

[image: Image 1]

Machine Learning, Deep Learning and AI

for Cybersecurity

Mark Stamp · Martin Jureček

Editors

Machine Learning, Deep

Learning and AI

for Cybersecurity

 Editors

Mark Stamp

Martin Jureček

Department of Computer Science

Department of Information Security

San José State University

Czech Technical University in Prague

San Jose, CA, USA

Prague, Czech Republic

ISBN 978-3-031-83156-0

ISBN 978-3-031-83157-7 (eBook)

https://doi.org/10.1007/978-3-031-83157-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

Preface

In an era where digital information is reshaping industries, governments, and our

personal lives, the importance of cybersecurity has never been more apparent. Cyber

threats are evolving at an unprecedented rate, becoming more sophisticated, unpre-

dictable, and destructive. To keep pace, we need tools and techniques that defend

against today’s threats and anticipate those of tomorrow. Artificial intelligence (AI),

machine learning, and deep learning are indispensable tools in the security arsenal,

providing heretofore unimaginable capabilities in analyzing massive amounts of data

to improve the detection and mitigation of advanced threats. Machine learning algo-

rithms have the ability to adapt and learn, and are used to detect anomalies and identify potential threats that would go unnoticed by conventional methods. Deep learning

takes this a step further by enabling systems to process complex, unstructured data,

potentially offering profound insights into vulnerabilities and attacks.

This book, Machine Learning, Deep Learning and AI for Cybersecurity, arrives

at a crucial time, when both defenders and attackers regularly deploy AI-based

techniques. On one side, cybercriminals have embraced machine learning and deep

learning to create evasive malware, phishing schemes, and advanced persistent threats

that can adapt and improve autonomously. On the other side, researchers and cyberse-

curity professionals are deploying cutting-edge AI models to predict, detect, and miti-

gate these attacks, often in real time. This dynamic confrontation between defensive

and adversarial AI is a defining characteristic of modern cybersecurity.

We believe that one of the most compelling aspects of this book is its balance

between theory and practice, offering technical depth for those interested in algo-

rithmic intricacies, while remaining grounded in real-world applications through

practical case studies. The chapters herein explore many of the latest advance-

ments in the field, covering topics such as malware detection and classification,

security aspects of federated learning, adversarial learning attacks and defenses,

and much more. The authors skillfully guide readers through the theoretical founda-

tions, practical implementations, and real-world examples, making complex concepts

accessible to cybersecurity professionals and academic researchers alike.

v

vi

Preface

As you dive into the following chapters, you will explore cutting-edge research,

practical applications, and real-world examples that demonstrate how AI, machine

learning, and deep learning are transforming cybersecurity.

San Jose, USA

Mark Stamp

Prague, Czech Republic

Martin Jureček

Contents

Malware Detection and Classification

Image-Based Malware Classification Using QR and Aztec Codes

3

Atharva Khadilkar and Mark Stamp

Online Clustering of Known and Emerging Malware Families

37

Olha Jurečková, Martin Jureček, and Mark Stamp

Comparing Balancing Techniques for Malware Classification

61

Ranjit John and Fabio Di Troia

Malware Classification Using a Hybrid Hidden Markov

Model-Convolutional Neural Network .

93

Ritik Mehta, Olha Jurečková, and Mark Stamp

Selecting Representative Samples from Malware Datasets

113

Lukáš Děd and Martin Jureček

Applying Word Embeddings and Graph Neural Networks

for Effective Malware Classification .

143

Manasa Mananjaya and Fabio Di Troia

An Empirical Analysis of Hidden Markov Models with Momentum

169

Andrew Miller, Fabio Di Troia, and Mark Stamp

Quantum Computing Methods for Malware Detection

207

Eliška Krátká and Aurél Gábor Gábris

Adversarial Learning and Explainable AI (XAI)

Reducing the Surface for Adversarial Attacks in Malware Detectors . . .

231

Benjamín Peraus and Martin Jureček

Effectiveness of Adversarial Benign and Malware Examples

in Evasion and Poisoning Attacks .

267

Matouš Kozák and Martin Jureček

vii

viii

Contents

A Comparative Analysis of SHAP and LIME in Detecting

Malicious URLs .

291

Ayush Nair and Fabio Di Troia

XAI and Android Malware Models .

327

Maithili Kulkarni and Mark Stamp

Federated Learning

Temporal Analysis of Adversarial Attacks in Federated Learning

359

Rohit Mapakshi, Sayma Akther, and Mark Stamp

Federated Learning: An Overview of Attacks and Defense Methods

393

K. M. Sameera, Dincy R. Arikkat, P. Vinod, Rehiman K. A. Rafidha,

Azin Aneez, and Mauro Conti

An Empirical Analysis of Federated Learning Models Subject

to Label-Flipping Adversarial Attack .

433

Kunal Bhatnagar, Sagana Chattanathan, Angela Dang, Bhargav Eranki,

Ronnit Rana, Charan Sridhar, Siddharth Vedam, Angie Yao,

and Mark Stamp

Model Robustness

On the Steganographic Capacity of Selected Learning Models

457

Rishit Agrawal, Kelvin Jou, Tanush Obili, Daksh Parikh,

Samarth Prajapati, Yash Seth, Charan Sridhar, Nathan Zhang,

and Mark Stamp

Robustness of Selected Learning Models Under Label-Flipping

Attack .

493

Sarvagya Bhargava and Mark Stamp

Steganographic Capacity of Transformer Models .

507

Lei Zhang, Dong Li, Olha Jurečková, and Mark Stamp

Large Language Models (LLMs)

Distinguishing Chatbot from Human .

529

Gauri Anil Godghase, Rishit Agrawal, Tanush Obili, and Mark Stamp

Multimodal Deception Detection Using Linguistic and Acoustic

Features .

565

Tien Nguyen, Faranak Abri, Akbar Siami Namin, and Keith S. Jones

Keystroke Dynamics

Keystroke Dynamics for User Identification .

601

Atharva Sharma, Martin Jureček, and Mark Stamp

Contents

ix

Enhancing Free Text Keystroke Authentication

with GAN-Optimized Deep Learning Classifiers .

623

Jonathan A. Bazan, Katerina Potika, and Petros Potikas

[image: Image 2]

Image-Based Malware Classification

Using QR and Aztec Codes

Atharva Khadilkar

and Mark Stamp

Abstract In recent years, the use of image-based techniques for malware detec-

tion has gained prominence, with numerous studies demonstrating the efficacy of

deep learning approaches such as Convolutional Neural Networks (CNN) in classi-

fying images derived from executable files. In this paper, we consider an innovative

method that relies on an image conversion process that consists of transforming fea-

tures extracted from executable files into QR and Aztec codes. These codes capture

structural patterns in a format that may enhance the learning capabilities of CNNs. We

design and implement CNN architectures tailored to the unique properties of these

codes and apply them to a comprehensive analysis involving two extensive malware

datasets, both of which include a significant corpus of benign samples. Our results

yield a split decision, with CNNs trained on QR and Aztec codes outperforming the

state of the art on one of the datasets, but underperforming more typical techniques

on the other dataset. These results indicate that the use of QR and Aztec codes as

a form of feature engineering holds considerable promise in the malware domain,

and that additional research is needed to better understand the relative strengths and

weaknesses of such an approach.

1

Introduction

In the current digital age, cybersecurity threats have become increasingly sophisti-

cated, one example of which is obfuscated malware. Obfuscated malware is malware

that is “disguised” so that it is difficult to detect using conventional methods. Tradi-

tional antivirus systems rely on signature-based detection, which struggles to identify

obfuscated malware [3].

Malware classification is the process of categorizing various types of malware

into distinct groups based on their behavior, characteristics, or potential impact. The

conventional approach to malware classification is reliant on signature based and

heuristic methods. In the malware context, signatures typically consist of known

A. Khadilkar · M. Stamp (B)

San Jose State University, San Jose, California, USA

e-mail: mark.stamp@sjsu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

3

M. Stamp and M. Jureček (eds.), Machine Learning, Deep Learning and AI for

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_1

4

A. Khadilkar and M. Stamp

patterns that appear in the code, whereas heuristic analysis usually attempts to focus

on behavioral patterns. These techniques struggle with the obfuscation strategies

employed in modern malware, often leading to false positives or negatives.

Traditional machine learning (ML) methods have been used for enhancing

malware classification offering an alternative to conventional signature based

approaches [33]. A variety of traditional methods are commonly employed, including logistic regression, Support Vector Machine (SVM), and Random Forests. ML techniques significantly improves the detection of novel malware strain, as ML does not

solely rely on pre-existing signatures. However, such ML methods can be challenged

by sophisticated obfuscation techniques. A recent trend in malware detection con-

sists of converting executable files to images and using sophisticated image analysis

techniques for classification. This approach is promising and has shown improved

results over traditional ML techniques. However, the process used to convert executa-

bles to images can have a large impact on the success of such image-based analysis

techniques.

Building on traditional ML methods for malware classification, we propose to use

QR and Aztec codes as image representations of data, combined with advanced image

classification techniques. By leveraging the unique patterns within these images, our

method aims to improve on image-based analysis of obfuscated malware. We find that

our approach offers an improvement over traditional features and also improves on

typical image-generation techniques for the detection of complex malware variants.

The remainder of this paper is organized as follows. Section 2 discusses relevant previous work, including traditional and image-based techniques for malware detection and classification. Section 3 introduces the datasets utilized in this study, detail-ing their composition, source, and the methodology employed for their collection

and preparation. Section 4 outlines the libraries and platforms used in our experiments. Following this, Sect. 5 covers the techniques and methodologies employed, along with a discussion of the implementation of these methods. Section 6 includes the results of our experiments and compares our results to previous related work.

Section 7 concludes the paper, summarizing our key findings and discussing potential avenues for future research.

2

Selected Related Work

This section explores selected prior research in the realm of malware detection,

particularly focusing on approaches that use image representation for identifying

malware. Additionally, we explore studies related to the detection of obfuscated

malware, emphasizing techniques that utilize memory dumps. These topics represent

significant advances in malware detection.

Image-Based Malware Classification Using QR and Aztec Codes

5

 2.1

 Obfuscated Malware

Obfuscated malware techniques complicate the detection process by disguising the

malicious code, making it challenging for traditional antivirus solutions to identify

threats effectively. Techniques such as polymorphism and metamorphism are fre-

quently employed, allowing malware to alter its code with each replication, thereby

evading signature-based detection systems. The research in [38] detail these methods, noting their sophistication and the difficulty they pose to detection efforts. Similarly,

[6] discuss the theoretical underpinnings of code obfuscation, pointing out the effectiveness of such techniques in protecting malware from analysis. These approaches

highlight the continuous arms race between cybersecurity professionals and attack-

ers, underscoring the need for advanced detection methods capable of penetrating

these obfuscations.

The CIC-MalMem-2022 dataset [8] contains features extracted from obfuscated malware samples. Studies focusing on binary classification using the CIC-MalMem-2022 dataset, such as [13, 18], have applied various ML techniques, achieving up to 0.9997 accuracy with learning methods such as Decision Trees and SVC. Additionally the research in [18] employs feature engineering and tree-based techniques such as XGBoost and CatBoost, achieving a 1.00 accuracy in binary classification

with a Random Forest Classifier. This demonstrates the effectiveness of combining

advanced methods and feature engineering in improving malware detection.

 2.2

 Behavioral Analysis of Malware

Malware behavior analysis techniques focus on observing the actions of malware

within a system, offering insights beyond those that static analysis can provide. This

dynamic approach, as considered in [7, 31], for example, involves monitoring the execution patterns and network behaviors of malware to classify and understand

its nature. Such techniques are critical in identifying new variants of malware by

examining their behavior patterns, potentially offering more adaptive and robust

mechanism for threat detection. The effectiveness of these methods lies in their ability

to provide a detailed view of malware operations, contributing to the development

of more precise and effective cybersecurity measures.

 2.3

 Image Representations

The conversion of malware binaries into visual images for analysis has recently

shown great promise. The papers [19, 20, 26] explore the potential of such techniques, which leverages the visual patterns that emerge from the binary code of

malware when represented as images. These methods allow for the application of

6

A. Khadilkar and M. Stamp

advanced image processing techniques to identify distinctive features associated with

malicious software. The advantage of image representation lies in its ability to reveal

patterns that are not easily discernible through traditional binary analysis, providing

an alternative avenue for the detection and classification of malware.

The use of Convolutional Neural Networks (CNNs) for classifying malware based

on image representations showcases the application of deep learning in cybersecurity.

For example, the research in [17, 19] demonstrates the effectiveness of CNNs in analyzing the visual patterns of malware images to accurately classify different types

of malware. These studies highlight the ability of CNNs to learn and identify complex

patterns within images, facilitating a highly effective classification system. Another

strength of this approach lies in its capacity to process and analyze large datasets of

malware images, thus offering a scalable and efficient solution for the identification

of malware.

 2.4

 Advanced CNN Architectures

The convergence of Convolutional Neural Networks and pre-trained models has

significantly advanced malware classification, leveraging deep learning for cyberse-

curity. The studies in [1, 23], for example, highlight the effectiveness of pre-trained CNN models. Examples of such pre-trained models include VGG16, ResNet-50, and

DenseNet-201. Additionally, these works delve into the challenges associated with

feature extraction, feature engineering, computational demands, dataset imbalances,

and so on. These are issues often encountered when learning techniques are used in

the malware domain.

Further innovations include ensemble and transfer learning approaches to enhance

accuracy and efficiency in malware-related tasks. For instance, in [15, 23] the application of fine-tuned CNN-based transfer learning models on transformed 2D images

of malware binaries demonstrated exceptional detection accuracies, outperforming

conventional methods. More generally, these approaches signify a shift towards uti-

lizing deep learning models to deal with the challenges of evolving cybersecurity

threats.

 2.5

 Memory Dump Analysis

Memory dump analysis for malware classification involves examining snapshots of

system memory to detect potentially malicious behavior. This technique, as discussed

in [10– 12] provides valuable insights into the runtime behavior of malware. Memory dump analysis is particularly effective in identifying malware that employs evasion

techniques, as it allows for the examination of the system state at the time of execution, at which point most obfuscation techniques have run their course. This approach

Image-Based Malware Classification Using QR and Aztec Codes

7

enhances the capability to classify and analyze complex malware, underscoring its

importance in the comprehensive examination of cyber threats.

 2.6

 QR Codes

Quick Response (QR) codes are 2D bar codes that can encode virtually any type of

data, and are easily readable by devices such as smartphone cameras. A QR code can

encode up to 7089 digits, 4296 alphanumeric characters, 2953 bytes, or 1817 Kanji

characters, although these values may be reduced, depending on the level of error

correction that is applied [28].

For our purposes, QR codes provide a basis for applying image-based learning

techniques to virtually any type of data. The research in [36] exemplifies this by evaluating various pre-trained CNN models, including AlexNet and MobileNetv2,

to accurately identify the source printer of QR codes. This example highlights the

potential for merging QR code versatility with CNN image-based learning capabil-

ities, offering a novel pathway for data classification that has the potential to sig-

nificantly enhance information security. The paper [29] explores another approach which uses CNNs to classify malware based on QR code representations of data.

 2.7

 Aztec Codes

Aztec codes are similar to QR codes, but they can be more space-efficient for a given

amount of data. An Aztec code can encode a maximum of 3832 numeric digits, 3067

alphabetic characters, or 1914 bytes of data [5]. As far as the authors are aware, Aztec codes have not been previously studied in the context of malware analysis, or

in conjunction with image-based learning techniques.

3

Datasets

In this section, we provide an overview of the datasets used in this research. We

consider two distinct datasets, one of which consists of dynamic features extracted

from obfuscated malware, while the other consists of static features extracted from

typical malware.

8

A. Khadilkar and M. Stamp

 3.1

 CIC-MalMem-2022

The paper [9] focuses on improving malware detection, specifically targeting obfuscated malware. The study uses the VolMemLyzer tool, a memory feature extractor,

to better identify hidden and obfuscated malware. A significant contribution is the

creation of the MalMemAnalysis-2022 dataset, which includes over 2500 malware

samples in the broad categories of spyware, ransomware, and Trojan horse, as well

as a representative benign set. The authors employ a stacked ensemble ML model

for detection, achieving high accuracy and F1-score for the binary classification

problem.

Based on the work in [9], the CIC-MalMem-2022 dataset was published [8].

This dataset includes features extracted using a memory dump operation in debug

mode. This method is specifically designed to prevent the dumping process itself

from being recorded in the memory dumps, which ensures that only the relevant data

is captured. The dataset consists of a total of 58,596 samples extracted from 2916

malware executables and 2916 benign executables, with a minimum of 100 and a

maximum of 200 samples per executable. The malware executables are from three

major categories, namely, ransomware, spyware, and Trojan horse.

From this dataset, we use 6000 samples chosen randomly for each of the three

malware categories, and 6000 benign samples. These 24,000 samples are the basis

for training and testing our multiclass models using the learning techniques discussed

in Sect. 5, below. The distribution of samples from the CIC-Malmem-2022 dataset is given in Fig. 1.

30000

Totalrecords

25000

Recordsused

20000

15000

Samples

10000

5000

0

Benign

Trojan

Spyware

Ransomware

Fig. 1 CIC-MalMem-2022 class distribution

Image-Based Malware Classification Using QR and Aztec Codes

9

 3.2

 BODMAS

The BODMAS dataset [37] is a collaborative effort between Blue Hexagon and the University of Illinois at Urbana-Champaign (UIUC), and it represents a valuable

resource for the cybersecurity research community. This dataset consists of 57,293

malware samples and 77,142 benign samples, collected between August 2019 and

September 2020. This substantial collection, which includes samples spanning 581

malware families, is notable for including date of origin of each sample, thus pro-

viding a resource for temporal-based analysis and classification of malware.

The feature vectors for each of the malware sample was extracted using the LIEF

project, similar to the EMBER [2] dataset. Executable file formats share common features including symbols, relocations, and entry-point. Each malware sample has

a feature vector of dimension 2384 and associated metadata. This metadata includes

details such as timestamp, label (malware or benign), and the specific malware fam-

ily of the sample. The feature vectors consist of features parsed from the PE file,

including the SHA256 hash of the file, header characteristics, entry points, entropy,

and various histograms [2].

Since the BODMAS dataset consists of approximately 58,000 malware samples

from 581 malware families, we selected a handful of the most frequently occurring

families for our analysis, along with a subset of benign samples. The distributions

of the benign class and the top 10 families in the BODMAS dataset are shown using

Fig. 2. We have selected 13,324 samples consisting of the top three malware families, namely, Sfone, Wacatac, and Upatre, along with 5200 benign samples for a

total of 18,524 samples. Similar to the CIC-MalMem-2022 dataset, we apply the

learning techniques discussed in Sect. 5, below.

4

Implementation

This section provides a comprehensive overview of the software and libraries used

in our research. Here, we introduce each chosen platform and library, specifying its

role, benefits, and the reason for its selection.

 4.1

 Machine Learning Tools

The implementation of our research involves data exploration of two datasets. Along

with this, we also explores feature selection and model training. The models vary

from classical ML to pre-trained DL models. These models varying greatly in the

amount of complexity, and they required different libraries to be used. Due to the

availability of necessary packages, Python 3.9 was used throughout our experiments.

Specifically, the following Python libraries were used.

10

A. Khadilkar and M. Stamp

5000

Benign

Malware samples used

Malware not used

4000

3000

Samples

2000

1000

0

Sfone

Mira

Benign

Upatre Wabot Small Ganelp

Gepys

Wacatac

Dinwod

Berbew Sillyp2p Ceeinject

Benjamin Musecador

Fig. 2 Benign and BODMAS class distribution

• scikit-learn—The Python library scikit-learn is designed for machine

learning [30]. It offers tools for data preprocessing, model building, and evaluation. It also includes algorithms for both supervised and unsupervised

learning such as regression, decision trees, clustering, and Support Vector

Machines. scikit-learn is designed to work with NumPy and SciPy. We

use scikit-learn for some of the classical ML algorithms and for feature

selection. scikit-learn was also used to calculate our performance metrics

(accuracy, F1-score) for our classic ML models.

• TensorFlow—TensorFlow is an open-source library for numerical computation

and ML [35]. It provides a flexible platform for building and deploying a wide range of ML models. TensorFlow supports deep learning algorithms along with

many traditional ML models. The library includes tools for data processing, model

creation, training, and inference. TensorFlow was used to form our generated QR

and Aztec codes into image datasets. It was also used to construct and train our

Convolutional Neural Networks.

 4.2

 Utilities

The following packages and libraries were also used in our research. These tools are

not directly used for ML, but they are necessary to prepare the data for our models.

Image-Based Malware Classification Using QR and Aztec Codes

11

• Pandas—Pandas is a Python library for data manipulation and analysis [24]. It provides data structures including DataFrame and Series for handling tabular data.

Pandas is equipped with tools for reading and writing data between in-memory

data structures and different file formats. We use this library for the manipulation

and preprocessing of our data.

• NumPy—NumPy is a fundamental package for scientific computing in

Python [21]. It provides support for large arrays and matrices, along with a collection of mathematical functions to operate on these arrays. NumPy was used along

with Pandas to enabling efficient processing of the data.

• Qrcode—The Python library qrcode is designed to generate QR codes [27]. It allows for the creation and customization of QR codes that can encode a wide

range of data types, including URLs, text, or numerical information. This library

provides a simple interface for QR code generation, offering flexibility in terms

of size, border, and error correction levels. Of course, we employ this library to

create QR representations of our data.

• AztecCode—AztecCode from aztec_code_generator is a Python library

designed for creating Aztec codes, a type of 2D barcode that can store a sig-

nificant amount of data within a small space [4]. Similar to QR codes, but with significant differences in design and capacity, Aztec codes are used in

various applications, especially where space and readability are critical. The

aztec_code_generator library provides functionality to generate and cus-

tomize these codes, including setting size, encoding data, and adjusting error cor-

rection levels. This library was used to generate the Aztec code representation of

the data used in our experiments.

• Operating System—The standard Python library OS provides a way to use oper-

ating system-dependent functionality [22]. It includes functions for interacting with the file system, such as creating, listing, and deleting files and directories. We

primarily use OS for data organization during the image generation process.

• Pillow—The Image module from Pillow, the Python Imaging Library, supports

opening, manipulating, and saving many different image file formats [25]. It provides a wide array of image processing capabilities, including image transforma-

tions (e.g., rotation and scaling), filtering, enhancement, and so on. We use Pillow

for post processing on our generated QR and Aztec codes.

 4.3

 Development Platforms

Google Colab was an essential part of our model training. Here, we provide some

details on our use of Colab and also our local computer setup.

• Google Colab—Throughout our experiments, the Google Colab platform was

used extensively for data processing, data conversion, and training learning mod-

els. The platform provides access to most of the libraries discussed above, includ-

ing TensorFlow and scikit-learn. The platform offers multiple environment

12

A. Khadilkar and M. Stamp

Table 1 Local machine

System

Specification

CPU

AMD Ryzen 5600X

CPU clock rate

4.6 GHz

GPU

NVIDIA RTX 3080 (10 GB)

CUDA core

8704

Cores

6

RAM

32 GB

OS

MS Windows 10

runtimes with the option of choosing GPUs. Using GPU hardware acceleration

reduced the training times for our CNNs by a factor of about four, as compared to

the CPU hardware accelerators.

• Local Computer—In addition to Google Colab, we used a local desktop setup

to execute some of our experiments. The local setup served multiple purposes,

including visualization and data exploration, as well as for data preprocessing

and cleaning. We also generated the QR and Aztec code images using this local

machine. The operations were performed locally using Visual Studio Code by

creating a Python 3.9 virtual environment. The specifications of the local machine

are given in Table 1.

5

Methodology

In this section we describe the machine learning models and methods used to generate

our experimental results. This section introduces each learning method and provides

reasons why these methods were used in the context of this research.

 5.1

 Feature Selection

Considering the large number of features in our datasets, feature reduction is an

important aspect to this research. For this purpose we consider the following feature

selection methods.

SelectKBest from scikit-learn is a statistical method used to select

features that have the most significant relationship with the output variable. This

works by applying a chosen statistical test to each feature to determine its strength of association with the output variable. The K in SelectKBest refers to the number

of features to select based, on their ranking. We selected features after normalizing

using the standard scaler.

Image-Based Malware Classification Using QR and Aztec Codes

13

Statistical tests available in SelectKBest include the ANOVA F-test for con-

tinuous data and . χ 2 for categorical data. We have used . χ 2 for selecting our . K best features. This method is effective in feature reduction, helping to improve model

performance by eliminating irrelevant or redundant features. It is particularly useful

in helping us reduce the number of features before converting the data into a QR or

Aztec code, since these representation can only hold a limited number of bytes.

 5.2

 Machine Learning Models

In this section, we describe all of the ML models used in this research including the

classical and deep learning models. We also mention why each model was chosen

for this research.

5.2.1

Random Forest

The Random Forest classifier from scikit-learn is an ML algorithm for classi-

fication tasks. It operates by constructing multiple decision trees during the training

phase and outputs the class that is the mode of the classes of the individual trees. This approach to combining multiple models to improve the overall result is an example

of ensemble learning.

The Random Forest algorithm can handle both numerical and categorical data and

is capable of dealing with large datasets efficiently. Additionally, it provides measures

of feature importance, which can be used for feature selection. Random Forest is

widely used across various fields for its robustness against overfitting, compared to a

single decision tree, making it a popular choice for complex classification problems.

5.2.2

Support Vector Machine

Support Vector Machine (SVM) from scikit-learn is a supervised ML algo-

rithm used for both classification and regression tasks, though it is primarily known

for classification. The core principle of SVM is to find the hyperplane that best

divides a dataset into classes. SVM is distinctive for its use of kernels, which trans-

form the input data space into a higher dimensional space where it becomes easier

to separate the data linearly. This makes SVM effective for complex datasets where

the relationship between features may not be clear.

The performance of SVMs depend heavily on the selection of the kernel and

the tuning of the hyperparameters, which can sometimes make it challenging to

optimize. SVM is widely utilized in applications ranging from image classification

to bioinformatics, due to its robustness and versatility.

14

A. Khadilkar and M. Stamp

Support Vector Classifier (SVC) is a generalization of SVM to the multiclass case.

SVC works by finding multiple hyperplanes that best separate different classes with

the maximum margin. This makes SVC particularly effective for complex classifi-

cation problems where the decision boundary is not immediately obvious.

5.2.3

Multilayer Perceptron

The Multilayer Perceptron (MLP) classifier from scikit-learn is a basic type

of artificial neural network that is used for classification and regression tasks. Unlike

simpler linear models, MLP can model complex nonlinear relationships between

inputs and outputs. An MLP includes at least three layers consisting of an input

layer, one or more hidden layers, and an output layer. The nodes, or neurons, in each

layer are fully connected to those in the next layer, and activation functions serve to

introduce nonlinearity to the learning process [34].

Training an MLP involves adjusting the weights of the connections through a

process known as backpropagation, which minimizes the difference between the

actual and predicted outputs. MLP is particularly useful for problems where the

relationship between input and output is not linearly separable. The performance of

an MLP is influenced by various factors, including the number of hidden layers, the

size of these layers, and the choice of activation function. MLPs are widely used in

a variety of fields, including speech recognition and natural language processing.

5.2.4

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a basic class of deep neural networks,

widely utilized in the field of computer vision. Developed with inspiration from the

human visual cortex, CNNs excel at automatically and adaptively learning spatial

hierarchies of features from image data. They consist of multiple layers, including

convolutional layers that capture patterns such as edges and textures, pooling layers

that reduce dimensionality and computational complexity, and fully connected layers

that classify the images based on the features extracted by convolutional and pooling

layers.

Our CNNs are implemented using the keras library, a high-level neural networks

API that runs on top of TensorFlow [35]. Keras provides a user-friendly interface for building and training CNN models, offering a flexible and efficient way to design

deep learning models with just a few lines of code.

Due to the different features available with the two datasets we consider, we

employ two distinct CNN architectures. Here, we describe both of these architectures

in some detail.

• CNN for CIC-MalMem-2022 dataset—Our CNN architecture for the CIC-

MalMem-2022 dataset has an input size of.128 × 128 × 1 which is the size of the

QR and Aztec codes generated from the dataset. The initial convolutional layer

Image-Based Malware Classification Using QR and Aztec Codes

15

consists of 32 filters of size.3 × 3, which yields an output of size.126 × 126 × 32.

There are four more convolutional layers which have output sizes of.61 × 61 × 64,

.28 × 28 × 128,.12 × 12 × 256, and.4 × 4 × 512, respectively. Each convolutional

layer is followed by a max pooling layer and the final output of all these layers

is.2 × 2 × 512. This is then flattened and forwarded to three dense layers for clas-

sification. Our CNN for the CIC-MalMem-2022 dataset is illustrated in Fig. 3a.

• CNN for BODMAS dataset—Our CNN for the BODMAS dataset has a similar

structure as that for the CIC-MalMem-2022 dataset. However, for this CNN

the input layer is .395 × 395 × 1, since this is the size of our QR images gener-

ated from the BODMAS data. This slightly alters the remaining parts of the model.

The initial convolutional layer consists of 32 filters of size.3 × 3, which yields an

output of size .393 × 393 × 32. There are four more convolutional layers which

have output sizes of .194 × 194 × 64, .95 × 95 × 128, .45 × 45 × 256, and . 20 ×

20 × 512, respectively. Each convolutional layer is followed by a max pooling

layer and the final output of all these layers is.10 × 10 × 512. This is then flattened

and forwarded to three dense layers for classification. The CNN architecture that

we use for the BODMAS dataset is illustrated in Fig. 3b.

6

Experiments and Results

This section is split into two main parts, each describing the results for one of the

two datasets that we consider. We summarize the overall results at the end of this

section and we discuss our main findings.

 6.1

 CIC-MalMem-2022 Results

As discussed above, for the CIC-MalMem-2022 dataset, each sample consists of 55

features. We first consider feature analysis to understand the relative importance of

features in the dataset.

For feature selection, we use SelectKBest from scikit-learn, with the . χ 2

option. SelectKBest determines the top . K features that have the highest . χ 2 values with respect to the target variable. The . χ 2 test measures the dependence between stochastic variables, making this method suitable for determining the statistical significance of features. The top 10 features of highest importance in the CIC-MalMem-

2022 dataset are listed in Table 2; a complete list of all 55 features is given in Table 7

in Appendix.

[image: Image 3]

16

A. Khadilkar and M. Stamp

(a) Model for CIC-MalMem-2022 dataset

(b) Model for BODMAS dataset

Fig. 3 CNN architectures

6.1.1

Classic Learning Techniques

In this section, we consider experiments involving Random Forest, SVC, and MLP

classifiers. The following experiments were conducted using the entire set of 55

features. We also experimented with the reduced set of 10 features in Table 2, but the results are similar.

When trained on the entire set of 55 features with 1000 estimators, Random Forest

achieves an accuracy of 0.7979. From the confusion matrix in Fig. 4a, we observe that all the benign examples were classified correctly; however the classifier had

considerable difficulty distinguishing between the three malware categories. The

F1-score for this classifier is 0.7980

[image: Image 4]

Image-Based Malware Classification Using QR and Aztec Codes

17

Table 2 Top 10 features for CIC-MalMem-2022 dataset

Rank

Feature name

1

malfind.commitCharge

2

handles.nhandles

3

handles.nevent

4

handles.nsection

5

handles.nthread

6

dlllist.ndlls

7

handles.nfile

8

handles.nkey

9

handles.nmutant

10

handles.nsemaphore

1200

1200

Benign

1250

Benign

1220

1

8

21

1000

1000

Spyware

843

160

223

800

Spyware

3

28

192

1003

800

600

600

Ransomware

151

898

141

Ransomware

8

10

239

933

400

400

200

200

Trojan

205

90

839

Trojan

4

1

51

1078

0

0

e

ar

enign

Benign

Trojan

B

Trojan

Spyware

Spyw

ansomware

Ransomware

R

)

a

(R n

a

o

d m o

F

t

s

e

r

b

()

C

V

S

1200

Benign

1242

8

1000

Spyware

2

589

21

614

800

600

Ransomware

21

579

26

564

400

200

Trojan

2

387

14

731

0

Benign

Trojan

Spyware

Ransomware

(c) MLP

Fig. 4 Confusion matrices for classic techniques (CIC-MalMem-2022)

18

A. Khadilkar and M. Stamp

Table 3 Accuracies and F1-scores (CIC-MalMem-2022 dataset)

Measure

Features

Random forest

SVC

MLP

Accuracy

55

0.7979

0.5343

0.5391

10

0.7689

0.5395

0.5483

F1-score

55

0.7980

0.4597

0.4886

10

0.7690

0.4615

0.4710

Table 4 QR parameters for CIC-MalMem-2022

Parameter

Value

version

1

error_correction

ERROR_CORRECT_L

box_size

5

border

1

When trained on the set of 55 features, SVC achieves an accuracy of 0.5343. The

confusion matrix in Fig. 4b further emphasizes the poor performance of this model.

The F1-score achieved using this method is 0.4597 which is also much worse than

the Random Forest.

When trained on the full 55 features, our MLP classifier achieves 0.5391 accuracy.

The confusion matrix in Fig. 4c shows that this MLP model tends to make different types of mistakes than the SVC. The F1-scores achieved by our MLP model is 0.4886,

which is similar to that of the SVC.

Table 3 summarizes the accuracies and F1-scores for the Random Forest, SVC, and MLP classifiers, both with and without feature reduction. We observe that feature

selection has little effect on the performance of these models.

6.1.2

QR Code Experiments

To create our QR representations for the CIC-MalMem-2022 dataset, the top 10

features were used. Figure 5a through d give examples of QR representations of benign, ransomware, spyware, and Trojan, respectively.

The parameters used to generate the QR codes for this dataset are given in Table 4.

The generated images were of size .175 × 175 pixels each. These were then resized

to images of size .128 × 128 before being used as input to the CNN.

We split the 24,000 samples 70:15:15 for train:validation:test. The train and val-

idation split was used to train on the CNN model described in Sect. 5. The loss and accuracy graphs are shown in Fig. 6. These graphs show that the model converged after two epochs, with no signs of overfitting. The test accuracy achieved for the

CNN on the QR image representation was 0.9998 for this multiclass classification

problem.

[image: Image 5]

[image: Image 6]

Image-Based Malware Classification Using QR and Aztec Codes

19

(a) Benign

(b) Ransomware

(c) Spyware

(d) Trojan

Fig. 5 Examples of QR code representations (CIC-MalMem-2022)

Fig. 6 QR-CNN accuracy and loss graphs for CIC-MalMem-2022

[image: Image 7]

20

A. Khadilkar and M. Stamp

(a) Benign

(b) Ransomware

(c) Spyware

(d) Trojan

Fig. 7 Examples of Aztec code representations (CIC-MalMem-2022)

6.1.3

Aztec Code Experiments

To create the Aztec code representation, as for the QR codes, we use the top 10

features. Figure 7a through d give typical examples of Aztec code representations for the benign, ransomware, spyware, and Trojan classes, respectively.

The only parameter that we employ when generating our Aztec code represen-

tations is .module_size = 5. The generated images are of size.175 × 175 pixels,

and these were then resized to images of size.128 × 128 so as to be suitable as input

to the CNN.

We split the samples 70:15:15 for train:validation:test. The train and validation

split was used to train the CNN architecture described in Sect. 5. The loss and accuracy graphs for this model are shown in Fig. 8. As with the QR-CNN results in Fig. 6, the graphs in Fig. 8 show that the model converges after two epochs, with no indication of overfitting.

The test accuracy achieved for the CNN on the QR image representation

was 0.9986 for this multiclass classification problem. While this is marginally less

than the accuracy achieved using the QR code representation, both represent nearly

perfect classification.

[image: Image 8]

Image-Based Malware Classification Using QR and Aztec Codes

21

Fig. 8 Aztec-CNN accuracy and loss graphs for CIC-MalMem-2022

 6.2

 BODMAS Results

In this section, we conduct analogous experiments as the previous section, but based

on the BODMAS dataset, rather than the CIC-MalMem-2022 dataset. We first discuss

feature selection before turning our attention to our experimental results.

6.2.1

Feature Selection

Recall that each BODMAS sample consists of a 2384 dimensional vector, which was

extracted using the LIEF project. For the classic ML models, we experiment with

the top 50 and the top 150 features. Similarly, our CNN models are trained on QR

and Aztec images derived from the same top 50 and top 150 features.

Figure 9 shows the distribution of the top 150 features among the 2384 BODMAS

features. This figure highlights the fact that most of the features are of little—if any—

relevance for classification.

The feature selection for the BODMAS dataset was done by selecting the top 50

features using SelectKBest with ANOVA as the a statistical technique. The 10

most significant features for the BODMAS dataset are shown in Table 5.

6.2.2

Classic Learning Techniques

When trained on the set of 50 features with 1000 estimators, the Random Forest

achieves an accuracy of 0.946. From the confusion matrix in Fig. 10a, we observe that almost all the benign examples are classified correctly, while the classifier has

more difficulty with the three malware classes.

22

A. Khadilkar and M. Stamp

60

40

Frequency

20

0

5

0.0010 0.0028 0.0046 0.0064 0.0083 0.0101 0.0119 0.0137 0.0156 0.0174 0.0192 0.0210 0.0228 0.0247 0.026 0.0283 0.0301 0.0320 0.0338 0.0356

Fig. 9 Feature importance distribution in BODMAS

Table 5 Top 10 features for BODMAS dataset

Rank

Feature number

Importance

1

584

0.036483

2

473

0.026751

3

1283

0.025871

4

137

0.024794

5

44

0.024691

6

506

0.024518

7

62

0.024090

8

38

0.024042

9

499

0.023880

10

27

0.022573

When trained on 50 features, SVC achieves an accuracy of 0.9190, while our

MLP classifier achieves 0.9482 accuracy. The confusion matrices in Fig. 10b and c show us that both of these classifiers more often misclassify Sfone as Upatre, as

compared to any other misclassification.

6.2.3

QR Code Experiments

To generate QR representations of the data, the top 50 features were used. Figure 11a through d are examples of the benign, Sfone, Upatre, and Wacatac classes,

respectively.

[image: Image 9]

Image-Based Malware Classification Using QR and Aztec Codes

23

1000

1000

Benign

1015

5

6

Benign

989

19

18

800

800

Upatre

926

22

Upatre

9

933

6

600

600

Wacatac

16

731

5

400

Wacatac

14

728

10

400

200

200

Sfone

22

86

10

827

Sfone

59

111

51

724

0

0

atac

Benign

Upatre

Sfone

Benign

Upatre

Sfone

Wacatac

Wac

a

() R

o

d

n

a

m

t

s

e

r

o

F

)

b

(

C

V

S

1000

Benign

990

1

6

29

800

Upatre

918

30

600

Wacatac

3

739

10

400

200

Sfone

19

86

6

834

0

Benign

Upatre

Sfone

Wacatac

(c) MLP

Fig. 10 Confusion matrices for classic techniques (BODMAS dataset)

Table 6 QR parameters for BODMAS dataset

Parameter

Value

version

1

error_correction

ERROR_CORRECT_L

box_size

5

border

1

[image: Image 10]

24

A. Khadilkar and M. Stamp

(a) Benign

(b) Sfone

(c) Upatre

(d) Wacatac

Fig. 11 Examples of QR code representations (BODMAS)

The parameters used to generate these QR are given in Table 6. The generated images are of size .395 × 395 pixels. These were resized to .128 × 128 images for

use as input to our CNN.

To train our CNN model, the 18,524 samples were split 80:20 to train:test. The

validation split was not done in this case due to the smaller number of samples avail-

able. The loss and accuracy graphs for this CNN model are shown in the following

Fig. 12, where we see some indications of overfitting.

The test accuracy achieved for the CNN on the QR image representation

was 0.8271 for this multiclass problem. Note that this accuracy is less than we

achieved with each of our three classic ML techniques.

We repeated this experiment using 150 features. The loss and accuracy graphs for

this case are shown in Fig. 13. In this case, there appears to be less overfitting, as compared to the model based on 50 features.

The test accuracy achieved for the CNN based on 150 features is 0.8971. This

result improves significantly on the case where 50 features are considered, but it is

still less than our best classic ML technique.

[image: Image 11]

[image: Image 12]

Image-Based Malware Classification Using QR and Aztec Codes

25

Fig. 12 QR-CNN accuracy and loss graphs for BODMAS (50 features)

Fig. 13 QR-CNN accuracy and loss graphs for BODMAS (150 features)

6.2.4

Aztec Code Experiments

For the Aztec code representations of the data, we follow the same procedure as

was used for our QR code experiments, above. Specifically, we experiment using 50

features, then we repeat the entire set of experiments based on 150 features.

Figure 14a through d are representative examples of Aztec codes, based on 50

features, for the benign, Sfone, Upatre, and Wacatac classes, respectively. As

above, the only parameter used fir these Aztec codes was .module_size = 5.

The generated Aztec images are of size.375 × 375 pixels. These are directly used

as input to our CNN architecture, which is described in Sect. 5. Note that no resizing is necessary. Also, when training, we use an 80:20 split for training and testing. As

with the QR code case, a validation split was not used in this case.

[image: Image 13]

[image: Image 14]

26

A. Khadilkar and M. Stamp

(a) Benign

(b) Sfone

(c) Upatre

(d) Wacatac

Fig. 14 Examples of Aztec code representations (BODMAS)

Fig. 15 Aztec-CNN accuracy and loss graphs for BODMAS (50 features)

The loss and accuracy graphs for this case are shown in Fig. 15. It is clear that the model starts overfitting from epoch three. The test accuracy achieved for the CNN

on the Aztec image representation was 0.7821 for this multiclass problem.

We repeat the experiment above using Aztec images generated from 150 features.

All parameters are the same for this case as for 50 features case. The loss and accuracy

[image: Image 15]

Image-Based Malware Classification Using QR and Aztec Codes

27

Fig. 16 Aztec-CNN accuracy and loss graphs for BODMAS (150 features)

graphs for this experiment are shown in the following Fig. 16. It is again clearly visible that the model is significantly overfitting the data. The test accuracy achieved for the

CNN on the Aztec image representation based on 150 features is 0.8344.

 6.3

 Discussion

Tables 8 and 9 in Appendix list the hyperparameters tested (via grid search) for our classic machine learning and CNN experiments, respectively. In these tables, we have

also listed the accuracies obtained for each case. Note that the accuracies in these

tables are marginally better than the accuracies given in Sects. 6.1 and 6.2 above, as here we have considered early stopping.

The accuracies for the various models tested over the two datasets are summarized

in the form of a bar graph in Fig. 17. Note that for the CNN experiments on the BODMAS dataset, we have used the “150 Features” results from Table 9, which were better than the “50 Features” results for both the QR and Aztec codes.

From Fig. 17, we observe that the QR and Aztec codes far outperform classic techniques on the obfuscated CIC-MalMem-2022 dataset. However, for the BODMAS dataset, the situation is very different, with all three of the classic learning

techniques tested outperforming our CNN architectures, regardless of whether the

CNN was trained on QR or Aztec codes.

28

A. Khadilkar and M. Stamp

1.00

0.80

0.60

Accuracy 0.40

0.20

CIC-MalMem-2022

BODMAS

0.00

RF

SVC

MLP

CNN-QR CNN-Aztec

Fig. 17 Accuracy comparison graph

7

Conclusion and Future Work

In recent years, malware detection and classification based on image analysis has

received considerable attention in the literature. The method used to construct images

from malware can have a major impact on the success of such techniques, yet this

aspect of image-based malware analysis has received relatively little attention.

In this paper, we provided an empirical analysis of the utility of QR and Aztec

codes when used to provide image representations of features extracted from mal-

ware. We compared CNN models trained on these code images to learning techniques

trained directly on the features, using two distinct datasets. Based on these experi-

ments, we found that for the CIC-MalMem-2022 dataset—which consists of dynamic

features extracted from obfuscated malware—the QR and Aztec code results were

remarkably good. On the other hand, for the more typical malware samples in the

BODMAS dataset—which consists of static features—our QR-CNN and Aztec-CNN

results did not improve on other, non-image learning approaches. That is, classic ML

techniques trained on non-image features performed better on the BODMAS than

our more complex QR and Aztec image-based techniques.

There are many possible avenues for future work. Perhaps most urgently, we

would like to understand why the QR and Aztec codes perform extremely well on

the CIC-MalMem-2022 dataset, yet yielded inferior results on the BODMAS dataset.

There are at least three possible reasons for this discrepancy.

• The CIC-MalMem-2022 dataset is derived from obfuscated malware, while BOD-

MAS is not. Perhaps code-based images are superior on more challenging cases,

such as obfuscated malware.

• The features in the CIC-MalMem-2022 dataset were determined via dynamic

analysis, while the BODMAS features are based on static analysis. It is conceivable

Image-Based Malware Classification Using QR and Aztec Codes

29

that the dynamic features are more informative, and that CNNs trained on code-

based images are better able to take advantage of this additional information.

• The CNNs that we trained on the BODMAS dataset showed clear signs of over-

fitting. Perhaps CNNs would achieve stronger results on this dataset if we reduce

this overfitting. Various techniques are available that can often mitigate overfitting

in CNNs. For example, cutout regularization [14], which is somewhat analogous to the popular dropout regularization [32] used in other types of neural networks, would be worth testing.

The BODMAS dataset includes accurate timestamps, and hence it is ideal for the

study of concept drift [16], which refers to the need to update models when the underlying data has changed. Such “drift” is common in malware, where families evolve

as new features are added—existing malware may be adapted for other purposes,

new obfuscation techniques may be applied, and so on. If improved results can be

obtained for CNNs trained on the BODMAS dataset based on QR or Aztec codes,

then testing the robustness of such models under concept drift would be interesting.

Additional tests of QR and Aztec code representations on other malware datasets,

as well as other classification problems involving inherently non-image data, would

be interesting. Such experiments would enable us to determine the relative strengths

and weaknesses of code-based data representations in the realm of machine learning.

Appendix

In Table 7, we provide a complete list of the 55 features that appear in the CIC-MalMem-2022 dataset. These features form the basis of experiments discussed in

Sect. 6.1 of this paper, and the top 10 most informative of these 55 features are listed in Table 2.

Recall that the features listed in Table 7 are derived from memory dumps of selected malware samples. For additional information on these features, see [8].

In Tables 8 and 9 we list the hyperparameters tested (via grid search) for the classic techniques and our CNN models, respectively. Note that for each model, the

selected values are given in boldface.

30

A. Khadilkar and M. Stamp

Feature

malfind.protection

malfind.uniqueInjections

psxview.not_in_pslist

psxview.not_in_eprocess_pool

psxview.not_in_ethread_pool

psxview.not_in_pspcid_list

psxview.not_in_csrss_handles

psxview.not_in_session

psxview.not_in_deskthrd

psxview.not_in_pslist_false_avg

psxview.not_in_eprocess_pool_false_avg

psxview.not_in_ethread_pool_false_avg

psxview.not_in_pspcid_list_false_avg

psxview.not_in_csrss_handles_false_avg

psxview.not_in_session_false_avg

psxview.not_in_deskthrd_false_avg

modules.nmodules

svcscan.nservices

svcscan.kernel_drivers

svcscan.fs_drivers

svcscan.process_services

svcscan.shared_process_services

svcscan.interactive_process_services

svcscan.nactive

callbacks.ncallbacks

callbacks.nanonymous

callbacks.ngeneric

–

x

Inde

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

–

dataset

IC-MalMem-2022 C

for

Feature

pslist.nproc

pslist.nppid

pslist.avg_threads

pslist.nprocs64bit

pslist.avg_handlers

dlllist.ndlls

dlllist.avg_dlls_per_proc

handles.nhandles

handles.avg_handles_per_proc

handles.nport

handles.nfile

handles.nevent

handles.ndesktop

handles.nkey

handles.nthread

handles.ndirectory

handles.nsemaphore

handles.ntimer

handles.nsection

handles.nmutant

ldrmodules.not_in_load

ldrmodules.not_in_init

ldrmodules.not_in_mem

ldrmodules.not_in_load_avg

ldrmodules.not_in_init_avg

ldrmodules.not_in_mem_avg

malfind.ninjections

malfind.commitCharge

features

of

List

7

le

x

b

Ta

Inde

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Image-Based Malware Classification Using QR and Aztec Codes

31

y

Accurac

0.7980

0.5395

0.5483

0.9460

0.9190

0.9482

)]

)]

 , 10

 , 10

]

 , 10

]

 , 10

y

15

]

15

]

]

 ,(

y

]

 ,(

 , 1000

 , 1000

alues

]

 , 200

]

]

 , 200

]

v

]

]

 , 500

 , entrop

 , scale

 , entrop

 , scale

 , 55

 , poly

 , 150

 , Adam

 , 100

 , 55

 , 500

 , 150

 , poly

 , 150

 , Adam

 , 100

 , 150

ested T

100

10

auto

50

(10,10,10)

50

10

100

50

auto

50

(10,10,10)

50

50

.[

gini.

. [

rbf.

. [

. [

.[

sgd.

. [

. [

.[

gini.

. [

rbf.

. [

. [

.[

sgd.

. [

.[

ace)

boldf

features

features

features

features

features

features

in

of

of

of

of

of

of

alues v

Hyperparameters

n_esitmators

criterion

Number

kernel

gamma

Number

hidden_layer_sizes

solver

max_iter

Number

n_esitmators

criterion

Number

kernel

gamma

Number

hidden_layer_sizes

solver

max_iter

Number

(selected

techniques

classic

for

Classifier

RF

SVC

MLP

RF

SVC

MLP

tested

Hyperparameters

8

le b

Ta

Dataset

CIC-MalMem-2022

CIC-MalMem-2022

CIC-MalMem-2022

BODMAS

BODMAS

BODMAS

32

A. Khadilkar and M. Stamp

(continued)

st

Te

0.9998

0.9986

0.8271

y

ain

Accurac

Tr

0.9996

0.9998

0.9386

]

]

]

]

]

]

]

]

]

]

]

]

alues

 . 0001

 . 0001

 . 0001

v

 , 0

 , 128

 , RMSProp

 , RMSProp

 , RMSProp

 , 20

 , 0

 , 128

 , 20

 , 0

 , 128

 , 20

 , 64

 , 175

 , 64

 , 175

 , 64

 , 256

ested

 , 10

 , 10

 , 10

T

0.001

32

5

128

0.001

32

5

128

0.001

32

5

128

.[

. [

. [

Adam.

. [

.[

. [

. [

Adam.

. [

.[

. [

. [

Adam.

. [

ace)

boldf

in

alues v

Hyperparameters

learning_rate

batch_size

Epochs

Optimizer

image_dim

learning_rate

batch_size

Epochs

Optimizer

image_dim

learning_rate

batch_size

Epochs

Optimizer

image_dim

(selected

CNNs

for

tested

Code

QR

Aztec

QR

eatures) F

(50

Hyperparameters

9

le b

Ta

Dataset

CIC-MalMem-2022

CIC-MalMem-2022

BODMAS

Image-Based Malware Classification Using QR and Aztec Codes

33

st

Te

0.7821

0.8971

0.8344

y

ain

Accurac

Tr

0.9288

0.9762

0.9521

]

]

]

]

]

]

 , 675

]

 , 675

]

]

]

]

 , 375

]

 , 512

]

 , 512

alues

 . 0001

 . 0001

 . 0001

 , Adam

v

 , 0

 , 128

 , RMSProp

 , 20

 , 0

 , 128

 , 20

 , 0

 , 128

 , 20

ma

 , 64

 , 256

 , 64

 , 256

 , 64

d

 , 256

ested

 , 10

 , 10

 , 10

T

0.001

32

5

128

0.001

32

5

128

0.001

32

5

NA

128

.[

. [

. [

Adam.

. [

.[

. [

. [

. [

.[

. [

. [

. [

.[

Hyperparameters

learning_rate

batch_size

Epochs

Optimizer

image_dim

learning_rate

batch_size

Epochs

image_dim

learning_rate

batch_size

Epochs

Optimizer

image_dim

Code

Aztec

QR

Aztec

eatures) F

(50

(150

(150

(continued)

9

le b

Ta

Dataset

BODMAS

BODMAS

Features)

BODMAS

Features)

34

A. Khadilkar and M. Stamp

References

1. Abdulazeez FA, Ahmed IT, Hammad BT. Examining the performance of various pretrained

convolutional neural network models in malware detection. Appl Sci 2024;14(6)

2. Anderson HS, Roth P. EMBER: An open dataset for training static PE malware machine

learning models 2018. https://arxiv.org/abs/1804.04637

3. Aycock J. Computer viruses and malware. In: Advances in information security, vol 22.

Springer; 2006

4. Aztec code generator 2023. https://pypi.org/project/aztec-code-generator/

5. Aztec

code:

Barcode

guide

2024.

https://barcodeguide.seagullscientific.com/content/

Symbologies/Aztec_Code.htm

6. Barak B, Goldreich O, Impagliazzo R, Rudich S, Sahai A, Vadhan S, Yang, K. On the

(im)possibility of obfuscating programs. J ACM 2012;59(2)

7. Bayer U, Moser A, Kruegel C, Kirda E. Dynamic analysis of malicious code. J Comput Virol.

2006;2:67–77.

8. Canadian Institute for Cybersecurity. Malware memory analysis: CIC-MalMem-2022. https://

www.unb.ca/cic/datasets/malmem-2022.html

9. Carrier T, Victor P, Tekeoglu A, Lashkari AH. Detecting obfuscated malware using memory feature engineering. In: The international conference on information systems security and

privacy 2022. p. 177–88

10. Case A, Richard GG. Memory forensics: the path forward. Digit Investig. 2017;20:23–33.

11. Casey E, editors. Handbook of digital forensics and investigation. Elsevier Science; 2009

12. Chakkaravarthy S, Sangeetha D, Vaidehi V. A survey on malware analysis and mitigation techniques. Comput Sci Rev 2019;32:1–23

13. Dener M, Ok G, Orman A. Malware detection using memory analysis data in big data environment. Appl Sci. 2022;12(17):8604.

14. DeVries T, Taylor GW. Improved regularization of convolutional neural networks with cutout 2017. https://arxiv.org/abs/1708.04552

15. El-Shafai W, Almomani I, AlKhayer A. Visualized malware multi-classification framework

using fine-tuned cnn-based transfer learning models. Appl Sci 2021;11(14)

16. Jie L, Liu A, Dong F, Feng G, Gama J, Zhang G. Learning under concept drift: a review. IEEE

Trans Knowl Data Eng. 2019;31(12):2346–63.

17. Kalash M, Rochan M, Mohammed N, Bruce NDB, Wang Y, Iqbal F. Malware classification

with deep convolutional neural networks. In: 2018 9th IFIP international conference on new technologies, mobility and security, NTMS, 2018. p. 1–5

18. Louk MHL, Tama BA. Tree-based classifier ensembles for PE malware analysis: a performance revisit. Algorithms 2022;15(9)

19. Makandar A, Patrot A. Malware analysis and classification using artificial neural network.

In: 2015 international conference on trends in automation, communications and computing

technology, I-TACT-15, 2015. p. 1–6

20. Nataraj L, Karthikeyan S, Jacob G, Manjunath BS. Malware images: visualization and automatic classification. In: Proceedings of the 8th international symposium on visualization for cyber security, VizSec’11, 2011

21. NumPy 2023. https://numpy.org/

22. OS-miscellaneous operating system interfaces 2023. https://docs.python.org/3/library/os.html

23. Panda B, Bisoyi SS, Panigrahy S. An ensemble approach for imbalanced multiclass malware classification using 1D-CNN. PeerJ Comput Sci 2023;9:e1677

24. Pandas: Powerful python data analysis toolkit 2023. https://pandas.pydata.org/

25. Pillow: The friendly PIL fork 2023. https://python-pillow.org/

26. Prajapati P, Stamp M. An empirical analysis of image-based learning techniques for malware classification. In: Stamp M, Alazab M, Shalaginov A, editors. Malware analysis using artificial intelligence and deep learning. Springer; 2021. p. 411–35

27. Python QR code 2023. https://pypi.org/project/qrcode/

Image-Based Malware Classification Using QR and Aztec Codes

35

28. QR code standardization (2024). https://www.qrcode.com/en/about/standards.html

29. Ravikiran M, Madgula K. Fusing deep quick response code representations improves mal-

ware text classification. In: Proceedings of the ACM workshop on crossmodal learning and

application, WCRML’19, 2019. p. 11–8

30. Scikit-learn: machine learning in Python 2023. https://scikit-learn.org/stable/

31. Shabtai A, Moskovitch R, Elovici Y, Glezer C. Detection of malicious code by applying machine learning classifiers on static features: a state-of-the-art survey. Inf Secur Techn Rep.

2009;14(1):16–29.

32. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15(1):1929–58.

33. Stamp M. A survey of machine learning algorithms and their application in information security.

In: Parkinson S, Crampton A, Hill R, editors. Guide to vulnerability analysis for computer networks and systems—an artificial intelligence approach, Computer Communications and

Networks. Springer; 2018. p. 33–55

34. Stamp M. Introduction to machine learning with applications in information security, 2nd ed.

Chapman and Hall/CRC; 2022

35. TensorFlow 2023. https://www.tensorflow.org/

36. Tsai M-J, Lee Y-C, Chen T-M. Implementing deep convolutional neural networks for QR

code-based printed source identification. Algorithms 2023;16(3)

37. Yang L, Ciptadi A, Laziuk I, Ahmadzadeh A, Wang G. BODMAS: an open dataset for learning based temporal analysis of PE malware. In: 2021 IEEE security and privacy workshops, SPW, 2021. p. 78–84

38. You I, Yim K. Malware obfuscation techniques: a brief survey. In: 2010 International conference on broadband, wireless computing, communication and applications, 2010. p. 297–300

[image: Image 16]

Online Clustering of Known and

Emerging Malware Families

Olha Jurečková

, Martin Jureˇcek

, and Mark Stamp

Abstract Malware attacks have become significantly more frequent and sophisti-

cated in recent years. Therefore, malware detection and classification are critical

components of information security. Due to the large amount of malware samples

available, it is essential to categorize malware samples according to their malicious

characteristics. Clustering algorithms are thus becoming more widely used in com-

puter security to analyze the behavior of malware variants and discover new malware

families. Online clustering algorithms help us to understand malware behavior and

produce a quicker response to new threats. This paper introduces a novel machine

learning-based model for the online clustering of malicious samples into malware

families. Streaming data is divided according to the clustering decision rule into

samples from known and new emerging malware families. The streaming data is

classified using the weighted . k-nearest neighbor classifier into known families, and the online . k-means algorithm clusters the remaining streaming data and achieves

a purity of clusters from 90.20% for four clusters to 93.34% for ten clusters. This

work is based on static analysis of portable executable files for the Windows operating

system. Experimental results indicate that the proposed online clustering model can

create high-purity clusters corresponding to malware families. This allows malware

analysts to receive similar malware samples, speeding up their analysis.

O. Jurečková (B) · M. Jureček

Faculty of Information Technology, Czech Technical University in Prague, Prague, Czechia

e-mail: jurecolh@fit.cvut.cz

M. Jureček

e-mail: martin.jurecek@fit.cvut.cz

M. Stamp

San Jose State University, San Jose, CA, USA

e-mail: mark.stamp@sjsu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

37

M. Stamp and M. Jureček (eds.), Machine Learning, Deep Learning and AI for

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_2

38

O. Jurečková et al.

1

Introduction

In the field of malware detection, there are usually two sides. One party participates

in malware creation, while its primary purpose is profit [15]. The other side detects the malware and tries to minimize the damage. In the past, malicious programs

were written by hand, which was time-consuming. In addition, in-depth knowledge

of operating systems, networks, programming, and others, was required to create

the malware. Today, the creation of malicious programs is fast, and it is not even

necessary to have the mentioned theoretical knowledge. There are several programs

that facilitate the creation of malware. These are malware generators, defined as

programs that receive a set of parameters. S as an input, and malware will be generated as an output. Some of these programs are also freely available, mainly for scientific

purposes. However, most of them are difficult to access, e.g., located on the darknet,

and some money may be required to provide the malware generator.

For a given malware generator. G and a set. S of specific parameters.{ p 1 , . . . , pn}, it is then possible to generate particular malware. m 1. For a different set of parameters

.{ q 1 , . . . , qn }, the same generator. G generates a different malware. m 2. Depending on the particular generator . G, it is possible to specify the differences between . m 1 and

. m 2 based only on the parameter sets. For example, programs . m 1 and . m 2 can perform the same harmful activity and differ in obfuscation techniques. Both malware

can perform various harmful activities, e.g., one malware may be aimed at stealing

passwords and the other at blocking access to the system, both generated from the

same generator. For this reason, for the sake of simplicity, we will generally con-

sider malware generators as programs that generate some malware for a given set of

parameters.

Based on various analyses performed on real malware generators, researchers

hypothesized that malware samples generated from the same generator are simi-

lar [8, 16, 25, 38]. More precisely, for an appropriate distance, elements generated by the same generator with a given set of parameters . S are close to each other. In this case, these elements come from the same malware family. So some generators,

with their parameter sets, can be identified with malware families. Many papers [9,

32] on malware classification are built on the assumption that malware samples from one family are close to each other and distant from different malware families and

benign files. Solving the problem of classifying malware into malware families has

practical applications in antivirus companies. These companies receive hundreds of

thousands of new malicious samples daily [4], which are either processed manually by malware analysts or automatically using detection systems usually based on

machine learning. Suppose it was possible to group malware samples into groups

based on appropriate similarity. In that case, it is possible that elements from the

same groups would essentially belong to the same malware family. Thus, malware

analysts could receive similar malware samples, speeding up their analysis.

Malware clustering is also necessary for scientific purposes since it provides the

knowledge necessary for the examination of the evolution of individual malware

families over time. This research might then be used to predict future variants of

Online Clustering of Known and Emerging Malware Families

39

malware. This area is important for the antivirus industry since it can help reduce

the so-called reaction time, defined as the period between spreading the malware by

some infection vector, finding the malware, and creating a detection rule for it.

This paper presents a new machine learning-based model for the online clustering

of malicious samples into malware families. Our proposed online clustering algo-

rithm can cluster samples one by one based on already clustered samples and does not

need to have all samples available immediately. We designed a new clustering deci-

sion rule to determine which incoming samples belong to known or new emerging

malware families. These two groups are then processed online, and our experimental

results show that this approach is more successful in terms of the purity of clusters

than the approach where we directly apply the online clustering algorithm.

This paper is organized as follows. Section 2 reviews related works on malware family clustering, and Sect. 3 presents three online clustering algorithms used in the experimental part. Section 4 presents the proposed online clustering system and our experimental setup. Section 5 describes the experimental results. Finally, Sect. 6

concludes the paper and presents suggestions for future work.

2

Related Work

There is a growing interest in the use of unsupervised methods in malware detection,

image processing, and wireless communication, for example. This section presents

recent works that dealt with malware detection or classification using unsupervised

learning methods.

In [29], the authors propose MalFamAware, an online clustering method for incremental automatic malware family identification and malware classification. This

method effectively updates the clusters when new samples are added without having

to rescan the entire dataset. The authors use BIRCH (Balanced Iterative Reducing

and Clustering using Hierarchies) as an online clustering algorithm. It is compared

with CURE (Clustering using Representatives), DBSCAN,. k-means, and other clus-

tering algorithms. MalFamAware either classifies new incoming malware into the

corresponding existing family or creates a class for a new family, depending on the

situation.

The authors of [34] propose a clustering method based on incremental learning.

This method is based on two-phase clustering. A clustering ensemble method is used

to group the dataset objects to complete the first phase. The final clustering result is then extracted using an incremental clustering algorithm in the second phase. The

authors use three clustering algorithms: . k-means, partitioning around medoid, and

self-organizing maps (SOM) with different random initializations and the voting

mechanism to extract a set of sub-clusters.

The authors of [14] propose the clustering ensemble method, an extension of the self-organizing map combined with the cascaded structure, also known as a cascaded

SOM. The method cascades the outputs of multiple SOM networks and uses them

as input to another SOM network.

40

O. Jurečková et al.

A framework based on an unsupervised machine learning algorithm called

“SOMDROID” is proposed by the authors of [23]. They use SOM to create a model to determine whether an Android app is benign or malicious. The authors use six

different feature ranking approaches to select significant features or feature sets

and then apply the self-organizing map algorithm to the selected features or feature

sets.

In [39], the authors create an automatic categorization system to automatically group phishing websites or malware samples into families with common characteristics using a cluster ensemble. Their approach combines the individual clustering

solutions produced by different algorithms using a cluster ensemble. The authors use

the . k-medoids and hierarchical clustering algorithms to create the base clusterings.

The authors of [37] create and test a new system called COUGAR (Clustering of Unknown malware using Genetic Algorithm Routines), which uses a multi-objective

genetic algorithm to reduce high-dimensional malware behavioral data and optimize

clustering behavior. The EMBER (Endgame Malware Benchmark for Research)

dataset is used, and the dimensionality reduction method chosen for it is UMAP

(Uniform Manifold Approximation and Projection). Although this method can be

parameterized to reduce to any number of dimensions, the two-dimensional embed-

ding reduction is selected for this paper due to its simplicity and ease of visualization.

The authors use three clustering algorithms: DBSCAN, OPTICS, and. k−means and

Non-dominated Sorting Genetic Algorithm III (NSGA-III). The optimal parameters

for each clustering algorithm are determined by training them on 2,000 samples from

EMBER. This procedure is repeated ten times in order to account for the stochastic

nature of genetic algorithms. The authors also investigate a hypothetical situation by

applying the system to a realistic, real-world scenario.

The authors of [27] investigate the problem of malware classification using the. k-

means and Expectation-Maximization (EM) clustering algorithms. They use Hidden

Markov Models (HMM) to generate the scores for the clustering techniques. The

authors create clusters from HMM scores using both. k-means and the EM clustering

algorithm. The authors use the silhouette coefficient to evaluate the clustering results.

In addition, they use a simple purity-based score to determine clustering success. In

their research, the authors focus primarily on the three dominant families in the

Malicia dataset: Zbot, ZeroAccess, and Winwebsec.

In [6], the authors examine the relationship between malware families. The features they employ for clustering are based on byte n-gram frequencies, and they use

the . k−means algorithm as their clustering technique. The authors analyze a dataset that contained 1,000 samples from 20 malware families, which can be categorized

into seven different malware types. They present three distinct sets of clustering

experiment results. The authors first cluster every pair of malware families, then

investigate clustering experiments in which they focus on a single family of each

malware type under consideration, and finally consider clustering multiple families

from the same malware type. The authors use the adjusted Rand index (ARI) to

evaluate the clustering results.

Pirscoveanu et al. [28] use SOM to generate clusters that capture similarities between malware behaviors. Pirscoveanu et al. use features chosen based on

Online Clustering of Known and Emerging Malware Families

41

API calls, which represent successful and unsuccessful calls (i.e., calls that have

succeeded or failed, respectively, in changing the state of the system on the infected

machine) and the return codes from failed calls. The authors use principal compo-

nent analysis to reduce the set of features and the elbow method and gap statistics

to determine the number of clusters. Each sample is then projected onto a two-

dimensional map using self-organizing maps, where the number of clusters equals

the number of map nodes. The dataset is used to generate a behavioral profile of

the malicious types, which is then passed to a self-organizing map, which compares

the proposed clustering result with labels obtained from Antivirus companies via

VirusTotal [36].

The relay selection algorithm and the power control protocol presented by the

authors of [13] are based on the Basic Sequential Algorithmic Scheme (BSAS) and do not require any additional infrastructure, in contrast to other capacity-improving

techniques. Users will instead act as temporary relay stations. The authors modify the

original BSAS to fit the requirements of power control and resource allocation while

also making it suitable for an LTE environment. The newly proposed BSAS-based

algorithm uses path loss as the proximity between a node and formed clusters instead

of using distance. The fundamental concept is that, based on its path-loss from the

previously formed clusters, each node is assigned to either one that already exists or

one that has just been formed.

The authors introduce a hybrid model of AE and SOM to detect IoT malware

in [26]. The proposed models are evaluated using the NBaIoT dataset in various aspects, including detecting new or unknown malware, transferring knowledge for

detecting IoT malware on various IoT devices, and detecting different IoT malware

groups. The authors also examine the latent representation of DAEs (Denoising

AutoEncoder) for unsupervised learning in IoT malware detection. There are two

stages to the newly proposed hybrid model for identifying IoT malware. To create

its latent representation, DAE is trained on unlabeled data in the first phase, which

includes both normal data and IoT malware. During the second phase, the SOM

functions as a method for classification that works directly with the feature space of

the DAE.

3

Theoretical Background

Clustering algorithms are unsupervised machine learning methods that aim at group-

ing abstract objects into clusters of similar objects. This work focuses on online clus-

tering algorithms, which are computational procedures that process streaming data

incrementally as data points arrive over time. This section presents three state-of-

the-art online clustering algorithms used in the experimental part: Online . k-means (OKM), Basic Sequential Algorithmic Scheme (BSAS), and Self-Organizing Map

(SOM). We applied all these algorithms to cluster the samples into malware families.

At the end of this section, the distance-weighted. k-nearest neighbor classifier, which is included in our proposed model, is briefly presented.

42

O. Jurečková et al.

 3.1

 Online . k-Means (OKM)

The online . k-means (OKM) algorithm, also known as sequential . k-means or Mac-Queen’s . k-means [1] is an example of a non-hierarchical clustering algorithm. The sequential . k-means algorithm sequentially clusters a new example and updates a

single center immediately after a data point is assigned to it. The number of clusters,

. k, must be determined in advance, which is one disadvantage of the online . k-means algorithm. The pseudocode for the online. k-means algorithm is given in Algorithm 1

below [11].

Algorithm 1 Sequential . k-means algorithm (OKM)

Input: a number of clusters. k to be created, a set of data points. X

Output: a set of. k clusters

1: initialize cluster centroids. μ 1 , . . . , μk randomly

2: set the counts. n 1 , . . . , nk to zero

3: repeat

4:

select a random point. x from. X and find the

nearest center. μi to this point

5:

if . μi is closest to. x then

6:

increment. ni

7:

replace. μi by. μi + 1 (x − μ

 n

 i)

 i

8:

end if

9: until interrupted

 3.2

 Self-organizing Map (SOM)

In 1982, Teuvo Kohonen introduced the concept of self-organizing maps, or SOMs.

Consequently, they are occasionally referred to as Kohonen maps [19]. The SOM is an unsupervised machine learning technique that preserves similarity relations between

the presented data while converting a complex high-dimensional input space into

a simpler low-dimensional (typically two-dimensional grid) discrete output space.

Self-organizing maps use competitive learning rules in which output neurons fight

with one another to be active neurons, activating only one of them at a time. A

winning neuron is an output neuron that has won the competition.

Before running the algorithm, several parameters need to be set, including the

size and shape of the map, as well as the distance at which neurons are compared for

similarity. After selecting the parameters, a map with a predetermined size is created.

Individual neurons in the network can be combined into layers.

SOM typically consists of two layers of neurons without any hidden layers [3].

The input layer represents input vector data. A weight is a connection that connects

an input neuron to an output neuron, and each output neuron has a weight vector

associated with it. The formation of self-organizing maps begins by initializing the

synaptic weights of the network. The weights are updated during the learning process.

The winner is the neuron whose weight vector is most similar to the input vector.

Online Clustering of Known and Emerging Malware Families

43

The winning neuron of the competition or the best-matching neuron. c at iteration

. t (i.e., for the input data . xt) is determined using

. c(t) = arg min { x (t) − wi (t)} , for i = 1 , 2 , . . . , n where . wi (t) is the weight of . i-th output neuron at time . t, and . n is the number of output neurons. After the winning neuron . c has been selected, the weight vectors of the winner and its neighboring units in the output space are updated. The weight

update function is defined as

. wi (t + 1) = wi (t) + α(t)hci (t) [x (t) − wi (t)] , where . α(t) is the learning rate parameter, and . hci (t) is the neighborhood kernel function around the winner . c at time . t. The learning rate is the speed with which the weights change. The connection between the input space and the output space is

created by the neighborhood function, which also determines the rate of change of

the neighborhood around the winner neuron. This function affects the training result

of the SOM procedure.

A Gaussian function is a common choice for a neighborhood function

 d 2 ci

. hci (t) = exp

−

 α(t).

2 σ 2 (t)

that determines how a neuron is involved in the training process, where . dci denotes the distance between the winning neuron. c and the excited neuron. i ,. σ 2 (t) is a factor used to control the width of the neighborhood kernel at time. t. The learning rate. α(t) is a decreasing function toward zero. The basic SOM algorithm can be summarized

in Algorithm 2.

Algorithm 2 Self-organizing map (SOM)

Input: dimension and size of the output space, distance function, neighborhood function, learning rate, and a set of data points. X .

Output: a set of clusters

1: initialize the weights of each neuron

2: . t = 1

3: select randomly an input vector from the set of training data. X

4: for each input vector do

5:

calculate the distances measure between

the input vector and all the weights

vectors.

6:

find the best matching neuron. c(t) at

iteration. t.

7:

update the weight vectors of the neurons.

8:

. t = t + 1 and update neighborhood size and

learning rate.

9: end for

44

O. Jurečková et al.

There are many applications for SOM, and one of them is clustering tasks. The

authors of [5] claim that since each SOM unit is the center of a cluster, the . k-unit SOM successfully finished a task comparable to. k-means. The authors further stated

that the SOM and . k-means algorithms strictly correspond to one another when the

radius of the neighborhood function in the SOM is zero.

 3.3

 Basic Sequential Algorithmic Scheme (BSAS)

The following algorithm we employed in our work is the Basis Sequential Algo-

rithmic Scheme (BSAS), a sequential clustering technique that presents all feature

vectors to the algorithm once [20]. The number of clusters is unknown in advance.

Clusters are gradually generated as the algorithm evolves. The basic idea behind

BSAS is to assign each newly considered feature vector . x to an existing cluster or to create a new cluster for that vector based on the distance to previously created

clusters. To determine whether a data point can join a particular cluster, the algorithm

considers two thresholds: a maximum number of clusters that can be merged and a

dissimilarity threshold.

There are several ways to define the distance . d(x, C) between a cluster . C and a feature vector. x. We will consider. d(x, C) as the distance between. x and the centroid of. C. The parameters of the BSAS are as follows: a number . q, which represents the maximum number of clusters permitted, and a dissimilarity threshold . , which is

the threshold used for creating new clusters. A new cluster with the newly presented

vector is formed when the distance between a new vector and any other clusters is

beyond a dissimilarity threshold and if the number of the maximum clusters allowed

has not been reached. The threshold. directly affects the number of clusters formed by BSAS. If the user chooses the too small value of. , then unnecessary clusters will be created, while if the user chooses the too large value of. , less than an appropriate number of clusters will be formed. The pseudocode for the BSAS algorithm is given

below in Algorithm 3.

 3.4

 Distance-Weighted . k-Nearest Neighbor (WKNN)

The distance-weighted . k-nearest neighbor (WKNN) classifier [12] is used in our work to classify testing data to known malware families. The main idea behind the

WKNN is that closer neighbors have larger weights than neighbors far away from the

query object. Let. T = (z 1 , . . . , zk) be. k nearest neighbors from. D of the query object

. x ∈ S and . d 1 , . . . , dk the corresponding distances arranged in increasing order. The resulting cluster . Cx for . x is defined by the majority weighted vote

. Cx = argmax

 wi · δ(C, Cz)

(1)

 i

 C

 (zi ,Cz)∈ T

 i

Online Clustering of Known and Emerging Malware Families

45

Algorithm 3 Basic Sequential Algorithmic Scheme (BSAS)

Input: the dissimilarity threshold. , the maximum allowed number of clusters. q, and a set of data points. X

Output: a set of clusters

1: initialize. m = 1

2: select a random point. x 1 from. X

3: define the first cluster. Cm = { x 1}

4: for each. x in. X \.{ x 1} do

5:

find. Ck : d(x, Ck) = min 1≤ i≤ md(x, Ci)

6:

if . d(x, Ck) > and. m < q then

7:

. m = m + 1

8:

. Cm = { x }

9:

else

10:

. Ck = Ck ∪ { x }

11:

update the centroid of. Ck

12:

end if

13: end for

where. (zi , Cz) denotes that the sample. z

,. δ(a, b) is equal

 i

 i belongs to the cluster . Czi

to one if . a = b and zero otherwise, and the weight. wi for. i-th nearest neighbor. zi is defined by

 dk− di if d

 d

 k = d 1

. wi =

 k − d 1

1

otherwise.

4

Proposed Approach and Experimental Setup

This section presents the proposed model for the online clustering of malicious

samples to malware families and the experimental setup, which contains detailed

information about the methodology and procedures used in experiments.

Suppose we have a dataset . D = { x 1 , . . . , xt }, which contains. t unlabeled feature vectors for malware samples. Let. K be a set of all malware families that the samples from . D belong to. Suppose that we have chronologically ordered streaming data

. S = { xt+1 , xt+2 , . . . }, which contains malware samples that belong to the set . K of malware families and newly emerging families. The goal is to cluster the data set. D

together with the data set. S so that the clusters in each of these data sets achieve the highest possible purity and thus correspond closely to the malware families.

This goal aims to simplify the work of malware analysts since they would receive

samples from the same malware family, which would speed up the overall analysis

process. The missing labels of samples from dataset. D corresponds to a real situation when antivirus companies received the newest samples, which had not yet been

analyzed, i.e., they were not subjected to machine learning algorithms that could

predict the labels, nor were they manually analyzed by malware analysts.

Therefore, we assume that when deploying the model proposed in this section,

we will have several unlabeled samples available. These samples can be clustered

46

O. Jurečková et al.

using a batch approach, where the clustering algorithm has all the samples available.

We assume that all samples from dataset . D appeared before a specific time . T . On the other hand, from the time . T , new malware samples . S = xt+1 , xt+2 , . . . arrive as streaming data. Since we will always have samples until the current time and

we have to wait for newer samples, we use online clustering to cluster incoming

samples from . S. This type of clustering algorithm can cluster samples one by one based on already clustered samples and does not need to have all samples available

immediately. Streaming data in the real world contain benign and malicious samples.

However, in this work, we only work with malware samples, assuming that the benign

samples of the streaming data . S have been filtered out.

 4.1

 Proposed Model

The proposed model for clustering samples from a fixed dataset . D and a streaming data . S is illustrated in Fig. 1. Dataset . D is first preprocessed using the standard score and principal component analysis (PCA). The preprocessed dataset . D is then

clustered using a clustering algorithm. In this work, we experimented with three

clustering algorithms, and based on the results from Sect. 5.1, we used the SOM

algorithm. The samples from dataset. D are clustered into malware families from the set . K , referred to as known malware families.

The streaming data . S = xt+1 , xt+2 , . . . is one by one preprocessed via the standard score, and PCA, using the same setup used for processing of dataset . D. Then the incoming samples . xt+1 , xt+2 , . . . will be clustered one by one according to the following approach. The sample . x ∈ S is first classified to the cluster . Cx from the clustering of dataset . D according to the WKNN classifier. Cluster names are used as labels for samples from dataset . D, which is used to train the WKNN classifier.

After the identification of. Cx for. x ∈ S using WKNN classification, the Clustering decision rule determines whether . x will remain in the cluster . Cx of samples from known malware families or will be assigned to some cluster of samples from new Fig. 1 The architecture of the proposed model for the online clustering of malicious samples to malware families

Online Clustering of Known and Emerging Malware Families

47

 malware families, i.e., families that appeared after the time. T . The Clustering decision rule is defined by . x ∈ S remains in the cluster . Cx ⊂ D if there is a sample . y ∈ Cx such that

. D(y, cx) + τ ≥ max{ D(y, x), D(x , cx)}

(2)

where . cx is the centroid of the cluster . Cx and . τ ≥ 0 is the parameter of our model.

We used the Euclidean distance . D throughout the experimental part. According to

the decision rule (2), . x will be added to the set . D clustered into known malware families, i.e., families that appeared before the time . T , or to a set clustered into new malware families, which emerged after the time. T . Samples from new malware families are clustered using an online clustering algorithm, such as OKM, SOM, or

BSAS. Section 5.3 presents the clustering results for these three algorithms.

The parameter. τ > 0 allows the clusters to expand. If. τ < 0, then we can extend to

. Cx only by internal points, i.e., points closer to the centroid. cx than the farthest point of the cluster . Cx . Figure 2 demonstrates the clustering decision rule (2) using the simple data set consisting of only two small clusters. C 1 and. C 2. Figure 2 shows that

. xt+1 remains in. C 1 since there is a sample. y ∈ C 1 for which rule (2) is satisfied. On the other hand,. xt+2 will be clustered into a new malware family (i.e., not belonging to the set. K), because rule (2) is not satisfied even for. y , which is the best candidate for. y.

The WKNN classifier was compared with the Multilayer perception and Ran-

dom forest classifiers, and based on the classification results presented in Section

6.2, WKNN was selected to classify the streaming data in our proposed model.

WKNN takes into account the similarities of the samples using mutual distance, and

in addition to the KNN, the WKNN classifier considers the distances between nearest

neighbors and the queried object. Note that a variant of the rule (2) was used in [17] to select a representative training set to train a classifier designed for malware detection.

Fig. 2 Demonstration of the decision rule (2) used to determine whether the sample . xt+1 will remain in the nearest cluster . C 1 ⊂ D corresponding to a known malware family and the sample

. xt+2 will be assigned into cluster corresponding to a new malware family. Three nearest neighbors of the sample. xt+1 are highlighted using the circle

48

O. Jurečková et al.

The rest of this section presents the dataset used in the experimental part, and

the metrics for evaluating clustering results. The implementation of our proposed

model and methods for evaluating clustering results are based on scikit-learn [33] and PyClustering [30] libraries. All experiments in this work were executed on a single computer platform having two processors (Intel Xeon Gold 6136, 3.0 GHz, 12 cores

each), with 64 GB of RAM running the Ubuntu server 18.04 LTS operating system.

 4.2

 Dataset

We evaluated our proposed method using EMBER dataset [2]. The dataset contains 400,000 feature vectors corresponding to malicious samples from more than 3,000

malware families. The features were extracted using the LIEF open source package

[22] and include metadata from portable executable file format [24], strings, byte, and entropy histograms. The feature set consists of 2,381 features that are described in [2].

These features were extracted using static analysis only, which aims at searching for

information about the file structure without running a program. The dataset also

contains feature vectors for benign samples which were not considered in our work.

Date of the first appearence of the corresponding sample and the name of mal-

ware family where the sample belongs to are assigned to each feature vector. The

date information is given by month and year of the first appearence of the sample.

Samples that appeared until October 2018 are included in the EMBER training set,

while samples appeared between November and December 2018 are included in

the EMBER test set. While the EMBER training set contains samples from more

than 3,000 malware families, we focus primarily on the four most prevalent malware

families: Xtrat, Zbot, Ramnit, and Sality. The training dataset . D used in our model consists of samples from the EMBER training set with labels corresponding to these

four malware families. The streaming data . S used in our model consists of samples from the EMBER test data set with labels corresponding to these four malware families and three additional malware families: Emotet, Ursnif, and Sivis. We considered

three new families to get closer to the real situation when new malware families are

Table 1 The size of unlabeled data set . D, size of streaming unlabeled data set . S, and the overall data set size, i.e.,. | D| + | S| = 47 , 268 + 65 , 383 = 112 , 651

Malware family

.| D|

.| S|

Size

Xtrat

16,689

19,280

35,969

Zbot

10,782

13,293

24,075

Ramnit

10,275

10,320

20,595

Sality

9,522

9,050

18,572

Ursnif

0

5,733

5,733

Emotet

0

4,904

4,904

Sivis

0

2,803

2,803

Online Clustering of Known and Emerging Malware Families

49

constantly being created. One of our goals is to verify whether our proposed model

can identify new families using online clustering.

Table 1 summarizes the number of samples used in the experimental part, arranged in descending order of sample count for each of the seven prevalent malware families

from the EMBER dataset. More information about malware families and technical

details can be found in [35].

 4.3

 Evaluation Metric

We evaluated the quality of clusters using two standard measures: purity and silhou-

ette coefficient (SC). Let the purity of cluster. C j be defined as. Purity (C j) = max i pi j , where. pi j is the probability that a randomly selected sample from cluster. C j belongs to class. i . The overall purity is the weighted sum of individual purities and is given by k

. Purity = 1

| C j|Purity (C j).

 n j=1

where . n is the size of a dataset.

While purity uses labels when evaluating the quality of clusters, the silhouette

coefficient does not depend on labels. It can therefore be used in the validation phase

to determine the number of clusters. The average silhouette coefficient [31] for each cluster is defined as follows.

Consider . n samples . x 1 , . . . , xn that have been divided into the . k clusters

. C 1 , . . . , Ck . Average distance between . xi ∈ C j to all other samples in cluster . C j is given by

. a(xi) =

1

 D(x

|

 i , y).

 C j | − 1 y∈ Cj

 y= xi

Let . bk(xi) be the average distance from the sample . xi ∈ C j to all samples in the cluster . Ck not containing . xi , and is defined by

. bk (xi) =

1

 D(x

|

 i , y).

 Ck| y∈ Ck

Let. b(xi) be the minimum of. bk(xi) for all clusters. Ck, where. k = j. The silhouette coefficient of . xi is given by combining . a(xi) and. b(xi), and is defined by

. s(xi) =

 b(xi) − a(xi) .

max (a(xi), b(xi))

50

O. Jurečková et al.

The silhouette coefficient. s(xi) ranges from –1 to 1, with higher scores indicating better performance. Finally, the average silhouette coefficient for a given dataset is

defined as the average value of . s(xi) over all samples in the dataset.

Note that our proposed model assumes that only unlabeled data is available.

Therefore, for example, when choosing the optimal number of features, the silhouette

coefficient is used, while purity is used only to evaluate our model.

5

Experimental Results

This section contains descriptions of experiments conducted for our proposed online

clustering model. Firstly, we experiment with the number of features used to represent

the samples from malware families. Then, we select a machine learning algorithm to

classify streaming data to the known malware families and tune the parameter . λ of our proposed model, enabling cluster expansion. Finally, we present the experimental

results of our proposed online clustering model, compare it with the reference model,

demonstrate that the computational times are low enough to cluster all malware

samples that appear daily, and provide a discussion for our work.

 5.1

 Preprocessing and Clustering Algorithm Selection

The preprocessing used in this work consists of data normalization and dimension-

ality reduction. Dataset . D was normalized using the standard score, and the PCA

algorithm was used to extract optimal features from the original features. When

calculating the standard score of the streaming data . S = { xt+1 , xt+2 , . . . }, standard deviations and mean values were obtained based on dataset. D. Then, the PCA transformation was applied to the normalized data, where the PCA transformation was

created based on dataset . D.

In this experiment, we considered options for the optimal number of features from

the set .{20 , 30 , 40 , . . . , 80}. We experimented with the following three clustering algorithms for clustering the dataset. D:. k-means, SOM, and DBSCAN. The optimal number of features was chosen via the silhouette coefficient which was used to

evaluate the clusters created by the three clustering algorithm. The number of cluster

was set to four since the dataset . D consists of samples from four malware families.

The number of clusters determined the number of output neurons in SOM. We left

all other SOM hyperparameters at their default values according to the PyClustering

library. The implementation of DBSCAN and . k-means is based on the scikit-learn

library. We tuned two hyper-parameters of the DBSCAN using the following search

grid:

• eps: 0.1, 0.5, 1, 2, 5

• min_samples: 5, 10, 20

Online Clustering of Known and Emerging Malware Families

51

Fig. 3 The relationship between the number of features and the silhouette coefficient The parameter eps is defined as the maximal distance between samples, where one is

considered to be in the neighborhood of the other one. The parameter min_samples is

the minimum number of points that are required to form a dense region. The highest

silhouette coefficient for DBSCAN was achieved for.eps = 5 and.min_samples = 10.

Figure 3 shows the relation between the number of features extracted by PCA and the average silhouette coefficient for three clustering algorithms. The highest

silhouette coefficient was achieved for 40 extracted features by SOM. Note that the

highest purity of clusters, 84.46%, was achieved for 50 features by DBSCAN. Since

we assumed that the dataset contains only unlabeled samples, we used 40 features

for all remaining experiments from this work.

 5.2

 Classifier Selection and Tuning of the Hyper-parameter . τ

To classify streaming data to the known malware families, we considered the fol-

lowing three classifiers: Multilayer perceptron (MLP), Random forest (RF), and

. k-nearest neighbors (KNN). MLP [21] is an artificial neural network composed of multiple layers of neurons, typically including an input layer, one or more hidden

layers, and an output layer. The input layer takes an input, which is then processed

in hidden layers, and finally, perceptrons in the output layer output a result. Random

forest [7] is an ensemble learning method combining the results made by several decision trees using a voting mechanism. The . k-nearest neighbors classifier [10] is a non-parametric method that predicts a class label according to a majority vote of

its . k nearest neighbors.

We tuned the hyper-parameters of the MLP, RF, and KNN classifiers using the

grid search that exhaustively considered all parameter combinations. The following

searching grid parameters were explored for MLP:

• hidden layer sizes: (100,0), (200, 0), (400, 0), (100, 50), (200, 100), (400, 100),

(400, 200)

52

O. Jurečková et al.

• activation function: relu, tanh, logistic

• solver for weight optimization: lbfgs, adam

• alpha: 0.0001, 0.001, 0.01

The parameter alpha controls the strength of regularization applied to the neural

network’s weights. The definitions of the activation functions and the solvers are

presented in the neural_network.MLPclassifier class from the scikit-learn library,

which was used in our experiments. For random forest, we explored the number of

trees in the forest, the maximal depth of trees, and the criterion that measure the

quality of a split:

• number of estimators: 100, 500, 1000

• maximal depth: 7, 8, 9, 10

• criterion: gini, entropy

The criteria are defined in the ensemble. RandomForestClassifier class from the

scikit-learn library, which was used in our experiments. Finally, for the KNN, we

considered the following hyper-parameters:

• . k: 1, 3, 5, 7, 9, 11

• weights: uniform, wknn

The parameter . k denotes the numbers of nearest neighbors, and the parame-

ter weights denotes the weight function. Uniform weight states that all . k neigh-

bors are weighted equally, while the case “weights=wknn” is described in (1). The best-performing values of the hyperparameters for the MLP, RF, and KNN models,

together with the corresponding classification accuracies, are given in Table 2. Since the WKNN classifier achieved the highest classification accuracy, we used it in all

remaining experiments.

The proposed online clustering model has the parameter. τ enabling cluster expan-

sion. We experimented with the. τ values from the set.{−5 , −2 , 0 , 2 , 5} to determine the optimal values. The highest silhouette coefficient was achieved for. τ = −2 where 11.2% of samples from. S were determined according to the clustering decision rule

(2) as samples from new malware families.

Table 2 Hyperparameter tuning for the MLP, RF, and KNN classifiers

Classifier

MLP

Parameters

hidden_layer_sizes

Activation

Solver

Alpha

Best-performing values

(400, 200)

Relu

Adam

0.0001

Classification accuracies

93.89%

Classifiers

RF

KNN

Parameters

Criterion

max_depth

n_estimators

. k

Weights

Best-performing values

Entropy

10

1000

3

wknn

Classification accuracies

92.31%

94.08%

Online Clustering of Known and Emerging Malware Families

53

Fig. 4 The relationship between the parameter. τ and the percentage of streaming data clustered to new malware families

Based on the rule (2), with increasing . τ , the number of elements clustered into known malware families increases. Figure 4 shows how the parameter . τ influences the number of samples from the streaming dataset classified as samples from new

 malware families. The figure was created for the parameter . k = 3 of the WKNN

classifier, and we assumed that the number of clusters in dataset . D equals four.

 5.3

 Online Clustering

This section describes the experimental results of the proposed online clustering

model. We evaluated the model using three state-of-the-art online clustering algo-

rithms: SOM, BSAS, and OKM. We applied these algorithms to cluster samples

determined by the clustering decision rule (2) as samples belonging to new malware (a) Purities of clusters.

(b) Average silhouette coefficients.

Fig. 5 The relation between the number of clusters and the purity of clusters (a), respectively, the average silhouette coefficient (b). The results correspond to samples that were clustered to new malware families

54

O. Jurečková et al.

 families. Since the number of newly emerging malware families during a specific

time window is unknown, we assume that the correct number of clusters, which is

required information for SOM and OKM clustering algorithms, is also unknown.

While the number of clusters is not required in BSAS, the upper bound for the num-

ber of clusters must be provided. The following experiments were conducted for the

number of clusters (or its upper bound for BSAS) in the set .{4 , 5 , . . . , 10}.

We applied SOM, BSAS, and OKM twenty times to samples clustered into new

 malware families, and Fig. 5 shows the average results for the purity of clusters and the silhouette coefficient, considering various numbers of clusters. These clustering

results correspond to the parameter. τ = −2, for which our model achieved the highest silhouette coefficient on the dataset . D.

The clustering results show that all three online clustering algorithms achieved

a purity of clusters of at least 88.5%, with OKM outperforming both BSAS and

SOM. However, SOM achieved a significantly higher average silhouette coefficient

than BSAS and OKM. The average silhouette coefficient values close to 1 indicate

that the clusters are well-separated. The clustering results show that the highest

purity of clusters, 93.34%, was achieved using OKM for ten clusters, and the highest

average silhouette coefficient, 0.99, was performed using SOM for four clusters. In

the previous work [18], the SOM also achieved significant results compared to BSAS

and OKM online clustering algorithms.

The average silhouette coefficient and purity of clusters calculated for samples

from known families are 0.99 and 56.59%, respectively, where the purity is significantly lower using the parameters . τ = −2 in comparison to this metric calculated

for samples from new malware families.

Finally, we compare the proposed online clustering model with the reference

model, where the online clustering algorithms were directly applied to the unlabeled

dataset. D, and the streaming data. S consisting of a total of 112,651 malicious samples from seven prevalent malware families. Figure 6 shows the purities of clusters and the average silhouette coefficient achieved for the unlabeled dataset. D and the streaming data . S for several numbers of clusters. The results indicate that the proposed online clustering model is more successful in terms of purity of clusters than the approach

where we directly apply the online clustering algorithm.

 5.4

 Computational Times

This section presents the computational times of three online clustering algorithms,

SOM, BSAS, and OKM, applied to cluster the samples determined by the clustering

decision rule (2) as samples belonging to new malware families. We run each of these algorithms twenty times, presenting the results as boxplot graphs. The average

number of samples clustered using the online clustering algorithms is 3,505, with a

standard deviation 776. This number of samples is based on the WKNN classification

results and the clustering decision rule as described in Sect. 4. Figure 7 shows the computational times of individual online clustering algorithms. The mean values of

Online Clustering of Known and Emerging Malware Families

55

(a) Purities of clusters.

(b) Average silhouette coefficients.

Fig. 6 The relation between the number of clusters and the purity of clusters (a), respectively, the average silhouette coefficient (b). The online clustering algorithms were directly applied to the unlabeled dataset. D and the streaming data. S

(a) SOM

(b) BSAS

(c) OKM

Fig. 7 The computational times of the online clustering algorithms

computational times for clustering all samples belonging to new malware families

are less than one second for all clustering algorithms and all considered numbers of

clusters. The graphs also demonstrate that the OKM algorithm is the fastest among

the three online clustering algorithms, whereby SOM is approximately two times

slower than OKM.

56

O. Jurečková et al.

Fig. 8 Histogram of average computational times for 20 measurements of the entire proposed model

It took less than 1 second to cluster the unlabeled data . D , i.e., the data that appeared before the streaming data . S. The training of the WKNN classifier took

1,706 s on average, with a standard deviation of 206 s. The total computational

time of the proposed model consists of computational times for data preprocessing,

clustering of the dataset. D, WKNN classification of the streaming data. S, and online clustering of samples belonging to new malware families, and is shown in Fig. 8 in the form of a histogram.

Note that the clustering of the dataset . D is conducted only once. Unlike other

classifiers, such as neural networks or support vector machines, WKNN does not learn

a discriminative function from the training data. As a result, training of WKNN is

done sequentially as streaming data comes. If we used, for example, a neural network

to classify malware families, the training would be performed only once, which

could reduce the total computation time of the proposed model. On the contrary, the

advantage of the WKNN classifier is that it does not need to be retrained; however,

distances between testing and training samples must be computed, which might be

computationally expensive for large datasets.

According to the AV-Test Institute [4], 450,000 new malware samples are detected on average daily. Based on the computation times shown in Fig. 8, all malware samples that appear daily can be clustered using the proposed model for online stream

data processing. Specifically, the mean of computational times from Fig. 8 is 1,728

s, the average computational time for clustering the streaming data . S consisting of 65,383 samples. As a result, processing 450,000 samples would take approximately

3.3 h. For the highest computational time, 2,159 s, for processing the streaming data,

processing the 450,000 samples would take approximately 4.13 h.

Online Clustering of Known and Emerging Malware Families

57

 5.5

 Discusion

This work deals with the problem of online clustering of streaming data concerning a

fixed dataset consisting of unlabeled samples that appeared before the streaming data

(the problem is defined in the first paragraph of Sect. 4). This problem differs from the straightforward application of clustering algorithms to a single fixed or streaming

data in that we also use another dataset consisting of older samples to improve

clustering results. This aligns with the real situation when antivirus companies have

to analyze streaming data while also having older, unlabeled data. If the older dataset

contains a subset of labeled samples, in this case, we could use semi-supervised

learning techniques, with the help of which we could improve the online clustering

of streaming data.

The proposed model for the online clustering works with malware samples only.

If the streaming data contains benign and malicious samples, applying a malware

detection model before clustering into malware families using our model will be

necessary.

6

Conclusion

Clustering malware samples into families is suitable for speeding up the work of mal-

ware analysts and also for research purposes. Clustering malware families allows us

to examine the evolution of individual malware families over time and potentially

help with the prediction of future variants of malware. In this work, we proposed a

model for the online clustering of malicious samples into malware families. Stream-

ing data is not clustered directly but split according to similarity with samples from

known malware families. The samples that the proposed system determined did not

belong to existing families were clustered into emerging families using online clus-

tering algorithms. The clustering results show that the online clustering algorithms

achieved a purity of clusters of at least 88.5%. Experimental results indicate that

this approach creates clusters with higher purity than clusters formed by the direct

application of an online clustering algorithm.

Future work may focus on testing and possibly improving the proposed model

to cluster incoming samples from a more significant number of families with the

required purity of clusters. This task is challenging since the feature set obtained from the static analysis may not be sufficient to distinguish a more significant number of

families from each other. Another extension of the work can be using semi-supervised

learning methods, which could improve clustering into malware families utilizing a

subset of labeled samples.

Acknowledgements This work was supported by the OP VVV MEYS funded project CZ.02.1.01/

0.0/0.0/16_019/0000 765 “Research Center for Informatics” and by the Grant Agency of the CTU

in Prague, grant No. SGS23/211/OHK3/3T/18 funded by the MEYS of the Czech Republic.

58

O. Jurečková et al.

References

1. Abernathy A, Emre Celebi M. The incremental online k-means clustering algorithm and its application to color quantization. Exp Syst Appl. 2022;207:117927.

2. Anderson HS, Roth P. Ember: an open dataset for training static pe malware machine learning models 2018. arXiv preprint:1804.04637

3. Asan U, Ercan S. An introduction to self-organizing maps. In: Computational intelligence systems in industrial engineering: with recent theory and applications;2012. p. 295–315.

4. AV-TEST. Av-test malware statistics 2024. https://www.av-test.org/en/statistics/malware/.

Accessed 22 Sept 2024.

5. Bação F, Lobo V, Painho M. Self-organizing maps as substitutes for k-means clustering. In: Computational science–ICCS 2005: 5th international conference, Atlanta, GA, USA, 22–25

May 2005, Proceedings, Part III, vol. 5. Springer; 2005. p. 476–83.

6. Basole S, Stamp M. Cluster analysis of malware family relationships. In: Malware analysis using artificial intelligence and deep learning;2021. p. 361–79.

7. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

8. Cesare S, Xiang Y. Malware variant detection using similarity search over sets of control flow graphs. In: 2011IEEE 10th international conference on trust, security and privacy in computing and communications. IEEE;2011. p. 181–9.

9. Chen X, Jiang Z, Wang S, Jing R, Ling C, Wang Q. Malware detected and tell me why: an verifiable malware detection model with graph metric learning. In: International conference on science of cyber security. Springer;2022. p. 302–14.

10. Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967;13(1):21–

7.

11. Duda R, Hart P. k-means clustering 2008. https://www.cs.princeton.edu/courses/archive/

fall08/cos436/Duda/C/sk_means.htm. Accessed 22 Sept 2024.

12. Dudani SA. The distance-weighted k-nearest-neighbor rule. IEEE Trans Syst Man Cybern.

1976;SMC-6(4):325–7.

13. Hajjar M, Aldabbagh G, Dimitriou N, Win MZ. Relay selection based clustering techniques for high density lte networks. Wirel Netw. 2019;25:2305–14.

14. Hua W, Mo L. Clustering ensemble model based on self-organizing map network. Comput

Intell Neurosci. 2020.

15. Huang K, Siegel M, Madnick S. Systematically understanding the cyber attack business: a survey. ACM Comput Surv (CSUR). 2018;51(4):1–36.

16. Jureček M, Jurečková O, Lórencz R. Improving classification of malware families using learning a distance metric. In: ICISSP; 2021. p. 643–52.

17. Jureček M, Jurečková O. Parallel instance filtering for malware detection. In: 2022 48th Euromi-cro conference on software engineering and advanced applications (SEAA). IEEE; 2022. p.

13–20.

18. Jurečková O, Jureček M, Stamp M, Di Troia F, Lórencz R. Classification and online clustering of zero-day malware. J Comput Virol Hacking Techn. 2024. p. 1–14.

19. Kohonen T. The self-organizing map. Proc IEEE. 1990;78(9):1464–80.

20. Koutroumbas K, Theodoridis S. Pattern recognition, 2008.

21. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

22. LIEF-Library to Instrument Executable Formats. https://github.com/lief-project/LIEF.

Accessed 22 Sept 2024.

23. Mahindru A, Sangal AL. Somdroid: android malware detection by artificial neural network trained using unsupervised learning. Evol Intell. 2022;15(1):407–37.

24. Microsoft. Pe format-win32 apps. https://docs.microsoft.com/en-us/windows/win32/debug/

pe-format. Accessed 22 Sept 2024.

25. Nataraj L, Karthikeyan S, Jacob G, Manjunath BS. Malware images: visualization and automatic classification. In: Proceedings of the 8th international symposium on visualization for cyber security;2011. p. 1–7.

Online Clustering of Known and Emerging Malware Families

59

26. Nguyen HN, Tran NN, Hoang TH, Cao VL. Denoising latent representation with soms for

unsupervised iot malware detection. SN Comput Sci. 2022;3(6):474.

27. Pai S, Troia FD, Aaron Visaggio C, Austin TH, Stamp M. Clustering for malware classification.

J Comput Virol Hacking Techn. 2017;13:95–107.

28. Pirscoveanu R-S, Stevanovic M, Pedersen JM. Clustering analysis of malware behavior using self organizing map. In: 2016 International conference on cyber situational awareness, data analytics and assessment (CyberSA). IEEE;2016. p. 1–6.

29. Pitolli G, Laurenza G, Aniello L, Querzoni L, Baldoni R. Malfamaware: automatic family identification and malware classification through online clustering. Int J Inf Secur. 2021;20:371–86.

30. PyClustering. https://pyclustering.github.io. Accessed 22 Sept 2024.

31. Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987;20:53–65.

32. Rudd EM, Krisiloff D, Coull S, Olszewski D, Raff E, Holt J. Efficient malware analysis using metric embeddings. Digit Threats Res Pract. 2024;5(1):1–20.

33. Scikit-learn. https://scikit-learn.org. Accessed 22 Sept 2024.

34. Soufiane K, Imene H, Manel A, Tarek KM. Clustering ensemble approach based on incremental learning. In: Proceedings of the 9th international conference on information systems and technologies;2019. p. 1–7.

35. Threat encyclopedia. https://www.trendmicro.com/vinfo/us/threat-encyclopedia/. Accessed 22 Sept 2024.

36. VirusTotal. https://www.virustotal.com. Accessed 22 Sept 2024.

37. Wilkins Z, Zincir-Heywood N. Cougar: clustering of unknown malware using genetic algorithm routines. In: Proceedings of the 2020 genetic and evolutionary computation conference;2020.

p. 1195–1203.

38. Wong W, Stamp M. Hunting for metamorphic engines. J Comput Virol. 2006;2:211–29.

39. Zhuang W, Ye Y, Chen Y, Li T. Ensemble clustering for internet security applications. IEEE

Trans Syst Man Cybern. Part C (Appl Rev). 2012;42(6):1784–96.

[image: Image 17]

Comparing Balancing Techniques for

Malware Classification

Ranjit John and Fabio Di Troia

Abstract Imbalanced datasets often disproportionately represent certain types of

malware, which can negatively impact the performance of machine learning classi-

fiers. This imbalance can result in insufficient data for rarer but highly dangerous mal-

ware, leading to potential detection failures with serious consequences. To address

this, data balancing techniques have proven effective in improving the representation

of minority classes and mitigating bias toward the majority class. Recent studies have

also shown that generative models can successfully create synthetic data that closely

mirrors real datasets. In this paper, we explore various balancing techniques and

generate synthetic opcode sequence data to enhance the training of machine learning

models for improved malware classification. Our approach includes oversampling,

undersampling, hybrid sampling, and the use of Wasserstein Generative Adversarial

Networks with Gradient Penalty (WGAN-GP) to generate synthetic samples. We

assess the effectiveness of these methods in tackling the class imbalance problem in

multi-class malware classification.

1

Introduction

Malicious software, or malware, inflicts significant damage on computer systems

by infiltrating and corrupting critical data. Over the past decade, the frequency of

malware attacks has surged exponentially and continues to rise at an alarming rate.

In response to this growing threat, researchers have increasingly turned to machine

learning for assistance in threat detection. In 2023, SonicWall Capture Labs threat

researchers documented 6.06 billion malware attacks, reflecting an 11% increase

from the previous year [20]. Despite the progress in machine learning solutions, further research is crucial to effectively combat future attacks and protect data privacy.

R. John · F. Di Troia (B)

San Jose State University, San Jose, CA, USA

e-mail: fabio.ditroia@sjsu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

61

M. Stamp and M. Jureček (eds.), Machine Learning, Deep Learning and AI for

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_3

62

R. John and F. Di Troia

To detect malware using machine learning, classifiers are trained on malware

datasets available from public repositories [18]. These datasets are presented in various formats, such as API calls, system calls, byte sequences, and opcode mnemon-

ics [26]. The features derived from this data are fed into machine learning algorithms, which analyze the relationships between these features and the target labels.

Although this approach has shown success, accurately classifying rare or novel mal-

ware remains a significant challenge for current machine learning solutions. The

continued rise in malware attacks can be largely attributed to the inability of exist-

ing classifiers to recognize these novel and rare forms of malware, primarily due to

insufficient data representing these types.

In this paper, opcode sequence data provided by VirusShare was used to train

machine learning models to classify malware by both category and family. This mal-

ware data showed moderate to high imbalance. To address this, various data sam-

pling and generation techniques were employed to balance the dataset and ensure

effective training. These techniques included oversampling, undersampling, hybrid

sampling, and Generative Adversarial Networks (GANs), applied across different

malware classes. The following machine learning models were used to assess the

impact of each technique: Support Vector Machines (SVM), . k-Nearest Neighbors

(. K -NN), Random Forest (RF), and Multilayer Perceptron (MLP). Prior studies have

successfully utilized models such as RF,. K -NN, and SVM for malware detection [3,

5, 18] , while others have leveraged n-grams and opcode sequences with neural networks [14, 17]. This research aims to investigate the effectiveness of data balancing techniques on model performance and to identify the best model for the task.

Figure 1 illustrates the overall experimental framework. The process begins by extracting the top 40 most frequent opcodes from the dataset and calculating their

proportions in each file. Next, the dataset is divided into training and test sets. The

training set is processed using various sampling techniques, that is, undersampling,

oversampling with Generative Adversarial Networks (GANs), and a combination

of undersampling and oversampling, while unbalanced sampling is retained as is.

Finally, these methods lead to the application of classifiers, allowing for a comparison

of the results obtained from each training set.

The remainder of this paper is organized as follows. Section 2 provides background information, reviewing related works and summarizing existing techniques.

Section 3 outlines the methodology employed in the experiments. Section 4 discusses the implementation and experimental setup. Section 5 presents the experimental results, and Sect. 6 concludes with future directions for this research.

2

Background

This section will discuss research conducted in machine learning with unbalanced

datasets. It will highlight the lack of studies utilizing balancing techniques for

multi-class classification problems and provide a brief introduction to oversampling,

[image: Image 18]

Comparing Balancing Techniques for Malware Classification

63

Fig. 1 General layout of experiments

undersampling, hybrid sampling, and data generation using Generative Adversarial

Networks (GANs).

 2.1

 Related Works

Several approaches have been proposed to address the class imbalance problem in

machine learning tasks. The two primary levels at which imbalance is addressed are

the algorithmic level and the data level [19]. Algorithmic solutions involve developing specialized machine learning classifiers that effectively handle unbalanced data

without becoming overly biased toward the majority class. These solutions typically

require experimentation with various hyperparameters of the classifiers. However, as

noted in [19], algorithmic approaches often depend heavily on the specific classifier used and may not perform well across diverse classification tasks.

In contrast, data-level approaches aim to address imbalance within the feature

space by balancing the data prior to classifier training. A common method for bal-

ancing data is oversampling, where synthetic points are added to the minority class

to match the sample count of the majority class. Conversely, undersampling removes

points from the majority class to align with the minority class’s sample count. In the

malware domain, data is often highly unbalanced, posing significant challenges in

representing uncommon malware attacks to classifiers. The authors in [4] demonstrated that undersampling can be particularly effective when the dataset is not exces-

sively imbalanced or balanced, as indicated by the posterior probability of the dataset.

64

R. John and F. Di Troia

This posterior probability is estimated through conditional probability based on sam-

ple mean and covariance. However, calculating the posterior probability can be com-

plex, and the work in [4] only evaluated this approach in binary classification tasks, leaving its effectiveness in multi-class classification untested.

Oversampling strategies also seek to balance data by generating synthetic sam-

ples for the minority class. One widely used method is the Synthetic Minority Over-

sampling Technique (SMOTE). The authors in [21] developed a promising network intrusion detection system using a random forest classifier, where the minority class

was oversampled with SMOTE. Similarly, the authors in [22] demonstrated the effectiveness of SMOTE and Adaptive Synthetic (ADASYN) methods in improving clas-

sification metrics for diabetes data. However, these studies focused primarily on

binary classification and did not explore the performance of these techniques in

multi-class malware classification. In the malware classification domain, the authors

in [1] found that SMOTE was particularly effective for balancing binary files converted to grayscale images for malware family classification. This study highlighted

SMOTE’s advantages for image data in convolutional neural networks (CNNs) and

transfer learning models. However, the effect of data balancing on unbalanced opcode

proportion data for other models remains unexplored.

In addition to oversampling and undersampling, hybrid sampling techniques and

ensemble learning methods have also been investigated. The work in [15] applied ADASYN for oversampling the minority class, coupled with Tomek Links for undersampling the majority class, resulting in improved performance in classifying dia-

betes data. However, this study was limited to binary classification. In the cyber-

security domain, the authors in [11] applied SMOTE-ENN to balance DNS logs for detecting malicious websites. They employed an artificial neural network (ANN)

model based on random forest for classification, reinforcing the idea that data balanc-

ing, combined with models like random forest and ANN, can enhance the detection

of malicious features. Nonetheless, the application of hybrid sampling techniques

for unbalanced file features in malware classification remains unexplored.

The study in [28] conducted a significant investigation using multiple features to classify malware families and trained ensemble models for malware recognition.

However, a limitation of this study was that the proposed model struggled to iden-

tify uncommon and zero-day malware families. Additionally, the model incurred

substantial overhead due to the extraction of multiple features.

Thus, there is a pressing need for research that investigates the impact of vari-

ous sampling techniques in the malware domain, particularly for classifying mul-

tiple malware classes. Moreover, limited research has focused on utilizing opcode

mnemonic proportions as features for training classifiers. In this work, we explore

this area by applying a range of undersampling, oversampling, and synthetic data gen-

eration techniques to opcode frequency data, assessing their effectiveness in better

representing malware to machine learning models.

Comparing Balancing Techniques for Malware Classification

65

 2.2

 Undersampling

Undersampling is a technique aimed at reducing the size of the majority class to

match that of the minority class, thereby balancing the dataset. This method is par-

ticularly useful when the majority class samples overshadow those of the minority

class, making it difficult for machine learning algorithms to effectively recognize the

minority samples. The fundamental goal of undersampling is to reduce bias in the

classifier toward the majority class by removing some of its samples.

The most common undersampling method is random undersampling (RUS),

which involves randomly selecting a subset of samples from the majority class

for elimination. However, RUS has a significant limitation, in fact, it may discard

informative samples from the majority class, which can degrade the classifier’s per-

formance on that class. To address this weakness, several advanced undersampling

techniques have been developed, including Tomek Links, Edited Nearest Neigh-

bors (ENN), Repeated Edited Nearest Neighbors (RENN), and One-Sided Selection

(OSS), all of which have demonstrated effectiveness.

Tomek Links (TL) identify pairs of sample points from different classes by exam-

ining their nearest neighbors. A Tomek Link exists when a sample point’s nearest

neighbor belongs to a different class. The majority class sample in these pairs is then

removed to improve separability within the feature space [24].

Edited Nearest Neighbors (ENN) is another undersampling technique that focuses

on removing noisy data points or outliers. The motivation behind ENN is to examine

the nearest neighbors of each sample point and determine if those neighbors belong to

the same class. If the majority of a sample’s neighbors are from a different class, that point is removed from the dataset [27]. Repeated Edited Nearest Neighbors (RENN) extends ENN by iterating the process until no further points can be eliminated [23].

However, these methods can be computationally expensive due to the need to find all

neighbors for each sample in large datasets. In addition, ENN also removes borderline

points that can be important training samples.

One-Sided Selection (OSS) combines the use of Tomek Links and Condensed

Nearest Neighbors (CNN) for undersampling. Initially, Tomek Links are applied to

remove bordering majority class points, followed by CNN, which further reduces

majority class samples to improve the data’s structure [12].

Each of these undersampling techniques has specific use cases, and it is essential

to experiment with them to determine which is most effective for a given dataset. In

this paper, we perform experiments using these undersampling methods to identify

the most suitable approach for our malware feature data.

 2.3

 Oversampling

Oversampling is another technique for balancing data without reducing the number

of existing samples. The primary concept behind oversampling is to resample the

66

R. John and F. Di Troia

minority class points to match the number of samples in the majority class. This

method is especially advantageous when the dataset is small. Random oversampling

(ROS) is a popular method for oversampling unbalanced data. Similar to random

undersampling, ROS randomly selects data points, however, instead of downsam-

pling the majority class, it upsamples the minority class. A key limitation of this

technique is that less informative minority samples may be randomly duplicated,

leading to a larger dataset without a corresponding improvement in classification

performance. Consequently, several advanced oversampling techniques have been

developed to address the shortcomings of ROS. Among these, the Synthetic Minority

Over-sampling Technique (SMOTE) and Adaptive Synthetic Sampling (ADASYN)

have proven effective in various applications.

SMOTE generates synthetic samples rather than simply duplicating instances of

the minority class. It uses the nearest neighbors approach, drawing a line between the

current data point and its nearest neighbors, and creates synthetic samples along this

line [2]. This method produces new, plausible samples that introduce diversity in the minority class, accommodating new observations. SMOTE has been shown to effectively enhance model performance, as demonstrated in [21]. Moreover, researchers have developed variations of SMOTE that deliver even better results.

ADASYN builds on the principles of SMOTE by generating data based on the

learning difficulty of the samples [10]. Minority class points are considered “hard to learn” if their nearest neighbors are majority class samples. More synthetic samples are generated from these “hard to learn” points, which improves classification

performance. In this paper, we will experiment with these sampling techniques and

compare their effectiveness in the context of malware classification.

In this paper, we perform experiments with all these oversampling methods to

identify the most suitable approach for our malware feature data.

 2.4

 Hybrid Sampling

Hybrid sampling combines undersampling and oversampling techniques to mitigate

the individual weaknesses of each method. This approach remains an active area of

research but has shown promising results in many applications. For instance, the work

in [15] used ADASYN combined with Tomek Links to improve the classification of diabetes patients. Similarly, the study in [13] applied One-Sided Selection (OSS) and Borderline SMOTE to develop an effective network intrusion detection system.

In this paper, we also experimented with combining undersampling and oversam-

pling methods to observe their effects on classifying malware data.

Comparing Balancing Techniques for Malware Classification

67

 2.5

 Generative Adversarial Networks (GANs)

To further advance our efforts, this paper will also explore generating synthetic

malware data using Generative Adversarial Networks (GANs). GANs consist of two

neural networks, the generator and the discriminator. These models continuously

compete against one another to achieve optimal results. The generator attempts to

create synthetic data that resembles the real data, while the discriminator’s role is

to accurately differentiate between real and fake data. The generator learns from the

discriminator’s feedback after each classification task, and this process is repeated

over many epochs until the discriminator can no longer reliably distinguish between

real and fake data [6].

Traditional GANs employ a loss function that establishes a zero-sum game

between the generator and discriminator, using the probability distributions of the

real and fake data. The discriminator’s loss function minimizes the log probability

of misclassifying real and fake samples, while the generator’s loss function maxi-

mizes the probability of the discriminator making a mistake, thereby improving the

quality of generated samples. The loss functions for the discriminator and generator

in traditional GANs are given by Equations (1) and (2), respectively: m

1

.∇ θd

=

log D(xi) + log (1 − D(G(zi)))

(1)

 m

 i=1

• .∇ θ : Gradient with respect to the discriminator’s parameters.

 d

• . m: Number of training examples.

• m

.

: Summation over all training examples.

 i=1

• .log D(xi): Logarithm of the discriminator’s output for real data. xi.

• .log (1 − D(G(zi))): Logarithm of one minus the discriminator’s output for generated data . G(zi).

 m

1

.∇ θg

=

log (1 − D(G(zi)))

(2)

 m

 i=1

• .∇ θ : Gradient with respect to the generator’s parameters.

 g

• . m: Number of training examples.

• m

.

: Summation over all training examples.

 i=1

• .log (1 − D(G(zi))): Logarithm of one minus the discriminator’s output for generated data . G(zi).

However, GANs face limitations such as mode collapse, vanishing gradients,

and convergence issues, which can adversely affect the quality of generated data,

leading to ineffective classifiers. To address these challenges, Wasserstein GAN with

Gradient Penalty (WGAN-GP) was developed by the authors in [8].

68

R. John and F. Di Troia

In this paper, we aim to oversample minority class samples using WGAN-GP.

Unlike traditional GANs, WGAN-GP employs Wasserstein’s Distance as the loss

function, along with a gradient penalty during generator training.

Wasserstein’s Distance, also known as the Earth-Mover’s Distance, is a measure

of the distance between two probability distributions over a given space. Intuitively,

it represents the minimum amount of “work” required to transform one distribution

into the other, where “work” is defined as the amount of probability mass that must

be moved, multiplied by the distance it is moved.

WGAN-GP enhances traditional GANs by utilizing different loss functions for

the generator and discriminator. The WGAN-GP neural networks use Wasserstein’s

Distance for their loss function and do not optimize the log probability of real and

fake data. Instead, the discriminator outputs scores that compute the Earth-Mover’s

Distance between the real and fake data distributions. Consequently, the two models

strive to maximize the difference between the Earth-Mover scores for real and fake

samples. If the generator produces samples that receive lower scores from the dis-

criminator, it indicates that the generated samples closely resemble the real data. Fur-

thermore, a gradient penalty is applied to the discriminator’s loss function to ensure

that the gradients do not become excessively large, as suggested in [8], improving the quality of generated fake data. WGAN-GP penalizes the generator model if the

gradient norm becomes excessively large. The loss functions for the discriminator

and generator in WGAN-GP are given by Equations (3) and (4), respectively: m

1

.∇ w

=

 f (xi) − f (G(zi))

(3)

 m

 i=1

• .∇w: Gradient with respect to the critic’s parameters.

• . m: Number of training examples.

• m

.

: Summation over all training examples.

 i=1

• . f (x i): Critic’s output for real data. x i.

• . f (G(z i)): Critic’s output for generated data. G(z i).

 m

1

.∇ θ

=

 f (G(zi))

(4)

 m

 i=1

• .∇ θ: Gradient with respect to the generator’s parameters.

• . m: Number of training examples.

• m

.

: Summation over all training examples.

 i=1

• . f (G(z i)): Critic’s output for generated data. G(z i).

The work in [25] supports this enhancement, demonstrating that fake opcode data generated by WGAN-GP was less distinguishable by classifiers compared to data

generated by traditional GANs and WGANs. Therefore, this paper will experiment

with the WGAN-GP architecture used by [25] to generate synthetic minority class samples and assess any improvements in classification metrics.

Comparing Balancing Techniques for Malware Classification

69

3

Methodology

This section outlines the procedures used for feature extraction, the sampling tech-

niques employed to balance the training data, the machine learning models used, and

the evaluation metrics applied to assess model performance.

 3.1

 Feature Extraction

For feature extraction, we utilized opcode sequence data extracted from ASM files

obtained via VirusShare. Opcodes represent the operational codes of a program and

provide insight into its behavior. However, the high dimensionality of opcode text data

poses challenges for machine learning algorithms. To address this, we focused on the

top 40 most frequently occurring opcodes across the entire dataset, a choice inspired

by prior work such as [25]. Each opcode was converted to a proportion, representing its relative frequency within each file. This transformation numerically captures

the distribution of the top opcodes in each malware file, reducing the complexities

associated with raw textual data. As a result, each malware sample is represented by

a feature vector of length 40. Let

. Opcodes = {Op , . . . , Op }

1

40

and define

. Proportions = {Proportions[i]}40

 i=1

where

in file

. Proportions[i] = Number of occurrences of Opi

Total number of Opcodes in file

While selecting the top 40 opcodes provides a practical method for dimensionality

reduction and has been effective in similar studies, we acknowledge that further fea-

ture selection techniques, such as recursive feature elimination (RFE) or information-

theoretic methods, could improve the relevance of the features. These approaches

could refine the current selection by identifying the opcodes most critical for malware

classification, and we consider this an avenue for future work.

 3.2

 Balancing Malware Features with Undersampling

This section describes the methodology for balancing the training data using under-

sampling techniques. We employed three undersampling methods, that is, Tomek

Links, Edited Nearest Neighbors (ENN), and One-Sided Selection (OSS). The steps

involved in these processes are detailed below.

70

R. John and F. Di Troia

Tomek Links improves classifier decision boundaries by reducing class overlap as

follows [24].

1. Identify pairs of samples from different classes that form a Tomek Link. A Tomek

Link consists of two nearest neighbor samples from different classes.

2. Remove the majority class instance in each Tomek Link.

3. Resample all classes, excluding the minority class.

ENN eliminates noisy and borderline samples that may confuse the classifier as

follows [27].

1. For each sample, identify its . k-nearest neighbors.

2. An outlier exists if all . k-nearest neighbors belong to a different class.

3. Remove all identified outliers.

4. Resample all classes, excluding the minority class.

OSS utilizes both Tomek Links and Condensed Nearest Neighbors (CNN) to

resample classes as follows [12].

1. Apply Tomek Links to remove majority class samples that reside on the class

boundary, particularly those overshadowing minority class points.

2. Use CNN to condense the neighboring points of different classes, retaining only

essential samples that prevent class overshadowing.

 3.3

 Balancing Malware Features with Oversampling

This section describes the approach used to balance the training data via oversam-

pling techniques. We implemented three oversampling methods: Synthetic Minority

Over-Sampling Technique (SMOTE), BorderlineSMOTE (BSMOTE), and Adaptive

Synthetic (ADASYN). The steps for each technique are outlined below.

SMOTE generates synthetic samples to enhance the detection of minority classes

as follows [2].

1. For each sample, identify its . k-nearest neighbors from the same class.

2. Randomly select one neighbor to generate a synthetic sample that lies on the

line between the sample point and its neighbor.

3. Repeat the process to generate the required number of synthetic samples (until

the number of samples matches that of the majority class).

4. Combine the original and synthetic samples.

5. Repeat steps 1-4 for each class except the majority class.

BSMOTE is a variant of SMOTE that generates synthetic samples near the decision

boundary as follows [9].

1. For each sample, calculate its m-nearest neighbors from the entire dataset to iden-

tify noise points. Samples with neighbors from a different class are considered

noise.

Comparing Balancing Techniques for Malware Classification

71

2. Identify borderline points using m-nearest neighbors. Borderline points have

neighbors from multiple classes.

3. For each borderline sample, find its . k-nearest neighbors from the same class.

4. Randomly select one neighbor and generate a synthetic sample along the line

connecting the sample point and the neighbor.

5. Repeat this process to create the required number of synthetic samples.

6. Combine the original and synthetic samples.

7. Repeat steps 1-6 for each class except the majority class.

ADASYN generates synthetic samples based on the difficulty of learning specific

sample points as follows [10].

1. Compute the imbalance ratio between each class and the majority class.

2. For each class, calculate the number of synthetic samples needed (the difference

between the number of majority class samples and the original class samples).

3. Identify “hard to learn” samples by analyzing the density distribution of samples.

Samples with many neighbors from other classes are deemed “hard to learn.”

4. Generate synthetic samples around these “hard to learn” points based on the

calculated density distribution.

5. Combine the synthetic samples with the original class samples.

6. Repeat steps 1-5 for all classes except the majority class.

 3.4

 Balancing Malware Features with Hybrid Sampling

To evaluate the effectiveness of hybrid sampling, we employed the following

methodology to balance the training data.

1. Oversample all classes, except the majority class, using SMOTE.

2. Undersample only the majority class in the newly generated data using Tomek

Links.

3. Repeat the above steps for the remaining oversampling and undersampling

techniques used in the other experiments.

 3.5

 Balancing Malware Features with WGAN-GP

We leveraged WGAN-GP to generate synthetic data and balance the training dataset.

The WGAN-GP architecture from [25] was adopted to conduct a small experiment to assess its effectiveness in generating synthetic data for malware classification tasks.

The steps involved in utilizing WGAN-GP are as follows.

72

R. John and F. Di Troia

1. Train WGAN-GP models for each malware class for 2000 epochs.

2. Generate synthetic samples from the trained generator in batches of 32. The gen-

erator and discriminator losses are recorded at every 100 epochs and visualized

for evaluation. The model yielding the best loss values is used to produce the

synthetic samples.

3. Combine the real and generated synthetic samples to create an oversampled

training dataset.

4. Repeat steps 1–3 for all malware classes except the majority class.

 3.6

 Evaluation Metrics

To measure the performance of the classifiers trained on balanced data, we adopted

specific evaluation metrics widely used in the literature [7, 16, 29]. These metrics, and the rationale for using them, are as follows.

1. Accuracy: This metric measures the overall correctness of the malware classifier.

However, it may be misleading when dealing with imbalanced datasets, as high

accuracy does not necessarily reflect good performance in identifying minority

classes. Therefore, accuracy is considered alongside other metrics.

2. Precision: This metric evaluates the classifier’s ability to avoid false positives, determining how well the model correctly identifies samples from a specific

malware class without misclassifying samples from other classes. Precision is

calculated using the formula

.Precision =

 TP

(5)

 TP + FP

where True Positives (TP) are correctly classified malware samples, and False

Positives (FP) are incorrectly classified samples.

3. Recall: This metric assesses the proportion of correctly classified instances of a class among all actual instances of that class. It highlights the model’s ability to

correctly identify malware samples and not miss them. Recall is calculated as

.Recall =

 TP

(6)

 TP + FN

where False Negatives (FN) are samples incorrectly classified as not belonging

to the correct malware class.

4. F1-Score: The F1-Score is the harmonic mean of precision and recall, providing

a single balanced metric that reflects the model’s ability to classify malware

accurately. It is calculated as

.F1-Score = 2 × Precision × Recall

(7)

Precision + Recall

Comparing Balancing Techniques for Malware Classification

73

5. Confusion Matrix: This matrix provides a class-wise breakdown of false pos-

itives, false negatives, true positives, and true negatives, offering a visual rep-

resentation of classification performance across different malware classes after

applying balancing techniques.

To evaluate the effectiveness of each balancing technique, we trained four machine

learning models using the opcode proportion data and calculated the metrics for each

model. The experimental process is consists of the following steps.

1. Retrieve real data samples from the dataset and convert each opcode file into a

40-length opcode array.

2. Label the target classes for malware family and category classification.

3. Split the dataset into training and testing sets.

4. Apply the sampling techniques to balance the training data.

5. Train Support Vector Machine (SVM), Random Forest, Multi-Layer Perceptron

(MLP), and . k-Nearest Neighbors (. K -NN) classifiers on the balanced training data.

6. Evaluate the models using the test set and compare the results with the models

trained on the unbalanced data.

4

Implementation

This section provides an overview of the dataset used, the implementation of the sam-

pling techniques, the WGAN-GP architecture, and the machine learning classifiers

that were tested.

 4.1

 Dataset

The dataset used in this study is based on files obtained via VirusShare, which

includes samples from various known malware families as well as unknown ones.

The repository contains binary files with opcodes, registers, labels, and memory

addresses. These binary files were cleaned using the objdump program and a Python

script to retain only the assembly opcodes in text format. The dataset consists of

50 distinct malware families. For this study, we selected the top 20 families with

the largest number of samples for training machine learning models. Among these

families, Vobfus and Zbot have over 4,000 and 2,000 samples, respectively, which

are used for malware family classification. These 20 families also belong to eight

different malware categories/types, which are used for conducting experiments in

malware category classification. The largest malware categories, Trojan and Worm,

contain over 8,000 and 5,000 samples, respectively.

We experiment with two data sets for the different classification tasks, specifi-

cally, Moderately Unbalanced set, and Highly Unbalanced set. The first data set is

74

R. John and F. Di Troia

Table 1 Malware family dataset with moderate and high degree of imbalance

Malware family

Moderately unbalanced

Highly unbalanced

Vobfus

4204

4204

Zbot

2353

2353

Diplugem

2269

2269

Obfuscator

2102

2102

Vundo

1877

1877

VBInject

1688

1688

Delf

1679

1679

Beebone

1629

1629

Winwebsec

1625

1625

Enterak.A

1530

1530

OnLineGames

1366

137

Startpage

1313

131

Allaple.A

1294

129

Injector

1161

116

Systex.A

1098

110

Expiro.BK

1095

110

FakeRean

1089

109

Small

1051

105

Toga!rfn

985

25

Lamechi.B

971

25

Table 2 Malware category dataset with moderate and high degree of imbalance

Malware category

Moderately unbalanced

Highly unbalanced

Trojan

8590

8590

Worm

5497

5497

Password stealer

5252

5252

Tool

4948

4948

Trojan downloader

2557

256

Browser modifier

2269

227

Trojan dropper

2077

25

Virus

1095

25

moderately unbalanced with a lower degree of imbalance per class. In contrast, the

second data set reduces half of the class samples by a factor of 10 and further reduces the last two classes to only 25 samples each. Experiments are conducted on these two

sets of data per classification task to further study the impact of balancing techniques

on imbalanced classes. The dataset for each malware family is shown in Table 1, and the dataset for malware categories is presented in Table 2.

Comparing Balancing Techniques for Malware Classification

75

 4.2

 Undersampler Implementation

This subsection describes the implementation of the Tomek Links, Edited Nearest

Neighbors (ENN), and One-Sided Selection (OSS) techniques for our experiments.

The under-samplers were implemented using Python and the imblearn library

from scikit-learn.

The Tomek Links sampler, as implemented in scikit-learn, follows the algo-

rithm described in [24]. The Tomek Links method has limited hyperparameters, with the sampling strategy being the primary configurable option. In our experiments, two

sampling strategies were tested, “not minority” and “majority”. The “not minority”

strategy resamples all classes except the minority class, retaining all minority class

samples for better visibility. In contrast, the “majority” strategy resamples only the

majority class, retaining all other class samples.

The Edited Nearest Neighbor (ENN) sampler, implemented in imblearn, is

based on the algorithm presented in [27]. ENN offers several hyperparameters, allowing for extensive configuration to balance the data. Along with the sampling strategy,

the neighborhood size can be adjusted to better fit the data. For the undersampling

experiments, we set the sampling strategy to “not minority” and “majority” and

conducted a hyperparameter tuning experiment, testing neighborhood sizes. n where

. n ∈ {1 , 2 , . . . , 10}. The best set of hyperparameters was chosen by evaluating the F1-Score produced by each classifier after training with the balanced data.

The One-Sided Selection (OSS) sampler was also implemented following the

algorithm described in [12]. Like ENN, OSS has several hyperparameters, including sampling strategy, neighborhood size, and sample extraction size. We conducted a

series of experiments using the previously tested sampling strategies and neighbor-

hood sizes. n ∈ {1 , 2 , . . . , 10} to determine the best OSS configuration that maximizes the F1-score for each classifier.

 4.3

 Oversampler Implementation

For the oversamplers, we selected the Synthetic Minority Over-Sampling Technique

(SMOTE), BorderlineSMOTE (BSMOTE), and Adaptive Synthetic (ADASYN)

methods, as recent literature highlights their strong performance in balancing

datasets. Similar to the undersampling techniques, we implemented these oversam-

plers using Python and the imblearn library.

SMOTE was implemented based on the algorithm in [2], which generates synthetic samples by interpolating between existing samples and their . k-nearest neigh-

bors. We experimented with the sampling strategy and the number of neighbors (. k), where. k ∈ {1 , 2 , . . . , 20}, to find the best configuration. The ’not majority’ sampling strategy, which oversamples all classes except the majority class, was selected to

balance the class distribution while retaining the original majority class samples.

76

R. John and F. Di Troia

The optimal . k value was chosen based on the F1-score performance of classifiers

trained on the SMOTE-balanced data.

BorderlineSMOTE (BSMOTE) follows a similar implementation as SMOTE but

is based on the algorithm in [9]. BSMOTE focuses on generating synthetic samples near the decision boundary, enhancing the classification of challenging instances. In

addition to tuning. k-neighbors, we tested different values for the boundary neighbors parameter. m ∈ {1 , 2 , . . . , 20}, which determines whether a minority sample lies near the decision boundary. The best combination of . k and . m was selected using the F1-score after training the classifiers on BSMOTE-balanced data.

ADASYN, implemented as per [10], generates synthetic data in regions where classifiers struggle the most, based on sample density. Like SMOTE, ADASYN has

two tunable hyperparameters: the sampling strategy and the number of neighbors

(. n), where . n ∈ {1 , 2 , . . . , 20}. The ‘n_neighbors’ parameter determines how many majority class neighbors surround a minority sample, guiding where synthetic samples should be generated. We selected the optimal . n based on the F1-scores from classifier evaluations on ADASYN-balanced datasets.

 4.4

 Hybrid Sampling Implementation

In the hybrid sampling experiments, we combined oversampling and undersampling

methods to balance the training data. We first applied the oversamplers with their

optimal hyperparameters, followed by undersampling the majority class using the

“majority” sampling strategy. This ensured that minority classes retained their over-

sampled instances while eliminating excess samples from the majority class. The

final configuration for each classifier was determined using the testing set, with the

best strategy identified based on the F1-score.

 4.5

 WGAN-GP Implementation

The Wasserstein GAN with Gradient Penalty (WGAN-GP) was implemented fol-

lowing the architecture outlined in [25]. Using Python and TensorFlow, we created two neural networks for the generator and discriminator. The Adam optimizer, with

a learning rate of 0.0001, . β 1 = 0 . 5, and. β 2 = 0 . 9, was chosen based on the optimal performance reported in [25]. The WGAN-GP model was trained for 2000 epochs, leveraging the opcode proportion data for faster learning. Both the generator and

discriminator utilized 1D convolutional layers, which had been shown to perform

well in [25] with opcode data.

For the discriminator, we employed hidden layers with 64, 128, and 256 filters,

all using a filter size of 3. Each layer used “same” padding, maintaining the output

size equal to the input size, and LeakyReLU activations with . α = 0 . 2. The output

Comparing Balancing Techniques for Malware Classification

77

layer consisted of a single neuron, representing the classification decision between

real and fake samples.

The generator had three hidden layers with filters of 64, 32, and 16, each followed

by a batch normalization step for training stability. LeakyReLU activations with

. α = 0 . 2 were applied to all layers. The output layer was a fully connected dense layer with 40 neurons (sample shape) using a TanH activation function to scale the

output between [–1, 1]. Wasserstein loss was computed in the output layer, and

gradient penalties were applied based on the L2-norm of the gradients.

After training, the generator was used to create synthetic samples for each minority

class, which were then added to the original data. All models were subsequently

trained, and their performance metrics were computed.

5

Experiments and Results

In this section, we present the findings from our experiments designed to evaluate

the performance of various machine learning models and sampling techniques on the

classification of malware families and categories. The results are organized into five

subsections, that is, baseline test, undersampling, oversampling, hybrid sampling,

and WGAN-GP. Each subsection provides insights into the effectiveness of different

sampling strategies in addressing class imbalance in malware classification tasks.

 5.1

 Baseline Test Results

The baseline tests evaluated the performance of four models (Random Forest, . k-

NN, SVM, and MLP) on the unbalanced data for classifying malware families and

categories. The unbalanced dataset was split 80/20 for training and testing, preserving

the class imbalance proportion in both sets. The best parameter configuration for each

model was selected using the GridSearchCV library.

The average precision, recall, F1-score, and accuracy for each classifier were

recorded as baseline metrics. Tables 3 and 4 present the results for the malware family and category classification tasks.

The consistent performance of both Random Forest and . k-Nearest Neighbors

(. K -NN) across our experiments establishes them as reliable classifiers for malware prediction, even when trained on unbalanced datasets. Their robustness suggests

an inherent capability to handle imbalanced class distributions effectively. In con-

trast, the results from the Support Vector Machine (SVM) and Multilayer Perceptron

(MLP) models indicate that these classifiers may require more distinct or separable

training data, or a better representation of minority classes, to achieve comparable

performance.

78

R. John and F. Di Troia

Table 3 Unbalanced malware family classification

Model

Dataset

Precision

Recall

F1-Score

Accuracy

SVM

Moderately

0.8038

0.7309

0.7471

0.7542

Unb.

MLP

Moderately

0.8168

0.8066

0.8064

0.8210

Unb.

. K -NN

Moderately

0.8733

0.8698

0.8697

0.8799

Unb.

RF

Moderately

0.9236

0.9102

0.9143

0.9202

Unb.

SVM

Highly Unb.

0.5764

0.4921

0.5043

0.7652

MLP

Highly Unb.

0.7984

0.6919

0.7134

0.8383

. K -NN

Highly Unb.

0.8088

0.7680

0.7787

0.8893

RF

Highly Unb.

0.9468

0.8448

0.8774

0.9296

Table 4 Unbalanced malware category classification

Model

Dataset

Precision

Recall

F1-Score

Accuracy

SVM

moderately

0.8461

0.8253

0.8332

0.8041

Unb.

MLP

moderately

0.8971

0.8824

0.8877

0.8589

Unb.

. K -NN

Moderately

0.9206

0.9132

0.9164

0.8995

Unb.

RF

Moderately

0.9500

0.9423

0.9457

0.9302

Unb.

SVM

Highly Unb.

0.5876

0.5373

0.5473

0.7895

MLP

Highly Unb.

0.6423

0.6174

0.6280

0.8497

. K -NN

Highly Unb.

0.9050

0.8080

0.8212

0.8914

RF

Highly Unb.

0.8334

0.7910

0.8073

0.9188

 5.2

 Undersampling Results

The undersampling experiments aimed to identify the most effective strategies for use

in the hybrid sampling experiments. We focused on three undersampling techniques,

that is, Tomek Links, Edited Nearest Neighbors (ENN), and One-Sided Selection

(OSS). For each method, we varied key hyperparameters, such as sampling strategy

and neighborhood sizes (. n ∈ {1 , 2 , . . . , 10}). Specifically, Tomek Links only allowed experimentation with sampling strategies (resampling the majority class or all non-minority classes), while ENN and OSS also included variations in neighborhood size.

These experiments were performed on both malware family and malware category

classification tasks.

Comparing Balancing Techniques for Malware Classification

79

Table 5 Undersampling results for malware family classification

Model

Dataset

Precision

Recall

F1-Score

Accuracy

SVM

Moderately

0.8301

0.7954

0.8119

0.7835

Unb.

MLP

Moderately

0.8505

0.8211

0.8346

0.8124

Unb.

KNN

Moderately

0.8943

0.8875

0.8909

0.8774

Unb.

RF

Moderately

0.9315

0.9157

0.9233

0.9287

Unb.

SVM

Highly Unb.

0.6342

0.5732

0.6032

0.7718

MLP

Highly Unb.

0.8391

0.7741

0.8032

0.8523

KNN

Highly Unb.

0.8765

0.8321

0.8547

0.8923

RF

Highly Unb.

0.9587

0.8901

0.9236

0.9346

Our findings indicate that the most effective strategy was resampling only the

majority class. This approach pruned samples from the majority class while retaining

the distribution of minority class samples, allowing the models to better capture class

boundaries. In contrast, resampling all classes except the minority class diminished

the models’ performance by removing critical samples from non-majority classes,

making it harder to define decision boundaries. Furthermore, smaller neighborhood

sizes yielded better results, suggesting a more focused and effective removal of noisy

or redundant data points. Larger neighborhoods often pruned too many useful points,

thus harming model performance by eliminating valuable samples that delineate

relationships between features and targets.

Models trained on moderately unbalanced data exhibited minimal differences in

performance compared to baseline tests. However, undersampling proved particu-

larly beneficial for highly unbalanced data, where all models saw notable improve-

ments, especially in SVM and MLP. For malware category classification, undersam-

pling had the most significant impact, reducing class imbalance and enhancing the

models’ ability to distinguish between categories. Undersampling the majority class

improved the decision boundaries for non-majority classes, allowing MLP to learn

better representations of malware families. Despite these gains, undersampling alone

was not sufficient for optimal performance and should be combined with other resam-

pling strategies for improved results. Tables 5 and 6 present the results for the best undersampling configurations, which employed the ’majority’ sampling strategy.

80

R. John and F. Di Troia

Table 6 Undersampling results for malware category classification

Model

Dataset

Precision

Recall

F1-Score

Accuracy

SVM

Moderately

0.8711

0.8427

0.8562

0.8123

Unb.

MLP

Moderately

0.9115

0.8954

0.9034

0.8693

Unb.

KNN

Moderately

0.9253

0.9146

0.9191

0.8971

Unb.

RF

Moderately

0.9557

0.9479

0.9512

0.9354

Unb.

SVM

Highly Unb.

0.6501

0.6102

0.6293

0.7897

MLP

Highly Unb.

0.7025

0.6801

0.6912

0.8491

KNN

Highly Unb.

0.9067

0.8235

0.8612

0.8923

RF

Highly Unb.

0.8103

0.7805

0.7943

0.9183

 5.3

 Oversampling Results

We then explored oversampling techniques, including SMOTE, BorderlineSMOTE,

and ADASYN, to assess their impact on model performance. In these experiments,

we used a sampling strategy that resampled all classes except the majority class,

generating synthetic data points for minority classes. The number of neighbors

(. k ∈ {1 , . . . , 20}) was tested for each technique, alongside the hyperparameter . m in BorderlineSMOTE (. m ∈ {1 , . . . , 20}).

For moderately mnbalanced data, ADASYN and SMOTE yielded the best results

for malware family classification, while BorderlineSMOTE and SMOTE performed

better in malware category classification. Random Forest and . K -NN emerged as

the top classifiers in both experiments, though MLP showed the most improvement

compared to baseline results. For highly unbalanced data, SMOTE and BorderlineS-

MOTE were particularly effective in generating synthetic samples for both classifi-

cation tasks. Random Forest and . K -NN remained the top performers, but SVM and

MLP showed the largest performance improvements with oversampling, especially

for malware family classification.

In the moderately unbalanced experiments, the Random Forest classifier, when

trained on data balanced using ADASYN with 9-nearest neighbors, achieved the

highest F1-score (0.9244) and accuracy (0.9294), representing a small but significant

improvement. . K -NN showed even larger gains, with an F1-score of 0.8986 and

accuracy of 0.9061 using ADASYN with 19-nearest neighbors. Both SVM and MLP

saw notable performance increases with SMOTE-sampled data (SVM:. k = 9; MLP:

. k = 15), benefiting from larger neighborhood sizes, which added diversity and helped models generalize across classes.

For the highly unbalanced experiments, the Random Forest classifier again per-

formed best, using BorderlineSMOTE with 9-nearest neighbors (. F 1 = 0.8872, accu-

racy = 0.9360). . K -NN also saw substantial improvements with BorderlineSMOTE

Comparing Balancing Techniques for Malware Classification

81

Table 7 Oversampled Malware Family Classification

Model

Dataset

Precision

Recall

F1-Score

Accuracy

SVM +

Moderately

0.7989

0.7957

0.7872

0.7869

SMOTE (k =

Unb.

15)

MLP +

Moderately

0.8744

0.8708

0.8706

0.8783

SMOTE (k =

Unb.

9)

KNN +

Moderately

0.8951

0.9040

0.8986

0.9061

ASADYN (n

Unb.

= 19)

RF +

Moderately

0.9256

0.9241

0.9244

0.9294

ADASYN (n

Unb.

= 9)

SVM +

Highly Unb.

0.7191

0.8075

0.7243

0.7955

SMOTE (k =

8)

MLP +

Highly Unb.

0.7812

0.8364

0.7964

0.8881

SMOTE (k =

4)

KNN +

Highly Unb.

0.8265

0.8267

0.8247

0.9100

BSMOTE (k,

m = 1, 7)

RF +

Highly Unb.

0.9394

0.8670

0.8872

0.9360

BSMOTE (k,

m = 9, 17)

and 1-nearest neighbors. Interestingly, MLP and . K -NN models favored smaller

neighborhood sizes, suggesting that these models perform better with less varia-

tion among synthetic samples in highly unbalanced datasets. On the other hand,

SVM and Random Forest benefited from larger neighborhood sizes, likely due to

their ability to handle more diverse synthetic data, which aids in exploring complex

feature spaces and defining decision boundaries. Table 7 summarizes the results for oversampling techniques applied to malware family classification.

In the moderately unbalanced’s malware category classification experiments,

model performance improved slightly overall. The MLP model saw the greatest

gains, achieving an F1-score of 0.9132 and accuracy of 0.8910, indicating that over-

sampling helped MLP learn better class distinctions. However, . K -NN, SVM, and

Random Forest showed only modest improvements, suggesting that these models

were already capturing the relationships within the moderately unbalanced data.

Models favored smaller neighborhood sizes in this context, indicating a preference

for more tightly clustered synthetic data points that reduce class overlap.

In the highly unbalanced’s malware category classification experiments, over-

sampling was essential to achieving significant performance gains across all models,

particularly for underrepresented malware categories like Virus and Trojan Dropper.

82

R. John and F. Di Troia

Table 8 Oversampled Malware Category Classification

Model

Dataset

Precision

Recall

F1-Score

Accuracy

SVM +

Moderately

0.8373

0.8517

0.8418

0.8061

SMOTE (k =

Unb.

5)

MLP +

Moderately

0.9128

0.9151

0.9132

0.8910

SMOTE (k =

Unb.

6)

KNN +

Moderately

0.9148

0.9296

0.9218

0.9074

SMOTE (k =

Unb.

5)

RF +

Moderately

0.9508

0.9515

0.9502

0.9346

BSMOTE (k,

Unb.

m = 1, 3)

SVM +

Highly Unb.

0.6049

0.7795

0.6429

0.7470

BSMOTE (k,

m = 3, 19)

MLP +

Highly Unb

0.8735

0.8409

0.8352

0.8769

SMOTE (k =

2)

KNN +

Highly Unb

0.8490

0.8563

0.8510

0.9001

BSMOTE (k,

m = 3, 17)

RF + SMOTE Highly Unb

0.9558

0.8646

0.8929

0.9208

(k = 8)

Models trained on the original data struggled to differentiate these classes, but over-

sampling increased the F1-scores and recall rates, significantly improving their clas-

sification accuracy. In the malware family classification task, all models performed

better with oversampled data, but . K -NN was unable to learn the Toga!rfn family, which may suggest high overlap in this class’s feature space. Similarly, Random

Forest, SVM, and MLP also struggled to precisely identify this family, highlight-

ing the limits of oversampling in the presence of high feature overlap. Table 8 provide detailed results for the best-performing oversampling configurations in malware

category classification.

 5.4

 Hybrid Sampling Results

In the hybrid sampling experiments, we combined various sampling strategies to

achieve improved classification metrics. For each oversampling technique, we used

the best-performing hyperparameter values for the number of neighbors, then applied

undersampling methods to the oversampled data to remove redundant points. We

conducted three tests for each undersampling method, evaluating different sampling

Comparing Balancing Techniques for Malware Classification

83

strategies-namely “majority,” “not minority,” and “all”-alongside neighborhood size

values (. n ∈ {1 , 2 , . . . , 10}).

For models trained on moderately unbalanced data, the “majority” sampling strat-

egy, which undersamples only the majority class, yielded the best results across all

models and classification tasks. For both malware category and family classification,

the Random Forest model outperformed others, achieving an average F1-score of

0.9503 and an accuracy of 0.9357 for category classification using the BorderlineS-

MOTE + TomekLinks method. When using the ADASYN + TomekLinks strategy,

Random Forest classified malware families with an average F1-score of 0.9239 and

an accuracy of 0.9297, improving over baseline tests.. K -NN followed as the second-best performer, with MLP and SVM ranking next. Moreover, hybrid sampling pro-

vided the most significant improvements in category classification for most mod-

els compared to either oversampled or undersampled data alone. However, despite

hybrid sampling performing well for the MLP and SVM models in moderately unbal-

anced data, oversampling still produced the best average F1-score for malware family

classification in Moderately Unbalanced.

With highly unbalanced data , model preferences for the undersampling strategy

varied. For malware category classification, Random Forest and . K -NN favored the

“not minority” strategy, while MLP and SVM performed better with the “major-

ity” undersampling strategy. In malware family classification, RF,. K -NN, and SVM

showed improved results with the “majority” undersampling approach, whereas

MLP performed better using the “not minority” strategy. The Random Forest model

achieved the best results in both classification tasks using the SMOTE + ENN method

for category classification and the BorderlineSMOTE + TomekLinks method for fam-

ily classification. Similarly,. K -NN ranked second in performance, followed by MLP

and SVM across all classification tasks. Interestingly, despite the degree of class

imbalance, MLP consistently performed better in malware family and category clas-

sification using oversampled data. Tables 9 and 10 summarize the hybrid sampling results for family and category classification across both datasets.

A class-by-class analysis reveals that hybrid sampling improved the representation

of minority malware classes compared to baseline tests. This effect was particularly

pronounced in the SVM and MLP models, where more samples were correctly clas-

sified with fewer false negatives. For Random Forest and. K -NN, improvements were

less noticeable in Moderately Unbalanced, showing only slight reductions in false

negatives and a marginal increase in F1-scores per family, which can be attributed to

these models’ inherent ability to handle moderate class imbalance. In contrast, Highly

Unbalanced exhibited more pronounced improvements due to the higher degree of

imbalance, with RF and . K -NN heavily relying on hybrid sampling strategies to

classify minority classes more effectively.

For malware category classification, all models showed a reduction in false neg-

atives after training on hybrid-sampled data. For Moderately Unbalanced, MLP

achieved a 41% and 80% reduction in false negatives for the Trojan Downloader

and Virus, respectively.

84

R. John and F. Di Troia

Table 9 Hybrid-Sampled malware family classification

Model

Dataset

Precision

Recall

F1-Score

Accuracy

SVM (SMOTE + Moderately

0.7987

0.7956

0.7872

0.7968

TomekLinks)

Unb.

MLP (ADASYN Moderately

0.8671

0.8706

0.8678

0.8774

+ OSS)

Unb.

. K -NN

Moderately

0.8952

0.9040

0.8986

0.9061

(ADASYN +

Unb.

ENN)

RF (ADASYN + Moderately

0.9242

0.9242

0.9239

0.9297

TomekLinks)

Unb.

SVM (SMOTE + Highly Unb.

0.7192

0.8076

0.7243

0.7957

ENN)

MLP (ADASYN Highly Unb.

0.7612

0.8158

0.7782

0.8629

+ TL)

. K -NN (BSMOTE Highly Unb.

0.8252

0.8309

0.8257

0.9062

+ ENN)

RF (BSMOTE + Highly Unb.

0.9523

0.8632

0.8905

0.9356

TomekLinks)

Table 10 Hybrid-sampled malware category classification

Model

Dataset

Precision

Recall

F1-Score

Accuracy

SVM (SMOTE + Moderately

0.8373

0.8517

0.8418

0.8061

TomekLinks)

Unb.

MLP (SMOTE + Moderately

0.9125

0.9160

0.9118

0.8851

TomekLinks)

Unb.

. K -NN

(SMOTE Moderately

0.9190

0.9312

0.9248

0.9096

+ TomekLinks)

Unb.

RF (BSMOTE + Moderately

0.9511

0.9510

0.9503

0.9357

TomekLinks)

Unb.

SVM (BSMOTE Highly Unb.

0.6317

0.7799

0.6695

0.7446

+ TomekLinks)

MLP (SMOTE + Highly Unb.

0.7798

0.8198

0.7937

0.8324

TomekLinks)

. K -NN (BSMOTE Highly Unb.

0.8606

0.8543

0.8514

0.8971

+ TomekLinks)

RF (SMOTE + Highly Unb.

0.9428

0.8743

0.9011

0.9035

ENN)

Comparing Balancing Techniques for Malware Classification

85

 5.5

 WGAN-GP Results

To further pursue data balancing, we conduct a small experiment with Genera-

tive Adversarial Networks, specifically the Wasserstein GAN with Gradient Penalty

(WGAN-GP), to oversample the moderately unbalanced training data. The rationale

for using WGAN-GP is its ability to generate high-quality synthetic data that can

help improve model performance, particularly for underrepresented classes.

The WGAN-GP model was trained on a Lenovo Legion 7i laptop equipped with

an NVIDIA RTX 4070 GPU and a 13th Gen Intel Core i9-13900HX CPU with 32GB

RAM. Training one generator model for 2000 epochs took over 20 minutes, which

made training 19 different generator models per malware family for various datasets

impractical. Therefore, we focused our experiments on classifying the 8 malware

categories for moderately unbalanced data.

We adjusted our training data to fit the WGAN-GP model’s requirements by

scaling the real sample features to a range of [–1,1]. This normalization was pivotal in ensuring compatibility with the WGAN-GP architecture used by [25]. We conducted two sets of experiments to oversample the non-majority classes. The first experiment

involved upsampling each non-majority class with an additional 10% of fake data,

while the second experiment increased the fake data to 20%. The real and fake

samples were then combined to train the four ML models.

The Random Forest and . K -NN models exhibited metrics similar to the initial

baseline tests. Notably, the Random Forest model trained with 10% fake data for the

Password Stealer, Tool, and Trojan Downloader classes outperformed other models.

In contrast, both SVM and MLP models experienced significant performance deteri-

oration. The SVM recorded a precision and recall value of 0 for classifying the Virus

(minority class), with F1-scores for all other classes well below the baseline tests. The MLP could not classify any non-majority classes and had a 27% precision and 100%

recall in recognizing the Trojan (majority class). This substantial decline in model

performance suggested that the generated fake data was ineffective in conveying the

complexities of malware categories to the SVM and MLP models.

Upon further examination of the actual feature values, we found that the opcode

data, after rescaling, had a narrow range between –0.95 and –1.0, leading to limited

class distinction. The minuscule differences in these values posed challenges for

models like SVM and MLP in learning clear decision boundaries, resulting in their

decreased performance in classifying malware categories. In contrast, Random Forest

and. K -NN remained unaffected, indicating their robustness against this type of data, as they employ ensemble techniques and local neighborhood voting.

Tables 11 and 12 present the average metrics of the models trained using oversampled WGAN-GP fake data.

From these experiments, we can derive several recommendations for improving

the oversampling process with WGAN-GP. Firstly, future studies could explore not

rescaling real and fake data since proportions already scale between {0,1}. Secondly,

investigating the activation function of the generator’s output layer could enable

output features to be scaled between {0,1}. Finally, experimenting with the learning

86

R. John and F. Di Troia

Table 11 Malware category classification metrics using 10% WGAN-GP Fake Data

Model

Dataset

Precision

Recall

F1-Score

Accuracy

SVM

Moderately

0.6498

0.6012

0.6133

0.6807

Unb.

MLP

Moderately

0.0333

0.1250

0.0525

0.2661

Unb.

. K -NN

Moderately

0.9204

0.9131

0.9163

0.8993

Unb.

RF

Moderately

0.9511

0.9436

0.9469

0.9314

Unb.

Table 12 Malware category classification metrics using 20% WGAN-GP Fake Data

Model

Dataset

Precision

Recall

F1-Score

Accuracy

SVM

Moderately

0.6532

0.5735

0.5794

0.6522

Unb.

MLP

Moderately

0.0333

0.1250

0.0525

0.2661

Unb.

. K -NN

Moderately

0.9202

0.9130

0.9161

0.8992

Unb.

RF

Moderately

0.9496

0.9430

0.9458

0.9303

Unb.

rate of the models might lead to faster training times for the WGAN-GP models and

yield higher-quality fake data.

 5.6

 Comparison of the Results

Given the experiments with various sampling strategies, this section summarizes

and compares the effectiveness of these techniques in classifying malware across the

four models. We compute and compare the best average F1-scores of each model

throughout the experiments to quantify their performances. The average F1-Score

was chosen because it considers each class’s precision and recall values to com-

pute a harmonic mean, providing a straightforward comparison of the models while

accounting for the impact of false positives and negatives.

For data with moderate class imbalance, models classified malware families better

when oversampling was applied, suggesting that synthetic data helped better repre-

sent specific families by providing more samples highlighting subtle distinctions

among each class. However, training with hybrid-sampled data proved to be more

effective for classifying malware categories. The SVM, . K -NN, and Random Forest

[image: Image 19]

Comparing Balancing Techniques for Malware Classification

87

models performed better with this technique, while the MLP performed slightly bet-

ter with oversampled data. Figures 2 and 3 show a graphical comparison of the best average F1-scores for each model and the corresponding sampling strategy used to

classify malware family and category with Moderately Unbalanced.

For data with a high degree of imbalance, most models preferred hybrid-sampled

data regardless of the classification task. Since half of the classes in Highly Unbal-

anced were reduced by a factor of 10, there was a severe skew in the learning process

for all models. In this case, simply oversampling malware data was insufficient and

could lead to poor generalization of underrepresented malware classes. Hybrid sam-

pling mitigates this by generating synthetic data for underrepresented classes while

pruning redundant points that overwhelm any non-minority class. Only the MLP per-

formed better using oversampled data for both classification tasks, likely due to its

intricate architecture, which relies on more samples to accurately represent the data

and extract complex relationships. Figures 4 and 5 present a graphical comparison of the best average F1-scores for each model and the corresponding sampling strategy

to classify malware family and category using Highly Unbalanced.

It is important to note the trade-offs associated with different sampling strategies

and models. All sampling and hyperparameter experiments were run on a Google

Colab CPU instance with a virtual machine CPU and 12GB RAM. While under-

sampling had only a limited effect on model metrics, it was the fastest method for

training the four models, taking only seconds. The hyperparameter testing time for

the three different undersamplers totaled only 3 hours per classification task. In con-

trast, the oversampling and hybrid approaches exhibited varying training times due

to the additional computation required for generating synthetic points, which fluctu-

ated depending on the classification task and the number of hyperparameters tested.

Fig. 2 Comparison of sampling strategies for moderately unbalanced malware family data

[image: Image 20]

[image: Image 21]

88

R. John and F. Di Troia

Fig. 3 Comparison of sampling strategies for moderately unbalanced malware category data Fig. 4 Comparison of sampling strategies for highly unbalanced malware family data

Notably, resampling malware category data was faster than resampling malware fam-

ily data, as the samplers had to consider fewer classes. Oversampling and training

the models for malware family classification took seconds to minutes. The . K -NN

model trained in seconds, while the Random Forest model required up to 1 minute.

Conversely, the SVM and MLP models took several minutes to train on the over-

sampled data, significantly contributing to the high training times, especially during

hyperparameter testing. The WGAN-GP models were trained on a local machine

with a GPU to avoid exhausting the Google Colab free-tier resources; even with a

[image: Image 22]

Comparing Balancing Techniques for Malware Classification

89

Fig. 5 Comparison of sampling strategies for highly unbalanced malware category Data GPU, training for 2000 epochs and generating fake data samples took over 20 minutes per class. Consequently, WGAN-GP fake data was only tested for classifying

malware categories on Moderately Unbalanced.

Overall, the choice of sampling strategy and data generation methods depends on

various factors for multi-class malware classification. Data characteristics, available

resources, model types, and time constraints will influence the selection of a particular

method. For this paper, the Random Forest model with oversampled and hybrid-

sampled data yielded the best results given the training time involved. Its individual

training time, accuracy levels, and inherent ability to handle imbalance make it a

robust choice for malware classification.

6

Conclusion and Future Work

In this work, we conducted several experiments to understand how different data

balancing techniques affect the classification of malware using datasets with mod-

erate and high class imbalance. We tested undersampling techniques such as Tomek

Links, Edited Nearest Neighbors, and One-Sided Selection to enhance class distinc-

tion between majority and minority classes. Additionally, we oversampled data using

techniques like SMOTE, BSMOTE, ADASYN, and WGAN-GP to create synthetic

training data that better represents non-majority classes. Finally, we combined both

oversampling and undersampling to generate fake samples and reduce the size of the

majority class for improved class representation.

