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Preface 

This  book  is  about  the  Arduino  microcontroller  and  the  Arduino  concept.  The  vision-ary  Arduino  team  of  Massimo  Banzi,  David  Cuartielles,  Tom  Igoe,  Gianluca  Martino, and  David  Mellis  launched  a  new  innovation  in  microcontroller  hardware  in  2005,  the concept  of  open-source  hardware.  Their  approach  was  to  openly  share  the  details  of microcontroller-based  hardware  design  platforms  to  stimulate  the  sharing  of  ideas  and promote  innovation.  This  concept  has  been  popular  in  the  software  world  for  many  years. 

Their  efforts  resulted  in  a  global  phenomenon  of  making  computing  accessible  for  all. 

I  was  quite  excited  when  I  heard  Arduino  was  extending  the  concept  of  accessible computing  to  the  industrial  and  Internet  of  Things  (IoT)  sectors.  Originally  I  planned  a book  including  both  of  the  Opta  series  of  programmable  logic  controllers  (PLCs)  and the  Portenta  Machine  Controller  (PMC).  As  the  book  evolved  it  became  quite  clear  there was  too  much  information  for  a  single  text.  Instead,  a  complementary  set  of  books  was planned:   Arduino  VII:  Industrial  Control   and   Arduino  VIII:  Machine  Control.  Although the  books  are  a  complementary  set,  each  is  independent  in  the  information  contained. 

This  book,  Arduino  VII:  Industrial  Control,  is  an  accessible  primer  on  industrial  control and  programmable  logic  controller  concepts  for  those  without  a  deep  instrumentation background.  An  understanding  of  basic  circuit  theory  is  an  appropriate  prerequisite  for the  book.  The  three  main  goals  of  the  book  are:  explore  accessible  Arduino  Opta  industrial control  products;  learn  the  fundamentals  of  programming  using  ladder  logic;  and  explore related  sensors  and  interface  concepts.  We  use  multiple  examples  throughout  the  book  and conclude  with  an  instrumented  greenhouse  project.  Throughout  the  book  we  concentrate on  remote,  direct  current  (DC)  powered  systems.  We  develop  systems  that  operate  on positive  polarity  (e.g.  supplied  by  solar  panels  and  batteries). 

v

vi

Preface

Approach  of  the  Book 

The  book  has  been  divided  into  a  series  of  six  chapters  to  accomplish  the  book’s  goals. 

The  book  follows  these  chapters:

• Chapter  1. Operational  Technology  and  the  Arduino  Opta

• Chapter  2. Opta  Features

• Chapter  3. Arduino  PLC  IDE  and  Ladder  Logic

• Chapter  4. Input  Sensors,  Output  Actuators,  and  Interfacing

• Chapter  5. Application:  IoT  Greenhouse

• Chapter  6. Opta  Expansions1 

• Appendix  A.  Safety

• Appendix  B.  Embedded  Systems  Design 

Throughout  the  book,  we  provide  numerous  hardware  and  software  examples.  A  tutorial on  safety  concepts  is  readily  available  in  Appendix  A  and  referenced  throughout  the  book. 

We  recommend  reading  this  appendix  first  (now)  and  regularly  as  you  progress  through the  book.  Appendix  B  provides  a  tutorial  on  system  design  concepts  and  tools. 

For  completeness  and  independence,  this  volume  contains  tutorial  information  contained  in  some  of  the  other  volumes  in  the  Arduino  series  and  related  works  completed for  Morgan  and  Claypool  and  Springer  Nature.  Chapter  footnotes  identify  the  source  of this  information  contained  elsewhere  in  the  series.  The  book  series  thus  far  includes:

• Arduino  I:  Getting  Started

• Arduino  II:  Systems

• Arduino  III:  Internet  of  Things

• Arduino  IV:  DIY  Robots–3D  Printing,  Instrumentation,  Control

• Arduino  V:  AI  and  Machine  Learning

• Arduino  VI:  Bioinstrumentation

• Arduino  VII:  Industrial  Control 

In  the  rapidly  evolving  Arduino  world,  I  anticipate  other  books  in  the  series.  As mentioned,  Arduino  VIII:  Machine  Control   is  in  development. 

Laramie,  WY,  USA 

Steven  F.  Barrett

April  2025 

1  I  am  thankful  to  Chuck  Glaser,  Editor,  and  Boopalan  Renu,  Production  Editor,  who  paused  the production  schedule  to  allow  inclusion  of  this  chapter. 
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Objectives:  After  reading  this  chapter,  the  reader  should  be  able  to  do  the  following:

• Define  Information  Technology  (IT)  and  Operational  Technology  (OT); 

• Describe  the  features  of  a  programmable  logic  controller  (PLC)  based  OT  system; 

• Provide  a  working  definition  of  the  Industrial  Internet  of  Things  (IIoT); 

• Describe  different  variants  of  the  Arduino  Opta  micro  PLC;  and

• Construct  a  portable  lab  environment  for  the  Arduino  Opta  micro  PLC. 

1.1

Overview 

In  this  chapter  we  begin  our  exploration  of  the  Operational  Technology  (OT)  world.  We start  with  a  basic  introduction  to  the  Internet  of  Things  (IoT).  Within  IoT  there  is  a  close relationship  between  Information  Technology  (IT)  and  Operational  Technology  (OT).  We explore  this  relationship  in  some  detail.  The  reader  is  assumed  to  have  a  solid  grounding  in basic  IT  concepts. 1 The  pervasiveness  of  IoT  is  then  examined  in  industry  or  the  Industrial Internet  of  Things  (IIoT).  We  then  shift  our  focus  to  OT  and  basic  PLC  concepts.  We  conclude the  chapter  with  an  introduction  to  the  Arduino  Opta  micro  PLC. 

1  A  basic  introduction  to  IT  concepts  is  provided  in  “Arduino  III:  Internet  of  Things,”  S.F.  Barrett, Springer  Nature,  2021.  Portions  of  this  chapter  have  been  adapted  with  permission. 
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1.2

Internet  of  Things–IoT 

The  term  Internet  of  Things  was  first  used  by  Kevin  Ashton  in  a  1999  Proctor  and  Gamble presentation.  Mr.  Ashton’s  presentation  discussed  concepts  on  using  the  existing  internet infrastructure  to  support  P&G’s  supply  chain  (Greer,  Hanes).  From  this  early  start,  applications  within  business  and  industry  have  become  quite  pervasive.  A  review  of  the  literature provides  a  feature  list  describing  the  Internet  of  Things  systems  concept  (Rajkumar,  Hanes, Greer):

• An  IoT  system  connects  things  to  the  internet; 

• Each  thing  or  device  has  its  own  unique  identifier  or  address; 

• Communication  between  things  is  provided  via  the  internet; 

• An  IoT  system  provides  for  interrelated  and  integrated  computing  devices  and  physical processes; 

• An  IoT  system  provides  the  ability  to  measure,  process,  and  transfer  to  and  from  remote locations;  and

• IoT  processes  are  monitored,  coordinated,  and  controlled. 

Interestingly  the  concept  of  Cyber–physical  Systems  (CPS)  share  many  of  the  same features.  The  National  Institute  of  Standards  and  Technology  (NIST)  performed  a  study  to examine  the  relationship  between  IoT  and  CPS  and  noted  although  the  concepts  originated in  different  industries,  they  are  substantially  equivalent  concepts.  A  unified  perspective  of the  two  concepts  was  provided:  “Internet  of  Things  and  Cyber–Physical  Systems  comprise interacting  logical,  physical,  transducer,  and  human  components  engineered  for  function through  integrated  logic  and  physics  (Greer).” 

1.3

Information  Technology  Versus  Operational  Technology 

A  key  concept  within  IoT  is  the  close  relationship  between  IT  and  OT.  The  relationship between  IT  and  OT  are  shown  in  Fig. 1.1. 

IT  communications  usually  consist  of  short,  frequent  communications  that  are  broken into  packets  and  communicated  globally.  IT  provides  a  wide  variety  of  message  traffic including  e-mails,  requests  and  response  for  information  from  websites,  and  multiple  other types.  IT  technology  developments  are  rapidly  evolving  with  vulnerabilities  well  known, documented,  combatted,  and  corrected  (Hanes). 

Operational  Technology  (OT)  provides  for  process  control  within  many  areas  of  industry. 

As  shown in Fig.  1.1, industrial  safety  and  security  are  intertwined.  OT  communications  are typically  short,  point–to–point  communications  on  a  factory  floor  or  within  an  industrial process.  Monitoring  via  a  Supervisory  Control  and  a  Data  Acquisition  (SCADA)  system is  typically  performed  within  a  local  and  confined  zone.  Although  OT  developments  are
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Fig.  1.1  Information  Technology  (IT)  versus  Operational  Technology  (OT)  (Hanes) actively  taking  place,  adoption  timelines  are  slower  than  with  IT.  Since  OT  governs  a  pro-prietary  and  custom  solution  for  a  given  industrial  process,  typically  there  is  a  low  incentive for  technology  upgrade.  Although  many  IT  and  OT  concepts  are  related  but  different,  IT 

and  OT  both  enjoy  the  dedication  of  skilled  professional  practitioners  (Hanes). 

IT  and  OT  share  the  requirement  for  robust  security  protection  and  countermeasures. 

Many  of  the  security  concepts  discussed  for  IT  also  apply  for  OT.  In  the  industrial  world  IT 

and  OT  systems  are  often  linked  to  share  information  among  related  processes.  For  example, a  remote  oil  drilling  platform  may  be  controlled  via  OT  processes.  If  an  oil  company  has multiple  remote  platforms,  they  may  be  linked  via  IT  processes  to  share  production  data. 

Some  form  of  isolation,  an  “air  gap,”  is  typically  provided  between  IT  and  OT  related processes  for  security  purposes.  This  helps  prevent  a  nefarious  actor  from  accessing  a  critical industrial  process  via  the  internet  (Hanes). 

1.4

Operational  Technology 

Operational  Technology  is  used  to  control  industrial  processes.  The  fundamental  OT  building block  is  the  programmable  logic  controller  (PLC).  A  PLC  diagram  is  provided  in  Fig. 1.2a. 

A  PLC  is  an  industrial  hardened  microcontroller.  As  shown  in  Fig. 1.2a,  a  PLC  is  typically  a  rack  mounted  collection  of  modules.  Each  module  provides  a  critical  subsystem  for the  PLC.  The  PLC  subsystems  share  many  of  the  same  functions  typically  found  in  most microcontrollers.  For  example,  a  typical  PLC  system  consists  of  power  supply,  central  processing  unit  (CPU),  serial  communications,  analog  input,  digital  input  and  output,  and  timer modules.  A  custom  system  is  assembled  by  choosing  modules  to  meet  system  requirements. 

PLC  systems  are  typically  programmed  using  ladder  logic  techniques.  A  ladder  logic program  resembles  a  ladder  with  two  vertical  side  rails  linked  by  a  number  of  rungs.  As
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(b) ladder logic links control outputs based on the status of input conditions and the linking PLC instructions (Stenerson). 
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(c) PLC scanning (Stenerson). 

Fig.  1.2  PLC  overview  (Stenerson) 

shown  in  Fig. 1.2b,  the  real  world  inputs  (switches,  sensors,  etc.)  are  interfaced  to  the  PLC 

via  input  modules.  Output  real  world  devices  such  as  indicators,  audible  alarms,  motors, actuators,  etc.  are  interfaced  to  the  PLC  via  output  modules.  The  PLC  ladder  logic  rungs represent  steps  of  a  program  that  link  input  device  conditions  to  output  control  signals. 

As  shown in Fig.  1.2c,  a  ladder  logic  program  goes  through  a  scan  consisting  of  multiple stages.  The  scan  begins  with  an  input  scan.  During  the  input  scan,  the  status  of  inputs  is
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checked  and  an  input  image  table  is  updated  in  the  PLC  CPU  memory.  The  input  status is  fixed  in  the  input  image  table  for  the  remainder  of  the  scan  time.  With  input  status updated,  the  program  scan  commences.  This  is  called  the  evaluation  phase  where  the  output image  table  is  updated  based  on  the  input  image  table  values  and  the  ladder  logic  rungs connecting  input  values  to  output  control  signals.  Each  rung  in  the  ladder  logic  program  is evaluated  sequentially  starting  with  the  top  rung  and  progressing  down  the  ladder.  With  the completion  of  the  evaluation  stage,  output  signals  are  generated  per  the  output  image  table. 

The  final  two  steps  of  the  scan  include  related  serial  communications  and  any  required  PLC 

housekeeping.  Upon  completion  of  the  scan,  the  scan  is  repeated  beginning  again  with  the input  scan  (Stenerson). 

1.5

IoT  Architecture 

The  Internet  of  Things  (IoT),  as  first  described  by  Mr.  Ashton  in  1999,  initiated  the  movement to  provide  a  link  between  the  IT  and  OT  worlds.  There  are  multiple  models  available  to describe  this  vital  link.  Hanes  et  al.  provides  the  model  shown  in  Fig. 1.3a. 

