

[image: Image 1]

[image: Image 2]

Se

E c

dit ond

ion

R for Data

Science

Import, Tidy, Transform, Visualize,

and Model Data

Hadley Wickham,

Mine Çetinkaya-Rundel

& Garrett Grolemund

R for Data Science

Use R to turn data into insight, knowledge, and understanding.

With this practical book, aspiring data scientists will learn

“This is an astonishingly

how to do data science with R and RStudio, along with the

good update to a

tidyverse—a collection of R packages designed to work

world-leading guide

together to make data science fast, fluent, and fun. Even if

to doing data science

you have no programming experience, this updated edition

will have you doing data science quickly.

with R. Everyone who

works with data should

You’ll learn how to import, transform, and visualize your data

and communicate the results. And you’ll get a complete,

read it!”

big-picture understanding of the data science cycle and

—Emma Rand

University of York, UK

the basic tools you need to manage the details. Updated

for the latest tidyverse features and best practices, new

chapters show you how to get data from spreadsheets,

databases, and websites. Exercises help you practice what

Hadley Wickham is chief scientist at Posit

and a member of the R Foundation. He

you’ve learned along the way.

builds computational and cognitive tools

You’ll understand how to:

that make data science easier, faster,

and more fun.

• Visualize: Create plots for data exploration and

communication of results

Mine Çetinkaya-Rundel is professor of

the practice and director of undergraduate

• Transform: Discover variable types and the tools

studies at the Department of Statistical

to work with them

Science at Duke University. She’s also a

developer educator at Posit.

• Import: Get data into R and in a form convenient

for analysis

Garrett Grolemund is the author of

 Hands-On Programming with R and

• Program: Learn R tools for solving data problems

director of learning at Posit.

with greater clarity and ease

• Communicate: Integrate prose, code, and results

with Quarto

DATA

Twitter: @oreillymedia

linkedin.com/company/oreilly-media

youtube.com/oreillymedia

US $79.99 CAN $99.99

ISBN: 978-1-492-09740-2

2ND EDITION

R for Data Science

 Import, Tidy, Transform, Visualize,

 and Model Data

 Hadley Wickham, Mine Çetinkaya-Rundel,

 and Garrett Grolemund

Beijing Boston Farnham Sebastopol Tokyo

R for Data Science

by Hadley Wickham, Mine Çetinkaya-Rundel, and Garrett Grolemund

Copyright © 2023 Hadley Wickham, Mine Çetinkaya-Rundel, and Garrett Grolemund. All rights

reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Aaron Black

Indexer: WordCo Indexing Services, Inc.

Development Editor: Melissa Potter

Interior Designer: David Futato

Production Editor: Ashley Stussy

Cover Designer: Karen Montgomery

Copyeditor: Kim Wimpsett

Illustrator: Kate Dullea

Proofreader: Charles Roumeliotis

June 2023:

First Edition

Revision History for the Second Edition

2023-06-07: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492097402 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. R for Data Science, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s views.

While the publisher and the authors have used good faith efforts to ensure that the information and

instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your

own risk. If any code samples or other technology this work contains or describes is subject to open

source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-492-09740-2

[LSI]

Table of Contents

Introduction. xi

Part I. Whole Game

1. Data Visualization. 3

Introduction 3

First Steps 4

ggplot2 Calls 16

Visualizing Distributions 16

Visualizing Relationships 21

Saving Your Plots 30

Common Problems 30

Summary 31

2. Workflow: Basics. 33

Coding Basics 33

Comments 34

What’s in a Name? 35

Calling Functions 36

Exercises 37

Summary 37

3. Data Transformation. 39

Introduction 39

Rows 42

Columns 47

The Pipe 51

iii

Groups 53

Case Study: Aggregates and Sample Size 60

Summary 62

4. Workflow: Code Style. 63

Names 64

Spaces 65

Pipes 65

ggplot2 67

Sectioning Comments 67

Exercises 68

Summary 68

5. Data Tidying. 69

Introduction 69

Tidy Data 70

Lengthening Data 73

Widening Data 81

Summary 85

6. Workflow: Scripts and Projects. 87

Scripts 87

Projects 91

Exercises 96

Summary 96

7. Data Import. 97

Introduction 97

Reading Data from a File 97

Controlling Column Types 104

Reading Data from Multiple Files 107

Writing to a File 108

Data Entry 109

Summary 110

8. Workflow: Getting Help. 111

Google Is Your Friend 111

Making a reprex 111

Investing in Yourself 113

Summary 114

iv | Table of Contents

Part II. Visualize

9. Layers. 117

Introduction 117

Aesthetic Mappings 118

Geometric Objects 122

Facets 128

Statistical Transformations 131

Position Adjustments 136

Coordinate Systems 141

The Layered Grammar of Graphics 143

Summary 144

10. Exploratory Data Analysis. 145

Introduction 145

Questions 146

Variation 146

Unusual Values 151

Covariation 154

Patterns and Models 164

Summary 167

11. Communication. 169

Introduction 169

Labels 170

Annotations 172

Scales 177

Themes 193

Layout 196

Summary 201

Part III. Transform

12. Logical Vectors. 205

Introduction 205

Comparisons 206

Boolean Algebra 210

Summaries 213

Conditional Transformations 216

Summary 219

Table of Contents | v

13. Numbers. 221

Introduction 221

Making Numbers 221

Counts 222

Numeric Transformations 224

General Transformations 231

Numeric Summaries 235

Summary 241

14. Strings. 243

Introduction 243

Creating a String 244

Creating Many Strings from Data 246

Extracting Data from Strings 249

Letters 254

Non-English Text 256

Summary 259

15. Regular Expressions. 261

Introduction 261

Pattern Basics 262

Key Functions 264

Pattern Details 268

Pattern Control 275

Practice 277

Regular Expressions in Other Places 282

Summary 283

16. Factors. 285

Introduction 285

Factor Basics 285

General Social Survey 287

Modifying Factor Order 288

Modifying Factor Levels 293

Ordered Factors 295

Summary 296

17. Dates and Times. 297

Introduction 297

Creating Date/Times 298

Date-Time Components 305

Time Spans 313

vi | Table of Contents

Time Zones 317

Summary 319

18. Missing Values. 321

Introduction 321

Explicit Missing Values 321

Implicit Missing Values 323

Factors and Empty Groups 326

Summary 328

19. Joins. 329

Introduction 329

Keys 330

Basic Joins 334

How Do Joins Work? 341

Non-Equi Joins 346

Summary 353

Part IV. Import

20. Spreadsheets. 357

Introduction 357

Excel 357

Google Sheets 371

Summary 375

21. Databases. 377

Introduction 377

Database Basics 378

Connecting to a Database 378

dbplyr Basics 381

SQL 383

Function Translations 391

Summary 394

22. Arrow. 395

Introduction 395

Getting the Data 396

Opening a Dataset 396

The Parquet Format 398

Using dplyr with Arrow 400

Table of Contents | vii

Summary 402

23. Hierarchical Data. 403

Introduction 403

Lists 404

Unnesting 408

Case Studies 412

JSON 420

Summary 423

24. Web Scraping. 425

Introduction 425

Scraping Ethics and Legalities 426

HTML Basics 427

Extracting Data 429

Finding the Right Selectors 433

Putting It All Together 434

Dynamic Sites 439

Summary 440

Part V. Program

25. Functions. 443

Introduction 443

Vector Functions 444

Data Frame Functions 449

Plot Functions 456

Style 463

Summary 464

26. Iteration. 465

Introduction 465

Modifying Multiple Columns 466

Reading Multiple Files 475

Saving Multiple Outputs 483

Summary 488

27. A Field Guide to Base R. 489

Introduction 489

Selecting Multiple Elements with [490

Selecting a Single Element with $ and [[494

viii | Table of Contents

Apply Family 497

for Loops 499

Plots 500

Summary 501

Part VI. Communicate

28. Quarto. 505

Introduction 505

Quarto Basics 506

Visual Editor 509

Source Editor 511

Code Chunks 513

Figures 517

Tables 521

Caching 522

Troubleshooting 523

YAML Header 524

Workflow 527

Summary 528

29. Quarto Formats. 531

Introduction 531

Output Options 531

Documents 532

Presentations 533

Interactivity 533

Websites and Books 536

Other Formats 537

Summary 537

Index. 539

Table of Contents | ix

Introduction

Data science is an exciting discipline that allows you to transform raw data into

understanding, insight, and knowledge. The goals of R for Data Science are to help

you learn the most important tools in R that will allow you to do data science

efficiently and reproducibly and to have some fun along the way! After reading this

book, you’ll have the tools to tackle a wide variety of data science challenges using the

best parts of R.

Preface to the Second Edition

Welcome to the second edition of R for Data Science (R4DS)! This is a major rework‐

ing of the first edition, removing material we no longer think is useful, adding

material we wish we included in the first edition, and generally updating the text

and code to reflect changes in best practices. We’re also very excited to welcome a

new co-author: Mine Çetinkaya-Rundel, a noted data science educator and one of our

colleagues at Posit (the company formerly known as RStudio).

A brief summary of the biggest changes follows:

• The first part of the book has been renamed to “Whole Game.” The goal of this

section is to give you the rough details of the “whole game” of data science before

we dive into the details.

• The second part of the book is “Visualize.” This part gives data visualization tools

and best practices a more thorough coverage compared to the first edition. The

best place to get all the details is still the ggplot2 book, but now R4DS covers

more of the most important techniques.

• The third part of the book is now called “Transform” and gains new chapters on

numbers, logical vectors, and missing values. These were previously parts of the

data transformation chapter but needed much more room to cover all the details.

xi

[image: Image 3]

• The fourth part of the book is called “Import.” It’s a new set of chapters that goes

beyond reading flat text files to working with spreadsheets, getting data out of

databases, working with big data, rectangling hierarchical data, and scraping data

from websites.

• The “Program” part remains but has been rewritten from top to bottom to

focus on the most important parts of function writing and iteration. Function

writing now includes details on how to wrap tidyverse functions (dealing with

the challenges of tidy evaluation), since this has become much easier and more

important over the last few years. We’ve added a new chapter on important base

R functions that you’re likely to see in wild-caught R code.

• The “Modeling” part has been removed. We never had enough room to fully

do modeling justice, and there are now much better resources available. We

generally recommend using the tidymodels packages and reading Tidy Modeling

 with R by Max Kuhn and Julia Silge (O’Reilly).

• The “Communicate” part remains but has been thoroughly updated to feature

Quarto instead of R Markdown. This edition of the book has been written in Quarto, and it’s clearly the tool of the future.

What You Will Learn

Data science is a vast field, and there’s no way you can master it all by reading a single

book. This book aims to give you a solid foundation in the most important tools and

enough knowledge to find the resources to learn more when necessary. Our model of

the steps of a typical data science project looks something like Figure I-1.

 Figure I-1. In our model of the data science process, you start with data import and tidy‐

 ing. Next, you understand your data with an iterative cycle of transforming, visualizing,

 and modeling. You finish the process by communicating your results to other humans.

First, you must import your data into R. This typically means that you take data

stored in a file, database, or web application programming interface (API) and load

xii | Introduction

it into a data frame in R. If you can’t get your data into R, you can’t do data science on it!

Once you’ve imported your data, it is a good idea to tidy it. Tidying your data means

storing it in a consistent form that matches the semantics of the dataset with how it

is stored. In brief, when your data is tidy, each column is a variable and each row is

an observation. Tidy data is important because the consistent structure lets you focus

your efforts on answering questions about the data, not fighting to get the data into

the right form for different functions.

Once you have tidy data, a common next step is to transform it. Transformation

includes narrowing in on observations of interest (such as all people in one city or all

data from the last year), creating new variables that are functions of existing variables

(such as computing speed from distance and time), and calculating a set of summary

statistics (such as counts or means). Together, tidying and transforming are called

 wrangling because getting your data in a form that’s natural to work with often feels

like a fight!

Once you have tidy data with the variables you need, there are two main engines

of knowledge generation: visualization and modeling. They have complementary

strengths and weaknesses, so any real data analysis will iterate between them many

times.

 Visualization is a fundamentally human activity. A good visualization will show you

things you did not expect or raise new questions about the data. A good visualization

might also hint that you’re asking the wrong question or that you need to collect

different data. Visualizations can surprise you, but they don’t scale particularly well

because they require a human to interpret them.

 Models are complementary tools to visualization. Once you have made your questions

sufficiently precise, you can use a model to answer them. Models are fundamentally

mathematical or computational tools, so they generally scale well. Even when they

don’t, it’s usually cheaper to buy more computers than it is to buy more brains! But

every model makes assumptions, and by its very nature a model cannot question its

own assumptions. That means a model cannot fundamentally surprise you.

The last step of data science is communication, an absolutely critical part of any data

analysis project. It doesn’t matter how well your models and visualization have led

you to understand the data unless you can also communicate your results to others.

Surrounding all these tools is programming. Programming is a cross-cutting tool that

you use in nearly every part of a data science project. You don’t need to be an expert

programmer to be a successful data scientist, but learning more about programming

pays off because becoming a better programmer allows you to automate common

tasks and solve new problems with greater ease.

Introduction | xiii

You’ll use these tools in every data science project, but they’re not enough for most

projects. There’s a rough 80/20 rule at play: you can tackle about 80% of every project

using the tools you’ll learn in this book, but you’ll need other tools to tackle the

remaining 20%. Throughout this book, we’ll point you to resources where you can

learn more.

How This Book Is Organized

The previous description of the tools of data science is organized roughly according

to the order in which you use them in an analysis (although, of course, you’ll iterate

through them multiple times). In our experience, however, learning data importing

and tidying first is suboptimal because, 80% of the time, it’s routine and boring,

and the other 20% of the time, it’s weird and frustrating. That’s a bad place to start

learning a new subject! Instead, we’ll start with visualization and transformation of

data that’s already been imported and tidied. That way, when you ingest and tidy your

own data, your motivation will stay high because you know the pain is worth the

effort.

Within each chapter, we try to adhere to a consistent pattern: start with some moti‐

vating examples so you can see the bigger picture and then dive into the details. Each

section of the book is paired with exercises to help you practice what you’ve learned.

Although it can be tempting to skip the exercises, there’s no better way to learn than

by practicing on real problems.

What You Won’t Learn

There are several important topics that this book doesn’t cover. We believe it’s impor‐

tant to stay ruthlessly focused on the essentials so you can get up and running as

quickly as possible. That means this book can’t cover every important topic.

Modeling

Modeling is super important for data science, but it’s a big topic, and unfortunately,

we just don’t have the space to give it the coverage it deserves here. To learn more

about modeling, we highly recommend Tidy Modeling with R by our colleagues Max Kuhn and Julia Silge (O’Reilly). This book will teach you the tidymodels family of

packages, which, as you might guess from the name, share many conventions with the

tidyverse packages we use in this book.

Big Data

This book proudly and primarily focuses on small, in-memory datasets. This is the

right place to start because you can’t tackle big data unless you have experience

with small data. The tools you learn in the majority of this book will easily handle

xiv | Introduction

hundreds of megabytes of data, and with a bit of care, you can typically use them

to work with a few gigabytes of data. We’ll also show you how to get data out of

databases and parquet files, both of which are often used to store big data. You won’t

necessarily be able to work with the entire dataset, but that’s not a problem because

you need only a subset or subsample to answer the question you’re interested in.

If you’re routinely working with larger data (10–100 GB, say), we recommend learn‐

ing more about data.table. We don’t teach it here because it uses a different interface than the tidyverse and requires you to learn some different conventions. However,

it is incredibly faster, and the performance payoff is worth investing some time in

learning it if you’re working with large data.

Python, Julia, and Friends

In this book, you won’t learn anything about Python, Julia, or any other program‐

ming language useful for data science. This isn’t because we think these tools are bad.

They’re not! And in practice, most data science teams use a mix of languages, often at

least R and Python. But we strongly believe that it’s best to master one tool at a time,

and R is a great place to start.

Prerequisites

We’ve made a few assumptions about what you already know to get the most out of

this book. You should be generally numerically literate, and it’s helpful if you have

some basic programming experience already. If you’ve never programmed before,

you might find Hands-On Programming with R by Garrett Grolemund (O’Reilly) to be a valuable adjunct to this book.

You need four things to run the code in this book: R, RStudio, a collection of R

packages called the tidyverse, and a handful of other packages. Packages are the

fundamental units of reproducible R code. They include reusable functions, docu‐

mentation that describes how to use them, and sample data.

Introduction | xv

R

To download R, go to CRAN, the c omprehensive R a rchive n etwork. A new major version of R comes out once a year, and there are two to three minor releases each

year. It’s a good idea to update regularly. Upgrading can be a bit of a hassle, especially

for major versions that require you to re-install all your packages, but putting it off

only makes it worse. We recommend R 4.2.0 or later for this book.

RStudio

RStudio is an integrated development environment (IDE) for R programming, which

you can download from the RStudio download page. RStudio is updated a couple of times a year, and it will automatically let you know when a new version is out, so

there’s no need to check back. It’s a good idea to upgrade regularly to take advantage

of the latest and greatest features. For this book, make sure you have at least RStudio

2022.02.0.

When you start RStudio, Figure I-2, you’ll see two key regions in the interface: the console pane and the output pane. For now, all you need to know is that you type

the R code in the console pane and press Enter to run it. You’ll learn more as we go

along!1

1 If you’d like a comprehensive overview of all of RStudio’s features, see the RStudio User Guide.

xvi | Introduction

[image: Image 4]

 Figure I-2. The RStudio IDE has two key regions: type R code in the console pane on the

 left, and look for plots in the output pane on the right.

The Tidyverse

You’ll also need to install some R packages. An R package is a collection of functions,

data, and documentation that extends the capabilities of base R. Using packages is key

to the successful use of R. The majority of the packages that you will learn in this

book are part of the so-called tidyverse. All packages in the tidyverse share a common

philosophy of data and R programming and are designed to work together.

You can install the complete tidyverse with a single line of code:

install.packages("tidyverse")

On your computer, type that line of code in the console, and then press Enter to run

it. R will download the packages from CRAN and install them on your computer.

You will not be able to use the functions, objects, or help files in a package until

you load it. Once you have installed a package, you can load it using the library()

function:

Introduction | xvii

library(tidyverse)

 #> ── Attaching core tidyverse packages ───────────────────── tidyverse 2.0.0 ──

 #> ✔ dplyr 1.1.0.9000 ✔ readr 2.1.4

 #> ✔ forcats 1.0.0 ✔ stringr 1.5.0

 #> ✔ ggplot2 3.4.1 ✔ tibble 3.1.8

 #> ✔ lubridate 1.9.2 ✔ tidyr 1.3.0

 #> ✔ purrr 1.0.1

 #> ── Conflicts ─────────────────────────────────────── tidyverse_conflicts() ──

 #> ✖ dplyr::filter() masks stats::filter()

 #> ✖ dplyr::lag() masks stats::lag()

 #> ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all

 #> conflicts to become errors

This tells you that tidyverse loads nine packages: dplyr, forcats, ggplot2, lubridate,

purrr, readr, stringr, tibble, and tidyr. These are considered the core of the tidyverse

because you’ll use them in almost every analysis.

Packages in the tidyverse change fairly frequently. You can see if updates are available

by running tidyverse_update().

Other Packages

There are many other excellent packages that are not part of the tidyverse because

they solve problems in a different domain or are designed with a different set of

underlying principles. This doesn’t make them better or worse; it just makes them

different. In other words, the complement to the tidyverse is not the messyverse

but many other universes of interrelated packages. As you tackle more data science

projects with R, you’ll learn new packages and new ways of thinking about data.

We’ll use many packages from outside the tidyverse in this book. For example, we’ll

use the following packages because they provide interesting data sets for us to work

with in the process of learning R:

install.packages(c("arrow", "babynames", "curl", "duckdb", "gapminder", "ggrepel",

"ggridges", "ggthemes", "hexbin", "janitor", "Lahman", "leaflet", "maps",

"nycflights13", "openxlsx", "palmerpenguins", "repurrrsive", "tidymodels", "writexl")) We’ll also use a selection of other packages for one-off examples. You don’t need to

install them now, just remember that whenever you see an error like this:

library(ggrepel)

 #> Error in library(ggrepel) : there is no package called ‘ggrepel’

it means you need to run install.packages("ggrepel") to install the package.

Running R Code

The previous section showed you several examples of running R code. The code in

the book looks like this:

1 + 2

 #> [1] 3

xviii | Introduction

[image: Image 5]

If you run the same code in your local console, it will look like this:

> 1 + 2

[1] 3

There are two main differences. In your console, you type after the >, called the

 prompt; we don’t show the prompt in the book. In the book, the output is commented

out with #>; in your console, it appears directly after your code. These two differences

mean that if you’re working with an electronic version of the book, you can easily

copy code out of the book and paste it into the console.

Throughout the book, we use a consistent set of conventions to refer to code:

• Functions are displayed in a code font and followed by parentheses, like sum() or

mean().

• Other R objects (such as data or function arguments) are in a code font, without

parentheses, like flights or x.

• Sometimes, to make it clear which package an object comes from, we’ll

use the package name followed by two colons, like dplyr::mutate() or nyc

flights13::flights. This is also valid R code.

Other Conventions Used in This Book

The following typographical conventions are used in this book:

 Italic Indicates URLs and email addresses.

Constant width

Used for program listings, as well as within paragraphs to refer to program

elements such as variable or function names, databases, data types, environment

variables, statements, keywords, and filenames.

Constant width bold

Shows commands or other text that should be typed literally by the user.

 Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐

mined by context.

This element signifies a general note.

Introduction | xix

[image: Image 6]

[image: Image 7]

This element indicates a warning or caution.

O’Reilly Online Learning

For more than 40 years, O’Reilly Media has provided technol‐

ogy and business training, knowledge, and insight to help

companies succeed.

Our unique network of experts and innovators share their knowledge and expertise

through books, articles, and our online learning platform. O’Reilly’s online learning

platform gives you on-demand access to live training courses, in-depth learning

paths, interactive coding environments, and a vast collection of text and video from

O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

707-829-7019 (international or local)

707-829-0104 (fax)

 support@oreilly.com

 https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional

information. You can access this page at https://oreil.ly/r-for-data-science-2e.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://www.youtube.com/oreillymedia

xx | Introduction

Acknowledgments

This book isn’t just the product of Hadley, Mine, and Garrett but is the result of

many conversations (in person and online) that we’ve had with many people in the

R community. We’re incredibly grateful for all the conversations we’ve had with y’all;

thank you so much!

We’d like to thank our technical reviewers for their valuable feedback: Ben

Baumer, Lorna Barclay, Richard Cotton, Emma Rand, and Kelly Bodwin.

This book was written in the open, and many people contributed via pull

requests. A special thanks to all 259 of you who contributed improvements via

GitHub pull requests (in alphabetical order by username): @a-rosenberg, Tim

Becker (@a2800276), Abinash Satapathy (@Abinashbunty), Adam Gruer (@adam-

gruer), adi pradhan (@adidoit), A. s. (@Adrianzo), Aep Hidyatuloh (@aephidaya‐

tuloh), Andrea Gilardi (@agila5), Ajay Deonarine (@ajay-d), @AlanFeder, Daihe

Sui (@alansuidaihe), @alberto-agudo, @AlbertRapp, @aleloi, pete (@alonzi), Alex

(@ALShum), Andrew M. (@amacfarland), Andrew Landgraf (@andland), @andy‐

huynh92, Angela Li (@angela-li), Antti Rask (@AnttiRask), LOU Xun (@aquarhead),

@ariespirgel, @august-18, Michael Henry (@aviast), Azza Ahmed (@azzaea), Steven

Moran (@bambooforest), Brian G. Barkley (@BarkleyBG), Mara Averick (@batpi‐

gandme), Oluwafemi OYEDELE (@BB1464), Brent Brewington (@bbrewington), Bill

Behrman (@behrman), Ben Herbertson (@benherbertson), Ben Marwick (@benmar‐

wick), Ben Steinberg (@bensteinberg), Benjamin Yeh (@bentyeh), Betul Turkoglu

(@betulturkoglu), Brandon Greenwell (@bgreenwell), Bianca Peterson (@BinxiePe‐

terson), Birger Niklas (@BirgerNi), Brett Klamer (@bklamer), @boardtc, Christian

(@c-hoh), Caddy (@caddycarine), Camille V Leonard (@camillevleonard), @cano‐

vasjm, Cedric Batailler (@cedricbatailler), Christina Wei (@christina-wei), Christian

Mongeau (@chrMongeau), Cooper Morris (@coopermor), Colin Gillespie (@csgil‐

lespie), Rademeyer Vermaak (@csrvermaak), Chloe Thierstein (@cthierst), Chris

Saunders (@ctsa), Abhinav Singh (@curious-abhinav), Curtis Alexander (@curtisa‐

lexander), Christian G. Warden (@cwarden), Charlotte Wickham (@cwickham),

Kenny Darrell (@darrkj), David Kane (@davidkane9), David (@davidrsch), David

Rubinger (@davidrubinger), David Clark (@DDClark), Derwin McGeary (@der‐

winmcgeary), Daniel Gromer (@dgromer), @Divider85, @djbirke, Danielle Nav‐

arro (@djnavarro), Russell Shean (@DOH-RPS1303), Zhuoer Dong (@dongzhuoer),

Devin Pastoor (@dpastoor), @DSGeoff, Devarshi Thakkar (@dthakkar09), Julian

During (@duju211), Dylan Cashman (@dylancashman), Dirk Eddelbuettel (@eddel‐

buettel), Edwin Thoen (@EdwinTh), Ahmed El-Gabbas (@elgabbas), Henry Webel

(@enryH), Ercan Karadas (@ercan7), Eric Kitaif (@EricKit), Eric Watt (@ericwatt),

Erik Erhardt (@erikerhardt), Etienne B. Racine (@etiennebr), Everett Robinson

(@evjrob), @fellennert, Flemming Miguel (@flemmingmiguel), Floris Vanderhaeghe

(@florisvdh), @funkybluehen, @gabrivera, Garrick Aden-Buie (@gadenbuie), Peter

Introduction | xxi

Ganong (@ganong123), Gerome Meyer (@GeroVanMi), Gleb Ebert (@gl-eb), Josh

Goldberg (@GoldbergData), bahadir cankardes (@gridgrad), Gustav W Delius

(@gustavdelius), Hao Chen (@hao-trivago), Harris McGehee (@harrismcgehee),

@hendrikweisser, Hengni Cai (@hengnicai), Iain (@Iain-S), Ian Sealy (@iansealy),

Ian Lyttle (@ijlyttle), Ivan Krukov (@ivan-krukov), Jacob Kaplan (@jacobkap), Jazz

Weisman (@jazzlw), John Blischak (@jdblischak), John D. Storey (@jdstorey), Greg‐

ory Jefferis (@jefferis), Jeffrey Stevens (@JeffreyRStevens), 蒋雨蒙 (@JeldorPKU),

Jennifer (Jenny) Bryan (@jennybc), Jen Ren (@jenren), Jeroen Janssens (@jeroenjans‐

sens), @jeromecholewa, Janet Wesner (@jilmun), Jim Hester (@jimhester), JJ Chen

(@jjchern), Jacek Kolacz (@jkolacz), Joanne Jang (@joannejang), @johannes4998,

John Sears (@johnsears), @jonathanflint, Jon Calder (@jonmcalder), Jonathan Page

(@jonpage), Jon Harmon (@jonthegeek), JooYoung Seo (@jooyoungseo), Justinas

Petuchovas (@jpetuchovas), Jordan (@jrdnbradford), Jeffrey Arnold (@jrnold),

Jose Roberto Ayala Solares (@jroberayalas), Joyce Robbins (@jtr13), @juandering,

Julia Stewart Lowndes (@jules32), Sonja (@kaetschap), Kara Woo (@karawoo),

Katrin Leinweber (@katrinleinweber), Karandeep Singh (@kdpsingh), Kevin Perese

(@kevinxperese), Kevin Ferris (@kferris10), Kirill Sevastyanenko (@kirillseva), Jon‐

athan Kitt (@KittJonathan), @koalabearski, Kirill Müller (@krlmlr), Rafał Kuchar‐

ski (@kucharsky), Kevin Wright (@kwstat), Noah Landesberg (@landesbergn),

Lawrence Wu (@lawwu), @lindbrook, Luke W Johnston (@lwjohnst86), Kara

de la Marck (@MarckK), Kunal Marwaha (@marwahaha), Matan Hakim (@mat‐

anhakim), Matthias Liew (@MatthiasLiew), Matt Wittbrodt (@MattWittbrodt),

Mauro Lepore (@maurolepore), Mark Beveridge (@mbeveridge), @mcewenkhundi,

mcsnowface, PhD (@mcsnowface), Matt Herman (@mfherman), Michael Boerman

(@michaelboerman), Mitsuo Shiota (@mitsuoxv), Matthew Hendrickson (@mjhen‐

drickson), @MJMarshall, Misty Knight-Finley (@mkfin7), Mohammed Hamdy

(@mmhamdy), Maxim Nazarov (@mnazarov), Maria Paula Caldas (@mpaulacal‐

das), Mustafa Ascha (@mustafaascha), Nelson Areal (@nareal), Nate Olson (@nate-

d-olson), Nathanael (@nateaff), @nattalides, Ned Western (@NedJWestern), Nick

Clark (@nickclark1000), @nickelas, Nirmal Patel (@nirmalpatel), Nischal Shrestha

(@nischalshrestha), Nicholas Tierney (@njtierney), Jakub Nowosad (@Nowosad),

Nick Pullen (@nstjhp), @olivier6088, Olivier Cailloux (@oliviercailloux), Robin

Penfold (@p0bs), Pablo E. Garcia (@pabloedug), Paul Adamson (@padamson),

Penelope Y (@penelopeysm), Peter Hurford (@peterhurford), Peter Baumgartner

(@petzi53), Patrick Kennedy (@pkq), Pooya Taherkhani (@pooyataher), Y. Yu (@Pur‐

suitOfDataScience), Radu Grosu (@radugrosu), Ranae Dietzel (@Ranae), Ralph

Straumann (@rastrau), Rayna M Harris (@raynamharris), @ReeceGoding, Robin

Gertenbach (@rgertenbach), Jajo (@RIngyao), Riva Quiroga (@rivaquiroga), Richard

Knight (@RJHKnight), Richard Zijdeman (@rlzijdeman), @robertchu03, Robin

Kohrs (@RobinKohrs), Robin (@Robinlovelace), Emily Robinson (@robinsones),

Rob Tenorio (@robtenorio), Rod Mazloomi (@RodAli), Rohan Alexander (@Roha‐

nAlexander), Romero Morais (@RomeroBarata), Albert Y. Kim (@rudeboybert),

xxii | Introduction

Saghir (@saghirb), Hojjat Salmasian (@salmasian), Jonas (@sauercrowd), Vebash

Naidoo (@sciencificity), Seamus McKinsey (@seamus-mckinsey), @seanpwilliams,

Luke Smith (@seasmith), Matthew Sedaghatfar (@sedaghatfar), Sebastian Kraus

(@sekR4), Sam Firke (@sfirke), Shannon Ellis (@ShanEllis), @shoili, Christian Hein‐

rich (@Shurakai), S’busiso Mkhondwane (@sibusiso16), SM Raiyyan (@sm-raiyyan),

Jakob Krigovsky (@sonicdoe), Stephan Koenig (@stephan-koenig), Stephen Balogun

(@stephenbalogun), Steven M. Mortimer (@StevenMMortimer), Stéphane Guillou

(@stragu), Sulgi Kim (@sulgik), Sergiusz Bleja (@svenski), Tal Galili (@talgalili), Alec

Fisher (@Taurenamo), Todd Gerarden (@tgerarden), Tom Godfrey (@thomasggod‐

frey), Tim Broderick (@timbroderick), Tim Waterhouse (@timwaterhouse), TJ Mahr

(@tjmahr), Thomas Klebel (@tklebel), Tom Prior (@tomjamesprior), Terence Teo

(@tteo), @twgardner2, Ulrik Lyngs (@ulyngs), Shinya Uryu (@uribo), Martin Van

der Linden (@vanderlindenma), Walter Somerville (@waltersom), @werkstattcodes,

Will Beasley (@wibeasley), Yihui Xie (@yihui), Yiming (Paul) Li (@yimingli), @ying‐

xingwu, Hiroaki Yutani (@yutannihilation), Yu Yu Aung (@yuyu-aung), Zach Bogart

(@zachbogart), @zeal626, and Zeki Akyol (@zekiakyol).

Online Edition

An online version of this book is available at the book’s GitHub repository. It will continue to evolve in between reprints of the physical book. The source of the book

is available at https://oreil.ly/Q8z_O. The book is powered by Quarto, which makes it

easy to write books that combine text and executable code.

Introduction | xxiii

[image: Image 8]

PART I

Whole Game

Our goal in this part of the book is to give you a rapid overview of the main tools

of data science: importing, tidying, transforming, and visualizing data, as shown in

Figure I-1. We want to show you the “whole game” of data science, giving you just

enough of all the major pieces so that you can tackle real, if simple, datasets. The later

parts of the book will hit each of these topics in more depth, increasing the range of

data science challenges that you can tackle.

 Figure I-1. In this section of the book, you’ll learn how to import, tidy, transform, and

 visualize data.

Four chapters focus on the tools of data science:

• Visualization is a great place to start with R programming, because the payoff is

so clear: you get to make elegant and informative plots that help you understand

data. In Chapter 1 you’ll dive into visualization, learning the basic structure of a ggplot2 plot and powerful techniques for turning data into plots.

• Visualization alone is typically not enough, so in Chapter 3, you’ll learn the key verbs that allow you to select important variables, filter out key observations,

create new variables, and compute summaries.

• In Chapter 5, you’ll learn about tidy data, a consistent way of storing your data

that makes transformation, visualization, and modeling easier. You’ll learn the

underlying principles and how to get your data into a tidy form.

• Before you can transform and visualize your data, you need to first get your data

into R. In Chapter 7 you’ll learn the basics of getting .csv files into R.

Nestled among these chapters are four other chapters that focus on your R workflow.

In Chapter 2, Chapter 4, and Chapter 6 you’ll learn good workflow practices for writing and organizing your R code. These will set you up for success in the long run,

as they’ll give you the tools to stay organized when you tackle real projects. Finally,

Chapter 8 will teach you how to get help and keep learning.

CHAPTER 1

Data Visualization

Introduction

“The simple graph has brought more information to the data analyst’s mind than any

other device.” —John Tukey

R has several systems for making graphs, but ggplot2 is one of the most elegant and

most versatile. ggplot2 implements the grammar of graphics, a coherent system for

describing and building graphs. With ggplot2, you can do more faster by learning one

system and applying it in many places.

This chapter will teach you how to visualize your data using ggplot2. We will start

by creating a simple scatterplot and use it to introduce aesthetic mappings and

geometric objects—the fundamental building blocks of ggplot2. We will then walk

you through visualizing distributions of single variables as well as visualizing rela‐

tionships between two or more variables. We’ll finish off with saving your plots and

troubleshooting tips.

Prerequisites

This chapter focuses on ggplot2, one of the core packages in the tidyverse. To access

the datasets, help pages, and functions used in this chapter, load the tidyverse by

running:

library(tidyverse)

 #> ── Attaching core tidyverse packages ───────────────────── tidyverse 2.0.0 ──

 #> ✔ dplyr 1.1.0.9000 ✔ readr 2.1.4

 #> ✔ forcats 1.0.0 ✔ stringr 1.5.0

 #> ✔ ggplot2 3.4.1 ✔ tibble 3.1.8

 #> ✔ lubridate 1.9.2 ✔ tidyr 1.3.0

 #> ✔ purrr 1.0.1

 #> ── Conflicts ─────────────────────────────────────── tidyverse_conflicts() ──

 #> ✖ dplyr::filter() masks stats::filter()

3

 #> ✖ dplyr::lag() masks stats::lag()

 #> ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all

 #> conflicts to become errors

That one line of code loads the core tidyverse, the packages that you will use in

almost every data analysis. It also tells you which functions from the tidyverse conflict

with functions in base R (or from other packages you might have loaded).1

If you run this code and get the error message there is no package called

'tidyverse', you’ll need to first install it, and then run library() once again:

install.packages("tidyverse")

library(tidyverse)

You need to install a package only once, but you need to load it every time you start a

new session.

In addition to tidyverse, we will use the palmerpenguins package, which includes the

penguins dataset containing body measurements for penguins on three islands in the

Palmer Archipelago, and the ggthemes package, which offers a colorblind safe color

palette.

library(palmerpenguins)

library(ggthemes)

First Steps

Do penguins with longer flippers weigh more or less than penguins with shorter

flippers? You probably already have an answer, but try to make your answer precise.

What does the relationship between flipper length and body mass look like? Is it pos‐

itive? Negative? Linear? Nonlinear? Does the relationship vary by the species of the

penguin? How about by the island where the penguin lives? Let’s create visualizations

that we can use to answer these questions.

The penguins Data Frame

You can test your answers to these questions with the penguins data frame found

in palmerpenguins (aka palmerpenguins::penguins). A data frame is a rectangular collection of variables (in the columns) and observations (in the rows). penguins

contains 344 observations collected and made available by Dr. Kristen Gorman and

the Palmer Station, Antarctica LTER. 2

1 You can eliminate that message and force conflict resolution to happen on demand by using the conflicted package, which becomes more important as you load more packages. You can learn more about conflicted on the package website.

2 Horst AM, Hill AP, Gorman KB (2020). palmerpenguins: Palmer Archipelago (Antarctica) penguin data. R

package version 0.1.0. https://oreil.ly/ncwc5. doi: 10.5281/zenodo.3960218.

4 | Chapter 1: Data Visualization

To make the discussion easier, let’s define some terms:

 Variable

A quantity, quality, or property that you can measure.

 Value The state of a variable when you measure it. The value of a variable may change

from measurement to measurement.

 Observation

A set of measurements made under similar conditions (you usually make all of

the measurements in an observation at the same time and on the same object).

An observation will contain several values, each associated with a different vari‐

able. We’ll sometimes refer to an observation as a data point.

 Tabular data

A set of values, each associated with a variable and an observation. Tabular data

is tidy if each value is placed in its own “cell,” each variable in its own column,

and each observation in its own row.

In this context, a variable refers to an attribute of all the penguins, and an observation

refers to all the attributes of a single penguin.

Type the name of the data frame in the console, and R will print a preview of its

contents. Note that it says tibble on top of this preview. In the tidyverse, we use

special data frames called tibbles that you will learn about soon.

penguins

 #> # A tibble: 344 × 8

 #> species island bill_length_mm bill_depth_mm flipper_length_mm

 #> <fct> <fct> <dbl> <dbl> <int>

 #> 1 Adelie Torgersen 39.1 18.7 181

 #> 2 Adelie Torgersen 39.5 17.4 186

 #> 3 Adelie Torgersen 40.3 18 195

 #> 4 Adelie Torgersen NA NA NA

 #> 5 Adelie Torgersen 36.7 19.3 193

 #> 6 Adelie Torgersen 39.3 20.6 190

 #> # … with 338 more rows, and 3 more variables: body_mass_g <int>, sex <fct>,

 #> # year <int>

This data frame contains eight columns. For an alternative view, where you can see all

variables and the first few observations of each variable, use glimpse(). Or, if you’re in RStudio, run View(penguins) to open an interactive data viewer.

glimpse(penguins)

 #> Rows: 344

 #> Columns: 8

 #> $ species <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, A…

 #> $ island <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torge…

 #> $ bill_length_mm <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34.…

 #> $ bill_depth_mm <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18.…

 #> $ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, …

 #> $ body_mass_g <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 347…

First Steps | 5

[image: Image 9]

 #> $ sex <fct> male, female, female, NA, female, male, female, m…

 #> $ year <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2…

Among the variables in penguins are:

species

A penguin’s species (Adelie, Chinstrap, or Gentoo)

flipper_length_mm

The length of a penguin’s flipper, in millimeters

body_mass_g

The body mass of a penguin, in grams

To learn more about penguins, open its help page by running ?penguins.

Ultimate Goal

Our ultimate goal in this chapter is to re-create the following visualization displaying

the relationship between flipper lengths and body masses of these penguins, taking

into consideration the species of the penguin.

6 | Chapter 1: Data Visualization

[image: Image 10]

Creating a ggplot

Let’s re-create this plot step by step.

With ggplot2, you begin a plot with the function ggplot(), defining a plot object that you then add layers to. The first argument of ggplot() is the dataset to use in the graph, so ggplot(data = penguins) creates an empty graph that is primed to display

the penguins data, but since we haven’t told it how to visualize it yet, for now it’s

empty. This is not a very exciting plot, but you can think of it like an empty canvas

where you’ll paint the remaining layers of your plot.

ggplot(data = penguins)

Next, we need to tell ggplot() how the information from our data will be visually represented. The mapping argument of the ggplot() function defines how variables in your dataset are mapped to visual properties (aesthetics) of your plot. The mapping

argument is always defined in the aes() function, and the x and y arguments of

aes() specify which variables to map to the x- and y-axes. For now, we will map only the flipper length to the x aesthetic and body mass to the y aesthetic. ggplot2 looks for

the mapped variables in the data argument, in this case, penguins.

The following plot shows the result of adding these mappings.

ggplot(

data = penguins,

mapping = aes(x = flipper_length_mm, y = body_mass_g)

)

First Steps | 7

[image: Image 11]

Our empty canvas now has more structure—it’s clear where flipper lengths will be

displayed (on the x-axis) and where body masses will be displayed (on the y-axis).

But the penguins themselves are not yet on the plot. This is because we have not yet

articulated, in our code, how to represent the observations from our data frame on

our plot.

To do so, we need to define a geom: the geometrical object that a plot uses to

represent data. These geometric objects are made available in ggplot2 with functions

that start with geom_. People often describe plots by the type of geom that the plot

uses. For example, bar charts use bar geoms (geom_bar()), line charts use line geoms

(geom_line()), boxplots use boxplot geoms (geom_boxplot()), scatterplots use point geoms (geom_point()), and so on.

The function geom_point() adds a layer of points to your plot, which creates a scatterplot. ggplot2 comes with many geom functions, and each adds a different

type of layer to a plot. You’ll learn a whole bunch of geoms throughout the book,

particularly in Chapter 9.

ggplot(

data = penguins,

mapping = aes(x = flipper_length_mm, y = body_mass_g)

) +

geom_point()

 #> Warning: Removed 2 rows containing missing values (`geom_point()`).

8 | Chapter 1: Data Visualization

[image: Image 12]

Now we have something that looks like what we might think of as a “scatterplot.” It

doesn’t yet match our “ultimate goal” plot, but using this plot we can start answering

the question that motivated our exploration: “What does the relationship between

flipper length and body mass look like?” The relationship appears to be positive (as

flipper length increases, so does body mass), fairly linear (the points are clustered

around a line instead of a curve), and moderately strong (there isn’t too much scatter

around such a line). Penguins with longer flippers are generally larger in terms of

their body mass.

Before we add more layers to this plot, let’s pause for a moment and review the

warning message we got:

Removed 2 rows containing missing values (geom_point()).

We’re seeing this message because there are two penguins in our dataset with missing

body mass and/or flipper length values and ggplot2 has no way of representing them

on the plot without both of these values. Like R, ggplot2 subscribes to the philosophy

that missing values should never silently go missing. This type of warning is probably

one of the most common types of warnings you will see when working with real data

—missing values are a common issue, and you’ll learn more about them throughout

the book, particularly in Chapter 18. For the remaining plots in this chapter we will suppress this warning so it’s not printed alongside every single plot we make.

First Steps | 9

[image: Image 13]

Adding Aesthetics and Layers

Scatterplots are useful for displaying the relationship between two numerical vari‐

ables, but it’s always a good idea to be skeptical of any apparent relationship between

two variables and ask if there may be other variables that explain or change the nature

of this apparent relationship. For example, does the relationship between flipper

length and body mass differ by species? Let’s incorporate species into our plot and

see if this reveals any additional insights into the apparent relationship between these

variables. We will do this by representing species with different colored points.

To achieve this, will we need to modify the aesthetic or the geom? If you guessed “in

the aesthetic mapping, inside of aes(),” you’re already getting the hang of creating data visualizations with ggplot2! And if not, don’t worry. Throughout the book you

will make many more ggplots and have many more opportunities to check your

intuition as you make them.

ggplot(

data = penguins,

mapping = aes(x = flipper_length_mm, y = body_mass_g, color = species)

) +

geom_point()

When a categorical variable is mapped to an aesthetic, ggplot2 will automatically

assign a unique value of the aesthetic (here a unique color) to each unique level of the

10 | Chapter 1: Data Visualization

[image: Image 14]

variable (each of the three species), a process known as scaling. ggplot2 will also add a

legend that explains which values correspond to which levels.

Now let’s add one more layer: a smooth curve displaying the relationship between

body mass and flipper length. Before you proceed, refer to the previous code, and

think about how we can add this to our existing plot.

Since this is a new geometric object representing our data, we will add a new geom as

a layer on top of our point geom: geom_smooth(). And we will specify that we want to draw the line of best fit based on a linear model with method = "lm".

ggplot(

data = penguins,

mapping = aes(x = flipper_length_mm, y = body_mass_g, color = species)

) +

geom_point() +

geom_smooth(method = "lm")

We have successfully added lines, but this plot doesn’t look like the plot from “Ulti‐

mate Goal” on page 6, which has only one line for the entire dataset as opposed to

separate lines for each of the penguin species.

When aesthetic mappings are defined in ggplot(), at the global level, they’re passed down to each of the subsequent geom layers of the plot. However, each geom

function in ggplot2 can also take a mapping argument, which allows for aesthetic

mappings at the local level that are added to those inherited from the global level.

First Steps | 11

[image: Image 15]

Since we want points to be colored based on species but don’t want the lines to be

separated out for them, we should specify color = species for geom_point() only.

ggplot(

data = penguins,

mapping = aes(x = flipper_length_mm, y = body_mass_g)

) +

geom_point(mapping = aes(color = species)) +

geom_smooth(method = "lm")

Voilà! We have something that looks very much like our ultimate goal, though it’s

not yet perfect. We still need to use different shapes for each species of penguins and

improve labels.

It’s generally not a good idea to represent information using only colors on a plot, as

people perceive colors differently due to color blindness or other color vision differ‐

ences. Therefore, in addition to color, we can map species to the shape aesthetic.

ggplot(

data = penguins,

mapping = aes(x = flipper_length_mm, y = body_mass_g)

) +

geom_point(mapping = aes(color = species, shape = species)) +

geom_smooth(method = "lm")

12 | Chapter 1: Data Visualization

[image: Image 16]

Note that the legend is automatically updated to reflect the different shapes of the

points as well.

Finally, we can improve the labels of our plot using the labs() function in a new

layer. Some of the arguments to labs() might be self-explanatory: title adds a title, and subtitle adds a subtitle to the plot. Other arguments match the aesthetic

mappings: x is the x-axis label, y is the y-axis label, and color and shape define the

label for the legend. In addition, we can improve the color palette to be color-blind

safe with the scale_color_colorblind() function from the ggthemes package.

ggplot(

data = penguins,

mapping = aes(x = flipper_length_mm, y = body_mass_g)

) +

geom_point(aes(color = species, shape = species)) +

geom_smooth(method = "lm") +

labs(

title = "Body mass and flipper length",

subtitle = "Dimensions for Adelie, Chinstrap, and Gentoo Penguins",

x = "Flipper length (mm)", y = "Body mass (g)",

color = "Species", shape = "Species"

) +

scale_color_colorblind()

First Steps | 13

[image: Image 17]

We finally have a plot that perfectly matches our “ultimate goal”!

Exercises

1. How many rows are in penguins? How many columns?

2. What does the bill_depth_mm variable in the penguins data frame describe?

Read the help for ?penguins to find out.

3. Make a scatterplot of bill_depth_mm versus bill_length_mm. That is, make a

scatterplot with bill_depth_mm on the y-axis and bill_length_mm on the x-axis.

Describe the relationship between these two variables.

4. What happens if you make a scatterplot of species versus bill_depth_mm? What

might be a better choice of geom?

5. Why does the following give an error, and how would you fix it?

ggplot(data = penguins) +

geom_point()

14 | Chapter 1: Data Visualization

[image: Image 18]

6. What does the na.rm argument do in geom_point()? What is the default value of the argument? Create a scatterplot where you successfully use this argument set

to TRUE.

7. Add the following caption to the plot you made in the previous exercise: “Data

come from the palmerpenguins package.” Hint: Take a look at the documentation

for labs().

8. Re-create the following visualization. What aesthetic should bill_depth_mm be

mapped to? And should it be mapped at the global level or at the geom level?

9. Run this code in your head and predict what the output will look like. Then, run

the code in R and check your predictions.

ggplot(

data = penguins,

mapping = aes(x = flipper_length_mm, y = body_mass_g, color = island)

) +

geom_point() +

geom_smooth(se = FALSE)

10. Will these two graphs look different? Why/why not?

ggplot(

data = penguins,

mapping = aes(x = flipper_length_mm, y = body_mass_g)

) +

geom_point() +

geom_smooth()

ggplot() +

geom_point(

data = penguins,

First Steps | 15

 mapping = aes(x = flipper_length_mm, y = body_mass_g)

) +

geom_smooth(

data = penguins,

mapping = aes(x = flipper_length_mm, y = body_mass_g)

)

ggplot2 Calls

As we move on from these introductory sections, we’ll transition to a more concise

expression of ggplot2 code. So far we’ve been very explicit, which is helpful when you

are learning:

ggplot(

data = penguins,

mapping = aes(x = flipper_length_mm, y = body_mass_g)

) +

geom_point()

Typically, the first one or two arguments to a function are so important that you

should know them by heart. The first two arguments to ggplot() are data and mapping; in the remainder of the book, we won’t supply those names. That saves

typing and, by reducing the amount of extra text, makes it easier to see what’s

different between plots. That’s a really important programming concern that we’ll

come back to in Chapter 25.

Rewriting the previous plot more concisely yields:

ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) +

geom_point()

In the future, you’ll also learn about the pipe, |>, which will allow you to create that

plot with:

penguins |>

ggplot(aes(x = flipper_length_mm, y = body_mass_g)) +

geom_point()

Visualizing Distributions

How you visualize the distribution of a variable depends on the type of variable:

categorical or numerical.

16 | Chapter 1: Data Visualization

[image: Image 19]

A Categorical Variable

A variable is categorical if it can take only one of a small set of values. To examine the

distribution of a categorical variable, you can use a bar chart. The height of the bars

displays how many observations occurred with each x value.

ggplot(penguins, aes(x = species)) +

geom_bar()

In bar plots of categorical variables with nonordered levels, like the previous penguin

species, it’s often preferable to reorder the bars based on their frequencies. Doing so

requires transforming the variable to a factor (how R handles categorical data) and

then reordering the levels of that factor.

ggplot(penguins, aes(x = fct_infreq(species))) +

geom_bar()

Visualizing Distributions | 17

[image: Image 20]

You will learn more about factors and functions for dealing with factors (such as

fct_infreq()) in Chapter 16.

A Numerical Variable

A variable is numerical (or quantitative) if it can take on a wide range of numerical

values and it is sensible to add, subtract, or take averages with those values. Numeri‐

cal variables can be continuous or discrete.

One commonly used visualization for distributions of continuous variables is a

histogram.

ggplot(penguins, aes(x = body_mass_g)) +

geom_histogram(binwidth = 200)

18 | Chapter 1: Data Visualization

[image: Image 21]

A histogram divides the x-axis into equally spaced bins and then uses the height of a

bar to display the number of observations that fall in each bin. In the previous graph,

the tallest bar shows that 39 observations have a body_mass_g value between 3,500

and 3,700 grams, which are the left and right edges of the bar.

You can set the width of the intervals in a histogram with the binwidth argument,

which is measured in the units of the x variable. You should always explore a variety

of binwidth values when working with histograms, as different binwidth values can

reveal different patterns. In the following plots, a binwidth of 20 is too narrow, result‐

ing in too many bars, making it difficult to determine the shape of the distribution.

Similarly, a binwidth of 2,000 is too high, resulting in all data being binned into only

three bars and also making it difficult to determine the shape of the distribution. A

binwidth of 200 provides a sensible balance.

ggplot(penguins, aes(x = body_mass_g)) +

geom_histogram(binwidth = 20)

ggplot(penguins, aes(x = body_mass_g)) +

geom_histogram(binwidth = 2000)

Visualizing Distributions | 19

[image: Image 22]

An alternative visualization for distributions of numerical variables is a density plot.

A density plot is a smoothed-out version of a histogram and a practical alternative,

particularly for continuous data that comes from an underlying smooth distribution.

We won’t go into how geom_density() estimates the density (you can read more about that in the function documentation), but let’s explain how the density curve

is drawn with an analogy. Imagine a histogram made out of wooden blocks. Then,

imagine that you drop a cooked spaghetti string over it. The shape the spaghetti will

take draped over blocks can be thought of as the shape of the density curve. It shows

fewer details than a histogram but can make it easier to quickly glean the shape of the

distribution, particularly with respect to modes and skewness.

ggplot(penguins, aes(x = body_mass_g)) +

geom_density()

 #> Warning: Removed 2 rows containing non-finite values (`stat_density()`).

20 | Chapter 1: Data Visualization

[image: Image 23]

Exercises

1. Make a bar plot of species of penguins, where you assign species to the y

aesthetic. How is this plot different?

2. How are the following two plots different? Which aesthetic, color or fill, is

more useful for changing the color of bars?

ggplot(penguins, aes(x = species)) +

geom_bar(color = "red")

ggplot(penguins, aes(x = species)) +

geom_bar(fill = "red")

3. What does the bins argument in geom_histogram() do?

4. Make a histogram of the carat variable in the diamonds dataset that is available

when you load the tidyverse package. Experiment with different binwidth values.

What value reveals the most interesting patterns?

Visualizing Relationships

To visualize a relationship we need to have at least two variables mapped to aesthetics

of a plot. In the following sections you will learn about commonly used plots for

visualizing relationships between two or more variables and the geoms used for

creating them.

Visualizing Relationships | 21

[image: Image 24]

A Numerical and a Categorical Variable

To visualize the relationship between a numerical and a categorical variable we can

use side-by-side box plots. A boxplot is a type of visual shorthand for measures of

position (percentiles) that describe a distribution. It is also useful for identifying

potential outliers. As shown in Figure 1-1, each boxplot consists of:

• A box that indicates the range of the middle half of the data, a distance known

as the interquartile range (IQR), stretching from the 25th percentile of the distri‐

bution to the 75th percentile. In the middle of the box is a line that displays

the median, i.e., 50th percentile, of the distribution. These three lines give you a

sense of the spread of the distribution and whether the distribution is symmetric

about the median or skewed to one side.

• Visual points that display observations that fall more than 1.5 times the IQR from

either edge of the box. These outlying points are unusual so they are plotted

individually.

• A line (or whisker) that extends from each end of the box and goes to the farthest

nonoutlier point in the distribution.

 Figure 1-1. Diagram depicting how a boxplot is created.

Let’s take a look at the distribution of body mass by species using geom_boxplot(): ggplot(penguins, aes(x = species, y = body_mass_g)) +

geom_boxplot()

22 | Chapter 1: Data Visualization

[image: Image 25]

[image: Image 26]

Alternatively, we can make density plots with geom_density():

ggplot(penguins, aes(x = body_mass_g, color = species)) +

geom_density(linewidth = 0.75)

Visualizing Relationships | 23

[image: Image 27]

We’ve also customized the thickness of the lines using the linewidth argument to

make them stand out a bit more against the background.

Additionally, we can map species to both color and fill aesthetics and use the

alpha aesthetic to add transparency to the filled density curves. This aesthetic takes

values between 0 (completely transparent) and 1 (completely opaque). In the follow‐

ing plot it’s set to 0.5:

ggplot(penguins, aes(x = body_mass_g, color = species, fill = species)) +

geom_density(alpha = 0.5)

Note the terminology we have used here:

• We map variables to aesthetics if we want the visual attribute represented by that

aesthetic to vary based on the values of that variable.

• Otherwise, we set the value of an aesthetic.

Two Categorical Variables

We can use stacked bar plots to visualize the relationship between two categorical

variables. For example, the following two stacked bar plots both display the rela‐

tionship between island and species, or, specifically, visualize the distribution of

species within each island.

24 | Chapter 1: Data Visualization

[image: Image 28]

The first plot shows the frequencies of each species of penguins on each island. The

plot of frequencies shows that there are equal numbers of Adelies on each island, but

we don’t have a good sense of the percentage balance within each island.

ggplot(penguins, aes(x = island, fill = species)) +

geom_bar()

The second plot is a relative frequency plot, created by setting position = "fill" in

the geom, and is more useful for comparing species distributions across islands since

it’s not affected by the unequal numbers of penguins across the islands. Using this

plot we can see that Gentoo penguins all live on Biscoe island and make up roughly

75% of the penguins on that island, Chinstrap all live on Dream island and make up

roughly 50% of the penguins on that island, and Adelie live on all three islands and

make up all of the penguins on Torgersen.

ggplot(penguins, aes(x = island, fill = species)) +

geom_bar(position = "fill")

Visualizing Relationships | 25

[image: Image 29]

In creating these bar charts, we map the variable that will be separated into bars to

the x aesthetic, and the variable that will change the colors inside the bars to the fill

aesthetic.

Two Numerical Variables

So far you’ve learned about scatterplots (created with geom_point()) and smooth

curves (created with geom_smooth()) for visualizing the relationship between two numerical variables. A scatterplot is probably the most commonly used plot for

visualizing the relationship between two numerical variables.

ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) +

geom_point()

26 | Chapter 1: Data Visualization

[image: Image 30]

Three or More Variables

As we saw in “Adding Aesthetics and Layers” on page 10, we can incorporate more

variables into a plot by mapping them to additional aesthetics. For example, in the

following scatterplot the colors of points represent species, and the shapes of points

represent islands:

ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) +

geom_point(aes(color = species, shape = island))

Visualizing Relationships | 27

[image: Image 31]

However, adding too many aesthetic mappings to a plot makes it cluttered and

difficult to make sense of. Another option, which is particularly useful for categorical

variables, is to split your plot into facets, subplots that each display one subset of the

data.

To facet your plot by a single variable, use facet_wrap(). The first argument of

facet_wrap() is a formula, 3 which you create with ~ followed by a variable name.

The variable that you pass to facet_wrap() should be categorical.

ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) +

geom_point(aes(color = species, shape = species)) +

facet_wrap(~island)

3 Here “formula” is the name of the thing created by ~, not a synonym for “equation.”

28 | Chapter 1: Data Visualization

[image: Image 32]

You will learn about many other geoms for visualizing distributions of variables and

relationships between them in Chapter 9.

Exercises

1. The mpg data frame that is bundled with the ggplot2 package contains 234

observations collected by the US Environmental Protection Agency on 38 car

models. Which variables in mpg are categorical? Which variables are numerical?

(Hint: Type ?mpg to read the documentation for the dataset.) How can you see this information when you run mpg?

2. Make a scatterplot of hwy versus displ using the mpg data frame. Next, map a

third, numerical variable to color, then size, then both color and size, and

then shape. How do these aesthetics behave differently for categorical versus

numerical variables?

3. In the scatterplot of hwy versus displ, what happens if you map a third variable

to linewidth?

4. What happens if you map the same variable to multiple aesthetics?

5. Make a scatterplot of bill_depth_mm versus bill_length_mm and color the

points by species. What does adding coloring by species reveal about the rela‐

tionship between these two variables? What about faceting by species?

6. Why does the following yield two separate legends? How would you fix it to

combine the two legends?

ggplot(

data = penguins,

mapping = aes(

x = bill_length_mm, y = bill_depth_mm,

color = species, shape = species

)

) +

geom_point() +

labs(color = "Species")

Visualizing Relationships | 29

7. Create the two following stacked bar plots. Which question can you answer with

the first one? Which question can you answer with the second one?

ggplot(penguins, aes(x = island, fill = species)) +

geom_bar(position = "fill")

ggplot(penguins, aes(x = species, fill = island)) +

geom_bar(position = "fill")

Saving Your Plots

Once you’ve made a plot, you might want to get it out of R by saving it as an image

that you can use elsewhere. That’s the job of ggsave(), which will save the plot most recently created to disk:

ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) +

geom_point()

ggsave(filename = "penguin-plot.png")

This will save your plot to your working directory, a concept you’ll learn more about

in Chapter 6.

If you don’t specify the width and height, they will be taken from the dimensions of

the current plotting device. For reproducible code, you’ll want to specify them. You

can learn more about ggsave() in the documentation.

Generally, however, we recommend that you assemble your final reports using

Quarto, a reproducible authoring system that allows you to interleave your code

and your prose and automatically include your plots in your write-ups. You will learn

more about Quarto in Chapter 28.

Exercises

1. Run the following lines of code. Which of the two plots is saved as

mpg-plot.png? Why?

ggplot(mpg, aes(x = class)) +

geom_bar()

ggplot(mpg, aes(x = cty, y = hwy)) +

geom_point()

ggsave("mpg-plot.png")

2. What do you need to change in the previous code to save the plot as a PDF

instead of a PNG? How could you find out what types of image files would work

in ggsave()?

Common Problems

As you start to run R code, you’re likely to run into problems. Don’t worry—it

happens to everyone. We have all been writing R code for years, but every day we still

write code that doesn’t work on the first try!

30 | Chapter 1: Data Visualization

Start by carefully comparing the code that you’re running to the code in the book. R

is extremely picky, and a misplaced character can make all the difference. Make sure

that every (is matched with a) and every " is paired with another ". Sometimes

you’ll run the code and nothing happens. Check the left side of your console: if it’s a

+, it means that R doesn’t think you’ve typed a complete expression and it’s waiting for

you to finish it. In this case, it’s usually easy to start from scratch again by pressing

Escape to abort processing the current command.

One common problem when creating ggplot2 graphics is to put the + in the wrong

place: it has to come at the end of the line, not the start. In other words, make sure

you haven’t accidentally written code like this:

ggplot(data = mpg)

+ geom_point(mapping = aes(x = displ, y = hwy))

If you’re still stuck, try the help. You can get help about any R function by running ?

function_name in the console or highlighting the function name and pressing F1 in

RStudio. Don’t worry if the help doesn’t seem that helpful; instead, skip down to the

examples and look for code that matches what you’re trying to do.

If that doesn’t help, carefully read the error message. Sometimes the answer will be

buried there! But when you’re new to R, even if the answer is in the error message,

you might not yet know how to understand it. Another great tool is Google: try

googling the error message, as it’s likely someone else has had the same problem and

has gotten help online.

Summary

In this chapter, you’ve learned the basics of data visualization with ggplot2. We started

with the basic idea that underpins ggplot2: a visualization is a mapping from variables

in your data to aesthetic properties such as position, color, size, and shape. You then

learned about increasing the complexity and improving the presentation of your

plots layer by layer. You also learned about commonly used plots for visualizing the

distribution of a single variable, as well as for visualizing relationships between two or

more variables, by levering additional aesthetic mappings and/or splitting your plot

into small multiples using faceting.

We’ll use visualizations again and again throughout this book, introducing new

techniques as we need them, as well as do a deeper dive into creating visualizations

with ggplot2 in Chapter 9 through Chapter 11.

Now that you understand the basics of visualization, in the next chapter we’re going

to switch gears a little and give you some practical workflow advice. We intersperse

workflow advice with data science tools throughout this part of the book because it’ll

help you stay organized as you write increasing amounts of R code.

Summary | 31

CHAPTER 2

Workflow: Basics

You now have some experience running R code. We didn’t give you many details,

but you’ve obviously figured out the basics or you would’ve thrown this book away

in frustration! Frustration is natural when you start programming in R because it is

such a stickler for punctuation, and even one character out of place can cause it to

complain. But while you should expect to be a little frustrated, take comfort in that

this experience is typical and temporary: it happens to everyone, and the only way to

get over it is to keep trying.

Before we go any further, let’s ensure you’ve got a solid foundation in running R code

and that you know some of the most helpful RStudio features.

Coding Basics

Let’s review some basics we’ve omitted so far in the interest of getting you plotting as

quickly as possible. You can use R to do basic math calculations:

1 / 200 * 30

 #> [1] 0.15

(59 + 73 + 2) / 3

 #> [1] 44.66667

sin(pi / 2)

 #> [1] 1

You can create new objects with the assignment operator <-:

x <- 3 * 4

Note that the value of x is not printed, it’s just stored. If you want to view the value,

type x in the console.

You can c ombine multiple elements into a vector with c(): primes <- c(2, 3, 5, 7, 11, 13)

33

And basic arithmetic on vectors is applied to every element of the vector:

primes * 2

 #> [1] 4 6 10 14 22 26

primes - 1

 #> [1] 1 2 4 6 10 12

All R statements where you create objects, assignment statements, have the same

form:

object_name <- value

When reading that code, say “object name gets value” in your head.

You will make lots of assignments, and <- is a pain to type. You can save time with

RStudio’s keyboard shortcut: Alt+– (the minus sign). Notice that RStudio automati‐

cally surrounds <- with spaces, which is a good code formatting practice. Code can be

miserable to read on a good day, so giveyoureyesabreak and use spaces.

Comments

R will ignore any text after # for that line. This allows you to write comments, text that

is ignored by R but read by humans. We’ll sometimes include comments in examples

to explain what’s happening with the code.

Comments can be helpful for briefly describing what the code does:

 # create vector of primes

primes <- c(2, 3, 5, 7, 11, 13)

 # multiply primes by 2

primes * 2

 #> [1] 4 6 10 14 22 26

With short pieces of code like this, leaving a comment for every single line of code

might not be necessary. But as the code you’re writing gets more complex, comments

can save you (and your collaborators) a lot of time figuring out what was done in the

code.

Use comments to explain the why of your code, not the how or the what. The what and how of your code are always possible to figure out, even if it might be tedious,

by carefully reading it. If you describe every step in the comments and then change

the code, you will have to remember to update the comments as well or it will be

confusing when you return to your code in the future.

Figuring out why something was done is much more difficult, if not impossible. For

example, geom_smooth() has an argument called span, which controls the smooth‐

ness of the curve, with larger values yielding a smoother curve. Suppose you decide to

change the value of span from its default of 0.75 to 0.9: it’s easy for a future reader to

34 | Chapter 2: Workflow: Basics

understand what is happening, but unless you note your thinking in a comment, no one will understand why you changed the default.

For data analysis code, use comments to explain your overall plan of attack and

record important insights as you encounter them. There’s no way to re-capture this

knowledge from the code itself.

What’s in a Name?

Object names must start with a letter and can contain only letters, numbers, _, and ..

You want your object names to be descriptive, so you’ll need to adopt a convention

for multiple words. We recommend snake_case, where you separate lowercase words

with _.

i_use_snake_case

otherPeopleUseCamelCase

some.people.use.periods

And_aFew.People_RENOUNCEconvention

We’ll return to names again when we discuss code style in Chapter 4.

You can inspect an object by typing its name:

x

 #> [1] 12

Make another assignment:

this_is_a_really_long_name <- 2.5

To inspect this object, try RStudio’s completion facility: type this, press Tab, add

characters until you have a unique prefix, and then press Return.

Let’s assume you made a mistake and that the value of this_is_a_really_long_name

should be 3.5, not 2.5. You can use another keyboard shortcut to help you fix it.

For example, you can press ↑ to bring the last command you typed and edit it. Or,

type this and then press Cmd/Ctrl+↑ to list all the commands you’ve typed that start

with those letters. Use the arrow keys to navigate and then press Enter to retype the

command. Change 2.5 to 3.5 and rerun.

Make yet another assignment:

r_rocks <- 2^3

Let’s try to inspect it:

r_rock

 #> Error: object 'r_rock' not found

R_rocks

 #> Error: object 'R_rocks' not found

This illustrates the implied contract between you and R: R will do the tedious compu‐

tations for you, but in exchange, you must be completely precise in your instructions.

What’s in a Name? | 35

If not, you’re likely to get an error that says the object you’re looking for was not

found. Typos matter; R can’t read your mind and say, “Oh, they probably meant

r_rocks when they typed r_rock.” Case matters; similarly, R can’t read your mind

and say, “Oh, they probably meant r_rocks when they typed R_rocks.”

Calling Functions

R has a large collection of built-in functions that are called like this:

function_name(argument1 = value1, argument2 = value2, ...)

Let’s try using seq(), which makes regular seq uences of numbers and, while we’re at it, learn more helpful features of RStudio. Type se and hit Tab. A pop-up shows

you possible completions. Specify seq() by typing more (a q) to disambiguate or by using ↑/↓ arrows to select. Notice the floating tooltip that pops up, reminding you of

the function’s arguments and purpose. If you want more help, press F1 to get all the

details on the help tab in the lower-right pane.

When you’ve selected the function you want, press Tab again. RStudio will add

matching opening (() and closing ()) parentheses for you. Type the name of the first

argument, from, and set it equal to 1. Then, type the name of the second argument,

to, and set it equal to 10. Finally, hit Return.

seq(from = 1, to = 10)

 #> [1] 1 2 3 4 5 6 7 8 9 10

We often omit the names of the first several arguments in function calls, so we can

rewrite this as follows:

seq(1, 10)

 #> [1] 1 2 3 4 5 6 7 8 9 10

Type the following code and notice that RStudio provides similar assistance with the

paired quotation marks:

x <- "hello world"

Quotation marks and parentheses must always come in a pair. RStudio does its best

to help you, but it’s still possible to mess up and end up with a mismatch. If this

happens, R will show you the continuation character, +:

> x <- "hello

+

The + tells you that R is waiting for more input; it doesn’t think you’re done yet.

Usually, this means you’ve forgotten either a " or a). Either add the missing pair, or

press Esc to abort the expression and try again.

Note that the Environment tab in the upper-right pane displays all of the objects that

you’ve created:

36 | Chapter 2: Workflow: Basics

[image: Image 33]

Exercises

1. Why does this code not work?

my_variable <- 10

my_varıable

 #> Error in eval(expr, envir, enclos): object 'my_varıable' not found

Look carefully! (This may seem like an exercise in pointlessness, but training

your brain to notice even the tiniest difference will pay off when programming.)

2. Tweak each of the following R commands so that they run correctly:

libary(todyverse)

ggplot(dTA = mpg) +

geom_point(maping = aes(x = displ y = hwy)) +

geom_smooth(method = "lm)

3. Press Option+Shift+K/Alt+Shift+K. What happens? How can you get to the

same place using the menus?

4. Let’s revisit an exercise from “Saving Your Plots” on page 30. Run the following

lines of code. Which of the two plots is saved as mpg-plot.png? Why?

my_bar_plot <- ggplot(mpg, aes(x = class)) +

geom_bar()

my_scatter_plot <- ggplot(mpg, aes(x = cty, y = hwy)) +

geom_point()

ggsave(filename = "mpg-plot.png", plot = my_bar_plot)

Summary

Now that you’ve learned a little more about how R code works and gotten some tips

to help you understand your code when you come back to it in the future, in the

next chapter, we’ll continue your data science journey by teaching you about dplyr,

the tidyverse package that helps you transform data, whether it’s selecting important

variables, filtering down to rows of interest, or computing summary statistics.

Summary | 37

CHAPTER 3

Data Transformation

Introduction

Visualization is an important tool for generating insight, but it’s rare that you get the

data in exactly the right form you need to make the graph you want. Often you’ll need

to create some new variables or summaries to answer your questions with your data,

or maybe you just want to rename the variables or reorder the observations to make

the data a little easier to work with. You’ll learn how to do all that (and more!) in this

chapter, which will introduce you to data transformation using the dplyr package and

a new dataset on flights that departed New York City in 2013.

The goal of this chapter is to give you an overview of all the key tools for transform‐

ing a data frame. We’ll start with functions that operate on rows and then columns

of a data frame, and then we’ll circle back to talk more about the pipe, an important

tool that you use to combine verbs. We will then introduce the ability to work with

groups. We will end the chapter with a case study that showcases these functions in

action, and we’ll come back to the functions in more detail in later chapters, as we

start to dig into specific types of data (e.g., numbers, strings, dates).

Prerequisites

In this chapter we’ll focus on the dplyr package, another core member of the tidy‐

verse. We’ll illustrate the key ideas using data from the nycflights13 package and use

ggplot2 to help us understand the data.

39

library(nycflights13)

library(tidyverse)

 #> ── Attaching core tidyverse packages ───────────────────── tidyverse 2.0.0 ──

 #> ✔ dplyr 1.1.0.9000 ✔ readr 2.1.4

 #> ✔ forcats 1.0.0 ✔ stringr 1.5.0

 #> ✔ ggplot2 3.4.1 ✔ tibble 3.1.8

 #> ✔ lubridate 1.9.2 ✔ tidyr 1.3.0

 #> ✔ purrr 1.0.1

 #> ── Conflicts ─────────────────────────────────────── tidyverse_conflicts() ──

 #> ✖ dplyr::filter() masks stats::filter()

 #> ✖ dplyr::lag() masks stats::lag()

 #> ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all

 #> conflicts to become errors

Take careful note of the conflicts message that’s printed when you load the tidyverse.

It tells you that dplyr overwrites some functions in base R. If you want to use the

base version of these functions after loading dplyr, you’ll need to use their full names:

stats::filter() and stats::lag(). So far we’ve mostly ignored which package a function comes from because most of the time it doesn’t matter. However, knowing

the package can facilitate finding help as well as related functions, so when we need to

be precise about which function a package comes from, we’ll use the same syntax as

R: packagename::functionname().

nycflights13

To explore the basic dplyr verbs, we’re going to use nycflights13::flights. This dataset contains all 336,776 flights that departed from New York City in 2013. The

data comes from the US Bureau of Transportation Statistics and is documented

in ?flights.

flights

 #> # A tibble: 336,776 × 19

 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

 #> <int> <int> <int> <int> <int> <dbl> <int> <int>

 #> 1 2013 1 1 517 515 2 830 819

 #> 2 2013 1 1 533 529 4 850 830

 #> 3 2013 1 1 542 540 2 923 850

 #> 4 2013 1 1 544 545 -1 1004 1022

 #> 5 2013 1 1 554 600 -6 812 837

 #> 6 2013 1 1 554 558 -4 740 728

 #> # … with 336,770 more rows, and 11 more variables: arr_delay <dbl>,

 #> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, …

flights is a tibble, a special type of data frame used by the tidyverse to avoid some

common gotchas. The most important difference between tibbles and data frames is

the way tibbles print; they are designed for large datasets, so they show only the first

few rows and only the columns that fit on one screen. There are a few options to see

everything. If you’re using RStudio, the most convenient is probably View(flights),

which will open an interactive scrollable and filterable view. Otherwise, you can use

print(flights, width = Inf) to show all columns or use glimpse(): 40 | Chapter 3: Data Transformation

glimpse(flights)

 #> Rows: 336,776

 #> Columns: 19

 #> $ year <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013…

 #> $ month <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…

 #> $ day <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1…

 #> $ dep_time <int> 517, 533, 542, 544, 554, 554, 555, 557, 557, 558, 55…

 #> $ sched_dep_time <int> 515, 529, 540, 545, 600, 558, 600, 600, 600, 600, 60…

 #> $ dep_delay <dbl> 2, 4, 2, -1, -6, -4, -5, -3, -3, -2, -2, -2, -2, -2,…

 #> $ arr_time <int> 830, 850, 923, 1004, 812, 740, 913, 709, 838, 753, 8…

 #> $ sched_arr_time <int> 819, 830, 850, 1022, 837, 728, 854, 723, 846, 745, 8…

 #> $ arr_delay <dbl> 11, 20, 33, -18, -25, 12, 19, -14, -8, 8, -2, -3, 7,…

 #> $ carrier <chr> "UA", "UA", "AA", "B6", "DL", "UA", "B6", "EV", "B6"…

 #> $ flight <int> 1545, 1714, 1141, 725, 461, 1696, 507, 5708, 79, 301…

 #> $ tailnum <chr> "N14228", "N24211", "N619AA", "N804JB", "N668DN", "N…

 #> $ origin <chr> "EWR", "LGA", "JFK", "JFK", "LGA", "EWR", "EWR", "LG…

 #> $ dest <chr> "IAH", "IAH", "MIA", "BQN", "ATL", "ORD", "FLL", "IA…

 #> $ air_time <dbl> 227, 227, 160, 183, 116, 150, 158, 53, 140, 138, 149…

 #> $ distance <dbl> 1400, 1416, 1089, 1576, 762, 719, 1065, 229, 944, 73…

 #> $ hour <dbl> 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6…

 #> $ minute <dbl> 15, 29, 40, 45, 0, 58, 0, 0, 0, 0, 0, 0, 0, 0, 0, 59…

 #> $ time_hour <dttm> 2013-01-01 05:00:00, 2013-01-01 05:00:00, 2013-01-0…

In both views, the variables names are followed by abbreviations that tell you the

type of each variable: <int> is short for integer, <dbl> is short for double (aka real

numbers), <chr> for character (aka strings), and <dttm> for date-time. These are

important because the operations you can perform on a column depend so much on

its “type.”

dplyr Basics

You’re about to learn the primary dplyr verbs (functions), which will allow you to

solve the vast majority of your data manipulation challenges. But before we discuss

their individual differences, it’s worth stating what they have in common:

• The first argument is always a data frame.

• The subsequent arguments typically describe which columns to operate on, using

the variable names (without quotes).

• The output is always a new data frame.

Because each verb does one thing well, solving complex problems will usually require

combining multiple verbs, and we’ll do so with the pipe, |>. We’ll discuss the pipe

more in “The Pipe” on page 51, but in brief, the pipe takes the thing on its left

and passes it along to the function on its right so that x |> f(y) is equivalent to

f(x, y), and x |> f(y) |> g(z) is equivalent to g(f(x, y), z). The easiest way

to pronounce the pipe is “then.” That makes it possible to get a sense of the following

code even though you haven’t yet learned the details:

Introduction | 41

flights |>

filter(dest == "IAH") |>

group_by(year, month, day) |>

summarize(

arr_delay = mean(arr_delay, na.rm = TRUE)

)

dplyr’s verbs are organized into four groups based on what they operate on: rows,

 columns, groups, and tables. In the following sections, you’ll learn the most important verbs for rows, columns, and groups; then we’ll come back to the join verbs that work

on tables in Chapter 19. Let’s dive in!

Rows

The most important verbs that operate on rows of a dataset are filter(), which

changes which rows are present without changing their order, and arrange(), which changes the order of the rows without changing which are present. Both

functions affect only the rows, and the columns are left unchanged. We’ll also dis‐

cuss distinct(), which finds rows with unique values, but unlike arrange() and

filter(), it can also optionally modify the columns.

filter()

filter() allows you to keep rows based on the values of the columns. 1 The first argument is the data frame. The second and subsequent arguments are the conditions

that must be true to keep the row. For example, we could find all flights that departed

more than 120 minutes (two hours) late:

flights |>

filter(dep_delay > 120)

 #> # A tibble: 9,723 × 19

 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

 #> <int> <int> <int> <int> <int> <dbl> <int> <int>

 #> 1 2013 1 1 848 1835 853 1001 1950

 #> 2 2013 1 1 957 733 144 1056 853

 #> 3 2013 1 1 1114 900 134 1447 1222

 #> 4 2013 1 1 1540 1338 122 2020 1825

 #> 5 2013 1 1 1815 1325 290 2120 1542

 #> 6 2013 1 1 1842 1422 260 1958 1535

 #> # … with 9,717 more rows, and 11 more variables: arr_delay <dbl>,

 #> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, …

As well as > (greater than), you can use >= (greater than or equal to), < (less than),

<= (less than or equal to), == (equal to), and != (not equal to). You can also combine

conditions with & or , to indicate “and” (check for both conditions) or with | to

indicate “or” (check for either condition):

1 Later, you’ll learn about the slice_*() family, which allows you to choose rows based on their positions.

42 | Chapter 3: Data Transformation

 # Flights that departed on January 1

flights |>

filter(month == 1 & day == 1)

 #> # A tibble: 842 × 19

 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

 #> <int> <int> <int> <int> <int> <dbl> <int> <int>

 #> 1 2013 1 1 517 515 2 830 819

 #> 2 2013 1 1 533 529 4 850 830

 #> 3 2013 1 1 542 540 2 923 850

 #> 4 2013 1 1 544 545 -1 1004 1022

 #> 5 2013 1 1 554 600 -6 812 837

 #> 6 2013 1 1 554 558 -4 740 728

 #> # … with 836 more rows, and 11 more variables: arr_delay <dbl>,

 #> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, …

 # Flights that departed in January or February

flights |>

filter(month == 1 | month == 2)

 #> # A tibble: 51,955 × 19

 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

 #> <int> <int> <int> <int> <int> <dbl> <int> <int>

 #> 1 2013 1 1 517 515 2 830 819

 #> 2 2013 1 1 533 529 4 850 830

 #> 3 2013 1 1 542 540 2 923 850

 #> 4 2013 1 1 544 545 -1 1004 1022

 #> 5 2013 1 1 554 600 -6 812 837

 #> 6 2013 1 1 554 558 -4 740 728

 #> # … with 51,949 more rows, and 11 more variables: arr_delay <dbl>,

 #> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, …

There’s a useful shortcut when you’re combining | and ==: %in%. It keeps rows where

the variable equals one of the values on the right:

 # A shorter way to select flights that departed in January or February

flights |>

filter(month %in% c(1, 2))

 #> # A tibble: 51,955 × 19

 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

 #> <int> <int> <int> <int> <int> <dbl> <int> <int>

 #> 1 2013 1 1 517 515 2 830 819

 #> 2 2013 1 1 533 529 4 850 830

 #> 3 2013 1 1 542 540 2 923 850

 #> 4 2013 1 1 544 545 -1 1004 1022

 #> 5 2013 1 1 554 600 -6 812 837

 #> 6 2013 1 1 554 558 -4 740 728

 #> # … with 51,949 more rows, and 11 more variables: arr_delay <dbl>,

 #> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, …

We’ll come back to these comparisons and logical operators in more detail in

Chapter 12.

When you run filter(), dplyr executes the filtering operation, creating a new data frame, and then prints it. It doesn’t modify the existing flights dataset because

dplyr functions never modify their inputs. To save the result, you need to use the

assignment operator, <-:

jan1 <- flights |>

filter(month == 1 & day == 1)

Rows | 43

Common Mistakes

When you’re starting out with R, the easiest mistake to make is to use = instead of ==

when testing for equality. filter() will let you know when this happens: flights |>

filter(month = 1)

 #> Error in `filter()`:

 #> ! We detected a named input.

 #> ℹ This usually means that you've used `=ìnstead of `==`.

 #> ℹ Did you mean `month == 1`?

Another mistake is writing “or” statements like you would in English:

flights |>

filter(month == 1 | 2)

This “works” in the sense that it doesn’t throw an error, but it doesn’t do what you

want because | first checks the condition month == 1 and then checks the condition

2, which is not a sensible condition to check. We’ll learn more about what’s happening

here and why in “Boolean Operations” on page 279.

arrange()

arrange() changes the order of the rows based on the value of the columns. It takes a data frame and a set of column names (or more complicated expressions) to order by.

If you provide more than one column name, each additional column will be used to

break ties in the values of preceding columns. For example, the following code sorts

by the departure time, which is spread over four columns. We get the earliest years

first, then within a year the earliest months, etc.

flights |>

arrange(year, month, day, dep_time)

 #> # A tibble: 336,776 × 19

 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

 #> <int> <int> <int> <int> <int> <dbl> <int> <int>

 #> 1 2013 1 1 517 515 2 830 819

 #> 2 2013 1 1 533 529 4 850 830

 #> 3 2013 1 1 542 540 2 923 850

 #> 4 2013 1 1 544 545 -1 1004 1022

 #> 5 2013 1 1 554 600 -6 812 837

 #> 6 2013 1 1 554 558 -4 740 728

 #> # … with 336,770 more rows, and 11 more variables: arr_delay <dbl>,

 #> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, …

You can use desc() on a column inside of arrange() to reorder the data frame based on that column in descending (big-to-small) order. For example, this code orders

flights from most to least delayed:

44 | Chapter 3: Data Transformation

flights |>

arrange(desc(dep_delay))

 #> # A tibble: 336,776 × 19

 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

 #> <int> <int> <int> <int> <int> <dbl> <int> <int>

 #> 1 2013 1 9 641 900 1301 1242 1530

 #> 2 2013 6 15 1432 1935 1137 1607 2120

 #> 3 2013 1 10 1121 1635 1126 1239 1810

 #> 4 2013 9 20 1139 1845 1014 1457 2210

 #> 5 2013 7 22 845 1600 1005 1044 1815

 #> 6 2013 4 10 1100 1900 960 1342 2211

 #> # … with 336,770 more rows, and 11 more variables: arr_delay <dbl>,

 #> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, …

Note that the number of rows has not changed. We’re only arranging the data; we’re

not filtering it.

distinct()

distinct() finds all the unique rows in a dataset, so in a technical sense, it primarily operates on the rows. Most of the time, however, you’ll want the distinct combination

of some variables, so you can also optionally supply column names:

 # Remove duplicate rows, if any

flights |>

distinct()

 #> # A tibble: 336,776 × 19

 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

 #> <int> <int> <int> <int> <int> <dbl> <int> <int>

 #> 1 2013 1 1 517 515 2 830 819

 #> 2 2013 1 1 533 529 4 850 830

 #> 3 2013 1 1 542 540 2 923 850

 #> 4 2013 1 1 544 545 -1 1004 1022

 #> 5 2013 1 1 554 600 -6 812 837

 #> 6 2013 1 1 554 558 -4 740 728

 #> # … with 336,770 more rows, and 11 more variables: arr_delay <dbl>,

 #> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, …

 # Find all unique origin and destination pairs

flights |>

distinct(origin, dest)

 #> # A tibble: 224 × 2

 #> origin dest

 #> <chr> <chr>

 #> 1 EWR IAH

 #> 2 LGA IAH

 #> 3 JFK MIA

 #> 4 JFK BQN

 #> 5 LGA ATL

 #> 6 EWR ORD

 #> # … with 218 more rows

Alternatively, if you want to keep the other columns when filtering for unique rows,

you can use the .keep_all = TRUE option:

Rows | 45

flights |>

distinct(origin, dest, .keep_all = TRUE)

 #> # A tibble: 224 × 19

 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

 #> <int> <int> <int> <int> <int> <dbl> <int> <int>

 #> 1 2013 1 1 517 515 2 830 819

 #> 2 2013 1 1 533 529 4 850 830

 #> 3 2013 1 1 542 540 2 923 850

 #> 4 2013 1 1 544 545 -1 1004 1022

 #> 5 2013 1 1 554 600 -6 812 837

 #> 6 2013 1 1 554 558 -4 740 728

 #> # … with 218 more rows, and 11 more variables: arr_delay <dbl>,

 #> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, …

It’s not a coincidence that all of these distinct flights are on January 1: distinct() will find the first occurrence of a unique row in the dataset and discard the rest.

If you want to find the number of occurrences instead, you’re better off swapping

distinct() for count(), and with the sort = TRUE argument you can arrange them in descending order of number of occurrences. You’ll learn more about count in

“Counts” on page 222.

flights |>

count(origin, dest, sort = TRUE)

 #> # A tibble: 224 × 3

 #> origin dest n

 #> <chr> <chr> <int>

 #> 1 JFK LAX 11262

 #> 2 LGA ATL 10263

 #> 3 LGA ORD 8857

 #> 4 JFK SFO 8204

 #> 5 LGA CLT 6168

 #> 6 EWR ORD 6100

 #> # … with 218 more rows

Exercises

1. In a single pipeline for each condition, find all flights that meet the condition:

• Had an arrival delay of two or more hours

• Flew to Houston (IAH or HOU)

• Were operated by United, American, or Delta

• Departed in summer (July, August, and September)

• Arrived more than two hours late, but didn’t leave late

• Were delayed by at least an hour, but made up more than 30 minutes in flight

2. Sort flights to find the flights with the longest departure delays. Find the flights

that left earliest in the morning.

46 | Chapter 3: Data Transformation

3. Sort flights to find the fastest flights. (Hint: Try including a math calculation

inside of your function.)

4. Was there a flight on every day of 2013?

5. Which flights traveled the farthest distance? Which traveled the least distance?

6. Does it matter what order you used filter() and arrange() if you’re using both? Why/why not? Think about the results and how much work the functions

would have to do.

Columns

There are four important verbs that affect the columns without changing the rows:

mutate() creates new columns that are derived from the existing columns, select()

changes which columns are present, rename() changes the names of the columns,

and relocate() changes the positions of the columns.

mutate()

The job of mutate() is to add new columns that are calculated from the existing columns. In the transform chapters, you’ll learn a large set of functions that you can

use to manipulate different types of variables. For now, we’ll stick with basic algebra,

which allows us to compute the gain, how much time a delayed flight made up in the

air, and the speed in miles per hour:

flights |>

mutate(

gain = dep_delay - arr_delay,

speed = distance / air_time * 60

)

 #> # A tibble: 336,776 × 21

 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

 #> <int> <int> <int> <int> <int> <dbl> <int> <int>

 #> 1 2013 1 1 517 515 2 830 819

 #> 2 2013 1 1 533 529 4 850 830

 #> 3 2013 1 1 542 540 2 923 850

 #> 4 2013 1 1 544 545 -1 1004 1022

 #> 5 2013 1 1 554 600 -6 812 837

 #> 6 2013 1 1 554 558 -4 740 728

 #> # … with 336,770 more rows, and 13 more variables: arr_delay <dbl>,

 #> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, …

By default, mutate() adds new columns on the right side of your dataset, which makes it difficult to see what’s happening here. We can use the .before argument to

instead add the variables to the left side:2

2 Remember that in RStudio, the easiest way to see a dataset with many columns is View().

Columns | 47

flights |>

mutate(

gain = dep_delay - arr_delay,

speed = distance / air_time * 60,

.before = 1

)

 #> # A tibble: 336,776 × 21

 #> gain speed year month day dep_time sched_dep_time dep_delay arr_time

 #> <dbl> <dbl> <int> <int> <int> <int> <int> <dbl> <int>

 #> 1 -9 370. 2013 1 1 517 515 2 830

 #> 2 -16 374. 2013 1 1 533 529 4 850

 #> 3 -31 408. 2013 1 1 542 540 2 923

 #> 4 17 517. 2013 1 1 544 545 -1 1004

 #> 5 19 394. 2013 1 1 554 600 -6 812

 #> 6 -16 288. 2013 1 1 554 558 -4 740

 #> # … with 336,770 more rows, and 12 more variables: sched_arr_time <int>,

 #> # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, …

The . is a sign that .before is an argument to the function, not the name of a third

new variable we are creating. You can also use .after to add after a variable, and in

both .before and .after you can use the variable name instead of a position. For

example, we could add the new variables after day:

flights |>

mutate(

gain = dep_delay - arr_delay,

speed = distance / air_time * 60,

.after = day

)

Alternatively, you can control which variables are kept with the .keep argument. A

particularly useful argument is "used", which specifies that we keep only the columns

that were involved or created in the mutate() step. For example, the following output will contain only the variables dep_delay, arr_delay, air_time, gain, hours, and

gain_per_hour:

flights |>

mutate(

gain = dep_delay - arr_delay,

hours = air_time / 60,

gain_per_hour = gain / hours,

.keep = "used"

)

Note that since we haven’t assigned the result of the previous computation back to

flights, the new variables gain, hours, and gain_per_hour will be printed only and

will not be stored in a data frame. And if we want them to be available in a data

frame for future use, we should think carefully about whether we want the result to

be assigned back to flights, overwriting the original data frame with many more

variables, or to a new object. Often, the right answer is a new object that is named

informatively to indicate its contents, e.g., delay_gain, but you might also have good

reasons for overwriting flights.

48 | Chapter 3: Data Transformation

select()

It’s not uncommon to get datasets with hundreds or even thousands of variables.

In this situation, the first challenge is often just focusing on the variables you’re

interested in. select() allows you to rapidly zoom in on a useful subset using operations based on the names of the variables:

• Select columns by name:

flights |>

select(year, month, day)

• Select all columns between year and day (inclusive):

flights |>

select(year:day)

• Select all columns except those from year to day (inclusive):

flights |>

select(!year:day)

You can also use - instead of ! (and you’re likely to see that in the wild); we

recommend ! because it reads as “not” and combines well with & and |.

• Select all columns that are characters:

flights |>

select(where(is.character))

There are a number of helper functions you can use within select(): starts_with("abc")

Matches names that begin with “abc”

ends_with("xyz")

Matches names that end with “xyz”

contains("ijk")

Matches names that contain “ijk”

num_range("x", 1:3)

Matches x1, x2, and x3

See ?select for more details. Once you know regular expressions (the topic of

Chapter 15), you’ll also be able to use matches() to select variables that match a pattern.

You can rename variables as you select() them by using =. The new name appears on the left side of the =, and the old variable appears on the right side:

flights |>

select(tail_num = tailnum)

 #> # A tibble: 336,776 × 1

 #> tail_num

 #> <chr>

Columns | 49

 #> 1 N14228

 #> 2 N24211

 #> 3 N619AA

 #> 4 N804JB

 #> 5 N668DN

 #> 6 N39463

 #> # … with 336,770 more rows

rename()

If you want to keep all the existing variables and just want to rename a few, you can

use rename() instead of select():

flights |>

rename(tail_num = tailnum)

 #> # A tibble: 336,776 × 19

 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

 #> <int> <int> <int> <int> <int> <dbl> <int> <int>

 #> 1 2013 1 1 517 515 2 830 819

 #> 2 2013 1 1 533 529 4 850 830

 #> 3 2013 1 1 542 540 2 923 850

 #> 4 2013 1 1 544 545 -1 1004 1022

 #> 5 2013 1 1 554 600 -6 812 837

 #> 6 2013 1 1 554 558 -4 740 728

 #> # … with 336,770 more rows, and 11 more variables: arr_delay <dbl>,

 #> # carrier <chr>, flight <int>, tail_num <chr>, origin <chr>, dest <chr>, …

If you have a bunch of inconsistently named columns and it would be painful to fix

them all by hand, check out janitor::clean_names(), which provides some useful

automated cleaning.

relocate()

Use relocate() to move variables around. You might want to collect related variables together or move important variables to the front. By default relocate() moves variables to the front:

flights |>

relocate(time_hour, air_time)

 #> # A tibble: 336,776 × 19

 #> time_hour air_time year month day dep_time sched_dep_time

 #> <dttm> <dbl> <int> <int> <int> <int> <int>

 #> 1 2013-01-01 05:00:00 227 2013 1 1 517 515

 #> 2 2013-01-01 05:00:00 227 2013 1 1 533 529

 #> 3 2013-01-01 05:00:00 160 2013 1 1 542 540

 #> 4 2013-01-01 05:00:00 183 2013 1 1 544 545

 #> 5 2013-01-01 06:00:00 116 2013 1 1 554 600

 #> 6 2013-01-01 05:00:00 150 2013 1 1 554 558

 #> # … with 336,770 more rows, and 12 more variables: dep_delay <dbl>,

 #> # arr_time <int>, sched_arr_time <int>, arr_delay <dbl>, carrier <chr>, …

50 | Chapter 3: Data Transformation

You can also specify where to put them using the .before and .after arguments, just

like in mutate():

flights |>

relocate(year:dep_time, .after = time_hour)

flights |>

relocate(starts_with("arr"), .before = dep_time)

Exercises

1. Compare dep_time, sched_dep_time, and dep_delay. How would you expect

those three numbers to be related?

2. Brainstorm as many ways as possible to select dep_time, dep_delay, arr_time,

and arr_delay from flights.

3. What happens if you specify the name of the same variable multiple times in a

select() call?

4. What does the any_of() function do? Why might it be helpful in conjunction with this vector?

variables <- c("year", "month", "day", "dep_delay", "arr_delay") 5. Does the result of running the following code surprise you? How do the select

helpers deal with upper- and lowercase by default? How can you change that

default?

flights |> select(contains("TIME"))

6. Rename air_time to air_time_min to indicate units of measurement and move

it to the beginning of the data frame.

7. Why doesn’t the following work, and what does the error mean?

flights |>

select(tailnum) |>

arrange(arr_delay)

 #> Error in àrrange()`:

 #> ℹ In argument: `..1 = arr_delay`.

 #> Caused by error:

 #> ! object 'arr_delay' not found

The Pipe

We’ve shown you simple examples of the pipe, but its real power arises when you start

to combine multiple verbs.

For example, imagine that you wanted to find the fast flights to Houston’s IAH

airport: you need to combine filter(), mutate(), select(), and arrange(): The Pipe | 51

flights |>

filter(dest == "IAH") |>

mutate(speed = distance / air_time * 60) |>

select(year:day, dep_time, carrier, flight, speed) |>

arrange(desc(speed))

 #> # A tibble: 7,198 × 7

 #> year month day dep_time carrier flight speed

 #> <int> <int> <int> <int> <chr> <int> <dbl>

 #> 1 2013 7 9 707 UA 226 522.

 #> 2 2013 8 27 1850 UA 1128 521.

 #> 3 2013 8 28 902 UA 1711 519.

 #> 4 2013 8 28 2122 UA 1022 519.

 #> 5 2013 6 11 1628 UA 1178 515.

 #> 6 2013 8 27 1017 UA 333 515.

 #> # … with 7,192 more rows

Even though this pipeline has four steps, it’s easy to skim because the verbs come at

the start of each line: start with the flights data, then filter, then mutate, then select,

and then arrange.

What would happen if we didn’t have the pipe? We could nest each function call

inside the previous call:

arrange(

select(

mutate(

filter(

flights,

dest == "IAH"

),

speed = distance / air_time * 60

),

year:day, dep_time, carrier, flight, speed

),

desc(speed)

)

Or we could use a bunch of intermediate objects:

flights1 <- filter(flights, dest == "IAH")

flights2 <- mutate(flights1, speed = distance / air_time * 60)

flights3 <- select(flights2, year:day, dep_time, carrier, flight, speed)

arrange(flights3, desc(speed))

While both forms have their time and place, the pipe generally produces data analysis

code that is easier to write and read.

To add the pipe to your code, we recommend using the built-in keyboard shortcut

Ctrl/Cmd+Shift+M. You’ll need to make one change to your RStudio options to use

|> instead of %>%, as shown in Figure 3-1; more on %>% shortly.

52 | Chapter 3: Data Transformation

[image: Image 34]

[image: Image 35]

 Figure 3-1. To insert |>, make sure the “Use native pipe operator” option is checked.

magrittr

If you’ve been using the tidyverse for a while, you might be familiar

with the %>% pipe provided by the magrittr package. The magrittr

package is included in the core tidyverse, so you can use %>%

whenever you load the tidyverse:

library(tidyverse)

mtcars %>%

group_by(cyl) %>%

summarize(n = n())

For simple cases, |> and %>% behave identically. So why do we

recommend the base pipe? First, because it’s part of base R, it’s

always available for you to use, even when you’re not using the

tidyverse. Second, |> is quite a bit simpler than %>%: in the time

between the invention of %>% in 2014 and the inclusion of |> in R

4.1.0 in 2021, we gained a better understanding of the pipe. This

allowed the base implementation to jettison infrequently used and

less important features.

Groups

So far you’ve learned about functions that work with rows and columns. dplyr gets

even more powerful when you add in the ability to work with groups. In this section,

we’ll focus on the most important functions: group_by(), summarize(), and the slice family of functions.

Groups | 53

group_by()

Use group_by() to divide your dataset into groups meaningful for your analysis: flights |>

group_by(month)

 #> # A tibble: 336,776 × 19

 #> # Groups: month [12]

 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

 #> <int> <int> <int> <int> <int> <dbl> <int> <int>

 #> 1 2013 1 1 517 515 2 830 819

 #> 2 2013 1 1 533 529 4 850 830

 #> 3 2013 1 1 542 540 2 923 850

 #> 4 2013 1 1 544 545 -1 1004 1022

 #> 5 2013 1 1 554 600 -6 812 837

 #> 6 2013 1 1 554 558 -4 740 728

 #> # … with 336,770 more rows, and 11 more variables: arr_delay <dbl>,

 #> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, …

group_by() doesn’t change the data, but if you look closely at the output, you’ll notice that the output indicates that it is “grouped by” month (Groups: month [12]).

This means subsequent operations will now work “by month. ” group_by() adds this grouped feature (referred to as class) to the data frame, which changes the behavior of

the subsequent verbs applied to the data.

summarize()

The most important grouped operation is a summary, which, if being used to cal‐

culate a single summary statistic, reduces the data frame to have a single row for

each group. In dplyr, this operation is performed by summarize(), 3 as shown by the

following example, which computes the average departure delay by month:

flights |>

group_by(month) |>

summarize(

avg_delay = mean(dep_delay)

)

 #> # A tibble: 12 × 2

 #> month avg_delay

 #> <int> <dbl>

 #> 1 1 NA

 #> 2 2 NA

 #> 3 3 NA

 #> 4 4 NA

 #> 5 5 NA

 #> 6 6 NA

 #> # … with 6 more rows

Uh-oh! Something has gone wrong, and all of our results are NAs (pronounced “N-

A”), R’s symbol for missing value. This happened because some of the observed flights

3 Or summarise() if you prefer British English.

54 | Chapter 3: Data Transformation

had missing data in the delay column, so when we calculated the mean including

those values, we got an NA result. We’ll come back to discuss missing values in detail

in Chapter 18, but for now we’ll tell the mean() function to ignore all missing values

by setting the argument na.rm to TRUE:

flights |>

group_by(month) |>

summarize(

delay = mean(dep_delay, na.rm = TRUE)

)

 #> # A tibble: 12 × 2

 #> month delay

 #> <int> <dbl>

 #> 1 1 10.0

 #> 2 2 10.8

 #> 3 3 13.2

 #> 4 4 13.9

 #> 5 5 13.0

 #> 6 6 20.8

 #> # … with 6 more rows

You can create any number of summaries in a single call to summarize(). You’ll learn various useful summaries in the upcoming chapters, but one useful summary is n(), which returns the number of rows in each group:

flights |>

group_by(month) |>

summarize(

delay = mean(dep_delay, na.rm = TRUE),

n = n()

)

 #> # A tibble: 12 × 3

 #> month delay n

 #> <int> <dbl> <int>

 #> 1 1 10.0 27004

 #> 2 2 10.8 24951

 #> 3 3 13.2 28834

 #> 4 4 13.9 28330

 #> 5 5 13.0 28796

 #> 6 6 20.8 28243

 #> # … with 6 more rows

Means and counts can get you a surprisingly long way in data science!

The slice_ Functions

There are five handy functions that allow you extract specific rows within each group:

df |> slice_head(n = 1)

Takes the first row from each group

df |> slice_tail(n = 1)

Takes the last row in each group

Groups | 55

df |> slice_min(x, n = 1)

Takes the row with the smallest value of column x

df |> slice_max(x, n = 1)

Takes the row with the largest value of column x

df |> slice_sample(n = 1)

takes one random row.

You can vary n to select more than one row, or instead of n =, you can use prop =

0.1 to select, say, 10% of the rows in each group. For example, the following code

finds the flights that are most delayed upon arrival at each destination:

flights |>

group_by(dest) |>

slice_max(arr_delay, n = 1) |>

relocate(dest)

 #> # A tibble: 108 × 19

 #> # Groups: dest [105]

 #> dest year month day dep_time sched_dep_time dep_delay arr_time

 #> <chr> <int> <int> <int> <int> <int> <dbl> <int>

 #> 1 ABQ 2013 7 22 2145 2007 98 132

 #> 2 ACK 2013 7 23 1139 800 219 1250

 #> 3 ALB 2013 1 25 123 2000 323 229

 #> 4 ANC 2013 8 17 1740 1625 75 2042

 #> 5 ATL 2013 7 22 2257 759 898 121

 #> 6 AUS 2013 7 10 2056 1505 351 2347

 #> # … with 102 more rows, and 11 more variables: sched_arr_time <int>,

 #> # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, …

Note that there are 105 destinations but we get 108 rows here. What’s up?

slice_min() and slice_max() keep tied values, so n = 1 means give us all rows with the highest value. If you want exactly one row per group, you can set with_ties

= FALSE.

This is similar to computing the max delay with summarize(), but you get the whole corresponding row (or rows if there’s a tie) instead of the single summary statistic.

Grouping by Multiple Variables

You can create groups using more than one variable. For example, we could make a

group for each date:

daily <- flights |>

group_by(year, month, day)

daily

 #> # A tibble: 336,776 × 19

 #> # Groups: year, month, day [365]

 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

 #> <int> <int> <int> <int> <int> <dbl> <int> <int>

 #> 1 2013 1 1 517 515 2 830 819

 #> 2 2013 1 1 533 529 4 850 830

 #> 3 2013 1 1 542 540 2 923 850

56 | Chapter 3: Data Transformation

 #> 4 2013 1 1 544 545 -1 1004 1022

 #> 5 2013 1 1 554 600 -6 812 837

 #> 6 2013 1 1 554 558 -4 740 728

 #> # … with 336,770 more rows, and 11 more variables: arr_delay <dbl>,

 #> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, …

When you summarize a tibble grouped by more than one variable, each summary

peels off the last group. In hindsight, this wasn’t a great way to make this function

work, but it’s difficult to change without breaking existing code. To make it obvious

what’s happening, dplyr displays a message that tells you how you can change this

behavior:

daily_flights <- daily |>

summarize(n = n())

 #> `summarise()` has grouped output by 'year', 'month'. You can override using

 #> thè.groupsàrgument.

If you’re happy with this behavior, you can explicitly request it to suppress the

message:

daily_flights <- daily |>

summarize(

n = n(),

.groups = "drop_last"

)

Alternatively, change the default behavior by setting a different value, e.g., "drop" to

drop all grouping or "keep" to preserve the same groups.

Ungrouping

You might also want to remove grouping from a data frame without using summa

rize(). You can do this with ungroup():

daily |>

ungroup()

 #> # A tibble: 336,776 × 19

 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

 #> <int> <int> <int> <int> <int> <dbl> <int> <int>

 #> 1 2013 1 1 517 515 2 830 819

 #> 2 2013 1 1 533 529 4 850 830

 #> 3 2013 1 1 542 540 2 923 850

 #> 4 2013 1 1 544 545 -1 1004 1022

 #> 5 2013 1 1 554 600 -6 812 837

 #> 6 2013 1 1 554 558 -4 740 728

 #> # … with 336,770 more rows, and 11 more variables: arr_delay <dbl>,

 #> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, …

Now let’s see what happens when you summarize an ungrouped data frame:

daily |>

ungroup() |>

summarize(

avg_delay = mean(dep_delay, na.rm = TRUE),

flights = n()

)

Groups | 57

 #> # A tibble: 1 × 2

 #> avg_delay flights

 #> <dbl> <int>

 #> 1 12.6 336776

You get a single row back because dplyr treats all the rows in an ungrouped data

frame as belonging to one group.