Our results indicate that classifying malware families requires more synthetic

data when the dataset is moderately unbalanced. This ensures better representation

90

R. John and F. Di Troia

of each family and effectively conveys their complexities to machine learning models.

Similarly, a hybrid sampling approach with a reduction in the majority class is more

favorable for classifying malware categories, as it captures a broader relationship

among malware and defines clearer class boundaries. However, in cases of high

class imbalance, hybrid sampling is more suitable because oversampling alone may

not mitigate the significant influence of the majority class. This can lead to poor

generalization and reduced performance due to bias and overfitting.

The Random Forest classifier outperformed all other models in our experiments,

achieving an average F1-score of 0.924 in classifying families and 0.950 in classi-

fying categories under moderate class imbalance. It maintained an average F1-score

of 0.891 for classifying families and 0.901 for classifying categories in high class

imbalance scenarios. Furthermore, Random Forest exhibited training times of just

a few seconds, regardless of data size or type, whereas models like SVM and MLP

required several minutes for training. The . K -NN classifier had the fastest training times but ranked second in performance for malware classification tasks.

Utilizing WGAN-GP to oversample malware category data yielded only slight

improvements in the Random Forest model. However, the performance of models

like SVM and MLP deteriorated significantly due to the generated fake data lacking

feature variation, which was compromised during the rescaling of inputs for training

the WGAN-GP neural networks.

For future studies, researchers can explore GANs by redesigning the WGAN-

GP generator and discriminator architectures to produce more varied fake opcode

proportion data. Improvements to the learning rates of the optimizers, activation

functions, and the types of layers in WGAN-GP models can further enhance the

quality of training data. Additionally, researchers may explore different features for

representing malware families and categories. Opcode proportion data captures only

one aspect of a malware file; therefore, incorporating features such as API calls,

system calls, bytes, or a combination of these may yield better representations for

training future classifiers.

References

1. Bouchaib P, Bouhorma M. Transfer learning and SMOTE algorithm for image-based malware

classification. In: Proceedings of the 4th International Conference on Networking, Information Systems and Security, NISS’21, 2021.

2. Chawla N, Bowyer K, Hall L, Kegelmeyer W. SMOTE: Synthetic minority over-sampling

technique. J Artif Intell Res. 2002;16:321–57.

3. Dabas N, Ahlawat P, Sharma P. An effective malware detection method using hybrid feature selection and machine learning algorithms. Arab J Sci Eng. 2023;48(8):9749–67.

4. Dal Pozzolo A, Caelen O, Bontempi G. When is undersampling effective in unbalanced classification tasks? In: Appice A, Rodrigues PP, Costa VS, Soares C, Gama J, Jorge A, editors.

Machine learning and knowledge discovery in databases. Springer;2015. p. 200–15.

5. Diyana Tehrany Dehkordy and Abbas Rasoolzadegan. A new machine learning-based

method for Android malware detection on imbalanced dataset. Multimed Tools Appl.

2021;80(16):24533–54.

Comparing Balancing Techniques for Malware Classification

91

6. Goodfellow I, Pouget-Abadie J, Mirza M, Bing X, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial networks. Commun ACM. 2020;63(11):139–44.

7. Guan J, Jiang X, Mao B. A method for class-imbalance learning in Android malware detection.

Electronics. 2021;10(24).

8. Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville A. Improved training of Wasserstein GANs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, 2017. p. 5769–79.

9. Han H, Wang W-Y, Mao B-H. Borderline-SMOTE: a new over-sampling method in imbalanced

data sets learning. In: Huang D-S, Zhang X-P, Huang G-B, editors. Advances in intelligent computing. 2005. p. 878–87.

10. He H, Bai Y, Garcia EA, Li S. Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE international joint conference on neural networks (IEEE world congress on computational intelligence). 2008. p. 1322–8.

11. Jain U, Srivastava Y, Malik A, Dhingra D, Kumar A, Nagrath P. Malicious DNS detection and prediction using SMOTE-ENN and hybrid artificial neural network. In: 2022 International conference on computing, communication, and intelligent systems, ICCCIS. 2022. p. 138–44.

12. Kubát M, Matwin S. Addressing the curse of imbalanced training sets: one-sided selection. In: International conference on machine learning. 1997.

13. Lee B-S, Kim J-W, Choi M-J. Experimental comparison of hybrid sampling methods for

an efficient NIDS. In: 23rd Asia-Pacific network operations and management symposium,

APNOMS. 2022. p. 1–4.

14. Moskovitch R, Feher C, Tzachar N, Berger E, Gitelman M, Dolev S, Elovici Y. Unknown malcode detection using OPCODE representation. In: Ortiz-Arroyo D, Larsen HL, Zeng DD,

Hicks D, Wagner G, editors. Intelligence and security informatics. 2008, p. 204–15.

15. Nhita AF, Kurniawan I. Improvement of imbalanced data handling: a hybrid sampling approach by using adaptive synthetic sampling and Tomek links. In: 2023 Eighth international conference on informatics and computing, ICIC. 2023. p. 1–5.

16. Oak R, Du M, Yan D, Takawale H, Amit I. Malware detection on highly imbalanced data through sequence modeling. In: Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, AISec’19. 2019. p. 37–48.

17. Purnama B, Stiawan D, Hanapi D, Winanto EA, Budiarto R, Idris MYB. N-gram effect in malware detection using multilayer perceptron (MLP). In: 2021 8th International Conference

on Electrical Engineering, Computer Science and Informatics, EECSI. 2021. p. 45–9.

18. Sawadogo Z, Dembele J-M, Mendy G, Ouya S. Android malware detection: an in-depth investigation of the impact of the use of imbalance datasets on the efficiency of machine learning models. In: 2023 25th international conference on advanced communication technology,

ICACT. 2023. p. 1460–7.

19. Shamsudin HC, Adam A, Shapiai MI, Basri MAM, Ibrahim Z, Khalid M. An improved two-

step supervised learning artificial neural network for imbalanced dataset problems. In: 2011

Third international conference on computational intelligence, modelling and simulation. 2011.

p. 108–13.

20. Sonicwall. Sonicwall cyber threat report. 2024. https://www.sonicwall.com/medialibrary/en/

white-paper/2024-cyber-threat-report.pdf.

21. Tan X, Su S, Huang Z, Guo X, Zuo Z, Sun X, Li L. Wireless sensor networks intrusion detection based on SMOTE and the random forest algorithm. Sensors. 2019;19(1).

22. Tasin I, Nabil TU, Islam S, Khan R. Diabetes prediction using machine learning and explainable AI techniques. Healthcare Technol Lett. 2022;10(1–2):1–10.

23. Tomek I. An experiment with the edited nearest-neighbor rule. IEEE Trans Syst Man Cybern.

1976;SMC-6(6):448–52.

24. Tomek I. Two modifications of CNN. IEEE Trans Syst Man Cybern. 1976;SMC-6(11):769–72.

25. Trehan H, Di Troia F. Fake malware generation using hmm and gan. In: Chang S-Y, Bathen L, Di Troia F, Austin TH, Nelson AJ, editors. Silicon valley cybersecurity conference. 2022. p.

3–21.

92

R. John and F. Di Troia

26. Ucci D, Aniello L, Baldoni R. Survey of machine learning techniques for malware analysis.

Comput Secur. 2019;81:123–47.

27. Wilson DL. Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans Syst Man Cybern. 1972;SMC-2(3):408–21.

28. Zhang Y, Huang Q, Ma X, Yang Z, Jiang J. Using multi-features and ensemble learning method for imbalanced malware classification. In: 2016 IEEE Trustcom/BigDataSE/ISPA. 2016. p.

965–73.

29. Zhu Y, Yan Y, Zhang Y, Zhang Y. Ehso: evolutionary hybrid sampling in overlapping scenarios for imbalanced learning. Neurocomputing. 2020;417:333–46.

[image: Image 23]

Malware Classification Using a Hybrid

Hidden Markov Model-Convolutional

Neural Network

Ritik Mehta

, Olha Jurečková

, and Mark Stamp

Abstract The proliferation of malware variants poses a significant challenges to

traditional malware detection approaches, such as signature-based methods, neces-

sitating the development of advanced machine learning techniques. In this research,

we present a novel approach based on a hybrid architecture combining features

extracted using a Hidden Markov Model (HMM), with a Convolutional Neural Net-

work (CNN) then used for malware classification. Inspired by the strong results

in previous work using an HMM-Random Forest model, we propose integrat-

ing HMMs, which serve to capture sequential patterns in opcode sequences, with

CNNs, which are adept at extracting hierarchical features. We demonstrate the effec-

tiveness of our approach on the popular Malicia dataset, and we obtain superior

performance, as compared to other machine learning methods—our results sur-

pass the aforementioned HMM-Random Forest model. Our findings underscore the

potential of hybrid HMM-CNN architectures in bolstering malware classification

capabilities, offering several promising avenues for further research in the field of

cybersecurity.

1

Introduction

Malicious software, commonly known as malware, poses a significant threat to com-

puter systems by causing damage or disruption. Despite advancements in cyberse-

curity, malware continues to present a formidable challenge in the digital landscape.

For example, ransomware attacks increased by 84% in 2023 as compared to 2022,

R. Mehta · M. Stamp (B)

San Jose State University, San Jose, CA, USA

e-mail: mark.stamp@sjsu.edu

O. Jurečková

Czech Technical University in Prague, Prague, Czech Republic

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

93

M. Stamp and M. Jureček (eds.), Machine Learning, Deep Learning and AI for

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_4

94

R. Mehta et al.

according to a study conducted by the NCC Group [16]. This escalating trend underscores the urgent need for improved methods of detecting and categorizing

malware.

Traditional signature-based techniques, as employed by anti-virus (AV) applica-

tions [41], entail creating signatures consisting of patterns extracted from malicious software files. However, these techniques are ineffective against previously-unknown

malware samples, and numerous code obfuscation techniques [44] have been developed that can defeat signature scans. In contrast, heuristic analysis [4] requires careful calibration to balance threat identification with excessive false positive rates on

benign code.

Recognizing the limitations of these conventional methods, researchers have

turned to machine learning paradigms for solutions. In this regard, static and dynamic

features, or a combination of the two [9], are used to train models for malware detection and classification. Static features are those which can be obtained without

executing or emulating the code, while dynamic features require code execution or

emulation. In general, models that rely on static features are more efficient as such

features are easy to extract and have low computation complexity, while models that

use dynamic features are more resistant to common obfuscation techniques. In our

research, we only consider static features.

In this paper, we propose a novel hybrid machine learning technique, termed

HMM-CNN, which combines the sequential insight of Hidden Markov Model

(HMM) [11] with the spatial awareness of Convolutional Neural Networks (CNN).

Specifically, we first train HMMs on opcode sequences, then we determine the hid-

den state sequences from the trained HMMs. This use of HMMs can be viewed as a

feature engineering step, and it is often employed in the field of Natural Language

Processing (NLP), but we are not aware of such an approach having been previ-

ously used in the malware domain. Finally, we classify malware samples into their

respective families based on these HMM-generated hidden state sequences using a

CNN. This study is an extension of our prior research efforts that culminated in the

development of the HMM-Random Forest model in [23].

The remainder of this paper is organized as follows. In Sect. 2 we present relevant background information and a brief introduction to the learning techniques considered in our research. Section 3 presents a selective survey of some relevant previous work. Section 4 covers our experimental design, with the emphasis on our proposed HMM-CNN model, and we provide a brief description of the dataset used. Section 5

gives our experimental results. We conclude the paper with Sect. 6, which includes some ideas for future work.

2

Background

In this section, we first introduce the learning techniques that appear in subsequent

sections of this paper. Specifically, we discuss Hidden Markov Models and Convo-

lutional Neural Networks.

Malware Classification Using a Hybrid Hidden Markov …

95

 2.1

 Hidden Markov Model

Hidden Markov Models (HMM) [11] can be described as statistical Markov models in which the states are hidden. An HMM can be represented by the triple. λ = (A, B, π), where . A is the state transition probability matrix, . B is the observation probability matrix, and . π is the initial state distribution. A series of observations, denoted as . O, are available, and these observations are probabilistically related to the hidden states sequence . X via the . B matrix. Figure 1 provides a high-level view of an HMM.

The number of hidden states in an HMM is denoted as . N and the number of

unique observation symbols is denoted as . M, while the length of the observation

sequence is . T . Within the HMM framework, there are efficient algorithms to solve three problems [38]. For the research in this paper, we are only focused on the following two problems.

1. Given a model. λ = (A, B, π) and an observation sequence. O, we can determine the optimal hidden state sequence corresponding to. O, where “optimal” is defined

as maximizing the expected number of correct states. Note that this implies an

HMM is an Expectation Maximization (EM) technique. Also, the HMM solution

to this problem differs, in general, from a dynamic program, where we maximize

with respect to the overall path.

2. Given an observation sequence . O and a specified number of hidden states . N , we can train an HMM. That is, we can determine the matrices that comprise the

model . λ = (A, B, π), so that. P(O | λ) is maximized.

The so-called forward algorithm and the backward algorithm enable an efficient

meet-in-the-middle approach to solve problem 1, above [2]. Typically, the Baum-Welch re-estimation algorithm, which is a hill climb technique, is used to train an

HMM to model a given observation sequence, which solves problem 2,

above.

Fig. 1 Hidden Markov model

96

R. Mehta et al.

 2.2

 Convolutional Neural Network (CNN)

A convolution can be described as a composite function that computes the amount

of overlap of one function as it is shifted over another function. In case of discrete

sequences . x and . y, the convolution is denoted as

. c = x ∗ y

which is computed as

. ck =

 xi yk− i .

 i

Here, . ck denotes the . k th element of the resulting sequence . c and the summation is performed over all indices . i where the sequence . x and . y overlap. The term . yk− i represents the element of sequence . y, shifted by . k positions. Note that for each position . k, the value . ck is computed by summing the products of corresponding elements of . x and the shifted version of . y.

CNNs [30] are a class of deep neural networks that applies layers of convolution to the input dataset using trainable filters. CNNs use a unique architecture to automatically learn and extract hierarchical characteristics from data, drawing inspiration

from the human visual system. Hence, they are particularly useful for tasks such as

feature extraction, object detection, and image classification. Figure 2 illustrates a convolution applied to input data using a filter.

In addition to convolutional layers, our CNNs also include max-pooling and fully-

connected layers. Max pooling layers consist of a non-trainable, fixed filter, which

selects the maximum value within non-overlapping windows. Pooling layers serve

primarily to reduce the dimensionality of the data. Lastly, an activation function is

applied via one or more fully connected layers, which results in a classification based

on the result. Figure 3 illustrates a generic CNN architecture.

Fig. 2 Convolution using filter

[image: Image 24]

Malware Classification Using a Hybrid Hidden Markov …

97

Fig. 3 Overview of CNN architecture

3

Literature Review

There has been a vast amount of previous work on malware classification using a

wide range of machine learning and deep learning approaches. This section discusses

a representative sample of such malware classifications techniques, with the empha-

sis on research that is most closely related to our novel NLP-inspired HMM-CNN

technique.

 3.1

 Malware Classification Using HMM

In one of the earliest papers in this genre, Wong and Stamp [42] consider HMMs for the detection of metamorphic malware. By modern standards, they considered a

very small sample set, but they were able to distinguish malware from benign with

high accuracy, clearly indicating the viability of machine learning models within the

malware domain.

Annachhatre et al. [3] train multiple HMMs on a variety of metamorphic malware samples. Each malware sample in the test set is then scored against all models, and

the samples are clustered based on the resulting vector of scores. They were able to

classify the malware samples into their respective families with good accuracy, even

for families that were not included in the training set.

In [46], Zhao et al., explore the usage of complex Gaussian Mixture Model-HMMs (GMM-HMM) for malware classification. In their research, GMM-HMMs

produced comparable results to discrete HMMs based on opcode sequence features,

and showed significant improvement over discrete HMMs when trained on entropy-

based features.

 3.2

 Malware Classification Using SVM

Support Vector Machines (SVM) are a prominent class of techniques for super-

vised learning. The objective of the SVM algorithm is to determine an optimal

hyperplane—or hyperplanes, in the the more general multiclass case—that can

98

R. Mehta et al.

segregate . n-dimensional space into classes. The decision boundary is then used to classify data points not in the training set. In [18], Kruczkowski et al., trained an SVM on malware samples and achieved a cross-validation accuracy of 0.9398, and

an F1-score of 0.9552.

Singh et al. [36] also use SVMs for malware classification. They trained HMMs, computed a Simple Substitution Distance (SSD) score based on the classic encryption

technique from symmetric cryptography, and also computed an Opcode Graph Score

(OGS). Each malware sample was classified—using an SVM—based on its vector

of these three scores. While the individual scores generally performing poorly in a

robustness analysis, the SVM results were significantly more robust, indicating the

advantage of combining multiple scores via an SVM.

 3.3

 Malware Classification Using Random Forest

In [12], Garcia and Muga II employ an approach for converting a binary file to a gray scale image, and subsequently use a Random Forest to classify malware into families,

achieving an accuracy of 0.9562. Domenick et al. [25], on the other hand, combine a Random Forest with Principal Component Analysis (PCA) [40] and Term Frequency-Inverse Document Frequency (TF-IDF) [33]. The model based on a Random Forest and PCA outperformed a models based on Logistic Regression, Decision Trees, and

SVM on a particular dataset.

 3.4

 Malware Classification Using RNN and LSTM

A Recurrent Neural Network (RNN) [10] is a type of neural network designed to process sequential data by incorporating feedback connections. This gives RNNs a form

of memory that is lacking in feedforward neural networks. However, generic RNNs

are subject to computational issues, including vanishing and exploding gradients,

which limit their utility. Consequently, various specialized RNN-based architectures

have been developed, which mitigate some of the issues observed in plain vanilla

RNNs. The best-known and most successful of these specialized RNN architectures

is the Long Short-Term Memory (LSTM) model.

An unsupervised approach involving Echo State Networks (ESNs) [32] and RNNs for a “projection” stage to extract features is discussed by Pascanu et al. [31]. A standard classifier then uses these extracted features to detect malicious samples.

Their hybrid model with the best performance employed ESN for the recurrent model,

a max pooling layer for nonlinear sampling, and Logistic Regression for the final

classification.

Lu [21], experimented with LSTMs for malware classification. First, Word2Vec word embedding of the opcodes were generated using skip-gram and CBOW models. Subsequently, a two stage LSTM model was used for malware detection. The

Malware Classification Using a Hybrid Hidden Markov …

99

two-stage LSTM model is composed of two LSTM layers and one mean-pooling

layer to obtain feature representations of malware opcode sequences. An average

Area under the ROC Curve (AUC) [6] of 0.987 was achieved for malware classification on a modest-sized dataset consisting of 969 malware and 123 benign samples.

 3.5

 Malware Classification Using CNN

Recently, image-based analysis of malware has been the focus of considerable

research; see [5, 15, 29, 43], for examples. Much of this work is based on CNNs [30].

A CNN is a type of neural network that designed to efficiently deal with data that is

in a grid-like layout where local structure dominates, which is the case for images.

In [17], Kalash et al., proposed a CNN-based architecture, called M-CNN, for malware classification. The architecture of M-CNN is based on the VGG-16 [35], and it achieves accuracies of 0.9852 and 0.9997 on the popular MalImg [27] dataset and a Microsoft [24] dataset, respectively.

4

Methodology

In this section, we first introduce the dataset used in our experiments. We then outline the experimental design that we employ for the results presented in Sect. 5.

 4.1

 Dataset and Preprocessing

As in [23], for the research presented here, we use the malware samples in the popular Malicia dataset [26]. This dataset includes 11,688 malware binaries, categorized into 48 different malware families. The binary files were gathered from 500 drive-by

download servers over a period of 11 months. They were then executed in a virtualized

environment designed to capture the network traffic produced by the malware and

to take a screenshot of the guest VM at the end of the execution. Windows XP

Service Pack 3 was used as the guest operating system. To classify the binaries into

malware families, a combination of automatic clustering techniques and an analyst

that manually refines the generic labels by comparing cluster behaviors against public

reports were employed.

The Malicia dataset is highly imbalanced and hence we remove all classes with

less than 50 samples. This results in malware samples belonging to the following

seven families.

Zeroaccess

tries to steal information, and it can also cause other malicious actions,

such as downloading additional malware or opening a backdoor [28].

100

R. Mehta et al.

5000

4360

4000

3000

2136

Samples 2000

1305

1000

58

74

68

53

0

Zbot

Cridex

arebot

artHDD

H

ZeroAccess

Winwebsec

Sm

ecurityShield

S

Fig. 4 Malware samples per family

Winwebsec

is a Trojan horse that attempts to install additional malicious pro-

grams [39].

SecurityShield

is based on Winwebsec, and it displays fake security warnings in

an attempt to get the user to pay money to fix the nonexistent issues [34].

Zbot

is a Trojan that tries to steal user information. It spreads by attaching exe-

cutable files to spam email messages [45].

Cridex

is a worm that installs a backdoor that can then be used to download

additional malware onto a system [8].

SmartHDD

pretends to be a hard drive optimizer. SmartHDD finds multiple

nonexistent issues, and attempts to convince the user to pay money to “repair” the

hard drive [37].

Harebot

is a rootkit that opens a system to remote attacks of various types [47].

The number of samples in each of these malware families is shown in Fig. 4.

 4.2

 Experimental Design

The first step in our experimental design is to disassemble every executable file in

the dataset and extract mnemonic opcode sequences. Next, the dataset is split into

train and test sets. For all of our experiments, we use an 80:20 train-test split, i.e., 80% of the samples are used for training, while 20% of the samples are reserved for

testing. We trained the models used in this research on a PC, with the specification

Malware Classification Using a Hybrid Hidden Markov …

101

Table 1 Relevant hardware and software

Item

Version

Hardware

Chip

Apple M1 Pro

Cores

8

Memory

16 GB

Firmware Version

8422.121.1

Software

OS

macOS Ventura

Python

3.9.12

NumPy

1.21.5

Pandas

1.4.2

Pickle

4.0

Scikit learn

1.0.2

of this machine shown in Table 1; the software—including operating system, and Python packages used—is also specified in Table 1.

 4.3

 Training Methodology

The methodology for training our HMM-CNN model can be summarized in the

following six steps.

1. Train HMMs on opcode sequences—This step consists of training seven different

HMMs; one HMM for each malware family discussed in Sect. 4.1, above. Each HMM is trained using only the opcode sequences of samples belonging to a particular family. The observation sequence. O for a given malware family is obtained

by concatenating the observation sequences (i.e., mnemonic opcode sequences)

extracted from training samples belonging to the family. When training these

HMMs, we specify the number of hidden states. N , which is a hyperparameter of

our overall system. We experiment with different choices for . N .

2. Determine the feature vector for each sample—The first . L opcodes of a given

sample are fed into each of the seven trained HMMs. This results in seven hidden

state sequence vectors that are each of length . L. We concatenate these seven

hidden state sequences to obtain a feature vector of length .7 L. The length . L is a hyperparameter of the system, and hence we experiment with different choices

for . L.

3. Scale the feature vectors—Each feature vector is scaled using a standard scaler,

that is, element . x is scaled as . z = (x − μ)/σ , where . μ is the mean and . σ is the standard deviation.

4. Generate images from feature vectors—Each scaled hidden state sequence

obtained in the previous step is formed into a square matrix. Since each vector is

√

√

of length .7 L these square matrices are of size . 7 L × 7 L. These matrices

102

R. Mehta et al.

are then padded with zeros at the edges to create images of dimension.224 × 224.

The padding is applied evenly across all the edges to maintain the symmetry.

5. Select the CNN architecture—In this step, a popular CNN architecture is chosen as

a base model for our HMM-CNN architecture. We then add custom classification

layers (as discussed below) on top of our base model so that the resulting CNN can

classify images into the seven malware families. We treat the CNN architecture

as a hyperparameter of our overall model, and hence we experiment with several

different base models.

6. Train the CNN model—Lastly, we train the CNN model on the images discussed

above. Of course, the malware family to which an image belongs serves as its label.

To summarize, we train an HMM for each family, then use the trained HMMs to deter-

mine the hidden state sequences corresponding to each sample. We rearrange these

hidden state sequence vectors to square matrices, then form images of size.224 × 224,

which are used to train a CNN. Each CNN architecture is built upon a base model

that includes the following three additional layers.

1. A Global Average Pooling (GAP) layer [20] is used to reduce spatial dimensions.

2. The GAP layer is followed by a dense layer with 1024 neurons and ReLU acti-

vation [1], which serves as a “bottleneck”, in the sense that it forces the model to condense the most relevant features into a more compact representation, which

serves to reduce overfitting.

3. The final dense layer, with softmax activation [22], has its number of neurons equal to the number of malware families and is responsible for classifying input

data. In all of our experiments, the number of classes is seven, since we consider

seven malware families from the Malicia dataset.

As mentioned above, we experiment with several base CNN architectures. Next,

we provide a brief description of each of the base CNN architectures that we consider.

ResNet50V2

is part of the Residual Network (ResNet) family. As indicated by its

name, ResNet50V2 contains 50 layers and is noteworthy for its deep architecture

and skip connections, allowing it to excel at image classification tasks [13].

ResNet101V2

is an extended version of the ResNet architecture with 101 layers.

Similar to other ResNet models, it has skip connections to facilitate the training

of extremely deep networks [13].

ResNet152V2

is another variant of the ResNet architecture, in this case with 152

layers. ResNet152V2 addresses the vanishing gradient problem by using residual

connections [13].

DenseNet201

is a deep neural network model that uses dense connections between

layers. This model has 201 layers and is known for efficient feature reuse [14].

Xception

is known for its extreme depth and parallelism. It employs depthwise

separable convolutions, making it computationally efficient while achieving high

performance in image classification tasks [7].

Table 2 provides a brief summary of each of the hyperparameters of our HMM-CNN model. Recall that the resulting feature vectors are of length .7 L, and images of size .224 × 224 are generated from these feature vectors.

Malware Classification Using a Hybrid Hidden Markov …

103

Table 2 HMM-CNN hyperparameters

Hyperparameter

Description

. N

Number of hidden states in the HMM

. L

Length of each extracted hidden state sequence

base_model

Base CNN architecture

optimizer

Algorithm to adjust model parameter during

training

learning_rate

Step size at which the model parameter are

updated

loss

Quantifies difference between actual and

predicted output

5

Experiments and Results

In this section, we first discuss the HMM training and the use to the resulting models

to obtain hidden state sequences. Next, we consider the training of our HMM-CNN

classifier, including hyperparameter tuning. Then we summarize the results of our

experiments, and we conclude this section with a comparison of our results to other

research involving the Malicia dataset.

 5.1

 HMM Training and Hidden States

As discussed above, the subset of the Malicia dataset that we use consists of seven

malware families, and we train one HMM for each family. Hence, we have seven

trained HMMs, where each model is of the form . λ = (A, B, π). We experimented with the number of hidden states . N ∈ {5 , 10 , 20 , 30}, and we found that . N = 20

yields the highest accuracy. The number of unique observations (i.e., a superset of

the opcodes in all seven families) is.426, with MOV being the most frequent. Therefore,

. N = 20 and . M = 426 in all of our HMMs discussed in the remainder of this paper.

Recall that these HMM matrices are. A = { ai j }, which is. N × N ,. B = { bi j }, which is . N × M, and . π = { πi }, which is .1 × N . We initialize the . A, . B, and . π matrices to approximately uniform, that is, each . ai j ≈ 1 /N , each. bi j ≈ 1 /M, and each. πi ≈

1 /N , while enforcing the required row stochastic conditions. The minimum number

of iterations of the Baum-Welch re-estimation algorithm is set to 10, and we stop

when successive iterations beyond this number produce a change in . P(O | λ) of less than . ε = 0 . 001. When training our models, the average number of iterations was 10.43, and it took an average of five hours to train each HMM. Note that this is

one-time work.

Next, we use the trained HMMs to generate hidden state sequences for each

sample as follows. Given a sample, we generate a hidden state sequence using

each of the seven HMMs. The length of each hidden state sequence correspond-

104

R. Mehta et al.

Table 3 Number of malware sample dropped for different values of. L

. L

Samples dropped

25

3

50

11

100

14

200

26

ing to each malware sample is truncated to a constant . L, that is, we only use the hidden state sequences corresponding to the first . L opcodes. We experiment

with. L ∈ {25 , 50 , 100 , 200}. In rare cases, there were insufficient opcodes available in a given sample, (i.e., the length of opcode sequence for the malware sample was

less than . L), in which case we dropped the sample from consideration. The number of dropped samples for each value of . L is given in Table 3, and we observe that an insignificant percentage of malware samples were dropped.

 5.2

 HMM-CNN Training

In our proposed HMM-CNN technique, we train a CNN on images created by reshap-

ing the hidden state sequences generated by HMMs. As discussed above, for each

sample, the concatenated hidden state sequence vector of length .7 L is rearranged

to a square matrix, and this matrix is then padded with zeros at its edges to create

an image of size .224 × 224. Note that this image dimension was chosen because

most modern CNN architectures cannot be trained on images of dimensions smaller

than.224 × 224. Also, we found that this embedding approach yielded slightly better

results than resizing the images.

We conduct a grid-search [19] to determine the hyperparameters of our HMM-CNN classifier. Specifically, we tested the hyperparameter values in Table 4, with the values in boldface yielding the best result. The accuracy obtained for the best

choice of hyperparameters in Table 4 was .0 . 9781.

Table 4 HMM-CNN hyperparameters tested and selected

Hyperparameter

Tested (selected in boldface)

. L

56, 112, 224

base_model

ResNet50V2, ResNet152V2, ResNet101V2,

DenseNet201, Xception

optimizer

Adam, RMSProp, Adagrad, Adadelta, Nadam,

Ftrl

learning_rate

0.0001, 0.001, 0.01

loss

categorical_crossentropy,

kullback_leibler_divergence, poisson

Malware Classification Using a Hybrid Hidden Markov …

105

1.00

ResNet50V2

0.95

DenseNet201

Xception

0.90

ResNet152V2

0.85

ResNet101V2

0.80

Accuracy 0.75

0.70

0.65

0.60

Adam

RMSProp

Adagrad

Adadelta

Nadam

Ftrl

(a) Optimizer

0.96

0.94

ResNet50V2

ResNet50V2

0.92

DenseNet201

0.90

DenseNet201

Xception

0.88

Xception

ResNet152V2

0.86

ResNet152V2

0.84

ResNet101V2

ResNet101V2

0.82

0.80

Accuracy

Accuracy 0.78

0.76

0.74

0.72

0.68

0.70

0.0001

0.001

0.01

Crossentropy KL Divergence

Poisson

(b) Learning rate

(c) Loss function

Fig. 5 Accuracy trends for different hyperparameters for HMM-CNN

We give expanded results for each of the individual hyperparameters of HMM-

CNN in Fig. 5. We observe that a learning_rate of 0.001 and the Categorical Crossentropy loss function were both clearly superior to the alternatives that we

tested. For the choice of optimizer, the results are not as clear, but Nadam was

generally the best.

Confusion matrices for our HMM-CNN experimental results are given in Fig. 6, where Fig. 6a provides the actual number of classifications for each case, and Fig. 6b is a scaled confusion matrix. The samples belonging to the three largest malware

families, namely, ZeroAccess, Winwebsec, and Zbot are classified with an average

accuracy of .0 . 9856, whereas Cridex, with only 74 samples available, is classified with the lowest accuracy of .0 . 200.

 5.3

 Comparison to Related Techniques

Finally, we compared the results obtained from our HMM-CNN model with a variety

of related techniques. The following provides a brief description of each of the related

techniques that we consider.

[image: Image 25]

106

R. Mehta et al.

200

1

ZeroAccess 260

1

ZeroAccess 0.996

0.004

Winwebsec

1

864

1

160

Winwebsec 0.001 0.998

0.001

0.8

SecurityShield

1

11

SecurityShield 0.083

0.917

120

0.6

Zbot

7

9

414

Zbot 0.016 0.021

0.963

80

0.4

Cridex

1

10

1

3

Cridex 0.067 0.667

0.067 0.200

SmartHDD

13

40

SmartHDD

1.000

0.2

Harebot

1

1

1

8

Harebot 0.091 0.091

0.091

0.727

0

0

Zbot

Zbot

Cridex

Harebot

Cridex

Harebot

ZeroAccess Winwebsec

SmartHDD

ZeroAccess Winwebsec

SmartHDD

SecurityShield

SecurityShield

(a) Actual

(b) Scaled

Fig. 6 Confusion matrices for HMM-CNN model

• Word2Vec-LSTM—For this model, we generate Word2Vec embeddings of the

opcodes, then train an LSTM model on the resulting sequence of embedding

vectors.

• BERT-LSTM—This is the same as the Word2Vec-LSTM model, except that BERT

is used to generate the embedding vectors, instead of Word2Vec.

• Random Forest—For this model, we train a Random Forest model directly on the

opcode sequences. We obtain the feature vectors by truncating each sequence to a

length . L, using the same values of . L as for our HMM-CNN model.

• SVM—As with the previous model, this model is also trained on the feature vectors

obtained directly from the opcode sequences, but using an SVM classifier, instead

of a Random Forest.

• HMM-RF—This is similar to our HMM-CNN model, except that we apply a

Random Forest classifier to the length .7 L feature vectors.

• HMM-SVM—This model is the same as the HMM-RF model, except that we use

an SVM classifier in place of a Random Forest.

• CNN—For this model, we generate .224 × 224 images directly using the first . L

opcodes of the malware samples. These images are then used to train a CNN

classifier, as discussed in Sect. 4.3, above.

Table 5 shows the accuracy and weighted F1-score obtained after testing each of the above techniques on the same subset of the Malicia dataset as we used for

our HMM-CNN experiments. We observe that the HMM-CNN slightly outperforms

the HMM-SVM and HMM-RF, with Word2Vec-LSTM, Random Forest, and SVM

models also performing reasonably well. Only the BERT-LSTM embedding achieved

significantly lower accuracy and F1 score, which is perhaps at least partially due to

insufficient training data for the more complex BERT embeddings.

Utilizing HMMs to generate feature vectors from opcode sequences clearly results

in improvement in accuracy. Furthermore, the HMM-based models outperformed

others when it came to classifying malware samples from some families that had

limited representation in the dataset. For example, the HMM-based models classified

Malware Classification Using a Hybrid Hidden Markov …

107

Table 5 Classification results for different techniques

Technique

Validation

Accuracy

F1-score

Word2Vec-LSTM

0.9714

0.9658

BERT-LSTM

0.9181

0.9037

Random Forest

0.9702

0.9668

HMM-RF

0.9758

0.9732

SVM

0.9589

0.9535

HMM-SVM

0.9757

0.9727

CNN

0.9725

0.9727

HMM-CNN

0.9781

0.9778

Table 6 Training and testing times for different techniques

Technique

Total training time

Testing time per sample

(in hours)

(in seconds)

Word2Vec-LSTM

1.38

0.0150

BERT-LSTM

3.32

0.0753

Random Forest

0.64

0.0010

HMM-RF

24.91

0.0008

SVM

2.34

0.0013

HMM-SVM

26.26

0.0016

CNN

25.08

0.0076

HMM-CNN

48.83

0.0076

50

0.10

Training

Testing

40

0.08

(seconds)

30

(hours)

0.06

sample

20

0.04

er

raining

p

T

10

0.02

esting T

0

0.00

t

ores

F

SVM

CNN

HMM-RF

BERT-LSTM

HMM-SVM

HMM-CNN

Random

Word2Vec-LSTM

Fig. 7 Training and testing timings

108

R. Mehta et al.

malware samples of SecurityShield with an average accuracy of 87.5%, while the

non-HMM models had an average accuracy of just 41.67%.

Table 6 shows the average training and testing time of the tested techniques for the Malicia dataset. For emphasis, we give these same timing results in Fig. 7.

We observe that Word2Vec-LSTM and BERT-LSTM, which combine word

embeddings with LSTM networks, require moderate training times and relatively

high testing times. On the other hand, techniques incorporating HMMs required sig-

nificantly longer training time, but maintain efficient testing times, while Random

Forests are extremely efficient, with respect to both training and testing.

6

Conclusion and Future Work

In this paper, we analyzed a hybrid HMM-CNN model. Specifically, we derived fea-

tures using HMMs, which were then converted into images, which were classified

using advanced CNN architectures. We found that our HMM-CNN model outper-

formed several comparable techniques on the same dataset. In contrast, techniques

that did not use the HMM hidden state sequences as features performed measurably

worse. This indicates that training an HMM and using it to uncover the hidden states

can serve as a valuable feature engineering step. The hidden state sequence of HMMs

are often used in Natural Language Processing (NLP) applications but, as far as the

authors are aware, this approach has only previously been applied to malware-related

problems in our previous work [23]. The results in this paper provide additional evidence that such NLP-inspired approaches holds promise in the malware domain.

Analogous approaches would be worth investigating in other domains as well.

There are many possible avenues for future work. For example, attempting to

extend our results for HMM-based models to various types of obfuscated malware—

such as polymorphic and metamorphic malware—would be an interesting challenge.

The training times required for the HMM models was found to be large in com-

parison to other standard models. Optimizing the HMM training times would be

worthwhile future work. For example, we could reduce the training times by reduc-

ing the length of the training opcode sequences. We used all of the available training

data to generate our HMMs, but the models would likely converge with far less data.

Utilizing hidden state sequences generated by HMMs in conjunction with Long

Short-Term Memory (LSTM) networks is another possible area of future research

work. Intuitively, leveraging LSTM to analyze hidden state sequences generated by

HMMs could provide a more holistic view with respect to the temporal dynamics

exhibited by malware. This approach holds the potential to enhance the accuracy and

robustness of malware classification, as it leverages both the discriminative power

of HMMs in identifying behavioral patterns and the feature learning capabilities of

LSTMs.

Testing on larger and more challenging datasets could give us a more fine-grained

view of the relative strengths and weaknesses of hybrid models based on HMM-

generated hidden state sequences. Ensemble modeling techniques are another area

Malware Classification Using a Hybrid Hidden Markov …

109

for potential future work. Generating multiple HMMs using random restarts could be

used to create ensembles of HMM-RF and HMM-CNN models, potentially providing

improved results.

References

1. Agarap AF. Deep learning using rectified linear units (ReLU) 2019. https://arxiv.org/abs/1803.

08375.

2. Agbinya J. Hidden Markov modelling (HMM)—an introduction. In: Applied data analytics—

principles and applications. River Publishers;2020. p. 17–34.

3. Annachhatre C, Austin T, Stamp M. Hidden Markov models for malware classification. J

Comput Virol Hacking Techn. 2015;11:59–73.

4. Bazrafshan Z, Hashemi H, Fard SMH, Hamzeh A. A survey on heuristic malware detection

techniques. In: The 5th conference on information and knowledge technology;2013. p. 113–

120.

5. Bhodia N, Prajapati P, Troia FD, Stamp M. Transfer learning for image-based malware classification. In: Mori P, Furnell S, Camp O, editors. Proceedings of the 5th international conference on information systems security and privacy, ICISSP;2019. p. 719–26.

6. Bradley AP. The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997;30(7):1145–59.

7. Chollet F. Xception: Deep learning with depthwise separable convolutions. In: 2017 IEEE

conference on computer vision and pattern recognition, CVPR;2017. p. 1800–7.

8. Cridex malware 2017. https://www.computerhope.com/jargon/c/cridex-malware.htm.

9. Damodaran A, Troia FD, Visaggio CA, Austin TH, Stamp M. A comparison of static, dynamic, and hybrid analysis for malware detection. J Comput Virol Hacking Techn. 2017;13(1):1–12.

10. Du K-L, Swamy MNS. Recurrent neural networks. In: Neural networks and statistical learning, 2nd ed. Springer;2019. p. 337–53.

11. Franzese M, Iuliano A. Hidden Markov models. In: Ranganathan S, Gribskov M, Nakai K, Schönbach C, editors, Encyclopedia of bioinformatics and computational biology. Academic

Press;2019. p 753–62.

12. Garcia FCC, Muga II FP. Random forest for malware classification 2016. https://arxiv.org/abs/

1609.07770.

13. He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks. In: Leibe B, Matas J, Sebe N, Welling M, editors, Computer vision, ECCV;2016. p. 630–45.

14. Huang G, Liu Z, van der Maaten L, Weinberger K. Densely connected convolutional networks.

In: 2017 IEEE conference on computer vision and pattern recognition, CVPR;2017.

15. Jain M, Andreopoulos W, Stamp M. Convolutional neural networks and extreme learning

machines for malware classification. J Comput Virol Hacking Techn. 2020;16(3):229–44.

16. Johnstone-Hulse V, Sommer K, Rodenburg W. Global cyber policy radar: report on cyber security regulation trends 2024. https://insights.nccgroup.com/l/898251/2024-02-09/31hwl3c/

898251/1707490152q2gY3vOD/NCC_Group_Global_Cyber_Policy_Radar_Report_Feb_

2024.pdf.

17. Kalash M, Rochan M, Mohammed N, Bruce NDB, Wang Y, Iqbal F. Malware classification

with deep convolutional neural networks. In: 2018 9th IFIP international conference on new technologies, mobility and security, NTMS;2018. p. 1–5.

18. Kruczkowski M, Szynkiewicz EN. Support vector machine for malware analysis and classification. In: 2014 IEEE/WIC/ACM international joint conferences on web intelligence (WI) and

intelligent agent technologies (IAT), vol. 2;2014. p. 415–20.

19. Liashchynskyi P, Liashchynskyi P. Grid search, random search, genetic algorithm: a big comparison for NAS. https://arxiv.org/abs/1912.06059.

110

R. Mehta et al.

20. Lin M, Chen Q, Yan S. Network in network 2014. https://arxiv.org/abs/1312.4400.

21. Lu R. Malware detection with LSTM using opcode language 2019. http://arxiv.org/abs/1906.

04593.

22. Maida AS. Cognitive computing and neural networks: Reverse engineering the brain. In: Gudi-vada VN, Raghavan VV, Govindaraju V, Rao CR, editors, Cognitive computing: theory and

applications. Handbook of statistics, chapter 2, vol. 35. Elsevier;2016, p. 39–78.

23. Mehta R, Jurečková O, Stamp M. A natural language processing approach to malware classification. J Comput Virol Hacking Techn. 2024;20:173–84.

24. Microsoft malware classification challenge (BIG 2015). https://www.kaggle.com/c/malware-

classification.

25. Morales-Molina CD, Santamaria-Guerrero D, Sanchez-Perez G, Perez-Meana H, Hernandez-

Suarez A. Methodology for malware classification using a random forest classifier. In: 2018

IEEE International autumn meeting on power, electronics and computing, ROPEC;2016. p.

1–6.

26. Nappa A, Zubair Rafique M, Caballero J. The MALICIA dataset: identification and analysis of drive-by download operations. Int J Inf Secur. 2014;14:15–33.

27. Nataraj L, Karthikeyan S, Jacob G, Manjunath BS. Malware images: visualization and automatic classification. In: Proceedings of the 8th international symposium on visualization for cyber security, VizSec’11;2011.

28. Neville A, Gibb R. Zeroaccess indepth 2013. https://docs.broadcom.com/doc/zeroaccess-

indepth-13-en.

29. Nguyen H, Di Troia F, Ishigaki G, Stamp M. Generative adversarial networks and image-based malware classification. J Comput Virol Hacking Techn. 2023;19(4):579–95.

30. O’Shea K, Nash R. An introduction to convolutional neural networks 2015. https://arxiv.org/

abs/1511.08458.

31. Pascanu R, Stokes JW, Sanossian H, Marinescu M, Thomas A. Malware classification with recurrent networks. In: 2015 IEEE international conference on acoustics, speech and signal

processing, ICASSP;2015. p. 1916–20.

32. Prokhorov D. Echo state networks: appeal and challenges. In: Proceedings. 2005 IEEE international joint conference on neural networks, vol. 3; 2005. p. 1463–66.

33. Sammut C, Webb GI. TF–IDF. In: Encyclopedia of machine learning. Springer;2010. p. 986–7.

34. Securityshield 2019. https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-

description?Name=SecurityShield.

35. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: Bengio Y, LeCun Y, editors, 3rd International conference on learning representations, ICLR;2015.

36. Singh T, Di Troia F, Visaggio CA, Austin T, Stamp M. Support vector machines and malware detection. J Comput Virol Hacking Techn. 2016;12:203–212.

37. Smart HDD 2010. https://www.bleepingcomputer.com/virus-removal/remove-smart-hdd.

38. Stamp M. A revealing introduction to hidden Markov models; 2004. https://www.cs.sjsu.edu/

~stamp/RUA/HMM.pdf.

39. Winwebsec

2017.

https://www.microsoft.com/enus/wdsi/threats/malware-encyclopedia-

description?Name=Win32/Winwebsec.

40. Wold S, Esbensen K, Geladi P. Principal component analysis. Chemom Intell Lab Syst.

1987;2(1):37–52.

41. Wolpin S. How does antivirus software work? https://www.usnews.com/360-reviews/privacy/

antivirus/how-does-antivirus-software-work.

42. Wong W, Stamp M. Hunting for metamorphic engines. J Comput Virol. 2006;2(3):211–29.

43. Yajamanam S, Selvin VRS, Di Troia F, Stamp M. Deep learning versus gist descriptors for image-based malware classification. In: Mori P, Furnell S, Camp O, editors, Proceedings of the 4th international conference on information systems security and privacy, ICISSP;2018, p.

553–61.

44. You I, Yim K. Malware obfuscation techniques: a brief survey. In: Proceedings-2010 international conference on broadband, wireless computing communication and applications,

BWCCA;2010. p. 297–300.

Malware Classification Using a Hybrid Hidden Markov …

111

45. Zbot

2017.

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-

description?Name=PWS.

46. Zhao J, Basole S, Stamp M. Malware classification with GMM-HMM models. In: Mori P,

Lenzini G, Furnell S, editors, Proceedings of the 7th international conference on information systems security and privacy, ICISSP;2021. p. 753–62. https://arxiv.org/abs/2103.02753.

47. ZulaZula.

EngmaSoft:

Rootkit.HareBot

2016.

https://www.enigmasoftware.com/

rootkitharebot-removal.

[image: Image 26]

Selecting Representative Samples from

Malware Datasets

Lukáš Děd and Martin Jureˇcek

Abstract This work focuses on the selection of representative instances for the

training set in malware detection. Opposed to random instance selection, the goal

of instance selection algorithms is to remove noise and redundancy while preserv-

ing relevant data for solving the task. Experiments were conducted on two publicly

available datasets containing metadata of Windows PE files, namely the EMBER

and SOREL-20M datasets. The theoretical part describes data preprocessing meth-

ods, instance selection algorithms, and classification algorithms used in the practical

part of this work. The practical part outlines the process of preprocessing datasets

and main experiments related to the comparison of state-of-the-art instance selection

algorithms. As part of the work, modifications to the parallel instance selection algo-

rithm PIF were proposed and implemented, and these were also experimentally eval-

uated and compared with the results of state-of-the-art instance selection algorithms.

Some of the modified versions ranked among the best in terms of reduction level as

well as the ratio between accuracy and the size of the reduced sets. The best among

the modified versions was the RPIF-AllKNN algorithm, which reduced the entire

training set of the SOREL-20M dataset to 6.24% of its original size with an accuracy

loss of 2.1%. The ratio between accuracy and the size of the reduced set was 14.43 and in terms of this metric, RPIF-AllKNN was the best among the compared algorithms.

1 Introduction

The world of information technology is developing rapidly, especially in recent years.

Business environments are moving into the digital world, resulting in an increase in

the number of devices connected to the Internet. Just like in the real world, in the digital world are also criminal entities trying to achieve their goals through illegal means.

L. Děd · M. Jureček (B)

Faculty of Information Technology, Czech Technical University in Prague, Prague, Czechia

e-mail: martin.jurecek@fit.cvut.cz

L. Děd

e-mail: dedlukas@fit.cvut.cz

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

113

M. Stamp and M. Jureček (eds.), Machine Learning, Deep Learning and AI for

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_5

114

L. Děd and M. Jureček

Attackers use many methods and technologies to achieve their goals. Malicious

software, abbreviated as malware, has long been one of the biggest threats. Malware

is software that aims to cause damage to a computer system or an entire network and

thus to the owner of those assets [15]. Examples include trojans, worms, or today’s increasingly common ransomware, whose goal is to encrypt data in the computer

systems of the attacker’s targets.

One of the possible methods for malware detection is based on the signatures of

executable files. Antivirus programs, relying on signature-based methods, operate

by comparing a file against a signature database created from previously obtained

malware samples. This detection method achieves good results for already-known

versions of malware, emphasizing the importance of working with an up-to-date

signature database. However, the effectiveness of this method diminishes for new

versions of malware [1]. A potential solution to this problem is the use of machine learning algorithms.

Malware detection using machine learning (ML) algorithms is currently a popular

method employed by many antivirus programs. ML algorithms classify files based

on their properties (referred to as features). In the context of malware detection,

features can be obtained through static or dynamic analysis of executable files [10].

Static analysis does not require the file to be executed, making it faster, safer, and less resource-intensive. However, this approach is vulnerable to obfuscated and encrypted

code. Examples of data obtained from static analysis include opcode sequences or

metadata of executable files. With dynamic analysis, the file is executed, which

involves a higher risk and greater resource consumption. However, the information

gathered can be more relevant than in the case of static analysis. Examples of data

obtained from dynamic analysis include API calls, system calls, or registry modi-

fications. A combination of both approaches is also possible. An essential phase in

ML algorithms is the learning process, which takes place using acquired samples.

The learning process involves setting the hyperparameters of the ML algorithm to

optimize its performance within the addressed issue. The resulting configuration is

then used for the classification of new samples.

In addition to properly tuning the hyperparameters of ML algorithms, their perfor-

mance can be enhanced by selecting representative samples on which the algorithm is

trained. The datasets used for model training commonly contain noise and redundant

data, which can have a negative impact on the overall performance of the resulting

model. Instance selection algorithms are employed to address this problem [20].

Reducing the size of the dataset also results in shorter training times for ML models

and lower memory requirements. Given the time and memory complexity of some

ML algorithms, this is another reason for the application of instance selection algo-

rithms. The task of instance selection algorithms is to reduce the size of the data,

ensuring that there is no significant loss in the classification model’s performance or,

conversely, to achieve improvement. This is accomplished by removing redundant

and noisy samples from the dataset.

The main focus of this work is the selection of representative samples for mal-

ware detection using instance selection algorithms. Part of this work is the experi-

mental evaluation of some state-of-the-art algorithms and experiments with modified

Selecting Representative Samples from Malware Datasets

115

versions of existing algorithms. The comparison of instance selection algorithms is

performed using two publicly available datasets containing metadata of Windows

Portable Executable files (these are features obtained through static analysis). These

are the EMBER [2] and SOREL-20M [13] datasets. Both datasets were preprocessed before experimenting with instance selection algorithms. Another contribution is

the experimentation with proposed modifications to the Parallel Instance Filtering

algorithm, which is also part of the comparison of instance selection algorithms.

This work is structured as follows. Section 2 provides an overview of all methods applied to the datasets before experimenting with instance selection algorithms.

Section 3 contains a detailed description of several state-of-the-art instance selection algorithms. In Sect. 5, experiments related to the application of methods described in Sect. 2 are documented. Section 4 provides a description of proposed modifications to the Parallel Instance Filtering instance selection algorithm. In Sect. 6, all experiments related to instance selection algorithms outlined in Sects. 3 and 4 are described.

2 Data Preprocessing

This section contains a description of the data preprocessing methods applied to the

datasets before the experiments with instance selection algorithms.

 2.1

 Data Cleaning

Data cleaning is an important part of data preprocessing. Training models on unclean

data often leads to a decrease in the performance of these models. In real-world sce-

narios, data is often incomplete and contains typos, unrealistic values, or noisy data.

Data also often contains various inconsistencies and it is necessary to ensure that val-

ues with the same meaning are represented consistently. To improve the performance

of machine learning algorithms, it is necessary to remove these errors [21].

Since some classification algorithms cannot handle missing values, it is necessary

to impute them. One option for dealing with missing values is to replace them with

a constant value. This approach was used in this work. The selected constant should

be a value outside of the domain of the feature. Missing values can also be replaced

based on the statistical properties of the features. The most commonly used values

include the mean, median, and for categorical variables, the mode. Another example

is filling in the missing value using the K Nearest Neighbors of the instance.

There are several basic methods for removing redundancy in data. One method

is the removal of features with constant values. These columns do not provide any

information and, therefore, do not contribute to the model’s performance. These

features can be identified based on zero variance [17]. Another basic method is the removal of identical instances. These are instances whose features have the same

values. To prevent distortion of the resulting model, it is necessary to remove these

instances. Both methods described in this paragraph were used in this work.

116

L. Děd and M. Jureček

Datasets also contain outliers. An outlier is an extreme value that significantly

differs from the rest of the population, and its occurrence in a data set is unlikely.

Outliers can be included in the data naturally or artificially [12]. The occurrence of outliers in data can have a significant impact on some machine learning algorithms

and data preprocessing methods that are sensitive to these deviations (such as min-

max normalization). However, replacing outliers can result in the loss of important

information, for example, if the outlier is meant to signal a significant event. The

method used in this work for detecting outliers is the Interquartile Range (IQR)

method, which involves identifying patterns that do not correspond to the normal

distribution of the processed data. As the name suggests, the upper and lower thresh-

old is calculated based on the interquartile range. The IQR method marks as outliers

the data points whose values are either below the lower threshold or above the upper

threshold [4]. This value is calculated as the difference between the third and first quartile. The upper/lower threshold is obtained by adding/subtracting a . k-multiple

of the IQR from the 75th/25th percentile. Other examples of methods for detecting

outliers include K Nearest Neighbors or Local Outlier Factor.

 2.2

 Conversion of Categorical Features to Numerical

Many machine learning algorithms used for classification (e.g., K nearest neighbors

classifier, neural networks) require only numeric inputs to function properly. To use

these algorithms without losing information from categorical features, it is necessary

to replace their values with a numeric representation. The following paragraphs

describe two methods used in this work.

One way to convert non-numerical categories to numerical is through encoding.

Nominal features are often encoded using the one-hot encoding method. When using

this method, the original feature is replaced by a vector of . k binary (also known as dummy) features, where . k is the number of categories. The feature representing the value of the current instance is set to one, while the remaining features are set to zero.

Another method is feature hashing [24], which is more suitable for features with a large number of categories. This method typically creates a smaller number of dummy

features than the number of unique values of the original categorical feature. How-

ever, as a result, collisions may occur, meaning that several different input values can

be transformed into the same output value. The input to the algorithm is the number of

output variables and the hash function. The feature hashing can also be used to create

a feature vector from documents and generally from variable-length information.

 2.3

 Feature Scaling

Feature scaling is one of the most important techniques used in data preprocessing

that can significantly affect the performance of machine learning algorithms. Some

machine learning algorithms (e.g., K Nearest Neighbors or Support Vector Machine)

Selecting Representative Samples from Malware Datasets

117

are sensitive to this problem [7]. The goal of feature scaling is to transform all features so that they contain values from the same domain, thereby having a similar impact

on classification. The following paragraphs describe two methods used in this work.

This transformation can be achieved using normalization, also known as min-

max scaling. Normalization preserves the original distribution of data, and after this

transformation, the values range between 0 and 1. The new value is calculated as

the difference between the original value and the minimum value divided by the

difference between the maximum and minimum values.

Another method is robust scaling [11], which does not use minimum and maximum values for calculation and is thus more resistant to outliers. Robust scaling

calculates the new value as the difference between the original value and the median,

divided by the difference between the third and first quartiles. Scaled features have

a mean and median of zero and a standard deviation of one.

 2.4

 Dimensionality Reduction

One option for reducing the number of features and mitigating negative impacts (such

as computational complexity or overfitting) in models trained on high-dimensional

data is to use dimensionality reduction techniques. The goal of dimensionality reduc-

tion is to transform the original set of features into another set of features while

preserving as much available information as possible.

Principal Component Analysis (PCA) [22] is a linear unsupervised method for dimensionality reduction of a dataset. As PCA involves an orthogonal transformation, the result is a set of linearly uncorrelated features that capture the maximum

variance [19]. These transformed features are linear combinations of the original features and are called principal components. This means that each principal component is a linear combination of the original features. The first principal component

contains the maximum possible variance among all linear combinations, the second

principal component contains the maximum variance orthogonal to the first princi-

pal component, and so on. By selecting a subset of the principal components, PCA

reduces the dimensionality of the data and preserves the most important information.

This method was chosen for dimensionality reduction in this work. Another represen-

tative of unsupervised methods is the non-linear t-Distributed Stochastic Neighbor

Embedding. An example of a supervised method is Linear Discriminant Analysis,

which was not selected due to its time complexity.

3 Instance Selection Algorithms

Another possibility to reduce the size of data is to apply instance selection (IS)

algorithms. The task of these algorithms is to decrease the number of instances

while preserving or even improving the classification/prediction ability [16]. This

118

L. Děd and M. Jureček

is achieved by removing noise in the data or eliminating irrelevant and redundant

instances. In addition to the classification accuracy, the suitability of an IS algorithm is compared based on the so-called reduction rate, which describes the extent to which

the original dataset has been reduced. This section describes the taxonomy of IS

algorithms and the existing IS algorithms that were used during the experiments. The

proposed modifications to the IS algorithm Parallel Instance Filtering are presented

in Sect. 4.

 3.1

 Taxonomy

There are many instance selection algorithms, which can be divided into three basic

types based on the way instances are selected [18]:

• Condensation algorithms–The principle of these methods is to retain instances

that are close to the decision boundary (known as ’border points’), while removing

distant instances (referred to as ’internal points’) from the training set. Condensa-

tion techniques are based on the assumption that internal points have less influence

on the formation of the decision boundary (due to their distance from it) and can

therefore be eliminated. These algorithms typically achieve a good reduction rate

but are prone to overfitting, resulting in a loss of generalization ability on unseen

data.

• Edition algorithms-Contrary to condensation algorithms, these techniques focus

on removing some border points while retaining internal points in the training

set. Edition algorithms remove instances near the decision boundary whose labels

differ from the labels of their nearest neighbors. This results in noise removal and

smoothing of the decision boundary. These algorithms are less prone to overfitting

but achieve poorer results in terms of data reduction.

• Hybrid algorithms–Hybrid algorithms are a combination of the previous two

types.

Another possible way to divide instance selection algorithms is according to the

direction in which the training set is searched [26]. The following is a description of the individual options:

• Incremental–As the name suggests, incremental algorithms start with an empty

reduced set . Tnew, the size of which gradually increases as the instances are processed. These are order-dependent techniques, i.e., it depends on the order in which

the instances are traversed. The algorithms go through all the instances that are

subsequently added to the . Tnew if they meet a certain condition. The advantage

of incremental algorithms is that newly acquired instances can be added to the

. Tnew additionally, which makes them a suitable option for online learning and data stream processing.

• Decremental–These techniques start with a reduced subset of the same size as the original training set (. Tnew = T). Then, all instances that satisfy a certain condition

Selecting Representative Samples from Malware Datasets

119

are sequentially examined, and if the condition is met, they are removed from

the . Tnew. If the condition is met, the instance is removed immediately after it has been tested. Unlike incremental algorithms, decremental algorithms are typically more computationally demanding and require access to all available data for

computation.

• Batch–Like Decremental algorithms, batch methods start with a. Tnew that is identical to the original . T . The difference is that if one of the instances fulfills the condition while going through the instances, it is not removed immediately but

only marked as a candidate for removal. Deletion of the marked data occurs only

at once after passing all (or a selected number of) instances.

• Mixed–Mixed algorithms operate on a pre-selected. Tnew, which is either randomly chosen or obtained through incremental/decremental techniques. Based on a chosen criterion, these algorithms iteratively remove or add instances. A special case

of mixed algorithms is called fixed algorithms, where the number of instances to

be added and removed from . Tnew is predetermined and fixed.

 3.2

 Condensation Algorithms

This subsection contains a description of two condensation algorithms: Condensed

Nearest Neighbors and Modified Selective Subset.

3.2.1 Condensed Nearest Neighbors (CNN)

Condensed Nearest Neighbor [14] is a representative of incremental algorithms. At the beginning,. K random instances from the original set. T are selected and moved to an empty reduced set. Tnew. Subsequently, the remaining instances are classified using a KNN classifier with the selected parameter . K trained on the . Tnew. If an instance is classified incorrectly, it is moved to the . Tnew. The classification of each instance is always performed using the most up-to-date version of . Tnew. This iteration over all instances in . T is repeated until either no instances are moved to . Tnew during a complete cycle or the set . T becomes empty.

3.2.2 Modified Selective Subset (MSS)

One of the representatives of decremental algorithms is Modified Selective Subset [3].

The Modified Selective Subset algorithm is based on the so-called. selecti ve. subset.

The . Tnew ⊆ T is a selective subset if:

• . Tnew is consistent, i.e., for all instances . x from the original set . T , their nearest neighbor from the . Tnew has the same class as. x.

• For all instances. x from. T , it holds that the distance between their nearest neighbor in the selective subset . Tnew, which belongs to the same class as. x, is smaller than

120

L. Děd and M. Jureček

the distance to the nearest enemy of. x in. T . The nearest enemy refers to the closest neighbor that belongs to a different class.

As the name suggests, the output of the described algorithm is a modified selective

subset. Modified selective subset can be defined based on the following terms:

• Related neighbor–An element . x j is a related neighbor of element . xi belonging to the same class if the distance between . x j and . xi is smaller than the distance between . xi and its nearest enemy.

• Relative neighborhood of element. xi–The relative neighborhood. RNi of element

. xi refers to the set of all its related neighbors.

• Modified Selective Subset–A subset . M SS of the original dataset . T is called a modified selective subset if, for all elements. x from. T ,. M S S contains the furthest relative neighbor of . x from its relative neighborhood.

The proposed algorithm processes elements of each class separately. Firstly, it

sorts all elements of a given class in ascending order based on their distances to their nearest enemies. Then, each element. x is compared to other elements of the same class that have a higher index in the sorted array (including . x itself). If the compared element. y is part of the set. S (where initially,. S contains all elements belonging to the currently processed class) and the distance between. x and. y is smaller than the distance between. y and its nearest enemy, the element. y is removed from the set. S. If there was at least one change in the set. S during this traversal, the element. x is added to the set

. M S S (where initially, . M S S = ∅). The process continues until the set . S is emptied or all elements . x have been processed. This procedure is performed for all classes.

 3.3

 Edition Algorithms

This subsection describes three edition algorithms: Edited Nearest Neighbor, Repea-

ted Edited Nearest Neighbor, and AllKNN.

3.3.1 Edited Nearest Neighbors (ENN)

Edited Nearest Neighbor [27] is a representative of decremental algorithms. During the process of reducing the set . T , classification using the K Nearest Neighbor classifier [9] is used. K Nearest Neighbors is considered one of the most straightforward machine learning algorithms used for classification. A new instance is classified

according to the majority class among the. K nearest neighbors, where. K is a chosen parameter. The appropriate value of the parameter . K is usually chosen based on

experiments. Before applying ENN, we set . Tnew = . T . The Edited Nearest Neighbor algorithm first finds for all elements . x from the original set . T their . K nearest neighbors (without elements . x) according to the selected distance metric. Using the found . K nearest neighbors, classification is performed for all elements . x. Elements

. x whose actual class does not match the classified class are removed from . Tnew.

Selecting Representative Samples from Malware Datasets

121

A modified version of the ENN algorithm is Repeated Edited Nearest Neighbor

(RENN). This algorithm further smooths the decision boundary by repeatedly apply-

ing the ENN algorithm until all remaining elements have the same majority class of

. K nearest neighbors with their class.

3.3.2 AllKNN

AllKNN [23] is a modification of the ENN algorithm. The operating principle of the AllKNN method consists in repeatedly applying the ENN algorithm, each time for a

different number of nearest neighbors. These are values from 1 to. K , where. K is an optional parameter. This is a batch method, i.e., misclassified instances are during

traversal only flagged and they are removed at once at the end of the algorithm.

 3.4

 Hybrid Algorithms

Hybrid algorithms are combinations of multiple methods, making them more

complex. The following is a description of the hybrid algorithms used in this work.

3.4.1 Decremental Reduction Optimization Procedure 3 (DROP3)

The Decremental Reduction Optimization Procedure 3 (DROP3) [25] is a decremental method. First, the instance set is reduced using the ENN algorithm with the

selected parameter . K E N N . Then, the instances are sorted in descending order based on their distances to their nearest enemies. For each instance, a list of . K +. 1 nearest neighbors (where . K is the input parameter of the algorithm) and a list of so-called associates are created. Associates of an instance. x are considered those instances that have. x among their. K nearest neighbors. Subsequently, instances. x are removed if the number of associates correctly classified without . x as a neighbor (using the (. K +. 1)-

th neighbor instead) is greater than or equal to the number of associates correctly

classified when instance. x is taken into account. If an instance. x is removed from the dataset, the list of nearest neighbors of all associates of. x must be updated, replacing

. x with another nearest neighbor . nn, ensuring that each remaining instance still has

. K +. 1 nearest neighbors. After finding a new neighbor. nn for element. a,. a is added to the list of associates of. nn. This is done for all. a that were affected by the removal of

. x . Once all instances have been processed, the algorithm returns the reduced dataset.

3.4.2 Parallel Instance Filtering (PIF)

Another representative of decremental algorithms is Parallel Instance Filtering

(PIF) [16]. The PIF algorithm can be divided into three main parts, each of which can

122

L. Děd and M. Jureček

be parallelized, allowing it to be used (unlike some other IS algorithms) on datasets

with a large number of instances.

Firstly, noise is filtered in the data by applying ENN algorithm with the selected

parameter . K . Subsequently, the dataset is divided into disjoint subsets. Elements are assigned to these subsets according to their closest enemies, i.e., in each subset,

there are only those elements that have a common nearest enemy. If an element has

multiple nearest enemies, only one of them is randomly selected. After dividing the

dataset into disjoint subsets, a filter rule is applied to each subset that is greater than the value of the chosen parameter . m. This rule removes an element . y if it finds an element . x different from . y such that the distance between . y and the nearest enemy

. ne (. ne is the same for all elements of the given subset) is greater than or equal to the maximum of the distances between . x and . y and between . x and . ne.

3.4.3 Iterative Case Filtering (ICF)

The next state-of-the-art hybrid algorithm is Iterative Case Filtering (ICF) [5]. It is a batch method.

The ICF algorithm uses the terms . Local Set(. x), . Coverage(. x), and

. Reachabl e(. x). The following is an explanation of these terms:

• LocalSet(x)–It is the set of all nearest neighbors of element . x that belong to the same class as . x and have a smaller distance to . x than its nearest enemy. This set is also referred to as the Relative Neighborhood of . x in the MSS algorithm.

• Coverage(x)–It is the set of all elements . y for which element . x belongs to their LocalSet(. y). A similar concept is used in the DROP3 algorithm, which refers to

such a set as associates(. x).

• Reachable(x)–It is the set of all elements. y that belong to the LocalSet of. x.

The execution of the algorithm can be divided into two parts. At the beginning,

the. Tnew (in the beginning. Tnew = T) is denoised using ENN. In the second part, the sets. Reachable(. x) and. Coverage(. x) are created for all elements. x from. Tnew. Subsequently, those elements. x whose. Reachable(. x) set is larger than the. Coverage(. x) set are flagged. After traversing the entire set. Tnew, all marked elements are removed at once. The second part is repeated until at least one element meets the condition

for removal. After completion, the reduced set . Tnew is returned.

4 Proposed Modifications of the PIF Algorithm

This section describes proposed modifications of the PIF algorithm, which were

applied and experimentally evaluated alongside other state-of-the-art IS algorithms.

Combining two proposed modifications resulted in a total of five modified versions,

described below.

Selecting Representative Samples from Malware Datasets

123

 4.1

 Replacement of the Editing Algorithm

The first proposal was to replace the original ENN algorithm with other editing

algorithms. Specifically, the algorithms RENN and AllKNN were considered. The

version using the RENN algorithm is further referred to as PIF-RENN, and the des-

ignation PIF-AllKNN is used for the modification of the PIF algorithm in which the

AllKNN algorithm is used for editing. Both mentioned algorithms more thoroughly

reduce noisy border points, resulting in a smoother decision boundary. The aim is

to assess the impact of this fact on the subsequent filtration of disjoint subsets and

the overall performance of the PIF algorithm. Algorithm 1 contains the algorithms described above. Changes compared to the original version of the PIF algorithm are

highlighted in red.

Algorithm 1 PIF-AllKNN/PIF-RENN

Let:

. T be the original dataset

. Tnew be the reduced dataset

. N E be the set of elements that are the nearest enemies for at least one of the other elements in. Tnew

. K be the parameter for the AllKNN/RENN algorithms

. m be the parameter indicating the minimum subset size

. d (x , y) be the distance (e.g., Euclidean distance) between elements. x and. y 1: . Tnew ← T

2: . Tnew ← All K N N (Tnew, K) (or Tnew ← R E N N (Tnew, K)) Select AllKNN or RENN

3: for each. x ∈ Tnew do

4:

find the nearest enemy. nex

5:

add. x to the subset. Snex

6: end for

7: for each. ne ∈ N E do

8:

if .| Sne| ≥ m then

9:

for each. y ∈ Sne do

10:

for each. x ∈ Sne where. x = y do

11:

if . d(. y, ne).≥ max{ d(. x, y). , d(. x, ne).. } then 12:

. Tnew ← Tnew \ { y}

13:

continue to the next. y

14:

end if

15:

end for

16:

end for

17:

end if

18: end for

19: return. Tnew

 4.2

 Repeated PIF

This modification involves repeatedly applying the filtration rule to updated dis-

joint subsets containing elements with the same nearest enemy. For this reason, the

proposed algorithm is referred to as Repeated PIF (RPIF). Another iteration of

124

L. Děd and M. Jureček

the algorithm occurs if, during the previous filtration, at least one element . y was removed. Another option is to use a parameter specifying the maximum number of

iterations. The RPIF algorithm is summarized in Algorithm 2. The parts highlighted in red indicate changes compared to the PIF algorithm.

Algorithm 2 RPIF

Let:

. T be the original dataset

. Tnew be the reduced dataset

. N E be the set of elements that are the nearest enemies for at least one of the other elements in. Tnew

. K be the parameter for the Wilson Editing algorithm

. m be the parameter indicating the minimum subset size

. d (. x , y) be the distance (e.g., Euclidean distance) between elements. x and. y

. max _ i t er be the parameter specifying the maximum number of iterations (OPTIONAL) 1: . Tnew ← T

2: . Tnew ← E N N (Tnew, K)

3: . pr ogr ess ← true

4: . i ter ← 0

5: while. pr ogr ess do

6:

. i t er = i t er +1

7:

if . max _ i ter is set AND. i ter > max _ iter then

8:

go to step 29

9:

end if

10:

. pr ogr ess ← f alse

11:

for each. x ∈ Tnew do

12:

find the nearest enemy. nex

13:

add. x to the subset. Snex

14:

end for

15:

for each. ne ∈ N E do

16:

if .| Sne| ≥ m then

17:

for each. y ∈ Sne do

18:

for each. x ∈ Sne where. x = y do

19:

if . d(. y, ne).≥ max{ d(. x, y). , d(. x, ne).. } then 20:

. Tnew ← Tnew \ { y}

21:

. pr ogr ess ← tr ue

22:

continue to the next. y

23:

end if

24:

end for

25:

end for

26:

end if

27:

end for

28: end while

29: return. Tnew

 4.3

 RPIF with Edition Algorithm Changed

Additional experiments were conducted with two modified versions of the PIF algo-

rithm, combining adjustments mentioned in Sects. 4.1 and 4.2. The version of the

Selecting Representative Samples from Malware Datasets

125

RPIF algorithm with the AllKNN editing algorithm is further referred to as RPIF-

AllKNN, and the designation RPIF-RENN is used for the RPIF algorithm that

performs editing using the RENN algorithm.

5 Experimental Setup

This section presents hardware devices used in the experimental part, describes the

datasets, and provides information about data preprocessing.

 5.1

 Used Hardware Devices

Experiments and computations were conducted on two computing stations. All exper-

iments with the EMBER dataset took place on the NVIDIA DGX Station. The

specifications of the NVIDIA DGX Station are described in Table 1.

Due to its size, the SOREL-20M dataset was partially processed on the GPU2

computing station, which has a larger memory. Specifically, this involved parsing the

dataset into CSV files and data cleaning. The specifications of the GPU2 computing

station are provided in Table 2. The remaining preprocessing of the SOREL-20M

dataset was performed on the NVIDIA DGX Station.

 5.2

 Datasets

Two datasets were selected for the experiments. The EMBER dataset [2] contains metadata of Windows Portable Executable (PE) files and histograms of printable

Table 1 Specifications of the NVIDIA DGX station

NVIDIA DGX Station A100 Version 5.4.2

Processor

AMD EPYC 7742 64-Core Processor

2.25 GHz

Memory

512 GB

Operating system

Ubuntu 20.04.5 LTS

Table 2 Specification of pa-rameters for GPU2 computing station

GPU2 station

Processor

2x Intel(R) Xeon(R) Gold 6136,

3.00GHz, 12 cores

Memory

755 GB

Operating system

Ubuntu 20.04.5 LTS

126

L. Děd and M. Jureček

characters, bytes, and entropy. Version 2 from 2018 was used, which contains 800 k

labeled instances, where . k is a multiple of thousands.

The second dataset chosen was SOREL-20M [13], which contains nearly 20

million instances with PE file metadata extracted using the Python module pefile [8].

 5.3

 Preprocessing Procedure

For experimental evaluation during the selection of preprocessing methods, the KNN

algorithm with parameter . K = 3 was used. Initially, both datasets were split into training, validation, and test sets in a ratio of 60:20:20. Information on the sizes of

these subsets before preprocessing for both datasets is provided in Table 3.

As feature hashing was used during parsing, experiments with the number of

transformed feature bins were conducted first. Feature hashing was applied to the fol-

lowing structures: Characteristics, DllCharacteristics, Name, VirtualSize, Size-OfRawData, Characteristics, Entropy, imported libraries, ordered pairs (imported library, imported function), exported functions, and for EMBER also Entry. The

number of bins was determined based on experiments with the EMBER dataset. The

remaining experiments were conducted separately for both datasets.

The following changes were consistent for both datasets. Missing values were

filled with a constant value. For the features VirtualAddress and Size from the Data Directory structure, missing values were replaced with zero, and for the categorical

features Machine and Subsystem, the categories “???” were replaced with the valid category “UNKNOWN”.

Next, for both datasets, constant features, unique value features, and duplicate

instances were removed.

One-hot encoding was applied to the categorical features Machine, Subsystem,

and Magic for both datasets.

Outliers were detected using the IQR method with a parameter of . k = 1.5. Sub-

sequent experiments involved replacing outliers with the mean or median. Based on

the results of the experimental evaluation, the mean was used for the SOREL-20M

dataset, while outliers were not replaced for the EMBER dataset.

Feature scaling experiments were conducted using the following methods: min-

max normalization, standardization, and robust scaling. Min-max normalization was

Table 3 Sizes of the created sets before preprocessing

Set

EMBER

SOREL-20M

Num of instances Num of features

Num of instances Num of features

Train

480000

1834

11626773

1242

Validation

120000

1834

3875591

1242

Test

120000

1834

3875592

1242

Selecting Representative Samples from Malware Datasets

127

Table 4 Information about the both datasets after preprocessing

Dataset

Set sizes

Number of features

Accuracy

Train

Validation

Test

EMBER

479952

159993

159997

119

0.9544

SOREL-20M 6926181

2388994

2387255

106

0.9761

used for the EMBER dataset. For the SOREL-20M dataset, the robust scaling method

was applied to its features.

PCA was used for dimensionality reduction. During the experiments, the number

of extracted features tested ranged from 1 to 120. The highest accuracy for the

EMBER dataset was achieved with 119 features, while 106 features were selected

for the SOREL-20M dataset.

Table 4 contains the results of the experiments and also information about the size of the datasets after preprocessing.

6 Experiments with Instance Selection Algorithms

This section presents the experimental evaluation and mutual comparison of instance

selection algorithms described in Sects. 3 and 4. The chosen classification algorithm is KNN with the parameter K = 3. The main metric used for comparing IS algorithms was. MAccSize = Accred/. Si zered, where. Accred is the accuracy on the reduced training set and . Si zered is the size of the reduced training set (both in percentages).

We used the. MAccSize since some instance selection algorithms outperform others in

terms of storage percentage of the reduced training set, while some instance selec-

tion algorithms outperform others in terms of the accuracy of the KNN classifier

applied to the reduced data set. Classification accuracy, reduction level, and runtime

of IS algorithms were also considered in the comparison. For all IS algorithms, a

custom implementation was developed. The main programming language used was

Python, but computationally intensive and parallelizable parts of the algorithms were

implemented in the C programming language for speed.

 6.1

 Tuning Parameters of Instance Selection Algorithms

Parameter tuning was performed separately for both datasets. The size of the train-

ing set subset for experiments was 75,000 for both the SOREL-20M and EMBER

datasets. The number 75,000 was chosen due to computational time constraints, and

this subset of samples was selected randomly and was the same for all IS algorithms.

The parameter labels correspond to the labeling used in Sects. 3 and 4. Algorithms with multiple parameters were tested with all possible combinations of the specified parameter values. The parameter selection was based on . MAccSize, considering

128

L. Děd and M. Jureček

Table 5 Selected parameters of IS algorithms

Algorithm

EMBER

SOREL-20M

ENN

K = 27

K = 29

RENN

K = 27

K = 29

AllKNN

K = 29

K = 29

CNN

K = 3

K = 3

ICF

K = 7

K = 5

DROP3

. K E N N = 17, K = 19

. K E N N = 13, K = 13

PIF

K = 29, m = 2

K = 29, m = 2

PIF-RENN

K = 13, m = 2

K = 29, m = 2

PIF-AllKNN

K = 17, m = 2

K = 29, m = 2

RPIF

K = 25, m = 2, max_iter = all

K = 29, m = 2, max_iter = all

RPIF-RENN

K = 13, m = 2, max_iter = 2

K = 19, m = 2, max_iter = all

RPIF-AllKNN

K = 17, m = 2, max_iter = 2

K = 29, m = 2, max_iter = 4

only parameter combinations where the accuracy did not decrease by more than five

percent compared to the original accuracy. This condition was created because the

metric. MAccSize does not include a penalty for accuracy loss. If no parameter combination meeting this condition was found, the combination with the smallest accuracy

reduction was selected. The chosen parameter values are in Table 5, where we explored the number of nearest neighbors. K ∈ {1 , 3 , 5 , . . . , 29} for all IS algorithms except for DROP3, for which we experimented with . K , KE N N ∈ {1 , 3 , 5 , . . . , 19}

due to high computational complexity. For the PIF algorithm and all its modifications,

we explored the parameters . m ∈ {2 , 3 , 4 , . . . , 10}, and max_iter.∈ {2 , 3 , 4 , all}.

 6.2

 Comparison of IS Algorithms

The content of this subsection involves the comparison of the listed instance selection

algorithms. In the first part, the comparison of IS algorithms when applied to the

EMBER dataset is presented, and the results of IS algorithms for the SOREL-20M

dataset are described in the second part.

6.2.1 EMBER

In the case of EMBER, IS algorithms were applied to the following set sizes: 1,

2, 5, 10, 20, 30, 40, 50, 60, 75, 100, 200, 300 k, 479,952 (the whole training set).

The parameter k in these values denotes multiples of a thousand. The DROP3 algo-

rithm, due to computational complexity, was applied only up to a size of 300k. This

subsection includes a total of four tables. Each table contains values for one of the

Selecting Representative Samples from Malware Datasets

129

following metrics: the . MAccSize, accuracy, the size of reduced sets, and computa-

tional time. Values marked in red represent sets where the reduction resulted in an

accuracy decrease greater than 5%. The best-achieved value for each size is high-

lighted in bold. In addition to the RPIF algorithm version with parameters set based

on experiments, a version labeled as RPIF_2 was used, where the maximum number

of iterations (max_iter) was set to 2. This was done to evaluate whether additional iterations of the algorithm lead to a significant loss of classification accuracy at the

expense of only a small reduction in the size of reduced sets.

Table 6 contain the values of the . MAccSize metric achieved by IS algorithms depending on the sizes of reduced sets. For edition algorithms, the values of. MAccSize decrease with increasing size of the reduced set. In the case of condensation and

hybrid algorithms, the trend is opposite, i.e., . MAccSize increases with the increasing size of the reduced set. The RPIF-AllKNN algorithm achieved the best result, while

the ENN algorithm achieved the worst result in terms of. MAccSize. According to this metric, IS algorithms can be divided into five groups. The order of these groups

depends on the achieved results (from the best to the worst). In the first group, which achieves the highest values of . MAccSize, are all versions of the RPIF algorithm. For this group, the values of. MAccSize during the reduction of the entire training set range from 15 to 18. The DROP3 algorithm follows, which achieved a value of 12.22 for a

size of 300 k. The third group consists of versions of the PIF algorithm, with the best results achieved by PIF-AllKNN. The range of values for this group during the reduction of the entire training set ranges from 9 to 12. The CNN, MSS, and ICF algorithms

form the fourth group. The values of . MAccSize for the fourth group range from 6 to 9. The last group consists of edition algorithms, which achieved values around one.

Sizes of the reduced sets are provided in Table 7. When examining the results, a similarity with the outcomes related to. MAccSize is evident, confirming the influence of the reduced set size on the overall metric value. The algorithm RPIF-AllKNN

achieved the best results in terms of reducing the training set, while the algorithm

ENN achieved the least reduction. In this case as well, algorithms can be divided

into five groups, listed from the best to the worst. The first group consists of the

RPIF algorithm and all its modifications. The sizes of reduced sets when using these

algorithms on the entire training set ranged from 5% to 6% compared to the original

size. In the second group is the DROP3 algorithm, which managed to reduce the set

of size 300k to 7.36%. All three versions of the PIF algorithm form the third group.

The sizes of the reduced sets when using these algorithms ranged from 8 to 10%.

The MSS, CNN, and ICF algorithms, which achieved a reduction in the training set

size between 11% and 15%, form the fourth group. The fifth group is composed of

edition algorithms. The sizes of reduced sets ranged from 89% to 94% compared to

the original size of the training set. For condensation algorithms CNN and MSS, it

can be observed that with increasing size of the reduced set, the size of reduced sets

compared to hybrid algorithms decreases more rapidly and approaches the reduction

level of the PIF algorithm. Edition algorithms achieved a lower level of reduction

with the increasing size of the original set.

Classification accuracies of IS algorithms depending on the sizes of original sets

are provided in Table 8. In terms of achieved classification accuracy, the CNN algorithm achieved the best results, surpassing the edition algorithms. The ICF algorithm

130

L. Děd and M. Jureček

achieved the worst results as the sizes of reduced sets increased. Excluding the edi-

tion algorithms from the evaluation, the PIF algorithm ranked second for the entire

training set of the EMBER dataset, and the third place was occupied by the RPIF

algorithm with the . max _ i ter parameter set to 2. The MSS and PIF-AllKNN algorithms were close to the RPIF_2 algorithm in terms of the achieved accuracy. The

remaining versions of the PIF and RPIF algorithms achieved the lowest classifica-

tion accuracy. The RPIF-AllKNN algorithm, which achieved the largest reduction

in the training set, was also the third worst algorithm in terms of achieved accuracy.

Table 6 Values of the. MAccSize metric achieved by IS algorithms–EMBER

Original size ENN

RENN

AllKNN CNN

ICF

MSS

PIF

1000

1.02

1.08

1.41

1.87

3.73

2.22

4.81

2000

1.00

1.07

1.29

2.22

2.94

2.48

4.04

5000

1.00

1.03

1.19

2.80

4.14

3.01

4.16

10000

1.00

1.03

1.15

3.32

4.60

3.50

5.22

20000

1.00

1.02

1.13

3.80

4.88

4.06

6.01

30000

1.00

1.03

1.11

4.25

4.96

4.38

6.37

40000

1.00

1.02

1.10

4.47

4.69

4.63

6.82

50000

1.00

1.02

1.10

4.66

5.19

4.90

7.22

60000

1.01

1.02

1.09

4.95

4.96

5.11

7.68

75000

1.01

1.02

1.09

5.21

5.07

5.37

7.62

100000

1.00

1.02

1.08

5.57

5.18

5.65

7.94

200000

1.00

1.02

1.06

6.53

6.66

6.61

8.72

300000

1.00

1.01

1.06

7.20

6.74

7.18

9.34

479952

1.00

1.01

1.05

8.10

6.39

7.96

10.08

Original size PIF-AllKNN PIF-RENN RPIF

RPIF-AllKNN RPIF-RENN DROP3 RPIF_2

1000

6.30

6.35

6.52

8.95

8.31

5.24

6.23

2000

5.68

4.49

6.38

8.36

6.39

4.13

5.61

5000

5.74

4.29

6.02

8.30

6.28

4.91

5.66

10000

6.92

5.34

8.32

10.62

8.48

5.53

7.68

20000

7.46

6.39

9.91

11.99

9.80

6.78

8.78

30000

7.79

6.72

10.51

12.12

10.32

7.28

8.90

40000

8.18

7.11

11.15

13.78

11.61

7.72

9.99

50000

9.03

7.41

11.94

13.92

11.49

8.22

10.66

60000

8.89

7.67

11.91

13.64

11.59

8.40

11.04

75000

9.11

7.80

12.55

14.33

12.46

8.73

11.31

100000

9.41

8.18

12.91

14.43

12.75

9.10

11.82

200000

10.19

8.87

14.47

16.15

13.96

11.49

13.12

300000

10.46

9.26

15.76

16.95

14.68

12.22

14.33

479952

11.33

9.86

16.94

18.03

15.63

–

15.50

Selecting Representative Samples from Malware Datasets

131

The DROP3 algorithm, which also performed among the best in terms of reduction,

achieved the second worst classification accuracy for the size of 300k.

Table 9 contains data for the evaluation and comparison of IS algorithms in terms of computational time. Based on the results, IS algorithms can be divided into four

groups. Processing a set of 300k using the DROP3 algorithm took approximately

77,570 s, which is several times longer compared to other algorithms. The CNN

algorithm, with a time of approximately 9,909 s for processing the entire training

Table 7 Sizes of reduced sets in percentage-EMBER

Original size ENN

RENN

AllKNN CNN

ICF

MSS

PIF

1000

73.80

67.50

53.50

42.10

19.50

34.00

15.50

2000

78.05

69.15

59.60

36.70

25.75

31.00

19.45

5000

81.50

75.34

67.38

30.24

18.84

27.04

18.92

10000

83.43

77.97

72.14

26.05

17.66

23.86

15.68

20000

86.17

81.16

75.83

23.37

17.36

21.08

14.09

30000

87.10

82.99

78.17

21.09

17.31

19.66

13.41

40000

88.07

84.44

79.50

20.18

18.42

18.81

12.72

50000

88.65

85.01

80.57

19.44

16.72

17.91

12.16

60000

89.07

85.39

81.16

18.36

17.61

17.25

11.49

75000

89.69

86.15

82.17

17.54

17.45

16.52

11.69

100000

90.39

87.33

83.46

16.55

17.13

15.80

11.31

200000

91.93

89.62

86.29

14.28

13.24

13.69

10.34

300000

92.70

90.65

87.62

13.03

13.26

12.71

9.78

479952

93.48

91.70

89.01

11.68

14.14

11.57

9.21

Original size PIF-AllKNN PIF-RENN RPIF

RPIF-AllKNN RPIF-RENN DROP3 RPIF_2

1000

11.80

11.80

11.30

8.30

8.90

13.80

11.80

2000

13.30

17.00

12.25

8.60

11.45

18.60

13.90

5000

13.50

17.82

12.90

9.08

12.22

16.10

13.78

10000

11.80

15.30

9.80

7.43

9.67

14.84

10.73

20000

11.27

13.23

8.53

6.92

8.55

12.36

9.63

30000

10.95

12.55

8.04

6.81

8.11

11.77

9.34

40000

10.35

12.02

7.68

6.18

7.34

11.05

8.57

50000

9.61

11.57

7.28

6.24

7.34

10.38

8.16

60000

9.82

11.47

7.32

6.23

7.35

10.26

7.94

75000

9.59

11.29

6.99

6.05

7.04

10.10

7.84

100000

9.48

10.85

6.87

5.91

6.94

9.58

7.51

200000

8.87

10.19

6.16

5.55

6.37

7.80

6.82

300000

8.62

9.86

5.76

5.37

6.15

7.36

6.36

479952

8.13

9.24

5.39

5.04

5.80

–

5.95

132

L. Děd and M. Jureček

Table 8 Classification accuracies achieved by IS algorithms in percentage-EMBER

Original size KNN ENN

RENN

AllKNN CNN

ICF

MSS

1000

79.44 75.51

73.10

75.23

78.52

72.75

75.43

2000

82.83 78.39

73.80

77.18

81.46

75.69

76.88

5000

85.74 81.25

77.69

80.07

84.59

78.04

81.29

10000

88.12 83.62

80.28

82.70

86.56

81.15

83.48

20000

89.96 86.15

83.15

85.49

88.75

84.76

85.50

30000

90.74 87.42

85.12

86.90

89.68

85.81

86.01

40000

91.46 88.33

86.31

87.71

90.29

86.45

87.11

50000

91.85 88.92

86.90

88.32

90.66

86.82

87.84

60000

92.23 89.54

87.40

88.77

90.97

87.26

88.12

75000

92.64 90.15

88.13

89.61

91.47

88.44

88.67

100000

93.18 90.77

89.04

90.27

92.14

88.75

89.28

200000

94.26 92.26

90.98

91.88

93.24

88.15

90.51

300000

94.82 93.04

91.90

92.62

93.90

89.37

91.29

479952

95.43 93.78

92.75

93.49

94.54

90.37

92.16

Original size PIF

PIF-AllKNN PIF-RENN RPIF

RPIF-AllKNN RPIF-RENN DROP3 RPIF_2

1000

74.57 74.35

74.92

73.70

74.28

73.97

72.31

73.50

2000

78.60 75.61

76.35

78.21

71.87

73.17

76.76

77.97

5000

78.76 77.46

76.40

77.67

75.41

76.68

79.11

78.00

10000

81.85 81.61

81.72

81.55

78.88

82.00

82.04

82.41

20000

84.66 84.09

84.48

84.45

82.92

83.79

83.76

84.60

30000

85.39 85.29

84.33

84.49

82.53

83.68

85.71

83.19

40000

86.72 84.63

85.45

85.64

85.19

85.27

85.31

85.66

50000

87.75 86.73

85.79

86.97

86.90

84.28

85.31

86.95

60000

88.22 87.29

87.90

87.11

85.02

85.25

86.17

87.70

75000

89.09 87.37

88.04

87.74

86.72

87.69

88.19

88.71

100000

89.77 89.24

88.73

88.72

85.21

88.45

87.15

88.79

200000

90.25 90.32

90.43

89.14

89.66

88.95

89.53

89.48

300000

91.42 90.12

91.26

90.86

91.02

90.27

89.85

91.18

479952

92.83 92.08

91.15

91.35

90.91

90.62

–

92.22

set, forms the second group. This time is roughly three times longer than the compu-

tation time of all other hybrid algorithms (except DROP3) and the MSS algorithm.

These algorithms form the third group, and their computation times ranged between

2,709 and 3,733 s. The fastest in this group was the ICF algorithm, making it the

fastest among hybrid and condensation algorithms for the EMBER dataset. Following

were the versions of PIF and RPIF algorithms without replaced edition algorithms.

The fourth group is formed by edition algorithms. Computation times required for

processing the entire training set in this group of algorithms ranged between 57 and

697 s. The fastest was the ENN algorithm. With increasing sizes of the reduced sets,

the computation time of the RENN algorithm increases faster than in the case of the

Selecting Representative Samples from Malware Datasets

133

Table 9 Runtimes of IS algorithms in seconds-EMBER

Original size ENN

RENN

AllKNN CNN

ICF

MSS

PIF

1000

0.0

0.1

0.5

41.8

0.4

0.1

0.2

2000

0.1

0.3

1.0

95.6

0.6

0.2

0.4

5000

0.2

0.9

2.5

203.6

1.8

0.5

1.3

10000

0.3

1.7

4.9

380.4

5.4

1.8

4.1

20000

0.6

3.4

10.1

803.6

20.2

6.4

16.9

30000

1.0

8.3

15.3

971.9

13.1

13.1

17.0

40000

1.4

10.9

21.1

1173.5

27.1

22.3

31.0

50000

1.8

21.0

26.4

1506.0

40.5

36.1

47.3

60000

2.2

37.3

32.1

1611.1

52.6

51.0

68.5

75000

2.3

25.3

39.8

1681.4

68.6

71.0

94.3

100000

3.7

47.2

53.7

1751.1

192.5

126.2

181.4

200000

12.1

124.3

111.9

3436.1

426.7

529.0

587.1

300000

24.4

364.4

175.3

5488.3

1006.9

1212.0

1340.8

479952

57.3

697.0

298.7

9909.0

2709.6

3242.5

3317.5

Original size PIF-AllKNN PIF-RENN RPIF

RPIF-AllKNN RPIF-RENN DROP3 RPIF_2

1000

0.5

0.4

0.4

0.4

0.5

65.6

0.2

2000

0.9

0.6

0.6

0.9

0.6

169.2

0.4

5000

2.7

1.7

1.7

2.4

1.9

388.6

1.4

10000

6.7

5.3

4.8

6.2

5.4

716.9

4.2

20000

20.3

20.0

18.3

19.2

20.4

1213.2

17.2

30000

25.9

27.9

18.4

27.8

28.1

1698.6

18.2

40000

40.7

45.9

32.1

44.0

46.6

2316.8

31.1

50000

67.9

61.4

47.7

61.6

62.0

3118.7

47.7

60000

88.2

83.3

66.2

79.6

83.9

4034.1

69.0

75000

116.2

100.4

93.2

111.4

101.5

5707.2

95.3

100000

200.2

200.5

160.4

198.9

202.9

9401.9

183.4

200000

610.2

711.8

595.7

602.0

716.4

34861.1 591.5

300000

1378.6

1533.7

1363.8

1370.9

1541.0

77578.9 1349.7

479952

3350.8

3709.0

3348.7

3368.8

3732.9

–

3335.9

ENN and AllKNN algorithms. This fact was also evident in the algorithms from the

third group, which use this algorithm for editing.

134

L. Děd and M. Jureček

6.2.2 SOREL-20M

The experiments described in this subsection can be divided into two parts. The first

part describes experiments with subsets of the SOREL-20M training dataset, and the

second part contains the results of reducing the entire training set using stratification.

Reduction of the SOREL-20M dataset without using stratification was performed

on subsets of the following sizes: 1, 2, 5, 10, 20, 30, 40, 50, 60, 75, 100, 200, 300, 500, 750, 1000 k. Exceptions are the MSS and DROP3 algorithms, for which processing

was only conducted up to the size of 300k. For the DROP3 algorithm, experiments

were halted due to high computational times, and for the MSS algorithm, the imple-

mented version encountered a memory shortage problem during the reduction of

larger sets. This subsection includes tables containing values for the same metrics as

in Sect. 6.2.1. In addition to experiments with versions of the RPIF algorithms, where the . max _ i ter parameter was set based on tuning, experiments were also conducted with the . max _ i ter = 2 parameter setting. These versions are further referred to as RPIF_2, RPIF-AllKNN_2, and RPIF-RENN_2.

The values of the. MAccSize metrics for IS algorithms, depending on the sizes of the reduced sets, are displayed in Table 10. Similar to the EMBER dataset, the . MAccSize values for edition algorithms decrease with increasing sizes of the reduced sets. In the

case of condensation and hybrid algorithms, the metric shows an increasing trend.

When looking at the results, IS algorithms can be divided into six groups based on

the results. The reported metric values relate to the results on a subset of the SOREL-

20M training set with a size of 1000k unless otherwise specified. The RPIF-AllKNN

algorithm, achieving the highest . MAccSize metric value, forms the first group. This algorithm reached a value of 20.63. The second-best group consists of the algorithms

RPIF-RENN, DROP3, RPIF, RPIF-AllKNN_2, and RPIF-RENN_2. The . MAccSize

values ranged from 16 to 18. The third group is composed of the RPIF_2 algorithm

with an achieved metric value of 14.58. The fourth group consists of all three versions

of the PIF algorithm along with the ICF algorithm. The values of the fourth group

ranged between 8.7 and 9.6. The condensation algorithms CNN and MSS form the

fifth group. The MSS algorithm reached a value of 5.57 on a set of size 300 k. The

CNN algorithm, which was better from this pair, reached a value of 7.89. The last

group is composed of edition algorithms, with values hovering around one.

Table 11 displays the sizes of the reduced sets depending on the sizes of the original sets. The RPIF-AllKNN algorithm again achieved the best reduction levels,

and the ENN algorithm reduced individual sets the least. Based on the results, IS

algorithms can be divided into three groups. The first group consists of all versions

of the RPIF algorithm. When applying these algorithms, the sizes of the reduced sets

ranged from 4 to 6%. All versions of the PIF, ICF, CNN, and MSS algorithms form

the second group. Although the size of the reduced sets using the CNN algorithm

is larger than other algorithms at small original sizes, with increasing original set

sizes, the reduction level of CNN approached the other algorithms in this group.

They were able to reduce the original size of 1000k to sizes ranging from 9 to 12%.

The MSS algorithm reduced the set of size 300 k to 15.79%. The third group consists

of edition algorithms, where, in the case of the SOREL-20M dataset, the reduction

Selecting Representative Samples from Malware Datasets

135

level decreased with increasing original set sizes. The reduced sizes ranged from 91

to 95% compared to the original size of 1000 k.

Table 12 contains classification accuracies achieved by IS algorithms depending Table 10 Values of the. MAccSize metric achieved by IS algorithms-SOREL-20M

Original size ENN

RENN AllKNN CNN

ICF

MSS

DROP3

PIF

1000

0.93

1.05

1.26

1.84

4.27

1.98

6.44

3.10

2000

0.96

1.00

1.20

2.14

4.49

2.27

8.86

4.93

5000

0.96

0.99

1.13

2.59

5.22

2.68

7.27

4.63

10000

0.96

0.99

1.10

3.00

6.11

3.03

7.68

4.83

20000

0.96

0.99

1.07

3.43

6.21

3.40

9.13

5.28

30000

0.97

0.99

1.07

3.70

6.65

3.66

9.60

5.49

40000

0.96

0.98

1.06

3.98

7.09

3.84

9.46

5.47

50000

0.97

0.98

1.05

4.19

7.26

4.07

9.64

5.58

60000

0.97

0.98

1.05

4.38

7.10

4.19

10.47

5.68

75000

0.97

0.98

1.04

4.66

7.33

4.36

11.08

5.93

100000

0.97

0.98

1.04

4.80

7.13

4.55

11.40

6.19

200000

0.97

0.98

1.03

5.61

7.78

5.14

13.93

6.90

300000

0.97

0.98

1.02

6.22

7.99

5.57

14.66

7.22

500000

0.96

0.97

1.00

6.83

8.12

–

–

7.80

750000

0.96

0.97

1.00

7.37

8.87

–

–

8.23

1000000

0.96

0.96

1.00

7.89

8.96

–

–

8.77

Original size PIF-

PIF-

RPIF

RPIF-

RPIF-

RPIF_2 RPIF-

RPIF-

AllKNN RENN

AllKNN RENN

AllKNN_2 RENN_2

1000

5.22

5.13

4.30

9.18

5.92

4.47

8.51

9.06

2000

6.71

5.86

7.92

13.52

16.29

7.20

10.08

8.28

5000

5.99

7.32

7.37

11.46

9.69

6.65

9.16

11.80

10000

6.43

5.91

7.54

12.86

8.76

6.83

10.59

9.20

20000

6.47

5.95

8.72

12.61

9.67

7.75

10.42

9.22

30000

6.66

6.18

9.17

12.84

10.26

8.19

11.16

10.17

40000

6.64

6.37

9.08

12.92

10.88

8.17

11.09

10.40

50000

6.71

6.39

9.53

12.61

10.90

8.42

10.73

10.34

60000

6.74

6.57

9.73

12.50

11.20

8.58

10.72

10.56

75000

6.84

6.72

10.19

13.32

11.66

8.98

11.34

10.92

100000

7.06

6.90

10.56

13.91

12.22

9.35

11.94

11.31

200000

7.67

7.62

12.25

15.53

13.58

10.74

13.33

12.64

300000

8.10

8.01

13.50

16.38

14.76

11.44

14.12

13.48

500000

8.67

8.62

14.66

18.60

15.81

12.66

15.40

14.81

750000

9.16

8.79

16.20

19.52

17.18

13.52

16.32

15.30

1000000

9.52

9.15

17.38

20.63

17.99

14.58

17.20

16.06

136

L. Děd and M. Jureček

Table 11 Sizes of reduced sets in percentage-SOREL-20M

Original size ENN

RENN AllKNN CNN

ICF

MSS

DROP3

PIF

1000

82.00

67.80

60.40

40.30

17.00

37.50

11.60

24.40

2000

81.70

77.25

63.75

35.65

16.85

34.35

8.05

15.85

5000

83.90

78.02

70.94

30.66

14.22

29.86

10.80

17.42

10000

86.06

82.56

74.80

27.36

12.13

26.86

10.35

16.84

20000

87.43

84.29

77.97

24.36

12.51

24.27

8.82

15.87

30000

88.29

85.64

79.57

22.56

12.04

22.84

8.52

15.46

40000

89.15

86.46

80.93

21.14

11.39

21.90

8.84

15.54

50000

89.53

86.96

82.01

20.36

11.15

21.03

8.58

15.35

60000

89.98

87.51

82.80

19.63

11.44

20.40

8.11

15.14

75000

90.39

88.14

83.61

18.60

11.19

19.69

7.67

14.57

100000

91.05

88.92

84.68

17.76

11.55

18.99

7.30

14.16

200000

92.44

90.55

87.03

15.46

10.81

17.08

6.09

12.76

300000

93.02

91.49

88.14

14.22

10.58

15.79

5.53

12.07

500000

93.83

92.45

89.48

12.86

10.43

–

–

11.26

750000

94.32

93.12

90.40

11.87

9.54

–

–

10.65

1000000

94.68

93.60

91.05

11.15

9.50

–

–

10.24

Original size PIF-

PIF-

RPIF

RPIF-

RPIF-

RPIF_2 RPIF_

RPIF_

AllKNN RENN

AllKNN RENN

AllKNN_2 RENN_2

1000

14.40

14.20

17.40

8.00

12.20

16.60

8.80

7.90

2000

11.60

13.10

9.60

5.65

4.60

10.75

7.55

9.00

5000

13.04

10.58

10.56

6.56

8.08

11.84

8.48

6.50

10000

12.61

13.60

10.67

6.18

9.04

11.79

7.60

8.59

20000

12.83

13.93

9.38

6.47

8.49

10.66

7.92

8.86

30000

12.61

13.61

8.95

6.40

7.99

10.20

7.42

8.19

40000

12.75

13.27

9.20

6.45

7.60

10.29

7.53

8.02

50000

12.85

13.26

8.79

6.62

7.61

10.06

7.83

8.13

60000

12.83

12.97

8.67

6.70

7.51

9.92

7.87

7.97

75000

12.57

12.76

8.30

6.33

7.21

9.49

7.50

7.76

100000

12.28

12.59

8.12

6.11

6.99

9.23

7.16

7.57

200000

11.35

11.52

6.93

5.47

6.29

8.03

6.44

6.86

300000

10.72

11.02

6.43

5.12

5.88

7.52

6.05

6.45

500000

10.11

10.34

5.83

4.60

5.36

6.87

5.62

5.91

750000

9.61

9.91

5.34

4.37

5.00

6.46

5.35

5.68

1000000

9.27

9.68

5.05

4.16

4.82

6.08

5.11

5.44

on the sizes of the reduced sets. Since the ranking of IS algorithms in terms of

classification accuracy varies for different sizes, they cannot be clearly divided into

groups. The mentioned classification accuracies in this paragraph are related to the

Selecting Representative Samples from Malware Datasets

137

Table 12 Classification accuracies achieved by IS algorithms in percentage-SOREL-20M

Original size KNN ENN

RENN AllKNN CNN

ICF

MSS

DROP3

1000

77.53 76.67

71.26

76.20

73.96

72.51

74.08

74.65

2000

80.89 78.15

77.48

76.81

76.42

75.66

78.11

71.36

5000

82.67 80.80

77.50

80.45

79.47

74.29

79.93

78.53

10000

84.64 82.85

81.46

82.23

81.98

74.13

81.35

79.49

20000

86.20 84.19

83.11

83.72

83.55

77.61

82.59

80.55

30000

87.29 85.53

84.49

84.91

83.45

80.06

83.69

81.74

40000

87.77 86.03

84.95

85.65

84.09

80.73

84.10

83.59

50000

88.44 86.82

85.49

86.36

85.23

80.89

85.63

82.71

60000

88.56 87.12

85.77

86.79

85.88

81.15

85.45

84.93

75000

89.28 87.43

86.34

87.28

86.77

82.00

85.88

85.01

100000

89.61 88.33

87.39

88.10

85.23

82.37

86.44

83.15

200000

90.29 89.48

88.76

89.22

86.69

84.12

87.83

84.83

300000

90.42 89.91

89.29

89.70

88.44

84.60

88.00

81.01

500000

90.39 89.94

89.78

89.71

87.89

84.73

–

–

750000

91.10 90.37

90.05

90.64

87.47

84.61

–

–

1000000

91.29 90.67

90.21

90.60

87.96

85.10

–

–

Original size PIF

PIF

PIF

RPIF

RPIF

RPIF

RPIF_2 RPIF_

RPIF_

AllKNN RENN

AllKNN RENN

AllKNN_2 RENN_2

1000

75.53 75.21

72.84

74.89

73.44

72.22

74.20

74.89

71.57

2000

78.21 77.85

76.77

76.05

76.40

74.95

77.38

76.12

74.48

5000

80.63 78.12

77.42

77.79

75.19

78.33

78.72

77.67

76.68

10000

81.36 81.09

80.34

80.48

79.50

79.20

80.52

80.45

78.99

20000

83.77 82.99

82.87

81.79

81.54

82.04

82.57

82.52

81.65

30000

84.81 83.96

84.12

82.10

82.21

81.96

83.56

82.78

83.27

40000

84.99 84.59

84.49

83.48

83.33

82.64

84.02

83.44

83.42

50000

85.67 86.15

84.79

83.81

83.48

82.88

84.71

84.01

84.03

60000

85.94 86.41

85.17

84.40

83.80

84.12

85.15

84.28

84.18

75000

86.33 86.01

85.69

84.53

84.32

84.09

85.27

85.09

84.69

100000

87.73 86.66

86.93

85.71

84.98

85.37

86.36

85.49

85.54

200000

87.98 87.08

87.73

84.97

84.94

85.49

86.17

85.83

86.72

300000

87.16 86.83

88.27

86.79

83.84

86.83

86.00

85.34

87.00

500000

87.89 87.68

89.16

85.47

85.58

84.68

87.03

86.59

87.56

750000

87.68 87.96

87.15

86.59

85.25

85.94

87.37

87.33

86.85

1000000

89.78 88.20

88.60

87.71

85.88

86.73

88.56

87.88

87.34

set of size 1000k unless stated otherwise. Edition algorithms achieved the best results

with an accuracy range between 90 and 91%. Among the worst algorithms in terms

of achieved accuracy are ICF, DROP3, RPIF-AllKNN, and RPIF-RENN. For these

138

L. Děd and M. Jureček

algorithms, accuracy ranged from 85 to 87%. Modifications of RPIF with the param-

eter. max _ i ter = 2 set, all three versions of the PIF algorithm, and the condensation algorithm CNN achieved better results. Classification accuracies for these algorithms

ranged between 87 and 90%. The MSS algorithm achieved an accuracy of 88% for

the set of size 300 k.

Table 13 contains recorded computational times of IS algorithms depending on the sizes of the reduced subsets of the SOREL-20M dataset. Based on the computational

times, IS algorithms can be divided into six groups. The mentioned times in this

paragraph are related to the reduced set of size 1000 k unless stated otherwise. Edition algorithms form the first group. These algorithms achieved the lowest computational

times, with reduction times ranging between 200 and 2200 s. The second group

consists of PIF, PIF-AllKNN, RPIF-AllKNN, RPIF-AllKNN_2, RPIF, and RPIF_2

algorithms. For this group, the reduction time ranged between 11594 and 12560

s. The next group is formed by PIF-RENN and RPIF-RENN_2 algorithms. The

computational time of the PIF-RENN algorithm was 13713 s, and RPIF-RENN_2

reduced the set of size 1000k in approximately 13799 s. Group four is composed of

MSS, ICF, and RPIF-RENN algorithms. The computation times of the fourth group

ranged between 15,272 and 15,352 s. The set of size 300 k was reduced by the MSS

algorithm in approximately 1624 s. In this algorithm, due to non-parallelizable parts,

a slowdown can be expected. The fifth group is represented by the CNN algorithm

with a computational time of almost 34000 s, which is more than twice the time

compared to algorithms from the previous group. In the case of the SOREL-20M

dataset, seemingly the slowest algorithm was DROP3, with a computational time

exceeding 53409 s for the reduction of the set of size 300 k.

The entire training set of the SOREL-20M dataset was reduced using stratification

[6], meaning the training set was randomly divided into a chosen number of equally sized subsets while preserving the class distribution. IS algorithms were then applied

to these subsets, and the results were combined into the reduced training set. Without

using stratification, due to the size of the training set, some algorithms could not be

included in the experiments because of time constraints. The number of subsets was

selected based on experiments with values of 100, 200, 300, and 400. All edition

algorithms achieved the best results when using a parameter value of 400. For the

remaining algorithms, the value of 100 was selected.

The experimental results of IS algorithms in reducing the entire training set of the

SOREL-20M dataset using stratification are presented in Table 14. The following is an evaluation of the algorithms in terms of. MAccSize and the achieved level of reduction. The rankings for both metrics are identical. The worst results were achieved by

the edition algorithms. The best algorithm was RPIF-AllKNN, which achieved an

. M AccSi ze value of 14.43 by reducing the training set to 6.24%, with an accuracy loss of 2.1% compared to the original set and 0.6% compared to the set reduced by the

original version of the PIF algorithm. Other top performers in terms of both metrics

included the remaining modifications of the RPIF algorithm along with the DROP3

algorithm. DROP3 was also the second-best in terms of accuracy but was by far the

slowest, with a computation time of 366,067 s. With an accuracy of 91.61%, the best

algorithm was MSS, which, however, was among the worst in terms of reduction

level and. MAccSize. Following MSS and DROP3, the highest accuracy was achieved

Selecting Representative Samples from Malware Datasets

139

Table 13 Runtimes of IS algorithms in seconds-SOREL-20M

Original size ENN

RENN

AllKNN CNN

ICF

MSS

DROP3

PIF

1000

0.0

0.3

0.5

35.0

0.4

0.1

36.9

0.2

2000

0.1

0.4

1.0

94.8

0.6

0.2

96.6

0.5

5000

0.2

1.2

2.5

201.8

2.1

0.6

252.9

1.7

10000

0.3

2.2

4.9

378.4

6.9

2.2

466.7

5.1

20000

0.6

5.1

10.2

675.8

26.6

7.9

822.5

20.9

30000

1.0

8.1

15.3

924.8

15.1

16.0

1155.6

16.8

40000

1.4

9.0

20.7

1469.6

26.2

28.3

1596.7

28.1

50000

1.9

15.7

26.3

1235.1

39.3

44.3

2189.3

35.5

60000

2.3

28.2

32.0

1662.1

56.2

62.7

2854.3

50.6

75000

2.4

20.8

39.3

1524.1

78.8

87.4

4074.8

66.0

100000

3.6

35.4

52.8

1834.3

143.8

163.0

6795.3

127.1

200000

11.4

141.2

110.9

3336.1

563.8

665.9

25019.2

518.5

300000

23.3

195.7

175.0

6015.1

1307.2

1623.8

53409.4

1305.9

500000

58.5

719.4

311.3

10462.1 3814.4

–

–

3181.3

750000

124.5

1790.8

516.3

24328.3 8729.5

–

–

7409.6

1000000

216.7

2170.6

734.3

33976.8 15272.0 –

–

11835.3

Original size PIF-

PIF-

RPIF

RPIF-

RPIF-

RPIF_2 RPIF_

RPIF_

AllKNN RENN

AllKNN RENN

AllKNN_2 RENN_2

1000

0.7

0.4

0.4

0.7

0.7

0.2

0.7

0.4

2000

1.3

0.7

0.8

1.4

0.9

0.5

1.3

0.8

5000

3.7

2.8

2.0

4.0

3.6

1.7

3.8

2.8

10000

8.8

7.0

6.2

9.3

6.9

5.2

9.1

7.1

20000

27.0

24.8

22.4

27.4

24.1

21.4

27.5

25.3

30000

29.9

23.8

18.5

31.0

24.1

17.1

30.4

24.0

40000

40.9

33.9

31.2

44.3

34.2

28.8

44.0

34.3

50000

60.5

47.4

38.5

59.8

49.1

36.1

61.4

48.1

60000

77.6

75.5

54.1

79.0

67.3

51.8

78.1

76.5

75000

106.5

83.9

71.7

108.1

96.5

67.7

107.9

85.5

100000

164.8

157.4

139.0

168.1

159.5

129.9

168.1

159.6

200000

575.7

657.6

572.9

585.1

626.9

527.0

581.8

663.8

300000

1240.7

1368.8

1291.2

1255.3

1440.6

1199.2

1242.8

1361.6

500000

3246.0

3906.1

3332.9

3268.8

4126.1

3215.9

3275.1

3933.0

750000

7552.3

9131.6

7483.7

7210.2

8558.3

7469.9

7593.5

9188.7

1000000

11594.9 13713.3 12559.3 11695.3 15351.9 11961.2 11668.6

13798.5

by PIF, RPIF, and their modifications. In terms of computation time, the fastest was

the ENN algorithm, completing the reduction in 219 s. Excluding edition algorithms,

PIF was the fastest with a time of 6,884 s.

140

L. Děd and M. Jureček

7 Conclusion

The aim of this work was to compare eight state-of-the-art algorithms along with five

proposed modifications of the PIF algorithm. Edition algorithms were the fastest and

also the best in terms of achieved accuracy. However, in terms of reduction level and

. M AccSi ze, they were clearly the worst and, for practical purposes, their use is suitable as a complement to more complex algorithms. An exception was the reduction of

the entire training set of the SOREL-20M dataset, where the edition algorithms were

among the worst in terms of accuracy as well.

Condensation algorithms achieved a lower level of reduction and . MAccSize com-

pared to hybrid algorithms. In terms of accuracy, it is not possible to clearly determine which of the two groups was better. Some representatives of hybrid algorithms were

able to outperform condensation algorithms in certain situations.

The behavior of individual modifications of the PIF algorithm varied slightly when

using stratification and without it. In experiments without stratification, as the level

of reduction increased, accuracy decreased. For the PIF-RENN and PIF-AllKNN

algorithms, the level of reduction was lower compared to the RPIF algorithm and

all its versions, but higher accuracy was achieved. In terms of reduced set sizes

and . MAccSize, the RPIF algorithm and its versions were among the best. The only competitor in these metrics was the DROP3 algorithm, which was by far the slowest.

Specifically, the RPIF-AllKNN algorithm reduced the size of subsets the most in all

Table 14 Results of IS algorithms when using stratification-SOREL-20M

IS Algorithm

Stratification

Size (%)

Accuracy (%) . MAccSize

Duration (s)

KNN

–

100

92.04

–

–

ENN

400

87.31

90.00

1.03

219.1

RENN

400

83.80

88.35

1.05

1540.9

AllKNN

400

77.53

89.18

1.15

3823.3

CNN

100

14.11

87.95

6.23

54364.6

ICF

100

11.52

89.36

7.76

7892.9

MSS

100

20.12

91.61

4.55

8066.5

DROP3

100

7.64

91.43

11.96

366067.1

PIF

100

14.99

90.56

6.04

6883.5

PIF-AllKNN

100

12.68

90.05

7.10

10357.2

PIF-RENN

100

13.15

89.80

6.83

9818.5

RPIF

100

8.48

90.29

10.65

8309.2

RPIF-AllKNN

100

6.24

89.94

14.43

10563.7

RPIF-RENN

100

7.48

89.84

12.01

9902.7

RPIF_2

100

9.69

90.33

9.32

7824.2

RPIF-AllKNN_2

100

7.42

89.88

12.11

10481.8

RPIF-RENN_2

100

8.00

89.63

11.20

9895.6

Selecting Representative Samples from Malware Datasets

141

cases, making it the best among all algorithms from the perspectives of. MAccSize and reduction level. The largest subset of the SOREL-20M dataset, with a size of 1000

k, was reduced by RPIF-AllKNN without stratification to 4.16% with an . MAccSize

value of 20.63. Since all modifications retained full parallelization capability, they

were among the fastest algorithms (after the edition algorithms).

In the reduction of the entire SOREL-20M dataset, which consists of nearly seven

million instances, the results of the modified versions of the PIF algorithm were

similar, with one main difference. In this case, the accuracy did not decrease with

increasing levels of reduction, and the modified algorithms achieved better results.

RPIF-AllKNN reduced the entire training set to 6.24% with an . MAccSize value of

14.43, with an accuracy loss of 2.1% compared to the original set and 0.6% compared

to the set reduced by the original version of the PIF algorithm, which had a reduction

to 14.99% and an. MAccSize value of 6.04. Even in this case, the RPIF algorithm and its modifications were only rivaled by DROP3 in terms of reduction level and. MAccSize, with a reduced set size of 7.64% and an . MAccSize value of 11.96. DROP3 was also the second-best algorithm in terms of accuracy, achieving 91.43%. However, it was

once again the worst in terms of computation time.

Future work related to instance selection could involve introducing a penalty into

. M AccSi ze that takes into account the loss of accuracy on reduced sets. This would allow the values of this metric to be adjusted depending on the importance of preserving

accuracy. Further experiments could explore the replacement of the editing method

in other hybrid algorithms. Regarding the PIF algorithm, experiments could involve

changing the filtration rule applied to subsets or experimenting with the application

of multiple filtration rules simultaneously.

Acknowledgements This work was supported by the Grant Agency of the Czech Technical University in Prague, grant No. SGS23/211/OHK3/3T/18 funded by the MEYS of the Czech

Republic.

References

1. Agarkar S, Ghosh S (2020) Malware detection & classification using machine learning. In: 2020 IEEE international symposium on sustainable energy, signal processing and cyber security (iSSSC); 2020. p. 1–6.

2. Anderson HS, Roth P. Ember: an open dataset for training static pe malware machine learning models. ArXiv e-prints, 04 2018.

3. Barandela R, Ferri F, Sánchez J. Decision boundary preserving prototype selection for nearest neighbor classification. IJPRAI. 2005;19:787–806. (09 2005).

4. Belichovski M, Stavrov D, Donchevski F, Nadzinski G. Unsupervised machine learning

approach for anomaly detection in e-coating plant. In: 2022 IEEE 17th international conference on control & automation (ICCA); 2022. p. 992–7.

5. Brighton H, Mellish C. On the consistency of information filters for lazy learning algorithms. In: Żytkow JM, Rauch J, editors, Principles of data mining and knowledge discovery.

Springer;1999. p. 283–8.

6. Cano JR, Herrera F, Lozano M. Stratification for scaling up evolutionary prototype selection.

Pattern Recognit Lett. 2005;26(7):953–63.

142

L. Děd and M. Jureček

7. Cao XH, Stojkovic I, Obradovic Z. A robust data scaling algorithm to improve classification accuracies in biomedical data. BMC Bioinform. 2016;17:359. (09 2016).

8. Ero Carrera Ventura. pefile. https://github.com/erocarrera/pefile, 2023.

9. Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967;13(1):21–

7.

10. Damodaran A, Troia FD, Visaggio CA, Austin TH, Stamp M. A comparison of static, dynamic, and hybrid analysis for malware detection. J Comput Virol Hacking Tech. 2017;13(1):1–12.

(Feb 2017).

11. de Amorim LBV, Cavalcanti GDC, Cruz RMO. The choice of scaling technique matters for classification performance. Appl Soft Comput. 2023;133:109924. (Jan 2023).

12. Jiawei H, Micheline K, Pei J. Data mining: concepts and techniques. Morgan Kaufmann, 500

Sansome Street, Suite 400, San Francisco, CA 94111, USA, 2011.

13. Harang R, Rudd EM. Sorel-20m: a large scale benchmark dataset for malicious pe detection; 2020.

14. Hart P. The condensed nearest neighbor rule (corresp.). IEEE Trans Inf Theory.

1968;14(3):515–6.

15. Jain P, Rajvaidya I, Sah KK, Kannan J. Machine learning techniques for malware detection-a research review. In: 2022 IEEE international students’ conference on electrical, electronics and computer science (SCEECS); 2022. p. 1–6.

16. Jureček M, Jurečková O. Parallel instance filtering for malware detection. In: 2022 48th Euromi-cro conference on software engineering and advanced applications (SEAA). IEEE;2022. p.

13–20

17. Kuhn M, Johnson K. Feature engineering and selection: a practical approach for predictive models. Chapman and Hall/CRC, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton,

FL 33487-2742, USA, 2019.

18. Malhat M, El Menshawy M, Mousa H, El Sisi A. A new approach for instance selection: algorithms, evaluation, and comparisons. Exp Syst Appl. 2020;149: 113297.

19. Murphy KP. Machine learning: a probabilistic perspective. The MIT Press;2012.

20. Olvera-López J, Carrasco-Ochoa J, Martínez-Trinidad JF, Kittler J. A review of instance selection methods. Artif Intell Rev. 2010;34:133–43. (08 2010).

21. Ridzuan F, Zainon WMNW. A review on data cleansing methods for big data. Proc Comput Sci.

2019;161:731–8. (The fifth information systems international conference, 23–24 July 2019,

Surabaya, Indonesia).

22. Song F, Guo Z, Mei D. Feature selection using principal component analysis. In: 2010 international conference on system science, engineering design and manufacturing informatization,

vol. 1;2010. p 27–30.

23. Tomek I. An experiment with the edited nearest-neighbor rule. IEEE Trans Syst Man Cybern.

1976;SMC-6(6):448–52.

24. Weinberger K, Dasgupta A, Attenberg J, Langford J, Smola A. Feature hashing for large scale multitask learning 2009. https://arxiv.org/abs/0902.2206.

25. Wilson D, Martinez T. Reduction techniques for instance-based learning algorithms. Mach Learn. 2000;38:257–86. (01 2000).

26. Randall Wilson D, Martinez TR. Instance pruning techniques. In: ICML, vol. 97; 1997. p 400–11.

27. Wilson DL. Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans Syst Man Cybern. 1972;SMC-2(3):408–21.

[image: Image 27]

Applying Word Embeddings and Graph

Neural Networks for Effective Malware

Classification

Manasa Mananjaya and Fabio Di Troia

Abstract The significance of word embeddings in natural language processing

for capturing semantic relationships between words is widely acknowledged. This

study aims to explore the efficacy of word embedding techniques in classifying mal-

ware. Specifically, we evaluate the effectiveness of applying Graph Neural Networks

(GNNs) to weighted graphs formed from word embeddings generated by analyzing

opcode sequences in malware files. In the initial experiments, we employ the Graph

Convolution Network (GCN) on weighted graphs generated using different word

embedding techniques, including Bag-of-words, TF-IDF, and Word2Vec. The results

indicate that Word2Vec provides the most effective word embeddings, serving as the

baseline for comparison with three GNN models, namely Graph Convolution Net-

work, Graph Attention Network (GAT), and GraphSAGE Network. Subsequently,

we conduct further experiments, generating vector embeddings of varying lengths

using Word2Vec, and utilizing these embeddings as node features for constructing

weighted graphs. Through performance comparison of the GNN models, we demon-

strate that larger vector embeddings significantly enhance the models’ ability to

classify malware files into their respective families. Furthermore, we compare the

result achieved using Word2Vec embeddings against those obtained through con-

textualized embeddings from BERT. Overall, our experiments show the potential of

word embeddings as node features for GNN classification, with an increase in accu-

racy from 71.6 to 91.91% when Word2Vec embeddings were used in combination

with GCN.

1

Introduction

Malware, a malicious software program created to cause harm to computer systems,

steal sensitive data, or gain unauthorized access to networks, poses a significant

threat to cybersecurity [32]. According to the Cybersecurity Ventures Report 2021, cybercrime is projected to cause damages of $10.5 trillion annually by 2025 [8].

M. Mananjaya · F. Di Troia (B)

San Jose State University, San Jose, CA, USA

e-mail: fabio.ditroia@sjsu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

143

M. Stamp and M. Jureček (eds.), Machine Learning, Deep Learning and AI for

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_6

144

M. Mananjaya and F. Di Troia

Cybercriminals heavily rely on malware as their primary weapon to infiltrate sys-

tems and networks, leading to a vast and diverse range of malware types that chal-

lenge cybersecurity experts. In 2019 alone, the number of malware families reached

a staggering 971,390, representing a 13.7% increase from the previous year [15].

Moreover, cybercriminals employ various obfuscation techniques to evade tradi-

tional signature-based detection methods, emphasizing the importance of the swift

detection of new malware variants to prevent security breaches.

To date, many companies still depend on conventional methods like signature-

based and behavioral-based detection for identifying malware. Signature-based

detection uses patterns or signatures to recognize known malware by comparing

files’ code or behavior to a database of known signatures [30]. While this approach is fast and efficient, it falls short in detecting unknown malware that lacks existing

signatures. In contrast, behavioral-based methods focus on the actions performed by

malware, monitoring system activities to detect unusual behavior indicative of mal-

ware presence [17]. These methods excel at identifying new and unknown malware without signatures in the database. However, they may generate high false positives

as legitimate software can also display abnormal behavior.

Given the limitations of traditional methods, researchers have turned to machine

learning techniques to enhance malware detection effectiveness and efficiency. One

such machine learning technique called Graph Neural Network (GNN) has recently

gained attention in the field of malware analysis as a powerful tool for capturing

the structural relationships between features of malware samples [42]. GNNs can process data represented as graphs, where individual elements are depicted as nodes

and edges depict relationships between the elements [9]. They have proven effective in different fields of study, such as Natural Language Processing (NLP), Computer

Vision, and Social Network Analysis, where the data is represented as a graph. On

the other hand, word embedding techniques are implemented to represent words in a

high-dimensional space as vectors. These vectors capture the meaning and structural

relationships between words and can be used for various NLP tasks. By applying

word embedding techniques to malware samples, it is possible to capture the seman-

tic relationships between different parts of the code and use them for classifying

malware [35].

In this research, we explore the use of three GNN models for malware classification

using word embedding techniques. We focus on the application of GNNs to weighted

graphs constructed from opcode sequences of malware files. Opcode sequences are

a representation of the behavior of a program, consisting of instructions executed by

the program. Weighted graphs are graphs that represent structured knowledge in a

form that can be processed by machines. In our case, we construct weighted graphs

where nodes represent opcodes, and edges represent the co-occurrence of opcodes

in malware samples.

We evaluate the effectiveness of different word embedding methods such as

Word2Vec [24], TF-IDF [29], and Bag-of-Words [26] in classifying malware using GNNs. First, we investigate the performance of GCN applied to weighted graphs built

using various word embedding techniques. The best word embedding technique is

then deduced and used to build weighted graphs. Finally, the performances of GCN,

Applying Word Embeddings and Graph Neural Networks …

145

GAT, and GraphSAGE in classifying the word-embedded weighted graphs into their

respective families are evaluated.

The remaining sections of this paper are organized in the following manner. In

Sect. 2, we discuss previous research conducted in the area of machine learning for malware analysis, including word embedding techniques and GNNs. Section 3

introduces the technology and algorithms used. Section 4 describes the dataset used in our experiments and the methodology for constructing weighted graphs. The results

of our classification experiments are described in Sect. 5. Finally, we conclude our paper and present potential directions for future work in Sect. 6.

2

Related Work

In recent years, there has been a significant focus on developing advanced meth-

ods to detect malware using machine learning techniques. Notably, graph neural

networks (GNNs) and word embedding have garnered considerable attention due

to their effectiveness in identifying and classifying malware [3]. In their survey on malware detection using graph representation learning, the authors in [3] analyzed various graph-based methods for detecting malware and discussed their advantages

and limitations. The survey highlighted the potential of GNNs as a viable method

for malware detection, primarily because of their ability to capture the complex

relationships between different features of malware.

An innovative approach proposed in [41] is the Dynamic Evolving Graph Convolutional Network (DEGCN), which was designed for malware detection. In this

approach, malware files are represented as graphs, with API calls as nodes and the

temporal sequence of API calls captured through the edges. The DEGCN model

dynamically adjusts node weights based on API call significance and updates edge

weights according to their temporal order, achieving an impressive 98.3% detection

rate on a dataset of 1,400 malware samples.

Another method presented in [16] utilizes GCNs for identifying malware. The authors represent malware as a graph, where nodes represent API calls, and edges

depict their dependencies. This approach achieved an accuracy of 98.6% on a dataset

of 3,512 malware samples. Similarly, the work in [5] applied Graph Attention Networks (GATs) to intelligent transportation systems, representing network traffic as a

graph with nodes representing source and destination IP addresses and edges depict-

ing communication between these addresses. The goal of this work was to detected

botnet traffic on Android devices by leveraging GAT to enhance the identification of

master-to-bot communication patterns. The proposed method achieved an accuracy

of 97.4% on a dataset of 400,000 network packets.

The work in [7] proposed a GNN model that uses a similarity-based approach to cluster malware samples with similar structures into the same category, regardless

of their behavior. This method automatically extracts structural information from

malware samples, making it more robust and generalizable to new malware samples.

146

M. Mananjaya and F. Di Troia

In the context of smart healthcare systems, the authors in [28] introduced a multi-view attention-based deep learning framework for detecting malware. They utilized

multiple views of malware, including API calls, system calls, and static features,

applying attention mechanisms to capture the most relevant features. The proposed

framework achieved an impressive accuracy of 99.4%, outperforming Support Vector

Machine (SVM) and Convolution Neural Networks (CNNs).

Instead of traditional graph-based methods, the authors in [36] introduced a novel attention network that leverages multi-feature alignment and fusion for malware

detection. This model combines the strengths of GCNs and attention mechanisms to

effectively capture both local and global features of malware. Evaluation on a dataset

of 10,000 benign and 10,000 malware samples yielded an accuracy of 99.2% and an

AUC of 0.998, showcasing the model’s high accuracy and robustness.

Regarding word embedding techniques, the work in [14] explored various methods for representing malware samples as opcode sequences, which are then converted

into Word2Vec embeddings or HMM states. The experiments on a dataset of 7,000

malware samples from 7 families revealed that Word2Vec-based models outper-

formed HMM-based ones, achieving an accuracy of 96.2% for the Word2Vec-RF

model and 96% for the HMM-RF model.

Similarly, the work in [6] compared the performance of three machine learning techniques, Word2Vec, PCA2Vec, and HMM2Vec, for classifying malware.

Word2Vec-based techniques exhibited superior performance and computational effi-

ciency compared to the other two methods. The paper’s valuable comparison can aid

researchers and practitioners in making informed decisions about which techniques

to use for specific malware classification tasks.

Our review of previous research has highlighted the potential effectiveness of

word embedding techniques for feature engineering when integrated with GNNs.

We aim to build upon this foundation to create a robust model capable of detecting

malware more accurately.

3

Background

 3.1

 Word Embedding Techniques

Word embedding techniques are commonly employed in Natural Language Process-

ing (NLP) to represent words as high-dimensional numerical vectors. These tech-

niques map words with similar meanings to comparable vectors in a high-dimensional

space, facilitating mathematical operations on words. Consequently, machine learn-

ing algorithms can process text data more efficiently and effectively, leading to

enhanced performance in tasks like text classification. In this section, we explore

Applying Word Embeddings and Graph Neural Networks …

147

three distinct word embedding techniques and assess their efficacy in classifying

malware using Graph Neural Networks (GNNs). These techniques are employed to

generate feature vectors, which are then utilized as node features within weighted

graphs.

3.1.1

Bag-of-Words

Bag-of-words (BoW) [26] is a widely used and straightforward word embedding technique in NLP. It represents a text document by counting the occurrences of each

word and converting it into a vector. BoW treats each word in the document as

independent of others, disregarding their order, syntax, or structure.

To create a BoW model, we first construct a vocabulary containing tokenized text

data. Then, we build a matrix that contains word frequency counts for each document

in the corpus using this vocabulary. Each row in the matrix represents a document,

and each column corresponds to a word in the vocabulary. To consider variations in

document lengths and word frequencies, we normalize the matrix.

Let W denote the vocabulary set, D represent the collection of documents, and n(d, w) indicate the frequency of word w in document d. The BoW representation of document d is a vector . x(d) of size W, where each element of the vector is given by

. x(d)[w] = n(d , w)

In our experiments, described in Sect. 4, we use the BoW model to generate one-dimensional feature vectors, which will serve as node features during the graph

classification process. Further details about BoW can be found in [13, 26].

3.1.2

TF-IDF

TF-IDF (Term Frequency-Inverse Document Frequency) [29] is a prominent word embedding method in NLP that transforms textual information into numerical representations. It operates as a statistical measure to determine the importance of each

word in a document. The fundamental principle of TF-IDF is that a word’s signif-

icance in a particular document is inversely proportional to its frequency (TF) in

that document and across all documents (IDF). In other words, a word is considered

more significant for a specific document if it appears frequently in that document but

rarely in others.

The TF-IDF score is computed by multiplying the TF and IDF of a word w in a

document d, that is,

. [TF − IDF] (w, d) = [IDF] (w) ∗ [TF] (w, d)

The TF (Term Frequency) represents the ratio of the number of occurrences of a

word w in a document d to the total number of words in d, that is,

148

M. Mananjaya and F. Di Troia

. [TF] (w, d) = number of occurrence of w in d

total number of words in d

On the other hand, the IDF (Inverse Document Frequency) value is calculated by

taking the logarithm of the ratio of the total number of documents N to the number of documents containing the word w, that is,

 N

. [IDF] (w) = log

number of documents that include w

The logarithmic function is employed to mitigate the impact of rare words on the

IDF score. As a result, words that frequently appear in documents will have a lower

IDF score and, consequently, a reduced influence on the TF-IDF score. The TF-IDF

scores for each word in a document can then be computed and used as features in

machine learning models. For more detailed information on TF-IDF, please refer

to [27].

3.1.3

Word2Vec

Word2Vec is a shallow neural network employed to generate word embeddings [24].

Word embeddings represent words distributed in a high-dimensional vector space,

where each dimension signifies a word feature. These embeddings find applica-

tion in various NLP tasks like text categorization, sentiment analysis, and language

modeling [1].

Word2Vec creates word embeddings by training a neural network on a large text

corpus. This network learns to predict a word from its context or anticipate nearby

words given a word. The word embeddings are then formed using the neural network’s

hidden layer weights. Word2Vec’s key advantage lies in its ability to capture semantic

relationships between words. For instance, words with similar meanings, like “car”

and “automobile,” have similar embeddings. There are two architectures used to train

Word2Vec, that is, the Continuous Bag of Words (CBOW) and the Skip-Gram model.

The CBOW technique predicts a target word using a group of words surrounding it,

while the Skip-Gram model takes the target word as input and aims to anticipate the

surrounding context words [2]. In this research, we experiment with the Skip-Gram model.

 3.2

 Graph Neural Networks

The Graph Neural Network (GNN) is a powerful deep learning algorithm designed to

analyze structured data represented as graphs. Unlike traditional neural networks that

process fixed-length data, GNNs take graphs as input, where individual elements are

represented as nodes, and edges depict the relationships between these elements [31].

Applying Word Embeddings and Graph Neural Networks …

149

Mathematically, GNNs are defined as a sequence of iterative graph convolution

operations, represented as

. h(k+1) = σ

 W (k)h(k) + b(k)

 v

 u

 u∈N (v)

Here,. h(k) denotes the representation of node

 v

. v at the . k -th iteration, .N (v) represents

the set of neighboring nodes of. v,. W (k) and. b(k) are learnable weight matrix and bias vector at the . k-th iteration, and . σ refers to a non-linear activation function, such as ReLU or sigmoid [31].

In the context of malware classification, the input graphs’ nodes represent opcodes,

and edges connect frequently co-occurring opcodes. The GNN conducts message

passing between nodes to capture information about their relationships. This process

involves computing node embeddings based on their neighboring embeddings and

updating the central node’s representation using these embeddings. This iterative

process can be repeated multiple times to capture higher-level relationships between

nodes. In this paper, we implement three graph neural network models for classifying

malware files.

3.2.1

Graph Convolutional Network

The Graph Convolutional Network (GCN) [40], a variant of GNN, incorporates convolutional layers that enable shared weights and translation invariance, as well

as pooling layers that facilitate hierarchical learning. GCNs learn a set of filters to

operate on the graph structure and extract features from the data. These filters are

defined as functions that process the node’s local neighborhood and produce a new

representation for the node.

During training, the filter weights are learned through backpropagation, allowing

the GCN to learn meaningful features from the graph structure. By repeatedly apply-

ing these filters, the GCN acquires hierarchical representations of the graph. In the

classification phase, the GCN takes the feature vectors of each node as input and pro-

duces a label for the entire graph. Graph labeling is achieved by applying a pooling

operation to the output of the last GCN layer, which aggregates the feature vectors

of all nodes into a single vector. This vector is then passed through a fully connected layer, generating a final output vector representing the predicted class probabilities

for the input graph.

3.2.2

Graph Attention Network

Graph Attention Networks (GATs) represent a popular graph-based machine learning

approach introduced by [33]. Unlike GCNs, GATs utilize an attention mechanism to determine the importance of each node’s neighbors for a specific task. This is achieved

150

M. Mananjaya and F. Di Troia

by computing weighted linear combinations of the neighbors’ hidden states, with the

weights learned through a self-attention mechanism. In other words, GATs leverage

the graph structure to identify the most relevant nodes for a given task, treating nodes differently based on their importance.

During the training phase, GAT optimizes the loss function with respect to model

parameters. This involves computing the model’s predictions for a set of labeled

examples and comparing them to the true labels using a loss function. Backpropaga-

tion is then employed to update the model parameters. For classifying new examples,

the hidden states of all nodes in the graph are computed, resulting in a probability

distribution over possible labels. The label with the highest probability is assigned

to the graph. For further insights into the application of GATs in text classification,

refer to [11, 18].

3.2.3

GraphSAGE Network

GraphSAGE (Graph Sample and Aggregate) networks [10] belong to a class of GNNs that learn representations for nodes in a graph by aggregating information from their

local neighborhoods. This model addresses the limitations of traditional graph-based

learning methods by leveraging graph convolutions, which enable learning from both

local and global information.

The GraphSAGE algorithm converts each node in the input graph into a low-

dimensional vector. A multi-layer neural network processes each node and its neigh-

bors in the graph to achieve this. At each layer, the model aggregates information

from the local neighborhood of each node by sampling a fixed number of neigh-

bors and applying mean or max pooling operations. The resulting representations

then undergo a non-linear activation function and are passed to the next layer. This

process iterates for a specified number of layers until the final node embeddings are

obtained. The efficiency of GraphSAGE in generating node embeddings for unseen

data is a notable advantage.

In our study, GraphSAGE learns embeddings for each opcode while considering

the relationships between adjacent opcodes. A summary vector is computed for

the entire graph based on the embeddings of its constituent nodes. This vector is

then fed through a fully-connected neural network to obtain the final graph-level

classification [38]. For more details on implementing GraphSAGE networks for text classification, refer to [37].

Applying Word Embeddings and Graph Neural Networks …

151

Table 1 Malware families

Family

Type of malware

No. of samples

BHO

Trojan

3,843

OnLineGames

Password stealer

13,164

Renos

Trojan downloader

23,980

VBInject

VirTool

15,171

Winwebsec

Rogue

13,277

4

Methodology

 4.1

 Dataset

The dataset used in this study is sourced from the VirusShare website, which hosts

malware files belonging to various families. It encompasses 13,597 malware families,

each having at least one malware file. Due to the considerable number of families

and the abundance of opcodes in each file, classifying all families demands extensive

computational resources, making it impractical. Therefore, the experiments were

limited to only five families as shown in Table 1. To maintain dataset balance, 1,000

samples were randomly selected from these five malware families, resulting in a total

of 5,000 samples. Other studies using this dataset are available in [6, 14]. We will provide a brief overview of the characteristics of each malware family in this section.

BHO—This family consists of Trojan malware used for malicious activities, such

as tracking user behavior or installing additional malware on user systems [21].

OnLineGames—Malware belonging to this family targets online gamers. It often

disguises itself as legitimate game components or spreads through fake games. Once

installed, it can steal sensitive information, including login credentials, banking

details, and game items [19].

Renos—Renos is a type of Trojan malware typically installed on computers through

security vulnerabilities or social engineering tactics. It conducts various malicious

activities, including displaying fake alerts and redirecting web traffic [20].

VBInject—Malware from this family injects malicious code into legitimate pro-

cesses running on operating systems. Attackers employ this malware to steal sensitive

information or log keystrokes [22].

Winwebsec—Windows Web Security, or Winwebsec, masquerades as a legitimate

antivirus program but is, in fact, rogue antivirus software. It deceives users into paying for unnecessary antivirus licenses while stealing their personal information [23].

152

M. Mananjaya and F. Di Troia

 4.2

 Dataset Preprocessing

For our research, we carefully organize 1,000 original malware files into each of the

five families, resulting in a total of 5,000 files for analysis. To extract the opcodes, the malware files are disassembled into .asm binary files. This disassembly process

is conducted on a Linux system using the Objdump command, which is part of the

GNU Binutils package. The extracted opcodes from each binary file are then stored

in a text file, sharing the same name as the corresponding binary file.

In order to manage the complexity and reduce overhead during the training of

the machine learning model, we decided not to include all distinct opcodes present

in each file, as there is a significant number of such opcodes. Furthermore, a vast

majority of opcodes contribute to less than 1% of the total number of opcodes.

Instead, we selected only the top 50 opcodes along with their respective frequencies

for further analysis. These top 50 opcodes play a crucial role in representing the

essential characteristics of the malware files. The frequency of these selected opcodes

is shown in Fig. 1.

 4.3

 Optimal Opcode Number Experiments

The analysis of the top 50 opcodes reveals that a significant portion of them are

infrequent in occurrence. To determine the optimal number of opcodes for our

experiments, we conducted binary classification experiments using the BHO and

OnLineGames malware families. From each family, we randomly selected 1,000

malware files. Our methodology involved implementing a Convolutional Neural

Network (CNN) with the Word2Vec embedding technique. In this approach, we

generated word embeddings from the opcode sequences using Word2Vec and then

applied convolution to these embeddings. We trained the CNN model with varying

numbers of opcodes (10, 20, 30, 40, and 50) and embedded vector lengths (2, 10, 50,

and 100).

Figure 2 presents the classification accuracy results obtained by the Word2Vec-CNN model for different numbers of opcodes and vector lengths. Surprisingly, the

performance does not show significant differences when using 50 opcodes compared

to using only 10 opcodes.

Among the experiments, the highest average accuracy is achieved when utilizing

the top 20 opcodes across all vector lengths. As a result, we extracted the top 20

opcodes and filtered the opcode files to include only these opcodes, which will be

used for further experimentation. Additionally, each file underwent a pre-processing

step that involved removing any punctuations and tokenizing the text into individual

words.

[image: Image 28]

Applying Word Embeddings and Graph Neural Networks …

153

Fig. 1 Opcode frequency

 4.4

 Feature Vector Generation

In this section, we explore various word embedding methods utilized to generate

feature vectors for the opcode sequences extracted from the malware files. We also

assess how each embedding technique influences the performance of the malware file

classification process. All the embedding techniques are evaluated using the GCN

model detailed in Sect. 4.11. Furthermore, a separate model is developed without any word embedding technique, serving as a baseline model for comparison with the other

embedding-implemented models. In this case, each unique opcode is represented as

a node in the graph, while edges between nodes represent the consecutive occurrence

of opcodes in the file.

The resulting feature vectors are then integrated into the weighted graphs, as

discussed in Sect. 4.8.

[image: Image 29]

[image: Image 30]

154

M. Mananjaya and F. Di Troia

Fig. 2 Word2Vec-CNN: binary classification results

 4.5

 GCN-Bag-of-Words

The Bag-of-Words (BoW) technique is a widely employed word embedding method

in NLP [32]. It offers a straightforward yet effective way to extract features and create feature vectors without considering the semantics or meaning of opcode sequences.

BoW enables us to examine how the frequency of specific opcodes influences the

categorization of malware families. In our BoW implementation, we generate a fea-

ture vector of length 20, where each vector value corresponds to the frequency of a

particular opcode in the malware file.

To maintain consistent vector lengths, we append a value of zero to the feature

vector in case of missing opcodes. This step is crucial because the BoW technique

requires fixed-length vectors for each malware file. By adding zeros to the end of the

vector, missing opcodes are effectively represented as non-existent features, ensur-

ing consistent vector lengths across all malware files. This feature vector is then

integrated into the weighted graphs as detailed in Sect. 4.8. Figure 3 illustrates the process of generating the feature vector using the BoW method.

Fig. 3 Bag-of-words feature generation

[image: Image 31]

Applying Word Embeddings and Graph Neural Networks …

155

 4.6

 GCN-TF-IDF

This section introduces the TF-IDF technique for generating feature vectors for each

malware file, containing the opcode sequences. In our implementation, we begin

by creating a document-term matrix, where each row represents a document (i.e.,

malware file) and each column represents an opcode. The matrix entries correspond

to the term frequency (TF) of each opcode in each document.

Next, we calculate the inverse document frequency (IDF) for each opcode, as

described in Sect. 3.1.2. This involves determining how frequently each opcode occurs across all documents.

Finally, we compute the TF-IDF score for each opcode by multiplying its TF score

with its IDF value. The resulting TF-IDF matrix is then used to generate a feature

vector for each file. Each vector represents a document and contains the TF-IDF

scores for every opcode in the malware file.

Figure 4 illustrates the process of generating feature vectors using the TF-IDF

vectorizer.

 4.7

 GCN-Word2Vec

Word2Vec plays a crucial role as a word embedding method to create feature vectors

in this study [32]. For our experiment, we utilize the gensim Word2Vec model and train it using the opcode sequences. We set the vector length to 100, and the window

size is kept at the default value of 5.

The Word2Vec library offers two training techniques, that is, Skip-Gram and

Continuous Bag of Words (CBOW). For our experiments, we chose the CBOW

algorithm to train Word2Vec. The trained Word2Vec model is then employed to

generate feature vectors for each document. This is achieved by averaging the opcode

vectors of all the opcodes present in the document.

Figure 5 illustrates the application of the Word2Vec model in generating feature vectors for each malware file.

Fig. 4 TF-IDF Feature Generation

[image: Image 32]

156

M. Mananjaya and F. Di Troia

Fig. 5 Word2Vec feature generation

 4.8

 Creating Weighted Graphs

We utilize Python’s NetworkX library to construct weighted graphs from the opcode

files. In these graphs, nodes represent the opcodes, and edges between nodes indicate

the consecutive occurrence of opcodes in the file. To compute edge weights, we

calculate the bi-gram frequency of the opcode pairs.

To establish a baseline for comparison, we generate 5,000 weighted graphs from

the opcode files without any word embedding. This baseline model will serve as a

point of reference when compared with the word-embedded graphs. Once the graph

is created, we save it in a .pkl file format, along with its corresponding label. During

classification, the data is retrieved from the .pkl files for further analysis.

For generating word-embedded graphs, we store the feature vectors generated by

the word embedding techniques in the .pkl files along with the graph and label data.

During the training phase, these feature vectors are embedded as node features in the

loaded graph, providing additional information to enhance the performance of the

GNN models. We generate graphs using BoW, TF-IDF, and Word2Vec. Each of these

techniques generates 5,000 weighted graphs, which are used in our experiments.

 4.9

 Results for Word Embedding Experiments

The classification results obtained for various word embedding techniques are sum-

marized in Table 2. We used the same GCN model described in Sect. 4.11 to classify the graphs generated using these word embedding techniques. These results are

Table 2 Accuracy of word embedding techniques

Model

Accuracy (%)

Baseline model

71.60

GCN-BoW

59.80

GCN-TFIDF

22.60

GCN-Word2Vec

60.20

[image: Image 33]

Applying Word Embeddings and Graph Neural Networks …

157

Fig. 6 Design of word embeddings experiments

instrumental in determining which word embedding technique to proceed with for

our implementation using GNN models. Figure 6 shows the design of these experiments. It is evident from the table that only Word2Vec provides improved classi-

fication results compared to our baseline model, respectively, 60.20% and 71.60%.

On the other hand, TF-IDF and BoW worsen the classification accuracy, with BoW

achieving an accuracy of 59.80% and TF-IDF a mere 22.6%.

While Word2Vec already achieves the best accuracy compared to other embedding

techniques, it should be noted that the feature vectors generated have a dimension

of 1. However, Word2Vec has the potential to increase the vector length for each

opcode (e.g., to 100). Additional experiments with larger vector size are described

in Sect. 5.

A larger vector size in Word2Vec allows for capturing more complex and nuanced

relationships between opcodes, which can improve performance even further in

downstream tasks such as classification. Therefore, we select Word2Vec as the

primary word embedding technique for our GNN models.

 4.10

 GNN Implementation

This section presents the architectures of the three GNNs utilized in our research

for malware classification. All models are designed to process graph data with

Word2Vec-generated feature vectors embedded as node features within the graphs.

Throughout our experiments, we vary the vector length of the feature vectors

generated by Word2Vec. More details on these experiments are available in Sect. 5.

In our implementation, the initial step involves loading all the graph data from the

stored .pkl files. Subsequently, the feature vectors are extracted from the files and

embedded in the nodes after loading the graph. Before training the GNN models,

158

M. Mananjaya and F. Di Troia

Table 3 GCN hyperparameter values

Hyperparameter

Value

Number of GCN layers

2

Number of units per GCN layer

64

Dense layer sizes

[32, 5]

Activation

[relu, softmax]

Dropout rate

0.4

Learning rate

0.001

Optimization algorithm

Adam

Loss function

Sparse categorical cross-entropy

we use graph generators to create data generators, enabling the models to be fed

with graph data during the training phase. This approach allows the models to learn

from graph data with varying numbers of nodes and edges, ensuring adaptability and

flexibility to different malware samples.

 4.11

 Word2Vec-GCN

The Graph Convolutional Network (GCN) is a neural network specifically

designed to handle graph-structured data [34]. It utilizes messages passing over the graph to compute node embeddings. To implement the GCN model, we use

the GCNSupervisedGraphClassification class from the Python library

stellargraph.

The GCN model architecture comprises two graph convolutional layers, each

consisting of 64 units with ReLU activation function. To prevent overfitting, a

dropout rate of 0.4 is applied to the convolutional layers. The global average

pooling layer aggregates the node features of the graph into a single vector rep-

resentation. The output of the global average pooling layer is then passed

through two fully connected dense layers: the first with 32 units and ReLU acti-

vation, and the second with 5 units and softmax activation. The final dense layer

generates a probability distribution over the five possible classes.

To minimize sparse categorical cross-entropy, which measures

the difference between the predicted and true class labels, we utilize the Adam opti-

mizer. The accuracy metric is used to evaluate the model’s performance on the test

data. A grid search was used to select the best hyperparameters for our GCN model.

A summary of these hyperparameters and their values can be found in Table 3.

Applying Word Embeddings and Graph Neural Networks …

159

Table 4 GAT hyperparameter values

Hyperparameter

Value

Number of GAT layers

2

Number of units per GAT layer

64

Dense layer sizes

[64, 5]

Activation

[elu, relu, softmax]

Attention heads

8

Dropout rate

0.4

Learning rate

0.005

Optimization algorithm

Adam

Loss function

Categorical cross-entropy

 4.12

 Word2Vec-GAT

The Graph Attention Network (GAT) is designed to learn node embeddings in a graph

by utilizing a self-attention mechanism to aggregate information from neighboring

nodes. We implement the GAT model using the GATConv layer from the Python

library spektral.

Our GAT model consists of two GAT layers, each with 64 hidden units, a dropout

rate of 0.5, and elu activation function. The attn_heads parameter is set to 8,

meaning that the model employs 8 attention heads to compute attention coefficients

for each neighbor of a node and then concatenates the results. We apply a dropout

rate of 0.4 to the GAT layers.

Following the GAT layers, we include a global sum pooling layer with

64 units and relu activation function. The output layer has 5 units with softmax

activation function, which generates a probability distribution over the five possible

classes.

For optimization, we use the Adam optimizer with a learning rate of 0.005. The

categorical cross-entropy loss function is employed to compute the vari-

ance between the predicted and actual labels. To evaluate the model’s performance,

we use the accuracy metric. A grid search was used to select the best hyperparameters

for our GAT model. A summary of these hyperparameters and their values can be

found in Table 4.

 4.13

 Word2Vec-GraphSAGE

GraphSAGE is a graph neural network that learns node embeddings by aggregat-

ing information from a node’s local neighborhood [38]. In our implementation, we use the GraphSAGENodeGenerator to generate training and validation batches,

160

M. Mananjaya and F. Di Troia

Table 5 GraphSAGE hyperparameter values

Hyperparameter

Value

Number of GraphSAGE layers

2

Number of units per GraphSAGE layer

32

Dense layer sizes

[32, 5]

Activation

[relu, softmax]

Dropout rate

0.5

Learning rate

0.005

Optimization algorithm

Adam

Loss function

Categorical cross-entropy

specifying the batch size and the number of samples in the generator. The model archi-

tecture consists of two GraphSAGEConv layers, available in Python’s spektral

library, with hidden dimensions of 32 and ReLU activation function.

A dropout rate of 0.5 is applied to each layer to prevent overfitting. To obtain

a single feature vector representing the entire graph, we perform global max

pooling operation. This feature vector is then fed into a dense output layer with

a softmax activation function to generate the final classification output.

For model optimization, we use the Adam optimizer with a learning rate of 0.005.

The categorical cross-entropy loss function is employed to measure the

variance between the predicted and actual labels. The model’s performance is eval-

uated using the accuracy metric. A grid search was used to select the best hyperpa-

rameters for our GraphSAGE model. A summary of these hyperparameters and their

values can be found in Table 5.

5

Classification Results

This section focuses on the malware data used in the study and its preprocessing. We

provide an overview of feature engineering and highlight the experiments conducted

using different word embedding techniques and GNNs.

To investigate the classification performance, we train GNN models with graph

samples using the best hyperparameter values. As a baseline, we first establish results

for graph classification without any word embeddings to observe the effect of word

embeddings on the classification performance.

Subsequently, we experiment with Word2Vec embeddings, varying the vector

length from 1 to 100. For each vector length category, 5,000 graph samples are gener-

ated, and the classification performance is evaluated using accuracy and classification

matrices for each GNN model.

By comparing the classification results, we gain insights into how the quality of

feature vectors influences the classification performance of the GNN models.

[image: Image 34]

Applying Word Embeddings and Graph Neural Networks …

161

Fig. 7 Classification matrices for GCN

 5.1

 GCN Results

Figure 7 presents the confusion matrices for GCN. The model achieves an accuracy of 79.60% for the baseline model, 60.20% for Word2Vec with a vector length of 1,

84.70% for Word2Vec with a vector length of 20, 85.3% for Word2Vec with a vector

length of 50, and 91.10% for Word2Vec with a vector length of 100.

[image: Image 35]

162

M. Mananjaya and F. Di Troia

Fig. 8 Classification matrices for GAT

 5.2

 GAT Results

Figure 8 gives the confusion matrices for GAT. This model achieves an accuracy of 73.80% for the baseline model, 42.90% for Word2Vec with a vector length of 1,

80.80% for Word2Vec with a vector length of 20, 83.80% for Word2Vec with a vector

length of 50 and 87.30% for Word2Vec with vector length of 100.

[image: Image 36]

Applying Word Embeddings and Graph Neural Networks …

163

Fig. 9 Classification matrices for GraphSAGE

 5.3

 GraphSAGE Results

Figure 9 gives the confusion matrices for GraphSAGE. This graph model achieves an accuracy of 75.90% for the baseline model, 47.50% for Word2Vec with a vector

length of 1, 76.80% for Word2Vec with a vector length of 20, 82.70% for Word2Vec

with a vector length of 50 and 84.70% for Word2Vec with vector length of 100.

[image: Image 37]

164

M. Mananjaya and F. Di Troia

Fig. 10 Accuracy for GNN models with varying Word2Vec vector lengths

 5.4

 Discussion

Figure 10 illustrates the accuracy achieved by each GNN architecture for both the baseline model and Word2Vec embeddings with vector lengths of 1, 20, 50, and 100.

The results clearly demonstrate that the classification accuracy improves signifi-

cantly as the length of the embedded vector increases. However, additional experi-

ments show diminishing returns beyond a vector length of 100, with no substantial

improvement even when increased up to 200.

Additionally, the comparison of the GNN architectures reveals that GCN outper-

forms GAT and GraphSAGE, achieving an accuracy of 91.10% for a vector length

of 100. Although GAT and GraphSAGE produce similar results, GAT shows slightly

better performance.

These findings suggest that longer Word2Vec vectors allow the models to capture

more intricate details in the opcode sequences. This leads to the creation of higher-

quality feature vectors, which are more effectively utilized by the GNNs to discern

the underlying graph structure and perform accurate node classification.

6

Conclusion and Future Work

In this study, we conducted an extensive analysis of various word embedding tech-

niques’ impact on the performance of Graph Neural Networks (GNNs) in classifying

malware files based on their opcode sequences. Our experimental results strongly

support the use of word embeddings, as they lead to improved feature engineering and

enhanced classification performance in malware analysis. We evaluated the perfor-

mance of Graph Convolutional Network (GCN), Graph Attention Network (GAT),

Applying Word Embeddings and Graph Neural Networks …

165

and GraphSAGE network in classifying malware files using weighted graphs con-

structed from opcode sequences. Our findings indicate that GCN outperforms GAT

and GraphSAGE, achieving an impressive accuracy of 91.10% for an embedded

vector of length 100.

In our initial experiments, we explored the impact of different word embedding

techniques, including Word2Vec, TF-IDF, and Bag-of-words, on the GNN models’

classification performance. Word2Vec emerged as the most effective technique, serv-

ing as a baseline for comparison in subsequent experiments. We generated vector

embeddings of varying lengths using Word2Vec and constructed weighted graphs

with these embeddings as node features. The performance comparison of the GNN

models demonstrated that larger feature vectors in the feature-embedded graphs sig-

nificantly enhance the models’ ability to accurately classify malware files into their

respective families.

Our analysis further revealed that the length of the Word2Vec vectors plays a

crucial role in the models’ classification performance. Longer embedded vectors

enable the models to capture finer details in the opcode sequences, resulting in higher-

quality feature vectors that effectively leverage the underlying graph structure for

precise node classification. We observed a notable improvement in classification

accuracy as the vector length increased, but beyond a length of 100, no significant

further improvement was observed.

The implications of our study in the field of malware analysis are substantial.

Firstly, GNNs have demonstrated promising potential for malware classification,

showcasing the significance of graph-based approaches in this domain. Secondly, the

effectiveness of word embeddings emphasizes the importance of employing appro-

priate feature extraction techniques in malware analysis. Lastly, our research high-

lights the significance of selecting suitable GNN architectures and hyperparameters

for graph-based classification tasks.

For future research directions, exploring the effectiveness of alternative word

embedding techniques such as GloVe [25] and FastText [4] would be worthwhile.

Additionally, investigating the impact of other graph construction techniques like

subgraph sampling and random walks [12] on GNN classification performance is valuable. Evaluating GNN models on larger datasets with more diverse malware

families can shed light on their scalability and robustness.

Another potential avenue for future research lies in exploring other GNN archi-

tectures, such as Transformer-based GNNs [39], and comparing their performance with traditional GNN models. Introducing additional features, such as file size and

entropy, to the graph could further improve the GNN’s classification accuracy. More-

over, incorporating temporal information, such as the order of opcode execution, into

the graph structure may enhance the GNN’s ability to classify malware effectively.

166

M. Mananjaya and F. Di Troia

References

1. Adewumi T, Liwicki F, Liwicki M. Word2Vec: optimal hyperparameters and their impact on natural language processing downstream tasks. Open Comput Sci. 2022;12(1):134–41.

2. Alashri S, Alzahrani S, Alhoshan M, Alkhanen I, Alghunaim S, Alhassoun M. Lexi-augmenter: lexicon-based model for tweets sentiment analysis. In: 2019 IEEE international conference on computational science and engineering (CSE) and IEEE international conference on embedded

and ubiquitous computing (EUC); 2019. p. 7–10.

3. Bilot T, El Madhoun N, Al Agha K, Zouaoui A. A survey on malware detection with graph representation learning. ACM Comput Surv. 2024;56(11):1–36.

4. Bojanowski P, Grave E, Joulin A, Mikolov T. Enriching word vectors with subword information.

Trans Assoc Comput Linguist. 2017;5:135–46.

5. Catal C, Gunduz H, Ozcan A. Malware detection based on graph attention networks for

intelligent transportation systems. Electronics. 2021;10(20):2534.

6. Chandak A, Lee W, Stamp M. A comparison of Word2Vec, HMM2Vec, and PCA2Vec for

malware classification. In: Stamp M, Alazab M, Shalaginov A, editors. Malware analysis

using artificial intelligence and deep learning. Springer; 2021. p. 287–320.