The  model  provides  three  layers  linking  IoT  “things”  to  applications  via  internet–based communication  channels.  The  “things”  are  the  sensors  and  actuators  interfacing  to  a  physical world  process.  The  sensors  and  actuators  provide  for  the  monitoring  and  control  signals  for the  process.  The  application,  which  may  be  physically  distant  from  the  process,  takes  in as  input  the  sensor  information  and  provides  output  control  signals  based  on  the  control algorithm  (Hanes). 

Example.  I  have  always  wanted  to  build  a  greenhouse.  I  find  it  quite  fascinating  that  the sun’s  energy  may  be  captured,  stored,  and  employed  at  a  later  time  to  extend  and  stabilize  the growing  season  for  vegetables.  Part  of  the  fascination  may  be  related  to  spending  much  of  my life  in  northern  climes  (Newfoundland,  Nebraska,  North  Dakota,  Montana,  and  Wyoming). 

Applying  the  IoT  model  described,  the  “things”  of  the  greenhouse  would  be  the  sensors used  to  measure  the  vital  signs  of  the  greenhouse.  For  example,  we  might  measure  the following  parameters:  indoor  temperature,  outdoor  temperature,  humidity,  soil  moisture, stored  water  level,  backup  battery  voltage  level,  etc.  The  actuator  “things”  of  the  greenhouse would  be  those  devices  used  to  change  the  greenhouse  configuration:  a  vent  fan  when  the indoor  greenhouse  temperature  becomes  too  high,  a  water  pump  to  mist  the  vegetables  when appropriate  conditions  are  met  (e.g.  plant  soil  too  dry,  etc.).  An  Arduino–based  sketch  may be  developed  to  visualize  and  manage  greenhouse  properties.  For  example,  the  greenhouse indoor  and  outdoor  temperatures  may  be  logged  and  displayed  over  a  long  period  of  time (e.g.  the  winter  months).  The  internet  infrastructure  with  WiFi  access  may  be  used  to  allow the  sending  and  receiving  of  greenhouse  events.  Also,  a  Bluetooth  link  to  a  cell  phone  might be  helpful.  In  Chap. 5  we  explore  this  IoT  application  in  detail. 
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(a) Simplified IoT model (Hanes). 
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(b) Arduino IoT deployment model (arduino.cc). 

Fig.  1.3  IoT  models  (Hanes, Arduino.cc) 

1.6

IoT  Technology 

To  support  IoT  deployment,  a  number  of  technologies  have  been  developed  to  support project  level  IoT  applications,  smart  home  concepts,  and  industrial  level  Industrial  Internet of  Things  (IIoT)  applications.  The  dividing  lines  between  these  applications  are  blurry.  It  is more  of  a  continuum  of  applications  rather  than  categories  of  applications. 

1.8
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Smart  Home  Applications.  A  smart  home  uses  technology  to  efficiently  monitor  and control  home  parameters  such  as  temperature,  humidity,  lighting,  security,  lawn  health,  etc. 

In  2005  the  Z–Wave  Alliance  was  established  to  provide  a  standard  configuration  and  control protocol  for  smart  home  applications.  The  Z–wave  protocol  provides  for  the  wireless  mesh networking  of  smart  objects  within  a  home.  The  protocol  provides  for  a  data  rate  between configured  devices  of  100  kbps.  Devices  communicate  securely  at  frequencies  of  908.4  or 916  MHz  using  AES  128  encryption. 2 Network  activities  are  coordinated  by  a  smart  hub that  is  connected  to  the  internet.  The  smart  hub  can  control  up  to  232  devices  within  a  home or  small  business  environment  at  a  range  up  to  328  ft.  Each  smart  home  network  has  a  unique network  identification  and  each  device  within  the  home  has  node  identification.  The  node identification  is  provided  using  the  IPv6  address  space.  This  provides  for  non–interference between  smart  configured  homes  within  a  neighborhood  (z-wavealliance.org). 

1.7

Industrial  Internet  of  Things  (IIoT) 

IoT  technology  has  found  its  way  into  a  number  of  industries  as  shown  in  Fig. 1.4. This merger  of  IoT  concepts  and  processes  applied  to  industry  has  resulted  in  the  Industrial Internet  of  Things  or  IIoT.  As  an  end  of  chapter  assignment,  we  ask  you  to  investigate  one of  these  areas. 

1.8

Cybersecurity 

One  of  my  favorite  books  is  the   The  Once  and  Future  King   by  T.H.  White.  It  is  the  tale  of the  young  boy,  “the  Wart,”  becoming  King  Arthur  and  the  many  adventures  along  the  way.  I have  read  this  book  every  several  years  since  I  was  young.  Early  in  the  book,  White  provides a  description  of  the  Wart’s  guardian’s  castle.  He  describes  how  the  castle  is  protected  from marauders  by  a  moat  (deep  ditch)  filled  with  water.  To  get  access  to  the  castle,  a  drawbridge is  lowered  across  the  moat  and  then  raised  again  to  secure  the  castle. 3

There  are  many  dangers  surrounding  a  network  or  a  computer  on  the  internet  or  within  an operational  environment.  As  shown  in  Fig. 1.5  the  dangers  are  in  the  form  of  malicious  software  (malware)  or  the  nefarious  efforts  of  computer  hackers.  These  dangers  and  challenges include  (Kurose,  Levine,  Lowe):

• botnet–network  of  infected  computers  controlled  from  an  external  source  to  perform coordinated  nefarious  activities  on  target  computers; 

• hackers–individuals  who  try  to  overcome  computer  protection  measures  and  procedures to  gain  personal  data; 

2  AES  128  is  a  data  encryption  standard. 

3  T.H.  White,  “The  Once  and  Future  King”. 
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Fig.  1.4  IIoT  applications

• ransomware–a  computer  attack  where  files  are  encrypted  and  held  for  ransom.  If  the ransom  is  paid,  the  files  are  returned  to  normal  service; 

• spyware–software  that  is  accidently  downloaded  while  browsing  the  internet.  The  software  spies  on  your  computer  activities  and  reports  back  to  its  source; 

• virus–a  nefarious  software  program  spread  as  an  e-mail  attachment.  When  the  e-mail attachment  is  executed  it  goes  to  your  computer’s  address  bank  and  sends  out  e-mails with  the  virus  program  as  an  attachment  masquerading  as  you.  Using  this  technique,  the virus  may  be  spread  to  a  number  of  computers.  The  nefarious  intent  of  the  virus  may  be activated  by  a  specific  event  such  as  reaching  a  particular  date  and  time;  and

• worm–a  worm  creeps  into  a  computer  by  means  of  flaws  within  network  programs.  Once onboard  your  computer,  the  worm  looks  for  password  and  credit  card  information. 

As  in  the  analogy,  the  castle  is  protected  from  marauders  by  the  surrounding  moat  and securing  the  drawbridge.  The  moat  and  drawbridge  for  a  network  and  its  computer  assets include  preventive  countermeasures  including  (Kurose,  Levine,  Lowe):

1.9
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Fig.  1.5  Network  threats

• Firewall–A  firewall  protects  network  resources  from  external  dangers.  It  applies  policies to  determine  message  traffic  that  may  enter  a  protected  network. 

• Antivirus  programs  (AVP)–Each  computer  on  the  network  should  have  an  AVP  installed. 

The  AVP  should  be  current  with  all  software  updates  applied. 

• Operating  system  updates–Regular  operating  system  updates  are  sent  to  computer  users. 

These  updates  should  be  made  when  received.  They  may  contain  updates  to  correct  a security  flaw. 

• Passwords–You  should  employ  a  strong  password  to  protect  your  computer  assets.  IoT 

hardware  devices  are  sometimes  configured  with  a  default  password.  You  should  replace the  default  password  with  a  strong  password. 

• File  backups–Computer  files  should  be  backed  up  on  a  regular  basis. 

• User  awareness–Users  should  be  skeptical  of  e-mails  that  appear  questionable.  An  e-mail with  an  executable  attachment  should  not  be  opened. 

1.9

IoT  and  IIoT  Security 

IoT  and  IIoT  security  borrows  many  of  the  same  measures  from  the  IT  world  discussed earlier  in  the  chapter.  In  addition,  the  International  Society  of  Automation  (ISA)  and  the International  Electrotechnical  Commission  (IEC)  have  jointly  developed  a  suite  of  security
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Fig.  1.6  ISA/IEC  62443  control  system  security  (www.isa.org) processes,  procedures,  and  standards  for  control  systems  as  shown  in  Fig. 1.6  (www.isa. 

org). The  literature  contains  documentation  of  nefarious  actors  penetrating  a  secure  system. 

Typically,  these  attacks  have  breached  the  “air  gap”  and  vulnerabilities  between  the  IT  and OT  components  of  the  system. 

1.10

Arduino  Opta  Micro  Programmable  Logic  Controller 

The  Arduino  company  has  partnered  with  the  Finder  company  to  develop  and  release  a  line of  basic,  yet  powerful,  Opta  programmable  logic  controllers.  The  Opta  PLCs  consist  of  three variants  as  shown  in  Fig. 1.7. 

Fig.  1.7  Opta  PLC  variants  (www.arduino.cc)

[image: Image 12]

1.10

Arduino Opta Micro Programmable Logic Controller

11

Fig.  1.8  Opta  PLC  features.  Images  used  courtesy  of  the  Arduino  Team  (CC  BY–NC–SA)  (www. 

arduino.cc) 

The  three  variants  (Opta  Lite  (AFX00003),  Opta  WiFi  (AFX00002),  and  Opta  RS485 

(AFX00001)  share  many  common  features  as  shown  in  Fig. 1.8.  Starting  in  the  upper  left corner  are  the  DC  power  supply  input  terminals  for  the  PLC.  The  Opta  may  be  powered from  a  12–24  VDC  power  source.  We  use  a  12  VDC  supply  in  our  examples.  Next  is  a  series of  eight  configurable  input  terminals  (I1–I8).  The  terminals  may  be  configured  for  digital or  analog  input.  There  is  also  an  Ethernet  10/100BASE–T  port  with  Local  Area  Network
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(LAN)  status  indicators.  At  the  bottom  of  the  PLC  are  four  normally  open  (NO)  relay  output terminals  rated  at  250  VAC  10  amps. 

The  PLC  is  equipped  with  a  USB–C  connector  for  communication  with  the  host  laptop or  PC.  On  the  left  side  of  the  PLC  are  programmable,  status  light  emitting  diodes  (LEDs 1–4)  and  a  programmable  user  button.  Finally,  there  is  a  PLC  reset  button  in  the  upper  left corner.  The  Opta  WiFi  and  RS485  are  equipped  with  additional  communication  assets  we discuss  in  Chap. 2. 

The  Arduino  Opta  variants  are  programmed  using  the  Arduino  IDE  or  the  Arduino  PLC 

IDE.  We  discuss  basic  programming  techniques  using  the  Arduino  IDE  in  the  next  section and  advanced  programming  techniques  with  the  Arduino  PLC  IDE  in  Chap. 3. 

1.11

Getting  Started  with  the  Arduino  IDE 

Most  microcontrollers  are  programmed  with  some  variant  of  the  C  programming  language. 

The  C  programming  language  provides  a  nice  balance  between  the  programmer’s  control  of the  microcontroller  hardware  and  time  efficiency  in  program  writing.  As  an  alternative,  the Arduino  Integrated  Development  Environment  (IDE)  provides  a  user–friendly  interface  to quickly  develop  a  program  or  sketch,  transform  the  sketch  to  machine  code,  and  then  load the  machine  code  into  the  Arduino  processor  in  several  simple  steps. 4

The  first  version  of  the  Arduino  IDE  was  released  in  August  2005.  It  was  developed  at the  Interaction  Design  Institute  in  Ivrea,  Italy  to  allow  the  ability  to  quickly  put  processing power  to  use  in  a  wide  variety  of  projects.  Since  that  time,  updated  versions  incorporating new  features,  have  been  released  on  a  regular  basis  (www.arduino.cc). 

At  its  most  fundamental  level,  the  IDE  is  a  user–friendly  interface  to  allow  one  to  quickly write,  load,  and  execute  code  on  an  Arduino  microcontroller  or  Opta  PLC.  A  barebones program  need  only  consist  of  a  setup()  and  loop()  function.  The  Arduino  IDE  adds  the  other required  pieces  such  as  header  files  and  the  main  program  construct.  The  IDE  is  written in  Java  and  has  its  origins  in  the  Processor  programming  language  and  the  Wiring  Project 

(www.arduino.cc). 