.by

dplyr 1.1.0 includes a new, experimental syntax for per-operation grouping, the .by

argument. group_by() and ungroup() aren’t going away, but you can now also use the .by argument to group within a single operation:

flights |>

summarize(

delay = mean(dep_delay, na.rm = TRUE),

n = n(),

.by = month

)

Or if you want to group by multiple variables:

flights |>

summarize(

delay = mean(dep_delay, na.rm = TRUE),

n = n(),

.by = c(origin, dest)

)

.by works with all verbs and has the advantage that you don’t need to use the .groups

argument to suppress the grouping message or ungroup() when you’re done.

We didn’t focus on this syntax in this chapter because it was very new when we wrote

the book. We did want to mention it because we think it has a lot of promise and it’s

likely to be quite popular. You can learn more about it in the dplyr 1.1.0 blog post.

Exercises

1. Which carrier has the worst average delays? Challenge: Can you disentangle the

effects of bad airports versus bad carriers? Why/why not? (Hint: Think about

flights |> group_by(carrier, dest) |> summarize(n()).)

2. Find the flights that are most delayed upon departure from each destination.

3. How do delays vary over the course of the day. Illustrate your answer with a plot.

4. What happens if you supply a negative n to slice_min() and friends?

5. Explain what count() does in terms of the dplyr verbs you just learned. What does the sort argument to count() do?

6. Suppose we have the following tiny data frame:

58 | Chapter 3: Data Transformation

df <- tibble(

x = 1:5,

y = c("a", "b", "a", "a", "b"),

z = c("K", "K", "L", "L", "K")

)

a. Write down what you think the output will look like; then check if you were

correct and describe what group_by() does.

df |>

group_by(y)

b. Write down what you think the output will look like; then check if you

were correct and describe what arrange() does. Also comment on how it’s different from the group_by() in part (a).

df |>

arrange(y)

c. Write down what you think the output will look like; then check if you were

correct and describe what the pipeline does.

df |>

group_by(y) |>

summarize(mean_x = mean(x))

d. Write down what you think the output will look like; then check if you were

correct and describe what the pipeline does. Then, comment on what the

message says.

df |>

group_by(y, z) |>

summarize(mean_x = mean(x))

e. Write down what you think the output will look like; then check if you were

correct and describe what the pipeline does. How is the output different from

the one in part (d)?

df |>

group_by(y, z) |>

summarize(mean_x = mean(x), .groups = "drop")

f. Write down what you think the outputs will look like; then check if you were

correct and describe what each pipeline does. How are the outputs of the two

pipelines different?

df |>

group_by(y, z) |>

summarize(mean_x = mean(x))

df |>

group_by(y, z) |>

mutate(mean_x = mean(x))

Groups | 59

Case Study: Aggregates and Sample Size

Whenever you do any aggregation, it’s always a good idea to include a count (n()).

That way, you can ensure that you’re not drawing conclusions based on very small

amounts of data. We’ll demonstrate this with some baseball data from the Lahman

package. Specifically, we will compare what proportion of times a player gets a hit (H)

versus the number of times they try to put the ball in play (AB):

batters <- Lahman::Batting |>

group_by(playerID) |>

summarize(

performance = sum(H, na.rm = TRUE) / sum(AB, na.rm = TRUE),

n = sum(AB, na.rm = TRUE)

)

batters

 #> # A tibble: 20,166 × 3

 #> playerID performance n

 #> <chr> <dbl> <int>

 #> 1 aardsda01 0 4

 #> 2 aaronha01 0.305 12364

 #> 3 aaronto01 0.229 944

 #> 4 aasedo01 0 5

 #> 5 abadan01 0.0952 21

 #> 6 abadfe01 0.111 9

 #> # … with 20,160 more rows

When we plot the skill of the batter (measured by the batting average, performance)

against the number of opportunities to hit the ball (measured by times at bat, n), we

see two patterns:

• The variation in performance is larger among players with fewer at-bats. The

shape of this plot is very characteristic: whenever you plot a mean (or other

summary statistics) versus group size, you’ll see that the variation decreases as

the sample size increases. 4

• There’s a positive correlation between skill (performance) and opportunities to

hit the ball (n) because teams want to give their best batters the most opportuni‐

ties to hit the ball.

batters |>

filter(n > 100) |>

ggplot(aes(x = n, y = performance)) +

geom_point(alpha = 1 / 10) +

geom_smooth(se = FALSE)

4 *cough* the law of large numbers *cough*

60 | Chapter 3: Data Transformation

[image: Image 36]

Note the handy pattern for combining ggplot2 and dplyr. You just have to remember

to switch from |>, for dataset processing, to + for adding layers to your plot.

This also has important implications for ranking. If you naively sort on desc(perfor

mance), the people with the best batting averages are clearly the ones who tried to put

the ball in play very few times and happened to get a hit; they’re not necessarily the

most skilled players:

batters |>

arrange(desc(performance))

 #> # A tibble: 20,166 × 3

 #> playerID performance n

 #> <chr> <dbl> <int>

 #> 1 abramge01 1 1

 #> 2 alberan01 1 1

 #> 3 banisje01 1 1

 #> 4 bartocl01 1 1

 #> 5 bassdo01 1 1

 #> 6 birasst01 1 2

 #> # … with 20,160 more rows

You can find a good explanation of this problem and how to overcome it on a blog

posts by David Robinson and Evan Miller.

Case Study: Aggregates and Sample Size | 61

Summary

In this chapter, you’ve learned the tools that dplyr provides for working with data

frames. The tools are roughly grouped into three categories: those that manipulate the

rows (such as filter() and arrange()), those that manipulate the columns (such as

select() and mutate()), and those that manipulate groups (such as group_by() and

summarize()). In this chapter, we focused on these “whole data frame” tools, but you haven’t yet learned much about what you can do with the individual variable. We’ll

come back to that in Part III, where each chapter will give you tools for a specific type of variable.

In the next chapter, we’ll pivot back to workflow to discuss the importance of code

style, keeping your code well organized to make it easy for you and others to read and

understand your code.

62 | Chapter 3: Data Transformation

CHAPTER 4

Workflow: Code Style

Good coding style is like correct punctuation: you can manage without it, butitsure‐

makesthingseasiertoread. Even as a very new programmer, it’s a good idea to work on

your code style. Using a consistent style makes it easier for others (including future

you!) to read your work and is particularly important if you need to get help from

someone else. This chapter will introduce the most important points of the tidyverse

style guide, which is used throughout this book.

Styling your code will feel a bit tedious to start with, but if you practice it, it will

soon become second nature. Additionally, there are some great tools to quickly restyle

existing code, like the styler package by Lorenz Walthert. Once you’ve installed it with install.packages("styler"), an easy way to use it is via RStudio’s command palette.

The command palette lets you use any built-in RStudio command and many addins

provided by packages. Open the palette by pressing Cmd/Ctrl+Shift+P and then type

 styler to see all the shortcuts offered by styler. Figure 4-1 shows the results.

63

[image: Image 37]

 Figure 4-1. RStudio’s command palette makes it easy to access every RStudio command

 using only the keyboard.

We’ll use the tidyverse and nycflights13 packages for code examples in this chapter.

library(tidyverse)

library(nycflights13)

Names

We talked briefly about names in “What’s in a Name?” on page 35. Remember that

variable names (those created by <- and those created by mutate()) should use only lowercase letters, numbers, and _. Use _ to separate words within a name.

 # Strive for:

short_flights <- flights |> filter(air_time < 60)

 # Avoid:

SHORTFLIGHTS <- flights |> filter(air_time < 60)

As a general rule of thumb, it’s better to prefer long, descriptive names that are easy

to understand rather than concise names that are fast to type. Short names save

relatively little time when writing code (especially since autocomplete will help you

finish typing them), but it can be time-consuming when you come back to old code

and are forced to puzzle out a cryptic abbreviation.

If you have a bunch of names for related things, do your best to be consistent. It’s easy

for inconsistencies to arise when you forget a previous convention, so don’t feel bad if

you have to go back and rename things. In general, if you have a bunch of variables

that are a variation on a theme, you’re better off giving them a common prefix rather

than a common suffix because autocomplete works best on the start of a variable.

64 | Chapter 4: Workflow: Code Style

Spaces

Put spaces on either side of mathematical operators apart from ^ (i.e., +, -, ==, <, …)

and around the assignment operator (<-).

 # Strive for

z <- (a + b)^2 / d

 # Avoid

z<-(a + b) ^ 2/d

Don’t put spaces inside or outside parentheses for regular function calls. Always put a

space after a comma, just like in standard English.

 # Strive for

mean(x, na.rm = TRUE)

 # Avoid

mean (x ,na.rm=TRUE)

It’s OK to add extra spaces if it improves alignment. For example, if you’re creating

multiple variables in mutate(), you might want to add spaces so that all the = line up. 1

This makes it easier to skim the code.

flights |>

mutate(

speed = distance / air_time,

dep_hour = dep_time %/% 100,

dep_minute = dep_time %% 100

)

Pipes

|> should always have a space before it and should typically be the last thing on a

line. This makes it easier to add new steps, rearrange existing steps, modify elements

within a step, and get a 10,000-foot view by skimming the verbs on the left side.

 # Strive for

flights |>

filter(!is.na(arr_delay), !is.na(tailnum)) |>

count(dest)

 # Avoid

flights|>filter(!is.na(arr_delay), !is.na(tailnum))|>count(dest)

If the function you’re piping into has named arguments (like mutate() or summa

rize()), put each argument on a new line. If the function doesn’t have named arguments (like select() or filter()), keep everything on one line unless it doesn’t fit, in which case you should put each argument on its own line.

1 Since dep_time is in HMM or HHMM format, we use integer division (%/%) to get hour and remainder (also known as modulo, %%) to get minute.

Pipes | 65

 # Strive for

flights |>

group_by(tailnum) |>

summarize(

delay = mean(arr_delay, na.rm = TRUE),

n = n()

)

 # Avoid

flights |>

group_by(

tailnum

) |>

summarize(delay = mean(arr_delay, na.rm = TRUE), n = n())

After the first step of the pipeline, indent each line by two spaces. RStudio automati‐

cally puts the spaces in for you after a line break following a |>. If you’re putting each

argument on its own line, indent by an extra two spaces. Make sure) is on its own

line and unindented to match the horizontal position of the function name.

 # Strive for

flights |>

group_by(tailnum) |>

summarize(

delay = mean(arr_delay, na.rm = TRUE),

n = n()

)

 # Avoid

flights|>

group_by(tailnum) |>

summarize(

delay = mean(arr_delay, na.rm = TRUE),

n = n()

)

 # Avoid

flights|>

group_by(tailnum) |>

summarize(

delay = mean(arr_delay, na.rm = TRUE),

n = n()

)

It’s OK to shirk some of these rules if your pipeline fits easily on one line. But in our

collective experience, it’s common for short snippets to grow longer, so you’ll usually

save time in the long run by starting with all the vertical space you need.

 # This fits compactly on one line

df |> mutate(y = x + 1)

 # While this takes up 4x as many lines, it's easily extended to

 # more variables and more steps in the future

df |>

mutate(

y = x + 1

)

66 | Chapter 4: Workflow: Code Style

Finally, be wary of writing very long pipes, say longer than 10–15 lines. Try to break

them up into smaller subtasks, giving each task an informative name. The names

will help cue the reader into what’s happening and makes it easier to check that inter‐

mediate results are as expected. Whenever you can give something an informative

name, you should, for example when you fundamentally change the structure of the

data, e.g., after pivoting or summarizing. Don’t expect to get it right the first time!

This means breaking up long pipelines if there are intermediate states that can get

good names.

ggplot2

The same basic rules that apply to the pipe also apply to ggplot2; just treat + the same

way as |>:

flights |>

group_by(month) |>

summarize(

delay = mean(arr_delay, na.rm = TRUE)

) |>

ggplot(aes(x = month, y = delay)) +

geom_point() +

geom_line()

Again, if you can’t fit all of the arguments to a function onto a single line, put each

argument on its own line:

flights |>

group_by(dest) |>

summarize(

distance = mean(distance),

speed = mean(distance / air_time, na.rm = TRUE)

) |>

ggplot(aes(x = distance, y = speed)) +

geom_smooth(

method = "loess",

span = 0.5,

se = FALSE,

color = "white",

linewidth = 4

) +

geom_point()

Watch for the transition from |> to +. We wish this transition wasn’t necessary, but

unfortunately, ggplot2 was written before the pipe was discovered.

Sectioning Comments

As your scripts get longer, you can use sectioning comments to break up your file into

manageable pieces:

Sectioning Comments | 67

[image: Image 38]

 # Load data --------------------------------------

 # Plot data --------------------------------------

RStudio provides a keyboard shortcut to create these headers (Cmd/Ctrl+Shift+R)

and will display them in the code navigation drop-down at the bottom left of the

editor, as shown in Figure 4-2.

 Figure 4-2. After adding sectioning comments to your script, you can easily navigate to

 them using the code navigation tool in the bottom left of the script editor.

Exercises

1. Restyle the following pipelines following the previous guidelines:

flights|>filter(dest=="IAH")|>group_by(year,month,day)|>summarize(n=n(),

delay=mean(arr_delay,na.rm=TRUE))|>filter(n>10)

flights|>filter(carrier=="UA",dest%in%c("IAH","HOU"),sched_dep_time> 0900,sched_arr_time<2000)|>group_by(flight)|>summarize(delay=mean(

arr_delay,na.rm=TRUE),cancelled=sum(is.na(arr_delay)),n=n())|>filter(n>10)

Summary

In this chapter, you learned the most important principles of code style. These may

feel like a set of arbitrary rules to start with (because they are!), but over time, as

you write more code and share code with more people, you’ll see how important a

consistent style is. And don’t forget about the styler package: it’s a great way to quickly

improve the quality of poorly styled code.

In the next chapter, we switch back to data science tools, learning about tidy data.

Tidy data is a consistent way of organizing your data frames that is used throughout

the tidyverse. This consistency makes your life easier because once you have tidy data,

it just works with the vast majority of tidyverse functions. Of course, life is never easy,

and most datasets you encounter in the wild will not already be tidy. So we’ll also

teach you how to use the tidyr package to tidy your untidy data.

68 | Chapter 4: Workflow: Code Style

CHAPTER 5

Data Tidying

Introduction

“Happy families are all alike; every unhappy family is unhappy in its own way.”

—Leo Tolstoy

“Tidy datasets are all alike, but every messy dataset is messy in its own way.”

—Hadley Wickham

In this chapter, you will learn a consistent way to organize your data in R using a

system called tidy data. Getting your data into this format requires some work up

front, but that work pays off in the long term. Once you have tidy data and the tidy

tools provided by packages in the tidyverse, you will spend much less time munging

data from one representation to another, allowing you to spend more time on the

data questions you care about.

In this chapter, you’ll first learn the definition of tidy data and see it applied to a

simple toy dataset. Then we’ll dive into the primary tool you’ll use for tidying data:

pivoting. Pivoting allows you to change the form of your data without changing any

of the values.

Prerequisites

In this chapter, we’ll focus on tidyr, a package that provides a bunch of tools to help

tidy up your messy datasets. tidyr is a member of the core tidyverse.

library(tidyverse)

From this chapter on, we’ll suppress the loading message from library(tidyverse).

69

Tidy Data

You can represent the same underlying data in multiple ways. The following example

shows the same data organized in three different ways. Each dataset shows the same

values of four variables: country, year, population, and number of documented cases of tuberculosis (TB), but each dataset organizes the values in a different way.

table1

 #> # A tibble: 6 × 4

 #> country year cases population

 #> <chr> <dbl> <dbl> <dbl>

 #> 1 Afghanistan 1999 745 19987071

 #> 2 Afghanistan 2000 2666 20595360

 #> 3 Brazil 1999 37737 172006362

 #> 4 Brazil 2000 80488 174504898

 #> 5 China 1999 212258 1272915272

 #> 6 China 2000 213766 1280428583

table2

 #> # A tibble: 12 × 4

 #> country year type count

 #> <chr> <dbl> <chr> <dbl>

 #> 1 Afghanistan 1999 cases 745

 #> 2 Afghanistan 1999 population 19987071

 #> 3 Afghanistan 2000 cases 2666

 #> 4 Afghanistan 2000 population 20595360

 #> 5 Brazil 1999 cases 37737

 #> 6 Brazil 1999 population 172006362

 #> # … with 6 more rows

table3

 #> # A tibble: 6 × 3

 #> country year rate

 #> <chr> <dbl> <chr>

 #> 1 Afghanistan 1999 745/19987071

 #> 2 Afghanistan 2000 2666/20595360

 #> 3 Brazil 1999 37737/172006362

 #> 4 Brazil 2000 80488/174504898

 #> 5 China 1999 212258/1272915272

 #> 6 China 2000 213766/1280428583

These are all representations of the same underlying data, but they are not equally

easy to use. One of them, table1, will be much easier to work with inside the

tidyverse because it’s tidy.

There are three interrelated rules that make a dataset tidy:

1. Each variable is a column; each column is a variable.

2. Each observation is a row; each row is an observation.

3. Each value is a cell; each cell is a single value.

70 | Chapter 5: Data Tidying

[image: Image 39]

Figure 5-1 shows the rules visually.

 Figure 5-1. Three rules make a dataset tidy: variables are columns, observations are

 rows, and values are cells.

Why ensure that your data is tidy? There are two main advantages:

1. There’s a general advantage to picking one consistent way of storing data. If you

have a consistent data structure, it’s easier to learn the tools that work with it

because they have an underlying uniformity.

2. There’s a specific advantage to placing variables in columns because it allows

R’s vectorized nature to shine. As you learned in “mutate()” on page 47 and

“summarize()” on page 54, most built-in R functions work with vectors of values.

That makes transforming tidy data feel particularly natural.

dplyr, ggplot2, and all the other packages in the tidyverse are designed to work with

tidy data.

Here are a few small examples showing how you might work with table1:

 # Compute rate per 10,000

table1 |>

mutate(rate = cases / population * 10000)

 #> # A tibble: 6 × 5

 #> country year cases population rate

 #> <chr> <dbl> <dbl> <dbl> <dbl>

 #> 1 Afghanistan 1999 745 19987071 0.373

 #> 2 Afghanistan 2000 2666 20595360 1.29

 #> 3 Brazil 1999 37737 172006362 2.19

 #> 4 Brazil 2000 80488 174504898 4.61

 #> 5 China 1999 212258 1272915272 1.67

 #> 6 China 2000 213766 1280428583 1.67

 # Compute total cases per year

table1 |>

group_by(year) |>

summarize(total_cases = sum(cases))

 #> # A tibble: 2 × 2

 #> year total_cases

 #> <dbl> <dbl>

 #> 1 1999 250740

 #> 2 2000 296920

Tidy Data | 71

[image: Image 40]

 # Visualize changes over time

ggplot(table1, aes(x = year, y = cases)) +

geom_line(aes(group = country), color = "grey50") +

geom_point(aes(color = country, shape = country)) +

scale_x_continuous(breaks = c(1999, 2000)) # x-axis breaks at 1999 and 2000

Exercises

1. For each of the sample tables, describe what each observation and each column

represents.

2. Sketch out the process you’d use to calculate the rate for table2 and table3. You

will need to perform four operations:

a. Extract the number of TB cases per country per year.

b. Extract the matching population per country per year.

c. Divide cases by population, and multiply by 10,000.

d. Store back in the appropriate place.

You haven’t yet learned all the functions you’d need to actually perform these

operations, but you should still be able to think through the transformations

you’d need.

72 | Chapter 5: Data Tidying

Lengthening Data

The principles of tidy data might seem so obvious that you wonder if you’ll ever

encounter a dataset that isn’t tidy. Unfortunately, however, most real data is untidy.

There are two main reasons:

1. Data is often organized to facilitate some goal other than analysis. For example,

it’s common for data to be structured to make data entry, not analysis, easy.

2. Most people aren’t familiar with the principles of tidy data, and it’s hard to derive

them yourself unless you spend a lot of time working with data.

This means that most real analyses will require at least a little tidying. You’ll begin

by figuring out what the underlying variables and observations are. Sometimes this is

easy; other times you’ll need to consult with the people who originally generated the

data. Next, you’ll pivot your data into a tidy form, with variables in the columns and

observations in the rows.

tidyr provides two functions for pivoting data: pivot_longer() and pivot_wider().

We’ll first start with pivot_longer() because it’s the most common case. Let’s dive into some examples.

Data in Column Names

The billboard dataset records the Billboard rank of songs in the year 2000:

billboard

 #> # A tibble: 317 × 79

 #> artist track date.entered wk1 wk2 wk3 wk4 wk5

 #> <chr> <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl>

 #> 1 2 Pac Baby Don't Cry (Ke… 2000-02-26 87 82 72 77 87

 #> 2 2Ge+her The Hardest Part O… 2000-09-02 91 87 92 NA NA

 #> 3 3 Doors Down Kryptonite 2000-04-08 81 70 68 67 66

 #> 4 3 Doors Down Loser 2000-10-21 76 76 72 69 67

 #> 5 504 Boyz Wobble Wobble 2000-04-15 57 34 25 17 17

 #> 6 98^0 Give Me Just One N… 2000-08-19 51 39 34 26 26

 #> # … with 311 more rows, and 71 more variables: wk6 <dbl>, wk7 <dbl>,

 #> # wk8 <dbl>, wk9 <dbl>, wk10 <dbl>, wk11 <dbl>, wk12 <dbl>, wk13 <dbl>, …

In this dataset, each observation is a song. The first three columns (artist, track

and date.entered) are variables that describe the song. Then we have 76 columns

(wk1-wk76) that describe the rank of the song in each week.1 Here, the column names

are one variable (the week), and the cell values are another (the rank).

To tidy this data, we’ll use pivot_longer():

1 The song will be included as long as it was in the top 100 at some point in 2000 and is tracked for up to 72

weeks after it appears.

Lengthening Data | 73

billboard |>

pivot_longer(

cols = starts_with("wk"),

names_to = "week",

values_to = "rank"

)

 #> # A tibble: 24,092 × 5

 #> artist track date.entered week rank

 #> <chr> <chr> <date> <chr> <dbl>

 #> 1 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk1 87

 #> 2 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk2 82

 #> 3 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk3 72

 #> 4 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk4 77

 #> 5 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk5 87

 #> 6 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk6 94

 #> 7 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk7 99

 #> 8 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk8 NA

 #> 9 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk9 NA

 #> 10 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk10 NA

 #> # … with 24,082 more rows

After the data, there are three key arguments:

cols

Specifies which columns need to be pivoted (i.e., which columns aren’t vari‐

ables). This argument uses the same syntax as select(), so here we could

use !c(artist, track, date.entered) or starts_with("wk").

names_to

Names the variable stored in the column names; we named that variable week.

values_to

Names the variable stored in the cell values; we named that variable rank.

Note that in the code "week" and "rank" are quoted because those are new variables

we’re creating; they don’t yet exist in the data when we run the pivot_longer() call.

Now let’s turn our attention to the resulting longer data frame. What happens if a

song is in the top 100 for less than 76 weeks? Take 2 Pac’s “Baby Don’t Cry,” for

example. The previous output suggests that it was only in the top 100 for 7 weeks,

and all the remaining weeks are filled in with missing values. These NAs don’t really

represent unknown observations; they were forced to exist by the structure of the

dataset, 2 so we can ask pivot_longer() to get rid of them by setting values_drop_na

= TRUE:

2 We’ll come back to this idea in Chapter 18.

74 | Chapter 5: Data Tidying

billboard |>

pivot_longer(

cols = starts_with("wk"),

names_to = "week",

values_to = "rank",

values_drop_na = TRUE

)

 #> # A tibble: 5,307 × 5

 #> artist track date.entered week rank

 #> <chr> <chr> <date> <chr> <dbl>

 #> 1 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk1 87

 #> 2 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk2 82

 #> 3 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk3 72

 #> 4 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk4 77

 #> 5 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk5 87

 #> 6 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk6 94

 #> # … with 5,301 more rows

The number of rows is now much lower, indicating that many rows with NAs were

dropped.

You might also wonder what happens if a song is in the top 100 for more than 76

weeks. We can’t tell from this data, but you might guess that additional columns such

as wk77, wk78, … would be added to the dataset.

This data is now tidy, but we could make future computation a bit easier by

converting values of week from character strings to numbers using mutate() and

readr::parse_number(). parse_number() is a handy function that will extract the first number from a string, ignoring all other text.

billboard_longer <- billboard |>

pivot_longer(

cols = starts_with("wk"),

names_to = "week",

values_to = "rank",

values_drop_na = TRUE

) |>

mutate(

week = parse_number(week)

)

billboard_longer

 #> # A tibble: 5,307 × 5

 #> artist track date.entered week rank

 #> <chr> <chr> <date> <dbl> <dbl>

 #> 1 2 Pac Baby Don't Cry (Keep... 2000-02-26 1 87

 #> 2 2 Pac Baby Don't Cry (Keep... 2000-02-26 2 82

 #> 3 2 Pac Baby Don't Cry (Keep... 2000-02-26 3 72

 #> 4 2 Pac Baby Don't Cry (Keep... 2000-02-26 4 77

 #> 5 2 Pac Baby Don't Cry (Keep... 2000-02-26 5 87

 #> 6 2 Pac Baby Don't Cry (Keep... 2000-02-26 6 94

 #> # … with 5,301 more rows

Now that we have all the week numbers in one variable and all the rank values in

another, we’re in a good position to visualize how song ranks vary over time. The

code is shown here and the result is in Figure 5-2. We can see that very few songs stay in the top 100 for more than 20 weeks.

Lengthening Data | 75

[image: Image 41]

billboard_longer |>

ggplot(aes(x = week, y = rank, group = track)) +

geom_line(alpha = 0.25) +

scale_y_reverse()

 Figure 5-2. A line plot showing how the rank of a song changes over time.

How Does Pivoting Work?

Now that you’ve seen how we can use pivoting to reshape our data, let’s take a little

time to gain some intuition about what pivoting does to the data. Let’s start with

a simple dataset to make it easier to see what’s happening. Suppose we have three

patients with ids A, B, and C, and we take two blood pressure measurements on each

patient. We’ll create the data with tribble(), a handy function for constructing small tibbles by hand:

df <- tribble(

~id, ~bp1, ~bp2,

"A", 100, 120,

"B", 140, 115,

"C", 120, 125

)

We want our new dataset to have three variables: id (already exists), measurement

(the column names), and value (the cell values). To achieve this, we need to pivot df

longer:

76 | Chapter 5: Data Tidying

[image: Image 42]

df |>

pivot_longer(

cols = bp1:bp2,

names_to = "measurement",

values_to = "value"

)

 #> # A tibble: 6 × 3

 #> id measurement value

 #> <chr> <chr> <dbl>

 #> 1 A bp1 100

 #> 2 A bp2 120

 #> 3 B bp1 140

 #> 4 B bp2 115

 #> 5 C bp1 120

 #> 6 C bp2 125

How does the reshaping work? It’s easier to see if we think about it column by

column. As shown in Figure 5-3, the values in the column that was already a variable in the original dataset (id) need to be repeated, once for each column that is pivoted.

 Figure 5-3. Columns that are already variables need to be repeated, once for each

 column that is pivoted.

The column names become values in a new variable, whose name is defined by

names_to, as shown in Figure 5-4. They need to be repeated once for each row in the original dataset.

Lengthening Data | 77

[image: Image 43]

[image: Image 44]

 Figure 5-4. The column names of pivoted columns become values in a new column. The

 values need to be repeated once for each row of the original dataset.

The cell values also become values in a new variable, with a name defined by val

ues_to. They are unwound row by row. Figure 5-5 illustrates the process.

 Figure 5-5. The number of values is preserved (not repeated) but unwound row by row.

Many Variables in Column Names

A more challenging situation occurs when you have multiple pieces of information

crammed into the column names and you would like to store these in separate new

variables. For example, take the who2 dataset, the source of table1, and friends that

you saw earlier:

78 | Chapter 5: Data Tidying

who2

 #> # A tibble: 7,240 × 58

 #> country year sp_m_014 sp_m_1524 sp_m_2534 sp_m_3544 sp_m_4554

 #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

 #> 1 Afghanistan 1980 NA NA NA NA NA

 #> 2 Afghanistan 1981 NA NA NA NA NA

 #> 3 Afghanistan 1982 NA NA NA NA NA

 #> 4 Afghanistan 1983 NA NA NA NA NA

 #> 5 Afghanistan 1984 NA NA NA NA NA

 #> 6 Afghanistan 1985 NA NA NA NA NA

 #> # … with 7,234 more rows, and 51 more variables: sp_m_5564 <dbl>,

 #> # sp_m_65 <dbl>, sp_f_014 <dbl>, sp_f_1524 <dbl>, sp_f_2534 <dbl>, …

This dataset, collected by the World Health Organization, records information about

tuberculosis diagnoses. There are two columns that are already variables and are

easy to interpret: country and year. They are followed by 56 columns like sp_m_014,

ep_m_4554, and rel_m_3544. If you stare at these columns for long enough, you’ll

notice there’s a pattern. Each column name is made up of three pieces separated

by _. The first piece, sp/rel/ep, describes the method used for the diagnosis; the

second piece, m/f, is the gender (coded as a binary variable in this dataset); and the

third piece, 014/1524/2534/3544/4554/65, is the age range (014 represents 0–14, for

example).

So in this case we have six pieces of information recorded in who2: the country and

the year (already columns); the method of diagnosis, the gender category, and the age

range category (contained in the other column names); and the count of patients in

that category (cell values). To organize these six pieces of information in six separate

columns, we use pivot_longer() with a vector of column names for names_to and instructors for splitting the original variable names into pieces for names_sep as well

as a column name for values_to:

who2 |>

pivot_longer(

cols = !(country:year),

names_to = c("diagnosis", "gender", "age"),

names_sep = "_",

values_to = "count"

)

 #> # A tibble: 405,440 × 6

 #> country year diagnosis gender age count

 #> <chr> <dbl> <chr> <chr> <chr> <dbl>

 #> 1 Afghanistan 1980 sp m 014 NA

 #> 2 Afghanistan 1980 sp m 1524 NA

 #> 3 Afghanistan 1980 sp m 2534 NA

 #> 4 Afghanistan 1980 sp m 3544 NA

 #> 5 Afghanistan 1980 sp m 4554 NA

 #> 6 Afghanistan 1980 sp m 5564 NA

 #> # … with 405,434 more rows

An alternative to names_sep is names_pattern, which you can use to extract variables

from more complicated naming scenarios, once you’ve learned about regular expres‐

sions in Chapter 15.

Lengthening Data | 79

[image: Image 45]

Conceptually, this is only a minor variation on the simpler case you’ve already seen.

Figure 5-6 shows the basic idea: now, instead of the column names pivoting into a

single column, they pivot into multiple columns. You can imagine this happening in

two steps (first pivoting and then separating), but under the hood it happens in a

single step because that’s faster.

 Figure 5-6. Pivoting columns with multiple pieces of information in the names means

 that each column name now fills in values in multiple output columns.

Data and Variable Names in the Column Headers

The next step up in complexity is when the column names include a mix of variable

values and variable names. For example, take the household dataset:

household

 #> # A tibble: 5 × 5

 #> family dob_child1 dob_child2 name_child1 name_child2

 #> <int> <date> <date> <chr> <chr>

 #> 1 1 1998-11-26 2000-01-29 Susan Jose

 #> 2 2 1996-06-22 NA Mark <NA>

 #> 3 3 2002-07-11 2004-04-05 Sam Seth

 #> 4 4 2004-10-10 2009-08-27 Craig Khai

 #> 5 5 2000-12-05 2005-02-28 Parker Gracie

This dataset contains data about five families, with the names and dates of birth of up

to two children. The new challenge in this dataset is that the column names contain

the names of two variables (dob, name) and the values of another (child, with values

1 or 2). To solve this problem we again need to supply a vector to names_to but

this time we use the special ".value" sentinel; this isn’t the name of a variable but a

unique value that tells pivot_longer() to do something different. This overrides the usual values_to argument to use the first component of the pivoted column name as

a variable name in the output.

household |>

pivot_longer(

cols = !family,

80 | Chapter 5: Data Tidying

[image: Image 46]

names_to = c(".value", "child"),

names_sep = "_",

values_drop_na = TRUE

)

 #> # A tibble: 9 × 4

 #> family child dob name

 #> <int> <chr> <date> <chr>

 #> 1 1 child1 1998-11-26 Susan

 #> 2 1 child2 2000-01-29 Jose

 #> 3 2 child1 1996-06-22 Mark

 #> 4 3 child1 2002-07-11 Sam

 #> 5 3 child2 2004-04-05 Seth

 #> 6 4 child1 2004-10-10 Craig

 #> # … with 3 more rows

We again use values_drop_na = TRUE, since the shape of the input forces the

creation of explicit missing variables (e.g., for families with only one child).

Figure 5-7 illustrates the basic idea with a simpler example. When you use ".value"

in names_to, the column names in the input contribute to both values and variable

names in the output.

 Figure 5-7. Pivoting with names_to = c(".value", "num") splits the column names into two components: the first part determines the output column name (x or y), and the

 second part determines the value of the num column.

Widening Data

So far we’ve used pivot_longer() to solve the common class of problems where values have ended up in column names. Next we’ll pivot (HA HA) to pivot_wider(), which makes datasets wider by increasing columns and reducing rows and helps

when one observation is spread across multiple rows. This seems to arise less com‐

monly in the wild, but it does seem to crop up a lot when dealing with governmental

data.

We’ll start by looking at cms_patient_experience, a dataset from the Centers of

Medicare and Medicaid services that collects data about patient experiences:

Widening Data | 81

cms_patient_experience

 #> # A tibble: 500 × 5

 #> org_pac_id org_nm measure_cd measure_title prf_rate

 #> <chr> <chr> <chr> <chr> <dbl>

 #> 1 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP_1 CAHPS for MIPS… 63

 #> 2 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP_2 CAHPS for MIPS… 87

 #> 3 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP_3 CAHPS for MIPS… 86

 #> 4 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP_5 CAHPS for MIPS… 57

 #> 5 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP_8 CAHPS for MIPS… 85

 #> 6 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP_12 CAHPS for MIPS… 24

 #> # … with 494 more rows

The core unit being studied is an organization, but each organization is spread across

six rows, with one row for each measurement taken in the survey organization.

We can see the complete set of values for measure_cd and measure_title by using

distinct():

cms_patient_experience |>

distinct(measure_cd, measure_title)

 #> # A tibble: 6 × 2

 #> measure_cd measure_title

 #> <chr> <chr>

 #> 1 CAHPS_GRP_1 CAHPS for MIPS SSM: Getting Timely Care, Appointments, and In…

 #> 2 CAHPS_GRP_2 CAHPS for MIPS SSM: How Well Providers Communicate

 #> 3 CAHPS_GRP_3 CAHPS for MIPS SSM: Patient's Rating of Provider

 #> 4 CAHPS_GRP_5 CAHPS for MIPS SSM: Health Promotion and Education

 #> 5 CAHPS_GRP_8 CAHPS for MIPS SSM: Courteous and Helpful Office Staff

 #> 6 CAHPS_GRP_12 CAHPS for MIPS SSM: Stewardship of Patient Resources

Neither of these columns will make particularly great variable names: measure_cd

doesn’t hint at the meaning of the variable, and measure_title is a long sentence

containing spaces. We’ll use measure_cd as the source for our new column names for

now, but in a real analysis you might want to create your own variable names that are

both short and meaningful.

pivot_wider() has the opposite interface to pivot_longer(): instead of choosing new column names, we need to provide the existing columns that define the values

(values_from) and the column name (names_from):

cms_patient_experience |>

pivot_wider(

names_from = measure_cd,

values_from = prf_rate

)

 #> # A tibble: 500 × 9

 #> org_pac_id org_nm measure_title CAHPS_GRP_1 CAHPS_GRP_2

 #> <chr> <chr> <chr> <dbl> <dbl>

 #> 1 0446157747 USC CARE MEDICAL GROUP … CAHPS for MIPS… 63 NA

 #> 2 0446157747 USC CARE MEDICAL GROUP … CAHPS for MIPS… NA 87

 #> 3 0446157747 USC CARE MEDICAL GROUP … CAHPS for MIPS… NA NA

 #> 4 0446157747 USC CARE MEDICAL GROUP … CAHPS for MIPS… NA NA

 #> 5 0446157747 USC CARE MEDICAL GROUP … CAHPS for MIPS… NA NA

 #> 6 0446157747 USC CARE MEDICAL GROUP … CAHPS for MIPS… NA NA

 #> # … with 494 more rows, and 4 more variables: CAHPS_GRP_3 <dbl>,

 #> # CAHPS_GRP_5 <dbl>, CAHPS_GRP_8 <dbl>, CAHPS_GRP_12 <dbl>

82 | Chapter 5: Data Tidying

The output doesn’t look quite right; we still seem to have multiple rows for each

organization. That’s because we also need to tell pivot_wider() which column or

columns have values that uniquely identify each row; in this case those are the

variables starting with "org":

cms_patient_experience |>

pivot_wider(

id_cols = starts_with("org"),

names_from = measure_cd,

values_from = prf_rate

)

 #> # A tibble: 95 × 8

 #> org_pac_id org_nm CAHPS_GRP_1 CAHPS_GRP_2 CAHPS_GRP_3 CAHPS_GRP_5

 #> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

 #> 1 0446157747 USC CARE MEDICA… 63 87 86 57

 #> 2 0446162697 ASSOCIATION OF … 59 85 83 63

 #> 3 0547164295 BEAVER MEDICAL … 49 NA 75 44

 #> 4 0749333730 CAPE PHYSICIANS… 67 84 85 65

 #> 5 0840104360 ALLIANCE PHYSIC… 66 87 87 64

 #> 6 0840109864 REX HOSPITAL INC 73 87 84 67

 #> # … with 89 more rows, and 2 more variables: CAHPS_GRP_8 <dbl>,

 #> # CAHPS_GRP_12 <dbl>

This gives us the output that we’re looking for.

How Does pivot_wider() Work?

To understand how pivot_wider() works, let’s again start with a simple dataset.

This time we have two patients with ids A and B; we have three blood pressure

measurements on patient A and two on patient B:

df <- tribble(

~id, ~measurement, ~value,

"A", "bp1", 100,

"B", "bp1", 140,

"B", "bp2", 115,

"A", "bp2", 120,

"A", "bp3", 105

)

We’ll take the values from the value column and the names from the measurement

column:

df |>

pivot_wider(

names_from = measurement,

values_from = value

)

 #> # A tibble: 2 × 4

 #> id bp1 bp2 bp3

 #> <chr> <dbl> <dbl> <dbl>

 #> 1 A 100 120 105

 #> 2 B 140 115 NA

Widening Data | 83

To begin the process, pivot_wider() needs to first figure out what will go in the rows and columns. The new column names will be the unique values of measurement:

df |>

distinct(measurement) |>

pull()

 #> [1] "bp1" "bp2" "bp3"

By default, the rows in the output are determined by all the variables that aren’t going

into the new names or values. These are called the id_cols. Here there is only one

column, but in general there can be any number:

df |>

select(-measurement, -value) |>

distinct()

 #> # A tibble: 2 × 1

 #> id

 #> <chr>

 #> 1 A

 #> 2 B

pivot_wider() then combines these results to generate an empty data frame: df |>

select(-measurement, -value) |>

distinct() |>

mutate(x = NA, y = NA, z = NA)

 #> # A tibble: 2 × 4

 #> id x y z

 #> <chr> <lgl> <lgl> <lgl>

 #> 1 A NA NA NA

 #> 2 B NA NA NA

It then fills in all the missing values using the data in the input. In this case, not every

cell in the output has a corresponding value in the input as there’s no third blood

pressure measurement for patient B, so that cell remains missing. We’ll come back to

this idea that pivot_wider() can “make” missing values in Chapter 18.

You might also wonder what happens if there are multiple rows in the input that

correspond to one cell in the output. The following example has two rows that

correspond to id A and measurement bp1:

df <- tribble(

~id, ~measurement, ~value,

"A", "bp1", 100,

"A", "bp1", 102,

"A", "bp2", 120,

"B", "bp1", 140,

"B", "bp2", 115

)

84 | Chapter 5: Data Tidying

If we attempt to pivot this, we get an output that contains list-columns, which you’ll learn more about in Chapter 23:

df |>

pivot_wider(

names_from = measurement,

values_from = value

)

 #> Warning: Values from `valueàre not uniquely identified; output will contain

 #> list-cols.

 #> • Usèvalues_fn = list` to suppress this warning.

 #> • Usèvalues_fn = {summary_fun}` to summarise duplicates.

 #> • Use the following dplyr code to identify duplicates.

 #> {data} %>%

 #> dplyr::group_by(id, measurement) %>%

 #> dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%

 #> dplyr::filter(n > 1L)

 #> # A tibble: 2 × 3

 #> id bp1 bp2

 #> <chr> <list> <list>

 #> 1 A <dbl [2]> <dbl [1]>

 #> 2 B <dbl [1]> <dbl [1]>

Since you don’t know how to work with this sort of data yet, you’ll want to follow the

hint in the warning to figure out where the problem is:

df |>

group_by(id, measurement) |>

summarize(n = n(), .groups = "drop") |>

filter(n > 1)

 #> # A tibble: 1 × 3

 #> id measurement n

 #> <chr> <chr> <int>

 #> 1 A bp1 2

It’s then up to you to figure out what’s gone wrong with your data and either repair

the underlying damage or use your grouping and summarizing skills to ensure that

each combination of row and column values has only a single row.

Summary

In this chapter you learned about tidy data: data that has variables in columns and

observations in rows. Tidy data makes working in the tidyverse easier, because it’s a

consistent structure understood by most functions; the main challenge is transform‐

ing the data from whatever structure you receive it in to a tidy format. To that end,

you learned about pivot_longer() and pivot_wider(), which allow you to tidy up many untidy datasets. The examples we presented here are a selection of those from

vignette("pivot", package = "tidyr"), so if you encounter a problem that this chapter doesn’t help you with, that vignette is a good place to try next.

Another challenge is that, for a given dataset, it can be impossible to label the longer

or the wider version as the “tidy” one. This is partly a reflection of our definition

of tidy data, where we said tidy data has one variable in each column, but we didn’t

Summary | 85

actually define what a variable is (and it’s surprisingly hard to do so). It’s totally fine to be pragmatic and to say a variable is whatever makes your analysis easiest. So if

you’re stuck figuring out how to do some computation, consider switching up the

organization of your data; don’t be afraid to untidy, transform, and re-tidy as needed!

If you enjoyed this chapter and want to learn more about the underlying theory, you

can learn more about the history and theoretical underpinnings in the “Tidy Data”

paper published in the Journal of Statistical Software.

Now that you’re writing a substantial amount of R code, it’s time to learn more about

organizing your code into files and directories. In the next chapter, you’ll learn all

about the advantages of scripts and projects and some of the many tools that they

provide to make your life easier.

86 | Chapter 5: Data Tidying

CHAPTER 6

Workflow: Scripts and Projects

This chapter will introduce you to two essential tools for organizing your code:

scripts and projects.

Scripts

So far, you have used the console to run code. That’s a great place to start, but you’ll

find it gets cramped pretty quickly as you create more complex ggplot2 graphics and

longer dplyr pipelines. To give yourself more room to work, use the script editor.

Open it by clicking the File menu, selecting New File, and then selecting R script,

or using the keyboard shortcut Cmd/Ctrl+Shift+N. Now you’ll see four panes, as in

Figure 6-1. The script editor is a great place to experiment with your code. When you want to change something, you don’t have to retype the whole thing; you can just edit

the script and rerun it. And once you have written code that works and does what

you want, you can save it as a script file to easily return to later.

87

[image: Image 47]

 Figure 6-1. Opening the script editor adds a new pane at the top left of the IDE.

Running Code

The script editor is an excellent place for building complex ggplot2 plots or long

sequences of dplyr manipulations. The key to using the script editor effectively is

to memorize one of the most important keyboard shortcuts: Cmd/Ctrl+Enter. This

executes the current R expression in the console. For example, take the following

code:

library(dplyr)

library(nycflights13)

not_cancelled <- flights |>

filter(!is.na(dep_delay)█, !is.na(arr_delay))

not_cancelled |>

group_by(year, month, day) |>

summarize(mean = mean(dep_delay))

If your cursor is at █, pressing Cmd/Ctrl+Enter will run the complete command

that generates not_cancelled. It will also move the cursor to the following statement

88 | Chapter 6: Workflow: Scripts and Projects

[image: Image 48]

[image: Image 49]

[image: Image 50]

(beginning with not_cancelled |>). That makes it easy to step through your com‐

plete script by repeatedly pressing Cmd/Ctrl+Enter.

Instead of running your code expression by expression, you can execute the complete

script in one step with Cmd/Ctrl+Shift+S. Doing this regularly is a great way to

ensure that you’ve captured all the important parts of your code in the script.

We recommend you always start your script with the packages you need. That way,

if you share your code with others, they can easily see which packages they need to

install. Note, however, that you should never include install.packages() in a script you share. It’s inconsiderate to hand off a script that will install something on their

computer if they’re not being careful!

When working through future chapters, we highly recommend starting in the script

editor and practicing your keyboard shortcuts. Over time, sending code to the con‐

sole in this way will become so natural that you won’t even think about it.

RStudio Diagnostics

In the script editor, RStudio will highlight syntax errors with a red squiggly line and a

cross in the sidebar:

Hover over the cross to see what the problem is:

RStudio will also let you know about potential problems:

Scripts | 89

Saving and Naming

RStudio automatically saves the contents of the script editor when you quit and

automatically reloads it when you re-open. Nevertheless, it’s a good idea to avoid

Untitled1, Untitled2, Untitled3, and so on, and instead save your scripts with infor‐

mative names.

It might be tempting to name your files code.R or myscript.R, but you should think

a bit harder before choosing a name for your file. Three important principles for file

naming are as follows:

1. Filenames should be machine readable: avoid spaces, symbols, and special char‐

acters. Don’t rely on case sensitivity to distinguish files.

2. Filenames should be human readable: use filenames to describe what’s in the file.

3. Filenames should play well with default ordering: start filenames with numbers

so that alphabetical sorting puts them in the order they get used.

For example, suppose you have the following files in a project folder:

alternative model.R

code for exploratory analysis.r

finalreport.qmd

FinalReport.qmd

fig 1.png

Figure_02.png

model_first_try.R

run-first.r

temp.txt

There are a variety of problems here: it’s hard to find which file to run first, filenames

contain spaces, there are two files with the same name but different capitalization

(finalreport versus FinalReport1), and some names don’t describe their contents

(run-first and temp).

Here’s a better way of naming and organizing the same set of files:

01-load-data.R

02-exploratory-analysis.R

03-model-approach-1.R

04-model-approach-2.R

fig-01.png

fig-02.png

report-2022-03-20.qmd

report-2022-04-02.qmd

report-draft-notes.txt

1 Not to mention that you’re tempting fate by using “final” in the name. The comic Piled Higher and Deeper has a fun strip on this.

90 | Chapter 6: Workflow: Scripts and Projects

Numbering the key scripts makes it obvious in which order to run them, and a

consistent naming scheme makes it easier to see what varies. Additionally, the figures

are labeled similarly, the reports are distinguished by dates included in the filenames,

and temp is renamed to report-draft-notes to better describe its contents. If you

have a lot of files in a directory, taking organization one step further and placing

different types of files (scripts, figures, etc.) in different directories is recommended.

Projects

One day, you will need to quit R, go do something else, and return to your analysis

later. One day, you will be working on multiple analyses simultaneously and want to

keep them separate. One day, you will need to bring data from the outside world into

R and send numerical results and figures from R back out into the world.

To handle these real-life situations, you need to make two decisions:

• What is the source of truth? What will you save as your lasting record of what

happened?

• Where does your analysis live?

What Is the Source of Truth?

As a beginner, it’s OK to rely on your current environment to contain all the objects

you have created throughout your analysis. However, to make it easier to work on

larger projects or collaborate with others, your source of truth should be the R scripts.

With your R scripts (and your data files), you can re-create the environment. With

only your environment, it’s much harder to re-create your R scripts: either you’ll have

to retype a lot of code from memory (inevitably making mistakes along the way) or

you’ll have to carefully mine your R history.

To help keep your R scripts as the source of truth for your analysis, we highly recom‐

mend that you instruct RStudio not to preserve your workspace between sessions.

You can do this either by running usethis::use_blank_slate()2 or by mimicking

the options shown in Figure 6-2. This will cause you some short-term pain, because

now when you restart RStudio, it will no longer remember the code that you ran last

time nor will the objects you created or the datasets you read be available to use.

But this short-term pain saves you long-term agony because it forces you to capture

all important procedures in your code. There’s nothing worse than discovering three

months after the fact that you’ve stored only the results of an important calculation in

your environment, not the calculation itself in your code.

2 If you don’t have this installed, you can install it with install.packages("usethis").

Projects | 91

[image: Image 51]

 Figure 6-2. Copy these selections in your RStudio options to always start your RStudio

 session with a clean slate.

There is a great pair of keyboard shortcuts that will work together to make sure

you’ve captured the important parts of your code in the editor:

1. Press Cmd/Ctrl+Shift+0/F10 to restart R.

2. Press Cmd/Ctrl+Shift+S to rerun the current script.

We collectively use this pattern hundreds of times a week.

Alternatively, if you don’t use keyboard shortcuts, you can select Session > Restart R

and then highlight and rerun your current script.

92 | Chapter 6: Workflow: Scripts and Projects

[image: Image 52]

[image: Image 53]

RStudio Server

If you’re using RStudio Server, your R session is never restarted

by default. When you close your RStudio Server tab, it might feel

like you’re closing R, but the server actually keeps it running in

the background. The next time you return, you’ll be in exactly the

same place you left. This makes it even more important to regularly

restart R so that you’re starting with a clean slate.

Where Does Your Analysis Live?

R has a powerful notion of the working directory. This is where R looks for files that

you ask it to load and where it will put any files that you ask it to save. RStudio shows

your current working directory at the top of the console:

You can print this out in R code by running getwd():

getwd()

 #> [1] "/Users/hadley/Documents/r4ds"

In this R session, the current working directory (think of it as “home”) is in Hadley’s

 Documents folder, in a subfolder called r4ds. This code will return a different result

when you run it, because your computer has a different directory structure than

Hadley’s!

As a beginning R user, it’s OK to let your working directory be your home directory,

documents directory, or any other weird directory on your computer. But you’re

seven chapters into this book, and you’re no longer a beginner. Soon you should

evolve to organizing your projects into directories and, when working on a project,

set R’s working directory to the associated directory.

You can set the working directory from within R, but we do not recommend it:

setwd("/path/to/my/CoolProject")

There’s a better way—a way that also puts you on the path to managing your R work

like an expert. That way is the RStudio project.

RStudio Projects

Keeping all the files associated with a given project (input data, R scripts, analytical

results, and figures) in one directory is such a wise and common practice that

Projects | 93

[image: Image 54]

RStudio has built-in support for this via projects. Let’s make a project for you to use

while you’re working through the rest of this book. Select File > New Project, and

then follow the steps shown in Figure 6-3.

 Figure 6-3. To create new project: (top) first click New Directory, then (middle) click New

 Project, then (bottom) fill in the directory (project) name, choose a good subdirectory for

 its home, and click Create Project.

Call your project r4ds and think carefully about which subdirectory you put the

project in. If you don’t store it somewhere sensible, it will be hard to find it in the

future!

Once this process is complete, you’ll get a new RStudio project just for this book.

Check that the “home” of your project is the current working directory:

getwd()

 #> [1] /Users/hadley/Documents/r4ds

94 | Chapter 6: Workflow: Scripts and Projects

Now enter the following commands in the script editor and save the file, calling it

diamonds.R. Then, create a new folder called data. You can do this by clicking the

New Folder button in the Files pane in RStudio. Finally, run the complete script,

which will save a PNG and CSV file into your project directory. Don’t worry about

the details; you’ll learn them later in the book.

library(tidyverse)

ggplot(diamonds, aes(x = carat, y = price)) +

geom_hex()

ggsave("diamonds.png")

write_csv(diamonds, "data/diamonds.csv")

Quit RStudio. Inspect the folder associated with your project—notice the .Rproj file.

Double-click that file to re-open the project. Notice you get back to where you left

off: it’s the same working directory and command history, and all the files you were

working on are still open. Because you followed our instructions, you will, however,

have a completely fresh environment, guaranteeing that you’re starting with a clean

slate.

In your favorite OS-specific way, search your computer for diamonds.png, and you

will find the PNG (no surprise) but also the script that created it (diamonds.R). This

is a huge win! One day, you will want to remake a figure or just understand where

it came from. If you rigorously save figures to files with R code and never with the

mouse or the clipboard, you will be able to reproduce old work with ease!

Relative and Absolute Paths

Once you’re inside a project, you should only ever use relative paths, not abso‐

lute paths. What’s the difference? A relative path is relative to the working direc‐

tory, i.e., the project’s home. When Hadley wrote data/diamonds.csv earlier, it

was a shortcut for /Users/hadley/Documents/r4ds/data/diamonds.csv. But impor‐

tantly, if Mine ran this code on her computer, it would point to /Users/Mine/Docu

ments/r4ds/data/diamonds.csv. This is why relative paths are important: they’ll

work regardless of where the R project folder ends up.

Absolute paths point to the same place regardless of your working directory. They

look a little different depending on your operating system. On Windows they start

with a drive letter (e.g., C:) or two backslashes (e.g., \\servername) and on Mac/

Linux they start with a slash, / (e.g., /users/hadley). You should never use absolute

paths in your scripts, because they hinder sharing: no one else will have exactly the

same directory configuration as you.

There’s another important difference between operating systems: how you separate

the components of the path. Mac and Linux uses slashes (e.g., data/diamonds.csv),

and Windows uses backslashes (e.g., data\diamonds.csv). R can work with either

Projects | 95

type (no matter what platform you’re currently using), but unfortunately, backslashes

mean something special to R, and to get a single backslash in the path, you need to

type two backslashes! That makes life frustrating, so we recommend always using the

Linux/Mac style with forward slashes.

Exercises

1. Go to the RStudio Tips Twitter account and find one tip that looks interesting.

Practice using it!

2. What other common mistakes will RStudio diagnostics report? Read this article

on code diagnostics to find out.

Summary

In this chapter, you learned how to organize your R code in scripts (files) and projects

(directories). Much like code style, this may feel like busywork at first. But as you

accumulate more code across multiple projects, you’ll learn to appreciate how a little

up-front organization can save you a bunch of time later.

In summary, scripts and projects give you a solid workflow that will serve you well in

the future:

• Create one RStudio project for each data analysis project.

• Save your scripts (with informative names) in the project, edit them, and run

them in bits or as a whole. Restart R frequently to make sure you’ve captured

everything in your scripts.

• Only ever use relative paths, not absolute paths.

Then everything you need is in one place and cleanly separated from all the other

projects you are working on.

So far, we’ve worked with datasets bundled in R packages. This makes it easier to get

some practice on preprepared data, but obviously your data won’t be available in this

way. So in the next chapter, you’re going to learn how load data from disk into your R

session using the readr package.

96 | Chapter 6: Workflow: Scripts and Projects

CHAPTER 7

Data Import

Introduction

Working with data provided by R packages is a great way to learn data science tools,

but you want to apply what you’ve learned to your own data at some point. In this

chapter, you’ll learn the basics of reading data files into R.

Specifically, this chapter will focus on reading plain-text rectangular files. We’ll start

with practical advice for handling features such as column names, types, and missing

data. You will then learn about reading data from multiple files at once and writing

data from R to a file. Finally, you’ll learn how to handcraft data frames in R.

Prerequisites

In this chapter, you’ll learn how to load flat files in R with the readr package, which is

part of the core tidyverse:

library(tidyverse)

Reading Data from a File

To begin, we’ll focus on the most common rectangular data file type: CSV, which is

short for “comma-separated values.” Here is what a simple CSV file looks like. The

first row, commonly called the header row, gives the column names, and the following

six rows provide the data. The columns are separated, aka delimited, by commas.

97

Student ID,Full Name,favourite.food,mealPlan,AGE

1,Sunil Huffmann,Strawberry yoghurt,Lunch only,4

2,Barclay Lynn,French fries,Lunch only,5

3,Jayendra Lyne,N/A,Breakfast and lunch,7

4,Leon Rossini,Anchovies,Lunch only,

5,Chidiegwu Dunkel,Pizza,Breakfast and lunch,five

6,Güvenç Attila,Ice cream,Lunch only,6

Table 7-1 represents of the same data as a table.

 Table 7-1. Data from the students.csv file as a table

Student ID Full Name

favourite.food

mealPlan

AGE

1 Sunil Huffmann

Strawberry yoghurt

Lunch only

4

2 Barclay Lynn

French fries

Lunch only

5

3 Jayendra Lyne

N/A

Breakfast and lunch

7

4 Leon Rossini

Anchovies

Lunch only

NA

5 Chidiegwu Dunkel

Pizza

Breakfast and lunch

five

6 Güvenç Attila

Ice cream

Lunch only

6

We can read this file into R using read_csv(). The first argument is the most important: the path to the file. You can think about the path as the address of the file:

the file is called students.csv, and it lives in the data folder.

students <- read_csv("data/students.csv")

 #> Rows: 6 Columns: 5

 #> ── Column specification ───

 #> Delimiter: ","

 #> chr (4): Full Name, favourite.food, mealPlan, AGE

 #> dbl (1): Student ID

 #>

 #> ℹ Usèspec()` to retrieve the full column specification for this data.

 #> ℹ Specify the column types or set `show_col_types = FALSÈ to quiet this message.

The previous code will work if you have the students.csv file in a data folder in

your project. You can download the students.csv file or you can read it directly from that URL with this:

students <- read_csv("https://pos.it/r4ds-students-csv")

When you run read_csv(), it prints out a message telling you the number of rows and columns of data, the delimiter that was used, and the column specifications

(names of columns organized by the type of data the column contains). It also prints

out some information about retrieving the full column specification and how to quiet

this message. This message is an integral part of readr, and we’ll return to it in

“Controlling Column Types” on page 104.

98 | Chapter 7: Data Import

Practical Advice

Once you read data in, the first step usually involves transforming it in some way to

make it easier to work with in the rest of your analysis. Let’s take another look at the

students data with that in mind:

students

 #> # A tibble: 6 × 5

 #> `Student ID` `Full Namè favourite.food mealPlan AGE

 #> <dbl> <chr> <chr> <chr> <chr>

 #> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

 #> 2 2 Barclay Lynn French fries Lunch only 5

 #> 3 3 Jayendra Lyne N/A Breakfast and lunch 7

 #> 4 4 Leon Rossini Anchovies Lunch only <NA>

 #> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five

 #> 6 6 Güvenç Attila Ice cream Lunch only 6

In the favourite.food column, there are a bunch of food items, and then the

character string N/A, which should have been a real NA that R will recognize as

“not available.” This is something we can address using the na argument. By default

read_csv() recognizes only empty strings ("") in this dataset as NAs; we want it to also recognize the character string "N/A":

students <- read_csv("data/students.csv", na = c("N/A", ""))

students

 #> # A tibble: 6 × 5

 #> `Student ID` `Full Namè favourite.food mealPlan AGE

 #> <dbl> <chr> <chr> <chr> <chr>

 #> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

 #> 2 2 Barclay Lynn French fries Lunch only 5

 #> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7

 #> 4 4 Leon Rossini Anchovies Lunch only <NA>

 #> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five

 #> 6 6 Güvenç Attila Ice cream Lunch only 6

You might also notice that the Student ID and Full Name columns are surrounded

by backticks. That’s because they contain spaces, breaking R’s usual rules for variable

names; they’re nonsyntactic names. To refer to these variables, you need to surround

them with backticks, `:

students |>

rename(

student_id = `Student ID`,

full_name = `Full Namè

)

 #> # A tibble: 6 × 5

 #> student_id full_name favourite.food mealPlan AGE

 #> <dbl> <chr> <chr> <chr> <chr>

 #> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

 #> 2 2 Barclay Lynn French fries Lunch only 5

 #> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7

 #> 4 4 Leon Rossini Anchovies Lunch only <NA>

 #> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five

 #> 6 6 Güvenç Attila Ice cream Lunch only 6

Reading Data from a File | 99

An alternative approach is to use janitor::clean_names() to use some heuristics to turn them all into snake case at once:1

students |> janitor::clean_names()

 #> # A tibble: 6 × 5

 #> student_id full_name favourite_food meal_plan age

 #> <dbl> <chr> <chr> <chr> <chr>

 #> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

 #> 2 2 Barclay Lynn French fries Lunch only 5

 #> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7

 #> 4 4 Leon Rossini Anchovies Lunch only <NA>

 #> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five

 #> 6 6 Güvenç Attila Ice cream Lunch only 6

Another common task after reading in data is to consider variable types. For example,

meal_plan is a categorical variable with a known set of possible values, which in R

should be represented as a factor:

students |>

janitor::clean_names() |>

mutate(meal_plan = factor(meal_plan))

 #> # A tibble: 6 × 5

 #> student_id full_name favourite_food meal_plan age

 #> <dbl> <chr> <chr> <fct> <chr>

 #> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

 #> 2 2 Barclay Lynn French fries Lunch only 5

 #> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7

 #> 4 4 Leon Rossini Anchovies Lunch only <NA>

 #> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five

 #> 6 6 Güvenç Attila Ice cream Lunch only 6

Note that the values in the meal_plan variable have stayed the same, but the type of

variable denoted underneath the variable name has changed from character (<chr>)

to factor (<fct>). You’ll learn more about factors in Chapter 16.

Before you analyze these data, you’ll probably want to fix the age and id columns.

Currently, age is a character variable because one of the observations is typed out as

five instead of a numeric 5. We discuss the details of fixing this issue in Chapter 20.

students <- students |>

janitor::clean_names() |>

mutate(

meal_plan = factor(meal_plan),

age = parse_number(if_else(age == "five", "5", age))

)

students

 #> # A tibble: 6 × 5

 #> student_id full_name favourite_food meal_plan age

 #> <dbl> <chr> <chr> <fct> <dbl>

 #> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

1 The janitor package is not part of the tidyverse, but it offers handy functions for data cleaning and works well within data pipelines that use |>.

100 | Chapter 7: Data Import

 #> 2 2 Barclay Lynn French fries Lunch only 5

 #> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7

 #> 4 4 Leon Rossini Anchovies Lunch only NA

 #> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch 5

 #> 6 6 Güvenç Attila Ice cream Lunch only 6

A new function here is if_else(), which has three arguments. The first argument test should be a logical vector. The result will contain the value of the second

argument, yes, when test is TRUE, and the value of the third argument, no, when

it is FALSE. Here we’re saying if age is the character string "five", make it "5", and if not, leave it as age. You will learn more about if_else() and logical vectors in

Chapter 12.

Other Arguments

There are a couple of other important arguments that we need to mention, and they’ll

be easier to demonstrate if we first show you a handy trick: read_csv() can read text strings that you’ve created and formatted like a CSV file:

read_csv(

"a,b,c

1,2,3

4,5,6"

)

 #> # A tibble: 2 × 3

 #> a b c

 #> <dbl> <dbl> <dbl>

 #> 1 1 2 3

 #> 2 4 5 6

Usually, read_csv() uses the first line of the data for the column names, which is a common convention. But it’s not uncommon for a few lines of metadata to be

included at the top of the file. You can use skip = n to skip the first n lines or use

comment = "#" to drop all lines that start with, for example, #:

read_csv(

"The first line of metadata

The second line of metadata

x,y,z

1,2,3",

skip = 2

)

 #> # A tibble: 1 × 3

 #> x y z

 #> <dbl> <dbl> <dbl>

 #> 1 1 2 3

read_csv(

"# A comment I want to skip

x,y,z

1,2,3",

comment = "#"

)

 #> # A tibble: 1 × 3

Reading Data from a File | 101

 #> x y z

 #> <dbl> <dbl> <dbl>

 #> 1 1 2 3

In other cases, the data might not have column names. You can use col_names =

FALSE to tell read_csv() not to treat the first row as headings and instead label them sequentially from X1 to Xn:

read_csv(

"1,2,3

4,5,6",

col_names = FALSE

)

 #> # A tibble: 2 × 3

 #> X1 X2 X3

 #> <dbl> <dbl> <dbl>

 #> 1 1 2 3

 #> 2 4 5 6

Alternatively, you can pass col_names a character vector, which will be used as the

column names:

read_csv(

"1,2,3

4,5,6",

col_names = c("x", "y", "z")

)

 #> # A tibble: 2 × 3

 #> x y z

 #> <dbl> <dbl> <dbl>

 #> 1 1 2 3

 #> 2 4 5 6

These arguments are all you need to know to read the majority of CSV files that you’ll

encounter in practice. (For the rest, you’ll need to carefully inspect your .csv file and

read the documentation for read_csv()’s many other arguments.) Other File Types

Once you’ve mastered read_csv(), using readr’s other functions is straightforward; it’s just a matter of knowing which function to reach for:

read_csv2()

Reads semicolon-separated files. These use ; instead of , to separate fields and

are common in countries that use , as the decimal marker.

read_tsv()

Reads tab-delimited files.

read_delim()

Reads in files with any delimiter, attempting to automatically guess the delimiter

if you don’t specify it.

102 | Chapter 7: Data Import

read_fwf()

Reads fixed-width files. You can specify fields by their widths with fwf_widths()

or by their positions with fwf_positions().

read_table()

Reads a common variation of fixed-width files where columns are separated by

whitespace.

read_log()

Reads Apache-style log files.

Exercises

1. What function would you use to read a file where fields were separated with |?

2. Apart from file, skip, and comment, what other arguments do read_csv() and

read_tsv() have in common?

3. What are the most important arguments to read_fwf()?

4. Sometimes strings in a CSV file contain commas. To prevent them from causing

problems, they need to be surrounded by a quoting character, like " or '. By

default, read_csv() assumes that the quoting character will be ". To read the following text into a data frame, what argument to read_csv() do you need to specify?

"x,y\n1,'a,b'"

5. Identify what is wrong with each of the following inline CSV files. What happens

when you run the code?

read_csv("a,b\n1,2,3\n4,5,6")

read_csv("a,b,c\n1,2\n1,2,3,4")

read_csv("a,b\n\"1")

read_csv("a,b\n1,2\na,b")

read_csv("a;b\n1;3")

6. Practice referring to nonsyntactic names in the following data frame by:

a. Extracting the variable called 1.

b. Plotting a scatterplot of 1 versus 2.

c. Creating a new column called 3, which is 2 divided by 1.

d. Renaming the columns to one, two, and three:

annoying <- tibble(

`1` = 1:10,

`2` = `1` * 2 + rnorm(length(`1`))

)

Reading Data from a File | 103

Controlling Column Types

A CSV file doesn’t contain any information about the type of each variable

(i.e., whether it’s a logical, number, string, etc.), so readr will try to guess the type.

This section describes how the guessing process works, how to resolve some common

problems that cause it to fail, and, if needed, how to supply the column types

yourself. Finally, we’ll mention a few general strategies that are useful if readr is failing

catastrophically and you need to get more insight into the structure of your file.

Guessing Types

readr uses a heuristic to figure out the column types. For each column, it pulls the

values of 1,0002 rows spaced evenly from the first row to the last, ignoring missing values. It then works through the following questions:

• Does it contain only F, T, FALSE, or TRUE (ignoring case)? If so, it’s a logical.

• Does it contain only numbers (e.g., 1, -4.5, 5e6, Inf)? If so, it’s a number.

• Does it match the ISO8601 standard? If so, it’s a date or date-time. (We’ll return

to date-times in more detail in “Creating Date/Times” on page 298.)

• Otherwise, it must be a string.

You can see that behavior in action in this simple example:

read_csv("

logical,numeric,date,string

TRUE,1,2021-01-15,abc

false,4.5,2021-02-15,def

T,Inf,2021-02-16,ghi

")

 #> # A tibble: 3 × 4

 #> logical numeric date string

 #> <lgl> <dbl> <date> <chr>

 #> 1 TRUE 1 2021-01-15 abc

 #> 2 FALSE 4.5 2021-02-15 def

 #> 3 TRUE Inf 2021-02-16 ghi

This heuristic works well if you have a clean dataset, but in real life, you’ll encounter a

selection of weird and beautiful failures.

Missing Values, Column Types, and Problems

The most common way column detection fails is that a column contains unexpected

values, and you get a character column instead of a more specific type. One of the

2 You can override the default of 1,000 with the guess_max argument.

104 | Chapter 7: Data Import

most common causes for this is a missing value, recorded using something other than

the NA that readr expects.

Take this simple one-column CSV file as an example:

simple_csv <- "

x

10

.

20

30"

If we read it without any additional arguments, x becomes a character column:

read_csv(simple_csv)

 #> # A tibble: 4 × 1

 #> x

 #> <chr>

 #> 1 10

 #> 2 .

 #> 3 20

 #> 4 30

In this small case, you can easily see the missing value .. But what happens if you

have thousands of rows with only a few missing values represented by .s sprinkled

among them? One approach is to tell readr that x is a numeric column and then see

where it fails. You can do that with the col_types argument, which takes a named list

where the names match the column names in the CSV file:

df <- read_csv(

simple_csv,

col_types = list(x = col_double())

)

 #> Warning: One or more parsing issues, call `problems()òn your data frame for

 #> details, e.g.:

 #> dat <- vroom(...)

 #> problems(dat)

Now read_csv() reports that there was a problem and tells us we can find out more with problems():

problems(df)

 #> # A tibble: 1 × 5

 #> row col expected actual file

 #> <int> <int> <chr> <chr> <chr>

 #> 1 3 1 a double . /private/tmp/RtmpAYlSop/file392d445cf269

This tells us that there was a problem in row 3, column 1 where readr expected a

double but got a .. That suggests this dataset uses . for missing values. So then we set

na = ".", and the automatic guessing succeeds, giving us the numeric column that

we want:

read_csv(simple_csv, na = ".")

 #> # A tibble: 4 × 1

 #> x

 #> <dbl>

Controlling Column Types | 105

 #> 1 10

 #> 2 NA

 #> 3 20

 #> 4 30

Column Types

readr provides a total of nine column types for you to use:

• col_logical() and col_double() read logicals and real numbers. They’re relatively rarely needed (except as shown previously), since readr will usually guess

them for you.

• col_integer() reads integers. We seldom distinguish integers and doubles in this book because they’re functionally equivalent, but reading integers explicitly

can occasionally be useful because they occupy half the memory of doubles.

• col_character() reads strings. This can be useful to specify explicitly when you have a column that is a numeric identifier, i.e., long series of digits that

identifies an object but doesn’t make sense to apply mathematical operations to.

Examples include phone numbers, Social Security numbers, credit card numbers,

and so on.

• col_factor(), col_date(), and col_datetime() create factors, dates, and datetimes, respectively; you’ll learn more about those when we get to those data types

in Chapter 16 and Chapter 17.

• col_number() is a permissive numeric parser that will ignore non-numeric components and is particularly useful for currencies. You’ll learn more about it in

Chapter 13.

• col_skip() skips a column so it’s not included in the result, which can be useful for speeding up reading the data if you have a large CSV file and you want to use

only some of the columns.

It’s also possible to override the default column by switching from list() to cols()

and specifying .default:

another_csv <- "

x,y,z

1,2,3"

read_csv(

another_csv,

col_types = cols(.default = col_character())

)

 #> # A tibble: 1 × 3

 #> x y z

 #> <chr> <chr> <chr>

 #> 1 1 2 3

106 | Chapter 7: Data Import

Another useful helper is cols_only(), which will read in only the columns you

specify:

read_csv(

another_csv,

col_types = cols_only(x = col_character())

)

 #> # A tibble: 1 × 1

 #> x

 #> <chr>

 #> 1 1

Reading Data from Multiple Files

Sometimes your data is split across multiple files instead of being contained in a

single file. For example, you might have sales data for multiple months, with each

month’s data in a separate file: 01-sales.csv for January, 02-sales.csv for February,

and 03-sales.csv for March. With read_csv() you can read these data in at once and stack them on top of each other in a single data frame.

sales_files <- c("data/01-sales.csv", "data/02-sales.csv", "data/03-sales.csv") read_csv(sales_files, id = "file")

 #> # A tibble: 19 × 6

 #> file month year brand item n

 #> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

 #> 1 data/01-sales.csv January 2019 1 1234 3

 #> 2 data/01-sales.csv January 2019 1 8721 9

 #> 3 data/01-sales.csv January 2019 1 1822 2

 #> 4 data/01-sales.csv January 2019 2 3333 1

 #> 5 data/01-sales.csv January 2019 2 2156 9

 #> 6 data/01-sales.csv January 2019 2 3987 6

 #> # … with 13 more rows

Once again, the previous code will work if you have the CSV files in a data folder in

your project. You can download these files from https://oreil.ly/jVd8o, https://oreil.ly/

 RYsgM, and https://oreil.ly/4uZOm or you can read them directly with: sales_files <- c(

"https://pos.it/r4ds-01-sales",

"https://pos.it/r4ds-02-sales",

"https://pos.it/r4ds-03-sales"

)

read_csv(sales_files, id = "file")

The id argument adds a new column called file to the resulting data frame that

identifies the file the data come from. This is especially helpful in circumstances

where the files you’re reading in do not have an identifying column that can help you

trace the observations back to their original sources.

If you have many files you want to read in, it can get cumbersome to write out their

names as a list. Instead, you can use the base list.files() function to find the files for you by matching a pattern in the filenames. You’ll learn more about these patterns

in Chapter 15.

Reading Data from Multiple Files | 107

sales_files <- list.files("data", pattern = "sales\\.csv$", full.names = TRUE) sales_files

 #> [1] "data/01-sales.csv" "data/02-sales.csv" "data/03-sales.csv"

Writing to a File

readr also comes with two useful functions for writing data to disk: write_csv() and

write_tsv(). The most important arguments to these functions are x (the data frame to save) and file (the location to save it). You can also specify how missing values are

written with na, as well as whether you want to append to an existing file.

write_csv(students, "students.csv")

Now let’s read that CSV file back in. Note that the variable type information that you

just set up is lost when you save to CSV because you’re starting over with reading

from a plain-text file again:

students

 #> # A tibble: 6 × 5

 #> student_id full_name favourite_food meal_plan age

 #> <dbl> <chr> <chr> <fct> <dbl>

 #> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

 #> 2 2 Barclay Lynn French fries Lunch only 5

 #> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7

 #> 4 4 Leon Rossini Anchovies Lunch only NA

 #> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch 5

 #> 6 6 Güvenç Attila Ice cream Lunch only 6

write_csv(students, "students-2.csv")

read_csv("students-2.csv")

 #> # A tibble: 6 × 5

 #> student_id full_name favourite_food meal_plan age

 #> <dbl> <chr> <chr> <chr> <dbl>

 #> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

 #> 2 2 Barclay Lynn French fries Lunch only 5

 #> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7

 #> 4 4 Leon Rossini Anchovies Lunch only NA

 #> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch 5

 #> 6 6 Güvenç Attila Ice cream Lunch only 6

This makes CSVs a little unreliable for caching interim results—you need to re-create

the column specification every time you load in. There are two main alternatives:

• write_rds() and read_rds() are uniform wrappers around the base functions

readRDS() and saveRDS(). These store data in R’s custom binary format called RDS. This means that when you reload the object, you are loading the exact same

R object that you stored.

write_rds(students, "students.rds")

read_rds("students.rds")

 #> # A tibble: 6 × 5

 #> student_id full_name favourite_food meal_plan age

 #> <dbl> <chr> <chr> <fct> <dbl>

 #> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

 #> 2 2 Barclay Lynn French fries Lunch only 5

 #> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7

108 | Chapter 7: Data Import

 #> 4 4 Leon Rossini Anchovies Lunch only NA

 #> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch 5

 #> 6 6 Güvenç Attila Ice cream Lunch only 6

• The arrow package allows you to read and write parquet files, a fast binary file

format that can be shared across programming languages. We’ll return to arrow

in more depth in Chapter 22.

library(arrow)

write_parquet(students, "students.parquet")

read_parquet("students.parquet")

 #> # A tibble: 6 × 5

 #> student_id full_name favourite_food meal_plan age

 #> <dbl> <chr> <chr> <fct> <dbl>

 #> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

 #> 2 2 Barclay Lynn French fries Lunch only 5

 #> 3 3 Jayendra Lyne NA Breakfast and lunch 7

 #> 4 4 Leon Rossini Anchovies Lunch only NA

 #> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch 5

 #> 6 6 Güvenç Attila Ice cream Lunch only 6

Parquet tends to be much faster than RDS and is usable outside of R but does require

the arrow package.

Data Entry

Sometimes you’ll need to assemble a tibble “by hand” doing a little data entry in your

R script. There are two useful functions to help you do this, which differ in whether

you lay out the tibble by columns or by rows. tibble() works by column:

tibble(

x = c(1, 2, 5),

y = c("h", "m", "g"),

z = c(0.08, 0.83, 0.60)

)

 #> # A tibble: 3 × 3

 #> x y z

 #> <dbl> <chr> <dbl>

 #> 1 1 h 0.08

 #> 2 2 m 0.83

 #> 3 5 g 0.6

Laying out the data by column can make it hard to see how the rows are related, so an

alternative is tribble(), short for tr ansposed t ibble, which lets you lay out your data row by row. tribble() is customized for data entry in code: column headings start with ~ and entries are separated by commas. This makes it possible to lay out small

amounts of data in an easy-to-read form:

tribble(

~x, ~y, ~z,

1, "h", 0.08,

2, "m", 0.83,

5, "g", 0.60

)

 #> # A tibble: 3 × 3

Data Entry | 109

 #> x y z

 #> <chr> <dbl> <dbl>

 #> 1 1 h 0.08

 #> 2 2 m 0.83

 #> 3 5 g 0.6

Summary

In this chapter, you learned how to load CSV files with read_csv() and to do your own data entry with tibble() and tribble(). You’ve learned how CSV files work, some of the problems you might encounter, and how to overcome them. We’ll come

to data import a few times in this book: Chapter 20 will show you how to load data

from Excel and Google Sheets, Chapter 21 from databases, Chapter 22 from parquet files, Chapter 23 from JSON, and Chapter 24 from websites.

We’re just about at the end of this section of the book, but there’s one important last

topic to cover: how to get help. So in the next chapter, you’ll learn some good places

to look for help, how to create a reprex to maximize your chances of getting good

help, and some general advice on keeping up with the world of R.

110 | Chapter 7: Data Import

CHAPTER 8

Workflow: Getting Help

This book is not an island; there is no single resource that will allow you to master

R. As you begin to apply the techniques described in this book to your own data, you

will soon find questions that we do not answer. This section describes a few tips on

how to get help and to help you keep learning.

Google Is Your Friend

If you get stuck, start with Google. Typically adding “R” to a query is enough to

restrict it to relevant results: if the search isn’t useful, it often means that there aren’t

any R-specific results available. Additionally, adding package names like “tidyverse”

or “ggplot2” will help narrow down the results to code that will feel more familiar

to you as well, e.g., “how to make a boxplot in R” versus “how to make a boxplot

in R with ggplot2.” Google is particularly useful for error messages. If you get an

error message and you have no idea what it means, try googling it! Chances are that

someone else has been confused by it in the past, and there will be help somewhere

on the web. (If the error message isn’t in English, run Sys.setenv(LANGUAGE = "en")

and rerun the code; you’re more likely to find help for English error messages.)

If Google doesn’t help, try Stack Overflow. Start by spending a little time searching for an existing answer, including [R], to restrict your search to questions and answers

that use R.

Making a reprex

If your googling doesn’t find anything useful, it’s a really good idea to prepare a

 reprex, short for minimal repr oducible ex ample. A good reprex makes it easier for other people to help you, and often you’ll figure out the problem yourself in the

course of making it. There are two parts to creating a reprex:

111

• First, you need to make your code reproducible. This means you need to capture

everything, i.e., include any library() calls and create all necessary objects. The easiest way to make sure you’ve done this is using the reprex package.

• Second, you need to make it minimal. Strip away everything that is not directly

related to your problem. This usually involves creating a much smaller and

simpler R object than the one you’re facing in real life or even using built-in data.

That sounds like a lot of work! And it can be, but it has a great payoff:

• 80% of the time, creating an excellent reprex reveals the source of your problem.

It’s amazing how often the process of writing up a self-contained and minimal

example allows you to answer your own question.

• The other 20% of the time, you will have captured the essence of your problem

in a way that is easy for others to play with. This substantially improves your

chances of getting help!

When creating a reprex by hand, it’s easy to accidentally miss something, meaning

your code can’t be run on someone else’s computer. Avoid this problem by using the

reprex package, which is installed as part of the tidyverse. Let’s say you copy this code

onto your clipboard (or, on RStudio Server or Cloud, select it):

y <- 1:4

mean(y)

Then call reprex(), where the default output is formatted for GitHub:

reprex::reprex()

A nicely rendered HTML preview will display in RStudio’s Viewer (if you’re in

RStudio) or your default browser otherwise. The reprex is automatically copied to

your clipboard (on RStudio Server or Cloud, you will need to copy this yourself):

``` r

y <- 1:4

mean(y)

#> [1] 2.5

```

This text is formatted in a special way, called Markdown, which can be pasted to sites

like StackOverflow or GitHub, which will automatically render it to look like code.

Here’s what that Markdown would look like rendered on GitHub:

y <- 1:4

mean(y)

 #> [1] 2.5

Anyone else can copy, paste, and run this immediately.

112 | Chapter 8: Workflow: Getting Help

There are three things you need to include to make your example reproducible:

required packages, data, and code.

• Packages should be loaded at the top of the script so it’s easy to see which ones the

example needs. This is a good time to check that you’re using the latest version of

each package; you may have discovered a bug that’s been fixed since you installed

or last updated the package. For packages in the tidyverse, the easiest way to

check is to run tidyverse_update().

• The easiest way to include data is to use dput() to generate the R code needed to re-create it. For example, to re-create the mtcars dataset in R, perform the

following steps:

— Run dput(mtcars) in R.

— Copy the output.

— In reprex, type mtcars <-, and then paste.

Try to use the smallest subset of your data that still reveals the problem.

• Spend a little bit of time ensuring that your code is easy for others to read:

— Make sure you’ve used spaces and your variable names are concise yet

informative.

— Use comments to indicate where your problem lies.

— Do your best to remove everything that is not related to the problem.

The shorter your code is, the easier it is to understand and the easier it is to fix.

Finish by checking that you have actually made a reproducible example by starting a

fresh R session and copying and pasting your script.

Creating reprexes is not trivial, and it will take some practice to learn to create good,

truly minimal reprexes. However, learning to ask questions that include the code and

investing the time to make it reproducible will continue to pay off as you learn and

master R.

Investing in Yourself

You should also spend some time preparing yourself to solve problems before they

occur. Investing a little time in learning R each day will pay off handsomely in the

long run. One way is to follow what the tidyverse team is doing on the tidyverse blog.

To keep up with the R community more broadly, we recommend reading R Weekly: it’s a community effort to aggregate the most interesting news in the R community

each week.

Investing in Yourself | 113

Summary

This chapter concludes the “Whole Game” part of the book. You’ve now seen the

most important parts of the data science process: visualization, transformation, tidy‐

ing, and importing. Now that you’ve gotten a holistic view of the whole process, we

can start to get into the details of small pieces.

The next part of the book, “Visualize,” does a deeper dive into the grammar of

graphics and creating data visualizations with ggplot2, showcases how to use the

tools you’ve learned so far to conduct exploratory data analysis, and introduces good

practices for creating plots for communication.

114 | Chapter 8: Workflow: Getting Help

[image: Image 55]

PART II

Visualize

After reading the first part of the book, you understand (at least superficially) the

most important tools for doing data science. Now it’s time to start diving into the

details. In this part of the book, you’ll learn about visualizing data in further depth in

Figure II-1.

 Figure II-1. Data visualization is often the first step in data exploration.

Each chapter addresses one to a few aspects of creating a data visualization:

• In Chapter 9 you will learn about the layered grammar of graphics.

• In Chapter 10, you’ll combine visualization with your curiosity and skepticism to ask and answer interesting questions about data.

• Finally, in Chapter 11 you will learn how to take your exploratory graphics, elevate them, and turn them into expository graphics, graphics that help the

newcomer to your analysis understand what’s going on as quickly and easily as

possible.

These three chapters get you started in the world of visualization, but there is much

more to learn. The absolute best place to learn more is the ggplot2 book: ggplot2: Ele‐

 gant Graphics for Data Analysis (Springer). It goes into much more depth about the underlying theory and has many more examples of how to combine the individual

pieces to solve practical problems. Another great resource is the ggplot2 extensions

gallery. This site lists many of the packages that extend ggplot2 with new geoms and scales. It’s a great place to start if you’re trying to do something that seems hard with

ggplot2.

CHAPTER 9

Layers

Introduction

In Chapter 1, you learned much more than just how to make scatterplots, bar charts,

and boxplots. You learned a foundation that you can use to make any type of plot

with ggplot2.

In this chapter, you’ll expand on that foundation as you learn about the layered

grammar of graphics. We’ll start with a deeper dive into aesthetic mappings, geomet‐

ric objects, and facets. Then, you will learn about statistical transformations ggplot2

makes under the hood when creating a plot. These transformations are used to

calculate new values to plot, such as the heights of bars in a bar plot or medians in

a box plot. You will also learn about position adjustments, which modify how geoms

are displayed in your plots. Finally, we’ll briefly introduce coordinate systems.

We will not cover every single function and option for each of these layers, but

we will walk you through the most important and commonly used functionality

provided by ggplot2 as well as introduce you to packages that extend ggplot2.

Prerequisites

This chapter focuses on ggplot2. To access the datasets, help pages, and functions

used in this chapter, load the tidyverse by running this code:

library(tidyverse)

117

Aesthetic Mappings

“The greatest value of a picture is when it forces us to notice what we never expected to

see.” —John Tukey

Remember that the mpg data frame bundled with the ggplot2 package contains 234

observations on 38 car models.

mpg

 #> # A tibble: 234 × 11

 #> manufacturer model displ year cyl trans drv cty hwy fl

 #> <chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int> <chr>

 #> 1 audi a4 1.8 1999 4 auto(l5) f 18 29 p

 #> 2 audi a4 1.8 1999 4 manual(m5) f 21 29 p

 #> 3 audi a4 2 2008 4 manual(m6) f 20 31 p

 #> 4 audi a4 2 2008 4 auto(av) f 21 30 p

 #> 5 audi a4 2.8 1999 6 auto(l5) f 16 26 p

 #> 6 audi a4 2.8 1999 6 manual(m5) f 18 26 p

 #> # … with 228 more rows, and 1 more variable: class <chr>

Among the variables in mpg are:

displ

A car’s engine size, in liters. A numerical variable.

hwy

A car’s fuel efficiency on the highway, in miles per gallon (mpg). A car with a low

fuel efficiency consumes more fuel than a car with a high fuel efficiency when

they travel the same distance. A numerical variable.

class

Type of car. A categorical variable.

Let’s start by visualizing the relationship between displ and hwy for various classes

of cars. We can do this with a scatterplot where the numerical variables are mapped to

the x and y aesthetics and the categorical variable is mapped to an aesthetic like color

or shape.

 # Left

ggplot(mpg, aes(x = displ, y = hwy, color = class)) +

geom_point()

 # Right

ggplot(mpg, aes(x = displ, y = hwy, shape = class)) +

geom_point()

 #> Warning: The shape palette can deal with a maximum of 6 discrete values

 #> because more than 6 becomes difficult to discriminate; you have 7.

 #> Consider specifying shapes manually if you must have them.

 #> Warning: Removed 62 rows containing missing values (`geom_point()`).

118 | Chapter 9: Layers

[image: Image 56]

[image: Image 57]

When class is mapped to shape, we get two warnings:

1: The shape palette can deal with a maximum of 6 discrete values because more than

6 becomes difficult to discriminate; you have 7. Consider specifying shapes manually if

you must have them.

2: Removed 62 rows containing missing values (geom_point()).

Since ggplot2 will use only six shapes at a time, by default, additional groups will go

unplotted when you use the shape aesthetic. The second warning is related—there are

62 SUVs in the dataset and they’re not plotted.

Similarly, we can map class to size or alpha aesthetics as well, which control the

shape and the transparency of the points, respectively.

 # Left

ggplot(mpg, aes(x = displ, y = hwy, size = class)) +

geom_point()

 #> Warning: Using size for a discrete variable is not advised.

 # Right

ggplot(mpg, aes(x = displ, y = hwy, alpha = class)) +

geom_point()

 #> Warning: Using alpha for a discrete variable is not advised.

Aesthetic Mappings | 119

[image: Image 58]

Both of these produce warnings as well:

Using alpha for a discrete variable is not advised.

Mapping an unordered discrete (categorical) variable (class) to an ordered aesthetic

(size or alpha) is generally not a good idea because it implies a ranking that does not

in fact exist.

Once you map an aesthetic, ggplot2 takes care of the rest. It selects a reasonable

scale to use with the aesthetic, and it constructs a legend that explains the mapping

between levels and values. For x and y aesthetics, ggplot2 does not create a legend,

but it creates an axis line with tick marks and a label. The axis line provides the same

information as a legend; it explains the mapping between locations and values.

You can also set the visual properties of your geom manually as an argument of

your geom function (outside of aes()) instead of relying on a variable mapping to determine the appearance. For example, we can make all of the points in our plot

blue:

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(color = "blue")

Here, the color doesn’t convey information about a variable; it changes only the

appearance of the plot. You’ll need to pick a value that makes sense for that aesthetic:

120 | Chapter 9: Layers

[image: Image 59]

• The name of a color as a character string, e.g., color = "blue"

• The size of a point in mm, e.g., size = 1

• The shape of a point as a number, e.g, shape = 1, as shown in Figure 9-1

 Figure 9-1. R has 25 built-in shapes that are identified by numbers. There are some

 seeming duplicates: for example, 0, 15, and 22 are all squares. The difference comes from

 the interaction of the color and fill aesthetics. The hollow shapes (0–14) have a border

 determined by color; the solid shapes (15–20) are filled with color; and the filled

 shapes (21–24) have a border of color and are filled with fill. Shapes are arranged to

 keep similar shapes next to each other.

So far we have discussed aesthetics that we can map or set in a scatterplot, when

using a point geom. You can learn more about all possible aesthetic mappings in the

aesthetic specifications vignette.

The specific aesthetics you can use for a plot depend on the geom you use to

represent the data. In the next section we dive deeper into geoms.

Exercises

1. Create a scatterplot of hwy versus displ where the points are pink filled-in

triangles.

2. Why did the following code not result in a plot with blue points?

ggplot(mpg) +

geom_point(aes(x = displ, y = hwy, color = "blue"))

3. What does the stroke aesthetic do? What shapes does it work with? (Hint:

Use ?geom_point.)

4. What happens if you map an aesthetic to something other than a variable name,

like aes(color = displ < 5)? Note, you’ll also need to specify x and y.

Aesthetic Mappings | 121

[image: Image 60]

Geometric Objects

How are these two plots similar?

Both plots contain the same x variable and the same y variable, and both describe the

same data. But the plots are not identical. Each plot uses a different geometric object,

geom, to represent the data. The plot on the left uses the point geom, and the plot on

the right uses the smooth geom, a smooth line fitted to the data.

To change the geom in your plot, change the geom function that you add to

ggplot(). For instance, to make the previous plot, you can use the following code:

 # Left

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point()

 # Right

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_smooth()

 #> `geom_smooth()ùsing method = 'loess' and formula = 'y ~ x'

Every geom function in ggplot2 takes a mapping argument, either defined locally

in the geom layer or globally in the ggplot() layer. However, not every aesthetic works with every geom. You could set the shape of a point, but you couldn’t set the

“shape” of a line. If you try, ggplot2 will silently ignore that aesthetic mapping. On the

other hand, you could set the linetype of a line. geom_smooth() will draw a different line, with a different linetype, for each unique value of the variable that you map to

linetype.

 # Left

ggplot(mpg, aes(x = displ, y = hwy, shape = drv)) +

geom_smooth()

 # Right

ggplot(mpg, aes(x = displ, y = hwy, linetype = drv)) +

geom_smooth()

122 | Chapter 9: Layers

[image: Image 61]

[image: Image 62]

Here, geom_smooth() separates the cars into three lines based on their drv value, which describes a car’s drivetrain. One line describes all of the points that have a 4

value, one line describes all of the points that have an f value, and one line describes

all of the points that have an r value. Here, 4 stands for four-wheel drive, f for

front-wheel drive, and r for rear-wheel drive.

If this sounds strange, we can make it clearer by overlaying the lines on top of the raw

data and then coloring everything according to drv.

ggplot(mpg, aes(x = displ, y = hwy, color = drv)) +

geom_point() +

geom_smooth(aes(linetype = drv))

Notice that this plot contains two geoms in the same graph.

Geometric Objects | 123

[image: Image 63]

Many geoms, like geom_smooth(), use a single geometric object to display multiple rows of data. For these geoms, you can set the group aesthetic to a categorical variable

to draw multiple objects. ggplot2 will draw a separate object for each unique value

of the grouping variable. In practice, ggplot2 will automatically group the data for

these geoms whenever you map an aesthetic to a discrete variable (as in the linetype

example). It is convenient to rely on this feature because the group aesthetic by itself

does not add a legend or distinguishing features to the geoms.

 # Left

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_smooth()

 # Middle

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_smooth(aes(group = drv))

 # Right

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_smooth(aes(color = drv), show.legend = FALSE)

If you place mappings in a geom function, ggplot2 will treat them as local mappings

for the layer. It will use these mappings to extend or overwrite the global mappings for

 that layer only. This makes it possible to display different aesthetics in different layers.

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(aes(color = class)) +

geom_smooth()

124 | Chapter 9: Layers

[image: Image 64]

You can use the same idea to specify different data for each layer. H

.

ere, we use red

points as well as open circles to highlight two-seater cars. The local data argument in

geom_point() overrides the global data argument in ggplot() for that layer only.

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point() +

geom_point(

data = mpg |> filter(class == "2seater"),

color = "red"

) +

geom_point(

data = mpg |> filter(class == "2seater"),

shape = "circle open", size = 3, color = "red"

)

Geometric Objects | 125

[image: Image 65]

[image: Image 66]

Geoms are the fundamental building blocks of ggplot2. You can completely transform

the look of your plot by changing its geom, and different geoms can reveal different

features of your data. For example, the following histogram and density plot reveal

that the distribution of highway mileage is bimodal and right skewed, while the

boxplot reveals two potential outliers:

 # Left

ggplot(mpg, aes(x = hwy)) +

geom_histogram(binwidth = 2)

 # Middle

ggplot(mpg, aes(x = hwy)) +

geom_density()

 # Right

ggplot(mpg, aes(x = hwy)) +

geom_boxplot()

126 | Chapter 9: Layers

[image: Image 67]

ggplot2 provides more than 40 geoms, but these geoms don’t cover all the possible

plots one could make. If you need a different geom, look into extension packages first to see if someone else has already implemented it. For example, the ggridges package

is useful for making ridgeline plots, which can be useful for visualizing the density of

a numerical variable for different levels of a categorical variable. In the following plot,

not only did we use a new geom (geom_density_ridges()), but we have also mapped the same variable to multiple aesthetics (drv to y, fill, and color) as well as set an

aesthetic (alpha = 0.5) to make the density curves transparent.

library(ggridges)

ggplot(mpg, aes(x = hwy, y = drv, fill = drv, color = drv)) +

geom_density_ridges(alpha = 0.5, show.legend = FALSE)

 #> Picking joint bandwidth of 1.28

The best place to get a comprehensive overview of all of the geoms ggplot2 offers, as

well as all functions in the package, is the reference page. To learn more about any

single geom, use the help (e.g., ?geom_smooth).

Exercises

1. What geom would you use to draw a line chart? A boxplot? A histogram? An

area chart?

2. Earlier in this chapter we used show.legend without explaining it:

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_smooth(aes(color = drv), show.legend = FALSE)

What does show.legend = FALSE do here? What happens if you remove it? Why

do you think we used it earlier?

3. What does the se argument to geom_smooth() do?

4. Re-create the R code necessary to generate the following graphs. Note that

wherever a categorical variable is used in the plot, it’s drv.

Geometric Objects | 127

[image: Image 68]

[image: Image 69]

Facets

In Chapter 1 you learned about faceting with facet_wrap(), which splits a plot into subplots that each display one subset of the data based on a categorical variable.

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point() +

facet_wrap(~cyl)

128 | Chapter 9: Layers

[image: Image 70]

To facet your plot with the combination of two variables, switch from facet_wrap()

to facet_grid(). The first argument of facet_grid() is also a formula, but now it’s a double-sided formula: rows ~ cols.

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point() +

facet_grid(drv ~ cyl)

By default each of the facets share the same scale and range for x and y axes. This

is useful when you want to compare data across facets, but it can be limiting when

you want to visualize the relationship within each facet better. Setting the scales

argument in a faceting function to "free" will allow for different axis scales across

both rows and columns, "free_x" will allow for different scales across rows, and

"free_y" will allow for different scales across columns.

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point() +

facet_grid(drv ~ cyl, scales = "free_y")

Facets | 129

[image: Image 71]

Exercises

1. What happens if you facet on a continuous variable?

2. What do the empty cells in the plot with facet_grid(drv ~ cyl) mean? Run the

following code. How do the cells relate to the resulting plot?

ggplot(mpg) +

geom_point(aes(x = drv, y = cyl))

3. What plots does the following code make? What does . do?

ggplot(mpg) +

geom_point(aes(x = displ, y = hwy)) +

facet_grid(drv ~ .)

ggplot(mpg) +

geom_point(aes(x = displ, y = hwy)) +

facet_grid(. ~ cyl)

4. Take the first faceted plot in this section:

ggplot(mpg) +

geom_point(aes(x = displ, y = hwy)) +

facet_wrap(~ class, nrow = 2)

What are the advantages to using faceting instead of the color aesthetic? What

are the disadvantages? How might the balance change if you had a larger dataset?

130 | Chapter 9: Layers

5. Read ?facet_wrap. What does nrow do? What does ncol do? What other options control the layout of the individual panels? Why doesn’t facet_grid() have nrow and ncol arguments?

6. Which of the following plots makes it easier to compare engine size (displ)

across cars with different drivetrains? What does this say about when to place a

faceting variable across rows or columns?

ggplot(mpg, aes(x = displ)) +

geom_histogram() +

facet_grid(drv ~ .)

ggplot(mpg, aes(x = displ)) +

geom_histogram() +

facet_grid(. ~ drv)

7. Re-create the following plot using facet_wrap() instead of facet_grid(). How do the positions of the facet labels change?

ggplot(mpg) +

geom_point(aes(x = displ, y = hwy)) +

facet_grid(drv ~ .)

Statistical Transformations

Consider a basic bar chart drawn with geom_bar() or geom_col(). The following chart displays the total number of diamonds in the diamonds dataset, grouped by

cut. The diamonds dataset is in the ggplot2 package and contains information on

about 54,000 diamonds, including the price, carat, color, clarity, and cut of each

diamond. The chart shows that more diamonds are available with high-quality cuts

than with low-quality cuts.

ggplot(diamonds, aes(x = cut)) +

geom_bar()

Statistical Transformations | 131

[image: Image 72]

On the x-axis, the chart displays cut, a variable from diamonds. On the y-axis, it

displays count, but count is not a variable in diamonds! Where does count come

from? Many graphs, like scatterplots, plot the raw values of your dataset. Other

graphs, like bar charts, calculate new values to plot:

• Bar charts, histograms, and frequency polygons bin your data and then plot bin

counts, the number of points that fall in each bin.

• Smoothers fit a model to your data and then plot predictions from the model.

• Boxplots compute the five-number summary of the distribution and then display

that summary as a specially formatted box.

The algorithm used to calculate new values for a graph is called a stat, short for

statistical transformation. Figure 9-2 shows how this process works with geom_bar().

132 | Chapter 9: Layers

[image: Image 73]

 Figure 9-2. When creating a bar chart, we first start with the raw data, then aggregate

 it to count the number of observations in each bar, and finally map those computed

 variables to plot aesthetics.

You can learn which stat a geom uses by inspecting the default value for the stat

argument. For example, ?geom_bar shows that the default value for stat is “count,”

which means that geom_bar() uses stat_count(). stat_count() is documented on the same page as geom_bar(). If you scroll down, the section called “Computed variables” explains that it computes two new variables: count and prop.

Every geom has a default stat, and every stat has a default geom. This means you can

typically use geoms without worrying about the underlying statistical transformation.

However, there are three reasons why you might need to use a stat explicitly:

1. You might want to override the default stat. In the following code, we change

the stat of geom_bar() from count (the default) to identity. This lets us map the height of the bars to the raw values of a y variable.

diamonds |>

count(cut) |>

ggplot(aes(x = cut, y = n)) +

geom_bar(stat = "identity")

Statistical Transformations | 133

[image: Image 74]

[image: Image 75]

2. You might want to override the default mapping from transformed variables to

aesthetics. For example, you might want to display a bar chart of proportions,

rather than counts:

ggplot(diamonds, aes(x = cut, y = after_stat(prop), group = 1)) +

geom_bar()

134 | Chapter 9: Layers

[image: Image 76]

To find the possible variables that can be computed by the stat, look for the

section titled “Computed variables” in the help for geom_bar().

3. You might want to draw greater attention to the statistical transformation in

your code. For example, you might use stat_summary(), which summarizes the

y values for each unique x value, to draw attention to the summary that you’re

computing:

ggplot(diamonds) +

stat_summary(

aes(x = cut, y = depth),

fun.min = min,

fun.max = max,

fun = median

)

ggplot2 provides more than 20 stats for you to use. Each stat is a function, so you can

get help in the usual way, e.g., ?stat_bin.

Exercises

1. What is the default geom associated with stat_summary()? How could you rewrite the previous plot to use that geom function instead of the stat function?

2. What does geom_col() do? How is it different from geom_bar()?

Statistical Transformations | 135

[image: Image 77]

3. Most geoms and stats come in pairs that are almost always used in concert. Make

a list of all the pairs. What do they have in common? (Hint: Read through the

documentation.)

4. What variables does stat_smooth() compute? What arguments control its behavior?

5. In our proportion bar chart, we need to set group = 1. Why? In other words,

what is the problem with these two graphs?

ggplot(diamonds, aes(x = cut, y = after_stat(prop))) +

geom_bar()

ggplot(diamonds, aes(x = cut, fill = color, y = after_stat(prop))) +

geom_bar()

Position Adjustments

There’s one more piece of magic associated with bar charts. You can color a bar chart

using either the color aesthetic or, more usefully, the fill aesthetic:

 # Left

ggplot(mpg, aes(x = drv, color = drv)) +

geom_bar()

 # Right

ggplot(mpg, aes(x = drv, fill = drv)) +

geom_bar()

Note what happens if you map the fill aesthetic to another variable, like class: the

bars are automatically stacked. Each colored rectangle represents a combination of

drv and class.

ggplot(mpg, aes(x = drv, fill = class)) +

geom_bar()

136 | Chapter 9: Layers

[image: Image 78]

[image: Image 79]

The stacking is performed automatically using the position adjustment specified by

the position argument. If you don’t want a stacked bar chart, you can use one of

three other options: "identity", "dodge", or "fill".

• position = "identity" will place each object exactly where it falls in the

context of the graph. This is not very useful for bars, because it overlaps them.

To see that overlapping, we need to make the bars either slightly transparent by

setting alpha to a small value or completely transparent by setting fill = NA.

 # Left

ggplot(mpg, aes(x = drv, fill = class)) +

geom_bar(alpha = 1/5, position = "identity")

 # Right

ggplot(mpg, aes(x = drv, color = class)) +

geom_bar(fill = NA, position = "identity")

Position Adjustments | 137

[image: Image 80]

The identity position adjustment is more useful for 2D geoms, like points, where

it is the default.

• position = "fill" works like stacking but makes each set of stacked bars the

same height. This makes it easier to compare proportions across groups.

• position = "dodge" places overlapping objects directly beside one another. This

makes it easier to compare individual values.

 # Left

ggplot(mpg, aes(x = drv, fill = class)) +

geom_bar(position = "fill")

 # Right

ggplot(mpg, aes(x = drv, fill = class)) +

geom_bar(position = "dodge")

There’s one other type of adjustment that’s not useful for bar charts but can be

very useful for scatterplots. Recall our first scatterplot. Did you notice that the plot

displays only 126 points, even though there are 234 observations in the dataset?

138 | Chapter 9: Layers

[image: Image 81]

The underlying values of hwy and displ are rounded so the points appear on a grid,

and many points overlap each other. This problem is known as overplotting. This

arrangement makes it difficult to see the distribution of the data. Are the data points

spread equally throughout the graph, or is there one special combination of hwy and

displ that contains 109 values?

You can avoid this gridding by setting the position adjustment to “jitter”. Using

position = "jitter" adds a small amount of random noise to each point. This

spreads the points out because no two points are likely to receive the same amount of

random noise.

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(position = "jitter")

Position Adjustments | 139

[image: Image 82]

Adding randomness seems like a strange way to improve your plot, but while it

makes your graph less accurate at small scales, it makes your graph more revealing at

large scales. Because this is such a useful operation, ggplot2 comes with a shorthand

for geom_point(position = "jitter"): geom_jitter().

To learn more about a position adjustment, look up the help page associated with

each adjustment:

• ?position_dodge

• ?position_fill

• ?position_identity

• ?position_jitter

• ?position_stack

Exercises

1. What is the problem with the following plot? How could you improve it?

ggplot(mpg, aes(x = cty, y = hwy)) +

geom_point()

140 | Chapter 9: Layers

[image: Image 83]

2. What, if anything, is the difference between the two plots? Why?

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point()

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(position = "identity")

3. What parameters to geom_jitter() control the amount of jittering?

4. Compare and contrast geom_jitter() with geom_count().

5. What’s the default position adjustment for geom_boxplot()? Create a visualization of the mpg dataset that demonstrates it.

Coordinate Systems

Coordinate systems are probably the most complicated part of ggplot2. The default

coordinate system is the Cartesian coordinate system where the x and y positions

act independently to determine the location of each point. There are two other

coordinate systems that are occasionally helpful.

