  and  a  majority-vote  technique  for  classical  machine  learning  methods,  achieving 

perfect  accuracy  for  every  user.  However,  these  results  are  not  comparable  as  their 

dataset  and  keystroke  extraction  techniques  are  not  available.  Alternatively,  in  [ 9, 18] 

they  take  a  different  approach  by  focusing  on  different  keystroke  features,  lengths, 

and  deep  learning  architectures  to  improve  model  performances. 

While  the  previous  papers  do  achieve  great  results,  the  feature  engineering  tech-

nique  and  the  classifiers  constructed  in  [ 9]  achieve  a  considerably  low  EER  rate  that may  meet  various  standards. 

This  work  aims  to  explore  several  GAN  architectures  from  [ 3, 6, 12, 14] in conjunction  with  deep  learning  architectures  to  see  if  the  classifiers  can  be  enhanced, 

and  if  the  GAN  generated  data  can  be  leveraged  to  reduce  the  amount  of  user  samples 

required  for  training  and  testing,  thus  improving  on  the  data  bottleneck. 

 2.2 

 Learning  Techniques 

In  this  work,  our  emphasis  is  on  deep  learning  techniques,  with  the  classic  machine 

learning  models  mentioned  above  used  to  establish  a  baseline  for  comparison.  A 

limited  scope  of  machine  learning  techniques  was  leveraged:  Logistic  Regression 

(Logit),  K  Nearest  Neighbors  (KNN),  Support  Vector  Machines  (SVM),  and  Random 

Forests  (RF). 

A  concise  overview  of  each  deep  learning  technique  discussed  is  provided  below. 

A  convolutional  neural  network  (CNN)  is  a  deep  learning  model  that  is  aimed  at 

mimicking  the  human  visual  cortex  and  the  way  it  processes  information.  Consisting 

of  multiple  layers  including  convolutional,  pooling,  and  fully  connected  layers,  the 

architecture  enables  the  identification  of  spatial  patterns  and  structures  within  images. 
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Moreover,  [ 9]  successfully  applied  CNNs  to  free  text  keystroke  authentication achieving  considerable  accuracy  with  a  low  EER.  Our  work  utilizes  the  same  CNNs 

for  testing  the  quality  and  efficacy  of  the  GAN  generated  data. 

Generative  Adversarial  Networks  (GANs)  [ 6]  are  a  recent  advancement  in  deep learning  that  has  been  a  powerful  tool  for  quality  image  generation  across  diverse  and 

complex  datasets.  A  GAN  contains  a  unique  architecture,  consisting  of  a  generator 

used  to  generate  images  and  a  discriminator  to  distinguish  between  the  real  and 

generated  images.  Together,  these  two  networks  go  back  and  forth  in  a  min-max  game 

where  the  generator  starts  with  a  random  noise  vector  that  eventually  transforms  into 

the  shape  of  the  desired  input,  and  the  discriminator  evaluates  the  real  samples  against 

the  generated  and  provides  feedback  that  the  generator  uses  to  enhance  the  quality 

of  the  images. 

In  the  following  years,  new  architectures  have  been  produced  such  as  DCGAN, 

WGAN,  and  CGAN,  all  aimed  at  mitigating  the  limitations  of  its  predecessors.  By 

employing  different  GANs  for  generating  free  text  keystroke  authentication  data,  the 

ability  to  learn  complex  patterns  and  variations  in  data  accurately  can  be  leveraged 

to  reproduce  keystroke  data  representative  of  a  given  user. 

Deep  Convolutional  Generated  Adversarial  Network  (DCGAN)  [ 14]  is  a  deep 

learning  model  that  influences  CNNs  using  convolutional  layers  in  the  discriminator 

allowing  it  to  extract  features  from  images  the  same  way  a  CNN  does.  Conversely, 

the  generator  uses  deconvolutional  layers  (also  known  as  upsampling)  to  take  a  low-

resolution  image  and  output  a  higher-quality  image  that  could  fool  the  discriminator. 

The  deconvolutional  layers  work  the  opposite  of  convolutional  layers,  performing 

mathematical  operations  between  the  input  data  and  kernels,  but  producing  an  output 

that  is  greater  than  the  input.  Realistic  3-D  images  that  take  account  of  textures, 

shapes,  and  colors  are  produced  from  their  GAN  highlighting  its  robustness  to  learn 

from  diverse  datasets.  With  a  powerful  underlying  structure,  DCGANs  are  a  popular 

choice  for  complex  tasks  such  as  high-quality  image  generation,  or  in  this  case, 

keystroke  generation,  as  GANs  like  this,  allow  for  multidimensional  input. 

Wasserstein  Generative  Adversarial  Network  (WGAN)  [ 3]  is  a  GAN  that  was implemented  to  improve  the  overall  stability  and  convergence  during  training - obstacles  of  previous  architectures.  WGAN  achieves  this  by  using  a  different  loss  func-

tion  known  as  the  “Wasserstein”  loss  rather  than  the  common  binary  cross-entropy 

loss.  The  Wasserstein  distance  is  a  powerful  function  as  it  measures  the  difference 

between  two  probability  distributions,  computing  the  minimum  amount  of  work  to 

transform  one  distribution  into  another  like  generating  high-quality  samples  from 

low-resolution  images.  Moreover,  as  the  model  has  the  discriminator  and  generator 

alternate  to  update  for  a  fixed  number  of  iterations,  this  process  enables  the  WGAN 

to  avoid  instability,  the  vanishing  gradient,  and  mode  collapse.  They  demonstrate 

these  qualities  by  producing  images  on  par  with  those  generated  from  a  DCGAN 

(better  in  some  instances)  but  with  improved  stability  and  convergence.  As  a  result, 

WGANs  are  a  common  approach  when  other  architectures  like  DCGAN  or  CGAN 

succumb  to  the  common  pitfalls  during  training. 

