

[image: Image 1]

Table of Contents

Cover

Table of Contents

Title Page

Copyright

Dedication

Preface

Acknowledgments

About the Authors

Part I: Generative AI for Trading and Asset

Management: A No-code Introduction

Chapter 1: No-code Generative AI for Basic

Quantitative Finance

1.1 Retrieving Historical Market Data

1.2 Computing Sharpe Ratio

1.3 Data Formatting and Analysis

1.4 Translating Matlab Codes to Python Codes

1.5 Conclusion

Chapter 2: No-code Generative AI for Trading

Strategies Development

2.1 Creating Codes from a Strategy

Specification

2.2 Summarizing a Trading Strategy Paper and

Creating Backtest Codes from It

2.3 Searching for a Portfolio Optimization

Algorithm Based on Machine Learning

2.4 Explore Options Term Structure Arbitrage

Strategies

2.5 Conclusion

2.6 Exercises

Appendix 2A.1 Computing Next-day’s Return

Appendix 2A.2 Uploading the Fama-French

Factors

Appendix 2A.3 Combining Fama-French Factors

with Next-day’s Returns

Chapter 3: Whirlwind Tour of ML in Asset

Management

3.1 Unsupervised Learning

3.2 Supervised Learning

3.3 Deep Reinforcement Learning

3.4 Data Engineering

3.5 Feature Engineering

3.6 Conclusion

Part II: Deep Generative Models for Trading and Asset

Management

Chapter 4: Understanding Generative AI

4.1 Why Generative Models

4.2 Difference with Discriminative Models

4.3 How Can We Use Them?

4.4 Illustrating Generative Models with

ChatGPT

4.5 Hybrid Modeling: Combining Generative

and Discriminative Models

4.6 Taxonomy of Generative Models

4.7 Conclusion

Chapter 5: Deep Autoregressive Models for

Sequence Modeling

5.1 Representation Complexity

5.2 Representation and Complexity Reduction

5.3 A Short Tour of Key Model Families

5.4 Model Fitting

5.5 Conclusions

Chapter 6: Deep Latent Variable Models

6.1 Introduction

6.2 Latent Variable Models

6.3 Examples of Traditional Latent Variable

Models

6.4 Learning

6.5 Variational Autoencoder (VAE)

6.6 VAEs for Sequential Data and Time Series

6.7 Conclusion

Chapter 7: Flow Models

7.1 Introduction

7.2 Model Training

7.3 Linear Flows

7.4 Designing Nonlinear Flows

7.5 Coupling Flows

7.6 Autoregressive Flows

7.7 Continuous Normalizing Flows

7.8 Modeling Financial Time Series with Flow

Models

7.9 Conclusion

Chapter 8: Generative Adversarial Networks

8.1 Introduction

8.2 Training

8.3 Some Theoretical Insight in GANs

8.4 Why Is GAN Training Hard? Improving GAN

Training Techniques

8.5 Wasserstein GAN (WGAN)

8.6 Extending GANs for Time Series

8.7 Conclusion

Chapter 9: Leveraging LLMs for Sentiment Analysis

in Trading

9.1 Sentiment Analysis in Fed Press Conference

Speeches Using Large Language Models

9.2 Data: Video + Market Prices

9.3 Speech-to-text Conversion

9.4 Sentiment Analysis

9.5 Experiment Results

9.6 Conclusion

Chapter 10: Efficient Inference

10.1 Introduction

10.2 Scaling Large Language Models: High

Performance, High Computational Cost, and

Emergent Abilities

10.3 Making FinBERT Faster

10.4 Model Quantization

10.5 Customizing Your LLM: Adapting Models

to Your Needs

10.6 Conclusions

Chapter 11: Afterword

11.1 Diffusion Models

11.2 Combining Generative Model Variants

11.3 LLMs as Financial Advisors

References

Appendix

A.1 Retrieving Adjusted Closing Prices and

Computing Daily Returns

A.2 Installing Python

A.3 Plotting the Risk-free-rate over the Years

A.4 Computing the Sharpe Ratio of SPY

A.5 Matlab Code for Computing Efficient Frontier

and Finding the Tangency Portfolio

Index

End User License Agreement

List of Illustrations

Chapter 1

Figure 1.1 Efficient frontier based on Python code

generated by ChatGPT.

Chapter 2

Figure 2.1 Cumulative returns of Fama-French

three-factor strategy.

Figure 2.2 Incorrect plot of annualized time value

of put options as function o...

Figure 2.3 Incorrect plot of implied volatility of put

options as function of t...

Figure 2.4 Annualized put option prices as function

of time to expiration based...

Figure 2.5 Annualized call option prices as function

of time to expiration base...

Chapter 3

Figure 3.1 Dendrogram of five stocks based on the

correlations of their daily r...

[image: Image 2]

[image: Image 3]

[image: Image 4]

[image: Image 5]

[image: Image 6]

Figure 3.2 Principal components of two correlated

series.

Figure 3.3 Illustration of a sigmoid function.

Figure 3.4 Illustration of why L1 regularization can

more easily get us zero we...

Figure 3.5 The Anscombe quartet. All four data sets

have same means, variances,...

Figure 3.6 A typical precision-recall curve.

Figure 3.7 A typical ROC (Receiver Operating

Characteristics) curve.

Figure 3.8 A one-hidden-layer MLP that takes a

vector of features to classify...

Figure 3.9 A simple MLP for time-series prediction.

Figure 3.10 Tying the weights to the same values

and connecting the hidden nodes...

Figure 3.11 Same as Figure 3.10, but rotated 90°

counterclockwise so time procee...

Figure 3.12 Daily minimum and maximum

sentiment scores that show structural brea...

Chapter 4

Figure 4.1 Model taxonomy.

Figure 4.2 Conditional probability of the first token

given the prompt

.

Figure 4.3 Conditional probability of the second

token given the prompt and p...

Figure 4.4 Conditional probability of the third token

given the prompt and pr...

Figure 4.5 Conditional probability of the fourth

token given the prompt and p...

[image: Image 7]

Figure 4.6 Conditional probability of the fourth

token given the prompt and p...

Chapter 5

Figure 5.1 Model taxonomy: Autoregressive

models.

Figure 5.2 Sample from the Binarized MNIST

dataset. Larochelle and Murray (2011).

Figure 5.3 MADE Generation on MNIST. Left:

samples from a MADE model. Right: Ne...

Figure 5.4 Visualization of a stack of causal

convolutional layers. Figure 2 fr...

Figure 5.5 Visualization of a stack of dilated causal

convolutional layers. Fig...

Figure 5.6 Visualizing attention.

Figure 5.7 Scaled Dot-Product Attention. Figure 2

(left) from Vaswani et al. (2...

Figure 5.8 The Transformer encoder-decoder

architecture, developed for machine ...

Figure 5.9 Multi-head Attention. Figure 2 (right)

from Vaswani et al. (2023).

Figure 5.10 An illustration showing how the current

and lagged values of the ser...

Figure 5.11 An illustration showing how the model

input, comprising the time-ser...

Chapter 6

Figure 6.1 Model taxonomy: variational

autoencoders.

Figure 6.2 Illustration of model selection for

homoscedastic noise.

Figure 6.3 Illustration of model selection for

heteroscedastic noise.

Figure 6.4 Illustration of clustering using Gaussian

Mixture Models (GMMs). (a)...

Figure 6.5 Gaussian Mixture Model for market

regime detection.

Figure 6.6 VAE.

Figure 6.7 Illustration of the learned data manifold

for generative models with...

Figure 6.8 Illustration of the encoder-decoder

architecture of Base TimeVAE. Th...

Figure 6.9 Illustration of the main components in

Interpretable TimeVAE. Specia...

Chapter 7

Figure 7.1 Model taxonomy: flow models.

Figure 7.2 Illustration of the operations involved in

coupling flows, including...

Figure 7.3 Illustration of unbiased samples

generated by the NICE model when tra...

Figure 7.4 Illustration of unbiased samples

generated by the NICE model when tra...

Figure 7.5 Samples generated by the Real-NVP

model across four datasets: CIFAR-10...

Figure 7.6 Illustration of new images generated

through interpolations between f...

Chapter 8

Figure 8.1 Model taxonomy: GANs.

Figure 8.2 Evolution of GAN-generated images over

time, illustrating the progre...

Figure 8.3 The rightmost column displays the

nearest training example to each c...

Figure 8.4 Table 1 from Goodfellow et al. (2014):

Parzen window-based log-likel...

Figure 8.5 Illustration of one reason why training

GANs can be difficult. In th...

Figure 8.6 Illustration of two different cases for the

data distribution and th...

Figure 8.7 Illustration of the optimal discriminator

and critic when distinguis...

Chapter 9

Figure 9.1 Fed Chair Powell discusses latest Fed

rate hike.

Figure 9.2 System block diagram.

Figure 9.3 SPY Price series during Fed press

conference.

Figure 9.4 Enriched price series.

Figure 9.5 Scatter plot of sentiment signal vs

forward returns.

Figure 9.6 Available models and languages.

Figure 9.7 Whisper output on FED data.

Figure 9.8 Figure 3 from Devlin et al. (2019):

Illustration of differences in p...

Figure 9.9 Figure 1 from Devlin et al. (2019):

Illustration of the input/output...

Figure 9.10 Figure 2 from Devlin et al. (2019):

Illustration of the BERT input r...

Figure 9.11 Time-series sentiment signal and

forward returns.

Figure 9.12 Scatter plot of sentiment signal vs

forward returns.

Chapter 10

Figure 10.1 Figure 1 from Kaplan et al. (2020):

Illustration of how language mod...

Figure 10.2 Figure 4 from Wei et al. (2023): An

illustration of how performance ...

Figure 10.3 Figure 2 from Wei et al. (2022):

Illustration of performance, measur...

Figure 10.4 Softmax distribution.

Figure 10.5 Weights distribution.

Figure 10.6 Distribution of quantized weights.

Figure 10.7 Figure 1 from Hu et al. (2021): This

figure illustrates the reparame...

Appendix

Figure A.1 BIL annualized returns.

Figure A.2 Twenty-day moving average of

annualized BIL returns.

Figure A.3 Efficient Frontier produced by Matlab

codes.

List of Tables

Chapter 3

Table 3.1 Results of cluster-based features

importance ranking based on their ...

Table 3.2 Hypothetical design matrix for three

features with four samples.

Table 3.3 The confusion matrix for binary

classification.

Table 3.4 Confusion matrix for three-class

classification.

Chapter 7

Table 7.1 Computational complexity of the inverse

and determinant of the Jacob...

Chapter 9

Table 9.1 Performance table.

Chapter 10

Table 10.1 Performance metrics of teacher vs.

student models.

Table 10.2 Inference speed of teacher vs. student

models.

Table 10.3 Integer range for different bit widths.

Table 10.4 Performance table for speedups because

of quantization.

Table 10.5 Inference speed after quantization.

[image: Image 8]

Generative AI for Trading

and Asset Management

Hamlet Jesse Medina Ruiz

Ernest Chan

Copyright © 2025 by John Wiley & Sons, Inc. All rights reserved, including rights for text and data mining and training of artificial intelligence

technologies or similar technologies.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the

appropriate per-copy fee to the Copyright Clearance Center, Inc., 222

Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

The manufacturer’s authorized representative according to the EU General Product Safety Regulation is Wiley-VCH GmbH, Boschstr. 12, 69469 Weinheim, Germany, e-mail: Product_Safety@wiley.com.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries and may not be used without written permission. All other

trademarks are the property of their respective owners. John Wiley & Sons, Inc.

is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United

States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

 Library of Congress Cataloging-in-Publication Data Applied for:

Print ISBN: 9781394266975

ePDF ISBN: 9781394267002

epub ISBN: 9781394266999

Cover Image: © imaginima/Getty Images

Cover Design: Wiley

Author Photos: Courtesy of the Authors

 To my parents, Denis and Herinarco, and my grandmother, Gloria María.

 To my family: Ben, Sarah, and Ethan

Preface

There are broadly three types of modern AI models:

discriminative models, generative models, and

reinforcement learning. Most quantitative asset managers

are familiar with discriminative models (e.g., given

yesterday’s return, what is the probability of today’s return

being positive); some are also familiar with reinforcement

learning (e.g., how can we optimize the selling price to get

a better profit). But Generative AI, commonly referred to as

GenAI, is a recent invention that receives a lot of buzz but

is often mistaken as a synonym with Large Language

Models (LLMs) or image generation. But GenAI can learn

from anything, not just from text or images. In particular, it

can learn from time series of asset returns, which is

perhaps most relevant for asset managers.

In this book, we delve into both the applications as well as

the fundamentals of GenAI. It is divided into two broad

parts: (1) No-code usage of Generative AI for traders and

asset managers with little coding experience; (2) the

fundamentals of Generative AI and their applications in

finance for those who are well-versed in coding and

discriminative AI. As a result, readers of each category can

feel free to just skim the chapters of the other part.

In the first two chapters of Part 1, we will show you examples of how to use the no-code version of GenAI to do

stuff that most traders and quantitative investors will

encounter in their lifetime. For example, how to retrieve

adjusted prices of an ETF from the internet, how to

compute the most common performance metrics based on a

spreadsheet full of their daily prices; how to convert a

trading strategy’s backtest code from Matlab to Python

(using Matlab code from Ernie’s book “Machine Trading”

as example); how to come up with Python code based on a

strategy specification; and how to summarize a paper about

a trading strategy and turn that into backtest code. What

we will not be able to show you is “ChatGPT, just come up

with a profitable trading strategy that I can use.” At this

stage of GenAI development, this level of creativity hasn’t

been achieved yet.

The strategies that we asked GenAI to help create include a

long-short factor strategy, a VIX futures carry strategy, and

a SPX options calendar spread strategy. We also asked

GenAI to conduct a literature search for portfolio

optimization techniques based on deep reinforcement

learning.

For these two chapters, we will use the most commonly

known interface for these examples: the web-based

ChatGPT GPT-4o which at the time of writing was the most

current version of ChatGPT, and its cousin Microsoft's

Copilot. Of course, you can probably perform most of these

tasks equally admirably using Google’s Gemini Pro, X.AI’s Grok, or DeepSeek, but we haven’t tried.

The third chapter of Part 1 of this book is a whirlwind tour of machine learning techniques commonly used in asset

management. They range from unsupervised learning to

supervised learning and reinforcement learning. The

chapter also covers techniques useful for avoiding

overfitting and for model selection, such as regularization

and hyperparameter optimization. It also covers various

nuances in data and feature engineering that are often as

important as what machine learning model to choose. It

can be used as a primer for finance professionals new to AI,

or as a refresher for those who are already dabbling in AI.

Until around 2022 when ChatGPT was launched, this is all

the AI that most asset managers would ever learn.

Part 2 of the book delves into the fundamentals and technical details of GenAI. Chapter 4 highlights the difference between discriminative and generative AI and

introduces the major generative families: deep

autoregressive models, and deep latent variable models

such as variational autoencoders, flow models, and GANs.

Each of these families get their own chapters in the

remainder of Part 2. Each chapter explores how these models were originally developed and demonstrates how to

adapt them to the dynamics of financial time series, with

practical notebook code examples using financial data. The

book concludes with end-to-end applications, showing how

these models can preprocess alternative data, generate

trading signals, and be optimized for efficient inference.

Chapter 9 is all about application: how to leverage LLMs for sentiment analysis in trading. Chapter 10 is about deploying these systems in practice—especially how to

optimize these models for efficient inference. This chapter

is unique, not typically found in generative modeling

resources, at least at the time of writing. Efficient inference

is something Hamlet worked on the last few years at his

company, where scalability and cost-effectiveness were

non-negotiable. Once again, Python notebooks that

implement most of these techniques are provided

throughout. We conclude with Chapter 11, summarizing the main techniques covered in this book. We also

emphasize the role of domain expertise in designing

meaningful trading strategies, particularly when using

LLMs as copilots, and discuss why GenAI, despite its

success in other domains, may require more empirical work

to achieve similar results in finance. Finally, we outline

promising research directions where GenAI could

significantly impact finance.

This book is not about proving mathematical theorems.

Instead, we try to provide the reader with enough

foundational knowledge to help the reader adapt the

techniques to your specific problems. From Hamlet’s own

experience solving challenging problems at his company,

his own projects, and in machine learning competitions, he

found that foundational understanding—going back to the

mathematical formulation—often holds the key to good

solutions. This is especially important when the most

popular or widely accepted published solutions tend to fail

on real-world datasets! So, this book is his attempt to bring

these principles to traders and asset managers. At the

same time, he includes many practical code examples that

the reader can use to conduct their own research, improve

models, and develop new solutions.

Where possible, we have used real-world datasets from the

financial domain, limiting the use of standard datasets used

for research publications just to explain foundational

principles. Throughout the book, we also use numerous

examples involving images and text data. These examples

not only make the concepts easier to understand but also

demonstrate techniques that have been very successful in

other fields. They also have direct implications for

preprocessing alternative data in finance and integrating it

into trading strategies. Additionally, we offer insights into

how these techniques can capture the unique

characteristics of financial data. Some of the techniques

may seem remote from financial applications, but the key to

finding alpha where none existed before often comes from

borrowing techniques from a different domain.

Part 1 is what Ernie has learned practicing AI and machine learning over the last 30 years, starting at the machine

learning group at IBM T. J. Watson Lab, and ending with

applying AI in the hedge fund and AI startup he founded

(qtscm.com and predictnow.ai). He eats his own dog food.

Part 2 is built on Hamlet’s experience at Criteo as its chief data scientist, where he worked on multiple large-scale AI

applications, his experience developing his own trading

strategies, his participation in achieving top 1% rankings in

various machine learning competitions, both finance and

non-finance-related, on platforms like Kaggle and Numerai,

and his own learning and formal finance education.

Hamlet’s journey into finance began, like many others, as

an outsider. He started by reading any book he found

interesting (fun fact: that included all of Ernie’s books). He

realized that, like many people entering a new field, it’s

common to discover that similar methods often exist in

your own field but under different names, notations, and

applications. Later, as he formalized his journey by

completing a MicroMasters in Finance from MIT, he

realized there wasn’t a single resource covering all the

topics he had learned or applied over the years. This book

is his attempt to fill that gap.

If Part 2 of this book seems hard, it is because the concepts are truly deep and revolutionary. Read it again, again, and

again. After the fourth pass, and after trying out some of

the code examples, you too can apply deep learning and

GenAI techniques to discover alpha that no one found

before.

We are sure that by the time this book is published, we

have already gained better understanding and better tools

in applying AI to finance, and we will post our latest

learnings in our social media accounts (x.com/echanQT,

x.com/hamletjmedina, and at our blog

substack.com/@gatambook). Also, as Blaise Pascal famously said, “If I had more time, I would have written a

shorter letter.” We hope to elucidate further some of the

essential concepts here via Q&A and short tweets on our

social media accounts, and via our workshops.

Acknowledgments

By Hamlet

The journey of writing this book has been deeply

rewarding, but also, as my first book, quite challenging. I

want to acknowledge the many people who supported me

during this journey:

To Criteo, for allowing me to work on the applied side

of the business, tackling a variety of challenging, large-

scale applications over many years while also

supporting me to spend time on the research side in

this fast-evolving field. To my colleagues there: this

combination has deeply shaped the way I approach

problems and find solutions.

To my brother, Yanick Medina, currently a master’s

student in AI, who has been an invaluable contributor

to the code in Part 2 of this book. He meticulously

reviewed and tested the code while providing feedback

that helped us ensure a balance between code

modularity and accessibility, a principle we try to keep

throughout.

To my family and friends, whose support and

encouragement have been my foundation. Special

thanks to my father, who taught me the beauty of

mathematics from a very young age.

To God, whose infinite mercy has made all of this

possible.

By Ernest

I would like to thank Dr. Roger Hunter, CTO at QTS Capital

Management (qtscm.com), for his partnership in working on many AI in finance projects throughout the years,

especially in co-developing the Lifecycle of Trading

Strategy Development with Machine Learning workshop

(epchan.com/workshops), and the Generative AI for Asset

Managers workshop (predictnow.ai/generative-ai-

workshop). I am also grateful that the current CEO of QTS

Capital Management (qtscm.com), Dr. Nahid Jetha, has continued to advance AI development there to the benefits

of our investors.

I also would like to thank my current and former technical

team members at Predictnow.ai for their contributions to bringing AI to many asset managers: Johann Abraham,

Sergei Belov, Pavan Dutt, Haoyu Fan, Guillaume Goujard,

Andrew Inscore, Nancy Khullar, Nancy Xin Man, Uttej

Mannava, Akshay Nautiyal, Sudarshan Sawal, Jean Silva,

Jai Sukumar, and Quentin Viville.

Of course, this book would not have come into existence

without the support of Wiley, especially the invaluable

contributions of our managing editor, Stacey Rivera,

editorial assistant, Katherine Cording, copyeditor Sheryl

Nelson, content specialist Bala Shanmugasundaram, and

executive editor, Bill Falloon. Working with them was truly

a pleasure.

About the Authors

Hamlet Jesse Medina Ruiz holds the position of chief

data scientist at Criteo. He specializes in time series

forecasting, machine learning, deep learning, and

Generative AI. He actively explores the potential of cutting-

edge AI technologies, such as Generative AI across diverse

applications.

He holds an electronic engineering degree from

Universidad Rafael Belloso Chacin in Venezuela, as well as

two master’s degrees with honors in mathematics and

machine learning from the Institut Polytechnique de Paris

and Université Paris-Saclay. Additionally, he earned a PhD

in physics from Université Paris-Saclay. Hamlet has

consistently achieved first place and top ten rankings in

global machine learning contests, earning the titles of

Kaggle Expert and Numerai Expert for these challenges.

Recently, he also earned a MicroMaster’s in finance from

MIT’s Sloan School of Management.

Ernest Chan (Ernie) is the founder and chief scientific

officer of Predictnow.ai (www.predictnow.ai), which offers AI-driven adaptive optimization solutions to the finance

industry and beyond. He is also the founder and

nonexecutive chairperson of QTS Capital Management

(www.qtscm.com), a quantitative CTA/CPO since 2011. He started his career as a machine learning researcher at

IBM’s T.J. Watson Research Center’s language modeling

group, which produced some of the best-known quant fund

managers. Ernie is the acclaimed author of four previous

books, Quantitative Trading (2nd ed.), Algorithmic Trading, Machine Trading, and Hands-on AI Trading all published by Wiley. More about these books and Ernie’s workshops on

topics in quantitative investing and machine learning can

be found at www.epchan.com. He obtained his PhD in physics from Cornell University and his BS in physics from

the University of Toronto.

Part I

Generative AI for Trading

and Asset Management: A

No-code Introduction

Chapter 1

No-code Generative AI for Basic

Quantitative Finance

In this chapter we want to demonstrate how Gen AI can be

used to do the basic tasks for which quantitative traders and

investors used to hire a professional programmer. We shall

find out to what extent we have succeeded. In all the

following examples, we have used a ChatGPT GPT-4o

subscription (at US$ 20/month as of this writing) since it is

the most well-known Gen AI service. But you can try

Microsoft Copilot (which has live internet access and often

gives different answers than ChatGPT because of different

“finetuning”), Google’s Gemini Pro ($19.99/month), xAI’s

Grok, or DeepSeek to see if they can do better.

We shall see that while we can enter English instructions into

ChatGPT, its best output is often code rather than numerical

answers.

Ernie has basic Python programming skills but is much more

proficient in Matlab. So, the following is written from the

point of view of someone who is a novice Python programmer

but an expert Matlab programmer. Let’s see if ChatGPT can

help such a person create useful Python code, either from

English instructions, or translating from existing Matlab

codes.

We will ask ChatGPT to do the following:

a. Retrieve adjusted historical prices of SPY and BIL.

b. Compute daily returns from those adjusted prices.

c. Compute the Sharpe ratio from those daily returns.

d. Analyze the data contained in an Excel spreadsheet.

e. Translate Matlab codes that use quadratic optimization to compute the efficient frontier of an ETF portfolio to

Python code.

f. Use those Python codes to plot the efficient frontier.

In this and the next chapter, we will use the following boxes

to denote prompts to ChatGPT, responses from ChatGPT, and

our commentaries.

For user prompts, we will use the following format:

User Prompt

This is a user prompt.

For output from ChatGPT, including code, we will use the

following:

ChatGPT Response

A response from ChatGPT

Here is an amazing Python code example.

import my_genai_trading_system # :)

% Or a MATLAB code example.

load_system('my_genai_trading_system') % :)

If we embed our own commentary within its response, we will

enclose it with [Author Note: …], as follows:

ChatGPT Response

Here is an amazing Python code example.

import spicy # [Author Note: This should be

'scipy', not 'spicy'.]

[image: Image 9]

[image: Image 10]

[image: Image 11]

Code, data, and relevant resources produced or required for

this chapter can be found in the corresponding chapter folder

within the book’s repository: https://github.com/genai-for-

traders/genai-for-trading-and-am. For this chapter, the files

are located in the chapter01 folder and includes scripts,

Jupyter notebooks, input data files, and any necessary code

for downloading or generating data.

1.1 Retrieving Historical Market Data

As readers of Ernie’s first book (Chan, 2021) know, when we

backtest a trading strategy on a stock, we must compute its

daily returns. To properly compute its daily returns, we must

use its closing prices adjusted for splits and dividends.

(Imagine if a stock split 1 to 2 before the market opens on

day . Without adjusting for splits, the return from day

to would be about −50% or so.) So, we entered one of the

most obvious prompts into ChatGPT:

User Prompt

Can you retrieve the daily closing prices of the ETF SPY

for the most recent 100 days? Please make sure they are

split and dividend adjusted.

ChatGPT Response

It seems that I currently don’t have access to the yfinance

library, which I typically use to retrieve financial data.

Therefore, I’m unable to directly fetch the daily prices of

the ETF SPY for the most recent 100 days.

However, you can easily obtain this information by using

financial data services like Yahoo Finance, Google

Finance, or Bloomberg. These platforms provide

comprehensive historical data, including split and

dividend adjustments. If you would like, I can guide you

through the process of retrieving this data using these

platforms.

Despite the seemingly unhelpful response as a no-code

assistant, it did provide a decent Python script that may

accomplish the task, which we included in Appendix A.1. We will discuss that later. Let’s say we use that script to

download the below prices on our desktop, and upload them

as a csv file back into ChatGPT:

2023-08-25: $438.42

2023-08-28: $441.20

2023-08-29: $447.58

…

2023-12-11: $461.99

We asked this question on 2023-12-12, so the retrieved prices

correctly ended on 2023-12-11. They are identical to what

you would see on Yahoo Finance if you had done so on the

same day. It is difficult to verify that on a later date (such as

when you are reading this). Adjusted prices change

depending on when you retrieve them, but they should

produce the same daily returns no matter how the prices look

to you. So, let’s now compute the daily returns.

[image: Image 12]

[image: Image 13]

[image: Image 14]

User Prompt

Please compute daily returns based on the above prices.

ChatGPT Response

…

To compute the daily returns, we use the formula:

I’ll calculate the daily returns for the SPY ETF based on

the adjusted closing prices provided:

… and so on for each subsequent day.

Let’s calculate these returns.

Here are the daily returns for the first five days:

…

These percentages represent the daily return for each

respective day. Would you like me to continue calculating

the daily returns for the remaining days?

Correct though these formula are, the output is difficult to

download and verify independently. So we ask:

User Prompt

Can you formulate the above output as a csv file with two

columns?

ChatGPT Response

Certainly! Here’s the data formatted as a CSV file with

two columns, “Date” and “Daily Return”:

Date,Daily Return

2023-09-12,-0.0055

2023-09-13,0.0012

...

2023-12-11,0.0039

We can copy and paste this output in a plain text file called

SPY Daily Returns.csv, and re-open it in Excel. Spot checking

a few prices around the dividend ex-date of 2023-09-15, we

verify that the returns were computed correctly, based on the

adjusted closing prices.

Anticipating that we will need the risk-free rate in order to

compute Sharpe ratio and other performance metrics for SPY

(or other trading strategies), we ask:

User Prompt

Over the same period of time as above, please retrieve the

daily risk free rate in % form.

[image: Image 15]

[image: Image 16]

ChatGPT Response

Retrieving the daily risk-free rate over a specific period,

like the one for the SPY ETF adjusted closing prices, can

be a bit more complex because there isn’t a direct source

that provides these rates in a daily format suitable for

immediate download and use in financial calculations.

(By the time you are reading this, ChatGPT will probably

have integrated different data sources that will enable it to

download the yield on the 3-Month U.S. Treasury Yield.)

In other words, it can’t do it unless data are available from

Yahoo Finance. But there is a proxy that we can use for risk

free returns: the SPDR Bloomberg 1–3 Month T-Bill ETF

(“BIL”). We will retrieve this by a simple modification of the

Python script described in Appendix A.1. We can use the codes in Appendix A.3 to compute the daily returns of BIL, which we can use as the (daily) risk free rate throughout the

book.

As any data scientist knows, one of the best ways to check

whether the results of a computation are correct is to plot

them.

User Prompt

Plot the annualized returns chart with the same x-axis. We

only need YYYY as x-axis labels.

You might think that the response to such a simple prompt

should be straightforward, but it was not. On the first

attempt, ChatGPT incorrectly annualized the returns by

multiplying the daily returns by

instead of

. At

another attempt it couldn’t parse the date/time format YYYY-

MM-DD hh:mm:ss-05:00 correctly.

User Prompt

What does the date and time format YYYY-MM-DD

hh:mm:ss-05:00 mean?

The response to this prompt is correct. The last hh:mm is the

timezone offset from UTC. For example, in December, YYYY-

MM-DD hh:mm:ss in New York will have −05:00 at the end.

After hours (!) of prompting, it finally produced the correct

plot. We reproduced the Python code accompanying the plot

in Appendix A.3. We recommend that you check out that code because you will see that the raw data are not quite usable.

As a bonus, it gives us a bird’s eye view of the US economy

since 2007.

1.2 Computing Sharpe Ratio

With strenuous prompting (ChatGPT is like a mediocre and

inexperienced intern), we finally downloaded data on our

favorite ETFs SPY and BIL, computed the daily returns of

both, and can now use these data to compute its Sharpe ratio.

As we suggested previously, we want ChatGPT to display the

Python code for the computation instead of generating

numerical results directly.

User Prompt

Suppose a daily returns series A is stored in A.csv, and the

daily risk free rate is stored in B.csv, and the dates of A

and B are not identical though they overlap, how do we

compute the Sharpe ratio of A? Please display the Python

code.

We display the (largely correct) response obtained in

Appendix A.4. The Sharpe ratio computed in Appendix A.4 is

for the period 2023-08-25 to 2023-12-11, which was a very bullish period. You can of course adapt the same prompts and

their resulting Python codes for other performance metrics

like maximum drawdown, Calmar ratio, and the like.

1.3 Data Formatting and Analysis

Not every spreadsheet that comes our way will be nicely

formatted like the one downloaded from Yahoo. One of the

most thankless and time-consuming task for a data analyst …

eh sorry … scientist, is to format the input data file correctly

so we can analyze it. For example, a colleague sent us the

Indices.xlsx file saved in https://github.com/genai-for-

traders/genai-for-trading-and-am/chapter01/. We have

anonymized the names of the indices to “A” “B” “C” but left

everything else unchanged. The file contains lots of floating

detritus such as the names of these indices, the start and end

dates of the data, and #N/A for those dates that did not have

data. Let’s see if ChatGPT can make the task of analyzing this

data easier.

User Prompt

This file contains four columns of pricing data. Can you

tell me the column names for these data?

[Author Note: we can attach a file to the prompt in

ChatGPT.]

ChatGPT Response

Unfortunately, I encountered an error while trying to

access and read the newly uploaded file. This could be due

to a variety of reasons such as file format issues or

compatibility problems.

That’s not promising! When we tried this a couple of months back, it had no problem analyzing the same data. After

several hours of trial and error, a trivial solution worked: we

just logged out and back in again. This is often frustratingly

the case with ChatGPT: the indeterministic and

irreproducible nature of the results. Now the response is:

ChatGPT Response

The Excel file you provided contains the following column

names:

1. Unnamed: 0

2. Unnamed: 1

3. [A column named with a date: 2000-01-03]

4. Unnamed: 3

5. Unnamed: 4

6. Unnamed: 5

7. Unnamed: 6

8. Unnamed: 7

9. Unnamed: 8

10. Unnamed: 9

…

Clearly, it needs a bit of human help. So

User Prompt

Use row 6, columns G to J as the column names for the

pricing data.

ChatGPT Response

A Index

B Index

C Index

D Index

...

which is correct.

User Prompt

Compute the daily returns of these four indices.

ChatGPT Response

It appears there was an error in calculating the daily

returns, likely due to the presence of non-numeric data in

the columns.

The NaNs are tripping ChatGPT up. So

User Prompt

For those cells with NaN, you can output NaN as returns.

But otherwise, display their numerical results.

After this prompt, ChatGPT attempted to compute the daily

returns for several subsets of the data, and without the dates

column. Finally, we prompted

User Prompt

I want the analysis to start from the first row to the last

row, and output a .csv file for the results.

It computed the current daily returns for all the data saved in

a .csv file. For example,

User Prompt

What are the returns on 11/6/2023?

ChatGPT Response

The daily returns for the indices on November 6, 2023, are

as follows:

A Index: 0.001378

B Index: −0.004321

C Index: −0.003129

D Index: −0.000333

...

User Prompt

Using these daily returns, please compute the annualized

Sharpe ratio of the A Index from 2019/1/7 to 2023/7/3,

assuming risk free rate of 0.

ChatGPT Response

The annualized Sharpe ratio of the A Index for the period

from January 7, 2019, to July 3, 2023, assuming a risk-free

rate of 0, is approximately 0.732.

Once we spot-checked a few numbers like this, it is much more convenient and efficient to use ChatGPT to extract

other statistical information on all or parts of the data instead

of using Excel or Python. ChatGPT can be a great friend to

data analysts … sorry … scientists.

1.4 Translating Matlab Codes to Python

Codes

Readers of Ernie’s previous three books know that they are

written in Matlab, for reasons explained in his third book,

 Machine Trading (Chan, 2017). Even though he subsequently

added Python codes to the online code repositories for the

first two books, there aren’t such codes for Machine Trading.

We will see if we can use ChatGPT to translate such Matlab

codes to Python.

The first code example in Machine Trading (ef.m) is about

computing the efficient frontier of a portfolio of ETFs and

finding the tangency portfolio (the one that maximizes

Sharpe ratio historically). For our readers’ convenience, we

have reproduced that in Appendix A.5.

Now let’s ask ChatGPT to translate this into Python. You can

just upload ef.m and ask for translation, or you can copy and

paste the entire file as text into the prompt.

User Prompt

Translate the following Matlab code to Python:

% ef.m

% Find efficient frontier of a set of ETFs

% Note in this program mean and sd of returns are

row vectors,

clear;

load('inputDataOHLCDaily_ETF_20150417', 'stocks',

'tday', 'cl');

...

Author Note: see A.5

ChatGPT Response

To translate this MATLAB code to Python, we’ll use

libraries such as NumPy for numerical computations and

SciPy for optimization (specifically, quadratic

programming). The MATLAB code is used to find the

efficient frontier for a set of ETFs, compute the tangency

portfolio, and find the minimum variance portfolio. Here’s

the equivalent Python code:

import numpy as np

import pandas as pd

from scipy.optimize import minimize

Assuming 'inputDataOHLCDaily_ETF_20150417.csv' is

a CSV file with columns 'stocks', 'tday', and 'cl'

Load data (you'll need to replace this with your

actual data loading mechanism)

data =

pd.read_csv('inputDataOHLCDaily_ETF_20150417.csv')

stocks = data['stocks'].unique()

cl = data.pivot(index='tday', columns='stocks',

values='cl')

Remove 'EWZ' and 'FXI'

cl = cl.drop(columns=['EWZ', 'FXI'])

Calculate returns

R = cl.pct_change().dropna()

Mean and covariance of returns

mi = R.mean()

C = R.cov()

Prepare different target mean portfolio returns

for efficient frontier

m = np.linspace(mi.min(), mi.max(), 21)

v = np.zeros_like(m)

Variance of portfolio to be minimized

H = 2 * C.values

Short sale constraint

A = -np.eye(len(mi))

b = np.zeros(len(mi))

No linear term in minimization

f = np.zeros(len(mi))

Efficient frontier calculation

for i in range(len(m)):

 Aeq = np.vstack([mi, np.ones(len(mi))])

beq = np.array([m[i], 1])

def objective(F):

return F @ H @ F

constraints = ({'type': 'eq', 'fun': lambda F:

np.dot(Aeq[0], F) - beq[0]},

{'type': 'eq', 'fun': lambda F:

np.dot(Aeq[1], F) - beq[1]})

bounds = [(0, None)] * len(mi)

result = minimize(objective, np.ones(len(mi)) /

len(mi), bounds=bounds, constraints=constraints)

v[i] = result.fun

sd = np.sqrt(v)

plt.scatter(sd, m)

plt.xlabel('Standard Deviation')

plt.ylabel('Mean Return')

plt.title('Efficient Frontier')

plt.show()

Find tangency portfolio

sharpe_ratio = m / sd

idx = np.argmax(sharpe_ratio)

Find minimum variance portfolio

idx_min = np.argmin(sd)

For further details like the weights of the

tangency and minimum variance portfolios,

use the 'idx' and 'idx_min' with the 'minimize'

function as shown above.

ChatGPT goes on to respond:

ChatGPT Response

This code does the following:

Loads the ETF data and computes daily returns.

Calculates the mean and covariance of the returns. Uses

quadratic programming (via scipy.optimize.minimize) to

find the efficient frontier, tangency portfolio, and

minimum variance portfolio.

Note: The inputDataOHLCDaily_ETF_20150417.csv

should be replaced with the actual file name and path you

have. This code assumes the data is in a long format with

“stocks,” “tday” (date), and “cl” (close price) columns.

Adjust the data loading and manipulation according to

your actual data format. The plotting part (using

matplotlib.pyplot) is minimal; you might want to enhance

it based on your specific visualization requirements.

The first hurdle in comparing the output of the Python codes

to the Matlab codes is that the Python code expects a .csv

input file in the “long format,” i.e., it assumes that price data

corresponding to different stocks to be stacked into rows one

day at a time. For example,

20050512 EWC 1412

20050512 EWG 1388

20050512 EWJ 894

…

20150417 EWY 6102

20150417 EWZ 3453

20150417 FXI 5003

Assuming that we are not expert Matlab programmers, we

ask ChatGPT to create Matlab code that can save the

information in the input .mat file into a .csv.

User Prompt

In the Matlab code, we assumed that the input file

inputDataOHLCDaily_ETF_20150417.mat has a cell array

stocks with length S, a double array tday with length T,

and a double array cl with dimension TxS. What Matlab

code can we write to output a csv file that conforms to the

format assumed in the input .csv file of the Python code?

ChatGPT Response

% Load data from .mat file

load('inputDataOHLCDaily_ETF_20150417.mat',

'stocks', 'tday', 'cl');

% Initialize a table with 'tday' as the first column

outputData = array2table(tday, 'VariableNames',

{'tday'});

% Add columns for each stock, with closing prices as

values

for i = 1:length(stocks)

outputData.(stocks{i}) = cl(:, i);

end

% Reshape the data to long format

outputDataLong = stack(outputData, stocks,

'NewDataVariableName', 'cl', 'IndexVariableName',

'stocks');

% Write to CSV

writetable(outputDataLong, 'outputData.csv');

The output data file looks reasonable. Renaming

outputData.csv to “inputDataOHLCDaily_ETF_20150417.csv”

will let us test the Python code.

From this point on, our voyage becomes treacherous. The

Python codes ChatGPT translated from Matlab didn’t work at

first. We will display below the tedious prompt-vs-response

between the human and the machine where we coached

ChatGPT to produce codes that finally work, not because we

are sadistic, but because it illustrates what it takes to

squeeze the correct codes out of ChatGPT.

Running the Python code results in error

“ModuleNotFoundError: No module named ‘scipy’.”

Prompting ChatGPT for help generates:

ChatGPT Response

The error “ModuleNotFoundError: No module named

‘scipy’” indicates that the SciPy library, which is essential

for the optimization part of the code (specifically, the

minimize function used for quadratic programming), is not

installed in your Python environment.

To resolve this, you will need to install the SciPy library. If

you are using a standard Python installation, you can

install SciPy using pip, which is the Python package

manager. Here’s how you can do it:

Open your command line interface (CLI). Run the

following command:

pip install scipy

which we did. Running the Python code again resulted in

error:

NameError Traceback

(most recent call last)

Cell In[1], line 50

47 v[i] = result.fun

49 sd = np.sqrt(v)

---> 50 plt.scatter(sd, m)

51 plt.xlabel('Standard Deviation')

52 plt.ylabel('Mean Return')

NameError: name 'plt' is not defined

Confronting ChatGPT with this error yields:

ChatGPT Response

The error you’re encountering, “NameError: name ‘plt’ is

not defined,” indicates that the matplotlib.pyplot module,

commonly imported as plt, has not been imported in your

Python script. This module is necessary for plotting the

efficient frontier.

To resolve this, you need to import matplotlib.pyplot at the

beginning of your script. Here’s the corrected segment of

the Python code with the necessary import statement:

...

import matplotlib.pyplot as plt # Import matplotlib

for plotting

[Rest of your code]

Nice of ChatGPT to tell us that, but why didn’t it add that in

the beginning? Anyway, the code now generated the Figure

1.1. (If you want to save this to a .png file, remember to add

plt.tight_layout() before plt.savefig(plot_file_path).)

[image: Image 17]

Figure 1.1 Efficient frontier based on Python code generated by ChatGPT.

Comparing this plot with the efficient frontier plotted by the

Matlab code in Appendix A.5, we see clearly that there is something wrong with the Python code. The scales of the x

and y axes are correct. The coordinates of the minimum

variance portfolio (corresponding to the green dot on the

Matlab chart) also seem right. But what happened to the

portfolios with the lowest two mean returns? Drilling down

into the details, the mean returns vectors mi from both

programs match. The covariance matrices C from both

programs also match. Following the suggestion from

ChatGPT above, let’s compute the weights for the tangency

portfolio:

Aeq = np.vstack([mi, np.ones(len(mi))])

beq = np.array([m[idx], 1])

def objective(F):

return F @ H @ F

constraints = ({'type': 'eq', 'fun': lambda F:

np.dot(Aeq[0], F) - beq[0]},

{'type': 'eq', 'fun': lambda F:

np.dot(Aeq[1], F) - beq[1]})

bounds = [(0, None)] * len(mi)

result = minimize(objective, np.ones(len(mi)) /

len(mi), bounds=bounds, constraints=constraints)

tangency_portfolio_weights = result.x

tangency_portfolio_weights are found to be [0.19413052,

0.2978653, 0., 0.01713741, 0., 0.49086677] which are very

different from F = [0.3815, 0, 0.6040, 0.0001, 0.0143, 0]

found by Matlab. Plugging these weights back into the array

for the Sharpe ratios at different weights, we found that

Matlab gave a Sharpe ratio of 0.0283 for the tangency

portfolio vs Python’s 0.0194. Clearly, Matlab’s optimization is

better. This is, however, not really the fault of ChatGPT, as a

line-by-line comparison of the codes revealed nothing

erroneous. In fact, we are pleasantly surprised that it was

able to find an optimization package (“minimize”) in scipy

that reasonably mirrors the quadratic optimization function

in Matlab. The fault lies squarely with Python’s subpar

optimization package. As Ernie has maintained in Machine

 Trading (Chan, 2017), Python is a poor cousin of Matlab—you

use it at your own peril. While Matlab’s codes are developed

and maintained commercially by a team of full-time

professionals and PhDs, Python’s codes are developed and

maintained by essentially a group of part-time volunteers. (A

bit of grapevine gossip: the Father of Deep Learning and

Nobel prize laureate, Dr. Geoff Hinton himself, was known to

prefer Matlab to Python in his own research.)

1.5 Conclusion

We have asked ChatGPT to retrieve historical data from the

web, compute returns and Sharpe ratio from these returns,

conduct exploratory data analysis, apply quadratic

optimization to compute the efficient frontier, and in general

translate Matlab to Python codes. With an annoyingly large

amount of coaching (i.e., prompting) and vigilant error-

checking, we conclude that ChatGPT is capable of these

tasks. At the very least, it can generate a first draft from

which human quants can use to build better codes. This is

especially helpful when the human is not an expert

programmer. For example, finding the exact syntax to

generate the precise chart we want in Python is tedious and

time consuming for a native Matlab programmer like Ernie—

a task that ChatGPT can do efficiently using English

instructions and with minimal room for serious error. The

keyword here is “codes”—we found it much better to ask

ChatGPT to suggest codes that we can audit (see Alshahwan

et al., 2024) and modify than to provide the direct numerical

answers to our questions.

In the next chapter, we will be more ambitious and see if Gen

AI can help us backtest or even suggest quantitative trading

strategies.

Chapter 2

No-code Generative AI for Trading

Strategies Development

In the previous chapter, we found that with sufficient

patience and prompting, we can get ChatGPT to perform

basic financial data science tasks such as retrieving,

exploring, and plotting data and computing performance

statistics from them. Though the instructions are all in

English, the output are frequently codes (especially Python

codes). We still consider that no-code usage of Gen AI.

In this chapter, we will see if no-code Gen AI can handle more

challenging tasks such as turning a trading strategy

specification in English into backtest codes, and even more

ambitious, suggest a trading strategy based on a vague

human insight. As a reminder, Ernie has basic Python

programming skills, is much more proficient in MATLAB, and

is a hedge fund founder. This means he has extensive

experience and domain knowledge in finance. In the following

examples, the author approaches the development of the

examples as someone who is an expert in the finance field,

but not a professional programmer or a specialist in prompt

engineering (like many professional asset managers). He

needs help coding in a new language. Let’s see if ChatGPT

can help him. Spoiler alert: ChatGPT’s responses will likely

improve in later releases.

As in Chapter 1, we use ChatGPT GPT-4o for our tests. You can also try Microsoft’s Copilot, Google’s Gemini Pro, xAI’s

Grok, or DeepSeek to see if they can do better. We will ask

ChatGPT to do the following:

a. Create Python codes to backtest a long-short equity

investment strategy that Ernie specified, which uses

Fama-French factors to predict individual stocks’ returns.

b. Create Python codes to backtest a hedged VIX futures

carry strategy from a published paper.

c. Conduct a literature search to find a portfolio

optimization technique that uses deep reinforcement

learning and that can adapt to regime changes.

d. Suggest and conduct exploratory analysis of a SPX

options calendar spread trading strategy.

Once again, we will use the following boxes to denote

prompts to ChatGPT, responses from ChatGPT, and our

commentaries.

For user prompts, we will use the following format:

User Prompt

This is a user prompt.

For output from ChatGPT, including code, we will use:

ChatGPT Response

A response from ChatGPT

Here is an amazing Python code example.

import my_genai_trading_system # :)

% Or a MATLAB code example.

load_system('my_genai_trading_system') % :)

If we embed our own commentary within its response, we will

enclose it with [Author Note: …], for example:

ChatGPT Response

Here is an amazing Python code example.

import spicy # [Author Note: This should be

'scipy', not 'spicy'.]

Once again, code, data, and relevant resources produced or

required for this chapter can be found in the corresponding

chapter folder within the book’s repository:

https://github.com/genai-for-traders/genai-for-trading-and-

am. For this chapter, the files are located in the chapter02

folder and include scripts, Jupyter notebooks, input data files,

and any necessary code for downloading or generating data.

2.1 Creating Codes from a Strategy

Specification

In Machine Trading (Chan, 2017), Ernie created a toy

strategy that used the Fama-French three-factor model to

predict stocks’ returns and backtested the performance of a

trading strategy based on those predictions. Let’s ask

ChatGPT to create all the Python codes necessary for the

backtest by just specifying the strategy in English. (Recall

that Chan, 2017 only has Matlab codes.)

User Prompt

In the following dialogue, pretend you are a quantitative

finance expert.

ChatGPT Response

… [Author Note: The response is a lot of unimportant

babble. Some research suggests it results in better

responses if we first prime ChatGPT on a particular

application area. See Kıcıman et al. (2023).]

User Prompt

Fama-French factors are often used to explain the returns

of a portfolio of stocks. What are the Fama-French

factors?

ChatGPT Response

The Fama-French factors are a set of three factors (and

later expanded to five) introduced by Eugene F. Fama and

Kenneth R. French. They are used in finance to explain the

returns of a stock portfolio, going beyond the traditional

Capital Asset Pricing Model (CAPM), which uses only

market risk (beta) to explain returns. Here’s a breakdown

of these factors:

Original Three Factors

Market Risk (Rm - Rf):

This is the same as in CAPM, representing the excess

return of a portfolio over the risk-free rate, capturing the

market risk. Rm stands for the return of the market

portfolio, and Rf is the risk-free rate.

Size Factor (SMB - Small Minus Big):

SMB stands for “Small [market capitalization] Minus Big”.

It captures the historical excess returns of small-cap

stocks over big-cap stocks. The factor is based on the

observation that, over long periods, small-cap stocks tend

to outperform large-cap stocks.

Value Factor (HML - High Minus Low):

HML stands for “High [book-to-market ratio] Minus Low”.

This factor captures the excess returns of value stocks

(with high book-to-market ratios) over growth stocks (with

low book-to-market ratios). Value stocks are those that are

typically undervalued by the market but have strong

fundamentals.

…

So far so good—at least ChatGPT regurgitates the correct

information that you can find in any quantitative finance

textbook (e.g., Ruppert and Matteson, 2015) or even

Wikipedia. Now let’s get it to produce codes.

User Prompt

Let’s focus only on the original Fama-French three factors.

Instead of using them to explain contemporaneous returns

of stocks in a portfolio, let’s use them to predict the next

day’s returns of these stocks. Can you display the

mathematical setup for this prediction?

[image: Image 18]

[image: Image 19]

[image: Image 20]

[image: Image 21]

[image: Image 22]

[image: Image 23]

[image: Image 24]

[image: Image 25]

[image: Image 26]

[image: Image 27]

[image: Image 28]

[image: Image 29]

[image: Image 30]

[image: Image 31]

[image: Image 32]

[image: Image 33]

[image: Image 34]

[image: Image 35]

[image: Image 36]

ChatGPT Response

Certainly! To use the original Fama-French three factors

for predicting the next day’s returns of stocks in a

portfolio, we set up a predictive linear regression model.

In this model, the future stock returns are the dependent

variable, and the current values of the Fama-French

factors are the independent variables. The mathematical

setup for this predictive model is as follows:

Let’s denote: [Author Note: We did some light editing of

the LaTeX code to make it more readable.]

: The return of stock in the next day (day

).

: The excess return of the market over the risk

free rate in the current day

.

: The small minus big factor in the current day.

: The high minus low factor in the current day.

: Coefficients to be estimated for stock .

: The error term for stock in month [Author Note:

This should be day, not month]

.

The linear regression model for each stock can be

represented as:

In this model:

, is the intercept term for stock .

are the coefficients measuring the sensitivities

of stock ’s returns to the market excess return, SMB, and

HML factors, respectively.

captures the residual effects not explained by the

model.

This setup allows for the prediction of next day’s returns for each stock in the portfolio based on the current values

of the Fama-French factors. It’s important to note that

while this model uses historical relationships to make

predictions, the accuracy of these predictions can vary

due to market volatility, economic changes, and other

factors not captured by the model.

User Prompt

Correct. Can you turn this mathematical model into

Python code?

To which ChatGPT responded with Python codes that

represent the linear regression of a single stock’s returns

against the Fama-French factors. Obviously, that isn’t

complete. Also, as a prerequisite, we will need data. Assume

that the prices are contained in the file “CRSP_mid.csv,”

which contains data formatted as follows:

tday syms mid

20070103 ABT 8.867780

20070103 HON 37.689365

20070103 AA 25.932974

20070103 BEAM 45.437196

20070103 AEP 31.218061

...

20131231 GGP 20.055000

20131231 MHK 148.904995

20131231 ADS 262.945005

20131231 FB 54.655000

20131231 TSCO NaN

[1309166 rows × 3 columns]

While we cannot share this data due to licensing restrictions,

you can construct a similar file from any daily stock

survivorship-bias-free data, such as that from Sharadar. (See a list of other data vendors in Chan [2017].)

* * *

 Exercise: Ask ChatGPT to help you convert whatever data you

purchased into the “long” format shown in Section 1.4.

* * *

We asked ChatGPT for the code for computing the future 1-

day return, and it responded with something that looked like

the code in Appendix 2A.1 at the end of this chapter. The original code wasn’t perfect, but if you know a bit of Python,

it is easy to fix it up.

Next, we need to upload the Fama-French data file, which is

available from

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/da

ta_library.html as “F-F_Research_Data_Factors_daily.CSV.”

We again prompted ChatGPT for the codes, and the response

is passable. After we edited it lightly, the code is displayed in

Appendix 2A.2. We also prompted for the codes for merging the labels (future 1-day return) and the features (Fama-French factors) into one dataframe for use as our training

data. Those are shown in Appendix 2A.3.

Now we are ready to train a regression model, or more

precisely, train regression models for all the stocks. We

started with the following:

User Prompt

The linear regression model you proposed above is

correct, but it is for one stock only. Can you display the

codes for all the stocks in the data?

ChatGPT Response

…

Assuming 'Stock_ID' and '1_Day_Returns' are

columns in your next month

returns data

Train a model for each stock

for stock_id in combined_data['Stock_ID'].unique():

stock_data =

combined_data[combined_data['Stock_ID'] == stock_id]

X = stock_data[['Mkt-RF', 'SMB', 'HML']] #

Replace with actual Fama-French column names

y = stock_data['1_Day_Returns']

model = LinearRegression().fit(X, y)

Save or use the model for each stock

The code looks correct. But unfortunately, it can’t handle any

NaNs in the data, and financial data (or indeed any data) is

full of such missing values. So, we try again.

User Prompt

Correct, but what if the X and y contains NaN?

ChatGPT Response

as most machine learning algorithms, including linear

regression in scikit-learn, cannot handle NaN values

directly. To address this, you have a few options: …

The statement that “most machine learning algorithms

cannot handle NaN” is wrong. Certainly most if not all

algorithms in Matlab’s Statistics and Machine Learning

Toolbox can handle NaN. We want to catch ChatGPT in its lie:

User Prompt

Can LightGBM handle NaNs in the input?

ChatGPT Response

Yes, LightGBM, a gradient boosting framework that uses

tree-based learning algorithms, can handle NaN (Not a

Number) values in its input data. …

Which directly contradicts ChatGPT’s own statement above!

Self-consistency is not a forte of Gen AI.

User Prompt

Is there any Python package for linear regression that can

handle NaN in the input data?

ChatGPT Response

… Statsmodels, another statistical modeling library in

Python, can handle missing data using the missing=‘drop’

parameter in its model-fitting functions. This tells the

model to automatically drop observations with NaNs.

import statsmodels.api as sm

model = sm.OLS(y, X, missing='drop').fit()

Note that this approach drops any row with NaNs, similar

to using dropna() in pandas, but it’s done internally within

the model.

So, we tried replacing the line

model = LinearRegression().fit(X, y)

with the sm.OLS line (after running pip install statsmodel).

Well, that didn’t work either, because sm.OLS is interpreting

the missing=‘drop’ option as weights. ChatGPT has no idea

why, and suggested we remove all rows with NaN before

running the LinearRegression in scikit-learn.

import pandas as pd

from sklearn.linear_model import LinearRegression

Assuming 'combined_data' is your DataFrame

some_minimum_threshold=100 # Define a threshold as per

your analysis

for stock_id in combined_data['Stock_ID'].unique():

stock_data =

combined_data[combined_data['Stock_ID'] == stock_id]

Remove rows where any of the columns have NaN

values

stock_data = stock_data.dropna(subset=

['1_Day_Returns', 'Mkt-RF', 'SMB', 'HML'])

X = stock_data[['Mkt-RF', 'SMB', 'HML']]

y = stock_data['1_Day_Returns']

Ensure that X and y have enough data points

if len(X) > some_minimum_threshold: # Define a

threshold as per your analysis

model = LinearRegression().fit(X, y)

print({

'Stock_ID': stock_id,

'Intercept': model.intercept_,

'Beta_Market': model.coef_[0],

'Beta_SMB': model.coef_[1],

'Beta_HML': model.coef_[2]

})

That seems to work. But we don’t want to fit a regression model using all our data—we need to leave some data for out-of-sample testing of our trading strategy. So let’s use the first

half for training:

User Prompt

The program you created above using Linear Regression

to predict 1-day return is correct, but can you modify it so

that it uses only the first half of the data for fitting?

ChatGPT Response

…

Split the data into two halves

halfway_point = len(combined_data) // 2

training_data = combined_data.iloc[:halfway_point]

#...

for stock_id in training_data['Stock_ID'].unique():

Filter training data for the current stock

stock_data =

training_data[training_data['Stock_ID'] == stock_id]

#...

The changes look correct and are easy enough to incorporate

in our original program. (See the final code fragment in the

#%%Train model cell in ff_1day.py, available for download

from our GitHub.)

We will need to make predictions using the previous trained

(fitted) model. Let’s ask ChatGPT how to do that.

User Prompt

With the fitted regression model above, how do you make

predictions using input “features”?

ChatGPT responded with some very cumbersome codes that

explicitly multiplies the regression coefficients such as

“Beta_Market” with the input features contained in X. So, we

asked it to make them more elegant.

User Prompt

Instead of explicitly using the names of the model

coefficients to make these predictions, can you call some

predict function generic to a regression model object?

ChatGPT Response

Certainly! To use a generic predict function that is

common to regression model objects, you would typically

save each fitted model object for each stock during the

training process, and then use the predict method of these

model objects to make predictions. This approach is more

flexible and aligns with standard practices in model

deployment.

Here’s how you can adjust the code to include saving the

fitted model objects and then using their predict methods:

Step 1: Save Each Fitted Model

While training the models, save each fitted model object

into a dictionary where the keys are the stock IDs:

from sklearn.linear_model import LinearRegression

Dictionary to store the model for each stock

fitted_models = {}

for stock_id in training_data['Stock_ID'].unique():

... [Data preparation steps]

Fit the model

model = LinearRegression().fit(X, y)

Store the fitted model

fitted_models[stock_id] = model

Step 2: Predict Using the Saved Models

Use the predict method of each saved model to make

predictions on new data:

def predict_returns(fitted_models, features):

"""

Make predictions for each stock using the fitted

models.

:param fitted_models: Dictionary of fitted model

objects for each stock

:param features: DataFrame with new input

features for prediction

:return: A DataFrame with predicted returns for

each stock

"""

predictions = []

for stock_id, model in fitted_models.items():

Select the features for the current stock

stock_features =

features.loc[features['Stock_ID'] == stock_id,

['Market_Excess_Return', 'SMB', 'HML']]

Modify this to

stock_features =

features.loc[features['Stock_ID'] == stock_id,

['Mkt-RF', 'SMB', 'HML']]

Check if there are features to predict on

if not stock_features.empty:

Make prediction

predicted_return =

model.predict(stock_features)

Store the predictions

for i, prediction in

enumerate(predicted_return):

predictions.append({'Stock_ID':

stock_id,

'Predicted_Return': prediction,

'Date': stock_features.index[i]}

)

return pd.DataFrame(predictions)

Example usage

features = pd.DataFrame(...) # Replace with your

new input features DataFrame

predicted_returns = predict_returns(fitted_models,

training_data)

print(predicted_returns)

In this updated code:

The predict_returns function iterates through each

fitted model in fitted_models.

It uses the predict method on the subset of features

corresponding to each stock.

The function compiles the predictions into a

DataFrame.

Ensure that the features DataFrame is structured

correctly with the Fama-French factors and stock IDs. This

approach allows for more flexibility and is more aligned

with typical model deployment practices.

Granted, we would only know to ask this question if we have

prior knowledge that fitted models from scikit-learn or

 statsmodels come with a predict function, so clearly this won’t work for someone completely unfamiliar with Python

and its data science libraries. Furthermore, though this code

looks useful because it helps us save the fitted models

somewhere as well, it isn’t quite correct.

A fundamental problem with the predict_returns function is

that it is expecting the input stock_features to have an index,

“stock_id. ” This may be appropriate for “cross-sectional”

features (see Nautiyal and Chan [2021]), but certainly not for

“time-series” features. When we told ChatGPT that these are

time-series features that do not have stock_id as index, it

thinks we must be predicting the returns of the portfolio as a

whole, not the returns of the individual stocks in that

portfolio. So, more prompting is needed to clarify.

User Prompt

Maybe it is common to use time-series factors to predict

portfolio returns, but here, we have trained our models to

predict returns for each stock. Modify your function

accordingly.

ChatGPT Response

…

import pandas as pd

import numpy as np

def predict_returns(fitted_models, features_today):

"""

Predict returns for each stock for a single day

using their respective fitted models.

:param fitted_models: Dictionary of fitted model

objects for each stock

:param features_today: DataFrame or Series with

input features for a single day

:return: A Series with predicted returns for

each stock

"""

predictions = {}

Ensure features_today is in the correct format

(2D array)

if isinstance(features_today, pd.Series):

features_today =

features_today.values.reshape(1, -1)

elif isinstance(features_today, pd.DataFrame):

features_today = features_today.values

Iterate over each model and predict the return

for each stock

for stock_id, model in fitted_models.items():

Predict the return for the current stock

using the common features

predicted_return =

model.predict(features_today)

If the model returns a list/array, take

the first element as the prediction

if isinstance(predicted_return, (list,

np.ndarray)):

predictions[stock_id] =

predicted_return[0]

 else:

predictions[stock_id] = predicted_return

return pd.Series(predictions)

Ultimately, none of the codes produced by ChatGPT quite

worked. Ernie had to use his limited Python skills to mix-and-

match different codes to produce the final function.

Predicting returns

import pandas as pd

import numpy as np

def predict_returns(fitted_models, features_today):

"""

Predict returns for each stock for a single day

using their respective fitted models.

:param fitted_models: Dictionary of fitted model

objects for each stock

:param features_today: DataFrame or Series with

input features for a single day

:return: A Series with predicted returns for each

stock

"""

predictions = {}

Ensure features_today is in the correct format

(2D array)

features_today = features_today[['Mkt-RF', 'SMB',

'HML']]

features_today = features_today.values.reshape(1,

-1)

Iterate over each model and predict the return

for each stock

for stock_id, model in fitted_models.items():

Predict the return for the current stock

using the common features

predicted_return =

model.predict(features_today)

If the model returns a list/array, take the

first element as the prediction

predictions[stock_id] = predicted_return[0]

return pd.Series(predictions)

If you run this code as

predicted_returns = predict_returns(fitted_models,

features_today)

where features today is a pd.Series that looks like

Mkt-RF -0.04

SMB 0.08

HML -0.11

RF 0.022

and fitted_models is an output of the training codes above,

the output will look like this:

0033A 0.044187

3511B 0.057673

3FMCC -0.139659

3FNMA -0.112233

5933B 0.045648

...

XTO 0.016649

YHOO -0.012752

YUM 0.015054

ZION -0.039987

ZMH -0.007693

Length: 553, dtype: float64

Now we need to incorporate these predictions in a backtest

program for the trading strategy. But let’s test if ChatGPT

understands what a trading strategy is first.

User Prompt

Imagine a trading strategy that buys the top 50 stocks

with the highest predicted returns and short the bottom

50, on a daily basis, and hold those positions for the next

30 days. What is the maximum number of positions we can

hold for a particular stock at any one time?

ChatGPT Response

Since you are trading daily and holding each position for

30 days, it means that on any given day, you could have up

to 30 overlapping positions for the same stock, each

initiated on a different day over the past 30 days. This

scenario assumes that the stock consistently appears

either in the top 50 or bottom 50 each day for 30

consecutive days.

Impressive! ChatGPT is finally showing some conceptual

intelligence that we felt wasn’t quite apparent until now.

However, when we asked it to convert this trading strategy to

backtest code (with 1-day holding period for simplicity and to

match the existing Matlab code), it produced versions that

are wrong in one aspect or another. In one version it is using

all the columns in the input data as features instead of just

selecting the three Fama-French factors. In another version,

it forgot that the input data has multiple rows of the same

date that correspond to different stock_Id’s. So, we had to

ask the following:

User Prompt

This doesn‘t fix the issue. The problem is that the for loop

goes over every row in the data, assuming that each row

refers to data of a different date. But that’s not true.

Currently it will repeatedly calculate portfolio_returns for

the same date many times as it iterates through the rows

of the data.

To which it regrettably responded with more erroneous

codes.

In a third version, ChatGPT thinks it is smart and looks at the

data 1-day ahead of the current date to look for the value

31_Day_Returns. But that is unnecessary because we created

1_Day_Returns as the return in the next day already. This is

another case where unless you understand Python, you won’t

be able to catch the error.

After many days (!) of prompting and manual adjustments,

we finally arrived at the following working version.

Backtest long-short trading strategy

import pandas as pd

import warnings

warnings.filterwarnings('ignore') # Without suppression

of warnings, the program will freeze in Jupyter

Notebook due to too much output

Function to execute the trading strategy

def execute_strategy(data, fitted_models,

holding_period=1):

portfolio_returns = []

Get unique dates from the data

unique_dates = data['Date'].unique()

for day in range(len(unique_dates) -

holding_period):

Get the current date

current_date = unique_dates[day]

Filter data for the current date

data_today = data[data['Date'] == current_date]

Get features for this day (assuming the

features are the same for all stocks on a given day)

features_today = data_today[['Mkt-RF', 'SMB',

'HML', 'RF']].iloc[0]

Predict returns using the predict_returns

function

predicted_returns =

predict_returns(fitted_models, features_today)

Implement your strategy: select top 50 and

bottom 50 stocks

top_50 = predicted_returns.nlargest(50)

bottom_50 = predicted_returns.nsmallest(50)

Calculate returns for the selected stocks on

a current date

 current_date = unique_dates[day]

current_data = data[data['Date'] ==

current_date]

#print(current_date)

long_returns =

current_data[current_data['Stock_ID'].isin(top_50.index

)]['1_Day_Returns'].mean()

short_returns = -

current_data[current_data['Stock_ID'].isin(bottom_50.in

dex)]['1_Day_Returns'].mean()

Daily portfolio return

daily_portfolio_return = (long_returns +

short_returns) / 2

portfolio_returns.append(daily_portfolio_return)

return portfolio_returns

To execute this function, ChatGPT helpfully suggested

(correctly)

portfolio_returns=execute_strategy(training_data,

fitted_models)

It produces a list, not a pd.Series, which isn’t ideal because it

does not include timestamps. We shan’t be picky, so we said:

User Prompt

Correct! Please compute the Sharpe ratio.

ChatGPT Response

import numpy as np

Calculate Sharpe Ratio

def calculate_sharpe_ratio(portfolio_returns,

risk_free_rate=0.02):

excess_returns = np.array(portfolio_returns) -

risk_free_rate / 252

sharpe_ratio = np.mean(excess_returns) /

np.std(excess_returns) * np.sqrt(252)

return sharpe_ratio

This brings up an important point that Ernie discussed in

 Quantitative Trading (Chan, 2021). Let’s see if ChatGPT

understands this nuance.

User Prompt

In the calculate_sharpe_ratio function defined above, the

risk-free rate is defaulted to 0.02. For a long-short dollar-

neutral portfolio, should we deduct risk-free rate from the

returns in a Sharpe ratio calculation? In other words, is

excess returns the raw returns minus the risk-free rate?

ChatGPT Response

In the context of a long-short dollar-neutral portfolio, the

consideration of the risk-free rate in the calculation of the

Sharpe ratio can be a bit nuanced. Here’s how to think

about it:

Excess Returns: Typically, the Sharpe ratio is calculated

using excess returns, which are the portfolio’s returns

minus the risk-free rate. This is to assess how much

additional return the investment is providing over a risk-

free alternative (like Treasury bills).

Dollar-Neutral Portfolio: In a dollar-neutral portfolio,

you’re equally long and short in dollar terms.

Theoretically, such a portfolio might be seen as self-

financing, implying that its performance could be assessed

without considering the risk-free rate. The rationale is that

any interest you would earn on the long side (from

investing money) might be offset by the interest you would

pay on the short side (from borrowing money).

Practical Considerations: Practically, whether or not to

include the risk-free rate in the Sharpe ratio calculation

for a dollar-neutral portfolio depends on several factors:

Strategy and Leverage: If your strategy involves leverage

or financing costs, these should be factored into the return

calculation. Benchmarking: Consider what is standard

practice in your benchmark group or among your peers.

Investor Expectations: Consider what investors in your

fund would expect. They might compare your fund’s

performance to other investments, which typically are

assessed using excess returns over the risk-free rate. Risk-

Free Rate in Sharpe Ratio:

Include Risk-Free Rate: If you want to maintain

consistency with broader market practices and make your

Sharpe ratio comparable to others, you might include the

risk-free rate. Exclude Risk-Free Rate: If you believe that your portfolio’s characteristics (like being dollar-neutral)

make the risk-free rate less relevant, you could exclude it.

In summary, whether to use raw returns or excess returns

(returns minus the risk-free rate) in the Sharpe ratio

calculation for a long-short dollar-neutral portfolio

depends on the specific characteristics of your portfolio

and your performance measurement goals. Both

approaches have rationales, but it’s important to be

consistent and clear about the method you choose,

especially when communicating with stakeholders or

investors.

Impressive! It got most of the nuance right. For a long-short

portfolio such as ours, we do not typically subtract risk-free

rate (Rf) from the raw returns in Sharpe ratio calculations for

the self-financing reason ChatGPT described. In other words,

investors with this portfolio can still earn margin interest on

the cash deposited in their accounts, and as long as you don’t

include such margin interest in your P&L, you also don’t need

to subtract Rf from your returns. But if you are running a

hedge fund and this portfolio is its sole holding, the fund’s

returns (ignoring management and performance fees) will

already have included this margin interest, and so in

reporting its Sharpe ratio, you must subtract Rf. During the

post-COVID era of high interest rates that reached more than

5%, this is an important consideration. Since we are not

including Rf as credit interest in our portfolio, we can also set

Rf to 0 in our following Sharpe ratio calculation.

Calculate Sharpe Ratio

def calculate_sharpe_ratio(portfolio_returns,

risk_free_rate=0.0):

excess_returns = np.array(portfolio_returns) -

risk_free_rate / 252

sharpe_ratio = np.mean(excess_returns) /

np.std(excess_returns) * np.sqrt(252)

return sharpe_ratio

Backtest the strategy

sharpe_ratio =

calculate_sharpe_ratio(portfolio_returns)

print("Sharpe Ratio:", sharpe_ratio)

which produces 6.5, much higher than the 3.7 that we

obtained from Matlab, on the training set. Which is right?

The reason the Python program seemingly outperformed the

Matlab program is that we have skipped all stocks with

insufficient data in the Python program, whereas in the

Matlab program, we have made a prediction of 0 returns for

those stocks—which wasn’t correct.

Let’s see how it performs on the test set.

User Prompt

Let’s say I have dataframe combined_data. I want to split

it into 2 two halves: training_data and test_data using

halfway_point = len(combined_data) // 2 training_data =

combined_data.iloc[:halfway_point]. How should I

compute test_data?

ChatGPT Response

test_data = combined_data.iloc[halfway_point:]

[image: Image 37]

which is correct. Running the backtest on the test data

resulted in a Sharpe ratio of 0.55, which is much better than

the negative Sharpe from the Matlab program. The complete

process can be downloaded from ff_1day.py on our GitHub.

Now let’s display the cumulative return (“equity” or “Growth

of $1”) curve shown in Figure 2.1.

Figure 2.1 Cumulative returns of Fama-French three-factor strategy.

User Prompt

Suppose the daily returns of a portfolio is contained in a

list portfolio_returns. Please display the cumulative

returns curve.

ChatGPT Response

import matplotlib.pyplot as plt

import numpy as np

Example portfolio_returns list (replace this with

your actual returns)

portfolio_returns = [0.01, -0.005, 0.007, -0.003,

0.002, 0.01, -0.004]

Calculate cumulative returns

cumulative_returns = np.cumprod(1 +

np.array(portfolio_returns)) – 1

Plotting the cumulative returns curve

plt.figure(figsize=(10, 6))

plt.plot(cumulative_returns, marker='o',

linestyle='-')

plt.title('Cumulative Returns of the Portfolio')

plt.xlabel('Days')

plt.ylabel('Cumulative Returns')

plt.grid(True)

plt.show()

Remember, this is all on the test set. If you are wondering,

the drawdown started around 2012-09, and it had been

relentless until the end of the data 2023-12. This doesn’t

mean Fama-French factors can’t explain returns any more. It

just means factor loadings are no longer persistent from one

day to the next. As a side note, we did not try to make the

plots generated by ChatGPT look pretty since the goal was

just to show the raw outputs it produced. Sure, we could have

asked it to create better-looking figures, but that wasn’t the

point of this exercise. By the way, if you ask ChatGPT to

improve the style of plots in Python using Matplotlib or

Seaborn, it is actually really good at it.

2.2 Summarizing a Trading Strategy

Paper and Creating Backtest Codes

from It

Ernie’s second book, Algorithmic Trading (Chan, 2013,

p.143), describes an interday momentum trading strategy

involving the VIX futures. The strategy is based on a paper by

Simon and Campasano (2014). Let’s see if ChatGPT can read

and understand that paper and produce backtest codes for it.

User Prompt

Pretend you are a quantitative finance expert. Please

summarize the trading strategies described in this paper.

[Author Note: Remember we can upload a paper to

ChatGPT-4o.]

ChatGPT Response

…

the paper explores relative value spread trades, designed

to profit from deviations in the EH [Author Note:

Expectations Hypothesis]

…

The paper’s results suggest that the VIX futures market

presents opportunities for strategic trades based on its

term structure anomalies.

That summary is too high level. So, we asked it to be more

specific.

User Prompt

More specifically, generate pseudocodes for the relative

value spread trades, or any other trades based on term

structure anomalies.

ChatGPT Response

The paper describes a beta-neutral trading strategy (BN)

that involves maintaining a long position in constant-

maturity VIX futures with a long-maturity tenor (L) and a

simultaneous short position in constant-maturity VIX

futures with a short-maturity tenor (S). The goal of this

strategy is to ensure that the net position is VIX-neutral.

Here’s a simplified pseudocode for the beta-neutral

trading strategy:

Define the beta-neutral (BN) trading strategy

Define BN_Trading_Strategy(long_maturity_tenor,

short_maturity_tenor, constant_maturity_betas):

Initialize weights for long and short

positions

weight_long = (1 / beta_long) / ((1 / beta_long)

+ (1 / beta_short))

weight_short = 1 - weight_long

Calculate daily payoff

daily_payoff = weight_long * return_long -

weight_short * return_short

return daily_payoff

Example usage

long_maturity_tenor = L # Specify the long-maturity

tenor

short_maturity_tenor = S # Specify the short-

maturity tenor

constant_maturity_betas = Table_4_data # Retrieve

constant-maturity betas from table 4

Calculate the daily payoff for the beta-neutral

trading strategy

daily_payoff =

BN_Trading_Strategy(long_maturity_tenor,

short_maturity_tenor, constant_maturity_betas)

In this pseudocode:

long_maturity_tenor and short_maturity_tenor are the

tenors for the long and short VIX futures positions,

respectively. constant_maturity_betas represents the betas

for each maturity, which can be retrieved from a specified

table (Table 4 in the paper). The weights for the long

(weight_long) and short (weight_short) positions are

calculated based on these betas. The daily_payoff is

computed as the weighted difference between the returns

of the long and short positions.

This actually isn’t the trading strategy the paper proposes.

The strategy proposed isn’t a calendar spread strategy. It is a

strategy to buy or short VIX futures based on whether it is in

backwardation or contango and then hedge its position by the

ES future with the same sign. Instead, we want ChatGPT to

focus on the following paragraph in the paper:

The simulations examine the profitability of shorting or

buying VIX futures contracts when the VIX futures basis is

in contango or backwardation, respectively, and the

efficiency of hedging market risk with mini-S&P futures

positions. The simulations then examine the impact of

modifying entry rules and then introducing exit rules based

on risk management strategies. All trading simulations

examine the profitability of shorting or buying the front

VIX futures contract that has at least ten business days

until settlement when the magnitude of the daily roll is

greater in magnitude than .10 VIX futures point ($100) per

day.13 The daily roll is defined as the difference between

the front VIX futures price and the VIX, divided by the

number of business days until the VIX futures contract

settles, and measures potential profits assuming that the

basis declines linearly until settlement.”

Let’s see how we can prompt it to do so.

User Prompt

In your pseudocodes above, you missed an important

trading rule. See especially the paragraph starting with

“The simulations examine the profitability of shorting or

buying VIX futures contracts when the VIX futures basis is

in contango or backwardation,…

[Author Note: We continued with the rest of the

paragraph just quoted.]”

ChatGPT Response

…

Define the beta-neutral trading strategy with

contango/backwardation consideration

Define

BN_Trading_Strategy_With_Contango_Backwardation(long

_maturity_tenor, short_maturity_tenor,

constant_maturity_betas, VIX_term_structure_state):

Determine trade direction based on the state

of the VIX futures term structure

if VIX_term_structure_state == "contango":

In contango, buy long-maturity and sell

short-maturity VIX futures

trade_direction = "buy_long_sell_short"

elif VIX_term_structure_state ==

"backwardation":

In backwardation, sell long-maturity and

buy short-maturity VIX futures

trade_direction = "sell_long_buy_short"

else:

return "No trade"

Calculate weights for long and short positions

weight_long = (1 / beta_long) / ((1 / beta_long)

+ (1 / beta_short))

weight_short = 1 - weight_long

Calculate daily payoff based on trade

direction

if trade_direction == "buy_long_sell_short":

daily_payoff = weight_long * return_long -

weight_short * return_short

elif trade_direction == "sell_long_buy_short":

daily_payoff = weight_short * return_short -

weight_long * return_long

return daily_payoff

Example usage

VIX_term_structure_state =

Determine_VIX_Term_Structure_State() # Function to

determine if VIX is in contango or backwardation

daily_payoff =

BN_Trading_Strategy_With_Contango_Backwardation(long

_maturity_tenor, short_maturity_tenor,

constant_maturity_betas, VIX_term_structure_state)

In this revised pseudocode, the function

Determine_VIX_Term_Structure_State() is assumed to

analyze the VIX term structure and return either

“contango” or “backwardation”. The trading strategy then

adjusts its positions accordingly, either buying long and

selling short in a contango state or the reverse in a

backwardation state.