7. Chen Y-H, Chen J-L, Deng R-F. Similarity-based malware classification using graph neural networks. Appl Sci. 2022;12(21):10837.

8. Cybersecurity Ventures. Cybercrime damages $6 trillion by 2025. 2021. https://

cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/

9. Ding L, Chen X, Xiang Y. Negative-supervised capsule graph neural network for few-shot text classification. J Intell Fuzzy Syst. 2021;41(6):6875–87.

10. Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs. In: Proceedings of the 31st international conference on neural information processing systems, NIPS’17; 2017. p. 1025–35. https://dl.acm.org/doi/10.5555/3294771.3294869

11. Huang J, Tao N, Chen H, Deng Q, Wang W, Wang J. Semi-supervised text classification based on graph attention neural networks. In: 4th international conference on artificial intelligence and big data, ICAIBD; 2021. p. 325–30.

12. Jin D, Wang R, Ge M, He D, Li X, Lin W, Zhang W. Raw-GNN: random walk aggregation based graph neural network. In: 31st international joint conference on artificial intelligence, IJCAI; 2022. p. 2108–14.

13. Juluru K, Shih H-H, Murthy KNK, Elnajjar P. Bag-of-words technique in natural language processing: a primer for radiologists. Radiographics. 2021;41(5):1420–6.

14. Kale AS, Di Troia F, Stamp M. Malware classification with word embedding features. In: 7th international conference on information systems security and privacy, ICISSP; 2021. https://

arxiv.org/abs/2103.02711

15. Kaspersky. Malware variety grew by 13.7% in 2019. 2019. https://usa.kaspersky.com/about/

press-releases/2019_malware-variety-grew-by-137-percent-in-2019

16. Li S, Zhou Q, Zhou R, Lv Q. Intelligent malware detection based on graph convolutional network. J Supercomput. 2022;78(3):4182–98.

17. Liu W, Ren P, Liu K, Duan H. Behavior-based malware analysis and detection. In: 2011 first international workshop on complexity and data mining; 2011. p. 39–42.

18. Liu Y, Gou X. A text classification method based on graph attention networks. In: International conference on information technology and biomedical engineering, ICITBE; 2021. p. 35–9.

19. Microsoft Security Intelligence. Pws:win32/onlinegames. 2010. https://www.microsoft.

com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32

%2FOnLineGames

20. Microsoft

Security

Intelligence.

TrojanDownloader:Win32/Renos.

2010.

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?

Name=TrojanDownloader:Win32/Renos&threatId=16054

21. Microsoft Security Intelligence. Trojan:Win32/BHO. 2010. https://www.microsoft.com/en-

us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/BHO&threatId=-

2147364778

Applying Word Embeddings and Graph Neural Networks …

167

22. Microsoft Security Intelligence. VBInject. 2010. https://www.microsoft.com/en-us/wdsi/

threats/malware-encyclopedia-description?Name=VirTool:Win32/VBInject%26ThreatID=-

2147367171

23. Microsoft Security Intelligence. Winwebsec. 2010. https://www.microsoft.com/security/

portal/threat/encyclopedia/entry.aspx?Name=Win32%2fWinwebsec

24. Mikolov T, Chen K, Corrado GS, Dean J. Efficient estimation of word representations

in vector space. In: International conference on learning representations; 2013. https://api.

semanticscholar.org/CorpusID:5959482

25. Pennington J, Socher R, Manning CD. Glove: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing,

EMNLP; 2014. p. 1532–43.

26. Qader WA, Ameen MM, Ahmed BI. An overview of bag of words; importance, implementation, applications, and challenges. In: 2019 international engineering conference, IEC; 2019. p.

200–4.

27. Qaiser S, Ali R. Text mining: use of TF-IDF to examine the relevance of words to documents.

Int J Comput Appl. 2018;181(1):25–9.

28. Ravi V, Alazab M, Selvaganapathy S, Chaganti R. A multi-view attention-based deep learning framework for malware detection in smart healthcare systems. Comput Commun. 2022;195:73–

81.

29. Robertson S. Understanding inverse document frequency: on theoretical arguments for IDF. J

Doc. 2004;60(5):503–20.

30. Savenko O, Nicheporuk A, Hurman I, Lysenko S. Dynamic signature-based malware detection technique based on API call tracing. In: ICTERI workshops; 2019. p. 633–43.

31. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. The graph neural network model. IEEE Trans Neural Netw. 2008;20(1):61–80.

32. Stamp M, Alazab M, Shalaginov A, editors. Malware analysis using artificial intelligence and deep learning. Springer; 2021.

33. Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y. Graph attention networks.

2017. https://arxiv.org/abs/1710.10903

34. Voytetskiy A, Herbert A, Poptsova M. Graph neural networks for Z-DNA prediction in

genomes. bioRxiv; 2022. https://www.biorxiv.org/content/10.1101/2022.08.23.504929v1

35. Wang B, Wang A, Chen F, Wang Y, Jay Kuo C-C. Evaluating word embedding models: methods and experimental results. APSIPA Trans Signal Inf Process. 2019;8:e19.

36. Yang X, Yang D, Li Y. A hybrid attention network for malware detection based on multi-feature aligned and fusion. Electronics. 2023;12(3):713.

37. Yao L, Mao C, Luo Y. Graph convolutional networks for text classification. In: 33rd AAAI conference on artificial intelligence; 2019. p. 7370–7.

38. Ying R, He R, Chen K, Eksombatchai P, Hamilton WL, Leskovec J. Graph convolutional neural networks for web-scale recommender systems. In: Proceedings of the 24th ACM SIGKDD

international conference on knowledge discovery and data mining; 2018. p. 974–83.

39. Yun S, Jeong M, Kim R, Kang J, Kim HJ. Graph transformer networks. In: Advances in neural information processing systems, vol. 32; 2019.

40. Zhang S, Tong H, Jiejun X, Maciejewski R. Graph convolutional networks: a comprehensive review. Comput Soc Netw. 2019;6(1):1–23.

41. Zhang Z, Li Y, Wang W, Song H, Dong H. Malware detection with dynamic evolving graph convolutional networks. Int J Intell Syst. 2022;37(10):7261–80.

42. Zhou J, Cui G, Shengding H, Zhang Z, Yang C, Liu Z, Wang L, Li C, Sun M. Graph neural networks: a review of methods and applications. AI Open. 2020;1:57–81.

[image: Image 38]

An Empirical Analysis of Hidden

Markov Models with Momentum

Andrew Miller, Fabio Di Troia

, and Mark Stamp

Abstract Momentum is a technique that is widely used to improve convergence rates

during gradient descent. In this research, we experiment with adding momentum to

the Baum-Welch expectation-maximization algorithm for training Hidden Markov

Models (HMM). We compare discrete HMMs trained with and without momentum

on English text and malware opcode data. The effectiveness of momentum is deter-

mined by measuring the changes in model score and classification accuracy due to

momentum, as a function of the Baum-Welch iteration. Our extensive experiments

indicate that applying momentum to Baum-Welch can accelerate convergence, in the

sense of reducing the number of iterations required for initial convergence, particu-

larly in cases where the model is otherwise slow to converge. However, momentum

does not seem to improve the final model performance in cases where a sufficiently

large number of iterations are used.

1

Introduction

Momentum is an extension to the gradient descent optimization algorithm for training

machine learning models, and it has been integrated into popular and widely used

optimizers such as ADAM [20]. Momentum can accelerate training, since it smooths the effects of noisy gradients by adjusting the step size based on an exponentially

decaying combination of past gradients.

This research applies the concept of momentum to a classic machine learning

method, namely, the Hidden Markov Model (HMM). HMMs are designed to model

Markov processes in which some or all states cannot be directly observed. HMMs

learn about these hidden states by observing a secondary observation sequence that

is probabilistically related to the corresponding hidden state sequence. HMMs have

been successfully applied in a wide variety of applications, including speech recog-

nition [22], biological sequence analysis [31], cryptanalysis [27], malware detection [7], and many others.

A. Miller · F. Di Troia · M. Stamp (B)

San Jose State University, San Jose, CA, USA

e-mail: mark.stamp@sjsu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

169

M. Stamp and M. Jureček (eds.), Machine Learning, Deep Learning and AI for

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_7

170

A. Miller et al.

HMMs are typically trained using the Baum-Welch algorithm, which employs an

iterative approach to efficiently re-estimate the model parameters [23]. We denote the usual implementation of Baum-Welch as standard-BW, so as to distinguish it from the variants that we consider in this paper. Standard-BW is a hill climb algorithm and, as

such, it will always converge to a local maximum, making its result heavily dependent

on the initialization of the HMM parameters. As with other hill climb algorithms,

multiple HMMs can be trained using random restarts, with the best model being that

which attains the highest local maximum. However, this dramatically increases the

training time.

In this paper, we add a momentum term to the Baum-Welch algorithm, that is, at

each iteration, we slightly overshoot in the direction that the parameters are moving.

Baum-Welch with momentum, which we shorthand as momentum-BW, is no longer

a strict hill climb algorithm, and hence for a given initialization, it may converge to

a higher local maximum, as compared to standard-BW. One potential drawback to

momentum is that additional hyperparameter tuning is required.

We use a classic English text problem as a test case for initial experiments com-

paring model scores of HMMs trained with standard-BW and momentum-BW. Our

findings show that early in the training process, using momentum tends to outper-

form standard-BW, in the sense of reducing the number of iterations required to

achieve a given model score. In particular, initializations that take a longer time to

converge using standard-BW show more significant reductions in training time using

momentum-BW. However, standard-BW tends to “catch up” with momentum-BW

if a sufficient number of iterations is used. Thus, the advantage of momentum-BW

over standard-BW is likely to be most relevant in cases were HMMs need to be

trained efficiently, such as cases where large numbers of models are required, or

where training resources are highly constrained.

As a more applicable test case, we also consider experiments involving malware

classification. The classification of malware into individual families can assist in

learning features that can make it easier to detect difficult types of malware [30]. In this set of experiments, we train HMMs on opcode sequences extracted from malware

executables using both the standard-BW and momentum-BW algorithms. Previous

work has shown that HMMs are an effective tool for classifying malware, based on

opcode sequences [7, 28]. The results of our malware experiments follow a similar pattern as the English text experiments discussed above, namely, momentum-BW

can speed initial convergence, but with sufficient training, standard-BW tends to

achieve equally-strong results.

The remainder of this paper is organized as follows. In Sect. 2, we review related work and provides background information on the various technologies used in

this paper. Section 3 details how momentum is implemented in our momentum-BW

experiments. In Sect. 4, we discuss our experiments and analyze the results comparing HMMs trained with standard Baum-Welch to those trained using momentum,

for both the English text and the malware opcode cases mentioned above. Finally, in

Sect. 5, we summarize our findings and suggest a few directions for future research.

An Empirical Analysis of Hidden Markov Models with Momentum

171

2

Background

Our main focus in this section is to introduce the basic concepts of Hidden Markov

Models. We also discuss several topics that are related to momentum and the use

of momentum in HMM training, and we briefly consider the malware problem that

forms the basis for extensive experiments in Sect. 4.

 2.1

 Hidden Markov Models

A Markov process is a sequence in which the probability of the state at each position

in the sequence depends—in a probabilistic sense—solely on the state at the previous

position. Hidden Markov Models are statistical models capable of modeling these

sequences in cases where the states cannot be measured directly. By using a secondary

sequence of observable values that are dependent on the original sequence, an HMM

can, for example, enable us to make predictions about the most probable states of the

underlying (hidden) Markov process. Note that while there exist continuous variants

of HMMs [6, 32], only the discrete case is considered in this paper.

HMMs function under the assumption that the probability of an observation

depends only on its corresponding state, and is independent of other observations and

states. An HMM of order one assumes that the probability of a hidden state depends

only on the previous hidden state. Higher order Markov processes that depend on

more than one previous state sometimes arise in the HMM context, but they are

significantly more complex and are not considered in this paper.

An HMM is defined by three matrices: The state transition probability matrix,

the observation (or emission) probability matrix, and the initial state probability

matrix. The state transition matrix determines the likelihood of transitioning from a

hidden state to another hidden state at each position in the sequence. Each row of

the observation probability matrix defines a distribution on the observable symbols

relative to a specific hidden state. The initial state matrix contains the probability that each hidden state is the first state in the sequence. The HMM notation in Table 1 is used throughout this paper. Note that, without loss of generality, we denote the . M

distinct observation symbols as .0 , 1 , . . . , M − 1.

HMMs are useful for solving the following three problems, and efficient algo-

rithms exist for each [23].

1. Given a model. λ = (A, B, π) and an observation sequence. O, determine. P(O | λ).

This probability can be viewed as scoring the sequence . O, relative to the given model . λ.

2. Given a model . λ = (A, B, π) and an observation sequence . O, find an optimal sequence of hidden states corresponding to . O. That is, we want to uncover the

hidden states of the HMM. Note that in the HMM sense, “optimal” is taken to

mean that we maximum the expected number of correct states. Thus, an HMM is

172

A. Miller et al.

an Expectation Maximization (EM) technique, in contrast to a dynamic program,

where we select the highest scoring path through the state space.

3. Given hyperparameters . N and . M, and an observation sequence . O, determine a model . λ = (A, B, π) that maximizes . P(O | λ). This can be viewed as training a model to best fit the given observation sequence . O.

In this paper, we are primarily concerned with Problem 3, that is, training a model to best fit a given observation sequence. However, the solutions to the other two

problems are obtained as part of the Baum-Welch training algorithm.

 2.2

 Problem 1: Score an Observation Sequence

Na¨ıvely computing . P(O | λ) would require . O(N T T) operations [23], so a more efficient algorithm is required. An improved solution to Problem 1 utilizes the forward algorithm, which we outline below. This reduces the work factor to . O(N 2 T) operations, which is linear with respect to the length of the observation sequence.

From Table 1, we see that . qi is the hidden state at time . t. We define . αt (i) as the cumulative probability of the observation sequence up to time. t and ending in hidden state . xi . That is,

. αt (i) = P (O0 , O1 , . . . , O t , xt = qi | λ) Table 1 HMM notation [23]

. N = number of hidden states

. M = number of observed states

. T = length of observation sequence O

. O = (O0 , O1 , . . . , O T −1) = observation sequence

. X = (x 0 , x 1 , . . . , xT −1) = hidden state sequence

. Q = { q 0 , q 1 , . . . , qN −1} = set of possible hidden states

. V = {0 , 1 , . . . , M − 1} = set of possible observations

. A = state transition probability matrix (N × N)

. B = observation probability matrix (N × M)

. π = initial state probability (1 × N)

. λ = model (A, B, π)

An Empirical Analysis of Hidden Markov Models with Momentum

173

The forward algorithm computes the. αt (i) recursively (and efficiently) as follows:

1. Initialization: for . i = 0 , 1 , . . . , N − 1, let

. α 0 (i) = πi bi (O0)

2. Recursion: for . i = 0 , 1 , . . . , N − 1 and. t = 1 , 2 , . . . , T − 1, compute N −1

. αt (i) =

 αt−1 (j)ajibi(O t)

 j =0

3. Completion:

 N −1

. P (O | λ) =

 αT−1 (j)

 j =0

Although this computation is efficient, as sequence length. T grows, the multiplication of a large number of small probabilities causes numerical underflow. To prevent this,

scaling factor . ci , for . i = 0 , 1 , . . . , T − 1, are introduced. The scaling factor . ct is computed as

 N−1

. ct = 1

 αt(i)

 i =0

The . α values are then scaled by. ct

. αt (i) = ct αt (i)

thus avoiding underflow.

Finally, rather than directly using the probability . P(O | λ) as the score—which would tend to cause underflow—we use the log likelihood, which can be computed

efficiently as

 T −1

. log

 P(O | λ) = −

log ct

 t=0

Note that the score is length-dependent and hence when scoring an observation

sequence (Problem 1), we would want to normalize by dividing the score by . T to obtain a Log Likelihood Per Observation (LLPO) score.

174

A. Miller et al.

 2.3

 Problem 2: Uncover the Hidden States

To find the most likely sequence of hidden states (in the EM sense), we will determine

the probability of each state at each time step. We denote these probabilities as. γt (i), where

. γt (i) = P (xt = qi | O , λ)

The . γt (i) can be efficiently computed using a meet-in-the-middle strategy, where

both the probability of the sequence up to time. t and the probability of the remaining sequence following . t are combined. The forward algorithm given above determines

the required initial probabilities up to time. t, while a corresponding backward algorithm is used to compute the tail probabilities as defined by

. βt (i) = P (O t+1 , O t+2 , . . . O T −1 , xt = qi | λ) The backward algorithm computes the . βt (i) recursively (and efficiently) as follows:

1. Initialization: for . i = 0 , 1 , . . . , N − 1, let. βT −1 (i) = 1 . 0

2. Recursion: for . i = 0 , 1 , . . . , N − 1 and. t = T − 2 , T − 3 , . . . , 0, compute N −1

. βt (i) =

 βt+1 (j)aijbj(O t+1)

 j =0

3. Completion: For a given state . i and time . t, it follows that . γt (i) is αt(i)βt(i)

. γt (i) =

 P(O | λ)

and the most likely state at time . t is determined by .argmax γt (i).

 i

 2.4

 Problem 3: HMM Training

The most popular way of solving Problem 3 is the Baum-Welch re-estimation algorithm, which, as noted above, we refer to as standard-BW. The standard-BW algo-

rithm is a version of Expectation Maximization (EM) for maximum likelihood esti-

mation [17]. An EM algorithm works by iteratively using the model parameters to compute a probability distribution for latent variables, then uses that distribution to

update the parameters [17]. Standard-BW uses this technique to efficiently train an HMM by iteratively adjusting the. A,. B, and. π matrices to best fit the given observation sequence . O. Standard-BW is a hill climb algorithm, and hence no iteration can

yield a worse model, and it will always climb to a local maximum.

An Empirical Analysis of Hidden Markov Models with Momentum

175

While not explicitly a part of standard-BW, the first step in training an HMM is

to initialize the matrices . A, . B, and . π. This can be done randomly, or by using prior knowledge of the problem. Stamp [23] recommends random values close to.1 /N . In any case, the matrices must be made row stochastic as part of the initialization, since

each row represents a discrete probability distribution.

Because hill climb algorithms will only converge to a local maximum, numerous

random restarts are often performed when training HMMs. By using different random

initializations for each restart, more of the parameter surface can be covered in search

of a better local maximum. This makes the efficiency of standard-BW critically

important, as many models may be trained, with only the best selected for use.

The first step of standard-BW is to compute both the. αt (i) and. βt (i) for each time step . t using the forward and backward algorithms, as discussed above. Standard-BW also computes the so-called di-gamma, denoted. γt (i, j), which is defined as the probability of being in state . qi at time . t and transitioning to state . q j at . t + 1. The di-gammas can be computed as

 αt(i)aijbj(O t+1)βt+1 (j)

. γt (i, j) =

 P(O | λ)

Standard-BW also makes use of the. γt (i) discussed above, which are seen to be given by

 N −1

. γt (i) =

 γt(i, j).

 j =0

Finally, the model parameters . A, . B, and . π are re-estimated using the . γt (i) and . γt (i, j) as follows:

. for i = 0 , 1 , . . . , N − 1

 πi = γ 0 (i)

for i = 0 , 1 , . . . , N − 1 and j = 0 , 1 , . . . , N − 1

 T −2

 T−2

 ai j =

 γt(i, j)

 γt(i)

 t=0

 t=0

for i = 0 , 1 , . . . , N − 1 and j = 0 , 1 , . . . , M − 1

 T −1

 T−1

 bi (j) =

 γt(i)

 γt(i)

 t=0

 t=0

O t = j

These re-estimation formulae are based on expectations and they are intuitively clear

when viewed from the perspective of generalized frequency counts [23].

176

A. Miller et al.

In summary, standard-BW training consists of the following steps:

1. Compute the. αt (i),. βt (i),. γt (i, j), and. γt (i) values using the current. A,. B, and. π

matrices, and the observation sequence . O.

2. Re-estimate . A, . B, and . π using the. γt (i) and. γt (i, j).

3. Repeat until a specified number of iterations is reached, or the model score, which

is given by.log P(O | λ) , does not increase significantly, or other stopping criteria is met.

 2.5

 Gradient Descent

Gradient descent (GD) is a technique for iteratively optimizing a function based

on its first-order derivative [8]. The GD technique was first proposed by Cauchy in 1847 [14] and today is a mainstay in the training of machine learning and, especially, deep learning algorithms [24].

GD is based on the intuitive principle that by continuously moving in the direction

of steepest descent, one will eventually reach a local minimum. Given a function and

set of parameters, at each iteration of gradient descent, we compute the gradient of

the function at a specified point, then update the parameters by taking a step in the

direction of the gradient. Note that when performing gradient descent, the direction

of the step is the negative of the gradient. The term gradient ascent is used if we move in the (positive) direction of the gradient. In ML and DL applications, the size of the step is called the learning rate and is often denoted by . η. A learning rate that is too large can cause the algorithm to overshoot a minimum, while a too-small learning

rate can require an excessive number of iterations. At a local minimum, the gradient

is 0. Given a learning rate. η, and an objective function. f to be minimized, in gradient descent, the model parameters . θt at step. t are computed as

. θt = θt−1 − η f (θt−1)

(1)

 2.6

 Momentum in Gradient Descent

Gradient descent may struggle near saddle points or ravines, as the algorithm may

get stuck and be unable to converge, or converge slowly towards the optimum while

oscillating between the sides of a ravine [20]. Various techniques have been proposed to avoid saddle points, such as injecting noise [10]. Momentum, as illustrated in Fig. 1, is a modification to classic gradient descent that can improve performance by accelerating training, while simultaneously avoiding saddle points. The momentum

term carries over a portion of previous gradients vectors, making the direction at a

given step a combination of the current and recent gradients [25].

An Empirical Analysis of Hidden Markov Models with Momentum

177

(a) Gradient descent

(b) Gradient descent with momentum

Fig. 1 Simplified gradient descent with and without momentum

Momentum in gradient descent is analogous to momentum in Newtonian

physics [18]. As a an object rolls downwards on a slope, it accelerates, gaining velocity in the direction of the slope, and upon reaching the base of the slope, it will continue moving until its momentum is exhausted. If the object encounters a small

hill, with sufficient momentum, it will continue over said hill while losing momentum.

Momentum in GD behaves similarly; although the gradient at each individual step

may differ, movement in a general direction will build momentum in that direction.

This can result in faster convergence in ravines, as well as potentially overshooting

to escape a local minimum. However, if momentum is too high, it can overshoot a

good minimum and result in worse performance.

The classic version of momentum is calculated as a sum of exponentially decaying

previous gradients, based on a momentum factor, say, . m ∈ [0 , 1). Note that . m is a hyperparameter defining how much momentum should be carried over at each

step. In this formulation, . m = 0 is equivalent to standard gradient descent without momentum; in practice, it appears that. m ≈ 0 . 9 often works well [8, 20]. Adjusting the generic gradient descent algorithm in (1) to include momentum yields θt = θt−1 − ηf (θt−1) + mvt−1

. vt = mvt−1 − ηf (θt−1)

2.6.1

Nesterov Accelerated Gradient

Nesterov momentum, or Nesterov accelerated gradient (NAG) [16], is a popular alternative to the standard momentum algorithm that was discussed in the previous section. NAG outperforms the standard momentum implementation in many

situations due to increased stability and responsiveness [25]. NAG is very similar to momentum, but reverses the order of operations—adding the momentum vector

first, then computing the gradient from the new point. NAG can be formulated as

 θt = θt−1 − ηf (θt−1 + mvt−1) + mvt−1

. vt = mvt−1 − ηf (θt−1 + mvt−1)

178

A. Miller et al.

Momentum

vector

Momentum

Lookahead

Gradient

Update

vector

gradient

step

Update

(a) Momentum

(b) NAG momentum

Fig. 2 Standard momentum update vs Nesterov update

Figure 2 illustrates how the “look ahead” gradient in NAG can change the update vector. In the case where the momentum vector points in a poor direction, NAG will

produce a better update vector without waiting until the next iteration for a correction.

The NAG difference may be small, but each such difference is compounded over

many iterations [25].

 2.7

 Parameterized EM

While momentum is commonly utilized by practical applications utilizing gradient

descent, it does not seem to have been explicitly studied for EM-based algorithms.

Xu [29] discusses a modified EM algorithm which scales the magnitude of each EM

update step using a scaling factor, and refers to this algorithm as Momentum EM

(MEM). However, this MEM algorithm is more accurately described as EM with

a learning rate, or “momentum” involving only the previous time step. Xu shows

that the MEM algorithm is capable of improving convergence rates, and suggests a

heuristic for choosing the learning rate. Xu’s MEM approach is described as param-

eterized EM by Ortiz and Kaelbling [17], who show that it improves convergence speed when close to a solution.

Xu and Jordan [11] demonstrate a connection between EM algorithms and gradient descent for Gaussian mixtures, specifically showing that the EM step can be related

to the gradient of a projection matrix. Due to such connections between gradient

descent and EM, it is plausible that true momentum may be advantageous when

applied to EM algorithms, such as Baum-Welch as used for training HMMs.

An Empirical Analysis of Hidden Markov Models with Momentum

179

 2.8

 HMMs for Malware Classification

HMMs have been extensively applied to malware problems, including detection,

classification, and analysis. In this section, we provide a selective survey that high-

lights some of the many successes of HMMs in the malware domain.

Annachhatre et al. [1] trained HMMs using opcode sequences extracted from executables generated by several standard compilers, along with hand-written assembly

and executables produced by two metamorphic malware generators. Malware sam-

ples from the Malicia dataset [15] were then scored against each model, and clustering techniques were used on the resulting vector of scores to produce predicted group-ings of the Malicia samples. This HMM-based clustering method was able to classify

malware samples with high accuracy, despite not being trained on any of the specific

malware families in the dataset.

Kale et al. [12] and Chandak et al. [5] both experimented with malware classification based on HMM models themselves, using the flattened. B matrix of each model

as a feature vector. That is, an HMM was trained on each malware sample, with the

resulting models acting as the feature vectors. In these experiments, HMM training

can be viewed as a feature engineering step. These classification techniques were

successful, and illustrate that discrete HMMs tend to be highly informative models.

Singh [21] also deals with classification via clustering of malware families. In this work, HMMs were trained on opcode sequences of length .10 , 000 for only 50

iterations, then clustered using . k-means and . k-medioids. The effectiveness of this approach varied by family, with some families being well clustered and others being

split between numerous clusters.

In Raghavan et al. [19], the classification accuracy of HMMs trained with multiple random restarts was compared to that of multiple HMMs combined using AdaBoost.

In these tests, boosting showed little improvement over performing a similar number

of restarts, except in the most challenging cases. In particular, in the “cold start”

problem, where limited training data is available, boosting performed better than

simply taking the best model based on a similar number of random restarts.

Zhao et al. [32] compared discrete HMMs to continuous Gaussian Mixture Model-Hidden Markov Models (GMM-HMM). For opcode sequences, GMM-HMMs per-

formed similarly to discrete HMMs, while requiring additional hyperparameter tun-

ing. However, GMM-HMMs proved superior in the case of continuous data derived

from entropy-based features.

3

Implementation

In this section we introduce two types of momentum, in the context of Baum-Welch

re-estimation. We then briefly consider the issue of missing observations, which leads

us to the topic of smoothing.

180

A. Miller et al.

 3.1

 Momentum for Baum-Welch

Our basic version of momentum mimics momentum as typically used in gradient

descent. In gradient descent, the current update is a product of the learning rate

and current gradient, and momentum is a function of these recent updates [20].

Due to the lack of an explicit gradient in Baum-Welch, the update step is instead

computed using the differences in model parameters before and after standard-BW

re-estimation. This can be considered a discrete analog of a continuous gradient. The

standard-BW algorithm with momentum, which we refer to as momentum-BW, can

be summarized as follows:

1. Run standard-BW to re-estimate . A, . B, and . π as usual

2. Compute the difference between parameters before and after re-estimation

3. Add the current momentum to the re-estimated matrices

4. Update momentum using the difference found in step 2

5. If the stopping criteria is not met, goto 1.

In this momentum-BW algorithm, momentum is tracked individually for each param-

eter, which is accomplished by creating momentum matrices corresponding to the

three matrices of the model, namely, . A, . B, and . π. Each momentum matrix element is initialized to 0 at the start of training, as no momentum exists prior to the first iteration. A hyperparameter . m is used to control the amount of momentum carried

over at each iteration.

The momentum-BW update can be formulated as follows. Let . vt represent the

current momentum at time

. t , with . A, . B, and .

 π being the momentum matrices

for a model . λ = (A, B, π). First, the usual standard-BW update is performed. We define . F (λ) as the function performing the standard-BW update, as described in

Sect. 2.4, for the model . λ = (A, B, π). With this notation, the Baum-Welch update at iteration . t can then be written as

. λt = F (λt−1)

where . λt represents the model parameters at iteration. t.

For momentum-BW, at iteration . t, we first compute the standard-BW update

. λ = F (λ

 t

 t−1)

and the difference between this update and the previous iteration

. λ = λ − λ

 t

 t−1

Let

. λ represent the current momentum, as determined at the previous iteration. Then

we obtain our updated model as

. λt = λ +

 λ

 t

An Empirical Analysis of Hidden Markov Models with Momentum

181

Finally, we update the momentum for the next iteration as

. λ = m(

 λ + λ)

Of course, the row stochastic conditions must be enforced when computing the

updated model . λt .

To make the momentum process somewhat more concrete, consider the state tran-

sition matrix

. A = { ai j }. Assuming that . A = {

 ai j } is the current momentum matrix,

then the momentum-BW update is computed as

 T −2

 T−2

 a =

 γ

 γ

 i j

 t (i, j)

 t (i)

 t=0

 t=0

. ai j = a − a

 i j

 i j

 ai j = a +

 a

 i j

 i j

 ai j = m(

 ai j + ai j)

for . i, j = 0 , 1 , . . . , N − 1, where. A = { ai j } is the updated matrix, and the momentum matrix for the next iteration is

. A = {

 ai j }.

Following the addition of momentum to each of the . A, . B, and . π matrices, an additional step is required to fix the updated values. Because negative momentum

may cause a parameter to become less than zero, any non-positive values are changed

to a small positive number. This avoids any negative parameters while also removing

zero probabilities from the model. Finally, each row of the . A, . B, and . π matrices is normalized so that the matrices are row stochastic.

It is worth noting that the momentum-BW algorithm is not a true hill-climb.

Momentum may cause the algorithm to overshoot a local maximum resulting in a

potential decrease in model score at an iteration. Of course, this may result in the

model ultimately climbing to a higher local maximum, which is one of the potential

advantages of momentum-BW over the standard-BW algorithm.

 3.2

 Nesterov Momentum

The Nesterov Accelerated Gradient (NAG) approach requires some changes to the

way that momentum is applied, as compared to momentum-BW. Rather than adding

and updating momentum at the end of each iteration, the momentum vector is added

at the start of each iteration, prior to the execution of Baum-Welch. Our Nesterov

momentum implementation of Baum-Welch, which we refer to as NAG-BW, can be

summarized as

1. Add momentum to the matrices

2. Run standard-BW and re-estimate . A, . B, and . π from these updated matrices 3. Compute the difference between parameters before and after re-estimation

182

A. Miller et al.

4. Update the momentum matrices using the difference in 3

5. If the stopping criteria is not met, goto 1.

For a model. λ, momentum matrices. v, momentum hyperparameter. m, and Baum-Welch update function . F , our NAG-BW update is computed as

 λ = λ

 t

 t−1 +

 λ

 λt = F(λ)

 t

. λ = λt − λt−1

 λ = m(

 λ + λ)

where, as above,

. λ represent the current momentum. As with the base momentum-

BW implementation, any negative probabilities are replaced with a small positive

value, and the matrices are normalized to be row stochastic after applying momentum.

 3.3

 Smoothing

Issues can occur with the standard-BW algorithm when zero probabilities appear

in the model. For example, suppose that a model . λ is trained on an observation sequence that does not contain a specific observation symbol. This will result in a

zero probability for any state producing that observation in the final model. Scoring

a test sequence that contains the “missing” observation will then cause a division

by zero error when computing the scaling factors that appear in (2.2). To prevent this and related issues, an option for additive smoothing is included in our HMM

implementation. Additive smoothing works by adding some designated small value

to each count, ensuring each count is greater than zero, and this eliminating zero

probabilities.

Smoothing is performed during the update step. The smoothed update operations

are

 γ 0 (i) + s

. πi =

 Ns

 T −2

 T −2

 ai j = s +

 γt(i, j)

 Ns +

 γt(i)

 t=0

 t=0

 T −1

 T −1

 bi (j) = s +

 γt(i)

 Ms +

 γt(i)

 t=0

 t=0

O t = j

where . s is a small constant. Note that smoothing is applied prior to any momentum updates. By smoothing in this manner, zero probabilities are avoided, while the matri-

An Empirical Analysis of Hidden Markov Models with Momentum

183

ces remain row stochastic. Examples of models involving smoothing are considered

in Sect. 4.2, below.

4

Experiments and Results

In this section, we provide empirical results of HMMs trained with momentum.

First, we consider the use of momentum in a classic HMM English text model. We

then present extensive experimental results where HMMs are applied to the malware

classification problem.

 4.1

 Momentum and English Text

In this section, as an elementary test case of the effectiveness of momentum, we

consider the problem of training HMMs on English text. This problem first appeared

in the seminal paper of Cave and Neuwirth [4], and also appears in the tutorial [23], where it is used to introduce many of the key concepts of HMMs.

4.1.1

Momentum-BW for English Text

We measure the effectiveness of momentum by comparing model scores during

HMM training, both with and without momentum, using identical hyperparameters.

English text samples are constructed by extracting character sequences of length . T

from the Brown Corpus of English text [26]. A vocabulary consisting of alphabetic characters A through Z, plus word space is used for all experiments. Upper and

lowercase characters are considered identical, and all other characters (other than

word space) are ignored in the input text, for a total of. M = 27 possible observations.

The corpus version used does not include spaces between words separated by line

breaks, so an additional space character is added at the end of each line.

Unless otherwise specified, models are initialized randomly using a continuous

uniform distribution, then normalized to ensure that each matrix is row stochastic.

Each model is trained for 500 iterations with 100 random restarts, and we report the

average case over each of these 100 random restarts. The number of hidden states

was chosen to be . N = 27 to match the number of observation symbols.

Figure 3 gives the mean difference in score across 100 restarts for HMMs trained on . T = 10 , 000 observations using the momentum-BW algorithm, for varying levels of momentum. On average, models with momentum converge slightly faster

than those without, with similar or slightly improved final scores. However, higher

momentum values tend to overshoot as convergence slows, resulting in worse scores

for a number of iterations—the higher the momentum, the larger the overshoot period

and the longer it takes to recover. The high momentum value of . m = 0 . 9 results in

[image: Image 39]

184

A. Miller et al.

 , 00010=

. T

ithw

momentum-BW

for

scores

Model

3 .

Fig

[image: Image 40]

An Empirical Analysis of Hidden Markov Models with Momentum

185

Fig. 4 First 50 iterations for. T = 10 , 000 with. m = 0 . 5

a larger increase in mean score during early iterations, with a lower momentum

of . m = 0 . 3 producing a more stable result, that is almost indistinguishable from standard-BW.

Also of note is the large dip in momentum scores during the first few iterations,

which quickly recovers. Figure 4 emphasizes this aspect by showing only the first fifty iterations for . m = 0 . 5. At iteration 0, the models with and without momentum perform the same, as no momentum has been generated. However, as with the later

overshoot, the large changes in the model during the first iterations creates excessive

momentum, causing a major decrease in score for one iteration.

Reducing the observation sequence length from . T = 10 , 000 to . T = 1000 does not significantly change the behavior and hence we omit the graphs for this case. As

with the. T = 10 , 000 case, the trend of an initial increase in score remains consistent across momentum values, but as the curve levels off, momentum at lower sequence

lengths results in more negative changes in score. This indicates that, as expected,

with less training data, the momentum carried over is less informative, and therefore

less beneficial.

As mentioned above, momentum built up during initial convergence can result

in lingering negative effects on model score during the latter iterations of training.

To isolate and observe momentum for just the tail, we train models with momen-

tum disabled for varying numbers of iterations at the start of training. These tests

use a training sequence length of . T = 1000 and a momentum value of . m = 0 . 9.

Figure 5 shows the difference in scores over time when momentum is disabled for the first 25, 35, 50, 100, and 200 iterations. For this test case, it takes on average between 35 and 50 iterations before momentum stops overshooting.

[image: Image 41]

186

A. Miller et al.

Fig. 5 Tail-only momentum score change

4.1.2

NAG-BW for English Text

In this section, we reproduce the same experiments of the previous section, but with

Nesterov momentum, that is, here we use NAG-BW for HMM training, instead of

momentum-BW. Figure 6 depicts scenarios identically to those in Fig. 3, but using Nesterov momentum. We observe that at the high momentum value of. m = 0 . 9, Nesterov momentum results in the models consistently failing to converge. Otherwise,

Nesterov momentum demonstrates the same overshoot behavior that we observed

above, with drops in score during the first few iterations and again after initial con-

vergence. While unusable at the highest momentum value tested, at lower values

Nesterov momentum generally produces slightly larger peak score increases during

early iterations. Nesterov momentum also results in a greater mean final increase in

score after a high number of iterations.

Table 2 compares the difference in scores at a select set of iterations. NAG-BW

training, with Nesterov momentum, seems to generally outperform momentum-BW

training, with its standard momentum implementation, but with NAG-BW, there is

a risk that convergence will fail if the momentum hyperparameter . m is set too high.

4.1.3

Number of Hidden States

To determine how the number of hidden states interacts with momentum, we com-

pare the effects of momentum on HMM English text models with . N = 2, . N = 10, and . N = 27. Tests with . N = 2 show almost no difference with or without momentum, as demonstrated in Fig. 7. The previously observed behavior of a sharp initial dip followed by a positive spike continues, but excluding the initial negative spike,

changes in score are negligible for both standard and Nesterov momentum.

[image: Image 42]

An Empirical Analysis of Hidden Markov Models with Momentum

187

 , 00010=

r. T fo

lts

resu

W

-BG

NA

6 .

Fig

[image: Image 43]

188

A. Miller et al.

Fig. 7 Momentum-BW versus NAG-BW (. N = 2 and. m = 0 . 5)

Increasing the number of hidden states to . N = 10 and. N = 27, as in Fig. 8, produces much more significant changes in momentum-BW and NAG-BW scores, as

compared to the baseline standard-BW training. These experiments indicate that

momentum is likely to be more impactful at higher values of . N . A plausible explanation for this behavior is that models with low numbers of hidden states are less

complex and more easily optimized, leaving little opportunity for momentum to

affect the training.

4.1.4

Plateaus

While the result above shows that momentum can slightly improve the speed of initial

convergence, the reduction in the number of iterations before training levels off is

fairly small. However, our experiments demonstrate significant speedup for cases

in which training scores plateau early before eventually converging. Such a plateau

can be produced by initializing English text models with values such that . πi ≈

1 /N , . ai j ≈ 1 /N , and . bi (j) ≈ 1 /M, as recommended in [23] for cases where little Table 2 Change in score

BW variant

. m

Iteration

5

15

25

50

100

200

500

Momentum-BW .0 . 9

. −108

2108

. −318

. −1250

. −1309

. −282

56

Momentum-BW .0 . 5

21

2313

465

. −120

4

55

88

Momentum-BW .0 . 3

24

1618

486

5

8

29

40

NAG-BW

.0 . 5

246

2890

241

. −275

. −12

84

116

NAG-BW

.0 . 3

77

2443

640

13

21

50

69

[image: Image 44]

An Empirical Analysis of Hidden Markov Models with Momentum

189

is known about the underlying data. We train HMMs using momentum-BW with

this initialization scheme for 500 iterations, 100 random restarts, . N = 27,. M = 27, and. T = 10 , 000. Figure 9a, b show that momentum reduces the number of required iterations for this case from about 200 to about 50. Momentum breaks out of early

plateaus even at the lowest value of . N = 2, as shown in Fig. 9c, d.

4.1.5

Momentum Scheduling

In gradient descent, learning rate schedules are frequently used to dynamically control

the learning rate, based on a predetermined function. Because the gradient descent

momentum update is dependent on the learning rate, learning rate scheduling also

indirectly influences the amount of momentum at each step. While our previous

momentum-BW and NAG-BW experiments used a static momentum value, it is

unlikely that a single momentum value will produce optimal results at all points in

training. Here, we consider experiments to test momentum scheduling.

As demonstrated in Figs. 3 and 6, momentum-BW and NAG-BW generally produce positive changes early and late in training, but tend to overshoot as training

slows, particularly at higher momentum values. As a na¨ıve solution, we implement

a momentum schedule in which the momentum is set to 0 for a predetermined range

of iterations. Figure 10 displays an example of the difference in training behavior with and without this na¨ıve momentum schedule. Disabling momentum between

iterations 50 and 100 for this model produces a smoother curve, and effectively

eliminates the overshoot.

Extending this method to also exclude momentum for the first iteration eliminates

the negative score differential in the first few iterations. As shown in Fig. 11, the combination of skipping momentum for both problematic periods results in a smoother

training curve. Removing momentum at the first iteration causes the model to take

slightly longer to start converging, but this is offset by higher peak increases in score.

The downside of such a manual scheduling approach is that it requires prior testing

Fig. 8 Comparison of number of hidden state (. N = 10 vs. N = 27)

[image: Image 45]

[image: Image 46]

190

A. Miller et al.

or knowledge of the general period in which overshoot occurs for the given model.

Fig. 9 Comparison of momentum plateaus

Fig. 10 No momentum for iterations 50 to 100

[image: Image 47]

An Empirical Analysis of Hidden Markov Models with Momentum

191

Fig. 11 No momentum for iterations 1 and 50 to 100

The obvious solution is an adaptive momentum schedule that dynamically modifies

the parameter . m based on current training; in effect, . m should be learned as part of the training.

 4.2

 Malware Classification

We now consider HMMs trained on malware opcode sequences to test the effects of

momentum on model classification accuracy. These malware classification experi-

ments aim to determine if the increases in scores observed for the English text models

discussed above translate into improvements in a practical application. We conduct

two sets of experiments, involving distinct malware datasets.

4.2.1

Malicia Dataset

Our first set of malware experiments involves the popular Malicia malware

dataset [15]. The Malicia dataset that we use contains 8283 malware executables from various malware families, along with a mnemonic opcode sequence extracted

from each executable. These opcode sequences were generated using the IDA Pro

disassembler [9]. The dataset is dominated by three families: Winwebsec, Zeroaccess, and Zbot; as shown in Table 3, these three families account for about 94% of the dataset, with the next largest family containing only 74 executables. All of our

Malicia experiments are based on these three dominant families.

To minimize model complexity, and consistent with previous work, only the top 29

most frequently occurring opcodes across the three families are used. All opcodes

outside this top 29 are combined into a single “other” category, giving us a total of 30

192

A. Miller et al.

Table 3 Number of Malicia malware files by family

Family

Samples

Winwebsec

4360

Zbot

2136

Zeroaccess

1305

All other

482

Table 4 Percentage of opcodes in top 29

Family

Percentage

Winwebsec

96.31

Zbot

92.42

Zeroaccess

95.00

All samples

95.34

distinct observation symbols. This “other” opcode category contains less than 5%

of the total opcodes for each the three families, as can be seen in Table 4. The effectiveness of grouping infrequently occurring opcodes was demonstrated in several

research papers; see, for example, Zhao et al [32]. Because of this grouping method, all models considered in this section have . M = 30.

To determine the effectiveness of momentum on individual models, we train an

HMM for each family using opcode sequences belonging to that family. Classification

is performed by scoring a given test sample against each of these three family models.

Because the magnitude of the score is dependent on sequence length, scores are

normalized by the length of the test sequence to produce a Log Likelihood Per Opcode

(LLPO) score. After generating the three normalized LLPO scores, the resulting score

vectors are used to train a linear Support Vector Machine (SVM) that is then used for

classification. Five-fold stratified cross validation is used when training the SVM.

The mean balanced accuracy across each fold is used as a metric to determine the

effectiveness of a given trio of family models. This process is repeated 100 times

for each experiment with random HMM initializations, and the results averaged to

produce a final accuracy metric for a set of HMM training parameters.

Training sequences for a given family are chosen by randomly sampling opcode

files for the specified family, without replacement, until a combined total length of. T

is reached. The test set for a given run is comprised of all non-training samples from

each family for that run.

For our experiments, we use a default sequence length of. T = 10 , 000. Due to this relatively small training sequence length, it is possible for opcodes to occur in testing that are not seen during training. This causes computation errors in HMM scores,

making such test sample unusable for the SVM. To solve this problem, a smoothing

value of . s = 0 . 01 is used to prevent zero probabilities in the models. Recall that smoothing was discussed in Sect. 3.3, above.

[image: Image 48]

An Empirical Analysis of Hidden Markov Models with Momentum

193

Fig. 12 Training score curves for NAG-BW with. m = 0 . 4

Tests are performed with . N = 20,. M = 30,. T = 10 , 000, and a smoothing value of . s = 0 . 01 with a NAG-BW (i.e., Nesterov momentum) and a momentum value of. m = 0 . 4. The relatively high. N was chosen based on similar experiments in [32], where more noticeable score differences are detected at higher numbers of hidden

states. Each experiment is repeated 100 times for a total of 100 models trained

per family. Figure 12 shows that NAG-BW produces similar changes to average training behavior as in our eariler English text examples. Training curves showing

the effects of momentum differ slightly between each family, but follow the general

trend observed in Sect. 4.1, above.

From Fig. 12, we observe that after 500 iterations, the Zbot models show a mean score increase of 194, while Winwebsec and Zeroaccess increase by 17 and 13 respectively. However, SVM classification accuracy does not demonstrate any significant

change with momentum, changing from an average balanced accuracy of 96.03%

to 95.92%. Accuracies with and without momentum for models trained for varying

numbers of iterations are listed in Table 5. Changing the number of iterations does not significantly affect SVM classification accuracy. Even after only two iterations,

the SVM achieves over 90% accuracy. This indicates that the SVM remains a strong

classifier, even with weaker HMM results.

194

A. Miller et al.

Table 5 SVM classification accuracy at various iterations

Iteration

. Score

Accuracy

Standard-BW

NAG-BW

2

.−4520

0.9362

0.9370

15

3501

0.9534

0.9585

25

508

0.9585

0.9600

50

265

0.9602

0.9605

200

106

0.9606

0.9589

500

75

0.9603

0.9592

Table 6 . Score and AUC at 500 iterations

Family

. Score

AUC

Standard-BW

NAG-BW

Winwebsec

17

0.8779

0.8782

Zbot

194

0.8750

0.8809

Zeroaccess

13

0.7609

0.7584

All samples

75

0.8379

0.8392

Because the intermediate SVM step appears to be compensating for changes in the

HMMs, we also test the HMM scores directly via one-vs-rest classification. In this

case, the classification performance of each model is measured relative to its Receiver

Operating Characteristic (ROC) curve. An ROC curve is obtained by plotting the true

positive rate versus the false positive rate over all possible thresholds [24]. The Area Under the ROC Curve (AUC) is between 0 and 1, and can be interpreted as the

probability that a randomly selected positive instance scores higher than a randomly

selected negative instance [3]. We use this AUC statistic as a metric for our one-versus-rest experiments.

Table 6 shows that after 500 iterations, the combined AUC of all families is almost identical with or without momentum. While the larger increase for Zbot results in

a minor AUC increase of .0 . 0059, there is minimal change for Winwebsec, and a

decrease in average AUC of .−0 . 0025 for Zeroaccess. This indicates that the small score differences on the tail end of training may not meaningfully contribute to model

performance, and may even be an artifact of overfitting.

Next, we compute the AUC after only 15 iterations, which is during the period

of maximum changes in scores with momentum. Figure 13 depicts the mean training scores for each family over the first 15 iterations. Table 7 compares the mean change in score for each family to the AUC after these same 15 iterations. The score

differences result in a larger combined AUC increase of 0.023 with momentum. As

with the English text examples, this shows that momentum is able to improve model

classification performance during the early training period.

[image: Image 49]

An Empirical Analysis of Hidden Markov Models with Momentum

195

Fig. 13 Training scores curves for first 15 iterations

Table 7 . Score and AUC at 15 iterations

Family

. Score

AUC

Standard-BW

NAG-BW

Winwebsec

1372

0.8533

0.8606

Zbot

925

0.8302

0.8501

Zeroaccess

1204

0.6911

0.7333

Total

1167

0.7915

0.8147

Training using NAG-BW for the full 500 iterations results in an additional AUC

increase of 0.025 as compared to only 15 iterations. This indicates that the usefulness

of momentum may be optimal for applications that train for a small number of

iterations, such as situations where training time is limited, resources for training

are limited, a large number of models must be trained in a short period of time, and

other similar constraints are applicable. Table 8 lists the total AUC at various points in training. By 50 iterations, AUC without momentum closes the gap, and the AUC

only shows minor increases after that point.

196

A. Miller et al.

Table 8 Total. Score and AUC at select iterations

Iteration

. Score

AUC

Standard-BW

NAG-BW

2

.−4520

0.7431

0.7444

15

1167

0.7915

0.8147

25

508

0.8189

0.8332

50

265

0.8338

0.8378

200

107

0.8378

0.8387

500

75

0.8379

0.8392

Table 9 . Score and AUC at 15 iterations (1 vs 5 restarts)

Restarts

. Score

AUC

Standard-BW

NAG-BW

1

1167

0.7915

0.8147

5

1169

0.7955

0.8203

Unsurprisingly, increasing the number of restarts per run to 5 results in a minor

increase in score and AUC. Table 9 compares score differences and AUC after 15

iterations for 1 restart versus 5 restarts.

Additionally, we experiment with various choices of. N in order to observe how the chosen number of hidden states influences the performance of momentum. For these

experiments, each model is trained using NAG-BW for 300 iterations with. M = 30,

. T = 10 , 000, and a Nesterov momentum value of . m = 0 . 4. Changes in AUC and accuracy are compared for. N ∈ {2 , 5 , 10 , 15 , 20} hidden states, with AUC statistics computed at iterations 5, 10, 15, 20, 25, 35, 50, 100, 200, and 300. Figure 14a depicts the changes in AUC at the specified iterations for each. N tested, while Fig. 14b shows analogous results for the SVM accuracy. At early iterations, higher numbers of hidden

states result in larger changes in AUC with momentum, while later iterations show

minimal change regardless of . N . The SVM classification results are similar, with greater increases in accuracy during early training at higher. N . These results tend to indicate that momentum is more beneficial for more complex models, as represented

by larger. N , but has minimal impact when dealing with simpler models, where. N is smaller. These findings align well with the English text experiments in Sect. 4.1.3, above.

We have conducted similar tests to determine whether the amount of training

data affects model performance with momentum. Here, models are trained with

and without momentum while varying the total length of the observation sequences

from . T = 100 to . T = 100 , 000. HMMs are trained using NAG-BW, with . N = 10

and. M = 30, and momentum. m = 0 . 4, with scoring performed at each of iteration 5, 10, 15, 20, 25, 35, 50, 100, 200, and 300. Figure 15a shows that changes in AUC

remain relatively consistent despite significant variance in the amount of training

[image: Image 50]

[image: Image 51]

An Empirical Analysis of Hidden Markov Models with Momentum

197

Fig. 14 Change in AUC and accuracy due to momentum

Fig. 15 Changes in AUC and SVM for cold start

data, with the exception of . T = 100. At. T = 100, momentum does not produce the expected increase in AUC at early iterations. The small amount of data available

in this case likely causes the model to overfit more quickly. With respect to SVM

accuracy, Fig. 15b shows that early momentum actually seems to perform slightly better with lower amounts of training data, peaking at. T = 1000. In addition, at. T =

50 , 000 and above, momentum results in a small negative dip in score between 25

and 35 iterations. The overall curve is much rougher and less consistent than the

AUC, but changes in accuracy at later iterations are minimal or slightly negative for

all. T . These results show that momentum is worth considering for challenging “cold start” problems, where training data is limited.

[image: Image 52]

198

A. Miller et al.

Fig. 16 Number of executables for the 15 families used

4.2.2

Extended Malware Dataset

In order to experiment with a more challenging and realistic scenario, we next con-

sider a large malware dataset containing 131,072 malware executables [13]. Of these, 58,679 are labeled as belonging to known malware families. We use the IDA disassembler [9] to produce a mnemonic opcode sequence for each labeled sample, as was done in Sect. 4.2.1, above, for the Malicia dataset.

Our experiments consist of multiclass classification utilizing 15 of the largest

families, containing a total of 19,705 malware samples. Figure 16 lists these families, along with the total number of samples for each. As with the Malicia dataset, the most

frequent 29 opcodes across these 15 families are considered as unique observations,

with all other opcodes being categorized a single “other” observation. The top 29

opcodes comprise in excess of 90% of the observations for most families, as indicated

in Fig. 17. Cycbot.G is an outlier, with less frequent opcodes occurring at a rate of 26%. Figure 18 lists the observed opcodes and their frequencies.

A single HMM is trained for each family based on training sequences belonging to

that family with total combined length. T = 100 , 000. Training splits for each family are generated as in Sect. 4.2.1 by randomly selecting samples from a specific family until the combined sequence length reaches . T . Once a sample is used in training, it cannot be selected again for training. All samples not used for training are combined

into a single test set, with test samples scored against each family model to determine

the likelihood of belonging to that family. Each test score is normalized by sequence

[image: Image 53]

[image: Image 54]

An Empirical Analysis of Hidden Markov Models with Momentum

199

Fig. 17 Top 29 opcodes percentage for each family

Fig. 18 Opcode frequency for 15 families

length to produce a LLPO score, so that scores for sequences of different lengths are

comparable. Scoring is performed after each of iterations 5, 10, 15, 20, 25, 35, 50,

100, 200, and 300. For each set of parameters, the process is repeated 100 times with

a unique set of training sequences for each run.

[image: Image 55]

200

A. Miller et al.

To compare the effects of momentum on model performance, identical experi-

ments are conducted with and without Nesterov momentum. Experiments are per-

formed using . N = 10, . M = 30, and . T = 100 , 000, and a smoothing value of . s =

0 . 001. Models are trained for 300 iterations with a single initial restart. For our NAG-BW experiments, a momentum value of . m = 0 . 4 is used. We select. N = 10 hidden states for reasonable model training times. Classification performance of the models

is again measured using the AUC statistic derived from ROC curves (one-vs-rest

case), and SVM balanced accuracy (classification based on HMM model scores).

SVM training is performed using five-fold stratified cross validation, with perfor-

mance measured by averaging the balanced accuracy across each fold. SVMS are

trained using the RBF kernel with regularization parameter. C = 10, as we found that this kernel increases accuracy by about 6% as compared to the linear kernel used in

the Malicia experiments.

Overall changes in model score due to NAG-BW momentum follow the pattern

found in the English text and Malicia experiments, with an initial sharp dip in score

due to overshoot followed by improved scores during the period of initial conver-

gence. Figure 19 shows the mean change in score caused by momentum across all families, with significant increases in score leveling off after roughly 25 iterations.

Inspecting the baseline models trained without momentum shows significant vari-

ance in AUC between each family, as can be observed in Fig. 20. For example, Allaple.A and Cycbot.G have mean AUCs near 1.0, leaving little room for any positive changes with momentum, yet about half of the 15 families produce models with

a very poor average AUC between.0 . 5 and.0 . 6; Zbot is lowest, with an average AUC

just under .0 . 5. On average, model AUC without momentum stops increasing by 50

training iterations. While many families have a poor AUC values, this research is

focused on the difference in AUC caused by momentum, rather than the absolute

level of the AUC itself.

Fig. 19 Mean change in model score with momentum

[image: Image 56]

[image: Image 57]

An Empirical Analysis of Hidden Markov Models with Momentum

201

Fig. 20 AUC without momentum for each family

Fig. 21 Comparison of total AUC over all families

Reproducing these same experiments with NAG-BW in place of standard-BW

results in small increases in AUC early in training, aligning with the period of sig-

nificant score increases seen in Fig. 19. A comparison of the mean AUC across all families with and without momentum is shown in Fig. 21a, with b showing the explicit difference in AUC caused by momentum. Momentum results in an average

AUC increase of .0 . 0134 at 10 iterations, dropping to .0 . 002 by 25 iterations. AUC

values with and without momentum tend to converge as the number of iterations

increases, showing negligible differences by 200 iterations.

The difference in AUC for each family due to momentum is depicted in Fig. 22.

At 10 iterations, all families show a net positive change in AUC with momentum.

Between 25 and 50 iterations, VBInject, Zbot, and VB show negative changes in

model AUC, but all three of these families recover with no net difference in AUC

by 100 iterations, which is likely the result of momentum overshooting. On the other

hand, Winwebsec consistently performs worse with momentum after 50 iterations.

[image: Image 58]

[image: Image 59]

202

A. Miller et al.

Fig. 22 Change in AUC due to momentum

Fig. 23 Change in AUC due to momentum at early iterations

Most families stabilize at a small net positive change in AUC at later iterations,

with the exceptions of Winwebsec, Zbot, VB, and FakeRean. Momentum produces

a positive or neutral change in mean AUC for all other families throughout training.

The early AUC differences for each family can be viewed more clearly in Fig. 23.

The change in SVM balanced accuracy with momentum is displayed in Fig. 24. For baseline models without momentum, accuracy increases by a mere 1.36% between 10

and 300 iterations. This appears to indicate that despite the low AUC for many

individual models, the combination of family scores is highly informative, even for

models trained for few iterations. As with model scores and AUC, SVM accuracy

shows the greatest increase at early iterations, declining to just below zero after 25

iterations. The difference in accuracy shows continuous growth after 25 iterations,

with a 0.1% increase in accuracy due to momentum at 300 iterations. While minor,

[image: Image 60]

An Empirical Analysis of Hidden Markov Models with Momentum

203

Fig. 24 Comparison of SVM accuracy with and without momentum

the small average score change with momentum at later iterations does appear to

positively influence the SVM. As models were only trained for 300 iterations, it is

not clear for how many iterations this trend would continue.

 4.3

 Discussion

In our extended malware experiments, both AUC and SVM metrics demonstrate an

overall mean improvement in training speed of approximately 5 iterations, up to

approximately 25 iterations. After that point, the difference in performance caused

by momentum becomes negligible. Therefore, applications aiming to maximize per-

formance would likely not benefit from momentum, assuming that a large number

of iterations are performed with a large training dataset. However, in cases where

time, computational power, or training data is severely limited, it may be desirable

to train for fewer iterations at the cost of some model performance. For such applica-

tions, momentum appears to be able to decrease the number of iterations necessary

to achieve a given level of performance. Based on the English text examples in

Sect. 4.1.4, the longer it takes for a model without momentum to converge, the more potential there is for momentum to improve training speed.

5

Conclusion

Our extensive experiments indicate that adding momentum to Baum-Welch re-

estimation can be beneficial for training Hidden Markov Models in some cases.

In general, HMMs trained with momentum converged more quickly than HMMs

trained without, leading to improved classification performance during early train-

204

A. Miller et al.

ing iterations. Momentum significantly reduced the number of iterations needed in

cases where the model was slow to converge, such as in our English text experiments,

where the matrices were initialized close to uniform values.

On the other hand, differences in model score and malware classification per-

formance were negligible at high numbers of iterations. Momentum is therefore

unlikely to be beneficial in applications aiming to maximize performance at any

cost. However, in cases involving limited computing resources, or when large num-

bers of models must be trained quickly, or when training on limited data (e.g., the cold start problem), momentum can enable us to train for fewer iterations with a reduced

penalty in terms of model performance. For such cases, momentum shows promise

in minimizing the number of required iterations while achieving good performance.

Gains from momentum were most significant for models with a relatively large

number of hidden states, indicating that momentum is likely to be more useful for

more complex models. Momentum did not seem to reduce the number of random

restarts needed; while high momentum caused large jumps in parameter space, we

found little evidence showing that new regions of the parameter space were being

searched.

Future work involving momentum and HMMs could consider other types of data

and HMM applications. While we have no reason to doubt that the results in this paper

hold more broadly, such experiments would confirm the general utility of momentum

when training HMMs. In a similar vein, momentum experiments involving other

HMM variants, such GMM-HMM for continuous observations, would be interesting.

Baldi and Chauvin [2] provide a gradient ascent technique for training HMMs. This technique could also be tested with momentum, and it would provide a counterpoint

to the Baum-Welch momentum experiments considered in this paper. It would also be

interesting to carefully compare the momentum techniques considered in this paper

to the parameterized EM algorithm discussed in Sect. 2.7.

For greater practical utility, it is important to be able to determine the parame-

ters associated with momentum dynamically, as briefly discussed in Sect. 4.1.5. The momentum parameter could be adjusted as part of the training process, based on the

change in the model score. In regions where the model score is rapidly improving, we

would likely be able to further speed convergence by using momentum more aggres-

sively. On the other hand, we observed that for the initial Baum-Welch training step,

it is better to not use momentum at all. Additionally, when the model has essentially

converged and improvements to the model are negligible, randomized steps would

almost certainly be more effective, since we could jump to a different location in the

parameter space, while strict adherence to momentum, will tend to limit movement

to one direction.

References

1. Annachhatre C, Austin TH, Stamp M. Hidden Markov Models for malware classification. J

Comput Virol Hacking Tech. 2015;11:59–73.

An Empirical Analysis of Hidden Markov Models with Momentum

205

2. Baldi P, Chavin Y. Smooth on-line learning algorithms for Hidden Markov Models. Neural Comput. 1994;6:307–318. https://core.ac.uk/download/pdf/4881023.pdf.

3. Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 1997;30:1145–59.

4. Cave RL, Neuwirth LP. Hidden Markov models for English. In: Ferguson JD, editor, Hid-

den Markov models for speech. IDA-CCR; 1980. https://www.cs.sjsu.edu/~stamp/RUA/

CaveNeuwirth/index.html.

5. Chandak A, Lee W, Stamp M. A comparison of Word2Vec, HMM2Vec, and PCA2Vec for

malware classification. In: Stamp M, Alazab M, Shalaginov A, editors. Malware analysis

using artificial intelligence and deep learning. Springer; 2021. p. 287–320.

6. Chen FR , Wilcox LD, Bloomberg DS. A comparison of discrete and continuous Hidden Markov Models for phrase spotting in text images. In: Proceedings of 3rd international conference on document analysis and recognition, vol. 1; 1995. p. 398–402.

7. Dhanasekar D, Di Troia F, Potika K, Stamp M. Detecting encrypted and polymorphic mal-

ware using Hidden Markov Models. In: Parkinson S, Crampton A, Hill R, editors, Guide to

vulnerability analysis for computer networks and systems: an artificial intelligence approach.

Springer; 2018, p. 281–299.

8. Du J. The frontier of SGD and its variants in machine learning. J Phys: Conf Ser. 2019;1229(1).

9. Hex Rays, Hex Rays—state-of-the-art binary code analysis solutions. https://hex-rays.com/

ida-free/.

10. Jin C, Ge R, Netrapalli P, Kakade SM, Jordan MI. How to escape saddle points efficiently; 2015. https://arxiv.org/abs/1703.00887.

11. Jordan M, Xu L. On convergence properties of the EM algorithm for Gaussian mixtures. Neural Comput. 2001;8.

12. Kale AS, Di Troia F, Stamp M. Malware classification with word embedding features; 2021.

https://arxiv.org/abs/2103.02711.

13. Kim S. PE header analysis for malware detection. Master’s thesis, San Jose State University, 2018.

14. Lemaréchal C. Cauchy and the gradient method. https://www.math.uni-bielefeld.de/

documenta/vol-ismp/40_lemarechal-claude.pdf.

15. Nappa A, Zubair Rafique M, Caballero J. The MALICIA dataset: identification and analysis of drive-by download operations. Int J Inf Secur. 2015;14(1):15–33.

16. Nesterov Y. A method for unconstrained convex minimization problem with the rate of convergence. o(1 /k 2). Doklady AN USSR. 1983;269:543–7.

17. Ortiz LE, Kaelbling LP. Accelerating EM: an empirical study; 2023. http://arxiv.org/abs/1301.

6730.

18. Qian N. On the momentum term in gradient descent learning algorithms. Neural Netw.

1999;12(1):145–51.

19. Raghavan A, Di Troia F, Stamp M. Hidden Markov Models with random restarts versus boosting for malware detection. J Comput Virol Hacking Tech. 2019;15:97–107.

20. Ruder S. An overview of gradient descent optimization algorithms; 2016. http://arxiv.org/abs/

1609.04747.

21. Singh S. Hidden Markov Model-based clustering for malware classification. Master’s thesis, San Jose State University, 2021.

22. Srivastava RK, Pandey D. Speech recognition using hmm and soft computing.

Mater Today: Proc. 2022;1:1878–1883. https://www.sciencedirect.com/science/article/pii/

S2214785321065937.

23. Stamp M. A revealing introduction to Hidden Markov Models; 2021. http://www.cs.sjsu.edu/

faculty/stamp/RUA/HMM.pdf.

24. Stamp M. Introduction to machine learning with applications in information security. 2nd ed.

Chapman and Hall/CRC Press; 2022.

25. Sutskever I, Martens J, Dahl G, Hinton G. On the importance of initialization and momentum in deep learning. In: Proceedings of the 30th international conference on machine learning, volume 28 of Proceedings of machine learning research; 2013. p. 1139–1147.

206

A. Miller et al.

26. The Brown Corpus of standard American English. http://www.cs.toronto.edu/~gpenn/csc401/

a1res.html.

27. Vobbilisetty R, Di Troia F, Low RM, Visaggio CA, Stamp M. Classic cryptanalysis using Hidden Markov Models. Cryptologia. 2017;41(1):1–28.

28. Wong W, Stamp M. Hunting for metamorphic engines. J Comput Virol. 2006;2:211–29.

29. Xu L. Comparative analysis on convergence rates of the EM algorithm and its two modifications for Gaussian mixtures. Neural Proc Lett. 1997;6:69–76.

30. Yadav B, Tokekar S. Deep learning in malware identification and classification. In: Stamp M, Alazab M, Shalaginov A, editors, Malware analysis using artificial intelligence and deep learning. Springer; 2021. p. 163–205.

31. Yoon B-J. Hidden Markov Models and their applications in biological sequence analysis.

Current Genom. 2009;10(6):402–415. http://www.eurekaselect.com/node/69904/article.

32. Zhao J, Basole S, Stamp M. Malware classification with gaussian mixture Model-Hidden

Markov models; 2020. https://scholarworks.sjsu.edu/etd_projects/967.

[image: Image 61]

Quantum Computing Methods

for Malware Detection

Eliška Krátká

and Aurél Gábor Gábris

Abstract In this paper, we explore the potential of quantum computing in enhancing

malware detection through the application of Quantum Machine Learning (QML).

Our main objective is to investigate the performance of the Quantum Support Vec-

tor Machine (QSVM) algorithm compared to SVM. A publicly available dataset

containing raw binaries of Portable Executable (PE) files was used for the classifica-

tion. The QSVM algorithm, incorporating quantum kernels through different feature

maps, was implemented and evaluated on a local simulator within the Qiskit SDK

and IBM quantum computers. Experimental results from simulators and quantum

hardware provide insights into the behavior and performance of quantum comput-

ers, especially in handling large-scale computations for malware detection tasks.

The work summarizes the practical experience with using quantum hardware via the

Qiskit interfaces. We describe in detail the critical issues encountered, as well as the

fixes that had to be developed and applied to the base code of the Qiskit Machine

Learning library. These issues include missing transpilation of the circuits submit-

ted to IBM Quantum systems and exceeding the maximum job size limit due to the

submission of all the circuits in one job.

1

Introduction

Quantum computing has opened up new possibilities for addressing complex com-

putational problems that classical computers struggle to solve. Quantum com-

puters exploit the principles of quantum mechanics, such as superposition and

entanglement, which allow them to perform parallel computations and potentially

achieve exponential speedup for specific tasks.

E. Krátká (B)

Faculty of Information Technology, Czech Technical University in Prague, Prague, Czechia

e-mail: kratkeli@fit.cvut.cz

A. G. Gábris

Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czechia

e-mail: gabris.aurel@fjfi.cvut.cz

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

207

M. Stamp and M. Jureček (eds.), Machine Learning, Deep Learning and AI for

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_8

208

E. Krátká and A. G. Gábris

In recent years, a significant milestone in quantum computing has been the devel-

opment of noisy intermediate-scale quantum (NISQ) devices [26]. NISQ devices are the class of quantum computers characterized by their intermediate scale in the

number of qubits. Unlike universal fault-tolerant quantum computers, which are still

a theoretical goal, NISQ devices operate with a limited number of qubits and suffer

from errors due to the noise in the quantum hardware [4]. They typically have tens to hundreds of qubits, larger than what can be simulated classically but smaller than

required for error correction and fault tolerance [4].

One promising research area on the presently available NISQ computers is the

combination of quantum computing and machine learning, known as Quantum

Machine Learning (QML). Over the last decade, there have been significant advances

in the QML field, including conventional machine learning algorithms that can be

enhanced using quantum techniques and entirely new quantum machine learning

algorithms explicitly designed to run on quantum computers [5].

In this chapter, we explore the potential of applying QML to a practical problem

from information security: malware detection. Malware detection is the process of

identifying malicious software. This task is typically framed as a binary classification

problem, where the goal is to distinguish between two categories: malicious and

benign (harmless) software [39]. Machine learning models are well-suited for solving this type of problem. Given the increasing volume and variety of new threats, malware

detection based on machine learning has become a popular approach in modern

antivirus programs [1, 17].

Our research focuses on the Quantum Support Vector Machine (QSVM) algorithm

and its application to malware detection. A key part of the work involves running the

QSVM on quantum computers from IBM. Executing the algorithm on real quantum

hardware presents unique challenges, making the process more difficult than running

the same calculations on quantum computer simulators.

The QSVM algorithm combines the conventional Support Vector Machine (SVM)

with a quantum kernel. We study and implement the quantum kernel using a quantum

computer. The SVM model is then fitted with the precomputed quantum kernel and

trained on a classical computer. We assess the performance of the QSVM in terms

of the model’s accuracy and compare its results to SVM using conventional kernels.

We organize our work into three parts, with each covered in the following sec-

tions. In Sect. 2, we provide the necessary background on the quantum computing aspects of our research, explaining how quantum kernels in QSVM differ from conventional ones and how they are computed using quantum computers. We then intro-

duce Qiskit [16] and IBM Quantum [14], highlighting their roles in implementing the algorithm and accessing quantum hardware. Section 3 focuses on our implementation, emphasizing the challenges faced during the development process for

quantum processors and how we addressed them. Section 4 presents the performed experiments and the achieved results.

Quantum Computing Methods for Malware Detection

209

2

Background

In this section, we explain the core concepts and principles underlying quantum

computation, which are necessary to understand before we focus on the QSVM algo-

rithm. We examine the theoretical foundations of QSVM, describe how it operates

on quantum computers and the advantages it offers over its classical counterpart.

Furthermore, we introduce the Qiskit and its machine learning module [16, 31].

Through Qiskit, researchers can develop quantum algorithms and access quantum

computers from IBM, which are available through the IBM Quantum platform [14].

We discuss the role of Qiskit in our research in implementing QSVM and performing

quantum experiments on real quantum processors.

 2.1

 Terminology

We follow the definitions and explanations of key terms laid down by Nielsen and

Chuang in [23]. The only prerequisite is a basic understanding of elementary linear algebra and classical computing.

The standard notation for linear algebra in quantum mechanics and quantum

computing is known as braket notation, which consists of two elements, bra and ket.

The ket, written as.| ψ, denotes a vector in the vector space. The bra, written as. ψ|, represents a dual vector to the ket. An inner product of two vectors .| ψ and .| ϕ is denoted by . ϕ| ψ. The inner product is formally a map

. · , · : V × V → C ,

where . V is a vector space over . C, which satisfies the following three properties for all vectors . x, y, z ∈ V and all scalars. α ∈ C:

1. x| αy + z = α x| y + x| z

 (linearity in the second argument),

. 2. x | y = y| x ∗

 (conjugate symmetry),

3. x| x ≥ 0 with equality if and only if | x = 0 (positive definiteness),

where * is a complex conjugate and 0 is a zero vector [2]. Quantum computing operates within a finite-dimensional Hilbert space, which in this context is equivalent

to a complex vector space .C n with the inner product.

A quantum bit, known as a qubit, serves as the fundamental unit of information

in quantum computing. While classical computing processes information using bits,

which are binary variables capable of holding values 0 or 1, quantum computing

utilizes qubits.

A state of the qubit, the quantum state, is described by a unit vector in a two-

dimensional Hilbert Space, which we further refer to as a quantum state space. The

states .|0 and .|1 denote the fundamental computational basis states of the qubit,

forming an orthonormal basis. Any quantum state of the qubit can be expressed as

210

E. Krátká and A. G. Gábris

a linear combination of .|0 and .|1, meaning a qubit can exist in a superposition of

these states. For example, the state

. | ψ = α|0 + β|1 ,

represents the qubit in the superposition of .|0 and.|1.

The complex numbers . α and. β referred to as probability amplitudes satisfy

. | α|2 + | β|2 = 1 .

They encode the probability of each outcome and the associated phase information. In

contrast to a classical probability distribution, which only considers the real numbers,

probability amplitudes incorporate both magnitude and phase. The absolute squares

of the probability amplitudes give the probabilities of the possible outcomes occurring

when measured in the computational basis.

Measurement plays an essential role in quantum computing. While the state of a

classical bit can be observed without altering it, the qubit in superposition cannot be

directly measured without affecting its quantum state. Upon measurement, the qubit

 collapses into one of the basis states, giving an outcome of either.|0 with a probability of .| α|2 or .|1 with a probability of .| β|2. Consequently, quantum states inherently embody non-determinism, as their measurement is probabilistic and fundamentally

different from classical systems.

The building blocks of quantum computing are quantum gates and circuits. Quan-

tum gates are basic operations that manipulate qubits, similar to classical logic gates.

They come in various types, such as single-qubit and two-qubit gates, each designed

to perform specific transformations on quantum states. Quantum gates are reversible

transformations, which means they allow for the exact reconstruction of the original

input information after processing. When a quantum gate is applied to a set of qubits,

the operation can be undone without any loss of information. Because quantum gates

are reversible, they preserve the quantum information encoded in qubits.

In quantum computing, quantum gates are represented by the unitary operators.

Unitary operators are mathematical operators represented by matrices that satisfy

the condition

. U † U = I ,

where . U † is the adjoint (conjugate transpose) of . U , and . I is the identity matrix.

Quantum circuits are composed of sequences of quantum gates applied to qubits

to perform specific computational tasks. Just as classical circuits are constructed from

interconnected logic gates, quantum circuits are built by connecting quantum gates.

They describe the flow of information and operations in the quantum computation.

Within quantum circuits, interference emerges is a phenomenon where the proba-

bility amplitudes of different quantum states combine and interact. Transition ampli-

tudes describe the probability amplitude for a qubit to transition from one quantum

state to another under the influence of a quantum gate or operation. In quantum

algorithms, transition amplitudes are manipulated by applying quantum gates to

Quantum Computing Methods for Malware Detection

211

the quantum circuit. By carefully designing the sequence of gates, the interference

effects can be exploited to enhance the probability of obtaining the desired output

state while minimizing the probability of undesired outcomes. The interference can

be constructive, where probability amplitudes increase the probability of a particular

outcome, or destructive, where probability amplitudes cancel each other out, reduc-

ing the probability of specific outcomes. The ability to control transition amplitudes

is a key feature that enables quantum computers to solve specific problems more

efficiently than classical computers.

State overlap and operator fidelity play a crucial role in quantifying the similarity

between quantum states. State overlap quantifies the extent to which two quantum

states share common elements or characteristics, providing insight into their simi-

larity. Operator fidelity quantifies the accuracy of a quantum operation or transfor-

mation by measuring the closeness between the input and output states. Maximizing

fidelity ensures the reliability and effectiveness of quantum algorithms, enhancing

their computational performance and accuracy.

Entanglement refers to a special relationship between qubits that allows them

to become correlated in such a way that the state of one qubit directly influences

the state of another, regardless of their individual locations within a quantum sys-

tem. When two qubits are entangled, they form a single quantum state that cannot

be described independently, which means that the measurement of one qubit will

instantly determine the state of the other qubit, even if they are not physically con-

nected. Entanglement enables quantum computers to perform calculations on multi-

ple states simultaneously and exhibit non-local correlations, exponentially increasing

processing power for certain problem domains.

 2.2

 Quantum Machine Learning

Quantum machine learning explores the potential benefits of using quantum algo-

rithms and quantum computing hardware to enhance classical machine learning

tasks [4]. We focus on enhancing the SVM algorithm, which is a widespread tool in the domain of machine learning-based malware detection [40], by combining it with a quantum kernel, estimated using a quantum computer.

The quantum advantage lies in using a kernel, which is hard to estimate clas-

sically [6]. QSVM is based on quantum circuits that are hard to simulate due to their unique quantum properties, such as entanglement and superposition. QSVM

promises to achieve better accuracy than conventional SVM across various problem

domains, including malware detection [3].

In this section, we explain the concept of kernels in SVM and introduce the

quantum kernel. We also provide an overview of the tools used to implement and run

software on quantum computers, specifically Qiskit and IBM Quantum. Additionally,

we present related work in the field and discuss how it connects to our research.

212

E. Krátká and A. G. Gábris

2.2.1

QSVM

In SVM classification, the algorithm seeks to find an optimal decision boundary

that separates the data points into different classes. Once the decision boundary

is established, new data points can be classified by determining which side of the

boundary they fall on. Many real-world datasets are not inherently linearly separable,

which is why kernels are used in SVM. Kernels map the input features to a new,

possibly higher-dimensional space where the data may become more easily separable.

A feature map. φ(x) is a function which maps each data point. x from the original input feature space to a new transformed feature space with a higher dimensionality.

The kernel function

. k(x , y) = (φ(x) · φ(y))

computes the dot product between two vectors . x and . y in the higher-dimensional feature space. Instead of explicitly computing the transformed vectors. φ(x) and. φ(y), the kernel function computes the dot product directly from the original input space

without explicitly performing the mapping, which allows SVM to operate efficiently

in high-dimensional space [34].

There are various types of SVM kernels, such as polynomial, RBF, and sigmoid

kernels. Different kernel functions define different ways of projecting the data and

measuring similarity between points. QSVM combine SVM with a quantum ker-

nel, computed using a quantum computer. The SVM model is then fitted with the

precomputed quantum kernel and trained on a classical computer.

The key difference between classical and quantum kernels lies in how the data

are processed. In a classical kernel, the data are processed directly in the origi-

nal form within the computational framework. The kernel computes the dot prod-

uct between feature vectors in the original input space. This computation is done

explicitly, without any transformation of the data into a different space.

In contrast, the quantum kernel requires data to be transformed into quantum state

space before processing. In the context of QSVM, we refer to this transformation as

data encoding. Once the data are encoded, the quantum kernel function is applied to

compute correlations between the quantum states. Therefore, estimating the quan-

tum kernel involves two main components: the encoding of classical data and the

application of the quantum kernel function.

The data encoding process is done through a quantum feature map, denoted

as . φ(x). It is a parameterized quantum circuit that maps a classical feature vector . x to its corresponding quantum state .| φ(x) φ(x)|. The mapping is done by applying the unitary operation . Uφ(x) to the initial state .|0 n, where . n is the number of qubits used for encoding [25]. The index. φ(x) in the. Uφ(x) refers to the specific parameterization of the operation. U , which depends on the classical feature vector. x. Quantum gates and operations can be parameterized by certain variables, which affect how they

transform quantum states. Different values of. x lead to different parameterizations of the unitary operation, resulting in different quantum states after the transformation.

Quantum Computing Methods for Malware Detection

213

The quantum kernel function

. k(x , y) = φ(x)| φ(y) = | φ(x)| φ(y)|2

is defined as the state overlap of the two data-encoded feature vectors from the

quantum state space and represents the similarity between them [6]. A larger value of. k(x, y) indicates that the classical data points. x and. y are close in feature space [25].

When applied to all datapoints, quantum kernel function generates the quantum

kernel matrix

. Ki, j = k(xi , x j) = | φ(xi)| φ(x j)|2 ,

where the entries represent the fidelities between different feature vectors. The fideli-

ties can be computed efficiently on the quantum computer by calculating the transition

amplitude between the states

. Ki, j = k(xi , x j) = | φ(xi)| φ(x j)|2 = |0 n| U †

 φ(xi)Uφ(x j)|0 n|2 ,

where the feature map. φ(x) is described as the unitary operation. Uφ(x) applied to the initial state .|0 n [6, 25].

2.2.2

Qiskit

In our work, we rely on Qiskit [16] to implement the QSVM algorithm. Qiskit is an open-source software development kit for Python that enables users to design

and implement algorithms for quantum computers at the level of quantum circuits.

These algorithms can be executed locally on simulators or on quantum computers

from IBM.

IBM provides access to the quantum computers, known as IBM Quantum sys-

tems, via cloud through the IBM Quantum platform [14], allowing researchers to experiment with real quantum hardware without needing specialized infrastructure.

IBM processors fall under the NISQ devices category, meaning they operate with

a limited number of qubits and suffer from errors due to the noise in the quantum

hardware [4, 26]. As of September 2024, eleven quantum processors are available on the IBM Quantum platform. Three quantum processors are freely available to the

public, while the remainder is accessible via a premium plan.

Qiskit Machine Learning [31] is a module within Qiskit which provides tools for quantum machine learning tasks, including classical machine learning algorithms

that can be enhanced using quantum computing techniques and entirely new quantum

machine learning algorithms designed to run on quantum computers. We focus on

introducing the classes implementing the quantum kernel within the Qiskit Machine

Learning module. Understanding those classes is essential for effective integration

of quantum-based kernels into the SVM.

The quantum kernel interface is abstractly defined by the BaseKernel [32]

class. It specifies the evaluate method for constructing a kernel matrix from a

214

E. Krátká and A. G. Gábris

given dataset, which is compatible with the Quantum Support Vector Classifier within

Qiskit Machine Learning, as well as other kernel-based machine learning algorithms

in established classical frameworks (for example, scikit-learn [24]). Each entry in the kernel matrix is the result of the kernel function, defined as

. K (x , y) = f (x)| f (y) ,

where . x, . y are n-dimensional inputs and . f is a map from an n-dimensional to an m-dimensional space. The quantum kernel algorithm computes the kernel matrix

given the datapoints . x and . y, and the feature map . f , all of dimension . n.

The FidelityQuantumKernel [33] implements the BaseKernel inter-

face. The kernel function is defined as the overlap of two quantum states . x

and . y,

. K (x , y) = | φ(x)| φ(y)|2 ,

constructed using the feature map. φ(x). The FidelityQuantumKernel requires

a fidelity primitive, which computes the fidelity between quantum states based on

the BaseStateFidelity [27] algorithm introduced in Qiskit.

The BaseStateFidelity class is an interface that calculates state fidelities

(state overlaps) for pairs of (parameterized) quantum circuits. The fidelity calculation

is generally defined as the state overlap

. | ψ(x)| φ(x)|2 ,

where . ψ and . φ represent the states, and . x and . y are optional parameterizations of these states. The default fidelity primitive in the FidelityQuantumKernel is

the ComputeUncompute [28], which implements the BaseStateFidelity

interface.

The data encoding process allows the quantum kernel to generate correlations

between variables that are difficult to achieve using classical methods alone. The

feature map must be based on quantum circuits that are hard to simulate classi-

cally [6] to obtain the quantum advantage over conventional kernels used in SVM.

We describe feature maps based on the work of Havlicek et al. [6] and implemented in Qiskit, which we later use in our experiments, namely PauliFeatureMap [8], ZZFeatureMap [10] and ZFeatureMap [9].

The PauliFeatureMap is based on the Pauli matrices, which are funda-

mental operators in quantum mechanics. The Pauli matrices include the X, Y

and Z matrices, each representing a different type of quantum operation. In the

PauliFeatureMap, combinations of these matrices, specified by the paulis

parameter, are applied to the input qubits to generate entanglement and capture fea-

tures of the input data. The PauliFeatureMap typically consists of layers of

single-qubit rotations and entangling gates involving Pauli matrices, with parame-

ters that can be optimized during training to learn an adequate representation of the

Quantum Computing Methods for Malware Detection

215

data for classification tasks. Data encoding is achieved by applying the unitary oper-

ation. Uφ(x) to the initial state, which in the case of PauliFeatureMap is defined

as

. Uφ(x) = exp

 i

 φS(x)

 Pi ,

 S∈I

 i ∈ S

where. S is a set of qubit indices that describes the connections in the feature map,. I is a set containing all these index sets, . Pi refers to the chosen Pauli matrix, and xi

if S = { i}

. φS (x) =

 (π − x

 j ∈ S

 j)

if | S| > 1

is the data mapping function, which can be customized.

The ZZFeatureMap is a special case of the PauliFeatureMap, where the

ZZ denotes the use of to the Pauli-Z matrices. These matrices represent the ZZ

interaction between qubits, contributing to the entanglement in the quantum circuit.

In the ZZFeatureMap, the Pauli matrices . Pi are specifically chosen as Pauli-Z

matrices, resulting in a product term that captures the ZZ interaction between qubits

The ZFeatureMap is another specific case of the PauliFeatureMap. Unlike

the ZZFeatureMap, it consists solely of Pauli Z matrices without entangling oper-

ations between qubits. As a result, the encoding produced by the ZFeatureMap

does not exhibit entanglement. While this lack of entanglement may mean that

the ZFeatureMap does not provide a quantum advantage for certain tasks, its

effectiveness still depends on the specific problem being addressed.

The last feature map we later use in our experiments is not implemented in Qiskit

directly. However, it is based on the ZZFeatureMap with a custom data mapping

function, defined as

 xi

if S = { i}

. φS (x) =

sin (π − xi) sin (π − x j) if S = { i, j} ,

where. S is a set of qubit indices that describes the connections in the feature map [25].

We later refer to this feature map as the ZZphiFeatureMap.

All the feature maps mentioned can have a custom circuit depth specified by the

depth parameter, which refers to the number of layers of quantum gates or opera-

tions applied to the input qubits to transform classical data into a quantum state. In

the PauliFeatureMap, each layer typically consists of single-qubit rotations and

entangling gates involving Pauli matrices. The depth of the PauliFeatureMap

is determined by the number of these layers applied to the input qubits. The depth

of a PauliFeatureMap, or any quantum circuit, represents the complexity of the

circuit and the number of sequential operations used to encode classical data into a

quantum state. A deeper circuit may capture more complex patterns in the data but

may also require more computational resources.

216

E. Krátká and A. G. Gábris

 2.3

 Related Work

The inspiration for our research is laid by the work of Barrué and Quertier [3], which provides insights into the performance of quantum machine learning algorithms in the context of malware detection. Notably, to date, this is the only paper

that addresses malware detection through quantum computing methods while also

performing experiments on IBM quantum computers rather than solely relying on

simulators. Their work investigates QSVM alongside Quantum Neural Networks, and

their findings underscore the potential of QSVM to outperform SVM with conven-

tional kernels, mainly when operating with smaller datasets. Their research is heavily

focused on experiments using only Qiskit’s simulator. In contrast, our approach dif-

fers by concentrating on experiments with real quantum computers, which allows

us to assess the practical challenges and performance of QSVM in a more realistic

setting.

However, we encountered several challenges when replicating their results due to

the paper’s lack of detailed experimental descriptions and parameter specifications.

More importantly, they do not specify how many qubits and shots were used or which

processors were utilized when conducting experiments on IBM Quantum devices.

Additionally, they are not consistent with their metrics, such as not consistently

measuring the F1-score, and if so, it is not clear to which parameters it belongs.

3

Implementation

Our implementation consists of two main Python modules: the peml module, which

is responsible for preprocessing the chosen dataset, and the svm module, which

implements the SVM classification interface with both quantum and classical kernels.

These modules are designed to function independently. The peml module focuses

on preprocessing the specified dataset. The svm module can classify any dataset that

adheres to the input format. The source code, along with detailed documentation, is

available on GitLab [18].

The QSVM class within the svm module implements the interface for QSVM

classification using both the local simulator and quantum computers from IBM.

Our implementation is based on two main classes from the Qiskit Machine Learning

module [31], ComputeUncompute [28] and FidelityQuantumKernel [33], which we previously described in detail in Sect. 2. However, a significant limitation of these classes, and the Qiskit Machine Learning module as a whole, is that they

are designed to run only on Qiskit’s local quantum computer simulators. We aim to

apply QSVM on real quantum hardware, specifically IBM’s quantum computers.

In this section, we explain the challenges encountered when running the code

on actual quantum hardware and detail how and why we modified the source code

of these two classes to overcome these obstacles, enabling execution on quantum

Quantum Computing Methods for Malware Detection

217

devices. While the challenges are explained in the context of QSVM, they are uni-

versal to any large-scale practical quantum machine learning problem, not limited to

QSVM, that requires substantial data processing on quantum hardware. For instance,

similar issues would arise when implementing other models, such as neural networks.

 3.1

 Modifications for Quantum Hardware

The implementation of the ComputeUncompute and FidelityQuantum

Kernel classes has three significant limitations that prevent the code from running

on quantum hardware: inability to split the evaluation process, lack of transpilation

for fidelity circuits and submission of all fidelity circuits in a single computational

job, which exceeds the maximum job size limit. In the modified versions of the

classes, we address these issues. Our improvements enable efficient resource utiliza-

tion, ensure compatibility with IBM Quantum hardware, and enhance scalability for

real-world machine learning applications.

However, a major ongoing challenge is that Qiskit and its Qiskit IBM Runtime

module constantly evolve, but often without maintaining minimal backward com-

patibility, which makes it difficult to keep the implementation up to date, and parts

of the project may become outdated even in terms of few months. Nonetheless, as

mentioned earlier, these three problems are not specific only to the QSVM implemen-

tation in Qiskit Machine Learning. They are general issues that need to be considered

when working with real IBM Quantum hardware and should be accounted for in any

project design.

3.1.1

Evaluation Process Must Wait for the Job Completion

The original implementation of the classes lacks the ability to split the evaluation

process into two distinct parts: submitting the computational jobs to IBM Quantum

and processing the completed jobs. As a result, the classification process must run

continuously while awaiting job execution on the IBM Quantum platform, which can

take several days, depending on the job queue. This inefficiency not only consumes

unnecessary resources but also restricts the scalability of the evaluation process,

particularly when dealing with large datasets.

To address this limitation, we introduced a solution that divides the process into

two parts by adding helper methods to handle job submission and post-processing

separately. In the first part, jobs are submitted to IBM Quantum to calculate the

entries of the kernel matrix. Once the quantum jobs are completed, the second phase

processes the results and evaluates the kernel matrices using the saved configuration.

218

E. Krátká and A. G. Gábris

3.1.2

Missing Transpilation

Another issue is the absence of transpilation for the fidelity circuits before sub-

mitting computational jobs to IBM Quantum, which is a critical flaw in the orig-

inal implementation. Transpilation refers to transforming quantum circuits to use

only instructions supported by the targeted quantum processor. This transformation

ensures compatibility and efficient execution on the actual quantum hardware. As of

March 1, 2024, IBM Quantum introduced a significant update to improve the speed

and efficiency of quantum computation [11, 15]. Circuits and observables must now be transformed to use only the instruction set architecture (ISA) supported by the target quantum system, meaning that all circuits must be transpiled before submission

for execution.

Without transpilation, the fidelity circuits in QSVM cannot be exe-

cuted on IBM processors, which makes the ComputeUncompute and

FidelityQuantumKernel classes unusable for real-world applications. It

is worth noting that the transpilation issue is known and tracked by the Qiskit com-

munity, affecting several other classes beyond those discussed here, yet as of the

completion of this work, it remains unresolved [29, 30].

To address this issue, we added logic to ensure the fidelity circuits are transpiled

before submission to the target quantum processor. However, while transpilation is

necessary for executing quantum circuits on IBM hardware, it is not straightforward.

It involves a series of optimizations that can sometimes alter the properties of the

original circuit. During transpilation, circuits are transformed to match the constraints

of the target system, such as available gates and qubit connectivity. However, this

can result in issues such as increased circuit depth, which directly impacts execution

time and noise levels.

Additionally, circuits might be mapped to sub-optimal qubits for the specific com-

putation, further degrading performance. In some cases, the original structure of the

circuit, which was carefully designed for a specific behavior, may be lost or com-

promised during the transpilation process. These challenges make transpilation a

problem of its own, requiring careful consideration when working with real quan-

tum hardware, as the efficiency and accuracy of the quantum computation can be

significantly affected.

3.1.3

Exceeding Maximum Job Size Limit

The original classes submit all the fidelity circuits in a single computational job. While this approach works for local simulation, it becomes impractical for larger datasets on

IBM Quantum systems. The job size often exceeds the maximum allowed limit [13], preventing circuit execution and significantly limiting the usability of these classes,

especially with larger datasets.

To address this limitation, we implemented a one-job-per-kernel-entry approach,

where each fidelity circuit responsible for computing one entry of the kernel matrix is

computed in an individual job. We avoid unnecessary queuing delays by submitting

these jobs in a session, enhancing overall efficiency and scalability.

Quantum Computing Methods for Malware Detection

219

4

Experiments

This section describes the experiments we performed and presents our results. We

categorize the experiments into two types: those run on Qiskit’s local simulator

and those executed on IBM Quantum processors. First, we outline the dataset and

evaluation metrics used, followed by a detailed description of the experiments within

each category.

 4.1

 Dataset

We used the publicly available PE Malware Machine Learning Dataset [19] for our experiments. A key benefit of this dataset is that it provides the raw binary files

themselves rather than just metadata extracted from the samples.

The dataset consists of raw binaries of PE files, such as .exe or .dll files, and con-

tains 201,549 labeled samples, with 86,812 benign and 114,737 malware samples. It

is distributed in an encrypted zip folder, with file extensions removed from the indi-

vidual samples to prevent accidental execution. Most malicious samples are sourced

primarily from platforms like VirusShare [41], MalShare [20], and theZoo [22]. Most of the legitimate files come from various instances of Windows 7, featuring a variety

of installed software. However, there is a potential bias towards files associated with

Microsoft products among them.

Directly feeding raw binary files into the model is impractical due to their unstruc-

tured nature and the volume of data. Unstructured data lacks the organization and

formatting necessary for practical analysis, and the amount of information in raw

binary files makes it challenging for the model to extract meaningful patterns. There-

fore we applied preprocessing techniques such as conversion to grayscale images [21]

and Principal Component Analysis [7] to transform the raw binaries into informative feature vectors from which the model can learn.

We converted the samples into grayscale images, adjusting their width based on

the size of the binary content according to the predefined size ranges from Nataraj

et al. [21]. The images were resized to a uniform size while maintaining their aspect ratio and flattened into one-dimensional feature vectors. To align the dimensionality

of the feature vectors with the number of qubits used in our experiments, we applied

Principal Component Analysis (PCA) for dimensionality reduction. Although it may

seem counterintuitive to convert binary files to images before applying PCA, we fol-

lowed this approach to replicate the setup and results presented in the paper by Barrué

and Quertier [3], described in Sect. 2. However, the image-construction process might not be necessary, and directly applying PCA to the binary data could have avoided

the resizing and flattening steps. We randomly selected samples for the training and

testing groups, ensuring an equal number of benign and malicious samples to create

balanced datasets for our experiments.

220

E. Krátká and A. G. Gábris

 4.2

 Evaluation Metrics

We adopt two metrics for evaluating the performance of models, accuracy and F1

score. Both metrics rely on the following terms, true positives, true negatives, false

positives, and false negatives.

• True positives (TP) refer to the number of malware samples that are correctly

classified as malware.

• True negatives (TN) represent the number of benign samples correctly classified

as benign.

• False positives (FP) refer to the number of benign samples that are incorrectly

classified as malware.

• False negatives (FN) represent the number of malware samples that are incorrectly classified as benign (missed malware detections).

Accuracy represents the proportion of correctly classified samples (both malware

and benign) out of the total number of classifications [35]. It provides a straightforward indication of the model’s overall correctness, reflecting how often it gets the

classification right.

. accuracy =

TP + TN

TP + TN + FP + FN

F1 score is defined as a harmonic mean of precision and recall [36]. Precision measures how many of the samples classified as malware are truly malware [37].

For example, in malware detection, precision tells us what fraction of the files the

model flagged as malware are actually malicious. Recall measures how many of the

actual malware samples were correctly classified [38]. It tells us how well the model performs in detecting malware. It indicates the proportion of all malware samples

that the model successfully identifies.

. precision =

TP

TP + FP

. recall =

TP

TP + FN

The F1 score combines precision and recall into a single metric, which can be espe-

cially useful when false positives and false negatives carry different consequences.

In the context of malware detection, a high F1 score ensures that the model is not

only accurate but also balances identifying actual malware and avoiding false posi-

tives, which can be critical when both false negatives (undetected malware) and false

positives (benign files flagged as malware) are undesirable.

.F1 =

2

=

2 × TP

1

1

2 × TP + FP + FN

precision recall

Quantum Computing Methods for Malware Detection

221

If there are no TP, FN, or FP samples (for example, in cases where no malware

samples were predicted), the F1 score defaults to zero to avoid division errors.

 4.3

 Experimental Results

Our primary focus was on testing and assessing performance on real quantum hard-

ware. While simulators are flexible and convenient, they do not fully capture the

complexity of quantum behavior under real conditions. They cannot fully emulate

the effects of quantum noise in real quantum systems and come at a higher computa-

tional cost. However, testing the implementation first on a simulator is a crucial part

of any quantum computing experiment. Simulators serve as a benchmark, helping to

verify that the quantum circuit is correctly implemented.

IBM Quantum computers offer the opportunity to validate algorithms under real-

world conditions. Despite this advantage, running experiments on quantum comput-

ers introduces several challenges that affect the consistency and scalability of the

results, as discussed in the previous section. Due to these limitations, the experi-

ments conducted on IBM Quantum processors differ from those run on simulators.

We could not run as many experiments on the hardware as on the simulator due to

implementation constraints and limited access to computational resources.

On both platforms, our goal was to evaluate the performance of our QSVM imple-

mentation and compare it with conventional SVM using kernels like polynomial or

RBF. We focused primarily on the model’s accuracy and investigated whether the

QSVM demonstrated any quantum advantage in improved performance over classical

methods.

4.3.1

Simulator

On the local simulator in Qiskit, we tested QSVM classification with datasets of var-

ious sizes, ranging from 500 training samples and 100 test samples to 8000 training

samples and 4000 test samples. For comparison, we performed SVM classification

using classical kernels to evaluate how QSVM performs against conventional meth-

ods. Our goal was to replicate the experimental setup from Barrué and Quertier [3]

as closely as possible and determine whether our implementation achieved similar

performance improvements, particularly on smaller datasets.

A notable finding from Barrué and Quertier [3] is that quantum kernels, especially the ZZFeatureMap, demonstrated up to a 2.5% improvement in accuracy

over conventional SVM kernels in specific configurations. Their results suggest that

QSVM may have an advantage in scenarios with limited dataset size. We aimed to

verify these claims by comparing the performance of QSVM with classical SVM

kernels across various dataset sizes.

In the experiments, we used quantum kernels with different feature maps:

ZZFeatureMap (ZZ), PauliFeatureMap (Pauli), ZZphiFeatureMap

222

E. Krátká and A. G. Gábris

Table 1 Accuracy comparison

Data

Qubits

Quantum Kernels

Classical Kernels

(train/test)

ZZ

Pauli

ZZphi

Z

Linear

Polynomial

RBF

Sigmoid

500/100

3

0.740

0.790

0.800

0.780

0.750

0.690

0.760

0.510

4

0.730

0.780

0.800

0.790

0.740

0.720

0.790

0.540

6

0.660

0.720

0.810

0.810

0.740

0.740

0.810

0.560

7

0.700

0.800

0.820

0.830

0.740

0.750

0.850

0.620

1000/200

3

0.725

0.675

0.735

0.720

0.705

0.730

0.745

0.575

4

0.730

0.660

0.735

0.735

0.705

0.720

0.740

0.580

6

0.745

0.760

0.780

0.775

0.735

0.745

0.790

0.640

7

0.790

0.735

0.780

0.780

0.730

0.775

0.780

0.640

2000/400

3

0.710

0.730

0.748

0.757

0.718

0.672

0.770

0.603

4

0.748

0.743

0.775

0.767

0.718

0.685

0.765

0.585

6

0.777

0.728

0.770

0.780

0.740

0.735

0.782

0.595

7

0.782

0.767

0.802

0.780

0.743

0.743

0.795

0.583

4000/800

3

0.799

0.784

0.771

0.777

0.766

0.639

0.787

0.671

4

0.806

0.821

0.771

0.775

0.771

0.637

0.791

0.637

6

0.830

0.812

0.816

0.800

0.772

0.804

0.830

0.608

7

0.838

0.805

0.824

0.821

0.771

0.791

0.840

0.616

8000/1600 3

0.783

0.779

0.797

0.796

0.779

0.619

0.804

0.633

4

0.812

0.792

0.804

0.806

0.781

0.662

0.822

0.630

6

0.835

0.806

0.819

0.818

0.779

0.734

0.840

0.616

7

0.851

0.812

0.831

0.821

0.776

0.746

0.845

0.608

(ZZphi), and ZFeatureMap (Z), with the depth of the circuits set to 2. We

used 1000 shots for all experiments, as the referenced paper did not specify the

shot count. Number of shots refers to the number of repetitions of each circuit for

sampling. Increasing the number of shots influences the statistical significance of

the quantum measurements but at the cost of the computational time. Our input

data consisted of binaries transformed into grayscale images of size 64. ×64, which

were preprocessed into feature vectors of dimensions corresponding to the number

of used qubits. The same preprocessing method was applied to both quantum and

classical experiments, with the kernel being the primary differentiating factor.

The results, presented in Tables 1 and 2, demonstrate that QSVM consistently matches or outperforms the accuracy and F1 scores of SVM using classical kernels.

In Figs. 1 and 2, we highlight the performance of the kernels based on ZZ and ZZphi feature maps compared to the RBF kernel. Notably, the ZZ and ZZphi kernels

exhibit the best performance among the quantum kernels, while the RBF kernel

stands out among the classical ones.

Figure 1 displays the F1 score comparison for the ZZ, ZZphi, and RBF kernels with three qubits, illustrating how quantum approaches can remain competitive even

Quantum Computing Methods for Malware Detection

223

Table 2 F1 score comparison

Data

Qubits

Quantum Kernels

Classical Kernels

(train/test)

ZZ

Pauli

ZZphi

Z

Linear

Polynomial

RBF

Sigmoid

500/100

3

0.736

0.790

0.797

0.777

0.746

0.662

0.754

0.510

4

0.729

0.779

0.797

0.788

0.736

0.700

0.787

0.540

6

0.649

0.716

0.808

0.810

0.736

0.729

0.808

0.560

7

0.690

0.795

0.819

0.829

0.736

0.738

0.849

0.620

1000/200

3

0.723

0.675

0.732

0.717

0.700

0.728

0.742

0.574

4

0.729

0.658

0.732

0.731

0.700

0.719

0.737

0.579

6

0.744

0.756

0.779

0.775

0.730

0.738

0.789

0.640

7

0.787

0.731

0.779

0.780

0.725

0.771

0.779

0.640

2000/400

3

0.707

0.728

0.747

0.756

0.716

0.651

0.769

0.601

4

0.746

0.741

0.774

0.767

0.716

0.670

0.764

0.584

6

0.776

0.726

0.769

0.780

0.739

0.729

0.782

0.595

7

0.781

0.764

0.802

0.780

0.742

0.737

0.795

0.582

4000/800

3

0.797

0.783

0.769

0.775

0.764

0.612

0.786

0.671

4

0.805

0.821

0.770

0.773

0.769

0.621

0.790

0.637

6

0.830

0.811

0.816

0.799

0.771

0.803

0.830

0.607

7

0.837

0.803

0.823

0.821

0.769

0.790

0.840

0.616

8000/1600 3

0.783

0.779

0.796

0.794

0.778

0.589

0.804

0.633

4

0.812

0.792

0.803

0.805

0.779

0.646

0.822

0.630

6

0.835

0.806

0.818

0.818

0.778

0.731

0.840

0.616

7

0.851

0.812

0.830

0.821

0.775

0.743

0.845

0.607

with limited qubit resources. In contrast, Fig. 2 presents the F1 score comparison for the same kernels with seven qubits, where the quantum kernels (particularly ZZ

and ZZphi) achieve their highest F1 scores. Figure 2 provides a more comprehensive understanding of how these kernels scale with increased qubit count and data size,

demonstrating the potential of quantum kernels against classical benchmarks like the

RBF kernel.

4.3.2

IBM Quantum Systems

The second phase of our experiments involves QSVM classification using quantum

kernels computed on IBM Quantum computers, to which we have access thanks to

a license from the Czech Technical University in Prague (CTU).

Inspired by the potential of NISQ computers, our initial goal was to implement

and evaluate QSVM primarily on IBM Quantum computers. However, during imple-

mentation, we encountered several challenges that significantly altered the course of

[image: Image 62]

[image: Image 63]

224

E. Krátká and A. G. Gábris

Fig. 1 F1 score comparison with 3 qubits

Fig. 2 F1 score comparison with 7 qubits

our experiments, as detailed in Sect. 3. These challenges stem mainly from limitations within the Qiskit Machine Learning module, particularly regarding transpilation

requirements and constraints on job sizes when using IBM Quantum systems.

As a result, we faced limitations when running experiments on real quantum

hardware. To mitigate these issues, we implemented a fix involving the addition

of transpilation and adopting a one-job-per-kernel-entry approach, as described in

Sect. 3. Transpilation, a critical requirement for executing quantum circuits on IBM

Quantum systems, involves adapting circuits to conform to the target quantum sys-

tem’s ISA. While our fix addressed the critical obstacles, more efficient and optimal

solutions likely exist. Unfortunately, due to time constraints during the project, we

were unable to fully explore these alternatives. As a result, we were limited to testing small datasets, with a maximum of 20 training samples and 10 test samples.

Quantum Computing Methods for Malware Detection

225

QSVM classification requires two quantum kernel matrices: one for training and

one for testing. The training matrix is symmetric and has a size of. n × n, where. n is the number of training samples. The test matrix is. m × n, where. m is the number of testing samples. For the dataset of 20 training and 10 testing samples, our one-job-per-kernel-entry approach results in 390 jobs on the quantum computer.

During the debugging phase, we conducted experiments to evaluate the time

required to execute a single job. Although the individual jobs are relatively small

regarding data volume and processing time, the nature of machine learning tasks

requires a substantial number of jobs, particularly with our current implementation,

where one job is required per kernel entry. Each job involves running a parameterized

quantum circuit (based on the chosen feature map) with a specific sample (feature

vector) as the parameter. We tested different numbers of shots and various quantum

processors, finding that executing one job takes approximately 15 s of quantum time.

Quantum time refers to the total duration a quantum system is committed to fulfilling

a user’s request [12]. Therefore, the total time required to evaluate the small dataset with 20 training and 10 testing samples is approximately 97.5 min on the quantum

computer. These limitations are further compounded by the constraints of the CTU

license, which grants us access to only 400 min per month.

We experimented with the number of jobs submitted in a single session. Sessions

allow all jobs to be executed consecutively, minimizing queue wait times. However,

as the number of jobs and the quantum minutes used approach the limits imposed by

our license, queue wait times can increase exponentially. Consequently, even small

datasets (e.g., 20 train and 10 test samples) could queue for up to approximately 14

days on the ibm_torino system, leading us to explore alternative systems.

In our experimentation, we tested various systems and opted to submit all jobs

within a single session to manage larger workloads. When selecting the least busy

system available, we typically encountered queue times of only a few minutes. How-

ever, with the busiest systems (in our case, ibm_torino), wait times could extend

to several hours, even for a relatively small number of jobs. While the quantum pro-

cessing time required to execute the jobs was consistent across various systems, with

differences of only a few seconds, these variations had a notable impact given our

limited resources and the larger volume of jobs we needed to process.

Table 3 presents the results of our experiments. We used different IBM Quantum systems for each dataset size, including ibm_torino, ibm_algiers,

ibm_cairo, and ibm_kyoto. The column labeled job time specifies the average

execution time of each job on the respective system, measured in quantum seconds.

Although we provide accuracy and F1 score metrics for completeness, it is important

to note that due to the small dataset sizes, these metrics may not fully represent the

performance of the QSVM algorithm. However, they offer insights into relative per-

formance across different systems and dataset sizes. The table highlights the iterative

nature of our experiments, beginning with smaller datasets and progressively scaling

up. We started with 4 training and 2 test samples, gradually increasing to 8 training

and 4 test samples, and eventually evaluating a larger dataset with 20 training and

10 test samples.

226

E. Krátká and A. G. Gábris

Table 3 Experiment results: QSVM classification on IBM Quantum systems

Data (train/test)

IBM Quantum

Job time (s)

Accuracy

F1 score

system

4/2

ibm_torino

15

0.5

0.333

ibm_algiers 18

0.5

0.333

8/4

ibm_torino

18

1

1

ibm_algiers 15

0.75

0.733

20/10

ibm_cairo

16

0.6

0.6

ibm_kyoto

17

0.6

0.524

5

Conclusion and Future Work

We extended the previous work by focusing on the implementation and evaluation on

real quantum computers, which brings its own challenges. We addressed and fixed the

issues in the original implementation of classes for quantum kernel in Qiskit Machine

Learning library, namely the inability to split the evaluation process into distinct parts, the absence of transpilation for fidelity circuits and the issue with submitting all the

fidelity circuits in one single job to IBM Quantum leading to exceeding the maximum

limit for job size. The absence of transpilation is a known issue within the Qiskit

community and has not yet been resolved at the time of finishing this work. Our

fixes address critical flaws in the original implementation and pave the way for more

efficient usage of quantum computing resources in malware detection.

Besides the local simulator, we also used IBM Quantum computers to compute

the quantum kernel for QSVM classification. We tested how the IBM Quantum

computers behave under the workload of many computation jobs.

In future work, we aim to optimize the transpilation process and the one-job-per-

kernel entry approach to enable large-scale experiments on IBM Quantum computers.

Further investigation into their topology would also be beneficial, as each system

features a unique layout of qubits. We may reduce computation time by specifying

the exact qubits used for computation.

From an algorithmic perspective, we plan to experiment with feature map design

and combine different data mapping functions to enhance our approach. Furthermore,

we would like to investigate various preprocessing techniques and their impact on

the classification results.

Acknowledgements This work was supported by the Grant Agency of the Czech Technical University in Prague, grant No. SGS23/211/OHK3/3T/18 funded by the MEYS of the Czech

Republic.

Quantum Computing Methods for Malware Detection

227

References

1. Avast. AI and machine learning. 2024. https://www.avast.com/technology/ai-and-machine-

learning

2. Axler S. Linear algebra done right. 4th ed. Cham: Springer International Publishing; 2024.

3. Barrué G, Quertier T. Quantum machine learning for malware classification. 2023. https://doi.

org/10.48550/arXiv.2305.09674

4. Bharti K, Cervera-Lierta A, Kyaw TH, Haug T, Alperin-Lea S, Anand A, Degroote M, Hei-monen H, Kottmann JS, Menke T, Mok W-K, Sim S, Kwek L-C, Aspuru-Guzik A. Noisy

intermediate-scale quantum algorithms. Rev Mod Phys. 2022;94(1).

5. Gujju Y, Matsuo A, Raymond R. Quantum machine learning on near-term quantum devices:

current state of supervised and unsupervised techniques for real-world applications. 2023.

https://doi.org/10.48550/arXiv.2307.00908

6. Havlíček V, Córcoles AD, Temme K, Harrow AW, Kandala A, Chow JM, Gambetta JM.

Supervised learning with quantum-enhanced feature spaces. Nature. 2019;567(7747):209–12.

7. IBM. What is principal component analysis (PCA)? 2024. https://www.ibm.com/topics/

principal-component-analysis

8. IBM Quantum documentation. PauliFeatureMap. 2023. https://docs.quantum.ibm.com/api/

qiskit/qiskit.circuit.library.PauliFeatureMap

9. IBM Quantum documentation. ZFeatureMap. 2023. https://docs.quantum.ibm.com/api/qiskit/

qiskit.circuit.library.ZFeatureMap

10. IBM Quantum documentation. ZZFeatureMap. 2023. https://docs.quantum.ibm.com/api/

qiskit/qiskit.circuit.library.ZZFeatureMap

11. IBM Quantum documentation. Configure runtime compilation for Qiskit runtime. 2024. https://

docs.quantum.ibm.com/run/configure-runtime-compilation

12. IBM Quantum documentation. Estimate job run time. 2024. https://docs.quantum.ibm.com/

run/estimate-job-run-time

13. IBM Quantum documentation. Maximum execution time for Qiskit runtime workloads. 2024.

https://docs.quantum.ibm.com/run/max-execution-time

14. IBM Quantum platform. 2024. https://quantum.ibm.com/

15. IBM Quantum platform. Update to Qiskit runtime primitives. 2024. https://docs.quantum.

ibm.com/announcements/product-updates/2024-02-14-qiskit-runtime-primitives-update#

update-to-qiskit-runtime-primitives

16. Javadi-Abhari A, Treinish M, Krsulich K, Wood CJ, Lishman J, Gacon J, Martiel S, Nation PD, Bishop LS, Cross AW, Johnson BR, Gambetta JM. Quantum computing with Qiskit; 2024.

17. Kaspersky. Machine learning in cybersecurity. 2024. https://www.kaspersky.com/enterprise-

security/wiki-section/products/machine-learning-in-cybersecurity

18. Krátká E. Quantum computing methods for malware detection. 2024. https://gitlab.fit.cvut.cz/

kratkeli/quantum-malware-detection

19. Lester M. PE malware machine learning dataset. 2021. https://practicalsecurityanalytics.com/

pe-malware-machine-learning-dataset/

20. MalShare. 2024. https://malshare.com/

21. Nataraj L, Karthikeyan S, Jacob G, Manjunath BS. Malware images: visualization and automatic classification. In: Proceedings of the 8th international symposium on visualization for cyber security, New York, NY, USA. ACM; 2011. p. 1–7

22. Nativ Y, Ludar L, 5fingers. theZoo. 2021. https://github.com/ytisf/theZoo

23. Nielsen MA, Chuang IL. Quantum computation and quantum information: 10th anniversary

edition. Cambridge University Press; 2010.

24. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Pretten-hofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.

25. Phan A. Qiskit global summer school 2021: introduction to quantum kernels and

SVMs. 2021. https://github.com/Qiskit/platypus/blob/main/notebooks/summer-school/2021/

resources/lab-notebooks/lab-3.ipynb

228

E. Krátká and A. G. Gábris

26. Preskill J. Quantum computing in the NISQ era and beyond. Quantum. 2018;2:79.

27. Qiskit

Algorithms.

BaseStateFidelity.

2024.

https://qiskit-community.github.io/qiskit-

algorithms/stubs/qiskit_algorithms.state_fidelities.BaseStateFidelity.html#qiskit_algorithms.

state_fidelities.BaseStateFidelity

28. Qiskit

Algorithms.

ComputeUncompute.

2024.

https://qiskit-community.github.io/

qiskit-algorithms/stubs/qiskit_algorithms.state_fidelities.ComputeUncompute.html#qiskit_

algorithms.state_fidelities.ComputeUncompute

29. Qiskit Algorithms. ISA circuit support for latest runtime. 2024. https://github.com/qiskit-

community/qiskit-algorithms/issues/164

30. Qiskit IBM runtime. Sampler fails to run FidelityKernel even if circuits are transpired. 2024.

https://github.com/Qiskit/qiskit-ibm-runtime/issues/1519

31. Qiskit Machine Learning. 2024. https://qiskit-community.github.io/qiskit-machine-learning/

32. Qiskit Machine Learning. BaseKernel. 2024. https://qiskit-community.github.io/qiskit-

machine-learning/stubs/qiskit_machine_learning.kernels.BaseKernel.html#qiskit_machine_

learning.kernels.BaseKernel

33. Qiskit Machine Learning. FidelityQuantumKernel. 2024. https://qiskit-community.github.io/

qiskit-machine-learning/stubs/qiskit_machine_learning.kernels.FidelityQuantumKernel.html

34. Schölkopf B, Mika S, Burges CJC, Knirsch P, Muller KR, Ratsch G, Smola AJ. Input space versus feature space in Kernel-based methods. IEEE Trans Neural Netw. 1999;10(5):1000–17.

35. scikit-learn: accuracy_score. 2024. https://scikit-learn.org/stable/modules/generated/sklearn.

metrics.accuracy_score.html

36. scikit-learn: f1_score. 2024. https://scikit-learn.org/stable/modules/generated/sklearn.metrics.

f1_score.html

37. scikit-learn: precision_score. 2024. https://scikit-learn.org/stable/modules/generated/sklearn.

metrics.precision_score.html

38. scikit-learn: recall_score. 2024. https://scikit-learn.org/stable/modules/generated/sklearn.

metrics.recall_score.html

39. Shahzad RK. Automated malware detection and classification using supervised learning.

Blekinge Institute of Technology Doctoral Dissertation Series. Blekinge Tekniska Högskola;

2024.

40. Ucci D, Aniello L, Baldoni R. Survey of machine learning techniques for malware analysis.

Comput Secur. 2019;81:123–47.

41. VirusShare. 2024. https://virusshare.com/

[image: Image 64]

Reducing the Surface for Adversarial

Attacks in Malware Detectors

Benjamín Peraus

and Martin Jureˇcek

Abstract Adversarial attacks pose a significant problem in malware detection

because they allow relatively simple modifications to already detected malware to

recreate undetectable malware and cause misclassification in machine learning mod-

els, even in black-box scenarios. The goal of this work is to study defensive techniques and implement a tool that can mitigate the impact of these attacks by preprocessing

samples to minimize the attack surface needed to create adversarial samples. Our

technique has been subjected to rigorous testing against a number of adversarial gen-

erators. The results of this testing have demonstrated the efficacy of our approach,

with a notable reduction in the evasion rate of detection for most generators to zero

percent. This has been achieved without any adverse impact on the detection accuracy

of common malware.

1 Introduction

Adversarial attacks in the realm of malware detection aim to deceive detection sys-

tems, causing them to misidentify malware. These attacks offer effective methods

for creating undetectable malware using adversarial generators. By making relatively

simple modifications to existing malware, the generator can produce new malware

with the same functionality but evades conventional detection systems. Furthermore,

the combination of generators can enhance evasion techniques, as demonstrated in

the work of [14].

The issue is further compounded by the fact that adversarial samples are often

transferable. Adversarial generators are often focused and learn against specific

detection models. It is therefore unsurprising that the samples are successful against

these specific detection models. However, the problem arises when samples gener-

ated specifically to evade a particular model are also successful in evading different

B. Peraus (B) · M. Jureček

Faculty of Information Technology, Czech Technical University in Prague, Prague, Czechia

e-mail: perauben@fit.cvut.cz

M. Jureček

e-mail: martin.jurecek@fit.cvut.cz

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

231

M. Stamp and M. Jureček (eds.), Machine Learning, Deep Learning and AI for

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_9

232

B. Peraus and M. Jureček

models, despite the internal working of the models being different. The vulnera-

bility of non-commercial or open-source detection systems to adversarial attacks

is not limited to these systems alone. As evidenced by the findings presented in

[12, 15, 19], even commercial antivirus products are susceptible to the same problem.

The motivation behind the work presented in this chapter is the pressing need to

address adversarial attacks in the field of malware detection. Current research indi-

cates that successful attacks could have severe consequences, potentially compro-

mising critical infrastructure or leading to large-scale data breaches. The potential for

such scenarios necessitates a thorough exploration of robust defense mechanisms.

This thesis delves into the complexities of adversarial attacks on Machine Learn-

ing (ML)-based malware detection with the aim of contributing to the development

of more resilient systems. Through comprehensive research, we will explore and

evaluate potential countermeasures that can significantly hinder the effectiveness of

adversarial attacks. Additionally, the dynamic nature of adversarial attacks in mal-

ware detection, with new attack vectors constantly emerging, underscores the need

for a continuous pursuit of innovative defense strategies.

Our contribution to this area of research is the development of a novel defensive

strategy based on adversarial space reduction. Furthermore, we have created a Python

tool capable of performing this reduction. It is our contention that adversarial space

reduction has the potential to enhance the system’s resilience against attacks. In

particular, we hypothesize that this approach can markedly reduce the transferability

of adversarial samples in a black box scenario. Furthermore, we posit that this method

can substantially diminish the creation of new adversarial attacks. Initial experiments

have demonstrated the veracity of our hypotheses, and the results regarding accuracy

and resilience to adversarial attacks are encouraging.

The remainder of this chapter is organized as follows. Section 2 covers related work in the field of defense against adversarial attacks. Section 3 provides the necessary background on adversarial attacks, adversarial generators, and Portable

Executable (PE) format. Section 4 describes defense techniques against adversarial attacks. Section 5 presents our proposed method. Section 6 outlines the experimental setup. Section 7 details the experiments and results. Section 8 contains our conclusion, including future work.

2 Related Work

This section provides an overview of related works in the field of defense against

adversarial machine learning attacks.

 2.1

 Related Works Based on Preprocessing

This section presents an overview of existing research on adversarial reduction.

Reducing the Surface for Adversarial Attacks in Malware Detectors

233

2.1.1 Burning the Adversarial Bridges: Robust Windows Malware

Detection Against Binary-Level Mutations

The paper [1] addresses two critical aspects in the field of malware detection: 1. Preprocessing for Reduced Attack Surface: The preprocessing steps (padding

removal, software stripping, and inter-section information resetting) are designed

to eliminate superfluous elements from the binary file. Such elements may be

exploited for adversarial modifications.

2. Effective Representation with Graph Neural Networks (GNNs): The paper puts

forth a graph-based representation of the binary code. This representation cap-

tures the relationships and dependencies between different sections within the

binary. By comprehending the program’s structure and the interrelationships

between its various sections, GNNs may be able to discern patterns indicative of

malicious behavior. It is noteworthy that GNNs are less reliant on specific code

sequences and focus more on the program’s overall structure. This makes them

more resilient against attempts to evade detection through minor binary-level

mutations.

The advantages of this method are as follows. The effective representation of data

with GNNs represents a significant topic in this paper. The effective representation

of data may mitigate the potential for adversarial attacks. Our work does not focus

on the development of more effective representations. Instead, our work employs

the EMBER representation, which has gained widespread acceptance as an effective

approach. Reducing adversarial space by preprocessing, similar to our proposed

method, is also an advantage.

The following disadvantages are to be considered. The description of the adver-

sarial space reduction is inadequate. It is unclear which fields in binary headers are

set to zero. The manner in which inter-section zeroing is implemented is unclear.

It is uncertain whether inter-section zeroing is susceptible to section table shuf-

fling. Only trivial anti-modifications have been implemented. Our implementation

of adversarial space reduction is more specifically described, and we implement also

harder modifications, such as the removal of unused imports. The potential impact

of the modification on the functionality of the program has been discussed. This is a

significant advantage of our proposed method. Training on unmodified reduced mal-

ware samples can be an effective approach, provided that the adversarial reduction

is capable of eliminating all adversarial modifications. However, it is important to

note that this adversarial space reduction is not a perfect solution. Ideally, adversar-

ial examples would also be incorporated into the training data or the entire method.

Our proposed method incorporates an adversarial part trained on reduced adversar-

ial malware samples, which can effectively address adversarial attacks that are not

eliminated by adversarial space reduction.

234

B. Peraus and M. Jureček

2.1.2 Defend Against Adversarial Attacks in Malware Detection

Through Attack Space Management

The paper [18] is focused on adversarial space reduction, which is also the subject of our work. The primary objective is to recreate the malware sample in a form that is

suitable for malware classification. This will ensure that adversarial modification has

minimal impact on the ability to evade malware detection. To achieve this, function-

preserving transformations are employed, which serve as the equivalent for our anti-

modifications. The aim is to develop a robust approach that can effectively address

adversarial attacks through adversarial space reduction.

The advantages of this method are as follows. The presented transformations for

reducing adversarial space are thought provoking, particularly those that have not

been implemented in our work, such as the handling of resources section, splitting

merged sections, and excluding injected sections. This paper puts forth the proposal of

employing adversarial reduction techniques for training data, in a manner consistent

with our own proposed method.

The following disadvantages are to be considered. It cannot be stated with certainty

that the transformations in question preserve program functionality. In our work,

we provided a comprehensive account of the potential for each antimodification to

alter program functionality. The extent to which the transformation preserves the

functionality of the program is contingent upon the capabilities of the disassembler.

This implies that code sections can be obfuscated, and that the disassembler may skip

portions of code containing the JMP instruction to the next code section. In such a

case, the section in question would be regarded as injected, which entails the removal

of a section and the disruption of the program’s functionality. Some transformations

are not sufficiently described or absent from the documentation. For instance, the

elimination of perturbation in the optional header, the appending of content to overlay

data, and the removal of unused imported symbols are not addressed. In our work,

we implemented all of the mentioned transformations. Additional disadvantages

are analogous to those observed in the context of paper, as previously discussed

in Sect. 2.1.1. These include the absence of any component trained on adversarial malware samples, which our proposed method includes.

 2.2

 Related Works Based on Other Methods

This section presents related works based on different methodologies than those

employed in our proposed method.

2.2.1 StratDef: A Deep Dive into Strategic Defense

As described in [24], StratDef is an example of combined defense. Its objective is to create a constantly changing target for attackers by selecting the optimal model from

Reducing the Surface for Adversarial Attacks in Malware Detectors

235

a set of pre-trained models on a dynamic basis. The result of this approach is that it becomes significantly more difficult for attackers to craft adversarial examples that

can circumvent the existing detection system. The defense is based on the following

points:

1. The creation of a model pool is the initial step undertaken by StratDef in the

process of developing a system for the detection of malware. The model pool

is constituted by a diverse range of pre-trained machine learning models, which

exhibit a distinct architecture, training data set, and set of hyperparameters. In

addition to these models, the pool also includes those that have been trained to

resist adversarial attacks. The defense strategies against adversarial examples on

a single model level can be variable.

2. The selection of the most appropriate model for prediction is based on the previ-

ously created moving strategy and the actual information related to the prediction.

The choice is made by rolling a biased die based on the probabilities.

3. StratDef’s strength lies in its dynamic adaptability. Over time, the system mon-

itors the effectiveness of each model against real-world attacks. Models that

consistently perform well are retained and potentially further improved through

retraining. Conversely, models that become vulnerable are either removed from

the pool or retrained with additional data to strengthen their defenses.

The advantages of StratDef are as follows. Enhanced robustness is a crucial advan-

tage of StratDef. StratDef does not rely on a single model but instead selects from

a pool of models, reducing the risk of an attacker fooling one model. This results

in robustness that is potentially superior to our proposed method. Adaptability to

different threats is the next advantage. Risk assessment allows StratDef to prioritize

models based on the perceived threat level and user context, offering a more nuanced

defense. Our proposed method lacks adaptability, which represents a clear advantage

of StratDef.

This paragraph lists the disadvantages associated with the StratDef method com-

pared to the proposed method. The computational cost of employing multiple models,

each of which must be kept up to date, is significantly greater than the computational

cost of employing a single model. Our defense technique scheme is much simpler.

The data requirements for training and optimizing multiple models are greater than

the data requirements for employing a single model. Furthermore, the time required to

complete this process is longer. Our defense technique does not require a substantial

amount of data. Each of its components, including adversarial and non-adversarial

parts as well as adversarial reduction part, can be updated independently. The StratDef

is more complex, comprising multiple components, and therefore presents greater

challenges in terms of implementation and management. In comparison, our defense

technique is relatively simple.

It is possible that the proposed method and StratDef could be considered as two

distinct approaches, but it is also possible that they could be viewed as complemen-

tary. Indeed, our proposed method could be incorporated into the existing pool of

StratDef.

236

B. Peraus and M. Jureček

2.2.2 Updating Windows Malware Detectors: Balancing Robustness

and Regression Against Adversarial EXEmples

The paper [13] outlined a defensive scheme designed to enhance existing defenses by incorporating a supplementary layer of protection. This layer can be integrated into

existing detection systems as a plugin. This layer, designated as the EXE-scanner,

is tasked with recognizing adversarial malware. It is trained on both benign samples

and adversarial malware samples. The ML model utilized for this layer is GBDT.

The detection process is conducted in the following manner:

1. The sample is provided to the detection system (antivirus) for analysis, which

then determines whether the sample is malicious or benign. If the detection

system identifies the sample as malicious, the process concludes.

2. Conversely, if the sample is classified as benign, the process continues. The

sample is then subjected to an EXE scanner to ascertain whether it is malicious

or benign. The EXE scanner’s output serves as the final label for the sample.

The EXE-scanner offers a number of advantages. A straightforward approach to

enhancing and reinforcing existing defenses is undoubtedly advantageous. In con-

trast, our proposed defensive methodology is more intricate. However, the adversarial

aspect of our proposed method can be utilised for the same purposes as EXE-scanner.

The separation of the adversarial malware detection component allows for the exist-

ing models to be updated independently, negating the need to retrain them to imple-

ment this defense technique. The principle of separated parts for adversarial and

non-adversarial detection is employed in our method as well. Our method is more

complex, and thus, the optimal approach is to retrain actual defenses on reduced

samples using our reducer. We hypothesize that our principles can also be applied

to extend existing defenses (add an adversarial part and add an adversarial reduction

before the existing defense), but this scenario has not yet been tested.

The EXE-scanner is not without shortcomings, which can be enumerated as fol-

lows. One of the advantages of our method is that it makes use of adversarial space

reduction. The inclusion of the EXE-scanner without adversarial space reduction

renders the EXE-scanner more susceptible to new generators, as the attack surface

for adversarial attacks is not minimized. Despite the fact that the EXE-scanner is

the only component attempting to prevent adversarial attacks, it must be acknowl-

edged that this component requires updating and the data set must be extended with

new adversarial samples. In our defense technique, the adversarial component is not

a significant priority for updating, as long as the adversarial reduction is effective

and sufficient. In this case, the adversarial part will become less and less necessary.

Additionally, this defensive strategy may be susceptible to exploitation by older gen-

erators when the internal settings of generators undergo alterations. To illustrate, we

may consider the example of adversarial modification, which results in a CheckSum

field value of 0xFF. A learned ML model is aware of this compromised CheckSum

value. However, the issue arises when the value is altered to a different value. The

ML model is only familiar with this value, which is typical for adversarial malware.

Reducing the Surface for Adversarial Attacks in Malware Detectors

237

Different values can influence the evasion. Our defense technique eliminates this

field as a candidate for adversarial modification by reducing the adversarial space.

2.2.3 MalProtect: Stateful Defense Against Adversarial Query Attacks

in ML-Based Malware Detection

MalProtect, described in [25], monitors the sequence of queries submitted to the detection model, thereby enabling it to track changes in the attacker’s behavior and

identify patterns indicative of manipulation attempts. Limiting access to detection

systems can help minimize the information knowledge of the attacker about the

detection system, which is needed to train the evasion strategy. In the event that the

attacker is detected, it is possible to react. For example, by changing the detection

ML model. The advantages and disadvantages are similar to StratDef.

3 Background

This section provides an essential background for understanding adversarial attacks

and Portable Executable (PE) format. In particular, it describes adversarial attacks in

the black-box scenario in detail. It also presents a taxonomy of adversarial attacks.

The description is created with the perspective of malware detection.

Adversarial attacks are a type of cyberattack that specifically target machine learn-

ing models. These attacks aim to manipulate the model’s decision-making process

by feeding its inputs that are designed to be very similar to legitimate inputs, but

with subtle modifications that cause the model to make incorrect predictions. These

inputs, which are called “adversarial examples”, are crafted in such a way that they

are hardly distinguishable from legitimate inputs, yet they elicit incorrect responses

from the model.

 3.1

 Taxonomy of Adversarial Attacks

Adversarial attacks in the malware detection domain can be classified in various

ways, depending on the specific aspects being considered. To illustrate, we will

consider th following, particularly inspired by National Institute of Standards and

Technology (NIST) [21, 29]:

238

B. Peraus and M. Jureček

1. By Attack Goal

• Evasion Attacks: The objective of this type of attack is to induce a machine

learning model to misclassify an input. This is the most prevalent form of

adversarial attack. To illustrate, an adversary might create an adversarial mal-

ware sample that a malware detection system misclassifies as a legitimate

benign file.

• Targeted misclassification: Targeted misclassification is a form of attack in

which the attacker attempts to have the model misclassify a specific type of

malware as a different, less severe type. This manipulation allows the malware

to bypass security measures designed for specific threats. It occurs at the single

sample level.

• Poisoning attacks: Poisoning attacks target the training data of a machine

learning model with the goal of manipulating the model’s behavior during

training. This can lead to the model performing poorly on unseen data. To

illustrate, consider a classifier that can recognize the malware family. The

training data for this classifier are collected from cyberspace. This implies that

attackers may attempt to inundate the cyberspace or specific targets, which

are utilized to collect data for training with some adversarial samples of mal-

ware. Modifying the training data set may result in the classifier erroneously

classifying common unmodified malware. Consequently, the performance of

the model may be negatively affected.

2. By Attacker Knowledge

• White-Box Attacks: In this scenario, the attacker is presumed to have com-

plete knowledge of the malware classifier’s architecture, parameters, and train-

ing data. This is unlikely in real-world malware detection, as models are often

proprietary and not publicly accessible.

• Black-Box Attacks: In this scenario, the attacker is not privy to the model’s

inner workings. They are only able to interact with the classifier by submitting

malware samples and observing the classifications. This is a more realistic

scenario for attackers targeting deployed malware detection systems.

• Gray-Box Attacks: The attacker may possess partial knowledge about the

model’s architecture or training data, including the types of features utilized

for classification. The extent to which this information is known by the attacker

can vary depending on the manner in which it was obtained.

3. By Adversarial Example Properties

• Physical Adversarial Examples: These are less prevalent in the context of

malware detection, as malware primarily operates within the digital domain.

However, there are theoretical scenarios in which physical modifications to

infected devices might influence the manner in which malware interacts with

the detection system.

Reducing the Surface for Adversarial Attacks in Malware Detectors

239

• Digital Adversarial Examples: These are the most prevalent types of malware

in terms of detection. The perpetrator modifies the malware sample itself

(e.g., the binary code) in order to circumvent detection while maintaining its

malicious functionality.

4. By Perturbation Method

• Gradient-Based Methods: This approach is a popular one that leverages

the gradients of the model’s loss function. The gradient essentially indicates

how much the model’s output (loss) changes with respect to small changes

in the input. Attackers can calculate the gradients and use them to iteratively

modify the input in a direction that will maximize the change in the model’s

output. This method allows for crafting targeted adversarial examples, as the

attacker can specify the desired target category and adjust the modifications

accordingly. Nevertheless, gradient-based methods are often computationally

expensive and may not always identify optimal adversarial example.

• Gradient-Free Methods: These methods do not rely on gradients and may

be more efficient in certain scenarios. They involve iteratively making small

random modifications to the input and evaluating the model’s output. If the

modification brings the output closer to the target category, it is retained. Oth-

erwise, it is discarded, and a new random modification is attempted. Gradient-

free methods may be less precise than gradient-based methods, but they may

be useful when calculating gradients is difficult or computationally expensive.

– Evolutionary Algorithms: These methods are inspired by biological evo-

lution and involve a population of candidate adversarial examples. The

examples are evaluated based on their proximity to achieving the desired

misclassification. “Fit” examples (those closer to the target misclassi-

fication) are then used to create new variations through mutations or

crossovers (combining elements from different examples). This iterative

process allows for the population to evolve towards increasingly effective

adversarial examples. Evolutionary algorithms are computationally expen-

sive, yet they offer a powerful means of exploring a wider range of potential

adversarial modifications.

– Decision Boundary Methods: Decision boundary methods focus on iden-

tifying the decision boundaries of the model, which are the regions in the

input space that separate different classification categories. Attackers can

then make targeted modifications to the input that push it across a decision

boundary and into the desired target category. This approach can be partic-

ularly effective for simpler models with well-defined decision boundaries.

– Reinforcement Learning: Reinforcement learning represents an effec-

tive approach to the generation of adversarial examples. The potential for

interaction with anti-malware environments is well-suited to the black-box

scenario. A specific set of adversarial modifications has been defined for

PE files, which are applied to unmodified malware samples by agents. Dur-

240

B. Peraus and M. Jureček

ing the training process, agents apply modifications to unmodified malware

samples, after which the modified malware sample is presented to an anti-

malware classifier. Based on the feedback received from the environment,

agents are rewarded. The objective of the learning process is to maximize

the reward of the agents in order to identify an effective strategy for mod-

ifying the malware, which would result in a higher evasion rate for the

specified classifier.

 3.2

 Adversarial Generators

This section describes selected adversarial generators used in the experimental part

to create Adversarial Examples (AE).

3.2.1 FGSM

The Fast Gradient Sign Method (FGSM) is a gradient-based method for generating

adversarial examples, initially proposed by Goodfellow et al. [8]. A modified version for the domain of malware samples is employed, whereby only a small portion of

bytes (payload) is perturbed and subsequently inserted to the original malware file

[16]. This attack is designed in a whitebox scenario and requires knowledge of the loss function used in the target classifier for FGSM. However, AEs are transferable to

other classifiers and can be used in a black-box scenario as well. In the aforementioned paper, Kreuk et al. [16] describe two methods for inserting payloads into executable files:

1. Mid-file injection: The payload is placed in existing, unused bytes of sections

where the physical size is greater than the virtual size.

2. End-of-file injection: The payload is treated as a new section and appended to

the file.

The implementation of the adversarial generator is available on the GitHub repository

 pralab/secml _ malware.

3.2.2 AMG

The Adversarial Malware Generator (AMG) is a reinforcement learning-based gen-

erator for creating AEs [12]. This generator can operate in two modes: 1. The generator uses the Proximal Policy Optimization (PPO) algorithm to choose

optimal modifications based on the policy learned during training.

2. A random agent is deployed, i.e., no previous training is needed, and available

modifications are chosen at random. The possible actions are in the form of

Reducing the Surface for Adversarial Attacks in Malware Detectors

241

a predefined set of PE file manipulations that the agents repeatedly use until

the evasion by the target classifier is accomplished or a maximum number of

modifications, 50, is performed.

The set of possible modifications is as follows:

• Breaking CheckSum field,

• appending new import,

• appending content to overlay,

• removing debug information,

• removing certificate table,

• adding new section with random content,

• modifying an unused part of the section content,

• renaming section,

• increasing TimeDateStamp,

• decreasing TimeDateStamp.

The implementation of this generator is available is available on the GitHub reposi-

tory matouskozak/AMG.

3.2.3 DOS Adversarial Generators

The following three adversarial attacks are gradient-based, specifically employing the

single gradient step method. The underlying principles of these attacks are elucidated

in papers [5, 6]. The byte modifications employed in these generators are applied exclusively to the MS-DOS part of the executable file, specifically the MS-DOS

header and MS-DOS stub.

• PartialDOS: This attack modifies the MS-DOS header in its entirety, with the

exception of two fields: the signature byte and the PE header offset.

• FullDOS: This attack employs the entire DOS part of the executable, the MS-DOS

header, and the MS-DOS stub for byte modifications. As in the previous case, the

sole exception to the byte modifications is the signature byte and the PE header

offset.

• ExtendDOS: This attack aims to expand the attack space for byte modifications.

By increasing the PE header offset field, new space is created between the end of

the MS-DOS stub and the beginning of the PE header. Except signature byte and

PE header offset, there is new space available for byte modifications that can be

used together with both DOS parts of executable file.

The implementation of the adversarial generator is available on the GitHub repository

 pralab/secml _ malware.

242

B. Peraus and M. Jureček

3.2.4 MAB-Malware

MAB-Malware [28] uses a type of reinforcement learning called “multi-armed bandit” to create adversarial malware. Unlike other methods, it does not care about the

order of changes, which keeps things simple. It works by trying changes to a file until it evades detection or reaches a limit. It then removes unnecessary modifications to

create the most streamlined adversarial example possible. This approach essentially

uses trial and error with built-in optimization to outsmart malware detectors. MAB-

Malware Generator is typically available as MAB-MalConv and MAB-EMBER.

The difference is the target classifier. MAB-MalConv is targeted to evade MalConv

based classifiers [23], while MAB-EMBER is targeted to evade EMBER based classifiers [2] . The set of possible modifications is as follows:

• Overlay Append: Appends benign contents at the end of a binary.

• Section Append: Appends random bytes to the unused space at the end of a

section.

• Section Add: Adds a new section with benign contents.

• Section Rename: Change the section name to a name in benign binaries.

• Remove Certificate: Zero out the signed certificate of a binary.

• Remove Debug: Zero out the debug information in a binary.

• Break Checksum: Zero out the checksum value in the optional header.

• Code Randomization: Replace instruction sequence with semantically equivalent

one.

The implementation of this adversarial generator is available on the GitHub reposi-

tory bitsecurerlab/MAB-malware.

3.2.5 GAMMA

The Genetic Adversarial Machine learning Malware attack (GAMMA) generator

employs a genetic algorithm to select the adversarial modification. The method is

described in detail in the paper [7]. This paper presents a multitude of adversarial modifications that may be utilized. However, the implemented and tested variants

are limited to the following:

• The addition of content to the end of the file (to the overlay),

• the injection of a new, unused section with random content.

The implementation of the adversarial generator is available on the GitHub repository

 pralab/secml _ malware.

3.2.6 Gym-Malware

Gym-malware is an OpenAI Gym-based reinforcement-learning generator (and also

an environment) for adversarial malware samples. This generator was the basis for

Reducing the Surface for Adversarial Attacks in Malware Detectors

243

the AMG generator as well. This generator learns optimal modification strategies

in interaction with the malware detection environment. The method is described

in the paper [3]. In this thesis, we employed Gym-malware in two modes. In the black-box mode, Gym-malware was trained against the Gradient Boosted Decision

Trees (GBDT) model [32], with only the binary response (i.e., whether the sample was malware or not) being utilized for training. In the second mode, score mode,

Gym-malware was trained against the same GBDT model, but the confidence score

responses of the model were employed for training.

The executable file modifications employed by this generator are as follows:

• Adding a function to the import address table that is never used,

• manipulating existing section names,

• creating new (unused) sections,

• appending bytes to extra space at the end of sections,

• creating a new entry point which immediately jumps to the original entry point,

• removing signer information,

• manipulating debug info,

• packing or unpacking the file (UPX packer),

• modifying (breaking) header CheckSum,

• appending bytes to the overlay,

The implementation of this adversarial generator is available on the GitHub reposi-

tory endgameinc/gym-malware.

 3.3

 PE format

Portable Executable (PE) is a file format commonly used for Executables (EXEs)

and Dynamically Linked Libraries (DDLs). This file format is typical for Windows

operating systems. It contains all the necessary information for the Operating System

(OS) loader to correctly map the PE file to system memory.

The PE file format has a specific structure. It begins with the MS-DOS header,

followed by the MS-DOS stub program. Next, the Common Object File Format

(COFF) header is included, followed by the optional header. Finally, the section

table is presented, followed by the individual sections. Optionally, an overlay can

also be found at the end of the file. This may contain both useful and useless data,

such as digital signatures and certificates. Figure 1 shows the high-level structure of the PE File Format. All information regarding the PE format can be found in

the official documentation published by Microsoft [11]. The parts of the PE format that are pertinent to our work are the MS-DOS header and stub, the COFF header,

the optional header, the section table and data, and the overlay data. Of the data

directories, the most relevant for our work are the certificate table, the debug data

directory, the import table, and the import address table.

244

B. Peraus and M. Jureček

PE Format

MS-DOS Header

MS-DOS Stub

PE Header

COFF Header

Optional Header

Section Table

Section Data + Overlay

Fig. 1 The high-level structure of the PE file format

4 Defense Techniques

This section describes defenses against adversarial attacks, particularly in black-

box scenarios. It is of paramount importance to emphasise that the majority of the

defensive strategies against adversarial attacks outlined in this chapter were initially

developed for the domain of image recognition. Consequently, the objective of this

chapter is to elucidate these methods in the context of malware classification and to

discuss the benefits and limitations of applying these techniques for malware clas-

sification. The selection of defense techniques is informed by the insights presented

in paper [4].

Reducing the Surface for Adversarial Attacks in Malware Detectors

245

 4.1

 Adversarial Training

Adversarial training enables a model to counteract attacks. This technique is employed

extensively in various fields. The paper [9] elucidates its application in the domain of picture classification. The papers [17, 20] concentrates on the domain of malware detection. When considering black-box scenario attacks, the process for developing

a defense is as follows:

1. Generating Adversarial Examples: During training, the model is exposed not

only to normal data (i.e., malware and benign samples without targeted adversar-

ial modifications) but also to adversarial examples. The provided dataset consists

of the latest adversarial samples generated by the most recent generators.

2. Learning Robustness: By exposing the model to adversarial examples, it

becomes more resilient to minor changes in the input data. It enhances its capabil-

ity to concentrate on the crucial characteristics of the malware sample (patterns

that are significant for malware) while disregarding irrelevant noise (caused by

perturbations) that attackers may introduce.

4.1.1 Benefits and Limitations of Adversarial Training

Enhanced generalizability is benefit of adversarial training. Adversarial training goes

beyond just protecting against specific attacks. Encountering various data distortions

helps the model become more adaptable to real-world variations, ultimately improv-

ing its overall performance. Thanks to adversarial training, we can achieve a certain

level of proactive defense. By learning patterns of adversarial examples, we can

increase our robustness against potential adversarial samples that do not yet exist.

The main disadvantage of this defense technique is the large size of the dataset.

When the base dataset containing only unmodified malware is already large, apply-

ing various adversarial generators with different modifications can cause the dataset

to grow exponentially. When attackers create new generators with different modifi-

cations, the dataset must be extended again, and the ML model must be retrained.

Repeating this process is important to stay ahead of attackers, but it can be compu-

tationally expensive.

From a black-box attack perspective, adversarial perturbations can target specific

classifiers, including ours, and their internal workings. However, these perturbations

can still be effective when transferred to another model, even if the internal struc-

ture is different. Adversarial generated samples’ perturbations can depend on the

attacker’s settings. Our different setting of the generator can create samples with

different patterns than the attacker’s samples. In this instance, adversarial training is

not sufficiently robust against adversarial samples created by an attacker.

246

B. Peraus and M. Jureček

 4.2

 Null Label Training

Null label training addresses the issue of adversarial examples by training the model

to classify regular samples and identify and reject adversarial ones. The technique in

question is described in detail in the paper [10]. The null labeling method considers not only whether a sample is malware or not, but also whether it is adversarial.

This is achieved by adding a ‘null’ label that indicates the probability of adversarial

modifications.

There are multiple ways to implement this method. One possible way to improve

the model is to modify the loss function to include objective criteria, such as adver-

sarial sample recognition. Another option is to create a function that can assess the

degree of adversarial modification. This can be used to determine the likelihood of

a sample being adversarial or not. This function can be used to add the ‘null’ label

for training dataset for adversarial training.

4.2.1 Benefits and Limitations of Null Label Training

By learning the characteristics of adversarial manipulations, the model becomes

less susceptible to transferred attacks. It flags these examples as ‘null’ instead of

making potentially incorrect predictions. The model is trained to accurately classify

legitimate data samples. The ‘null’ label is only applied to suspicious inputs.

The limitations of this defense technique are almost the same as those in the case

of adversarial training. A large number of adversarial samples need to be generated

using actual generators. The model should be updated to be in line with attackers,

and the update process requires significant computing performance.

 4.3

 Feature Squeezing

Feature squeezing is a technique that aims to expose adversarial manipulations by

simplifying the input data presented to the model and selecting only the relevant

features for malware recognition. In the field of image classification, this defensive

technique is presented in [31]. The elimination of irrelevant features, which are not relevant to the recognition process, limits the adversarial attack surface. As an

illustration of the utilization of the aforementioned feature, the EMBER project [2]

may be cited as an exemplar. This project employs feature extraction and vector

representation for its datasets. Other projects, such as MalConv [23], utilize only a portion of the PE file, which entails the raw binary data without the selection of only the relevant components.

It is also possible to utilize both ML models. The first model is trained on non-

squeezed samples, while the second model is trained on the squeeze representation of

the same data. The sample to be classified is then sent to both models, allowing for the

Reducing the Surface for Adversarial Attacks in Malware Detectors

247

observation of the consistency of the output from both classifiers. The discrepancy

in the output from both ML models indicates the presence of an adversarial attack.

This technique is referred to as detection through disagreement.

4.3.1 Benefits and Limitations of Feature Squeezing

Feature squeezing represents a valuable tool for identifying malware that attempts

to evade detection through minor modifications. Consequently, improved detection

accuracy, when an adversarial sample is present, confers a distinct advantage. Squeez-

ing the data can potentially reduce the computational cost of processing large malware

samples, which represents an additional advantage.

Note that feature squeezing may not be an effective countermeasure against all

types of adversarial attacks. This is particularly the case for those that do not rely

on easily disrupted features. The effectiveness of feature squeezing depends on the

specific technique employed and the machine learning model used for detection. In

the case of black-box scenario attacks, this defense technique limits the space for

attacks, but attackers can create generators that the squeezing function cannot elimi-

nate. Subsequently, it is essential to alter the squeezing function and retrain the entire model, which necessitates a considerable amount of computational performance for

repeated execution.

 4.4

 Defense-GAN

Defense-GAN, as described in paper [26], comprises two primary components: a generator and a discriminator. The generator is tasked with transforming adversarial

samples into a form that corresponds to the original sample, which can be correctly

classified by the malware classifier. This implies that the generator’s objective is to

generate samples that appear to be non-modified samples. In contrast, the discrimina-

tor is responsible for distinguishing between non-adversarial samples and adversarial

samples cleaned by the generator. During the training phase, the generator and dis-

criminator engage in a learning rivalry. The generator’s ability to clean adversarial

samples that can fool the discriminator into believing they are genuine is enhanced,

while the discriminator’s ability to detect even the subtlest traces of manipulation

after generator’s transformations is improved. This adversarial dynamic leads to the

generator becoming increasingly adept at producing almost non-adversarial samples,

while the discriminator evolves into an expert at spotting adversarial examples.

4.4.1 Benefits and Limitations of Defense-GAN

The independence from the model is the primary advantage of Defense-GAN. As

it is not reliant on the knowledge of a specific attack method or target classifier, it

248

B. Peraus and M. Jureček

is still capable of attempting to “clean up” the adversarial example by generating a

more authentic version.

It is sometimes necessary for a generator to attempt a greater number of iterations

in order to successfully remove the adversarial noise from the sample. This results in

a greater number of requests being made to the generator. Furthermore, the disadvan-

tage of updating and retraining models is also relevant for this technique. However,

the malware classifier and generator are separate entities, which means that they can

be trained separately.

 4.5

 Combining Defenses

The utilization of diverse defensive mechanisms, encompassing detection, transfor-

mation, adversarial training, and other techniques, facilitates the establishment of

a comprehensive security system. This approach entails the integration of multiple

layers of protection, each of which addresses potential threats from a distinct per-

spective. Consequently, it becomes more challenging for adversaries to circumvent

the collective defenses simultaneously and design new attacks.

Different attacks exploit vulnerabilities in different ways. Combining defenses

with complementary strengths helps cover a wider range of attack methods. Even

if one defense is breached, the others can act as backups, potentially preventing

successful attacks. This redundancy increases the overall robustness of your system.

5 Proposed Method

This section describes our proposed method for improving defense against adver-

sarial machine learning techniques. The goal is to prevent malware classifiers from

misclassifying malware as a benign file.

Our proposed defense mechanism against malware generated by adversarial gen-

erators consists of two parts: executable preprocessing and machine learning. The

focus of our proposed method is on a tool that reduces the attack space used by adver-

sarial machine learning techniques (adversarial space). The objective is to transform

a modified malware sample into a state space that is better suited for ML models to

make a decision on whether the sample is malware or not. The goal of adversarial

generators is to transform the sample into a state space that can confuse the learned

classifier in its decision-making process. For this reason, we have incorporated an

adversarial space reduction process into several places. Antimodifications, i.e. mod-

ifications to the executable file that attempt to eliminate adversarial modifications,

which reduce the adversarial space, are designed to preserve program functionality

to the greatest extent possible.

Reducing the Surface for Adversarial Attacks in Malware Detectors

249

 5.1

 Reduced Executables and Machine Learning

The crucial aspect of our method involves reducing the adversarial space prior to pre-

processing the training data. Unmodified malware samples are available, but adver-

sarial generators often transform them into undetected malware. These unmodified

malware samples are used as part of the training data, however before preprocessing

and feature selection, an adversarial space reduction process is applied.

Adversarial space reduction is applied to unmodified malware due to state space

transformation. For example, if the adversarial generator is using timestamp incre-

mentation and decrementation to maximize the evasion rate, we can change the

timestamp to a fixed value as a prevention of this attack. For example, zero bytes

can be used. However, even unmodified malware has many different timestamps. It

is important to transform multiple malware samples with different timestamp values

into a single state in a smaller state space to improve the decision-making process.

The learning process of ML model is applied after the adversarial space reduction.

After the learning process, data from the preprocessed validation dataset is used to

select hyperparameters and the final machine learning model. The dataset manipu-

lation and preprocessing for this phase is shown in the left branch of Fig. 2.

Adversarial space reduction is also applied before the classification process. After

reduction, sample is transformed to state, which ML model has a potential to correctly

classify with greater probability than before the reduction. The architecture of our

proposed method is shown in Fig. 3. This method is only sufficient in scenarios where an ideal adversarial space reduction tool is present. In this case term “ideal”

means, that after application this tool to adversarial space reduction, there is no more

adversarial space in executable. We acknowledge that our tool can be improved and

that there are additional challenges related to adversarial space reduction, such as

eliminating sections with random, unused content. Due to these reasons, we have

added one more ML model to our architecture, as shown in Fig. 3. The category of our defensive technique is combined, as its fundamental basis is the integration of two

distinct yet complementary approaches: the feature squeezing defensive technique

and adversarial training defensive technique.

The second ML model is trained to recognize adversarial malware. As shown

in Fig. 2, adversarial generators are applied to the whole dataset used for the first ML model. The output of this procedure is a set of adversarial malware samples.

After that, adversarial space reduction is applied to all adversarial malware samples.

After reducing the adversarial space, the adversarial samples contain modifications

that our tool cannot eliminate. These samples are suitable for training a new ML

model focused solely on adversarial malware samples. This second ML model was

designed to improve our accuracy. The second ML model determines whether a

sample is benign or not based on the input that the first ML model did not label as

malware. Before classifying with the second ML model, it is also important to use

adversarial space reduction for the same reasons as with the first ML model. The

architecture is displayed in Fig. 3. Sect. 5.2 describes the details of reducing the adversarial space. The training process and selection of hyperparameters routine is

250

B. Peraus and M. Jureček

Adversarial Malware

Malware Samples

Samples

Test Samples

Test Samples

Validation Samples

Validation Samples

Adversarial

Generators

Training Samples

Training Samples

Adversarial

Adversarial

Space

Space

Reduction

Reduction

Preprocessing and

Preprocessing and

Feature Selection

Feature Selection

Final Data Sets 1

Final Data Sets 2

Test Data

Test Data

Validation Data

Validation Data

Training Data

Training Data

Fig. 2 Creating the testing, training and validating data sets

the same as in the first ML model, but with datasets created from adversarial samples

(right branch in Fig. 2). Algorithm 1 provides a more comprehensive understanding of the classification process.

 5.2

 PE File Antimodifications

In this section, we discuss adversarial space reduction implemented in our Python

tool that preprocesses PE files using the LIEF library. Our aim is to reduce the attack surface for malware generators using adversarial machine learning. We implement

antimodifications to counter common modifications used by malware generators and

minimize the potential for adversarial modifications.

Reducing the Surface for Adversarial Attacks in Malware Detectors

251

First ML model for Non-

Adversarial Malware

Feature

Adversarial

Selection

Interpretation

Is this sample

Yes

Space

of Output

malware?

Reduction

(Yes/No)

Malware

Yes

No

Adversarial Malware == Yes

Executable

and Malware == No

Sample

Second ML Model for

Adversarial Malware

Yes

Feature

Adversarial

Selection

Interpretation

Is this sample

Space

of Output

adversarial

No

Benign

Reduction

(Yes/No)

malware?

Yes

No

Adversarial Malware == No

and Malware == No

Fig. 3 Our proposed method for classifying malware

Algorithm 1 Classification process

Input: . i – The sample to classify, . ML – First ML model for Non-adversarial malware, . MLadv –

Second ML model for adversarial malware

Output: Malware/Benign

1: . ir ← adv_space_reduction(. i)

2: . otmp ← ML(ir)

3: if . otmp = Malware then

4:

return Malware

5: else if . otmp = Benign then

6:

. oadv ← MLadv(ir)

7:

if . oadv = Malware then

8:

return Malware

9:

else if . oadv = Benign then

10:

return Benign

11:

end if

12: end if

To discuss whether the modification can change the program’s functionality, we

must define what “changing the functionality” means. It is always possible to create a

scenario in which any modification of the PE file results in a change in the program’s

functionality. For example, modifying a time stamp is considered a modification that

should not affect program functionality. However, if the program is designed to read

a PE file related to it and decide which code branch to use based on the timestamp

value, that means the functionality changes due to timestamp modification. However,

252

B. Peraus and M. Jureček

this case is quite specific and in practical usage, we should not be afraid that it

will occur frequently. For these reasons, we will label modifications as having the

potential to change the functionality of the program, or as not potentially changing

the functionality of the program.

5.2.1 MS-DOS Header and Stub Modifications

The MS-DOS header values that we are not modifying include the Signature byte

and PE header start. All other values are set to the most commonly used values. It

can be concluded that the program’s functionality will potentially not change.

The modification to the MS-DOS stub is designed in a straightforward manner.

The stub program is replaced with the most commonly used variant. We can conclude

that this modification potentially does not affect the program’s functionality.

5.2.2 CheckSum and TimeDateStamp Modifications

The CheckSum is a 4-byte field defined in the optional header. The

TimeDataStamp field is also a 4-byte field defined in the COFF header. Both

fields are set to zero bytes.

The CheckSum is only checked for drivers, DLLs loaded at boot time, and DLLs

that are loaded into a critical Windows process. It can be concluded that modifying the

CheckSum does not affect program loading. We can also conclude that CheckSum

modification potentially do not change the program’s functionality.

The TimeDataStamp only provides information about the creation of the exe-

cutable file. Considering that this is an informational item, it can be concluded that

modifying this field will potentially have no impact on program functionality.

5.2.3 Modifications to Section Names

This modification sets all section names to “.sec”. The name of the section is defined

in the section table and serves only an informational purpose. So we can conclude

that this modification potentially does not change the program’s functionality.

5.2.4 Remove Debug Information

This modification aims to remove debug information. It is optional whether the com-

piler generates debug information in the final executable file. Therefore, we can

conclude that this modification potentially does not change the program’s function-

ality.

Reducing the Surface for Adversarial Attacks in Malware Detectors

253

5.2.5 Remove Certificate Table

The directory for certificate tables is removed by overwriting the contents of this

data directory with zero bytes. Changing the content of this data may not impact the

functionality of this program, as it does not exist in program memory during runtime.

5.2.6 Removing Unused Imports

The aim of this modification is to remove unused imports added by adversarial gen-

erators. As is known, actual strategies of adversarial modification involve appending

unused imported symbols to the end of the import address table. This modification

is done in this way because adding a new imported symbol to a different location

is complicated. If a new imported symbol is added to a location other than the end

of IAT, some symbols will have different indexes in IAT. If the modification aims

to maintain program functionality, manipulating the IAT alone is not sufficient. As

adversarial modifications only add unused symbols to the end of the IAT, we tra-

verse the IAT from the end to the beginning. Each position in the IAT is checked to

determine whether it is used in the program’s machine code or not. If the position is

utilized in machine code, the traversal is halted. We assume a scenario without code

section modification, that all unused imports are located at the end of the IAT. So we

can continue removing until we find the used symbol.

It cannot be concluded that this modification does not potentially change the

functionality. There are scenarios in which these modifications can remove imported

symbols that cannot be removed, resulting in broken program functionality.

 5.3

 Content Modification Between Sections

Between sections, there may be section data on the disk that is not mapped into

memory. However, adversarial modifications may still attempt to modify this data,

as it can impact malware classifiers. This modification rewrites the content between

sections with zero bytes. It can be concluded that this modification potentially does

not change the program functionality.

 5.4

 Remove Overlay Data

This modification removes all overlay data by discarding all data from the beginning

of the overlay data. It cannot be concluded that the program’s functionality will

potentially not change due to the modification. Since overlay data can be relevant in

certain scenarios.

254

B. Peraus and M. Jureček

6 Experimental Setup

The chapter employs a crucial metric, the evasion rate. This metric represents the ratio

of newly misclassified malware files after the application of adversarial generators to

previously correctly classified malware files. The rationale behind the utilization of

this metric is to assess the robustness of malware detection models against adversarial

generators. This metric can be calculated using the following formula.

. e = # missclassified

(1)

 total

In this context, “total” refers to the number of correctly classified malware samples

utilized for testing.

In order to assess the accuracy of classification, all models are evaluated using

the accuracy metric, which serves as the foundation for evaluating the impact of

defense techniques on classification accuracy. This metric can be calculated using

the following formula.

. acc =

 TP + TN

(2)

 TP + TN + FP + FN

In this context, . TP represents the number of true positives (correctly identified malware samples) and . TN represents the number of true negatives (correctly identified benign samples). Similarly, . FP denotes the number of false positives (incorrectly

identified benign samples) and . FN represents the number of false negatives (incor-

rectly identified malware samples).