Another  recent  and  popular  GAN  architecture  is  the  Conditional  Generative 

Adversarial  Network  (CGAN)  [ 12],  developed  to  overcome  the  previous  limitations
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such  as  generating  data  from  a  random  noise  input  vector.  Moreover,  this  limitation 

is  overcome  with  the  introduction  of  conditional  input,  which  is  just  additional  input 

such  as  a  label  or  attribute  that  is  concatenated  with  the  random  noise  vector.  By 

leveraging  these  conditional  inputs,  generating  images  with  labels  such  as  ‘happy’ 

or  ‘animal’  are  not  completely  random  as  they  follow  a  pattern  based  on  the  addi-

tional  input,  thus  eliminating  the  lack  of  ability  over  the  content  being  generated 

in  [ 6].  The  GAN  conditioned  with  class  labels  was  able  to  produce  visually  realistic  images  similar  to  those  in  the  handwritten  digits  MNIST  dataset,  capturing  a 

higher  degree  of  coherence  and  specificity  lacking  in  the  original  GAN.  For  free  text 

keystroke  authentication,  the  CGAN’s  ability  to  incorporate  conditional  input  could 

be  particularly  advantageous  for  generating  keystroke  patterns  that  are  specific  to 

individual  users’  typing  habits. 

3 

Dataset 

We  use  the  Buffalo  Keystroke  Dataset  [ 16]  that  was  gathered  by  the  researchers  at  the University  of  Buffalo,  consisting  of  keystroke  data  collected  from  148  subjects.  The 

subjects  participated  in  three  different  laboratory  sessions,  spanning  over  a  month, 

with  73  people  using  the  same  keyboard  and  75  people  using  different  keyboards 

each  session  to  complete  two  tasks.  One  task  was  completing  Steve  Jobs’s  com-

mencement  speech  broken  up  into  three  parts,  and  the  other  was  completing  free 

text  questions.  The  results  are  long  text  files  recording  the  character  activated  if  it 

is  pressed/released  (KeyUp,  KeyDown),  and  the  timestamp  of  when  it  was  pressed. 

About  5700  keystrokes  are  gathered  per  session  consisting  of  fixed  text  and  free  text 

responses,  altogether  more  than  17,000  keystrokes  for  a  total  of  three  sessions.  See 

statistics  of  the  dataset  in  [ 16]. 

The  two  types  of  keystroke  datasets  used  for  exploring  ML-based  keystroke 

authentication  are  fixed  text  and  free  text.  Each  involves  different  approaches  for 

pre-processing  the  data,  especially  if  both  deep  learning  and  traditional  techniques 

are  employed.  Since  data  gathered  for  this  paper  consists  of  free  text  data,  we  go 

more  into  depth  about  the  process  of  feature  engineering.  The  GitHub  repository  of 

this  work  is  in  [ 17]. 

 3.1 

 Fixed  Text  and  Free  Text  Data 

Although  our  work  uses  free  text  data  for  keystroke  authentication,  it  is  worth  briefly 

mentioning  how  different  the  structure  of  fixed  text  data  is  compared  to  free  text 

data,  to  observe  why  feature  engineering  is  more  involved.  As  the  name  suggests, 

fixed  text  data  consists  of  metrics  (features)  extracted  from  users  typing  the  same 

things.  In  the  case  of  [ 7],  the  participants  had  to  type  the  same  password  “.tie5Roanl” 

400  times,  where  each  attempt  yields  a  feature  vector  containing  the  different  timing
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metrics  extracted  (31  features).  As  a  result,  the  data  pre-processing  aspect  is  less 

intensive  as  the  input  data  collected  from  every  user  yields  fixed  feature  vectors. 

Conversely,  free  text  data  is  usually  comprised  of  a  long  series  of  various  keystrokes 

pressed  (either  up  or  down)  with  a  timestamp  assigned  next  to  them,  as  seen  in  the 

Buffalo  Keystroke  dataset.  Moreover,  the  words  that  participants  typed  and  the  total 

length  of  keystrokes  used  will  vary,  as  there  are  significant  underlying  patterns  in 

their  typing  habits.  For  this  reason,  extra  data  pre-processing  steps  must  be  performed 

to  transform  the  free  text  data  into  fixed  feature  vectors  for  traditional  models  and 

tensors  for  deep  learning  models  like  CNN. 

 3.2 

 Time-Based  and  Touch-Based  Features 

Similar  to  how  keystroke  authentication  is  separated  into  either  fixed  text  or  free 

text  data,  the  type  of  features  in  most  studies  are  also  split  between  time  and  touch-

based  features.  As  the  name  suggests,  time-based  features  involve  extracting  features 

produced  from  time-based  measurements.  If  a  user  is  typing  a  password,  the  tim-

ing  of  the  press/release  between  two  consecutive  keys,  “a”  and  “b”,  would  be  the 

time-based  features  for  this  pair  of  characters.  Conversely,  touch-based  features  are 

measurements  taken  from  an  individual  physically  interacting  with  a  touch-screen. 

In  the  case  of  the  same  user  typing  their  password,  the  touch-based  features  could  be 

the  pressure  of  tapping  a  letter  and  how  much  of  the  screen  is  taken  up  by  pressing 

a  letter.  Given  that  most  research  is  conducted  with  time-based  features,  studies  like 

[ 2,  8, 11, 15]  have  shown  that  adding  touch-based  data  can  enhance  the  detection system  on  a  smartphone. 

As  the  free  text  data  from  the  Buffalo  dataset  only  consists  of  typed  characters 

with  a  timestamp  attached  to  them,  feature  engineering  with  time-based  features  is 

explored. 

 3.3 

 Free  Text  Data  Time-Based  Features 

Similar  to  [ 1], time-based  features  are  extracted  from  each  pair  of  consecutive keystrokes.  Each  feature  refers  to  some  duration  of  an  action  (press  or  release) 

between  these  two  characters.  Figure  1  depicts  an  example  of  typing  two  characters,  releasing  a  key  will  produce  an  “Up”  event  whereas  pressing  a  key  yields  a 

“Down”  event.  Altogether,  the  “Up”  and  “Down”  events  between  the  characters  “A” 

and  “B”  will  produce  5  features  that  fall  into  one  of  the  following  categories. 

• Up-Down:  The  time  between  the  first  key  being  released  and  the  second  key  being 

pressed. 

• Up-Up:The  time  between  the  first  and  second  key  being  released. 
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Fig.  1  Time-based  feature  extraction

• Down-Up:  The  time  between  the  first  key  being  pressed  and  the  second  key  being 

released. 

• Down-Down:  The  time  between  the  first  and  second  key  being  pressed. 

• Duration:  The  time  between  a  single  key  being  pressed  and  released. 