It still isn’t the strategy described in the paragraph, but at

least it mentioned the term structure criterion. Does ChatGPT

know how the authors of the paper define backwardation or

contango of the VIX futures? We shall find out.

User Prompt

Based on the paper, provide definition of the function

Determine_VIX_Term_Structure_State(). That is, define

backwardation or contango based on the paper’s

definition.

ChatGPT Response

Based on the information in the paper, the

Determine_VIX_Term_Structure_State() function can be

defined as follows:

Contango: The VIX futures curve is in a state of contango

when it is upward sloping. This means that the futures

prices are higher than the spot price of the VIX index, and

they increase as the time to maturity increases. In a

contango market, the long end of the futures curve is less

volatile, and the price ranges (difference between high

and low readings) and the volatility of prices decrease

with increasing time to maturity.

Backwardation: The VIX futures curve is in a state of

backwardation when it is downward sloping. This occurs

when the futures prices are lower than the spot price of

the VIX index, and they decrease as the time to maturity

increases. The long end of the curve in backwardation

would be more responsive to changes in the spot price.

Here’s how the Determine_VIX_Term_Structure_State()

function could be defined in pseudocode:

Define a function to determine the state of the

VIX term structure

Define

Determine_VIX_Term_Structure_State(VIX_spot_price,

VIX_futures_prices):

Compare spot price with futures prices for

different maturities

is_upward_sloping = True

for each maturity in VIX_futures_prices:

if VIX_futures_prices[maturity] <

VIX_spot_price:

is_upward_sloping = False

break

Determine the term structure state based on

the slope

if is_upward_sloping:

return "contango"

else:

return "backwardation"

Example usage

VIX_spot_price = Current_VIX_Spot_Price() #

Function to get the current VIX spot price

VIX_futures_prices = Get_VIX_Futures_Prices() #

Function to get VIX futures prices for different

maturities

term_structure_state =

Determine_VIX_Term_Structure_State(VIX_spot_price,

VIX_futures_prices)

In this pseudocode:

The VIX_spot_price is the current spot price of the VIX

index. VIX_futures_prices is a dictionary (or similar data

structure) that holds futures prices for various maturities.

The function compares the spot price with futures prices

for each maturity to check if the curve is upward or

downward sloping, thus determining if the term structure is in contango or backwardation.

It got the definition of backwardation and contango right. But

still, we are missing trading rules that incorporate them.

User Prompt

That is correct definition of backwardation and contango.

But note the paragraph starting with “The simulations

examine….” It has a version of the strategy embedded

there. Please summarize that version and provide

pseudocodes.

ChatGPT Response

Thank you for providing the detailed paragraph. Based on

this information, the revised trading strategy involves:

Determining the State of the VIX Futures Basis: The

strategy involves shorting VIX futures contracts when the

VIX futures basis is in contango and buying them when in

backwardation.

Entry Rules: Trades are entered when the front VIX

futures contract, which has at least ten business days until

settlement, shows a daily roll greater in magnitude than

0.10 VIX futures points ($100) per day.

Daily Roll Calculation: The daily roll is calculated as the

difference between the front VIX futures price and the

VIX, divided by the number of business days until the VIX

futures contract settles. This measures potential profits

assuming that the basis declines linearly until settlement.

Exit Rules: Based on risk management strategies, the

strategy may also involve specific exit rules, though these

are not detailed in the paragraph you provided.

Alternative Thresholds: Footnote 13 indicates that

simulations were also run with +/− 0.15 daily roll

thresholds, resulting in fewer but more profitable trades.

Here’s a pseudocode representation of this strategy:

Define the trading strategy based on VIX futures

basis and daily roll

Define Trading_Strategy(VIX_spot_price,

front_VIX_futures_price, days_until_settlement,

daily_roll_threshold = 0.10):

Calculate the daily roll

daily_roll = (front_VIX_futures_price -

VIX_spot_price) / days_until_settlement

Determine the state of the VIX futures basis

if daily_roll > daily_roll_threshold:

basis_state = "contango"

elif daily_roll < -daily_roll_threshold:

basis_state = "backwardation"

else:

return "No trade"

Determine the trade action based on the basis

state

if basis_state == "contango":

trade_action = "short VIX futures"

elif basis_state == "backwardation":

trade_action = "buy VIX futures"

return trade_action

Example usage

VIX_spot_price = Current_VIX_Spot_Price() #

Function to get the current VIX spot price

front_VIX_futures_price =

Get_Front_VIX_Futures_Price() # Function to get the

price of the front VIX futures contract

days_until_settlement =

Get_Days_Until_Settlement(front_VIX_futures_contract

) # Function to get the number of business days

until settlement of the front VIX futures contract

trade_action = Trading_Strategy(VIX_spot_price,

front_VIX_futures_price, days_until_settlement)

Getting closer. However, it is still strange that it completely ignored the explicit requirement (much discussed in the

paper) to hedge the VIX future with E-mini future.

User Prompt

Apparently you have forgotten the specification “hedging

market risk with mini-S&P futures positions”. How would

that enter your strategy specification and pseudocode?

ChatGPT Response

Incorporating the hedging of market risk with mini-S&P

futures into the trading strategy requires adding a

component to the strategy that adjusts the position in

mini-S&P futures based on the market exposure of the VIX

futures position. The idea here is to hedge the market risk

associated with the VIX futures trade by taking an

offsetting position in mini-S&P futures.

Here’s how this could be integrated into the strategy:

Assess Market Exposure: After determining the trade

action for VIX futures (either shorting or buying), assess

the market exposure this position creates. For instance, a

long position in VIX futures could be considered as having

negative market exposure (since VIX often increases when

the market falls), and a short position in VIX futures as

positive market exposure.

Hedge with Mini-S&P Futures: Based on the assessed

market exposure from the VIX futures position, take an

offsetting position in mini-S&P futures. If the VIX futures

position has negative market exposure, a long position in

mini-S&P futures would hedge this risk, and vice versa.

Here is the revised pseudocode with market risk hedging:

Define the trading strategy with market risk

hedging using mini-S&P futures

Define Trading_Strategy_With_Hedging(VIX_spot_price,

front_VIX_futures_price, days_until_settlement,

S_and_P_position_size, daily_roll_threshold = 0.10):

Calculate the daily roll

daily_roll = (front_VIX_futures_price -

VIX_spot_price) / days_until_settlement

Determine the state of the VIX futures basis

if daily_roll > daily_roll_threshold:

basis_state = "contango"

elif daily_roll < -daily_roll_threshold:

basis_state = "backwardation"

else:

return "No trade"

Determine the trade action based on the basis

state

if basis_state == "contango":

VIX_trade_action = "short VIX futures"

S_and_P_trade_action = "long mini-S&P

futures" # Hedge against positive market exposure

elif basis_state == "backwardation":

VIX_trade_action = "buy VIX futures"

S_and_P_trade_action = "short mini-S&P

futures" # Hedge against negative market exposure

Adjust mini-S&P futures position size to hedge

market risk

Adjust_Mini_SP_Futures_Position(S_and_P_position_

size, S_and_P_trade_action)

return VIX_trade_action, S_and_P_trade_action

Example usage

VIX_spot_price = Current_VIX_Spot_Price()

front_VIX_futures_price =

Get_Front_VIX_Futures_Price()

days_until_settlement =

Get_Days_Until_Settlement(front_VIX_futures_contract

)

S_and_P_position_size = Determine_Position_Size() #

Function to determine the size of the mini-S&P

futures position

VIX_trade_action, S_and_P_trade_action =

Trading_Strategy_With_Hedging(VIX_spot_price,

front_VIX_futures_price, days_until_settlement,

S_and_P_position_size)

In this pseudocode, Adjust_Mini_SP_Futures_Position is a

function that adjusts the position in mini-S&P futures

based on the calculated trade action and position size.

This function would take into account the specifics of the

hedge, such as the degree of leverage or the precise sizing

of the mini-S&P position relative to the VIX position, to

effectively balance the market risk.

After basically spoon-feeding information to ChatGPT

(treating it as an inexperienced and mediocre intern), it

finally added the hedge. But wait, whenever there is a hedge,

we need to specify a hedge ratio. Doesn’t ChatGPT know

basic finance?

User Prompt

This is correct. Does the paper specify how we should

determine the hedge ratio between the VIX and ES

futures?

ChatGPT Response

I have thoroughly reviewed the paper “VIX Futures Term

Structure and the Expectations Hypothesis” to find

specific information regarding the determination of the

hedge ratio between VIX and mini-S&P (ES) futures.

However, the sections of the paper I was able to access

did not provide explicit details or formulas for calculating

this hedge ratio.

This mediocre intern is becoming even more annoying. But as

mentors, we shall not lose patience.

User Prompt

See this paragraph starting with “The hedge ratio–the

number of mini-S&P futures contracts to buy or sell per

VIX futures position–—is constructed using the out of

sample parameter estimates from equation 3. ” Are you able to summarize the method of calculating the hedge

ratio and display the pseudocodes?

[image: Image 38]

[image: Image 39]

[image: Image 40]

[image: Image 41]

[image: Image 42]

[image: Image 43]

[image: Image 44]

[image: Image 45]

[image: Image 46]

ChatGPT Response

…, the hedge ratio (HR) is calculated using the following

formula:

where:

is the hedge ratio at time .

and

are parameters estimated from equation 3

(not provided in your quote).

is the lagged value of some variable (not

specified in your quote) at time

.

is the lagged value of the mini-S&P futures

contract at time

.

The value of a one-point VIX futures price change is

$1,000.

The gain or loss for a one percent mini-S&P futures

price change is calculated as 0.01 times the lagged

value of the mini-S&P futures contract times $50,

which is the value of one mini-S&P futures point.

The average hedge ratio is roughly one mini-S&P futures

contract per VIX futures contract, with a range from 1/2

to 2 contracts, influenced mainly by fluctuations in the

number of business days to settlement of the relevant VIX

futures contracts and the level of S&P futures prices.

Here is the pseudocode for this hedge ratio calculation:

[image: Image 47]

[image: Image 48]

Define a function to calculate the hedge ratio

Define Calculate_Hedge_Ratio(beta1, beta2,

TTS_lagged, ES_lagged):

Calculate the value of a one-point VIX futures

price change

VIX_price_change_value = 1000

Calculate the gain or loss for a one percent

mini-S&P futures price change

mini_SP_price_change_gain_loss = 0.01 *

ES_lagged * 50

Calculate the hedge ratio

HR = (beta1 * VIX_price_change_value + beta2 *

TTS_lagged * VIX_price_change_value) /

mini_SP_price_change_gain_loss

return HR

Example usage

beta1 = Parameter_Estimate1 # Estimated from

equation 3

beta2 = Parameter_Estimate2 # Estimated from

equation 3

TTS_lagged = Lagged_Value_TTS # Lagged value of the

TTS variable

ES_lagged = Lagged_Value_ES # Lagged value of the

mini-S&P futures contract

hedge_ratio = Calculate_Hedge_Ratio(beta1, beta2,

TTS_lagged, ES_lagged)

In this pseudocode, Parameter_Estimate1 and

Parameter_Estimate2 represent the out of sample

parameter estimates

and

from equation 3.

Lagged_Value_TTS and Lagged_Value_ES are the lagged

values of the TTS variable and the mini-S&P futures

contract, respectively. The function Calculate_Hedge_Ratio

[image: Image 49]

[image: Image 50]

[image: Image 51]

[image: Image 52]

computes the hedge ratio based on these inputs and the

formula provided.

Apparently, ChatGPT couldn’t remember the entire paper,

hence it doesn’t know what

and

are, nor does it know

what

is. To avoid prolonging the agony, let’s just

quote what the paper said.

“The hedge ratios are constructed from regressions of VIX

futures price changes on a constant and on contemporaneous

percentage changes of the front mini-S&P 500 futures

contract both alone and multiplied by the number of days that

the VIX futures contract is from settlement, as shown below.

(3)’’

That’s the mysterious equation 3 that ChatGPT can’t

remember. Let’s leave that aside and move on to a bigger

issue: what about the exit rule? The paper specified that

“These simulations also assume that trades are exited at the

end of 5 business days….”

Let’s see if ChatGPT spotted that!

User Prompt

In the trading strategy specification Define

Trading_Strategy_With_Hedging(VIX_spot_price,

front_VIX_futures_price, days_until_settlement,

S_and_P_position_size, daily_roll_threshold = 0.10), it

appears that you only specified when we should enter a

trade. What is the exit rule?

ChatGPT Response

The exit rule for the trading strategy involving VIX futures

and hedging with mini-S&P futures, as described in your

earlier quote from the paper, isn’t explicitly detailed in the

information provided…

User Prompt

That isn’t true! See the paragraph that contains the

sentence, “These simulations also assume that trades are

exited at the end of ….”

ChatGPT Response

…

Define the trading strategy with market risk

hedging and a ixed duration exit rule

Define

Trading_Strategy_With_Hedging_And_Fixed_Duration_Exi

t(VIX_spot_price, front_VIX_futures_price,

days_until_settlement, S_and_P_position_size,

daily_roll_threshold = 0.10, holding_period = 5):

Entry rules as before

...

Exit rule based on a fixed holding period of 5

business days

Define

Fixed_Duration_Exit_Rule(current_holding_days,

holding_period):

if current_holding_days >= holding_period:

return "exit"

else:

return "hold"

Monitor the holding period and decide whether

to exit

current_holding_days = Count_Holding_Days() #

Function to count the number of business days since

the trade was entered

exit_decision =

Fixed_Duration_Exit_Rule(current_holding_days,

holding_period)

return exit_decision

Example usage

...

exit_decision =

Trading_Strategy_With_Hedging_And_Fixed_Duration_Exi

t(...)

In this pseudocode:

holding_period is set to 5 business days, as specified in

your sentence. The function Fixed_Duration_Exit_Rule

checks whether the current holding period has reached or

exceeded the specified duration of 5 business days.

Count_Holding_Days is a hypothetical function that counts

the number of business days since the trade was initiated.

ChatGPT finally found the relevant sentence in question! Now

let’s convert to Python codes.

User Prompt

Good. Now convert the pseudocodes to a complete Python

program to backtest the complete trading strategy.

ChatGPT Response

import pandas as pd

import numpy as np

from datetime import timedelta

Function to simulate getting historical data

(Replace with actual data source)

def get_historical_data():

Dummy data for illustration

data = pd.DataFrame({

'date': pd.date_range(start='2020-01-01',

periods=100, freq='B'),

'VIX_spot': np.random.uniform(20, 30, 100),

'VIX_futures': np.random.uniform(20, 30,

100),

'ES_futures': np.random.uniform(3000, 4000,

100)

})

return data

Function to calculate the daily roll

def calculate_daily_roll(VIX_futures, VIX_spot,

days_until_settlement):

return (VIX_futures - VIX_spot) /

days_until_settlement

Trading strategy implementation

def trading_strategy(data,

daily_roll_threshold=0.10, holding_period=5):

positions = []

entry_days_remaining = None

for index, row in data.iterrows():

if entry_days_remaining is None:

Entry logic

daily_roll =

calculate_daily_roll(row['VIX_futures'],

row['VIX_spot'], days_until_settlement=10)

if abs(daily_roll) >

daily_roll_threshold:

position = 'short' if daily_roll > 0

else 'long'

entry_days_remaining =

holding_period

else:

Holding the position

entry_days_remaining -= 1

if entry_days_remaining <= 0:

Exit logic after holding period

positions.append(position)

position = None

entry_days_remaining = None

return positions

Main function to run the backtest

def backtest_strategy():

data = get_historical_data()

positions = trading_strategy(data)

print("Trade positions:", positions)

Run the backtest

backtest_strategy()

This script includes:

A dummy function get_historical_data to simulate

historical data. You should replace this with actual data

retrieval from a reliable source. Functions

calculate_daily_roll and trading_strategy implement the

entry and exit logic based on the daily roll and the fixed

holding period. The backtest_strategy function runs the

backtest and prints the trade positions. Please note:

This script is highly simplified and doesn’t include real

data sources, transaction costs, slippage, risk

management features, or performance metrics.

The hedge ratio and hedging with mini-S&P futures are

not included in this script. You would need to integrate

this based on the specific hedge ratio formula and market data. For a realistic backtesting environment, consider

using a backtesting framework like backtrader or zipline.

This script is a starting point, and you would need to

expand and refine it for more comprehensive and realistic

backtesting.

Strangely, ChatGPT didn’t translate the complete

pseudocodes it generated earlier into the corresponding

Python. This is quite inexcusable.

User Prompt

Why don’t you include the hedging positions with E-mini

futures, since you already have the pseudocodes for

Define Calculate_Hedge_Ratio? Add that into the Python

codes.

It responded by adding the calculate_hedge_ratio function

definition and so forth. The final code is correct, and we

saved it in VX_ES.py on our GitHub.

Overall, we find that ChatGPT is an exceptionally poor reader

and content summarizer when technical details are involved.

It cannot remember many details from a typical finance paper

of about 40 pages. Even when presented with specific quotes

from the paper, it took a great deal of human intelligence,

expertise, and prompting to get it to generate pseudo

backtest codes from a paper. This is far from the AGI

paradise (or dystopia) that we were promised. Count us as

unimpressed.

2.3 Searching for a Portfolio

Optimization Algorithm Based on

Machine Learning

Enough about spoon-feeding ChatGPT specific strategies that

we want to backtest. How about if we use it to find these

algorithms? One of us has developed a machine-learning-

based portfolio optimization method called CPO (Chan et al.,

2023). The CPO method uses a large number of input

features spanning different markets, including fundamental,

macro-economic factors, technical, and even microstructure

data. A machine learning algorithm is then trained on these

data in addition to many historical hypothetical capital

allocations, in order to determine which capital allocation will

give the best Sharpe ratio for some forward period at any

time.

However, this isn’t the only way machine learning can be

applied to portfolio optimization. A more “conventional”

approach is to apply deep reinforcement learning (DRL), with

the current portfolio allocation as the current “state,” future

returns as the “reward,” reallocation decisions as “actions”

that lead to the next state. The typical input to DRL are just

returns or prices—we haven’t seen any examples of using

fundamental and other big data input, especially one using

time-series features. So, we ask Copilot for such references.

(We tried ChatGPT first, but it did not provide satisfactory

responses.)

Again, Kıcıman et al. (2023) said that we should warm up and

orient LLMs to a specific domain to get better results.

User Prompt

Pretend you are a quantitative finance and deep learning

expert in the following.

Copilot Response

[Author Note: some babble].

User Prompt

We intend to apply deep reinforcement learning to the

portfolio optimization problem. What types of input have

researchers used for this problem?

Copilot Response

Applying deep reinforcement learning (DRL) to portfolio

optimization is a cutting-edge approach that combines the

complexity of financial markets with advanced AI

techniques. In this context, researchers have used various

types of inputs to inform the DRL models. Here are some

common types of inputs:

1. Price-based Data: This is the most common input

type and includes historical prices, returns, and other

derived statistics like moving averages, volatility

(measured as standard deviation of returns), and

momentum indicators. This data can be at different

frequencies (daily, hourly, minute-level, etc.).

2. Volume Data: Trading volume and its derivatives can

provide insights into market sentiment and liquidity,

which are important factors in portfolio optimization.

3. Fundamental Data: For equities, this might include

company financials like earnings, revenue, debt levels,

P/E ratios, etc. For other asset classes, relevant

fundamental data would be used (e.g., economic

indicators for forex or commodities).

4. Alternative Data: This can range from satellite

imagery for predicting crop yields in commodity

markets to social media sentiment analysis for

gauging market sentiment.

5. Market Indicators: Various market indices, inter-

market spreads, and macroeconomic indicators (like

interest rates, inflation rates, GDP growth rates) can

be important for understanding the broader market

context.

6. Technical Indicators: Indicators like the Relative

Strength Index (RSI), Bollinger Bands, MACD (Moving

Average Convergence Divergence), and others are

often used by traders and can be useful inputs for a

DRL model.

7. Risk Metrics: Measures like Value at Risk (VaR),

Conditional Value at Risk (CVaR), or Sharpe Ratio can

also be inputs to guide the DRL algorithm toward not

just return maximization but also risk-adjusted return

optimization.

8. News and Event Data: Real-time news feeds,

earnings reports, and other event data can have a

significant impact on market dynamics and, hence, on

portfolio performance.

9. Order Book Data: In high-frequency trading

scenarios, order book data (like bid-ask spreads, order

depth, etc.) can be crucial.

10. Macro Signals: Signals from larger economic trends

or geopolitical events can also be factored into more

sophisticated models.

…

That looks encouraging—it mentions a large variety of input,

exactly what we have in mind. So, let’s drill down.

User Prompt

Can you give me references to research that used

fundamental data as input for a DRL solution to portfolio

optimization?

Copilot Response

…

One study, “Deep Reinforcement Learning for Portfolio

Optimization Using Latent Feature State Space (LFSS)

Module,” explores the use of reinforcement learning in a

financial context.. .

…

Another relevant study is titled “A New Deep

Reinforcement Learning Model for Dynamic Portfolio

Optimization.”…

…

We actually know of one specific paper (Cong et al., 2021)

that uses DRL with fundamental features, although it is more

of a stock-selection algorithm than a general portfolio

optimization one. It is still disappointing that ChatGPT didn’t

mention it. Let’s see what these other papers are about.

User Prompt

In the Deep Reinforcement Learning for Portfolio

Optimization Using Latent Feature State Space (LFSS)

Module you cited, what kind of input data was used?

Copilot Response

…

The primary focus was on price and return data, which is

typically derived from Open, High, Low, Close (OHLC)

data.

…

That’s not what we wanted!

User Prompt

In the new deep reinforcement learning model for

dynamic portfolio optimization paper you cited, what kind

of input data was used?

Copilot Response

The paper “A New Deep Reinforcement Learning Model

for Dynamic Portfolio Optimization” did not provide

specific details in the sections I accessed about the exact

types of input data used …

Well, that’s quite disappointing. What’s the use of AI if we

have to read the original paper to find that information?

User Prompt

So, neither of the two papers you cited actually used

fundamental data as input, yet you claimed that

fundamental data is one type of data used for DRL. What

evidence do you have on which to base that claim?

Copilot Response

You are correct in noting that the two papers I cited

earlier did not specifically mention the use of fundamental

data as input in their deep reinforcement learning models

for portfolio optimization. However, the claim that

fundamental data is used in such models is based on

broader trends and practices in the field of quantitative

finance and deep learning.

…

In summary, while the specific papers I cited did not use

fundamental data, it remains an important type of input

for DRL-based portfolio optimization. I appreciate your

diligence and thank you for pointing out the oversight!

For further exploration, you can refer to research papers

that explicitly focus on fundamental data integration in

DRL models for portfolio management.

User Prompt

Yes, so which research papers should I explore that cover

that exact topic?

Copilot Response

Certainly! Here are some research papers that specifically

explore the integration of fundamental data into deep

reinforcement learning (DRL) models for portfolio

optimization:

“Deep Reinforcement Learning for Portfolio Optimization

Using Latent Feature State Space (LFSS) Module”

Abstract: This paper presents a DRL framework for

autonomous portfolio optimization. It includes a Latent

Feature State Space (LFSS) Module for filtering and

feature extraction from financial data. The study confirms

robust results and performance advantages over several

benchmarks.

“Deep Reinforcement Learning in Portfolio Management”

Abstract: This paper implements two state-of-the-art

continuous reinforcement learning algorithms (Deep

Deterministic Policy Gradient and Proximal Policy

Optimization) in portfolio management. While it doesn’t

explicitly focus on fundamental data, it provides insights

into DRL techniques for portfolio optimization.

“A New Deep Reinforcement Learning Model for Dynamic

Portfolio Optimization” Abstract: This model integrates

data processing methods, deep learning, and

reinforcement learning to enhance investor decision-

making. While it doesn’t directly use fundamental data, it

explores dynamic portfolio optimization.

“Deep Reinforcement Learning for Optimizing Finance

Portfolio Management” Abstract: This study examines how

DRL can be adopted to maximize portfolio management in

the financial sector. While it covers various aspects,

including technical indicators, it provides insights into

DRL applications.

…

It is great that Copilot finally cited some papers relevant to

our query, but when we followed up by asking what specific

features these papers used, it wasn’t able to answer. In fact,

you can verify that these papers did not use any fundamental

data or time-series features at all. Once again, count us as

unimpressed.

2.4 Explore Options Term Structure

Arbitrage Strategies

In the ideal world of the famous Black-Scholes options pricing

model that every quant finance student is forced to learn,

volatility is constant, and prices can be described by Gaussian

Brownian Motion (i.e., a random walk of log prices). None of

these assumptions is true in the real world. That is a good

thing for traders—if these assumptions were correct, implied

volatilities would have been constant for any maturity, and so

would these options’ annualized time values. In other words,

the term structure of options prices would be flat, and term

structure arbitrage would have been impossible. By term

structure arbitrage, we meant the possibility of earning

options premium by buying and shorting options of different

maturities without taking directional risk in the underlying.

The simplest term structure arbitrage strategy is calendar

spreads trading where all the options involved have the same

strike price.

Let’s see if ChatGPT can help us construct a term structure

arbitrage strategy. Note that this task is more challenging

than any of the other tasks we have asked ChatGPT to

perform so far. Here we haven’t specified a trading strategy

and are asking ChatGPT to construct one based only on

conceptual hints.

User Prompt

Pretend you are a quantitative finance and especially an

options trading expert in the following.

User Prompt

Please summarize different trading strategies involving

term structure arbitrage in options

ChatGPT Response

Term structure arbitrage in options trading involves

exploiting inefficiencies in the pricing of options across

different expiration dates. This type of arbitrage takes

advantage of discrepancies in the implied volatility curve

or the term structure of interest rates, which can affect

option prices differently depending on their time to

expiration. Here are several strategies that traders might

use to exploit these inefficiencies:

1. Calendar Spreads (Horizontal Spreads)

Description: Involves buying and selling two

options of the same type (either calls or puts) and

strike, but with different expiration dates. The

trader might sell a short-term option and buy a

long-term option, betting on the volatility

difference over time.

Goal: Profit from the difference in time decay or

changes in the volatility term structure.

2. Diagonal Spreads

Description: Similar to calendar spreads but

involves options with different strikes and

expiration dates. It’s a combination of a vertical

and a calendar spread.

Goal: To take advantage of differences in volatility

and time decay between two options.

3. Butterfly Spreads in Time

Description: This strategy involves setting up a

butterfly spread (buying one in-the-money option,

selling two at-the-money options, and buying one

out-of-the-money option) across different

expiration dates.

Goal: To profit from the convergence of the term structure toward a normal state if it is currently in

an abnormal state.

4. Variance Swaps

Description: Entering into a variance swap

contract allows traders to speculate or hedge

against the future variability of an asset’s price,

which can be related to the differences in the

implied volatility term structure over time.

Goal: To profit from the difference between the

realized variance of an asset’s returns and the

implied variance from the term structure.

5. Interest Rate Options Arbitrage

Description: Utilizing options on interest rate

futures or directly on bonds, traders can exploit

inefficiencies in the term structure of interest

rates.

Goal: To profit from the mispricing of options

based on expected changes in interest rates

affecting different maturities differently.

6. Volatility Surface Arbitrage

Description: This involves analyzing the entire

volatility surface (across both strike prices and

expiration dates) to identify mispricings.

Goal: To exploit discrepancies in implied volatility

for options with different strikes and maturities.

7. Dynamic Hedging Strategies

Description: Involves frequently adjusting the

composition of a portfolio of options with different

expirations to maintain a delta-neutral or gamma-

neutral position.

Goal: To profit from changes in the term structure of volatility or interest rates while managing risk.

 Implementation Considerations

Market Analysis: Requires deep understanding of the

factors influencing option prices, including volatility,

interest rates, and their term structures.

Risk Management: Strategies involve significant

risks, including the potential for loss if the term

structure moves against the position or if the

anticipated arbitrage opportunity does not materialize.

Execution: Efficient execution and low transaction

costs are crucial due to the potentially small margins

of arbitrage opportunities.

These strategies are sophisticated and carry a high level

of risk, requiring a solid understanding of options pricing

models, market dynamics, and rigorous risk management

practices. Traders employ these strategies in markets

where they have identified specific inefficiencies or expect

certain shifts in the term structure of volatility or interest

rates.

It is good that ChatGPT describes a plethora of possible

strategies, the simplest of them uses just calendar spreads.

So, let’s learn more about it.

User Prompt

Elaborate on the calendar spread strategy.

ChatGPT Response

The calendar spread strategy, also known as a time spread

or horizontal spread, is a versatile options trading strategy

that involves simultaneously entering into two options

positions of the same type (either two calls or two puts),

same strike price, but with different expiration dates. The

trader typically sells a short-term option (the front month)

and buys a long-term option (the back month) on the same

underlying asset. This strategy is designed to take

advantage of differences in time decay (theta) and

potentially implied volatility between the two options.

 How It Works

Short-Term Option (Sell): By selling a short-term

option, the trader collects premium due to the option’s

higher theta, or time decay, as options lose value

faster as they approach expiration.

Long-Term Option (Buy): By buying a long-term

option, the trader pays for the option which has a

slower rate of time decay. This position benefits from

any increase in implied volatility or favorable

movements in the underlying asset’s price over time.

 Objective

The primary goal of a calendar spread is to profit from the

differential in time decay between the short-dated and

longer-dated options. The ideal scenario is for the short-

term option to expire worthless or nearly so, allowing the

trader to keep the premium collected, while still holding

the longer-term option that retains significant time value.

…

This doesn’t sound like a viable strategy at all, since a long-dated option will typically have a higher time value than a

short-dated one. If we don’t expect any directional movement

of the underlying, then after the short-dated option expires,

we will just be losing (time) value of the long-dated option all

the way to its expiration. Maybe if we keep rolling forward

the short-dated option to the next short-term expiration

period this will work, but ChatGPT didn’t suggest that.

How about the opposite strategy of shorting the long-dated

option and buying the short-dated one? In this case, we have

to keep rolling over (buying) the short-dated long position

forward as a hedge to the long-dated short position.

In either strategy, we need to compare the annualized

premium (price) of the short-dated options with the

annualized premium of shorting the long-dated option,

assuming there is no change in underlying price nor

volatility.

User Prompt

You suggested that we should short a short-term option

and buy a long-term option. Let’s assume this is a put on

the SPX. Can you plot the annualized time values of these

two puts as a function of their time-to-expiration?

ChatGPT Response

… [Author Note: See plot in Figure 2.2.]

[image: Image 53]

Figure 2.2 Incorrect plot of annualized time value of put options as function of time to expiration.

User Prompt

Can you plot the same for a far out-of-the-money put?

The plot in Figure 2.2 isn’t correct—we compared these curves with actual option prices we observed from live

market data, and they are wildly off the mark for OTM

options. Let’s explore further.

User Prompt

Please plot the same for implied volatilities this time.

ChatGPT Response

…

[image: Image 54]

Figure 2.3 shows that implied volatility behaves opposite to options prices! That’s quite counterintuitive—is it

hallucinating? As we have learned, it is better to ask ChatGPT

for codes than the output of some unknown models it uses

internally. To produce code in this case, we need an options

pricing model, but Black-Scholes model won’t do.

Figure 2.3 Incorrect plot of implied volatility of put options as function of time to expiration.

User Prompt

Do you know of a theoretical option pricing model that

exhibits non-trivial volatility surface with such

characteristics as the “volatility smile” and the fact that

short-dated options have different implied volatility than

long-dated options of the same strike, while short-dated

options have more negative theta than long-dated ones?

ChatGPT Response

Yes, the phenomena you’re describing, including the

volatility smile and the observed patterns in implied

volatility and theta across different expiration dates, are

addressed by several advanced option pricing models that

go beyond the Black-Scholes framework. These models

incorporate features to account for market imperfections

and observed behaviors that the Black-Scholes model,

with its simplifying assumptions (e.g., constant volatility,

log-normal distribution of stock prices), cannot fully

capture. Here are a few theoretical models known for

their ability to reflect a more complex and realistic

volatility surface:

…

2. Stochastic Volatility Models Examples: Heston model,

SABR model. Key Features: In stochastic volatility

models, the volatility of the underlying asset is itself a

random process. These models can capture the

volatility smile because they allow for changes in

volatility over time, independent of the underlying

asset’s price movements. Characteristics: These

models can explain various empirical observations,

including the volatility smile and changes in implied

volatilities across different expiration dates. They also

allow for correlation between the asset price and its

volatility, which can affect the pricing of short-dated

versus long-dated options.

…

ChatGPT listed four types of options pricing model: local

volatility models that use options prices to calibrate the

volatility surface at different expirations and strikes;

stochastic volatility models (such as Heston) that use a few

parameters to produce the general shape of the volatility surface; jump-diffusion model that allows for jumps in the

price of the underlying in addition to Gaussian Brownian

Motion; and the Levy Process Models that model the

movement of the underlying asset as a Levy process. The

Heston model seems the simplest and most appropriate if we

just want to get a conceptual understanding of the term

structure without getting an exact match with real data.

User Prompt

Let’s pick the Heston model. Can you elaborate on that?

ChatGPT Response

The Heston model is a popular stochastic volatility model

for pricing options, introduced by Steven Heston in 1993.

It addresses some of the limitations of the Black-Scholes

model, particularly its assumption of constant volatility.

The Heston model allows the volatility of the underlying

asset to be stochastic, meaning it can change over time

according to a specific stochastic process. This feature

enables the model to more accurately capture market

phenomena such as the volatility smile.

 Key Features of the Heston Model

1. Stochastic Volatility: The model describes the

evolution of the underlying asset’s price and its

variance (volatility squared) using two stochastic

differential equations (SDEs). The first SDE models

the asset price dynamics similarly to Black-Scholes but

incorporates a stochastic volatility term. The second

SDE models the dynamics of the variance itself.

2. Mean Reversion: The variance process in the Heston

model is mean-reverting, meaning it tends to return to

a long-term average level over time. This is consistent

with observed market behavior, where volatility spikes

are usually temporary.

3. Correlation Between Asset Returns and Volatility:

The model allows for a correlation between the asset

returns and volatility changes. This correlation is

crucial for accurately capturing the leverage effect,

where asset prices and their volatility tend to be

inversely related.

[image: Image 55]

[image: Image 56]

[image: Image 57]

[image: Image 58]

[image: Image 59]

[image: Image 60]

[image: Image 61]

[image: Image 62]

[image: Image 63]

[image: Image 64]

[image: Image 65]

[image: Image 66]

[image: Image 67]

[image: Image 68]

 Mathematical Formulation

The dynamics of the underlying asset price

and its

variance

in the Heston model are described by the

following SDEs:

where:

is the asset price at time .

is the variance of the asset price at time .

is the risk-free rate of return. [Author Note: This

isn’t correct! It should be the deterministic (i.e., non-

stochastic) instantaneous drift of asset price returns!

See Gatheral (2006).]

is the rate of mean reversion of the variance.

is the long-term variance mean level.

is the volatility of the volatility (vol of vol), which

determines the volatility of the variance process.

and

are two Wiener processes for the asset

price and variance, respectively, with a correlation

coefficient .

 Pricing Options with the Heston Model

The Heston model allows for the derivation of a semi-

analytical formula for the price of European-style options.

The option pricing formula involves complex integrations

due to the model’s stochastic nature but can be efficiently

computed using numerical methods such as the fast

Fourier transform (FFT).

 Applications and Limitations

Applications: The Heston model is widely used in

financial markets for pricing European options,

capturing the volatility surface more accurately than

the Black-Scholes model, and is also extended to price

American options and exotic options under certain

conditions.

Limitations: Despite its advanced features, the

Heston model can be challenging to calibrate to

market data due to the complexity of its dynamics and

the sensitivity of its parameters. Moreover, like all

models, it makes simplifications and assumptions that

may not hold under all market conditions.

The Heston model’s ability to incorporate stochastic

volatility and mean reversion makes it a powerful tool for

understanding and pricing options in a more realistic

manner, reflecting the dynamic nature of financial

markets.

User Prompt

Please cite any publications that show the term structure

of implied volatility of an option as function of time-to-

expiration.

ChatGPT Response

…

 Books and Papers

1. Option Volatility and Pricing by Sheldon

Natenberg - This book is a widely regarded resource

in the field of options trading. Natenberg provides

detailed explanations of the behavior of implied

volatility and its impact on options pricing, including

discussions on the term structure of volatility.

2. Dynamic Hedging by Nassim Nicholas Taleb -

Taleb’s work focuses on the practical aspects of

managing option positions, including insights into the

term structure of volatility and how it can be exploited

through dynamic hedging strategies.

3. The Volatility Surface: A Practitioner’s Guide by

Jim Gatheral - Gatheral provides an in-depth analysis

of the volatility surface, which includes discussions on

the term structure of implied volatility and how it

varies with time to expiration and strike price.

…

We pick Jim Gatheral’s book (Gatheral, 2006) as our

reference as it seems to cover the relevant topic with lots of

charts. Unfortunately, none of which is exactly what we want:

a comparison of the term structure of ATM and OTM option

prices based on the Heston model. We need to instantiate a

Heston model to do that. But first, we need to know what

inputs are reasonable.

[image: Image 69]

[image: Image 70]

[image: Image 71]

[image: Image 72]

User Prompt

What are reasonable estimates for when the asset in

question is the SPX?

ChatGPT Response

The parameter in financial models typically represents

the expected return or drift rate of the underlying asset

over time. For the S&P 500 Index (SPX), reasonable

estimates for should reflect the long-term average

return of the index, accounting for dividends, inflation,

and the overall growth of the economy.

 Historical Perspective on for the SPX

The S&P 500 has historically returned about 7% to 10%

annually after adjusting for inflation. This range accounts

for dividends reinvested and represents a long-term

perspective over multiple decades. The exact figure can

vary depending on the specific time period considered,

how dividends are treated, and the inflation adjustment

method.

…

User Prompt

What are reasonable estimates for the rate of mean

reversion of the variance when the asset in question is the

SPX?

[image: Image 73]

[image: Image 74]

[image: Image 75]

[image: Image 76]

[image: Image 77]

ChatGPT Response

The rate of mean reversion in the Heston model is a key

parameter that describes how quickly the variance of the

asset returns reverts to its long-term mean . For the S&P

500 Index (SPX), as with other financial assets, the

specific value of can vary based on market conditions,

the time period analyzed, and the calibration methodology

used. However, empirical studies and market practice

provide some guidance on reasonable estimates for this

parameter.

 Reasonable Estimates for

Typical Range: For equity indices like the SPX,

values are often found in the range of 1 to 3 per year.

This range suggests that the variance tends to revert

to its long-term mean within a few months to a year.

…

User Prompt

What are reasonable estimates for long-term variance

mean level for SPX?

[image: Image 78]

[image: Image 79]

[image: Image 80]

[image: Image 81]

[image: Image 82]

[image: Image 83]

[image: Image 84]

[image: Image 85]

[image: Image 86]

[image: Image 87]

[image: Image 88]

[image: Image 89]

[image: Image 90]

[image: Image 91]

ChatGPT Response

The long-term variance mean level in the Heston model

represents the level to which the variance of the asset

returns is expected to revert over time. For the S&P 500

Index (SPX), as with other assets, this parameter is crucial

for modeling the long-term behavior of market volatility.

Estimating involves analyzing historical volatility data

and calibrating the model to current market prices of

options.

 Reasonable Estimates for

Given that is the long-term mean of the variance, not

volatility, it’s important to distinguish between the two

when discussing estimates. Variance

is the square of

volatility [Author Note: This is wrong. is the volatility

of volatility here, not the volatility], so when practitioners

refer to volatility levels, they’re often discussing [Author

Note: same error as above], whereas pertains to

.

Converting Volatility to Variance: To think about

in terms of familiar volatility levels, you first need to

square the annualized volatility. For example, if the

long-term volatility expectation for the SPX is around

20% (or 0.20 in decimal form), the corresponding

variance would be

.

Typical Range for SPX: Historically, the annualized

volatility of the SPX has fluctuated, but a range of 15%

to 30% (0.15 to 0.30 in decimal form) is common for

estimating long-term volatility, depending on the time

period and market conditions. Squaring these values

gives a variance range of approximately 0.0225 to

0.09 for .

[image: Image 92]

[image: Image 93]

[image: Image 94]

[image: Image 95]

[image: Image 96]

[image: Image 97]

[image: Image 98]

User Prompt

What are reasonable estimates for for SPX?

ChatGPT Response

In the context of the Heston model, represents the

volatility of volatility (vol of vol), which quantifies the

variability in the implied volatility of the underlying asset.

This parameter is crucial for capturing the dynamics of

the volatility surface, including the curvature and behavior

of the implied volatility skew. For the S&P 500 Index

(SPX), reasonable estimates for can vary based on

historical market conditions, the calibration period, and

the specific model calibration approach. [Author Note: In

this description, it got right the parameters , which as

described stands for the volatility of volatility.]

 Reasonable Estimates for

Typical Range: For the SPX, reasonable estimates for

(volatility of volatility) often fall within the range of

0.1 to 0.4 per annum. This range reflects the observed

variability in the market’s implied volatility but can

vary depending on the specific market environment

and historical period analyzed.

…

User Prompt

What are reasonable estimates for correlation coefficient

for SPX?

[image: Image 99]

[image: Image 100]

[image: Image 101]

[image: Image 102]

[image: Image 103]

[image: Image 104]

[image: Image 105]

[image: Image 106]

[image: Image 107]

[image: Image 108]

[image: Image 109]

[image: Image 110]

ChatGPT Response

The correlation coefficient in the context of the Heston

model represents the correlation between the asset’s

returns and its volatility. For the S&P 500 Index (SPX), as

well as other assets, this correlation tends to be negative,

reflecting the common market observation that asset

prices often move inversely to their volatility. This

phenomenon is sometimes referred to as the “leverage

effect,” where market downturns are typically associated

with increases in volatility.

Reasonable Estimates for - Typical Range: For the

SPX, reasonable estimates for the correlation coefficient

often fall within the range of (-0.5) to (-0.8). This range is

consistent with empirical studies that have examined the

relationship between stock returns and volatility.

We will generally pick the middle value of a given range of

just provided estimates, except that we use the low end of the

estimate of (long-term variance of SPX) as volatility level

has dropped over the years, but a high-end estimate of

(volatility of volatility of SPX) as that has increased over the

years (see Chan (2013), Figure 5.10). We also pick the high-end estimate of (long-term return of SPX) because it has

trended higher in recent years.

User Prompt

Let’s assume

,

,

,

,

,

initial variance

. Display the Matlab code for

computing the ATM option price using its Financial

Toolbox.

[image: Image 111]

[image: Image 112]

[image: Image 113]

[image: Image 114]

[image: Image 115]

[image: Image 116]

ChatGPT Response

To compute the price of an At-The-Money (ATM) option on

the SPX using the Heston model in MATLAB, you would

typically use functions provided by MATLAB’s Financial

Toolbox. The Heston model parameters you’ve specified

are:

Rate of mean reversion,

Long-term variance mean level,

Volatility of volatility,

Correlation coefficient,

Expected return or drift rate,

Initial variance,

Here’s a conceptual MATLAB script to calculate the price

of an ATM option using the Heston model. Note that

MATLAB’s Financial Toolbox may require specific

functions for option pricing, such as optByHestonNI (using

numerical integration) to compute European option prices.

% Heston model parameters

kappa = 2;

theta = 0.15^2;

sigma = 0.4;

rho = -0.65;

v0 = 0.15^2;

r = 0.1; % Risk-free rate, assuming it's the same as

mu for simplicity [Author Note: this is wrong! r

should be 0.03.]

% Define the asset path

S0 = 100; % Example initial SPX level, adjust as

needed [Author Note: should be about 5,000 as of

February, 2024.]

K = S0; % ATM option

T = 1; % Time to maturity in years

% Define option type

OptType = {'call', 'put'}; % Choose as needed

% Pricing the option using Heston model

for i = 1:length(OptType)

price = optByHestonNI(kappa, theta, sigma, rho,

v0, r, T, S0, K, 'OptSpec', OptType{i});

fprintf('%s option price using Heston model:

%f\n', OptType{i}, price);

end

This script uses the optByHestonNI function to calculate

option prices based on the Heston model parameters. The

OptSpec option allows you to specify the type of option

(‘call’ or ‘put’). Adjust S0, K, and T as needed to reflect the

current price of the SPX, the strike price for the ATM

option, and the desired time to maturity, respectively.

Please ensure you have the Financial Toolbox installed

and consult the MATLAB documentation for the latest

functions and syntax, as function names and parameters

can change between releases. This example assumes a

simplified scenario for illustrative purposes.

We don’t completely trust the codes generated, but we are

glad that ChatGPT pointed to the Matlab Financial

Instruments Toolbox (though not the Financial Toolbox that it

suggested) function optByHestonNI. We will reference the

official documentation at

https://www.mathworks.com/help/fininst/optbyhestonni.html?

s_tid=doc_ta#d126e204312 to clean up this script. Our final

version is saved in GitHub as HestonModelPutPlot.m. The

plot is displayed in Figure 2.4. The one for calls is saved in HestonModelCallPlot.m and displayed in Figure 2.5.

[image: Image 117]

Figure 2.4 Annualized put option prices as function of time to expiration based on the Heston model.

[image: Image 118]

Figure 2.5 Annualized call option prices as function of time to expiration based on the Heston model.

* * *

 Exercise: Ask ChatGPT for an equivalent Python version.

* * *

Based on these curves, it seems that we can short a long-

dated OTM option and hedge that by buying a short-dated

OTM option that is continuously being rolled forward before

its expiration, unless it becomes an ATM option at some point

due to SPX level changes. At that point, we should liquidate

the positions because the cost of hedging the long-dated

option will outweigh the annualized time value of that option.

The opposite strategy, buying a long-dated ATM option and

shorting a short-dated option won’t work because when the

short-dated option expires, the long-dated option will most

likely not be ATM anymore and the noted term structure

won’t apply (unless we expect a catalyst in the market that might produce significant move in the underlying after the

first option expires, such that the long-dated option becomes

at the money). There is a wide range of SPX levels that make

the options OTM, but a narrow range that make them ATM.

What about the implied volatility term structure? Are they the

same or opposite to the annualized option value as ChatGPT

suggested earlier? But wait, recall that in the Heston model,

volatility is stochastic and changes constantly. What does the

implied volatility term structure (also known as the volatility

surface) even mean?

User Prompt

Given that Heston model uses a stochastic volatility model

as the basis, does it even make sense to ask for the

implied volatility of an option since it is stochastic over

time?

ChatGPT Response

Your question touches on a nuanced aspect of option

pricing theory and the interpretation of implied volatility

within the context of stochastic volatility models like the

Heston model.

Implied Volatility in the Black-Scholes Framework In

the Black-Scholes model, implied volatility is a constant

value that, when input into the model, produces an option

price matching the market price. It represents a single,

average measure of expected volatility over the life of the

option. This model assumes volatility is known and

constant, which simplifies the calculation but does not

capture the complexity of real market conditions.

Stochastic Volatility Models Stochastic volatility

models, including the Heston model, recognize that

volatility is not constant but varies over time in a random

manner. These models provide a more realistic framework

for option pricing by incorporating a stochastic process for

volatility.

Implied Volatility within Stochastic Volatility Models

Even though the Heston model and other stochastic

volatility models use a dynamic view of volatility,

practitioners still compute implied volatilities from these

models for several reasons:

1. Market Benchmark: Implied volatility serves as a

standardized benchmark, allowing traders and

analysts to compare option prices across different

strikes and maturities in a consistent way, even within

the context of models that recognize volatility’s

dynamic nature.

2. Model Calibration: Implied volatility is used to

calibrate stochastic volatility models to market data.

By adjusting model parameters to match the observed

market implied volatilities across a range of strikes

and maturities, practitioners ensure that the model

reflects current market conditions as closely as

possible.

3. Volatility Surface: The concept of implied volatility is

central to constructing the volatility surface, which

plots implied volatilities across different strikes and

maturities. Even in the context of stochastic volatility

models, the volatility surface provides valuable

insights into market expectations and sentiment.

4. Communication Tool: Despite its limitations, implied

volatility remains a useful tool for communicating

market conditions and risk perceptions among traders,

analysts, and other market participants.

Conclusion While it might seem counterintuitive to

discuss implied volatility in the context of a model that

inherently acknowledges volatility’s stochastic nature,

doing so allows for the practical application of these

models in real-world trading and risk management.

Implied volatility, derived from market prices of options,

bridges the gap between theoretical models and market

practice, serving as a common language for market

participants and a tool for model calibration.

Unlike what academic theoreticians often do, we will not

bother with plotting the volatility surface. It isn’t empirically

observable, and we can’t make money from it directly. As

traders, we prefer things that we can actually trade.

2.5 Conclusion

We asked ChatGPT to create the backtest codes for a long-

short equity trading strategy using the Fama-French factors,

and a hedged VIX futures carry strategy. We also asked

ChatGPT to suggest an options calendar spread strategy and

explore the term structure of options prices. Less

demandingly, we asked Copilot to find out if someone has

published a deep reinforcement learning technique for

portfolio optimization. From these experiments, we conclude

the following:

1. We can’t really use ChatGPT to automate the entire

process. What is needed is a combination of human

intelligence, knowledge, experience and the LLM’s

suggestions. The situation is quite analogous to self-

driving cars. Fully autonomous vehicles are rarely found

except in a few experimental urban areas, but assisted

driving technology has been embedded in almost all new

cars for years already (Chan, 2022). We are pretty far

from AGI (artificial general intelligence).

2. The responses from ChatGPT are often not reproducible:

the same prompt can result in different responses. This is

difficult for most engineering projects that require strict

reproducibility.

3. It may be more efficient to use ChatGPT as a coach to

speed up your own coding tasks than to ask it to write

good codes every time you need one.

These conclusions are not dissimilar to those of Simon

Willison (Django and Datasette creator) as reported in

Claburn (2024). We need a “human in the loop” for the most

serious applications of AI.

That is not to say that there aren’t occasional flashes of

brilliance or evidence of conceptual understanding of

quantitative finance, such as when ChatGPT understands that

a trading strategy that holds a position for N days may have

up to N positions on any single day, or whether subtracting

the risk-free rate from the gross returns is always necessary

when computing the Sharpe ratio. These “sparks of AGI” are

well-documented in the paper by Bubeck et al. (2023). But such brilliance vanished when we asked ChatGPT to analyze

the VIX paper and produce pseudocodes for the carefully

described trading strategy contained therein. Even after

pointing ChatGPT to the specific paragraph with the relevant

information, it failed to capture the entire trading strategy.

Perhaps it is just a limitation of how long a paper GPT-4o can

handle at this time, but we can only say that the state-of-the-

art available to a professional trader is simply not adequate

as of this writing. As our effort to locate a paper on applying

deep reinforcement learning to portfolio optimization shows,

Copilot isn’t very good at locating information that meet our

specific professional needs. We can perhaps improve that

ability by fine-tuning it on a quantitative finance database, or

with particularly expert prompt engineering. For example, it

has been known that “chain-of-thought prompting,” i.e.,

“asking language models to generate step-by-step solutions

enabled the models to solve problems that had previously

seemed beyond their reach” (Brukbaker, 2024). But if such

highly technical human skills are required of the user, it can

hardly be called AGI. Of course, with each new generation of

GPT (we are using GPT-4o as of this writing), its capability

will improve. What ChatGPT and other Gen AI tools are good

at is providing a first draft of something that may be partially

correct. As such it is useful as a junior collaborator,

motivating the senior human collaborator to try new things.

Often, the first draft is the most difficult (a.k.a., writer’s

block). Revisions and improvements are easier for humans.

So, if you ask us: “After writing these two chapters, would

you still use Gen AI to help with investment strategies

discovery and backtest?” The answer is yes.

You may wonder, given the state of Gen AI, why we should

dive deeper into Gen AI later on. The reason is this: most of

the tasks we have given Gen AI so far are those that have a

clear answer, and human experts can perform them equally

well if not better. Of course, not all of us are experts in every

subject, and it saves us time to get AI to do what we know how to do if it can do it well. That was the reason we explored

no-code AI. However, there are tasks where there are no

clear answers, and even human experts may disagree on

what the best answers are. In medical diagnostics, we may

ask, “Given the symptoms, what is the likely disease affecting

the patient?” In asset management, “Will NVDA increase its

earnings next quarter?”, “Will oil price go down next

month?”, or “Is what the Fed chair just said in the press

conference positive or negative for the S&P 500?” (The Gen

AI answer to the last question is actually an example later in

this book.) These are all questions with no clear answers,

except in hindsight. This is the realm of discretionary or

fundamental trading. Because machines and humans are on

more equal footing for these questions, we may find that Gen

AI can add more value. We want to find out if building a

“George Soros on a chip” is possible.

The following chapter will set the stage for this ambitious

project. This will inevitably involve usage of Generative AI

APIs.

* * *

2.6 Exercises

1. Ask ChatGPT to create the backtest code for the paper

Zhang et al. (2019) on Deep Reinforcement Learning for

Trading. Does ChatGPT use Tensorflow? Can you create

unit tests to see if it produces the codes correctly?

2. What is Retrieval Augmented Generation (RAG), and how

would it correct some of the hallucinations the LLMs

produce?

3. Ask the latest version of ChatGPT to see if it can now

summarize the VIX strategy from the cited paper

correctly.

4. As ChatGPT to create the code to compute the expected profit of an iron condor for SPX options with a holding

period of a month, assuming normal distribution of

returns and reasonable volatility estimates. Watch how it

does numerical integration with aplomb! Bonus question:

ask it to generate the code to compute its Sharpe ratio

too.

Appendix 2A.1 Computing Next-day’s

Return

Here is the Python program that computes the next-day (or in

general, next-N-day) returns. These returns will be used as

“labels” (or the Y variable) for the Fama-French regression

model.

import pandas as pd

def calculate_N_day_ahead_returns(file_path,

output_file_path, N=1):

try:

Load the data

stock_prices = pd.read_csv(file_path)

Rename column names

stock_prices=stock_prices.rename(columns=

{'tday':'Date', 'syms':'Stock_ID', 'mid': 'Price'})

Convert the 'Date' column from integer

YYYYMMDD format to datetime format

stock_prices['Date'] =

pd.to_datetime(stock_prices['Date'], format='%Y%m%d')

Sort the data by 'Stock_ID' and 'Date'

stock_prices.sort_values(by=['Stock_ID',

'Date'], inplace=True)

Shift the prices by -N days to align with the

price N days ahead

stock_prices['Price_in_N_days'] =

stock_prices.groupby('Stock_ID')['Price'].shift(-N)

Calculate the N-day returns

stock_prices[str(N)+'_Day_Returns'] =

(stock_prices['Price_in_N_days'] -

stock_prices['Price']) / stock_prices['Price']

Dropping the column used for calculation

stock_prices.drop(columns=['Price_in_N_days'],

inplace=True)

Save the results to a new CSV file

stock_prices.to_csv(output_file_path,

index=False)

return "Successfully computed 30-day returns

and saved to " + output_file_path

 except Exception as e:

return f"An error occurred: {e}"

Example usage

file_path = 'CRSP_mid.csv' # Replace with the actual

file path

output_file_path = 'CRSP_nextDayReturns.csv' # Replace

with the desired output file path

result = calculate_N_day_returns(file_path,

output_file_path)

print(result)

Appendix 2A.2 Uploading the Fama-

French Factors

The Fama-French factors file was downloaded from

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/da

ta_library.html. We just need to create a Python Pandas

dataframe to hold the data with proper dates.

import pandas as pd

Path to the file (replace with your file path)

file_path = 'F-F_Research_Data_Factors_daily.CSV'

First attempt: Skipping initial rows that might

contain descriptions or headers

ff_data_1 = pd.read_csv(file_path, skiprows=3)

Assuming successful read, filtering out non-date

entries

ff_data_filtered = ff_data_1[ff_data_1['Unnamed:

0'].apply(lambda x: str(x).isdigit())]

Rename first column to ‘Date’

ff_data_filtered.rename(columns=

{ff_data_filtered.columns[0]: 'Date'}, inplace=True)

Change first column to datetime type

ff_data_filtered ['Date'] =

pd.to_datetime(ff_data_filtered['Date'])

Example query: Finding the SMB factor on a specific

date

smb_factor = ff_data_filtered[ff_data_filtered['Date']

== '20151106']['SMB'].iloc[0]

This returns the correct numerical value of 0.87

Including a “unit-test” like the last line of this code is

important in any program, but especially for those generated

by ChatGPT.

Now, we need to combine the daily returns data and the

factor data correctly, using the former as the “label” or “Y”

variable in our regression fit and the latter as “features” or

“X” variable. Prompting ChatGPT for that, the response more

or less looks like Appendix 2.3, which follows, with some

human editing.

Appendix 2A.3 Combining Fama-French

Factors with Next-day’s Returns

We have created the dataframe that contained the Fama-

French factors as features for our training data. Now we

need to combine them with the labels, which are the next-

day’s returns, in order to form the complete dataframe for

training and testing a linear regression model.

import pandas as pd

from sklearn.linear_model import LinearRegression

Assuming ff_data_filtered and next_day_returns_data

are your loaded DataFrames

#%% Load and parse daily returns of stocks

next_day_returns_data =

pd.read_csv('CRSP_nextDayReturns.csv')

next_day_returns_data['Date'] =

pd.to_datetime(next_day_returns_data['Date'],

format='%Y-%m-%d')

next_day_returns_data['Date'] =

pd.to_datetime(next_day_returns_data['Date'],

format='%Y%m%d')

#%% Load and parse Fama-French data

file_path = 'F-F_Research_Data_Factors_daily.CSV'

First attempt: Skipping initial rows that might

contain descriptions or headers

ff_data_1 = pd.read_csv(file_path, skiprows=3)

Assuming successful read, filtering out non-date

entries

ff_data_filtered = ff_data_1[ff_data_1['Unnamed:

0'].apply(lambda x: str(x).isdigit())]

Rename first column to ‘Date’

ff_data_filtered.rename(columns=

{ff_data_filtered.columns[0]: 'Date'}, inplace=True)

Change first column to datetime type

ff_data_filtered ['Date'] =

pd.to_datetime(ff_data_filtered['Date'])

Example query: Finding the SMB factor on a specific

date

smb_factor = ff_data_filtered[ff_data_filtered['Date']

== '20151106']['SMB'].iloc[0]

This returns the correct numerical value of 0.87

Merge the datasets on the 'Date' column

combined_data = pd.merge(ff_data_filtered,

next_day_returns_data, on='Date')

Unit test

Function to perform the unit test

def test_factors_on_date(data, date, expected_smb,

expected_hml):

Extracting the row for the given date

data_on_date = data[data['Date'] == date]

Checking if the date exists in the data

if data_on_date.empty:

return "Date not found in the data."

Extracting the SMB and HML values

smb_value = data_on_date['SMB'].iloc[0]

hml_value = data_on_date['HML'].iloc[0]

Testing the conditions

smb_test = abs(smb_value - expected_smb) < 0.01 #

Approximate check

hml_test = abs(hml_value - expected_hml) < 0.01 #

Approximate check

return {

"SMB Test Passed": smb_test,

"HML Test Passed": hml_test,

"Actual SMB Value": smb_value,

"Actual HML Value": hml_value

}

Performing the test for 20151106

test_results = test_factors_on_date(combined_data,

'20100423', 0.37, 0.62)

test_results

Function to perform the unit test for MSFT 1 day

return

def test_msft_return_on_date(data, date,

expected_return):

 # Extracting the row for the given date

data_on_date = data[(data['Date'] == date) &

(data['Stock_ID']== 'MSFT')]

print(data_on_date)

Checking if the date exists in the data

if data_on_date.empty:

return "Date not found in the data."

Extracting the MSFT 1 day return value

msft_return_value =

data_on_date['1_Day_Returns'].iloc[0]

Testing the condition

return_test = abs(msft_return_value -

expected_return) < 0.01 # Approximate check

return {

"MSFT Return Test Passed": return_test,

"Actual MSFT 1 Day Return Value":

msft_return_value

}

test_msft_return_on_date(combined_data, '20100423',

0.00508690122)

{'MSFT Return Test Passed': True,

'Actual MSFT 1 Day Return Value': 0.0035501048894635}

test_msft_return_on_date(combined_data,

'20081021',-0.078)

{'MSFT Return Test Passed': True,

'Actual MSFT 1 Day Return Value': -0.0777468408652821}

It passed all the unit tests.

Chapter 3

Whirlwind Tour of ML in Asset

Management

You may not have realized it, but you have probably been

applying machine learning to asset management for many

years now. Maybe you have used linear regression to find the

beta of a portfolio against a market index? Maybe you have

tried Principal Component Analysis as an alternative to the

Fama-French factor model described in Chapter 2? Though they may seem retro, these are all examples of machine

learning. On the other hand, you may think that machine

learning in asset management is all about using a robot to

predict stock returns. As we will explain in the section on

supervised learning, that may be the least successful

application of AI in finance.

In this chapter, we will take a whirlwind tour of machine

learning in asset management, ending with how Generative

AI can help beyond the no-code usages we have already

demonstrated in the previous two chapters. (We will leave

the nuances of Deep Learning and Generative AI to the rest

of the book.) This tour will include the following:

Unsupervised learning: clustering with application to

capital allocation via Hierarchical Risk Parity (HRP),

Principal Component Analysis (PCA), Cluster-based

Feature Selection (cMDA), and Hidden Markov Model

(HHM)

Supervised learning: linear and logistic regressions with

regularizations, tree-based models, and neural networks.

Various performance metrics, hyperparameter

optimization and (cross-)validation. Applications to

Corrective AI (CAI) and Conditional Parameter/Portfolio

[image: Image 119]

[image: Image 120]

[image: Image 121]

[image: Image 122]

[image: Image 123]

[image: Image 124]

[image: Image 125]

[image: Image 126]

[image: Image 127]

Optimization (CPO), but emphatically not asset return

predictions

Comments on Recurrent Neural Networks and Deep

Reinforcement Learning

Data and features engineering; features importance

ranking and selection; application of Generative AI to

features engineering

The intention of this chapter is to highlight some of the most

important concepts in machine learning that are relevant to

asset managers but not delve into details in any one of them.

You can find much better books if you want details. For

foundational machine learning concepts, see Murphy (2012)

and Bishop (2006). For machine learning for asset managers,

see López de Prado (2018, 2020). For neural networks, see

Goodfellow et al. (2016).

We will follow this notational convention:

is a matrix, is a

vector, is a scalar. In particular, is a feature vector, and

are inferred (predicted) scalar and vector label

respectively, while and are the actual scalar and vector

label respectively.

often denotes a data or design matrix

with n rows of samples and m columns of features. (We shall

explain what features, labels, and design matrix mean in the

supervised learning section.)

3.1 Unsupervised Learning

We sometimes expect a machine to do things that we know

how to do, if only with hindsight. Deciding whether to buy or

sell an asset and hold it for one day is one such example,

because with historical data we would immediately know

whether that was a good decision or not. Other times, we

want a machine to do things that we couldn’t even tell if the

solution provided is right or is the best available. Deciding

what stocks should be grouped into clusters for the purpose

of portfolio optimization via Hierarchical Risk Parity (HRP) is an example. We don’t have historical data showing what the

optimal clusters are, nor an analytical method to prove that a

given cluster is optimal. Finding these clusters, historical or

current, is exactly what we want to apply unsupervised

machine learning to. Similarly, if we want to find out what

the common factors that drive asset returns are based on the

historical returns data alone via Principal Component

Analysis (PCA), we can’t use any observable variables except

the returns themselves. Finally, we may want to use a Hidden

Markov Model (HHM) to model the regime changes in the

financial market when we build probabilistic models of asset

returns. As the adjective Hidden suggests, the discrete

Markov states that we hypothesize aren’t observable, and we

must infer from the “emissions”—such as the returns of a

stock—in order to estimate the parameters of the HMM. All

these tasks fall under the category of unsupervised learning,

which is all about capturing patterns in unlabeled data. We

will discuss each of these unsupervised learning techniques

to illustrate the general concept.

 3.1.1 Hierarchical Risk Parity (HRP)

Portfolio optimization, or how much money we should

allocate to each component asset of a portfolio, is an age-old

finance problem. Harry Markowitz earned a Nobel Prize in

Economics for inventing the mean-variance optimization

approach in 1952 (see Section 1.4 on finding the Efficient Frontier of a portfolio.) However, it is well-known that mean-variance optimization works only in hindsight—it doesn’t

usually produce an optimal portfolio in the future. That’s

because the mean-variance optimal portfolio is highly

sensitive to the input returns. Ang (2014) illustrated this well

in a section baldly titled “Garbage In, Garbage Out” (p. 95). A

portfolio that is allocated to five developed countries’ equity

indices will change its allocation to the US index from −9% to

[image: Image 128]

41% if we change the estimate of its annual mean return from

10.3% to 13%. If you tell me you can predict the US equity

index to within 2.7% next year, we have a Brooklyn Bridge to

sell you. Hence many asset managers despair (including the

mighty Bridgewater Associates) and adopt a seemingly

simplistic approach instead: just allocate equal “risk” to each

asset, with risk measured simply by the volatility of its

returns. This is called the risk parity allocation method. If

asset A has risk of 20% and asset B has risk of 40%, then we

allocate capital to A:B in the ratio 2:1 (i.e., inversely

proportional to the volatility). This simplistic approach

actually works better in practice than the sophisticated mean-

variance optimization, but there are some issues with this

approach too. Risk parity assumes that all the asset returns

are statistically independent (and thus uncorrelated). If the

two assets are in fact highly correlated (think F vs GM

stocks) and have similar volatility, risk parity will allocate to

them on a 1:1 basis approximately, but together the two

assets contribute to the portfolio

times the risk of two

uncorrelated assets. Hierarchical risk parity (López de Prado,

2020) is a method to address that. The basic idea is to cluster

the assets within a portfolio based on their correlations.

Assets that are highly correlated are going into the same

cluster. The outline of the algorithm is this:

1. Apply hierarchical clustering (Hastie et al., 2009) to the

covariance matrix to find clusters of highly correlated

assets. (There are various techniques to decide on the

optimal number of clusters, but that is of secondary

importance. You might regard this number as a

hyperparameter to be optimized, a concept to be

discussed in the supervised learning section.)

2. Apply your favorite portfolio optimization method to the

assets within each cluster to find the intra-cluster

allocations. Since all assets in the cluster are similar, we

can just apply the usual risk parity allocation which will

[image: Image 129]

[image: Image 130]

[image: Image 131]

[image: Image 132]

[image: Image 133]

[image: Image 134]

[image: Image 135]

[image: Image 136]

[image: Image 137]

[image: Image 138]

[image: Image 139]

[image: Image 140]

[image: Image 141]

[image: Image 142]

[image: Image 143]

[image: Image 144]

[image: Image 145]

[image: Image 146]

[image: Image 147]

not overweigh any asset’s risk in this case. (Note that

correlation ~ 1 doesn’t mean asset volatilities are the

same within the cluster.) Call this allocation

for

asset in cluster , where

.

3. Apply your favorite portfolio optimization method to each

cluster’s return to find the capital allocation across

different clusters. As the correlations between these

clusters are supposed to be very low, the covariance

matrix of the cluster returns is almost diagonal. Hence

mean-variance optimization applied here won’t suffer the

instability and sensitivity to inputs. In fact, if

is the

weight given to cluster , with

, and

and

are the mean and standard deviation of returns of

cluster , then

which many readers will

recognize as the allocation based on the Kelly formula

(Chan, 2017).

4. The final allocation to assets in cluster is

. Note that if all the clusters have

similar returns and volatilities, and all the assets within a

cluster have similar volatilities, then

,

where

is the size of cluster , and is the number of

clusters. This is, of course, very different from a naive

equal allocation which would give

.

* * *

 Exercise: Ask ChatGPT to plot the dendrogram of these five

stocks based on the correlations of their daily returns in the

last 5 years: F, GM, TSLA, BAC, JPM. Stop at a maximum of

three clusters. Does it look like Figure 3.1?

* * *

[image: Image 148]

Figure 3.1 Dendrogram of five stocks based on the correlations of their daily returns in the last 5 years.

 3.1.2 Principal Component Analysis (PCA)

In Chapter 2 we saw how we can use the Fama-French

factors to predict returns of stocks. These factors are

observable: e.g., anybody can compute the SMB factor by

gathering stocks’ returns and market capitalizations. PCA is a

method of finding factors that are “statistical”—wholly

constructed from the stocks’ returns data alone—and use

these factors to analyze or predict these same returns. Hence

it is another example of unsupervised learning. PCA factors

(more precisely, factor exposures or loadings) are created by

either finding the top eigenvectors (ranked by their

eigenvalues) of the covariance matrix of returns, or by

finding the top “right singular vectors” by applying singular

value decomposition (SVD) directly to the data matrix of

[image: Image 149]

returns (e.g., rows of daily returns vectors of various stocks).

For more details, see Chan (2021), Example 7.1. By “top,” we

meant the eigenvectors associated with the largest

eigenvalues, or the right singular vectors associated with the

largest singular values. The cutoff value of what makes the

cut to be top is a detail that you can find discussed in López

de Prado (2018) and can also be considered a

hyperparameter to be optimized when results are used

downstream in an investment process.

In addition to their use as statistical factors that drive asset

returns, PCA or more generally SVD can often be used for

denoising or feature selection in machine learning

applications. Specifically, if we have a set of input features

that can be used in supervised learning (see the next

section), and these features are highly correlated, we can

apply PCA to find the top “orthogonal features” that are

uncorrelated and significant. Significant means that these

features are top-ranked in statistical importance relative to

all the other features (which doesn’t necessarily mean they

are statistically significant in the absolute sense.) For more

details, read López de Prado (2018). In Chapter 6, we will discuss additional unsupervised learning approaches, such as

probabilistic principal component analysis (PPCA), which is

the probabilistic version of PCA, as well as Factor Analysis

(FA), which can be seen as an extension of PPCA.

* * *

 Exercise: Ask ChatGPT to generate two random series with

100 samples each, and with covariance matrix

.

Create a scatter plot, and superimpose the eigenvectors

based on PCA on it. Does it look like Figure 3.2?

* * *

[image: Image 150]

Figure 3.2 Principal components of two correlated series.

Speaking of features selection and importance ranking, there

is another way unsupervised learning can help to be

described next.

 3.1.3 Cluster-based Feature Selection (cMDA)

As we will discuss in the context of supervised learning,

feature importance ranking and selection is a method to

 regularize a machine learning process so that it doesn’t learn

from statistically insignificant and noisy input features.

Feature importance ranking also improves interpretability of

a machine learning model, as a human user can more readily

understand how the model derives its predictive power with a

small number of important features instead of a large number

of possibly irrelevant inputs. Whether a feature is significant

(important) of course depends on the label (target variable) during the training phase in supervised learning. We will

detail a few feature selection methods when we come to

supervised learning, but there is a common problem with

many of those methods. If many of the features are correlated

or in general highly statistically dependent with each other,

these feature selection methods often randomly select one

but not the others as the important feature. Two highly

similar features may receive two very different importance

ranks. That is arbitrary and not conducive to interpretability,

as a cluster of similar features often tells a better story than

an individual feature. López de Prado (2020) described a

cluster-based feature selection method to address this issue.

In Man and Chan (2021b), we applied hierarchical clustering

to find these clusters and presented evidence that applying

features importance ranking and selection based on clusters

instead of individual features yield better predictive outcomes

and better interpretability. From that paper, we clustered

some features that are used for predicting the returns of SPX

and found two big clusters that can be readily interpreted as

fundamental vs technical features, as shown in Table 3.1.

TABLE 3.1

Results of cluster-based features importance ranking

based on their importance in predicting SPX returns.

Topic

Cluster

Features

Scores

Fundamental 0.667

d/p, d/y, e/p, b/m, ntis, tbl, lty,

dfy, dfr, infl

Technical

0.333

d/e, svar, ltr, tms

 3.1.4 Hidden Markov Model (HHM)

Hidden Markov Model is a popular technique (Chan, 2017) of

quantitative investors, because the connection between the

“hidden states” and market regimes is so seductive. Who

wouldn’t want to model the transitions between market

regimes as transitions on a Markov chain? The problem is

that if the market regimes are observable and well-defined,

we wouldn’t need a hidden Markov model. For example, you

can define the start of a “bear” market regime as when the

price drops 20% or more below the high watermark, and the

end of this bear market as when the price rises 20% or more

above the low watermark since the beginning of the bear

market. (The end of a bear market is the beginning a bull

market, and vice versa.) However, predicting these regimes

would be a supervised learning problem, not a problem for

HMM. If we can’t observe the market regimes, all HMM is

doing is to introduce more parameters into a probabilistic

model of returns where, for example, a simple static mixture

of Gaussians, known as a Gaussian Mixture Model (GMM),

doesn’t fit the data well enough. The correspondence with

hidden market regimes is aspirational, or more bluntly,

fictional. Of course, the more parameters you have, the better

the fit for the training set. If two hidden Markov states don’t

fit the observed returns well enough, how about two

hundred? The question is: does the HMM predict the out-of-

sample returns well? Here the evidence is weak. Chan (2017)

found that it fails miserably for SPY, but Catello et al. (2023)

found that it worked on a few stocks for a few time periods.

The jury is still out. In Chapter 6, we will delve deeper into GMM and provide an illustrative example of market regime

detection.

[image: Image 151]

[image: Image 152]

3.2 Supervised Learning

The bulk of investment applications of machine learning falls

under the category of supervised learning. Predicting stock

returns using technical indicators? Finding the beta of a

portfolio relative to a market index? Predicting whether an

investment decision will be profitable? All these are familiar

examples of supervised learning.

Supervised learning means that we know the truth, at least

historically, and we want to train a machine learning model

with that knowledge so that it can make good inferences

(predictions) on data it hasn’t seen yet. The truth is variously

called label, target, variate, dependent variable, or simply .

To train the machine learning model, we also need features,

a.k.a., predictors, regressors, covariates, factors,

independent variables, or simply . When the label is discrete

(e.g., a stock going up or down), the problem is called

classification. When the label is continuous (e.g., a stock will

have 11.2% return next year), the problem is called

regression.

We wrote as if predicting stock returns is the best use case of

supervised learning. Actually, it is the worst. When we are

learning from historical data to predict something, it is

imperative that what we try to predict won’t change the

target variable’s behavior because the prediction is

successful. For example, predicting the next earthquake

won’t change when it will happen. But when you build a stock

prediction model that is based on learning from past data,

yours won’t be the only such predictive model since the data

is public. Arbitrage activities will cause the returns prediction

to gradually diminish in accuracy—that’s known as alpha

decay in the business. Taking action based on the prediction

has effectively changed the behavior of the variable being

predicted. This effect can be seen as a feedback loop, where

our actions change the system being observed and predicted,

is not considered in the standard formulation of supervised

learning problems but is instead the subject of control systems or reinforcement learning (RL), which will be

described later in this chapter. There are much more

effective use cases of machine learning in asset management:

Corrective AI (Belov et al., 2023) and Conditional Portfolio

Optimization (Chan et al., 2023). The former applies

classification and the latter applies regression. Both of them

are more effective than directly predicting asset returns

because what they try to predict are not subject to arbitrage.

We will explain why.

Corrective AI (CAI) was called metalabeling by López de

Prado (2018). It means that we treat a conventional

quantitative investment system as an “expert system,” with

investment rules defined by humans based on their

market/mathematical insights and with a small number of

inputs. Then we apply machine learning as a “corrective

layer” using supervised learning to determine the

“probability of profit” (PoP) of each investment decision or

each position over some time period. If the PoP is above a

threshold, we accept the decision/position. If not, we reject

the decision/position and remain “flat” or “risk-free.” The

labels for CAI are profitable (the positive class, with label 1)

vs nonprofitable (the negative class, with label 0). For an

example trading application of CAI, see Belov et al. (2023).

This use of ML prediction isn’t subject to arbitrage because

no one else is supposed to know your expert system’s next

prediction of asset returns. So even if everyone can predict

with high accuracy whether your expert system will be

profitable, they can’t take any action that may change the

outcome.

Conditional Portfolio Optimization (CPO) is the invention of

Predictnow.ai. It uses ML to predict the performances (e.g., returns, Sharpe ratio, max drawdown) of a portfolio under

various asset allocations and rank such performances so that

we can pick the best asset allocation with the highest

predicted performance. It is a novel portfolio optimization

[image: Image 153]

[image: Image 154]

[image: Image 155]

[image: Image 156]

[image: Image 157]

[image: Image 158]

[image: Image 159]

[image: Image 160]

method that can use big data as input to adapt to market

regime changes. For a more complete exposition of CPO and

its many successes, see Chan et al. (2023). CPO also isn’t

subject to arbitrage because few investors have the exact

same optimization objective on the same exact portfolio. The

effectiveness of the optimization also doesn’t depend on

accurately predicting individual asset returns, nor does it

depend on even on accurately predicting portfolio returns,

making this method highly fault-tolerant.

There are numerous supervised learning techniques, ranging

from the simple and well known, to the complex and arcane.

Most of these techniques can be applied to both classification

and regression, with small adaptations. Many of these

techniques can be fine-tuned by optimizing their

“hyperparameters.” Some techniques to improve the

performance of a supervised learning system on unseen (out-

of-sample, test) data fall into a category called regularization,

which are a rich and varied set of methods. We will highlight

the various supervised learning techniques as well as

methods of hyperparameter optimization and regularizations

next.

 3.2.1 Linear and Logistic Regressions

We trust that anyone who studied finance or statistics have

seen the regression fit

, where indicates a dot

(scalar) product of (vector of regression coefficients) and

(features vector) giving the scalar label . This works for

inferring (predicting) one label at a time. To train this model

—i.e., finding the best values of that can make accurate

inferences (predictions)—we need a lot of historical data with

(features, label) pairs of

forming the data matrix

(each row represents one sample data with many columns of

different features, augmented with a column of ones to

account for possible constant offset) and the label vector y (a

[image: Image 161]

[image: Image 162]

[image: Image 163]

[image: Image 164]

[image: Image 165]

[image: Image 166]

[image: Image 167]

[image: Image 168]

column vector of the corresponding univariate labels.)

is

also called a “design” matrix. We can use ordinary least

square (OLS) fit to give us

See Murphy

(2012).

* * *

 Exercise: Ask ChatGPT to generate a hypothetical design

matrix of four samples of three features. Name these features

“Oil 30d return,” “GDP Growth,” and “HML.” All the features

should be normally distributed with mean and STD of 0.5%.

Does the matrix look like Table 3.2?

* * *

TABLE 3.2

Hypothetical design matrix for three features with

four samples.