• coord_quickmap() sets the aspect ratio correctly for geographic maps. This is important if you’re plotting spatial data with ggplot2. We don’t have the space to

discuss maps in this book, but you can learn more in the Maps chapter of ggplot2: Elegant Graphics for Data Analysis (Springer).

nz <- map_data("nz")

ggplot(nz, aes(x = long, y = lat, group = group)) +

geom_polygon(fill = "white", color = "black")

ggplot(nz, aes(x = long, y = lat, group = group)) +

geom_polygon(fill = "white", color = "black") +

coord_quickmap()

Coordinate Systems | 141

[image: Image 84]

[image: Image 85]

• coord_polar() uses polar coordinates. Polar coordinates reveal an interesting connection between a bar chart and a Coxcomb chart.

bar <- ggplot(data = diamonds) +

geom_bar(

mapping = aes(x = clarity, fill = clarity),

show.legend = FALSE,

width = 1

) +

theme(aspect.ratio = 1)

bar + coord_flip()

bar + coord_polar()

142 | Chapter 9: Layers

Exercises

1. Turn a stacked bar chart into a pie chart using coord_polar().

2. What’s the difference between coord_quickmap() and coord_map()?

3. What does the following plot tell you about the relationship between city and

highway mpg? Why is coord_fixed() important? What does geom_abline() do?

ggplot(data = mpg, mapping = aes(x = cty, y = hwy)) +

geom_point() +

geom_abline() +

coord_fixed()

The Layered Grammar of Graphics

We can expand on the graphing template you learned in “ggplot2 Calls” on page 16 by

adding position adjustments, stats, coordinate systems, and faceting:

ggplot(data = <DATA>) +

<GEOM_FUNCTION>(

mapping = aes(<MAPPINGS>),

stat = <STAT>,

position = <POSITION>

) +

<COORDINATE_FUNCTION> +

<FACET_FUNCTION>

Our new template takes seven parameters, the bracketed words that appear in the

template. In practice, you rarely need to supply all seven parameters to make a

graph because ggplot2 will provide useful defaults for everything except the data, the

mappings, and the geom function.

The seven parameters in the template compose the grammar of graphics, a formal

system for building plots. The grammar of graphics is based on the insight that

you can uniquely describe any plot as a combination of a dataset, a geom, a set of

mappings, a stat, a position adjustment, a coordinate system, a faceting scheme, and a

theme.

To see how this works, consider how you could build a basic plot from scratch: you

could start with a dataset and then transform it into the information that you want

to display (with a stat). Next, you could choose a geometric object to represent each

observation in the transformed data. You could then use the aesthetic properties

of the geoms to represent variables in the data. You would map the values of each

variable to the levels of an aesthetic. These steps are illustrated in Figure 9-3. You’d then select a coordinate system to place the geoms into, using the location of the

objects (which is itself an aesthetic property) to display the values of the x and y

variables.

The Layered Grammar of Graphics | 143

[image: Image 86]

 Figure 9-3. These are the steps for going from raw data to a table of frequencies to a bar

 plot where the heights of the bar represent the frequencies.

At this point, you would have a complete graph, but you could further adjust the

positions of the geoms within the coordinate system (a position adjustment) or split

the graph into subplots (faceting). You could also extend the plot by adding one or

more additional layers, where each additional layer uses a dataset, a geom, a set of

mappings, a stat, and a position adjustment.

You could use this method to build any plot that you imagine. In other words, you

can use the code template that you’ve learned in this chapter to build hundreds of

thousands of unique plots.

If you’d like to learn more about the theoretical underpinnings of ggplot2, you might

enjoy reading “A Layered Grammar of Graphics” , the scientific paper that describes the theory of ggplot2 in detail.

Summary

In this chapter you learned about the layered grammar of graphics starting with

aesthetics and geometries to build a simple plot, facets for splitting the plot into

subsets, statistics for understanding how geoms are calculated, position adjustments

for controlling the fine details of position when geoms might otherwise overlap, and

coordinate systems that allow you to fundamentally change what x and y mean. One

layer we have not yet touched on is theme, which we will introduce in “Themes” on

page 193.

Two very useful resources for getting an overview of the complete ggplot2 functional‐

ity are the ggplot2 cheatsheet and the ggplot2 package website.

An important lesson you should take from this chapter is that when you feel the

need for a geom that is not provided by ggplot2, it’s always a good idea to look

into whether someone else has already solved your problem by creating a ggplot2

extension package that offers that geom.

144 | Chapter 9: Layers

CHAPTER 10

Exploratory Data Analysis

Introduction

This chapter will show you how to use visualization and transformation to explore

your data in a systematic way, a task that statisticians call exploratory data analysis, or

EDA for short. EDA is an iterative cycle. You:

1. Generate questions about your data.

2. Search for answers by visualizing, transforming, and modeling your data.

3. Use what you learn to refine your questions and/or generate new questions.

EDA is not a formal process with a strict set of rules. More than anything, EDA is

a state of mind. During the initial phases of EDA you should feel free to investigate

every idea that occurs to you. Some of these ideas will pan out, and some will be

dead ends. As your exploration continues, you will home in on a few particularly

productive insights that you’ll eventually write up and communicate to others.

EDA is an important part of any data analysis, even if the primary research questions

are handed to you on a platter, because you always need to investigate the quality

of your data. Data cleaning is just one application of EDA: you ask questions about

whether your data meets your expectations. To do data cleaning, you’ll need to deploy

all the tools of EDA: visualization, transformation, and modeling.

Prerequisites

In this chapter we’ll combine what you’ve learned about dplyr and ggplot2 to interac‐

tively ask questions, answer them with data, and then ask new questions.

library(tidyverse)

145

Questions

“There are no routine statistical questions, only questionable statistical routines.”

—Sir David Cox

“Far better an approximate answer to the right question, which is often vague, than an

exact answer to the wrong question, which can always be made precise.” —John Tukey

Your goal during EDA is to develop an understanding of your data. The easiest way

to do this is to use questions as tools to guide your investigation. When you ask a

question, the question focuses your attention on a specific part of your dataset and

helps you decide which graphs, models, or transformations to make.

EDA is fundamentally a creative process. And like most creative processes, the key to

asking quality questions is to generate a large quantity of questions. It is difficult to ask revealing questions at the start of your analysis because you do not know what

insights can be gleaned from your dataset. On the other hand, each new question

that you ask will expose you to a new aspect of your data and increase your chance

of making a discovery. You can quickly drill down into the most interesting parts of

your data—and develop a set of thought-provoking questions—if you follow up each

question with a new question based on what you find.

There is no rule about which questions you should ask to guide your research.

However, two types of questions will always be useful for making discoveries within

your data. You can loosely word these questions as:

1. What type of variation occurs within my variables?

2. What type of covariation occurs between my variables?

The rest of this chapter will look at these two questions. We’ll explain what variation

and covariation are, and we’ll show you several ways to answer each question.

Variation

 Variation is the tendency of the values of a variable to change from measurement to

measurement. You can see variation easily in real life; if you measure any continuous

variable twice, you will get two different results. This is true even if you measure

quantities that are constant, like the speed of light. Each of your measurements will

include a small amount of error that varies from measurement to measurement.

Variables can also vary if you measure across different subjects (e.g., the eye colors

of different people) or at different times (e.g., the energy levels of an electron at

different moments). Every variable has its own pattern of variation, which can reveal

interesting information about how it varies between measurements on the same

observation as well as across observations. The best way to understand that pattern

146 | Chapter 10: Exploratory Data Analysis

[image: Image 87]

is to visualize the distribution of the variable’s values, which you’ve learned about in

Chapter 1.

We’ll start our exploration by visualizing the distribution of weights (carat) of about

54,000 diamonds from the diamonds dataset. Since carat is a numerical variable, we

can use a histogram:

ggplot(diamonds, aes(x = carat)) +

geom_histogram(binwidth = 0.5)

Now that you can visualize variation, what should you look for in your plots? And

what type of follow-up questions should you ask? We’ve put together a list in the

next section of the most useful types of information that you will find in your graphs,

along with some follow-up questions for each type of information. The key to asking

good follow-up questions will be to rely on your curiosity (what do you want to learn

more about?) as well as your skepticism (how could this be misleading?).

Typical Values

In both bar charts and histograms, tall bars show the common values of a variable,

and shorter bars show less-common values. Places that do not have bars reveal values

that were not seen in your data. To turn this information into useful questions, look

for anything unexpected:

• Which values are the most common? Why?

Variation | 147

[image: Image 88]

• Which values are rare? Why? Does that match your expectations?

• Can you see any unusual patterns? What might explain them?

Let’s take a look at the distribution of carat for smaller diamonds:

smaller <- diamonds |>

filter(carat < 3)

ggplot(smaller, aes(x = carat)) +

geom_histogram(binwidth = 0.01)

This histogram suggests several interesting questions:

• Why are there more diamonds at whole carats and common fractions of carats?

• Why are there more diamonds slightly to the right of each peak than there are

slightly to the left of each peak?

Visualizations can also reveal clusters, which suggest that subgroups exist in your

data. To understand the subgroups, ask:

• How are the observations within each subgroup similar to each other?

• How are the observations in separate clusters different from each other?

148 | Chapter 10: Exploratory Data Analysis

[image: Image 89]

• How can you explain or describe the clusters?

• Why might the appearance of clusters be misleading?

Some of these questions can be answered with the data, while some will require

domain expertise about the data. Many of them will prompt you to explore a relation‐

ship between variables, for example, to see if the values of one variable can explain the

behavior of another variable. We’ll get to that shortly.

Unusual Values

Outliers are observations that are unusual, in other words, data points that don’t seem

to fit the pattern. Sometimes outliers are data entry errors, sometimes they are simply

values at the extremes that happened to be observed in this data collection, and other

times they suggest important new discoveries. When you have a lot of data, outliers

are sometimes difficult to see in a histogram. For example, take the distribution of the

y variable from the diamonds dataset. The only evidence of outliers is the unusually

wide limits on the x-axis.

ggplot(diamonds, aes(x = y)) +

geom_histogram(binwidth = 0.5)

Variation | 149

[image: Image 90]

There are so many observations in the common bins that the rare bins are very short,

making it difficult to see them (although maybe if you stare intently at 0, you’ll spot

something). To make it easy to see the unusual values, we need to zoom to small

values of the y-axis with coord_cartesian(): ggplot(diamonds, aes(x = y)) +

geom_histogram(binwidth = 0.5) +

coord_cartesian(ylim = c(0, 50))

coord_cartesian() also has an xlim() argument for when you need to zoom into

the x-axis. ggplot2 also has xlim() and ylim() functions that work slightly differently: they throw away the data outside the limits.

This allows us to see that there are three unusual values: 0, ~30, and ~60. We pluck

them out with dplyr:

unusual <- diamonds |>

filter(y < 3 | y > 20) |>

select(price, x, y, z) |>

arrange(y)

unusual

 #> # A tibble: 9 × 4

 #> price x y z

 #> <int> <dbl> <dbl> <dbl>

 #> 1 5139 0 0 0

 #> 2 6381 0 0 0

 #> 3 12800 0 0 0

 #> 4 15686 0 0 0

 #> 5 18034 0 0 0

150 | Chapter 10: Exploratory Data Analysis

 #> 6 2130 0 0 0

 #> 7 2130 0 0 0

 #> 8 2075 5.15 31.8 5.12

 #> 9 12210 8.09 58.9 8.06

The y variable measures one of the three dimensions of these diamonds, in mm. We

know that diamonds can’t have a width of 0mm, so these values must be incorrect. By

doing EDA, we have discovered missing data that were coded as 0, which we never

would have found by simply searching for NAs. Going forward we might choose to

re-code these values as NAs to prevent misleading calculations. We might also suspect

that measurements of 32mm and 59mm are implausible: those diamonds are more

than an inch long but don’t cost hundreds of thousands of dollars!

It’s good practice to repeat your analysis with and without the outliers. If they have

minimal effect on the results and you can’t figure out why they’re there, it’s reasonable

to omit them and move on. However, if they have a substantial effect on your results,

you shouldn’t drop them without justification. You’ll need to figure out what caused

them (e.g., a data entry error) and disclose that you removed them in your write-up.

Exercises

1. Explore the distribution of each of the x, y, and z variables in diamonds. What do

you learn? Think about a diamond and how you might decide which dimension

is the length, width, and depth.

2. Explore the distribution of price. Do you discover anything unusual or surpris‐

ing? (Hint: Carefully think about the binwidth and make sure you try a wide

range of values.)

3. How many diamonds are 0.99 carat? How many are 1 carat? What do you think

is the cause of the difference?

4. Compare and contrast coord_cartesian() and xlim() or ylim() when zooming in on a histogram. What happens if you leave binwidth unset? What happens if

you try to zoom so only half a bar shows?

Unusual Values

If you’ve encountered unusual values in your dataset and simply want to move on to

the rest of your analysis, you have two options:

1. Drop the entire row with the strange values:

diamonds2 <- diamonds |>

filter(between(y, 3, 20))

We don’t recommend this option because one invalid value doesn’t imply that all

the other values for that observation are also invalid. Additionally, if you have

Unusual Values | 151

[image: Image 91]

low-quality data, by the time that you’ve applied this approach to every variable

you might find that you don’t have any data left!

2. Instead, we recommend replacing the unusual values with missing values. The

easiest way to do this is to use mutate() to replace the variable with a modified

copy. You can use the if_else() function to replace unusual values with NA: diamonds2 <- diamonds |>

mutate(y = if_else(y < 3 | y > 20, NA, y))

It’s not obvious where you should plot missing values, so ggplot2 doesn’t include

them in the plot, but it does warn that they’ve been removed:

ggplot(diamonds2, aes(x = x, y = y)) +

geom_point()

 #> Warning: Removed 9 rows containing missing values (`geom_point()`).

To suppress that warning, set na.rm = TRUE:

ggplot(diamonds2, aes(x = x, y = y)) +

geom_point(na.rm = TRUE)

Other times you want to understand what makes observations with missing

values different to observations with recorded values. For example, in nyc

flights13::flights, 1 missing values in the dep_time variable indicate that the 1 Remember that when we need to be explicit about where a function (or dataset) comes from, we’ll use the special form package::function() or package::dataset.

152 | Chapter 10: Exploratory Data Analysis

[image: Image 92]

flight was cancelled. So you might want to compare the scheduled departure times for

cancelled and noncancelled times. You can do this by making a new variable, using

is.na() to check whether dep_time is missing.

nycflights13::flights |>

mutate(

cancelled = is.na(dep_time),

sched_hour = sched_dep_time %/% 100,

sched_min = sched_dep_time %% 100,

sched_dep_time = sched_hour + (sched_min / 60)

) |>

ggplot(aes(x = sched_dep_time)) +

geom_freqpoly(aes(color = cancelled), binwidth = 1/4)

However, this plot isn’t great because there are many more noncancelled flights than

cancelled flights. In the next section, we’ll explore some techniques for improving this

comparison.

Exercises

1. What happens to missing values in a histogram? What happens to missing values

in a bar chart? Why is there a difference in how missing values are handled in

histograms and bar charts?

2. What does na.rm = TRUE do in mean() and sum()?

Unusual Values | 153

[image: Image 93]

3. Re-create the frequency plot of scheduled_dep_time colored by whether the

flight was cancelled or not. Also facet by the cancelled variable. Experiment

with different values of the scales variable in the faceting function to mitigate

the effect of more noncancelled flights than cancelled flights.

Covariation

If variation describes the behavior within a variable, covariation describes the behav‐

ior between variables. Covariation is the tendency for the values of two or more

variables to vary together in a related way. The best way to spot covariation is to

visualize the relationship between two or more variables.

A Categorical and a Numerical Variable

For example, let’s explore how the price of a diamond varies with its quality (meas‐

ured by cut) using geom_freqpoly(): ggplot(diamonds, aes(x = price)) +

geom_freqpoly(aes(color = cut), binwidth = 500, linewidth = 0.75)

Note that ggplot2 uses an ordered color scale for cut because it’s defined as an

ordered factor variable in the data. You’ll learn more about these in “Ordered Factors”

on page 295.

154 | Chapter 10: Exploratory Data Analysis

[image: Image 94]

The default appearance of geom_freqpoly() is not that useful here because the height, determined by the overall count, differs so much across cuts, making it hard

to see the differences in the shapes of their distributions.

To make the comparison easier, we need to swap what is displayed on the y-axis.

Instead of displaying count, we’ll display the density, which is the count standardized

so that the area under each frequency polygon is 1:

ggplot(diamonds, aes(x = price, y = after_stat(density))) +

geom_freqpoly(aes(color = cut), binwidth = 500, linewidth = 0.75)

Note that we’re mapping the density the y, but since density is not a variable in the

diamonds dataset, we need to first calculate it. We use the after_stat() function to do so.

There’s something rather surprising about this plot: it appears that fair diamonds (the

lowest quality) have the highest average price! But maybe that’s because frequency

polygons are a little hard to interpret; there’s a lot going on in this plot.

A visually simpler plot for exploring this relationship is using side-by-side boxplots:

ggplot(diamonds, aes(x = cut, y = price)) +

geom_boxplot()

Covariation | 155

[image: Image 95]

We see much less information about the distribution, but the boxplots are much

more compact so we can more easily compare them (and fit more on one plot).

It supports the counterintuitive finding that better-quality diamonds are typically

cheaper! In the exercises, you’ll be challenged to figure out why.

cut is an ordered factor: fair is worse than good, which is worse than very good and

so on. Many categorical variables don’t have such an intrinsic order, so you might

want to reorder them to make a more informative display. One way to do that is with

fct_reorder(). You’ll learn more about that function in “Modifying Factor Order”

on page 288, but we wanted to give you a quick preview here because it’s so useful.

For example, take the class variable in the mpg dataset. You might be interested to

know how highway mileage varies across classes:

ggplot(mpg, aes(x = class, y = hwy)) +

geom_boxplot()

156 | Chapter 10: Exploratory Data Analysis

[image: Image 96]

[image: Image 97]

To make the trend easier to see, we can reorder class based on the median value of

hwy:

ggplot(mpg, aes(x = fct_reorder(class, hwy, median), y = hwy)) +

geom_boxplot()

If you have long variable names, geom_boxplot() will work better if you flip it 90°.

You can do that by exchanging the x and y aesthetic mappings:

ggplot(mpg, aes(x = hwy, y = fct_reorder(class, hwy, median))) +

geom_boxplot()

Covariation | 157

[image: Image 98]

Exercises

1. Use what you’ve learned to improve the visualization of the departure times of

cancelled versus noncancelled flights.

2. Based on EDA, what variable in the diamonds dataset appears to be most impor‐

tant for predicting the price of a diamond? How is that variable correlated with

cut? Why does the combination of those two relationships lead to lower-quality

diamonds being more expensive?

3. Instead of exchanging the x and y variables, add coord_flip() as a new layer to the vertical boxplot to create a horizontal one. How does this compare to

exchanging the variables?

4. One problem with boxplots is that they were developed in an era of much smaller

datasets and tend to display a prohibitively large number of “outlying values.”

One approach to remedy this problem is the letter value plot. Install the lvplot

package, and try using geom_lv() to display the distribution of price versus cut.

What do you learn? How do you interpret the plots?

5. Create a visualization of diamond prices versus a categorical variable from the

diamonds dataset using geom_violin(), then a faceted geom_histogram(), then

a colored geom_freqpoly(), and then a colored geom_density(). Compare and contrast the four plots. What are the pros and cons of each method of visualizing

158 | Chapter 10: Exploratory Data Analysis

[image: Image 99]

the distribution of a numerical variable based on the levels of a categorical

variable?

6. If you have a small dataset, it’s sometimes useful to use geom_jitter() to avoid overplotting to more easily see the relationship between a continuous and categorical variable. The ggbeeswarm package provides a number of methods similar to

geom_jitter(). List them and briefly describe what each one does.

Two Categorical Variables

To visualize the covariation between categorical variables, you’ll need to count the

number of observations for each combination of levels of these categorical variables.

One way to do that is to rely on the built-in geom_count():

ggplot(diamonds, aes(x = cut, y = color)) +

geom_count()

The size of each circle in the plot displays how many observations occurred at

each combination of values. Covariation will appear as a strong correlation between

specific x values and specific y values.

Another approach for exploring the relationship between these variables is comput‐

ing the counts with dplyr:

diamonds |>

count(color, cut)

 #> # A tibble: 35 × 3

Covariation | 159

[image: Image 100]

 #> color cut n

 #> <ord> <ord> <int>

 #> 1 D Fair 163

 #> 2 D Good 662

 #> 3 D Very Good 1513

 #> 4 D Premium 1603

 #> 5 D Ideal 2834

 #> 6 E Fair 224

 #> # … with 29 more rows

Then visualize with geom_tile() and the fill aesthetic:

diamonds |>

count(color, cut) |>

ggplot(aes(x = color, y = cut)) +

geom_tile(aes(fill = n))

If the categorical variables are unordered, you might want to use the seriation

package to simultaneously reorder the rows and columns to more clearly reveal

interesting patterns. For larger plots, you might want to try the heatmaply package,

which creates interactive plots.

Exercises

1. How could you rescale the previous count dataset to more clearly show the

distribution of cut within color, or color within cut?

160 | Chapter 10: Exploratory Data Analysis

[image: Image 101]

2. What different data insights do you get with a segmented bar chart if color is

mapped to the x aesthetic and cut is mapped to the fill aesthetic? Calculate the

counts that fall into each of the segments.

3. Use geom_tile() together with dplyr to explore how average flight departure delays vary by destination and month of year. What makes the plot difficult to

read? How could you improve it?

Two Numerical Variables

You’ve already seen one great way to visualize the covariation between two numerical

variables: draw a scatterplot with geom_point(). You can see covariation as a pattern in the points. For example, you can see a positive relationship between the carat

size and price of a diamond: diamonds with more carats have a higher price. The

relationship is exponential.

ggplot(smaller, aes(x = carat, y = price)) +

geom_point()

(In this section we’ll use the smaller dataset to stay focused on the bulk of the

diamonds that are smaller than 3 carats.)

Scatterplots become less useful as the size of your dataset grows, because points

begin to overplot and pile up into areas of uniform black, making it hard to judge

differences in the density of the data across the two-dimensional space as well as

Covariation | 161

[image: Image 102]

making it hard to spot the trend. You’ve already seen one way to fix the problem:

using the alpha aesthetic to add transparency.

ggplot(smaller, aes(x = carat, y = price)) +

geom_point(alpha = 1 / 100)

But using transparency can be challenging for very large datasets. Another solution is

to use bins. Previously you used geom_histogram() and geom_freqpoly() to bin in one dimension. Now you’ll learn how to use geom_bin2d() and geom_hex() to bin in two dimensions.

geom_bin2d() and geom_hex() divide the coordinate plane into 2D bins and then use a fill color to display how many points fall into each bin. geom_bin2d() creates

rectangular bins. geom_hex() creates hexagonal bins. You will need to install the hexbin package to use geom_hex().

ggplot(smaller, aes(x = carat, y = price)) +

geom_bin2d()

 # install.packages("hexbin")

ggplot(smaller, aes(x = carat, y = price)) +

geom_hex()

162 | Chapter 10: Exploratory Data Analysis

[image: Image 103]

[image: Image 104]

Another option is to bin one continuous variable so it acts like a categorical variable.

Then you can use one of the techniques for visualizing the combination of a catego‐

rical and a continuous variable that you learned about. For example, you could bin

carat and then for each group display a boxplot:

ggplot(smaller, aes(x = carat, y = price)) +

geom_boxplot(aes(group = cut_width(carat, 0.1)))

cut_width(x, width), as used here, divides x into bins of width width. By default,

boxplots look roughly the same (apart from the number of outliers) regardless of how

many observations there are, so it’s difficult to tell that each boxplot summarizes a

different number of points. One way to show that is to make the width of the boxplot

proportional to the number of points with varwidth = TRUE.

Covariation | 163

Exercises

1. Instead of summarizing the conditional distribution with a boxplot, you could

use a frequency polygon. What do you need to consider when using cut_width()

versus cut_number()? How does that impact a visualization of the 2D distribution of carat and price?

2. Visualize the distribution of carat, partitioned by price.

3. How does the price distribution of very large diamonds compare to small dia‐

monds? Is it as you expect, or does it surprise you?

4. Combine two of the techniques you’ve learned to visualize the combined distri‐

bution of cut, carat, and price.

5. Two-dimensional plots reveal outliers that are not visible in one-dimensional

plots. For example, some points in the following plot have an unusual combina‐

tion of x and y values, which makes the points outliers even though their x and

y values appear normal when examined separately. Why is a scatterplot a better

display than a binned plot for this case?

diamonds |>

filter(x >= 4) |>

ggplot(aes(x = x, y = y)) +

geom_point() +

coord_cartesian(xlim = c(4, 11), ylim = c(4, 11))

6. Instead of creating boxes of equal width with cut_width(), we could create boxes that contain roughly equal number of points with cut_number(). What are the advantages and disadvantages of this approach?

ggplot(smaller, aes(x = carat, y = price)) +

geom_boxplot(aes(group = cut_number(carat, 20)))

Patterns and Models

If a systematic relationship exists between two variables, it will appear as a pattern in

the data. If you spot a pattern, ask yourself:

• Could this pattern be due to coincidence (i.e., random chance)?

• How can you describe the relationship implied by the pattern?

• How strong is the relationship implied by the pattern?

• What other variables might affect the relationship?

• Does the relationship change if you look at individual subgroups of the data?

164 | Chapter 10: Exploratory Data Analysis

Patterns in your data provide clues about relationships; i.e., they reveal covariation.

If you think of variation as a phenomenon that creates uncertainty, covariation is a

phenomenon that reduces it. If two variables covary, you can use the values of one

variable to make better predictions about the values of the second. If the covariation

is due to a causal relationship (a special case), then you can use the value of one

variable to control the value of the second.

Models are a tool for extracting patterns out of data. For example, consider the dia‐

monds data. It’s hard to understand the relationship between cut and price, because

cut and carat, and carat and price, are tightly related. It’s possible to use a model to

remove the very strong relationship between price and carat to explore the subtleties

that remain. The following code fits a model that predicts price from carat and then

computes the residuals (the difference between the predicted value and the actual

value). The residuals give us a view of the price of the diamond, once the effect of

carat has been removed. Note that instead of using the raw values of price and carat,

we log transform them first and fit a model to the log-transformed values. Then, we

exponentiate the residuals to put them back in the scale of raw prices.

library(tidymodels)

diamonds <- diamonds |>

mutate(

log_price = log(price),

log_carat = log(carat)

)

diamonds_fit <- linear_reg() |>

fit(log_price ~ log_carat, data = diamonds)

diamonds_aug <- augment(diamonds_fit, new_data = diamonds) |>

mutate(.resid = exp(.resid))

ggplot(diamonds_aug, aes(x = carat, y = .resid)) +

geom_point()

Patterns and Models | 165

[image: Image 105]

[image: Image 106]

Once you’ve removed the strong relationship between carat and price, you can see

what you expect in the relationship between cut and price: relative to their size,

better-quality diamonds are more expensive.

ggplot(diamonds_aug, aes(x = cut, y = .resid)) +

geom_boxplot()

We’re not discussing modeling in this book because understanding what models are

and how they work is easiest once you have tools for data wrangling and program‐

ming in hand.

166 | Chapter 10: Exploratory Data Analysis

Summary

In this chapter you learned a variety of tools to help you understand the variation

within your data. You saw a technique that works with a single variable at a time

and with a pair of variables. This might seem painfully restrictive if you have tens or

hundreds of variables in your data, but they’re the foundation upon which all other

techniques are built.

In the next chapter, we’ll focus on the tools we can use to communicate our results.

Summary | 167

CHAPTER 11

Communication

Introduction

In Chapter 10, you learned how to use plots as tools for exploration. When you make exploratory plots, you know—even before looking—which variables the plot

will display. You made each plot for a purpose, could quickly look at it, and could

then move on to the next plot. In the course of most analyses, you’ll produce tens or

hundreds of plots, most of which are immediately thrown away.

Now that you understand your data, you need to communicate your understanding

to others. Your audience will likely not share your background knowledge and will

not be deeply invested in the data. To help others quickly build up a good mental

model of the data, you will need to invest considerable effort in making your plots as

self-explanatory as possible. In this chapter, you’ll learn some of the tools that ggplot2

provides to do so.

This chapter focuses on the tools you need to create good graphics. We assume that

you know what you want and just need to know how to do it. For that reason, we

highly recommend pairing this chapter with a good general visualization book. We

particularly like The Truthful Art by Albert Cairo (New Riders). It doesn’t teach the mechanics of creating visualizations but instead focuses on what you need to think

about to create effective graphics.

Prerequisites

In this chapter, we’ll focus once again on ggplot2. We’ll also use a little dplyr for

data manipulation; scales to override the default breaks, labels, transformations and

palettes; and a few ggplot2 extension packages, including ggrepel by Kamil Slowikow‐

ski and patchwork by Thomas Lin Pedersen. Don’t forget that you’ll need to install

those packages with install.packages() if you don’t already have them.

169

[image: Image 107]

library(tidyverse)

library(scales)

library(ggrepel)

library(patchwork)

Labels

The easiest place to start when turning an exploratory graphic into an expository

graphic is with good labels. You add labels with the labs() function: ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(aes(color = class)) +

geom_smooth(se = FALSE) +

labs(

x = "Engine displacement (L)",

y = "Highway fuel economy (mpg)",

color = "Car type",

title = "Fuel efficiency generally decreases with engine size",

subtitle = "Two seaters (sports cars) are an exception because of their light weight",

caption = "Data from fueleconomy.gov"

)

The purpose of a plot title is to summarize the main finding. Avoid titles that just

describe what the plot is, e.g., “A scatterplot of engine displacement vs. fuel economy.”

If you need to add more text, there are two other useful labels: subtitle adds

additional detail in a smaller font beneath the title, and caption adds text at the

bottom right of the plot, often used to describe the source of the data. You can also

170 | Chapter 11: Communication

[image: Image 108]

use labs() to replace the axis and legend titles. It’s usually a good idea to replace short variable names with more detailed descriptions and to include the units.

It’s possible to use mathematical equations instead of text strings. Just switch "" out

for quote() and read about the available options in ?plotmath: df <- tibble(

x = 1:10,

y = cumsum(x^2)

)

ggplot(df, aes(x, y)) +

geom_point() +

labs(

x = quote(x[i]),

y = quote(sum(x[i] ^ 2, i == 1, n))

)

Exercises

1. Create one plot on the fuel economy data with customized title, subtitle,

caption, x, y, and color labels.

2. Re-create the following plot using the fuel economy data. Note that both the

colors and shapes of points vary by type of drivetrain.

Labels | 171

[image: Image 109]

3. Take an exploratory graphic that you’ve created in the last month, and add

informative titles to make it easier for others to understand.

Annotations

In addition to labeling major components of your plot, it’s often useful to label indi‐

vidual observations or groups of observations. The first tool you have at your disposal

is geom_text(). geom_text() is similar to geom_point(), but it has an additional aesthetic: label. This makes it possible to add textual labels to your plots.

There are two possible sources of labels. First, you might have a tibble that provides

labels. In the following plot we pull out the cars with the highest engine size in each

drive type and save their information as a new data frame called label_info:

label_info <- mpg |>

group_by(drv) |>

arrange(desc(displ)) |>

slice_head(n = 1) |>

mutate(

drive_type = case_when(

drv == "f" ~ "front-wheel drive",

drv == "r" ~ "rear-wheel drive",

drv == "4" ~ "4-wheel drive"

)

) |>

select(displ, hwy, drv, drive_type)

label_info

172 | Chapter 11: Communication

[image: Image 110]

 #> # A tibble: 3 × 4

 #> # Groups: drv [3]

 #> displ hwy drv drive_type

 #> <dbl> <int> <chr> <chr>

 #> 1 6.5 17 4 4-wheel drive

 #> 2 5.3 25 f front-wheel drive

 #> 3 7 24 r rear-wheel drive

Then, we use this new data frame to directly label the three groups to replace the leg‐

end with labels placed directly on the plot. Using the fontface and size arguments

we can customize the look of the text labels. They’re larger than the rest of the text

on the plot and bolded. (theme(legend.position = "none") turns all the legends

off—we’ll talk about it more shortly.)

ggplot(mpg, aes(x = displ, y = hwy, color = drv)) +

geom_point(alpha = 0.3) +

geom_smooth(se = FALSE) +

geom_text(

data = label_info,

aes(x = displ, y = hwy, label = drive_type),

fontface = "bold", size = 5, hjust = "right", vjust = "bottom"

) +

theme(legend.position = "none")

 #> `geom_smooth()ùsing method = 'loess' and formula = 'y ~ x'

Note the use of hjust (horizontal justification) and vjust (vertical justification) to

control the alignment of the label.

Annotations | 173

[image: Image 111]

However, the annotated plot we just made is hard to read because the labels overlap

with each other and with the points. We can use the geom_label_repel() function from the ggrepel package to address both of these issues. This useful package will

automatically adjust labels so that they don’t overlap:

ggplot(mpg, aes(x = displ, y = hwy, color = drv)) +

geom_point(alpha = 0.3) +

geom_smooth(se = FALSE) +

geom_label_repel(

data = label_info,

aes(x = displ, y = hwy, label = drive_type),

fontface = "bold", size = 5, nudge_y = 2

) +

theme(legend.position = "none")

 #> `geom_smooth()ùsing method = 'loess' and formula = 'y ~ x'

You can also use the same idea to highlight certain points on a plot with

geom_text_repel() from the ggrepel package. Note another handy technique used here: we added a second layer of large, hollow points to further highlight the labeled

points.

potential_outliers <- mpg |>

filter(hwy > 40 | (hwy > 20 & displ > 5))

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point() +

geom_text_repel(data = potential_outliers, aes(label = model)) +

geom_point(data = potential_outliers, color = "red") +

geom_point(

174 | Chapter 11: Communication

[image: Image 112]

data = potential_outliers,

color = "red", size = 3, shape = "circle open"

)

Remember, in addition to geom_text() and geom_label(), you have many other geoms in ggplot2 available to help annotate your plot. A couple ideas:

• Use geom_hline() and geom_vline() to add reference lines. We often make them thick (linewidth = 2) and white (color = white) and draw them underneath the primary data layer. That makes them easy to see, without drawing

attention away from the data.

• Use geom_rect() to draw a rectangle around points of interest. The boundaries of the rectangle are defined by aesthetics xmin, xmax, ymin, and ymax. Alternatively, look into the ggforce package, specifically geom_mark_hull(), which allows

you to annotate subsets of points with hulls.

• Use geom_segment() with the arrow argument to draw attention to a point with an arrow. Use aesthetics x and y to define the starting location, and use xend and

yend to define the end location.

Another handy function for adding annotations to plots is annotate(). As a rule of thumb, geoms are generally useful for highlighting a subset of the data, while

annotate() is useful for adding one or a few annotation elements to a plot.

Annotations | 175

[image: Image 113]

To demonstrate using annotate(), let’s create some text to add to our plot. The text is a bit long, so we’ll use stringr::str_wrap() to automatically add line breaks to it given the number of characters you want per line:

trend_text <- "Larger engine sizes tend to\nhave lower fuel economy." |>

str_wrap(width = 30)

trend_text

 #> [1] "Larger engine sizes tend to\nhave lower fuel economy."

Then, we add two layers of annotation: one with a label geom and the other with a

segment geom. The x and y aesthetics in both define where the annotation should

start, and the xend and yend aesthetics in the segment annotation define the starting

location of the end location of the segment. Note also that the segment is styled as an

arrow.

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point() +

annotate(

geom = "label", x = 3.5, y = 38,

label = trend_text,

hjust = "left", color = "red"

) +

annotate(

geom = "segment",

x = 3, y = 35, xend = 5, yend = 25, color = "red",

arrow = arrow(type = "closed")

)

176 | Chapter 11: Communication

Annotation is a powerful tool for communicating main takeaways and interesting

features of your visualizations. The only limit is your imagination (and your patience

with positioning annotations to be aesthetically pleasing)!

Exercises

1. Use geom_text() with infinite positions to place text at the four corners of the plot.

2. Use annotate() to add a point geom in the middle of your last plot without having to create a tibble. Customize the shape, size, or color of the point.

3. How do labels with geom_text() interact with faceting? How can you add a label to a single facet? How can you put a different label in each facet? (Hint: Think

about the dataset that is being passed to geom_text().)

4. What arguments to geom_label() control the appearance of the background box?

5. What are the four arguments to arrow()? How do they work? Create a series of plots that demonstrate the most important options.

Scales

The third way you can make your plot better for communication is to adjust the

scales. Scales control how the aesthetic mappings manifest visually.

Default Scales

Normally, ggplot2 automatically adds scales for you. For example, when you type:

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(aes(color = class))

ggplot2 automatically adds default scales behind the scenes:

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(aes(color = class)) +

scale_x_continuous() +

scale_y_continuous() +

scale_color_discrete()

Note the naming scheme for scales: scale_ followed by the name of the aesthetic,

then _, and then the name of the scale. The default scales are named according to the

type of variable they align with: continuous, discrete, date-time, or date. scale_x_con

tinuous() puts the numeric values from displ on a continuous number line on the

x-axis, scale_color_discrete() chooses colors for each class of car, etc. There are lots of nondefault scales, which you’ll learn about next.

Scales | 177

[image: Image 114]

The default scales have been carefully chosen to do a good job for a wide range of

inputs. Nevertheless, you might want to override the defaults for two reasons:

• You might want to tweak some of the parameters of the default scale. This allows

you to do things like change the breaks on the axes, or the key labels on the

legend.

• You might want to replace the scale altogether and use a completely different

algorithm. Often you can do better than the default because you know more

about the data.

Axis Ticks and Legend Keys

Collectively axes and legends are called guides. Axes are used for x and y aesthetics;

legends are used for everything else.

There are two primary arguments that affect the appearance of the ticks on the axes

and the keys on the legend: breaks and labels. The breaks argument controls the

position of the ticks or the values associated with the keys. The labels argument

controls the text label associated with each tick/key. The most common use of breaks

is to override the default choice:

ggplot(mpg, aes(x = displ, y = hwy, color = drv)) +

geom_point() +

scale_y_continuous(breaks = seq(15, 40, by = 5))

178 | Chapter 11: Communication

[image: Image 115]

You can use labels in the same way (a character vector the same length as breaks),

but you can also set it to NULL to suppress the labels altogether. This can be useful

for maps or for publishing plots where you can’t share the absolute numbers. You can

also use breaks and labels to control the appearance of legends. For discrete scales

for categorical variables, labels can be a named list of the existing levels names and

the desired labels for them.

ggplot(mpg, aes(x = displ, y = hwy, color = drv)) +

geom_point() +

scale_x_continuous(labels = NULL) +

scale_y_continuous(labels = NULL) +

scale_color_discrete(labels = c("4" = "4-wheel", "f" = "front", "r" = "rear")) The labels argument coupled with labeling functions from the scales package is also

useful for formatting numbers as currency, percent, etc. The plot on the left shows

default labeling with label_dollar(), which adds a dollar sign as well as a thousand

separator comma. The plot on the right adds further customization by dividing dollar

values by 1,000 and adding a suffix “K” (for “thousands”) as well as adding custom

breaks. Note that breaks is in the original scale of the data.

 # Left

ggplot(diamonds, aes(x = price, y = cut)) +

geom_boxplot(alpha = 0.05) +

scale_x_continuous(labels = label_dollar())

 # Right

ggplot(diamonds, aes(x = price, y = cut)) +

Scales | 179

[image: Image 116]

[image: Image 117]

geom_boxplot(alpha = 0.05) +

scale_x_continuous(

labels = label_dollar(scale = 1/1000, suffix = "K"),

breaks = seq(1000, 19000, by = 6000)

)

Another handy label function is label_percent(): ggplot(diamonds, aes(x = cut, fill = clarity)) +

geom_bar(position = "fill") +

scale_y_continuous(name = "Percentage", labels = label_percent())

Another use of breaks is when you have relatively few data points and want to

highlight exactly where the observations occur. For example, take this plot that shows

when each US president started and ended their term:

180 | Chapter 11: Communication

[image: Image 118]

presidential |>

mutate(id = 33 + row_number()) |>

ggplot(aes(x = start, y = id)) +

geom_point() +

geom_segment(aes(xend = end, yend = id)) +

scale_x_date(name = NULL, breaks = presidential$start, date_labels = "'%y")

Note that for the breaks argument we pulled out the start variable as a vector with

presidential$start because we can’t do an aesthetic mapping for this argument.

Also note that the specification of breaks and labels for date and date-time scales is a

little different:

• date_labels takes a format specification, in the same form as parse_date

time().

• date_breaks (not shown here) takes a string like “2 days” or “1 month.”

Legend Layout

You will most often use breaks and labels to tweak the axes. While they both also

work for legends, there are a few other techniques you are more likely to use.

To control the overall position of the legend, you need to use a theme() setting. We’ll come back to themes at the end of the chapter, but in brief, they control the nondata

parts of the plot. The theme setting legend.position controls where the legend is

drawn:

Scales | 181

[image: Image 119]

base <- ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(aes(color = class))

base + theme(legend.position = "right") # the default

base + theme(legend.position = "left")

base +

theme(legend.position = "top") +

guides(col = guide_legend(nrow = 3))

base +

theme(legend.position = "bottom") +

guides(col = guide_legend(nrow = 3))

If your plot is short and wide, place the legend at the top or bottom, and if it’s tall

and narrow, place the legend at the left or right. You can also use legend.position =

"none" to suppress the display of the legend altogether.

To control the display of individual legends, use guides() along with guide_leg

end() or guide_colorbar(). The following example shows two important settings: controlling the number of rows the legend uses with nrow, and overriding one of the

aesthetics to make the points bigger. This is particularly useful if you have used a low

alpha to display many points on a plot.

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(aes(color = class)) +

geom_smooth(se = FALSE) +

theme(legend.position = "bottom") +

guides(color = guide_legend(nrow = 2, override.aes = list(size = 4)))

 #> `geom_smooth()ùsing method = 'loess' and formula = 'y ~ x'

182 | Chapter 11: Communication

[image: Image 120]

Note that the name of the argument in guides() matches the name of the aesthetic,

just like in labs().

Replacing a Scale

Instead of just tweaking the details a little, you can instead replace the scale alto‐

gether. There are two types of scales you’re most likely to want to switch out:

continuous position scales and color scales. Fortunately, the same principles apply

to all the other aesthetics, so once you’ve mastered position and color, you’ll be able

to quickly pick up other scale replacements.

It’s useful to plot transformations of your variable. For example, it’s easier to see the

precise relationship between carat and price if we log transform them:

 # Left

ggplot(diamonds, aes(x = carat, y = price)) +

geom_bin2d()

 # Right

ggplot(diamonds, aes(x = log10(carat), y = log10(price))) +

geom_bin2d()

Scales | 183

[image: Image 121]

[image: Image 122]

However, the disadvantage of this transformation is that the axes are now labeled

with the transformed values, making it hard to interpret the plot. Instead of doing the

transformation in the aesthetic mapping, we can instead do it with the scale. This is

visually identical, except the axes are labeled on the original data scale.

ggplot(diamonds, aes(x = carat, y = price)) +

geom_bin2d() +

scale_x_log10() +

scale_y_log10()

184 | Chapter 11: Communication

[image: Image 123]

Another scale that is frequently customized is color. The default categorical scale

picks colors that are evenly spaced around the color wheel. Useful alternatives are

the ColorBrewer scales, which have been hand tuned to work better for people with

common types of color blindness. The following two plots look similar, but there is

enough difference in the shades of red and green that the dots on the right can be

distinguished even by people with red-green color blindness. 1

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(aes(color = drv))

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(aes(color = drv)) +

scale_color_brewer(palette = "Set1")

Don’t forget simpler techniques for improving accessibility. If there are just a few

colors, you can add a redundant shape mapping. This will also help ensure your plot

is interpretable in black and white.

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(aes(color = drv, shape = drv)) +

scale_color_brewer(palette = "Set1")

1 You can use a tool like SimDaltonism to simulate color blindness to test these images.

Scales | 185

[image: Image 124]

The ColorBrewer scales are documented online and made available in R via the RColorBrewer package, by Erich Neuwirth. Figure 11-1 shows the complete list of all palettes. The sequential (top) and diverging (bottom) palettes are particularly useful if

your categorical values are ordered or have a “middle.” This often arises if you’ve used

cut() to make a continuous variable into a categorical variable.

186 | Chapter 11: Communication

[image: Image 125]

 Figure 11-1. All ColorBrewer scales.

Scales | 187

[image: Image 126]

When you have a predefined mapping between values and colors, use

scale_color_manual(). For example, if we map presidential party to color, we want to use the standard mapping of red for Republicans and blue for Democrats. One

approach for assigning these colors is using hex color codes:

presidential |>

mutate(id = 33 + row_number()) |>

ggplot(aes(x = start, y = id, color = party)) +

geom_point() +

geom_segment(aes(xend = end, yend = id)) +

scale_color_manual(values = c(Republican = "#E81B23", Democratic = "#00AEF3"))

For continuous color, you can use the built-in scale_color_gradient() or

scale_fill_gradient(). If you have a diverging scale, you can use scale_color_gra

dient2(). That allows you to give, for example, positive and negative values different colors. That’s sometimes also useful if you want to distinguish points above or below

the mean.

Another option is to use the viridis color scales. The designers, Nathaniel Smith and

Stéfan van der Walt, carefully tailored continuous color schemes that are perceptible

to people with various forms of color blindness as well as perceptually uniform in

both color and black and white. These scales are available as continuous (c), discrete

(d), and binned (b) palettes in ggplot2.

188 | Chapter 11: Communication

[image: Image 127]

df <- tibble(

x = rnorm(10000),

y = rnorm(10000)

)

ggplot(df, aes(x, y)) +

geom_hex() +

coord_fixed() +

labs(title = "Default, continuous", x = NULL, y = NULL)

ggplot(df, aes(x, y)) +

geom_hex() +

coord_fixed() +

scale_fill_viridis_c() +

labs(title = "Viridis, continuous", x = NULL, y = NULL)

ggplot(df, aes(x, y)) +

geom_hex() +

coord_fixed() +

scale_fill_viridis_b() +

labs(title = "Viridis, binned", x = NULL, y = NULL)

Note that all color scales come in two varieties: scale_color_*() and

scale_fill_*() for the color and fill aesthetics, respectively (the color scales are

available in both UK and US spellings).

Zooming

There are three ways to control the plot limits:

• Adjusting what data are plotted

• Setting the limits in each scale

• Setting xlim and ylim in coord_cartesian()

We’ll demonstrate these options in a series of plots. The plot on the left shows the

relationship between engine size and fuel efficiency, colored by type of drivetrain.

The plot on the right shows the same variables but subsets the data plotted. Subset‐

ting the data has affected the x and y scales as well as the smooth curve.

 # Left

ggplot(mpg, aes(x = displ, y = hwy)) +

Scales | 189

[image: Image 128]

[image: Image 129]

geom_point(aes(color = drv)) +

geom_smooth()

 # Right

mpg |>

filter(displ >= 5 & displ <= 6 & hwy >= 10 & hwy <= 25) |>

ggplot(aes(x = displ, y = hwy)) +

geom_point(aes(color = drv)) +

geom_smooth()

Let’s compare these to the two following plots where the plot on the left sets

the limits on individual scales and the plot on the right sets them in coord_car

tesian(). We can see that reducing the limits is equivalent to subsetting the data. Therefore, to zoom in on a region of the plot, it’s generally best to use

coord_cartesian().

 # Left

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(aes(color = drv)) +

geom_smooth() +

scale_x_continuous(limits = c(5, 6)) +

scale_y_continuous(limits = c(10, 25))

 # Right

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(aes(color = drv)) +

geom_smooth() +

coord_cartesian(xlim = c(5, 6), ylim = c(10, 25))

190 | Chapter 11: Communication

[image: Image 130]

On the other hand, setting the limits on individual scales is generally more useful

if you want to expand the limits, e.g., to match scales across different plots. For

example, if we extract two classes of cars and plot them separately, it’s difficult

to compare the plots because all three scales (the x-axis, the y-axis, and the color

aesthetic) have different ranges.

suv <- mpg |> filter(class == "suv")

compact <- mpg |> filter(class == "compact")

 # Left

ggplot(suv, aes(x = displ, y = hwy, color = drv)) +

geom_point()

 # Right

ggplot(compact, aes(x = displ, y = hwy, color = drv)) +

geom_point()

One way to overcome this problem is to share scales across multiple plots, training

the scales with the limits of the full data.

x_scale <- scale_x_continuous(limits = range(mpg$displ))

y_scale <- scale_y_continuous(limits = range(mpg$hwy))

col_scale <- scale_color_discrete(limits = unique(mpg$drv))

 # Left

ggplot(suv, aes(x = displ, y = hwy, color = drv)) +

geom_point() +

x_scale +

y_scale +

col_scale

 # Right

ggplot(compact, aes(x = displ, y = hwy, color = drv)) +

geom_point() +

x_scale +

y_scale +

col_scale

Scales | 191

[image: Image 131]

In this particular case, you could have simply used faceting, but this technique is

useful more generally, if, for instance, you want to spread plots over multiple pages of

a report.

Exercises

1. Why doesn’t the following code override the default scale?

df <- tibble(

x = rnorm(10000),

y = rnorm(10000)

)

ggplot(df, aes(x, y)) +

geom_hex() +

scale_color_gradient(low = "white", high = "red") +

coord_fixed()

2. What is the first argument to every scale? How does it compare to labs()?

3. Change the display of the presidential terms by:

a. Combining the two variants that customize colors and x-axis breaks

b. Improving the display of the y-axis

c. Labeling each term with the name of the president

d. Adding informative plot labels

e. Placing breaks every four years (this is trickier than it seems!)

4. First, create the following plot. Then, modify the code using override.aes to

make the legend easier to see.

ggplot(diamonds, aes(x = carat, y = price)) +

geom_point(aes(color = cut), alpha = 1/20)

192 | Chapter 11: Communication

[image: Image 132]

Themes

Finally, you can customize the nondata elements of your plot with a theme:

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(aes(color = class)) +

geom_smooth(se = FALSE) +

theme_bw()

ggplot2 includes the eight themes shown in Figure 11-2, with theme_gray() as the default. 2 Many more are included in add-on packages like ggthemes, by Jeffrey Arnold. You can also create your own themes, if you are trying to match a particular

corporate or journal style.

2 Many people wonder why the default theme has a gray background. This was a deliberate choice because

it puts the data forward while still making the grid lines visible. The white grid lines are visible (which is important because they significantly aid position judgments), but they have little visual impact, and we can easily tune them out. The gray background gives the plot a similar typographic color to the text, ensuring that the graphics fit in with the flow of a document without jumping out with a bright white background. Finally, the gray background creates a continuous field of color, which ensures that the plot is perceived as a single visual entity.

Themes | 193

[image: Image 133]

 Figure 11-2. The eight themes built in to ggplot2.

It’s also possible to control individual components of each theme, such as the size

and color of the font used for the y-axis. We’ve already seen that legend.position

controls where the legend is drawn. There are many other aspects of the legend that

can be customized with theme(). For example, in the following plot we change the direction of the legend as well as put a black border around it. Note that customization of the legend box and plot title elements of the theme are done with element_*()

functions. These functions specify the styling of nondata components; e.g., the title

text is bolded in the face argument of element_text(), and the legend border color is defined in the color argument of element_rect(). The theme elements that control the position of the title and the caption are plot.title.position and

plot.caption.position, respectively. In the following plot these are set to "plot"

194 | Chapter 11: Communication

[image: Image 134]

to indicate these elements are aligned to the entire plot area, instead of the plot

panel (the default). A few other helpful theme() components are used to change the placement for formatting the title and caption text.

ggplot(mpg, aes(x = displ, y = hwy, color = drv)) +

geom_point() +

labs(

title = "Larger engine sizes tend to have lower fuel economy",

caption = "Source: https://fueleconomy.gov."

) +

theme(

legend.position = c(0.6, 0.7),

legend.direction = "horizontal",

legend.box.background = element_rect(color = "black"),

plot.title = element_text(face = "bold"),

plot.title.position = "plot",

plot.caption.position = "plot",

plot.caption = element_text(hjust = 0)

)

For an overview of all theme() components, see the help with ?theme. The ggplot2

book is also a great place to go for the full details on theming.

Themes | 195

[image: Image 135]

Exercises

1. Pick a theme offered by the ggthemes package and apply it to the last plot you

made.

2. Make the axis labels of your plot blue and bold.

Layout

So far we talked about how to create and modify a single plot. What if you have

multiple plots you want to lay out in a certain way? The patchwork package allows

you to combine separate plots into the same graphic. We loaded this package earlier

in the chapter.

To place two plots next to each other, you can simply add them to each other. Note

that you first need to create the plots and save them as objects (in the following

example they’re called p1 and p2). Then, you place them next to each other with +.

p1 <- ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point() +

labs(title = "Plot 1")

p2 <- ggplot(mpg, aes(x = drv, y = hwy)) +

geom_boxplot() +

labs(title = "Plot 2")

p1 + p2

It’s important to note that in the previous code chunk we did not use a new function

from the patchwork package. Instead, the package added a new functionality to the +

operator.

196 | Chapter 11: Communication

[image: Image 136]

You can also create complex plot layouts with patchwork. In the following, | places

the p1 and p3 next to each other, and / moves p2 to the next line:

p3 <- ggplot(mpg, aes(x = cty, y = hwy)) +

geom_point() +

labs(title = "Plot 3")

(p1 | p3) / p2

Additionally, patchwork allows you to collect legends from multiple plots into one

common legend, customize the placement of the legend as well as dimensions of the

plots, and add a common title, subtitle, caption, etc., to your plots. Here we created

five plots. We turned off the legends on the box plots and the scatterplot and collected

the legends for the density plots at the top of the plot with & theme(legend.position

= "top"). Note the use of the & operator here instead of the usual +. This is because

we’re modifying the theme for the patchwork plot as opposed to the individual

ggplots. The legend is placed on top, inside the guide_area(). Finally, we have also customized the heights of the various components of our patchwork—the guide has

a height of 1, the box plots 3, the density plots 2, and the faceted scatterplot 4.

Patchwork divides up the area you have allotted for your plot using this scale and

places the components accordingly.

Layout | 197

p1 <- ggplot(mpg, aes(x = drv, y = cty, color = drv)) +

geom_boxplot(show.legend = FALSE) +

labs(title = "Plot 1")

p2 <- ggplot(mpg, aes(x = drv, y = hwy, color = drv)) +

geom_boxplot(show.legend = FALSE) +

labs(title = "Plot 2")

p3 <- ggplot(mpg, aes(x = cty, color = drv, fill = drv)) +

geom_density(alpha = 0.5) +

labs(title = "Plot 3")

p4 <- ggplot(mpg, aes(x = hwy, color = drv, fill = drv)) +

geom_density(alpha = 0.5) +

labs(title = "Plot 4")

p5 <- ggplot(mpg, aes(x = cty, y = hwy, color = drv)) +

geom_point(show.legend = FALSE) +

facet_wrap(~drv) +

labs(title = "Plot 5")

(guide_area() / (p1 + p2) / (p3 + p4) / p5) +

plot_annotation(

title = "City and highway mileage for cars with different drivetrains",

caption = "Source: https://fueleconomy.gov."

) +

plot_layout(

guides = "collect",

heights = c(1, 3, 2, 4)

) &

theme(legend.position = "top")

198 | Chapter 11: Communication

[image: Image 137]

If you’d like to learn more about combining and laying out multiple plots with

patchwork, we recommend looking through the guides on the package website.

Layout | 199

[image: Image 138]

Exercises

1. What happens if you omit the parentheses in the following plot layout. Can you

explain why this happens?

p1 <- ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point() +

labs(title = "Plot 1")

p2 <- ggplot(mpg, aes(x = drv, y = hwy)) +

geom_boxplot() +

labs(title = "Plot 2")

p3 <- ggplot(mpg, aes(x = cty, y = hwy)) +

geom_point() +

labs(title = "Plot 3")

(p1 | p2) / p3

Using the three plots from the previous exercise, re-create the following patchwork:

200 | Chapter 11: Communication

Summary

In this chapter you learned about adding plot labels such as title, subtitle, and caption

as well as modifying default axis labels, using annotation to add informational text

to your plot or to highlight specific data points, customizing the axis scales, and

changing the theme of your plot. You also learned about combining multiple plots in

a single graph using both simple and complex plot layouts.

While you’ve so far learned about how to make many different types of plots and

how to customize them using a variety of techniques, we’ve barely scratched the

surface of what you can create with ggplot2. If you want to get a comprehensive

understanding of ggplot2, we recommend reading the book ggplot2: Elegant Graphics

 for Data Analysis (Springer). Other useful resources are the R Graphics Cookbook by Winston Chang (O’Reilly) and Fundamentals of Data Visualization by Claus Wilke (O’Reilly).

Summary | 201

[image: Image 139]

PART III

Transform

The second part of the book was a deep dive into data visualization. In this part of the

book, you’ll learn about the most important types of variables that you’ll encounter

inside a data frame and learn the tools you can use to work with them.

 Figure III-1. The options for data transformation depend heavily on the type of data

 involved, the subject of this part of the book.

You can read these chapters as you need them; they’re designed to be largely stand‐

alone so that they can be read out of order.

• Chapter 12 teaches you about logical vectors. These are the simplest types of

vectors, but they are extremely powerful. You’ll learn how to create them with

numeric comparisons, how to combine them with Boolean algebra, how to use

them in summaries, and how to use them for condition transformations.

• Chapter 13 dives into tools for vectors of numbers, the powerhouse of data science. You’ll learn more about counting and a bunch of important transformation

and summary functions.

• Chapter 14 gives you the tools to work with strings: you’ll slice them, you’ll dice them, and you’ll stick them back together again. This chapter mostly focuses on

the stringr package, but you’ll also learn some more tidyr functions devoted to

extracting data from character strings.

• Chapter 15 introduces you to regular expressions, a powerful tool for manipulat‐

ing strings. This chapter will take you from thinking that a cat walked over your

keyboard to reading and writing complex string patterns.

• Chapter 16 introduces factors: the data type that R uses to store categorical data.

You use a factor when a variable has a fixed set of possible values, or when you

want to use a nonalphabetical ordering of a string.

• Chapter 17 gives you the key tools for working with dates and date-times.

Unfortunately, the more you learn about date-times, the more complicated they

seem to get, but with the help of the lubridate package, you’ll learn to how to

overcome the most common challenges.

• Chapter 18 discusses missing values in depth. We’ve discussed them a couple of

times in isolation, but now it’s time to discuss them holistically, helping you come

to grips with the difference between implicit and explicit missing values and how

and why you might convert between them.

• Chapter 19 finishes up this part of the book by giving you the tools to join two

(or more) data frames together. Learning about joins will force you to grapple

with the idea of keys and think about how you identify each row in a dataset.

CHAPTER 12

Logical Vectors

Introduction

In this chapter, you’ll learn tools for working with logical vectors. Logical vectors are

the simplest type of vector because each element can be only one of three possible

values: TRUE, FALSE, and NA. It’s relatively rare to find logical vectors in your raw data,

but you’ll create and manipulate them in the course of almost every analysis.

We’ll begin by discussing the most common way of creating logical vectors: with

numeric comparisons. Then you’ll learn about how you can use Boolean algebra

to combine different logical vectors, as well as some useful summaries. We’ll finish

off with if_else() and case_when(), two useful functions for making conditional

changes powered by logical vectors.

Prerequisites

Most of the functions you’ll learn about in this chapter are provided by base R, so

we don’t need the tidyverse, but we’ll still load it so we can use mutate(), filter(), and friends to work with data frames. We’ll also continue to draw examples from the

nycflights13::flights dataset.

library(tidyverse)

library(nycflights13)

However, as we start to cover more tools, there won’t always be a perfect real example.

So we’ll start making up some dummy data with c():

x <- c(1, 2, 3, 5, 7, 11, 13)

x * 2

 #> [1] 2 4 6 10 14 22 26

205

This makes it easier to explain individual functions at the cost of making it harder to see how it might apply to your data problems. Just remember that any manipulation

we do to a free-floating vector, you can do to a variable inside a data frame with

mutate() and friends.

df <- tibble(x)

df |>

mutate(y = x * 2)

 #> # A tibble: 7 × 2

 #> x y

 #> <dbl> <dbl>

 #> 1 1 2

 #> 2 2 4

 #> 3 3 6

 #> 4 5 10

 #> 5 7 14

 #> 6 11 22

 #> # … with 1 more row

Comparisons

A common way to create a logical vector is via a numeric comparison with <, <=,

>, >=, !=, and ==. So far, we’ve mostly created logical variables transiently within

filter()—they are computed, used, and then thrown away. For example, the following filter finds all daytime departures that arrive roughly on time:

flights |>

filter(dep_time > 600 & dep_time < 2000 & abs(arr_delay) < 20)

 #> # A tibble: 172,286 × 19

 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

 #> <int> <int> <int> <int> <int> <dbl> <int> <int>

 #> 1 2013 1 1 601 600 1 844 850

 #> 2 2013 1 1 602 610 -8 812 820

 #> 3 2013 1 1 602 605 -3 821 805

 #> 4 2013 1 1 606 610 -4 858 910

 #> 5 2013 1 1 606 610 -4 837 845

 #> 6 2013 1 1 607 607 0 858 915

 #> # … with 172,280 more rows, and 11 more variables: arr_delay <dbl>,

 #> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, …

It’s useful to know that this is a shortcut and you can explicitly create the underlying

logical variables with mutate():

flights |>

mutate(

daytime = dep_time > 600 & dep_time < 2000,

approx_ontime = abs(arr_delay) < 20,

.keep = "used"

)

 #> # A tibble: 336,776 × 4

 #> dep_time arr_delay daytime approx_ontime

 #> <int> <dbl> <lgl> <lgl>

 #> 1 517 11 FALSE TRUE

 #> 2 533 20 FALSE FALSE

 #> 3 542 33 FALSE FALSE

206 | Chapter 12: Logical Vectors

 #> 4 544 -18 FALSE TRUE

 #> 5 554 -25 FALSE FALSE

 #> 6 554 12 FALSE TRUE

 #> # … with 336,770 more rows

This is particularly useful for more complicated logic because naming the intermedi‐

ate steps makes it easier to both read your code and check that each step has been

computed correctly.

All told, the initial filter is equivalent to the following:

flights |>

mutate(

daytime = dep_time > 600 & dep_time < 2000,

approx_ontime = abs(arr_delay) < 20,

) |>

filter(daytime & approx_ontime)

Floating-Point Comparison

Beware of using == with numbers. For example, it looks like this vector contains the

numbers 1 and 2:

x <- c(1 / 49 * 49, sqrt(2) ^ 2)

x

 #> [1] 1 2

But if you test them for equality, you get FALSE:

x == c(1, 2)

 #> [1] FALSE FALSE

What’s going on? Computers store numbers with a fixed number of decimal places,

so there’s no way to exactly represent 1/49 or sqrt(2), and subsequent computations

will be very slightly off. We can see the exact values by calling print() with the digits1 argument:

print(x, digits = 16)

 #> [1] 0.9999999999999999 2.0000000000000004

You can see why R defaults to rounding these numbers; they really are very close to

what you expect.

Now that you’ve seen why == is failing, what can you do about it? One option is to use

dplyr::near(), which ignores small differences: near(x, c(1, 2))

 #> [1] TRUE TRUE

1 R normally calls print for you (i.e., x is a shortcut for print(x)), but calling it explicitly is useful if you want to provide other arguments.

Comparisons | 207

Missing Values

Missing values represent the unknown, so they are “contagious”: almost any opera‐

tion involving an unknown value will also be unknown:

NA > 5

 #> [1] NA

10 == NA

 #> [1] NA

The most confusing result is this one:

NA == NA

 #> [1] NA

It’s easiest to understand why this is true if we artificially supply a little more context:

 # We don't know how old Mary is

age_mary <- NA

 # We don't know how old John is

age_john <- NA

 # Are Mary and John the same age?

age_mary == age_john

 #> [1] NA

 # We don't know!

So if you want to find all flights where dep_time is missing, the following code doesn’t

work because dep_time == NA will yield NA for every single row, and filter()

automatically drops missing values:

flights |>

filter(dep_time == NA)

 #> # A tibble: 0 × 19

 #> # … with 19 variables: year <int>, month <int>, day <int>, dep_time <int>,

 #> # sched_dep_time <int>, dep_delay <dbl>, arr_time <int>, …

Instead we’ll need a new tool: is.na().

is.na()

is.na(x) works with any type of vector and returns TRUE for missing values and

FALSE for everything else:

is.na(c(TRUE, NA, FALSE))

 #> [1] FALSE TRUE FALSE

is.na(c(1, NA, 3))

 #> [1] FALSE TRUE FALSE

is.na(c("a", NA, "b"))

 #> [1] FALSE TRUE FALSE

208 | Chapter 12: Logical Vectors

We can use is.na() to find all the rows with a missing dep_time: flights |>

filter(is.na(dep_time))

 #> # A tibble: 8,255 × 19

 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

 #> <int> <int> <int> <int> <int> <dbl> <int> <int>

 #> 1 2013 1 1 NA 1630 NA NA 1815

 #> 2 2013 1 1 NA 1935 NA NA 2240

 #> 3 2013 1 1 NA 1500 NA NA 1825

 #> 4 2013 1 1 NA 600 NA NA 901

 #> 5 2013 1 2 NA 1540 NA NA 1747

 #> 6 2013 1 2 NA 1620 NA NA 1746

 #> # … with 8,249 more rows, and 11 more variables: arr_delay <dbl>,

 #> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, …

is.na() can also be useful in arrange(). arrange() usually puts all the missing

values at the end, but you can override this default by first sorting by is.na(): flights |>

filter(month == 1, day == 1) |>

arrange(dep_time)

 #> # A tibble: 842 × 19

 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

 #> <int> <int> <int> <int> <int> <dbl> <int> <int>

 #> 1 2013 1 1 517 515 2 830 819

 #> 2 2013 1 1 533 529 4 850 830

 #> 3 2013 1 1 542 540 2 923 850

 #> 4 2013 1 1 544 545 -1 1004 1022

 #> 5 2013 1 1 554 600 -6 812 837

 #> 6 2013 1 1 554 558 -4 740 728

 #> # … with 836 more rows, and 11 more variables: arr_delay <dbl>,

 #> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, …

flights |>

filter(month == 1, day == 1) |>

arrange(desc(is.na(dep_time)), dep_time)

 #> # A tibble: 842 × 19

 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

 #> <int> <int> <int> <int> <int> <dbl> <int> <int>

 #> 1 2013 1 1 NA 1630 NA NA 1815

 #> 2 2013 1 1 NA 1935 NA NA 2240

 #> 3 2013 1 1 NA 1500 NA NA 1825

 #> 4 2013 1 1 NA 600 NA NA 901

 #> 5 2013 1 1 517 515 2 830 819

 #> 6 2013 1 1 533 529 4 850 830

 #> # … with 836 more rows, and 11 more variables: arr_delay <dbl>,

 #> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, …

We’ll come back to cover missing values in more depth in Chapter 18.

Comparisons | 209

[image: Image 140]

Exercises

1. How does dplyr::near() work? Type near to see the source code. Is sqrt(2)^2

near 2?

2. Use mutate(), is.na(), and count() together to describe how the missing values in dep_time, sched_dep_time, and dep_delay are connected.

Boolean Algebra

Once you have multiple logical vectors, you can combine them using Boolean alge‐

bra. In R, & is “and,” | is “or,” ! is “not, ” and xor() is exclusive or.2 For example, df

|> filter(!is.na(x)) finds all rows where x is not missing, and df |> filter(x <

-10 | x > 0) finds all rows where x is smaller than -10 or bigger than 0. Figure 12-1

shows the complete set of Boolean operations and how they work.

 Figure 12-1. The complete set of Boolean operations. x is the left circle, y is the right

 circle, and the shaded region show which parts each operator selects.

As well as & and |, R also has && and ||. Don’t use them in dplyr functions! These are

called short-circuiting operators and only ever return a single TRUE or FALSE. They’re

important for programming, not data science.

2 That is, xor(x, y) is true if x is true or y is true, but not both. This is how we usually use “or” in English.

“Both” is not usually an acceptable answer to the question “Would you like ice cream or cake?”

210 | Chapter 12: Logical Vectors

Missing Values

The rules for missing values in Boolean algebra are a little tricky to explain because

they seem inconsistent at first glance:

df <- tibble(x = c(TRUE, FALSE, NA))

df |>

mutate(

and = x & NA,

or = x | NA

)

 #> # A tibble: 3 × 3

 #> x and or

 #> <lgl> <lgl> <lgl>

 #> 1 TRUE NA TRUE

 #> 2 FALSE FALSE NA

 #> 3 NA NA NA

To understand what’s going on, think about NA | TRUE. A missing value in a logical

vector means that the value could be either TRUE or FALSE. TRUE | TRUE and FALSE |

TRUE are both TRUE because at least one of them is TRUE. So NA | TRUE must also be

TRUE because NA can either be TRUE or FALSE. However, NA | FALSE is NA because we

don’t know if NA is TRUE or FALSE. Similar reasoning applies with NA & FALSE.

Order of Operations

Note that the order of operations doesn’t work like English. Take the following code

that finds all flights that departed in November or December:

flights |>

filter(month == 11 | month == 12)

You might be tempted to write it like you’d say in English: “Find all flights that

departed in November or December”:

flights |>

filter(month == 11 | 12)

 #> # A tibble: 336,776 × 19

 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

 #> <int> <int> <int> <int> <int> <dbl> <int> <int>

 #> 1 2013 1 1 517 515 2 830 819

 #> 2 2013 1 1 533 529 4 850 830

 #> 3 2013 1 1 542 540 2 923 850

 #> 4 2013 1 1 544 545 -1 1004 1022

 #> 5 2013 1 1 554 600 -6 812 837

 #> 6 2013 1 1 554 558 -4 740 728

 #> # … with 336,770 more rows, and 11 more variables: arr_delay <dbl>,

 #> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, …

This code doesn’t error, but it also doesn’t seem to have worked. What’s going on?

Here, R first evaluates month == 11 creating a logical vector, which we call nov. It

computes nov | 12. When you use a number with a logical operator, it converts

Boolean Algebra | 211

everything apart from 0 to TRUE, so this is equivalent to nov | TRUE, which will

always be TRUE, so every row will be selected:

flights |>

mutate(

nov = month == 11,

final = nov | 12,

.keep = "used"

)

 #> # A tibble: 336,776 × 3

 #> month nov final

 #> <int> <lgl> <lgl>

 #> 1 1 FALSE TRUE

 #> 2 1 FALSE TRUE

 #> 3 1 FALSE TRUE

 #> 4 1 FALSE TRUE

 #> 5 1 FALSE TRUE

 #> 6 1 FALSE TRUE

 #> # … with 336,770 more rows

%in%

An easy way to avoid the problem of getting your ==s and |s in the right order is to

use %in%. x %in% y returns a logical vector the same length as x that is TRUE whenever

a value in x is anywhere in y.

1:12 %in% c(1, 5, 11)

 #> [1] TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

letters[1:10] %in% c("a", "e", "i", "o", "u")

 #> [1] TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE

So to find all flights in November and December, we could write:

flights |>

filter(month %in% c(11, 12))

Note that %in% obeys different rules for NA to ==, as NA %in% NA is TRUE.

c(1, 2, NA) == NA

 #> [1] NA NA NA

c(1, 2, NA) %in% NA

 #> [1] FALSE FALSE TRUE

This can make for a useful shortcut:

flights |>

filter(dep_time %in% c(NA, 0800))

 #> # A tibble: 8,803 × 19

 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

 #> <int> <int> <int> <int> <int> <dbl> <int> <int>

 #> 1 2013 1 1 800 800 0 1022 1014

 #> 2 2013 1 1 800 810 -10 949 955

 #> 3 2013 1 1 NA 1630 NA NA 1815

 #> 4 2013 1 1 NA 1935 NA NA 2240

 #> 5 2013 1 1 NA 1500 NA NA 1825

 #> 6 2013 1 1 NA 600 NA NA 901

 #> # … with 8,797 more rows, and 11 more variables: arr_delay <dbl>,

 #> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, …

212 | Chapter 12: Logical Vectors

Exercises

1. Find all flights where arr_delay is missing but dep_delay is not. Find all flights

where neither arr_time nor sched_arr_time is missing, but arr_delay is.

2. How many flights have a missing dep_time? What other variables are missing in

these rows? What might these rows represent?

3. Assuming that a missing dep_time implies that a flight is cancelled, look at

the number of cancelled flights per day. Is there a pattern? Is there a connec‐

tion between the proportion of canceled flights and the average delay of non-

cancelled flights?

Summaries

The following sections describe some useful techniques for summarizing logical

vectors. As well as functions that only work specifically with logical vectors, you can

also use functions that work with numeric vectors.

Logical Summaries

There are two main logical summaries: any() and all(). any(x) is the equivalent of

|; it’ll return TRUE if there are any TRUEs in x. all(x) is equivalent of &; it’ll return

TRUE only if all values of x are TRUEs. Like all summary functions, they’ll return NA if

there are any missing values present, and as usual you can make the missing values go

away with na.rm = TRUE.

For example, we could use all() and any() to find out if every flight was delayed on departure by at most an hour or if any flights were delayed on arrival by five hours or

more. And using group_by() allows us to do that by day: flights |>

group_by(year, month, day) |>

summarize(

all_delayed = all(dep_delay <= 60, na.rm = TRUE),

any_long_delay = any(arr_delay >= 300, na.rm = TRUE),

.groups = "drop"

)

 #> # A tibble: 365 × 5

 #> year month day all_delayed any_long_delay

 #> <int> <int> <int> <lgl> <lgl>

 #> 1 2013 1 1 FALSE TRUE

 #> 2 2013 1 2 FALSE TRUE

 #> 3 2013 1 3 FALSE FALSE

 #> 4 2013 1 4 FALSE FALSE

 #> 5 2013 1 5 FALSE TRUE

 #> 6 2013 1 6 FALSE FALSE

 #> # … with 359 more rows

Summaries | 213

In most cases, however, any() and all() are a little too crude, and it would be nice to be able to get a little more detail about how many values are TRUE or FALSE. That leads

us to the numeric summaries.

Numeric Summaries of Logical Vectors

When you use a logical vector in a numeric context, TRUE becomes 1, and FALSE

becomes 0. This makes sum() and mean() useful with logical vectors because sum(x) gives the number of TRUEs and mean(x) gives the proportion of TRUEs (because

mean() is just sum() divided by length()).

That, for example, allows us to see the proportion of flights that were delayed on

departure by at most an hour and the number of flights that were delayed on arrival

by five hours or more:

flights |>

group_by(year, month, day) |>

summarize(

all_delayed = mean(dep_delay <= 60, na.rm = TRUE),

any_long_delay = sum(arr_delay >= 300, na.rm = TRUE),

.groups = "drop"

)

 #> # A tibble: 365 × 5

 #> year month day all_delayed any_long_delay

 #> <int> <int> <int> <dbl> <int>

 #> 1 2013 1 1 0.939 3

 #> 2 2013 1 2 0.914 3

 #> 3 2013 1 3 0.941 0

 #> 4 2013 1 4 0.953 0

 #> 5 2013 1 5 0.964 1

 #> 6 2013 1 6 0.959 0

 #> # … with 359 more rows

Logical Subsetting

There’s one final use for logical vectors in summaries: you can use a logical vector

to filter a single variable to a subset of interest. This makes use of the base [(pro‐

nounced subset) operator, which you’ll learn more about in “Selecting Multiple

Elements with [” on page 490.

Imagine we wanted to look at the average delay just for flights that were actually

delayed. One way to do so would be to first filter the flights and then calculate the

average delay:

flights |>

filter(arr_delay > 0) |>

group_by(year, month, day) |>

summarize(

behind = mean(arr_delay),

n = n(),

.groups = "drop"

)

214 | Chapter 12: Logical Vectors

 #> # A tibble: 365 × 5

 #> year month day behind n

 #> <int> <int> <int> <dbl> <int>

 #> 1 2013 1 1 32.5 461

 #> 2 2013 1 2 32.0 535

 #> 3 2013 1 3 27.7 460

 #> 4 2013 1 4 28.3 297

 #> 5 2013 1 5 22.6 238

 #> 6 2013 1 6 24.4 381

 #> # … with 359 more rows

This works, but what if we wanted to also compute the average delay for flights that

arrived early? We’d need to perform a separate filter step and then figure out how to

combine the two data frames together.3 Instead, you could use [to perform an inline filtering: arr_delay[arr_delay > 0] will yield only the positive arrival delays.

This leads to:

flights |>

group_by(year, month, day) |>

summarize(

behind = mean(arr_delay[arr_delay > 0], na.rm = TRUE),

ahead = mean(arr_delay[arr_delay < 0], na.rm = TRUE),

n = n(),

.groups = "drop"

)

 #> # A tibble: 365 × 6

 #> year month day behind ahead n

 #> <int> <int> <int> <dbl> <dbl> <int>

 #> 1 2013 1 1 32.5 -12.5 842

 #> 2 2013 1 2 32.0 -14.3 943

 #> 3 2013 1 3 27.7 -18.2 914

 #> 4 2013 1 4 28.3 -17.0 915

 #> 5 2013 1 5 22.6 -14.0 720

 #> 6 2013 1 6 24.4 -13.6 832

 #> # … with 359 more rows

Also note the difference in the group size: in the first chunk, n() gives the number of delayed flights per day; in the second, n() gives the total number of flights.

Exercises

1. What will sum(is.na(x)) tell you? How about mean(is.na(x))?

2. What does prod() return when applied to a logical vector? What logical summary function is it equivalent to? What does min() return when applied to a logical vector? What logical summary function is it equivalent to? Read the

documentation and perform a few experiments.

3 We’ll cover this in Chapter 19.

Summaries | 215

Conditional Transformations

One of the most powerful features of logical vectors are their use for conditional

transformations, i.e., doing one thing for condition x and doing something different

for condition y. There are two important tools for this: if_else() and case_when().

if_else()

If you want to use one value when a condition is TRUE and another value when it’s

FALSE, you can use dplyr::if_else(). 4 You’ll always use the first three argument of

if_else(). The first argument, condition, is a logical vector; the second, true, gives the output when the condition is true; and the third, false, gives the output if the

condition is false.

Let’s begin with a simple example of labeling a numeric vector as either “+ve” (posi‐

tive) or “-ve” (negative):

x <- c(-3:3, NA)

if_else(x > 0, "+ve", "-ve")

 #> [1] "-ve" "-ve" "-ve" "-ve" "+ve" "+ve" "+ve" NA There’s an optional fourth argument, missing, which will be used if the input is NA:

if_else(x > 0, "+ve", "-ve", "???")

 #> [1] "-ve" "-ve" "-ve" "-ve" "+ve" "+ve" "+ve" "???"

You can also use vectors for the true and false arguments. For example, this allows

us to create a minimal implementation of abs():

if_else(x < 0, -x, x)

 #> [1] 3 2 1 0 1 2 3 NA

So far all the arguments have used the same vectors, but you can of course mix and

match. For example, you could implement a simple version of coalesce() like this:

x1 <- c(NA, 1, 2, NA)

y1 <- c(3, NA, 4, 6)

if_else(is.na(x1), y1, x1)

 #> [1] 3 1 2 6

You might have noticed a small infelicity in our previous labeling example: zero

is neither positive nor negative. We could resolve this by adding an additional

if_else():

if_else(x == 0, "0", if_else(x < 0, "-ve", "+ve"), "???")

 #> [1] "-ve" "-ve" "-ve" "0" "+ve" "+ve" "+ve" "???"

4 dplyr’s if_else() is similar to base R’s ifelse(). There are two main advantages of if_else() over

ifelse(): you can choose what should happen to missing values, and if_else() is much more likely to give you a meaningful error if your variables have incompatible types.

216 | Chapter 12: Logical Vectors

This is already a little hard to read, and you can imagine it would only get harder if you have more conditions. Instead, you can switch to dplyr::case_when().

case_when()

dplyr’s case_when() is inspired by SQL’s CASE statement and provides a flexible way of performing different computations for different conditions. It has a special syntax

that unfortunately looks like nothing else you’ll use in the tidyverse. It takes pairs that

look like condition ~ output. condition must be a logical vector; when it’s TRUE,

output will be used.

This means we could re-create our previous nested if_else() as follows:

x <- c(-3:3, NA)

case_when(

x == 0 ~ "0",

x < 0 ~ "-ve",

x > 0 ~ "+ve",

is.na(x) ~ "???"

)

 #> [1] "-ve" "-ve" "-ve" "0" "+ve" "+ve" "+ve" "???"

This is more code, but it’s also more explicit.

To explain how case_when() works, let’s explore some simpler cases. If none of the cases matches, the output gets an NA:

case_when(

x < 0 ~ "-ve",

x > 0 ~ "+ve"

)

 #> [1] "-ve" "-ve" "-ve" NA "+ve" "+ve" "+ve" NA If you want to create a “default”/catchall value, use TRUE on the left side:

case_when(

x < 0 ~ "-ve",

x > 0 ~ "+ve",

TRUE ~ "???"

)

 #> [1] "-ve" "-ve" "-ve" "???" "+ve" "+ve" "+ve" "???"

Note that if multiple conditions match, only the first will be used:

case_when(

x > 0 ~ "+ve",

x > 2 ~ "big"

)

 #> [1] NA NA NA NA "+ve" "+ve" "+ve" NA

Just like with if_else() you can use variables on both sides of the ~, and you can mix and match variables as needed for your problem. For example, we could use

case_when() to provide some human-readable labels for the arrival delay: Conditional Transformations | 217

flights |>

mutate(

status = case_when(

is.na(arr_delay) ~ "cancelled",

arr_delay < -30 ~ "very early",

arr_delay < -15 ~ "early",

abs(arr_delay) <= 15 ~ "on time",

arr_delay < 60 ~ "late",

arr_delay < Inf ~ "very late",

),

.keep = "used"

)

 #> # A tibble: 336,776 × 2

 #> arr_delay status

 #> <dbl> <chr>

 #> 1 11 on time

 #> 2 20 late

 #> 3 33 late

 #> 4 -18 early

 #> 5 -25 early

 #> 6 12 on time

 #> # … with 336,770 more rows

Be wary when writing this sort of complex case_when() statement; my first two attempts used a mix of < and >, and I kept accidentally creating overlapping

conditions.

Compatible Types

Note that both if_else() and case_when() require compatible types in the output. If they’re not compatible, you’ll see errors like this:

if_else(TRUE, "a", 1)

 #> Error in ìf_else()`:

 #> ! Can't combinètruè <character> and `falsè <double>.

case_when(

x < -1 ~ TRUE,

x > 0 ~ now()

)

 #> Error in `case_when()`:

 #> ! Can't combinè..1 (right)` <logical> and `..2 (right)` <datetime<local>>.

Overall, relatively few types are compatible, because automatically converting one

type of vector to another is a common source of errors. Here are the most important

cases that are compatible:

• Numeric and logical vectors are compatible, as we discussed in “Numeric Sum‐

maries of Logical Vectors” on page 214.

• Strings and factors (Chapter 16) are compatible, because you can think of a factor as a string with a restricted set of values.

218 | Chapter 12: Logical Vectors

• Dates and date-times, which we’ll discuss in Chapter 17, are compatible because you can think of a date as a special case of date-time.

• NA, which is technically a logical vector, is compatible with everything because

every vector has some way of representing a missing value.

We don’t expect you to memorize these rules, but they should become second nature

over time because they are applied consistently throughout the tidyverse.

Exercises

1. A number is even if it’s divisible by two, which in R you can find out with x %% 2

== 0. Use this fact and if_else() to determine whether each number between 0

and 20 is even or odd.

2. Given a vector of days like x <- c("Monday", "Saturday", "Wednesday"), use

an ifelse() statement to label them as weekends or weekdays.

3. Use ifelse() to compute the absolute value of a numeric vector called x.

4. Write a case_when() statement that uses the month and day columns from flights to label a selection of important US holidays (e.g., New Years Day,

Fourth of July, Thanksgiving, and Christmas). First create a logical column that

is either TRUE or FALSE, and then create a character column that either gives the

name of the holiday or is NA.

Summary

The definition of a logical vector is simple because each value must be either TRUE,

FALSE, or NA. But logical vectors provide a huge amount of power. In this chapter,

you learned how to create logical vectors with >, <, <=, =>, ==, !=, and is.na(); how to combine them with !, &, and |; and how to summarize them with any(),

all(), sum(), and mean(). You also learned the powerful if_else() and case_when()

functions that allow you to return values depending on the value of a logical vector.

We’ll see logical vectors again and again in the following chapters. For example, in

Chapter 14, you’ll learn about str_detect(x, pattern), which returns a logical

vector that’s TRUE for the elements of x that match the pattern, and in Chapter 17, you’ll create logical vectors from the comparison of dates and times. But for now,

we’re going to move onto the next most important type of vector: numeric vectors.

Summary | 219

CHAPTER 13

Numbers

Introduction

Numeric vectors are the backbone of data science, and you’ve already used them a

bunch of times earlier in the book. Now it’s time to systematically survey what you

can do with them in R, ensuring that you’re well situated to tackle any future problem

involving numeric vectors.

We’ll start by giving you a couple of tools to make numbers if you have strings and

then go into a little more detail on count(). Then we’ll dive into various numeric transformations that pair well with mutate(), including more general transforma‐

tions that can be applied to other types of vectors but are often used with numeric

vectors. We’ll finish off by covering the summary functions that pair well with

summarize() and show you how they can also be used with mutate().

Prerequisites

This chapter mostly uses functions from base R, which are available without loading

any packages. But we still need the tidyverse because we’ll use these base R functions

inside of tidyverse functions such as mutate() and filter(). Like in the previous

chapter, we’ll use real examples from nycflights13, as well as toy examples made with

c() and tribble().

library(tidyverse)

library(nycflights13)

Making Numbers

In most cases, you’ll get numbers already recorded in one of R’s numeric types:

integer or double. In some cases, however, you’ll encounter them as strings, possibly

221

because you’ve created them by pivoting from column headers or because something

has gone wrong in your data import process.

readr provides two useful functions for parsing strings into numbers: parse_dou

ble() and parse_number(). Use parse_double() when you have numbers that have been written as strings:

x <- c("1.2", "5.6", "1e3")

parse_double(x)

 #> [1] 1.2 5.6 1000.0

Use parse_number() when the string contains non-numeric text that you want to ignore. This is particularly useful for currency data and percentages:

x <- c("$1,234", "USD 3,513", "59%")

parse_number(x)

 #> [1] 1234 3513 59

Counts

It’s surprising how much data science you can do with just counts and a little basic

arithmetic, so dplyr strives to make counting as easy as possible with count(). This function is great for quick exploration and checks during analysis:

flights |> count(dest)

 #> # A tibble: 105 × 2

 #> dest n

 #> <chr> <int>

 #> 1 ABQ 254

 #> 2 ACK 265

 #> 3 ALB 439

 #> 4 ANC 8

 #> 5 ATL 17215

 #> 6 AUS 2439

 #> # … with 99 more rows

(Despite the advice in Chapter 4, we usually put count() on a single line because it’s usually used at the console for a quick check that a calculation is working as

expected.)

If you want to see the most common values, add sort = TRUE:

flights |> count(dest, sort = TRUE)

 #> # A tibble: 105 × 2

 #> dest n

 #> <chr> <int>

 #> 1 ORD 17283

 #> 2 ATL 17215

 #> 3 LAX 16174

 #> 4 BOS 15508

 #> 5 MCO 14082

 #> 6 CLT 14064

 #> # … with 99 more rows

222 | Chapter 13: Numbers

And remember that if you want to see all the values, you can use |> View() or |> print(n = Inf).

You can perform the same computation “by hand” with group_by(), summarize(), and n(). This is useful because it allows you to compute other summaries at the same time:

flights |>

group_by(dest) |>

summarize(

n = n(),

delay = mean(arr_delay, na.rm = TRUE)

)

 #> # A tibble: 105 × 3

 #> dest n delay

 #> <chr> <int> <dbl>

 #> 1 ABQ 254 4.38

 #> 2 ACK 265 4.85

 #> 3 ALB 439 14.4

 #> 4 ANC 8 -2.5

 #> 5 ATL 17215 11.3

 #> 6 AUS 2439 6.02

 #> # … with 99 more rows

n() is a special summary function that doesn’t take any arguments and instead accesses information about the “current” group. This means that it works only inside

dplyr verbs:

n()

 #> Error in `n()`:

 #> ! Must only be used inside data-masking verbs likèmutate()`,

 #> `filter()`, and `group_by()`.

There are a couple of variants of n() and count() that you might find useful:

• n_distinct(x) counts the number of distinct (unique) values of one or more

variables. For example, we could figure out which destinations are served by the

most carriers:

flights |>

group_by(dest) |>

summarize(carriers = n_distinct(carrier)) |>

arrange(desc(carriers))

 #> # A tibble: 105 × 2

 #> dest carriers

 #> <chr> <int>

 #> 1 ATL 7

 #> 2 BOS 7

 #> 3 CLT 7

 #> 4 ORD 7

 #> 5 TPA 7

 #> 6 AUS 6

 #> # … with 99 more rows

• A weighted count is a sum. For example, you could “count” the number of miles

each plane flew:

Counts | 223

flights |>

group_by(tailnum) |>

summarize(miles = sum(distance))

 #> # A tibble: 4,044 × 2

 #> tailnum miles

 #> <chr> <dbl>

 #> 1 D942DN 3418

 #> 2 N0EGMQ 250866

 #> 3 N10156 115966

 #> 4 N102UW 25722

 #> 5 N103US 24619

 #> 6 N104UW 25157

 #> # … with 4,038 more rows

Weighted counts are a common problem, so count() has a wt argument that does the same thing:

flights |> count(tailnum, wt = distance)

• You can count missing values by combining sum() and is.na(). In the flights dataset this represents flights that are cancelled:

flights |>

group_by(dest) |>

summarize(n_cancelled = sum(is.na(dep_time)))

 #> # A tibble: 105 × 2

 #> dest n_cancelled

 #> <chr> <int>

 #> 1 ABQ 0

 #> 2 ACK 0

 #> 3 ALB 20

 #> 4 ANC 0

 #> 5 ATL 317

 #> 6 AUS 21

 #> # … with 99 more rows

Exercises

1. How can you use count() to count the number rows with a missing value for a given variable?

2. Expand the following calls to count() to instead use group_by(), summarize(),

and arrange():

a. flights |> count(dest, sort = TRUE)

b. flights |> count(tailnum, wt = distance)

Numeric Transformations

Transformation functions work well with mutate() because their output is the same length as the input. The vast majority of transformation functions are already built

into base R. It’s impractical to list them all, so this section will show the most useful

224 | Chapter 13: Numbers

ones. As an example, while R provides all the trigonometric functions that you might

dream of, we don’t list them here because they’re rarely needed for data science.

Arithmetic and Recycling Rules

We introduced the basics of arithmetic (+, -, *, /,) in Chapter 2 and have used them a bunch since. These functions don’t need a huge amount of explanation because

they do what you learned in grade school. But we need to briefly talk about the

 recycling rules, which determine what happens when the left and right sides have

different lengths. This is important for operations like flights |> mutate(air_time

= air_time / 60) because there are 336,776 numbers on the left of / but only one

on the right.

R handles mismatched lengths by recycling, or repeating, the short vector. We can see

this in operation more easily if we create some vectors outside of a data frame:

x <- c(1, 2, 10, 20)

x / 5

 #> [1] 0.2 0.4 2.0 4.0

 # is shorthand for

x / c(5, 5, 5, 5)

 #> [1] 0.2 0.4 2.0 4.0

Generally, you want to recycle only single numbers (i.e., vectors of length 1), but R

will recycle any shorter length vector. It usually (but not always) gives you a warning

if the longer vector isn’t a multiple of the shorter:

x * c(1, 2)

 #> [1] 1 4 10 40

x * c(1, 2, 3)

 #> Warning in x * c(1, 2, 3): longer object length is not a multiple of shorter

 #> object length

 #> [1] 1 4 30 20

These recycling rules are also applied to logical comparisons (==, <, <=, >, >=, !=)

and can lead to a surprising result if you accidentally use == instead of %in% and the

data frame has an unfortunate number of rows. For example, take this code, which

attempts to find all flights in January and February:

flights |>

filter(month == c(1, 2))

 #> # A tibble: 25,977 × 19

 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

 #> <int> <int> <int> <int> <int> <dbl> <int> <int>

 #> 1 2013 1 1 517 515 2 830 819

 #> 2 2013 1 1 542 540 2 923 850

 #> 3 2013 1 1 554 600 -6 812 837

 #> 4 2013 1 1 555 600 -5 913 854

 #> 5 2013 1 1 557 600 -3 838 846

 #> 6 2013 1 1 558 600 -2 849 851

 #> # … with 25,971 more rows, and 11 more variables: arr_delay <dbl>,

 #> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, …

Numeric Transformations | 225

The code runs without error, but it doesn’t return what you want. Because of the

recycling rules, it finds flights in odd-numbered rows that departed in January and

flights in even numbered rows that departed in February. Unfortunately, there’s no

warning because flights has an even number of rows.

To protect you from this type of silent failure, most tidyverse functions use a stricter

form of recycling that recycles only single values. Unfortunately, that doesn’t help

here, or in many other cases, because the key computation is performed by the base R

function ==, not filter().

Minimum and Maximum

The arithmetic functions work with pairs of variables. Two closely related functions

are pmin() and pmax(), which when given two or more variables will return the smallest or largest value in each row:

df <- tribble(

~x, ~y,

1, 3,

5, 2,

7, NA,

)

df |>

mutate(

min = pmin(x, y, na.rm = TRUE),

max = pmax(x, y, na.rm = TRUE)

)

 #> # A tibble: 3 × 4

 #> x y min max

 #> <dbl> <dbl> <dbl> <dbl>

 #> 1 1 3 1 3

 #> 2 5 2 2 5

 #> 3 7 NA 7 7

Note that these are different from the summary functions min() and max(), which take multiple observations and return a single value. You can tell that you’ve used the

wrong form when all the minimums and all the maximums have the same value:

df |>

mutate(

min = min(x, y, na.rm = TRUE),

max = max(x, y, na.rm = TRUE)

)

 #> # A tibble: 3 × 4

 #> x y min max

 #> <dbl> <dbl> <dbl> <dbl>

 #> 1 1 3 1 7

 #> 2 5 2 1 7

 #> 3 7 NA 1 7

226 | Chapter 13: Numbers

Modular Arithmetic

Modular arithmetic is the technical name for the type of math you did before you

learned about decimal places, i.e., division that yields a whole number and a remain‐

der. In R, %/% does integer division, and %% computes the remainder:

1:10 %/% 3

 #> [1] 0 0 1 1 1 2 2 2 3 3

1:10 %% 3

 #> [1] 1 2 0 1 2 0 1 2 0 1

Modular arithmetic is handy for the flights dataset, because we can use it to unpack

the sched_dep_time variable into hour and minute:

flights |>

mutate(

hour = sched_dep_time %/% 100,

minute = sched_dep_time %% 100,

.keep = "used"

)

 #> # A tibble: 336,776 × 3

 #> sched_dep_time hour minute

 #> <int> <dbl> <dbl>

 #> 1 515 5 15

 #> 2 529 5 29

 #> 3 540 5 40

 #> 4 545 5 45

 #> 5 600 6 0

 #> 6 558 5 58

 #> # … with 336,770 more rows

We can combine that with the mean(is.na(x)) trick from “Summaries” on page 213

to see how the proportion of cancelled flights varies over the course of the day. The

results are shown in Figure 13-1.

flights |>

group_by(hour = sched_dep_time %/% 100) |>

summarize(prop_cancelled = mean(is.na(dep_time)), n = n()) |>

filter(hour > 1) |>

ggplot(aes(x = hour, y = prop_cancelled)) +

geom_line(color = "grey50") +

geom_point(aes(size = n))

Numeric Transformations | 227

[image: Image 141]

 Figure 13-1. A line plot with scheduled departure hour on the x-axis, and proportion of

 cancelled flights on the y-axis. Cancellations seem to accumulate over the course of the

 day until 8 p.m., and very late flights are much less likely to be cancelled.

Logarithms

Logarithms are an incredibly useful transformation for dealing with data that ranges

across multiple orders of magnitude and for converting exponential growth to linear

growth. In R, you have a choice of three logarithms: log() (the natural log, base e),

log2() (base 2), and log10() (base 10). We recommend using log2() or log10().

log2() is easy to interpret because a difference of 1 on the log scale corresponds to doubling on the original scale, and a difference of -1 corresponds to halving, whereas

log10() is easy to back-transform because, for example, 3 is 10^3 = 1000. The inverse of log() is exp(); to compute the inverse of log2() or log10(), you’ll need to use 2^

or 10^.

Rounding

Use round(x) to round a number to the nearest integer:

round(123.456)

 #> [1] 123

You can control the precision of the rounding with the second argument, digits.

round(x, digits) rounds to the nearest 10^-n, so digits = 2 will round to the

228 | Chapter 13: Numbers

nearest 0.01. This definition is useful because it implies round(x, -3) will round to

the nearest thousand, which indeed it does:

round(123.456, 2) # two digits

 #> [1] 123.46

round(123.456, 1) # one digit

 #> [1] 123.5

round(123.456, -1) # round to nearest ten

 #> [1] 120

round(123.456, -2) # round to nearest hundred

 #> [1] 100

There’s one weirdness with round() that seems surprising at first glance: round(c(1.5, 2.5))

 #> [1] 2 2

round() uses what’s known as “round half to even” or Banker’s rounding: if a number is halfway between two integers, it will be rounded to the even integer. This is a good

strategy because it keeps the rounding unbiased: half of all 0.5s are rounded up, and

half are rounded down.

round() is paired with floor(), which always rounds down, and ceiling(), which

always rounds up:

x <- 123.456

floor(x)

 #> [1] 123

ceiling(x)

 #> [1] 124

These functions don’t have a digits argument, so you can instead scale down, round,

and then scale back up:

 # Round down to nearest two digits

floor(x / 0.01) * 0.01

 #> [1] 123.45

 # Round up to nearest two digits

ceiling(x / 0.01) * 0.01

 #> [1] 123.46

You can use the same technique if you want to round() to a multiple of some other number:

 # Round to nearest multiple of 4

round(x / 4) * 4

 #> [1] 124

 # Round to nearest 0.25

round(x / 0.25) * 0.25

 #> [1] 123.5

Numeric Transformations | 229

Cutting Numbers into Ranges

Use cut()1 to break up (aka bin) a numeric vector into discrete buckets: x <- c(1, 2, 5, 10, 15, 20)

cut(x, breaks = c(0, 5, 10, 15, 20))

 #> [1] (0,5] (0,5] (0,5] (5,10] (10,15] (15,20]

 #> Levels: (0,5] (5,10] (10,15] (15,20]

The breaks don’t need to be evenly spaced:

cut(x, breaks = c(0, 5, 10, 100))

 #> [1] (0,5] (0,5] (0,5] (5,10] (10,100] (10,100]

 #> Levels: (0,5] (5,10] (10,100]

You can optionally supply your own labels. Note that there should be one less

labels than breaks.

cut(x,

breaks = c(0, 5, 10, 15, 20),

labels = c("sm", "md", "lg", "xl")

)

 #> [1] sm sm sm md lg xl

 #> Levels: sm md lg xl

Any values outside of the range of the breaks will become NA:

y <- c(NA, -10, 5, 10, 30)

cut(y, breaks = c(0, 5, 10, 15, 20))

 #> [1] <NA> <NA> (0,5] (5,10] <NA>

 #> Levels: (0,5] (5,10] (10,15] (15,20]

See the documentation for other useful arguments such as right and include.low

est, which control if the intervals are [a, b) or (a, b] and if the lowest interval

should be [a, b].

Cumulative and Rolling Aggregates

Base R provides cumsum(), cumprod(), cummin(), and cummax() for running, or cumulative, sums, products, and mins and maxes. dplyr provides cummean() for cumulative means. Cumulative sums tend to come up the most in practice:

x <- 1:10

cumsum(x)

 #> [1] 1 3 6 10 15 21 28 36 45 55

If you need more complex rolling or sliding aggregates, try the slider package.

1 ggplot2 provides some helpers for common cases in cut_interval(), cut_number(), and cut_width().

ggplot2 is an admittedly weird place for these functions to live, but they are useful as part of histogram computation and were written before any other parts of the tidyverse existed.

230 | Chapter 13: Numbers

Exercises

1. Explain in words what each line of the code used to generate Figure 13-1 does.

2. What trigonometric functions does R provide? Guess some names and look up

the documentation. Do they use degrees or radians?

3. Currently dep_time and sched_dep_time are convenient to look at but hard to

compute with because they’re not really continuous numbers. You can see the

basic problem by running the following code; there’s a gap between each hour:

flights |>

filter(month == 1, day == 1) |>

ggplot(aes(x = sched_dep_time, y = dep_delay)) +

geom_point()

Convert them to a more truthful representation of time (either fractional hours

or minutes since midnight).

4. Round dep_time and arr_time to the nearest five minutes.

General Transformations

The following sections describe some general transformations that are often used

with numeric vectors but can be applied to all other column types.

Ranks

dplyr provides a number of ranking functions inspired by SQL, but you should

always start with dplyr::min_rank(). It uses the typical method for dealing with ties, e.g., 1st, 2nd, 2nd, 4th.

x <- c(1, 2, 2, 3, 4, NA)

min_rank(x)

 #> [1] 1 2 2 4 5 NA

Note that the smallest values get the lowest ranks; use desc(x) to give the largest

values the smallest ranks:

min_rank(desc(x))

 #> [1] 5 3 3 2 1 NA

If min_rank() doesn’t do what you need, look at the variants dplyr::row_number(),

dplyr::dense_rank(), dplyr::percent_rank(), and dplyr::cume_dist(). See the documentation for details.

df <- tibble(x = x)

df |>

mutate(

row_number = row_number(x),

dense_rank = dense_rank(x),

percent_rank = percent_rank(x),

cume_dist = cume_dist(x)

General Transformations | 231

)

 #> # A tibble: 6 × 5

 #> x row_number dense_rank percent_rank cume_dist

 #> <dbl> <int> <int> <dbl> <dbl>

 #> 1 1 1 1 0 0.2

 #> 2 2 2 2 0.25 0.6

 #> 3 2 3 2 0.25 0.6

 #> 4 3 4 3 0.75 0.8

 #> 5 4 5 4 1 1

 #> 6 NA NA NA NA NA

You can achieve many of the same results by picking the appropriate ties.method

argument to base R’s rank(); you’ll probably also want to set na.last = "keep" to keep NAs as NA.

row_number() can also be used without any arguments when inside a dplyr verb. In this case, it’ll give the number of the “current” row. When combined with %% or %/%,

this can be a useful tool for dividing data into similarly sized groups:

df <- tibble(id = 1:10)

df |>

mutate(

row0 = row_number() - 1,

three_groups = row0 %% 3,

three_in_each_group = row0 %/% 3

)

 #> # A tibble: 10 × 4

 #> id row0 three_groups three_in_each_group

 #> <int> <dbl> <dbl> <dbl>

 #> 1 1 0 0 0

 #> 2 2 1 1 0

 #> 3 3 2 2 0

 #> 4 4 3 0 1

 #> 5 5 4 1 1

 #> 6 6 5 2 1

 #> # … with 4 more rows

Offsets

dplyr::lead() and dplyr::lag() allow you to refer the values just before or just

after the “current” value. They return a vector of the same length as the input, padded

with NAs at the start or end:

x <- c(2, 5, 11, 11, 19, 35)

lag(x)

 #> [1] NA 2 5 11 11 19

lead(x)

 #> [1] 5 11 11 19 35 NA

• x - lag(x) gives you the difference between the current and previous value:

x - lag(x)

 #> [1] NA 3 6 0 8 16

• x == lag(x) tells you when the current value changes:

232 | Chapter 13: Numbers

x == lag(x)

 #> [1] NA FALSE FALSE TRUE FALSE FALSE

You can lead or lag by more than one position by using the second argument, n.

Consecutive Identifiers

Sometimes you want to start a new group every time some event occurs. For example,

when you’re looking at website data, it’s common to want to break up events into

sessions, where you begin a new session after a gap of more than x minutes since

the last activity. For example, imagine you have the times when someone visited a

website:

events <- tibble(

time = c(0, 1, 2, 3, 5, 10, 12, 15, 17, 19, 20, 27, 28, 30)

)

You’ve computed the time between each event and figured out if there’s a gap that’s

big enough to qualify:

events <- events |>

mutate(

diff = time - lag(time, default = first(time)),

has_gap = diff >= 5

)

events

 #> # A tibble: 14 × 3

 #> time diff has_gap

 #> <dbl> <dbl> <lgl>

 #> 1 0 0 FALSE

 #> 2 1 1 FALSE

 #> 3 2 1 FALSE

 #> 4 3 1 FALSE

 #> 5 5 2 FALSE

 #> 6 10 5 TRUE

 #> # … with 8 more rows

But how do we go from that logical vector to something that we can group_by()?

cumsum(), from “Cumulative and Rolling Aggregates” on page 230, comes to the res-cue as gap, i.e., has_gap is TRUE, will increment group by one (“Numeric Summaries

of Logical Vectors” on page 214):

events |> mutate(

group = cumsum(has_gap)

)

 #> # A tibble: 14 × 4

 #> time diff has_gap group

 #> <dbl> <dbl> <lgl> <int>

 #> 1 0 0 FALSE 0

 #> 2 1 1 FALSE 0

 #> 3 2 1 FALSE 0

 #> 4 3 1 FALSE 0

 #> 5 5 2 FALSE 0

 #> 6 10 5 TRUE 1

 #> # … with 8 more rows

General Transformations | 233

Another approach for creating grouping variables is consecutive_id(), which starts a new group every time one of its arguments changes. For example, inspired by this

StackOverflow question, imagine you have a data frame with a bunch of repeated values:

df <- tibble(

x = c("a", "a", "a", "b", "c", "c", "d", "e", "a", "a", "b", "b"), y = c(1, 2, 3, 2, 4, 1, 3, 9, 4, 8, 10, 199)

)

If you want to keep the first row from each repeated x, you could use group_by(),

consecutive_id(), and slice_head(): df |>

group_by(id = consecutive_id(x)) |>

slice_head(n = 1)

 #> # A tibble: 7 × 3

 #> # Groups: id [7]

 #> x y id

 #> <chr> <dbl> <int>

 #> 1 a 1 1

 #> 2 b 2 2

 #> 3 c 4 3

 #> 4 d 3 4

 #> 5 e 9 5

 #> 6 a 4 6

 #> # … with 1 more row

Exercises

1. Find the 10 most delayed flights using a ranking function. How do you want to

handle ties? Carefully read the documentation for min_rank().

2. Which plane (tailnum) has the worst on-time record?

3. What time of day should you fly if you want to avoid delays as much as possible?

4. What does flights |> group_by(dest) |> filter(row_number() < 4) do?

What does flights |> group_by(dest) |> filter(row_number(dep_delay)

< 4) do?

5. For each destination, compute the total minutes of delay. For each flight, com‐

pute the proportion of the total delay for its destination.

6. Delays are typically temporally correlated: even once the problem that caused the

initial delay has been resolved, later flights are delayed to allow earlier flights to

leave. Using lag(), explore how the average flight delay for an hour is related to the average delay for the previous hour.

flights |>

mutate(hour = dep_time %/% 100) |>

group_by(year, month, day, hour) |>

summarize(

dep_delay = mean(dep_delay, na.rm = TRUE),

n = n(),

234 | Chapter 13: Numbers

 .groups = "drop"

) |>

filter(n > 5)

7. Look at each destination. Can you find flights that are suspiciously fast (i.e.,

flights that represent a potential data entry error)? Compute the air time of a

flight relative to the shortest flight to that destination. Which flights were most

delayed in the air?