 3.4 

 Feature  Engineering  for  Deep  Learning 

We  used  the  same  data  pre-processing  technique  as  in  [ 1]  for  transforming  a  sequence of  keystrokes  collected  into  an  image-like  (5-D)  tensor,  called  a  Keystroke  Dynamic 

Image  (KDI),  that  can  be  used  as  input  for  a  CNN.  Moreover,  the  process  of  this 

transformation  is  discussed  more  thoroughly  next. 

3.4.1

Keystroke  Dynamic  Image 

The  novel  feature  engineering  employed  by  [ 9]  starts  with  taking  a  subsequence of  keystrokes  from  the  total  keystrokes  types  by  a  given  user,  and  translating  those 

keystrokes  being  typed  into  a  digraph.  The  most  integral  part  of  KDI  revolves  around 

creating  digraphs  that  are  used  as  an  input  channel  for  the  KDI.  Each  digraph  consists 

of  the  top  42  most  used  characters  on  a  keyboard  and  represents  the  duration  of  an 

event  happening  between  two  keys  typed.  For  example,  typing  “A”  and  “B”  would 

yield  a  digraph  where  the  “AB”/“BA”  position  has  been  updated.  With  this  example 

in  mind,  each  digraph  represents  one  of  the  5  different  time  features  that  are  extracted, resulting  in  5  channels  (matrices)  or  a  5-D  image.  Following  the  previous  example, 

typing  those  two  characters  would  update  the  same  position  in  every  digraph,  but
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with  different  values.  A  more  concise  image  is  given  in  Fig. 2  depicting  how  a  KDI looks  like.  Since  the  average  amount  of  keystrokes  per  person  in  the  dataset  is  more 

than  5000,  by  taking  subsequences  of  keystrokes  within  the  interval.[50 ,  75 ,  100], a reasonable  amount  of  data  can  be  captured  and  updated  in  the  KDI  without  adding 

too  much  noise.  In  the  case  of  50  keystrokes,  a  sequence  of  49  could  produce  as 

many  as  294  features.  However,  due  to  repeated  character  pairs  and  other  factors,  the 

number  of  features  is  always  less.  We  apply  cutouts  on  the  KDIs,  which  are  artificially 

added  occlusions  to  these  image-like  data  as  in  [ 9]  in  order  to  avoid  overfitting  the CNNs. 
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Fig.  2  Keystroke  Dynamic  Image  (KDI)  example
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 3.5 

 Feature  Engineering  for  Machine  Learning 

As  machine  learning  models  typically  work  with  fixed  feature  vectors,  working  with 

a  set  of  user  KDIs  would  not  be  possible  unless  a  way  for  transforming  the  KDI  into 

a  fixed  feature  vector  was  found.  Therefore,  fixed  feature  vectors  are  produced  from 

the  images,  and  are  able  to  be  trained  and  tested  on  robust  traditional  ML  models. 

Next,  we  give  more  details  on  how  the  key  pair  mappings  in  the  KDI  are  transformed 

into  a  corresponding  fixed  feature  vector. 

3.5.1

Keyboard  Feature  Vector 

We  use  the  technique  of  [ 1]  for  transforming  free  text  data  into  fixed  feature  vectors. 

Their  process  relies  on  two  critical  aspects  (1)  the  adjacency  between  two  characters 

typed,  and  (2)  the  side  of  the  keyboard  where  the  two  characters  are  typed.  By 

combining  these  two  components,  a  set  of  feature  vectors  that  capture  the  underlying 

pattern  of  the  sequence  of  keystrokes  typed  is  produced.  For  example,  with  respect 

to  adjacency,  if  the  letter  “G”  is  typed,  and  “F”  is  pressed  next,  then  this  would  be 

a  first-level  adjacency,  as  the  two  characters  are  next  to  each  other  on  a  keyboard. 

On  the  other  hand,  if  “I”  was  pressed  after  “G”,  this  would  represent  a  third-level 

adjacency,  since  “I”  is  three  keys  away  from  “G”,  and  so  on. 

The  second  keyboard  side  is  more  straightforward,  as  each  pair  of  characters  typed 

must  fall  into  one  of  the  following  categories. 

• Left  Left  (LL):  Both  keys  pressed  are  on  the  left  side  of  the  keyboard. 

• Right  Right  (RR):  Both  keys  pressed  are  on  the  right  side  of  the  keyboard. 

• Both  (B):  The  two  keys  pressed  are  on  different  sides. 

Consider  again  the  examples  above:  If  “F”  is  pressed  after  “G”  then  the  resulting  key-

board  tag  would  be  (LR),  whereas  “I”  after  “F”  would  produce  a  (B)  tag.  This  process 

yields  15  possible  categories  a  key  pair  can  be  mapped  into,  each  of  these  categories 

containing  five  time-based  features:  Up-Down,  Down-Up,  Up-Up,  Hold1,  Hold2. 

Altogether,  these  15  categories  with  five  values  in  each  category,  are  concatenated 

to  produce  a  fixed  feature  vector  of  length  75. 

3.5.2

Mapping  KDI 

We  follow  a  similar  approach  for  mapping  the  KDI  to  fixed  feature  vectors.  Even 

though  these  mappings  can  be  directly  performed  on  the  free  text  data  directly  as  it 

is  processed,  KDI  is  used  as  the  input.  We  first  captured  all  the  unique  pairs  in  the 

digraphs  (non-zero  values),  saving  each  of  the  timestamps  corresponding  to  a  key  pair 

in  a  dictionary.  An  adjacency  keyboard  based  on  a  MacBook  was  then  constructed 

and  traversed  with  a  breadth-first  search  (BFS)  to  compute  the  level  of  adjacency  for 

each  pair  of  characters  in  the  dictionary  computed  previously.  However,  unlike  [ 1], 
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Table  1  Timing  features 