In order to ascertain whether there has been an improvement or a deterioration in

evasion rates or accuracies subsequent to the implementation of a defense mechanism,

we utilize the relative difference in these evasion rates or accuracies. The relative

difference is calculated for . x, xnew ∈ [0 , 1] using the following formula.

.Relative_difference_accuracies (x, xnew) = xnew − x

(3)

 x

.

⎧

⎨ x − xnew if x = 0

Relative_difference_evassion_rates (x, xnew) = ⎩ x

(4)

0

if x = xnew = 0

In cases where the. x value is zero and the. xnew value is not zero, the relative difference is not defined. These cases describe a deterioration in the evasion rate or accuracy.

To evaluate the rate of deterioration, we use the absolute difference defined by the

following formula for . x, xnew ∈ [0 , 1].

.Absolute_difference_accuracies (x, xnew) = xnew − x

(5)

.Absolute_difference_evassion_rates (x, xnew) = x − xnew

(6)

Reducing the Surface for Adversarial Attacks in Malware Detectors

255

Table 1 Tested ML models and their hyperparameters

ML method

Hyperparameter name

Tested values of the

hyperparameter

KNeighborsClassifier

n_neighbors

1, 3, 5, 7, 9

RandomForestClassifier

n_estimators

100, 500, 1000

max_depth

7, 8, 9, 10

criterion

gini, entropy

LogisticRegression

C

0.001, 0.01, 0.1, 1, 10, 100,

1000

penalty

l2

MLPClassifier

hidden_layer_sizes

(200,), (100, 50), (200, 100),

(400, 200)

activation

relu, tanh

solver

lbfgs, adam

alpha

0.0001, 0.001

The terms “KNeighborsClassifier”, “RandomForestClassifier”, “LogisticRegres-

sion”, “MLPClassifier”, “GridSearchCV”, “PCA”, “SimplerInputer” and all related

parameters were derived from the scikit-learn, which was utilized for experimental

purposes. A comprehensive explanation of these terms and their associated parame-

ters can be found in the scikit-learn documentation [27]. For all experiments involving machine learning tasks, Table 1 includes a list of ML methods and hyperparameters that were tuned. The GridSearchCV method was employed for the evaluation of

the optimal model and hyperparameters. This method was set to utilize a 5-fold

cross-validation approach.

All executable files utilized for training or testing are transformed into feature

vector representation, which is more suitable for training and testing purposes. The

algorithm for this transformation is derived from the EMBER project, the repository

containing the source code is accessible on the GitHub repository elastic/ember, and the paper related to this project is [2]. Given the high dimensionality of the EMBER

feature vector (2381), we reduced it in order to facilitate the training process. To this end, we employed Principal Component Analysis (PCA) to reduce the dimensionality

of the feature vector, specifying the number of components to be used. This indicates

that the number of components was another hyperparameter that was subjected to

testing. The tested values of this hyperparameter are shown in Table 2.

Table 2 PCA, tested values of the number of components

Hyperparameter name

Tested values of the hyperparameter

n_components

40, 50, 60, 70, 80, 90, 100

256

B. Peraus and M. Jureček

Before PCA, SimpleInputer is used with the strategy “mean”. SimpleInputer is

used to replace NaN values with the mean value of the feature vector since PCA

cannot work with NaN value and this value can occur as a result of preprocessing

malware samples.

The malware samples included in our datasets came from VirusShare [30]. These unmodified malware samples were used to create adversarial malware samples that

were also used to train defense techniques. Benign samples included in our datasets

came from multiple sources. The first source is Practical Security Analytics LLC [22], the second is DikeDataset available on the GitHub repository iosifache/DikeDataset

and the rest of the samples came from clean Windows 11 installed system. All datasets

were randomly shuffled and perfectly balanced. This means that half of the samples

in each dataset were malware samples and half were benign samples. Due to the

use of cross-validation with GridSearchCV, the datasets were split into only two

parts: the testing part and the training+validation part. GridSearchCV itself performs

the splitting of the subsets for training and validation. The testing part was set to be 20% of the dataset, with the remaining data comprising the training+validation parts.

Should the ratio of test data differ, this will be explicitly stated.

 6.1

 Malware Detection Models

This section presents all experiments employ the detection models described in the

following subsections.

6.1.1 Basic ML

The Basic ML model is employed as a reference for comparison with other tech-

niques. This model was trained on a dataset that included unmodified malware sam-

ples and benign samples. The total number of samples was 15,392. The best ML

model type with the hyperparameters is presented in Table 3.

Table 3 The best ML model type and hyperparameters values for the Basic ML method ML model

Hyperparameter name

Hyperparameter value

MLPClassifier(random_state = 42)

Activation

Relu

Alpha

0.0001

hidden_layer_sizes

(200)

Solver

Adam

pca_n_components

100

Validation accuracy

97.959%

Reducing the Surface for Adversarial Attacks in Malware Detectors

257

Table 4 The best ML model type and hyperparameters values for the Adversarial trained ML

method

ML model

Hyperparameter name

Hyperparameter value

MLPClassifier(random_state = 42)

Activation

Relu

Alpha

0.0001

hidden_layer_sizes

(200, 100)

Solver

adam

pca_n_components

100

Validation accuracy

99.764%

6.1.2 Adversarial Trained ML

In order to train this defensive technique (described in Sect. 4.1), the dataset from the Basic ML model was used and extended by including adversarial malware samples

and additional benign samples. The adversarial malware samples were generated

from unmodified malware included in the Basic ML dataset by applying adversarial

malware generators (described in Sect. 3.2). The following adversarial generators were used (described in Sect. 3.2). AMG in modes random and PPO, PartialDOS, FullDOS, ExtendDOS, FGSM, GAMMA, Gym-malware in modes black-box and

score, MAB-malware in modes EMBER and MalConv.

The use of a sufficient number of benign samples enabled the production of a

balanced dataset, obviating the need for oversampling methods. The total number

of samples was 174,590. The best ML model and hyperparameters are presented in

Table 4.

6.1.3 Reduced 1 ML

This instance represents our proposed defense technique, as described in Sect. 5. In this case, only antimodifications were employed, which have the potential to maintain the functionality of the program. Therefore, all antimodifications described in

Sect. 5.2 were utilized, with the exception of removing unused imports and removing overlay data.

As previously stated, our defensive technique in Sect. 5 employs two ML models. Depending on the training data, we refer to them as the adversarial and non-

adversarial cases. The training datasets for both models are presented in detail in the

following items:

• Non-adversarial case: The training data for this part is identical to that of the Basic ML model. However, there is one significant difference: all the data is subjected

to adversarial space reduction, with the utilization of defined anti-modifications

as previously discussed. The total number of samples in the training dataset is

identical to that of the Basic ML case, which is 15,392.

[image: Image 65]

258

B. Peraus and M. Jureček

Training Dataset

Adversarial Training

Technique

Basic ML and

Adversarial

Non-adversarial

Part Training

Part Training

Dataset

Dataset

Fig. 4 Relationships between training datasets for Basic ML, Adversarial trained ML, Reduced 1

ML and Reduced 2 ML

• Adversarial case: The training dataset for this part is identical to the Adversarial trained ML dataset, with the exception of the samples that correspond to the Basic

ML model. The same set of adversarial generators utilized in the Adversarial

trainded ML case was employed to generate adversarial training data from Basic

 ML (Non-adversarial) samples. Figure 4 illustrates the relationships between the datasets. It is crucial to apply adversarial space reduction to all training samples

(explained in Sect. 5). The precise number of samples included in the training dataset is 159, 198, which corresponds to the calculation

. #Adversarial_part = #Adversarial_trained_ML − #Basic_ML

159 , 198 = 174 , 590 − 15 , 392

(7)

The best ML models and hyperparameters for both parts (adversarial and non-

adversarial) are presented in Table 5.

6.1.4 Reduced 2 ML

This instance is analogous to the Reduced 1 ML. The sole distinction lies in the

utilization of all implemented anti-modifications during the adversarial space reduc-

tion. This implies that the set of anti-modifications is augmented by the removal of

unused imports and overlay data, which may impact the program functionality. The

best ML models and hyperparameters for both parts (adversarial and non-adversarial)

are presented in Table 6.

Reducing the Surface for Adversarial Attacks in Malware Detectors

259

Table 5 The best ML model and hyperparameters values for the Reduced 1 ML method

ML model

Hyperparameter name

Hyperparameter value

 Non-adversarial case

MLPClassifier(random_state = 42)

Activation

Relu

Alpha

0.0001

hidden_layer_sizes

(400, 200)

Solver

adam

pca_n_components

100

Validation accuracy

97.843%

 Adversarial case

MLPClassifier(random_state = 42)

Activation

Relu

Alpha

0.001

hidden_layer_sizes

(200, 100)

Solver

Adam

pca_n_components

100

Validation accuracy

99.690%

Table 6 The best ML model type and hyperparameters values for the Reduced 2 ML method ML model

Hyperparameter name

Hyperparameter value

 Non-adversarial case

MLPClassifier(random_state = 42)

Activation

Relu

Alpha

0.0001

hidden_layer_sizes

(400, 200)

Solver

Adam

pca_n_components

100

Validation accuracy

97.732%

 Adversarial case

MLPClassifier(random_state = 42)

Activation

Relu

Alpha

0.0001

hidden_layer_sizes

(400, 200)

Solver

lbfgs

pca_n_components

100

Validation accuracy

99.743%

260

B. Peraus and M. Jureček

7 Experiments

We designed two experiments:

1. The initial experiment is designed to assess and quantify the impact of defensive

techniques on the accuracy of malware detection. The comparison is conducted

in relative terms with respect to the Basic ML baseline.

2. The second experiment is designed to evaluate and compare the robustness of

each defensive strategy, including our proposed technique, against adversarial

malware generators. The evaluation is conducted in relative terms with respect

to the Basic ML.

 7.1

 Detection Accuracy after Deploying Defenses

When proposing a defensive technique, it is important to consider the impact on

detection model accuracy. A robust defense technique against adversarial attacks

is rendered completely unusable if the impact on unmodified malware detection

accuracy is highly negative. In order to assess the accuracy of each detection model,

a testing dataset was created. The testing dataset comprised samples that had not

been seen by the ML models during the training and hyperparameters validation

stages. As previously stated in Sect. 6, when creating the training dataset for Basic ML, the samples were split into two parts: 80% was used for training and validation

of Basic ML, while 20% was used in this experiment for testing purposes. The total

number of samples in the testing dataset was 3,848, randomly shuffled and perfectly

balanced (with 1,924 samples of malware and 1,924 samples of benign software).

The testing dataset created for Basic ML is suitable for use as a testing dataset

for Adversarial trained ML. For Reduced 1 ML and Reduced 2 ML, it is impor-

tant to apply adversarial space reduction to this testing dataset, with corresponding

antimodifications as described in Sect. 6.1.

Hypothesis 1 Adding our proposed defense does not degrade malware detection

 accuracy of the Basic ML accuracy.

Table 7 shows the percentage accuracy of correctly classified samples from the test dataset on the malware detection models. We computed the relative difference

of the detection accuracies for each detection method with respect to the Basic

ML model to evaluate the rate of improvement. Relative differences are shown in

percentages in Table 8. The results demonstrate that all defensive techniques enhance the accuracy of unmodified malware detection. This outcome may be attributed to

the growing number of benign samples, which enables detection models to more

accurately identify benign files. The best variant was Adversarial trained ML. Our

conclusion is that Adversarial trained ML model is a more generalized for benign

files recognition than other models because this single model has seen the most

benign samples during training. The Reduced 1 and 2 ML models, which employ

Reducing the Surface for Adversarial Attacks in Malware Detectors

261

Table 7 The accuracy achieved by individual ML detection models on the test dataset Basic ML

Adversarial_trained ML

Reduced_1 ML Reduced_2 ML

Accuracy

97.973

98.597

98.025

98.129

Table 8 The relative change in accuracy (.Relative_difference_accuracies (x, xnew)) compared to the Basic ML model for each ML model on the testing dataset

Adversarial_trained

Reduced_1 ML

Reduced_2 ML

ML

Relative change

0.637

0.053

0.159

our proposed methodology, were found to demonstrate comparable (not significantly

worse) levels of accuracy to those achieved in Adversarial trained ML. Following

the results, it is evident that our findings do not reject the Hypothesis 1.

 7.2

 Robustness Against Adversarial Malware

The objective of this experiment is to evaluate the robustness of each detection

model, including the model using our proposed defense technique, against adversarial

machine learning generators. In this experiment, a testing dataset was constructed

from only adversarial samples. It is of the utmost importance to create this testing

dataset correctly in order to accurately assess the robustness of the detection models

against adversarial generators.

Samples used for input to adversarial malware generators were correctly classified

as malware samples from the testing dataset in the previous experiment. The subset

of correctly classified malware samples may differ for each detection model. For

instance, Basic ML may correctly classify a different subset from the testing dataset

than Adversarial trained ML. This entailed creating a custom testing dataset for each

adversarial generator and each detection model to assess the evasion rate of each

generator to each detection model. We applied the same set of adversarial generators

as described in Sect. 6.1.2. Figure 5 illustrates the correct methodology for creating the testing dataset. For a more detailed explanation, we provide the Pseudocode 2.

Hypothesis 2 The evasion ratio after the application of the proposed defense will be reduced compared to the Basic ML evasion rate.

Table 9 illustrates the percentage of evasion rates for each adversarial generator of each detection method. The relative difference in evasion rates between each

detection method and the Basic ML model was calculated to assess the extent of

improvement or decline. These relative differences are presented in percentages in

Table 10. The findings illustrate that our defensive technique (Reduced 1 ML and

262

B. Peraus and M. Jureček

Algorithm 2 Adversarial testing datasets creation.

Input: . T – set of malware samples from experiment in Sect. 7.1,. G – set of adversarial generators,

. D – set of detection methods

Output: . F = {{ Tadv , T

 , ..., T

}

 , T

 , ..., T

}

1

 adv 2

 adv| G| 1 , { Tadv 1

 adv 2

 adv| G| 2 , ...,

.{ Tadv , T

 , ..., T

}

1

 adv 2

 adv| G| | D|} – sets of sets of adversarial malware samples for each adversarial generator and each detection method

1: for . d = 1 to.| D| do

2:

Apply. d -th detection method to. T

3:

. C ← Correctly classified malware samples by. d -th detection method

4:

for . g = 1 to.| G| do

5:

Apply. g-th adversarial generator to. C

6:

. Tadv ← New generated adversarial malware samples from previous step

 g

7:

. Fd ← Tadv Add new generated set of adversarial malware (by. g-th generator) to. d -th set g

of sets of adversarial malware

8:

end for

9: end for

Final Data Sets 1

Malware

Misclassified

Classifier

Test Data

Correctly

Classified

Training Data

+

Validation Data

Testing

Adversarial

Data -

Generators

Adversarial

Fig. 5 Adversarial testing dataset creation

Reduced 2 ML) exhibits greater robustness against adversarial attacks than adver-

sarial training (Adversarial trained ML). The results indicate that the use of pre-

processing and the implementation of anti-modifications can significantly enhance

the robustness against adversarial attacks. Based on the results, it is evident that our

findings support Hypothesis 2.

8 Conclusion

In this chapter, we have focused on the topic of defense against adversarial attacks in

the domain of malware detection. In order to achieve this goal, we have successfully

implemented a tool for PE file preprocessing, which reduces the space available for

adversarial attacks. This tool has served as an important base for our proposed defense

Reducing the Surface for Adversarial Attacks in Malware Detectors

263

Table 9 The evasion rates observed for each model and adversarial generator

.[%]

Basic ML

Adversarial_trained ML

Reduced_1 ML Reduced_2 ML

AMG

10.728

0.000

0.000

0.000

ExtendDOS

2.258

0.108

0.108

0.161

FGSM

0.000

0.106

0.000

0.000

FullDOS

0.000

0.000

0.000

0.000

GAMMA

5.325

0.214

0.000

0.266

Gym-

1.497

0.215

0.071

0.000

malware_black-

box

Gym-

1.977

0.073

0.073

0.000

malware_score

MAB-EMBER

21.698

0.213

0.212

0.000

MAB-MalConv 2.851

0.168

0.056

0.000

PartialDOS

0.000

0.000

0.000

0.000

Random-AMG

8.120

0.055

0.000

0.055

Mean

4.950

0.105

0.047

0.044

Table 10 The relative change (.Relative_difference_evassion_rates (x, xnew)) in evasion rates for each defensive technique and adversarial generator in comparison to the Basic ML model

.[%]

Adversarial_trained

Reduced_1 ML

Reduced_2 ML

ML

AMG

100.000

100.000

100.000

ExtendDOS

95.223

95.236

92.857

FGSM

–0.106a

.

0.000

0.000

FullDOS

0.000

0.000

0.000

GAMMA

95.985

100.000

94.997

Gym-malware_black-

85.653

95.235

100.000

box

Gym-malware_score

96.283

96.296

100.000

MAB-EMBER

99.019

99.021

100.000

MAB-MalConv

94.101

98.037

100.000

PartialDOS

0.000

0.000

0.000

Random-AMG

99.327

100.000

99.328

Meanb

.

85.054

97.978

98.398

a

.. This value represents the absolute difference (defined in Sect. 6) in the percentage of evasion rates, as the relative difference is undefined

b

..

The mean value is calculated exclusively from non-zero values, as zero values of relative change indicate a scenario in which the evasion rate was zero in both the past and the present, precluding any potential for improvement in the new evasion rate. However, the mean value is downwardly deflected by zero values, which is an inaccurate representation

264

B. Peraus and M. Jureček

technique. We have also successfully designed a defense technique that is more

robust against adversarial attacks than adversarial training. The implementation of

our antimodification tool renders our defense technique robust against a multitude of

adversarial generators, including Gym-malware, MAB-malware, FGSM, FullDOS,

and PartialDOS.

The proposed defense technique has no negative impact on detection accuracy,

and in fact, the accuracy of detection is higher than without the defense. The aver-

age reduction in evasion rate with respect to ML detection without a defense is

97.978% less for modifications, which do not change the program functionality. For

the comprehensive set of modifications, which do not guarantee the preservation of

the program’s functionality, the value is even more optimal, reaching 98.397%.

A comparison of our proposed defense technique with related works indicates

that our technique represents a satisfactory compromise between effectiveness and

computational cost. Our chapter makes a significant contribution by implementing an

anti-modification for removing unused imports, a feature not present in other related

works.

It is evident that advanced modifications represent a promising avenue for future

research and development. Potential avenues for improvement include unpacking,

section injection elimination, and the elimination of unused resources.

In future work, we intend to conduct further experiments to ascertain which com-

ponent of our proposed technique is most effective in enhancing robustness against

adversarial attacks. Additionally, we will aim to assess the potential of initiating the

utilisation of an updated version of adversarial space reduction without retraining

the machine learning components of our technique, which were trained on reduced

samples with an earlier version of the adversarial space reduction. Furthermore, we

will seek to determine whether this update can still optimise the entire method and,

if so, to what extent each individual component of our proposed defence technique

can be independently enhanced.

The limited time available to implement anti-modification measures against

ExtendedDOS allowed the generator to achieve some success against our defen-

sive technique. Additionally, due to time constraints, we were unable to implement

more advanced modifications, such as section injection elimination or unpacking.

We intend to address these issues in future work.

In this chapter, we employed EMBER’s feature vector representation for training

machine learning models. An investigation of alternative representations, such as

GNN representation, represents a promising avenue for future research in this field.

Our chapter was exclusively focused on the Windows PE format. The ELF format is

also a suitable subject for future research.

Acknowledgements This work was supported by the Grant Agency of the Czech Technical University in Prague, grant No. SGS23/211/OHK3/3T/18 funded by the MEYS of the Czech Republic.

Reducing the Surface for Adversarial Attacks in Malware Detectors

265

References

1. Abusnaina A, Wang Y, Arora S, Wang K, Christodorescu M, Mohaisen D. Burning the

adversarial bridges: robust windows malware detection against binary-level mutations. (Oct

2023).https://arxiv.org/abs/2310.03285, arXiv:2310.03285 [cs].

2. Anderson HS, Roth P. EMBER: an open dataset for training static PE malware machine learning models. arXiv e-prints, April 2018.

3. Anderson HS, Kharkar A, Filar B, Evans D, Roth P. Learning to evade static pe machine learning malware models via reinforcement learning. January 2018. arXiv:1801.08917.

4. Chakraborty A, Alam M, Dey V, Chattopadhyay A, Mukhopadhyay D. Adversarial attacks and defences: a survey 2018. arXiv:1810.00069.

5. Demetrio L, Coull SE, Biggio B, Lagorio G, Armando A, Roli F. Adversarial exemples: A survey and experimental evaluation of practical attacks on machine learning for windows

malware detection. ACM Trans Privacy Secur. 2021;24(4):1–31. (September 2021).

6. Demetrio L, Biggio B, Lagorio G, Roli F, Armando A. Explaining vulnerabilities of deep learning to adversarial malware binaries 2019. CoRR, abs/1901.03583.

7. Demetrio L, Biggio B, Lagorio G, Roli F, Armando A. Functionality-preserving black-box

optimization of adversarial windows malware. IEEE Trans Inf Forensics Secur. 2021;16:3469–

78.

8. Goodfellow IJ, Shlens J, Szegedy C. Explaining and harnessing adversarial examples 2014.

CoRR, abs/1412.6572.

9. Goodfellow IJ, Shlens J, Szegedy C. Explaining and harnessing adversarial examples 2014.

CoRR, abs/1412.6572.

10. Hosseini H, Chen Y, Kannan S, Zhang B, Poovendran R. Blocking transferability of adversarial examples in black-box learning systems 2017. arXiv:abs/1703.04318.

11. Karl-Bridge-Microsoft. PE Format-Win32 apps. March 2023. https://learn.microsoft.com/en-

us/windows/win32/debug/pe-format.

12. Kozák M. Application of reinforcement learning to creating adversarial malware sam-

ples. February 2023. https://dspace.cvut.cz/handle/10467/107246. (Accepted: 2023-03-23T09:24:47Z Publisher: České vysoké učení technické v Praze. Vypočetní a informační cen-

trum).

13. Kozák M, Demetrio L, Trizna D, Roli F. Updating windows malware detectors: balancing

robustness and regression against adversarial exemples. 2024. arXiv:abs/2405.02646.

14. Kozák M, Jureček M. Combining generators of adversarial malware examples to increase evasion rate. In: Proceedings of the 20th International Conference on Security and Cryptography-SECRYPT. INSTICC, SciTePress, 2023. p. 778–86

15. Kozák M, Jureček M, Stamp M, Troia FD. Creating valid adversarial examples of malware. J

Comput Virol Hacking Techn. 2024;1–15

16. Kreuk F, Barak A, Aviv-Reuven S, Baruch M, Pinkas B, Keshet J. Deceiving end-to-end deep learning malware detectors using adversarial examples. February 2018. arXiv:1802.04528.

17. Li K, Zhang F, Guo W. Atwm: defense against adversarial malware based on adversarial training. 2023. arXiv:abs/2307.05095.

18. Liu L, Kuang X, Liu L, Zhang L. Defend against adversarial attacks in malware detection through attack space management. Comput Secur. 2024;141: 103841.

19. Louthánová P, Kozák M, Jureček M, Stamp M. A comparison of adversarial learning techniques for malware detection. 2023. arXiv:2308.09958.

20. Lucas K, Pai S, Lin W, Bauer L, Reiter MK, Sharif M. Adversarial training for Raw-Binary malware classifiers. In: 32nd USENIX security symposium (USENIX security 23) Anaheim,

CA: USENIX Association; August 2023. p. 1163–80.

21. Pitropakis N, Panaousis E, Giannetsos T, Anastasiadis E, Loukas G. A taxonomy and survey of attacks against machine learning. Comput Sci Rev. 2019;34:100199, 11.

22. Pracsec. PE malware machine learning dataset. June 2021. https://practicalsecurityanalytics.

com/pe-malware-machine-learning-dataset/.

266

B. Peraus and M. Jureček

23. Raff E, Barker J, Sylvester J, Brandon R, Catanzaro B, Nicholas CK. Malware detection by eating a whole exe. In: AAAI Workshops 2017.

24. Rashid A, Such JM. Stratdef: Strategic defense against adversarial attacks in ml-based malware detection. Comput Secur. 2022;134: 103459.

25. Rashid A, Such JM. Malprotect: stateful defense against adversarial query attacks in ml-based malware detection. IEEE Trans Inf Forensics Secur. 2023;18:4361–76.

26. Samangouei P, Kabkab M, Chellappa R. Defense-gan: protecting classifiers against adversarial attacks using generative models. 2018. arXiv:abs/1805.06605.

27. Scikit-learn: Api reference. https://scikit-learn.org/stable/api/index.html.

28. Song W, Li X, Afroz S, Garg D, Kuznetsov D, Yin H. Automatic generation of adversarial examples for interpreting malware classifiers. 2020. arXiv:abs/2003.03100.

29. Vassilev A, Oprea A, Fordyce A, Anderson H. Adversarial machine learning: a taxonomy and terminology of attacks and mitigations. Technical Report NIST 100-2e2023, National Institute of Standards and Technology (U.S.), Gaithersburg, MD, January 2024.

30. VirusShare.com. https://virusshare.com/.

31. Xu W, Evans D, Qi Y. Feature squeezing: Detecting adversarial examples in deep neural networks. In: Proceedings 2018 Network and Distributed System Security Symposium, NDSS

2018. Internet Soc. 2018.

32. Zhang Z, Jung C. Gbdt-mo: Gradient-boosted decision trees for multiple outputs. IEEE Trans Neural Netw Learn Syst. 2019;32:3156–67.

[image: Image 66]

Effectiveness of Adversarial Benign and

Malware Examples in Evasion and

Poisoning Attacks

Matouš Kozák

and Martin Jureˇcek

Abstract Adversarial attacks present significant challenges for malware detection

systems. This research investigates the effectiveness of benign and malicious adver-

sarial examples (AEs) in evasion and poisoning attacks on the Portable Executable

file domain. A novel focus of this study is on benign AEs, which, although not

directly harmful, can increase false positives and undermine trust in antivirus solu-

tions. We propose modifying existing adversarial malware generators to produce

benign AEs and show they are as successful as malware AEs in evasion attacks.

Furthermore, our data show that benign AEs have a more decisive influence in poi-

soning attacks than standard malware AEs, demonstrating their superior ability to

decrease the model’s performance. Our findings introduce new opportunities for

adversaries and further increase the attack surface that needs to be protected by

security researchers.

1 Introduction

Malware, an abbreviation for malicious software, refers to a wide range of harm-

ful software types, including viruses, worms, trojans, ransomware, and spyware.

These harmful programs are intended to cause damage, disruption, or illegal access

to computer systems, posing serious risks to individuals, companies, and national

security [17].

To tackle these threats, security engineers design malware detection systems,

antiviruses (AVs), to detect and neutralize harmful behavior. Traditional malware

detection solutions typically use signature-based methods that compare known pat-

terns of harmful code to a database of signatures [2]. While these methods are successful against known threats, they fail to detect new, previously unknown malware

M. Kozák (B) · M. Jureček

Faculty of Information Technology, Czech Technical University in Prague, Prague, Czechia

e-mail: matous.kozak@fit.cvut.cz

M. Jureček

e-mail: martin.jurecek@fit.cvut.cz

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

267

M. Stamp and M. Jureček (eds.), Machine Learning, Deep Learning and AI for

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_10

268

M. Kozák and M. Jureček

patterns. To overcome this issue, heuristic and behavior-based detection algorithms

have been developed. Heuristic-based methods evaluate software code structure

and behavior to identify potentially dangerous actions [5], whereas behavior-based methods monitor program runtime activity to find anomalies that indicate malicious

actions [21, 33]. More recently, machine learning (ML) algorithms have improved malware detection by recognizing patterns and features in big datasets [4, 10, 38,

42].

As a result, attackers are constantly evolving their strategies to avoid discovery.

For example, techniques such as polymorphism [15] where malware encrypts its code, or metamorphism [45], where the code is rewritten to appear differently to malware detectors. A new emerging threat in the malware domain is adversarial

attacks [36], which create inputs, so-called adversarial examples (AEs), that trick malware detectors into misidentifying malware as benign (non-malicious software

also referred to as goodware).

In the field of malware detection, AEs are purpose-engineered inputs to incentivize

the attacked model to make incorrect predictions. These perturbations are often sub-

tle, yet they significantly impact the model’s performance [12]. In the malware area, adversarial attacks fall into two categories: evasion attacks and poisoning attacks.

Evasion attacks entail constructing AEs that avoid detection by the model during

inference [3, 14, 29, 30, 44]. Poisoning attacks attempt to undermine the training process by contaminating the training dataset with AEs, to decrease the model’s

performance [8, 41].

This work investigates the effectiveness of benign and malware AEs in evasion

and poisoning attacks on Portable Executable (PE) files. A unique aspect of this work

is the focus on benign AEs, which, unlike malicious counterparts, do not constitute

a direct threat to the system. However, benign AEs can have a major impact on

malware detection systems’ performance by raising false positives. Consequently,

this can lead to a loss of trust in AV products and unnecessary bottlenecks for legit-

imate software suppliers. To the best of our knowledge, this is the first work that

compares the effectiveness of benign and malware AEs in evasion and poisoning

attacks.

To summarize, our contributions are (i) we introduce and formally define the

concept of benign AEs; (ii) we propose how contemporary generators of adversarial

malware can be modified to create benign AEs; (iii) we show comparable effective-

ness of malware and benign AEs in evasion attacks; (iv) we demonstrate superior

influence of benign AEs in poisoning attacks over traditional malware AEs.

The outline of the paper

• In Sect. 2, we provide the essential background for this paper by describing adversarial machine learning, focusing on the malware detection domain, and the PE

file format.

• In Sect. 3, we describe how adversarial software generators work and propose how to modify existing generators to produce benign AEs.

Effectiveness of Adversarial Benign and Malware Examples …

269

• In Sect. 4, we introduce our experiments’ setup, dataset, and evaluation metrics.

Next, we evaluate AEs in evasion and poisoning attacks, and discuss the results.

• In Sect. 5, we review related work in evasion and poisoning attacks with a focus on malware detection domain.

• In Sect. 6, we list our conclusions and suggest areas of future research.

2 Background

In this section, we introduce the necessary background for this work. We start by

explaining the concepts of adversarial machine learning while focusing on two main

adversary scenarios in the malware domain: evasion and poisoning attacks. We follow

with a description of the PE file format.

 2.1

 Adversarial Machine Learning

 Adversarial machine learning is a field that studies enhancing ML systems’ resilience to adversarial attacks from both the outside (evasion attacks) and the inside (data

poisoning). An adversarial attack is a well-planned action designed to deceive the

ML model. The victim model is also known as a target model, whereas the attacker

is also referred to as an adversary. An adversarial example (AE) is the object that is used to conduct the adversarial attack, e.g., a modified malware sample that evades

detection or a tampered data point hidden in the training dataset. The next part outlines the taxonomy of adversarial attacks in the domain of malware detection and potential

defense techniques.

We use the taxonomy offered by Huang et al. [20] as it is one of this topic’s most comprehensive and security-related descriptions. Adversarial attacks are distinguished by three major characteristics: influence, security violation, and specificity.

Influence. The first attribute represents opponents’ capacity to attack a particular

model. The first type is termed causative attacks, where the adversary may affect the training process of the model, e.g., conceal incorrectly labeled samples into

the training dataset (data poisoning). The second type is exploratory attacks. These attacks do not affect the training process, and their purpose is to learn about the

model and avoid its detection measures, such as a modified malicious file that evades

detection (evasion attack).

Security violation. The second attribute describes the type of security breach com-

mitted by the attacker. If an adversarial attack increases the model’s false negative

rate (adversarial malware samples classed as benign), we term it an integrity attack.

An availability attack occurs when an attack increases both false negative and false positive rates, rendering the model unsuitable for any prediction. The last kind is

270

M. Kozák and M. Jureček

a privacy attack, also known as a model-stealing attack, which aims to steal the model’s sensitive information, such as the training dataset or model parameters. In

previous work, no specific category for increase of false positives was define. How-

ever, we can think of integrity attack as any attack that causes the intrusion points to be misclassified, whether malware or benign AEs.

Specificity. The third attribute represents the scope of the adversarial attack. Assume the attack is directed at a limited and specified subset of samples, we mark it as a

 targeted attack. On the other hand, an indiscriminate attack is a scenario where any sample can be misclassified.

We continue with a more detailed description of evasion and poisoning attacks,

followed by common defense measures deployed against adversarial attacks.

2.1.1 Evasion Attacks

An adversary may alter the input data in an evasion attempt to avoid being discov-

ered by the detector. Evasion attacks, as they relate to malware detection, entail the

development of malware that may evade the classifier and remain undetected.

Let . f : R n → {0 , 1} be a binary classifier where. f (x) = 1 indicates a malicious sample and . f (x) = 0 indicates a benign sample. An evasion attack seeks to find an adversarial malware example . xadv such that

. xadv = x + δ

where. δ is a perturbation added to the original input. x, and. f (xadv) = 0 while. f (x) =

1. To prevent suspicion or behavioral changes, minimizing the perturbation . δ to

maintain . xadv’s similarity to. x is a common practice.

To formally define the concept of adversarial benign examples, we follow the

same principles as with malware AEs but modify the added perturbation. δ such that the . f (xadv) = 1 while. f (x) = 0.

Numerous techniques are used for creating. xadv examples. We follow with a brief

introduction of a selected few and a more detailed case study in the later sections of

this work.

Feature Manipulation. Attackers change particular aspects of the feature vector

representing malware such that the classifier considers it safe software. This attack

usually involves the attacker having good knowledge about what feature represen-

tation the target classifier uses to be able to successfully craft an evasive malware

AE. The critical challenge for this attack is to devise an algorithm for transforming

the adversarial feature vector back to executable binary format so that the AE can be

deployed outside of the laboratory settings [19, 50].

Adversarial EXEmples. To overcome the problem of mapping from feature vectors

to binary executables, attackers can create AEs by introducing noise or perturbations

Effectiveness of Adversarial Benign and Malware Examples …

271

directly to binary code (EXE). This technique does not require knowledge about the

inner workings of the target classifier as it can be used in black-box settings where

only the prediction label is used as feedback for the adversary. However, creating

both evasive and functional AEs is a complex problem where a good knowledge of

the executable’s binary format is needed [13, 29].

Obfuscation. To keep the classifier from realizing the true nature of the presented software, methods like packing and code obfuscation are used. Obfuscation involves

transforming the malware’s code into a form that is difficult to analyze, whereas

packing compresses and encrypts the code to prevent detection [3, 16].

2.1.2 Poisoning Attacks

The goal of poisoning attacks is to modify the training dataset that is utilized to

train the detector. In terms of malware detection, this can consist of camouflaging

AEs inside the training set to hinder the model’s training process and consequently

mistakenly identify some malware as benign or vice versa.

Let . D = (xi , yi)M be the training dataset where

 i =1

. xi represents the input features

and . yi represents the corresponding labels. A poisoning attack seeks to modify the training dataset by including poisoned samples such that classifier . f trained on

poisoned dataset . D prediction behavior is changed, that is

. f (x) = f (x)

for some input . x, causing the model to make incorrect predictions.

Among the frequent techniques used to create poisoned samples are data injection

and label manipulation.

Data Injection. Attackers can influence the model’s learning process by adding

deliberately constructed harmful samples to the training data. These samples are

meant to appear genuine, yet they have subtle details that cause the model to be

misled. The samples can be crafted using a gradient ascent strategy to optimize the

impact of the poisoned samples against a specific target detector [7]. Additionally, AEs created as part of evasion attack techniques described in previous Sect. 2.1.1

can also be injected to the model’s dataset.

Label Manipulation. To fool the model, existing samples in the training set can have their labels flipped. For instance, labeling malware samples as benign can cause the

model to learn incorrect associations between features and labels. The adversary’s

goal is to determine which samples’ labels to change to maximize the influence on

the training stage [48].

272

M. Kozák and M. Jureček

2.1.3 Defense Against Adversarial Attacks

The goal of adversarial machine learning is to mitigate the risks posed by adversarial

attacks. Researchers have created various protection methods to make ML models

more resilient and improve reliability and confidence in their decisions. However, the

trade-off between model robustness and performance must be carefully controlled

to guarantee that the detection system remains efficient and accurate.

Adversarial Training. Adding correctly labeled AEs to the training set is known

as adversarial training. The model gains the ability to identify and reject adversarial

inputs by using these instances throughout the training phase. This technique can

strengthen the model’s resistance to evasive attacks [31, 32].

Data Sanitization. Methods for data sanitization, such as detecting anomalies, can

be applied to detect inputs that substantially diverge from the trusted training set.

Through the system’s ability to identify questionable inputs, AEs can be excluded

from the system, preventing both evasive and poisoning attacks [1, 37]. An example of data sanitization is the . L 2 defense (also called sphere defense) technique where data points are projected onto a high dimensionality sphere, and points beyond the

sphere’s radius are excluded [24].

Feature Representation. The complexity and attack surface disposable for the

attacker can be reduced by increasing the robustness of the feature representation

used by the model. For example, decreasing the precision of individual features [49]

or dimensionality reduction [6] can lower attackers’ chances of bypassing the detection. Additionally, domain knowledge in devising the feature representation is critical

as including unrelated features can mislead the model in learning false connections

that the adversaries can exploit [12].

Robust Model Architecture. The security of malware detection systems can be

increased by creating model designs that are inherently resistant to adversarial

attacks. For example, using multiple classifiers [39] or plug-in adversary detectors

[27] can increase the difficulty of executing a successful adversarial attack.

 2.2

 Portable Executable File Format

The Portable Executable (PE) file format is a data format that stores the information required by the Windows operating system loader to manage the executable code.

It is used to store executable (EXE), object code, dynamic link libraries (DLL), and

other files on both 32-bit and 64-bit Windows operating systems [22].

The structure of the PE file format can differ slightly depending on which type of

file it represents. This section focuses on the PE file format structure used for EXE

files. The format is organized as follows:

Effectiveness of Adversarial Benign and Malware Examples …

273

MS-DOS Header. Every PE file begins with the MS-DOS header, which is a 64-byte

structure that converts the PE file into MS-DOS executable. This header contains a

magic number that indicates the file is MS-DOS executable. At the end of the header

is an offset of the COFF file header.

MS-DOS Stub. The MS-DOS header is followed by the MS-DOS stub, a short MS-

DOS program that typically prints a message such as “This program cannot be run

in DOS mode” if the executable is run on MS-DOS.

COFF File Header. Next, the COFF File header is located at the offset found in the MS-DOS header. Before the actual COFF header appears, a 4-byte signature field

identifies the file as a PE file with a value of PE\0\0. The following 20 bytes contain generic information about the PE file, e.g., machine type, timestamp, or number of

sections.

Optional Header. Following is the Optional header. For EXE files, the header

includes essential information for the OS loader, such as the entry point address,

linker version, image base, and section alignment.

Section Headers. The Section headers come right after the optional header, with

each header totaling 40 bytes of section description: name, virtual size and address,

section attributes, and more.

Section Data. Following the table of section headers is the actual section content,

including code and other resources. Typical sections and their content are .text (exe-

cutable code), .data (initialized data), .rdata (read-only data), .debug (debugging

information), and .idata (imported libraries and functions).

3 Generators of Adversarially Modified Software

In this section, we dive into what the generators of adversarial malware are and

portray how some contemporary generators work. Finally, we propose the notion of

adversarial benign generators and how we can modify contemporary generators of

adversarial malware to create benign AEs.

 3.1

 Generators of Adversarial Malware

The purpose of adversarial malware generators is to produce malware samples capa-

ble of evading detection by security systems, especially those that employ ML-based

models. Adversarial malware generators are primarily used to test and enhance mal-

ware detection systems’ resilience. Researchers and security experts can find flaws

274

M. Kozák and M. Jureček

a

M

u

o

t š Kozák and Martin Jureček

Malware Sample

Adversarial Generator

Adversarial Example

Adversarial Perturbations

Fig. 1 Workflow of adversarial malware generators

in their detection methods and create more robust defenses by testing the systems on

adversarial examples. However, these generators can also be abused by bad actors to

produce malware that hides from detection, which poses potential security issues.

From the black-box point of view as portrayed in Fig. 1, the generators work by taking a genuine malware sample as an input, followed by an application of adversarial perturbations and finally producing a modified, so-called adversarial example.

The following is a selection of adversarial malware generators used in this work.

We decided to select generators that do not require previous training. As such, we

can use the same generator to create and fairly compare adversarial malware and

benign examples.

AMG. The Adversarial Malware Generator (AMG) is a generator utilizing a rein-

forcement learning (RL) algorithm called proximal policy optimization (PPO) agent

trained to apply a set of functionality-preserving modifications to previously detected

samples. The modifications were carefully designed and thoroughly tested to max-

imize the functionality preservation of used input samples. The same modifications

can also be used in random settings (without previous training), and the resulting

AEs are highly evasive against commercial AVs [29].

FGSM. In contrast to the original attack [18] utilizing the fast gradient sign method (FGSM) for the image domain, only short sequences of bytes (payloads) are adversarially perturbed. At first, random bytes are placed into unused space between sections

or at the end of the file to ensure that the original functionality remains intact. The FGSM technique is then used to perturb only these sequences, misleading the target

classifier [30].

GAMMA. The Genetic Adversarial Machine Learning Malware Attack (GAMMA)

is a generator that injects benign content at the end of the file or into newly created sections. The injected benign content is optimized using a genetic algorithm constrained

to maximize evasion rate while minimizing the magnitude of the perturbation [13].

MAB-Malware. An RL-based generator using a multi-armed bandit (MAB) agent

together with a set of macro and micro manipulations devised to maximize evasion

with minimal perturbation. The generator works in two phases. First, the MAB agent

applies a sequence of modifications until evasion is achieved. Subsequently, each

applied modification is tested to be expendable and removed if found so. This mini-

mization process is possible because the MAB agent does not imply any connection

Effectiveness of Adversarial Benign and Malware Examples …

275

between applied actions, hence making it possible to remove some of them after-

ward [44].

Partial-, Full-, Extend-DOS Manipulators. Set of MS-DOS manipulators utilizing

gradient-based optimization to adversarially modify malware’s MS-DOS header and

stub program. The Partial-DOS generator modifies only the content of the MS-DOS

header between the magic number and offset of the COFF File header [12]. The Full-DOS generator extends the modifications of Partial-DOS by perturbing the MS-DOS stub program as well [14]. Lastly, the Extend-DOS generator further extends the modification beyond the end of the MS-DOS stub program until the beginning

of the COFF File header [14].

 3.2

 Generators of Adversarial Goodware

While contemporary research in the adversarial machine learning and malware detec-

tion domain focuses only on the efficacy of malware AEs, we propose a novel

approach that involves the creation of benign AEs. This new type of AE represents

harmless software files deliberately compromised to be misclassified as malware.

While not directly harmful, this strategy can dramatically influence the functioning

of malware detection systems by increasing false positives, leading to a loss of trust in antivirus solutions and causing legitimate software vendors to face costly blockages.

The following is an approach we use to modify the above-mentioned generators of

adversarial malware to create effective benign AEs.

A common theme across generators of malware AEs is a stopping condition that

stops the generating process when the target classifier. f no longer detects the malware sample. First, we must change this condition to a reverse scenario where the process

is halted when AE is no longer classified as benign. This change is demonstrated in

Algorithm 1.

Algorithm 1 Stopping condition for generators of AEs.

Require: . x orig: Original sample,. f : Target classifier,. N max: Maximum number of iterations Ensure: . x AE: Adversarial example

1: . x AE ← x orig

2: for . i = 1 to. N max do

3:

if . f (x AE) =. malicious . benign then

4:

break

5:

end if

6:

Adversarially perturbe. x AE

7: end for

8: return. x AE

Further, for RL-based generators AMG and MAB-Malware, we must prepare

malware-looking content used to inject into unused spaces of PE files. We extract

276

M. Kozák and M. Jureček

malware section content using the process_benign_dataset.py script from

the source codes of MAB-Malware [43] on our dataset of malware executables described later in Sect. 4.1.

For gradient-based generators FGSM, PartialDOS, FullDOS, and ExtendDOS, the

adversarial modifications need to be designed in such a manner that the perturbation

calculated using the gradient of the target classifier’s loss function moves the sample

closer to the malware class. A simple solution can be achieved by changing the sign

of the computed gradient, which is used to optimize the perturbation, hence reversing

the direction of the movement introduced by the generator.

For the GAMMA generator, we must provide malware EXEs instead of benign

files for the generator. Additionally, the fitness value function must be changed to

prefer individuals that maximize the target classifier’s prediction score, i.e., have a

higher malicious confidence score.

The proposed changes are easy to implement and significantly increase the capa-

bilities of existing generators as discussed in the next section. We implement these

changes in the source codes provided by the authors of AMG [26], MAB-Malware

[43] and SecML Malware [11] (FGSM, GAMMA, PartialDOS, FullDOS, ExtendDOS generators).

4 Experimental Evaluation

In this section, we present our experimental evaluation of the effectiveness of adver-

sarial benign and malware examples. We start by describing our hardware setup,

dataset, and used evaluation metrics. We follow by presenting our experimental com-

parison of benign and malware AEs in evasion and poisoning attacks. We conclude

this section by discussing the results and pointing out the limitations of our research.

 4.1

 Setup

Hardware. Experiments presented in this work were conducted on the NVIDIA

DGX Station A100 server. The server contains a single AMD 7742 CPU with 64

cores, four NVIDIA A100 GPUs, and 512 GB of system memory. However, both the

generation of adversarial examples and subsequent experimentation can be repro-

duced on a standard personal computer with at least 16 GB of system memory.

Dataset. We use three datasets for the experiments. Benign EXE files were obtained

from a clean Windows 10 installation. Next, we downloaded malicious EXE files

from the VirusShare [46] data repository, whom we thank for access. We verified malware and benign EXEs to be truly malicious and harmless, respectively, by using

the VirusTotal [47] API and discarding samples classified as the contrary class. Lastly, we also use the EMBER dataset [4] to extend our range of available samples. Namely,

Effectiveness of Adversarial Benign and Malware Examples …

277

we use parts of the EMBER training dataset to balance the ratio of benign to malware

files in the training sets used in the experimental evaluation. Additionally, we benefit

from the recognized EMBER test dataset and use it as our default evaluation set for

poisoning attacks. The EMBER test set contains 200000 samples, equally distributed

between malicious and benign classes.

 4.2

 Evaluation Metrics

To assess the effectiveness of evasion and poisoning adversarial attacks, several key

metrics are used. These metrics contribute to quantifying the success of adversarial

attacks and the resilience of protection measures. The following are the metrics used:

Confusion Matrix. The base of statistical evaluation is the confusion matrix that

thoroughly describes the performance of the studied model. The table is structured

as follows

Predicted positive

Predicted negative

Actual positive

True positive (TP)

False negative (FN)

Actual negative

False positive (FP)

True negative (TN)

where

• True Positive (TP) The number of correctly detected malicious samples.

• True Negative (TN) The number of correctly identified harmless files.

• False Negative (FN) The number of undetected malware files.

• False Positive (FP) The number of incorrectly blocked benign files.

Detection Rate (DR). The proportion of correctly detected malicious samples to

the total number of malware samples, commonly referred to as sensitivity or true

positive rate (TPR). The DR is calculated as

. D R =

 T P

 T P + F N

False Positive Rate (FPR). The proportion of benign files classified as malicious to

the total number of benign samples, that is

. F P R =

 F P

 F P + T N

Evasion Rate (ER). The proportion of adversarial files that bypassed the detector to

the total number of adversarial samples, computed as

. E R = number of missed AEs

total number of AEs

Note that this metric can be used both for benign and malware AEs.

278

M. Kozák and M. Jureček

Contamination Rate (CR). A metric used in the context of poisoning attacks rep-

resenting the proportion of training dataset that has been compromised (poisoned).

The CR has a form of

. C R =

number of poisoned samples

total number of training samples

Receiver Operating Characteristics (ROC) Curve A graphical representation of

classifier’s performance across different threshold settings. The thresholds are dis-

played based on the values of FPR against TPR.

 4.3

 Evasion Attack Against the Target Classifiers

In the first experiment, we generate adversarial malware examples using the gen-

erators described in Sect. 3.1 and adversarial benign examples by their modified versions described in Sect. 3.2. We use the previously described datasets of malware and benign executables as inputs for the generators. Next, we compare the genuine

samples with the adversarial counterparts and discard examples that do not contain

adversarial perturbations. Several factors can cause the lack of modification, the most

common being that the genuine sample was already misclassified (either as benign

for malware AEs or as malware for benign AEs) by the target classifier before the

modification process. As a target classifier, we use the default selection provided by

the authors of the generators: gradient boosted decision tree (GBDT) [4] and MalConv, a convolutional neural network classifier [38]. The resulting counts of used benign and malware AEs are shown in Table 1, where each row represents a single generator with the target classifier specified in parenthesis after the generator name.

To evaluate the effectiveness of generated benign and malware AEs in evasion

attacks, we compare the evasion rates against the respective target classifiers. Based

on the taxonomy introduced in Sect. 2.1, this represents a targeted exploratory attack.

Table 1 Sums of generated benign and malware AEs for each generator after filtering Generator (classifier)

Benign

Malware

AMG-random (GBDT)

3158

6595

ExtendDOS (MalConv)

1566

5511

FGSM (MalConv)

1321

5090

FullDOS (MalConv)

1568

2035

GAMMA (MalConv)

3132

5506

MAB-Malware (GBDT)

1439

6614

MAB-Malware (MalConv)

1477

5397

PartialDOS (MalConv)

1568

3065

15229

39813

Effectiveness of Adversarial Benign and Malware Examples …

279

Table 2 Evasion rates of malware and benign AEs from different generators against the target classifier for which the samples were generated [%]

Generator (classifier)

Benign

Malware

AMG-random (GBDT)

30.34

36.12

ExtendDOS (MalConv)

96.81

43.51

FGSM (MalConv)

30.96

42.16

FullDOS (MalConv)

97.64

56.02

GAMMA (MalConv)

16.32

36.29

MAB-Malware (GBDT)

84.09

74.77

MAB-Malware (MalConv)

65.00

90.99

PartialDOS (MalConv)

71.88

93.05

The results are shown in Table 2, where each row represents a single generator, and benign and malware columns represent the evasion rates (in %) of generated AEs

against the target classifier. Based on the results, we do not have a clear pattern of

whether benign or malware AEs are more effective against MalConv or GBDT detec-

tors. The ExtendDOS, FullDOS (MalConv), and MAB-Malware (GBDT) generate

highly evasive benign AEs with evasion rates between 84 and 97%. The rest of the

generators are more successful in creating evasive malware AEs with MAB-Malware

and PartialDOS (MalConv), generating between 90 and 93% of evasive samples.

 4.4

 Poisoning Attacks Against the GBDT Classifier

We frame the poisoning attack as an indiscriminate causative attack, i.e., our goal

is to mislead the subsequently trained model into any misclassification. Addition-

ally, we do not generate poisoning samples separately but use the previously crafted

adversarial examples from Sect. 4.3. Note that we use the EMBER train samples to represent the non-poisoned samples in the training dataset over the genuine executables used to generate the poisoning samples. This represents a scenario where

the attacker does not possess knowledge of the samples that are already present in

the training dataset. As a victim model, we choose the GBDT model trained using

LightGBM library [23]. The input binary files are represented by a 2381-long feature vectors containing information extracted from the PE files [4]. We evaluate the trained GBDT classifier on the EMBER test set.

4.4.1 Poisoning by Single AE Generator

In the second experiment, we investigate the effectiveness of individual generators

in the poisoned training dataset. We explore different ratios of dataset contamination

ranging from 0% (only genuine EMBER train samples) to 50% (poisoned samples

[image: Image 67]

280

M. Kozák and M. Jureček

Fig. 2 Comparison of detection rates at fixed levels of FPR after poisoning the dataset by malware or benign AEs from the MAB-Malware (GBDT) generator

replace a single class of genuine samples). During all experiments, we maintain an

even balance between genuine and malware classes. Due to the limited number of

generated benign AEs (see Table 1) and to ensure a fair comparison between malware and benign AEs, we use a smaller training dataset of 2000 samples containing up to

1000 AEs.

Based on the results we collected, the effect of poisoning by benign or malware

AEs varies significantly based on the generator used. For example, in Fig. 2, where each subfigure represents a comparison between benign and malware AEs for a fixed

level of FPR, we can see that malware AEs generated by MAB-Malware (GBDT)

are more successful in poisoning the classifier’s training dataset than the benign

counterparts. The graphs show that for all evaluated levels of FPR and contamination

rates, the presence of malware AEs in the training dataset detriments trained GBDT’s

detection rate more than benign AEs.

On the other hand, Fig. 3 shows that the benign AEs created by FullDOS (MalConv) are significantly more potent in decreasing the detection rate of the GBDT

model than malware AEs.

The high variance in the success of benign and malware AEs can also be seen in

Fig. 4, where we display ROC curves for each of the generators at a fixed contamination rate of 10%. Notably, we can see that the effect of benign and malware AEs

is similar, with only marginal differences across all evaluated generators.

A similar conclusion can be made by looking at Table 3, which presents the detection rates at fixed 1% FPR after poisoning 10% of the training dataset by benign or

malware AEs from respective generators. We can see that PartialDOS, FullDOS, and

[image: Image 68]

Effectiveness of Adversarial Benign and Malware Examples …

281

Fig. 3 Comparison of detection rates at fixed levels of FPR after poisoning the dataset by malware or benign AEs from the FullDOS (MalConv) generator

GAMMA benign AEs lead to 59–61% detection rates at 1% FPR while the mal-

ware counterparts report higher detection rates of 61–64% (a lower DR means more

successful poisoning attack). The malware AEs from the rest of the generators are

more effective (59–62% DRs) than benign AEs (60–64% DRs).

4.4.2 Poisoning by Combination of AEs from Different Generators

In the third experiment, we explore different scenarios based on the samples included

in the training dataset. The first is a malware scenario where all generated malware

AEs are accompanied by malware and benign samples from the EMBER dataset. The

second is a benign scenario where all benign AEs are merged with genuine samples

from EMBER. The third is a mixture scenario, where both benign and malware AEs

are combined together with genuine EMBER training samples. The total size of the

final dataset for each scenario is set to 30000 samples, with a balanced distribution

between malicious and benign samples. As in the previous experiment, the range of

adversarial contamination of the training dataset ranges from 0 to 50%, i.e., up to

15000 AEs are present in the training loop.

The results are presented in Fig. 5, where each subfigure compares benign and malware AEs at a fixed level of FPR. Based on an initial look, benign AEs are

causing more harm to the model’s detection rate over malware or mixture scenarios

with increasing contamination rate.

[image: Image 69]

282

M. Kozák and M. Jureček

Fig. 4 Comparison of ROC curves after poisoning 10% of training dataset by malware or benign AEs from different generators

Table 3 Comparison of detection rates at 1% FPR for individual generators after poisoning 10%

of the training dataset. [%]

Generator (classifier)

Benign

Malware

AMG-random (GBDT)

62.46

61.66

ExtendDOS (MalConv)

63.70

61.64

FGSM (MalConv)

60.49

59.84

FullDOS (MalConv)

59.58

62.44

GAMMA (MalConv)

60.92

63.84

MAB-Malware (GBDT)

61.87

60.39

MAB-Malware (MalConv)

62.93

61.50

PartialDOS (MalConv)

60.64

61.40

[image: Image 70]

Effectiveness of Adversarial Benign and Malware Examples …

283

Fig. 5 Comparison of detection rates at fixed FPR levels in malware, benign, and mixture scenarios In more detail, we can see the performance at 10% contamination rate in Fig. 6.

From the ROC curve, we can see that poisoning the training dataset benign AEs

from different generators consistently leads to the worst performance of the result-

ing trained model. The effect is apparent even for as little as 10% of benign AEs in the training dataset for low levels of FPR (1–5%). In Table 4, we can see that for all tested levels of FPR, the presence of benign AEs in the training dataset decreases the detection rate by 0.96–2.19% more than the corresponding scenario with malware AEs.

 4.5

 Discussion

In evasion attacks, some generators are highly effective in crafting benign AEs that

are successfully mispredicted as malware by the target classifier for which they were

generated. Although, due to the nature of benign AEs, evasive benign AEs cannot

cause harm to the attacked system, they can increase spikes in false positive reporting,

consequently leading users to lose trust in the AV systems and vendors to complain

due to blockage of their software.

In untargeted poisoning attacks, we do not see a significant difference in the

effectiveness of contaminating the training dataset by benign or malware AEs crafted

by a single generator. However, we still observe that benign AEs can be as effective

as malware counterparts in poisoning attacks.

Moreover, using a combination of AEs from different sources for poisoning

attacks, we report a measurable difference between benign and malware AEs.

[image: Image 71]

284

M. Kozák and M. Jureček

Fig. 6 ROC curve after poisoning 10% of training dataset by malware, benign or mixed AEs Table 4 Comparison of detection rates at fixed levels of FPR in malware, benign, and mixture scenarios. [%]

FPR

Benign

Malware

Mixture

1

83.88

86.07

86.43

2

89.42

90.58

90.92

3

91.80

92.79

92.77

4

92.96

93.92

93.81

5

93.41

94.81

94.67

Notably, benign AEs are more effective in decreasing the detection rate at fixed FPR

when included in the training dataset over malware (and mixed) AEs. This effec-

tiveness presents a new opportunity for poisoning attacks where security researchers

must keep focus on both malware and benign poisoning samples infiltrating the

training datasets.

Limitations. One of the shortcomings of this paper is the size of the benign EXE

dataset, which posed a limitation on the quality of the model used in the section

“Poisoning by Single AE Generator” experiment. This limitation caused the trained model to significantly underperform on the EMBER test set (62.44% DR at 1%

FPR before poisoning attack), making it harder to compare the detrimental effect of

poisoning by benign and malware AEs from a single generator. Another limitation

of our work is the use of a sole GBDT classifier as a victim model for poisoning

attacks. While several generators specifically target the GBDT classifier, many target

the MalConv detector, which has a different architecture and is thus susceptible to

Effectiveness of Adversarial Benign and Malware Examples …

285

different adversarial perturbations. Consequently, AEs against MalConv may not

significantly affect the feature representation used for training GBDT, diminishing

the effectiveness of created AEs.

5 Related Work

In this section, we present related research in adversarial machine learning and mal-

ware detection. We divide this section into two parts. The first part is focused on

evasion attacks where adversaries generated AEs with the goal of bypassing detec-

tion by antivirus protection systems. The second part is dedicated to poisoning attacks

where attackers infiltrate the training sets of malware detectors.

 5.1

 Evasion Attacks

Evasion attacks can be divided into groups based on their technique to generate AEs.

We use the division into the three most prevalent groups in the domain of adversarial

malware: gradient-based, reinforcement learning-based, and others.

The gradient-based attacks take advantage of the back-propagation algorithm,

commonly used for training deep neural networks [18, 35]. The techniques are based on injecting specially crafted perturbations that cause the target model to move its

prediction in the direction of the gradient, thus decreasing its confidence in malware

prediction.

Kolosnjaji et al. [25] used gradient computation to adversarially perturb the overlay data of PE files, achieving a 60% evasion rate against the MalConv detector.

Next, Kreuk et al. [30] presented an attack that injects up to 1000 bytes of adversarial content into unused regions of the PE file. Their attack misled the MalConv

classifier in 99% of cases, highlighting the severe vulnerability of pure ML-based

antivirus systems to adversarial attacks.

Another attack on the MalConv detector was proposed by Demetrio et al. [12].

The authors investigated which parts of the executable binary the MalConv model

focuses on when making a prediction. Based on their results, the detector learned

to use parts of the MS-DOS header to make its prediction decisions even though

the MS-DOS header is currently included just for compatibility with older operating

systems. Demetrio et al. exploited this finding and introduced an attack perturbing

only the MS-DOS header and achieving an evasion rate of over 86% against the

MalConv.

The reinforcement learning-based attacks use agents equipped with a set of manip-

ulation actions on binary files. These agents are trained to apply these actions by

continuously probing the target classifier and learning its inner decision-making [3].

The use of reinforcement learning agents for adversarial malware generation was

pioneered by Anderson et al. [3]. The authors deployed an actor-critic model trained

286

M. Kozák and M. Jureček

to modify PE files. The agent was equipped with modifications such as adding new

sections, packing, or including new imports. Their agent was able to bypass the

GBDT detector in 24% of cases.

Next, Song et al. [44] used a state-less multi-armed bandit (MAB) agent to attack MalConv, GBDT, and commercial AVs. The MAB agent was armed with modifications such as adding new sections, appending benign content to overlay, or renaming

current sections. The authors demonstrated an evasion rate of 74.4 and 97.7% against

GBDT and MalConv classifiers, respectively. Against the commercial AVs, the MAB

agent’s evasion rate dropped to 48.3%.

More RL-bassed attacks were proposed by Kozak et al. [28]. The authors trained a DQN agent with similar modifications as in [44] against the GBDT and MalConv classifiers. The adversarial malware examples generated by the DQN achieved

68.64% and 13.32% evasion rates against GBDT and MalConv, respectively. While

their results are significantly worse than the results by Song et al. [44], to the best of our knowledge, Kozak et al. were the first to propose the reverse scenario of generating adversarial benign examples. The authors demonstrated the danger of benign

AEs in evasion attacks by increasing the FPR of GBDT and MalConv models by

3.45 and 14.29%, respectively.

The remaining evasion attacks are a mixture of different approaches that do not

fit into gradient and RL-based groups.

Hu et al. [19] demonstrated the capabilities of generative adversarial networks (GANs) in generating malware AEs. The generator network operated by modifying

feature vectors representing API calls captured from malicious files. The discrim-

inator network represented a substitute malware detector and was trained to detect

feature vectors modified by the generator. The authors reported an evasion rate of

98–100% when the generated vectors were transferred and evaluated against other

ML-based malware classifiers. Unfortunately, the authors did not propose a method

of converting the feature vectors back to executable binaries, thus limiting the real-

world application of their work.

Further, Demetrio et al. [13] experimented with evolutionary algorithms to create malware AEs. The evolutionary algorithm was dedicated to solving an optimization

problem balancing maximum evasion rate with minimal perturbation size. Evolu-

tionary techniques such as selection, cross-over, and mutation are applied to vectors

to show how adversarial benign content inside malicious PE files should be injected.

The optimized feature vectors are later applied on genuine malicious files, creating

malware AEs. The authors reported an evasion of 12 out of 70 detectors hosted on

VirusTotal [47] website.

 5.2

 Poisoning Attacks

Biggio et al. [8] presented one of the first poisoning attacks in the domain of malicious software. The authors demonstrated how an attacker could subvert the behavior

clustering process of Malheur [40], an open-source tool, by injecting carefully crafted

Effectiveness of Adversarial Benign and Malware Examples …

287

poisoning samples. Biggio et al. experimented with bridge-based (adding points to

bridge clusters), random, and F-measure minimizing attacks. The results showed that

poisoning the training dataset by as little as 5% samples from the bridge-based attack

can lead to complete deterioration of clustering performance where Malheur merges

all samples to a single cluster (originally 40 clusters before poisoning attack).

Further, Chen et al. [9] investigated the vulnerability of ML-based malware detection systems to poisoning attacks on the Android platform. The authors introduced

three types of attacks (weak, strong, and sophisticated) and used a customized adver-

sarial crafting algorithm to generate crafted camouflage samples that misled classi-

fiers. The proposed defense system, KuafuDet, includes an offline training phase and

an online detection phase, intertwined through a self-adaptive learning scheme that

uses similarity-based filtering to identify and retrain on suspicious false negatives.

The authors first show that SVM-based detectors are susceptible to poisoning attacks

by demonstrating up to a 30% decrease in accuracy. Later, Chen et al. prototyped their

retraining mechanism on suspicious samples to increase accuracy by at least 15%.

Next, Sasaki et al. [41] explored using data poisoning attacks to embed backdoors in malware detection systems. The proposed methodology involves generating poisoning data that misclassifies specific types of malware as benign software while

maintaining the detection accuracy for other malware (so-called targeted poisoning).

The attack framework consists of three steps: selecting backdoor malware, generat-

ing poisoning data using an optimization problem, and injecting the poisoning data

into the training set. The authors introduced a constraint term to ensure the poison-

ing data resembles benign data, making it harder to detect. Logistic regression was

used as the target malware detector. The result showed that the proposed method

effectively increases the false negative rate for backdoor malware (over 80% at 15%

contamination rate for selected malware) without significantly affecting the detection

rates for other malware or benign software.

The work of Sasaki et al. [41] was followed by Narisada et al. [34]. The authors introduced two new targeted poisoning attack algorithms designed to evade common

data sanitization defenses, specifically the sphere defense. The proposed methods

include a basic attack that generates poisoning points by minimizing validation loss

while ensuring points remain within a feasible set and a streamlined attack that com-

bines label-flip attacks with the validation loss minimization approach. As previously,

the logistic regression was used as a target classifier, and sphere defense was applied

to remove 15% of the points from the training data. The results showed that both pro-

posed algorithms successfully evade the sphere defense, with the streamlined attack

achieving a 91% attack success rate at 15% contamination rate.

6 Conclusion

In this work, we explored a new scenario of benign AEs and their effectiveness in eva-

sion and poisoning attacks. We utilized several well-known generators of adversarial

malware and modified them to create benign examples.

288

M. Kozák and M. Jureček

The experimentation provided insights into the effectiveness of benign and mal-

ware AEs. In evasion attacks, specific generators were highly effective at producing

benign AEs that are misclassified as malware by the target classifier in 97% of cases.

Although these benign AEs do not directly threaten the system, they cause an increase

in FPR. This vulnerability can erode consumer faith in AV solutions and displease

software vendors due to the blocking of their legitimate applications.

In a more realistic scenario where benign AEs are used to poison a training dataset

of malware detectors, we found no substantial difference in the effectiveness of

contaminating the training dataset with benign or malicious AEs produced by a single

generator. This result suggests that the specific generator of benign or malicious AEs

has little effect on the overall contamination when a single source is used. However,

as mentioned in the discussion in Sect. 4.5, we operated with a limited dataset size in this scenario, and increasing the available training samples could provide more

practical results.

Nevertheless, a measurable difference was recorded when combining AEs from

different generators for the poisoning attack. Our results show that including benign

AEs in the training dataset outperforms malware or mixed AEs in reducing detection

rates at fixed levels of FPR. These findings reveal a new pathway for poisoning

attacks, requiring security engineers to remain vigilant for both benign and malware

AEs infiltrating training datasets.

Future Work. We envision that more research on the efficacy of benign AEs will

follow. We plan to study the use of benign AEs in targeted poisoning attacks more

thoroughly and investigate how to create dedicated generators of benign AEs to

contaminate training datasets more effectively. Finally, further research on robustness

to benign AE attacks is needed.

Acknowledgements This work was supported by the Grant Agency of the Czech Technical University in Prague, grant No. SGS23/211/OHK3/3T/18 funded by the MEYS of the Czech Republic.

References

1. Abusnaina A, Wang Y, Arora S, Wang K, Christodorescu M, Mohaisen D. Burning the adversarial bridges: robust windows malware detection against binary-level mutations; 2023. (arXiv).

2. Al-Asli M, Ghaleb TA. Review of signature-based techniques in antivirus products. In: 2019

International conference on computer and information sciences (ICCIS);2019. p. 1–6.

3. Anderson HS, Kharkar A, Filar B, Evans D, Roth P. Learning to evade static pe machine learning malware models via reinforcement learning;2018. (arXiv).

4. Anderson HS, Roth P. Ember: an open dataset for training static pe malware machine learning models;2018. (arXiv).

5. Bazrafshan Z, Hashemi H, Fard SMH, Hamzeh A. A survey on heuristic malware detection

techniques. In: The 5th conference on information and knowledge technology;2013. p. 113–20.

6. Bhagoji AN, Cullina D, Sitawarin C, Mittal P. Enhancing robustness of machine learning systems via data transformations. In: 2018 52nd Annual conference on information sciences

and systems (CISS);2018. p. 1–5.

Effectiveness of Adversarial Benign and Malware Examples …

289

7. Biggio B, Nelson B, Laskov P. Poisoning attacks against support vector machines. In: Proceedings of the 29th international conference on international conference on machine learning;2012.

p. 1467–74.

8. Biggio B, Rieck K, Ariu D, Wressnegger C, Corona I, Giacinto G, Roli F. Poisoning behavioral malware clustering. In: Proceedings of the 2014 workshop on artificial intelligent and security workshop;2014. p. 27–36.

9. Chen S, Xue M, Fan L, Hao S, Lihua X, Zhu H, Li B. Automated poisoning attacks and defenses in malware detection systems: an adversarial machine learning approach. Comput

Secur. 2018;73:326–44.

10. Comar PM, Liu L, Saha S, Tan P-N, Nucci A. Combining supervised and unsupervised learning for zero-day malware detection. In: 2013 Proceedings IEEE INFOCOM;2013. p. 2022–30.

11. Demetrio L, Biggio B. Secml-malware: a python library for adversarial robustness evaluation of windows malware classifiers;2021. www.github.com/pralab/secml_malware.

12. Demetrio L, Biggio B, Lagorio G, Roli F, Armando A. Explaining vulnerabilities of deep learning to adversarial malware binaries;2019. (arXiv).

13. Demetrio L, Biggio B, Lagorio G, Roli F, Armando A. Functionality-preserving black-box optimization of adversarial windows malware. IEEE Trans Inf Forensics Secur. 2021;16:3469–

78.

14. Demetrio L, Coull SE, Biggio B, Lagorio G, Armando A, Roli F. Adversarial exemples: a survey and experimental evaluation of practical attacks on machine learning for windows

malware detection. ACM Trans Privacy Secur. 2021;24:1–31.

15. Drew J, Moore T, Hahsler M. Polymorphic malware detection using sequence classification methods. In: 2016 IEEE security and privacy workshops (SPW);2016. p. 81–7.

16. Etter B, Hu JL, Ebrahimi M, Li W, Li X, Chen H. Evading deep learning-based malware detectors via obfuscation: a deep reinforcement learning approach. In: 2023 IEEE international conference on data mining (ICDM);2023. p. 101–9.

17. Gerencer T. The top 10 worst computer viruses in history;2016. www.hp.com/us-en/shop/tech-

takes/top-ten-worst-computer-viruses-in-history.

18. Goodfellow IJ, Shlens J, Szegedy C. Explaining and harnessing adversarial examples. In: 3rd International conference on learning representations (ICLR);2015.

19. Hu W, Tan Y. Generating adversarial malware examples for black-box attacks based on

gan;2017. (arXiv).

20. Huang L, Joseph AD, Nelson B, Rubinstein BIP, Tygar JD. Adversarial machine learning. In: Proceedings of the 4th ACM workshop on security and artificial intelligence;2011. p. 43–58.

21. Jacob G, Debar H, Filiol E. Behavioral detection of malware: from a survey towards an established taxonomy. J Comput Virol. 2008;4:251–66.

22. Karl Bridge, Microsoft. Pe format-win32 apps 8 2019. www.docs.microsoft.com/en-us/

windows/win32/debug/pe-format.

23. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y. Lightgbm: a highly efficient gradient boosting decision tree. In: Guyon I, Von Luxburg U, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R, editors, Advances in neural information processing systems;2017.

p. 3149–57.

24. Koh PW, Steinhardt J, Liang P. Stronger data poisoning attacks break data sanitization defenses.

Mach Learn. 2022; 1–47.

25. Kolosnjaji B, Demontis A, Biggio B, Maiorca D, Giacinto G, Eckert C, Roli F. Adversarial malware binaries: evading deep learning for malware detection in executables. In: 2018 26th European signal processing conference (EUSIPCO);2018. p. 533–7.

26. Kozak M. Adversarial malware generator (amg). AMG;2023. www.github.com/matouskozak/

AMG.

27. Kozak M, Demetrio L, Trizna D, Roli F. Updating windows malware detectors: balancing

robustness and regression against adversarial exemples;2014. (arXiv).

28. Kozák M, Jureček M, Lórencz R. Generation of adversarial malware and benign examples

using reinforcement learning. In: Artificial intelligence for cybersecurity. Springer;2022. p.

3–25.

290

M. Kozák and M. Jureček

29. Kozák M, Jureček M, Stamp M, Di Troia F. Creating valid adversarial examples of malware.

J Comput Virol Hacking Techn. 2024;1–15.

30. Kreuk F, Barak A, Aviv-Reuven S, Baruch M, Pinkas B, Keshet J. Deceiving end-to-end deep learning malware detectors using adversarial examples;2018. (arXiv).

31. Lucas K, Pai S, Lin W, Bauer L, Reiter MK, Sharif M. Adversarial training for.. {Raw-Binary.. }

malware classifiers. In: 32nd USENIX security symposium (USENIX security 23);2023. p.

1163–80.

32. Madry A, Makelov A, Schmidt L, Tsipras D, Vladu A. Towards deep learning models resistant to adversarial attacks. In: International conference on learning representations;2018.

33. Nachenberg C. Polymorphic virus detection module, 10 1998. Patent Number: US5826013A.

34. Narisada S, Sasaki S, Hidano S, Uchibayashi T, Suganuma T, Hiji M, Kiyomoto S. Stronger targeted poisoning attacks against malware detection. In: International conference on cryptology and network security;2020. p. 65–84.

35. Papernot N, McDaniel P, Jha S, Fredrikson M, Celik ZB, Swami A. The limitations of deep learning in adversarial settings. In: 2016 IEEE European symposium on security and privacy (EuroS&P);2016. p. 372–87.

36. Podschwadt R, Takabi H. On effectiveness of adversarial examples and defenses for malware classification. In: Security and privacy in communication networks: 15th EAI international

conference (SecureComm);2019. p. 380–93.

37. Quiring E, Pirch L, Reimsbach M, Arp D, Rieck K. Against all odds: winning the defense challenge in an evasion competition with diversification;2020. (arXiv).

38. Raff E, Barker J, Sylvester J, Brandon R, Catanzaro B, Nicholas C. Malware detection by eating a whole exe. In: The workshops of the the thirty-second AAAI conference on artificial intelligence;2018. p. 268–76.

39. Rashid A, Such J. Effectiveness of moving target defenses for adversarial attacks in ml-based malware detection;2023. (arXiv).

40. Rieck K, Trinius P, Willems C, Holz T. Automatic analysis of malware behavior using machine learning. J Comput Secur. 2011;19(4):639–68.

41. Sasaki S, Hidano S, Uchibayashi T, Suganuma T, Hiji M, Kiyomoto S. On embedding backdoor in malware detectors using machine learning. In: 2019 17th international conference on privacy, security and trust (PST);2019. p. 1–5.

42. Singh J, Singh J. A survey on machine learning-based malware detection in executable files. J

Syst Architect. 2021;112: 101861.

43. Song W, Li X, Afroz S, Garg D, Kuznetsov D, Yin H. Mab-malware;2021. www.github.com/

weisong-ucr/MAB-malware.

44. Song W, Li X, Afroz S, Garg D, Kuznetsov D, Yin H. Mab-malware: a reinforcement learning framework for blackbox generation of adversarial malware. In: Proceedings of the 2022 ACM

on Asia conference on computer and communications security;2022. p. 990–1003.

45. Szor P, Ferrie P. Hunting for metamorphic. In: Virus bulletin conference;2001.

46. VirusShare. www.virusshare.com.

47. VirusTotal. www.virustotal.com.

48. Xiao H, Xiao H, Eckert C. Adversarial label flips attack on support vector machines. In: ECAI;2012. p. 870–5.

49. Weilin X, Evans D., Qi Y. Feature squeezing: Detecting adversarial examples in deep neural networks;2017. (arXiv).

50. Yilmaz I, Siraj A, Ulybyshev D. Improving dga-based malicious domain classifiers for malware defense with adversarial machine learning. In: 2020 IEEE 4th conference on information & communication technology (CICT);2020. p. 1–6.

[image: Image 72]

A Comparative Analysis of SHAP

and LIME in Detecting Malicious URLs

Ayush Nair and Fabio Di Troia

Abstract Malicious URLs pose significant vulnerabilities, leaving users exposed

as they navigate the digital world. To counter this, cybersecurity experts develop

machine learning models using complex algorithms to protect users from cybercrime.

Machine learning models are often referred to as “black boxes” due to their opaque

nature. However, understanding the decision-making processes of these models is

crucial. In fact, it is through this understanding that we can build robust protections

for users and platforms. This research investigates the structural properties of URLs

using machine learning models trained to classify them into five categories, specif-

ically, benign, malware, phishing, defacement, and spam. By leveraging LIME and

SHAP analysis, we identify key features that influence the model’s decision-making

process for each classification. Through detailed analysis, the study highlights influ-

ential factors that impact URL classification, including positive, negative, and inter-

active effects between features. Benign URLs are characterized by simplicity, often

shorter with fewer numeric or special characters, and minimal domain complex-

ity. Malware URLs tend to be longer, with a higher density of numeric characters

and complex domain structures, masking their malicious intent. Phishing URLs are

detected based on features like short query lengths and minimal domain tokens,

designed to resemble trusted sources and deceive users. Defacement URLs show

complex domain structures and advanced techniques aimed at webpage tampering.

Spam URLs exhibit shorter domains and simple paths, making them ideal for bulk

distribution in spam campaigns. These insights provide a deeper understanding of

how harmful and benign URLs can be distinguished based on structural attributes.

The findings contribute to refining URL classification models and improving their

effectiveness in the ever-changing threat landscape.

A. Nair · F. Di Troia (B)

San Jose State University, San Jose, CA, USA

e-mail: fabio.ditroia@sjsu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

291

M. Stamp and M. Jureček (eds.), Machine Learning, Deep Learning and AI for

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_11

292

A. Nair and F. Di Troia

1

Introduction

The internet, since its inception, has empowered fast and seamless communication

and interaction between people across the globe. It has allowed for greater collabora-

tion and the spread of ideas. However, it has also perpetrated the spread of cybercrime.

This form of criminal activities pose a significant threat to individuals, corporations,

and governments as they lead to loss of security, breach of information, financial

loss, and more [11, 12]. Hence, cybersecurity has become a critical component of IT apparatuses for these entities.

Malicious URLs are web addresses that lead to web pages containing malware or

are designed for phishing, scamming, or other fraudulent activities. They are designed

to lead users to websites and locations on the internet that have harmful content. This

content can be used to entrap users in crimes, gain sensitive information, or propagate

the URLs to other users. It is critical to classify such URLs into various threats such as spam, phishing, defacement, and malware to understand and mitigate their risks

with appropriate countermeasures [13]. However, classifying malicious URLs is a challenging task. It requires powerful algorithms that can analyze large amounts

of data and identify patterns to make accurate inferences. While machine learning

models meet this criterion, it is also important to understand how and why these

algorithms classify URLs into specific categories. By comprehending the decision-

making process of the algorithms, in fact, researchers can for example fine-tune the

models to enhance their accuracy and reduce false positives and negatives, or identify

any inherent biases in the models.

The field of eXplainable Artificial Intelligence (XAI) aims to reveal the under-

lying decision-making processes of machine learning models. It is a crucial aspect

of cybersecurity models, ensuring that their decisions and predictions are transpar-

ent and reliable. SHapley Additive exPlanations (SHAP) and Local Interpretable

Model-Agnostic Explanations (LIME) are two leading interpretability algorithms.

They provide insights into the factors influencing the prediction model, enabling

professionals to refine the model and correct any potential issues.

This paper investigates the effectiveness of machine learning models in classify-

ing malicious URLs. It utilizes SHAP and LIME to interpret the outcomes, drawing

insights for informed decision-making in cybersecurity applications. This study has

two primary objectives. First, we aim to develop and evaluate the capabilities of

four distinct machine learning models, that is, Multi-Layer Perceptron (MLP), Ran-

dom Forest Classifier (RF), Support Vector Machine (SVM), and eXtreme Gradient

Boosting (XGBoost). These models are specifically trained for the classification of

malicious URLs. The diverse range of models enables us to thoroughly assess their

effectiveness from various perspectives. Second, we aim to illuminate the decision-

making process of the most effective model. We accomplish this by employing SHAP

and LIME techniques. The integration of the insights from both these algorithms

allows to identify key features that indicate why certain URLs are deemed mali-

cious. This research is geared towards enhancing the performance of models that

A Comparative Analysis of SHAP and LIME in Detecting Malicious URLs

293

detect malicious URLs and aims to demystify the ‘black box’ nature of such models

for increased transparency and trust.

The remaining sections of this paper are organized as follows. In Sect. 2, we discuss previous research conducted in this area of study. Section 3 introduces the technology and algorithms used. Section 4 describes the dataset and our experimental methodology, which includes preprocessing, data cleaning, training, and evaluation

metrics. Section 5 analyzes the experiments performed in our research and discusses the results. Finally, we conclude our paper and present potential directions for future

work in Sect. 6.

2

Related Work

The Internet serves as a primary platform for various malicious activities, including

cybercrime. Malicious actors often exploit URLs to launch their attacks, as URLs are

the primary avenue for users to navigate the web. In response, cybersecurity experts

invest substantial effort in developing protocols and algorithmic solutions aimed at

detecting and blacklisting malicious, phishing, defacement, or spam URLs.

Several techniques are commonly employed to detect malicious URLs, with one of

the most widely used being blacklisting. Blacklisting is relatively straightforward to

implement and can be highly effective, but its success hinges on the constant updating

of these lists [1]. If blacklists are not kept up-to-date, new malicious URLs that have yet to be flagged can slip through. This method typically involves crawling numerous

web pages and links to assess their maliciousness. However, cybercriminals are

aware of this and frequently change URLs and IP addresses through techniques

like cloaking, which reduce the likelihood of matching against blacklist entries.

Furthermore, defacement URLs and fraudulent pages often hide among legitimate

ones, making them difficult to identify through simple web crawling.

For instance, the work presented in [10] focuses on detecting phishing URLs as a way to prevent cyberattacks that could lead to malware infections or network intru-sions. However, the authors do not rely solely on blacklisting. Instead, they combine

lexical features with blacklisted domains to enhance detection performance, showing

how hybrid approaches can improve the limitations of traditional blacklisting.

Another key category of detection involves behavioral detection techniques, which

often utilize machine learning models that analyze the characteristics of URLs.

In [19], the authors explore online learning approaches for detecting malicious websites using both lexical and host-based features. By employing these features, the

model can continuously adapt to detect new malicious URLs as they emerge. Simi-

larly, the study in [16] focuses on phishing detection by selecting lexical features to train an online model that handles noisy training data. The study reveals that even

just the structure of the URL names can provide enough information to accurately

detect phishing attempts.

Moreover, the work in [6] takes a more comprehensive approach by combining static analysis with minimalistic emulation to identify malicious web pages related to

294

A. Nair and F. Di Troia

drive-by downloads, phishing, and malware distribution. The authors introduce new

discriminative features and apply supervised learning to enhance detection capabil-

ities. Similarly, the research in [18] proposes an automated classification system to prevent users from visiting malicious websites by leveraging statistical methods to

identify lexical and host-based properties of URLs.

In [4], the authors develop a machine learning approach that not only detects malicious URLs but also identifies the type of attack being launched, such as spam-ming, phishing, or malware distribution. This method utilizes a variety of discrimi-

native features, including textual properties, link structures, webpage content, DNS

information, and network traffic data.

Although these works demonstrate high detection rates of malicious URLs, they

fall short of offering a clear explanation as to why these methods are so effective.

Understanding the reasoning behind the success of these techniques is crucial for

future improvement and adaptation. By examining the underlying mechanisms and

feature interactions, researchers can pinpoint the key factors that contribute to the

effectiveness of these methods. This knowledge can then be leveraged to refine exist-

ing models, develop new detection approaches, and enhance the overall robustness of

malicious URL detection systems. Additionally, bad actors may study these models

to discover weaknesses and exploit them. This could lead to the development of new

evasion techniques designed to bypass current detection methods. Therefore, it is

essential to continuously update and monitor these models to stay ahead of potential

threats. By understanding the limitations and vulnerabilities of current techniques,

researchers can design more resilient and adaptive systems capable of countering the

evolving strategies employed by malicious actors. This proactive approach is critical

for maintaining the security and integrity of web environments against malicious

URLs.

In recent years, the field of Explainable AI (XAI) has seen a significant and rapid

transformation, driven primarily by advancements in deep learning techniques. These

developments have made previously unsolved challenges, such as the interpretabil-

ity and transparency of complex AI models, far more manageable. XAI focuses on

addressing the “black-box” nature of many machine learning models, particularly

deep neural networks, by providing tools and methods that explain and visualize how

these models make decisions. This transparency is vital for industries like health-

care, finance, and cybersecurity, where understanding the decision-making process

is essential for trust, accountability, and regulatory compliance.

Recent studies have contributed substantially to this rapidly evolving field. For

example, in [14], the authors propose an interpretable feedforward (FF) design for convolutional neural networks (CNNs) that eliminates the need for backpropagation.

By using a data-centric approach, the FF design calculates the network parameters

of each layer based on statistical data from the previous layer in a single pass.

Another study, presented in [5], highlights the importance of explainability in AI, particularly for deep neural networks. The authors propose a hybrid approach that

combines clustering with the TREPAN decision tree to create human-interpretable

explanations, demonstrating the method’s effectiveness in real-world applications

such as credit card default prediction.

A Comparative Analysis of SHAP and LIME in Detecting Malicious URLs

295

While there has been considerable progress in XAI across various fields, there

is a notable lack of research specifically focused on applying XAI techniques to

cybersecurity, particularly in detecting malicious URLs. Malicious URLs represent

a serious cybersecurity threat, as they are commonly employed in phishing, malware

distribution, and spam attacks. The intricate structure of URLs, combined with the

need for real-time detection, makes this a particularly challenging yet promising

application for XAI. However, no specific work has yet addressed the application

of XAI to malicious URL detection. This paper aims to bridge that gap by not only

improving model transparency but also enhancing user trust in automated systems

designed to safeguard against these cyber threats.

3

Background

Machine learning algorithms play a pivotal role in cybersecurity. Their ability to

learn and analyze various features extracted from URLs enables them to effectively

distinguish between benign and malicious web addresses. This capability is crucial

for cybersecurity professionals working to protect networks and users from a wide

array of cyber threats.

In the following sections, we provide a concise analysis of the machine learn-

ing models employed in this research, outlining their fundamental principles,

distinguishing characteristics, and ideal use cases for malicious URL classification.

 3.1

 Support Vector Machines

A Support Vector Machine (SVM) is a machine learning algorithm that maps input

features into a high-dimensional space [22]. In this space, in case of multi-class implementation, it constructs one or more hyperplanes to separate data points into

distinct groups based on the regions formed by the intersections of these hyperplanes.

Figure 1 illustrates an example of a hyperplane in two dimensions. New data points are classified by evaluating their proximity to these hyperplanes. The algorithm

strategically positions the optimal hyperplanes to maximize the margin between

themselves and the closest points (support vectors) from each class. This enables

SVM to effectively capture complex relationships among features.

In cybersecurity applications, an effective use of SVM involves identifying the

optimal hyperplane that maximally separates malicious URLs from legitimate ones.

By doing so, SVM not only detects various categories of malicious URLs but also

offers valuable insights for broader cybersecurity tasks. This approach is particularly

useful due to the clear separability of different types of URL data points based on

this key feature.

[image: Image 73]

296

A. Nair and F. Di Troia

Fig. 1 Linear SVM classifier hyperplane

 3.2

 Random Forest

Random Forest (RF) is an ensemble learning technique based on decision trees, com-

monly used in machine learning [2]. During training, it constructs numerous decision trees, each working with different random subsets of the data. The final class prediction is determined by aggregating the votes from these individual trees. By using dis-

tinct subsets of training data and selecting random features for each tree, RF achieves

diversity in its predictions, which helps reduce overfitting. Figure 2 illustrates an example.

In the context of malicious URL detection, RF excels at handling large sets of

features that capture complex hierarchical relationships. A key advantage of this

approach is its ability to assess feature importance, providing valuable insights into

the significance of each feature in the classification process. This allows cybersecurity

professionals to better understand which characteristics are most relevant to detect-

ing malicious URLs and facilitates informed discussions on the topic. Additionally,

RF is effective in managing noisy data and outliers, making it a robust solution in

cybersecurity tasks.

 3.3

 XGBoost

eXtreme Gradient Boosting, commonly known as XGBoost, is a gradient boosting

algorithm that merges the principles of gradient boosting and decision trees [3]. It operates by building a series of decision trees, each trained to correct the errors of its

[image: Image 74]

A Comparative Analysis of SHAP and LIME in Detecting Malicious URLs

297

Fig. 2 Random forest trees

predecessor, forming an ensemble that improves upon a single model. Figure 3 provides an example. At each iteration, "weak learners" are introduced. These algo-

rothyms are typically decision trees that might not perform well on their own but,

collectively, contribute to a more accurate model.

In the context of malicious URL detection, where high-dimensional feature spaces

are common, XGBoost excels due to its ability to capture complex relationships

between features while still utilizing simple base learner components. This makes it

an efficient and powerful choice for detecting malicious URLs.

This approach leverages shallow decision trees, that is, weak learners with minimal

depth, typically comprising each leaf node, alongside statistical insights derived

from the distributional properties of the training data that they aim to approximate.

Regularization techniques are employed to enhance the model’s robustness against

noisy data. This is achieved by ignoring some samples during tree construction or

by considering only a subset of features at each node split, effectively addressing

imbalanced datasets.

Similar to Random Forest, XGBoost incorporates feature importance scores,

allowing cybersecurity professionals to identify critical indicators of malicious

URLs. These insights can then be used to inform mitigation strategies.

[image: Image 75]

298

A. Nair and F. Di Troia

Fig. 3 XGBoost decision making via boosting

However, it is important to recognize that relying solely on the mathematical

formulation of XGBoost may not offer clear intuition about the internal decision-

making process at various stages. This includes decisions on the structure of the

decision trees and the selection of valid threshold values during splits.

 3.4

 Multi-layer Perceptron

The strength of a Multi-Layer Perceptron (MLP) lies in its ability to create hierarchi-

cal data representations, enabling it to automatically extract essential features from

the original data [8]. Figure 4 provides an example. This feature extraction capability is particularly valuable in scenarios where manual feature engineering is challenging. Additionally, MLP is highly versatile and can effectively handle different data

types, including both categorical and numerical features, making it suitable for a

wide range of applications.

In the realm of malicious URL classification, MLP excels at capturing complex

relationships between URL features and their respective classes. It can effectively

predict the maliciousness of URLs by identifying subtle patterns indicative of harm-

ful behavior. The ability to uncover intricate data patterns makes MLP especially

powerful for detecting malicious activity. Moreover, MLP offers potential for model

interpretability through techniques such as feature visualization and activation map-

ping. By analyzing the learned representations within the neural network, cyberse-

curity professionals can gain valuable insights into the characteristics of malicious

URLs and understand the model’s decision-making process.

[image: Image 76]

A Comparative Analysis of SHAP and LIME in Detecting Malicious URLs

299

Fig. 4 A basic multi-layer perceptron

However, the effectiveness of deep models like MLP is closely tied to the amount

and quality of data available for training. Small datasets can lead to overfitting, caus-

ing the model to produce narrow, unreliable results. Additionally, deep models are

inherently complex, which poses challenges for interpretation and explanation, par-

ticularly when dealing with nonlinearity and high-dimensional data. As a result, it is

essential to carefully consider the use of deep models for malicious URL classifica-

tion, especially in situations where the dataset may be limited or sparse. In such cases, balancing the model’s sophistication with its interpretability and the availability of

data becomes crucial for successful application.

 3.5

 Recursive Feature Elimination

Feature engineering can be a challenging task, but Recursive Feature Elimination

(RFE) provides an effective solution. RFE is a technique that iteratively removes

features from the dataset, evaluating the model’s performance at each step until the

most important features are identified. Examples of this technique can be found in [9]

and [21]. This approach enhances both model interpretability and generalization. By focusing on a select subset of relevant features, RFE improves efficiency and reduces

the risk of overfitting. Moreover, it facilitates a deeper understanding of data patterns

and relationships by emphasizing key features that have been shown to improve

model performance.

300

A. Nair and F. Di Troia

 3.6

 Local Interpretable Model-Agnostic Explanations

 (LIME)

A powerful tool for explaining machine learning model predictions, including those

used for malicious URL classification, is Local Interpretable Model-agnostic Expla-

nations (LIME) [20]. LIME generates explanations that maintain local fidelity for individual predictions, allowing users to understand the model’s behavior on a case-by-case basis. This approach is particularly beneficial for complex models, as it

provides insights into the factors driving specific predictions without requiring a

deep understanding of the model’s underlying structure or concepts.

LIME’s foundation lies in approximating the decision boundary of a machine

learning model around an instance of interest. This process involves creating a local

neighborhood of perturbed instances, that is, a small area where feature changes are

made to observe how the model responds. In this localized region, LIME constructs

an interpretable model, such as a linear regression or decision tree, which helps

illuminate the reasons behind the model’s behavior in that specific context.

Algorithm 1 presents the pseudocode for this approach. The input is a trained model and a specific instance to explain. LIME then generates perturbed samples,

predicts their outcomes, and fits a simpler model to capture the local behavior. In

output we have the feature importances from the simpler model indicating which

features influenced the prediction for the specific instance.

For example, consider a machine learning model trained to classify URLs as either

safe or dangerous. To explain why a particular URL is deemed malicious, LIME

would generate a set of similar URLs (the local neighborhood) and analyze which

feature changes led to different predictions by the model. Through this analysis, it

might reveal that certain keywords or patterns are influential in the classification deci-

sion. By providing such insights, LIME assists cybersecurity experts in identifying

indicators of maliciousness within the dataset, empowering them to make informed

decisions.

 3.7

 SHapley Additive ExPlanations (SHAP)

SHapley Additive exPlanations (SHAP) is a powerful tool for explaining machine

learning model outcomes by attributing each prediction to individual feature values.

It assigns importance to each feature based on its contribution to the predicted output,

considering both individual and interactive effects through the lens of Shapley values

from cooperative game theory [17].

At its core, SHAP aims to calculate the Shapley values for each feature. In simpler

terms, Shapley values represent the average marginal contribution of a specific feature

across all possible combinations of features or coalitions. These numerical values

provide insight into the importance of each feature in predicting the final output.

A Comparative Analysis of SHAP and LIME in Detecting Malicious URLs

301

Algorithm 1 LIME Pseudocode

1: function LIME(model, instance, num_samples)

2:

Generate perturbed samples around the instance

3:

perturbed_samples = []

4:

for . i = 1 to num_samples do

5:

perturbed_sample = perturb(instance)

6:

perturbed_samples.append(perturbed_sample)

7:

end for

8:

Get predictions from the original model for these samples

9:

predictions = model.predict(perturbed_samples)

10:

Fit an interpretable model (e.g., linear regression) to the perturbed samples and their predictions

11:

interpretable_model = fit_interpretable_model(perturbed_samples, predictions)

12:

Get feature importances from the interpretable model

13:

feature_importances = interpretable_model.get_importances()

14:

return feature_importances

15: end function

When thoroughly understood, they offer a comprehensive picture of how decisions

are made by the model.

Algorithm 2 presents the pseudocode to describe this approach. In input we have a trained model and a specific instance. SHAP then computes contributions of each

feature by evaluating predictions with and without the feature across all combina-

tions. In output we have the values indicating the contribution of each feature to the

prediction.

By analyzing these Shapley values, we can identify which features drive the

model’s predictions and to what extent. Additionally, any changes to the input features

will affect the prediction output accordingly. The concept of Shapley values, rooted

in game theory, illustrates how the contributions of individual members in a coalition

determine their respective payoffs. This framework significantly enhances trust and

transparency in machine learning systems, as it clarifies model decisions and allows

for validation of those decisions.

4

Methodology

This section discusses the advantages of using LIME and SHAP instead of traditional

methods, it introduces the dataset and its features, followed by the methodology used

in the experiments. It includes details on preprocessing, data cleaning, training, and

evaluation metrics.

302

A. Nair and F. Di Troia

Algorithm 2 SHAP Pseudocode

1: function SHAP(model, input)

2:

Get the set of all features

3:

features = input.features

4:

Initialize SHAP values for each feature

5:

shap_values = {feature: 0 for feature in features}

6:

Calculate the prediction for the model with all features

7:

baseline_prediction = model.predict(input.features = empty_set)

8:

for each feature in features do

9:

Generate all combinations of features excluding the current feature

10:

for each subset in combinations(features excluding feature) do

11:

Predict with the subset of features

12:

prediction_with_subset = model.predict(input.features = subset)

13:

Predict with the subset + current feature

14:

prediction_with_feature = model.predict(input.features = subset + feature)

15:

Compute the contribution of the current feature

16:

contribution = prediction_with_feature - prediction_with_subset

17:

Weight the contribution by the size of the subset

18:

shap_values[feature] += contribution * weight(subset)

19:

end for

20:

end for

21:

Return SHAP values

22:

return shap_values

23: end function

 4.1

 Advantages of SHAP and LIME in eXplainable AI (XAI)

In this section, we emphasize how SHAP and LIME, two widely used implementa-

tions of eXplainable AI (XAI), offer deeper insights compared to traditional methods

like standard feature analysis.

One key advantage is their model-agnostic nature. SHAP and LIME can be

applied to various model types, such as SVM, Deep Learning, Random Forest, and

XGBoost, without being tied to a specific algorithm. This universality provides con-

sistent insights across different models. Unlike traditional feature analysis, which

often gives a global view of feature importance, LIME offers local explanations by

analyzing how small changes to the input affect model predictions. This approach

uncovers the nuanced behavior of models in particular cases.

Another strength is the ability to quantify feature contributions. SHAP, based on

cooperative game theory, measures how much each feature contributes to the final

prediction, offering a clear understanding of its positive or negative influence. SHAP

can also reveal feature interactions, helping to identify cases where certain feature

combinations are particularly predictive, such as in identifying malicious URLs.

Finally, SHAP and LIME handle non-linearity and complexity more effectively.

Complex models, like deep learning, often exhibit non-linear interactions between

features, making it difficult to assess feature importance using traditional methods.

SHAP and LIME provide more robust tools to interpret these intricate relationships,

making it easier to understand which features are important in specific instances-

insights that standard analysis might overlook.

A Comparative Analysis of SHAP and LIME in Detecting Malicious URLs

303

 4.2

 Dataset

The ISCX-URL2016 dataset is a curated collection of labeled URL samples specif-

ically designed for cybersecurity research [7, 15]. It includes URLs sourced from various origins, such as web pages, Alexa rankings, and email messages. Each URL

is labeled either by cybersecurity experts or through automated methods based on its

content.

This dataset is rich in samples, featuring a wide array of extracted attributes that

provide insights into the structure of the URLs, details about the domains, and an

analysis of the words used in the URL text. It also highlights specific keywords or

patterns that may be present.

Table 1 offers an overview of the dataset’s size and its distribution across five class labels:

• Spam: URLs associated with unsolicited and often irrelevant messages intended

to deceive users who click on them.

• Defacement: URLs linked to websites that have been altered by unauthorized

individuals to display messages or images that deface the original content.

• Benign: URLs considered safe and not posing any threat.

• Malware: URLs associated with malicious software designed to harm or exploit

programmable devices, services, or networks.

• Phishing: URLs used to obtain sensitive information, such as usernames,

passwords, and credit card details, by masquerading as trustworthy entities.

This classification enhances our understanding of different types of malicious

URLs and their characteristics.

The ISCX-URL2016 dataset comprises a substantial number of URLs spanning

various categories, ensuring a balanced representation of both malicious and benign

behaviors. This broad spectrum makes the dataset an ideal resource for training

Table 1 Dataset description

Descriptor

Count

Spam

6,698

Defacement

7,930

Benign

7,781

Malware

6,712

Phishing

7,586

Total

36,707

304

A. Nair and F. Di Troia

machine learning models on URL classification tasks. To enhance its informative-

ness, contextual metadata such as annotations with timestamps, source identifiers,

and confidence scores on classifications are incorporated. These annotations signifi-

cantly enrich the dataset’s utility, enabling detailed analyses that lead to meaningful

interpretations. This is particularly beneficial for effective cybersecurity research

initiatives.

In Table 2, we can find descriptions of the features used to describe the dataset samples.

 4.3

 Evaluation

In this section we present the metrics used to analyze and compare the performance of

the various models. Specifically, we used accuracy, precision, recall, and F1-score.

These comparisons were conducted prior to the experimentation with SHAP and

LIME, utilizing the best-performing algorithm with the ISCX-URL2016 dataset. In

the context of the discussion below, an instance refers to a row element of the dataset.

Accuracy, shown in Eq. (1), is the ratio of correctly classified items in the dataset to the total number of items.

.Accuracy = Number of Correctly Classified Instances

(1)

Total Number of Instances

To describe precision, recall, and F1-score, we need to define a few key terms:

• True Positive (TP): Number of instances correctly classified as positive.

• False Positive (FP): Number of instances incorrectly classified as positive when

they are negative.

• False Negative (FN): Number of instances incorrectly classified as negative when

they are positive.

• True Negative (TN): Number of instances correctly classified as negative.

Precision, shown in Eq. (2), is calculated as the ratio of correctly classified positive items to the total number of items classified as positive.

.Precision =

 TP

(2)

 TP + FP

Recall, shown in Eq. (3), is the ratio of correctly classified positive items to all items in the dataset that are actually positive.

.Recall =

 TP

(3)

 TP + FN

Finally, the F1-score combines precision and recall to create a more comprehen-

sive evaluation metric for analyzing model performance. It is calculated as the har-

A Comparative Analysis of SHAP and LIME in Detecting Malicious URLs

305

Table 2 Description of features

Column

Description

Querylength

Length of the query part of the URL

domain_token_count

Number of tokens in the domain

path_token_count

Number of tokens in the path

avgdomaintokenlen

Average length of domain tokens

avgpathtokenlen

Average length of path tokens

tld

Multiple top-level domains within a domain

ldl_url

Sequence of letter-digit-letter in URL

ldl_domain

Sequence of letter-digit-letter in domain

dld_url

Proportion of digits in URL

dld_domain

Proportion of digits in domain

urlLen

Length of URL

domainlength

Length of domain

pathLength

Length of path

subDirLen

Length of sub-directory

fileNameLen

Length of filename

this.fileExtLen

Length of file extension

ArgLen

Length of argument

pathurlRatio

Ratio of path length to URL length

ArgUrlRatio

Ratio of argument length to URL length

argDomanRatio

Ratio of argument length to domain length

domainUrlRatio

Ratio of domain length to URL length

pathDomainRatio

Ratio of path length to domain length

argPathRatio

Ratio of argument length to path length

NumberofDotsinURL

Number of dots in URL

CharacterContinuityRate

Character continuity rate

URL_DigitCount

Number of digits in URL

host_DigitCount

Number of digits in host

Directory_DigitCount

Number of digits in directory name

Directory_LetterCount

Number of letters in directory name

Filename_LetterCount

Number of letters in filename

delimeter_Domain

Presence of delimiters in domain

delimeter_path

Presence of delimiters in path

NumberRate_URL

Proportion of digits in URL

NumberRate_Domain

Proportion of digits in domain

SymbolCount_URL

Number of symbols in URL

SymbolCount_Domain

Number of symbols in domain

URL_Type_obf_Type

Type of URL obfuscation

306

A. Nair and F. Di Troia

monic mean of precision and recall, as shown in Eq. (4). This metric provides a robust measure of the performance of various machine learning models in classification

problems.

.F1-score = 2 · Precision · Recall

(4)

Precision + Recall

 4.4

 Procedure

We started with a comprehensive exploration of the dataset using Exploratory Data

Analysis (EDA). We analyzed the dataset’s characteristics to uncover hidden pat-

terns, anomalies, and complexities. The first step involved understanding the overall

structure of the dataset, including the number of samples, the dimensions of features,

and the types of data present. For numerical features, we revealed their properties

through descriptive statistics, while for categorical attributes, we examined frequency

counts and proportions.

Handling missing values is a crucial step in this process. We made strategic deci-

sions based on the plausibility of the missing data, choosing between imputation or

exclusion. We further highlighted patterns, trends, and outliers using visualization

methods. These methods reveal hidden insights that go beyond what mere summary

statistics can provide.

As indicated in Table 3, the feature NumberRate_Extension and the feature

Entropy_DirectoryName were removed due to a high count of missing values,

reaching almost 30% and 20% of the total, respectively. The remaining missing fields

resulted in the corresponding rows being dropped. This was because their counts

were negligible compared to the size of the dataset, and imputing the values with a

statistical replacement did not significantly improve the score.

Additionally, correlation analysis unveiled relationships between features, inform-

ing feature selection and model development decisions. Our examination of class

distribution showed potential class imbalances, guiding the choice of evaluation

Table 3 Missing values

Column

Missing count

NumberRate_Extension

10,130

Entropy_DirectoryName

8,468

avgpathtokenlen

280

Entropy_Extension

236

NumberRate_DirectoryName

40

NumberRate_FileName

10

Entropy_Afterpath

10

NumberRate_AfterPath

3

[image: Image 77]

A Comparative Analysis of SHAP and LIME in Detecting Malicious URLs

307

metrics and model training strategies. As seen in Fig. 5, most features are uncorrelated with each other, and only small clusters exhibit high correlation, such as

argUrlRatio and argPathRatio. The correlation matrix also indicates that

there is no correlation between URL_Type_obf_Type and the other features.

The analysis extended to applying various machine learning algorithms, namely,

Random Forest (RF), XGBoost, Multilayer Perceptron (MLP), and Support Vector

Machine (SVM). The algorithms for these models are described in Sect. 3. After scaling the input data, we scored and compared the models using a weighted F1-score, with accuracy as a secondary metric to evaluate performance for the best

model.

For the RF model, the hyperparameters used were criterion set to entropy,

maximum features set to sqrt, and the number of estimators set to 100. The

XGBoost model was configured with the objective set to multi:softmax and the

evaluation metric set to mlogloss. The SVM model had the hyperparameter C set

to .1 . 0, coef0 set to .0 . 0, degree set to . 3, and the kernel set to rbf. Lastly, the MLP model was configured with a single hidden layer of .155 neurons, a learning

rate set to constant, and the solver set to adam. Table 4 recapitulates the chosen Fig. 5 Correlation matrix

308

A. Nair and F. Di Troia

Table 4 Hyperparameters for each model

Model

Hyperparameters

Random Forest (RF)

criterion: ‘entropy’

max_features: ‘sqrt’

n_estimators: 100

XGBoost

objective: ‘multi:softmax’

eval_metric: ‘mlogloss’

Support Vector Machine (SVM)

C: 1.0

coef0: 0.0

degree: 3

kernel: ‘rbf’

Multi-layer Perceptron (MLP)

layers: (155,)

learning_rate: ‘constant’

solver: ‘adam’

hyperparameters for each model.

We also implemented a deep MLP model with .10 hidden layers, which are a

combination of Dense, BatchNormalization, and Dropout layers, as an

instance of a deep model. However, it performed poorly compared to a shallower

model with just two hidden layers. This suggests that the dataset size is not sufficient for a deeper model to be effective. Table 5 shows the Keras model summary and the hyperparameters for reference.

Table 5 Deep model summary using Keras

Layer

Output Shape

Param #

Dense

(None, 512)

39,936

BatchNormalization

(None, 512)

2048

Dropout

(None, 512)

0

Dense

(None, 256)

131,328

BatchNormalization

(None, 256)

1024

Dropout

(None, 256)

0

Dense

(None, 128)

32,896

BatchNormalization

(None, 128)

512

Dropout

(None, 128)

0

Dense

(None, 5)

8256

BatchNormalization

(None, 64)

256

Dropout

(None, 64)

0

Dense

(None, 5)

325

A Comparative Analysis of SHAP and LIME in Detecting Malicious URLs

309

We use these models for feature importance analysis to reveal the most important

predictors leading to model outcomes. The crux of the problem is that when we plug

in the model and dataset with 80 columns into the interpretability algorithms, the

individual contributions of each feature would be negligible (e.g., 0.01 importance).

The total number of columns is too large to easily make sense of the features, so

we used Recursive Feature Elimination to reduce the number of columns without

losing too much predictive power on the weighted F1-score. In this way, the reduced

number of columns would be more influential, allowing us to better identify trends

and inferences for malicious URL classification.

Finally, we conducted experiments using SHAP and LIME to understand why a

model makes certain predictions (TP, FP, FN, TN scenarios). Through these compar-

isons between different approaches used for analysis and based on their outcomes

regarding malicious URL detection, including model strength, interpretability scope,

and ability to succeed, we are able to obtain more detailed information about our

models’ robustness and predictive efficacy in identifying types of malicious URLs.

5

Experiments and Results

This section presents the results, including relevant plots and diagrams, from each

experiment and simulation. A detailed discussion, comparison, and analysis of these

results will follow in Sect. 5.3. All the results here are based on a test set using an 80–20 train-test split.

Table 6 shows the F1-score and Accuracy for the four models tested, along with a deep learning model implemented using Keras. Among these, XGBoost stands out

as the top performer, although the differences in scores are relatively small.

Since XGBoost proved to be the best model, we chose it for further analysis in

our explainability experiments. The next step involved applying Recursive Feature

Elimination (RFE) to reduce the number of features used by the XGBoost model.

This process improves the interpretability of the model while maintaining similar

performance. Figure 6 shows the F1-score for feature sets ranging from 10 to 80.

While the red dotted line indicates that the optimal result is achieved with around

71 features, we can confidently select about 20 features without much performance

Table 6 Model training scores

Model

Weighted F1-score

Accuracy

XGBoost

0.9811

0.9810

RF

0.9763

0.9762

MLP

0.9647

0.9650

Keras

0.9481

0.9462

SVM

0.9148

0.9146

[image: Image 78]

[image: Image 79]

310

A. Nair and F. Di Troia

Fig. 6 Recursive Feature Elimination (RFE) results with XGBoost with cross-validation loss, still achieving a strong F1-score of 0.972. Figures 7 and 8 present the confusion matrices for XGBoost using all features and the selected RFE features, respectively.

Figure 9 highlights the top 20 features chosen by RFE in conjunction with XGBoost.

Fig. 7 Confusion matrix of XGBoost with All features

[image: Image 80]

[image: Image 81]

A Comparative Analysis of SHAP and LIME in Detecting Malicious URLs

311

Fig. 8 Confusion matrix of XGBoost with RFE

Fig. 9 Top 20 features using RFE with XGBoost

 5.1

 LIME

In this section, we conduct experiments using LIME with the XGBoost model,

refined by Recursive Feature Elimination (RFE). We focus on the True Positive

(TP) instances for each class/label and generate explanations with the LIMETabu-

 larExplainer, a LIME variant designed for tabular data. The results of individual

explanations are averaged to provide a clearer overall interpretation. Figures 10, 11,

[image: Image 82]

[image: Image 83]

312

A. Nair and F. Di Troia

Fig. 10 Average LIME Explanation—Benign Label

Fig. 11 Average LIME Explanation—Malware Label

12, 13 to 14 illustrate the features and their respective importance, as determined by LIME, in assessing the maliciousness of various URLs in the test set.

The LIMETabularExplainer improves the interpretability of machine learning

models, particularly for tabular data. Its model-agnostic approach allows it to work

seamlessly across different machine learning techniques, making it a versatile tool in

diverse analytical workflows. For tabular data, where each row represents an obser-

vation and each column corresponds to a feature, LIMETabularExplainer effectively

clarifies the complex relationships between input variables and model predictions.

It excels at explaining feature importance, highlighting the relative contributions of

individual features to the model’s predictions.

[image: Image 84]

[image: Image 85]

A Comparative Analysis of SHAP and LIME in Detecting Malicious URLs

313

Fig. 12 Average LIME Explanation—Defacement Label

Fig. 13 Average LIME Explanation—Phishing Label

 5.2

 SHAP

As with the LIME experiments, we use the XGBoost model refined by Recursive

Feature Elimination (RFE) to extract True Positive (TP) instances for all five labels,

applying the SHAP TreeExplainer and averaging the results for each label. Fig-

ures 15, 16, 17, 18 to 19 display the features and their respective importance, as assigned by the TreeExplainer, for each label.

The SHAP TreeExplainer is a powerful tool for interpreting tree-based models. It

measures the marginal impact of each feature on prediction outcomes by considering

all possible feature permutations and their contributions to the predictions. Specifi-

cally designed for tree-based models, the TreeExplainer uses game theory to navigate

[image: Image 86]

314

A. Nair and F. Di Troia

Fig. 14 Average LIME Explanation—Spam Label

Table 7 SHAP TreeExplainer expected values

Label

Value

Spam

0.1844

Defacement

0.5590

Benign

0.4894

Malware

0.4828

Phishing

0.6215

decision trees and compute Shapley values for each feature, capturing both additive

and interaction effects. By breaking down the prediction process into feature contri-

butions, this method offers deep insights into the model’s decision-making, clearly

identifying the relative importance of each feature in shaping the final predictions.

Table 7 presents the base expected values for each label, representing the model’s average prediction across the dataset, independent of feature values. This expected

value serves as a baseline for comparing individual feature contributions, providing

insight into the model’s bias or general prediction tendency before accounting for

specific features.

 5.3

 Analysis

The precision of LIME’s explanation is evident, as illustrated in Fig. 10. For example, the blue bars clearly show which features push the classification

toward the positive class. In the case of benign URLs, characteristics such as

shorter query lengths (.Querylength ≤ −0 . 96), fewer vowels in the character

[image: Image 87]

A Comparative Analysis of SHAP and LIME in Detecting Malicious URLs

315

Fig. 15 Average SHAP Explanation—Benign

composition (.charcompvowels ≤ −0 . 58), and shorter domain token lengths

(.longdomaintokenlen ≤ −0 . 08) are strongly associated with benign classi-

fications. Conversely, the red bars highlight features that shift the classification away

from benign, such as a high value for dld_getArg.

The SHAP Decision Plot offers further insight into how individual features influ-

ence the likelihood of a positive classification as more features are incorporated

into the model (see [17]). Thresholds are particularly important for specific benign URLs, as shown in Fig. 15. Features like urlLen, NumberOfDotsinURL, and

token counts play a significant role. Sharp changes in the plot lines indicate points

where certain features exert a strong influence on the model’s output. These insights

help refine the model and provide a deeper understanding of its behavior-insights

that cannot be fully captured by performance metrics alone.

The SHAP Force Plot visualizes the contribution of each individual feature. It

shows how features drive the model’s output from a baseline toward either a benign

or non-benign classification. Red features on the right push the score towards benign,

while blue features on the left reduce it. Features such as top-level domain,

[image: Image 88]

316

A. Nair and F. Di Troia

Fig. 16 Average SHAP Explanation—Malware

delimiter_path, and domain_token_count play a crucial role in deter-

mining whether a URL should be classified as benign, offering a clear view of how

domain characteristics and path complexity influence the classification.

After extensive testing with both LIME and SHAP, a specific set

of features consistently emerges as having a significant impact across

all

cases

and

labels.

Influential

features

are

top-level domain,

domain_token_count, avgdomaintokenlen, NumberOfDotsinURL,

and NumberRateFileName. These features exhibit strong discriminatory power,

making them essential determinants of classification outcomes. The force plots

reveal an interesting dynamic: the interactions between these features are pivotal in

shaping classification decisions, underscoring their combined effect on the model’s

predictive accuracy.

These five features are highly interrelated, and their interactions highlight the

importance of understanding URL characteristics, particularly when distinguishing

between benign and malicious URLs. The insights from this analysis confirm that

these features possess discriminative qualities that are key to accurate URL classi-

fication. Their role in identifying maliciousness emphasizes their importance in the

[image: Image 89]

A Comparative Analysis of SHAP and LIME in Detecting Malicious URLs

317

Fig. 17 Average SHAP Explanation—Defacement

broader context of URL classification tasks. This granular understanding helps guide

the development of more robust and interpretable predictive models for future URL

classification challenges.

5.3.1

Benign

• LIME Explanation

– Positive Contributors: Having a shorter query length . Querylength < =

−0 . 96, having fewer vowels in character composition. charcompvowels < =

−0 . 58, and a shorter total domain token length. longdomaintokenlen < =

−0 . 08 are strongly associated with benign classifications.

– Features Contributing Negatively: a high value for dld_getArg pushes the

classification away from benign

• SHAP Decision Plot: Certain thresholds are crucial such as those involving

urlLen, NumberOfDotsinURL, and specific token counts.

[image: Image 90]

318

A. Nair and F. Di Troia

Fig. 18 Average SHAP Explanation—Phishing

• SHAP Force Plot: We find that some features, such as top-level domain,

delimeter_path, avgdomaintokenlen, and domain_token_count,

can either firmly push towards or pull away from a benign classification based on

their values.

Features related to URL structure, such as the length, composition, number of

subdomains, and path complexity, play a decisive role in classifying URLs as benign.

However, the model is sensitive to changes in domain-related features and path

complexity.

5.3.2

Malware

• LIME Explanation

– Positive Contributors: URLs with a high number of digits in their structure, espe-

cially in the file name (ldl_url, Extension_DigitCount), are strongly

[image: Image 91]

A Comparative Analysis of SHAP and LIME in Detecting Malicious URLs

319

Fig. 19 Average SHAP Explanation—Spam

indicative of malware. This could be due to auto-generated URLs for delivering

malware, which often include random numeric sequences.

– Complex domain and file structures (domain_token_count in combination

with NumberRate_FileName): A higher count of tokens in domains or spe-

cial numeric rates in filenames can indicate sophisticated obfuscation methods

used by malicious actors to mask nefarious activities.

– Negative Contributors: Shorter overall URL length (.urlLen = −0 . 76) is clas-

sified as benign, indicating that the model views longer URLs, which might

contain more complex and hidden paths or queries, with suspicion.

• SHAP Decision Plot Inferences: The plot highlights structural characteristics like

urlLen, the number of tokens in the domain (i.e., domain_token_count),

and numeric patterns within the URL which strongly influence malware detection.

– Crucial Thresholds for Malware Prediction: Specific thresholds in features like

NumberRate_Domain and argDomainRatio are critical. For instance,

a higher ratio of arguments to domain length might suggest complex queries

320

A. Nair and F. Di Troia

typical of URLs designed to exploit vulnerabilities or perform malicious

redirects.

• SHAP Force Plot Inferences: Specific features, such as top-level domain,

delimiter_path, and avgdomaintokenlen, have significant impacts

based on their values. A suspicious top-level domain or unexpected delimiters

in the path can push the classification toward malware.

The model heavily weighs features that describe URLs’ structural complexity and

numeric content, which are common characteristics of malicious sites.

5.3.3

Defacement

• LIME Explanation

– Positive Contributors: Higher domain complexity (.ldl_domain > 0 . 35) indicates URLs with more complex domain structures are more likely to be classified

as defacement. Higher character composition in URLs (. charcompvowels >

0 . 08) increases certain character types within URLs.

– Negative Contributors: Shorter filenames (.ldl_filename ≤ −0 . 47) within

the URL suggest a benign nature, possibly because legitimate URLs often

use straightforward naming conventions. Lower average domain token length

(.avgdomaintokenlen ≤ −0 . 25) typically pushes a URL’s classification

away from defacement, implying that more superficial domain structures are

less suspicious.

• SHAP Decision Plot Inferences: A significant role is played by fea-

tures

such

as

domain_token_count, NumberOfDotsinURL, and

Query_LetterCount. For example, more dots might indicate subdomain

complexity, a common trait in malicious URLs.

• SHAP Force Plot Inferences: Individual predictions are influenced

by

features

such

as

top-level domain, delimiter_path, and

domain_token_count. Suspicious top-level domains or unusual delim-

iter usage can firmly push the classification towards defacement. This shows how

a combination of high-risk factors in domain, path, and query can significantly

sway the decision towards identifying a URL as involved in defacement.

The model relies heavily on URL structural complexity, character composition,

and specific domain features to classify URLs as involved in defacement. This sug-

gests that defacement URLs use complex structures and deceptive naming to target

websites.

A Comparative Analysis of SHAP and LIME in Detecting Malicious URLs

321

5.3.4

Phishing

• LIME Explanation

– Positive Contributors: Shorter query lengths.Querylength ≤ −0 . 96 in URLs

are frequently associated with phishing attempts, possibly because attackers

often simplify queries to mimic legitimate URLs better and deceive users. Fewer

vowels in character composition.charcompvowels ≤ −0 . 58 lead to a reduc-

tion in vowel usage in the URL, which could indicate non-standard word con-

structions. Decreased length in domain tokens . domain_token_count ≤

−0 . 19 signifies that simpler or shorter domain tokens are attempts to copy

reputable domains, misleading the user into thinking the URL is trustworthy.

– Negative Contributors: Complex file and domain names . ldl_filename >

−0 . 47,.ldl_domain > −0 . 36 introduce complexity in these areas.

• SHAP

Decision

Plot

Inferences:

Features

such

as

.urlLen,

.NumberofDotsinURL, and specific token counts are pivotal in distin-

guishing phishing URLs. The SHAP values indicate sensitivity to changes in

URL length and structure, where shorter and less complex URLs tend to be

marked as potential phishing attempts.

• SHAP Force Plot Inferences: Special characters (.spcharUrl, number of dots

in the URL .NumberofDotsinURL, and .URLQueries_variable) impact

the model’s decision for a single prediction. Higher counts or unusual patterns in

these areas can flag a URL as phishing.

The phishing detection model infers that short, simple domains and queries that

try to appear legitimate are vital indicators.

5.3.5

Spam

• LIME Explanation

– Positive Contributors: Lower domain token count. domain_token_count ≤

−0 . 70 is more frequently associated with spam, possibly indicating that spam

URLs opt for less complex domains to appear more generic or mimic legitimate

domains. Moreover, shorter total domain lengths. longdomaintokenlen ≤

−0 . 34 suggest a propensity for spam URLs to use concise domain

names, enhancing memorability to deceive users. Reduced path complexity

.ldl_path ≤ −0 . 63 also indicates spam.

– Negative Contributors: Higher counts of vowels in character composition

.charcompvowels > 0 . 08 push the classification away from spam, poten-

tially due to more natural-sounding or legible domain names in non-spam

URLs.

• SHAP

Decision

Plot

Inferences:

Feature

.urlLen

and

feature

.domain_token_count

significantly influence spam detection. Shorter,

322

A. Nair and F. Di Troia

simpler URLs are often flagged as spam, reflecting a common trait among spam

URLs to avoid complexity.

• SHAP Force Plot Inferences: Feature.NumberRate_FileName and the feature

.Extension_DigitCount can strongly push towards a spam classification.

High numeric content in filenames and extensions can indicate automated or non-

individualized URL generation typical in spam campaigns.

The insights from our analysis have significant implications for the refinement

of spam detection mechanisms. We find that spam URLs tend to be structurally

simpler and shorter, possibly to facilitate easier dissemination and avoid detection.

Features that imply complexity or mimic legitimate website structures often pull

the classification away from spam. These findings suggest that by focusing on these

features, we can enhance the model’s accuracy and reliability in spam detection.

This, in turn, will help in effectively identifying and filtering out spam URLs while

minimizing false positives. Understanding these feature impacts is a crucial step

towards improving spam detection in the vast landscape of internet communications.

6

Conclusion

This work explored the properties and underlying structures of URLs using a machine

learning model trained on the ISCX-URL2016 dataset, which classifies URLs into

categories such as benign, malware, phishing, defacement, and spam. By utilizing

LIME and SHAP visualizations, we demonstrated how specific features contribute to

these classifications, offering insights into the factors that drive the model’s decision-

making process.

• Benign: The model classifies URLs as benign based on their simplicity and stan-

dard features typically found in legitimate websites. These URLs tend to be shorter,

with fewer numeric or special characters, and have a simple domain structure,

suggesting benign intent through a lack of complexity or deceptive elements.

• Malware: Malware URLs are often longer and contain a higher density of numeric

characters, especially in filenames and domain segments. These URLs tend to

follow convoluted and complex structures, likely designed to mask malicious

intent.

• Phishing: Short query lengths and fewer domain tokens make phishing URLs

easier to detect. These features are often exploited by attackers to craft URLs that

closely resemble those of trusted sources, increasing the likelihood of deceiving

users.

• Defacement: URLs associated with defacement exhibit more complex domain

structures, indicating efforts to tamper with webpages through sophisticated tech-

niques. Features like character composition and domain-specific traits play a

crucial role in identifying these cases.

A Comparative Analysis of SHAP and LIME in Detecting Malicious URLs

323

Table 8 Influential factors for each class

Label

Influential factors

Benign

Positive: Shorter Query Length, Fewer Vowels,

Short Domain Token Length

Negative: High Digits in Arguments

Interactive: urlLen, NumberofDotsInURL,

Top-level Domain, Domain Token Count

Malware

Positive: High Digits in URL, More Tokens,

Special Numeric Rates in Filenames

Negative: Shorter URLs

Interactive: urlLen, Top-level Domain, Domain

Token Count

Defacement

Positive: High Domain Complexity, Higher

Character Composition

Negative: Shorter Filenames, Average Domain

Token Length

Interactive: Top-level Domain, Delimiter Path,

Domain Token Count

Phishing

Positive: Shorter Query Length, Fewer Vowels,

Short Domain Token Length

Negative: Letter-Digit-Letter Combos in

Filename and Domain

Interactive: spcharUrl, NumberofDotsinURL,

URLQueries_variable

Spam

Positive: Low and Short Domain Token Count,

Reduced Path Complexity

Negative: More Vowels in Characters

Interactive: NumberRate_FileName,

Extension_DigitCount

• Spam: Spam URLs are characterized by shorter domain lengths and simple paths,

making them easy to recall and ideal for mass-distribution campaigns. Numeric-

rich filenames and structural simplicity are also common traits that the model

identifies as indicators of spam.

Table 8 summarizes the factors that positively and negatively influence URL classification toward each label, along with interactive effects where feature combinations

significantly affect the outcome.

By analyzing these findings, we gain a deeper understanding of how different

structural attributes help distinguish between harmful and harmless URLs. The visu-

alizations offer valuable insights into which specific characteristics have the greatest

influence on the model’s predictions. This knowledge is crucial for refining URL clas-

sification models, improving their accuracy, and adapting to the constantly evolving

threat landscape.

324

A. Nair and F. Di Troia

In conclusion, this research provides important insights into the automated mech-

anisms of URL classification models, laying a strong foundation for future studies.

Future research could build on this by exploring additional attributes, such as changes

in URL behavior over time, to better counter the evolving tactics of cyber adversaries.

References

1. Bell S, Komisarczuk P. An analysis of phishing blacklists: google safe browsing, OpenPhish, and PhishTank. In: Proceedings of the Australasian computer science week multiconference,

ACSW ’20; 2020.

2. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

3. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining; 2016. p.

785–794.

4. Choi H, Zhu BB, Lee H. Detecting malicious web links and identifying their attack types. In: 2nd USENIX conference on web application development. WebApps. 2011;11.

5. De T, Giri P, Mevawala A, Nemani R, Deo A. Explainable AI: a hybrid approach to generate human-interpretable explanation for deep learning prediction. Procedia Comput Sci.

2020;168:40–8.

6. Eshete B, Villafiorita A, Weldemariam K. BINSPECT: Holistic analysis and detection of malicious web pages. In: Keromytis AD, Di Pietro R, editors, Security and privacy in communication networks; 2013. p. 149–166.

7. Canadian Institute for Cybersecurity. Iscx-url2016 dataset; 2016. https://www.unb.ca/cic/

datasets/url-2016.html.

8. Gardner MW, Dorling SR. Artificial neural networks (the multilayer perceptron)–a review of applications in the atmospheric sciences. Atmos Environ. 1998;32(14–15):2627–36.

9. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn. 2002;46(1–3):389–422.

10. Hong J, Kim T, Liu J, Park N, Kim S-W. Phishing URL detection with lexical features and blacklisted domains. In: Jajodia S, Cybenko G, Subrahmanian VS, Swarup V, Wang C, Wellman M, editors, Adaptive autonomous secure cyber systems. Springer; 2020. p. 253–267.

11. Huang K, Wang X, Wei W, Madnick S. The devastating business impacts of a cyber breach; 2023. https://hbr.org/2023/05/the-devastating-business-impacts-of-a-cyber-breach.

12. IBM. IBM data breach report; 2022. https://www.ibm.com/security/data-breach/threat-

intelligence.

13. Islam MS, Rathore MA, Lashkari AH, Stakhanova N, Ghorbani AA. Detecting malicious URLs using lexical analysis. In Network and System Security. Springer; 2016. p. 467–482.

14. Jay Kuo C-C, Zhang M, Li S, Duan J, Chen Y. Interpretable convolutional neural networks via feedforward design. J Vis Commun Image Represent. 2019;60:346–359.

15. Lashkari AH, Islam Mamun MS, Ghorbani AA. Iscx-url2016 dataset; 2016. https://www.unb.

ca/cic/datasets/url-2016.html.

16. Le A, Markopoulou A, Faloutsos M. PhishDef: URL names say it all. In: 2011 proceedings IEEE INFOCOM; 2011. p. 191–195.

17. Lundberg S. SHAP documentation; 2018. https://shap.readthedocs.io/en/latest/.

18. Ma J, Saul LK, Savage S, Voelker GM. Beyond blacklists: learning to detect malicious web sites from suspicious URLs. In: Proceedings of the 15th ACM SIGKDD international conference

on knowledge discovery and data mining, KDD ’09; 2009. p. 1245–1254.

19. Ma J, Saul LK, Savage S, Voelker GM. Identifying suspicious urls: an application of large-scale online learning. In: Proceedings of the 26th annual international conference on machine learning, ICML ’09; 2009. p. 681–688.

A Comparative Analysis of SHAP and LIME in Detecting Malicious URLs

325

20. Tulio Ribeiro M. Local interpretable model-agnostic explanations (LIME); 2016. https://lime-

ml.readthedocs.io/en/latest/.

21. Theerthagiri P, Vidya J. Cardiovascular disease prediction using recursive feature elimination and gradient boosting classification techniques. Exp Syst. 2022;39(9): e13064.

22. I-Tung Yang and Handy Prayogo. Efficient reliability analysis of structures using symbiotic organisms search-based active learning support vector machine. Buildings. 2022;12:455.

[image: Image 92]

XAI and Android Malware Models

Maithili Kulkarni

and Mark Stamp

Abstract Android malware detection based on machine learning (ML) and deep

learning (DL) models is widely used for mobile device security. Such models offer

benefits in terms of detection accuracy and efficiency, but it is often difficult to understand how such learning models make decisions. As a result, these popular malware

detection strategies are generally treated as black boxes, which can result in a lack

of trust in the decisions made, as well as making adversarial attacks more difficult to

detect. The field of eXplainable Artificial Intelligence (XAI) attempts to shed light

on such black box models. In this paper, we apply XAI techniques to ML and DL

models that have been trained on a challenging Android malware classification prob-

lem. Specifically, the classic ML models considered are Support Vector Machines

(SVM), Random Forest, and. k-Nearest Neighbors (. k-NN), while the the DL models we consider are Multi-Layer Perceptrons (MLP) and Convolutional Neural Networks

(CNN). The state-of-the-art XAI techniques that we apply to these trained models are

Local Interpretable Model-agnostic Explanations (LIME), Shapley Additive exPla-

nations (SHAP), PDP plots, ELI5, and Class Activation Mapping (CAM). We obtain

global and local explanation results, and we discuss the utility of XAI techniques

in this problem domain. We also provide a literature review of XAI work related to

Android malware.

1

Introduction

Malicious software, or malware, can appear in various forms, including worms,

viruses, adware, and ransomware. In recent years, the popularity of smartphones has

made them targets of malware attacks.

It is not surprising that machine learning (ML) and deep learning (DL) have

become dominant approaches for detecting malware, including malware on mobile

devices [34]. Such models can be trained on a variety of static and dynamic features [3,

29]. We elaborate on some of these techniques in Sect. 2.

M. Kulkarni · M. Stamp (B)

San Jose State University, San Jose, CA, USA

e-mail: mark.stamp@sjsu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

327

M. Stamp and M. Jureček (eds.), Machine Learning, Deep Learning and AI for

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_12

328

M. Kulkarni and M. Stamp

Although ML and DL provide significant capabilities, such techniques are gen-

erally treated as black boxes [7]. This black box aspect can limit the trust that users are willing to place in such models. Also, from a security perspective, black box

models may be more susceptible to adversarial attacks, where an attacker attempts to

modify a model to yield incorrect results. Furthermore, when an opaque model fails,

it is difficult to identify why the model is failing. Thus, there is a need to develop insights into the internal operations of learning models, especially those that are used

for malware detection and classification.

The emerging field of eXplainable Artificial Intelligence (XAI) deals with under-

standing the inner workings of learning models [27]. XAI generally attempts to explain model outcomes in terms of the influence of input variable (i.e., features), or by using approximation or surrogate models whose outcomes are more explainable. The goal is

to provide a transparent and interpretable view of a model’s decision-making process.

In this paper, we focus on XAI in the context of Android malware detection.

We consider XAI for selected classic ML techniques and DL models that have been

trained on the well-known KronoDroid Android malware dataset. Specifically, the

classic ML models that we consider are Support Vector Machines (SVM),. k-Nearest

Neighbors (. k-NN), and Random Forest. In the DL realm, we consider Multi-Layer

Perceptron (MLP) and Convolutional Neural Network (CNN) architectures. In gen-

eral, classic ML techniques are relatively interpretable, as ML models are typically

based on probabilistic, algebraic, or geometric intuition. In contrast, most neural net-

working models are opaque, in the sense that it is non-trivial to understand how they

are making decisions. In this paper, we aim to provide a comparative study of XAI for

the selected ML and DL models, within the context of Android malware classification.

For each trained model, we apply relevant XAI techniques from among the fol-

lowing: Local Interpretable Model-Agnostic Explanations (LIME), SHapley Addi-

tive exPlanations (SHAP), PDP, and ELI5 [18, 26, 38]. Additionally, we provide a review of recent literature where XAI techniques are applied to models trained on

Android malware. Our literature review can be viewed as an extension of that in [19].

The remainder of this paper is organized as follows. Section 2 covers a range of relevant background topics, including malware detection strategies and an introduction to the XAI techniques that we employ in our experiments. Section 3 gives an overview of related previous work on malware classification and provides a literature

review of recent XAI work related to models trained on Android malware. Section 4

covers the implementation of the various classic ML and DL models used in this

paper, along with our experiments and results. Finally, Sect. 5 summarizes our work, and we provide a discussion of potential avenues for future work.

2

Background

In this section, we first give a brief overview of malware, followed by a discussion

of ML and DL algorithms that are commonly used to classify malware. This section

also includes detailed background on the state-of-the-art XAI techniques that we

consider in this paper.

XAI and Android Malware Models

329

 2.1

 Malware and Categories

Malware is the dominant security threat to smartphones [22]. The purpose of writing malware can range from simply a prank to an organized criminal activity, information warfare, and espionage. Figure 1 highlights the rapid increase in the volume of Android malware samples over the years 2012 through 2018 [6].

Malware covers an array of threats, including backdoors, spyware and adware,

Trojan horses, and viruses. We now give a brief overview of these common types of

malware before moving on to discuss malware detection techniques.

A backdoor, also known as a trapdoor, is built to circumvent security checks [22].

Programmers may create backdoors for legitimate reasons when developing their

code. Cybercriminals seek to exploit their backdoors to delete files, access sensitive

data, install additional malware, open communication ports for remote access, and

so on.

As the name implies, spyware is used to spy on user activities, and can include

recording the audio of calls on a smartphone, tracking Internet usage, recording

keystrokes (including passwords), and so on [22]. Adware, on the other hand, often generates fake error messages and then asks the user to pay money to fix a non-existent problem. Winwebsec is a well-known family of adware [25].

Named after the ancient historic plot by Greek invaders to capture Troy, a Trojan

is a program devised to look harmless, but secretly performs a malicious task. Trojan

apps that send premium SMS messages in the background are a typical example [22].

Zeus (aka Zbot) is a well-known Trojan family, and it has been widely used for nearly

two decades for crimes including bank fraud and money laundering [13].

A virus is the most common type of malware. True to its name, this malware repli-

cates by infecting executable programs. The infected programs can further propagate

the virus during their execution, or a virus might propagate through external devices,

4

3

millions)

(in

2

samples

are

1

Malw

0

2012

2013

2014

2015

2016

2017

2018

Fig. 1 Detected Android malware samples

330

M. Kulkarni and M. Stamp

software, or email. Like a biological virus, a computer virus might exhibit meta-

morphism, in the sense of changing its form when infecting other systems [33].

Metamorphism is an effective means of evading classic virus detection techniques,

such as signature scanning.

 2.2

 Learning Models for Malware Detection

There is a constant arms race between malware writers and antivirus developers.

Over the past two decades, ML and DL techniques have come to the fore in the fields

of malware detection, classification, and analysis. In this section, we introduce the

ML and DL techniques that we consider in this paper, where the underlying problem

is to classify Android malware samples.

2.2.1

Classic Machine Learning

Support Vector Machines (SVM) [34] are popular supervised machine learning models. SVMs attempt to separate classes using hyperplanes. A nonlinear kernel can be

used to map training data into a higher-dimensional space and thereby enhance the

separability.

In machine learning, a Random Forest consists of an ensemble of decision trees,

with voting among the component trees used to determine the classification [12].

More trees can mean better accuracy and generalizability, but care must be taken not

to overfit the data.

As the name suggests, in . k-Nearest Neighbors (. k-NN), samples are classified based on the . k nearest samples in the training set. There is no explicit training required for . k-NN, and hence the algorithm is often referred to as a “lazy learner”.

However, scoring calculation can be relatively expensive. The technique is highly

sensitive to local structure and, in particular, for small values of . k, overfitting is common [34].

2.2.2

Deep Learning

Artificial Neural Networks (ANNs) are mathematical models that are inspired by

neurons in the brain. Multi-layer Perceptrons (MLP) are the simplest useful neu-

ral networking architecture, and hence they are sometimes referred to simply as

ANNs. MLPs are feed-forward networks that generalize basic perceptrons to allow

for nonlinear decision boundaries. This is analogous to the way that nonlinear SVMs

generalizes linear SVMs. As with most DL architectures, MLPs are trained using

backpropagation [34].

Convolutional Neural Networks (CNNs) are a specialized type of neural net-

work that focus on local structure, making them ideal for image analysis. CNNs

XAI and Android Malware Models

331

are composed of an input layer, convolution layers, and pooling layers, along with a

fully-connected output layer (or layers) that produce a vector of class scores. The first convolutional layer in a CNN extracts various intuitive features from the input. Subsequent convolutional layers extract ever more abstract features from the previous

layer.

 2.3

 Overview of Explainable AI

The applications of artificial intelligence in the security domain introduces sev-

eral challenges. For example, adversarial attacks on such systems are a concern.

By employing eXplainable Artificial Intelligence (XAI) techniques to understand

how a model works, we have a better chance of detecting such attacks. Addi-

tionally, XAI analysis, may enable us to perform feature reduction, based on

feature importance, which can speed up detection. XAI can shed light on black

box models by uncovering relationships between dependent and independent vari-

ables, thereby increasing user trust, which is especially important in security-related

applications.

Next, we briefly consider XAI techniques from various perspectives. Specifically,

we discuss interpretability and explanations from the perspectives of ante-hoc ver-

sus post-hoc, model-agnostic versus model-specific, and local versus global. We

then consider the level of interpretability—high, medium, or low—provided by XAI

techniques.

Models that are inherently easy to understand are said to be ante-hoc interpretable.

For example, linear models and classic Hidden Markov Models (HMM) fall into the

ante-hoc interpretable category. A model is post-hoc model interpretable if we need

to apply explicit interpretation methods after the model is trained. Of course, post-

hoc techniques can also be used on intrinsically interpretable models after they are

trained [38].

Some XAI techniques are model agnostic, in the sense that they can be applied

to any type of machine learning algorithm. On the other hand, some XAI techniques

are model-specific. Of the XAI techniques that we consider, LIME, SHAP, PDP

plots, and ELI5 are all model-agnostic techniques, while CAM is specific to CNNs.

According to [27], model-specific techniques may, in general, be more informative than model-agnostic explanation techniques.

Local interpretable techniques help us understand how and why the model makes

a certain classification for a specific sample, or for a group of samples [24]. Locally, models can often be viewed as linear or monotonic in some features. Global techniques deal with interpreting a model as a whole, taking a holistic view of features

into account. For example, LIME only deals with local interpretability, while SHAP

can be used for both local and global explanations.

Models consisting of linear functions are highly interpretable. For example, linear

SVM models are highly interpretable. For this reason, some XAI techniques, such

as LIME, use linear functions as local approximations.

332

M. Kulkarni and M. Stamp

Models with nonlinear monotonic functions are in the class of medium inter-

pretable models. Nonlinear functions are those in which input data is modeled using

a function with a nonlinear combination of the model parameters. For example, an

SVM trained with the (nonlinear) RBF kernel is a medium interpretable model.

Machine learning models with nonlinear and non-monotonic functions fall into

the low interpretability category. Most DL models are in this category, and hence

they are inherently difficult to interpret. CAM is model-specific technique that is

applicable to CNNs, which are in the low interpretability category.

It has been suggested that there may be an inverse correlation between model

performance and inherent interpretability [9, 10]. However, there are XAI techniques that are useful for models in the low interpretability category; for example, CAM is

useful for interpreting CNN models, as mentioned above.

 2.4

 XAI Techniques

Before moving on to discuss our experiments, we first introduce the explainability

techniques that we consider. We use feature ranking to analyze our linear SVM and

Random Forest models, and for other models, we use the XAI techniques of LIME,

ELI5, CAM, and SHAP (including PDP plots).

2.4.1

SVM and Random Forest Interpretations

Linear SVMs are inherently interpretable models, in the sense that we can determine

the relative importance of features based on the model weights, assuming that the

features have been properly normalized. In the sklearn Python library, it is easy

to obtain feature weights for the linear SVM kernel using the coef_method [31].

Similarly, we can obtain feature rankings from Random Forest models. Non-linear

SVMs, as well as the other ML and DL techniques that we consider, are not highly

interpretable.

2.4.2

LIME

Local Interpretable Model-agnostic Explanations (LIME) is based on local surrogate

interpretable models, and is used to explain individual predictions of black box

machine learning models [17]. LIME generates a new dataset consisting of perturbed samples and the corresponding predictions of the black box model. Based on this

new dataset, LIME then trains a simple interpretable model which is weighted by

the proximity of the perturbed instances to the sample of interest. This interpretable

model provides a good local approximation to the original machine learning model.

According to [30], the explanation provided by LIME of sample. x, denoted. E(x), can be expressed as

XAI and Android Malware Models

333

. E (x) = arg min L (M, g, πx) + (g)

 g∈ G

where. L measures the inaccuracy introduced by approximating the original model. M

with the simplified model. g in a perturbed neighborhood defined by. πx . By default,. g is a sparse linear model, but decision trees can also be used. Here,. (g) is a measure of model complexity and acts as a penalty term, since we want a simple approximation.

Note that the minimum is over the family . G of possible explanations.

Obtaining LIME explanations consists of the following steps.

1. Choose a dataset.

2. Train a black box model on the dataset.

3. Generate new data samples by perturbing existing samples and weight the new

dataset samples according to their proximity to the sample of interest.

4. Train a weighted, interpretable model on this new dataset.

5. Explain the prediction by interpreting the local model.

2.4.3

ELI5

The name ELI5 is derived from the saying, “Explain it Like I’m 5”. ELI5 can be

used to generate global explanations of a black-box model. The concept behind ELI5

is simply based on permuting the values of individual features—in turn, the values

of each feature are shuffled, and model results are tabulated after each such shuffle.

The worse the classification results after a given feature is shuffled, the more that the model depends on that feature [15].

2.4.4

Grad-CAM

The technique of Gradient-weighted Class Activation Map (Grad-CAM) is used

to analyze CNNs. Grad-CAM assists in understanding which parts of an image a

convolutional layer weights most to determine a given classification [27]. That is, Grad-CAM is a class-based localization technique for CNN interpretability.

Grad-CAM uses gradient information flowing into the last convolutional layer of

a CNN to obtain a localization map of the important regions in the image, and thereby

determines the importance of each pixel of the input image for the specified class.

This resulting gradient weighted activation map can be overlayed on the original

input image to visualize which parts of the input the CNN associates highly with a

given output class.

2.4.5

SHAP and PDP Plots

SHapley Additive exPlanations (SHAP) is a popular XAI technique based on Shapley

values. In 1951, Lloyd Shapley developed a technique to determine the contribution

334

M. Kulkarni and M. Stamp

of each player in a multi-player game setting, and in 2012, he won the Nobel Prize in

economics for his work. In Shapley’s approach, player contributions are determined

by Shapley values, which have a number of desirable theoretical properties. More

recently, Shapley values have been applied to XAI [21], with features in place of game-theoretic players.

In SHAP, we first compute a Shapley value for each sample and each feature,

as discussed below in some detail. A Shapley value measures the contribution of a

specified feature to the classification of a given sample. If we arrange the Shapley

values into a matrix with the rows indexed by the samples and the columns indexed by

the features, then the row corresponding to a sample can provide an explanation for

the classification of the sample. For example, the largest value in a row corresponds

to the feature that has the most influence on the classification of the corresponding

sample. Similarly, explanations of the overall model can be determined by analyzing

the Shapley values in the entire matrix.

Several types of graphs and plots can be generated based on Shapley values.

Before discussing such graphs, we first provide more details on the computation of

Shapley values.

Suppose that . X represents a feature vector of length . n of the form . X =

 (f 1 , f 2 , . . . , fn), where each . f j is the value of a specific feature. Further, suppose that we have a model . M that for each such . X produces a real-valued result, . M(X).

For example,. M(X) could be the classification of. X as determined by the model. M, or it could be a probability generated by the model. For any subset . S of the features .{ f 1 , f 2 , . . . , fn}, let . MS be a model corresponding to . M, but trained only on the features in the subset . S. Then . MS(X) is the real-valued result obtained for sample . X , under the restricted model . MS.

For a given sample. X , we compute. n Shapley values, with each value corresponding to one of the. n features. We denote the Shapley value for sample. X , corresponding to feature . fi , as . i (X). The Shapley value is defined as

 n − 1

. i (X) = 1

 M{ S

 (X)

(1)

 n

 i ∪ fi } (X) − MSi

| Si|

 Si

where . Si denotes a subset of the . n − 1 features .{ f 1 , . . . , fi−1 , fi+1 , . . . , fn}, and the sum is over all such subsets (including the empty set, with . M∅ (X) defined to be 0). Note that the Shapley value computation consists of comparing the behavior

of pairs of models applied to the sample . X : One models of each pair includes the feature. fi , while the other omits. fi , with the other features unchanged. These pairwise computations are averaged over the number of subsets of a given size. The.1 /n term in (1) normalizes the result based on the number of features.

For example, suppose that we have four features with . X = (f 1 , f 2 , f 3 , f 4), and that we are computing the Shapley value . 3 (X). Then from equation (1), we have

XAI and Android Malware Models

335

 3 (X) = 1 M{ f

4

3 } (X) − M∅ (X)

+ M{ f

 / 3

1 , f 3 } (X) − M{ f 1 } (X)

+ M{ f

 / 3

2 , f 3 } (X) − M{ f 2 } (X)

+ M{ f

 / 3

3 , f 4 } (X) − M{ f 4 } (X)

.

(2)

+ M{ f

 / 3

1 , f 2 , f 3 } (X) − M{ f 1 , f 2 } (X)

+ M{ f

 / 3

1 , f 3 , f 4 } (X) − M{ f 1 , f 4 } (X)

+ M{ f

 / 3

2 , f 3 , f 4 } (X) − M{ f 2 , f 4 } (X)

+ M{ f 1 , f 2 , f 3 , f 4} (X) − M{ f 1 , f 2 , f 4} (X) Shapley values can also be computed by considering all . n! orderings of the features. In this formulation, for each permutation, we again sum the differences of

pairs of a models, where one is trained on all features up to and including . fi , with the model trained on all features up to . fi , but not including . fi . We now discuss this approach in more detail.

For any permutation. P of the features, let. Pi be the initial part of the permutation before . fi appears. Then we can rewrite equation (1) as

. i (X) = 1

 MP

 (X)

(3)

 n!

 i ∪{ fi } (X) − M Pi

 P

where the sum is over all . n! permutations. P of the. n features.{ f 1 , f 2 , . . . , fn}.

Using Eq. (3), the example in Eq. (2) can be written as

 3 (X) = 1

 M{ f

24

1 , f 2 , f 3 , f 4 } (X) − M{ f 1 , f 2 , f 3 , f 4 } (X)

+ M{ f 1 , f 2 , f 4 , f 3} (X) − M{ f 1 , f 2 , f 4 , f 3} (X)

+ M{ f 1 , f 3 , f 2 , f 4} (X) − M{ f 1 , f 3 , f 2 , f 4} (X)

+ M{ f 1 , f 3 , f 4 , f 2} (X) − M{ f 1 , f 3 , f 4 , f 2} (X)

+ M{ f 1 , f 4 , f 2 , f 3} (X) − M{ f 1 , f 4 , f 2 , f 3} (X)

 .

 .

.

 ..

 ..

(4)

+ M{ f 4 , f 1 , f 3 , f 2} (X) − M{ f 4 , f 1 , f 3 , f 2} (X)

+ M{ f 4 , f 2 , f 1 , f 3} (X) − M{ f 4 , f 2 , f 1 , f 3} (X)

+ M{ f 4 , f 2 , f 3 , f 1} (X) − M{ f 4 , f 2 , f 3 , f 1} (X)

+ M{ f 4 , f 3 , f 1 , f 2} (X) − M{ f 4 , f 3 , f 1 , f 2} (X)

+ M{ f 4 , f 3 , f 2 , f 1} (X) − M{ f 4 , f 3 , f 2 , f 1} (X)

336

M. Kulkarni and M. Stamp

where, for clarity, we have listed the entirety of each permutations, with the under-

lined red parts representing the subscripts that appear in (2). Note that if there is no underlined part of a permutation, the model is . M∅.

From the formula in (3)—and the example in (4)—we can clearly see how the Shapley value . i (X) measures the contribution of feature. fi to the classification of sample. X . Specifically, a model is trained on a set of features that includes. fi , and the classification of. X by that model is compared to that obtained using the same features, except that. fi is removed. Such comparisons are computed for all permutations, and the results are averaged. Rearranging terms, we see that the Shapley value is the

difference between the expected outcome when feature . fi is included in the model, and the expected outcome when feature . fi is not included.

In many cases, training models for all permutations would be prohibitively costly,

even for just one Shapley value. Sampling methods are used, and some of the prop-

erties of Shapley values can also play a role in making the problem computationally

tractable.

As alluded to in the previous paragraph, Shapley values satisfy several useful

and interesting properties. For our purposes the most relevant properties are the

following.

• Efficiency—The sum of the Shapley values for . X is equal to the value that the model trained on all features produces for . X . That is,

 n

. M (X) =

 i(X)

 i =1

• Symmetry—If . MS ∪{ fi} (X) = MS ∪{ fj} (X) for all feature subsets . S that include neither . fi nor . f j , then . i (X) = j (X).

• Linearity—The Shapley values are linear with respect to samples, that is,

. αi (X) = i (α X) and . i (X) + i (Y) = i (X + Y).

• Null—The Shapley value of a null feature is 0, where a null feature, by definition,

satisfies . MS ∪{ fi} (X) = MS(X) for all. S that do not include. fi .

The linear property implies that for a Random Forest, we can compute the Shapley

values of each component decision tree and then combine the results to obtain the

Shapley value for the overall model [27, Section 9.5]. A similar statement holds for boosting methods, and hence for both Random Forest and boosting models,

computing Shapley values is computationally feasible.

Partial Dependence Plots (PDP) use Shapley values to visualize the marginal

effect of a predictor variable on the predictive variable by plotting the average model

outcome at different levels of the predictor variable [27]. This gives the average effect that a predictor variable has on the predictive variable. These values are plotted on

a chart which provides evidence of the direction in which a variable affects the

outcome.

XAI and Android Malware Models

337

3

Related Work

XAI is a very active field, although research into its application in the malware

domain is more limited. In this section, we survey previous research that involves

applications of XAI to malware classification and detection.

Manthena et al. [23] consider XAI in the context of malware detection. The goal of this research is to determine how malware influences the behavior of virtual machines

(VMs) in a cloud environment. Three different variants of SHAP are applied (Ker-

nelSHAP, TreeSHAP, and DeepSHAP), while the learning techniques considered

are linear SVM, nonlinear SVM (with RBF kernel), Random Forest, a specific feed-

forward neural network, and CNN, all of which are trained on a malware dataset.

The researchers use the SHAP interpretations to implement feature reductions.

Yan et al. [38] consider ante-hoc and post-hoc explanation in detail. They evaluate these techniques based on six metrics (accuracy, sparsity, completeness, stability,

efficiency, and fidelity), and conclude that Layerwise Relevance Propagation (LRP)

is the most efficient XAI technique. The authors also list open issues, including the

potential tradeoff between accuracy and explanability.

Charmet et al. [1] provide a comparative study of XAI for different cybersecurity tasks with the goal of determining which explanation methods could be efficiently

used for each of the following: Improved trust (in the sense of increased transparency),

improved classifier performance, and to explain errors in the models. They also show

that XAI methods involving heatmaps and saliency maps can be easily compromised.

Ullah et al. [35] conduct XAI experiments in the context of Android malware detection, based on both traditional features and greyscale image data. They consider pre-trained Bidirectional Encoder Representations from Transformers (BERT)

models, which rely on transfer learning. LIME and SHAP are used to determine the

effect of each feature on the overall accuracy of the model.

Liu et al. [20] also use XAI approaches to explore learning models in the realm of malware detection. They consider LIME and SHAP, and the research primarily

focuses on understanding the impact of temporal inconsistencies in the training data

with respect to the performance of ML-based malware detection approaches.

Kinkead et al. [14] consider the problem of explaining predictions of Android malware classification models. They consider CNN models, and they use the LIME

for their XAI analysis. The authors claim that their work provides additional trust

and confidence in their CNN model.

Severi et al. [32] develop a model-agnostic methodology based on SHAP to examine the vulnerability of classifiers to adversarial attack. The research is based on

static and dynamic analysis of diverse datasets, including Portable Executable (PE)

files and Android applications. High-contributing features are selected using SHAP

and attacks are conducted against a variety of learning models, including Random

Forest, SVM, and a Deep Neural Network (DNN). These researchers claim that

their explanation-guided attack method is more robust, as compared to alternative

approaches.

338

M. Kulkarni and M. Stamp

Fan et al. [4] provide guidelines to assess the quality, stability, and robustness of XAI approaches. They experiment with LIME, Anchor, Local Rule-based Explanations (LORE), SHAP, and LEMNA and consider several learning techniques (MLP,

Random Forest, SVM). They claim that in the domain of Android malware detection,

inconsistencies in results from different XAI techniques makes it difficult to trust the

explanations.

Warnecke, et al. [36] provide general recommendations related to the application of explanation methods for deep learning techniques in the security domain. A variety

of XAI methods are considered, and the authors find that the Integrated Gradients

and LRP methods are most effective, according to their specified criteria.

In Table 1, we summarize the papers mentioned in this section, as well as a few other relevant research papers. We note that these cited papers are relatively recent,

with all having been published between 2016 and 2023.

Amongst the XAI techniques considered in this paper, SHAP appears to be the

most widely studied by the research community, followed by CAM and LIME. The

graph in Fig. 2 charts the appearance of these three XAI technique in research papers over recent years [28].

We note in passing that the number of relevant studies focusing on evaluating XAI

in the malware domain is relatively small. Further, there is currently no accepted

standard method or criteria for selecting or evaluating XAI methods for malware-

related problems, and hence a general recommendation as to which XAI method or

methods will work well in the Android malware domain is unavailable. Thus, more

research is needed in this area to determine the practical utility of XAI techniques

for real-world Android malware problems.

Table 1 Selected previous work

Authors

Dataset

XAI techniques

Charmet et al. [1]

–

Survey paper

Chen et al. [2]

AndroZoo

LEMNA

Fan et al. [4]

Multiple sources

LORE, SHAP, others

Feichtner and Gruber [5]

PlayDrone

LIME

Iadarola et al. [11]

Android Malware Dataset

Grad-CAM

Kinkead et al. [14]

Drebin

LIME

Liu et al. [20]

AndroZoo

LIME, SHAP

Manthena et al. [23]

VirusTotal

SHAP

Severi et al. [32]

Grad-CAM

SHAP

Ullah et al. [35]

CICMalDroid 2020

LIME, SHAP

Warnecke et al. [36]

Drebin, Genome

LRP, LIME, SHAP

Wu et al. [37]

Drebin+

XMal

Yan et al. [38]

–

Survey paper

Yang et al. [40]

Drebin

Distance-based

XAI and Android Malware Models

339

0.0008

CAM

papers

SHAP

h 0.0006

LIME

researc 0.0004

of

tion

0.0002

Propor

0.0000

2017

2018

2019

2020

2021

2022

2023

Fig. 2 XAI research papers

4

Experiments and Results

In this section, we consider a range of XAI experiments. But first, we discuss our

dataset and implementation.

 4.1

 Dataset and Implementation

We use the KronoDroid dataset [8] for all of the experiments reported in this paper.

This dataset includes labeled data from 240 malware families, with 78,137 total

samples, of which 41,382 are malware and 36,755 are benign Android apps. For

each sample, 289 dynamic features (based on system calls) and 200 static features

(e.g., permissions) are provided. Each malware family contains a number of

samples collected over an extended period of time. Samples belonging to a malware

family generally have similar characteristics and share a common code base.

To ensure a significant number of samples per family, we restrict our attention

to the top 10 malware families in the KronoDroid dataset. These top 10 malware

families have a total of 31,046 samples, with the percentage of samples per family

illustrated in the pie graph in Fig. 3.

All classic machine algorithms experiments are performed on a single host

machine, while deep learning experiments are performed using the GPU on this

same machine. All experiments in this research have been executed on the computer

specified in Table 2.

We cleaned the data to remove irrelevant features. The cleaned dataset con-

tains 468 features per sample. All features are standardized using a standard scaler.

In our experiments, we use accuracy and F1-score to measure the performance of

each classifier. Accuracy is defined as the total number of correct predictions over

the number of samples tested. The F1-score is a weighted average of precision and

recall, and it is computed as

340

M. Kulkarni and M. Stamp

SMSreg

Airpush

16%

25%

Malap

13%

3%

FakeApp

4%

12%

4%

Dogwin

6%

Boxer

BankBot

9%

8%

Locker

Agent

FakeInst

Fig. 3 Top 10 malware families

Table 2 Computing resources used in experiments

Computing resource Details

Computer

Dell XPS 13

Processor

Intel Core i5-7200U CPU @ 2.50 Ghz, 2.70 Ghz

RAM

8.0 GB

Operating System

Windows 10 Enterprise 64-bit

 (Precision × Recall)

. F1 = 2 × (Precision + Recall)

where

. Precision =

True Positives

 (True Positives + False Positives)

and

. Recall =

True Positives

 (True Positives + False Negatives)

As with accuracy, F1 scores fall between 0 and 1, with 1 being the best possible.

As discussed above, the primary goal of this research is to explore the utility

of XAI techniques in the Android malware domain. Towards this end, we generate

explanations and obtain interpretations for SVM (both linear and non-linear), Ran-

dom Forest, . k-NN, MLP, and CNN. We consider a wide range of XAI experiments,

from generating ante-hoc explanations based a model’s inherent interpretability to

post-hoc explanations. We generate post-hoc explanations using LIME, SHAP, ELI5,

and PDP Plots. For CNNs, we use the model-specific technique of CAM. The pack-

age scikit-learn has been employed for most of the experiments, with the

exception being that the Tensorflow and Keras libraries are utilized for CNNs.

In all cases, we perform stratified 5-fold cross-validation.

XAI and Android Malware Models

341

A summary of the main hyperparameters for our various models follows.

• SVM—We perform preliminary tests to determine the best kernel for our nonlinear

SVM, with the result being the Gaussian radial basis function (RBF).

• Random Forest—Based on small-scale experiments, we found that

using.n_estimator = 100 and otherwise using the hyperparameter defaults in

scikit-learn yielded the best results.

• . k-NN—Again, based on small-scale experiments, we selected. k = 5 for all. k-NN

experiments reported in this paper.

• MLP—We use a deep architecture with 300 hidden layers, rectified linear unit

(ReLu) activation functions, and a learning rate of . α = 0 . 0001.

• CNN—We use max pooling for our CNN model. We experimented with various

hyperparameters and found that an initial number of convolution filters set to 32,

a filter size .2 × 2, and a dropout rate of.0 . 25 yielded the best results.

 4.2

 Performance of Learning Models

For the experiments in this section, we use an 80:20 stratified training:testing split.

As mentioned above, all models are trained using only the top 10 malware families

in the KronoDroid dataset. The results of our experiments are shown in Table 3. We observe that Random Forest performs best, while MLP is second best. In addition, all

models perform reasonably well, with the accuracy of the worst-performing model

being within 4% of that of Random Forest.

 4.3

 XAI Results

In this section, we apply the explainability techniques in Sect. 2.4 to our models, and we discuss the results. Note that three versions of SHAP are considered here: For

SVM models we use KernalSHAP, for Random Forest we use TreeSHAP, and for

MLP we use DeepSHAP.