8. Find all destinations that are flown by at least two carriers. Use those destinations

to come up with a relative ranking of the carriers based on their performance for

the same destination.

Numeric Summaries

Just using the counts, means, and sums that we’ve introduced already can get you a

long way, but R provides many other useful summary functions. Here is a selection

that you might find useful.

Center

So far, we’ve mostly used mean() to summarize the center of a vector of values. As we’ve seen in “Case Study: Aggregates and Sample Size” on page 60, because the mean

is the sum divided by the count, it is sensitive to even just a few unusually high or

low values. An alternative is to use the median(), which finds a value that lies in the “middle” of the vector, i.e., 50% of the values are above it and 50% are below

it. Depending on the shape of the distribution of the variable you’re interested in,

mean or median might be a better measure of center. For example, for symmetric

distributions we generally report the mean, while for skewed distributions we usually

report the median.

Figure 13-2 compares the mean to the median departure delay (in minutes) for each

destination. The median delay is always smaller than the mean delay because flights

sometimes leave multiple hours late, but they never leave multiple hours early.

flights |>

group_by(year, month, day) |>

summarize(

mean = mean(dep_delay, na.rm = TRUE),

median = median(dep_delay, na.rm = TRUE),

n = n(),

.groups = "drop"

) |>

ggplot(aes(x = mean, y = median)) +

geom_abline(slope = 1, intercept = 0, color = "white", linewidth = 2) +

geom_point()

Numeric Summaries | 235

[image: Image 142]

 Figure 13-2. A scatterplot showing the differences of summarizing hourly departure

 delay with median instead of mean.

You might also wonder about the mode, or the most common value. This is a

summary that works well only for very simple cases (which is why you might have

learned about it in high school), but it doesn’t work well for many real datasets. If

the data is discrete, there may be multiple most common values, and if the data is

continuous, there might be no most common value because every value is ever so

slightly different. For these reasons, the mode tends not to be used by statisticians,

and there’s no mode function included in base R.2

Minimum, Maximum, and Quantiles

What if you’re interested in locations other than the center? min() and max() will give

you the largest and smallest values. Another powerful tool is quantile(), which is

a generalization of the median: quantile(x, 0.25) will find the value of x that is

greater than 25% of the values, quantile(x, 0.5) is equivalent to the median, and

quantile(x, 0.95) will find the value that’s greater than 95% of the values.

2 The mode() function does something quite different!

236 | Chapter 13: Numbers

For the flights data, you might want to look at the 95% quantile of delays rather

than the maximum, because it will ignore the 5% of most delayed flights, which can

be quite extreme.

flights |>

group_by(year, month, day) |>

summarize(

max = max(dep_delay, na.rm = TRUE),

q95 = quantile(dep_delay, 0.95, na.rm = TRUE),

.groups = "drop"

)

 #> # A tibble: 365 × 5

 #> year month day max q95

 #> <int> <int> <int> <dbl> <dbl>

 #> 1 2013 1 1 853 70.1

 #> 2 2013 1 2 379 85

 #> 3 2013 1 3 291 68

 #> 4 2013 1 4 288 60

 #> 5 2013 1 5 327 41

 #> 6 2013 1 6 202 51

 #> # … with 359 more rows

Spread

Sometimes you’re not so interested in where the bulk of the data lies, but in how

it is spread out. Two commonly used summaries are the standard deviation, sd(x),

and the inter-quartile range, IQR(). We won’t explain sd() here since you’re probably already familiar with it, but IQR() might be new—it’s quantile(x, 0.75) - quan tile(x, 0.25) and gives you the range that contains the middle 50% of the data.

We can use this to reveal a small oddity in the flights data. You might expect the

spread of the distance between origin and destination to be zero, since airports are

always in the same place. But the following code reveals a data oddity for airport

EGE:

flights |>

group_by(origin, dest) |>

summarize(

distance_sd = IQR(distance),

n = n(),

.groups = "drop"

) |>

filter(distance_sd > 0)

 #> # A tibble: 2 × 4

 #> origin dest distance_sd n

 #> <chr> <chr> <dbl> <int>

 #> 1 EWR EGE 1 110

 #> 2 JFK EGE 1 103

Numeric Summaries | 237

[image: Image 143]

Distributions

It’s worth remembering that all of the summary statistics described earlier are a way

of reducing the distribution to a single number. This means they’re fundamentally

reductive, and if you pick the wrong summary, you can easily miss important differ‐

ences between groups. That’s why it’s always a good idea to visualize the distribution

before committing to your summary statistics.

Figure 13-3 shows the overall distribution of departure delays. The distribution is so skewed that we have to zoom in to see the bulk of the data. This suggests that the

mean is unlikely to be a good summary, and we might prefer the median instead.

 Figure 13-3. (Left) The histogram of the full data is extremely skewed, making it hard to

 get any details. (Right) Zooming into delays of less than two hours makes it possible to

 see what’s happening with the bulk of the observations.

It’s also a good idea to check that distributions for subgroups resemble the whole.

In the following plot, 365 frequency polygons of dep_delay, one for each day, are

overlaid. The distributions seem to follow a common pattern, suggesting it’s fine to

use the same summary for each day.

flights |>

filter(dep_delay < 120) |>

ggplot(aes(x = dep_delay, group = interaction(day, month))) +

geom_freqpoly(binwidth = 5, alpha = 1/5)

238 | Chapter 13: Numbers

[image: Image 144]

Don’t be afraid to explore your own custom summaries specifically tailored for the

data that you’re working with. In this case, that might mean separately summarizing

the flights that left early versus the flights that left late, or given that the values are

so heavily skewed, you might try a log transformation. Finally, don’t forget what you

learned in “Case Study: Aggregates and Sample Size” on page 60: whenever creating

numerical summaries, it’s a good idea to include the number of observations in each

group.

Positions

There’s one final type of summary that’s useful for numeric vectors but also works

with every other type of value: extracting a value at a specific position: first(x),

last(x), and nth(x, n).

For example, we can find the first and last departure for each day:

flights |>

group_by(year, month, day) |>

summarize(

first_dep = first(dep_time, na_rm = TRUE),

fifth_dep = nth(dep_time, 5, na_rm = TRUE),

last_dep = last(dep_time, na_rm = TRUE)

)

 #> `summarise()` has grouped output by 'year', 'month'. You can override using

 #> thè.groupsàrgument.

 #> # A tibble: 365 × 6

 #> # Groups: year, month [12]

Numeric Summaries | 239

 #> year month day first_dep fifth_dep last_dep

 #> <int> <int> <int> <int> <int> <int>

 #> 1 2013 1 1 517 554 2356

 #> 2 2013 1 2 42 535 2354

 #> 3 2013 1 3 32 520 2349

 #> 4 2013 1 4 25 531 2358

 #> 5 2013 1 5 14 534 2357

 #> 6 2013 1 6 16 555 2355

 #> # … with 359 more rows

(Note that because dplyr functions use _ to separate components of function and

arguments names, these functions use na_rm instead of na.rm.)

If you’re familiar with [, which we’ll come back to in “Selecting Multiple Elements

with [” on page 490, you might wonder if you ever need these functions. There are

three reasons: the default argument allows you to provide a default if the specified

position doesn’t exist, the order_by argument allows you to locally override the order

of the rows, and the na_rm argument allows you to drop missing values.

Extracting values at positions is complementary to filtering on ranks. Filtering gives

you all variables, with each observation in a separate row:

flights |>

group_by(year, month, day) |>

mutate(r = min_rank(sched_dep_time)) |>

filter(r %in% c(1, max(r)))

 #> # A tibble: 1,195 × 20

 #> # Groups: year, month, day [365]

 #> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

 #> <int> <int> <int> <int> <int> <dbl> <int> <int>

 #> 1 2013 1 1 517 515 2 830 819

 #> 2 2013 1 1 2353 2359 -6 425 445

 #> 3 2013 1 1 2353 2359 -6 418 442

 #> 4 2013 1 1 2356 2359 -3 425 437

 #> 5 2013 1 2 42 2359 43 518 442

 #> 6 2013 1 2 458 500 -2 703 650

 #> # … with 1,189 more rows, and 12 more variables: arr_delay <dbl>,

 #> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, …

With mutate()

As the names suggest, the summary functions are typically paired with summarize().

However, because of the recycling rules we discussed in “Arithmetic and Recycling

Rules” on page 225, they can also be usefully paired with mutate(), particularly when you want do some sort of group standardization. For example:

x / sum(x)

Calculates the proportion of a total.

(x - mean(x)) / sd(x)

Computes a Z-score (standardized to mean 0 and standard deviation 1).

240 | Chapter 13: Numbers

(x - min(x)) / (max(x) - min(x))

Standardizes to range [0, 1].

x / first(x)

Computes an index based on the first observation.

Exercises

1. Brainstorm at least five ways to assess the typical delay characteristics of a group

of flights. When is mean() useful? When is median() useful? When might you want to use something else? Should you use arrival delay or departure delay?

Why might you want to use data from planes?

2. Which destinations show the greatest variation in air speed?

3. Create a plot to further explore the adventures of EGE. Can you find any evi‐

dence that the airport moved locations? Can you find another variable that might

explain the difference?

Summary

You’re already familiar with many tools for working with numbers, and after reading

this chapter you now know how to use them in R. You also learned a handful of

useful general transformations that are commonly, but not exclusively, applied to

numeric vectors such as ranks and offsets. Finally, you worked through a number of

numeric summaries and discussed a few of the statistical challenges that you should

consider.

Over the next two chapters, we’ll dive into working with strings with the stringr

package. Strings are a big topic, so they get two chapters, one on the fundamentals of

strings and one on regular expressions.

Summary | 241

CHAPTER 14

Strings

Introduction

So far, you’ve used a bunch of strings without learning much about the details. Now

it’s time to dive into them, learn what makes strings tick, and master some of the

powerful string manipulation tools you have at your disposal.

We’ll begin with the details of creating strings and character vectors. You’ll then dive

into creating strings from data, then the opposite: extracting strings from data. We’ll

then discuss tools that work with individual letters. The chapter finishes with func‐

tions that work with individual letters and a brief discussion of where your expecta‐

tions from English might steer you wrong when working with other languages.

We’ll keep working with strings in the next chapter, where you’ll learn more about the

power of regular expressions.

Prerequisites

In this chapter, we’ll use functions from the stringr package, which is part of the core

tidyverse. We’ll also use the babynames data since it provides some fun strings to

manipulate.

library(tidyverse)

library(babynames)

You can quickly tell when you’re using a stringr function because all stringr functions

start with str_. This is particularly useful if you use RStudio because typing str_ will

trigger autocomplete, allowing you to jog your memory of the available functions.

243

[image: Image 145]

Creating a String

We created strings in passing earlier in the book but didn’t discuss the details. First,

you can create a string using either single quotes (') or double quotes ("). There’s no

difference in behavior between the two, so in the interest of consistency, the tidyverse

style guide recommends using ", unless the string contains multiple ".

string1 <- "This is a string"

string2 <- 'If I want to include a "quote" inside a string, I use single quotes'

If you forget to close a quote, you’ll see +, the continuation prompt:

> "This is a string without a closing quote

+

+

+ HELP I'M STUCK IN A STRING

If this happens to you and you can’t figure out which quote to close, press Escape to

cancel and try again.

Escapes

To include a literal single or double quote in a string, you can use \ to “escape” it:

double_quote <- "\"" # or '"'

single_quote <- '\'' # or "'"

So if you want to include a literal backslash in your string, you’ll need to escape it:

"\\":

backslash <- "\\"

Beware that the printed representation of a string is not the same as the string itself

because the printed representation shows the escapes (in other words, when you print

a string, you can copy and paste the output to re-create that string). To see the raw

contents of the string, use str_view():1

1 Or use the base R function writeLines().

244 | Chapter 14: Strings

x <- c(single_quote, double_quote, backslash)

x

 #> [1] "'" "\"" "\\"

str_view(x)

 #> [1] │ '

 #> [2] │ "

 #> [3] │ \

Raw Strings

Creating a string with multiple quotes or backslashes gets confusing quickly. To

illustrate the problem, let’s create a string that contains the contents of the code block

where we define the double_quote and single_quote variables:

tricky <- "double_quote <- \"\\\"\" # or '\"'

single_quote <- '\\'' # or \"'\""

str_view(tricky)

 #> [1] │ double_quote <- "\"" # or '"'

 #> │ single_quote <- '\'' # or "'"

That’s a lot of backslashes! (This is sometimes called leaning toothpick syndrome.) To eliminate the escaping, you can instead use a raw string:2

tricky <- r"(double_quote <- "\"" # or '"'

single_quote <- '\'' # or "'")"

str_view(tricky)

 #> [1] │ double_quote <- "\"" # or '"'

 #> │ single_quote <- '\'' # or "'"

A raw string usually starts with r"(and finishes with)". But if your string con‐

tains)", you can instead use r"[]" or r"{}", and if that’s still not enough, you can insert any number of dashes to make the opening and closing pairs unique, e.g.,

`r"--()--", `r"---()---", etc. Raw strings are flexible enough to handle any text.

Other Special Characters

As well as \", \', and \\, there are a handful of other special characters that may

come in handy. The most common are \n, a new line, and \t, tab. You’ll also

sometimes see strings containing Unicode escapes that start with \u or \U. This is

a way of writing non-English characters that work on all systems. You can see the

complete list of other special characters in ?Quotes.

x <- c("one\ntwo", "one\ttwo", "\u00b5", "\U0001f604")

x

 #> [1] "one\ntwo" "one\ttwo" "µ" "ߘ 䢊 str_view(x)

 #> [1] │ one

 #> │ two

 #> [2] │ one{\t}two

2 Available in R 4.0.0 and newer.

Creating a String | 245

 #> [3] │ µ

 #> [4] │ ߘ 伯

Note that str_view() uses a blue background for tabs to make them easier to spot.

One of the challenges of working with text is that there’s a variety of ways that

whitespace can end up in the text, so this background helps you recognize that

something strange is going on.

Exercises

1. Create strings that contain the following values:

a. He said "That's amazing!"

b. \a\b\c\d

c. \\\\\\

2. Create the following string in your R session and print it. What happens to the

special “\u00a0”? How does str_view() display it? Can you do a little Googling to figure out what this special character is?

x <- "This\u00a0is\u00a0tricky"

Creating Many Strings from Data

Now that you’ve learned the basics of creating a string or two by “hand,” we’ll go into

the details of creating strings from other strings. This will help you solve the common

problem where you have some text you wrote that you want to combine with strings

from a data frame. For example, you might combine “Hello” with a name variable

to create a greeting. We’ll show you how to do this with str_c() and str_glue()

and how you can use them with mutate(). That naturally raises the question of what stringr functions you might use with summarize(), so we’ll finish this section with a discussion of str_flatten(), which is a summary function for strings.

str_c()

str_c() takes any number of vectors as arguments and returns a character vector: str_c("x", "y")

 #> [1] "xy"

str_c("x", "y", "z")

 #> [1] "xyz"

str_c("Hello ", c("John", "Susan"))

 #> [1] "Hello John" "Hello Susan"

str_c() is similar to the base paste0() but is designed to be used with mutate() by obeying the usual tidyverse rules for recycling and propagating missing values:

df <- tibble(name = c("Flora", "David", "Terra", NA))

df |> mutate(greeting = str_c("Hi ", name, "!"))

246 | Chapter 14: Strings

 #> # A tibble: 4 × 2

 #> name greeting

 #> <chr> <chr>

 #> 1 Flora Hi Flora!

 #> 2 David Hi David!

 #> 3 Terra Hi Terra!

 #> 4 <NA> <NA>

If you want missing values to display in another way, use coalesce() to replace them.

Depending on what you want, you might use it either inside or outside of str_c(): df |>

mutate(

greeting1 = str_c("Hi ", coalesce(name, "you"), "!"),

greeting2 = coalesce(str_c("Hi ", name, "!"), "Hi!")

)

 #> # A tibble: 4 × 3

 #> name greeting1 greeting2

 #> <chr> <chr> <chr>

 #> 1 Flora Hi Flora! Hi Flora!

 #> 2 David Hi David! Hi David!

 #> 3 Terra Hi Terra! Hi Terra!

 #> 4 <NA> Hi you! Hi!

str_glue()

If you are mixing many fixed and variable strings with str_c(), you’ll notice that you type a lot of "s, making it hard to see the overall goal of the code. An alternative

approach is provided by the glue package via str_glue().3 You give it a single string that has a special feature: anything inside {} will be evaluated like it’s outside of the quotes:

df |> mutate(greeting = str_glue("Hi {name}!"))

 #> # A tibble: 4 × 2

 #> name greeting

 #> <chr> <glue>

 #> 1 Flora Hi Flora!

 #> 2 David Hi David!

 #> 3 Terra Hi Terra!

 #> 4 <NA> Hi NA!

As you can see, str_glue() currently converts missing values to the string "NA", unfortunately making it inconsistent with str_c().

You also might wonder what happens if you need to include a regular { or } in your

string. You’re on the right track if you guess you’ll need to escape it somehow. The

trick is that glue uses a slightly different escaping technique: instead of prefixing with

a special character like \, you double up the special characters:

df |> mutate(greeting = str_glue("{{Hi {name}!}}"))

 #> # A tibble: 4 × 2

3 If you’re not using stringr, you can also access it directly with glue::glue().

Creating Many Strings from Data | 247

 #> name greeting

 #> <chr> <glue>

 #> 1 Flora {Hi Flora!}

 #> 2 David {Hi David!}

 #> 3 Terra {Hi Terra!}

 #> 4 <NA> {Hi NA!}

str_flatten()

str_c() and str_glue() work well with mutate() because their output is the same length as their inputs. What if you want a function that works well with summarize(), i.e., something that always returns a single string? That’s the job of str_flatten():4 it takes a character vector and combines each element of the vector into a single string:

str_flatten(c("x", "y", "z"))

 #> [1] "xyz"

str_flatten(c("x", "y", "z"), ", ")

 #> [1] "x, y, z"

str_flatten(c("x", "y", "z"), ", ", last = ", and ")

 #> [1] "x, y, and z"

This makes it work well with summarize(): df <- tribble(

~ name, ~ fruit,

"Carmen", "banana",

"Carmen", "apple",

"Marvin", "nectarine",

"Terence", "cantaloupe",

"Terence", "papaya",

"Terence", "mandarin"

)

df |>

group_by(name) |>

summarize(fruits = str_flatten(fruit, ", "))

 #> # A tibble: 3 × 2

 #> name fruits

 #> <chr> <chr>

 #> 1 Carmen banana, apple

 #> 2 Marvin nectarine

 #> 3 Terence cantaloupe, papaya, mandarin

Exercises

1. Compare and contrast the results of paste0() with str_c() for the following

inputs:

str_c("hi ", NA)

str_c(letters[1:2], letters[1:3])

2. What’s the difference between paste() and paste0()? How can you re-create the equivalent of paste() with str_c()?

4 The base R equivalent is paste() used with the collapse argument.

248 | Chapter 14: Strings

3. Convert the following expressions from str_c() to str_glue() or vice versa:

a. str_c("The price of ", food, " is ", price)

b. str_glue("I'm {age} years old and live in {country}")

c. str_c("\\section{", title, "}")

Extracting Data from Strings

It’s common for multiple variables to be crammed together into a single string. In this

section, you’ll learn how to use four tidyr functions to extract them:

• df |> separate_longer_delim(col, delim)

• df |> separate_longer_position(col, width)

• df |> separate_wider_delim(col, delim, names)

• df |> separate_wider_position(col, widths)

If you look closely, you can see there’s a common pattern here: separate_, then

longer or wider, then _, then delim or position. That’s because these four functions

are composed of two simpler primitives:

• Just like with pivot_longer() and pivot_wider(), _longer functions make the input data frame longer by creating new rows, and _wider functions make the

input data frame wider by generating new columns.

• delim splits up a string with a delimiter like ", " or " "; position splits at

specified widths, like c(3, 5, 2).

We’ll return to the last member of this family, separate_wider_regex(), in Chap‐

ter 15. It’s the most flexible of the wider functions, but you need to know something about regular expressions before you can use it.

The following two sections will give you the basic idea behind these separate func‐

tions, first separating into rows (which is a little simpler) and then separating into

columns. We’ll finish off by discussing the tools that the wider functions give you to

diagnose problems.

Separating into Rows

Separating a string into rows tends to be most useful when the number of

components varies from row to row. The most common case is requiring sepa

rate_longer_delim() to split based on a delimiter: df1 <- tibble(x = c("a,b,c", "d,e", "f"))

df1 |>

Extracting Data from Strings | 249

 separate_longer_delim(x, delim = ",")

 #> # A tibble: 6 × 1

 #> x

 #> <chr>

 #> 1 a

 #> 2 b

 #> 3 c

 #> 4 d

 #> 5 e

 #> 6 f

It’s rarer to see separate_longer_position() in the wild, but some older datasets do use a compact format where each character is used to record a value:

df2 <- tibble(x = c("1211", "131", "21"))

df2 |>

separate_longer_position(x, width = 1)

 #> # A tibble: 9 × 1

 #> x

 #> <chr>

 #> 1 1

 #> 2 2

 #> 3 1

 #> 4 1

 #> 5 1

 #> 6 3

 #> # … with 3 more rows

Separating into Columns

Separating a string into columns tends to be most useful when there are a fixed

number of components in each string, and you want to spread them into columns.

They are slightly more complicated than their longer equivalents because you need

to name the columns. For example, in the following dataset, x is made up of a code,

an edition number, and a year, separated by ".". To use separate_wider_delim(), we supply the delimiter and the names in two arguments:

df3 <- tibble(x = c("a10.1.2022", "b10.2.2011", "e15.1.2015"))

df3 |>

separate_wider_delim(

x,

delim = ".",

names = c("code", "edition", "year")

)

 #> # A tibble: 3 × 3

 #> code edition year

 #> <chr> <chr> <chr>

 #> 1 a10 1 2022

 #> 2 b10 2 2011

 #> 3 e15 1 2015

If a specific piece is not useful, you can use an NA name to omit it from the results:

df3 |>

separate_wider_delim(

x,

250 | Chapter 14: Strings

 delim = ".",

names = c("code", NA, "year")

)

 #> # A tibble: 3 × 2

 #> code year

 #> <chr> <chr>

 #> 1 a10 2022

 #> 2 b10 2011

 #> 3 e15 2015

separate_wider_position() works a little differently because you typically want to specify the width of each column. So you give it a named integer vector, where the

name gives the name of the new column, and the value is the number of characters it

occupies. You can omit values from the output by not naming them:

df4 <- tibble(x = c("202215TX", "202122LA", "202325CA"))

df4 |>

separate_wider_position(

x,

widths = c(year = 4, age = 2, state = 2)

)

 #> # A tibble: 3 × 3

 #> year age state

 #> <chr> <chr> <chr>

 #> 1 2022 15 TX

 #> 2 2021 22 LA

 #> 3 2023 25 CA

Diagnosing Widening Problems

separate_wider_delim()5 requires a fixed and known set of columns. What happens if some of the rows don’t have the expected number of pieces? There are two possible

problems, too few or too many pieces, so separate_wider_delim() provides two arguments to help: too_few and too_many. Let’s first look at the too_few case with the

following sample dataset:

df <- tibble(x = c("1-1-1", "1-1-2", "1-3", "1-3-2", "1")) df |>

separate_wider_delim(

x,

delim = "-",

names = c("x", "y", "z")

)

 #> Error in `separate_wider_delim()`:

 #> ! Expected 3 pieces in each element of `x`.

 #> ! 2 values were too short.

 #> ℹ Usètoo_few = "debug"` to diagnose the problem.

 #> ℹ Usètoo_few = "align_start"/"align_end"` to silence this message.

5 The same principles apply to separate_wider_position() and separate_wider_regex().

Extracting Data from Strings | 251

You’ll notice that we get an error, but the error gives us some suggestions on how you might proceed. Let’s start by debugging the problem:

debug <- df |>

separate_wider_delim(

x,

delim = "-",

names = c("x", "y", "z"),

too_few = "debug"

)

 #> Warning: Debug mode activated: adding variables `x_ok`, `x_pieces`, and

 #> `x_remainder`.

debug

 #> # A tibble: 5 × 6

 #> x y z x_ok x_pieces x_remainder

 #> <chr> <chr> <chr> <lgl> <int> <chr>

 #> 1 1-1-1 1 1 TRUE 3 ""

 #> 2 1-1-2 1 2 TRUE 3 ""

 #> 3 1-3 3 <NA> FALSE 2 ""

 #> 4 1-3-2 3 2 TRUE 3 ""

 #> 5 1 <NA> <NA> FALSE 1 ""

When you use the debug mode, you get three extra columns added to the output:

x_ok, x_pieces, and x_remainder (if you separate a variable with a different name,

you’ll get a different prefix). Here, x_ok lets you quickly find the inputs that failed:

debug |> filter(!x_ok)

 #> # A tibble: 2 × 6

 #> x y z x_ok x_pieces x_remainder

 #> <chr> <chr> <chr> <lgl> <int> <chr>

 #> 1 1-3 3 <NA> FALSE 2 ""

 #> 2 1 <NA> <NA> FALSE 1 ""

x_pieces tells us how many pieces were found, compared to the expected three (the

length of names). x_remainder isn’t useful when there are too few pieces, but we’ll see

it again shortly.

Sometimes looking at this debugging information will reveal a problem with your

delimiter strategy or suggest that you need to do more preprocessing before separat‐

ing. In that case, fix the problem upstream and make sure to remove too_few =

"debug" to ensure that new problems become errors.

In other cases, you may want to fill in the missing pieces with NAs and move on. That’s

the job of too_few = "align_start" and too_few = "align_end", which allow you

to control where the NAs should go:

df |>

separate_wider_delim(

x,

delim = "-",

names = c("x", "y", "z"),

too_few = "align_start"

)

 #> # A tibble: 5 × 3

 #> x y z

252 | Chapter 14: Strings

 #> <chr> <chr> <chr>

 #> 1 1 1 1

 #> 2 1 1 2

 #> 3 1 3 <NA>

 #> 4 1 3 2

 #> 5 1 <NA> <NA>

The same principles apply if you have too many pieces:

df <- tibble(x = c("1-1-1", "1-1-2", "1-3-5-6", "1-3-2", "1-3-5-7-9")) df |>

separate_wider_delim(

x,

delim = "-",

names = c("x", "y", "z")

)

 #> Error in `separate_wider_delim()`:

 #> ! Expected 3 pieces in each element of `x`.

 #> ! 2 values were too long.

 #> ℹ Usètoo_many = "debug"` to diagnose the problem.

 #> ℹ Usètoo_many = "drop"/"merge"` to silence this message.

But now, when we debug the result, you can see the purpose of x_remainder:

debug <- df |>

separate_wider_delim(

x,

delim = "-",

names = c("x", "y", "z"),

too_many = "debug"

)

 #> Warning: Debug mode activated: adding variables `x_ok`, `x_pieces`, and

 #> `x_remainder`.

debug |> filter(!x_ok)

 #> # A tibble: 2 × 6

 #> x y z x_ok x_pieces x_remainder

 #> <chr> <chr> <chr> <lgl> <int> <chr>

 #> 1 1-3-5-6 3 5 FALSE 4 -6

 #> 2 1-3-5-7-9 3 5 FALSE 5 -7-9

You have a slightly different set of options for handling too many pieces: you can

either silently “drop” any additional pieces or “merge” them all into the final column:

df |>

separate_wider_delim(

x,

delim = "-",

names = c("x", "y", "z"),

too_many = "drop"

)

 #> # A tibble: 5 × 3

 #> x y z

 #> <chr> <chr> <chr>

 #> 1 1 1 1

 #> 2 1 1 2

 #> 3 1 3 5

 #> 4 1 3 2

 #> 5 1 3 5

Extracting Data from Strings | 253

df |>

separate_wider_delim(

x,

delim = "-",

names = c("x", "y", "z"),

too_many = "merge"

)

 #> # A tibble: 5 × 3

 #> x y z

 #> <chr> <chr> <chr>

 #> 1 1 1 1

 #> 2 1 1 2

 #> 3 1 3 5-6

 #> 4 1 3 2

 #> 5 1 3 5-7-9

Letters

In this section, we’ll introduce you to functions that allow you to work with the

individual letters within a string. You’ll learn how to find the length of a string,

extract substrings, and handle long strings in plots and tables.

Length

str_length() tells you the number of letters in the string: str_length(c("a", "R for data science", NA))

 #> [1] 1 18 NA

You could use this with count() to find the distribution of lengths of US baby names

and then with filter() to look at the longest names, which happen to have 15

letters:6

babynames |>

count(length = str_length(name), wt = n)

 #> # A tibble: 14 × 2

 #> length n

 #> <int> <int>

 #> 1 2 338150

 #> 2 3 8589596

 #> 3 4 48506739

 #> 4 5 87011607

 #> 5 6 90749404

 #> 6 7 72120767

 #> # … with 8 more rows

babynames |>

filter(str_length(name) == 15) |>

count(name, wt = n, sort = TRUE)

 #> # A tibble: 34 × 2

6 Looking at these entries, we’d guess that the babynames data drops spaces or hyphens and truncates after 15

letters.

254 | Chapter 14: Strings

 #> name n

 #> <chr> <int>

 #> 1 Franciscojavier 123

 #> 2 Christopherjohn 118

 #> 3 Johnchristopher 118

 #> 4 Christopherjame 108

 #> 5 Christophermich 52

 #> 6 Ryanchristopher 45

 #> # … with 28 more rows

Subsetting

You can extract parts of a string using str_sub(string, start, end), where start

and end are the positions where the substring should start and end. The start and

end arguments are inclusive, so the length of the returned string will be end - start

+ 1:

x <- c("Apple", "Banana", "Pear")

str_sub(x, 1, 3)

 #> [1] "App" "Ban" "Pea"

You can use negative values to count back from the end of the string: -1 is the last

character, -2 is the second to last character, etc.

str_sub(x, -3, -1)

 #> [1] "ple" "ana" "ear"

Note that str_sub() won’t fail if the string is too short: it will just return as much as possible:

str_sub("a", 1, 5)

 #> [1] "a"

We could use str_sub() with mutate() to find the first and last letters of each name:

babynames |>

mutate(

first = str_sub(name, 1, 1),

last = str_sub(name, -1, -1)

)

 #> # A tibble: 1,924,665 × 7

 #> year sex name n prop first last

 #> <dbl> <chr> <chr> <int> <dbl> <chr> <chr>

 #> 1 1880 F Mary 7065 0.0724 M y

 #> 2 1880 F Anna 2604 0.0267 A a

 #> 3 1880 F Emma 2003 0.0205 E a

 #> 4 1880 F Elizabeth 1939 0.0199 E h

 #> 5 1880 F Minnie 1746 0.0179 M e

 #> 6 1880 F Margaret 1578 0.0162 M t

 #> # … with 1,924,659 more rows

Exercises

1. When computing the distribution of the length of baby names, why did we use

wt = n?

Letters | 255

2. Use str_length() and str_sub() to extract the middle letter from each baby name. What will you do if the string has an even number of characters?

3. Are there any major trends in the length of baby names over time? What about

the popularity of first and last letters?

Non-English Text

So far, we’ve focused on English language text, which is particularly easy to work

with for two reasons. First, the English alphabet is relatively simple: there are just

26 letters. Second (and maybe more important), the computing infrastructure we use

today was predominantly designed by English speakers. Unfortunately, we don’t have

room for a full treatment of non-English languages. Still, we wanted to draw your

attention to some of the biggest challenges you might encounter: encoding, letter

variations, and locale-dependent functions.

Encoding

When working with non-English text, the first challenge is often the encoding. To

understand what’s going on, we need to dive into how computers represent strings. In

R, we can get at the underlying representation of a string using charToRaw(): charToRaw("Hadley")

 #> [1] 48 61 64 6c 65 79

Each of these six hexadecimal numbers represents one letter: 48 is H, 61 is a, and

so on. The mapping from hexadecimal number to character is the encoding, and in

this case, the encoding is called ASCII. ASCII does a great job of representing English

characters because it’s the American Standard Code for Information Interchange.

Things aren’t so easy for languages other than English. In the early days of comput‐

ing, there were many competing standards for encoding non-English characters. For

example, there were two different encodings for Europe: Latin1 (aka ISO-8859-1)

was used for Western European languages, and Latin2 (aka ISO-8859-2) was used

for Central European languages. In Latin1, the byte b1 is ±, but in Latin2, it’s ą!

Fortunately, today there is one standard that is supported almost everywhere: UTF-8.

UTF-8 can encode just about every character used by humans today and many extra

symbols like emojis.

readr uses UTF-8 everywhere. This is a good default but will fail for data produced

by older systems that don’t use UTF-8. If this happens, your strings will look weird

when you print them. Sometimes just one or two characters might be messed up;

256 | Chapter 14: Strings

other times, you’ll get complete gibberish. For example, here are two inline CSVs

with unusual encodings:7

x1 <- "text\nEl Ni\xf1o was particularly bad this year"

read_csv(x1)

 #> # A tibble: 1 × 1

 #> text

 #> <chr>

 #> 1 "El Ni\xf1o was particularly bad this year"

x2 <- "text\n\x82\xb1\x82\xf1\x82\xc9\x82\xbf\x82\xcd"

read_csv(x2)

 #> # A tibble: 1 × 1

 #> text

 #> <chr>

 #> 1 "\x82\xb1\x82\xf1\x82\xc9\x82\xbf\x82\xcd"

To read these correctly, you specify the encoding via the locale argument:

read_csv(x1, locale = locale(encoding = "Latin1"))

 #> # A tibble: 1 × 1

 #> text

 #> <chr>

 #> 1 El Niño was particularly bad this year

read_csv(x2, locale = locale(encoding = "Shift-JIS"))

 #> # A tibble: 1 × 1

 #> text

 #> <chr>

 #> 1 こんにちは

How do you find the correct encoding? If you’re lucky, it’ll be included somewhere

in the data documentation. Unfortunately, that’s rarely the case, so readr provides

guess_encoding() to help you figure it out. It’s not foolproof and works better when you have lots of text (unlike here), but it’s a reasonable place to start. Expect to try a

few different encodings before you find the right one.

Encodings are a rich and complex topic; we’ve only scratched the surface here. If

you’d like to learn more, we recommend reading the detailed explanation.

Letter Variations

Working in languages with accents poses a significant challenge when determining

the position of letters (e.g., with str_length() and str_sub()) as accented letters might be encoded as a single individual character (e.g., ü) or as two characters by

combining an unaccented letter (e.g., u) with a diacritic mark (e.g., ¨). For example,

this code shows two ways of representing ü that look identical:

7 Here I’m using the special \x to encode binary data directly into a string.

Non-English Text | 257

u <- c("\u00fc", "u\u0308")

str_view(u)

 #> [1] │ ü

 #> [2] │ ü

But both strings differ in length, and their first characters are different:

str_length(u)

 #> [1] 1 2

str_sub(u, 1, 1)

 #> [1] "ü" "u"

Finally, note that a comparison of these strings with == interprets these strings as

different, while the handy str_equal() function in stringr recognizes that both have the same appearance:

u[[1]] == u[[2]]

 #> [1] FALSE

str_equal(u[[1]], u[[2]])

 #> [1] TRUE

Locale-Dependent Functions

Finally, there are a handful of stringr functions whose behavior depends on your

 locale. A locale is similar to a language but includes an optional region specifier

to handle regional variations within a language. A locale is specified by a lower‐

case language abbreviation, optionally followed by a _ and an uppercase region

identifier. For example, “en” is English, “en_GB” is British English, and “en_US”

is American English. If you don’t already know the code for your language, Wikipe‐

dia has a good list, and you can see which are supported in stringr by looking at

stringi::stri_locale_list().

Base R string functions automatically use the locale set by your operating system.

This means that base R string functions do what you expect for your language, but

your code might work differently if you share it with someone who lives in a different

country. To avoid this problem, stringr defaults to English rules by using the “en”

locale and requires you to specify the locale argument to override it. Fortunately,

there are two sets of functions where the locale really matters: changing case and

sorting.

The rules for changing cases differ among languages. For example, Turkish has

two i’s: with and without a dot. Since they’re two distinct letters, they’re capitalized

differently:

str_to_upper(c("i", "ı"))

 #> [1] "I" "I"

str_to_upper(c("i", "ı"), locale = "tr")

 #> [1] "İ" "I"

258 | Chapter 14: Strings

Sorting strings depends on the order of the alphabet, and the order of the alphabet

is not the same in every language! 8 Here’s an example: in Czech, “ch” is a compound letter that appears after h in the alphabet.

str_sort(c("a", "c", "ch", "h", "z"))

 #> [1] "a" "c" "ch" "h" "z"

str_sort(c("a", "c", "ch", "h", "z"), locale = "cs")

 #> [1] "a" "c" "h" "ch" "z"

This also comes up when sorting strings with dplyr::arrange(), which is why it also has a locale argument.

Summary

In this chapter, you learned about some of the power of the stringr package such as

how to create, combine, and extract strings, and about some of the challenges you

might face with non-English strings. Now it’s time to learn one of the most important

and powerful tools for working with strings: regular expressions. Regular expressions

are a concise but expressive language for describing patterns within strings and are

the topic of the next chapter.

8 Sorting in languages that don’t have an alphabet, like Chinese, is more complicated still.

Summary | 259

CHAPTER 15

Regular Expressions

Introduction

In Chapter 14, you learned a whole bunch of useful functions for working with

strings. This chapter will focus on functions that use regular expressions, a concise and

powerful language for describing patterns within strings. The term regular expression

is a bit of a mouthful, so most people abbreviate it to regex1 or regexp.

The chapter starts with the basics of regular expressions and the most useful stringr

functions for data analysis. We’ll then expand your knowledge of patterns and

cover seven important new topics (escaping, anchoring, character classes, shorthand

classes, quantifiers, precedence, and grouping). Next, we’ll talk about some of the

other types of patterns that stringr functions can work with and the various “flags”

that allow you to tweak the operation of regular expressions. We’ll finish with a

survey of other places in the tidyverse and base R where you might use regexes.

Prerequisites

In this chapter, we’ll use regular expression functions from stringr and tidyr, both

core members of the tidyverse, as well as data from the babynames package:

library(tidyverse)

library(babynames)

Through this chapter, we’ll use a mix of simple inline examples so you can get the

basic idea, the baby names data, and three character vectors from stringr:

• fruit contains the names of 80 fruits.

1 You can pronounce it with either a hard-g (“reg-x”) or a soft-g (“rej-x”).

261

• words contains 980 common English words.

• sentences contains 720 short sentences.

Pattern Basics

We’ll use str_view() to learn how regex patterns work. We used str_view() in the previous chapter to better understand a string versus its printed representation,

and now we’ll use it with its second argument, a regular expression. When this is

supplied, str_view() will show only the elements of the string vector that match, surrounding each match with <> and, where possible, highlighting the match in blue.

The simplest patterns consist of letters and numbers that match those characters

exactly:

str_view(fruit, "berry")

 #> [6] │ bil<berry>

 #> [7] │ black<berry>

 #> [10] │ blue<berry>

 #> [11] │ boysen<berry>

 #> [19] │ cloud<berry>

 #> [21] │ cran<berry>

 #> ... and 8 more

Letters and numbers match exactly and are called literal characters. Most punctuation

characters, like ., +, *, [,], and ?, have special meanings2 and are called metacharacters. For example, . will match any character, 3 so "a." will match any string that contains an “a” followed by another character:

str_view(c("a", "ab", "ae", "bd", "ea", "eab"), "a.")

 #> [2] │ <ab>

 #> [3] │ <ae>

 #> [6] │ e<ab>

Or we could find all the fruits that contain an “a,” followed by three letters, followed

by an “e”:

str_view(fruit, "a...e")

 #> [1] │ <apple>

 #> [7] │ bl<ackbe>rry

 #> [48] │ mand<arine>

 #> [51] │ nect<arine>

 #> [62] │ pine<apple>

 #> [64] │ pomegr<anate>

 #> ... and 2 more

 Quantifiers control how many times a pattern can match:

2 You’ll learn how to escape these special meanings in “Escaping” on page 269.

3 Well, any character apart from \n.

262 | Chapter 15: Regular Expressions

• ? makes a pattern optional (i.e., it matches 0 or 1 times).

• + lets a pattern repeat (i.e., it matches at least once).

• * lets a pattern be optional or repeat (i.e., it matches any number of times,

including 0).

 # ab? matches an "a", optionally followed by a "b".

str_view(c("a", "ab", "abb"), "ab?")

 #> [1] │ <a>

 #> [2] │ <ab>

 #> [3] │ <ab>b

 # ab+ matches an "a", followed by at least one "b".

str_view(c("a", "ab", "abb"), "ab+")

 #> [2] │ <ab>

 #> [3] │ <abb>

 # ab* matches an "a", followed by any number of "b"s.

str_view(c("a", "ab", "abb"), "ab*")

 #> [1] │ <a>

 #> [2] │ <ab>

 #> [3] │ <abb>

 Character classes are defined by [] and let you match a set of characters; e.g., [abcd]

matches “a”, “b”, “c”, or “d.” You can also invert the match by starting with ^: [^abcd]

matches anything except “a”, “b”, “c”, or “d.” We can use this idea to find the words

containing an “x” surrounded by vowels or a “y” surrounded by consonants:

str_view(words, "[aeiou]x[aeiou]")

 #> [284] │ <exa>ct

 #> [285] │ <exa>mple

 #> [288] │ <exe>rcise

 #> [289] │ <exi>st

str_view(words, "[^aeiou]y[^aeiou]")

 #> [836] │ <sys>tem

 #> [901] │ <typ>e

You can use alternation, |, to pick between one or more alternative patterns. For

example, the following patterns look for fruits containing “apple,” “melon,” or “nut” or

a repeated vowel:

str_view(fruit, "apple|melon|nut")

 #> [1] │ <apple>

 #> [13] │ canary <melon>

 #> [20] │ coco<nut>

 #> [52] │ <nut>

 #> [62] │ pine<apple>

 #> [72] │ rock <melon>

 #> ... and 1 more

str_view(fruit, "aa|ee|ii|oo|uu")

 #> [9] │ bl<oo>d orange

 #> [33] │ g<oo>seberry

 #> [47] │ lych<ee>

 #> [66] │ purple mangost<ee>n

Pattern Basics | 263

Regular expressions are very compact and use a lot of punctuation characters, so

they can seem overwhelming and hard to read at first. Don’t worry: you’ll get better

with practice, and simple patterns will soon become second nature. Let’s kick off that

process by practicing with some useful stringr functions.

Key Functions

Now that you understand the basics of regular expressions, let’s use them with some

stringr and tidyr functions. In the following section, you’ll learn how to detect the

presence or absence of a match, how to count the number of matches, how to replace

a match with fixed text, and how to extract text using a pattern.

Detect Matches

str_detect() returns a logical vector that is TRUE if the pattern matches an element of the character vector and FALSE otherwise:

str_detect(c("a", "b", "c"), "[aeiou]")

 #> [1] TRUE FALSE FALSE

Since str_detect() returns a logical vector of the same length as the initial vector, it pairs well with filter(). For example, this code finds all the most popular names containing a lowercase “x”:

babynames |>

filter(str_detect(name, "x")) |>

count(name, wt = n, sort = TRUE)

 #> # A tibble: 974 × 2

 #> name n

 #> <chr> <int>

 #> 1 Alexander 665492

 #> 2 Alexis 399551

 #> 3 Alex 278705

 #> 4 Alexandra 232223

 #> 5 Max 148787

 #> 6 Alexa 123032

 #> # … with 968 more rows

We can also use str_detect() with summarize() by pairing it with sum() or mean(): sum(str_detect(x, pattern)) tells you the number of observations that match, and

mean(str_detect(x, pattern)) tells you the proportion that match. For example,

the following snippet computes and visualizes the proportion of baby names4 that

contain “x,” broken down by year. It looks like they’ve radically increased in popular‐

ity lately!

4 This gives us the proportion of names that contain an “x”; if you wanted the proportion of babies with a name containing an x, you’d need to perform a weighted mean.

264 | Chapter 15: Regular Expressions

[image: Image 146]

babynames |>

group_by(year) |>

summarize(prop_x = mean(str_detect(name, "x"))) |>

ggplot(aes(x = year, y = prop_x)) +

geom_line()

There are two functions that are closely related to str_detect(): str_subset() and

str_which(). str_subset() returns a character vector containing only the strings that match. str_which() returns an integer vector giving the positions of the strings that match.

Count Matches

The next step up in complexity from str_detect() is str_count(): rather than a true or false, it tells you how many matches there are in each string.

x <- c("apple", "banana", "pear")

str_count(x, "p")

 #> [1] 2 0 1

Note that each match starts at the end of the previous match; i.e., regex matches never

overlap. For example, in "abababa", how many times will the pattern "aba" match?

Regular expressions say two, not three:

str_count("abababa", "aba")

 #> [1] 2

str_view("abababa", "aba")

 #> [1] │ <aba>b<aba>

Key Functions | 265

It’s natural to use str_count() with mutate(). The following example uses

str_count() with character classes to count the number of vowels and consonants in each name:

babynames |>

count(name) |>

mutate(

vowels = str_count(name, "[aeiou]"),

consonants = str_count(name, "[^aeiou]")

)

 #> # A tibble: 97,310 × 4

 #> name n vowels consonants

 #> <chr> <int> <int> <int>

 #> 1 Aaban 10 2 3

 #> 2 Aabha 5 2 3

 #> 3 Aabid 2 2 3

 #> 4 Aabir 1 2 3

 #> 5 Aabriella 5 4 5

 #> 6 Aada 1 2 2

 #> # … with 97,304 more rows

If you look closely, you’ll notice that there’s something off with our calculations:

“Aaban” contains three a’s, but our summary reports only two vowels. That’s because

regular expressions are case sensitive. There are three ways we could fix this:

• Add the uppercase vowels to the character class: str_count(name,

"[aeiouAEIOU]").

• Tell the regular expression to ignore case: str_count(name, regex("[aeiou]",

ignore_case = TRUE)). We’ll talk about more in “Regex Flags” on page 275.

• Use str_to_lower() to convert the names to lowercase: str_count(str_to_lower(name), "[aeiou]").

This variety of approaches is pretty typical when working with strings—there are

often multiple ways to reach your goal, either by making your pattern more compli‐

cated or by doing some preprocessing on your string. If you get stuck trying one

approach, it can often be useful to switch gears and tackle the problem from a

different perspective.

Since we’re applying two functions to the name, I think it’s easier to transform it first:

babynames |>

count(name) |>

mutate(

name = str_to_lower(name),

vowels = str_count(name, "[aeiou]"),

consonants = str_count(name, "[^aeiou]")

)

 #> # A tibble: 97,310 × 4

 #> name n vowels consonants

 #> <chr> <int> <int> <int>

 #> 1 aaban 10 3 2

 #> 2 aabha 5 3 2

266 | Chapter 15: Regular Expressions

 #> 3 aabid 2 3 2

 #> 4 aabir 1 3 2

 #> 5 aabriella 5 5 4

 #> 6 aada 1 3 1

 #> # … with 97,304 more rows

Replace Values

As well as detecting and counting matches, we can also modify them with

str_replace() and str_replace_all(). str_replace() replaces the first match, and as the name suggests, str_replace_all() replaces all matches: x <- c("apple", "pear", "banana")

str_replace_all(x, "[aeiou]", "-")

 #> [1] "-ppl-" "p--r" "b-n-n-"

str_remove() and str_remove_all() are handy shortcuts for str_replace(x, pat tern, ""):

x <- c("apple", "pear", "banana")

str_remove_all(x, "[aeiou]")

 #> [1] "ppl" "pr" "bnn"

These functions are naturally paired with mutate() when doing data cleaning, and you’ll often apply them repeatedly to peel off layers of inconsistent formatting.

Extract Variables

The last function we’ll discuss uses regular expressions to extract data out of one

column into one or more new columns: separate_wider_regex(). It’s a peer of

the separate_wider_position() and separate_wider_delim() functions that you learned about in “Separating into Columns” on page 250. These functions live in tidyr

because they operate on (columns of) data frames, rather than individual vectors.

Let’s create a simple dataset to show how it works. Here we have some data derived

from babynames where we have the name, gender, and age of a bunch of people in a

rather weird format:5

df <- tribble(

~str,

"<Sheryl>-F_34",

"<Kisha>-F_45",

"<Brandon>-N_33",

"<Sharon>-F_38",

"<Penny>-F_58",

"<Justin>-M_41",

"<Patricia>-F_84",

)

5 We wish we could reassure you that you’d never see something this weird in real life, but unfortunately over the course of your career you’re likely to see much weirder!

Key Functions | 267

To extract this data using separate_wider_regex() we just need to construct a sequence of regular expressions that match each piece. If we want the contents of that

piece to appear in the output, we give it a name:

df |>

separate_wider_regex(

str,

patterns = c(

"<",

name = "[A-Za-z]+",

">-",

gender = ".", "_",

age = "[0-9]+"

)

)

 #> # A tibble: 7 × 3

 #> name gender age

 #> <chr> <chr> <chr>

 #> 1 Sheryl F 34

 #> 2 Kisha F 45

 #> 3 Brandon N 33

 #> 4 Sharon F 38

 #> 5 Penny F 58

 #> 6 Justin M 41

 #> # … with 1 more row

If the match fails, you can use too_short = "debug" to figure out what went wrong,

just like separate_wider_delim() and separate_wider_position().

Exercises

1. What baby name has the most vowels? What name has the highest proportion of

vowels? (Hint: What is the denominator?)

2. Replace all forward slashes in "a/b/c/d/e" with backslashes. What happens

if you attempt to undo the transformation by replacing all backslashes with

forward slashes? (We’ll discuss the problem very soon.)

3. Implement a simple version of str_to_lower() using str_replace_all().

4. Create a regular expression that will match telephone numbers as commonly

written in your country.

Pattern Details

Now that you understand the basics of the pattern language and how to use it with

some stringr and tidyr functions, it’s time to dig into more of the details. First, we’ll

start with escaping, which allows you to match metacharacters that would otherwise

be treated specially. Next, you’ll learn about anchors, which allow you to match the

start or end of the string. Then, you’ll more learn about character classes and their

shortcuts, which allow you to match any character from a set. Next, you’ll learn

268 | Chapter 15: Regular Expressions

the final details of quantifiers, which control how many times a pattern can match.

Then, we have to cover the important (but complex) topic of operator precedence and

parentheses. And we’ll finish off with some details of grouping components of the

pattern.

The terms we use here are the technical names for each component. They’re not

always the most evocative of their purpose, but it’s helpful to know the correct terms

if you later want to google for more details.

Escaping

To match a literal ., you need an escape, which tells the regular expression to match

metacharacters6 literally. Like strings, regexps use the backslash for escaping. So, to match a ., you need the regexp \.. Unfortunately, this creates a problem. We use

strings to represent regular expressions, and \ is also used as an escape symbol in

strings. So to create the regular expression \., we need the string "\\.", as the

following example shows:

 # To create the regular expression \., we need to use \\.

dot <- "\\."

 # But the expression itself only contains one \

str_view(dot)

 #> [1] │ \.

 # And this tells R to look for an explicit .

str_view(c("abc", "a.c", "bef"), "a\\.c")

 #> [2] │ <a.c>

In this book, we’ll usually write regular expression without quotes, like \.. If we need

to emphasize what you’ll actually type, we’ll surround it with quotes and add extra

escapes, like "\\.".

If \ is used as an escape character in regular expressions, how do you match a literal

\? Well, you need to escape it, creating the regular expression \\. To create that

regular expression, you need to use a string, which also needs to escape \. That means

to match a literal \ you need to write "\\\\"—you need four backslashes to match

one!

x <- "a\\b"

str_view(x)

 #> [1] │ a\b

str_view(x, "\\\\")

 #> [1] │ a<\>b

Alternatively, you might find it easier to use the raw strings you learned about in

“Raw Strings” on page 245. That lets you avoid one layer of escaping:

6 The complete set of metacharacters is .^$\|*+?{}[]().

Pattern Details | 269

str_view(x, r"{\\}")

 #> [1] │ a<\>b

If you’re trying to match a literal ., $, |, *, +, ?, {, }, (,), there’s an alternative to using

a backslash escape. You can use a character class: [.], [$], [|], ... all match the literal

values:

str_view(c("abc", "a.c", "a*c", "a c"), "a[.]c")

 #> [2] │ <a.c>

str_view(c("abc", "a.c", "a*c", "a c"), ".[*]c")

 #> [3] │ <a*c>

Anchors

By default, regular expressions will match any part of a string. If you want to match at

the start or end you need to anchor the regular expression using ^ to match the start

or $ to match the end:

str_view(fruit, "^a")

 #> [1] │ <a>pple

 #> [2] │ <a>pricot

 #> [3] │ <a>vocado

str_view(fruit, "a$")

 #> [4] │ banan<a>

 #> [15] │ cherimoy<a>

 #> [30] │ feijo<a>

 #> [36] │ guav<a>

 #> [56] │ papay<a>

 #> [74] │ satsum<a>

It’s tempting to think that $ should match the start of a string, because that’s how we

write dollar amounts, but that’s not what regular expressions want.

To force a regular expression to match only the full string, anchor it with both ^

and $:

str_view(fruit, "apple")

 #> [1] │ <apple>

 #> [62] │ pine<apple>

str_view(fruit, "^apple$")

 #> [1] │ <apple>

You can also match the boundary between words (i.e., the start or end of a word)

with \b. This can be particularly useful when using RStudio’s find and replace tool.

For example, to find all uses of sum(), you can search for \bsum\b to avoid matching summarize, summary, rowsum, and so on:

x <- c("summary(x)", "summarize(df)", "rowsum(x)", "sum(x)") str_view(x, "sum")

 #> [1] │ <sum>mary(x)

 #> [2] │ <sum>marize(df)

 #> [3] │ row<sum>(x)

 #> [4] │ <sum>(x)

str_view(x, "\\bsum\\b")

 #> [4] │ <sum>(x)

270 | Chapter 15: Regular Expressions

When used alone, anchors will produce a zero-width match:

str_view("abc", c("$", "^", "\\b"))

 #> [1] │ abc<>

 #> [2] │ <>abc

 #> [3] │ <>abc<>

This helps you understand what happens when you replace a standalone anchor:

str_replace_all("abc", c("$", "^", "\\b"), "--")

 #> [1] "abc--" "--abc" "--abc--"

Character Classes

A character class, or character set, allows you to match any character in a set. As we

discussed, you can construct your own sets with [], where [abc] matches “a,” “b,” or

“c” and [^abc] matches any character except “a,” “b,” or “c.” Apart from ^ there are

two other characters that have special meaning inside []:

• - defines a range; e.g., [a-z] matches any lowercase letter, and [0-9] matches

any number.

• \ escapes special characters, so [\^\-\]] matches ^, -, or].

Here are a few examples:

x <- "abcd ABCD 12345 -!@#%."

str_view(x, "[abc]+")

 #> [1] │ <abc>d ABCD 12345 -!@#%.

str_view(x, "[a-z]+")

 #> [1] │ <abcd> ABCD 12345 -!@#%.

str_view(x, "[^a-z0-9]+")

 #> [1] │ abcd< ABCD >12345< -!@#%.>

 # You need an escape to match characters that are otherwise

 # special inside of []

str_view("a-b-c", "[a-c]")

 #> [1] │ <a>--<c>

str_view("a-b-c", "[a\\-c]")

 #> [1] │ <a><->b<-><c>

Some character classes are used so commonly that they get their own shortcut. You’ve

already seen ., which matches any character apart from a newline. There are three

other particularly useful pairs:7

• \d matches any digit.

\D matches anything that isn’t a digit.

7 Remember, to create a regular expression containing \d or \s, you’ll need to escape the \ for the string, so you’ll type "\\d" or "\\s".

Pattern Details | 271

• \s matches any whitespace (e.g., space, tab, newline).

\S matches anything that isn’t whitespace.

• \w matches any “word” character, i.e., letters and numbers.

\W matches any “nonword” character.

The following code demonstrates the six shortcuts with a selection of letters, num‐

bers, and punctuation characters:

x <- "abcd ABCD 12345 -!@#%."

str_view(x, "\\d+")

 #> [1] │ abcd ABCD <12345> -!@#%.

str_view(x, "\\D+")

 #> [1] │ <abcd ABCD >12345< -!@#%.>

str_view(x, "\\s+")

 #> [1] │ abcd< >ABCD< >12345< >-!@#%.

str_view(x, "\\S+")

 #> [1] │ <abcd> <ABCD> <12345> <-!@#%.>

str_view(x, "\\w+")

 #> [1] │ <abcd> <ABCD> <12345> -!@#%.

str_view(x, "\\W+")

 #> [1] │ abcd< >ABCD< >12345< -!@#%.>

Quantifiers

 Quantifiers control how many times a pattern matches. In “Pattern Basics” on page

262 you learned about ? (0 or 1 matches), + (1 or more matches), and * (0 or more

matches). For example, colou?r will match American or British spelling, \d+ will

match one or more digits, and \s? will optionally match a single item of whitespace.

You can also specify the number of matches precisely with {}:

• {n} matches exactly n times.

• {n,} matches at least n times.

• {n,m} matches between n and m times.

Operator Precedence and Parentheses

What does ab+ match? Does it match “a” followed by one or more “b”s, or does it

match “ab” repeated any number of times? What does ^a|b$ match? Does it match

the complete string a or the complete string b, or does it match a string starting with a

or a string ending with b?

The answer to these questions is determined by operator precedence, similar to the

PEMDAS or BEDMAS rules you might have learned in school. You know that a + b

* c is equivalent to a + (b * c) not (a + b) * c because * has higher precedence

and + has lower precedence: you compute * before +.

272 | Chapter 15: Regular Expressions

Similarly, regular expressions have their own precedence rules: quantifiers have high

precedence, and alternation has low precedence, which means that ab+ is equivalent

to a(b+), and ^a|b$ is equivalent to (^a)|(b$). Just like with algebra, you can

use parentheses to override the usual order. But unlike algebra, you’re unlikely to

remember the precedence rules for regexes, so feel free to use parentheses liberally.

Grouping and Capturing

As well as overriding operator precedence, parentheses have another important effect:

they create capturing groups that allow you to use subcomponents of the match.

The first way to use a capturing group is to refer to it within a match with a back

 reference: \1 refers to the match contained in the first parenthesis, \2 in the second

parenthesis, and so on. For example, the following pattern finds all fruits that have a

repeated pair of letters:

str_view(fruit, "(..)\\1")

 #> [4] │ b<anan>a

 #> [20] │ <coco>nut

 #> [22] │ <cucu>mber

 #> [41] │ <juju>be

 #> [56] │ <papa>ya

 #> [73] │ s<alal> berry

This one finds all words that start and end with the same pair of letters:

str_view(words, "^(..).*\\1$")

 #> [152] │ <church>

 #> [217] │ <decide>

 #> [617] │ <photograph>

 #> [699] │ <require>

 #> [739] │ <sense>

You can also use back references in str_replace(). For example, this code switches the order of the second and third words in sentences:

sentences |>

str_replace("(\\w+) (\\w+) (\\w+)", "\\1 \\3 \\2") |>

str_view()

 #> [1] │ The canoe birch slid on the smooth planks.

 #> [2] │ Glue sheet the to the dark blue background.

 #> [3] │ It's to easy tell the depth of a well.

 #> [4] │ These a days chicken leg is a rare dish.

 #> [5] │ Rice often is served in round bowls.

 #> [6] │ The of juice lemons makes fine punch.

 #> ... and 714 more

If you want to extract the matches for each group, you can use str_match(). But

str_match() returns a matrix, so it’s not particularly easy to work with:8

8 Mostly because we never discuss matrices in this book!

Pattern Details | 273

sentences |>

str_match("the (\\w+) (\\w+)") |>

head()

 #> [,1] [,2] [,3]

 #> [1,] "the smooth planks" "smooth" "planks"

 #> [2,] "the sheet to" "sheet" "to"

 #> [3,] "the depth of" "depth" "of"

 #> [4,] NA NA NA

 #> [5,] NA NA NA

 #> [6,] NA NA NA

You could convert to a tibble and name the columns:

sentences |>

str_match("the (\\w+) (\\w+)") |>

as_tibble(.name_repair = "minimal") |>

set_names("match", "word1", "word2")

 #> # A tibble: 720 × 3

 #> match word1 word2

 #> <chr> <chr> <chr>

 #> 1 the smooth planks smooth planks

 #> 2 the sheet to sheet to

 #> 3 the depth of depth of

 #> 4 <NA> <NA> <NA>

 #> 5 <NA> <NA> <NA>

 #> 6 <NA> <NA> <NA>

 #> # … with 714 more rows

But then you’ve basically re-created your own version of separate_wider_regex().

Indeed, behind the scenes, separate_wider_regex() converts your vector of patterns to a single regex that uses grouping to capture the named components.

Occasionally, you’ll want to use parentheses without creating matching groups. You

can create a noncapturing group with (?:).

x <- c("a gray cat", "a grey dog")

str_match(x, "gr(e|a)y")

 #> [,1] [,2]

 #> [1,] "gray" "a"

 #> [2,] "grey" "e"

str_match(x, "gr(?:e|a)y")

 #> [,1]

 #> [1,] "gray"

 #> [2,] "grey"

Exercises

1. How would you match the literal string "'\? How about "$^$"?

2. Explain why each of these patterns don’t match a \: "\", "\\", "\\\".

3. Given the corpus of common words in stringr::words, create regular expressions that find all words that:

a. Start with “y.”

b. Don’t start with “y.”

274 | Chapter 15: Regular Expressions

c. End with “x.”

d. Are exactly three letters long. (Don’t cheat by using str_length()!) e. Have seven letters or more.

f. Contain a vowel-consonant pair.

g. Contain at least two vowel-consonant pairs in a row.

h. Only consist of repeated vowel-consonant pairs.

4. Create 11 regular expressions that match the British or American spellings

for each of the following words: airplane/aeroplane, aluminum/aluminium,

analog/analogue, ass/arse, center/centre, defense/defence, donut/doughnut, gray/

grey, modeling/modelling, skeptic/sceptic, summarize/summarise. Try to make

the shortest possible regex!

5. Switch the first and last letters in words. Which of those strings are still words?

6. Describe in words what these regular expressions match (read carefully to see if

each entry is a regular expression or a string that defines a regular expression):

a. ^.*$

b. "\\{.+\\}"

c. \d{4}-\d{2}-\d{2}

d. "\\\\{4}"

e. \..\..\..

f. (.)\1\1

g. "(..)\\1"

7. Solve the beginner regexp crosswords.

Pattern Control

It’s possible to exercise extra control over the details of the match by using a pattern

object instead of just a string. This allows you to control the so-called regex flags and

match various types of fixed strings, as described next.

Regex Flags

A number of settings can be used to control the details of the regexp. These settings

are often called flags in other programming languages. In stringr, you can use them

by wrapping the pattern in a call to regex(). The most useful flag is probably

ignore_case = TRUE because it allows characters to match either their uppercase or

lowercase forms:

Pattern Control | 275

bananas <- c("banana", "Banana", "BANANA")

str_view(bananas, "banana")

 #> [1] │ <banana>

str_view(bananas, regex("banana", ignore_case = TRUE))

 #> [1] │ <banana>

 #> [2] │ <Banana>

 #> [3] │ <BANANA>

If you’re doing a lot of work with multiline strings (i.e., strings that contain \n),

dotall and multiline may also be useful:

• dotall = TRUE lets . match everything, including \n:

x <- "Line 1\nLine 2\nLine 3"

str_view(x, ".Line")

str_view(x, regex(".Line", dotall = TRUE))

 #> [1] │ Line 1<

 #> │ Line> 2<

 #> │ Line> 3

• multiline = TRUE makes ^ and $ match the start and end of each line rather

than the start and end of the complete string:

x <- "Line 1\nLine 2\nLine 3"

str_view(x, "^Line")

 #> [1] │ <Line> 1

 #> │ Line 2

 #> │ Line 3

str_view(x, regex("^Line", multiline = TRUE))

 #> [1] │ <Line> 1

 #> │ <Line> 2

 #> │ <Line> 3

Finally, if you’re writing a complicated regular expression and you’re worried you

might not understand it in the future, you might try comments = TRUE. It tweaks the

pattern language to ignore spaces and new lines, as well as everything after #. This

allows you to use comments and whitespace to make complex regular expressions

more understandable,9 as in the following example:

phone <- regex(

r"(

\(? # optional opening parens

(\d{3}) # area code

[)\-]? # optional closing parens or dash

\ ? # optional space

(\d{3}) # another three numbers

[\ -]? # optional space or dash

(\d{4}) # four more numbers

)",

comments = TRUE

)

str_extract(c("514-791-8141", "(123) 456 7890", "123456"), phone)

 #> [1] "514-791-8141" "(123) 456 7890" NA

9 comments = TRUE is particularly effective in combination with a raw string, as we use here.

276 | Chapter 15: Regular Expressions

If you’re using comments and want to match a space, newline, or #, you’ll need to

escape it with \.

Fixed Matches

You can opt out of the regular expression rules by using fixed():

str_view(c("", "a", "."), fixed("."))

 #> [3] │ <.>

fixed() also gives you the ability to ignore case: str_view("x X", "X")

 #> [1] │ x <X>

str_view("x X", fixed("X", ignore_case = TRUE))

 #> [1] │ <x> <X>

If you’re working with non-English text, you will probably want coll() instead of

fixed(), as it implements the full rules for capitalization as used by the locale you specify. See “Non-English Text” on page 256 for more details on locales.

str_view("i İ ı I", fixed("İ", ignore_case = TRUE))

 #> [1] │ i <İ> ı I

str_view("i İ ı I", coll("İ", ignore_case = TRUE, locale = "tr"))

 #> [1] │ <i> <İ> ı I

Practice

To put these ideas into practice, we’ll solve a few semi-authentic problems next. We’ll

discuss three general techniques:

• Checking your work by creating simple positive and negative controls

• Combining regular expressions with Boolean algebra

• Creating complex patterns using string manipulation

Check Your Work

First, let’s find all sentences that start with “The.” Using the ^ anchor alone is not

enough:

str_view(sentences, "^The")

 #> [1] │ <The> birch canoe slid on the smooth planks.

 #> [4] │ <The>se days a chicken leg is a rare dish.

 #> [6] │ <The> juice of lemons makes fine punch.

 #> [7] │ <The> box was thrown beside the parked truck.

 #> [8] │ <The> hogs were fed chopped corn and garbage.

 #> [11] │ <The> boy was there when the sun rose.

 #> ... and 271 more

Practice | 277

That pattern also matches sentences starting with words like They or These. We need

to make sure that the “e” is the last letter in the word, which we can do by adding a

word boundary:

str_view(sentences, "^The\\b")

 #> [1] │ <The> birch canoe slid on the smooth planks.

 #> [6] │ <The> juice of lemons makes fine punch.

 #> [7] │ <The> box was thrown beside the parked truck.

 #> [8] │ <The> hogs were fed chopped corn and garbage.

 #> [11] │ <The> boy was there when the sun rose.

 #> [13] │ <The> source of the huge river is the clear spring.

 #> ... and 250 more

What about finding all sentences that begin with a pronoun?

str_view(sentences, "^She|He|It|They\\b")

 #> [3] │ <It>'s easy to tell the depth of a well.

 #> [15] │ <He>lp the woman get back to her feet.

 #> [27] │ <He>r purse was full of useless trash.

 #> [29] │ <It> snowed, rained, and hailed the same morning.

 #> [63] │ <He> ran half way to the hardware store.

 #> [90] │ <He> lay prone and hardly moved a limb.

 #> ... and 57 more

A quick inspection of the results shows that we’re getting some spurious matches.

That’s because we’ve forgotten to use parentheses:

str_view(sentences, "^(She|He|It|They)\\b")

 #> [3] │ <It>'s easy to tell the depth of a well.

 #> [29] │ <It> snowed, rained, and hailed the same morning.

 #> [63] │ <He> ran half way to the hardware store.

 #> [90] │ <He> lay prone and hardly moved a limb.

 #> [116] │ <He> ordered peach pie with ice cream.

 #> [127] │ <It> caught its hind paw in a rusty trap.

 #> ... and 51 more

You might wonder how you might spot such a mistake if it didn’t occur in the first

few matches. A good technique is to create a few positive and negative matches and

use them to test that your pattern works as expected:

pos <- c("He is a boy", "She had a good time")

neg <- c("Shells come from the sea", "Hadley said 'It's a great day'")

pattern <- "^(She|He|It|They)\\b"

str_detect(pos, pattern)

 #> [1] TRUE TRUE

str_detect(neg, pattern)

 #> [1] FALSE FALSE

It’s typically much easier to come up with good positive examples than negative

examples, because it takes a while before you’re good enough with regular expressions

to predict where your weaknesses are. Nevertheless, they’re still useful: as you work

on the problem, you can slowly accumulate a collection of your mistakes, ensuring

that you never make the same mistake twice.

278 | Chapter 15: Regular Expressions

Boolean Operations

Imagine we want to find words that contain only consonants. One technique is to

create a character class that contains all letters except for the vowels ([^aeiou]), then

allow that to match any number of letters ([^aeiou]+), and then force it to match the

whole string by anchoring to the beginning and the end (^[^aeiou]+$):

str_view(words, "^[^aeiou]+$")

 #> [123] │ <by>

 #> [249] │ <dry>

 #> [328] │ <fly>

 #> [538] │ <mrs>

 #> [895] │ <try>

 #> [952] │ <why>

But you can make this problem a bit easier by flipping the problem around. Instead

of looking for words that contain only consonants, we could look for words that don’t

contain any vowels:

str_view(words[!str_detect(words, "[aeiou]")])

 #> [1] │ by

 #> [2] │ dry

 #> [3] │ fly

 #> [4] │ mrs

 #> [5] │ try

 #> [6] │ why

This is a useful technique whenever you’re dealing with logical combinations, par‐

ticularly those involving “and” or “not.” For example, imagine if you want to find

all words that contain “a” and “b.” There’s no “and” operator built in to regular

expressions, so we have to tackle it by looking for all words that contain an “a”

followed by a “b,” or a “b” followed by an “a”:

str_view(words, "a.*b|b.*a")

 #> [2] │ <ab>le

 #> [3] │ <ab>out

 #> [4] │ <ab>solute

 #> [62] │ <availab>le

 #> [66] │ <ba>by

 #> [67] │ <ba>ck

 #> ... and 24 more

It’s simpler to combine the results of two calls to str_detect(): words[str_detect(words, "a") & str_detect(words, "b")]

 #> [1] "able" "about" "absolute" "available" "baby" "back"

 #> [7] "bad" "bag" "balance" "ball" "bank" "bar"

 #> [13] "base" "basis" "bear" "beat" "beauty" "because"

 #> [19] "black" "board" "boat" "break" "brilliant" "britain"

 #> [25] "debate" "husband" "labour" "maybe" "probable" "table"

What if we wanted to see if there was a word that contains all vowels? If we did it with

patterns, we’d need to generate 5! (120) different patterns:

Practice | 279

words[str_detect(words, "a.*e.*i.*o.*u")]

 # ...

words[str_detect(words, "u.*o.*i.*e.*a")]

It’s much simpler to combine five calls to str_detect():

words[

str_detect(words, "a") &

str_detect(words, "e") &

str_detect(words, "i") &

str_detect(words, "o") &

str_detect(words, "u")

]

 #> character(0)

In general, if you get stuck trying to create a single regexp that solves your problem,

take a step back and think if you could break the problem down into smaller pieces,

solving each challenge before moving onto the next one.

Creating a Pattern with Code

What if we wanted to find all sentences that mention a color? The basic idea is

simple: we just combine alternation with word boundaries:

str_view(sentences, "\\b(red|green|blue)\\b")

 #> [2] │ Glue the sheet to the dark <blue> background.

 #> [26] │ Two <blue> fish swam in the tank.

 #> [92] │ A wisp of cloud hung in the <blue> air.

 #> [148] │ The spot on the blotter was made by <green> ink.

 #> [160] │ The sofa cushion is <red> and of light weight.

 #> [174] │ The sky that morning was clear and bright <blue>.

 #> ... and 20 more

But as the number of colors grows, it would quickly get tedious to construct this

pattern by hand. Wouldn’t it be nice if we could store the colors in a vector?

rgb <- c("red", "green", "blue")

Well, we can! We’d just need to create the pattern from the vector using str_c() and

str_flatten():

str_c("\\b(", str_flatten(rgb, "|"), ")\\b")

 #> [1] "\\b(red|green|blue)\\b"

We could make this pattern more comprehensive if we had a good list of colors. One

place we could start from is the list of built-in colors that R can use for plots:

str_view(colors())

 #> [1] │ white

 #> [2] │ aliceblue

 #> [3] │ antiquewhite

 #> [4] │ antiquewhite1

 #> [5] │ antiquewhite2

 #> [6] │ antiquewhite3

 #> ... and 651 more

But let’s first eliminate the numbered variants:

280 | Chapter 15: Regular Expressions

cols <- colors()

cols <- cols[!str_detect(cols, "\\d")]

str_view(cols)

 #> [1] │ white

 #> [2] │ aliceblue

 #> [3] │ antiquewhite

 #> [4] │ aquamarine

 #> [5] │ azure

 #> [6] │ beige

 #> ... and 137 more

Then we can turn this into one giant pattern. We won’t show the pattern here because

it’s huge, but you can see it working:

pattern <- str_c("\\b(", str_flatten(cols, "|"), ")\\b")

str_view(sentences, pattern)

 #> [2] │ Glue the sheet to the dark <blue> background.

 #> [12] │ A rod is used to catch <pink> <salmon>.

 #> [26] │ Two <blue> fish swam in the tank.

 #> [66] │ Cars and busses stalled in <snow> drifts.

 #> [92] │ A wisp of cloud hung in the <blue> air.

 #> [112] │ Leaves turn <brown> and <yellow> in the fall.

 #> ... and 57 more

In this example, cols contains only numbers and letters, so you don’t need to worry

about metacharacters. But in general, whenever you create patterns from existing

strings, it’s wise to run them through str_escape() to ensure they match literally.

Exercises

1. For each of the following challenges, try solving them by using both a single

regular expression and a combination of multiple str_detect() calls: a. Find all words that start or end with x.

b. Find all words that start with a vowel and end with a consonant.

c. Are there any words that contain at least one of each different vowel?

2. Construct patterns to find evidence for and against the rule “i before e except

after c.”

3. colors() contains a number of modifiers like “lightgray” and “darkblue.” How could you automatically identify these modifiers? (Think about how you might

detect and then remove the colors that are modified.)

4. Create a regular expression that finds any base R dataset. You can get a list of

these datasets via a special use of the data() function: data(package = "data sets")$results[, "Item"]. Note that a number of old datasets are individual

vectors; these contain the name of the grouping “data frame” in parentheses, so

you’ll need to strip them off.

Practice | 281

Regular Expressions in Other Places

Just like in the stringr and tidyr functions, there are many other places in R where

you can use regular expressions. The following sections describe some other useful

functions in the wider tidyverse and base R.

Tidyverse

There are three other particularly useful places where you might want to use regular

expressions:

• matches(pattern) will select all variables whose name matches the supplied

pattern. It’s a “tidyselect” function that you can use anywhere in any tidyverse

function that selects variables (e.g., select(), rename_with(), and across()).

• pivot_longer()’s names_pattern argument takes a vector of regular expressions,

just like separate_wider_regex(). It’s useful when extracting data from variable names with a complex structure.

• The delim argument in separate_longer_delim() and separate_

wider_delim() usually matches a fixed string, but you can use regex() to make it match a pattern. This is useful, for example, if you want to match a comma that

is optionally followed by a space, i.e., regex(", ?").

Base R

apropos(pattern) searches all objects available from the global environment that

match the given pattern. This is useful if you can’t quite remember the name of a

function:

apropos("replace")

 #> [1] "%+replace%" "replace" "replace_na"

 #> [4] "setReplaceMethod" "str_replace" "str_replace_all"

 #> [7] "str_replace_na" "theme_replace"

list.files(path, pattern) lists all files in path that match a regular expression

pattern. For example, you can find all the R Markdown files in the current directory

with:

head(list.files(pattern = "\\.Rmd$"))

 #> character(0)

It’s worth noting that the pattern language used by base R is slightly different from

that used by stringr. That’s because stringr is built on top of the stringi package,

which is in turn built on top of the ICU engine, whereas base R functions use

either the TRE engine or the PCRE engine, depending on whether you’ve set perl =

TRUE. Fortunately, the basics of regular expressions are so well established that you’ll

encounter few variations when working with the patterns you’ll learn in this book.

282 | Chapter 15: Regular Expressions

You only need to be aware of the difference when you start to rely on advanced

features like complex Unicode character ranges or special features that use the (?…)

syntax.

Summary

With every punctuation character potentially overloaded with meaning, regular

expressions are one of the most compact languages out there. They’re definitely con‐

fusing at first, but as you train your eyes to read them and your brain to understand

them, you unlock a powerful skill that you can use in R and in many other places.

In this chapter, you’ve started your journey to become a regular expression master by

learning the most useful stringr functions and the most important components of the

regular expression language. And there are plenty of resources to learn more.

A good place to start is vignette("regular-expressions", package =

"stringr"): it documents the full set of syntax supported by stringr. Another useful reference is https://oreil.ly/MVwoC. It’s not R specific, but you can use it to learn about the most advanced features of regexes and how they work under the hood.

It’s also good to know that stringr is implemented on top of the stringi package by

Marek Gagolewski. If you’re struggling to find a function that does what you need in

stringr, don’t be afraid to look in stringi. You’ll find stringi easy to pick up because it

follows many of the same conventions as stringr.

In the next chapter, we’ll talk about a data structure closely related to strings: factors.

Factors are used to represent categorical data in R, i.e., data with a fixed and known

set of possible values identified by a vector of strings.

Summary | 283

CHAPTER 16

Factors

Introduction

Factors are used for categorical variables, variables that have a fixed and known set of

possible values. They are also useful when you want to display character vectors in a

nonalphabetical order.

We’ll start by motivating why factors are needed for data analysis1 and how you can create them with factor(). We’ll then introduce you to the gss_cat dataset, which contains a bunch of categorical variables to experiment with. You’ll then use that

dataset to practice modifying the order and values of factors, before we finish up with

a discussion of ordered factors.

Prerequisites

Base R provides some basic tools for creating and manipulating factors. We’ll supple‐

ment these with the forcats package, which is part of the core tidyverse. It provides

tools for dealing with cat egorical variables (and it’s an anagram of factors!) using a

wide range of helpers for working with factors.

library(tidyverse)

Factor Basics

Imagine that you have a variable that records the month:

x1 <- c("Dec", "Apr", "Jan", "Mar")

Using a string to record this variable has two problems:

1 They’re also really important for modeling.

285

1. There are only 12 possible months, and there’s nothing saving you from typos:

x2 <- c("Dec", "Apr", "Jam", "Mar")

2. It doesn’t sort in a useful way:

sort(x1)

 #> [1] "Apr" "Dec" "Jan" "Mar"

You can fix both of these problems with a factor. To create a factor, you must start by

creating a list of the valid levels:

month_levels <- c(

"Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"

)

Now you can create a factor:

y1 <- factor(x1, levels = month_levels)

y1

 #> [1] Dec Apr Jan Mar

 #> Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

sort(y1)

 #> [1] Jan Mar Apr Dec

 #> Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Any values not in the level will be silently converted to NA:

y2 <- factor(x2, levels = month_levels)

y2

 #> [1] Dec Apr <NA> Mar

 #> Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

This seems risky, so you might want to use forcats::fct() instead:

y2 <- fct(x2, levels = month_levels)

 #> Error in `fct()`:

 #> ! All values of `x` must appear in `levelsòr `nà

 #> ℹ Missing level: "Jam"

If you omit the levels, they’ll be taken from the data in alphabetical order:

factor(x1)

 #> [1] Dec Apr Jan Mar

 #> Levels: Apr Dec Jan Mar

Sorting alphabetically is slightly risky because not every computer will sort strings in

the same way. So forcats::fct() orders by first appearance: fct(x1)

 #> [1] Dec Apr Jan Mar

 #> Levels: Dec Apr Jan Mar

If you ever need to access the set of valid levels directly, you can do so with levels():

levels(y2)

 #> [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

286 | Chapter 16: Factors

You can also create a factor when reading your data with readr with col_factor(): csv <- "

month,value

Jan,12

Feb,56

Mar,12"

df <- read_csv(csv, col_types = cols(month = col_factor(month_levels)))

df$month

 #> [1] Jan Feb Mar

 #> Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

General Social Survey

For the rest of this chapter, we’re going to use forcats::gss_cat. It’s a sample of data from the General Social Survey, a long-running US survey conducted by the independent research organization NORC at the University of Chicago. The survey

has thousands of questions, so in gss_cat Hadley selected a handful that will illus‐

trate some common challenges you’ll encounter when working with factors.

gss_cat

 #> # A tibble: 21,483 × 9

 #> year marital age race rincome partyid

 #> <int> <fct> <int> <fct> <fct> <fct>

 #> 1 2000 Never married 26 White $8000 to 9999 Ind,near rep

 #> 2 2000 Divorced 48 White $8000 to 9999 Not str republican

 #> 3 2000 Widowed 67 White Not applicable Independent

 #> 4 2000 Never married 39 White Not applicable Ind,near rep

 #> 5 2000 Divorced 25 White Not applicable Not str democrat

 #> 6 2000 Married 25 White $20000 - 24999 Strong democrat

 #> # … with 21,477 more rows, and 3 more variables: relig <fct>, denom <fct>,

 #> # tvhours <int>

(Remember, since this dataset is provided by a package, you can get more informa‐

tion about the variables with ?gss_cat.) When factors are stored in a tibble, you can’t see their levels so easily. One way to

view them is with count():

gss_cat |>

count(race)

 #> # A tibble: 3 × 2

 #> race n

 #> <fct> <int>

 #> 1 Other 1959

 #> 2 Black 3129

 #> 3 White 16395

When working with factors, the two most common operations are changing the

order of the levels and changing the values of the levels. Those operations are

described in the following sections.

General Social Survey | 287

[image: Image 147]

Exercise

1. Explore the distribution of rincome (reported income). What makes the default

bar chart hard to understand? How could you improve the plot?

2. What is the most common relig in this survey? What’s the most common

partyid?

3. Which relig does denom (denomination) apply to? How can you find out with a

table? How can you find out with a visualization?

Modifying Factor Order

It’s often useful to change the order of the factor levels in a visualization. For example,

imagine you want to explore the average number of hours spent watching TV per day

across religions:

relig_summary <- gss_cat |>

group_by(relig) |>

summarize(

tvhours = mean(tvhours, na.rm = TRUE),

n = n()

)

ggplot(relig_summary, aes(x = tvhours, y = relig)) +

geom_point()

288 | Chapter 16: Factors

[image: Image 148]

It is hard to read this plot because there’s no overall pattern. We can improve it

by reordering the levels of relig using fct_reorder(). fct_reorder() takes three arguments:

• f, the factor whose levels you want to modify.

• x, a numeric vector that you want to use to reorder the levels.

• Optionally, fun, a function that’s used if there are multiple values of x for each

value of f. The default value is median.

ggplot(relig_summary, aes(x = tvhours, y = fct_reorder(relig, tvhours))) +

geom_point()

Reordering religion makes it much easier to see that people in the “Don’t know”

category watch much more TV, and Hinduism and other Eastern religions watch

much less.

As you start making more complicated transformations, we recommend moving

them out of aes() and into a separate mutate() step. For example, you could rewrite the previous plot as:

relig_summary |>

mutate(

relig = fct_reorder(relig, tvhours)

) |>

ggplot(aes(x = tvhours, y = relig)) +

geom_point()

Modifying Factor Order | 289

[image: Image 149]

What if we create a similar plot looking at how average age varies across reported

income level?

rincome_summary <- gss_cat |>

group_by(rincome) |>

summarize(

age = mean(age, na.rm = TRUE),

n = n()

)

ggplot(rincome_summary, aes(x = age, y = fct_reorder(rincome, age))) +

geom_point()

Here, arbitrarily reordering the levels isn’t a good idea! That’s because rincome

already has a principled order that we shouldn’t mess with. Reserve fct_reorder()

for factors whose levels are arbitrarily ordered.

However, it does make sense to pull “Not applicable” to the front with the other

special levels. You can use fct_relevel(). It takes a factor, f, and then any number of levels that you want to move to the front of the line.

ggplot(rincome_summary, aes(x = age, y = fct_relevel(rincome, "Not applicable"))) +

geom_point()

290 | Chapter 16: Factors

[image: Image 150]

Why do you think the average age for “Not applicable” is so high?

Another type of reordering is useful when you are coloring the lines on a plot.

fct_reorder2(f, x, y) reorders the factor f by the y values associated with the

largest x values. This makes the plot easier to read because the colors of the line at the

far right of the plot will line up with the legend.

by_age <- gss_cat |>

filter(!is.na(age)) |>

count(age, marital) |>

group_by(age) |>

mutate(

prop = n / sum(n)

)

ggplot(by_age, aes(x = age, y = prop, color = marital)) +

geom_line(linewidth = 1) +

scale_color_brewer(palette = "Set1")

ggplot(by_age, aes(x = age, y = prop, color = fct_reorder2(marital, age, prop))) +

geom_line(linewidth = 1) +

scale_color_brewer(palette = "Set1") +

labs(color = "marital")

Modifying Factor Order | 291

[image: Image 151]

[image: Image 152]

Finally, for bar plots, you can use fct_infreq() to order levels in decreasing fre‐

quency: this is the simplest type of reordering because it doesn’t need any extra

variables. Combine it with fct_rev() if you want them in increasing frequency so that in the bar plot the largest values are on the right, not the left.

gss_cat |>

mutate(marital = marital |> fct_infreq() |> fct_rev()) |>

ggplot(aes(x = marital)) +

geom_bar()

292 | Chapter 16: Factors

Exercises

1. There are some suspiciously high numbers in tvhours. Is the mean a good

summary?

2. For each factor in gss_cat identify whether the order of the levels is arbitrary or

principled.

3. Why did moving “Not applicable” to the front of the levels move it to the bottom

of the plot?

Modifying Factor Levels

More powerful than changing the orders of the levels is changing their values. This

allows you to clarify labels for publication and collapse levels for high-level displays.

The most general and powerful tool is fct_recode(). It allows you to recode, or change, the value of each level. For example, take the partyid variable from the

gss_cat data frame:

gss_cat |> count(partyid)

 #> # A tibble: 10 × 2

 #> partyid n

 #> <fct> <int>

 #> 1 No answer 154

 #> 2 Don't know 1

 #> 3 Other party 393

 #> 4 Strong republican 2314

 #> 5 Not str republican 3032

 #> 6 Ind,near rep 1791

 #> # … with 4 more rows

The levels are terse and inconsistent. Let’s tweak them to be longer and use a parallel

construction. Like most rename and recoding functions in the tidyverse, the new

values go on the left, and the old values go on the right:

gss_cat |>

mutate(

partyid = fct_recode(partyid,

"Republican, strong" = "Strong republican",

"Republican, weak" = "Not str republican",

"Independent, near rep" = "Ind,near rep",

"Independent, near dem" = "Ind,near dem",

"Democrat, weak" = "Not str democrat",

"Democrat, strong" = "Strong democrat"

)

) |>

count(partyid)

 #> # A tibble: 10 × 2

 #> partyid n

 #> <fct> <int>

 #> 1 No answer 154

 #> 2 Don't know 1

 #> 3 Other party 393

 #> 4 Republican, strong 2314

Modifying Factor Levels | 293

 #> 5 Republican, weak 3032

 #> 6 Independent, near rep 1791

 #> # … with 4 more rows

fct_recode() will leave the levels that aren’t explicitly mentioned as is and will warn you if you accidentally refer to a level that doesn’t exist.

To combine groups, you can assign multiple old levels to the same new level:

gss_cat |>

mutate(

partyid = fct_recode(partyid,

"Republican, strong" = "Strong republican",

"Republican, weak" = "Not str republican",

"Independent, near rep" = "Ind,near rep",

"Independent, near dem" = "Ind,near dem",

"Democrat, weak" = "Not str democrat",

"Democrat, strong" = "Strong democrat",

"Other" = "No answer",

"Other" = "Don't know",

"Other" = "Other party"

)

)

Use this technique with care: if you group levels that are truly different, you will end

up with misleading results.

If you want to collapse a lot of levels, fct_collapse() is a useful variant of

fct_recode(). For each new variable, you can provide a vector of old levels: gss_cat |>

mutate(

partyid = fct_collapse(partyid,

"other" = c("No answer", "Don't know", "Other party"),

"rep" = c("Strong republican", "Not str republican"),

"ind" = c("Ind,near rep", "Independent", "Ind,near dem"),

"dem" = c("Not str democrat", "Strong democrat")

)

) |>

count(partyid)

 #> # A tibble: 4 × 2

 #> partyid n

 #> <fct> <int>

 #> 1 other 548

 #> 2 rep 5346

 #> 3 ind 8409

 #> 4 dem 7180

Sometimes you just want to lump together the small groups to make a plot or table

simpler. That’s the job of the fct_lump_*() family of functions. fct_lump_lowfreq()

is a simple starting point that progressively lumps the smallest group’s categories into

“Other,” always keeping “Other” as the smallest category.

gss_cat |>

mutate(relig = fct_lump_lowfreq(relig)) |>

count(relig)

 #> # A tibble: 2 × 2

294 | Chapter 16: Factors

 #> relig n

 #> <fct> <int>

 #> 1 Protestant 10846

 #> 2 Other 10637

In this case it’s not very helpful: it is true that the majority of Americans in this survey

are Protestant, but we’d probably like to see some more details! Instead, we can use

fct_lump_n() to specify that we want exactly 10 groups: gss_cat |>

mutate(relig = fct_lump_n(relig, n = 10)) |>

count(relig, sort = TRUE)

 #> # A tibble: 10 × 2

 #> relig n

 #> <fct> <int>

 #> 1 Protestant 10846

 #> 2 Catholic 5124

 #> 3 None 3523

 #> 4 Christian 689

 #> 5 Other 458

 #> 6 Jewish 388

 #> # … with 4 more rows

Read the documentation to learn about fct_lump_min() and fct_lump_prop(), which are useful in other cases.

Exercises

1. How have the proportions of people identifying as Democrat, Republican, and

Independent changed over time?

2. How could you collapse rincome into a small set of categories?

3. Notice there are 9 groups (excluding other) in the previous fct_lump example.

Why not 10? (Hint: Type ?fct_lump, and find the default for the argument other_level is “Other.”)

Ordered Factors

Before we go on, there’s a special type of factor that needs to be mentioned briefly:

ordered factors. Ordered factors, created with ordered(), imply a strict ordering and equal distance between levels: the first level is “less than” the second level by the

same amount that the second level is “less than” the third level, and so on. You can

recognize them when printing because they use < between the factor levels:

ordered(c("a", "b", "c"))

 #> [1] a b c

 #> Levels: a < b < c

In practice, ordered() factors behave similarly to regular factors. There are only two places where you might notice different behavior:

Ordered Factors | 295

• If you map an ordered factor to color or fill in ggplot2, it will default to

scale_color_viridis()/scale_fill_viridis(), a color scale that implies a

ranking.

• If you use an ordered function in a linear model, it will use “polygonal contrasts.”

These are mildly useful, but you are unlikely to have heard of them unless you

have a PhD in statistics, and even then you probably don’t routinely interpret

them. If you want to learn more, we recommend vignette("contrasts", pack

age = "faux") by Lisa DeBruine.

Given the arguable utility of these differences, we don’t generally recommend using

ordered factors.

Summary

This chapter introduced you to the handy forcats package for working with factors,

explaining the most commonly used functions. forcats contains a wide range of

other helpers that we didn’t have space to discuss here, so whenever you’re facing a

factor analysis challenge that you haven’t encountered before, I highly recommend

skimming the reference index to see if there’s a canned function that can help solve your problem.

If you want to learn more about factors after reading this chapter, we recommend

reading Amelia McNamara and Nicholas Horton’s paper, “Wrangling categorical data

in R” . This paper lays out some of the history discussed in “stringsAsFactors: An

unauthorized biography” and “stringsAsFactors = <sigh>”, and compares the tidy approaches to categorical data outlined in this book with base R methods. An early

version of the paper helped motivate and scope the forcats package; thanks, Amelia

and Nick!

In the next chapter we’ll switch gears to start learning about dates and times in R.

Dates and times seem deceptively simple, but as you’ll soon see, the more you learn

about them, the more complex they seem to get!

296 | Chapter 16: Factors

CHAPTER 17

Dates and Times

Introduction

This chapter will show you how to work with dates and times in R. At first glance,

dates and times seem simple. You use them all the time in your regular life, and they

don’t seem to cause much confusion. However, the more you learn about dates and

times, the more complicated they seem to get!

To warm up, think about how many days there are in a year and how many hours

there are in a day. You probably remembered that most years have 365 days, but leap

years have 366. Do you know the full rule for determining if a year is a leap year? 1

The number of hours in a day is a little less obvious: most days have 24 hours, but

in places that use daylight saving time (DST), one day each year has 23 hours and

another has 25.

Dates and times are hard because they have to reconcile two physical phenomena

(the rotation of Earth and its orbit around the sun) with a whole raft of geopolitical

phenomena including months, time zones, and DST. This chapter won’t teach you

every last detail about dates and times, but it will give you a solid grounding of

practical skills that will help you with common data analysis challenges.

We’ll begin by showing you how to create date-times from various inputs, and then

once you’ve got a date-time, you’ll learn how you can extract components such as

year, month, and day. We’ll then dive into the tricky topic of working with time

spans, which come in a variety of flavors depending on what you’re trying to do. We’ll

conclude with a brief discussion of the additional challenges posed by time zones.

1 A year is a leap year if it’s divisible by 4, unless it’s also divisible by 100, except if it’s also divisible by 400. In other words, in every set of 400 years, there’s 97 leap years.

297

Prerequisites

This chapter will focus on the lubridate package, which makes it easier to work

with dates and times in R. As of the latest tidyverse release, lubridate is part of core

tidyverse. We will also need nycflights13 for practice data.

library(tidyverse)

library(nycflights13)

Creating Date/Times

There are three types of date/time data that refer to an instant in time:

• A date. Tibbles print this as <date>.

• A time within a day. Tibbles print this as <time>.

• A date-time is a date plus a time: it uniquely identifies an instant in time (typ‐

ically to the nearest second). Tibbles print this as <dttm>. Base R calls these

POSIXct, but that doesn’t exactly trip off the tongue.

In this chapter we are going to focus on dates and date-times as R doesn’t have a

native class for storing times. If you need one, you can use the hms package.

You should always use the simplest possible data type that works for your needs.

That means if you can use a date instead of a date-time, you should. Date-times are

substantially more complicated because of the need to handle time zones, which we’ll

come back to at the end of the chapter.

To get the current date or date-time, you can use today() or now(): today()

 #> [1] "2023-03-12"

now()

 #> [1] "2023-03-12 13:07:31 CDT"

Otherwise, the following sections describe the four ways you’re likely to create a

date/time:

• While reading a file with readr

• From a string

• From individual date-time components

• From an existing date/time object

298 | Chapter 17: Dates and Times

During Import

If your CSV contains an ISO8601 date or date-time, you don’t need to do anything;

readr will automatically recognize it:

csv <- "

date,datetime

2022-01-02,2022-01-02 05:12

"

read_csv(csv)

 #> # A tibble: 1 × 2

 #> date datetime

 #> <date> <dttm>

 #> 1 2022-01-02 2022-01-02 05:12:00

If you haven’t heard of ISO8601 before, it’s an international standard for writing dates where the components of a date are organized from biggest to smallest separated by -.

For example, in ISO8601 May 3, 2022, is 2022-05-03. ISO8601 dates can also include

times, where hour, minute, and second are separated by :, and the date and time

components are separated by either a T or a space. For example, you could write 4:26

p.m. on May 3, 2022, as either 2022-05-03 16:26 or 2022-05-03T16:26.

For other date-time formats, you’ll need to use col_types plus col_date() or

col_datetime() along with a date-time format. The date-time format used by readr is a standard used across many programming languages, describing a date component with a % followed by a single character. For example, %Y-%m-%d specifies a date

that’s a year, -, month (as number) -, day. Table 17-1 lists all the options.

 Table 17-1. All date formats understood by readr

Type

Code Meaning

Example

Year

%Y

4-digit year

2021

%y

2-digit year

21

Month %m

Number

2

%b

Abbreviated name

Feb

%B

Full name

February

Day

%d

Two digits

02

%e

One or two digits

2

Time

%H

24-hour hour

13

%I

12-hour hour

1

%p

a.m./p.m.

pm

%M

Minutes

35

%S

Seconds

45

%OS

Seconds with decimal component 45.35

%Z

Time zone name

America/Chicago

%z

Offset from UTC

+0800

Creating Date/Times | 299

Type

Code Meaning

Example

Other %.

Skip one nondigit

:

%*

Skip any number of nondigits

This code shows a few options applied to a very ambiguous date:

csv <- "

date

01/02/15

"

read_csv(csv, col_types = cols(date = col_date("%m/%d/%y")))

 #> # A tibble: 1 × 1

 #> date

 #> <date>

 #> 1 2015-01-02

read_csv(csv, col_types = cols(date = col_date("%d/%m/%y")))

 #> # A tibble: 1 × 1

 #> date

 #> <date>

 #> 1 2015-02-01

read_csv(csv, col_types = cols(date = col_date("%y/%m/%d")))

 #> # A tibble: 1 × 1

 #> date

 #> <date>

 #> 1 2001-02-15

Note that no matter how you specify the date format, it’s always displayed the same

way once you get it into R.

If you’re using %b or %B and working with non-English dates, you’ll also need to

provide a locale(). See the list of built-in languages in date_names_langs(), or

create your own with date_names().

From Strings

The date-time specification language is powerful but requires careful analysis of the

date format. An alternative approach is to use lubridate’s helpers, which attempt to

automatically determine the format once you specify the order of the component. To

use them, identify the order in which year, month, and day appear in your dates; then

arrange “y,” “m,” and “d” in the same order. That gives you the name of the lubridate

function that will parse your date. For example:

ymd("2017-01-31")

 #> [1] "2017-01-31"

mdy("January 31st, 2017")

 #> [1] "2017-01-31"

dmy("31-Jan-2017")

 #> [1] "2017-01-31"

300 | Chapter 17: Dates and Times

ymd() and friends create dates. To create a date-time, add an underscore and one or more of “h”, “m”, and “s” to the name of the parsing function:

ymd_hms("2017-01-31 20:11:59")

 #> [1] "2017-01-31 20:11:59 UTC"

mdy_hm("01/31/2017 08:01")

 #> [1] "2017-01-31 08:01:00 UTC"

You can also force the creation of a date-time from a date by supplying a time zone:

ymd("2017-01-31", tz = "UTC")

 #> [1] "2017-01-31 UTC"

Here I use the UTC2 timezone, which you might also know as GMT, or Greenwich

Mean Time, the time at 0° longitude.3 It doesn’t use daylight saving time, making it a bit easier to compute with.

From Individual Components

Instead of a single string, sometimes you’ll have the individual components of the

date-time spread across multiple columns. This is what we have in the flights data:

flights |>

select(year, month, day, hour, minute)

 #> # A tibble: 336,776 × 5

 #> year month day hour minute

 #> <int> <int> <int> <dbl> <dbl>

 #> 1 2013 1 1 5 15

 #> 2 2013 1 1 5 29

 #> 3 2013 1 1 5 40

 #> 4 2013 1 1 5 45

 #> 5 2013 1 1 6 0

 #> 6 2013 1 1 5 58

 #> # … with 336,770 more rows

To create a date/time from this sort of input, use make_date() for dates, or use

make_datetime() for date-times: flights |>

select(year, month, day, hour, minute) |>

mutate(departure = make_datetime(year, month, day, hour, minute))

 #> # A tibble: 336,776 × 6

 #> year month day hour minute departure

 #> <int> <int> <int> <dbl> <dbl> <dttm>

 #> 1 2013 1 1 5 15 2013-01-01 05:15:00

 #> 2 2013 1 1 5 29 2013-01-01 05:29:00

 #> 3 2013 1 1 5 40 2013-01-01 05:40:00

 #> 4 2013 1 1 5 45 2013-01-01 05:45:00

 #> 5 2013 1 1 6 0 2013-01-01 06:00:00

2 You might wonder what UTC stands for. It’s a compromise between the English “Coordinated Universal

Time” and French “Temps Universel Coordonné.”

3 No prizes for guessing which country came up with the longitude system.

Creating Date/Times | 301

 #> 6 2013 1 1 5 58 2013-01-01 05:58:00

 #> # … with 336,770 more rows

Let’s do the same thing for each of the four time columns in flights. The times are

represented in a slightly odd format, so we use modulus arithmetic to pull out the

hour and minute components. Once we’ve created the date-time variables, we focus

in on the variables we’ll explore in the rest of the chapter.

make_datetime_100 <- function(year, month, day, time) {

make_datetime(year, month, day, time %/% 100, time %% 100)

}

flights_dt <- flights |>

filter(!is.na(dep_time), !is.na(arr_time)) |>

mutate(

dep_time = make_datetime_100(year, month, day, dep_time),

arr_time = make_datetime_100(year, month, day, arr_time),

sched_dep_time = make_datetime_100(year, month, day, sched_dep_time),

sched_arr_time = make_datetime_100(year, month, day, sched_arr_time)

) |>

select(origin, dest, ends_with("delay"), ends_with("time"))

flights_dt

 #> # A tibble: 328,063 × 9

 #> origin dest dep_delay arr_delay dep_time sched_dep_time

 #> <chr> <chr> <dbl> <dbl> <dttm> <dttm>

 #> 1 EWR IAH 2 11 2013-01-01 05:17:00 2013-01-01 05:15:00

 #> 2 LGA IAH 4 20 2013-01-01 05:33:00 2013-01-01 05:29:00

 #> 3 JFK MIA 2 33 2013-01-01 05:42:00 2013-01-01 05:40:00

 #> 4 JFK BQN -1 -18 2013-01-01 05:44:00 2013-01-01 05:45:00

 #> 5 LGA ATL -6 -25 2013-01-01 05:54:00 2013-01-01 06:00:00

 #> 6 EWR ORD -4 12 2013-01-01 05:54:00 2013-01-01 05:58:00

 #> # … with 328,057 more rows, and 3 more variables: arr_time <dttm>,

 #> # sched_arr_time <dttm>, air_time <dbl>

With this data, we can visualize the distribution of departure times across the year:

flights_dt |>

ggplot(aes(x = dep_time)) +

geom_freqpoly(binwidth = 86400) # 86400 seconds = 1 day

302 | Chapter 17: Dates and Times

[image: Image 153]

Or within a single day:

flights_dt |>

filter(dep_time < ymd(20130102)) |>

ggplot(aes(x = dep_time)) +

geom_freqpoly(binwidth = 600) # 600 s = 10 minutes

Creating Date/Times | 303

[image: Image 154]

Note that when you use date-times in a numeric context (like in a histogram), 1

means 1 second, so a binwidth of 86400 means one day. For dates, 1 means 1 day.

From Other Types

You may want to switch between a date-time and a date. That’s the job of as_date

time() and as_date():

as_datetime(today())

 #> [1] "2023-03-12 UTC"

as_date(now())

 #> [1] "2023-03-12"

Sometimes you’ll get date/times as numeric offsets from the “Unix epoch,”

1970-01-01. If the offset is in seconds, use as_datetime(); if it’s in days, use

as_date().

as_datetime(60 * 60 * 10)

 #> [1] "1970-01-01 10:00:00 UTC"

as_date(365 * 10 + 2)

 #> [1] "1980-01-01"

Exercises

1. What happens if you parse a string that contains invalid dates?

ymd(c("2010-10-10", "bananas"))

2. What does the tzone argument to today() do? Why is it important?

304 | Chapter 17: Dates and Times

3. For each of the following date-times, show how you’d parse it using a readr

column specification and a lubridate function.

d1 <- "January 1, 2010"

d2 <- "2015-Mar-07"

d3 <- "06-Jun-2017"

d4 <- c("August 19 (2015)", "July 1 (2015)")

d5 <- "12/30/14" # Dec 30, 2014

t1 <- "1705"

t2 <- "11:15:10.12 PM"

Date-Time Components

Now that you know how to get date-time data into R’s date-time data structures, let’s

explore what you can do with them. This section will focus on the accessor functions

that let you get and set individual components. The next section will look at how

arithmetic works with date-times.

Getting Components

You can pull out individual parts of the date with the accessor functions year(),

month(), mday() (day of the month), yday() (day of the year), wday() (day of

the week), hour(), minute(), and second(). These are effectively the opposites of

make_datetime().

datetime <- ymd_hms("2026-07-08 12:34:56")

year(datetime)

 #> [1] 2026

month(datetime)

 #> [1] 7

mday(datetime)

 #> [1] 8

yday(datetime)

 #> [1] 189

wday(datetime)

 #> [1] 4

For month() and wday() you can set label = TRUE to return the abbreviated name of the month or day of the week. Set abbr = FALSE to return the full name.

month(datetime, label = TRUE)

 #> [1] Jul

 #> 12 Levels: Jan < Feb < Mar < Apr < May < Jun < Jul < Aug < Sep < ... < Dec wday(datetime, label = TRUE, abbr = FALSE)

 #> [1] Wednesday

 #> 7 Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < ... < Saturday Date-Time Components | 305

[image: Image 155]

We can use wday() to see that more flights depart during the week than on the weekend:

flights_dt |>

mutate(wday = wday(dep_time, label = TRUE)) |>

ggplot(aes(x = wday)) +

geom_bar()

We can also look at the average departure delay by minute within the hour. There’s

an interesting pattern: flights leaving in minutes 20–30 and 50–60 have much lower

delays than the rest of the hour!

flights_dt |>

mutate(minute = minute(dep_time)) |>

group_by(minute) |>

summarize(

avg_delay = mean(dep_delay, na.rm = TRUE),

n = n()

) |>

ggplot(aes(x = minute, y = avg_delay)) +

geom_line()

306 | Chapter 17: Dates and Times

[image: Image 156]

Interestingly, if we look at the scheduled departure time, we don’t see such a strong

pattern:

sched_dep <- flights_dt |>

mutate(minute = minute(sched_dep_time)) |>

group_by(minute) |>

summarize(

avg_delay = mean(arr_delay, na.rm = TRUE),

n = n()

)

ggplot(sched_dep, aes(x = minute, y = avg_delay)) +

geom_line()

Date-Time Components | 307

[image: Image 157]

So why do we see that pattern with the actual departure times? Well, like much data

collected by humans, there’s a strong bias toward flights leaving at “nice” departure

times, as Figure 17-1 shows. Always be alert for this sort of pattern whenever you

work with data that involves human judgment!