In  this  section  we  configure  the  Arduino  Opta  Lite  for  basic  operation.  The  Opta  Lite  is powered  from  a  laboratory  power  supply  set  for  12–24  VDC.  The  Opta  Lite  is  connected to  the  support  PC  or  laptop  via  a  USB–C  cable  as  shown  in  Fig. 1.9.  The  Arduino  IDE 

may  be  downloaded  from  the  Arduino  website’s  front  page  at  www.arduino.cc.  Versions are  available  for  Windows,  Mac  OS  X,  and  Linux.  When  the  IDE  is  successfully  installed, install  the  Opta  mbed  Library  using  the  Library  Manager  within  the  Arduino  IDE. 

Using  the  Arduino  IDE,  compile  and  upload  the  following  sketch  from  “Getting  Started with  Opta”  tutorial  (www.arduino.cc): 4  This  section  was  adapted  with  permission  from:  “Arduino  I:  Getting  Started,”  S.  Barrett,  Springer Nature,  2020. 

[image: Image 13]
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Arduino Development Environment 

computer 

Arduino IDE 

or 

Arduino PLC IDE 

Fig.  1.9  Opta  barebones  quickstart.  Images  used  courtesy  of  the  Arduino  team  (CC  BY–NC–SA) (www.arduino.cc)

• Under  the  Tools  tab  select  the  evaluation  Board  you  are  using  and  the  Port  that  it  is connected  to. 

• Upload  and  execute  the  program  by  asserting  the  “Upload”  (right  arrow)  button. 

• When  uploaded  the  four  LEDs  on  the  front  of  the  Opta  PLC  will  blink  sequentially. 

Modify  the  sketch  so  the  LEDs  sequentially  cycle  left  to  right  and  then  back  right  to  left within  a  single  loop  pass. 

14

1

Operational Technology and the Arduino Opta

//**************************************************** 

//Getting Started with Opta 

//Name: LED_Blink_Opta 

//Purpose: Blink STATUS LEDs on Opta 

//author: Arduino 

//This is Open Source software. 

//***************************************************** 

void setup() 

{ 

pinMode(LED_D0, OUTPUT); 

pinMode(LED_D1, OUTPUT); 

pinMode(LED_D2, OUTPUT); 

pinMode(LED_D3, OUTPUT); 

} 

void loop() 

{ 

digitalWrite(LED_D0, HIGH); 

delay(100); 

digitalWrite(LED_D0, LOW); 

delay(100); 

digitalWrite(LED_D1, HIGH); 

delay(100); 

digitalWrite(LED_D1, LOW); 

delay(100); 

digitalWrite(LED_D2, HIGH); 

delay(100); 

digitalWrite(LED_D2, LOW); 

delay(100); 

digitalWrite(LED_D3, HIGH); 

delay(100); 

digitalWrite(LED_D3, LOW); 

delay(500); 

} 

//**************************************************** 

With  the  Arduino  IDE  downloaded  and  exercised,  let’s  take  a  closer  look  at  its  features. 

[image: Image 15]
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1.11.1  Arduino  IDE  Overview 

The  Arduino  IDE  is  illustrated  in  Fig. 1.10. The  IDE  contains  a  text  editor,  a  message  area  for displaying  status,  a  text  console,  a  tool  bar  of  common  functions,  and  an  extensive  menuing system.  The  IDE  also  provides  a  user–friendly  interface  to  the  Arduino  processor  board or  PLC  which  allows  for  a  quick  upload  of  code.  This  is  possible  because  the  Arduino processing  boards  are  equipped  with  a  bootloader  program. 

A  close  up  of  the  Arduino  toolbar  is  provided  in  Fig. 1.11. The  toolbar  provides  single button  access  to  the  more  commonly  used  menu  features.  Most  of  the  features  are  self– 

explanatory.  As  described  in  the  previous  section,  the  “Upload”  button  compiles  your  code and  uploads  it  to  the  Arduino  processing  board.  The  “Serial  Monitor”  button  opens  the  serial monitor  feature.  The  serial  monitor  feature  allows  text  data  to  be  sent  to  and  received  from the  Arduino  processing  board. 

Upload 
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Board 

Manager 

Library 

Manager 

Debug 
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Fig.  1.10  Arduino  development  environment  (www.arduino.cc) 

Fig.  1.11  Arduino 
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1.11.2  Sketchbook  Concept 

In  keeping  with  a  hardware  and  software  platform  for  students  of  the  arts,  the  Arduino environment  employs  the  concept  of  a  sketchbook.  An  artist  maintains  their  works  in  progress in  a  sketchbook.  Similarly,  we  maintain  our  programs  within  a  sketchbook  in  the  Arduino environment.  Furthermore,  we  refer  to  individual  programs  as  sketches.  An  individual  sketch within  the  sketchbook  may  be  accessed  via  the  Sketchbook  entry  under  the  file  tab. 

1.11.3  Arduino  Software,  Libraries,  and  Language  References 

The  Arduino  IDE  has  a  number  of  built–in  features.  Some  of  the  features  may  be  directly accessed  via  the  Arduino  IDE  drop  down  toolbar  illustrated  in  Fig. 1.10. Provided in Fig.  1.12 

is  a  handy  reference  to  show  the  available  features.  The  toolbar  provides  a  wide  variety  of features  to  compose,  compile,  load  and  execute  a  sketch. 

1.11.4  Writing  an  Arduino  Sketch 

The  basic  format  of  the  Arduino  sketch  consists  of  a  “setup”  and  a  “loop”  function.  The setup  function  is  executed  once  at  the  beginning  of  the  program.  It  is  used  to  configure  pins, declare  variables  and  constants,  etc.  The  loop  function  will  execute  sequentially  step–by-

–step.  When  the  end  of  the  loop  function  is  reached  it  will  automatically  return  to  the  first step  of  the  loop  function  and  execute  again.  This  goes  on  continuously  until  the  program Menu 
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Fig.  1.12  Arduino  IDE  menu  (www.arduino.cc)
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is  stopped.  This  serves  as  a  good  template  for  developing  an  embedded  control  system.  We typically  initialize  the  system  (setup)  and  the  continuously  monitor  and  respond  to  status (loop). 

//********************************************************** 

void setup() 

{ 

//place setup code here 

} 

void loop() 

{ 

//main code steps are provided here 

: 

: 

} 

//********************************************************** 

Even  the  most  complicated  sketches  follow  the  basic  format  of  the  setup  function  followed by  the  loop  function.  To  aid  in  the  development  of  more  complicated  sketches,  the  Arduino IDE  has  many  built–in  features  that  may  be  divided  into  the  areas  of  structure,  variables  and functions.  The  structure  and  variable  features  follow  rules  similar  to  the  C  programming language  which  is  discussed  in  the  text  “Arduino  II:  Systems.” 5 The  built–in  functions consists  of  a  set  of  pre–defined  activities  useful  to  the  programmer.  These  built–in  functions are  summarized  in  Fig. 1.13. 

There  are  many  program  examples  available  to  allow  the  user  to  quickly  construct  a sketch.  These  programs  are  summarized  in  Fig. 1.14. Complete  documentation  for  these programs  is  available  at  the  Arduino  homepage  (www.arduino.cc). This  documentation  is easily  accessible  via  the  Help  tab  on  the  Arduino  Development  Environment  toolbar.  This documentation  will  not  be  repeated  here.  Instead,  we  refer  to  these  features  at  appropriate places  throughout  the  remainder  of  the  book.  With  the  Arduino  open  source  concept,  users throughout  the  world  are  constantly  adding  new  built–in  features.  As  new  features  are  added, they  will  be  released  in  future  Arduino  IDE  versions.  As  an  Arduino  user,  you  too  may  add to  this  collection  of  useful  tools. 

5  S.F.  Barrett,  “Arduino  II:  Systems,”  Morgan  and  Claypool  Publishers,  2020. 
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Fig.  1.13  Arduino  IDE  functions  (www.arduino.cc) Arduino Environment 
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Fig.  1.14  Arduino  development  environment  built–in  features  (www.arduino.cc)
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Application:  Portable  Lab  Configuration 

Provided  in  Fig. 1.15  is  a  layout  diagram  for  an  Opta  PLC  panel.  Raceway  ducts  are used  to  route  wiring  between  components.  The  DIN  compatible  components  are  mounted on  standard  industrial  DIN  rails.  A  12  VDC,  5A  DIN  rail  power  supply  (Mean  Well  MDR-BAOMIN 
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Fig.  1.15  Opta  PLC  panel
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–60\12)  powers  the  Opta  PLC.  A  standard  three  conductor  115  VAC  provides  AC  power  to the  12  VDC  supply.  The  AC  input  line  is  fused  with  a  2A  fuse  and  the  12  VDC  output  is fused  with  a  5A  fuse.  The  10. × 38  mm  fuses  are  housed  within  a  DIN  compatible  BAOMIN 

fuse  holder. 

The  12  VDC  supply  is  distributed  to  eight  channels  via  the  HCDC  HD064VT  distribution block.  Stranded  20  AWG  wire  is  used  to  connect  the  components.  Block  channel  1  is  routed to  the  Arduino  Opta  Lite  power  input.  The  assembled  panel  is  shown  in  Fig. 1.16. 

1.13

Summary 

In  this  chapter  we  began  our  exploration  of  the  Operational  Technology  (OT)  world.  We started  with  a  basic  introduction  to  the  Internet  of  Things  (IoT).  Within  IoT  there  is  a  close relationship  between  Information  Technology  (IT)  and  Operational  Technology  (OT).  We explored  this  relationship  in  some  detail.  The  pervasiveness  of  IoT  was  then  examined  in industry  or  the  Industrial  Internet  of  Things  (IIoT).  We  then  shifted  our  focus  to  OT  and basic  PLC  concepts.  We  concluded  the  chapter  with  an  introduction  to  the  Arduino  Opta micro  PLC. 

1.14

Problems 

1.  Describe  different  sources  of  cybersecurity  threats. 

2.  Describe  measures  to  counter  cybersecurity  threats. 

3.  Provide  a  working  definition  of  IoT  and  IIoT. 

4.  What  is  the  difference  between  IT  and  OT?  How  are  the  concepts  related. 

5.  What  is  a  PLC? 

6.  Describe  the  PLC  scanning  process. 

7.  Provide  an  IoT  model.  Describe  the  interaction  between  things  and  applications. 

8.  What  is  an  “air  gap?”  Why  is  it  essential  for  IIoT  security? 

9.  Research  and  write  a  short  paper  on  an  IIoT  security  breach.  How  was  the  system  penetrated?  How  could  the  situation  been  prevented? 

[image: Image 17]
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Objectives:  After  reading  this  chapter,  the  reader  should  be  able  to  do  the  following:

• Distinguish  between  different  variants  in  the  Arduino  Opta  micro  PLC  series; 

• Describe  common  features  of  the  Arduino  Opta  micro  PLC  variants; 

• Design  and  implement  control  circuits  employing  the  common  features  of  the  Arduino Opta  micro  PLC  variants; 

• Describe  and  apply  features  of  a  specific  Arduino  Opta  micro  PLC  variant; 

• Design  a  control  system  employing  an  Arduino  Opta  micro  PLC;  and

• Implement  an  Arduino  Opta  micro  PLC  control  system  using  DIN  rail  technology. 

2.1

Introduction 

We  begin  the  chapter  with  a  brief  review  of  the  Arduino  Opta  series  of  micro  PLCs.  We explore  features  common  to  all  three  variants  and  employ  them  to  explore  fundamental input/output  control  concepts.  We  then  examine  and  apply  features  specific  to  a  given Arduino  Opta  variant.  Throughout  the  chapter  we  provide  illustrative  examples. 

2.2

Arduino  Opta  Features 

As  discussed  in  Chap. 1,  the  Arduino  company  has  partnered  with  the  Finder  company  to develop  and  release  a  line  of  basic,  yet  powerful,  Opta  programmable  logic  controllers. 

The  Opta  PLCs  consist  of  three  variants  as  shown  in  Fig. 2.1.  The  three  variants  (Opta  Lite (AFX00003),  Opta  WiFi  (AFX00002),  and  Opta  RS485  (AFX00001)  share  many  common 

©  The  Author(s),  under  exclusive  license  to  Springer  Nature  Switzerland  AG  2025 
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Fig.  2.1  Opta  PLC  variants  (www.arduino.cc) features.  In  this  section  we  explore  these  features.  For  each  feature  we  provide  supporting theory,  feature  description,  and  an  example  using  the  Arduino  IDE.  Information  provided here  is  adapted  and  expanded  from   Opta  User  Manual, the   Ardunio  Opta  Collective  Data Sheet,  and  other  sources  as  referenced. 1

2.2.1

ST  STM32H747XI  Dual–Core  Processor 

The  ST  STM32H747XI  dual–core  processor  provides  the  features,  subsystems  and  processing  power  for  the  Opta  micro  PLC  line.  The  processor  features  an  Arm  Cortex–M7 

core  operating  at  480  MHz  and  also  an  ARM  32–bit  Cortex–M4  core  operating  at  up  to 240  MHz.  The  processor  is  equipped  with  multiple  memory  assets  including:  1  MB  of  program  memory,  2  MB  of  Flash  memory,  and  a  Flash  Quad  Serial  Peripheral  Interface  (QSPI) memory.  Portions  of  the  QSPI  memory  is  available  for  manufacturer  use  and  user  data  logging  applications.  We  explore  STM32H747XI  features  as  needed  as  we  investigate  Opta PLC  features. 