Keyboard  category

Feature  set 

1st  Adjacent  Left  Side

AL-H

AL-UU

AL-DD

AL-UD

AL-DU 

1st  Adjacent  Right  Side

AR-H

AR-UU

AR-DD

AR-UD

AR-DU 

1st  Adjacent  Both  Side

AB-H

AB-UU

AB-DD

AB-UD

AB-DU 

2nd  Adjacent  Left  Side

SL-H

SL-UU

SL-DD

SL-UD

SL-DU 

2nd  Adjacent  Right  Side

SR-H

SR-UU

SR-DD

SR-UD

SR-DU 

2nd  Adjacent  Both  Side

SB-H

SB-UU

SB-DD

SB-UD

SB-DU 

3rd  Adjacent  Left  Side

TL-H

TL-UU

TL-DD

TL-UD

TL-DU 

3rd  Adjacent  Right  Side

TR-H

TR-UU

TR-DD

TR-UD

TR-DU 

3rd  Adjacent  Both  Side

TB-H

TB-UU

TB-DD

TB-UD

TB-DU 

None  Adjacent  Left  Side

NL-H

NL-UU

NL-DD

NL-UD

NL-DU 

None  Adjacent  Right  Side

NR-H

NR-UU

NR-DD

NR-UD

NR-DU 

None  Adjacent  Both  Side

NB-H

NB-UU

NB-DD

NB-UD

NB-DU 

there  are  only  4  adjacency  levels  used  to  reduce  the  amount  of  empty  (zero)  features, 

these  are  .1 ,  2 ,  3,  and  None.  Additionally,  we  modified  the  five  time-based  features captured  to:

• Up-Down

• Down-Up

• Up-Up

• Down-Down

• Hold. 

Nonetheless,  we  use  the  same  keyboard  side  tags,  LL,  RR,  or  B.  From  our  process, 

a  key  pair  mapping  can  fall  into  one  of  12  categories  each  containing  five  times 

based  features,  altogether  creating  a  fixed  feature  vector  of  length  60  once  all  the 

categories  have  been  concatenated.  Table  1  lists  all  the  possible  categories  a  key  pair can  be  mapped  into. 

4 

Architecture 

In  this  Section,  we  go  in-depth  on  the  various  machine  learning  and  deep  learning 

models  used  for  our  binary  classification  problem  and  the  corresponding  hyperpa-

rameters,  as  well  as  the  hyperparameter  tuning,  involved  for  the  binary  classification 

and  generating  data. 
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 4.1 

 Binary  Classification 

The  Buffalo  dataset  consists  of  148  users,  each  containing  several  thousand 

keystrokes  from  doing  the  same  tasks  as  the  other  users.  Even  though  multi-

classification  can  be  leveraged  for  identifying  users  rather  than  authenticating,  which 

is  a  binary  classification  model,  the  implementation  would  be  impractical  for  a  com-

mercial  enterprise.  Multi-classification  would  involve  more  input  from  many  dif-

ferent  users,  and  the  increased  computational  cost  and  added  noise  from  more  data 

used  would  produce  a  model  that  takes  significantly  longer  to  train  and  is  less  robust. 

Overall,  binary  classification  is  more  practical  for  this  problem  as  the  main  focus  of 

these  models  is  to  uncover  hidden  typing  patterns  for  a  given  user  and  detect  whether 

these  patterns  exist  in  a  given  attempt.  The  goal  of  these  models  is  to  each  take  in  a portion  of  a  user’s  positive  data  select  limited  negative  samples  from  other  users,  and 

identify  whether  a  given  sample  belongs  to  a  legitimate  user  or  an  intruder.  Moreover, 

since  positive  data  imbalance  is  a  common  challenge  in  keystroke  authentication,  it 

is  advisable  to  use  Stratified  K-Fold  cross-validation  instead  of  the  standard  K-Fold. 

This  approach  ensures  that  each  fold  maintains  the  same  class  distribution  as  the  orig-

inal  dataset.  For  instance,  if  the  dataset  consists  of  0.3%  positive  and  0.7%  negative 

samples,  the  training  and  testing  datasets  preserve  these  ratios. 

 4.2 

 Machine  Learning  Models 

As  mentioned  earlier,  we  use  a  novel  feature  engineering  technique  that  transforms 

the  KDI  to  create  fixed  feature  vectors  traditional  algorithms  can  train  on.  This  work 

uses  these  traditional  algorithms  as  a  baseline  for  comparison  with  other  studies 

that  use  classical  methods  for  free  text  data,  and  to  highlight  the  differences  in 

performance  between  classical  and  deep  learning  models. 

4.2.1

Hyperparameter  Tuning 

In  order  to  create  powerful  and  robust  models,  a  reasonable  amount  of  hyperparameter 

tuning  is  undergone  to  find  the  parameters  that  significantly  improve  the  model.  We 

use  random  grid  search  with  features  similar  to  the  ones  seen  in  Table  2  to  find  the optimal  set  of  initial  parameters  for  each  model.  Moreover,  as  each  architecture  varies 

in  the  additional  hyperparameters  provided  in  the  architecture,  each  model  has  an 

additional  set  of  architecture-related  parameters  that  also  undergo  a  grid  search. 

For  KNN  we  use  three  parameters  to  optimize:  the  number  of  neighbors,  the  power 

parameter  p,  and  the  weights.  By  using  different  numbers  of  neighbors  in  KNN,  the 

model  can  find  an  optimal  set  of  neighbors  that  preserves  the  local  structure  of  the 

data  without  overfitting,  and  generalize  the  data  well  without  underfitting.  Moreover, 
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Table  2  Best  hyperparameters  for  machine  learning  models 

Model

Parameter

Search  space

Selected 

KNN

Neighbors

[10,20,30]

20 

p

[1,2,3]

1 

Weights

Uniform,  distance

Distance 

SVM

C

[0.01,  0.1,  1,  10]

1 

Kernel

[3, 5, 7]

3 

Gamma

[0.001,  0.01,  0.1]

0.1 

Random  forest

Estimators

[10,50,100]

100 

Max  features

Auto,  Sqrt

Sqrt 

Max  depth

[5,15,25]

25 

Bootstrap

[True,  False]

True 

Logistic  Regression

Estimators

[10,  100,  150]

100 

Learning  rate

[0.001,  0.1,  1]

0.1 

Bootstrap

[True,  False]

True 

experimenting  with  the  power  and  weight  parameters  helps  the  model  find  a  distance 

metric  and  weight  distribution  between  neighbors  that  improves  itself. 

For  SVM  we  use  the  following  three  parameters  to  optimize:  the  regularization 

parameter  C,  the  Kernel,  and  the  Gamma  used.  By  modifying  the  C  we  can  adjust 

values  to  find  a  nice  balance  between  low  testing  and  low  training  error.  A  similar 

process  occurs  with  the  Gamma  parameter  to  find  a  decision  boundary  that  does  not 

overfit  the  data  too  much.  Lastly,  experimenting  with  different  kernels  allows  us  to 

better  understand  which  kernel  best  handles  the  data. 