Sample

Oil 30d return

GDP Growth

HML

0

0.013820

0.007001

0.009894

1

0.016204

0.014338

0.000114

2

0.009750

0.004243

0.004484

3

0.007053

0.005720

0.012271

Another way to optimize the parameters of the linear

regression model is to maximize the log likelihood of the

training data via maximum likelihood estimation (MLE). In

other words, we maximize the joint log likelihood

of obtaining a set of observations by

tweaking the values of given the values of

. (Note we use

index as it is the conventional row index for a design

matrix.) It turns out that if we assume that has a Gaussian

distribution, maximizing the log likelihood is the same as

minimizing the mean squared errors (MSE) of the inferred

labels vs the actual labels on the train set (Goodfellow et al.,

[image: Image 169]

[image: Image 170]

[image: Image 171]

[image: Image 172]

[image: Image 173]

[image: Image 174]

[image: Image 175]

[image: Image 176]

[image: Image 177]

[image: Image 178]

2016, section 5.5.1). The solution to that is the same as the

OLS fit.

But in trading, we often just want to predict whether the

asset will go up or down the next day, or whether a trading

strategy will be profitable the next day. In other words, we

have a classification problem, not a regression problem. So,

is often a discrete or even binary variable 0 or 1. In this case,

we don’t just want to predict whether will be 0 or 1, we

want to compute the probability

of each. Like linear

regression, we assume

is a linear function

of the

features . But it isn’t as straightforward here because

can only take on values between 0 and 1, and a linear

function gives values between

and

. To fix that, we can

feed this linear function through a sigmoid function

first.

* * *

 Exercise: Ask ChatGPT to plot a sigmoid function. Does it

look like Figure 3.3?

* * *

[image: Image 179]

[image: Image 180]

[image: Image 181]

[image: Image 182]

[image: Image 183]

[image: Image 184]

Figure 3.3 Illustration of a sigmoid function.

We now have a quasi-linear parametric probabilistic model of

the binary variable. To find the best based on the

observations we can again apply MLE to this probabilistic

model, but there is no closed-form solution like the OLS fit for

linear regression. A numerical optimization method such as

gradient descent is needed. This gives us a taste of what’s to

come—much of neural network and deep learning training is

based on gradient descent too, though in neural networks,

the regression coefficients are called “weights”

instead.

We will discuss that soon. This scheme is called logistic

“regression” despite being a classification problem. The

sigmoid function

above is also called a logistic

function.

[image: Image 185]

[image: Image 186]

[image: Image 187]

[image: Image 188]

[image: Image 189]

[image: Image 190]

Once we have

trained, we can set a threshold to

decide when we should infer/predict y = 0 or 1 for a given

input . The conventional choice is 0.5. But let’s say you want

your returns prediction to generate a long bias for your

trading model, you can always set the threshold to lower than

0.5. The best threshold is not a problem for machine learning

—it is a trading strategy construction problem. You can

backtest and optimize the best threshold to achieve the

highest CAGR, Sharpe ratio, or the lowest maximum

drawdown etc. In other words, it is a hyperparameter to be

optimized based on financial metrics.

 3.2.2 L1 and L2 Regularizations

In theory, linear and logistic regressions look simple to train

(with even a closed form solution for linear regression). But

in practice, if we have a large number of features and we

don’t know whether they are significant or if they are

redundant (i.e., highly correlated, also called multicollinear),

we will find that can be very unstable (sensitive to small

changes in

) and it will have large errors. Furthermore, the

matrix

may even be singular and non-invertible and

can’t generate any at all. Also, having too many input

features leads to the problem of overfitting in machine

learning: the fitted model may work very well on the training

data, but generalize very poorly on unseen test data. All these

issues call for procedures called “regularization” or “features

selection.” The former means reducing the complexity of the

model by reducing the “size” of model’s parameters or the

number of parameters in a model, and the latter means

reducing the number of features in particular. Some

regularization techniques might also do automatic feature

selection, as we will see later. In the context of linear or

logistic regressions, two popular regularization and feature

selection techniques are called L1 and L2 regularizations,

[image: Image 191]

[image: Image 192]

[image: Image 193]

[image: Image 194]

[image: Image 195]

[image: Image 196]

[image: Image 197]

[image: Image 198]

[image: Image 199]

[image: Image 200]

[image: Image 201]

[image: Image 202]

[image: Image 203]

[image: Image 204]

[image: Image 205]

which are two different ways to “size” or measure the

model’s complexity.

L1 regularization is just adding a penalty term like

to the log likelihood function to be maximized. (Note we use

index as it is the conventional column index for a design

matrix that enumerates individual features.) You may

recognize

as being the L1-norm for a vector .

is an adjustable penalty hyperparameter that you can

optimize in a “validation set.” (More on hyperparameter

optimization and validation sets later.) The point is that this

penalty term will decrease the log likelihood if you have too

many nonzero

’s, and thus will force the training program

to reduce the of some of the insignificant or correlated

features close to zeros, performing an automatic feature

selection.

Similarly, L2 regularization is adding a penalty term like

to the log likelihood function to be maximized. You

may recognize

as being the L2-norm for a vector .

This penalty term has similar effect

. But is L1 or L2

regularization better? Researchers found that L1

regularization often results in more zero

’s and therefore

the resulting model is more sparse and better regularized. L1

is therefore more of a feature selection than a regularization

technique. Murphy (2012, Figure 13.3) explained this well:

the constraint

forms a diamond-shaped ball that

has many vertices where a

vanishes, and the contour

surface where the log-likelihood function is a constant and

which we seek to maximize can more easily satisfy the

constraint by touching one of these vertices. We reproduced

the effect in Figure 3.4.

[image: Image 206]

[image: Image 207]

[image: Image 208]

[image: Image 209]

[image: Image 210]

Figure 3.4 Illustration of why L1 regularization can more easily get us zero weights. The black lines

indicate where the constraints are satisfied (a

diamond for L1, a circle for L2). The red dashed lines

represent the constant likelihood surfaces (contours),

which we try to maximize by moving it downward. The

points where the likelihood surfaces touch the

constraints represent the optimized weights. You can

see that L1 gives

 but L2 does not. (By Mxwsn—

Own

work,

CC

BY-SA

4.0,

https://commons.wikimedia.org/w/index.php?

curid=45672058)

The red dashed line in the figure indicates the constant log

likelihood contour, while the diamond and circle and their

interiors indicate the L1 and L2 constraints, respectively. The

contour will likely intersect the diamond at a vertex with

vanishing

(or

in Figure 3.4.)

L1 and L2 regularizations are also called Lasso and ridge

regularizations respectively. One can also apply both L1 and

L2 regularizations simultaneously with a penalty term

. This is called Elastic Net

regularization. Ernie finds these names to be terribly hard to

remember and prefers L1, L2, and L1 + L2.

[image: Image 211]

[image: Image 212]

[image: Image 213]

[image: Image 214]

[image: Image 215]

Just as optimizing the parameters of a logistic regression

using gradient descent is a general technique that extends to

optimizing a neural network, L1 and L2 regularizations

during training is also a general technique of regularizing

neural networks. However, for very deep neural networks,

more specific regularization techniques are applied in

practice, as we will see next.

 3.2.3 Hyperparameter Optimization, Validation

 and Cross-validation

Every machine learning model has parameters and

 hyper parameters. In the linear and logistic regression models

above, contains the parameters, and if you applied L1 or L2

regularizations or both, then

and

are the

hyperparameters. When we discuss later more complex

learning algorithms such as random forest, gradient-boosted

trees, or neural network, you will find a larger set of

hyperparameters. You can even consider the length of the

train set, or even which ML algorithm to apply, as

hyperparameters. Some hyperparameters, such as the

probability threshold (“decision boundary”) for classification,

relate to the financial outcome you want to achieve, and is

not a matter for machine learning to decide. We described

how we could train the parameters in the case of linear and

logistic regression, but that’s assuming we have a fixed set of

hyperparameters. How do we optimize these

hyperparameters? Validation or cross-validation is the

answer. This process is called hyperparameter optimization

(HPO). In validation, we divide the data into three non-

overlapping subsets: the train set, the validation set, and the

test set. Assigning some reasonable starting values for the

hyperparameters (e.g.,

), we use the train set to find the

parameters (e.g.,). Then we test how the model performs in

the validation set. The performance metric can be mean

squared error (MSE) in the regression case, or log likelihood

in the classification case, or it can be something more complicated like F1 score or AUC score that we will discuss

later, or you might even use your financial performance

metrics to pick the best parameters. After performance

evaluation, we can vary the hyperparameters and retrain the

model and repeat the process until the “best” set of

hyperparameters that generates the highest performance on

the validation set is found. “Best” is limited by your patience

and computational resource. There are fancy methods to

more intelligently sample the hyperparameter space (such as

using a Bayesian optimizer), but often a brute-force grid

search is used if we don’t have too many hyperparameters.

For example, if the length of the training set is considered a

hyperparameter, you will just keep increasing the length until

performance on the validation set stops improving. Once the

best set of hyperparameters and the corresponding trained

model is found, it can be tested on the test set to see if all this

effort yields good out-of-sample performance. If not, you are

not supposed to go back to modify the hyperparameters and

try again (e.g., adding features, try different ML algorithms,

try different training sets, …). You should admit defeat and

abandon your project (López de Prado, 2015). However, you

are allowed to change your labels and start a new project.

There is one small issue with taking a chunk of data out to

serve as a validation set: we have reduced the amount of data

that can be used for training, which reduces the ability of

your model to generalize. However, as we will see more

details in Chapter 10, modern techniques allow you to train a model using small datasets with good generalization by

leveraging pre-trained models. Also, especially for financial

time series, which tends to violate the standard assumption of

independent and identically distributed (IID) observations in

most ML models, who is to say that a specific period should

be used to pick the optimal hyperparameters and not

another? An easy way to remedy that is to apply “cross-

validation”: cut up any data that is not in the test set into K

[image: Image 216]

[image: Image 217]

[image: Image 218]

[image: Image 219]

subsets (called “validation folds”), train model k on the data

 not in the k-fold and make inferences on the k-fold. Average

the validation set performance over all k-folds and optimize

hyperparameters based on this performance. This way, we

have used all the data outside of the test set for optimizing

the hyperparameters. (By “averaging performance,” we mean

making inferences/predictions on every sample in the k-folds

and then compute any performance metric you like on those

inferred labels. We do not mean just averaging the Sharpe

ratio or some other nonlinear metrics over different folds.)

There are further issues when cross-validation is applied to

time-series data, such as when the features used for training

model k overlaps in time with the time period of the k-fold,

thus possibly inflating the performance of model k on k-fold

due to look-ahead bias. López de Prado (2018) discussed the

remedies to this problem extensively.

 3.2.4 Performance Metrics

For asset managers, the ultimate performance metrics of any

ML system are financial metrics such as Sharpe or Calmar

ratios. But if we want an intermediate performance metrics

just for the machine learning component of an investment

system, there are other standard ones. These can be used for

ML model validation, comparison, or hyperparameter

optimization.

For regression problems, the performance metrics are the

familiar Mean Squared Error (MSE, the closer to zero the

better) and -squared (

, the closer to 1 the better). As a

reminder,

measure the proportion of the variance in the

label that can be explained by the features. However, before

we get too excited by a good MSE or

, we should perform

some sanity checks. As an illustration, see the Anscombe

quartet

[image: Image 220]

[image: Image 221]

[image: Image 222]

[image: Image 223]

(https://en.wikipedia.org/wiki/Anscombe%27s_quartet) in

Figure 3.5.

Figure 3.5 The Anscombe quartet. All four data sets have same means, variances, correlations, regression

coefficients, and

 Source: Anscombe /

https://commons.wikimedia.org/wiki/File:Anscombe.svg#/media/File:Ans

combe.svg, last accessed on 13 January 2025 / CC BY 3.0.

These four very different scatter plots of (x, y) turn out to

have the same high

of 0.67 and many other descriptive

statistics, but no one would think that linear regression is a

good fit for the second and fourth set of data. Meanwhile the

regression coefficient is biased for the third set due to an

outlier. Visual inspection tells a very different, and more

accurate, story than a numerical statistic such as

.

However, when we have a high dimensional data set, it is

[image: Image 224]

very difficult to find these anomalies via visual inspection.

What we can do in those cases is to perform exploratory data

analysis (EDA) to determine if there are any outliers in the

data and if those are due to errors and should be excluded.

Then we can apply features importance ranking to find the

top-ranked features. Even better, we can use cluster-based

MDA (cMDA) (see López de Prado [2020]) to find the top-

ranked clusters of features, and see whether they make

sense. Sometimes, especially important features that have

high predictive powers turn out to embed look-ahead-bias

and should be discarded. We will discuss more about feature

engineering later in this chapter.

For binary classification problems, and the majority of the

probabilistic approaches to machine learning, we have

already seen that the usual metric to optimize is the log

likelihood (LL). This is also the metric to compare the

inference powers of different classifiers (or maybe the same

classifier with different hyperparameters) given labels in the

test set. However, the LL score doesn’t give an intuitive

understanding of how good a classifier is, just as MSE doesn’t

give an intuitive appeal of how good a regression is because

its value depends on the labels’ inherent variance. There are

other classification performance metrics that are often used

instead.

The most common classification metric is accuracy of

prediction:

. You might think that any

accuracy over 50% means the model is better than random

and is working. But imagine if the labels are very imbalanced:

90% of them are 0 and only 10% of them are 1. We can just

blindly bet on 0 and get a 90% accuracy rate. We need

additional measures to demonstrate the power of our ML

model. Precision and recall are such measures. Typically,

these are applied to the minority class, or the class with label

1 that we consider the results are “positive.” For example, in

Corrective AI, this would be the case where the investment

[image: Image 225]

[image: Image 226]

[image: Image 227]

[image: Image 228]

[image: Image 229]

decision is profitable. The negative class is the one presumed

to be in the majority with label 0. Precision is

and recall is

. The

correct predictions of 1 are called the true positives (TP),

while the incorrect predictions of 1 (also known as Type I

error) are called the false positives (FP). The correct

predictions of 0 are called the true negatives (TN), while the

incorrect predictions of 0 (also known as Type II error) are

called the false negatives (FN). So, you can also write

and

. Typically, both recall and

precision should be above 50% to indicate any predictive

power. In our example, if the model were to always bet on 0,

recall will be 0, indicating the model doesn’t work. If the

model were to always bet on 1, precision will be just 10%,

again indicating the model doesn’t work. To take into account

both precision and recall, people often calculate the F1 score

which is the harmonic mean of recall and precision:

. You can see that F1 score is obviously 0 if

either precision or recall is zero. It will also be far smaller

than 0.5 if either precision or recall is far smaller than 0.5. If

we want to drill down to details, we can also compute the

confusion matrix for each of the quadrant (Table 3.3):

TABLE 3.3

The confusion matrix for binary classification.

Predicted Positive Predicted Negative

Actual Positive TP

FN

Actual Negative FP

TN

We find this mnemonic helpful: Type I errors (FP) are more

serious than Type II errors (FN) in trading because FP may

mean accepting an investment decision that is wrong and we

lose money, while FN means not accepting an investment

decision that turns out to be correct and profitable but we are

keeping our money safe in the bank. Hence FP is given

priority as Type I error. The confusion matrix is also giving

the priority of the first row and column to the positive class.

When we have a multiclass classification problem (e.g.,

return is labeled very negative, mildly negative or 0, mildly

positive, very positive) the precision and recall scores need to

be computed by regarding each class as the positive class in

turn and the other classes grouped together as the negative

class. The F1 score is then computed as some sort of average

over these recall and precision scores. We can’t explain it

better than Copilot:

Copilot Response

Micro-average: This method aggregates the contributions

of all classes to compute the average metric. It calculates

the F1 score globally by counting the total true positives,

false negatives, and false positives.

Macro-average: This method calculates the F1 score for

each class independently and then takes the average. This

treats all classes equally, regardless of their size.

Weighted-average: This method calculates the F1 score

for each class independently but when it averages them, it

uses a weight that depends on the number of true

instances for each class.

A confusion matrix for a three-class classification problem

would look something like Table 3.4.

[image: Image 230]

[image: Image 231]

[image: Image 232]

TABLE 3.4

Confusion matrix for three-class classification.

Predicted

Predicted

Predicted

Class 1

Class 2

Class 3

Actual

TP

FN

FN

Class1

Actual

FN

TP

FN

Class 2

Actual

FN

FN

TP

Class 3

(Of course, each of the TP and FN will have a different

number in each cell.)

* * *

 Exercise: Ask Copilot to generate a random 3 × 3 confusion

matrix and ask it to compute recall and precision for each

class, and compute the three types of F1 scores. Manually

check if these numbers are correct.

* * *

There is one particular hyperparameter that we usually want

to optimize in a binary classification problem: the probability

threshold

that decides whether we should infer 0 or 1.

This is also called the “decision boundary” in ML in general.

Which performance metrics should be used for this?

The usual objective function to be optimized, the log

likelihood (LL), does not include

as the hyperparameter

as it only requires the probability distribution and the actual

labels as input. If we use precision or recall as the objective,

increasing one by tuning

will typically lead to the

decrease of the other. This can be seen from the hypothetical

PR curve in Figure 3.6 (generated by ChatGPT), which plots

[image: Image 233]

[image: Image 234]

[image: Image 235]

[image: Image 236]

[image: Image 237]

the precision against the recall with decreasing

toward

the right side.

Figure 3.6 A typical precision-recall curve.

We can also see this from the ROC curve in Figure 3.7, which plots the True Positive Rate (TPR, a.k.a., recall) against the

False Positive Rate (FPR = FP/#actual negatives = FP/(FP +

TN)) again with decreasing

toward to right side. As

decreases, naturally we get more predictions of positives,

some right and some wrong, and thus both TPR and FPR

increase. It is obvious that recall can at most be 1, and FPR

can also be at most 1, both of which happen when we

mislabel all the negatives as positives. A binary classifier that

assigns probabilities randomly with

will give a

straight diagonal line as the ROC curve, and the more

discriminating power the classifier has, the more negative its

[image: Image 238]

curvature. This means at any point of the curve except the

endpoints, TPR > FPR. (If a ROC curve has positive

curvature, we just need to infer 0 when

and we will

recover the same discriminating power. That is, a false

prophet that is consistently wrong is a true prophet.) This

also means that we can use the area under the ROC curve as

the statistic, which describes the discriminating power of the

classifier. This area is called the AUC (area under curve), and

it should be greater than 0.5 for a good classifier. This

statistic is useful for comparing different classifiers as well,

particularly during the modeling phase, where we want to

evaluate model performance independently of the chosen

probability threshold. There is also a related measure called

AUCH (area under convex hull), which is very similar to AUC

but applies to the convex hull that is fitted to the actual

precision and recall data.

[image: Image 239]

[image: Image 240]

[image: Image 241]

Figure 3.7 A typical ROC (Receiver Operating Characteristics) curve.

* * *

 Exercise: Ask ChatGPT to generate 1,001 random samples of

or 1 based on the binomial distribution, with the

probability of class 1 determined by a sigmoid function of a

scalar feature that takes on values −500 to 500 increments

of 1. Ask it to fit a logistic regression on this simulated data,

and compute the various performance metrics just described.

Are those metrics computed correctly? Does the model fit the

data well? (Hint: it has to! This is just in-sample fitting.)

* * *

[image: Image 242]

 3.2.5 Classification and Regression Trees,

 Random Forest, and Boosted Trees

Tree-based models are widely regarded as the most effective

ML technique for tabular, inhomogeneous features (Shwartz-

Ziv and Armon, 2021). Inhomogeneous features mean that

features may have very different statistical characteristics. In

finance, one feature might be annualized GDP growth,

another might be a categorical feature of whether Fed

interest rate announcement was made on the previous day,

and yet another might be the 1-day return of the SPY. In

contrast, neural networks are widely regarded as the most

effective ML technique for homogeneous features such as

image, videos, acoustic (including speech), and textual

features. Homogeneous features are exemplified by words in

a text file: every word is usually drawn from the same

vocabulary. As we shall see, tree-based models typically

select one feature at a time, so the fact that different features

have different statistical properties is of no hindrance. Plain-

vanilla classification and regression trees are also more

explainable/interpretable than neural networks, though the

embellished versions such as gradient-boosted trees or

random forest are less so.

The most popular and basic method of training a tree is

called CART (Breiman et al., 1984). Depending on the

context, sometimes we also call the tree itself a CART. For a

classification problem, the algorithm starts with the entire

train set and goes through the list of features and picks one

that separates the samples into two subsets (“child nodes”)

such that each one contains “mostly” samples of the same

label. To be technical, that means we choose the feature such

that the weighted sum of the Gini indices of the two subsets

is the lowest. If the feature chosen is continuous as opposed

to categorical, then the choice of the feature and the

threshold (denoting cutoff) to divide the feature’s range of

values into two are made at the same time. Repeat this

[image: Image 243]

[image: Image 244]

[image: Image 245]

[image: Image 246]

[image: Image 247]

[image: Image 248]

[image: Image 249]

[image: Image 250]

process recursively with each child node, until a child node’s

number of samples drops to or below the minimum, or when

the depth of the branch reaches a certain maximum. As you

can tell, it is a greedy algorithm, because it always picks the

best feature one at a time, without regard to the possibility

that picking a few suboptimal features consecutively may

ultimately result in a lower Gini index. It is easy to see how

we can infer the label given a new set of features—just follow

the decision rules down to the leaf node and see which class

it belongs to. The probability of ending up in that class

based on feature

,…,

picked before the leaf node

is

simply

.

(There is no loss of generality to assume the decision rule is

≥ because we can always apply a minus sign to the

continuous features, and the = takes care of the categorical

features.)

For a regression problem, the CART algorithm is very similar,

except that the criterion for choosing a feature is determined

by minimizing the weighted MSE of the child nodes. For

inference, we can just compute the average value of the

labels in the training samples in a leaf node

.

The simplest regularization techniques for trees are to set a

minimum for the number of samples in any of the nodes

and/or set a maximum depth (i.e., the maximum number of

features used) of any branch of a tree. Data scientists have

also found that it is helpful to average the inferences of an

ensemble of K trees where each tree is trained using samples

randomly drawn with replacement from the original train set.

This ensemble is called the Random Forest. For a

classification tree, that means computing the average of the

probability of inferring class and picking the that has the

highest probability given the feature values. For a regression

[image: Image 251]

[image: Image 252]

[image: Image 253]

[image: Image 254]

[image: Image 255]

[image: Image 256]

[image: Image 257]

[image: Image 258]

[image: Image 259]

[image: Image 260]

[image: Image 261]

[image: Image 262]

[image: Image 263]

tree, one can just average the inferred values of the label

across all the trees given the feature values.

Performance of any machine learning model can be boosted

by a technique called, you guessed it, boosting. The most

popular implementation of boosting is called gradient

boosting. It is yet another recursive algorithm. Assume we

already have a boosted model

(which is initialized to the

original unboosted model

). It makes an inference

(we use a vector here to indicate many samples of labels). We

compute the errors of these inferences

and use these

errors as the new labels to train an error

prediction/correction model

. A new ensemble model

is now ready for the next iteration. (We use

this notation to indicate the output of

is the output of

minus the output of

.) The inference errors (at least on

the train set) of

are supposed to decrease with every

iteration. (See https://developers.google.com/machine-

learning/decision-forests/intro-to-gbdt.) We will stop when the errors become small enough (in the classification case,

the number of positive cases become small enough), or when

the improvement in error rate is not big enough, or when we

exceed the maximum number of iterations. Notice that

although we hook up several models together in a boosted

model/tree, we add these models sequentially and the

parameters of the existing sequential of models are not

modified in subsequent training. As we shall see, this is

similar to neural networks (NN) in that NN also connect

multiple elementary models together, but in a NN the

parameters of the elementary models do change during

training.

One way to regularize a boosted model to reduce overfitting

is to introduce a learning rate

such that

. In other words, we don’t trust the full

predicted error to correct the model. The learning rate and

the maximum number of trees n_estimators in the ensemble

[image: Image 264]

[image: Image 265]

[image: Image 266]

are the typical hyperparameters to be optimized. When is

close to 0, n_estimators need to be high to minimize the

errors. We will find the concept of learning rate to be

relevant to neural network training, discussed next.

There are many attempts to improve on the classical CART

algorithm for tree-growing. There are also deep learning

techniques (specifically using attention) applied to trees

(Zhuang et al., 2024; Arik and Pfister, 2020). In financial

applications, Cong et al. (2024) described the Panel Tree

approach for classifying entire stock returns series that result

in superior investment performance. These efforts are made

because of the unique interpretability of CART and its power

on tabular data. There is still ongoing debate about the

predictive power of tree-based models compared to deep

learning for tabular data. An excellent paper showcasing the

performance of tree-based models in this context is by

Grinsztajn et al. (2022), which we recommend to readers for

further details.

 3.2.6 Neural Networks

You may notice that the machine learning algorithms we have

described so far, linear or logistic regressions or CART,

always output a scalar label , whether it is continuous-

valued or categorical. (We may write as a vector

sometimes, but only because we stack all the samples

together during training.) They can’t be used to produce a

vector. You can of course build multiple models using the

same input to produce a vector as in multivariate regression,

but those models are trained separately and have

independent parameters. However, sometimes we find that

training a model on labels that are vectors generates better

inferences. For example, in Kolm et al. (2021), the authors

used a neural network to predict the term structure of

returns based on the limit order book. The fact that we know

(as labels, not features) the future returns over several time

frames provides a richer information set to train a better model. Neural networks is a much more flexible ML

algorithm that can produce such vector outputs. This benefit

may outweigh the drawback we mentioned earlier that tree-

based models work better for tabular and heterogeneous

features—when the labels are vectors, you have no choice but

to use NN.

* * *

 Exercise: What are the exact inputs used in the Kolm paper

just cited? How many different time horizons are used for the

labels? What kind of neural network architecture is used? Ask

Copilot to help, or even generate codes based on this paper!

* * *

To motivate NN, we saw earlier how boosted machines

combine multiple elementary models (e.g., each of them a

single tree) sequentially to boost performance. To extend this

concept, why not connect these models both in parallel and

sequentially? Why not take multiple outputs from different

models so that the global output is a vector or even a tensor?

Why not allow all these machines’ parameters to be tunable

during training instead of fixing them sequentially? If we

allow all these possibilities, we end up with a feedforward

neural network, also known as a multilayer perceptron

(MLP), which is the simplest type of NN (Goodfellow et al.,

2016). We show a simple one in Figure 3.8.

[image: Image 267]

[image: Image 268]

[image: Image 269]

[image: Image 270]

[image: Image 271]

[image: Image 272]

[image: Image 273]

[image: Image 274]

[image: Image 275]

[image: Image 276]

[image: Image 277]

[image: Image 278]

[image: Image 279]

[image: Image 280]

[image: Image 281]

Figure 3.8 A one-hidden-layer MLP that takes a vector of features to classify a scalar, binary label . Every

arrow denotes a linear function (dot product) with

weights (regression coefficients) and biases (offsets).

If this were for regression, we can omit the sigmoid

function at the output node. In general, we can also

predict a vector of binary labels , with different

weights

. We can also need more nodes to the

hidden layer, and/or add more hidden layers. To

simplify notation, we have used w and to represent

both the weights and biases.

The simplest MLP has three layers:

1. An input layer that is just a several linear regressors

that each accept the same features and each output a

scalar

. We use

instead of

because this is

typical in NN literature. To simplify notations, we have

also used instead of and to include both weights

and “biases,” which are the constant offsets in linear

regressions. (This means we assumed a “1” to be added

to the input vector

This is for notational convenience

because, in practice, for reasons of computational time

and memory complexity, it is more efficient to add the

biases directly rather than appending one to the input,

[image: Image 282]

[image: Image 283]

[image: Image 284]

[image: Image 285]

[image: Image 286]

[image: Image 287]

[image: Image 288]

[image: Image 289]

[image: Image 290]

particularly when the number of regressions becomes

large.) They form the fundamental parameters of a NN.

2. These scalars

are each fed into a hidden node.

Here we introduce a nonlinear function that is as close to

a linear model as possible: like the ReLU unit

. The output of each ReLU unit is again a

scalar,

, and known as the activation.

3. These scalars

together form a vector that is fed into

the output node(s), which is another linear regressor

for a regression problem, or our familiar

sigmoid function

for a binary

classification problem. The latter represents the

probability of a class, as in logistic regression. Again, we

have simplified notations to use to represent both

weights and biases, and assumed we added “1” to the

vector .

Since we have used the same symbol to represent both

weights and biases, we will also refer both weights and

biases as just “weights” in the text.

We can extend MLP by adding more hidden layers, where the

outputs of one hidden layer are used as inputs of another

hidden layer. We can also use higher dimensional tensors as

inputs, weights, and outputs. For multiclass classification, we

can replace the sigmoidal function with the softmax function

.

Do not be alarmed by all these matrix multiplications. NN

libraries such as PyTorch or TensorFlow will deal with them

for you, as long as you specify the dimensions of the inputs

and outputs, the number of hidden layers, and the number of

nodes each layer.

[image: Image 291]

[image: Image 292]

[image: Image 293]

[image: Image 294]

[image: Image 295]

[image: Image 296]

[image: Image 297]

[image: Image 298]

[image: Image 299]

[image: Image 300]

[image: Image 301]

There is research to show that a MLP with just one hidden

layer can approximate any reasonable function (Hornik et al.,

1989). But what this research didn’t say is that we will need

exp(# number of features) nodes in this layer to have a good

approximation. People found that it is generally more

efficient to train a network with more hidden layers, each

with few nodes, than a single hidden layer with many nodes.

To train a NN, we need to decide on the objective function.

As in linear and logistic regression and almost every other

ML problem: optimizing the log likelihood is most of the time

the right choice. Assuming a Gaussian probability distribution

for the output layer, this is again equivalent to minimizing the

MSE for a regression problem as mentioned for linear and

logistic regressions. To maximize the log likelihood for

logistic regression, we can again resort to gradient descent of

the parameters, now called weights. The problem with

applying gradient descent to the much larger set of

parameters that are typical of a NN and with a large training

set is the prohibitive computational time. Hence there is a

more effective algorithm called stochastic gradient descent

(SGD) that samples a small subset of the train set when

computing the gradient. This subset is called the minibatch—

at most a few hundred samples. The smaller the size of a

minibatch, the better the network is regularized. Just as in

the boosting algorithm we described above, we will update

the parameters

where represent all the

weights of the network, is the gradient, and is the

learning rate. (There are several techniques to accelerate

model training by modifying these equations, as we will see

later.) The computation of can be efficiently performed by a

forward-backward algorithm called backpropagation.

Backpropagation is based on the chain rule of calculus to

recursively compute , which is the first partial derivative of

the negative log likelihood (or in general any cost function

) with respect to a parameter

The inferred output node

(together with the actual label) of a NN can be used to

[image: Image 302]

[image: Image 303]

[image: Image 304]

[image: Image 305]

[image: Image 306]

[image: Image 307]

[image: Image 308]

[image: Image 309]

[image: Image 310]

[image: Image 311]

[image: Image 312]

[image: Image 313]

[image: Image 314]

[image: Image 315]

[image: Image 316]

[image: Image 317]

[image: Image 318]

[image: Image 319]

[image: Image 320]

[image: Image 321]

[image: Image 322]

[image: Image 323]

[image: Image 324]

[image: Image 325]

[image: Image 326]

[image: Image 327]

[image: Image 328]

[image: Image 329]

[image: Image 330]

[image: Image 331]

[image: Image 332]

[image: Image 333]

compute the cost function. Using the chain rule of calculus,

. Note that the sum is over all the

hidden nodes that lead forward to the output node , and

is the output from node . In other words, over all the parent

nodes of . To compute

, we can invoke the chain rule

again and express it in terms of all the partial derivatives

with respect to all the outputs from all the parent nodes

that lead forward to the node . And so on and so on until

we reach the node with the parameter . Except for the

output node, all the other partial derivatives

are just

simple functions of all the outputs of the parent nodes of as

well as the weights that take the output of parent node and

turn it into an input to the child node . For example, for

hidden node

, let’s say

and

and

,

then

. If

and

, then

. For the

output node, let’s say is the MSE function, and

where s is over all

samples in the minibatch, and

and

. Let’s

further assume we only have 1 sample in the minibatch and

then

* * *

 Exercise: In the previous example, what would

be given

two alternate sets of

and

? If the minibatch has two

[image: Image 334]

[image: Image 335]

[image: Image 336]

[image: Image 337]

[image: Image 338]

[image: Image 339]

[image: Image 340]

[image: Image 341]

[image: Image 342]

[image: Image 343]

[image: Image 344]

[image: Image 345]

[image: Image 346]

[image: Image 347]

[image: Image 348]

[image: Image 349]

[image: Image 350]

[image: Image 351]

[image: Image 352]

samples, and

,

and

for the second

sample, what would be?

* * *

To start the training (backprop) process, we take samples

from a minibatch of train data, initialize the parameters

to

some values (recommendation: initialize weights to small

random values in the range

where is the

number of features, and initialize biases to zero) and run

them forward through the network to compute all the outputs

of all the nodes . That is, going layer by layer and link by

link through all the linear and ReLU or sigmoid functions,

through all the matrix multiplications of weights, and then

finally arrive at the output nodes . All the from different

samples are combined with their corresponding actual labels

to produce

aggregated over all samples in the

minibatch. This is the forward propagation that produces the

output values of all the nodes. Now we are ready to compute

the gradient using the chain rule described earlier, starting

from output node and going backward, like the numerical

example above. After is computed, we can use it to update

. That finishes one iteration of the SGD, and we

can start again with a different minibatch. We will discuss

later when we should stop iterating. It is often not necessary

to wait till the gradient is 0 to stop, nor should one be

concerned whether we have reached a local or global minima

in the cost function.

In this forward-backward algorithm, no partial derivative is

ever computed more than once, because whenever one is

computed, it is stored for use in another backward

propagating path. For any network with nodes, there can’t

be more than

edges and therefore more than

operations to compute the gradients. Most often, the NN

[image: Image 353]

[image: Image 354]

[image: Image 355]

[image: Image 356]

[image: Image 357]

[image: Image 358]

[image: Image 359]

[image: Image 360]

[image: Image 361]

won’t be fully connected and has only

edges, resulting in

operations.

If you find training a NN dauting, keep in mind that you won’t

actually need to implement any of these complicated steps—

PyTorch, TensorFlow, etc. make use of automatic

differentiation (also known as autograd) and do it for you.

But it is good to know the high-level principles just so you

know what hyperparameters to try.

To regularize a NN, we have already mentioned the number

of samples in a minibatch is one hyperparameter. The smaller

this is, the more regularized is the network. Another

hyperparameter for regularization is the learning rate

during gradient descent. The smaller is, the more

regularized the network. However, it is found that training

works better if decreases linearly over time. Goodfellow et

al. (2016) suggests that after a few hundred iterations,

should drops to 1% of its initial value and stay there. As an

initial value, one can optimize it over the validation set with

the first 100 iterations and set it just a little higher than the

optimal. Other technique is to use a cyclical learning rate,

where the learning rate varies within a range of values rather

than only decreasing it in a step-wise manner (which, by the

way, is already implemented in PyTorch, see

https://pytorch.org/docs/stable/generated/torch.optim.lr_sch

eduler.CyclicLR.html). More details about this approach can

be found in Smith (2017).

We can also use L1 or L2 regularizations. The cost function J

above can be set to the negative log likelihood plus

or

or both. Note that typically we only regularize

the weights but not the biases. As usual, the bigger the ’s,

the more regularized the network. However, as mentioned

previously, these regularization techniques are less

commonly used in practice for deep neural networks.

Yet another popular regularization technique is early

stopping: essentially treating the number of training steps

[image: Image 362]

[image: Image 363]

(one forward-backward iteration) as a hyperparameter to be

optimized on the validation set. Once the cost drops to a

plateau in the validation set as a function of training steps,

we will stop training even if further training will decrease the

cost on the train set further.

Last but not least, there is the powerful technique of dropout

(Srivastava et al., 2014): randomly removing non-output

nodes of a network for each minibatch’s iteration (typically

input nodes are included with probability of 0.8, hidden

nodes are included with probability of 0.5). However,

researchers found the dropout doesn’t work well when the

train data has fewer than 5,000 samples.

While SGD is a canonical training technique, researchers

have tried to improve its convergence rate. There is a method

called momentum that uses an exponential moving average of

the gradients computed over several iterations. This is called

the “velocity” , and the update rule becomes

.

Other improvements have been proposed, with names like

RMSProp, Adam, and BFGS. There is also “batch

normalization,” which seeks to keep the mean and variance of

the output of input or hidden units fixed during training by

normalizing them to almost zero and one, respectively. Only

correlations between hidden units and higher order statistics

are allowed to change. Details can be found in Goodfellow et

al. (2016).

* * *

 Exercise: Construct a neural net with one hidden layer where

the layer has two hidden nodes for classification. Connect the

output of the first hidden node to both the output node and

the second hidden node. Note that this means it is no longer

a feedforward NN nor a MLP. Label = Is next day return

positive? Features = last 1 day SPY return, last 2 days SPY

returns. With the help of ChatGPT, write a Python program

without using any NN libraries like Tensorflow to train this

[image: Image 364]

[image: Image 365]

[image: Image 366]

[image: Image 367]

[image: Image 368]

[image: Image 369]

[image: Image 370]

[image: Image 371]

[image: Image 372]

network. What is its performance? Can you tune the

hyperparameters to improve validation set?

* * *

 3.2.7 Recurrent Neural Network

Let’s say we have a standard time-series prediction problem

in trading: we want to predict the next period’s return using

a technical indicator known in the current period. For

concreteness, let’s say we want to use a MLP (or indeed any

ML system such as CART) to predict the next period’s return

using the market index return

, as feature. Each

sample, i.e., each period, has a scalar label and a scalar

feature. We can use the simple MLP in Figure 3.9 to

represent this:

Figure 3.9 A simple MLP for time-series prediction.

* * *

 Exercise: Ask ChatGPT to help train this MLP using SPY daily

returns as the feature, and MSFT daily returns on the next

day as labels. Regularize the MLP and optimize the

hyperparameters on a validation set. How do the Sharpe

ratios look on the train, validation, and test sets?

* * *

 indicates the weights connecting the input node to the

hidden node , and indicates those connecting the hidden

node to the output node . However, it may be advantageous

for a ML model to remember what the past features and

labels were when predicting the next label, instead of

treating them as independent samples, especially during

inferences. One simple way to pass information from the

previous features and labels from timestep

to is to feed

[image: Image 373]

[image: Image 374]

[image: Image 375]

[image: Image 376]

[image: Image 377]

[image: Image 378]

[image: Image 379]

[image: Image 380]

[image: Image 381]

[image: Image 382]

[image: Image 383]

[image: Image 384]

[image: Image 385]

[image: Image 386]

[image: Image 387]

[image: Image 388]

[image: Image 389]

[image: Image 390]

[image: Image 391]

the output of

as input to

. We may envision a

network at that looks like Figure 3.10.

Figure 3.10 Tying the weights to the same values and connecting the hidden nodes to transmit information

from

 to .

Since the time series is assumed stationary (if not, ML won’t

work), we can force all , , and

(the weights connecting

the hidden nodes) to be the same at every During training,

all the features and labels up to

would be available and

are used to indirectly determine

as they will affect

the values of , , and

. Every time we advance a time step

to , the network adds another input node, hidden node, and

output node. Since weights are presumed the same

throughout the network, there is no problem in making a

prediction at . Once we have the actual label

, we can

retrain the network and adjust all the weights (if we want to).

We have just motivated one prototypical recurrent neural

network (RNN). Most books display the RNN by rotating our

figure

counterclockwise so that time proceeds on the

horizontal axis (as is common in stock price charts) and the

output is at the top, as in Figure 3.11.

[image: Image 392]

[image: Image 393]

[image: Image 394]

[image: Image 395]

[image: Image 396]

[image: Image 397]

[image: Image 398]

[image: Image 399]

[image: Image 400]

[image: Image 401]

[image: Image 402]

[image: Image 403]

[image: Image 404]

[image: Image 405]

[image: Image 406]

[image: Image 407]

Figure 3.11 Same as Figure 3.10, but rotated 90°

counterclockwise so time proceeds from left to right.

Notice the resemblance with a Hidden Markov Model. During

prediction, you can think of the previous inputs from to

as modifying a hidden state

that serves as

another input to

and affecting the prediction

, just

like the hidden state in a HMM that determines the

probability distribution of the emissions

. A few key

differences between standard HMMs and RNNs are that

RNNs can model more complex mappings for state evolution

and predictions (from states to observations) using neural

networks. Also, the evolution of the state in RNNs is

deterministic, and not stochastic as it is for HMMs.

There are other prototypical RNN architectures—for

example, we can connect the output

to the hidden

node

. Designing network architecture is like designing a

building, the architect can let their imagination run free,

subject to training practicalities imposed by the (civil ML)

engineer. To actually train a RNN successfully, though, isn’t a

trivial problem. It is plagued by the “vanishing” and

“exploding” gradient problems (Goodfellow et al., 2016). The

gist of these problems is that in backpropagation using the

chain rule, we have to multiply many gradients together. If

the network is very deep, you are essentially computing

where is the gradient and is the number of layers (depth)

of the network. If

,

as

, i.e., it vanishes. If

[image: Image 408]

[image: Image 409]

[image: Image 410]

,

as

, i.e., it explodes. In either case, SGD

fails. The solutions to these problems give rise to LSTM,

GRU, the attention mechanism, and transformers. The latter

became the key to building large language models such as

GPT-4. So, we have come full circle. For a practical example

of using LSTM for financial predictions, see Sirignano and

Cont (2018) and Kolm et al. (2021). More details about the

attention mechanism, and transformers models will be given

in Chapter 6.

* * *

 Exercise: Ask ChatGPT to use Tensorflow or PyTorch to

create such as RNN and train it on SPY and MSFT as in the

previous exercise. Does your training succeed? If so, how

does the performance look on test set? Is it better than the

previous simple MLP?

 Exercise: Ask ChatGPT, “Can you find a paper that describes

financial time-series prediction using LSTM and that comes

with a GitHub?” and try to implement the model.

* * *

3.3 Deep Reinforcement Learning

In unsupervised learning, we don’t have the correct answer

(label) to a problem (such as “What is the best way to cluster

stocks?”). In supervised learning, we have the answer in

hindsight to a problem (such as “What will the return of

MSFT be?”). There is an intermediate situation though: we

don’t know the correct answer, but we know that one answer

is better than another to a problem (such as “What asset

allocation is best among these 100 stocks?”). Reinforcement

learning (RL) is designed to handle this situation. The

prototypical problem is a chess move: you won’t know if a

move is the “best” move possible, but you know a move is bad

if it immediately leads to checkmate! Similarly, the

[image: Image 411]

[image: Image 412]

[image: Image 413]

[image: Image 414]

[image: Image 415]

[image: Image 416]

prototypical problem in finance is portfolio optimization. You

won’t know what the optimal asset allocation to a portfolio of

assets is (though the tangency portfolio from mean-variance

optimization, in hindsight, may come pretty close), but you

know one allocation is better than another if it generates a

better Sharpe ratio in hindsight. Hence reinforcement

learning has been applied to many optimization problems in

finance such as portfolio optimization and optimal executions

(Dixon et al., 2020; Sood et al., 2023). In recent years,

successful reinforcement learning schemes often use deep

neural network to learn the optimal actions automatically,

instead of manually crafting them or updating a table of

actions. This is called Deep Reinforcement Learning (DRL).

DRL may seem complicated, but we can implement it in a way

very similar to supervised learning. Recall we train a neural

network via supervised learning by presenting samples

(minibatches) with labels to it, and the labels are used to

compute the (negative) log likelihood of the sample given the

network parameters (weights). The negative log likelihood

can be viewed as a cost function to be minimized via

gradient descent and backpropagation by iteratively

adjusting the network parameters as we present training

samples to the network. In the case of DRL, we don’t have

labels and their log likelihood, but we can still compute the

cost J given the output of a network. For example, in portfolio

optimization, the output of a network can be the asset

weights in a portfolio, and the cost may be the negative

Sharpe ratio for the next 12 months of that portfolio given

such weights. Following Cong et al. (2021), if we are

planning monthly rebalance of a portfolio, we can sample

every month-end in the train set and feed the features

obtainable at as input into a network, with the cost set

equal to the negative Sharpe ratio from to

months.

Once the network parameters are trained, it can output the

optimal weights every month going forward, given fresh input

features. Of course, the network can be retrained periodically

[image: Image 417]

with new data as we go forward as well. Cong et al. (2021)

applied this scheme to a stock portfolio and found that it

generates a Sharpe ratio of close to 2 in the test set.

In supervised learning, the outcome of the predictive model is

called the label or target, but in reinforcement learning, the

outcome of the optimizer model is called the “reward.” In

general, the cost is the sum of all the rewards earned over

all the samples. You may have heard there is a difference

between online vs. offline reinforcement learning. Offline RL

is needed when we cannot simulate what reward we would

have earned by a different action, and all we have to train on

are historical actions actually taken and their rewards. (For

example, we wouldn't know if a consumer would actually buy

a product if we were to lower its price when conducting price

optimization RL.) However, in financial applications such as

portfolio optimization, we can definitely simulate what would

have happened if we took a different trading decision, since

the rewards were based on historical prices. Hence almost all

financial RL is online learning.

Note there are other more complicated ways to implement

DRL, with names such as Q-learning or Proximal Policy

Optimization (PPO). These methods deal with the possibility

that sometimes we want to explore less immediately

rewarding action to optimize for long-term rewards (the

“Exploit vs Explore” tradeoff), and sometimes we want to

avoid unstable behaviors during training. In particular, the

function that outputs an action based on the current state

(called the “policy function”) may instead output a probability

distribution of possible actions instead (or more often, the

parameters of the probability distribution). See the excellent

free online course on RL by Hugging Face

(https://huggingface.co/learn/deep-rl-course/) for further details. Also, in case we gave the impression that RL based

on machine learning can only be implemented via deep

neural network, the paper by Fuhrer et al. (2024) that uses

gradient-boosted trees should correct that.

3.4 Data Engineering

Without data, there is nothing for ML to learn from. Even

with data, there is a considerable amount of expertise needed

to vet them properly. We will highlight some common issues

with financial data here. Most of these issues are pertinent to

training, not inference/prediction.

 3.4.1 Unique Company Identifiers

This is mainly a problem for data associated with individual

companies and the data related to them (e.g., prices of their

stocks, bonds, and options, fundamental information on the

company itself, etc.). Different data vendors often use

different identifiers for these companies. Even within one

data file, the identifier for a company may change over time,

and two companies may use the same identifier at different

times. This is especially true if the identifier is just the ticker

symbol. We should use data that has a “securities master”

file: it should have a unique identifier for a security

throughout its history, and cross reference other commonly

used identifiers such as ticker symbols, cusips, etc. for

different periods that various other datasets may use. The

goal is to link all the information related to this security from

different datasets together for the same date, and use that as

features or labels for ML.

A related problem is how we should handle securities that are

highly correlated. By that we don’t mean Exxon vs Chevron

stocks. We mean companies that issue multiclass stocks such

as BF.A and BF.B. They are almost identical in their daily

returns. If one construct features from their returns, we

would get highly redundant features. Of course, redundant

features wouldn’t necessarily be a problem if we use ML

algorithms like CART, or feature selection techniques such as

cMDA. But still, it is good hygiene to eliminate such

duplications to avoid confusion downstream in the investment process.

 3.4.2 Dividend and Split Adjustments

In general, we should treat returns of an asset as features or

label, and not prices. The price level is arbitrary and doesn’t

add much information. It is also nonstationary and price

features at one time cannot in general to be used to predict

labels at another time in the future. You might think that if

there is a stock split, it might be a bullish signal, and a

reverse split is a bearish signal, but you can code such events

as categorical features separately. Similarly, you may think

that a large adjustment of prices due to a large dividend is

bullish. But again, you can use dividend yields as a

standalone feature. There is no need to infer that from the

price level. We have discussed in Chapter 1 already how to compute returns that take into account such corporate

actions. More discussion can be found in Chan (2021).

 3.4.3 Survivorship Bias

Survivorship bias is a data problem that you can’t discover by

examining the data itself. You won’t know what you are

missing. For example, in testing a trading strategy on a

portfolio of stocks with market cap greater than $1B, you

would need a historical database of market cap of all the

stocks that existed at a certain time (called a “Point-in-Time”

database), not just a database of market cap of stocks that

exist now. Similarly, if you want to test this strategy on S&P

500 stocks, you will need a historical database of the S&P

500 index constituents. The consequences of having

survivorship bias in your training data and what data vendors

provide survivorship-bias-free data is discussed in Chan

(2021).

[image: Image 418]

[image: Image 419]

[image: Image 420]

[image: Image 421]

[image: Image 422]

[image: Image 423]

[image: Image 424]

[image: Image 425]

[image: Image 426]

[image: Image 427]

[image: Image 428]

[image: Image 429]

[image: Image 430]

[image: Image 431]

[image: Image 432]

[image: Image 433]

[image: Image 434]

[image: Image 435]

[image: Image 436]

[image: Image 437]

[image: Image 438]

[image: Image 439]

[image: Image 440]

[image: Image 441]

 3.4.4 Look-ahead Bias

If someone mis-specified the timestamp of a feature obtained

at time to be

which is earlier than , we have a look-

ahead bias if we use it to predict a label at time such that

. Equivalently, if someone mis-specified the timestamp of

a label obtained at time to be

which is later than , we

have a look-ahead bias if we use a feature obtained at time

such that

. There are subtle ways that look-ahead bias

can creep into data, even those from highly reputable data

vendors. For example, if a company announced earnings at

time , but subsequently revised the earnings to at time

, the data must not contain the entry (,), though some

datasets assuredly do. Similarly, if the nonfarm payroll was

announced by the Bureau of Labor Statistics at time , but

subsequently revised to at time

, the data must not

contain only the revised entry ().

There is another interesting case of look-ahead bias in data.

Some event-driven trading strategies are based on the

earning announcement date (not the announced earning

itself). For example, it may specify that “At the market close

before the earning announcement at time , buy the stock if it

has positive 1-day return.” If you backtest such a strategy

based on the earnings announcements calendar you scrape

from Yahoo Finance or the like, you will probably have

introduced look-ahead bias. The reason is that most

databases only capture the actual announcement date, not

the expected announcement date, whereas the expected date

is what’s needed to backtest an event-driven strategy like the

one we described. Companies often revise their expected

announcement date or time, and it is crucial to capture the

Point-in-Time expected announcement date/time. As far as

we know, such data are only available from Wall Street

Horizon.

One other interesting case of look-ahead bias occurs in futures price data. But in this case, the fault lies with the

interpretation of the data, not with the data itself. For

example, our favorite futures data vendor CSIdata provides a

futures settlement price as well as the spot price of the

underlying. To be specific, let’s say on 2019-06-06, the 2019

June contract of 6M future has settlement price = 0.05082,

and spot price = 0.05086. Is it correct to conclude that this

future is in backwardation (see Chan, 2013 for the definition)

on that date? No! The futures settlement price is obtained at

15:00 ET at the CME, while the spot price is obtained (by

CSIdata) at 17:00 ET.

Perhaps you think that by using intraday data, we can safely

overcome any look-ahead bias issues with futures or other

price data. That may not be enough. Suppose we want to

backtest a futures calendar spread strategy using 1-minute

OHLC trade bars. That still won’t work because the last trade

of one leg does not usually occur at the same time as the last

trade of the other leg. Backtesting such trade bars in a

calendar spread essentially assumes you know the later trade

price when we execute the earlier trade. To overcome this

problem, we have to use best bid-offer quotes instead of trade

prices to form the minute bar of the spread, since the last

quote of each leg remains valid till the end of that minute bar.

Such subtleties will surely escape your well-paid data

scientist unless they are steeped in financial data science.

Even if the look-ahead bias is recognized, it is often hard to

find archived data that is bias-free. And even if found, their

histories tend to be short. Nevertheless, that’s the only data

that is fit to be used for ML.

3.5 Feature Engineering

We already wrote that unlike ML applications in images,

videos, speech, and texts, raw price data won’t work as

features for applications in finance. Sometimes extensive features engineering is required. Firstly, we need to ensure

that a feature is stationary. This usually means time-

differencing a time series instead of using its levels, such as

taking differences of the logarithm of a price series to create

a log returns series, taking the percentage differences of a

GDP series to create a GDP-changes series, and so on.

Secondly, we need to properly merge time series with

different sampling frequencies. Thirdly, there are different

ways to handle similar features from a large pool of similar

assets. Lastly, if we purchase such features from a vendor

and do not create them from raw data ourselves, extra

precautions are needed. We will drill down on these issues

next.

 3.5.1 Stationarity

It is obvious that we cannot use price levels of stocks as

either features or labels. The price may be $10 in year 2000,

and $10,000 in 2024 if we adjust for splits, and we simply

cannot train a ML model based on 2000 prices and expect

inferences to work with 2024 prices. We should convert price

to return series. But there are subtler time series where it is

not clear if they are stationary. For example, is the spread

between WTI crude oil futures and Brent crude oil futures

stationary? Is the spread between MSFT and GOOG

stationary? To determine those questions, we have to run a

stationarity test such as the augmented Dickey–Fuller test

(ADF) test to find out. If not, we can either time-difference

these spreads or construct a spread that is stationary to

begin with. Ernie has discussed many ways to construct a

stationary time series out of multiple nonstationary time

series in Chan (2013).

 3.5.2 Merging Time Series with Different

 Frequencies

The frequency that the ML model should make predictions is

up to the user. For example, do they want to trade at daily

intervals or weekly intervals? Once this frequency is

determined, we have to convert features data that may have

lower or higher frequency to conform to the label frequency.

The former is usually done by either filling the features with

NaN when they don’t have an updated value, or filling

forward with their last updated value. The former may be

appropriate if it is a categorical event feature such as “Was

the nonfarm payroll announced yesterday?” and the latter

may be appropriate if it is a numerical feature such as, “What

was the most recent percentage change in nonfarm payroll?”

Which method to adopt needs to be determined on a case-by-

case basis. When the features frequency is higher than the

label frequency, we must use a down-sampling method. The

default is just using the last updated value of the feature just

before the time stamp of the label. However, in some

situations it may be better to use some kind of average across

all the values during the intervals between two consecutive

labels. For example, if we are using a price series as raw

data, the former choice means sampling the last prices, while

the latter choice may mean taking the Volume-Weighted

Average Price (VWAP). After down-sampling these prices, we

can proceed to compute return features. In addition to taking

averages, other down-sampling techniques include taking

order statistics, like the max or min, familiar to investors as

taking the high or low of a price bar. There are many other

signal processing techniques one can apply. See López de

Prado (2018) for more details. But how do we down-sample

categorical features? To down-sample binary categorical

features with values 0 or 1, we can either treat them as real-

valued features and apply the aforementioned techniques or

we can apply the logical AND, OR, XOR operators. To down-

sample a multiclass categorical feature, we can first convert

[image: Image 442]

[image: Image 443]

it into a binary feature via one-hot encoding. For example, if

we have a three-class categorical feature, it can be converted

to three binary features, the first feature is whether the

original feature is of class A, the second feature is whether

the original feature is of class B, and the third feature is

whether the original feature is of class C. A -class

categorical feature can thus be represented by binary

features.

 3.5.3 Time-series Versus Cross-sectional

 Features

If we want to build a ML model to predict returns or other

attributes of several assets in the same category (e.g., S&P

500 stocks), we can surely use features that are specific to

each of these assets (e.g., past earnings yield of a stock).

These features are called cross-sectional features because

they span the cross-section of the asset universe. However,

what if we want to build a ML model to predict returns or

other attributes of the portfolio of assets as a whole? While

you may be right to think that MSFT’s earnings would

portend the returns of the SPY, in general each of these

cross-sectional features will be an extremely weak predictor,

and it is very inefficient to use so many of them as features. It

is better to aggregate these cross-sectional features into

something like a summary feature, similar to the way we

down-sample high-frequency features to low-frequency

features in the previous section. The aggregation method

isn’t new: it was based on Fama-French’s seminal paper

Fama and French (1995). First, we sort the assets based on

the cross-sectional feature in question (e.g., earnings yield).

Then we form a long-short portfolio based on this ranking

(e.g., the long portfolio contains stocks in the top decile of

earnings yield, and the short portfolio contain stocks in the

bottom decile.) This is called the “hedge” portfolio. The

resulting time-series feature is simply the return of this

portfolio over some past period. This way, we have collapsed 500 cross-sectional features (for an S&P 500 portfolio) into

just one time-series feature. The most famous of these time-

series features are none other than the Fama-French factors

discussed in Chapter 2. For more discussions, see Pik et. al.

(2025).

 3.5.4 Validating Third-party Features

Sometimes a feature series is created by a third-party vendor

and not by ourselves from raw data. How would we know if

the feature is computed correctly? Case in point: we once

purchased historical and live sentiment data on financial

news articles from a vendor. The scores look reasonable, and

we proceeded to train a ML model using this data. Strangely,

upon further examination of the time-series data by taking

their min and max, we found the chart shown in Figure 3.12.

[image: Image 444]

Figure 3.12 Daily minimum and maximum sentiment scores that show structural breaks in the data

generating process.

There is a clear structural break in the data in 2015. The

vendor admitted that they have changed their methodology

for computing sentiment scores. Of course, that rendered all

the historical data prior to 2015 useless. But more ominously,

how would we know if they won’t change the methodology

again going forward?

The lesson from this experience is that careful and extensive

EDA (Exploratory Data Analysis) is needed when we are

purchasing features from third parties—ideally before you

commit to an annual contract.

 3.5.5 Generative AI as a Feature Generator

The example we quoted above in relying on third-party

vendor for features is sobering. Back in the days, we

purchased those sentiment data because it wasn’t easy to

process unstructured data such as text and turn them into

numerical/structured data such as sentiment scores.

However, with Generative AI, this has become much easier.

We used this as example of Generative AI in Chapter 9 on how we can compute sentiment scores, and whether they add

any value to an investment process.

Of course, whether or not the features are created by

ourselves or by a vendor, we can always use Generative AI to

conduct no-code EDA. Further, as demonstrated in the

previous chapters, we can even ask Generative AI to create

ML codes that can merge the features and labels into a file,

build a ML model, and assess the performance.

 3.5.6 Features Importance Ranking and Selection

Recall that one of benefits of L1 regularization is that some

features will be eliminated altogether as input to a ML model.

Similarly, tree-based models typically only select a small

subset of features for their nodes before stopping at the

leaves. If one is merely concerned about test set

performance, we typically do not need to reduce the number

of features any further for CART. However, there is

sometimes a need for features importance ranking and

selection not for performance improvement, but for model

interpretability to humans and for features validation (i.e.,

sanity checks). The power of ML is that we can start with a

large features set, without regard to whether these features

are insignificant or redundant. But this inclusiveness is at the

expense of interpretability because humans will have no idea

how the model arrives at its inferences. Features importance

ranking alleviates that problem. For a real financial example,

[image: Image 445]

see Table 7 of Chan et al. (2023). Sometimes, when the top

feature makes no sense whatsoever to us, we should

investigate whether that feature has embedded look-ahead

bias or is otherwise corrupted. Hence features importance

ranking also serves as a validation method.

As we discussed before, cMDA is our favored features

importance ranking method. We have explained the —

clustering—part. The MDA (Mean Decrease in Accuracy) part

is better known. The idea is that if we randomly permute the

samples of a feature (i.e., randomly permute the rows of a

column of a data/design matrix), the model should generate

lower predictive accuracy on a validation set. (We specified

validation set because it is almost guaranteed to generate

lower predictive accuracy if we corrupt the train set data

 whether or not that feature is really important.) If we make

several of these permutations and compute the mean of the

decrease in accuracy (or log likelihood), we can use this

mean as a metric to rank the features’ importance. The

bigger the decrease, the more important is the feature.

There are other features importance ranking methods

besides MDA or cMDA, notably Shapley Additive

Explanations (SHAP), and Local Interpretable Model-Agnostic

Explanations (LIME) (Man and Chan, 2021a), but none of

them produces as interpretable results as cMDA. Cong et al.

(2021) also invented another interpretable AI technique that

approximates the ML model by a polynomial function of the

most important input features.

3.6 Conclusion

We have presented almost everything you need to know

about the various techniques of machine learning as relevant

to asset management but are afraid to ask (because some of

the details seem very trivial but are very critical for success).

The jury is still out on whether tree-based models, deep

learning, or reinforcement learning is the best method for financial features and applications.

Can Generative AI help in a different way? Can it create

trading strategies unlike (i.e., uncorrelated with) those we

have seen before using expert systems and conventional

machine learning? Can it become a discretionary trader, a

“George Soros on a chip?” We will find out in the rest of the

book.

Part II

Deep Generative Models

for Trading and Asset

Management

[image: Image 446]

Chapter 4

Understanding Generative AI

Generative models represent a fascinating frontier in the

advance of artificial intelligence. These models have the

ability to understand and generate complex, high-dimensional

data. This capability not only opens the door to numerous

practical applications but also offers deeper insight into the

underlying structure of data. This chapter explores the

essence of generative models, their applications, and the

differences with discriminative models that many quant

finance professionals have been familiar with. We will also

provide a taxonomy to navigate the landscape of generative

models (Figure 4.1).

Figure 4.1 Model taxonomy.

[image: Image 447]

[image: Image 448]

[image: Image 449]

4.1 Why Generative Models

Generative models are pivotal for several reasons. Firstly,

they enable machines to generate new data instances that

resemble the data they have encountered during training,

effectively learning the distribution of the dataset. This ability

goes beyond merely replicating observed data; it’s about

understanding the underlying structure of the data to

generate new instances. Secondly, generative models

facilitate unsupervised learning tasks, where the machine

learns common patterns in the data without needing labeled

data. This aspect is crucial for exploiting the vast amounts of

unlabeled data available today and avoiding the costly and

time-consuming process of manual data labeling. Lastly, they

aid in understanding data distribution, enabling applications

for anomaly detection, data compression, and more.

We want to disabuse the reader of the notion that Generative

AI is only useful for understanding unstructured data such as

text or images, or that it is only useful for generating

synthetic data for simulation purposes. As the following

section illustrates, it can be crucial for the usual supervised

learning tasks using discriminative models that most quant

finance professionals are primarily interested in.

4.2 Difference with Discriminative

Models

At the heart of machine learning lies the quest to model and

make predictions from data. Discriminative and generative

models represent two approaches to this quest, differentiated

by the type of probability distribution they aim to learn from

the data.

Discriminative models focus on learning the probability of a

label or target given an input , denoted as

. These

[image: Image 450]

[image: Image 451]

[image: Image 452]

[image: Image 453]

[image: Image 454]

[image: Image 455]

[image: Image 456]

models excel in classification or regression tasks, where the

goal is to correctly predict the target. They are closely

associated with supervised learning tasks, where the models

are trained on a labeled dataset, learning to map inputs to

targets. Despite their powerful ability to determine the most

probable target for a given input, a critical limitation of

discriminative models is their inability to assess the likelihood

of the input data itself. This design limitation makes

them susceptible to adversarial attacks or misinterpretations

of novel or outlier data.

Generative models, on the other hand, aim to model the

distribution of data itself, learning either the joint probability

distribution

or the unconditional probability

distribution

. Unconditional generative models attempt to

learn the probability distribution of the input

, enabling

them to generate new data instances that resemble the

training data. As an example, let’s suppose we want to model

the SPY ETF return data and decide to approximate its

distribution using a Gaussian Mixture Model (GMM), one of

the simplest generative models. This model not only allows us

to generate new data instances but, as we will see in Chapter

6, it also captures some underlying structure of the data that

can be used for applications like regime detection. In general,

generative models provide a deeper understanding of the

data’s structure, enabling applications like data generation

and outlier detection.

Conditional generative models represent a hybrid approach,

learning to generate data conditioned on specific values of

, such as class labels, denoted as

. These models

combine the generative capability to produce new instances

with the discriminative power to condition these instances on

particular attributes or classes, making them more robust to

adversarial attacks or misinterpretations of novel or outlier

data. As an example, commonly encountered, consider

models like ChatGPT, which can generate new data like text,

[image: Image 457]

[image: Image 458]

[image: Image 459]

[image: Image 460]

[image: Image 461]

[image: Image 462]

[image: Image 463]

[image: Image 464]

[image: Image 465]

[image: Image 466]

[image: Image 467]

[image: Image 468]

[image: Image 469]

[image: Image 470]

[image: Image 471]

[image: Image 472]

[image: Image 473]

[image: Image 474]

[image: Image 475]

[image: Image 476]

[image: Image 477]

[image: Image 478]

[image: Image 479]

images, or source code conditioned on input prompts

provided by the user.

To illustrate the difference between discriminative and

generative models, let’s consider the classic dog vs. cat

classifier example. A discriminative model learns

—the

probability of a label (dog or cat) given an image . At

inference time, it takes an input image and predicts the

probability that it belongs to each class. A conditional

generative model, on the other hand, learns

, modeling

the probability of an image given a specific class .

This model can also be used as a classifier, known as a

generative classifier, by comparing the probability of an

image under

versus

. However,

unlike discriminative models, it can also generate new images

conditioned on a label. For example, when conditioned on

 dog

, the model can generate an image of a dog by

sampling from

.

In this sense, a discriminative model maps the input image

to the output class label , while a generative model works in

reverse, generating from a given . Additionally, in

generative modeling, is not restricted to class labels—it can

also represent attributes or features.

The distinction between generative and discriminative

models, which may initially seem somewhat disconnected, is

rooted in Bayes’ rule of probability. This relationship is

illustrated by the equation

(4.1)

where

represents the unconditional generative model,

corresponds to the discriminative model,

is the

marginal probability over the labels, and

is a

conditional model of given . By combining the strengths of

both unconditional generative models and discriminative models, we can construct conditional generative models,

which can be used not only for conditional data generation

but also for supervised learning tasks, such as classification.

4.3 How Can We Use Them?

These models are designed with some key core abilities or

objectives in mind, which open a world of possibilities for

innovation, creativity, and efficiency across various domains.

Following is a summary of these characteristics, which we

will explore further in next chapters.

 4.3.1 Probability Density Estimation

These models can approximate high-dimensional, multimodal

distributions of data. Once we have access to this versatile

object, we can develop and solve a wide range of

applications. Notable examples include multivariate time

series forecasting, as illustrated in Chapter 3, Value at Risk (VaR) applications for risk management; anomaly detection,

and classification tasks.

Finance professionals are already familiar with high

dimensional probability distributions of returns, but they are

typically modeled as the multivariate versions of simple

parametric models such as the multivariate Gaussian or t-

distribution. More advanced models such as copulas attempt

to capture the nonlinear nature of the co-dependency

between variables, but at the heart of them are still simple

parametric models. Generative AI, on the other hand, allow

much more complex, nonlinear, distributions that cannot be

expressed in simple parametric forms.

 4.3.2 Generating New Data

At the heart of generative models’ capabilities is their power

to create. They can produce highly complex, high-dimensional

objects, like realistic images, videos, text, computer code,

multivariate time series, etc. This makes them invaluable

across applications like entertainment, marketing,

productivity tools, and risk management. Their ability to

generate data is often indistinguishable from humans. This

ability goes beyond simply crafting content that is often

indistinguishable from human-created work, as seen in widely

available examples in the media at the time of writing.

New generated data can be used for the following:

Improving data quality and availability: Generated data

can address challenges related to data scarcity and

quality. These models can augment existing datasets,

especially in fields where data collection is expensive or

impractical, by creating new data instances and

enhancing datasets for downstream learning tasks.

Facilitating discovery and decision-making: one of the

most promising applications of generative models lies in

their ability to simulate and predict complex, high-

dimensional structures and phenomena. In the

pharmaceutical industry, for example, these models can

predict molecular structures, potentially leading to

groundbreaking drugs. Additionally, they can simulate

environments for AI training, such as for reinforcement

learning applications with are known to be very data

hungry, therefore reducing the need for costly and time-

consuming real-world data collection, accelerating

research and development across fields as diverse as

autonomous driving and urban planning.

 4.3.3 Learning New Data Representations

The goal of finding new data representations, or

representation learning, is to discover an effective way to

represent data. Ideally, this new representation should

possess desirable properties, such as lower dimensionality

compared to the data space or “independent” axes of

variation. This new representation serves as a compressed

form of the data that can be used for solving downstream

tasks such as prediction, anomaly detection, or data

generation (see Torralba et al., [2024]).

Many finance professionals are already familiar with

representation learning disguised in other names: factor

models, PCA, etc. Some of which we already discussed in

Chapter 3, but we will reframe them within the Generative AI framework. This allows us to potentially improve on them at a

fundamental level.

The power of representation learning allows you to combine

multiple models as building blocks to develop complex

applications. We will explore examples of using them,

particularly in Chapters 9 and 10, where they are applied to train a model specialized in sentiment analysis for financial

data.

4.4 Illustrating Generative Models with

ChatGPT

To better understand how we can use generative models for

computing probability densities and generate new data, let’s

examine a concrete example in Natural Language Processing

(NLP). For simplicity, we’ll set aside specific model details

and instead focus on a pre-built model, ChatGPT, examining

its density estimation, sampling, and representation learning

capabilities.

[image: Image 480]

[image: Image 481]

Let’s consider a sequence of random variables where each

variable represents a word or token in a sentence. (For this

example, we’ll ignore the distinction between words and

tokens, which will be covered in Chapter 5.) Each element in the sequence takes values from a finite vocabulary—a

discrete set. In ChatGPT-4o, for example, the vocabulary

consists of 16,384 unique tokens (See OpenAI documentation

at https://platform.openai.com/docs/models/gpt-4-and-gpt-4-

turbo), which include common words, word fragments, and

characters.

A probabilistic model for a sequence is defined by its joint

probability distribution:

 4.4.1 Language Modeling

Modeling this joint probability over a sequence of

words/tokens is what is known as the Language Modeling

(LM) task in NLP. One of the most straightforward ways to

express this joint distribution is by applying the product rule

of probability:

(4.2)

Models that exploits the right-hand side of Equation 4.2 to represent joint distributions as a sequence of conditional

probabilities like this are known as autoregressive models. As

it turns out, ChatGPT is an instance of an autoregressive

model, specifically a transformer-based model, which we will

explore in Chapter 5.

[image: Image 482]

[image: Image 483]

[image: Image 484]

From Equation 4.2, we see that each conditional probability models the likelihood of the next word/token given the

previous ones. In other words, ChatGPT performs

probabilistic “one-step-ahead” forecasts, where each

prediction is based on past values, or past context.

A key question is: How many previous words can ChatGPT

consider when making predictions?

This is defined by what is known in NLP as the context

window. As of the time of writing, the context window of

ChatGPT-4o is 128,000 tokens, meaning it can analyze up to

128,000 previous tokens to estimate the probability of the

next one (https://platform.openai.com/docs/models/gpt-4-

and-gpt-4-turbo). This significantly enhances its ability to

capture long-range dependencies in text.

 4.4.2 Sampling: How Generative Models Create

 New Data

Language models are generative models, meaning they can

generate new sequences by sampling from the learned

probability distribution. The process follows these steps:

Generate the first token,

Generate the second token,

Continue generating tokens,

Since sampling is sequential, each newly generated token

depends on previously generated ones, making the process

relatively slow for autoregressive models.

[image: Image 485]

[image: Image 486]

[image: Image 487]

[image: Image 488]

[image: Image 489]

 4.4.3 Conditional Language Generation: Asking

 ChatGPT a Question

Just as we can model a sequence of words/tokens with a

language model, we can also generate text conditionally. That

is, we can condition the generated output on some given

context, such as a question or a prompt, which we will denote

in the following example as . This process is used in question

answering, where the model generates responses conditioned

on user input.

Mathematically, the conditional version of the product rule is

given by:

(4.3)

Sampling follows the same sequential process described in

Equation 4.3:

Generate the first token

Generate the second token

Continue generating tokens

To illustrate this, we first ask ChatGPT to generate humorous

responses to our prompts. Now, let’s consider the following

user prompt:

User Prompt

What do Mark Zuckerberg and Elon Musk have in

common?

[image: Image 490]

[image: Image 491]

[image: Image 492]

When ChatGPT generates a response to given prompt, it

follows the process outlined above, predicting one word at a

time based on the probabilities it assigns to possible next

tokens conditioned on previous tokens and the prompt ().

Here’s an example response generated by ChatGPT-4o:

ChatGPT Response

They both have enough money to buy a small country … or

at least a really nice pizza place!

Now, how did ChatGPT-4o generate this response?

To understand its output, we used the OpenAI API to access

both the sequence of tokens generated by ChatGPT-4o and

the probabilities associated with each token in the

vocabulary. Since ChatGPT-4o has a vocabulary size of

16,384 unique tokens, visualizing the entire probability

distribution over the next word would be impractical. Instead,

we display only the top 20 most probable tokens based on

their probabilities.

Step-by-Step Breakdown: How the AR Model Generates a

Response

1. Computing the first word’s conditional probabilities

Conditioned on the prompt, the model calculates the

probabilities of the first word.

As shown in Figure 4.2, the top choices include

“They”, “They’re”, and “Both”.

[image: Image 493]

[image: Image 494]

[image: Image 495]

[image: Image 496]

[image: Image 497]

[image: Image 498]

Figure 4.2 Conditional probability of the first token given the prompt

.

The model samples “They” (which happens to be the

most probable word in this case).

2. Computing the second word’s conditional probabilities

Next, the model predicts the probabilities of the

second word, conditioned on the prompt and the first

word (“They”).

As shown in Figure 4.3, the top choices include is

“both”.

Figure 4.3 Conditional probability of the second token given the prompt and previous

token

:

.

The model samples “both.”

3. Computing the third word’s conditional probabilities

Now, the model predicts the next word, conditioned

on the prompt, “They” and “both”.

[image: Image 499]

[image: Image 500]

[image: Image 501]

[image: Image 502]

[image: Image 503]

[image: Image 504]

[image: Image 505]

[image: Image 506]

[image: Image 507]

[image: Image 508]

[image: Image 509]

As shown in Figure 4.4, the most probable words are

“have” “now” and “think.”

Figure 4.4 Conditional probability of the third token given the prompt and previous tokens

,

:

.

The model samples “have”.

4. Computing the fourth word’s conditional probabilities

The model then predicts the next word, given the

prompt, “They”, “both”, and “have”.

As shown in Figure 4.5, the top choices include

“enough”, “more”, “a”, and “billions.”

Figure 4.5 Conditional probability of the fourth token given the prompt and previous

tokens

,

,

:

.

The model samples “enough.”

5. Computing the fifth word’s conditional probabilities

[image: Image 510]

[image: Image 511]

[image: Image 512]

[image: Image 513]

[image: Image 514]

[image: Image 515]

[image: Image 516]

The model continues, now predicting the next word

given the prompt, “They”, “both”, “have”, and

“enough”.

As shown in Figure 4.6, the most probable words

include “money”, “wealth”, and “cash”.

Figure 4.6 Conditional probability of the fourth token given the prompt and previous

tokens

,

,

,

:

.

The model samples “money.”

6. The process continues

The model sequentially predicts each word based on

the previous ones and the original prompt until it

forms a coherent response.

Each word generated depends on the probability distribution

estimated by the model at that step. In this case, data

generation is performed using the probability density

function. This process illustrates how autoregressive

generative models perform sampling in a real-world scenario.

Beyond data generation, probability density estimation can

also be applied to forecasting the next most probable token

or answering questions about the probability of rare words in

a text. This becomes even more relevant when shifting from

modeling a sequence of words to modeling a sequence of

financial returns, a topic we will explore in Chapter 5. These techniques can be used for applications such as anomaly

detection or for computing key financial metrics like Value at Risk (VaR).

As you can see, generative models can function as simulators,

which are widely used in finance. A well-known example is

option pricing, especially for complex option payoffs using

Monte Carlo techniques.

In the example above, the sampling process selects the

word/token from the vocabulary with the highest probability

at each step. However, in practice, ChatGPT may use more

complex sampling strategies (such as temperature scaling or

top-k/top-p sampling) to generate more diverse and

contextually relevant responses.

If you prefer video lectures, a tutorial based on this section,

presented by the authors of this book, can be found on

YouTube. You can search for: Trading Using LLM | Generative

AI & Sentiment Analysis for Finance | Webinar on the

QuantInsti Quantitative Learning YouTube channel.

As you might have noticed with this example, even though

these models are highly effective at generating new data, a

key question arises: how can we evaluate the quality of the

generated data if every run produces different results? As we

saw in Chapter 3, the answer is clear for applications like forecasting, where you can compare the true realized values

against your predictions using a chosen metric, such as mean

squared error.

In our experience developing applications, one of the best

ways to evaluate the quality of generated data is to use it for

training a downstream model to solve a specific task. By

combining the real data with the newly generated data, you

can train the model and assess whether its performance

improves. However, many metrics for evaluating the quality

of generated samples are available in the literature, and we

will use several of them throughout the book to assess the

performance of these models in data generation.

In the accompanying notebook [Synthetic Data Evaluation—

 Notebook], we will walk through an example to explain the

different metrics we will use in our experiments in the book.

This example highlights how ChatGPT, as an autoregressive

model, generates text by modeling probability distributions

over sequences of tokens.

 4.4.4 A Few Words on Representation Learning

 with ChatGPT

As mentioned earlier, representation learning is about

discovering effective ways to encode data that facilitates

solving downstream tasks such as prediction, anomaly

detection, data generation, among others. Surprisingly,

ChatGPT also has the capability to compute new

representations of input data in the form of vectors, also

known as embeddings or vector embeddings in the NLP

literature. These embeddings capture semantic information

about words and concepts, enabling us to manipulate and

“understand language” by performing mathematical

operations with these objects. We will explore embeddings in

more details in Chapter 5.

OpenAI provides access to ChatGPT embeddings through its

API, allowing users to use these representations for solving

applications.

As a use case, imagine you are an investor or a discretionary

trader tracking a set of companies where you either hold

positions in your portfolio or are considering an allocation.

Let’s say that you frequently analyze 10-K and 10-Q filings,

earnings transcripts, and financial analysis reports to make

informed decisions. However, retrieving relevant information

across multiple documents can be very time consuming.

Wouldn’t it be useful to have a way to extract specific insights

from these sources? For example, imagine asking a question

like “What are the risks associated with Company XYZ?”, and having a system that retrieve relevant documents where

these risks are mentioned. To solve this kind of problem, text

representations might come to rescue.

To approach this, the first step is to build a knowledge

database using vector embeddings. Here’s how:

1. Chunking the Documents: Break each financial report or

document into manageable chunks (e.g., sentences,

paragraphs, or pages).