Table 3 Performance of ML and DL models

Model

Accuracy

Precision

Recall

F1

Linear SVM

0.9180

0.9194

0.8719

0.8917

RBF-SVM

0.8917

0.8937

0.8917

0.8898

Random Forest

0.9322

0.9318

0.9322

0.9314

. k-NN

0.9061

0.9052

0.9061

0.9054

MLP

0.9209

0.9206

0.9209

0.9207

CNN

0.9076

0.9089

0.8976

0.9091

[image: Image 93]

[image: Image 94]

342

M. Kulkarni and M. Stamp

4.3.1

Linear SVM and Random Forest Feature Importance

We calculate feature importance by extracting the feature weights from the linear

SVM and Random Forrest models. Figures 4 and 5 show the top 10 most important features for our linear SVM and Random Forrest models, respectively. We

observe that BLIND_DEVICE_ADMIN, SET_WALLPAPER, and READ_SMS are

the main drivers of model predictions for the linear SVM, while for Random Forrest,

ACCESS_COARSE_LOCATION, total_perm, and read contribute the most.

We find that the feature importance results on the train and test sets are consistent for both models, which indicates that they are not overfitting on the KronoDroid dataset.

Extracting such feature coefficients is not possible for a nonlinear SVM kernel.

Fig. 4 Feature importance from linear SVM

Fig. 5 Feature importance from random forest

XAI and Android Malware Models

343

4.3.2

ELI5 Feature Importance

Recall that ELI5 is a permutation-based technique that measures the change in model

error after the values of a single feature have been shuffled. We use the ELI5 library

in Python to calculate permutation importance [16].

Table 4 shows the permutation importance for our Random Forest model. The values at the top of the ELI5 output are the most important features in our model, while those at the bottom matter the least. The first number in each row indicates how much

the model performance decreased with random shuffling, using the same performance

metric as the original model—in this case, we use mean squared error (MSE). The

number after the. ± measures how performance varied over the reshuffling, in terms of

the range of values. For example, shuffling the data of the SEND_SMS feature caused

the Random Forest MSE to vary by 0.0010. By this measure, the top three features

are SEND_SMS, RECEIVE_BOOT_COMPLETED, and TimesSubmitted.

We note that only four of the top 10 features listed in the bar graph in Fig. 5

appear among the top 20 features in Table 4. This points to the issue of inconsistency between XAI analysis techniques.

Table 4 ELI5 feature importance for Random Forest

Weight

Feature

.0 . 0033 ± 0 . 0010

SEND_SMS

.0 . 0032 ± 0 . 0003

RECEIVE_BOOT_COMPLETED

.0 . 0021 ± 0 . 0020

TimesSubmitted

.0 . 0015 ± 0 . 0011

GET_ACCOUNTS

.0 . 0014 ± 0 . 0016

FilesInsideAPK

.0 . 0012 ± 0 . 0006

GET_TASKS

.0 . 0011 ± 0 . 0017

UFileSize

.0 . 0011 ± 0 . 0005

READ_EXTERNAL_STORAGE

.0 . 0010 ± 0 . 0002

READ_PHONE_STATE

.0 . 0008 ± 0 . 0006

dangerous

.0 . 0008 ± 0 . 0013

signature

.0 . 0008 ± 0 . 0002

SYSTEM_ALERT_WINDOW

.0 . 0007 ± 0 . 0011

mprotect

.0 . 0006 ± 0 . 0005

WRITE_SECURE_SETTINGS

.0 . 0005 ± 0 . 0009

sysinfo

.0 . 0005 ± 0 . 0004

CHANGE_CONFIGURATIONS

.0 . 0005 ± 0 . 0009

fsync

.0 . 0005 ± 0 . 0012

prctl

.0 . 0004 ± 0 . 0004

READ_LOGS

.0 . 0004 ± 0 . 0008

fchmod

 ..

 ..

. .

. .

(448 more)

(448 more)

344

M. Kulkarni and M. Stamp

4.3.3

LIME Interpretations

LIME provides a list of the importance of each feature in model prediction relative

to a specified sample. Recall that LIME relies on a simplified local model for feature

ranking.

KronoDroid dataset consists of tabular data, so we define a tabular explainer object

in LIME. The trained model, features used in training, and labels of target classes

serve as inputs, and the results are based on the test data.

Figure A.1a through d in the appendix show the LIME explanations for the RBF-SVM, . k-NN, Random Forest, and MLP models, respectively, based on the

first sample of the test dataset for each model. All models correctly classify this

first sample of test data with high confidence as Locker ransomware. The left side

of the LIME explanation shows the probability with which the sample is classified

as ransomware—the pink color indicates that the contribution is towards the ran-

somware family, while the purple color indicates that the contribution is towards

Malap family. We observe that these figures show that the RBF-SVM, . k-NN, Ran-

dom Forest, and MLP models classify this specific sample as ransomware with

probabilities of 0.82, 1.0, 1.0, and 1.0, respectively.

The LIME output in Fig. A.1a shows the classification result for the top two highest probability classes for this specific sample. In the middle of the figure, there is a list of rules that gives the reason why this sample belongs to the class ransomware,

and it identifies and lists the features that contribute most to the prediction, in order of importance. On the right side of the figure, there is a table—pink values are the

reason for the final prediction, while green values are the reasons that do not support

the prediction outcome. In this case, SEND_SMS points strongly towards a ran-

somware classification, while there are four features that are against the ransomware

classification, but only weakly so.

Figures A.2a through d in the appendix show the LIME explanations for RBF-SVM, . k-NN, Random Forest, and MLP models, respectively, for a sample in

the Malap family that is misclassified as BankBot by all of these models. The

(mis)classification probabilities are 0.93, 0.79, 0.57, and 1.0 for the RBF-SVM,

. k-NN, Random Forest, and MLP models. respectively. In the figures, orange val-

ues are the reason for the final prediction, and green color values are those that do

not support the predicted outcome. Figure A.2a, for example, shows that the feature SEND_SMS contributes to a Bankbot and a ransomware classifications, both

of which are incorrect, but since there are fewer negative factors for Bankbot, it is

the selected classification. Interestingly, Random Forest is the only model that gives

any significant weight to the possibility of this sample being in the (correct) Malap

family, but only with a probability of 0.17.

We observe that the LIME interpretations for the RBF-SVM and MLP models are

the most similar pair in Fig. A.1 and, arguably, also in Fig. A.2. This is not surprising, as nonlinear SVMs and MLPs are closely related models, in the sense that an MLP

can be viewed as an SVM-like model, where the equivalent of the kernel function

is learned [34]. Based on the LIME interpretations in these figures, Random Forest appears to be the most different from the other three models. It is somewhat surprising

[image: Image 95]

XAI and Android Malware Models

345

that the . k-NN and Random Forest results are not more similar, as those techniques are both neighborhood-based techniques [34].

4.3.4

Grad-CAM Interpretation

For this experiment, we represent the input array as an image. To generate the images,

we first order the 468 features from highest to lowest importance, as determined by

the Random Forest model. For each sample, we put these ordered feature values into

a .22 × 22 array (with 0 padding for the final 16 elements), which we then interpret

as a grayscale image for our CNN model.

We use iNNvestigate library to generate Grad-CAM output on our CNN model

output. The method create_analyzer of iNNvestigate determines the com-

ponents of the input that correspond to the output. It then determines the importance

of an input pixel based on how much a change in the pixel affects the output.

We analyze an image from the test dataset with the gradient function, which

gives the gradient of the output neuron with respect to the input. Figure 6a shows the sample test image reshaped as .22 × 22 grayscale image as discussed above.

Figure 6b shows the Grad-CAM output for the prediction made by the CNN model for this sample. We can visually verify which pixels (equivalently, features) in the

input image the CNN is emphasizing when making its classification. For example,

the Grad-CAM image shows a dark red pixel in row 1, column 12, indicating that

the corresponding feature is one of the most important to the CNN classification of

this particular sample.

We observe that the feature importance determined by Grad-CAM is much dif-

ferent from that of the Random Forest model. This follows, since the features in

the original image are ordered from highest to lowest importance, according to the

Random Forest model weights, yet there is only a slight bias towards more important

features in the lower region of the Grad-CAM image. We conclude that the Random

Forest and CNN models appear to be using much different criteria to make their

classification decisions.

(a) Original image

(b) Grad-CAM

Fig. 6 Grad-CAM example

[image: Image 96]

346

M. Kulkarni and M. Stamp

4.3.5

SHAP Interpretations and PDPs

We use KernelSHAP to generate explanations for our SVM and . k-NN models,

DeepSHAP for our MLP, and TreeSHAP for the Random Forest model. It is

well-known that KernelSHAP and DeepSHAP are much more costly to compute,

as compared to TreeSHAP [39].

Due to the high computational cost we use Recursive Feature Elimination (RFE)

based on Random Forest models to determine which features to sample. The graph

in Fig. 7 shows that the accuracy of the Random Forest model does not improve, provided that at least the top 10 features are selected. Hence, we select these top 10

features to sample for each of the models under consideration.

For our experiments, TreeSHAP only required about 53 s to complete execution

on a dataset of size 41,382, while KernelSHAP required about 1 h for a comparable

experiment. We found that DeepSHAP was comparable in runtime to KernelSHAP.

For comparison, for the LIME experiments discussed in Sect. 4.3.3, the execution time was on the order of 30 s.

Using global model interpretation techniques, we can see how our model behaves

in general. Toward this end, we generate two SHAP global model interpretation plots,

specifically, a SHAP variable importance plot and a SHAP dependence plot.

We use shap.summary_plot function with plot_type set to bar to gen-

erate the variable importance plots. Figures 8a through d provide these SHAP global explanations for the RBF-SVM, Random Forest, . k-NN, and MLP models, respectively. In these plots, the . x-axis denotes the average impact on the model output (i.e., the mean SHAP value across all relevant samples) of the specified variable.

It is interesting to note that the top two ranking features for all of the models are

dangerous and total_perm. These graphs enable us to easily compare the

relative contribution of the listed features for each model.

The SHAP values appear in the form of a beeswarm plot in Fig. 9. The function shap.summary_plot was used to produce this plot. Here, the . x-axis indicates

the Shapley value, while the. y-axis lists the 10 features under consideration. Shapley Fig. 7 Random Forest RFE accuracy

[image: Image 97]

XAI and Android Malware Models

347

Fig. 8 Variable importance plots

values corresponding to a given feature are plotted for all samples in the test set, with the thickness of the “swarm” representing the density of points. The color-coding

represents the raw value of the feature, with blue indicating a low value and red

corresponding to a high value. Thus, we obtain insight into the relationship of raw

features and their predictive strength via the Shapley values.

From Fig. 9, we make the following observations.

1. The plot lists the features in descending order of importance which, of course,

matches the results in Fig. 8d.

2. For most of the features, raw values that are low are more predictive than high

values, with this being especially clear for the sysinfo and FilesInsideAPK

features.

3. Curiously, the two highest ranked features behave somewhat differently than the

other features. Specifically, the raw high-low values of the feature total_perm

appears to have little correlation to the corresponding Shapley values and, to a

somewhat lesser extent, this also appears to be the case for the dangerous feature.

Partial Dependence Plots (PDP) show the average manner in which machine-

learned response functions changes, based on the values of two input variables of

interest, while averaging out the effects of all other input variables. PDP plots enhance

[image: Image 98]

348

M. Kulkarni and M. Stamp

Fig. 9 MLP global interpretation value plot

our understanding of a model by showing interactions between variables and depen-

dent variables in complex models. PDP plots can also enhance trust, provided that

observed relationships conform to domain knowledge expectations.

We generate PDP plots using the dependence_plot method. This function

automatically includes as the second variable the feature that interacts most strongly

with the selected variable. PDP plots with the dangerous feature selected are

shown in Fig. 10a through d for our RBF-SVM, . k-NN, Random Forest, and MLP

models, respectively. We note that the dangerous feature is discrete, with values

in the set .{0 , 1 , 2 , . . . , 25}.

We observe that for the RBF-SVM model in Fig. 10a there is an approximately linear relationship between the raw value of dangerous in the range from 0 to 13

and the corresponding Shapley values. Furthermore, over the range of 2 to 13, higher

dangerous values are associated with a progressively higher proportion of high

values for ACCESS_COARSE_LOCATION, and beyond 13, only high values of

ACCESS_COARSE_LOCATION occur.

Figures 11a through d show PDP plots with the feature total_perm selected for our RBF-SVM, . k-NN, Random Forest, and MLP models, respectively. We observe

that the RBF-SVM model in Fig. 11a shows a linear relationship between the raw value of the total_perm and the Shapley values. Also, below a total_perm

value of about 10, the corresponding dangerous values are low, while above that

threshold, they are predominantly high.

Finally, we illustrate a local explanation for an individual sample using the SHAP

force_plot method. This method requires the following three inputs. pagebreak

1. The average of the model output over the training data, which serves as the base

value used to generate the force plot.

2. The Shapley values, as computed on training data.

[image: Image 99]

XAI and Android Malware Models

349

Fig. 10 PDP plots (dangerous)

3. The sample for which we wish to obtain a local explanation.

Figure 12 shows the SHAP force plot generated for our MLP model, based on the last sample in the test dataset. Features that push the prediction higher (to the

right) are shown in red, while those pushing the prediction lower are in blue. In

this case, the base value is 3.1, and based on the Shapley values, sysinfo and

total_perm have highest positive impact on the classification, with dangerous,

ACCESS_COARSE_LOCATION, and FilesInsideAPK also having positive

impact. For this particular sample, no features have a significant negative impact

on the classification, as indicated by the lack of any “force” in the blue direction.

In summary, Shapley values indicate how much a feature contributes to the predic-

tion of a given sample, and this contribution can be positive or negative. If a feature is positively correlated to the target at a value higher than the average, it will contribute positively to the prediction. On the other hand, if a feature is negatively correlated

to the target, it will contribute negatively to the prediction. Furthermore, a wealth of

information can be gleaned from Shapley values using a number of different plotting

strategies.

[image: Image 100]

[image: Image 101]

350

M. Kulkarni and M. Stamp

Fig. 11 PDP plots (total_perm)

Fig. 12 SHAP explanations for MLP (last observation)

5

Conclusion and Future Work

In this paper, we provided a selective survey of previous work involving the appli-

cation of XAI techniques to detection and classification problems in the malware

domain. We then performed a comparative study of several XAI techniques for a

variety of models, including classic ML models (linear SVM, RBF-SVM, Random

Forest, and . k-NN) and deep learning models (MLP and CNN). When trained on

a challenging Android malware multiclass problem, we found that Random Forest

performed best among these models, followed closely by MLP, with all of the models

performing within a few percentage points of the best model.

We applied a several well-known XAI techniques (ELI5, LIME, CAM, and SHAP)

to our trained models. All of these XAI techniques provided interesting information

about the learning models to which they were applicable. Although relatively costly

to compute, SHAP explanations were particularly informative.

XAI and Android Malware Models

351

ELI5 proved effective at providing global explanations, while LIME generated

explanations at a granular level of individual samples. CAM uncovered details of

the inner workings of our CNN model, which otherwise would have remained

very opaque. SHAP provided many insights, including PDP plots that enabled us

to visualize relationships between pairs of features.

There are many potential avenues for future research. It would certainly be useful

to have guidelines for determining which XAI techniques are most likely to produce

useful results for problems in the malware domain. Of course, it would also be useful

to have such guidelines more generally, that is, for a given model type when trained

on a dataset from a specific problem domain. Additional work to quantify XAI results

is another important fundamental research topic.

Finally, we note that the work in [4] purports to show that “. . . . explanation results obtained in the malware analysis domain cannot achieve a consensus in general. . . . ”.

Some of our results presented in Sect. 4 do raise questions of consistency. This issue of consistency (or lack thereof) is perhaps the most pressing concern in the entire

field of XAI, and hence further research on this topic is needed.

Appendix

Figures A.1 and A.2 contain LIME explanations for specific cases; see Sect. 4.3.3

for a discussion of these results.

[image: Image 102]

352

M. Kulkarni and M. Stamp

(a) RBF-SVM

(b) -NN

(c) Random Forest

(d) MLP

Fig. A.1 LIME explanations for correctly classified sample

[image: Image 103]

XAI and Android Malware Models

353

(a) RBF-SVM

(b) -NN

(c) Random Forest

(d) MLP

Fig. A.2 LIME explanations for incorrectly classified sample

354

M. Kulkarni and M. Stamp

References

1. Charmet F, Tanuwidjaja H, Ayoubi S, Gimenez P-F, Han Y, Jmila H, Blanc G, Takahashi

T, Zhang Z. Explainable artificial intelligence for cybersecurity: a literature survey. Ann Telecommun. 2022;77.

2. Chen S, Bateni S, Grandhi S, Li X, Liu C, Yang W. DENAS: automated rule generation by knowledge extraction from neural networks. Proc ESEC/FSE. 2020;2020:813–25.

3. Damodaran A, Troia FD, Visaggio CA, Austin TH, Stamp M. A comparison of static, dynamic, and hybrid analysis for malware detection. J Comput Virol Hacking Tech. 2017;13(1):1–12.

4. Fan M, Wei W, Xie X, Liu Y, Guan X, Liu T. Can we trust your explanations? Sanity checks for interpreters in Android malware analysis. https://arxiv.org/abs/2008.05895.

5. Feichtner J, Gruber S. Understanding privacy awareness in Android app descriptions using deep learning. In: Proceedings of the Tenth ACM conference on data and application security and privacy; 2020. p. 203–14

6. G DATA blog: cyber attacks on Android devices on the rise; 2018. https://www.gdatasoftware.

com/blog/2018/11/31255-cyber-attacks-on-android-devices-on-the-rise.

7. Google. AI explanations whitepaper. https://storage.googleapis.com/cloud-ai-whitepapers/AI

%20Explainability%20Whitepaper.pdf.

8. Guerra-Manzanares A, Bahsi H, Nõmm S. KronoDroid: time-based hybrid-featured dataset for effective Android malware detection and characterization. Comput Secur. 2021;110(C):8–14.

9. Gunning D, Stefik M, Choi J, Miller T, Stumpf S, Yang G-Z. XAI: explainable artificial intelligence. Sci Robot. 2019;4(37).

10. Hall P, Gill N. An introduction to machine learning interpretability. O’Reilly Media and H. 2O, 2nd ed; 2019.

11. Iadarola G, Martinelli F, Mercaldo F, Santone A. Towards an interpretable deep learning model for mobile malware detection and family identification. Comput Secur. 2021;105:102–98.

12. IBM. What is random forest? https://www.ibm.com/topics/random-forest.

13. Kaspersky. Zeus virus; 2023. https://www.kaspersky.com/resource-center/threats/zeus-virus.

14. Kinkead M, Millar S, McLaughlin N, O’Kane P. Towards explainable CNNs for Android

malware detection. Procedia Comput Sci. 2021;184:959–65.

15. Korobov M, Lopuhin K. ELI5; 2016. https://eli5.readthedocs.io/en/latest/index.html.

16. Korobov M, Lopuhin K. ELI5: permutation importance; 2016. https://eli5.readthedocs.io/en/

latest/blackbox/permutation_importance.html.

17. LIME. https://github.com/marcotcr/lime.

18. Linardatos P, Papastefanopoulos V, Kotsiantis S. Explainable AI: a review of machine learning interpretability methods. Entropy 2021;23(1).

19. Liu Y, Tantithamthavorn C, Li L, Liu Y. Deep learning for Android malware defenses: a systematic literature review. ACM Comput Surv. 2022;55(8):1–36.

20. Liu Y, Tantithamthavorn C, Li L, Liu Y. Explainable AI for Android malware detection: towards understanding why the models perform so well?; 2022. https://arxiv.org/abs/2209.00812.

21. Lundberg S, Lee S-I (2017) A unified approach to interpreting model predictions. Adv Neural Inf Proc Syst 2017;30:4765–74. http://arxiv.org/abs/1705.07874.

22. Malware categories; 2023. https://developers.google.com/android/play-protect/phacategories

23. Manthena H, Kimmel JC, Abdelsalam M, Gupta M. Analyzing and explaining black-box

models for online malware detection. IEEE Access. 2023;11:25237–52.

24. MathWorks. What is interpretability? https://it.mathworks.com/discovery/interpretability.

html.

25. Microsoft Blog. Win32/winwebsec; 2017. https://www.microsoft.com/en-us/wdsi/threats/

malware-encyclopedia-description?Name=Win32/Winwebsec.

26. Mishra P. Model Explainability and interpretability. Apress Publishers; 2022.

27. Molnar C. Interpretable machine learning. Independently Published, 2nd ed.; 2022. https://

christophm.github.io/interpretable-ml-book.

28. PapersWithCode: Class-activation map. https://paperswithcode.com/method/cam.

XAI and Android Malware Models

355

29. Rezaei S, Afraz A, Rezaei F, Shamani MR. Malware detection using opcodes statistical features.

In: 8th international symposium on telecommunications, IST; 2016. p. 151–55.

30. Rothman D. Exploring LIME explanations and the mathematics behind it; 2020. https://www.

codemotion.com/magazine/ai-ml/lime-explainable-ai/.

31. scikit-learn. https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html.

32. Severi G, Meyer J, Coull S, Oprea A. Explanation-guided backdoor poisoning attacks against malware classifiers. In: 30th USENIX security symposium, USENIX security 21; 2021. p.

1487–504.

33. Stamp M. Information security: principles and practice, 3rd ed.; 2021. Wiley.

34. Stamp M. Introduction to machine learning with applications in information security, 2nd ed.

Chapman and Hall/CRC Press; 2023.

35. Ullah F, Alsirhani A, Alshahrani MM, Alomari A, Naeem H, Shah SA. Explainable mal-

ware detection system using transformers-based transfer learning and multi-model visual

representation. Sensors. 2022;22(18).

36. Warnecke A, Arp D, Wressnegger C, Rieck K. Evaluating explanation methods for deep

learning in security; 2020. https://arxiv.org/abs/1906.02108.

37. Wu B, Chen S, Gao C, Fan L, Liu Y, Wen W, Lyu MR. Why an Android app is classified as malware? Towards malware classification interpretation; 2020. https://arxiv.org/abs/2004.

11516.

38. Yan F, Wen S, Nepal S, Paris C, Xiang Y. Explainable machine learning in cybersecurity: a survey. Int J Intell Syst. 2022;37(12):12305–34.

39. Yang J. Fast TreeSHAP: accelerating SHAP value computation for trees; 2021. https://arxiv.

org/abs/2109.09847v3.

40. Yang L, Guo W, Hao Q, Ciptadi A, AhmadzadAAeh A, Xing X, Wang G. CADE: detecting

and explaining concept drift samples for security applications. In: 30th USENIX security

symposium, USENIX security 21; 2021. p. 2327–44.

[image: Image 104]

Temporal Analysis of Adversarial

Attacks in Federated Learning

Rohit Mapakshi

, Sayma Akther

, and Mark Stamp

Abstract In this paper, we experimentally analyze the robustness of selected Feder-

ated Learning (FL) systems in the presence of adversarial clients. We find that tempo-

ral attacks significantly affect model performance in the FL models tested, especially

when the adversaries are active throughout or during the later rounds. We consider

a variety of classic learning models, including Multinominal Logistic Regression

(MLR), Random Forest, XGBoost, Support Vector Classifier (SVC), as well as var-

ious Neural Network models including Multilayer Perceptron (MLP), Convolution

Neural Network (CNN), Recurrent Neural Network (RNN), and Long Short-Term

Memory (LSTM). Our results highlight the effectiveness of temporal attacks and the

need to develop strategies to make the FL process more robust against such attacks.

We also briefly consider the effectiveness of defense mechanisms, including outlier

detection in the aggregation algorithm.

1

Introduction

The rapid evolution in Machine Learning (ML) and the widespread availability of the

Internet has made a major impact and has become a driving force of technology in

numerous fields, including the Internet of Things (IoT), Natural Language Processing

(NLP), and computer vision. However, machine learning requires a large amount of

data to train models and typically has operated on centralized data repositories and a

R. Mapakshi · S. Akther · M. Stamp (B)

San Jose State University, San Jose, CA, USA

e-mail: mark.stamp@sjsu.edu

R. Mapakshi

e-mail: rohit.mapakshi@sjsu.edu

S. Akther

e-mail: sayma.akther@sjsu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

359

M. Stamp and M. Jureček (eds.), Machine Learning, Deep Learning and AI for

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_13

360

R. Mapakshi et al.

centralized server. As more companies adopt ML, training models on dispersed data

without compromising individual privacy has become an important consideration.

Data protection laws, such as the General Data Protection Regulation (GDPR) [17], restrict how personal data may be collected and used. Federated Learning (FL) has

emerged as a powerful solution to data privacy concerns.

FL leverages the power of distributed and decentralized computing to train ML

models. In the FL process, a global model is first trained on a subset of the data that is available in a central repository, and the resulting model serves as a starting point.

This global model is then distributed to the clients, who refine the model based on

their local data. This allows sensitive user data to be preserved because the clients

only send the refined model parameters and gradients back to the server. The server

then aggregates these gradients to optimize the global model and the process repeats.

This iterative process continues until the model converges. FL not only addresses

security and privacy issues, but due to its use of distributed computing, it also extends ML capabilities.

FL systems have tremendous potential in various fields, including healthcare,

financial services, recommender systems, and many others. In healthcare systems, for

example, the patient’s health records can be kept private while an ML system provides

personalized health recommendations. In a financial system, the user’s spending

patterns can be kept private, while simultaneously detecting fraudulent activities.

IoT devices in cars can be used to monitor traffic and optimize traffic flow without

compromising an individual driver’s privacy.

There are several inherent challenges in federated learning. Since the client devices

vary in terms of computing power, storage capacity, and network connectivity, the

consistency of model training may be affected. Maintaining consistency between

low-end smart devices and high-performing servers is a concern in FL. Managing an

efficient network system to enable data sharing between the FL server and personal

device can also be a bottleneck. Furthermore, some users may be reluctant to con-

tribute the computing power of their devices for FL systems due to issues such as the

cost of mobile data transfer and battery consumption. A key issue in FL systems is

maintaining the integrity of the models developed in the presence of malicious actors

within the FL system who might, for example, try to degrade model performance by

performing poisoning attacks.

In this paper, we focus on the security aspects of federated learning. Specifically,

we aim to measure the impact of malicious clients in an FL system, and we quantify

the extent to which these adversaries can affect the performance of specific FL

models.

This remainder of this paper is organized as follows. Section 2 discusses the background knowledge required to understand federated machine learning. Section 3 discusses relevant previous work in this field. Section 4 explains our experimental setup, and Sect. 5 reports our results. Finally, Sect. 6 provides conclusions drawn from our experiments and we briefly discuss potential directions for future related work.

Temporal Analysis of Adversarial Attacks in Federated Learning

361

2

Background

In this section, we discuss the fundamentals of Federated Learning (FL), including

various types of FL systems and some of the challenges faced when training mod-

els via FL. Then we discuss the different aggregation strategies that are used in the

FL pipeline. We also briefly consider defense mechanisms, including outlier detec-

tion. Finally, we introduce the specific classification models that we consider in this

paper.

 2.1

 Federated Learning

Federated learning (FL) [33], or collaborative learning, is a subfield of machine learning where a number of clients work together to train a model while maintaining

the decentralization of their data. The fundamental idea of FL is to train local models

on local data samples of the clients and periodically exchange parameters such as

weights through a central server. The central server then aggregates these parameters

to build a global model. This is not the case in typical machine learning environments

where data and computing resources are centralized.

Federated learning differs from distributed learning. In distributed learning, the

objective is to parallelize the model training process across multiple servers, while

the dataset at each client is assumed to be Independent and Identically Distributed

(IID) and roughly the same size. In contrast, in FL, the dataset across clients may be

heterogeneous and can range in size by orders of magnitude.

2.1.1

General Federated Learning Architectures

FL can be centralized, decentralized, or heterogeneous. In centralized FL, a cen-

tral server is responsible for coordinating various steps, such as selecting clients,

gathering model updates, and aggregating these updates. This setup is prone to a

single point of failure at the server. In a decentralized FL setup, the clients col-

laborate among themselves to obtain a global model. This mitigates the problem

of single-point failures in centralized federated learning. In heterogeneous FL, the

majority of FL systems assume that local models and global models have the same

design, but the clients are heterogeneous with varying computing and communication

capabilities [15].

According to [48], there are three types of FL systems based on the relationship between distributed datasets: Horizontal, Vertical, and Federated Transfer Learning.

In Horizontal FL, datasets share a similar feature space but differ in samples. For

362

R. Mapakshi et al.

example, suppose two distinct companies are developing a single ML application.

They may select similar features, but their user data might be different. In vertical FL, datasets share the same sample space but may have different features. For example,

the Department of Motor Vehicles and a local city may have overlapping user data

but they may use different features to develop ML applications that are relevant to

their needs. In Federated Transfer Learning, the datasets are different in both feature

space and the sample space.

2.1.2

Centralized Federated Learning Training Process

A centralized FL training process consists of multiple rounds repeated by a server

that coordinates the training process. A round typically consists of the following

steps.

1. Client Selection: The server selects clients that fit certain eligibility criteria.

For example, such criteria could be based on computing power, connection to

unmetered Wi-Fi connection, idleness, etc.

2. Broadcast: The chosen clients download from the server the current ML model

and global weights.

3. Client Computation: Each client instantiates the training model with the down-

loaded weights and conducts local training on their local dataset.

4. Aggregation: The device updates are aggregated by the server using an aggre-

gating strategy. Some client updates may be dropped based on the reliability of

the client or aspects of the trained model.

5. Model Update: The aggregated weights are used to reinitialize the global model

and the global model is evaluated to determine if the FL process has produced an

improved model.

 2.2

 Aggregation Strategy

As mentioned above, the client model weights are aggregated by the server using an

aggregating strategy. In this section, we discuss two such strategies, namely, federated

average and federated bagging.

2.2.1

Federated Average (FedAvg)

FedAvg involves computing the average of the shared model weights. The intuition

is that averaging the gradients amounts to averaging the model weights. Algorithm 1

is a FedAvg strategy based on the work in [33]. Note that the model is trained over multiple rounds, with the centralized server updating the global model at each round,

based on the local models trained by the clients.

Temporal Analysis of Adversarial Attacks in Federated Learning

363

Algorithm 1 FedAvg

//. K clients indexed by. k

//. Pk is training dataset on client. k

//

 K

. nk = | Pk | and. n =

 n

 k=1 k

//. B is local minibatch size

//. E is the number of local epochs

//. η is the learning rate

//. (w; b) is local loss function evaluated on weights. w and minibatch. b Server Executes:

initialize. w 0

for each round. t = 0 , 1 , 2 , . . . do

for each client. k ∈ K in parallel do // all clients update model

. wk

← ClientUpdate (k, w

 t+1

 t)

 K

 nk

. wt+1 ←

 wk // weighted average

 n

 t+1

 k=1

function ClientUpdate(. k, w) // runs on client. k

. B ← (split. Pk into minibatches of size. B)

for each local epoch. i from. 1 to. E do

for each minibatch. b ∈ B do

. w ← w − η∇ (w; b)

return. w to server

2.2.2

Federated Bagging

Bagging aggregation [18] is a technique for generalizing local updates from tree-based classifiers, such as Random Forest and XGBoost. Each client is trained on a

random subset of the data. After every FL round, the server integrates all the trees from the FL clients to form a global model. Therefore, all local models affect the global

model. For. C clients and. R rounds, the global model will have a total of. C · R trees.

 2.3

 Threats to FL Systems

Despite its many advantages, FL has significant vulnerabilities due to the distributed

nature of such systems. The vulnerabilities can be broadly categorized into issues

related to client and server integrity, as well as general attacks on the distributed

nature of FL. Examples of threats to FL models include the following.

• Compromised Clients: Clients play an active role in model training, which intro-

duces numerous potential vulnerabilities. For example, malicious clients can send

false updates to the server or tamper with the training data, and thereby corrupt the

learning processes. Also, at the beginning of every FL round, each client receives

an update from the server. This allows clients to observe intermediate states of

364

R. Mapakshi et al.

the global model, and can enable malicious clients to engineer more sophisticated

attacks.

• Compromised Server: The server in FL coordinates training and model aggre-

gation. A compromised server could alter model updates and misdirects the entire

learning process. Since the server has access to all gradient updates, it might also

be able to leak sensitive information about the training data.

• Aggregation Algorithm Vulnerabilities: The aggregation algorithm merges

client updates. Lack of anomaly detection mechanisms at this stage could expose

the FL system to attacks by the clients.

• Distributed Nature of FL: The decentralized nature of FL allows clients to collude and launch coordinated attacks on the model. Such attacks may be harder to detect,

as compared to attacks by individual clients.

 2.4

 Specific Attacks on FL

For our research, we focus on attacks performed by malicious clients. In general, such

attacks can be broadly categorized as targeted or untargeted. Targeted attacks aim to

alter the model’s behavior on specific tasks while maintaining overall accuracy on the

main task. In contrast, untargeted attacks aim to reduce the global model’s accuracy;

they do not target specific outcomes. In this paper, we consider untargeted attacks

based on data poisoning, model poisoning, and GAN reconstruction, as discussed

below.

2.4.1

Data Poisoning Attack

Data poisoning attacks compromise the integrity of the training data—malicious

clients manipulate the data in various ways to reduce the overall accuracy of the

global model. There are two main types of data poisoning attacks, namely, clean-

label and dirty label. In a clean-label attack, the adversarial client manipulates the

features of the training data. This can be accomplished by adding noise or slightly

modifying the training data in such a way that it is not easily detected by human

evaluation [44]. In a label flipping attack, the malicious clients change the labels of the training data. Since the labels are modified, the model learning is affected, which

can significantly degrade the resulting accuracy [10]. For our research, we consider label flipping attacks in an untargeted scenario. In our attack, labels are poisoned at

a specified percentage by malicious clients according to

. poisoned_label = (original_label + 1) mod N

where the classes are .{0 , 1 , 2 , . . . , N − 1}.

Temporal Analysis of Adversarial Attacks in Federated Learning

365

2.4.2

Model Poisoning Attack

Model poisoning attacks directly tamper with the model weights and send these mali-

cious weights to the server for aggregation. The attack can be altering the gradients

sent during the backpropagation phase. These attacks can be hard to detect.

Model Poisoning Attacks via Fake Updates (MPAF) was implemented in [8]. This method attacks the learning process using fake updates from malicious clients. The

strategy consists of the following steps.

1. A base model with low testing accuracy is used as a starting point.

2. In each training round where the attack is performed, the client computes the

difference between the parameters of the base model and the current global model.

3. The malicious clients magnify the difference using a factor . λ > 1.

For our model poisoning attacks, we follow this strategy, using a randomly initialized

model that has the effect of guessing the labels randomly.

2.4.3

GAN Reconstruction Attack

Generative Adversarial Network (GAN) is a neural network architecture that can

be used to generating synthetic data that mimics the training data. GAN includes a

generator network and a discriminator network that compete against each other. The

GAN generator network takes random noise as input and produces fake samples of

data. Generator training aims to iteratively improve the quality of the fake samples.

The GAN discriminator classifies data as being from the actual dataset or a fake

sample produced by the generator. The loss is fed back to the generator to improve it.

GAN training occurs over several rounds in the form of a two-player min-max game.

In this research, we use Conditional GANs, which enable us to specify a particular

label when training the generator.

The gradients shared for aggregation can reveal features of clients’ training data.

GANs can use this information to create adversarial samples that represent training

data. In our version of a GAN reconstruction attack, each client has a subset of

the classes that are present in the dataset. A Conditional GAN is used to generate

synthetic samples of digits that are not present in the local dataset, and we give such samples incorrect labels. This has the effect of poisoning the local training in the

subsequent rounds, and thereby affects the global model.

 2.5

 Outlier Detection

Defense mechanisms can be used in Federated Learning (FL) to mitigate a wide

range of attacks and to reduce the chance that the global model is corrupted. Outlier

detection is a proactive defense mechanism that can be enabled in the aggregation

366

R. Mapakshi et al.

stage in FL to identify malicious clients and protect the global model from poisoned

updates.

Outlier detection can be viewed as a form of anomaly detection since it serves

to detect observations that are inconsistent with the rest of the data. This technique

is relevant as a defense mechanism in FL, where it can identify and drop dishonest

clients from the FL process. Commonly used outlier detection algorithms include

the following.

• Robust Covariance: Here, observations are assumed to follow a Gaussian distri-

bution, and a robust estimate of the covariance is used to encapsulate the data points

in an elliptic envelope. All the points that lie outside this envelope are considered

to be anomalies [38].

• One-Class SVM: This technique consists of training an SVM to learn a decision

boundary to separate normal points and outliers [42].

• Isolation Forest: This algorithm repeatedly splits the dataset by randomly select-

ing features and determining a split point between the maximum and minimum

values of that feature [29].

• Local Outlier Factor: This technique measures the local deviation of data points to identify regions of similar density. Density is calculated with respect to neighboring

points, which is used to identify anomalies in the data [7].

 2.6

 Classification Models

In machine learning, classification is a task that involves assigning a class label

to examples. In this paper, we consider classical learning models, neural network

models, and ensemble techniques, all in the context of Federated Learning.

2.6.1

Multinominal Logistic Regression

Multinomial Logistic Regression (MLR) is an extension of the logistic regression

model to multiclass problems. For a given set of independent variables, this model

predicts the probabilities of the possible outcomes for a categorically distributed

dependent variable. Logistic regression uses maximum-likelihood estimation (MLE)

to determine the odd for each class.

2.6.2

Support Vector Classifier

Support Vector Machines (SVM) [14] are popular algorithms for binary classification tasks. The algorithm attempts to find a hyperplane that can separate data points into

different classes. The points that are closest to the hyperplane are the support vectors

and SVMs maximize the margin between the hyperplane and support vectors. SVMs

Temporal Analysis of Adversarial Attacks in Federated Learning

367

enable the efficient use of nonlinear decision boundaries via the kernel trick. Support

Vector Classifiers (SVC) extend the SVM concept to multiclass data.

2.6.3

Random Forest

Random Forests [6] is an ensemble learning method that combines multiple decision trees and can be used for classification and regression tasks. In a decision tree, nodes represent features, branches represent decisions, and the leaf nodes represent an

output. Decision trees are prone to overfitting and are not effective for data with a

large number of features. A Random Forest is a collection of decision trees that are

independently constructed using subsets of the data and feature—a process known

as bagging. The Random Forest model then uses votes from individual trees for

classification.

2.6.4

XGBoost

Extreme Gradient Boosting (XGBoost) [9], is a machine learning algorithm used for classification, regression, and ranking problems. XGBoost builds upon Gradient-Boosted Decision Trees (GBDT), which starts with a base decision tree, and makes

predictions on the dataset. The errors from this initial prediction are used to build

the next tree, and this process is repeated iteratively to train the subsequent trees

on the residual errors of the predecessor. GBDT uses a gradient descent algorithm

to minimize the loss between the predicted and actual values to minimize the loss

function. XGBoost uses a similar approach but constructs trees in parallel which

significantly improves the computational efficiency of the model. XGBoost also

incorporates regularization to control overfitting.

2.6.5

Multilayer Perceptron

Multilayer Perceptrons (MLP) [40] consists of a series of interconnected nodes or neurons arranged in layers. A neuron is an atomic unit that processes incoming

signals using a non-linear activation function and then outputs a signal. This non-

linear activation function enables the network to capture complex data patterns and

have made MLPs a successful model for many classification tasks.

An MLP includes an input layer, one or more hidden layers, and an output layer.

MLPs are trained in two passes; a forward pass and a backward pass, which together

are known as backpropagation. In the forward pass, the input data is passed through

the network and each layer uses the activation function to compute the inputs for the

next layer in the network. The backward pass is used to propagate the loss backward

in the network, effectively adjusting the weights of the neurons to minimize the loss

function.

368

R. Mapakshi et al.

2.6.6

Convolution Neural Network

Convolutional Neural Networks (CNNs) [26] are a special type of feedforward neural networks that are highly effective for image data. These networks are char-

acterized by an input layer, convolution layers, pooling layers, and an output

layer.

In each convolutional layer of a CNN, a convolution kernel (or filter), is passed

over the input image or the outputs of the previous layer. This filter is used to perform a dot product on the data, resulting in a map that identifies features, with the features becoming more abstract at each convolutional layer.

Generally, each convolutional layer is followed by a pooling layer, which uses

a fixed convolution to reduce the size of the generated feature map. There are two

common types of pooling: max pooling, which takes the maximum value from a

group of neurons, and average pooling, which calculates the average value.

The classification step is based on a fully connected layer or multiple such layers.

As the name suggests, neurons in fully connected layers are connected to every

neuron in the preceding layer and, if applicable, following layer.

CNNs do not require any feature engineering as images can be fed directly into the

network, including color channels. Although CNNs were designed for image data,

they have proven effective for many types of data that are not typically considered

as images. Any data where local structure dominates is a good candidate for CNN

classifiers.

2.6.7

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [40] are a special type of feedforward neural network that, in contrast to feedforward networks, can be viewed as hav-

ing a form of memory. That is, RNNs can capture temporal details by retaining

information from previous inputs to influence future outputs. RNNs are capable

of processing sequential data and are highly effective in tasks such as language

processing.

When training, RNNs tend to suffer from gradient instability. For example, the

gradient can tend zero exponentially during backpropagation, which severely limits

the number of previous time steps that the model can effectively use, making it

difficult to capture long-range dependencies.

2.6.8

Long Short-Term Memory

Long Short-Term Memory (LSTM) models [19] are highly specialized RNNs that are designed to better deal with long-term dependencies in the data. While maintaining

the structure of RNNs, LSTMs include a complex gating structure that improves

gradient flow, thereby mitigating the vanishing and exploding gradient problems that

plague generic RNNs.

Temporal Analysis of Adversarial Attacks in Federated Learning

369

3

Literature Review

In this literature review of Federated Learning, we first discuss the motivations for

adopting FL. Next, we consider some of the key challenges in FL, including client

dropout, security vulnerabilities, and system reliability. Finally, we briefly consider

some of the various methods used to evaluate FL systems.

Ensuring data privacy and enabling communication efficiency are the main advan-

tages of FL. Data privacy is preserved since training data can remain local [5, 37], while communication efficiency is improved because the local devices (i.e., clients)

send only model updates, as opposed to the actual data, which would typically incur

higher costs for transmission [33]. Further, studies show that FL reduces not only network bandwidth but also energy consumption [1]. These advantages allow FL

systems to scale and attract more clients to participate in the FL process.

There are some potential disadvantages to FL. Since the data among the clients

may be diverse and heterogeneous, the clients might have data that is imbalanced

and not representative of the feature set for a particular task [20]. Therefore, training models only on local data can lead to overfitting [27]. FL models attempt to overcome these issues by collectively aggregating the gradients from multiple clients to create

a global model that can capture all of the features of a specific dataset.

Next, we discuss some of the challenges inherent in FL systems. These challenges

include client dropout, security, reliability, and system evaluation.

FL process requires multiple rounds of participation by the clients to successfully

create a global model, which increases network bandwidth. In [16] it is claimed that clients tend to drop out of the FL systems due to bandwidth limitations, which

in turn reduces the amount of data available for model training and increases the

overall training time. It has been suggested that the server avoid aggregating the

weights when the number of clients falls below a certain threshold [30].

Other research [22] emphasizes selective aggregation based on the quality of the local model, or asynchronous aggregation [12]. The common goal is to reduce communication and energy costs while maintaining model performance.

Incentive mechanisms for clients might attract more participants to FL pro-

cesses [45]. The incentives can be based on the quality of the updates provided and the honest behavior of clients. Such incentive mechanisms could be orchestrated

by a central server [21] or through a distributed blockchain system [23].

While the data in an FL system is private to the local devices, there is still a

risk of some information being exposed via gradient updates. The presence of mali-

cious actors at various levels of an FL system poses a significant threat. Various

data security mechanisms are considered in [4], while [41] focuses on client device security. Not surprisingly, encrypting model updates can help to secure the overall

FL system [28].

Since FL relies on clients participating in the process, it is susceptible to Byzantine

attacks, as discussed in [13]. Auditing mechanisms can be also play a role in securing an FL system [2].

The common problem in any centralized system is that the server is a single point

of failure. Having a decentralized system mitigates this vulnerability and could make

370

R. Mapakshi et al.

an FL system more reliable. Peer-to-Peer approaches for FL have been considered

in the literature [24, 39].

Apart from handling incentive mechanisms, blockchains can also be used to

develop data provenance mechanisms to monitor communication between clients

to handle single-point failures [31]. Further, model updates can be stored in Merkle trees [32] to ensure transparent and verifiable transaction records in FL systems.

In FL, communication efficiency can be measured in terms of communication

cost, dropout ratio, and system running time [11]. It is also relevant to compare the number of communication rounds with learning accuracy [49], for example. FL

system scalability is evaluated in terms of communication cost and system running

time [50] and overall training time [47].

4

Experimental Design

In this section, we first discuss the hardware configuration and the libraries used to

implement our machine learning models. Then we discuss specific detail about our

experiments, including the dataset, FL setup, and the evaluation metrics used.

 4.1

 Hardware and Software

Table 1 lists the hardware configuration for our experiments. For neural networks models, we used PyTorch [36], while for classic machine learning models (e.g., Logistic Regression and SVC) and outlier detection, we used scikit-learn [43]. For tree-based methods, we used the XGBoost library [46]. For general data processing, we used Numpy [34] and pandas [35].

 4.2

 Dataset and Data Processing

For all of our experiments, we use the well-known MNIST dataset [25]. This dataset consists of a large collection of handwritten digits, 0 through 9, and is commonly used

Table 1 Hardware characteristics

Feature

Details

CPU

AMD Ryzen 5 6600H (3.30 GHz)

GPU

NVIDIA GeForce RTX 3060 (6 GB)

RAM

16 GB

Storage

1 TB

[image: Image 105]

Temporal Analysis of Adversarial Attacks in Federated Learning

371

as a benchmark for image processing systems. MNIST consists of 60,000 training

samples and 10,000 test samples. All of the samples are in the form of grayscale

images of size.28 × 28 pixels, with each pixel value in the range of 0 to 255, where 0

represents black and 255 represents white. Examples of images from the dataset are

provided in Fig. 1.

The MNIST dataset is approximately balanced across the labels, 0 through 9. The

precise number of samples in each class of the dataset are given in the form of a bar graph in Fig. 2.

As a preprocessing step, the MNIST images are first converted into tensors or

numpy arrays, depending on the libraries used for the specific classifier. The pixel

values in the MNIST dataset have a mean of 1.307 and a standard deviation of 0.3081,

and values are normalized to have a mean of 0 and a standard deviation of 1, as is

standard practice in data preparation.

Fig. 1 Sample MNIST images

8000

7000

6000

samples 5000

of

4000

3000

Number

2000

1000

0

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Fig. 2 Class distribution of MNIST dataset

372

R. Mapakshi et al.

For GAN reconstruction attacks, the data is distributed horizontally, in the sense

that the feature space is the same, but only a subset of the classes are present in

each client. Specifically, each partition consists of images for only 7 labels out of 10

classes. The conditional GAN generates images of these missing labels and inten-

tionally mislabels them with labels that were received by the malicious client.

 4.3

 Federated Learning Setup

The FL stack developed for this research is based on Flower: A Friendly Federated

Learning Framework [3]. Flower has three main components, namely, the server, client, and strategy.

• Server: The Server is responsible for global computations, including aggregating

the model weights, selecting the input parameters for the models, and sampling

random clients for each FL round.

• Client: The client is responsible for executing local computations, including run-

ning the ML model for a set amount of epochs. The client has access to the actual

data used for training and evaluation of model parameters.

• Strategy: The framework provides a Strategy abstraction which includes the

logic for client selection, configuration, parameter aggregation, and model eval-

uation. Outlier detection has been implemented in this strategy as a defense

mechanism to reject model updates from malicious clients, and is executed on

the server. A high-level abstraction of the Flower FL framework is provided in

Fig. 3.

For our experiments, the FedAvg [33] strategy was used to aggregate model weights for all models, except that a bagging aggregation strategy [18] was used for aggregating model updates from tree-based models (Random Forest and XGBoost).

Note that the clients and the server communicate through Remote Procedure Calls

(RPC).

Each experiment was performed for 10 federated rounds and the hyperparam-

eters were adjusted accordingly. For example, if a model requires 120 epochs for

convergence, the number of local epochs is set to 12 in each FL round so that at

the end of the FL process, the models would have been trained for a total of 120

epochs.

Due to extended training times required, for LSTM, RNN, Random Forest, and

XGBoost, 50 clients were deployed for these models, while for all other models,

100 clients were deployed. We set 25% of the clients as adversarial. Recall that we

consider three types of attacks, namely, untargeted label flipping, model poisoning,

and GAN reconstruction. In this paper, our focus in on temporal effects of adversarial

attacks, and hence adversarial clients are perform their attacks during different stages

of the FL rounds as follows.

• FULL: Adversarial attacks are present in all FL rounds

• MID: Adversarial attacks are present in 30% of the middle FL rounds

Temporal Analysis of Adversarial Attacks in Federated Learning

373

Strategy

Global

model

Config

Config

train

train

eval

eval

Client manager

RPC server

RPC

RPC

client

client

training

. . . training

Clients

data

data

Fig. 3 Overview of Flower federated ML framework

• END: Adversaries attacks are present in the last 30% of FL rounds

Our implementation is specified in detail in Algorithm 2.

Algorithm 2 Federated learning with threat model

//. n = number of rounds,. c = number of clients

//. M = machine learning model,. e = number of local epochs

//. k = ratio of malicious clients

//. attack_rounds ∈ {FULL, MID, END}

procedure FederatedLearning(. n, c, M, e, k, attack_rounds)

. datasets ← CreateDistributedDataset(. c)

. global_model_params ← server.get_initial_params (M)

. clients ← SpawnClients(. global_model_params)

MarkAdversarialClients(. clients, k)

for . i = 1 to. n do

TrainClients(. clients, datasets, e, i, attack_rounds)

. server.aggregate (clients. get_weights ())

. global_model ← server.get_aggregated_model ()

EvaluateModelOnTestData(. global_model)

procedure TrainClients(. clients, datasets, e, i, attack_rounds)

for . j = 1 to.length (clients) do

if . clients[j] . is_malicious () and. i ∈ attack_rounds then

. clients[j] . perform_attack (datasets[j])

Train(. clients[j] , datasets[j] , e)

374

R. Mapakshi et al.

 4.4

 Evaluation Metrics

Standard metrics for evaluating classification models include precision, recall, F1-

score, loss, and accuracy. Precision is the ratio of correctly predicted positive obser-

vations to the total predicted positive observations. Recall is the ratio of correctly

predicted positive observations to all observations in the actual class. The F1-Score

is computed as the weighted average of Precision and Recall. Loss is a measure of the

error of the model, relative to the specified objective function. Accuracy is the ratio

of correctly predicted observations to the total observations. Note that lower values

for the loss represent better models and, of course, models with higher accuracy are

desired. We include all of these metrics in our results.

5

Experiments and Results

In this section, we first present the baseline accuracy for each of our eight FL mod-

els, where baseline refers to the case where there are no malicious clients. Then

we analyze various outlier detection techniques. Finally, we turn our attention to

experiments for each of the three types of adversarial attacks discussed in Sect. 2.4, namely, a straightforward label flipping attack, a model poisoning attack, and our

GAN reconstruction attack. In each case, we consider all of the FL models introduced

in Sect. 2.6 that are relevant for the particular attack scenario, and we compare the results when no outlier detection is used to the results obtained when outlier detection

is employed.

 5.1

 Baseline Cases

Each of the eight FL models discussed in Sect. 2.6 was trained via a grid search over reasonable sets of hyperparameters. The hyperparameters tested and selected

are given in Appendix A. In Fig. 4, we give the accuracy obtained for each FL model when there are no malicious clients.

From Fig. 4 we observe that LSTM achieves the best accuracy, while MLP and CNN also perform well. In contrast, the tree-based models—Random Forest and

XGBoost—perform relatively poorly.

 5.2

 Outlier Detection Experiments

We employ a supervised approach to create a classifier that attempts to distinguish

between honest and malicious clients. First, we train the FL model, as described in

Algorithm 2. In the process, evaluation metrics consisting of class-wise precision,

[image: Image 106]

Temporal Analysis of Adversarial Attacks in Federated Learning

375

1.00

0.80

0.60

racy

cu

Ac 0.40

0.20

0.00

MLR

SVC

MLP

CNN

RNN

LSTM

RF

XGBoost

Fig. 4 Baseline accuracies of FL models

recall, and F1-scores, and loss are recorded for all clients, whether honest or mali-

cious. These evaluation metrics are each normalized to form a uniform distribution

in the interval .[0 , 1]. The resulting metrics are then used as features to train outlier detectors, based on the client labels of honest or malicious.

The distribution of the outlier detection data—in terms of loss and F1-score—is

illustrated in Fig. 5. Note that the GAN reconstruction data is similar to the actual data prior to the label flipping that is applied to this data when it is used in an attack.

On our outlier dataset, we tested Robust Covariance, One-Class SVM, Isolation

Forest, and Local Outlier Factor. For each of these outlier detection algorithms, the

best hyperparameters were identified using a grid search. The results in Fig. 6 present Fig. 5 Scatterplot of honest and malicious clients

[image: Image 107]

376

R. Mapakshi et al.

Fig. 6 Visual comparison of outlier detection algorithms

a visual comparison of these outlier detection algorithms when applied to identify

adversarial clients. The plots use normalized loss (. x-axis) and normalized accuracy score (. y-axis) to represent the data distribution. The red (lighter) dots indicate points classified as outliers and blue (darker) dots represent honest clients.

Visually, it is difficult to distinguish between the outlier detection techniques in

Fig. 6. Therefore, as a test case, the same set of experiments described in Algorithm 2

were run again with outlier detection enabled and the results were recorded. The

accuracy of each of the four tested outlier detection algorithms is given in Table 2.

From the results in Table 2, we observe that One-Class SVM far outperforms the other algorithms, with an accuracy of 97%. Since the One-Class SVM gives the best

results, in the experiments below, for outlier detection, we employ this technique.

Table 2 Accuracy scores for outlier detection algorithms

Algorithm

Accuracy

One-Class SVM

0.9700

Isolation Forest

0.8877

Robust Covariance

0.8193

Local Outlier Factor

0.8780

Temporal Analysis of Adversarial Attacks in Federated Learning

377

1.00

1.00

0.80

0.80

0.60

0.60

ccuracy

ccuracy

A 0.40

A 0.40

0.20

0.20

Without outlier detection

Without outlier detection

With outlier detection

With outlier detection

0.00

0.00

MLR SVC MLP CNN RNN LSTM RF XGBoost

MLR SVC MLP CNN RNN LSTM RF XGBoost

(a) FULL

(b) MID

1.00

0.80

0.60

ccuracy A 0.40

0.20

Without outlier detection

With outlier detection

0.00

MLR SVC MLP CNN RNN LSTM RF XGBoost

(c) END

Fig. 7 Label flipping attack results

 5.3

 Label Flipping Attack

The accuracies for the temporal test cases FULL, MID, and END for each of the eight

models considered under the label flipping attack are given in the form of bar graphs

in Figs. 7(a), (b), and (c), respectively. Table 11 in Appendix B contain results for all of the metrics considered, without outlier detection, while Table 12 in Appendix B

gives the analogous results, with outlier detection enabled. Note that for all of our

label flipping attacks, each adversarial client flips 30% of their labels.

In general, the MID case has little effect on the models, while the END and FULL

cases have a more substantial effect. MLR in the FULL case (and to a lesser extent

in the END case), and CNN in the END case are affected most by label flipping, and

we also observe that outlier detection has the largest positive effect in these cases.

These results illustrate the potential benefit of outlier detection in FL.

 5.4

 Model Poisoning Attack

The accuracies for the temporal test cases FULL, MID, and END for each of the

six models 1 considered under the model poisoning attack are given in the form of bar graphs in Figs. 8(a), (b), and (c), respectively. Table 13 in Appendix B contain 1 In model poisoning, the model weights are directly modified. Since Random Forest and XGBoost do not have explicit learned weights, these models are not included in this section.

378

R. Mapakshi et al.

1.00

1.00

0.80

0.80

0.60

0.60

Without outlier detection

Without outlier detection

ccuracy

ccuracy

A 0.40

With outlier detection

A 0.40

With outlier detection

0.20

0.20

0.00

0.00

MLR

SVC

MLP

CNN

RNN

LSTM

MLR

SVC

MLP

CNN

RNN

LSTM

(a) FULL

(b) MID

1.00

0.80

0.60

Without outlier detection

ccuracy A 0.40

With outlier detection

0.20

0.00

MLR

SVC

MLP

CNN

RNN

LSTM

(c) END

Fig. 8 Model poisoning attack results

results for all of the metrics considered, without outlier detection, while Table 14 in Appendix B gives the analogous results, with outlier detection enabled.

We observe that the model poisoning attack has a drastic effect on the CNN, RNN,

and LSTM models—without outlier detection, these models yield accuracies that are

essentially random. Outlier detection dramatically improves the performance of all

of these models, although less so in the FULL and END cases, as compared to the

MID case. With respect to model poisoning, MLP is the most robust of the models

tested.

 5.5

 GAN Reconstruction Attack

The accuracies for the temporal test cases FULL, MID, and END for each of the

eight models considered under the GAN reconstruction attack are given in the form

of bar graphs in Figs. 9(a), (b), and (c), respectively. Table 15 in Appendix B contain results for all of the metrics considered, without outlier detection, while Table 16 in Appendix B gives the analogous results, with outlier detection enabled.

Temporal Analysis of Adversarial Attacks in Federated Learning

379

1.00

1.00

0.80

0.80

0.60

0.60

ccuracy

ccuracy

A 0.40

A 0.40

0.20

0.20

Without outlier detection

Without outlier detection

With outlier detection

With outlier detection

0.00

0.00

MLR SVC MLP CNN RNN LSTM RF XGBoost

MLR SVC MLP CNN RNN LSTM RF XGBoost

(a) FULL

(b) MID

1.00

0.80

0.60

ccuracy A 0.40

0.20

Without outlier detection

With outlier detection

0.00

MLR SVC MLP CNN RNN LSTM RF XGBoost

(c) END

Fig. 9 GAN reconstruction attack results

Our GAN reconstruction attack is somewhat effective on the tree-based algorithms

of Random Forest and XGBoost, but otherwise the attack has surprisingly little effect.

Outlier detection has virtually no effect under this attack scenario, with the lone

exception of XGBoost under the END attack scenario.

6

Conclusion

When adversaries are present in later rounds of the FL process, we tend to observe a

larger negative effect on model performance, while attacks in the earlier rounds do

not have a strong effect. This indicates that FL models can recover from attacks.

For simple attack strategies, outlier detection as a defense mechanism had a clear

positive impact, often significantly improving model performance in the presence

of adversarial clients. Outlier detection was most effective in the case of model

poisoning attacks, which is not too surprising, given that this attack strategy was also

the most effective. The label flipping attack was moderately effective in some cases,

while our GAN reconstruction attacks was surprisingly weak.

Different models showed differing levels of inherent resistance to adversarial

attacks. For example, although LSTM was the best performing model, it was one of

the most affected by model poisoning. In contrast, MLP performed almost as well as

LSTM in the baseline case, and yet MLP was the most robust model under the attack

scenarios considered. The ensemble methods of Random Forest and XGBoost strug-

380

R. Mapakshi et al.

gled with GAN reconstruction attacks, revealing a weakness in tree-based algorithms

when dealing with synthetic adversarial data.

For future work, more sophisticated attack scenarios can be considered. Such addi-

tional case studies would enable us to obtain more insight into the relative strengths

and weaknesses of the various FL models analyzed in this paper. Similarly, the effec-

tiveness of more advanced defense mechanisms, such as differential privacy—where

noise is added to the data to prevent information leakage—can be explored. Addi-

tionally, instead of a centralized FL scenario, a fully decentralized FL structure would

be an interesting case study in the context of adversarial attacks.

Appendix A

In this appendix, we list the hyperparameters tested (via grid search) for each of the

eight FL models tested. In each case, we highlight the selected hyperparameters in

boldface and, where appropriate, we specify the model architecture. For each model,

we also give the accuracy of the trained model in the baseline case, that is, when no

adversarial clients are present.

 A.1 MLR and SVC

For Multinomial Logistic Regression and Support Vector Classifier, the . 28 × 28

images are flattened to a feature vector of 784 features. L2 regularization is applied

to both models to penalize extreme values. For SVC, a linear kernel is used. The

hyperparameters considered for logistic regression are in Table 3, while the hyperparameters for SVC are in Table 4. Note that the hyperparameters that yield the best result appear in boldface. In the baseline case, the MLR model gives an accuracy

of 0.8683 while SVC yields an accuracy of 0.8997.

Table 3 Hyperparameters for MLR

Hyperparameter

Values

Accuracy

Local epochs

[1, 10, 100]

0.8683

Penalty

L2

[image: Image 108]

Temporal Analysis of Adversarial Attacks in Federated Learning

381

Table 4 Hyperparameters for SVC

Hyperparameter

Values

Accuracy

Local epochs

[1, 10, 100]

0.8997

C

[0.01, 0.1, 1]

Kernel

Linear

Penalty

L2

Fig. 10 MLP architecture

Table 5 Hyperparameters for MLP

Hyperparameter

Values

Accuracy

Learning rate

[0.001, 0.01, 0.1, 1]

0.9459

Local epochs

[1, 10, 100]

Batch size

20

Optimizer

[Adam, SGD]

 A.2 Multilayer Perceptron

Figure 10 illustrates our MLP model architecture. The MLP has a flattening layer that converts .28 × 28 pixel images into a 784 dimensional vector. This model has three

fully connected layers with 128, 64, 10 neurons respectively. A ReLU activation

function is used after each layer, except the last, to introduce nonlinearity. A softmax

function is applied to the final layer to convert the probabilities to a classification

decision. Using on the hyperparameters in boldface in Table 5, this model gives a baseline accuracy of 0.9459

 A.3 Convolution Neural Networks

We use a plain vanilla CNN for classifying digits in the MNIST dataset. The input

layer takes an image of size .28 × 28. Since the images are gray scale, the number

of channels for all convolutional layers is 1. The architecture starts with a convo-

lutional layer that applies six .5 × 5 filters to the input. ReLU activation is used

to introduce non-linearity. This is followed by max pooling to reduce the dimen-

sionality. The second convolutional layer applies 16 filters, each of size .5 × 5,

and uses ReLU activation function, and is followed by max pooling. Finally, the

output from the convolutional layer is flattened and passed to a series of fully

connected layers of size 120, 84 and 10 neurons, respectively. The hyperparam-

[image: Image 109]

382

R. Mapakshi et al.

eters selected are in boldface in Table 6 and the model architecture is illustrated in Fig. 11. For the selected hyperparameters, this model achieves an accuracy of 0.9449.

Table 6 Hyperparameters for CNN

Hyperparameter

Values

Accuracy

Learning rate

[0.001, 0.01, 0.1, 1]

0.9449

Local epochs

[1, 10, 100]

Momentum

0.9

Batch size

20

Optimizer

[Adam, SGD]

Fig. 11 CNN architecture

 A.4 Recurrent Neural Network

Our RNN has two cells with 100 neurons. The input to RNN is passed in such a way

that the.28 × 28 images are unrolled as 28 sequences of 28 features each. In this way,

MNIST classification is modeled as sequential data. Tanh activation function is used

to introduce non-linearity. The last fully connected layer has 10 neurons to represent

the 10 digits of MNIST, with softmax activation function for this last fully connected

layer. The hyperparameters tested appear in Table 7 and the model architecture is illustrated in Fig. 12. For the selected hyperparameters, the model has an accuracy of 0.9198.

[image: Image 110]

Temporal Analysis of Adversarial Attacks in Federated Learning

383

Table 7 Hyperparameters for RNN

Hyperparameter

Values

Accuracy

Learning rate

[0.001, 0.01, 0.1, 1]

0.9198

Local epochs

[1, 10, 100]

Batch size

20

Optimizer

[Adam, SGD]

Fig. 12 RNN architecture

384

R. Mapakshi et al.

 A.5 Long Short-Term Memory

Our LSTM architecture is modeled to have three layers, each with 64 hidden states.

Here, like our RNN, the images are unrolled as 28 sequences of 28 features, thus

modeling MNIST images as sequential data. The last time step is connected to a fully

connected layer of 10 neurons representing the 10 MNIST digits. Tanh is used as the

activation function in the LSTM layers for nonlinearity, and softmax activation is

used for the last layer. The hyperparameters tested appear in Table 8, and the LSTM

architecture is illustrated in Fig. 13. For the selected hyperparameters, the model gave an accuracy of 0.9720.

 A.6 Random Forest and XGBoost

For XGBoost, the max depth parameter sets the maximum depth of each decision

tree, while the subsample parameter and colsample by-tree together determine the

fraction of features to be randomly sampled for each tree. The loss metric is mlogloss

due to the multiclass problem under consideration. The same architecture is used to

train a Random Forests by simply setting the number of boosting rounds to 1. The

hyperparameters tested for the Random Forests are in Table 9 and the hyperparameters tested with XGBoost are in Table 10. The Random Forest model achieves an accuracy of 0.770 while XGBoost produces an accuracy of 0.8525.

Appendix B

In this appendix, we provide tables with all of the metrics for the FULL, MID, and

END temporal cases for each of the three types of attacks considered. For each attack

type, we have also included the baseline case, for comparison.

Table 8 Hyperparameters for LSTM

Hyperparameter

Values

Accuracy

Learning rate

[0.001, 0.01, 0.1, 1]

0.9720

Local epochs

[1, 10, 100]

Batch size

20

Optimizer

[Adam, SGD]

[image: Image 111]

Temporal Analysis of Adversarial Attacks in Federated Learning

385

Fig. 13 LSTM architecture

 B.1 Label Flipping Attack Statistics

The metrics for our label flipping attacks with no outlier detection enabled are given

in Table 11. The statistics for the corresponding cases with outlier detection enabled are given in Table 12.

386

R. Mapakshi et al.

Table 9 Hyperparameters for random forest

Hyperparameter

Values

Accuracy

Learning rate

[0.001, 0.08, 0.1]

0.7770

Max depth

[6, 10, 12]

Subsample

[0.50, 0.75, 0.97]

Colsample by-tree

[0.50, 0.75, 0.97

Objective

multi:softmax

Alpha

[2, 4, 8]

Lambda

[2, 4, 8]

Evaluation metric

mlogloss

Tree method

hist

Boosting rounds

1

Table 10 Hyperparameters for XGBoost

Hyperparameter

Values

Accuracy

Learning rate

[0.001, 0.08, 0.1]

0.8525

Max depth

[6, 10, 12]

Sub sample

[0.50, 0.75, 0.80]

Colsample by-tree

[0.50, 0.75, 0.80]

Objective

multi:softmax

Alpha

[2, 4, 8]

Lambda

[2, 4, 8]

Evaluation metric

mlogloss

Tree method

hist

Boosting rounds

60

 B.2 Model Poisoning Attack Statistics

The metrics for our model poisoning attacks with no outlier detection enabled are

given in Table 13. The statistics for the corresponding cases with outlier detection enabled are given in Table 14.

 B.3 GAN Reconstruction Attack Statistics

The metrics for our GAN reconstruction attacks with no outlier detection enabled

are given in Table 15. The statistics for the corresponding cases with outlier detection enabled are given in Table 16.

Temporal Analysis of Adversarial Attacks in Federated Learning

387

Table 11 Label flipping attack without outlier detection

MLR

SVC

MLP

CNN

RNN

LSTM

RF

XGBoost

Precision

0.8725

0.8996

0.9459

0.9452

0.9209

0.9720

0.7798

0.8541

Recall

0.8683

0.8997

0.9459

0.9449

0.9198

0.9720

0.7770

0.8525

F1

0.8669

0.8989

0.9458

0.9448

0.9200

0.9720

0.7760

0.8517

Loss

0.4984

0.9040

15.2677

13.8814

22.3004

8.8013

1.8893

0.6594

Baseline

Accuracy

0.8683

0.8997

0.9459

0.9449

0.9198

0.9720

0.7770

0.8525

Precision

0.7233

0.8723

0.9251

0.8858

0.9162

0.9659

0.7252

0.7993

Recall

0.6187

0.8707

0.9240

0.8805

0.9155

0.9656

0.7240

0.7975

F1

0.5831

0.8700

0.9240

0.8807

0.9154

0.9657

0.7230

0.7978

Loss

1.1729

1.0891

28.7463

40.6656

24.3846

10.2456

2.3283

1.1623

FULL

Accuracy

0.6187

0.8707

0.9240

0.8805

0.9155

0.9656

0.7240

0.7975

Precision

0.8597

0.8996

0.9432

0.9392

0.9095

0.9713

0.7060

0.8460

Recall

0.8529

0.8997

0.9430

0.9391

0.9088

0.9712

0.7013

0.8436

F1

0.8504

0.8989

0.9430

0.9388

0.9087

0.9712

0.6986

0.8433

Loss

0.6154

0.9040

15.7765

15.4667

24.7902

9.1022 00 3.2076

0.7542

MID

Accuracy

0.8529

0.8997

0.9430

0.9391

0.9088

0.9712

0.7013

0.8436

Precision

0.8124

0.8727

0.9191

0.8166

0.9118

0.9663

0.7003

0.7408

Recall

0.7446

0.8710

0.9156

0.7556

0.9093

0.9662

0.6573

0.7402

F1

0.7161

0.8703

0.9160

0.7365

0.9092

0.9662

0.6685

0.7398

Loss

0.9167

1.0849

33.2798

58.2337

25.7339

9.9934

2.7512

1.2845

END

Accuracy

0.7446

0.8710

0.9156

0.7556

0.9093

0.9662

0.6573

0.7402

Table 12 Label flipping attack with outlier detection

MLR

SVC

MLP

CNN

RNN

LSTM

RF

XGBoost

Precision 0.8725

0.8996

0.9459

0.9452

0.9209

0.9720

0.7798

0.8541

Recall

0.8683

0.8997

0.9459

0.9449

0.9198

0.9720

0.7770

0.8525

F1

0.8669

0.8989

0.9458

0.9448

0.9200

0.9720

0.7760

0.8517

Loss

0.4984

0.9040

15.2677

13.8814

22.3004

8.8013

1.8893

0.6594

Baseline

Accuracy 0.8683

0.8997

0.9459

0.9449

0.9198

0.9720

0.7770

0.8525

Precision 0.7852

0.8816

0.9270

0.9263

0.9024

0.9526

0.7408

0.8370

Recall

0.7815

0.8817

0.9270

0.9260

0.9014

0.9526

0.7382

0.8354

F1

0.7833

0.8816

0.9270

0.9261

0.9019

0.9526

0.7395

0.8362

Loss

0.6479

0.9058

22.9016

18.0459

24.3074

8.8189

2.8340

1.3188

FULL

Accuracy 0.7832

0.8814

0.9269

0.9259

0.9017

0.9524

0.7393

0.8360

Precision 0.8646

0.8987

0.9365

0.9433

0.8380

0.9711

0.7408

0.8455

Recall

0.8605

0.8988

0.9364

0.9430

0.8370

0.971

0.7382

0.8440

F1

0.8625

0.8987

0.9365

0.9431

0.8375

0.9710

0.7395

0.8448

Loss

0.5981

0.9492

16.0311

16.6577

24.5304

9.2414

2.0783

0.9891

MID

Accuracy 0.8624

0.8986

0.9363

0.9430

0.8373

0.9708

0.7394

0.8447

Precision 0.8288

0.8825

0.8608

0.8790

0.8380

0.9536

0.7096

0.7772

Recall

0.8249

0.8826

0.8608

0.8788

0.8370

0.9535

0.7071

0.7758

F1

0.8269

0.8825

0.8608

0.8789

0.8375

0.9535

0.7084

0.7765

Loss

0.9968

0.9492

22.9016

62.4664

25.6454

9.2414

2.0783

0.9891

END

Accuracy 0.8267

0.8824

0.8607

0.8788

0.8373

0.9534

0.7083

0.7763

388

R. Mapakshi et al.

Table 13 Model poisoning attack without outlier detection

MLR

SVC

MLP

CNN

RNN

LSTM

Precision

0.8725

0.8996

0.9459

0.9452

0.9209

0.9720

Recall

0.8683

0.8997

0.9459

0.9449

0.9198

0.9720

F1

0.8669

0.8989

0.9458

0.9448

0.9200

0.9720

Loss

0.4984

0.9040

15.2677

13.8814

22.3004

8.8013

Baseline

Accuracy

0.8683

0.8997

0.9459

0.9449

0.9198

0.9720

Precision

0.6491

0.5195

0.7135

0.0096

0.1339

0.1673

Recall

0.6502

0.4355

0.7133

0.0980

0.1420

0.1427

F1

0.6495

0.4219

0.7127

0.0175

0.0680

0.1097

Loss

11.4170

1.8487

10784403

273.6978

478.6425

665.9301

FULL

Accuracy

0.6502

0.4355

0.7133

0.0980

0.1420

0.1427

Precision

0.7015

0.8996

0.8381

0.1556

0.1669

0.0925

Recall

0.6795

0.8997

0.8385

0.1145

0.1780

0.0892

F1

0.6769

0.8989

0.8381

0.0252

0.1547

0.0707

Loss

2.8480

0.9040

1202.6790

186.6558

175.1006

424.9485

MID

Accuracy

0.6795

0.8997

0.8385

0.1145

0.1780

0.0892

Precision

0.5915

0.5608

0.7438

0.0253

0.0780

0.1636

Recall

0.5488

0.4575

0.7057

0.0951

0.1105

0.1525

F1

0.5305

0.4310

0.7098

0.0170

0.0760

0.1485

Loss

5.1380

1.8564

3144.8430

371.6640

614.2485

632.3198

END

Accuracy

0.5488

0.4575

0.7057

0.0951

0.1105

0.1525

Table 14 Model poisoning attack with outlier detection

MLR

SVC

MLP

CNN

RNN

LSTM

Precision

0.8725

0.8996

0.9459

0.9452

0.9209

0.9720

Recall

0.8683

0.8997

0.9459

0.9449

0.9198

0.9720

F1

0.8669

0.8989

0.9458

0.9448

0.9200

0.9720

Loss

0.4984

0.9040

15.2677

13.8814

22.3004

8.8013

Baseline

Accuracy

0.8683

0.8997

0.9459

0.9449

0.9198

0.9720

Precision

0.7939

0.7736

0.8135

0.8128

0.7919

0.8360

Recall

0.7902

0.7737

0.8135

0.8126

0.7910

0.8359

F1

0.7920

0.7737

0.8135

0.8127

0.7915

0.8359

Loss

0.5233

1.4735

15.4204

14.7143

26.7604

9.3294

FULL

Accuracy

0.7919

0.7735

0.8134

0.8126

0.7914

0.8357

Precision

0.7939

0.8816

0.9270

0.9263

0.9024

0.9526

Recall

0.7902

0.8817

0.9270

0.9260

0.9014

0.9526

F1

0.7920

0.8816

0.9270

0.9261

0.9019

0.9526

Loss

0.5233

1.3831

14.6570

18.4623

30.1055

11.7057

MID

Accuracy

0.7919

0.8814

0.9268

0.9259

0.9017

0.9525

Precision

0.7939

0.7916

0.8324

0.8317

0.8104

0.8554

Recall

0.7902

0.7917

0.8324

0.8315

0.8094

0.8554

F1

0.7920

0.7917

0.8324

0.8316

0.8099

0.8554

Loss

0.5233

1.0938

16.4892

15.9636

25.6454

10.1215

END

Accuracy

0.7918

0.7916

0.8323

0.8315

0.8097

0.8552

Temporal Analysis of Adversarial Attacks in Federated Learning

389

Table 15 GAN reconstruction attack without outlier detection

MLR

SVC

MLP

CNN

RNN

LSTM

RF

XGBoost

Precision

0.8725

0.8996

0.9459

0.9452

0.9209

0.9720

0.7798

0.8541

Recall

0.8683

0.8997

0.9459

0.9449

0.9198

0.9720

0.7770

0.8525

F1

0.8669

0.8989

0.9458

0.9448

0.9200

0.9720

0.7760

0.8517

Loss

0.4984

0.9040

15.2677

13.8814

22.3004

8.8013

1.8893

0.6594

Baseline

Accuracy

0.8683

0.8997

0.9459

0.9449

0.9198

0.9720

0.7770

0.8525

Precision

0.8721

0.8994

0.9343

0.9183

0.9122

0.9606

0.4128

0.8330

Recall

0.8661

0.8995

0.9341

0.9173

0.9103

0.9604

0.5511

0.8325

F1

0.8643

0.8987

0.9339

0.9171

0.9104

0.9604

0.4628

0.8318

Loss

0.5116

0.9114

19.4806

22.0921

24.1009

11.4465

1.9348

0.6909

FULL

Accuracy

0.8661

0.8995

0.9341

0.9173

0.9103

0.9604

0.5511

0.8325

Precision

0.8729

0.8996

0.9293

0.9117

0.9181

0.9624

0.4327

0.5942

Recall

0.8686

0.8997

0.9282

0.9078

0.9169

0.9622

0.5834

0.7107

F1

0.8672

0.8989

0.9281

0.9073

0.9170

0.9622

0.4921

0.6408

Loss

0.5006

0.9040

19.9489

24.1492

21.5096

10.7564

1.9129

1.1639

MID

Accuracy

0.8686

0.8997

0.9282

0.9078

0.9169

0.9622

0.5834

0.7107

Precision

0.8718

0.8988

0.9320

0.9127

0.9040

0.9640

0.4546

0.4541

Recall

0.8667

0.8988

0.9314

0.9118

0.8997

0.9639

0.6105

0.6251

F1

0.8652

0.8980

0.9313

0.9112

0.8996

0.9639

0.5158

0.5216

Loss

0.5039

0.9119

20.064

23.1629

26.5582

10.5914

1.9098

1.4798

END

Accuracy

0.8667

0.8988

0.9314

0.9118

0.8997

0.9639

0.6105

0.6251

Table 16 GAN reconstruction attack with outlier detection

MLR

SVC

MLP

CNN

RNN

LSTM

RF

XGBoost

Precision 0.8725

0.8996

0.9459

0.9452

0.9209

0.9720

0.7798

0.8541

Recall

0.8683

0.8997

0.9459

0.9449

0.9198

0.9720

0.7770

0.8525

F1

0.8669

0.8989

0.9458

0.9448

0.9200

0.9720

0.7760

0.8517

Loss

0.4984

0.9040

15.2677

13.8814

22.3004

8.8013

1.8893

0.6594

Baseline

Accuracy 0.8683

0.8997

0.9459

0.9449

0.9198

0.9720

0.7770

0.8525

Precision 0.8637

0.8906

0.9365

0.9357

0.9117

0.9623

0.5459

0.8264

Recall

0.8596

0.8907

0.9364

0.9355

0.9106

0.9623

0.5439

0.8249

F1

0.8617

0.8906

0.9365

0.9356

0.9111

0.9623

0.5449

0.8256

Loss

0.5283

0.9402

15.8784

14.4367

20.5163

8.0972

2.135

0.7583

FULL

Accuracy 0.8615

0.8904

0.9363

0.9355

0.9109

0.9621

0.5447

0.8255

Precision 0.8637

0.8906

0.9365

0.9357

0.9117

0.9623

0.5303

0.7243

Recall

0.8596

0.8907

0.9364

0.9355

0.9106

0.9623

0.5284

0.7229

F1

0.8617

0.8906

0.9365

0.9356

0.9111

0.9623

0.5293

0.7236

Loss

0.5184

0.9582

14.6570

13.3262

23.6384

9.3294

1.9838

1.4125

MID

Accuracy 0.8616

0.8905

0.9363

0.9355

0.9110

0.9621

0.5292

0.7234

Precision 0.8637

0.8906

0.9365

0.9357

0.9117

0.9623

0.5927

0.8264

Recall

0.8596

0.8907

0.9364

0.9355

0.9106

0.9623

0.5905

0.8249

F1

0.8617

0.8906

0.9365

0.9356

0.9111

0.9623

0.5916

0.8256

Loss

0.4785

0.9402

14.0463

14.7143

23.1924

9.1534

1.9082

1.4125

END

Accuracy 0.8616

0.8905

0.9364

0.9355

0.9110

0.9621

0.5914

0.8255

390

R. Mapakshi et al.

References

1. Amiri MM, Gündüz D, Kulkarni SR, Poor HV. Update aware device scheduling for federated learning at the wireless edge. In: 2020 IEEE international symposium on information theory, ISIT; 2020. p. 2598–603.

2. Anelli VW, Deldjoo Y, Di Noia T, Ferrara A. Towards effective device-aware federated learning.

In: AI*IA 2019—advances in artificial intelligence; 2019. p. 477–91.

3. Beutel DJ, Topal T, Mathur A, Qiu X, Fernandez-Marques J, Gao Y, Sani L, Kwing HL, Parcollet T, de Gusmão PPB, Lane ND. Flower: a friendly federated learning research framework; 2020.

https://arxiv.org/abs/2007.14390.

4. Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, Ramage D, Segal A, Seth K. Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC conference on computer and communications security, CCS ’17;

2017. p. 1175–91.

5. Bonawitz K, Salehi F, Konečn`y J, McMahan B, Gruteser M. Federated learning with autotuned communication-efficient secure aggregation. In: 2019 53rd Asilomar conference on signals,

systems, and computers; 2019. p. 1222–26.

6. Breiman L. Random forests. Mach Learn. 2001;45:5–32.

7. Breunig MM, Kriegel H-P, Ng RT, Sander J. LOF: identifying density-based local outliers.

In: Proceedings of the 2000 ACM SIGMOD international conference on management of data,

SIGMOD ’00; 2000. p. 93–04.

8. Cao X, Gong NZ. MPAF: Model poisoning attacks to federated learning based on fake

clients. In: 2022 IEEE/CVF conference on computer vision and pattern recognition workshops, CVPRW; 2022. p. 3395–03.

9. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining; 2016. p.

785–94.

10. Chen X, Liu C, Li B, Lu K, Song D. Targeted backdoor attacks on deep learning systems using data poisoning; 2017. https://arxiv.org/abs/1712.05526.

11. Chen Y, Sun X, Jin Y. Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation. IEEE Trans Neural Netw Learn

Syst. 2020;31(10):4229–38.

12. Chen Y, Ning Y, Slawski M, Rangwala H (2020) Asynchronous online federated learning for edge devices with non-IID data. In: 2020 IEEE international conference on big data, big data; 2020. p. 15–24.

13. Jinho Choi and Shiva Raj Pokhrel. Federated learning with multichannel ALOHA. IEEE Wirel Commun Lett. 2019;9(4):499–502.

14. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–97.

15. Diao E, Ding J, Tarokh V. Heterofl: computation and communication efficient federated learning for heterogeneous clients. In: International conference on learning representations; 2020.

16. Doku R, Rawat DB, Liu C. Towards federated learning approach to determine data relevance in big data. In: 2019 IEEE 20th international conference on information reuse and integration for data science (IRI); 2019. p. 184–92.

17. EUR-lex: regulation (EU) 2016/679 of the European Parliament and of the Council; 2016.

https://data.europa.eu/eli/reg/2016/679/oj.

18. Flower framwork: tree-based bagging aggregation—Quickstart with XGBoost; 2023. https://

flower.ai/docs/framework/tutorial-quickstart-xgboost.html#tree-based-bagging-aggregation.

19. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80.

20. Hu Y, Sun X, Chen Y, Lu Z. Model and feature aggregation based federated learning for multi-sensor time series trend following. In: Advances in computational intelligence. Springer; 2019.

p. 233–46.

21. Kang J, Xiong Z, Niyato D, Yu H, Liang Y-C, Kim DI. Incentive design for efficient federated learning in mobile networks: a contract theory approach. In: 2019 IEEE VTS Asia Pacific

Wireless Communications Symposium, APWCS; 2019. p. 1–5.

Temporal Analysis of Adversarial Attacks in Federated Learning

391

22. Kang J, Xiong Z, Niyato D, Zou Y, Zhang Y, Guizani M. Reliable federated learning for mobile networks. IEEE Wirel Commun. 2020;27(2):72–80.

23. Kim H, Park J, Bennis M, Kim S-L. Blockchained on-device federated learning. IEEE Commun Lett. 2020;24(6):1279–83.

24. Lalitha A, Kilinc OC, Javidi T, Koushanfar F. Peer-to-peer federated learning on graphs; 2019.

https://arxiv.org/abs/1901.11173.

25. LeCun Y, Cortes C. MNIST handwritten digit database; 2010. http://yann.lecun.com/exdb/

mnist/.

26. LeCun Y, et al. Backpropagation applied to handwritten zip code recognition. Neural Comput.

1989;1(4):541–51.

27. Li T, Sanjabi M, Beirami A, Smith V. Fair resource allocation in federated learning; 2020.

https://arxiv.org/abs/1905.10497.

28. Liu C, Chakraborty S, Verma D. Secure model fusion for distributed learning using partial homomorphic encryption. Springer; 2019. p. 154–79.

29. Liu FT, Ting KM, Zhou Z-H. Isolation forest. In: 2008 Eighth IEEE international conference on data mining; 2008. p. 413–22.

30. Liu Y, Ma Z, Liu X, Ma S, Nepal S, Deng RH, Ren K. Boosting privately: Federated extreme gradient boosting for mobile crowdsensing. In: 2020 IEEE 40th international conference on

distributed computing systems, ICDCS; 2020. p. 1–11.

31. Yunlong L, Huang X, Dai Y, Maharjan S, Zhang Y. Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Trans Ind Inf. 2020;16(6):4177–86.

32. Majeed U, Hong CS (2019) FLchain: federated learning via MEC-enabled blockchain network.

In: 2019 20th Asia-Pacific network operations and management symposium, APNOMS; 2019.

p. 1–4.

33. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA. Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th international conference on artificial intelligence and statistics, vol. 54; 2017. p. 1273–82.

34. Numpy: The fundamental package for scientific computing with Python. https://numpy.org/.

35. Pandas: powerful data structures for data analysis, time series, and statistics. https://pandas.

pydata.org/.

36. Pytorch. https://pytorch.org/.

37. Reisizadeh A, Mokhtari A, Hassani H, Jadbabaie A, Pedarsani R. Fedpaq: a communication-efficient federated learning method with periodic averaging and quantization. In: International conference on artificial intelligence and statistics; 2020. p. 2021–31.

38. Rousseeuw PJ, Van Driessen K. A fast algorithm for the minimum covariance determinant estimator. Technometrics. 1999;41(3):212–23.

39. Roy AG, Siddiqui S, Pölsterl S, Navab N, Wachinger C. Braintorrent: a peer-to-peer environment for decentralized federated learning; 2019. https://arxiv.org/abs/1905.06731.

40. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors.

Nature. 1986;323(6088):533–6.

41. Samy AE, Girdzijauskas S. Mitigating sybil attacks in federated learning. In: Information security practice and experience. Springer; 2023, p. 36–51.

42. Schölkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC. Estimating the support of a high-dimensional distribution. Neural Comput. 2001;13(7):1443–71.

43. Scikit-learn: machine learning in Python. https://scikit-learn.org/stable/.

44. Shafahi A, Huang WR, Najibi M, Suciu O, Studer C, Dumitras T, Goldstein T. Poison frogs!

Targeted clean-label poisoning attacks on neural networks; 2018. https://arxiv.org/abs/1804.

00792.

45. Wang G, Dang CX, Zhou Z. Measure contribution of participants in federated learning. In: 2019 IEEE international conference on big data (Big Data); 2019.

46. XGBoost: scalable and flexible gradient boosting. https://xgboost.readthedocs.io/en/stable/.

47. Xu R, Baracaldo N, Zhou Y, Anwar A, Ludwig H. Hybridalpha: an efficient approach for privacy-preserving federated learning. In: Proceedings of the 12th ACM workshop on artificial intelligence and security, AISec’19; 2019. p. 13–23.

392

R. Mapakshi et al.

48. Yang Q, Liu Y, Cheng Y, Kang Y, Chen T. Federated learning. Synth Lect Artif Intell Mach Learn. 2019;13(3):1–207.

49. Zhan Y, Li P, Guo S. Experience-driven computational resource allocation of federated learning by deep reinforcement learning. In: 2020 IEEE international parallel and distributed processing symposium (IPDPS); 2020. p. 234–43.

50. Zhang X, Chen X, Liu JK, Xiang Y. DeepPAR and DeepDPA: privacy preserving and asyn-

chronous deep learning for industrial IoT. IEEE Trans Ind Inf. 2020;16(3):2081–90.

[image: Image 112]

Federated Learning: An Overview

of Attacks and Defense Methods

K. M. Sameera

, Dincy R. Arikkat

, P. Vinod

, Rehiman K. A. Rafidha

,

Azin Aneez

, and Mauro Conti

Abstract Federated Learning (FL) has achieved extensive adoption, especially in

applications like healthcare and cyber-physical systems, serving as a protective mea-

sure for data while ensuring participant privacy. In FL, adversarial attacks present a

considerable risk to both the integrity of the learning model and the privacy of the distributed data. The decentralized structure of FL exacerbates this vulnerability, as the

data stays local and is not accessible to the central server, complicating efforts to protect against adversarial attacks. This challenge underscores the necessity for further

research on robust defense approaches to guarantee that FL can effectively safeguard

data privacy and become a viable solution in real-world applications. This article pro-

vides an extensive review, including potential attacks and mitigation strategies. This

survey presents a taxonomy of adversarial attacks and defense mechanisms, offering

a comprehensive overview of the vulnerabilities in FL and the strategies available

to mitigate them. Besides, we introduce a unified adversary-resilient FL framework

that integrates Blockchain to enhance security. Finally, we present open research

challenges in the field of FL.

K. M. Sameera (B) · D. R. Arikkat · P. Vinod · R. K. A. Rafidha

Department of Computer Applications, Cochin University of Science and Technology, Kochi, India e-mail: sameerakm@cusat.ac.in

D. R. Arikkat

e-mail: dincyrarikkat@cusat.ac.in

P. Vinod

e-mail: vinod.p@cusat.ac.in; vinod.puthuvath@unipd.it

R. K. A. Rafidha

e-mail: rafidharehimanka@cusat.ac.in

P. Vinod · M. Conti

Department of Mathematics, University of Padua, Padua, Italy

e-mail: mauro.conti@unipd.it

A. Aneez

School of Behavioral and Brain Sciences, University of Texas, Austin, USA

e-mail: axa220246@utdallas.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

393

M. Stamp and M. Jureček (eds.), Machine Learning, Deep Learning and AI for

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_14

394

K. M. Sameera et al.

1

Introduction

In recent years, the rapid growth and advancement of end devices have posed sig-

nificant challenges for existing networks. The emergence of new technologies has

sparked a focus on creating distributed and intelligent systems. Artificial Intelli-

gence (AI) and Blockchain-based technologies have a vigorous scientific reputa-

tion for providing secure, decentralized data and model sharing, intelligent network

supervision, and administration. AI and Blockchain have been employed in diverse

sectors [69], including the Industrial Internet of Things (IIoT), Pharmaceuticals, Healthcare Sector, Vehicular Networks, Cyber-Physical Systems, etc.

Machine Learning (ML) techniques continuously evolve, and researchers are

attempting to build innovative automated solutions suitable for different applications.

The core principle behind the ML approach is to leverage unlabeled and labeled input

to determine the optimal rules for categorizing unknown data or projecting future

events. However, centralized techniques are associated with various issues [60]. Centralized ML methods involve collecting user data on a central server for analysis

during the training phase, which is then used to generate insights. However, as the

number of connected devices grows, centralized data collection, processing, and

model updates become increasingly inefficient due to latency issues, and the rising

demand for computational resources.

Furthermore, the massive volume of sensitive data collected from the various edge

devices might be compromised by malicious parties. A distributed ML model can

solve the problem of excessive computation overhead in the standard ML model [99]

by distributing work across multiple nodes and a global server. However, users may

be concerned about data privacy and hesitant to provide private information for pro-

cessing and analysis. Additionally, it is difficult to implement such a setting due to the security regulations imposed by the Health Insurance Portability and Accountability

Act (HIPPA) [38] and General Data Protection Regulation (GDPR) [100].

FL [65] has gained considerable attention across various applications as a solution for distributed trustworthy data sharing. FL diminishes the computation complexity of centralized infrastructure by allowing each client to train the model locally

while maintaining data privacy. In the FL framework, a central aggregator (server)

distributes the initial global model to all clients, who then train the model using

their own local data. After training, the parameters are sent back to the central server for aggregation. The updated global model is subsequently shared with the clients,

and this process continues until the desired performance is achieved. FL is expected

to increase scalability, reduce latency, improve accuracy, reduce training time, and

assure privacy.

According to recent research [70], FL is subject to malicious attacks, such as inference and poisoning attacks. Also, the heterogeneous environment and asynchronous communication inherent to FL lead to unpredictable and potentially con-

flicting client updates. These factors not only complicate the model training process

but also exacerbate security and privacy vulnerabilities, as inconsistent updates may

allow adversaries to exploit the system. While our paper primarily surveys existing

Federated Learning: An Overview of Attacks and Defense Methods

395

literature on FL attacks and defense mechanisms, we also suggest a unified frame-

work designed to enhance security and privacy in FL. The major highlights of this

work are as follows:

• We present a thorough examination of FL, privacy and security attacks and possible

countermeasures.

• We present a unified FL framework using Blockchain to enhance trustworthiness

while developing the global model collaboratively.

• We present a framework that detects malicious clients influencing the training

process by evaluating the quality of local models through auxiliary data generated

via Generative Adversarial Networks (GANs).

The structure of this article is organized as follows. Section 2 offers an overview of FL. Sections 3 and 4 provide a detailed analysis of various attacks on FL systems, while Sect. 5 reviews state-of-the-art strategies for mitigating such attacks. Section 5

discusses the proposed solution, and Sect. 7 highlights open research challenges.

Finally, Sect. 8 concludes the paper.

2

Background

This section delves into the context of FL, focusing on aggregation algorithms and

examining both the benefits and challenges associated with the FL environment.

 2.1

 Federated Learning

FL, a paradigm within ML, facilitates model training across multiple decentralized

devices without revealing data. It ensures collaborative model improvement without

exposing confidential data. In a standard FL scenario, a centralized server initially

deploys a global model. Rather than sending raw data for training, individual devices

or servers perform local computations on their private datasets to generate updates.

These local updates, typically in the form of gradients or weights, are then sent to the central server, where they are aggregated to refine the global model. The structure of

the FL process is illustrated in Fig. 1. The main stages of the traditional FL process include:

1. Initialization: The central aggregator creates an initial global model with predefined hyperparameters for training (i.e., number of local and federation epochs,

learning rate, batch size, model optimizer, etc.) and broadcasts to the client.

Formally, at each epoch . t ≥ 0, the central aggregator sends the recent global

model . Wt to a set of. k clients.

2. Local Model Training: The randomly selected . k clients will receive the global model . Wt from the server and locally train . Wt with their sensitive data. Using

[image: Image 113]

396

K. M. Sameera et al.

Fig. 1 Architecture of federated learning

multiple stages of Stochastic Gradient Descent (SGD), each client calculates the

local model update and the average gradient as

. Wk (t + 1) = Wk (t) − η Wk (t)

where . Wk(t) denotes the local model’s update at iteration . t, . η represents the learning rate, . Wk(t) is the gradient.

3. Transfer local model Parameters: Each client (. Ck) transmit their local updated model to the server.

4. Aggregation: The federated central aggregator combines local parameters (gra-

dient or weight) from selected . Ck clients to build a new global model as

 K

 nk

. W (t + 1) = W (t) − η

 Wk(t)

 n

 k=1

Federated Learning: An Overview of Attacks and Defense Methods

397

where . W(t) is the global model update at round . t, . η is the global learning rate,

. nk is the number of samples at client k, . n is the total number of training samples at round . t.

5. Sending current global model: The improved global model is then broadcast to

the . k clients, and the procedure continues until the required accuracy is attained or the model converges.

FL can be classified into three distinct types (horizontal, vertical, and transfer)

depending on the distinct characteristics and diverse sample spaces [119]. Horizontal Federated Learning is utilized in situations where datasets exhibit a common feature space but vary across multiple sample spaces. For instance, Google incorporated a

horizontal FL solution into its keyboard app [37] to predict the next word the user is likely to type. Conversely, Vertical FL is effective when two repositories share nearly identical sample spaces but differ in their features. Specifically, vertical FL

is employed to address data or label shortages without compromising the integrity

of the underlying dataset. Conversely, Federated Transfer Learning is applicable in

situations where two sets of samples differ not only in their sample distributions but

also in their feature spaces [78].

2.1.1

Aggregation Algorithms

In an FL system, aggregation techniques play a crucial role as the algorithm seam-

lessly integrates model updates from all the local edge devices (clients) engaged

in the training phase. Different aggregation procedures have been introduced in the

literature, each with distinct focuses, such as enhancing privacy, optimizing commu-

nication bandwidth, or selectively accommodating specific participants in training

epochs [1]. Some of the evolved algorithms are mentioned below:

1. FedAvg: FedAvg [64] empowers edge devices to leverage an SGD optimizer for multiple batch updates on sensitive local data, sharing the updated weights rather

than the gradients. The central aggregator then averages these weights from indi-

vidual local models, generating new weights and consequently updating the global

model. The aggregation weight in FedAvg is typically calculated by the amount

of training data on each client, assuming an even spread of data among clients.

Unfortunately, the FedAvg algorithm is less likely to be optimal in real-world sce-

narios characterized by non-Independent and Identically Distributed (non-IID)

heterogeneous data.

2. SMC-Avg: SMC-Avg (Secure Multiparty Computation) aggregation algorithm

aggregates the secret values of mutually suspicious clients without giving infor-

mation about their sensitive data [9]. This method has a fault tolerance limit, signifying that the protocol persists even in the event of one-third of the participating parties failing to adhere to the process.

3. FedProx: In FL, diverse edge devices often contend with varying resource con-

straints, encompassing factors like battery life, processing hardware capabilities,

and internet connectivity. However, FedAvg’s insistence that each edge device

398

K. M. Sameera et al.

performs the same workload by running an equal number of local epochs is

unrealistic in practical scenarios. In response to this challenge, FedProx [52], an enhanced iteration of FedAvg, introduces flexibility by allowing edge devices to

perform varying amounts of local work based on their specific system resources.

Subsequently, FedProx aggregates the partial solutions from these devices instead

of discarding their contributions. Notably, the accuracy of the FedAvg has been

shown to be higher than that of other FedProx.

4. FedMA: FedMA [106] employs an averaging approach for aggregating global model updates in FL, utilizing both Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN). This method conducts layer-wise matching

and averaging at a central aggregator. During each training epoch, the aggregated

parameters are distributed to all participating clients, and an extra neuron is added

to the local model to facilitate the transmission of updates to the global model,

resulting in notably robust performance. Furthermore, FedMA outperforms both

FedProx and FedAvg, surpassing them within just a few training rounds.

2.1.2

Benefits of Federated Learning

By default, FL prioritizes the privacy of sensitive data while collectively constructing

a model through the exchange of training parameters with a central aggregator. In

the FL environment, potential adversaries face the challenge of targeting multiple

dispersed devices instead of a centralized model to gain control over information.

The decentralized nature of FL amplifies the complexity of potential attacks, thereby

diminishing their likelihood of success. Moreover, as FL eliminates the necessity

of transmitting sensitive data from edge devices, the time delay for model updates

is significantly reduced. Additionally, FL facilitates real-time predictions for edge

devices since the data resides on the edge nodes, eliminating the need for continuous

internet connectivity to leverage the model’s predictive capabilities. The decentral-

ized nature of FL models obviates the requirement for a single, complex centralized

system to interpret data, resulting in a cost-effective hardware solution.

2.1.3

Challenges of Federated Learning

Despite the benefits, FL is subjected to a variety of attacks and challenges. Some

of the major issues that come with working in the FL environment are discussed

below [51].

1. Expensive communication: In the FL implementations, effective communication

management is a critical constraint to navigate. This stems from the fact that feder-

ated systems may encompass a large number of edge devices, which can be signif-

icantly slower than local computing due to the constrained nature of edge devices.

Consequently, the success of FL hinges on the deployment of communication-

efficient algorithms. These algorithms, designed for FL, prioritize efficiency by

Federated Learning: An Overview of Attacks and Defense Methods

399

eliminating the transfer of the entire dataset to the central aggregator. Instead, they

send compact messages or model changes iteratively as part of the distributed

training process. To curtail communication overhead, two key factors are taken

into consideration: a) minimizing the total number of epochs and b) reducing the

volume of messages exchanged between the client and the server in each round.

2. Systems heterogeneity: In an FL system, clients exhibit diverse capacities in terms of communication, storage, and computing, driven by variations in hardware,

network connectivity, battery power, and memory. Additionally, owing to lim-

itations in network capacity and resources on individual devices, only a small

number of devices are active at any given moment. These system-level properties

further intensify challenges related to straggler mitigation and fault tolerance.

Consequently, well-designed FL systems must anticipate a) a low level of partic-

ipation, b) the presence of diverse hardware, and c) resilience to communication

network disruptions.

3. Statistical heterogeneity: Edge devices usually generate and gather data in a non-IID manner across the network. This unconventional data production paradigm

challenges the widely accepted principles of IID data in distributed optimization,

consequently heightening the likelihood of encountering stragglers. Challenges

arise both in terms of modeling the data and evaluating the convergence behavior

of associated training methods.

4. Privacy concerns: FL makes strides in safeguarding data collected on each edge

device by transmitting only model updates, instead of exposing sensitive data.

However, sharing model parameters with third parties or the central aggrega-

tor during the training process could potentially reveal confidential information.

Modern technologies, such as Differential Privacy (DP), Secure Multiparty Com-

putation (SMC), and Homomorphic Encryption (HE), aim to enhance the privacy

of FL, but these strategies often introduce the expense of degrading model perfor-

mance. As a result, achieving a balance between enhancing privacy and preserving

optimal model performance presents a significant challenge in the deployment of

private FL systems.

According to many recent research studies [70, 78, 96, 99], the basic privacy in FL is inadequate for securing sensitive data from adversaries, and FL is inherently

vulnerable to many attacks. The following section discusses different attacks that

have occurred in an FL environment.

3

Security Attacks in Federated Learning

Recent research indicates that FL is intrinsically vulnerable to server-side or

participant-side attacks for the following reasons. Since this FL system contains

many users, some malicious individuals are almost bound to be there. Additionally,

malicious actors can manipulate the training parameters, aggregated model updates,

and learning results if they infiltrate the FL system [76]. Furthermore, it is difficult to

400

K. M. Sameera et al.

Fig. 2 High-Level taxonomy of adversarial attacks in FL systems

validate the legitimacy of a particular user’s updates because the server cannot access

the user’s local data and training process. Finally, local device updates may differ

significantly from one another, providing substantial challenges for anomaly detec-

tion systems. Figure 2 exhibits a high-level taxonomy of the attacks inflicted upon FL [46]. This section delves into the various security attacks that pose challenges to the integrity and privacy of FL systems.

 3.1

 Poisoning Attack

A poisoning attack aims to transform a benign model into a compromised one,

enabling the manipulation of private data or local models to influence the global

model’s performance directly. In FL, all participants have equal access to the training

data, and each participant transmits updates to the central server during the training

phase. An adversary or malicious client can introduce malicious data or models

into this process, resulting in tainted updates that impact the training, ultimately

contaminating the global model and lowering its accuracy. Authors in [10] observed that the attack success rate of the distributed poisoning attack increases when the

number of attackers and poisoned samples increases. The poisoning attack can be

categorized based on the attacker’s objective and strategy, as shown in Fig. 3.

3.1.1

Taxonomy Based on the Objective

The adversary’s goals can categorized into two groups based on their objectives: (a)

diminishing the accuracy of the global model across various tasks and b) influencing

the performance of the global model on particular tasks. Thus, poisoning attacks are

Federated Learning: An Overview of Attacks and Defense Methods

401

Fig. 3 Taxonomy of poisoning attacks in FL system based on attack objectives and strategies divided into three types based on the attacker’s objective: targeted, semi-targeted,

and untargeted.

 Targeted Attack

In a targeted attack, an adversary aims to manipulate or compromise the model’s

performance on a particular task and not affect the other task. Due to the nature of

the targeted attack, it is challenging to detect in a non-IID environment [62]. This attack aims to influence specific aspects of the model’s behavior rather than broadly

affecting all tasks. A targeted attack can be executed by poisoning the local dataset

of the client model through a data poisoning attack [96, 115] or by manipulating the local model itself through a model poisoning attack [4, 7].

 Semi-targeted Attack

In a semi-targeted attack, the adversaries have designated a specific class (referred

to as . CS), and their objective is to contaminate the global model so that instances associated with the . CS are misclassified as a different class . (C∗). Unlike a targeted attack, the attacker can select the target class strategically to optimize the attack’s

effectiveness in a semi-targeted scenario. The general formula for the semi-targeted

attack is [92]

 C∗ if y = CS

. arg max f (x)m =

 m

 y

otherwise

where . m is the compromised participant in the current round.

 Untargeted Attack

The adversary can select the type of attack based on their goal. For instance, a

malevolent client aiming to hinder the overall model’s convergence may execute an

untargeted poisoning attack. This attack aims to influence the model accuracy and

402

K. M. Sameera et al.

impact all tasks, they are relatively more discernible by the server, making detection

easier than targeted attacks [12, 84]. It also damages the target model’s integrity, which might lead to a Denial-of-Service [59]. Recent research proposed three types of untargeted poisoning attacks.

Sign flipping attack: In this attack, the adversaries alter the signs of a portion of the data before sending the local model. By manipulating the signs of the data,

the attacker aims to change the model’s decision boundaries, forcing it to create

erroneous predictions during inference. In sign-flipping, the Byzantine participants

reverse the gradient without applying any scaling [54, 117].

Additive noise attack: Including some noise in the local model update increases

privacy, but too much noise makes the system vulnerable. An additive noise attack

involves the introduction of Gaussian noise or Laplacian noise or random noise to

the local model updates [40].

Byzantine attack: In a Byzantine attack, malicious client changes their local

updates or datasets to disrupt the global model. Furthermore, in the FL environ-

ment, a malicious client detracts from its regular behavior to malicious or aberrant

behaviour [89].

3.1.2

Taxonamy Based on Attack Strategy

The attacker compromises the local model by altering its parameters, either by cor-

rupting the dataset or tampering with the model directly. So, based on the attack

strategy, the classification includes data poisoning and model poisoning attacks.

These poisoning can occur during the training phase, indirectly interfering with the

overall performance and accuracy of the global ML model [70].

 Data Poisoning Attack

Data poisoning attacks in FL frequently undermine the integrity of the training data

instead of directly targeting the global model. In essence, adversaries contaminate the

local dataset during training to instigate such attacks. These data poisoning attacks

can manifest through label flipping [84, 96], data injection [86], and backdoor techniques [105, 115].

Label Flipping Attack: In this type of attack, adversaries flip the label of the

true class to the wrong class while preserving the features of the input sample. The

label manipulation attack does not necessitate the adversary to be acquainted with FL

model parameters, DNN architecture, or any other details. The label-flipping attack

can be categorized as targeted, untargeted, or semi-targeted, depending on how the

attacker selects the incorrect label corresponding to the true label. Label flipping

can occur through either the dirty label or clean label method. Clean-label attacks operate under the assumption that the adversary cannot alter the label of any training

data, given a certification process ensuring the accuracy of class assignments and

imperceptibility of data sample poisoning [28]. In contrast, dirty-label poisoning involves the adversary injecting data samples with attacker-specified labels, rather

than their true labels, into the training set to intentionally cause misclassification

[image: Image 114]

Federated Learning: An Overview of Attacks and Defense Methods

403

Fig. 4 Dirty label flipping attack

toward a desired target label. The study of [25] demonstrated that FL is susceptible to the dirty label-flipping attack.

Figure 4 illustrates a label-flipping attack scenario. Assume that there are. k clients, one of which is malicious, and all commit to a common learning task and model

system. Malicious clients of this FL system flip labels; in this example, label . 3 is

mislabeled as . 8, while the other samples’ labels stay unchanged. After conducting

local model training, each of the . k clients transfers the local model parameters to the central aggregator. The malicious client indirectly poisons the global model during the federated aggregation process, after which the compromised global model is

distributed to the. k clients for the next round of training. In an FL environment, Tolpegin et al. [96] proposed a targeted label-flipping attack, where an adversary alters labels from a specific source class to an attacker-chosen class, negatively impacting

404

K. M. Sameera et al.

global model accuracy and recall. The investigation indicated that the attack becomes

more effective as malicious clients increase, reducing source class recall and overall

model accuracy. Moreover, the probability of a successful attack in the final iteration

exceeds that of the initial iteration.

The authors in [84] studied the impact of an untargeted poisoning attack on FL production, using label flipping to increase data loss and diminish global model accuracy.

The attack breaks norm-bounded defenses and is effective across various aggrega-

tion rules and FL environments. While increasing label-flipped data improves the

attack, excessive amounts may not consistently bypass the target aggregation rule’s

robustness, prompting a suggested adjustment for more effective circumvention.

Sun et al. [92] suggested dynamic label flipping as an alternative to static labeling throughout training. They proposed the Distance-Aware attack, which aims to boost

poisoning attacks by identifying optimal target classes in the feature space. The cen-

tral concept is that a small attack distance between the actual class and target class

necessitates smaller malicious updates in the adversary’s local model, thereby ele-

vating the chances of the attack persisting through aggregating legitimate updates

and resulting in a more substantial impact. In [34], the authors introduced a novel data poisoning attack that reverses a benign model’s loss function. This inverted loss

function generates malicious gradients at each SGD iteration, acting in almost the

opposite direction to the minima. These gradients are then used to generate poisoned

labels, which are introduced into the dataset to corrupt it, thereby contaminating the

local node’s data involved in federated training.

Data Injection: Data injection attacks involve the modification of specific data

samples within a dataset. In [86], Shi et al. introduced the novel Fed-MIFGSM poisoning attack algorithm to generate adversarial samples, exhibiting a reduction in

accuracy of over 5% across various scenarios. Kasyap et al. [50] introduced a technique for generating adversarial samples using the hyper dimensional computing

model. This approach is founded on the assumption that projecting data into a higher-

dimensional space provides greater flexibility in altering image pixels, accomplished

through various operations in the hyperdimensional space. The proposed attack, for-

mulated with adversarial samples, applies to targeted and untargeted scenarios. The

results demonstrated a significant increase in attack success rate and impact, with a

range of 5 to 10 times higher than that of existing local model poisoning attacks. The

authors in [126] proposed a poisoning technique using GAN to generate malicious samples. Adversaries train a GAN to mimic prototypical samples of the other begin

participants’ training dataset. The attacker then uses the generated samples to create

poisoning updates, which are uploaded to the central aggregator, compromising the

global model through the scaled poisoning updates. In [125] authors, proposed a similar approach to generate the adversarial samples. In [91], the authors proposed three distinct data poisoning attacks, categorized as direct, indirect, and hybrid attacks,

depending on the attacker’s access level to the target nodes.

 Model Poisoning Attack

In model poisoning attacks, adversaries directly manipulate the local model param-

eters before sending them to the central aggregator for aggregation [6]. As a result,

Federated Learning: An Overview of Attacks and Defense Methods

405

the global model was compromised by the malicious client. Model poisoning attacks

are more harmful than data poisoning attacks. Depending on how the adversary cre-

ates the models, they are categorized into model replacement, optimization-based

method, and training rule manipulation.

Model Replacement Attack: In this type of attack, the models are substituted with

crafted ones, achieved through random weights generation or gradient manipulation.

The method described in [4] employs random weights to manipulate the local models, thereby jeopardizing the performance of the global model. These attacks involve

generating a vector of random values to be utilized as model weights, matching the

dimensions of the global model weights. In [54], the authors investigated global model poisoning attacks, including techniques like the reverse and random attack,

which contaminate the global model by introducing a reverse gradient and a random

gradient. Also, the explored partial drop attack involves substituting the gradient

parameter with a zero-based on a specified probability. Additionally, the global model

is poisoned through manipulated gradients by introducing perturbations to the mean

of the gradient, depending on the adversary’s capability. To affect the convergence

of the global model, attackers inject random noise into the local model [12, 40].

Optimization-based Method: In [20], the authors discussed a local model poisoning attack, formulating it as an optimization problem during the training phase.

The maximum deviation in the global model is introduced in the opposite direction

of the changes observed in the pre-attack global model. Instead of random weights,

they employed Gaussian distribution samples in the local model poisoning attack.

Shejwalkar et al. [83] also proposed a frame for the local model poisoning attack.

The adversary creates a benign reference aggregate using known benign updates and

then computes a malicious perturbation, such as a unit vector that opposes the benign

aggregate. Then, they maximize the perturbation in the malicious direction to derive

the malicious model update, aiming to bypass detection by robust aggregation algo-

rithms. Also, it demonstrated the high success of model poisoning attack, resulting

in a 1.5 to 60-fold reduction in FL accuracy.

Training Rule Manipulation: In this method, the training rule is altered to intro-

duce poison into the global model. In [7], the authors effectively performed a stealthy targeted model poisoning attack by adding a penalty element to the target function

that reduces the distance between malicious and benign weight update distributions.

3.1.3

Backdoor Attack

A backdoor attack might involve manipulating the training data or model parameters

to introduce a hidden vulnerability through an entry point, known as a “backdoor,”

which allows an attacker to gain unauthorized access or control over the system.

Backdoor attacks introduce a hidden pattern (backdoor trigger) into a specific region

or feature of the actual training sample and misreport with a different label. Backdoor

attacks can manifest in three distinct phases of the FL process: during local data

collection, training of the local model, and server aggregation [102]. The model performs well with clean data but behaves badly on attacker-selected inputs [31].

[image: Image 115]

406

K. M. Sameera et al.

Fig. 5 Backdoor attack scenario in federated learning

Figure 5 illustrates a backdoor attack scenario in FL with two clients: benign and malicious. The malicious client in the FL system injected a backdoor trigger (small

yellow diamond) in the lower right side of multiple images (in this case, 7 and 9)

and mislabeled it with class 1. The malicious clients of the FL system train the

local model with the original image and backdoor-triggered images. After the local

model training, each client in the FL system transfers their model parameters to

the central aggregator for the aggregation process. The final updated global model

classifies backdoor-triggered images with the wrong label when backdoor triggers

are activated.

In backdoor attacks, triggers manifest in two variations: single and multi-triggers.

In the single-trigger approach, a uniform trigger is applied across all malicious clients, while in the multi-trigger scenario, distinct triggers are employed for each mali-

Federated Learning: An Overview of Attacks and Defense Methods

407

Table 1 Overview of prevalent studies related to backdoor attacks

Reference

Contribution

. S

. M

. N 1

. N 2

. St

. Dy

. G 1

. G 2

[7]

Gradient-based

.

.

.

.

optimization and boosting

in MP

[115]

Gradient boosting and

.

.

.

.

.

distributed global trigger

pattern

[105]

DP using

.

.

.

.

.

Out-of-distribution,

introduced edge-case

backdoor

[43]

Symbiosis network with

.

.

.

.

.

gradient boosting

[4]

Model replacement

.

.

.

.

.

.

[30]

Random and Model

.

.

.

dependent triggers using

DP

[49]

Federated GAN,

.

.

.

.

.

backdoor with different

pattern with different

sizes

. S: Single compromised participants, . M : Multiple compromised participants,

. N 1: Number of Triggers (Single), . N 2: Number of Triggers (Multiple), . St : Static, . Dy: Dynamic,

. G 1: Goal (Targeted),. G 2: Goal (Untargeted), DP: Data Poisoning, MP: Model Poisoning cious client [105]. Furthermore, static and dynamic approaches exist; static implementations maintain the same trigger throughout the FL process, whereas dynamic

approaches introduce different triggers for each training round [49]. This variety in trigger strategies underscores the nuanced and evolving nature of backdoor attacks

in the context of FL. Table 1 summarizes the distinctive aspects observed in various studies related to backdoor attacks. Chulin et al. [114] introduced a Distributed Backdoor Attack (DBA), in the FL model in which a malicious client uses some

part of the global trigger to poison their local model. This approach delivers a more

powerful and enduring attack compared to the centralized backdoor attack by con-

sidering several trigger factors such as size, gap, location, scale, poison ratio, poison

interval, and data distribution.

3.1.4

Dropout Client Attack

FL training on decentralized devices operates under the assumption that participants

who connect to the server must fully engage in the system. However, challenges

such as network issues, low battery, loss of communication signal, and unexpected

obstacles can lead to clients being unable to participate in the FL system [82]. This

408

K. M. Sameera et al.

situation, known as a dropout client, is beyond the server’s control. Dropout in FL

can result in clients participating only for a few rounds, leading to partial participa-

tion instead of full participation in the system. This client may contain a high-quality

model [18]. In [104], the authors revealed that partial participation hindered convergence, resulting in clients dropping out. Horvath et al. [39] show that the dropout client during the federated training lowers the result and affects the system’s fairness.

3.1.5

Free-Rider Attack

A free-rider attack in FL occurs when a participant in the decentralized learning sys-

tem attempts to gain an advantage from the global model updates without actively

contributing meaningful or accurate information. Free riders enjoy communal ser-

vices, public goods, or resources without making contributions or payments. This

behavior entails generating counterfeit local updates to acquire the globally shared

model without active participation. The motivation behind this practice includes

clients fabricating updates to conserve local CPU cycles and computing resources,

possibly due to a lack of essential data or concerns regarding data privacy. Lin et

al. [55] introduced the concept of a free rider attack through random weights, wherein a deceptive global model is generated using random weights. Additionally, they proposed the Delta Weights Attack, which was achieved by subtracting two previously

received global models. In [22], Fraboni et al. presented the free rider through two mechanisms: plain free-riding, where participants return the same global model, and

disguised free-riding, achieved by introducing stochastic perturbations to the model’s

parameters.

4

Privacy Attacks in Federated Learning

Privacy attacks in FL aim to reveal information about the participants involved in a

task. Privacy attacks within FL can jeopardize the confidentiality of training data by

exploiting vulnerabilities in the learning process. Attackers may target the inference

stage to deduce sensitive information about participants and reconstruct private data

by scrutinizing shared model parameters. An inference attack (refer Fig. 6) seeks to ascertain whether a specific data point was included in the training dataset [88], as expressed by

. d target , M, I → {0 , 1}

(1)

where . d target = (x, y) is represented by adversary target records, . M represents the target pre-trained model, and. I denotes the prior information possessed by the adversary. In Eq. (1), 0 means. d target = (x, y) does not belong to the training dataset of. M

and 1 otherwise.

The privacy attacks are categorized into two types: (a) Passive attacks which

involve inferring characteristics from the learning process without modifying the

[image: Image 116]

Federated Learning: An Overview of Attacks and Defense Methods

409

Fig. 6 Inference attack in federated learning

model. These attacks generate labeled samples to distinguish updates based on data

with or without specific properties, often using a binary batch classifier. (b) Active attacks involve the adversary manipulating the target model, leading the global model to learn different representations for data with and without specific properties. This

significantly disrupts collaborative learning by introducing extra local computations

and uploading modified values.

 4.1

 Membership Inference Attack

Membership Inference Attack (MIA) aims to ascertain whether a specific data point

. (d target) is part of the training dataset of other FL participants. The attacker operates in a white-box setting, granting access to central aggregation or local training,

thereby enabling the gathering of information about the training process to infer

membership [41]. For example, a federated model generated using the records of patients with a particular disease and inferring that an individual’s record is among

them directly influences his or her privacy [66]. The attacker leverages multiple versions of the model . (M) obtained through multi-round training, enhancing their

membership inference capabilities. The expanded definition of the attack is give by

. d target , (M 1 , M 2 , M 3 , . . . , MR), Iwhite → {0 , 1}

which involves the target data point, a series of model versions . (M 1 , M 2 , M 3 , . . . , Mr), and white-box knowledge. (Iwhite), resulting in a binary outcome.0 , 1.

410

K. M. Sameera et al.

Nasr et al. [73] proposed a white-box attack in active and passive versions, leveraging client-side or server-side knowledge. They target privacy vulnerabilities in the

SGD algorithm. Additionally, they introduced two techniques, Gradient Ascent and

Client Isolation, to enhance the attack’s effectiveness. Gradient Ascent negates the

influence of gradient descent on testing instances, increasing the disparity between

data points used for training and those excluded from training the victim model.

Client Isolation aims to overfit the victim model by withholding global learning

updates from the victim participant, thereby retaining more information about the

training dataset. Chen et al. [15] address critical limitations in [73], including the requirement for the attack and target models to share the same data distribution with

some intersections and not explore privacy attacks involving malicious participants

launching MIA. They introduced a targeted MIA involving adversaries with white-

box access to the models as client-side knowledge, emphasizing that they do not

share labels. Also, high-quality fake samples can be generated using GAN for the

attack. In [127], Zhang et al. also used a similar strategy for the passive MIA.

In [94] presented innovative Subject-level Inference Attacks (SIA) that require partial knowledge about subjects in the training data and rely on black-box access to

model predictions. They proposed two distinct types of SIA: one that requires access

to the trained model and another that targets intermediate training model states, which

is pertinent when the adversary is involved in the system. Further, Melis et al. [66]

demonstrated MIA by inferring unintended properties that only pertain to a subset of

data and not all class members using auxiliary datasets. In [42], Hu et al. proposed a source inference attack in FL using an honest but curious server’s prediction loss

of the participating clients’ local model. Gu et al. [32] proposed MIA based on prediction confidence series surpasses that of [73] and addresses local, passive, and active global adversaries. In [90] introduced MIA at both the model and user levels using GAN to handle the lack of labeling of the newly generated data. These attacks

aim to determine whether a record belongs to a member and identify the specific

member to whom the record corresponds.

 4.2

 Feature Inference Attack

An attacker infers features/attributes of the sensitive data by recognizing the aggre-

gated model parameters. Luo et al. [58] investigated a feature inference attack in vertical FL in which the active party tries to infer feature values of the passive party and demonstrated the attack on linear regression, decision tree models, neural networks, and random forest. Further, in [66], the authors demonstrated MIA by inferring unintended properties that only pertain to a subset of data and not all class members

using auxiliary datasets. They showcased the ability of an adversarial participant to

identify specific data points, like exact locations, in others’ training data.

Additionally, they highlighted how this adversary can recognize unique properties

in a subset of the training data, distinct from the properties targeted by the joint model.

The paper [108] introduces a novel poisoning-associated property inference attack in

Federated Learning: An Overview of Attacks and Defense Methods

411

FL, which overcomes limitations such as achieving satisfactory performance when

the global model has converged or in dynamic FL scenarios. It introduces a property-

specific poisoning mechanism that highlights the discriminatory features of global

model updates associated with the target property.

 4.3

 Reconstruction Attack

Reconstruction attacks focus on creating a probabilistic representation of training

set samples through gradient or parameter-based approaches.

4.3.1

Gradient Based

In FL, participants share gradients with the server. However, research indicates that

information can potentially be extracted from publicly shared gradients, revealing

details about the training data of a specific client, even though the attack has par-

tial client-side knowledge [137]. The paper [133] addresses the challenges associated with initialization and stability problems observed in [137] by introducing an enhanced gradient approach. This attack approach is successful when the victim

client has a batch size set to one.

The authors in [77] also address these issues using a Generative Regression Neural Network (GRNN). They frame the attack as a regression problem, employing a

GAN for generating image data and a fully connected layer for producing label data.

Through joint optimization, GRNN successfully aligns the latent space of the GAN

with the gradient space of the shared global model, ensuring the stable generation

of high-quality training data. The framework [111] demonstrates the adversaries’

capabilities across various attack settings and hyperparameter configurations, mainly

focusing on passive reconstruction attacks in image datasets. Geiping et al. [29] uses optimization techniques and a magnitude-invariant loss to exploit reconstruction

attacks for input data. In [121], the authors applied local batch norm to regularize high-fidelity image recovery with gradient inversion, even for complex datasets and

large batch sizes in deep neural networks.

4.3.2

Parameter Based

In this approach, the attack surface primarily relies on the clients’ parameters instead

of the gradient, as they exchange their local model parameters with the curator

during FL rounds. In [109], user-level privacy leaks are investigated by an adversary possessing server-side knowledge. The approach combines a GAN with a multi-task

discriminator that can distinguish between client identity, authenticity, and category

in the input samples. In [122], the adversary leverages partial knowledge from both the client and the server sides in an optimization-based approach for reconstructing

text in Natural Language Processing tasks, focusing on record-level privacy leakage.

412

K. M. Sameera et al.

 4.4

 Property Inference Attack

This attack aim to deduce uncorrelated properties from the client or the participant

population in FL tasks. These attacks focus on extracting information beyond the pri-

mary task of FL models, seeking to infer specific attributes not expected to be shared.

Examples include determining features like eye color in a face detection model or

discerning attributes unrelated to the primary task, such as detecting individuals

wearing glasses in a model designed for race or gender recognition.

There are two types of property inference attacks centered on launch time: static

and dynamic. Static attacks occur after training with a predetermined target set, while dynamic attacks occur during training with a changing set. Property inference attacks

also be categorized according to the attacker’s objective into population distribution

and individual distribution.

4.4.1

Population Distribution

Property on population distribution infers feature distribution in a federated client

population. In [26], the authors addressed the issue of static attacks where adversaries target the population distribution. They introduced a method for deducing global

properties of training data in white-box Fully Connected Neural Networks (FCNNs),

organizing the network into a canonical form, representing each layer as a set.

In [130], Zhang et al. examined security in horizontal FL, considering adversaries as servers or malicious clients impacting population distribution. They proposed a

passive attack to infer sensitive attribute distribution in the training population, lim-

iting attackers to external information and bypassing the need for direct access to

participants’ private data.

4.4.2

Individual Distribution

The goal of the individual distribution is to detect a property within the target client unrelated to the primary task in FL. In [85], the authors introduced a novel active attack using a metaclassifier to exploit unintended features in a subset of participants’

data, incorporating adjustable parameters for increased effectiveness. Melis et al. [66]

disclosed unintended features in FL using the non-zero gradient method. In [118], the authors investigated subject-level privacy inference during training, studying passive

and active property attacks. The active approach uses CycleGAN to reconstruct

gradients with the target attributes. Hu et al. [42] proposed a source inference attack in FL that surpasses the MIA by identifying the source of training members. Wang

et al. [108] proposed a dynamic attack that utilizes periodic model updates to infer the presence and timing of a sensitive property.

Federated Learning: An Overview of Attacks and Defense Methods

413

 4.5

 Label Inference Attack

Label inference attack aims to infer the labels of training samples by extracting

ground-truth labels from the gradients of either a single or a batch of target records.

In [141], the authors accurately deduce the labels in vertical FL when employing small batch sizes, utilizing both local batch-averaged gradient information and the gradient

sign. Also, Fu et al. [23] infer the labels in vertical FL using gradient information and the sign.

5

Defense Strategy Against Federated Learning Attacks

This section delves into the defense strategies aimed at mitigating security and privacy

attacks within the framework of FL. Figure 7 illustrates various defense methods.

 5.1

 Defense Approaches for Security Attack

In this section, we explore the various defense methodologies proposed to protect the

robustness of FL against security threats. These defense strategies can be categorized

into five types.

Fig. 7 Taxonomy of various defense approaches against FL attacks

414

K. M. Sameera et al.

5.1.1

Robust Aggregation Method

Robust aggregation methods are incorporated during the aggregation phase on the

server side to safeguard the model against poisoning attacks. Studies indicate that

FedAvg [64] is susceptible to poisoning attacks, as it aggregates the received updates from participants using the arithmetic mean. Instead of FedAvg, researchers have

suggested robust aggregation rules to discern and exclude malicious models during

the aggregation process. Median substitutes the arithmetic mean with the median of

the model updates [120]. Trimmed-mean filters a fixed percentage of extreme values below and above the data distribution [113]. The geometric mean determines the central tendency of the data distribution by utilizing the product of values. Norm

thresholding limits participants’ contribution by clipping the model updates’ norm

to a fixed value [93]. The Krum aggregation method sorts clients according to the geometric distances of their model updates and selects the one that is closest to the

majority to serve as the aggregated model. Multikrum follows a similar approach to

Krum, aggregating the first . k models for the aggregation [8].

In the research, [33] proposed Bulyan, combining MultiKrum and trimmed-mean aggregation to create operators preventing poisoning attacks. The major limitation

of this method is that it focused on IID distribution. Fung et al. proposed FoolsGold,

which analyzes the gradient updates to eliminate the malicious updates based on

the similarity of the models [25]. In [75], the authors introduced RFA, which aggregates model updates via weighted geometric median using a smoothed Weiszfeld-

type algorithm, ensuring individual distribution remains undisclosed. The researchers

employed several robust methods, such as ZeKoC [17], FLTrust [11], ShieldFL [63], Adaptive Model Averaging [71], Residual-based Reweighting [24], SEAR [134], FedGuard [14] and [20].

5.1.2

Anomaly Detection

In this defense strategy, the server discovers adverse model updates, excludes these

adverse model updates, and then aggregates the benign models. This procedure

attempts to improve the system’s accuracy and diminish the negative impacts of

malevolent client updates. In [79], the authors proposed a novel agnostic defense named DDaBA, which relies on a dynamic aggregation operator utilizing the induced

ordered weighted averaging operator in a non-IID setting. Zhang et al. [132] introduced SecFedNIDS, countering poisoned model detection with model-level and

data-level defenses. The first one employs a gradient-based approach for selecting

important model parameters and an online unsupervised method for poisoned model

detection, while the second one uses class path similarity and layer-wise relevance

propagation to distinguish clean and poisoned traffic data among clients. In [57], malicious participants are detected during the pre-aggregation phase, while in [101], anomalies in updates are identified using a density-based approach.

In [2], Andreina et al. proposed BaFFLe, which uses clients to train and validate the global model. In each round, validating clients check the global model for poisoning

Federated Learning: An Overview of Attacks and Defense Methods

415

updates. The decision to accept or reject the global model is collectively made by

validating clients. In [53], malicious model detection employs the Local Malicious Factor (LoMar), calculated by measuring the relative distribution of updates from

each remote client among their neighbors using kernel density estimation along with

an optimal threshold employed to distinguish malicious and benign updates. In [96], Principal Component Analysis (PCA) was proposed against targeted attacks in FL.

Jebreel et al. [44] proposed to counter targeted label-flipping and backdoor attacks.

The method calculates the angle similarity between workers’ last-layer gradients,

compresses the resulting vectors using PCA, and adjusts the weights based on their

distance from the centroid of the compressed similarity vectors. Jebreel et al. [45]

also discussed a similar approach for targeted label-flipping attacks. In [135], the authors proposed a GAN-based approach to detect malicious updates.

Some studies have employed clustering approaches for anomaly detection to iden-

tify malicious entities. The authors in [131] proposed FLDetector, which identifies and removes potential malicious clients by evaluating their suspicious scores derived

from the Euclidean distances between predicted and received model updates. Using

Gap statistics, clients are clustered based on these scores, and if more than one clus-

ter emerges, . k-means is employed to create two clusters. Malicious clients are then identified within the cluster with higher average suspicious scores. The detection

process concludes when at least one client is labeled as malicious, triggering the

removal of such clients and aggregating the remaining models. In another work, [47]

detects the data quality of each client and involves identifying malicious clients by

reconstructing a distribution across a latent feature space.

The authors in [103] proposed a free-rider attack detection scheme for FL, utilizing a deep autoencoding Gaussian mixture model based on contribution and reputation.

Contribution values are calculated by considering computing resources, communi-

cation costs, and data quality for each node (edge device) in the model. Employing

PageRank algorithms, the authors create an optimized reputation-based model to

select benign nodes fairly and precisely in federated training under information asym-

metry, maintaining robust defense even when up to 80% of clients are free-riders.

In [107], the authors introduced a secure and fair FL scheme utilizing parameter audit to counteract free-rider attacks.

5.1.3

Modification of Learning Parameters

The server implements a dynamic learning rate adjustment to strengthen the defense

approach, influencing the weights of the aggregated local participants model and the

previous global model. In [74], the authors proposed the Robust Learning Rate (RLR) against backdoor attacks in FL. In this defense strategy, During the FL round, the

server modifies the learning rate for each dimension based on the gradient sign infor-

mation from participating nodes. The approach involves evaluating, for each dimen-

sion, whether the participating clients agree on the direction of the model update by

comparing it to a predefined threshold. If the agreement exceeds the threshold, the

learning rate remains unchanged; otherwise, the sign of the learning rate is modified.

416

K. M. Sameera et al.

5.1.4

Adversarial Training Approaches

Adversarial training is an active defense technique implemented on the client side.

Instead of relying exclusively on original samples, the local client trains the model

using a combination of adversarial samples and actual samples. This approach aims

to strengthen the classification model, making it more resilient to attacks. Hallaji et

al. [35] proposed a defense mechanism incorporating adversarial training and label noise analysis defense against the backdoor and label flipping attack. The method

involves a Generative Adversarial Label Poisoner (GALP), injecting artificial label

noise into client networks. When combined with neural network models that can

handle random noise, this approach allows the neural networks to accurately capture

the distribution of potential label poisoning attacks. Shah et al. [81] and Zizzo et al. [140] also explored adversarial training against the poisoning attack in FL.

5.1.5

Model Pruning

The model pruning defense strategy involves removing unnecessary parameters

or reducing the model’s size by focusing on relevant features. This technique is

employed in FL methods to reduce the effects of model poisoning attacks, either

on the server or client side. On the server side, pruning is performed during the

aggregation phase, while on the client side, pruned models are shared after the

aggregation process. A significant advantage of this approach is the reduction in

communication costs. In [67], the authors proposed FLAP, a data-agnostic server-side post-aggregation pruning approach, to bolster the Byzantine robustness of FL

by eliminating malicious updates. Jiang et al. [48] introduced PruneFL, a two-stage adaptive and distributed pruning method initially implemented on the client side and

subsequently extended to encompass both the client and the server sides. In [136], the authors introduced FedPAGE, which accelerates the entire training process through

an adaptive pruning approach.

 5.2

 Defense Approaches for Privacy Attack

As outlined in Sect. 4, FL is inherently susceptible to privacy breaches. The sharing of model updates and gradients between devices can potentially compromise sensitive information. The researchers have explored different confidentiality and privacy

preservation approaches to mitigate this challenge.

5.2.1

Encryption-Based Method

Encryption techniques like Homomorphic Encryption (HE) and Secure Multi-Party

Computation (SMPC) are essential for ensuring the confidentiality of model param-

Federated Learning: An Overview of Attacks and Defense Methods

417

eters and gradients during communication. HE enables computations to be carried

out on encrypted data without the need for decryption. The core concept of HE is

expressed as

. E (f (x 1 ∗ x 2 ∗ · · · ∗ xn)) = E (f (x 1)) ∗ E (f (x 2)) ∗ E (f (x 3)) ∗ · · · ∗ E (f (xn)) (2)

where . f is a computation function applied on local model parameters or gradients

. (x 1 , x 2 , . . . , xn), . E denotes the encryption function on . f , and . ∗ represents the holo-morphic operation. Equation (2) illustrates that encrypting the computation is equivalent to performing the computation on encrypted data. Aono et al. [3] employed an HE method to safeguard participants’ shared parameters from an honest but curious

server, ensuring the privacy of sensitive information. This approach encompasses

the encryption of participants’ trained parameters before transmission, successfully

thwarting the extraction of information by the curious server while upholding accu-

racy levels similar to those observed in centralized deep learning algorithms. In the

context of industrial intelligence, Hao et al. [36] introduced an FL framework that prioritizes privacy preservation through the incorporation of homomorphic ciphertext

and the implementation of a distributed Gaussian mechanism at a cloud server.

Chen et al. [16] introduced FedHealth, a novel federated transfer learning framework tailored for wearable healthcare, effectively tackling the issues of data islanding

and personalization. Employing FL and HE, FedHealth combines data from varied

organizations, ensuring the confidentiality of user information while building robust

ML models. Zhang et al. [124] introduced BatchCrypt, which is designed for cross-silo FL, effectively minimizing encryption and communication overhead attributed

to HE. Rather than encrypting individual gradients with full precision, BatchCrypt

encodes batches of quantized gradients into a singular encrypted integer, resulting

in a notable training speedup (.23 x − 93 x) and a significant reduction in communication overhead. In [128], Zhang et al. employed FL within an IoT-based healthcare system to fortify the security of local models against diverse attacks, utilizing cryptographic primitives such as masks and HE. The determination of the contribution rate

of local models to the global model in each training epoch is based on the quality of

the dataset. Furthermore, they introduced a dropout-tolerable scheme, ensuring the

uninterrupted progress of the FL process unless the number of online clients drops

below a predefined threshold.

In the case of HE-based systems, clients encrypt their local updates, and aggre-

gation occurs on the client’s ciphertext, providing a high level of security. However,

this approach is accompanied by drawbacks, including substantial communication

and computation overhead. Moreover, the risk of collusion between the server and

clients poses a potential threat, allowing the decryption of local model updates from

ciphertexts. On the other hand, SMPC adopts a collaborative approach where all users

work together to protect privacy. This strategy boasts advantages such as maintain-

ing accuracy and incurring low computation overhead. SMPC allows collaborative

computation on encrypted inputs without revealing the individual data. The secure

computation of a function. f on inputs. x 1 , x 2 , x 3 , . . . , xn across. n parties is given by

418

K. M. Sameera et al.

. f (x 1 , x 2 , x 3 , . . . , xn) = f (E (x 1), E (x 2), E (x 3), . . . , E (xn)) where . E represents the encryption function, . f is a function of joint computation performed on the encrypted inputs . E(x 1), . E(x 2), . E(x 3), …, . E(xn). Xu et al. [116]

introduced a novel FL framework, VerifyNet, which prioritizes privacy and verifiabil-

ity. The framework utilizes a double-masking protocol to maintain the confidentiality

of users’ local gradients, while also employing secure sharing and additive perturba-

tion techniques in FL to protect local gradients throughout the training process. Shi

et al. [87] presented a privacy-preserving scheme for FL that combines the homomorphic aspects of both secret sharing and encryption. Their approach ensures the

confidentiality of local parameters, resists collusion threats within a specified range,

supports client dropout, allows aggregation without the need for key sharing, and pre-

serves a simple interaction process. Furthermore, the cryptographic functionality is

validated using the ProVerif protocol tool, and the theoretical complexity is analyzed

and compared with similar schemes. Gao et al. [27] introduced a transfer learning strategy to handle covariate shifts and establish connections across distinct feature

spaces of data owners while ensuring robust privacy preservation. Their comprehen-

sive privacy-preserving multi-party learning approach incorporates HE and secret

sharing techniques to establish a secure and efficient framework for heterogeneous

federated transfer learning.

5.2.2

Perturbation-Based Method

In the perturbation-based approach DISTPAB [13], an algorithm designed for distributed perturbation, privacy challenges in horizontally partitioned data are tack-

led by leveraging resource asymmetry in distributed environments. Noising before

model aggregation FL (NbAFL) [110] prevents information leakage by introducing artificial noise to parameters at the clients’ side before aggregation. The theoretical analysis confirms NbAFL’s compliance with differential privacy across different

protection levels, exposing a tradeoff between convergence performance and privacy

protection. Furthermore, the authors introduce a random scheduling strategy with a

variable number of clients in each aggregation round. Truex et al. [97] introduced a novel method that integrates both SMPC and differential privacy, effectively mitigating trade-offs. This approach offers a scalable solution that safeguards against

inference threats while maintaining a high level of model accuracy.

Liu et al. [56] proposed a novel adaptive noise perturbation or masking scheme designed to protect clients’ privacy in FL with minimal communication and computational expenses, while preserving the accuracy of the global model. This approach

dynamically modifies the noise magnitude according to local model updates, incor-

porates direction-based filtering to accelerate FL model convergence, and theoreti-

cally ensures accuracy and convergence rates comparable to non-private FL using

SGD. In [138], the authors introduced a perturbed model compression method that decreases the model size, improves privacy, and allows for concurrent decryption

and decompression operations using a reconstruction algorithm on encrypted and

Federated Learning: An Overview of Attacks and Defense Methods

419

compressed model parameters. Their model attained a compression ratio of 0.0953,

preserving an accuracy of 97%, in contrast to the non-compressed accuracy of 98%

on the MNIST dataset.

5.2.3

Knowledge Distillation Method

Knowledge Distillation (KD) involves a fully trained network transferring its knowl-

edge gradually to a smaller model, enabling the reduced model to accurately predict

classification tasks. This not only lowers the computational cost but also enhances

security by sharing knowledge rather than model parameters. The study by Zhu et

al. [139] introduced Federated Distillation via Generative Learning (FEDGEN), a data-free knowledge distillation approach for heterogeneous FL. FEDGEN employs

a lightweight generator learned by the server to ensemble user information in a data-

free manner, broadcasting it to the users. This generator guides local training, serving

as an inductive bias and introducing minimal overhead to the existing FL framework

by operating in a smaller latent space.

In [129], the authors introduced FedFTG, a data-free KD technique for refining the global model on the server. This method addresses the challenge of directly

aggregating models by employing a generator to explore the input space of local

models, facilitating knowledge transfer to the global model. It incorporates a hard

sample mining technique to enhance Knowledge Distillation (KD) during training.

Additionally, knowledge utilization is optimized through tailored label sampling and

class-level ensemble strategies. The authors in [112] introduced FedKD, emphasizing its relevance in cross-silo scenarios, featuring adaptive mutual knowledge distillation

and dynamic gradient compression techniques. In FedKD, a small model (mentee)

and a large model (mentor) collaborate to learn and distill knowledge. The recipro-

cal learning between the local mentor and its mentees is facilitated by an adaptive

mutual distillation method, where distillation intensity self-adjusts based on predic-

tion correctness. This proposed approach efficiently reduces communication costs

while enhancing model accuracy. Qiao explored KD in a non-IID setting, exploring

the optimal location and methodology for distillation [129]. The study highlighted superior performance by conducting distillation before the classification head at a

specific feature layer. Center Kernel Alignment emerged as the most effective loss

metric among those tested.

Table 2 summarizes work related to defense mechanisms against FL attacks discussed above.

 5.3

 Integration of Blockchain and FL

Nakamoto created the Bitcoin cryptocurrency in 2008 [72], which is a decentralized and transparent peer-to-peer system. Blockchain is the technology that underpins

Bitcoin, and it is employed in a variety of applications due to its unique properties.

420

K. M. Sameera et al.

Table 2 Different defense approaches against security and privacy attacks in FL systems Attack type

Defense approach

References

Security attack

Robust aggregation

[4, 8, 11, 14, 17, 20, 24, 25,

33, 63, 64, 71, 75, 93, 120,

134]

Anomaly detection

[2, 44, 45, 47, 53, 57, 79, 96,

101, 107, 131, 132, 135]

Modification of learning

[74]

parameters

Model pruning

[48, 67, 136]

Adversarial training approach

[35, 81, 140]

Privacy attack

Encryption based method

[3, 16, 27, 36, 87, 116, 124,

128]

Perturbation based method

[56, 97, 110, 138]

Knowledge distillation method

[112, 129, 129, 139]

The most prominent feature of a blockchain network is that it employs a publicly

distributed ledger that is shared across all nodes in the network. In this network, all

nodes communicate and validate new blocks using a protocol powered by miners.

This protocol also enables information transparency by allowing miners to audit the

ledger at any time. Furthermore, the data within every block is immutable, ensuring

that it cannot be modified after it has been produced. Each miner keeps a local copy

of the whole Blockchain, and the block contains transaction details and the hash

of the preceding block. The block is also validated using consensus techniques. The

fundamental characteristics of Blockchain technology are decentralized architecture,

immutability, traceability, security, and transparency [19].

By combining Blockchain and FL, we can effectively address the challenges

discussed in Sect. 2.1.3. This approach offers secure model storage and data verification, enhanced data security, accountability and confidentiality, and transparent,

immutable decision-making processes. Recent studies exploring the integration of

Blockchain and FL primarily focus on applications in the Internet of Things (IoT),

smart cities, healthcare, etc. For instance, Ferrag et al. [21] demonstrated the resilience of a smart grid energy architecture against cyber threats by employing

the backpropagation through time method and a Practical Byzantine Fault Tolerance

(PBFT) consensus mechanism. Their model achieved impressive accuracy rates of

98.23%, 98.20%, and 96.25% on the CICIDS-2017, power system, and BoT-IoT

datasets, respectively.

Rehman et al. [98] introduced an approach to FL that incorporates Blockchain and fine-grained reputation awareness, ensuring trustworthiness in collaborative training.

They leverage a public proof-of-work (PoW) mechanism to uphold privacy. Ma et

al. [61] introduced a decentralized accountability approach that verifies model quality on the Blockchain, encouraging participation and identifying low-quality FL ser-

vices. The system employed a PoW mechanism to preserve privacy. Miao et al. [68]

Federated Learning: An Overview of Attacks and Defense Methods

421

proposed a privacy-preserving training approach utilizing CKKS encryption and

Blockchain, effectively eliminating malicious gradients through cosine similarity.

Their system incorporates the public PBFT mechanism and demonstrates improve-

ments in credibility, robustness, and efficiency.

In [5], the authors proposed an FL and Blockchain-enabled fog-IoT platform designed for wearables in predictive healthcare, with the implementation based on

Hyperledger Fabric. In [123], researchers proposed an adaptive method employing two-trapdoor HE to encrypt the client’s parameters or gradients. This approach

is designed to resist inference attacks, and the researchers also introduced mecha-

nisms for calculating confidence and contribution to counter poisoning and free-rider

attacks.

6

Unified Federated Learning Framework

This section presents a comprehensive framework that integrates FL with Blockchain

to enhance trust through decentralized tamper-resistant collaboration, as depicted

in Fig. 8. The proposed framework exhibits resilience against adversarial attacks, including data poisoning and inference attacks. The framework has proven applicability across diverse domains, including Healthcare, Cyber Threat Intelligence,

Cyber-Physical Systems, the Internet of Things, and any other areas dealing with

sensitive data. Blockchain features are seamlessly integrated to ensure the trustwor-

thiness of this unified federated framework. The proposed architecture comprises

three key components: (a) the trusted authority, (b) the clients, and (c) the Blockchain.

The trusted federated server, assumed to be curious, initiates the global model and

controls the federation process. Client devices leverage their local data and comput-

ing resources to execute the global model for training. The workflow of the unified

framework is outlined below.

1. The Parameter Initializer on the trusted authority creates an initial global model with training hyperparameters such as batch size, local epochs, number of federated iterations, number of nodes, and learning rate. Moreover, the Parameter

 Initializer stores the actual model file in a distributed file system, like Inter-Planetary File System (IPFS), which generates a unique hash for the model. A

transaction is then created on the blockchain using trusted authority credentials,

which include metadata about the model, such as model version, training details,

and the CID from IPFS.

2. The client participated in the training, which collects sensitive raw data from the

edge devices in the data collection phase. Then the Data Preprocessor module

preprocess the collected sensitive raw data to create preprocessed data for local

model training. The Data Pre-processor performs data cleaning, normalization,

noise reduction, image scaling, etc.

3. The client’s Local Model Trainer receives the shared global model from the

Blockchain, where it is securely stored with version tracking and validation

[image: Image 117]

422

K. M. Sameera et al.

Fig. 8 Attack resilient unified framework using the integration of FL and blockchain for enhanced security

enabled by smart contracts. Each client accesses the Blockchain, verifies the latest

global model’s integrity using metadata, such as its hash, and downloads it for

local use. Using Blockchain transaction hashes, the Local Model Trainer fetches

the latest verified global model version for secure, consistent local training on

preprocessed data. Also, it gets the training samples from Dataset Sampler by

dividing the preprocessed data into a predetermined training set and a test set.

Then Local Model Trainer performs the local model training, and the trained

local model parameter is handed over to the Local Differential Privacy Module.

4. Then, the Local Differential Privacy Module perturbs the gradients based on each local instance, effectively reducing the likelihood of success for membership

inference attacks. Subsequently, the local model parameter is handed over to the

 Quality Estimator for the model quality valuation.

5. The Quality Estimator evaluates the performance of their local models using two metrics: Cross Entropy (CE) loss and the Euclidean distance [95]. Each received local model in the current round compares the CE loss of the local model with the

current global model. It is presumed that the CE loss of the clean client decreases

as the training progresses, but the CE loss of the noisy client is maintained at

Federated Learning: An Overview of Attacks and Defense Methods

423

a higher level due to contaminated data on the noisy client. Also, the majority

of collaborative local models tend to converge in the same direction. Moreover,

as the training progresses, the Euclidean distance between a clean client’s local

model and the updated global model narrows, but for the noisy client, it deviates

highly. Based on this loss, assign a reputation for each client. Those having a

higher loss decrease their reputation. These estimated values (. Q 1) and the local model are stored in IPFS and then recorded in the blockchain.

6. In each federation epoch, the Performance Evaluator of the Trusted Authority

extracts the client’s information from the Blockchain via smart contract and eval-

uates the performance of the client’s local model. Also, the Trusted Authority

creates an auxiliary dataset generated by a GAN from the clean dataset to evalu-

ate the reputation of the client. Then, Performance Evaluator retrieves the latest

local models from the Blockchain and validates the model using an auxiliary

dataset. This validation score (. Q 2) is used for another metric for each client’s trust score calculation for detecting the malicious nodes.

7. The Federated Aggregator (Secure FedAvg) module selects clients with high trust scores using . Q 1 and . Q 2. It then aggregates the local updates to revise the global model. Subsequently, the new global model with aggregated parameters is saved

to IPFS and recorded on the blockchain.

8. Clients continuously monitor the Blockchain for the updated global model. If

the client receives a new version of the global model, it checks if the required

federation rounds have been reached and decides when to terminate the training

process. When the federated rounds are over, then the prediction is performed;

otherwise, the procedure is repeated from Step 3 until the federation epoch is

reached.

7

Open Research Challenges

This section discusses the current issues in FL, and some possible alternatives are

also explored, which might lead to new research directions.

1. Incentive Mechanism: Integrating an incentive mechanism into the FL model to

offer participants specific incentives can effectively manage and discipline their

actions while also encouraging them to deliver accurate training data. There is

currently no comprehensive research on how to distribute incentives in a decen-

tralized manner in order to reduce malicious intentions.

2. Sparsification and quantization: Sparsification in FL systems can be used to

achieve optimal communication resource usage. When the number of selected

nodes increases, it may not be possible to provide a cost-effective resource man-

agement solution. We compress the data by using quantization, although this has

an impact on performance. There is also a trade-off between the efficient usage

of communication resources and the convergence time.

424

K. M. Sameera et al.

3. Clustering the heterogeneous data: The data collected by devices from Healthcare, Cyber Threat Intelligence, Cyber-Physical Systems, etc., are diverse in nature.

The existing aggregation techniques do not guarantee an improvement in overall

system performance. To address these challenges, cluster the clients with similar

features like data distribution, resource utilization, and computational capability.

Subsequently, randomly select a cluster head, who is responsible for constructing

sub-grouped local models, transferring model parameters and the sub-grouped

local model to the aggregation server, and sending the updated global model to

the clients for their respective cluster for local training.

4. Protection against attacks in Blockchain network: It has been discovered that

different Blockchain attacks such as DDoS, DNS attacks, smart contract attacks

due to vulnerabilities, and privacy attacks exist [80]. So an efficient preventative strategy is needed to make Blockchain more reliable and effective.

5. Handling heterogeneous environment: In the real world, data is often character-

ized by a heterogeneous environment, leading to a high likelihood of non-IID

distribution. In scenarios with unbalanced and non-IID data, the rapid increase

in the number of clients creates a bottleneck in direct communication between

clients and the server for parameter updates, leading to heightened congestion

in the network. This causes a higher likelihood of data loss during FL training

epochs and delays the convergence rates in the training process. As the hetero-

geneity of non-IID data increases, the negative impact on system performance

becomes more severe. Specifically, a dataset exhibiting more non-IID charac-

teristics notably adversely affects the system’s overall performance. Addressing

non-IID data in FL is a key requirement for the research community [62].

8

Conclusion

This paper presents a systematic review emphasizing FL aggregation algorithms,

their benefits and challenges, and security and privacy issues associated with FL.

Furthermore, we comprehensively analyze various defense mechanisms designed to

mitigate these risks. Based on insights from existing research, we propose a unified

FL framework to enhance security and privacy across diverse applications, includ-

ing Healthcare, Cyber Threat Intelligence, and Cyber-Physical Systems. Our frame-

work integrates a reputation-based system with a Blockchain module to strengthen

defenses against inference and poisoning attacks. While we present the theory sup-

porting this framework, practical implementation and real-world testing remain

promising directions for future work.

[image: Image 118]

Federated Learning: An Overview of Attacks and Defense Methods

425

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial

or financial relationships that could be construed as a potential conflict of interest.

Data Availability Statement

The data used to support the findings of this research is derived from publicly available literature, research articles, and reputable academic sources cited in the references.

Acknowledgements This work was partly supported by the HORIZON Europe Framework Pro-

gramme through the project “OPTIMA-Organization sPecific Threat Intelligence Mining and sharing” (101063107), funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

References

1. Ali M, Karimipour H, Tariq M. Integration of blockchain and federated learning for internet of things: recent advances and future challenges. Comput Secur. 2021;108: 102355.

2. Andreina S, Marson GA, Möllering H, Karame G. BaFFLe: backdoor detection via feedback-

based federated learning. In: 2021 IEEE 41st international conference on distributed computing systems, ICDCS; 2021. p. 852–863.

3. Aono Y, Hayashi T, Wang L, Moriai S, et al. Privacy-preserving deep learning via additively homomorphic encryption. IEEE Trans Inf Forensics Secur. 2017;13(5):1333–45.

4. Bagdasaryan E, Veit A, Hua Y, Estrin D, Shmatikov V. How to backdoor federated learning.

In: Proceedings of the twenty third international conference on artificial intelligence and statistics; 2020. p. 2938–48.

5. Baucas MJ, Spachos P, Plataniotis KN. IEEE transactions on computational social systems: federated learning and blockchain-enabled Fog-IoT platform for wearables in predictive

healthcare; 2023.

6. Bhagoji AN, Chakraborty S, Mittal P, Calo S. Model poisoning attacks in federated learning.

In: Workshop on security in machine learning, SecML. Collocated with the 32nd Conference

on Neural Information Processing Systems (NeurIPS’18); 2018. p. 1–23.

7. Bhagoji AN, Chakraborty S, Mittal P, Calo S. Analyzing federated learning through an adversarial lens. In: Proceedings of the 36th international conference on machine learning; 2019.

p. 634–43.

8. Blanchard P, El Mhamdi EM, Guerraoui R, Stainer J. Machine learning with adversaries:

Byzantine tolerant gradient descent. In: Proceedings of the 31st international conference on neural information processing systems, NIPS’17; 2017. p. 118–28.

9. Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, Ramage D, Segal A, Seth K. Practical secure aggregation for federated learning on user-held data; 2016. https://

arxiv.org/abs/1611.04482.

426

K. M. Sameera et al.

10. Cao D, Chang S, Lin Z, Liu G, Sun D. Understanding distributed poisoning attack in federated learning. In: 2019 IEEE 25th international conference on parallel and distributed systems,

ICPADS; 2019. p. 233–39.

11. Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. Fltrust: Byzantine-robust federated learning via trust bootstrapping; 2022. arxiv: 2012.13995.

12. Cao X, Gong NZ. MPAF: model poisoning attacks to federated learning based on fake clients.

In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition;

2022. p. 3396–3404.

13. Chamikara MAP, Bertok P, Khalil I, Liu D, Camtepe S. Privacy preserving distributed machine learning with federated learning. Comput Commun. 2021;171:112–25.

14. Chelli M, Prigent C, Schubotz R, Costan A, Antoniu G, Cudennec L, Slusallek P. FedGuard: selective parameter aggregation for poisoning attack mitigation in federated learning. In: 2023

IEEE international conference on cluster computing, CLUSTER; 2023. p. 72–81.

15. Chen J, Zhang J, Zhao Y, Han H, Zhu K, Chen B. Beyond model-level membership privacy leakage: an adversarial approach in federated learning. In: 2020 29th international conference on computer communications and networks, ICCCN; 2020. p. 1–9.

16. Chen Y, Qin X, Wang J, Chaohui Yu, Gao W. FedHealth: a federated transfer learning framework for wearable healthcare. IEEE Intell Syst. 2020;35(4):83–93.

17. Zheyi Chen P, Tian WL, Wei Yu. Zero knowledge clustering based adversarial mitigation in heterogeneous federated learning. IEEE Trans Netw Sci Eng. 2020;8(2):1070–83.

18. Cheng G, Charles Z, Garrett Z, Rush K. Does federated dropout actually work? In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition; 2022. p. 3387–3395.

19. Dai H-N, Zheng Z, Zhang Y. Blockchain for internet of things: a survey. IEEE Int Things J.

2019;6(5):8076–94.

20. Fang M, Cao X, Jia J, Gong N. Local model poisoning attacks to Byzantine-robust federated learning. In: 29th USENIX security symposium, USENIX security 20; 2020. p. 1605–1622.

21. Mohamed Amine Ferrag and Leandros Maglaras. DeepCoin: a novel deep learning and

blockchain-based energy exchange framework for smart grids. IEEE Trans Eng Manag.

2019;67(4):1285–97.

22. Fraboni Y, Vidal R, Lorenzi M. Free-rider attacks on model aggregation in federated learning.

In: International conference on artificial intelligence and statistics; 2021 p. 1846–1854.

23. Fu C, Zhang X, Ji S, Chen J, Wu J, Guo S, Zhou J, Liu AX, Wang T. Label inference attacks against vertical federated learning. In: 31st USENIX security symposium, USENIX security

22; 2022. p. 1397–1414.

24. Fu S, Xie C, Li B, Chen Q. Attack-resistant federated learning with residual-based reweighting; 2021. arxiv:1912.11464.

25. Fung C, Yoon CJM, Beschastnikh I. Mitigating sybils in federated learning poisoning; 2020.

arxiv: 1808.04866.

26. Ganju K, Wang Q, Yang W, Gunter CA, Borisov N. Property inference attacks on fully

connected neural networks using permutation invariant representations. In: Proceedings of

the 2018 ACM SIGSAC conference on computer and communications security; 2018. p.

619–633.

27. Gao D, Liu Y, Huang A, Ju C, Yu H, Yang Q. Privacy-preserving heterogeneous federated transfer learning. In: 2019 IEEE international conference on big data; 2019. p. 2552–2559.

28. Gao Y, Li Y, Zhu L, Dongxian W, Jiang Y, Xia S-T. Not all samples are born equal: towards effective clean-label backdoor attacks. Pattern Recogn. 2023;139: 109512.

29. Geiping J, Bauermeister H, Dröge H, Moeller M. Inverting gradients—how easy is it to break privacy in federated learning? In: Advances in neural information processing systems, NeurIPS; 2020. p. 16937–47.

30. Gong X, Chen Y, Huang H, Liao Y, Wang S, Wang Q. Coordinated backdoor attacks against federated learning with model-dependent triggers. IEEE Netw. 2022;36(1):84–90.

31. Gu T, Dolan-Gavitt B, Garg S. BadNets: identifying vulnerabilities in the machine learning model supply chain; 2019. arxiv:1708.06733.

Federated Learning: An Overview of Attacks and Defense Methods

427

32. Yuhao G, Bai Y, Shubin X. CS-MIA: membership inference attack based on prediction confidence series in federated learning. J Inf Secur Appl. 2022;67: 103201.

33. Guerraoui R, Rouault S et al. The hidden vulnerability of distributed learning in byzantium.

In: International conference on machine learning; 2018. p. 3521–3530.

34. Gupta P, Yadav K, Gupta BB, Alazab M, Gadekallu TR. A novel data poisoning attack in federated learning based on inverted loss function. Comput Secur. 2023;130:103270.

35. Hallaji E, Razavi-Far R, Saif M, Herrera-Viedma E. Label noise analysis meets adversarial training: a defense against label poisoning in federated learning. Knowl-Based Syst. 2023;266: 110384.

36. Hao M, Li H, Luo X, Guowen X, Yang H, Liu S. Efficient and privacy-enhanced federated learning for industrial artificial intelligence. IEEE Trans Ind Inf. 2019;16(10):6532–42.

37. Hard A, Rao K, Mathews R, Ramaswamy S, Beaufays F, Augenstein S, Eichner H, Kiddon

C, Ramage D. Federated learning for mobile keyboard prediction; 2019. arxiv:1811.03604.

38. HIPAA: health insurance portability and accountability act of 1996; 1996. https://www.

govinfo.gov/content/pkg/PLAW-104publ191/pdf/PLAW-104publ191.pdf.

39. Horvath S, Laskaridis S, Almeida M, Leontiadis I, Venieris S, Lane N. Fjord: fair and accurate federated learning under heterogeneous targets with ordered dropout. In: Advances in neural information processing systems, NeurIPS; 2021. p. 12876–89.

40. Hossain MT, Islam S, Badsha S, Shen H. DeSMP: differential privacy-exploited stealthy model poisoning attacks in federated learning. In: 2021 17th international conference on mobility, sensing and networking, MSN; 2021. p. 167–174.

41. Hu H, Salcic Z, Sun L, Dobbie G, Yu PS, Zhang X. Membership inference attacks on machine learning: a survey. ACM Comput Surv. 2022;54(11s):1–37.

42. Hu H, Salcic Z, Sun L, Dobbie G, Zhang X. Source inference attacks in federated learning.

In: 2021 IEEE international conference on data mining, ICDM; 2021. p. 1102–1107.

43. Huang A. Dynamic backdoor attacks against federated learning; 2020. arxiv:2011.07429.

44. Jebreel NM, Domingo-Ferrer J. FL-Defender: combating targeted attacks in federated learning. Knowl-Based Syst. 2023;260:110178.

45. Jebreel NM, Domingo-Ferrer J, Sánchez D, Blanco-Justicia A. Defending against the label-flipping attack in federated learning, LFighter. Neural Netw. 2024;170:111–26.

46. Malhar S Jere, Tyler Farnan, and Farinaz Koushanfar. A taxonomy of attacks on federated learning. IEEE Security & Privacy, 19(2):20–28, 2020.