For  Random  Forests  we  use  four  parameters  to  optimize:  the  number  of  estimators, 

the  max  features,  the  max  depth,  and  the  bootstrap.  By  exploring  the  data  with 

different  numbers  of  estimators,  the  performance  can  improve,  but  at  a  computational 

cost.  Furthermore,  using  different  thresholds  for  the  number  of  features  and  varying 

the  depth  of  the  trees  allow  us  to  capture  some  control  over  the  randomness  of 

the  forest  generated,  striking  an  ideal  balance  between  a  simple  forest  (potentially 

underfitting)  and  a  complex  forest  (potentially  overfitting). 

For  Logistic  Regression  we  use  the  following  three  parameters  to  optimize:  the 

number  of  estimators,  the  learning  rate,  and  the  bootstrap  variable.  By  exploring 

the  data  with  different  numbers  of  estimators,  the  performance  can  improve  at  a 

computational  cost.  Furthermore,  we  use  various  learning  rate  parameters  to  find  a 

balance  between  the  rate  of  convergence  and  model  generalization. 
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 4.3 

 Deep  Learning  Models 

Since  deep  learning  models  have  demonstrated  that  they  produce  results  comparable 

to  traditional  models,  as  shown  in  [ 9, 13], we  have  chosen  to  incorporate  these  deep learning  models  as  a  benchmark.  This  approach  allows  us  to  showcase  the  quality  of 

the  data  generated  and  implemented  by  our  method  effectively. 

4.3.1

CNNs  and  GANs 

We  leverage  deep  learning  models  that  align  with  the  structure  presented  in  [ 9] as the baselines.  We  utilize  the.  ( 5 × 42 × 42 )  KDIs  of  each  user  as  input  for  the  CNN.  The CNN  itself  consists  of  two  convolutional  layers,  max-pooling  layers,  fully-connected 

layers,  and  a  dropout  layer,  each  working  to  help  the  model  achieve  a  meaningful 

representation  of  the  keystroke  data  without  overfitting.  Ultimately,  producing  a 

probability  (via  sigmoid)  of  the  likeliness  of  a  given  sample  being  authentic  or  not. 

Table  3  contains  the  CNN  hyperparameters. 

Since  the  GAN  architectures  implemented  are  computationally  expensive  to  train, 

we  provided  a  limited  search  space  for  the  initial  parameters  as  seen  in  Table  3  below that  would  be  used  for  all  GAN  models.  Additionally,  we  explore  hyperparameter 

tuning  within  the  varying  GAN  architectures  to  find  the  most  robust  version  as  seen 

in  Table  4. 

Table  3  Initial  hyperparameters  for  deep  learning  models 

Parameter

Search  space

Selected 

CNN

Epochs

200

200 

Learning  rate

0.01

0.01 

Optimizer

Adam

Adam 

GAN

Epochs

[50,  100,  150]

50 

Table  4  Best  hyperparameters  for  GAN  models 

Model

Parameter

Search  space

Selected 

DCGAN

Learning  rate

[2e-6,  2e-5,  2e-4]

2e-6 

batch  size

[16,  32,  64]

64 

WGAN

Learning  rate

[9e-5,  9e-4,  9e-3]

9e-5 

critic  iterations

[2, 5, 15]

5 

weight  clipping

[0.01]

0.01 

CGAN

Learning  rate

[1e-4,  1e-5,  1e-6]

1e-5 

Critic  iterations

[2, 5, 15]

5
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4.3.2

Generating  Positive  Data 

Varying  other  GAN  architectures  such  as  WGAN,  CGAN,  and  DCGAN  are  leveraged 

to  demonstrate  the  efficacy  of  these  deep  learning  models  for  producing  quality 

positive  data.  Ultimately,  we  incorporate  different  architectures  to  identify  how  the 

baseline  models  handle  generated  data,  and  how  the  generated  data  from  each  GAN 

compares  to  one  another.  Intuitively,  each  GAN  utilizes  the  same  underlying  structure 

which  consists  of  a  generator  and  a  discriminator.  The  generator  network  is  producing 

images  that  are  supposed  to  be  similar  to  the  discriminator,  and  the  discriminator  is 

learning  to  distinguish  the  real  and  fake  images.  This  results  in  an  endless  back  and 

forth  until  the  fake  data  is  indistinguishable  from  the  authentic  data  in  this  case. 

Since  GAN  architectures  usually  work  with  the  input  of.  ( 64 × 64 )  and.  ( 128 × 128 ), we  decided  to  pad  the  KDIs  of  .  ( 42 × 42 )  to  produce  a  new  set  of  KDIs  that  are 

.  ( 64 × 64 )  and  can  be  used  as  input  for  GAN  training.  The  next  section  touches  on how  the  generated  data  of.  ( 64 × 64 )  is  tested  with  the  baseline  CNNs.  We  go  in-depth about  the  various  hyperparameters  that  are  tuned  and  could  be  tuned  in  future  work. 

Table  4  has  the  hyperparameters  for  these  different  models. 

For  DCGANs,  the  hyperparameters  batch  size,  and  learning  rate,  are  experimented 

with  as  other  parameters  require  modifying  the  internal  structure  of  the  model.  Fur-

thermore,  the  batch  size  and  learning  rate  are  tuned  to  balance  the  trade-off  between 

faster  convergence  and  more  accurate  gradient  updates  during  training,  which  can 

result  in  more  stable  and  better-quality  synthetic  data  generated  by  the  GAN  model. 

For  the  WGAN  hyperparameters,  we  experimented  with  the  learning  rate,  critical 

iterations,  and  weight  clipping.  The  learning  rate  is  straightforward  to  determine  by 

finding  a  value  that  leads  to  optimal  results  without  a  significantly  slow  convergence, 

similar  to  weight  clipping  and  critic  iterations.  Overall,  a  reasonable  amount  of  critic 

iterations,  a  small  learning  rate,  and  a  tight  weight  clipping  can  lead  to  a  stable 

training  process  that  converges  and  produces  quality  data. 

For  the  CGAN,  we  experimented  with  the  learning  rate,  and  critic  iterations. 