2. Generating Embeddings: Use OpenAI’s Embeddings API

to generate vector representations for each document

chunk. Store these embeddings in a database.

3. Performing Semantic Search: When a user submits a

query (e.g., “What are the risks associated with Company

XYZ?”), converts the query into an embedding. This

embedding is then compared against stored embeddings

in the database using a similarity measure, such as cosine

similarity. Then, you can retrieve the top K most relevant

text chunks, such that you get the most contextually

relevant information for your query.

This embedding-based retrieval approach is a core building

block for more advanced techniques like Retrieval-

Augmented Generation (RAG), see

https://help.openai.com/en/articles/8868588-retrieval-

augmented-generation-rag-and-semantic-search-for-gpts.

RAG enables Large Language Models (LLMs) to generate

responses based on external knowledge by enriching the

input query, allowing you to customize your LLM for your

specific domain without fine-tuning the model. More details

on this topic can be found in Chapter 10.

[image: Image 517]

[image: Image 518]

4.5 Hybrid Modeling: Combining

Generative and Discriminative Models

To illustrate the benefits of combining both modeling

approaches, let’s consider an example from commodity

trading.

Commodity trading involves buying and selling raw materials

such as agricultural products, oil, and natural gas, etc.

Success in this field often depends on our ability to

accurately predicting supply and demand. For instance, in

energy trading, investors and traders would like to track

global oil and gas production, which is distributed across

different regions of the world.

A particularly useful application of machine learning in this

field is leveraging satellite imagery to monitor fracking

operations—specifically, detecting well pads (prepared sites

where the drilling process occurs). This use case is

mentioned in SkyFi’s blog, at

https://skyfi.com/en/blog/synmax-case-study. SkyFi is a company that provides satellite imagery data and analytics.

Let’s say we have access to this data, and we are considering

how it can be used to make informed trading decisions. One

idea could be to build a classifier that takes satellite images

as input and outputs the probability of a well pad being

present. This model could be used to estimate the number of

active well pads, providing insights into natural gas

production and enabling investors and hedge funds to

improve their decision making. In the case of fully systematic

strategies, for example, the output of such a model could be

incorporated into more complex factor-based trading

strategies.

Now, let’s imagine the process of actually building this

model. We’ll denote the input image as and the binary label

as , indicating whether a well pad is present. A common

[image: Image 519]

[image: Image 520]

[image: Image 521]

[image: Image 522]

[image: Image 523]

approach is to use a discriminative model that directly

estimates

—the probability of a well pad being present

given the satellite image.

We can assume we’ve collected a high-quality dataset of

satellite images, all labeled with precision—either by human

annotators or another reliable method. Let’s say we use a

Deep Neural Network model to solve this problem. The model

takes an input image and directly outputs the probability of

, indicating the presence of a well pad. If the model

performs well on test data—measured using common

classification metrics like AUC, precision, or recall—we might

be tempted to think the problem is solved.

However, real-world deployment presents challenges. One

key issue is that unexpected noise in the inputs caused by

multiple factors might affect performance. Let’s consider

what happens when our model encounters an image that is

significantly different from anything it has seen before. What

will

output?

What if an input image has been affected by severe weather

and environmental factors? For example, clouds, which cover

around 70% of the Earth’s surface at any given time,

according to NASA’s Earth Observatory

(https://earthobservatory.nasa.gov/features/CloudsGallery), can obscure key features. What happens if an input image is

completely covered by clouds?. Or, instead of clouds, what if

geopolitical crises destroy major pipelines or natural

disasters drastically alter the landscape? In real-time

production environments, the input images may differ

drastically from those in our training set. What will

output in such cases?

[image: Image 524]

[image: Image 525]

[image: Image 526]

Ideally, in situations of extreme uncertainty, we’d want our

model to simply say, “I don’t know,” and return

. But in reality, that’s often not

the case. Instead, the model may still produce an

overconfident prediction.

This problem is well-documented in deep learning, and

uncertainty in deep learning remains an active area of

research. These models often achieve impressive

performance, but they are unable to recognize “when they

don’t know”. For example, in the paper ‘‘Deep Neural

Networks are Easily Fooled:High Confidence Predictions for

Unrecognizable Images’’ by Nguyen, Yosinski, and Clune

(2015), the authors conducted experiments where state-of-

the-art classifiers were presented with input images

consisting of random noise that were unrecognizable for

humans. Despite of the input been random noise, deep neural

networks (DNNs) trained on ImageNet classified these inputs

with

confidence as belonging to familiar object

categories, see Nguyen, Yosinski, and Clune (2015). This

experiment provides empirical evidence on how modern deep

learning models can be overconfident in their predictions,

even when the input is entirely noise. Ideally, we would want

our model to be robust to such inputs.

This issue arises when the distribution of the training data

differs significantly from the distribution encountered during

at inference time, a problem known in the machine learning

literature as the out-of-distribution (OOD) problem or dataset

shift. In the time series and finance literature, this is

commonly referred to as the non-stationarity problem.

Without going into too much detail, two common scenarios

encountered in practice are covariate shift, where the

distribution of input features

changes at inference time,

and open set recognition, which occurs when new, unseen

classes appear at inference time that were not present during

training.

[image: Image 527]

[image: Image 528]

[image: Image 529]

[image: Image 530]

[image: Image 531]

[image: Image 532]

[image: Image 533]

One fundamental limitation of modeling

alone is that,

since it represents a probability distribution over , the model

is forced to assign probability mass over of the known

classes, regardless of the input. In a binary classification

scenario, for instance, the model must satisfy:

As a side note regarding satellite imagery and geopolitical

crisis, SkyFi mentions in its blog how satellite imagery was

used in 2022 to track energy infrastructure in Ukraine,

including power plants, pipelines, and fuel storage facilities.

Well, let’s get back to our problem. The question is: how can

we solve or mitigate issues like this?

A common solution used in practice is to introduce a new

class, typically called an unknown class, where images that

do not belong to any of the target categories are labeled as

unknown. However, this introduces another challenge: how

many classes that do not belong to the target categories

should we label as “unknown”? How many examples should

we include for each of these classes to achieve good coverage

of all possible out-of-distribution (OOD) inputs? If we rely on

this method alone, we might find ourselves endlessly adding

new categories without truly solving the problem. So, can we

tackle this issue using a different approach?

One approach to solving this problem could be combining

generative and discriminative models. The main issue with

the previous approach is that, at training time, the new image

was not present in the training set. But what if we had a way

to quantify the probability that comes from the training

distribution? What if, instead of modeling

, we modeled

instead?

By applying the product rule, we know that:

.

[image: Image 534]

[image: Image 535]

[image: Image 536]

[image: Image 537]

[image: Image 538]

[image: Image 539]

[image: Image 540]

[image: Image 541]

[image: Image 542]

[image: Image 543]

[image: Image 544]

[image: Image 545]

[image: Image 546]

[image: Image 547]

This means that if we can build a model for

(a generative

model for the input features) and a separate discriminative

model for

, we could potentially provide a solution to

our problem. Since our

model aims to approximate the

probability distribution of the data, it should assign high

probability density to familiar images (inputs) and low

probability density to those that are out of distribution.

Consequently, inputs that are out of distribution relative to

the training set should have low probability density under

.

For an OOD input during training,

should be low,

which in turn attenuates the product

, making it

also low. We can then use a probability threshold to decide

whether to trust the prediction. For example, if

falls below a certain value, it indicates too much uncertainty,

and the model should avoid making a confident prediction.

Thus, this hybrid modeling approach allows us to combine

our preferred discriminative model with a generative model,

improving robustness to OOD inputs and uncertainty

estimation, leading to better decision-making.

Another use case, distinct from the satellite imagery example,

is the well-known application in finance for predicting market

regimes. Suppose we have collected a dataset consisting of

pairs of inputs and targets , where is a binary variable

indicating whether the next market state corresponds to a

bull or bear market. The inputs represent features or

characteristics of the current market state that we believe

provide valuable information for predicting the next market

regime state.

Similar to the previous case on satellite imagery, if we collect

data only relevant for bull and bear markets—each with

specific characteristics encoded in —what happens when we

encounter a new input that is very different from those

observed in either regime? As before, if we model

, the

[image: Image 548]

[image: Image 549]

[image: Image 550]

[image: Image 551]

system will still provide a high-confidence prediction for

either bull or bear, even if the input does not fit either

category well.

However, modeling

could offer additional insights into

the novelty of a given input. This can be useful in two ways:

1. As a standalone anomaly detection system, identifying

inputs that deviate significantly from the training

distribution.

2. In combination with a discriminative model, improving

forecasts by accounting for out-of-distribution (OOD)

inputs and uncertainty.

Now, the question is: if we take this approach, how can we

build

and

? There are multiple ways to do this, but

two main approaches are described below.

One straightforward solution is to build them independently

and then attempt to combine them as

. However,

there is no guarantee that this will work. In practice,

sometimes it performs very well, and other times it does not.

This approach may also require numerous iterations over

both models, as they are trained independently and

decoupled from each other by design.

We can consider an example in finance. You may be building

a ML-based trading model to predict the returns of some

volatility futures. But there is a great risk of overfitting due to

the limited historical data. It may therefore be advantageous

to learn from the vast amount of historical data from across

all financial series, futures, stocks, FX, or otherwise, and use

that as prior probability of the volatility futures returns. We

may also be using certain technical indicators as input to this

supervised learning model. Computing the marginal

probability of these indicators may inform us if certain input

are outliers and may not generalize.

[image: Image 552]

[image: Image 553]

[image: Image 554]

[image: Image 555]

Another way to approach this problem is by making the

models dependent on each other. This idea is explored in the

paper ‘‘Hybrid Models with Deep and Invertible Features’’ by

Nalisnick et al. (2019). The key idea is to use a latent variable

model that not only captures the distribution of the data but

also serves as an input to the discriminative model. This way,

both models are tightly coupled and depend on the same

latent representation. The training of

and

is now

coupled.

In the paper, they use a flow model for

(a type of

generative modeling you’ll learn more about in Chapter 7) and a Generalized Linear Model (GLM) for

. This setup

makes it possible to apply the approach to both general

classification and regression problems.

4.6 Taxonomy of Generative Models

Generative models can be broadly categorized into two main

types based on how they model data distribution: Explicit

Density Models and Implicit Density Models. Explicit Density

Models explicitly define and calculate the probability

distribution of the data. Examples of Explicit Density Models

include the following:

Autoregressive Models: These models generate data

sequentially, predicting each piece of the data based on

what has been generated so far.

Variational Autoencoders (VAEs): VAEs learn to encode

input data into a lower-dimensional space and then

decode it back, allowing for efficient data generation.

Flow Models: This family of models transforms simple

distributions into complex ones, maintaining the ability to

calculate the exact likelihood of the data.

Diffusion Models: These models gradually add noise to

data and learn to reverse this process, generating data by

denoising. (We don’t have space to discuss diffusion

models in this book, but we will cite references to it.)

On the other hand, Implicit Density Models aim to generate

data by capturing the data distribution without explicitly

defining it. A well-known example of these models is:

Generative Adversarial Networks (GANs): GANs involve a

dual-network architecture where one network generates

data and the other evaluates it, leading to highly realistic

outputs.

See Figure 4.1 for a categorization of the main types of generative models.

Each model family, as specified in the model taxonomy, has

its own advantages and disadvantages for abilities mentioned

in the previous section. In the accompanying notebook

[Model Family Comparison—Notebook], we present a list of

the main model families and compare their efficiency. This

table is something we hope to keep updating as new models

are released or better techniques are developed.

4.7 Conclusion

Generative models represent a profound shift in AI’s

capabilities. By learning to understand and manipulate data,

they enable us to categorize the world as it is and to imagine

and create what it could be. From creating art to advancing

scientific discovery, Generative AI is not just a tool for

innovation but a foundation for future advancements in the

field. In the following chapter, we will dive deeper into each

of the key model families for generative models.

[image: Image 556]

Chapter 5

Deep Autoregressive Models for

Sequence Modeling

Autoregressive (AR) models are a familiar presence in the

quantitative investor’s toolbox. After all, the most basic

financial data is a price series (sequence), and who doesn’t

want to predict the next price? In Chan (2017), Ernie

discussed the various linear predictive AR models such as

AR(p), ARMA(p,q), VAR, VEC, and state space models such

as the Kalman filter. In this chapter, we will find out whether

we can push the envelope by adopting nonlinear techniques

from deep learning for such a “sequence modeling” problem.

Beyond predictions, AR can be used for anomaly detection

and data generation applications as well. It falls under the

category of explicit density models, as illustrated in Figure

5.1. This means it proposes a tractable probability density

model to approximate the data distribution

.

[image: Image 557]

Figure 5.1 Model taxonomy: Autoregressive models.

Sequential data means that data appear in sequences where

a natural or artificial order is present. This principle enables

the construction of probabilistic models for any variable in

the sequence by conditioning on its preceding values.

This feature makes them useful for applications involving

inherently ordered data, such as audio signals,

meteorological phenomena (e.g., precipitation patterns), text

data for Natural Language Processing (NLP) applications, or

human-created time series like the ones found in financial

markets. Remarkably, AR models also apply to datasets

lacking of inherent order, such as images. By imposing an

order among the pixels within the image, AR models can

generate complete images one pixel at a time, as

demonstrated with the PixelCNN architecture, see Oord et al.

(2016b) for more details.

[image: Image 558]

[image: Image 559]

[image: Image 560]

[image: Image 561]

[image: Image 562]

5.1 Representation Complexity

Consider a sequence of random variables

. A

probabilistic model of the sequence is specified by its joint

probability distribution,

. Through

the application of the product rule in probability, we can

decompose the joint distribution into a product of

conditionals:

(5.1)

AR models simplify the modeling of high-dimensional

distributions by exploiting the right-hand side of Equation

5.1, modeling a series of conditional distributions.

These distributions provide probabilistic descriptions for

each variable based on its predecessors in the sequence,

transforming complex high-dimensional modeling into a

series of more manageable conditional probabilities that are

easier to represent and estimate.

Despite AR models’ simplification of high-dimensional

problem into more manageable one-dimensional conditional

distributions, the computational cost of inference and storage

remains a challenge. For example, in financial time series

like the S&P500, discretizing values into a finite states, let’s

say, five states—a common practice in financial applications,

such as the NUMERAI Hedge Fund competition—illustrates

the complexity. As an example, consider modeling the

conditional distribution

given the

previous

values in the sequence. Think of this example

[image: Image 563]

[image: Image 564]

[image: Image 565]

[image: Image 566]

[image: Image 567]

[image: Image 568]

[image: Image 569]

[image: Image 570]

as forecasting the next day’s returns of a security based on

the last month of daily returns, similar to trading applications

where the past month’s data is used for prediction. This

approach would require a huge probability table with

entries, which is clearly impractical. Instead of specifying

conditional probabilities through table lookups, a

parameterized model is necessary. However, even with a

parameterized approach, modeling interactions between all

variables can result in a prohibitive number of parameters.

Therefore, we need to find ways to reduce the number of

parameters.

5.2 Representation and Complexity

Reduction

One way to reduce the number of parameters in the model is

by making assumptions about the structure of the joint

distribution in Equation 5.1. These assumptions might include specifications about variable interactions, density

forms, etc.

One approach to reduce complexity is to impose conditional

probability assumptions, such that to model

we do not

need the knowledge of the entire sequence of previous values

. For example, we could say that to model

, all

we need to know is the value of

, suggesting that all

relevant information is contained in this variable. (There is

no loss of generality in assuming that

only depends on the

previous state

, because we could just redefine a state to

include information from a longer lookback period.)

Mathematically, we express this as

, also known

as the Markov Property. We touched on this in Chapter 3

when we discussed the Hidden Markov Model.

[image: Image 571]

[image: Image 572]

[image: Image 573]

[image: Image 574]

[image: Image 575]

[image: Image 576]

[image: Image 577]

[image: Image 578]

[image: Image 579]

[image: Image 580]

[image: Image 581]

Another technique involves weight sharing, where, in the

case of the previous example, the conditional probability

is independent of the sequence position ,

imposing a kind of invariance or stationarity across the

sequence.

These simplifications also reduce the expressiveness of the

model by narrowing the types of probability distributions that

can be represented.

To illustrate the concept of conditional independence and

model stationarity in sequence modeling, let’s consider a

practical example involving an AR model or order 2, denoted

as AR(2). An AR(2) model factorizes the joint probability of a

sequence

as follows:

(5.2)

In this scenario, we assume that takes values in the space

and that we can further model each conditional

probability using a Gaussian distribution. Specifically, for any

given

, the conditional probability

is

expressed as:

(5.3)

here

denotes a Gaussian distribution with the mean

determined by the linear combination of the two preceding

values in the sequence and a constant term, and with

constant variance

. As an example of using a linear AR

models, the accompanying notebook [AR Notebook]

demonstrates forecasting the quarterly growth rate of the US

gross national product (GNP).

[image: Image 582]

This Gaussian assumption is for illustration only. We do not

need to constrain ourselves to any particular form of the

density function

. We could even choose to model

variables taking values in either continuous or discrete

spaces. The choice of the density function may determine

whether you frame the task as a classification problem or a

regression problem, each with its own distinct

characteristics. These representations will have their

advantages and disadvantages in terms of efficient training

and model representation, expressiveness and generalization,

sampling quality and speed, and compression rate.

In this chapter, we will explore various model classes that are

commonly used to model conditional probabilities, starting

from traditional to more cutting-edge architectures. We will

start with model families such as Logistic Regression to lay

the groundwork and clarify essential concepts. Next we

explore Neural Networks and Recurrent Neural Network

leading to more complex families. We then advance to

innovations that serve as the cornerstone of modern

architectures, including Causal Masked Neural Networks,

specifically WaveNet, and transformers. (The discussion on

Causal Masked Neural Networks is inspired by insights

gained from the lecture slides of Abbeel et al. [2020]).

To illustrate main concepts and techniques for image

applications, we will use the standard Binary MNIST dataset

(Larochelle and Murray, 2011), a canonical example in

Computer Vision. Even though we use simple datasets, these

models have the potential to extend far beyond these basic

applications.

These models can be used to develop trading strategies

utilizing alternative data. For instance, analyzing satellite

images of crop fields can help predict commodity prices

(Guida, 2019; Denev and Amen, 2020), while observations of

retail parking lots can forecast retail company earnings

(Guida, 2019), among other applications. Of course, we can

[image: Image 583]

[image: Image 584]

[image: Image 585]

[image: Image 586]

also apply these models to price, or more appropriately,

returns series.

By the end of the chapter, we will provide examples of how

these models can be applied for asset management and

trading, while also exploring how Transformer models can be

adapted for time-series forecasting tasks. In Chapter 9,

“Leveraging Large Language Models (LLMs) for Text Data

Analysis in Trading,” we will demonstrate how to construct a

simple high-frequency trading strategy using Auto Regressive

Generative Models to process speech signals from Federal

Reserve announcements to inform trading decisions.

5.3 A Short Tour of Key Model Families

 5.3.1 Logistic Regression Model

The binary MNIST dataset (Larochelle and Murray, 2011) is

a simplified version of the original MNIST dataset, which has

been widely used as a benchmark in computer vision.

This dataset consists of 28 × 28 pixel images, with each pixel

falling into

, representing the color black or white at

that pixel location. The binary constraints means that there

are

possible images, highlighting the fact that any

practical training set can cover only a very small portion of

all potential image configurations. Indeed, the dataset

contains only 60,000 images for training and 10,000 images

for testing.

In this context, an image is an element of the space

.

As typical examples of digits in the dataset, see Figure 5.2.

[image: Image 587]

[image: Image 588]

[image: Image 589]

Figure 5.2 Sample from the Binarized MNIST dataset.

Larochelle and Murray (2011).

For a given image , we can write its joint probability as

follows:

(5.4)

This factorization is presented verbosely to highlight two key

aspects of this model:

Lack of parameters sharing

No assumptions of conditional independence

In this model, each conditional probability is modeled using a

logistic model defined as:

[image: Image 590]

[image: Image 591]

[image: Image 592]

[image: Image 593]

[image: Image 594]

[image: Image 595]

(5.5)

(Recall from Chapter 3 that the logistic model is defined in terms of the sigmoid function.) Here, a unique set of

parameters

is assigned to each conditional. This

model is known as a fully visible sigmoid belief network

(FVSBN); see Frey et al. (1995).

So far, we have discussed several model representations and

will introduce a few more. Keep in mind, however, that model

training and parameter estimation will be covered in detail in

Section 5.4 of this chapter.

5.3.1.1 Sampling from FVSN.

The sampling process involves generating one pixel at a time,

sequentially. For example, the first pixel is sample from its

distribution,

. Subsequent pixels are generated

conditioned on the pixel values realized previously, e.g.,

, continuing in this manner for the rest of

the pixels. This method is known as Ancestral Sampling

(Bishop, 2006).

Instead of modeling the conditionals using a logistic model,

we could explore using a different function to enhance model

expressiveness, such as a Neural Network. Here,

(5.6)

where now

. Of course,

modeling with a Neural Network will increase the number of

parameters to estimate.

 5.3.2 Masked Autoencoder for Density

 Estimation (MADE)

The Masked Autoencoder for Density Estimation (MADE), see

Germain et al. (2015), represents a significant advancement

in the field of Generative AI by enhancing the capabilities of

traditional autoencoders. Traditional autoencoders compress

input data into a latent representation and then attempt to

reconstruct it, introducing and denoising noise in the

process. However, they are limited in their ability to generate

new data points or to model the probability distribution of the

data.

MADE addresses these limitations by introducing a

sequential dependency among the input variables, following

the chain rule of probability. This method ensures that the

generation of any data point in the sequence does not depend

on future data points, adhering to a predefined ordering. This

innovation allows MADE to output probabilities and sample

new data points in a way that respects the underlying data

distribution, marking a departure from traditional

autoencoders.

Key features of MADE include its flexibility in handling input

variables of varying dimensionality and its use of a softmax

output for each variable, representing a probability

distribution from which new data points can be sampled. The

model’s structure, which incorporates masked connections

between nodes, enables it to maintain the autoregressive

property essential for accurate density estimation.

Illustrating the application of MADE, experiments on

datasets like MNIST demonstrate its capability to generate

digit images that increasingly resemble authentic data points

with extended training. Figure 5.3 shows an image generated in the left and its nearest neighbor in the right, which is a

very good practice to verify the model is not just learning the

[image: Image 596]

images of the dataset, and that it is actually generating new

ones.

Figure 5.3 MADE Generation on MNIST. Left: samples from a MADE model. Right: Nearest neighbor in

binarized MNIST.

 Source: Germain et al. (2015).

In conclusion, MADE’s innovative approach to combining

autoencoder frameworks with probabilistic modeling

techniques has established it as a foundational model in

Generative AI. Its contribution lies in its ability to generate

new data points and model data distributions more

accurately, paving the way for further advancements in the

field.

 5.3.3 Causal Masked Neural Network Models

Causal Masked Neural Networks have emerged as a leading

approach in the field of Generative AI, building on the

foundational concepts introduced by models like MADE. This

approach has advanced the state of generative modeling by

implementing efficient parameter sharing and introducing

coordinate coding to incorporate location information about data sequences.

At the heart of Causal Masked Neural Networks is the

principle of parameterizing conditionals with a neural

network, similar to MADE, but with a crucial innovation: the

use of the same neural network parameters across different

stages of the generation process. This approach is akin to

applying a “sliding window” over the data, allowing the

repetitive use of a set of parameters, significantly increasing

model efficiency by reducing the total number of parameters

needed while still modeling high-dimensional data.

To address the challenges associated with parameter

sharing, particularly the potential loss of positional

information in data such as images, these networks

incorporate coordinate coding. This technique involves

feeding the location coordinates of data points (e.g., pixels in

an image) into the model along with the data itself, enabling

the network to retain spatial awareness despite the uniform

use of parameters across different positions. Coordinate

coding can be implemented in various forms, such as one-hot

encodings or relative position encodings, adding a layer of

flexibility to the model’s design.

5.3.3.1 WaveNet.

One of the first and most successful implementations of this

approach was WaveNet (see Oord et al., 2016a), a model

primarily designed for generating speech. Its influence

extends beyond academic circles, with variations of the

model being implemented in real-world systems such as

personal assistants on smartphones. WaveNet is recognized

for its superior audio generation quality, making it a

cornerstone in the evolution of audio synthesis technologies.

WaveNet utilizes 1D convolutional layers and introduces

additional techniques like dilation in convolutions to capture

[image: Image 597]

information from further back in the sequence, see Figure

5.4. This means WaveNet can capture longer-range

dependencies within the audio data more efficiently,

improving the quality and naturalness of the generated

audio. This model has showcased the potential of this

approach not only for audio data but also for a wide range of

sequential data types.

Figure 5.4 Visualization of a stack of causal convolutional layers. Figure 2 from Oord et al.

(2016a).

In practice, WaveNet utilizes a stack of dilated causal

convolutional layers to enable networks to have very large

receptive fields, thereby allowing the network to consider

inputs located far away in the sequence. For example, Figure

5.5 illustrates dilated causal convolutions with dilations of 1,

2, 4, and 8, as shown in the paper by Oord et al. (2016a).

[image: Image 598]

Figure 5.5 Visualization of a stack of dilated causal convolutional layers. Figure 3 from Oord et al.

(2016a).

As an example of using WaveNet, the accompanying

notebook [WaveNet Notebook] demonstrates its application

for forecasting financial data, providing an opportunity for

hands-on learning with this type of models

Despite the efficiency and expressiveness of Causal Masked

Neural Network Models, challenges remain, particularly in

the context of sampling. Generating new data points requires

processing each element sequentially, which can be slow.

However, the training process benefits from parallelism,

significantly speeding up model learning. Moreover, concerns

about the finite context window—how far back the model can

look when generating the next part of a sequence—have been

mitigated by advancements in attention mechanisms.

 5.3.4 Recurrent Neural Networks (RNN)

As discussed in Chapter 3, Recurrent Neural Networks (RNNs) are well known for their ability to process sequential

data with an effectively infinite look-back capability. This

feature distinguishes them from other models that are limited

to fixed-size inputs, enabling RNNs to dynamically

incorporate all prior information in a sequence. This

capability makes RNNs exceptionally well-suited for complex

[image: Image 599]

[image: Image 600]

[image: Image 601]

[image: Image 602]

[image: Image 603]

[image: Image 604]

[image: Image 605]

[image: Image 606]

[image: Image 607]

[image: Image 608]

[image: Image 609]

[image: Image 610]

tasks such as speech recognition, natural language

processing, and other time-series related applications.

To recap, at the core of an RNN is the concept of a hidden

network state, often referred to simply as the “state.” This

state acts as the network’s memory, theoretically holding all

necessary past information to make future predictions. In a

typical RNN, the hidden state at any sequence index ,

denoted by

, is updated based on the previous state

and the current input

, according to a function . The

output at each timestep depends on the current state

using a typical nonlinear function ,

(5.7)

Here, and are typical nonlinear neural network layers

that are independent of the specific index location .

Consequently, RNNs effectively employ parameter sharing

across the sequence.

This recursive nature allows RNNs to handle variable input

lengths and provides them with the theoretical capacity to

manage an infinite window of context, which is ideal for

generating coherent and contextually rich sequences over

time.

However, the practical application of RNNs is often

challenged by issues related to their deep and recursive

structure. Notably, the training of RNNs can be subject to

the phenomena of vanishing and exploding gradients. These

occur when the gradient signals, essential for learning

through backpropagation, diminish to insignificant levels

(vanish) or grow too large (explode) as they are propagated

back through each “timestep” in the sequence. Such issues

can severely limit the RNN’s ability to learn long-term

dependencies within the data affecting the overall efficacy of

the model in real-world applications.

In generative tasks, RNNs operate by predicting the next item in a sequence based on the history it has processed,

with each output dependent on the preceding computational

state. For example, when trained on specific datasets like the

works of Shakespeare or encoded Wikipedia text, RNNs can

generate text that mimics the style of the training data,

capturing nuances such as punctuation, grammar, and even

the specific formatting of text.

In the accompanying notebook [RNN Notebook], we

demonstrate an experiment using RNNs to forecast price

movements and returns of the S&P 500.

5.3.4.1 Practical Considerations and Limitations.

While theoretically capable of handling sequences of

arbitrary length and complexity, RNNs in practice face

significant operational challenges:

Training Speed: Training RNNs is slow due to the

sequential nature of their computations, which prevents

parallel processing. Each step depends on the completion

of the previous step, leading to longer training times.

Gradient Issues: The training of RNNs is notoriously

difficult due to vanishing and exploding gradient

problems, which can severely impact learning

effectiveness. Techniques like Long Short-Term Memory

(LSTM) units have been developed to mitigate these

issues but do not entirely eliminate them.

Memory Requirements: Due to their recursive nature,

RNNs often require substantial memory for training, as

they need to maintain information across many time

steps.

 5.3.5 Transformers

Transformer models have revolutionized both industry and

academia in recent years. Since their introduction in the

highly influential paper Attention Is All You Need by Vaswani

et al. (2023), they have been successfully applied to a wide

range of data types, including text, audio, time series, image,

and video. As autoregressive models, Transformers offer

several advantages over traditional RNNs. One of the most

significant is their ease of training and the ability to leverage

parallelization, which accelerates both training and

inference. Additionally, Transformers mitigate issues such as

vanishing and exploding gradients, which are more prevalent

in earlier models like RNNs and LSTMs.

In this section, we will explore the Transformer architecture

in detail, breaking down its core components. By the end of

this section, we will have covered all the essential building

blocks necessary to implement two of the most influential

Transformer models: BERT, introduced by (Devlin et al.

2019) and developed by Google, and GPT, introduced by

Radford et al. (2018) and developed by OpenAI. BERT, which

stands for Bidirectional Encoder Representations from

Transformers, revolutionized natural language processing,

redefining how both industry and academia tackle a wide

range of NLP tasks. Similarly, the GPT family of models

(Generative Pre-trained Transformers) by OpenAI has been

groundbreaking, pushing the boundaries of what’s possible

with language generation and understanding.

For clarity of exposition, let’s focus on text data, as it makes

these models easier to understand. Keep in mind, however,

that the same framework may be applicable to numerical

time series, as both text and time series are considered

“sequences.” We will elaborate on this point further in

Section 5.3.6. We will briefly cover the essential steps involved in a typical preprocessing pipeline for Natural

Language Processing (NLP) applications, providing just

enough information to understand Transformers. To do this, we will use a combination of code snippets and mathematical

notation to illustrate how these models work.

5.3.5.1 Attention Mechanism.

To understand the concept of attention, let’s consider the

following two sentences:

 The startup achieved a new round of funding to expand operations.

 He invited his friends for another round of drinks at the bar.

In the first sentence, the word “round” refers to a phase of

funding for a company, while in the second sentence, it refers

to a sequence of drinks being ordered. Intuitively, these

different meanings suggest that the word “round” should be

represented by different vectors, also known as vector

embeddings—or simply embeddings in the NLP literature—

depending on the context.

However, in the initial steps of the NLP pipeline—when raw

text is transformed into token embeddings—the model

assigns the same vector representation to the words “round”

in both sentences, regardless of the context. This is because

token embeddings, at this point, are context-independent

and rely solely on the token ID assigned to the word.

 The NLP Pipeline: From Raw Data to Token Embeddings:

1. Tokenization: The first step in modern NLP pipelines

involves converting raw text into smaller units called

tokens. Tokens can be full words, subwords, or even

characters, depending on the tokenizer. Each token is

mapped to a unique token ID.

2. Token Embeddings: The model assigns an initial embedding to each token based on the token ID. At this

stage, the embeddings are purely context-independent

—the same word will always have the same embedding,

regardless of the surrounding text.

To illustrate this, we will use the Hugging Face

(https://huggingface.co) transformers python library, which simplifies working with Transformer models like BERT. In the

following code, we examine the tokenization process:

from transformers import BertTokenizer, BertModel

import torch

Initialize BERT tokenizer and model

model_ckpt = 'bert-base-uncased'

tokenizer = BertTokenizer.from_pretrained(model_ckpt)

model = BertModel.from_pretrained(model_ckpt)

Two sentences with different meanings for "round"

sentence_1 = "The startup achieved a new round of fundi

ng to expand operations."

sentence_2 = "He invited his friends for another round

of drinks at the bar."

Tokenize the sentences

inputs_1 = tokenizer(sentence_1, return_tensors='pt')

inputs_2 = tokenizer(sentence_2, return_tensors='pt')

Get the token ID for "round"

token_id = tokenizer.convert_tokens_to_ids('round')

print(f"Token ID of word round: {token_id}")

Print token IDs to show tokenization process

print("Token ids for sentence 1:", inputs_1.input_ids)

print("Token ids for sentence 2:", inputs_2.input_ids)

Access the token embeddings directly from BERT's embe

dding matrix

The embedding matrix is model.embeddings.word_embeddi

ngs

token_embedding_matrix = model.embeddings.word_embeddin

gs.weight

Extract the token embedding for "round"

token_embedding_matrix[token_id]

Print results to verify that token embeddings are ide

ntical

print(f"Token embedding for 'round': {token_embedding_f or_round_1[:5]}...")

First 5 vavlues

>>>

Token ID of word round: 2461

Token ids for sentence 1: tensor([[

101, 1996, 22752, 4719,

1037, 2047, 2461, 1997,

4804, 2000, 7818, 3136,

1012, 102]])

Token ids for sentence 2: tensor([[

101, 2002, 4778, 2010,

2814, 2005, 2178, 2461,

1997, 8974, 2012, 1996,

3347, 1012, 102]])

Here, the Token ID for the word “round” corresponds to the

ID 2461, which is located at position 6 and position 7 (0-

indexed) in inputs_1.input_ids for sentence 1 and

inputs_2.input_ids for sentence 2, respectively.

To determine the token embeddings assigned to the word

“round” let’s access the token embedding matrix of BERT:

Access the token embeddings directly from BERT's embe dding matrix

The embedding matrix is model.embeddings.word_embeddi

ngs

token_embedding_matrix = model.embeddings.word_embeddin

gs.weight

Extract the token embedding for "round"

token_embedding_for_round = token_embedding_matrix[toke

n_id]

print(f"Embedding matrix size: {token_embedding_matrix.

size()}")

>>>

Embedding matrix size: torch.Size([30522, 768])

print(f"Token embedding for 'round': {token_embedding_f

or_round[:5]}...")

>>

Token embedding for

'round': tensor([0.0109, 0.0577,

0.0310, -0.0615, 0.0571], grad_fn=<SliceBackward0>)...

The embedding matrix size for the BERT model is

torch.Size([30522, 768]), meaning that each token ID is

mapped to a 768-dimensional vector representation, and the

vocabulary—the number of unique tokens for this specific

model—consists of 30,522 tokens. More details about how

these embedding representations are created and learned

will be provided later. Additionally, more information about

this process and the typical NLP pipeline can be found in the

Hugging Face tutorial, located in the chapter 10 folder of the book repository.

The purpose of the attention mechanism is to refine the

representation of each word in a sentence, making it more

context-dependent. After applying attention, we obtain a

more refined embedding that captures the context in which

the word appears. The importance of the attention

mechanism is so profound that the authors of the influential

paper “Attention Is All You Need” (Vaswani et al., 2023)

emphasized it in the very title. But how exactly does attention

work to refine these embeddings?

Before diving into the mathematical details, let’s explore

some insightful visualizations using BertViz, a tool introduced

by Vig (2019), which helps us understand how models like

BERT, GPT2, or T5 update word representation through

attention. This visualization will help us to grasp the concept

before looking at the equations.

Most attention mechanisms refine embeddings by computing

a linear combination of all input embedding using specific

“attention weights.” The attention mechanism makes these

“attention weights” or “attention scores” dependent on the

input, allowing the model to create context-dependent

representations. To clarify this concept, we will use BertViz

to see how BERT assign attention weights across different

words in a sentence.

In the visualizations generated by the following code, namely

Figures 5.6a and b, it is displayed the attention scores for two input sentences:

[image: Image 611]

[image: Image 612]

Figure 5.6 Visualizing attention.

from transformers import AutoTokenizer

from transformers import AutoModel

from bertviz import head_view

model_ckpt = "bert-base-uncased"

tokenizer = AutoTokenizer.from_pretrained(model_ckpt)

model = AutoModel.from_pretrained(model_ckpt, output_at

tentions=True)

sentence_a = 'The startup achieved a new round of fundi

ng to expand operations'

sentence_b = 'He invited his friends for another round

of drinks at the bar'

viz_inputs = tokenizer(sentence_a, sentence_b, return_

tensors='pt')

attention = model(**viz_inputs).attentions

sentence_b_start = (viz_inputs.token_type_ids == 0).sum

(dim=1)

tokens = tokenizer.convert_ids_to_tokens(viz_inputs.inp

ut_ids[0])

head_view(attention, tokens, sentence_b_start, heads=

[8])

Here, we instructed BERT to process the two input

sequences simultaneously. Both sentences are shown in the

left and right column, separated by the special [SEP] token.

In these figures, the right column represents the initial input

embeddings, while the left column shows the output

embeddings after applying the attention mechanism.

Although the visualizations do not show the final word

embeddings, they display the attention scores between

words. By selecting any word in the left column, highlighted

with a gray background, we can see lines connecting this

word to all words in the right column. The intensity of each

line represents the magnitude of the attention score, ranging

from 0 to 1, indicating how much influence each word in the

right column has on the selected word in the left column.

[image: Image 613]

[image: Image 614]

[image: Image 615]

[image: Image 616]

[image: Image 617]

[image: Image 618]

[image: Image 619]

[image: Image 620]

[image: Image 621]

Let’s look at Figure 5.6a, where we focus on the word round in the first sentence, “The startup achieved a new round of funding to expand operations.” The visualization shows that

the words “funding,” “operations,” “startup,” and “achieved”

have the highest attention scores, contributing the most to

refining the representation of “round.” Notably, none of the

words from the second sentence are considered important in

updating this specific representation.

On the other hand, in Figure 5.6b, we select the word round from the second sentence, “He invited his friends for another

 round of drinks at the bar.” In this context, the words

“drinks,” “friends,” and “invited” are most significant in

updating the representation of “round.” Similarly, no

significant attention is assigned to words from the first

sentence.

These visualizations illustrate how attention helps the model

focus on relevant parts of the context when refining word

representations. Now, let’s see how this attention update is

computed.

If we are dealing with a stock’s returns series instead, we

might imagine that a return at time may depend

significantly on some past return

that was

particularly significant, perhaps because there was an

earnings announcement or economic news at (Guijarro-

Ordonez et al., 2021).

Now, let’s see how this attention update is already computed.

Let’s say we have some embedding representation for each

token in the input sequence, denoted as

, each

of dimension

. (In the case of a returns series, each

might be an embedding representation of the stock returns at

time in a portfolio.) As mentioned, most attention

mechanisms create refined embeddings by computing a

linear combination of all input embeddings, such as the

in

our example, which, as we will see next, are linear

combinations of the input embeddings . To find a refined

[image: Image 622]

[image: Image 623]

[image: Image 624]

[image: Image 625]

[image: Image 626]

[image: Image 627]

[image: Image 628]

[image: Image 629]

representation for each input vector, we compute a weighted

sum. For example, the refined representation, or hidden

representation,

for

is computed as:

(5.8)

where

is the attention vector, also known

as attention scores or attention weights, used to compute

.

Similarly, for the refined representation or hidden

representation of the third vector, we have:

(5.9)

In general, the refined representation for the -th input is:

(5.10)

This can be represented in matrix form as:

[image: Image 630]

[image: Image 631]

[image: Image 632]

[image: Image 633]

[image: Image 634]

[image: Image 635]

[image: Image 636]

[image: Image 637]

(5.11)

where is the matrix of attention weights. In short, we

update each token through a linear combination of all other

tokens. In a financial time-series application for forecasting

returns, to avoid look-ahead bias, we should only include past

returns when calculating the current return. This approach is

known as causal masked attention in NLP terminology. The

question now is, how do we determine this matrix ? Well,

these weights are learned from data during training.

Before explaining how the attention matrix is computed, let’s

clarify the difference between hard attention and soft

 attention.

Hard Attention: Each attention vector

satisfies the

property

, meaning it is a one-hot vector where

only one component is 1 and the rest are 0. This means

the new representation will be exactly one of the input

vectors.

Soft Attention: Each attention vector

satisfies

, meaning the new representation is a weighted

combination of the input vectors.

Although there are several methods to compute the attention

matrix and the matrix of embedding vectors , in this book,

we will focus on the most well-known approach, Scaled Dot-

Product Attention, as introduced in the influential paper by

Vaswani et al. (2023).

[image: Image 638]

[image: Image 639]

[image: Image 640]

[image: Image 641]

5.3.5.2 Scaled Dot-Product Attention.

In Scaled Dot-Product Attention, the attention scores are

computed as:

(5.12)

and so, the hidden representation is computed as:

(5.13)

The operations of the Scaled Dot-Product Attention are

illustrated in Figure 5.7, serving as a useful reference for understanding the process.

Figure 5.7 Scaled Dot-Product Attention. Figure 2

(left) from Vaswani et al. (2023).

Let’s break down the equation for Scaled Dot-Product

Attention.

[image: Image 642]

[image: Image 643]

[image: Image 644]

[image: Image 645]

[image: Image 646]

[image: Image 647]

[image: Image 648]

[image: Image 649]

[image: Image 650]

[image: Image 651]

[image: Image 652]

[image: Image 653]

[image: Image 654]

[image: Image 655]

[image: Image 656]

[image: Image 657]

[image: Image 658]

[image: Image 659]

[image: Image 660]

[image: Image 661]

[image: Image 662]

[image: Image 663]

[image: Image 664]

[image: Image 665]

[image: Image 666]

[image: Image 667]

[image: Image 668]

[image: Image 669]

[image: Image 670]

[image: Image 671]

(Query Matrix): This matrix is computed from the

input embeddings as

. For now, consider the

input embeddings as those generated from the basic

NLP pipeline explained earlier, where they are assigned

based on token ID. In Section 5.3.5.4, we will discuss how additional sequence information is incorporated into the

token embeddings to fully create . The query matrix

contains row vectors, each representing a query vector

of dimension

. The matrix

is a learnable

parameter of size

.

(Key matrix): Similarly, the Key matrix is computed as

. Each row of

corresponds to a key vector

of dimension

. The matrix

is also learnable

parameter of size

.

(Value matrix). The Value matrix is computed as

. It contains row vectors, each representing

a value vector

of dimension

. The matrix

is a

learnable parameter of size

.

For Scaled Dot-Product Attention to work, the dimensions

and

must match, and a common choice is

.

The attention mechanism used here is a soft-attention

mechanism, enforced by applying the softmax function to

ensure that the rows of sum to 1. The scaling factor

was introduced by the authors of the Attention Is All You

 Need paper to prevent the argument of the softmax from

becoming too large, thereby avoiding regions of the function

with very small gradients (Vaswani et al., 2023).

To better understand Scaled Dot-Product Attention, let’s

focus on the computation of the unnormalized attention

scores:

[image: Image 672]

[image: Image 673]

[image: Image 674]

[image: Image 675]

[image: Image 676]

[image: Image 677]

[image: Image 678]

[image: Image 679]

[image: Image 680]

[image: Image 681]

[image: Image 682]

[image: Image 683]

[image: Image 684]

[image: Image 685]

(5.14)

We can call this matrix

the unnormalized attention scores.

For every input vector in the sequence

, we

compute its query representation

, its key

representation

, and its value representation

, and using this information, we compute the

attention weights.

For example, to compute the attention weights

needed to

the hidden representation

of

, we take the dot product

of its query vector

with the key vectors in the sequence:

(5.15)

The terminology and concepts used in the Attention Is All You

 Need paper by Vaswani et al. (2023) draw from information

retrieval, where we have a database or key-value store

indexed by keys with corresponding values. To retrieve a

value, we compute the similarity between a query and all the

keys in the database. The retrieved value can be the one with

the maximum score or a weighted sum of values based on

these scores, which is the essence of self-attention.

After computing the unnormalized attention scores

, we

normalize them using the softmax function

(5.16)

Now, we can compute the hidden representation

by taking

a linear combination of all the values in the key-value store,

following the same key-store analogy:

[image: Image 686]

[image: Image 687]

[image: Image 688]

(5.17)

This produces a refined representation

for each input

,

incorporating information about the whole sequence.

The combination of Scaled Dot-Product Attention with the

three linear transformations for the query, key, and value

vectors is what’s known as an Attention Head in Transformer

models. (Multiple heads can be used to capture different

relationships between words, as will be explained later.)

Let’s implement this concept in PyTorch to gain a better

understanding. The following implementation is adapted from

the book Natural Language Processing with Transformers, by

Tunstall et al. (2022).

To implement Scaled Dot-Product Attention, we need to pass

in the query, key, and value matrices. Here is a simple

implementation of the function in PyTorch:

import torch

from math import sqrt

import torch.nn.functional as F

def scaled_dot_product_attention(query, key, value):

dim_k = query.size(-1)

unnormalised_scores = torch.bmm(query, key.transpose

(1, 2)) / sqrt(dim_k)

scores = F.softmax(unnormalised_scores, dim=-1)

return torch.bmm(scores, value)

In this function:

[image: Image 689]

[image: Image 690]

[image: Image 691]

[image: Image 692]

We use torch.bmm for batch matrix multiplication, which

efficiently handles the batch dimension during

computation.

The scores are scaled by dividing by the square root of

the dimension of the key vectors (sqrt(dim_k)) to

stabilize the dot products and prevent them from

becoming too large.

We apply the softmax function to the scores to obtain

attention weights and then use these weights to compute

a weighted sum of the value vectors.

Next, we’ll implement the full attention head. This requires

creating the matrices

,

, and

for the key, query,

and value transformations, respectively. Each of these

matrices transforms the input embeddings into the required

dimensions query, key, and value dimensional spaces.

We define these matrices in the following AttentionHead

class. For simplicity, we assume

, which we refer to as head_dim

in the code:

from torch import nn

class AttentionHead(nn.Module):

def __init__(self, embed_dim, head_dim):

super().__init__()

self.q = nn.Linear(embed_dim, head_dim)

self.k = nn.Linear(embed_dim, head_dim)

self.v = nn.Linear(embed_dim, head_dim)

def forward(self, hidden_state):

attn_outputs = scaled_dot_product_attention(

self.q(hidden_state),

self.k(hidden_state),

self.v(hidden_state)

)

return attn_outputs

In this implementation:

The __init__ method initializes three linear

transformations for the query, key, and value matrices.

These transformations project the input embeddings into

the head_dim dimensional space.

In the forward method, the hidden states are passed

through the linear transformations to obtain the query,

key, and value matrices.

The scaled_dot_product_attention function is called with

these matrices to compute the attention outputs.

5.3.5.3 From Self-attention to Transformers.

In this section, we will explain how to transition from the self-

attention mechanism discussed earlier to the complete

Transformer architecture introduced in the influential paper

by Vaswani et al. (2023). The architecture of the Transformer

model can be visualized in Figure 5.8.

[image: Image 693]

[image: Image 694]

[image: Image 695]

Figure

5.8

The

Transformer

encoder-decoder

architecture, developed for machine translation,

processes an input sequence—such as a sentence in

the source language—into continuous representations

via the encoder. The decoder then generates the

translated output sequence, producing one token at a

time.

Input

embeddings

correspond

to

the

representation of the source language, while output

embeddings correspond to the representation of the

target language. The output embeddings are offset by

one position to ensure that the prediction for position

 depends only on the known outputs at positions less

than . Figure 1 from Vaswani et al. (2023).

The Transformer model was originally developed for machine

translation tasks, which traditionally follow an encoder-

decoder structure. The role of the encoder is to map the

input sequence—such as the sentence in the source language

—into a sequence of hidden representations. These hidden

representations are then used by the decoder to generate the

translated output sequence, one token at a time. This process

is autoregressive, meaning the decoder generates each token

by considering the previously generated tokens as additional

inputs. In the Transformer architecture, the encoder is

depicted on the left side of Figure 5.8, while the decoder is shown on the right.

As seen in the figure, we need several components for

building the complete Transformer model, including Input

Embeddings, Multi-Head Attention, and Feed-Forward

blocks. These components are fundamental to both the

encoder and decoder sections. To build a comprehensive

understanding of the Transformer model, we will explore

each of these components in details by providing a code

implementation of the encoder section.

Additionally, it’s important to note that self-attention allows the model to attend to all tokens simultaneously, which is not

ideal for tasks such as sequence generation, where the model

needs to distinguish between past and future tokens, such as

in financial time series. To address this, the self-attention

mechanism can be modified to create what is known as

causal masked self-attention, which ensures that each token

only attends to previous tokens in the sequence. This

modification preserves the causal structure needed for

generating text in an autoregressive manner.

5.3.5.4 Positional Encodings.

Positional encoding enables self-attention to consider the

order of tokens in the sequence, addressing a limitation of

the self-attention mechanism, which does not account for

positional information in the sequence.

Positional encodings are combined to token embeddings so

that the self-attention mechanism can incorporate the order

of tokens in the sequence. These encodings can be created

using a fixed mathematical formula or learned from data.

Common methods for integrating token embeddings with

positional encodings include concatenation and addition. The

most widely used approach is to add the positional encodings

to the token embeddings directly. It’s important to note that

positional encodings depend only on the position within the

sequence.

With positional encodings, the input to the AttentionHead is

no longer just token embeddings, but the addition of token

embeddings and positional information.

The following code implements a class that creates both

token and positional embeddings and adds them together.

class Embeddings(nn.Module):

def __init__(self, config):

super().__init__()

self.token_embeddings = nn.Embedding(config.voca

b_size,

config.hidd

en_size)

self.position_embeddings=

nn.Embedding(config.max_position_embeddings,

config.h

idden_size)

self.layer_norm = nn.LayerNorm(config.hidden_siz

e, eps=1e-12)

self.dropout = nn.Dropout()

def forward(self, input_ids):

Create position IDs for input sequence

seq_length = input_ids.size(1)

position_ids = torch.arange(seq_length,

dtype=torch.long).unsqueeze(0)

Create token and position embeddings

token_embeddings = self.token_embeddings(input_i

ds)

position_embeddings = self.position_embeddings(p

osition_ids)

Combine token and position embeddings

embeddings = token_embeddings + position_embeddi

ngs

embeddings = self.layer_norm(embeddings)

embeddings = self.dropout(embeddings)

return embeddings

In this class:

The __init__ method creates both token and position

embeddings, as well as a layer normalization and dropout

layer.

The forward method combines token and position

embeddings by addition, normalizes them, and applies

dropout.

5.3.5.5 Multi-headed Attention.

The self-attention mechanism involves a single set of

projections for generating the query, key, and value

representations. In practice, the authors in Vaswani et al.

(2023) found it beneficial to use multiple sets of these

transformations, known as attention heads. These heads are

computed in parallel and then combined by concatenation,

which joins the vectors end-to-end, to create a richer

representation of the input, see Figure 5.9 for a schematic representation of this process. Multi-head attention enables

the model to focus simultaneously on different aspects of the

input.

[image: Image 696]

[image: Image 697]

Figure 5.9 Multi-head Attention. Figure 2 (right) from Vaswani et al. (2023).

Multi-head attention allows for different dimensions for the

query, key, and value projections. However, in practice, each

attention head typically has the same dimension. In addition

to the dimensions of these projection matrices, we must

specify the number of attention heads. For example, in the

original Transformer architecture, the input embedding

dimension is 512, and there are 8 attention heads. This

configuration sets the dimension for each head as

.

An implementation of the following MultiHeadAttention class

demonstrates this concept:

class MultiHeadAttention(nn.Module):

def __init__(self, config):

super().__init__()

embed_dim = config.hidden_size

num_heads = config.num_attention_heads

head_dim = embed_dim // num_heads

self.heads = nn.ModuleList(

[AttentionHead(embed_dim, head_dim) for

_ in range(num_heads)]

)

self.output_linear = nn.Linear(embed_dim, embed_

dim)

def forward(self, hidden_state):

x = torch.cat([h(hidden_state) for h in

self.heads], dim=-1)

x = self.output_linear(x)

return x

In this implementation:

The __init__ method creates multiple attention heads

using the AttentionHead class, based on the specified

number of heads.

The forward computes attention heads outputs and

concatenate them, which is them passed through a final

linear layer.

5.3.5.6 The Feed-forward Layer.

The feed-forward layer adds nonlinearity to the model and is

applied to the output of the multi-head attention layer. It

consists of two linear transformations with a nonlinear

activation function in between, as shown here:

class FeedForward(nn.Module):

def __init__(self, config):

super().__init__()

self.linear_1 = nn.Linear(config.hidden_size, co

nfig.intermediate_size)

self.linear_2 = nn.Linear(config.intermediate_si

ze, config.hidden_size)

self.gelu = nn.GELU()

self.dropout = nn.Dropout(config.hidden_dropout_

prob)

def forward(self, x):

x = self.linear_1(x)

x = self.gelu(x)

x = self.linear_2(x)

x = self.dropout(x)

return x

This class performs the following steps:

The __init__ method defines two linear layers, a GELU

activation function, and dropout for regularization.

The forward method applies the first linear

transformation, the GELU activation, the second linear

transformation, and finally dropout before returning the

output.

In the original paper, the dimensionality of the input and

output is 512, referred in the code as hidden_size, while the

inner layer has a dimensionality of 2048, referred in the code

as intermediate_size.

The multi-head attention, feed-forward layers, and positional

encodings together form the building blocks of the

Transformer model. They enable the model to capture

complex dependencies and learn rich representations from the input data.

5.3.5.7 Add and Norm Blocks.

As depicted in Figure 5.8, there are Add & Norm blocks integrated into the Transformer architecture.

These blocks perform two key operations: Add, which applies

a residual connection (i.e., adding a layer’s input to its output

to improve gradient flow and facilitate training), and Norm,

which involves layer normalization (see Goodfellow et al.,

2016, for more details). As shown in the figure, the authors

use a residual connection around both Multi-head Attention

and feed-forward blocks.

5.3.5.8 The Transformer Encoder Layer.

Now that we’ve covered the core components of the

Transformer architecture, we are ready to implement the

Transformer encoder layer, as shown in the left of Figure 5.8.

The Encoder layer, also known as Encoder block, consists of

an embedding layer, a multi-head attention mechanism, and a

feed-forward network. As described, batch normalization and

residual connections are also included.

Following is the implementation of the

TransformerEncoderLayer, incorporating layer normalization

and skip connections for better gradient flow:

class TransformerEncoderLayer(nn.Module):

def __init__(self, config):

super().__init__()

self.layer_norm_1 = nn.LayerNorm(config.hidden_s

ize)

self.layer_norm_2 = nn.LayerNorm(config.hidden_s

ize)

self.attention = MultiHeadAttention(config)

self.feed_forward = FeedForward(config)

def forward(self, x):

Apply layer normalization and then copy input

into query, key, value

hidden_state = self.layer_norm_1(x)

Apply attention with a skip connection

x = x + self.attention(hidden_state)

Apply feed-

forward layer with a skip connection

x = x + self.feed_forward(self.layer_norm_2(x))

return x

 A note on regularization: As described by the authors of the

Transformers paper, and as you may have noticed in the code

implementation, dropout (see Chapter 3) is used for

regularization. Dropout is applied around the Add & Norm

blocks, as well as to the sum of the embeddings and

positional encodings in both the encoder and decoder stacks

(Vaswani et al., 2023).

5.3.5.9 The Complete Transformer Encoder.

The Transformer model is constructed by stacking multiple

TransformerEncoderLayer modules. Each layer processes the

input embeddings and refines them further, allowing the

model to learn complex relationships within the data.

Here’s how we can implement the complete Transformer

encoder:

class TransformerEncoder(nn.Module):

def __init__(self, config):

super().__init__()

self.embeddings = Embeddings(config)

self.layers = nn.ModuleList([TransformerEncoderL

ayer(config)

for _ in

range(config.num_hidden_layers)])

def forward(self, x):

x = self.embeddings(x)

for layer in self.layers:

x = layer(x)

return x

5.3.5.10 Model Objective.

Now that we have defined the Transformer encoder

architecture, the next question is: What tasks can we solve

with it? how do we structure the model’s output for solving

these tasks and train the model?

The typical approach is to use the Transformer encoder

model as the core body of our model and attach either a

decoder, as in language translation tasks, or a specific head

that is suited to the task at hand. For instance, for a

classification task, we can attach a specific head, a network

layer that takes the output of the Transformer and generates

a probability distribution over the possible classes. This

allows us to use an optimization algorithm to find the model

parameters that best explain the relationship between inputs

and targets in our dataset.

Let’s consider a few examples to understand this concept better:

Sentiment Analysis: For this task, we would use a

classification head that processes the output of the

Transformer model and predicts the sentiment (for

example, positive, negative, or neutral) of a given input

text. The model learns to associate specific patterns in

the text with specific sentiments.

Language Modeling: The BERT model, introduced by

(Devlin et al. 2019), is a good example of this approach.

BERT stands for Bidirectional Encoder Representations

from Transformers and uses the Transformer encoder

architecture. One of BERT’s primary training objectives

is the Masked Language Model (MLM) task, where

certain words in a sentence are randomly masked, and

the model is trained to predict these missing words.

Specifically, 15% of the words in a sentence are masked.

Of these, 80% are replaced with the [MASK] token, 10%

remain unchanged, and the final 10% are substituted

with a random word. To solve this task, we would use a

classification head that processes the output of the

Transformer and generates a probability distribution over

the input’s vocabulary.

To adapt the Transformer encoder for a classification task

like sentiment analysis, we add a classification head on top of

the encoder. As an example, the head implemented here

consists of a dropout layer followed by a fully connected layer

that maps the encoded representation to the desired number

of labels:

class TransformerForSequenceClassification(nn.Module): def __init__(self, config):

super().__init__()

self.encoder = TransformerEncoder(config)

self.dropout = nn.Dropout(config.hidden_dropout_

prob)

self.classifier = nn.Linear(config.hidden_size,

config.num_labels)

def forward(self, x):

x = self.encoder(x)

[:, 0, :] # select hidden state of [CLS] token

x = self.dropout(x)

x = self.classifier(x)

return x

self.encoder: This is the Transformer encoder that

processes the input sequence.

self.dropout: This layer is used to prevent overfitting

during training.

self.classifier: This fully connected layer maps the

encoder’s output to the desired number of classes.

As just shown, the classification model leverages the

Transformer encoder to create powerful representations of

the input text. By attaching a classification head, we can

train this model for various tasks, such as sentiment analysis,

language modeling, question answering, and more. However,

the typical way these models are trained to solve downstream

tasks, such as sentiment analysis, involves a two-step training

process. First, in the pre-training phase, the Transformer

encoder is trained on a language modeling task. Then, in the

second step, known as fine-tuning, the model is further

trained on a specific dataset related to the task, and a

classification or regression head is added to solve specific

problems. More details on this process, along with practical examples, can be found in Chapters 9 and 10.

In fact, the structure described here is essentially an

implementation of the BERT model, which has become a

foundational tool for many NLP applications due to its

versatility and powerful performance across a wide range of

tasks.

For complementary purposes, the accompanying notebook

[DecoderOnly Transformers—Notebook] showcases an

implementation of a decoder-only transformer model,

specifically GPT, to complement the discussion of decoder-

only transformers presented here.

 5.3.6 From NLP Transformer to the Time-series

 Transformers

Given the great success of Transformer models in capturing

long-range dependencies in sequential data—such as text,

audio, and video—it is natural to wonder if they can also be

applied to time-series applications, as time-series data, like

text, is inherently sequential.

Transformers are known for several advantages, which we

will discuss in more detail in Chapter 10. To mention a few, these models improve their performance in NLP tasks as

model size, training data volume, and training time increase

(see Kaplan et al., 2020). They are also highly parallelizable

and adaptable for multiple downstream tasks, as

demonstrated by Devlin et al. (2019). These qualities are

motivating the industry to explore whether Transformers can

achieve a similar level of success in modeling time-series

problems.

For language modeling tasks, Transformers are trained with

the objective of predicting the next token in a sequence

based on the previous tokens. This is conceptually similar to

the time-series forecasting task, where we want to predict the next element of the series based on previous values, or

perform what is called a “one-step-ahead forecast.” In time-

series terminology, we could say that the language modeling

task is akin to forecasting a discrete time series where the

elements in the sequence take values from a finite

vocabulary, with a time horizon of one. Given this similarity

in objectives, we might wonder what modifications are

needed to apply Transformers to time series.

As hinted, one key difference is that most of the time, the

values in a time series are unbounded, continuous quantities,

unlike in a text sequence, where elements (called tokens)

take values from a finite vocabulary. A straightforward idea

for adapting Transformers to time-series data is to convert

the continuous values of the series into a finite set of values,

or tokens, drawing an analogy to text applications, similar to

how words are represented in language tasks. This approach

is taken in Chronos: Learning the Language of Time Series

(Ansari et al., 2024).

5.3.6.1 Discretizing Time-series Data: The Chronos

Approach.

In the paper Chronos: Learning the Language of Time Series

(Ansari et al., 2024), the authors propose an approach for

using Transformers on time-series data by tokenizing time-

series values. This is achieved by first normalizing and then

quantizing the time series, transforming continuous values

into discrete “tokens” that can be processed by standard

Transformer architectures.

1. Normalization: Each time series is normalized to mitigate

scaling differences between series and improve model

optimization. The authors use mean scaling, in which

each series is normalized by the mean absolute historical

value within the “historical context”—the number of

inputs to the Transformer.

2. Quantization: The normalized values are then quantized

into a fixed number of bins, converting continuous values

into a discrete set of values, or tokens. These discrete

tokens represent the time series in a way similar to how

text is represented by a sequence of tokens.

Once each value has been tokenized, token embeddings

and positional embeddings are created in the same way as

for language modeling tasks and combined by addition to

form the input embeddings for the Transformer. At inference

time, since the model outputs tokens, a process of

dequantization and denormalization is applied to convert

discrete token predictions back into continuous values.

This method allows the use of standard Transformer

architectures, such as T5 (Raffel et al., 2020; encoder-

decoder) and GPT-2 (Radford et al., 2019; decoder-only),

without architectural modifications. The authors of Chronos

demonstrated that this approach is effective across a wide

range of time-series data, achieving strong results on out-of-

sample data. To train their models, the authors compiled

time-series data from various domains, including retail,

energy, finance, healthcare, and climate science, enhancing

generalization by incorporating synthetic data generated

through data augmentation techniques.

In the accompanying notebook [Chronos Notebook], we

explore the use of Chronos on the Exchange Rate dataset,

which contains daily exchange rates for currencies of eight

countries (Australia, United Kingdom, Canada, Switzerland,

China, Japan, New Zealand, and Singapore) from 1990 to

2016 (Exchange Rate data). Part of this data was used to

train Chronos, and according to the references provided in

their repository and paper, we evaluate Chronos’s

performance on the unseen part of the data, highlight some of its limitations, and compare it with some simple baselines.

5.3.6.2 Continuous Input for Transformers: The Lag-

Llama Approach.

An alternative approach to discretizing the time series is to

treat the data as it is, using continuous values so that the

network takes continuous inputs and outputs continuous

values. This approach not only requires preprocessing the

input to create “token embeddings,” but also adjustments to

the output, as we are now solving a regression task rather

than a classification task, as in language modeling. This is

the approach taken in the paper Lag-Llama: Towards

 Foundation Models for Probabilistic Time Series Forecasting

(Rasul et al., 2024).

In this work, the authors adapt the Llama model (Touvron et

al., 2023), a decoder-only Transformer architecture, to

output continuous values rather than discrete tokens by

introducing a final layer that predicts the parameters of

continuous distributions, specifically a t-distribution, rather

than the parameters of a categorical distribution typical in

multiclass classification problems.

The modifications in Lag-Llama include the following:

1. Probabilistic continuous output layer: Instead of

predicting the parameters of a categorical distribution

that allocates probability mass over a finite vocabulary of

tokens, Lag-Llama outputs the parameters of a t-

distribution, allowing the model to make probabilistic

forecasts over continuous values.

2. Lagged and date-time features: In addition to using the

current time step, Lag-Llama incorporates lagged

features—previous values at various intervals (e.g.,

quarterly, monthly, weekly)—to enrich the input and

capture seasonality and periodic patterns. The model also includes features such as the hour, day, and month, etc.,

derived from the timestamp, which provide additional

contextual information about each time point. The

authors also include summary statistics of the series to

provide additional context.

3. Normalization and outlier control: Lag-Llama normalizes

each time series and mitigates outliers using the

interquartile range (IQR).

By enriching the current input with lagged and date-time

features, the authors provide the Llama model with more

contextual information to capture long-term and short-term

dependencies effectively. In our experience with forecasting

tasks involving large datasets of multivariate time series, this

type of feature engineering helps models capture seasonal

characteristics and improves forecasting performance.

In the Lag-Llama approach, the current and lagged values of

the series, along with engineered date-time features, are

concatenated into a vector. See Figure 5.10 for an illustration of how these features are constructed. This vector is then

projected into the model’s “token embedding” space,

creating an analogous “token representation” as in NLP

applications, which serves as the input to the Transformer

model, as shown in Figure 5.11.

[image: Image 698]

[image: Image 699]

[image: Image 700]

[image: Image 701]

Figure 5.10 An illustration showing how the current and lagged values of the series, combined with

engineered date-time features, are concatenated into

a vector. Each component of the vector represents

past value of

 (shown in blue), along with

temporal covariates (date-time features) derived from

the timestamp (shown in red). Figure 1 from Rasul et

al. (2024).

[image: Image 702]

[image: Image 703]

[image: Image 704]

[image: Image 705]

Figure 5.11 An illustration showing how the model input, comprising the time-series value at timestep

with

 lags,

 date-time features, and summary

statistics, is projected into the transformer’s “token

embedding” space, creating a “token representation”

similar to NLP applications. Figure 2 from Rasul et al.

(2024).

In the accompanying notebook [Lag-Llama Notebook], we

explore the use of Lag-Llama on the same Exchange Rate

dataset. For Lag-Llama, since this dataset has not been used

for training the model according to the authors, we will

evaluate its “zero-shot” performance. As an additional

exercise, we will fine-tune the model on this dataset and

observe how its performance is affected. Similar to Chronos,

we will highlight some of its limitations and compare its

performance with simple baselines.

 5.3.6.2.1 Innovations and Approaches.

The examples of Chronos and Lag-Llama illustrate some of

the most common techniques for adapting Transformer

architectures for time-series applications, which in these

cases required few to no modifications to existing

Transformer architectures. In these cases, much of the work

revolves around techniques for preprocessing time-series

data and enriching contextual information, using methods

such as normalization, quantization, and the addition of

lagged values and datetime features. We also saw how

different preprocessing choices, such as applying

quantization or not, affect how the problem is framed: as a

classification problem (as in Chronos, which requires no

changes to standard Transformer architectures and treats

the problem similarly to text tasks) or as a regression

problem (as in Lag-Llama, where the authors modified the

last layer of the architecture to model a probability

distribution over continuous values).

While these examples showcase a few interesting

adaptations, they are by no means representative of the full

range of approaches that can be applied to improve model

performance. In particular, there are approaches that focus

on improving the space and time complexity of Transformers,

which we have not yet discussed.

Over the past few years, numerous Transformer

architectures for time series have been proposed. To the best

of our knowledge, the main areas of work are around the following:

1. Input Normalization and Contextual Information: This

area includes scaling time-series data to help model

optimization, applying various normalization techniques,

handling outliers, and quantizing the series. Context can

be enriched by incorporating lagged values or creating

datetime features to capture important seasonal and

calendar effects, or incorporating macroeconomic

indicators, as well as indicators from markets or indices

that are not part of the target time series—some of which

were outlined in Chapter 3, among others. This

information is typically projected to create “token

embeddings,” which serve as inputs to the Transformer.

For example, some models use one-dimensional

convolutional layers as projection layers, as seen in the

Informer architecture (Zhou et al., 2021).

2. Positional Encoding: Transformers are permutation-

invariant by nature, posing a challenge when handling

sequential data like time series. Positional encoding is

crucial to convey order information in NLP tasks and

becomes even more vital for time-series applications,

where the sequence order is essential. Solutions range

from fixed positional encodings, as used in the original

Transformer (Vaswani et al., 2023), to learnable

positional embeddings like the one discussed in Section

5.3.5.4.

3. Attention Layer efficiency: Improving the efficiency of the

attention mechanism is an active area of research,

especially for time-series data, which often involves long

historical sequences and forecasting over extended

horizons. Improving computational complexity of this

layer can help reduce inference latency and help us to

meet the system requirements of specific applications.

Recall from our earlier discussion in Section 5.3.5.2 that

[image: Image 706]

[image: Image 707]

[image: Image 708]

[image: Image 709]

[image: Image 710]

[image: Image 711]

[image: Image 712]

the vanilla Transformer’s attention mechanism (Vaswani

et al., 2023), computes a dot product between each query

and all keys, resulting in a time complexity of

for

inputs. To reduce this complexity, several methods

have been proposed. For example, the Informer model

(Zhou et al., 2021) reduces the computational cost of the

attention layer by computing attention for a subset of

“active queries,” rather than for all queries, thus,

achieving a time complexity

.

4. New transformers architecture variants: Researchers

have developed architecture variants to account for the

multi-resolution nature of time series. For example, the

Informer architecture down-samples the series by

inserting max-pooling layers between attention blocks

(Zhou et al., 2021). The Pyraformer model (Liu et al.,

2021) introduces a pyramidal attention module that

summarizes features at different resolutions, enabling it

to model temporal dependencies over varying time scales

effectively.

For a more detailed overview of the most well-known

Transformer architectures for time series at the time of

writing, we recommend the excellent resource Transformers

 in Time Series: A Survey (Wen et al., 2023). Additionally, for

an application of transformers as building blocks in portfolio

construction, see Cong et al. (2021).

5.4 Model Fitting

Autoregressive models are often referred to as Maximum

Likelihood models, since they primarily rely on Maximum

Likelihood Estimation (MLE) for parameter estimation. All

the models discussed in this chapter use MLE as the main

method for parameter learning. Once we define a model class

parametrized by , denoted as

, it becomes essential to

[image: Image 713]

[image: Image 714]

[image: Image 715]

[image: Image 716]

[image: Image 717]

[image: Image 718]

[image: Image 719]

[image: Image 720]

[image: Image 721]

[image: Image 722]

[image: Image 723]

establish a metric that evaluates the model’s ability to

approximate the data probability distribution, denoted as

. Of course, we discussed MLE fitting already in Chapter

3, but here is a new way to think about it.

Considering that our goals include computing probability

densities, determining hidden structures, and generating

new samples, determining a single model scoring metric that

fulfills all these objectives can be challenging. Intuitively, if a

model can closely approximate the distribution

, it

should theoretically perform well in the other tasks.

Therefore, our objective is to align the model distribution

as closely as possible with

.

To quantify the closeness between two distributions, we use

the Kullback-Leibler divergence,

, defined as:

(5.18)

Our goal is to minimize the Kullback-Leibler divergence

between the empirical data distribution and our model’s

distribution:

(5.19)

The term

does not depend on and is thus

irrelevant to the optimization process. Hence, the objective

function, cost function, or score to minimize is given by:

(5.20)

Given that we only have access to samples from

, the

empirical estimation is:

[image: Image 724]

[image: Image 725]

[image: Image 726]

(5.21)

This formulation corresponds to Maximum Likelihood

Estimation, or minimizing the Negative Log Likelihood, which

aims to increase the probability mass at points present in our

training dataset while assigning lower probabilities to those

that are absent.

To minimize this objective function, the typical optimization

algorithm used is Stochastic Gradient Descent (SGD):

(5.22)

Here,

represents the loss computed using a batch or

subset of the data, facilitating efficient gradient computation

and model updates.

5.5 Conclusions

As we have explored in this chapter, autoregressive models

are powerful tools for modeling high-dimensional sequences.

We began with classical approaches such as linear AR

models, progressed to RNNs, and concluded with the

groundbreaking Transformers that have reshaped the fields

of NLP, speech, computer vision, and more. However, at the

time of writing, Transformers for time-series applications

have not yet reached the level of performance observed in

other domains such as text and vision tasks.

Adapting Transformers for time series may require further

optimization and empirical work to achieve the same level of

success. Throughout this chapter, we have highlighted points

that could provide pathways for improvement. By addressing

the unique challenges posed by time-series data, future

research and development can help bridge the current

performance gap. Based on findings in the literature, simple

customized solutions, such as solutions based on linear AR

models, can still outperform them, particularly when

forecasting financial time series. However, Transformer

models offer many advantages, and their use depends on

your main objective—whether it is performance, scalability

for handling multiple heterogeneous time series, custom

versus general solutions, or other factors.

When it comes to applications of Transformers for developing

trading strategies, they are powerful tools for preprocessing

alternative data, providing valuable insights for systematic

strategies or discretionary investment managers. As a use

case, in Chapter 9, we will demonstrate how to leverage this powerful model for processing alternative data and develop

systematic trading strategies.

[image: Image 727]

Chapter 6

Deep Latent Variable Models

In the previous chapter, we discussed how autoregressive

models leverage previous values in a sequence to represent

highly complex, high dimensional probability distributions.

In contrast, latent variable models adopt a distinct

approach to approximating the probability distribution

. Latent variable models do not use previous values in the

sequence as AR models do; instead, they assume the

existence of an unobservable hidden variable that

influences every data point in the dataset.

In this chapter, we focus on models where the knowledge

of the hidden or latent variables partially explains the

observed data. Here, the relationship between the hidden

variables and the observations is not fully deterministic—

we introduce some uncertainty in the modeling step

regarding how the latent variables generate the observed

data. On the other hand, models where the latent variables

completely determine the observed data—where a

deterministic, invertible mapping exists between the

hidden variables and the data—will be the subject of

Chapter 7. These are known as flow models or invertible models. In Chapter 8, we will introduce another type of latent variable model: Generative Adversarial Networks

(GANs). Unlike the models discussed here or in the next

chapter, GANs do not explicitly model the probability

distribution of the data.

In this chapter, we focus on models where the

dimensionality of this latent variable is significantly smaller

than that of the observed data. Introducing hidden

variables in our models helps model a high-dimensional

multimodal distribution as the integral of the product of two simpler distributions. Commonly, these simpler

distributions belong to the exponential family, which

simplifies the overall modeling process while retaining

flexibility in capturing the underlying data structure. The

Hidden Markov Model that we introduced in Chapter 3 is obviously one simple example of such latent variables

model (where there is some dynamic between the latent

variables), but we shall see that Principal Component

Analysis (PCA) introduced there can also be viewed as an

example of latent variables model. Deep latent variable

models, such as the well-known variational autoencoders

discussed in this chapter, belong to the category of explicit

models that estimate densities approximately, as shown in

Figure 6.1. This chapter will leverage the full machinery of deep learning to create a much richer variety of these

models.

[image: Image 728]

[image: Image 729]

[image: Image 730]

[image: Image 731]

[image: Image 732]

Figure

6.1

Model

taxonomy:

variational

autoencoders.

6.1 Introduction

To illustrate the utility of latent variable models, consider

their application in finance, particularly for modeling and

estimating the covariance matrix of multivariate time

series. Covariance matrices are fundamental in finance,

utilized for tasks such as regression analysis, risk

estimation, portfolio optimization, and scenario simulation

through Monte Carlo methods (López de Prado, 2020).

Let’s assume we have a lengthy history of returns from

time series, each representing an asset’s historical returns.

A straightforward approach to modeling these multivariate

time series is to ignore individual time-series serial

correlation and assume a constant covariance across assets

over time. At any time index , the returns could be

modelled as a draw from a constant probability

distribution, for example,

, where

[image: Image 733]

[image: Image 734]

[image: Image 735]

[image: Image 736]

[image: Image 737]

[image: Image 738]

[image: Image 739]

[image: Image 740]

[image: Image 741]

[image: Image 742]

[image: Image 743]

[image: Image 744]

[image: Image 745]

[image: Image 746]

represent the return at time index , is the mean return

vector, and is the covariance matrix of returns.

To provide context, consider modeling the daily returns of

the S&P 500 index components, thereby setting the

number of time series to

. Here, the simplest

estimator for the covariance matrix would require

computing

covariance

values. This large number of parameters can become

problematic if the available daily data are limited.

Another way to think about modeling

is to assume it is

influenced by a smaller set of underlying, unobserved

factors that partially explain the observations.

These factors may look similar to traditional multi-factor

models, such as the Fama-French three-factor model we

discussed in Chapter 2, which explains asset returns using factors like the market, Small Minus Big (SMB), and High

Minus Low (HML) factors. However, a key difference

between these traditional models and the ones we will

explore in this chapter is that, in the traditional case, the

factors are observable—they can be measured, and often,

they can even be traded, providing significant value to

traders. In contrast, the models introduced in this chapter

deal with unobservable factors. These are hidden, or latent,

variables, terms we will use interchangeably in this

chapter, and which are common in the literature.

For instance, Factor Analysis (FA), a type of latent variable

model, decomposes the covariance matrix as

, where

is known as the loading matrix,

being

the number of factors (a hyperparameter in FA) with

, and

is a

diagonal matrix. In financial

terminology, we can think of

as the systematic

covariance matrix, representing the part of the asset’s

returns variance explained by the factors, and

as the

[image: Image 747]

[image: Image 748]

[image: Image 749]

[image: Image 750]

[image: Image 751]

idiosyncratic covariance matrix—the variance of asset’s

returns not explained by the factors. This type of variance

decomposition is particularly useful for risk modeling in

portfolio construction applications, where we might be

interested in reducing the exposure of our strategy to

certain factors or placing an upper limit on systematic

variance, etc. This formulation of variance decomposition

allows constraints like these to be easily incorporated into

the portfolio optimization process.

This method significantly reduces the number of

parameters to estimate, from

to

,

from

to

. For example, if

, the

parameter count drops to 5,010 compared to 125,250—a

25-fold reduction. Because this modeling approach assumes

that observations are explained by a smaller set of factors,

the covariance matrix is inherently low rank. This not only

reduces the number of parameters to estimate but also

decreases the memory required to store the covariance

matrix compared to simpler modeling approaches.

What is fascinating about latent variable models is that,

even though the factors are not directly observed, by

making probabilistic assumptions about how they behave,

we can infer their values and estimate the associated model

parameters. Hamlet remembers when he first studied these

kinds of models; I was absolutely fascinated by them. In the

context of FA, things get even more interesting when we

introduce dynamics into the latent variables, leading to

models such as the well-known Kalman Filter.