47. Jiang Y, Zhang W, Chen Y. Data quality detection mechanism against label flipping attacks in federated learning. IEEE Transactions on Information Forensics and Security. 2023;18:1625–

37.

48. Jiang Y, Wang S, Valls V, Ko BJ, Lee W-H, Leung KK, Tassiulas L. Model pruning

enables efficient federated learning on edge devices. IEEE Trans Neural Netw Learn Syst.

2023;34(12):10374–386.

49. Jin R, Li X. Backdoor attack and defense in federated generative adversarial network-based medical image synthesis. Med Image Anal. 2023;90: 102965.

50. Kasyap H, Tripathy S. Beyond data poisoning in federated learning. Exp Syst Appl. 2024;235: 121192.

51. Li T, Sahu AK, Talwalkar A, Smith V. Federated learning: challenges, methods, and future directions. IEEE Signal Proc Mag. 2020;37(3):50–60.

52. Li T, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V. Federated optimization in heterogenous networks. Proc Mach Learn Syst. 2020;2:429–50.

53. Li X, Zhe Q, Zhao S, Tang B, Zhuo L, Liu Y. Lomar: a local defense against poisoning attack on federated learning. IEEE Trans Depend Secure Comput. 2023;20(1):437–50.

54. Li Y, Yuan D, Sani AS, Bao W. Enhancing federated learning robustness in adversarial environment through clustering non-IID features. Comput Secur. 2023;132:103319.

55. Lin J, Du M, Liu J. Free-riders in federated learning: attacks and defenses; 2019.

arxiv:1911.12560.

56. Liu T, Hu X, Xu H, Shu T, Nguyen DN. High-accuracy low-cost privacy-preserving federated learning in IoT systems via adaptive perturbation. J Inf Secur Appl. 2022;70:103309.

428

K. M. Sameera et al.

57. Shiwei L, Li R, Liu W, Chen X. Defense against backdoor attack in federated learning. Comput Secur. 2022;121: 102819.

58. Luo X, Wu Y, Xiao X, Ooi BC. Feature inference attack on model predictions in vertical federated learning. In: 2021 IEEE 37th international conference on data engineering, ICDE;

2021. p. 181–92.

59. Lyu L, Han Yu, Ma X, Chen C, Sun L, Zhao J, Yang Q, Philip SY. Privacy and robustness in federated learning: attacks and defenses. IEEE Trans Neural Netw Learn Syst. 2020;35(7):8726–

46.

60. L’heureux A, Grolinger K, Elyamany HF, Capretz MAM. Challenges and approaches.

Machine learning with big data. IEEE Access. 2017;5:7776–97.

61. Ma C, Li J, Shi L, Ding M, Wang T, Han Z, Poor HV. When federated learning meets blockchain: a new distributed learning paradigm. IEEE Comput Intell Mag. 2022;17(3):26–

33.

62. Ma X, Zhu J, Lin Z, Chen S, Qin Y. A state-of-the-art survey on solving non-IID data in federated learning. Fut Gen Comput Syst. 2022;135:244–58.

63. Ma Z, Ma J, Miao Y, Li Y, Shieldfl RHD. Mitigating model poisoning attacks in privacy-preserving federated learning. IEEE Trans Inf Forensics Secur. 2022;17:1639–54.

64. McMahan B, Moore E, Ramage D, Hampson S, Arcas BAY. Communication-efficient learning

of deep networks from decentralized data. In: Artificial intelligence and statistics; 2017. p.

1273–82.

65. McMahan HB, Yu FX, Richtarik P, Suresh AT, Bacon D et al. Federated learning: strategies for improving communication efficiency. In: Proceedings of the 29th conference on neural

information processing systems, NIPS; 2016. p. 5–10.

66. Melis L, Song C, De Cristofaro E, Shmatikov V. Exploiting unintended feature leakage in collaborative learning. In: 2019 IEEE symposium on security and privacy; 2019. SP, p. 691–

706.

67. Meng MH, Teo SG, Bai G, Wang K, Dong JS. Enhancing federated learning robustness using data-agnostic model pruning. In: Pacific-Asia conference on knowledge discovery and data

mining; 2023. p. 441–453.

68. Miao Y, Liu Z, Li H, Choo K-KR, Deng RH. Privacy-preserving Byzantine-robust federated learning via blockchain systems. IEEE Trans Inf Forensics Secur. 2022;17:2848–61.

69. Mohammadi M, Al-Fuqaha A, Sorour S, Guizani M. Deep learning for IoT big data and

streaming analytics: a survey. IEEE Commun Surv Tutor. 2018;20(4):2923–60.

70. Mothukuri V, Parizi RM, Pouriyeh S, Huang Y, Dehghantanha A, Srivastava G. A survey on security and privacy of federated learning. Fut Gen Comput Syst. 2021;115:619–40.

71. Muñoz-González L, Co KT, Lupu EC. Byzantine-robust federated machine learning through

adaptive model averaging; 2019. arxiv:1909.05125.

72. Nakamoto S. Bitcoin: a peer-to-peer electronic cash system; 2008. https://bitcoin.org/bitcoin.

pdf.

73. Nasr M, Shokri R, Houmansadr A. Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning. In: 2019

IEEE symposium on security and privacy, SP; 2019. p. 739–53.

74. Ozdayi MS, Kantarcioglu M, Gel YR. Defending against backdoors in federated learning

with robust learning rate. In: Proceedings of the AAAI conference on artificial intelligence; 2021. p. 9268–76.

75. Pillutla K, Kakade SM, Harchaoui Z. Robust aggregation for federated learning. IEEE Trans Signal Process. 2022;70:1142–54.

76. Qammar A, Ding J, Ning H. Federated learning attack surface: taxonomy, cyber defences, challenges, and future directions. Artif Intell Rev. 2022;55:1–38.

77. Ren H, Deng J, Xie X. GRNN: generative regression neural network–a data leakage attack for federated learning. ACM Trans Intell Syst Technol. 2022;13(4):1–24.

78. Rodríguez-Barroso N, Jiménez-López D, Luzón MV, Herrera F, Martínez-Cámara E. Survey

on federated learning threats: concepts, taxonomy on attacks and defences, experimental study and challenges. Inf Fus. 2023;90:148–173.

Federated Learning: An Overview of Attacks and Defense Methods

429

79. Rodríguez-Barroso N, Martínez-Cámara E, Luzón MV, Herrera F. Dynamic defense against

Byzantine poisoning attacks in federated learning. Fut Gen Comput Syst. 2022;133:1–9.

80. Saad M, Spaulding J, Njilla L, Kamhoua C, Shetty S, Nyang DH, Mohaisen D. Explor-

ing the attack surface of blockchain: a comprehensive survey. IEEE Commun Surv Tutor.

2020;22(3):1977–2008.

81. Shah D, Dube P, Chakraborty S, Verma A. Adversarial training in communication constrained federated learning; 2021. arxiv:2103.01319.

82. Shao J, Sun Y, Li S, Zhang J. DReS-FL: Dropout-resilient secure federated learning for non-IID clients via secret data sharing. In: Advances in Neural Information Processing Systems, NeurIPS; 2022. p. 10533–45.

83. Shejwalkar V, Houmansadr A. Manipulating the Byzantine: optimizing model poisoning

attacks and defenses for federated learning. In: Proceedings 2021 network and distributed

system security symposium; 2021.

84. Shejwalkar V, Houmansadr A, Kairouz P, Ramage D. Back to the drawing board: a critical evaluation of poisoning attacks on production federated learning. In: 2022 IEEE symposium

on security and privacy, SP; 2022. p. 1354–71.

85. Shen M, Wang H, Zhang B, Zhu L, Ke X, Li Q, Xiaojiang D. Exploiting unintended property leakage in blockchain-assisted federated learning for intelligent edge computing. IEEE Int

Things J. 2020;8(4):2265–75.

86. Shi L, Chen Z, Shi Y, Zhao G, Wei L, Tao Y, Gao Y. Data poisoning attacks on federated learning by using adversarial samples. In: 2022 international conference on computer engineering and artificial intelligence, ICCEAI; 2022. p. 158–62.

87. Shi Z, Yang Z, Hassan A, Li F, Ding X. A privacy preserving federated learning scheme using homomorphic encryption and secret sharing. Telecommun Syst. 2023;82(3):419–33.

88. Shokri R, Stronati M, Song C, Shmatikov V. Membership inference attacks against machine learning models. In: 2017 IEEE symposium on security and privacy, SP; 2017. p. 3–18.

89. So J, Güler B, Avestimehr AS. Byzantine-resilient secure federated learning. IEEE J Sel Areas Commun. 2020;39(7):2168–2181.

90. Sui H, Sun X, Zhang J, Chen B, Li W. Multi-level membership inference attacks in federated learning based on active GAN. Neural Comput Appl. 2023;35:1–15.

91. Sun G, Cong Y, Dong J, Wang Q, Lyu L, Liu J. Data poisoning attacks on federated machine learning. IEEE Int Things J. 2021;9(13):11365–75.

92. Sun Y, Ochiai H, Sakuma J. Semi-targeted model poisoning attack on federated learning via backward error analysis. In: 2022 international joint conference on neural networks, IJCNN; 2022. p. 1–8.

93. Sun Z, Kairouz P, Suresh AT, McMahan HB. Can you really backdoor federated learning?

2019. arxiv:1911.07963.

94. Suri A, Kanani P, Marathe VJ, Peterson DW. Subject membership inference attacks in federated learning; 2023. arxiv:2206.03317.

95. Tam K, Li L, Han B, Xu C, Fu H. Federated noisy client learning. In: IEEE transactions on neural networks and learning systems; 2023. p. 1–14.

96. Tolpegin V, Truex S, Gursoy ME, Liu L. Data poisoning attacks against federated learning systems. In: 25th European symposium on research in computer security, ESORICS; 2020.

p. 480–01.

97. Truex S, Baracaldo N, Anwar A, Steinke T, Ludwig H, Zhang, and Yi Zhou. A hybrid approach to privacy-preserving federated learning. In: Proceedings of the 12th ACM workshop on

artificial intelligence and security; 2019. p. 1–11.

98. Ur Rehman MH, Salah K, Damiani E, Svetinovic D. Towards blockchain-based reputation-

aware federated learning. In: IEEE INFOCOM 2020-IEEE conference on computer commu-

nications workshops, INFOCOM WKSHPS; 2020. p. 183–88.

99. Verbraeken J, Wolting M, Katzy J, Kloppenburg J, Verbelen T, Rellermeyer JS. A survey on distributed machine learning. ACM Comput Surv. 2020;53(2):1–33.

100. Voigt P, Von dem Bussche A. The EU general data protection regulation (GDPR): a practical guide. 1st ed.: Springer; 2017.

430

K. M. Sameera et al.

101. Wan W, Lu J, Hu S, Zhang LY, Pei X. Shielding federated learning: a new attack approach and its defense. In: 2021 IEEE wireless communications and networking conference, WCNC;

2021. p. 1–7.

102. Wan Y, Youyang Q, Ni W, Xiang Y, Gao L, Hossain E. Data and model poisoning backdoor attacks on wireless federated learning, and the defense mechanisms: a comprehensive survey.

IEEE Commun Surv Tutor. 2024;26(3):1861–97.

103. Wang B, Li H, Liu X, Guo Y. FRAD: free-rider attacks detection mechanism for federated learning in AIoT. IEEE Int Things J. 2024;11(3):4377–88.

104. Wang H, Xu J. Combating client dropout in federated learning via friend model substitution; 2023. arxiv:2205.13222.

105. Wang H, Sreenivasan K, Rajput S, Vishwakarma H, Agarwal S, Sohn J, Lee K, Papailiopoulos D. Attack of the tails: yes, you really can backdoor federated learning. In: Advances in Neural Information Processing Systems, NeurIPS; 2020. p. 16070–84.

106. Wang H, Yurochkin M, Sun Y, Papailiopoulos D, Khazaeni Y. Federated learning with matched averaging; 2020. arxiv:2002.06440.

107. Wang J, Chang X, Mišić J, Mišić VB, Wang Y. PASS: a parameter audit-based secure and fair federated learning scheme against free-rider attack. IEEE Int Things J. 2023;11(1):1374–

1384.

108. Wang Z, Huang Y, Song M, Libing W, Xue F, Ren K. Poisoning-assisted property inference attack against federated learning. IEEE Trans Depend Secur Comput. 2022;20(4):3328–40.

109. Wang Z, Song M, Zhang Z, Song Y, Wang Q, Qi H. Beyond inferring class representatives: User-level privacy leakage from federated learning. In: IEEE conference on computer communications, IEEE INFOCOM; 2019. p. 2512–20.

110. Wei K, Li J, Ding M, Ma C, Yang HH, Farokhi F, Jin S, Quek TQS, Poor HV. Federated learning with differential privacy: algorithms and performance analysis. IEEE Trans Inf Forensics

Secur. 2020;15:3454–69.

111. Wei W, Liu L, Loper M, Chow K-H, Gursoy ME, Truex S, Wu Y. A framework for evaluating gradient leakage attacks in federated learning; 2020. arxiv:2004.10397.

112. Chuhan W, Fangzhao W, Lyu L, Huang Y, Xie X. Communication-efficient federated learning via knowledge distillation. Nat Commun. 2022;13(1):2032.

113. Wu Z, Ling Q, Chen T, Giannakis GB. Federated variance-reduced stochastic gradient descent with robustness to Byzantine attacks. IEEE Trans Signal Process. 2020;68:4583–4596.

114. Xie C, Huang K, Chen P-Y, Li B. DBA: distributed backdoor attacks against federated learning.

In: International conference on learning representations; 2019.

115. Xie C, Huang K, Chen PY, Li B. DBA: distributed backdoor attacks against federated learning.

In: 8th international conference on learning representations, ICLR; 2020.

116. Guowen X, Li H, Liu S, Yang K, Lin X. VerifyNet: secure and verifiable federated learning.

IEEE Trans Inf Forensics Secur. 2019;15:911–26.

117. Xu J, Huang S-L, Song L, Lan T. Byzantine-robust federated learning through collaborative malicious gradient filtering. In: 2022 IEEE 42nd international conference on distributed computing systems, ICDCS; 2022. p. 1223–35.

118. Xu M, Li X. Subject property inference attack in collaborative learning. In: 2020 12th international conference on intelligent human-machine systems and cybernetics, IHMSC; 2020.

p. 227–231.

119. Yang Q, Liu Y, Chen T, Tong Y. Federated machine learning: concept and applications. ACM

Trans Intell Syst Technol. 2019;10(2):1–19.

120. Yin D, Chen Y, Kannan R, Bartlett P. Byzantine-robust distributed learning: towards optimal statistical rates. In: International conference on machine learning; 2018. p. 5650–59.

121. Yin H, Mallya A, Vahdat A, Alvarez JM, Kautz J, Molchanov P. See through gradients: Image batch recovery via gradinversion. In: Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, CVPR; 2021. p. 16337–46.

122. Yuan X, Ma X, Zhang L, Fang Y, Dapeng W. Beyond class-level privacy leakage: breaking record-level privacy in federated learning. IEEE Int Things J. 2021;9(4):2555–65.

Federated Learning: An Overview of Attacks and Defense Methods

431

123. Yuan Z, Tian Y, Zhou Z, Li T, Wang S, Xiong J. Trustworthy federated learning against malicious attacks in web 3.0. IEEE Trans Netw Sci Eng. 2024;11(5):3969–3982.

124. Zhang C, Li S, Xia J, Wang W, Yan F, Liu Y. BatchCrypt: efficient homomorphic encryption for cross-silo federated learning. In: 2020 USENIX annual technical conference, USENIX

ATC 20; 2020. p. 493–506.

125. Zhang J, Chen B, Cheng X, Binh HTT, Shui Yu. PoisonGAN: generative poisoning attacks against federated learning in edge computing systems. IEEE Int Things J. 2020;8(5):3310–22.

126. Zhang J, Chen J, Wu D, Chen B, Yu S. Poisoning attack in federated learning using generative adversarial nets. In: 2019 18th IEEE international conference on trust, security and privacy in computing and communications/13th IEEE international conference on big data science and

engineering, TrustCom/BigDataSE; 2019. p. 374–380.

127. Zhang J, Zhang J, Chen J, Yu S. GAN enhanced membership inference: a passive local attack in federated learning. In: ICC 2020-2020 IEEE international conference on communications,

ICC; 2020. p. 1–6.

128. Zhang L, Xu J, Vijayakumar P, Sharma PK, Ghosh U. Homomorphic encryption-based

privacy-preserving federated learning in IoT-enabled healthcare system. IEEE Trans Netw

Sci Eng. 2023;10(5):2864–80.

129. Zhang L, Shen L, Ding L, Tao D, Duan L-Y. Fine-tuning global model via data-free knowledge distillation for non-IID federated learning. In: Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, CVPR; 2022. p. 10174–183.

130. Zhang W, Tople S, Ohrimenko O. Leakage of dataset properties in multi-party machine learning. In: 30th USENIX security symposium, USENIX security 21; 2021. p. 2687–704.

131. Zhang Z, Cao X, Jia J, Gong NZ. FLDetector: defending federated learning against model poisoning attacks via detecting malicious clients. In: Proceedings of the 28th ACM SIGKDD

conference on knowledge discovery and data mining; 2022. p. 2545–55.

132. Zhang Z, Zhang Y, Guo D, Yao L, Li Z. Secfednids: robust defense for poisoning attack against federated learning-based network intrusion detection system. Fut Gen Comput Syst.

2022;134:154–69.

133. Zhao B, Mopuri KR, Bilen H. iDLG: improved deep leakage from gradients; 2020.

arxiv:2001.02610.

134. Zhao L, Jiang J, Feng B, Wang Q, Shen C, Li Q. SEAR: secure and efficient aggregation for Byzantine-robust federated learning. IEEE Trans Depend Secur Comput. 2021;19(5):3329–

42.

135. Zhao Y, Chen J, Zhang J, Wu D, Teng J, Yu S. PDGAN: a novel poisoning defense method in federated learning using generative adversarial network. In: Algorithms and architectures for parallel processing; 2020. p. 595–09.

136. Zhou G, Qi L, Yang L, Yi Z, Qi Tan Su Y, Xu K. FedPAGE: pruning adaptively toward global efficiency of heterogeneous federated learning. IEEE/ACM Trans Netw. 2023;32(3):1873–87.

137. Zhu L, Liu Z, Han S. Deep leakage from gradients. In: Advances in Neural Information Processing Systems, NeurIPS; 2019.

138. Zhu X, Wang J, Chen W, Sato K. Model compression and privacy preserving framework for federated learning. Fut Gen Comput Syst. 2023;140:376–89.

139. Zhu Z, Hong J, Zhou J. Data-free knowledge distillation for heterogeneous federated learning.

In: International conference on machine learning; 2021. p. 12878–889.

140. Zizzo G, Rawat A, Sinn M, Buesser B. FAT: federated adversarial training; 2020.

arxiv:2012.01791.

141. Zou T, Liu Y, Kang Y, Liu W, He Y, Yi Z, Yang Q, Zhang Y-Q. Defending batch-level label inference and replacement attacks in vertical federated learning. IEEE Trans Big Data.

2022;10(6):1016–27.

[image: Image 119]

An Empirical Analysis of Federated

Learning Models Subject

to Label-Flipping Adversarial Attack

Kunal Bhatnagar

, Sagana Chattanathan

, Angela Dang

,

Bhargav Eranki

, Ronnit Rana

, Charan Sridhar

, Siddharth Vedam

,

Angie Yao

, and Mark Stamp

Abstract In this paper, we empirically analyze adversarial attacks on selected Fed-

erated Learning (FL) models. The specific models considered are FL versions of

Multinominal Logistic Regression (MLR), Support Vector Classifier (SVC), Mul-

tilayer Perceptron (MLP), Convolution Neural Network (CNN), Random Forest,

XGBoost, and Long Short-Term Memory (LSTM). For each model, we simulate

label-flipping attacks, experimenting extensively with 10 federated clients and 100

federated clients. We vary the percentage of adversarial clients from 10 to 100%

and, simultaneously, the percentage of labels flipped by each adversarial client is

also varied from 10 to 100%. Among other results, we find that models differ in their

inherent robustness to the two vectors in our label-flipping attack, i.e., the percentage

of adversarial clients, and the percentage of labels flipped by each adversarial client.

We discuss the potential practical implications of our results.

1

Introduction

The Federated Learning (FL) paradigm offers the advantage of maintaining the pri-

vacy of local training data, while also distributing some of the work required to

train models. Although the accuracy of FL models tends to be lower than models

trained via traditional centralized learning techniques, the tradeoff may be worth-

while in many cases, especially in situations where data privacy would otherwise

make training models impractical.

The distributed nature of FL opens the door to a wide range of adversarial attack

scenarios. In this paper, we empirically analyze the effectiveness of label-flipping

attacks. We simulate such attacks by assigning a percentage of clients as adversarial,

with each adversarial client flipping a specified percentage of the labels in its local

training dataset. We experiment with seven distinct FL models, namely, Multinominal

Logistic Regression (MLR), Support Vector Classifier (SVC), Multilayer Perceptron

K. Bhatnagar · S. Chattanathan · A. Dang · B. Eranki · R. Rana · C. Sridhar · S. Vedam · A. Yao ·

M. Stamp (B)

San Jose State University, San Jose, CA, USA

e-mail: mark.stamp@sjsu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

433

M. Stamp and M. Jureček (eds.), Machine Learning, Deep Learning and AI for

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_15

434

K. Bhatnagar et al.

(MLP), Convolution Neural Network (CNN), Random Forest, XGBoost, and Long

Short-Term Memory (LSTM). For each of these models, we carefully analyze the

case with 10 federated clients and the case with 100 federated clients, giving us 14

experiments, in total. Furthermore, for each of these 14 experiments, the percentage

of adversarial clients ranges from 10 to 100%, while the label flipping percentage

simultaneously ranges from 10 to 100%, giving us 100 data points per experiment.

For each experiment, we provide a 3-dimensional graph of the accuracy as a

function of both the percentage of adversarial clients and the percentage of labels

flipped. We further analyze our results and show that some models are inherently

more robust with respect to the percentage of adversarial clients, while other models

are more robust with respect to the percentage of labels flipped by each adversarial

client. That is, for a given overall percentage of labels flipped, some models retain

more of their accuracy when relatively few adversarial clients flip relatively many

labels, whereas other models retain more of their accuracy when the converse is

true. This has potential practical implications, as we might choose to favor specific

federated learning models for a given application based on likely attack scenarios or

available defensive techniques.

The remainder of this paper is organized as follows. In Sect. 2, we provide some background information on FL, and we introduce the specific learning models considered in this paper. Section 3 provides implementation details, with the emphasis on the dataset used in our experiments and our experimental design. Our experimental results are presented and discussed in Sect. 4. Section 5 concludes the paper and considers potential directions for future work.

2

Background

In this section, we present a brief introduction to relevant aspects of Federated Learn-

ing (FL). Among other topics, we discuss the aggregation strategy used in our FL

experiments. We also introduce the specific FL models that are considered in this

paper.

 2.1

 Federated Learning

Federated learning (FL) models are trained in a distributed manner, where the data

is decentralized among a number of clients. The clients train local models on their

local data and, typically, a central server periodically collects these model parameters

(e.g., weights). The central server then aggregates the parameters to build an overall

model. This is in contrast to a traditional machine learning environment, where all

data and computing resources are centralized.

FL is not to be confused with distributed learning. In distributed learning, training

is parallelized across multiple servers, and the dataset at each client is assumed to be identically distributed and approximately the same size. In FL, the dataset at clients

An Empirical Analysis of Federated Learning Models Subject …

435

can be heterogeneous in terms of size and other aspects, e.g., only a subset of classes might be present in a given client’s dataset [19].

In this paper, we consider an FL training process consisting of multiple rounds

coordinated by a centralized server. Each round consists of the following steps.

1. Broadcast: The clients download the current ML model and global weights from

the server.

2. Client Computation: Each client instantiates the training model using the down-

loaded weights and conducts local training on their local dataset.

3. Aggregation: The client model updates are aggregated by the server using an

aggregating strategy.

4. Model Update: The aggregated weights are used to update the global model and

the global model is evaluated to determine if this round has produced an improved

model.

Note that multiple rounds are needed, as the global model updates are computed on

the centralized server.

The aggregating strategy is a key component of FL training process outlined above.

In this paper, we use a federated averaging (FedAvg) approach. As the name suggests,

FedAvg involves computing the average of the client model weights. The intuition

is that averaging the model weights has a similar effect of the model gradients.

Algorithm 1 is a FedAvg strategy found in [19]. The key parameters of this FedAvg algorithm are . K (the number of clients in each federated learning round), . E (the number of local training epochs), . B (the local minibatch size), and . η (the learning rate).

Algorithm 1 FedAvg

// K clients indexed by k

// P k is training dataset on client k

// n

 K

 k = |P k | and n =

 n

 k=1 k

// B is local minibatch size

// E is the number of local epochs

// η is the learning rate

// (w; b) is local loss function evaluated on weights w and minibatch b Server Executes:

initialize w 0

for each round t = 0 , 1 , 2 , . . . do

for each client k ∈ K in parallel do // all clients update model wk ←

 t+1

ClientUpdate (k, wt)

 K

 w

 nk

 t+1 ←

 wk // weighted average

 n

 t+1

 k=1

function ClientUpdate(k, w) // runs on client k

B ← (split P k into minibatches of size B)

for each local epoch i from 1 to E do

for each minibatch b ∈ B do

 w ← w − η∇ (w; b)

return w to server

436

K. Bhatnagar et al.

While there are numerous potential threats to FL systems, in this paper, we focus

on a simple label-flipping attack. That is, we specify a percentage of adversarial

clients and a percentage of labels flipped. Each of the adversarial clients then flips

the specified percentage of labels in its local dataset, which has the effect of corrupting its model update to the centralized server.

Next, we introduce each of the seven FL models considered in this paper. These

models include examples of both classic machine learning and neural network-based

models.

 2.2

 Multinominal Logistic Regression

Multinomial Logistic Regression (MLR) is used to predict the probability of a certain

category, where the dependent variable can represent multiple categories. It calculates

the weighted sum of the independent variables and their respective coefficients to

find the log odds—the model multiplies the value of each independent variable by

its coefficient and adds all such values. The softmax function is then used to convert

these log odds into probabilities for each category [12].

 2.3

 Support Vector Classifier

The Support Vector Machine (SVM) can be used for classification and regression.

The goal when training an SVM is to construct a hyperplane that serves as a decision

boundary to separate two classes, while maximizes the margin, which is defined as

the minimum distance between the data points and the separating hyperplane. By

maximizing the margin, an SVM minimizes the chance of incorrectly classifying

data points not in the training set. Nonlinear decision boundaries can be constructed

when training an SVM by use of the so-called kernel trick, which allows for the

data to be embedded in a higher dimensional space. By carefully selecting the kernel

function, the computational complexity is minimized. Support Vector Classifiers

(SVC) generalize the SVM approach to multiclass data [24].

 2.4

 Multilayer Perceptron

Multilayer Perceptrons (MLPs) are the most basic type of feedforward neural net-

work, and they are frequently used for supervised learning tasks. An MLP includes

an input layer, one or more hidden layers, and an output layer. Each layer consists

of multiple neurons, which are fully connected to the neurons in the preceding and

succeeding layers [23].

The input layer receives raw data and passes it to the first hidden layer. Hidden

layers are responsible for extracting information and learning complex patterns and

An Empirical Analysis of Federated Learning Models Subject …

437

features from the input data. Each node in these layers performs a nonlinear trans-

formation on the weighted sum of its inputs, employing activation functions such

as ReLU, sigmoid, or tanh. This nonlinearity enables the MLP to model intricate,

nonlinear relationships within the data.

 2.5

 Convolution Neural Network

Convolutional Neural Networks (CNNs) are a type of feedforward neural network

that specializes in grid-like data and, in particular, images. CNNs are optimized for

dealing with local structure, as opposed to, say, MLPs, which can effectively deal

with global structure, but are too inefficient for complex images [24].

A typical CNN includes an input layer, convolution layers, pooling layers, and an

output layer. This neural network does not require manual feature engineering, as it

autonomously extracts features, further increasing efficiency.

 2.6

 Random Forest

Random Forests (RF) are ensemble learning methods widely used for classification

and regression related tasks. An RF consists of multiple decision trees, each of

which is trained on a subset of the features and data, with a simple voting scheme

typically used for classification. Such an approach reduces overfitting and improves

the generalizability of the model [3].

 2.7

 XGBoost

Boosting a generic learning technique that builds a strong classifier from a collection

of weak classifiers. Extreme Gradient Boosting (XGBoost) is a robust boosting tech-

nique that has performed well in many machine learning contests [4]. Like Random Forest, our implementation of XGBoost is based on simple decision trees.

 2.8

 Long Short-Term Memory

Long Short-Term Memory (LSTM) models represent a class of neural networking

architectures designed to deal with sequential data. LSTMs are highly specialized

types of RNNs that allow for long-term dependencies in the data. LSTMs mitigate the

vanishing and exploding gradient issues that plague generic RNNs, thereby enabling

LSTMs to “remember” information over an extended period of time, which can

improve the accuracy of predictions [7].

438

K. Bhatnagar et al.

 2.9

 Related Work

In this section, we briefly review previous work involving attacks on FL systems.

For a more detailed discussion of the FL literature, see the literature review in the

companion paper [18].

There exists a surprisingly large number of survey (and similar) papers dealing

with attacks on FL systems, including [2, 5, 10, 13, 16, 20, 22], among others.

These survey-like papers tend to have a broad focus, and many place an emphasis

on categorizing the various types of attacks that can occur at different stages of the

FL process. The label-flipping attacks considered in this paper are considered to be

examples of poisoning attacks [25].

There is also no shortage of research papers dealing with label-flipping attacks

on FL systems. Examples of such papers include [8, 9, 11, 15, 17], among many others. However, these papers tend to be focused on the problem of detecting label-flipping attacks, as opposed to analyzing the effectiveness of such attacks. In contrast,

our research is narrowly focused on the effectiveness of label-flipping attacks, as a

function of the number of adversarial clients and the percentage of labels flipped by

each of the adversarial clients.

The paper [26] is an example research into label-flipping attack effectiveness in FL. However, in [26] the emphasis is on targeted attacks, while the research presented in this paper does not consider targeted attack scenarios. To the best of the authors’

knowledge, there is a relative paucity of research papers that analyze label-flipping

attack effectiveness, and we are not aware of any research that considers the specific

problem analyzed in this paper.

3

Implementation

In this section, we first discuss the dataset used for our experiments. Then in the

remainder of this section, we outline our experimental design.

 3.1

 Dataset

For all of our experiments, we use the popular MNIST dataset [14], which consists of handwritten digits, 0 through 9. The MNIST dataset is often used as a benchmark

for various learning algorithms. This dataset consists of 60,000 training samples

and 10,000 test samples. All samples are in the form of grayscale images of size. 28 ×

28, with each pixel value in the range of 0 to 255, where 0 represents black and 255

represents white. Examples of images from the dataset are given in Fig. 1.

The MNIST dataset is approximately balanced. The precise number of samples

in each class is given in the form of a bar graph in Fig. 2.

[image: Image 120]

An Empirical Analysis of Federated Learning Models Subject …

439

Fig. 1 Examples of MNIST images

8000

7000

6000

5000

4000

Samples

3000

2000

1000

0

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Fig. 2 Class distribution in MNIST dataset

As a preprocessing step, the MNIST images are converted into tensors or numpy

arrays, depending on the libraries used for the specific classifier. The pixel values in

the MNIST dataset have a mean of 1.307 and a standard deviation of 0.3081, and

these values are normalized to have a mean of 0 and a standard deviation of 1, which

is standard practice in machine learning.

 3.2

 Experimental Design

All federated models were trained using Flower: A Friendly Federated Learn-

ing Framework [1], which is a Python library designed for such models. The

440

K. Bhatnagar et al.

Strategy

Global

model

Config

Config

train

train

eval

eval

Client manager

RPC server

RPC

RPC

client

client

training

. . . training

Clients

data

data

Fig. 3 Overview of Flower federated ML framework

torch.utils.data.random_split function in Pytorch [21] was used to

split the data between all the clients, and the label flipping occurred throughout all

round—in the terminology of the paper [18], we consider the FULL case.

The FL stack developed for this research has three main components, namely, the

Server, Client, and Strategy.

• Server: The Server is responsible for global computations, including aggregating

the model weights, selecting the input parameters for the models, and sampling

random clients for each FL round.

• Client: The Client is responsible for executing local computations, including run-

ning the ML model for a set amount of epochs. The client has access to the actual

data used for training and evaluation of model parameters.

• Strategy: The framework provides a Strategy abstraction which includes the logic

for client selection, configuration, parameter aggregation, and model evaluation.

Outlier detection has been implemented in this strategy as a defense mechanism

to reject model updates from malicious clients, and is executed on the server. A

high-level abstraction of the Flower FL framework is provided in Fig. 3.

For our experiments, the FedAvg [19] strategy was used to aggregate model weights for all models, except that a bagging aggregation strategy [6] was used for aggregating model updates for tree-based models (Random Forest and XGBoost).

The clients and the server communicate through Remote Procedure Calls (RPC).

An Empirical Analysis of Federated Learning Models Subject …

441

Each experiment was performed for 10 federated rounds and the hyperparam-

eters were adjusted accordingly. For example, if a model requires 120 epochs for

convergence, the number of local epochs is set to 12 in each FL round so that at the

end of the FL process, the models would have been trained for a total of 120 epochs.

4

Experiments and Results

We first consider a series of experiments where there are no adversarial clients.

These experiments serve to determine the hyperparameters for our models, and to

set baselines for accuracy. We then consider the effect of adversarial clients on each

federated model, and we conclude this section with an analysis of the relationship

between the label-flipping percentage and the percentage of adversarial clients.

 4.1

 Baseline Experiments

Table 1 in the Appendix lists the hyperparameters tested (via grid search) for each model in the case of 10 clients, with the hyperparameters selected for the best model

given in boldface. Table 2 in the Appendix contains the analogous results for each model in the case of 100 clients.

Figure 4 shows the accuracies for each model as a function of the number of clients, where the number of clients ranges from 10 to 100. In Fig. 5, we give the accuracies for 10 and 100 clients for each model. We observe that with the exception

of MLR, all of the models perform worse as the number of clients increases. In some

cases, the degradation in accuracy for larger numbers of clients is small (e.g., SVC

and MLP), while for other models, the decline is more substantial (e.g., Random

Forest and XGBoost).

1.00

1.00

0.90

0.90

0.80

0.80

0.70

0.70

0.60

0.60

ccuracy

ccuracy

A 0.50

A 0.50

0.40

0.40

0.30

0.30

10

20

30

40

50

60

70

80

90 100

10

20

30

40

50

60

70

80

90 100

Number of clients

Number of clients

(a) MLR

(b) SVC

Fig. 4 Accuracy as a function of the number of clients

442

K. Bhatnagar et al.

1.00

1.00

0.90

0.90

0.80

0.80

0.70

0.70

0.60

0.60

ccuracy

ccuracy

A 0.50

A 0.50

0.40

0.40

0.30

0.30

10

20

30

40

50

60

70

80

90 100

10

20

30

40

50

60

70

80

90 100

Number of clients

Number of clients

(c) MLP

(d) CNN

1.00

1.00

0.90

0.90

0.80

0.80

0.70

0.70

0.60

0.60

ccuracy

ccuracy

A 0.50

A 0.50

0.40

0.40

0.30

0.30

10

20

30

40

50

60

70

80

90 100

10

20

30

40

50

60

70

80

90 100

Number of clients

Number of clients

(e) Random Forest

(f) XGBoost

1.00

0.90

0.80

0.70

0.60

ccuracy A 0.50

0.40

0.30

10

20

30

40

50

60

70

80

90 100

Number of clients

(g) LSTM

Fig. 4 (continued)

 4.2

 Adversarial Attack Experiments

In this section, we consider label-flipping attacks on each of the seven models. Using

our best model for 10 clients—as determined in Sect. 4.1, above—we vary the percentage of adversarial clients from 10 to 100%, in steps of 10%. For each of these 10

test cases, we vary the label-flipping percentage of each adversarial client from 10

to 100%, again with a steps size of 10%. This gives us 100 accuracy results for

[image: Image 121]

An Empirical Analysis of Federated Learning Models Subject …

443

9805

.9696

.9886

9397

0

.

9496

1.00

.

.9176

0

.

.9419

9166

0

0

0

.8730

8748

0

.8997

0

0

0

8434

0.

0.

.0

8118 0.

0.80

7088 0.

0.60

ccuracy A

0.40

0.20

10 clients

100 clients

0.00

MLR

SVC

MLP

CNN

RF

XGBoost

LSTM

Fig. 5 Baseline model accuracies for 10 and 100 clients

each 10-client model. We then repeat this entire process for each model, but with 100

clients instead of 10.

The results for each model for our 10-client adversarial attack experiments are

summarized in the form of 3-dimensional surface plots in Fig. 6. The corresponding results for our 100-client experiments appear in Fig. 7. Next, we provide brief com-ments on our adversarial attack results for each of the seven federated models under

consideration.

4.2.1

Multinominal Logistic Regression

From Fig. 4a we observe that the MLR model accuracy drops only slightly when used in a federated mode, as compared to an MLR model with no federated clients.

However, the accuracy of the federated MLR is fairly constant, regardless of the

number of federated clients.

1.00

1.00

0.80

0.80

0.60

0.60

ccuracy

ccuracy

A 0.40

A 0.40

10

10

d

e

d

p

e

p

0.20

40

pi

0.20

p

fl

40

i

fl

sl

s

e

le

70

b

70

b

0.00

al

0.00

a

t

l

n

tn

10

9

e

e

8

7

10

6

c

9

c

5

100

8

100

4

r

7

r

3

6

2

5

1

e

4

3

2

e

Adversarialclients

P

1

Adversarialclients

P

(a) MLR

(b) SVC

Fig. 6 Accuracy as a function of adversarial clients and label-flipping (10 clients)

[image: Image 122]

[image: Image 123]

[image: Image 124]

[image: Image 125]

444

K. Bhatnagar et al.

1.00

1.00

0.80

0.80

0.60

0.60

ccuracy

ccuracy

A 0.40

A 0.40

10

10

d

e

d

p

e

p

0.20

40

pi

0.20

p

fl

40

i

fl

sl

s

e

le

70

b

70

b

0.00

al

0.00

a

t

l

n

tn

10

9

e

e

8

7

10

6

c

9

c

5

100

8

100

4

r

7

r

3

6

2

5

1

e

4

3

2

e

Adversarialclients

P

1

Adversarialclients

P

(c) MLP

(d) CNN

1.00

1.00

0.80

0.80

0.60

0.60

ccuracy

ccuracy

A

A 0.40

10

0.40

10

d

e

d

p

e

p

40

pi

0.20

p

fl

40

i

fl

0.20

sl

s

e

le

70

b

a

70

b

l

0.00

a

t

l

n

tn

10

9

e

e

8

7

10

6

c

9

c

5

100

8

100

4

r

7

r

3

6

2

5

1

e

4

3

2

e

Adversarialclients

P

1

Adversarialclients

P

(e) RandomForest

(f)XGBoost

1.00

0.80

0.60

ccuracy A 0.40

10

d

e

p

0.20

40

pi

fl

sl

e

70

b

0.00

al

tn

10

9

e

8

7

6

c

5

100

4

r

3

2

1

e

Adversarialclients

P

(g) LSTM

Fig. 6 (continued)

1.00

1.00

0.80

0.80

0.60

0.60

ccuracy

ccuracy

A 0.40

A 0.40

10

10

d

e

d

p

e

p

0.20

40

pi

0.20

p

fl

40

i

fl

sl

s

e

le

70

b

70

b

0.00

al

0.00

a

t

l

n

tn

100

90

e

e

80

70

100

60

c

90

c

50

100

80

100

40

r

70

r

30

60

20

50

10

e

40

30

20

10

e

Adversarial clients

P

Adversarial clients

P

(a) MLR

(b) SVC

Fig. 7 Accuracy as a function of adversarial clients and label-flipping (100 clients)

[image: Image 126]

[image: Image 127]

[image: Image 128]

[image: Image 129]

[image: Image 130]

[image: Image 131]

[image: Image 132]

[image: Image 133]

[image: Image 134]

An Empirical Analysis of Federated Learning Models Subject …

445

1.00

1.00

0.80

0.80

0.60

0.60

ccuracy

ccuracy

A 0.40

A 0.40

10

10

d

e

d

p

e

p

0.20

40

pi

0.20

p

fl

40

i

fl

sl

s

e

le

70

b

70

b

0.00

al

0.00

a

t

l

n

tn

100

90

e

e

80

70

100

60

c

90

c

50

100

80

100

40

r

70

r

30

60

20

50

10

e

40

30

20

10

e

Adversarial clients

P

Adversarial clients

P

(c) MLP

(d) CNN

1.00

1.00

0.80

0.80

0.60

0.60

ccuracy

ccuracy

A

A 0.40

10

0.40

10

d

e

d

p

e

p

40

pi

0.20

p

fl

40

i

fl

0.20

sl

s

e

le

70

b

a

70

b

l

0.00

a

t

l

n

tn

100

90

e

e

80

70

100

60

c

90

c

50

100

80

100

40

r

70

r

30

60

20

50

10

e

40

30

20

10

e

Adversarial clients

P

Adversarial clients

P

(e) Random Forest

(f) XGBoost

1.00

0.80

0.60

ccuracy A 0.40

10

d

e

p

0.20

40

pi

fl

sl

e

70

b

0.00

al

tn

100

90

e

80

70

60

c

50

100

40

r

30

20

10

e

Adversarial clients

P

(g) LSTM

Fig. 7 (continued)

Comparing the attack results in Figs. 6a and 7a, we observe similar behavior. This is not surprising, given that the MLR model performs similarly over a wide range of

federated clients.

4.2.2

Support Vector Classifier

In Fig. 4b we observe that the SVC model accuracy only decreases slightly as the number of federated clients increases. This is similar behavior as was observed for

the MLR model, above

446

K. Bhatnagar et al.

Comparing the adversarial attacks in Figs. 6b and 7b, we observe that the SVC

model is highly symmetric about the. (x, y)-plane, as compared to the other models.

4.2.3

Multilayer Perceptron

From Fig. 4c we observe that the MLP model achieves high accuracy and, similar to the MLR and SVC models, the accuracy does not drop significantly as more federated

clients are added.

Comparing the label-flipping attacks in Figs. 6c and 7c, we observe that in the 10-client case the accuracy drops precipitously, while this drop off is somewhat

smoother in the 100-client case. These graphs are the least symmetric of the attack

graphs considered so far.

4.2.4

Convolution Neural Network

From Fig. 4d we observe that the CNN model accuracy actually improves slightly in a federated mode, as compared to the case with no federated clients. However, as

we add more federated clients, the model accuracy degrades much more rapidly than

the three models considered above.

For the 10-client case, the attack graph in Figs. 6d for the CNN model is similar to that of the MLP model. However, CNN 100-client case in Fig. 7d is more erratic than any of the other models, which would seem to indicate that this model is somewhat

unstable with 100 clients.

4.2.5

Random Forest

From Fig. 4e we observe that the Random Forest model achieves high accuracy when no federated clients are considered. Also, the accuracy drop consistently as more

federated clients are included, and with 100 clients, the model performs poorly.

Comparing the label-flipping attacks in Figs. 6e and 7e, we observe that the qualitative behavior is similar, but the 10-client experiments show consistently higher

accuracies. This is not too surprising, given that the decline in accuracy as more

federated clients are used, as noted above.

4.2.6

XGBoost

From Fig. 4f and the label-flipping attack graphs in Figs. 6f and 7f, we observe that behavior of the XGBoost models are similar to those of the Random Forest. This is

not surprising, given that they are both tree-based algorithms.

An Empirical Analysis of Federated Learning Models Subject …

447

4.2.7

Long Short-Term Memory

From Fig. 4g we observe that the LSTM model achieves high accuracy. We also note that the accuracy of the LSTM model drops only slightly as the number of clients

increases from 10 to 100.

Comparing the label-flipping attacks in Figs. 6g and 7g, we observe that the LSTM

behaves most similar to the MLP model. This is somewhat surprising, since these

models are dramatically different.

 4.3

 Dominance Graphs

For a given overall level of labels flipped, the flipping can be dominated by the

number of adversarial clients, or by the percentage of labels flipped. For example,

suppose that 40% of the clients are adversarial, and that each of these flips 20% of

the labels in their local dataset. Since the local datasets are all of the same size, this implies that for the model as a whole, 8% of the labels are flipped. On the other hand, if only 20% of the clients are malicious, but each flips 40% of the labels in their

local dataset, this also represents a case where 8% of the labels are flipped. All of the 3-dimensional accuracy graphs in Figs. 6 and 7 that are not symmetric with respect to the . (x, y)-plane will—for a given level of label-flipping and selected region of the domain—perform better for one of these two cases, that is, the case where the

percentage of adversarial clients dominates or where the percentage of labels flipped

dominates.

To obtain better insight into this relationship between the relative percentage of

labels flipped and the percentage of adversarial clients, we generate 2-dimensional

“dominance curves” for each of the seven models under consideration. Let . c be the fraction of adversarial clients and let. be the fraction of labels flipped by each adversarial client. As discussed in Sect. 4.2, above, we have. c, ∈ {0 . 1 , 0 . 2 , . . . , 1 . 0}, and for each of these 100 cases we test the model and determine the accuracy. For a

given model . m, denote the accuracy for a specified . c and . as . Am(c,). Note that the values . Am(c,) are derived from the same experimental results that were used to construct the 3-dimensional surface plots in Figs. 6 and 7.

To construct the dominance curves for a given model, we consider all 100 test

cases, and whenever . c > , then . (c, Am(c,)) is a point on the client-dominated curve and, on the other hand, whenever . > c, then . (c, Am(c,)) is a point on the flipping-dominated curve. We ignore the cases where. and. c are equal, since neither dominates the other. We refer to. c as the label-flipping rate, since it gives the overall fraction of labels flipped. Based on the data used to construct the 3-dimensional

accuracy graphs in Figs. 6 or 7, dominances graphs for each model appear in Fig. 8. 1

1 For each model, we selected either the 10-client or 100-client case to draw the corresponding dominance graph in Fig. 8, depending on which of the 3-dimensional attack graphs in Figs. 6 and 7

produced visually smoother results.

448

K. Bhatnagar et al.

From Fig. 8, we observe that for the MLR model, it is more effective—from an attacker’s perspective—to have fewer clients flipping a higher percentage of labels.

In contrast, for the MLP model—and to a lesser extent, the CNN model—for a given

overall percentage of labels flipped, a stronger attack will consist of more adversarial

clients, each flipping a smaller fraction of the labels. In fact, each model has a bias (or biases, depending on the label-flipping rate) towards client dominance or flipping

dominance, with the exception of SVC, which is essentially unbiased in this respect

throughout the entire range of label-flipping.

The insights provided by the graphs in Fig. 8 could be used to help determine a preferred model, based on the likelihood of various attack scenarios.For example, if

there is a higher probability that many adversarial clients will send slightly corrupted

updates, we would prefer different models as compared to the case where our primary

concern is relatively few adversarial clients, with each potentially sending relatively

highly-corrupted updates. As another example, we might have stronger defenses

against specific types of attacks, in which case we could choose models that are

inherently more robust against the types of attacks that are more difficult to detect.

1.0

1.0

Client dominant

Client dominant

0.9

0.9

Flipping dominant

Flipping dominant

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

ccuracy 0.4

ccuracy

A

0.4

A

0.3

0.3

0.2

0.2

0.1

0.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Label flipping rate

Label flipping rate

(a) MLR (10 clients)

(b) SVC (10 clients)

Fig. 8 Accuracy as a function of the label-flipping rate

An Empirical Analysis of Federated Learning Models Subject …

449

1.0

1.0

Client dominant

Client dominant

0.9

0.9

Flipping dominant

Flipping dominant

0.8

0.8

0.7

0.7

0.6

0.6

racy

0.5

0.5

ccuracy

cu

0.4

A

0.4

Ac

0.3

0.3

0.2

0.2

0.1

0.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Label flipping rate

Label flipping rate

(c) MLP (100 clients)

(d) CNN (100 clients)

1.0

1.0

Client dominant

Client dominant

0.9

0.9

Flipping dominant

Flipping dominant

0.8

0.8

0.7

0.7

0.6

0.6

0.5

0.5

ccuracy 0.4

ccuracy

A

0.4

A

0.3

0.3

0.2

0.2

0.1

0.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Label flipping rate

Label flipping rate

(e) Random Forest (10 clients)

(f) XGBoost (10 clients)

1.0

Client dominant

0.9

Flipping dominant

0.8

0.7

0.6

0.5

ccuracy 0.4

A 0.3

0.2

0.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Label flipping rate

(g) LSTM (100 clients)

Fig. 8 (continued)

450

K. Bhatnagar et al.

5

Conclusion

In this paper, we empirically analyzed label-flipping attacks against the following

federated learning models: Multinominal Logistic Regression (MLR), Support Vec-

tor Classifier (SVC), Multilayer Perceptron (MLP), Convolution Neural Network

(CNN), Random Forest, XGBoost, and Long Short-Term Memory (LSTM). We

found that all model have reduced accuracy as more clients are added, although for

most models, the reduction was small within the range of 10 to 100 clients. We then

considered the 10-client and 100-client cases in more detail, graphing the accuracy

as a function of the percentage of adversarial clients and the percentage of labels

flipped by each adversarial client. We then further analyzed the relationship between

the percentage of adversarial clients and the percentage of labels flipped. For a given

overall percentage of labels flipped, we found that some models are inherently more

robust when there are fewer adversarial clients flipping a higher percentage of labels,

whereas other models were more robust in the case where there are more adversarial

clients, but each flips a smaller percentage of the labels in their local dataset. This

has practical implications, as we might, for example, choose models that are more

robust against likely adversarial attacks, or we might choose models that are more

robust against attacks that are harder to defend against.

For future work, it would be interesting to extend the research in this paper to other

FL models. We could also consider more fine-grained attack scenarios, with smaller

steps in the percentage of adversarial clients and the percentage of labels flipped. It

would be worthwhile to consider more sophisticated adversarial attacks involving

strategies other simple label-flipping. Targeted attacks would be interesting, where

the goal is to maintain the overall accuracy, but to force the misclassification of sam-

ples belonging to a specific class. Of course, an empirical analysis of the effectiveness of various defensive strategies would be another interesting line of research.

Appendix

Table 1 lists the hyperparameter values tested for each of the federated learning models, in the case where there are 10 clients. The values selected are given in boldface.

Table 2 lists the corresponding hyperparameter values tested and selected for the federated learning models in the case where there are 100 clients.

An Empirical Analysis of Federated Learning Models Subject …

451

Table 1 Hyperparameters (10 clients)

Model

Hyperparameters

Tested values

Accuracy

Train

Test

MLR

learning_rate

.[0.01 , 0 . 0001]

0.8715

0.8730

batch_size

. [20 , 64 , 128]

Epochs

. [1 , 10 , 20]

momentum

0.9

penalty

l2

warm_start

True

SVC

learning_rate

.[0.01 , 0 . 001]

0.9026

0.9176

batch_size

. [20 , 64 , 128]

Epochs

. [1 , 10 , 20]

momentum

0.9

penalty

l2

MLP

learning_rate

.[0.003 , 0 . 0001]

0.9793

0.9696

batch_size

. [20 , 64 , 128]

Epochs

. [1 , 10 , 20]

Optimizer

. Adam , RMSProp

image_dim

. [128 , 256]

CNN

learning_rate

.[0.01 , 0 . 001]

0.9896

0.9886

batch_size

. [20 , 64 , 128]

Epochs

. [1 , 10 , 20]

Optimizer

. Adam , RMSProp

image_dim

. [128 , 256 , 375]

Random Forest

learning_rate

.[0.08 , 0 . 0001]

0.8471

0.8434

num_parallel_tree . [32 , 100 , 128]

max_depth

. [2 , 4 , 6]

Epochs

. [1 , 10 , 20]

colsample_bytree . [0.963 , 0 . 70.5]

subsample

. [0.97 , 0 . 7 , 0 . 5]

objective

multi:softmax

eval_metric

mlogloss

alpha

. [2 , 4 , 8]

Lambda

. [1 , 2 , 3]

tree_method

hist

XGBoost

learning_rate

.[0 . 001 , 0.08]

0.9044

0.9166

local_epochs

. [1 , 10 , 20]

max_depth

. [6 , 10 , 12]

subsample

. [0 . 50 , 0 . 75 , 1]

colsample_bytree . [0 . 50 , 0 . 75 , 1]

objective

multi:softmax

eval_metric

mlogloss

alpha

. [2 , 4 , 8]

Lambda

. [2 , 4 , 8]

tree_method

hist

LSTM

learning_rate

.[0.001 , 0 . 1]

0.9906

0.9805

batch_size

. [24 , 64 , 128]

Epochs

. [1 , 10 , 20]

Optimizer

.[SGD , Adam]

452

K. Bhatnagar et al.

Table 2 Hyperparameters (100 clients)

Model

Hyperparameters

Tested values

Accuracy

Train

Test

MLR

learning_rate

.[0.001 , 0 . 0001]

0.8537

0.8748

batch_size

. [20 , 64 , 128]

Epochs

. [1 , 10 , 20]

momentum

0.9

penalty

l2

warm_start

True

SVC

learning_rate

.[0.01 , 0 . 001]

0.8983

0.8997

batch_size

. [20 , 64 , 128]

Epochs

. [1 , 10 , 20]

momentum

0.9

penalty

l2

MLP

learning_rate

.[0.003 , 0 . 0001]

0.9524

0.9397

batch_size

. [20 , 64 , 128]

Epochs

. [1 , 10 , 20]

Optimizer

. Adam , RMSProp

image_dim

. [128 , 256]

CNN

learning_rate

.[0.01 , 0 . 001]

0.9317

0.9419

batch_size

. [20 , 64 , 128]

Epochs

. [1 , 10 , 20]

Optimizer

. Adam , RMSProp

image_dim

. [128 , 256 , 375]

Random Forest

learning_rate

.[0.08 , 0 . 0001]

0.7157

0.7088

num_parallel_tree . [32 , 100 , 128]

max_depth

. [2 , 4 , 6]

Epochs

. [1 , 10 , 20]

colsample_bytree . [0.963 , 0 . 70.5]

subsample

. [0.97 , 0 . 7 , 0 . 5]

objective

multi:softmax

eval_metric

mlogloss

alpha

. [2 , 4 , 8]

Lambda

. [1 , 2 , 3]

tree_method

hist

XGBoost

learning_rate

.[0 . 001 , 0.08]

0.8001

0.8118

local_epochs

. [1 , 10 , 20]

max_depth

. [6 , 10 , 12]

subsample

. [0 . 50 , 0 . 75 , 1]

colsample_bytree . [0 . 50 , 0 . 75 , 1]

objective

multi:softmax

eval_metric

mlogloss

alpha

. [2 , 4 , 8]

Lambda

. [2 , 4 , 8]

tree_method

hist

LSTM

learning_rate

.[0.001 , 0 . 1]

0.9503

0.9496

batch_size

. [24 , 64 , 128]

Epochs

. [1 , 10 , 20]

Optimizer

.[SGD , Adam]

An Empirical Analysis of Federated Learning Models Subject …

453

References

1. Beutel DJ, Topal T, Mathur A, Qiu X, Fernandez-Marques J, Gao Y, Sani L, Kwing HL, Parcollet T, de Gusmão PPB, Lane ND. Flower: a friendly federated learning research framework; 2020.

https://arxiv.org/abs/2007.14390.

2. Bouacida N, Mohapatra P. Vulnerabilities in federated learning. IEEE Access. 2021;9:63229–

49.

3. Breiman L. Random forests. Mach Learn. 2001;45:5–32.

4. Chen T, Guestrin C. XGBoost: a scalable tree boosting system; 2016. https://arxiv.org/abs/

1603.02754.

5. Chen Y, Gui Y, Lin H, Gan W, Wu Y. Federated learning attacks and defenses: a survey; 2022.

https://arxiv.org/abs/2211.14952.

6. Flower framwork: tree-based bagging aggregation—Quickstart with XGBoost; 2023. https://

flower.ai/docs/framework/tutorial-quickstart-xgboost.html#tree-based-bagging-aggregation.

7. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;8(8):1735–80.

8. Jebreel NM, Domingo-Ferrer J, Sánchez D, Blanco-Justicia A. Defending against the label-flipping attack in federated learning; 2022. https://arxiv.org/abs/2207.01982.

9. Jebreel NM, Domingo-Ferrer J, Sánchez D, Blanco-Justicia A. Defending against the label-flipping attack in federated learning. Lfighter. Neural Netw. 2024;170:111–26.

10. Jere MS, Farnan T, Koushanfar F. A taxonomy of attacks on federated learning. IEEE Secur Priv. 2020;19(2):20–8.

11. Jiang Y, Zhang W, Chen Y. Data quality detection mechanism against label flipping attacks in federated learning. IEEE Trans Inf Forensics Secur. 2023;18:1625–37.

12. Kaggle. Multinomial logistic regression for beginners. https://www.kaggle.com/code/

saurabhbagchi/multinomial-logistic-regression-for-beginners.

13. Naveen Kumar K, Krishna Mohan C, Cenkeramaddi LR. The impact of adversarial attacks on federated learning: a survey. IEEE Trans Pattern Anal Mach Intell. 2023.

14. LeCun Y, Cortes C. MNIST handwritten digit database; 2010. http://yann.lecun.com/exdb/

mnist/.

15. Li D, Wong WE, Wang W, Yao Y, Chau M. Detection and mitigation of label-flipping attacks in federated learning systems with KPCA and K-means. In: 8th international conference on

dependable systems and their applications, DSA; 2021. p. 551–559.

16. Liu P, Xu X, Wang W. Threats, attacks and defenses to federated learning: issues, taxonomy and perspectives. Cybersecurity, 2022;5(4).

17. Lv Z, Cao H, Zhang F, Ren Y, Wang B, Chen C, Li N, Chang H, Wang W. AWFC:

preventing label flipping attacks towards federated learning for intelligent IoT. Comput J.

2022;65(11):2849–59.

18. Mapakshi R, Akther S, Stamp M. Temporal analysis of adversarial attacks in federated learning.

In: Stamp M, Jureček M, editors, Machine learning, deep learning, and AI for cybersecurity.

Springer; 2025.

19. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA. Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th international conference on artificial intelligence and statistics, vol 54; 2017. p. 1273–1282.

20. Nair AK, Raj ED, Sahoo J. A robust analysis of adversarial attacks on federated learning environments. Comput Stand Interfaces. 2023;86:103723.

21. Pytorch. https://pytorch.org/.

22. Rodriguez-Barroso N, Jiménez-López D, Luzón MV, Herrera F, Martinez-Cámara E. Survey

on federated learning threats: Concepts, taxonomy on attacks and defences, experimental study and challenges. Inf Fus. 2023;90:148–173.

23. Shaygan M, Meese C, Li W, Zhao X, Nejad M. Review of recent advances and emerging

opportunities. transportation research part C: emerging technologies; 2023. https://arxiv.org/

abs/2305.19591.

24. Stamp M. Introduction to machine learning with applications in information security. 2nd ed.

Chapman and Hall/CRC; 2022.

454

K. Bhatnagar et al.

25. Tolpegin V, Truex S, Gursoy ME, Liu L. Data poisoning attacks against federated learning systems. In: 25th European symposium on research in computer security, ESORICS; 2020. p.

480–501.

26. Tolpegin V, Truex S, Gursoy ME, Liu L. Data poisoning attacks against federated learning systems. In: Chen L, Li N, Liang K, Schneider S, editors, Computer security, ESORICS; 2020.

p. 480–501.

[image: Image 135]

On the Steganographic Capacity

of Selected Learning Models

Rishit Agrawal

, Kelvin Jou

, Tanush Obili , Daksh Parikh

,

Samarth Prajapati , Yash Seth , Charan Sridhar

, Nathan Zhang

,

and Mark Stamp

Abstract Machine learning and deep learning models are potential vectors for var-

ious attack scenarios. For example, previous research has shown that malware can

be hidden in deep learning models. Hiding information in a learning model can

be viewed as a form of steganography. In this research, we consider the general

question of the steganographic capacity of learning models. Specifically, for a wide

range of models, we determine the number of low-order bits of the trained param-

eters that can be overwritten, without adversely affecting model performance. For

each model considered, we graph the accuracy as a function of the number of low-

order bits that have been overwritten, and for selected models, we also analyze the

steganographic capacity of individual layers. The models that we test include clas-

sic machine learning techniques, popular general deep learning models, pre-trained

transfer learning-based models, and others. In all cases, we find that a majority of the bits of each trained parameter can be overwritten before the accuracy degrades. Of

the models tested, the steganographic capacity ranges from 7.04 KB to 44.74 MB.

We discuss the implications of our results and consider possible avenues for further

research.

1

Introduction

The field of information hiding includes watermarking and steganography, which

use similar techniques, but for different purposes [28]. In digital watermarking, we want to hide information in a digital object, typically for the purpose of identifying

the object. For example, we might add a unique digital watermark to each copy of a

confidential pdf files that we distribute. Then, if a copy of the pdf is leaked to an

unauthorized party, we could read the watermark to determine the source of the leak.

In contrast to watermarking, steganography consists of hiding information for the

purpose of communication. For example, if we want to communicate with someone in

R. Agrawal · K. Jou · T. Obili · D. Parikh · S. Prajapati · Y. Seth · C. Sridhar · N. Zhang ·

M. Stamp (B)

San Jose State University, San Jose, CA, USA

e-mail: mark.stamp@sjsu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

457

M. Stamp and M. Jureček (eds.), Machine Learning, Deep Learning and AI for

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_16

458

R. Agrawal et al.

a repressive country, we could hide information in a digital image of, say, a cat. If the recipient knows where and how to read the hidden information, we can communicate

on topics that would otherwise be censored.

Machine learning (ML), which can be considered as a subfield of Artificial Intelli-

gence (AI), enables computers to learn important information from training data [29].

Today, ML models are widely used to deal with a vast array of problems, including

speech recognition, image recognition, sentiment analysis, language translation, and

malware detection, with new applications being constantly developed. Deep learn-

ing (DL) models are the subset of ML models that are based on neural networking

techniques—they are “deep” in the sense of having multiple layers.

Machine learning models are of interest in the context of steganography for the

following reasons.

• Machine learning models are rapidly becoming ubiquitous. For example, learning-

based voice-activated systems were used by more than 3.25 billion people

in 2021 [2].

• The steganographic capacity of most ML models is likely to be high. Models

typically include a large number of weights or other trained parameters, and learn-

ing models do not typically require high precision in their trained parameters.

For example, the most popular algorithm used to train a Support Vector Machine

(SVM) is Sequential Minimal Optimization (SMO), and the efficiency of this algo-

rithm relies on the fact that limited precision suffices [29]. As another example, in neural network-based models, many neurons tend to atrophy during training, with

such weights contributing little to the trained model. By relying on such redundant

neurons, the authors of [33] show that they can hide 36.9 MB of malware within a 178 MB AlexNet architecture, with only a 1% degradation in performance. These

changes do not affect the structure of the model and the embedded malware was

not detected by any of the anti-virus systems tested.

• Machine learning models may be an ideal cover media for advanced malicious

attacks. For example, in addition to simply embedding malware in a learning

model, it is conceivable that a specific predetermined input to the model could be

used to trigger the embedded malware.

As mentioned above, learning models generally do not require high precision

in their trained parameters. Therefore, we propose to measure the steganographic

capacity of learning models by determining the number of low-order bits of each

weight that can be used for information hiding, without adversely affecting the per-

formance of a model. Specifically, we embed information in the . n low-order bits of the weights of trained models, and graph the resulting model accuracy as a function

of. n. As our test case, we train models on a dataset that contains 10 different malware families, with a total of 15,356 samples.

The remainder of the paper is organized as follows. Section 2 gives relevant background information. Section 3 provides an overview the dataset used in our experiments, and we outline our experimental design. Our results are presented and dis-

cussed in Sect. 4. Finally, Sect. 5 gives our conclusions, and we discuss potential topics for further research.

On the Steganographic Capacity of Selected Learning Models

459

2

Background

In this section, we discuss relevant background topics. First, we discuss steganogra-

phy, then we briefly introduce the learning models that are used in this research. We

conclude this section with a discussion of relevant related work.

 2.1

 Steganography

The word “steganography” is a combination of the Greek roots steganós and graphia, which together translate as “hidden writing” [7]. Thus, steganography consists of embedding information in a cover media [30]. In modern practice, digital steganography consists of concealing information within seemingly innocuous data, such as

images, audio, video, or network communication, among other possibilities [1].

We note in passing that cryptography protects a message by transforming it into an

unintelligible format. This is in contrast to steganography, where the goal is to hide

the fact that the communication represented by the hidden information has even taken

place. Steganography dates at least to ancient Greece and it predates cryptography

as a means of secret communication [28].

A simple example of a modern steganographic application consists of hiding

information in the low order RGB bits of an uncompressed image file [28]. Since the RGB color scheme uses a byte for each of the R (red), G (green), and B (blue) color

components of each pixel, there are .224 > 16 , 000 , 000 colors available. However, many of these color combination are indistinguishable to humans, and hence there

are redundant bits in an uncompressed image file that can be used for steganography.

In particular, the low-order RGB bits of each byte can be used to hide information,

without perceptibly changing the image. Provided that the intended recipient knows

which images are used for hiding information, and knows how to extract the informa-

tion, communication can take place between a sender and receiver, without it being

apparent that the hidden information has been communicated. The steganographic

capacity of an uncompressed image file is surprisingly large—in [28, Sect. 5.9.3] it is shown that the a pdf file containing the entire Alice’s Adventures in Wonderland

book can be embedded in the low order RGB bits of a single image of Alice from

the Alice book itself.

The image-based steganographic technique described in the previous paragraph

is not robust, since it is easy to disrupt the communication, without affecting the

non-steganographic use of such images. If a censor suspects that the low-order RGB

bits of uncompressed image files are being used for steganographic purposes, he can

simply randomize the low-order bits of all such images. The information would thus

be lost from images that were being used for steganography, while all other images

would be unaffected in any perceptible way. Research in information hiding often

focuses on creating more robust steganographic techniques.

The following three issues are relevant for a steganographic technique.

460

R. Agrawal et al.

• Perceptual transparency—A steganographic process should hide information in a

way that is imperceptible to human senses. This ensures that it is not obvious that

the cover medium is being used for secret communication.

• Robustness—As we noted in the case of image steganography discussed above,

such a system may be more useful if it is robust.

• Capacity—The amount of information that can be hidden in the cover medium is

the capacity. The capacity of a steganographic technique depends on the redun-

dancy in the cover media.

In this research, we consider the steganographic capacity of various learning

models. Specifically, we hide information in the low-order bits of trained parameters

of selected learning models. While such a simple approach to information hiding is

not robust, our work does provide a basis for designing more advanced techniques,

with the analogy to image-based steganography being obvious.

 2.2

 Learning Models

Machine learning (ML) and deep learning (DL) are tools used in the field of artificial

intelligence (AI). The general topic of ML deals with training “machines” to learn

from data, and is often used for classification tasks. In our usage, DL is the subset

of ML that uses Artificial Neural Networks (ANN), generally with multiple hidden

layers, which is the source of the word “deep” in DL. Neural networking algorithms

are designed to (loosely) mimic the structure of the human brain, and such mod-

els have proven to be very effective for solving complex problems such as image

and speech recognition, natural language processing, and playing complex games at

superhuman levels.

ML enables computers to learn important information, and improve based on

experience, which saves humans from the inherently difficult task of extracting such

information from massive volumes of data [29]. A primary goal in the field of machine learning is to enable computers to learn, while requiring minimal human intervention

or assistance [26].

As mentioned above, ML techniques are applied in a wide and growing range

of fields. ML techniques have become staples in the areas of data security, finance,

healthcare, and so on. The subfield of DL has been particularly successful at dealing

with such challenging problems as speech recognition, image classification, senti-

ment analysis, and language translation, among many others [6].

In recent years, DL models have achieved significant successes due to their ability

to automatically extract complex patterns and representations from raw data without

the requirement of extensive feature engineering. Through the process of training, DL

models learn to recognize patterns and relationships in data, enabling them to often

perform tasks at a higher level than had previously been achievable using “classic”

ML models.

On the Steganographic Capacity of Selected Learning Models

461

ML algorithms can be subdivided into supervised and unsupervised techniques.

A supervised ML technique requires labeled data to train the model. In contrast,

unsupervised machine learning techniques can be applied to unlabeled data. In this

paper, we only consider supervised learning techniques; specifically, we train models

to classify samples from a dataset containing 10 different malware families.

Next, we introduce each of the learning techniques that are employed in the

experiments in Sect. 4. Specifically, we discuss Logistic Regression (LR), Support Vector Machine (SVM), Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short Term Memory (LSTM) models, VGG16, DenseNet121,

InceptionV3, Xception, and Auxiliary Classifier Generative Adversarial Network

(ACGAN).

2.2.1

Overview of Logistic Regression

Logistic Regression (LR) is a traditional machine learning algorithm, designed to

be used for classification problems with a finite number of classes [13]. LR utilizes the sigmoid function to map features to a scale of 0 to 1. While training, the model

derives coefficients for each of the variables and determines a threshold for each clas-

sification. These coefficients are analogous to the weights in a deep learning model.

One advantage of LR is that we obtain probabilities for each classification. While

extremely simple, LR models often perform reasonably well on many classification

tasks.

2.2.2

Overview of Support Vector Machine

Support Vector Machines (SVM) are a class of popular supervised learning algo-

rithms, specifically designed for classification tasks. SVMs have strong generaliza-

tion capability and robustness, and they come in both linear and non-linear forms.

The SVM input layer accepts the feature vectors, and the prediction is obtained via

the output layer.

The main elements of an SVM are support vectors, decision boundaries (as deter-

mined by hyperplanes), and a kernel function. The kernel function can be used to

map input data into a higher-dimensional “feature space”, which enables the model

to deal with non-linear relationships in terms of the input data. The main concept

behind an SVM is to find the optimal hyperplane that can best separate the different

classes. Support vectors are those feature vectors that maximize the margin, where

margin is defined as the minimum distance from a feature vector to the decision

boundary.

The process of training an SVM involves solving a quadratic programming prob-

lem, with the Sequential Minimal Optimization (SMO) algorithm currently being the

best available means to do so. Of relevance to the research reported in this paper, the SMO algorithm specifically takes advantage of the fact that the weights of a trained

SVM do not require great accuracy [29].

462

R. Agrawal et al.

2.2.3

Overview of Multilayer Perceptron

Multilayer Perceptrons (MLP) are a popular class of feedforward neural network

architectures that are widely used for supervised learning tasks, including classifica-

tion and regression [32]. MLPs consist of multiple layers of interconnected nodes, where each node receives input from the previous layer and produces output that is

passed to the next layer.

The input layer of an MLP receives the input data, and the output layer produces

the final prediction. In between these layers, there can be one or more hidden layers

that help the model to learn complex patterns in data. Each node in the hidden layers

applies a nonlinear activation function to the weighted sum of its inputs, which helps

to capture non-linear relationships in the data.

MLPs are trained using backpropagation, which is an optimization algorithm

that adjusts the weights of the network based on the difference between the predicted

output and the actual class label [29]. The weights are updated using gradient descent, which iteratively adjusts the weights to minimize the error.

One of the main advantages of MLPs is their ability to learn complex patterns in the

data, making them suitable for high-dimensional and non-linear datasets. However,

since they use fully-connected layers, MLPs can be computationally expensive to

train and, as with most DL models, they require a large amount of labeled data to

achieve high accuracy.

2.2.4

Overview of Convolutional Neural Networks

Convolutional Neural Network (CNN) is a prominent general deep learning tech-

nique. CNNs were originally designed for images, utilizing a unique architecture,

consisting of convolutional layers, pooling layers, and dense layers (also known as

fully-connected layers). The first convolutional layers trains filters based on input

data. These filters help distinguish basic aspects of the image. Deeper convolutional

layers are trained on the output of the previous layer, which enables the model

to learn more abstract features—and, ultimately, to distinguish between complex

images, such as those representing “cat” and “dog”. Convolution layers are often

followed by a pooling layer, which decrease the dimensionality, thereby decreasing

the computational requirements. The final layer of a CNN is a dense layer that is

utilized to classify [3].

In spite of their origin in image classification, CNNs are applicable to other types

of data. In particular, CNNs can be expected to perform well in cases where local

structure is dominant.

2.2.5

Overview of LSTM

Long Short Term Memory (LSTM) is a specific type of Recurrent Neural Network

(RNN). RNNs allow previous output to be used as input, based on recurrent con-

On the Steganographic Capacity of Selected Learning Models

463

nections, which enables such models to have a form of memory that is absent in

feedforward architectures. However, in plain vanilla RNNs, this memory tends to

create gradient flow problems when training via backpropagation. One advantage of

LSTMs over plain vanilla RNNs is their ability to mitigate these gradient problems

when training. LSTMs achieve this improvement over generic RNNs by use of a

complex gating structure [29].

We note in passing that, commercially, LSTM is one of the most successful archi-

tectures yet developed. Examples of significant applications where LSTMs have

played a crucial role include Google Allo [11], Google Translate [35], Apple’s Siri [14], and Amazon Alexa [9].

2.2.6

Overview of VGG16

Visual Geometry Group 16 (VGG16) is a popular computer vision model [27].

VGG16 was designed as a deep convolutional neural network, pre-trained for image

classification on the ImageNet dataset.

The model derives its name from its 16 layers with trainable parameters. VGG16

includes 13 convolutional layers, five max-pooling layers, and three dense layers,

resulting in a total of 21 layers. Of these 21 layers, the five max-pooling layers do

not contain any trainable weights.

One unique aspect of VGG16 is its architectural uniformity. It employs convolu-

tional layers with a consistent .3 × 3 filter size and a stride of one, using the same

padding throughout. Additionally, max-pooling layers in VGG16 use a .2 × 2 filter

with a stride of two. This simplicity facilitates ease of implementation and efficient

training.

The generalization ability of VGG16 to images beyond its training data has made it

a popular and successful model. VGG16 is commonly employed in transfer learning,

where the original dense layers are replaced with new task-specific dense layers.

The hidden layers, consisting of the convolutional and max-pooling layers from the

original model, remain unchanged and are used as a feature extractor while training

the new fully connected layers on the new data.

2.2.7

Overview of DenseNet121

DenseNet121 is a convolutional neural network architecture that belongs to the

DenseNet family [10]. It consists of four dense blocks and several transition layers that involve convolution and pooling. The dense layers receive direct input from

all preceding layers within the same block, allowing for feature reuse. Transition lay-

ers are inserted between dense blocks to control the spatial dimensions and channel

depth of the feature maps. A dense blocks is typically followed by an average-pooling

layer, which serves to reduce the dimensionality. DenseNet121 ends with a classifi-

cation head, containing a fully connected layer with a softmax activation.

464

R. Agrawal et al.

DenseNet121 was designed to address the limitations of traditional CNN archi-

tectures, such as vanishing gradients and information flow constraints. Since its

introduction in 2017, the model has been successfully applied to image classifica-

tion tasks and object detection. With excellent information flow and feature reuse,

DenseNet121 can capture fine-grained details and small-scale patterns throughout the

network, which is crucial for image analysis. In spite of having more than six million

trainable parameters, DenseNet121 is more computationally efficient and requires

less memory than many other comparable CNN models, including ResNet152 and

VGG16 [10].

2.2.8

Overview of InceptionV3

InceptionV3 is a prominent CNN architecture that has been very successful in the

domain of computer vision. This advanced architecture was developed as an enhance-

ment to Google’s initial Inception model, providing an innovative approach to effi-

cient computation and the discernment of complex patterns within image data [31].

A distinguishing feature of the InceptionV3 network is its proprietary “Inception

Modules.” These modules incorporate convolution operations with various kernel

sizes that operate simultaneously, thereby enabling the model to efficiently learn

features from the input data.

In typical applications, the input to an InceptionV3 model comprises image data,

and its output layer delivers predictions across a pre-defined set of classes. The

intervening layers of the architecture—including numerous convolutional layers,

pooling layers, Inception modules, and fully connected layers—perform sequential

transformations of the input data. This sequence facilitates the extraction of patterns

and relevant features from the images.

The training of the InceptionV3 model employs backpropagation and gradient

descent. Due to its complex and deep structure, it also employs advanced techniques

such as batch normalization (BatchNorm) and sophisticated initialization schemes.

These approaches are intended to ensure efficient training and mitigate potential

issues such as the vanishing gradient problem.

The InceptionV3 architecture is known for its balance of computational efficiency

and high accuracy, performing effectively even with a large number of classes and

when handling high-resolution image data. Nevertheless, training the InceptionV3

network can be computationally intensive, and typically requires a substantial volume

of labeled data.

2.2.9

Overview of Xception

The Xception model is a deep CNN that is an expansion of the Inception archi-

tecture. The convolutional blocks that make up the Xception architecture each have

multiple convolutional layers [5]. The convolutions that the Xception model employs are divided into two categories, namely, depthwise convolutions and pointwise con-

On the Steganographic Capacity of Selected Learning Models

465

volutions. Pointwise convolutions utilize a .1 × 1 convolution to mix the outputs of

depthwise convolutions, whereas depthwise convolutions apply a single filter to each

channel-wise . n × n spatial convolution independently. A matrix of pixel values is used to represent the input image, and each pixel contains RGB color information,

which is passed through an initial convolution block. Global average pooling in

employed, where the average value of each feature map to create a single value for

each channel. The final output layer consists of a fully connected layer followed by

a softmax activation function for classification tasks.

2.2.10

Overview of ACGAN

Auxiliary Classifier Generative Adversarial Network (ACGAN) is a specific type

of Generative Adversarial Network (GAN) that is used when the data consists of

multiple classes. In addition to classification, GANs can be used to generate new

“deep fake” data instances that resemble the training data.

Any GAN consists of two neural networks, a generator and a discriminator, that

compete in an adversarial zero-sum game. The generator produces new pieces of

data that are as close to the training data as possible. The discriminator attempts to

determine whether the input it receives—some of which comes from the generator

and some of which comes from the actual training data—is generated or authentic.

The discriminator and generator weights are updated in a way that incentivizes the

generator to produce “fake” data that is similar to the training data, and incentivizes

the discriminator to accurately diagnose if a sample is fake or real [8].

An ACGAN works similarly, except that the discriminator also returns the class

it thinks the data belongs to. The ACGAN incentivizes the generator to produce

believable fakes that conform well to a specific class, while the discriminator is

incentivized to accurately diagnose fake samples and classify the data.

 2.3

 Related Work

In the paper [33], a technique that the authors refer to as “EvilModel” is used to hide malware in a neural network model. In one example, a malware sample of

size 36.9 MB is embedded in a specific model, and the accuracy of the model is

reduced by about 1%. The authors of [33] embed malware in a learning model by carefully selecting weights that have minimal effect on model performance, and then

overwrite these weights with the malware sample.

The paper [34] is a continuation of the work in [33]. Among other results, in [34], malware is embedded in the least significant bits of model weights, and an “embedding rate” of slightly more than 48% is achieved.

The paper [15] considers a technique that its authors call “StegoNet.” Among other contributions, this paper includes experiments consisting of modifying the least

466

R. Agrawal et al.

significant bits of model weights, and they propose a plausible trigger mechanisms

for malware that is embedded in a machine learning model.

Here, we consider the problem of embedding information in the least significant

bits of model weights. In comparison to [34], we are generally able to achieve relatively high embedding rates with no significant decrease in model performance. In

contrast to both [15, 34], we consider far more model types, and our analysis is much more thorough, as we provide graphs explicitly showing the tradeoff between the

number of bits overwritten and model accuracy.

The work presented in this paper is a continuation of the work in [36], where the steganographic capacity of a Multilayer Perceptron (MLP), a Convolutional Neural

Network (CNN), and a specific Transformer model are analyzed. Here, we consider

the models introduced in Sect. 2.2, above, and provide a detailed analysis of the steganographic capacity of each.

3

Implementation

In this section, we introduce the malware dataset used to train our learning models.

Then we provide details on our experimental design. Our experimental results are

given in Sect. 4, below.

 3.1

 Dataset

Malware samples that are closely related can be grouped into families. Malware

samples within a family generally have similar functionality, behavior, and code

structure. Members of a given family typically share a core code base that contains

common functions, routines, and behavior. Malware families tend to evolve over

time, and new families can branch off from existing families.

In this research, we consider a malware dataset obtained from VirusShare [12].

This dataset contains more than 500,000 malware executables. From this dataset

of 500,000 malware executables, we consider the top 10 most numerous families—

these malware families and number of samples per family are listed Table 1. Note that the dataset is imbalanced, with the most numerous of the 10 families containing

more than 17% of the samples, while the least numerous has slightly over 7% of the

samples.

Next, we briefly describe each of these families; for more details, see [36]. These families include several different categories of malware, including viruses, worms,

and Trojans.

Adload is an adware program that displays unwanted advertisements on a web

browser [25].

On the Steganographic Capacity of Selected Learning Models

467

Table 1 Malware families

Family

Samples

Fraction of total

Adload

1225

0.0798

BHO

1412

0.0920

Ceeinject

1084

0.0706

OnLineGames

1511

0.0984

Renos

1567

0.1020

Startpage

1347

0.0877

VB

1110

0.0723

VBinject

2689

0.1751

Vobfus

1108

0.0721

Winwebsec

2303

0.1500

Total

15,356

1.0000

BHO

is a type of add-on or plugin for web browsers, such as Internet Explorer.

While there are many legitimate BHOs, the malware version can perform unwanted

actions, such as redirecting web traffic or displaying unwanted ads [19].

Ceeinject injects itself into legitimate processes running on a Windows oper-

ating system, allowing it to execute its malicious code undetected [17].

OnLineGames

is a Trojan that mimics an online game [24].

Renos

is designed to trick users into purchasing fraudulent security software or

services [18].

Startpage is a family is Trojans that modifies a user’s web browser settings,

such as the homepage and search engine, without the user’s consent [23].

VB is a simple Trojan that spreads a worm by copying itself to removable drives,

network shares, and other accessible file systems [16].

VBinject

is a general technique that is applied by malware author to inject

malicious program into legitimate Windows processes [20].

Vobfus is a malware family that downloads other malware, such as Zbot, onto

a victim’s computer [21].

Winwebsec is designed to trick users into purchasing fraudulent security soft-

ware or services. It displays false alerts and warnings about supposed security

threats [22].

We consider several types of feature vectors, depending on the requirements of the

particular model under consideration. For our feedforward models (LR, SVM, MLP,

ACGAN), we extract a relative byte histogram from each sample. For our image-

based models (CNN, VGG16, DenseNet121, InceptionV3, Xception), we treat the

raw bytes of an exe file as an image. For example, if a model uses.64 × 64 images,

we place the first 4096 bytes of an exe into a .64 × 64 array (padding with 0 bytes,

if necessary) which we then treat as an image. For our model that requires sequential

data (LSTM), we use the first . n bytes of each exe file. Note that in all cases, these

468

R. Agrawal et al.

feature vectors are trivial to generate, and require no costly disassembly or dynamic

analysis.

 3.2

 Model Training

A similar training and testing procedure is used for each of the 10 learning models

considered. First, we train each model with labeled data and test the trained model,

which establishes a baseline level of performance. In this phase a grid search is

performed over a set of reasonable hyperparameter values. Accuracy is used as our

measure of performance.

After the initial training and testing, data is inserted into the low-order . n bits of the weights, which, on average, changes about half of the bit values. For each. n, the performance of the model is re-evaluated using the same data and accuracy metric

as for the unmodified model. This allows for a direct comparison of the results for

each . n. We graph the accuracy as a function of . n.

4

Steganographic Capacity Experiments

In this section, we consider the steganographic capacity of each of the 10 models

discussed in Sect. 2.2. As mentioned above, to measure the steganographic capacity, we embed information in the low-order . n bits of selected model weights, and we

graph the accuracy as a function of . n. In all cases, the information that we hide is extracted from the pdf version of the book Alice’s Adventures in Wonderland [4].

For each deep learning model, we consider the following cases.

1. Only the output layer weights are modified

2. The weights of all hidden layers are modified

3. All of the model weights are modified

For selected models, we also consider the effect of overwriting the weights of individ-

ual layers. In addition to graphing the model accuracy as a function of. n, we provide a capacity graph, that is, the number of model bits that have been overwritten for

each . n.

To determine the overall capacity of a model, we find the number of bits . n that must be overwritten for at least a 1% drop in accuracy, as compared to the original

trained model, which has no bits of its weights overwritten. We then use. n − 1 as the per-weight steganographic capacity, and the total capacity (in bits) is determined by

multiplying the number of weights by. n − 1. We give the capacity in kilobytes (KB) or megabytes (MB), as appropriate.

On the Steganographic Capacity of Selected Learning Models

469

Table 2 LR hyperparameters tested

Hyperparameter

Values tested

solver

lbfgs, saga, liblinear

penalty

elasticnet, l2

C (regularization)

0.2, 0.3, 0.5, 0.7, 0.8

max_iter

50, 80, 100, 120, 200, 500

 4.1

 LR Experiments

This model utilized the LogisticRegression() class from the sklearn

package in Python scikit-learn. The class has 4 different hyperparameters,

all of which were tested via grid search and optimized. The hyperparameter values

tested are given in Table 2, with the values in boldface yielding the best results.

For this 10-class classification problem, the model achieves a respectable accuracy

of 0.8717 on the validation set. From the confusion matrix for our model, which

appears in Fig. 13 in the Appendix, we see a similar spread of errors, as compared to the other models tested, with slightly poorer performance in identifying VB viruses.

Since LR models only have one layer of coefficients, we can only overwrite the

bits in that layer; the graph of these results are given in Fig. 1. There is no drop in model accuracy when . n ≤ 22 bits are overwritten, with about a 2% drop at. n = 23.

Therefore, we can overwrite the 22 low-order bits of each weight with no loss in

performance and hence we deem . n = 22 as the steganographic capacity per weight

of this model. Since the model has 2560 weights, the total steganographic capacity

is .22 · 2560 = 56 , 320 bits, or 7.04 KB.

1.00

12

10

0.80

8

0.60

(inKB)

6

ccuracy A 0.40

4

Capacity

0.20

Accuracy

2

Capacity

0.00

0

0

4

8

12

16

20

24

28

32

Bits overwritten

Fig. 1 LR steganographic capacity graph

470

R. Agrawal et al.

Table 3 SVM model hyperparameters tested

Hyperparameter

Values tested

C (regularization)

0.1, 1, 10

kernel

linear, rbf

gamma

0.1, 1, 10

 4.2

 SVM Experiments

The svm.SVC() function from the sklearn module from scikit-learn was

used for the training and testing of our SVM model. The hyperparameters that we

tested are listed in Table 3, with the selected values in boldface. For example, the SVM model with a C value of 1 yielded the best results, and the linear kernel was

selected, with a gamma value of 0.1.

Based on the confusion matrix for the SVM model, which appears in Fig. 14 in the Appendix, the model performs similarly to the other models, with the highest

level of confusion for the VBinject class of viruses. Also, the SVM model outputs

a classifying accuracy of 0.8264 for the Adload class, which is lower than the most

accurate of our models.

The overall accuracy of our SVM model is 0.8870. An SVM consists of a single

“layer” of coefficients, which correspond to the weights of a deep learning model.

Furthermore, SVM coefficients are within the range of .−1 to 1, with a higher mag-

nitude indicating a larger importance in determining the decision boundary. The

model was able to withstand the overwriting of 27 bits before experiencing a sig-

nificant drop in accuracy, which is a slightly higher per-weight capacity than any of

the deep learning models considered. The SVM model contains 26,703 coefficients

(i.e., weights) and hence we calculate the steganographic capacity of the model to

be 90.12 KB (Fig. 2).

 4.3

 MLP Experiments

The MLP results we present here are from [36]; we include these results for the sake of comparison. The MLPClassifier() from the sklearn.neural_network

module was used to train and test our MLP model. The hyperparameters tested are

listed in Table 4, with the selected values appear in boldface. Note that a model with two hidden layers, with 128 and 10 neurons, respectively, was best. Also, the

logistic function was selected as our activation function.

The results obtained when overwriting the low order bits of all weights of our

trained MLP model are summarized in Fig. 3c. We observe that the original accuracy for the model is 0.8417, and the performance of the model is unchanged when the low-order 19 bits of the weights are overwritten, while there is a 1% drop in performance

On the Steganographic Capacity of Selected Learning Models

471

1.00

120

100

0.80

80

KB)

0.60

(in

60

ccuracy A 0.40

40

Capacity

0.20

Accuracy

20

Capacity

0.00

0

0

4

8

12

16

20

24

28

32

Bits overwritten

Fig. 2 SVM steganographic capacity graph

Table 4 MLP model hyperparameters tested

Hyperparameter

Values tested

hidden_layer_sizes

(64, 10), (96, 10), (128, 10)

activation

identity, logistic

alpha

0.0001, 0.05

random_state

30, 40, 50

solver

adam

learning_rate_init

0.00001

max_iter

10000

when 20 bits are overwritten. Overwriting more bits causes the accuracy to drop

substantially.

Figure 3a, b are the results when overwriting the output and internal layer weights, respectively. The results in these two cases are similar—although not identical—to

the results for all weights, discussed above.

There are 100 weights in the output layer, and 34,048 weights in the hidden layer,

which makes the total number of weights 34,148 in this particular MLP model.

Since we can hide information in 19 bits of the all of the weights, we find that the

steganographic capacity of this MLP model is approximately 81.10 KB.

 4.4

 CNN Experiments

A

Keras

Sequential model with the Conv2D(), Dense(), and

MaxPooling2D() layers provided by tensorflow.keras.layers was

used to train our CNN model. After testing the hyperparameters listed in Table 5,

472

R. Agrawal et al.

1.00

0.450

1.00

150

0.375

0.80

0.80

120

0.300

KB)

KB)

0.60

(in

0.60

90

(in

0.225

ccuracy

ccuracy

A 0.40

A 0.40

60

0.150

Capacity

Capacity

0.20

Accuracy

Accuracy

30

0.075

0.20

Capacity

Capacity

0.00

0.000

0.00

0

0

4

8

12

16

20

24

28

32

0

4

8

12

16

20

24

28

32

Bits overwritten

Bits overwritten

(a) Output weights

(b) Internal weights

1.00

150

0.80

120

KB)

0.60

90

(in

ccuracy A 0.40

60

Capacity

0.20

Accuracy

30

Capacity

0.00

0

0

4

8

12

16

20

24

28

32

Bits overwritten

(c) All weights

Fig. 3 MLP steganographic capacity graphs [36]

Table 5 CNN hyperparameters tested

Hyperparameter

Values tested

layers

6, 8, 10 12

activation

ReLU, softmax, sigmoid

dropout rate

0.1, 0.2, 0.3, 0.4, 0.5

learning rate

0.001, 0.1

we found those in boldface to be optimal. The 12 layers in our CNN consist of four

Conv2D() and MaxPooling2D() layers, along with two Dense() layers. The

other two layers are dropout and flattening layers, for which the placement and

dropout rate were tested. The activation function for the last dense layer is softmax,

with the other convolution layers using ReLU as their activation functions.

Our CNN model achieves an accuracy of 0.8925. From the accuracy and loss

graph in Fig. 4, we detect no signs that the model is overfitting the data.

The confusion matrix for our best CNN model appears in Fig. 15 in the Appendix.

From the confusion matrix, we observe that the VB and VBInject viruses account

for the majority of errors on the test set. This is reasonable, as these two families are relatively similar.

The results of overwriting the low-order bits for different layers can be seen

in Fig. 5. In the case of all model weights, the accuracy first drops when we overwrite 21 bits, and hence we denote the per-weight capacity as 20 bits. Our CNN model

On the Steganographic Capacity of Selected Learning Models

473

1.00

1.50

0.80

1.20

0.60

0.90

ccuracy

Loss

A 0.40

0.60

Test accuracy

0.20

Validation accuracy

0.30

Test loss

Validation loss

0.00

0.00

1

2

3

4

5

6

7

8

9

10 11 12 13 14 15

Epoch

Fig. 4 Test and validation graphs for CNN

1.00

25

1.00

7

6

0.80

20

B)

0.80

B)

K

5

M

0.60

15

(in

0.60

4

(in

ccuracy

ccuracy

3

A 0.40

10

A 0.40

Capacity

2

Capacity

0.20

Accuracy

5

0.20

Accuracy

1

Capacity

Capacity

0.00

0

0.00

0

0

4

8

12

16

20

24

28

32

0

4

8

12

16

20

24

28

32

Bits overwritten

Bits overwritten

(a) Output weights

(b) Internal weights

1.00

7

6

0.80

5

MB)

0.60

4

(in

ccuracy

3

A 0.40

2

Capacity

0.20

Accuracy

1

Capacity

0.00

0

0

4

8

12

16

20

24

28

32

Bits overwritten

(c) All weights

Fig. 5 CNN steganographic capacity graphs

has 5130 weights in the output layer and 1,484,544 weights in the internal layers,

for a total of 1,489,674 weights. This give us an overall steganographic capacity of

approximately 3.72 MB

474

R. Agrawal et al.

Table 6 LSTM model hyperparameters tested

Hyperparameter

Values tested

batch_size

16, 32, 64, 128

activation

tanh, ReLU

epoch

5, 10, 12

optimizer

RMSprop, adam

learning_rate

0.0001, 0.001

LSTM_units

64, 128, 512

dense_layer_units

64, 128,

sequence_length

150, 200, 300, 350, 400

 4.5

 LSTM Experiments

The LSTM() function from the keras module was used for training and testing

our LSTM model. Table 6 shows the hyperparameters tested while training, and the boldface entries indicate the combination that yielded the best results. The confusion

matrix for our best LSTM model appears in Fig. 16 in the Appendix.

As feature vectors for our LSTM, we use the first . N bytes of the exe files,

where each byte is converted to the range of 0 and 1 by treating the byte value as

an integer and dividing by 255. We experimented with the different values of . N

as listed in Table 6 and found that . N = 300 gave us the best results. Note that this model is extremely lightweight, and hence it is not surprising that it yields slightly

less accurate results, as compared to other models tested.

When overwriting low-order bits of all weights, the validation accuracy is slightly

more than 0.78 up to 24 bits. However, the accuracy drops about 4% when 25 bits

have been modified per weight, before plummeting at 26 bits, as shown in Fig. 6c.

The results for the output and internal layers are similar.

With 1,119,626 trainable parameters, the weights were split into an LSTM layer

and two dense layers. The majority of the units are found in the LSTM layer (con-

taining a total of 1,052,672) in this particular LSTM model. The first dense layer

has 65,664 weights while the output dense layer only possess 1290. Based on over-

writing the 24 low-order bits, the total steganographic capacity of this LSTM is

about 3.36 MB.

 4.6

 VGG16 Experiments

The

VGG16()

model

pre-trained

on

ImageNet

from

the

tf.keras.applications module was used to train and test our VGG16

model. Since this is a transfer learning model, we replaced the old dense layers with

a new dense layer that has 10 units, each unit corresponding to one of our output

On the Steganographic Capacity of Selected Learning Models

475

1.00

6

1.00

5

5

0.80

0.80

4

B)

4

KB)

M

0.60

(in

0.60

3

(in

3

ccuracy

ccuracy

A 0.40

A 0.40

2

2

Capacity

Capacity

0.20

Accuracy

Accuracy

1

1

0.20

Capacity

Capacity

0.00

0

0.00

0

0

4

8

12

16

20

24

28

32

0

4

8

12

16

20

24

28

32

Bits overwritten

Bits overwritten

(a) Output weights

(b) Internal weights

1.00

5

0.80

4

B) M

0.60

3

(in

ccuracy A 0.40

2

Capacity

0.20

Accuracy

1

Capacity

0.00

0

0

4

8

12

16

20

24

28

32

Bits overwritten

(c) All weights

Fig. 6 LSTM steganographic capacity graphs

Table 7 VGG16 model hyperparameters tested

Hyperparameter

Values tested

random_state

100, 120, 130

solver

adam

learning_rate_init

0.001, 0.01

max_iter

50, 75, 100

classes. The output layer uses a softmax activation function. The hyperparameters

tested are listed in Table 7, with the selected values in boldface. Note that most of the hyperparameters of the model are predetermined due to transfer learning. The

confusion matrix for our best VGG16 model appears in Fig. 17 in the Appendix.

For all of the pre-trained models considered here (i.e., VGG16, DenseNet121,

InceptionV3, and Xception) we refer to the weights that are re-trained for our malware

classification problem as the “trained weights.” These are in contrast to the pre-trained

weights, which do not change from the pre-trained models.

Only the output layer weights of this model were retrained for our malware classi-

fication problem. From the graph in Fig. 7a, we see that our VGG16 model accuracy is maintained when 21 bits of the trained weights are overwritten, with a drop of

more than 2% at 22 bits, and a larger drop thereafter. Thus, the per-weight capacity

476

R. Agrawal et al.

1.00

1.00

20

60

0.80

B)

0.80

B)

15

K

M

0.60

(in

0.60

40

(in

ccuracy

10

ccuracy

A 0.40

A 0.40

20

Capacity

Capacity

0.20

5

Accuracy

0.20

Accuracy

Capacity

Capacity

0.00

0

0.00

0

0

4

8

12

16

20

24

28

32

0

4

8

12

16

20

24

28

32

Bits overwritten

Bits overwritten

(a) Output (trained) weights

(b) Pre-trained weights

1.00

60

0.80

MB)

0.60

40

(in

ccuracy A 0.40

20

Capacity

0.20

Accuracy

Capacity

0.00

0

0

4

8

12

16

20

24

28

32

Bits overwritten

(c) All weights

Fig. 7 VGG16 steganographic capacity graphs

is 21 bits when only trained weights are considered. Since the output layer has 5130

weights, this gives us a capacity of 13.47 KB.

Figure 7b gives capacity results for the pre-trained weights, while Fig. 7c contains the results for all weights. In both of these cases, the per-weight capacity is 20 bits.

The hidden layer of our VGG16 implementation has 14,714,688 weights, and hence

the total number of weights is 14,719,818 in our VGG16 model. Considering all

weights, this gives us a capacity of almost 36.8 MB.

Figure 18 in the Appendix gives the steganographic capacity results for each of the 13 individual layers in our VGG16 model. In each case, these graphs follow a

similar pattern, and hence we observe no dramatic differences between the layers,

with respect to our steganographic capacity experiments.

 4.7

 DenseNet121

DenseNet121() from the tensorflow module was used for training and test-

ing. Table 8 shows the hyperparameters tested, and the boldface entries indicate the combination that attained the best results. The confusion matrix for our best

DenseNet121 model appears in Fig. 19 in the Appendix.

From Fig. 8c we observe that model accuracy is about 0.88 and that overwriting 20

bits of the trained weights provides no loss in accuracy, but overwriting 21 bits results

On the Steganographic Capacity of Selected Learning Models

477

Table 8 DenseNet121 hyperparameters tested

Hyperparameter

Values tested

batch_size

16, 32, 64, 128

activation

ReLU

kernel_regularizer

l2 (0.01)

epoch

5, 10, 12

optimizer

adam

learning_rate

0.0001, 0.001

dense_layer_units

64, 128, 512

input_shape

64, 128, 224, 64

1.00

1.00

20

2.0

0.80

B)

0.80

B)

15

K

1.5

M

0.60

(in

0.60

(in

ccuracy

10

ccuracy

1.0

A 0.40

A 0.40

Capacity

Capacity

0.20

5

0.5

Accuracy

0.20

Accuracy

Capacity

Capacity

0.00

0

0.00

0.0

0

4

8

12

16

20

24

28

32

0

4

8

12

16

20

24

28

32

Bits overwritten

Bits overwritten

(a) Output (trained) weights

(b) Internal (trained) weights

1.00

3.0

2.5

0.80

B)

2.0

M

0.60

(in

1.5

ccuracy A 0.40

1.0

Capacity

0.20

Accuracy

0.5

Capacity

0.00

0.0

0

4

8

12

16

20

24

28

32

Bits overwritten

(c) All trained weights

Fig. 8 DenseNet121 steganographic capacity graphs

in a 2% drop, with further declines thereafter. Thus, the per-weight steganographic

capacity of our DenseNet121 model is 20, when considering the trained weights.

DenseNet121 contains 7,571,530 total parameters, but only 700,106 weights are

trainable. Thus, when modifying the trained weights, the model has a capacity of

about 1.75 MB, based on a per-weight capacity of 20 bits.

478

R. Agrawal et al.

 4.8

 InceptionV3

The InceptionV3 pre-trained model from the Keras library was utilized for our

training and testing. This model is based on transfer learning, with fine tuning applied

to the output and dense layers. The hyperparameters tested are listed in Table 9, with the selected values in boldface. Since InceptionV3 is a pre-trained model, only three

hyperparameters were tested. The confusion matrix for our best InceptionV3 model

appears in Fig. 20 in the Appendix.

Figure 9c summarize the effect of hiding data in all trained weights of our trained InceptionV3 model. The model’s initial accuracy is approximately 0.9004

and remains above 0.89 until we have overwritten the 26 least-significant bits, which

causes only a slight decline in accuracy to 0.88, with more substantial drops there-

after. Thus, with respect to the trained weights, we consider 25 bits as the per-weight

capacity of this model.

Table 9 InceptionV3 hyperparameters tested

Hyperparameter

Values tested

epochs

2, 4, 5, 8

batch_size

32, 64, 128

learning_rate

0.001, 0.0001, 0.0005

1.00

50

1.00

10

0.80

40

8

B)

0.80

B)

K

M

0.60

30

(in

0.60

6

(in

ccuracy

ccuracy

A 0.40

20

A 0.40

4

Capacity

Capacity

0.20

Accuracy

10

0.20

Accuracy

2

Capacity

Capacity

0.00

0

0.00

0

0

4

8

12

16

20

24

28

32

0

4

8

12

16

20

24

28

32

Bits overwritten

Bits overwritten

(a) Output weights

(b) Dense layer weights

1.00

10

1.00

100

0.80

8

0.80

80

MB)

MB)

0.60

6

(in

0.60

60

(in

ccuracy

ccuracy

A 0.40

4

A 0.40

40

Capacity

Capacity

0.20

Accuracy

2

0.20

Accuracy

20

Capacity

Capacity

0.00

0

0.00

0

0

4

8

12

16

20

24

28

32

0

4

8

12

16

20

24

28

32

Bits overwritten

Bits overwritten

(c) All trained weights

(d) All pre-trained weights

Fig. 9 InceptionV3 steganographic capacity graphs

On the Steganographic Capacity of Selected Learning Models

479

Our InceptionV3 model has 10,240 weights in the output layer, and 2,097,152

weights in the dense layer, for a total of 2,107,392 trained weights. With a per-

weight capacity of 25 bits, this gives us a total steganographic capacity of approxi-

mately 6.59 MB in the trained weights.

In Fig. 9d, we have the capacity graph for the pre-trained weights of the InceptionV3 model. Interestingly, the pre-trained weights have a much lower per-weight

steganographic capacity, as compared to the trained weights. For the pre-trained

weights, we observe a drop of about 1% in accuracy at 15 bits, followed by a steep

drop at 16 bits, and hence we consider 14 bits as the per-weight capacity with respect

to the pre-trained weights. There are 21,802,784 weights in the pre-trained Incep-

tionV3 layer, so even with its lower per-weight capacity of 14 bits, the total stegano-

graphic capacity of the pre-trained weights is large, at 38.15 MB.

 4.9

 Xception

The Xception pre-trained model from the tensorflow.keras module was

used for our Xception experiments. The hyperparameters tested are listed in Table 10, and the combination that yielded the best result appear in boldface. Note that both

softmax and ReLU activation functions were utilized in the hidden layers, and the

input data was reshaped to fit the input size of . (256 , 256 , 3). The confusion matrix for our best Xception model appears in Fig. 21 in the Appendix.

Figure 10c provides a summary of our experimental results when the low-order bits of all weights are overwritten. The initial accuracy is about 0.88, and there is a marginal—but inconsistent—decline at small values of. n, with the consistent decline

beginning when 21 bits of the trained weights are overwritten. Thus, we take. n = 20

as the per-weight steganographic capacity of our Xception model, with respect to

trained weights.

For the Xception model, the hidden layers have 29,046 weights, and the output

layer has 5130 weights, for a total of 34,176 trained weights. Based on a per-weight

capacity of 20 bits, the steganographic capacity is 85.44 KB in the trained weights.

Table 10 Xception model hyperparameters tested

Hyperparameter

Values tested

input_shape

(256, 256, 3), (299, 299, 3)

activation

ReLU, softmax

num_classes

10

batch_size

16, 32, 64

epochs

5, 7, 10, 15

learning_rate

0.001, 0.0001

kernal_regularizer

l2 (0.01)

test_split

0.2

480

R. Agrawal et al.

1.00

25

1.00

120

100

0.80

20

B)

0.80

B)

K

80

K

0.60

15

(in

0.60

(in

60

ccuracy

ccuracy

A 0.40

10

A 0.40

40

Capacity

Capacity

0.20

Accuracy

5

0.20

Accuracy

20

Capacity

Capacity

0.00

0

0.00

0

0

4

8

12

16

20

24

28

32

0

4

8

12

16

20

24

28

32

Bits overwritten

Bits overwritten

(a) Output (trained) weights

(b) Internal (trained) weights

1.00

140

120

0.80

B)

100

K

0.60

80

(in

ccuracy

60

A 0.40

40

Capacity

0.20

Accuracy

20

Capacity

0.00

0

0

4

8

12

16

20

24

28

32

Bits overwritten

(c) All trained weights

Fig. 10 Xception steganographic capacity graphs

Table 11 ACGAN discriminator hyperparameters tested

Hyperparameter

Values tested

pad-size

same

batch size

32, 128, 256

max-epochs

10000, 14000

random_state

10, 50, 100

momentum

0.5, 0.8

learning_rate_init

0.0001 0.0002

solver

adam

 4.10

 ACGAN

For our ACGAN, we use the Sequential model from keras.models to train

the discriminator and generator. The discriminator of the trained ACGAN is then

used as the classifier in our experiments. The hyperparameters tested for the model

are listed in Table 11, with the selected values in boldface. The confusion matrix for our best ACGAN discriminator model appears in Fig. 22 in the Appendix. Note that the ACGAN generator plays no role in our capacity calculations.

The results obtained when hiding information in the low-order bits of the weights

of our trained discriminator model are summarized in Fig. 11. We observe that the original accuracy for the model is approximately 0.8469, and the performance of the

On the Steganographic Capacity of Selected Learning Models

481

1.00

90

1.00

500

75

0.80

400

B)

0.80

B)

60

K

K

0.60

(in

0.60

300

(in

45

ccuracy

ccuracy

A 0.40

A 0.40

200

30

Capacity

Capacity

0.20

Accuracy

Accuracy

100

15

0.20

Capacity

Capacity

0.00

0

0.00

0

0

4

8

12

16

20

24

28

32

0

4

8

12

16

20

24

28

32

Bits overwritten

Bits overwritten

(a) Output weights

(b) Internal weights

1.00

500

0.80

400

B) K

0.60

300

(in

ccuracy A 0.40

200

Capacity

0.20

Accuracy

100

Capacity

0.00

0

0

4

8

12

16

20

24

28

32

Bits overwritten

(c) All weights

Fig. 11 ACGAN steganographic capacity graphs

model declines by slightly more than 1% when 21 bits are overwritten, and hence

we consider . n = 20 to be the per-bit capacity.

Figure 23 in the Appendix gives results the steganographic capacity results for each of the 4 individual layers in ACGAN. These graphs follow a similar pattern as

the graphs in Fig. 11, and hence we observe no significant differences between the individual layers.

The ACGAN discriminator has 20,490 weights in the output layer and 97,536

weights in the hidden layers, for a total of 118,026 weights. Based on a per-weight

capacity of 20 bits, the total steganographic capacity is 295.065 KB.

 4.11

 Discussion

We summarize our steganographic capacity findings in Table 12 and, in bar graph form, in Fig. 12. Of the models tested, SVM has the highest capacity per weight, which implies that this particular model requires the least precision in its weights.

This is not surprising, given that the SMO algorithm that is used to train SVMs relies

on the fact that low precision suffices. Of the pre-trained transfer learning models,

InceptionV3 has the highest capacity per-weight, with respect to trained weights.

Note that the numbers in Table 12 and Fig. 12 for the pre-trained models (VGG16, DenseNet121, InceptionV3, Xception) only include the trained weights, that is, the

weights that were retrained for the specific malware classification problem under

482

R. Agrawal et al.

Table 12 Summary of results

Model

Layers

Weights

Initial

Steganographic capacity

accuracy

Bits per

Total

weight

LR

All

2560

0.8652

22

7.04 KB

SVM

All

26,703

0.8873

27

90.12 KB

MLP

All

34,148

0.8416

19

81.10 KB

CNN

All

1,489,674

0.8925

20

3.72 MB

LSTM

All

1,119,626

0.7562

24

3.36 MB

VGG16

Trained

5130

0.9079

21

13.47 KB

DenseNet121

Trained

700,106

0.8963

20

1.75 MB

InceptionV3

Trained

2,107,392

0.9004

25

6.59 MB

Xception

Trained

34,176

0.8886

20

85.44 KB

ACGAN

Discriminator

118,026

0.8469

20

295.07 KB

32

5900

27

7

.

28

6

25

bits)

24

MB) 6

24

22

(in

21

(in

20

20

20

20

19

5

20

.7200

4

3

.3600

16

3

capacity

capacity 3

12

tal o

.7500

eight

T 2

1

w

8

er P

1

0854

.2951

4

.0074

.0901

0811

0135 .

.

0

0

0

0.

0

0

0

0

R

6

LR

VM

TM

AN

L

VM

TM

AN

S

MLP

CNN

MLP

CNN

ption

LS

GG16 et121

S

GG1

et121

V

CG

LS

V

N

CG

Xception A

se

Xce

A

DenseN InceptionV3

Den

InceptionV3

(a) Total capacity

(b) Per weight capacity

Fig. 12 Bar graphs of capacity results

consideration. In Sect. 4.8, we found that the per-weight capacity for the pre-trained layers of the InceptionV3 model was just 14 bits, as compared to 25 bits for its

trained weights. In spite of this low per-weight capacity, the number of pre-trained

weights in InceptionV3 is large, and hence the steganographic capacity is large—if

we consider all weights, the capacity is 44.74 MB. Similarly, in Sect. 4.6 we showed that if we consider all weights of the VGG16 model, it also has an extremely high

steganographic capacity at 36.80 MB.

On the Steganographic Capacity of Selected Learning Models

483

5

Conclusion

The primary goal of this research was to determine reasonable lower bounds for the

stenographic capacity of a representative sample of learning models. Each model

was trained on a dataset of more than 15,000 malware executables from 10 families,

with more than 1000 samples per family.

All of the trained learning models underwent a similar testing procedure: We first

determined the accuracy of a model on the test set, then we embedded information

in the . n low-order bits of the weights, for . n = 1 , 2 , . . . , 32, and we recomputed the classification accuracy for each . n. For generic deep learning models, we experimented with the output layer weights, the hidden layer weights, and all of the weights,

while for pre-trained models, we considered the trained weights. The results were

fairly consistent across all models, in that a substantial number of bits per weight

can be used to hide information, with minimal effect on the accuracy. In addition, at

some point, the accuracy of all models dropped precipitously, indicating a minimum

level of required precision. These results were also reasonably consistent across the

various layers of the models, with the only notable exception being the pre-trained

weights of the InceptionV3 model, which had a lower per-weight steganographic

capacity.

Our experimental results show that the steganographic capacity of the models we

tested is surprisingly high. This is potentially a significant security issue, since such

models are ubiquitous, and hence it is to be expected that attackers will try to take

advantage of them. Embedding, say, malware in a learning model offers an attack

vector that is practical, and could be highly effective in practice.

It would be wise to reduce the steganographic capacity of learning models. Our

results indicate that standard 32-bit weights do not yield a significant improvement

in accuracy over what could be achieved with, say, 16-bit weights, and for some

models, 8-bit weights would be more than sufficient.

Further research into other popular deep learning models would be worthwhile.

Also, training models on different types of problems—including classification prob-

lems of varying levels of difficulty—would tell us whether the capacity of a specific

model varies with the difficulty of the problem. Additional analysis of the pre-trained

weights of transfer learning models would be interesting. Research on compressed

models that use smaller numbers of bits to store each weight would be of practical

significance.

Dropout regularization in, say, MLPs (equivalently, cutouts in CNNs) is used to

force more neurons to be active in training, which can be very effective in reducing

overfitting. It would be interesting to determine whether such regularization tech-

niques also affect the precision of trained weights, which can be measured via the

steganographic capacity experiments presented in this paper.

Another area for further investigation would be to combine some aspects of the

steganographic capacity approach considered in this paper with the work in [33], where information is hidden in weights that are (essentially) unused by the model.

By combining both of these techniques, we could obtain even larger stegano-

[image: Image 136]

484

R. Agrawal et al.

graphic capacities for learning models. Finally, it would be interesting—although

challenging—to obtain tight upper bounds on the minimum size of various models,

with the goal of eliminating any usable steganographic capacity.

Appendix

In this appendix, we provide confusion matrices for the models analyzed in this paper.

We observe that, in general, VB and VBInject are consistently the most difficult

families to distinguish. We also provide additional steganographic capacity graphs

for selected models. We also provide capacity graphs for the individual layers of the

VGG16 and ACGAN models (Figs. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 and 23).

Fig. 13 LR confusion matrix

[image: Image 137]

[image: Image 138]

On the Steganographic Capacity of Selected Learning Models

485

Fig. 14 SVM confusion matrix

Fig. 15 CNN confusion matrix

[image: Image 139]

[image: Image 140]

486

R. Agrawal et al.

Fig. 16 LSTM confusion matrix

Fig. 17 VGG16 confusion matrix

On the Steganographic Capacity of Selected Learning Models

487

1.00

7.5

1.00

160

1.00

300

B)

0.80

6.0

0.80

120

0.80

K

200

0.60

4.5

0.60

0.60

(in

80

ccuracy 0.40

3.0

ccuracy

ccuracy

A

0.40

A

0.40

A

100

Accuracy

Accuracy

40

Accuracy

0.20

1.5

0.20

0.20

Capacity

Capacity

Capacity

Capacity

0.00

0.0

0.00

0

0.00

0

0

4

8

12

16 20 24 28 32

0

4

8

12

16 20 24 28 32

0

4

8

12

16 20 24 28 32

Bits overwritten

Bits overwritten

Bits overwritten

(a) Layer 1

(b) Layer 2

(c) Layer 3

1.00

0.60

1.00

1.20

1.00

2.50

B)

0.80

2.00

0.45

0.80

0.80

0.90

M

0.60

0.60

0.60

1.50

(in

0.30

0.60

ccuracy 0.40

ccuracy

ccuracy

1.00

A

0.40

A

0.40

A

Accuracy

0.15

Accuracy

0.30

Accuracy

0.20

0.20

0.20

0.50

Capacity

Capacity

Capacity

Capacity

0.00

0.00

0.00

0.00

0.00

0.00

0

4

8

12

16 20 24 28 32

0

4

8

12

16 20 24 28 32

0

4

8

12

16 20 24 28 32

Bits overwritten

Bits overwritten

Bits overwritten

(d) Layer 4

(e) Layer 5

(f) Layer 6

1.00

2.50

1.00

5

1.00

10

B)

0.80

2.00

0.80

4

0.80

8

M

0.60

1.50

0.60

3

0.60

6

(in

ccuracy 0.40

1.00

ccuracy

2

ccuracy

4

A

0.40

A

0.40

A

Accuracy

Accuracy

Accuracy

0.20

0.50

0.20

1

0.20

2

Capacity

Capacity

Capacity

Capacity

0.00

0.00

0.00

0

0.00

0

0

4

8

12

16 20 24 28 32

0

4

8

12

16 20 24 28 32

0

4

8

12

16 20 24 28 32

Bits overwritten

Bits overwritten

Bits overwritten

(g) Layer 7

(h) Layer 8

(i) Layer 9

1.00

10

1.00

10

1.00

10

B)

0.80

8

0.80

8

0.80

8

M

0.60

6

0.60

6

0.60

6

(in

ccuracy 0.40

4

ccuracy

4

ccuracy

4

A

0.40

A

0.40

A

Accuracy

Accuracy

Accuracy

0.20

2

0.20

2

0.20

2

Capacity

Capacity

Capacity

Capacity

0.00

0

0.00

0

0.00

0

0

4

8

12

16 20 24 28 32

0

4

8

12

16 20 24 28 32

0

4

8

12

16 20 24 28 32

Bits overwritten

Bits overwritten

Bits overwritten

(j) Layer 10

(k) Layer 11

(l) Layer 12

1.00

10

B)

0.80

8

M

0.60

6

(in

ccuracy 0.40

4

A

Accuracy

0.20

2

Capacity

Capacity

0.00

0

0

4

8

12

16 20 24 28 32

Bits overwritten

(m) Layer 13

Fig. 18 VGG16 capacity graphs for individual layers

[image: Image 141]

[image: Image 142]

488

R. Agrawal et al.

Fig. 19 DenseNet121 confusion matrix

Fig. 20 InceptionV3 confusion matrix

[image: Image 143]

[image: Image 144]

On the Steganographic Capacity of Selected Learning Models

489

Fig. 21 Xception confusion matrix

Fig. 22 ACGAN confusion matrix

490

R. Agrawal et al.

1.00

1.0

1.00

25

0.80

0.8

20

B)

0.80

B)

K

K

0.60

0.6

(in

0.60

15

(in

ccuracy

ccuracy

A 0.40

0.4

A 0.40

10

Capacity

Capacity

0.20

Accuracy

0.2

0.20

Accuracy

5

Capacity

Capacity

0.00

0.0

0.00

0

0

4

8

12

16

20

24

28

32

0

4

8

12

16

20

24

28

32

Bits overwritten

Bits overwritten

(a) Layer 1

(b) Layer 2

1.00

100

1.00

400

0.80

80

0.80

300

KB)

KB)

0.60

60

(in

0.60

(in

200

ccuracy

ccuracy

A 0.40

40

A 0.40

Capacity

100

Capacity

0.20

Accuracy

20

0.20

Accuracy

Capacity

Capacity

0.00

0

0.00

0

0

4

8

12

16

20

24

28

32

0

4

8

12

16

20

24

28

32

Bits overwritten

Bits overwritten

(c) Layer 3

(d) Layer 4

Fig. 23 ACGAN capacity graphs for individual layers

References

1. Agarwal M. Text stegeganographic approaches: a comparison. Int J Netw Secur Appl.

2013;5(1):91–106.

2. Anthony J. 60 notable machine learning statistics: 2021/2022 market share and data analysis.

2022. https://financesonline.com/machine-learning-statistics/

3. Biswal A. Convolutional neural network tutorial. 2022. https://www.simplilearn.com/

tutorials/deep-learning-tutorial/convolutional-neural-network#layers_in_a_convolutional_

neural_network

4. Carroll L. Alice’s adventures in wonderland. Macmillan; 1865. https://www.gutenberg.org/

ebooks/11

5. Chollet F. Xception: deep learning with depthwise separable convolutions. 2017. https://arxiv.

org/abs/1610.02357

6. Duggal N. Top 10 machine learning applications and examples in 2022. 2022. https://www.

simplilearn.com/tutorials/machine-learning-tutorial/machine-learning-applications

7. Fiscutean A. Steganography explained and how to protect against it. 2021. https://www.

csoonline.com/article/3632146/steganography-explained-and-how-to-protect-against-it.

html

8. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. In: Proceedings of the 27th international conference on neural information processing systems, NIPS’14, vol. 2; 2014. p. 2672–2680.

9. Gupta A. Alexa blogs: how Alexa is learning to converse more naturally. 2018. https://

developer.amazon.com/blogs/alexa/post/15bf7d2a-5e5c-4d43-90ae-c2596c9cc3a6/how-

alexa-is-learning-to-converse-more-naturally

10. Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely connected convolutional networks.

2018. https://arxiv.org/abs/1608.06993

11. Khaitan P. Google AI blog: chat smarter with Allo. 2016. https://ai.googleblog.com/2016/05/

chat-smarter-with-allo.html

12. Kim S. PE header analysis for malware detection. Master’s thesis, San Jose State University; 2018.

On the Steganographic Capacity of Selected Learning Models

491

13. Kumar S. Kaggle: linear regression tutorial. 2020. https://www.kaggle.com/code/sudhirnl7/

linear-regression-tutorial

14. Levy S. The iBrain is here—and it’s already inside your phone. Wired; 2016. https://www.

wired.com/2016/08/an-exclusive-look-at-how-ai-and-machine-learning-work-at-apple/

15. Liu T, Liu Z, Liu Q, Wen W, Xu W, Li M. StegoNet: turn deep neural network into a stegoma-lware. In: Proceedings 36th annual computer security applications conference, ACSAC; 2020.

p. 928–938. https://cse.buffalo.edu/~wenyaoxu/papers/conference/xu-acsac2020.pdf

16. Microsoft. Trojan:Win32/VB. 2007. https://www.microsoft.com/en-us/wdsi/threats/malware-

encyclopedia-description?Name=Trojan:Win32/VB

17. Microsoft. VirTool:Win32/CeeInject. 2007. https://www.microsoft.com/en-us/wdsi/threats/

malware-encyclopedia-description?Name=VirTool%3AWin32%2FCeeInject

18. Microsoft. Win32/Renos. 2007. https://www.microsoft.com/en-us/wdsi/threats/malware-

encyclopedia-description?name=Win32/Renos

19. Microsoft. Trojan:Win32/BHO.BO. 2009. https://www.microsoft.com/en-us/wdsi/threats/

malware-encyclopedia-description?Name=Trojan:Win32/BHO.BO

20. Microsoft.

VirTool:Win32/VBInject.

2010.

https://www.microsoft.com/en-us/wdsi/

threats/malware-encyclopedia-description?Name=VirTool:Win32/VBInject&ThreatID=-

2147367171

21. Microsoft. Win32/Vobfus. 2010. https://www.microsoft.com/en-us/wdsi/threats/malware-

encyclopedia-description?name=win32%2Fvobfus

22. Microsoft.

Win32/Winwebsec.

2010.

https://www.microsoft.com/en-us/wdsi/threats/

malware-encyclopedia-description?Name=Win32%2fWinwebsec

23. Microsoft. Trojan:Win32/Startpage. 2011. https://www.microsoft.com/en-us/wdsi/threats/

malware-encyclopedia-description?Name=Trojan:Win32/Startpage

24. Microsoft.

Win32/OnLineGames.

2015.

https://www.microsoft.com/en-us/wdsi/threats/

malware-encyclopedia-description?name=Win32/OnLineGames

25. Microsoft. Adware:Win32/Adload. 2018. https://www.microsoft.com/en-us/wdsi/threats/

malware-encyclopedia-description?Name=Adware:Win32/Adload

26. Selig J. What is machine learning? A definition. 2022. https://www.expert.ai/blog/machine-

learning-definition/

27. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition.

2015. https://arxiv.org/abs/1409.1556

28. Stamp M. Information security: principles and practice, 3rd ed. Wiley; 2021.

29. Stamp M. Introduction to machine learning with applications in information security, 2nd ed.

Chapman and Hall/CRC; 2022.

30. Stanger J. The ancient practice of steganography: what is it, how is it used and why do cybersecurity pros need to understand it. 2020. https://www.comptia.org/blog/what-is-steganography

31. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. 2014. https://arxiv.org/abs/1409.4842

32. Taud H, Mas J-F. Multilayer perceptron (MLP). In: Olmedo MTC, Paegelow M, Mas J-F,

Escobar F, editors, Geomatic approaches for modeling land change scenarios. Springer; 2018.

p. 451–455.

33. Wang Z, Liu C, Cui X. EvilModel: hiding malware inside of neural network models. In: 2021

IEEE symposium on computers and communications, ISCC; 2021. p. 1–7. https://arxiv.org/

abs/2107.08590

34. Wang Z, Liu C, Cui X, Yin J, Wang X. EvilModel 2.0: bringing neural network models into malware attacks. Comput Secur. 2022; 120:102807.

35. Wu Y et al. Google’s neural machine translation system: bridging the gap between human and machine translation. 2016. https://arxiv.org/abs/1609.08144

36. Zhang L, Li D, Jurečková O, Stamp M. Steganographic capacity of transformer models. In: Stamp M, Jureček M, editors. Machine learning, deep learning, and AI for cybersecurity.

Springer; 2025.

[image: Image 145]

Robustness of Selected Learning Models

Under Label-Flipping Attack

Sarvagya Bhargava

and Mark Stamp

Abstract In this paper we compare traditional machine learning and deep learning

models trained on a malware dataset when subjected to adversarial attack based on

label-flipping. Specifically, we investigate the robustness of Support Vector Machines

(SVM), Random Forest, Gaussian Na¨ıve Bayes (GNB), Gradient Boosting Machine

(GBM), LightGBM, XGBoost, Multilayer Perceptron (MLP), Convolutional Neural

Network (CNN), MobileNet, and DenseNet models when facing varying percentages

of misleading labels. We empirically assess the accuracy of each of these models

under such an adversarial attack on the training data. This research aims to provide

insights into which models are inherently more robust, in the sense of being better

able to resist intentional disruptions to the training data. We find wide variation in the robustness of the models tested to adversarial attack, with our MLP model achieving

the best combination of initial accuracy and robustness.

1 Introduction

Malicious software—malware—is a pernicious threat. Machine learning models

have proven to be powerful tools for identifying and mitigating malware-based

attacks. Since malware evolves, we need to constantly improve our defenses, which

implies that research into learning models as applied in to the malware problem is

essential.

One of the fundamental areas where we need to improve our defenses is in dealing

with adversarial attacks on machine learning models. Poisoning attacks typically

involve corrupting the training data or features vectors. The research in this paper,

focuses on label-flipping adversarial attacks [20]. These attacks involve mislabeling data points during training, which serves to corrupt the training phase, and thereby

degrade model performance. Understanding how various models respond to these

attacks is the main focus of this paper. We consider both classic machine learning

techniques and deep learning models.

S. Bhargava · M. Stamp (B)

San Jose State University, San Jose, CA, USA

e-mail: mark.stamp@sjsu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

493

M. Stamp and M. Jureček (eds.), Machine Learning, Deep Learning and AI for

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_17

494

S. Bhargava and M. Stamp

Evaluating machine learning models against label-flipping attacks within the

malware domain is important for the following reasons.

• The consequences of misclassification in malware detection can be severe, lead-

ing to security breaches, data compromise, and system vulnerabilities. Thus it is

important to understand how different models respond to adversarial attacks.

• Many types of learning models have been shown to perform well in the malware

domain. Comparing and evaluating the resilience and robustness of these archi-

tectures offers critical insights that can guiding practitioners in selecting the most

suitable models for defensive applications.

In short, understanding and mitigating the impacts of label-flipping adversarial

attacks is imperative for the development of secure, reliable, and effective machine

learning based malware detection systems. This research advances knowledge in the

field by serving as a practical guide for practitioners to select and implement more

secure machine learning models.

In this paper, we utilize the Malicia dataset—which consists of Windows

malware—to evaluate the resilience of various machine learning and deep learn-

ing algorithms when faced with label-flipping attacks. Initially, we pre-process data

comprising of 11,688 malware binaries, which are classified into 48 distinct mal-

ware families [14]. We exclude from our training and testing all classes containing fewer than 50 samples. We partition the resulting dataset into training and testing

subsets, and we implement a procedure to simulate label-flipping attacks on the test

set. This manipulated dataset is subsequently fed into a variety of trained models

to assess their performance. These results enable us to analyze the effectiveness

of the models under this attack scenario. We empirically analyze the robustness of

Support Vector Machines (SVM), Random Forest, Gaussian Na¨ıve Bayes (GNB),

Gradient Boosting Machine (GBM), LightGBM, XGBoost, Multilayer Perceptron

(MLP), Convolutional Neural Network (CNN), MobileNet, and DenseNet models.

The remainder of this paper is organized as follows. In Sect. 2, we provide information on related work, that is, selected prior research into adversarial attacks involving

malware datasets. Section 3 covers the technical details of our research, including an overview of the machine learning models used in this study. In Sect. 4, we detail the experiments conducted to evaluate the resilience of our models against label-flipping

attacks. The discussion extends to the implications of our findings, emphasizing the

strengths and limitations of current approaches. We conclude the paper in Sect. 5, where we also consider future work that could be undertaken to extend the results in

this paper.

Robustness of Selected Learning Models Under Label-Flipping Attack

495

2 Related Work

Adversarial attacks against malware detection systems have emerged as a challeng-

ing problem in cybersecurity research. In this section, we discuss representative

examples of previous works related to adversarial attacks on malware detection and

classification systems.

Aryal et al. in [1] provide a detailed survey of adversarial attacks within malware detection systems. Their work systematically highlights the vulnerabilities of various

machine learning models to these such threats. Our research aims to build upon this

previous work by investigating the resiliency of various machine learning and deep

learning techniques to label-flipping attacks. A goal of our research is to uncover any

inherent model-specific strengths and weaknesses.

Paudice et al. in [16] conducts an in-depth study utilizing three distinct datasets (MNIST, BreastCancer, and SpamBase) to explore the efficacy of label-flipping

attacks on machine learning models. Their research demonstrates the significant

impact of such adversarial tactics on the performance of learning systems, and

they also consider a . k-Nearest Neighbor based defense mechanism. This mecha-

nism focuses on label sanitization, effectively identifying and correcting maliciously

altered labels to mitigate the adverse effects of these attacks.

In their research, Xiao et al. in [20] examined the resilience of Support Vector Machines (SVMs) against adversarial label noise attacks. Such attacks aim to manipulate SVM classification through strategic label-flipping. Their analysis, focuses on

both linear and non-linear SVMs, across synthetic and real-world datasets.

Taheri et al. in [19] introduce two novel defense strategies against silhouette clustering-based label-flipping attacks, specifically designed for deep-learning-based

malware systems. Additionally, Bootkrajang and Kabán in [3] discuss the utility of robust logistic regression algorithms that can withstand label-flipping, underscoring

the relevance in practical applications.

Aryal et al.in [2] examine the resilience of various machine learning models to label-poisoning within the realm of malware detection by evaluating the detrimental

impact of data corruption on the performance of ML-based malware detectors. This

paper emphasize the critical importance of developing robust defense mechanisms

to safeguard machine learning applications from adversarial attacks.

Jha et al. in [11] introduced “FLIP,” a novel label-only backdoor attack method that subverts machine learning models by manipulating the labels on training data.

Demonstrating significant efficacy, FLIP achieved a high attack success rate on the

CIFAR-10 dataset with a minimal amount of label corruption, while maintaining high

accuracy on clean data. This highlights a critical vulnerability in machine learning

systems and underscores the need to understand which models are more susceptible

to these types of attacks.

496

S. Bhargava and M. Stamp

3 Background

In this section, we introduce the various learning models that are considered in

our experiments. These models range from classic machine learning techniques to

cutting-edge pre-trained deep learning models.

 3.1

 Classic Models

Support Vector Machines (SVM) [4] are powerful supervised learning models used for classification and regression tasks. When training an SVM for binary classification, the goal is to find a separating hyperplane that splits the classes. SVMs

are effective in high-dimensional spaces and can handle non-linear relationships

via kernel functions. SVMs easily generalize to the multiclass case, where they are

sometimes referred to as Support Vector Classifiers (SVC).

Random Forest [5] models are constructed by using multiple decision trees. They are a category of ensemble learning models and often perform well in classification

and regression tasks. By combining a number of decision trees, a Random Forest

reduces overfitting and increases the robustness of the model. They are noted for

handling high-dimensional data well.

Gaussian Na¨ıve Bayes (GNB) [8] is a probabilistic algorithm which is relatively simple, efficient, and can be highly effective in some cases. GNB is a variant of Na¨ıve Bayes that works especially well when the independence assumption holds true.

 3.2

 Boosting Models

We place an emphasis on boosting models, since mislabeled training data is con-

sidered a weakness of boosting [18]. Thus, we expect that boosting models will generally be susceptible to failure under a label-flipping attack, and we would like

to determine whether there are meaningful differences in the robustness of different

boosting techniques.

Gradient Boosting Machines (GBM) [7] are a class of ensemble learning techniques which are known for incrementally improving model accuracy. This is

achieved by generating new models to correct misjudgments of preceding mod-

els. These models are generated in sequence until no substantial improvements are

observable. GBM employs decision trees as the base learners and refines them

through an iterative approach. Specifically, GBM minimizes a loss function by

employing weak learners, following a method akin to gradient descent. This pro-

cess addresses errors primarily by focusing on the residuals of earlier learners in

the sequence, and is accomplished through the sequential addition of shallow trees

tailored to correct previous mistakes.

Robustness of Selected Learning Models Under Label-Flipping Attack

497

LightGBM [12] is a gradient boosting ensemble modeling technique, which

focuses on fast and efficient training with reduced memory usage. LightGBM uses a

histogram-based method where it bins the data using a histograms of the distribution

which, in turn are used to iterate, calculate the gain, and split the data. LightGBM

also uses feature bundling, where it combines various features together to reduce

dimensionality and make the training more efficient.

XGBoost [6] (eXtreme Gradient Boosting) is an enhancement to the foundational concepts of GBM. The benefits of XGBoost are that it is efficient to train, it handles

complex relationships, it employs regularization techniques that reduce overfitting,

it can incorporate parallel processing to improve computation speed, and it is robust.

 3.3

 Deep Learning Models

Multilayer Perceptrons (MLP) [17] are a type of feedforward artificial neural network characterized by multiple layers of interconnected nodes (i.e., neurons). An MLP has

an input layer and an output layers, along with one or more hidden layers, with each

layer being full-connected to the layers above and below. MLPs often perform well

even on relatively small datasets.

Convolutional Neural Networks (CNN) [13] are a category of deep learning algorithms that are designed to be efficient for dealing with data where local structure

dominates, such as is the case for images. The architecture of a CNN typically

involves a sequence of interleaved convolutional and pooling layers, with one or more

fully connected layers for classification. The convolutional layers apply a number of

filters to the input to create feature maps that abstract higher-level features from the

raw input data. Pooling layers reduce the dimensionality for the next convolutional

layer, thereby reducing the number of parameters and improving the computational

efficiency. CNNs have proven to be highly effective for image classification and

object detection, and have been successfully applied to many non-image problems

as well.

MobileNets [9] are a streamlined class of convolutional neural networks designed for efficiency and are suitable for environments with limited computational resources

such as mobile devices. MobileNets employ a unique architecture involving depth-

wise separable convolutions, significantly reducing the number of parameters and

computational overhead. This makes MobileNets particularly suitable for small

datasets, as their compact structure minimizes the risk of overfitting while facilitating

faster training via transfer learning.

DensetNets [10] have shown remarkable performance in image classification, object detection, and segmentation tasks. Their ability to leverage information from

previous layers makes them particularly effective for tasks where preserving spatial

hierarchies in images is crucial.

498

S. Bhargava and M. Stamp

4 Experiments and Results

This section provides details on all of our label-flipping experiments. We begin with

a discussion of the dataset, the preprocessing of the data, and feature extraction. We

then move on to the experimental results for each of the models, where we vary the

percentages of labels that are flipped.

 4.1

 Dataset and Data Preprocessing

We train models using the Malicia dataset [15]. In the preprocessing phase, the dataset is filtered to seven malware families, based on the criterion that each family should

have at least 50 samples. The malware families and number of samples per family

are listed in Table 1. In all of our experiments, we consider multiclass classification, based on the seven classes in Table 1.

The models introduced in Sect. 3 can be categorized as follows.

• Classic models—SVM, Random Forest, and GNB

• Boosting models—GBM, Light GBM, and XGBoost

• Deep learning models—MLP, CNN, MobileNet, and DenseNet

Initially, we train each model without any label-flipping. Then we test each of these

model by varying the percentage of labels randomly flipped during training, and we

discuss the insights gained from these experiments. The percentage of labels flipped

ranges from 10 to 100%, in increments of 10%. Note that the smallest class, Harebot,

has only 53 samples, while the largest class, Winwebsec, has 4360 samples. Label-

flipping is implemented on a per-class basis, that is, for a given flipping percentage,

that percentage of labels is randomly flipped in the training data for each class.

To train our classic machine learning, boosting models, and MLP, features are

obtained by extracting the mnemonic opcodes, and applying the TF-IDF vectorizer

Table 1 Number of samples

Family

Samples

Cridex

74

Harebot

53

SecurityShield

58

Smarthdd

68

Winwebsec

4360

Zbot

2136

Zeroaccess

1305

Total

8054

Robustness of Selected Learning Models Under Label-Flipping Attack

499

to the sequence extracted from each sample. This method was chosen because TF-

IDF is effective at emphasizing crucial information within a sequence, while also

serving to minimize background noise.

For training our CNN and pre-trained deep learning models, a different preprocess-

ing approach was necessary, since these models expect image data. To accommodate

this case, we convert each malware sample into an image representation by assigning

a unique number to each opcode and interpreting the first 4096 opcodes as a. 64 × 64

image. If a sample has fewer than 4096 opcodes, we simply pad with 0 to fill out

the .64 × 64 image.

 4.2

 Baseline Results

First, we train each of the 10 models under consideration on clean data, that is, data

without any label-flipping. These results are summarized in the form of a bar graph

in Fig. 1. Here, accuracy is defined as the number of correctly classified samples divided by the total number of samples classified.

From Fig. 1, we observe that a eight of the 10 models perform well, with the top five models (Random Forest, GBM, XGBoost, LightGBM, MLP) all achieving

about 98% accuracy, or higher. The next three best (SVM, CNN, MobileNet) all attain

an accuracy of about 96%. Only the DenseNet and GNB models fail to produce strong

results on this dataset.

1.00

0.80

0.60

ccuracy A 0.40

0.20

Classic models

Boosting

Deep learning

0.00

t

t

et

et

VM

S

ores

F

GNB

GBM

MLP

CNN

XGBoos

DenseN

LightGBM

MobileN

Random

Fig. 1 Baseline accuracies without label-flipping

500

S. Bhargava and M. Stamp

The differences in accuracy among the top eight models is relatively small. Hence,

we might be willing to choose from among these models based on robust their inherent

robustness to label-flipping attack, as opposed to accuracy alone. Next, we consider

label-flipping attacks on each of the 10 models.

 4.3

 Label-Flipping Results for Classic Models

As discussed above, the traditional machine learning models we selected for our

experimentation are SVM, Random Forest, and GNB. Each of these models was

chosen for its distinct approach to data analysis: SVM excels in separating data

in high-dimensional spaces through margin maximization, Random Forest leverages

ensembles of decision trees to improve predictive accuracy and robustness, and GNB

relies on the probabilistic assumptions of data distributions. Here, we present and

discuss the results of our label-flipping experiment for each of these models.

4.3.1 Support Vector Machine Results

From Fig. 2a we observe that SVM achieved high accuracy and that the accuracy was virtually unchanged until more than 60% of the labels were flipped, and even at 70%

label-flipping, the accuracy only diminished slightly. After 70% label flipping, the

accuracy drops precipitously. These results indicate that SVM is remarkably robust

when faced with a label-flipping adversarial attack.

4.3.2 Random Forest Results

In Fig. 2b we see that the accuracy of our Random Forest model is very high without any label-flipping. The accuracy then degrades consistently, and almost linearly up to

about 60% label-flipping. Although Random Forest is the most accurate of our classic

models, it is not as robust to label-flipping attacks as SVM (and MLP, as we note

below).

4.3.3 Gaussian Na¨ıve Bayes Results

Figure 2c shows that GNB performed very poorly initially and, of course, it also performed poorly with respect to label-flipping. This model is clearly not suitable

for this particular problem, most likely due to the selected features failing to be

conditionally independent.

[image: Image 146]

[image: Image 147]

Robustness of Selected Learning Models Under Label-Flipping Attack

501

(a) SVM

(b) Random Forest

(c) GNB

Fig. 2 Accuracy, precision and recall graphs for classic ML techniques

 4.4

 Label-Flipping Results for Boosting Techniques

We also consider label-flipping attacks on advanced boosting techniques. As dis-

cussed above, the specific models we consider are XGBoost, GBM, and LightGBM.

4.4.1 Gradient Boosting Machine Results

Our GBM results appear in Fig. 3a. We see that this model delivers strong performance and robustness to label-flipping adversarial attack. The results for GBM are

comparable to the MLP model in Fig. 4a.

4.4.2 XGBoost Results

From the Fig. 3b, we observe that qualitatively, XGBoost performs similarly to the Random Forest model in Fig. 2b, with XGBoost is slightly more robust to label-flipping. This result is not too surprising, since XGBoost and Random Forest are

both based on multiple decision trees. It is also worth noting that XGBoost has

similar initial accuracy as GBM, but it is far less robust in the face of label-flipping.

[image: Image 148]

[image: Image 149]

502

S. Bhargava and M. Stamp

()

b X B

G

o

o t

s

a

() G M

B

(c) LightGBM

Fig. 3 Accuracy, precision and recall graphs for boosting techniques

4.4.3 LightGBM Results

In Fig. 3c we see that LightGBM yields almost identically performance as our XGBoost model, but well below that of the GBM model. This is interesting, as

it indicates that the LightGBM is—in the sense of robustness—much weaker than

the GBM model from which it is derived.

 4.5

 Label-Flipping Results for Deep Learning Models

In addition to traditional machine learning models and boosting models, we consider

deep learning architectures. As discussed above, we analyze three image-based deep

learning models, namely, MLP, a generic CNN, as well as the pre-trained models

MobileNet and DenseNet.

4.5.1 Multilayer Perceptron Results

As can be seen in Fig. 4a, our MLP model performs similar to—although slightly better than—the SVM model, both initially, and at each label-flipping percentage.

Robustness of Selected Learning Models Under Label-Flipping Attack

503

The similarity of SVM and MLP is not too surprising, as these are closely related

techniques. Roughly speaking, an MLP can be viewed as a generalization of an SVM,

where the equivalent of the kernel function is learned, rather than being specified as

a hyperparameter during training [18].

4.5.2 Convolutional Neural Network Results

From the graphs in Fig. 4b, we see that our CNN model gives us accuracies comparable to the Random Forest model in Fig. 2b. This model is not nearly as robust as the classic SVM and MLP models, and it also is far weaker than the GBM model.

4.5.3 MobileNet Results

In Fig. 4c, we observe that, as compared to CNN, the performance of MobileNet is slightly better across the full range of label-flipping attacks. However, as with our

CNN model, MobileNet trails far behind the SVM, MLP, and GBM models.

4.5.4 DenseNet Results

DenseNet results in Fig. 4d. We found DenseNet difficult to train, and hence the poor and erratic results for this model are not surprising. We believe that there is

insufficient data in our training set for this particular model.

 4.6

 Discussion

Figure 5a depicts the accuracy of all models tested, while Fig. 5b and c give the precision and recall, respectively. These graphs serve to emphasize that, overall, our

best model is the MLP. The MLP has nearly the highest initial accuracy, and it is

remarkably robust to label-flipped training data. The SVM model yields slightly

worse results than MLP, while also providing robustness. The GBM model also

performs well, both in terms of initial accuracy, and robustness to label-flipping.

CNN and MobileNet, two of the three image-based deep learning techniques

considered, performed well on the malware classification problem. However, these

two techniques are quite fragile with respect to label flipping.

[image: Image 150]

504

S. Bhargava and M. Stamp

)

a

(

M P

L

()

b C N

N

)

c

(

b

o

M

l

i

e

N

e

t

()

d

e

D

s

n

t

e

N

e

Fig. 4 Accuracy, precision and recall graphs for deep learning techniques

5 Conclusion and Future Work

In this paper, we compared the robustness of various learning model under a label-

flipping attack scenario. The underlying learning problem was malware classifica-

tion, and the we considered a variety of classic machine learning techniques, boost-

ing techniques, and deep learning techniques. Specifically, the classic techniques

tested were Support Vector Machine (SVM), Random Forest, and Gaussian Na¨ıve

Bayes (GNB); the boosting techniques we analyzed were Gradient Boosting Machine

(GBM), XGBoost, and LightGBM; while the deep learning techniques were Mul-

tilayer Perceptron (MLP), Convolutional Neural Network (CNN), MobileNet, and

DenseNet. Although most of these techniques performed well on the original classifi-

cation problem, the MLP and SVM were the most robust, with the boosting technique

of GBM also performing well with respect to robustness. The Random Forest model

was the least robust, while the image-based models and two of the boosting tech-

niques (XGBoost and LightGBM) also did not hold up well under our label-flipping

adversarial attack.

These results have practical implications. In an environment where adversarial

attacks are likely, and defenses could be challenging to implement, we might be

willing to give up a small amount of initial accuracy for a model that is inherently

more robust to such an attack. Of the models tested, MLP stands out as giving high

initial accuracy—within 1% of the best model—yet also being the most robust under

a label-flipping scenario. Furthermore, as mentioned in Sect. 3.2, mislabeled data is

[image: Image 151]

Robustness of Selected Learning Models Under Label-Flipping Attack

505

(a) Accuracy

()

b

e

r

P

s

i

c i n

o

)

c

(

e

R

l

a

c l

Fig. 5 Accuracy, precision, and recall for all models tested

generally considered to be an inherent weakness of boosting techniques, However, we

found that GBM is reasonably robust in this regard. Thus, GBM might be preferred

in cases where a boosting strategy is needed, and mislabeled data (or label-flipping

attack) is a legitimate concern.

There are many possible avenues for future work. Additional models could be

considered, as well as additional datasets and learning problems. We could consider

more advanced and targeted label-flipping attacks, as well as other classes of attacks.

Defenses against attacks, and countermeasures to those defenses would be additional

interesting related problems.

506

S. Bhargava and M. Stamp

References

1. Aryal K, Gupta M, Abdelsalam M. A survey on adversarial attacks for malware analysis. 2021.

https://arxiv.org/abs/2111.08223

2. Aryal K, Gupta M, Abdelsalam M. Analysis of label-flip poisoning attack on machine learning based malware detector. In: 2022 IEEE international conference on big data. 2022. p. 4236–45.

3. Bootkrajang J, Kabán A. Label-noise robust logistic regression and its applications. In: Flach PA, De Bie T, Cristianini N, editors. Machine learning and knowledge discovery in databases: ECML PKDD; 2012.

4. Boswell

D.

Introduction

to

support

vector

machines.

2002.

https://www.

semanticscholar.org/paper/Introduction-to-Support-Vector-Machines-Boswell/

ea2ea7c6e280c1cfb67ee38ea63a327b1ba3ca36

5. Breiman L. Random forests. Mach Learn. 2001;45:5–32.

6. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. 2016. p.

785–94.

7. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat.

2001;1189–232.

8. Hand DJ, Yu K. Idiot’s Bayes – Not so stupid after all? Int Stat Rev. 2001;69(3):385–98.

9. Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam

H. MobileNets: efficient convolutional neural networks for mobile vision applications. 2017.

https://arxiv.org/abs/1704.04861

10. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition.

2017. p. 4700–8.

11. Jha R, Hayase J, Sewoong O. Label poisoning is all you need. Adv Neural Inf Process Syst.

2023;36:71029–52.

12. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y. LightGBM: a highly efficient gradient boosting decision tree. In: Advances in neural information processing systems, vol.

30; 2017.

13. LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document

recognition. Proc IEEE. 1998;86(11):2278–324.

14. Mehta R, Jurečková O, Stamp M. A natural language processing approach to malware

classification. J Comput Virol Hack Tech. 2024;20(1):173–84.

15. Nappa A, Zubair Rafique M, Caballero J. The Malicia dataset: identification and analysis of drive-by download operations. Int J Inf Secur. 2015;14:15–33.

16. Paudice A, Muñoz-González L, Lupu EC. Label sanitization against label flipping poisoning attacks. In: Alzate C et al., editors. ECML PKDD 2018 workshops. 2019. p. 5–15.

17. Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error propagation, parallel distributed processing, explorations in the microstructure of cognition. Biometrika.

1986;71:599–607.

18. Stamp M. Introduction to machine learning with applications in information security, 2nd edn.

Chapman and Hall/CRC; 2022.

19. Taheri R, Javidan R, Shojafar M, Pooranian Z, Miri A, Conti M. On defending against label flipping attacks on malware detection systems. Neural Comput Appl. 2020;32:14781–800.

20. Xiao H, Biggio B, Nelson B, Xiao H, Eckert C, Roli F. Support vector machines under adversarial label contamination. Neurocomputing. 2015;160(C):53–62.

[image: Image 152]

Steganographic Capacity of Transformer

Models

Lei Zhang, Dong Li, Olha Jurečková

, and Mark Stamp

Abstract As machine learning and deep learning models become ubiquitous, it is

inevitable that there will be attempts to exploit such models in various attack sce-

narios. For example, in a steganographic-based attack, information could be hidden

in a learning model, which might then be used to distribute malware, or for other

malicious purposes. In this research, our focus is on the steganographic capacity a

Transformer model, but for comparison we also consider a Multilayer Perceptron

(MLP) and Convolutional Neural Network (CNN). All three models are trained on a

challenging malware classification problem, and for each models, we determine the

number of low-order bits of the trained parameters that can be altered without signif-

icantly affecting the classification accuracy. We find that the steganographic capacity

of the learning models tested is surprisingly high, and that in each case, there is a clear threshold after which model performance rapidly degrades. Due to its large number

of weights, we find that the Transformer model has a steganographic capacity that is

orders of magnitude larger than that of either the MLP or CNN models.

1

Introduction

Steganography, or information hiding, consists of embedding information in another

message or physical object [13]. While cryptography also hides information, it does so by converting the information into a human unreadable form [7]. The main difference between these two techniques is that cryptography alters the structure of the

secret information but does not hide the fact that communication is taking place,

while steganography hides the information in another medium that is not intended

L. Zhang · M. Stamp (B)

San Jose State University, San Jose, CA, USA

e-mail: mark.stamp@sjsu.edu

D. Li

Shanghai AI Laboratory, Shanghai, China

O. Jurečková

Czech Technical University in Prague, Prague, Czech Republic

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

507

M. Stamp and M. Jureček (eds.), Machine Learning, Deep Learning and AI for

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_18

508

L. Zhang et al.

for such communication [24]. Modern steganographic techniques have been developed for a wide range of data types, including text, images, audio, video, and even

networking data [1].

Machine learning (ML), which can be considered as a subfield of artificial intel-

ligence, enables computers to learn important information from training data [27].

Today, ML models are widely used to deal with a vast array of problems, includ-

ing speech recognition, image recognition, sentiment analysis, language translation,

malware detection, and so on, with new applications being constantly developed.

Deep learning (DL) models are the subset of ML models that are based on neural

networking techniques.

Machine learning models are a plausible cover media in steganography for the

following reasons.

1. Machine learning models are rapidly becoming ubiquitous. For example voice-

activated search assistants were used by approximately 3.25 billion people

worldwide in 2021, out of a world population of 7.9 billion [2].

2. It is likely that the information hiding capacity of most machine learning models is

substantial. Machine learning models typically include a large number of weights

or other trained parameters, and it is known that learning models typically do not

require high precision in their trained parameters. For example, the most popular

algorithm used to train Support Vector Machines (SVM) relies on the fact that

limited precision is sufficient [27]. As another example, in neural networking-based models, many—if not most—neurons tend to atrophy during training, and

such weights contribute little to the trained model. By relying on such redundant

neurons, the authors of [31] show that they can hide 36.9 MB of malware within a 178 MB AlexNet architecture, with only a 1% degradation in performance. These

changes did not affect the structure of the model and the embedded malware was

not detected by any of the anti-virus systems tested.

3. Machine learning models may be an ideal cover media for malicious attacks. For

example, as in [31], malware could be embedded in a learning model. It is even conceivable that a specific predetermined input to the model could be used to

trigger an embedded malware-based attack.

We define the steganographic capacity of a learning model to be the total number of bits of trained parameters of the model that can be overwritten without reducing

the classification accuracy by more than. ε, as compared to the original classification accuracy. In this paper, we choose a threshold of . ε = 0 . 01, that is, the accuracy cannot decrease by more than 1%.

In this research, we focus on the fact that, in general, learning models do not

require high precision in their trained parameters. Therefore, as a measure of the

inherent steganographic capacity of learning models, we determine the number of

low-order bits in each weight that can be used for information hiding purposes. We

embed information in the . n low-order bits of the weights of trained models, and graph the model accuracy as a function of . n. We analyze three DL models: MultiLayer Perceptron (MLP), Convolutional Neural Network (CNN), and a Transformer

architecture. We train and test each of these models on a dataset that contains 10

Steganographic Capacity of Transformer Models

509

different malware families, with a total of 15,356 samples. The main contribution

of this work is determining the steganographic capability of these three machine

learning models. This knowledge can be used for developing new detection models,

which will protect the learning models against inserting malicious files into them. The

steganographic capacity of a learning model is also used in developing watermarking

algorithms to protect the intellectual property rights of the learning models.

The remainder of the paper is organized as follows. Section 2 gives relevant background information on steganographic techniques and the various machine learning

models used in this research. Section 3 provides details on the dataset employed in our experiments, along with a high-level view of our experimental design. Our results

are presented and discussed in Sect. 4. Finally, Sect. 5 gives our conclusions, as well as outlining potential avenues for further research.

2

Background

In this section, we discuss several relevant background topics. First, we consider

steganography, then we introduce the learning models that are used in this research.

We conclude this section with a discussion of related work.

 2.1

 Steganography

The word “steganography” is a combination of two Greek roots: steganós, which

means “concealed or hidden”, and graphein, which translates as “drawing or writ-

ing” [9]. Thus, steganography is the art and science of embedding secret information inside unremarkable cover media that does not raise suspicions [28]. In modern practice, steganography consists of concealing information or messages within seemingly

innocuous data or media, such as images, audio, video, or network communication,

among many other possibilities [1].

Steganography involves embedding secret data into a cover media in a way that is

imperceptible to human senses and difficult to detect without specialized tools and

knowledge. Such techniques have been used throughout history for various purposes,

including espionage, communication in times of war, and digital watermarking.

With the advancement of digital technology, steganography has found applications

in modern information security, digital forensics, and multimedia communications,

among others. It is an evolving field with ongoing research and development of new

techniques to enhance its security and application in various domains.

Cryptography protects a secret message by transforming it into an unintelligible

format to hide the meaning of the message, while steganography aims to hide the

presence of the original message [26]. Steganography dates at least to ancient Greece and, in fact, it predates cryptography as a means of secret communication [26]. An historical example of steganography was the use of invisible ink during the American

510

L. Zhang et al.

Revolutionary War to pass messages. As another example, during World War II,

photosensitive glass [10] and microdots [6] were used to embed information in other messages. Today, hiding information in image files on computing systems is the most

common method of steganography.

A textbook example of a modern steganographic application consists of hiding

information in the low order RGB bits of an uncompressed image file, such as a

bmp image [26]. Since the RGB color scheme uses a byte for each of the R (red), G

(green), and B (blue) color components, there are.224 > 16 , 000 , 000 colors available.

However, many of the colors are indistinguishable to the human eye, and hence there

are a large number of redundant bits in an uncompressed image. The low-order RGB

bits of each byte can be used to hide information in such an image, without changing

the carrier image in any perceptible way. Provided that the intended recipient knows

which image is used for hiding information, and knows how to extract the informa-

tion, communication can take place between a sender and receiver, without it being

apparent that such communication has even occurred. The steganographic capacity

of an uncompressed image file is surprisingly large; for example, in [26, Sect. 5.9.3]

it is shown that the entire Alice’s Adventures in Wonderland book can be hidden in the low order RGB bits of an image of Alice from the Alice book itself.

The image-based steganographic system described in the previous paragraph is

not robust, that is, it is trivial to disrupt the communication, without the disruption

affecting the non-steganographic use of such images: If we suspect that the low-

order RGB bits of bmp files are being used for steganographic purposes, we can

simply randomize the low-order bits of all bmp images. For any such images that

were being used for information hiding, the information would be lost, and for any

innocent images that were not used for information hiding, the image would not

be affected in any perceptible way. Much of the modern research into information

hiding revolves around creating more robust steganographic techniques.

Steganography can be characterized by three important aspects, namely, percep-

tual transparency, robustness, and capacity.

• Perceptual transparency—This refers to the ability of the steganographic process

to hide the secret information in a way that is imperceptible to human senses. This

is a critical characteristic of steganography, which ensures that it is not obvious

that the cover medium is being used for surreptitious communication.

• Robustness—Robustness is the ability to tolerate perturbations of a system

without adversely affecting its initial stable configuration [33]. In image-based steganographic techniques, the perturbations could be transformation, sharpening,

filtering, scaling, cropping, and so on.

• Capacity—The amount of information that can be hidden in the cover medium

is the capacity, which is related to the practical redundancy in the cover media.

The larger the capacity, the more information that can be hidden; equivalently, the

smaller the cover medium that is needed.

Achieving an optimal balance among these characteristics is a crucial consideration

in the design and implementation of a steganographic technique, as it determines the

effectiveness of the communications, and the security of the concealed information.

Steganographic Capacity of Transformer Models

511

In this research, we are interested in the steganographic capacity of machine

learning models. Specifically, we hide information in the low-order bits of the weights

of learning models. While such a scheme is not robust, our work does provide an

intuitive and practical means for information hiding. We show that learning models

have considerable redundancy, which is the basis for more advanced steganographic

techniques, with the analogy to uncompressed image files being obvious.

 2.2

 Learning Models

Machine learning and deep learning can be viewed as branches of artificial intelli-

gence. In general, ML refers to the use of statistical models and algorithms to enable

machines to learn from data and improve their performance on a specific task. DL is

the subset of machine learning that focuses on training Artificial Neural Networks

(ANN)—generally with multiple hidden layers, which is the “deep” part of deep

learning—to identify patterns and relationships in data. DL algorithms, which are

designed to (loosely) mimic the structure and functioning of the human brain, have

proven to be very effective in solving complex problems such as image and speech

recognition, natural language processing, and even playing complex games.

ML enables computers to learn important information, and improve from expe-

rience, which saves humans from the work of extracting useful information from

seemingly inscrutable data [27]. The process of machine learning begins with observations derived from datasets. The primary goal of machine learning is to make

computers learn with minimal human intervention or assistance [25].

ML is applied in a wide and ever-growing range of important fields, including data

security, finance, healthcare, fraud detection, and so on. In addition, DL techniques

have been used to successfully deal with such problems as speech recognition, image

classification, sentiment analysis, and language translation, among many others [8].

Deep learning has gained significant attention and success in recent years due to its

ability to automatically extract complex patterns and representations from raw data

without extensive feature engineering. Through the process of training, deep learning

models learn to recognize patterns, features, and relationships in data, enabling them

to often perform tasks at a higher level than had previously been achieved using

classic machine learning models.

Machine learning algorithms can be divided into three categories: supervised

machine learning, unsupervised machine learning, and semi-supervised machine

learning. Supervised machine learning uses labeled datasets to train the model. Sup-

port Vector Machine, Multilayer Perceptron, . k-Nearest Neighbors, Decision Trees,

Random Forest, and Linear Regression are popular examples of supervised machine

learning algorithms. In contrast, unsupervised machine learning techniques can be

applied to unlabeled data. Expectation Maximization (EM) clustering and the well-

known. K -means clustering algorithm are examples of unsupervised learning. Semi-

supervised machine learning can be viewed as a hybrid approach that combines

aspects of supervised and unsupervised algorithms. In this paper, we only consider

512

L. Zhang et al.

supervised learning techniques; specifically, we train models to classify malware

from several different families.

Next, we discuss each of the learning techniques that are employed in the exper-

iments in Sect. 4. Here, we introduce the DL techniques of Multilayer Perceptron, Convolutional Neural Networks, and Transformer models.

2.2.1

Overview of Multilayer Perceptrons

Multilayer Perceptrons (MLP) are a popular class of feedforward neural network

architectures that are widely used for supervised learning tasks, including classifica-

tion and regression [29]. MLPs consist of multiple layers of interconnected nodes, where each node receives input from the previous layer and produces output that is

passed to the next layer.

The input layer of an MLP receives the input data, and the output layer produces

the final prediction. In between these layers, there can be one or more hidden layers

that help to learn complex patterns in data. Each node in the hidden layers applies

a nonlinear activation function to the weighted sum of its inputs, which helps to

capture non-linear relationships in the data.

MLPs are trained using backpropagation, which is an optimization algorithm that

adjusts the weights of the network based on the difference between the predicted

output and the actual class label. The weights are updated using gradient descent,

which iteratively adjusts the weights to minimize the error.

One of the main advantages of MLPs is their ability to learn complex patterns in the

data, making them suitable for high-dimensional and non-linear datasets. However,

MLPs can be computationally expensive to train, and they require a large amount of

labeled data to achieve high accuracy.

2.2.2

Overview of Convolutional Neural Networks

Convolutional Neural Network (CNN) are one of the most popular DL techniques.

CNNs were designed for efficient training on images, where local structure domi-

nates, but they have proven surprisingly useful for a wide range of problems—any

problem domain where local structure is most important is a good candidate for a

CNN. The CNN architecture is composed of convolution layers, pooling layers, and

one or more fully connected layers.

A convolution layer performs a discrete convolution operation on the output of

the previous layer. This can be viewed as applying a filter, where the parameters of

the filter are learned. The first convolutional layer is applied to the input data, and in the case of images it learns basic features, such as edges. Subsequent convolutional

layers learn higher-level and more abstract features. Pooling layer serve to reduce the

dimensionality of the problem, and thereby speed up the training process. Pooling

may also serve to increase translation invariance.