2.2.2

Programmable  Status  LEDs  and  Push  Button 

The  Opta  PLCs  are  equipped  with  four  programmable  status  LEDs  (1–4)  and  also  a  programmable  push  button.  In  Chap. 1  we  provided  a  sketch  to  sequentially  illuminate  the  LEDs. 

The  sketch  is  provided  below. 

Within  the  Arduino  IDE  the  LEDs  have  been  defined  as  LED_D0  to  LED_D3.  In  the setup  portion  of  the  sketch  the  pins  associated  with  the  LEDs  are  designated  output  pins. 

1  During  the  upcoming  examples,  should  the  Opta/support  computer  interface  become  problematic, the  Opta  may  be  reset  by  depressing  the  “RESET”  pushbutton  twice  on  the  Opta  front  panel. 
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Within  the  loop  portion  of  the  sketch,  the  pins  are  then  sequentially  turned  on  (logic  HIGH) and  off  (logic  LOW)  using  the  digitalWrite  command.  Between  each  command  there  is  a delay  of  100  ms  to  allow  viewing  of  the  LED  status  change. 

//**************************************************** 

//Source: Getting Started with Opta 

//Name: LED_Blink_Opta 

//Purpose: Blink STATUS LEDs on Opta 

//author: Arduino 

//This is Open Source software. 

//***************************************************** 

void setup() 

{ 

pinMode(LED_D0, OUTPUT); 

//set pins to output 

pinMode(LED_D1, OUTPUT); 

pinMode(LED_D2, OUTPUT); 

pinMode(LED_D3, OUTPUT); 

} 

void loop() 

{ 

digitalWrite(LED_D0, HIGH); 

//set pin HIGH Â– LED ON 

delay(100); 

//delay 100 ms 

digitalWrite(LED_D0, LOW); 

//set pin LOW  Â– LED OFF 

delay(100); 

//delay 100 ms 

digitalWrite(LED_D1, HIGH); 

delay(100); 

digitalWrite(LED_D1, LOW); 

delay(100); 

digitalWrite(LED_D2, HIGH); 

delay(100); 

digitalWrite(LED_D2, LOW); 

delay(100); 

digitalWrite(LED_D3, HIGH); 

delay(100); 

digitalWrite(LED_D3, LOW); 

delay(500); 

} 

//**************************************************** 

The  programmable  button  is  designated  as  “USER”  on  the  Opta  front.  Within  the  Arduino IDE,  it  is  defined  as  “BTN_USER.”  The  button  provides  a  logic  high  when  not  pressed  and
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a  logic  low  when  pressed.  The  following  sketch  sequentially  turns  on  an  additional  LED 

each  time  the  pushbutton  is  pressed.  Once  all  of  the  LEDs  have  turned  on  the  sequence  starts over. 

The  sketch  calls  the  function  “changeLights()”  to  update  the  LED  status  based  on  the value  of  variable  counter.  When  a  function  is  called,  program  control  is  released  from  the loop  program  portion  to  the  function.  Once  the  function  is  complete,  program  control  returns to  the  main  program.  Functions  may  in  turn  call  other  functions. 

Within  the  function  “changeLights()”  a  “switch”  statement  is  used  to  determine  appropriate  action  based  on  the  value  of  variable  “counter.”  The  switch  statement  is  used  when multiple  if–else  conditions  exist.  Each  possible  condition  is  specified  by  a  case  statement. 

When  a  match  is  found  between  the  switch  variable  and  a  specific  case  entry,  the  statements associated  with  the  case  are  executed  until  a  break  statement  is  encountered.  The  alternatives  are  processed  in  the  order  specified  by  the  switch  statement.  If  no  match  is  found,  the default  case  is  executed. 

//**************************************************** 

//Source: Getting Started with Opta 

//Name: Programmable_Button_Opta 

//Purpose: Configures the programmable button to 

//control STATUS LED sequence. 

//author Arduino 

// This is Open Source software. 

//**************************************************** 

int buttonState = 0; 

int counter = 0; 

void setup() 

{ 

pinMode(LED_D0, OUTPUT); 

//initialize Opta LEDs 

pinMode(LED_D1, OUTPUT); 

pinMode(LED_D2, OUTPUT); 

pinMode(LED_D3, OUTPUT); 

pinMode(BTN_USER, INPUT); 

} 

void loop() 

{

//check button status 

buttonState = digitalRead(BTN_USER); 

if(buttonState == LOW) 

{ 

if(counter < 4)

//status of button ctr 

{ 

counter++; 

//increment button ctr 

} 

else
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{ 

counter = 0; 

//reset counter 

} 

delay(100); 

//delay 100 ms 

} 

changeLights(); 

//call function 

} 

//**************************************************** 

//Function to control STATUS LED based on counter value 

//**************************************************** 

void changeLights() 

{ 

switch(counter) 

{ 

case 0: digitalWrite(LED_D0, LOW); 

digitalWrite(LED_D1, LOW); 

digitalWrite(LED_D2, LOW); 

digitalWrite(LED_D3, LOW); 

break; 

case 1: digitalWrite(LED_D0, HIGH); 

break; 

case 2: digitalWrite(LED_D1, HIGH); 

break; 

case 3: digitalWrite(LED_D2, HIGH); 

break; 

case 4: digitalWrite(LED_D3, HIGH); 

break; 

} 

delay(100); 

} 

//**************************************************** 

2.2.3

Sink  and  Source  Configurations 

In  the  next  section  we  discuss  DC  inputs  and  outputs.  For  DC  inputs  and  outputs  we  need to  be  comfortable  with  the  concept  of  sink  and  source  configurations  (Stenerson). 

Figure  2.2a  illustrates  the  relationship  between  two  electronic  devices  with  the  current flow  from  one  to  another.  From  device  1’s  point  of  view,  it  is  sourcing  current  to  device  2. 

Whereas,  from  device  2’s  point  of  view,  device  2  serves  as  a  sink  for  current  from  device  1. 
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Fig.  2.2  Sink  and  source  configurations  (Stenerson) 

Field  (peripheral)  devices  may  be  designed  as  sink  or  source  devices.  The  supply  voltage for  the  field  devices  are  typically  provided  external  from  the  PLC.  It  is  important  to  correctly configure  the  field  device,  power  supply,  and  PLC  such  that  current  properly  flows  in  a closed  pattern.  Figure  2.2b  provides  common  configurations  for  a  PLC  in  various  sink/source configurations.  An  example  of  current  flow  direction  with  the  Opta  PLC  is  provided  in Fig. 2.7. 
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2.2.4

Programmable  Analog/Digital  Inputs 

The  Arduino  Opta  series  is  equipped  with  eight  inputs  designated  I1–I8.  Each  input  can  be configured  as  an  analog  input  or  a  digital  input.  We  discuss  each  configuration  in  turn. 

2.2.4.1  Analog  Inputs 

When  configured  as  an  analog  input,  the  input  signal  ranging  from  0  to  10  VDC  is  converted to  a  corresponding  digital  value.  The  corresponding  digital  value  may  be  configured  for 12–16  bits  of  resolution.  A  brief  introduction  to  the  analog–to–digital  (ADC)  conversion process  follows  with  an  Opta  example. 

 Analog–to–Digital  Conversion  (ADC)   A  controller  is  used  to  process  information  from the  natural  world,  use  an  algorithm  to  decide  on  a  course  of  action  based  on  the  information collected,  and  then  issue  control  signals  to  implement  the  decision. 2

Since  the  information  from  the  natural  world,  is  analog  or  continuous  in  nature,  and  the controller  is  a  digital  or  discrete  based  processor,  a  method  to  convert  an  analog  signal  to a  digital  form  is  required.  An  ADC  system  performs  this  task  while  a  digital–to–analog converter  (DAC)  performs  the  conversion  in  the  opposite  direction. 

There  are  three  important  processes  associated  with  the  ADC  process:  sampling,  quantization,  and  encoding. 

Sampling.  Sampling  is  the  process  of  taking  “snap  shots”  of  a  signal  over  time.  When we  sample  a  signal,  we  want  to  sample  it  in  an  optimal  fashion  such  that  we  capture  the essence  of  the  signal  while  minimizing  the  use  of  memory  resources.  In  essence,  we  want  to minimize  the  number  of  samples  while  retaining  the  capability  to  faithfully  reconstruct  the original  signal  from  the  samples.  Intuitively,  the  rate  of  change  of  a  signal  determines  the number  of  samples  required  to  faithfully  reconstruct  the  signal,  provided  that  all  adjacent samples  are  captured  with  the  same  sample  timing  intervals. 

Harry  Nyquist  from  Bell  Laboratory  studied  the  sampling  process  and  derived  a  criterion that  determines  the  minimum  sampling  rate  for  a  continuous  analog  signal.  His,  now  famous, minimum  sampling  rate  is  known  as  the  Nyquist  sampling  rate,  which  states  that  one  must sample  a  signal  at  least  twice  as  fast  as  the  highest  frequency  content  of  the  signal  of  interest. 

For  example,  if  we  are  dealing  with  the  human  voice  signal  that  contains  frequency components  that  span  from  about  20  Hz  to  4  kHz,  the  Nyquist  sample  theorem  requires  that we  must  sample  the  signal  at  least  at  8  kHz,  8000  “snap  shots”  every  second.  Figure  2.3 

illustrates  various  sample  rates. 

2  The  information  on  analog-to-digital  conversion  first  appeared  in  “Microcontroller  Fundamentals for  Engineers  and  Scientists,”  Morgan  and  Claypool  Publishers,  2006.  It  has  been  adapted  with permission.  Although  first  developed  for  embedded  systems  design,  concepts  provided  here  apply  to Opta–based  PLC  system  design. 
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Fig.  2.3  Sampling  rate 

When  a  signal  is  sampled  a  low  pass  anti–aliasing  filter  is  employed  to  ensure  the  Nyquist sampling  rate  is  not  violated.  In  the  example  above,  a  low  pass  filter  with  a  cutoff  frequency of  4  kHz  would  be  used  before  the  sampling  circuitry  for  this  purpose. 

Quantization.  Each  digital  system  has  a  number  of  bits  it  uses  as  the  basic  unit  to represent  data.  A  bit  is  the  most  basic  unit  where  single  binary  information,  one  or  zero,  is represented. 

Suppose  you  have  a  single  bit  to  represent  an  incoming  signal.  You  only  have  two  different values,  0  and  1.  You  may  say  that  you  can  distinguish  only  low  from  high.  Suppose  you have  two  bits.  You  can  represent  four  different  levels,  00,  01,  10,  and  11.  What  if  you  have three  bits?  You  now  can  represent  eight  different  levels:  000,  001,  010,  011,  100,  101,  110, and  111  as  shown  in  Fig. 2.3. Similar  discussion  can  lead  us  to  conclude  that  given  n  bits, we  have .2 n  unique  numbers  or  levels  one  can  represent. 

Figure  2.4  shows  how  n  bits  are  used  to  quantize  a  range  of  values.  In  many  digital  systems, the  incoming  signals  are  voltage  signals.  The  voltage  signals  are  first  obtained  from  physical signals  (pressure,  temperature,  etc.)  with  the  help  of  transducers,  such  as  microphones,  angle sensors,  and  infrared  sensors. 

The  voltage  signals  are  then  conditioned  to  map  their  range  with  the  input  range  of  a digital  system,  typically  0–5  VDC  for  microcontrollers  and  0–10  VDC  for  the  Arduino
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Fig.  2.4  Sampling,  quantization,  and  encoding 

Opta  PLC.  In  Fig. 2.4,  n  bits  allow  you  to  divide  the  input  signal  range  of  a  digital  system into .2 n  different  quantization  levels.  As  can  be  seen  from  the  figure,  the  more  quantization levels  means  the  better  mapping  of  an  incoming  signal  to  its  true  value.  As  the  number  of bits  used  for  the  quantization  levels  increases  for  a  given  input  range  the  “distance”  between two  adjacent  levels  decreases  accordingly. 

Encoding.  Finally,  the  encoding  process  involves  converting  a  quantized  signal  into  a digital  binary  value.  Suppose  again  we  are  using  eight  bits  to  quantize  a  sampled  analog signal.  The  quantization  levels  are  determined  by  the  eight  bits  and  each  sampled  signal is  quantized  as  one  of  256  quantization  levels.  Consider  the  two  sampled  signals  shown  in Fig. 2.4. The  first  sample  is  mapped  to  quantization  level  two  and  the  second  one  is  mapped to  quantization  level  198.  Note  the  amount  of  quantization  error  introduced  for  both  samples. 