As we will see in this chapter, when we consider Deep

Latent Variable Models, the algorithms used to estimate

these models become even more interesting. The concepts

and tools required to develop them are applied in many

fields, including statistics, machine learning, optimization,

[image: Image 752]

[image: Image 753]

[image: Image 754]

[image: Image 755]

[image: Image 756]

[image: Image 757]

[image: Image 758]

[image: Image 759]

[image: Image 760]

[image: Image 761]

[image: Image 762]

[image: Image 763]

information theory, etc., and have applications across many

areas.

6.2 Latent Variable Models

Latent variable models aim to represent high-dimensional

data distributions using two simpler distributions. The

model involves a latent variable and an observed variable

,where is an

-dimensional random vector and is a -

dimensional random vector. By design, we choose

to ensure a lower dimensionality for the latent space.

A latent variable model is defined by the joint probability

distribution of the latent and observed variables as

. The model is specified by two

components: a probability distribution over the latent

variables,

, called the prior distribution, and a

conditional distribution over the observed data given the

latent variables,

, which maps from the latent space

to the data space. Sampling in latent variable models is

relatively straightforward, as it follows the data generation

process described by:

(6.1)

The challenge lies in choosing the prior and conditional

distributions to represent our hypotheses about the data

generation process. These choices also determine the

specific methods used for performing latent variable

inference and parameter estimation.

As examples of these particular choices, we will briefly

examine traditional latent variable models such as Factor

Analysis (FA), Probabilistic Principal Component Analysis

[image: Image 764]

[image: Image 765]

[image: Image 766]

[image: Image 767]

[image: Image 768]

[image: Image 769]

[image: Image 770]

[image: Image 771]

[image: Image 772]

(PPCA), and Gaussian Mixture Models (GMM) before

moving on to the main topic of this chapter: Deep Latent

Variable Models.

6.3 Examples of Traditional Latent

Variable Models

 6.3.1 Factor Analysis

As we have already seen, Factor Analysis (FA), see Bishop

(2006), is a foundational model that expresses the modeling

assumption that data can be explained by a reduced

number of factors. This approach has interesting

applications, such as covariance matrix estimation and

dimensionality reduction we just saw, among others.

Similarly, PPCA, which we will also examine later, builds on

this probabilistic framework. In this section, we will go into

the probabilistic formulation of these methods.

In FA, we assume that both the marginal and conditional

distributions are Gaussian and are defined as follows:

(6.2)

where

is the prior distribution over the latent

variable, and

, and

represents the conditional

probability over the latent variable

given the observed

data

.

In the FA literature, the matrix

is referred to as

the loading matrix, and it captures the correlations

between the observed variables. The vector of means

can be thought as a bias term. The matrix

is

[image: Image 773]

[image: Image 774]

[image: Image 775]

[image: Image 776]

[image: Image 777]

[image: Image 778]

[image: Image 779]

[image: Image 780]

[image: Image 781]

[image: Image 782]

[image: Image 783]

[image: Image 784]

[image: Image 785]

[image: Image 786]

[image: Image 787]

[image: Image 788]

[image: Image 789]

[image: Image 790]

diagonal with elements and represents the noise

covariance matrix. The values along the diagonal are the

independent noise variances for each variable. In finance,

this is commonly referred to as idiosyncratic variance, as

described in Bodie et al. (2018).

To obtain the marginal distribution over

, we integrate

out all possible values of the latent variable

:

In FA, where both

and

are Gaussian, this

integral has a closed-form solution. However, a simpler way

to compute the marginal distribution and to avoid the

previous integral is to express

as:

where

.

Using the property that Gaussians are closed under

addition and multiplication, the marginal distribution over

is also Gaussian. Therefore, we only need to compute the

mean and covariance of

, which are given by:

Thus, the marginal distribution over

is:

where

, retrieving the formulation presented

in the introduction of this chapter.

Parameter estimation in this model follows a well-known

approach: the parameters , , and

are estimated from

data using the Expectation-Maximization (EM) algorithm.

[image: Image 791]

[image: Image 792]

For more details on parameter estimation for FA, see

Bishop (2006).

 6.3.2 Probabilistic Principal Component

 Analysis

Probabilistic Principal Component Analysis, or Probabilistic

PCA (PPCA), is the probabilistic version of PCA proposed

by Bishop and Tipping (2001). As we know, PCA is a widely

used technique in data analysis and processing, yet it does

not rely on a probabilistic model. Particularly in finance,

PCA is employed to identify statistical factors that can be

utilized for asset prediction (Chan, 2017) or risk modeling,

where these factors have shown performance comparable

to fundamental ones (see Paleologo [2021]).

This model is closely related to the Factor Analysis. In

PPCA, both the prior and conditional distributions are

Gaussian and are defined by the same equations as in

Equation 6.2. However, the key difference between the two methods is that PPCA assumes

is a constant diagonal

matrix, denoted as

.

This assumption provides a computational advantage while

preserving the interpretability of Factor Analysis.

6.3.2.1 Example: Comparing PCA and Factor Analysis

for Latent Space Recovery.

As an illustrative use case for Factor Analysis (FA) versus

Probabilistic PCA (PPCA), let’s explore an example adapted

from the sklearn documentation (https://scikit-

learn.org/stable/auto_examples/decomposition/plot_pca_vs

_fa_model_selection.html). As we have seen, FA and PPCA

are closely related: both assume Gaussian prior and

Gaussian conditional distributions. The key difference lies in their treatment of idiosyncratic variance.

PPCA assumes homoscedastic noise, meaning the

variance is the same for all variables (identity

covariance matrix).

Factor Analysis assumes heteroscedastic noise, where

each variable has its own variance (diagonal covariance

matrix).

This example illustrates the ability of PCA (the limiting case

of PPCA with zero variance) and Factor Analysis to recover

the correct latent dimension in a low-rank simulated

dataset with additive noise. We examine two cases, one

with homoscedastic noise, with the same variance for each

variable (identity covariance), and a second case with

heteroscedastic noise, with different variance for each

variable (diagonal covariance).

For the experiment, we generate 100-dimensional data with

an underlying low-rank structure (latent dimension = 10).

Results regarding model selection for homoscedastic noise

are illustrated in Figure 6.2. In this case, the low-rank data has been corrupted with noise that has equal variance

across all variables. Both PCA (blue) and Factor Analysis

(red) successfully recover the correct latent dimension of

10 when performing model selection.

[image: Image 793]

Figure 6.2 Illustration of model selection for homoscedastic noise.

On the other hand, results regarding model for

heteroscedastic noise are illustrated in Figure 6.3. Here, the low-rank data are corrupted with noise that has varying

variance across variables. This leads to a more interesting

result:

Factor Analysis (red) correctly identifies the latent

dimension as 10, aligning with its assumption of

heteroscedastic noise.

PCA (blue), on the other hand, overestimates the latent

dimension.

[image: Image 794]

[image: Image 795]

Figure 6.3 Illustration of model selection for heteroscedastic noise.

These results demonstrate how the assumptions behind

each method influence their ability to capture the true

latent structure in the presence of different noise

characteristics.

6.3.2.2 Advantages of Probabilistic Approaches

(PPCA/FA) over PCA

There are several advantages of using the probabilistic

approach, either with PPCA or FA, over PCA, also called the

non-probabilistic PCA. Some of the main ones include the

following:

Estimation with Missing Data: PPCA and FA provide

a natural framework for parameter estimation when

some entries of a vector in the dataset

are

missing. This contrasts with the non-probabilistic PCA,

where parameter estimation with missing data might

requires data imputation techniques.

Mixtures of Probabilistic Principal Component

Analysis Models: Sometimes, a single PCA projection

is insufficient to explain the data. Why not use a

mixture of PCA models? This idea is analogous to

Gaussian Mixture Models (GMM), detailed in the next

section, where the data distribution is approximated

using a mixture of Gaussians rather than a single

Gaussian. Similarly, the probabilistic framework allows

that a mixture of PPCA models can be easily

implemented to better capture the structure of the

data, which is an advantage over the non-probabilistic

approach.

Data Generation and Likelihood Computation: If

your task involves data generation or the computation

of densities (e.g., finding the likelihood of a point in

your dataset), the probabilistic versions (PPCA/FA) are

the way to go, as they explicitly model the data

distribution.

For more details on these advantages, as well as the

estimation procedures for FA, PPCA, and PCA using the

Expectation-Maximization (EM) algorithm, refer to the

excellent reference paper by Bishop and Tipping (2001) on

PPCA.

In practice, choosing the appropriate method can be done

using cross-validation or domain knowledge. Also, you

might:

Use explained variance to determine the dimension of

the latent space.

You might decide between PPCA and FA based on

whether you believe the idiosyncratic variance

[image: Image 796]

[image: Image 797]

[image: Image 798]

[image: Image 799]

[image: Image 800]

[image: Image 801]

[image: Image 802]

[image: Image 803]

[image: Image 804]

[image: Image 805]

[image: Image 806]

[image: Image 807]

[image: Image 808]

[image: Image 809]

[image: Image 810]

(residual noise) of each variable should be equal

(homoscedastic), requiring a single

to estimate, or

different (heteroscedastic), requiring variances to

estimate

.

For initial data exploration or modeling insight, you

might use PCA, which is computationally more efficient

to estimate than its probabilistic counterpart.

Depending on your needs, PCA might offer a good

trade-off between performance and computational

complexity, especially when the amount of data to

process is extremely large.

By understanding or making assumptions about the noise

structure in our data we can make a better informed

decision about our modeling choices.

 6.3.3 Gaussians Mixture Models

In the Gaussian Mixture Model (GMM), the latent variable

is discrete, taking values in the set

, while the

observed value is continuous, taking values in

. The

latent variable follows a Categorical distribution, denoted

as

, where

,

and, for example, the probability that the variable takes

the value is given by

. The conditional

distribution of given are Gaussian, defined by

.

The mixture of Gaussian becomes apparent when

computing the marginal over the observed variable by

marginalizing the joint probability between the latent and

observed variables over the latent variable, as follows:

[image: Image 811]

[image: Image 812]

[image: Image 813]

[image: Image 814]

(6.3)

The result is simply a weighted sum of Gaussians (hence

the adjective “mixture”). We can create different mixture

models by altering the probability mass over the latent

variables.

The posterior probability distribution of the latent variables

given the observations quantifies the probability that the

data point was generated by the -th mixture component.

It is given by the conditional distribution:

(6.4)

For an illustrative example of GMM applied to clustering,

see Figure 6.4. For more details on GMM see the excellent references Bishop (2006) and Murphy (2022).

[image: Image 815]

[image: Image 816]

[image: Image 817]

Figure 6.4 Illustration of clustering using Gaussian Mixture Models (GMMs). (a) Generated 2D data

samples. (b) A possible clustering of the same data

with

 using GMMs with a diagonal covariance

matrix. (c) A possible clustering with

 using

GMMs with a full covariance matrix. Cluster

assignments (indicated by colors) are determined

by selecting the cluster with the highest posterior

probability for each point. Illustration based on

Figure 3.12 in Murphy (2022), with additional details.

6.3.3.1 Gaussian Mixture Model (GMM) for Market

Regime Detection.

Let’s explore how Gaussian Mixture Models (GMM) can be

applied to a well-known problem: detecting market

regimes. As we know, markets change over time, and

traders and investors often use domain knowledge to label

certain periods. Common labels we hear in the press, on the news, or in interviews include terms like “bull market,”

“bear market,” “trending market,” or “mean-reverting

market,” and so on. In this case, however, we are going to

take a data-driven approach to estimate market regimes.

Modeling market regimes is crucial for traders and

investors, as for example, it might help them deploy the

most appropriate strategy from a pool of potential

strategies for the current market conditions or incorporate

regime information into portfolio construction models for

risk management. As we will see, GMM serves as a

powerful building block for developing more sophisticated

models that can be tailored to your specific market

insights.

6.3.3.2 Example: Low and High Volatility Regimes.

In this hypothetical scenario, based on domain knowledge,

let’s say we are interested in identifying two distinct

clusters that may correspond to two different market

regimes: one with low volatility and the other with high

volatility. These regimes might be identified entirely based

on domain knowledge or through exploratory data analysis.

For instance, it’s unlikely that the returns of an asset like

the SPY could be well explained over long periods using a

single Gaussian distribution with constant mean and

constant variance. Consider recent periods in history, such

as the time before, during, and after the COVID-19

pandemic. During the pandemic, volatility was

exceptionally high, while the months before and after

exhibited much lower volatility. For simplicity, we might

build a model to capture this high-volatility period

separately from the low-volatility periods, which we could

then visualize as “clusters” in the SPY returns time series.

From an application point of view, identifying volatility

[image: Image 818]

[image: Image 819]

[image: Image 820]

[image: Image 821]

[image: Image 822]

[image: Image 823]

[image: Image 824]

[image: Image 825]

[image: Image 826]

[image: Image 827]

[image: Image 828]

regimes can help traders make decisions such as adjusting

portfolio allocations, modifying leverage levels, or

implementing volatility-specific trading strategies.

In the following example, we use the SPY ETF return data

for market regime detection. In this setup, the latent

variable represents the market regime and can take two

possible values: “low volatility” or “high volatility.”

Conditioned on the market regime (or state of), we

assume that returns follow a Gaussian distribution with

regime-specific means and variances.

In this case, the data generation process can be described

as follows. Since we have only two states for the latent

variable, 0 or 1, at time we draw the value of the state

from a Bernoulli distribution with parameter , where

:

Once the value of the latent variable is determined, at time

we generate data from the corresponding Gaussian

distribution, with regime-specific means and variances, as

follows:

Here, the state

corresponds to the first cluster, or

low-volatility regime, while

represents the second

cluster, or high-volatility regime. In the accompanying

notebook [GMM-Market-Regime-Detection], we will

demonstrate how to estimate the parameters of this model,

namely

, using data from the SPY ETF.

Figure 6.5 is a time-series plot of SPY returns from January 2000 to March 2024, along with the most probable market

regimes estimated from the posterior probability

distribution (see Equation 6.4) for this period. In this plot,

[image: Image 829]

individual points represent SPY returns, while vertical

frames indicate the most probable regime at each time

point. Light orange corresponds to regime 0 (low volatility),

and blue corresponds to regime 1 (high volatility) (see

Figure 6.5). As shown in Figure 6.5, this simple model identifies well-known high-volatility periods over the

timeline, such as the 2008 financial crisis and the pandemic

period in 2020. It is worth noting that in this example, we

are addressing the problem of market regime detection or

identification, not market regime forecasting or prediction.

Figure 6.5 Gaussian Mixture Model for market regime detection.

Two Sigma, one of the largest hedge funds in the world,

ranked fourth in Forbes Advisor’s “Top 10 US Hedge Funds

of December 2024” (Baldridge, 2024) with $67.47 billion in

assets under management (AUM) at the time of writing this

chapter, shared a similar approach in their blog post, “A

Machine Learning Approach to Regime Modeling,” see

Botte and Bao (2021). They used GMM to detect market

regimes and identified four clusters they linked to different

market conditions: Crisis, Steady State, Inflation, and

Walking on Ice. They backed these labels with historical

analysis and applied the method to custom-built factors developed in-house.

Even though their setup uses more clusters and proprietary

data, the underlying method is very similar. GMM is a

strong starting point for building more powerful models,

which you can tailor with your unique insights into the

market.

There are many ways to improve our modeling approach

for regime detection. For example, one limitation of the

basic GMM setup is that it assumes the latent variables are

independent over time. This assumption ignores the well-

known stylized fact of volatility clustering, where periods of

high volatility tend to be followed by more high-volatility

periods, and the same is true for low-volatility periods.

To capture this, you can add dynamics to the latent

variables. This essentially turns GMM into a Hidden

Markov Model (HMM), which has been widely used for

market regime detection (see Chan [2017] Kinlaw et al.,

[2021]). Unlike GMM, HMM adds “memory,” allowing it to

better reflect how market conditions evolve over time.

As a fun historical note, Leonard Baum

(https://en.wikipedia.org/wiki/Leonard_E._Baum), one of the first employees of Monemetrics (the precursor to

Renaissance Technologies, considered the most successful

quantitative hedge fund ever), co-developed the Baum-

Welch algorithm. This algorithm, a special case of

Expectation-Maximization (EM), is used to estimate the

parameters of an HMM.

According to Gregory Zuckerman’s book (Zuckerman,

2019), The Man Who Solved the Market, James Simons,

founder of Renaissance Technologies, said about his early

days at Monemetrics: “Once I got Lenny (Leonard)

involved, I could see the possibilities of building models.”

[image: Image 830]

[image: Image 831]

[image: Image 832]

[image: Image 833]

[image: Image 834]

[image: Image 835]

[image: Image 836]

[image: Image 837]

[image: Image 838]

[image: Image 839]

[image: Image 840]

[image: Image 841]

Now, in the rest of this chapter, we will focus on cases

where the parameters of the conditional distribution of

observations given the latent variables are functions of the

latent variables and are modeled using Deep Neural

Networks.

 6.3.4 Deep Latent Variable Models

In this book, we will focus on specific representations for

the latent variable model we have discussed so far, namely:

Here,

represents the prior over the latent variable .

Unlike the earlier examples, the parameters of the

conditional probability of given are determined by Deep

Neural Network function of . Typically, as before, the

relationship is represented as

, but now is defined as

.

Note that

is also known as the decoder, a term that

you will find all over the deep learning and LLM literature.

Such models are referred to as Deep Latent Variable

Models (DLVM). When the prior over the latent variable is

Gaussian, the model is known as a Deep Latent Gaussian

Model (DLGM); see Murphy (2023).

Contrary to the examples previously discussed, the

posterior computation

is intractable. Likewise, the

marginal over is also intractable:

[image: Image 842]

[image: Image 843]

[image: Image 844]

[image: Image 845]

[image: Image 846]

[image: Image 847]

We will need to approximate this quantity to compute the

density of and, in turn, use it to estimate the parameters

of the model, In the next section, we will explore methods

for approximating this integral to effectively train Deep

Latent Variable Models.

6.4 Learning

 6.4.1 Training Objective

As we discussed in the previous chapter on autoregressive

(AR) models, once we define a family of probability

distributions parametrized by , denoted by

, our goal

is to establish an objective function that will allow us to

select the best model from this family that most accurately

approximates the data distribution,

.

Similar to AR models, we will use the log-likelihood to

define our objective function:

however, as we have observed, this calculation is

intractable for most interesting cases.

[image: Image 848]

[image: Image 849]

[image: Image 850]

[image: Image 851]

[image: Image 852]

[image: Image 853]

[image: Image 854]

[image: Image 855]

[image: Image 856]

[image: Image 857]

 6.4.2 The Variational Inference Approximation

Given that the exact likelihood is intractable, we will derive

an approximation for it and pick the best model by

optimizing this quantity. The following derivations were

inspired by the exposition style presented in Levine (2021).

Let’s focus on a single observation

(6.5)

where

indicates expectation value over the

distribution

. In this derivation, we introduced an

arbitrary distribution

by applying an identity—

multiplying and dividing the integrand by this quantity.

This technique allowed us to rewrite the integral as an

expectation with respect to arbitrary distribution

. This

technique is known as importance sampling, and it provides

a framework for approximating expectations with respect

to distributions that are difficult to sample from but easy to

evaluate. It does so by using a distribution that is easier to

sample from, such as

, which is a design choice (see

Bishop [2006]). In the importance sampling literature,

is referred to as the proposal distribution.

Applying Jensen’s inequality to Equation 6.5,

, we can push the

inside the

expectation, obtaining:

[image: Image 858]

[image: Image 859]

[image: Image 860]

[image: Image 861]

[image: Image 862]

[image: Image 863]

[image: Image 864]

(6.6)

Here, the last expression in Equation 6.6 is known as the Evidence Lower Bound (ELBO, pronounced as “elbow”),

defined as follows:

(6.7)

The ELBO can be written or interpreted in two ways

(Levine, 2021). The first one uses the entropy formulation:

(6.8)

here,

represents the Entropy of the probability

distribution , defined

.

The second commonly used interpretation involves the

Kullback-Leibler Divergence:

(6.9)

This formulation highlights the common interpretation

given to this objective function in the variational inference

literature: the first term represents the reconstruction

[image: Image 865]

[image: Image 866]

[image: Image 867]

[image: Image 868]

[image: Image 869]

[image: Image 870]

[image: Image 871]

[image: Image 872]

[image: Image 873]

[image: Image 874]

[image: Image 875]

[image: Image 876]

[image: Image 877]

[image: Image 878]

[image: Image 879]

error (log likelihood), and the second term serves as a

regularization term. The advantage of this approach is that

the KL divergence between

and

often has a

closed-form solution, especially when both distributions are

Gaussian—a common design choice that also simplifies the

gradient computation.

6.4.2.1 How to Choose the Proposal Distribution

One critical decision in this formulation is to pick the

proposal distribution,

. We could say that it makes

sense to align the proposal distribution close to the

posterior distribution of the latent variable given the

observed data , represented as

. Therefore, we can

opt to minimize the KL divergence between both

distributions to make

close to

, which involves:

(6.10)

here, minimizing

with respect to is

equivalent to maximizing

with respect to , since

is independent of :

[image: Image 880]

[image: Image 881]

[image: Image 882]

[image: Image 883]

[image: Image 884]

[image: Image 885]

[image: Image 886]

[image: Image 887]

[image: Image 888]

[image: Image 889]

[image: Image 890]

[image: Image 891]

[image: Image 892]

(6.11)

Hamlet remembers the first time he encountered this

derivation and how amazed he was by its elegant result. It

enables us to design a proposal distribution using tractable

quantities, even when the quantities involved in the

derivation, such as the posterior distribution, are

intractable. In most practical cases, where deep neural

networks are used to parameterize conditional

distributions, computing the posterior

directly is

infeasible. If we had direct access to this posterior, we

could use it instead of relying on

.

Remarkably, the derivation shows that we do not actually

need access to the posterior

to find a proposal

distribution

that is close to it, that minimizes the KL

divergence between both distributions. By developing the

optimization problem, we discover that making

as

close as possible to the posterior is equivalent to

maximizing Equation 6.7, the ELBO with respect to . This is a powerful result because the ELBO consists of

quantities that are tractable and can be computed

efficiently.

What surprised Hamlet most is the realization that by

optimizing the same objective—the ELBO—with respect to

, we can simultaneously find the best parameters for

approximating the data distribution. In other words, finding

the optimal that best approximates the posterior and the

optimal that best models the data involves alternating

between two steps:

1. Maximizing the ELBO with respect to to make

as

close as possible to the posterior

in KL

divergence sense.

[image: Image 893]

[image: Image 894]

[image: Image 895]

[image: Image 896]

[image: Image 897]

[image: Image 898]

[image: Image 899]

[image: Image 900]

[image: Image 901]

[image: Image 902]

[image: Image 903]

[image: Image 904]

[image: Image 905]

[image: Image 906]

[image: Image 907]

[image: Image 908]

[image: Image 909]

2. Maximizing the ELBO with respect to to increase the

likelihood of the observed data .

This alternating optimization approach unifies the goals of

posterior approximation and data likelihood maximization

under the same objective function.

Recall that we have constructed all these equations for a

single, fixed, observation . One of the challenges with this

formulation is that for each

in our dataset , we need to

solve an inference problem as specified by Equation 6.11 to determine for the specific

, denoted as

. For example,

if we represent

, this will involves

finding a unique

and

for every data point.

Consequently, the number of parameters to be estimated

are:

here, the notation

represent the number of parameters.

As indicated by the previous formula, the number of

parameters to estimate is linear with respect to the size of

the dataset , which in current practical applications can

be huge.

6.4.2.2 Amortized Inference.

The main idea behind amortized inference is that if we

repeatedly face the same inference problem, could a

parameterized function solve it for us? This leads us to

consider using a family of neural networks for this task.

Instead of determining a distinct by solving the

optimization problem in Equation 6.11 for every individual

, we might think of finding a single

where the

parameters are determined by a Deep Neural Network that

[image: Image 910]

[image: Image 911]

[image: Image 912]

[image: Image 913]

[image: Image 914]

[image: Image 915]

[image: Image 916]

[image: Image 917]

[image: Image 918]

[image: Image 919]

[image: Image 920]

takes as input, and that minimizes the average KL

divergence across the entire dataset:

(6.12)

This formulation enables us to use another Deep Neural

Network to define the parameters of

and solve the

problem in an amortized manner. This network takes an

input and outputs the parameters of a probability

distribution over the latent variable is commonly referred

to as the encoder in the literature.

 6.4.3 Optimization

As previously seen, to optimize for and , we need to

maximize the same training objective, the ELBO, with

respect to both and . Now, considering the computation

of:

(6.13)

we face the challenge of computing gradients with respect

to , which involves taking the derivative with respect to

the parameters of the distribution over which the expected

value is taken. There are two common methods to address

this problem: the famous REINFORCE algorithm (Williams,

1992) and the reparametrization trick (Kingma, 2013).

6.4.3.1 The Likelihood Gradient, REINFORCE.

The REINFORCE algorithm can be derived as follows:

[image: Image 921]

[image: Image 922]

[image: Image 923]

[image: Image 924]

[image: Image 925]

[image: Image 926]

[image: Image 927]

[image: Image 928]

(6.14)

This method computes the gradient of an expectation by

exploiting the identity

. So, the

gradient of an expectation becomes the expectation of a

gradient. REINFORCE uses a Monte Carlo approach to

estimate the gradient of the expectation in Equation 6.14.

One advantage of this method is that it works with latent

variables whose value spaces can be either discrete or

continuous. However, one of the primary disadvantages

with this approach is that it tends to suffer from high

variance. For more details about the algorithm, see

Williams (1992).

6.4.3.2 Reparameterization Trick.

An alternative approach is the reparameterization trick

(Kingma, 2013), which can be utilized for the computation

of Equation 6.13.

For expectations involving sampling from

, we can reparametrize as:

(6.15)

where

. With the reparametrization trick, all

randomness is absorbed by , and for computing the

[image: Image 929]

[image: Image 930]

[image: Image 931]

[image: Image 932]

[image: Image 933]

[image: Image 934]

[image: Image 935]

[image: Image 936]

[image: Image 937]

[image: Image 938]

[image: Image 939]

[image: Image 940]

[image: Image 941]

gradient with respect to , we just need to compute the

gradient of the deterministic functions

and

.

This gradient can be computed efficiently using automatic

differentiation tools such as PyTorch or TensorFlow.

 6.4.4 Mind the Gap!

Another way to write Equation 6.10 is:

(6.16)

In this formulation, the term

is known as

the gap or error that arises when approximating the log

likelihood by the ELBO. If we truly match

to

, the

KL will be zero and the log likelihood is equal to the ELBO.

Consequently, the error in our approximation is quantified

by the KL divergence between our approximation

to

.

6.5 Variational Autoencoder (VAE)

The Variational Autoencoder (VAE) is a latent variable

model where the marginal distribution over the latent

variable is Gaussian, and both the encoder and decoder (to

be discussed shortly) are modeled as conditional Gaussians,

as described by Kingma (2013). The observations can be

images, multivariate time series, etc.

The encoder takes as input and outputs the parameters of

, specifically the mean vector and covariance matrix.

Similarly, the decoder takes as input and outputs the

[image: Image 942]

[image: Image 943]

[image: Image 944]

[image: Image 945]

[image: Image 946]

[image: Image 947]

[image: Image 948]

[image: Image 949]

[image: Image 950]

[image: Image 951]

[image: Image 952]

[image: Image 953]

[image: Image 954]

[image: Image 955]

mean vector and covariance matrix for

. The

classical VAE is typically trained using the

reparametrization trick. A schematic representation of

these operations is illustrated in Figure 6.6.

Figure 6.6 VAE.

 Source: EugenioTL /

https://en.m.wikipedia.org/wiki/File:Reparameterized_Variational_Aut

oencoder.png, last accessed on 13 January 2025 / CC BY 30.

More formally, the classical VAE (Kingma, 2013) is defined

by the following representations:

The prior over ,

The encoder,

The decoder

VAEs are typically trained using the reparametrization

trick. During training, the ELBO is used as training

objective:

with

. To optimize for and ,

gradients

and

are computed, typically

using Stochastic Gradients. Parameters and can be

then updated using gradient ascent.

[image: Image 956]

After training the VAE, new points can be generated by

sampling a value from the prior and feeding this value into

the decoder to generate a new sample:

In Figure 6.7, we see visualizations from the paper Kingma (2013) of the learned latent space and the corresponding

data space, generated by a VAE after training on the Frey

Faces dataset.

[image: Image 957]

Figure 6.7 Illustration of the learned data manifold for generative models with a two-dimensional

independent Gaussian latent space. Varying one

coordinate generates smiling faces, while varying

the other alters head poses, both independently.

The model was trained on the Frey Faces dataset.

 Source: Kingma (2013).

A remarkable aspect is that since the prior of the latent

space are independent Gaussian variables (identity

covariance), using a two-dimensional latent space

illustrates disentanglement in the data space. Varying one

coordinate can generate smiling faces, while varying the

[image: Image 958]

[image: Image 959]

[image: Image 960]

[image: Image 961]

[image: Image 962]

[image: Image 963]

[image: Image 964]

[image: Image 965]

[image: Image 966]

[image: Image 967]

[image: Image 968]

[image: Image 969]

other can alter head poses, all independently, as shown in

Figure 6.7.

The VAE can also serve as a representation learning tool

for downstream machine learning tasks. For example, if

represents an image, the compressed representation

could be used as input for an image classifier. In fact, this

representation learning approach is utilized in Stable

Diffusion, one of the most powerful techniques for image

generation currently available.

In the accompanying notebook for this chapter ([VAE

 Notebook]), we implement and test the traditional VAE

model introduced by Kingma (2013). While this example

uses image data, it serves as an important step for building

a solid understanding of VAEs, which we will extend to

capture time-series dynamics.

6.6 VAEs for Sequential Data and

Time Series

As we saw in the previous section based on the work of

Kingma (2013), and illustrated in Figure 6.7, VAEs are really good at modeling the correlations within an image

in a dataset, where

is a -dimensional vector of pixel

intensities. If we want to apply standard VAEs to time-

series data, we might simply reinterpret the vector

as a

multivariate time series with series at time and use

VAEs to sample cross-sectional time series, for example.

However, in the standard latent variable model framework,

the data generation process assumes that we sample

from

and then generate

from the conditional

distribution

. By design, this structure assumes

independence between consecutive observations. This

independence assumption can significantly limit the

[image: Image 970]

[image: Image 971]

performance of VAEs in scenarios where temporal

dependencies between observations are significant.

There are several interesting ways to extend the standard

VAE to capture temporal dependencies between

observations. This is particularly important for modeling

time series at certain time scales, where past

prices/returns, market conditions, and other factors

significantly influence future prices/returns. These

extensions can take inspiration from traditional time-series

models, such as incorporating autoregressive structures in

the observations or latent variables, similar to classical

AutoRegressive models or Dynamic Linear Models (DLMs),

see Prado and West (2010). Next, we mention a few

alternatives for this.

 6.6.1 Extending VAEs for Time Series

6.6.1.1 Sequential Encoders and Decoders.

One straightforward extension is to replace the standard

VAE encoder and decoder used in Kingma (2013) with

sequential models, such as RNNs, or Transformers. One

example of this approach is the Variational Recurrent

Autoencoder (VRAE) by Fabius and Van Amersfoort (2014).

Following is a brief description of the main idea behind

VRAE:

VRAE uses the final hidden state of the encoder RNN

as a representation or summary of the input sequence.

This hidden state is then used to determine the

parameters of the probability distribution of the latent

variable . In other words, the distribution over is

determined from the last state of the RNN.

[image: Image 972]

[image: Image 973]

The latent variable is then sampled using the

reparameterization trick.

Finally, the sampled latent variable is passed into the

decoder RNN, which reconstructs the input sequence.

6.6.1.2 Superposition of Time-series Components.

Another approach is to model time series as a superposition

of components—an idea commonly used in dynamic linear

models (DLMs), see Prado and West (2010). In this

framework, the observed time series might be composed as

a combinations of the following:

Local level or intercept (e.g., a random walk)

Long-term trend components

Seasonal patterns (e.g., weekly, monthly, or yearly

periodicities)

Short-term autocorrelated processes

Here, each time-series component can have its own state

vector (latent variables), which is then projected linearly

into the data space.

This approach provides both the interpretability and the

flexibility to incorporate domain expertise, address data

limitations, and adapt to the specific needs of the problem

at hand. By using individual time-series components,

modelers can design solutions that are tailored to their

specific needs. In the next section, we will describe a

solution based on this principle.

If you want to learn more about DLM models, check out the

introduction to Bayesian Structural Time-series Models

(Medina Ruiz, 2019), which explores time-series modeling

for predicting Criteo’s internet traffic load in the context of

server infrastructure capacity planning. This example

highlights how injecting domain knowledge into the

modeling process can address data limitations and improve

the overall performance.

6.6.1.3 TimeVAE: A Flexible VAE for Time-series

Generation.

A more recent example of extending VAEs to time series is

TimeVAE, introduced by Desai et al. (2021). TimeVAE

adapts VAEs specifically for multivariate time-series

generation, combining traditional deep learning layers with

time-series-specific components.

By using specialized decoders, TimeVAE allows the

inclusion of temporal structures—such as trends and

seasonal components—directly into the modeling process.

This approach combines the flexibility and interpretability

of traditional methods like Dynamic Linear Models (DLMs),

but with the advantage of capturing nonlinear relationships

in high-dimensional data. TimeVAE makes use of both

traditional learning layers (e.g., dense and convolutional

layers) and custom time-series-specific layers to capture

components like levels, multi-polynomial trends, and

seasonalities.

The TimeVAE architecture is divided into two main parts:

Base TimeVAE, which does not incorporate domain

knowledge for modeling the time series, and Interpretable

TimeVAE, which allows domain knowledge to be injected

and is tailored to model specific time-series components.

Following is a description of the architecture.

 6.6.1.3.1 Architecture of TimeVAE

[image: Image 974]

[image: Image 975]

1. Base TimeVAE encoder and decoder

The encoder processes the input time series

through a series of convolutional layers with ReLU

activation.

The output of the encoder is flattened and passed

through a fully connected (dense) linear layer to

determine the parameters of the distribution over

the latent variable , which is modeled as a

multivariate Gaussian.

A realization of the latent variable is sampled

using the reparametrization trick, which is then

feed into the decoder.

The decoder tries to invert the encoding process. It

consists of a fully connected linear layer, followed

by reshaping and a series of transposed

convolutional layers with ReLU activation. Finally,

the data passes through a time-distributed fully

connected layer to produce the reconstructed time

series.

A schematic representation of Base TimeVAE can be found

in Figure 6.8.

[image: Image 976]

[image: Image 977]

[image: Image 978]

[image: Image 979]

[image: Image 980]

Figure 6.8 Illustration of the encoder-decoder architecture of Base TimeVAE. The input

 is

processed through a series of operations, including

convolutional layers, reshaping, and a dense layer,

to determine the parameters of the latent variable

distribution . The decoder takes a realization of

and tries to reconstruct the input by inverting the

encoding process. Figure 1 from Desai et al. (2021).

2. Interpretable TimeVAE: Time-series-specific

components

As mentioned, TimeVAE introduces specialized decoders to

model individual components of a time series, such as

trends and seasonalities.

Each specialized decoder takes the latent variable as

input (which can be produced by the Base TimeVAE

encoder). The outputs of these decoders are combined in

parallel by addition to produce the final reconstruction of

the time series. A schematic representation of Interpretable

TimeVAE can be found in Figure 6.9.

[image: Image 981]

[image: Image 982]

Figure 6.9 Illustration of the main components in Interpretable TimeVAE. Specialized decoders, such

as the Trend Block, Seasonal Block 1, and Seasonal

Block 2, take the latent variable

 as input. The

outputs of these decoders are combined in parallel

through

addition

to

produce

the

final

reconstruction of the time series. Seasonal Block 1

and Seasonal Block 2 can represent different

seasonal

components,

capturing

multiple

seasonalities present in the time series. Figure 2

from Desai et al. (2021).

TimeVAE provides the following advantages:

Flexibility: You can easily model multiple temporal

components, such as polynomial trends of different

degrees, and different seasonalities (e.g., weekly,

monthly, yearly), making it highly adaptable to capture

different time-series characteristics.

Interpretability: By explicitly modeling components like

trends and seasonality, TimeVAE makes it easier to

understand the underlying structure of the time series.

Nonlinear Modeling: unlike traditional models like

DLM, TimeVAE can capture complex nonlinear

relationships in high dimensional data.

In the accompanying notebook for this chapter ([TimeVAE

 Notebook]), we implement and test TimeVAE on financial

data. We believe that the best way to learn is by hands-on

practice, and this notebook gives you the opportunity to

explore and experiment with the specific decoder

architectures used in the paper for modeling trends and

seasonalities. You can also extend these architectures to fit

your specific needs.

If you are not yet familiar with the standard VAE

implementation, we recommend starting with the VAE

notebook, where the encoder and decoder architectures

are easier to follow. This will provide a solid foundation

before diving into TimeVAE.

6.7 Conclusion

In this chapter, we explored how VAEs provide a powerful

framework for modeling complex, multimodal, and high-

dimensional data.

We saw how VAEs are highly efficient at sampling and

flexible for modeling high-dimensional data using a smaller

latent space representation. This latent space provides

meaningful data representations that can be used for

applications such as compression, data generation, and

other downstream tasks. However, one trade-off for this

flexibility is that the likelihood computation becomes

intractable for most practical cases involving deep models.

To address this, we rely on likelihood approximations,

which enable parameter estimation and tasks like model

selection.

We also discussed how VAEs can be extended to handle

sequential data, particularly for time-series dynamics. For

example, we introduced approaches like the VRAE and

TimeVAE, which combine the VAE framework with

sequential architectures like RNNs and time-series-specific

components. These models offer a practical starting point

for building solutions tailored to your own applications,

whether for forecasting financial data, generating financial

data, or other sequential problems or data. The latent

representation learned by VAEs is highly versatile and can

be used to train downstream models to solve a wide variety

of applications. While we have seen its use in time-series

generation, it can also be used for tasks such as

classification, anomaly detection, and forecasting.

In the next chapters, we will continue expanding our

toolbox of deep generative models for high-dimensional

data—models that were originally successful in NLP and

computer vision. More importantly, for our use cases in

Trading and Asset Management, we will explore techniques

to show how these models can be further extended and

adapted for time-series and sequential data applications.

[image: Image 983]

Chapter 7

Flow Models

In the last chapter, we explored how Deep Latent Variable

Models (DLVMs) model complex probability distributions

as the integral of the product of two simpler distributions.

This approach, while powerful, introduces several

complexities, such as the intractability of the marginal

probability of the observations. To address this, we often

resort to approximations like the Evidence Lower Bound

(ELBO).

In this chapter, we will examine a simpler yet effective

approach for modeling complex distributions: flow models.

Flow models are also latent variable models but circumvent

many of the challenges associated with DLVMs described in

the previous chapter. They allow us to compute marginals

(i.e.,

) exactly, sample efficiently, and use them for

representation learning without the need for complex

likelihood approximations. Flow models fall into the

category of explicit models with a tractable density, as

illustrated in Figure 7.1.

[image: Image 984]

[image: Image 985]

[image: Image 986]

[image: Image 987]

[image: Image 988]

[image: Image 989]

[image: Image 990]

[image: Image 991]

[image: Image 992]

[image: Image 993]

[image: Image 994]

[image: Image 995]

[image: Image 996]

Figure 7.1 Model taxonomy: flow models.

7.1 Introduction

Latent Variable Models (LVMs) are characterized by a

probability distribution over the latent variable , denoted

by

, and a conditional probability distribution over the

observation given the latent variable , denoted by

. In Deep Latent Variable Models, the parameters of

this conditional probability are determined by a Deep

Neural Network called the decoder. The decoder takes as

input and outputs the parameter of the probability

distribution over . For example, in the case of the

Variational Autoencoder (VAE), these parameters are the

mean vector and covariance matrix of a Gaussian

distribution over . In this setting, the value of influences

the probability density over the possible states of , but it

does not deterministically specify its state. Thus, the

mapping from to provided by the decoder is

probabilistic.

[image: Image 997]

[image: Image 998]

[image: Image 999]

[image: Image 1000]

[image: Image 1001]

[image: Image 1002]

[image: Image 1003]

[image: Image 1004]

[image: Image 1005]

[image: Image 1006]

[image: Image 1007]

[image: Image 1008]

[image: Image 1009]

[image: Image 1010]

[image: Image 1011]

[image: Image 1012]

In flow models, we replace the probabilistic decoder

, with a deterministic mapping from the latent

variable to the observation , denoted by

. In the

terminology of flow models,

is called the base

measure or base distribution, and is referred as the flow.

In these models, computing the marginal or density of

involves solving a derived distribution problem, where the

base measure

is given, and we aim to find the

probability distribution of as a function of the base

measure. The distribution of is given by the change of

variables formula, which allows us to express the

probability density

as a function of the known

.

(7.1)

with

, and

representing the Jacobian

matrix.

In flow models, the base measure is typically a simple

distribution, such as a normal distribution or a uniform

distribution. When the base measure is a normal

distribution, the flow model is known as a normalizing flow.

The goal is to design the flow to be a highly complex

function capable of mapping a simple base measure to a

multimodal, complex data distribution.

Compared to deep latent variable models discussed in the

previous chapter, normalizing flows allow exact

computation of marginals without the need for

approximations or lower bounds. Sampling in flow models

is also simpler, and can be performed as follows:

[image: Image 1013]

[image: Image 1014]

[image: Image 1015]

[image: Image 1016]

[image: Image 1017]

[image: Image 1018]

[image: Image 1019]

[image: Image 1020]

[image: Image 1021]

[image: Image 1022]

(7.2)

Thus, we sample from the base measure and apply the

flow transformation to obtain the observation .

The change of variables formula imposes certain

constraints on the family of flows that we can use.

Specifically, for this formula to work, must be invertible

and differentiable. Consequently, the dimensionality of the

observations must be equal to the dimensionality of the

latent variable .

To meet these requirements, we need to design special

neural network architectures that are invertible and

differentiable. This often involves creating innovative and

complex deep models that satisfy to these constraints.

7.2 Model Training

We train flow models using maximum likelihood estimation.

The log-likelihood is given by:

(7.3)

where

. The primary challenge lies in

designing neural network architectures to model a flow

that is invertible and has a Jacobian determinant that can

be efficiently computed. This is crucial for ensuring that the

[image: Image 1023]

[image: Image 1024]

[image: Image 1025]

[image: Image 1026]

[image: Image 1027]

[image: Image 1028]

[image: Image 1029]

[image: Image 1030]

[image: Image 1031]

[image: Image 1032]

[image: Image 1033]

[image: Image 1034]

[image: Image 1035]

[image: Image 1036]

[image: Image 1037]

[image: Image 1038]

[image: Image 1039]

[image: Image 1040]

[image: Image 1041]

log-likelihood can be computed quickly for potentially

millions of data points in our dataset. In the following

sections, we will detail and elaborate on some architectures

that meet these constraints.

7.3 Linear Flows

Let’s revisit the linear factor model from the last chapter,

where the prior over and the conditional model of

are

given by:

(7.4)

To convert this linear factor model into a flow model, a

simple approach is to replace the probabilistic mapping or

probabilistic decoder from to , defined by the

conditional distribution, with a deterministic mapping or

flow, represented by . If we assume the same base

measure

(prior) and the flow as

, we

obtain what is known as Linear Normalizing Flows, see

Kobyzev et al. (2021). This can be interpreted as a scale

and location transformation of the variable . In this

setting, must be a

invertible matrix in order for

the flow to be invertible.

Sampling under this model is straightforward. We sample

from the base measure

, and compute using the

flow and the realized value of

.

As an exercise, let’s compute the marginal distribution over

using the change of variables formula. To apply this

formula, we need to know the inverse flow, which is given

by

, and the Jacobian, which is

[image: Image 1042]

[image: Image 1043]

[image: Image 1044]

[image: Image 1045]

[image: Image 1046]

[image: Image 1047]

[image: Image 1048]

[image: Image 1049]

[image: Image 1050]

[image: Image 1051]

equal to . Then, the density over can be computed as

follows:

where we used the fact that

.

Thus, follows a Gaussian distribution with mean vector

and covariance matrix

. An easier way to compute the

marginal distribution over is to recognize that a linear

transformation of a Gaussian distribution results in another

Gaussian distribution. Hence, the probability distribution

over can be derived by computing its mean vector and

covariance matrix:

Therefore,

[image: Image 1052]

[image: Image 1053]

[image: Image 1054]

[image: Image 1055]

[image: Image 1056]

[image: Image 1057]

However, linear flows are limited in their expressiveness,

as they only modify the mean and covariance matrix of the

base distribution. Even if we stack multiple linear

transformations, they remain closed under composition.

This means that the composition of linear transformations

is equivalent to a single linear transformation, which limits

the expressiveness of this model. This is insufficient for

modeling very complex data distributions. In general, for

base measures that are members of the exponential family,

a linear transformation remains within the exponential

family, potentially eliminating the need for the change of

variables formula for computing the probability density

over the observations. However, in the case of nonlinear

flows, this formula is essential.

Additionally, the determinant of the Jacobian

equal to

. If is a full matrix, computing this

determinant requires

operations, which can be

prohibitively expensive for high-dimensional datasets.

One way to reduce the computational complexity of the

Jacobian’s determinant and its inverse is to impose some

particular structure on the linear transformation, in our

case on the matrix , that reduce the computational cost of

inverse and determinant calculations. For example, Table

7.1 shows useful structures that can be imposed on the

matrix used for the linear transformation, along with the

computational complexity for computing its inverse and

determinant. More useful structures are discussed in

Kobyzev et al. (2021) and Brubaker and Köthe (2021).

[image: Image 1058]

[image: Image 1059]

[image: Image 1060]

[image: Image 1061]

[image: Image 1062]

[image: Image 1063]

[image: Image 1064]

[image: Image 1065]

[image: Image 1066]

[image: Image 1067]

[image: Image 1068]

[image: Image 1069]

[image: Image 1070]

[image: Image 1071]

[image: Image 1072]

[image: Image 1073]

TABLE 7.1

Computational complexity of the inverse and

determinant of the Jacobian based on matrix

structure. Here,

 denotes the dimension of the

latent variable, and represents the block size for

Block Diagonal matrices or the number of channels

for 1 × 1 convolutions.

Adapted from Brubaker and Köthe (2021).

Matrix Type

Inverse

Determinant

Complexity

Complexity

Full

Diagonal

Triangular

Block Diagonal

LU Factorized

Special

Convolution

1 × 1

Convolution

7.4 Designing Nonlinear Flows

As we saw in the previous example with a linear flow, its

expressiveness is very limited since a composition of linear

transformations is equivalent to a single linear

transformation. Additionally, we highlighted some of the

main requirements that a flow must satisfy for the change

of variables formula to work, as well as some key

[image: Image 1074]

[image: Image 1075]

[image: Image 1076]

[image: Image 1077]

[image: Image 1078]

properties for model expressiveness and computational

efficiency. We want flows that are:

Expressive enough to model complex data distributions

Invertible

Differentiable

Computationally efficient to invert

Computationally efficient to compute the Jacobian

determinant

Flows are also called flow layers or bijections, see Kobyzev

et al. (2021).

From deep neural networks, we know that an easy way to

improve model expressiveness is through function

composition. An important aspect of flow models is that the

composition of invertible flows or layers remains invertible.

So, if we compose different flows, such as

, and each

is invertible and

differentiable, then will also be invertible and

differentiable.

Additionally, the determinant of the Jacobian for the

composed function has a very convenient form:

[image: Image 1079]

[image: Image 1080]

[image: Image 1081]

[image: Image 1082]

(7.5)

where

. Thus, under the composition of flows,

the determinant of the Jacobian is equal to the product of

the determinants of the Jacobians of the individual flows,

which provides significant computational advantages. This

form simplifies the computation of log-likelihoods to the

sum of the log-determinants of each function involved in

the composition.

In the following sections, we will describe one main way of

designing nonlinear flows that are used in practice–

coupling flows. Coupling flows are based on the principle of

composition of invertible layers, a principle widely applied

to the design of deep invertible neural network flows.

Within this class, we will describe two specific cases:

Nonlinear Independent Components Estimation (NICE) and

Non-volume Preserving Transformation (Real-NVP).

7.5 Coupling Flows

Coupling flows are a widely used approach for constructing

nonlinear flows (Dinh et al., 2015). The main idea is to

partition the vector into two parts:

[image: Image 1083]

[image: Image 1084]

[image: Image 1085]

[image: Image 1086]

[image: Image 1087]

[image: Image 1088]

[image: Image 1089]

[image: Image 1090]

[image: Image 1091]

[image: Image 1092]

[image: Image 1093]

[image: Image 1094]

[image: Image 1095]

[image: Image 1096]

[image: Image 1097]

[image: Image 1098]

[image: Image 1099]

[image: Image 1100]

[image: Image 1101]

[image: Image 1102]

[image: Image 1103]

[image: Image 1104]

[image: Image 1105]

(7.6)

To transform into , we apply the flow , such that

. In the same manner, we can partition :

(7.7)

A flow is considered a coupling flow if:

(7.8)

where the first partition of

remains unaffected by

the flow , and

is another invertible transformation

(another flow) with parameters , applied to the second

partition of

.

The parameters of the function

, denoted as , are

defined by an arbitrary function . In practice, is

modelled by a neural network, whose input depend only on

the first partition of

and not in the second partition

. The function is referred to as a conditioner,

which does not need to be invertible. The function

is

known as a coupling function or coupling transform,

and must be a monotonic function of its argument,

therefore invertible. The function is called a coupling

flow or coupling layer. As we will see in the following

examples, different well-known coupling flows differ in how

they define the conditioner and the coupling function.

Specifically, we will examine two cases: one utilizing an

additive coupling function and another employing an affine

coupling function.

[image: Image 1106]

[image: Image 1107]

[image: Image 1108]

This structure has several advantages for building complex

nonlinear mappings, which are invertible. By stacking

multiple “coupling layers,” we can create highly expressive

flows while keeping the computation of the Jacobian

determinant efficient, as we will see in the next section.

As an illustration of the process, Figure 7.2 demonstrates how the vector is partitioned and then transformed using

the flow as described.

Figure 7.2 Illustration of the operations involved in coupling

flows,

including

partitioning

and

transformation using a coupling layer.

Adapted from Brubaker and Köthe (2021).

In the following section, inspired by the exposition style of

Levine (2021), we will explore two specific

implementations of coupling layers: Nonlinear

Independent Components Estimation (NICE) and Non-

volume Preserving Transformation (Real-NVP).

 7.5.1 NICE: Nonlinear Independent Components

 Estimation

In this section, we explain the approach to designing

invertible layers based on the work by Dinh et al. (2015),

[image: Image 1109]

[image: Image 1110]

[image: Image 1111]

[image: Image 1112]

[image: Image 1113]

[image: Image 1114]

[image: Image 1115]

[image: Image 1116]

[image: Image 1117]

[image: Image 1118]

[image: Image 1119]

[image: Image 1120]

[image: Image 1121]

[image: Image 1122]

[image: Image 1123]

[image: Image 1124]

[image: Image 1125]

known as NICE: Nonlinear Independent Components

Estimation.

As mentioned before, the approach involves partitioning

the vector into two parts, described as

. Due to the constraints of the invertible mapping, the

dimension of must also be equal to . We decompose the

entries of also into two components, namely

. In NICE, the invertible layer is defined

as follows:

(7.9)

NICE uses an additive coupling function, which is an

invertible transformation with parameters defined by

. In practice,

is implemented using a neural

network, such as an MLP, a CNN, or other architectures

tailored to the specific problem. Given the value , we can

recover the vector by first recovering its first

entries:

, and then using this result to recover the

second part of the entries

.

The Jacobian of this mapping is given by:

(7.10)

where

is an identity matrix with

diagonal elements.

[image: Image 1126]

[image: Image 1127]

[image: Image 1128]

[image: Image 1129]

[image: Image 1130]

[image: Image 1131]

[image: Image 1132]

Since we are interested in the determinant of the Jacobian,

we do not need to compute the

entry of , as the

of is zero, and

will not contribute to the result.

Thus, the determinant of the Jacobian is

.

The log-likelihood for this model is given by:

(7.11)

which is computationally convenient. However, the fact

that the determinant of the Jacobian is constant and equal

to 1 means that this flow only transforms the base measure

but does not rescale it. This limits the expressiveness of the

model and makes it difficult to fit very complex data

distributions (see Levine [2021]). Therefore, in practical

settings, a rescaling layer is often inserted into the model

(see Dinh et al. [2015]).

In practice, we stack several of these invertible layers to

train generative flow models effectively. As an illustrative

example of how these models perform on simple image

data, in Figure 7.3, subfigures (a) and (b) show samples from a NICE model that has been trained to model the

distribution of the simple MNIST digits dataset and basic

images from the TFD dataset. The architecture used in both

experiments consists of a stack of four NICE

layers/functions. Each NICE layer is implemented as a deep

rectified network with linear output units. The authors use

the same network architecture for all NICE functions: five

hidden layers with 1,000 units each for the MNIST dataset

and four hidden layers with 5,000 units each for the TFD

[image: Image 1133]

dataset. As observed, the generated digit images (subfigure

a) look like real digits from the MNIST dataset, and the

generated simple face images (subfigure b) resemble faces

to some extent. This model, developed in 2015, was the

first normalizing flow model capable of generating images

of reasonable quality for its time. We will discuss how to

extend these models to capture temporal dependencies in

Section 7.8, as well as an example in financial applications in Section 7.8.3.

Figure 7.3 Illustration of unbiased samples generated by the NICE model when trained on the

MNIST dataset (subfigure a) and the TFD dataset

(subfigure b).

 Source: Dinh, Krueger, and Bengio (2015).

However, when the model is trained on more complex

datasets, as shown in Figure 7.4, its performance

deteriorates. In subfigure (c), we see samples generated

from a model trained on the SVHN dataset, which consists

of color images of digits taken from house numbers. The

model begins to struggle to generate these kinds of color

digits. When trained on CIFAR-10, which is a more complex

[image: Image 1134]

dataset containing a diverse set of realistic object images,

the model generates very low-quality images, showing its

limitations in handling more complex data distributions.

Figure 7.4 Illustration of unbiased samples generated by the NICE model when trained on the

SVHN dataset (subfigure c) and on the CIFAR-10

dataset (subfigure d).

 Source: Dinh, Krueger, and Bengio (2015).

In the accompanying notebook for this chapter ([NICE

 Notebook]), we implement and test the NICE coupling flow

with custom architectures for generating equity financial

data, which can be easily customized for your own

applications. Additionally, we include experimental results

to demonstrate the performance and practical applications

of this approach.

[image: Image 1135]

[image: Image 1136]

[image: Image 1137]

[image: Image 1138]

[image: Image 1139]

[image: Image 1140]

[image: Image 1141]

[image: Image 1142]

[image: Image 1143]

[image: Image 1144]

[image: Image 1145]

[image: Image 1146]

[image: Image 1147]

 7.5.2 Real-NVP: Non-volume Preserving

 Transformation

The Non-volume Preserving Transformation (Real-NVP)

introduced by Dinh et al. (2017) proposes a new kind of

invertible layer that enhances the model’s expressiveness.

In particular, this model’s Jacobian determinant is not

constant, allowing for greater flexibility. Similar to the

NICE model, in Real-NVP, they partition the vectors and

into two parts, namely

and

. The proposed invertible layer

(coupling function) is defined as follows:

(7.12)

where stands for the element-wise product, and

and

are neural network layers that can be implemented

using architectures such as MLPs, CNNs, or other designs

tailored to your specific problem. As defined in Equation

7.12, Real-NVP uses an affine coupling function, which is

by definition an invertible transformation with parameters

given by

. This can be interpreted as a

scale and location transformation of the second partition of

.

To recover the vector from , we apply a transformation

similar to that used in the NICE model:

(7.13)

Given this mapping, we can derive the Jacobian, which is

given by:

[image: Image 1148]

[image: Image 1149]

(7.14)

The Jacobian is triangular, so its determinant is the product

of diagonal entries:

(7.15)

Here we can see that the determinant of the Jacobian is not

constant, allowing for the rescaling of the base measure

and enabling greater expressiveness for the model to fit

very complex data distributions. This makes the Real-NVP

model more expressive compared to the NICE model.

Once again, as an illustrative example of how this performs

on simple image data, Figure 7.5 shows samples generated by the RealNVP model, see Dinh et al. (2017). The authors

of the paper present results of a RealNVP model trained on

various datasets: CIFAR-10, ImageNet (32 × 32), ImageNet

(64 × 64), CelebA, and LSUN (bedroom). In each pair of

columns, the left column shows examples from the dataset,

while the right column displays samples generated by the

model trained on that dataset.

[image: Image 1150]

Figure 7.5 Samples generated by the Real-NVP

model across four datasets: CIFAR-10, ImageNet

(32 × 32), ImageNet (64 × 64), CelebA, and LSUN

(bedroom). For each dataset (subfigures), the left

column shows real examples, while the right column

displays samples generated by the model trained on

the respective dataset.

 Source: Dinh, Sohl-Dickstein, and Bengio (2017).

The authors of this work employed a multi-scale

architecture, as described in Section 3.6 of Dinh et al.

(2017). This architecture incorporates a sequence of

coupling-squeezing-coupling layers, utilizing deep

convolutional residual networks within the coupling

transformations. For a more detailed explanation of the

[image: Image 1151]

[image: Image 1152]

[image: Image 1153]

architecture used in the original experiments, we

encourage readers to refer to the work by Dinh et al.

(2017).

As observed, this model can generate much more realistic

samples, including images of various objects, bedrooms,

natural scenes, and human faces.

Another interesting aspect demonstrated in the RealNVP

paper is the model’s ability for representation learning.

Recall from the beginning of the chapter that one limitation

of these models being invertible is that the dimensions of

the latent variable and the observed variable must be

the same, with being high dimensional. Normally, we

prefer the latent dimension to be lower than the data

dimension, as in the VAEs studied in Chapter 6, to provide a compressed representation of the input data.

In Figure 7.6, the authors showcase Real-NVP’s ability to capture a useful representation of the data in the latent

space. This figure shows new images generated by

interpolations in the latent space between four examples

for different datasets. The datasets used, in clockwise order

from the top left, are CelebA, ImageNet (64 × 64), LSUN

(tower), and LSUN (bedroom).

[image: Image 1154]

Figure 7.6 Illustration of new images generated through interpolations between four examples from

the dataset. The datasets used are, in clockwise

order from the top left: CelebA, ImageNet (64 × 64),

LSUN (tower), and LSUN (bedroom).

 Source: Dinh, Sohl-Dickstein, and Bengio (2017).

For each dataset, four examples are placed at the corners

of each subimage, and the interpolations between them are

generated. The results suggest that even if the latent space

is high dimensional, the model still learns an interesting

structure, where similar images in the data space are also

close in the latent space. This indicates that the model is

capturing a meaningful and semantic representation that

goes beyond simple pixel-space interpolation.

To further test whether the latent space has a consistent

semantic interpretation, the authors trained a class-

conditional model on the CelebA dataset. They found that

the learned representation had a consistent semantic

meaning across class labels, as described in Dinh et al.

(2017).

In the accompanying notebook for this chapter ([RealNVP

 Notebook]), we implement and test the Real-NVP coupling

[image: Image 1155]

flow with custom architectures for generating equity

financial data, which can be easily customized for your own

applications. We will discuss how to extend these models to

capture temporal dependencies in Section 7.8, along with an application to financial data in Section 7.8.3.

In the following sections, we will briefly introduce two

additional approaches for constructing flows:

Autoregressive Flows and Continuous Normalizing

Flows.

7.6 Autoregressive Flows

Another type of flow model is known as Autoregressive

Flows, which are, in fact, one of the first classes of flows

developed (see Papamakarios et al. [2021]). These flows

are motivated by the idea that the joint distribution over

can be factorized into a product of one-dimensional

conditional probability distributions using the chain rule, as

introduced in Chapter 5 on autoregressive models. By parameterizing each conditional distribution, these factors

form the basis of a normalizing flow known as the Masked

Autoregressive Flow (MAF) (see Papamakarios et al.

[2017]; Bishop and Bishop [2023]).

Some of our experiments in Section 7.8 will incorporate MAF flows as building blocks in a model’s architecture.

Regarding the modeling flexibility of Autoregressive flows,

an interesting result, presented in Papamakarios et al.

(2021), shows that all autoregressive models for continuous

variables can be interpreted as autoregressive flows with a

single autoregressive layer. If you want to know more

about this result, refer to Papamakarios et al. (2021) for

further details.

[image: Image 1156]

[image: Image 1157]

[image: Image 1158]

[image: Image 1159]

[image: Image 1160]

[image: Image 1161]

[image: Image 1162]

[image: Image 1163]

7.7 Continuous Normalizing Flows

Another type of flow model is known as Continuous

Normalizing Flows, which take a different approach to

define the mapping from to . In the previous sections,

we discussed constructing flows by parameterizing a

function and applying a finite sequence of

transformations (e.g., coupling layers in Real-NVP) to

transform the base measure

into a more complex

distribution

.

In contrast, Continuous Normalizing Flows view the

mapping from to as a continuous process. Instead of

applying a finite number of discrete transformations, the

transformation can be thought of, loosely speaking, as

applying an “infinite number of infinitesimal

transformations.” This process is mathematically described

by a Neural Ordinary Differential Equation (Neural

ODE). In this framework, the flow is defined by an ODE,

and during the learning process, the parameters of the

ODE are learned from the data, rather than learning the

parameters of individual discrete flows, as in the previous

cases we studied. Continuous Normalizing Flows can be

used to generate the complex continuous stochastic

process of financial data (see Deng et al. [2020]). For more

details on Continuous Normalizing Flows, we encourage

the reader to take a look at Chen et al. (2018) and

Papamakarios et al. (2021).

[image: Image 1164]

[image: Image 1165]

[image: Image 1166]

[image: Image 1167]

[image: Image 1168]

[image: Image 1169]

[image: Image 1170]

[image: Image 1171]

[image: Image 1172]

7.8 Modeling Financial Time Series

with Flow Models

 7.8.1 Transitioning from Image Data to Time-

 series Dynamics

In earlier sections, we introduced two flow models, NICE

and Real-NVP. These models create flows that are

differentiable, invertible, and allow for quick computation

of log-likelihoods. The efficiency in log-likelihood

computation is mainly due to the structure imposed in

these flows, which simplifies the computation of the

determinant of the Jacobian. While so far we had used

image data as examples to demonstrate the capacity of

these models to approximate complex data distributions

(and to highlight the field where these models were

originally developed), flows are not restricted to this

domain and can be used whenever we need to model

complex probability distributions. They can be extended to

other areas, such as time-series modeling, unlocking new

modeling opportunities.

To transition into time series, we can start by simply giving

another interpretation to the data . Instead of thinking as

as a vector of pixel intensities for the -th image in our

dataset, we can think of

as a vector representing

multivariate time series at time . Each component or

“dimension” might correspond to a variable, such as the

returns of a given stock at time , with the vector

providing a snapshot of the cross-sectional returns at that

time. For simplicity, we will use to index time instead of ,

as it is more intuitive in the context of time series.

In this setup, flows like NICE or Real-NVP can model the

cross-sectional relationships (i.e., correlations) among the

[image: Image 1173]

[image: Image 1174]

[image: Image 1175]

[image: Image 1176]

[image: Image 1177]

[image: Image 1178]

[image: Image 1179]

[image: Image 1180]

time series at time . However, by design, these

architectures assume independence between consecutive

observations. Recall how sampling works in standard flow

models: to generate the observations

, we sample

from

the base measure, apply the flow to it to produce

, and

repeat this process for every . This assumption of

independence can limit the performance of these models at

certain time scales, where dependencies between

observations may be significant.

 7.8.2 Adapting Flows for Time Series

Conventional flows like NICE and Real-NVP are good at

modeling cross-sectional dynamics but impose

independence between observations by design. This might

not be enough for modeling financial time series at certain

time granularities, where past prices/returns, market

conditions, and other factors significantly impact future

prices/returns.

So, how can we adapt flows to capture the temporal

dynamics (dependencies over time) present in the data we

want to model? Here are a few ideas:

1. Latent state dynamics: Introduce temporal

dependencies into the latent variables, such that

depends on past latent variables

either

deterministically or stochastically.

This mirrors the idea behind models like the Kalman

filter, or RNN, where latent states depends on the

previous latent space.

[image: Image 1181]

[image: Image 1182]

[image: Image 1183]

[image: Image 1184]

[image: Image 1185]

[image: Image 1186]

[image: Image 1187]

[image: Image 1188]

[image: Image 1189]

[image: Image 1190]

[image: Image 1191]

[image: Image 1192]

[image: Image 1193]

[image: Image 1194]

[image: Image 1195]

[image: Image 1196]

2. AR-style dependencies: Extend the generative process

to depend on past observations, making

a function of

both the latent variable

and previous observations

where is a function that can encode the effect of past

observations on

. This approach mirrors with

autoregressive models.

3. Hybrid approaches: Combine the two methods,

allowing

to depend both of past observations and

past latent variables

where encodes the effect of past observations and

the effect of past latent variables.

4. Time-varying flows: allow the flow to vary with time .

 7.8.3 Case Study: A Practical Example—

 Conditioned Normalizing Flows

To demonstrate these ideas, let’s explore practical

implementations of flows adapted for modeling time-series

dynamic. One notable example is presented in the paper

 Multivariate Probabilistic Time Series Forecasting via

 Conditioned Normalizing Flows (Rasul et al., 2021). In this

work, the authors use Real-NVP flows but adapt them to

handle temporal dependencies. They key idea is to

condition the flow transformation on a hidden state

,

which encodes information about the past:

[image: Image 1197]

[image: Image 1198]

[image: Image 1199]

[image: Image 1200]

[image: Image 1201]

So, how do we get

? The authors explore two approaches.

1. RNN-based hidden state: the first option is to use an

RNN (like an LSTM or GRU) to summarize past

observations and covariates into

:

Here

includes any additional covariates (i.e., in

financial time series think like additional market indicators

or macroeconomic variables, or categorical variables).

2. Transformer-based hidden state: The second option is

to use an encoder-decoder transformer architecture.

Here, the encoder embeds the past observations and

covariates, while the decoder generates the hidden

states for the flow.

As we know, both RNNs and Transformers are effective at

modeling sequential data, with Transformers being

particularly better than RNN for capturing long-range

dependencies.

At this point, you might notice that we are only limited by

our creativity when designing architectures to capture

temporal dynamics with flows. This is another example of

how the building blocks we’ve covered in previous chapters

come together—combining flows with powerful sequential

models like RNNs or Transformers to achieve the same

goal.

Exploring examples like this one can bring to life many

ideas for customizing your own solutions. You might

consider training the model differently, adding or removing

components, or adapting the architecture to better fit your

specific needs.

7.8.3.1 Importance of Domain Knowledge in Financial

Time Series.

In financial time-series modeling, incorporating domain

knowledge during the modeling process is critical. This

field is well known for its low signal-to-noise ratio and non-

stationarity is all over the place, which violates the core

assumptions of independence and identical distribution that

underlie most machine learning solutions. These challenges

make it difficult to achieve good results with generic

models.

This means that most of the time we can’t simply throw a

generic model at the data and expect great outcomes in

this domain. Who knows—perhaps in the near future,

maybe even a few months after this book is published, this

might change. For now, let’s focus on customizing our

solutions to the specific problem at hand so we can extract

valuable insights and, hopefully, some profit.

In the accompanying notebook for this chapter, we explore

these ideas using the Exchange Rate dataset, which

contains daily exchange rates for the currencies of eight

countries (Australia, the United Kingdom, Canada,

Switzerland, China, Japan, New Zealand, and Singapore)

from 1990 to 2016. We will walk through the main

components of the implementation and discuss variations in

the architecture and its performance on other datasets.

7.9 Conclusion

In this chapter, we have seen how flow models are a

powerful addition to our toolbox for handling high-

dimensional data. They combine the fast sampling

capabilities of traditional latent variable models with the

key advantage of exact likelihood computation. By

designing flows with the right structure, we can make

computations like the determinant of the log Jacobian very

efficient, which is a key element for likelihood computation.

We also explored how to extend flows to capture temporal

dependencies. This opens up opportunities to combine flow

models with architectures that we know excels at this task,

such as autoregressive models based on RNN and

Transformers, both of which work great at modeling

sequential data.

By mastering flow models, you add a flexible and efficient

tool to your modeling toolbox, giving you another great

option for modeling high-dimensional multimodal data.

Chapter 8

Generative Adversarial Networks

In previous chapters, we explored modeling high-

dimensional complex data distributions using

Autoregressive Models, Variational AutoEncoders (VAEs),

and Flow Models. While each of these models has its

advantages and disadvantages in terms of computing

densities—whether exactly or through approximations,

sampling efficiency, and representation learning—they all

share a common characteristic: they are likelihood-based

models. This means they use Maximum Likelihood

Estimation (MLE) as the primary approach for learning

their parameters. In the generative learning literature,

these kinds of models are known as explicit models.

In this chapter, we will delve into a different approach for

learning generative models, referred to as implicit models

in the literature, as shown in Figure 8.1. These models do not require the ability to compute the probability density.

This chapter will focus on Generative Adversarial Networks

(GANs) as a prominent example of implicit models, with a

training process that focuses on generating high-quality

realistic high-dimensional samples rather than performing

density estimation.

[image: Image 1202]

Figure 8.1 Model taxonomy: GANs.

8.1 Introduction

In previous chapters, we discussed the primary goals of

generative models: to build models for high-dimensional

data that can accomplish the following:

Compute probability densities

Perform representation learning (identifying hidden

structures)

Generate new samples

Choosing a single metric that measures the quality all these

objectives can be challenging. A specific metric or training

objective might be good for representation learning but not

for generating high-quality samples, for example. However,

intuitively, if a model can closely approximate the data

distribution, it should, in theory, perform well in the other

tasks. Model families like Autoregressive Models, VAEs,

and Flow Models use this principle and during the learning

process, try to align the model distribution as closely as possible to the data distribution. This alignment ensures

that the resulting model is not only a good density

estimator but also provides useful hidden structures and

high-quality samples. All these model families propose a

tractable or approximate density model class such that the

learning can be based on Maximum Likelihood Estimation,

which we saw is equivalent to minimizing the Kullback-

Leibler divergence between the data distribution and the

model distribution.

Generative Adversarial Networks (GANs), on the other

hand, focus their training process on producing a model

that can generate high-quality samples without the need to

compute density estimation explicitly. The inventor of

GANs, Ian Goodfellow, described his solution in his paper

(Goodfellow et al., 2014), detailing how this can be

achieved. His very clever idea is to use a different neural

network, called the discriminator, whose sole task is to

score whether an observation sample has been generated

by the data distribution or by the model distribution and to

use this signal provided by the discriminator to improve the

model distribution. The model distribution is called the

generator in GAN terminology. Ideally, a good generator

will produce samples such that one cannot distinguish

between the distribution generated by the model and the

actual data distribution.

Yann LeCun who received the 2018 Turing Award, together

with Yoshua Bengio and Geoffrey Hinton, for their work on

deep learning, declared GANs to be “the most interesting

idea in the last 10 years in machine learning.” As a

historical note, Ian Goodfellow conceived generative

adversarial networks while brainstorming programming

techniques with friends at a bar. For more details, read the

interview at https://www.deeplearning.ai/the-batch/ian-

goodfellow-a-man-a-plan-a-gan/.

[image: Image 1203]

[image: Image 1204]

[image: Image 1205]

[image: Image 1206]

[image: Image 1207]

[image: Image 1208]

[image: Image 1209]

[image: Image 1210]

[image: Image 1211]

[image: Image 1212]

[image: Image 1213]

[image: Image 1214]

Similar to VAEs or Flow Models, in GANs, the sampling

process for the generator consists of first sampling a latent

variable from a prior distribution

, which is chosen to

be easy to sample from, and then mapping the latent

variable space to the observation or data space using the

generator, denoted by

and parameterized by . This

mapping can be either probabilistic or deterministic. For a

deterministic mapping

, sampling can be computed very

efficiently, as in Flow Models. The sampling process in

GANs is given by:

(8.1)

A key difference from Flow Models is that, because we are

not using the density for model learning, the generator can

be any neural network. There is no requirement that the

mapping be invertible, and the dimensions of the latent

variable and the observations can be different, as in

VAEs, which can provide interesting learned

representations.

Unlike Flow Models, where we train only the encoder or

flow, GANs require learning the parameters of two

different models simultaneously: the generator neural

network

and the discriminator neural network, denoted

by

and parameterized by .

The big-picture idea of what happens during training is the

following. We train the discriminator, which is a binary

classifier that classifies real data (generated by the data

distribution), versus fake data (generated by the

generator), optimizing its parameters to get better at

discriminating these classes. To train the discriminator, we

build the “real dataset,” denoted by

, by collecting real

data related to our application (e.g., images of faces) and

[image: Image 1215]

[image: Image 1216]

[image: Image 1217]

[image: Image 1218]

[image: Image 1219]

assigning the target label true or positive (or 1) to all of

them. We build the “fake dataset,” denoted by

, by

randomly initializing the generator

, sampling a number

of images, and assigning the target label false or negative

(or 0) to all of them. With the combined dataset

, we train the discriminator

. Once the

discriminator is trained, we use the signal provided by the

discriminator as a loss function to train

, and iterate.

Thus, the GAN training process involves a game where the

discriminator tries to get better at classifying real versus

fake data, and the generator tries to get better at fooling

the discriminator into classifying fake data as real. This is

the adversarial part of the game, which can eventually

reach an equilibrium called the Nash Equilibrium.

GANs are known for generating very high-quality high-

dimensional images. In Figure 8.2, we see a progression of samples generated by GANs over a span of 4.5 years, from

the original work by Goodfellow et al. (2014) in 2014 to

2018. However, GANs are known to be difficult to train. In

the following sections, we will delve into more details about

the training process and what GANs are actually learning.

The following exposition was inspired by the style

presented in Levine (2021).

[image: Image 1220]

Figure 8.2 Evolution of GAN-generated images over time, illustrating the progressive improvement in

image generation. This figure is adapted from a

tutorial by Ian Goodfellow titled “Ian Goodfellow:

Adversarial Machine Learning” at ICLR 2019. The

image is sourced from a screenshot taken at the

6:47 mark of the presentation.

 Source: Ian Goodfellow: Adversarial Machine Learning (ICLR 2019

invited talk) / https://www.youtube.com/watch?v=sucqskXRkss / / last

accessed on January 17, 2025.

8.2 Training

Training GANs involves solving a two-player game between

the discriminator and the generator, as described in the

original formulation by Goodfellow et al. (2014). The goal is

to solve the following min-max optimization problem:

[image: Image 1221]

[image: Image 1222]

[image: Image 1223]

[image: Image 1224]

[image: Image 1225]

[image: Image 1226]

[image: Image 1227]

[image: Image 1228]

[image: Image 1229]

[image: Image 1230]

(8.2)

where the objective function

is given by:

(8.3)

In this formulation,

represents the loss function of

the discriminator

, which takes an input and outputs the

probability that it belongs to the true dataset (real

observations). This loss function has the form of a typical

cross-entropy loss (negative log likelihood) used in binary

classification problems (see Murphy [2022]; López de

Prado, 2018), where the goal in this particular case is to

distinguish real from fake data. The discriminator aims to

maximize this objective, while the generator aims to

minimize it, creating and adversarial training dynamic. The

discriminator seeks to maximize the log-likelihood of real

data (positive labels) and the log-likelihood of fake data

(negative labels). Thus, in the previous equation, the first

expectation is taken with respect to the distribution of real

data,

, and the second expectation is taken with

respect to the latent variable distribution,

. which is used

to generate the fake dataset.

These expectations are approximated using sample-based

estimators. The objective function can be approximated by:

(8.4)

where

. In most practical applications, the

number of negative samples

is set equal to the number

[image: Image 1231]

[image: Image 1232]

[image: Image 1233]

[image: Image 1234]

[image: Image 1235]

[image: Image 1236]

[image: Image 1237]

[image: Image 1238]

[image: Image 1239]

[image: Image 1240]

of positive samples, , making the discriminator’s binary

classification problem balanced.

To solve the min-max problem, we need to find the

gradients with respect to and of the objective function.

For the discriminator, we need the gradient with respect to

:

(8.5)

For the generator, the gradient with respect to is:

(8.6)

Once the gradients are computed, we update the

parameters using stochastic gradient ascent in the

discriminator, and stochastic gradient descent on the

generator:

(8.7)

where

and

are the learning rates for the

discriminator and the generator, respectively.

An interesting aspect is the computation of the gradients

for the generator. While the discriminator’s gradient

computation is straightforward, the generator’s gradient

[image: Image 1241]

[image: Image 1242]

[image: Image 1243]

[image: Image 1244]

[image: Image 1245]

[image: Image 1246]

[image: Image 1247]

[image: Image 1248]

requires backpropagating through the discriminator. If we

denote

, then:

(8.8)

This indicates that we are backpropagating the gradients

through the discriminator to the generator. In practice, we

concatenate the generator and the discriminator as a

compose function,

, and our favorite automatic

differentiation tool will compute the entire gradient

efficiently.

The typical training procedure for GANs involves the

following steps:

1. Obtain a true dataset

and label each

observation as real (positive label).

2. Initialize the Generator

randomly.

3. Generate a fake dataset,

, by sampling from

 the generator,

,

, and label each

observation as fake (negative label).

[image: Image 1249]

[image: Image 1250]

[image: Image 1251]

[image: Image 1252]

4. Combine the true and fake datasets to create a

combined dataset

.

5. Optimize the discriminator

using the

combined dataset with one step of stochastic

gradient ascent.

6. Optimize the generator

using the feedback signal

from the discriminator with one step of stochastic

gradient descent.

7. Repeat steps 3 to 6 until convergence.

By alternative updating the discriminator and the

generator, we train the GAN to improve the quality of the

generated data, making it increasingly difficult for the

discriminator to distinguish between real and fake data

more difficult.

In Figure 8.3, we show samples generated as illustrated in the original work by Goodfellow et al. (2014). At that time,

the sample quality was at least competitive with the best

generative models available, as noted by the authors. In

Figure 8.3, the rightmost column shows the nearest

training example to the neighboring sample, demonstrating

that the model has not memorized the training set. This is

illustrated for the following datasets: (a) MNIST, (b) TFD,

(c) CIFAR-10 (fully connected model), and (d) CIFAR-10

(convolutional discriminator and “deconvolutional”

generator). For more details, see Goodfellow et al. (2014).