308 | Chapter 17: Dates and Times

[image: Image 158]

 Figure 17-1. A frequency polygon showing the number of flights scheduled to depart each

 hour. You can see a strong preference for round numbers like 0 and 30 and generally for

 numbers that are a multiple of five.

Rounding

An alternative approach to plotting individual components is to round the date to a

nearby unit of time, with floor_date(), round_date(), and ceiling_date(). Each function takes a vector of dates to adjust and then the name of the unit to round

down (floor), round up (ceiling), or round to. This, for example, allows us to plot the

number of flights per week:

flights_dt |>

count(week = floor_date(dep_time, "week")) |>

ggplot(aes(x = week, y = n)) +

geom_line() +

geom_point()

Date-Time Components | 309

[image: Image 159]

You can use rounding to show the distribution of flights across the course of a day by

computing the difference between dep_time and the earliest instant of that day:

flights_dt |>

mutate(dep_hour = dep_time - floor_date(dep_time, "day")) |>

ggplot(aes(x = dep_hour)) +

geom_freqpoly(binwidth = 60 * 30)

 #> Don't know how to automatically pick scale for object of type <difftime>.

 #> Defaulting to continuous.

310 | Chapter 17: Dates and Times

[image: Image 160]

Computing the difference between a pair of date-times yields a difftime (more on that

in “Intervals” on page 316). We can convert that to an hms object to get a more useful x-axis:

flights_dt |>

mutate(dep_hour = hms::as_hms(dep_time - floor_date(dep_time, "day"))) |>

ggplot(aes(x = dep_hour)) +

geom_freqpoly(binwidth = 60 * 30)

Date-Time Components | 311

[image: Image 161]

Modifying Components

You can also use each accessor function to modify the components of a date/time.

This doesn’t come up much in data analysis but can be useful when cleaning data that

has clearly incorrect dates.

(datetime <- ymd_hms("2026-07-08 12:34:56"))

 #> [1] "2026-07-08 12:34:56 UTC"

year(datetime) <- 2030

datetime

 #> [1] "2030-07-08 12:34:56 UTC"

month(datetime) <- 01

datetime

 #> [1] "2030-01-08 12:34:56 UTC"

hour(datetime) <- hour(datetime) + 1

datetime

 #> [1] "2030-01-08 13:34:56 UTC"

Alternatively, rather than modifying an existing variable, you can create a new date-

time with update(). This also allows you to set multiple values in one step: update(datetime, year = 2030, month = 2, mday = 2, hour = 2)

 #> [1] "2030-02-02 02:34:56 UTC"

If values are too big, they will roll over:

update(ymd("2023-02-01"), mday = 30)

 #> [1] "2023-03-02"

312 | Chapter 17: Dates and Times

update(ymd("2023-02-01"), hour = 400)

 #> [1] "2023-02-17 16:00:00 UTC"

Exercises

1. How does the distribution of flight times within a day change over the course of

the year?

2. Compare dep_time, sched_dep_time, and dep_delay. Are they consistent?

Explain your findings.

3. Compare air_time with the duration between the departure and arrival. Explain

your findings. (Hint: Consider the location of the airport.)

4. How does the average delay time change over the course of a day? Should you use

dep_time or sched_dep_time? Why?

5. On what day of the week should you leave if you want to minimize the chance of

a delay?

6. What makes the distribution of diamonds$carat and flights$sched_dep_time

similar?

7. Confirm our hypothesis that the early departures of flights in minutes 20–30

and 50–60 are caused by scheduled flights that leave early. Hint: Create a binary

variable that tells you whether a flight was delayed.

Time Spans

Next you’ll learn about how arithmetic with dates works, including subtraction,

addition, and division. Along the way, you’ll learn about three important classes that

represent time spans:

 Durations

Represent an exact number of seconds

 Periods

Represent human units like weeks and months

 Intervals

Represent a starting and ending point

How do you pick between duration, periods, and intervals? As always, pick the

simplest data structure that solves your problem. If you care only about physical time,

use a duration; if you need to add human times, use a period; and if you need to

figure out how long a span is in human units, use an interval.

Time Spans | 313

Durations

In R, when you subtract two dates, you get a difftime object:

 # How old is Hadley?

h_age <- today() - ymd("1979-10-14")

h_age

 #> Time difference of 15855 days

A difftime class object records a time span of seconds, minutes, hours, days, or

weeks. This ambiguity can make difftimes a little painful to work with, so lubridate

provides an alternative that always uses seconds: the duration.

as.duration(h_age)

 #> [1] "1369872000s (~43.41 years)"

Durations come with a bunch of convenient constructors:

dseconds(15)

 #> [1] "15s"

dminutes(10)

 #> [1] "600s (~10 minutes)"

dhours(c(12, 24))

 #> [1] "43200s (~12 hours)" "86400s (~1 days)"

ddays(0:5)

 #> [1] "0s" "86400s (~1 days)" "172800s (~2 days)"

 #> [4] "259200s (~3 days)" "345600s (~4 days)" "432000s (~5 days)"

dweeks(3)

 #> [1] "1814400s (~3 weeks)"

dyears(1)

 #> [1] "31557600s (~1 years)"

Durations always record the time span in seconds. Larger units are created by con‐

verting minutes, hours, days, weeks, and years to seconds: 60 seconds in a minute, 60

minutes in an hour, 24 hours in a day, and 7 days in a week. Larger time units are

more problematic. A year uses the “average” number of days in a year, i.e., 365.25.

There’s no way to convert a month to a duration, because there’s just too much

variation.

You can add and multiply durations:

2 * dyears(1)

 #> [1] "63115200s (~2 years)"

dyears(1) + dweeks(12) + dhours(15)

 #> [1] "38869200s (~1.23 years)"

You can add and subtract durations to and from days:

tomorrow <- today() + ddays(1)

last_year <- today() - dyears(1)

However, because durations represent an exact number of seconds, sometimes you

might get an unexpected result:

one_am <- ymd_hms("2026-03-08 01:00:00", tz = "America/New_York")

one_am

314 | Chapter 17: Dates and Times

 #> [1] "2026-03-08 01:00:00 EST"

one_am + ddays(1)

 #> [1] "2026-03-09 02:00:00 EDT"

Why is one day after 1 a.m. March 8, returning as 2 a.m. on March 9? If you look

carefully at the date, you might also notice that the time zones have changed. March

8 has only 23 hours because it’s when DST starts, so if we add a full day’s worth of

seconds, we end up with a different time.

Periods

To solve this problem, lubridate provides periods. Periods are time spans but don’t

have a fixed length in seconds; instead, they work with “human” times, like days and

months. That allows them to work in a more intuitive way:

one_am

 #> [1] "2026-03-08 01:00:00 EST"

one_am + days(1)

 #> [1] "2026-03-09 01:00:00 EDT"

Like durations, periods can be created with a number of friendly constructor

functions:

hours(c(12, 24))

 #> [1] "12H 0M 0S" "24H 0M 0S"

days(7)

 #> [1] "7d 0H 0M 0S"

months(1:6)

 #> [1] "1m 0d 0H 0M 0S" "2m 0d 0H 0M 0S" "3m 0d 0H 0M 0S" "4m 0d 0H 0M 0S"

 #> [5] "5m 0d 0H 0M 0S" "6m 0d 0H 0M 0S"

You can add and multiply periods:

10 * (months(6) + days(1))

 #> [1] "60m 10d 0H 0M 0S"

days(50) + hours(25) + minutes(2)

 #> [1] "50d 25H 2M 0S"

And of course, add them to dates. Compared to durations, periods are more likely to

do what you expect:

 # A leap year

ymd("2024-01-01") + dyears(1)

 #> [1] "2024-12-31 06:00:00 UTC"

ymd("2024-01-01") + years(1)

 #> [1] "2025-01-01"

 # Daylight savings time

one_am + ddays(1)

 #> [1] "2026-03-09 02:00:00 EDT"

one_am + days(1)

 #> [1] "2026-03-09 01:00:00 EDT"

Let’s use periods to fix an oddity related to our flight dates. Some planes appear to

have arrived at their destination before they departed from New York City:

Time Spans | 315

flights_dt |>

filter(arr_time < dep_time)

 #> # A tibble: 10,633 × 9

 #> origin dest dep_delay arr_delay dep_time sched_dep_time

 #> <chr> <chr> <dbl> <dbl> <dttm> <dttm>

 #> 1 EWR BQN 9 -4 2013-01-01 19:29:00 2013-01-01 19:20:00

 #> 2 JFK DFW 59 NA 2013-01-01 19:39:00 2013-01-01 18:40:00

 #> 3 EWR TPA -2 9 2013-01-01 20:58:00 2013-01-01 21:00:00

 #> 4 EWR SJU -6 -12 2013-01-01 21:02:00 2013-01-01 21:08:00

 #> 5 EWR SFO 11 -14 2013-01-01 21:08:00 2013-01-01 20:57:00

 #> 6 LGA FLL -10 -2 2013-01-01 21:20:00 2013-01-01 21:30:00

 #> # … with 10,627 more rows, and 3 more variables: arr_time <dttm>,

 #> # sched_arr_time <dttm>, air_time <dbl>

These are overnight flights. We used the same date information for both the depar‐

ture and the arrival times, but these flights arrived on the following day. We can fix

this by adding days(1) to the arrival time of each overnight flight:

flights_dt <- flights_dt |>

mutate(

overnight = arr_time < dep_time,

arr_time = arr_time + days(overnight),

sched_arr_time = sched_arr_time + days(overnight)

)

Now all of our flights obey the laws of physics:

flights_dt |>

filter(arr_time < dep_time)

 #> # A tibble: 0 × 10

 # … with 10 variables: origin <chr>, dest <chr>, dep_delay <dbl>,

 # arr_delay <dbl>, dep_time <dttm>, sched_dep_time <dttm>, …

 # ℹ Usècolnames()` to see all variable names

 #> # … with 10,627 more rows, and 4 more variables:

Intervals

What does dyears(1) / ddays(365) return? It’s not quite 1, because dyears() is

defined as the number of seconds per average year, which is 365.25 days.

What does years(1) / days(1) return? Well, if the year is 2015, it should return

365, but if it is 2016, it should return 366! There’s not quite enough information for

lubridate to give a single clear answer. What it does instead is give an estimate:

years(1) / days(1)

 #> [1] 365.25

If you want a more accurate measurement, you’ll have to use an interval. An interval

is a pair of starting and ending date times, or you can think of it as a duration with a

starting point.

316 | Chapter 17: Dates and Times

You can create an interval by writing start %--% end:

y2023 <- ymd("2023-01-01") %--% ymd("2024-01-01")

y2024 <- ymd("2024-01-01") %--% ymd("2025-01-01")

y2023

 #> [1] 2023-01-01 UTC--2024-01-01 UTC

y2024

 #> [1] 2024-01-01 UTC--2025-01-01 UTC

You could then divide it by days() to find out how many days fit in the year: y2023 / days(1)

 #> [1] 365

y2024 / days(1)

 #> [1] 366

Exercises

1. Explain days(!overnight) and days(overnight) to someone who has just

started learning R. What is the key fact you need to know?

2. Create a vector of dates giving the first day of every month in 2015. Create a

vector of dates giving the first day of every month in the current year.

3. Write a function that, given your birthday (as a date), returns how old you are in

years.

4. Why can’t (today() %--% (today() + years(1))) / months(1) work?

Time Zones

Time zones are an enormously complicated topic because of their interaction with

geopolitical entities. Fortunately we don’t need to dig into all the details as they’re

not all important for data analysis, but there are a few challenges we’ll need to tackle

head on.

The first challenge is that everyday names of time zones tend to be ambiguous.

For example, if you’re American, you’re probably familiar with Eastern Standard

Time (EST). However, both Australia and Canada also have EST! To avoid confu‐

sion, R uses the international standard IANA time zones. These use a consistent

naming scheme {area}/{location}, typically in the form {continent}/{city}

or {ocean}/{city}. Examples include “America/New_York,” “Europe/Paris,” and

“Pacific/Auckland.”

You might wonder why the time zone uses a city when typically you think of time

zones as associated with a country or region within a country. This is because the

IANA database has to record decades worth of time zone rules. Over the course of

decades, countries change names (or break apart) fairly frequently, but city names

tend to stay the same. Another problem is that the name needs to reflect not only

Time Zones | 317

the current behavior but also the complete history. For example, there are time zones

for both “America/New_York” and “America/Detroit.” These cities both currently use

Eastern Standard Time, but in 1969–1972 Michigan (the state in which Detroit is

located) did not follow DST, so it needs a different name. It’s worth reading the raw

time zone database just to read some of these stories!

You can find out what R thinks your current time zone is with Sys.timezone():

Sys.timezone()

 #> [1] "America/Chicago"

(If R doesn’t know, you’ll get an NA.)

And see the complete list of all time zone names with OlsonNames():

length(OlsonNames())

 #> [1] 597

head(OlsonNames())

 #> [1] "Africa/Abidjan" "Africa/Accra" "Africa/Addis_Ababa"

 #> [4] "Africa/Algiers" "Africa/Asmara" "Africa/Asmera"

In R, the time zone is an attribute of the date-time that only controls printing. For

example, these three objects represent the same instant in time:

x1 <- ymd_hms("2024-06-01 12:00:00", tz = "America/New_York")

x1

 #> [1] "2024-06-01 12:00:00 EDT"

x2 <- ymd_hms("2024-06-01 18:00:00", tz = "Europe/Copenhagen")

x2

 #> [1] "2024-06-01 18:00:00 CEST"

x3 <- ymd_hms("2024-06-02 04:00:00", tz = "Pacific/Auckland")

x3

 #> [1] "2024-06-02 04:00:00 NZST"

You can verify that they’re the same time using subtraction:

x1 - x2

 #> Time difference of 0 secs

x1 - x3

 #> Time difference of 0 secs

Unless otherwise specified, lubridate always uses UTC. UTC is the standard time

zone used by the scientific community and is roughly equivalent to GMT. It does

not have DST, which makes a convenient representation for computation. Operations

that combine date-times, like c(), will often drop the time zone. In that case, the date-times will display in the time zone of the first element:

x4 <- c(x1, x2, x3)

x4

 #> [1] "2024-06-01 12:00:00 EDT" "2024-06-01 12:00:00 EDT"

 #> [3] "2024-06-01 12:00:00 EDT"

318 | Chapter 17: Dates and Times

You can change the time zone in two ways:

• Keep the instant in time the same, and change how it’s displayed. Use this when

the instant is correct but you want a more natural display.

x4a <- with_tz(x4, tzone = "Australia/Lord_Howe")

x4a

 #> [1] "2024-06-02 02:30:00 +1030" "2024-06-02 02:30:00 +1030"

 #> [3] "2024-06-02 02:30:00 +1030"

x4a - x4

 #> Time differences in secs

 #> [1] 0 0 0

(This also illustrates another challenge of time zones: they’re not all integer hour

offsets!)

• Change the underlying instant in time. Use this when you have an instant that

has been labeled with the incorrect time zone and you need to fix it.

x4b <- force_tz(x4, tzone = "Australia/Lord_Howe")

x4b

 #> [1] "2024-06-01 12:00:00 +1030" "2024-06-01 12:00:00 +1030"

 #> [3] "2024-06-01 12:00:00 +1030"

x4b - x4

 #> Time differences in hours

 #> [1] -14.5 -14.5 -14.5

Summary

This chapter introduced you to the tools that lubridate provides to help you work

with date-time data. Working with dates and times can seem harder than necessary,

but we hope this chapter has helped you see why—date-times are more complex than

they seem at first glance, and handling every possible situation adds complexity. Even

if your data never crosses a DST boundary or involves a leap year, the functions need

to be able to handle it.

The next chapter gives a roundup of missing values. You’ve seen them in a few places

and have no doubt encountered them in your own analysis, and it’s now time to

provide a grab bag of useful techniques for dealing with them.

Summary | 319

CHAPTER 18

Missing Values

Introduction

You’ve already learned the basics of missing values earlier in the book. You first saw

them in Chapter 1 where they resulted in a warning when making a plot as well as in

“summarize()” on page 54 where they interfered with computing summary statistics,

and you learned about their infectious nature and how to check for their presence in

“Missing Values” on page 208. Now we’ll come back to them in more depth so you

can learn more of the details.

We’ll start by discussing some general tools for working with missing values recorded

as NAs. We’ll then explore the idea of implicitly missing values, values are that are

simply absent from your data, and show some tools you can use to make them

explicit. We’ll finish off with a related discussion of empty groups, caused by factor

levels that don’t appear in the data.

Prerequisites

The functions for working with missing data mostly come from dplyr and tidyr,

which are core members of the tidyverse.

library(tidyverse)

Explicit Missing Values

To begin, let’s explore a few handy tools for creating or eliminating missing explicit

values, i.e., cells where you see an NA.

321

Last Observation Carried Forward

A common use for missing values is as a data entry convenience. When data is

entered by hand, missing values sometimes indicate that the value in the previous

row has been repeated (or carried forward):

treatment <- tribble(

~person, ~treatment, ~response,

"Derrick Whitmore", 1, 7,

NA, 2, 10,

NA, 3, NA,

"Katherine Burke", 1, 4

)

You can fill in these missing values with tidyr::fill(). It works like select(), taking a set of columns:

treatment |>

fill(everything())

 #> # A tibble: 4 × 3

 #> person treatment response

 #> <chr> <dbl> <dbl>

 #> 1 Derrick Whitmore 1 7

 #> 2 Derrick Whitmore 2 10

 #> 3 Derrick Whitmore 3 10

 #> 4 Katherine Burke 1 4

This treatment is sometimes called “last observation carried forward,” or locf for

short. You can use the .direction argument to fill in missing values that have been

generated in more exotic ways.

Fixed Values

Sometimes missing values represent some fixed and known value, most commonly 0.

You can use dplyr::coalesce() to replace them: x <- c(1, 4, 5, 7, NA)

coalesce(x, 0)

 #> [1] 1 4 5 7 0

Sometimes you’ll hit the opposite problem where some concrete value actually repre‐

sents a missing value. This typically arises in data generated by older software that

doesn’t have a proper way to represent missing values, so it must instead use some

special value like 99 or -999.

If possible, handle this when reading in the data, for example, by using the na

argument to readr::read_csv(), e.g., read_csv(path, na = "99"). If you discover the problem later or your data source doesn’t provide a way to handle it on read, you

can use dplyr::na_if():

x <- c(1, 4, 5, 7, -99)

na_if(x, -99)

 #> [1] 1 4 5 7 NA

322 | Chapter 18: Missing Values

NaN

Before we continue, there’s one special type of missing value that you’ll encounter

from time to time: a NaN (pronounced “nan”), or not a number. It’s not that important

to know about because it generally behaves just like NA:

x <- c(NA, NaN)

x * 10

 #> [1] NA NaN

x == 1

 #> [1] NA NA

is.na(x)

 #> [1] TRUE TRUE

In the rare case you need to distinguish an NA from a NaN, you can use is.nan(x).

You’ll generally encounter a NaN when you perform a mathematical operation that has

an indeterminate result:

0 / 0

 #> [1] NaN

0 * Inf

 #> [1] NaN

Inf - Inf

 #> [1] NaN

sqrt(-1)

 #> Warning in sqrt(-1): NaNs produced

 #> [1] NaN

Implicit Missing Values

So far we’ve talked about missing values that are explicitly missing; i.e., you can see an

NA in your data. But missing values can also be implicitly missing, if an entire row of

data is simply absent from the data. Let’s illustrate the difference with a simple dataset

that records the price of some stock each quarter:

stocks <- tibble(

year = c(2020, 2020, 2020, 2020, 2021, 2021, 2021),

qtr = c(1, 2, 3, 4, 2, 3, 4),

price = c(1.88, 0.59, 0.35, NA, 0.92, 0.17, 2.66)

)

This dataset has two missing observations:

• The price in the fourth quarter of 2020 is explicitly missing, because its value is

NA.

• The price for the first quarter of 2021 is implicitly missing, because it simply

does not appear in the dataset.

Implicit Missing Values | 323

One way to think about the difference is with this Zen-like koan:

An explicit missing value is the presence of an absence.

An implicit missing value is the absence of a presence.

Sometimes you want to make implicit missings explicit to have something physical to

work with. In other cases, explicit missings are forced upon you by the structure of

the data, and you want to get rid of them. The following sections discuss some tools

for moving between implicit and explicit missingness.

Pivoting

You’ve already seen one tool that can make implicit missings explicit, and vice versa:

pivoting. Making data wider can make implicit missing values explicit because every

combination of the rows and new columns must have some value. For example, if we

pivot stocks to put the quarter in the columns, both missing values become explicit:

stocks |>

pivot_wider(

names_from = qtr,

values_from = price

)

 #> # A tibble: 2 × 5

 #> year `1` `2` `3` `4`

 #> <dbl> <dbl> <dbl> <dbl> <dbl>

 #> 1 2020 1.88 0.59 0.35 NA

 #> 2 2021 NA 0.92 0.17 2.66

By default, making data longer preserves explicit missing values, but if they are

structurally missing values that exist only because the data is not tidy, you can drop

them (make them implicit) by setting values_drop_na = TRUE. See the examples in

“Tidy Data” on page 70 for more details.

Complete

tidyr::complete() allows you to generate explicit missing values by providing a set of variables that define the combination of rows that should exist. For example, we

know that all combinations of year and qtr should exist in the stocks data:

stocks |>

complete(year, qtr)

 #> # A tibble: 8 × 3

 #> year qtr price

 #> <dbl> <dbl> <dbl>

 #> 1 2020 1 1.88

 #> 2 2020 2 0.59

 #> 3 2020 3 0.35

 #> 4 2020 4 NA

 #> 5 2021 1 NA

 #> 6 2021 2 0.92

 #> # … with 2 more rows

324 | Chapter 18: Missing Values

Typically, you’ll call complete() with names of existing variables, filling in the missing combinations. However, sometimes the individual variables are themselves

incomplete, so you can instead provide your own data. For example, you might know

that the stocks dataset is supposed to run from 2019 to 2021, so you could explicitly

supply those values for year:

stocks |>

complete(year = 2019:2021, qtr)

 #> # A tibble: 12 × 3

 #> year qtr price

 #> <dbl> <dbl> <dbl>

 #> 1 2019 1 NA

 #> 2 2019 2 NA

 #> 3 2019 3 NA

 #> 4 2019 4 NA

 #> 5 2020 1 1.88

 #> 6 2020 2 0.59

 #> # … with 6 more rows

If the range of a variable is correct but not all values are present, you could use

full_seq(x, 1) to generate all values from min(x) to max(x) spaced out by 1.

In some cases, the complete set of observations can’t be generated by a simple com‐

bination of variables. In that case, you can do manually what complete() does for you: create a data frame that contains all the rows that should exist (using whatever

combination of techniques you need) and then combine it with your original dataset

with dplyr::full_join().

Joins

This brings us to another important way of revealing implicitly missing observations:

joins. You’ll learn more about joins in Chapter 19, but we wanted to quickly mention them to you here since you can often know that values are missing from one dataset

only when you compare it another.

dplyr::anti_join(x, y) is a useful tool here because it selects only the rows in x

that don’t have a match in y. For example, we can use two anti_join()s to reveal that we’re missing information for 4 airports and 722 planes mentioned in flights:

library(nycflights13)

flights |>

distinct(faa = dest) |>

anti_join(airports)

 #> Joining with `by = join_by(faa)`

 #> # A tibble: 4 × 1

 #> faa

 #> <chr>

 #> 1 BQN

 #> 2 SJU

 #> 3 STT

 #> 4 PSE

Implicit Missing Values | 325

flights |>

distinct(tailnum) |>

anti_join(planes)

 #> Joining with `by = join_by(tailnum)`

 #> # A tibble: 722 × 1

 #> tailnum

 #> <chr>

 #> 1 N3ALAA

 #> 2 N3DUAA

 #> 3 N542MQ

 #> 4 N730MQ

 #> 5 N9EAMQ

 #> 6 N532UA

 #> # … with 716 more rows

Exercises

1. Can you find any relationship between the carrier and the rows that appear to be

missing from planes?

Factors and Empty Groups

A final type of missingness is the empty group, a group that doesn’t contain any

observations, which can arise when working with factors. For example, imagine we

have a dataset that contains some health information about people:

health <- tibble(

name = c("Ikaia", "Oletta", "Leriah", "Dashay", "Tresaun"), smoker = factor(c("no", "no", "no", "no", "no"), levels = c("yes", "no")), age = c(34, 88, 75, 47, 56),

)

And say we want to count the number of smokers with dplyr::count():

health |> count(smoker)

 #> # A tibble: 1 × 2

 #> smoker n

 #> <fct> <int>

 #> 1 no 5

This dataset contains only nonsmokers, but we know that smokers exist; the group of

nonsmoker is empty. We can request count() to keep all the groups, even those not

seen in the data, by using .drop = FALSE:

health |> count(smoker, .drop = FALSE)

 #> # A tibble: 2 × 2

 #> smoker n

 #> <fct> <int>

 #> 1 yes 0

 #> 2 no 5

326 | Chapter 18: Missing Values

[image: Image 162]

The same principle applies to ggplot2’s discrete axes, which will also drop levels that

don’t have any values. You can force them to display by supplying drop = FALSE to

the appropriate discrete axis:

ggplot(health, aes(x = smoker)) +

geom_bar() +

scale_x_discrete()

ggplot(health, aes(x = smoker)) +

geom_bar() +

scale_x_discrete(drop = FALSE)

The same problem comes up more generally with dplyr::group_by(). And again you can use .drop = FALSE to preserve all factor levels:

health |>

group_by(smoker, .drop = FALSE) |>

summarize(

n = n(),

mean_age = mean(age),

min_age = min(age),

max_age = max(age),

sd_age = sd(age)

)

 #> # A tibble: 2 × 6

 #> smoker n mean_age min_age max_age sd_age

 #> <fct> <int> <dbl> <dbl> <dbl> <dbl>

 #> 1 yes 0 NaN Inf -Inf NA

 #> 2 no 5 60 34 88 21.6

We get some interesting results here because when summarizing an empty group,

the summary functions are applied to zero-length vectors. There’s an important

distinction between empty vectors, which have length 0, and missing values, each of

which has length 1.

 # A vector containing two missing values

x1 <- c(NA, NA)

length(x1)

 #> [1] 2

 # A vector containing nothing

x2 <- numeric()

Factors and Empty Groups | 327

length(x2)

 #> [1] 0

All summary functions work with zero-length vectors, but they may return results

that are surprising at first glance. Here we see mean(age) returning NaN because

mean(age) = sum(age)/length(age), which here is 0/0. max() and min() return -Inf and Inf for empty vectors, so if you combine the results with a nonempty vector of

new data and recompute, you’ll get the minimum or maximum of the new data.1

Sometimes a simpler approach is to perform the summary and then make the

implicit missings explicit with complete(): health |>

group_by(smoker) |>

summarize(

n = n(),

mean_age = mean(age),

min_age = min(age),

max_age = max(age),

sd_age = sd(age)

) |>

complete(smoker)

 #> # A tibble: 2 × 6

 #> smoker n mean_age min_age max_age sd_age

 #> <fct> <int> <dbl> <dbl> <dbl> <dbl>

 #> 1 yes NA NA NA NA NA

 #> 2 no 5 60 34 88 21.6

The main drawback of this approach is that you get an NA for the count, even though

you know that it should be zero.

Summary

Missing values are weird! Sometimes they’re recorded as an explicit NA, but other

times you notice them only by their absence. This chapter has given you some tools

for working with explicit missing values and some tools for uncovering implicit

missing values, and we discussed some of the ways that implicit can become explicit,

and vice versa.

In the next chapter, we tackle the final chapter in this part of the book: joins. This is a

bit of a change from the chapters so far because we’re going to discuss tools that work

with data frames as a whole, not something that you put inside a data frame.

1 In other words, min(c(x, y)) is always equal to min(min(x), min(y)).

328 | Chapter 18: Missing Values

CHAPTER 19

Joins

Introduction

It’s rare that a data analysis involves only a single data frame. Typically you have many

data frames, and you must join them together to answer the questions that you’re

interested in. This chapter will introduce you to two important types of joins:

• Mutating joins, which add new variables to one data frame from matching

observations in another.

• Filtering joins, which filter observations from one data frame based on whether

they match an observation in another.

We’ll begin by discussing keys, the variables used to connect a pair of data frames in

a join. We cement the theory with an examination of the keys in the datasets from

the nycflights13 package and then use that knowledge to start joining data frames

together. Next we’ll discuss how joins work, focusing on their action on the rows.

We’ll finish up with a discussion of non-equi joins, a family of joins that provide a

more flexible way of matching keys than the default equality relationship.

Prerequisites

In this chapter, we’ll explore the five related datasets from nycflights13 using the join

functions from dplyr.

library(tidyverse)

library(nycflights13)

329

Keys

To understand joins, you need to first understand how two tables can be connected

through a pair of keys, within each table. In this section, you’ll learn about the two

types of key and see examples of both in the datasets of the nycflights13 package.

You’ll also learn how to check that your keys are valid and what to do if your table

lacks a key.

Primary and Foreign Keys

Every join involves a pair of keys: a primary key and a foreign key. A primary key is a

variable or set of variables that uniquely identifies each observation. When more than

one variable is needed, the key is called a compound key. For example, in nycflights13:

• airlines records two pieces of data about each airline: its carrier code and its

full name. You can identify an airline with its two-letter carrier code, making

carrier the primary key.

airlines

 #> # A tibble: 16 × 2

 #> carrier name

 #> <chr> <chr>

 #> 1 9E Endeavor Air Inc.

 #> 2 AA American Airlines Inc.

 #> 3 AS Alaska Airlines Inc.

 #> 4 B6 JetBlue Airways

 #> 5 DL Delta Air Lines Inc.

 #> 6 EV ExpressJet Airlines Inc.

 #> # … with 10 more rows

• airports records data about each airport. You can identify each airport by its

three-letter airport code, making faa the primary key.

airports

 #> # A tibble: 1,458 × 8

 #> faa name lat lon alt tz dst

 #> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>

 #> 1 04G Lansdowne Airport 41.1 -80.6 1044 -5 A

 #> 2 06A Moton Field Municipal Airport 32.5 -85.7 264 -6 A

 #> 3 06C Schaumburg Regional 42.0 -88.1 801 -6 A

 #> 4 06N Randall Airport 41.4 -74.4 523 -5 A

 #> 5 09J Jekyll Island Airport 31.1 -81.4 11 -5 A

 #> 6 0A9 Elizabethton Municipal Airpo… 36.4 -82.2 1593 -5 A

 #> # … with 1,452 more rows, and 1 more variable: tzone <chr>

• planes records data about each plane. You can identify a plane by its tail number,

making tailnum the primary key.

330 | Chapter 19: Joins

planes

 #> # A tibble: 3,322 × 9

 #> tailnum year type manufacturer model engines

 #> <chr> <int> <chr> <chr> <chr> <int>

 #> 1 N10156 2004 Fixed wing multi… EMBRAER EMB-145XR 2

 #> 2 N102UW 1998 Fixed wing multi… AIRBUS INDUSTR… A320-214 2

 #> 3 N103US 1999 Fixed wing multi… AIRBUS INDUSTR… A320-214 2

 #> 4 N104UW 1999 Fixed wing multi… AIRBUS INDUSTR… A320-214 2

 #> 5 N10575 2002 Fixed wing multi… EMBRAER EMB-145LR 2

 #> 6 N105UW 1999 Fixed wing multi… AIRBUS INDUSTR… A320-214 2

 #> # … with 3,316 more rows, and 3 more variables: seats <int>,

 #> # speed <int>, engine <chr>

• weather records data about the weather at the origin airports. You can identify

each observation by the combination of location and time, making origin and

time_hour the compound primary key.

weather

 #> # A tibble: 26,115 × 15

 #> origin year month day hour temp dewp humid wind_dir

 #> <chr> <int> <int> <int> <int> <dbl> <dbl> <dbl> <dbl>

 #> 1 EWR 2013 1 1 1 39.0 26.1 59.4 270

 #> 2 EWR 2013 1 1 2 39.0 27.0 61.6 250

 #> 3 EWR 2013 1 1 3 39.0 28.0 64.4 240

 #> 4 EWR 2013 1 1 4 39.9 28.0 62.2 250

 #> 5 EWR 2013 1 1 5 39.0 28.0 64.4 260

 #> 6 EWR 2013 1 1 6 37.9 28.0 67.2 240

 #> # … with 26,109 more rows, and 6 more variables: wind_speed <dbl>,

 #> # wind_gust <dbl>, precip <dbl>, pressure <dbl>, visib <dbl>, …

A foreign key is a variable (or set of variables) that corresponds to a primary key in

another table. For example:

• flights$tailnum is a foreign key that corresponds to the primary key

planes$tailnum.

• flights$carrier is a foreign key that corresponds to the primary key

airlines$carrier.

• flights$origin is a foreign key that corresponds to the primary key

airports$faa.

• flights$dest is a foreign key that corresponds to the primary key

airports$faa.

• flights$origin-flights$time_hour is a compound foreign key that corre‐

sponds to the compound primary key weather$origin-weather$time_hour.

These relationships are summarized visually in Figure 19-1.

Keys | 331

[image: Image 163]

 Figure 19-1. Connections between all five data frames in the nycflights13 package.

 Variables making up a primary key are gray and are connected to their corresponding

 foreign keys with arrows.

You’ll notice a nice feature in the design of these keys: the primary and foreign

keys almost always have the same names, which, as you’ll see shortly, will make

your joining life much easier. It’s also worth noting the opposite relationship: almost

every variable name used in multiple tables has the same meaning in each place.

There’s only one exception: year means year of departure in flights and year of

manufacturer in planes. This will become important when we start actually joining

tables together.

Checking Primary Keys

Now that that we’ve identified the primary keys in each table, it’s good practice to

verify that they do indeed uniquely identify each observation. One way to do that is

to count() the primary keys and look for entries where n is greater than one. This reveals that planes and weather both look good:

planes |>

count(tailnum) |>

filter(n > 1)

 #> # A tibble: 0 × 2

 #> # … with 2 variables: tailnum <chr>, n <int>

weather |>

count(time_hour, origin) |>

filter(n > 1)

 #> # A tibble: 0 × 3

 #> # … with 3 variables: time_hour <dttm>, origin <chr>, n <int>

332 | Chapter 19: Joins

You should also check for missing values in your primary keys—if a value is missing,

then it can’t identify an observation!

planes |>

filter(is.na(tailnum))

 #> # A tibble: 0 × 9

 #> # … with 9 variables: tailnum <chr>, year <int>, type <chr>,

 #> # manufacturer <chr>, model <chr>, engines <int>, seats <int>, …

weather |>

filter(is.na(time_hour) | is.na(origin))

 #> # A tibble: 0 × 15

 #> # … with 15 variables: origin <chr>, year <int>, month <int>, day <int>,

 #> # hour <int>, temp <dbl>, dewp <dbl>, humid <dbl>, wind_dir <dbl>, …

Surrogate Keys

So far we haven’t talked about the primary key for flights. It’s not super important

here, because there are no data frames that use it as a foreign key, but it’s still useful to

consider because it’s easier to work with observations if we have some way to describe

them to others.

After a little thinking and experimentation, we determined that there are three

variables that together uniquely identify each flight:

flights |>

count(time_hour, carrier, flight) |>

filter(n > 1)

 #> # A tibble: 0 × 4

 #> # … with 4 variables: time_hour <dttm>, carrier <chr>, flight <int>, n <int> Does the absence of duplicates automatically make time_hour-carrier-flight a

primary key? It’s certainly a good start, but it doesn’t guarantee it. For example, are

altitude and latitude a good primary key for airports?

airports |>

count(alt, lat) |>

filter(n > 1)

 #> # A tibble: 1 × 3

 #> alt lat n

 #> <dbl> <dbl> <int>

 #> 1 13 40.6 2

Identifying an airport by its altitude and latitude is clearly a bad idea, and in general

it’s not possible to know from the data alone whether a combination of variables

makes a good primary key. But for flights, the combination of time_hour, carrier,

and flight seems reasonable because it would be really confusing for an airline and

its customers if there were multiple flights with the same flight number in the air at

the same time.

That said, we might be better off introducing a simple numeric surrogate key using

the row number:

Keys | 333

flights2 <- flights |>

mutate(id = row_number(), .before = 1)

flights2

 #> # A tibble: 336,776 × 20

 #> id year month day dep_time sched_dep_time dep_delay arr_time

 #> <int> <int> <int> <int> <int> <int> <dbl> <int>

 #> 1 1 2013 1 1 517 515 2 830

 #> 2 2 2013 1 1 533 529 4 850

 #> 3 3 2013 1 1 542 540 2 923

 #> 4 4 2013 1 1 544 545 -1 1004

 #> 5 5 2013 1 1 554 600 -6 812

 #> 6 6 2013 1 1 554 558 -4 740

 #> # … with 336,770 more rows, and 12 more variables: sched_arr_time <int>,

 #> # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, …

Surrogate keys can be particularly useful when communicating to other humans: it’s

much easier to tell someone to take a look at flight 2001 than to say look at UA430,

which departed at 9 a.m. on January 3, 2013.

Exercises

1. We forgot to draw the relationship between weather and airports in Fig‐

ure 19-1. What is the relationship, and how should it appear in the diagram?

2. weather contains information for only the three origin airports in NYC. If it

contained weather records for all airports in the US, what additional connection

would it make to flights?

3. The year, month, day, hour, and origin variables almost form a compound key

for weather, but there’s one hour that has duplicate observations. Can you figure

out what’s special about that hour?

4. We know that some days of the year are special and fewer people than usual fly

on them (e.g., Christmas Eve and Christmas Day). How might you represent that

data as a data frame? What would be the primary key? How would it connect to

the existing data frames?

5. Draw a diagram illustrating the connections between the Batting, People, and

Salaries data frames in the Lahman package. Draw another diagram that shows

the relationship between People, Managers, and AwardsManagers. How would

you characterize the relationship between the Batting, Pitching, and Fielding

data frames?

Basic Joins

Now that you understand how data frames are connected via keys, we can start using

joins to better understand the flights dataset. dplyr provides six join functions:

• left_join()

334 | Chapter 19: Joins

• inner_join()

• right_join()

• full_join()

• semi_join()

• anti_join()

They all have the same interface: they take a pair of data frames (x and y) and return a

data frame. The order of the rows and columns in the output is primarily determined

by x.

In this section, you’ll learn how to use one mutating join, left_join(), and two

filtering joins, semi_join() and anti_join(). In the next section, you’ll learn exactly

how these functions work and about the remaining inner_join(), right_join(),

and full_join().

Mutating Joins

A mutating join allows you to combine variables from two data frames: it first

matches observations by their keys and then copies across variables from one data

frame to the other. Like mutate(), the join functions add variables to the right, so if your dataset has many variables, you won’t see the new ones. For these examples,

we’ll make it easier to see what’s going on by creating a narrower dataset with just six

variables:1

flights2 <- flights |>

select(year, time_hour, origin, dest, tailnum, carrier)

flights2

 #> # A tibble: 336,776 × 6

 #> year time_hour origin dest tailnum carrier

 #> <int> <dttm> <chr> <chr> <chr> <chr>

 #> 1 2013 2013-01-01 05:00:00 EWR IAH N14228 UA

 #> 2 2013 2013-01-01 05:00:00 LGA IAH N24211 UA

 #> 3 2013 2013-01-01 05:00:00 JFK MIA N619AA AA

 #> 4 2013 2013-01-01 05:00:00 JFK BQN N804JB B6

 #> 5 2013 2013-01-01 06:00:00 LGA ATL N668DN DL

 #> 6 2013 2013-01-01 05:00:00 EWR ORD N39463 UA

 #> # … with 336,770 more rows

There are four types of mutating join, but there’s one that you’ll use almost all of the

time: left_join(). It’s special because the output will always have the same rows as x.2 The primary use of left_join() is to add additional metadata. For example, we

can use left_join() to add the full airline name to the flights2 data: 1 Remember that in RStudio you can also use View() to avoid this problem.

2 That’s not 100% true, but you’ll get a warning whenever it isn’t.

Basic Joins | 335

flights2 |>

left_join(airlines)

 #> Joining with `by = join_by(carrier)`

 #> # A tibble: 336,776 × 7

 #> year time_hour origin dest tailnum carrier name

 #> <int> <dttm> <chr> <chr> <chr> <chr> <chr>

 #> 1 2013 2013-01-01 05:00:00 EWR IAH N14228 UA United Air Lines In…

 #> 2 2013 2013-01-01 05:00:00 LGA IAH N24211 UA United Air Lines In…

 #> 3 2013 2013-01-01 05:00:00 JFK MIA N619AA AA American Airlines I…

 #> 4 2013 2013-01-01 05:00:00 JFK BQN N804JB B6 JetBlue Airways

 #> 5 2013 2013-01-01 06:00:00 LGA ATL N668DN DL Delta Air Lines Inc.

 #> 6 2013 2013-01-01 05:00:00 EWR ORD N39463 UA United Air Lines In…

 #> # … with 336,770 more rows

Or we could find out the temperature and wind speed when each plane departed:

flights2 |>

left_join(weather |> select(origin, time_hour, temp, wind_speed))

 #> Joining with `by = join_by(time_hour, origin)`

 #> # A tibble: 336,776 × 8

 #> year time_hour origin dest tailnum carrier temp wind_speed

 #> <int> <dttm> <chr> <chr> <chr> <chr> <dbl> <dbl>

 #> 1 2013 2013-01-01 05:00:00 EWR IAH N14228 UA 39.0 12.7

 #> 2 2013 2013-01-01 05:00:00 LGA IAH N24211 UA 39.9 15.0

 #> 3 2013 2013-01-01 05:00:00 JFK MIA N619AA AA 39.0 15.0

 #> 4 2013 2013-01-01 05:00:00 JFK BQN N804JB B6 39.0 15.0

 #> 5 2013 2013-01-01 06:00:00 LGA ATL N668DN DL 39.9 16.1

 #> 6 2013 2013-01-01 05:00:00 EWR ORD N39463 UA 39.0 12.7

 #> # … with 336,770 more rows

Or what size of plane was flying:

flights2 |>

left_join(planes |> select(tailnum, type, engines, seats))

 #> Joining with `by = join_by(tailnum)`

 #> # A tibble: 336,776 × 9

 #> year time_hour origin dest tailnum carrier type

 #> <int> <dttm> <chr> <chr> <chr> <chr> <chr>

 #> 1 2013 2013-01-01 05:00:00 EWR IAH N14228 UA Fixed wing multi en…

 #> 2 2013 2013-01-01 05:00:00 LGA IAH N24211 UA Fixed wing multi en…

 #> 3 2013 2013-01-01 05:00:00 JFK MIA N619AA AA Fixed wing multi en…

 #> 4 2013 2013-01-01 05:00:00 JFK BQN N804JB B6 Fixed wing multi en…

 #> 5 2013 2013-01-01 06:00:00 LGA ATL N668DN DL Fixed wing multi en…

 #> 6 2013 2013-01-01 05:00:00 EWR ORD N39463 UA Fixed wing multi en…

 #> # … with 336,770 more rows, and 2 more variables: engines <int>, seats <int>

When left_join() fails to find a match for a row in x, it fills in the new variables with missing values. For example, there’s no information about the plane with tail

number N3ALAA so the type, engines, and seats will be missing:

flights2 |>

filter(tailnum == "N3ALAA") |>

left_join(planes |> select(tailnum, type, engines, seats))

 #> Joining with `by = join_by(tailnum)`

 #> # A tibble: 63 × 9

 #> year time_hour origin dest tailnum carrier type engines seats

 #> <int> <dttm> <chr> <chr> <chr> <chr> <chr> <int> <int>

 #> 1 2013 2013-01-01 06:00:00 LGA ORD N3ALAA AA <NA> NA NA

 #> 2 2013 2013-01-02 18:00:00 LGA ORD N3ALAA AA <NA> NA NA

336 | Chapter 19: Joins

 #> 3 2013 2013-01-03 06:00:00 LGA ORD N3ALAA AA <NA> NA NA

 #> 4 2013 2013-01-07 19:00:00 LGA ORD N3ALAA AA <NA> NA NA

 #> 5 2013 2013-01-08 17:00:00 JFK ORD N3ALAA AA <NA> NA NA

 #> 6 2013 2013-01-16 06:00:00 LGA ORD N3ALAA AA <NA> NA NA

 #> # … with 57 more rows

We’ll come back to this problem a few times in the rest of the chapter.

Specifying Join Keys

By default, left_join() will use all variables that appear in both data frames as the join key, the so-called natural join. This is a useful heuristic, but it doesn’t always

work. For example, what happens if we try to join flights2 with the complete

planes dataset?

flights2 |>

left_join(planes)

 #> Joining with `by = join_by(year, tailnum)`

 #> # A tibble: 336,776 × 13

 #> year time_hour origin dest tailnum carrier type manufacturer

 #> <int> <dttm> <chr> <chr> <chr> <chr> <chr> <chr>

 #> 1 2013 2013-01-01 05:00:00 EWR IAH N14228 UA <NA> <NA>

 #> 2 2013 2013-01-01 05:00:00 LGA IAH N24211 UA <NA> <NA>

 #> 3 2013 2013-01-01 05:00:00 JFK MIA N619AA AA <NA> <NA>

 #> 4 2013 2013-01-01 05:00:00 JFK BQN N804JB B6 <NA> <NA>

 #> 5 2013 2013-01-01 06:00:00 LGA ATL N668DN DL <NA> <NA>

 #> 6 2013 2013-01-01 05:00:00 EWR ORD N39463 UA <NA> <NA>

 #> # … with 336,770 more rows, and 5 more variables: model <chr>,

 #> # engines <int>, seats <int>, speed <int>, engine <chr>

We get a lot of missing matches because our join is trying to use tailnum and year

as a compound key. Both flights and planes have a year column, but they mean

different things: flights$year is the year the flight occurred, and planes$year is the

year the plane was built. We only want to join on tailnum, so we need to provide an

explicit specification with join_by(): flights2 |>

left_join(planes, join_by(tailnum))

 #> # A tibble: 336,776 × 14

 #> year.x time_hour origin dest tailnum carrier year.y

 #> <int> <dttm> <chr> <chr> <chr> <chr> <int>

 #> 1 2013 2013-01-01 05:00:00 EWR IAH N14228 UA 1999

 #> 2 2013 2013-01-01 05:00:00 LGA IAH N24211 UA 1998

 #> 3 2013 2013-01-01 05:00:00 JFK MIA N619AA AA 1990

 #> 4 2013 2013-01-01 05:00:00 JFK BQN N804JB B6 2012

 #> 5 2013 2013-01-01 06:00:00 LGA ATL N668DN DL 1991

 #> 6 2013 2013-01-01 05:00:00 EWR ORD N39463 UA 2012

 #> # … with 336,770 more rows, and 7 more variables: type <chr>,

 #> # manufacturer <chr>, model <chr>, engines <int>, seats <int>, …

Note that the year variables are disambiguated in the output with a suffix (year.x

and year.y), which tells you whether the variable came from the x or y argument.

You can override the default suffixes with the suffix argument.

Basic Joins | 337

join_by(tailnum) is short for join_by(tailnum == tailnum). It’s important to

know about this fuller form for two reasons. First, it describes the relationship

between the two tables: the keys must be equal. That’s why this type of join is often

called an equi join. You’ll learn about non-equi joins in “Filtering Joins” on page 346.

Second, it’s how you specify different join keys in each table. For example, there are

two ways to join the flight2 and airports table: either by dest or by origin:

flights2 |>

left_join(airports, join_by(dest == faa))

 #> # A tibble: 336,776 × 13

 #> year time_hour origin dest tailnum carrier name

 #> <int> <dttm> <chr> <chr> <chr> <chr> <chr>

 #> 1 2013 2013-01-01 05:00:00 EWR IAH N14228 UA George Bush Interco…

 #> 2 2013 2013-01-01 05:00:00 LGA IAH N24211 UA George Bush Interco…

 #> 3 2013 2013-01-01 05:00:00 JFK MIA N619AA AA Miami Intl

 #> 4 2013 2013-01-01 05:00:00 JFK BQN N804JB B6 <NA>

 #> 5 2013 2013-01-01 06:00:00 LGA ATL N668DN DL Hartsfield Jackson …

 #> 6 2013 2013-01-01 05:00:00 EWR ORD N39463 UA Chicago Ohare Intl

 #> # … with 336,770 more rows, and 6 more variables: lat <dbl>, lon <dbl>,

 #> # alt <dbl>, tz <dbl>, dst <chr>, tzone <chr>

flights2 |>

left_join(airports, join_by(origin == faa))

 #> # A tibble: 336,776 × 13

 #> year time_hour origin dest tailnum carrier name

 #> <int> <dttm> <chr> <chr> <chr> <chr> <chr>

 #> 1 2013 2013-01-01 05:00:00 EWR IAH N14228 UA Newark Liberty Intl

 #> 2 2013 2013-01-01 05:00:00 LGA IAH N24211 UA La Guardia

 #> 3 2013 2013-01-01 05:00:00 JFK MIA N619AA AA John F Kennedy Intl

 #> 4 2013 2013-01-01 05:00:00 JFK BQN N804JB B6 John F Kennedy Intl

 #> 5 2013 2013-01-01 06:00:00 LGA ATL N668DN DL La Guardia

 #> 6 2013 2013-01-01 05:00:00 EWR ORD N39463 UA Newark Liberty Intl

 #> # … with 336,770 more rows, and 6 more variables: lat <dbl>, lon <dbl>,

 #> # alt <dbl>, tz <dbl>, dst <chr>, tzone <chr>

In older code you might see a different way of specifying the join keys, using a

character vector:

• by = "x" corresponds to join_by(x).

• by = c("a" = "x") corresponds to join_by(a == x).

Now that it exists, we prefer join_by() since it provides a clearer and more flexible

specification.

inner_join(), right_join(), and full_join() have the same interface as

left_join(). The difference is which rows they keep: left join keeps all the rows in x, the right join keeps all rows in y, the full join keeps all rows in either x or y, and

the inner join keeps only those rows that occur in both x and y. We’ll come back to

these in more detail later.

338 | Chapter 19: Joins

Filtering Joins

As you might guess, the primary action of a filtering join is to filter the rows. There

are two types: semi-joins and anti-joins. Semi-joins keep all rows in x that have a

match in y. For example, we could use a semi-join to filter the airports dataset to

show just the origin airports:

airports |>

semi_join(flights2, join_by(faa == origin))

 #> # A tibble: 3 × 8

 #> faa name lat lon alt tz dst tzone

 #> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>

 #> 1 EWR Newark Liberty Intl 40.7 -74.2 18 -5 A America/New_York

 #> 2 JFK John F Kennedy Intl 40.6 -73.8 13 -5 A America/New_York

 #> 3 LGA La Guardia 40.8 -73.9 22 -5 A America/New_York

Or just the destinations:

airports |>

semi_join(flights2, join_by(faa == dest))

 #> # A tibble: 101 × 8

 #> faa name lat lon alt tz dst tzone

 #> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>

 #> 1 ABQ Albuquerque Internati… 35.0 -107. 5355 -7 A America/Denver

 #> 2 ACK Nantucket Mem 41.3 -70.1 48 -5 A America/New_Yo…

 #> 3 ALB Albany Intl 42.7 -73.8 285 -5 A America/New_Yo…

 #> 4 ANC Ted Stevens Anchorage… 61.2 -150. 152 -9 A America/Anchor…

 #> 5 ATL Hartsfield Jackson At… 33.6 -84.4 1026 -5 A America/New_Yo…

 #> 6 AUS Austin Bergstrom Intl 30.2 -97.7 542 -6 A America/Chicago

 #> # … with 95 more rows

 Anti-joins are the opposite: they return all rows in x that don’t have a match in y.

They’re useful for finding missing values that are implicit in the data, the topic of

“Implicit Missing Values” on page 323. Implicitly missing values don’t show up as NAs but instead exist only as an absence. For example, we can find rows that are missing

from airports by looking for flights that don’t have a matching destination airport:

flights2 |>

anti_join(airports, join_by(dest == faa)) |>

distinct(dest)

 #> # A tibble: 4 × 1

 #> dest

 #> <chr>

 #> 1 BQN

 #> 2 SJU

 #> 3 STT

 #> 4 PSE

Or we can find which tailnums are missing from planes:

flights2 |>

anti_join(planes, join_by(tailnum)) |>

distinct(tailnum)

 #> # A tibble: 722 × 1

 #> tailnum

 #> <chr>

 #> 1 N3ALAA

Basic Joins | 339

 #> 2 N3DUAA

 #> 3 N542MQ

 #> 4 N730MQ

 #> 5 N9EAMQ

 #> 6 N532UA

 #> # … with 716 more rows

Exercises

1. Find the 48 hours (over the course of the whole year) that have the worst delays.

Cross-reference it with the weather data. Can you see any patterns?

2. Imagine you’ve found the top 10 most popular destinations using this code:

top_dest <- flights2 |>

count(dest, sort = TRUE) |>

head(10)

How can you find all flights to those destinations?

3. Does every departing flight have corresponding weather data for that hour?

4. What do the tail numbers that don’t have a matching record in planes have in

common? (Hint: One variable explains about 90% of the problems.)

5. Add a column to planes that lists every carrier that has flown that plane.

You might expect that there’s an implicit relationship between plane and airline,

because each plane is flown by a single airline. Confirm or reject this hypothesis

using the tools you’ve learned in previous chapters.

6. Add the latitude and the longitude of the origin and destination airport to

flights. Is it easier to rename the columns before or after the join?

7. Compute the average delay by destination and then join on the airports data

frame so you can show the spatial distribution of delays. Here’s an easy way to

draw a map of the United States:

airports |>

semi_join(flights, join_by(faa == dest)) |>

ggplot(aes(x = lon, y = lat)) +

borders("state") +

geom_point() +

coord_quickmap()

You might want to use the size or color of the points to display the average

delay for each airport.

8. What happened on June 13, 2013? Draw a map of the delays, and then use

Google to cross-reference with the weather.

340 | Chapter 19: Joins

[image: Image 164]

How Do Joins Work?

Now that you’ve used joins a few times, it’s time to learn more about how they work,

focusing on how each row in x matches rows in y. We’ll begin by introducing a

visual representation of joins, using the simple tibbles defined next and shown in

Figure 19-2. In these examples we’ll use a single key called key and a single value column (val_x and val_y), but the ideas all generalize to multiple keys and multiple

values.

x <- tribble(

~key, ~val_x,

1, "x1",

2, "x2",

3, "x3"

)

y <- tribble(

~key, ~val_y,

1, "y1",

2, "y2",

4, "y3"

)

 Figure 19-2. Graphical representation of two simple tables. The colored key columns

 map background color to key value. The gray columns represent the “value” columns that

 are carried along for the ride.

Figure 19-3 introduces the foundation for our visual representation. It shows all

potential matches between x and y as the intersection between lines drawn from

each row of x and each row of y. The rows and columns in the output are primarily

determined by x, so the x table is horizontal and lines up with the output.

How Do Joins Work? | 341

[image: Image 165]

[image: Image 166]

 Figure 19-3. To understand how joins work, it’s useful to think of every possible match.

 Here we show that with a grid of connecting lines.

To describe a specific type of join, we indicate matches with dots. The matches

determine the rows in the output, a new data frame that contains the key, the x

values, and the y values. For example, Figure 19-4 shows an inner join, where rows

are retained if and only if the keys are equal.

 Figure 19-4. An inner join matches each row in x to the row in y that has the same value

 of key. Each match becomes a row in the output.

We can apply the same principles to explain the outer joins, which keep observations

that appear in at least one of the data frames. These joins work by adding an

additional “virtual” observation to each data frame. This observation has a key that

matches if no other key matches, as well as values filled with NA. There are three types

of outer joins:

• A left join keeps all observations in x, as shown in Figure 19-5. Every row of x is preserved in the output because it can fall back to matching a row of NAs in y.

342 | Chapter 19: Joins

[image: Image 167]

[image: Image 168]

 Figure 19-5. A visual representation of the left join where every row in x appears in

 the output.

• A right join keeps all observations in y, as shown in Figure 19-6. Every row of y is preserved in the output because it can fall back to matching a row of NAs in x.

The output still matches x as much as possible; any extra rows from y are added

to the end.

 Figure 19-6. A visual representation of the right join where every row of y appears

 in the output.

• A full join keeps all observations that appear in x or y, as shown in Figure 19-7.

Every row of x and y is included in the output because both x and y have a

fallback row of NAs. Again, the output starts with all rows from x, followed by the

remaining unmatched y rows.

How Do Joins Work? | 343

[image: Image 169]

[image: Image 170]

 Figure 19-7. A visual representation of the full join where every row in x and y

 appears in the output.

Another way to show how the types of outer join differ is with a Venn diagram, as

in Figure 19-8. However, this is not a great representation because while it might jog your memory about which rows are preserved, it fails to illustrate what’s happening

with the columns.

 Figure 19-8. Venn diagrams showing the difference between inner, left, right, and full

 joins.

The joins shown here are the so-called equi joins, where rows match if the keys are

equal. Equi joins are the most common type of join, so we’ll typically omit the equi

prefix and just say “inner join” rather than “equi inner join.” We’ll come back to

non-equi joins in “Filtering Joins” on page 346.

Row Matching

So far we’ve explored what happens if a row in x matches zero or one rows in y. What

happens if it matches more than one row? To understand what’s going on, let’s first

narrow our focus to inner_join() and then draw a picture, as shown in Figure 19-9.

344 | Chapter 19: Joins

[image: Image 171]

 Figure 19-9. The three ways a row in x can match. x1 matches one row in y, x2 matches

 two rows in y, and x3 matches zero rows in y. Note that while there are three rows in x

 and three rows in the output, there isn’t a direct correspondence between the rows.

There are three possible outcomes for a row in x:

• If it doesn’t match anything, it’s dropped.

• If it matches one row in y, it’s preserved.

• If it matches more than one row in y, it’s duplicated once for each match.

In principle, this means there’s no guaranteed correspondence between the rows in

the output and the rows in x, but in practice, this rarely causes problems. There is,

however, one particularly dangerous case that can cause a combinatorial explosion of

rows. Imagine joining the following two tables:

df1 <- tibble(key = c(1, 2, 2), val_x = c("x1", "x2", "x3"))

df2 <- tibble(key = c(1, 2, 2), val_y = c("y1", "y2", "y3"))

While the first row in df1 matches only one row in df2, the second and third rows

both match two rows. This is sometimes called a many-to-many join and will cause

dplyr to emit a warning:

df1 |>

inner_join(df2, join_by(key))

 #> Warning in inner_join(df1, df2, join_by(key)):

 #> Detected an unexpected many-to-many relationship between `xànd `y`.

 #> ℹ Row 2 of `x` matches multiple rows in `y`.

 #> ℹ Row 2 of `y` matches multiple rows in `x`.

 #> ℹ If a many-to-many relationship is expected, set `relationship =

 #> "many-to-many"` to silence this warning.

 #> # A tibble: 5 × 3

 #> key val_x val_y

 #> <dbl> <chr> <chr>

 #> 1 1 x1 y1

 #> 2 2 x2 y2

 #> 3 2 x2 y3

 #> 4 2 x3 y2

 #> 5 2 x3 y3

How Do Joins Work? | 345

[image: Image 172]

[image: Image 173]

If you are doing this deliberately, you can set relationship = "many-to-many", as

the warning suggests.

Filtering Joins

The number of matches also determines the behavior of the filtering joins. The

semi-join keeps rows in x that have one or more matches in y, as in Figure 19-10.

The anti-join keeps rows in x that match zero rows in y, as in Figure 19-11. In both

cases, only the existence of a match is important; it doesn’t matter how many times it

matches. This means that filtering joins never duplicate rows like mutating joins do.

 Figure 19-10. In a semi-join it only matters that there is a match; otherwise, values in y

 don’t affect the output.

 Figure 19-11. An anti-join is the inverse of a semi-join, dropping rows from x that have

 a match in y.

Non-Equi Joins

So far you’ve seen only equi joins, joins where the rows match if the x key equals the y

key. Now we’re going to relax that restriction and discuss other ways of determining if

a pair of rows match.

346 | Chapter 19: Joins

[image: Image 174]

[image: Image 175]

But before we can do that, we need to revisit a simplification we made previously.

In equi joins the x keys and y are always equal, so we need to show only one in the

output. We can request that dplyr keep both keys with keep = TRUE, leading to the

following code and the redrawn inner_join() in Figure 19-12.

x |> left_join(y, by = "key", keep = TRUE)

 #> # A tibble: 3 × 4

 #> key.x val_x key.y val_y

 #> <dbl> <chr> <dbl> <chr>

 #> 1 1 x1 1 y1

 #> 2 2 x2 2 y2

 #> 3 3 x3 NA <NA>

 Figure 19-12. An inner join showing both x and y keys in the output.

When we move away from equi joins, we’ll always show the keys, because the key

values will often be different. For example, instead of matching only when the x$key

and y$key are equal, we could match whenever the x$key is greater than or equal to

the y$key, leading to Figure 19-13. dplyr’s join functions understand this distinction between equi and non-equi joins so will always show both keys when you perform a

non-equi join.

 Figure 19-13. A non-equi join where the x key must be greater than or equal to the y key.

 Many rows generate multiple matches.

Non-Equi Joins | 347

[image: Image 176]

Non-equi join isn’t a particularly useful term because it only tells you what the join

is not, not what it is. dplyr helps by identifying four particularly useful types of

non-equi join:

 Cross joins

Match every pair of rows.

 Inequality joins

Use <, <=, >, and >= instead of ==.

 Rolling joins

Similar to inequality joins but only find the closest match.

 Overlap joins

A special type of inequality join designed to work with ranges.

Each of these is described in more detail in the following sections.

Cross Joins

A cross join matches everything, as in Figure 19-14, generating the Cartesian product of rows. This means the output will have nrow(x) * nrow(y) rows.

 Figure 19-14. A cross join matches each row in x with every row in y.

Cross joins are useful when generating permutations. For example, the following

code generates every possible pair of names. Since we’re joining df to itself, this is

sometimes called a self-join. Cross joins use a different join function because there’s

no distinction between inner/left/right/full when you’re matching every row.

df <- tibble(name = c("John", "Simon", "Tracy", "Max"))

df |> cross_join(df)

 #> # A tibble: 16 × 2

 #> name.x name.y

 #> <chr> <chr>

 #> 1 John John

 #> 2 John Simon

 #> 3 John Tracy

348 | Chapter 19: Joins

[image: Image 177]

 #> 4 John Max

 #> 5 Simon John

 #> 6 Simon Simon

 #> # … with 10 more rows

Inequality Joins

Inequality joins use <, <=, >=, or > to restrict the set of possible matches, as in

Figure 19-13 and Figure 19-15.

 Figure 19-15. An inequality join where x is joined to y on rows where the key of x is less

 than the key of y. This makes a triangular shape in the top-left corner.

Inequality joins are extremely general, so general that it’s hard to come up with

meaningful specific use cases. One small useful technique is to use them to restrict

the cross join so that instead of generating all permutations, we generate all

combinations:

df <- tibble(id = 1:4, name = c("John", "Simon", "Tracy", "Max")) df |> left_join(df, join_by(id < id))

 #> # A tibble: 7 × 4

 #> id.x name.x id.y name.y

 #> <int> <chr> <int> <chr>

 #> 1 1 John 2 Simon

 #> 2 1 John 3 Tracy

 #> 3 1 John 4 Max

 #> 4 2 Simon 3 Tracy

 #> 5 2 Simon 4 Max

 #> 6 3 Tracy 4 Max

 #> # … with 1 more row

Rolling Joins

Rolling joins are a special type of inequality join where instead of getting every row

that satisfies the inequality, you get just the closest row, as in Figure 19-16. You can turn any inequality join into a rolling join by adding closest(). For example,

join_by(closest(x <= y)) matches the smallest y that’s greater than or equal to x,

and join_by(closest(x > y)) matches the biggest y that’s less than x.

Non-Equi Joins | 349

[image: Image 178]

 Figure 19-16. A rolling join is similar to a greater-than-or-equal inequality join but

 matches only the first value.

Rolling joins are particularly useful when you have two tables of dates that don’t

perfectly line up and you want to find, for example, the closest date in table 1 that

comes before (or after) some date in table 2.

For example, imagine that you’re in charge of the party planning commission for

your office. Your company is rather cheap so instead of having individual parties, you

have a party only once each quarter. The rules for determining when a party will be

held are a little complex: parties are always on a Monday, you skip the first week of

January since a lot of people are on holiday, and the first Monday of Q3 2022 is July 4,

so that has to be pushed back a week. That leads to the following party days:

parties <- tibble(

q = 1:4,

party = ymd(c("2022-01-10", "2022-04-04", "2022-07-11", "2022-10-03"))

)

Now imagine that you have a table of employee birthdays:

employees <- tibble(

name = sample(babynames::babynames$name, 100),

birthday = ymd("2022-01-01") + (sample(365, 100, replace = TRUE) - 1)

)

employees

 #> # A tibble: 100 × 2

 #> name birthday

 #> <chr> <date>

 #> 1 Case 2022-09-13

 #> 2 Shonnie 2022-03-30

 #> 3 Burnard 2022-01-10

 #> 4 Omer 2022-11-25

 #> 5 Hillel 2022-07-30

 #> 6 Curlie 2022-12-11

 #> # … with 94 more rows

And for each employee we want to find the first party date that comes after (or on)

their birthday. We can express that with a rolling join:

employees |>

left_join(parties, join_by(closest(birthday >= party)))

350 | Chapter 19: Joins

 #> # A tibble: 100 × 4

 #> name birthday q party

 #> <chr> <date> <int> <date>

 #> 1 Case 2022-09-13 3 2022-07-11

 #> 2 Shonnie 2022-03-30 1 2022-01-10

 #> 3 Burnard 2022-01-10 1 2022-01-10

 #> 4 Omer 2022-11-25 4 2022-10-03

 #> 5 Hillel 2022-07-30 3 2022-07-11

 #> 6 Curlie 2022-12-11 4 2022-10-03

 #> # … with 94 more rows

There is, however, one problem with this approach: the folks with birthdays before

January 10 don’t get a party:

employees |>

anti_join(parties, join_by(closest(birthday >= party)))

 #> # A tibble: 0 × 2

 #> # … with 2 variables: name <chr>, birthday <date>

To resolve that issue we’ll need to tackle the problem a different way, with overlap

joins.

Overlap Joins

Overlap joins provide three helpers that use inequality joins to make it easier to work

with intervals:

• between(x, y_lower, y_upper) is short for x >= y_lower, x <= y_upper.

• within(x_lower, x_upper, y_lower, y_upper) is short for x_lower >=

y_lower, x_upper <= y_upper.

• overlaps(x_lower, x_upper, y_lower, y_upper) is short for x_lower <=

y_upper, x_upper >= y_lower.

Let’s continue the birthday example to see how you might use them. There’s one

problem with the strategy we used earlier: there’s no party preceding the birthdays

from January 1 to 9. So it might be better to to be explicit about the date ranges that

each party span, and make a special case for those early birthdays:

parties <- tibble(

q = 1:4,

party = ymd(c("2022-01-10", "2022-04-04", "2022-07-11", "2022-10-03")), start = ymd(c("2022-01-01", "2022-04-04", "2022-07-11", "2022-10-03")), end = ymd(c("2022-04-03", "2022-07-11", "2022-10-02", "2022-12-31"))

)

parties

 #> # A tibble: 4 × 4

 #> q party start end

 #> <int> <date> <date> <date>

 #> 1 1 2022-01-10 2022-01-01 2022-04-03

 #> 2 2 2022-04-04 2022-04-04 2022-07-11

 #> 3 3 2022-07-11 2022-07-11 2022-10-02

 #> 4 4 2022-10-03 2022-10-03 2022-12-31

Non-Equi Joins | 351

Hadley is hopelessly bad at data entry, so he also wanted to check that the party

periods don’t overlap. One way to do this is by using a self-join to check whether any

start-end interval overlaps with another:

parties |>

inner_join(parties, join_by(overlaps(start, end, start, end), q < q)) |>

select(start.x, end.x, start.y, end.y)

 #> # A tibble: 1 × 4

 #> start.x end.x start.y end.y

 #> <date> <date> <date> <date>

 #> 1 2022-04-04 2022-07-11 2022-07-11 2022-10-02

Oops, there is an overlap, so let’s fix that problem and continue:

parties <- tibble(

q = 1:4,

party = ymd(c("2022-01-10", "2022-04-04", "2022-07-11", "2022-10-03")), start = ymd(c("2022-01-01", "2022-04-04", "2022-07-11", "2022-10-03")), end = ymd(c("2022-04-03", "2022-07-10", "2022-10-02", "2022-12-31"))

)

Now we can match each employee to their party. This is a good place to use

unmatched = "error" because we want to quickly find out if any employees didn’t

get assigned a party:

employees |>

inner_join(parties, join_by(between(birthday, start, end)), unmatched = "error")

 #> # A tibble: 100 × 6

 #> name birthday q party start end

 #> <chr> <date> <int> <date> <date> <date>

 #> 1 Case 2022-09-13 3 2022-07-11 2022-07-11 2022-10-02

 #> 2 Shonnie 2022-03-30 1 2022-01-10 2022-01-01 2022-04-03

 #> 3 Burnard 2022-01-10 1 2022-01-10 2022-01-01 2022-04-03

 #> 4 Omer 2022-11-25 4 2022-10-03 2022-10-03 2022-12-31

 #> 5 Hillel 2022-07-30 3 2022-07-11 2022-07-11 2022-10-02

 #> 6 Curlie 2022-12-11 4 2022-10-03 2022-10-03 2022-12-31

 #> # … with 94 more rows

Exercises

1. Can you explain what’s happening with the keys in this equi join? Why are they

different?

x |> full_join(y, by = "key")

 #> # A tibble: 4 × 3

 #> key val_x val_y

 #> <dbl> <chr> <chr>

 #> 1 1 x1 y1

 #> 2 2 x2 y2

 #> 3 3 x3 <NA>

 #> 4 4 <NA> y3

x |> full_join(y, by = "key", keep = TRUE)

 #> # A tibble: 4 × 4

 #> key.x val_x key.y val_y

 #> <dbl> <chr> <dbl> <chr>

 #> 1 1 x1 1 y1

352 | Chapter 19: Joins

 #> 2 2 x2 2 y2

 #> 3 3 x3 NA <NA>

 #> 4 NA <NA> 4 y3

2. When finding if any party period overlapped with another party period, we used

q < q in the join_by()? Why? What happens if you remove this inequality?

Summary

In this chapter, you learned how to use mutating and filtering joins to combine data

from a pair of data frames. Along the way you learned how to identify keys, and you

learned the difference between primary and foreign keys. You also understand how

joins work and how to figure out how many rows the output will have. Finally, you

gained a glimpse into the power of non-equi joins and saw a few interesting use cases.

This chapter concludes the “Transform” part of the book where the focus was on the

tools you could use with individual columns and tibbles. You learned about dplyr and

base functions for working with logical vectors, numbers, and complete tables; stringr

functions for working strings; lubridate functions for working with date-times; and

forcats functions for working with factors.

In the next part of the book, you’ll learn more about getting various types of data into

R in a tidy form.

Summary | 353

[image: Image 179]

PART IV

Import

In this part of the book, you’ll learn how to import a wider range of data into R, as

well as how to get it into a form useful form for analysis. Sometimes this is just a

matter of calling a function from the appropriate data import package. But in more

complex cases it might require both tidying and transformation to get to the tidy

rectangle that you’d prefer to work with.

 Figure IV-1. Data import is the beginning of the data science process; without data you

 can’t do data science!

In this part of the book you’ll learn how to access data stored in the following ways:

• In Chapter 20, you’ll learn how to import data from Excel spreadsheets and

Google Sheets.

• In Chapter 21, you’ll learn about getting data out of a database and into R (and

you’ll also learn a little about how to get data out of R and into a database).

• In Chapter 22, you’ll learn about Arrow, a powerful tool for working with out-of-memory data, particularly when it’s stored in the parquet format.

• In Chapter 23, you’ll learn how to work with hierarchical data, including the

deeply nested lists produced by data stored in the JSON format.

• In Chapter 24, you’ll learn web “scraping,” the art and science of extracting data from web pages.

There are two important tidyverse packages that we don’t discuss here: haven and

xml2. If you are working with data from SPSS, Stata, and SAS files, check out the

haven package. If you’re working with XML data, check out the xml2 package.

Otherwise, you’ll need to do some research to figure out which package you’ll need to

use; Google is your friend here.

CHAPTER 20

Spreadsheets

Introduction

In Chapter 7 you learned about importing data from plain-text files like .csv

and .tsv. Now it’s time to learn how to get data out of a spreadsheet, either an

Excel spreadsheet or a Google Sheet. This will build on much of what you’ve learned

in Chapter 7, but we will also discuss additional considerations and complexities

when working with data from spreadsheets.

If you or your collaborators are using spreadsheets for organizing data, we strongly

recommend reading the paper “Data Organization in Spreadsheets” by Karl Broman and Kara Woo. The best practices presented in this paper will save you much head-ache when you import data from a spreadsheet into R to analyze and visualize.

Excel

Microsoft Excel is a widely used spreadsheet software program where data are organ‐

ized in worksheets inside of spreadsheet files.

Prerequisites

In this section, you’ll learn how to load data from Excel spreadsheets in R with the

readxl package. This package is noncore tidyverse, so you need to load it explicitly,

but it is installed automatically when you install the tidyverse package. Later, we’ll

also use the writexl package, which allows us to create Excel spreadsheets.

library(readxl)

library(tidyverse)

library(writexl)

357

[image: Image 180]

Getting Started

Most of readxl’s functions allow you to load Excel spreadsheets into R:

• read_xls() reads Excel files with the XLS format.

• read_xlsx() reads Excel files with the XLSX format.

• read_excel() can read files with both the XLS and XLSX formats. It guesses the file type based on the input.

These functions all have similar syntax just like other functions we have previously

introduced for reading other types of files, e.g., read_csv(), read_table(), etc. For the rest of the chapter we will focus on using read_excel().

Reading Excel Spreadsheets

Figure 20-1 shows what the spreadsheet we’re going to read into R looks like in Excel.

 Figure 20-1. Spreadsheet called students.xlsx in Excel.

The first argument to read_excel() is the path to the file to read.

students <- read_excel("data/students.xlsx")

read_excel() will read the file in as a tibble.

students

 #> # A tibble: 6 × 5

 #> `Student ID` `Full Namè favourite.food mealPlan AGE

 #> <dbl> <chr> <chr> <chr> <chr>

 #> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

 #> 2 2 Barclay Lynn French fries Lunch only 5

358 | Chapter 20: Spreadsheets

 #> 3 3 Jayendra Lyne N/A Breakfast and lunch 7

 #> 4 4 Leon Rossini Anchovies Lunch only <NA>

 #> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five

 #> 6 6 Güvenç Attila Ice cream Lunch only 6

We have six students in the data and five variables on each student. However, there

are a few things we might want to address in this dataset:

1. The column names are all over the place. You can provide column names that

follow a consistent format; we recommend snake_case using the col_names

argument.

read_excel(

"data/students.xlsx",

col_names = c(

"student_id", "full_name", "favourite_food", "meal_plan", "age")

)

 #> # A tibble: 7 × 5

 #> student_id full_name favourite_food meal_plan age

 #> <chr> <chr> <chr> <chr> <chr>

 #> 1 Student ID Full Name favourite.food mealPlan AGE

 #> 2 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

 #> 3 2 Barclay Lynn French fries Lunch only 5

 #> 4 3 Jayendra Lyne N/A Breakfast and lunch 7

 #> 5 4 Leon Rossini Anchovies Lunch only <NA>

 #> 6 5 Chidiegwu Dunkel Pizza Breakfast and lunch five

 #> 7 6 Güvenç Attila Ice cream Lunch only 6

Unfortunately, this didn’t quite do the trick. We now have the variable names

we want, but what was previously the header row now shows up as the first

observation in the data. You can explicitly skip that row using the skip argument.

read_excel(

"data/students.xlsx",

col_names = c("student_id", "full_name", "favourite_food", "meal_plan", "age"), skip = 1

)

 #> # A tibble: 6 × 5

 #> student_id full_name favourite_food meal_plan age

 #> <dbl> <chr> <chr> <chr> <chr>

 #> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

 #> 2 2 Barclay Lynn French fries Lunch only 5

 #> 3 3 Jayendra Lyne N/A Breakfast and lunch 7

 #> 4 4 Leon Rossini Anchovies Lunch only <NA>

 #> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five

 #> 6 6 Güvenç Attila Ice cream Lunch only 6

2. In the favourite_food column, one of the observations is N/A, which stands

for “not available,” but it’s currently not recognized as an NA (note the contrast

between this N/A and the age of the fourth student in the list). You can specify

which character strings should be recognized as NAs with the na argument. By

default, only "" (empty string, or, in the case of reading from a spreadsheet, an

empty cell or a cell with the formula =NA()) is recognized as an NA.

read_excel(

"data/students.xlsx",

col_names = c("student_id", "full_name", "favourite_food", "meal_plan", "age"), Excel | 359

 skip = 1,

na = c("", "N/A")

)

 #> # A tibble: 6 × 5

 #> student_id full_name favourite_food meal_plan age

 #> <dbl> <chr> <chr> <chr> <chr>

 #> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

 #> 2 2 Barclay Lynn French fries Lunch only 5

 #> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7

 #> 4 4 Leon Rossini Anchovies Lunch only <NA>

 #> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five

 #> 6 6 Güvenç Attila Ice cream Lunch only 6

3. One other remaining issue is that age is read in as a character variable, but

it really should be numeric. Just like with read_csv() and friends for reading

data from flat files, you can supply a col_types argument to read_excel()

and specify the column types for the variables you read in. The syntax is a

bit different, though. Your options are "skip", "guess", "logical", "numeric",

"date", "text", or "list".

read_excel(

"data/students.xlsx",

col_names = c("student_id", "full_name", "favourite_food", "meal_plan", "age"), skip = 1,

na = c("", "N/A"),

col_types = c("numeric", "text", "text", "text", "numeric")

)

 #> Warning: Expecting numeric in E6 / R6C5: got 'five'

 #> # A tibble: 6 × 5

 #> student_id full_name favourite_food meal_plan age

 #> <dbl> <chr> <chr> <chr> <dbl>

 #> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

 #> 2 2 Barclay Lynn French fries Lunch only 5

 #> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7

 #> 4 4 Leon Rossini Anchovies Lunch only NA

 #> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch NA

 #> 6 6 Güvenç Attila Ice cream Lunch only 6

However, this didn’t quite produce the desired result either. By specifying that

age should be numeric, we have turned the one cell with the non-numeric entry

(which had the value five) into an NA. In this case, we should read age in as

"text" and then make the change once the data is loaded in R.

students <- read_excel(

"data/students.xlsx",

col_names = c("student_id", "full_name", "favourite_food", "meal_plan", "age"), skip = 1,

na = c("", "N/A"),

col_types = c("numeric", "text", "text", "text", "text")

)

students <- students |>

mutate(

age = if_else(age == "five", "5", age),

age = parse_number(age)

)

students

360 | Chapter 20: Spreadsheets

 #> # A tibble: 6 × 5

 #> student_id full_name favourite_food meal_plan age

 #> <dbl> <chr> <chr> <chr> <dbl>

 #> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

 #> 2 2 Barclay Lynn French fries Lunch only 5

 #> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7

 #> 4 4 Leon Rossini Anchovies Lunch only NA

 #> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch 5

 #> 6 6 Güvenç Attila Ice cream Lunch only 6

It took us multiple steps and trial and error to load the data in exactly the format

we want, and this is not unexpected. Data science is an iterative process, and the

process of iteration can be even more tedious when reading data in from spreadsheets

compared to other plain-text, rectangular data files because humans tend to input

data into spreadsheets and use them not just for data storage but also for sharing and

communication.

There is no way to know exactly what the data will look like until you load it and take

a look at it. Well, there is one way, actually. You can open the file in Excel and take a

peek. If you’re going to do so, we recommend making a copy of the Excel file to open

and browse interactively while leaving the original data file untouched and reading

into R from the untouched file. This will ensure you don’t accidentally overwrite

anything in the spreadsheet while inspecting it. You should also not be afraid of doing

what we did here: load the data, take a peek, make adjustments to your code, load it

again, and repeat until you’re happy with the result.

Reading Worksheets

An important feature that distinguishes spreadsheets from flat files is the notion of

multiple sheets, called worksheets. Figure 20-2 shows an Excel spreadsheet with multiple worksheets. The data come from the palmerpenguins package. Each worksheet

contains information on penguins from a different island where data were collected.

You can read a single worksheet from a spreadsheet with the sheet argument in

read_excel(). The default, which we’ve been relying on up until now, is the first sheet.

read_excel("data/penguins.xlsx", sheet = "Torgersen Island")

 #> # A tibble: 52 × 8

 #> species island bill_length_mm bill_depth_mm flipper_length_mm

 #> <chr> <chr> <chr> <chr> <chr>

 #> 1 Adelie Torgersen 39.1 18.7 181

 #> 2 Adelie Torgersen 39.5 17.399999999999999 186

 #> 3 Adelie Torgersen 40.299999999999997 18 195

 #> 4 Adelie Torgersen NA NA NA

 #> 5 Adelie Torgersen 36.700000000000003 19.3 193

 #> 6 Adelie Torgersen 39.299999999999997 20.6 190

 #> # … with 46 more rows, and 3 more variables: body_mass_g <chr>, sex <chr>,

 #> # year <dbl>

Excel | 361

[image: Image 181]

 Figure 20-2. Spreadsheet called penguins.xlsx in Excel containing three worksheets.

Some variables that appear to contain numerical data are read in as characters due to

the character string "NA" not being recognized as a true NA.

penguins_torgersen <- read_excel(

"data/penguins.xlsx", sheet = "Torgersen Island", na = "NA"

)

penguins_torgersen

 #> # A tibble: 52 × 8

 #> species island bill_length_mm bill_depth_mm flipper_length_mm

 #> <chr> <chr> <dbl> <dbl> <dbl>

 #> 1 Adelie Torgersen 39.1 18.7 181

 #> 2 Adelie Torgersen 39.5 17.4 186

 #> 3 Adelie Torgersen 40.3 18 195

 #> 4 Adelie Torgersen NA NA NA

 #> 5 Adelie Torgersen 36.7 19.3 193

 #> 6 Adelie Torgersen 39.3 20.6 190

 #> # … with 46 more rows, and 3 more variables: body_mass_g <dbl>, sex <chr>,

 #> # year <dbl>

Alternatively, you can use excel_sheets() to get information on all worksheets in an Excel spreadsheet and then read the one(s) you’re interested in.

excel_sheets("data/penguins.xlsx")

 #> [1] "Torgersen Island" "Biscoe Island" "Dream Island"

362 | Chapter 20: Spreadsheets

Once you know the names of the worksheets, you can read them in individually with

read_excel().

penguins_biscoe <- read_excel("data/penguins.xlsx", sheet = "Biscoe Island", na = "NA") penguins_dream <- read_excel("data/penguins.xlsx", sheet = "Dream Island", na = "NA") In this case, the full penguins dataset is spread across three worksheets in the spreadsheet. Each worksheet has the same number of columns but different numbers of

rows.

dim(penguins_torgersen)

 #> [1] 52 8

dim(penguins_biscoe)

 #> [1] 168 8

dim(penguins_dream)

 #> [1] 124 8

We can put them together with bind_rows(): penguins <- bind_rows(penguins_torgersen, penguins_biscoe, penguins_dream)

penguins

 #> # A tibble: 344 × 8

 #> species island bill_length_mm bill_depth_mm flipper_length_mm

 #> <chr> <chr> <dbl> <dbl> <dbl>

 #> 1 Adelie Torgersen 39.1 18.7 181

 #> 2 Adelie Torgersen 39.5 17.4 186

 #> 3 Adelie Torgersen 40.3 18 195

 #> 4 Adelie Torgersen NA NA NA

 #> 5 Adelie Torgersen 36.7 19.3 193

 #> 6 Adelie Torgersen 39.3 20.6 190

 #> # … with 338 more rows, and 3 more variables: body_mass_g <dbl>, sex <chr>,

 #> # year <dbl>

In Chapter 26 we’ll talk about ways of doing this sort of task without repetitive code.

Reading Part of a Sheet

Since many use Excel spreadsheets for presentation as well as for data storage, it’s

quite common to find cell entries in a spreadsheet that are not part of the data you

want to read into R. Figure 20-3 shows such a spreadsheet: in the middle of the sheet

is what looks like a data frame, but there is extraneous text in cells above and below

the data.

Excel | 363

[image: Image 182]

 Figure 20-3. Spreadsheet called deaths.xlsx in Excel.

This spreadsheet is one of the example spreadsheets provided in the readxl package.

You can use the readxl_example() function to locate the spreadsheet on your system in the directory where the package is installed. This function returns the path to the

spreadsheet, which you can use in read_excel() as usual.

deaths_path <- readxl_example("deaths.xlsx")

deaths <- read_excel(deaths_path)

 #> New names:

 #> • `` -> `...2`

 #> • `` -> `...3`

 #> • `` -> `...4`

 #> • `` -> `...5`

 #> • `` -> `...6`

deaths

 #> # A tibble: 18 × 6

 #> `Lots of peoplè ...2 ...3 ...4 ...5 ...6

 #> <chr> <chr> <chr> <chr> <chr> <chr>

 #> 1 simply cannot resi… <NA> <NA> <NA> <NA> some notes

 #> 2 at the top <NA> of their spreadsh…

 #> 3 or merging <NA> <NA> <NA> cells

 #> 4 Name Profession Age Has kids Date of birth Date of death

 #> 5 David Bowie musician 69 TRUE 17175 42379

 #> 6 Carrie Fisher actor 60 TRUE 20749 42731

 #> # … with 12 more rows

The top three rows and the bottom four rows are not part of the data frame. It’s

possible to eliminate these extraneous rows using the skip and n_max arguments, but

we recommend using cell ranges. In Excel, the top-left cell is A1. As you move across

364 | Chapter 20: Spreadsheets

columns to the right, the cell label moves down the alphabet, i.e., B1, C1, etc. And as you move down a column, the number in the cell label increases, i.e., A2, A3, etc.

Here the data we want to read in starts in cell A5 and ends in cell F15. In spreadsheet

notation, this is A5:F15, which we supply to the range argument:

read_excel(deaths_path, range = "A5:F15")

 #> # A tibble: 10 × 6

 #> Name Profession AgèHas kids` `Date of birth`

 #> <chr> <chr> <dbl> <lgl> <dttm>

 #> 1 David Bowie musician 69 TRUE 1947-01-08 00:00:00

 #> 2 Carrie Fisher actor 60 TRUE 1956-10-21 00:00:00

 #> 3 Chuck Berry musician 90 TRUE 1926-10-18 00:00:00

 #> 4 Bill Paxton actor 61 TRUE 1955-05-17 00:00:00

 #> 5 Prince musician 57 TRUE 1958-06-07 00:00:00

 #> 6 Alan Rickman actor 69 FALSE 1946-02-21 00:00:00

 #> # … with 4 more rows, and 1 more variable: `Date of death` <dttm>

Data Types

In CSV files, all values are strings. This is not particularly true to the data, but it is

simple: everything is a string.

The underlying data in Excel spreadsheets is more complex. A cell can be one of four

things:

• A Boolean, like TRUE, FALSE, or NA

• A number, like “10” or “10.5”

• A datetime, which can also include time like “11/1/21” or “11/1/21 3:00 PM”

• A text string, like “ten”

When working with spreadsheet data, it’s important to keep in mind that the underly‐

ing data can be very different than what you see in the cell. For example, Excel has

no notion of an integer. All numbers are stored as floating points, but you can choose

to display the data with a customizable number of decimal points. Similarly, dates

are actually stored as numbers, specifically the number of seconds since January 1,

1970. You can customize how you display the date by applying formatting in Excel.

Confusingly, it’s also possible to have something that looks like a number but is

actually a string (e.g., type '10 into a cell in Excel).

These differences between how the underlying data are stored versus how they’re

displayed can cause surprises when the data are loaded into R. By default readxl will

guess the data type in a given column. A recommended workflow is to let readxl

guess the column types, confirm that you’re happy with the guessed column types,

and if not, go back and re-import specifying col_types, as shown in “Reading Excel

Spreadsheets” on page 358.

Excel | 365

[image: Image 183]

Another challenge is when you have a column in your Excel spreadsheet that has

a mix of these types, e.g., some cells are numeric, others text, others dates. When

importing the data into R, readxl has to make some decisions. In these cases you can

set the type for this column to "list", which will load the column as a list of length 1

vectors, where the type of each element of the vector is guessed.

Sometimes data is stored in more exotic ways, like the color of

the cell background or whether the text is bold. In such cases, you

might find the tidyxl package useful. See https://oreil.ly/jNskS for more on strategies for working with nontabular data from Excel.

Writing to Excel

Let’s create a small data frame that we can then write out. Note that item is a factor

and quantity is an integer.

bake_sale <- tibble(

item = factor(c("brownie", "cupcake", "cookie")),

quantity = c(10, 5, 8)

)

bake_sale

 #> # A tibble: 3 × 2

 #> item quantity

 #> <fct> <dbl>

 #> 1 brownie 10

 #> 2 cupcake 5

 #> 3 cookie 8

You can write data back to disk as an Excel file using write_xlsx() from the writexl

package:

write_xlsx(bake_sale, path = "data/bake-sale.xlsx")

Figure 20-4 shows what the data looks like in Excel. Note that column names are

included and bold. These names can be turned off by setting the col_names and

format_headers arguments to FALSE.

366 | Chapter 20: Spreadsheets

[image: Image 184]

 Figure 20-4. Spreadsheet called bake_sale.xlsx in Excel.

Just like reading from a CSV, information on data type is lost when we read the data

back in. This makes Excel files unreliable for caching interim results as well. For

alternatives, see “Writing to a File” on page 108.

read_excel("data/bake-sale.xlsx")

 #> # A tibble: 3 × 2

 #> item quantity

 #> <chr> <dbl>

 #> 1 brownie 10

 #> 2 cupcake 5

 #> 3 cookie 8

Formatted Output

The writexl package is a lightweight solution for writing a simple Excel spreadsheet,

but if you’re interested in additional features such as writing to sheets within a

spreadsheet and styling, you will want to use the openxlsx package. We won’t go into

the details of using this package here, but we recommend reading https://oreil.ly/clwtE

for an extensive discussion on further formatting functionality for data written from

R to Excel with openxlsx.

Note that this package is not part of the tidyverse, so the functions and workflows

may feel unfamiliar. For example, function names are camelCase, multiple functions

can’t be composed in pipelines, and arguments are in a different order than they

tend to be in the tidyverse. However, this is OK. As your R learning and usage

expands outside of this book, you will encounter lots of different styles used in

Excel | 367

[image: Image 185]

various R packages that you might use to accomplish specific goals in R. A good way

of familiarizing yourself with the coding style used in a new package is to run the

examples provided in the function documentation to get a feel for the syntax and the

output formats as well as reading any vignettes that might come with the package.

Exercises

1. In an Excel file, create the following dataset and save it as survey.xlsx. Alterna‐

tively, you can download it as an Excel file.

Then, read it into R, with survey_id as a character variable and n_pets as a

numerical variable.

#> # A tibble: 6 × 2

#> survey_id n_pets

#> <chr> <dbl>

#> 1 1 0

#> 2 2 1

#> 3 3 NA

#> 4 4 2

#> 5 5 2

#> 6 6 NA

2. In another Excel file, create the following dataset and save it as roster.xlsx.

Alternatively, you can download it as an Excel file.

368 | Chapter 20: Spreadsheets

[image: Image 186]

Then, read it into R. The resulting data frame should be called roster and should

look like the following:

#> # A tibble: 12 × 3

#> group subgroup id

#> <dbl> <chr> <dbl>

#> 1 1 A 1

#> 2 1 A 2

#> 3 1 A 3

#> 4 1 B 4

#> 5 1 B 5

#> 6 1 B 6

#> 7 1 B 7

#> 8 2 A 8

#> 9 2 A 9

#> 10 2 B 10

#> 11 2 B 11

#> 12 2 B 12

3. In a new Excel file, create the following dataset and save it as sales.xlsx.

Alternatively, you can download it as an Excel file.

Excel | 369

[image: Image 187]

a. Read sales.xlsx in and save as sales. The data frame should look like the

following, with id and n as column names and nine rows:

#> # A tibble: 9 × 2

#> id n

#> <chr> <chr>

#> 1 Brand 1 n

#> 2 1234 8

#> 3 8721 2

#> 4 1822 3

#> 5 Brand 2 n

#> 6 3333 1

#> 7 2156 3

#> 8 3987 6

#> 9 3216 5

b. Modify sales further to get it into the following tidy format with three

columns (brand, id, and n) and seven rows of data. Note that id and n are

numeric, and brand is a character variable.

#> # A tibble: 7 × 3

#> brand id n

#> <chr> <dbl> <dbl>

#> 1 Brand 1 1234 8

#> 2 Brand 1 8721 2

#> 3 Brand 1 1822 3

#> 4 Brand 2 3333 1

#> 5 Brand 2 2156 3

#> 6 Brand 2 3987 6

#> 7 Brand 2 3216 5

370 | Chapter 20: Spreadsheets

4. Re-create the bake_sale data frame, and write it out to an Excel file using the

write.xlsx() function from the openxlsx package.

5. In Chapter 7 you learned about the janitor::clean_names() function to turn column names into snake case. Read the students.xlsx file that we introduced

earlier in this section and use this function to “clean” the column names.

6. What happens if you try to read in a file with an .xlsx extension with

read_xls()?

Google Sheets

Google Sheets is another widely used spreadsheet program. It’s free and web-based.

Just like with Excel, in Google Sheets data are organized in worksheets (also called

 sheets) inside of spreadsheet files.

Prerequisites

This section will also focus on spreadsheets, but this time you’ll be loading data from

a Google Sheet with the googlesheets4 package. This package is noncore tidyverse as

well, so you need to load it explicitly:

library(googlesheets4)

library(tidyverse)

A quick note about the name of the package: googlesheets4 uses v4 of the Sheets API

v4 to provide an R interface to Google Sheets.

Getting Started

The main function of the googlesheets4 package is read_sheet(), which reads a Google Sheet from a URL or a file ID. This function also goes by the name range_read().

You can also create a new sheet with gs4_create() or write to an existing sheet with

sheet_write() and friends.

In this section we’ll work with the same datasets as the ones in the Excel section

to highlight similarities and differences between workflows for reading data from

Excel and Google Sheets. The readxl and googlesheets4 packages are both designed

to mimic the functionality of the readr package, which provides the read_csv()

function you saw in Chapter 7. Therefore, many of the tasks can be accomplished

with simply swapping out read_excel() for read_sheet(). However you’ll also see that Excel and Google Sheets don’t behave in the same way; therefore, other tasks may

require further updates to the function calls.

Google Sheets | 371

[image: Image 188]

Reading Google Sheets

Figure 20-5 shows what the spreadsheet we’re going to read into R looks like in

Google Sheets. This is the same dataset as in Figure 20-1, except it’s stored in a Google Sheet instead of Excel.

 Figure 20-5. Google Sheet called students in a browser window.

The first argument to read_sheet() is the URL of the file to read, and it returns a

tibble.

These URLs are not pleasant to work with, so you’ll often want to identify a sheet by

its ID.

students_sheet_id <- "1V1nPp1tzOuutXFLb3G9Eyxi3qxeEhnOXUzL5_BcCQ0w"

students <- read_sheet(students_sheet_id)

 #> ✔ Reading from students.

 #> ✔ Range Sheet1.

students

 #> # A tibble: 6 × 5

 #> `Student ID` `Full Namè favourite.food mealPlan AGE

 #> <dbl> <chr> <chr> <chr> <list>

 #> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only <dbl>

 #> 2 2 Barclay Lynn French fries Lunch only <dbl>

 #> 3 3 Jayendra Lyne N/A Breakfast and lunch <dbl>

 #> 4 4 Leon Rossini Anchovies Lunch only <NULL>

 #> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch <chr>

 #> 6 6 Güvenç Attila Ice cream Lunch only <dbl>

Just like we did with read_excel(), we can supply column names, NA strings, and column types to read_sheet().

372 | Chapter 20: Spreadsheets

students <- read_sheet(

students_sheet_id,

col_names = c("student_id", "full_name", "favourite_food", "meal_plan", "age"), skip = 1,

na = c("", "N/A"),

col_types = "dcccc"

)

 #> ✔ Reading from students.

 #> ✔ Range 2:10000000.

students

 #> # A tibble: 6 × 5

 #> student_id full_name favourite_food meal_plan age

 #> <dbl> <chr> <chr> <chr> <chr>

 #> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

 #> 2 2 Barclay Lynn French fries Lunch only 5

 #> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7

 #> 4 4 Leon Rossini Anchovies Lunch only <NA>

 #> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five

 #> 6 6 Güvenç Attila Ice cream Lunch only 6

Note that we defined column types a bit differently here, using short codes. For

example, “dcccc” stands for “double, character, character, character, character.”

It’s also possible to read individual sheets from Google Sheets. Let’s read the “Tor‐

gersen Island” sheet from the penguins Google Sheet:

penguins_sheet_id <- "1aFu8lnD_g0yjF5O-K6SFgSEWiHPpgvFCF0NY9D6LXnY"

read_sheet(penguins_sheet_id, sheet = "Torgersen Island")

 #> ✔ Reading from penguins.

 #> ✔ Range ''Torgersen Island''.

 #> # A tibble: 52 × 8

 #> species island bill_length_mm bill_depth_mm flipper_length_mm

 #> <chr> <chr> <list> <list> <list>

 #> 1 Adelie Torgersen <dbl [1]> <dbl [1]> <dbl [1]>

 #> 2 Adelie Torgersen <dbl [1]> <dbl [1]> <dbl [1]>

 #> 3 Adelie Torgersen <dbl [1]> <dbl [1]> <dbl [1]>

 #> 4 Adelie Torgersen <chr [1]> <chr [1]> <chr [1]>

 #> 5 Adelie Torgersen <dbl [1]> <dbl [1]> <dbl [1]>

 #> 6 Adelie Torgersen <dbl [1]> <dbl [1]> <dbl [1]>

 #> # … with 46 more rows, and 3 more variables: body_mass_g <list>, sex <chr>,

 #> # year <dbl>

You can obtain a list of all sheets within a Google Sheet with sheet_names(): sheet_names(penguins_sheet_id)

 #> [1] "Torgersen Island" "Biscoe Island" "Dream Island"

Finally, just like with read_excel(), we can read in a portion of a Google Sheet by defining a range in read_sheet(). Note that we’re also using the gs4_example()

function to locate an example Google Sheet that comes with the following google‐

sheets4 package:

deaths_url <- gs4_example("deaths")

deaths <- read_sheet(deaths_url, range = "A5:F15")

 #> ✔ Reading from deaths.

 #> ✔ Range A5:F15.

deaths

Google Sheets | 373

 #> # A tibble: 10 × 6

 #> Name Profession AgèHas kids` `Date of birth`

 #> <chr> <chr> <dbl> <lgl> <dttm>

 #> 1 David Bowie musician 69 TRUE 1947-01-08 00:00:00

 #> 2 Carrie Fisher actor 60 TRUE 1956-10-21 00:00:00

 #> 3 Chuck Berry musician 90 TRUE 1926-10-18 00:00:00

 #> 4 Bill Paxton actor 61 TRUE 1955-05-17 00:00:00

 #> 5 Prince musician 57 TRUE 1958-06-07 00:00:00

 #> 6 Alan Rickman actor 69 FALSE 1946-02-21 00:00:00

 #> # … with 4 more rows, and 1 more variable: `Date of death` <dttm>

Writing to Google Sheets

You can write from R to Google Sheets with write_sheet(). The first argument is the data frame to write, and the second argument is the name (or other identifier) of the

Google Sheet to write to:

write_sheet(bake_sale, ss = "bake-sale")

If you’d like to write your data to a specific (work)sheet inside a Google Sheet, you

can specify that with the sheet argument as well:

write_sheet(bake_sale, ss = "bake-sale", sheet = "Sales")

Authentication

While you can read from a public Google Sheet without authenticating with your

Google account, reading a private sheet or writing to a sheet requires authentication

so that googlesheets4 can view and manage your Google Sheets.

When you attempt to read in a sheet that requires authentication, googlesheets4 will

direct you to a web browser with a prompt to sign in to your Google account and

grant permission to operate on your behalf with Google Sheets. However, if you want

to specify a specific Google account, authentication scope, etc., you can do so with

gs4_auth(), e.g., gs4_auth(email = "mine@example.com"), which will force the use of a token associated with a specific email. For further authentication details, we

recommend reading the googlesheets4 auth vignette.

Exercises

1. Read the students dataset from earlier in the chapter from Excel and also from

Google Sheets, with no additional arguments supplied to the read_excel() and

read_sheet() functions. Are the resulting data frames in R exactly the same? If not, how are they different?

2. Read the Google Sheet titled survey, with survey_id as a character variable and n_pets as a numerical variable.

3. Read the Google Sheet titled roster. The resulting data frame should be called roster and should look like the following:

374 | Chapter 20: Spreadsheets

#> # A tibble: 12 × 3

#> group subgroup id

#> <dbl> <chr> <dbl>

#> 1 1 A 1

#> 2 1 A 2

#> 3 1 A 3

#> 4 1 B 4

#> 5 1 B 5

#> 6 1 B 6

#> 7 1 B 7

#> 8 2 A 8

#> 9 2 A 9

#> 10 2 B 10

#> 11 2 B 11

#> 12 2 B 12

Summary

Microsoft Excel and Google Sheets are two of the most popular spreadsheet systems.

Being able to interact with data stored in Excel and Google Sheets files directly

from R is a superpower! In this chapter, you learned how to read data into R

from spreadsheets from Excel with read_excel() from the readxl package and from

Google Sheets with read_sheet() from the googlesheets4 package. These functions

work very similarly to each other and have similar arguments for specifying column

names, NA strings, rows to skip on top of the file you’re reading in, etc. Additionally,

both functions make it possible to read a single sheet from a spreadsheet.

On the other hand, writing to an Excel file requires a different package and function

(writexl::write_xlsx()), while you can write to a Google Sheet with the google‐

sheets4 package, with write_sheet().

In the next chapter, you’ll learn about a different data source, databases, and how to

read data from that source into R.

Summary | 375

CHAPTER 21

Databases

Introduction

A huge amount of data lives in databases, so it’s essential that you know how to access

it. Sometimes you can ask someone to download a snapshot into a .csv file for you,

but this gets painful quickly: every time you need to make a change, you’ll have to

communicate with another human. You want to be able to reach into the database

directly to get the data you need, when you need it.

In this chapter, you’ll first learn the basics of the DBI package: how to use it to

connect to a database and then retrieve data with a SQL1 query. SQL, short for Structured Query Language, is the lingua franca of databases and is an important

language for all data scientists to learn. That said, we’re not going to start with SQL,

but instead we’ll teach you dbplyr, which can translate your dplyr code to SQL. We’ll

use that as a way to teach you some of the most important features of SQL. You won’t

become a SQL master by the end of the chapter, but you will be able to identify the

most important components and understand what they do.

Prerequisites

In this chapter, we’ll introduce DBI and dbplyr. DBI is a low-level interface that con‐

nects to databases and executes SQL; dbplyr is a high-level interface that translates

your dplyr code to SQL queries and then executes them with DBI.

library(DBI)

library(dbplyr)

library(tidyverse)

1 SQL is either pronounced “s”-“q”-“l” or “sequel.”

377

Database Basics

At the simplest level, you can think about a database as a collection of data frames,

called tables in database terminology. Like a data.frame, a database table is a collec‐

tion of named columns, where every value in the column is the same type. There are

three high-level differences between data frames and database tables:

• Database tables are stored on disk and can be arbitrarily large. Data frames are

stored in memory and are fundamentally limited (although that limit is still

plenty large for many problems).

• Database tables almost always have indexes. Much like the index of a book, a

database index makes it possible to quickly find rows of interest without having

to look at every single row. Data frames and tibbles don’t have indexes, but data

tables do, which is one of the reasons that they’re so fast.

• Most classical databases are optimized for rapidly collecting data, not analyzing

existing data. These databases are called row-oriented because the data is stored

row by row, rather than column by column like R. More recently, there’s been

much development of column-oriented databases that make analyzing the existing

data much faster.

Databases are run by database management systems (DBMS for short), which come

in three basic forms:

• Client-server DBMS run on a powerful central server, which you connect from

your computer (the client). They are great for sharing data with multiple people

in an organization. Popular client-server DBMS include PostgreSQL, MariaDB,

SQL Server, and Oracle.

• Cloud DBMS, like Snowflake, Amazon’s RedShift, and Google’s BigQuery, are

similar to client-server DBMS, but they run in the cloud. This means they

can easily handle extremely large datasets and can automatically provide more

compute resources as needed.

• In-process DBMS, like SQLite or duckdb, run entirely on your computer. They’re

great for working with large datasets where you’re the primary user.

Connecting to a Database

To connect to the database from R, you’ll use a pair of packages:

• You’ll always use DBI (d ata b ase i nterface) because it provides a set of generic functions that connect to the database, upload data, run SQL queries, etc.

• You’ll also use a package tailored for the DBMS you’re connecting to. This

package translates the generic DBI commands into the specifics needed for a

378 | Chapter 21: Databases

given DBMS. There’s usually one package for each DBMS, e.g., RPostgres for

PostgreSQL and RMariaDB for MySQL.

If you can’t find a specific package for your DBMS, you can usually use the odbc

package instead. This uses the ODBC protocol supported by many DBMS. odbc

requires a little more setup because you’ll also need to install an ODBC driver and tell

the odbc package where to find it.

Concretely, you create a database connection using DBI::dbConnect(). The first argument selects the DBMS,2 and then the second and subsequent arguments

describe how to connect to it (i.e., where it lives and the credentials that you need to

access it). The following code shows a couple of typical examples:

con <- DBI::dbConnect(

RMariaDB::MariaDB(),

username = "foo"

)

con <- DBI::dbConnect(

RPostgres::Postgres(),

hostname = "databases.mycompany.com",

port = 1234

)

The precise details of the connection vary a lot from DBMS to DBMS, so unfortu‐

nately we can’t cover all the details here. This means you’ll need to do a little research

on your own. Typically you can ask the other data scientists in your team or talk to

your DBA (d ata b ase a dministrator). The initial setup will often take a little fiddling (and maybe some googling) to get it right, but you’ll generally need to do it only once.

In This Book

Setting up a client-server or cloud DBMS would be a pain for this book, so we’ll

instead use an in-process DBMS that lives entirely in an R package: duckdb. Thanks

to the magic of DBI, the only difference between using duckdb and any other DBMS

is how you’ll connect to the database. This makes it great to teach with because you

can easily run this code as well as easily take what you learn and apply it elsewhere.