Moreover,  it  is  worth  noting  that  the  CGAN  architecture  for  this  problem  is  unique 

in  comparison  to  the  other  GANs.  Unlike  the  other  architectures,  the  CGAN  also 

accepts  class  labels  that  are  combined  with  the  noise  vector  which  helps  generate 

data  belonging  to  a  certain  class. 

5 

Experiments  and  Results 

In  this  Section,  we  provide  the  experimental  setting  and  the  results  of  the  different 

experiments.  Moreover,  we  divide  it  into  two  parts:  First,  we  evaluate  the  performance 

of  machine  learning  models  on  free  text  data  that  has  undergone  feature  engineering, 

and  second,  we  explore  the  effect  of  training  on  generated  GAN  data—specifically, 

we  consider  the  performance  of  CNNs  trained  with  and  without  generated  GAN  data. 
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 5.1 

 Experiment  Strategy 

Our  experiments  are  conducted  with  free  text  data  that  has  undergone  separate  feature 

engineering  techniques  for  machine  learning  and  deep  learning  models.  This  data  is 

first  used  with  machine  learning  models  to  identify  if  any  performance  metrics  are 

comparable  to  prior  studies  that  also  use  machine  learning  models  and  as  another 

baseline  for  the  deep  learning  models  discussed  next.  Secondly,  the  data  is  fed  to 

train  CNN  models  and  the  goal  is  to  achieve  a  very  low  EER.  Lastly,  the  original  data 

the  CNN  has  been  trained  is  fed  into  the  GANs  which  generates  data  that  removes 

the  padding  and  compares  it  with  the  CNN’s  results.  The  overall  expectations  are 

that  the  machine  learning  models  will  be  able  to  identify  but  will  not  outperform 

deep  learning  models  and  that  GANs  will  be  able  to  produce  quality  data  that  the 

CNNs  can  train  on  and  enhance  their  performance. 

 5.2 

 Experiment  Metrics 

With  any  machine  learning  model,  to  gain  insight  into  the  performance  of  the  model 

and  how  it  handles  the  data,  evaluation  metrics  must  be  incorporated  to  provide 

different  perspectives  while  assisting  in  identifying  the  strengths  and  weaknesses. 

We  utilize  three  common  evaluation  metrics  and  a  biometric  evaluation  metric.  The 

three  common  metrics  consist  of  accuracy,  precision,  and  recall.  Accuracy  refers 

to  the  percentage  of  correctly  identified  predictions.  However,  this  metric  can  be 

misleading,  especially  when  there  is  data  imbalance  (as  seen  in  our  data)  since  the 

accuracy  can  be  skewed  to  be  high  but  impractical  in  a  commercial  setting.  As  a  result, precision  and  recall  are  leveraged  to  gain  more  perspective  about  the  model  where 

accuracy  falls  short.  Precision  gives  us  the  accuracy  of  the  positive  predictions  while 

recall  measures  the  completeness  of  the  positive  predictions.  These  three  metrics 

rely  on  a  set  of  variables:  FN,  FP,  TP,  and  TN.  These  variables  are  quite  straightfor-

ward:  True  Positive  (TP)  instances  are  correctly  identified  instances,  True  Negative 

(TN)  instances  are  correctly  identified  instances,  while  False  Positive  (FP)  and  False 

Negative  (FN)  are  instances  incorrectly  identified.  False  Positive  Rate  (FPR)  is  the 

proportion  of  negative  cases  incorrectly  identified  as  positive,  while  False  Negative 

Rate  (FNR)  is  the  proportion  of  positive  cases  incorrectly  identified  as  negative. 

Moreover,  the  biometric  evaluation  the  biometric  used  is  Equal  Error  Rate  (EER) 

which  refers  to  the  point  on  the  False  Acceptance  Rate  (FAR)  and  False  Rejection 

Rate  (FRR)  curves  where  the  error  rate  is  equal  (i.e.,  FAR  ==  FRR).  Figure  3  below depicts  an  example  of  where  the  EER  might  be  for  a  model  that  has  similar  FAR  and 

FRR  curves.  For  this  example,  if  the  EER  rate  is  5%,  then  this  implies  that  adjusting 

the  threshold  at  which  points  are  identified  could  result  in  an  FRR  and  FAR  of  5%. 

As  a  result,  95%  of  intruders  and  authentic  users  are  identified  correctly. 
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Fig.  3  EER  illustrated 

 5.3 

 Machine  Learning  Models  Results 

We  start  with  the  machine  learning  model  results.  The  machine  learning  models  are 

trained  and  tested  on  input  data  which  consists  of  KDIs  mapped  into  fixed  feature 

vectors  of  length  60.  Moreover,  while  the  general  accuracy  of  the  models  is  relatively 

well  as  seen  in  Fig. 4(a, b,  c),  using  other  metrics  such  as  the  precision  and  recall uncovers  a  different  story  about  the  performance  of  the  models.  When  evaluating 

the  models  through  precision  and  recall,  the  results  show  that  models  are  capable 

of  identifying  the  intruder  (high  precision)  but  are  unable  to  identify  the  correct 

user  (low  recall).  For  models  evaluated  with  data  consisting  of  keystroke  sequences 

of  50  keystrokes,  traditional  models  such  as  SVM  and  KNN  produce  great  accuracy 

and  a  low  FAR  but  a  high  EER,  whereas  Logit  with  boosting  and  RF  provide  an 

even  greater  accuracy,  a  low  FAR,  and  a  relatively  low  EER.  Overall,  Logit  has  the 

best  EER  of  13.57%  and  Random  Forests  outperforms  everyone  with  an  accuracy 

of  95.95%  with  50  keystrokes.  These  results  indicate  that  with  more  fine-tuning  to 

reduce  the  FNR  and  EER,  a  commercially  feasible  product  capable  of  generalizing 

a  user’s  typing  patterns  to  a  high  degree  of  accuracy  is  possible. 