[image: Image 1253]

Figure 8.3 The rightmost column displays the nearest training example to each corresponding

generated sample, demonstrating that the model

has not memorized the training set. This is

illustrated for the following datasets: (a) MNIST, (b)

TFD, (c) CIFAR-10 (fully connected model), and (d)

CIFAR-10

(convolutional

discriminator

and

“deconvolutional” generator).

 Source: I. J. Goodfellow et al. (2014).

 8.2.1 Evaluation

The evaluation of GANs is still an open problem. Since we

cannot compute the density explicitly, and the

discriminator probability score is used to drive the

generator to create data that are similar to the data

distribution, this score for a given observation does not

[image: Image 1254]

provide much insight into the quality of the generated

samples. This is especially important when we want to

compare models. One initial solution was to use Parzen

window-based log-likelihood estimates, also known as

Kernel Density Estimation (KDE), as a replacement for

likelihoods. More details about KDE can be found in Bishop

(2006).

The Figure 8.4 shows the Parzen window-based log-

likelihood on the original work on GANs, allowing for a

quantifiable model comparison rather than simply

eyeballing the generated images. They reported numbers

on MNIST and TFD datasets for different generated

models.

Figure 8.4 Table 1 from Goodfellow et al. (2014): Parzen window-based log-likelihood estimates. The

reported values for MNIST represent the mean log-

likelihood of test set samples, with the standard

error of the mean computed across individual

examples.

More evaluation metrics have been proposed in the

literature to better account for the coverage of the

generated samples. One such metric is the Inception Score,

see Salimans et al. (2016), which utilizes the Inception

neural network to classify images and evaluate the quality

of conditional generation with GANs. Improvements over

the Inception Score include the Frechet Inception Distance

(FID), which aims to improve the measurement of diversity

by incorporating statistics of the images in a different

[image: Image 1255]

[image: Image 1256]

[image: Image 1257]

[image: Image 1258]

[image: Image 1259]

embedding space. More details about the FID distance can

be found in Heusel et al. (2018).

8.3 Some Theoretical Insight in GANs

We have already seen that the training of GANs requires

solving a min-max two-player game between the generator

and the discriminator. From the objective function, the task

for each model is clear: the discriminator maximizes the

likelihood of the data, while the generator tries to fool the

discriminator by minimizing the same objective function.

However, since we are interested in the quality of the

generated samples, we can ask ourselves the following

question: Are GANs trained with the aforementioned

procedure trying to optimize some kind of divergence

between the data distribution

and the generator

distribution

?

To answer this, let’s perform a theoretical exercise to solve

for the optimal discriminator and generator and see if we

can gain some insights. Although we do not train GANs

using the exact procedure to be described here, this

exercise provides valuable insights that have been used in

practice to improve the training and performance of GANs.

Let’s solve for the optimal classifier. Given our objective:

(8.9)

what can we say about at convergence? Let’s see if we

can find a closed-form solution for . We can rewrite

Equation 8.9 as follows:

[image: Image 1260]

[image: Image 1261]

[image: Image 1262]

[image: Image 1263]

[image: Image 1264]

[image: Image 1265]

[image: Image 1266]

[image: Image 1267]

[image: Image 1268]

[image: Image 1269]

[image: Image 1270]

[image: Image 1271]

[image: Image 1272]

[image: Image 1273]

[image: Image 1274]

[image: Image 1275]

[image: Image 1276]

[image: Image 1277]

[image: Image 1278]

[image: Image 1279]

[image: Image 1280]

[image: Image 1281]

(8.10)

Here, we simplify our notation and optimize over functions

and instead of optimizing over parameters and .

We also replace

by , the distribution of the true

dataset, and let represent the distribution used to

generate our fake dataset, with

.

Let’s solve for the optimal discriminator :

(8.11)

To find the optimal value of , we compute the gradient

with respect to and set it equal to zero:

(8.12)

Setting

and solving for , we find that optimal

value is:

(8.13)

where is replaced by

, to indicate that the negative

labels are generated from the generator distribution,

.

Now, if we plug the optimal value of into the objective

function, we can determine what the generator is trying

to optimize:

[image: Image 1282]

[image: Image 1283]

[image: Image 1284]

[image: Image 1285]

[image: Image 1286]

[image: Image 1287]

(8.14)

Let

. Then

(8.15)

where

is the Jensen-Shannon Divergence.

Thus, at convergence, the generator minimizes a notion of

distance between the data distribution

and the

generator distribution

. This insight has led to modern

approaches that address both the drawbacks and

advantages of minimizing this divergence, proposing better

alternatives for training GANs.

8.4 Why Is GAN Training Hard?

Improving GAN Training Techniques

Training GANs in practice is challenging. Implementing

GANs as described in the original work by Goodfellow et al.

(2014) requires an enormous amount of hyperparameter

tuning to achieve convergence and generate high-quality

samples.

For example, the paper by Salimans et al. (2016) illustrates

the extensive hyperparameter tuning required and some of

[image: Image 1288]

[image: Image 1289]

[image: Image 1290]

[image: Image 1291]

[image: Image 1292]

[image: Image 1293]

[image: Image 1294]

the techniques used to make GANs work effectively. These

techniques include minibatch discrimination, feature

matching, historical averaging, and others, which are

applicable to either the generator, the discriminator, or

both. For more details, see Salimans et al. (2016).

One reason why training GANs is difficult can be

understood by examining a simple example, illustrated in

Figure 8.5. For the sake of simplicity, we generate samples from both the data distribution and the generator,

overlaying the corresponding density functions and

assuming this is the initial data for training. At

initialization, with a random generator, the densities and

samples generated from

and

are far apart. If we

train the discriminator with the combined dataset

using the true data

and the fake data

from these samples, the discriminator can easily achieve

perfect classification. This results in a very sharp decision

boundary, saturated at 1 for samples from

and 0 for

samples generated by

.

[image: Image 1295]

[image: Image 1296]

Figure 8.5 Illustration of one reason why training GANs can be difficult. In this conceptual

illustration, at initialization, the data distribution

and the generator distribution are far apart,

allowing the discriminator to achieve perfect

classification. This results in a sharp decision

boundary, where the discriminator outputs 1 for

real samples and 0 for generated samples, making it

challenging for the generator to receive meaningful

gradient updates.

As the generator learns by backpropagating the complete

gradients of the discriminator, in situations where the

discriminator is saturated, it provides very poor gradient

signals to the generator for almost all the points that are

generated from

. This makes it almost impossible for the

generator to improve the quality of the generated samples.

In short, one of the main reasons why GAN training is hard

is that the discriminator might provide a very weak

gradient signal, if the data distribution and the generator

distribution are very far apart.

[image: Image 1297]

[image: Image 1298]

[image: Image 1299]

[image: Image 1300]

To improve this situation where

and

are very far

apart, we aim to have a smoother decision boundary for the

discriminator. This would provide meaningful signals to

drive the training of the generator and improve the quality

of the generated samples. Solutions around this point

include explicitly modifying the discriminator to have a

smoother decision boundary or making the samples from

and

overlap, making it more difficult for the

discriminator to classify them. Instance noise, as described

by Mescheder et al. (2018), is a method where noise is

added to both real and fake samples to make their

distributions overlap, making the classification task harder

for the discriminator and resulting in a smoother decision

boundary.

Techniques for explicitly modifying the decision boundary

include Least Squares Generative Adversarial Networks

(LSGANs), as described by Mao et al. (2017), where the

discriminator outputs an unbounded real number instead of

a probability, a real number between 0 and 1. Other

solutions involve using different objective functions to force

the discriminator to have a smoother decision boundary.

The main solution proposed in Wasserstein GANs (WGANs),

as described in Arjovsky et al. (2017), constrains the

discriminator to be Lipschitz-continuous. Further solutions

for making the decision boundary even smoother include

WGAN with Gradient Penalty (WGAN-GP) by Gulrajani et

al. (2017) and Spectral Normalization GAN (SNGAN) by

Miyato et al. (2018).

For detailed analysis of convergence and different training

techniques for GANs, refer to the paper by Mescheder et

al. (2018).

[image: Image 1301]

[image: Image 1302]

[image: Image 1303]

[image: Image 1304]

[image: Image 1305]

[image: Image 1306]

8.5 Wasserstein GAN (WGAN)

From Section 8.3, we got the intuition that the generator is trying to minimize the Jensen-Shannon (JS) divergence

between the data distribution and the generator

distribution. However, the JS divergence is not effective at

capturing the distance between distributions when they are

very far apart or have little to no overlap.

To illustrate this, consider Figure 8.6. In the top figure, the distributions

and

are very far apart with zero

overlap. In the bottom figure,

and

are closer but

still do not overlap. Ideally, we want to drive the generator

distribution

closer to

, and between these two

options, we would prefer the generator from the bottom

figure. However, the JS divergence assigns the same score

to both situations since there is no overlap between the two

distributions, which poses a problem for training the

generator effectively.

[image: Image 1307]

[image: Image 1308]

[image: Image 1309]

[image: Image 1310]

[image: Image 1311]

[image: Image 1312]

[image: Image 1313]

[image: Image 1314]

[image: Image 1315]

Figure 8.6 Illustration of two different cases for the data distribution and the generator distribution. In

Figure (a), the distributions are far apart, whereas

in Figure (b), they are closer. Despite this

difference, the JS divergence assigns the same score

to both cases.

An improvement to this situation could be to use a different

divergence measure that actually quantifies the distance

between two distributions. One candidate is the

Wasserstein distance, which is used to optimize GANs as

proposed by Arjovsky et al. (2017).

The Wasserstein distance is defined as:

(8.16)

where is the distribution over and that satisfies the

marginals

and

.

Directly optimizing this formulation of

is

complicated because finding the optimal is not an easy

[image: Image 1316]

[image: Image 1317]

[image: Image 1318]

[image: Image 1319]

[image: Image 1320]

[image: Image 1321]

[image: Image 1322]

[image: Image 1323]

[image: Image 1324]

[image: Image 1325]

[image: Image 1326]

task. However, there is a dual formulation known as the

Kantorovich-Rubinstein duality, which makes the problem

more tractable:

(8.17)

This is equal to the supremum over the set of all possible 1-

Lipschitz functions , of the expected value of under

minus the expected value of under

. The set of all

possible 1-Lipschitz scalar functions satisfies:

(8.18)

which means roughly speaking that should have a

bounded gradient or slope.

Returning to our example, if

is our discriminator neural

network parameterized by , how can we constrain the

network to be 1-Lipschitz, or equivalently, to have a

bounded gradient? The original solution proposed by

Arjovsky et al. (2017) involves clipping the weights of the

network to ensure the gradient is bounded. However, the

paper’s authors clearly mentioned that weight clipping is

probably not the best way to enforce this constraint and

illustrated many problems with it. In fact, at the time of

writing, gradient clipping for achieving this constraint is

mostly obsolete. Other works build on this idea to enforce a

Lipschitz-continuous neural network, such as WGAN with

Gradient Penalty (WGAN-GP) by Gulrajani et al. (2017) and

Spectral Normalization GAN (SNGAN) by Miyato et al.

(2018).

Once we constrain the search space of functions to the set

of 1-Lipschitz functions, we can use the sample-based

objective to find the optimal discriminator and generator:

[image: Image 1327]

[image: Image 1328]

[image: Image 1329]

[image: Image 1330]

[image: Image 1331]

[image: Image 1332]

[image: Image 1333]

[image: Image 1334]

[image: Image 1335]

[image: Image 1336]

[image: Image 1337]

[image: Image 1338]

[image: Image 1339]

[image: Image 1340]

[image: Image 1341]

[image: Image 1342]

[image: Image 1343]

[image: Image 1344]

(8.19)

We approximate

using sample-based

estimators:

(8.20)

We can then optimize by taking gradients with respect to

and .

The pseudo code for training WGANs is as follows (adapted

from Levine (2021)):

1. Obtain a true dataset

and label each

observation as real (positive label).

2. Initialize the Generator

randomly.

3. Generate a fake dataset,

, by sampling from

 the generator,

,

, and label each

observation as fake (negative label).

4. Combine the true and fake datasets to create a

combined dataset

.

5. Update the discriminator

to maximize

.

Compute

and use stochastic gradient

ascent.

6. Clip all weights matrices in such that each weight

matrix layer, denoted by

, is within

for some

constant .

[image: Image 1345]

[image: Image 1346]

[image: Image 1347]

7. Update the generator

to minimize

.

Compute the gradients

and use

stochastic gradient descent.

8. Repeat steps 3 to 7 until convergence.

In Figure 8.7, we see the results from Figure 2 in the paper by Arjovsky et al. (2017). This figure illustrates the effect of

the Wasserstein distance on optimizing GANs, particularly

highlighting the decision boundary obtained by the

discriminator. In Figure 8.7, the decision boundary of the discriminator for typical vanilla GANs is labeled “GAN

Discriminator” in red, optimized using the two-player min-

max game. The decision boundary for the WGAN, labeled

“WGAN Critic” in cyan, shows a much smoother boundary,

providing better gradient signals for the generator and

improving the training process.

[image: Image 1348]

Figure 8.7 Illustration of the optimal discriminator and critic when distinguishing two Gaussians. The

minimax GAN discriminator (red) saturates, leading

to vanishing gradients, while the WGAN critic

(cyan) provides smoother gradients, improving

generator training. Figure 2 from Arjovsky,

Chintala, and Bottou (2017).

 8.5.1 Gradient Penalty GAN (WGAN-GP)

As mentioned, another way to enforce Lipschitz constraints

in a neural network is to directly constrain the gradient,

which is the approach proposed in WGAN with Gradient

Penalty (WGAN-GP) by Gulrajani et al. (2017).

In their work, they modified the original WGAN objective

by introducing a gradient penalty for Lipschitz continuity,

given by:

[image: Image 1349]

[image: Image 1350]

[image: Image 1351]

[image: Image 1352]

[image: Image 1353]

(8.21)

where the gradient penalty term is the last term of the

previous equation. Here, the objective function directly

penalizes the discriminator for having gradients with norms

different from one, using the regularization parameter .

The expectation is computed under the distribution

, for

which samples are generated by sampling uniformly along

straight lines between pairs of points sampled from the

data distribution

and the generator distribution

.

For more details, see Gulrajani et al. (2017). In practice,

WGAN-GP improves the stability of WGAN training and is

very easy to implement.

A detailed analysis of the convergence of different GAN

training algorithms can be found in Mescheder et al.

(2018).

8.6 Extending GANs for Time Series

Similarly, as we have seen in previous chapters with

models like VAEs, and Flows, these models, by their

structural design, assume independence between

consecutive observations. Then, the natural questions arise,

how can we adapt them to capture this time-series

dynamics that might be important at certain time scales?

One potential answer is similar to the way we have done it

previous chapters. We could try to combine GANs with

models that excel at handling the kind of dynamics we want

to capture, such as autoregressive models like RNN or

Transformers.

Let's consider two interesting cases for time-series

generation.

Recurrent Conditional GAN (RCGAN), see Esteban et

al. (2017): Uses a combination of RNN with GAN. It

uses an RNN for the generator and discriminators. Due

to this design choice, data are generated sequentially.

More details about model architecture and

experimental results are in [RCGAN Notebook].

Time-series Generative Adversarial Networks

(TimeGAN), see Yoon et al. (2019): TimeGAN employs a

sequence generator and discriminator to model time-

series dynamics. However, it does that by modeling the

temporal dependencies in the latent space. They do

that by combining supervised learning objectives as

well as generative adversarial objectives in a jointly

optimization problem. The supervised learning

objective drives the network to capture the dynamics in

the latent space. The adversarial objective, like in

standard GANs, drives the network to generate realistic

samples. More details about model architecture and

experimental results are in [TimeGAN Notebook].

8.7 Conclusion

In this chapter, we explored another powerful tool for

modeling high-dimensional data—GANs. Unlike the models

studied in previous chapters, GANs belong to the class of

implicit generative models, meaning they do not require

explicit density estimation. Instead, they rely on an

adversarial learning process in which two models—the

generator and the discriminator—are trained

simultaneously in an adversarial framework. Unlike flow

models, the GAN generator can be any neural network,

with no constraints on invertibility or matching

dimensionality between the latent variable and

observations. This flexibility allows GANs to learn complex

representations and generate high-quality samples. We also

discussed key challenges in training GANs and explored

strategies to improve their stability and performance.

Additionally, we examined how GANs can be extended to

model sequential data, particularly time series. By

integrating GANs with architectures specialized for

capturing temporal dependencies—such as RNNs—we can

generate sequential data with time-dependent dynamics. In

the notebooks associated with this chapter, you will find

practical examples of both traditional GANs and time-

series-adapted GANs applied to financial data generation.

With this chapter, you have added yet another powerful

tool to your generative modeling toolbox. GANs provide a

flexible and effective approach for generating high-

dimensional, multimodal data.

Chapter 9

Leveraging LLMs for Sentiment

Analysis in Trading

In this chapter, we pivot from our previous discussions,

where we focused on studying different generative model

families in isolation, to explore and build a practical financial

application that combines these models. The goal is to create

a system that takes speech data as input and outputs trading

signals. This system leverages powerful models, such as

transformer models for sequence-to-sequence tasks to

convert audio signals to text, and transformer models in

Large Language Models (LLMs) to assign sentiment scores to

text. We will apply these techniques to analyze the sentiment

of Federal Reserve (Fed) press conference speeches and

generate potentially profitable trading signals.

9.1 Sentiment Analysis in Fed Press

Conference Speeches Using Large

Language Models

Is it possible to use sentiment analysis on Federal Reserve

press conference speeches, computed using LLMs, to

generate predictive trading signals?

Let’s imagine a scenario where we are watching US Federal

Reserve Chair Jerome Powell hold a press conference on

November 2, 2022, where he is discussing the latest Fed rate

hike and communicating the committee’s current economic

outlook, as shown in Figure 9.1 (WGN News, 2022).

[image: Image 1354]

Figure 9.1 Fed Chair Powell discusses latest Fed rate hike.

 Source: WGN News (2022).

As traders, we might wonder how to use the information

provided in such a speech to make informed trading

decisions. If you were someone like George Soros, known for

his exceptional trading skills and remarkable track record in

macro trading, you might be able to filter the relevant

information from the speech, converting it into insights that

you can combine with other data, such as market data, to

predict the market’s next moves easily.

However, for those of us without Soros’ insights, a more

quantitative approach could be helpful. This approach

requires converting segments of the video into numerical

values from which we can generate buy or sell signals. Our

approach has been inspired by reports on JPMorgan AI’s

analysis of Fed speeches for trading signals from Bloomberg

[image: Image 1355]

 News (2023) and Fortune (2023), as well as an OpenAI

Whisper tutorial on Fed Speech Transcription from Part Time

Larry (2022).

There are several ways to design a system with the goal of

translating video content into actionable trading signals.

Here, we attempt to provide a solution based on a cascade

approach that involves a series of subsystems for processing

different datatypes. The whole system takes a segment of the

Fed press conference video as input and outputs a numerical

value representing the sentiment score of that segment. The

design of these subsystems will involve the following:

1. Extracting speech from the video of the Fed press

conference

2. Converting speech segments to text

3. Converting text to numerical values (sentiment scores)

that can generate relevant signals

The system’s block diagram illustrating this process is in

Figure 9.2.

Figure 9.2 System block diagram.

To explore this, we will take a step back and simulate making

decisions based on the press conference and related market

data available to us.

Let’s say we want to design a trading strategy to trade the

SPY in 30-second intervals. In Figure 9.3, we illustrate the SPY price series during the November 2, 2022, Fed press

conference, from 14:30 to 15:30 in 30-second intervals.

Ideally, we would like to find some kind of correlation

[image: Image 1356]

between what Jerome Powell is saying at or up to that

particular moment and the subsequent SPY price moves.

Figure 9.3 SPY Price series during Fed press conference.

For every 30-second trading bar of SPY data, we would do

the following:

1. Extract audio from the video up to that particular bar.

2. Perform speech-to-text conversion.

3. Perform Sentiment Analysis based on text.

4. Generate signals to make buy and sell decisions.

This process will enrich the SPY open-high-low-close (OHLC)

price series with the sentiment scores of Powell’s speech

during each 30-second interval, making it easier to quantify

the predictive power of the signal. The desired tabular data

format is illustrated in Figure 9.4.

[image: Image 1357]

Figure 9.4 Enriched price series.

With this enriched data, we can investigate whether there is

a statistical relationship between the computed sentiment

scores and future returns. In Figure 9.5, we illustrate a scatter plot for a few Fed press conferences videos that took

place in 2022 and 2023, where the x-axis represents the

sentiment scores and the y-axis represents the SPY forward

returns over the next 30 seconds.

[image: Image 1358]

[image: Image 1359]

Figure 9.5 Scatter plot of sentiment signal vs forward returns.

In the rest of the section, we will describe in more detail the

main components of the system, how they work, and how to

put them together. In our experience, using a limited sample

size of videos, we found a significant Pearson correlation of

14.14% between the sentiment signal and forward SPY

return, with a -value of 0.199%.

9.2 Data: Video + Market Prices

In this use case, we utilize video data, extract the

corresponding audio, process it into text, converting the text

into numerical values, and finally joining these numerical

values with market price data for model construction and

evaluation. This approach leverages the unique insights

offered by alternative data sources to enhance trading

strategies and market predictions.

As noted by López de Prado (2018):

Alternative data offers the opportunity to work with truly unique, hard-to-process datasets. Remember, data that is

hard to store, manipulate, and operate is always the most

promising. You will recognize that a dataset may be useful

if it annoys your data infrastructure team. Perhaps your

competitors did not try to use it for logistic reasons, gave

up midway, or processed it incorrectly.

 9.2.1 Collecting Audio Data

For collecting audio data from YouTube, we use the pytube

tool, which is a lightweight, Pythonic, and command-line

utility for downloading YouTube Videos.

Downloading YouTube videos or audios can be easily

achieved using pytube. Once the url of the desired video is

defined, you can use the library as shown below:

from pytube import YouTube

video_url = 'http://youtube.com/watch?v=9bZkp7q19f0'

yt = YouTube(video_url)

yt.streams

.filter(progressive=True, file_extension='mp4')

.order_by('resolution')

.desc()

.first()

.download()

where in the code snippet specified:

We first import the pytube library.

We specify the video url video_url.

We create a YouTube object.

We then filter mp4 file streams, order them by resolution,

and download the highest resolution file.

9.3 Speech-to-text Conversion

 9.3.1 Whisper Model

“We’ve trained and are open-sourcing a neural net called

Whisper that approaches human level robustness and

accuracy on English speech recognition.” —Introducing

Whisper (https://openai.com/index/whisper/)

Whisper, Radford et al. (2022), is an automatic speech

recognition (ASR) system trained on 680,000 hours of

multilingual and multitask supervised data collected from the

web. This large-scale dataset enables Whisper to transcribe

in multiple languages and translate from multiple languages

to English. OpenAI has open-sourced Whisper under the MIT

License. According the paper results, Whisper is comparable

to standard benchmark and often competitive with models

that have been finetuned for specific datasets.

In their paper, OpenAI describes various methods for

evaluating and collecting data. The data collected for

Whisper is weakly supervised, meaning it is not annotated by

professional transcribers but instead has labels collected

from the web. To build a dataset for model training

consisting of audio paired with transcripts, the authors

performed a great deal of data engineering work, including

multiple preprocessing and heuristic filtering steps for tasks

like input language detection and transcript alignment, which

are detailed in the paper. Due to the vast amount of data

collected, the dataset is highly diverse, encompassing a wide

range of speakers, languages, and environments. More

details about the Whisper architecture can be found in

Radford et al. (2022).

Whisper processes the input audio by splitting it into 30-

second chunks and converted into a log-magnitude Mel

spectrogram representation, which serves as the input to the

[image: Image 1360]

encoder. The decoder is trained to predict the corresponding

text caption, intermixed with special tokens that direct the

model to perform tasks such as language identification,

phrase-level timestamps, multilingual speech transcription,

and translation to English (see “Introducing Whisper” or the

paper for more details).

According to the Whisper model card available in the official

OpenAI GitHub repository for Whisper

(https://github.com/openai/whisper), it comes in five model sizes, offering different speed and accuracy trade-offs. Four

of these models are English-only versions. Figure 9.6 lists the names of the available models and their approximate memory

requirements and inference speed relative to the large

model.

Figure 9.6 Available models and languages.

According to OpenAI experiments, the .en models for

English-only applications tend to perform better, especially

for the tiny.en and base.en models. See their GitHub cited

earlier for more details.

9.3.1.1 Python Usage.

We perform transcription using the forementioned Python

Whisper library. Following is an example of how to transcribe

audio using Whisper:

import whisper

audio_input = "audio.mp3"

model_name = "base"

model = whisper.load_model(model_name)

result = model.transcribe(audio_input)

print(result["text"])

In this example:

We first import the Whisper library.

We specify the audio input file audio.mp3 and the model

we want to use base.

We load the specified Whisper model using

whisper.load_model(model_name).

We transcribe the audio file using

model.transcribe(audio_input).

Finally, we print the transcribed text using

print(result["text"]).

Internally, the transcribe method reads the entire file and

processes the audio with a sliding 30-second window,

performing autoregressive sequence-to-sequence predictions

on each window.

 9.3.2 Whisper on FED Speech Audio Data

As we have seen, whisper models are trained on 30-second

input chunks and cannot process longer audio input at once.

This limitation can pose challenges for real-world

applications. The authors of the Whisper paper propose a

solution for transcribing longer audio sequences by

consecutively transcribing 30-second audio windows and

shifting this window according to the timestamps predicted

by the model. They also emphasize the importance of making

correct decisions about decoding heuristics to reliably transcribe long audio, as detailed in section 4.5 of their paper, Radford et al. (2022).

This has several implications for our use case. Fed speech

conferences typically last between 45 and 60 minutes. Using

such long audio inputs means that the timestamps predicted

by Whisper might not be accurate, which could potentially

introduce data alignment and look-ahead bias issues when

merging data by timestamp between audio and price data-

and important issue when backtesting trading strategies. The

unreliability of the predicted timestamps for long audio files

is something we have also observed during our

experimentation.

To ensure the input audio signals are correctly aligned with

the corresponding market time-series data, we avoid relying

on the transcription timestamps produced by Whisper, whose

accuracy decreases as the audio length increases. Instead,

we perform audio segmentation (described in Section 9.3.3)

beforehand, creating 60-second input chunks sampled every

30 seconds. This process generates 60-second “audio bars”

every 30 seconds. This method allows us to determine the

start and end timestamps of the corresponding audio, and

therefore its transcript, without relying on Whisper for this

purpose. Additionally, we introduced an embargo period in

the audio series. This means joining price data timestamps

with audio/transcribe timestamps 15 seconds earlier, thereby

reducing the risk of look-ahead bias even further. While all

these design choices limit the amount of information used to

compute the sentiment score in subsequent subsystems, they

significantly reduce the risk of introducing look-ahead bias.

 9.3.3 Audio Segmentation

For the forementioned audio segmentation, we use FFmpeg

(https://ffmpeg.org), which is cross-platform solution to

record, convert and stream audio and video.

You can use ffmpeg-python: Python bindings for FFmpeg

(https://github.com/kkroening/ffmpeg-python), which are Python wrappers for FFmpeg. For example, in the code

snippet below we can see how to convert between different

audio formats:

import ffmpeg

Define input and output files

input_file = 'input_video.mp4'

output_file = 'output_audio.wav'

Extract audio from video

ffmpeg.input(input_file).output(output_file).run()

For audio segmentation, you can specify the start time and

duration. This allows you to create specific “audio bars” of

defined lengths, containing pure alternative data. These can

then be combined with market data to create enriched

datasets for model training and evaluation.

Define start time and duration in seconds

start_time = 30

duration = 60

Extract a specific segment

ffmpeg.input(input_file, ss=start_time, t=duration).out

put(output_file).run()

Results on actual FED data are shown in Figure 9.7.

[image: Image 1361]

Figure 9.7 Whisper output on FED data.

9.4 Sentiment Analysis

After performing the speech-to-text conversion using whisper,

the next step is to compute the sentiment of the speech

based on the transcribed text. For this task, we use the

FinBERT model, Araci (2019), a variant of BERT Devlin et al.

(2019) fine-tuned specifically financial data. You might

wonder—why use FinBERT for this task instead of the more

powerful ChatGPT? One simple reason is cost—both

economic and computational. Using a BERT-based model for

this demo allows you to work with a widely used industry

model that can run on your own computer with minimal

resources or with free cloud resources available at the time

from Google Cloud. Beyond cost considerations, in the next

chapter, we will explore how to customize this model.

Specifically, we’ll cover how to fine-tune it and optimize it for

inference, making it more memory-efficient and faster at

runtime—something that would be far more challenging with

ChatGPT. With a large proprietary model like ChatGPT, you

would have to rely entirely on OpenAI's infrastructure, limiting customization and hands-on learning.

 9.4.1 BERT

The BERT model, which stand for Deep Bidirectional

Representation from Transformers, was introduced in in

2019 by Devlin et al. (2019).

BERT has been highly influential in both academic research

and industrial applications. In industry, Google Search

results were powered by a BERT model, eBay’s recommender

system utilizes BERT, and variants of BERT have been

successfully applied in Hamlet’s own work at Criteo.

Academically, extensive work has been done to improve

BERT’s performance, scalability, and efficiency. As of now,

the BERT paper has been cited more than 119,678 times

according to Google Scholar.

One reason BERT has been so influential is its transformation

of the typical workflow in NLP, both in industry and

academia. The paper demonstrated the power of pre-training

BERT plus fine-tuning for a variety of downstream NLP tasks,

consistently outperforming state-of-the-art models at the time

and proving invaluable for scenarios with limited training

data. Unlike traditional NLP approaches at the time of

BERT’s introduction, which often required training separate

models for each task, the pre-training and fine-tuning

approach enabled a more generalized and efficient workflow.

The concept of pre-training and fine-tuning, as highlighted in

the paper by demonstrating state-of-the-art experimental

results across the board at the time, has driven the industry

and academia to build better models by increasing the

amount of training data and model size. This approach has

led to the development of foundational models, which can

later be fine-tuned for more specific tasks. Fine-tuning

techniques will be covered in the next chapter.

For this chapter, we will describe the main aspects of the BERT model, as FinBERT, which we use for sentiment

analysis, is a fine-tuned version of BERT specifically for

financial data.

9.4.1.1 BERT Overview.

BERT is based on a transformer encoder-only architecture,

which we covered in Chapter 5 in the Transformers section.

Unlike earlier models like GPT-1 (Radford et al., 2018) or

ELMo (Peters et al., 2018), which used left-to-right context or

a concatenation of left-to-right and right-to-left contexts

computed independently, BERT introduced bidirectional

context. This means that BERT considers both the left and

right context of a word simultaneously. Empirical results

have shown that this bidirectional context provides

embeddings that are better adapted to the surrounding

context. The differences in how these models handle

contextual information are illustrated in Figure 9.8.

[image: Image 1362]

Figure 9.8 Figure 3 from Devlin et al. (2019): Illustration of differences in pre-training model

architectures, comparing BERT, OpenAI-GPT, and

ELMo OpenAI GPT uses a left-to-right Transformer.

ELMo uses the concatenation of independently

trained left-to-right and right-to-left LSTMs to

generate features for downstream tasks. Among the

three, only BERT representations are jointly

conditioned on both left and right context in all

layers. In addition to the architecture differences,

BERT and OpenAI GPT are fine-tuning approaches,

while ELMo is a feature-based approach.

9.4.1.2 Input/Output Representations.

To enable BERT to handle a variety of downstream tasks,

Devlin et al. (2019) designed a special input representation.

This representation allows BERT to unambiguously represent

both single sentences and pairs of sentences with a single

token sequence, making it suitable for various downstream

tasks. Let’s explore how inputs are represented in BERT.

 9.4.1.2.1 Input Representations.

As discussed in Section 5.3.5, the first step in the NLP

pipeline involves a tokenization process, which takes a

sequence of raw words as input and outputs a sequence of

token IDs. Once we have this sequence of token IDs, BERT

[image: Image 1363]

[image: Image 1364]

[image: Image 1365]

[image: Image 1366]

[image: Image 1367]

[image: Image 1368]

[image: Image 1369]

[image: Image 1370]

augments the input representation. Let’s illustrate this

process with two sentences, Sentence A and Sentence B, and

see how BERT computes their initial representation and

processes them. Using the notation from Devlin et al. (2019):

1. Tokenization

Sentence A is tokenized into a sequence of tokens:

, where is the number of

tokens in Sentence A.

Sentence B is tokenized into a sequence of tokens:

, where

is the number of

tokens in Sentence B.

2. Use of special tokens [SEP] and [CLS]

The tokenized sequences of Sentence A and Sentence

B are concatenated and separated by a special token

called [SEP]. This token helps BERT distinguish

between the two sentences when they are combined

into a single token sequence.

A special classification token [CLS] is added to the

beginning of the sequence. This token plays a critical

role in downstream tasks, as its final representation

is treated as the “aggregate sequence

representation” of the input; see Devlin et al. (2019).

3. Initial Embeddings: each token is mapped to an initial

embedding (embeddings are discussed in more detail in

Section 5.3.5)

[CLS] token is mapped to

.

[SEP] token is mapped to

.

Sentence A’s tokens are associated with embeddings

.

Sentence B’s tokens are associated with embeddings

.

[image: Image 1371]

These steps are part of BERT’s input representation process,

which is illustrated in Figure 9.9. As an example to understand the dimensions associated with each embedding,

the embeddings for each token typically reside in a 768-

dimensional hidden space for the BERT-Base configuration or

a 1024-dimensional hidden space for the BERT-Large

configuration (more details about this are provided in the

next section).

Figure 9.9 Figure 1 from Devlin et al. (2019): Illustration of the input/output BERT representation.

Apart from the output layers, the same architecture is

used for both pre-training and fine-tuning. The same

pre-trained model can be used as an initialization and

adapted for multiple tasks, as shown in the image on

the right. In the paper, during fine-tuning, all

parameters were updated. [CLS] is a special symbol

added at the beginning of every input example, and

[SEP] is a special token used to separate pairs of

sentences.

 9.4.1.2.2 Output Representations.

After the Transformer layers process the input, the initial

token embeddings are updated to produce the final hidden

[image: Image 1372]

[image: Image 1373]

[image: Image 1374]

[image: Image 1375]

[image: Image 1376]

[image: Image 1377]

[image: Image 1378]

states or representations for each token. At the output:

The final hidden state for the [CLS] token is denoted as

.

The final hidden state for the [SEP] token is denoted as

.

The final hidden states for tokens in Sequence A and

Sequence B are

and

, respectively.

This is also visualized in Figure 9.9.

The role of the special token [CLS], short for classification, is

of special importance, it is used as the aggregate

representation of the entire input sequence. Devlin et al.

(2019) used in experiments related to classification tasks

showing its efficacy. In fact, FinBERT also uses to fine-tune

the model to perform sentiment analysis. In such task, is a

passed to a classifier, often referred to as the “classification

head,” to predict the sentiment of the input

sequence. (Remember that a classification head is a neural

network added on top of the encoder that maps C, the

encoded representation, to the desired number of classes.)

Another key feature of BERT is the introduction of a third

type of embedding for encoding the input, known as

segment embeddings. If you recall from our introduction to

Transformers in Section 5.3.5, the input embeddings to transformers are typically computed as a combination of

token embeddings and positional embeddings, which are

usually combined by addition. In BERT, segment

embeddings are learned during the training process and

used to indicate whether a token belongs to Sentence A or

Sentence B. In summary, inputs embeddings are the sum of

three components: token embeddings, positional

embeddings, and segment embeddings. This is illustrated in

Figure 9.10.

[image: Image 1379]

Figure 9.10 Figure 2 from Devlin et al. (2019): Illustration of the BERT input representation. The

input embeddings to the Transformer model are the

sum of the token embeddings, segment embeddings,

and positional embeddings.

This input representation allows BERT to unambiguously

represent both a single sentence and pairs of sentences in

one token sequence, which enables BERT to be use for

downstream task like Question and Answering, where we

typically provide the dataset as a collection of (Question,

Answer) pairs. Moreover, this representation makes the Next

Sentence Prediction (NSP) pre-training objective possible,

which we will discuss next.

 9.4.1.2.3 Pre-training Objectives.

The pre-training objectives of BERT include two tasks:

1. Masked Language Model (MLM) task: In this task, words

in a sentence are randomly masked, and the model is

trained to predict the missing words. In the BERT paper,

15% of the words are masked. Of these, 80% of the time,

the [MASK] token is used, 10% of the time the correct

word is used, and the remaining 10% of the time a

random word is used.

2. Next Sentence Prediction (NSP): This task involves

predicting whether a given sentence B logically follows

sentence A. The model is trained on pairs of sentences

from a corpus.

The bidirectional context and the segment embeddings

introduced by BERT, along with its two pre-training

objectives, are considered the main innovations of the BERT

work (Devlin et al., 2019).

The data used for pre-training BERT included the

BookCorpus (900M words) (Zhu et al., 2015) and English

Wikipedia (2,500M words), with some additional pre-

processing described in the paper.

BERT comes in two configurations:

BERT-Base: 12-layer (transformer blocks), 768-hidden

dimension, 12 attention-heads, with a total number of

parameters equal to 110M

BERT-Large: 24-layer (transformer blocks), 1024-hidden

dimension, 16 attention-heads, with a total number of

parameters equal to 340M

The process of pre-training plus fine-tuning BERT for specific

downstream NLP applications outperformed state-of-the-art

models at the time, including GPT-1 from OpenAI, in all

considered NLP tasks.

9.4.1.3 Fine-tuning BERT for Enhanced Financial

Sentiment Analysis: Producing FinBERT.

Fine-tuning BERT on financial data is crucial because

general-purpose sentiment models may not accurately

capture the nuances of financial vocabulary and market-

specific sentiments. For example, the sentence “Mark left

Facebook” might be considered neutral by most sentiment

models, but in the financial context, it could significantly

impact the market. By fine-tuning BERT on financial texts, we

enable the model to learn new concepts, names, and entities specific to finance, resulting in more accurate sentiment

analysis. Fine-tuning BERT for multiple tasks is

straightforward, as demonstrated by Devlin et al. (2019) in

multiple experiments.

As discussed in the previous section, fine-tuning BERT for a

classification task can be done by using the final hidden

representation of the classification token [CLS], which serves

as the “aggregate representation” of the entire sequence.

This representation is then fed to a classification head, which

outputs the probabilities associated with each sentiment

class.

To train the entire model, we simply need a collection of

(input, output) pairs. During training, all the model’s

parameters are updated, including those of BERT and the

classification head. In the literature, BERT is often referred

to as the “Body” of the network, to distinguish it from the

additional layer appended to perform a specific task, such as

classification, which is called the “classification head.”

In Hamlet’s experience, there are variations in what

parameters to train or finetune in practice. For certain

applications, fine-tuning only the classification head can yield

good results. However, this depends on the specific use case

and requires empirical validation. As we will see in the next

chapter, fine-tuning all the parameters might also be very

time-consuming and costly, but it often improves

performance. To address this, more efficient fine-tuning

methods can be utilized, which will be discussed in Section

10.5.1.

As discussed, fine-tuning for tasks like text classification

(e.g., sentiment analysis), the input text is fed into BERT, and

the final [CLS] token representation is passed into an output

layer for classification. This is the approach followed by the

authors of Araci (2019) to produce the FinBERT model for

text classification. The authors also experimented with

producing a FinBERT for regression, where the main

difference from the classification case is the use of a

continuous target, an output layer for regression, and a

regression loss function, specifically mean squared error.

This score can serve as a representation summarizing the

processing of relatively complex alternative data in a

downstream multi-factor trading strategy, for example. If you

want to learn more about applying Transformer-based

models for time series, check out Section 5.3.6, where we have already covered this use case.

The datasets used to fine-tune BERT into FinBERT were as

follows:

1. TRC2-financial, which is a subset of Reuters’ TRC2. It

consists of 1.8M news articles that were published by

Reuters between 2008 and 2010. These data are used to

pre-train BERT. The corpus can be obtained for research

purposes by applying here:

https://trec.nist.gov/data/reuters/reuters.html.

2. Financial PhraseBank, see Malo et al. (2014), which is

the main sentiment analysis dataset used in this paper.

3. FiQA Sentiment, see WWW ’18: Companion Proceedings

 of the Web Conference 2018 (2018), a dataset created for

the WWW ’18 conference financial opinion mining and

question-answering challenge. It includes 1,174 financial

news headlines and tweets with their corresponding

sentiment score.

For more details about the datasets, see Araci (2019).

So, let’s explore how we can leverage the FinBERT model for

our practical application.

[image: Image 1380]

[image: Image 1381]

9.4.1.4 Using FinBERT.

In this experiment, we use FinBERT, which has been trained

by Araci (2019) and made available at ProsusAI/finbert

(https://huggingface.co/ProsusAI/finbert). FinBERT is based on fine-tuning BERT-Base, so it has a model size of 110M

parameters. We have also written some additional code on

top of the ProsusAI/finbert to make sentiment evaluation

quite easy.

Here, we illustrate how we can make use of this model for

computing the sentiment of sentences. Let’s start with a

simple example.

To compute the sentiment of the sentence “Mark has left

Facebook,” we can use the following code:

negative

finbert_sa.predict_overall_sentiment('Mark has left fac

ebook',

finbert_model)

>>> -0.45569813

The sentiment score of

indicates a negative

sentiment. Similarly, we can compute the sentiment of other

sentences. For example, consider the sentences “Jeff bezos

acquires Netflix”:

seems neutral

finbert_sa.predict_overall_sentiment('Jeff bezos acquir

es Netflix',

finbert_model)

>>> -0.0069163926

This sentence has a sentiment score of

, which

is quite neutral. Let’s look at another example, “Business

magnate Elon Musk initiated an acquisition of American

social media company Twitter”:

[image: Image 1382]

[image: Image 1383]

seems neutral

finbert_sa.predict_overall_sentiment(

'''Business magnate Elon Musk

initiated an acquisition of American

social media company Twitter''',

finbert_model)

>>> 0.090285115

The sentence has a slightly positive sentiment score of

. Finally, let’s evaluate the sentiment of a more

complex sentence related to the Federal Reserve:

negative

finbert_sa.predict_overall_sentiment(

'''The Federal Reserve held interest rates steady,

while also indicating it still expects one more hike

before the end of the year and fewer cuts than

previously indicated next year.''',

finbert_model)

>>> -0.13109717

This sentence has a negative sentiment score of

.

We can also process multiple sentences at one. For example:

sentences = [

'Mark has left facebook',

'Jeff bezos adquires Netflix',

'''Business magnate Elon Musk initiated an

acquisition of American social media company Twitter

''',

'''The Federal Reserve held interest rates steady,

while also indicating it still expects one more

hike before the end of the year and fewer cuts

than previously indicated next year.'''

]

sentiments = finbert_sa.process_sentences(finbert_model

, sentences)

sentiments

>>> array([-4.5569813e-01, -1.7964840e-04,

9.0285115e-02, -1.3109717e-01], dtype=float32)

This array of sentiment scores makes it easy to analyze the

sentiment of multiple sentences efficiently.

9.5 Experiment Results

In this section, we describe the results of the model pipeline

used to convert FED speech audio data into trading signals.

As a reminder, the model pipeline consists of the following

steps:

1. Collecting audio from YouTube using pytube.

2. Audio segmentation using ffmpeg.

3. Transcribing the audio bars into text using the Whisper

model.

4. Computing sentiment scores for the transcribed text

using FinBERT.

5. Generating trading signals based on the sentiment

scores, with buy or sell decisions made according to

predefined thresholds from the sentiment score

distribution.

Price SPY data are sampled at 30-second intervals (30-second

bars), and based on sentiment, we attempt to make a trading

decision every 30 seconds.

In our test, we collected a total of 5 hours of speech data

from the Fed using pytube, corresponding to five different

Fed conferences. The audio was downloaded with a specified

bit rate (ABR) of 160kbps to ensure high quality.

As previously explained, after downloading the data, the

audio was segmented to create 60-second “audio bars,”

sampled at 30-second intervals, with timestamps delayed by

15 seconds (embargo) to reduce the risk of introducing look-

ahead bias. For transcription, we used the Whisper base

model for its trade-off between speed and accuracy. In our

experiments related to the speech processing part, we

noticed that the results were sensitive to using larger

versions of Whisper for producing the transcriptions, but this

did not significantly affect the results. Instead, the quality of

the input data had a more important impact. Therefore, we

downloaded the highest quality available that was common

across all videos.

Once the audio bars were created along with the

corresponding transcriptions, we used FinBERT to compute

the sentiment score of each audio bar. Trading signals were

generated based on the computed sentiment scores. The

sentiment score distribution was analyzed, and thresholds

were set based on its quantiles. If the sentiment score was

above the upper threshold, we generated a buy signal for the

SPY; if it was below the lower threshold, a short signal was

generated. Otherwise, no action was taken unless a position was already open, in which case we closed it.

A summary of the main steps performed by each subsystem is

described here:

1. Data collection and preprocessing

Collected 5 hours of FED speech data

Downloaded audio with bit rate (ABR) of 160 kbps

Segmented the audio into 60-second bars with a 30-

second sampling interval and a 15-second embargo

2. Transcription and sentiment analysis

Used the Whisper base model for transcription

Applied FinBERT to compute sentiment scores for

each audio bar

3. Trading signal generation

Analyzed the sentiment score distribution to set

thresholds

Generated buy or sell signals based on sentiment

scores

Figure 9.11 shows the SPY forward return and sentiment score time series produced by the system:

[image: Image 1384]

Figure 9.11 Time-series sentiment signal and forward returns.

In Figure 9.12 we present the scatter plot between the sentiment score and the SPY forward returns, which reveals

a positive correlation between them.

[image: Image 1385]

[image: Image 1386]

[image: Image 1387]

Figure 9.12 Scatter plot of sentiment signal vs forward returns.

Finally, Table 9.1 summarizes the key performance results of the strategy. These results include a simple constant model

for transaction costs, assuming 5 basis points (bps) per

transaction. Overall, across all videos, the trading signal

predicts the sign of the SPY forward returns with an accuracy

of 53.15%. The correlation between the sentiment score and

the SPY forward returns is 14.14% with a -value of 0.199%.

TABLE 9.1

Performance table.

Unnormalized

Pearson

Sharpe ratio

Correlation of

Sentiment Signal

Accuracy vs SPY

-value

11.3844%

53.1532% 14.1458%

0.1999%

9.6 Conclusion

The experimental results demonstrate how we can effectively

process alternative data, in this case, audio, to generate

actionable trading signals. By collecting high-quality audio

from the internet, using appropriate audio segmentation, and

employing complex models for transcription and sentiment

score computation, we were able to generate profitable high-

frequency trading signals to trade the next 30 seconds of the

SPY. This application highlights the power of deep

autoregressive transformer models for modeling audio and

text, as covered in Chapter 5. Our experiments demonstrated the critical role of FinBERT, a fine-tuned BERT model for

financial data. Unlike general sentiment analysis models,

which often miss financial nuances, FinBERT outperformed

other tested models not trained on financial data,

significantly improving our performance metrics. The next

chapter explores methods for customizing LLMs for

specialized tasks. This approach highlights the potential for

composing very complex deep learning models to address

complex financial applications.

Chapter 10

Efficient Inference

10.1 Introduction

In the past, the typical machine learning workflow in industry

was “relatively” straightforward: collect data for the problem

at hand, train a model on that data, and then deploy the

trained model directly into production to respond to new

inputs.

However, with the advent of increasingly large models, this

traditional approach has become less feasible. The large size

of modern models often makes it impractical to deploy them

in production as they are, at least for most companies or

institutions. This can be due to constraints such as latency

requirements for the specific applications these models are

used for, or due to the prohibitive infrastructure costs

associated with running these models at scale.

As a result, the typical machine learning workflow in the

industry has evolved. Instead of deploying the model directly

after training, a compression step is now commonly

introduced. This compression step takes the model produced

after training and typically produces a smaller version—

smaller in terms of the number of parameters or the memory

required to store them—while striving to maintain or even

improve the performance of the original model. Nowadays,

model compression is essential for meeting system

requirements for certain applications, such as reducing

latency or simply to reduce infrastructure costs.

One example from industry is the eBay case study (see Xue et

al. [2023]). They improved their recommender system by

fine-tuning BERT on eBay item titles, which often include

product-specific words, alongside the Wikipedia corpus, that is more suited to the needs of eBay language understanding

tasks. In offline evaluations, this eBERT model outperforms

out-of-the-box BERT models on a collection of eBay-specific

tagging tasks. However, the eBERT model was too large to

achieve low latency specifications at inference time, making

it challenging to deliver recommendations in real time. To

address this issue, eBay used model compression techniques

to produce a smaller version of BERT that met their inference

requirements. They also optimized the model for CPU

inference to reduce costs. For more details on their work, see

Xue et al. (2023).

In Hamlet’s professional experience at Criteo, he has seen

that compression techniques are crucial not only for cost

reduction, which is a significant concern, but also for

meeting system design constraints. While massive

parallelization techniques can be employed to deploy models

and potentially meet latency requirements, in some cases,

the high costs associated with these solutions can diminish

the potential benefits of the system.

In this chapter, we introduce the most common techniques

used in the industry for efficient inference, such as

knowledge distillation, and model quantization. To illustrate

these techniques, we use FinBERT—the model applied in our

practical application in the last chapter—as a case study,

demonstrating how to make it faster at inference. We

conclude the chapter by showcasing techniques for

customizing LLMs, allowing you to adapt models to your

specific needs.

10.2 Scaling Large Language Models:

High Performance, High Computational

Cost, and Emergent Abilities

As discussed in the previous chapter, where we explored one

of the first, most widely used, and successful large language

models, BERT, the modern approach to solving a variety of

NLP tasks involves a two-step training process: pre-training

and fine-tuning. In the first step, a large model is pre-trained

on vast amounts of data, then fine-tuned to solve specific

NLP tasks.

Nowadays, there is strong evidence that improving the

model’s performance during the pre-training phase leads to

improvements across multiple NLP tasks. For example, in the

paper by Devlin et al. (2019), they empirically demonstrated

that the larger version of BERT, named BERT-Large,

outperformed the smaller version, BERT-Base, during pre-

training and consistently outperformed it across all the

downstream NLP tasks considered.

Given this evidence, a natural question arises: if strong

performance during pre-training is crucial, how should we

approach this phase effectively? Among the many variables

and strategies available, which are the most critical?

In the paper by Kaplan et al. (2020), the authors found that

one path to improving performance lies in scaling up the

models—specifically, increasing the number of model

parameters, the amount of training data, and the duration of

training time. When these factors are increased, they lead to

significant gains in performance. The authors empirically

found that performance follows a power-law relationship with

respect to these factors, as shown in Figure 10.1.

[image: Image 1388]

Figure 10.1 Figure 1 from Kaplan et al. (2020): Illustration of how language modeling performance

improves with increases in model size, dataset size,

and the amount of compute used for training. For

optimal performance, all three factors must be scaled

up in tandem. Empirical performance exhibits a

power-law relationship with each individual factor

when the other two are not limiting.

For more details about how other parameters affect

performance, refer to the paper by Kaplan et al. (2020).

These empirical laws, which suggest that increasing any of

the mentioned factors can lead to almost predictable

improvements in model performance, have further motivated

the industry to scale up models. Scaling up models is also

crucial for unlocking emergent abilities of large models,

which we briefly discuss on the next section.

While this path of scaling up is highly effective for improving

performance, it also comes with some drawbacks, such as

increased inference costs and the infrastructure required to

serve these large models.

 10.2.1 Emergent Abilities

While the scaling laws provide a powerful path for improving

model performance, recent evidence suggests that they are

also key for unlocking the emergent abilities of large

language models. Emergent abilities is defined by Wei et al.

(2022) as, “An ability is emergent if it is not present in

smaller models but is present in larger models.”

There are two main aspects of emergent abilities that are

important to know:

They cannot be directly predicted by extrapolating from

scaling laws (like the one discussed earlier).

These abilities begin to emerge only after the model

reaches a certain scale.

In the following section, we will use the main work by Wei et

al. (2023) on emergent abilities of large models. Particularly,

we will illustrate how model size and training time contribute

to the emergence of these abilities.

 10.2.2 Impact of Model Size

To illustrate the impact of model size on emergent abilities,

let’s examine how Large Language Models (LLMs) perform in

solving middle school math word problems. In the work by

Wei et al. (2023), the GSM8K dataset is used for this

evaluation, where the LLMs are asked to solve math

problems using both standard prompting and chain-of-

thought prompting. According to Wikipedia, “Chain-of-

thought (CoT) prompting is a technique that allows large

language models (LLMs) to solve a problem as a series of

intermediate steps before giving a final answer” (see

[https://en.wikipedia.org/wiki/Prompt_engineering]).

In Figure 10.2, you can see the performance measured as solve rate (%) versus model scale, represented by the

number of model parameters in billions.

[image: Image 1389]

Figure 10.2 Figure 4 from Wei et al. (2023): An illustration of how performance (solve rate) improves

as model scale, measured in billions of parameters,

increases for standard prompting versus chain-of-

thought prompting. Chain-of-thought prompting

enables LLMs to solve challenging math problems,

with chain-of-thought reasoning notably emerging as

an ability with increasing model scale.

The plot shows the performance of three different models:

LaMDA, GPT, and PaLM. A clear pattern emerges for each of

these models: as the number of parameters increases, so

does the performance. For example, focusing on the results

using chain-of-thought prompting, which tends to yield better

results, LaMDA, with 137 billion parameters, achieves a

performance of less than 20%. In contrast, GPT, with 175

billion parameters, achieves a performance exceeding 40%.

PaLM, with 540 billion parameters, reaches a performance of

around 50%.

 10.2.3 Effect of Training Time

Evidence suggests that emergent abilities only appear after a

large number of training iterations. It’s not enough to simply

have a large model; it must also be trained extensively to unlock these capabilities.

In Figure 10.3, taken from the paper by Wei et al. (2022), we see the performance of various models—LaMDA, GPT-3,

Gopher, Chinchilla, PaLM, and a Random Model—on eight

different common NLP tasks, like Modular Arithmetic, Multi-

task Natural Language Understanding (NLU), Word-in-

Context, among others.

[image: Image 1390]

[image: Image 1391]

Figure 10.3 Figure 2 from Wei et al. (2022): Illustration of performance, measured by accuracy,

versus model scale (measured in training FLOPs) for

eight different tasks. The figure shows how

performance transitions from random levels to

significantly above random after reaching a certain

scale threshold. These tasks demonstrate examples of

emergent abilities in the few-shot prompting setting,

which only appear after sufficient training.

Each graph shows model performance (measured in

accuracy) as a function of the model scale (training FLOPS,

or training floating point operations per second). For

example, looking at the Modular Arithmetic task, large

models like GPT-3 and PaLM show a significant performance

boost only when their training FLOPS exceed

. Similarly,

for the Multi-task NLU task, models such as Chinchilla,

Gopher, and GPT-3 only start improving once their training

FLOPS pass the same threshold. We observe the same

behavior for the Word-in-Context task as well.

The key takeaway is that not only do we need large models, but we also need to train them for many iterations to improve

their performance and unlock emergent abilities.

However, it is important to note that even after extensive

training, large models can be slow during inference due to

their huge number of parameters. This creates the need for

methods to speed up inference, as the ones described in this

chapter.

Lastly, although not explicitly shown in the figures, the

amount of training data is also a critical factor in the model’s

performance. Large models benefit from vast amounts of

data to learn from, further enhancing their capabilities.

 10.2.4 Efficient Inference for Deep Models

To develop efficient inference for deep models, recent work

has focused on model compression and acceleration

techniques, such as the following:

1. Knowledge distillation

2. Quantization

3. Parameter pruning

4. Neural Architecture Search

In this chapter, we will focus only on techniques 1 and 2.

10.3 Making FinBERT Faster

 10.3.1 Knowledge Distillation

Knowledge distillation is a technique used to create a faster

model (the student)—meaning one with lower inference time

—that approximates the performance of a slower but more

powerful model (the teacher). In this process, the student model is by design smaller than the teacher model, with

fewer parameters, making it more efficient at inference time.

Knowledge distillation involves a learning process for the

student model where it not only learns from data, as in

typical training, but also has knowledge transferred from the

teacher model.

In our case study, the teacher model we want to approximate

is FinBERT; see Araci (2019). As a reminder, FinBERT is a

fine-tuned version of BERT that has been specifically trained

for sentiment analysis prediction in the financial domain.

If our only concern were inference speed, we could simply

train the student model using the given data (which, for

example, could be a combination of pre-training on the BERT

corpus followed by fine-tuning with the financial data used by

FinBERT). However, because the student model is smaller

than the teacher, it would likely underperform compared to

the teacher. Knowledge distillation offers a different

approach to this situation: it involves not only learning from

the data but also aligning the student model with certain

aspects of the teacher model. In its simplest form, this

alignment could involve matching the probability distribution

that the teacher model assigns to a given input, as described

by Hinton et al. (2015) in their paper on knowledge

distillation. (Yes, the same Hinton who shared the 2024

Nobel Prize in Physics with John Hopfield and is considered

one of the Godfathers of Deep Learning. See

https://en.wikipedia.org/wiki/Geoffrey_Hinton.) An analogy can help clarify this process. Consider how we

learn a subject in school: imagine we have the option to study

directly from a textbook or to attend lectures given by a

teacher who is an expert in the subject. Most of the time, a

combination of both—attending lectures and reading the

textbook—leads to a better understanding than either

approach alone. In this analogy, the textbook represents the

data used in standard training, while the teacher represents the model that also guides the learning process. Similarly, in

knowledge distillation, the student model benefits from

learning both from the data and from the guidance provided

by the teacher model.

To enable the student model to learn both from the data and

from the teacher model, the cost function used during

training must account not only for how well the student

model fits the data but also for how well it matches the

specific aspects of the teacher model that we want to

capture.

We will explore how to apply knowledge distillation to

FinBERT, demonstrating how this technique can be used to

create a faster model without sacrificing too much

performance.

10.3.1.1 Which Aspect of the Teacher Model to Match.

In knowledge distillation, there are various aspects of the

teacher model that the student model can try to align with.

These different aspects are known in the knowledge

distillation literature as different types of knowledge. For

example, in the most basic form of knowledge distillation,

often called vanilla knowledge distillation, the focus is on

aligning the probability distribution that the teacher model

assigns to different classes given the input, as in the case of a

classification task. This approach was popularized by Hinton

et al. (2015).

However, there are other forms of knowledge that can be

transferred from the teacher to the student model. For

instance, the intermediate representations computed by the

network are a potential source of knowledge that can be

transferred. Some methods use the activation features of

intermediate layers in the teacher model to guide the

learning of the student model, as described by Romero et al.

[image: Image 1392]

(2015) in their work on FitNets. Also, the parameters or

weights of the teacher model can also be a different source of

knowledge.

These different types of knowledge to transfer fall into three

categories: response-based knowledge, feature-based

knowledge, and relation-based knowledge. A very good

overview of these classification can be found in the excellent

survey on knowledge distillation by Gou et al. (2021).

For the purpose of this book and in our case study, we will

focus on the response-based knowledge, which is the

simplest yet highly effective method for model compression.

10.3.1.2 Response-based Knowledge.

Response-based knowledge refers to a scenario where the

student model attempts to mimic or match the output of the

teacher model’s last layer, meaning that we try to match its

final prediction.

In typical classification tasks, the most popular form of

response-based knowledge is known as soft targets, as

described in Hinton et al. (2015). In this context, soft targets

refer to the probability distribution allocated by the teacher

model over the different classes for a given input. This

contrast with the “ground truth” or hard targets, where the

probability mass is fully allocated to the “correct class.”

In neural networks for classification tasks, the class

probabilities are usually generated by applying a “softmax”

function to the logits, which are the outputs of the last fully

connected layer of the network. Following the notation

introduced in Hinton et al. (2015), we denote the outputs

logits as the vector , whose dimension depends on the

number of classes specified by the classification problem.

(Logits are the outputs of a neural network before the

softmax activation function is applied. They are scores of the

[image: Image 1393]

[image: Image 1394]

[image: Image 1395]

[image: Image 1396]

[image: Image 1397]

[image: Image 1398]

[image: Image 1399]

[image: Image 1400]

input belonging to a certain class. Recall the discussion on

Logistic Regression in Chapter 3). The probability

distribution is then computed by applying the softmax

function to :

where is the output corresponding to the -th class, and

is a parameter known as the temperature. Typically, in

classification problems, is set to 1, but in knowledge

distillation, using larger values of tends to produce a

“softer” probability distribution over the classes.

For example, in Figure 10.4, we show how the output of the softmax function applied to the vector of logits

changes as we increase the temperature. At a

temperature of 1, the output is close to a hard target, with

almost all of the probability mass allocated to a single class.

As the temperature increases, the probability distribution

becomes progressively softer. For very large temperatures—

such as in our case temperature = 1,000—the distribution

approaches a uniform distribution across all classes.

(Physicists will recognize this as the Boltzman distribution

that gives the probability that a system will be in a certain

state as a function of that state’s energy and the temperature

of the system.)

[image: Image 1401]

[image: Image 1402]

[image: Image 1403]

[image: Image 1404]

[image: Image 1405]

[image: Image 1406]

[image: Image 1407]

[image: Image 1408]

[image: Image 1409]

Figure 10.4 Softmax distribution.

As we have discussed, the goal in knowledge distillation is for

the student model to learn both from the data and from the

teacher model, and specifically in soft targets response-based

knowledge, from the soft targets produced by the teacher. To

achieve this, we need an objective function for the student

that accounts for how well it fits the empirical data

distribution (typically measured by the cross-entropy loss in

classification problems) and how well it matches the

teacher’s soft targets. One approach is to use a weighted

average of both objectives:

where

represents the total loss for the student,

represents the cross-entropy loss between the student model

and the ground truth label , is the weight hyper-parameter

between 0 and 1, and

is the distillation loss that

measures how well the student’s distribution

aligns

with the teacher’s distribution

.

[image: Image 1410]

[image: Image 1411]

[image: Image 1412]

[image: Image 1413]

The knowledge distillation loss is typically proportional to the

Kullback-Leibler (KL) divergence,

where is the temperature and

is the KL divergence,

which measures the difference between the teacher and

student distributions. The factor

ensures that the relative

contributions of the hard and soft targets remain balanced.

For more detailed explanations about the proportionally

factor, we encourage you to refer to Hinton et al. (2015)

10.3.1.3 Implementation Details.

We will use the Hugging Face

(https://huggingface.co) transformers python library for performing knowledge distillation due to its powerful API and

utilities, which greatly simplifies the training and inference

with transformer models. In the repository accompanying

this book, you will find a short tutorial covering the basics of

this library, making sure you have the have the knowledge

needed to understand the relevant components discussed in

the book.

In the code snippets provided later, we focus on the most

important steps for implementing knowledge distillation.

Many steps, such as dataset creation, tokenization, train-test

splitting, among others, are common across machine learning

and NLP workflows and not specific to this project, so they

are not shown here. However, you can find the complete

step-by-step process for building this use case in the

accompanying notebook for this chapter.

Our goal is to find a balance between theory and specific

implementation, allowing you to understand the core

concepts of the topic and apply them using different libraries,

such as PyTorch Lightning

[image: Image 1414]

(https://lightning.ai/docs/pytorch/stable/), or even implementing everything in plain Pytorch or TensorFlow. We

hope this approach give you a solid understanding of the

theory while providing detailed implementation examples in

the notebook, which can be updated as new powerful tools

become available.

Now that we understand the student loss described earlier—

a linear combination of cross-entropy loss (commonly used

for classification tasks) and knowledge distillation loss

(proportional to the KL divergence between the teacher and

student distributions)—we can proceed to implement it.

For standard training procedures, we typically use the

Trainer class of the transformers library, which provides and

API for training models in PyTorch, offering many features

out of the box, such as distributed training on multiple

GPUs/TPUs, etc. More information can be found in the

library documentation

https://huggingface.co/docs/transformers/v4.15.0/main_clas

ses/trainer.

Since our objective is to train the model using the distillation

loss

, and the Trainer class does not support this loss

out of the box, we need to extend its capabilities.

Fortunately, this is straightforward.

We extend the standard Trainer class to create a

DistillationTrainer, as suggested in Tunstall et al. (2022),

which supports the student loss function necessary for

knowledge distillation. The DistillationTrainer can be

instantiated as shown in the following code:

distilbert_trainer = DistillationTrainer(

model_init=student_init,

teacher_model=teacher_model,

args=student_training_args

train_dataset=YOUR_TRAINING_SET,

eval_dataset=YOUR_EVALUATION_SET,

compute_metrics=compute_metrics,

tokenizer=student_tokenizer)

The DistillationTrainer object takes the following inputs:

student_init: a function used to provide the initialization

of the student model

teacher_model: the teacher model used for distillation

student_training_args: an instance of the

TrainingArguments class

YOUR_TRAINING_SET: a torch.utils.data.Dataset,

torch.utils.data.IterableDataset, or datasets.Dataset,

the dataset used to train the model

YOUR_EVALUATION_SET: a torch.utils.data.Dataset,

torch.utils.data.IterableDataset, or datasets.Dataset,

the dataset used to evaluate the model

compute_metrics: a function used to report metrics on the

evaluation set, such as precision, recall, accuracy, etc.

student_tokenizer: The tokenizer used to preprocess the

data

A key difference, from the input arguments point of view,

between the DistillationTrainer and the standard Trainer

class is the inclusion of the teacher_model argument, which

is essential for knowledge distillation.

From a functional perspective, DistillationTrainer must

compute the correct loss function. To do this, it needs access

[image: Image 1415]

[image: Image 1416]

to the and temperature hyperparameters. The

implementation of the compute_loss method is shown here:

import torch.nn as nn

import torch.nn.functional as F

from transformers import Trainer

class DistillationTrainer(Trainer):

def

__init__(self, *args, teacher_model=None, **kwargs):

super().__init__(*args, **kwargs)

self.teacher_model = teacher_model

def

compute_loss(self, model, inputs, return_outputs=False)

:

device = torch.device("cuda" if

torch.cuda.is_available() else "cpu")

inputs = inputs.to(device)

outputs_stu = model(**inputs)

Extract cross-

entropy loss and logits from student

loss_ce = outputs_stu.loss

logits_stu = outputs_stu.logits

Extract logits from teacher

with torch.no_grad():

outputs_tea = self.teacher_model(**inputs)

logits_tea =

outputs_tea.logits

Soften probabilities and compute distillation

loss

loss_fct = nn.KLDivLoss(reduction="batchmean")

loss_kd = self.args.temperature ** 2 *

loss_fct(

F.log_softmax(logits_stu /

self.args.temperature, dim=-1),

F.softmax(logits_tea /

self.args.temperature, dim=-1))

Return weighted student loss

loss = self.args.alpha * loss_ce + (1. -

self.args.alpha) * loss_kd

[image: Image 1417]

[image: Image 1418]

return (loss, outputs_stu) if

return_outputs else loss

In this customized Trainer class, we:

Save the teacher model in the __init__ method.

Compute the student loss in the compute_loss method,

where:

loss_ce corresponds to the cross-entropy loss.

loss_fct is an instance of the nn.KLDivLoss object,

which computes the KL divergence loss.

loss_kd corresponds to the knowledge distillation loss

between the teacher and student distributions.

loss is the linear combination of both losses.

As shown in the code, the class accesses and as

self.args.alpha and self.args.temperature through the

student_training_args parameters object. To make these

available during training, we extend the TrainingArguments

class as shown here:

from transformers import TrainingArguments

class DistillationTrainingArguments(TrainingArguments):

def

__init__(self, *args, alpha, temperature, **kwargs):

super().__init__(*args, **kwargs)

self.alpha = alpha

self.temperature = temperature

After creating our custom trainer and custom training

arguments, we can train our student model using the

convenient features provided by the transformers library by

simply calling distilbert_trainer.train(). As previously

mentioned, the detailed step-by-step process for distilling

FinBERT is provided in the accompanying notebook, while this section focuses on the key concepts and implementation

details.

 10.3.2 Case study results. Distilling FinBERT

In the original paper by Araci (2019) on FinBERT, the

authors used two different datasets to fine-tune the model.

One of these datasets is TRC2-financial, which was employed

to improve the relevance of corpus to financial keywords. You

can obtain these dataset for research purposes by applying

here: https://trec.nist.gov/data/reuters/reuters.html.

The second dataset, Financial PhraseBank created by Malo et

al. (2014), is the main dataset used the FinBERT paper for

the specific task of sentiment analysis. It can be obtained for

free here:

https://www.researchgate.net/publication/251231364_Finan

cialPhraseBank-v10. In our experiments, this is the dataset

we used to perform knowledge distillation on FinBERT.

To ensure a fair comparison, we used the same train-test split

specified by the original authors, as provided in their GitHub

repository, FinBERT: Financial Sentiment Analysis with BERT

(https://github.com/ProsusAI/finBERT). This allowed us to report evaluation metrics that are comparable to those in the

original paper. The evaluation metrics we used to assess

performance are the same as those in the original study,

namely accuracy, and macro F1 average.

Our first step was to reproduce the results reported in the

original paper, which we successfully did on the test portion

of the TRC2-financial sentiment dataset.

For the student model, we selected distilbert/distilbert-

base-uncased, provided by Hugging Face at

https://huggingface.co/distilbert/distilbert-base-uncased.

The Transformers library makes it easy to download models

from HuggingFace. More information about this process can be found in the accompanying notebook for this chapter and

the HuggingFace tutorial in the book repository.

In terms of performance, our DistilledFinBERT slightly

outperforms the teacher model, FinBERT, which is an

excellent result. Detailed results can be found in Table 10.1.

TABLE 10.1

Performance metrics of teacher vs. student models.

Model

Precision

Recall

F1-Score

FinBERT

0.85

0.84

0.84

DistilledFinBERT

0.86

0.85

0.85

Since we managed to maintain or even improve performance,

how does it compare in terms of inference speed? The results

are shown in Table 10.2.

TABLE 10.2

Inference speed of teacher vs. student models.

Model

Average Latency (ms)

FinBERT

0.034

DistilledFinBERT

0.016

DistilledFinBERT achieves a 2.125 times faster inference

speed compared to the original FinBERT. In conclusion, our

DistilledFinBERT not only matches the performance of the

original model on the same test set, but it also offers

significantly faster inference, making it a more efficient

option for deployment.

10.4 Model Quantization

Quantization refers to the process of reducing the set of

values a variable can take so that the variable can be

represented using fewer bits, thereby reducing its precision.

The key question behind quantization is: Can deep neural

networks operate effectively with lower precision?

In deep learning, we are particularly interested in applying

quantization to the weights, biases, and activations of our

models. Reducing the bit precision of these elements leads to

improvements in memory storage, computational speed, and

energy consumption. Modern hardware is equipped with

specialized instructions for integer arithmetic, which further

enhance computational speed when operating in lower

precision. However, this reduction in precision can come at

the cost of accuracy, as lower bit representation might lose

information.

Training and inference in deep neural networks have distinct

precision requirements. During training—a highly dynamic

process involving a wide range of weight values—a large

dynamic range is important. On the other hand, inference

often prioritizes precision over a small dynamic range, as the

model makes predictions based on pre-trained weights that

often concentrates around a particular value. By

understanding the different requirements of training and

inference, we can design data types optimized for each stage.

As of the time of writing, there are two main quantization

techniques: K-Means quantization and linear quantization. In

this section, we will focus on linear quantization and explore

how it can be applied to achieve efficient model inference.

[image: Image 1419]

[image: Image 1420]

[image: Image 1421]

[image: Image 1422]

[image: Image 1423]

[image: Image 1424]

[image: Image 1425]

[image: Image 1426]

[image: Image 1427]

[image: Image 1428]

[image: Image 1429]

[image: Image 1430]

[image: Image 1431]

[image: Image 1432]

[image: Image 1433]

[image: Image 1434]

 10.4.1 Linear Quantization

Linear quantization applies an affine mapping from the space

of integers to the space of real numbers (or floating-point

space) using the following formula:

, as

described in Jacob et al. (2017). Here:

is the scale, a floating-point value.

is the zero point, an integer that represents the offset

or bias.

is the quantized number, an integer.

is the real value, a floating-point number.

The formula is a reconstruction formula, mapping quantized

values back to real values . In practice, though, we usually

start with the real value and need to find its quantized

counterpart, .

We can view this equation as a mapping from the integer

range

to the floating-point range

. The

range of the integer representation depends on the number

of bits used. For example, in signed integer representations,

the range of values for different bit widths is shown in Table

10.3:

TABLE 10.3

Integer range for different bit widths.

Bit width

2

−1

1

3

−4

3

4

−8

7

[image: Image 1435]

[image: Image 1436]

[image: Image 1437]

[image: Image 1438]

[image: Image 1439]

[image: Image 1440]

[image: Image 1441]

[image: Image 1442]

[image: Image 1443]

[image: Image 1444]

[image: Image 1445]

[image: Image 1446]

[image: Image 1447]

[image: Image 1448]

[image: Image 1449]

[image: Image 1450]

[image: Image 1451]

[image: Image 1452]

The floating-point range

is determined by the

statistics of the real values input to be quantized. To

determine the scale , we impose that

maps to

and

maps to

, solving the following system of equations:

Subtracting these two equations gives us the value of :

The zero point is found by solving for using

, which results in:

Since is an integer, we round it. To compute the quantized

value , we use:

Finally, is clamped to the range

and rounded to

the nearest integer. Although there are different methods for

rounding, this example uses the simplest case, but adaptive

rounding methods also exist.

10.4.1.1 Example of Linear Quantization.

Let’s illustrate linear quantization with a toy example to give

a better understanding of the operations involved. Consider a

weight matrix that we want to quantize using 2 bits:

[image: Image 1453]

[image: Image 1454]

[image: Image 1455]

[image: Image 1456]

[image: Image 1457]

[image: Image 1458]

weights = np.array([

[-1.0856306 0.99734545 0.2829785]

[-1.50629471 -0.57860025 1.65143654]

[-2.42667924 -0.42891263 1.26593626]

])

First, we compute the scale . The dynamic range of the

weight matrix, defined by its minimum and maximum values,

is

and

. Using a 2-bit

representation, the integer range is

. From this, we

compute the scale as

. We can then find the zero

point

. Finally, we compute the quantized weights using

the equation provided:

quantized_weights = (weights / scale +

zero_point).clamp(qmin, qmax).round()

>>> quantized_weights

np.array([

[[-1. 1. 0.]

[-1. -0. 1.]

[-2. -0. 1.]]

])

If we attempt to reconstruct the original matrix from the

quantized version, we obtain:

>>> reconstructed_weights

np.array([

[-1.3594 1.3594 0.],

[-1.3594 -0. 1.3594],

[-2.7187 -0. 1.3594],

])

The reconstruction error is the difference between the

original and reconstructed weights:

[image: Image 1459]

>>> reconstruction_error

np.array([

[0.2737 -0.362 0.283],

[-0.1469 -0.5786 0.2921],

[0.2921 -0.4289 -0.0934]

])

 10.4.2 Quantizing an Attention Layer in Distilled

 FinBERT

Now, let’s apply this process to one of the attention layers in

our Distilled FinBERT model using 8 bits. Figure 10.5 is a distribution of the parameters of the layer, following a similar

setup to that in Tunstall et al. (2022).

Figure 10.5 Weights distribution.

As shown in Figure 10.5, the weights are concentrated within a narrow range of values, exhibiting a small dynamic range.

Since we are using signed 8-bit integers, the range is

[image: Image 1460]

[image: Image 1461]

. The scale factor and zero point are calculated

similarly to the previous example.

Next, we compute the quantized weights using the formula

, clamp the values, round them to the nearest

integer, and store them in the torch.int8 data type:

manually_quantized_weights = (weights / scale +

zero_point).clamp(qmin, qmax).round().char()

>>> manually_quantized_weights

tensor([[-5, -8, 0, ..., -6, -3, 8],

[8, 3, 1, ..., -4, 7, 1],

[-9, -5, 5, ..., 0, 6, -3],

...,

[5, 0, 13, ..., 0, 6, -1],

[0, -2, -12, ..., 12, -8, -13],

[-13, -1, -9, ..., 8, 2, -2]], dtype=tor

ch.int8)

Torch also provides a built-in function,

torch.quantize_per_tensor, for this process. Here’s how the

result compares:

from torch import quantize_per_tensor

torch as a function which performs this operation for

us

dtype = torch.qint8

quantized_weights =

quantize_per_tensor(weights, scale, zero_point, dtype)

quantized_weights.int_repr()

tensor([[-5, -8, 0, ..., -6, -3, 8],

[8, 3, 1, ..., -4, 7, 1],

[-9, -5, 5, ..., 0, 6, -3],

...,

[5, 0, 13, ..., 0, 6, -1],

[0, -2, -12, ..., 12, -8, -13],

[-13, -1, -9, ..., 8, 2, -2]], dtype=tor

ch.int8)

Finally, let’s compare the results:

make sure they are equivalent

assert abs(quantized_weights.int_repr() -

manually_quantized_weights).sum().item() <= 1e-5

Figure 10.6 is the distribution of the quantized weights.

[image: Image 1462]

Figure 10.6 Distribution of quantized weights.

To verify the gain in memory efficiency from moving from

FP32 to INT8, we can measure it directly in code:

import sys

4x time compression!

sys.getsizeof(weights.storage()) /

sys.getsizeof(quantized_weights.storage())

>>> 3.999755879241598

We also measure the speedup of performing the operation

weights*weights, as shown in Table 10.4.

TABLE 10.4

Performance

table

for

speedups

because

of

quantization.

Data Type

Time (s)

float32

0.006926

int8

0.000266

Speedup

26.06x

As demonstrated, quantization provides significant

improvements in both memory footprint and computational

speed. For more details, refer to the associated notebook for

this chapter.

 10.4.3 Experiment Results with Linear

 Quantization on Distilled FinBERT

In this section, we apply linear quantization to the entire

Distilled FinBERT model and evaluate the improvements in

memory storage and computational speed, along with any

potential loss in accuracy due to representing the model’s

weights with lower precision. (As a side note, in these

experiments, quantization is applied only during the

inference process.) Since at the time of writing PyTorch

currently supports linear quantization only on CPU devices,

the results presented here are for CPU-based inference. The

results are summarized in Table 10.5.

TABLE 10.5

Inference speed after quantization.