The  quantization  error  is  inversely  proportional  to  the  number  of  bits  used  to  quantize  the signal. 

Once  a  sampled  signal  is  quantized,  the  encoding  process  involves  representing  the  quantization  level  with  the  available  bits.  Thus,  for  the  first  sample,  the  encoded  sampled  value is  0000_0010  (two),  while  the  encoded  sampled  value  for  the  second  sample  is  1100_0110 

(198).  As  a  result  of  the  encoding  process,  sampled  analog  signals  are  now  represented  as  a set  of  binary  numbers.  Thus,  the  encoding  is  the  last  necessary  step  to  represent  a  sampled analog  signal  into  its  corresponding  digital  form,  shown  in  Fig. 2.4. 

Resolution.  Resolution  is  a  metric  used  to  quantize  an  analog  signal.  Resolution  is  nothing more  than  the  voltage  “distance”  between  two  adjacent  quantization  levels  discussed  earlier. 
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The  number  of  bits  used  for  the  quantization  is  directly  proportional  to  the  resolution  of  a system.  In  general,  resolution  may  be  defined  as: 

.  r esol ut i on =  (volt age s pan)/ 2 b =  (Vre f high −  Vre f low)/ 2 b for  the  Arduino  Opta,  the  best  achievable  resolution  is: 

.  r esol ut i on =  ( 10 − 0 )/ 216 = 153  uV

The  desired  resolution  is  chosen  based  on  the  requirements  of  the  system.  The  ADC 

resolution  for  the  Opta  PLC  can  be  set  from  12  to  16  bits. 

 Opta  ADC  example   The  Arduino  Opta  input  pins  are  designated  I1–I8  on  the  PLC  case. 

Within  the  Arduino  IDE  environment  they  are  designated  “PIN_A0”  to  “PIN_A7.”  To  use the  pins  as  analog  inputs,  the  resolution  is  set  using  the  “analogReadResolution(insert  12–16 

bits)”  command. 

The  maximum  allowable  voltage  to  the  Arduino  Opta  PLC  is  10  VDC.  However,  the internal  host  PLC  processor  performing  the  ADC  has  a  maximum  allowable  voltage  of  3 

VDC.  Therefore,  the  voltage  for  ADC  conversion  provided  to  the  Opta  PLC  input  is  scaled internally  by  a  factor  of  0.30.  When  a  measurement  is  taken,  the  result  must  be  rescaled  by this  value. 

In  the  following  sketch  voltage  samples  provided  to  Opta  PLC  inputs  I1,  I2,  and  I3 

(process  inputs  A0,  A1,  A2)  are  converted,  scaled,  and  displayed  to  the  Arduino  IDE  serial monitor.  The  voltages  supplied  to  I1,  I2,  and  I3  are  supplied  to  the  Opta  from  a  bank  of potentiometers  as  shown  in  Fig. 2.5.  The  Opta  readings  received  need  to  be  calibrated  with an  external  device  such  as  a  voltmeter. 

//**************************************************** 

//Source: Getting Started with Opta 

//Name: Analog_Inputs_Opta 

//Purpose: Test Opta analog pins I1 (A0) to I2 (A1) 

// 

//author Arduino 

//This is Open Source software. 

//**************************************************** 

void setup() 

{ 

Serial.begin(9600); 

analogReadResolution(12); 

//set 12 to 16 bits 

} 

void loop() 

{ 

//Read the input on analog input I1 corresponding to A0: 

int sensorValueA0 = analogRead(A0); 
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float voltageA0 = sensorValueA0 * (3.0 / 4095.0)/ 0.3; 

//Print out value from I1 

Serial.print("I1 value: "); 

Serial.print(sensorValueA0); 

Serial.print(" corresponding to "); 

//Print voltage as float with 2 decimal digits 

Serial.print(voltageA0, 2); 

Serial.println("Volts"); 

//Read the input on analog input I2 corresponding to A1: 

int sensorValueA1 = analogRead(A1); 

float voltageA1 = sensorValueA1 * (3.0 / 4095.0)/0.3; 

//Print out value from I2 

Serial.print("I2 value: "); 

Serial.print(sensorValueA1); 

Serial.print(" corresponding to "); 

//Print voltage as float with 2 decimal digits 

Serial.print(voltageA1, 2); 

Serial.println("Volts"); 

//Read the input on analog input I3 corresponding to A2: 

int sensorValueA2 = analogRead(A2); 

float voltageA2 = sensorValueA2 * (3.0 / 4095.0)/0.3; 

//Print out value from I3 

Serial.print("I3 value: "); 

Serial.print(sensorValueA2); 

Serial.print(" corresponding to "); 

//Print voltage as float with 2 decimal digits 

Serial.print(voltageA2, 2); 

Serial.println("Volts"); 

delay(1000); 

//1 second delay 

} 

//**************************************************** 

2.2.4.2  Digital  Input/Outputs 

In  this  section  we  explore  the  digital  inputs  and  outputs  of  the  Opta  PLC. 

 Digital  Inputs   The  Arduino  Opta  input  pins  are  designated  I1–I8  on  the  PLC  case.  Within the  Arduino  IDE  environment  they  are  designated  “PIN_A0”  to  “PIN_A7.” 

[image: Image 19]
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Fig.  2.5  Arduino  Opta  analog  input  from  potentiometer  bank.  Images  used  courtesy  of  the  Arduino team  (CC  BY–NC–SA)  (www.arduino.cc) 

The  Opta  inputs  I1–I8  may  be  configured  as  digital  inputs  using: pinMode(pinName, INPUT); 

A  digital  input  value  may  range  from  0  to  24  VDC.  Values  less  than  4.46  VDC  are considered  logic  low  while  those  greater  than  6.6  VDC  are  considered  logic  high. 

Provided  in  Fig. 2.6  is  a  test  circuit  for  digital  inputs.  Pushbutton  tact  switches  are  used between  the  12  VDC  supply  and  the  Opta  input  terminals  to  introduce  logic  changes  to inputs  I1,  I2,  and  I3. 

[image: Image 20]

2.2

Arduino Opta Features

35

Fig.  2.6  Opta  digital  inputs. 

Images  used  courtesy  of  the 

Arduino  team  (CC 

BY–NC–SA)  (www.arduino. 

cc) 

Mechanical  switches  do  not  make  a  clean  transition  from  one  position  (on)  to  another (off).  When  a  switch  is  moved  from  one  position  to  another,  it  makes  and  breaks  contact multiple  times.  This  activity  may  go  on  for  tens  of  milliseconds.  A  processor  such  as  the PLC  is  relatively  fast  as  compared  to  the  action  of  the  switch.  Therefore,  the  processor  is able  to  recognize  each  switch  bounce  as  a  separate  and  erroneous  transition. 

To  correct  the  switch  bounce  phenomena  additional  external  hardware  components  may be  used  or  software  techniques  may  be  employed.  Software  switch  debouncing  is  accomplished  by  inserting  a  30–50  ms  lockout  delay  in  the  function  responding  to  input  changes. 

The  delay  prevents  the  processor  from  responding  to  the  multiple  switch  transitions  related to  bouncing. 

The  following  sketch  scans  for  changes  in  inputs  I1–I3.  When  a  switch  is  depressed,  the corresponding  Opta  status  LED  is  illuminated.  Note  the  use  of  delays. 

//************************************************************ 

//Opta_input_switch 

// 

//This is Open Source software. 

//************************************************************ 

void setup() 

{ 

pinMode(PIN_A0, INPUT); 

//Opta inputs I1 to I4 

pinMode(PIN_A1, INPUT); 

36

2

Opta Features

pinMode(PIN_A2, INPUT); 

pinMode(PIN_A3, INPUT); 

pinMode(LED_D0, OUTPUT); 

//Opta Status LEDs 1 to 4 

pinMode(LED_D1, OUTPUT); 

pinMode(LED_D2, OUTPUT); 

pinMode(LED_D3, OUTPUT); 

} 

void loop() 

{ 

if(digitalRead(PIN_A0)) 

{ 

digitalWrite(LED_D0, HIGH); 

delay(100); 

digitalWrite(LED_D0, LOW); 

delay(100); 

} 

else if(digitalRead(PIN_A1)) 

{ 

digitalWrite(LED_D1, HIGH); 

delay(100); 

digitalWrite(LED_D1, LOW); 

delay(100); 

} 

else if(digitalRead(PIN_A2)) 

{ 

digitalWrite(LED_D2, HIGH); 

delay(100); 

digitalWrite(LED_D2, LOW); 

delay(100); 

} 

else if(digitalRead(PIN_A3)) 

{ 

digitalWrite(LED_D3, HIGH); 

delay(100); 

digitalWrite(LED_D3, LOW); 

delay(100); 

} 

else 

{ 

digitalWrite(LED_D0, LOW); 

digitalWrite(LED_D1, LOW); 

digitalWrite(LED_D2, LOW); 

digitalWrite(LED_D3, LOW); 

delay(100); 

} 

} 

//***********************************************************

[image: Image 21]
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2.2.4.3  Relay  Outputs 

The  Arduino  Opta  is  equipped  with  four  normally  open  (NO)  mechanical  relay  contacts. 

The  relay  contacts  are  rated  at  250  VAC,  10A.  Since  they  are  AC  contacts,  current  can  flow in  either  direction  through  the  relay.  The  relay  outputs  are  not  fused.  They  may  be  fused with  DIN  rail  mounted  fuses.  If  you  have  not  read  the  appendix  on  safety  yet,  now  would be  a  good  time  to  do  so. 

In  the  following  sketch  the  relays  are  closed  sequentially  to  illuminate  external  LEDs and  also  the  Opta  STATUS  LEDs  as  shown  in  Fig. 2.7.  Since  these  are  mechanical  relays, you  can  hear  as  they  open  and  close! 

Fig.  2.7  Opta  relay  outputs. 

Current  flow  direction  is  shown 

by  blue  arrows.  Images  used 

courtesy  of  the  Arduino  team 

(CC  BY–NC–SA)  (www. 

arduino.cc)
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//**************************************************** 

//Source: Getting Started with Opta 

//Name: Output_Relay_Opta 

//Purpose: Test output relays of the Opta 

//author Arduino 

// This is Open Source software. 

//**************************************************** 

void setup() 

{ 

pinMode(D0, OUTPUT); 

//Initialize relay outputs 

pinMode(D1, OUTPUT); 

pinMode(D2, OUTPUT); 

pinMode(D3, OUTPUT); 

pinMode(LED_D0, OUTPUT); 

//Initialize Opta LEDs 

pinMode(LED_D1, OUTPUT); 

pinMode(LED_D2, OUTPUT); 

pinMode(LED_D3, OUTPUT); 

} 

void loop() 

{ 

//Closes/opens contact relay 1 and turns on/off LED 1 

digitalWrite(D0, HIGH); 

//Sets relay 1 on 

digitalWrite(LED_D0, HIGH); 

delay(1000); 

digitalWrite(D0, LOW); 

//Sets relay 1 off 

digitalWrite(LED_D0, LOW); 

delay(1000); 

//Closes/opens contact relay 2 and turns on/off LED 2 

digitalWrite(D1, HIGH); 

//Sets relay 2 on 

digitalWrite(LED_D1, HIGH); 

delay(1000); 

digitalWrite(D1, LOW); 

//Sets relay 2 off 

digitalWrite(LED_D1, LOW); 

delay(1000); 

//Closes/opens contact relay 3 and turns on/off LED 3 

digitalWrite(D2, HIGH); 

//Sets relay 3 on 

digitalWrite(LED_D2, HIGH); 

delay(1000); 

digitalWrite(D2, LOW); 

//Sets relay 3 off 

digitalWrite(LED_D2, LOW); 

delay(1000); 

//Closes/opens contact relay 4 and turns on/off LED 4 

digitalWrite(D3, HIGH); 

//Sets relay 4 on

[image: Image 22]
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digitalWrite(LED_D3, HIGH); 

delay(1000); 

digitalWrite(D3, LOW); 

//Sets relay 4 off 

digitalWrite(LED_D3, LOW); 

delay(1000); 

} 

//**************************************************** 

 Digital  input/output   In  the  following  sketch  we  combine  digital  inputs  with  relay  outputs  as shown in Fig.  2.8. When  a  given  switch  input  is  depressed,  the  corresponding  relay  output closes  and  illuminates  the  corresponding  extermal  10  mm  LED.  Also,  the  corresponding STATUS  LED  is  illuminated. 

Fig.  2.8  Opta  digital  inputs 

with  relay  outputs.  Images  used 

courtesy  of  the  Arduino  team 

(CC  BY–NC–SA)  (www. 

arduino.cc)
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//**************************************************** 

//Source: Getting Started with Opta 

//Name: Digital_In_Output_Relay_Opta 

//Purpose: Test digital inputs with Opta output relays 

//author Arduino 

//This is Open Source software. 