Connecting to duckdb is particularly simple because the defaults create a temporary

database that is deleted when you quit R. That’s great for learning because it guaran‐

tees that you’ll start from a clean slate every time you restart R:

con <- DBI::dbConnect(duckdb::duckdb())

duckdb is a high-performance database that’s designed very much for the needs of a

data scientist. We use it here because it’s easy to get started with, but it’s also capable

2 Typically, this is the only function you’ll use from the client package, so we recommend using :: to pull out that one function, rather than loading the complete package with library().

Connecting to a Database | 379

of handling gigabytes of data with great speed. If you want to use duckdb for a

real data analysis project, you’ll also need to supply the dbdir argument to make a

persistent database and tell duckdb where to save it. Assuming you’re using a project

(Chapter 6), it’s reasonable to store it in the duckdb directory of the current project: con <- DBI::dbConnect(duckdb::duckdb(), dbdir = "duckdb")

Load Some Data

Since this is a new database, we need to start by adding some data. Here we’ll add the

mpg and diamonds datasets from ggplot2 using DBI::dbWriteTable(). The simplest

usage of dbWriteTable() needs three arguments: a database connection, the name of the table to create in the database, and a data frame of data.

dbWriteTable(con, "mpg", ggplot2::mpg)

dbWriteTable(con, "diamonds", ggplot2::diamonds)

If you’re using duckdb in a real project, we highly recommend learning about

duckdb_read_csv() and duckdb_register_arrow(). These give you powerful and

performant ways to quickly load data directly into duckdb, without having to first

load it into R. We’ll also show off a useful technique for loading multiple files into a

database in “Writing to a Database” on page 483.

DBI Basics

You can check that the data is loaded correctly by using a couple of other DBI func‐

tions: dbListTable() lists all tables in the database,3 and dbReadTable() retrieves the contents of a table.

dbListTables(con)

 #> [1] "diamonds" "mpg"

con |>

dbReadTable("diamonds") |>

as_tibble()

 #> # A tibble: 53,940 × 10

 #> carat cut color clarity depth table price x y z

 #> <dbl> <fct> <fct> <fct> <dbl> <dbl> <int> <dbl> <dbl> <dbl>

 #> 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43

 #> 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31

 #> 3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31

 #> 4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63

 #> 5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75

 #> 6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48

 #> # … with 53,934 more rows

dbReadTable() returns a data.frame, so we use as_tibble() to convert it into a tibble so that it prints nicely.

3 At least, all the tables that you have permission to see.

380 | Chapter 21: Databases

If you already know SQL, you can use dbGetQuery() to get the results of running a

query on the database:

sql <- "

SELECT carat, cut, clarity, color, price

FROM diamonds

WHERE price > 15000

"

as_tibble(dbGetQuery(con, sql))

 #> # A tibble: 1,655 × 5

 #> carat cut clarity color price

 #> <dbl> <fct> <fct> <fct> <int>

 #> 1 1.54 Premium VS2 E 15002

 #> 2 1.19 Ideal VVS1 F 15005

 #> 3 2.1 Premium SI1 I 15007

 #> 4 1.69 Ideal SI1 D 15011

 #> 5 1.5 Very Good VVS2 G 15013

 #> 6 1.73 Very Good VS1 G 15014

 #> # … with 1,649 more rows

If you’ve never seen SQL before, don’t worry! You’ll learn more about it shortly. But

if you read it carefully, you might guess that it selects five columns of the diamonds

dataset and all the rows where price is greater than 15,000.

dbplyr Basics

Now that we’ve connected to a database and loaded up some data, we can start

to learn about dbplyr. dbplyr is a dplyr backend, which means you keep writing

dplyr code but the backend executes it differently. In this, dbplyr translates to SQL;

other backends include dtplyr, which translates to data.table, and multidplyr, which

executes your code on multiple cores.

To use dbplyr, you must first use tbl() to create an object that represents a database table:

diamonds_db <- tbl(con, "diamonds")

diamonds_db

 #> # Source: table<diamonds> [?? x 10]

 #> # Database: DuckDB 0.6.1 [root@Darwin 22.3.0:R 4.2.1/:memory:]

 #> carat cut color clarity depth table price x y z

 #> <dbl> <fct> <fct> <fct> <dbl> <dbl> <int> <dbl> <dbl> <dbl>

 #> 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43

 #> 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31

 #> 3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31

 #> 4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63

 #> 5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75

 #> 6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48

 #> # … with more rows

dbplyr Basics | 381

[image: Image 189]

There are two other common ways to interact with a database.

First, many corporate databases are very large so you need some

hierarchy to keep all the tables organized. In that case you might

need to supply a schema, or a catalog and a schema, to pick the

table you’re interested in:

diamonds_db <- tbl(con, in_schema("sales", "diamonds"))

diamonds_db <- tbl(

con, in_catalog("north_america", "sales", "diamonds")

)

Other times you might want to use your own SQL query as a

starting point:

diamonds_db <- tbl(con, sql("SELECT * FROM diamonds"))

This object is lazy; when you use dplyr verbs on it, dplyr doesn’t do any work: it just

records the sequence of operations that you want to perform and performs them only

when needed. For example, take the following pipeline:

big_diamonds_db <- diamonds_db |>

filter(price > 15000) |>

select(carat:clarity, price)

big_diamonds_db

 #> # Source: SQL [?? x 5]

 #> # Database: DuckDB 0.6.1 [root@Darwin 22.3.0:R 4.2.1/:memory:]

 #> carat cut color clarity price

 #> <dbl> <fct> <fct> <fct> <int>

 #> 1 1.54 Premium E VS2 15002

 #> 2 1.19 Ideal F VVS1 15005

 #> 3 2.1 Premium I SI1 15007

 #> 4 1.69 Ideal D SI1 15011

 #> 5 1.5 Very Good G VVS2 15013

 #> 6 1.73 Very Good G VS1 15014

 #> # … with more rows

You can tell this object represents a database query because it prints the DBMS name

at the top, and while it tells you the number of columns, it typically doesn’t know the

number of rows. This is because finding the total number of rows usually requires

executing the complete query, something we’re trying to avoid.

You can see the SQL code generated by dplyr with the show_query() function. If you know dplyr, this is a great way to learn SQL! Write some dplyr code, get dbplyr to

translate it to SQL and then try to figure out how the two languages match up.

big_diamonds_db |>

show_query()

 #> <SQL>

 #> SELECT carat, cut, color, clarity, price

 #> FROM diamonds

 #> WHERE (price > 15000.0)

382 | Chapter 21: Databases

To get all the data back into R, you call collect(). Behind the scenes, this generates

the SQL, calls dbGetQuery() to get the data, and then turns the result into a tibble: big_diamonds <- big_diamonds_db |>

collect()

big_diamonds

 #> # A tibble: 1,655 × 5

 #> carat cut color clarity price

 #> <dbl> <fct> <fct> <fct> <int>

 #> 1 1.54 Premium E VS2 15002

 #> 2 1.19 Ideal F VVS1 15005

 #> 3 2.1 Premium I SI1 15007

 #> 4 1.69 Ideal D SI1 15011

 #> 5 1.5 Very Good G VVS2 15013

 #> 6 1.73 Very Good G VS1 15014

 #> # … with 1,649 more rows

Typically, you’ll use dbplyr to select the data you want from the database, performing

basic filtering and aggregation using the translations described next. Then, once

you’re ready to analyze the data with functions that are unique to R, you’ll collect the

data using collect() to get an in-memory tibble and continue your work with pure R code.

SQL

The rest of the chapter will teach you a little SQL through the lens of dbplyr. It’s a

rather nontraditional introduction to SQL, but we hope it will get you quickly up

to speed with the basics. Luckily, if you understand dplyr, you’re in a great place to

quickly pick up SQL because so many of the concepts are the same.

We’ll explore the relationship between dplyr and SQL using a couple of old friends

from the nycflights13 package: flights and planes. These datasets are easy to get

into our learning database because dbplyr comes with a function that copies the

tables from nycflights13 to our database:

dbplyr::copy_nycflights13(con)

 #> Creating table: airlines

 #> Creating table: airports

 #> Creating table: flights

 #> Creating table: planes

 #> Creating table: weather

flights <- tbl(con, "flights")

planes <- tbl(con, "planes")

SQL Basics

The top-level components of SQL are called statements. Common statements include

CREATE for defining new tables, INSERT for adding data, and SELECT for retrieving

SQL | 383

data. We will on focus on SELECT statements, also called queries, because they are almost exclusively what you’ll use as a data scientist.

A query is made up of clauses. There are five important clauses: SELECT, FROM, WHERE,

ORDER BY, and GROUP BY. Every query must have the SELECT4 and FROM5 clauses, and the simplest query is SELECT * FROM table, which selects all columns from the

specified table. This is what dbplyr generates for an unadulterated table:

flights |> show_query()

 #> <SQL>

 #> SELECT *

 #> FROM flights

planes |> show_query()

 #> <SQL>

 #> SELECT *

 #> FROM planes

WHERE and ORDER BY control which rows are included and how they are ordered:

flights |>

filter(dest == "IAH") |>

arrange(dep_delay) |>

show_query()

 #> <SQL>

 #> SELECT *

 #> FROM flights

 #> WHERE (dest = 'IAH')

 #> ORDER BY dep_delay

GROUP BY converts the query to a summary, causing aggregation to happen:

flights |>

group_by(dest) |>

summarize(dep_delay = mean(dep_delay, na.rm = TRUE)) |>

show_query()

 #> <SQL>

 #> SELECT dest, AVG(dep_delay) AS dep_delay

 #> FROM flights

 #> GROUP BY dest

There are two important differences between dplyr verbs and SELECT clauses:

• In SQL, case doesn’t matter: you can write select, SELECT, or even SeLeCt. In

this book we’ll stick with the common convention of writing SQL keywords in

uppercase to distinguish them from table or variables names.

• In SQL, order matters: you must always write the clauses in the order SELECT,

FROM, WHERE, GROUP BY, and ORDER BY. Confusingly, this order doesn’t match how

4 Confusingly, depending on the context, SELECT is either a statement or a clause. To avoid this confusion, we’ll generally use SELECT query instead of SELECT statement.

5 Technically, only the SELECT is required, since you can write queries like SELECT 1+1 to perform basic calculations. But if you want to work with data (as you always do!), you’ll also need a FROM clause.

384 | Chapter 21: Databases

[image: Image 190]

the clauses are actually evaluated, which is first FROM and then WHERE, GROUP BY,

SELECT, and ORDER BY.

The following sections explore each clause in more detail.

Note that while SQL is a standard, it is extremely complex, and no

database follows the standard exactly. While the main components

that we’ll focus on in this book are similar between DBMSs, there

are many minor variations. Fortunately, dbplyr is designed to han‐

dle this problem and generates different translations for different

databases. It’s not perfect, but it’s continually improving, and if you

hit a problem, you can file an issue on GitHub to help us do better.

SELECT

The SELECT clause is the workhorse of queries and performs the same job as

select(), mutate(), rename(), relocate(), and, as you’ll learn in the next section,

summarize().

select(), rename(), and relocate() have very direct translations to SELECT as they just affect where a column appears (if at all) along with its name:

planes |>

select(tailnum, type, manufacturer, model, year) |>

show_query()

 #> <SQL>

 #> SELECT tailnum, "type", manufacturer, model, "year"

 #> FROM planes

planes |>

select(tailnum, type, manufacturer, model, year) |>

rename(year_built = year) |>

show_query()

 #> <SQL>

 #> SELECT tailnum, "type", manufacturer, model, "year" AS year_built

 #> FROM planes

planes |>

select(tailnum, type, manufacturer, model, year) |>

relocate(manufacturer, model, .before = type) |>

show_query()

 #> <SQL>

 #> SELECT tailnum, manufacturer, model, "type", "year"

 #> FROM planes

This example also shows you how SQL does renaming. In SQL terminology, renam‐

ing is called aliasing and is done with AS. Note that unlike mutate(), the old name is

on the left, and the new name is on the right.

SQL | 385

[image: Image 191]

In the previous examples, note that "year" and "type" are wrap‐

ped in double quotes. That’s because these are reserved words in

duckdb, so dbplyr quotes them to avoid any potential confusion

between column/table names and SQL operators.

When working with other databases, you’re likely to see every

variable name quoted because only a handful of client packages,

like duckdb, know what all the reserved words are, so they quote

everything to be safe:

SELECT "tailnum", "type", "manufacturer", "model", "year"

FROM "planes"

Some other database systems use backticks instead of quotes:

SELECT `tailnum`, `type`, `manufacturer`, `model`, `year`

FROM `planes`

The translations for mutate() are similarly straightforward: each variable becomes a new expression in SELECT:

flights |>

mutate(

speed = distance / (air_time / 60)

) |>

show_query()

 #> <SQL>

 #> SELECT *, distance / (air_time / 60.0) AS speed

 #> FROM flights

We’ll come back to the translation of individual components (like /) in “Function

Translations” on page 391.

FROM

The FROM clause defines the data source. It’s going to be rather uninteresting for a little

while, because we’re just using single tables. You’ll see more complex examples once

we hit the join functions.

GROUP BY

group_by() is translated to the GROUP BY6 clause, and summarize() is translated to the SELECT clause:

diamonds_db |>

group_by(cut) |>

summarize(

n = n(),

avg_price = mean(price, na.rm = TRUE)

6 This is no coincidence: the dplyr function name was inspired by the SQL clause.

386 | Chapter 21: Databases

) |>

show_query()

 #> <SQL>

 #> SELECT cut, COUNT(*) AS n, AVG(price) AS avg_price

 #> FROM diamonds

 #> GROUP BY cut

We’ll come back to what’s happening with translating n() and mean() in “Function

Translations” on page 391.

WHERE

filter() is translated to the WHERE clause: flights |>

filter(dest == "IAH" | dest == "HOU") |>

show_query()

 #> <SQL>

 #> SELECT *

 #> FROM flights

 #> WHERE (dest = 'IAH' OR dest = 'HOU')

flights |>

filter(arr_delay > 0 & arr_delay < 20) |>

show_query()

 #> <SQL>

 #> SELECT *

 #> FROM flights

 #> WHERE (arr_delay > 0.0 AND arr_delay < 20.0)

There are a few important details to note here:

• | becomes OR, and & becomes AND.

• SQL uses = for comparison, not ==. SQL doesn’t have assignment, so there’s no

potential for confusion there.

• SQL uses only '' for strings, not "". In SQL, "" is used to identify variables,

like R’s ``.

Another useful SQL operator is IN, which is close to R’s %in%:

flights |>

filter(dest %in% c("IAH", "HOU")) |>

show_query()

 #> <SQL>

 #> SELECT *

 #> FROM flights

 #> WHERE (dest IN ('IAH', 'HOU'))

SQL uses NULL instead of NA. NULLs behave similarly to NAs. The main difference

is that while they’re “infectious” in comparisons and arithmetic, they are silently

dropped when summarizing. dbplyr will remind you about this behavior the first

time you hit it:

SQL | 387

flights |>

group_by(dest) |>

summarize(delay = mean(arr_delay))

 #> Warning: Missing values are always removed in SQL aggregation functions.

 #> Usèna.rm = TRUÈ to silence this warning

 #> This warning is displayed once every 8 hours.

 #> # Source: SQL [?? x 2]

 #> # Database: DuckDB 0.6.1 [root@Darwin 22.3.0:R 4.2.1/:memory:]

 #> dest delay

 #> <chr> <dbl>

 #> 1 ATL 11.3

 #> 2 ORD 5.88

 #> 3 RDU 10.1

 #> 4 IAD 13.9

 #> 5 DTW 5.43

 #> 6 LAX 0.547

 #> # … with more rows

If you want to learn more about how NULLs work, you might enjoy “The Three-

Valued Logic of SQL” by Markus Winand.

In general, you can work with NULLs using the functions you’d use for NAs in R:

flights |>

filter(!is.na(dep_delay)) |>

show_query()

 #> <SQL>

 #> SELECT *

 #> FROM flights

 #> WHERE (NOT((dep_delay IS NULL)))

This SQL query illustrates one of the drawbacks of dbplyr: while the SQL is correct,

it isn’t as simple as you might write by hand. In this case, you could drop the

parentheses and use a special operator that’s easier to read:

WHERE "dep_delay" IS NOT NULL

Note that if you filter() a variable that you created using a summarize, dbplyr will generate a HAVING clause, rather than a WHERE clause. This is a one of the

idiosyncrasies of SQL: WHERE is evaluated before SELECT and GROUP BY, so SQL needs

another clause that’s evaluated afterward.

diamonds_db |>

group_by(cut) |>

summarize(n = n()) |>

filter(n > 100) |>

show_query()

 #> <SQL>

 #> SELECT cut, COUNT(*) AS n

 #> FROM diamonds

 #> GROUP BY cut

 #> HAVING (COUNT(*) > 100.0)

388 | Chapter 21: Databases

ORDER BY

Ordering rows involves a straightforward translation from arrange() to the ORDER

BY clause:

flights |>

arrange(year, month, day, desc(dep_delay)) |>

show_query()

 #> <SQL>

 #> SELECT *

 #> FROM flights

 #> ORDER BY "year", "month", "day", dep_delay DESC

Notice how desc() is translated to DESC: this is one of the many dplyr functions whose name was directly inspired by SQL.

Subqueries

Sometimes it’s not possible to translate a dplyr pipeline into a single SELECT statement

and you need to use a subquery. A subquery is just a query used as a data source in

the FROM clause, instead of the usual table.

dbplyr typically uses subqueries to work around the limitations of SQL. For example,

expressions in the SELECT clause can’t refer to columns that were just created. That

means that the following (silly) dplyr pipeline needs to happen in two steps: the

first (inner) query computes year1, and then the second (outer) query can compute

year2:

flights |>

mutate(

year1 = year + 1,

year2 = year1 + 1

) |>

show_query()

 #> <SQL>

 #> SELECT *, year1 + 1.0 AS year2

 #> FROM (

 #> SELECT *, "year" + 1.0 AS year1

 #> FROM flights

 #>) q01

You’ll also see this if you attempted to filter() a variable that you just created.

Remember, even though WHERE is written after SELECT, it’s evaluated before it, so we

need a subquery in this (silly) example:

flights |>

mutate(year1 = year + 1) |>

filter(year1 == 2014) |>

show_query()

 #> <SQL>

 #> SELECT *

 #> FROM (

 #> SELECT *, "year" + 1.0 AS year1

 #> FROM flights

SQL | 389

 #>) q01

 #> WHERE (year1 = 2014.0)

Sometimes dbplyr will create a subquery where it’s not needed because it doesn’t yet

know how to optimize that translation. As dbplyr improves over time, these cases will

get rarer but will probably never go away.

Joins

If you’re familiar with dplyr’s joins, SQL joins are similar. Here’s a simple example:

flights |>

left_join(planes |> rename(year_built = year), by = "tailnum") |>

show_query()

 #> <SQL>

 #> SELECT

 #> flights.*,

 #> planes."year" AS year_built,

 #> "type",

 #> manufacturer,

 #> model,

 #> engines,

 #> seats,

 #> speed,

 #> engine

 #> FROM flights

 #> LEFT JOIN planes

 #> ON (flights.tailnum = planes.tailnum)

The main thing to notice here is the syntax: SQL joins use subclauses of the FROM

clause to bring in additional tables, using ON to define how the tables are related.

dplyr’s names for these functions are so closely connected to SQL that you can easily

guess the equivalent SQL for inner_join(), right_join(), and full_join():

SELECT flights.*, "type", manufacturer, model, engines, seats, speed

FROM flights

INNER JOIN planes ON (flights.tailnum = planes.tailnum)

SELECT flights.*, "type", manufacturer, model, engines, seats, speed

FROM flights

RIGHT JOIN planes ON (flights.tailnum = planes.tailnum)

SELECT flights.*, "type", manufacturer, model, engines, seats, speed

FROM flights

FULL JOIN planes ON (flights.tailnum = planes.tailnum)

You’re likely to need many joins when working with data from a database. That’s

because database tables are often stored in a highly normalized form, where each

“fact” is stored in a single place, and to keep a complete dataset for analysis, you need

to navigate a complex network of tables connected by primary and foreign keys. If

you hit this scenario, the dm package, by Tobias Schieferdecker, Kirill Müller, and Darko Bergant, is a lifesaver. It can automatically determine the connections between

tables using the constraints that DBAs often supply, visualize the connections so you

390 | Chapter 21: Databases

can see what’s going on, and generate the joins you need to connect one table to

another.

Other Verbs

dbplyr also translates other verbs such as distinct(), slice_*(), and intersect(), as well as a growing selection of tidyr functions such as pivot_longer() and

pivot_wider(). The easiest way to see the full set of what’s currently available is to visit the dbplyr website.

Exercises

1. What is distinct() translated to? How about head()?

2. Explain what each of the following SQL queries do and try to re-create them

using dbplyr:

SELECT *

FROM flights

WHERE dep_delay < arr_delay

SELECT *, distance / (airtime / 60) AS speed

FROM flights

Function Translations

So far we’ve focused on the big picture of how dplyr verbs are translated to the clauses

of a query. Now we’re going to zoom in a little and talk about the translation of the

R functions that work with individual columns; e.g., what happens when you use

mean(x) in summarize()?

To help see what’s going on, we’ll use a couple of little helper functions that run a

summarize() or mutate() and show the generated SQL. That will make it a little easier to explore a few variations and see how summaries and transformations can

differ.

summarize_query <- function(df, ...) {

df |>

summarize(...) |>

show_query()

}

mutate_query <- function(df, ...) {

df |>

mutate(... , .keep = "none") |>

show_query()

}

Let’s dive in with some summaries! Looking at the following code, you’ll notice that

some summary functions, such as mean(), have a relatively simple translation, while Function Translations | 391

others like median() are much more complex. The complexity is typically higher for operations that are common in statistics but less common in databases.

flights |>

group_by(year, month, day) |>

summarize_query(

mean = mean(arr_delay, na.rm = TRUE),

median = median(arr_delay, na.rm = TRUE)

)

 #> `summarise()` has grouped output by "year" and "month". You can override

 #> using thè.groupsàrgument.

 #> <SQL>

 #> SELECT

 #> "year",

 #> "month",

 #> "day",

 #> AVG(arr_delay) AS mean,

 #> PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY arr_delay) AS median

 #> FROM flights

 #> GROUP BY "year", "month", "day"

The translation of summary functions becomes more complicated when you use

them inside a mutate() because they have to turn into so-called window functions. In SQL, you turn an ordinary aggregation function into a window function by adding

OVER after it:

flights |>

group_by(year, month, day) |>

mutate_query(

mean = mean(arr_delay, na.rm = TRUE),

)

 #> <SQL>

 #> SELECT

 #> "year",

 #> "month",

 #> "day",

 #> AVG(arr_delay) OVER (PARTITION BY "year", "month", "day") AS mean

 #> FROM flights

In SQL, the GROUP BY clause is used exclusively for summaries, so here you can see

that the grouping has moved from the PARTITION BY argument to OVER.

Window functions include all functions that look forward or backward, such as

lead() and lag(), which look at the “previous” or “next” value, respectively: flights |>

group_by(dest) |>

arrange(time_hour) |>

mutate_query(

lead = lead(arr_delay),

lag = lag(arr_delay)

)

 #> <SQL>

 #> SELECT

 #> dest,

 #> LEAD(arr_delay, 1, NULL) OVER (PARTITION BY dest ORDER BY time_hour) AS lead,

 #> LAG(arr_delay, 1, NULL) OVER (PARTITION BY dest ORDER BY time_hour) AS lag

392 | Chapter 21: Databases

 #> FROM flights

 #> ORDER BY time_hour

Here it’s important to arrange() the data, because SQL tables have no intrinsic order.

In fact, if you don’t use arrange(), you might get the rows back in a different order every time! Notice for window functions, the ordering information is repeated: the

ORDER BY clause of the main query doesn’t automatically apply to window functions.

Another important SQL function is CASE WHEN. It’s used as the translation of

if_else() and case_when(), the dplyr function that it directly inspired. Here are a couple of simple examples:

flights |>

mutate_query(

description = if_else(arr_delay > 0, "delayed", "on-time")

)

 #> <SQL>

 #> SELECT CASE WHEN

 #> (arr_delay > 0.0) THEN 'delayed'

 #> WHEN NOT (arr_delay > 0.0) THEN 'on-time' END AS description

 #> FROM flights

flights |>

mutate_query(

description =

case_when(

arr_delay < -5 ~ "early",

arr_delay < 5 ~ "on-time",

arr_delay >= 5 ~ "late"

)

)

 #> <SQL>

 #> SELECT CASE

 #> WHEN (arr_delay < -5.0) THEN 'early'

 #> WHEN (arr_delay < 5.0) THEN 'on-time'

 #> WHEN (arr_delay >= 5.0) THEN 'late'

 #> END AS description

 #> FROM flights

CASE WHEN is also used for some other functions that don’t have a direct translation

from R to SQL. A good example of this is cut():

flights |>

mutate_query(

description = cut(

arr_delay,

breaks = c(-Inf, -5, 5, Inf),

labels = c("early", "on-time", "late")

)

)

 #> <SQL>

 #> SELECT CASE

 #> WHEN (arr_delay <= -5.0) THEN 'early'

 #> WHEN (arr_delay <= 5.0) THEN 'on-time'

 #> WHEN (arr_delay > 5.0) THEN 'late'

 #> END AS description

 #> FROM flights

Function Translations | 393

dbplyr also translates common string and date-time manipulation functions, which

you can learn about in vignette("translation-function", package = "dbplyr").

dbplyr’s translations are certainly not perfect, and there are many R functions that

aren’t translated yet, but dbplyr does a surprisingly good job covering the functions

that you’ll use most of the time.

Summary

In this chapter you learned how to access data from databases. We focused on dbplyr,

a dplyr “backend” that allows you to write the dplyr code you’re familiar with and

have it be automatically translated to SQL. We used that translation to teach you a

little SQL; it’s important to learn some SQL because it’s the most commonly used

language for working with data and knowing some will make it easier for you to

communicate with other data folks who don’t use R. If you’ve finished this chapter

and would like to learn more about SQL, we have two recommendations:

• SQL for Data Scientists by Renée M. P. Teate is an introduction to SQL designed specifically for the needs of data scientists and includes examples of the sort of

highly interconnected data you’re likely to encounter in real organizations.

• Practical SQL by Anthony DeBarros is written from the perspective of a data journalist (a data scientist specialized in telling compelling stories) and goes

into more detail about getting your data into a database and running your own

DBMS.

In the next chapter, we’ll learn about another dplyr backend for working with large

data: arrow. The arrow package is designed for working with large files on disk and is

a natural complement to databases.

394 | Chapter 21: Databases

CHAPTER 22

Arrow

Introduction

CSV files are designed to be easily read by humans. They’re a good interchange

format because they’re simple and they can be read by every tool under the sun. But

CSV files aren’t efficient: you have to do quite a lot of work to read the data into R.

In this chapter, you’ll learn about a powerful alternative: the parquet format, an open standards–based format widely used by big data systems.

We’ll pair parquet files with Apache Arrow, a multilanguage toolbox designed for efficient analysis and transport of large datasets. We’ll use Apache Arrow via the

arrow package, which provides a dplyr backend allowing you to analyze larger-than-memory datasets using familiar dplyr syntax. As an additional benefit, arrow is

extremely fast; you’ll see some examples later in the chapter.

Both arrow and dbplyr provide dplyr backends, so you might wonder when to use

each. In many cases, the choice is made for you, as in the data is already in a database

or in parquet files, and you’ll want to work with it as is. But if you’re starting with

your own data (perhaps CSV files), you can either load it into a database or convert

it to parquet. In general, it’s hard to know what will work best, so in the early stages

of your analysis, we encourage you to try both and pick the one that works the best

for you.

(A big thanks to Danielle Navarro who contributed the initial version of this chapter.)

Prerequisites

In this chapter, we’ll continue to use the tidyverse, particularly dplyr, but we’ll pair it

with the arrow package, which was designed specifically for working with large data:

395

library(tidyverse)

library(arrow)

Later in the chapter, we’ll also see some connections between arrow and duckdb, so

we’ll also need dbplyr and duckdb:

library(dbplyr, warn.conflicts = FALSE)

library(duckdb)

 #> Loading required package: DBI

Getting the Data

We begin by getting a dataset worthy of these tools: a dataset of item checkouts from

Seattle public libraries, available online at Seattle Open Data. This dataset contains 41,389,465 rows that tell you how many times each book was checked out each

month from April 2005 to October 2022.

The following code will get you a cached copy of the data. The data is a 9 GB CSV

file, so it will take some time to download. I highly recommend using curl::multi

download() to get very large files as it’s built for exactly this purpose: it gives you a

progress bar, and it can resume the download if it’s interrupted.

dir.create("data", showWarnings = FALSE)

curl::multi_download(

"https://r4ds.s3.us-west-2.amazonaws.com/seattle-library-checkouts.csv",

"data/seattle-library-checkouts.csv",

resume = TRUE

)

Opening a Dataset

Let’s start by taking a look at the data. At 9 GB, this file is large enough that we

probably don’t want to load the whole thing into memory. A good rule of thumb is

that you usually want at least twice as much memory as the size of the data, and many

laptops top out at 16 GB. This means we want to avoid read_csv() and instead use

arrow::open_dataset():

seattle_csv <- open_dataset(

sources = "data/seattle-library-checkouts.csv",

format = "csv"

)

What happens when this code is run? open_dataset() will scan a few thousand rows to figure out the structure of the dataset. Then it records what it’s found and stops; it

will only read further rows as you specifically request them. This metadata is what we

see if we print seattle_csv:

seattle_csv

 #> FileSystemDataset with 1 csv file

 #> UsageClass: string

396 | Chapter 22: Arrow

 #> CheckoutType: string

 #> MaterialType: string

 #> CheckoutYear: int64

 #> CheckoutMonth: int64

 #> Checkouts: int64

 #> Title: string

 #> ISBN: null

 #> Creator: string

 #> Subjects: string

 #> Publisher: string

 #> PublicationYear: string

The first line in the output tells you that seattle_csv is stored locally on disk as a

single CSV file; it will be loaded into memory only as needed. The remainder of the

output tells you the column type that arrow has imputed for each column.

We can see what’s actually in with glimpse(). This reveals that there are ~41 million rows and 12 columns and shows us a few values.

seattle_csv |> glimpse()

 #> FileSystemDataset with 1 csv file

 #> 41,389,465 rows x 12 columns

 #> $ UsageClass <string> "Physical", "Physical", "Digital", "Physical", "Ph…

 #> $ CheckoutType <string> "Horizon", "Horizon", "OverDrive", "Horizon", "Hor…

 #> $ MaterialType <string> "BOOK", "BOOK", "EBOOK", "BOOK", "SOUNDDISC", "BOO…

 #> $ CheckoutYear <int64> 2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016, 20…

 #> $ CheckoutMonth <int64> 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,…

 #> $ Checkouts <int64> 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 2, 3, 2, 1, 3, 2,…

 #> $ Title <string> "Super rich : a guide to having it all / Russell S…

 #> $ ISBN <string> "", "", "", "", "", "", "", "", "", "", "", "", ""…

 #> $ Creator <string> "Simmons, Russell", "Barclay, James, 1965-", "Tim …

 #> $ Subjects <string> "Self realization, Conduct of life, Attitude Psych…

 #> $ Publisher <string> "Gotham Books,", "Pyr,", "Random House, Inc.", "Di…

 #> $ PublicationYear <string> "c2011.", "2010.", "2015", "2005.", "c2004.", "c20…

We can start to use this dataset with dplyr verbs, using collect() to force arrow to perform the computation and return some data. For example, this code tells us the

total number of checkouts per year:

seattle_csv |>

count(CheckoutYear, wt = Checkouts) |>

arrange(CheckoutYear) |>

collect()

 #> # A tibble: 18 × 2

 #> CheckoutYear n

 #> <int> <int>

 #> 1 2005 3798685

 #> 2 2006 6599318

 #> 3 2007 7126627

 #> 4 2008 8438486

 #> 5 2009 9135167

 #> 6 2010 8608966

 #> # … with 12 more rows

Thanks to arrow, this code will work regardless of how large the underlying dataset

is. But it’s currently rather slow: on Hadley’s computer, it took ~10s to run. That’s not

Opening a Dataset | 397

terrible given how much data we have, but we can make it much faster by switching

to a better format.

The Parquet Format

To make this data easier to work with, let’s switch to the parquet file format and split

it up into multiple files. The following sections will first introduce you to parquet and

partitioning and then apply what we learned to the Seattle library data.

Advantages of Parquet

Like CSV, parquet is used for rectangular data, but instead of being a text format that

you can read with any file editor, it’s a custom binary format designed specifically for

the needs of big data. This means that:

• Parquet files are usually smaller than the equivalent CSV file. Parquet relies on

efficient encodings to keep file size down and supports file compression. This helps make parquet files fast because there’s less data to move from disk to

memory.

• Parquet files have a rich type system. As we talked about in “Controlling Column

Types” on page 104, a CSV file does not provide any information about column

types. For example, a CSV reader has to guess whether "08-10-2022" should be

parsed as a string or a date. In contrast, parquet files store data in a way that

records the type along with the data.

• Parquet files are “column-oriented.” This means they’re organized column by

column, much like R’s data frame. This typically leads to better performance for

data analysis tasks compared to CSV files, which are organized row by row.

• Parquet files are “chunked,” which makes it possible to work on different parts of

the file at the same time and, if you’re lucky, to skip some chunks altogether.

Partitioning

As datasets get larger and larger, storing all the data in a single file gets increasingly

painful, and it’s often useful to split large datasets across many files. When this

structuring is done intelligently, this strategy can lead to significant improvements in

performance because many analyses will require only a subset of the files.

There are no hard and fast rules about how to partition your dataset: the results will

depend on your data, access patterns, and the systems that read the data. You’re likely

to need to do some experimentation before you find the ideal partitioning for your

situation. As a rough guide, arrow suggests that you avoid files smaller than 20 MB

and larger than 2 GB and avoid partitions that produce more than 10,000 files. You

398 | Chapter 22: Arrow

should also try to partition by variables that you filter by; as you’ll see shortly, that allows arrow to skip a lot of work by reading only the relevant files.

Rewriting the Seattle Library Data

Let’s apply these ideas to the Seattle library data to see how they play out in practice.

We’re going to partition by CheckoutYear, since it’s likely some analyses will want to

look at only recent data and partitioning by year yields 18 chunks of a reasonable size.

To rewrite the data, we define the partition using dplyr::group_by() and then save the partitions to a directory with arrow::write_dataset(). write_dataset() has two important arguments: a directory where we’ll create the files and the format we’ll

use.

pq_path <- "data/seattle-library-checkouts"

seattle_csv |>

group_by(CheckoutYear) |>

write_dataset(path = pq_path, format = "parquet")

This takes about a minute to run; as we’ll see shortly this is an initial investment that

pays off by making future operations much much faster.

Let’s take a look at what we just produced:

tibble(

files = list.files(pq_path, recursive = TRUE),

size_MB = file.size(file.path(pq_path, files)) / 1024^2

)

 #> # A tibble: 18 × 2

 #> files size_MB

 #> <chr> <dbl>

 #> 1 CheckoutYear=2005/part-0.parquet 109.

 #> 2 CheckoutYear=2006/part-0.parquet 164.

 #> 3 CheckoutYear=2007/part-0.parquet 178.

 #> 4 CheckoutYear=2008/part-0.parquet 195.

 #> 5 CheckoutYear=2009/part-0.parquet 214.

 #> 6 CheckoutYear=2010/part-0.parquet 222.

 #> # … with 12 more rows

Our single 9 GB CSV file has been rewritten into 18 parquet files. The filenames use

a “self-describing” convention used by the Apache Hive project. Hive-style partitions

name folders with a “key=value” convention, so as you might guess, the Checkout

Year=2005 directory contains all the data where CheckoutYear is 2005. Each file is

between 100 and 300 MB and the total size is now around 4 GB, a little more than

half the size of the original CSV file. This is as we expect since parquet is a much

more efficient format.

The Parquet Format | 399

Using dplyr with Arrow

Now that we’ve created these parquet files, we’ll need to read them in again. We use

open_dataset() again, but this time we give it a directory: seattle_pq <- open_dataset(pq_path)

Now we can write our dplyr pipeline. For example, we could count the total number

of books checked out in each month for the last five years:

query <- seattle_pq |>

filter(CheckoutYear >= 2018, MaterialType == "BOOK") |>

group_by(CheckoutYear, CheckoutMonth) |>

summarize(TotalCheckouts = sum(Checkouts)) |>

arrange(CheckoutYear, CheckoutMonth)

Writing dplyr code for arrow data is conceptually similar to dbplyr, as discussed in

Chapter 21: you write dplyr code, which is automatically transformed into a query

that the Apache Arrow C++ library understands, which is then executed when you

call collect(). If we print out the query object, we can see a little information about what we expect Arrow to return when the execution takes place:

query

 #> FileSystemDataset (query)

 #> CheckoutYear: int32

 #> CheckoutMonth: int64

 #> TotalCheckouts: int64

 #>

 #> * Grouped by CheckoutYear

 #> * Sorted by CheckoutYear [asc], CheckoutMonth [asc]

 #> See $.data for the source Arrow object

And we can get the results by calling collect(): query |> collect()

 #> # A tibble: 58 × 3

 #> # Groups: CheckoutYear [5]

 #> CheckoutYear CheckoutMonth TotalCheckouts

 #> <int> <int> <int>

 #> 1 2018 1 355101

 #> 2 2018 2 309813

 #> 3 2018 3 344487

 #> 4 2018 4 330988

 #> 5 2018 5 318049

 #> 6 2018 6 341825

 #> # … with 52 more rows

Like dbplyr, arrow understands only some R expressions, so you may not be able to

write exactly the same code you usually would. However, the list of operations and

functions supported is fairly extensive and continues to grow; find a complete list of

currently supported functions in ?acero.

400 | Chapter 22: Arrow

Performance

Let’s take a quick look at the performance impact of switching from CSV to parquet.

First, let’s time how long it takes to calculate the number of books checked out in each

month of 2021, when the data is stored as a single large CSV file:

seattle_csv |>

filter(CheckoutYear == 2021, MaterialType == "BOOK") |>

group_by(CheckoutMonth) |>

summarize(TotalCheckouts = sum(Checkouts)) |>

arrange(desc(CheckoutMonth)) |>

collect() |>

system.time()

 #> user system elapsed

 #> 11.997 1.189 11.343

Now let’s use our new version of the dataset in which the Seattle library checkout data

has been partitioned into 18 smaller parquet files:

seattle_pq |>

filter(CheckoutYear == 2021, MaterialType == "BOOK") |>

group_by(CheckoutMonth) |>

summarize(TotalCheckouts = sum(Checkouts)) |>

arrange(desc(CheckoutMonth)) |>

collect() |>

system.time()

 #> user system elapsed

 #> 0.272 0.063 0.063

The ~100x speedup in performance is attributable to two factors: the multifile parti‐

tioning and the format of individual files:

• Partitioning improves performance because this query uses CheckoutYear ==

2021 to filter the data, and arrow is smart enough to recognize that it needs to

read only 1 of the 18 parquet files.

• The parquet format improves performance by storing data in a binary format

that can be read more directly into memory. The column-wise format and rich

metadata means that arrow needs to read only the four columns actually used in

the query (CheckoutYear, MaterialType, CheckoutMonth, and Checkouts).

This massive difference in performance is why it pays off to convert large CSVs to

parquet!

Using dplyr with Arrow | 401

Using dbplyr with Arrow

There’s one last advantage of parquet and arrow—it’s easy to turn an arrow dataset

into a DuckDB database (Chapter 21) by calling arrow::to_duckdb():

seattle_pq |>

to_duckdb() |>

filter(CheckoutYear >= 2018, MaterialType == "BOOK") |>

group_by(CheckoutYear) |>

summarize(TotalCheckouts = sum(Checkouts)) |>

arrange(desc(CheckoutYear)) |>

collect()

 #> Warning: Missing values are always removed in SQL aggregation functions.

 #> Usèna.rm = TRUÈ to silence this warning

 #> This warning is displayed once every 8 hours.

 #> # A tibble: 5 × 2

 #> CheckoutYear TotalCheckouts

 #> <int> <dbl>

 #> 1 2022 2431502

 #> 2 2021 2266438

 #> 3 2020 1241999

 #> 4 2019 3931688

 #> 5 2018 3987569

The neat thing about to_duckdb() is that the transfer doesn’t involve any memory copying and speaks to the goals of the arrow ecosystem: enabling seamless transitions

from one computing environment to another.

Summary

In this chapter, you got a taste of the arrow package, which provides a dplyr backend

for working with large on-disk datasets. It can work with CSV files, and it’s much

much faster if you convert your data to parquet. Parquet is a binary data format

that’s designed specifically for data analysis on modern computers. Far fewer tools

can work with parquet files compared to CSV, but its partitioned, compressed, and

columnar structure makes it much more efficient to analyze.

Next up you’ll learn about your first nonrectangular data source, which you’ll handle

using tools provided by the tidyr package. We’ll focus on data that comes from JSON

files, but the general principles apply to tree-like data regardless of its source.

402 | Chapter 22: Arrow

CHAPTER 23

Hierarchical Data

Introduction

In this chapter, you’ll learn the art of data rectangling, taking data that is fundamen‐

tally hierarchical, or tree-like, and converting it into a rectangular data frame made

up of rows and columns. This is important because hierarchical data is surprisingly

common, especially when working with data that comes from the web.

To learn about rectangling, you’ll need to first learn about lists, the data structure that

makes hierarchical data possible. Then you’ll learn about two crucial tidyr functions:

tidyr::unnest_longer() and tidyr::unnest_wider(). We’ll then show you a few case studies, applying these simple functions again and again to solve real problems.

We’ll finish off by talking about JSON, the most frequent source of hierarchical

datasets and a common format for data exchange on the web.

Prerequisites

In this chapter, we’ll use many functions from tidyr, a core member of the tidyverse.

We’ll also use repurrrsive to provide some interesting datasets for rectangling practice,

and we’ll finish by using jsonlite to read JSON files into R lists.

library(tidyverse)

library(repurrrsive)

library(jsonlite)

403

Lists

So far you’ve worked with data frames that contain simple vectors such as integers,

numbers, characters, date-times, and factors. These vectors are simple because they’re

homogeneous: every element is of the same data type. If you want to store elements of

different types in the same vector, you’ll need a list, which you create with list(): x1 <- list(1:4, "a", TRUE)

x1

 #> [[1]]

 #> [1] 1 2 3 4

 #>

 #> [[2]]

 #> [1] "a"

 #>

 #> [[3]]

 #> [1] TRUE

It’s often convenient to name the components, or children, of a list, which you can do

in the same way as naming the columns of a tibble:

x2 <- list(a = 1:2, b = 1:3, c = 1:4)

x2

 #> $a

 #> [1] 1 2

 #>

 #> $b

 #> [1] 1 2 3

 #>

 #> $c

 #> [1] 1 2 3 4

Even for these simple lists, printing takes up quite a lot of space. A useful alternative

is str(), which generates a compact display of the str ucture, de-emphasizing the contents:

str(x1)

 #> List of 3

 #> $: int [1:4] 1 2 3 4

 #> $: chr "a"

 #> $: logi TRUE

str(x2)

 #> List of 3

 #> $ a: int [1:2] 1 2

 #> $ b: int [1:3] 1 2 3

 #> $ c: int [1:4] 1 2 3 4

As you can see, str() displays each child of the list on its own line. It displays the name, if present; then an abbreviation of the type; and then the first few values.

404 | Chapter 23: Hierarchical Data

Hierarchy

Lists can contain any type of object, including other lists. This makes them suitable

for representing hierarchical (tree-like) structures:

x3 <- list(list(1, 2), list(3, 4))

str(x3)

 #> List of 2

 #> $:List of 2

 #> ..$: num 1

 #> ..$: num 2

 #> $:List of 2

 #> ..$: num 3

 #> ..$: num 4

This is notably different from c(), which generates a flat vector: c(c(1, 2), c(3, 4))

 #> [1] 1 2 3 4

x4 <- c(list(1, 2), list(3, 4))

str(x4)

 #> List of 4

 #> $: num 1

 #> $: num 2

 #> $: num 3

 #> $: num 4

As lists get more complex, str() gets more useful, as it lets you see the hierarchy at a glance:

x5 <- list(1, list(2, list(3, list(4, list(5)))))

str(x5)

 #> List of 2

 #> $: num 1

 #> $:List of 2

 #> ..$: num 2

 #> ..$:List of 2

 #> $: num 3

 #> $:List of 2

 #> $: num 4

 #> $:List of 1

 #> $: num 5

As lists get even larger and more complex, str() eventually starts to fail, and you’ll need to switch to View(). 1 Figure 23-1 shows the result of calling View(x5). The viewer starts by showing just the top level of the list, but you can interactively expand

any of the components to see more, as in Figure 23-2. RStudio will also show you the

code you need to access that element, as in Figure 23-3. We’ll come back to how this code works in “Selecting a Single Element with $ and [[” on page 494.

1 This is an RStudio feature.

Lists | 405

[image: Image 192]

[image: Image 193]

 Figure 23-1. The RStudio view lets you interactively explore a complex list. The viewer

 opens showing only the top level of the list.

 Figure 23-2. Clicking the right-facing triangle expands that component of the list so that

 you can also see its children.

406 | Chapter 23: Hierarchical Data

[image: Image 194]

 Figure 23-3. You can repeat this operation as many times as needed to get to the data

 you’re interested in. Note the bottom-left corner: if you click an element of the list,

 RStudio will give you the subsetting code needed to access it, in this case x5[[2]][[2]]

 [[2]].

List Columns

Lists can also live inside a tibble, where we call them list columns. List columns

are useful because they allow you to place objects in a tibble that wouldn’t usually

belong in there. In particular, list columns are used a lot in the tidymodels ecosystem, because they allow you to store things like model outputs or resamples in a data

frame.

Here’s a simple example of a list column:

df <- tibble(

x = 1:2,

y = c("a", "b"),

z = list(list(1, 2), list(3, 4, 5))

)

df

 #> # A tibble: 2 × 3

 #> x y z

 #> <int> <chr> <list>

 #> 1 1 a <list [2]>

 #> 2 2 b <list [3]>

There’s nothing special about lists in a tibble; they behave like any other column:

df |>

filter(x == 1)

 #> # A tibble: 1 × 3

 #> x y z

 #> <int> <chr> <list>

 #> 1 1 a <list [2]>

Lists | 407

[image: Image 195]

Computing with list columns is harder, but that’s because computing with lists is

harder in general; we’ll come back to that in Chapter 26. In this chapter, we’ll focus on unnesting list columns into regular variables so you can use your existing tools on

them.

The default print method just displays a rough summary of the contents. The list

column could be arbitrarily complex, so there’s no good way to print it. If you want to

see it, you’ll need to pull out just the one list column and apply one of the techniques

that you’ve learned previously, like df |> pull(z) |> str() or df |> pull(z) |>

View().

Base R

It’s possible to put a list in a column of a data.frame, but it’s a lot

fiddlier because data.frame() treats a list as a list of columns: data.frame(x = list(1:3, 3:5))

 #> x.1.3 x.3.5

 #> 1 1 3

 #> 2 2 4

 #> 3 3 5

You can force data.frame() to treat a list as a list of rows by wrapping it in list I(), but the result doesn’t print particularly well: data.frame(

x = I(list(1:2, 3:5)),

y = c("1, 2", "3, 4, 5")

)

 #> x y

 #> 1 1, 2 1, 2

 #> 2 3, 4, 5 3, 4, 5

It’s easier to use list columns with tibbles because tibble() treats lists like vectors and the print method has been designed with lists

in mind.

Unnesting

Now that you’ve learned the basics of lists and list columns, let’s explore how you can

turn them back into regular rows and columns. Here we’ll use simple sample data so

you can get the basic idea; in the next section we’ll switch to real data.

List columns tend to come in two basic forms: named and unnamed. When the

children are named, they tend to have the same names in every row. For example,

in df1, every element of list column y has two elements named a and b. Named list

columns naturally unnest into columns: each named element becomes a new named

column.

df1 <- tribble(

~x, ~y,

408 | Chapter 23: Hierarchical Data

 1, list(a = 11, b = 12),

2, list(a = 21, b = 22),

3, list(a = 31, b = 32),

)

When the children are unnamed, the number of elements tends to vary from row to

row. For example, in df2, the elements of list column y are unnamed and vary in

length from one to three. Unnamed list columns naturally unnest into rows: you’ll get

one row for each child.

df2 <- tribble(

~x, ~y,

1, list(11, 12, 13),

2, list(21),

3, list(31, 32),

)

tidyr provides two functions for these two cases: unnest_wider() and

unnest_longer(). The following sections explain how they work.

unnest_wider()

When each row has the same number of elements with the same names, like df1, it’s

natural to put each component into its own column with unnest_wider():

df1 |>

unnest_wider(y)

 #> # A tibble: 3 × 3

 #> x a b

 #> <dbl> <dbl> <dbl>

 #> 1 1 11 12

 #> 2 2 21 22

 #> 3 3 31 32

By default, the names of the new columns come exclusively from the names of the

list elements, but you can use the names_sep argument to request that they combine

the column name and the element name. This is useful for disambiguating repeated

names.

df1 |>

unnest_wider(y, names_sep = "_")

 #> # A tibble: 3 × 3

 #> x y_a y_b

 #> <dbl> <dbl> <dbl>

 #> 1 1 11 12

 #> 2 2 21 22

 #> 3 3 31 32

unnest_longer()

When each row contains an unnamed list, it’s most natural to put each element into

its own row with unnest_longer():

Unnesting | 409

df2 |>

unnest_longer(y)

 #> # A tibble: 6 × 2

 #> x y

 #> <dbl> <dbl>

 #> 1 1 11

 #> 2 1 12

 #> 3 1 13

 #> 4 2 21

 #> 5 3 31

 #> 6 3 32

Note how x is duplicated for each element inside of y: we get one row of output for

each element inside the list column. But what happens if one of the elements is empty,

as in the following example?

df6 <- tribble(

~x, ~y,

"a", list(1, 2),

"b", list(3),

"c", list()

)

df6 |> unnest_longer(y)

 #> # A tibble: 3 × 2

 #> x y

 #> <chr> <dbl>

 #> 1 a 1

 #> 2 a 2

 #> 3 b 3

We get zero rows in the output, so the row effectively disappears. If you want to

preserve that row, add NA in y, set keep_empty = TRUE.

Inconsistent Types

What happens if you unnest a list column that contains different types of vectors?

For example, take the following dataset where list column y contains two numbers, a

character, and a logical, which can’t normally be mixed in a single column:

df4 <- tribble(

~x, ~y,

"a", list(1),

"b", list("a", TRUE, 5)

)

unnest_longer() always keeps the set of columns unchanged, while changing the number of rows. So what happens? How does unnest_longer() produce five rows while keeping everything in y?

df4 |>

unnest_longer(y)

 #> # A tibble: 4 × 2

 #> x y

 #> <chr> <list>

 #> 1 a <dbl [1]>

 #> 2 b <chr [1]>

410 | Chapter 23: Hierarchical Data

 #> 3 b <lgl [1]>

 #> 4 b <dbl [1]>

As you can see, the output contains a list column, but every element of the list

column contains a single element. Because unnest_longer() can’t find a common type of vector, it keeps the original types in a list column. You might wonder if this

breaks the commandment that every element of a column must be the same type. It

doesn’t: every element is a list, even though the contents are of different types.

Dealing with inconsistent types is challenging and the details depend on the pre‐

cise nature of the problem and your goals, but you’ll most likely need tools from

Chapter 26.

Other Functions

tidyr has a few other useful rectangling functions that we’re not going to cover in this

book:

• unnest_auto() automatically picks between unnest_longer() and unn

est_wider() based on the structure of the list column. It’s great for rapid exploration, but ultimately it’s a bad idea because it doesn’t force you to understand

how your data is structured and makes your code harder to understand.

• unnest() expands both rows and columns. It’s useful when you have a list column that contains a 2D structure like a data frame, which you don’t see in this

book, but you might encounter if you use the tidymodels ecosystem.

These functions are good to know about as you might encounter them when reading

other people’s code or tackling rarer rectangling challenges yourself.

Exercises

1. What happens when you use unnest_wider() with unnamed list columns like

df2? What argument is now necessary? What happens to missing values?

2. What happens when you use unnest_longer() with named list columns like df1? What additional information do you get in the output? How can you

suppress that extra detail?

3. From time to time you encounter data frames with multiple list columns with

aligned values. For example, in the following data frame, the values of y and z

are aligned (i.e., y and z will always have the same length within a row, and the

first value of y corresponds to the first value of z). What happens if you apply two

unnest_longer() calls to this data frame? How can you preserve the relationship between x and y? (Hint: Carefully read the docs.)

Unnesting | 411

df4 <- tribble(

~x, ~y, ~z,

"a", list("y-a-1", "y-a-2"), list("z-a-1", "z-a-2"),

"b", list("y-b-1", "y-b-2", "y-b-3"), list("z-b-1", "z-b-2", "z-b-3")

)

Case Studies

The main difference between the simple examples we used earlier and real data is

that real data typically contains multiple levels of nesting that require multiple calls to

unnest_longer() and/or unnest_wider(). To show that in action, this section works through three real rectangling challenges using datasets from the repurrrsive package.

Very Wide Data

We’ll start with gh_repos. This is a list that contains data about a collection of GitHub

repositories retrieved using the GitHub API. It’s a deeply nested list, so it’s difficult to

show the structure in this book; we recommend exploring a little on your own with

View(gh_repos) before we continue.

gh_repos is a list, but our tools work with list columns, so we’ll begin by putting it

into a tibble. We call this column json for reasons we’ll get to later.

repos <- tibble(json = gh_repos)

repos

 #> # A tibble: 6 × 1

 #> json

 #> <list>

 #> 1 <list [30]>

 #> 2 <list [30]>

 #> 3 <list [30]>

 #> 4 <list [26]>

 #> 5 <list [30]>

 #> 6 <list [30]>

This tibble contains six rows, one row for each child of gh_repos. Each row contains

a unnamed list with either 26 or 30 rows. Since these are unnamed, we’ll start with

unnest_longer() to put each child in its own row: repos |>

unnest_longer(json)

 #> # A tibble: 176 × 1

 #> json

 #> <list>

 #> 1 <named list [68]>

 #> 2 <named list [68]>

 #> 3 <named list [68]>

 #> 4 <named list [68]>

 #> 5 <named list [68]>

 #> 6 <named list [68]>

 #> # … with 170 more rows

412 | Chapter 23: Hierarchical Data

At first glance, it might seem like we haven’t improved the situation: while we

have more rows (176 instead of 6), each element of json is still a list. However,

there’s an important difference: now each element is a named list, so we can use

unnest_wider() to put each element into its own column: repos |>

unnest_longer(json) |>

unnest_wider(json)

 #> # A tibble: 176 × 68

 #> id name full_name owner private html_url

 #> <int> <chr> <chr> <list> <lgl> <chr>

 #> 1 61160198 after gaborcsardi/after <named list> FALSE https://github…

 #> 2 40500181 argufy gaborcsardi/argu… <named list> FALSE https://github…

 #> 3 36442442 ask gaborcsardi/ask <named list> FALSE https://github…

 #> 4 34924886 baseimports gaborcsardi/base… <named list> FALSE https://github…

 #> 5 61620661 citest gaborcsardi/cite… <named list> FALSE https://github…

 #> 6 33907457 clisymbols gaborcsardi/clis… <named list> FALSE https://github…

 #> # … with 170 more rows, and 62 more variables: description <chr>,

 #> # fork <lgl>, url <chr>, forks_url <chr>, keys_url <chr>, …

This has worked, but the result is a little overwhelming: there are so many columns

that tibble doesn’t even print all of them! We can see them all with names() and here we look at the first 10:

repos |>

unnest_longer(json) |>

unnest_wider(json) |>

names() |>

head(10)

 #> [1] "id" "name" "full_name" "owner" "private"

 #> [6] "html_url" "description" "fork" "url" "forks_url"

Let’s pull out a few that look interesting:

repos |>

unnest_longer(json) |>

unnest_wider(json) |>

select(id, full_name, owner, description)

 #> # A tibble: 176 × 4

 #> id full_name owner description

 #> <int> <chr> <list> <chr>

 #> 1 61160198 gaborcsardi/after <named list [17]> Run Code in the Backgro…

 #> 2 40500181 gaborcsardi/argufy <named list [17]> Declarative function ar…

 #> 3 36442442 gaborcsardi/ask <named list [17]> Friendly CLI interactio…

 #> 4 34924886 gaborcsardi/baseimports <named list [17]> Do we get warnings for …

 #> 5 61620661 gaborcsardi/citest <named list [17]> Test R package and repo…

 #> 6 33907457 gaborcsardi/clisymbols <named list [17]> Unicode symbols for CLI…

 #> # … with 170 more rows

You can use this to work back to understand how gh_repos was structured: each

child was a GitHub user containing a list of up to 30 GitHub repositories that they

created.

owner is another list column, and since it contains a named list, we can use

unnest_wider() to get at the values: Case Studies | 413

repos |>

unnest_longer(json) |>

unnest_wider(json) |>

select(id, full_name, owner, description) |>

unnest_wider(owner)

 #> Error in ùnnest_wider()`:

 #> ! Can't duplicate names between the affected columns and the original

 #> data.

 #> ✖ These names are duplicated:

 #> ℹ ìd`, from òwner`.

 #> ℹ Usènames_sep` to disambiguate using the column name.

 #> ℹ Or usènames_repair` to specify a repair strategy.

Uh-oh, this list column also contains an id column, and we can’t have two id

columns in the same data frame. As suggested, let’s use names_sep to resolve the

problem:

repos |>

unnest_longer(json) |>

unnest_wider(json) |>

select(id, full_name, owner, description) |>

unnest_wider(owner, names_sep = "_")

 #> # A tibble: 176 × 20

 #> id full_name owner_login owner_id owner_avatar_url

 #> <int> <chr> <chr> <int> <chr>

 #> 1 61160198 gaborcsardi/after gaborcsardi 660288 https://avatars.gith…

 #> 2 40500181 gaborcsardi/argufy gaborcsardi 660288 https://avatars.gith…

 #> 3 36442442 gaborcsardi/ask gaborcsardi 660288 https://avatars.gith…

 #> 4 34924886 gaborcsardi/baseimports gaborcsardi 660288 https://avatars.gith…

 #> 5 61620661 gaborcsardi/citest gaborcsardi 660288 https://avatars.gith…

 #> 6 33907457 gaborcsardi/clisymbols gaborcsardi 660288 https://avatars.gith…

 #> # … with 170 more rows, and 15 more variables: owner_gravatar_id <chr>,

 #> # owner_url <chr>, owner_html_url <chr>, owner_followers_url <chr>, …

This gives another wide dataset, but you can get the sense that owner appears to

contain a lot of additional data about the person who “owns” the repository.

Relational Data

Nested data is sometimes used to represent data that we’d usually spread across multi‐

ple data frames. For example, take got_chars, which contains data about characters

that appear in the Game of Thrones books and TV series. Like gh_repos, it’s a list, so

we start by turning it into a list column of a tibble:

chars <- tibble(json = got_chars)

chars

 #> # A tibble: 30 × 1

 #> json

 #> <list>

 #> 1 <named list [18]>

 #> 2 <named list [18]>

 #> 3 <named list [18]>

 #> 4 <named list [18]>

 #> 5 <named list [18]>

 #> 6 <named list [18]>

 #> # … with 24 more rows

414 | Chapter 23: Hierarchical Data

The json column contains named elements, so we’ll start by widening it:

chars |>

unnest_wider(json)

 #> # A tibble: 30 × 18

 #> url id name gender culture born

 #> <chr> <int> <chr> <chr> <chr> <chr>

 #> 1 https://www.anapio… 1022 Theon Greyjoy Male "Ironborn" "In 278 AC or …

 #> 2 https://www.anapio… 1052 Tyrion Lannist… Male "" "In 273 AC, at…

 #> 3 https://www.anapio… 1074 Victarion Grey… Male "Ironborn" "In 268 AC or …

 #> 4 https://www.anapio… 1109 Will Male "" ""

 #> 5 https://www.anapio… 1166 Areo Hotah Male "Norvoshi" "In 257 AC or …

 #> 6 https://www.anapio… 1267 Chett Male "" "At Hag's Mire"

 #> # … with 24 more rows, and 12 more variables: died <chr>, alive <lgl>,

 #> # titles <list>, aliases <list>, father <chr>, mother <chr>, …

Then we select a few columns to make it easier to read:

characters <- chars |>

unnest_wider(json) |>

select(id, name, gender, culture, born, died, alive)

characters

 #> # A tibble: 30 × 7

 #> id name gender culture born died

 #> <int> <chr> <chr> <chr> <chr> <chr>

 #> 1 1022 Theon Greyjoy Male "Ironborn" "In 278 AC or 27… ""

 #> 2 1052 Tyrion Lannister Male "" "In 273 AC, at C… ""

 #> 3 1074 Victarion Greyjoy Male "Ironborn" "In 268 AC or be… ""

 #> 4 1109 Will Male "" "" "In 297 AC, at…

 #> 5 1166 Areo Hotah Male "Norvoshi" "In 257 AC or be… ""

 #> 6 1267 Chett Male "" "At Hag's Mire" "In 299 AC, at…

 #> # … with 24 more rows, and 1 more variable: alive <lgl>

This dataset also contains many list columns:

chars |>

unnest_wider(json) |>

select(id, where(is.list))

 #> # A tibble: 30 × 8

 #> id titles aliases allegiances books povBooks tvSeries playedBy

 #> <int> <list> <list> <list> <list> <list> <list> <list>

 #> 1 1022 <chr [2]> <chr [4]> <chr [1]> <chr [3]> <chr> <chr> <chr>

 #> 2 1052 <chr [2]> <chr [11]> <chr [1]> <chr [2]> <chr> <chr> <chr>

 #> 3 1074 <chr [2]> <chr [1]> <chr [1]> <chr [3]> <chr> <chr> <chr>

 #> 4 1109 <chr [1]> <chr [1]> <NULL> <chr [1]> <chr> <chr> <chr>

 #> 5 1166 <chr [1]> <chr [1]> <chr [1]> <chr [3]> <chr> <chr> <chr>

 #> 6 1267 <chr [1]> <chr [1]> <NULL> <chr [2]> <chr> <chr> <chr>

 #> # … with 24 more rows

Let’s explore the titles column. It’s an unnamed list column, so we’ll unnest it into

rows:

chars |>

unnest_wider(json) |>

select(id, titles) |>

unnest_longer(titles)

 #> # A tibble: 59 × 2

 #> id titles

 #> <int> <chr>

 #> 1 1022 Prince of Winterfell

Case Studies | 415

 #> 2 1022 Lord of the Iron Islands (by law of the green lands)

 #> 3 1052 Acting Hand of the King (former)

 #> 4 1052 Master of Coin (former)

 #> 5 1074 Lord Captain of the Iron Fleet

 #> 6 1074 Master of the Iron Victory

 #> # … with 53 more rows

You might expect to see this data in its own table because it would be easy to join to

the characters data as needed. Let’s do that, which requires a little cleaning: removing

the rows containing empty strings and renaming titles to title since each row now

contains only a single title.

titles <- chars |>

unnest_wider(json) |>

select(id, titles) |>

unnest_longer(titles) |>

filter(titles != "") |>

rename(title = titles)

titles

 #> # A tibble: 52 × 2

 #> id title

 #> <int> <chr>

 #> 1 1022 Prince of Winterfell

 #> 2 1022 Lord of the Iron Islands (by law of the green lands)

 #> 3 1052 Acting Hand of the King (former)

 #> 4 1052 Master of Coin (former)

 #> 5 1074 Lord Captain of the Iron Fleet

 #> 6 1074 Master of the Iron Victory

 #> # … with 46 more rows

You could imagine creating a table like this for each of the list columns and then

using joins to combine them with the character data as you need it.

Deeply Nested

We’ll finish off these case studies with a list column that’s very deeply nested

and requires repeated rounds of unnest_wider() and unnest_longer() to unravel: gmaps_cities. This is a two-column tibble containing five city names and the results

of using Google’s geocoding API to determine their location:

gmaps_cities

 #> # A tibble: 5 × 2

 #> city json

 #> <chr> <list>

 #> 1 Houston <named list [2]>

 #> 2 Washington <named list [2]>

 #> 3 New York <named list [2]>

 #> 4 Chicago <named list [2]>

 #> 5 Arlington <named list [2]>

json is a list column with internal names, so we start with an unnest_wider():

gmaps_cities |>

unnest_wider(json)

 #> # A tibble: 5 × 3

 #> city results status

416 | Chapter 23: Hierarchical Data

 #> <chr> <list> <chr>

 #> 1 Houston <list [1]> OK

 #> 2 Washington <list [2]> OK

 #> 3 New York <list [1]> OK

 #> 4 Chicago <list [1]> OK

 #> 5 Arlington <list [2]> OK

This gives us the status and the results. We’ll drop the status column since

they’re all OK; in a real analysis, you’d also want to capture all the rows where

status != "OK" and figure out what went wrong. results is an unnamed list, with

either one or two elements (we’ll see why shortly), so we’ll unnest it into rows:

gmaps_cities |>

unnest_wider(json) |>

select(-status) |>

unnest_longer(results)

 #> # A tibble: 7 × 2

 #> city results

 #> <chr> <list>

 #> 1 Houston <named list [5]>

 #> 2 Washington <named list [5]>

 #> 3 Washington <named list [5]>

 #> 4 New York <named list [5]>

 #> 5 Chicago <named list [5]>

 #> 6 Arlington <named list [5]>

 #> # … with 1 more row

Now results is a named list, so we’ll use unnest_wider(): locations <- gmaps_cities |>

unnest_wider(json) |>

select(-status) |>

unnest_longer(results) |>

unnest_wider(results)

locations

 #> # A tibble: 7 × 6

 #> city address_compone…¹ formatted_address geometry place_id

 #> <chr> <list> <chr> <list> <chr>

 #> 1 Houston <list [4]> Houston, TX, USA <named list> ChIJAYWNSLS4QI…

 #> 2 Washington <list [2]> Washington, USA <named list> ChIJ-bDD5__lhV…

 #> 3 Washington <list [4]> Washington, DC, … <named list> ChIJW-T2Wt7Gt4…

 #> 4 New York <list [3]> New York, NY, USA <named list> ChIJOwg_06VPwo…

 #> 5 Chicago <list [4]> Chicago, IL, USA <named list> ChIJ7cv00DwsDo…

 #> 6 Arlington <list [4]> Arlington, TX, U… <named list> ChIJ05gI5NJiTo…

 #> # … with 1 more row, 1 more variable: types <list>, and abbreviated variable

 #> # name ¹address_components

Now we can see why two cities got two results: Washington matched both Washing‐

ton state and Washington, DC, and Arlington matched Arlington, Virginia, and

Arlington, Texas.

There are a few different places we could go from here. We might want to determine

the exact location of the match, which is stored in the geometry list column:

locations |>

select(city, formatted_address, geometry) |>

unnest_wider(geometry)

Case Studies | 417

 #> # A tibble: 7 × 6

 #> city formatted_address bounds location location_type

 #> <chr> <chr> <list> <list> <chr>

 #> 1 Houston Houston, TX, USA <named list [2]> <named list> APPROXIMATE

 #> 2 Washington Washington, USA <named list [2]> <named list> APPROXIMATE

 #> 3 Washington Washington, DC, USA <named list [2]> <named list> APPROXIMATE

 #> 4 New York New York, NY, USA <named list [2]> <named list> APPROXIMATE

 #> 5 Chicago Chicago, IL, USA <named list [2]> <named list> APPROXIMATE

 #> 6 Arlington Arlington, TX, USA <named list [2]> <named list> APPROXIMATE

 #> # … with 1 more row, and 1 more variable: viewport <list>

That gives us new bounds (a rectangular region) and location (a point). We can

unnest location to see the latitude (lat) and longitude (lng):

locations |>

select(city, formatted_address, geometry) |>

unnest_wider(geometry) |>

unnest_wider(location)

 #> # A tibble: 7 × 7

 #> city formatted_address bounds lat lng location_type

 #> <chr> <chr> <list> <dbl> <dbl> <chr>

 #> 1 Houston Houston, TX, USA <named list [2]> 29.8 -95.4 APPROXIMATE

 #> 2 Washington Washington, USA <named list [2]> 47.8 -121. APPROXIMATE

 #> 3 Washington Washington, DC, USA <named list [2]> 38.9 -77.0 APPROXIMATE

 #> 4 New York New York, NY, USA <named list [2]> 40.7 -74.0 APPROXIMATE

 #> 5 Chicago Chicago, IL, USA <named list [2]> 41.9 -87.6 APPROXIMATE

 #> 6 Arlington Arlington, TX, USA <named list [2]> 32.7 -97.1 APPROXIMATE

 #> # … with 1 more row, and 1 more variable: viewport <list>

Extracting the bounds requires a few more steps:

locations |>

select(city, formatted_address, geometry) |>

unnest_wider(geometry) |>

 # focus on the variables of interest

select(!location:viewport) |>

unnest_wider(bounds)

 #> # A tibble: 7 × 4

 #> city formatted_address northeast southwest

 #> <chr> <chr> <list> <list>

 #> 1 Houston Houston, TX, USA <named list [2]> <named list [2]>

 #> 2 Washington Washington, USA <named list [2]> <named list [2]>

 #> 3 Washington Washington, DC, USA <named list [2]> <named list [2]>

 #> 4 New York New York, NY, USA <named list [2]> <named list [2]>

 #> 5 Chicago Chicago, IL, USA <named list [2]> <named list [2]>

 #> 6 Arlington Arlington, TX, USA <named list [2]> <named list [2]>

 #> # … with 1 more row

We then rename southwest and northeast (the corners of the rectangle) so we can

use names_sep to create short but evocative names:

locations |>

select(city, formatted_address, geometry) |>

unnest_wider(geometry) |>

select(!location:viewport) |>

unnest_wider(bounds) |>

rename(ne = northeast, sw = southwest) |>

unnest_wider(c(ne, sw), names_sep = "_")

 #> # A tibble: 7 × 6

418 | Chapter 23: Hierarchical Data

 #> city formatted_address ne_lat ne_lng sw_lat sw_lng

 #> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

 #> 1 Houston Houston, TX, USA 30.1 -95.0 29.5 -95.8

 #> 2 Washington Washington, USA 49.0 -117. 45.5 -125.

 #> 3 Washington Washington, DC, USA 39.0 -76.9 38.8 -77.1

 #> 4 New York New York, NY, USA 40.9 -73.7 40.5 -74.3

 #> 5 Chicago Chicago, IL, USA 42.0 -87.5 41.6 -87.9

 #> 6 Arlington Arlington, TX, USA 32.8 -97.0 32.6 -97.2

 #> # … with 1 more row

Note how we unnest two columns simultaneously by supplying a vector of variable

names to unnest_wider().

Once you’ve discovered the path to get to the components you’re interested in, you

can extract them directly using another tidyr function, hoist():

locations |>

select(city, formatted_address, geometry) |>

hoist(

geometry,

ne_lat = c("bounds", "northeast", "lat"),

sw_lat = c("bounds", "southwest", "lat"),

ne_lng = c("bounds", "northeast", "lng"),

sw_lng = c("bounds", "southwest", "lng"),

)

If these case studies have whetted your appetite for more real-life rectangling, you can

see a few more examples in vignette("rectangling", package = "tidyr").

Exercises

1. Roughly estimate when gh_repos was created. Why can you only roughly esti‐

mate the date?

2. The owner column of gh_repo contains a lot of duplicated information because

each owner can have many repos. Can you construct an owners data frame

that contains one row for each owner? (Hint: Does distinct() work with list-cols?)

3. Follow the steps used for titles to create similar tables for the aliases, allegian‐

ces, books, and TV series for the Game of Thrones characters.

4. Explain the following code line by line. Why is it interesting? Why does it work

for got_chars but might not work in general?

tibble(json = got_chars) |>

unnest_wider(json) |>

select(id, where(is.list)) |>

pivot_longer(

where(is.list),

names_to = "name",

values_to = "value"

) |>

unnest_longer(value)

Case Studies | 419

5. In gmaps_cities, what does address_components contain? Why does the length

vary between rows? Unnest it appropriately to figure it out. (Hint: types always

appears to contain two elements. Does unnest_wider() make it easier to work

with than unnest_longer()?)

JSON

All of the case studies in the previous section were sourced from wild-caught JSON.

JSON is short for JavaScript Object Notation and is the way that most web APIs

return data. It’s important to understand it because while JSON and R’s data types are

pretty similar, there isn’t a perfect one-to-one mapping, so it’s good to understand a

bit about JSON if things go wrong.

Data Types

JSON is a simple format designed to be easily read and written by machines, not

humans. It has six key data types. Four of them are scalars:

• The simplest type is a null (null), which plays the same role as NA in R. It

represents the absence of data.

• A string is much like a string in R but must always use double quotes.

• A number is similar to R’s numbers: they can use integer (e.g., 123), decimal

(e.g., 123.45), or scientific (e.g., 1.23e3) notation. JSON doesn’t support Inf, -Inf,

or NaN.

• A boolean is similar to R’s TRUE and FALSE but uses lowercase true and false.

JSON’s strings, numbers, and Booleans are pretty similar to R’s character, numeric,

and logical vectors. The main difference is that JSON’s scalars can represent only a

single value. To represent multiple values you need to use one of the two remaining

types: arrays and objects.

Both arrays and objects are similar to lists in R; the difference is whether they’re

named. An array is like an unnamed list and is written with []. For example, [1,

2, 3] is an array containing three numbers, and [null, 1, "string", false] is

an array that contains a null, a number, a string, and a Boolean. An object is like a

named list and is written with {}. The names (keys in JSON terminology) are strings, so they must be surrounded by quotes. For example, {"x": 1, "y": 2} is an object

that maps x to 1 and y to 2.

Note that JSON doesn’t have any native way to represent dates or date-times, so

they’re often stored as strings, and you’ll need to use readr::parse_date() or

readr::parse_datetime() to turn them into the correct data structure. Similarly, 420 | Chapter 23: Hierarchical Data

JSON’s rules for representing floating-point numbers in JSON are a little imprecise,

so you’ll also sometimes find numbers stored in strings. Apply readr::parse_dou

ble() as needed to get the correct variable type.

jsonlite

To convert JSON into R data structures, we recommend the jsonlite package, by

Jeroen Ooms. We’ll use only two jsonlite functions: read_json() and parse_json().

In real life, you’ll use read_json() to read a JSON file from disk. For example, the repurrsive package also provides the source for gh_user as a JSON file, and you can

read it with read_json():

 # A path to a json file inside the package:

gh_users_json()

 #> [1] "/Users/hadley/Library/R/arm64/4.2/library/repurrrsive/extdata/gh_users.json"

 # Read it with read_json()

gh_users2 <- read_json(gh_users_json())

 # Check it's the same as the data we were using previously

identical(gh_users, gh_users2)

 #> [1] TRUE

In this book, we’ll also use parse_json(), since it takes a string containing JSON, which makes it good for generating simple examples. To get started, here are three

simple JSON datasets, starting with a number, then putting a few numbers in an

array, and then putting that array in an object:

str(parse_json('1'))

 #> int 1

str(parse_json('[1, 2, 3]'))

 #> List of 3

 #> $: int 1

 #> $: int 2

 #> $: int 3

str(parse_json('{"x": [1, 2, 3]}'))

 #> List of 1

 #> $ x:List of 3

 #> ..$: int 1

 #> ..$: int 2

 #> ..$: int 3

jsonlite has another important function called fromJSON(). We don’t use it here because it performs automatic simplification (simplifyVector = TRUE). This often

works well, particularly in simple cases, but we think you’re better off doing the

rectangling yourself so you know exactly what’s happening and can more easily

handle the most complicated nested structures.

JSON | 421

Starting the Rectangling Process

In most cases, JSON files contain a single top-level array, because they’re designed

to provide data about multiple “things,” e.g., multiple pages, multiple records, or

multiple results. In this case, you’ll start your rectangling with tibble(json) so that

each element becomes a row:

json <- '[

{"name": "John", "age": 34},

{"name": "Susan", "age": 27}

]'

df <- tibble(json = parse_json(json))

df

 #> # A tibble: 2 × 1

 #> json

 #> <list>

 #> 1 <named list [2]>

 #> 2 <named list [2]>

df |>

unnest_wider(json)

 #> # A tibble: 2 × 2

 #> name age

 #> <chr> <int>

 #> 1 John 34

 #> 2 Susan 27

In rarer cases, the JSON file consists of a single top-level JSON object, representing

one “thing.” In this case, you’ll need to kick off the rectangling process by wrapping it

in a list, before you put it in a tibble:

json <- '{

"status": "OK",

"results": [

{"name": "John", "age": 34},

{"name": "Susan", "age": 27}

]

}

'

df <- tibble(json = list(parse_json(json)))

df

 #> # A tibble: 1 × 1

 #> json

 #> <list>

 #> 1 <named list [2]>

df |>

unnest_wider(json) |>

unnest_longer(results) |>

unnest_wider(results)

 #> # A tibble: 2 × 3

 #> status name age

 #> <chr> <chr> <int>

 #> 1 OK John 34

 #> 2 OK Susan 27

422 | Chapter 23: Hierarchical Data

Alternatively, you can reach inside the parsed JSON and start with the bit that you

actually care about:

df <- tibble(results = parse_json(json)$results)

df |>

unnest_wider(results)

 #> # A tibble: 2 × 2

 #> name age

 #> <chr> <int>

 #> 1 John 34

 #> 2 Susan 27

Exercises

1. Rectangle the following df_col and df_row. They represent the two ways of

encoding a data frame in JSON.

json_col <- parse_json('

{

"x": ["a", "x", "z"],

"y": [10, null, 3]

}

')

json_row <- parse_json('

[

{"x": "a", "y": 10},

{"x": "x", "y": null},

{"x": "z", "y": 3}

]

')

df_col <- tibble(json = list(json_col))

df_row <- tibble(json = json_row)

Summary

In this chapter, you learned what lists are, how you can generate them from JSON

files, and how to turn them into rectangular data frames. Surprisingly we need

only two new functions: unnest_longer() to put list elements into rows and unn

est_wider() to put list elements into columns. It doesn’t matter how deeply nested the list column is; all you need to do is repeatedly call these two functions.

JSON is the most common data format returned by web APIs. What happens if the

website doesn’t have an API but you can see data you want on the website? That’s the

topic of the next chapter: web scraping, extracting data from HTML web pages.

Summary | 423

CHAPTER 24

Web Scraping

Introduction

This chapter introduces you to the basics of web scraping with rvest. Web scraping is a useful tool for extracting data from web pages. Some websites will offer an API,

a set of structured HTTP requests that return data as JSON, which you handle using

the techniques from Chapter 23. Where possible, you should use the API, 1 because typically it will give you more reliable data. Unfortunately, however, programming

with web APIs is out of scope for this book. Instead, we are teaching scraping, a

technique that works whether or not a site provides an API.

In this chapter, we’ll first discuss the ethics and legalities of scraping before we dive

into the basics of HTML. You’ll then learn the basics of CSS selectors to locate specific

elements on the page and how to use rvest functions to get data from text and

attributes out of HTML and into R. We’ll then discuss some techniques to figure out

what CSS selector you need for the page you’re scraping, before finishing up with a

couple of case studies and a brief discussion of dynamic websites.

Prerequisites

In this chapter, we’ll focus on tools provided by rvest. rvest is a member of the

tidyverse but is not a core member, so you’ll need to load it explicitly. We’ll also

load the full tidyverse since we’ll find it generally useful working with the data we’ve

scraped.

library(tidyverse)

library(rvest)

1 Many popular APIs already have CRAN packages that wrap them, so start with a little research first!

425

Scraping Ethics and Legalities

Before we get started discussing the code you’ll need to perform web scraping, we

need to talk about whether it’s legal and ethical for you to do so. Overall, the situation

is complicated with regard to both of these.

Legalities depend a lot on where you live. However, as a general principle, if the data

is public, nonpersonal, and factual, you’re likely to be OK.2 These three factors are

important because they’re connected to the site’s terms and conditions, personally

identifiable information, and copyright, as we’ll discuss.

If the data isn’t public, nonpersonal, or factual or if you’re scraping the data specifi‐

cally to make money with it, you’ll need to talk to a lawyer. In any case, you should

be respectful of the resources of the server hosting the pages you are scraping. Most

important, this means that if you’re scraping many pages, you should make sure to

wait a little between each request. One easy way to do so is to use the polite package

by Dmytro Perepolkin. It will automatically pause between requests and cache the

results so you never ask for the same page twice.

Terms of Service

If you look closely, you’ll find many websites include a “terms and conditions” or

“terms of service” link somewhere on the page, and if you read that page closely,

you’ll often discover that the site specifically prohibits web scraping. These pages tend

to be a legal land grab where companies make very broad claims. It’s polite to respect

these terms of service where possible, but take any claims with a grain of salt.

US courts have generally found that simply putting the terms of service in the footer

of the website isn’t sufficient for you to be bound by them, e.g., HiQ Labs v. LinkedIn.

Generally, to be bound to the terms of service, you must have taken some explicit

action such as creating an account or checking a box. This is why whether or not the

data is public is important; if you don’t need an account to access them, it is unlikely

that you are bound to the terms of service. Note, however, the situation is rather

different in Europe where courts have found that terms of service are enforceable

even if you don’t explicitly agree to them.

Personally Identifiable Information

Even if the data is public, you should be extremely careful about scraping personally

identifiable information such as names, email addresses, phone numbers, dates of

birth, etc. Europe has particularly strict laws about the collection of storage of

2 Obviously we’re not lawyers, and this is not legal advice. But this is the best summary we can give having read a bunch about this topic.

426 | Chapter 24: Web Scraping

such data (GDPR), and regardless of where you live, you’re likely to be entering an ethical quagmire. For example, in 2016, a group of researchers scraped public

profile information (e.g., username, age, gender, location, etc.) about 70,000 people

on the dating site OkCupid and publicly released these data without any attempts

for anonymization. While the researchers felt that there was nothing wrong with

this since the data were already public, this work was widely condemned due to

ethics concerns around identifiability of users whose information was released in

the dataset. If your work involves scraping personally identifiable information, we

strongly recommend reading about the OkCupid study3 as well as similar studies

with questionable research ethics involving the acquisition and release of personally

identifiable information.

Copyright

Finally, you also need to worry about copyright law. Copyright law is complicated,

but it’s worth taking a look at the US law, which describes exactly what’s protected:

“[…] original works of authorship fixed in any tangible medium of expression, […].”

It then goes on to describe specific categories that it applies to such as literary works,

musical works, motion pictures, and more. Notably absent from copyright protection

are data. This means that as long as you limit your scraping to facts, copyright

protection does not apply. (But note that Europe has a separate “sui generis” right that protects databases.)

As a brief example, in the US, lists of ingredients and instructions are not copyright‐

able, so copyright cannot be used to protect a recipe. But if that list of recipes is

accompanied by substantial novel literary content, that is copyrightable. This is why

when you’re looking for a recipe on the internet, there’s always so much content

beforehand.

If you do need to scrape original content (like text or images), you may still be

protected under the doctrine of fair use. Fair use is not a hard and fast rule but weighs up a number of factors. It’s more likely to apply if you are collecting the data for

research or noncommercial purposes and if you limit what you scrape to just what

you need.

HTML Basics

To scrape web pages, you need to first understand a little bit about HTML, the

language that describes web pages. HTML stands for HyperText Markup Language

and looks something like this:

3 One example of an article on the OkCupid study was published by Wired.

HTML Basics | 427

< html>

< head>

< title>Page title</title>

</head>

< body>

< h1 id='first'>A heading</h1>

< p>Some text & < b>some bold text.</p>

< img src='myimg.png' width='100' height='100'>

</body>

HTML has a hierarchical structure formed by elements, which consist of a start tag

(e.g., <tag>), optional attributes (id='first'), an end tag4 (like </tag>), and contents (everything in between the start and end tags).

Since < and > are used for start and end tags, you can’t write them directly. Instead,

you have to use the HTML escapes > (greater than) and < (less than). And

since those escapes use &, if you want a literal ampersand, you have to escape it as

&. There are a wide range of possible HTML escapes, but you don’t need to worry

about them too much because rvest automatically handles them for you.

Web scraping is possible because most pages that contain data that you want to scrape

generally have a consistent structure.

Elements

There are more than 100 HTML elements. Some of the most important are:

• Every HTML page must be in an <html> element, and it must have two children:

<head>, which contains document metadata like the page title, and <body>, which

contains the content you see in the browser.

• Block tags like <h1> (heading 1), <section> (section), <p> (paragraph), and (ordered list) form the overall structure of the page.

• Inline tags like (bold), <i> (italics), and <a> (link) format text inside block tags.

If you encounter a tag that you’ve never seen before, you can find out what it does

with a little googling. Another good place to start is the MDN Web Docs, which

describe just about every aspect of web programming.

Most elements can have content in between their start and end tags. This content

can be either text or more elements. For example, the following HTML contains a

paragraph of text, with one word in bold:

4 A number of tags (including <p> and) don’t require end tags, but we think it’s best to include them because it makes seeing the structure of the HTML a little easier.

428 | Chapter 24: Web Scraping

<p>

Hi! My name is Hadley.

</p>

The children are the elements it contains, so the previous <p> element has one child,

the element. The element has no children, but it does have contents (the text

“name”).

Attributes

Tags can have named attributes, which look like name1='value1' name2='value2'.

Two of the most important attributes are id and class, which are used in conjunc‐

tion with Cascading Style Sheets (CSS) to control the visual appearance of the page.

These are often useful when scraping data off a page. Attributes are also used to

record the destination of links (the href attribute of <a> elements) and the source of

images (the src attribute of the element).

Extracting Data

To get started scraping, you’ll need the URL of the page you want to scrape, which

you can usually copy from your web browser. You’ll then need to read the HTML

for that page into R with read_html(). This returns an xml_document5 object, which you’ll then manipulate using rvest functions:

html <- read_html("http://rvest.tidyverse.org/")

html

 #> {html_document}

 #> <html lang="en">

 #> [1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UT ...

 #> [2] <body>\n Ski ...

rvest also includes a function that lets you write HTML inline. We’ll use this a

bunch in this chapter as we teach how the various rvest functions work with simple

examples.

html <- minimal_html("

<p>This is a paragraph</p>

This is a bulleted list

")

html

 #> {html_document}

 #> <html>

 #> [1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UT ...

 #> [2] <body>\n<p>This is a paragraph</p>\n<p>\n </p>\n\nThis is a b ...

5 This class comes from the xml2 package. xml2 is a low-level package that rvest builds on top of.

Extracting Data | 429

Now that you have the HTML in R, it’s time to extract the data of interest. You’ll

first learn about the CSS selectors that allow you to identify the elements of interest

and the rvest functions that you can use to extract data from them. Then we’ll briefly

cover HTML tables, which have some special tools.

Find Elements

CSS is a tool for defining the visual styling of HTML documents. CSS includes a

miniature language for selecting elements on a page called CSS selectors. CSS selectors

define patterns for locating HTML elements and are useful for scraping because they

provide a concise way of describing which elements you want to extract.

We’ll come back to CSS selectors in more detail in “Finding the Right Selectors” on

page 433, but luckily you can get a long way with just three:

p

Selects all <p> elements.

.title

Selects all elements with class “title.”

#title

Selects the element with the id attribute that equals “title.” id attributes must be

unique within a document, so this will only ever select a single element.

Let’s try these selectors with a simple example:

html <- minimal_html("

<h1>This is a heading</h1>

<p id='first'>This is a paragraph</p>

<p class='important'>This is an important paragraph</p>

")

Use html_elements() to find all elements that match the selector: html |> html_elements("p")

 #> {xml_nodeset (2)}

 #> [1] <p id="first">This is a paragraph</p>

 #> [2] <p class="important">This is an important paragraph</p>

html |> html_elements(".important")

 #> {xml_nodeset (1)}

 #> [1] <p class="important">This is an important paragraph</p>

html |> html_elements("#first")

 #> {xml_nodeset (1)}

 #> [1] <p id="first">This is a paragraph</p>

Another important function is html_element(), which always returns the same number of outputs as inputs. If you apply it to a whole document, it’ll give you the first

match:

430 | Chapter 24: Web Scraping

html |> html_element("p")

 #> {html_node}

 #> <p id="first">

There’s an important difference between html_element() and html_elements()

when you use a selector that doesn’t match any elements. html_elements() returns

a vector of length 0, where html_element() returns a missing value. This will be important shortly.

html |> html_elements("b")

 #> {xml_nodeset (0)}

html |> html_element("b")

 #> {xml_missing}

 #> <NA>

Nesting Selections

In most cases, you’ll use html_elements() and html_element() together, typically

using html_elements() to identify elements that will become observations and then

using html_element() to find elements that will become variables. Let’s see this in action using a simple example. Here we have an unordered list () where each list

item () contains some information about four characters from Star Wars:

html <- minimal_html("

C-3PO is a <i>droid</i> that weighs 167 kg

R4-P17 is a <i>droid</i>

R2-D2 is a <i>droid</i> that weighs 96 kg

Yoda weighs 66 kg

")

We can use html_elements() to make a vector where each element corresponds to a different character:

characters <- html |> html_elements("li")

characters

 #> {xml_nodeset (4)}

 #> [1] \nC-3PO is a <i>droid</i> that weighs ...

 #> [2] \nR4-P17 is a <i>droid</i>\n

 #> [3] \nR2-D2 is a <i>droid</i> that weighs ...

 #> [4] \nYoda weighs 66 kg\n To extract the name of each character, we use html_element(), because when applied

to the output of html_elements(), it’s guaranteed to return one response per element: characters |> html_element("b")

 #> {xml_nodeset (4)}

 #> [1] C-3PO

 #> [2] R4-P17

 #> [3] R2-D2

 #> [4] Yoda

Extracting Data | 431

The distinction between html_element() and html_elements() isn’t important for the name, but it is important for the weight. We want to get one weight for each

character, even if there’s no weight . That’s what html_element() does: characters |> html_element(".weight")

 #> {xml_nodeset (4)}

 #> [1] 167 kg

 #> [2] <NA>

 #> [3] 96 kg

 #> [4] 66 kg

html_elements() finds all weight s that are children of characters. There’s only three of these, so we lose the connection between names and weights:

characters |> html_elements(".weight")

 #> {xml_nodeset (3)}

 #> [1] 167 kg

 #> [2] 96 kg

 #> [3] 66 kg

Now that you’ve selected the elements of interest, you’ll need to extract the data,

either from the text contents or from some attributes.

Text and Attributes

html_text2()6 extracts the plain-text contents of an HTML element: characters |>

html_element("b") |>

html_text2()

 #> [1] "C-3PO" "R4-P17" "R2-D2" "Yoda"

characters |>

html_element(".weight") |>

html_text2()

 #> [1] "167 kg" NA "96 kg" "66 kg"

Note that any escapes will be automatically handled; you’ll only ever see HTML

escapes in the source HTML, not in the data returned by rvest.

html_attr() extracts data from attributes: html <- minimal_html("

<p>cats</p>

<p>dogs</p>

")

html |>

html_elements("p") |>

html_element("a") |>

html_attr("href")

 #> [1] "https://en.wikipedia.org/wiki/Cat" "https://en.wikipedia.org/wiki/Dog"

6 rvest also provides html_text(), but you should almost always use html_text2() since it does a better job of converting nested HTML to text.

432 | Chapter 24: Web Scraping

html_attr() always returns a string, so if you’re extracting numbers or dates, you’ll need to do some post-processing.

Tables

If you’re lucky, your data will be already stored in an HTML table, and it’ll be a matter

of just reading it from that table. It’s usually straightforward to recognize a table in

your browser: it’ll have a rectangular structure of rows and columns, and you can

copy and paste it into a tool like Excel.

HTML tables are built up from four main elements: <table>, <tr> (table row), <th>

(table heading), and <td> (table data). Here’s a simple HTML table with two columns

and three rows:

html <- minimal_html("

<table class='mytable'>

<tr><th>x</th> <th>y</th></tr>

<tr><td>1.5</td> <td>2.7</td></tr>

<tr><td>4.9</td> <td>1.3</td></tr>

<tr><td>7.2</td> <td>8.1</td></tr>

</table>

")

rvest provides a function that knows how to read this sort of data: html_table().

It returns a list containing one tibble for each table found on the page. Use html_ele

ment() to identify the table you want to extract: html |>

html_element(".mytable") |>

html_table()

 #> # A tibble: 3 × 2

 #> x y

 #> <dbl> <dbl>

 #> 1 1.5 2.7

 #> 2 4.9 1.3

 #> 3 7.2 8.1

Note that x and y have automatically been converted to numbers. This automatic

conversion doesn’t always work, so in more complex scenarios you may want to turn

it off with convert = FALSE and then do your own conversion.

Finding the Right Selectors

Figuring out the selector you need for your data is typically the hardest part of the

problem. You’ll often need to do some experimenting to find a selector that is both

specific (i.e., it doesn’t select things you don’t care about) and sensitive (i.e., it does

select everything you care about). Lots of trial and error is a normal part of the

process! Two main tools are available to help you with this process: SelectorGadget

and your browser’s developer tools.

Finding the Right Selectors | 433

SelectorGadget is a JavaScript bookmarklet that automatically generates CSS selectors based on the positive and negative examples that you provide. It doesn’t always work,

but when it does, it’s magic! You can learn how to install and use SelectorGadget

either by reading the vignette or by watching Mine’s video.

Every modern browser comes with some toolkit for developers, but we recommend

Chrome, even if it isn’t your regular browser: its web developer tools are some of the

best, and they’re immediately available. Right-click an element on the page and click

Inspect. This will open an expandable view of the complete HTML page, centered on

the element that you just clicked. You can use this to explore the page and get a sense

of what selectors might work. Pay particular attention to the class and id attributes,

since these are often used to form the visual structure of the page and hence make for

good tools to extract the data that you’re looking for.

Inside the Elements view, you can also right-click an element and choose Copy as

Selector to generate a selector that will uniquely identify the element of interest.

If either SelectorGadget or Chrome DevTools has generated a CSS selector that you

don’t understand, try Selectors Explained, which translates CSS selectors into plain English. If you find yourself doing this a lot, you might want to learn more about CSS

selectors generally. We recommend starting with the fun CSS dinner tutorial and then

referring to the MDN web docs.

Putting It All Together

Let’s put this all together to scrape some websites. There’s some risk that these

examples may no longer work when you run them—that’s the fundamental challenge

of web scraping; if the structure of the site changes, then you’ll have to change your

scraping code.

Star Wars

rvest includes a very simple example in vignette("starwars"). This is a simple page with minimal HTML, so it’s a good place to start. We encourage you to navigate to

that page now and use Inspect Element to inspect one of the headings that’s the title

of a Star Wars movie. Use the keyboard or mouse to explore the hierarchy of the

HTML and see if you can get a sense of the shared structure used by each movie.

434 | Chapter 24: Web Scraping

You should be able to see that each movie has a shared structure that looks like this:

< section>

< h2 data-id="1">The Phantom Menace</h2>

< p>Released: 1999-05-19</p>

< p>Director: < span class="director">George Lucas</p>

< div class="crawl">

< p>...</p>

< p>...</p>

< p>...</p>

</div>

</section>

Our goal is to turn this data into a seven-row data frame with the variables title,

year, director, and intro. We’ll start by reading the HTML and extracting all the

<section> elements:

url <- "https://rvest.tidyverse.org/articles/starwars.html"

html <- read_html(url)

section <- html |> html_elements("section")

section

 #> {xml_nodeset (7)}

 #> [1] <section><h2 data-id="1">\nThe Phantom Menace\n</h2>\n<p>\nReleased: 1 ...

 #> [2] <section><h2 data-id="2">\nAttack of the Clones\n</h2>\n<p>\nReleased: ...

 #> [3] <section><h2 data-id="3">\nRevenge of the Sith\n</h2>\n<p>\nReleased: ...

 #> [4] <section><h2 data-id="4">\nA New Hope\n</h2>\n<p>\nReleased: 1977-05-2 ...

 #> [5] <section><h2 data-id="5">\nThe Empire Strikes Back\n</h2>\n<p>\nReleas ...

 #> [6] <section><h2 data-id="6">\nReturn of the Jedi\n</h2>\n<p>\nReleased: 1 ...

 #> [7] <section><h2 data-id="7">\nThe Force Awakens\n</h2>\n<p>\nReleased: 20 ...

This retrieves seven elements matching the seven movies found on that page, suggest‐

ing that using section as a selector is good. Extracting the individual elements is

straightforward since the data is always found in the text. It’s just a matter of finding

the right selector:

section |> html_element("h2") |> html_text2()

 #> [1] "The Phantom Menace" "Attack of the Clones"

 #> [3] "Revenge of the Sith" "A New Hope"

 #> [5] "The Empire Strikes Back" "Return of the Jedi"

 #> [7] "The Force Awakens"

section |> html_element(".director") |> html_text2()

 #> [1] "George Lucas" "George Lucas" "George Lucas"

 #> [4] "George Lucas" "Irvin Kershner" "Richard Marquand"

 #> [7] "J. J. Abrams"

Putting It All Together | 435

Once we’ve done that for each component, we can wrap up all the results into a tibble: tibble(

title = section |>

html_element("h2") |>

html_text2(),

released = section |>

html_element("p") |>

html_text2() |>

str_remove("Released: ") |>

parse_date(),

director = section |>

html_element(".director") |>

html_text2(),

intro = section |>

html_element(".crawl") |>

html_text2()

)

 #> # A tibble: 7 × 4

 #> title released director intro

 #> <chr> <date> <chr> <chr>

 #> 1 The Phantom Menace 1999-05-19 George Lucas "Turmoil has engulfed …

 #> 2 Attack of the Clones 2002-05-16 George Lucas "There is unrest in th…

 #> 3 Revenge of the Sith 2005-05-19 George Lucas "War! The Republic is …

 #> 4 A New Hope 1977-05-25 George Lucas "It is a period of civ…

 #> 5 The Empire Strikes Back 1980-05-17 Irvin Kershner "It is a dark time for…

 #> 6 Return of the Jedi 1983-05-25 Richard Marquand "Luke Skywalker has re…

 #> # … with 1 more row

We did a little more processing of released to get a variable that will be easy to use

later in our analysis.

IMDb Top Films

For our next task we’ll tackle something a little trickier, extracting the top 250 movies

from IMDb. At the time we wrote this chapter, the page looked like Figure 24-1.

436 | Chapter 24: Web Scraping

[image: Image 196]

 Figure 24-1. IMDb top movies web page taken on 2022-12-05.

This data has a clear tabular structure, so it’s worth starting with html_table():

url <- "https://www.imdb.com/chart/top"

html <- read_html(url)

table <- html |>

html_element("table") |>

html_table()

table

 #> # A tibble: 250 × 5

 #> `` `Rank & Titlè ÌMDb Rating` `Your Rating` ``

Putting It All Together | 437

 #> <lgl> <chr> <dbl> <chr> <lgl>

 #> 1 NA "1.\n The Shawshank Redempt… 9.2 "12345678910\n… NA

 #> 2 NA "2.\n The Godfather\n … 9.2 "12345678910\n… NA

 #> 3 NA "3.\n The Dark Knight\n … 9 "12345678910\n… NA

 #> 4 NA "4.\n The Godfather Part II… 9 "12345678910\n… NA

 #> 5 NA "5.\n 12 Angry Men\n … 9 "12345678910\n… NA

 #> 6 NA "6.\n Schindler's List\n … 8.9 "12345678910\n… NA

 #> # … with 244 more rows

This includes a few empty columns but overall does a good job of capturing the

information from the table. However, we need to do some more processing to make

it easier to use. First, we’ll rename the columns to be easier to work with and

remove the extraneous whitespace in rank and title. We will do this with select()

(instead of rename()) to do the renaming and selecting of just these two columns in one step. Then we’ll remove the new lines and extra spaces and then apply

separate_wider_regex() (from “Extract Variables” on page 267) to pull out the title,

year, and rank into their own variables.

ratings <- table |>

select(

rank_title_year = `Rank & Titlè,

rating = ÌMDb Rating`

) |>

mutate(

rank_title_year = str_replace_all(rank_title_year, "\n +", " ")

) |>

separate_wider_regex(

rank_title_year,

patterns = c(

rank = "\\d+", "\\. ",

title = ".+", " +\\(",

year = "\\d+", "\\)"

)

)

ratings

 #> # A tibble: 250 × 4

 #> rank title year rating

 #> <chr> <chr> <chr> <dbl>

 #> 1 1 The Shawshank Redemption 1994 9.2

 #> 2 2 The Godfather 1972 9.2

 #> 3 3 The Dark Knight 2008 9

 #> 4 4 The Godfather Part II 1974 9

 #> 5 5 12 Angry Men 1957 9

 #> 6 6 Schindler's List 1993 8.9

 #> # … with 244 more rows

Even in this case where most of the data comes from table cells, it’s still worth looking

at the raw HTML. If you do so, you’ll discover that we can add a little extra data by

using one of the attributes. This is one of the reasons it’s worth spending a little time

spelunking the source of the page; you might find extra data or a parsing route that’s

slightly easier.

438 | Chapter 24: Web Scraping

html |>

html_elements("td strong") |>

head() |>

html_attr("title")

 #> [1] "9.2 based on 2,712,990 user ratings"

 #> [2] "9.2 based on 1,884,423 user ratings"

 #> [3] "9.0 based on 2,685,826 user ratings"

 #> [4] "9.0 based on 1,286,204 user ratings"

 #> [5] "9.0 based on 801,579 user ratings"

 #> [6] "8.9 based on 1,370,458 user ratings"

We can combine this with the tabular data and again apply separate_wider_regex()

to extract the bit of data we care about:

ratings |>

mutate(

rating_n = html |> html_elements("td strong") |> html_attr("title")

) |>

separate_wider_regex(

rating_n,

patterns = c(

"[0-9.]+ based on ",

number = "[0-9,]+",

" user ratings"

)

) |>

mutate(

number = parse_number(number)

)

 #> # A tibble: 250 × 5

 #> rank title year rating number

 #> <chr> <chr> <chr> <dbl> <dbl>

 #> 1 1 The Shawshank Redemption 1994 9.2 2712990

 #> 2 2 The Godfather 1972 9.2 1884423

 #> 3 3 The Dark Knight 2008 9 2685826

 #> 4 4 The Godfather Part II 1974 9 1286204

 #> 5 5 12 Angry Men 1957 9 801579

 #> 6 6 Schindler's List 1993 8.9 1370458

 #> # … with 244 more rows

Dynamic Sites

So far we focused on websites where html_elements() returns what you see in the browser and discussed how to parse what it returns and how to organize that

information in tidy data frames. From time to time, however, you’ll hit a site where

html_elements() and friends don’t return anything like what you see in the browser.

In many cases, that’s because you’re trying to scrape a website that dynamically

generates the content of the page with JavaScript. This doesn’t currently work with

rvest, because rvest downloads the raw HTML and doesn’t run any JavaScript.

It’s still possible to scrape these types of sites, but rvest needs to use a more expensive

process: fully simulating the web browser including running all JavaScript. This

functionality is not available at the time of writing, but it’s something we’re actively

working on and might be available by the time you read this. It uses the chromote

Dynamic Sites | 439

package, which actually runs the Chrome browser in the background, and gives

you additional tools to interact with the site, like a human typing text and clicking

buttons. Check out the rvest website for more details.

Summary

In this chapter, you learned about the why, the why not, and the how of scraping data

from web pages. First, you learned about the basics of HTML and using CSS selectors

to refer to specific elements, and then you learned about using the rvest package to

get data out of HTML into R. We then demonstrated web scraping with two case

studies: a simpler scenario on scraping data on Star Wars films from the rvest package

website and a more complex scenario on scraping the top 250 films from IMDb.

Technical details of scraping data off the web can be complex, particularly when deal‐

ing with sites; however, legal and ethical considerations can be even more complex.

It’s important for you to educate yourself about both of these before setting out to

scrape data.

This brings us to the end of the import part of the book where you’ve learned

techniques to get data from where it lives (spreadsheets, databases, JSON files, and

websites) into a tidy form in R. Now it’s time to turn our sights to a new topic:

making the most of R as a programming language.

440 | Chapter 24: Web Scraping

[image: Image 197]

PART V

Program

In this part of the book, you’ll improve your programming skills. Programming is a

cross-cutting skill needed for all data science work: you must use a computer to do

data science; you cannot do it in your head or with pencil and paper.

 Figure V-1. Programming is the water in which all the other components swim.

Programming produces code, and code is a tool of communication. Obviously code

tells the computer what you want it to do. But it also communicates meaning to other

humans. Thinking about code as a vehicle for communication is important because

every project you do is fundamentally collaborative. Even if you’re not working

with other people, you’ll definitely be working with future-you! Writing clear code

is important so that others (like future-you) can understand why you tackled an

analysis in the way you did. That means getting better at programming also involves

getting better at communicating. Over time, you want your code to become not just

easier to write but easier for others to read.

In the following three chapters, you’ll learn skills to improve your programming

skills:

• Copy and paste is a powerful tool, but you should avoid doing it more than twice.

Repeating yourself in code is dangerous because it can easily lead to errors and

inconsistencies. Instead, in Chapter 25, you’ll learn how to write functions, which let you extract repeated tidyverse code so that it can be easily reused.

• Functions extract repeated code, but you often need to repeat the same actions

on different inputs. You need tools for iteration that let you do similar things

again and again. These tools include for loops and functional programming,

which you’ll learn about in Chapter 26.

• As you read more code written by others, you’ll see more code that doesn’t use

the tidyverse. In Chapter 27, you’ll learn some of the most important base R

functions that you’ll see in the wild.

The goal of these chapters is to teach you the minimum about programming that you

need for data science. Once you have mastered the material here, we strongly recom‐

mend you continue to invest in your programming skills. We’ve written two books

that you might find helpful. Hands on Programming with R by Garrett Grolemund (O’Reilly) is an introduction to R as a programming language and is a great place

to start if R is your first programming language. Advanced R by Hadley Wickham (CRC Press) dives into the details of R the programming language; it’s a great place to

start if you have existing programming experience and a great next step once you’ve

internalized the ideas in these chapters.

CHAPTER 25

Functions

Introduction

One of the best ways to improve your reach as a data scientist is to write functions.

Functions allow you to automate common tasks in a more powerful and general way

than copy and pasting. Writing a function has three big advantages over using copy

and paste:

• You can give a function an evocative name that makes your code easier to

understand.

• As requirements change, you need to update code only in one place, instead of

many.

• You eliminate the chance of making incidental mistakes when you copy and paste

(i.e., updating a variable name in one place but not in another).