Accuracy

Average Latency

Model

(%)

per Sentence (s)

FinBERT

83.9175

0.1533

DistilledFinBERT

85.3608

0.1060

QuantizedDistilledFinBERT 83.7113

0.0458

As shown, the quantization process introduces some loss in

accuracy, with the model’s performance dropping from

85.36% in the distilled version to 83.71% in the quantized

version. However, the quantized Distilled FinBERT still

matches the original FinBERT’s accuracy (83.92%), with only

a slight difference of 0.2%. In contrast, the quantized model

achieves a significant speedup, performing inference 3.35

times faster than the original model.

This result demonstrates the power of efficient inference:

maintaining nearly identical performance while delivering

significantly faster predictions. Details on how to apply

quantization to the model are provided in the accompanying

chapter notebook.

10.5 Customizing Your LLM: Adapting

Models to Your Needs

LLMs are incredibly powerful tools that can speed up many

kinds of tasks. In earlier chapters, we showed how they can

help generate code for trading strategies or assist in

developing trading ideas. However, as we have seen, getting

satisfactory answers often requires extensive prompt

engineering and adding extra context to guide the model to

produce relevant outputs.

Sometimes, though, you might already have a lot of useful information, like a codebase or internal documentation, that

you would like the LLM to access directly. By customizing the

LLM to work with this knowledge, you can reduce the

amount of prompt engineering and get answers that are

much more tailored to your specific needs. For example, this

would allow software engineers, quant researchers, or

discretionary traders to interact with a knowledge base more

effectively, getting responses that are more relevant and

aligned with their work.

As of the time of writing, there are two main ways to

customize an LLM to work with your own data. One involves

fine-tuning, also known as post-training, which as we have

seen involves retraining the model with your specific data to

make it better for your tasks. The other approach does not

require retraining the LLM but instead enriches the user’s

prompt by appending extra information as part of the input,

allowing the LLM to use that data to answer specific

questions.

A popular method in this second category is Retrieval

Augmented Generation (RAG). In RAG, contextual

information is automatically retrieved from an external

database and appended to the user’s prompt, helping the

LLM generate more relevant or “grounded” responses.

The contextual information is dynamically retrieved from the

database by measuring the similarity between the user’s

input prompt and the files in the database. The main idea is

to represent both the files in the database and the user’s

prompt as mathematical objects, such as vectors

(embeddings). Once we have these representations, a

similarity measure can be applied to identify and retrieve the

most relevant files for the input prompt. For more

information about RAG, please refer to the OpenAI blog post

Retrieval-augmented Generation (RAG) and Semantic Search

for GPTs at https://help.openai.com/en/articles/8868588-

retrieval-augmented-generation-rag-and-semantic-search-for-

gpts.

In the next section, we will provide a brief overview of

techniques for fine-tuning (or post-training) to customize

your LLMs. While we will not delve into the technical details

—that is beyond the scope of this book—we will cover the key

concepts and focus on one specific technique to build a

practical example you can try yourself.

 10.5.1 Fine-tuning Techniques

10.5.1.1 Traditional Fine-tuning (FT).

FT involves retraining all the parameters of the model, which

can be computationally expensive and time-consuming as

models scale. Additionally, it comes with the risk of

catastrophic forgetting, where the model loses a considerable

part of the knowledge gained during pre-training, leading to

degraded generalization performance.

To address these challenges, academia and industry have

developed techniques that involve adapting only a subset of a

model’s parameters during training. These techniques fall

under the category of parameter-efficient fine-tuning (PEFT),

making models faster to adapt, more memory-efficient, and

capable of achieving comparable or even better performance

than traditional fine-tuning.

10.5.1.2 Parameter-efficient Fine-tuning (PEFT).

PEFT focuses on adapting a subset of model’s parameters

during fine-tuning, which reduces computational

requirements, storage needs, and training time compare with

FT. Following are some key PEFT methods.

 10.5.1.2.1 BitFit.

BitFit updates only the bias terms of the network rather than

all the model’s parameters; see Zaken et al. (2021). The

authors have shown that applying BitFit to BERT-like

architectures—models we’ve explored in this and the

previous chapter—achieves performance comparable to full

fine-tuning on small-to-medium datasets. Remarkably, for

models like BERTBase and BERTLarge, the bias terms

represent less than 0.1% of the model’s parameters, yet

modifying only this small percentage appears to be enough

for such datasets. For more details, refer to Zaken et al.

(2021).

 10.5.1.2.2 Adapters.

Adapters (Houlsby et al., 2019) introduce trainable layers

into the network. During adaptation, only these newly added

layers are updated, while the original model parameters

remain frozen. Authors have shown that adapters achieve

near state-of-the-art performance at the time of publication.

However, adding new layers to the network increases both

storage requirements and inference latency. More details can

be found in Houlsby et al. (2019).

 10.5.1.2.3 Prompt-tuning.

Prompt-tuning involves enriching the input prompt with a

learnable prompt to help the LLM perform well on a

downstream task, such as computing the sentiment of a given

text, see the paper The Power of Scale for Parameter-efficient

 Prompt Tuning by Lester et al. (2021). The authors of this

paper show that prompt-tuning achieves accuracy

comparable to traditional fine-tuning as the model size increases. An extension of prompt-tuning is prefix-tuning,

introduced in the paper Prefix-tuning: Optimizing Continuous

 Prompts for Generation by Li and Liang (2021), which adds

learnable prompts to each layer of the transformer. However,

this method introduces additional inference latency due to

the learnable prompts and reduces the available input

prompt length.

10.5.1.3 LoRA (Low-rank Adaptation of Large Language

Models).

LoRA, see Hu et al. (2021), is similar to adapters in the sense

that it introduces additional learnable layers, but with the

difference that it does so as a parallel branch (see Figure

10.7), which provides the advantage of not increasing

inference latency. Like adapters, LoRA keeps the original

network parameters fixed and trains additional parameters,

which are then combined with the original network via

addition.

[image: Image 1463]

[image: Image 1464]

[image: Image 1465]

[image: Image 1466]

[image: Image 1467]

[image: Image 1468]

[image: Image 1469]

[image: Image 1470]

[image: Image 1471]

[image: Image 1472]

[image: Image 1473]

[image: Image 1474]

[image: Image 1475]

[image: Image 1476]

[image: Image 1477]

[image: Image 1478]

[image: Image 1479]

[image: Image 1480]

[image: Image 1481]

[image: Image 1482]

[image: Image 1483]

[image: Image 1484]

[image: Image 1485]

[image: Image 1486]

Figure 10.7 Figure 1 from Hu et al. (2021): This figure illustrates the reparameterization of new layers

added as a parallel branch using LoRA. Only the

matrices

 and

 are trained, while pretrained

weights

 are not updated. The figure also shows the

initialization of matrices and .

For example, following the terminology of the paper,

consider a dense layer in the network with parameters

. If

the input to this layer is , the output is denoted as

.

In LoRA, an additional layer,

, is introduced as a parallel

branch. The output of LoRA then becomes:

During training, the parameters of

remain fixed (frozen),

while the parameters of

are adapted.

The key aspect of LoRA is that the matrix

is constrained

to be a low-rank matrix, defined as

. For example,

if

has dimensions

,

must also have dimensions

. However, and have dimensions

and

,

respectively, where

. This, in LoRA, the forward

pass is modified as follows:

[image: Image 1487]

[image: Image 1488]

[image: Image 1489]

[image: Image 1490]

[image: Image 1491]

[image: Image 1492]

[image: Image 1493]

[image: Image 1494]

[image: Image 1495]

[image: Image 1496]

[image: Image 1497]

So, once the weights and are learned and combined with

the original network to form

, no extra latency is

introduced at inference time because

and

have the

same dimensions. Authors in Hu et al. (2021), propose to

initialize with random Gaussian values and with zeros, so

making sure that

starts as zero at the beginning of

training (see Figure 10.7).

 10.5.1.3.1 Efficiency of LoRA.

Authors have shown that for large models like GPT-3 (175B

parameters), a very low rank , such as 1 or 2, suffices even

when the full rank is as high as 12,288. This makes LoRA

highly storage and compute efficient.

In their experiments, the authors demonstrated that,

compared to fine-tuning GPT-3 175B with Adam optimizer,

LoRA reduces the number of trainable parameters by 10,000

times and the GPU memory requirements by three times. See

Hu et al. (2021) for more details on the results and

experiments.

 10.5.1.3.2 QLoRA.

QLoRA, see Dettmers et al. (2024), extends LoRA by

incorporating quantization, making it even more storage and

compute efficient. More details about QLoRA can be found at

Dettmers et al. (2024).

Fortunately for us, most of these PEFT techniques have

already been implemented by the Hugging Face team. You

can learn more in their blog post announcing the release of

the PEFT library: Parameter-Efficient Fine-Tuning of Billion-

Scale Models on Low-Resource Hardware at

https://huggingface.co/blog/peft. For a more in-depth exploration, visit the PEFT GitHub repository at

https://github.com/huggingface/peft, which provides implementations of state-of-the-art PEFT methods fully

compatible with the Hugging Face Library. Also, if you want

to learn more about efficient deep learning, check out the

MIT course TinyML and Efficient Deep Learning Computing

at https://hanlab.mit.edu/courses/2024-fall-65940. This excellent resource covers more topics than we can address in

a single chapter.

As an example, in the accompanying notebook for this

chapter, we will illustrate how to fine-tune the Llama 3 model

using LoRA. This approach enables can be extended by you

to develop various applications, such as customized Q&A

systems for internal use or customer-facing applications.

10.5.1.4 Aligning Your LLM with Human Preferences.

Another key aspect of fine-tuning is aligning LLM responses

with human preferences. After the initial pre-training phase,

model outputs can sometimes be unhelpful or even toxic.

Techniques like Reinforcement Learning from Human

Feedback (RLHF), introduced by Ouyang et al. (2022), help

language models generate responses that are more human-

like, creative, truthful, and helpful. RLHF also helps to

reduce issues like biased or inaccurate content and was one

of the major advancements used by OpenAI that transformed

GPT-3, into the remarkable ChatGPT that we all love.

A newer approach, direct preference optimization (DPO),

simplifies the RLHF process while improving stability,

performance, and computational efficiency. For more details

about DPO see Rafailov et al. (2024).

Interestingly, PEFT methods—like the ones we talked about

earlier—can also be used with RLHF and DPO, making fine-

tuning more efficient.

These techniques are important for customizing LLMs to

specific use cases. However, since they are beyond the scope

of this book—at least in this edition—we will not go into the

details. That being said, they are worth keeping an eye on as

this field continues to evolve.

For a practical example of applying PEFT techniques with

RLHF, we encourage readers to check out the Hugging Face

blog post, Fine-tuning 20B LLMs with RLHF on a 24GB

consumer GPU at https://huggingface.co/blog/trl-peft, which can be especially useful if you have limited computational

resources–basically, if you don’t have a cluster of GPUs just

available to you to fine-tune your models.

10.6 Conclusions

In this chapter, we highlighted the importance of model

scaling for improving performance, not only in a wide range

of downstream tasks but also in unlocking emergent abilities.

However, as demonstrated, scaling models come with trade-

offs, such as increased latency and higher deployment costs.

These challenges necessitate modern solutions for efficient

production deployment, such as knowledge distillation and

model quantization.

We showcased the effectiveness of these techniques using a

real-world case study with FinBERT, a BERT-based model

specialized for sentiment analysis in financial data. Through

distillation and quantization, we achieved a nearly threefold

increase in inference speed while maintaining the same level

of accuracy.

Additionally, we explored techniques for customizing your

own LLM to make it more tailored to your specific data.

Among these, we delved into LoRA and QLoRA, which, at the

time of writing, stand out as some of the most efficient

methods for fine-tuning LLMs. We also briefly mentioned the

two major techniques currently used to align LLM outputs with human preferences, which have been crucial in the

development of widely adopted LLM solutions like OpenAI’s

ChatGPT. These techniques are versatile and can be applied

across various models, offering powerful solutions for

optimizing performance and inference costs in real-world

applications.

Chapter 11

Afterword

In Part 1 the book, we demonstrated how LLMs can assist with a no-code approach to developing trading applications,

such as helping traders with code generation or generating

ideas for trading strategies. While these tools can

significantly accelerate the development process, like in

typical software engineering tasks in other fields, we found

that in financial applications at least, domain expertise is

still crucial. Users need a solid understanding of their goals

to generate meaningful trading strategies. LLMs can serve

as copilots, assisting with coding tasks and clarifying ideas,

but their outputs must be critically evaluated by a

knowledgeable user. Techniques like Retrieval Augmented

Generation (RAG) can enhance LLMs by grounding their

responses in specific content, but when it comes to

generating trading strategies, human insight and domain

expertise remain indispensable.

We then transitioned from the no-code approach to a

whirlwind tour of the modeling techniques that are well

known to quantitative traders and hedge fund managers.

We explored the advantages and limitations of

unsupervised and supervised learning, tree-based and

neural-network-based methods, RNNs, and Reinforcement

Learning, highlighting the importance and nuances of data

and feature engineering. On the way, we also discussed

training methods such as stochastic gradient descent that

are widely used in deep learning.

In Part 2, we explore the power of Deep Generative Models and their applications in trading and asset management.

These models excel at handling complex, multimodal, high-

dimensional data. First, we explained the difference

between discriminative vs generative models. Then, we

examined several families of generative models, some of

which possess core abilities like generating new data,

computing probability densities, and discovering new

representations, though not all model families are capable

of performing all these tasks, with some excelling in

specific areas like data generation, probability density

approximation, or representation learning. As a reminder,

representation learning is all about finding a new

representation for the data space, typically referred to as

the latent space. Ideally, this latent representation should

possess desirable properties, such as a lower

dimensionality compared to the data space or

“independent” axes of variation. The goal is for this new

data representation to serve as a compressed form of the

data and that can be used for solving downstream tasks,

such as prediction, anomaly detection, or data generation.

The Variational Autoencoder (VAE) is an example of a

model that provides such a representation. These

capabilities are crucial for developing applications in fields

like finance, where high-dimensional, multimodal complex

data—such as multivariate time series—are common, and

where uncertainty quantification is critical for making

informed decisions.

We discussed the pros and cons of both explicit and implicit

deep generative models for high-dimensional data.

Remember that explicit models propose a tractable

probability density model to approximate the data

distribution, in contrast to implicit models, which do not

define a probability density function. Examples of explicit

models discussed in this book include Autoregressive

Models, the well-known VAE and Flow Models. For implicit

models, we discussed Generative Adversarial Networks

(GANs). These models have valuable applications in

forecasting and risk management.

These techniques, which allow you to model high-

dimensional multimodal data, are not just simple extensions

of classical parametric models found in classical statistics,

such as regression models under Gaussian or t-distribution

assumptions. Also, due to the large number of parameters

involved to model complex data distributions, and the

amount of data required for training them, these models

are designed not only to achieve good performance, but

also to be efficient at training time, inference time, and

sample generation. Sometimes, achieving all these benefits

simultaneously in a single solution is very challenging.

However, techniques have been developed to improve

specific aspects, such as the one described in Chapter 10 to improve inference speed.

We illustrated their potential in finance through use cases

such as multivariate time-series forecasting and synthetic

multivariate time-series generation. We emphasize that

despite being called “Generative AI,” as previously

mentioned, the proposed models are not just for generating

synthetic multivariate time series. They can also be used

for forecasting these series or as powerful building blocks

for solving a variety of downstream tasks, like the use case

presented in Chapter 9. These downstream tasks may even be trained with data augmentation, using synthetic data

generated by these models to improve performance, or be

used to manage risk by simulating new scenarios based on

this data.

In the final chapters, Chapters 9 and 10 we discussed how these models can be used to process alternative data and

generate trading signals, showing their flexibility and

potential in generating alternative features and trading

strategy development. In particular, we explored how to

build a system that takes speech data as input and outputs trading signals. This system uses transformer models to

convert audio signals to text and applies LLMs to assign

sentiment scores to text, which are then used to generate

trading signals.

Last but not least, we covered some important special

topics. One of them is the modern approach of pre-training

plus adaptation, which allows you to adapt or fine-tune

powerful pre-trained models for your custom applications.

This technique enables good performance even when we

have limited data available to train our model for a specific

task. We also discussed fine-tuning techniques that help

improve the efficiency of the fine-tuning process.

Additionally, we covered compression techniques for

optimizing model scalability, speeding up inference,

reducing inference latency, and lowering the associated

deployment costs, which are critical for making these

models works in practical settings. Finally, we explored the

scaling laws of LLMs and their emergent abilities. Scaling

laws of LLMs state that increasing the number of model

parameters, the amount of training data, and the training

duration will lead to significant gains in performance on

these models. These laws provide a straightforward way to

improve performance in LLMs: if you increase your

resources for data and training, you will increase model’s

performance. However, we still don’t know if these laws

will reach a saturation point where the “law” starts to

break down.

Emergent abilities, such as the ability of these models to

solve math problems, only appear after the model has

reached at certain scale. These abilities are a surprise for

practitioners and researchers, and at the time of writing,

we are not able to predict when they will appear.

While no single deep generative model family is universally superior across all tasks and datasets, different families

excel in different domains. For example, autoregressive

models have proven highly effective for text generation,

while diffusion models are, as of this writing, the leading

approach for image generation. However, in data

generation for financial applications—especially for

generating synthetic univariate or multivariate time series

—there is still no clear winner. The low signal-to-noise

ratio, non-stationarity of financial data, and the relatively

small datasets available for training, compared to domains

like text and images, pose significant challenges. These

factors make the problem more difficult, suggesting that

more tailored solutions or additional empirical work need

to be done for this specific use case.

Despite these challenges, generative models hold immense

potential for financial applications, particularly in

generating features from alternative data sources, which in

the past required large teams of highly specialized talent

and significant infrastructure investing. The features

generated by these systems can be integrated into more

advanced trading strategies, providing a competitive edge

in an increasingly data-driven industry.

While we covered a wide range of topics, there are several

promising areas of future exploration in finance where

generative AI models could play a significant role, which

we did not have the time to cover in this edition:

11.1 Diffusion Models

Diffusion Models are currently considered state-of-the-art

in image generation applications and are integrated into

well-known products such as DALL·E from OpenAI. These

models, also known as denoising diffusion probabilistic

models (DDPMs), see Sohl-Dickstein et al. (2015) and Ho et al. (2020).

Diffusion Models take a different approach to data

generation compared to the methods we have explored so

far. For instance, GANs generate samples in a single step

by feeding noise into the generator, which produces the

output image in one go. In contrast, Diffusion Models

generate data through an iterative refinement process

consisting of multiple steps. This iterative procedure is

considered one of the key reasons for their superior

performance.

Diffusion Models are explicit models with approximate

density estimation—recalling VAEs. In fact, their learning

process can be seen as analogous to training only the

decoder of a VAE.

These models achieve equal or better results comparable to

GANs in data generation, but they offer a more stable

training process and with additional advantage of

performing density estimation. However, sampling from

them is relatively slow.

More details about diffusion models can be found at Sohl-

Dickstein et al. (2015), Ho et al. (2020), and Bishop and

Bishop (2023).

Given the success of Diffusion Models in generating image

data, researchers have started applying them to multiple

applications, including, multivariate time-series forecasting

and generation. Details can be found in the following

surveys: Yang et al. (2023, 2024). We anticipate further

developments in this area.

11.2 Combining Generative Model

Variants

Throughout the book, we have seen that some generative

model families are very good at modeling correlation

between the dimensions of a single point in our datasets

(e.g. cross-sectional co-dependence of returns across

assets). However, by design, their structure assumes

independence between consecutive observations.

Throughout the book, we have discussed various

approaches to adapt these models to capture this structure,

the time-series dynamics, which can be crucial when

modeling time series at certain time scales where

dependencies between observations are significant.

Some of these solutions involve combining different model

families, which, as we’ve mentioned, can serve as powerful

building blocks when used together. For example:

Combining Autoregressive Models with VAEs: This was

achieved by adding sequential encoders and decoders

to VAEs, giving rise to models like the Variational

Recurrent Autoencoder (VRAE), as described in

Chapter 6.

Combining Autoregressive Models with Flow Models: In

Chapter 7, we explore the combination of RNNs and

Transformer models with flows.

Combining Autoregressive Models with GANs: In

Chapter 8, we examine using RNNs with GANs,

resulting in models such as RCGAN or TimeGAN.

TimeGAN, in particular, employs a sequence generator

and discriminator to model time-series dynamics in the

latent space.

These are some of the variants discussed throughout the book. However, there are well-known variations used in

other fields that we did not cover. A few of them consists on

combining flows with VAEs (see Kingma et al. [2016]);

GANs with VAEs, called InfoGAN (see Chen et al. [2016]).

We expect that more variants may be developed, inspired,

or applied in the context of time series.

11.3 LLMs as Financial Advisors

Similar to how large language models (LLMs) are being

tested on medical university examinations to evaluate their

potential as doctor assistants, Lo and his team are

exploring whether LLMs can demonstrate the same domain

knowledge humans exhibit when passing typical financial

examinations, such as the CFA test; see

https://mitsloan.mit.edu/ideas-made-to-matter/can-

generative-ai-provide-trusted-financial-advice. The goal of this approach is to assess whether LLMs are capable of

providing relevant financial advice.

According to Lo, his team’s research shows promising

results thus far. He stated, “We’re actually able to generate

passing domain-specific knowledge among large language

models,” as reported in the cited MIT Sloan web article. We

expect to see a growing trend in developing LLMs that are

specific to finance, for example, whether as advisors or, as

demonstrated in Chapter 9, by fine-tuning LLMs to perform sentiment analysis specific to financial contexts, among

others.

This is a rapidly evolving field, with new approaches and

advancements being released in an almost daily basis. In

this book, our goal was to provide a solid understanding of

the core building blocks of generative models, enabling you

to navigate, analyze, innovate, and apply these innovations

in trading and asset management. We have sprinkled code samples throughout the book. They can be downloaded

from the book’s GitHub repository:

https://github.com/genai-for-traders/genai-for-trading-and-

am. Also, we welcome reader’s questions and comments on

our Twitter/X account (echanQT, and hamletjmedina)

and at our blog https://substack.com/@gatambook. We are sure that by the time this book is published, we have

already gained better understanding and better tools in

applying AI to finance, and we will post our latest learnings

to those media.

References

Abbeel, P., Chen, P., Ho, J., and Sriniva, A. (2020). Lecture

slides on deep unsupervised learning, CS294-158-SP20.

Course, University of California, Berkeley.

https://sites.google.com/view/berkeley-cs294-158-

sp20/home.

Alshahwan, N., Chheda, J., Finegenova, A., Gokkaya, B.,

Harman, M., Harper, I., et al. (2024). This automated

 unit test improvement using large language models at

 Meta. https://arxiv.org/abs/2402.09171.

Ang, A. (2014). Asset management: A systematic approach

 to factor investing. Oxford University Press.

Ansari, A.F., Stella, L., Turkmen, C., Zhang, X., Mercado,

P., et al. (2024). Chronos: Learning the language of time

 series. https://arxiv.org/abs/2403.07815.

Araci, D. (2019). FinBERT: Financial sentiment analysis

 with pre-trained language models.

https://arxiv.org/abs/1908.10063.

Arik, S. and Pfister, T. (2020). TabNet: Attentive

 interpretable tabular learning.

https://arxiv.org/abs/1908.07442.

Arjovsky, M., Chintala, S., and Bottou, L. (2017).

 Wasserstein GAN. https://arxiv.org/abs/1701.07875.

Baldridge, R. (2024). Top 10 U.S. hedge funds of December

 2024. https://www.forbes.com/advisor/investing/top-

hedge-funds/.

Belov, S., Chan, E., Jetha, N., and Nautiyal, A. (2023).

 Applying corrective AI to daily seasonal Forex trading.

https://predictnow.ai/applying-corrective-ai-to-daily-

seasonal-forex-trading-paper/.

Bishop, C.M. (2006). Pattern recognition and machine

 learning (Information science and statistics). Berlin,

Heidelberg: Springer-Verlag.

Bishop, C.M. and Tipping, M.E. (2001). P robabilistic

principal component analysis. Journal of the Royal

 Statistical Society, Series B, 61, part 3, pp. 611–622.

Bishop, C. M. and Bishop, H. (2023). Deep learning:

 Foundations and concepts. Springer Nature.

Bloomberg News. (2023). JPMorgan AI analyzes Fed

 speeches for trading signals.

https://www.bloomberg.com/news/articles/2023-04-

26/jpmorgan-s-ai-puts-25-years-of-federal-reserve-talk-

into-a-hawk-dove-score.

Bodie, Z., Marcus, A.J., and Kane, A. (2018). Investments.

New York: McGraw-Hill/Irwin.

Botte, A. and Bao, Ds. (2021). A machine learning approach

 to regime modeling.

https://www.twosigma.com/articles/a-machine-learning-

approach-to-regime-modeling/.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.

(1984). Classification and regression trees. Wadsworth &

Brooks/Cole Advanced Books & Software.

Brubaker, M. A. and Köthe, U. (2021). Normalizing flows

 and invertible neural networks in computer vision. CVPR

2021 Tutorial.

Brukbaker, B. (2024). How chain-of-thought reasoning helps neural networks compute.

https://www.quantamagazine.org/how-chain-of-thought-

reasoning-helps-neural-networks-compute-20240321/.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,

Horvitz, E., Kamar, E. et al. (2023). Sparks of Artificial

 General Intelligence: Early experiments with GPT-4.

https://arxiv.org/abs/2303.12712.

Catello, L., Ruggiero, L., Schiavone, L., and Valentino, M.

(2023). Hidden Markov models for stock market

 prediction. https://arxiv.org/pdf/2310.03775.pdf.

Chan, E. (2013). Algorithmic trading: Winning strategies

 and their rationale. New York: Wiley.

Chan, E. (2021). Quantitative trading: How to build your

 own algorithmic trading business, 2nd ed. New York:

Wiley.

Chan, E. (2022). What is Corrective AI?

https://predictnow.ai/what-is-corrective-ai/.

Chan, E., Fan, H., Sawal, S., and Viville, Q. (2023).

 Conditional portfolio optimization: Using machine

 learning to adapt capital allocations to market regimes.

https://ssrn.com/abstract=4383184.

Chan, E.P. (2017). Machine trading: Deploying computer

 algorithms to conquer the markets. New York: Wiley.

Chen, R.T.Q., Rubanova, Y., Bettencourt, J., and Duvenaud,

D.K. (2018). Neural Ordinary differential equations.

 Advances in Neural Information Processing Systems, 31.

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever,

I., and Abbeel, P. (2016). Infogan: Interpretable

representation learning by information maximizing

generative adversarial nets. Advances in Neural

 Information Processing Systems, 29.

Claburn, T. (2024). Simon Willison interview: AI software

 still needs the human touch.

https://www.theregister.com/2024/01/24/willison_ai_sof

tware_development/?utm_source=tldrnewsletter.

Cong, L. W., Feng, G., He, J., and He, X. (2024). Growing

the Efficient Frontier on Panel Trees. Journal of Financial

 Economics, Forthcoming,

https://ssrn.com/abstract=3949463.

Cong, L. W., Tang, K., Wang, J., and Zhang, Y. (2021).

AlphaPortfolio: Direct construction through deep

 reinforcement learning and interpretable AI.

https://ssrn.com/abstract=3554486.

Denev, A. and Amen, S. (2020). The book of alternative

 data: A guide for investors, traders and risk managers.

New York: John Wiley & Sons.

Deng, R., Chang, B., Brubaker M.A., Mori, G., and

Lehrmann, A. (2020). Modeling continuous stochastic

processes with dynamic normalizing flows. Advances in

 Neural Information Processing Systems, 33, pp. 7805–

7815.

Desai, A., Freeman, C., Wang, Z., and Beaver, I. (2021).

 Timevae: A variational auto-encoder for multivariate time

 series generation. arXiv Preprint arXiv:2111.08095.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer,

L. (2024). Qlora: Efficient finetuning of quantized LLMS.

 Advances in Neural Information Processing Systems, 36.

Devlin, J., Chang M.-W., Lee, K., and Toutanova, K. (2019).

BERT: Pre-training of deep bidirectional transformers for

 language understanding.

https://arxiv.org/abs/1810.04805.

Dinh, L., Krueger, D., and Bengio, Y. (2015). NICE: Non-

 linear independent components estimation.

https://arxiv.org/abs/1410.8516.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Density

 estimation using real NVP.

https://arxiv.org/abs/1605.08803.

Dixon, M. F., Halpern, I., and Bilokon, P. (2020). Machine

 learning in finance: From theory to practice. New York:

Springer.

Esteban, C., Hyland, S.L., and Rätsch, G. (2017). Real-

 valued (medical) time series generation with recurrent

 conditional GANS. arXiv Preprint arXiv:1706.02633.

Fabius, O. and Van Amersfoort, J.R. (2014). Variational

 recurrent auto-encoders. arXiv Preprint arXiv:1412.6581.

Fama, E. F. and French, K. R. (1995). Size and book-to-

market factors in earnings and returns. Journal of

 Finance, 50, pp. 131–155.

Fortune. (2023). JPMorgan created a Fed-whispering AI

 model to help investors stay on top of the market.

https://fortune.com/2023/04/28/jpmorgan-artificial-

intelligence-chatgpt-llm-hawk-dove-federal-reserve-

speak/.

Frey, B.J., Hinton, G.E., and Dayan, P. (1995). Does the

wake-sleep algorithm produce good density estimators?

 Advances in Neural Information Processing Systems, 8.

Fuhrer, B., Tessler, C., and Dala, G. (2024). Gradient Boosting reinforcement learning.

https://arxiv.org/abs/2407.08250.

Gatheral, J. (2006). The volatility surface: A practitioner’s

 guide. New York: Wiley.

Germain, M., Gregor, K., Murray, I., and Larochelle, H.

(2015). MADE: Masked Autoencoder for Distribution

 Estimation. https://arxiv.org/abs/1502.03509.

Grinsztajn, L., Oyallon, E., and Varoquaux, G. (2022). Why

 do tree-based models still outperform deep learning on

 tabular data? https://arxiv.org/abs/2207.08815.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep

 learning. MIT Press.

Goodfellow, I.J. Pouget-Abadie, J., Mirza, M., Xu, B., Warde-

Farley, D., Sherjil et al. (2014). Generative adversarial

 networks. https://arxiv.org/abs/1406.2661.

Goodfellow, I. (2019). Adversarial machine learning.

Invited talk at ICLR.

Gou, J., Baosheng, Y., Maybank, S.J., and Tao, D. (2021).

Knowledge distillation: A survey. International Journal of

 Computer Vision, 129(6), pp. 1789–1819.

https://doi.org/10.1007/s11263-021-01453-z.

Guida, Ty. (2019). Big data and machine learning in

 quantitative investment. New York: John Wiley & Sons.

Guijarro-Ordonez, J., Pelger, M., and Zanotti, G. (2022).

 Deep learning statistical arbitrage.

https://arxiv.org/abs/2106.04028.

Guijarro-Ordonez, J., Pelger, M., and Zanotti, G. (2021).

 Deep learning statistical arbitrage. arXiv Preprint

arXiv:2106.04028.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and

Courville, A. (2017). Improved training of Wasserstein

 GANs. https://arxiv.org/abs/1704.00028.

Hastie, T., Tobshirani, R., and Friedman, J. (2009). The

 elements of statistical learning. 2nd ed. New York:

Springer.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and

Hochreiter, S. (2018). GANs trained by a two time-scale

 update rule converge to a local Nash equilibrium.

https://arxiv.org/abs/1706.08500.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the

 knowledge in a neural network.

https://arxiv.org/abs/1503.02531.

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion

probabilistic models. Advances in Neural Information

 Processing Systems, 33, pp. 6840–6851.

Hornik, K., Stinchcombe, M., and White, H. (1989).

Multilayer feedforward networks are universal

approximators. Neural Networks, 2(5), pp. 359–366.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De

Laroussilhe, Q., Gesmundo, A., et al. (2019). Parameter-

efficient transfer learning for NLP. In International

 Conference on Machine Learning, pp. 2790–2799. PMLR.

Hu, E.J., Shen, Y., Wallis, P. Allen-Zhu, Z., Li, Y., Wang, S.

et al. (2021). LORA: Low-rank adaptation of large

 language models. arXiv Preprint arXiv:2106.09685.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A. et al. (2017). Quantization and training of neural

 networks for efficient integer-arithmetic-only inference.

https://arxiv.org/abs/1712.05877.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T.B..,

Chess, B., Child, R. et al. (2020). Scaling laws for neural

 language models. https://arxiv.org/abs/2001.08361.

Kıcıman, E., Ness, R., Sharma, A., and Tan, C. (2023).

 Causal reasoning and large language models: Opening a

 new frontier for causality.

https://arxiv.org/abs/(2305).00050.

Kingma, D.P. (2013). Auto-encoding variational Bayes.

arXiv Preprint arXiv:1312.6114.

Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X.,

Sutskever, I., and Welling, M. (2016). Improved

variational inference with inverse autoregressive flow.

 Advances in Neural Information Processing Systems, 29.

Kinlaw, W., Kritzman, M.P., and Turkington, D. (2021).

 Asset allocation: From theory to practice and beyond.

New York: John Wiley & Sons.

Kobyzev, I., Prince, S.J.D., and Brubaker, M.A. (2021).

Normalizing flows: An introduction and review of current

methods. IEEE Transactions on Pattern Analysis and

 Machine Intelligence, 43 (11), pp. 3964–3979.

https://doi.org/10.1109/tpami.(2020).2992934.

Kolm, P., Turiel, J., and Westray, N. (2021). Deep order

 flow imbalance: Extracting alpha at multiple horizons

 from the Limit Order Book. SSRN:

https://ssrn.com/abstract=3900141.

Larochelle, H. and Murray, I. (2011). The neural

autoregressive distribution estimator. In Proceedings of

 the Fourteenth International Conference on Artificial

 Intelligence and Statistics, 29–37. JMLR Workshop;

Conference Proceedings.

Lester, B., Al-Rfou, R., and Constant, N. (2021). The power

 of scale for parameter-efficient prompt tuning. arXiv

Preprint arXiv:2104.08691.

Levine, S. (2021). Lecture slides on designing, visualizing

and understanding deep neural networks, CS

W182/282A. Course, University of California, Berkeley.

https://cs182sp21.github.io.

Li, X.L. and Liang, P. (2021). Prefix-tuning: Optimizing

 continuous prompts for generation. arXiv Preprint

arXiv:2101.00190.

Liu, S., Yu, H., Liao, C., Li, J., Lin, W., Liu, A.X. et al.

(2021). Pyraformer: Low-complexity pyramidal attention

for long-range time series modeling and forecasting. In

 International Conference on Learning Representations.

López de Prado, M. (2015). The probability of backtest

overfitting. Journal of Computational Finance (Risk

 Journals), 34, pp. 123–137.

López de Prado, M. (2018). Advances in financial machine

 learning. New York: Wiley.

López de Prado, M.M. (2020). Machine learning for asset

 managers. Elements in quantitative finance. Cambridge

University Press.

Malo, P., Sinha, A., Korhonen, P., Wallenius, J., and Takala,

P. (2014). Good debt or bad debt: Detecting semantic

orientations in economic texts. Journal of the Association

 for Information Science and Technology, 65 (4), pp. 782–

796.

Man, X. and Chan, E. P. (2021a). The best way to select

features? Comparing MDA, LIME, and SHAP. The

 Journal of Financial Data Science, 3(1), pp. 127–139.

Man, X. and Chan, E. (2021b). Cluster-based feature

selection. Market Technician, 90, pp. 11–22.

Mao, X., Li, Q., Xie, H., Lau, R.Y.K., Wang, Z., and Smolley,

S.P. (2017). Least squares generative adversarial

 networks. https://arxiv.org/abs/1611.04076.

Medina Ruiz, H. J. (2019). Predicting Criteo’s internet

traffic load using Bayesian structural time series models.

Presented at the Strata Data Conference.

https://conferences.oreilly.com/strata/strata-ny-

2019/public/schedule/detail/77395.html.

Mescheder, L., Andreas G., and Sebastian N. (2018). Which

training methods for GANs do actually

converge? https://arxiv.org/abs/1801.04406.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y.

(2018). Spectral normalization for generative adversarial

 networks. https://arxiv.org/abs/1802.05957.

Murphy, K. (2012). Machine learning: A probabilistic

 perspective. Boston, MA: MIT Press.

Murphy, K.P. (2022). Probabilistic machine learning: An

 introduction. Boston, MA: MIT Press. probml.ai.

Murphy, K.P. (2023). Probabilistic machine learning:

 Advanced topics. Boston, MA: MIT Press.

http://probml.github.io/book2.

Nautiyal, A. and Chan, E. (2021). Metalabeling and the duality between cross-sectional and time-series factors.

Retrieved from https://predictnow.ai/metalabeling-and-

the-duality-between-cross-sectional-and-time-series-

factors/.

Nalisnick, E., Matsukawa, A., Teh, Y.W., Gorur, D., and

Lakshminarayanan, B. (2019). Hybrid models with deep

and invertible features. In International Conference on

 Machine Learning, pp. 4723–4732. PMLR.

Nguyen, A., Yosinski, J., and Clune, J. (2015). Deep neural

networks are easily fooled: High confidence predictions

for unrecognizable images. In Proceedings of the IEEE

 Conference on Computer Vision and Pattern Recognition,

pp. 427–436.

Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O.,

Graves, A. et al. (2016a). WaveNet: A generative model

 for raw audio. https://arxiv.org/abs/1609.03499.

Oord, A., Kalchbrenner, N., and Kavukcuoglu, K. (2016b).

 Pixel recurrent neural networks.

https://arxiv.org/abs/1601.06759.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.L.,

Mishkin, P. et al. (2022). Training language models to

follow instructions with human feedback. Advances in

 Neural Information Processing Systems, 35, pp. 27730–

27744.

Paleologo, G.A. (2021). Advanced portfolio management: A

 quant’s guide for fundamental investors. New York:

Wiley.

Papamakarios, G., Nalisnick, E., Rezende, D.J., Mohamed,

S., and Lakshminarayanan, B. (2021). Normalizing flows

for probabilistic modeling and inference. Journal of Machine Learning Research, 22(57), pp. 1–64.

Papamakarios, G., Pavlakou, T., and Murray, I. (2017).

Masked autoregressive flow for density estimation.

 Advances in Neural Information Processing Systems, 30.

Part Time Larry. (2022). 2. OpenAI whisper—Fed speech

 recognition. https://www.youtube.com/watch?

v=Wc4bQxuypo0.

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark,

C., Lee, K. et al. (2018). Deep contextualized word

 representations. https://arxiv.org/abs/(1802).05365.

Pik, J., Chan, E., Broad, J. and Sun, P. (2025) Hands-On AI

 Trading with Python, QuantConnect and AWS. New York:

Wiley.

Prado, R. and West, M. (2010). Time series: Modeling,

 computation, and inference. Chapman; Hall/CRC.

Radford, A., Wu, J., Jiang, X., Almeida, D., Wainwright, C.L.,

Mishkin, P. et al. (2019). Language models are

unsupervised multitask learners. OpenAI Blog, 1(8), p. 9.

Radford, A., Kim, J.W., Xu, T., Brockman, G., McLeavey, C.,

Sutskever, I. (2022). Robust speech recognition via

 large-scale weak supervision.

https://arxiv.org/abs/(2212).04356.

Radford, A. Narasimhan, K., Salimans, T., Sutskever, I.

(2018). Improving language understanding by generative

 pre-training.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C.D.,

Ermon, S., and Finn, C. (2024). Direct preference

optimization: your language model is secretly a reward

model. Advances in Neural Information Processing

 Systems, 36.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,

Matena, M. et al. (2020). Exploring the limits of transfer

learning with a unified text-to-text transformer. Journal

 of Machine Learning Research, 21(140), pp. 1–67.

Rasul, K., Sheikh, A-S., Schuster, I., Bergmann, U.M., and

Vollgraf, R. (2021). Multivariate probabilistic time series

forecasting via conditioned normalizing flows. In

 International Conference on Learning Representations.

https://openreview.net/forum?id=WiGQBFuVRv.

Rasul, K., Ashok, A., Williams, A.R., Ghonia, H.,

Bhagwatkar, R., Khorasani, A. et al. (2024). Lag-Llama:

 Towards foundation models for probabilistic time series

 forecasting. https://arxiv.org/abs/(2310).08278.

Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C.,

and Bengio, Y. (2015). FitNets: Hints for thin deep nets.

https://arxiv.org/abs/(1412).6550.

Ruppert, D., and Matteson, D. S. (2015). Statistics and data

 analysis for financial engineering with R examples. 2nd

ed. New York: Springer.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V.,

Radford, A., and Chen, X. (2016). Improved techniques

 for training GANs. https://arxiv.org/abs/(1606).03498.

Shwartz-Ziv, R. and Armon, A. (2021). Tabular data: Deep

 learning is not all you need.

https://arxiv.org/abs/2106.03253.

Simon, D.P. and Campasano, J. (2014). The VIX futures

 basis: evidence and trading strategies.

https://www.efmaefm.org/0EFMAMEETINGS/EFMA%20

ANNUAL%20MEETINGS/2013-

Reading/papers/EFMA2013_0164_fullpaper.pdf.

Sirignano, J. and Cont, R. (2018). Universal features of

 price formation in financial markets: Perspectives from

 deep learning. https://arxiv.org/pdf/1803.06917.pdf.

Smith, L. N. (2017, March). Cyclical learning rates for

 training neural networks. In 2017 IEEE Winter

 Conference on Applications of Computer Vision (WACV),

pp. 464–472. IEEE.

https://doi.org/10.1109/WACV.2017.58.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and

Ganguli, S. (2015). Deep unsupervised learning using

nonequilibrium thermodynamics. In International

 Conference on Machine Learning, 2256–2265. PMLR.

Sood, S., Papasotiriou, K., Vaiciulis, M., and Balch, T.

(2023). Deep reinforcement learning for optimal

portfolio allocation: A comparative study with mean-

variance optimization. https://icaps23.icaps-

conference.org/papers/finplan/FinPlan23_paper_4.pdf.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and

Salakhutdinov, R. (2014). Dropout: A simple way to

prevent neural networks from overfitting. Journal of

 Machine Learning Research, 15(1), pp. 1929–1958.

Torralba, A., Isola, P., and Freeman, W.T. (2024).

 Foundations of computer vision. Boston, MA: MIT Press.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,

M.-A., Lacroix, T. et al. (2023). LLaMA: Open and

 efficient foundation language models. arXiv. arXiv

Preprint arXiv:2302.13971.

Tunstall, L., Von Werra, L., and Wolf, T. (2022). Natural language processing with transformers. O’Reilly Media,

Inc.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,

L., Gomez, A.N., Kaiser, L., and Polosukhin, I. (2023).

 Attention is all you need.

https://arxiv.org/abs/1706.03762.

Vig, J. (2019). A multiscale visualization of attention in the

transformer model. In Proceedings of the 57th Annual

 Meeting of the Association for Computational

 Linguistics: System Demonstrations, pp. 37–42.

Florence, Italy: Association for Computational

Linguistics. https://doi.org/10.18653/v1/P19-3007.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,

Xia, F. et al. (2023). Chain-of-thought prompting elicits

 reasoning in large language models.

https://arxiv.org/abs/2201.11903.

Wei, J. Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,

Borgeaud. S. et al. (2022). Emergent abilities of large

 language models. https://arxiv.org/abs/2206.07682.

Wen, Q., Zhou, T., Zhang, C., Chen, W., Ma, Z., Yan, J., and

Sun, L. (2023). Transformers in time series: A survey.

https://arxiv.org/abs/2202.07125.

WGN News. (2022). WATCH LIVE | Fed Chair Powell

 Discusses Latest Fed Rate Hike.

https://www.youtube.com/watch?v=NT2H9iyd-ms.

Williams, R.J. (1992). Simple statistical gradient-following

algorithms for connectionist reinforcement learning.

 Machine Learning, 8, pp. 229–256.

WWW ’18: Companion Proceedings of the Web Conference.

(2018). Republic; Canton of Geneva, CHE: International

World Wide Web Conferences Steering Committee.

Xue, C., Lute, J., Schonfeld, D., Han, G., and Dahlmann, L.

(2023). How eBay created a language model with three

 billion item titles.

https://innovation.ebayinc.com/tech/engineering/how-

ebay-created-a-language-model-with-three-billion-item-

titles/.

Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao, Y. et

al. (2023). Diffusion models: A comprehensive survey of

methods and applications. ACM Computing Surveys,

56(4), pp. 1–39.

Yang, Y., Jin, M., Wen, H., Zhang, C., Liang, Y., Ma, L. et al.

(2024). A survey on diffusion models for time series and

 spatio-temporal data. arXiv Preprint arXiv:2404.18886.

Yoon, J., Jarrett, D., and van der Schaar, M. (2019). Time-

series generative adversarial networks. In H. Wallach, H.

Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, and R.

Garnett, Eds. Advances in neural information processing

 systems (Vol. 32). Curran Associates, Inc.

https://proceedings.neurips.cc/paper_files/paper/2019/fi

le/c9efe5f26cd17ba6216bbe2a7d26d490-Paper.pdf.

Zaken, E.B., Ravfogel, S., and Goldberg, Y. (2021). Bitfit:

 Simple parameter-efficient fine-tuning for transformer-

 based masked language-models. arXiv Preprint

arXiv:2106.10199.

Zhang, Z., Zohren, S., and Roberts, S. (2019). deep

reinforcement learning for trading.

https://arxiv.org/pdf/1911.10107.pdf.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H. et al. (2021). Informer: Beyond efficient transformer for

 long sequence time-series forecasting.

https://arxiv.org/abs/2012.07436.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R.,

Torralba, A., and Fidler, S. (2015). Aligning books and

 movies: Towards story-like visual explanations by

 watching movies and reading books.

https://arxiv.org/abs/1506.06724.

Zhuang, Y., Liu, L, Singh, C., Shang, J., and Gao, J. (2024).

 Learning a decision tree algorithm with transformers.

https://arxiv.org/abs/2402.03774.

Zuckerman, G. (2019). The man who solved the market:

 How Jim Simons launched the quant revolution. Penguin

Publishing Group. https://books.google.fr/books?

id=2vm0DwAAQBAJ.

Appendix

A.1 Retrieving Adjusted Closing Prices

and Computing Daily Returns

It is often a more reliable way to get correct responses from

ChatGPT if we ask for codes instead of actual numerical

responses. We display the results here.

User Prompt

Display the Python codes that let us retrieve 100 most

recent days of adjusted closing prices of SPY from Yahoo

Finance.

Assuming that you are not an expert programmer, at least not

in Python, we can also prompt for instructions of installing

Python, which we displayed in Appendix A.2. As suggested there, we can copy and paste the following commands in

Jupyter Notebook which runs in your internet browser or run

it in the Spyder IDE.

ChatGPT Response

import yfinance as yf

import pandas as pd

Define the ticker symbol

tickerSymbol = 'SPY'

Get data on this ticker

tickerData = yf.Ticker(tickerSymbol)

Get the historical prices for this ticker

tickerDf = tickerData.history(period='1d',

start='2023-08-25', end='2023-12-12')

Only keep the Adjusted Close column

adjusted_close = tickerDf['Close']

Display the last 100 days of adjusted closing

prices

print(adjusted_close.tail(100))

It goes on to respond that

ChatGPT Response

This script does the following:

Imports the necessary libraries (yfinance and pandas).

Defines the ticker symbol for the SPY ETF.

Fetches the historical data for SPY from Yahoo Finance.

Extracts the Adjusted Close prices.

Prints the last 100 days of adjusted closing prices.

Make sure to adjust the start and end dates in the history

method to match the current date and go back 100 days

from there. The yfinance library automatically adjusts for

dividends and stock splits.

Is it really true that “The yfinance library automatically

adjusts for dividends and stock splits”? We have checked the

first line of the output,

2023-08-25 00:00:00-04:00 436.653168

indeed matched the adjusted closing price displayed on

Yahoo Finance at the time of this writing. How do we

download the printed data in the browser into a csv file?

User Prompt

How do we download the data generated in the previous

program into a csv file with the first column being date

and second column the price?

ChatGPT Response

…

Save the last 100 days of adjusted closing prices

to a CSV file

adjusted_close.tail(100).to_csv('SPY_last_100_days.c

sv', header=True)

print("Data saved to 'SPY_last_100_days.csv'")

You can check that SPY_last_100_days.csv is now created in

the book4_py/ folder where you created the Python

environment. Now we want to compute daily returns.

User Prompt

Great! Please display the codes that use the retrieved

prices to compute daily returns.

ChatGPT Response

...

Compute daily returns

daily_returns = adjusted_close.pct_change()

Display the last 100 days of daily returns

print(daily_returns.tail(100))

Of course, we can print that to a csv file

‘SPY_returns_last_100_days.csv’ using the same method as

above. You can easily spot check that the daily returns are

computed correctly.

A.2 Installing Python

As we mentioned in Appendix A.1, we wanted to use Python to retrieve historical prices. To do that, we first need to

install Python on our Windows desktop, and then to install

the yfinance (Yahoo Finance) package in Step 4 that follows.

(Obviously, if you are already a Python programmer, you can

skip this section. Remember: We are writing this chapter

from the point of view of a novice Python programmer.)

User Prompt

How do I install a python environment on my Windows

desktop?

ChatGPT Response

Installing Python Installing a Python environment on your

Windows desktop is a straightforward process. Here’s a

step-by-step guide to get you started:

 A.2.1 Step 1: Download Python

1. Visit the Official Python Website: Go to python.org.

2. Navigate to Downloads: The website typically

detects your operating system and displays the latest

version of Python for Windows.

3. Download Python: Click on the download link for

Windows. It’s usually recommended to download the

latest stable version.

 A.2.2 Step 2: Install Python

1. Run the Installer: Once the download is complete,

open the installer.

2. Select Installation Options:

Check “Add Python to PATH”: This is crucial as

it allows you to run Python from the Command

Prompt.

Choose Customize Installation (Optional): You

can customize features if needed, but the default

settings are usually sufficient for most users.

3. Proceed with the Installation: Click on “Install

Now” and wait for the installation to complete.

4. Verify Installation:

Open Command Prompt.

Type python --version and press Enter. This

should display the Python version, confirming that

it’s installed.

 A.2.3 Step 3: Set Up a Virtual Environment (Optional

 but Recommended)

Python’s virtual environments allow you to manage

separate package installations for different projects. They

prevent conflicts between project dependencies.

1. Open Command Prompt: Navigate to the folder

where you want to create your project.

2. Create a Virtual Environment:

Run python -m venv myenv (replace myenv with your

desired environment name).

This creates a folder named myenv in your project

directory containing the virtual environment.

3. Activate the Virtual Environment:

For Windows, run myenv\Scripts\activate.

You’ll know it’s activated when the command line

prefix changes to show the name of your

environment.

 A.2.4 Step 4: Install Packages with pip

With Python installed, you can use pip to install packages:

To install a package, use pip install package-name.

Remember to activate your virtual environment first if

you’re using one.

[Author’s Note: this should be pip install yfinance.]

 A.2.5 Step 5: Consider an Integrated Development

 Environment (IDE)

While not necessary, an IDE can make coding in Python

much easier. Popular choices include:

PyCharm

Visual Studio Code

Jupyter Notebook (great for data science projects)

[Author’s Note: Why it doesn’t recommend Spyder that

automatically comes with the Anaconda library is beyond

us. For a quick and easy start, we recommend Jupyter

Notebook since it can run in a web browser. How do we

do that? See the next prompt.]

 A.2.6 Additional Tips

Regularly Update Python: Keep your Python version

up-to-date for security and feature improvements.

Explore Python Libraries: Python has a vast

ecosystem of libraries for different purposes—web

development, data analysis, machine learning, etc.

Learn Python Basics: If you’re new to Python,

consider going through some tutorials to understand

the basics.

By following these steps, you should have a functional

Python environment set up on your Windows desktop.

User Prompt

Assuming that I have installed a Python Virtual

Environment called book4_py on the Windows desktop,

how can I install Jupyter Notebook as an IDE?

ChatGPT Response

Install Jupyter Notebook:

Once your virtual environment is active, you can install

Jupyter Notebook using pip. Run the following

command:

pip install notebook

This command will download and install Jupyter Notebook

and its dependencies in your book4_py virtual

environment.

Launch Jupyter Notebook:

After the installation is complete, you can start Jupyter

Notebook by running:

jupyter notebook

You will find a new browser window opens with Jupyter

notebook running. You just need to navigate to whatever

folder that you want to download your adjusted closing price

data and copy and paste the code in Appendix A.1.

A.3 Plotting the Risk-free-rate over the

Years

Many financial applications such as Sharpe ratio calculation

require the use of the risk-free rate (Rf ). However, ChatGPT

found it difficult to locate a website to download this for free

and in a convenient format. So we use the returns of the

short-term treasury bills ETF called BIL as a proxy.

import pandas as pd

import matplotlib.pyplot as plt

import matplotlib.dates as mdates

Load your CSV file

file_path = 'BIL.csv' # Replace with your file path

data_plot = pd.read_csv(file_path)

Converting 'Date' column to datetime format

data_plot['Date'] = pd.to_datetime(data_plot['Date'])

Calculating daily returns and annualizing them

data_plot['Daily Returns'] =

data_plot['Close'].pct_change()

data_plot['Annualized Returns'] = data_plot['Daily

Returns'] * 252 # Annualizing the returns

Plotting the annualized returns

plt.figure(figsize=(12, 6))

plt.plot(data_plot['Date'], data_plot['Annualized

Returns'], color='green', marker='o', linestyle='-',

linewidth=2)

plt.title('Annualized Returns Over Time')

plt.xlabel('Year')

plt.ylabel('Annualized Returns')

plt.grid(True)

plt.xticks(rotation=45)

plt.gca().xaxis.set_major_formatter(mdates.DateFormatte

r('%Y')) # Only year as x-axis labels

plt.gca().xaxis.set_major_locator(mdates.YearLocator())

plt.tight_layout()

Show plot

plt.show()

If you want to download the plot in Figure A.1 instead of just displaying it in Jupyter Notebook, prompt ChatGPT on the

instructions. It will respond with

[image: Image 1498]

ChatGPT Response

Saving the plot as a PNG file

plot_file_path = 'your_plot.png'

...

Save the figure

plt.savefig(plot_file_path)

Figure A.1 BIL annualized returns.

Though the chart was plotted correctly, the daily returns

show too much volatility for us to gain any insights and more

importantly, check whether the returns are sensible. (After

all, this is an ETF that is traded every microsecond, not the

Federal Funds Rate set by the Federal Open Market

Committee.) A moving average over approximately a month

should look better.

User Prompt

Replot the above with 20-day moving average

[image: Image 1499]

Unfortunately, it couldn’t for some technical reasons, but it

did generate codes that we can use. The key line is

Calculate the 20-day moving average

data_plot['20-Day MA'] = data_plot['Annualized

Returns'].

rolling(window=20).mean()

Now we can see in Figure A.2 clearly the almost zero interest rate due to Quantitative Easing since 2008’s Great Financial

Crisis, until it gradually rose starting in 2017 as the economy

recovered, and then another plunge to zero during the 2020

COVID era, before it steadily rose again in 2022 in response

to the inflationary pressure due to the enormous fiscal

stimulus, settling at above 5% at the end of 2023.

Figure A.2 Twenty-day moving average of annualized BIL returns.

So, after a lot of work, we are satisfied that the BIL data is

retrieved correctly and daily returns computed correctly. We

will also use this 20-day moving average returns as the Rf for

other applications. So

User Prompt

How can I download the dates and moving average

numbers to a csv file with 2 columns?

ChatGPT Response

Select only the ‘Date’ and ‘20-Day MA’ columns for export

export_data = data_plot[['Date', '21-Day MA']]

Save to a CSV file

export_file_path =

'BIL_annualized_returns_20_day_MA.csv'

export_data.to_csv(export_file_path, index=False)

A.4 Computing the Sharpe Ratio of SPY

We computed the daily returns of SPY in Appendix A.1, and the risk-free rate (Rf) in Appendix A.3. Now let’s use them to compute the Sharpe ratio of SPY.

User Prompt

Suppose a daily returns series A is stored in A.csv, and the

daily risk free rate is stored in B.csv, and the dates of A

and B are not identical though they overlap, how do we

compute the Sharpe ratio of A? Please display the Python

code.

ChatGPT Response

To compute the Sharpe Ratio for a series of daily returns

(Series A) with a corresponding series of daily risk-free

rates (Series B), you’ll need to align the two series on

their common dates. The Sharpe Ratio is typically

calculated as the average return of the investment minus

the risk-free rate, divided by the standard deviation of the

investment’s returns. Here’s a step-by-step guide to

perform this calculation in Python:

Load both datasets. Align the datasets on their dates.

Compute the excess returns by subtracting the risk-free

rate from Series A’s returns. Calculate the Sharpe Ratio

using the formula: (Average Excess Returns) / (Standard

Deviation of Excess Returns).

The Python code to achieve this would look something like

this:

import pandas as pd

Load Series A (investment returns) and Series B

(risk-free rate)

series_a = pd.read_csv('path_to_your_csv/A.csv')

series_b = pd.read_csv('path_to_your_csv/B.csv')

Convert the 'Date' columns to datetime and ensure

they are the index

series_a['Date'] = pd.to_datetime(series_a['Date'])

series_b['Date'] = pd.to_datetime(series_b['Date'])

series_a.set_index('Date', inplace=True)

series_b.set_index('Date', inplace=True)

Align the two series on their dates

aligned_a, aligned_b = series_a.align(series_b,

join='inner')

Calculate excess returns

"""

[Author Note: remembering that the RiskFreeRate

is annualized, we manually insert /252 in the

line below]

[Author Note: beware that the header for the

returns columns may not be called Returns or

RiskFreeRate in your files. Adapt accordingly.]

"""

excess_returns = aligned_a['Returns'] -

aligned_b['RiskFreeRate']/252

Compute Sharpe Ratio

sharpe_ratio = excess_returns.mean() /

excess_returns.std()

Adjust for annualization if necessary

If returns are daily, multiply Sharpe Ratio by

sqrt(number of trading days)

from math import sqrt

trading_days = 252

annualized_sharpe_ratio = sharpe_ratio *

sqrt(trading_days)

print("Sharpe Ratio:", sharpe_ratio)

print("Annualized Sharpe Ratio:",

annualized_sharpe_ratio)

It turns out the code isn’t completely correct: aligned_a and

aligned_b contain only dates, not the returns.

User Prompt

Something wrong with the code above: aligned_a and

aligned_b do not contain the returns, only the dates.

ChatGPT replaces the code with

ChatGPT Response

...

Merge the datasets on the 'Date' column

merged_data = pd.merge(series_a, series_b,

on='Date', how='inner')

Assuming your returns column in series_a is named

'Returns' and

the risk-free rate column in series_b is named

'RiskFreeRate'

Calculate excess returns

merged_data['ExcessReturns'] =

merged_data['Returns'] - merged_data['RiskFreeRate']

Compute Sharpe Ratio

sharpe_ratio = merged_data['ExcessReturns'].mean() /

merged_data['ExcessReturns'].std()

...

which finally produced

Sharpe Ratio: 0.06826677308094933

Annualized Sharpe Ratio: 1.0837014262864237

A.5 Matlab Code for Computing

Efficient Frontier and Finding the

Tangency Portfolio

This is the code from Machine Trading (Chan, 2017). For

simplicity, we have assumed the risk-free rate (Rf) to be 0. It

is also available for download from our GitHub repos.

% ef.m

% Find efficient frontier of a set of ETFs

% Note in this program mean and sd of returns are row

vectors,

clear;

load('inputDataOHLCDaily_ETF_20150417', 'stocks',

'tday', 'cl');

% Remove EWZ and FXI

stocks=stocks(~strcmp('EWZ', stocks) & ~strcmp('FXI',

stocks));

cl=cl(:, ~strcmp('EWZ', stocks) & ~strcmp('FXI',

stocks));

R=calculateReturns(cl, 1); % 1-period "net" returns

R(1, :)=[]; % Skip first row since returns there are

NaN

mi=mean(R, 1); % average return of each stock i.

C=cov(R); % covariance of returns

m=[min(mi):(max(mi)-min(mi))/20:max(mi)]; % prepare

different target mean portfolio returns for efficient

frontier

v=NaN(size(m));

% Variance of portfolio to be minimized

H=2*C;

% short sale constraint

A=-eye(length(mi));

b=zeros(length(mi), 1);

% No linear term in minimization

f=zeros(1, length(mi));

% Fixing portfolio mean return and the normalization

constraint

Aeq=[mi; ones(1, length(mi))];

for i=1:length(m)

beq=[m(i); 1];

[F, v(i)]=quadprog(H, f, A, b, Aeq, beq);

end

sd=sqrt(v);

scatter(sd, m);

hold on;

% Find tangency portfolio

sharpeRatio=m./sd;

[~, idx]=max(sharpeRatio);

scatter(sd(idx), m(idx), 'red');

beq=[m(idx); 1];

[F]=quadprog(H, f, A, b, Aeq, beq)

% F =

%

% 0.451338068065785

% 0.263444604411169

% 0.000019328104256

% 0.000004913963978

% 0.000007497342085

% 0.285185588112728

% Find minimum variance portfolio

[~, idxMin]=min(sd);

scatter(sd(idxMin), m(idxMin), 'green', 'filled');

beq=[m(idxMin); 1];

[F]=quadprog(H, f, A, b, Aeq, beq)

% F =

%

% 0.381518036613685

% 0.000033166607068

% 0.604011066007258

% 0.000133505575004

[image: Image 1500]

% 0.014299849485899

% 0.000004375711085

It produces the nice plot in Figure A.3, with the green dot indicating the minimum variance portfolio and the red circle

indicating the tangency portfolio (with maximum Sharpe

ratio).

Figure A.3 Efficient Frontier produced by Matlab codes.

Index

A

accuracy of prediction, 85–86

ADF (augmented Dickey-Fuller test), 103

alternative data input, 47

amortized inference, 174

Ancestral sampling, 130

Anscombe quartet, 85

AR (autoregressive) models, 125

CMNN (Causal Masked Neural Network), 128, 131–133

WaveNet, 132–133

logistic regression, 128

logistic regression model, 128–129

MADE (Masked Autoencoder for Density Estimation),

130–131

NN (neural networks), 128

CMNN (Causal Masked Neural Network), 128, 131–

133

RNN (Recurrent Neural Network), 128

representation complexity, 126

reduction, 127–128

RNN (Recurrent Neural Network), 133–134

transformer models, 134–135

Add blocks, 148

attention, 135–144

multi-headed, 146–147

Encoder layer, 148–149

feed-forward layer, 147–148

model objective, 149–150

Norm blocks, 148

positional encodings, 145–146

ASR (automatic speech recognition), 222

ATM (At-The-Money) option

Matlab Financial Toolbox, 60–61

OTM options, 63

term structure, 58

attention, transformer models

BERT (Bidirectional Encoder Representations from

Transformers) matrix, 136–139

BertViz, 137–140

context dependence, 135

hard attention, 140

Hugging Face library, 135–137

multi-headed, 146–147

NLP (Natural Language Processing) and, 135

scaled dot-product, 141–143

soft attention, 140

token embeddings, 135

Token IDs, 135–137

tokenization, 135

unnormalized scores, 142

visualizing, 137–140

augmented Dickey-Fuller test (ADF), 103

automatic speech recognition (ASR), 222

Autoregressive Flows, MAF (Masked Autoregressive Flow),

195

autoregressive models, 155. See also Maximum Likelihood

models

B

backpropagation, 93–95

backtesting code, 29, 44–45

creating from trading strategies, 34–45

backwardation, 36–37

VIX term structure, 37

BERT (Bidirectional Encoder Representations from

Transformers), 134–135

bidirectional context, 226

FinBERT, 229–231

input representation, 226–227

language modeling, 149–150

output representation, 227–228

sentiment analysis, 225–231

beta neutral (BN) trading strategies, 34–35

betas, constant_maturity_betas, 35

bidirectional context, BERT, 226

BIL (SPDR Bloomberg 1-3 Month T-Bill ETF), 7

binary MNIST, 128–129

Black-Scholes options pricing model, 50–66

implied volatility, 63

stochastic volatility, 63

BN (beta neutral) trading strategies, 34–35

boosted trees, 89–91

butterfly spreads in time, term structure arbitrage

strategies, 51

C

CAI (Corrective AI), 45, 72, 78

calendar spreads, term structure arbitrage strategies

backtesting and, 102

butterfly spreads, 51

diagonal spreads, 51

dynamic hedging strategies, 51

horizontal spreads, 50

implementation, 51–52

interest rate options arbitrage, 51

Long-term Option (buy), 52

OHLC trade bars, 102

Short-Term Option (sell), 52

variance swaps, 51

volatility surface arbitrage, 51

Calmar ratio, 84

CAPM (Capital Asset Pricing Model), 19

CART, tree-based models, 89–90

boosted trees, 89

random forest, 89

Causal Masked Neural Network (CMNN), 128, 131–133

WaveNet, 132–133

[image: Image 1501]

ChatGPT

as autoregressive model, 114–118

conceptual intelligence, 29

need for human interaction, 64–65

prompt examples, 4

response examples, 4

sampling strategies, 118

statistical information extraction, 10

technical details, issues with, 45

ChatGPT GPT4o, 3

response example, 115

closing prices, adjusting, 263–265

cMDA (cluster-based Feature Selection), 71, 76–77, 85

CMNN (Causal Masked Neural Network), 128, 131–133

WaveNet, 132–133

codes, from strategy specification, 19–33

conditional generative models, 111–112

conditional probability, 115–117

confusion matrix, 87

constant_maturity_betas, 35

contango, 36

VIX term structure, 37

Continuous Normalizing Flows, 195–196

Corrective AI (CAI), 45, 72, 78

correlation coefficient , 60

coupling flows, 188

NICE (Nonlinear Independent Components Estimation),

189, 190–191

Real-NVP (Non-volume Preserving Transformation), 189,

191–195

CPO (Conditional Parameter/Portfolio Optimization), 45,

72, 78–79

cross-sectional features, 26

NICE (Nonlinear Independent Components Estimation),

196

Real-NVP (Non-volume Preserving Transformation), 196

time-series, 104, 178

csv files, output, 6

cumulative returns curve, 33

D

daily returns

adjusted closing prices and, 263–265

backtesting and, 4

computing requirements, 4

factor data and, 68–69

MSFT daily returns, 96

SPDR Bloomberg 1-3 Month T-Bill ETF, 7

SPY daily returns, 96

DALL-E, 260

data, non-numeric, 9–10

data engineering

dividends, 101

look-ahead bias, 101–102

split adjustments, 101

survivorship bias, 101

unique identifiers, 100–101

data formatting, 8–10

decision boundary, 87

dendrogram for stock tickers, 74

denoising, 75

denormalization, time series transformers, 151

dequantization, 151

derived distribution, 184

design matrix, 79

diagonal spreads, term structure arbitrage strategies, 51

Diffusion Models, 260

discriminative models, 110–111

generative models hybrid, 119

dividends, data engineering and, 101

DLGM (deep latent Gaussian model), 170–171

DLMs (dynamic linear models), 178

DLVM (deep latent variable models), 161, 170–171

DNN (Deep Neural Networks), 120–121, 183–184

dollar-neutral portfolio, Sharpe ratio, 31

DPO (Direct Preference Optimization), 256

DRL (Deep Reinforcement Learning)

portfolio optimization and, 46–49

Sharpe ratio, 99–100

dropout, 95

dynamic hedging strategies, term structure arbitrage

strategies, 51

E

EDA (exploratory data analysis), 84–85, 104

efficient frontier computing, 272–274

EH (Expectations Hypothesis), 34–35

ELBO (Evidence Lower Bound), 172, 173–174

ELMo Open AI GPT, 227

ES futures, VIX futures HR (hedge ratio), 41–43

ETF SPY, daily prices, 5–8

ETFs (exchange-traded funds)

BIL (SPDR Bloomberg 1-3 Month T-Bill ETF), 7

MATLAB code, 11–16

portfolio, 4

event input data, 47

excess returns, Sharpe ratio, 31

Explicit Density Models

autoregressive models, 123

normalizing flows, 123

VAEs (Variational Autoencoders), 123

F

F1 score, 86

FA (Factor Analysis), 75, 161, 162–163

Fama-French data file, 21

Fama-French factors, 19–33, 68–69, 161

Fama, Eugene F., 19

feature engineering, 102

ADF (augmented Dickey-Fuller test), 103

Generative AI as generator, 105

importance ranking, 105–106

stationarity, 103

third-party feature validation, 104–105

time series

merging, frequencies and, 103–104

 versus cross-sectional features, 104

feedforward neural networks, 92

FFmpeg, 224–225

FinBERT, 229–231

Distilled FinBERT, 249–252

speed, 240–247

flow models, 183

Autoregressive Flows, MAF (Masked Autoregressive

Flow), 195

conditioned normalizing flows, 197–198

Continuous Normalizing Flows, 195–196

coupling flows, 188

NICE, 189, 190–191

Real-NVP, 189, 191–195

derived distribution, 184

linear flows, 185–187

model training, 185

nonlinear flows, 187–188

normalizing flow, 184–185

taxonomy, 184

time series

domain knowledge, 198

flows, adapting, 196–197

image data transition, 196

FN (false negatives), 86

FP (false positives), 86

FPR (False Positive Rate), 87

French, Kenneth R., 19

FT (fine-tuning), 253–254

fundamental data, 46–47

futures, look-ahead bias, 102

FVSBN (fully visible sigmoid belief network), 129–130

G

GANs (Generative Adversarial Networks), 123, 159, 201

SNGAN (Spectral Normalization GAN), 211, 213

taxonomy, 202

time series, 214–215

training, 202–208

WGAN (Wasserstein GAN), 211–212

WGAN-GP, 213–214

Gaussian Brownian Motion, 50, 55

Gemini Pro (Google), 3

Generative AI, 109

discriminative models, 110–111

generative models, 110–111

as simulators, 113–118

ChatGPT and, 113–119

conditional, 111–112

data creation, 114

data generation, 112

discriminative models, 110–111

Explicit Density Models, 123

Implicit Density Models, 123

NLP (Natural Language Processing), 113

probability density estimation, 112

RAG (Retrieval-Augmented Generation), 119

representation learning, 112–113, 118–119

taxonomy, 109

hybrid modeling, 119–123

generative models

AR (autoregressive) models, 125–126

as simulators, 113–118

ChatGPT and

data creation, 114

language generation, conditional, 114–118

language modeling, 113–114

conditional, 111–112

data creation, 114

data generation, 112

discriminative models, 110–111, 119

Explicit Density Models

autoregressive models, 123

normalizing flows, 123

VAEs (Variational Autoencoders), 123

Implicit Density Models

Diffusion Models, 123

GANs (Generative Adversarial Networks), 123

NLP (Natural Language Processing), 113

probability density estimation, 112

RAG (Retrieval-Augmented Generation), 119

representation learning, 112–113, 118–119

taxonomy, 109

variants, combining, 260–261

GLM (Generalized Linear Model), 123

GMM (Gaussian Mixture Models), 77, 110–111, 162, 166

as HMM (Hidden Markov Model), 170

limitations, 170

market regime detection, 167–169

GNP (gross national product), 128

GPT (Generative Pre-trained Transformers), 134–135

Grok (xAI), 3

H

hedging market risk, mini-S&P futures and, 39–40

Heston volatility model, 55–57

historical market data retrieval, 4–16

HML (High-Minus-Low), 20, 161

HMM (Hidden Markov Model), 71, 72, 77

EM (Expectation-Maximization), 170

GMM (Gaussian Mixture Model as HMM, 170

Markov Property, 127

RNNs (Recurrent Neural Networks) and, 97

HPO (hyperparameter optimization), 83–84

HR (hedge ratio), VIX futures, 41–43

HRP (Hierarchical Risk Parity), 71, 72, 73–74

hyperparameter optimization, 71

I

identifiers, unique identifiers, 100–101

IID (independent and identically distributed) observations,

84

Implicit Density Models, 109

Autoregressive models, 126

Flow models, 184

Diffusion Models, 123

GANs (Generative Adversarial Networks), 202, 123

Variational autoencoders, 160

implied volatility, 63–64

inhomogeneous features, 89

input data, 46–49

interest rate options arbitrage, term structure arbitrage

strategies, 51

IQR (interquartile range), 152

J

Jensen’s inequality, 172

K

Kalman filter, 125, 161

Kullback-Leibler divergence, 156, 172, 202, 243

L

L1 regularization, 81–83

L2 regularization, 81–83

language modeling, transformer models, 149–150

Levy Process Model, 55

LFSS (Latent Feature State Space) module, 47–49

LightGBM, NaNs, 22–23

linear flows, 185–187

linear normalizing flows, 185–186

nonlinear flows, 187–188

linear regression

binary variable, 80

L1 regularization, 81–83

L2 regularization, 81–83

LinearRegression (Scikit-learn), 23–24

MLE (maximum likelihood estimation), 80

NaNs (Not a Number), 22

Python, 23

Statsmodels, 23

supervised learning, 79–81

training, 22–26

LinearRegression (Scikit-learn), 23–24

LL (log likelihood), 85

LLMs (Large Language Models), 119

as financial advisors, 261

customization, 252–256

emergent abilities, 237

model size impact, 237–238

scaling, 236–239

sentiment analysis

BERT model, 225–231

Fed press conference speech, 217–221

results of experiment, 232–234

speech-to-text conversion, 221–225

video and audio data, 221

training time effects, 238–239

LM (Language Modeling), 113, 150–152

efficient inference, 239–240

logistic regression model, 128–129

logistic regressions, 71, 128

supervised learning, 79–81

long_maturity_tenor, 35

long-term options, calendar spread strategy, 52–53

look-ahead bias, 101–102

LoRA (low-rank adaptation of Large Language Models),

254–256

LVMs (latent variable models), 159

amortized inference, 174

DLVM (deep latent variable models), 170–171

ELBO (Evidence Lower Bound), 172, 173–174

FA (Factor Analysis), 161, 162–163

PPCA comparison, 164–165

Fama-French factors, 161

GANs (Generative Adversarial Networks), 159

GMM (Gaussian Mixture Models), 162, 166–170

heteroscedastic noise, 164–166

HML (High-Minus-Low), 161

Jensen’s inequality, 172

latent space recovery, 164–165

optimization, 174–175

PPCA (Probabilistic Principal Component Analysis), 162,

163–166

FA comparison, 164–165

proposal distribution, 173–174

SMB (Small Minus Big), 161

VAEs (Variational Autoencoders), 176–177

sequential data, 177–181

time series, 177

extending, 178

superposition, 178–179

TimeVAE, 179–181

variational inference approximation, 171–172

M

macro signals data, 47

MADE (Masked Autoencoder for Density Estimation), 130–

131

MAF (Masked Autoregressive Flow), 195

market data retrieval, historical data, 4–5

market indicators inputs, 47

market risk (Rm-Rf), 19

Markov Property, 127

Matlab, 3–4, 32

ATM (At-The-Money) option, 60–61

codes, translating to Python, 11–16

efficient frontier computing, 272–274

Matlab Financial Instruments Toolbox, 61

tangency portfolio, 272–274

Maximum Likelihood models, 155

mean reversion

estimates, SPX, 58–60

Heston model, 56–57

metalabeling, 78

Microsoft Copilot, 3

mini-S&P futures, 35

hedging market risk and, 39–40

VIX futures HR (hedge ratios), 41–43

ML (machine learning)

bosting, 90

CAI (Corrective AI), 78

data engineering

dividends, 101

look-ahead bias, 101–102

split adjustments, 101

survivorship bias, 101

unique identifiers, 100–101

decision boundary, 87

design matrix, 79

feature engineering, 102

Generative AI as generator, 105

importance ranking, 105–106

stationarity, 103

third-party feature validation, 104–105

time series, 103–104

neural networks, 89

NN (neural networks), 91–96

AR (autoregressive models), 128

backpropagation, 93–95

CMNN (Causal Masked Neural Network), 128, 131–

133

DNN (Deep Neural Networks), 120–121

dropout, 95

feedforward neural networks, 92

MLP (multilayer perceptron), 92–93

PyTorch, 93

regularization, 95

RNN (Recurrent Neural Network), 96–98, 128, 133–

134

TensorFlow, 93

portfolio optimization, 45–49

regularizing, 76

supervised learning, 77–78

CAI (Corrective AI), 72

CPO (Conditional Parameter/Portfolio Optimization),

72

cross-validation, 83–84

HPO (hyperparameter optimization), 71, 83–84

linear regressions, 79–81

logistic regressions, 71, 79–81

performance metrics, 71, 84–89

tree-based models, 71

validation, 83–84

tree-based models, 89–91

unsupervised learning, 71–77, 85

cMDA (cluster-based Feature Selection), 71, 76–77

HHM (Hidden Markov Model), 71, 72, 77

HRP (Hierarchical Risk Parity), 71, 72, 73–74

PCA (Principal Component Analysis), 71, 72, 75–76

MLE (maximum likelihood estimation), 80, 155, 165, 201

MLP (multilayer perceptron), 92–93

MNIST dataset, 128–131, 191

MSE (mean squared errors), 80, 84

N

NaNs (Not a Number), 10

LightGBM, 22–23

regression models, 22

Negative Log Likelihood, 156

Neural ODE (Neural Ordinary Differential Equation), 195–

196

news input data, 47

next-N-day returns, 67–69

NICE (Nonlinear Independent Components Estimation),

189, 190–191

NLP (Natural Language Processing)

attention, transformer models, 135

generative models, 113

language generation, 114–118

LM (Language Modeling), 113

NN (neural networks), 91–96

AR (autoregressive models), 128

backpropagation, 93–95

CMNN (Causal Masked Neural Network), 128, 131–133

DNN (Deep Neural Networks), 120–121

dropout, 95

feedforward neural networks, 92

HMMs (Hidden Markov Model), 97–98

MLP (multilayer perceptron), 92–93

PyTorch, 93

regularization, 95

RNN (Recurrent Neural Network), 96–98, 128, 133–134

TensorFlow, 93

non-numeric data, 9–10

normalizing flow, 184–185

NumPy, 11

O

OHLC (Open, High, Low, Close) data, 48

OOD (out-of-distribution) problem, 121–122

OpenAI API, 115

OpenAI

ChatGPT access, 118–119

data collection, 222

DALL-E, 260

ELMo OpenAI GPT, 227

Embeddings API, 119

.en models, 223

GPT-3 transformation, 256

GPT family, 134–135

RAG (Retrieval-augmented Generation), 253

tokens, 113

Open AI BERT. See BERT (Bidirectional Encoder

Representations from Transformers)