//**************************************************** 

void setup() 

{ 

pinMode(PIN_A0, INPUT); 

//Opta inputs I1 to I4 

pinMode(PIN_A1, INPUT); 

pinMode(PIN_A2, INPUT); 

pinMode(PIN_A3, INPUT); 

pinMode(LED_D0, OUTPUT); 

//Opta Status LEDs 1 to 4 

pinMode(LED_D1, OUTPUT); 

pinMode(LED_D2, OUTPUT); 

pinMode(LED_D3, OUTPUT); 

pinMode(D0, OUTPUT); 

//initialize relays outputs 

pinMode(D1, OUTPUT); 

pinMode(D2, OUTPUT); 

pinMode(D3, OUTPUT); 

} 

void loop() 

{ 

if(digitalRead(PIN_A0)) 

{ 

digitalWrite(LED_D0, HIGH); 

digitalWrite(D0, HIGH); 

//Sets relay 0 on 

delay(100); 

digitalWrite(LED_D0, LOW); 

digitalWrite(D0, LOW); 

//Sets relay 0 off 

delay(100); 

} 

else if(digitalRead(PIN_A1)) 

{ 

digitalWrite(LED_D1, HIGH); 

digitalWrite(D1, HIGH); 

//Sets relay 1 on 

delay(100); 

digitalWrite(LED_D1, LOW); 

digitalWrite(D1, LOW); 

//Sets relay 1 off 

delay(100); 

} 

else if(digitalRead(PIN_A2)) 

{ 

digitalWrite(LED_D2, HIGH); 
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digitalWrite(D2, HIGH); 

//Sets relay 2 on 

delay(100); 

digitalWrite(LED_D2, LOW); 

digitalWrite(D2, LOW); 

//Sets relay 2 off 

delay(100); 

} 

else if(digitalRead(PIN_A3)) 

{ 

digitalWrite(LED_D3, HIGH); 

digitalWrite(D3, HIGH); 

//Sets relay 3 on 

delay(100); 

digitalWrite(LED_D3, LOW); 

digitalWrite(D3, LOW); 

//Sets relay 3 off 

delay(100); 

} 

else 

{ 

digitalWrite(LED_D0, LOW);  digitalWrite(D0, LOW); 

digitalWrite(LED_D1, LOW);  digitalWrite(D1, LOW); 

digitalWrite(LED_D2, LOW);  digitalWrite(D2, LOW); 

digitalWrite(LED_D3, LOW);  digitalWrite(D3, LOW); 

delay(100); 

} 

} 

//**************************************************** 

2.2.5

Interrupts 

The  interrupt  system  onboard  a  processor  allows  it  to  respond  to  higher  priority  events. 

Appropriate  responses  to  these  events  are  planned,  but  we  do  not  know  when  these  events  will occur.  When  an  interrupt  event  occurs,  the  processor  will  normally  complete  the  instruction it  is  currently  executing  and  then  transition  program  control  to  interrupt  event  specific  tasks. 

These  tasks,  which  resolve  the  interrupt  event,  are  organized  into  a  function  called  an  interrupt service  routine  (ISR).  Each  interrupt  will  normally  have  its  own  interrupt  specific  ISR.  Once the  ISR  is  complete,  the  processor  will  return  to  the  main  program  where  it  left  off  before the  interrupt  event  occurred  (Fig. 2.9). 

The  Arduino  Development  Environment  has  four  built–in  functions  to  support  external interrupts  (www.arduino.cc). 

These  are  the  four  functions:

• interrupts().  This  function  enables  interrupts. 

• noInterrupts().  This  function  disables  interrupts. 
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Fig.  2.9  Processor  interrupt 
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• attachInterrupt(interrupt,  function,  mode).  This  function  links  the  interrupt  to  the appropriate  interrupt  service  routine. 

• detachInterrupt(interrupt).  This  function  turns  off  the  specified  interrupt. 

The  Arduino  Opta  micro  PLC  series  is  equipped  with  interrupts  on  the  USER  button (BTN_USER)  and  all  inputs.  The  attachInterrupt(interrupt,  function,  mode)  function  is used  to  link  the  hardware  pin  to  the  appropriate  interrupt  service  pin.  The  three  arguments of  the  function  are  configured  as  follows:

• interrupt.  Interrupt  specifies  the  interrupt  pin. 

• function.  Function  specifies  the  name  of  the  interrupt  service  routine. 

• mode.  Mode  specifies  what  activity  on  the  interrupt  pin  will  initiate  the  interrupt:  LOW 

level  on  pin,  CHANGE  in  pin  level,  RISING  edge,  or  FALLING  edge. 

Provided  below  is  a  template  to  configure  an  interrupt. 

//**************************************************************** 

void setup() 

{ 

attachInterrupt((BTN_USER), button_ISR, RISING); 

} 

void loop() 

{
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//wait for interrupts 

} 

//**************************************************************** 

//button_ISR: interrupt service routine for (BTN_USER) 

//**************************************************************** 

void button_ISR(void) 

{ 

//Insert interrupt specific actions here. 

} 

//***************************************************************** 

2.2.5.1  Foreground  and  Background  Processing 

A  sequential  processor  can  only  execute  a  single  instruction  at  a  time.  It  processes  instructions  in  a  fetch–decode–execute  sequence  as  determined  by  the  program  and  its  response to  external  events.  In  many  cases,  a  processor  has  to  process  multiple  events  seemingly simultaneously.  How  is  this  possible  with  a  single  sequential  processor? 3

Normal  processing  accomplished  by  the  processor  is  called  foreground  processing.  An interrupt  may  be  used  to  periodically  break  into  foreground  processing,  ‘steal’  some  clock cycles  to  accomplish  another  event  called  background  processing,  and  then  return  processor control  back  to  the  foreground  process. 

As  an  example,  a  processor  controlling  access  for  an  electronic  door  must  monitor  input commands  from  a  user  and  generate  the  appropriate  pulse  width  modulation  (PWM)  signals to  open  and  close  the  door.  Once  the  door  is  in  motion,  the  controller  must  monitor  door motor  operation  for  obstructions,  malfunctions,  and  other  safety  related  parameters.  This may  be  accomplished  using  interrupts.  In  this  scenario,  the  processor  is  responding  to  user input  status  in  the  foreground  while  monitoring  safety  related  status  in  the  background  using interrupts  as  illustrated  in  Fig. 2.10. 

Example:  As  an  example,  we  configure  BTN_USER  as  an  interrupt.  During  normal operation  Opta  STATUS  LED  1  flashes  at  one  second  intervals.  When  the  button  is  pressed, an  interrupt  service  routine  (ISR)  is  called  and  sequentially  illuminates  STATUS  LED  2,  3, and  4.  Within  the  ISR  multiple  NOP  instructions  are  used  to  generate  time  delays. 

3  This  section  is  condensed  and  adapted  with  permission  from  “Arduino  II:  Systems,”  S.  Barrett, Morgan  &  Claypool  Publishers,  2020. 
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Fig.  2.10  Interrupt  used  for  background  processing.  The  processor  responds  to  user  input  status  in the  foreground  while  monitoring  safety  related  status  in  the  background  using  interrupts 

//***************************************************************** 

//int_button:  Opta user button (BTN_USER) is configured as 

//rising edge interrupt.  In main foreground program, Opta STATUS 

//LED1 flashes at 1 second interval.  When button is pressed, ISR 

//executes to sequentially illuminate Opta STATUS LEDs 2, 3, 4. 

// 

////This is Open Source software. 

//***************************************************************** 

unsigned long int i; 

void setup() 

{ 

pinMode(LED_D0, OUTPUT); 

//Opta Status LEDs 1 to 4 

pinMode(LED_D1, OUTPUT); 

pinMode(LED_D2, OUTPUT); 

pinMode(LED_D3, OUTPUT); 

pinMode(BTN_USER, INPUT); 

attachInterrupt(BTN_USER, background, RISING); 

} 

void loop() 

{

//foreground processing 

digitalWrite(LED_D0, HIGH); 

//Opta STATUS LED1 on 

delay(500); 

//500 ms delay 

digitalWrite(LED_D0, LOW); 

//Opta STATUS LED1 off 

delay(500); 

//500 ms delay
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} 

void background()

//Interrupt Service Routine 

{

//background processing 

digitalWrite(LED_D0, LOW); 

//Opta STATUS LED1 off 

digitalWrite(LED_D1, HIGH); 

//Opta STATUS LED2 on 

for (i=0; i<=240000000; i++) 

//1s delay 240e6 clock cycles 

{ 

asm("nop"); 

//1 clock cycle 

} 

digitalWrite(LED_D1, LOW); 

//Opta STATUS LED2 off 

digitalWrite(LED_D2, HIGH); 

//Opta STATUS LED3 on 

for (i=0; i<=240000000; i++) 

//1s delay 240e6 clock cycles 

{ 

asm("nop"); 

//1 clock cycle 

} 

digitalWrite(LED_D2, LOW); 

//Opta STATUS LED3 off 

digitalWrite(LED_D3, HIGH); 

//Opta STATUS LED4 on 

for (i=0; i<=240000000; i++) 

//1s delay 240e6 clock cycles 

{ 

asm("nop"); 

//1 clock cycle 

} 

digitalWrite(LED_D3, LOW); 

//Opta STATUS LED4 off 

} 

//**************************************************************** 

2.2.6

Internet  Connectivity 

All  three  of  the  Arduino  Opta  variants  are  equipped  with  internet  features  including  the capability  to  establish  Ethernet  connectivity  with  other  devices.  In  this  section  we  begin with  fundamental  internet  concepts  and  also  an  Ethernet  example.  In  the  section  following we  provide  for  internet  connectivity  via  WiFi  using  the  Opta  WiFi  variant. 

2.2.6.1  A  Big  Picture  of  the  Internet 

From  its  early  beginnings  in  the  late  1960s  to  today,  the  internet  has  become  ubiquitous (found  everywhere)  in  every  facet  of  our  lives.  A  few  examples  where  the  internet  has
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Fig.  2.11  Internet  at  home  or  a  small  business  configuration become  prevalent  include  industry,  agriculture,  energy  production,  education,  healthcare, entertainment,  manufacturing,  retail,  communications,  and  many  other  areas.  References for  the  following  internet  sections  are  from  (Hanes,  Lowe,  and  Null)  and  others  as  cited. 4

Many  (including  the  author)  take  a  safe,  secure,  and  reliable  internet  for  granted.  Portions of  the  internet,  consisting  of  a  global  network  of  interconnected  computers,  are  referred  to as  the  “cloud.”  In  this  section  we  examine  connections  between  computers  that  comprise the  internet  in  a  home  and  work  environment  and  then  examine  what  is  inside  the  cloud. 

Figure  2.11  provides  a  typical  internet  connection  found  in  a  home  or  small  business  such as  a  cafe  or  small  store.  A  cable  or  digital  subscriber  line  (DSL)  modulator/demodulator (modem)  provides  a  connection  to  the  internet.  The  cable/DSL  modem  is  provided  by  an Internet  Service  Provider  (ISP)  when  you  subscribe  to  their  internet  connection  service.  The connection  between  the  cable/DSL  modem  and  the  ISP  provider  may  be  a  combination  of copper  cable,  optical  fiber,  and  wireless  radio  frequency  connection  links. 

With  internet  service  available  via  the  cable/DSL  modem,  a  WiFi  router  is  used  to  establish a  wireless  local  area  network  (WLAN)  within  your  home  or  small  business.  The  WLAN 

serves  as  an  internet  access  point  to  a  broader  area  using  radio  frequency  (RF)  signals operating  at  2.5  or  5  GHz.  The  link  between  the  cable/DSL  modem  to  the  WiFi  router  is 4  Portions  of  this  section  are  adapted  with  permission  from  “Arduino  III:  Internet  of  Things,”  S. 

Barrett,  Springer,  2021. 
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Fig.  2.12  Internet  at  a  large  business  or  university 

via  a  cable.  Wireless  devices  such  as  a  cell  phone  or  a  laptop  within  range  of  the  WiFi router  are  able  to  access  the  internet  with  proper  credentials  (i.e.  WLAN  password  and  ISP 

subscription).  The  WiFi  router  range  may  be  extended  using  a  WiFi  range  extender. 

Internet  service  typically  found  in  a  larger  business  or  a  university  is  shown  in  Fig. 2.12. 

Internet  service  is  provided  to  the  organization  via  an  ISP.  Connection  is  made  to  the  ISP  via a  firewall.  The  firewall  provides  protection  from  internet  hazards  outside  the  organization.  It may  also  be  used  to  limit  outgoing  information  from  the  organization  (e.g.  sensitive  company information,  classified  material,  etc.).  There  is  also  a  router  at  the  organization  portal.  It  is used  to  route  internet  message  traffic  to  its  next  destination. 

Individual  computers  are  provided  access  to  the  internet  via  a  cabled  connection  to  a  hub. 