Moreover,  the  performance  of  the  models  seen  in  Fig. 4(a)  contrasted  with  those  in Fig. 4(b,  c)  illustrate  how  adding  more  data  before  producing  the  fixed  feature  vectors for  training  can  be  an  obstacle.  As  seen  in  the  results  from  Fig. 4(b,  c),  as  fixed-feature vectors  are  based  on  longer  keystroke  sequences,  like  75  and  100,  the  inclusion  of 

more  data  leads  to  poorer  performance  in  a  model’s  ability  to  distinguish  an  authentic 

user  from  an  intruder.  In  comparison  to  Fig. 4(a), the  more  data  is  included  the  higher the  EER  and  FAR  increase,  eventually  leading  to  a  KNN  with  a  4%  FAR  and  an  ERR 

of  68%. 
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(a)  50  keystrokes

(b)  75  keystrokes 

(c)  100  keystrokes 

Fig.  4  Traditional  machine  learning  model  results 

The  results  suggest  that  adding  more  keystrokes  can  negatively  impact  deep  learn-

ing  predictions  by  increasing  data  complexity  and  variability,  leading  to  more  errors 

and  overwhelming  the  model’s  ability  to  accurately  generalize  from  the  data. 

While  these  models  do  underperform  when  contrasted  to  the  performance  of  the 

deep  learning  methods  implemented,  as  we  discuss  next,  the  EER  results  of  the  best 

model  are  comparable  to  other  studies  that  also  measure  the  EER  of  their  models  on 

free  text  data. 

 5.4 

 Deep  Learning  Methods 

Now  we  cover  in  more  depth  the  performance  of  the  varying  CNN  architectures  on 

KDIs  derived  from  the  free  text  dataset  and  from  the  GANs.  Additionally,  the  quality 

of  the  generated  data  and  its  impact  on  CNN  architectures  is  explored. 
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Fig.  5  CNN  classifier  accuracy 

5.4.1

Results  of  CNNs  with  Original  Data 

The  CNNs  are  based  on  the  architectures  in  [ 9]  and  trained/tested  using  the  same methodology.  Moreover,  the  results  of  these  classifiers  align  with  those  seen  in 

the  prior  research.  Highlighted  in  Fig. 5, the  CNNs  trained  on  different  keystroke sequence  lengths  achieve  high  accuracy  and  considerably  low  EER  when  contrasted 

to  the  traditional  models.  Even  though  the  results  of  all  the  CNNs  are  relatively 

similar,  the  CNN  based  on  keystroke  sequences  of  length  75  achieves  an  average 

accuracy  of  88%  and  an  EER  of  0.09%. 

5.4.2

Results  of  CNNs  with  GAN  Generated  Positive  Data 

Several  data  generation  experiments  are  conducted  on  different  GAN  architectures 

to  identify  any  key  advantages/disadvantages  for  data  generation  and  for  data  quality. 

Moreover,  the  experiments  produced  a  set  of  generated  data  (KDIs)  that  were  then 

unpadded  and  evaluated  with  positive  data  on  the  trained  CNNs  in  the  prior  section. 

The  results  of  evaluating  the  CNNs  with  positive  data,  GAN  data,  and  both  (aug-

mented  data)  on  a  keystroke  sequence  of  50,  75,  and  100  are  depicted  in  Fig. 6(a, b, c),  respectively.  The  GAN  generated  data  is  labeled  as . 1 for  these  experiments. 

When  it  comes  to  keystroke  sequences  of  50  and  100,  the  results  are  relatively 

similar  with  WGAN  and  CGAN  producing  images  based  on  each  individual  user.  On 

average,  the  CNNs  identified  the  generated  images  with  86%  accuracy.  As  intended, 

each  classifier  that  is  fed  its  positive  data  with  negative  data  produces  high  accuracy, 

since  the  positive  data  is  the  data  it  was  trained  with.  Interestingly,  when  the  CNNs 

are  fed  positive  data  that  consists  of  the  real  and  GAN  data,  the  results  do  show  that there  is  a  slight  increase  in  the  accuracy  as  seen  by  the  WGAN  which  improves  the 

accuracy  from  94  to  94.9%  in  the  100  keystroke  case. 
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(a)  50  keystrokes

(b)  75  keystrokes 

(c)  100  keystrokes 

Fig.  6  Models  trained  on  positive  GAN  data 

5.4.3

Results  for  GAN  Data  Versus  CNN 

To  provide  more  perspective  about  the  quality  of  the  data  being  generated,  more 

experiments  are  conducted  which  essentially  invert  the  ones  presented  in  Sect. 5.4.2. 

The  GAN-generated  data  are  labeled  0,  and  the  performance  of  CNN  is  recorded. 

The  results  of  the  CNN  against  actual  negative  data,  and  GAN  data  are  illustrated  in 

Fig. 7a  through  c. 

The  results  highlight  that  the  CNNs  perform  poorly  when  treating  the  GAN  data 

as  separate,  as  seen  in  Fig. 7  on  50  keystrokes  with  accuracy  of  60.79%.  This  low accuracy  suggests  that  the  data  generated  bears  resemblance  to  the  input  data  for  a 

given  user.  As  a  result,  these  classifiers  struggle  to  distinguish  between  the  real  data 

and  generated  data  when  treated  separately.  Moreover,  the  CNN  with  actual  positive 

data  against  negative  data  performs  with  similar  accuracy  to  those  presented  in  [ 9]. 

5.4.4

Results  for  GAN  Data  and  Real  Data  Versus  CNN 

The  last  experiments  treat  the  GAN  data  as  valid  and  compare  it  with  the  negative 

data.  Moreover,  the  first  test  uses  only  GAN  data  and  negative  samples  from  other 

users,  while  the  second  test  combines  both  real  and  generated  data  (augmented  data)
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(a)  50  keystrokes

(b)  75  keystrokes 

(c)  100  keystrokes 

Fig.  7  Models  trained  on  negative  GAN  data 

and  also  compares  it  against  the  negative  samples.  The  accuracy  of  each  test  is 

highlighted  in  Figs. 8(a,  b,  c). 

As  anticipated  when  the  CNN  uses  GAN  data  as  valid  vs  negative  samples,  the 

performance  suffers  by  a  negligible  amount.  In  other  cases,  the  accuracy  increases 

slightly  as  seen  in  Fig. 8.  Moreover,  the  second  experiments  produce  an  accuracy similar  to  those  when  the  classifiers  are  tested  against  only  positive  data,  and  positive data  versus  negative  data.  These  results  are  depicted  in  the  figures  above  where  the 

accuracy  differences  are  very  minimal,  emphasizing  how  well  the  data  generated  fits 

into  a  classifier  trained  on  the  data  it  was  generated  on.  Since  the  generated  KDIs 

are  able  to  perform  well  when  evaluated  by  the  CNNs,  the  next  step  was  to  retrain 

the  CNNs  with  the  GAN-generated  user  data  labeled  as  positive,  following  the  same 

process  as  those  in  the  first  section. 