OpenAI Whisper, 218, 222–225

optimization, LVMs (latent variable models), 174–175

order book input data, 47

orthogonal features, 75

OTM, 53, 54, 58, 62, 63

output, csv files, 6

P

parameters

CPO (Conditional Parameter/Portfolio Optimization), 45,

72, 78–79

hyperparameter optimization, 71

HPO (hyperparameter optimization), 83–84

MLE (maximum likelihood estimation), 155

PEFT (parameter-efficient fine-tuning), 253–256

PCA (Principal Component Analysis), 71, 72, 75–76, 163–

166

PEFT (parameter-efficient fine-tuning), 253–256

penalty terms, 82, 214

performance metrics, 71

accuracy of prediction, 85–86

AUC, 89

AUCH, 89

F1 score, 89

FN (false negatives), 86

FP (false positives), 86

macro-average, 86

micro-average, 86

TP (true positives), 86

weighted-average, 86

PoP (probability of profit), 78

portfolio optimization, 45–49

PPCA (Probabilistic Principal Component Analysis), 75, 162

FA (Factor Analysis), 164–166

PCA (Principal Component Analysis), 75

PPO (Proximal Policy Optimization), 100

predict_returns functions, 26

price-based input data, 46

probability density estimation, 112, 115–117

prompt examples, 4

proposal distribution, 173–174

Pyraformer model, 155

Python

backtesting, 44–45

FFmpeg, 224

installation, 265–267

linear regression, 23

Matlab codes, 11–16

next-day returns, 67

Pandas dataframe, 68

Sharpe Ratio, 270–271

Whisper library, 223

PyTorch, 93, 95, 98

Attention Head, 143

linear quantization, 251–252

PyTorch Lightning, 243

pytube library, 221, 232

Q

Q-learning, 100

quantization, linear, 247–249

Distilled FinBERT, 249–252

PyTorch, 251–252

R

RAG (Retrieval-Augmented Generation), 119, 252–253

Random Forest, tree-based models, 90

Real-NVP (Non-volume Preserving Transformation), 189,

191–195

regression

CPO (Conditional Parameter Portfolio Optimization), 78–

79

linear regression

binary variable, 80

L1 regularization, 81–83

L2 regularization, 81–83

LinearRegression (Scikit-learn), 23–24

MLE (maximum likelihood estimation), 80

NaNs (Not a Number), 22

Statsmodels, 23

supervised learning, 79–81

training, 22–26

logistic regressions, 71

supervised learning, 79–81

performance metrics, 84–89

regression trees, 89–91

CART, 89–90

Random Forest, 90

regularization, 90

regression models

fitted model objects, 25

LinearRegression (Scikit-learn), 23–24

NaNs (Not a Number), 22

Statsmodels, 23

training, 22–26

regression trees, 89–91

CART, 89–90

Random Forest, 90

regularization, 90

regularization

L1 regularization, 81–83

L2 regularization, 81–83

NN (neural networks), 95

penalty terms, 82

regression trees, 90

transformer models, 148–149

relative value spreads, 34

representation complexity, AR (autoregressive) models,

126–128

representation learning, 112–113, 118–119

responses to prompts, examples, 4

results, plotting, 7

returns, cumulative returns curve, 33

Rf (risk-free) rate, 32, 268

risk metrics, inputs, 47

risk-free-rate plotting over years, 268–270

RL (reinforcement learning), 78

DRL (Deep Reinforcement Learning), 46–48, 99–100

RLHF (Reinforcement Learning from Human Feedback),

256

Rm-Rf (market risk), 19

RNN (Recurrent Neural Network), 96–98, 128, 133–134

HMMs (Hidden Markov Models) and, 97

transformer models, 134

VRAE (Variational Recurrent Autoencoder), 178

ROC (Receiver Operating Characteristics) curve, 87–89

S

S&P futures, hedging market risk and, 39–40

sampling, 196

Ancestral sampling, 130

autoregressive generative models, 117

down-sampling, 103

frequencies, 102–103

from FVSN, 130

GANs, 203

importance sampling, 172

temperature scaling, 118

top-k/top-p sampling, 118

VAE and, 176–177

Scikit-learn, LinearRegression, 23–24

SciPy, 11

library installation, 14

SDEs (stochastic differential equations), 56–57

securities master, 100

sentiment analysis, 113

Financial PhraseBank, 230

FinBERT, 228, 229, 232, 240

LLMs (Large Language Models)

BERT (Bidirectional Encoder Representations from

Transformers) model, 225–231

Fed press conference speech, 217–221

results of experiment, 232–234

speech-to-text conversion, 221–225

video and audio data, 221

OpenAI Whisper, 218, 222–225

transformer models, 149–150

sequence modeling, AR (autoregressive) models, 125

CMNN (Causal Masked Neural Network), 128, 131–133

logistic regression, 128

logistic regression model, 128–129

MADE (Masked Autoencoder for Density Estimation),

130–131

NN (neural networks), 128

representation complexity, 126–127

representation complexity reduction, 127–128

RNN (Recurrent Neural Network), 133–134

transformer models, 134–150

sequential data, 125

SGD (stochastic gradient descent), 93, 156

[image: Image 1502]

Sharpe ratio, 3, 7–10, 16, 84

dollar-neutral portfolio, 31

DRL (Deep Reinforcement Learning), 99–100

excess returns, 31

Rf (risk-free rate), 268

Risk-Free Rate, 31

SPY, 6–7, 270–272

strategy and leverage, 31

short_maturity_tenor, 35

short-term options, calendar spread strategy, 52–53

sigmoid function, 80

size factor, SMB (Small Minus Big), 19

SkyFi, 119

SMB (Small Minus Big), 19, 161

SNGAN (Spectral Normalization GAN), 211, 213

SPDR Bloomberg 1-3 Month T-Bill ETF. See BIL

split adjustments, data engineering and, 101

SPX (S&P 500 Index)

ATM (At-The-Money), 63

correlation coefficient , 60

mean reversion, 58–60

options calendar, 18

SPY, daily returns, 5–6

Sharpe ratio, 6–7

Statsmodels, 23

stochastic volatility models, 55–57, 63–64

stock returns. See also trading strategies

CAPM (Capital Asset Pricing Model), 19

stock tickers, dendrogram, 74

stock_features function, 26

strategy specification, codes, 19–33

supervised learning, 77–78

CAI (Corrective AI), 72

CPO (Conditional Parameter/Portfolio Optimization), 72

cross-validation, 83–84

HPO (hyperparameter optimization), 83–84

hyperparameter optimization, 71

linear regression, 71, 79–81

binary variable, 80

L1 regularization, 81–83

L2 regularization, 81–83

MLE (maximum likelihood estimation), 80

logistic regressions, 71, 79–81

performance metrics, 71, 84–89

tree-based models, 71

validation, 83–84

survivorship bias, 21, 101

SVD (singular value decomposition), 75

T

tangency portfolio, 272–274

technical indicators inputs, 47

tenors

long_maturity_tenor, 35

short_maturity_tenor, 35

TensorFlow, 93, 175, 243

term structure arbitrage strategies

ATM (At-The-Money) option, 60–61

butterfly spreads in time, 51

calendar spreads, 50–51, 52–53

diagonal spreads, 51

dynamic hedging strategies, 51

Heston volatility model, 55–57

implementation, 51–52

implied volatilities, 54

publications, 57–58

stochastic volatility models, 55–57

volatility smile, 55, 56–57

interest rate options arbitrage, 51

out-of-the money put, 54

variance swaps, 51

volatility surface arbitrage, 51

testing records, 134–135

time series

feature engineering

merging, frequencies and, 103–104

 versus cross-sectional features, 104

flow models

domain knowledge, 198

flows, adapting, 196–197

image data transition, 196

GANs (Generative Adversarial Networks), 214–215

transformer models

Attention Layer, 155

Chronos approach, 151–152

contextual information, 154–155

continuous input, 152–155

denormalization, 151

dequantization, 151

discretizing data, 151–152

input normalization, 154–155

Lag-Llama approach, 152–155

positional encoding, 155

tokenization, 151–152

VAEs (Variational Autoencoders), 177

extending, 178

superposition, 178–179

TimeVAE, 179–181

time-series features, 26

TimeVAE, 179–181

TP (true positives), 86

TPR (True Positive Rate), 87

trading strategies, 17. See also stock returns

backtest code creation, 34–45

BN (beta neutral), 34–35

Fama-French factors, 19–21

HML (high minus low), 20

relative value spreads, 34

Rm-Rf (market risk), 19

SMB (Small Minus Big), 19

summarizing, 34–45

transformer models, 134–135, 149–150

Add blocks, 148

attention, 135–144

BERT matrix, 136–139

BertViz, 137–140

hard attention, 140

Hugging Face library, 135–137

multi-headed, 146–147

NLP and, 135

scaled dot-product, 141–143

soft attention, 140

token embeddings, 135

Token IDs, 135–137

tokenization, 135

unnormalized scores, 142

visualizing, 137–140

BERT (Bidirectional Encoder Representations from

Transformers), 134–135

Encoder layer, 148–149

feed-forward layer, 147–148

GPT (Generative Pre-trained Transformers), 134–135

language modeling, 149–150

model objective, 149–150

NLP (Natural Language Processing), 135

Norm blocks, 148

positional encodings, 145–146

RNNs (Recurrent Neural Networks), 134

sentiment analysis, 149

time series

Attention Layer, 155

Chronos approach, 151–152

contextual information, 154–155

continuous input, 152–155

denormalization, 151

dequantization, 151

discretizing data, 151–152

input normalization, 154–155

Lag-Llama approach, 152–155

positional encoding, 155

tokenization, 151–152

visualization, 144–145

tree-based models, 71

tree-based regression models, 89–91

CART, 89–90

Random Forest, 90

U

unique identifiers, 100–101

unsupervised learning, 71

cMDA (cluster-based Feature Selection), 71, 76–77, 85

HHM (Hidden Markov Model), 71, 72, 77

HRP (Hierarchical Risk Parity), 71, 72, 73–74

PCA (Principal Component Analysis), 71, 72, 75–76

V

VAEs (Variational Autoencoders), 123, 176–177, 183–184

Explicit Density Models, 123

sequential data, 177–181

time series, 177

extending, 178

superposition, 178–179

TimeVAE, 179–181

validation, cross-validation, 83–84

value factor, HML (high minus low), 20

VaR (Value at Risk), 117

variables. See also LVMs (latent variable models)

variance swaps, term structure arbitrage strategies, 51

visualization, transformer models, 144–145

attention, 137–140

VIX futures, 34–39

ES futures HR (hedge ratio), 41–43

mini-S&P futures HR (hedge ratio), 41–43

VIX index, 38

volatility smile, 55, 56–57

volatility surface arbitrage, term structure arbitrage

strategies, 51

volume data inputs, 46

VRAE (Variational Recurrent Autoencoder), 178

VWAP (Volume-Weighted Average Price), 103

W–Z

WaveNet, 132–133

WGAN (Wasserstein GAN), 211–214

WILEY END USER LICENSE

AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

Document Outline

	Table of Contents

	Title Page

	Copyright

	Dedication

	Preface

	Acknowledgments

	About the Authors

	Part I: Generative AI for Trading and Asset Management: A No-code Introduction

	Chapter 1: No-code Generative AI for Basic Quantitative Finance

	1.1 Retrieving Historical Market Data

	1.2 Computing Sharpe Ratio

	1.3 Data Formatting and Analysis

	1.4 Translating Matlab Codes to Python Codes

	1.5 Conclusion

	Chapter 2: No-code Generative AI for Trading Strategies Development

	2.1 Creating Codes from a Strategy Specification

	2.2 Summarizing a Trading Strategy Paper and Creating Backtest Codes from It

	2.3 Searching for a Portfolio Optimization Algorithm Based on Machine Learning

	2.4 Explore Options Term Structure Arbitrage Strategies

	2.5 Conclusion

	2.6 Exercises

	Appendix 2A.1 Computing Next-day’s Return

	Appendix 2A.2 Uploading the Fama-French Factors

	Appendix 2A.3 Combining Fama-French Factors with Next-day’s Returns

	Chapter 3: Whirlwind Tour of ML in Asset Management

	3.1 Unsupervised Learning

	3.2 Supervised Learning

	3.3 Deep Reinforcement Learning

	3.4 Data Engineering

	3.5 Feature Engineering

	3.6 Conclusion

	Part II: Deep Generative Models for Trading and Asset Management

	Chapter 4: Understanding Generative AI

	4.1 Why Generative Models

	4.2 Difference with Discriminative Models

	4.3 How Can We Use Them?

	4.4 Illustrating Generative Models with ChatGPT

	4.5 Hybrid Modeling: Combining Generative and Discriminative Models

	4.6 Taxonomy of Generative Models

	4.7 Conclusion

	Chapter 5: Deep Autoregressive Models for Sequence Modeling

	5.1 Representation Complexity

	5.2 Representation and Complexity Reduction

	5.3 A Short Tour of Key Model Families

	5.4 Model Fitting

	5.5 Conclusions

	Chapter 6: Deep Latent Variable Models

	6.1 Introduction

	6.2 Latent Variable Models

	6.3 Examples of Traditional Latent Variable Models

	6.4 Learning

	6.5 Variational Autoencoder (VAE)

	6.6 VAEs for Sequential Data and Time Series

	6.7 Conclusion

	Chapter 7: Flow Models

	7.1 Introduction

	7.2 Model Training

	7.3 Linear Flows

	7.4 Designing Nonlinear Flows

	7.5 Coupling Flows

	7.6 Autoregressive Flows

	7.7 Continuous Normalizing Flows

	7.8 Modeling Financial Time Series with Flow Models

	7.9 Conclusion

	Chapter 8: Generative Adversarial Networks

	8.1 Introduction

	8.2 Training

	8.3 Some Theoretical Insight in GANs

	8.4 Why Is GAN Training Hard? Improving GAN Training Techniques

	8.5 Wasserstein GAN (WGAN)

	8.6 Extending GANs for Time Series

	8.7 Conclusion

	Chapter 9: Leveraging LLMs for Sentiment Analysis in Trading

	9.1 Sentiment Analysis in Fed Press Conference Speeches Using Large Language Models

	9.2 Data: Video + Market Prices

	9.3 Speech-to-text Conversion

	9.4 Sentiment Analysis

	9.5 Experiment Results

	9.6 Conclusion

	Chapter 10: Efficient Inference

	10.1 Introduction

	10.2 Scaling Large Language Models: High Performance, High Computational Cost, and Emergent Abilities

	10.3 Making FinBERT Faster

	10.4 Model Quantization

	10.5 Customizing Your LLM: Adapting Models to Your Needs

	10.6 Conclusions

	Chapter 11: Afterword

	11.1 Diffusion Models

	11.2 Combining Generative Model Variants

	11.3 LLMs as Financial Advisors

	References

	Appendix

	A.1 Retrieving Adjusted Closing Prices and Computing Daily Returns

	A.2 Installing Python

	A.3 Plotting the Risk-free-rate over the Years

	A.4 Computing the Sharpe Ratio of SPY

	A.5 Matlab Code for Computing Efficient Frontier and Finding the Tangency Portfolio

	Index

	End User License Agreement

index-343_5.png

index-343_4.png

index-231_4.png

index-308_12.png
D x D

index-348_3.png

index-231_3.png

index-308_11.png

index-348_2.png

index-231_6.png
Token distribution

bilions wallets way their

Token

made

* mastered bank accounts port-

folio

00

index-308_14.png

index-348_5.png

index-231_5.png
p(x3|e1,x2,Y)

index-308_13.png
AAT

index-348_4.png

index-308_8.png
A e RDxM

index-344_2.png

index-308_7.png
S =AAT + 3

index-344_1.png
X—»]

Time-VAE (Interpretable)
Decoder (Interpretable)

y—Z

”
N,
oJ (multi- (Sample)

variate
Gaussian)

index-231_2.png

index-308_10.png
M < D

index-348_1.png
Generative
Models

Implicit
Density Models

Tractable

(Autoregressive)
Models

Approximate
Density
Variational
Autoencoders

index-231_1.png
Token distribution

have know think make believe keep invest love want under spend can made coud lke try need stated put seem
stand

Token

index-308_9.png

index-347_1.png

index-354_14.png
0(D)

index-354_13.png
0(DlogD)

index-354_16.png

index-354_15.png
ﬁ(c3 + C2D)

index-308_5.png
D (D +1) /2 =500 (501) /2 = 125,250

index-308_4.png
D = 500

index-343_3.png

index-354_12.png
0(D)

index-308_6.png

index-355_5.png

index-355_2.png

index-355_1.png

index-355_4.png
fr

index-355_3.png
f=fxkofk10...0fy0fi

index-338_12.png
p(x|2n)

index-308_1.png

index-342_2.png

index-307_5.png
Xy e RP

index-342_1.png

index-308_3.png

index-343_2.png

index-308_2.png

index-343_1.png
Encoder (Base)

Time-VAE (Base)

e A

N, *y—> 7
(multi- (Sample)|
77 variate

Gaussian)

Decoder (Base)

index-307_2.png

index-339_2.png

index-339_1.png

index-307_4.png
N (@, %)
Xy ~

index-340_2.png

index-307_3.png

index-340_1.png

index-356_4.png

index-356_3.png

index-357_2.png

index-357_1.png
Z1:p!
z =
Zp'+1:D

index-303_3.png
Z(0)

index-338_11.png

index-303_2.png
0 0—nVyZ (0)

index-338_10.png

index-307_1.png
Density Models

Approximate
Density

Tractable
Density
Autoregressive
owttoses

Diffusion
Models

Variational
Autoencoders

index-356_2.png

index-305_1.png
Pdata

index-356_1.png
detJ

index-357_4.png

index-357_3.png

index-357_6.png

index-357_5.png
x = f(z)

index-302_10.png
argmin Ey.,, . — logpe (x)
]

index-338_7.png

index-302_9.png

index-338_6.png

index-29_2.png

index-303_1.png
1
argznin.i’(e) =N z —log py (%)

xn€9

index-338_9.png

index-29_1.png

index-302_11.png
Pdata

index-338_8.png

index-31_1.png
Pricetoday — Priceprevious day

Daily Return () x100%

Priceprevious day

index-338_3.png

index-29_3.png

index-338_2.png

index-302_8.png

index-31_3.png
1.2023 — 08 — 28 :((441.20 — 438.42)/438.42) x100% = 0.637%
2.2023 — 08 — 29 :((447.58 — 441.20)/441.20)x100% = 1.45%

index-338_5.png

index-302_7.png
Ddat: (X)
KL (pasta [P8) = Exepy, [log L]

po (%)
= E’“Pdm logpdata (x) -]EXNPdm logpy (x)

index-31_2.png
1.2023 — 08 — 28 :((441.20 — 438.42) /438.42) x 1007
2.2023 — 08 — 29 :((447.58 — 441.20)/441.20) % 100%

index-338_4.png

index-352_8.png

index-391_4.png

index-302_6.png
KL(P||Q)= Ex.p {log

P(z)
Q(x)

]

index-391_3.png
D=9 U 9Dr

index-352_10.png
Ex] = Elp+Azj=p
Covlx] = AZ.AT = ATAT = AAT

index-391_6.png
Pdata

index-352_9.png

index-391_5.png

index-302_3.png
Pe

index-337_1.png

index-302_2.png
Pdata

index-336_1.png
z ~ p(z)
x|z ~ pe(x|z)

index-302_5.png
KL(P|Q)

index-391_2.png
PG

index-302_4.png
Pdata

index-338_1.png

index-353_6.png

index-353_5.png

index-393_2.png
PG

index-354_1.png

index-353_2.png
det

of (2)

0z

index-392_1.png
px)

PaatalX)
= Pex)
D)
@ Real samples
| O Generated samples

-10.0

=15

=50

25

0.0

10.0

index-353_1.png
px (x) = JV(x; u, AAT)

index-391_7.png
PG

index-353_4.png

index-393_1.png
Pdata

index-353_3.png
det A

index-392_2.png
PG

index-301_6.png

index-335_12.png
Vs L(g,p)

index-301_5.png
O(NlogN)

index-335_11.png
VoL(q,p)

index-302_1.png
Pdata

index-335_14.png

index-301_7.png
Pe

index-335_13.png

index-335_8.png
7 = py () +24(x)' e

index-301_4.png

index-335_10.png

index-335_9.png

index-301_3.png
logN

index-354_3.png

index-301_2.png

index-354_2.png

index-354_5.png
0(D)

index-354_4.png

index-298_3.png
|zl

index-335_5.png
a4 (z|x)= AN (pe(x), Ty (x))

index-298_2.png

index-335_4.png

index-301_1.png

index-335_7.png
Z (4,p) = Ecr(0) [log po (x|2)] — KL(gy (2 [x)| |p (2))

index-298_4.png

index-335_6.png
po (x|z)= A (po(z), Xo(z))

index-354_11.png

index-354_10.png
73 (63 D)

index-354_7.png

index-354_6.png
0(D)

index-354_9.png
73 (63 D)

index-354_8.png
0(D)

index-351_6.png

index-351_5.png

index-297_3.png

index-335_1.png
pe (x|2z)

index-57_13.png

index-297_2.png
|zl

index-334_13.png

index-57_12.png
t+1

index-298_1.png
,
B
&
2
&

Distribution
Head

Positional
Encoding

x| [Xi-1 X X4l xea

CIES €t < €l

b |ag-featured inputs ————————————————rqf

index-335_3.png

index-57_15.png
Bio

index-297_4.png

index-335_2.png
Probabilistic

Probabilistic

Encoder

Decoder

index-57_14.png
Riti1 = Bio + B (Rmy — Ryp)+BiaSMBy + BisHML; + €141

index-57_17.png
Bi1, Bi2, Bis

index-57_16.png

index-334_12.png
75 (z|x)

index-57_19.png
it+1

index-334_11.png

index-57_18.png

index-389_10.png

index-57_10.png
it+1

index-334_10.png
p(z|x)

index-57_9.png

index-351_7.png
P, (z)

index-389_12.png

index-389_11.png
D" =arg énax Expllog D(x)] + Ex4[log(1 — D(x))]

index-57_11.png

index-334_7.png
q(z)

index-334_6.png
KL(q(z)||p(x|z))

index-334_9.png
9o

index-334_8.png
p(x|z)

index-351_13.png

index-389_18.png

index-351_12.png
D x D

index-389_17.png
p(z)
p(z)+q(z)
pdata(z)
Pdata (T)+pc ()

index-351_15.png
Z ~ Py

index-351_14.png

index-389_19.png
PG

index-351_9.png
f(z)=p+ Az

index-389_14.png
Vo = Exwp[Vplog D(x)]+Ex[Vp log(l - D(x))]

E.
Exesp [D(lx)] B [1 - }3<x>]

index-351_8.png

index-389_13.png

index-351_11.png

index-389_16.png

index-351_10.png

index-389_15.png
Vp=0

index-351_16.png

index-334_3.png

index-57_2.png

index-334_2.png
Ko

index-334_5.png
log p(x)= L(q, p)+KL(q(2)|p(x|z))

index-57_4.png

index-334_4.png
Vo Easy lpo(x12)] = Vo Ecouyion [po (X[1s @)+ 5 ()) |

index-57_3.png
(t+1)

index-57_6.png
SM By

index-57_5.png

index-334_1.png

index-57_8.png
(Bio, B, Biz, Bis)

index-57_7.png
HML,

index-33_2.png
252

index-333_8.png

index-389_21.png

index-33_1.png

index-333_7.png
e ~ A(0,1I)

index-389_20.png
PG

index-351_18.png

index-390_1.png
V(G,D*) = Expy,llog D(x)] + Esp, [log(1 — D (x))]

E
Pdata () pe ()

5 P (@) 1 26 (z)] B [bg P (@) 1 26 (@)

= EprdaLa [1Og Pdata (w) - 10€(pdata (z) +pa (x))] +

Expe log pe (z) — log(Paata (z) + D6 (2))]

index-57_1.png

index-351_17.png
z:x = f(z)

index-389_22.png

index-48_1.png
Mean Return

0.00055

0.00050

0.00045

0.00040

0.00035

0.00030

0.00025

Efficient Frontier

T
0.020

0.022

0.024 0.026
Standard Deviation

T
0.028

0.030

index-333_4.png
a4 (z|x)= N (2; g (2), By (z))

index-333_3.png

index-333_6.png
7 = py () +24(x)' e

index-333_5.png

index-352_5.png

index-391_1.png
Pdata

index-352_4.png
\det A~
detA|™! = (detAAT)AN

index-390_6.png
PG

index-352_7.png
AAT

index-352_6.png

index-352_1.png

index-390_3.png
V(G,D*) = Exupy,, [l0gPpata (z) —logq(@)] + Exvp, [logpe (z) —logg(z)] —log4
= Dk (paatallpe) + Dxi (pc ||Paata) — log 4
2D ;s (pdata [lPc) — log4

index-351_19.png
x) =AY x—p)

index-390_2.png
q(z) = (paata (z) + pa (x)) /2

index-352_3.png
dt
)] ot

(2r) P exp

D aet (20

o

1 27
2"

)
) det A"

(27) 7P/ (det AAT)V p(

(2m) "/ (det AAT)™

=/V(x W, AAT)

Pool-ge

ml»—t m|>—

x

w)" - u)))

T(AAT) u))

index-390_5.png
Pdata

index-352_2.png

index-390_4.png

index-349_10.png

index-384_8.png
Tm = Go(Zm)

index-349_9.png

index-384_7.png

index-104_2.png
Bo

index-349_12.png

index-104_1.png
b1

index-349_11.png

index-104_4.png
AVIXF = By + B1*SPRET; + B2*SPRET,*TTS; + i

index-332_11.png

index-104_3.png
TTS; 1

index-332_10.png
Vo Ezp, [Po(x|2)]

index-127_1.png
Conceptual Implied Volatility of Put Options

'ATM Implied Volatilty
Far OTM Implied Volatiity

0.400

0.375

0.350

0.325

0.300

0.275

0.250

0.225

0.200

0.00 025 0.50 0.75 1.00 125 1.50 175 200
Time to Expiration (Years)

index-333_2.png

index-126_1.png
Annualized Time Value

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Conceptual Annualized Time Value of Put Options

\TM Annualized Time Value
Far OTM Annualized Time Value

0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
Time to Expiration (Years)

index-333_1.png
Vo Bangy [Po(x[2)] = Vo [g4 (2/x)po(x|2)dz
= [V a4(zx)pe(x|z)dz
= [a4(2]%)Vlog g4 (z[x)pe (x|2)dz
= Esup, (Vg log gy (z(x)pe(x|2)]

index-131_2.png

index-131_1.png

index-131_4.png

index-131_3.png
dsS;
dl/t

pSedt + /7 S, WS

k(0 — 1) dt + o /v dWY

index-332_8.png

index-471_3.png

index-103_2.png
Bo

index-332_7.png

index-385_1.png
D=9 U 9Dr

index-471_5.png

index-332_9.png

index-471_4.png

index-332_4.png

index-332_3.png
9o

index-332_6.png

index-332_5.png

index-350_1.png
z ~ p(z)
x = f(z)

index-388_1.png
Pdata

index-471_11.png

index-349_16.png

index-387_1.png
Model | MNIST | TFD
DBN [3] 1B38E2 | 1909 £66
Stacked CAE [3] | 121 £ 1.6 | 2110+ 50
Deep GSN [6] | 214 % 1.1 | 1890 +29
Adversarial nets | 225+2 | 2057 +26

index-471_10.png

index-350_3.png

index-388_3.png
minmax V(6,¢)
6 ¢

— Dy(Go(2)))]
i x~Paata (108 D (%)|+E;-p, [log(1
n%m mgx E. . D +E D4 (G,

index-350_2.png

index-388_2.png
PG

index-511_1.png
Annualized Retums Over Time

3 =3 3
=) S <

swiniey pazienuuy

Year

index-349_13.png

index-385_3.png

index-471_7.png

index-385_2.png
Dy (x)= p(y|x)

index-471_6.png

index-349_15.png

index-386_1.png

index-471_9.png
AW = BA

index-349_14.png
z = f1(x)

index-385_4.png

index-471_8.png

index-350_5.png

index-350_4.png

index-388_4.png

index-102_2.png
HR;

index-350_6.png

index-102_4.png
b1

index-331_17.png
9o

index-102_3.png

index-102_6.png
TTS; 1

index-332_2.png
min Y KL (g (2n[%0) [ps (2n[%0)) = max D L (s (2lxn), p6 (% 20))

index-102_5.png
Bo

index-332_1.png

index-102_8.png
ES; 1

index-102_7.png

index-103_1.png
b1

index-102_9.png

index-102_1.png
B1 % 1000 + Bo x TT'S;—1 x 1000
0.01 x ES;_; x 50

HR,

index-331_14.png

index-331_13.png

index-82_1.png
0.20

°
o

0.10

Cumulative Returns

0.05

0.00

Cumulative Returns of the Portfolio

0 200 400 600 800
Days

index-331_16.png

index-389_1.png
minmax Ex., [log D(x)]+E;-, [log(1 — D(G(2)))]

mcin max Exp[log D(x)]+Ex~q[log(1 — D(x))]

index-331_15.png

index-388_5.png

index-331_10.png
Hn

index-331_9.png
Gn (2)= AN (2Z; fin,0n)

index-331_12.png
|0]+N(|p|+|o|)

index-331_11.png

index-351_2.png

index-389_7.png

index-351_1.png

index-389_6.png
Pdata

index-351_4.png

index-389_9.png

index-351_3.png
ps(z) = A (20,I)
Dxz (X|2) = A (x50 + Az, Z))

index-389_8.png

index-350_8.png

index-389_3.png

index-350_7.png

index-389_2.png

index-350_10.png

index-389_5.png

index-350_9.png

index-389_4.png

index-134_2.png

index-134_1.png

index-134_4.png

index-134_3.png

index-135_2.png

index-135_1.png

index-135_4.png

index-331_8.png
an

index-135_3.png

index-331_7.png

index-136_1.png

index-135_5.png

index-131_5.png

index-131_7.png

index-131_6.png

index-131_9.png

index-131_8.png

index-131_11.png

index-131_10.png

index-131_13.png
dWw,»

index-131_12.png
AW

index-131_14.png

index-136_13.png
(0.20% =
=0.04)

index-136_12.png

index-137_1.png

index-136_14.png

index-137_3.png

index-137_2.png

index-137_5.png

index-137_4.png

index-137_7.png

index-137_6.png

index-136_2.png

index-136_4.png

index-136_3.png

index-136_6.png

index-136_5.png

index-136_8.png

index-136_7.png

index-136_10.png

index-136_9.png

index-136_11.png

index-357_11.png

index-357_10.png
z(2z1.p')

index-357_13.png

index-357_12.png
fi

index-357_7.png
X1:p!
X =

XD/ +1

index-357_9.png

index-357_8.png

index-357_15.png
fi

index-357_14.png
z(Zp'11:D)

index-357_16.png

index-174_2.png

index-174_1.png
P(y|z)

index-174_4.png

index-174_3.png

index-173_4.png

index-526_1.png

index-173_3.png
Y,

index-520_1.png
x 107

6.0
o
55 °
o
o
5.0 o
o
o
45 o
o \(Hed)
o
o
4.0 °
o
35l o
o
® (Green)
30f ©
[
o
25 Q.

0.013 0.014 0.015 0.016 0.017 0.018 0.019 0.020 0.021 0.022 0.023

index-173_6.png
1/[1 4+ exp(...)]

index-173_5.png

index-554_1.png

index-173_2.png

index-173_1.png
Sigmoid(z)

1.0

0.8

0.6

0.4

0.2

0.0

1
T+e?

Sigmoid Function:

Sigmoid Function

-10.0 -7.5 -5.0 25 0.0 25

5.0

75

10.0

index-172_7.png
P(y)

index-172_6.png

index-172_9.png

index-172_8.png

index-172_3.png
P(y)

index-172_2.png

index-172_5.png

index-172_4.png
P(y)

index-172_10.png
P(y) = 1/[1+ exp(—B e x)]

index-172_1.png

index-171_4.png
Yi

index-171_3.png
> log(P (i)

index-171_6.png

index-171_5.png

index-170_8.png

index-170_7.png
(x, v)

index-171_2.png
B=(XTX) ' XTy.

index-171_1.png

index-171_8.png

index-171_7.png

index-170_1.png

index-202_4.png

index-168_2.png

index-202_3.png

index-170_3.png

index-202_6.png

index-170_2.png

index-202_5.png
h(t — 1)

index-164_1.png
[

1
0.5

0.5
2

]

index-201_19.png
90°

index-201_18.png
J(t)

index-168_1.png

index-202_2.png

index-165_1.png
2 seues

-2

Series 1

index-202_1.png

index-170_5.png

index-170_4.png

index-202_7.png
y(t)

index-170_6.png

index-201_17.png

index-512_1.png
Annualized Retums Over Time (20-Day MA)

S v o w 9 w o
S R B &4 8 a4 B
£ 3 38 & 8 & 9
© 6 6 6 8 & oS

TS
(v AeQ-02) suimey pazienuuy

Year

index-162_14.png

index-201_12.png
h(t — 1)

index-162_13.png

index-201_11.png

index-162_16.png
n(c)

index-201_14.png

index-162_15.png

index-201_13.png

index-201_8.png

index-201_7.png

index-162_12.png

index-201_10.png

index-162_11.png
W) ~m. /o

index-201_9.png

index-162_18.png

index-201_16.png

index-162_17.png

index-201_15.png

index-163_1.png
Distance

0.8-

0.7 -

06"

05~

04 -

0.3~

0.2-

0.1~

0.0

Custom Dendrogram for Stock Tickers

BAC

JPM

F
Stock Ticker

GM

TSLA

index-162_19.png

index-162_3.png

index-201_1.png
h(t — 1)

index-162_2.png

index-200_9.png

index-162_5.png

index-201_3.png

index-162_4.png
> we(s) =1

index-201_2.png

index-200_6.png

index-162_1.png
we(s)

index-200_8.png

index-200_7.png

index-162_10.png

index-162_7.png
> W(c)=1

index-201_5.png

index-162_6.png

index-201_4.png

index-162_9.png

index-162_8.png

index-201_6.png

index-159_2.png

index-199_1.png

index-159_1.png

index-198_9.png

index-159_4.png

index-200_1.png
y(t)

index-159_3.png

index-199_2.png
0, = 0; — ev

index-198_8.png
Ay Yo, W2

index-198_7.png
ALY (Wi

index-161_1.png

index-159_9.png

index-159_6.png

index-200_3.png

index-159_5.png

index-200_2.png

index-159_8.png

index-200_5.png

index-159_7.png

index-200_4.png

index-138_11.png

index-197_18.png

index-252_4.png
T2 ~ PXy|X; ('7 Zl)

index-197_17.png

index-252_3.png
1 ~ Px;

index-139_1.png

index-198_1.png

index-252_6.png
f = NeuralNetwork (xl:d,l; 0(”))

index-138_12.png
0.152
vy =

index-197_19.png

index-252_5.png
p(zalx141) = f (X1:(171;9(d))

index-251_3.png
Px (X) = Pxy, X, .., Xpgs (T15-- -5 T768) = pxy (21)
X Px,|x; (%2]e1)

X PX5|Xq, Xy (z3|z1,22)

X PXres] Xy -, Xrg7 (@768]%1.767)

index-197_16.png
0, =0, —eg

index-252_2.png
0! ={w?, b’}

index-252_1.png
p(zd|x14-1) = f (xl:(,,l;a(@) = sigmoid (x{dflw(d) - b(d))

index-142_1.png
Annualized Put Price

1000

900

800

700

600

500

400

300

200

100

Annualized Put Price vs Time-to-Expiration

2 4 6 8 10 12
Months to Option Expiry

index-139_6.png
0.152
vy =

index-198_6.png

index-143_1.png
Annualized Call Price

1000

900

800

700

600

500

400

300

200

Annualized Call Price vs Time-to-Expiration

2 4 6 8 10 12
Months to Option Expiry

index-139_3.png
oc=0.4

index-198_3.png

index-256_1.png
Output
Hidden Layer
Hidden Layer

Hidden Layer

Input

index-139_2.png
9 = 0.152

index-198_2.png

index-254_1.png
—[A

| Q[[fn 0[S
*Q T [| TN O~ O
N NEDE
N I EN N ERE
Q[[Q[N [%
o[S| MW[x3 [y[w [ty |Ou[)|~
o[| & | o[- X | D] o~
w30~ 0]y
|| T | o[~ [>| ~]
IR EEE

| QD0 [B[0| |9
&[]0 D[
3| O8] 0| Q|22 | 1

[w8 o4 [S
Q™ B

%

o Y

T~

ESIES

index-139_5.png
mu = 0.1

index-198_5.png

index-139_4.png
p = —0.65

index-198_4.png

index-257_1.png
Output
Dilation = 8
Hidden Layer
Dilation = 4
Hidden Layer
Dilation = 2
Hidden Layer
Dilation = 1
Input

index-197_7.png

index-249_1.png
po(:|-)

index-197_6.png
H_W
B

index-248_11.png

index-358_3.png
Conditioner © ()

Coupling Transform

p

f1@p 03 (@ 1p)

f(z)=[

i
1@ 010 @ 1),

index-138_2.png

index-197_9.png

index-250_2.png
D = 2764

index-138_1.png

index-197_8.png

index-250_1.png
{0,1}

index-357_23.png

index-398_3.png
VoW (PaaarPc) = Vo Sm_ fs (Go (2m))

index-357_22.png
fi

index-398_2.png
W (Pdata, PG)

index-248_10.png

index-358_2.png

index-248_9.png
p(Tn|Tp—2,Tp1)= -/V(wo +wiTp1 + Wk, 2, U2)

index-358_1.png

index-399_1.png
1.0

0.8

0.6

0.4

02

Linear gradients
ina WGAN

- Density of real

— Density of fake
—- GAN Discriminator
—- WGAN Critic

T e

Vanishing gradients
in regular GAN

2 4 6

index-138_8.png
9 = 0.152

index-197_15.png

index-138_7.png

index-197_14.png

index-138_10.png
p = —0.65

index-138_9.png
oc=0.4

index-138_4.png

index-197_11.png

index-250_4.png
2 ={0,1}"

index-138_3.png

index-197_10.png

index-250_3.png

index-138_6.png

index-197_13.png
oJ

y

index-251_2.png

index-138_5.png

index-197_12.png

index-251_1.png
F-RNYOOmamnao
IOIXINRTmEm e
ST NN ER 5 -
N> ineo— e
DTS vy~
Ve b4 I M0
ESWDHD Qe
Mo DO N o e N T
el R Rt WP N
Al ™ =~ e~

index-359_4.png

index-404_1.png

index-359_3.png

index-400_5.png
PG

index-359_6.png
T
X = [Xl:D" xD’+1:D]

index-406_1.png
il
%ﬂ.l%l - |
| M
’ i W',ui m"u
%M*Q"“ i ’lt"
o o o8 & &

388

386

]
g
Price ($)

382

380

index-359_5.png

index-405_1.png
Tranecrt
Data Collection and '3"5;:”“"" Trading Signal
Preprocessing Sentiment Analysis Generation

index-400_2.png

index-400_1.png
W (Pdata, PG) = SUp gy, [fo (%)) = Exnpg [fo (%)]
[[4l

—AEgpe [(HV; fo @), — 1)2]

index-359_2.png
T
z — [zl:D'v ZD’+1:D]

index-400_4.png
Pdata

index-359_1.png

index-400_3.png

index-196_28.png

index-248_1.png
P, X,y (Tn|Tn-1)

index-247_8.png
DX X1y X1 (Tl 15 - o o3 Bno1)= Px, (X, (Tn]Tn1)

index-196_30.png
Ohy
Ohy

index-248_3.png
Llyeo-

sy TN

index-196_29.png
ﬂ:2*(0.1*1+0.2*0.5+0.3—1)*0.5.
Ohs

index-248_2.png

index-359_8.png
90 (z1.p’)

index-408_1.png
Forward Return

0.006

0.004

0.002

0.000

—-0.002

—-0.004

—-0.006

0.2

0.0

0.2

Sentiment Score

0.4

0.6

index-359_7.png
X1:pf = Zi1Dp!
Xp'i1:p = Zp'y1p + 9o (Z1.0)

index-407_1.png
data_with_sent inent.head (16)

0606

202200

" ca0o

20220015 103530

o videota_ sentimentscore

oos sarmosn, 1 g

oot tmoon v bsgnwitnors

o e st ores

[Err———

e ppoprive n s, we .
it consumption spenson s
e

P e o s cions o

bt mprvsments o i

g s T oo

e o0 494y, o 2t

o3e0zz0

asons

oaner

ossaese

st smestams.

O e

Ta0eas a0

3

o615 az30-

3

o615 masa0:

3

20220615 33430

3

nzz0615 33830

oo Won o cese rwum

e

o

o

e

s7ars

0

s

o

o

s

30

s

s

200

e

e

—oooress

000080

ooooesn

oourets

index-247_7.png

index-359_10.png

index-359_9.png
ge

index-197_4.png

index-197_3.png

index-248_8.png
p(%n|Tn—2,Tn_1)

index-197_5.png

index-196_32.png

index-248_5.png

index-196_31.png

index-248_4.png
p(x1,...,zn)= p(x1)p(x2|z1)p(z3|21, T2)p(Ts|T2, T3). . . P(TN |TN_2, ZN-_1)

index-197_2.png

index-248_7.png

index-197_1.png

index-248_6.png

index-408_2.png

index-359_15.png
d
(x1:p1)
17}
(x1
.D')

3 I¢)
(e
)
0z
0
a(xle:D’
/.
- +1:D) i
- 0 D'+1:
Z 0(XD’+ .
. Z(D'+11:D)
):D

g/
9 (2
o) I
D-D!

index-419_3.png
Tok;, Toks, ..., Tokys

index-359_14.png
Zp'+1:D = XD'4+1:D — 98(21:11')

index-419_2.png

index-359_17.png

index-419_5.png
Ejcrs)

index-359_16.png

index-419_4.png

index-359_11.png

index-415_1.png
load the whisper sodel
ot = whiiper. 1056_rode\ WHISPER HODEL JAYE)

o —— 5513 00

3003 eviogocly ith ecent model GPU, theflowingcll my v th message st th st version o PyTorch doe not suppot 1 CUOK v o your
(GPU.You can i th prblen b istlig th approprite vrsonof PyTorc using thess nstructions: s fytorch gt startedicaly

<o0:00, 74.048/51

tronscript = transcribe(aodel, cutdetals, seed AT SEED)
printitrancript.ess)

Started st 203-09-29 57246030204

C3 1975 (sorsoch, Tit/s)
crded at 223-00-25 13109034, 334133
Viee elapscd: 0:05:48.290029

et cisestamy
st ttrmon, 1 b it 202

Goos afternoon, T WAL bepin with one overare.

e overarching sessoge. He ot the Fed unders.

1wt Cere Ko Rave 3 atoined prios of stro.

Fate Wil be apprapriate. Tn sdoition, ve ore.

tronscript.hesd)

o o, i bognwin 20220615 133100
(o trnoo. i g with o vt 2022.0615 133130
onscvrcng mesge, et e Fedders.. 2072:06:16133200
v e o hove s sstined oo s 2022061813325
i appropiate. i aditon, we ... 2022-06-16 133300

index-411_1.png
Size | Parameters Eng:'l‘izz-:;nly Murl'l‘ili:eglual ng‘;‘i':ld Relative speed

tiny 39M ~1GB ~32x

base 74M ~1GB ~16x

small | 244M ~2GB -6
medium | 769 M ~5GB ~2x

large 1550 M N/A ~10GB 1x

index-359_13.png
Z1.p' — X

index-419_1.png
Tok;, Toks, ..., Toky

index-359_12.png

index-418_1.png
BERT (Ours) OpenAl GPT

index-246_3.png
px (X) = Px,, X,,..., Xy (T15-- -, TN) = px,(z1)
X Px, |x, (T2 |1)

X PXyx,, X, (T3]T1,22)

X PXylXy.., Xy 1 (EN|X1N-1)

index-246_2.png
DXy, Xy, ..., Xy (T1, T2, 0, TN)

index-397_2.png
W (pdata, Pc)

index-196_19.png

index-246_5.png

index-196_18.png

index-246_4.png
PX, 1 Xym ($n+1 \x1m,)

index-396_10.png

index-396_9.png

index-397_1.png
W(paata;pc) = SUP Expyn [fo (%)) =Expg [fo(%)]
| foll =1

= sup By [(0] —Eanp, [f3(Go(2))]
|| foll <1

index-396_11.png

index-196_25.png
J=3,(01%hs+0.2%hs+0.3—7,)2

index-247_6.png

index-196_24.png

index-247_5.png

index-196_27.png

index-196_26.png

index-196_21.png

index-247_2.png

index-196_20.png

index-247_1.png

index-196_23.png

index-247_4.png

index-196_22.png

index-247_3.png
Llyeo-

index-196_17.png
hs = ReLU(0.1*h; + 0.2*hy — 0.2),

index-397_6.png
Dr = {x,}

index-397_5.png

index-397_8.png
Dr ={xm}

index-397_7.png

index-397_4.png

index-397_3.png
W (Paaia, pc)= sup Z folxn)— Z f5(Gol(zm))

I follp=tn=

index-241_2.png

index-313_1.png

index-312_18.png

index-196_8.png
Oh;

index-241_4.png
p(y|z)p(z)

index-315_1.png
CV Scores

-1456

1458

-146.0

-146.2

-146.4

-146.6

Homoscedastic Noise

—* Shrunk Covariance MLE
LedoitWolf MLE

20

40 60 80
Number of Components

index-241_3.png
p(y|z)

index-313_2.png
> =01

index-397_10.png
Tm = Go(Zm)

index-397_9.png

index-312_17.png

index-397_12.png

index-397_11.png
D=9 U 9Dr

index-196_14.png

index-245_1.png
Generative
Models

Approximate
Density

Tractable
Density
Flow Models

Variational
Autoencoders

index-196_13.png

index-244_1.png
Pdata

index-318_3.png

index-196_16.png

index-196_15.png

index-246_1.png

index-196_10.png

index-242_2.png
p(y|z)

index-316_2.png
x, € RP

index-196_9.png

index-242_1.png

index-316_1.png
Heteroscedastic Noise

CV Scores

—144
-146
— PCA Scores

FA Scores

TRUTH: 10

PCACV: 95

nalysis CV:

_148 Factor Analysis CV: 10

PCAMLE: 88
Shrunk Covariance MLE.
LedoitWolf MLE

:
[20 40 60 50
Number of Components

index-196_12.png
Oh;
ol

index-242_4.png
p(y|z)

index-318_2.png

index-196_11.png

index-242_3.png

index-318_1.png

index-196_7.png

index-196_6.png

index-357_19.png
z(21.0)

index-397_17.png
[_61 C]

index-357_18.png

index-397_16.png
b1

index-357_21.png

index-398_1.png

index-357_20.png
z(Zp'11:D)

index-397_18.png

index-397_13.png
W (Pdata, PG)

index-357_17.png

index-397_15.png

index-397_14.png
VoW (pdata, D)

index-312_8.png
x; = p+ Az + €

index-395_1.png
Far Apart Distributions

index-312_7.png

index-394_6.png
Pdata

index-240_7.png
p(y|z)p(z)

index-312_10.png

index-240_6.png

index-312_9.png
)
PN
0,

H(

€ ~

index-395_2.png
W (paata, Pc) = 0 Exy)y [lx =yl

index-394_3.png
Pdata

index-394_2.png
PG

index-394_5.png
PG

index-394_4.png
PG

index-196_3.png

index-240_13.png

index-312_16.png

index-196_2.png

index-240_12.png

index-312_15.png
S =AAT + 3

index-196_5.png

index-241_1.png

index-196_4.png

index-240_14.png
p(y|z)

index-195_10.png

index-240_9.png

index-312_12.png
T =AAT 4+ 3

index-195_9.png

index-240_8.png
p(y|z)p(z)

index-312_11.png

index-196_1.png
9i

o0J

oJ

Oh;

06;

Y

7 Oh;

5 00

index-240_11.png

index-312_14.png
p(x)= A (x; p, X),

index-195_11.png

index-240_10.png

index-312_13.png

index-240_5.png

index-395_4.png

index-395_3.png

index-395_6.png
Yx = Pdata

index-395_5.png

index-311_6.png

index-396_3.png

index-396_2.png

index-239_3.png
p(y = well pad presence|z)+p(y = no well pad presence|z

index-311_8.png
p e RP

index-311_7.png
Ae RDxM

index-395_8.png
W (paatar Pc)

index-395_7.png
Ty = PG

index-396_1.png
W (pdatas Pc) = sup Exopy.. f(x)—Exop, f(x)
I flp=1

index-395_9.png

index-240_2.png
p(y|z)

index-312_5.png
p(x¢)

index-240_1.png

index-312_4.png
px) = [px,z)dz, = fp(xr| Zr)p(zt)dzr

index-240_4.png

index-240_3.png

index-312_6.png
p(x¢|Z¢)

index-239_5.png
p(y|z)

index-312_1.png

index-239_4.png

index-311_9.png

index-239_7.png
p(z,y)= p(z)p(y|z)

index-312_3.png

index-239_6.png
p(z,y)

index-312_2.png

index-239_2.png

index-239_1.png
p(y|z)

index-396_6.png
PG

index-396_5.png

index-396_8.png
[f (@)= fy)| <|z—yl

index-396_7.png

index-396_4.png
Pdata

index-310_9.png

index-310_8.png
p(z,x)= p(z)p(x|z)

index-238_1.png
p(y = well pad presence|z)= 0.5

index-311_3.png

index-237_5.png
p(y|z)

index-311_2.png
p(z¢)

index-238_3.png

index-311_5.png

index-238_2.png
> 99.6%

index-311_4.png
p(x¢|Z¢)

index-237_2.png

index-310_11.png

index-237_1.png
p(y|z)

index-310_10.png
p(x|z)

index-237_4.png
p(y|z)

index-311_1.png
p(zt)
p(x¢|2¢)

A (24;0,1)
N (xe5 p + Azy, 3o)

index-237_3.png

index-310_12.png
7, ~ p(z)

X¢|ze ~ p(x¢|ze)

index-236_1.png

index-232_7.png
p(@s|@1, T2, T3, T4,Y)

index-310_7.png
M < D

index-236_2.png

index-348_6.png
pe (x|z)

index-309_3.png

index-348_8.png

index-348_7.png

index-232_4.png

index-310_4.png

index-349_1.png
pe (x|z)

index-232_3.png

index-310_3.png

index-348_13.png

index-232_6.png

index-310_6.png

index-232_5.png

index-310_5.png

index-349_2.png

index-231_11.png
p(x4 |21, T2, 23,Y)

index-309_5.png

index-348_10.png

index-309_4.png
0 (D x M)

index-348_9.png

index-232_2.png

index-310_2.png

index-348_12.png

index-232_1.png
Token distribution

money weallh cash captal zoros stock firancil billons assets zero lech © nel funds in slocks dala shares invest: invest-
ments mont

Token

index-310_1.png

index-348_11.png

index-231_8.png

index-309_2.png
Dx M+ D

index-231_7.png

index-309_1.png
D(D +1)/2

index-231_10.png

index-231_9.png

index-393_3.png
Pdata

index-394_1.png
Pdata

index-393_4.png
PG

index-328_2.png
Z(q,p) = Eqqg[log p (x|z) + log p (z) — log g (z)]

index-271_2.png
Vi

index-329_1.png
q(z)

index-271_1.png

index-328_7.png
Z(a,p) = Eggllogp(x[z) +logp (z)] — E,vqlogq(z)
~ B llogp(xi)] - [lon 2|
p(2)
= E,[logp(x|z)] — KL (q(z)||p(z))

index-271_4.png
a=la,a,...

y AN

index-329_3.png
q(z)

index-271_3.png
ajvy +asvy +...

> anvy
0

Vi -+ VN
Lo
Lo

vy et VN

+anvy

an

ay

index-329_2.png

index-270_7.png

index-328_4.png

index-328_3.png
Z(ap)

E
E

2~qlog p (x|2) +log p (z)] — E,q log g (z)
~qllog p (x|z) + log p (z)] + H g

index-270_9.png

index-328_6.png
H(g]= Esq[— log q(z)]

index-270_8.png

index-328_5.png

index-372_12.png

index-372_11.png

index-372_14.png
fi

index-372_13.png

index-270_4.png

index-328_1.png
p(x,2)
q(z) }
p(x,2)
Euglog|” ()]
E,q[log p (x,2) — log q(z)]
E;-q[log p (x|z) + log p (z) — log q(z))]

log p(x) = logEM[

Y]

vV IV

index-270_3.png

index-327_10.png
log

index-270_6.png

index-372_10.png

index-270_5.png

index-372_9.png
Xy = f(zt1¢(xt—11xt—27~ . 1xt7p)71/)(z6717zt721 e ,thq))

index-372_16.png

index-372_15.png

index-373_2.png

index-373_1.png
x; = f(z¢, he)

index-268_1.png
Layer: [0+ Attention: [All M

[cLs] [cLs]
the the
startup startup
achieved achieved
a a
new new
round round
of of
funding funding
to to
expand expand
operations operations
[SEP] [SEP]
he he
invited invited
his his

friends
for for
another another
of of
drinks
at at
the the
bar bar
[SEP] [SEP]

(b)

index-327_7.png
q(z)

index-267_1.png
Layer:|0 v| Attention: [All

[cLs)
the
startup
achieved

of
funding
to
expand
operations
[SEP]
he
invited
his
friends
for
another
round
of
drinks
at

the

bar
[SEP]

(a)

[cLs]
the

startup

achieved

a

new

round
of

to

expand

[SEP]
he
invited
his
friends
for
another
round
of
drinks
at

the
bar
[SEP]

index-327_6.png
q(z)

index-270_2.png

index-327_9.png
log E [z] > E [log z]

index-270_1.png

index-327_8.png
q(z)

index-327_3.png
Ezng

index-327_2.png
log p(x)

index-258_12.png

index-327_5.png
q(z)

index-258_11.png

index-327_4.png
q(z)

index-258_10.png

index-258_7.png

index-326_6.png
z|~ 2|~
=1

=11

log py (%)

log [p(Xn|2n)p(2n)d2n

index-258_6.png
Yt

index-326_5.png
Pdata

index-258_9.png
Yt

g (he-1,2)
£ (hy)

index-258_8.png

index-327_1.png

index-258_3.png

index-326_2.png

index-258_2.png

index-326_1.png
= fp z ExponentlalFamily(x;DNNg(z))dz

index-258_5.png

index-326_4.png
{pe}e

index-258_4.png

index-326_3.png

index-325_10.png
p(x|z)

index-258_1.png

index-325_12.png

index-325_11.png
p(z|x)

index-370_7.png

index-370_6.png

index-370_9.png

index-370_8.png

index-325_7.png
p(x|z)= ExponentialFamily(x;)

index-325_6.png

index-325_9.png
n = DNNy(z)

index-325_8.png

index-371_6.png

index-371_5.png

index-371_2.png

index-371_1.png

index-371_4.png

index-371_3.png

index-325_3.png

index-325_2.png

index-325_5.png

index-325_4.png

index-325_1.png
z ~ p(z)
x|z ~ p(x|z)

index-323_1.png
SPY Daily Return Series with GMM-Detected Market Regimes

15{. spy
= Regime |
= Regime 0)

10

Returns (%)

z
~
A
]

2000 2004 2008 2012 2016 2020 2024
Date

index-372_1.png

index-322_11.png
0 = {m, o, 11,00,01}

index-371_8.png
Zt ™~ Prnlz 1z g

x = f(z)

index-372_3.png
Xt—19Xt-25.-

P

index-372_2.png

index-322_8.png
xy ~(1 — z¢) N (po,00)+2eN (p1,01)

index-322_7.png

index-322_10.png

index-371_7.png
Zi 1,242,

.y

index-322_9.png

index-372_8.png

index-372_5.png

index-372_4.png
Xt = f(zh ¢(xt—1’ Xt2y.0e ,th,))

index-372_7.png

index-372_6.png

index-364_1.png
9 (x1.p') 0 (x1.p1)

5 of (z) 0z1.p 0zp/+1:p
T8z N d(xp11.0) O (xps1p)
Ozy.p1 0z(pry1).0
I 0

glo (z1.pr) diag (exp(hg (z1:p7))

index-322_4.png

index-322_3.png

index-322_6.png
z; ~ Bernoulli(7)

index-322_5.png
P(z=1)

™

index-322_2.png

index-322_1.png

index-441_1.png
—*—LaMDA —=—GPT-3 —4— Gopher —4— Chinchilla ~#-PalLM --- Random
(a) Mod. arithmetic (b) IPA transliterate () Word unscramble (d) Persian QA
50 50
40 F40
£30 530
=3 -] < -
220 w0
=10 20 ”
0 - 0 --- 0
10" 10* 10 10* 10 10% 10 10* 10" 10% 102 10% 10" 10% 102 10%
(¢) TruthfulQA (f) Grounded mappings _ (g) Multi-task NLU (h) Word in context
70 70 70
0 60 60
50 €50 g50}-
40 540 540
£30 230 : 30
§20 520 20
<10 10 <10
0 0 0
10102 10% 10102 10% 10102 10 100102 10

Model scale (training FLOPs)

index-320_3.png

index-439_1.png
GSMSK

solve rate (%)

8 5 3

—o— Standard prompting
&~ Chain-of-thought prompting
- - - Prior supervised best

LaMDA

Model scale (# parameters in billions)

index-365_1.png

index-445_1.png

index-364_2.png
D

detJ =[] exp(ho(z1.0r)y)
d=D'+1

- exp< f: hﬂ(zl:D’)d>

d=D'+1

index-441_2.png

index-319_4.png
TN (%5 ks Tie)
S e (X ey i)

p(z = klx)

index-319_3.png

index-320_2.png

index-320_1.png
(@)

Original Data

GMM with diag covariance

GMM with full covariance

(b)

©

=50 -25 0.0 25

index-369_1.png

index-446_6.png

index-368_1.png

index-446_5.png

index-369_3.png

index-369_2.png

index-366_2.png

index-446_2.png
oy _exp(z/T)
p(2,T) = Zexp(Zj/T)
i

index-366_1.png

index-446_1.png

index-367_1.png

index-446_4.png

index-366_3.png

index-446_3.png

index-318_15.png
p(x|z=k) =N (x; py, Xk)

index-318_14.png

index-319_2.png

index-319_1.png

index-318_12.png
p(z = k)= my,

index-369_4.png

index-318_11.png

index-369_6.png

index-318_13.png

index-369_5.png

index-318_8.png
p(z)= Categorical(1,..., K;m)

index-318_7.png

index-318_10.png

index-318_9.png
™ =[m1,...

K]

index-370_4.png

index-370_3.png

index-370_5.png

index-369_8.png

index-369_7.png

index-370_2.png

index-370_1.png

index-360_2.png

index-360_1.png
(2,1)

index-419_6.png
Eisgp)

index-360_3.png
(1,2)

index-318_4.png

index-318_6.png

index-318_5.png
.....

index-419_8.png
E}

5.

B
M

index-419_7.png

index-362_1.png
Ml 2R g T
W A9ENH BT
SHHERL | 00a] oL

(c) Model trained on SVHN (d) Model trained on CIFAR-10

index-421_5.png

index-361_1.png
d

(b) Model trained on TFD

index-421_4.png

index-363_2.png

index-421_7.png

index-363_1.png

index-421_6.png

index-360_5.png
9'a(
Z1.p')
)

index-421_1.png

index-360_4.png

index-420_1.png
Mask LM
«

MNLI

en /Sauno savemson

T) (e (B

BERT
ElE=IE] - E]

ED) ® 11'_‘

Masked Sentence A Masked Sentence B

*

Unlabeled Sentence A and B Pair

Pre-training

0

BERT
Eeal(E] - [EE=]E]- [E]

\ nun S semRE

EHHQ[}A!FEEEIIETASI

Question Paragraph
x*
Question Answer Pair

Fine-Tuning

index-360_7.png
S log p(zn) — log‘det (
Y log p(z,) —log 1
Y log p(za)

95 (2)

o)

index-421_3.png

index-360_6.png
detJ =1

index-421_2.png
Tiskp)

index-363_4.png
T
X = [XI:D'» XD'+1:D]

index-363_3.png
T
z — [zl:D’1 ZD'+1:D]

index-422_1.png
Input [oLs] [my |[dog] [is |[cute |[SEPI|[he |[likes | play | [##ing | [SEP]
E?:begddings Ecvs)]| Eny || Boog || B |[Ecuo || Erserr || Evn | | Evas] | Epy | | Euono || Eisem
+ + + + + 2+ + + + + +

Ereoeings LB (B (B0 (B (B [(& & & & [&
B o+ o+ o+ + o+ o+ o+ o+ o+ +
Postton e [B][E [E [& (B [& (&] [&][E] [& [e

index-363_5.png
X1:p0 = Z1D’
xpi1.p = 2Zp+1:0 © exp(hg(z1.p))+9g0(z1.07)

index-426_2.png
—0.0069163926

index-426_1.png
—0.45569813

index-363_11.png

index-432_3.png

index-363_10.png
z(Zp'+1:D)

index-432_2.png

index-363_13.png
Z1.p0 = XuD'
zpi1.p = (Xp+1:0 — 90(2z1.0))/exp(he(2z1.07))

index-363_12.png

index-437_1.png
Test Loss

2

42
39
36

33
30

27

[—L=(Dr5.4-10"°%%

5.6

[—L=(w8.8- 10"

4.8
4.0

32

24

107

10° 10%
Compute
PF-days, non-embedding

107

107!

10!

108 10°
Dataset Size
tokens

10° 107 10°
Parameters

non-embedding

index-363_7.png

index-427_2.png
—0.13109717

index-363_6.png

index-427_1.png
0.090285115

index-363_9.png
{ho (z1:0'), 90 (z1.0)}

index-432_1.png
Forward Return

0.006

0.004

0.002

0.000

-0.002

—-0.004

—-0.006

-0.2

0.0 0.2 0.4 0.6
Sentiment Score

index-363_8.png
ge

index-431_1.png
Forward Return

0.006

-+~ Forward Retum
-+ Sentiment Score

0.004

0.002

0.000

—-0.004

-0.006

Sentiment Score

I
o
Ny

0 100 200 300 400

index-175_7.png

index-175_6.png

index-175_8.png
-A Z]‘ ﬁj2

index-175_3.png
> 18i

index-175_2.png

index-175_5.png
A>0

index-175_4.png

index-174_5.png

index-175_1.png
=X 1Bl

index-174_6.png

cover_image.jpg
/ [
Tl Generative Al

for Trading and
Asset

Z[Management

Hamlet Jesse Medina
Ruiz
Ernest Chan

index-195_6.png

index-195_5.png

index-195_8.png

index-195_7.png

index-195_2.png

index-195_1.png
9i+1 =

index-195_4.png

index-195_3.png

index-194_9.png
exp(zi)
>, exp(z;)

softmaz (z;) =

index-446_8.png
z = [30,20,10]"

index-194_8.png

index-446_7.png

index-194_4.png

index-194_3.png

index-194_6.png
y=1/[1+ exp(w e h)]

index-194_5.png
y=weh

index-193_15.png

index-193_14.png

index-194_2.png
h(z) = max(0, z)

index-194_1.png

index-194_7.png

index-193_13.png

index-193_8.png

index-193_7.png

index-193_10.png

index-193_9.png

index-193_4.png

index-193_3.png

index-193_6.png

index-193_5.png

index-193_12.png

index-193_11.png

index-1_1.jpg
HAMLET JESSE MEDINA RUIZ
ERNEST CHAN

GENERATIVE RI

FOR TRADING
AND ASSET MANAGEMENT

WILEY

index-7_2.png
y:p(x|y)

index-7_1.png

index-7_4.png

index-7_3.png

index-8_1.png

index-7_5.png

index-13_1.png
WILEY

index-190_13.png

index-190_12.png
M1 = My —emy,

index-191_2.png

index-191_1.png

index-190_9.png
my

index-190_11.png

index-190_10.png

index-193_1.png
P(y) = sigmoid(@ - h)

hi = ReLU(w; - x)

-/

index-191_3.png

index-193_2.png

index-190_2.png

index-230_2.png
y:p(x|y)

index-190_1.png

index-230_1.png
Token distribution

They Theye Both Well Besidos Aside What Neither Their Apart Noi A Whats In Mark Other The When While One
Token

index-190_4.png
Y — Y

index-230_4.png

index-190_3.png
Yi

index-230_3.png
Token distribution

boh e

an

are

could

a

cach e
Token

@

might

have

should were may

Both would

index-229_1.png

index-228_5.png
Tn ~ P(Tn|21,. .., Tn-1,Y)

index-189_8.png

index-229_3.png

index-189_7.png

index-229_2.png

index-190_6.png
M1 = My, — my,

index-230_6.png
p(x2|T1,y)

index-190_5.png
my

index-230_5.png

index-190_8.png

index-190_7.png

index-187_3.png

index-227_2.png
zo ~ p(z2|T1)

index-187_2.png

index-227_1.png
z1 ~ p(z1)

index-189_1.png

index-228_1.png

index-188_1.png

index-227_3.png
Ty ~ P(mn|11, ey zn—l)

index-222_23.png

index-187_1.png
Hypothetical Receiver Operating Characteristic (ROC)

0.2 04 0.6 0.8
False Positive Rate (FPR)

index-226_2.png
p(z1,...,zn) = p(z1)
xp (z2|z1)
xp(z3|21,22)

xp (zy|X1.8-1)

index-226_1.png
P(zl,---

,IN)

index-189_6.png
2 U

senode j+1

Ty >Cl Ty >Co oy Tj>C
Plyler 2 ez 2 e ’ i) # training samples in leaf node (j + 1)

index-189_3.png

index-228_3.png
z1 ~ p(z1y)

index-189_2.png
L1

index-228_2.png
p(z1,.. znly) = p21ly)
xp (z2|z1,y)
xp (3|21, 2,Y)

xp (2N |X1.N-1,Y)

index-189_5.png
class y training samples in leaf node (j + 1)

Ty >Cl Ty >Co oy T C
plvlar = e, 22 > ez ’ i) # training samples in leaf node (j + 1)

index-189_4.png
n+1

index-228_4.png
zo ~ p(z2|T1,y)

index-184_1.png

index-222_16.png

index-182_5.png
ok precision *recall

precision + recall

index-222_15.png

index-184_3.png

index-222_18.png

index-184_2.png

index-222_17.png
p(z)p(ylz)

p(zly)=)

index-222_14.png

index-222_13.png

index-186_1.png

index-185_5.png

index-185_2.png
Precision

0.9

0.8

0.7

0.6

0.5

Hypothetical Precision-Recall Curve

0.2

0.4 0.6 0.8
Recall

1.0

index-222_20.png

index-185_1.png

index-222_19.png
p(y|z)

index-185_4.png

index-222_22.png

index-185_3.png

index-222_21.png
p(z|y)

index-179_4.png

index-222_5.png

index-222_4.png
p(z|y)

index-180_2.png

index-222_7.png

index-180_1.png
4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
Xy Xo

4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
X X

index-222_6.png

index-382_6.png
Pdata

index-470_6.png

index-382_5.png

index-470_5.png

index-222_3.png

index-382_8.png
v (6, ¢)

Mz

0gD¢> Xn) + Z log(1 — Dy (Go (2m)))

m=1

log Dy (xn) + Z log(1 — Dy (xm))

index-382_7.png
Pz

index-182_3.png
TP

precision = ————
TP+ FP

index-182_2.png
correct predictions of 1

of actual 1

index-222_12.png

index-182_4.png
TP

recall = —————
TP+ FN

index-180_4.png

index-222_9.png
p(z|y = cat)

index-180_3.png

index-222_8.png
p(z|y = dog)

index-182_1.png
correct predictions of 1

predictions of 1

index-222_11.png
p(z|y = dog)

index-181_1.png
correct predictions
predictions

index-222_10.png
(y = dog)

index-470_7.png

index-383_3.png

index-470_13.png

index-383_2.png

index-470_12.png

index-383_5.png
N M
VeV (6,6) =Vs (Z log Dy (xn) + Z log(1 — Dy (an)))

index-470_15.png
AW = BA

index-383_4.png

index-470_14.png

index-382_9.png
Xm = Go(zm)

index-470_9.png

index-470_8.png

index-383_1.png

index-470_11.png
h=Wzx+ AWz

index-382_10.png

index-470_10.png

index-221_1.png

index-277_4.png
dy = dq = d, = head dimension

index-220_3.png
p(y|z)

index-277_3.png

index-176_5.png
MY 1B =X X B

index-221_3.png

index-280_1.png

index-176_4.png

index-221_2.png
p(y,z)

index-279_1.png
Output
Probabilities

Positional
Encoding

Inputs Outputs
(shifted right)

index-383_7.png
N M
VoV (6,4) = vg(gllogm(xnw zzllogu—m(xm)))

= v (3 1ost - Dy x)

index-383_6.png

index-470_16.png

index-277_2.png

index-277_1.png

index-383_8.png
¢ —d+arVyV (6,0)
0 60— aVeV (6,9)

index-179_1.png

index-222_2.png

index-177_5.png

index-222_1.png
p(y|z)

index-179_3.png

index-179_2.png

index-177_2.png

index-221_5.png

index-284_1.png
Multi-Head Attention

] _1
Scaled Dot-Product I

Attention

index-177_1.png

index-221_4.png

index-280_2.png

index-177_4.png

index-221_7.png
p(z|y)

index-297_1.png
lag indices:
£={L7. 14, L)

sec(t)
min(t)

montn(t)

 RIEIHF

index-177_3.png

index-221_6.png

index-284_2.png
dy, = dr, = dg = dhead = 512/8 = 64

index-470_18.png

index-470_17.png
dx k

index-176_3.png

index-349_6.png

index-384_4.png
Dr = {x,}

index-470_24.png
r < min(d, k)

index-349_5.png
P, (z)

index-384_3.png
Dy (Go (2))

index-470_23.png
r X k

index-349_8.png
P, (z)

index-384_6.png
Dr ={xm}

index-471_2.png

index-349_7.png

index-384_5.png

index-471_1.png
h=MWx+ AWx= Wx+ BAx = (I + BAx = W'x

index-383_10.png
a

index-470_20.png

index-383_9.png
aq

index-470_19.png
dx k

index-349_4.png
x = f(z)

index-384_2.png
M
VoV (6,4) = vo(zmg(l—m(xm)))

m=1

M
- vg(z log(1 — Dy (Go (zm»)
m=1
M
- (zlvglog(1—0¢<ce(zm)>)
M
= ¥ Vet
m=1

M ox,, 0Cn,
B mzzl 90 0x,,

index-470_22.png
dxr

index-349_3.png

index-384_1.png
¢=1log(1 — Dy(Go(2)))

index-470_21.png

index-208_22.png

index-275_10.png
q:

index-379_6.png

index-275_9.png
X1

index-379_5.png

index-175_9.png

index-208_24.png

index-275_12.png

index-208_23.png

index-275_11.png

index-379_2.png
Pz

index-458_12.png
Pmin = S (Qmin

_Z)

index-379_1.png

index-458_11.png

index-275_8.png

index-379_4.png

index-458_14.png

index-379_3.png

index-458_13.png
Tmin

Z = round (q,m;n -

index-175_15.png

index-220_1.png

index-175_14.png

index-219_1.png
Generative
Models

Approximate
Density

Tractable
Density

Flow Models

‘Autoregressive
Models

Variational
Autoencoders

index-276_3.png

index-176_2.png

index-176_1.png

index-220_2.png

index-175_11.png
185

index-212_2.png

index-275_14.png

index-175_10.png

index-212_1.png

index-275_13.png
a; = softma.x(

index-175_13.png
>;18i|< B

index-216_1.png

index-276_2.png

index-175_12.png

index-214_1.png
Daily min and max article_sentiment

0.8
0.6

0.4

3
s
£
I3
s
3

02

-1
Jun 2012 Apr2013 Feb 2014 Dec 2014 Oct 2015

Date

index-276_1.png

index-379_9.png

index-459_1.png

index-379_8.png

index-458_18.png
[llmm) qmam]

index-379_11.png

index-459_3.png
Pmaz = 1.65143654

index-379_10.png

index-459_2.png
Pmin = —2.42667924

index-458_15.png

index-379_7.png

index-458_17.png

index-458_16.png
g=r/S+7Z

index-274_29.png

index-274_28.png

index-380_4.png

index-208_13.png

index-275_1.png

index-208_12.png

index-274_30.png
1/+/dy,

index-380_1.png

index-459_5.png
S = 1.35937

index-379_12.png

index-459_4.png

index-380_3.png
D=9 U 9Dr

index-380_2.png

index-459_6.png

index-208_19.png

index-275_7.png

index-208_18.png

index-275_6.png

index-208_21.png

index-208_20.png
t >
t

index-208_15.png

index-275_3.png

index-208_14.png
t >
t

index-275_2.png

index-208_17.png

index-275_5.png
ki, ko,...

S ky

index-208_16.png

index-275_4.png
q:1,92,---,49N

index-208_11.png

index-382_2.png
vV (6, d)

index-470_2.png

index-382_1.png
min max V(6, ¢)
6 ¢

index-470_1.png
Pretrained
Weights

W € Rixd

index-382_4.png
vV (6, d)

index-470_4.png

index-382_3.png
V(0, 9)= Expy., 108 Dy (%) 4+Ez~p, [log(1 — Dy (Go(2)))]

index-470_3.png

index-461_1.png
[—127,128]

index-460_1.png
Distribution of Transformer Weights

"% @15 ol 005 000 005 010 015
Weieht Values

index-381_1.png
4.5 years of progress on faces

(Goodfellow 2019)

index-463_1.png
40000

35000

30000

25000

Frequency
w
g
3

15000

04
-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

Distribution of Transformer Weights After Quantization

Weieht Values

index-380_5.png

index-461_2.png
g=r/S+7Z

index-274_18.png
d X dj,

index-457_10.png
[llmm) qmam]

index-457_9.png

index-208_2.png

index-274_20.png

index-274_19.png

index-457_6.png

index-457_5.png

index-457_8.png

index-457_7.png

index-208_8.png

index-274_26.png

index-208_7.png

index-274_25.png
dxd,

index-208_10.png
t<T

index-208_9.png

index-274_27.png

index-208_4.png

index-274_22.png

index-208_3.png

index-274_21.png

index-208_6.png

index-274_24.png

index-208_5.png
T <t

index-274_23.png

index-208_1.png

index-205_1.png

index-457_13.png
dmaz

index-457_12.png
dmin

index-457_15.png
_9oN-1

index-457_14.png

index-457_11.png
[Pmins Tmaz]

index-330_11.png

index-330_10.png

index-458_4.png
Tmin

index-274_9.png

index-330_13.png
p(z|x)

index-274_8.png
ql

index-330_12.png
q(z)

index-458_1.png
[Pmins Tmaz]

index-457_16.png

index-458_3.png
Amin

index-458_2.png

index-204_4.png

index-274_15.png

index-331_6.png

index-204_3.png

index-274_14.png

index-331_5.png

index-204_6.png
t+ 12

index-274_17.png

index-204_5.png

index-274_16.png

index-203_3.png
n — o0

index-274_11.png
d x d,

q

index-331_2.png

index-203_2.png
g’
—
(o]

index-274_10.png

index-331_1.png

index-204_2.png

index-274_13.png
K =XW,;

index-331_4.png

index-204_1.png

index-274_12.png

index-331_3.png

index-202_16.png
n — o0

index-202_15.png
g
—
0

index-274_7.png

index-203_1.png

index-373_4.png
h; = RNN(concat(x;—1,¢;—1), hy1)

index-458_8.png

index-373_3.png

index-458_7.png
"'muw

Tmin

S (gmaz

S (Gmin —

-Z)

Z)

index-377_1.png
Tractable
Density

Flow Models

Autoregressi

Models

Approximate
Density

Variational
Autoencoders

index-458_10.png

index-373_5.png

index-458_9.png
Tmaz_— Tmin

Gmaz — Qmin

index-458_6.png
T"maz

index-458_5.png
Qmaz

index-329_15.png

index-447_6.png

index-447_5.png

index-273_2.png
A= softmax(

QK”

index-330_2.png
p(z|x)

index-447_8.png
p(zs,T)

index-330_1.png
argmin, KL (¢ (2) || p (z]x)) = argmax, & (g,p)

index-447_7.png

index-447_2.png
Litudent = ZLcE (Y,p (25, T =1)) + (1 — a) Zkp (p(2,T) ,p(25,T))

index-447_1.png
0.0

Softmax distribution for different temperature values

Temperature = |

Temperature = 10

2
Labels

Temperature = 100

Labels
Temperature = 1000

index-447_4.png

index-447_3.png
Litudent

index-202_12.png

index-274_4.png

index-330_8.png

index-202_11.png

index-274_3.png
Q=XW,

index-330_7.png

index-202_14.png

index-274_6.png

index-202_13.png

index-274_5.png

index-330_9.png

index-202_8.png

index-273_4.png
Scaled Dot-Product Attention

index-330_4.png
p(z|x)

index-273_3.png

index-330_3.png
q(z)

index-202_10.png

index-274_2.png

index-330_6.png
q(z)

index-202_9.png

index-274_1.png

index-330_5.png
q(z)

index-273_1.png

index-272_8.png

index-447_9.png
p(z,T)

index-448_2.png

index-448_1.png
o (p(2,T),p(2s,T)) = T>Dxy, (p (2, T) ,p (25,T))

index-453_1.png

index-451_2.png

index-329_6.png
p(z|x)

index-329_5.png

index-453_2.png

index-448_4.png

index-448_3.png

index-451_1.png

index-449_1.png
Litudent

index-272_5.png
lanllo =1

index-329_12.png
< (q,p)

index-272_4.png

index-329_11.png

index-272_7.png

index-329_14.png
log p(x)

index-272_6.png

index-329_13.png

index-272_1.png

index-329_8.png
p(z|x)

index-271_8.png

index-329_7.png
q(z)

index-272_3.png

index-329_10.png
KL(q(z)||p(x|z))

index-272_2.png

index-329_9.png
q(z) }
p(z[x)
= Esqlogq(z) — Esvqlogp (z|x)
= E,logq(z) — E,oqlogp (x,2) + E, qlogp (x)
= Eavglogq(z) — Ezeylogp(2) — Eaeg logp (x]2) + Eqng logp (x)
= —E,. [logp(2) + logp (x|z) —logq(z)] + logp (x)

—%(g,p) + logp (x)

KL(q(z) |p(zlx)) = szq[log

index-271_6.png

index-271_5.png

index-329_4.png

index-271_7.png

index-457_2.png

index-457_1.png
r=S(q—2)

index-457_4.png

index-457_3.png