The  hub  is  used  to  connect  computers  into  a  local  area  network  (LAN)  sharing  the  same location  or  similar  function  such  as  an  academic  department  or  company  section.  Multiple LANs  are  then  connected  via  a  bridge.  The  bridge  will  also  provide  connection  to  a  series  of local  servers  such  as  a  Domain  Name  System  (DNS)  server,  a  Dynamic  Host  Configuration Protocol  (DHCP)  server,  a  Structured  Query  Language  (SQL)  database  server,  and  a  mail server  (among  others).  WiFi  access  may  also  be  provided  by  a  WiFi  router  as  previously described. 

48

2

Opta Features

2.2.6.2  Internet  Cloud 

Figure  2.13  shows  the  configuration  of  the  internet  cloud.  The  cloud  contains  the  global connection  of  multiple  internet  service  providers.  Regional  internet  service  providers  share internet  traffic  via  a  metropolitan  area  exchange  (MAE).  The  regional  network  ISPs  connect to  a  network  service  provider  who  are  in  turn  connected  to  other  network  service  providers via  network  access  points.  Connectivity  across  the  globe  is  provided  by  submarine  optical fiber  cables  spanning  the  oceans.  Internet  access  may  be  provided  to  remote  areas  via  balloon  borne  network  access  points.  The  overall  result  is  a  global  network  of  interconnected computers  for  the  open  exchange  of  information. 

Aside  from  the  internet  hardware  components,  there  are  internet  protocols  and  applications  used  to  ensure  reliable  and  compatible  communications  from  one  location  to  another. 

As  an  example,  when  you  are  checking  your  favorite  news  website  or  sending  an  e–mail  to network 
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a  friend,  the  specific  application  you  are  using  along  with  the  computers  operating  system has  built  in  features  to  interact  with  the  internet  to  accomplish  your  desired  task. 

The  application  and  the  operating  system  apply  the  different  layer  activities  to  transmit information  over  the  internet.  For  example,  the  e–mail  message  you  are  sending  is  broken into  packets  of  information,  provided  source  and  destination  IP  addresses,  and  converted  to an  electronic  signal.  The  packets  are  then  routed  to  the  destination  computer  via  a  series  of internet  hops  directed  by  routers  along  the  path.  At  the  destination  the  received  packets  are reassembled  and  the  protocol  steps  are  applied  in  reverse  order. 

2.2.6.3  Internet  Protocol  Models 

There  are  two  different  models  of  protocol  stacks  commonly  used  within  the  internet  community.  A  protocol  is  a  standardized  set  of  rules  and  procedures.  The  layered  protocol models  provide  guidelines  on  how  data  is  processed  within  applications  and  prepared  for transmission  over  the  internet.  Both  protocols  were  developed  in  the  early  1980s. 

The  International  Organization  for  Standardization  (ISO)  developed  the  seven  layered Open  Systems  Internet  protocol  stack  ISO/OSI  reference  model  shown  in  Fig. 2.14a.  The adjacent  layers  interact  with  one  another  in  a  given  system  while  similar  layers  interact  with one  another  in  different  systems. 

The  transmission  control  protocol/internet  (TCP/IP)  maps  into  several  layers  of  the  OSI model  as  shown  in  Fig. 2.14a.  Figure  2.14b  shows  the  four  layers  of  the  TCP/IP  model: application,  transport,  internet,  and  link  layer. 

The  data  to  be  shared  with  another  computer  resides  within  the  application  layer.  The  data is  divided  into  packets.  As  the  data  packet  is  processed  through  each  layer  of  the  sending computer,  additional  header  and  footer  information  is  appended  to  the  data  payload.  The  IP 

address  allows  the  sender  and  receiver  to  find  one  another  on  the  internet  (Leiden,  Lowe, Null). 

2.2.6.4  Internet  Addressing  Techniques 

In  this  section  we  discuss  the  importance  of  and  techniques  used  to  address  network  assets. 

We  begin  with  IP  addressing  and  packet  headers.  There  are  two  different  versions  of  the  IP 

header:  IPv4  and  IPv6  as  shown  in  Fig. 2.15. 

 IPv4  header   The  earlier  IPv4  header  version  consists  of  24  bytes  followed  by  the  data payload.  The  overall  packet  datagram  must  be  at  least  40  bytes.  The  IPv4  header  consists of  the  following  fields:

• version:  IP  protocol  version.  For  IPv4  this  field  is  set  to.  ( 0100 ) 2. 

• header  length:  specified  as  32–bit  words. 

• type  of  service:  specifies  priority  from  low  (000)  to  critical  (101)

• total  length:  specifies  total  length  of  the  datagram  packet  in  bytes. 
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Fig.  2.15  IPv4  and  IPv6  (Hanes,  Null)

• packet  ID:  the  packet  is  assigned  a  unique  serial  number

• flags:  indicates  whether  a  larger  packet  can  be  broken  into  smaller  packets. 

• fragment  offset:  provides  fragment  location  within  packet. 

• time  to  live:  determines  number  of  internet  hops  are  allowed  from  source  to  destination. 

• protocol  number:  indicates  the  type  of  protocol  associated  with  the  data:  0–reserved, 1–internet  control  message  protocol  (ICMP),  6–transmission  control  protocol  (TCP),  or 17–user  datagram  protocol  (UDP). 

• header  checksum:  holds  the  calculated  checksum  of  the  header. 

• provides  source  and  destination  address  of  packet.  Note  each  address  is  32  bits  in  length. 

A  unique  address  or  source  ID  is  provided  to  each  source  computer  on  the  internet.  The allocation  of  addresses  is  coordinated  by  the  Internet  Corporation  for  Assigned  Names and  Numbers  or  ICANN  (www.ICANN.org). 

• IP  options:  provides  additional  control  information. 
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The  IPv4  protocol  uses  the  32–bit  IP  address  configuration  as  shown  in  Fig. 2.15b.  The first  several  bits  of  the  address  indicates  the  network  class:  Class  A  for  large  networks  (0), Class  B  for  medium  sized  networks  (10),  and  Class  C  for  smaller  networks  (110).  The remaining  IP  address  bits  are  partitioned  to  select  a  network  and  a  specific  host.  The  IP 

address  is  expressed  as  a  32–bit  dotted  decimal  notation  value  (xxx.xxx.xxx.xxx).  Each byte  in  the  address  is  specified  by  its  decimal  equivalent  (xxx)  and  has  a  value  ranging  from 0  to  255  (Hanes,  Lowe,  Null). 

 CIDR  addressing   To  provide  additional  addressing  flexibility  a  Classless  Inter–Domain Routing  (CIDR)  addressing  scheme  was  developed.  The  CIDR  scheme  provides  for  flexible subnet  addressing  within  the  IPv4  protocol.  The  format  of  the  CIDR  address  is  provided  in Fig. 2.16a.  A  subnet  is  a  smaller  network  within  one  of  the  network  classes:  A,  B,  or  C. 

Recall  the  IPv4  protocol  provides  for  a  32–bit  IP  address.  The  CIDR  protocol  allows the  address  to  be  partitioned  into  a  number  of  address  bits  allocated  to  identify  the  network and  the  remaining  bits  allocated  to  identify  a  specific  host  (computer)  within  the  network.  A slash  character  (/)  follows  the  address  with  a  decimal  number.  The  decimal  number  indicates the  number  of  logic  ones  in  the  subnet  mask. 

xxx.xxx.xxx.xxx/number 
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number = leading 1's in routing mask 

a) Classless Inter-Domain Routing (CIDR) addressing format. 

subnet mask: 255.255.255.0 

32-bit address 

11111111.11111111.11111111.00000000 

255.255.255.0   subnet mask 

bitwise AND of 

24 leading 1's 

subnet mask with IP address 

yields subnet address 

xxx.xxx.xxx.xxx/24 

190.166.2.2/24   CIDR IP address 

network  host 

190.166.2.0         subnet address 

2host bits = host addresses 

unique host addresses 

190.166.2.1 

: 

: 

190.166.2.255 
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Fig.  2.16  CIDR  addressing  (www.IETF.org)
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In  the  example  provided  in  Fig. 2.16b  left  an  IP  address  has  been  partitioned  such that  24  bits  will  be  used  to  identify  the  specific  network  while  the  remaining  bits  eight bits  will  be  used  to  specify  a  specific  computer  within  the  network.  This  partition  allocation  results  in  a  subnet  mask  of  255.255.255.0  or  expressed  in  separated  binary  as 

.  ( 11111111 .  11111111 .  11111111 .  00000000 ) 2.  Since  there  are  24  bits  in  the  subnet  mask containing  leading  ones,  a  .  / 24 is  appended  to  the  IP  address  to  communicate  the  partition  information.  The  eight  bits  allocated  for  host  or  computer  addressing  will  provide  for 

.2 host bi t s  or  256  unique  addresses. 

In  Fig. 2.16b  right,  the  IP  address  (190.166.2.2./24)  has  been  partitioned  into  24  bits  for the  subnet  address  and  the  other  eight  bits  for  specific  computer  addressing.  This  partition results  in  the  subnet  mask  255.255.255.0.  When  this  mask  is  logically  ANDed  with  the  IP 

address  the  resulting  subnet  address  190.166.2.0  results.  The  specific  computers  within  the subnet  will  be  addressed  beginning  at  190.166.2.1  and  ending  at  190.166.2.255  (www.IETF. 

org). 

 IPv6  header   In  the  mid–1990s  the  IPv6  was  released  by  the  Internet  Engineering  Task  Force (IETF).  The  IPv6  protocol  provides  for  a  longer  128–bit  IP  address  space.  The  different  fields within  the  IPv6  header  specify:

• version:  IP  protocol  version.  For  IPv6  this  field  is  set  to.  ( 0110 ) 2. 

• traffic  class:  will  specify  different  priority. 

• flow  label:  will  specify  the  type  of  communication  in  progress. 

• payload  length:  expressed  in  bytes

• next  header:  specifies  if  additional  header  information  is  provided  in  the  payload. 

• hop  limit:  will  allow  up  to  256  hops  from  source  to  destination. 

• source  and  destination  addresses:  128–bits  each. 

The  IETF  developed  a  logical,  methodical  method  of  assigning  IPv6  addresses,  the Aggregatable  Global  Unicast  Address  Format,  as  shown  in  Fig. 2.17. The  128–bit  address is  partitioned  into  different  fields  to  specify  top,  next,  and  site–level  aggregation  representing  for  an  example  a  country,  a  company  within  the  country,  and  networks  within  the company,  respectively.  The  64–bit  interface  ID  is  a  combination  of  the  host  device  MAC 

address  and  information  from  a  nearby  router.  The  128–bit  IPv6  address  is  specified  as  eight 16—bit  values  expressed  in  hexadecimal  and  separated  by  colons  (hhhh:hhhh:hhhh:hhhh: hhhh:hhhh:hhhh:hhhh)  (Hanes,  Lowe,  Null). 

 MAC  address   The  host  device’s  Medium  Access  Control  or  MAC  address  is  a  48–bit  device specific  address  as  shown  in  Fig. 2.18. The  address  is  partitioned  into  six  different  bytes. 

The  address  specifies  the  Organizational  Unique  Identifier  (OUI)  and  the  Network  Interface Controller  (NIC)  identifier.  The  NIC  provides  the  interface  between  the  host  computer  or device  and  the  internet.  The  MAC  addressing  scheme  allows  each  NIC  to  have  a  unique address  (Hanes,  Lowe,  Null). 
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Fig.  2.19  Common  URL  domains  (Shuler) 

 DNS  and  URL  addressing   Rather  than  memorize  the  IP  address  for  individual  networks  and computers,  descriptive,  user–friendly  names  may  be  assigned  using  Domain  Name  System (DNS)  techniques.  The  DNS  serves  as  a  distributed  directory  of  named  network  assets.  The directory  is  stored  on  a  number  of  DNS  servers  throughout  the  internet.  You  may  apply  for a  DNS  name  from  a  DNS  provider.  The  provider  will  determine  if  the  name  is  available  for use.  The  Internet  Corporation  for  Assigned  Names  and  Numbers  (ICANN)  coordinates  the use  of  DNS  names  across  the  globe  (Shuler). 

To  completely  specify  the  location  of  a  computer  on  the  internet,  a  Uniform  Resource Locator  (URL)  address  is  used.  The  URL  address  consists  of  three  parts:  the  protocol  identifier,  the  DNS  name,  and  the  domain  name. 

A  common  protocol  is  “http.”  The  protocol  type  is  followed  by  “.:  //www. .”  The  next portion  of  the  URL  address  is  the  DNS  name  followed  by  the  domain  (e.g.  .edu,  .org,  etc.). 

URL  domains  are  shown  in  Fig. 2.19.  As  an  example,  the  website  address  for  the  main Arduino  site  is:  http://www.arduino.cc. The  “.cc”  is  a  variant  of  the  “.com.”  domain. 