• It makes it easier to reuse work from project to project, increasing your produc‐

tivity over time.

A good rule of thumb is to consider writing a function whenever you’ve copied and

pasted a block of code more than twice (i.e., you now have three copies of the same

code). In this chapter, you’ll learn about three useful types of functions:

• Vector functions take one or more vectors as input and return a vector as output.

• Data frame functions take a data frame as input and return a data frame as

output.

• Plot functions take a data frame as input and return a plot as output.

Each of these sections includes many examples to help you generalize the patterns

that you see. These examples wouldn’t be possible without the help of the folks of

443

Twitter, and we encourage you to follow the links in the comment to see original

inspirations. You might also want to read the original motivating tweets for general

functions and plotting functions to see even more functions.

Prerequisites

We’ll wrap up a variety of functions from around the tidyverse. We’ll also use nyc‐

flights13 as a source of familiar data to use our functions with:

library(tidyverse)

library(nycflights13)

Vector Functions

We’ll begin with vector functions: functions that take one or more vectors and return

a vector result. For example, take a look at this code. What does it do?

df <- tibble(

a = rnorm(5),

b = rnorm(5),

c = rnorm(5),

d = rnorm(5),

)

df |> mutate(

a = (a - min(a, na.rm = TRUE)) /

(max(a, na.rm = TRUE) - min(a, na.rm = TRUE)),

b = (b - min(b, na.rm = TRUE)) /

(max(b, na.rm = TRUE) - min(a, na.rm = TRUE)),

c = (c - min(c, na.rm = TRUE)) /

(max(c, na.rm = TRUE) - min(c, na.rm = TRUE)),

d = (d - min(d, na.rm = TRUE)) /

(max(d, na.rm = TRUE) - min(d, na.rm = TRUE)),

)

 #> # A tibble: 5 × 4

 #> a b c d

 #> <dbl> <dbl> <dbl> <dbl>

 #> 1 0.339 2.59 0.291 0

 #> 2 0.880 0 0.611 0.557

 #> 3 0 1.37 1 0.752

 #> 4 0.795 1.37 0 1

 #> 5 1 1.34 0.580 0.394

You might be able to puzzle out that this rescales each column to have a range from 0

to 1. But did you spot the mistake? When Hadley wrote this code, he made an error

when copying and pasting and forgot to change an a to a b. Preventing this type of

mistake is one good reason to learn how to write functions.

444 | Chapter 25: Functions

Writing a Function

To write a function, you need to first analyze your repeated code to figure what parts

are constant and what parts vary. If we take the preceding code and pull it outside of

mutate(), it’s a little easier to see the pattern because each repetition is now one line: (a - min(a, na.rm = TRUE)) / (max(a, na.rm = TRUE) - min(a, na.rm = TRUE))

(b - min(b, na.rm = TRUE)) / (max(b, na.rm = TRUE) - min(b, na.rm = TRUE))

(c - min(c, na.rm = TRUE)) / (max(c, na.rm = TRUE) - min(c, na.rm = TRUE))

(d - min(d, na.rm = TRUE)) / (max(d, na.rm = TRUE) - min(d, na.rm = TRUE))

To make this a bit clearer, we can replace the bit that varies with █:

(█ - min(█, na.rm = TRUE)) / (max(█, na.rm = TRUE) - min(█, na.rm = TRUE))

To turn this into a function, you need three things:

• A name. Here we’ll use rescale01 because this function rescales a vector to sit

between 0 and 1.

• The arguments. The arguments are things that vary across calls and our analysis

tells us that we have just one. We’ll call it x because this is the conventional name

for a numeric vector.

• The body. The body is the code that’s repeated across all the calls.

Then you create a function by following the template:

name <- function(arguments) {

body

}

For this case that leads to:

rescale01 <- function(x) {

(x - min(x, na.rm = TRUE)) / (max(x, na.rm = TRUE) - min(x, na.rm = TRUE))

}

At this point you might test with a few simple inputs to make sure you’ve captured

the logic correctly:

rescale01(c(-10, 0, 10))

 #> [1] 0.0 0.5 1.0

rescale01(c(1, 2, 3, NA, 5))

 #> [1] 0.00 0.25 0.50 NA 1.00

Then you can rewrite the call to mutate() as: df |> mutate(

a = rescale01(a),

b = rescale01(b),

c = rescale01(c),

d = rescale01(d),

)

 #> # A tibble: 5 × 4

 #> a b c d

 #> <dbl> <dbl> <dbl> <dbl>

Vector Functions | 445

 #> 1 0.339 1 0.291 0

 #> 2 0.880 0 0.611 0.557

 #> 3 0 0.530 1 0.752

 #> 4 0.795 0.531 0 1

 #> 5 1 0.518 0.580 0.394

(In Chapter 26, you’ll learn how to use across() to reduce the duplication even further so all you need is df |> mutate(across(a:d, rescale01)).)

Improving Our Function

You might notice that the rescale01() function does some unnecessary work—

instead of computing min() twice and max() once, we could compute both the minimum and maximum in one step with range():

rescale01 <- function(x) {

rng <- range(x, na.rm = TRUE)

(x - rng[1]) / (rng[2] - rng[1])

}

Or you might try this function on a vector that includes an infinite value:

x <- c(1:10, Inf)

rescale01(x)

 #> [1] 0 0 0 0 0 0 0 0 0 0 NaN

That result is not particularly useful, so we could ask range() to ignore infinite values:

rescale01 <- function(x) {

rng <- range(x, na.rm = TRUE, finite = TRUE)

(x - rng[1]) / (rng[2] - rng[1])

}

rescale01(x)

 #> [1] 0.0000000 0.1111111 0.2222222 0.3333333 0.4444444 0.5555556 0.6666667

 #> [8] 0.7777778 0.8888889 1.0000000 Inf

These changes illustrate an important benefit of functions: because we’ve moved the

repeated code into a function, we need to make the change in only one place.

Mutate Functions

Now that you understand the basic idea of functions, let’s take a look at a whole

bunch of examples. We’ll start by looking at “mutate” functions, i.e., functions that

work well inside of mutate() and filter() because they return an output of the same length as the input.

Let’s start with a simple variation of rescale01(). Maybe you want to compute the

Z-score, rescaling a vector to have a mean of 0 and a standard deviation of 1:

z_score <- function(x) {

(x - mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE)

}

446 | Chapter 25: Functions

Or maybe you want to wrap up a straightforward case_when() and give it a useful name. For example, this clamp() function ensures all values of a vector lie in between

a minimum or a maximum:

clamp <- function(x, min, max) {

case_when(

x < min ~ min,

x > max ~ max,

.default = x

)

}

clamp(1:10, min = 3, max = 7)

 #> [1] 3 3 3 4 5 6 7 7 7 7

Of course, functions don’t just need to work with numeric variables. You might want

to do some repeated string manipulation. Maybe you need to make the first character

uppercase:

first_upper <- function(x) {

str_sub(x, 1, 1) <- str_to_upper(str_sub(x, 1, 1))

x

}

first_upper("hello")

 #> [1] "Hello"

Or maybe you want to strip percent signs, commas, and dollar signs from a string

before converting it into a number:

 # https://twitter.com/NVlabormarket/status/1571939851922198530

clean_number <- function(x) {

is_pct <- str_detect(x, "%")

num <- x |>

str_remove_all("%") |>

str_remove_all(",") |>

str_remove_all(fixed("$")) |>

as.numeric(x)

if_else(is_pct, num / 100, num)

}

clean_number("$12,300")

 #> [1] 12300

clean_number("45%")

 #> [1] 0.45

Sometimes your functions will be highly specialized for one data analysis step. For

example, if you have a bunch of variables that record missing values as 997, 998, or

999, you might want to write a function to replace them with NA:

fix_na <- function(x) {

if_else(x %in% c(997, 998, 999), NA, x)

}

We’ve focused on examples that take a single vector because we think they’re the most

common. But there’s no reason that your function can’t take multiple vector inputs.

Vector Functions | 447

[image: Image 198]

Summary Functions

Another important family of vector functions is summary functions, functions that

return a single value for use in summarize(). Sometimes this can just be a matter of setting a default argument or two:

commas <- function(x) {

str_flatten(x, collapse = ", ", last = " and ")

}

commas(c("cat", "dog", "pigeon"))

 #> [1] "cat, dog and pigeon"

Or you might wrap up a simple computation, like for the coefficient of variation,

which divides the standard deviation by the mean:

cv <- function(x, na.rm = FALSE) {

sd(x, na.rm = na.rm) / mean(x, na.rm = na.rm)

}

cv(runif(100, min = 0, max = 50))

 #> [1] 0.5196276

cv(runif(100, min = 0, max = 500))

 #> [1] 0.5652554

Or maybe you just want to make a common pattern easier to remember by giving it a

memorable name:

 # https://twitter.com/gbganalyst/status/1571619641390252033

n_missing <- function(x) {

sum(is.na(x))

}

You can also write functions with multiple vector inputs. For example, maybe you

want to compute the mean absolute prediction error to help you compare model

predictions with actual values:

 # https://twitter.com/neilgcurrie/status/1571607727255834625

mape <- function(actual, predicted) {

sum(abs((actual - predicted) / actual)) / length(actual)

}

RStudio

Once you start writing functions, there are two RStudio shortcuts

that are super useful:

• To find the definition of a function that you’ve written, place

the cursor on the name of the function and press F2.

• To quickly jump to a function, press Ctrl+. to open the fuzzy

file and function finder and type the first few letters of your

function name. You can also navigate to files, Quarto sections,

and more, making it a handy navigation tool.

448 | Chapter 25: Functions

Exercises

1. Practice turning the following code snippets into functions. Think about what

each function does. What would you call it? How many arguments does it need?

mean(is.na(x))

mean(is.na(y))

mean(is.na(z))

x / sum(x, na.rm = TRUE)

y / sum(y, na.rm = TRUE)

z / sum(z, na.rm = TRUE)

round(x / sum(x, na.rm = TRUE) * 100, 1)

round(y / sum(y, na.rm = TRUE) * 100, 1)

round(z / sum(z, na.rm = TRUE) * 100, 1)

2. In the second variant of rescale01(), infinite values are left unchanged. Can you

rewrite rescale01() so that -Inf is mapped to 0, and Inf is mapped to 1?

3. Given a vector of birthdates, write a function to compute the age in years.

4. Write your own functions to compute the variance and skewness of a numeric

vector. You can look up the definitions on Wikipedia or elsewhere.

5. Write both_na(), a summary function that takes two vectors of the same length

and returns the number of positions that have an NA in both vectors.

6. Read the documentation to figure out what the following functions do. Why are

they useful even though they are so short?

is_directory <- function(x) {

file.info(x)$isdir

}

is_readable <- function(x) {

file.access(x, 4) == 0

}

Data Frame Functions

Vector functions are useful for pulling out code that’s repeated within a dplyr verb.

But you’ll often also repeat the verbs themselves, particularly within a large pipeline.

When you notice yourself copying and pasting multiple verbs multiple times, you

might think about writing a data frame function. Data frame functions work like

dplyr verbs: they take a data frame as the first argument and some extra arguments

that say what to do with it and return a data frame or vector.

To let you write a function that uses dplyr verbs, we’ll first introduce you to the

challenge of indirection and how you can overcome it with embracing, {{ }}. We’ll

then show you a bunch of examples to illustrate what you might do with it.

Data Frame Functions | 449

Indirection and Tidy Evaluation

When you start writing functions that use dplyr verbs, you rapidly hit the problem of

indirection. Let’s illustrate the problem with a simple function: grouped_mean(). The

goal of this function is to compute the mean of mean_var grouped by group_var:

grouped_mean <- function(df, group_var, mean_var) {

df |>

group_by(group_var) |>

summarize(mean(mean_var))

}

If we try and use it, we get an error:

diamonds |> grouped_mean(cut, carat)

 #> Error in `group_by()`:

 #> ! Must group by variables found in `.datà.

 #> ✖ Column `group_varìs not found.

To make the problem a bit clearer, we can use a made-up data frame:

df <- tibble(

mean_var = 1,

group_var = "g",

group = 1,

x = 10,

y = 100

)

df |> grouped_mean(group, x)

 #> # A tibble: 1 × 2

 #> group_var `mean(mean_var)`

 #> <chr> <dbl>

 #> 1 g 1

df |> grouped_mean(group, y)

 #> # A tibble: 1 × 2

 #> group_var `mean(mean_var)`

 #> <chr> <dbl>

 #> 1 g 1

Regardless of how we call grouped_mean() it always does df |>

group_by(group_var) |> summarize(mean(mean_var)), instead of df |>

group_by(group) |> summarize(mean(x)) or df |> group_by(group) |> summa

rize(mean(y)). This is a problem of indirection, and it arises because dplyr uses

 tidy evaluation to allow you to refer to the names of variables inside your data frame

without any special treatment.

Tidy evaluation is great 95% of the time because it makes your data analyses very

concise as you never have to say which data frame a variable comes from; it’s obvious

from the context. The downside of tidy evaluation comes when we want to wrap up

repeated tidyverse code into a function. Here we need some way to tell group_mean()

and summarize() not to treat group_var and mean_var as the name of the variables but instead look inside them for the variable we actually want to use.

450 | Chapter 25: Functions

Tidy evaluation includes a solution to this problem called embracing. Embracing a variable means to wrap it in braces, so, for example, var becomes {{ var }}.

Embracing a variable tells dplyr to use the value stored inside the argument, not the

argument as the literal variable name. One way to remember what’s happening is to

think of {{ }} as looking down a tunnel—{{ var }} will make a dplyr function look

inside of var rather than looking for a variable called var.

So to make grouped_mean() work, we need to surround group_var and mean_var

with {{ }}:

grouped_mean <- function(df, group_var, mean_var) {

df |>

group_by({{ group_var }}) |>

summarize(mean({{ mean_var }}))

}

df |> grouped_mean(group, x)

 #> # A tibble: 1 × 2

 #> group `mean(x)`

 #> <dbl> <dbl>

 #> 1 1 10

Success!

When to Embrace?

The key challenge in writing data frame functions is figuring out which arguments

need to be embraced. Fortunately, this is easy because you can look it up in the

documentation. There are two terms to look for in the docs that correspond to the

two most common subtypes of tidy evaluation:

 Data masking

This is used in functions such as arrange(), filter(), and summarize() that compute with variables.

 Tidy selection

This is used for functions such as select(), relocate(), and rename() that select variables.

Your intuition about which arguments use tidy evaluation should be good for many

common functions—just think about whether you can compute (e.g., x + 1) or select

(e.g., a:x).

In the following sections, we’ll explore the sorts of handy functions you might write

once you understand embracing.

Data Frame Functions | 451

Common Use Cases

If you commonly perform the same set of summaries when doing initial data explora‐

tion, you might consider wrapping them up in a helper function:

summary6 <- function(data, var) {

data |> summarize(

min = min({{ var }}, na.rm = TRUE),

mean = mean({{ var }}, na.rm = TRUE),

median = median({{ var }}, na.rm = TRUE),

max = max({{ var }}, na.rm = TRUE),

n = n(),

n_miss = sum(is.na({{ var }})),

.groups = "drop"

)

}

diamonds |> summary6(carat)

 #> # A tibble: 1 × 6

 #> min mean median max n n_miss

 #> <dbl> <dbl> <dbl> <dbl> <int> <int>

 #> 1 0.2 0.798 0.7 5.01 53940 0

(Whenever you wrap summarize() in a helper, we think it’s good practice to set .groups = "drop" to both avoid the message and leave the data in an ungrouped

state.)

The nice thing about this function is that because it wraps summarize(), you can use

it on grouped data:

diamonds |>

group_by(cut) |>

summary6(carat)

 #> # A tibble: 5 × 7

 #> cut min mean median max n n_miss

 #> <ord> <dbl> <dbl> <dbl> <dbl> <int> <int>

 #> 1 Fair 0.22 1.05 1 5.01 1610 0

 #> 2 Good 0.23 0.849 0.82 3.01 4906 0

 #> 3 Very Good 0.2 0.806 0.71 4 12082 0

 #> 4 Premium 0.2 0.892 0.86 4.01 13791 0

 #> 5 Ideal 0.2 0.703 0.54 3.5 21551 0

Furthermore, since the arguments to summarize are data masking, the var argument

to summary6() is also data masking. That means you can also summarize computed

variables:

diamonds |>

group_by(cut) |>

summary6(log10(carat))

 #> # A tibble: 5 × 7

 #> cut min mean median max n n_miss

 #> <ord> <dbl> <dbl> <dbl> <dbl> <int> <int>

 #> 1 Fair -0.658 -0.0273 0 0.700 1610 0

 #> 2 Good -0.638 -0.133 -0.0862 0.479 4906 0

 #> 3 Very Good -0.699 -0.164 -0.149 0.602 12082 0

 #> 4 Premium -0.699 -0.125 -0.0655 0.603 13791 0

 #> 5 Ideal -0.699 -0.225 -0.268 0.544 21551 0

452 | Chapter 25: Functions

To summarize multiple variables, you’ll need to wait until “Modifying Multiple Col‐

umns” on page 466, where you’ll learn how to use across().

Another popular summarize() helper function is a version of count() that also computes proportions:

 # https://twitter.com/Diabb6/status/1571635146658402309

count_prop <- function(df, var, sort = FALSE) {

df |>

count({{ var }}, sort = sort) |>

mutate(prop = n / sum(n))

}

diamonds |> count_prop(clarity)

 #> # A tibble: 8 × 3

 #> clarity n prop

 #> <ord> <int> <dbl>

 #> 1 I1 741 0.0137

 #> 2 SI2 9194 0.170

 #> 3 SI1 13065 0.242

 #> 4 VS2 12258 0.227

 #> 5 VS1 8171 0.151

 #> 6 VVS2 5066 0.0939

 #> # … with 2 more rows

This function has three arguments: df, var, and sort. Only var needs to be embraced

because it’s passed to count(), which uses data masking for all variables. Note that we use a default value for sort so that if the user doesn’t supply their own value, it will

default to FALSE.

Or maybe you want to find the sorted unique values of a variable for a subset of the

data. Rather than supplying a variable and a value to do the filtering, we’ll allow the

user to supply a condition:

unique_where <- function(df, condition, var) {

df |>

filter({{ condition }}) |>

distinct({{ var }}) |>

arrange({{ var }})

}

 # Find all the destinations in December

flights |> unique_where(month == 12, dest)

 #> # A tibble: 96 × 1

 #> dest

 #> <chr>

 #> 1 ABQ

 #> 2 ALB

 #> 3 ATL

 #> 4 AUS

 #> 5 AVL

 #> 6 BDL

 #> # … with 90 more rows

Here we embrace condition because it’s passed to filter() and var because it’s passed to distinct() and arrange().

Data Frame Functions | 453

We’ve made all these examples to take a data frame as the first argument, but if

you’re working repeatedly with the same data, it can make sense to hardcode it. For

example, the following function always works with the flights dataset and always

selects time_hour, carrier, and flight since they form the compound primary key

that allows you to identify a row:

subset_flights <- function(rows, cols) {

flights |>

filter({{ rows }}) |>

select(time_hour, carrier, flight, {{ cols }})

}

Data Masking Versus Tidy Selection

Sometimes you want to select variables inside a function that uses data masking.

For example, imagine you want to write a count_missing() method that counts the

number of missing observations in rows. You might try writing something like:

count_missing <- function(df, group_vars, x_var) {

df |>

group_by({{ group_vars }}) |>

summarize(

n_miss = sum(is.na({{ x_var }})),

.groups = "drop"

)

}

flights |>

count_missing(c(year, month, day), dep_time)

 #> Error in `group_by()`:

 #> ℹ In argument: `c(year, month, day)`.

 #> Caused by error:

 #> ! `c(year, month, day)` must be size 336776 or 1, not 1010328.

This doesn’t work because group_by() uses data masking, not tidy selection. We can work around that problem by using the handy pick() function, which allows you to

use tidy selection inside data-masking functions:

count_missing <- function(df, group_vars, x_var) {

df |>

group_by(pick({{ group_vars }})) |>

summarize(

n_miss = sum(is.na({{ x_var }})),

.groups = "drop"

)

}

flights |>

count_missing(c(year, month, day), dep_time)

 #> # A tibble: 365 × 4

 #> year month day n_miss

 #> <int> <int> <int> <int>

 #> 1 2013 1 1 4

 #> 2 2013 1 2 8

 #> 3 2013 1 3 10

454 | Chapter 25: Functions

 #> 4 2013 1 4 6

 #> 5 2013 1 5 3

 #> 6 2013 1 6 1

 #> # … with 359 more rows

Another convenient use of pick() is to make a 2D table of counts. Here we count using all the variables in the rows and columns and then use pivot_wider() to rearrange the counts into a grid:

 # https://twitter.com/pollicipes/status/1571606508944719876

count_wide <- function(data, rows, cols) {

data |>

count(pick(c({{ rows }}, {{ cols }}))) |>

pivot_wider(

names_from = {{ cols }},

values_from = n,

names_sort = TRUE,

values_fill = 0

)

}

diamonds |> count_wide(c(clarity, color), cut)

 #> # A tibble: 56 × 7

 #> clarity color Fair Good `Very Good` Premium Ideal

 #> <ord> <ord> <int> <int> <int> <int> <int>

 #> 1 I1 D 4 8 5 12 13

 #> 2 I1 E 9 23 22 30 18

 #> 3 I1 F 35 19 13 34 42

 #> 4 I1 G 53 19 16 46 16

 #> 5 I1 H 52 14 12 46 38

 #> 6 I1 I 34 9 8 24 17

 #> # … with 50 more rows

While our examples have mostly focused on dplyr, tidy evaluation also underpins

tidyr, and if you look at the pivot_wider() docs, you can see that names_from uses tidy selection.

Exercises

1. Using the datasets from nycflights13, write a function that:

a. Finds all flights that were cancelled (i.e., is.na(arr_time)) or delayed by

more than an hour:

flights |> filter_severe()

b. Counts the number of cancelled flights and the number of flights delayed by

more than an hour:

flights |> group_by(dest) |> summarize_severe()

c. Finds all flights that were cancelled or delayed by more than a user-supplied

number of hours:

flights |> filter_severe(hours = 2)

Data Frame Functions | 455

d. Summarizes the weather to compute the minimum, mean, and maximum of a

user-supplied variable:

weather |> summarize_weather(temp)

e. Converts the user-supplied variable that uses clock time (e.g., dep_time,

arr_time, etc.) into a decimal time (i.e., hours + [minutes / 60]):

weather |> standardize_time(sched_dep_time)

2. For each of the following functions, list all arguments that use tidy evaluation and

describe whether they use data masking or tidy selection: distinct(), count(),

group_by(), rename_with(), slice_min(), slice_sample().

3. Generalize the following function so that you can supply any number of variables

to count:

count_prop <- function(df, var, sort = FALSE) {

df |>

count({{ var }}, sort = sort) |>

mutate(prop = n / sum(n))

}

Plot Functions

Instead of returning a data frame, you might want to return a plot. Fortunately, you

can use the same techniques with ggplot2, because aes() is a data-masking function.

For example, imagine that you’re making a lot of histograms:

diamonds |>

ggplot(aes(x = carat)) +

geom_histogram(binwidth = 0.1)

diamonds |>

ggplot(aes(x = carat)) +

geom_histogram(binwidth = 0.05)

Wouldn’t it be nice if you could wrap this up into a histogram function? This is

easy as pie once you know that aes() is a data-masking function and you need to embrace:

histogram <- function(df, var, binwidth = NULL) {

df |>

ggplot(aes(x = {{ var }})) +

geom_histogram(binwidth = binwidth)

}

diamonds |> histogram(carat, 0.1)

456 | Chapter 25: Functions

[image: Image 199]

Note that histogram() returns a ggplot2 plot, meaning you can still add components

if you want. Just remember to switch from |> to +:

diamonds |>

histogram(carat, 0.1) +

labs(x = "Size (in carats)", y = "Number of diamonds")

More Variables

It’s straightforward to add more variables to the mix. For example, maybe you want

an easy way to eyeball whether a dataset is linear by overlaying a smooth line and a

straight line:

 # https://twitter.com/tyler_js_smith/status/1574377116988104704

linearity_check <- function(df, x, y) {

df |>

ggplot(aes(x = {{ x }}, y = {{ y }})) +

geom_point() +

geom_smooth(method = "loess", formula = y ~ x, color = "red", se = FALSE) +

geom_smooth(method = "lm", formula = y ~ x, color = "blue", se = FALSE)

}

starwars |>

filter(mass < 1000) |>

linearity_check(mass, height)

Plot Functions | 457

[image: Image 200]

Or maybe you want an alternative to colored scatterplots for very large datasets where

overplotting is a problem:

 # https://twitter.com/ppaxisa/status/1574398423175921665

hex_plot <- function(df, x, y, z, bins = 20, fun = "mean") {

df |>

ggplot(aes(x = {{ x }}, y = {{ y }}, z = {{ z }})) +

stat_summary_hex(

aes(color = after_scale(fill)), # make border same color as fill

bins = bins,

fun = fun,

)

}

diamonds |> hex_plot(carat, price, depth)

458 | Chapter 25: Functions

[image: Image 201]

Combining with Other Tidyverse Packages

Some of the most useful helpers combine a dash of data manipulation with ggplot2.

For example, you might want to do a vertical bar chart where you automatically sort

the bars in frequency order using fct_infreq(). Since the bar chart is vertical, we

also need to reverse the usual order to get the highest values at the top:

sorted_bars <- function(df, var) {

df |>

mutate({{ var }} := fct_rev(fct_infreq({{ var }}))) |>

ggplot(aes(y = {{ var }})) +

geom_bar()

}

diamonds |> sorted_bars(clarity)

Plot Functions | 459

[image: Image 202]

We have to use a new operator here, :=, because we are generating the variable name

based on user-supplied data. Variable names go on the left of =, but R’s syntax doesn’t

allow anything to the left of = except for a single literal name. To work around this

problem, we use the special operator :=, which tidy evaluation treats in the same way

as =.

Or maybe you want to make it easy to draw a bar plot just for a subset of the data:

conditional_bars <- function(df, condition, var) {

df |>

filter({{ condition }}) |>

ggplot(aes(x = {{ var }})) +

geom_bar()

}

diamonds |> conditional_bars(cut == "Good", clarity)

460 | Chapter 25: Functions

[image: Image 203]

You can also get creative and display data summaries in other ways. You can find a

cool application at https://oreil.ly/MV4kQ; it uses the axis labels to display the highest value. As you learn more about ggplot2, the power of your functions will continue to

increase.

We’ll finish with a more complicated case: labeling the plots you create.

Labeling

Remember the histogram function we showed you earlier?

histogram <- function(df, var, binwidth = NULL) {

df |>

ggplot(aes(x = {{ var }})) +

geom_histogram(binwidth = binwidth)

}

Wouldn’t it be nice if we could label the output with the variable and the bin width

that was used? To do so, we’re going to have to go under the covers of tidy evaluation

and use a function from the package we haven’t talked about yet: rlang. rlang is

a low-level package that’s used by just about every other package in the tidyverse

because it implements tidy evaluation (as well as many other useful tools).

To solve the labeling problem, we can use rlang::englue(). This works similarly to

str_glue(), so any value wrapped in { } will be inserted into the string. But it also understands {{ }}, which automatically inserts the appropriate variable name:

Plot Functions | 461

[image: Image 204]

histogram <- function(df, var, binwidth) {

label <- rlang::englue("A histogram of {{var}} with binwidth {binwidth}")

df |>

ggplot(aes(x = {{ var }})) +

geom_histogram(binwidth = binwidth) +

labs(title = label)

}

diamonds |> histogram(carat, 0.1)

You can use the same approach in any other place where you want to supply a string

in a ggplot2 plot.

Exercises

Build up a rich plotting function by incrementally implementing each of these steps:

1. Draw a scatterplot given a dataset and x and y variables.

2. Add a line of best fit (i.e., a linear model with no standard errors).

3. Add a title.

462 | Chapter 25: Functions

Style

R doesn’t care what your function or arguments are called, but the names make a big

difference for humans. Ideally, the name of your function will be short but clearly

evoke what the function does. That’s hard! But it’s better to be clear than short, as

RStudio’s autocomplete makes it easy to type long names.

Generally, function names should be verbs, and arguments should be nouns. There

are some exceptions: nouns are OK if the function computes a well-known noun (i.e.,

mean() is better than compute_mean()) or accesses some property of an object (i.e.,

coef() is better than get_coefficients()). Use your best judgment and don’t be afraid to rename a function if you figure out a better name later.

 # Too short

f()

 # Not a verb, or descriptive

my_awesome_function()

 # Long, but clear

impute_missing()

collapse_years()

R also doesn’t care about how you use whitespace in your functions, but future

readers will. Continue to follow the rules from Chapter 4. Additionally, function()

should always be followed by squiggly brackets ({}), and the contents should be indented by an additional two spaces. This makes it easier to see the hierarchy in your

code by skimming the left margin.

 # Missing extra two spaces

density <- function(color, facets, binwidth = 0.1) {

diamonds |>

ggplot(aes(x = carat, y = after_stat(density), color = {{ color }})) +

geom_freqpoly(binwidth = binwidth) +

facet_wrap(vars({{ facets }}))

}

 # Pipe indented incorrectly

density <- function(color, facets, binwidth = 0.1) {

diamonds |>

ggplot(aes(x = carat, y = after_stat(density), color = {{ color }})) +

geom_freqpoly(binwidth = binwidth) +

facet_wrap(vars({{ facets }}))

}

As you can see, we recommend putting extra spaces inside {{ }}. This makes it

obvious that something unusual is happening.

Style | 463

Exercises

1. Read the source code for each of the following two functions, puzzle out what

they do, and then brainstorm better names:

f1 <- function(string, prefix) {

str_sub(string, 1, str_length(prefix)) == prefix

}

f3 <- function(x, y) {

rep(y, length.out = length(x))

}

2. Take a function that you’ve written recently and spend five minutes brainstorm‐

ing a better name for it and its arguments.

3. Make a case for why norm_r(), norm_d(), etc., would be better than rnorm() and

dnorm(). Make a case for the opposite. How could you make the names even clearer?

Summary

In this chapter, you learned how to write functions for three useful scenarios: creating

a vector, creating a data frame, or creating a plot. Along the way you saw many

examples, which ideally started to get your creative juices flowing, and gave you some

ideas for where functions might help your analysis code.

We have shown you only the bare minimum to get started with functions and there’s

much more to learn. A few places to learn more are:

• To learn more about programming with tidy evaluation, see useful recipes in

programming with dplyr and programming with tidyr and learn more about the theory in “What is data masking and why do I need {{?”.

• To learn more about reducing duplication in your ggplot2 code, read the “Pro‐

gramming with ggplot2” chapter of the ggplot2 book.

• For more advice on function style, see the tidyverse style guide.

In the next chapter, we’ll dive into iteration which gives you further tools for reducing

code duplication.

464 | Chapter 25: Functions

CHAPTER 26

Iteration

Introduction

In this chapter, you’ll learn tools for iteration, repeatedly performing the same action

on different objects. Iteration in R generally tends to look rather different from other

programming languages because so much of it is implicit and we get it for free. For

example, if you want to double a numeric vector x in R, you can just write 2 * x. In

most other languages, you’d need to explicitly double each element of x using some

sort of for loop.

This book has already given you a small but powerful number of tools that perform

the same action for multiple “things”:

• facet_wrap() and facet_grid() draw a plot for each subset.

• group_by() plus summarize() computes a summary statistics for each subset.

• unnest_wider() and unnest_longer() create new rows and columns for each element of a list column.

Now it’s time to learn some more general tools, often called functional programming

tools because they are built around functions that take other functions as inputs.

Learning functional programming can easily veer into the abstract, but in this chapter

we’ll keep things concrete by focusing on three common tasks: modifying multiple

columns, reading multiple files, and saving multiple objects.

Prerequisites

In this chapter, we’ll focus on tools provided by dplyr and purrr, both core members

of the tidyverse. You’ve seen dplyr before, but purrr is new. We’re just going to use 465

a couple of purrr functions in this chapter, but it’s a great package to explore as you improve your programming skills:

library(tidyverse)

Modifying Multiple Columns

Imagine you have this simple tibble and you want to count the number of observa‐

tions and compute the median of every column:

df <- tibble(

a = rnorm(10),

b = rnorm(10),

c = rnorm(10),

d = rnorm(10)

)

You could do it with copy and paste:

df |> summarize(

n = n(),

a = median(a),

b = median(b),

c = median(c),

d = median(d),

)

 #> # A tibble: 1 × 5

 #> n a b c d

 #> <int> <dbl> <dbl> <dbl> <dbl>

 #> 1 10 -0.246 -0.287 -0.0567 0.144

That breaks our rule of thumb to never copy and paste more than twice, and you

can imagine that this will get tedious if you have tens or even hundreds of columns.

Instead, you can use across():

df |> summarize(

n = n(),

across(a:d, median),

)

 #> # A tibble: 1 × 5

 #> n a b c d

 #> <int> <dbl> <dbl> <dbl> <dbl>

 #> 1 10 -0.246 -0.287 -0.0567 0.144

across() has three particularly important arguments, which we’ll discuss in detail in the following sections. You’ll use the first two every time you use across(): the first

argument, .cols, specifies which columns you want to iterate over, and the second

argument, .fns, specifies what to do with each column. You can use the .names argu‐

ment when you need additional control over the names of output columns, which is

particularly important when you use across() with mutate(). We’ll also discuss two important variations, if_any() and if_all(), which work with filter().

466 | Chapter 26: Iteration

Selecting Columns with .cols

The first argument to across(), .cols, selects the columns to transform. This uses the same specifications as select(), “select()” on page 49, so you can use functions

such as starts_with() and ends_with() to select columns based on their name.

There are two additional selection techniques that are particularly useful for

across(): everything() and where(). everything() is straightforward: it selects every (nongrouping) column:

df <- tibble(

grp = sample(2, 10, replace = TRUE),

a = rnorm(10),

b = rnorm(10),

c = rnorm(10),

d = rnorm(10)

)

df |>

group_by(grp) |>

summarize(across(everything(), median))

 #> # A tibble: 2 × 5

 #> grp a b c d

 #> <int> <dbl> <dbl> <dbl> <dbl>

 #> 1 1 -0.0935 -0.0163 0.363 0.364

 #> 2 2 0.312 -0.0576 0.208 0.565

Note grouping columns (grp here) are not included in across(), because they’re automatically preserved by summarize().

where() allows you to select columns based on their type: where(is.numeric)

Selects all numeric columns.

where(is.character)

Selects all string columns.

where(is.Date)

Selects all date columns.

where(is.POSIXct)

Selects all date-time columns.

where(is.logical)

selects all logical columns.

Just like other selectors, you can combine these with Boolean algebra. For exam‐

ple, !where(is.numeric) selects all non-numeric columns, and starts_with("a") &

where(is.logical) selects all logical columns whose name starts with “a.”

Modifying Multiple Columns | 467

Calling a Single Function

The second argument to across() defines how each column will be transformed. In

simple cases, as shown, this will be a single existing function. This is a pretty special

feature of R: we’re passing one function (median, mean, str_flatten, …) to another

function (across). This is one of the features that makes R a functional programming

language.

It’s important to note that we’re passing this function to across(), so across() can call it; we’re not calling it ourselves. That means the function name should never be

followed by (). If you forget, you’ll get an error:

df |>

group_by(grp) |>

summarize(across(everything(), median()))

 #> Error in `summarize()`:

 #> ℹ In argument: àcross(everything(), median())`.

 #> Caused by error in ìs.factor()`:

 #> ! argument "x" is missing, with no default

This error arises because you’re calling the function with no input, e.g.:

median()

 #> Error in is.factor(x): argument "x" is missing, with no default

Calling Multiple Functions

In more complex cases, you might want to supply additional arguments or perform

multiple transformations. Let’s motivate this problem with a simple example: what

happens if we have some missing values in our data? median() propagates those missing values, giving us a suboptimal output:

rnorm_na <- function(n, n_na, mean = 0, sd = 1) {

sample(c(rnorm(n - n_na, mean = mean, sd = sd), rep(NA, n_na)))

}

df_miss <- tibble(

a = rnorm_na(5, 1),

b = rnorm_na(5, 1),

c = rnorm_na(5, 2),

d = rnorm(5)

)

df_miss |>

summarize(

across(a:d, median),

n = n()

)

 #> # A tibble: 1 × 5

 #> a b c d n

 #> <dbl> <dbl> <dbl> <dbl> <int>

 #> 1 NA NA NA 1.15 5

468 | Chapter 26: Iteration

It would be nice if we could pass along na.rm = TRUE to median() to remove these missing values. To do so, instead of calling median() directly, we need to create a new function that calls median() with the desired arguments: df_miss |>

summarize(

across(a:d, function(x) median(x, na.rm = TRUE)),

n = n()

)

 #> # A tibble: 1 × 5

 #> a b c d n

 #> <dbl> <dbl> <dbl> <dbl> <int>

 #> 1 0.139 -1.11 -0.387 1.15 5

This is a little verbose, so R comes with a handy shortcut: for this sort of throwaway

(or anonymous)1 function, you can replace function with \:2

df_miss |>

summarize(

across(a:d, \(x) median(x, na.rm = TRUE)),

n = n()

)

In either case, across() effectively expands to the following code:

df_miss |>

summarize(

a = median(a, na.rm = TRUE),

b = median(b, na.rm = TRUE),

c = median(c, na.rm = TRUE),

d = median(d, na.rm = TRUE),

n = n()

)

When we remove the missing values from the median(), it would be nice to know just how many values were removed. We can find that out by supplying two functions

to across(): one to compute the median and the other to count the missing values.

You supply multiple functions by using a named list to .fns:

df_miss |>

summarize(

across(a:d, list(

median = \(x) median(x, na.rm = TRUE),

n_miss = \(x) sum(is.na(x))

)),

n = n()

)

 #> # A tibble: 1 × 9

1 Anonymous, because we never explicitly gave it a name with <-. Another term programmers use for this is lambda function.

2 In older code you might see syntax that looks like ~ .x + 1. This is another way to write anonymous

functions, but it works only inside tidyverse functions and always uses the variable name .x. We now

recommend the base syntax, \(x) x + 1.

Modifying Multiple Columns | 469

 #> a_median a_n_miss b_median b_n_miss c_median c_n_miss d_median d_n_miss

 #> <dbl> <int> <dbl> <int> <dbl> <int> <dbl> <int>

 #> 1 0.139 1 -1.11 1 -0.387 2 1.15 0

 #> # … with 1 more variable: n <int>

If you look carefully, you might intuit that the columns are named using a glue

specification (“str_glue()” on page 247) like {.col}_{.fn} where .col is the name of the original column and .fn is the name of the function. That’s not a coincidence! As

you’ll learn in the next section, you can use the .names argument to supply your own

glue spec.

Column Names

The result of across() is named according to the specification provided in the .names argument. We could specify our own if we wanted the name of the

function to come first:3

df_miss |>

summarize(

across(

a:d,

list(

median = \(x) median(x, na.rm = TRUE),

n_miss = \(x) sum(is.na(x))

),

.names = "{.fn}_{.col}"

),

n = n(),

)

 #> # A tibble: 1 × 9

 #> median_a n_miss_a median_b n_miss_b median_c n_miss_c median_d n_miss_d

 #> <dbl> <int> <dbl> <int> <dbl> <int> <dbl> <int>

 #> 1 0.139 1 -1.11 1 -0.387 2 1.15 0

 #> # … with 1 more variable: n <int>

The .names argument is particularly important when you use across() with

mutate(). By default, the output of across() is given the same names as the inputs.

This means that across() in mutate() will replace existing columns. For example, here we use coalesce() to replace NAs with 0: df_miss |>

mutate(

across(a:d, \(x) coalesce(x, 0))

)

 #> # A tibble: 5 × 4

 #> a b c d

 #> <dbl> <dbl> <dbl> <dbl>

 #> 1 0.434 -1.25 0 1.60

 #> 2 0 -1.43 -0.297 0.776

 #> 3 -0.156 -0.980 0 1.15

3 You can’t currently change the order of the columns, but you could reorder them after the fact using

relocate() or similar.

470 | Chapter 26: Iteration

 #> 4 -2.61 -0.683 -0.785 2.13

 #> 5 1.11 0 -0.387 0.704

If you’d like to instead create new columns, you can use the .names argument to give

the output new names:

df_miss |>

mutate(

across(a:d, \(x) abs(x), .names = "{.col}_abs")

)

 #> # A tibble: 5 × 8

 #> a b c d a_abs b_abs c_abs d_abs

 #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

 #> 1 0.434 -1.25 NA 1.60 0.434 1.25 NA 1.60

 #> 2 NA -1.43 -0.297 0.776 NA 1.43 0.297 0.776

 #> 3 -0.156 -0.980 NA 1.15 0.156 0.980 NA 1.15

 #> 4 -2.61 -0.683 -0.785 2.13 2.61 0.683 0.785 2.13

 #> 5 1.11 NA -0.387 0.704 1.11 NA 0.387 0.704

Filtering

across() is a great match for summarize() and mutate(), but it’s more awkward to

use with filter(), because you usually combine multiple conditions with either | or

&. It’s clear that across() can help to create multiple logical columns, but then what?

So dplyr provides two variants of across() called if_any() and if_all():

 # same as df_miss |> filter(is.na(a) | is.na(b) | is.na(c) | is.na(d))

df_miss |> filter(if_any(a:d, is.na))

 #> # A tibble: 4 × 4

 #> a b c d

 #> <dbl> <dbl> <dbl> <dbl>

 #> 1 0.434 -1.25 NA 1.60

 #> 2 NA -1.43 -0.297 0.776

 #> 3 -0.156 -0.980 NA 1.15

 #> 4 1.11 NA -0.387 0.704

 # same as df_miss |> filter(is.na(a) & is.na(b) & is.na(c) & is.na(d))

df_miss |> filter(if_all(a:d, is.na))

 #> # A tibble: 0 × 4

 #> # … with 4 variables: a <dbl>, b <dbl>, c <dbl>, d <dbl>

across() in Functions

across() is particularly useful to program with because it allows you to operate on multiple columns. For example, Jacob Scott uses this little helper that wraps a bunch of lubridate functions to expand all date columns into year, month, and day columns:

expand_dates <- function(df) {

df |>

mutate(

across(where(is.Date), list(year = year, month = month, day = mday))

)

}

df_date <- tibble(

Modifying Multiple Columns | 471

 name = c("Amy", "Bob"),

date = ymd(c("2009-08-03", "2010-01-16"))

)

df_date |>

expand_dates()

 #> # A tibble: 2 × 5

 #> name date date_year date_month date_day

 #> <chr> <date> <dbl> <dbl> <int>

 #> 1 Amy 2009-08-03 2009 8 3

 #> 2 Bob 2010-01-16 2010 1 16

across() also makes it easy to supply multiple columns in a single argument because the first argument uses tidy-select; you just need to remember to embrace that

argument, as we discussed in “When to Embrace?” on page 451. For example, this

function will compute the means of numeric columns by default. But by supplying

the second argument you can choose to summarize just selected columns:

summarize_means <- function(df, summary_vars = where(is.numeric)) {

df |>

summarize(

across({{ summary_vars }}, \(x) mean(x, na.rm = TRUE)),

n = n()

)

}

diamonds |>

group_by(cut) |>

summarize_means()

 #> # A tibble: 5 × 9

 #> cut carat depth table price x y z n

 #> <ord> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>

 #> 1 Fair 1.05 64.0 59.1 4359. 6.25 6.18 3.98 1610

 #> 2 Good 0.849 62.4 58.7 3929. 5.84 5.85 3.64 4906

 #> 3 Very Good 0.806 61.8 58.0 3982. 5.74 5.77 3.56 12082

 #> 4 Premium 0.892 61.3 58.7 4584. 5.97 5.94 3.65 13791

 #> 5 Ideal 0.703 61.7 56.0 3458. 5.51 5.52 3.40 21551

diamonds |>

group_by(cut) |>

summarize_means(c(carat, x:z))

 #> # A tibble: 5 × 6

 #> cut carat x y z n

 #> <ord> <dbl> <dbl> <dbl> <dbl> <int>

 #> 1 Fair 1.05 6.25 6.18 3.98 1610

 #> 2 Good 0.849 5.84 5.85 3.64 4906

 #> 3 Very Good 0.806 5.74 5.77 3.56 12082

 #> 4 Premium 0.892 5.97 5.94 3.65 13791

 #> 5 Ideal 0.703 5.51 5.52 3.40 21551

Versus pivot_longer()

Before we go on, it’s worth pointing out an interesting connection between across()

and pivot_longer() (“Lengthening Data” on page 73). In many cases, you perform the same calculations by first pivoting the data and then performing the operations by

group rather than by column. For example, take this multifunction summary:

472 | Chapter 26: Iteration

df |>

summarize(across(a:d, list(median = median, mean = mean)))

 #> # A tibble: 1 × 8

 #> a_median a_mean b_median b_mean c_median c_mean d_median d_mean

 #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

 #> 1 0.0380 0.205 -0.0163 0.0910 0.260 0.0716 0.540 0.508

We could compute the same values by pivoting longer and then summarizing:

long <- df |>

pivot_longer(a:d) |>

group_by(name) |>

summarize(

median = median(value),

mean = mean(value)

)

long

 #> # A tibble: 4 × 3

 #> name median mean

 #> <chr> <dbl> <dbl>

 #> 1 a 0.0380 0.205

 #> 2 b -0.0163 0.0910

 #> 3 c 0.260 0.0716

 #> 4 d 0.540 0.508

And if you wanted the same structure as across(), you could pivot again:

long |>

pivot_wider(

names_from = name,

values_from = c(median, mean),

names_vary = "slowest",

names_glue = "{name}_{.value}"

)

 #> # A tibble: 1 × 8

 #> a_median a_mean b_median b_mean c_median c_mean d_median d_mean

 #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

 #> 1 0.0380 0.205 -0.0163 0.0910 0.260 0.0716 0.540 0.508

This is a useful technique to know about because sometimes you’ll hit a problem

that’s not currently possible to solve with across(): when you have groups of columns that you want to compute with simultaneously. For example, imagine that our

data frame contains both values and weights and we want to compute a weighted

mean:

df_paired <- tibble(

a_val = rnorm(10),

a_wts = runif(10),

b_val = rnorm(10),

b_wts = runif(10),

c_val = rnorm(10),

c_wts = runif(10),

d_val = rnorm(10),

d_wts = runif(10)

)

Modifying Multiple Columns | 473

There’s currently no way to do this with across(), 4 but it’s relatively straightforward with pivot_longer():

df_long <- df_paired |>

pivot_longer(

everything(),

names_to = c("group", ".value"),

names_sep = "_"

)

df_long

 #> # A tibble: 40 × 3

 #> group val wts

 #> <chr> <dbl> <dbl>

 #> 1 a 0.715 0.518

 #> 2 b -0.709 0.691

 #> 3 c 0.718 0.216

 #> 4 d -0.217 0.733

 #> 5 a -1.09 0.979

 #> 6 b -0.209 0.675

 #> # … with 34 more rows

df_long |>

group_by(group) |>

summarize(mean = weighted.mean(val, wts))

 #> # A tibble: 4 × 2

 #> group mean

 #> <chr> <dbl>

 #> 1 a 0.126

 #> 2 b -0.0704

 #> 3 c -0.360

 #> 4 d -0.248

If needed, you could pivot_wider() this back to the original form.

Exercises

1. Practice your across() skills by:

a. Computing the number of unique values in each column of palmerpen

guins::penguins.

b. Computing the mean of every column in mtcars.

c. Grouping diamonds by cut, clarity, and color and then counting the num‐

ber of observations and computing the mean of each numeric column.

2. What happens if you use a list of functions in across(), but don’t name them?

How is the output named?

3. Adjust expand_dates() to automatically remove the date columns after they’ve

been expanded. Do you need to embrace any arguments?

4 Maybe there will be one day, but currently we don’t see how.

474 | Chapter 26: Iteration

4. Explain what each step of the pipeline in this function does. What special feature

of where() are we taking advantage of?

show_missing <- function(df, group_vars, summary_vars = everything()) {

df |>

group_by(pick({{ group_vars }})) |>

summarize(

across({{ summary_vars }}, \(x) sum(is.na(x))),

.groups = "drop"

) |>

select(where(\(x) any(x > 0)))

}

nycflights13::flights |> show_missing(c(year, month, day))

Reading Multiple Files

In the previous section, you learned how to use dplyr::across() to repeat a transformation on multiple columns. In this section, you’ll learn how to use purrr::map()

to do something to every file in a directory. Let’s start with a little motivation: imagine

you have a directory full of Excel spreadsheets5 you want to read. You could do it with copy and paste:

data2019 <- readxl::read_excel("data/y2019.xlsx")

data2020 <- readxl::read_excel("data/y2020.xlsx")

data2021 <- readxl::read_excel("data/y2021.xlsx")

data2022 <- readxl::read_excel("data/y2022.xlsx")

Then use dplyr::bind_rows() to combine them all together: data <- bind_rows(data2019, data2020, data2021, data2022)

You can imagine that this would get tedious quickly, especially if you had hundreds

of files, not just four. The following sections show you how to automate this sort

of task. There are three basic steps: use list.files() to list all the files in a directory, then use purrr::map() to read each of them into a list, and then use

purrr::list_rbind() to combine them into a single data frame. We’ll then discuss how you can handle situations of increasing heterogeneity, where you can’t do the

same thing to every file.

Listing Files in a Directory

As the name suggests, list.files() lists the files in a directory. You’ll almost always use three arguments:

• The first argument, path, is the directory to look in.

5 If you instead had a directory of CSV files with the same format, you can use the technique from “Reading

Data from Multiple Files” on page 107.

Reading Multiple Files | 475

• pattern is a regular expression used to filter the filenames. The most common

pattern is something like [.]xlsx$ or [.]csv$ to find all files with a specified

extension.

• full.names determines whether the directory name should be included in the

output. You almost always want this to be TRUE.

To make our motivating example concrete, this book contains a folder with 12 Excel

spreadsheets containing data from the gapminder package. Each file contains one

year’s worth of data for 142 countries. We can list them all with the appropriate call to

list.files():

paths <- list.files("data/gapminder", pattern = "[.]xlsx$", full.names = TRUE) paths

 #> [1] "data/gapminder/1952.xlsx" "data/gapminder/1957.xlsx"

 #> [3] "data/gapminder/1962.xlsx" "data/gapminder/1967.xlsx"

 #> [5] "data/gapminder/1972.xlsx" "data/gapminder/1977.xlsx"

 #> [7] "data/gapminder/1982.xlsx" "data/gapminder/1987.xlsx"

 #> [9] "data/gapminder/1992.xlsx" "data/gapminder/1997.xlsx"

 #> [11] "data/gapminder/2002.xlsx" "data/gapminder/2007.xlsx"

Lists

Now that we have these 12 paths, we could call read_excel() 12 times to get 12 data

frames:

gapminder_1952 <- readxl::read_excel("data/gapminder/1952.xlsx")

gapminder_1957 <- readxl::read_excel("data/gapminder/1957.xlsx")

gapminder_1962 <- readxl::read_excel("data/gapminder/1962.xlsx")

... ,

gapminder_2007 <- readxl::read_excel("data/gapminder/2007.xlsx")

But putting each sheet into its own variable is going to make it hard to work with

them a few steps down the road. Instead, they’ll be easier to work with if we put them

into a single object. A list is the perfect tool for this job:

files <- list(

readxl::read_excel("data/gapminder/1952.xlsx"),

readxl::read_excel("data/gapminder/1957.xlsx"),

readxl::read_excel("data/gapminder/1962.xlsx"),

... ,

readxl::read_excel("data/gapminder/2007.xlsx")

)

Now that you have these data frames in a list, how do you get one out? You can use

files[[i]] to extract the i th element:

files[[3]]

 #> # A tibble: 142 × 5

 #> country continent lifeExp pop gdpPercap

 #> <chr> <chr> <dbl> <dbl> <dbl>

 #> 1 Afghanistan Asia 32.0 10267083 853.

 #> 2 Albania Europe 64.8 1728137 2313.

 #> 3 Algeria Africa 48.3 11000948 2551.

476 | Chapter 26: Iteration

 #> 4 Angola Africa 34 4826015 4269.

 #> 5 Argentina Americas 65.1 21283783 7133.

 #> 6 Australia Oceania 70.9 10794968 12217.

 #> # … with 136 more rows

We’ll come back to [[in more detail in “Selecting a Single Element with $ and [[” on

page 494.

purrr::map() and list_rbind()

The code to collect those data frames in a list “by hand” is basically just as tedious

to type as code that reads the files one by one. Happily, we can use purrr::map() to make even better use of our paths vector. map() is similar to across(), but instead of

doing something to each column in a data frame, it does something to each element

of a vector. map(x, f) is shorthand for:

list(

f(x[[1]]),

f(x[[2]]),

... ,

f(x[[n]])

)

So we can use map() to get a list of 12 data frames: files <- map(paths, readxl::read_excel)

length(files)

 #> [1] 12

files[[1]]

 #> # A tibble: 142 × 5

 #> country continent lifeExp pop gdpPercap

 #> <chr> <chr> <dbl> <dbl> <dbl>

 #> 1 Afghanistan Asia 28.8 8425333 779.

 #> 2 Albania Europe 55.2 1282697 1601.

 #> 3 Algeria Africa 43.1 9279525 2449.

 #> 4 Angola Africa 30.0 4232095 3521.

 #> 5 Argentina Americas 62.5 17876956 5911.

 #> 6 Australia Oceania 69.1 8691212 10040.

 #> # … with 136 more rows

(This is another data structure that doesn’t display particularly compactly with str(), so you might want to load it into RStudio and inspect it with View()).

Now we can use purrr::list_rbind() to combine that list of data frames into a single data frame:

list_rbind(files)

 #> # A tibble: 1,704 × 5

 #> country continent lifeExp pop gdpPercap

 #> <chr> <chr> <dbl> <dbl> <dbl>

 #> 1 Afghanistan Asia 28.8 8425333 779.

 #> 2 Albania Europe 55.2 1282697 1601.

 #> 3 Algeria Africa 43.1 9279525 2449.

 #> 4 Angola Africa 30.0 4232095 3521.

 #> 5 Argentina Americas 62.5 17876956 5911.

Reading Multiple Files | 477

 #> 6 Australia Oceania 69.1 8691212 10040.

 #> # … with 1,698 more rows

Or we could do both steps at once in a pipeline:

paths |>

map(readxl::read_excel) |>

list_rbind()

What if we want to pass in extra arguments to read_excel()? We use the same

technique that we used with across(). For example, it’s often useful to peak at the first few rows of the data with n_max = 1:

paths |>

map(\(path) readxl::read_excel(path, n_max = 1)) |>

list_rbind()

 #> # A tibble: 12 × 5

 #> country continent lifeExp pop gdpPercap

 #> <chr> <chr> <dbl> <dbl> <dbl>

 #> 1 Afghanistan Asia 28.8 8425333 779.

 #> 2 Afghanistan Asia 30.3 9240934 821.

 #> 3 Afghanistan Asia 32.0 10267083 853.

 #> 4 Afghanistan Asia 34.0 11537966 836.

 #> 5 Afghanistan Asia 36.1 13079460 740.

 #> 6 Afghanistan Asia 38.4 14880372 786.

 #> # … with 6 more rows

This makes it clear that something is missing: there’s no year column because that

value is recorded in the path, not the individual files. We’ll tackle that problem next.

Data in the Path

Sometimes the name of the file is data itself. In this example, the filename contains

the year, which is not otherwise recorded in the individual files. To get that column

into the final data frame, we need to do two things.

First, we name the vector of paths. The easiest way to do this is with the set_names()

function, which can take a function. Here we use basename() to extract just the file name from the full path:

paths |> set_names(basename)

 #> 1952.xlsx 1957.xlsx

 #> "data/gapminder/1952.xlsx" "data/gapminder/1957.xlsx"

 #> 1962.xlsx 1967.xlsx

 #> "data/gapminder/1962.xlsx" "data/gapminder/1967.xlsx"

 #> 1972.xlsx 1977.xlsx

 #> "data/gapminder/1972.xlsx" "data/gapminder/1977.xlsx"

 #> 1982.xlsx 1987.xlsx

 #> "data/gapminder/1982.xlsx" "data/gapminder/1987.xlsx"

 #> 1992.xlsx 1997.xlsx

 #> "data/gapminder/1992.xlsx" "data/gapminder/1997.xlsx"

 #> 2002.xlsx 2007.xlsx

 #> "data/gapminder/2002.xlsx" "data/gapminder/2007.xlsx"

478 | Chapter 26: Iteration

Those names are automatically carried along by all the map functions, so the list of

data frames will have those same names:

files <- paths |>

set_names(basename) |>

map(readxl::read_excel)

That makes this call to map() shorthand for: files <- list(

"1952.xlsx" = readxl::read_excel("data/gapminder/1952.xlsx"),

"1957.xlsx" = readxl::read_excel("data/gapminder/1957.xlsx"),

"1962.xlsx" = readxl::read_excel("data/gapminder/1962.xlsx"),

... ,

"2007.xlsx" = readxl::read_excel("data/gapminder/2007.xlsx")

)

You can also use [[to extract elements by name:

files[["1962.xlsx"]]

 #> # A tibble: 142 × 5

 #> country continent lifeExp pop gdpPercap

 #> <chr> <chr> <dbl> <dbl> <dbl>

 #> 1 Afghanistan Asia 32.0 10267083 853.

 #> 2 Albania Europe 64.8 1728137 2313.

 #> 3 Algeria Africa 48.3 11000948 2551.

 #> 4 Angola Africa 34 4826015 4269.

 #> 5 Argentina Americas 65.1 21283783 7133.

 #> 6 Australia Oceania 70.9 10794968 12217.

 #> # … with 136 more rows

Then we use the names_to argument to list_rbind() to tell it to save the names into a new column called year and then use readr::parse_number() to extract the number from the string:

paths |>

set_names(basename) |>

map(readxl::read_excel) |>

list_rbind(names_to = "year") |>

mutate(year = parse_number(year))

 #> # A tibble: 1,704 × 6

 #> year country continent lifeExp pop gdpPercap

 #> <dbl> <chr> <chr> <dbl> <dbl> <dbl>

 #> 1 1952 Afghanistan Asia 28.8 8425333 779.

 #> 2 1952 Albania Europe 55.2 1282697 1601.

 #> 3 1952 Algeria Africa 43.1 9279525 2449.

 #> 4 1952 Angola Africa 30.0 4232095 3521.

 #> 5 1952 Argentina Americas 62.5 17876956 5911.

 #> 6 1952 Australia Oceania 69.1 8691212 10040.

 #> # … with 1,698 more rows

In more complicated cases, there might be other variables stored in the direc‐

tory name, or maybe the filename contains multiple bits of data. In that case,

use set_names() (without any arguments) to record the full path and then use

tidyr::separate_wider_delim() and friends to turn them into useful columns: Reading Multiple Files | 479

paths |>

set_names() |>

map(readxl::read_excel) |>

list_rbind(names_to = "year") |>

separate_wider_delim(year, delim = "/", names = c(NA, "dir", "file")) |> separate_wider_delim(file, delim = ".", names = c("file", "ext"))

 #> # A tibble: 1,704 × 8

 #> dir file ext country continent lifeExp pop gdpPercap

 #> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>

 #> 1 gapminder 1952 xlsx Afghanistan Asia 28.8 8425333 779.

 #> 2 gapminder 1952 xlsx Albania Europe 55.2 1282697 1601.

 #> 3 gapminder 1952 xlsx Algeria Africa 43.1 9279525 2449.

 #> 4 gapminder 1952 xlsx Angola Africa 30.0 4232095 3521.

 #> 5 gapminder 1952 xlsx Argentina Americas 62.5 17876956 5911.

 #> 6 gapminder 1952 xlsx Australia Oceania 69.1 8691212 10040.

 #> # … with 1,698 more rows

Save Your Work

Now that you’ve done all this hard work to get to a nice tidy data frame, it’s a great

time to save your work:

gapminder <- paths |>

set_names(basename) |>

map(readxl::read_excel) |>

list_rbind(names_to = "year") |>

mutate(year = parse_number(year))

write_csv(gapminder, "gapminder.csv")

Now when you come back to this problem in the future, you can read in a single CSV

file. For large and richer datasets, using parquet might be a better choice than .csv, as

discussed in “The Parquet Format” on page 398.

If you’re working in a project, we suggest calling the file that does this sort of data

prep work, something like 0-cleanup.R. The 0 in the filename suggests that this

should be run before anything else.

If your input data files change over time, you might consider learning a tool like

targets to set up your data cleaning code to automatically rerun whenever one of the input files is modified.

Many Simple Iterations

Here we loaded the data directly from disk and were lucky enough to get a tidy

dataset. In most cases, you’ll need to do some additional tidying, and you have two

basic options: you can do one round of iteration with a complex function or do

multiple rounds of iteration with simple functions. In our experience, most folks

reach first for one complex iteration, but you’re often better off doing multiple simple

iterations.

480 | Chapter 26: Iteration

For example, imagine that you want to read in a bunch of files, filter out missing

values, pivot, and then combine. One way to approach the problem is to write a

function that takes a file and does all those steps and then call map() once: process_file <- function(path) {

df <- read_csv(path)

df |>

filter(!is.na(id)) |>

mutate(id = tolower(id)) |>

pivot_longer(jan:dec, names_to = "month")

}

paths |>

map(process_file) |>

list_rbind()

Alternatively, you could perform each step of process_file() for every file:

paths |>

map(read_csv) |>

map(\(df) df |> filter(!is.na(id))) |>

map(\(df) df |> mutate(id = tolower(id))) |>

map(\(df) df |> pivot_longer(jan:dec, names_to = "month")) |>

list_rbind()

We recommend this approach because it stops you from getting fixated on getting

the first file right before moving on to the rest. By considering all of the data when

doing tidying and cleaning, you’re more likely to think holistically and end up with a

higher-quality result.

In this particular example, there’s another optimization you could make, by binding

all the data frames together earlier. Then you can rely on regular dplyr behavior:

paths |>

map(read_csv) |>

list_rbind() |>

filter(!is.na(id)) |>

mutate(id = tolower(id)) |>

pivot_longer(jan:dec, names_to = "month")

Heterogeneous Data

Unfortunately, sometimes it’s not possible to go from map() straight to list_rbind()

because the data frames are so heterogeneous that list_rbind() either fails or yields a data frame that’s not useful. In that case, it’s still useful to start by loading all of the

files:

files <- paths |>

map(readxl::read_excel)

Reading Multiple Files | 481

Then a useful strategy is to capture the structure of the data frames so that you can

explore it using your data science skills. One way to do so is with this handy df_types

function6 that returns a tibble with one row for each column:

df_types <- function(df) {

tibble(

col_name = names(df),

col_type = map_chr(df, vctrs::vec_ptype_full),

n_miss = map_int(df, \(x) sum(is.na(x)))

)

}

df_types(gapminder)

 #> # A tibble: 6 × 3

 #> col_name col_type n_miss

 #> <chr> <chr> <int>

 #> 1 year double 0

 #> 2 country character 0

 #> 3 continent character 0

 #> 4 lifeExp double 0

 #> 5 pop double 0

 #> 6 gdpPercap double 0

You can then apply this function to all of the files and maybe do some pivoting to

make it easier to see where the differences are. For example, this makes it easy to

verify that the gapminder spreadsheets that we’ve been working with are all quite

homogeneous:

files |>

map(df_types) |>

list_rbind(names_to = "file_name") |>

select(-n_miss) |>

pivot_wider(names_from = col_name, values_from = col_type)

 #> # A tibble: 12 × 6

 #> file_name country continent lifeExp pop gdpPercap

 #> <chr> <chr> <chr> <chr> <chr> <chr>

 #> 1 1952.xlsx character character double double double

 #> 2 1957.xlsx character character double double double

 #> 3 1962.xlsx character character double double double

 #> 4 1967.xlsx character character double double double

 #> 5 1972.xlsx character character double double double

 #> 6 1977.xlsx character character double double double

 #> # … with 6 more rows

If the files have heterogeneous formats, you might need to do more processing

before you can successfully merge them. Unfortunately, we’re now going to leave you

to figure that out on your own, but you might want to read about map_if() and

map_at(). map_if() allows you to selectively modify elements of a list based on their

values; map_at() allows you to selectively modify elements based on their names.

6 We’re not going to explain how it works, but if you look at the docs for the functions used, you should be able to puzzle it out.

482 | Chapter 26: Iteration

Handling Failures

Sometimes the structure of your data might be sufficiently wild that you can’t even

read all the files with a single command. And then you’ll encounter one of the

downsides of map(): it succeeds or fails as a whole. map() will either successfully read all of the files in a directory or fail with an error, reading zero files. This is annoying:

why does one failure prevent you from accessing all the other successes?

Luckily, purrr comes with a helper to tackle this problem: possibly(). possibly() is what’s known as a function operator: it takes a function and returns a function with

modified behavior. In particular, possibly() changes a function from erroring to

returning a value that you specify:

files <- paths |>

map(possibly(\(path) readxl::read_excel(path), NULL))

data <- files |> list_rbind()

This works particularly well here because list_rbind(), like many tidyverse functions, automatically ignores NULLs.

Now you have all the data that can be read easily, and it’s time to tackle the hard part

of figuring out why some files failed to load and what to do about it. Start by getting

the paths that failed:

failed <- map_vec(files, is.null)

paths[failed]

 #> character(0)

Then call the import function again for each failure and figure out what went wrong.

Saving Multiple Outputs

In the previous section, you learned about map(), which is useful for reading multiple files into a single object. In this section, we’ll now explore sort of the opposite

problem: how can you take one or more R objects and save it to one or more files?

We’ll explore this challenge using three examples:

• Saving multiple data frames into one database

• Saving multiple data frames into multiple .csv files

• Saving multiple plots to multiple .png files

Writing to a Database

Sometimes when working with many files at once, it’s not possible to fit all your data

into memory at once, and you can’t do map(files, read_csv). One approach to deal

Saving Multiple Outputs | 483

with this problem is to load your data into a database so you can access just the bits you need with dbplyr.

If you’re lucky, the database package you’re using will provide a handy function that

takes a vector of paths and loads them all into the database. This is the case with

duckdb’s duckdb_read_csv():

con <- DBI::dbConnect(duckdb::duckdb())

duckdb::duckdb_read_csv(con, "gapminder", paths)

This would work well here, but we don’t have CSV files; instead, we have Excel

spreadsheets. So we’re going to have to do it “by hand.” Learning to do it by hand

will also help you when you have a bunch of CSV files and the database that you’re

working with doesn’t have one function that will load them all in.

We need to start by creating a table that will fill in with data. The easiest way to do

this is by creating a template, a dummy data frame that contains all the columns we

want, but only a sampling of the data. For the gapminder data, we can make that

template by reading a single file and adding the year to it:

template <- readxl::read_excel(paths[[1]])

template$year <- 1952

template

 #> # A tibble: 142 × 6

 #> country continent lifeExp pop gdpPercap year

 #> <chr> <chr> <dbl> <dbl> <dbl> <dbl>

 #> 1 Afghanistan Asia 28.8 8425333 779. 1952

 #> 2 Albania Europe 55.2 1282697 1601. 1952

 #> 3 Algeria Africa 43.1 9279525 2449. 1952

 #> 4 Angola Africa 30.0 4232095 3521. 1952

 #> 5 Argentina Americas 62.5 17876956 5911. 1952

 #> 6 Australia Oceania 69.1 8691212 10040. 1952

 #> # … with 136 more rows

Now we can connect to the database and use DBI::dbCreateTable() to turn our template into a database table:

con <- DBI::dbConnect(duckdb::duckdb())

DBI::dbCreateTable(con, "gapminder", template)

dbCreateTable() doesn’t use the data in template, just the variable names and types.

So if we inspect the gapminder table now, you’ll see that it’s empty, but it has the

variables we need with the types we expect:

con |> tbl("gapminder")

 #> # Source: table<gapminder> [0 x 6]

 #> # Database: DuckDB 0.6.1 [root@Darwin 22.3.0:R 4.2.1/:memory:]

 #> # … with 6 variables: country <chr>, continent <chr>, lifeExp <dbl>,

 #> # pop <dbl>, gdpPercap <dbl>, year <dbl>

Next, we need a function that takes a single file path, reads it into R, and adds

the result to the gapminder table. We can do that by combining read_excel() with

DBI::dbAppendTable():

484 | Chapter 26: Iteration

append_file <- function(path) {

df <- readxl::read_excel(path)

df$year <- parse_number(basename(path))

DBI::dbAppendTable(con, "gapminder", df)

}

Now we need to call append_file() once for each element of paths. That’s certainly

possible with map():

paths |> map(append_file)

But we don’t care about the output of append_file(), so instead of map(), it’s slightly nicer to use walk(). walk() does exactly the same thing as map() but throws the output away:

paths |> walk(append_file)

Now we can see if we have all the data in our table:

con |>

tbl("gapminder") |>

count(year)

 #> # Source: SQL [?? x 2]

 #> # Database: DuckDB 0.6.1 [root@Darwin 22.3.0:R 4.2.1/:memory:]

 #> year n

 #> <dbl> <dbl>

 #> 1 1952 142

 #> 2 1957 142

 #> 3 1962 142

 #> 4 1967 142

 #> 5 1972 142

 #> 6 1977 142

 #> # … with more rows

Writing CSV Files

The same basic principle applies if we want to write multiple CSV files, one for each

group. Let’s imagine that we want to take the ggplot2::diamonds data and save one CSV file for each clarity. First we need to make those individual datasets. There are

many ways you could do that, but there’s one way we particularly like: group_nest().

by_clarity <- diamonds |>

group_nest(clarity)

by_clarity

 #> # A tibble: 8 × 2

 #> clarity data

 #> <ord> <list<tibble[,9]>>

 #> 1 I1 [741 × 9]

 #> 2 SI2 [9,194 × 9]

 #> 3 SI1 [13,065 × 9]

 #> 4 VS2 [12,258 × 9]

 #> 5 VS1 [8,171 × 9]

 #> 6 VVS2 [5,066 × 9]

 #> # … with 2 more rows

Saving Multiple Outputs | 485

This gives us a new tibble with eight rows and two columns. clarity is our grouping

variable, and data is a list column containing one tibble for each unique value of

clarity:

by_clarity$data[[1]]

 #> # A tibble: 741 × 9

 #> carat cut color depth table price x y z

 #> <dbl> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>

 #> 1 0.32 Premium E 60.9 58 345 4.38 4.42 2.68

 #> 2 1.17 Very Good J 60.2 61 2774 6.83 6.9 4.13

 #> 3 1.01 Premium F 61.8 60 2781 6.39 6.36 3.94

 #> 4 1.01 Fair E 64.5 58 2788 6.29 6.21 4.03

 #> 5 0.96 Ideal F 60.7 55 2801 6.37 6.41 3.88

 #> 6 1.04 Premium G 62.2 58 2801 6.46 6.41 4

 #> # … with 735 more rows

While we’re here, let’s create a column that gives the name of the output file, using

mutate() and str_glue():

by_clarity <- by_clarity |>

mutate(path = str_glue("diamonds-{clarity}.csv"))

by_clarity

 #> # A tibble: 8 × 3

 #> clarity data path

 #> <ord> <list<tibble[,9]>> <glue>

 #> 1 I1 [741 × 9] diamonds-I1.csv

 #> 2 SI2 [9,194 × 9] diamonds-SI2.csv

 #> 3 SI1 [13,065 × 9] diamonds-SI1.csv

 #> 4 VS2 [12,258 × 9] diamonds-VS2.csv

 #> 5 VS1 [8,171 × 9] diamonds-VS1.csv

 #> 6 VVS2 [5,066 × 9] diamonds-VVS2.csv

 #> # … with 2 more rows

So if we were going to save these data frames by hand, we might write something like:

write_csv(by_clarity$data[[1]], by_clarity$path[[1]])

write_csv(by_clarity$data[[2]], by_clarity$path[[2]])

write_csv(by_clarity$data[[3]], by_clarity$path[[3]])

...

write_csv(by_clarity$by_clarity[[8]], by_clarity$path[[8]])

This is a little different from our previous uses of map() because there are two arguments that are changing, not just one. That means we need a new function:

map2(), which varies both the first and second arguments. And because we again don’t care about the output, we want walk2() rather than map2(). That gives us: walk2(by_clarity$data, by_clarity$path, write_csv)

486 | Chapter 26: Iteration

[image: Image 205]

Saving Plots

We can take the same basic approach to create many plots. Let’s first make a function

that draws the plot we want:

carat_histogram <- function(df) {

ggplot(df, aes(x = carat)) + geom_histogram(binwidth = 0.1)

}

carat_histogram(by_clarity$data[[1]])

Now we can use map() to create a list of many plots7 and their eventual file paths: by_clarity <- by_clarity |>

mutate(

plot = map(data, carat_histogram),

path = str_glue("clarity-{clarity}.png")

)

Then use walk2() with ggsave() to save each plot: walk2(

by_clarity$path,

by_clarity$plot,

\(path, plot) ggsave(path, plot, width = 6, height = 6)

)

7 You can print by_clarity$plot to get a crude animation—you’ll get one plot for each element of plots.

Saving Multiple Outputs | 487

This is shorthand for:

ggsave(by_clarity$path[[1]], by_clarity$plot[[1]], width = 6, height = 6)

ggsave(by_clarity$path[[2]], by_clarity$plot[[2]], width = 6, height = 6)

ggsave(by_clarity$path[[3]], by_clarity$plot[[3]], width = 6, height = 6)

...

ggsave(by_clarity$path[[8]], by_clarity$plot[[8]], width = 6, height = 6)

Summary

In this chapter, you saw how to use explicit iteration to solve three problems

that come up frequently when doing data science: manipulating multiple columns,

reading multiple files, and saving multiple outputs. But in general, iteration is a

superpower: if you know the right iteration technique, you can easily go from fixing

one problem to fixing all the problems. Once you’ve mastered the techniques in this

chapter, we highly recommend learning more by reading the “Functionals” chapter of Advanced R and consulting the purrr website.

If you know much about iteration in other languages, you might be surprised that

we didn’t discuss the for loop. That’s because R’s orientation toward data analysis

changes how we iterate: in most cases you can rely on an existing idiom to do

something to each column or each group. And when you can’t, you can often use a

functional programming tool like map() that does something to each element of a list.

However, you will see for loops in wild-caught code, so you’ll learn about them in the

next chapter where we’ll discuss some important base R tools.

488 | Chapter 26: Iteration

CHAPTER 27

A Field Guide to Base R

Introduction

To finish off the programming section, we’re going to give you a quick tour of the

most important base R functions that we don’t otherwise discuss in the book. These

tools are particularly useful as you do more programming and will help you read

code you encounter in the wild.

This is a good place to remind you that the tidyverse is not the only way to solve

data science problems. We teach the tidyverse in this book because tidyverse packages

share a common design philosophy, increasing the consistency across functions, and

making each new function or package a little easier to learn and use. It’s not possible

to use the tidyverse without using base R, so we’ve actually already taught you a lot

of base R functions, including library() to load packages; sum() and mean() for numeric summaries; the factor, date, and POSIXct data types; and of course all the

basic operators such as +, -, /, *, |, &, and !. What we haven’t focused on so far is base

R workflows, so we will highlight a few of those in this chapter.

After you read this book, you’ll learn other approaches to the same problems using

base R, data.table, and other packages. You’ll undoubtedly encounter these other

approaches when you start reading R code written by others, particularly if you’re

using StackOverflow. It’s 100% OK to write code that uses a mix of approaches, and

don’t let anyone tell you otherwise!

In this chapter, we’ll focus on four big topics: subsetting with [, subsetting with

[[and $, using the apply family of functions, and using for loops. To finish off, we’ll

briefly discuss two essential plotting functions.

489

Prerequisites

This package focuses on base R so it doesn’t have any real prerequisites, but we’ll load

the tidyverse to explain some of the differences:

library(tidyverse)

Selecting Multiple Elements with [

[is used to extract subcomponents from vectors and data frames and is called like

x[i] or x[i, j]. In this section, we’ll introduce you to the power of [, first showing

you how you can use it with vectors, and then showing how the same principles

extend in a straightforward way to 2D structures like data frames. We’ll then help you

cement that knowledge by showing how various dplyr verbs are special cases of [.

Subsetting Vectors

There are five main types of things that you can subset a vector with, i.e., that can be

the i in x[i]:

• A vector of positive integers. Subsetting with positive integers keeps the elements

at those positions:

x <- c("one", "two", "three", "four", "five")

x[c(3, 2, 5)]

 #> [1] "three" "two" "five"

By repeating a position, you can actually make a longer output than input,

making the term “subsetting” a bit of a misnomer:

x[c(1, 1, 5, 5, 5, 2)]

 #> [1] "one" "one" "five" "five" "five" "two"

• A vector of negative integers. Negative values drop the elements at the specified

positions:

x[c(-1, -3, -5)]

 #> [1] "two" "four"

• A logical vector. Subsetting with a logical vector keeps all values corresponding

to a TRUE value. This is most often useful in conjunction with the comparison

functions:

x <- c(10, 3, NA, 5, 8, 1, NA)

 # All non-missing values of x

x[!is.na(x)]

 #> [1] 10 3 5 8 1

 # All even (or missing!) values of x

x[x %% 2 == 0]

 #> [1] 10 NA 8 NA

Unlike filter(), NA indices will be included in the output as NAs.

490 | Chapter 27: A Field Guide to Base R

• A character vector. If you have a named vector, you can subset it with a character vector:

x <- c(abc = 1, def = 2, xyz = 5)

x[c("xyz", "def")]

 #> xyz def

 #> 5 2

As with subsetting with positive integers, you can use a character vector to

duplicate individual entries.

• Nothing. The final type of subsetting is nothing, x[], which returns the complete

x. This is not useful for subsetting vectors, but as we’ll see shortly, it is useful

when subsetting 2D structures like tibbles.

Subsetting Data Frames

There are quite a few different ways1 that you can use [with a data frame, but the most important way is to select rows and columns independently with df[rows,

cols]. Here rows and cols are vectors as described earlier. For example, df[rows,]

and df[, cols] select just rows or just columns, using the empty subset to preserve

the other dimension.

Here are a couple of examples:

df <- tibble(

x = 1:3,

y = c("a", "e", "f"),

z = runif(3)

)

 # Select first row and second column

df[1, 2]

 #> # A tibble: 1 × 1

 #> y

 #> <chr>

 #> 1 a

 # Select all rows and columns x and y

df[, c("x" , "y")]

 #> # A tibble: 3 × 2

 #> x y

 #> <int> <chr>

 #> 1 1 a

 #> 2 2 e

 #> 3 3 f

 # Select rows wherèxìs greater than 1 and all columns

df[df$x > 1,]

 #> # A tibble: 2 × 3

 #> x y z

1 Read the Selecting multiple elements section in Advanced R to see how you can also subset a data frame like it is a 1D object and how you can subset it with a matrix.

Selecting Multiple Elements with [| 491

 #> <int> <chr> <dbl>

 #> 1 2 e 0.834

 #> 2 3 f 0.601

We’ll come back to $ shortly, but you should be able to guess what df$x does from the

context: it extracts the x variable from df. We need to use it here because [doesn’t use

tidy evaluation, so you need to be explicit about the source of the x variable.

There’s an important difference between tibbles and data frames when it comes to [.

In this book, we’ve mainly used tibbles, which are data frames, but they tweak some

behaviors to make your life a little easier. In most places, you can use “tibble” and

“data frame” interchangeably, so when we want to draw particular attention to R’s

built-in data frame, we’ll write data.frame. If df is a data.frame, then df[, cols]

will return a vector if col selects a single column and will return a data frame if it

selects more than one column. If df is a tibble, then [will always return a tibble.

df1 <- data.frame(x = 1:3)

df1[, "x"]

 #> [1] 1 2 3

df2 <- tibble(x = 1:3)

df2[, "x"]

 #> # A tibble: 3 × 1

 #> x

 #> <int>

 #> 1 1

 #> 2 2

 #> 3 3

One way to avoid this ambiguity with data.frames is to explicitly specify drop =

FALSE:

df1[, "x" , drop = FALSE]

 #> x

 #> 1 1

 #> 2 2

 #> 3 3

dplyr Equivalents

Several dplyr verbs are special cases of [:

• filter() is equivalent to subsetting the rows with a logical vector, taking care to exclude missing values:

df <- tibble(

x = c(2, 3, 1, 1, NA),

y = letters[1:5],

z = runif(5)

)

df |> filter(x > 1)

 # same as

df[!is.na(df$x) & df$x > 1,]

492 | Chapter 27: A Field Guide to Base R

Another common technique in the wild is to use which() for its side effect of

dropping missing values: df[which(df$x > 1),].

• arrange() is equivalent to subsetting the rows with an integer vector, usually created with order():

df |> arrange(x, y)

 # same as

df[order(dfx, dfy),]

You can use order(decreasing = TRUE) to sort all columns in descending order

or -rank(col) to sort columns in decreasing order individually.

• Both select() and relocate() are similar to subsetting the columns with a character vector:

df |> select(x, z)

 # same as

df[, c("x", "z")]

Base R also provides a function that combines the features of filter() and

select()2 called subset():

df |>

filter(x > 1) |>

select(y, z)

 #> # A tibble: 2 × 2

 #> y z

 #> <chr> <dbl>

 #> 1 a 0.157

 #> 2 b 0.00740

 # same as

df |> subset(x > 1, c(y, z))

This function was the inspiration for much of dplyr’s syntax.

Exercises

1. Create functions that take a vector as input and return:

a. The elements at even-numbered positions

b. Every element except the last value

c. Only even values (and no missing values)

2. Why is x[-which(x > 0)] not the same as x[x <= 0]? Read the documentation

for which() and do some experiments to figure it out.

2 But it doesn’t handle grouped data frames differently, and it doesn’t support selection helper functions like

starts_with().

Selecting Multiple Elements with [| 493

Selecting a Single Element with $ and [[

[, which selects many elements, is paired with [[and $, which extract a single

element. In this section, we’ll show you how to use [[and $ to pull columns out of

data frames, discuss a couple more differences between data.frames and tibbles, and

emphasize some important differences between [and [[when used with lists.

Data Frames

[[and $ can be used to extract columns out of a data frame. [[can access by position

or by name, and $ is specialized for access by name:

tb <- tibble(

x = 1:4,

y = c(10, 4, 1, 21)

)

 # by position

tb[[1]]

 #> [1] 1 2 3 4

 # by name

tb[["x"]]

 #> [1] 1 2 3 4

tb$x

 #> [1] 1 2 3 4

They can also be used to create new columns, the base R equivalent of mutate():

tb$z <- tb$x + tb$y

tb

 #> # A tibble: 4 × 3

 #> x y z

 #> <int> <dbl> <dbl>

 #> 1 1 10 11

 #> 2 2 4 6

 #> 3 3 1 4

 #> 4 4 21 25

There are several other base R approaches to creating new columns including with

transform(), with(), and within(). Hadley collected a few examples.

Using $ directly is convenient when performing quick summaries. For example, if you

just want to find the size of the biggest diamond or the possible values of cut, there’s

no need to use summarize():

max(diamonds$carat)

 #> [1] 5.01

levels(diamonds$cut)

 #> [1] "Fair" "Good" "Very Good" "Premium" "Ideal"

494 | Chapter 27: A Field Guide to Base R

dplyr also provides an equivalent to [[/$ that we didn’t mention in Chapter 3: pull().

pull() takes either a variable name or a variable position and returns just that column. That means we could rewrite the previous code to use the pipe:

diamonds |> pull(carat) |> mean()

 #> [1] 0.7979397

diamonds |> pull(cut) |> levels()

 #> [1] "Fair" "Good" "Very Good" "Premium" "Ideal"

Tibbles

There are a couple of important differences between tibbles and base data.frames

when it comes to $. Data frames match the prefix of any variable names (so-called

 partial matching) and don’t complain if a column doesn’t exist:

df <- data.frame(x1 = 1)

df$x

 #> Warning in df$x: partial match of 'x' to 'x1'

 #> [1] 1

df$z

 #> NULL

Tibbles are more strict: they only ever match variable names exactly and they will

generate a warning if the column you are trying to access doesn’t exist:

tb <- tibble(x1 = 1)

tb$x

 #> Warning: Unknown or uninitialised column: `x`.

 #> NULL

tb$z

 #> Warning: Unknown or uninitialised column: `z`.

 #> NULL

For this reason we sometimes joke that tibbles are lazy and surly: they do less and

complain more.

Lists

[[and $ are also really important for working with lists, and it’s important to

understand how they differ from [. Let’s illustrate the differences with a list named l:

l <- list(

a = 1:3,

b = "a string",

c = pi,

d = list(-1, -5)

)

Selecting a Single Element with $ and [[| 495

• [extracts a sublist. It doesn’t matter how many elements you extract, the result

will always be a list.

str(l[1:2])

 #> List of 2

 #> $ a: int [1:3] 1 2 3

 #> $ b: chr "a string"

str(l[1])

 #> List of 1

 #> $ a: int [1:3] 1 2 3

str(l[4])

 #> List of 1

 #> $ d:List of 2

 #> ..$: num -1

 #> ..$: num -5

Like with vectors, you can subset with a logical, integer, or character vector.

• [[and $ extract a single component from a list. They remove a level of hierarchy

from the list.

str(l[[1]])

 #> int [1:3] 1 2 3

str(l[[4]])

 #> List of 2

 #> $: num -1

 #> $: num -5

str(l$a)

 #> int [1:3] 1 2 3

The difference between [and [[is particularly important for lists because [[drills

down into the list, while [returns a new, smaller list. To help you remember the

difference, take a look at the unusual pepper shaker shown in Figure 27-1. If this pepper shaker is your list pepper, then pepper[1] is a pepper shaker containing a single

pepper packet. pepper[2] would look the same but would contain the second packet.

pepper[1:2] would be a pepper shaker containing two pepper packets. pepper[[1]]

would extract the pepper packet itself.

496 | Chapter 27: A Field Guide to Base R

[image: Image 206]

 Figure 27-1. (Left) A pepper shaker that Hadley once found in his hotel room. (Middle)

 pepper[1]. (Right) pepper[[1]].

This same principle applies when you use 1D [with a data frame: df["x"] returns a

one-column data frame, and df[["x"]] returns a vector.

Exercises

1. What happens when you use [[with a positive integer that’s bigger than the

length of the vector? What happens when you subset with a name that doesn’t

exist?

2. What would pepper[[1]][1] be? What about pepper[[1]][[1]]?

Apply Family

In Chapter 26, you learned tidyverse techniques for iteration like dplyr::across()

and the map family of functions. In this section, you’ll learn about their base equiva‐

lents, the apply family. In this context, apply and map are synonyms because another

way of saying “map a function over each element of a vector” is “apply a function over

each element of a vector.” Here we’ll give you a quick overview of this family so you

can recognize them in the wild.

Apply Family | 497

The most important member of this family is lapply(), which is similar to

purrr::map(). 3 In fact, because we haven’t used any of map()’s more advanced features, you can replace every map() call in Chapter 26 with lapply().

There’s no exact base R equivalent to across(), but you can get close by using [with

lapply(). This works because under the hood, data frames are lists of columns, so

calling lapply() on a data frame applies the function to each column.

df <- tibble(a = 1, b = 2, c = "a", d = "b", e = 4)

 # First find numeric columns

num_cols <- sapply(df, is.numeric)

num_cols

 #> a b c d e

 #> TRUE TRUE FALSE FALSE TRUE

 # Then transform each column with lapply() then replace the original values

df[, num_cols] <- lapply(df[, num_cols, drop = FALSE], \(x) x * 2)

df

 #> # A tibble: 1 × 5

 #> a b c d e

 #> <dbl> <dbl> <chr> <chr> <dbl>

 #> 1 2 4 a b 8

The previous code uses a new function, sapply(). It’s similar to lapply(), but

it always tries to simplify the result, which is the reason for the s in its name,

here producing a logical vector instead of a list. We don’t recommend using it for

programming, because the simplification can fail and give you an unexpected type,

but it’s usually fine for interactive use. purrr has a similar function called map_vec()

that we didn’t mention in Chapter 26.

Base R provides a stricter version of sapply() called vapply(), short for v ector apply. It takes an additional argument that specifies the expected type, ensuring that

simplification occurs the same way regardless of the input. For example, we could

replace the previous sapply() call with this vapply() where we specify that we

expect is.numeric() to return a logical vector of length 1:

vapply(df, is.numeric, logical(1))

 #> a b c d e

 #> TRUE TRUE FALSE FALSE TRUE

The distinction between sapply() and vapply() is really important when they’re inside a function (because it makes a big difference to the function’s robustness to

unusual inputs), but it doesn’t usually matter in data analysis.

Another important member of the apply family is tapply(), which computes a single grouped summary:

3 It just lacks convenient features such as progress bars and reporting which element caused the problem if there’s an error.

498 | Chapter 27: A Field Guide to Base R

diamonds |>

group_by(cut) |>

summarize(price = mean(price))

 #> # A tibble: 5 × 2

 #> cut price

 #> <ord> <dbl>

 #> 1 Fair 4359.

 #> 2 Good 3929.

 #> 3 Very Good 3982.

 #> 4 Premium 4584.

 #> 5 Ideal 3458.

tapply(diamonds$price, diamonds$cut, mean)

 #> Fair Good Very Good Premium Ideal

 #> 4358.758 3928.864 3981.760 4584.258 3457.542

Unfortunately, tapply() returns its results in a named vector, which requires some gymnastics if you want to collect multiple summaries and grouping variables into

a data frame (it’s certainly possible to not do this and just work with free-floating

vectors, but in our experience that just delays the work). If you want to see how you

might use tapply() or other base techniques to perform other grouped summaries,

Hadley has collected a few techniques in a gist.

The final member of the apply family is the titular apply(), which works with matrices and arrays. In particular, watch out for apply(df, 2, something), which is

a slow and potentially dangerous way of doing lapply(df, something). This rarely

comes up in data science because we usually work with data frames and not matrices.

for Loops

for loops are the fundamental building block of iteration that both the apply and

map families use under the hood. for loops are powerful and general tools that are

important to learn as you become a more experienced R programmer. The basic

structure of a for loop looks like this:

for (element in vector) {

 # do something with element

}

The most straightforward use of for loops is to achieve the same effect as walk(): call some function with a side effect on each element of a list. For example, in “Writing to

a Database” on page 483, instead of using walk():

paths |> walk(append_file)

we could have used a for loop:

for (path in paths) {

append_file(path)

}

for Loops | 499

Things get a little trickier if you want to save the output of the for loop, for example reading all of the Excel files in a directory like we did in Chapter 26:

paths <- dir("data/gapminder", pattern = "\\.xlsx$", full.names = TRUE)

files <- map(paths, readxl::read_excel)

There are a few different techniques that you can use, but we recommend being

explicit about what the output is going to look like up front. In this case, we’re going

to want a list the same length as paths, which we can create with vector():

files <- vector("list", length(paths))

Then instead of iterating over the elements of paths, we’ll iterate over their indices,

using seq_along() to generate one index for each element of paths: seq_along(paths)

 #> [1] 1 2 3 4 5 6 7 8 9 10 11 12

Using the indices is important because it allows us to link to each position in the

input with the corresponding position in the output:

for (i in seq_along(paths)) {

files[[i]] <- readxl::read_excel(paths[[i]])

}

To combine the list of tibbles into a single tibble, you can use do.call() + rbind():

do.call(rbind, files)

 #> # A tibble: 1,704 × 5

 #> country continent lifeExp pop gdpPercap

 #> <chr> <chr> <dbl> <dbl> <dbl>

 #> 1 Afghanistan Asia 28.8 8425333 779.

 #> 2 Albania Europe 55.2 1282697 1601.

 #> 3 Algeria Africa 43.1 9279525 2449.

 #> 4 Angola Africa 30.0 4232095 3521.

 #> 5 Argentina Americas 62.5 17876956 5911.

 #> 6 Australia Oceania 69.1 8691212 10040.

 #> # … with 1,698 more rows

Rather than making a list and saving the results as we go, a simpler approach is to

build up the data frame piece by piece:

out <- NULL

for (path in paths) {

out <- rbind(out, readxl::read_excel(path))

}

We recommend avoiding this pattern because it can become slow when the vector is

long. This is the source of the persistent canard that for loops are slow: they’re not,

but iteratively growing a vector is.

Plots

Many R users who don’t otherwise use the tidyverse prefer ggplot2 for plotting due

to helpful features such as sensible defaults, automatic legends, and a modern look.

500 | Chapter 27: A Field Guide to Base R

[image: Image 207]

However, base R plotting functions can still be useful because they’re so concise—it

takes very little typing to do a basic exploratory plot.

There are two main types of base plot you’ll see in the wild: scatterplots and histo‐

grams, produced with plot() and hist(), respectively. Here’s a quick example from the diamonds dataset:

 # Left

hist(diamonds$carat)

 # Right

plot(diamonds$carat, diamonds$price)

Note that base plotting functions work with vectors, so you need to pull columns out

of the data frame using $ or some other technique.

Summary

In this chapter, we showed you a selection of base R functions useful for subsetting

and iteration. Compared to approaches discussed elsewhere in the book, these func‐

tions tend to have more of a “vector” flavor than a “data frame” flavor because base R

functions tend to take individual vectors, rather than a data frame and some column

specification. This often makes life easier for programming and so becomes more

important as you write more functions and begin to write your own packages.

This chapter concludes the programming section of the book. You made a solid

start on your journey to becoming not just a data scientist who uses R, but a data

scientist who can program in R. We hope these chapters have sparked your interest in

programming and that you’re looking forward to learning more outside of this book.

Summary | 501

[image: Image 208]

PART VI

Communicate

So far, you’ve learned the tools to get your data into R, tidy it into a form convenient

for analysis, and then understand your data through transformation and visualiza‐

tion. However, it doesn’t matter how great your analysis is unless you can explain it to

others: you need to communicate your results.

 Figure VI-1. Communication is the final part of the data science process; if you can’t

 communicate your results to other humans, it doesn’t matter how great your analysis is.

Communication is the theme of the following two chapters:

• In Chapter 28, you will learn about Quarto, a tool for integrating prose, code,

and results. You can use Quarto for analyst-to-analyst communication as well

as analyst-to-decision-maker communication. Thanks to the power of Quarto

formats, you can even use the same document for both purposes.

• In Chapter 29, you’ll learn a little about the many other varieties of outputs you can produce using Quarto, including dashboards, websites, and books.

These chapters focus mostly on the technical mechanics of communication, not the

really hard problems of communicating your thoughts to other humans. However,

there are lot of other great books about communication, which we’ll point you to at

the end of each chapter.

CHAPTER 28

Quarto

Introduction

Quarto provides a unified authoring framework for data science, combining your

code, its results, and your prose. Quarto documents are fully reproducible and sup‐

port dozens of output formats, such as PDFs, Word files, presentations, and more.

Quarto files are designed to be used in three ways:

• For communicating to decision-makers, who want to focus on the conclusions,

not the code behind the analysis

• For collaborating with other data scientists (including future you!), who are

interested in both your conclusions and how you reached them (i.e., the code)

• As an environment in which to do data science, as a modern-day lab notebook

where you can capture not only what you did but also what you were thinking

Quarto is a command-line interface tool, not an R package. This means that help is,

by and large, not available through ?. Instead, as you work through this chapter and

use Quarto in the future, you should refer to the Quarto documentation.

If you’re an R Markdown user, you might be thinking, “Quarto sounds a lot like R

Markdown.” You’re not wrong! Quarto unifies the functionality of many packages

from the R Markdown ecosystem (rmarkdown, bookdown, distill, xaringan, etc.)

into a single consistent system as well as extends it with native support for multiple

programming languages such as Python and Julia in addition to R. In a way, Quarto

reflects everything that was learned from expanding and supporting the R Markdown

ecosystem for a decade.

505

Prerequisites

You need the Quarto command-line interface (Quarto CLI), but you don’t need to

explicitly install it or load it, as RStudio automatically does both when needed.

Quarto Basics

This is a Quarto file—a plain-text file that has the extension .qmd:

title: "Diamond sizes"

date: 2022-09-12

format: html

```{r}

#| label: setup

#| include: false

library(tidyverse)

smaller <- diamonds |> 

filter(carat <= 2.5)

```

We have data about `r nrow(diamonds)` diamonds.

Only `r nrow(diamonds) - nrow(smaller)àre larger than 2.5 carats.