Steganographic Capacity of Transformer Models

513

2.2.3

Overview of Transformer Models

Transformers are a type of deep learning architecture that have revolutionized the

field of natural language processing (NLP). Transformers were introduced in [30], and are currently the state-of-the-art architecture for many NLP tasks, including

machine translation, sentiment analysis, and question answering. They have also

been successfully applied to other tasks, such as image classification and speech

recognition.

The key innovation of Transformers is the self-attention mechanism, which allows

the model to selectively attend to different parts of the input sequence when making

predictions. All models use attention to some degree, but Transformer model in [30]

showed that explicit attention is far more powerful than had been previously realized.

Transformers consist of an encoder and a decoder module. The encoder takes

an input sequence and generates a hidden-state representation that is designed to

capture the meaning of the input. The decoder takes the hidden-state representation

and generates the output one token at a time.

One of the key advantages of Transformers is their ability to handle variable-

length input sequences without the need for padding or truncation. They also require

less training time compared to traditional Recurrent Neural Networks, and can be

parallelized more easily.

 2.3

 Related Work

The authors of [3] consider the problem of embedding watermarks in deep learning models. Their work is focused on developing new classes of watermarking algorithms

that are specific to deep neural networks (DNN). They consider the capacity problem,

in the sense of the number of bits that can be reliably hidden in a DNN model with

a specific number of parameters.

In [4], a taxonomy for classifying and examining different types of watermarking schemes for machine learning models is considered. In addition, the author introduces

a unified threat model, which enables structured reasoning about and comparison of

the effectiveness of watermarking methods under various scenarios.

In the paper [31], a technique dubbed “EvilModel” is developed and analyzed.

EvilModel serves to hide malware inside of a neural network model. For example,

when a 36.9 MB malware is embedded in a specific model, the accuracy of the

model is only reduced by about 1%. The authors of [31] embed malware samples in a learning model by carefully selecting weights that have atrophied during training,

and thus have little or no effect on model performance. They then overwrite these

weights, which has only a negligible effect on the model.

In [32] the results in [31] are expanded. Among other results, the authors of [32]

consider embedding malware in the least significant bits of model weights. They find

that they can achieve an “embedding rate” of slightly more than 48%.

514

L. Zhang et al.

The paper [12] considers a technique that its authors refer to as “StegoNet.” One aspect of the work in [12] consists of modifying the least significant bits of model weights, while the authors also develop an approach that can deal with compressed

models, and they propose a plausible trigger mechanisms, that is, ways to trigger

malware that is embedded in a machine learning model.

As with [12, 32], the work that we present in this paper considers the problem of embedding information in the least significant bits of model weights. However, in

comparison to [32], for the models we consider, we are able to achieve much higher embedding rates with little or no decrease in model performance. In contrast to [12], with respect to hiding information in the least significant bits of model weights, our

results are far more thorough and detailed; for example, we provide graphs explicitly

showing the tradeoff between the number of bits overwritten and model accuracy.

3

Implementation

In this section, we first discuss the malware dataset used to train our learning models.

Then we provide details on the training of each of the models considered in this paper.

The steganographic capacity of these models is analyzed in Sect. 4, below.

 3.1

 Dataset

Malware families can be difficult to define precisely because they can vary in terms

of their size, scope, and specific features. However, a family generally refers to

a group of malware samples that have similarities in terms of their functionality,

behavior, and code structure. Although the specific details of each sample may differ,

members of a given family typically share a core code base that contains common

functions, routines, and behaviors. This allows security researchers to identify and

track specific malware families over time, even as the individual samples within the

family continue to evolve and change. By analyzing these shared characteristics,

researchers can develop more effective detection and mitigation strategies to protect

against the threat of malware.

In this research, we consider a malware dataset from VirusShare [11]. This dataset contains more than 500,000 malware executables, which occupy more than 500 GB

of storage. Among the 500,000 malware executables, we have extracted the top 10

families, in terms of the number of samples available per family. Specifically, we

consider the malware families listed in Table 1, which are given in descending order based on the number of samples.

Next, we describe each of these families. Note that several different classes of

malware are represented, including viruses, worms, and Trojans.

Steganographic Capacity of Transformer Models

515

Table 1 Malware families

Family

Samples

Fraction of total

VBinject

2689

0.1751

Winwebsec

2303

0.1500

Renos

1567

0.1020

OnLineGames

1511

0.0984

BHO

1412

0.0920

Startpage

1347

0.0877

Adload

1225

0.0798

VB

1110

0.0723

Vobfus

1108

0.0721

Ceeinject

1084

0.0706

Total

15,356

1.0000

.VBinject,

short for “Visual Basic Injection”, is a general technique that is

applied by malware author to inject malicious program into legitimate Windows

processes [18]. This technique is commonly used by malware to evade detection by antivirus software and other security measures. Once the malware is injected, it

can carry out a variety of malicious actions, such as stealing sensitive information,

downloading additional malware, or taking control of the infected system.

.Winwebsec

is designed to trick users into purchasing fraudulent security soft-

ware or services by displaying false alerts and warnings about supposed security

threats on their computers. Once installed on a user’s computer, Winwebsec will

typically display fake warnings claiming that the system is infected with viruses,

spyware, or other malicious software. These warnings are often accompanied by

instructions to download and install a security program or pay for a service to

remove the alleged threats [20]. Winwebsec is often distributed through social engineering tactics such as spam emails, malicious websites, and file-sharing

networks.

.Renos

is similar to Winwebsec, in that it is designed to trick users into purchasing

fraudulent security software or services [16]. Like other types of fake antivirus malware, Renos typically display fake warnings claiming that the system is

infected with viruses, spyware, or other malicious software, and these warnings

are often accompanied by instructions to download (and pay for) a supposed

anti-virus program. Renos is distributed in the same manner as Winwebsec.

.OnLineGames

is a Trojan that mimics an online game, but is actually designed

to steal user information. This malware is often distributed through malicious

websites, peer-to-peer networks, or email attachments. OnLineGames may be

particularly dangerous because it targets a vulnerable population of online gamers

who may be less aware of the risks associated with downloading and installing

unknown software. Additionally, this type of malware can be difficult to detect

516

L. Zhang et al.

and remove because it often operates in the background and can evade detection

by antivirus software [22].

.BHO,

which is short for “Browser Helper Object”, is a type of add-on or plugin

for web browsers, such as Internet Explorer. Legitimate BHOs provide additional

functionality or modify the behavior of the browser; however, this BHO malware

can be used by to perform unwanted actions, such as redirecting web traffic or

displaying unwanted ads [17]. Because a BHO has deep access to the browser’s functionality, it can be difficult to remove once installed. In some cases, a malicious

BHO may be bundled with legitimate software and installed without the user’s

knowledge or consent.

.Startpage

is a family of Trojans that modifies a user’s web browser settings,

such as the homepage and search engine, without the user’s consent [21]. Once installed, it changes the browser settings to redirect the user’s searches to a specific

search engine or homepage that may contain advertisements or other unwanted

content. In some cases, this browser hijacker may also install additional unwanted

software or collect information about the user’s browsing habits.

.Adload

is an adware program that displays unwanted advertisements that the

user cannot control as they browse the web [23]. This malware may also collect information about the user’s browsing habits and use this data to display targeted

advertisements. Adload can be difficult to remove and may continue to display

unwanted advertisements even after the user has attempted to uninstall the soft-

ware. In some cases, it may also install additional malware or compromise the

security of the victim’s computer.

.VB

is short for “Visual Basic”, and it is a simple Trojan. It spreads a worm by copy-

ing itself to removable drives, network shares, and other accessible file systems.

Once installed on a victim’s computer, VB may perform a variety of malicious

actions, such as stealing sensitive information, logging keystrokes, downloading

additional malware, or using the victim’s computer to participate in botnets or dis-

tributed denial-of-service (DDoS) attacks. It is particularly dangerous as it spreads

rapidly and may infect a large number of computers before it is detected [14].

.Vobfus

is a malware family that downloads other malware onto a victim’s com-

puter, including Beebone, Fareit, and Zbot. It spreads through infected

USB drives, network shares, and malicious URLs, and is known for its ability to

mutate and evade detection by security software [19]. Vobfus is dangerous, in part, because it can propagate rapidly and silently, making it difficult to detect and

contain. It can also disable or bypass security software, making it challenging to

remove.

.Ceeinject

injects itself into legitimate processes running on a Windows oper-

ating system, allowing it to execute its malicious code undetected. It is often used

in conjunction with other malware, such as banking Trojans, to steal sensitive

information from victims. This particular threat employs obfuscation techniques

to conceal its true intentions, making it more difficult for security software to

detect its malicious activities [15].

Steganographic Capacity of Transformer Models

517

For our feature vectors, we extract a relative byte histogram from each sample:

Given a sample. S in the form of an exe file, we count the number of times that each byte value 0 through 255 occurs in . S, and then divide each of these counts by the total number of bytes in . S. Note that this implies that our feature vectors are all of length 256. Also, if . si is the . i th component of the feature vector for the sample . S, then. si can be interpreted as the probability of drawing byte value. i, when randomly selecting a byte from . S. These feature vectors are efficient to generate, and require no costly disassembly or dynamic analysis.

 3.2

 Model Training

Analogous training and testing procedures were used for all learning models con-

sidered. For the first step, we train each model with labeled data and test the model,

which establishes a baseline level of performance. We use accuracy as our measure

of performance.

After the initial training and testing, data is inserted into the low-order . n bits of the weights, which, on average, changes about half of the bit values. For each. n, the performance of the model is re-evaluated using the same data and accuracy metric

as previously used, which allows for a direct comparison of the results for each . n.

We then graph these accuracy results as a function of . n.

4

Steganographic Capacity Experiments

In this section, we consider the steganographic capacity of each of the models dis-

cussed in Sect. 2.2. To measure the steganographic capacity, we embed information in the low-order. n bits of the model weights. For each model, we consider the following three cases.

1. Only the output layer weights are modified

2. Only the weights of the hidden layer (or layers) are modified

3. All of the model weights are modified.

In each case, we graph the model accuracy as a function of . n. Also, we discuss the total capacity, that is, the total number of model bits that are available for this form of information hiding. In each case, the information that we hide is extracted from

the book Alice’s Adventures in Wonderland [5].

518

L. Zhang et al.

Table 2 MLP model hyperparameters tested

Hyperparameter

Values tested

.hidden_layer_sizes

(64, 10), (96, 10), (128, 10)

activation

identity, logistic

alpha

0.0001, 0.05

.random_state

30, 40, 50

solver

adam

.learning_rate_init

0.00001

.max_iter

10000

 4.1

 MLP

The MLPClassifier() from the sklearn.neural_network module was

used to train and test our MLP model. The hyperparameters tested are listed in

Table 2, with the selected values in boldface. Note that a model with two hidden layers, with 128 and 10 neurons, respectively, was best. Also, the logistic function

was selected as our activation function, and so on.

The results obtained when hiding information in the low order bits of the output

layer weights of our trained MLP model are summarized in Fig. 1a. We observe that the original accuracy for the model is approximately 0.8417, and the performance

of the model exceeds 0.8119, until the low-order 26 bits of the output weights are

overwritten, which causes the accuracy to drop dramatically to 0.3830. Overwriting

more bits causes the accuracy to fluctuate, but it remains very low.

In Fig. 1b, c we give the results when information is hidden in the hidden layer weights, and when information is hidden in all of the weights of our trained MLP

model, respectively. The results in these two cases are analogous to the results for

the output layer weights, although in both of these latter cases, only 21 bits can be

overwritten before the accuracy drops below 0.80.

There are 100 weights in the output layer, and 34,048 weights in the hidden layer,

which makes the total number of weights 34,148 in this particular MLP model.

As shown in the results in Fig. 1a, we can overwrite the low-order-25 bits of each weights in the output layer with minimal loss of accuracy, which gives the model a

steganographic capacity of 2.44 KB, 1 just in the output layer. The results in Fig. 1b show that inserting information into the low-order-21 bits weights in the internal

layers does not have a major negative impact on the model accuracy, which gives

the a steganographic capacity of slightly more than 698KB. With all weights in the

model considered, as shown in Fig. 1c, again the low-order-21 bits are available for information hiding, which give the MLP model a steganographic capacity that is

slightly in excess of 700 KB.

1 Note that we follow the convention whereby 1 KB represents.210 bytes, while 1 MB is.220 bytes, and 1 GB is.230 bytes.

Steganographic Capacity of Transformer Models

519

1.00

1.00

0.80

0.80

0.60

0.60

curacy

curacy

Ac 0.40

Ac 0.40

0.20

0.20

0.00

0.00

0

4

8

12

16

20

24

28

32

0

4

8

12

16

20

24

28

32

Bits overwritten

Bits overwritten

(a) Output weights

(b) Internal weights

1.00

0.80

0.60

curacy Ac 0.40

0.20

0.00 0

4

8

12

16

20

24

28

32

Bits overwritten

(c) All weights

Fig. 1 MLP model performance with low-order bits of weights overwritten

 4.2

 CNN

Our CNN model was implemented using torch in PyTorch, which provides support

for tensor computation, deep neural networks, and many other useful machine learn-

ing utilities. The model architecture selected consists of two convolutional layers,

each utilizing ReLU activation functions, with one and six input channels, as well as

six and 12 output channels, respectively. Following the convolutional layers, there

are two fully connected linear layers, again with ReLU activation functions. The

input sizes of these fully connected layers are .12 × 256 and 512, respectively. The

final layer of the model is a fully connected output layer with an input size of 100

and an output size of 10, utilizing a linear activation function.

The hyperparameters tested (via grid search) are listed in detail in Table 3, with the selected values in boldface. Since this model has a large number of hyperparameters

and training is relatively costly, only two of the hyperparameter values are varied.

As with the previous models, process of analyzing the impact of hiding informa-

tion in the output layer weights on the accuracy of the CNN model was carried out

systematically. The model was initially trained with the preprocessed malware family

520

L. Zhang et al.

Table 3 CNN model hyperparameters tested

Hyperparameter

Values tested

pad-size

256

batch size

128, 64

max-epoch

20

lr

0.0005, 0.00005

momentum

0.9

hidden-size

512

output

10

bptt

256

ntoken

256

.d_model

128

.d_hid

128

nlayers

2

nhead

1

dropout

0.5

dataset, and its accuracy was evaluated on the testing data. The accuracy was found

to be 0.7354 in this unmodified case, which serves as the baseline for subsequent

analysis.

Next, the output layer weights were systematically overwritten with data, starting

from the low-order bits and increasing towards the high-order bits. A total of 32 bits

are present in each weight, and the resulting accuracy was recorded after the . n low-order bits had been overwritten, for each. n ∈ {0 , 1 , 2 , . . . , 32}. Figure 2a summarizes the accuracies obtained for the model in each case.

We observe that overwriting the low-order 21 bits of the output layer weights

does not have any significant effect on the accuracy. However, when the .22nd bit is

overwritten, the accuracy drops from 0.7468 to 0.7070, and a large drop to 0.5576

occurs when the low-order 24 bits are overwritten. Finally, another large drop is

accuracy is observed when the 27 low-order bits are overwritten, resulting in an

accuracy of only 0.2507, and when 29 low-order bits are overwritten, the accuracy

is comparable to guessing the labels at random.

In Fig. 2b, c we give the results when information is hidden in the hidden layer weights, and when information is hidden in all of the weights of our trained CNN

model, respectively. These results are analogous to the output layer case, but with 22

low-order bits available for information hiding in both, and a sharper drop in accuracy

from that point.

In this particular CNN model, there are 1000 weights in the output layer,

and 1,624,142 weights in the internal layer, and hence the total number of weights

is 1,625,142. As shown in the results in Fig. 2a, we can change the low-order-21 bits of each weight in the output layer without significantly affecting the model performance, which gives the model a steganographic capacity of slightly more than 20.5

Steganographic Capacity of Transformer Models

521

1.00

1.00

0.80

0.80

0.60

0.60

ccuracy

ccuracy

A 0.40

A 0.40

0.20

0.20

0.00

0.00

0

4

8

12

16

20

24

28

32

0

4

8

12

16

20

24

28

32

Bits overwritten

Bits overwritten

(a) Output weights

(b) Internal weights

1.00

0.80

0.60

ccuracy A 0.40

0.20

0.00 0

4

8

12

16

20

24

28

32

Bits overwritten

(c) All weights

Fig. 2 CNN model performance with low-order bits of weights overwritten

KB, just in terms of the output layer. The results in Fig. 2b show that inserting information into the low-order-22 bits of the weights in the internal layers does not have

a negative impact on the model accuracy, which gives the model a steganographic

capacity of about 34.0 MB in terms of the internal weights. With all weights of the

model considered, as shown in Fig. 2c, the low-order 22 bits are again available for information hiding, which give the MLP model a total steganographic capacity of

about 34.1 MB.

 4.3

 Transformer Model

Our Transformer model is implemented using a variety of PyTorch mod-

ules, including TransformerEncoder, TransformerEncoderLayer,

TransformerDecoder, TransformerDecoderLayer, and LayerNorm.

The model consists of an embedding layer, a positional encoding layer, a Transformer

encoder layer, a Transformer decoder layer, and two linear layers. The input first

passes through an embedding layer, which maps each token in the input sequence to

522

L. Zhang et al.

Table 4 Transformer model hyperparameters tested

Hyperparameter

Values tested

pad-size

256

batch size

128, 64

max-epoch

20

lr

0.0005, 0.00005

momentum

0.9

hidden-size

256, 512

output

10

bptt

256

ntoken

256

.d_model

128, 256, 512

.d_hid

128, 1024

nlayers

2, 12

nhead

1, 8

dropout

0.5

a vector in a high-dimensional space. Then, a positional encoding layer is applied to

the embedded input sequence to add positional information to the embeddings.

The Transformer encoder layer serves to encode the input sequence and create a

representation of it in a high-dimensional space. The encoder layer is composed of

a self-attention mechanism and a feedforward neural network layer. The resulting

vectors are then passed through a feedforward neural network layer.

The Transformer decoder layer takes the encoded input sequence and generates

a prediction for each output token. The decoder layer is also composed of self-

attention and feedforward neural network layers. However, it also receives inputs

from the encoder layer through a multi-head attention mechanism.

Finally, the output of the Transformer decoder layer is passed through two linear

layers, where the first layer maps the output to a lower-dimensional space, and the

second layer maps this lower-dimensional representation to the output classes. The

model also employs layer normalization and dropout for regularization.

The hyperparameters tested via a grid search are listed in Table 4, with the values selected in boldface. Since there are a large number of hyperparameters in this model,

seven of the hyperparameters in Table 4 are fixed values. Our trained transformer model achieved perfect accuracy on the test dataset.

The weights of the output layer were manipulated to explore the effect of over-

writing the low-order bits. The resulting accuracies—as a function of the number

of bits overwritten—can be seen in Fig. 3a. We observe that up to 26 low-order bits can be overwritten with no adverse effect on the model accuracy. A drop in accuracy

from 1.00 to 0.9833 occurs when the low-order-27 bits are overwritten. When the

low-order 28 bits of the output layer weights are overwritten, the accuracy of the

model drops to 0.8307, and the accuracy plummets thereafter.

Steganographic Capacity of Transformer Models

523

1.00

1.00

0.80

0.80

0.60

0.60

curacy

curacy

Ac 0.40

Ac 0.40

0.20

0.20

0.00

0.00

0

4

8

12

16

20

24

28

32

0

4

8

12

16

20

24

28

32

Bits overwritten

Bits overwritten

(a) Output weights

(b) Internal weights

1.00

0.80

0.60

curacy Ac 0.40

0.20

0.00 0

4

8

12

16

20

24

28

32

Bits overwritten

(c) All weights

Fig. 3 Transformer model performance with low-order bits of weights overwritten

In Fig. 3b, c we give the results when information is hidden in the hidden layer weights, and when information is hidden in all of the weights, of our trained Transformer model, respectively. In both of these cases, we are free to hide information

in the low-order 24 bit positions with no negative effect on the model, but when we

use the low-order 25 bits, model accuracy is severely affected.

In the transformer model, the number of weights in output layer and internal layers

are 1280 and 175,681,024, respectively, giving a total of 175,682,304 weights. For

the output layer weights, as shown in Fig. 3a, we can overwrite the low-order 26 bits with minimal loss in accuracy, giving a steganographic capacity of 32.5 KB, just in

terms of the output layer. Considering either the internal weights or all weights, we

can hide information in the low 24 bits without any ill effect on the model, giving us a steganographic capacity in excess of 3.92 GB for both cases.

524

L. Zhang et al.

5

Conclusion

The primary goal of this research was to determine a reasonable lower bound the

stenographic capacity of selected learning models. Specifically, we tested Multilayer

Perceptron, Convolutional Neural Network, and Transformer models, which were

each trained on a dataset of more than 15,000 malware executables from 10 families,

with more than 1000 samples for each family.

All of the models underwent the same testing procedure: We first determined

the accuracy of each model on the test set, then we embedded information in the . n low-order bits of the weights, recomputing the classification accuracy for each . n.

We experimented with just the output layer weights, just the hidden layer weights,

and all of the weights. The results were consistent across all models, in the sense

that at least 20 bits per weight can be used to hide information, with minimal effect

on the accuracy. In addition, at some point shortly beyond 20 bits, model accuracy

deteriorates dramatically. These results hold whether considering the output layer

weights, the hidden layer weights, or all weights.

Our experimental results show that the steganographic capacity is surprisingly

high. This is potentially a significant security issue, since such models are ubiquitous,

and hence it is to be expected that attackers will try to take advantage of them.

Embedding, say, malware in a learning model offers an attack vector that is practical,

and could be highly effective in practice.

It would be wise to reduce the steganographic capacity of learning models. Our

results indicate that 32-bit weight do not yield a significant improvement in accuracy

over what could be achieved with, say, 16-bit weights. With additional work, for

specific models, it should be feasible to use even smaller weights—this would be an

interesting and potentially valuable area for additional research.

Further research into other popular deep learning models would also be worth-

while. If the steganographic capacity of pre-trained models could be reduced, then

the creation of “thin” pre-trained models would be of value. It would also be inter-

esting to determine whether more challenging classification problems tend to affect

the steganographic capacity of inherently “fat” models. Intuitively, more challenging

problems should require more learning be embedded in the weights, and hence the

steganographic capacity might be somewhat lower.

Another area for further investigation would be to combine some aspects of the

steganographic capacity work presented in this paper with the work in [31], where information is hidden in weights that are (essentially) unused by the model. By

combining both of these approaches, we could obtain a larger steganographic capacity

of learning models.

Steganographic Capacity of Transformer Models

525

References

1. Agarwal M. Text steganographic approaches: a comparison. Int J Netw Secur Appl.

2013;5(1):91–106.

2. Anthony J. 60 notable machine learning statistics: 2021/2022 market share and data analysis.

2022. https://financesonline.com/machine-learning-statistics/

3. Barni M, Pérez-González F, Tondi B. DNN watermarking: four challenges and a funeral. In: Proceedings of the 2021 ACM workshop on information hiding and multimedia security. 2021.

p. 189–96.

4. Boenisch F. A systematic review on model watermarking for neural networks. Front Big Data.

2021;4: 729663.

5. Carroll L. Alice’s adventures in wonderland. Macmillan; 1865. https://www.gutenberg.org/

ebooks/11

6. Clelland CT, Risca V, Bancroft C. Hiding messages in DNA microdots. Nature.

1999;399(6736):533–4.

7. Diffie W, Hellman ME. New directions in cryptography. IEEE Trans Inf Theory.

1976;22(6):644–54.

8. Duggal N. Top 10 machine learning applications and examples in 2022. 2022. https://www.

simplilearn.com/tutorials/machine-learning-tutorial/machine-learning-applications

9. Fiscutean A. Steganography explained and how to protect against it. 2021. https://www.

csoonline.com/article/3632146/steganography-explained-and-how-to-protect-against-it.

html

10. John. Word of the day: steganography. 2017. https://www.secalliance.com/blog/word-day-

steganography

11. Kim S. PE header analysis for malware detection. Master’s thesis, San Jose State University; 2018.

12. Liu T, Liu Z, Liu Q, Wen W, Xu W, Li M. StegoNet: turn deep neural network into a stegoma-lware. In: Proceedings 36th annual computer security applications conference, ACSAC. 2020.

p. 928–38. https://cse.buffalo.edu/~wenyaoxu/papers/conference/xu-acsac2020.pdf

13. Majeed MA, Sulaiman R, Shukur Z, Hasan MK. A review on text steganography techniques.

Mathematics. 2021;9(21):2829.

14. Microsoft. Trojan:Win32/VB. 2007. https://www.microsoft.com/en-us/wdsi/threats/malware-

encyclopedia-description?Name=Trojan:Win32/VB

15. Microsoft. VirTool:Win32/CeeInject. 2007. https://www.microsoft.com/en-us/wdsi/threats/

malware-encyclopedia-description?Name=VirTool

16. Microsoft. Win32/Renos. 2007. https://www.microsoft.com/en-us/wdsi/threats/malware-

encyclopedia-description?name=Win32/Renos

17. Microsoft. Trojan:Win32/BHO.BO. 2009. https://www.microsoft.com/en-us/wdsi/threats/

malware-encyclopedia-description?Name=Trojan:Win32/BHO.BO

18. Microsoft.

VirTool:Win32/VBInject.

2010.

https://www.microsoft.com/en-us/wdsi/

threats/malware-encyclopedia-description?Name=VirTool:Win32/VBInject&ThreatID=-

2147367171

19. Microsoft. Win32/Vobfus. 2010. https://www.microsoft.com/en-us/wdsi/threats/malware-

encyclopedia-description?name=win32

20. Microsoft.

Win32/Winwebsec.

2010.

https://www.microsoft.com/en-us/wdsi/threats/

malware-encyclopedia-description?Name=Win32

21. Microsoft. Trojan:Win32/Startpage. 2011. https://www.microsoft.com/en-us/wdsi/threats/

malware-encyclopedia-description?Name=Trojan:Win32/Startpage

22. Microsoft.

Win32/OnLineGames.

2015.

https://www.microsoft.com/en-us/wdsi/threats/

malware-encyclopedia-description?name=Win32/OnLineGames

23. Microsoft. Adware:Win32/Adload. 2018. https://www.microsoft.com/en-us/wdsi/threats/

malware-encyclopedia-description?Name=Adware:Win32/Adload

24. Mishra R, Bhanodiya P. A review on steganography and cryptography. In: 2015 international conference on advances in computer engineering and applications. 2015. p. 119–22.

526

L. Zhang et al.

25. Selig J. What is machine learning? A definition. 2022. https://www.expert.ai/blog/machine-

learning-definition/

26. Stamp M. Information security: principles and practice, 3rd edn. Wiley; 2021.

27. Stamp M. Introduction to machine learning with applications in information security, 2nd edn.

Chapman and Hall/CRC; 2022.

28. Stanger J. The ancient practice of steganography: what is it, how is it used and why do cybersecurity pros need to understand it. 2020. https://www.comptia.org/blog/what-is-

steganography

29. Taud H, Mas J-F. Multilayer perceptron (MLP). In: Olmedo MTC, Paegelow M, Mas J-F,

Escobar F, editors. Geomatic approaches for modeling land change scenarios. Springer; 2018.

p. 451–5.

30. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. In: Proceedings of the 31st international conference on neural information processing systems, NIPS’17. 2017. p. 6000–10.

31. Wang Z, Liu C, Cui X. EvilModel: hiding malware inside of neural network models. In: 2021

IEEE symposium on computers and communications, ISCC. 2021. p. 1–7. https://arxiv.org/

abs/2107.08590

32. Wang Z, Liu C, Cui X, Yin J, Wang X. EvilModel 2.0: bringing neural network models into malware attacks. Comput Secur. 2022;120:102807.

33. Wieland A, Wallenburg CM. Dealing with supply chain risks: linking risk management

practices and strategies to performance. Int J Phys Distrib Logist Manag. 2012;42(10):887–905.

[image: Image 153]

Distinguishing Chatbot from Human

Gauri Anil Godghase , Rishit Agrawal

, Tanush Obili ,

and Mark Stamp

Abstract There have been many recent advances in the fields of generative Arti-

ficial Intelligence (AI) and Large Language Models (LLM), with the Generative

Pre-trained Transformer (GPT) model being a leading “chatbot.” LLM-based chat-

bots have become so powerful that it may seem difficult to differentiate between

human-written and machine-generated text. To analyze this problem, we have devel-

oped a new dataset consisting of more than 750,000 human-written paragraphs, with

a corresponding chatbot-generated paragraph for each. Based on this dataset, we

apply Machine Learning (ML) techniques to determine the origin of text (human or

chatbot). Specifically, we consider two methodologies for tackling this issue: feature

analysis and embeddings. Our feature analysis approach involves extracting a collec-

tion of features from the text for classification. We also explore the use of contextual embeddings and transformer-based architectures to train classification models. Our

proposed solutions offer high classification accuracy and serve as useful tools for

textual analysis, resulting in a better understanding of chatbot-generated text in this

era of advanced AI technology.

1

Introduction

Recent advances in Large Language Models (LLM) have forever changed the field of

Natural Language Processing (NLP). A front-runner in the LLM industry has been

the Generative Pre-trained Transformer (GPT) [14] series of models, 1 colloquially known as ChatGPT. These GPT models are known for their large scale, parameter

size, advanced language processing abilities and creative text generation. The promi-

nence of GPT in the current field makes this model an important topic of research.

1 At the time that this research was initiated, the state-of-the-art version of the GPT model was GPT-3.5, and hence that is the version that we use in all experiments discussed in this paper.

G. A. Godghase · R. Agrawal · T. Obili · M. Stamp (B)

San Jose State University, San Jose, CA, USA

e-mail: mark.stamp@sjsu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

529

M. Stamp and M. Jureček (eds.), Machine Learning, Deep Learning and AI for

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_19

530

G. A. Godghase et al.

The GPT model, and other LLMs are gradually becoming more human-like. The line

between human written text and LLM-generated text is likely to continue to blur.

This advent of LLMs, although beneficial in several fields, also presents challenges

associated with discerning the origin of written text.

In this research, we explore the use of Machine Learning (ML) and Deep Learn-

ing (DL) techniques for the classification of text as either human-written or GPT-

generated. This classification is important in several domains, including content

moderation, cybersecurity, education, and so on.

We first collect a large dataset of more than 750,000 human-written paragraphs,

each of which includes a brief summary. Then, for each of these human-written

paragraphs, we ask ChatGPT to generate a corresponding paragraph on the same

topic and of approximately the same length, which yields a new, high-quality dataset

containing more than 1,500,000 full paragraphs. We then determine how accurately

we can classify these text samples as human or chatbot. For the classification task,

we consider the following two approaches.

• Feature analysis—Our feature analysis approach involves extracting a wide range

of features from the data samples and using elementary statistical properties of

these features to classify text as human or chatbot generated. This involves analyz-

ing the lexical diversity, linguistics, syntactical structures, and other characteristics

of the data.

• Embeddings—Our embeddings approach involves feeding data to learning mod-

els, based on word and sentence embeddings. These embeddings are vectors that

are designed to capture some relationships present in the data, enabling models to

learn from the underlying semantics of the text.

At the core of our research are several ML and DL techniques that we use to clas-

sify text. Our main goal is to determine how accurately such learning techniques are

able to distinguish human-generated text from GPT-generated text. Another impor-

tant aspect of this research is to determine which features are most useful in this

classification. Understanding the relative importance of various features will allow

us to better understand the strengths and limitations of ChatGPT-generated content

and to identify areas for improvement.

The remainder of this paper is organized as follows. Section 2 explores the existing literature surrounding this topic, while in Sect. 3 we focus on the background required to understand our work. Section 4 covers the process we follow for dataset generation, and Sect. 5 presents some elementary statistical analysis of our new dataset.

Section 6 delves into implementation details of our learning-based approaches for distinguishing between human and chatbot text, including the features extracted,

embedding techniques, the learning models that we train, and so on. In Sect. 7 we discuss the results that we have obtained. The paper concludes with Sect. 8, where we also discuss some potential avenues for future work.

Distinguishing Chatbot from Human

531

2

Relevant Related Work

In this section, we first review the chatbot that we use to generate our data, namely,

ChatGPT. Then we delve into the existing literature and research studies that have

explored the differentiation between human and machine-generated text. This review

of previous work serves to place our research in context, as of the time this paper

was written. However, it is worth noting that this is a rapidly evolving field, and

additional new research and results are certain to appear.

 2.1

 ChatGPT

The GPT 3.5 model used by ChatGPT, developed by OpenAI, is a deep learning

model based on a transformer architecture. It is a pre-trained model which has been

trained on a vast corpus of information from the Internet, and several other publicly

available sources, including books, websites, etc. [14, 15]. The exact size amount of training data used for this model is not publicly known. However, a previous version

of the model had 175 billion parameters and was trained with 499 billion crawled text

tokens. The model is able to recognize patterns within text and generate information

that closely resembles text written by humans. During the pre-training, the model

learns to predict the next word in a sentence [15]. This is done using an attention-based transformer architecture [18], which enables the model to learn contextual information and patterns within the text. The model first interprets the context of

the user’s query and autoregressively generates the next word (or token) that fits the

context.

 2.2

 Human Classification

Before diving into the classification of text using machine learning, we might consider

the question: How good are humans at distinguishing between machine and human

content? The research in [5] attempted to answer this question. This study included nine literature professionals and each was given the initial lines of 18 poems and short stories by classic authors. They were asked to produce two continuations for each text,

one with AI tool based on the GPT 2 model. While evaluating, the participants were

asked to classify all continuations not written by themselves as AI or human. The

results of this study indicated that the professional struggled with this classification

problem, with high rates on false positives and negatives. These results indicate

that the problem of identification of human versus machine generated content may

be moving out of human hands. The research in [7] presents evidence suggesting longer excerpts of text can fool humans over 30% of the time. Thus, it would appear

that we may need machines to accurately distinguish between human-generated and

chatbot-generated text.

532

G. A. Godghase et al.

 2.3

 Datasets

To date, research on the classification of text as human or GPT-generated has been

scant. There is also a paucity of publicly available datasets for experimentation. Most

researchers have thus had to create their own datasets (and this paper is no exception).

In the study [11], the authors created a dataset based on Wikipedia articles. They defined 10 categories and selected 10 topics within each category to generate content

using AI. Similarly, the authors of [6] developed a dataset based on scientific papers.

They passed the title of the paper as a prompt and asked the model to generate an

abstract based on the title. In contrast to using a single dataset for classification, the authors of [6] created several categories of data, such as essays, poems, stories and code. All of these were used for classification. These papers indicate that a wide

array of creative techniques have been used to generate data.

 2.4

 Classification Techniques

The approaches for classification using Machine Learning have also varied widely in

published studies. The research of [9, 11] both used feature extraction based approach for classification. On the other hand, the authors of [6] transformed the textual data to numerical using TFIDF 2 and similar techniques. The authors of [7] used a “bag of words” implementation to generate embeddings. Thus, two primary methods have

been adopted for classification problem: feature based and embedding based.

 2.5

 Feature Based Classification

The authors of [11] extracted 37 features grouped in eight categories. (perplexity, semantic, list lookup, document, error based, readability, AI feedback, and text vector

features.) On the other hand, the authors of [9] used features in just three categories (syntax, semantics, and pragmatics). The syntax features are token level (e.g., length

of words, part of speech, function word frequency, and stopword ratio), semantic

features consist of cosine similarities between sentences (including the title), and

pragmatic features deal with things like self-contradictions and redundancies.

An interesting approach was adopted in [11], which included asking the GPT

model itself if specific text was generated by it. Another feature category in this

paper was perplexity, which is a measure of how surprised the language model is

when it encounters a new sequence of words. The remaining features in [11] were similar to [9].

2 We discuss TFIDF in Sect. 3.2.1.

Distinguishing Chatbot from Human

533

 2.6

 Model Selection

Several different models have been used for text classification in various studies,

with Logistic Regression being often used to establish baseline metric scores. The

work in [6, 7, 9] all use Logistic Regression for classification; in [6, 7] it is used for classification of text into human or AI-generated content, whereas in [9] it is used to interpret the various features. In [6, 7], Logistic Regression yielded an average accuracy of 0.79–0.93 in various cases.

XGBoost, Random Forest, and Multilayer Perceptron models were used for clas-

sification in [6], where an accuracy of 0.98 was attained for basic AI-generated texts and 0.969 for more advanced cases. Bidirectional Encoder Representations from

Transformers (BERT) was used in [7]. The authors of [6] experimented with the Long Short Term Memory (LSTM) models.

3

Background

In this research, we attempt to classify text as either human or GPT 3.5 generated

using Machine Learning and Deep Learning techniques. As mentioned above, we

consider two approaches, namely, feature analysis and embeddings. In this section,

we explain in some detail background topics, including the various embedding

techniques and the learning models used.

 3.1

 Models

In this section, we provide an overview of all of the ML and DL models that were used in the project. Among classic ML techniques, we consider Logistic Regression, Random Forest, and XGBoost, while from DL models, we experiment with Multilayer

Perceptron, a Deep Neural Network, and Long Short Term Memory networks.

3.1.1

Logistic Regression

Logistic Regression (LR) models the relationship between independent and depen-

dent variables. LR is useful when we need to predict the possibility of the occurrence

of an event, and it is most often used for binary classification problems [1].

LR predicts the likelihood of an observation belonging to a particular class by

using the logistic or the sigmoid function to map the probability of outcomes to the

range 0–1. It assumes that a linear relationship exists between the predictor variable

and the log odds of the feature variables [16].

534

G. A. Godghase et al.

3.1.2

Random Forest

Random Forest (RF) is one of the most popular supervised ML algorithms. It is an

ensemble technique that is trained using a “bagging” approach. In bagging, multiple

weak learners (decision trees in the case of RF) are trained in parallel, each based on a subset of the features and data. Classification of individual data points into classes

is based on the ensemble of these weak learners [17]. One advantages of RF is that it can effectively handle missing values.

3.1.3

Support Vector Machine

For a binary classification problem, Support Vector Machines (SVM) attempt to

separate the classes using a hyperplane, while maximizing the “margin,” i.e., the

minimum distance between the hyperplane and the training data. The so-called kernel

trick enables us to embed a nonlinear transformation into the SVM training process—

which can serve to increase the separation between classes—without any significant

loss of efficiency. In this paper, we only consider linear SVMs, in which case each

feature has an associated weight which specifies the importance that the model places

on that specific feature [17].

3.1.4

XGBoost

XGBoost is short for eXtreme Gradient Boosting. Like RF, it is also an ensemble

learning model that uses various weak learners (trees) to give predictions. However,

boosting techniques rely on an involved process for combining weak learners, as

opposed to the simple voting strategy of an RF. XGBoost employs a block structure

for parallel learning, enabling efficient distributed computing [2].

XGBoost is known for its scalability. It is capable of handling datasets that scale

beyond billions of examples. However, potential disadvantage of XGBoost include

that it is prone to overfitting and sensitive to outliers.

3.1.5

Multilayer Perceptron

Multilayer Perceptron (MLP) is a type of feedforward Artificial Neural Network

(ANN). An MLP can effectively deal with nonlinear relationships within the data.

MLPs are known for their applications in a wide range of domains, including natural

language processing (NLP). Within the NLP domain, MLPs have been successfully

used for various tasks, including machine translation and speech recognition.

The architecture of an MLP consists of multiple layers of neurons with each layer

being fully connected to the next [17]. There are three types of layers present—one input layer, one output layer, and a small number of hidden layers, where “small” is

typically one or two. The number of neurons in each layer and the number of hidden

Distinguishing Chatbot from Human

535

layers are parameters that need to be determined experimentally. Each neuron has

a nonlinear activation function associated with it, such as a sigmoid, rectified linear

unit (ReLU), or absolute value activation function [20].

3.1.6

Deep Neural Network

In our usage, Deep Neural Networks (DNN) are a more general form of ANN, with

an architecture similar to MLP, but with a larger number of hidden layers. In addition,

a DNN may contain different types of layers, such as convolutional layers, pooling

layers, or recurrent layers [12]. The presence of these layers helps in distinguishing between different types of DNNs, such as Convolutional Neural Networks (CNN)

and Recurrent Neural Networks (RNN). For the experiments considered in this paper,

the DNN architecture is just a deeper version (i.e., more hidden layers) of an MLP.

Training of deep neural networks involves adjusting the weights between layers

to minimize the error between input and output. This is most efficiently done by a

process known as backpropogation [17]. This process is iteratively repeated over the training data, with the trained version of the model then used to make predictions

on previously unseen data. DNNs have proven useful for handling complex data and

they generally give good performance on such datasets. However, they require a large

amount of data for training and the models themselves are notoriously difficult to

interpret [17].

3.1.7

Long Short Term Memory

Long Short Term Memory (LSTM) networks are a special class of Recurrent Neural

Networks (RNN) [12]. RNNs are ANNs that possess some “memory,” in the sense that they can use data from previous time steps to make decisions. RNNs have

many applications in NLP that require context, such as predicting the next word in a

sentence or machine translation. However, generic RNNs tend to suffer from gradient

pathologies (e.g., vanishing or exploding gradient) when trained via backpropagation,

making it difficult to effectively use information that is farther back in time. LSTMs

mitigate these gradient issues by use of a complex gating structure, which enables

information to flow more easily through multiple time steps. For additional details

on LSTMs, see [17, 19].

 3.2

 Word Embeddings

Word embeddings are a powerful concept in NLP that allow computers to understand

and manipulate words based on their meanings. Word embeddings are numerical

representations of words represented by vectors. They are designed to enable models

to process the nuances of language, similar to the way that humans do. They consist

536

G. A. Godghase et al.

of multi-dimensional arrays where each word is mapped to a vector in a predefined

vector space. The goal of embeddings is to place similar words closer together (in

some well-defined sense) within the vector space.

3.2.1

TFIDF

Term Frequency Inverse Document Frequency (TFIDF) is simple method to gener-

ate numerical representations of words, that was originally developed to automati-

cally extract indexing terms from documents. Term Frequency (TF) measures how

frequently a word occurs in a document. Specifically,

. TF (t , d) =

 nt,d

 nw,d

 w∈ d

where . nt,d is the number of times term. t appears in document. d and

.

 nw,d

 w∈ d

is the total number of words in document . d. A higher TF score simply means that a word occurs more frequently in a text. On the other hand, Inverse Document

Frequency (IDF) measures how important a term is. It penalizes words that occur

too frequently across all documents [17]. By taking the logarithm of the division, IDF reduces the effect of terms that appear very frequently in the dataset. This is

done because the terms that occur frequently across all documents are less likely to

be informative. Specifically, the IDF of a term is calculated by

 N

. IDF (t , d) = log

 nt

where . N is the total number of documents in the collection . d and . nt is the number of documents containing the term . t.

By multiplying the TF and IDF scores together we obtain the TFIDF score. A

higher TFIDF score for a word indicates that the term is frequent in a particular

document but not so frequent across all the other documents. This term is likely to

be a distinguishing characteristic of that particular document.

3.2.2

Word2Vec

Word2Vec is a series of related models that are used to produce word embeddings.

Word2Vec models are designed to capture the syntactic and semantic relationships

between words [10]. This is done by placing words in a continuous vector space where

Distinguishing Chatbot from Human

537

words with similar meanings are located close (in the sense of cosine similarity) to

one another.

Word2Vec can be implemented using two different architectures: Continuous

Bag-Of-Words (CBOW) and Skip-Gram. CBOW predicts a target word based on its

context, and it is faster and tends to produce better results for more frequent words.

Skip-Gram, on the other hand, does essentially the opposite, using a target word to

predict the surrounding context. It performs well with small datasets and is effective

at representing rare words [10]. For the research reported in this paper, we use the CBOW architecture.

3.2.3

GloVe

Global Vectors for Word Representation (GloVe) is an unsupervised learning algo-

rithm designed to generate word embeddings. It uses information about the co-

occurrence of words within a corpus to generate its embeddings [13]. These embeddings are vector representations of the corpus, and they are dense in the vector space.

They capture the semantic meanings and relationships between words, which allows

the model to understand the nuances of the language.

The core concept of GloVe is to analyze the probabilities of word co-occurrences

across a text corpus to learn word vectors that reflect collective usage patterns. This is accomplished by constructing a word-context co-occurrence matrix. This matrix represents the frequency with which words in the corpus occur near each other (within

a specified context window). This matrix is then factorized to lower its dimension-

ality, using various matrix factorization techniques [13]. The values of these vectors are iteratively changed and optimized to minimize the difference between the co-occurrence probabilities in the original matrix and the dot product of the resulting

word vectors—this is known as the reconstruction loss. Through this process, GloVe

captures global word usage patterns, where both semantic and syntactic information

is contained within the vectors.

3.2.4

BERT

Bidirectional Encoder Representations from Transformers (BERT) is a popular word

embedding method. BERT is said to have revolutionized NLP by allowing machines

to understand and process text with high accuracy [3]. Unlike GloVe and Word2Vec embeddings, BERT embeddings capture more information about context.

BERT generates embeddings by processing text in both forward and backwards

directions. This means that it takes into account the words on both sides of the word

currently being processed. Before BERT, most models considered text in only the

forward direction, which provides less context to a model.

BERT has a maximum input limit of 512 tokens. Input words are broken down

further into smaller units called WordPieces. The model is pre-trained using two

strategies: Masked Language Modeling (MLM) and Next Sentence Prediction (NSP).

538

G. A. Godghase et al.

MLM randomly masks some of the tokens from the input and predicts them based

on their context. NSP predicts whether two segments of text follow each other in

the original document. This pre-training allows BERT to achieve a highly develop

model of language structure and context.

At the core of the BERT architecture, lie transformers, which allow for simultane-

ous processing using a mechanism known as “attention” to determine which parts of

the data are most relevant. This attention mechanism is based on an encoder-decoder

model that allows BERT to capture the nuances of language and complex sentence

structures [18].

4

Dataset

This section outlines the process we used to generate our dataset. We also discuss the

numerous features that we extract from the data for our feature analysis approach.

These features lay a foundation for differentiating between the two classes of text.

 4.1

 Raw Data Generation

Our dataset consists of a combination of human-generated and GPT-generated text.

For the human-generated text, the publicly available WikiHow dataset introduced

in [8] was used. The original dataset consists of four columns: title, overview, headline, and text. The title consists of the title of the WikiHow article, the

overview is an introduction, the headline is a bold headline that occurs before

the paragraph, and, finally, the text paragraph is the actual text of article.

Each WikiHow article in our dataset was used to generate a corresponding GPT

paragraph of approximately the same length. This was done to maintain the similarity

of topics and length of paragraphs between the two sets of data. The prompt in

Fig. 1 was passed to the GPT 3 API, replacing the placeholders with the corresponding information from each WikiHow paragraph. Some examples human-generated text

and the corresponding GPT-generated text can be found in the appendix.

The resulting response from the GPT 3.5 model was extracted and all of the

responses for all of the WikiHow articles in our dataset comprise the GPT generated

data. The structure of the prompt was intended to ensure that the content of the GPT-

generated data mirrored the content of the human data in information and length.

Fig. 1 ChatGPT prompt

Distinguishing Chatbot from Human

539

Table 1 Dataset details

Class

Paragraphs

Words

Characters

Average words

per paragraph

Human

784,636

54,005,604

307,005,548

68.83

ChatGPT

920,259

75,474,378

474,396,685

82.01

Our goal is to ensure that the models we consider differentiate the text based on the

fundamental characteristics, rather than simply based on topics or other extraneous

aspects. Once the chatbot data was generated, the two sets were merged. The resulting

dataset is balanced, with the same number of human and chatbot-generated samples.

Basic statistics for our dataset appear in Table 1. It is immediately apparent that ChatGPT tends to be “wordy,” in comparison to human writers. Note also

that ChatGPT sometimes produced responses consisting of more than one para-

graph, and hence we obtain more ChatGPT-generated paragraphs than the number

of human-generated paragraphs.

 4.2

 Features

This section covers the various types of features that were generated for every para-

graph of data. We briefly discuss the four broad categories of features that we consider, and even more briefly introduce each of the individual features within these categories. Note that we used Google Colab [4] to extract all of the features discussed in this section.

4.2.1

Linguistic Features

Our linguistic features are designed to capture information about an author’s unique

voice and approach to language. It includes the choice of words, their arrangement,

and the use of various parts of speech. These features convey meaning, tone, and

personality. This category is used to understand how language expresses ideas and

emotions. These features combined contribute to the readability and nuances of the

text. Linguistic style is one of the fundamental aspects of text analysis, and it offers insights into the texture and flavor of the language.

Note that when creating these linguistic features, all values were normalized and

ratios were calculated, instead of using raw frequencies. This was done to ensure

minimal influence of lengths of the text and to minimize further data preprocessing.

Next, we introduce each the eight linguistic features that we consider.

540

G. A. Godghase et al.

Verb ratio—The verb ratio refers to the ratio of the frequency of verbs in a text to the total number of words. Verbs refer to the action words in the text. They are essential

in the construction of sentences, conveying actions and states. A higher verb ratio

indicates text that is more dynamic.

Noun ratio—The noun ratio is the ratio of the frequency of nouns in the text to

the total number of words. Nouns are the fundamental building blocks of sentences

consisting of the names of people, places, things, or ideas. A text with a high noun

ratio indicates richness of the text, in terms of subjects and concepts and abstract

entities, and suggests that the text is dense with information and ideas.

Adjective ratio—The adjective ratio is the ratio of the frequency of adjectives within a text to the total number of words. Adjectives describe or modify nouns. They

provide more refined information about the qualities, quantities, or states of being of

the nouns in the sentence. A higher ratio of adjectives indicates a more descriptive

or expressive text, and create a more detailed picture of the corresponding nouns.

Pronoun ratio—The pronoun ratio is the ratio of the frequency of pronouns to

the number of words. Pronouns are used to replace nouns. A higher pronoun ratio

indicates frequent references to previously occurring nouns, which tends to make the

text more personalized and generally easier to read and follow.

Adverb ratio—The adverb ratio is the ratio of the frequency of adverbs within a

text to the total number of words. Adverbs describe or modify verbs, adjectives, or

other adverbs. They provide more information on how, when, where, and to what

extent actions are performed. Text with a high adverb ratio provides more detailed

descriptions of how actions are performed, and they add to the depth of the text, in

the sense of making it more descriptive.

Preposition ratio—The preposition ratio is the ratio of the frequency of prepositions within a text to the total number of words. Prepositions are words that link nouns,

pronouns, or phrases to other words within a sentence. They indicate temporal, spatial

or other relationships of objects. A text with a high preposition ratio contains more

complex descriptions of places, times, and other relationships.

Conjunction ratio—The conjunction ratio is the ratio of the frequency of conjunc-

tions within a text to the total number of words. Conjunctions join together different

words, phrases, clauses, or sentences. They allow a seamless flow of words and

ensure the coherence of the text. A higher conjunction ratio indicates complex and

interwoven ideas, and can enhance the reader’s ability to follow these ideas smoothly.

Interjection ratio—The interjection ratio is the ratio of the frequency of interjections within a text to the total number of words. Interjections are words or phrases that

express sudden or spontaneous emotion. They make the text appear more lively and

mirroring of real life. A higher interjection ratio speaks to a higher level of emotion

within the text.

Distinguishing Chatbot from Human

541

4.2.2

Structural Features

Structural features deal with the construction and architecture of the text. They pro-

vide information on how sentences are formed and how paragraphs are organized.

They also contribute to the high-level structure of the text. This includes aspects such

as sentence length, complexity, and the use of lower and upper case letters. Together

all of these characteristics influence the readability and aesthetics of the text. These

features are crucial in order to gain a deeper understanding of how ideas are pre-

sented in text. They provide a way in which we can understand the organizational

preferences of the author. Next, we introduce the eight structural features that we

consider.

Average sentence length—Average sentence length is, of course, the average num-

ber of words per sentence in a text. Longer sentences often contain more complex

ideas or multiple thoughts joined together. On the other hand, shorter sentences tend

to be more concise and focused on one idea. The average sentence length gives us

an indication of the complexity of the text, and the writing style of the author.

Lowercase letter ratio—The lowercase letter ratio is the ratio of the number of

lowercase alphabetic characters to the total number of alphabetic characters in the

paragraph. Texts containing a large value for this ratio indicate the adherence of the

writer to traditional writing conventions, which state that capitalization should only

be used to begin sentences or to name locations and persons. A lower ratio could be

a sign of unusual structural choice, which may be an indication of a human author.

Capital letter ratio—The uppercase letter ratio is the ratio of the number of uppercase alphabetic characters to the total number of alphabetic characters in the para-

graph. A higher ratio could be a sign of unusual structural choice, which may be an

indication of a human author.

Lexical diversity—Lexical diversity refers to the number of unique words used in

the text. A higher value indicates the use of a wide range of vocabulary within the text.

In creative writing, high lexical diversity can contribute to the vividness of the text.

This allows the writer to capture and convey more complex emotions effectively. In

academic writing, a higher degree of lexical diversity is often associated with greater

sophistication.

Sentence complexity—Our sentence complexity score is the average number of

clauses per sentence in a given text. It provides information about the syntactic

complexity of the text by indicating how tightly clauses are packed into sentences. A

higher score denotes more complex sentence structure, which indicates more complex

concepts and a greater degree of information. However, this higher complexity can

also make the text harder to read.

Burstiness—Burstiness is a characteristic that represents to what extent words occur

in certain “bursts” or clusters, rather than in an even distribution throughout the

paragraph. Burstiness is common among humans and is often a characteristic of

542

G. A. Godghase et al.

specific authors. Burstiness is calculated as the ratio of the variance to the mean in

the frequency of words occurring within a given text.

Sentence count—Sentence count is the total number of sentences in a paragraph.

This can help us gauge whether the chatbot tends to write longer or shorter sentences,

compared to a typical human. For instance, a higher sentence count with shorter

average sentence length might suggest a style that prioritizes clarity and simplicity.

Word count—Word count is the total number of words in the paragraph. Analyzing

the word count can offer insights into the style of the text. For example, a higher word count with complex sentence structures may indicate a more detailed text, which is

typical in scholarly articles. Conversely, a lower word count with simple sentences

might be more appropriate for a quick read or content aimed at a broader audience.

Stopword ratio—The stopword ratio in a text is the proportion of commonly used

words that carry minimal lexical content (e.g., “the,” “is,” “at”). This statistic helps

in assessing the density of meaningful content in a given text.

Complex ratio—Complex sentences are those that contain one independent clause

and at least one dependent clause, linked by subordinating conjunctions or relative

pronouns. Such sentences tend to express deeper relationships and nuances in ideas.

4.2.3

Semantic Features

Semantic features deal with the meaning of the text, including the ideas and emotions

conveyed by the paragraph. This includes the sentiment of the text, figures of speech,

literary devices, subjectivity, and objectivity of the text. These features showcase the

richness of the language used. Next, we introduce the six semantic features that we

consider.

Sentiment polarity—Sentiment polarity refers to the sentiment of the text, which

can be positive, negative, or neutral. This gives us an idea of the mood conveyed

by the text and the writer’s attitude towards the subject matter. A score between . −1

and .+1 is assigned to each paragraph, where .−1 refers to an extremely negative

sentiment, 0 is neutral and .+1 is extremely positive.

Subjectivity—Subjectivity quantifies what percent of the text is the writer’s opinion, feelings, or personal experiences. Human text is likely to be more subjective, whereas

model-generated text tends to be objective and neutral, eschewing personal opinions.

A score between 0 and 1 is assigned to each paragraph, with 1 being completely

subjective and 0 being completely objective.

Homonym frequency—Homonyms refer to words that sound or spell the same but

have different meanings. Higher homonym frequency might indicate a text with more

potential ambiguities, which is usually a characteristic of poetic or literary works.

Such texts often require more contextual interpretation. Conversely, lower homonym

frequency could suggest clearer and more straightforward text that is intended for a

wide audience with varying levels of language proficiency.

Distinguishing Chatbot from Human

543

Simile frequency—Simile frequency measures the use of the simile figure of speech.

Simile refers to the comparison of two different things, typically by using the words

“as” or “like.” Similes are used to draw parallels while enhancing the language

used. The strategic use of similes can enrich a narrative, making descriptions more

engaging.

Synonym frequency—Synonym frequency is the frequency of synonyms used in a

paragraph. Synonyms refer to different words that have the same meaning. Synonyms

help avoid the repetition of words and enhance the diversity of words.

Antonym frequency—Antonym frequency is the measure of how often opposites

are used in the paragraph. They help enrich the text by adding contrast and depth.

The use of antonyms can create a more vivid narrative or more persuasive arguments.

4.2.4

Interaction Features

Interaction features deal with how the writer engages with the reader. They include

conditionals, questions, tones, and parts of speech that address dialogue. These fea-

tures play a role in analyzing the strategies used to engage the reader and achieve

communicative objectives. Next, we introduce the eight interaction features that we

consider.

Active passive ratio—Active passive ratio is the ratio of the frequency of active to passive voice. Active voice refers to a more direct approach to sentences, where the

subject of the sentence performs the action described by the verb. The structure of

an active voice sentence is

. subject + verb + object

On the other hand, in passive-voiced sentences, the focus of the sentence is the action

or object rather than the subject. A typical passive voice sentence structure is

. object + past participle of verb + subject

Writing style is greatly affected by the voice used.

Direct to indirect speech ratio—Direct speech refers to quoting a speaker without

changes. In contrast, indirect speech refers to paraphrasing the speaker, without the

use of quotes. Direct speech, also called reported speech is used to portray a dialogue.

Indirect speech is usually used for summarizing existing conversations.

Conditional sentence ratio—Conditional sentence ratio is the ratio of the number

of conditional sentences to the total number of sentences in a text. Conditional sen-

tences refer to statements that include a hypothetical situation as an outcome using

connectors such as “if”, “unless”, and so on.

Negation ratio—Negation ratio is the ratio of sentences containing negations to the

total number of sentences in a text. Negations usually refer to the use of words such

544

G. A. Godghase et al.

as “not”, “no”, or “never”, which effectively invert the meaning of the sentence. They

are used to express contradictions or disagreements within the text.

Question ratio—The question ratio is the ratio of the number of questions in the text to total number of sentences. In the context of our dataset, questions will generally

be more rhetorical and meant to get the reader to ponder over the content, and is a

common human author strategy.

Exclamatory sentence ratio—The exclamatory sentence ratio is the ratio of the

number of exclamatory sentences to total number of sentences. Exclamatory sen-

tences express strong feelings, reactions, surprise, excitement, or other intense emo-

tions, and typically end with an exclamation point. Such sentences are often used for

dramatic effect.

Imperative mood ratio—Imperative mood ratio is the ratio of sentences containing

imperative mood to the total number of sentences. An imperative sentence demands

or requires that an action be taken, and texts with a higher ratio of imperative mood

are usually instructive in nature.

Subjunctive mood ratio—The subjunctive mood is used to express wishes, hypo-

theticals, or contrary scenarios. A higher ratio of subjunctive mood indicates

more speculative context, and is often found in literary works, opinion pieces, or

discussions involving scenarios that are not grounded in reality.

5

Data Exploration

Before discussing the ML models cosidered, we explore what insights can be gathered

directly from the dataset. This includes an analysis of the distribution of the data

across the various features introduced in the previous section.

 5.1

 Target Variable

The target variable that we attempt to predict is whether a given piece of text is

“human” or “GPT”. For training, the dataset consists of the text from wikiHow

articles and corresponding GPT-generated text. Therefore, in terms of the number of

paragraphs, the dataset is balanced.

 5.2

 Paragraph Length

While creating the GPT generated counterpart of the human written data, we passed

the length of the paragraph to the prompt, with the goal of generating reasonably

[image: Image 154]

Distinguishing Chatbot from Human

545

Fig. 2 Distribution of number of words in paragraphs

consistent lengths in the corresponding GPT generated data. Figure 2 reflects this distribution of the target variable.

From Fig. 2 it is clear that the distribution of words in human as compared to GPT

is significantly different, despite passing the length of human written paragraphs to

the GPT model in the prompt. This indicates that the model is not able to strictly

stay within the specified word length. One reason for this is that the GPT model is

based on “tokens” instead of words, and one word can contain anywhere from one

to three tokens, on average. Hence, the model is not able to adhere well to word

limits. Figure 2 indicates that GPT tends to be more wordy or chatty, as compared to humans.

 5.3

 Feature Analysis

This section outlines the insights gained from visualizing the target variable with

individual features. This can help us understand how these features affect the predic-

tor variable. For the sake of brevity, we omit the graphs from which these insights

were drawn.

5.3.1

Linguistic Features

By examining the linguistic patterns in human and GPT-generated text, we can

observe clear variations in different parts of speech. For instance, humans typically

use verbs more often, and in addition, have a higher mean verb ratio. They also use a

wider variety of verbs compared to GPT. Similarly, human texts have a wider range

of prepositions. This suggests that GPT-generated texts have a more structured and

limited approach to the usage of prepositions.

546

G. A. Godghase et al.

Another interesting difference between human versus GPT-generated texts is the

usage of adjectives. GPT-generated texts tend to use more adjectives and in turn more

descriptive language. This might be done in an effort to enhance the quality and add

depth to the text. In contrast, the usage of pronouns is higher in humans. This shows

that humans generally prefer a more personal and interactive style of writing.

Despite the use of interjections being limited in both human and GPT text, their

use in human text is relatively more frequent. This indicates that human texts are

more spontaneous, and that this is one characteristic that GPT does not attempt to

imitate. This is a subtle difference between the two classes.

5.3.2

Structural Features

Structural features offer more insights into the nuanced differences between human-

generated and GPT-generated texts. Sentences produced by GPT are typically longer

than sentences produced by humans. Human-written sentences have a wider range

of sentence lengths, in contrast to the consistently longer sentences of GPT. Addi-

tionally, the use of capitalization is also higher in humans, mostly due to emphasis

and stylistic choices.

In addition to sentence variety and capitalization, human writing also has a greater

diversity of words, indicating that humans tend to use more creative language. This

is not surprising, as a trained chatbot tends to select the best fitting word (or words), whereas humans often prefer more variation to make the text more interesting to

read.

Sentence composition is another characteristic that differs in human as compared

to GPT generated text. GPT is known for generating complex sentences with multiple

clauses. Human writing, on the other hand, demonstrates a wider range of complexity;

some authors favor straightforward sentence structures, while others choose far more

complexity.

Burstiness is an attribute that describes the repeated occurrence of certain words

or phrases in “bursts”. Human writing has a higher mean and variance in burstiness,

while GPT text is generally less erratic, highlighting a more consistent approach to

text generation.

Due to longer sentences of GPT text, it also tends to use more words overall.

Hence, GPT-generated texts have a higher level of verbosity or wordiness, and the

wordiness of AI writing occasionally results in redundancy. Humans, on the other

hand, write succinct and to-the-point sentences focusing on clarity.

5.3.3

Semantic Features

Humans tend to include personal thoughts, opinions, and emotional range in their

writing. This leads to varied tones and perspectives. In contrast, GPT texts are consis-

tently neutral or positive. This is likely the result of an algorithmic bias that produces less divisive content to avoid controversy. In addition, GPT tends to stick to facts,

Distinguishing Chatbot from Human

547

without expressing opinions. This might be due to the fact that chatbots are intended

to be informative and subjective, without introducing their own bias.

Another interesting characteristic of GPT text is the frequent use of homonyms.

It is unclear why ChatGPT tends to use more homonyms than humans.

Conversely, GPT tends to use more similes than humans. This might be because it

is trained to enhance the readability of text and make it more likely to be understood.

Additionally, GPT also uses more synonyms than humans while, in contrast, GPT

uses fewer antonyms, preferring non-contrasting language. This might again stem

from the fact that it is trained to make the content less divisive and polarizing.

Humans, not bound by this restriction, tend to use a larger number of antonyms.

5.3.4

Interaction Features

Interaction features refer to how the text interacts with the reader, such as the “voice”

of the text. Human text has a higher median of active to passive ratio with a wider

variation, which suggests that human authors use a variety of stylistic choices when

picking the voice of the sentences. ChatGPT, on the other hand, utilizes an active

voice more frequently, thus making the text direct, straightforward, and easier to

understand.

Text written by humans has a larger mean conditional sentence ratio than that

generated by GPT. Humans tend to use conditionals (e.g., “if”) more often to discuss

possibilities and hypotheticals. Human-generated text also has a larger mean nega-

tion ratio than GPT, indicating a higher frequency of negative constructs in human

language. GPT uses fewer negations which, again, serves to keep the text neutral and

less polarizing.

Humans use questions more frequently than GPT as evidenced by the higher

mean question ratio. Questions are often employed to engage with the reader. This

suggests a more interactive approach in human writing compared to GPT’s generally

more informative style. Exclamatory sentences, which express strong feelings and

reactions, appear at a higher ratio in human texts. This contrasts with the typically

more subdued tone of GPT-generated texts. Lastly, the mean subjunctive mood ratio

is larger in texts created by humans. This indicates a greater tendency for humans to

discuss hypothetical scenarios, which requires thinking beyond the immediate. This

is less frequently observed in GPT text.

 5.4

 Correlation Analysis

Figure 3 provides a heatmap of the correlations between pairs of the most significant features. For example, we observe that.auxiliary_verb_frequency and

.lexical_diversity are highly correlated. As another example, we note that

.homonym_frequency is not highly correlated with any of the other features.

[image: Image 155]

548

G. A. Godghase et al.

Fig. 3 Correlation heatmap

6

Implementation

This section describes the process through which we trained ML and DL models to

distinguish between human-generated and GPT-generated text. We provide details

about our feature analysis approach, which involves crafting and selecting informa-

tive features from the text data. We also discuss our embeddings approach, where text

is converted into numerical representations that capture deeper semantic meanings.

 6.1

 Data Preprocessing

Generally, preparing the data to a point where models can be trained on it is one of

the most important steps in ML. This step typically involves cleaning the dataset,

removing unnecessary or redundant features, analyzing correlation, and selecting

the appropriate features for training. However, since data generation is part of this

Distinguishing Chatbot from Human

549

research, most preprocessing tasks have already been addressed during the dataset

creation phase. Consequently, minimal preprocessing is necessary before proceeding

with model training. This section describes the minimal preprocessing required by

the models. In fact, the only significant processing that we need to perform is to split the data into training and test sets. In all of our experiments, the dataset is split at an 80–20 ratio for training and testing, respectively. Note that due to the number of

experiments and the size of the dataset, we do not perform cross-validation.

 6.2

 Feature Importance

In our feature analysis approach, we generate features from the raw data, and these

features are then used for training binary classification models. The feature gener-

ation process involves extracting characteristics from the text, including syntactical

features, semantic features, structural features, and interaction features, as discussed

in Sect. 4.2, above. These features aim to capture subtle differences between the structured nature of machine-generated text and the more variable style of human

writing.

Following feature extraction, we employ various feature selection techniques such

as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), fea-

ture importance charts, etc. This is done to identify the most important features for

distinguishing between human and GPT-generated writing. This step helps in reduc-

ing dimensionality and improving model efficiency by eliminating redundant or less

informative features.

The selected features are then utilized to train several types of binary classification

models. We explore a range of models—from simple Logistic Regression to more

complex neural networks, such as LSTMs. Finally, the performance of each model

is evaluated (based on accuracy), and the models are compared.

Once we have the important features, we modify features to see how such changing

affect model performance. This helps us identify non-human-like aspects of the

chatbot.

6.2.1

Feature Selection Techniques

Feature selection is a critical process in machine learning that involves identifying

and selecting the features that have the most significant impact on the predictor

variable. This process is essential because it directly influences the performance of

the machine learning models. By focusing on the most relevant features, we can

enhance the model accuracy, reduce overfitting, and decrease the computational cost

associated with training, and less data would need to be collected when the model is

used for classification in practice.

For the classification problem at hand, the extracted features are all assumed to

be likely to impact the predictor variable. However, this might not be true for all the

550

G. A. Godghase et al.

features, as some might be of minimal value. Moreover, some features might be cor-

related, thus adding little or no new information. Therefore, it is necessary to identify the subset of input variables that are most predictive of the desired outcome. By eliminating unnecessary and redundant features, the model can concentrate its learning

on the aspects of the data that are most distinguishing. This helps in improving both

the training efficiency and the generalizability of the model.

There are many feature selection techniques. For feature reduction, we consider

Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), as

well as feature selection based on a Random Forest classifier, and Lasso feature

importance. Next, we briefly describe each of these feature reduction techniques.

Principal Component Analysis—PCA is a widely used technique in ML for dimen-

sionality reduction. It simplifies data with a large number of dimensions while retain-

ing statistically significant aspects of the original data. PCA works by identifying

the directions along which the variances within the data is maximized. These direc-

tions, known as principal components, are linear combinations of the original fea-

tures. Moreover, the principal components are orthogonal, ensuring that they are

uncorrelated [17].

Linear Discriminant Analysis—Like PCA, Linear Discriminant Analysis is also

a dimensionality reduction technique that is used to find a linear combination of

features. However, unlike PCA, LDA explicitly considers class labels to identify the

principal components that maximize the separation between multiple classes [17].

Random Forest—Random Forest models are often used to evaluate and rank the

importance of various features in a dataset. The significance of each feature is eval-

uated based on its impact on the Random Forest model accuracy. This significance

is calculated by observing how much the accuracy of the model decreases when the

values of that feature are randomly shuffled while keeping all other feature values

constant. This shuffling changes the structure that the feature brings to the model,

thus highlighting its influence on the model performance.

Figure 4 gives the random forest feature importance for our dataset, where we have omitted the features that are most highly correlated. For performing feature

selection, we identify the top 15 most important features and discard the remaining

features.

Lasso—Least Absolute Shrinkage and Selection Operator (Lasso) is a modification

of linear regression that incorporates a regularization term in the loss function. This

term, known as an L1 penalty, is directly proportional to the absolute value of the

coefficient magnitudes.

The Lasso regression technique can be used to perform both feature selection and

regularization. By introducing the L1 penalty term, Lasso converts the coefficients of

less important features to zero. This aspect of Lasso is useful in feature selection as

it automatically reduces the number of features by setting some coefficients to zero.

The greater the value of the penalty term, the more coefficients are set to zero. The

remaining features (i.e., those with non-zero coefficients) are considered significant.

[image: Image 156]

Distinguishing Chatbot from Human

551

Fig. 4 Random Forest feature importances

Figure 5 illustrates the features coefficients. We observe that 11 of the features have non-zero coefficients, and hence we use these features in our Lasso experiments.

To assess the impact of these various feature selection techniques on model perfor-

mance, we conduct numerous experiments. As outlined above, the feature selection

techniques that we have evaluated are the following.

• No feature selection

• Principal Component Analysis (PCA)

• Linear Discriminant Analysis (LDA)

• Features selected by Random Forest

• Features selected by Lasso.

For each of these feature selection methods, six distinct models have been trained to

compare their effectiveness. These models are the following.

• Logistic Regression

• Random Forest (RF)

• XGBoost

• Multilayer Perceptron (MLP)

• Deep Neural Network (DNN)

• Long Short Term Memory (LSTM).

This comprehensive approach allows us to thoroughly evaluate how the various

feature selection strategies influence the predictive accuracy and of a wide variety

of machine learning and deep learning models. Note that each of the six models

considered was discussed in Sect. 3.1, above.

[image: Image 157]

552

G. A. Godghase et al.

Fig. 5 Lasso feature importances

6.2.2

Similar-Length Dataset

Figure 2 indicates that the distribution of paragraph lengths is different in human-generated text, as compared to GPT-generated text. We normalize most features based

on the total number of words, but this uneven distribution of words might skew some

features. For example, from Fig. 4 we see that homonym_frequency is the most important feature, according to a Random Forest model.

As an experiment, we wanted to consider the influence of text length on the

trained models, that is, how the various models perform over text with similar length

distributions in each class. To test this case, we selected a subset of our data for

which the absolute difference in length between the human-generated paragraph and

the corresponding chatbot-generated text is less than 15 words. We refer to this as

the similar-length subset, and it consists of 292,604 paragraphs. Figure 6 shows the distribution of the number of words in each paragraph within this similar-length

subset.

The same feature extraction, data preprocessing, and feature selection steps

outlined in Sect. 6.2 have been carried out on our similar-length subset. Figures 7 and 8 show the Random Forest and Lasso feature importances respectively.

From Fig. 7, we observe that the importance of .homonym_frequency has been reduced.

[image: Image 158]

[image: Image 159]

Distinguishing Chatbot from Human

553

Fig. 6 Paragraph length distribution for similar-length subset

Fig. 7 Random Forest feature importance chart for similar-length data

 6.3

 Embeddings Approach Implementation

Our embedding approach involves using sophisticated algorithms to convert text into

numerical vector representations. These embeddings are then analyzed by machine

learning models to detect differences in language patterns.

[image: Image 160]

554

G. A. Godghase et al.

Fig. 8 Lasso feature importance chart for similar-length data

Vector embeddings are designed to capture semantic and syntactic nuances of the

language. This is done by analyzing large texts and learning representations where

related words have related encodings. These models provide dense and informative

representations that capture context and meaning effectively. The embeddings tech-

niques that we consider are the following: TFIDF, Word2Vec, GloVe, and BERT.

Each of these word embedding techniques was introduced in Sect. 3.2, above. As with our feature selection experiments, for each of these embedding techniques, the

same six learning models have been trained to compare their effectiveness. These

models are the following: LR, RF, XGBoost, MLP, DNN, LSTM. This compre-

hensive approach allows us to thoroughly evaluate how these various embedding

techniques affect the accuracy of a wide variety of learning models. Again, each of

the six models considered was introduced in Sect. 3.1, above.

7

Experimental Results

In this section, we present and analyze our experimental results. We first consider

the results of our feature analysis experiments—for both the case where we use

all of the data, and for the case where we use a subset of the data for which

Distinguishing Chatbot from Human

555

9643

1.00

9467

0.9621

0.

.9585

.9569

0.9520

0.9473

0.9537

0

0.9602

0.9653

.9234

0

9123

0.9617

0.9545

0.9552

9078

0.9593

0.9415

0.9523

9207

0.9243

0.9545

0.9236

0

0.

.8647

.8713

0.

0.

0.9092

0

0

0.8501

0.8570

0.9231

0.9158

0.

0.80

0.60

ccuracy A

0.40

All features

PCA

LDA

0.20

RF

Lasso

0.00

LR

RF

XGBoost

MLP

DNN

LSTM

Fig. 9 Accuracy of ML models with various feature selection methods

corresponding human and chatbot written paragraphs are restricted to be nearly

the same length. Then we present the results of our embeddings-based experiments.

Finally, we summarize all of our experimental results.

 7.1

 Feature Analysis Experiments

For the experiments discussed in this section, we train models based on the features

discussed in Sect. 6.2. As mentioned above, we consider two cases—first, where we use all of our data, and a second set where we restrict our attention to a subset where the lengths of the human-generated and corresponding chatbot-generated paragraphs

are nearly the same.

7.1.1

All of the Data

Figure 9 shows the accuracies obtained using our feature analysis approach. Interestingly, feature reduction techniques significantly improve the results for LR and

provide a marginal improvement for MLP, but for the other models considered, train-

ing on all features performs at least as well as training the same model using any of

the feature reduction techniques.

7.1.2

Similar-Length Experiments

This section gives the results obtained the similar-length subset discussed in

Sect. 6.2.2. That is, we only consider the subset of our data that is more balanced with respect to paragraph length.

556

G. A. Godghase et al.

467

0000

1.0000

0.9999

.0000 1

1.

333

0.9994

0.9996

1.00

.9

.9198

0.9173

0.9234

0.9

0.9467

0.9279

0.9257

0.9298

0

0.9352

0.9149

8521

0.9082

0.9207

0.9078

0.9224

0.8447

0.8678

0

0.8357

0.8264

0.8654

0.8573

0.

0.8536

0.8475

0.80

0.60

ccuracy A

0.40

All features

PCA

LDA

0.20

RF

Lasso

0.00

LR

RF

XGBoost

MLP

DNN

LSTM

Fig. 10 Accuracy of ML models for similar-length data

Figure 10 gives our results for this similar-length dataset. In this case, PCA is clearly the best feature reduction approach, with all models using PCA features

having at least 0.99 accuracy. Curiously, training models on all features outperforms

all of the feature reduction techniques (LDA, RF, Lasso) for each of the models

considered.

 7.2

 Embeddings Approach

In this approach, each document is converted into a single fixed-length vector by

averaging the word embeddings for each word in a document. This results in fixed-

length vectors of length 100 for each paragraph.

Recall that our embeddings approach consists of applying four different word

embedding techniques, and then applying the same six learning models as considered

above to the resulting features. Figure 11 shows the accuracy obtained with our embeddings approach.

From these results embeddings results, we observe that all of the embedding

techniques are able to achieve very high accuracy for at least one model. Also,

BERT and TFIDF both achieve consistently high accuracy for every model tested,

whereas Word2Vec and GloVe lag somewhat when classic ML models are used.

 7.3

 Ablation Study

In this section, we consider the effects of modifications to the features. We consider

two sets of experiments, one based on the Random Forest classifier and one based on

a linear Support Vector Machine (SVM). In both cases, these models are trained and

tested using the extracted features discussed in Sect. 4.2 with the original dataset.

Distinguishing Chatbot from Human

557

800

876

9982

9801

9790

9757

9786

9780

765

.9

9723

9780

0.

.9673

1.00

0.9839

9460

0.9820

0.

.9557

0

0.9

0.

0

0.

0.

0.

0.9863

0.

0.9

0.9862

.9154

0.

0.9548

0.9673

0.9825

0.9775

0.

0

0.9424

0

0.80

0.60

ccuracy A

0.40

TFIDF

Word2Vec

0.20

GloVe

BERT

0.00

LR

RF

XGBoost

MLP

DNN

LSTM

Fig. 11 Accuracy of ML models with various embedding techniques

7.3.1

Random Forest Model

Table 2 shows the results of modifying individual features in the ChatGPT samples by modifying selected feature values by .+10% and by .−10%, while keeping all

other features unchanged. Note that in each case, we test the resulting data using the

Random Forest model that was trained on the unmodified data.

We observe that decreasing the lowercase_letter_ratio has by far the

most effect, making the prediction no better than random. All other modifications

have a minimal effect on the accuracy.

Table 2 Feature modifications and Random Forest (original accuracy 0.9247)

Feature

Accuracy

Increase 10%

Decrease 10%

.lowercase_letter_ratio

0.9623

0.4955

.verb_ratio

0.9182

0.9292

.average_sentence_length 0.9227

0.9194

.noun_ratio

0.9129

0.9313

.negation_ratio

0.9242

0.9250

subjectivity

0.9281

0.9201

.sentence_complexity

0.9258

0.9223

.homonym_frequency

0.9265

0.9218

burstiness

0.9237

0.9194

558

G. A. Godghase et al.

7.3.2

Linear SVM Model

As mentioned in Sect. 3.1.3, SVM training consists of constructing a hyperplane to separate the classes. We choose a linear SVM since each feature has an associated

well-defined weight. Training this model, we obtain an accuracy of 0.9234, which

is comparable to the result for the Random Forest model discussed in the previous

section.

As a first experiment with our SVM model, we consider the effect when individual

features are altered by.+10% and.−10% then tested on our trained SVM model. These

results are summarized in Table 3.

As with the Random Forest model, decreasing the .. lowercase_letter_

.ratio by 10% has the effect of making the SVM model prediction essentially

random, while other modifications have relatively little effect. If an attacker is able

to make appropriate modifications to the data, both the Random Forest and the SVM

model will be rendered useless. The next logical step would be to train models on

such modified data to determine how well we can distinguish between human and

modified-ChatGPT data.

In Table 4, we give the results when the specified modification is made to the ChatGPT data, and the SVM model is retrained on the modified dataset. The most

interesting case in Table 4 is when the.lowercase_letter_ratio is decreased by 10%.

By retraining our SVM, we are able achieve an accuracy of 0.8125. Recall

that for this same case, without retraining the SVM, the prediction was essen-

tially random, as can be seen in Table 3. This result indicates that even if the

.lowercase_letter_ratio is modified in this way, there is sufficient statistical

information available to distinguish between the classes with reasonable accuracy.

Table 3 Feature modification and SVM (original accuracy 0.9234)

Feature

Accuracy

Increase 10%

Decrease 10%

.verb_ratio

0.9156

0.9295

.capital_letter_ratio

0.9266

0.9198

.lowercase_letter_ratio

0.9567

0.4620

.lexical_diversity

0.8901

0.9404

.homonym_frequency

0.9389

0.8903

.synonym_frequency

0.9000

0.9363

burstiness

0.9184

0.9278

.sentence_count

0.9174

0.9282

.negation_ratio

0.9229

0.9239

.word_count

0.9303

0.9139

Distinguishing Chatbot from Human

559

Table 4 Feature modification and retrained SVM (original accuracy 0.9234)

Feature

Accuracy

Increase 10%

Decrease 10%

.verb_ratio

0.9157

0.9297

.capital_letter_ratio

0.9265

0.9198

.lowercase_letter_ratio

0.9453

0.8125

.lexical_diversity

0.8988

0.9393

.homonym_frequency

0.9389

0.8962

.synonym_frequency

0.9079

0.9343

burstiness

0.9184

0.9279

.sentence_count

0.9176

0.9282

.negation_ratio

0.9229

0.9239

.word_count

0.9289

0.9166

As a final experiment, we directly modify the weights of our trained linear SVM

to determine the robustness of the model itself. In Fig. 12, we give the results when each individual feature weight is modified from .−10% to.+10%.

Analogous to the data modifications discussed above, we observe that only the

feature weight associated with the.lowercase_letter_ratio has a substantial

effect, at least within the range of .−10% to.+10%. This shows that the linear SVM

model is robust with respect to changes to the weights, and further emphasizes the

overriding importance of the .lowercase_letter_ratio to the success of the

model.

Fig. 12 SVM individual feature modification

560

G. A. Godghase et al.

8

Conclusion and Future Work

The rapid advancement of generative AI in general, and Large Language Models

like GPT-3 in particular, presents both opportunities and challenges. One of the

challenges is in distinguishing between human-generated and machine-generated

text. In the research presented in this paper, we considered two methodologies to

address this challenge—one based on feature analysis and another based on advanced

word embedding techniques.

Through feature analysis, we identified sentence patterns and general tendencies

of the GPT model. First, we computed a variety of statistical features of text. By

employing classic machine learning techniques (Linear Regression, Random For-

rest, XGBoost) and deep learning architectures (MLP, DNN, LSTM), we identified

the how these features can be used to differentiate between human and GPT-generated

texts. In addition to these techniques, we also explored various dimensionality reduc-

tion methods (PCA, LDA, RF, Lasso). We found that based on the features that we

extracted from text, we could distinguish chatbot from human with an accuracy of

better than 0.96.

Since the chatbot-generated text tends to be slightly longer than the human-

generated text, we also explored the effect of normalizing the length on our feature

analysis approach. Surprisingly, this resulted in improved accuracy, with the best

models achieving perfect separation on our test set.

We then applied word embedding techniques (TFIDF, Word2Vec, GloVe, BERT),

which are designed to capture semantic aspects of the language. The same machine

learning and deep learning models were trained on the resulting word embedding

sequences, and we obtained accuracies that were better than for our original feature

analysis experiments. In the best cases, we obtained accuracies in excess of 0.99.

Finally, we consider an ablation study to determine the effect of modification to

features on our feature analysis based models. We found that relatively small modifi-

cations to the.lowercase_letter_ratio feature have a profound impact on the

accuracies of models—to the point where the models only marginally outperform

a coin flip—while modifications to other features had minimal effect. This result

indicates that there is considerable scope for improvement, with respect to making

chatbot-generated text more human-like.

For future work, it would be interesting to expand the scope of experimentation

to include a broader range of model architectures, features, word embeddings, and

dimensionality reduction techniques, along with more extensive tuning of model

hyperparameters. This could involve experimenting with stacked models, which use

a hierarchical approach to refine predictions through successive layers of processing,

as well as various ensemble techniques.

Experiments involving other chatbots should be considered. With recent advances,

new models are constantly being created, including newer versions of the GPT model

considered in this paper. It would be interesting to rank the “humanness” of the text

generated by various chatbots.

Distinguishing Chatbot from Human

561

Finally, it would be very interesting to post-process chatbot-generated text using

the insights gained from our research, with the goal of making the modified text

more human-like. We have provided evidence that such modified text can defeat

detection techniques that are based on feature analysis of the original chatbot data,

but it is unclear how effective such techniques will be for models trained on word

embeddings.

Appendix

Here, we provide a few examples of human text and the corresponding ChatGPT-

generated text.

Example 1

Human: Sell Yourself First. Before you embark on selling fine art online, it is crucial to establish a strong personal brand and present yourself as a credible artist. Begin by creating a captivating artist statement that reflects your artistic vision, inspirations,

and unique style. Craft a compelling biography that highlights your artistic journey,

education, exhibitions, and any accolades or awards received. Showcase your art-

work through a well-designed portfolio website, social media platforms, and online

galleries. Engage with your audience by sharing your creative process, behind-the-

scenes glimpses, and meaningful stories behind your artworks. By selling yourself

first and establishing a strong online presence, you will attract art enthusiasts who

appreciate your talent and are more likely to purchase your fine art.

ChatGPT: Before doing anything else, stop and sum up yourself as an artist. Now,

think about how to translate that to an online profile. Be it the few words Twitter

allows you or an entire page of indulgence that your own website would allow you.

Bring out the most salient features of your creativity, your experience, your passion,

and your reasons for painting. Make it clear to readers why you are an artist who

loves art, produces high quality art, and is a true champion of art. If you’re not great with words, find a friend who can help you with this really important aspect of selling online—the establishment of your credibility and reliability.

Example 2

Human: Reading the classics before 1600 is a profound way to enhance your literary knowledge and truly become well-read. Dive into the works of ancient Greek and

Roman writers, such as Homer’s epic poems “The Iliad” and “The Odyssey,” which

562

G. A. Godghase et al.

provide invaluable insights into heroic quests and the human condition. Explore the

philosophical musings of Plato and Aristotle, whose ideas shaped Western thought

and continue to resonate today. Engage with the plays of Sophocles, Euripides, and

Aeschylus, witnessing the timeless tragedies that delve into the depths of human

emotions and moral dilemmas. Additionally, immerse yourself in medieval literature

like Dante Alighieri’s “The Divine Comedy,” a compelling journey through Hell,

Purgatory, and Heaven, offering profound theological and philosophical reflections.

By delving into these classics before 1600, you will open doors to a wealth of wisdom,

artistry, and cultural understanding.

ChatGPT: Reading the classics is the very first thing you have to do to be well-read.

If you want to build a solid foundation for your understanding of the books you read,

then you can’t avoid some of the earliest plays, poems, and oral tales ever written

down. Remember that the novel didn’t really get popular until the 18th century, so

you won’t find novels on this list. Without reading the poetry of Homer or the plays

of Sophocles, you won’t be able to call yourself well-read. Here’s a list to get you

started: The Epic of Gilgamesh (Unknown author) (18th–17th century BCE) The

Iliad and The Odyssey by Homer (850–750 BCE, 8th century BCE) “The Oresteia”

by Aeschylus (458 BCE) Oedipus the King by Sophocles (430 BCE) Medea by

Euripides (431 BCE) Aeneid by Virgil (29–19 BCE) One Thousand and One Nights

(Unknown author) (700–1500) Beowulf (Unknown author) (975–1025) The Tale of

Genji by Murasaki Shikibu (11th century) The Divine Comedy by Dante (1265–

1321) The Decameron by Boccaccio (1349–53) The Canterbury Tales by Chaucer

(14th century).

Example 3

Human: While you certainly don’t have to be wealthy to adopt a child, you will have to be able to demonstrate that you have the space to house the child and the financial means to support the child. Home and community environment are also important.

Talk to your family and friends, and evaluate the multicultural resources available

in your area. Make sure those close to you accept your decision to adopt a child of

another race. You also want to make sure there are no legal restrictions that would

prevent you from adopting a child. If you’re thinking about adopting internationally,

you want to look at the laws in the child’s home country as well.

ChatGPT: Before embarking on the journey to adopt a child of another race, it is

crucial to honestly assess your ability to care for a child. Consider factors such as your emotional readiness, financial stability, and available support systems. Reflect on

your understanding of the unique challenges that may arise from transracial adoption,

including potential racial identity issues and the importance of cultural preservation.

Assessing your ability to provide a loving and inclusive environment will help you

choose an agency that specializes in transracial adoption and can offer the necessary

resources and support to ensure a successful and fulfilling adoption experience.

Distinguishing Chatbot from Human

563

Example 4

Human: Most computers are set to boot into the hard drive first, which means you

will need to change some settings to boot from your newly-burned CD or USB. Start

by rebooting the computer. Once the computer reboots, press the key used to enter

the boot menu. The key for your system will be displayed on the same screen as the

manufacturer’s logo. Typical keys include F12, F2, or Del. For Windows 8 users,

hold the Shift key and click restart. This will load the Advanced Startup Options,

where you can boot from CD. If your computer doesn’t give you direct access to

the boot menu from the manufacturer’s splash screen, it’s most likely hidden in the

BIOS menu. You can access the BIOS menu in the same way that you would get to

the boot menu. At the manufacturer splash screen, the key should be listed in one

of the bottom corners. Once you’re in the boot menu, select your live CD or USB.

Once you’ve changed the settings, save and exit the BIOS setup or boot menu. Your

computer will continue with the boot process.

ChatGPT: To boot into the Live CD or Live USB for the Installing Any Linux Distribution section, begin by inserting the Linux installation media into your computer’s

CD/DVD drive or USB port. Restart your computer and access the BIOS settings by

pressing the designated key during startup (typically F2, F12, or Del). Once in the

BIOS, navigate to the Boot menu and prioritize the boot order to allow the computer

to boot from the installation media. Save the changes and exit the BIOS. As the

computer restarts, it will load the Linux distribution from the Live CD or Live USB,

presenting you with a graphical interface where you can explore the distribution, test

its features, and ultimately proceed with the installation process.

References

1. Boateng EY, Abaye DA. A review of the logistic regression model with emphasis on medical research. J Data Anal Inf Process. 2019;7:190–207.

2. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, KDD’16.

2016. p. 785–94.

3. Devlin J, Chang M-W, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein J, Doran C, Solorio T, editors. Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, vol. 1. 2019. p. 4171–86.

4. Google Colab. 2024. https://colab.research.google.com/

5. Gunser VE, Gottschling S, Brucker B, Richter S, Gerjets P. Can users distinguish narrative texts written by an artificial intelligence writing tool from purely human text? In: Stephanidis C, Antona M, Ntoa S, editors. HCI international 2021—posters. 2021. p. 520–7.

6. Hayawi K, Shahriar S, Mathew SS. The imitation game: detecting human and AI-generated

texts in the era of ChatGPT and BARD. J Inf Sci. 2023. https://zuscholars.zu.ac.ae/works/6382

7. Ippolito D, Duckworth D, Callison-Burch C, Eck D. Automatic detection of generated text is easiest when humans are fooled. In: Proceedings of the 58th annual meeting of the association for computational linguistics. 2020. p. 1808–22.

564

G. A. Godghase et al.

8. Koupaee M, Wang WY. WikiHow: a large scale text summarization dataset. 2018. https://arxiv.

org/abs/1810.09305

9. Ma Y, Liu J, Yi F, Cheng Q, Huang Y, Lu W, Liu X. AI versus human—differentiation analysis of scientific content generation. 2023. https://arxiv.org/abs/2301.10416

10. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. 2013. https://arxiv.org/abs/1301.3781

11. Mindner L, Schlippe T, Schaaff K. Classification of human- and AI-generated texts: investigating features for ChatGPT. In: Schlippe T, Cheng ECK, Wang T, editors. Artificial intelligence in education technologies: new development and innovative practices. 2023. p. 152–70.

12. Otter DW, Medina JR, Kalita JK. A survey of the usages of deep learning for natural language processing. IEEE Trans Neural Netw Learn Syst. 2021;32(2):604–24.

13. Pennington J, Socher R, Manning C. GloVe: global vectors for word representation. In: Mos-chitti A, Pang B, Daelemans W, editors. Proceedings of the 2014 conference on empirical

methods in natural language processing, EMNLP. 2014. p. 1532–43.

14. Radford A, Narasimhan K, Salimans T, Sutskever I. Improving language understanding by generative pre-training. 2018. https://cdn.openai.com/research-covers/language-unsupervised/

language_understanding_paper.pdf

15. Ray PP. ChatGPT: a comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet Things Cyber Phys Syst. 2023;3:121–54.

16. Saini A. A beginners guide to logistic regression. https://www.analyticsvidhya.com/blog/2021/

08/conceptual-understanding-of-logistic-regression-for-data-science-beginners/

17. Stamp M. Introduction to machine learning with applications in information security, 2nd edn.

Chapman and Hall/CRC; 2022.

18. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. In: Proceedings of the 31st international conference on neural information processing systems, NIPS’17. 2017. p. 6000–10.

19. Vennerød CB, Kjærran A, Bugge ES. Long short-term memory RNN. 2021. https://arxiv.org/

abs/2105.06756

20. Yu Y, Zhang Y. Multi-layer perceptron trainability explained via variability. 2023. https://arxiv.

org/abs/2105.08911

[image: Image 161]

Multimodal Deception Detection Using

Linguistic and Acoustic Features

Tien Nguyen

, Faranak Abri

, Akbar Siami Namin , and Keith S. Jones Abstract Recently, there has been a growing interest among researchers in the automatic detection of deceptive behavior, actions, and contents. This surge in attention is

driven by the wide-ranging applications of deception detection, particularly in crim-

inology and cybersecurity. To advance this line of research, this study investigates

both text and audio data derived from speeches in natural languages. We evaluate

traditional linguistic models alongside deep models and advanced Large Language

Models (LLMs), utilizing Natural Language Processing (NLP) techniques to model

deception detection. Furthermore, we employ various feature selection methods to

determine the significance of linguistic features. Through extensive experimenta-

tion, we assess the effectiveness of both conventional and advanced deep models

on transcribed data while also applying deep models to audio data, thus leverag-

ing both types of data to build a multimodal model for deception and lie detection.

Our findings indicate that the Bidirectional Long Short-Term Memory (BiLSTM)

model excels in processing textual data. On the other hand, the ResNet50 model

performs best with audio data. By combining these models in a late fusion approach,

we achieve a model that outperforms individual text and audio models.

T. Nguyen · F. Abri (B)

San José State University, San Jose, CA, USA

e-mail: faranak.abri@sjsu.edu

T. Nguyen

e-mail: tien.t.nguyen04@sjsu.edu

A. Siami Namin · K. S. Jones

Texas Tech University, Lubbock, TX, USA

e-mail: akbar.namin@ttu.edu

K. S. Jones

e-mail: keith.s.jones@ttu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

565

M. Stamp and M. Jureček (eds.), Machine Learning, Deep Learning and AI for

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_20

566

T. Nguyen et al.

1

Introduction

Attackers have always used deception to manipulate or take advantage of the trust

of others for their own benefit. It can be used to scam people out of their money

or mislead a criminal investigation. This deceptive behavior can lead to serious

consequences, such as innocent people being wrongly convicted or losing money.

With that motivation in mind, finding out when someone is not telling the truth

could help avoid damage in both interpersonal and work relationships. Developing

effective techniques to know when people are deceiving is crucial to supporting fair

judgment in court cases. The ability to recognize dishonest claims is a solution to the

dilemma our society faces every day. Applications of such deception detection are not

limited to legal and criminal contexts but can extend to areas such as financial fraud

prevention, corporate security, and safeguarding personal interactions where trust is

crucial. Additionally, deception detection from speech can be particularly valuable in

cybersecurity, such as identifying phishing calls and other forms of verbal deception.

Traditionally, authorities have performed polygraph tests on suspect individu-

als [18]. This test uses a device to measure and record physiological indicators such as heartbeat, blood pressure, and skin conductivity, based on the assumption that

deceptive answers trigger involuntary physiological reactions [18]. Although the polygraph has long been considered a standard method for detecting lies, experimental studies show that these tests are not always accurate. They are prone to errors

and biases that arise from both the equipment used and human misinterpretation [10].

In addition, many factors can affect physiological responses, which may not neces-

sarily indicate deception. An alternative approach, as proposed in this work, is the

use of multimodal lie detection techniques that integrate multiple data sources, such

as speech and facial expressions, to enhance the accuracy of lie detection tasks and

address the limitations of traditional polygraph tests. Specifically, analyzing speech

data can provide a wealth of information to identify instances of deceitfulness [4, 15].

One potential approach is to examine the characteristics in the audio of the speech,

often referred to as “audio features”, also known as Mel-frequency cepstral coef-

ficients (MFCC), such as changes in pitch, speaking rate, and intensity, which can

occur when someone is untruthful [4, 28, 31]. Another potential approach involves analyzing transcribed data of speech, which is often referred to as “textual or transcribed features”, such as word choice and sentence structure, which can also serve

as indicators of deception [6, 14, 24]. In addition, considering nonverbal cues, often referred to as “behavioral features”, such as expressions, body language, and eye

movements, is another feasible approach to detecting deceptive behavior [6, 31].

The recent advancement in machine learning and deep learning algorithms enables

the creation of classification schemes trained on these multimodal features to accu-

rately classify people’s truthfulness in a given case or scenario. The use of machine

learning in lie detection has gained significant attention in recent years, with many

researchers achieving promising results in accurately detecting deception from

speech by combining these features and using machine learning algorithms [3, 27].

This work aims to create a multimodal model that uses both transcribed text and

audio/speech data to detect deceptive behavior more accurately. Recognizing the

Multimodal Deception Detection Using Linguistic and Acoustic Features

567

potential of multimodal approaches, we research and conduct experiments to develop

models that can better identify deception. By focusing on both linguistic and audio

cues, our objective is to reduce the risk of wrongful convictions and financial fraud,

ultimately improving the fairness and reliability of legal and investigative processes.

One of our key contributions is the integration of text and audio models using a late

fusion technique. This approach takes advantage of the strengths of both modalities,

resulting in a more robust detection system. We also test our models on the Real-

Life Trial dataset to ensure that our findings are grounded in practical, real-world

scenarios. By experimenting with conventional models, LLMs, and deep learning

models, we provide a comprehensive and reliable method for deception detection.

This paper is structured as follows. Section 2 reviews existing research in the field of deception detection. Section 3 presents the technical background of the conventional and deep models we studied. Section 4 outlines the experimental setup, giving details on the dataset, preprocessing, feature selection, and evaluation metrics. Section 5 discusses the setup of the detection models, and Sect. 6 explains the performance of these models. Section 7 discusses these results, providing insight into the effectiveness and alignment of various approaches with existing literature.

Lastly, Sect. 8 concludes the paper and suggests future work.

2

Related Work

This section will review the datasets and models used and implemented in previous

research on deception detection. A summary of the reviewed papers is provided in

Table 1.

 2.1

 Existing Public Datasets

In the process of training models that are capable of detecting deception, a variety of

datasets are utilized, such as Real-life trial [4], Columbia X-Cultural Deception [20], or H Wolf [8] dataset. These datasets are typically sourced from different contexts and scenarios, providing a wide range of data from which models can learn. Each

dataset can fall into three main categories: (1) The first category is any data collected from real-life situations where deception is common, such as legal proceedings; (2)

Data can also be generated artificially by asking people questions designed to force

deception; and (3) Finally, data can also be collected while playing games, where

deception can also commonly and naturally occur.

The first category of data comes from various real-life situations. This type of

dataset provides authentic examples of deception and truth-telling. Instead of staged

setups, these datasets can provide more realistic scenarios for lie detection. Some

research papers [4, 13, 23, 24] have used data collected from actual court trials.

The dataset includes 121 videos divided into 61 clips that show deceptive behavior

568

T. Nguyen et al.

(%)

(continued)

Scores

58.9

67.32

60.80

63.90

67

69

51.04

45.07

47.25

81

68.62

82.47

y

1

y

MAR

y

y

y

F

MMA

F1

Metrics

Accurac

Precision

recall

Accurac

MAE

MA

Accurac

Accurac

Accurac

ard

DNN

ethodm

.+

feed-forw

ork

polynomial

ork

STM

gression,

L

re

netw

sing

semi-supervised

u

netw

el rn

Classification

SVM

Hybrid:

Logistic

multi-input

neural

SVM

ke

Hybrid

neural

SVM

eo

ranscription,

d

Modality

T

written

Audio,

transcription

Audio,

transcription

Audio

Audio

Vi

,

,

spectral,

shimmer

gy

y,

features

pitch,

,

g

y

ener

(jitter

spectral

psychoacoustic

ener

frames

,

features

spectral

er

all

ork

including

of

other

w

quality

ratio),

speak

quality

,

short-term

time-frequenc

ice

ice

y,

escriptors

FCC,

isting

o

o

MFCC

v

ector

v

d

and

M

ex

psychoacoustic

el

of

i-v

v

of

,

and

frequenc

rate,

,

MFCCs

w-le

mean

.IDF

acoustic-prosodic

duration,

lo

,

F

statistics

T

sharpness,

and

armonics-to-noise

ther

features

h

o

performance

Features

43

Ngrams,

intensity

and

harmonicity

sharpness,

LIWC,

spectral

and

MFCC

Acoustic

Fundamental

zero-crossing

the f o

true

debates

trial

OLF

1,500

W

lf

false

o

comparison

A

Dataset

Nearly

and

statements

Columbia

X-cultural

deception

Political

Real-life

HW

IDIAP

1

le

]

]

]

]

b

]

]

Ta

Ref.

[22

[20

[15

[4

[8

[28

Multimodal Deception Detection Using Linguistic and Acoustic Features

569

(%)

Scores

96

84.18

97

71.51

97

88.14

78.5

96

F1

y

y

y

y

y

y

Metrics

Accurac

Accurac

Accurac

F1

Accurac

Accurac

Accurac

CNN

model

SVM

.+

. +

ethod

.+

fusion

m

attention)

ensemble

early

(audio)

BiLSTM

AdaBoost

xpression)

BiLSTM

KNN

A

.+

model

.+

.+

.+

t)

oting)

x

RestNet50

Classification

BiLSTM,

(v

NN

SRKD

(te

(micro-e

MLP

Multi-task

Hybrid:

GCFM

(cross

LSTM

.+

audio,

audio,

audio,

audio,

audio,

audio,

isual,

isual,

isual,

isual,

isual,

Modality

V

transcription

V

transcription

visual,

transcription

V

transcription

V

transcription

V

transcription

Audio,

transcription

video

as

gy

the

eness,

and

estures,

and

v

well

g

ords, w

iLSTM

features

mean

as

B

and

log-ener

capturing

h

quality

features:

imension

silence

distincti

d

ice o

FCCs

emotion

crying,

ord

itch,

v

M

dimension

p

intensity

e

MFCCs,

xpressions

features

w

3

,

t-based

v

features,

features

displays,

noise-to-harmonics

S),

tex

ati

ax,

,

g

C

syntactical

1

ideo

frame

A

m

quality

2

ne

laughing,

v

facial

micro-e

(F

numeric

and

spectral

including

jitter,

features,

ectors

and

ice,

es,

ideo

v

subsystem:

CC,

v

and

ov

etc.

and

esNet

units

R

features,

e

hasY

LIWC,

and

mean

speaking

v

audio

inary

linguistic

histograms

b

(shimmer

assi

rds,

errors,

action

o

features,

pitch

and

pf w

pectrograms

o

features,

S

MFCC,

y

pitch-based

xt

ector

Features

136-dimension

Unigrams,

facial

speech

Ngrams,

of

LIWC,

hedging

acoustic-prosodic

max,

features

ratio),

Pitch-based

use

den

speech

21

te

Mel

v

trial

trial

trial

trial

trial

trial

tasting

e m

(continued)

Dataset

Real-life

Real-life

Real-life

Blind

ga

Real-life

Real-life

Real-life

1

le

]

]

]

]

]

]

b

]

Ta

Ref.

[13

[24

[31

[14

[6

[33

[23

570

T. Nguyen et al.

and 60 clips that feature truthful interactions [24]. The individuals featured in these videos, who are either defendants or witnesses, range in age from 16 to 60. On

average, the videos are approximately 28 s long, and the transcripts of these videos

have an average of around 66 words, amounting to a total of over 8,000 words of

speech data. Another notable dataset is used by Kopev et al. [15]. This dataset is for real-world political debate and offers a wider range of realistic situations for lie

detection, including claims labeled as true, half-true, or false. This dataset consists

of 94 training claims and 192 test claims, providing substantial data for the models

to learn from.

The second type of dataset is generated by asking actors questions to generate false

and true responses. In a study by Sarzynska-Wawer et al. [22], 400 participants were invited to create four statements on a given topic: two of these statements were to be

delivered orally, while the other two were to be written. This method resulted in 1,600

statements, 1,498 of which were selected for the final analysis. Mendels et al. [20]

used the CXD corpus, which comprises deceptive and non-deceptive speech from

native English and Mandarin speakers, all communicating in English. It includes

170 conversations involving 340 participants. This data was gathered using a fake

resume setup where subjects alternated between interviewer and interviewee roles,

answering 24 biographical questions. Participants had financial incentives to both

lie convincingly and accurately detect lies. During the interviews, the interviewees

labeled each response as true or false.

The third type of dataset was collected from playing games. Tao et al. [28] used the IDIAP WOLF dataset developed by the Swiss IDIAP Research Institute. This

study collected vocal signals from the “werewolf killing game” that involved 12

participants, four of whom played werewolves to create confusion through deception

while the rest of the players played honest characters. The werewolves are expected

to lie, while the other players need to guess who the werewolves are. Similarly,

Fu et al. [8] created the H-Wolf corpus, a self-built dataset constructed from the Idiap Wolf and Killer datasets. They gathered approximately 70 h of video from the

“Werewolves of Miller’s Hollow” competitions available online, selecting clips that

contained truthful and deceptive interactions based on the players’ ID cards and the

rules of each game.

 2.2

 Conventional Models in Deception Detection

This section will review some of the conventional models used in previous work for

deception detection. Researchers have explored a variety of methodologies, rang-

ing from traditional statistical models to advanced machine-learning techniques for

this problem. Sarzynska-Wawer et al. [22] implemented a Support Vector Machine (SVM) and XGBoost model with 20-fold cross-validation. Their best model, SVM,

gave an accuracy of 58.9%.

Bareeda et al. [4] built SVM-based classifiers using Gaussian and polynomial kernels. Based on their experiments, they found that using polynomial or Gaussian

Multimodal Deception Detection Using Linguistic and Acoustic Features

571

kernels resulted in an overall classification accuracy of 81 and 78% for the lie and

truth classes, respectively.

Tao et al. [28] extracted different acoustic features from audio datasets to detect deception using SVM as the classifier. The experimental results showed that SVM

could effectively detect deception with an accuracy of over 80%.

Chebbi et al. [6] created K Nearest Neighbour (KNN) models for each modality (visual, audio, transcription) separately using feature selection techniques to select

the most relevant features. They combined the modalities using a decision-level

fusion approach based on belief theory. The approach was studied using the real-life

trial dataset [24]. The deception detection accuracy rate reached 97% using only 19

combined features.

¸Sen et al. [24] collected videos from a set of actual court trials and built models that used verbal, acoustic, and visual modalities to detect deception. Initially, they

conducted experiments with each set of features separately using SVM, Randon For-

est (RF), and Neural Network (NN) classifiers. Then, they tried various combinations

of features using early and late fusion. Their results showed that late fusion achieved

better performance with 84.18% accuracy with combined text, visual, and acoustic

features.

Venkatesh et al. [31] introduced a novel deception detection approach that used different types of data, including audio, text, and nonverbal characteristics, to build their deception detection models. The method combined the results of each of these features using majority voting. Specifically, the audio component was based on Cepstral

Coefficients (CC) and Spectral Regression Kernel Discriminant Analysis (SRKDA).

On the other hand, the text model used bag-of-n-gram features and a linear SVM

classifier, whereas the nonverbal component employed the AdaBoost classifier. The

results showed that the proposed method outperformed both existing state-of-the-art

techniques and human performance, achieving a deception detection accuracy of

97% in the entire dataset during a 25-fold cross-validation.

 2.3

 Deep Learning Models for Deception Detection

Deep learning models have significantly impacted deception detection, resulting

in a level of complexity that can detect certain details in the data. This section

reviews previous work using deep models. Sehrawat et al. [23] proposed a model that combined Long-Short Term Memory (LSTM), Bidirectional Long-Short Term

Memory (BiLSTM) networks, Convolutional Neural Network (CNN), and ResNet50

to detect deception. They first extracted text, audio, and video features from the “Real

Life Court Trial” dataset. To process audio data, they transformed them into Mel

spectrograms to create a visual representation that captured key audio characteristics.

ResNet50 was then used to analyze these Mel Spectrograms. The proposed model,

which used audio and text features, achieved an accuracy of 80%.

Unlike Sehrawat et al. [23], who used an existing dataset, Marcolla et al. [19]

created their own dataset by interviewing subjects to capture the subject’s answers,

572

T. Nguyen et al.

labeled lying or truthful. To get the audio features, the researchers used Librosa library functions to extract the Mel-Frequency Cepstral Coefficients (MFCC) characteristics.

The researchers then normalized the features through the padding to match the length

of the longest sequence, ensuring uniformity for neural network processing [19].

Their LSTM neural network model resulted in an overall classification accuracy of

72.5%. Hsiao and Sun [13] also used MFCC for their audio feature. But instead of normalizing MFCC features to match the longest sequence, they calculated average

MFCC values per second. This method reduced MFCC length, which helped train

their BiLSTM model more effectively. They also extracted features from text and

transcript. Lastly, they proposed an ensemble model that combined the outputs of

the audio, visual, and transcription models using BiLSTM. Their ensemble model

achieved 96% accuracy when used on the “Real Life Court Trial” dataset.

Gallardo-Antoln and Montero [9] developed an automatic deception detection model based on gaze and speech characteristics using attention-based LSTM. The

feature extraction procedure from gaze data involved selecting channels from the

Gazepoint GP3 Eye Tracker for fixations, saccades, and pupil size, which are known

as indicators of deceptive behavior. For speech, features were derived from Log-

Mel Spectrograms using Python’s package LibROSA. The researchers trained their

models on the Bag-of-Lies dataset and achieved an accuracy of 70.5%.

Zhang et al. [33] created a Graph-based Cross-modal Fusion Model (GCFM) along with a Cross-modal Attention Mechanism to detect deception in the Real-Life

Trial dataset [24]. They extracted visual, textual, and audio features by using a pre-trained ResNet50 and LSTM neural network with attention mechanisms. The

proposed GCFM method achieved an accuracy of 88.14% as well as an F1-score of

78.50%. Additionally, using association learning increased the accuracy by 1.87%

while the cross-modal attention mechanism improved the accuracy by 2.44%.

3

Background on Conventional and Deep Models Studied

 3.1

 Conventional Models

We explore Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and

Logistic Regression (LG) for deception detection using textual data. SVM is a

supervised learning algorithm commonly used for classification tasks. SVM aims to

identify a hyperplane in an n-dimensional space, where n represents the number of

features, to effectively separate data points into different classes [12]. KNN is a non-parametric algorithm that stores all training data and then classifies new data points

based on the “k” closest training points, where k is some constant number of points.

LG is a statistical model commonly used for classification tasks. It outputs proba-

bilities from 0 to 1 for different classes and classifies data based on continuous and

discrete measurements. The model finds a line or a hyperplane in higher-dimensional

spaces that best separates the data into classes. After trying various lines, the one

with the maximum likelihood is selected.

[image: Image 162]

[image: Image 163]

Multimodal Deception Detection Using Linguistic and Acoustic Features

573

 3.2

 Convolutional Neural Networks (CNNs)

CNNs are powerful tools in deep learning, particularly for analyzing visual and

image data. The CNNs architecture, as shown in Fig. 1, contains many layers that perform different tasks to convert input data into important features. The first layer,

called the convolutional layer, uses many filters on the input image. The filter out-

put is put on a feature map (Fig. 2). After that, the feature maps are run through an activation function such as ReLU. Next, these feature maps enter the pooling

layers. The purpose is to decrease the spatial dimensions of the data while keep-

ing important information intact. The pooled layers are converted to columns of the

input nodes. Finally, fully connected layers take the input nodes and compute the

final classification task. CNN’s architecture for visual recognition tasks is power-

ful because it can learn complex features hierarchically. This method demonstrates

impressive accuracy in image classification, object detection, and other fields of

application.

Fig. 1 A simple architecture of CNNs

Fig. 2 Process of applying filter on input image and the results onto feature map

[image: Image 164]

574

T. Nguyen et al.

 3.3

 Long Short-Term Memory (LSTM)

Recurrent Neural Networks (RNNs) are neural networks that process data sequences

such as time series or natural language. They have looped connections that let them

keep information over time. This makes RNNs good for tasks needing context from

earlier data. But RNNs have a big problem: vanishing or exploding gradients. During

training, the gradients used to update weights can get too small (vanishing) or too big

(exploding). This makes it hard for RNNs to learn long-term patterns. The LSTM

is an advanced RNN that can solve RNNs’ vanishing/exploding gradient problem.

The memory cell of the LSTM network contains three different gates: the input gate,

the forget gate, and the output gate. The input gate determines what information we

should store in the memory cell, while the forget gate chooses which information to

remove from the memory cell [30]. The function of the forget gate is to manage and control what is output from the memory cell. Figure 3 describes the architecture of an LSTM block.

 3.4

 Bidirectional LSTM

The BiLSTM model leverages complete sequential information by considering both

past and future data points for each position in the sequence, thereby enhancing

the original LSTM designed for sequence learning [32]. BiLSTM consists of two LSTMs, and both of them return a probability vector. Their combination forms the

final output. This ability of BiLSTMs to process in both directions is especially

useful for intricate sequence prediction tasks such as examining speech and text.

Figure 4 describes the architecture of a BiLSTM block.

Fig. 3 Architecture of an LSTM block. Adapted from [17]

[image: Image 165]

Multimodal Deception Detection Using Linguistic and Acoustic Features

575

Fig. 4 Architecture of a BiLSTM block. Adapted from [5]

 3.5

 Residual Network 50 (ResNet50)

ResNet50 is a convolutional neural network (CNN) with 50 layers. ResNet50 is useful

for complex tasks that involve image processing and analysis. It contains 48 convo-

lution layers, one MaxPooling layer, and one AveragePooling layer. The main idea

behind the ResNet50 model is its unique design using residual blocks. These resid-

ual blocks help to solve the vanishing gradient problem. The blocks with residuals

have “skip” connections. This lets the layers learn residual mappings, which means

that the network can understand these mappings instead of only direct feature map-

pings [11]. This way of building makes it possible to create deeper networks without losing performance and helps to improve the flow of gradients during training, making

learning more efficient and stable. This proven CNN is especially useful for feature

extraction in complex datasets, including audio spectrograms. Figure 5 describes the architecture of a RetNes50 block.

 3.6

 Late Fusion

We also apply a late fusion method, combining audio and text data characteristics.

Each data type is processed using its own specialized neural network architecture. The

results of both models are combined into one vector after being processed separately.

Afterward, this combined vector is fed into a fusion layer. Figure 6 describes a high level of late fusion model. In this layer, the weights that can be trained are used to find the best weight for each model. The weights have a softmax function applied

to them. Softmax will force all outputs to sum up to one. The output of this layer is then processed by a last dense layer with sigmoid activation. Each output provides

a probability score showing the possibility of deception. This method, called late

[image: Image 166]

[image: Image 167]

576

T. Nguyen et al.

Fig. 5 Architecture of a RetNes50. Adapted from [23]

Fig. 6 A high level of late fusion model

Multimodal Deception Detection Using Linguistic and Acoustic Features

577

fusion, makes our model flexible and adjustable; it learns which features from every

data type are more telling about deceitful behavior.

 3.7

 Additional Pretrained Models

In addition to the models that are fine-tuned throughout the research, several pre-

trained models are applied for comparative analysis. We choose to use pre-trained

models because they offer a strong starting point, having already learned from large

datasets. These models are known for capturing complex patterns in text and audio

data, which are crucial for deception detection. Using these models, we aim to ben-

efit from their proven effectiveness in various tasks and expect them to enhance the

accuracy of our detection system. These include BERT, a language model developed

by Google that uses a bidirectional approach and transformer architecture to create

context-aware word representations, enabling strong performance in various natural

language processing [7]. We also use GPT-2, developed by OpenAI, which generates coherent and contextually relevant text based on extensive pre-training on large

datasets [26]. Furthermore, RoBERTa, an improved version of BERT developed by Facebook AI Research, optimizes the pretraining process through hyperparameter

adjustments and other enhancements [16]. Lastly, the VGG-16 model, a convolutional neural network with 16 weight layers, is utilized for its effectiveness in image classification tasks, focusing on.3 × 3 convolution layers and a simplified architecture [29].

4

Experimental Setup

 4.1

 Methodology

We conducted our experiment as follows: We started with conventional models that

use linguistic features extracted from the textual data, then progressed to deep models

such as BiLSTM and pre-trained models that we covered in our previous work [21].

These text-only experiments yield relatively good results, indicating that deep models

work well. In this work, we add audio data using a similar analysis. We use deep

models like ResNet50 and VGG16 to analyze speech Mel spectrograms. Finally, a

late fusion technique is employed to combine the outputs of the best-performing

textual and audio models. The details of all the steps completed prior to and included

in this work are outlined in this section.

 4.2

 Dataset Description

Our research uses a unique and valuable dataset from public court trials created

by researchers at the University of Michigan [24]. This dataset contains 121 video

578

T. Nguyen et al.

Table 2 Example of deceptive and truthful content

Deceptive

And he told me that, ammm ... he was trying to figure some stuff out, and ammm ... I asked him Like what? and he will ... I mean I will never forget it, he was smoking a cigarette, and he was like really calm, and he looked at me and he said What would you say if I said ... if I told you Laura was dead? And I was like, you know, I was like What? And ... basically he told me that, ammm ... the night that Laura had come over to the house, that she had died, and that whenever I left that he just panicked and freaked out, and I got ... I started freaking out, and I was asking him why he didn’t call the cops [stutters] ... call for help like he told me he was going to, and he told me that, ammm ... he got scared that he was a black man with a dead white woman and nobody was gonna believe him that it was an accident

Truthful

I have no idea. A police officer I presume. You’d have to ask my mother or my brother. Nope.

They said they didn’t know where he was being taken. Yep. Went to the house, I was in a fairly catatonic state, my dad and my brother started making phone calls to all the local hospitals, and they eventually got a hold of... I don’t know, whatever the hospital is, Atlanta Medical Center.

And they wouldn’t tell my dad anything but that he was being taken there. So we got in the car, and we left. That’s correct. Yes, he was and I had, I – that was instructed that that was the best idea was to keep him at the day care. The, uh ... Donna. The woman that runs the day care. Yep.

That’s the safest place ... uh for him to be

recordings, evenly split between deceptive and truthful statements. Each video is

about 28 s long and features defendants or witnesses speaking in different trial sce-

narios. The dataset includes not only the video content but also transcripts of each

video, allowing us to analyze textual information alongside audio/visual cues. Addi-

tionally, the research group has annotated each video with gestures such as smiles,

laughs, etc. In this work, we primarily focus on the textual and audio data for building a multimodal deception detection model. Table 2 provides examples of both deceptive and truthful content from the dataset.

 4.3

 Transcribed Data

4.3.1

Preprocessing and Cleaning

Our text processing pipeline varies depending on the model. For conventional models,

we remove non-alphabetic characters from the text to eliminate noise that could

interfere with later processing stages. This step ensures that only alphabetic letters

remain, which helps the models focus on relevant linguistic features. We accomplish

this using Python packages such as re for regular expression operations and NLTK

for text processing tasks. The cleaned text is then used to extract features, which will be discussed in the next section.

In contrast, for deep models, we do not remove non-alphabetic characters, allow-

ing the model to retain as much of the original text as possible. We apply stemming

to each word, reducing it to its root form by removing suffixes, which helps reduce

Multimodal Deception Detection Using Linguistic and Acoustic Features

579

the number of unique words for more efficient analysis. After stemming, we perform

one-hot encoding, where each word is assigned a unique integer index from a vocab-

ulary size of 5000. Additionally, each sequence is padded with zeros to a uniform

length of 221 words, which is the maximum sentence length in our dataset. (221).

Padding is necessary because machine learning algorithms require input data with a

consistent shape. It ensures all sequences have the same feature count, which helps

the machine learning algorithms function correctly.

4.3.2

Linguistic Features Extraction

After preprocessing textual data, we extract 16 key textual features relevant to lie

detection, detailed in Table 3. Specifically, to understand the speaker’s perspective, discourse structure, and temporal references, we compute the number of pronouns,

conjunctions, and verb tenses (i.e., past, present, future). The sentiment score aggre-

gates the emotional valence of words into a compound score ranging from .−1 to 1,

indicating negative, neutral, or positive emotion. We also use part-of-speech tagging

to get the frequency of adjectives and adverbs, which helps provide insights into

the descriptive language used. Additionally, we count the frequency of filler words

like ‘um,’ ‘uh,’ and ‘like,’ as well as repetitions, negations, and self-references to

evaluate the speaker’s fluency, rhetorical style, and persuasive attempts. Together,

these features provide a comprehensive framework for detecting deception through

linguistic patterns in textual data.

Table 3 Description for extracted linguistic features [21]

Feature name

Description

Word count

The total number of words in the text

Sentence count

The total number of sentences in the text

Sentiment score

A numerical score indicating the overall sentiment of the text

Average word length

The average length of words in the text

Vocabulary diversity

The ratio of unique words to the total number of words in the text

Adjective frequency

The proportion of adjectives in the text

Adverb frequency

The proportion of adverbs in the text

Pronoun frequency

The proportion of pronouns in the text

Conjunction frequency

The proportion of conjunctions in the text

Past tense frequency

The proportion of verbs in the past tense in the text

Present tense frequency

The proportion of verbs in the present tense in the text

Future tense frequency

The proportion of verbs in the future tense in the text

Filler word count

The number of common filler words in the text

Repetition count

The proportion of words that appear more than once in the text

Negation count

The number of negations in the text

Self-reference count

The number of self-referential words in the text (e.g., “I,” “me,” “myself”)

580

T. Nguyen et al.

4.3.3

Feature Selection for Conventional Models

We use two main methods to choose important features from the textual data: (1) over-

lapping coefficient (OVL) and (2) stepwise regression. The OVL method assesses

the significance of specific features by comparing the probability density functions

(PDFs) of features between “Lie” and “Truth” categories [1]. Features with lower OVL scores, indicating less overlap, are deemed more effective for distinguishing

between these categories. On the other hand, higher OVL scores suggest more over-

lap, which implies that the feature is less effective at distinguishing between the cat-

egories because the distributions are more similar. The stepwise regression method,

a greedy approach, iteratively adds or removes features based on their impact on

model performance [2]. Typically, this evaluation involves training the model with the selected features and measuring its performance using accuracy or F1 score metrics. Based on these performance metrics, a decision is made to include or exclude

a feature, and the process continues until a predefined stopping condition is met.

 4.4

 Audio Data

We convert MP4 video files into WAV audio format using the movies library. Our

approach is to transform the audio into images of the type of Mel spectrograms using

the Librosa library. We use a Mel spectrogram, a visual representation of sound that

aligns frequencies to the Mel scale (corresponding to human auditory perception).

This is achieved by segmenting the audio, performing a Fourier transform on each

segment to identify frequency content, and then applying Mel scale filters to empha-

size perceptually important frequencies. Finally, the Mel spectrograms are converted

into the RGB color space using matplotlib library and resized to a uniform dimen-

sion of 224. × 224 pixels to ensure consistent input size. Once the Mel spectrogram

images are generated, we use them as input data for training deep learning models.

Examples of deception and truth images are shown in Figs. 7 and 8. The Mel spectrogram’s x-axis represents time in seconds, while the y-axis shows frequency in

Hertz on the Mel scale, which emphasizes frequencies important to human hearing.

The color scheme indicates sound intensity, with lighter colors representing louder

sounds and darker colors indicating quieter ones. The color bar, in decibels (dB),

provides a reference for these intensity levels.

 4.5

 Model Evaluation

We evaluate the models using 5-fold cross-validation. It divides the dataset into five

subsets and iteratively creates the training and test sets. During each iteration, one

subset is used as the test set, while the remaining four subsets form the training set.

This process is repeated five times, with each subset taking a turn as the test set. This

[image: Image 168]

Multimodal Deception Detection Using Linguistic and Acoustic Features

581

Fig. 7 Deception image example

ensures robustness and minimizes overfitting. The model’s performance is evaluated

using metrics such as accuracy and the F1 score, where the following metrics are

used for the computation:

• TP: true positives (classifier correct; classifier guessed 1).

• FP: false positives (classifier incorrect; classifier guessed 1).

• TN: true negative (classifier correct; classifier guessed 0).

• FN: false negative (classifier incorrect; classifier guessed 0).

• Accuracy measures the percentage of correct predictions out of the total instances.

.Accuracy =

 T P + T N

(1)

 T P + F P + T N + F N

• The F1 score is the harmonic mean of the precision and recall metrics. Precision

measures the percentage of times the classifier was correct when it was predict-

ing the true (1) class. Recall is the percentage of times that the model correctly

predicted 1 when the label was, in fact, 1.

. Recall =

 T P

Precision =

 T P

(2)

 T P + F N

 T P + F P

[image: Image 169]

582

T. Nguyen et al.

Fig. 8 Truthful image example

.F1 score = 2 ∗ (Precision ∗ Recall)

(3)

Precision + Recall

5

Deception Detection Models

 5.1

 Conventional Models for Textual Data Only

To train our deception detection models, we explore various conventional algorithms

such as:

1. Support Vector Machines (SVM) (called Model 1), and

2. K-Nearest Neighbors (KNN) (called Model 2), and

3. Logistic Regression (LG) (called Model 3).

To optimize their performance, we conduct a grid search to fine-tune the hyperpa-

rameters of each model. This thorough parameter tuning significantly improves the

predictive power of our models. Table 4 lists parameters and their values obtained through the grid search. Bold values represent parameters selected by the stepwise

Multimodal Deception Detection Using Linguistic and Acoustic Features

583

Table 4 Parameter lists of for grid search

Model

Parameters

SVM

C: 0.001, 0.1, 1, 10, 100, 1000

Kernel: linear, poly, rbf, sigmoid

Gamma: scale, auto

LG

C: 0.001, 0.01, 0.1, 1, 10, 100

KNN

n neighbors: 3, 5, 7

Weights:. uniform, distance

p: 1, 2

Table 5 Explanation of parameters used in grid search

Model

Parameter explanation

SVM

C: Controls the trade-off between fitting the training data and generalizing to new data. Smaller values lead to a smoother decision boundary

Kernel: Specifies the function used to transform the data (e.g., linear, polynomial, RBF, sigmoid) for better decision boundaries

Gamma: Defines how far the influence of a single training example reaches,

affecting the complexity of the model

LG

C: Controls the regularization strength, balancing between fitting the data closely

and preventing overfitting

KNN

n_neighbors: Number of neighbors considered for making predictions

Weights: Determines if all neighbors contribute equally (uniform) or if closer

neighbors have more influence (distance)

p: Defines the distance metric (Manhattan for. p = 1, Euclidean for. p = 2) approach, and underlined values represent parameters selected by the OVL approach.

Table 5 explains the parameters used in grid search for each model.

 5.2

 Deep Models and Pre-trained Models for Textual Data

 Only

5.2.1

Model 4: 1 BiLSTM

For textual models, we focus on improving deception detection using the BiLSTM

model. The BiLSTM model includes three primary layers. The first layer is an embed-

ding layer that transforms integer encoded words into dense fixed-sized vectors. The

second layer is a BiLSTM layer that processes these vectors into a sequence of

outputs. The output from this layer is then passed to a Dense layer with a sigmoid

activation function, which outputs a single value. This value predicts the likelihood

of the input text being deceptive or truthful, interpreting it as a probability between 0

and 1. We compile the model using binary cross-entropy as the loss function, utilize

Adam as the optimizer, and measure performance with the accuracy metric.

584

T. Nguyen et al.

5.2.2

Model 5: 1 BiLSTM . + Dropout Layer

We build Model 5 on top of Model 4. We add architectural features to improve the

performance of the detection of deception. A key addition is the GlobalMaxPool1D

layer and the Dropout layer. The GlobalMaxPool1D layer reduces the LSTM output

to a single maximum value per feature, highlighting the most important signals for

classification. The model includes a Dense layer with 64 ReLU-activated neurons to

analyze these reduced features. Furthermore, a Dropout layer is added with a 20%

rate to prevent overfitting by randomly skipping some neuron activations during

training. The model ends with a Dense output layer. It uses a sigmoid activation to

give a probability estimate of deception. Like Model 4, the model still uses binary

cross-entropy loss and the Adam optimizer.

5.2.3

Model 6: 1 BiLSTM . + Early Stopping

Model 6 builds on the architecture used in previous models by incorporating an

Early Stopping mechanism to optimize training efficiency and prevent overfitting.

Early Stopping monitors the validation loss during training and stops the process

if no improvement is observed for five consecutive epochs. This approach ensures

that the model does not continue to learn from the training data beyond the point of

beneficial returns. Therefore, the model maintains its generalizability and prevents

it from learning noise and irrelevant details from the training set.

5.2.4

Model 7: BERT . + Early Stopping. + Dropout

Model 7 utilizes the TFBertForSequenceClassification, which is a TensorFlow 2.0

adaptation of the BERT model for sequence classification tasks. This model pro-

cesses sequences of tokens, outputting a probability distribution across various labels

using the ‘bert-base-uncased’ configuration. This version of BERT is pre-trained on

uncased English text, enhancing its applicability to diverse text inputs. To optimize

performance and handle multiclass classification, we employ Sparse Categorical

Cross Entropy as the loss function and an Adam optimizer with a learning rate of

2e-5 and epsilon of 1e-08. Additionally, Early Stopping and Dropout techniques are

integrated to prevent overfitting and ensure efficient training, with the model’s config-

uration finalized with the chosen loss function, optimizer, and performance metrics.

5.2.5

Model 8: Pretrained GPT-2 Model

Model 8 is built using a pre-trained GPT-2 architecture. We initialize it with

GPT2Model.from. _pretrained() to use its existing weights and increase learning effi-

ciency. We added a linear layer (self.fc1) to the model to convert it for sequence

classification. This layer takes the hidden states from GPT-2 and transforms them

Multimodal Deception Detection Using Linguistic and Acoustic Features

585

for classification. During the . f or ward() method process, input IDs and masks are processed by the GPT-2 model. The outputs are reshaped using. gpt _ out.view(batch si ze, −1) and then passed through the linear layer to get the final class predictions.

Basically, we use GPT-2 as a feature extractor to transform its complex linguistic

features into class predictions.

5.2.6

Model 9: Pretrained RoBERTa Model

Model 9 employs the RoBERTa architecture, configured for sequence classifica-

tion using the robust PyTorch framework alongside the Hugging Face Transformers

library. We utilize the ‘RoBERTa-base’ model along with its associated tokenizer

to prepare our input corpus. Each input sequence is tokenized and then uniformly

padded to maintain consistent dimensions across all data, ensuring efficient process-

ing. These tokenized sequences, along with their respective labels, are transformed

into tensors. For training, the model is optimized using an Adam optimizer with a

learning rate of 2e-5. The optimization is guided by the cross-entropy loss function,

which is particularly suited for classification tasks involving multiple classes.

 5.3

 Deep Models for Audio Data

5.3.1

Model 10: ResNet50 . + Dropout

We have modified the ResNet model from its original design to suit binary classifi-

cation tasks. The base ResNet50 model, with weights pre-trained on ImageNet, uses

transfer learning to take advantage of features learned from visually rich datasets. We

hypothesize that this approach will improve the model’s ability to recognize subtle

patterns in audio spectrogram data. These audio data share similarities with the image

data due to their time-frequency representation. The model uses the ResNet50 base.

Its top layer is removed for customization, adjusting the input shape for the task.

The last 20 layers are trainable, while earlier layers keep their ImageNet weights. It

includes a Global Average Pooling 2D layer, a 0.5 rate Dropout layer, and Early Stop-

ping to prevent overfitting. A Dense layer with 1024 neurons using ReLU activation

learns non-linear combinations of features. The final layer is a Dense layer with a sin-

gle neuron for binary classification. With a 0.0001 learning rate, the Adam optimizer

optimizes for binary cross-entropy loss, ensuring learning and generalization.

5.3.2

Model 11: VGG-16

We employ a VGG16 base pre-trained on ImageNet, excluding its top layers. All

VGG16 layers are initially non-trainable, except those in the final block. Custom

layers are added on top, starting with an Input layer, then passing through a Glob-

alAveragePooling2D layer, a Dropout layer, and a Dense layer with 1024 units and

[image: Image 170]

586

T. Nguyen et al.

ReLU activation. The final output layer uses a single Dense layer with sigmoid acti-

vation. The model is compiled with an Adam optimizer (learning rate of 0.00001),

binary cross-entropy loss, and accuracy as a metric.

 5.4

 Model 12: Late Fusion Model for Audio Data

 and Textual Data

We use the ResNet50 (model 10) for audio data and the BiLSTM model (model 6)

for textual data to create a late fusion model (Fig. 9). We chose these models because they provide the highest scores for their respective modalities when we experiment

with different models. We change the last layers of both models so they will produce

a feature vector with 128 dimensions, making sure that features from different types

are represented in the same way. The vectors for each model are put together. It makes

a combined feature vector with 256 dimensions. A specially created LinearW layer

takes this vector and works to balance and mix the features coming from both the

audio and text paths. The LinearW layer uses a group of weights that can be adjusted

and which get better during training. This lets it give each set of features a certain

level of importance based on what it has learned. After this fusion layer’s output

is ready, it goes through another thick layer with sigmoid activation to develop the

ultimate prediction.

Fig. 9 Late fusion model for textual and audio data

[image: Image 171]

Multimodal Deception Detection Using Linguistic and Acoustic Features

587

6

Results

 6.1

 Overlapping Probability Density Functions for Linguistic

 Features

PDFs are initially plotted for a selected set of features to better understand the dif-

ferences in data distribution between the “Lie” and “Truth” categories. These visu-

alizations, presented as PDFs, offer an intuitive comparison of the data distribution

shapes. Smoothed PDFs are generated using Kernel Density Estimation (KDE) with

a Gaussian kernel. They provide continuous representations of data distributions.

These visualizations are useful for identifying features with distinct patterns that can

potentially enhance the effectiveness of lie detection based on linguistic analysis.

Both PDF plots (Figs. 10, 11 and 12 in the appendix) and Table 6 visualize and report the quantitative results of the Overlapping Probability Density Functions

Fig. 10 PDF plots for “Lie” and “Truth” data across multiple features (part 1)

[image: Image 172]

588

T. Nguyen et al.

Fig. 11 PDF plots for “Lie” and “Truth” data across multiple features (part 2)

[image: Image 173]

Multimodal Deception Detection Using Linguistic and Acoustic Features

589

Fig. 12 PDF plots for “Lie” and “Truth” data across multiple features (part 3)

590

T. Nguyen et al.

Table 6 Feature significance analysis using OVL [21]

Features

OVL score

filler. _word. _count

0.5471

future. _tense. _frequency

0.5517

negation_count

0.6097

adverb_frequency

0.7367

present. _tense. _frequency

0.7512

sentence. _count

0.7811

self. _reference. _count

0.8106

sentiment. _score

0.8159

adjective. _frequency

0.8182

word. _count

0.8214

pronoun. _frequency

0.8299

past. _tense. _frequency

0.8345

avg. _word_length

0.8479

repetition. _count

0.8497

conjunction. _frequency

0.9001

vocabulary. _diversity

0.9119

analysis. This analysis provides a more precise measure of the discriminatory power

of individual features in distinguishing between the “Lie” and “Truth” categories.

By calculating the OVL scores, we can determine how much the probability density

functions of different features overlap between the two categories.

As Table 6 reports, features such as “vocabulary diversity” and “conjunction frequency” exhibit high OVL scores. This indicates a substantial overlap in their prob-

ability density functions between the “Lie” and “Truth” categories. This suggests

that these features may not be strong indicators on their own when it comes to dis-

tinguishing between lies and truths. On the other hand, features like “filler word

count” and “negation count” display lower OVL scores, implying less overlap in

their probability density functions. This indicates a higher potential for effectively

distinguishing between “Lie” and “Truth” instances using these features. However,

it is important to note that feature interactions and analysis context can significantly

influence their discriminatory power.

 6.2

 The Performance of Deception Detection Models

6.2.1

Conventional Models for Textual Data

From the initial set of 16 features shown in Table 3, OVL and stepwise feature selection select different sets of features. For the OVL feature selection approach, we

choose the threshold of 0.8, so features with an OVL score lower than 0.8 will be

selected. Therefore, we have six features in total, which are (1) filter work count,

Multimodal Deception Detection Using Linguistic and Acoustic Features

591

Table 7 Accuracy and F1 scores of conventional models for textual data only. All results are presented as percentages

Model

Train accuracy

Test accuracy

F1 score

Model 1a: SVM.+ OVL

61.12

59.37

70.44

Model 1b: SVM.+ Stepwise

64.46

63.77

69.8

Model 2a: KNN.+ OVL

70.65

63.6

65.47

Model 2b: KNN.+ Stepwise

71.69

62.83

63.07

Model 3a: LR.+ OVL

66.12

63.63

67.89

Model 3b: LR + Stepwise

66.11

68.53

71.69

(2) future tense frequency, (3) negation count, (4) adverb frequency, (5) present

tense frequency, and (6) sentence count. In contrast, the stepwise approach carefully

chose five features that showed the strongest discriminatory potential: (1) average

word length, (2) vocabulary diversity, (3) frequency of adjectives, (4) frequency of

adverbs, and (5) the count of filler words. These features played a crucial role in our efforts to detect deception.

Table 7 presents an evaluation of conventional models for both the OVL and the stepwise feature selection approach in terms of accuracy and F1 scores. Among the

three convention models with the OVL approach, the SVM (Model 1a) has the lowest

test accuracy but the highest F1 score. SVM (Model 1b) achieves a relatively lower

test precision and F1 score for the stepwise approach. KNN (Model 2b) shows a

reasonable training accuracy but faces challenges in generalization, with a lower test

accuracy and an F1 score. Among the three different models evaluated, LR (Model

3b) stands out with its test accuracy of 68.53% and F1 score of 71.69%. These results

highlight the strong potential of this model in distinguishing deceptive actions.

6.2.2

Deep Learning Models for Textual Data

Table 8 summarizes the performance of different deep models with various architectures and techniques. Model 4, with only one BiLSTM layer, shows improve-

ments in precision (67.73%) and the F1 score (69.83%), indicating the importance

Table 8 Accuracy and F1 scores of deep models for textual data only [21]. All results are presented as percentages

Model

Train accuracy

Test accuracy

F1 score

Model 4: 1 BiLSTM

100

67.73

69.83

Model 5: 1 BiLSTM.+ Dropout

100

66.9

66.18

Model 6: 1 BiLSTM + Early stopping

100

93.57

94.48

Model 7: BERT.+ Early stopping.+ Dropout

83.54

68.73

64.63

Model 8: Pretrained GPT2 model

99.79

58.73

60.12

Model 9: Pretrained RoBERTa model

88.18

71.2

73.71

592

T. Nguyen et al.

Table 9 Accuracy and F1 scores of deep models for audio data only. All results are presented as percentages

Model

Train accuracy

Test accuracy

F1 score

Model 10: ResNet50

96.04

93.57

92.16

Model 11: VGG16

96.01

87.63

89.25

of simplifying the model structure. Model 5 incorporates a Dropout layer along-

side a single BiLSTM layer, demonstrating the impact of regularization techniques.

However, its accuracy (66.9%) and F1 score (66.18%) are slightly lower than Model

5. Model 6 introduces Early Stopping and significantly enhances predictive perfor-

mance. Model 6 achieves an impressive accuracy of 93.57% and an F1 score of

94.48%. This finding highlights the importance of monitoring validation loss during

training to prevent overfitting. Among the three pre-trained models, Model 9 applies

pre-trained Roberta, giving the highest scores. Table 8 reveals the performance variations among different models and emphasizes the importance of carefully selecting

architecture and techniques. The findings further show that regularization techniques,

such as Early Stopping, can help prevent overfitting and improve generalization

capabilities.

6.2.3

Deep Models for Audio Data

Table 9 shows the performance of the audio models. Model 10, which employs the ResNet50 structure, gets good training and test accuracy results with 96.04% and

95.57%, respectively. It also achieves an F1 score of 92.17%. It shows it can general-

ize well when finding lies in audio. However, Model 11 with VGG16 structure also

has good accuracy in training at 96.01% but a slight drop in test accuracy to 87.63%,

and an F1 score of 89.25%. This decrease might show that even though VGG16 is

very good for pulling out features, it could be worse at making these features more

general than ResNet50.

6.2.4

Late Fusion Models for Both Textual and Audio Data

As mentioned earlier, we combined ResNet50 (model 10) for audio data and BiLSTM

(model 6) for textual data to create the late fusion model (Fig. 9). We chose these models based on their outstanding performance in their respective modalities during

our experiments. Table 10 presents how our late fusion model performed on five cross-validation folds. On average, the late fusion model obtains a test accuracy of

90.9% and an F1 score of 91.07%. The second fold shows the best results for test

accuracy and F1 score, with both around 96%. On the other hand, performance is

not as good in the fifth fold; it has an accuracy of about 79.12% and an F1 score near 82.76%.

Multimodal Deception Detection Using Linguistic and Acoustic Features

593

Table 10 Late fusion model weights and performance across 5-fold cross validation. All results are presented as percentages

Fold

Audio weight

Text weight

Test accuracy

F1 score

1

0.49731752

0.50268245

92

90.9

2

0.5032117

0.49678826

95.83

96

3

0.516298

0.4837021

91.67

88.89

4

0.5161787

0.48382124

95.83

96.77

5

0.49938968

0.5006103

79.12

82.76

Average

0.5064791

0.4935209

90.9

91.07

7

Discussion

 7.1

 Textual Models

7.1.1

Conventional Models

The stepwise method selects a variety of linguistic features. They are the average

word length, the diversity of the vocabulary used, the frequency of adjective and

adverb usage, and the count of filler words. These features are chosen because they

can provide valuable information on speech patterns indicative of deception. On the

other hand, the OVL method focuses on a different set of features. These include the

count of filler words, the frequency of adverb usage, the usage of the future tense,

the frequency of negations, and the usage of the present tense. Interestingly, filler

words and adverb frequency are selected by both methods. Filler words, which are

often used as hesitations or distractions in speech, may be indicative of deceptive

tendencies, as they could suggest that the speaker is trying to buy time or divert

attention. The consistent selection of adverb frequency across both methods further

suggests that the manner or intensity with which expressions are made might hold

significant weight in identifying deceptive behavior. This shared focus on filler words,

and adverb frequency highlights their potential importance in the study of deceptive

speech patterns.

For conventional models using the OVL feature selection method, SVM (Model

1a) scores the highest F1 score at 70.44%. In contrast, when using features from the

stepwise method, LG (Model 3b) achieves the best F1 score. This suggests that the

performance of the models can vary according to the selected features. LG (Model

3b) attains the highest test accuracy and F1 score among all conventional models

with both feature selection methods. However, LR (model 3b) also shows signs of

underfitting in our analysis. The relatively low train accuracy of 66.11% implies that

the model struggles to fit the training data adequately. However, the test accuracy

is even higher at 68.53%. This difference between the accuracy of the train and

the test is a classic indicator of inadequate fitting. This underfitting issue may be

attributed to the simplicity of the LR model, which may not be able to capture

complex, nonlinear relationships within the data. Consequently, the LR model’s

594

T. Nguyen et al.

limited capacity to capture these complex patterns ultimately compromises its overall

performance and prevents it from achieving higher accuracy on both the train and

test sets. By exploring more sophisticated models, such as deep models, we could

strive to improve our models’ accuracy and generalization capabilities, ultimately

enhancing our analysis’s overall performance.

¸Sen et al. [24] also conducted a study in which they implemented conventional classifiers such as SVM and RF. They reported that their RF model achieved the

highest accuracy of 64.41% using the Linguistic Inquiry and Word Count (LIWC)

lexicon. When comparing it to our conventional model, our LG model (Model 3b)

uses a smaller feature set and outperforms their RF model in terms of accuracy.

This indicates that our feature selection approach plays a crucial role in enhancing

models’ performance by eliminating noise and irrelevant data.

7.1.2

Deep Models

We start building a simple model (i.e., Model 4), which consists of a single BiLSTM

layer. Since its test accuracy is much lower than its train accuracy, this Model 4 shows signs of overfitting. This means that Model 4 does not perform well on new data. To

improve and manage overfitting more effectively, we progressively integrate addi-

tional layers and techniques, such as Dropout and Early Stopping, into subsequent

models. Dropout and Early Stopping are important techniques in deep learning for

managing overfitting and improving model performance. Dropout randomly removes

certain units during training to balance network weights [25]. However, when we add Dropout to Model 5, it does not perform better than Model 4. It has similar training

accuracy but lower test accuracy and F1 score. This means Dropout does not suc-

cessfully control overfitting or help Model 5 generalize to the test data. Model 6,

which is Model 4 with added early stopping, performs much better than Models 4

and 5. It has a test accuracy of 93.57% and an F1 score of 94.48%. While it keeps

the high training accuracy of Model 4, Model 6 has much better test accuracy and

F1 score because of early stopping. Early Stopping adjusts the number of epochs

in backpropagation and forward propagation to prevent overfitting and find the best

point for model performance [25]. These results show that the right regularization techniques are key to managing overfitting and getting the best performance from a

model. Model 6’s success shows how useful early stopping can be in deep learning.

It is a good choice for applications that need simple, high-performing models. Pre-

trained models are not the best option for this task. The value of a model, whether

it’s pretrained or not, depends on the dataset and the nature of the task.

 7.2

 Audio Models

After looking at the study by Sehrawat et al. [23] on finding deception with CNNs, we realize that when comparing ResNet50 and VGG16 structures, ResNet50 does

a better job working with audio data. Our experimental findings match this result,

Multimodal Deception Detection Using Linguistic and Acoustic Features

595

showing the ResNet50 model works better than the VGG16. Another reason we

chose ResNet50 instead of VGG16 is because it takes much considerably less time

to train. These findings imply that the ResNet50 model outperforms the VGG16

model in terms of accuracy and computational efficiency. Therefore, we decide to

use the ResNet50 architecture in our late fusion model.

 7.3

 Late Fusion Model

Table 1 includes a broader range of referenced works, including those using video data. Since our study focuses only on text and audio, we limit comparisons in

Table 11 to models using text and audio. Table 11 shows that our late fusion model outperforms the previous model in both test accuracy and F1 scores. With 90.9% in

accuracy and an F1 number of 91.1%, our model does better compared to Sehrawat et

al.’s method with 80% accuracy, and Zhang et al.’s work has a correct rate of 84.40%.

Given that the dataset is nearly balanced, we expect minimal differences between

accuracy and F1 score, and our model’s performance aligns with this expectation.

We see a consistent balance between audio and text inputs when we carefully look

at how the last layer of fusion gives weights over five validation folds (as shown in

Table 10). There is only a small change around an almost equal division. This shows that our model is strong because even little changes in the weights, which go from

about 49.7–51.6% for audio and then similar for text, are good enough to handle the

slight differences in each fold’s information. The balance that is always the same

makes sure one way of getting information does not take over so the model can

use what was good about both audio and textual data. This careful way of deciding

importance really helps make the model work very well and be trusted with different

kinds of information because it mixes ways to get knowledge together in a smart way

to find deception.

Table 11 Comparison of test accuracy and F1 score for models with different modalities Modality

Previous research

Accuracy (%)

F1 score (%)

Text

Venkatesh et al. [31]

84

N/A

Hsiao and Sun [13]

84

82.64

Zhang et al. [33]

82.26

65.87

Our model (BiLSTM)

93.57

94.48

Audio

Venkatesh et al. [31]

76

N/A

Hsiao and Sun [13]

88

87.92

Zhang et al. [33]

84.59

70.53

Our model (ResNet50)

93.57

92.16

Text.+ Audio

Sehrawat et al. [23]

80

N/A

Zhang et al. [33]

84.40

70.80

Our model (late fusion)

90.9

91.1

596

T. Nguyen et al.

8

Conclusion and Future Work

This work aims to create a multimodal model that uses both transcribed text and audio

data to detect deceptive behavior more accurately. We extracted a total of 16 textual

features and identified five highly significant ones using both the stepwise method

and the Overlapping Coefficient (OVL) method. Through our experiments, Logistic

Regression (LR) achieves the highest accuracy among conventional models with an

accuracy of 68.53% and an F1 score of 71.69%. However, our deep learning model,

a BiLSTM with Early Stopping, outperforms all other textual models, achieving an

accuracy of 93.57% and an F1 score of 94.48%. For the audio data, the ResNet50

model performs exceptionally well, achieving an accuracy of 93.57% and an F1

score of 92.16%. Furthermore, by combining text and audio data through a late-

fusion approach, we achieve an accuracy of 90.9% and an F1 score of 91.07%,

outperforming previous research on similar datasets.

While this project focused on creating textual and audio models, further analysis

is needed to explore the interactions between features from both modalities, such

as the correlation between high pitch and increased wordiness with deception. In

future work, we plan to add behavioral features from video and images to provide a

more comprehensive understanding of deceptive behavior. It is important to note that

the Real Life Trial dataset is relatively small, and while the results are promising,

experiments with larger datasets will enhance the robustness and generalizability of

the model. Expanding the dataset will help ensure that our findings are applicable

across different contexts and populations.

Acknowledgements This research was supported by the U.S. National Science Foundation

(Awards#: 2319802 and 2319803). Opinions, findings, and conclusions are those of the authors and do not necessarily reflect the views of the NSF.

References

1. Abri F, Gutiérrez LF, Namin AS, Jones KS, Sears DRW. Linguistic features for detecting fake reviews. In: 2020 19th IEEE international conference on machine learning and applications,

ICMLA; 2020. p. 352–9.

2. Arshad M, Zhao D, Zare E, Sefton M, Triantafilis J. Proximally sensed digital data library to predict topsoil clay across multiple sugarcane fields of Australia: applicability of local and universal support vector machine. CATENA. 2021;196:104934.

3. Aslan M, Baykara M, Alaku¸s TB. LSTMNCP: lie detection from EEG signals with novel

hybrid deep learning method. Multimed Tools Appl. 2023;1–17.

4. Bareeda EPF, Mohan BSS, Muneer KVA. Lie detection using speech processing techniques. J

Phys Conf Ser. IOP Publishing. 2021;1921:012028.

5. Bidirectional LSTM in NLP. https://www.geeksforgeeks.org/bidirectional-lstm-in-nlp/

6. Chebbi S, Jebara SB. Deception detection using multimodal fusion approaches. Multimed

Tools Appl. 2021;1–30.

7. Devlin J, Chang M-W, Lee K, Toutanova K. Bert: pre-training of deep bidirectional transformers for language understanding. 2018. arXiv:1810.04805

Multimodal Deception Detection Using Linguistic and Acoustic Features

597

8. Fu H, Yu H, Wang X, Lu X, Zhu C. A semi-supervised speech deception detection algorithm combining acoustic statistical features and time-frequency two-dimensional features. Brain

Sci. 2023;13(5):725.

9. Gallardo-Antolín A, Montero JM. Detecting deception from gaze and speech using a multimodal attention LSTM-based framework. Appl Sci. 2021;11(14):6393.

10. Gannon TA, Beech AR, Ward T. Risk assessment and the polygraph. In: The use of the polygraph in assessing, treating and supervising sex offenders: a practitioner’s guide. 2009. p. 129–54.

11. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. p. 770–8.

12. Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. Support vector machines. IEEE Intell Syst Appl. 1998;13(4):18–28.

13. Hsiao S-W, Sun C-Y. Attention-aware multi-modal RNN for deception detection. In: 2022

IEEE international conference on big data (big data). IEEE; 2022. p. 3593–6.

14. Hu S. Detecting concealed information in text and speech. In: Proceedings of the 57th annual meeting of the association for computational linguistics. 2019. p. 402–12.

15. Kopev D, Ali A, Koychev I, Nakov P. Detecting deception in political debates using acoustic and textual features. In: 2019 IEEE automatic speech recognition and understanding workshop (ASRU). IEEE; 2019. p. 652–9.

16. Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer L, Stoyanov V.

Roberta: a robustly optimized Bert pretraining approach; 2019.

17. Long short-term memory networks (LSTM)—simply explained! https://databasecamp.de/en/

ml/lstms

18. Mallow MS. The admissibility of polygraph test as evidence. In: Proceedings of SOCIOINT, 2020(7th), 2020.

19. Marcolla FM, de Santiago R, Dazzi RLS. Novel lie speech classification by using voice stress.

ICAART. 2020;(2):742–9.

20. Mendels G, Levitan SI, Lee K-Z, Hirschberg J. Hybrid acoustic-lexical deep learning approach for deception detection. In: Interspeech. 2017. p. 1472–6.

21. Nguyen T, Abri F, Namin AS, Jones KS. Deception and lie detection using reduced linguistic features, deep models and large language models for transcribed data. In: 2024 IEEE 48th

annual computers, software, and applications conference, COMPSAC; 2024. p. 376–81.

22. Sarzynska-Wawer J, Pawlak A, Szymanowska J, Hanusz K, Wawer A. Truth or lie: exploring the language of deception. PLoS ONE. 2023;18(2):e0281179.

23. Sehrawat PK, Kumar R, Kumar N, Vishwakarma DK. Deception detection using a multimodal stacked bi-LSTM model. In: 2023 international conference on innovative data communication

technologies and application (ICIDCA). IEEE; p. 318–26.

24. ¸Sen MU, Perez-Rosas V, Yanikoglu B, Abouelenien M, Burzo M, Mihalcea R. Multimodal

deception detection using real-life trial data. IEEE Trans Affect Comput. 2020;13(1):306–19.

25. Sitaula C, Ghimire N. An analysis of early stopping and dropout regularization in deep learning.

Int J Concept Comput Inf Technol. 2017;5(1):17–20.

26. Solaiman I, Brundage M, Clark J, Askell A, Herbert-Voss A, Wu J, Radford A, Krueger G, Kim JW, Kreps S, McCain M, Newhouse A, Blazakis J, McGuffie K, Wang J. Release strategies

and the social impacts of language models. 2019.

27. Talaat FM. Explainable enhanced recurrent neural network for lie detection using voice stress analysis. Multimed Tools Appl. 2023;1–23.

28. Tao H, Lei P, Wang M, Wang J, Fu H. Speech deception detection algorithm based on SVM

and acoustic features. In: 2019 IEEE 7th international conference on computer science and

network technology (ICCSNT). IEEE; 2019. p. 31–3.

29. Theckedath D, Sedamkar RR. Detecting affect states using VGG16, ResNet50 and SE-

ResNet50 networks. SN Comput Sci. 2020;1(2):79.

30. Van Houdt G, Mosquera C, Nápoles G. A review on the long short-term memory model. Artif Intell Rev. 2020;53(8):5929–55.

31. Venkatesh S, Ramachandra R, Bours P. Robust algorithm for multimodal deception detection.

In: 2019 IEEE conference on multimedia information processing and retrieval (MIPR). IEEE;

2019. p. 534–7.

598

T. Nguyen et al.

32. Zhang F, Hu C, Yin Q, Li W, Li H-C, Hong W. Multi-aspect-aware bidirectional LSTM networks for synthetic aperture radar target recognition. IEEE Access. 2017;5:26880–91.

33. Zhang H, Ding Y, Cao L, Wang X, Feng L. Fine-grained question-level deception detection via graph-based learning and cross-modal fusion. IEEE Trans Inf Forensics Secur. 2022;17:2452–

67.

[image: Image 174]

Keystroke Dynamics for User

Identification

Atharva Sharma

, Martin Jureˇcek

, and Mark Stamp

Abstract In previous research, keystroke dynamics has shown promise for user

authentication, based on both fixed-text and free-text data. In this research, we con-

sider the more challenging multiclass user identification problem, in the case of

free-text data. We experiment with a complex image-like feature that has previously

been used to achieve state-of-the-art authentication results over free-text data. Using

this image-like feature and multiclass Convolutional Neural Networks, we are able

to attain a classification (i.e., identification) accuracy of 0.78 over a set of 148 users.

Surprisingly, we find that a Random Forest classifier trained on a slightly modified

version of this same feature yields an improved accuracy of 0.93.

1

Introduction

Authentication and intrusion detection are crucial aspects of online security. Con-

ventional authentication methods, such as passwords, have limitations, and biometric

systems may require additional hardware or be unsuitable for specific user groups.

Recent research highlights the need for accessible and inclusive authentication sys-

tems for all users, including the elderly [15, 25] and disabled individuals [28].

Keystroke dynamics are a promising means for improved user authentication and

identification. By analyzing keystroke patterns, a user can be distinguished based

on their distinctive typing style, regardless of age or physical ability. Furthermore,

keystroke dynamics can aid in detecting an intruder who has gained unauthorized

access to a system, making such techniques potentially useful in the field of intrusion

detection.

Compared to traditional authentication methods such as passwords, keystroke

dynamics offer several benefits. First, keystroke dynamics are challenging to break

A. Sharma · M. Stamp (B)

San Jose State University, San Jose, CA, USA

e-mail: mark.stamp@sjsu.edu

M. Jureček

Czech Technical University in Prague, Prague, Czech Republic

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

601

M. Stamp and M. Jureček (eds.), Machine Learning, Deep Learning and AI for

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_21

602

A. Sharma et al.

since people tend to have distinctive typing patterns that may be difficult to replicate, and guessing is not a viable attack strategy. In contrast, passwords can be compromised through data breaches or guessed via trial-and-error. Second, keystroke dynam-

ics can provide a more robust and reliable two-factor authentication approach—if an

unauthorized user obtains a valid user’s login credentials, they may still be detected

and denied access, due to their failure to mimic the specific user’s expected typ-

ing characteristics. Also, keystroke dynamics can offer continuous authentication,

enabling passive, ongoing user-identity verification throughout a session, adding an

extra layer of protection in the form of intrusion detection. In summary, keystroke

dynamics holds promise for improvements in authentication, identification, and intru-

sion detection.

For the research presented in this paper, we use the so-called Buffalo free-

text keystroke dataset to study keystroke dynamics. This dataset was collected by

researchers at SUNY Buffalo and has been widely used in research in this field [29].

Here, free-text means that subjects do not type the same thing—in contrast to fixed-

text data, where all subjects type the same text. While fixed text is relevant to authentication (typically, via passwords), free text is more relevant for the intrusion detection

problem, which, in this context, is often referred to as continuous authentication.

Both free-text and fixed-text data can be used to study the user identification prob-

lem. Note that for the identification problem, we are trying to determine specifically

who is typing, and there may be a very large number of possible typists. In contrast,

for the authentication problem, the typist claims to be a specific user, and we only need to determine whether the person typing is the claimed user or not. Consequently, the

authentication problem is a 1-to-1 comparison, whereas the identification problem is

a many-to-one comparison, and hence the identification problem is inherently much

more challenging. In this paper, we consider this inherently more challenging iden-

tification problem, based on the Buffalo free-text dataset. Since the Buffalo dataset

includes data from 148 users, for the identification problem considered here, at ran-

dom we would only expect to guess the correct user with probability.1 / 148 < 0 . 007, whereas for the authentication problem, random chance will yield the correct answer

with probability .0 . 50.

Free-text and fixed-text datasets have relative advantages and disadvantages. Free-

text datasets, collected while users type naturally without constraints, offer a more

realistic representation of user behavior and provide a more transparent experience

for users [19]. On the other hand, fixed-text datasets, collected under controlled conditions where participants type specific words, phrases, or sentences, enable more con-

trolled experiments and easier comparison by eliminating variations in text input [14].

Due to the practicality and user experience aspects, we have chosen to work with

free-text data in this study. Note that of the various permutations involving free-

text or fixed-text for authentication or identification, the problem considered in this

paper—namely, user identification based on free-text data—is the most challenging

case. Note also that in this context, identification is synonymous with classification.

Inspired by successful authentication results in prior studies, we first consider a

feature engineering approach that originated in the paper [16], where elementary features are transformed into a multi-channel image-like transition matrix which is

Keystroke Dynamics for User Identification

603

referred to as a Keystroke Dynamics Image (KDI). Within this KDI matrix, rows and

columns denote keyboard keys, while the depth signifies distinct feature categories.

We conduct multi-class classification experiments on the.148 users in the well-known

Buffalo dataset, employing a Convolutional Neural Network (CNN) model trained

on the KDI features with cutout regularization. To assess the effect of keystroke

sequence lengths on our model, we experiment with multiple sequence lengths. Our

CNN model results yield a respectable multiclass accuracy of 0.78 over the 148

classes.

We then experiment with classic learning techniques using a “flattened” version

of the KDI as our feature vector. Surprisingly, we find that a Random Forest model

trained on these feature vectors yields dramatically improved results, with an accu-

racy of 0.93 for this inherently challenging 148-user identification problem. As far

as the authors are aware, this is the best experimental result to date for the user

identification problem, based on the popular Buffalo free-text dataset.

In summary, the main contributions of this paper are the following.

• While authentication (i.e., binary classification) based on keystroke dynamics has

been widely studied, the inherently more challenging identification (i.e., multi-

class) problem has received little attention. In this paper, we present results that

set a strong benchmark for the user identification problem, based on the popular

Buffalo free-text dataset.

• In the process of analyzing this user identification problem, we find that a Random

Forest significantly outperforms a Convolutional Neural Network (CNN). This is

surprising, given that we use the feature vectors from [16], which are explicitly designed to be interpreted as images. Since CNNs only deal with local structure,

this result indicates that these image-like feature vectors fail to sufficiently localize

significant information that exists in the raw data.