5.4.5

Results  for  CNN  Trained  with  GAN  Data 

The  last  step  to  verify  the  effectiveness  and  quality  of  the  KDIs  generated  by  the 

GANs  was  to  retrain  the  CNNs.  The  classifiers  at  this  step,  in  contrast  with  the 

previous  experiments,  leverage  the  GAN  generated  samples  by  also  including  them
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(a)  50  keystrokes

(b)  75  keystrokes 

(c)  100  keystrokes 

Fig.  8  Models  trained  on  generated  GAN  data 

as  positive  data.  For  the  sake  of  ease,  the  CNNs  for  keystroke  sequences  50,  75, 

and  100,  are  tested  with  only  one  architecture-generated  data  for  different  sequences. 

Since  CGAN  performed  the  best  overall,  the  results  presented  in  the  figure  below 

are  based  only  on  the  CGAN  data,  see  Fig. 9. 

 5.5 

 Discussion 

The  results  retrieved  from  all  the  experiments  conducted  provide  diverse  insights 

regarding  the  performance  of  machine  learning  versus  deep  learning  models  in  user 

authentication,  and  the  utility  of  GANs  to  generate  quality  data  while  enhancing  the 

deep  learning  methods.  When  contrasting  machine  learning  to  deep  learning  methods, 

the  results  clearly  show  that  machine  learning  models  can  achieve  a  relatively  high 

accuracy  with  a  reasonable  FAR  and  EER  as  seen  by  the  Logistic  Regression  with 

boosting  model  and  Random  Forest  on  50  keystrokes.  However,  these  results  obtained 

pale  in  comparison  to  the  CNNs  that  can  achieve  a  greater  accuracy  with  a  lower  EER, 

but  these  deep  learning  models  still  have  an  issue  with  the  FNR.  Moreover,  when 

introducing  GANs  to  resolve  the  positive  data  bottleneck  by  creating  synthetic  data
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Fig.  9  Accuracy  and  EER  for  models  trained  on  generated  data 

resembling  user  data,  the  results  illustrate  the  effectiveness.  The  GAN  data  by  itself 

when  evaluated  produces  a  reasonable  accuracy  of  around  85%.  Furthermore,  Fig. 7 

demonstrates  that  treating  the  generated  data  as  negative  throws  the  classifier  off 

producing  low  accuracy,  indicating  that  the  generated  data  has  a  resemblance  to  the 

user  data  it  was  trained  on.  Finally,  using  the  augmented  data  consisting  of  positive 

and  generated  data,  and  retraining  the  CNNs  results  in  slightly  higher  accuracy  with 

a  low  EER  with  a  negligible  move  in  either  direction.  As  mentioned  before,  this 

work  builds  upon  the  deep  learning  classifiers  presented  in  [ 9],  and  we  demonstrate that  the  CNNs  and  data  used  in  the  study  can  be  further  extended  to  generate  more 

positive  data  and  achieve  greater  accuracy  and  lower  EER. 

6 

Conclusions 

As  technology  continues  to  evolve  and  become  more  integrated  with  day-to-day  life, 

the  concern  for  security  breaches  (hacks)  across  multiple  mediums  increases.  As  a 

result,  methods  for  incorporating  and  enhancing  keystroke  authentication  must  be 

implemented  to  reduce  the  likelihood  of  hackers  gaining  unauthorized  access.  This 

work  presents  a  study  of  utilizing  traditional  machine  learning  and  deep  learning 

methods  in  free  text  keystroke  authentication  with  binary  classification  and  demon-

strates  the  potential  of  GAN  techniques  to  create  synthetic  data  to  enhance  the  per-

formance  of  CNN  binary  classifiers.  Moreover,  as  a  byproduct  of  successfully  gen-

erating  quality  data,  the  scarcity  of  authentic  user  data,  which  is  a  common  challenge 

in  data-driven  commercial  settings,  is  effectively  addressed. 

We  trained  machine  learning  models  using  KDIs  based  on  varying  sequence 

lengths  that  are  transformed  into  fixed-feature  vectors  through  feature  engineering
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influenced  by  [ 1].  While  the  traditional  models  did  produce  high  accuracy  and  reasonable  EER  in  certain  instances,  these  results  still  present  an  issue  for  the  authentic 

user  and  did  not  exceed  the  performance  of  the  baseline  CNNs.  Moreover,  the  CNNs 

follow  the  same  architecture  and  feature  engineering  process  as  those  presented 

in  [ 9], achieving  similar  results  as  in  that  study.  Our  work  emphasized  that  deep learning  models  carry  a  higher  capability  for  recognizing  patterns  from  time-based 

features  and  may  provide  a  better  generalization  compared  to  traditional  methods. 

The  KDIs  generated  from  different  GANs  are  examined  through  different  tests  with 

the  baseline  CNN  and  are  finally  used  to  retrain  the  CNNs.  Overall,  the  synthetic 

user  data  generated  resembles  the  structure  of  those  presented  in  the  real  dataset 

as  is  highlighted  by  the  CNN  performance  enhanced  after  retraining  and  the  CNN 

struggling  to  identify  the  GAN  data  treated  as  negative  before  retraining. 

Even  though  we  focused  on  generating  data  based  on  time-based  features  from 

the  free  text  keystroke  dataset,  the  input  data  does  not  have  to  be  limited  to  time 

features.  Touch-based  features  are  another  form  of  data  that  captures  unique,  mostly 

static,  individual  characteristics  like  a  user’s  touch  area  and  pressure  when  typing. 

Furthermore,  as  CGANs  require  additional  conditional  input  to  help  construct  more 

precise  images,  free  text  keystroke  authentication  can  be  performed  on  a  dataset 

with  touch-based  features  utilizing  the  touch-based  metric  as  conditional  input  to 

generate  data  more  precise  with  the  user’s  time  and  touch  patterns.  Overall,  this 

work  contributes  to  the  growing  body  of  literature  on  using  GAN  techniques  for 

data  generation  and  highlights  their  potential  to  revolutionize  the  field  of  biometric 

authentication  and  other  data-driven  applications. 
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Local explanation for class defacement
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Local explanation for class spam
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