The distribution of the remainder is shown below:

```{r}

#| label: plot-smaller-diamonds

#| echo: false

smaller |> 

ggplot(aes(x = carat)) + 

geom_freqpoly(binwidth = 0.01)

``Ìt contains three important types of content:

• An (optional)  YAML header surrounded by ---

•  Chunks of R code surrounded by ```

• Text mixed with simple text formatting like # heading and _italics_

Figure 28-1 shows a .qmd document in RStudio with a notebook interface where

code and output are interleaved. You can run each code chunk by clicking the

Run icon (it looks like a play button at the top of the chunk) or by pressing Cmd/

Ctrl+Shift+Enter. RStudio executes the code and displays the results inline with the

code. 

506  |  Chapter 28: Quarto

[image: Image 209]

[image: Image 210]

 Figure 28-1. A Quarto document in RStudio. Code and output are interleaved in the

 document, with the plot output appearing right underneath the code. 

If you don’t like seeing your plots and output in your document and would rather

make use of RStudio’s Console and Plots panes, you can click the gear icon next to

Render and switch to Chunk Output in Console, as shown in Figure 28-2. 

 Figure 28-2. A Quarto document in RStudio with the plot output in the Plots pane. 

Quarto Basics  |  507

[image: Image 211]

[image: Image 212]

To produce a complete report containing all text, code, and results, click Ren‐

der or press Cmd/Ctrl+Shift+K. You can also do this programmatically with

quarto::quarto_render("diamond-sizes.qmd"). This will display the report in the

viewer pane as shown in Figure 28-3 and create an HTML file. 

 Figure 28-3. A Quarto document in RStudio with the rendered document in the Viewer

 pane. 

When you render the document, Quarto sends the .qmd file to knitr, which executes

all of the code chunks and creates a new Markdown (.md) document that includes

the code and its output. The Markdown file generated by knitr is then processed by

pandoc, which is responsible for creating the finished file. Figure 28-4 shows this process. The advantage of this two-step workflow is that you can create a very wide

range of output formats, as you’ll learn about in Chapter 29. 

 Figure 28-4. Diagram of Quarto workflow from qmd, to knitr, to md, to pandoc, to

 output in PDF, MS Word, or HTML formats. 

To get started with your own .qmd file, select File > New File > Quarto Document…

in the menu bar. RStudio will launch a wizard that you can use to prepopulate your

file with useful content that reminds you how the key features of Quarto work. 

508  |  Chapter 28: Quarto

The following sections dive into the three components of a Quarto document in more

details: the Markdown text, the code chunks, and the YAML header. 

Exercises

1. Create a new Quarto document by selecting File > New File > Quarto Document. 

Read the instructions. Practice running the chunks individually. Then render the

document by clicking the appropriate button and then by using the appropriate

keyboard shortcut. Verify that you can modify the code, rerun it, and see modi‐

fied output. 

2. Create one new Quarto document for each of the three built-in formats: HTML, 

PDF, and Word. Render each of the three documents. How do the outputs differ? 

How do the inputs differ? (You may need to install LaTeX to build the PDF

output—RStudio will prompt you if this is necessary.)

Visual Editor

The visual editor in RStudio provides a WYSIWYM interface for authoring Quarto documents. Under the hood, prose in Quarto documents (.qmd files) is written

in Markdown, a lightweight set of conventions for formatting plain-text files. In

fact, Quarto uses Pandoc markdown (a slightly extended version of Markdown that

Quarto understands), including tables, citations, cross-references, footnotes, divs/

spans, definition lists, attributes, raw HTML/TeX, and more, as well as support for

executing code cells and viewing their output inline. While Markdown is designed

to be easy to read and write, as you will see in “Source Editor” on page 511, it still requires learning new syntax. Therefore, if you’re new to computational documents

like .qmd files but have experience using tools like Google Docs or MS Word, the

easiest way to get started with Quarto in RStudio is the visual editor. 

In the visual editor either you can use the buttons on the menu bar to insert images, 

tables, cross-references, etc., or you can use the catch-all Cmd/Ctrl+/ shortcut to

insert just about anything. If you are at the beginning of a line (as shown in Fig‐

ure 28-5), you can also enter just / to invoke the shortcut. 

Visual Editor  |  509

[image: Image 213]

 Figure 28-5. Quarto visual editor. 

510  |  Chapter 28: Quarto

Inserting images and customizing how they are displayed is also facilitated with the

visual editor. Either you can paste an image from your clipboard directly into the

visual editor (and RStudio will place a copy of that image in the project directory and

link to it) or you can use the visual editor’s Insert > Figure/Image menu to browse to

the image you want to insert or paste its URL. In addition, using the same menu you

can resize the image as well as add a caption, alternative text, and a link. 

The visual editor has many more features that we haven’t enumerated here that you

might find useful as you gain experience authoring with it. 

Most importantly, while the visual editor displays your content with formatting, 

under the hood, it saves your content in plain Markdown, and you can switch back

and forth between the visual and source editors to view and edit your content using

either tool. 

Exercises

1. Re-create the document in Figure 28-5 using the visual editor. 

2. Using the visual editor, insert a code chunk using the Insert menu and then the

insert anything tool. 

3. Using the visual editor, figure out how to:

a. Add a footnote. 

b. Add a horizontal rule. 

c. Add a block quote. 

4. In the visual editor, select Insert > Citation and insert a citation to the paper

titled “Welcome to the Tidyverse” using its digital object identifier (DOI), which

is 10.21105/joss.01686. Render the document and observe how the reference shows up in the document. What change do you observe in the YAML of your

document? 

Source Editor

You can also edit Quarto documents using the source editor in RStudio, without

the assist of the visual editor. While the visual editor will feel familiar to those with

experience writing in tools like Google Docs, the source editor will feel familiar

to those with experience writing R scripts or R Markdown documents. The source

editor can also be useful for debugging any Quarto syntax errors since it’s often easier

to catch these in plain text. 

The following guide shows how to use Pandoc’s Markdown for authoring Quarto

documents in the source editor:

Source Editor  |  511

## Text formatting

*italic* **bold** ~~strikeout~~ `codè

superscript^2^ subscript~2~

[underline]{.underline} [small caps]{.smallcaps}

## Headings

# 1st Level Header

## 2nd Level Header

### 3rd Level Header

## Lists

-   Bulleted list item 1

-   Item 2

-   Item 2a

-   Item 2b

1.  Numbered list item 1

2.  Item 2. 

The numbers are incremented automatically in the output. 

## Links and images

<http://example.com> 

[linked phrase](http://example.com)

![optional caption text](quarto.png){

fig-alt="Quarto logo and the word quarto spelled in small case letters"}

## Tables

| First Header | Second Header |

|--------------|---------------|

| Content Cell | Content Cell  |

| Content Cell | Content Cell  |

The best way to learn these is simply to try them. It will take a few days, but soon they

will become second nature, and you won’t need to think about them. If you forget, 

you can get to a handy reference sheet with Help > Markdown Quick Reference. 

512  |  Chapter 28: Quarto

Exercises

1. Practice what you’ve learned by creating a brief résumé. The title should be your

name, and you should include headings for (at least) education or employment. 

Each of the sections should include a bulleted list of jobs/degrees. Highlight the

year in bold. 

2. Using the source editor and the Markdown quick reference, figure out how to:

a. Add a footnote. 

b. Add a horizontal rule. 

c. Add a block quote. 

3. Copy and paste the contents of diamond-sizes.qmd into a local R Quarto document. Check that you can run it, and then add text after the frequency polygon

that describes its most striking features. 

4. Create a document in Google Docs or MS Word (or locate a document you

have created previously) with some content in it such as headings, hyperlinks, 

formatted text, etc. Copy the contents of this document and paste it into a Quarto

document in the visual editor. Then, switch to the source editor and inspect the

source code. 

Code Chunks

To run code inside a Quarto document, you need to insert a chunk. There are three

ways to do so:

• Pressing the keyboard shortcut Cmd+Option+I/Ctrl+Alt+I

• Clicking the insert button icon in the editor toolbar

• Manually typing the chunk delimiters ```{r} and ```

We’d recommend you learn the keyboard shortcut. It will save you a lot of time in the

long run! 

You can continue to run the code using the keyboard shortcut that by now (we hope!)

you know and love: Cmd/Ctrl+Enter. However, chunks get a new keyboard shortcut, 

Cmd/Ctrl+Shift+Enter, which runs all the code in the chunk. Think of a chunk like

a function. A chunk should be relatively self-contained and focused around a single

task. 

The following sections describe the chunk header that consists of ```{r}, followed

by an optional chunk label and various other chunk options, each on their own line, 

marked by #|. 

Code Chunks  |  513

[image: Image 214]

Chunk Label

Chunks can be given an optional label:

```{r}

#| label: simple-addition

1 + 1

```

#> [1] 2

This has three advantages:

• You can more easily navigate to specific chunks using the drop-down code

navigator in the bottom left of the script editor:

• Graphics produced by the chunks will have useful names that make them easier

to use elsewhere. More on that in “Figures” on page 517. 

• You can set up networks of cached chunks to avoid re-performing expensive

computations on every run. More on that in “Caching” on page 522. 

Your chunk labels should be short but evocative and should not contain spaces. 

We recommend using dashes (-) to separate words (instead of underscores, _) and

avoiding other special characters in chunk labels. 

You are generally free to label your chunk however you like, but there is one chunk

name that imbues special behavior: setup. When you’re in a notebook mode, the

chunk named setup will be run automatically once, before any other code is run. 

Additionally, chunk labels cannot be duplicated. Each chunk label must be unique. 

Chunk Options

Chunk output can be customized with  options, fields supplied to the chunk header. 

Knitr provides almost 60 options that you can use to customize your code chunks. 

Here we’ll cover the most important chunk options that you’ll use frequently. You can

see the full list here. 

514  |  Chapter 28: Quarto

The most important set of options controls if your code block is executed and what

results are inserted in the finished report:

eval: false

Prevents code from being evaluated. (And obviously if the code is not run, no

results will be generated.) This is useful for displaying example code, or for

disabling a large block of code without commenting each line. 

include: false

Runs the code but doesn’t show the code or results in the final document. Use

this for setup code that you don’t want cluttering your report. 

echo: false

Prevents code, but not the results, from appearing in the finished file. Use this

when writing reports aimed at people who don’t want to see the underlying R

code. 

message: false  or  warning: false

Prevents messages or warnings from appearing in the finished file. 

results: hide

Hides printed output. 

fig-show: hide

Hides plots. 

error: true

Causes the render to continue even if code returns an error. This is rarely

something you’ll want to include in the final version of your report, but can be

useful if you need to debug exactly what is going on inside your .qmd. It’s also

useful if you’re teaching R and want to deliberately include an error. The default, 

error: false, causes rendering to fail if there is a single error in the document. 

Each of these chunk options gets added to the header of the chunk, following #|. For

example, in the following chunk, the result is not printed since eval is set to false:

```{r}

#| label: simple-multiplication

#| eval: false

2 * 2

```

Code Chunks  |  515

The following table summarizes which types of output each option suppresses:

Option

Run Code

Show Code

Output

Plots

Messages

Warnings

eval: false

X



X

X

X

X

include: false



X

X

X

X

X

echo: false



X









results: hide





X







fig-show: hide







X





message: false









X



warning: false











X

Global Options

As you work more with knitr, you will discover that some of the default chunk

options don’t fit your needs and you want to change them. 

You can do this by adding the preferred options in the document YAML, under

execute. For example, if you are preparing a report for an audience who does not

need to see your code but only your results and narrative, you might set echo:

false at the document level. That will hide the code by default and show only the

chunks you deliberately choose to show (with echo: true). You might consider

setting message: false and warning: false, but that would make it harder to

debug problems because you wouldn’t see any messages in the final document. 

title: "My report" 

execute:

echo: false

Since Quarto is designed to be multilingual (it works with R as well as other

languages like Python, Julia, etc.), all of the knitr options are not available at the

document execution level since some of them work only with knitr and not other

engines Quarto uses for running code in other languages (e.g., Jupyter). You can, 

however, still set these as global options for your document under the knitr field, 

under opts_chunk. For example, when writing books and tutorials we set:

title: "Tutorial" 

knitr:

opts_chunk:

comment: "#>" 

collapse: true

This uses our preferred comment formatting and ensures that the code and output

are kept closely entwined. 

516  |  Chapter 28: Quarto

Inline Code

There is one other way to embed R code into a Quarto document: directly into the

text, with `r `. This can be useful if you mention properties of your data in the text. 

For example, the example document used at the start of the chapter had:

We have data about `r nrow(diamonds)` diamonds. Only `r nrow(diamonds) -

nrow(smaller)àre larger than 2.5 carats. The distribution of the remainder is shown

below:

When the report is rendered, the results of these computations are inserted into the

text:

We have data about 53940 diamonds. Only 126 are larger than 2.5 carats. The distribu‐

tion of the remainder is shown below:

When inserting numbers into text, format() is your friend. It allows you to set the number of digits so you don’t print to a ridiculous degree of accuracy, and you can

use big.mark to make numbers easier to read. You might combine these into a helper

function:

comma <- function(x) format(x, digits = 2, big.mark = ",")

comma(3452345)

 #> [1] "3,452,345" 

comma(.12358124331)

 #> [1] "0.12" 

Exercises

1. Add a section that explores how diamond sizes vary by cut, color, and clarity. 

Assume you’re writing a report for someone who doesn’t know R, and instead of

setting echo: false on each chunk, set a global option. 

2. Download diamond-sizes.qmd. Add a section that describes the largest 20 diamonds, including a table that displays their most important attributes. 

3. Modify diamonds-sizes.qmd to use label_comma() to produce nicely formatted

output. Also include the percentage of diamonds that are larger than 2.5 carats. 

Figures

The figures in a Quarto document can be embedded (e.g., a PNG or JPEG file) or

generated as a result of a code chunk. 

To embed an image from an external file, you can use the Insert menu in the Visual

Editor RStudio and select Figure/Image. This will pop open a menu where you can

browse to the image you want to insert as well as add alternative text or a caption to it

and adjust its size. In the visual editor you can also simply paste an image from your

Figures  |  517

clipboard into your document and RStudio will place a copy of that image in your

project folder. 

If you include a code chunk that generates a figure (e.g., includes a ggplot() call), the

resulting figure will be automatically included in your Quarto document. 

Figure Sizing

The biggest challenge of graphics in Quarto is getting your figures the right size and

shape. There are five main options that control figure sizing: fig-width, fig-height, 

fig-asp, out-width, and out-height. Image sizing is challenging because there are

two sizes (the size of the figure created by R and the size at which it is inserted in

the output document) and multiple ways of specifying the size (i.e., height, width, and

aspect ratio: pick two of three). 

We recommend three of the five options:

• Plots tend to be more aesthetically pleasing if they have consistent width. To

enforce this, set fig-width: 6 (6”) and fig-asp: 0.618 (the golden ratio) in the

defaults. Then in individual chunks, adjust only fig-asp. 

• Control the output size with out-width and set it to a percentage of the body

width of the output document. We suggest out-width: "70%" and fig-align:

center. That gives plots room to breathe, without taking up too much space. 

• To put multiple plots in a single row, set layout-ncol to 2 for two plots, 3 for

three plots, etc. Depending on what you’re trying to illustrate (e.g., show data or

show plot variations), you might also tweak fig-width, as discussed next. 

If you find that you’re having to squint to read the text in your plot, you need to

tweak fig-width. If fig-width is larger than the size the figure is rendered in the

final doc, the text will be too small; if fig-width is smaller, the text will be too big. 

You’ll often need to do a little experimentation to figure out the right ratio between

the fig-width and the eventual width in your document. To illustrate the principle, 

the following three plots have fig-width of 4, 6, and 8, respectively:

518  |  Chapter 28: Quarto

[image: Image 215]

[image: Image 216]

[image: Image 217]

If you want to make sure the font size is consistent across all your figures, whenever

you set out-width, you’ll also need to adjust fig-width to maintain the same ratio

with your default out-width. For example, if your default fig-width is 6 and out-

width is “70%” when you set out-width: "50%", you’ll need to set fig-width to 4.3

(6 * 0.5 / 0.7). 

Figure sizing and scaling is an art and science, and getting things right can require

an iterative trial-and-error approach. You can learn more about figure sizing in the

“Taking Control of Plot Scaling” blog post. 

Figures  |  519

Other Important Options

When mingling code and text, like in this book, you can set fig-show: hold so that

plots are shown after the code. This has the pleasant side effect of forcing you to

break up large blocks of code with their explanations. 

To add a caption to the plot, use fig-cap. In Quarto this will change the figure from

inline to “floating.” 

If you’re producing PDF output, the default graphics type is PDF. This is a good

default because PDFs are high-quality vector graphics. However, they can produce

large and slow plots if you are displaying thousands of points. In that case, set

fig-format: "png" to force the use of PNGs. They are slightly lower quality but will

be much more compact. 

It’s a good idea to name code chunks that produce figures, even if you don’t routinely

label other chunks. The chunk label is used to generate the filename of the graphic on

disk, so naming your chunks makes it much easier to pick out plots and reuse them

in other circumstances (e.g., if you want to quickly drop a single plot into an email). 

Exercises

1. Open diamond-sizes.qmd in the visual editor, find an image of a diamond, copy

it, and paste it into the document. Double-click the image and add a caption. 

Resize the image and render your document. Observe how the image is saved in

your current working directory. 

2. Edit the label of the code chunk in diamond-sizes.qmd that generates a plot to

start with the prefix fig- and add a caption to the figure with the chunk option

fig-cap. Then, edit the text above the code chunk to add a cross-reference to the

figure with Insert > Cross Reference. 

3. Change the size of the figure with the following chunk options, one at a time; 

render your document; and describe how the figure changes. 

a. fig-width: 10

b. fig-height: 3

c. out-width: "100%" 

d. out-width: "20%" 

520  |  Chapter 28: Quarto

Tables

Similar to figures, you can include two types of tables in a Quarto document. They

can be Markdown tables that you create in directly in your Quarto document (using

the Insert Table menu), or they can be tables generated as a result of a code chunk. In

this section we will focus on the latter, tables generated via computation. 

By default, Quarto prints data frames and matrices as you’d see them in the console:

mtcars[1:5, ]

 #>                    mpg cyl disp  hp drat    wt  qsec vs am gear carb

 #> Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4

 #> Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4

 #> Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1

 #> Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1

 #> Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2

If you prefer that data be displayed with additional formatting, you can use the

knitr::kable() function. The following code generates Table 28-1:

knitr::kable(mtcars[1:5, ], )

 Table 28-1. A knitr kable

 

mpg cyl

disp hp

drat

wt

qsec vs am

gear

carb

Mazda RX4

21.0

6

160 110

3.90

2.620

16.46

0

1

4

4

Mazda RX4 Wag

21.0

6

160 110

3.90

2.875

17.02

0

1

4

4

Datsun 710

22.8

4

108

93

3.85

2.320

18.61

1

1

4

1

Hornet 4 Drive

21.4

6

258 110

3.08

3.215

19.44

1

0

3

1

Hornet Sportabout

18.7

8

360 175

3.15

3.440

17.02

0

0

3

2

Read the documentation for ?knitr::kable to see the other ways in which you can customize the table. For even deeper customization, consider the gt, huxtable, reacta-ble, kableExtra, xtable, stargazer, pander, tables, and ascii packages. Each provides a

set of tools for returning formatted tables from R code. 

Exercises

1. Open diamond-sizes.qmd in the visual editor, insert a code chunk, and add a

table with knitr::kable() that shows the first five rows of the diamonds data frame. 

2. Display the same table with gt::gt() instead. 

3. Add a chunk label that starts with the prefix tbl- and add a caption to the table

with the chunk option tbl-cap. Then, edit the text above the code chunk to add

a cross-reference to the table with Insert > Cross Reference. 

Tables  |  521

Caching

Normally, each render of a document starts from a completely clean slate. This is

great for reproducibility, because it ensures that you’ve captured every important

computation in code. However, it can be painful if you have some computations that

take a long time. The solution is cache: true. 

You can enable the knitr cache at the document level for caching the results of all

computations in a document using standard YAML options:

---

title: "My Document" 

execute: 

cache: true

---

You can also enable caching at the chunk level for caching the results of computation

in a specific chunk:

```{r}

#| cache: true

code for lengthy computation...

```

When set, this will save the output of the chunk to a specially named file on disk. On

subsequent runs, knitr will check to see if the code has changed, and if it hasn’t, it will

reuse the cached results. 

The caching system must be used with care, because by default it is based on the code

only, not its dependencies. For example, here the processed_data chunk depends on

the raw-data chunk:

```{r}

#| label: raw-data

#| cache: true

rawdata <- readr::read_csv("a_very_large_file.csv")

```

```{r}

#| label: processed_data

#| cache: true

processed_data <- rawdata |>

filter(!is.na(import_var)) |>

mutate(new_variable = complicated_transformation(x, y, z))

```

Caching the processed_data chunk means that it will get rerun if the dplyr pipeline

is changed, but it won’t get rerun if the read_csv() call changes. You can avoid that

problem with the dependson chunk option:

522  |  Chapter 28: Quarto

```{r}

#| label: processed-data

#| cache: true

#| dependson: "raw-data"

processed_data <- rawdata |>

filter(!is.na(import_var)) |>

mutate(new_variable = complicated_transformation(x, y, z))

```

dependson should contain a character vector of  every chunk that the cached chunk

depends on. Knitr will update the results for the cached chunk whenever it detects

that one of its dependencies has changed. 

Note that the chunks won’t update if a_very_large_file.csv changes, because

knitr caching tracks changes only within the .qmd file. If you want to also track

changes to that file, you can use the cache.extra option. This is an arbitrary R

expression that will invalidate the cache whenever it changes. A good function to use

is file.mtime(): it returns when it was last modified. Then you can write:

```{r}

#| label: raw-data

#| cache: true

#| cache.extra: !expr file.mtime("a_very_large_file.csv")

rawdata <- readr::read_csv("a_very_large_file.csv")

```

We’ve followed the advice of David Robinson to name these chunks: each chunk is named after the primary object that it creates. This makes it easier to understand the

dependson specification. 

As your caching strategies get progressively more complicated, it’s a good idea to

regularly clear out all your caches with knitr::clean_cache(). 

Exercises

1. Set up a network of chunks where d depends on c and b, and both b and c

depend on a. Have each chunk print lubridate::now(), set cache: true, and then verify your understanding of caching. 

Troubleshooting

Troubleshooting Quarto documents can be challenging because you are no longer in

an interactive R environment, and you will need to learn some new tricks. Addition‐

ally, the error could be due to issues with the Quarto document itself or due to the R

code in the Quarto document. 

Troubleshooting  |  523

One common error in documents with code chunks is duplicated chunk labels, which

are especially pervasive if your workflow involves copying and pasting code chunks. 

To address this issue, all you need to do is to change one of your duplicated labels. 

If the errors are due to the R code in the document, the first thing you should always

try is to re-create the problem in an interactive session. Restart R, and then select

“Run all chunks,” either from the Code menu, under the Run region, or by pressing

the keyboard shortcut Ctrl+Alt+R. If you’re lucky, that will re-create the problem, and

you can figure out what’s going on interactively. 

If that doesn’t help, there must be something different between your interactive

environment and the Quarto environment. You’re going to need to systematically

explore the options. The most common difference is the working directory: the

working directory of a Quarto is the directory in which it lives. Check the working

directory is what you expect by including getwd() in a chunk. 

Next, brainstorm all the things that might cause the bug. You’ll need to systematically

check that they’re the same in your R session and your Quarto session. The easiest

way to do that is to set error: true on the chunk causing the problem and then use

print() and str() to check that settings are as you expect. 

YAML Header

You can control many other “whole document” settings by tweaking the parameters

of the YAML header. You might wonder what YAML stands for: it’s “YAML Ain’t

Markup Language,” which is designed for representing hierarchical data in a way

that’s easy for humans to read and write. Quarto uses it to control many details of

the output. Here we’ll discuss three: self-contained documents, document parameters, 

and bibliographies. 

Self-Contained

HTML documents typically have a number of external dependencies (e.g., images, 

CSS style sheets, JavaScript, etc.) and, by default, Quarto places these dependencies

in a _files folder in the same directory as your .qmd file. If you publish the HTML

file on a hosting platform (e.g., QuartoPub), the dependencies in this directory are published with your document and hence are available in the published report. 

However, if you want to email the report to a colleague, you might prefer to have a

single, self-contained, HTML document that embeds all of its dependencies. You can

do this by specifying the embed-resources option. 

format:

html:

embed-resources: true

524  |  Chapter 28: Quarto

the resulting file will be self-contained, such that it will need no external files and no internet access to be displayed properly by a browser. 

Parameters

Quarto documents can include one or more parameters whose values can be set

when you render the report. Parameters are useful when you want to re-render the

same report with distinct values for various key inputs. For example, you might

be producing sales reports per branch, exam results by student, or demographic

summaries by country. To declare one or more parameters, use the params field. 

This example uses a my_class parameter to determine which class of cars to display:

---

format: html

params:

my_class: "suv" 

---

```{r}

#| label: setup

#| include: false

library(tidyverse)

class <- mpg |> filter(class == params$my_class)

```

# Fuel economy for `r params$my_class`s

```{r}

#| message: false

ggplot(class, aes(x = displ, y = hwy)) +

geom_point() +

geom_smooth(se = FALSE)

``Às you can see, parameters are available within the code chunks as a read-only list

named params.

You can write atomic vectors directly into the YAML header. You can also run

arbitrary R expressions by prefacing the parameter value with !expr. This is a good

way to specify date/time parameters.

params:

start: !expr lubridate::ymd("2015-01-01")

snapshot: !expr lubridate::ymd_hms("2015-01-01 12:30:00")

YAML Header | 525

Bibliographies and Citations

Quarto can automatically generate citations and a bibliography in a number of styles.

The most straightforward way of adding citations and bibliographies to a Quarto

document is using the visual editor in RStudio.

To add a citation using the visual editor, select Insert > Citation. Citations can be

inserted from a variety of sources:

• DOI references

• Zotero personal or group libraries.

• Searches of Crossref, DataCite, or PubMed.

• Your document bibliography (a .bib file in the directory of your document)

Under the hood, the visual mode uses the standard Pandoc Markdown representation

for citations (e.g., [@citation]).

If you add a citation using one of the first three methods, the visual editor will

automatically create a bibliography.bib file for you and add the reference to it.

It will also add a bibliography field to the document YAML. As you add more

references, this file will get populated with their citations. You can also directly edit

this file using many common bibliography formats including BibLaTeX, BibTeX,

EndNote, and Medline.

To create a citation within your .qmd file in the source editor, use a key composed

of @ plus the citation identifier from the bibliography file. Then place the citation in

square brackets. Here are some examples:

Separate multiple citations with à;`: Blah blah [@smith04; @doe99].

You can add arbitrary comments inside the square brackets:

Blah blah [see @doe99, pp. 33-35; also @smith04, ch. 1].

Remove the square brackets to create an in-text citation: @smith04

says blah, or @smith04 [p. 33] says blah.

Add à-` before the citation to suppress the author's name:

Smith says blah [-@smith04].

When Quarto renders your file, it will build and append a bibliography to the end

of your document. The bibliography will contain each of the cited references from

your bibliography file, but it will not contain a section heading. As a result it is

common practice to end your file with a section header for the bibliography, such as #

References or # Bibliography.

526 | Chapter 28: Quarto

You can change the style of your citations and bibliography by referencing a citation

style language (CSL) file in the csl field:

bibliography: rmarkdown.bib

csl: apa.csl

As with the bibliography field, your CSL file should contain a path to the file. Here we

assume that the CSL file is in the same directory as the .qmd file. A good place to find

CSL style files for common bibliography styles is the official repository for citation

styles.

Workflow

Earlier, we discussed a basic workflow for capturing your R code where you work

interactively in the console and then capture what works in the script editor. Quarto

brings together the console and the script editor, blurring the lines between interac‐

tive exploration and long-term code capture. You can rapidly iterate within a chunk,

editing and re-executing with Cmd/Ctrl+Shift+Enter. When you’re happy, you move

on and start a new chunk.

Quarto is also important because it so tightly integrates prose and code. This makes it

a great analysis notebook because it lets you develop code and record your thoughts.

An analysis notebook shares many of the same goals as a classic lab notebook in the

physical sciences. It:

• Records what you did and why you did it. Regardless of how great your memory

is, if you don’t record what you do, there will come a time when you have

forgotten important details. Write them down so you don’t forget!

• Supports rigorous thinking. You are more likely to come up with a strong analy‐

sis if you record your thoughts as you go and continue to reflect on them. This

also saves you time when you eventually write up your analysis to share with

others.

• Helps others understand your work. It is rare to do data analysis by yourself, and

you’ll often be working as part of a team. A lab notebook helps you share not

only what you’ve done but why you did it with your colleagues or lab mates.

Much of the good advice about using lab notebooks effectively can also be translated

to analysis notebooks. We’ve drawn on our own experiences and Colin Purrington’s

advice on lab notebooks to come up with the following tips:

• Ensure each notebook has a descriptive title, an evocative filename, and a first

paragraph that briefly describes the aims of the analysis.

Workflow | 527

• Use the YAML header date field to record the date you started working on the

notebook:

date: 2016-08-23

Use ISO8601 YYYY-MM-DD format so that’s there no ambiguity. Use it even if

you don’t normally write dates that way!

• If you spend a lot of time on an analysis idea and it turns out to be a dead

end, don’t delete it! Write up a brief note about why it failed and leave it in the

notebook. That will help you avoid going down the same dead end when you

come back to the analysis in the future.

• Generally, you’re better off doing data entry outside of R. But if you do need to

record a small snippet of data, clearly lay it out using tibble::tribble().

• If you discover an error in a data file, never modify it directly, but instead write

code to correct the value. Explain why you made the fix.

• Before you finish for the day, make sure you can render the notebook. If you’re

using caching, make sure to clear the caches. That will let you fix any problems

while the code is still fresh in your mind.

• If you want your code to be reproducible in the long run (i.e., so you can come

back to run it next month or next year), you’ll need to track the versions of the

packages that your code uses. A rigorous approach is to use renv, which stores packages in your project directory. A quick and dirty hack is to include a chunk

that runs sessionInfo()—that won’t let you easily re-create your packages as they are today, but at least you’ll know what they were.

• You are going to create many, many, many analysis notebooks over the course of

your career. How are you going to organize them so you can find them again in

the future? We recommend storing them in individual projects and coming up

with a good naming scheme.

Summary

This chapter introduced you to Quarto for authoring and publishing reproducible

computational documents that include your code and your prose in one place.

You learned about writing Quarto documents in RStudio with the visual or source

editor, how code chunks work and how to customize options for them, how to

include figures and tables in your Quarto documents, and options for caching for

computations. Additionally, you learned about adjusting YAML header options for

creating self-contained or parameterized documents as well as including citations and

a bibliography. We also gave you some troubleshooting and workflow tips.

528 | Chapter 28: Quarto

While this introduction should be sufficient to get you started with Quarto, there is

still a lot more to learn. Quarto is still relatively young and is still growing rapidly.

The best place to stay on top of innovations is the official Quarto website.

There are two important topics that we haven’t covered here: collaboration and the

details of accurately communicating your ideas to other humans. Collaboration is

a vital part of modern data science, and you can make your life much easier by

using version control tools, like Git and GitHub. We recommend Happy Git with R, a

user-friendly introduction to Git and GitHub from R users, by Jenny Bryan. The book

is freely available online.

We have also not touched on what you should actually write to clearly communicate

the results of your analysis. To improve your writing, we highly recommend reading

either Style: Lessons in Clarity and Grace by Joseph M. Williams & Joseph Bizup

(Pearson) or The Sense of Structure: Writing from the Reader’s Perspective by George

Gopen (Pearson). Both books will help you understand the structure of sentences and

paragraphs and give you the tools to make your writing clearer. (These books are

rather expensive if purchased new, but they’re used by many English classes, so there

are plenty of cheap second-hand copies.) George Gopen also has a number of short

articles on writing. They are aimed at lawyers, but almost everything applies to data scientists too.

Summary | 529

CHAPTER 29

Quarto Formats

Introduction

So far, you’ve seen Quarto used to produce HTML documents. This chapter gives

a brief overview of some of the many other types of output you can produce with

Quarto.

There are two ways to set the output of a document:

• Permanently, by modifying the YAML header:

title: "Diamond sizes"

format: html

• Transiently, by calling quarto::quarto_render() by hand:

quarto::quarto_render("diamond-sizes.qmd", output_format = "docx")

This is useful if you want to programmatically produce multiple types of output

since the output_format argument can also take a list of values:

quarto::quarto_render(

"diamond-sizes.qmd", output_format = c("docx", "pdf")

)

Output Options

Quarto offers a wide range of output formats. You can find the complete list on

the Quarto documentation on all formats. Many formats share some output options (e.g., toc: true for including a table of contents), but others have options that are

format specific (e.g., code-fold: true collapses code chunks into a <details> tag for

HTML output so the user can display it on demand; it’s not applicable in a PDF or

Word document).

531

To override the default options, you need to use an expanded format field. For

example, if you wanted to render an HTML document, with a floating table of

contents, you’d use:

format:

html:

toc: true

toc_float: true

You can even render to multiple outputs by supplying a list of formats:

format:

html:

toc: true

toc_float: true

pdf: default

docx: default

Note the special syntax (pdf: default) if you don’t want to override any default

options.

To render to all formats specified in the YAML of a document, you can use out

put_format = "all":

quarto::quarto_render("diamond-sizes.qmd", output_format = "all")

Documents

The previous chapter focused on the default html output. There are several basic

variations on that theme, generating different types of documents. For example:

• pdf makes a PDF with LaTeX (an open-source document layout system), which

you’ll need to install. RStudio will prompt you if you don’t already have it.

• docx for Microsoft Word (.docx) documents.

• odt for OpenDocument Text (.odt) documents.

• rtf for Rich Text Format (.rtf) documents.

• gfm for a GitHub Flavored Markdown (.md) document.

• ipynb for Jupyter Notebooks (.ipynb).

Remember, when generating a document to share with decision-makers, you can turn

off the default display of code by setting global options in the document YAML:

execute:

echo: false

532 | Chapter 29: Quarto Formats

For HTML documents, another option is to make the code chunks hidden by default

but visible with a click:

format:

html:

code: true

Presentations

You can also use Quarto to produce presentations. You get less visual control than

with a tool like Keynote or PowerPoint, but automatically inserting the results of your

R code into a presentation can save a huge amount of time. Presentations work by

dividing your content into slides, with a new slide beginning at each second (##) level

header. Additionally, first (#) level headers indicate the beginning of a new section

with a section title slide that is, by default, centered in the middle.

Quarto supports a variety of presentation formats, including:

revealjs

HTML presentation with revealjs

pptx

PowerPoint presentation

beamer

PDF presentation with LaTeX Beamer

You can read more about creating presentations with Quarto.

Interactivity

Just like any HTML document, HTML documents created with Quarto can contain

interactive components as well. Here we introduce two options for including interac‐

tivity in your Quarto documents: htmlwidgets and Shiny.

htmlwidgets

HTML is an interactive format, and you can take advantage of that interactivity with

 htmlwidgets, R functions that produce interactive HTML visualizations. For example,

take the leaflet map shown next. If you’re viewing this page on the web, you can drag

the map around, zoom in and out, etc. You obviously can’t do that in a book, so

Quarto automatically inserts a static screenshot for you.

library(leaflet)

leaflet() |>

setView(174.764, -36.877, zoom = 16) |>

addTiles() |>

addMarkers(174.764, -36.877, popup = "Maungawhau")

Interactivity | 533

[image: Image 218]

The great thing about htmlwidgets is that you don’t need to know anything about

HTML or JavaScript to use them. All the details are wrapped inside the package, so

you don’t need to worry about it.

There are many packages that provide htmlwidgets, including:

• dygraphs for interactive time series visualizations

• DT for interactive tables

• threejs for interactive 3D plots

• DiagrammeR for diagrams (like flow charts and simple node-link diagrams) To learn more about htmlwidgets and see a complete list of packages that provide

them, visit https://oreil.ly/lmdha.

Shiny

htmlwidgets provide client-side interactivity—all the interactivity happens in the

browser, independently of R. That’s great because you can distribute the HTML file

without any connection to R. However, that fundamentally limits what you can do to

things that have been implemented in HTML and JavaScript. An alternative approach

is to use shiny, a package that allows you to create interactivity using R code, not

JavaScript.

534 | Chapter 29: Quarto Formats

[image: Image 219]

To call Shiny code from a Quarto document, add server: shiny to the YAML

header:

title: "Shiny Web App"

format: html

server: shiny

Then you can use the “input” functions to add interactive components to the

document:

library(shiny)

textInput("name", "What is your name?")

numericInput("age", "How old are you?", NA, min = 0, max = 150)

And you also need a code chunk with the chunk option context: server, which

contains the code that needs to run in a Shiny server.

You can then refer to the values with input$name and input$age, and the code that

uses them will be automatically rerun whenever they change.

We can’t show you a live Shiny app here because Shiny interactions occur on the

 server side. This means you can write interactive apps without knowing JavaScript,

but you need a server to run them on. This introduces a logistical issue: Shiny

apps need a Shiny server to be run online. When you run Shiny apps on your

own computer, Shiny automatically sets up a Shiny server for you, but you need a

public-facing Shiny server if you want to publish this sort of interactivity online.

That’s the fundamental trade-off of Shiny: you can do anything in a Shiny document

that you can do in R, but it requires someone to be running R.

To learn more about Shiny, we recommend reading Mastering Shiny by Hadley Wickham.

Interactivity | 535

Websites and Books

With a bit of additional infrastructure, you can use Quarto to generate a complete

website or book:

• Put your .qmd files in a single directory. index.qmd will become the home page.

• Add a YAML file named _quarto.yml that provides the navigation for the site. In

this file, set the project type to either book or website, e.g.:

project:

type: book

For example, the following _quarto.yml file creates a website from three source files:

index.qmd (the home page), viridis-colors.qmd, and terrain-colors.qmd.

project:

type: website

website:

title: "A website on color scales"

navbar:

left:

- href: index.qmd

text: Home

- href: viridis-colors.qmd

text: Viridis colors

- href: terrain-colors.qmd

text: Terrain colors

The _quarto.yml file you need for a book is similarly structured. The following

example shows how you can create a book with four chapters that renders to three

different outputs (html, pdf, and epub). Once again, the source files are .qmd files.

project:

type: book

book:

title: "A book on color scales"

author: "Jane Coloriste"

chapters:

- index.qmd

- intro.qmd

- viridis-colors.qmd

- terrain-colors.qmd

format:

html:

theme: cosmo

pdf: default

epub: default

We recommend that you use an RStudio project for your websites and books. Based

on the _quarto.yml file, RStudio will recognize the type of project you’re working on

536 | Chapter 29: Quarto Formats

and add a Build tab to the IDE that you can use to render and preview your websites

and books. Both websites and books can also be rendered using quarto::render().

Read more about Quarto websites and books.

Other Formats

Quarto offers even more output formats:

• You can write journal articles using Quarto Journal Templates.

• You can output Quarto documents to Jupyter Notebooks with format: ipynb.

See the Quarto formats documentation for a list of even more formats.

Summary

In this chapter we presented you with a variety of options for communicating your

results with Quarto, from static and interactive documents to presentations to web‐

sites and books.

To learn more about effective communication in these different formats, we recom‐

mend the following resources:

• To improve your presentation skills, try Presentation Patterns by Neal Ford, Matthew McCollough, and Nathaniel Schutta. It provides a set of effective patterns

(both low- and high-level) that you can apply to improve your presentations.

• If you give academic talks, you might like “The Leek group guide to giving talks” .

• We haven’t taken it ourselves, but we’ve heard good things about Matt McGarri‐

ty’s online course on public speaking.

• If you are creating many dashboards, make sure to read Stephen Few’s Informa‐

 tion Dashboard Design: The Effective Visual Communication of Data (O’Reilly). It

will help you create dashboards that are truly useful, not just pretty to look at.

• Effectively communicating your ideas often benefits from some knowledge of

graphic design. Robin Williams’s The Non-Designer’s Design Book (Peachpit Press)

is a great place to start.

Summary | 537

Index

Symbols

selecting a single element with $ and [[,

! (not), 210

494-497

" (double quotes), 244

tibbles and, 495

(pound sign), 34

working with lists, 495-497

$ (dollar sign)

[] (brackets), 263

extracting columns from data frames with $

\ (backslashes)

and [[, 494

escapes, 244

selecting a single element with $ and [[,

paths, 95

494-497

\n (new line), 245

tibbles and, 495

\t (tab), 245

working with lists, 495-497

\u (escape), 245

%% (remainder computation), 227

\U (escape), 245

%/% (integer division), 227

` (backticks), 99

%>% pipe, 53

{} (brackets), 247

%in%, 43, 212, 225

| (alternation), 263

& (ampersand) operators, 197, 210

| (or), 210

&& (ampersand) short-circuiting operator, 210

|> (pipe), 65-67

' (single quotes), 244

|| (short-circuiting operator), 210

() (parentheses), in regex, 272

+ operator

A

in ggplot2 graphics, 31, 65

absolute paths, relative paths versus, 95

in plot layouts, 196

across() function

/ (slashes), 95

.cols argument, 467

:= operator, 460

column names and, 470

<- (assignment operator), 33, 43, 65

defining how column will be transformed,

= (equals sign), 44, 49

468

== (equals sign), 207, 225

filter() and, 471

[(left bracket)

in functions, 471-474

dplyr verbs that are special cases of [,

handling missing values, 469

492-493

modifying multiple columns with, 466

selecting multiple elements with [, 490-493

pivot_longer() versus, 472-474

[[(left brackets)

selecting columns with .cols, 467

extracting columns from data frames with $

aes() function, 456-462

and [[, 494

aesthetic mappings, 118-121

539

aesthetics, 10-14

tibbles, 495

aggregation

books, generating with Quarto, 536-537

case study: aggregates and sample size,

Boolean algebra, 210-212

60-61

%in%, 212

cumulative and rolling aggregates, 230

missing values in, 211

aliasing, 385

order of operations, 211

all() function, 213

Boolean operations

alternation (|), 263

JSON, 420

analysis notebooks, 527-528

regular expressions and, 279-280

anchors, regex and, 270

boxplot, defined, 22

annotate() function, 175

breaks argument, 178, 180

annotations, 172-177

.by argument, 58

anti-joins, 339

anti_join() function, 325

C

any() function, 213

c() function, 33, 405

Apache Arrow (see Arrow)

caching, in Quarto, 522-523

apply() function, 499

capturing groups, regex, 273-274

arrange() function, 44, 493

case_when() function, 217-218

array, JSON, 420

categorical variables, 17

Arrow, 395-402

covariation between numerical variables

dbplyr and, 402

and, 154-158

dplyr and, 400-402

covariation between two categorical vari‐

getting dataset for, 396

ables, 159-161

opening dataset, 396-398

visualizing relationships between numerical

parquet format, 398-399

variables and, 22

ASCII, 256

visualizing relationships between two cate‐

assignment statements, 34

gorical variables, 24

as_date() function, 304

ceiling() function, 229

as_datetime() function, 304

center, numeric summary functions for,

axis ticks, 178-181

235-236

character classes (character sets), 263, 271-283

B

chunks (see code chunks)

back reference, 273

closest() function, 349

Banker's rounding, 229

code chunks

Base R, 489-501

global options, 516

apply family of functions, 497-499

inline code, 517

dplyr verbs that are special cases of [,

label, 514

492-493

options, 514

extracting columns from data frames with $

Quarto, 513-517

and [[, 494

code style, 63-68

for loops, 499-500

function names/arguments, 463

lists, 495-497

ggplot2, 67

plotting functions, 500

names, 64

regex applications, 282

pipe (|>), 65-67

selecting a single element with $ and [[,

sectioning comments, 67

494-497

spaces, 65

selecting multiple elements with [, 490-493

coding basics, 33

subsetting data frames, 491-492

coll() function, 277

subsetting vectors, 490

color, 185-186

540 | Index

ColorBrewer scales, 185-189

if_else(), 216

.cols, 467

consecutive identifiers, 233

column headers, data and variable names in, 80

coordinate systems, 141

column types

copyright law, 427

controlling, 104-107

count() function, 222-224

guessing types, 104

counting, 222-224

missing/unexpected values, 104-105

covariation, 154-163

types provided by readr, 106

between a categorical and a numerical vari‐

column-oriented databases, 378

able, 154-158

columns, 47-51

between two categorical variables, 159-160

across() in functions, 471-474

between two numerical variables, 161-163

calling a single function, 468

defined, 154

calling multiple functions, 468-470

cross joins, 348

data and variable names in column headers,

CSL files, 527

80

CSS, 430

data transformation, 47-51

CSV files

filtering, 471

basics, 97

lengthening data in column names, 73-76

writing multiple files, 485-486

modifying multiple columns, 466-474

cumulative aggregates, 230

mutate(), 47-48

names, 470

D

relocate(), 50

data entry, 109

rename(), 50

data frame functions, 449-455

select(), 49

common use cases, 452-454

selecting with .cols, 467

data masking versus tidy selection, 454-455

separating strings into, 250

indirection and tidy evaluation, 450-451

working with many variables in column

when to embrace a variable, 451

names, 78-80

data frames

command palette, 63

databases and, 378

commas, spaces and, 65

defined, 4

comments, 34, 67

extracting columns with $ and [[, 494

communication, 169-201

subsetting, 491-492

annotations, 172-177

tibbles versus, 40, 492

labels, 170

data import, 97-110

layout, 196-199

controlling column types, 104-107

scales, 177-192

data entry, 109

themes, 193-195

reading data from a file, 97-103

community, R, 113

reading data from multiple files, 107

comparisons

writing to a file, 108-109

creating logical vectors with, 206-209

data masking, tidy selection versus, 454-455

floating-point, 207

data point, 5

is.na(), 208-209

(see also observation)

missing values, 208

data tidying, 69-86

compatible types, 218

lengthening data, 73-81

complete() function, 324

tidy data basics, 70-72

compound keys, 330

widening data, 81-85

conditional transformations, 216-219

data transformation, 39-62

case_when(), 217-218

case study: aggregates and sample size,

compatible types, 218

60-61

Index | 541

columns, 47-51

Arrow and, 402

dplyr basics, 41

basics, 381-383

groups, 53-58

dbReadTable() function, 380

nycflights13 dataset, 40

dbWriteTable() function, 380

pipes, 51-53

density plot, 20

rows, 42-46

distinct() function, 45

data types, 365

distributions

data visualization, 3

categorical variables, 17

adding aesthetics and layers, 10-14

numerical variables, 18-20

common problems, 30

summary functions for, 238

first steps, 4-14

visualizing, 16-20

ggplot creation, 7-9

double quotes ("), 244

ggplot2 calls, 16

dplyr, 41

penguins data frame, 4-6

(see also data transformation)

saving your plots, 30

Arrow and, 400-402

visualizing distributions, 16-20

primary functions, 41

visualizing relationships, 21-29

verbs as special cases of [, 492-493

data.frame() function, 408

duckdb, 379, 402

databases, 377-394

durations, 314

basics, 378

connecting from R, 378-381

E

DBI basics, 380

EDA (see exploratory data analysis)

dbplyr basics, 381-383

elements, HTML

duckdb and, 379

basics, 428

function translations, 391-394

extracting plain-text contents of, 432

loading data into, 380

finding, 430

SQL, 383-391

nesting selections, 431

date-time

embracing a variable

components, 305-312

figuring out which arguments need to be

getting components, 305-308

embraced, 451

modifying components of, 312

tidy evaluation and, 451

rounding dates to nearby unit of time,

empty groups, 326-328

309-312

encoding non-English text, 256

date/times

equi joins, 344

creating, 298-304

escapes (\), 244, 269

creating during import, 299

ethical issues, in web scraping, 426-427

creating from individual components,

Excel, 357-368

301-304

basics, 358

creating from strings, 300

data types, 365

switching between date-time and date, 304

formatted output, 367

dates and times, 297-319

importing data from, 357-368

creating date/times, 298-304

reading Excel spreadsheets, 358-365

date-time components, 305-312

reading part of a sheet, 363-365

JSON, 420

reading worksheets, 361-363

time spans, 313-317

writing to, 366

time zones, 317-319

explicit missing values

dbListTable() function, 380

explicit missing values, 321-323

dbplyr, 381

fixed values, 322

(see also databases)

last observation carried forward, 322

542 | Index

NaN, 323

FROM clause, SQL, 384, 386

exploratory data analysis (EDA), 145-167

full join, 343

covariation, 154-163

function translations, 391-394

patterns and models, 164-166

functional programming tools, 465

unusual values, 151-153

functions, writing, 443-464

using questions as tools, 146

calling, 36

variation, 146-151

calling a single function, 468

calling multiple functions, 468-470

F

copy-and-paste versus, 443

faceting, 28, 128-130

data frame functions, 449-455

facet_grid() function, 129

plot functions, 456-463

facet_wrap() function, 28

style for names/arguments, 463

factors, 285-296

vector functions, 444-448

basics, 285-287

empty groups, 326-328

G

General Social Survey dataset, 287

geom, defined, 8

modifying factor levels, 293-295

geometric objects, in plots, 122-127

modifying factor order, 288-292

geom_bin2d() function, 162

ordered, 295

geom_point() function, 8

fct_collapse() function, 294

geom_smooth() function, 123

fct_infreq() function, 292

geom_text() function, 172

fct_lump_*() functions, 294

geom_text_repel() function, 174

fct_recode() function, 293

ggplot, creating, 7-9

fct_reorder() function, 289-291

ggplot2, 9

figures

(see also layers)

options, 520

calls, 16

in Quarto documents, 517-520

code style, 67

sizing, 518-519

missing values, 9

files, reading multiple

ggsave() function, 30

handling failures, 483

Google, as source of information on R, 111

heterogeneous data, 481-482

Google Sheets, 371-374

listing files in a directory, 475

authentication, 374

lists, 476

basics, 371

name of file as data, 478-479

reading, 372-373

one complex iteration versus multiple sim‐

writing to, 374

ple iterations, 480

grammar of graphics

purrr::map() and purrr::list_rbind(),

ggplot2 and, 3

477-478

layers and, 143-144

saving your work, 480

(see also layers)

filter() function, 42-43, 471, 492

GROUP BY clause, SQL, 384, 386

filtering joins

groups

about, 339

.by argument, 58

row matching and, 346

data transformation and, 53-58

fixed() function, 277

grouping by multiple variables, 56

flags, regex, 275-277

group_by(), 54

floating-point comparisons, 207

slice_ functions, 55

floor() function, 229

summarize(), 54-55

for loops, 499-500

ungrouping, 57

foreign keys, 331

group_by() function, 54

Index | 543

guides (axes and legends), 178-181

reading multiple files, 475-483

guides() function, 182

saving multiple outputs, 483-488

saving multiple outputs to a database,

H

483-485

header row, 97

saving multiple plots, 487

headers, data and variable names in, 80

writing multiple CSV files, 485-486

help, getting

from Google, 111

J

investing in yourself, 113

janitor::clean_names() function, 100

preparing a reprex, 111-113

jitter, 139

hierarchical data, 403-408

joins, 329-353

case study: deeply nested list-column,

basic, 334-339

416-419

cross joins, 348

case study: relational data, 414-416

filtering, 339, 346

case study: very wide data, 412-414

how they work, 341-346

JSON, 420-423

inequality joins, 349

lists, 404-408

keys, 330-334

unnesting, 408-411

mutating joins, 335-337

HTML, 427

non-equi joins, 346-352

attributes of tags, 429

overlap joins, 351

elements, 428

rolling joins, 349-351

extracting plain-text contents of, 432

row matching, 344-346

tables, 433

specifying join keys, 337-338

htmlwidgets, 533

SQL, 390

html_attr() function, 432

join_by() function, 337-338

html_element() function, 430-432

JSON, 420-423

html_text2() function, 432

data types, 420

jsonlite package, 421

I

starting the rectangling process, 422

IANA time zones, 317

jsonlite package, 421

identifiers, consecutive, 233

if_else() function, 101, 216

K

images, saving plots as, 30

keys

implicit missing values

checking primary keys, 332

generating with complete(), 324

joins and, 330-334

pivoting, 324

primary and foreign, 330-332

revealing with joins, 325

specifying join keys, 337-338

IN operator, SQL, 387

surrogate, 333

indirection, 450-451

inequality joins, 349

L

interquartile range (IQR), 22, 237

labels argument, 178-180

intervals of time, 316

labels/labeling

IQR() function, 237

chunks, 514

is.na() function, 208-209

communication and, 170

ISO8601 date standard, 299

plot functions, 461

iteration, 465-488

labs() function, 13, 170

modifying multiple columns, 466-474

lapply() function, 498

one complex iteration versus multiple sim‐

layers, 117-144

ple iterations, 480

544 | Index

adding to visualization, 10-14

many-to-many joins, 345

aesthetic mappings, 118-121

mappings, aesthetic, 118-121

coordinate systems, 141

mathematical operators, spaces and, 65

facets, 128-130

mean() function, 214, 235

geometric objects, 122-127

median() function, 235, 468-470

layered grammar of graphics, 143-144

metacharacters, 262

position adjustments, 136-140

min_rank() function, 231

statistical transformations, 131-135

missing values, 321-328

layout, 196-199

Boolean algebra rules for, 211

left join, 342

comparisons and, 208

left_join() function, 335-337

explicit missing values, 321-323

legal issues, web scraping and, 426-427

factors and empty groups, 326-328

copyright law, 427

fixed values, 322

personally identifiable information, 426

ggplot2 and, 9

terms of service, 426

implicit missing values, 323-325

legend keys, 178-181

is.na() and, 208-209

legend layout, 181-183

last observation carried forward, 322

lengthening data, 73-81

NaN, 323

data and variable names in column headers,

mode, 236

80

models, 164-166

data in column names, 73-76

modular arithmetic, 227

many variables in column names, 78-80

mutate() function, 446-447

pivoting, 76-78

columns and, 47-48

letters in strings, 254

pairing summary functions with, 240

length, 254

mutating joins, 335-337

non-English variations, 257

list() function, 404

N

list-columns, 407-411

n() function, 223

list.files() function, 475

names

lists, 404-408

code style for, 64

literal characters, 262

columns, 470

locale-dependent functions, 258

NaN (not a number), 323

log() function, 228

natural joins, 337

logarithms, 228

nesting selections, 431

logical subsetting, 214

non-English text, 256-259

logical summaries, 213

coll() function, 277

logical vectors, 205-219

encoding, 256

Boolean algebra, 210-212

letter variations, 257

comparisons, 206-209

locale-dependent functions, 258

conditional transformations, 216-219

non-equi joins, 346-352

numeric summaries of, 214

cross joins, 348

summaries, 213-215

inequality joins, 349

lubridate package, 298

overlap joins, 351

(see also dates and times)

rolling joins, 349-351

nonsyntactic names, 99

M

NULL operator, SQL, 387

magrittr package, 53

null, JSON handling of, 420

make_date() function, 301

numbers, working with, 221-241

make_datetime() function, 301

counts, 222-224

Index | 545

general transformations, 231-234

partitioning, 398

JSON, 420

performance impact of switching from CSV

making numbers from strings, 221

to, 401

numeric summaries, 235-240

parse_double() function, 222

numeric transformations, 224-230

parse_number() function, 222

numeric comparisons, 206-209

partial matching, 495

(see also comparisons)

paths, relative versus absolute, 95

numeric summaries, 214

pattern control, regex, 275-277

numeric summary functions, 235-240

patterns, 164-166

numeric transformations, 224-230

PDF output, from Quarto, 520

arithmetic and recycling rules, 225

per-operation grouping, 58

cumulative and rolling aggregates, 230

periods, 315-316

cutting numbers into ranges, 230

personally identifiable information, 426

logarithms, 228

pipe (|>), 41, 51-53

minimum and maximum, 226

%>% pipe versus, 53

modular arithmetic, 227

style rules, 65-67

rounding, 228

pivoting

numeric vectors (see numbers, working with)

how it works, 76-78

numerical variables, 18-20

implicit missing values and, 324

covariation between, 161-163

tidyr and, 73

covariation between categorical variables

pivot_longer() function

and, 154-158

across() versus, 472-474

visualizing relationships between categorical

organizing variables in column names, 79

variables and, 22

pivot_wider() function, 83-85

visualizing relationships between two

plot functions, 456-462

numerical variables, 26

adding more variables to, 457

Base R, 500

O

combining with other tidyverse packages,

objects

459-461

JSON, 420

labeling, 461

naming conventions, 35

plots, saving as image, 30

observation, defined, 5

pmax() function, 226

offsets, 232

pmin() function, 226

operator precedence, regex, 272

position adjustments, 136-140

options, for customizing chunk output, 514,

positions, summary functions for, 239

516

presentations, Quarto and, 533

ORDER BY clause, SQL, 384, 389

primary keys

order of operations, Boolean algebra, 211

about, 330-332

ordered() factors, 295

checking, 332

outer joins, 342

projects, 91-96

outliers, variation and, 149-151

relative versus absolute paths, 95

overlap joins, 351

RStudio support for file organization, 93-95

overplotting, 139

source of truth for, 91-93

working directory for, 93

P

purrr::list_rbind() function, 477

purrr::map() function, 477

parentheses (), in regex, 272

parquet files, 109, 398-399

(see also Arrow)

Q

advantages of, 398

quantifiers, regex, 262, 272

546 | Index

quantile() function, 236

counting matches, 265-266

Quarto, 505-529

creating a pattern with code, 280-281

basics, 506-509

detecting matches, 264-265

bibliographies and citations, 526-527

escaping for matching literals, 269

caching, 522-523

extracting variables, 267-268

chunk label, 514

fixed matches, 277

chunk options, 514

flags, 275-277

code chunks, 513-517

grouping and capturing, 273-274

document formats, 532

key functions, 264-268

document parameters, 525

operator precedence and parentheses, 272

figures, 517-520

pattern basics, 262-264

formats other than HTML, 531-537

pattern control, 275-277

generating websites and books, 536-537

pattern details, 268

htmlwidgets, 533

practical applications, 277-281

interactivity options, 533-535

quantifiers, 272

output options, 531, 537

replacing values, 267

presentations, 533

tidyverse applications, 282

self-contained documents, 524

relationships, visualizing, 21-29

shiny package, 534-535

between numerical and categorical vari‐

source editor, 511

ables, 22

tables, 521

between three or more variables, 27

troubleshooting, 523

between two categorical variables, 24

visual editor, 509-511

relative paths, absolute paths versus, 95

workflow, 527-528

relocate() function, 50, 493

YAML header, 524-527

rename() function, 50

queries, SQL, 384

reprex, creating, 111-113

reserved words, 386

R

right join, 343

R community, 113

rolling aggregates, 230

R scripts, as source of truth, 91-93

rolling joins, 349-351

ranks/ranking, 231

round() function, 228

raw strings, 245

rounding, 228

readr package (see data import)

row-oriented databases, 378

readxl package, 357

rows, 42-46

(see also Excel)

arrange(), 44

read_csv() function, 98, 101

common mistakes when working with, 44

read_excel() function, 358-361

diagnosing widening problems, 251-253

read_html() function, 429

distinct(), 45

read_rds() function, 108

filter(), 42-43

read_sheet() function, 371-373

separating strings into, 249

rectangling, 422

transforming, 42-46

(see also hierarchical data)

row_number() function, 232

recycling rules, 225

RStudio

regular expressions (regex), 261

command palette, 63

anchors, 270

diagnostics, 89

Base R applications, 282

projects, 93-95

Boolean operations, 279-280

saving/naming scripts, 90-91

character classes, 271-274

source editor for Quarto documents, 511

checking work with, 277-278

Index | 547

visual editor for Quarto documents,

GROUP BY clause, 386

509-511

joins, 390

RStudio Server, 93

ORDER BY clause, 389

rvest (see web scraping)

SELECT clause, 385-386

subqueries, 389

S

WHERE clause, 387-388

sample size, aggregates and, 60-61

statements, SQL, 383

sapply() function, 498

statistical transformations, 131-135

scales, 177-192

str() function, 404

axis ticks and legend keys, 178-181

stringr package, 243-259

default scales, 177

strings, 243-259

legend layout, 181-183

creating, 244-246

replacing, 183-189

creating date/times from, 300

zooming, 189-192

creating many strings from data, 246-248

scale_color_manual() function, 188

diagnosing widening problems, 251-253

scaling, 10

escapes, 244

scripts, 87-91

extracting data from, 249-253

RStudio diagnostics, 89

JSON, 420

running code, 88

making numbers from, 221

saving and naming, 90-91

non-English text, 256-259

sectioning comments, 67

raw, 245

SELECT clause, SQL, 384, 385-386

separating into columns, 250

select() function, 49, 493

separating into rows, 249

SelectorGadget, 434

str_c(), 246

selectors, 433

str_flatten(), 248

self-joins, 348

str_glue(), 247

semi-joins, 339

subsetting, 255

separate_longer_delim() function, 249

working with individual letters, 254

separate_longer_position() function, 250

str_c() function, 246

separate_wider_delim() function, 250, 251-253

str_count() function, 265-266

separate_wider_position() function, 251

str_detect() function, 264

separate_wider_regex() function, 267-268

str_flatten() function, 248

set_names() function, 478

str_glue() function, 247

shiny, 534-535

str_length() function, 254

short-circuiting operators, 210

str_remove() function, 267

single quotes ('), 244

str_replace() function, 267

slice_ functions, 55

str_sub() function, 255

snake_case, 35

str_subset() function, 265

spaces, code style for, 65

str_view() function, 262

spread of data, 237

str_which() function, 265

spreadsheets, 357-375

style (see code style)

data types, 365

styler package, 63

Excel, 357-368

subqueries, SQL, 389

Google Sheets, 371-374

subset() function, 493

importing data from, 357-375

subsetting

reading part of an Excel sheet, 363-365

logical, 214

SQL, 383-391

strings, 255

basics, 383-385

sum() function, 214

FROM clause, 386

summaries, of logical vectors, 213-215

548 | Index

logical subsetting, 214

U

logical summaries, 213

ungroup() function, 57

numeric summaries, 214

unnest() function, 411

summarize() function, 54-55, 248

unnesting, 408-411

summary functions, 448

inconsistent types, 410

distributions, 238

unnest_longer(), 409

minimum/maximum/quantiles, 236

unnest_wider(), 409

numeric summaries, 235-240

unnest_auto() function, 411

pairing with mutate(), 240

unnest_longer() function, 409

positions, 239

unnest_wider() function, 409

spread of data, 237

unusual values

surrogate keys, 333

handling, 151-153

variation and, 149-151

T

UTC time zones, 318

tables

UTF-8, 256

databases and, 378

HTML, 433

V

Quarto, 521

values

tabular data, 5

defined, 5

tapply() function, 498

missing (see missing values)

tbl() function, 381

variation (see variation)

terms of service, 426

vapply() function, 498

text, non-English (see non-English text)

variables

theme() function, 181-183

categorical (see categorical variables)

themes, 193-195

data and variable names in column headers,

tibble() function, 109

80

tibbles, 495

defined, 5

data frames versus, 40, 492

extracting with regex, 267-268

defined, 40

grouping by multiple variables, 56

list-columns in, 407-407

numerical (see numerical variables)

tidy data (see data tidying)

plot functions and, 457

tidy evaluation, 450-451

visualizing relationships between numerical

tidy selection, data masking versus, 454-455

and categorical variables, 22

tidy tabular data, 5

working with many variables in column

tidyr, 69

names, 78-80

(see also data tidying)

variation

tidyr::complete() function, 324

EDA and, 146-151

tidyverse, regex applications for, 282

typical values, 147-149

time (see dates and times)

unusual values, 149-151

time spans, 313-317

vector functions, 444-448

durations, 314

improving a function, 446

intervals, 316

mutate functions, 446-447

periods, 315-316

summary functions, 448

time zones, 317-319

writing a function, 445-446

to_duckdb() function, 402

vectors

tribble() function, 109

logical (see logical vectors)

truth, source of, 91-93

numerical (see numbers, working with)

subsetting, 490

Venn diagram, 344

Index | 549

View() function, 405

getting help, 111-114

object names, 35

W

projects, 91-96

web scraping, 425-440

Quarto, 527-528

dynamic websites, 439

scripts, 87-91

examples, 434-439

working directory, 93

extracting data, 429-433

worksheets, Excel, 361-363

finding HTML elements, 430

write_csv() function, 108

finding the right selectors, 433

write_rds() function, 108

HTML basics, 427

write_tsv() function, 108

IMDb top films example, 436-439

legal/ethical issues, 426-427

X

nesting selections, 431

xor() function, 210

Star Wars example, 434-436

websites, generating with Quarto, 536-537

Y

WHERE clause, SQL, 384, 387-388

YAML header

where() function, 467

bibliographies and citations, 526-527

widening data, 81-85

document parameters, 525

workflow

Quarto and, 524-527

basics, 33-37

self-contained documents, 524

calling functions, 36

code style, 63-68

coding basics, 33

Z

comments, 34

zooming, 189-192

550 | Index

About the Authors

Hadley Wickham is Chief Scientist at Posit, PBC, winner of the 2019 COPSS award,

and a member of the R Foundation. He builds tools (both computational and cogni‐

tive) to make data science easier, faster, and more fun. His work includes packages

for data science (like the tidyverse, which includes ggplot2, dplyr, and tidyr) and

principled software development (e.g. roxygen2, testthat, and pkgdown). He is also a

writer, educator, and speaker promoting the use of R for data science. Learn more on

his website.

Mine Çetinkaya-Rundel is Professor of the Practice at the Department of Statistical

Science at Duke University and Developer Educator at Posit, PBC. Mine’s work

focuses on innovation in statistics and data science pedagogy, with an emphasis

on computing, reproducible research, student-centered learning, and open source

education. Mine has authored introductory statistics textbooks as part of the Open‐

Intro project, she is the creator and maintainer of Data Science in a Box, and she

teaches the popular Statistics with R specialization on Coursera. Mine is the winner

of the 2021 Hogg Award for Excellence in Teaching Introductory Statistics, the 2018

Harvard Pickard Award, and the 2016 ASA Waller Education Award. Learn more on

her website.

Garrett Grolemund is a statistician, teacher, and the director of learning at Posit

Academy. He is the author of Hands-On Programming with R (O’Reilly) and an early

contributor to the tidyverse.

Colophon

The animal on the cover of R for Data Science is the kakapo (Strigops habroptilus).

Also known as the owl parrot, the kakapo is a large flightless bird native to New

Zealand. Adult kakapos can grow up to 64 centimeters in height and 4 kilograms in

weight. Their feathers are generally yellow and green, although there is significant

variation between individuals. Kakapos are nocturnal and use their robust sense of

smell to navigate at night. Although they cannot fly, kakapos have strong legs that

enable them to run and climb much better than most birds.

The name kakapo comes from the language of the native Maori people of New

Zealand. Kakapos were an important part of Maori culture, both as a food source and

as a part of Maori mythology. Kakapo skin and feathers were also used to make cloaks

and capes.

Due to the introduction of predators to New Zealand during European colonization,

kakapos are now critically endangered, with less than 200 individuals currently living.

The government of New Zealand has been actively attempting to revive the kakapo

population by providing special conservation zones on three predator-free islands.

Many of the animals on O’Reilly covers are endangered; all of them are important to

the world.

The cover illustration is by Karen Montgomery, based on Wood’s Animate Creations.

The cover fonts are Gilroy Semibold and Guardian Sans. The text font is Adobe

Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is

Dalton Maag’s Ubuntu Mono.

[image: Image 220]

Learn from experts.

Become one yourself.

Books | Live online courses

Instant answers | Virtual events

Videos | Interactive learning

Get started at oreilly.com.

75.19

75 7x9. 1

eilly Media, Inc’Rf O

ademark o

ed trter

egis

eilly is a r’R. O

eilly Media, Inc’R

2023 O©

Document Outline

	Copyright

	Table of Contents

	Introduction

	Preface to the Second Edition

	What You Will Learn

	How This Book Is Organized

	What You Won’t Learn

	Modeling

	Big Data

	Python, Julia, and Friends

	Prerequisites

	R

	RStudio

	The Tidyverse

	Other Packages

	Running R Code

	Other Conventions Used in This Book

	O’Reilly Online Learning

	How to Contact Us

	Acknowledgments

	Online Edition

	Part I. Whole Game

	Chapter 1. Data Visualization

	Introduction

	Prerequisites

	First Steps

	The penguins Data Frame

	Ultimate Goal

	Creating a ggplot

	Adding Aesthetics and Layers

	Exercises

	ggplot2 Calls

	Visualizing Distributions

	A Categorical Variable

	A Numerical Variable

	Exercises

	Visualizing Relationships

	A Numerical and a Categorical Variable

	Two Categorical Variables

	Two Numerical Variables

	Three or More Variables

	Exercises

	Saving Your Plots

	Exercises

	Common Problems

	Summary

	Chapter 2. Workflow: Basics

	Coding Basics

	Comments

	What’s in a Name?

	Calling Functions

	Exercises

	Summary

	Chapter 3. Data Transformation

	Introduction

	Prerequisites

	nycflights13

	dplyr Basics

	Rows

	filter()

	Common Mistakes

	arrange()

	distinct()

	Exercises

	Columns

	mutate()

	select()

	rename()

	relocate()

	Exercises

	The Pipe

	Groups

	group_by()

	summarize()

	The slice_ Functions

	Grouping by Multiple Variables

	Ungrouping

	.by

	Exercises

	Case Study: Aggregates and Sample Size

	Summary

	Chapter 4. Workflow: Code Style

	Names

	Spaces

	Pipes

	ggplot2

	Sectioning Comments

	Exercises

	Summary

	Chapter 5. Data Tidying

	Introduction

	Prerequisites

	Tidy Data

	Exercises

	Lengthening Data

	Data in Column Names

	How Does Pivoting Work?

	Many Variables in Column Names

	Data and Variable Names in the Column Headers

	Widening Data

	How Does pivot_wider() Work?

	Summary

	Chapter 6. Workflow: Scripts and Projects

	Scripts

	Running Code

	RStudio Diagnostics

	Saving and Naming

	Projects

	What Is the Source of Truth?

	Where Does Your Analysis Live?

	RStudio Projects

	Relative and Absolute Paths

	Exercises

	Summary

	Chapter 7. Data Import

	Introduction

	Prerequisites

	Reading Data from a File

	Practical Advice

	Other Arguments

	Other File Types

	Exercises

	Controlling Column Types

	Guessing Types

	Missing Values, Column Types, and Problems

	Column Types

	Reading Data from Multiple Files

	Writing to a File

	Data Entry

	Summary

	Chapter 8. Workflow: Getting Help

	Google Is Your Friend

	Making a reprex

	Investing in Yourself

	Summary

	Part II. Visualize

	Chapter 9. Layers

	Introduction

	Prerequisites

	Aesthetic Mappings

	Exercises

	Geometric Objects

	Exercises

	Facets

	Exercises

	Statistical Transformations

	Exercises

	Position Adjustments

	Exercises

	Coordinate Systems

	Exercises

	The Layered Grammar of Graphics

	Summary

	Chapter 10. Exploratory Data Analysis

	Introduction

	Prerequisites

	Questions

	Variation

	Typical Values

	Unusual Values

	Exercises

	Unusual Values

	Exercises

	Covariation

	A Categorical and a Numerical Variable

	Two Categorical Variables

	Two Numerical Variables

	Patterns and Models

	Summary

	Chapter 11. Communication

	Introduction

	Prerequisites

	Labels

	Exercises

	Annotations

	Exercises

	Scales

	Default Scales

	Axis Ticks and Legend Keys

	Legend Layout

	Replacing a Scale

	Zooming

	Exercises

	Themes

	Exercises

	Layout

	Exercises

	Summary

	Part III. Transform

	Chapter 12. Logical Vectors

	Introduction

	Prerequisites

	Comparisons

	Floating-Point Comparison

	Missing Values

	is.na()

	Exercises

	Boolean Algebra

	Missing Values

	Order of Operations

	%in%

	Exercises

	Summaries

	Logical Summaries

	Numeric Summaries of Logical Vectors

	Logical Subsetting

	Exercises

	Conditional Transformations

	if_else()

	case_when()

	Compatible Types

	Exercises

	Summary

	Chapter 13. Numbers

	Introduction

	Prerequisites

	Making Numbers

	Counts

	Exercises

	Numeric Transformations

	Arithmetic and Recycling Rules

	Minimum and Maximum

	Modular Arithmetic

	Logarithms

	Rounding

	Cutting Numbers into Ranges

	Cumulative and Rolling Aggregates

	Exercises

	General Transformations

	Ranks

	Offsets

	Consecutive Identifiers

	Exercises

	Numeric Summaries

	Center

	Minimum, Maximum, and Quantiles

	Spread

	Distributions

	Positions

	With mutate()

	Exercises

	Summary

	Chapter 14. Strings

	Introduction

	Prerequisites

	Creating a String

	Escapes

	Raw Strings

	Other Special Characters

	Exercises

	Creating Many Strings from Data

	str_c()

	str_glue()

	str_flatten()

	Exercises

	Extracting Data from Strings

	Separating into Rows

	Separating into Columns

	Diagnosing Widening Problems

	Letters

	Length

	Subsetting

	Exercises

	Non-English Text

	Encoding

	Letter Variations

	Locale-Dependent Functions

	Summary

	Chapter 15. Regular Expressions

	Introduction

	Prerequisites

	Pattern Basics

	Key Functions

	Detect Matches

	Count Matches

	Replace Values

	Extract Variables

	Exercises

	Pattern Details

	Escaping

	Anchors

	Character Classes

	Quantifiers

	Operator Precedence and Parentheses

	Grouping and Capturing

	Exercises

	Pattern Control

	Regex Flags

	Fixed Matches

	Practice

	Check Your Work

	Boolean Operations

	Creating a Pattern with Code

	Exercises

	Regular Expressions in Other Places

	Tidyverse

	Base R

	Summary

	Chapter 16. Factors

	Introduction

	Prerequisites

	Factor Basics

	General Social Survey

	Exercise

	Modifying Factor Order

	Exercises

	Modifying Factor Levels

	Exercises

	Ordered Factors

	Summary

	Chapter 17. Dates and Times

	Introduction

	Prerequisites

	Creating Date/Times

	During Import

	From Strings

	From Individual Components

	From Other Types

	Exercises

	Date-Time Components

	Getting Components

	Rounding

	Modifying Components

	Exercises

	Time Spans

	Durations

	Periods

	Intervals

	Exercises

	Time Zones

	Summary

	Chapter 18. Missing Values

	Introduction

	Prerequisites

	Explicit Missing Values

	Last Observation Carried Forward

	Fixed Values

	NaN

	Implicit Missing Values

	Pivoting

	Complete

	Joins

	Exercises

	Factors and Empty Groups

	Summary

	Chapter 19. Joins

	Introduction

	Prerequisites

	Keys

	Primary and Foreign Keys

	Checking Primary Keys

	Surrogate Keys

	Exercises

	Basic Joins

	Mutating Joins

	Specifying Join Keys

	Filtering Joins

	Exercises

	How Do Joins Work?

	Row Matching

	Filtering Joins

	Non-Equi Joins

	Cross Joins

	Inequality Joins

	Rolling Joins

	Overlap Joins

	Exercises

	Summary

	Part IV. Import

	Chapter 20. Spreadsheets

	Introduction

	Excel

	Prerequisites

	Getting Started

	Reading Excel Spreadsheets

	Reading Worksheets

	Reading Part of a Sheet

	Data Types

	Writing to Excel

	Formatted Output

	Exercises

	Google Sheets

	Prerequisites

	Getting Started

	Reading Google Sheets

	Writing to Google Sheets

	Authentication

	Exercises

	Summary

	Chapter 21. Databases

	Introduction

	Prerequisites

	Database Basics

	Connecting to a Database

	In This Book

	Load Some Data

	DBI Basics

	dbplyr Basics

	SQL

	SQL Basics

	SELECT

	FROM

	GROUP BY

	WHERE

	ORDER BY

	Subqueries

	Joins

	Other Verbs

	Exercises

	Function Translations

	Summary

	Chapter 22. Arrow

	Introduction

	Prerequisites

	Getting the Data

	Opening a Dataset

	The Parquet Format

	Advantages of Parquet

	Partitioning

	Rewriting the Seattle Library Data

	Using dplyr with Arrow

	Performance

	Using dbplyr with Arrow

	Summary

	Chapter 23. Hierarchical Data

	Introduction

	Prerequisites

	Lists

	Hierarchy

	List Columns

	Unnesting

	unnest_wider()

	unnest_longer()

	Inconsistent Types

	Other Functions

	Exercises

	Case Studies

	Very Wide Data

	Relational Data

	Deeply Nested

	Exercises

	JSON

	Data Types

	jsonlite

	Starting the Rectangling Process

	Exercises

	Summary

	Chapter 24. Web Scraping

	Introduction

	Prerequisites

	Scraping Ethics and Legalities

	Terms of Service

	Personally Identifiable Information

	Copyright

	HTML Basics

	Elements

	Attributes

	Extracting Data

	Find Elements

	Nesting Selections

	Text and Attributes

	Tables

	Finding the Right Selectors

	Putting It All Together

	Star Wars

	IMDb Top Films

	Dynamic Sites

	Summary

	Part V. Program

	Chapter 25. Functions

	Introduction

	Prerequisites

	Vector Functions

	Writing a Function

	Improving Our Function

	Mutate Functions

	Summary Functions

	Exercises

	Data Frame Functions

	Indirection and Tidy Evaluation

	When to Embrace?

	Common Use Cases

	Data Masking Versus Tidy Selection

	Exercises

	Plot Functions

	More Variables

	Combining with Other Tidyverse Packages

	Labeling

	Exercises

	Style

	Exercises

	Summary

	Chapter 26. Iteration

	Introduction

	Prerequisites

	Modifying Multiple Columns

	Selecting Columns with .cols

	Calling a Single Function

	Calling Multiple Functions

	Column Names

	Filtering

	across() in Functions

	Versus pivot_longer()

	Exercises

	Reading Multiple Files

	Listing Files in a Directory

	Lists

	purrr::map() and list_rbind()

	Data in the Path

	Save Your Work

	Many Simple Iterations

	Heterogeneous Data

	Handling Failures

	Saving Multiple Outputs

	Writing to a Database

	Writing CSV Files

	Saving Plots

	Summary

	Chapter 27. A Field Guide to Base R

	Introduction

	Prerequisites

	Selecting Multiple Elements with [

	Subsetting Vectors

	Subsetting Data Frames

	dplyr Equivalents

	Exercises

	Selecting a Single Element with $ and [[

	Data Frames

	Tibbles

	Lists

	Exercises

	Apply Family

	for Loops

	Plots

	Summary

	Part VI. Communicate

	Chapter 28. Quarto

	Introduction

	Prerequisites

	Quarto Basics

	Exercises

	Visual Editor

	Exercises

	Source Editor

	Exercises

	Code Chunks

	Chunk Label

	Chunk Options

	Global Options

	Inline Code

	Exercises

	Figures

	Figure Sizing

	Other Important Options

	Exercises

	Tables

	Exercises

	Caching

	Exercises

	Troubleshooting

	YAML Header

	Self-Contained

	Parameters

	Bibliographies and Citations

	Workflow

	Summary

	Chapter 29. Quarto Formats

	Introduction

	Output Options

	Documents

	Presentations

	Interactivity

	htmlwidgets

	Shiny

	Websites and Books

	Other Formats

	Summary

	Index

	About the Authors

	Colophon

index-395_1.png
A B

1 |group subgroup id

2 1 A 1
3 2
4 3
5 B 4
6 5
7/ 6
8 7
9 |2 A 8
10 9
1" B 10
12 1
13 12

index-394_1.png
7}

®

2 EEE

c Z 2
N[0o

M_

)

<

=]

7}

- N ™M T 0w O~

index-398_1.png
c

+ students - Google Sheets

@ docs.google.com,

students ©

File Edit View

Insert Format Data Tools Extensions Help

Q | @ Incognito

&= Y~ 100% - ~
A1 - | StudentID
A B © D F G
1 M Full Name favourite.food mealPlan AGE
2 1 Sunil Huffmann Strawberry yoghurt | Lunch only 4
3 2 Barclay Lynn French fries Lunch only 5
4 3 Jayendra Lyne N/A Breakfast and lunch 7
5 4 Leon Rossini Anchovies Lunch only
6 5 Chidiegwu Dunkel Pizza Breakfast and lunch five
7 6 Giliveng Attila Ice cream Lunch only 6

©

o

Sheet1 ~

index-396_1.png
A

B

0 N A WODN

10
11
12
13

This file contains information on sales.

Data are organized by brand name,
and for each brand, we have the ID
number for the item sold, and how

many are sold.

Brand 1

Brand 2

1234
8721
1822

3333
2156
3987
3216

n

w N

oo W -

index-390_1.png
() H o~ B deaths
Insert PagelLayout Formulas Data Review View

. E‘;Z:;y' (Calibri (Body) vH12 ‘J(asla-] (= =23 =0 Wrap Text (General - a.; . 7/j‘v %v . dmx ., ';' . é':i‘l‘l“:s“"" Ay~ |
Pe e (B L UL S A (S S = (6202 [lveceacemers (@B %) |[% S| Codtonl Fomat Cel e Delete Fomat g S |
AL 5 X fx|Forthesake Y
A B C D E F G H 1 [
1 |For the sake | |
2 of consistency in the data layout, |
3 |which is really a beautiful thing, |
4 |l will keep making notes up here
5 g Profession gAge pgHaskids Date of birth gDate of death g
6 [Vera Rubin scientist TRUE 23/07/1928 25/12/2016 |
7 |Mohamed Ali |athlete TRUE 17/01/1942 03/06/2016 |
8 |Morley Safer journalist TRUE 08/11/1931 19/05/2016 |
9 |Fidel Castro politician TRUE 13/08/1926 25/11/2016
10 fAntonin Scalia lawyer TRUE 11/03/1936 13/02/2016
11 jJo Cox politician TRUE 22/06/1974 16/06/2016
12 jJanet Reno lawyer FALSE 21/07/1938 07/11/2016 |
13 fGwen Ifill journalist FALSE 29/09/1955 14/11/2016 |
14 {John Glenn astronaut TRUE 28/07/1921 08/12/2016 |
15 fPat Summit coach TRUE 14/06/1952 28/06/2016
16 |This
17 has been really fun, but |
18 'we're signing |
19 off now! |
? ‘
 Ready B [- c————+ 217%

index-388_1.png
(J
Page Layout

ic) & v @

Formulas Data

Review

B penguins

E . E‘;Z:;y' [Calibri (Body) + 12 ‘J(asla-] (= =23 =9 Wrap Text (General . a.; . 7/?‘v jv ¢, dmx ';' . é':i‘l‘l“:s“"" Ay~
e G BlL 8o(n$ A (= 2 =] Bwesacmer B % 0% 4 e o e e om gl
Al S % v fx | species v
A B C D E F G H | J

1 |species _|is|and bill_length_mm |bill_depth_mm flipper_length_mm body_mass_g sex year

2 |Adelie Torgersen 39.1 18.7 181 3750 male 2007

3 |Adelie |Torgersen 39.5 17.4 186 3800|female | 2007

4 |Adelie [Torgersen 40.3 18 195 3250 female ' 2007

5 |Adelie |Torgersen NA NA NA NA NA 2007

6 |Adelie |Torgersen 36.7 19.3 193 3450|female | 2007

7 |Adelie Torgersen 39.3 20.6 190 3650 male 2007

8 |Adelie |Torgersen 38.9 17.8 181 3625|female | 2007

9 |Adelie |Torgersen 39.2 19.6 195 4675 male 2007

10 |Adelie Torgersen 34.1 18.1 193 3475 NA 2007

11 |Adelie Torgersen 42 20.2 190 4250 NA 2007

12 |Adelie Torgersen 37.8 17.1 186 3300|NA 2007

13 |Adelie Torgersen 37.8 17.3 180 3700|NA 2007

14 |Adelie Torgersen 411 17.6 182 3200 female ' 2007

15 |Adelie Torgersen 38.6 21.2 191 3800 male 2007

16 |Adelie Torgersen 34.6 21.1 198 4400 male 2007

17 |Adelie Torgersen 36.6 17.8 185 3700 female ' 2007

18 |Adelie Torgersen 38.7 19 195 3450 female ' 2007

4 > Torgersen Island Biscoe Island | Dream Island l + |

- Ready

I]I]] = c—— + 200%

index-393_1.png
() M E v~ S v iBbake..

Page Layout Formulas Data Review View

3{, Calibri e [Conditional Formatting ¥ 11
v (Body) +||11 v| A~ Av| =. O/, o o
o~ | 1 : \ — A) [/ Format as Table ¥ # Q
Paste d 1 B | I | U I'H ;I'Hél'l&l'\ Alignment Number jCeII Styles Cells Editing
67 VX v ok M
A B C D E F G
item quantity

brownie 10

cupcake 5

cookie 8

0O N O U1 b WN B

'S

4 Sheet1 + |

23]

index-392_1.png

cover_image.jpg
R for Data Science

Hadley Wickham, Mine
Cetinkaya-Rundel
Garrett Grolemund

index-384_1.png
() B v J B students

Page Layout Formulas PEIE] Review View

- %, | [fe . — 152 o)| | B | & 2Y
Pt = H& L) (e az[e] B5% %% G casyes- Biromate | @ S8
AL sl % v fx|studentiD v

A B C D E
1 |Student ID _|Fu|| Name favourite.food mealPlan AGE
2 1 Sunil Huffmann Strawberry yoghurt Lunch only 4
3 2 Barclay Lynn French fries Lunch only 5
4 3 Jayendra Lyne N/A Breakfast and lunch 7
5 4 Leon Rossini Anchovies Lunch only
6 5 Chidiegwu Dunkel Pizza Breakfast and lunch [five
7 6 Glvenc Attila Ice cream Lunch only 6
Q

< » | sheett | + |

Ready [III] [= e m—+ 250%

index-381_1.png
Visualize

Understand

Program

index-373_2.png
key)

join_by(key >

index-373_1.png
join_by(key == key)

index-375_1.png
join_by(key < key)

index-374_1.png
_by()

join

index-371_1.png

index-370_2.png
inner_join(x, y)

' full_join(x, y)

Q left_join(x, y)

right_join(x, y)

index-372_2.png
anti_join(x, y)

index-372_1.png
semi_join(x, y)

index-376_1.png
join_by(closest(key <= key))

index-370_1.png
full_join(x, y)

index-367_1.png

index-358_1.png
flights weather

~orign |+
]

airports

airlines

carrier

index-368_2.png
inner_join(x, y)

index-368_1.png

index-337_1.png

index-336_1.png
Jan 2013 Apr 2013 Jul 2013 0Oct 2013

index-353_1.png
smoker

]
no
smoker

index-338_1.png
I I
00:00:00 10:00:00

dep hour

index-33_1.png

index-32_1.png
Body mass (9)

5500 -

IS
a
o
o
!

Body mass and flipper length
Dimensions for Adelie, Chinstrap, and Gentoo Penguins

70 180 190 200 210 220 230
Flipper length (mm)

Species
® Adelie
4 Chinstrap

= Gentoo

index-35_1.png
6000 -

200 210
flipper length mm

220

230

index-369_2.png
right_join(x, vy)

index-34_1.png
190

flipper length mm

index-369_1.png
left_join(x, y)

index-37_1.png
species
Adelie
Chinstrap

Gentoo

180 190 200 20 230
flipper length mm

index-36_1.png
species
® Adelie
® Chinstrap

® Gentoo

180 190 200 20 230
flipper length mm

index-329_1.png
count

1000 -

750 -

500 -

250 -

0-

Jan 2013

Apr 2013

Jul 2013
dep time

Oct 2013

Jan 2014

index-318_2.png
count

10000 -

7500 -

5000 -

2500 -

0-

No answer

Separated Wldowed Dlvorced Nevermarrled Marrled
marital

index-332_1.png

index-330_1.png
15~

10~

count

0-

Jan 01 06:00 Jan 01 12:00 Jan 01 18:00 Jan 02 00:00
dep time

index-316_1.png
Not applicable -
Refused

Don't know -

No answer
$25000 or more -
20000 - 24999
10000 - 14999 -
$8000 to 9999
Lt $1000 -
$6000 to 6999 -
$15000 - 19999 -

| $4000 to 4999
$7000 to 7999 -
$3000 to 3999 -
$5000 to 5999
$1000 to 2999 -

ge

$
$

@©
o)
IS
<)
o
=
=
=
[
<
2
o
o
2
3]

w

index-318_1.png
0.00 = 1 1 1
20 40 60 80
age

marital

== No answer
== Never married
== Separated
= Divorced

== Widowed

- Married

0.00 = 1 1 1
20 40 60 80
age

marital

= Widowed
== Married

= Divorced

= Never married
=== No answer

- Separated

index-317_1.png
Lt $1000 -
$1000 to 2999
$3000 to 3999 -
$4000 to 4999
$5000 to 5999 -
$6000 to 6999
$7000 to 7999 -
$8000 to 9999
10000 - 14999 -
15000 - 19999 -
20000 - 24999 -
25000 or more -

Refused -

Don't know -
No answer
Not applicable -

o
€
Q
o
=
=
[
>
(]
[
Ul

index-334_1.png
14-

'
o

Aejap Bae

minute

index-333_1.png

index-335_1.png

index-1_1.jpg

index-14_1.png
Visualize

Understand

Program

index-1_2.jpg

index-21_1.png

index-19_1.png
O -y~ A Go to file/function % -/ B2 - Addins ~ [®) rstudio-screenshots ~

Console Terminal x Background Jobs x Environment = History Connections Build _ ™
@ R4.1.2 . ~/Documents/r4ds/r4ds/diagrams/rstudio-screensho| & [| F# ~| " 257 MiB - (List - | @&~
> library(ggplot2) R ~ | il Global Environment - | Q

> ggplot(mpg, aes(displ, hwy)) +

+ geom_point(aes(colour = class))
>

Environment is empty

Files Plots Packages Help Viewer P _ ™
@ A zoom | Hexport - | Q| & 4 | E

class
2seater
compact
midsize

minivan

pickup

subcompact

suv

index-22_2.png
OREILLY

index-22_1.png

index-27_1.png
/v Visualize

Understand

Program

index-262_1.png
median

60 -

40-

80

index-254_1.png
0.04 -

0.03-

0.02-

prop_cancelled

0.01-

hour

index-265_1.png
count

400 -

300 -

200 -

100 -

50
dep delay

100

index-264_1.png
200000

150000

index-236_1.png

index-229_1.png
Visualize

Import — Tidy —> A) — Communicate

Model
Understand

index-53_1.png
6000 -

200 210
flipper length mm

220

230

index-52_1.png
count

1.00 -

0.75-

0.50-

0.25-

0.00-

Biscoe

Dream
island

Torgersen

species
Adelie

. Chinstrap
. Gentoo

index-55_1.png
Biscoe Dream Torgersen

170 180 190 200 210 220 230170 180 190 200 210 220 230170 180 190 200 210 220 230
flipper length mm

species
Adelie
4 Chinstrap

= Gentoo

index-54_1.png
180 190 200 210 220 230
flipper length mm

species
® Adelie
® Chinstrap
® Gentoo

island

® Biscoe
4 Dream

= Torgersel

index-291_1.png

index-79_1.png

index-270_1.png
vV V VvV VvV VvV VvV VvV V VYV

& str_conv {stringr}
& str_count {stringr}
& str_detect {stringr}
& str_dup {stringr}
& str_extract {stringr}

& str_extract_all {stringr}

str_|

str_c(..., sep = "", collapse = NULL)

To understand how str_c works, you need to imagine that you are
building up a matrix of strings. Each input argument forms a
column, and is expanded to the length of the longest argument,
using the usual recyling rules. The sep string is inserted between
each column. If collapse is NULL each row is collapsed into a single
string. If non-NULL that string is inserted at the end of each row,
and the entire matrix collapsed to a single string.

Press F1 for additional help

index-63_1.png
Environment | History Connections = Build

& I | 2 Import Dataset - | N 216 MiB - | ¢
R ~ | il Global Environment -

Values
primes
r_rocks
this_is_a_really_long_name

X

Git

Tutorial

num [1:6] 2 3 5 7 11 13
8

2.5

12

index-315_1.png
g, tvhours

ct_reorder(reli

Don't know

Native american
Protesta

Catholic

Inter-nondenominational

Christian

No answer

Moslem/islam
Orthodox-christian
Buddhism -
Hinduism

Other eastern

2 3

h

index-87_1.png
performance

0.3~

0.2-

0.1~

5000

10000

index-314_1.png
Jewish

None

Other
Buddhism
Hinduism
Other eastern

Moslem/islam

Don't know
No answer

index-79_2.png
Options

> Console

@ Appearance

A(l‘l Pane Layout

) Packages

R Markdown

v

N & O

W

—m Display Saving Completion

General

Insert spaces for tab
Tab width 2

Auto-detect code indentation

Insert matching parens/quotes
Use native pipe operator, |> (requires R 4.1+)
Auto-indent code after paste

Vertically align arguments in auto-indent

index-50_1.png
9e-04 -

3e-04 -

0e+00 -

3000

4000 5000
body mass g

6000

species

I:‘ Adelie
. Chinstrap

Gentoo

index-49_2.png
species
Adelie
Chinstrap

Gentoo

index-51_1.png
count

150 -

100 -

50 -

0-

Biscoe

Dream
island

Torgersen

species

I Adelie
. Chinstrap
. Gentoo

index-218_1.png

index-217_1.png

index-220_1.png
Theme functions change the appearance of your plot.

theme_bw() theme_light()

White background Light axes and grid
with grid lines lines

theme_classic() theme_linedraw()

Classic theme, Only black lines
axes but no grid

lines

theme_dark() theme_minimal()

Dark background Minimal theme, no
for contrast background

theme_gray() theme_void()

Grey background Empty theme, only
(default theme) geoms are visible

index-219_1.png
L]
404
class

©® 2seater
® compact
® midsize
©® minivan
® pickup

® subcompact

® suv

index-216_2.png
10~ S O I —— 10— — ————
500 525 550 5. 6.00 500 525 550 575
displ displ

index-43_1.png
count

150 -

100 -

50 -

0-

Adelie

Chinstrap
species

Gentoo

index-226_1.png

index-45_1.png
count

40~

30-

20-

10-

3000

4000

body mass g

5000

6000

index-44_1.png
count

150 -

100 -

50 -

0-

Adelie

Gentoo
fct_infreq(species)

Chinstrap

index-222_1.png
'5:-, ,;Q. .

40~

Plot 2

index-47_1.png

index-221_1.png
Larger engine sizes tend to have lower fuel economy

40~

4

drv

LN 1) 0000 o -<

00
L] -

o oo
o000 -
e0000 (1) (1]
(1] o

20-

'
o
@

Amy

displ

Source: https://fueleconomy.gov.

index-46_1.png
count

12.5=
10.0-
7.5-
5.0-

=l

\ 1

3500

i

4500

5500

body mass g

count

200~

100 -

O_

2000

4000
body_mass_g

6000

index-225_1.png
City and highway mileage for cars with different drivetrains

drv 4-f.r

Plot 1 Plot 2

NN EEEN] SENEEEEEEEE B EIIIIIIII
Hllwllllzslllll ENNNENEEEEE] I NN

3 10 15 25 3 10 15 25
Cty

Source: https://fueleconomy.gov.

index-49_1.png
!
Chinstrap
species

index-223_1.png
30

35

index-48_1.png
The actual values
in a distribution

How a histogram
would display the
values (rotated)

|
-

How a boxplot
would display
the values
Outliers |
—_— .
1.5xIQR
Whisker to farthest
nonoutlier point >
75th percentile ——fp
Interquartile
50th percentile ey range (IQR)

25th percentile =———pp

index-39_1.png
species
* Adelie
4 Chinstrap

= Gentoo

180 190 200 210 220 230
flipper length mm

index-38_1.png
species
® Adelie
® Chinstrap
® Gentoo

180 190 200 210 220 230
flipper length mm

index-41_1.png
6000 - 0o, o

bill_depth_mm

20
18
16
14

170 180 190 200 210 220 230
flipper length mm

index-40_1.png
Body mass (9)

5500 -

IS
a
o
o
!

Body mass and flipper length
Dimensions for Adelie, Chinstrap, and Gentoo Penguins

70 180 190 200 210 220 230
Flipper length (mm)

Species
® Adelie
4 Chinstrap

= Gentoo

index-209_1.png
displ

©® 2scater @ midsize @ pickup ® suv

class
® compact @ minivan @ subcompact

index-208_1.png
class
40-
° ® 2seater
]
$ ® compact
> 30- f ® midsize
330"
= o ® minivan
' ‘ #‘ 0 * L] ' 1
o i pickup
20-
subcompact
suv
' ' ' ' '
2 3 4 6 7
displ
© 2seater ® minivan suv
class ® compact pickup
® midsize subcompact
40 - ’
>
30- 8 f ;
E 1 |'=|"_‘. 1 L
20- L
2 3 4 5 6 7

class
40~
® 2seater °
® compact :
* midsize 3 30- ,;j
® minivan < 3 x#"! «° 3
L L) L]
pickup . i“ °
20-
subcompact
suv
2 3 4 5 6 7
displ
40 - *
>
30- =88 ;
Z ot .':F:_.) 1
20~
2 3 4 5 6 7
displ
© 2seater ® minivan suv
class ® compact pickup
® midsize subcompact

index-210_2.png
price

10000 -

3000 -

1000 -

300 -

0.3

1.0
carat

3.0

count

1000

500

index-210_1.png
price

6000

4000

2000

log10(price)

B
o
i

w
a
1

w
o
1

e
Sy
I

04 00 04
log10(carat)

0.8

count

1000

500

index-115_3.png
A 8 3 = NA

use 'is.na' to check whether expression
evaluates to NA

index-115_2.png
© 3 xy « 10

unexpected token 'y
unexpected token '¢'

index-119_1.png

index-216_1.png

index-118_1.png
L

T T & WY U7 M

Options

R General

Code

|> Console

Q Appearance

EE, Pane Layout

] Packages

R Markdown

‘l Python
@D sweave

ABC

v Spelling

@ citsw

":.J- Publishing

- Terminal

ﬁ Accessibility

—m Graphics

R Sessions

Default working directory (when not in a project):

] Restore most recently opened project at startup

(V) Restore previously open source documents at startup

Workspace

() Restore .RData into workspace at startup

Save workspace to .RData on exit:

History

W

Always save history (even when not saving .RData)

Remove duplicate entries in history

Other

W

Wrap around when navigating to previous/next tab

W

Automatically notify me of updates to RStudio

Send automated crash reports to RStudio

~ Browse...

Advanced }—

Cancel

Apply

index-215_1.png
Detault, continuous Viridis, continuous Viridis, binned

count count
80

80
60

60

index-120_1.png
Create Project

Exist

e

Vers|

Check
i@ RPackage

@ Shiny Application
@ Quarto Project

@ Quarto Website

<« Quarto Blog

B Qquarto Book

Project Type

Create New Project

Directory name:

Create project as subdirectory of:

() Create a git repository

() Use renv with this project

() Open in new session Create Project

index-119_2.png
Console Terminal x Find in Files x

@ R 4.1.2 . ~/Documents/r4ds/

index-145_1.png
20-

~-

class
® 2seater
® compact
® midsize
® minivan
® pickup

© subcompact

® suv

>
2
£

30-

B
"

&Y

class

2seater
compact
midsize
minivan
pickup
subcompact

suv

index-212_1.png

index-141_1.png
/'-

Import — Tidy — Transform A) — Communicate
\ Model

Understand

index-211_1.png

index-146_1.png

index-214_1.png
—o- Democratic

—o— Republican

index-145_2.png
(]
: class class
40-

® 2seater 2seater

@® compact compact

@ midsize ® midsize

. minivan ® minivan

. pickup ® pickup

. subcompact ® subcompact
. suv ® suv

index-213_1.png
YIOrRd N
YIOrBr N
YIGnBu | | |
vicn - NE.
Reds N
RdPu]
Purples B |
PURd N
PUBUGH S | |
PuBy N
OrRd I
Oranges N
Greys - .
Greens D NNEE
GnBu . NEE
BuPy N NE.
BuGn I NNEE
Blues - NNE.

sers [0 m
secz I
ser I

Pastel2

Pastel1

raves [
oarc [
T

index-115_1.png

index-198_1.png

index-200_1.png
front-wheel drive

I ' .
i | rear-wheel drive |

! |
| | | |
TS e NG 4-wheel drive |

index-199_1.png

index-97_1.png
Afgh stan 5
Afghdistan 2@0 566
Brazi 199 337
Brazi| 2o 8@88
Chin: 199 21458
Chin! 2 66

Variables

20
172
174

1272

128

071
5360
6362
4898
5272
8583

Observations

A(goslan
Afggslan
Brao
Brao
cni@®
Chi@ @ 21@3 128@583

Values

index-102_1.png
75-

60

index-206_2.png
100% =
75% -
50% -
25% =

0% -

Falr Good Very Good Premlum Ideal
cut

index-206_1.png
Premium - —D:'—— Premium - —D:l——
§ Very Good - —Dj—_ § Very Good - ~[D—_
Good - —D:l——— Good - ~|:|:|———‘——

Fair - —D:l—:—::x:x =>owr - Fair - —D:l—:-:::::

$0 $5,000 $10,000 $15,000 $1K §7K $13K $19K
price price

index-98_1.png
cases

200000

150000

100000

e
e

year

country
* Afghanistan
A Brazil

China

index-104_1.png
S|l o || wn
© | N | < | -
| | |

index-103_1.png

index-207_1.png

index-106_1.png

index-202_1.png
hwy

40~

30-

20-

Larger engine sizes tend to
have lower fuel economy.

index-104_2.png
o e

ERECE

index-201_1.png
hwy

40~

30-

20-

@new beetle
jetta

new beetle

corvette corvette
O]
d rix© orvette ®
gand p & corvette
2 corvette
(1]
(1] L]
e o0
o0 L) [] [] []
o0 e o
o0 o000 L N]
L] L]
[]
6 7

index-114_1.png
O - e-1E & | [A Go tofile/function %5 -/ B3 - Addins - [®) rstudio-screenshots ~

@) Untitled1* x
&= Algl QA Sl AN S
1 Tlibrary(ggplot2)
2 ggplot(mpg, aes(displ, hwy)) +
3 geom_point(aes(colour = class))

Environment = History Connections Build _ ™
@d 2-tsrme. | =t~ |G-
R ~ | il Global Environment ~ ' Q

Environment is empty

Files Plots Packages Help Viewer P _ ™
Editor @ Pzom Begon- O & 5 G

3:34

(Top Level) +

Console Terminal x

@R R4.1.2 - ~/Documents/r4ds/r4ds/diagrams/rstudio-screensho o 2seater
> library(ggplot2)

> ggplot(mpg, aes(displ, hwy)) +

+ geom_point(aes(colour = class))
> |

Background Jobs x class

compact
midsize

minivan

pickup
subcompact

suv

Output

=3
7]
°

index-205_1.png

index-107_1.png
i | x|y o
DND
NS e [A N I I

alsfef7]e] O B

B 6|82

index-204_1.png

index-94_1.png
B Load data *

index-90_1.png
A workflow-style.Rmd == ["1 _ Environment Hist

& styler Style active file

& styler Style active package

& styler Style selection

index-561_1.png
What Is your name?

How old are you?

index-186_1.png
Premium -

g Very Good -

index-185_1.png
Very Good
cut

Premium

Ideal

index-579_1.jpg

index-155_1.png
34567 234567 2345867

N

smaaaas|
2 34567

0
0

index-154_2.png
WOV

40~

30-

20-

©
-
-
-~
-
-0
© °
oo eng -
".
)
CX 00
e -™
-
.
-
\ | |
o o o
< [Se] N

Amy

displ

index-158_1.png
count

20000 -

15000 -

10000 -

5000 -

Falr Good Very Good Premlum Ideal
cut

index-156_1.png
v
o}
=

displ

index-160_1.png
20000 -

15000 -

-
10000 -
- -

Falr Good Very Good Premlum Ideal
cut

index-192_2.png
Fair

Good

Very Good
cut

i
lTI

Premlum

Ideal

index-159_1.png
1. geom_bar () begins with 2.geom_bar() transforms the 3.geom_bar () uses the

the diamonds data set. data with the "count” stat, which transformed data to build
returns a data set of cut values the plot. Cut is mapped to
and counts. the x axis, count is mapped

tothey axis.

15000 -
e e 5 s = P “m

Ideal E SI2 615 395 398 243 Fair 1610 1 =
021 Premum E SH 598 61 326 389 384 231 Good 4906 1 2 10000~
023 Good E VS 569 65 327 405 407 231 Very Good 12082 1 S
029 Premum | VS2 624 58 334 420 423 263 Premium 13791 1
031 Good J SI2 633 58 335 434 435 275 Ideal 21551 1
.. I .

Fair Good _ Very Good Premium Ideal
cut

index-192_1.png

index-161_1.png
Very Good Premium

index-197_1.png

index-160_2.png
0.4-

0.3~

o
O 0.2-
S

0.1-

Falr Good Very Good Premlum Ideal
cut

index-196_1.png
Highway fuel economy (mpg)

o
o
1

30-

N
o
'

Fuel efficiency generally decreases with engine size

Two seaters (sports cars) are an exception because of their light weight

Engine displacement (L)
Data from fueleconomy.gov

Car type

2seater
compact
midsize
minivan
pickup
subcompact

suv

index-163_1.png
count

100 -

75-

50 -

25-

0-

class

2seater
compact
midsize
minivan
pickup
subcompact

suv

index-188_1.png

index-162_1.png
5
0
25-
0

'
o
o ~ e}
=

index-187_1.png
'
o
o
o
)

10000 -

so1d

5000 -

carat

index-189_2.png

index-189_1.png
price

20000 -

15000 -

10000 -

5000 -

count
6000
4000

2000

index-533_2.png
[LARAR K= 2

£ diamond-sizes.qmd x
Qo | al (O Render on save | *° Q | &b Render

| & | [A Go to file/function

| B8 - Addins ~

=

Source | Visual | | B 7 <> | Normal ~ | i= 3=

« Use Visual Editor

- 3%F4

title: "Diamond sizes"

Preview in Window
« Preview in Viewer Pane
(No Preview)

date: 2022-09-12
format: html

Chunk Output Inline
« Chunk Output in Console

ir}
#| label: setup
#| include: false

library(tidyverse)

smaller <- diamonds |>
filter(carat <= 2.5)

‘a

a

=
| =Run ~ | % ~

= Outline

I
-

We have data about r nrow(diamonds) diamonds. Only r nrow(diamonds) -
nrow(smaller) are larger than 2.5 carats. The distribution of the remainder is shown

below:

ir}
#| label: plot-smaller-diamonds

#| echo: false

smaller |>
ggplot(aes(carat)) +
geom_fregpoly (binwidth = 0.01)

(Top Level) +

Console

I
-

Quarto =

20

Environment

History = Connections

Tutorial

& [| 2 mport Dataset ~ | ¥ 248 Mig - | ¢
R ~ | il Global Environment ~

Data
Osmaller

Files @ Plots | Packages @Help Viewer Presentation

| ® zoom | = Export - | @ \(

2000~

count

1000~

0.5 1.0

53814 obs. of 10 variables

carat

r4ds-quarto ~

=0
List » | @ -

=0

4% Publish ~ | @

25

index-533_1.png
- &-| B | & | [A Gotofile/function | B - Addins ~ [® rads-quarto ~

ﬁ diamond-sizes.qmd x e} Environment = History Connections = Tutorial a0
a3 | & | (J Render on Save | '\,'}(Q | =p Render <o ~ W <+ L[=#Run - | %~
. Files @ Plots | Packages @Help Viewer Presentation |
Source | Visual | | B 7 <> | Normal ~ | i= 3= B=| | Format ~ | Insert ~ | Table ~ = Outline v
@ | 2 zoom | HExport -~ | O | ¥

CTRT Ul y S Tuy Ve Doy

smaller <- diamonds |>
filter(carat <= 2.5)

We have data about r nrow(diamonds) diamonds. Only r nrow(diamonds) -
nrow(smaller) are larger than 2.5 carats. The distribution of the remainder is shown

below:

I
-

v {r}
#| label: plot-smaller-diamonds

#| echo: false
smaller |>

ggplot(aes(carat)) +
geom_fregpoly (binwidth = 0.01)

2000 -

count

1000 -

05 1.0 15 2.0 25
carat

(Top Level) + Quarto =

Console 20

index-147_1.png
0 X4 @10
O1 e XX
2 K7 12
Os Ke ®W13
43 $Ho N 14

M 15
® 16
A 17

& 18

index-149_1.png
s
2 3 4 5 6 7
displ

index-148_1.png

index-150_1.png

index-545_2.png
40~

20-

displ

index-149_2.png

index-545_1.png

index-152_1.png
40~

'
o
@

Amy

20-

displ

index-560_1.png
Leafiet | © OpenStreetMap contributors, CC-BY-SA

index-151_1.png
class

2seater
compact
midsize
minivan
pickup
subcompact

index-545_3.png
40

30

20

index-153_1.png
20

hwy

30

40

index-534_2.png
qmd

knitr

md

pandoc

ps:

index-152_2.png
0.4~

'
©
S
IS}

0.2-

0.0-

'
<
=}
o

Ajsuap

02~

'
o
=}
S

10-

04~

0.00 -

40

40

30
hwy

20

30 40

hwy

20

20 30

10

index-534_1.png
(+] v\g\@‘v\ \ & | [A Go to file/function

£ diamond-sizes.qmd x
| & | () Render on Save | '\,‘}(Q | ==p Render
Visual | | B T

G

| == 31—

= = |

</> | Normal -

Source

title: "Diamond sizes"
date: 2022-09-12
format: html

ir}
#| label: setup
#| include: false

library(tidyverse)

smaller <- diamonds |>
filter(carat <= 2.5)

| B5 -~ Addins ~

' rdds-quarto ~

=T Environment = History = Connections = Tutorial 90
e v W <+ | =»Run - | % -

B | Format « | insert | Table ~ o Files = Plots Packages Help @Viewer @ Presentation |
= = Q| &) | [/Edit 4 publish ~ | &

Diamond sizes

PUBLISHED

September 12, 2022

We have data about 53940 diamonds. Only 126 are larger than 2.5 carats. The

= distribution of the remainder is shown below:

We have data about r nrow(diamonds) diamonds. Only r nrow(diamonds) -

nrow(smaller) are larger than 2.5 carats. The distribution of the remainder is shown

below:

ir}
#| label: plot-smaller-diamonds

#| echo: false

smaller |>
ggplot(aes(carat)) +

I

geom_fregpoly (binwidth = 0.01)

(Top Level) +

Console

2000 -

count

1000 -

20 25

1.0 1.5

carat

Quarto =

20

index-540_1.png
Chunk 1: setup
Quarto

Chunk 2: cars
Including plots

Chunk 3: pressure

Chunk 3: pressure *

index-154_1.png
bttt 3

index-536_1.png
©) markdown.qmd
1 1 DRender on Save

< 7 Q= Render
Source [Visual] | B I < Normal - | i=

Text formatting

- & & Format -

‘a ~#Run
Insert - Table - =

italic bold underline strikeout sMALL caps code superscript? and subscripty

Headings

1st Level Header
2nd Level Header

3rd Level Header

Lists

* Bulleted list item 1
* Item 2

o Item 2a
o Item 2b

1. Numbered list item 1

2. Item 2. The numbers are incremented automatically in the output.

Links and images
http://example.com

linked phrase
‘hxm;LLexamm_e.mm P ¢

|
@& quarto

ptional caption text

Slis
Outline

Figure

Image (File or URL):

proos [oome)
Width: 320 (4 Lock ratio

Height: 77

[-Alignment

© Default © Left © Center © Right

Caption:

optional caption text

Alternative text:

Quarto Iogo and the word quarto spelled in small case letters

@ Lock ratio

First Header
Content Cell

Content Cell

/| type to search...

o R Code Chunk
Executable R chunk

& Python Code Chunk
Executable Python chunk

&= Div...
Block containing other con...

Bullet List
List using bullets for items

Numbered List
List using numbers for items

Hi Heading 1
Part heading

@ Tables &

Link to:

Co)
‘Second Header
Content Cell
Content Cell

Quarto ¥

index-529_1.png
Visualize

index-176_1.png
50 -

40~

30-

1UN02

20~

10-

60

index-483_1.png
count

10000 -

7500 -

5000 -

2500 -

index-175_1.png

index-179_1.png
cancelled

et I 1]
10 20
sched dep time

i
5

index-178_1.png

index-181_1.png
Oe+00 o o I I I N]

0 5000 10000 15000 20000
price

Fair

Good
Very Good
Premium

Ideal

index-180_1.png
||
10000 15000 20000
price

Fair

Good
Very Good
Premium

Ideal

index-183_1.png
i '
2seater compact midsize minivan pickup subcompact suv

index-513_1.png
150 -

100 -

1UN02

'
o
w0

carat

index-182_1.png
price

15000 -

10000 -

5000 -

Fair

Good

Very Good
cut

Premium

Ideal

index-488_1.png
count

A histogram of carat with binwidth 0.1

10000 -

7500 -

5000 -

2500 -

index-184_1.png
midsize -

compact

subcompact

2seater

minivan

index-527_1.png
000s} 000s O

aoudgspuowelp

diamonds$carat

H

11T 1
000S1 000s O

Histogram of diamonds$carat

Kousnbalg

diamonds$carat

index-183_2.png
minivan 2seater subcompact compact midsize
fct reorder(class, hwy, median

index-523_1.png

index-485_1.png
price

15000 -

10000 -

5000 -

value

index-484_1.png

index-487_1.png
1500 -

1000 -

count

500 -

1 si2 si1 vs2 VS ws2 wsi IF
clarity

index-486_1.png
clarity

S -

VS2-

SI2-

VS1-

VVS2 -

VVS1 -

IF-

5000

count

10000

index-163_2.png
| |

. class class

- 2seater 2seater
= compact compact
- . midsize midsize
- . minivan minivan
= . pickup pickup
- subcompact subcompact
| N suv suv

index-165_1.png
40~

20-

displ

index-164_1.png
count

1.00 -

0.75-

0.50-

0.25-

0.00 -

class

2seater
compact
midsize
minivan
pickup
subcompact

suv

count

50 -

40-

30-

20~

10~

0-

class

. 2seater

compact
midsize
minivan

pickup

subcompact

suv

index-167_1.png
lat

-36 -

-40 -

44~

48 -

170

long

175

index-166_1.png
40-

20-

10-

displ

index-168_2.png
clarity

IF -
VVS1 -
VVS2 -

VS1-
V82 -
Si1 -
SI2-

I1-

]
5000
count

L}
10000

count

12500 -
10000 -

7500 -
5000 -VVS1

2500 -

VVS2

IF

VS1

clarity

11

VS2

index-168_1.png
lat

-36 -

40 -

44 -

48 -

170 175
long

index-173_1.png
30000 -

20000 -

count

10000 -

carat

index-170_1.png
20000 -

15000 -

o e i MO L prop
= 615 395 398 243 Fair 1610 —
021 Pemum E St 598 326 389 384 231 Good 4906 —
023 Good E VS1 569 327 405 407 231 Very Good 12082 — 10000+
029 Premum | VS2 624 334 420 423 263 Premium 13791 —m
031 Good J SR 633 335 434 435 275 Ideal 21551 —m
./ N .

88828
count

Fair Good Very Good Premium Ideal
cut

index-174_1.png
count

2000 -

1000 -

carat

index-467_1.png
Visualize

Understand

Program

index-463_1.png
IMDb Charts
IMDb Top 250 Movies

IMDDb Top 250 as rated by regular IMDb voters.

Showing 250 Titles Sort by: | Ranking
IMDb Your
Rank & Title Rating Rating
1. The Shawshank Redemption (1994) 9.2
i
2. The Godfather (1972) 9.2
3. The Dark Knight (2008) ¥ 9.0
4. The Godfather: Part II (1974) 9.0
5. 12 Angry Men (1957) 9.0
6. Schindler's List (1993) ¥ 8.9
7. The Lord of the Rings: The Return of the King (2003) ¥ 8.9
8. Pulp Fiction (1994) ¥ 8.8

SHARE

(]

+t

H O IO IO 3O 1O 1 1

index-474_1.png

index-432_2.png
r4ds - main - RStudio Source Editor

Q x5 x

<3 | 9 | (O Show Attributes Q c
Name Type Value
| © x5 list [2] List of length 2
rj double [1] 1
© 211 list [2] List of length 2
rj double [1] 2
O 1217 list [2] List of length2 &

index-432_1.png
r4ds - main - RStudio Source Editor

Q x5 x

<3 | 9 | (O Show Attributes Q c
Name Type Value
| © x5 list [2] List of length 2
rj double [1] 1
O 211 list [2] List of length 2

index-434_1.png

index-433_1.png
r4ds - main - RStudio Source Editor

Q x5 x

<3 | 9 | (O Show Attributes Q c
Name Type Value
| © x5 list [2] List of length 2
rj double [1] 1
© 211 list [2] List of length 2
rj double [1] 2
© 211 list [2] List of length 2
ij double [1] 3
O 211 list [2] List of length2 E&

X5

index-408_1.png

index-412_1.png

index-411_1.png