The remainder of this paper is organized as follows. In Sect. 2, we delve into background topics such as the learning techniques utilized and the dataset considered in

our study. This section also includes a selective survey of related prior research in

the field of keystroke dynamics. Section 3 details the features we employ, with the emphasis on our feature engineering strategy for preparing input data for classification models. In Sect. 4, we elaborate on the model architectures considered in this paper and discuss hyperparameter tuning. Section 5 encompasses our experiments and provides an analysis of the results. Lastly, Sect. 6 offers a conclusion and suggests potential avenues for future research.

2

Background

Authentication is a fundamental aspect of security systems [4]. Keystroke dynamics has emerged as a promising method for verifying user identity. Unlike traditional

authentication methods, keystroke dynamics has the potential to detect intruders

604

A. Sharma et al.

even after they have gained access to the system, making it a valuable tool for

preventing security breaches. However, the effectiveness of keystroke dynamics-

based systems depends on the ability to accurately classify users, based on their

typing characteristics.

The more challenging problem of user identification based on keystroke dynamics

is also of interest, particularly in the context of intrusion detection systems (IDS).

Also, for IDS, the use of free text data may be advantageous, as compared to fixed

text [2]. Free text data is more representative of how users type on a regular basis and is not constrained by a pre-determined text input, which may result in more accurate

and reliable outcomes. Most importantly, free text datasets are adaptable to passive

monitoring of user behavior within an IDS.

Another advantage of keystroke dynamics-based systems is that they are applica-

ble to users of all ages and even those with disabilities, provided only that they type when using a system [24]. Therefore, this approach can provide a more inclusive and accessible method that does not discriminate based on age or physical ability.

In summary, keystroke dynamics-based systems may offer an effective means of

user authentication and identification, provided that we can accurately distinguish

between users. In this research, we show that even for the inherently challenging

identification problem, it is possible to obtain strong results.

 2.1

 Related Work

Keystroke dynamics is a behavioral biometric that has been extensively studied

for user authentication. In contrast, the problem we consider in this paper, namely,

keystroke dynamics for user identification, has received little attention in the research

literature. Therefore, unless otherwise noted, the previous work discussed in this

section deals primarily with the user authentication problem, rather than user iden-

tification.

In an early example of research into keystroke dynamics [9], digraph latencies were used to examine the distinctiveness of typing patterns. Gaines et al. found

that specific digraphs could distinguish right-handed touch typists from one another

with 92% accuracy over a limited number of users. About a decade later, a real-

time pattern recognition based approach to classify users was proposed in [7]. The online verification system they developed had a false rejection rate (FRR) of 8.1%

for rejecting valid users and 2.8% false acceptance rate (FAR). This work laid the

foundation for much of the subsequent research in this field.

Recently, machine learning has been widely applied in keystroke dynamics. Clas-

sic machine learning algorithms, such as . k-Nearest Neighbors (. k-NN) and Support Vector Machines (SVM), have yielded promising results in user authentication tasks.

However, these methods often rely on handcrafted features, which may be less robust

and less generalizable to diverse user groups and typing scenarios.

An SVM-based method in [10] requires only five captures for initial enrollment, while [12] utilize a . k-NN approach, resulting in further improvements in efficiency.

Keystroke Dynamics for User Identification

605

These examples of previous research offer robust and generalizable methods with

high accuracy and efficiency, as compared to prior work that utilized traditional

statistical-based classification algorithms.

Clustering techniques have been employed in the context of keystroke dynamics,

which serves to group similar users or typing patterns, and to identify potential

outliers. For example, in the paper [22], the authors have demonstrated that. K -Means clustering can yield useful results, achieving an authentication accuracy of 96.2%.

Not surprisingly, clustering techniques have also been used in a data analysis mode.

For example, [23] use hierarchical clustering to evaluate the effect of hold times on the homogeneity of valid user timing vectors. This use of hierarchical clustering

helped to establish the relative homogeneity of valid user timing vectors and improve

the accuracy of subsequent experiments.

Clustering can also be applied to keystroke dynamics for the purpose of detecting

account sharing. The research in [13] shows that user’s keystroke patterns form distinctive clusters in Euclidean space and that the number of shared accounts can

then be estimated by the number of clusters. The optimal number of clusters is

estimated using a Bayesian model-selection framework, and the results show a 2%

false alarm rate, a 2% miss rate, and an overall accuracy of 93%.

Clustering methods such as Expectation Conditional Maximization (ECM) have

also been combined with other approaches, including Extreme Learning Machines

(ELM), to improve accuracy and stability. ELM is a single hidden-layer feedforward

network model that is extremely fast to train, yet can achieve good generalization

performance for some problems. A clustering-based, semi-supervised ECM-ELM

approach in [21] is able to achieve an authentication accuracy of 87% for the popular Carnegie Mellon University (CMU) keystroke dataset.

Deep learning techniques for keystroke dynamics-based authentication have

shown promise in recent studies; in particular, CNNs have been employed to achieve

notable results. A novel approach in [17] involves converting keystroke data into images-like features, which allows for the mining of spatial information, and results

in an accuracy of 96.8%, with an FAR of 0.04%. A passphrase-based user authentica-

tion approach based on deep learning is considered in [20], resulting in performance that surpasses state-of-the-art methods in terms of the Equal Error Rate (EER).

Another CNN-based approach to user authentication using keystroke dynamics

can be found in [1]. In this paper, the authors convincingly demonstrate that quantile transformation can be used to provide improved results, and they claim to achieve the

best authentication accuracies to date, based on experiments with the CMU dataset.

In the realm of keystroke dynamics for user authentication, recent studies have

investigated the application of Recurrent Neural Networks. An architecture based on

a hybrid CNN and Gated Recurrent Unit (GRU) is proposed and analyzed by [30], while [18] examine the use of Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory (BiLSTM) architectures. Both papers illustrate the

potential of deep learning models in this domain. In particular, Mhenni, et al. show

that BiLSTM outperforms LSTM, achieving an accuracy of 86% and 71% for the

GREYC-2009 and WEBGREYC datasets, respectively; in comparison their LSTM

model has an accuracy of 68% and 53% over these same datasets.

606

A. Sharma et al.

The research presented in this paper is motivated by the previous work involving

an image-like structure for keystroke data in [5, 16]. These image-like representations are designed to leverage the powerful capabilities of CNNs, which are well-known

for their success in dealing with challenging classification tasks. In this context, the

work presented in [16] is particularly relevant to our research, as it introduced a unique image-like Keystroke Dynamic Image (KDI) data structure that resulted in

improved state-of-the-art results on the user authentication problem. We consider

this same KDI image-like feature in the context of user identification, which is more

challenging, due to it being a multiclass problem over a large number of classes.

In summary, the related work in the field of keystroke dynamics for user authen-

tication spans a wide range of techniques and methodologies, including classic

machine learning, deep learning, feature engineering, threshold-based techniques,

clustering, and various ensembles. Building upon this rich body of research, the

present study aims to advance the state-of-the-art within the relatively neglected—

and inherently more challenging—field of user identification.

 2.2

 Dataset

For our experiments, we use the free-text keystroke dataset collected by researchers at

SUNY Buffalo [29], which is generally referred to as the Buffalo keystroke dataset in the literature, or, more simply, the Buffalo dataset. This dataset includes a collection

of free-text keystroke dynamics data obtained from 148 research participants. The

participants were asked to complete two typing tasks in a laboratory setting over the

course of three separate sessions. The first task involved transcribing Steve Jobs’

Commencement Speech, split into three parts, while the second task included free-

text responses to a list of specific questions. To ensure the generalizability, there was a 28-day interval between each session.

Out of the 148 participants, 75 completed the typing test with the same keyboard

across all three sessions, while the remaining 73 participants used three different

keyboards in each session. The dataset contains the timestamp of each key press (key-

down) and key release (key-up), organized in a tabular format with three columns—

the first column indicates the key, the second column denotes whether the event is a

key-press or key-release, and the third column records the timestamp of the event.

The dataset includes information about the gender of each participant. On average,

participants have a total of more than .17 , 000 keystrokes across their three sessions.

The Buffalo keystroke dataset has been widely studied in the research literature.

 2.3

 Machine Learning and Deep Learning Algorithms

Despite the rapid growth in the popularity of neural networks, classic machine learn-

ing algorithms have remained competitive in the field of keystroke dynamics. Such

Keystroke Dynamics for User Identification

607

algorithms are based on statistical and mathematical techniques, and have been used

with success for many years in various fields. Thus, we consider two popular classic

machine learning algorithms, namely, Support Vector Machine (SVM), and Random

Forest. Among classic learning techniques, SVMs are the most closely related to

neural networks, while Random Forests are neighborhood-based [27]. Thus, these two techniques provide us with very different views of the data.

In the realm of deep learning techniques, we consider Convolutional Neural Net-

works (CNN). In fact, the KDI feature vectors from [16] that we employ were designed to mimic images, and hence CNNs are the obvious tool for dealing with

this data.

2.3.1

Support Vector Machines

Support Vector Machine (SVM) is a powerful supervised machine learning technique,

which has its theoretical foundation solidly rooted in computational and mathematical

principles [11]. SVM is designed to identify a hyperplane in an high-dimensional space that can accurately separate labeled data points into their respective classes.

The algorithm aims to maximize the minimum distance, or “margin,” between the

hyperplane and the data. SVM is generally recognized for its practical effectiveness,

as it can efficiently handle large and complex datasets. It has been used in a wide

range of fields, including image classification, text classification, and bioinformatics.

2.3.2

Random Forest

Random Forest classifiers consist of ensembles of decision trees. During training, a

Random Forest uses a divide and conquer strategy by sampling small subsets of the

data and features, with a simple decision tree constructed for each such subset. The

Random Forest classification is based on the predictions of its component decision

trees, usually using a simple voting strategy [6]. Important hyperparameters in a Random Forest include the number of estimators (i.e., decision trees), maximum

features (maximum number of features to sample in any one decision tree), among

others.

2.3.3

Convolutional Neural Network

CNNs [3] are a specialized type of neural network that utilize convolution kernels to deal with local information, often from image-like data. Unlike traditional neural networks, CNNs share weights at different locations, resulting in more efficient

and shift-invariant models with fewer parameters. Their multi-layer convolutional

architecture enables them to extract information at different resolutions in computer

vision tasks, making them ideal for image processing. CNNs can analyze images and

extract important features, such as edges, shapes, and textures, in a highly effective

608

A. Sharma et al.

manner. Additionally, the use of convolution kernels in CNNs enables the network

to learn spatial features, such as orientation and scale, which is especially useful

in image recognition tasks. CNNs have proven to be highly effective in a surpris-

ingly wide variety of applications, including object recognition, face recognition,

and image classification. CNNs have also been successfully applied to non-image

data, such as audio and text.

Dropout regularization [26] is commonly used to prevent overfitting in feedforward neural networks. However, this approach is less effective in convolutional layers

due to their shared information and lower parameter count. To overcome this limi-

tation, cutout regularization is used [8]. As the name suggests, cutout regularization consists of blocking out parts of the input image at various stages in the training

process. This forces the model to focus on areas of the image that might otherwise

be ignored during training, resulting in a more robust model. Cutouts also improve

a model’s ability to generalize and perform well with limited training data. Overall,

cutout is a versatile and effective technique for image analysis that can enhance the

performance of CNNs.

3

Feature Engineering

As mentioned above, we use the Buffalo keystroke dataset, which is a free-text

dataset. Feature engineering is critical to our analysis, as we will be exploring an

image-like data structure that is derived from the features that appear in the dataset.

These features capture the timing information of individual keystrokes and their rela-

tionships to other keystrokes, allowing us to build a detailed sequence of keystrokes

for each user. By carefully engineering these features, we hope to gain additional

insight into how keystroke dynamics can be successfully used in the challenging user

identification problem.

 3.1

 Keystroke Features

Keystroke dynamics datasets sometimes include two types of features, those provid-

ing time-based information and those providing pressure-based information. Both

types of features can yield valuable insights into typing behavior, but pressure-based

features are not available on many modern keyboards, and such information is not

available in the Buffalo dataset. Therefore, our research will focus solely on time-

based features.

The Buffalo keystroke dataset includes the following time-based features, which

are depicted in Fig. 1.

Keystroke Dynamics for User Identification

609

total

key up-key up

key up-key down

key down-key down

hold

hold

Key 1

Key 2

Key 1

Key 1

Key 2

press

Key 2

release

press

release

Time

Fig. 1 Time based features

• Duration—The time that the user holds a key in the down position

• Down-down time (DD-time)—The time between the press of a key and the press

of the subsequent key

• Up-down time (UD-time)—The time between the release of a key and the press

of the subsequent key

• Up-up time (UU-time)—The time between the release of a key and the release of

the subsequent key

• Down-up time (DU-time)—The time between the press of a key and the release

of the subsequent key

Note that for consecutive key strokes, there are two durations, and hence for each pair

of keystrokes, we have six features. Of course, these features are not all independent,

as there are some obvious relationships. In any case, by carefully analyzing these

features, we hope to gain insights into the unique patterns of typing behavior exhibited

by individual users and determine how these patterns can be successfully applied to

the challenging problem of user identification.

 3.2

 Keystroke Sequence

To better analyze keystroke sequences, the keystrokes are often divided into subse-

quences. Each subsequence can be viewed as a separate keystroke sequence from

the same user. In this paper, we experiment with different lengths of keystroke sub-

sequences, which we treat as a hyperparameter of the system. A longer keystroke

sequence can provide more information, but it is also more resource-intensive to

process, and the analysis is delayed until the sequence has been collected. Shorter

subsequences may not capture enough information and thereby result in decreased

610

A. Sharma et al.

accuracy. Therefore, we will experiment with the length of the keystroke subse-

quences, with the goal of selecting the minimum length that provides (near) optimal

results. Depending on the requirements of a specific application, it might be desir-

able to strike a different balance between accuracy and practicality when using our

technique.

 3.3

 Keystroke Data Image

In this section, we discuss a feature engineering approach, originally developed

by [16], that enables us to effectively organize keystroke timing features into an image-like structure. As discussed in Sect. 3.1, for consecutive pairs of keystrokes, there are four timing features (UD-time, DD-time, DU-time, and UU-time), plus

the duration for each keystroke. Therefore, given a subsequence of . N keystrokes,

we obtain .4 (N − 1) + N features. For any repeated pairs—or, in the case of the duration feature, individual keystrokes—the timings are averaged, resulting in a

histogram-like feature. We consider each keystroke subsequence as an independent

input sequence for the corresponding user.

Inspired by the structure of RGB images, we organize these features into the

aforementioned Keystroke Data Image (KDI), which has five channels—the first

four channels are the digraph features mentioned above (UD-time, DD-time, DU-

time, and UU-time), and the fifth channel is a diagonal matrix obtained from the

durations. Recall that if a keystroke pair appears more than once in a subsequence,

all occurrences are averaged. Also, note that each row and column in the KDI corre-

sponds to a key on the keyboard, with each channel representing one specific feature.

To reduce sparsity in the KDI, we only consider time-based features for the fol-

lowing 42 most common keystrokes.

• The 26 English letters (A–Z)

• The 10 Arabic numerals (0–9)

• The 6 meta keys: Space, back, left-shift, right-shift, tab, and capital

Thus, the KDI is .42 × 42 × 5, with the five channels as described above.

The KDI data structure is illustrated in Fig. 2. As mentioned above, to mitigate overfitting in our CNN model, we employ cutout regularization [8]. The dark blocks in Fig. 2 represent cutouts.

4

Model Architectures

In this section, we provide details on the learning architectures used in our experi-

ments. We also discuss hyperparameter tuning for each of our models.

[image: Image 175]

Keystroke Dynamics for User Identification

611

a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9 tab

l-s

ba

r-s

cap

sp

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

cutout

p

q

r

s

t

u

v

w

x

y

z

0

1

2

3

4

5

6

7

8

9

tab

l-s

ba

r-s

cap

sp

Fig. 2 Keystroke data image (KDI)

 4.1

 Multiclass CNN

The input “shape” of our data is . (5 , 42 , 42), indicating that the input is a 3-D array with a depth of 5 and a width and height of 42. After experimenting with variations

on the CNN architecture, we find that our best model includes five convolutional

layers, each followed by a batch normalization layer and a max pooling layer. The

first convolutional layer has 32 filters of size . (5 , 5), while the subsequent convolutional layers have 64, 128, 256, and 256 filters, respectively, all of size . (3 , 3). All convolutional layers use the Rectified Linear Unit (ReLU) activation function. The

max pooling layers have a pool size of . (2 , 2) and a stride of 2, ensuring that the output size of each layer remains the same.

After the five convolutional layers, the model includes a flattening layer, followed

by two fully connected layers. The first fully connected layer has 128 units with

[image: Image 176]

612

A. Sharma et al.

Fig. 3 Architecture of CNN

Table 1 Hyperparameter tuning for multiclass CNN

Parameter

Values

Number of epochs

10, 20, 30, 40

Learning rate

0.1, 0.01, 0.001, 0.0001

Optimizer

Adam, SGD, SGD with momentum

Learning schedule

StepLR, reduceLROnPlateau

the ReLU activation function. The final output layer has 148 units with the softmax

activation function. Figure 3 illustrates our CNN model.

To identify the best combination of hyperparameters, we employ a grid search

over reasonable values of various parameters. The hyperparameters tested for our

CNN are given Table 1, where the selected values are in boldface. We use these selected hyperparameters in all CNN models discussed in Sect. 5, below.

Note that our best model uses the reduceLROnPlateau (from Keras) callback to

dynamically reduce the learning rate when the model is unable to improve sufficiently

during training. Also, we utilize the earlyStopping (again, from Keras) callback to

halt training if the model shows signs of overfitting. Our experimental results indicate

that the model tends to overfit after about the 20th epoch, which was confirmed by

the results of our grid search.

 4.2

 SVM Classifier

We consider the classic learning technique of SVM. As discussed above, for our

SVM classifier we use the flattened KDI. The features are standardized to have zero

mean and unit variance.

Keystroke Dynamics for User Identification

613

Table 2 Hyperparameter tuning for Random Forest

Parameter

Values

n_estimators

100, 500, 1000

max_features

auto, sqrt

min_samples_split

2, 5

min_samples_leaf

1, 2

The SVM classifier used for multiclass classification is a one-vs-one (OVO)

model, which trains a separate SVM for each pair of classes. Since this is costly

to train, we restrict our attention to the 47 users that are most difficult to classify using our CNN. This requires that we train a total of

47

.

= 1081

2

SVM classifiers. To train each SVM classifier, the dataset is split into training and

testing sets using stratified random sampling, with an 80–20 split, that is, 80% of the

data is used for training with 20% reserved for testing. For all of our SVM models,

we use the hyperparameters . C = 1 and . γ = scale, with the Radial Basis Function (RBF) kernel.

 4.3

 Random Forest Classifier

We also train and test a Random Forest classifier. As with our SVM model, for our

Random Forest classifier we use the flattened KDI. The Random Forest hyperparam-

eters tested for this model are listed in Table 2, with the values selected in boldface.

As with our SVM classifier, we initially restrict our Random Forest to the 47 most

challenging to identify users. However, given the strong results that we obtain, and

since there is no significant efficiency issue when training on a larger dataset, we

also train and test this Random Forest on the entire set of 148 users.

5

Experiments and Results

In this section, we first discuss our experimental design. Then we present our exper-

imental results, and provide some discussion of these results.

614

A. Sharma et al.

 5.1

 Experiment Strategy

We train multiclass CNN classifiers over all 148 users, based on the KDI data struc-

ture, and keystroke subsequence lengths of 50, 75 and 100. Once we establish our best

model, we generate the confusion matrix, and sort based on the diagonal (i.e., true

positive) elements. This enables us to split the users into three categories, namely,

those that are easiest to classify, those that are of moderate difficulty to classify, and those that are the most difficult to classify.

We then apply classic machine learning techniques to the difficult-to-classify

users, based on a flattened KDI, that is, we convert the .5 × 42 × 42 array represen-

tation of the KDI into a vector of length .5 · 42 · 42 = 8820. As mentioned above,

the performance of the Random Forest on these challenging cases leads us to further

analyze this model over the entire dataset.

 5.2

 Metrics

We use accuracy as the primary measuring of the quality of our results. We also

present confusion matrices to better visualize the distribution of correct and incorrect

predictions across all classes, and to distinguish users, based on the difficulty of

correct classification.

The accuracy of a binary classifier is simply the number of correct classifications

divided by the total number of classifications, that is,

. Accuracy =

TP + TN

 ,

TP + TN + FP + FN

where TP is the number of true positive samples (samples correctly classified as

positive), TN is the number of true negative samples (samples correctly classified as

negative), FP is the number of false positive samples (samples incorrectly classified

as positive), and FN is the number of false negative samples (samples incorrectly

classified as negative). In a multiclass classification problem, accuracy is the propor-

tion of correctly classified samples to the total number of samples in the dataset. We

can calculate the accuracy for multiclass classifier as

 n TP

 i =1

 i

. Accuracy =

 ,

 M

where .TP i represents the number of samples of class . i that are correctly classified and . M is the total number of samples in the dataset.

In a confusion matrix, each row and column corresponds to a class in the dataset.

We follow the convention that the rows represent the actual classes of the samples,

and the columns represent the predicted classes. To determine the accuracy for class. i ,

Keystroke Dynamics for User Identification

615

we divide the . i th diagonal element by the sum of the elements in row . i . The overall accuracy is the sum of all diagonal elements, divided by the sum of all elements in

the matrix.

 5.3

 Multiclass CNN Experiments

As shown in Table 1, we determined our CNN hyperparameters via a grid search over the number of epochs, learning rate, optimizer, and learning schedule callbacks. We

found that training for 20 epochs, with a learning rate of 0.01, along with Adam and

reduceLROnPlateau as optimizer and callback, respectively, yielded the best results.

We also experimented with different architecture of the model itself, and settled on

a model with five convolutional layers, where each convolutional layer is followed

by batch normalization and max pooling layer, as illustrated in Fig. 3.

After determining the hyperparameters and model architecture, we experimented

with the keystroke sequence length for the KDIs. The model with keystroke length 50

shows signs of overfitting, as can be seen from the Fig. 4a. On the other hand, models which were trained on keystrokes with length 75 and 100 are more robust against

overfitting, as can be seen in Fig. 4b and c, respectively—for both of these cases, the validation loss is continuously dropping and both validation and training accuracies

are steadily climbing.

The comparative analysis of training, testing and validation accuracies for

keystrokes lengths of 50, 75 and 100 are shown in Table 3. Since the model trained on keystroke sequences of length 100 gave us the best test and validation accuracies,

in the next section, we determine the confusion matrix based on this case.

5.3.1

CNN Confusion Matrix

From Table 3, we see that the model trained on keystroke length 100, provides the best results. For the keystroke length 100 model, a bar graph of the accuracy for each

user is given in Fig. 5, where we have sorted by accuracy.

Next, we use the bar graph in Fig. 5 to partition the users into three subsets, based on the accuracy attained when identifying them using a CNN trained on the KDI

features. We use the slope of the bar graph to identify these subsets. A slight “elbow”

in the slope occurs after about the first 15 users, and another is near the last third of the users. Based on these observations, we establish two accuracy thresholds for

authenticating users. Those users who are classified with 0.90 or greater accuracy,

we consider relatively easy-to-classify, while those who are classified at accuracies

below 0.75 are deemed the difficult-to-classify subset, while all of those in between

these two thresholds are referred to as moderately-difficult-to-classify. The number

of users in each of these subsets can be found in Fig. 6. We further analyze the difficult-to-classify subset in the next section.

[image: Image 177]

616

A. Sharma et al.

(a) Keystroke length 50

(b) Keystroke length 75

(c) Keystroke length 100

Fig. 4 Training of models

Table 3 Accuracy as a function of keystroke sequence length

Length

Accuracy

Train

Test

Validation

50

0.91

0.67

0.58

75

0.95

0.74

0.73

100

0.97

0.79

0.78

 5.4

 Experiments on Difficult-to-Classify Users

In the previous section, we categorized 47 of the users as difficult-to-classify using

a CNN trained on KDI features. Here, we consider additional experiments on this

subset of users, to see if we can improve on the relatively poor results for these users.

Specifically, we apply Support Vector Machines, Decision Trees, and Random Forest,

[image: Image 178]

Keystroke Dynamics for User Identification

617

Fig. 5 Bar graph for the 148 users in the Buffalo dataset (sorted)

100

86

80

60

47

Count

40

20

15

0

Easy

Moderate

Difficult

Fig. 6 Number of users in each cluster

based on the flattened KDI features. For the 47 users that comprise the difficult-to-

identify subset, we achieve the accuracies listed in Table 4.

The confusion matrix for the best of these experiments, namely, the Random

Forest model, appears in Fig. 7. This confusion matrix serves to reinforce the strong results that we obtained classifying the most challenging users with our Random

Forest model, using the flattened KDI feature.

[image: Image 179]

618

A. Sharma et al.

Table 4 Accuracy of models for difficult-to-classify users

Model

Test accuracy

SVM

0.50

Decision tree

0.88

Random Forest

0.92

80

0 71

1

56

2

2

60

2

2

3

64

4

52

2

2

5

59

70

6

61

2

2

7

59

8

66

2

2

9

49

2

2

2

10

73

2

11

72

60

12

52

13

71

14

2

2

58

15

67

16

44

2

2

17

59

50

18

57

19

59

20

2

2

2 54

4

21

2

53

22

55

class

23 2

2

2

62

2

2

40

24

2

2

53

ctual 25

2

61

2

2

A 26

2

57

2

27

4

2

2

2

44

28

72

2

29

76

30

30 2

62

4

31 2

2

2

2

51

2

32

2

2

57

33

2

65

34

80

35

2

69

20

36

2

4

4

44

37

48

4

2

38

69

39

2

2

58

40

68

10

41

2

2

2

50

42

64

43

2

2

2

51

44 4

64

45

2

2

4

49

46

67

0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Predicted class

Fig. 7 Random Forest confusion matrix for difficult-to-classify users

 5.5

 Random Forest Model for All Users

Our surprisingly strong results for the difficult-to-classify users lead us to test the

Random Forest model using the flattened KDI features over the entire dataset of 148

users. We find that the accuracy in this case is 0.93. This outcome signifies a substantial improvement over the original multiclass CNN that was trained on the 5-channel

KDI, as the CNN model only achieved an accuracy of 0.78.

Keystroke Dynamics for User Identification

619

104

100

80

users

60

of

mber u 40

N

32

20

10

2

0

0.50

0.60

0.70

0.80

0.90

Minimum accuracy

Fig. 8 Random Forest accuracy ranges for all 148 users

Figure 8 summarizes the classification results for our Random Forest model over all 148 users. We find that only 8 of the 148 users now have an accuracy of 0.75 or

lower. In addition, 36 users have classification accuracies in the range of 0.75 to 0.90, while the remaining 104 users are all classified with an accuracy of at least 0.90.

These results underscore the success of the Random Forest model trained on the

flattened KDI features. As far as the authors are aware, this Random Forest model

yields the best identification (i.e., classification) results yet achieved for the 148 users in the Buffalo dataset.

6

Conclusion

In this paper, we extended previous work on authentication based on keystroke

dynamics to the inherently much more challenging identification problem. We used

an image-like data structure (KDI) and obtained reasonably strong results with a

Convolutional Neural Network. One innovative aspect of this approach was in the

application of a multiclass CNN for identifying users, which enabled us to catego-

rize users into easy-, moderate-, and difficult-to-classify subsets. We then focused

additional attention on the users that were most difficult to identify.

When experimenting with the most challenging cases, we discovered that a Ran-

dom Forest trained on a flattened version of the KDI image-based feature yielded

surprisingly strong results. Even more surprising, testing this same model over the

entire dataset yielded much better results that our multiclass CNN model. Since

620

A. Sharma et al.

CNNs are based on local structure, while a Random Forest considers a more global

view, the most likely explanation for our surprising results is that the KDI feature

fails to localize important keystroke dynamics information. In nay case, our Random

Forest results set a strong benchmark for the user identification problem, with respect

to the popular Buffalo keystroke dynamics dataset.

There are a couple of practical issues with our approach. First, a substantial amount

of keystroke data is required for training. Collecting reliable training data would be

a challenge. Second, our classification results are based on keystroke sequences of

length 100. Requiring 100 keystrokes means that an attack that can be completed

with a small number of keystrokes might go undetected. From Table 3 we see that the results degrade by about 6% when 50 keystrokes are used, and hence in some

situations, it might be desirable to trade accuracy for shorter keystroke sequences.

Future research could explore incorporating additional features, such as digraph

and trigraph latencies, or even other biometric data, to improve model performance.

Also, the Buffalo keystroke dataset that we employed for our experiments was created

using mechanical keyboards. It would be interesting to obtain keystroke data from

mobile devices and apply a similar analysis to that data. The dynamics of touch-based

interactions likely differ substantially from those of traditional mechanical keyboard

input.

Another potential area of future research is the development of an efficient strategy

for adding new users to an existing keystroke dynamics-based authentication or

identification system. Currently, incorporating new users into a multiclass model

generally requires retraining the entire model, which may not be practical in real-

world scenarios. To overcome this issue, one could explore methods for determining

the cluster that a user’s keystroke patterns most closely match. It would then be

possible to consider a two-stage process, whereby users are first assigned to a cluster,

and subsequently distinguished from the other users in their cluster. By assigning a

user to a cluster, we could avoid the problem of retraining a multiclass model for

all users. This approach could facilitate the seamless integration of new users into

the system, while maintaining the efficiency and accuracy of the identification or

authentication process.

In summary, we have presented a new benchmark result for the challenging prob-

lem of user identification based on keystroke dynamics. That this was achieved

using a classic machine learning model is somewhat surprising. In any case, our

results indicate that practical, real-world user identification—based on keystroke

dynamics—may be feasible.

References

1. AbdelRaouf H, Chelloug SA, Muthanna A, Semary N, Amin K, Ibrahim M. Efficient convo-

lutional neural network-based keystroke dynamics for boosting user authentication. Sensors

(Basel). 2023;23(10):4898.

Keystroke Dynamics for User Identification

621

2. Ahmed A, Traore I. Biometric recognition based on free-text keystroke dynamics. IEEE Trans Cybern. 2014;44(4):458–72.

3. Albawi S, Mohammed TA, Al-Zawi S. Understanding of a convolutional neural network. In: 2017 international conference on engineering and technology, ICET; 2017. p. 1–6.

4. Anderson RJ. Security engineering: a guide to building dependable distributed systems. Wiley; 2001.

5. Anurag T. An improved user identification based on keystroke-dynamics and transfer learning.

Webology. 2022;19:5369–87.

6. Biau G, Scornet E. A random forest guided tour. TEST. 2016;25(2):197–227.

7. Bleha S, Slivinsky C, Hussien B. Computer-access security systems using keystroke dynamics.

IEEE Trans Pattern Anal Mach Intell. 1990;12(12):1217–22.

8. Devries T, Taylor GW. Improved regularization of convolutional neural networks with cutout.

2017. https://arxiv.org/abs/1708.04552

9. Gaines R, Lisowski W, Press S, Shapiro N. Authentication by keystroke timing: some preliminary results. Technical Report R-2526-NSF, RAND Corporation; 1980. https://www.rand.org/

pubs/reports/R2526.html

10. Giot R, El-Abed M, Rosenberger C. Keystroke dynamics with low constraints SVM based

passphrase enrollment. In: 2009 IEEE 3rd international conference on biometrics: theory, applications, and systems, p. 1–6.

11. Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. Support vector machines. IEEE Intell Syst Appl. 1998;13(4):18–28.

12. Hu J, Gingrich D, Sentosa A. A . k-nearest neighbor approach for user authentication through biometric keystroke dynamics. In: 2008 IEEE international conference on communications, p.

1556–60.

13. Hwang S, Lee H, Cho S. Account-sharing detection through keystroke dynamics analysis. Int J Electron Commer. 2009;14(2):109–26.

14. Killourhy KS, Maxion RA. Comparing anomaly-detection algorithms for keystroke dynamics.

In: 2009 IEEE/IFIP international conference on dependable systems and networks, DSN; 2009.

p. 125–34.

15. Kowtko M. Biometric authentication for older adults. In: 2014 IEEE long island systems, applications and technology conference, LISAT; 2014. p. 1–6.

16. Li J, Chang H-C, Stamp M. Free-text keystroke dynamics for user authentication. In: Stamp M, Visaggio CA, Mercaldo F, Di Troia F, editors. Artificial intelligence for cybersecurity. Springer; 2022. p. 357–80.

17. Liu M, Guan J. User keystroke authentication based on convolutional neural network. In: You I, Chen H-C, Sharma V, Kotenko I, editors. Mobile internet security. 2019. p. 157–68.

18. Mhenni A, Rosenberger C, Amara NEB. Keystroke dynamics classification based on LSTM

and BLSTM models. In: 2021 international conference on cyberworlds, CW; 2021. p. 295–8.

19. Montalvão Filho JR, Freire EO. On the equalization of keystroke timing histograms. Pattern Recogn Lett. 2006;27(13):1440–6.

20. Piugie YBW, Di Manno J, Rosenberger C, Charrier C. Keystroke dynamics based user authentication using deep learning neural networks. In: 2022 international conference on cyberworlds, CW; 2022. p. 220–7.

21. Ravindran S, Gautam C, Tiwari A. Keystroke user recognition through extreme learning

machine and evolving cluster method. In: 2015 IEEE international conference on compu-

tational intelligence and computing research, ICCIC; 2015. p. 1–5.

22. Revett K, Jahankhani H, de Magalh aes ST, Santos HMD. A survey of user authentication based on mouse dynamics. In: Global e-security. 2008. p. 210–9.

23. Robinson JA, Liang VW, Chambers JAM, MacKenzie CL. Computer user verification using

login string keystroke dynamics. IEEE Trans Syst Man Cybern Part A Syst Humans.

1998;28(2):236–41.

24. Saevanee H, Bhatarakosol P. User authentication using combination of behavioral biometrics over the touchpad acting like touch screen of mobile device. In: 2008 international conference on computer and electrical engineering. 2008. p. 82–6.

622

A. Sharma et al.

25. Sasse A, Krol K. Usable biometrics for an ageing population. In: Fairhurst M, editor. Age factors in biometric processing. Institution of Engineering and Technology; 2013.

26. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15(1):1929–58.

27. Stamp M. Introduction to machine learning with applications in information security, 2nd edn.

Chapman and Hall/CRC; 2022.

28. Stanton BC, Theofanos MF, Sheppard CL. A study of users with visual disabilities and a finger-print process. Technical Report NISTIR 7435, National Institute of Standards and Technology; 2008.

29. Sun Y, Çeker H, Upadhyaya S. Shared keystroke dataset for continuous authentication. In: 2016 IEEE international workshop on information forensics and security, WIFS; 2016. p. 1–6.

30. Xiaofeng L, Shengfei Z, Shengwei Y. Continuous authentication by free-text keystroke based on CNN plus RNN. Procedia Comput Sci. 2019;147:314–8. In: 2018 international conference

on identification, information and knowledge in the internet of things.

[image: Image 180]

Enhancing Free Text Keystroke

Authentication with GAN-Optimized

Deep Learning Classifiers

Jonathan A. Bazan

, Katerina Potika

, and Petros Potikas

Abstract Leveraging machine learning for biometric authentication is an area of

research that has seen a lot of progress within the past decade. Keystroke authentica-

tion based on machine and deep learning binary classifiers aims to develop a robust

model to distinguish a user from an adversary based on typing metrics (keystrokes).

While keystroke authentication started with fixed text, where users types the same

data, the shift has been to free text data where every user’s data varies. However, popular deep learning classifiers are bottlenecked by the large amount of data needed to

make them efficient. This work solves the data bottleneck issue in keystroke authenti-

cation’s binary classification problem by utilizing Generative Adversarial Networks

to generate free text keystroke data with a valid label. Furthermore, the produced

synthetic data are used to train a Convolutional Neural Network, attempting to push

the Equal Error Rate rate even lower and at the same time resolve the data bottleneck.

1

Introduction

As society’s reliance on technology is higher than ever before, nefarious actors are

frequently leaking and/or cracking passwords at increasing rates, enabling others

to gain unauthorized access and possibly cause irreparable damage to victims. Even

with additional layers of security such as 2 Factor Authentication (2FA), simply steal-

ing a smartphone can allow an attacker to bypass this mechanism. Consequently, to

enhance current security protocols, vast research in keystroke authentication has

been undertaken. Keystroke authentication is a form of biometric authentication,

where an individual’s keystroke data, while typing, is collected by a computer and

fed into a machine learning model (ML). The model captures specific details about

keystroke patterns to discriminate against unauthorized users. Moreover, as a user

J. A. Bazan · K. Potika (B)

San Jose State University, San Jose, CA, USA

e-mail: katerina.potika@sjsu.edu

P. Potikas

National Technical University of Athens, Athens, Greece

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

623

M. Stamp and M. Jureček (eds.), Machine Learning, Deep Learning and AI for

 Cybersecurity, https://doi.org/10.1007/978-3-031-83157-7_22

624

J. A. Bazan et al.

types their password repeatedly, the metrics used to gather information about the

patterns become more stable, eventually reaching a point with minimal change. As

a result, if an adversary can figure out a user’s password, it is likely that their typing habits will be distinct enough for a model to recognize, especially if it is the

adversary’s first time typing the password. Essentially, with vast amounts of data, a

computer can recognize how a group of individuals type and distinguish them from

one another, even if the individuals are typing the same or different things.

A significant amount of recent work has been centered around exploring tech-

niques to extract features more representative of a user’s typing habits without losing

accuracy or increasing the computational cost. Most of the work carried out analyzes

either fixed text or free text behavior. The key distinction between fixed text and free text behavior is in the datasets. Fixed text behavior is analyzed from a collection

of individuals typing the same phrase/password where the typing behaviors follow

different patterns. Since everyone types the same phrase, translating these metrics

into a fixed-feature vector is more straightforward. In contrast, free text behavior

is extracted from free text data which usually consists of a collection of users who

typed very different things. Consequently, working with free text data means that

we must consider feature engineering, as variability in keystroke length as well as

the keystrokes themselves may impact the effectiveness of any model. Overall, both

suffer the issue of requiring a large amount of data, generally more than a user would

be willing to give up time for, and a relatively high false negative rate making it more challenging to apply as an extra security layer in a commercial environment.

This work builds upon recent robust deep learning architectures such as Convolu-

tional Neural Networks (CNNs) with varying kernel sizes and cutout regularization

that leverage novel feature engineering techniques for free text keystroke authentica-

tion presented in Li et al. [9]. We aim to enhance the accuracy of these classifiers to investigate if the data bottleneck issue can be mitigated through generated images by

experimenting with different Generative Adversarial Networks (GAN) architectures:

the Deep Convolution GAN (DCGAN), the Wasserstein GAN (WGAN), and the

Conditional GAN (CGAN). Additionally, this work uses novel feature engineering

techniques to transform free text data into fixed feature vectors that can be trained on popular classical methods for fixed text keystroke authentication like Random Forest

(RF), Support Vector Machines (SVM), and K-Nearest Neighbors (KNN). We then

contrast the performance of deep learning and classical methods with previous liter-

ature, by reviewing the performance, and applicability in a commercial environment.

The contributions of this work include the following:

• A novel feature engineering technique for transforming free text keystroke data

into fixed feature vectors.

• Generating free text keystroke data for deep learning classifier with various GAN

architectures.

• Using augmented data to enhance the performance of deep learning binary

classifiers.

The rest of the chapter is structured as follows: Section 2 provides similar work, and the learning techniques employed in the work. Section 3 describes in more

Enhancing Free Text Keystroke Authentication with GAN-Optimized. . . .

625

depth the various forms of keystroke authentication, and data collected, and focuses

on different feature engineering techniques used to transform the data for training

and testing. Section 4 highlights the architecture used, the hyperparameters that are selected for the classification models, and the generative models. Section 5 provides an analysis of the results collected from all the experiments conducted. Lastly, Sect. 6

highlights the main goals achieved in this work and directions for future work.

2

Background

Keystroke authentication is a method for analyzing and measuring an individual’s

typing behavior on a keyboard to determine whether they are a legitimate user or

an impostor. The method captures timing data such as key press duration (dwell

time) and the time between key presses (flight time) to build a distinctive typing

pattern for each individual. Fixed text datasets in keystroke authentication consist of

keystroke data where all users type the same predefined text or phrase repeatedly.

This controlled input allows for consistent timing pattern comparisons, primarily

used for static authentication. Free text datasets, on the other hand, involve users

typing unrestricted text of their choice, resulting in variable content and keystroke

sequences. These datasets are utilized for dynamic authentication, reflecting more

natural typing behaviors and providing a more realistic assessment of user identifi-

cation. Equal error rate (EER) is a metric used in keystroke authentication and other

biometric systems. It’s the point at which the false acceptance rate (FAR), i.e., incor-

rectly accepting an imposter, and false rejection rate (FRR), i.e., incorrectly rejecting

a legitimate user, are equal. A lower EER indicates a more secure and usable system.

 2.1

 Related Work

Research in keystroke dynamics has been present for a long time, first explored in

1977 to investigate whether users could be distinguished based on how they typed

their name [5]. In recent years, keystroke authentication has experienced significant advancements, largely driven by machine learning techniques. The work of Killourhy

et al. [7] has played a pivotal role in this field by enabling succeeding research to be directly comparable by establishing a fixed text dataset that serves as a benchmark.

This data consisted of 50 users typing the same password “.tie5Roanl” 400 times and

leveraging various architectures for their top performing detectors such as KNN and

SVM to achieve an EER in the range of 6% to 7%. Other work such as [4] sought to take keystroke authentication beyond the desktop/laptop keyboard realm and explore

its application on mobile devices. With more data gathered through internal sensors

such as finger positioning, length, and width, the trained models achieved accuracy

varying from 58% to 91%.

626

J. A. Bazan et al.

Moreover, studies such as [10, 13] went beyond the realm of classical methods, focusing on the utility of deep learning methods for keystroke authentication. Consequently, deep learning-centric literature used on fixed data like those collected

in [7] revealed that these types of classifiers could outperform classical methods.

The authors in [13] experimented with deep learning methods achieving an overall accuracy of 92.6%, outperforming classical methods by a considerable amount. Similarly, in [10] they experimented with novel feature engineering techniques like transforming fixed feature vectors into multiple channeled digraphs, which are treated as

images, and fed into different classifiers achieving an accuracy anywhere from 90%

to 95%, thus improving on previous benchmark models.

Recently, the direction in this field has moved towards creating models that can

learn and discriminate a person’s typing habits in free text datasets. Consequently,

these solutions, are more practical and effective as part of an Intrusion Detection Sys-

tem. Furthermore, since datasets contain significant variation between the samples of

each user, feature engineering becomes more involved as free text must be extracted,

categorized, normalized, and transformed into fixed feature vectors for classical

methods. In [1] they use a novel way of categorizing a sequence of keystrokes per user and a majority-vote technique for classical machine learning methods, achieving

perfect accuracy for every user. However, these results are not comparable as their

dataset and keystroke extraction techniques are not available. Alternatively, in [9, 18]

they take a different approach by focusing on different keystroke features, lengths,

and deep learning architectures to improve model performances.

While the previous papers do achieve great results, the feature engineering tech-

nique and the classifiers constructed in [9] achieve a considerably low EER rate that may meet various standards.

This work aims to explore several GAN architectures from [3, 6, 12, 14] in conjunction with deep learning architectures to see if the classifiers can be enhanced,

and if the GAN generated data can be leveraged to reduce the amount of user samples

required for training and testing, thus improving on the data bottleneck.

 2.2

 Learning Techniques

In this work, our emphasis is on deep learning techniques, with the classic machine

learning models mentioned above used to establish a baseline for comparison. A

limited scope of machine learning techniques was leveraged: Logistic Regression

(Logit), K Nearest Neighbors (KNN), Support Vector Machines (SVM), and Random

Forests (RF).

A concise overview of each deep learning technique discussed is provided below.

A convolutional neural network (CNN) is a deep learning model that is aimed at

mimicking the human visual cortex and the way it processes information. Consisting

of multiple layers including convolutional, pooling, and fully connected layers, the

architecture enables the identification of spatial patterns and structures within images.

Enhancing Free Text Keystroke Authentication with GAN-Optimized. . . .

627

Moreover, [9] successfully applied CNNs to free text keystroke authentication achieving considerable accuracy with a low EER. Our work utilizes the same CNNs

for testing the quality and efficacy of the GAN generated data.

Generative Adversarial Networks (GANs) [6] are a recent advancement in deep learning that has been a powerful tool for quality image generation across diverse and

complex datasets. A GAN contains a unique architecture, consisting of a generator

used to generate images and a discriminator to distinguish between the real and

generated images. Together, these two networks go back and forth in a min-max game

where the generator starts with a random noise vector that eventually transforms into

the shape of the desired input, and the discriminator evaluates the real samples against

the generated and provides feedback that the generator uses to enhance the quality

of the images.

In the following years, new architectures have been produced such as DCGAN,

WGAN, and CGAN, all aimed at mitigating the limitations of its predecessors. By

employing different GANs for generating free text keystroke authentication data, the

ability to learn complex patterns and variations in data accurately can be leveraged

to reproduce keystroke data representative of a given user.

Deep Convolutional Generated Adversarial Network (DCGAN) [14] is a deep

learning model that influences CNNs using convolutional layers in the discriminator

allowing it to extract features from images the same way a CNN does. Conversely,

the generator uses deconvolutional layers (also known as upsampling) to take a low-

resolution image and output a higher-quality image that could fool the discriminator.

The deconvolutional layers work the opposite of convolutional layers, performing

mathematical operations between the input data and kernels, but producing an output

that is greater than the input. Realistic 3-D images that take account of textures,

shapes, and colors are produced from their GAN highlighting its robustness to learn

from diverse datasets. With a powerful underlying structure, DCGANs are a popular

choice for complex tasks such as high-quality image generation, or in this case,

keystroke generation, as GANs like this, allow for multidimensional input.

Wasserstein Generative Adversarial Network (WGAN) [3] is a GAN that was implemented to improve the overall stability and convergence during training - obstacles of previous architectures. WGAN achieves this by using a different loss func-

tion known as the “Wasserstein” loss rather than the common binary cross-entropy

loss. The Wasserstein distance is a powerful function as it measures the difference

between two probability distributions, computing the minimum amount of work to

transform one distribution into another like generating high-quality samples from

low-resolution images. Moreover, as the model has the discriminator and generator

alternate to update for a fixed number of iterations, this process enables the WGAN

to avoid instability, the vanishing gradient, and mode collapse. They demonstrate

these qualities by producing images on par with those generated from a DCGAN

(better in some instances) but with improved stability and convergence. As a result,

WGANs are a common approach when other architectures like DCGAN or CGAN

succumb to the common pitfalls during training.

Another recent and popular GAN architecture is the Conditional Generative

Adversarial Network (CGAN) [12], developed to overcome the previous limitations

628

J. A. Bazan et al.

such as generating data from a random noise input vector. Moreover, this limitation

is overcome with the introduction of conditional input, which is just additional input

such as a label or attribute that is concatenated with the random noise vector. By

leveraging these conditional inputs, generating images with labels such as ‘happy’

or ‘animal’ are not completely random as they follow a pattern based on the addi-

tional input, thus eliminating the lack of ability over the content being generated

in [6]. The GAN conditioned with class labels was able to produce visually realistic images similar to those in the handwritten digits MNIST dataset, capturing a

higher degree of coherence and specificity lacking in the original GAN. For free text

keystroke authentication, the CGAN’s ability to incorporate conditional input could

be particularly advantageous for generating keystroke patterns that are specific to

individual users’ typing habits.

3

Dataset

We use the Buffalo Keystroke Dataset [16] that was gathered by the researchers at the University of Buffalo, consisting of keystroke data collected from 148 subjects. The

subjects participated in three different laboratory sessions, spanning over a month,

with 73 people using the same keyboard and 75 people using different keyboards

each session to complete two tasks. One task was completing Steve Jobs’s com-

mencement speech broken up into three parts, and the other was completing free

text questions. The results are long text files recording the character activated if it

is pressed/released (KeyUp, KeyDown), and the timestamp of when it was pressed.

About 5700 keystrokes are gathered per session consisting of fixed text and free text

responses, altogether more than 17,000 keystrokes for a total of three sessions. See

statistics of the dataset in [16].

The two types of keystroke datasets used for exploring ML-based keystroke

authentication are fixed text and free text. Each involves different approaches for

pre-processing the data, especially if both deep learning and traditional techniques

are employed. Since data gathered for this paper consists of free text data, we go

more into depth about the process of feature engineering. The GitHub repository of

this work is in [17].

 3.1

 Fixed Text and Free Text Data

Although our work uses free text data for keystroke authentication, it is worth briefly

mentioning how different the structure of fixed text data is compared to free text

data, to observe why feature engineering is more involved. As the name suggests,

fixed text data consists of metrics (features) extracted from users typing the same

things. In the case of [7], the participants had to type the same password “.tie5Roanl”

400 times, where each attempt yields a feature vector containing the different timing

Enhancing Free Text Keystroke Authentication with GAN-Optimized. . . .

629

metrics extracted (31 features). As a result, the data pre-processing aspect is less

intensive as the input data collected from every user yields fixed feature vectors.

Conversely, free text data is usually comprised of a long series of various keystrokes

pressed (either up or down) with a timestamp assigned next to them, as seen in the

Buffalo Keystroke dataset. Moreover, the words that participants typed and the total

length of keystrokes used will vary, as there are significant underlying patterns in

their typing habits. For this reason, extra data pre-processing steps must be performed

to transform the free text data into fixed feature vectors for traditional models and

tensors for deep learning models like CNN.

 3.2

 Time-Based and Touch-Based Features

Similar to how keystroke authentication is separated into either fixed text or free

text data, the type of features in most studies are also split between time and touch-

based features. As the name suggests, time-based features involve extracting features

produced from time-based measurements. If a user is typing a password, the tim-

ing of the press/release between two consecutive keys, “a” and “b”, would be the

time-based features for this pair of characters. Conversely, touch-based features are

measurements taken from an individual physically interacting with a touch-screen.

In the case of the same user typing their password, the touch-based features could be

the pressure of tapping a letter and how much of the screen is taken up by pressing

a letter. Given that most research is conducted with time-based features, studies like

[2, 8, 11, 15] have shown that adding touch-based data can enhance the detection system on a smartphone.

As the free text data from the Buffalo dataset only consists of typed characters

with a timestamp attached to them, feature engineering with time-based features is

explored.

 3.3

 Free Text Data Time-Based Features

Similar to [1], time-based features are extracted from each pair of consecutive keystrokes. Each feature refers to some duration of an action (press or release)

between these two characters. Figure 1 depicts an example of typing two characters, releasing a key will produce an “Up” event whereas pressing a key yields a

“Down” event. Altogether, the “Up” and “Down” events between the characters “A”

and “B” will produce 5 features that fall into one of the following categories.

• Up-Down: The time between the first key being released and the second key being

pressed.

• Up-Up:The time between the first and second key being released.

630

J. A. Bazan et al.

total

key up-key up

key up-key down

key down-key down

hold

hold

Key 1

Key 2

Key 1

Key 1

Key 2

press

Key 2

release

press

release

Time

Fig. 1 Time-based feature extraction

• Down-Up: The time between the first key being pressed and the second key being

released.

• Down-Down: The time between the first and second key being pressed.

• Duration: The time between a single key being pressed and released.

 3.4

 Feature Engineering for Deep Learning

We used the same data pre-processing technique as in [1] for transforming a sequence of keystrokes collected into an image-like (5-D) tensor, called a Keystroke Dynamic

Image (KDI), that can be used as input for a CNN. Moreover, the process of this

transformation is discussed more thoroughly next.

3.4.1

Keystroke Dynamic Image

The novel feature engineering employed by [9] starts with taking a subsequence of keystrokes from the total keystrokes types by a given user, and translating those

keystrokes being typed into a digraph. The most integral part of KDI revolves around

creating digraphs that are used as an input channel for the KDI. Each digraph consists

of the top 42 most used characters on a keyboard and represents the duration of an

event happening between two keys typed. For example, typing “A” and “B” would

yield a digraph where the “AB”/“BA” position has been updated. With this example

in mind, each digraph represents one of the 5 different time features that are extracted, resulting in 5 channels (matrices) or a 5-D image. Following the previous example,

typing those two characters would update the same position in every digraph, but

Enhancing Free Text Keystroke Authentication with GAN-Optimized. . . .

631

with different values. A more concise image is given in Fig. 2 depicting how a KDI looks like. Since the average amount of keystrokes per person in the dataset is more

than 5000, by taking subsequences of keystrokes within the interval.[50 , 75 , 100], a reasonable amount of data can be captured and updated in the KDI without adding

too much noise. In the case of 50 keystrokes, a sequence of 49 could produce as

many as 294 features. However, due to repeated character pairs and other factors, the

number of features is always less. We apply cutouts on the KDIs, which are artificially

added occlusions to these image-like data as in [9] in order to avoid overfitting the CNNs.

-s

a b c d e f

g h i

j

k l

m n o p q r

s t

u v w x y z 0 1 2 3 4 5 6 7 8 9 tab

l-s

ba

r

cap

sp

a

b

c

d

e

f

g

h

i

j

k

l

m

n

cutout

o

p

q

r

s

t

u

v

w

x

y

z

0

1

2

3

4

5

6

7

8

9

tab

l-s

ba

r-s

cap

sp

Fig. 2 Keystroke Dynamic Image (KDI) example

632

J. A. Bazan et al.

 3.5

 Feature Engineering for Machine Learning

As machine learning models typically work with fixed feature vectors, working with

a set of user KDIs would not be possible unless a way for transforming the KDI into

a fixed feature vector was found. Therefore, fixed feature vectors are produced from

the images, and are able to be trained and tested on robust traditional ML models.

Next, we give more details on how the key pair mappings in the KDI are transformed

into a corresponding fixed feature vector.

3.5.1

Keyboard Feature Vector

We use the technique of [1] for transforming free text data into fixed feature vectors.

Their process relies on two critical aspects (1) the adjacency between two characters

typed, and (2) the side of the keyboard where the two characters are typed. By

combining these two components, a set of feature vectors that capture the underlying

pattern of the sequence of keystrokes typed is produced. For example, with respect

to adjacency, if the letter “G” is typed, and “F” is pressed next, then this would be

a first-level adjacency, as the two characters are next to each other on a keyboard.

On the other hand, if “I” was pressed after “G”, this would represent a third-level

adjacency, since “I” is three keys away from “G”, and so on.

The second keyboard side is more straightforward, as each pair of characters typed

must fall into one of the following categories.

• Left Left (LL): Both keys pressed are on the left side of the keyboard.

• Right Right (RR): Both keys pressed are on the right side of the keyboard.

• Both (B): The two keys pressed are on different sides.

Consider again the examples above: If “F” is pressed after “G” then the resulting key-

board tag would be (LR), whereas “I” after “F” would produce a (B) tag. This process

yields 15 possible categories a key pair can be mapped into, each of these categories

containing five time-based features: Up-Down, Down-Up, Up-Up, Hold1, Hold2.

Altogether, these 15 categories with five values in each category, are concatenated

to produce a fixed feature vector of length 75.

3.5.2

Mapping KDI

We follow a similar approach for mapping the KDI to fixed feature vectors. Even

though these mappings can be directly performed on the free text data directly as it

is processed, KDI is used as the input. We first captured all the unique pairs in the

digraphs (non-zero values), saving each of the timestamps corresponding to a key pair

in a dictionary. An adjacency keyboard based on a MacBook was then constructed

and traversed with a breadth-first search (BFS) to compute the level of adjacency for

each pair of characters in the dictionary computed previously. However, unlike [1],

Enhancing Free Text Keystroke Authentication with GAN-Optimized. . . .

633

Table 1 Timing features

Keyboard category

Feature set

1st Adjacent Left Side

AL-H

AL-UU

AL-DD

AL-UD

AL-DU

1st Adjacent Right Side

AR-H

AR-UU

AR-DD

AR-UD

AR-DU

1st Adjacent Both Side

AB-H

AB-UU

AB-DD

AB-UD

AB-DU

2nd Adjacent Left Side

SL-H

SL-UU

SL-DD

SL-UD

SL-DU

2nd Adjacent Right Side

SR-H

SR-UU

SR-DD

SR-UD

SR-DU

2nd Adjacent Both Side

SB-H

SB-UU

SB-DD

SB-UD

SB-DU

3rd Adjacent Left Side

TL-H

TL-UU

TL-DD

TL-UD

TL-DU

3rd Adjacent Right Side

TR-H

TR-UU

TR-DD

TR-UD

TR-DU

3rd Adjacent Both Side

TB-H

TB-UU

TB-DD

TB-UD

TB-DU

None Adjacent Left Side

NL-H

NL-UU

NL-DD

NL-UD

NL-DU

None Adjacent Right Side

NR-H

NR-UU

NR-DD

NR-UD

NR-DU

None Adjacent Both Side

NB-H

NB-UU

NB-DD

NB-UD

NB-DU

there are only 4 adjacency levels used to reduce the amount of empty (zero) features,

these are .1 , 2 , 3, and None. Additionally, we modified the five time-based features captured to:

• Up-Down

• Down-Up

• Up-Up

• Down-Down

• Hold.

Nonetheless, we use the same keyboard side tags, LL, RR, or B. From our process,

a key pair mapping can fall into one of 12 categories each containing five times

based features, altogether creating a fixed feature vector of length 60 once all the

categories have been concatenated. Table 1 lists all the possible categories a key pair can be mapped into.

4

Architecture

In this Section, we go in-depth on the various machine learning and deep learning

models used for our binary classification problem and the corresponding hyperpa-

rameters, as well as the hyperparameter tuning, involved for the binary classification

and generating data.

634

J. A. Bazan et al.

 4.1

 Binary Classification

The Buffalo dataset consists of 148 users, each containing several thousand

keystrokes from doing the same tasks as the other users. Even though multi-

classification can be leveraged for identifying users rather than authenticating, which

is a binary classification model, the implementation would be impractical for a com-

mercial enterprise. Multi-classification would involve more input from many dif-

ferent users, and the increased computational cost and added noise from more data

used would produce a model that takes significantly longer to train and is less robust.

Overall, binary classification is more practical for this problem as the main focus of

these models is to uncover hidden typing patterns for a given user and detect whether

these patterns exist in a given attempt. The goal of these models is to each take in a portion of a user’s positive data select limited negative samples from other users, and

identify whether a given sample belongs to a legitimate user or an intruder. Moreover,

since positive data imbalance is a common challenge in keystroke authentication, it

is advisable to use Stratified K-Fold cross-validation instead of the standard K-Fold.

This approach ensures that each fold maintains the same class distribution as the orig-

inal dataset. For instance, if the dataset consists of 0.3% positive and 0.7% negative

samples, the training and testing datasets preserve these ratios.

 4.2

 Machine Learning Models

As mentioned earlier, we use a novel feature engineering technique that transforms

the KDI to create fixed feature vectors traditional algorithms can train on. This work

uses these traditional algorithms as a baseline for comparison with other studies

that use classical methods for free text data, and to highlight the differences in

performance between classical and deep learning models.

4.2.1

Hyperparameter Tuning

In order to create powerful and robust models, a reasonable amount of hyperparameter

tuning is undergone to find the parameters that significantly improve the model. We

use random grid search with features similar to the ones seen in Table 2 to find the optimal set of initial parameters for each model. Moreover, as each architecture varies

in the additional hyperparameters provided in the architecture, each model has an

additional set of architecture-related parameters that also undergo a grid search.

For KNN we use three parameters to optimize: the number of neighbors, the power

parameter p, and the weights. By using different numbers of neighbors in KNN, the

model can find an optimal set of neighbors that preserves the local structure of the

data without overfitting, and generalize the data well without underfitting. Moreover,

Enhancing Free Text Keystroke Authentication with GAN-Optimized. . . .

635

Table 2 Best hyperparameters for machine learning models

Model

Parameter

Search space

Selected

KNN

Neighbors

[10,20,30]

20

p

[1,2,3]

1

Weights

Uniform, distance

Distance

SVM

C

[0.01, 0.1, 1, 10]

1

Kernel

[3, 5, 7]

3

Gamma

[0.001, 0.01, 0.1]

0.1

Random forest

Estimators

[10,50,100]

100

Max features

Auto, Sqrt

Sqrt

Max depth

[5,15,25]

25

Bootstrap

[True, False]

True

Logistic Regression

Estimators

[10, 100, 150]

100

Learning rate

[0.001, 0.1, 1]

0.1

Bootstrap

[True, False]

True

experimenting with the power and weight parameters helps the model find a distance

metric and weight distribution between neighbors that improves itself.

For SVM we use the following three parameters to optimize: the regularization

parameter C, the Kernel, and the Gamma used. By modifying the C we can adjust

values to find a nice balance between low testing and low training error. A similar

process occurs with the Gamma parameter to find a decision boundary that does not

overfit the data too much. Lastly, experimenting with different kernels allows us to

better understand which kernel best handles the data.

For Random Forests we use four parameters to optimize: the number of estimators,

the max features, the max depth, and the bootstrap. By exploring the data with

different numbers of estimators, the performance can improve, but at a computational

cost. Furthermore, using different thresholds for the number of features and varying

the depth of the trees allow us to capture some control over the randomness of

the forest generated, striking an ideal balance between a simple forest (potentially

underfitting) and a complex forest (potentially overfitting).

For Logistic Regression we use the following three parameters to optimize: the

number of estimators, the learning rate, and the bootstrap variable. By exploring

the data with different numbers of estimators, the performance can improve at a

computational cost. Furthermore, we use various learning rate parameters to find a

balance between the rate of convergence and model generalization.

636

J. A. Bazan et al.

 4.3

 Deep Learning Models

Since deep learning models have demonstrated that they produce results comparable

to traditional models, as shown in [9, 13], we have chosen to incorporate these deep learning models as a benchmark. This approach allows us to showcase the quality of

the data generated and implemented by our method effectively.

4.3.1

CNNs and GANs

We leverage deep learning models that align with the structure presented in [9] as the baselines. We utilize the. (5 × 42 × 42) KDIs of each user as input for the CNN. The CNN itself consists of two convolutional layers, max-pooling layers, fully-connected

layers, and a dropout layer, each working to help the model achieve a meaningful

representation of the keystroke data without overfitting. Ultimately, producing a

probability (via sigmoid) of the likeliness of a given sample being authentic or not.

Table 3 contains the CNN hyperparameters.

Since the GAN architectures implemented are computationally expensive to train,

we provided a limited search space for the initial parameters as seen in Table 3 below that would be used for all GAN models. Additionally, we explore hyperparameter

tuning within the varying GAN architectures to find the most robust version as seen

in Table 4.

Table 3 Initial hyperparameters for deep learning models

Parameter

Search space

Selected

CNN

Epochs

200

200

Learning rate

0.01

0.01

Optimizer

Adam

Adam

GAN

Epochs

[50, 100, 150]

50

Table 4 Best hyperparameters for GAN models

Model

Parameter

Search space

Selected

DCGAN

Learning rate

[2e-6, 2e-5, 2e-4]

2e-6

batch size

[16, 32, 64]

64

WGAN

Learning rate

[9e-5, 9e-4, 9e-3]

9e-5

critic iterations

[2, 5, 15]

5

weight clipping

[0.01]

0.01

CGAN

Learning rate

[1e-4, 1e-5, 1e-6]

1e-5

Critic iterations

[2, 5, 15]

5

Enhancing Free Text Keystroke Authentication with GAN-Optimized. . . .

637

4.3.2

Generating Positive Data

Varying other GAN architectures such as WGAN, CGAN, and DCGAN are leveraged

to demonstrate the efficacy of these deep learning models for producing quality

positive data. Ultimately, we incorporate different architectures to identify how the

baseline models handle generated data, and how the generated data from each GAN

compares to one another. Intuitively, each GAN utilizes the same underlying structure

which consists of a generator and a discriminator. The generator network is producing

images that are supposed to be similar to the discriminator, and the discriminator is

learning to distinguish the real and fake images. This results in an endless back and

forth until the fake data is indistinguishable from the authentic data in this case.

Since GAN architectures usually work with the input of. (64 × 64) and. (128 × 128), we decided to pad the KDIs of . (42 × 42) to produce a new set of KDIs that are

. (64 × 64) and can be used as input for GAN training. The next section touches on how the generated data of. (64 × 64) is tested with the baseline CNNs. We go in-depth about the various hyperparameters that are tuned and could be tuned in future work.

Table 4 has the hyperparameters for these different models.

For DCGANs, the hyperparameters batch size, and learning rate, are experimented

with as other parameters require modifying the internal structure of the model. Fur-

thermore, the batch size and learning rate are tuned to balance the trade-off between

faster convergence and more accurate gradient updates during training, which can

result in more stable and better-quality synthetic data generated by the GAN model.

For the WGAN hyperparameters, we experimented with the learning rate, critical

iterations, and weight clipping. The learning rate is straightforward to determine by

finding a value that leads to optimal results without a significantly slow convergence,

similar to weight clipping and critic iterations. Overall, a reasonable amount of critic

iterations, a small learning rate, and a tight weight clipping can lead to a stable

training process that converges and produces quality data.

For the CGAN, we experimented with the learning rate, and critic iterations.

Moreover, it is worth noting that the CGAN architecture for this problem is unique

in comparison to the other GANs. Unlike the other architectures, the CGAN also

accepts class labels that are combined with the noise vector which helps generate

data belonging to a certain class.

5

Experiments and Results

In this Section, we provide the experimental setting and the results of the different

experiments. Moreover, we divide it into two parts: First, we evaluate the performance

of machine learning models on free text data that has undergone feature engineering,

and second, we explore the effect of training on generated GAN data—specifically,

we consider the performance of CNNs trained with and without generated GAN data.

638

J. A. Bazan et al.

 5.1

 Experiment Strategy

Our experiments are conducted with free text data that has undergone separate feature

engineering techniques for machine learning and deep learning models. This data is

first used with machine learning models to identify if any performance metrics are

comparable to prior studies that also use machine learning models and as another

baseline for the deep learning models discussed next. Secondly, the data is fed to

train CNN models and the goal is to achieve a very low EER. Lastly, the original data

the CNN has been trained is fed into the GANs which generates data that removes

the padding and compares it with the CNN’s results. The overall expectations are

that the machine learning models will be able to identify but will not outperform

deep learning models and that GANs will be able to produce quality data that the

CNNs can train on and enhance their performance.

 5.2

 Experiment Metrics

With any machine learning model, to gain insight into the performance of the model

and how it handles the data, evaluation metrics must be incorporated to provide

different perspectives while assisting in identifying the strengths and weaknesses.

We utilize three common evaluation metrics and a biometric evaluation metric. The

three common metrics consist of accuracy, precision, and recall. Accuracy refers

to the percentage of correctly identified predictions. However, this metric can be

misleading, especially when there is data imbalance (as seen in our data) since the

accuracy can be skewed to be high but impractical in a commercial setting. As a result, precision and recall are leveraged to gain more perspective about the model where

accuracy falls short. Precision gives us the accuracy of the positive predictions while

recall measures the completeness of the positive predictions. These three metrics

rely on a set of variables: FN, FP, TP, and TN. These variables are quite straightfor-

ward: True Positive (TP) instances are correctly identified instances, True Negative

(TN) instances are correctly identified instances, while False Positive (FP) and False

Negative (FN) are instances incorrectly identified. False Positive Rate (FPR) is the

proportion of negative cases incorrectly identified as positive, while False Negative

Rate (FNR) is the proportion of positive cases incorrectly identified as negative.

Moreover, the biometric evaluation the biometric used is Equal Error Rate (EER)

which refers to the point on the False Acceptance Rate (FAR) and False Rejection

Rate (FRR) curves where the error rate is equal (i.e., FAR == FRR). Figure 3 below depicts an example of where the EER might be for a model that has similar FAR and

FRR curves. For this example, if the EER rate is 5%, then this implies that adjusting

the threshold at which points are identified could result in an FRR and FAR of 5%.

As a result, 95% of intruders and authentic users are identified correctly.

[image: Image 181]

Enhancing Free Text Keystroke Authentication with GAN-Optimized. . . .

639

Fig. 3 EER illustrated

 5.3

 Machine Learning Models Results

We start with the machine learning model results. The machine learning models are

trained and tested on input data which consists of KDIs mapped into fixed feature

vectors of length 60. Moreover, while the general accuracy of the models is relatively

well as seen in Fig. 4(a, b, c), using other metrics such as the precision and recall uncovers a different story about the performance of the models. When evaluating

the models through precision and recall, the results show that models are capable

of identifying the intruder (high precision) but are unable to identify the correct

user (low recall). For models evaluated with data consisting of keystroke sequences

of 50 keystrokes, traditional models such as SVM and KNN produce great accuracy

and a low FAR but a high EER, whereas Logit with boosting and RF provide an

even greater accuracy, a low FAR, and a relatively low EER. Overall, Logit has the

best EER of 13.57% and Random Forests outperforms everyone with an accuracy

of 95.95% with 50 keystrokes. These results indicate that with more fine-tuning to

reduce the FNR and EER, a commercially feasible product capable of generalizing

a user’s typing patterns to a high degree of accuracy is possible.

Moreover, the performance of the models seen in Fig. 4(a) contrasted with those in Fig. 4(b, c) illustrate how adding more data before producing the fixed feature vectors for training can be an obstacle. As seen in the results from Fig. 4(b, c), as fixed-feature vectors are based on longer keystroke sequences, like 75 and 100, the inclusion of

more data leads to poorer performance in a model’s ability to distinguish an authentic

user from an intruder. In comparison to Fig. 4(a), the more data is included the higher the EER and FAR increase, eventually leading to a KNN with a 4% FAR and an ERR

of 68%.

[image: Image 182]

640

J. A. Bazan et al.

(a) 50 keystrokes

(b) 75 keystrokes

(c) 100 keystrokes

Fig. 4 Traditional machine learning model results

The results suggest that adding more keystrokes can negatively impact deep learn-

ing predictions by increasing data complexity and variability, leading to more errors

and overwhelming the model’s ability to accurately generalize from the data.

While these models do underperform when contrasted to the performance of the

deep learning methods implemented, as we discuss next, the EER results of the best

model are comparable to other studies that also measure the EER of their models on

free text data.

 5.4

 Deep Learning Methods

Now we cover in more depth the performance of the varying CNN architectures on

KDIs derived from the free text dataset and from the GANs. Additionally, the quality

of the generated data and its impact on CNN architectures is explored.

[image: Image 183]

Enhancing Free Text Keystroke Authentication with GAN-Optimized. . . .

641

Fig. 5 CNN classifier accuracy

5.4.1

Results of CNNs with Original Data

The CNNs are based on the architectures in [9] and trained/tested using the same methodology. Moreover, the results of these classifiers align with those seen in

the prior research. Highlighted in Fig. 5, the CNNs trained on different keystroke sequence lengths achieve high accuracy and considerably low EER when contrasted

to the traditional models. Even though the results of all the CNNs are relatively

similar, the CNN based on keystroke sequences of length 75 achieves an average

accuracy of 88% and an EER of 0.09%.

5.4.2

Results of CNNs with GAN Generated Positive Data

Several data generation experiments are conducted on different GAN architectures

to identify any key advantages/disadvantages for data generation and for data quality.

Moreover, the experiments produced a set of generated data (KDIs) that were then

unpadded and evaluated with positive data on the trained CNNs in the prior section.

The results of evaluating the CNNs with positive data, GAN data, and both (aug-

mented data) on a keystroke sequence of 50, 75, and 100 are depicted in Fig. 6(a, b, c), respectively. The GAN generated data is labeled as . 1 for these experiments.

When it comes to keystroke sequences of 50 and 100, the results are relatively

similar with WGAN and CGAN producing images based on each individual user. On

average, the CNNs identified the generated images with 86% accuracy. As intended,

each classifier that is fed its positive data with negative data produces high accuracy,

since the positive data is the data it was trained with. Interestingly, when the CNNs

are fed positive data that consists of the real and GAN data, the results do show that there is a slight increase in the accuracy as seen by the WGAN which improves the

accuracy from 94 to 94.9% in the 100 keystroke case.

[image: Image 184]

642

J. A. Bazan et al.

(a) 50 keystrokes

(b) 75 keystrokes

(c) 100 keystrokes

Fig. 6 Models trained on positive GAN data

5.4.3

Results for GAN Data Versus CNN

To provide more perspective about the quality of the data being generated, more

experiments are conducted which essentially invert the ones presented in Sect. 5.4.2.

The GAN-generated data are labeled 0, and the performance of CNN is recorded.

The results of the CNN against actual negative data, and GAN data are illustrated in

Fig. 7a through c.

The results highlight that the CNNs perform poorly when treating the GAN data

as separate, as seen in Fig. 7 on 50 keystrokes with accuracy of 60.79%. This low accuracy suggests that the data generated bears resemblance to the input data for a

given user. As a result, these classifiers struggle to distinguish between the real data

and generated data when treated separately. Moreover, the CNN with actual positive

data against negative data performs with similar accuracy to those presented in [9].

5.4.4

Results for GAN Data and Real Data Versus CNN

The last experiments treat the GAN data as valid and compare it with the negative

data. Moreover, the first test uses only GAN data and negative samples from other

users, while the second test combines both real and generated data (augmented data)

[image: Image 185]

Enhancing Free Text Keystroke Authentication with GAN-Optimized. . . .

643

(a) 50 keystrokes

(b) 75 keystrokes

(c) 100 keystrokes

Fig. 7 Models trained on negative GAN data

and also compares it against the negative samples. The accuracy of each test is

highlighted in Figs. 8(a, b, c).

As anticipated when the CNN uses GAN data as valid vs negative samples, the

performance suffers by a negligible amount. In other cases, the accuracy increases

slightly as seen in Fig. 8. Moreover, the second experiments produce an accuracy similar to those when the classifiers are tested against only positive data, and positive data versus negative data. These results are depicted in the figures above where the

accuracy differences are very minimal, emphasizing how well the data generated fits

into a classifier trained on the data it was generated on. Since the generated KDIs

are able to perform well when evaluated by the CNNs, the next step was to retrain

the CNNs with the GAN-generated user data labeled as positive, following the same

process as those in the first section.

5.4.5

Results for CNN Trained with GAN Data

The last step to verify the effectiveness and quality of the KDIs generated by the

GANs was to retrain the CNNs. The classifiers at this step, in contrast with the

previous experiments, leverage the GAN generated samples by also including them

[image: Image 186]

644

J. A. Bazan et al.

(a) 50 keystrokes

(b) 75 keystrokes

(c) 100 keystrokes

Fig. 8 Models trained on generated GAN data

as positive data. For the sake of ease, the CNNs for keystroke sequences 50, 75,

and 100, are tested with only one architecture-generated data for different sequences.

Since CGAN performed the best overall, the results presented in the figure below

are based only on the CGAN data, see Fig. 9.

 5.5

 Discussion

The results retrieved from all the experiments conducted provide diverse insights

regarding the performance of machine learning versus deep learning models in user

authentication, and the utility of GANs to generate quality data while enhancing the

deep learning methods. When contrasting machine learning to deep learning methods,

the results clearly show that machine learning models can achieve a relatively high

accuracy with a reasonable FAR and EER as seen by the Logistic Regression with

boosting model and Random Forest on 50 keystrokes. However, these results obtained

pale in comparison to the CNNs that can achieve a greater accuracy with a lower EER,

but these deep learning models still have an issue with the FNR. Moreover, when

introducing GANs to resolve the positive data bottleneck by creating synthetic data

[image: Image 187]

Enhancing Free Text Keystroke Authentication with GAN-Optimized. . . .

645

Fig. 9 Accuracy and EER for models trained on generated data

resembling user data, the results illustrate the effectiveness. The GAN data by itself

when evaluated produces a reasonable accuracy of around 85%. Furthermore, Fig. 7

demonstrates that treating the generated data as negative throws the classifier off

producing low accuracy, indicating that the generated data has a resemblance to the

user data it was trained on. Finally, using the augmented data consisting of positive

and generated data, and retraining the CNNs results in slightly higher accuracy with

a low EER with a negligible move in either direction. As mentioned before, this

work builds upon the deep learning classifiers presented in [9], and we demonstrate that the CNNs and data used in the study can be further extended to generate more

positive data and achieve greater accuracy and lower EER.

6

Conclusions

As technology continues to evolve and become more integrated with day-to-day life,

the concern for security breaches (hacks) across multiple mediums increases. As a

result, methods for incorporating and enhancing keystroke authentication must be

implemented to reduce the likelihood of hackers gaining unauthorized access. This

work presents a study of utilizing traditional machine learning and deep learning

methods in free text keystroke authentication with binary classification and demon-

strates the potential of GAN techniques to create synthetic data to enhance the per-

formance of CNN binary classifiers. Moreover, as a byproduct of successfully gen-

erating quality data, the scarcity of authentic user data, which is a common challenge

in data-driven commercial settings, is effectively addressed.

We trained machine learning models using KDIs based on varying sequence

lengths that are transformed into fixed-feature vectors through feature engineering

646

J. A. Bazan et al.

influenced by [1]. While the traditional models did produce high accuracy and reasonable EER in certain instances, these results still present an issue for the authentic

user and did not exceed the performance of the baseline CNNs. Moreover, the CNNs

follow the same architecture and feature engineering process as those presented

in [9], achieving similar results as in that study. Our work emphasized that deep learning models carry a higher capability for recognizing patterns from time-based

features and may provide a better generalization compared to traditional methods.

The KDIs generated from different GANs are examined through different tests with

the baseline CNN and are finally used to retrain the CNNs. Overall, the synthetic

user data generated resembles the structure of those presented in the real dataset

as is highlighted by the CNN performance enhanced after retraining and the CNN

struggling to identify the GAN data treated as negative before retraining.

Even though we focused on generating data based on time-based features from

the free text keystroke dataset, the input data does not have to be limited to time

features. Touch-based features are another form of data that captures unique, mostly

static, individual characteristics like a user’s touch area and pressure when typing.

Furthermore, as CGANs require additional conditional input to help construct more

precise images, free text keystroke authentication can be performed on a dataset

with touch-based features utilizing the touch-based metric as conditional input to

generate data more precise with the user’s time and touch patterns. Overall, this

work contributes to the growing body of literature on using GAN techniques for

data generation and highlights their potential to revolutionize the field of biometric

authentication and other data-driven applications.

References

1. Alsultan A, Warwick K, Wei H. Improving the performance of free-text keystroke dynamics authentication by fusion. Appl Soft Comput. 2018;70:1024–33.

2. Antal M, Szabó LZ, László I. Keystroke dynamics on Android platform. In: 8th international conference interdisciplinarity in engineering, INTER-ENG; 2015. p. 820–826.

3. Arjovsky M, Chintala S, Bottou L. Wasserstein GAN; 2017. https://arxiv.org/abs/1701.07875.

4. de Marcos L, Martínez-Herráiz J-J, Junquera-Sánchez J, Cilleruelo C, Pages-Arevalo C.

Comparing machine learning classifiers for continuous authentication on mobile devices by

keystroke dynamics. Electronics. 2021;10(14):1622.

5. Forsen GE, Nelson MR, Staron RJ. Personal attributes authentication techniques; 1977. https://

apps.dtic.mil/sti/pdfs/ADA047645.pdf.

6. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative adversarial nets. In: Advances in neural information processing systems; 2014.

7. Killourhy KS, Maxion RA. Comparing anomaly-detection algorithms for keystroke dynamics.

In: 2009 IEEE/IFIP international conference on dependable systems and networks; 2009. p.

125–134.

8. Kim J, Kang P. Freely typed keystroke dynamics-based user authentication for mobile devices based on heterogeneous features. Pattern Recogn. 2020;108: 107556.

9. Li J, Chang H-C, Stamp M. Free-text keystroke dynamics for user authentication. In: Stamp M, Visaggio CA, Mercaldo F, Di Troia F, editors, Artificial intelligence for cybersecurity. Springer; 2022. p. 357–380.

Enhancing Free Text Keystroke Authentication with GAN-Optimized. . . .

647

10. Li J, Chang H-C, Stamp M. Machine learning and deep learning for fixed-text keystroke dynamics. In: Stamp M, Visaggio CA, Mercaldo F, Di Troia F, editors, Artificial intelligence for cybersecurity. Springer; 2022. p. 309–329.

11. Lin C-H, Liu J-C, Lee K-Y. On neural networks for biometric authentication based on keystroke dynamics. Sens Mater. 2018;30(3):385–96.

12. Mirza M, Osindero S. Conditional generative adversarial nets. https://arxiv.org/abs/1411.1784.

13. Muliono Y, Ham H, Darmawa D. Keystroke dynamic classification using machine learning for password authorization. Procedia Comput Sci. 2018;135:564–9.

14. Radford A. Unsupervised representation learning with deep convolutional generative adversarial networks; 2015. https://arxiv.org/abs/1511.06434.

15. Saevanee H, Bhattarakosol P. Authenticating user using keystroke dynamics and finger pressure.

In: 2009 6th IEEE consumer communications and networking conference; 2009. p. 1–2.

16. Sun Y, Çeker H, Upadhyaya S. Shared keystroke dataset for continuous authentication. In: 2016 IEEE international workshop on information forensics and security. WIFS; 2016. p. 1–6.

17. Bazan J. Thesis. Keystroke authentication with gans; 2023. https://github.com/jay-CS/Thesis_

Project.

18. Xiaofeng L, Shengfei Z, Shengwei Y. Continuous authentication by free-text keystroke based on CNN plus RNN. Procedia Comput Sci. 2019;147:314–8.

Document Outline

	Preface

	Contents

	 Image-Based Malware Classification Using QR and Aztec Codes

	1 Introduction

	2 Selected Related Work

	2.1 Obfuscated Malware

	2.2 Behavioral Analysis of Malware

	2.3 Image Representations

	2.4 Advanced CNN Architectures

	2.5 Memory Dump Analysis

	2.6 QR Codes

	2.7 Aztec Codes

	3 Datasets

	3.1 CIC-MalMem-2022

	3.2 BODMAS

	4 Implementation

	4.1 Machine Learning Tools

	4.2 Utilities

	4.3 Development Platforms

	5 Methodology

	5.1 Feature Selection

	5.2 Machine Learning Models

	6 Experiments and Results

	6.1 CIC-MalMem-2022 Results

	6.2 BODMAS Results

	6.3 Discussion

	7 Conclusion and Future Work

	References

	 Online Clustering of Known and Emerging Malware Families

	1 Introduction

	2 Related Work

	3 Theoretical Background

	3.1 Online kk-Means (OKM)

	3.2 Self-organizing Map (SOM)

	3.3 Basic Sequential Algorithmic Scheme (BSAS)

	3.4 Distance-Weighted kk-Nearest Neighbor (WKNN)

	4 Proposed Approach and Experimental Setup

	4.1 Proposed Model

	4.2 Dataset

	4.3 Evaluation Metric

	5 Experimental Results

	5.1 Preprocessing and Clustering Algorithm Selection

	5.2 Classifier Selection and Tuning of the Hyper-parameter \tauτ

	5.3 Online Clustering

	5.4 Computational Times

	5.5 Discusion

	6 Conclusion

	References

	 Comparing Balancing Techniques for Malware Classification

	1 Introduction

	2 Background

	2.1 Related Works

	2.2 Undersampling

	2.3 Oversampling

	2.4 Hybrid Sampling

	2.5 Generative Adversarial Networks (GANs)

	3 Methodology

	3.1 Feature Extraction

	3.2 Balancing Malware Features with Undersampling

	3.3 Balancing Malware Features with Oversampling

	3.4 Balancing Malware Features with Hybrid Sampling

	3.5 Balancing Malware Features with WGAN-GP

	3.6 Evaluation Metrics

	4 Implementation

	4.1 Dataset

	4.2 Undersampler Implementation

	4.3 Oversampler Implementation

	4.4 Hybrid Sampling Implementation

	4.5 WGAN-GP Implementation

	5 Experiments and Results

	5.1 Baseline Test Results

	5.2 Undersampling Results

	5.3 Oversampling Results

	5.4 Hybrid Sampling Results

	5.5 WGAN-GP Results

	5.6 Comparison of the Results

	6 Conclusion and Future Work

	References

	 Malware Classification Using a Hybrid Hidden Markov Model-Convolutional Neural Network

	1 Introduction

	2 Background

	2.1 Hidden Markov Model

	2.2 Convolutional Neural Network (CNN)

	3 Literature Review

	3.1 Malware Classification Using HMM

	3.2 Malware Classification Using SVM

	3.3 Malware Classification Using Random Forest

	3.4 Malware Classification Using RNN and LSTM

	3.5 Malware Classification Using CNN

	4 Methodology

	4.1 Dataset and Preprocessing

	4.2 Experimental Design

	4.3 Training Methodology

	5 Experiments and Results

	5.1 HMM Training and Hidden States

	5.2 HMM-CNN Training

	5.3 Comparison to Related Techniques

	6 Conclusion and Future Work

	References

	 Selecting Representative Samples from Malware Datasets

	1 Introduction

	2 Data Preprocessing

	2.1 Data Cleaning

	2.2 Conversion of Categorical Features to Numerical

	2.3 Feature Scaling

	2.4 Dimensionality Reduction

	3 Instance Selection Algorithms

	3.1 Taxonomy

	3.2 Condensation Algorithms

	3.3 Edition Algorithms

	3.4 Hybrid Algorithms

	4 Proposed Modifications of the PIF Algorithm

	4.1 Replacement of the Editing Algorithm

	4.2 Repeated PIF

	4.3 RPIF with Edition Algorithm Changed

	5 Experimental Setup

	5.1 Used Hardware Devices

	5.2 Datasets

	5.3 Preprocessing Procedure

	6 Experiments with Instance Selection Algorithms

	6.1 Tuning Parameters of Instance Selection Algorithms

	6.2 Comparison of IS Algorithms

	7 Conclusion

	References

	 Applying Word Embeddings and Graph Neural Networks for Effective Malware Classification

	1 Introduction

	2 Related Work

	3 Background

	3.1 Word Embedding Techniques

	3.2 Graph Neural Networks

	4 Methodology

	4.1 Dataset

	4.2 Dataset Preprocessing

	4.3 Optimal Opcode Number Experiments

	4.4 Feature Vector Generation

	4.5 GCN-Bag-of-Words

	4.6 GCN-TF-IDF

	4.7 GCN-Word2Vec

	4.8 Creating Weighted Graphs

	4.9 Results for Word Embedding Experiments

	4.10 GNN Implementation

	4.11 Word2Vec-GCN

	4.12 Word2Vec-GAT

	4.13 Word2Vec-GraphSAGE

	5 Classification Results

	5.1 GCN Results

	5.2 GAT Results

	5.3 GraphSAGE Results

	5.4 Discussion

	6 Conclusion and Future Work

	References

	 An Empirical Analysis of Hidden Markov Models with Momentum

	1 Introduction

	2 Background

	2.1 Hidden Markov Models

	2.2 Problem 1: Score an Observation Sequence

	2.3 Problem 2: Uncover the Hidden States

	2.4 Problem 3: HMM Training

	2.5 Gradient Descent

	2.6 Momentum in Gradient Descent

	2.7 Parameterized EM

	2.8 HMMs for Malware Classification

	3 Implementation

	3.1 Momentum for Baum-Welch

	3.2 Nesterov Momentum

	3.3 Smoothing

	4 Experiments and Results

	4.1 Momentum and English Text

	4.2 Malware Classification

	4.3 Discussion

	5 Conclusion

	References

	 Quantum Computing Methods for Malware Detection

	1 Introduction

	2 Background

	2.1 Terminology

	2.2 Quantum Machine Learning

	2.3 Related Work

	3 Implementation

	3.1 Modifications for Quantum Hardware

	4 Experiments

	4.1 Dataset

	4.2 Evaluation Metrics

	4.3 Experimental Results

	5 Conclusion and Future Work

	References

	 Reducing the Surface for Adversarial Attacks in Malware Detectors

	1 Introduction

	2 Related Work

	2.1 Related Works Based on Preprocessing

	2.2 Related Works Based on Other Methods

	3 Background

	3.1 Taxonomy of Adversarial Attacks

	3.2 Adversarial Generators

	3.3 PE format

	4 Defense Techniques

	4.1 Adversarial Training

	4.2 Null Label Training

	4.3 Feature Squeezing

	4.4 Defense-GAN

	4.5 Combining Defenses

	5 Proposed Method

	5.1 Reduced Executables and Machine Learning

	5.2 PE File Antimodifications

	5.3 Content Modification Between Sections

	5.4 Remove Overlay Data

	6 Experimental Setup

	6.1 Malware Detection Models

	7 Experiments

	7.1 Detection Accuracy after Deploying Defenses

	7.2 Robustness Against Adversarial Malware

	8 Conclusion

	References

	 Effectiveness of Adversarial Benign and Malware Examples in Evasion and Poisoning Attacks

	1 Introduction

	2 Background

	2.1 Adversarial Machine Learning

	2.2 Portable Executable File Format

	3 Generators of Adversarially Modified Software

	3.1 Generators of Adversarial Malware

	3.2 Generators of Adversarial Goodware

	4 Experimental Evaluation

	4.1 Setup

	4.2 Evaluation Metrics

	4.3 Evasion Attack Against the Target Classifiers

	4.4 Poisoning Attacks Against the GBDT Classifier

	4.5 Discussion

	5 Related Work

	5.1 Evasion Attacks

	5.2 Poisoning Attacks

	6 Conclusion

	References

	 A Comparative Analysis of SHAP and LIME in Detecting Malicious URLs

	1 Introduction

	2 Related Work

	3 Background

	3.1 Support Vector Machines

	3.2 Random Forest

	3.3 XGBoost

	3.4 Multi-layer Perceptron

	3.5 Recursive Feature Elimination

	3.6 Local Interpretable Model-Agnostic Explanations (LIME)

	3.7 SHapley Additive ExPlanations (SHAP)

	4 Methodology

	4.1 Advantages of SHAP and LIME in eXplainable AI (XAI)

	4.2 Dataset

	4.3 Evaluation

	4.4 Procedure

	5 Experiments and Results

	5.1 LIME

	5.2 SHAP

	5.3 Analysis

	6 Conclusion

	References

	 XAI and Android Malware Models

	1 Introduction

	2 Background

	2.1 Malware and Categories

	2.2 Learning Models for Malware Detection

	2.3 Overview of Explainable AI

	2.4 XAI Techniques

	3 Related Work

	4 Experiments and Results

	4.1 Dataset and Implementation

	4.2 Performance of Learning Models

	4.3 XAI Results

	5 Conclusion and Future Work

	References

	 Temporal Analysis of Adversarial Attacks in Federated Learning

	1 Introduction

	2 Background

	2.1 Federated Learning

	2.2 Aggregation Strategy

	2.3 Threats to FL Systems

	2.4 Specific Attacks on FL

	2.5 Outlier Detection

	2.6 Classification Models

	3 Literature Review

	4 Experimental Design

	4.1 Hardware and Software

	4.2 Dataset and Data Processing

	4.3 Federated Learning Setup

	4.4 Evaluation Metrics

	5 Experiments and Results

	5.1 Baseline Cases

	5.2 Outlier Detection Experiments

	5.3 Label Flipping Attack

	5.4 Model Poisoning Attack

	5.5 GAN Reconstruction Attack

	6 Conclusion

	References

	 Federated Learning: An Overview of Attacks and Defense Methods

	1 Introduction

	2 Background

	2.1 Federated Learning

	3 Security Attacks in Federated Learning

	3.1 Poisoning Attack

	4 Privacy Attacks in Federated Learning

	4.1 Membership Inference Attack

	4.2 Feature Inference Attack

	4.3 Reconstruction Attack

	4.4 Property Inference Attack

	4.5 Label Inference Attack

	5 Defense Strategy Against Federated Learning Attacks

	5.1 Defense Approaches for Security Attack

	5.2 Defense Approaches for Privacy Attack

	5.3 Integration of Blockchain and FL

	6 Unified Federated Learning Framework

	7 Open Research Challenges

	8 Conclusion

	References

	 An Empirical Analysis of Federated Learning Models Subject to Label-Flipping Adversarial Attack

	1 Introduction

	2 Background

	2.1 Federated Learning

	2.2 Multinominal Logistic Regression

	2.3 Support Vector Classifier

	2.4 Multilayer Perceptron

	2.5 Convolution Neural Network

	2.6 Random Forest

	2.7 XGBoost

	2.8 Long Short-Term Memory

	2.9 Related Work

	3 Implementation

	3.1 Dataset

	3.2 Experimental Design

	4 Experiments and Results

	4.1 Baseline Experiments

	4.2 Adversarial Attack Experiments

	4.3 Dominance Graphs

	5 Conclusion

	References

	 On the Steganographic Capacity of Selected Learning Models

	1 Introduction

	2 Background

	2.1 Steganography

	2.2 Learning Models

	2.3 Related Work

	3 Implementation

	3.1 Dataset

	3.2 Model Training

	4 Steganographic Capacity Experiments

	4.1 LR Experiments

	4.2 SVM Experiments

	4.3 MLP Experiments

	4.4 CNN Experiments

	4.5 LSTM Experiments

	4.6 VGG16 Experiments

	4.7 DenseNet121

	4.8 InceptionV3

	4.9 Xception

	4.10 ACGAN

	4.11 Discussion

	5 Conclusion

	References

	 Robustness of Selected Learning Models Under Label-Flipping Attack

	1 Introduction

	2 Related Work

	3 Background

	3.1 Classic Models

	3.2 Boosting Models

	3.3 Deep Learning Models

	4 Experiments and Results

	4.1 Dataset and Data Preprocessing

	4.2 Baseline Results

	4.3 Label-Flipping Results for Classic Models

	4.4 Label-Flipping Results for Boosting Techniques

	4.5 Label-Flipping Results for Deep Learning Models

	4.6 Discussion

	5 Conclusion and Future Work

	References

	 Steganographic Capacity of Transformer Models

	1 Introduction

	2 Background

	2.1 Steganography

	2.2 Learning Models

	2.3 Related Work

	3 Implementation

	3.1 Dataset

	3.2 Model Training

	4 Steganographic Capacity Experiments

	4.1 MLP

	4.2 CNN

	4.3 Transformer Model

	5 Conclusion

	References

	 Distinguishing Chatbot from Human

	1 Introduction

	2 Relevant Related Work

	2.1 ChatGPT

	2.2 Human Classification

	2.3 Datasets

	2.4 Classification Techniques

	2.5 Feature Based Classification

	2.6 Model Selection

	3 Background

	3.1 Models

	3.2 Word Embeddings

	4 Dataset

	4.1 Raw Data Generation

	4.2 Features

	5 Data Exploration

	5.1 Target Variable

	5.2 Paragraph Length

	5.3 Feature Analysis

	5.4 Correlation Analysis

	6 Implementation

	6.1 Data Preprocessing

	6.2 Feature Importance

	6.3 Embeddings Approach Implementation

	7 Experimental Results

	7.1 Feature Analysis Experiments

	7.2 Embeddings Approach

	7.3 Ablation Study

	8 Conclusion and Future Work

	References

	 Multimodal Deception Detection Using Linguistic and Acoustic Features

	1 Introduction

	2 Related Work

	2.1 Existing Public Datasets

	2.2 Conventional Models in Deception Detection

	2.3 Deep Learning Models for Deception Detection

	3 Background on Conventional and Deep Models Studied

	3.1 Conventional Models

	3.2 Convolutional Neural Networks (CNNs)

	3.3 Long Short-Term Memory (LSTM)

	3.4 Bidirectional LSTM

	3.5 Residual Network 50 (ResNet50)

	3.6 Late Fusion

	3.7 Additional Pretrained Models

	4 Experimental Setup

	4.1 Methodology

	4.2 Dataset Description

	4.3 Transcribed Data

	4.4 Audio Data

	4.5 Model Evaluation

	5 Deception Detection Models

	5.1 Conventional Models for Textual Data Only

	5.2 Deep Models and Pre-trained Models for Textual Data Only

	5.3 Deep Models for Audio Data

	5.4 Model 12: Late Fusion Model for Audio Data and Textual Data

	6 Results

	6.1 Overlapping Probability Density Functions for Linguistic Features

	6.2 The Performance of Deception Detection Models

	7 Discussion

	7.1 Textual Models

	7.2 Audio Models

	7.3 Late Fusion Model

	8 Conclusion and Future Work

	References

	 Keystroke Dynamics for User Identification

	1 Introduction

	2 Background

	2.1 Related Work

	2.2 Dataset

	2.3 Machine Learning and Deep Learning Algorithms

	3 Feature Engineering

	3.1 Keystroke Features

	3.2 Keystroke Sequence

	3.3 Keystroke Data Image

	4 Model Architectures

	4.1 Multiclass CNN

	4.2 SVM Classifier

	4.3 Random Forest Classifier

	5 Experiments and Results

	5.1 Experiment Strategy

	5.2 Metrics

	5.3 Multiclass CNN Experiments

	5.4 Experiments on Difficult-to-Classify Users

	5.5 Random Forest Model for All Users

	6 Conclusion

	References

	 Enhancing Free Text Keystroke Authentication with GAN-Optimized Deep Learning Classifiers

	1 Introduction

	2 Background

	2.1 Related Work

	2.2 Learning Techniques

	3 Dataset

	3.1 Fixed Text and Free Text Data

	3.2 Time-Based and Touch-Based Features

	3.3 Free Text Data Time-Based Features

	3.4 Feature Engineering for Deep Learning

	3.5 Feature Engineering for Machine Learning

	4 Architecture

	4.1 Binary Classification

	4.2 Machine Learning Models

	4.3 Deep Learning Models

	5 Experiments and Results

	5.1 Experiment Strategy

	5.2 Experiment Metrics

	5.3 Machine Learning Models Results

	5.4 Deep Learning Methods

	5.5 Discussion

	6 Conclusions

	References

index-633_1.jpg
Values

Performance of CNN and GAN Data vs negative - 50 keystrokes

100

80

60

40

20

DCGAN-50

WGAN-50

Values

= v

CGAN-50

= N e

Performance of CNN and GAN Data vs negative - 75 keystrokes

o
- 8 5
z 8
& 5 .
& g 2
80 2 2 B
» 604
% B e
40
20
DCGAN-75 ‘WGAN-75 CGAN-75

Performance of CNN and GAN Data vs negative - 100 keystrokes

4 i - 2 @
100 E a g ; y 8
5 S g2
801
604
- g
-+ . cetve
401
204
WGAN-100 CGAN-100

index-632_1.jpg
Performance of CNN vs GAN Data - 50 keystrokes Performance of CNN vs GAN Data - 100 keystrokes

100 g H .
101 S 3]
80
80
60 5
9 -—canerwiea 5 3 —=Ganarated
- ogutve | g 8 2 = Negative
a0 404
204 20
0 0
DCGAN-50 CGAN-50 DCGAN-100 WGAN-100 CGAN-100

Performance of CNN vs GAN Data - 75 keystrokes

804

6
735
7038

704
604

504
- Cenecated

2 a0 —egative

STET
3135
35,01

204

104

index-634_1.jpg
Values

Performance of CNN trained on CGAN data

"
®
<
o

T

CGAN-50

T
-75 CGAN-100
Categories

g Jo.09a

index-629_1.jpg
Values

100

80

40

20

Performance of Classical Methods with 75 keystrokes

Performance of Classical Methods with 50 keystrokes 100 im0 9524
95.74 95.95 91.4 = . Accuracy
- _ m Accuracy = EER
89.85 = EER - FAR
= FAR 80
60
g 3
s -
. 2
= 40
&]
2]
g m
5 g 2 20
3 g 2 g 8
SVM-50 Logit-50 RF-50 KNN-50 SVM-75 Logit-75 RF-75

Performance of Classical Methods with 100 keystrokes

100
. %12 o551 oty
== EER
= FAR
80|
F
s
60|
g g
A
] 3
s
40 = -
2 g
20
5 ki 5 2
SVM-100 Logit-100 RF-100 KNN-100

index-628_1.jpg
(Yv4) 1dedoe asej pue
(4¥4) 1ala1 asjey e sawiy jo abejuadiag

Sensitivity

index-631_1.jpg
Values

100

80

60

40

20

Performance of CNN with GAN Data - 50 keystrokes

06,704

6838

196794
6.729

77.458

6831

96704

- rositive
= Generated
- oth

DCGAN-50 WGAI

Values

N-50

100

80

60

40

20

CGAN-50

80

60

Values

40

20

Performance of CNN with GAN Data - 75 keystrokes

72.07
76.76

Positive
nerated

Ger
8ot

th

DCGAN-75

CGAN-75

Performance of CNN with GAN Data - 100 keystrokes

01,029

3

67.56

3

77.88

—positive
W= Generated
- Goth

DCGAN-100

CGAN-100

index-630_1.jpg
Values

Performance of CNNs

cover_image.jpg
Stamp M. Machine
Learning, Deep
Learning and Al

for Cybersecurity
2025

index-612_1.png

index-607_1.jpg

index-600_1.jpg

index-590_1.png

index-605_1.jpg
Accuracy / Loss

Training History

Training History

train accuracy
val accuracy
train loss

val loss

Accuracy / Loss

train accuracy
val accuracy
train loss
val loss

Epoch

15

20

Training History

2.5 5.0 75 10.0 125

Epoch

Accuracy / Loss

111

train accuracy
val accuracy
train loss

val loss

0.0

25

5.0

75
Epoch

10.0

15.0 17.5

15.0

17.5

20.0

index-601_1.jpg
G >
ConvaD(64) BatehNorm Conv2D(128) BN

) / MP
| ¥
Conv2D BN hee
Input Conv2D(32) BatchNorm s \
ComvaD BN MP - -
Flatten Dense Dense

index-578_1.jpg
Probability Density

Probability Density

0.4

o
w

o
N

0.1

0.0

0.5

0.4

°
w

o
N

0.1

0.0

OVL - filler_word_count: 0.5471 OVL - future_tense_frequency: 0.5517

50
40
2
2 30
[
a
z
20
Q
e
o
10
0
0 2 4 6 8 10 12 0.00 0.02 0.04 006 008 010 0.12
filler_word_count future_tense_frequency
OVL - negation_count: 0.6097 OVL - adverb_frequency: 0.7367
12
10
28
i)
c
d)
a
> 6
L
a
©
£y
S 4
a
2
0
0 1 2 3 4 5 0.00 0.05 0.10 0.15 0.20 0.25

negation count adverb frequency

index-577_1.jpg

index-580_1.jpg
OVL - pronoun_frequency: 0.8299

OVL - past_tense_frequency: 0.8345

8 8
> >
2 2
D 6 G 6
f = c
i GJ
) a
> >
= -~
84 Sa
o Q
[IS
a a
2 2
0 0
0.00 0.05 0.10 0.15 0.20 0.25 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
pronoun_frequency past_tense_frequency
OVL - avg_word_length: 0.8479 OVL - repetition_count: 0.8497
1.2
10
1.0
) z°
% 0.8 @
c c
3 [
) o 6
206 2z
= 3
© ©
Q Q a4
So4 e
0.2 2
0.0 0
25 3.0 3.5 4.0 45 5.0 000 005 010 015 020 025 030
avg_word_length repetition_count
OVL - conjunction_frequency : 0.9001 OVL - vocabulary_diversity: 0.9119
4.0
8
35
3.0
> 6 >
£ £
a a2s
Q) [
a a)
Z, 220
2 2
Qo al5s
o £
Q. a
2 1.0
0.5
0 0.0
0.00 0.05 0.10 0.15 0.20 0.4 0.5 0.6 0.7 0.8 0.9 1.0

conjunction frequency

vocabulary diversity

index-579_1.jpg
OVL - present_tense_frequency: 0.7512 OVL - sentence_count: 0.7811

0.175
16
14 0.150
0.125
>
Z
2
@ 0.100
a
>
=
3 0.075
©
£l
[
A 0.050
2 0.025
0 0.000
0.00 0.02 004 006 008 010 012 0.14 25 50 75 100 125 150 175 20.0
present_tense_frequency sentence_count
OVL - self_reference_count: 0.8106 OVL - sentiment_score: 0.8159
0.7
0.10
0.6
0.08
0.5
> >
2 2
@ @
S 0.06 S04
Q- Q-
> >
= =
3 303
2 0.04 8
< <)
o o 0.2
0.02
0.1
0.00 0.0
00 25 50 75 100 125 150 175 -1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00
self_reference_count sentiment_score
OVL - adjective_frequency: 0.8182 OVL - word_count: 0.8214
10
0.010
8
- - 0.008
=] £
w n
= =
3 a
= >, 0.006
= - 24
a a
© ©
8 4 8 0.004
[<)
Q. a
2 0.002
0 0.000
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0 50 100 150 200 250

adjective frequency word count

index-606_1.png

index-573_1.jpg
Mel-frequency spectrogram

N
=
>
[
€
o
3
g
e
[

index-565_1.jpg
Cell State | ¢(t-1) x + > c(t)

Tanh

* .

Sigmoid

Input
4 [Sigmoid J

h(t)

Forget Gate Input Gate Output Gate

Hidden
State

index-564_2.jpg
Filter

Input

Result

index-567_1.jpg
7x7 Conv, 64/2

Max Pooling

1x1 Conv, 64
3x3 Conv, 64

1x1 Conv, 256

1x1 Conv, 128
3x3 Conv, 128
1x1 Conv, 256

1x1 Conv, 256
3x3 Conv, 256
1x1 Conv, 1024

1x1 Conv, 512
3x3 Conv, 512

1x1 Conv, 2048

index-566_1.jpg
Output Layer

Bidirectional
Layer

Input Layer

index-545_1.jpg
feature

complex_ratio
negation_ratio

subjectivity
sentence_complexity
sentence_count
auxiliary_verb_frequency
homonym_frequency
average_sentence_length
simile_frequency
subjunctive_mood_ratio
question_ratio 1
conditional_sentence_ratio o
polarity 4

burstiness

verb_ratio 1

adjective_ratio 4
direct_indirect_speech_ratio -
active_passive_ratio o
lexical_diversity 1
lowercase_letter ratio -
interjection_ratio <
conjunction_ratio
preposition_ratio |
adverb_ratio |

noun_ratio 4
exclamatory_sentence_ratio

0.00

Feature Importance for Lasso Regression Model

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
importance

index-544_2.jpg
feature

lowercase_letter_ratio
auxiliary_verb_frequency
verb_ratio
average_sentence_length
noun_ratio

negation_ratio

subjectivity
sentence_complexity
conditional_sentence_ratio
homonym_frequency
complex_ratio
lexical_diversity
adverb_ratio

burstiness
preposition_ratio
conjunction_ratio
direct_indirect_speech ratio
sentence_count

polarity

adjective_ratio
active_passive_ratio
simile_frequency
subjunctive_mood_ratio
exclamatory_sentence_ratio
question_ratio
interjection_ratio

Feature Importance for Random Forest Model

I
0.00

0.05

T T
0.10 0.15 0.20
importance

0.25

index-564_1.jpg
rr = =N
| = s =
Input Image Convolution Layer Pooling Layer — Output

Fully Connected Layer

index-556_1.png

index-31_1.png

index-30_1.jpg

index-32_2.jpg
Loss

Training loss for the first 5 epochs

Accuracy for the first 5 epochs

14]
124
1.0
0.8
0.6
0.4

024

0.04

—— Training loss
—— Test accuracy

1.0

—— Training accuracy
—— Test accuracy

T T T

10 12 14

index-572_1.jpg
Mel-frequency spectrogram

]
z
>
9
€
1]
3
T
L
&

Time (s)

index-32_1.jpg
Training loss for the first 5 epochs

Accuracy for the first 5 epochs

—— Training loss
—— Test accuracy

Accuracy

0.9

0.8

0.7

0.6

0.5

0.4

0.3

—— Training accuracy
—— Test accuracy

1.0

15 2.0 2.5 3.0
Epochs

40 45 50

1.0 15 2.0 2.5 3.0 35 4.0 4.5 5.0
Epochs

index-567_2.jpg

index-33_2.jpg
Training loss for the first 5 epochs

Accuracy for the first 5 epochs

091

—— Training loss
—— Test accuracy

Accuracy

0.95

0.90 1

0.85 4

0.80 1

0.75 4

0.70 4

0.65 4

0.60 1

—— Training accuracy
—— Test accuracy

10

4.5

15 20 25 30 5.0

Epochs

35 40

20 25 30

Epochs

10 15 35 40 45 5.0

index-33_1.png

index-520_1.png

index-500_1.png

index-539_1.png

index-536_1.jpg
Frequency

Histogram of GPT-Generated Text Length

Histogram of Human Text Length

120000 4
200000
100000 4
80000 4 > 150000
e
o
3
60000 o g
£ 100000
40000 4
50000
20000 4
0 0
0 0 100 200 300 400
GPT Length

Length

index-495_2.jpg
Score

10

0.8

06

0.4

0.2

0.0

— hccuracy
—— precision
— Pecall

20

40 60
Flipped Percentage (%)

80

100

index-498_1.jpg
Accuracy

Accuracy

Model
— SVM
— RF
— NB
—— MLP
—— GB
—— XGB
— LGBM
—— CNN
~—— MobileNet
DenseNet

Accuracy

index-497_1.png
10

08

06

Score

0.4

02

0.0

10

08

06

Score

0.4

02

0.0

— Accuracy
— precision
— Recall

10

0.8

06

Score

0.4

0.2

0.0

40 60

Flipped Percentage (%)

80

100

0 20 40 60 80 100
Flipped Percentage (%)

— accuracy
— precision
— Recall

08

07

06

05

04

Score.

03

02

01

0.0

— accuracy
—— precision
— recall

40 60
Flipped Percentage (%)

80

100

o 20 40 60 80 100
Flipped Percentage (%)

index-543_1.jpg
feature

negation_ratio
complex_ratio
sentence_complexity
conditional_sentence_ratio
verb_past_tense_frequency
burstiness
antonym_frequency
simile_frequency
subjectivity
homonym_frequency
average_sentence_length
imperative_mood_ratio
exclamatory_sentence_ratio
question_ratio
sentiment_polarity
verb_ratio

adjective_ratio
direct_indirect_speech_ratio
active_passive_ratio
stopword_ratio
lowercase_letter_ratio
interjection_ratio
conjunction_ratio
preposition_ratio
adverb_ratio

pronoun_ratio

noun_ratio
subjunctive_mood_ratio

Feature Importance for Lasso Regression Model

0.000

T
0.025

T T T T
0.050 0.075 0.100 0.125
importance

0.150

T
0.175

index-542_1.jpg
feature

homonym_frequency
lowercase_letter ratio
burstiness
average_sentence_length
verb_ratio

negation_ratio

noun_ratio
sentence_complexity
conditional_sentence_ratio
stopword_ratio

subjectivity
imperative_mood_ratio
direct_indirect_speech_ratio
adverb_ratio
adjective_ratio
conjunction_ratio
pronoun_ratio
complex_ratio
preposition_ratio
antonym_frequency
sentiment_polarity
active_passive_ratio
simile_frequency
verb_past_tense_frequency
subjunctive_mood_ratio
exclamatory_sentence_ratio
question_ratio
interjection_ratio

Feature Importance for Random Forest Model

0.00

T
0.02

T T T T
0.04 0.06 0.08 0.10
importance

0.12

index-544_1.jpg
Frequency

40000

Histogram of Original Text Length (0 to 600)

Length

Frequency

Histogram of GPT-Generated Text Length

100 200 300
GPT Length

index-1_1.jpg
Mark Stamp
Martin Jurecek Editors

Machine
Learning, Deep
Learning and Al
for Cybersecurity

@ Springer

index-23_1.jpg
(P cowz ({ waxeoolingzn () rlatten () vense

index-10_1.png

index-26_1.png

index-24_1.jpg

index-27_1.png

index-26_2.jpg
Loss

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Loss for the first 5 epochs

Accuracy for the first 5 epochs

—— Training loss
—— Validation loss

Accuracy

1.00 q

0.98

0.96 4

0.94 4

0.92

0.90 1

0.88 1

0.86 -

0.84 1

—— Training accuracy
—— Validation accuracy

3 4 5
Epochs

index-28_1.jpg
Loss

Loss for the first 5 epochs

Accuracy for the first 5 epochs

0.40 1

0.354

0.30

0.25 4

0.20 4

0.15 4

0.10 q

0.05 1

0.00 4

—— Training loss
—— Validation loss

Accuracy

1.000 A

0.975 1

0.950

0.925

0.900 4

0.875

0.850 4

0.825

0.800

—— Training accuracy
—— Validation accuracy

T T T

3 4 5
Epochs

index-482_2.png

index-482_1.png

index-483_2.png

index-483_1.png

index-480_2.png

index-480_1.png

index-158_2.jpg
Opcode Count Vectorizer Feature Vector
Sequence of length 20

Vector length = 20

index-158_1.jpg
Accuracy

Number of top Opcodes vs Accuracy
100 985 98.5 98.7_98.7 985 977 977 982 9624 96.8 978 978
80
60
40
20
Top 40 Top 50

Top 10

Top 20

Top 30
Number of top Opcodes

index-160_1.jpg
Opcode
data

Word2Vec model Feature Vector

Opcode
vectors

Vector length = 100 Opcode
sequence

Window size =5

index-159_1.jpg
Opcode TF-1DF Vectorizer TF-IDF feature Feature Vector
data from matrix of length 20
all files

No. of features = 20 Opcode
sequence

index-165_1.jpg
Tue Class

True Class

BHO

OnLineGames -

Renos -

VBInject -

Winwebsec -

BHO

OnLineGames -

Renos -

VBInject -

Winwebsec -

0 0.02 0

08
06

0.01
04

0.01
-02

0.01
' ' ' 0 -00

BHO OnLineGames Renos VBInject Winwebsec
Predicted Class
(a) Baseline
003 0 003

08
06

0
04

0
-02

o
-0.0

| ' ' '
BHO OnLineGames Renos VBInject Winwebsec

Predicted Class.
(c) Vector Length = 20
BHO
OnLineGames -
S Renos - 0.02
@
5

VBlnject - 0.01

Winwebsec - 0.02

| D ' '
BHO OnLineGames Renos VBInject Winwebsec
Predicted Class

BHO

OnLineGames -

Renos -

Tue Class

VBInject -

Winwebsec

BHO

OnlLineGames -

Renos -

Tue Class

VBlnject -

Winwebsec -

0 0.02

(e) Vector Length = 100

)) 021 08
07

) 002 0
06
05

026)) 022

04
) 009 023 ea
-02
0 008 025 -01
-00

D ' ' .
BHO OnLineGames Renos VBInject Winwebsec
Predicted Class.

(b) Vector Length = 1

0 0 003
08
0.6
0.04

04

0
-02

0
-00

| D ' '
BHO OnLineGames Renos VBInject Winwebsec
Predicted Class

(d) Vector Length = 50

08
06
04
-02

-00

index-494_1.jpg
Score

08

06

0.4

02

0.0

10

Flipped Percentage (%)

Flipped Percentage (%)

— Accuracy — Accuracy
— precision — precision
— recal — recall
08
06
g
5
&
04
02
00
o 20 40 60 80 100 20 40 60 80 100

index-161_1.jpg
Opcodes

Opcodes

GCN

GCN

index-486_1.png

index-167_1.jpg
Fue Class

Tue Class

BHO 0 0 001 001
08
OnLineGames - 0 001 004 004
06
Renos- 0 002
-04
VBlnject - 0.01 01
-02
Winwebsec - 0.01 003
| b i ' -00
BHO OnLineGames Renos VBInject Winwebsec
Predicted Class
(a) Baseline
10
BHO 0 0 0
08
OnLineGames - 0 0.08 0
06
Renos - 0.07 0 0.04
-04
VBInject - 0.03 0.09 0.06 011
-02
Winwebsec - 0 011 0.06 0.08
-00

| D ' '
BHO OnLineGames Renos VBInject Winwebsec
Predicted Class

(c) Vector Length = 20

OnLineGames -
@
2
o Renos- 0
@
&
VBlnject - 0

Winwebsec - 0

| | ' |
BHO OnLineGames Renos VBInject Winwebsec

BHO 0 o 0
08
OnLineGames - 0 002 0
] 06
s
': Renos - 0 019 004
5 04
VBInject 0 0.06 0.09
-02
Winwebsec - 031 031 0 011 028
| 0 i 0 i -0.0
BHO OnLineGames Renos VBInject Winwebsec
Predicted Class
(b) Vector Length = 1
BHO 0
08
OnlLineGames - 0
0.6
i
3 Renos - 0.07
& 04
VBlnject - 0 003 014
-02
Winwebsec - 0 0.06 0.06
' ' ' 0 -00
BHO OnLineGames Renos VBInject Winwebsec
Predicted Class
(d) Vector Length = 50
0 0 01
08
06
-04
-02
0.06
-00

Predicted Class

(e) Vector Length = 100

index-495_1.jpg
Score

10

08

0.6

04

0.2

0.0

— Accuracy
—— precision
— Recall

Score

1.0

08

06

0.4

02

0.0

— hccuracy
— Precision
— Recall

o 20 40 60 80

100
Flipped Percentage (%)

o 20 0 60 80
Flipped Percentage (%)

100

index-166_1.jpg
Fue Class

TFue Class

BHO

OnLineGames -
Renos - 001
VBinject - 002
Winwebsec - 0.01

Bl:lo ml.ine’Games Rm:ms
Predicted Class
(a) Baseline
BHO
OnLineGames -
Renos- 0

VBinject - 006

Winwebsec - 0

BHO OnLineGames Renos VBlnject Winwebsec

Predicted Class

(c) Vector Length =

Tue Class

0 0.01 0

'
VBInject Winwebsec

20

OnLineGames -

Renos -

VBlnject -

Winwebsec -

BHO 0 018
08 08
OnLineGames - 0]
06 " 06
=
o Renos - 007 015
04 © -04
VBInject - 014 014
-02 -02
Winwebsec 0.06 0.06
-00 ' ' " " -0.0
BHO OnLineGames Renos VBInject Winwebsec
Predicted Class
(b) Vector Length = 1
10
BHO 0)
08 08
OnLineGames -
06
g 06
v Renos- 0
v
-04 & -04
VBinject - 0.06
-02 -02
Winwebsec - 0
-00 ' D " ' -00
BHO OnLineGames Renos VBInject Winwebsec
Predicted Class
(d) Vector Length = 50
0 001 001
08
0
06
001
-04
0.02
-02
0.02
=00

| ' ' '
BHO OnLineGames Renos VBInject Winwebsec
Predicted Class

(e) Vector Length = 100

index-494_2.jpg
Score

05

0.4

03

02

01

— Accuracy
— Precision
— recall

o 20 40 60 80
Flipped Percentage (%)

100

index-147_1.png

index-117_1.png

index-157_1.jpg
Opcode

OPCODE FREQUENCY

17.9

0.0

2.5

5.0

7.'5 10I.0
Percentage of total

index-441_6.jpg

index-441_5.jpg

index-441_8.jpg

index-441_7.jpg

index-441_4.jpg

index-92_1.png
Average Fl-5core

1.00

095 {

0.901

0.85

0.80

0.754
B Unbalanced

0.70 0 Undersampled
B Oversampled
B Hybrid-sampled

Random Forest
Models

index-479_2.png

index-93_2.png
Average Fl-5core

1.00

0.95

0.90

0.85 4

0.80

0.75

0.60

0.551

0.50

Models

B Unbalanced
I Undersampled

mmm Oversampled
B Hybrid-sampled

Random Forest

index-93_1.png
1.00

0.95

0.90

Average Fl-5core

0.80

Models

B Unbalanced
0 Undersampled
B Oversampled

B Hybrid-sampled

Random Forest

index-451_1.png

index-98_1.png

index-441_9.jpg

index-94_1.png
Average Fl-5core

1.00

0.95

0.90

0.85 4

0.80

0.75

0.60

0.551

0.50

Models

B Unbalanced
I Undersampled

mmm Oversampled
B Hybrid-sampled

Random Forest

index-111_1.jpg

index-479_1.png

index-102_1.jpg
Output

Max Pooling Convolutional Max Pooling
Layer Layer Layer

Convolutional
Layer

Fully
Connected
Layer

Input

index-478_1.png

index-43_1.png

index-34_1.jpg
Loss

Training loss for the first 5 epochs

Accuracy for the first 5 epochs

124

—— Training loss
—— Test loss

Accuracy

1.00 {

0.95 4

0.90 4

0.854

0.80 1

0.754

0.70 4

0.65 4

0.60

—— Training accuracy
—— Test accuracy

Epochs

index-68_1.png
Extract top 40 occurring

opcodes in dataset and

calculate proportion in
each file

Split training/test set

Training set

I

I l

}

Unbalanced

Undersample +

Undersample Oversample

Oversample/GANs

Classifiers

index-66_1.png

index-435_1.png
EUEEICIBHAAER
FINEECEAREA

ANEEBCI\EMEEA
ol RI3]1s1617]3] 7
ol/121»1 1516121217

index-429_1.png

index-440_1.jpg

index-439_1.jpg

index-200_1.jpg
0
lteratio, 100 200

300

(a) AUC

51015505, 55 5

lteratioy,

100 3
200 500 25

(b) SVM accuracy

o
N
SVM Accuracy

o
o
A

index-198_1.png
>core

—22000

~24000

-26000

—28000

-30000

-32000

—34000

winwebsec Mean

—— winwebsec m=0
—— winwebsec m=0.4

0 2 4 6 8 10 12 14

Iter

(a) Winwebsec

zeroaccess Mean

Score

-15000

-17500

=20000

—22500

=25000

27500

—30000

-32500

Zbot Mean

—— zbot m=0
—— zbot m=0.4

0 2 4 6 8 10 12 14

Iter

(b) Zbot

-22000

—24000

26000

Score

—28000

=30000

—32000

—34000

—— zeroaccess m=0
—— zeroaccess m=0.4

Iter

10 12 14

(¢) Zeroaccess

index-201_1.png
Number of Files

2500 A

2000 A

1500 A

1000 A

500 A

Families

index-441_3.jpg

index-200_2.jpg
5000
1000 T
500

0
Itara, 20 100
“erations'*® 200 500 100

(b) SVM accuracy

SVM Accuracy

o
o
A

-0.1

100000

50000
10000

index-441_2.jpg

index-202_2.png
0.251

0.20 1

0.151

RUERICT]

0.101

0.05 1

0.00

Opcodes

index-202_1.png

index-204_1.png
AUC

0.6 -

0.4

0.2 A

0.0 f==== == e e e oo

T T T T
100 125 150 175 200 225 250 275 300

lterations

VBInject
Winwebsec
Renos
OnLineGames
Startpage
VB

Vobfus
Ceelnject
Lolyda.BF
Zbot
FakeRean
Agent
Wintrim.BX
Allaple.A
Cycbot.G

index-440_3.jpg

index-203_1.png
A >core

10000

—10000

—20000

—30000

—40000

T

50

T
75

T T T T T T T T
100 125 150 175 200 225 250 275 300
Iterations

index-440_2.jpg

index-205_1.png
aAUC

0.03 1

0.02

0.01 1

—0.01 +—

75

100 125 150 175 200 225 250 275 300
Iterations

VBInject
Winwebsec
Renos
OnLineGames
Startpage
VB

Vobfus
Ceelnject
Lolyda.BF
Zbot
FakeRean
Agent
Wintrim.BX
Allaple.A
Cycbot.G

index-441_1.jpg

index-204_2.png
0.014
0.73
0.012
0.72 0.010
0.008
o
§ 0.71 E
< 0.006
0.70 0.004
0.002
0.69 —— no momentum
—— nesterov=0.4 0.000 F===mmmmmmmmmmmmme e CCCCCoCo—======= -
0 25 50 75 100 125 150 175 200 225 250 275 300 0 25 50 75 100 125 150 175 200 225 250 275 300
Iterations Iterations

(a) AUC (b) AAUC

index-440_4.jpg

index-196_1.png
20000

—22000

24000

—26000

Score

—28000

=30000

32000

—34000

winwebsec Mean

zbot Mean

-15000

=17500

—~20000

=22500

Score

=25000

=27500
—30000
—— winwebsec m=0 -32500 —— zbot m=0
~—— winwebsec m=0.4 ~—— zbot m=0.4
100 200 300 400 0 100 200 300 400

Iter

(a) Winwebsec

Iter

(b) Zbot

zeroaccess Mean

—20000

22000

—24000

~26000

Score

-28000

~30000

-32000

—34000

—— zeroaccess m=0
~—— zeroaccess m=0.4

0 100

200

300
Iter

400

(¢) Zeroaccess

index-379_1.jpg
W (6x1x5%5) W (16x6x5x5)
B (6) ceil_mode = 0 B (16) ceil mode = 0
dlations = 1.1 el kernel shape = 2. 2 dilations = 1, 1 e kernel_shape = 2.2 shape (2)
20x1x28x28 kernel_shape = 5,5 pads = 0,0,0,0 kermel_shape = 5,5 pac 0.0.0 allowzero = 0
pads = €.0.0.0 strides » 2.2 pads =0,0.0.0 strides = 2.2
strides = 1, 1 strices = 1,1

Reshape

B (120x256)
€ (120)
transB = 1

B (84x120)
C (84)
transB = 1

B (10x84)
€ {10}
transB = 1

index-382_1.jpg
——
=

requires_grad_
depth:1
to
depth:1

oo [[
o

:
o

e

LSTM (m:miza):zx(a;mlm)

depih:1 @0, 28, 64), 2x (3, 20, 64)

getiem
e

index-380_1.jpg
w [e [
depth:1 (2, 20, 100)

detach
depth:1

RNN (20, 28, 28), (2, 20, 100)
depth:1 (20, 28, 100), (2, 20, 100)

ey
depth:1 (20, 100)

index-187_1.png
Ixsl
€.0=m 0000I=T YS=M YS=U1

91022 1165M
[000SS—
[0008E—
[00085~
El
3
S
F 00085— ~
0000E—
| 000SE~
O=muinsmorn =
£.0=muinamom ——
[N 00 00 001 0
93l
€.0 = v 91022 (9)
IxaT
€.0=m 0000I=T YS=M YS=1
opnsrd nssM
£.0=muinamom ——
ooar
000t
ooz
o]
3
S
&

00e-

000I-

oocI—

0008~

0o» 00g 0os 0oL
RE |

€.0 = wv 91022A (1)

Ixal
2.0=m 0000I=T YS=M <=4
51032 1165M

O=rmuinsrom ——
2.0=muinsmom ——

00 00g 00S 00L
191l

.0 = s 91022 (d)

IxaT
2.0=m 0000I=T YS=M TS=U
spnsrd nssM

2.0=muinamom ——

00» 00€ 00< 0oL
191l

¢.0 = v 51022A (9)

0008S—

000pS—

0003S—

00088—

0000€~

0008€—

000<

ooor

000L-

000S—

000€—

000k

2cols

2coLe

Ixal
€.0=m 0000I=T YS=M V<=1
51032 1165M

O=muinsrriomm ——
R.0=muinsmom ——

0op ooe 00S 00L
RE]

Q.0 = s 51022 (8)

1xal
€.0=m 0000I=T YS=M Y<=U1
apnend nesM

R.0=muinsmorm ——

oo 0ot 00S 00L
RE]

Q.0 = v 91002A (b)

00288~

00028~

002vs—

0000€~

00esE~

000cE~

002vE

000S

0008—

0004

0000—

0008—

00001—

ScoLe

ocoL6

index-189_1.jpg
Mean Score Change

Text
N=27 M=27 T=1000 m=0.9

101

skip=25
skip=35
skip=50

skip=100
skip=200

.|
500

g1 1111

g i T 5
0 100 200 300
Iterations

index-419_1.png

index-188_1.jpg
=22000

—24000

—26000

—28000

=30000

—32000

Text
N=27 M=27 T=10000 m=0.5 100 iters
Mean Score

—— momentum=0
~—— momentum=0.5

Score

2000

1000

—1000

—2000

-3000

-4000

lext
N=27 M=27 T=10000 m=0.5 100 iters
Mean Change

—— momentum=0.5

0 10 20 30 40
Iter

(a) Score

[10 20 30 40
Iter

(b) AScore

index-406_1.jpg
Local Model Training

Local Model Update

Local Model

Update

New Global
Model

Aggregated
Parameters

Local Model Training

0%

Information Leakage

Membership Inference
Feature Inference
Data Reconstruction

Model Inversion

index-191_1.png
Score

-1000

—2000

-3000

—4000

-5000

lext
N=2 M=27 T=10000 m=0.5
Mean Change

lext
N=2 M=27 T=10000 nesterov=0.5
Mean Change

—— momentum=0.5

Score

-1000

-2000

-3000

—4000

5000

—— nesterov=0.5

100 200 300
Iter

(a) Momentum-BW

400

100 200 300 400
Iter

(b) NAG-BW

index-190_1.png
Ixsl
€.0=vo1siesn 0000I=T Y<=M TS=1

51002 n6sM
O=munsmom —
£.0=vostesn ——
oon 00€ 008 001

REH]

€.0 = v 91022 (92)

IxsT
€.0=vo15125n 0000[=T YS=M Y<=U1
9pnsnd nssM

000SS—

0008~

0000S—

0008S—

0000€—

000SE-

£€.0=voisfesn ——

000S

000L

000I-

000S—

008 00€ 00< o0or
1991

€.0 = my 91022A (1)

2cos

2cole

Ixsl
2.0=vo1siesn 0000I=T Y<=M TS=1
51052 n6SM
0008S—
000AS—
00035~
")
g
00085— ®
0000€—
000SE~
O=muinsmom ——
2.0=voistesn ——
T T r r 000hE~
00p 00 008 oor 0
19l
IxsT
2.0=vo153251 0000[=T V<=M Y<=U1
opnsnd nssM
2.0=vosfeon —
000S
0
@
3
®

000S—-

000p—

00» 00€ 00S 00r 0
1991

¢.0 = w1 91022A (9)

Ixsl
@.0=vo1st29n 0000L=T YS=M YS=1
91002 n6sM

0=muinsmom —
e.0=vowstesn ——

00» 00€ 00S oor
101l

Q.0 = w 91024 (8)

IxsT
@.0=vo1s32on 0000[=T YS=M TS=1
spnsrd nesM

e.0=voisfesn ——

00p 00€ 00S 0oL
9l

Q.0 = mv 91022 (b)

0028S—

00028~

00278~

0000~

002SE~

0002E~

002VE—

000

000S-

000p—

0003—

0008—

0000I—

000SI-

000pL—

Scole

>coLe

index-422_1.jpg
[Funded by
LN the European Union

index-193_1.png
Score

>core

22500

=25000

=27500

=30000

32500

=35000

=37500

—40000

—28000

=29000

=30000

-31000

=32000

-33000

Plateau
N=27 M=27 T=10000 Skip 0
Mean Score

Plateau
N=27 M=27 T=10000 Skip 0
Mean Change

~—— momentum=0.9

5000

2500

2 2500
5
@
-5000
=7500
—— momentum=0.0 —10000
—— momentum=0.9
100 200 300 400 100 200 300 400
Iter Iter
(a) Score (N =27) (b) AScore (N = 27)
Text Text
N=2 M=27 T=10000 m=0.5 N=2 M=27 T=10000 m=0.5
Mean Score Mean Change
—— momentum=0.5
0
-1000
o —2000
5
@
—3000
4000
~—— momentum=0
—— momentum=0.5 5000
100 200 300 400 0 100 200 300 400

Iter

(¢) Score (N =2)

Iter

(d) AScore (N =2)

index-393_1.jpg

index-192_1.jpg
Mean Score Difference

2000

1000

-1000

—2000

-3000

Momentum = 0.5

100 200 300
iters

(a) Momentum-BW

Mean Score Difference

3000

2000

1000

-1000

-2000

—3000

Nesterov = 0.5

100

200 300
iters

(b) NAG-BW

index-390_1.png

index-194_1.jpg
Score

=21000

—22000

=23000

—24000

—25000

26000

=27000

—28000

Plateau

N=27 M=27 T=10000 Skip 1, 50-100
Mean Score

—— momentum=0.0
~—— momentum=0.9

Score

Plateau
N=27 M=27 T=10000 Skip 1, 50-100
Mean Change

7000

6000

5000

4000

3000

2000

1000

—— momentum=0.9

100

200
Iter

(a) Score

300

400

100 200 300 400
Iter

(b) AScore

index-403_1.jpg
Federated Learning with Backdoor Trigger
[of iz

d" Label 5

Local Model
Update

Label 8 4
Label 4 ®

Poisoned Local
Model Update

New Global Model

Global Model

index-193_2.png
Score

—22500

=25000

=27500

=30000

-32500

~35000

~37500

—40000

Plateau
N=27 M=27 T=10000 Skip 50-100
Mean Score

Plateau

N=27 M=27 T=10000 Skip 50-100

Mean Change

—— momentum=0.0
~—— momentum=0.9

100 200 300 400
Iter

(a) Score

Score

5000

2500

=2500

-5000

=7500

—10000

—— momentum=0.9

100

200 300
Iter

(b) AScore

400

index-400_1.jpg
Federated Learning with Label Flipping Attack

f Labe”% i Local Model
. .-Label5§ u
“Labellé

e

‘\‘Iahdous Client
. Fl EY v-ve 7
: a Label 8

W Label-l;

New Global Model

Prediction
Global Model bl

Label 8

—————— Label 0

index-172_1.png

index-168_1.jpg
GNN models vs Accuracy

=3
3

Accuracy

IS
S

9L1 =&
87.3 mm cosace
84.7 853 o34 8.7 84.7
79.6 80.8
75.9 76.8
73.8
60.2

Base Model Word2Vec (Vec size =1) Word2Vec (Vec size =20) Word2Vec (Vec size =50) Word2Vec (Vec size =100)

GNN models

index-350_1.jpg
snosabuep
@ ©

1.0
0.
0.0
12
10

3]
. o " 8
8
a8
s
. g
g - =1
'3 -~
o
8
8
<
S
8
o
~ - o - o
wiad |e30) wizd[e30)
10j @neA dvHS 10§ anjen dvHS
snosabuep ojuishs
o) o n o
- - @ © < ~ =i S S
———
. o . o
] 8
8 8
. .
" = ewe g
. = . . —
.)
. - . -
: 8
|
8 m 2
]
™ i
—~
< < <
=
8 |
o o
. - - -
S v e v 2 wvw 9 w < L} o~ =} e - ~
N A 4 S S 6 o o q§ S S c = < <
wiad |e30} uwuad |eyoy

10} @2n|eA dVYHS 10} an|eA dyHS

total_perm

(d) MLP

total_perm

(¢) Random Forest

index-349_1.jpg
0.0

15 2 3
(d) MLP

10
dangerous

5

20

15

10
dangerous

(¢) Random Forest

- S o NOLLYD0T 3S4Y00”§5300V
— S b= S o
-. - oamee .
J]

Bfess " 'z s e
a0 3 z. o @0 o oo e .
—e oo S a o @n cocmmmie

o cmm——— o> . cesemm— -
[25 M oo enemeam—————
s o oo mmmamemm o oo
.o =
n
°
@ 2 2 § 3 T
snosabuep snosabuep
10J 3N|BA dVHS 10j @njeA dvHS
- - JAdvapisuisaly
- NOILYDO1 mmM(OU SS300V o m m m M m
p S o o e L I
o e cmme oo o oo
. : m .
— -
e s o
—— W W
————s
Sl anEEESaEEm——E 00 Wm0 88 o S5
%8
=
=
. n
°
& 3 < [l a8 & 2 2 8 8 8§ 2 & §
! ! S 6 8 6 S o © o o
snosabuep T T T T
10 3N[EA dVHS snosabuep

10} 3N|eA dVHS

index-284_1.jpg
100

80

60

40

Detection Rate

20

80

@
3

Detection Rate
»
S

N
>

FPR: 10.0% 100 FPR: 5.0% FPR: 4.0%
80 80
))
3 60 260
4 4
c <
-4 3
g 40 ga0
©]
a a
20 20
—— benign —s— benign —— benign
—+— malware —+— malware —+— malware
—— mixture o] —*— mixture 0] —* mixture
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Contamination Rate Contamination Rate Contamination Rate
FPR: 3.0% FPR: 2.0% FPR: 1.0%
80
80
o 460
T]
< 4
< <
s S
Sa0 G40
@ @
a a
20 20

—— benign
—— malware
—— mixture

—— benign
—— malware
—— mixture

—— benign
—— malware
—s— mixture

0 20 40 60 80
Contamination Rate

100

0 20 40 60 80
Contamination Rate

100

0 20 40 60 80
Contamination Rate

100

index-283_1.png
AMG-random (GBDT)

ExtendDOS (MalConv)

FGSM (MalConv)

1.00 1.00 1.00
—— benign —— benign —— benign
0.95/ — malware 0.95] — malware 0.95 — malware
0.90 0.90 0.90
0.85 0.85 0.85
o « <
> 0.80 & 0.80 & 0.80
0.75 0.75 0.75
0.70 0.70 0.70
0.65 0.65 0.65
06800 005 010 015 020 o025 030 800 005 o010 015 020 025 030 *%Boo 005 0lo 015 020 025 030
FPR FPR FPR
1.00 FullDOS (MalConv) 1.00 GAMMA (MalConv) 1.00 MAB-Malware (GBDT)
—— benign —— benign —— benign
0.95| — malware 0.95] — malware 0.95] — malware
0.90 0.90 0.90
0.85 0.85 0.85
o« « I
> 0.80 & 0.80 & 0.80
0.75 0.75 0.75
0.70 0.70 0.70
0.65 0.65 0.65
%% 005 010 015 020 025 030 %00 005 o010 015 020 025 030 *%B00 005 010 015 020 025 030
FPR FPR FPR
1.00 MAB-Malware (MalConv) 1.00 PartialDOS (MalConv)
—— benign —— benign
0.95, — malware 0.95] — malware
0.90 0.90
0.85 0.85
o «
& 0.80 & 0.80
0.75 0.75
0.70 0.70
0.65 0.65
06800 005 010 015 020 025 030 800 005 010 015 020 025 030

EPR

EPR

index-292_1.png

index-285_1.jpg
1PR

0.95 1

0.90

0.85 1

0.80 1

0.65

0.60
0

—— benign
—— malware
—— mixture

.00 0.5

0.10

0.15
EPR

0.20

0.30

index-298_1.jpg
Training Subset

. File Size

<10/ % =10

‘ Entropy E]

Training Subset

’ File Size

<10/ =10

‘ Entropy m

index-372_1.jpg
Normalized F1 Score

Scatter Plot of Loss vs F1 by Clients and Attack Type

Client Type
Honest Clients
Label Flipping
Model Poisoning
‘GAN Reconstruction

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Loss

index-297_1.jpg
Hyperplane

index-368_1.jpg

index-300_1.jpg

index-378_1.jpg
20x1x28x28

Flatten

Gemm

B (128x784)
c (128)

Gemm

B (64x128)
€ (64)

Gemm

B (10x64)
c (10)

20x10

index-299_1.jpg
Compute Compute Compute Compute
Residuals Residuals Residuals Residuals

(r1) (r2) (ri) (Tin)

E (X)=F,_,(X)+ anh,,(X,7m-1)

index-373_1.jpg
10

0.8

Normalized F1 Score

0.2

0.0

10

08

°
B3

Normalized F1 Score
°
S

02

00

Robust covariance

0.0 0.2 04 0.6
Normalized Loss

Isolation Forest

08

10

0.0 0.2 0.4 0.6
Normalized Loss

08

10

Outliers

Inliers.

Outliers

Inliers

1.0

0.8

4
Y

Normalized F1 Score
o
=

0.2

0.0

1.0

0.8

°
o

Normalized F1 Score
°
2

0.2

0.0

One-Class SVM

0.0 0.2 0.4 0.6
Normalized Loss.

Local Outlier Factor

08

0.0 0.2 0.4 0.6
Normalized Loss

Outliers

Inliers.

Outliers

Inliers

index-311_1.jpg
Cross-validation score

0.976 ' —$— Cross-validation scores

0.974

0.972

0.970

0.968

0.966

T

——=- Optimal num

Number of features vs. Cross-validation scores

ber of features

/)

\|/]

10

20

40 50
Number of features

60 70 80

index-352_1.png
100]

' =>SINNOJDY L3D)

200 _ . - [___000] »=wo
901 ..m.wwaﬂ-_ﬂﬁ anig aN.o” =>TrE SAS M Jaxog
m.m oH ..ﬁéb\g 9€°0- => powrydy 000] baisws
o oy m—
€ = = o 550 290 00'T [semwosuey
80'0- SNOLLVZINLLAO ANELIVE TIONOI LSANOMY b00 = MY SAIVIS S 2ONDI L5370
anfep amgeay deepy defe]y LON aremuosuey aremwosuey JON saniiqeqoid uondipaig
100 _ _
" =>SINNOJDY 13D 8L°0-=> SINS aQvIy
[—

8L0- SWS Qv
680~ SIS IAIEDMY]

£00- < udsy

109f

" => SINS"IAIZOTY]

=2 SINS IAIZOTY]
107)
 SMSVL 139> T80

— R
—

wl o _ 100l
vL0- “NATLNOOIN > 19°0- 170 => sweun) [_000] aby
: = _ 109) __ 109 00T [] 2remuwosuey
£9°0- ANOHd TIVD *=> SN FAIZDTY £9°0- => NOHd TTvDl
anjep armesy SeISINS SAISINS ION aremwosuey aremwosuey LON saniiqeqosd uonipasg
600 _ _ _
[“Wav 2013 ang OV INVISTY
oo " e _ 000] 240
60°0- => 1easis wesar [60°0- => [Teas s weisas 300] 10miueg
010 ? L___000]
- [“no¥oNoveE T TTIEISSI00Y aNIg 000] Swsdois/ysndiry
HOIANES ALITIEISS €0 50_ T 000] by
44V ONGAq 1S OLLVJIIION aNIg > dév O1gad 135 01 e sremaosumy
DVIOVd TIVLSNI ISHNOXY] b0'0- => uisT “IVISNI 1S3N0TY. =
SaISINS SeISINS ION aremwosuey aremwosuey TON saniqeqoid uondipaig
» - _ 5o
90'1-=> SIS ANS| 90'1- => SINS NS
90T [~ OdNOD IONVHD o] sra
TS ~ e - 20
90°0- HIVLS ITaVNE INSNOdNOD FONVHD) 070~ => uasT] ! uaby
0 e e |
= — =] 200] deew
80'0- SNOLLVZINLLAO ANALIVE TMONSI ISANDTY] SHONO! 1531 B | Em_ESm..s_
00 SEOVIDVA TIVLSNI LSHNOTY 700 => WVeE SNIVIS IVISND 1S3N0TE
sanqeqoxd uonatparg

anjep armeay dereiy defe]Ny LON aremwosuey aremuwrosuey TON

index-308_1.jpg
-10
-os
-06
-0a

M- 244 jq0"3dA T4
- wediayy Adonua
- orsuag Adonu3

M- aweud) Adonu3

- 19 Adona
B wediayy unoojoquiks
£ B s wnoioquis
aWweNal 1uN0310quiAS
- SweuG0152:10 Junoioquis
- Urewoq WwnoJjoquiks
- Tun unodjoquis
- hesouy Sewiaqun
- awenaj eyiaqun
BE- cuonomons swasaun
- urewioq a1eniaquiny
= Tun siewsaquiny
uno3 sanat
wed sauiap
8- uiewoq sarewip
- unsey>ds
- odeuen sauanoTun

- (26U3TPIOMISIBUCT SUAWNGAy
U TPIONISIBUCT AI01211-ns
IWE- yI6uaTpIoMISaBUOT ey
BB y6ua1piomIsabuoy uiewog
B wibuauaoLiedisabuol
B 2un0d1an37 AI3n0.
[B- JunosenaT UoIsuaYG
- Juno>ieueT sweualy
I unodieua1kioaia

M- 1uno>_1aua/ 150y

ENEE CEESEEET EEEEE EEEE- sevlnunuodispeeyy
- weNureLIOQUISSIPPYUIS!
- TUNUISI1004012qWinN

Correlation Matrix

W- oiqeinooe
- oneyyiedbie
[M- oneyurewoqyied
B onepnurewop
B- oneyuewoqtie
eyinbiy
- oneyhinned
warbay
B oo s
B uauwenal
B uaigans
- ybuied
(B wbuajuewop

I B}
- 2>edwodsey>
- sipmondwodse
I EEEEEE])
i3juayoupedbAe
ijojutewop6uo|

=
)
ERE A

I Im| u
RAn W, B, AAAN RRRREARNARN mRRRAR
oLl L W, ARNNNAN, N n, W i e LI L B DL LT
SEESSSESY R g e e o R e P TR P TR P
B5523859g R ES S Be S g S R EE R 25555555555 5558500080 R 5 REESSSEESRES
323558 55 ERECI U PR H EEA e T W I P e
25288 £5 s g € QES® Y8858y Hld'e OOJBZEEESE SSEZEESL9R0EEERS
££559 2 §82 220gEESEST Mrreeeiiueas E83EfSeEe05332 £
£88%° © 2 Eps8 0CEsEESERTE2R002G 3 938,55 55,009 &
§ %% 3887 EopoT¥55oE88855: £3effesass

359 OE8 sTf ooy © 2855 A8tet

35 §5885 2 2965

2 £°%e £ €

8 w.w, 2 &
)

index-350_2.jpg
higher = lower

Dase value 1x)
11 5.1 4 8.00

9.1

)))-_—_

FilesinsideAPK = 482 K&:Ess,comss‘l_oo\nw =1 dangerous = 5 total_perm = 15 sysinfo = 0

index-356_1.png

index-353_1.png
901~

890 d
190 SIWHLSASHTIY INNOWNN LNNOW|
67°0- SANVININOD VILXH NOLLVOOT SSHOOV|
S¥0- [

NELSASHT INNOANN INNOW]
YAIVATIVAL aNIg|

YIIVATIVAY LES|

ST IVINNOA INNOW|

SINS (NS
MAIVATIVA ANIg

$0°0-
€00
£0°0-SNOLLVOI'TddV QH¥MYHAHEd LES
anfep ameaj

o0
“I¥DIAILON $SIIOV
SPISINS S2ISINS LON

100)
780~ => Quondia3)
100}
0670 => s wosno)
_ w0l
£9'0- =>INOHd TIVD)|
100
“N00JY 139> 1870
10|
= SINS IATDTY!

derepy dereN TON

500

I L¥ITY NALSAS
600

OVIOVd LMVISTY
ST0

[TTI9ISSIODY aNIgd
750

> dav ongad 13s

990
“IVISNI 1S3N0TY
sremwosuey sremwosuey TON

8€0_
" FHOVD AIITEQ
)
[~ TVISNI 153n0TY
s
> ddv ONgaa L3S
asremwosuey aremwosuey TON

_500)
907T-=> SINS ANZS]
L00)
§0°0 < 3ZISAT,
. L00)
“INNOWNNA INNO]
L0
OLI¥D0T 5300V
600

I = SN FAIEOTY
1ogyueg jogUed LON

_ oy

8L°0-=> SIS Qv |
w

YIS M IONVHD)
£0°0]

“N0JJV 13D > 1870
~ e

~INNONNNINNON]
<00)

= SINS IATIDTY!

logueg logyued LON

550
H ¥3dVdTIVAL L3S

ogyueg jogyued TON

_ 00
90'T-=> SINS” NS
1900 _
AIAVITTVA aANIE

logyueqg logyued LON

— P
—
-
-

oo [eves

sauinqeqosd UoRaPasg

[_so0] w0
[Zo0] webv
[__»T0[] asemwosuey

s3nIqeqoid uondIpalg

[0 w0

[000] Swsdois/ysndiry

000 wsby

[_Tco L] oremuosuey
s{O] owtues

sauiqeqoid uondtpasg

[_5o9] =wo
——r
—— LN
—— P

s T w1

sanIIqeqosd uondtpaid

index-205_2.png
aAUC

0.03 1

0.02

0.01 1

0.00 +=

—0.01+

Iterations

VBInject
Winwebsec
Renos
OnLineGames
Startpage
VB

Vobfus
Ceelnject
Lolyda.BF
Zbot
FakeRean
Agent
Wintrim.BX
Allaple.A
Cycbot.G

index-210_1.png

index-206_1.png
Balanced Accuracy

84.6

84.4

84.2

84.0

83.8

83.6

83.4

83.2

0.5
®
=04
9
e
E
g
g 03
o
I
5
So02
@
<
0.1
= no momentum
~—— nesterov=0.4 0.0 F====
T -
0 25 50 75 100 125 150 175 200 225 250 275 300 0 25 50 75 100 125 150 175 200 225 250 275 300

Iterations

(a) Accuracy

Iterations

(b) AAccuracy

index-227_2.jpg
F1 Score

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

B 77 Kernel B 7Zphi Kernel RBF Kernel

500/100 1000/200 2000/400 4000/800 8000/1600
Dataset

index-227_1.jpg
F1l Score

N 77 Kernel EEm ZZphi Kernel RBF Kernel

0.8
0.7
0.6
0.5
0.4
0.31
0.2
0.14

500/100 1000/200 2000/400 4000/800 8000/1600
Dataset

index-259_1.jpg

index-232_1.png

index-281_1.jpg
Detection Rate
v o
s 3

IS
S

w
S

Detection Rate
N W oA o
s &8 & &

=
o

FPR: 10.0%

FPR: 5.0%

FPR: 4.0%

- 80
70 70
— 60
k-1 kil
& &
§50 §%°
g g
a0 g0
30 30
—— benign 20/ —— benign 20 —— benign
—— malware —— malware —— malware
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Contamination Rate Contamination Rate Contamination Rate
FPR: 3.0% FPR: 2.0% FPR: 1.0%
70 60
60 50
@ @
Y50 8
& 840
§ §
40 30
g g
a8 a8
30 20
20 10
—— benign —— benign —— benign
—— malware 0] ™ malware —— malware
o
0 20 40 60 80 100 0 20 40 60 80 100 [20 40 60 80 100

Contamination Rate

Contamination Rate

Contamination Rate

index-268_1.png

index-282_1.png
80

o
3

Detection Rate
»
3

20

Detection Rate
2N oW s ow
s 3 8 & &

o

FPR: 10.0%

FPR: 5.0%

FPR: 4.0%

—+— benign
—+— malware

—— benign
—+— malware

—+— benign
—+— malware

70 70
60 60
2 i}
S50 350
< <
a0 40
g 8
4 g
30 &30
20 20
10 10
0 0
0 20 40 60 8 100 20 40 6 8 100 0 20 40 60 8 100
Contamination Rate Contamination Rate Contamination Rate
FPR: 3.0% FPR: 2.0% FPR: 1.0%

—— benign

—— benign

—— benign 70 60
—+— malware —+— malware —— malware
60 50
50
g g
& 2%
T 40 c
s s
g g0
230 2
g g
o o 20
20
10 10
0 0
0 20 40 60 80 100 20 40 60 80 100 0 20 40 60 8 100

Contamination Rate

Contamination Rate

Contamination Rate

index-319_1.jpg
urlLen

domain_token_count

Idl_url

NumberofDotsinURL
argDomanRatio
avgdomaintokenlen
delimeter_path
SymbolCount_Directoryname
spcharUrl

tid

NumberRate_FileName
URLQueries_variable
Extension_DigitCount
Arguments_LongestWordLength
Query_LetterCount
NumberRate_Domain
NumberRate_AfterPath
delimeter_Count
SymbolCount_FileName

executable

benign
defacement
malware
phishing
spam

0

0.

0.2

04 0.6
Model output value

0.8

index-318_1.jpg
domain_token_count
Arguments_LongestWordLength
Query_LetterCount
NumberofDotsinURL
spcharUrl
avgdomaintokenlen
NumberRate_FileName
argDomanRatio
delimeter_Count
URLQueries_variable

urlLen

Extension_DigitCount
SymbolCount_Directoryname
delimeter_path

tid

SymbolCount_FileName
Idl_url

NumberRate_Domain
NumberRate_AfterPath

executable

benign
defacement
malware
phishing
spam

1.0

0.0

0.2

0:4 0.6
Model output value

0.8

1.0

index-327_1.png

index-320_1.jpg
avgdomaintokenlen

IdI_url

domain_token_count
Extension_DigitCount

urlLen

NumberofDotsinURL
argDomanRatio
NumberRate_FileName
SymbolCount_FileName
spcharurl
URLQueries_variable
delimeter_path
SymbolCount_Directoryname
NumberRate_Domain
Query_LetterCount
Arguments_LongestWordLength
tid

NumberRate_AfterPath
delimeter_Count

executable

benign
defacement
malware
phishing
spam

0.0

0.2

0.4 0.6
Model output value

0.8

1.0

index-342_2.png
(ACCESS_COARSE_LOCATION,)
(total_perm,)

(read,)

(BROADCAST_SMS,)
(FilesInsideAPK,)
(RECEIVE_MMS,)
(RECEIVE_BOOT_COMPLETED,)
(ACCESS_FINE_LOCATION,)
(sysinfo,)

(dangerous,)

0.00 0.02 0.04 0.06 0.08 0.10

index-342_1.png
BIND_DEVICE_ADMIN

SET_WALLPAPER

READ_SMS

GET_ACCOUNTS
CHANGE_NETWORK_STATE
rt_sigprocmask

flock

READ_CALL_LOG
ACCESS_LOCATION_EXTRA_COMMANDS

BATTERY_STATS
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

index-346_1.jpg
Accuracy

0.950
0925
0.900
0875
0.850
0.825
0.800
0.775
0.750

100

200 300
Number Of Features

400

500

index-345_1.jpg
Original Image

Grad-CAM Outpufe_g -

index-348_1.jpg
dangerous

total_perm

FilesinsideAPK

sysinfo
ACCESS_COARSE_LOCATION
RECEIVE_BOOT_COMPLETED
ACCESS_FINE_LOCATION
BROADCAST_SMS

read

RECEIVE_MMS

-3 -2 -1 0 1 2 3
SHAP value (impact on model output)

High

Low

Feature value

index-347_1.jpg
dangerous

total_perm

|
I

ACCESS_COARSE_LOCATION

RECEIVE_BOOT_COMPLETED

sysinfo | == ©:
== BankBot
ACCESS_FINE_LOCATION _ = Fakelnst
ritesinsidear | NN o Armshiiopais
= Agent
W Ransomware
srorocast_sws | = Malap
read mmm Dowgin
= SMSreg
0 1 2 3 4 L 6 7 8

mean(|SHAP value|) (average impact on model output mag

(a) RBF-SVM

dangerous
total_perm
RECEIVE_BOOT_COMPLETED
/ACCESS_COARSE_LOCATION
sysinfo

ACCESS_FINE_LOCATION

BROADCAST_SMS

Fakelnst
Ransomware
SMsreg
Airpush/Stops
FakeApp
Malap

FilesInsideAPK
RECEIVE_MMS

read

02
mean(|SHAP value|) (average impact on model output v

(¢) k-NN

00 01 03 04

total_perm
dangerous
RECEIVE_BOOT_COMPLETED

ACCESS_COARSE_LOCATION

sysinfo s BankBot
m Agent
Fiesinsidesr [— s
- b
read
! == Ransomware
ACCESS_FINE_LOCATION = Dowgin
= Airpush/StopSMS
BROADCAST _SMs m— FakeApp
RECEIVE_MMS _ w— Velgp
‘ = SMSreg

0.00 005 010 015 020 025 030 035 040
mean(|SHAP value|) (average impact on model output magnit

dangerous
total_perm

FilesInsideAPK

i ~
s
g
g
2
19
3
g
g
a

sysinfo
!

ACCESS_COARSE_LOCATION

RECEIVE_BOOT_COMPLETED
[

ACCESS_FINE_LOCATION

BROADCAST_SMS

]Ill

read
RECEIVE_MMS
00 01 02 03 04 05
mean(|SHAP value|) (average impact on model output magnits

index-311_2.png
defacement

malware

]
a
]
)
2
i

phishing

benign defacement malware phishing
Predicted label

index-312_2.jpg
domain_token_count

td
Arguments_LongestWordLength
URLQueries_variable
NumberofDotsinURL
NumberRate_Domain
delimeter_Count

spcharUrl
Extension_DigitCount
executable
Query_LetterCount
argDomanRatio

uriLen
SymbolCount_Directoryname
delimeter_path
NumberRate_FileName
NumberRate_AfterPath
avgdomaintokenlen

di_url
SymbolCount_FileName

0.00

Feature Importances from RFE with XGBoost with 20 features

0.02 0.04 0.06 0.08 0.10
Feature Importance

0.12

index-312_1.png
defacement

malware

]
a
]
)
2
i

phishing

benign defacement malware phishing
Predicted label

index-313_2.jpg
tld <= -0.04

-0.37 < longdomaintokenlen <= -0.18
-0.96 < Querylength <= 0.17
charcompace <= -0.40

-0.47 < Idl_filename <= 0.67

-0.70 < domain_token_count <= -0.19
dld_filename <= -0.89

did_domain > -0.36

-0.32 < avgpathtokenlen <= -0.31
dld_url <=-0.64

-0.76 < urlLen <= -0.55

-0.27 < did_getArg <= 0.48

-0.96 < path_token_count <= 0.17
avgdomaintokenlen > -0.18

-0.58 < charcompvowels <= 0.08
Idl_domain <= -0.58

Idl_path <= -0.63

Idl_url <=-0.21

IdI_getArg <= -0.68

did_path > 0.32

Local explanation for class malware

-0.25 -0.20 -0.15% -0.10 -0.05 0.00

T
0.05

0.10

index-313_1.jpg
Querylength <= -0.96 -
charcompvowels <= -0.58
tld <= -0.04 4
domain_token_count > 0.50 4
Idl_getArg > 0.26 4
path_token_count <= -0.96 -
longdomaintokenlen > 0.08
urlLen <= -0.76
avgdomaintokenlen <= -0.25 4
-0.27 < dld_getArg <= 0.48 1
charcompace <= -0.40 -
Idl_url <=-0.21 4

-0.32 < avgpathtokenlen <= -0.31 -
did_filename <= -0.89 4
Idl_domain <= -0.58 4

-0.47 < IdI_filename <= 0.67 4
dld_url <= -0.64

dld_path <= -0.34 4
did_domain <= -0.36 -
Idl_path <= -0.63 1

Local explanation for class benign

-=0.10

-=0.05

T
0.00

T
0.05

T
0.10

T
0.15

T
0.20

T
0.25

T
0.30

index-314_2.jpg
Local explanation for class phishing

tld <=-0.04

longdomaintokenlen <= -0.37
IdI_filename <= -0.47
Querylength <= -0.96
charcompvowels <= -0.58
Idl_getArg <= -0.68

dld_url <=-0.64

-1.01 < dld_getArg <= -0.27
avgdomaintokenlen > -0.18
charcompace <= -0.40
dld_filename <= -0.89

-0.32 < avgpathtokenlen <= -0.31
IdI_path <= -0.63

dld_domain <= -0.36

-0.76 < urlLen <= -0.55

-0.19 < domain_token_count <= 0.50
path_token_count <= -0.96
Idl_domain <= -0.58

Idl_url <=-0.21

-0.11 < dld_path <= 0.32

R T T S S TS

TR T S Wt

1

IS '

T

T T T T
-0.05 0.00 0.05 0.10 0.15

I
o
i
o

index-314_1.jpg
Local explanation for class defacement

Idl_domain > 0.35

IdI_filename <= -0.47
avgdomaintokenlen <= -0.25

IdI_url > -0.06

-0.31 < avgpathtokenlen <= 0.08
Idl_path > 0.33

-0.34 < charcompace <= -0.06
did_url > 0.30

tld <= -0.04

Querylength > 0.17

-0.34 < dld_path <=-0.11
dld_getArg <= -1.01

-0.19 < domain_token_count <= 0.50
dld_domain <= -0.36

-0.89 < dld_filename <= 0.95

-0.68 < IdI_getArg <= -0.36
charcompvowels > 0.08
path_token_count > 0.17

urlLen > 0.49

-0.18 < longdomaintokenlen <= 0.08

—-0.02 0.00 0.02 0.04

index-316_1.jpg
NumberofDotsinURL
delimeter_path
domain_token_count

urlLen

avgdomaintokenlen
argDomanRatio

spcharuUrl
SymbolCount_Directoryname
SymbolCount_FileName

tid

NumberRate_FileName

IdI_url

Extension_DigitCount
NumberRate_Domain
Query_LetterCount
Arguments_LongestWordLength

NumberRate_AfterPath

. —— benign
delimeter_Count ___ jefacement
URLQueries_variable malware
= —— phishing
executable —— spam
- r - - -
0.0 0.2 0.4 0.6 0.8 1.0

Model output value

index-315_1.jpg
Local explanation for class spam

domain_token_count <= -0.70
-0.96 < Querylength <= 0.17

tld <= -0.04

-0.58 < charcompvowels <= 0.08
dld_domain <= -0.36

-0.96 < path_token_count <= 0.17
did_filename > 0.95

-0.27 < dld_getArg <= 0.48
charcompace > -0.06

-0.31 < avgpathtokenlen <= 0.08
avgdomaintokenlen > -0.18
Idl_getArg <= -0.68

-0.55 < urlLen <= 0.49
longdomaintokenlen > 0.08

-0.58 < Idl_domain <= 0.35
did_path > 0.32

-0.21 < IdI_url <= -0.06

-0.63 < Idl_path <= 0.33

-0.64 < dld_url <= 0.30

-0.47 < Idl_filename <= 0.67

T T T T
0.02 0.04 0.06 0.08

o
=]
)

index-317_1.jpg
IdI_url
NumberRate_FileName
domain_token_count
urlLen
avgdomaintokenlen
NumberRate_Domain
Extension_DigitCount
NumberofDotsinURL
argDomanRatio
delimeter_path
SymbolCount_Directoryname
spcharUrl
Query_LetterCount

tid

Arguments_LongestWordLength

SymbolCount_FileName

URLQueries_variable

—— benign
NumberRate_AfterPath ___ gefacement
delimeter Count =~ Mmalware
= —— phishing
executable —— spam
T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Model output value