2.2.7

Ethernet  10/100BASE–T  Port 

Each  Arduino  Opta  variant  provides  access  to  Ethernet  features  via  a  standard  RJ45  connector.  The  ethernet  is  a  method  of  connecting  computers  within  a  Local  Area  Network  (LAN). 

The  10BASE–T  designator  indicates  a  maximum  transmission  rate  of  10  Mbps  per  second (10)  of  baseband  signal  transmission  (BASE)  with  twisted  pair  cable  (T).  The  100BASE–T’s maximum  transmission  rate  is  100  Mbps  per  second. 

Example:  Ethernet  1.  For  this  demonstration,  an  Ardunio  Opta  is  connected  to  a  home  router via  an  RJ45  cable  as  shown  in  Fig. 2.20. The  Opta  is  programmed  using  a  laptop/PC.  In  the sketch  the  Opta  is  configured  as  a  client.  It  will  connect  to  a  server  configured  computer  via the  internet  and  request  the  service  provided.  In  this  specific  example  the  server  is  located  at 

www.ip-api.com. This  website  hosts  an  IP  Geolocation  Application  Programming  Interface

[image: Image 23]
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Fig.  2.20  Ethernet  configuration.  Images  used  courtesy  of  the  Arduino  team  (CC  BY–NC–SA) (www.arduino.cc)
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(API).  When  queried  the  API  provides  the  geolocation  of  the  IP  address  (www.ip-api.com) 

and  provides  the  result  on  the  Serial  Monitor. 

Note  the  sketch’s  use  of  the  Arduino  Ethernet  and  JSON  header  files.  These  are  available for  download  via  the  Library  Manager  within  the  Arduino  IDE.  JSON  or  Java  Script  Object Notation  is  a  standard  for  data  interchange  in  a  human  readable  format  (www.json.org). 

//********************************************************************* 

//Web Client (Ethernet version) 

//Name: opta_ethernet_web_client.ino 

//Purpose: This sketch connects an Opta device to ip-api.com via Ethernet 

//and fetches IP details for the device. 

// 

//@author Arduino PRO Content Team 

//@version 2.0 15/08/23 

//********************************************************************* 

#include <Ethernet.h> 

//Include libraries 

#include <Arduino_JSON.h> 

const char* server = "ip-api.com"; 

//Server addr ip-api.com 

String path = "/json/"; 

//API path for IP details 

IPAddress ip(10, 130, 22, 84); 

//Static IP config for Opta 

//Ethernet client instance for the communication 

EthernetClient client; 

//JSON variable to store and process the fetched data 

JSONVar doc; 

//Variable to ensure we fetch data only once 

bool dataFetched = false; 

void setup() 

{ 

Serial.begin(115200); 

//serial comm at 115200 Baud 

while (!Serial); 

//wait for serial port connection 

//Attempt to start Ethernet connection via DHCP. 

//If DHCP fails, print diagnostic message. 

if(Ethernet.begin() == 0) 

{ 

Serial.println("- Failed to configure Ethernet using DHCP!"); 

//Try to configure Ethernet with the predefined static IP address. 

Ethernet.begin(ip); 

} 

delay(2000); 


} 

void loop() 

{ 

//Ensure we haven’t fetched data already, ensure the Ethernet link is 

//active, establish a connection to the server, and compose and send the
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// HTTP GET request. 

if(!dataFetched) 

{ 

if(Ethernet.linkStatus() == LinkON) 

{ 

if(client.connect(server, 80)) 

{ 

client.print("GET "); 

client.print(path); 

client.println(" HTTP/1.1"); 

client.print("Host: "); 

client.println(server); 

client.println("Connection: close"); 

client.println(); 

//Wait and skip the HTTP headers to get to the JSON data. 

char endOfHeaders[] = "\r\n\r\n"; 

client.find(endOfHeaders); 

//Read and parse the JSON response. 

String payload = client.readString(); 

doc = JSON.parse(payload); 

//Check if the parsing was successful. 

if(JSON.typeof(doc) == "undefined") 

{ 

Serial.println("- Parsing failed!"); 

return; 

} 

//Extract and print the IP details. 

Serial.println("*** IP Details:"); 

Serial.print("- IP Address: "); 

Serial.println((const char*)doc["query"]); 

Serial.print("- City: "); 

Serial.println((const char*)doc["city"]); 

Serial.print("- Region: "); 

Serial.println((const char*)doc["regionName"]); 

Serial.print("- Country: "); 

Serial.println((const char*)doc["country"]); 

Serial.println(""); 

//Mark data as fetched. 

dataFetched = true; 

} 

//Close the client connection once done. 

client.stop(); 

} 

else 

{ 

Serial.println("- Ethernet link disconnected!"); 

} 

} 

} 

//*********************************************************************

[image: Image 24]
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Fig.  2.21  Ethernet  sketch  result 

The  result  is  shown  in  Fig. 2.21. 

Example:  Ethernet  2.  The  next  example,  Ethernet  WebClient,  is  available  within  the Arduino  Mbed  OS  Opta  Boards  core.  Additional  instructions  are  provided  within  the  “Bluetooth  Low  Energy,  Wi–Fi  and  Ethernet  with  OPTA  (www.opta.findernet.com/en/).”  When compiled,  uploaded,  and  executed;  the  sketch  goes  to  the  designated  website  and  retrieves and  displays  the  website’s  contents  to  the  serial  monitor. 

//********************************************************************* 

//WebClient: This sketch connects to a website (http://www.google.com) 

//and displays results to the Serial Monitor. 

// 

//created 18 Dec 2009 by David A. Mellis 

//modified 9 Apr 2012 by Tom Igoe based on work by Adrian McEwen 

//********************************************************************* 

#include <PortentaEthernet.h> 

#include <Ethernet.h> 

#include <SPI.h> 

//Enter a MAC address for your controller below. 

//byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED }; 

// if you don’t want to use DNS (and reduce your sketch size) 

// use the numeric IP instead of the name for the server: 

//IPAddress server(74,125,232,128); 

//numeric IP for Google (no DNS) 

char server[] = "www.google.com"; 

//name addr for Google (using DNS) 

//Set the static IP address to use if the DHCP fails to assign
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IPAddress ip(192, 168, 2, 177); 

IPAddress myDns(192, 168, 2, 1); 

//Initialize the Ethernet client library with the IP address and 

//port of the server that you want to connect to (port 80 is default 

//for HTTP): 

EthernetClient client; 

//Variables to measure the speed 

unsigned long beginMicros, endMicros; 

unsigned long byteCount = 0; 

bool printWebData = true; 

//set false-better speed measure 

void setup() 

{ 

//Open serial communications and wait for port to open: 

Serial.begin(9600); 

while (!Serial) 

{ 

;// wait for serial port to connect. Needed for native USB port only 

} 

//start the Ethernet connection: 

Serial.println("Initialize Ethernet with DHCP:"); 

if(Ethernet.begin() == 0) 

{ 

Serial.println("Failed to configure Ethernet using DHCP"); 

//Check for Ethernet hardware present 

if(Ethernet.hardwareStatus() == EthernetNoHardware) 

{ 

Serial.println("Ethernet shield was not found.Ã‚âŁž); 

Serial.println("Sorry, can’t run 

without hardware. :("); 

while(true) 

{ 

delay(1); //do nothing, no point running without Ethernet hardware 

} 

} 

if(Ethernet.linkStatus() == LinkOFF) 

{ 

Serial.println("Ethernet cable is not connected."); 

} 

//try to congifure using IP address instead of DHCP: 

Ethernet.begin(ip, myDns); 

} 

else 

{ 

Serial.print("  DHCP assigned IP "); 

Serial.println(Ethernet.localIP()); 

} 

//give the Ethernet shield a second to initialize: 

delay(1000); 

Serial.print("connecting to "); 

Serial.print(server); 
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Serial.println("..."); 

//if you get a connection, report back via serial: 

if(client.connect(server, 80)) 

{ 

Serial.print("connected to "); 

Serial.println(client.remoteIP()); 

//Make a HTTP request: 

client.println("GET /search?q=arduino HTTP/1.1"); 

client.println("Host: www.google.com"); 

client.println("Connection: close"); 

client.println() 

} 

else 

{ 

//if you didn’t get a connection to the server: 

Serial.println("connection failed"); 

} 

beginMicros = micros(); 

} 

void loop() 

{ 

//if there are incoming bytes available from the server, 

//read them and print them: 

int len = client.available(); 

if(len > 0) 

{ 

byte buffer[80]; 

if(len > 80) 

len = 80; 

client.read(buffer, len); 

if(printWebData) 

{ 

Serial.write(buffer, len); 

//show serial monitor 

} 

byteCount = byteCount + len; 

} 

//if the server’s disconnected, stop the client: 

if(!client.connected()) 

{ 

endMicros = micros(); 

Serial.println(); 

Serial.println("disconnecting."); 

client.stop(); 

Serial.print("Received "); 

Serial.print(byteCount); 

Serial.print(" bytes in "); 

float seconds = (float)(endMicros - beginMicros) / 1000000.0; 

Serial.print(seconds, 4); 

float rate = (float)byteCount / seconds / 1000.0; 

Serial.print(", rate = "); 
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Serial.print(rate); 

Serial.print(" kbytes/second"); 

Serial.println(); 

//do nothing forevermore: 

while(true) 

{ 

delay(1); 

} 

} 

} 

//********************************************************************* 

2.3

Variant  Specific  Features 

In  this  section  we  explore  Opta  PLC  features  available  on  specific  variants.  For  each  feature we  identify  variants  hosting  the  feature,  some  basic  theory  of  operation,  and  an  illustrative example. 

2.3.1

Wi–Fi  802.11  B/g/n  (Opta  WiFi) 

The  Opta  WiFi  variant  (AFX000002)  is  equipped  with  hardware  to  support  the  802.11 

b/g/n  Wireless  Fidelity  (Wi–Fi)  standard.  The  b/g/n  suffix  designates  different  bit  rate  and frequency  features  for  802.11  versions:  b  (11  Mbps,  2.4  GHz,  1999);  g(6–54  Mbps,  2.4  GHz, 2003);  and  n  (72–600  Mbps,  2.4  and  5  Ghz,  2008).  Opta  Wi–Fi  features  also  includes  support for  WEP,  WPA,  WPA2,  and  WPA3  security  standards.  The  Opta  also  hosts  an  internal  Wi–Fi antenna. 

The  next  two  examples  are  Wi–Fi  versions  of  the  two  previous  ethernet  examples. 

Example:  Wi–Fi  1.  For  this  demonstration,  an  Ardunio  Opta  is  connected  to  a  home  router via  Wi–Fi.  The  Opta  is  programmed  using  a  laptop/PC.  In  the  sketch  the  Opta  is  configured as  a  client.  It  will  connect  to  a  server  configured  computer  via  the  internet  and  request  the service  provided.  In  this  specific  example  the  server  is  located  at  www.ip-api.com. This website  hosts  an  IP  Geolocation  Application  Programming  Interface  (API).  When  queried the  API  provides  the  geolocation  of  the  IP  address  (www.ip-api.com)  and  provides  the  result on  the  Serial  Monitor. 

Note  the  sketch’s  use  of  the  Arduino  Wi–Fi  and  JSON  header  files.  These  are  available for  download  via  the  Library  Manager  within  the  Arduino  IDE.  JSON  or  Java  Script  Object Notation  is  a  standard  for  data  interchange  in  a  human  readable  format  (www.json.org). 
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//********************************************************************* 

//WiFi Web Client 

//Name: opta_wifi_web_client.ino 

//Purpose: This sketch connects an Opta device to ip-api.com via WiFi 

//and fetches IP details. 

// 

//@author Arduino PRO Content Team 

//@version 2.2 16/08/23 

//********************************************************************* 

#include <WiFi.h> 

#include <Arduino_JSON.h> 

//Wi-Fi network details. 

const char* ssid 

= "insert your network name"; 

const char* password = "insert your network passwor"; 

//Server address for ip-api.com. 

const char* server = "ip-api.com"; 

//API endpoint path to get IP details in JSON format. 

String path = "/json"; 

//Wi-Fi client instance for the communication. 

WiFiClient client; 

//JSON variable to store and process the fetched data. 

JSONVar doc; 

//Variable to ensure we fetch data only once. 

bool dataFetched = false; 

void setup() 

{ 

//Begin serial communication at a baud rate of 115200. 

Serial.begin(115200); 

//Wait for the serial port to connect, 

//This is necessary for boards that have native USB. 

while (!Serial); 

//Start the Wi-Fi connection using the provided SSID and password. 

Serial.print("- Connecting to "); 

Serial.println(ssid); 

WiFi.begin(ssid, password); 

while(WiFi.status() != WL_CONNECTED) 

{ 

delay(1000); 

Serial.print("."); 

} 

Serial.println(); 
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Serial.println("- Wi-Fi connected!"); 

Serial.print("- IP address: "); 

Serial.println(WiFi.localIP()); 

} 

void loop() 

{ 

//Check if the IP details have been fetched. 

//If not, call the function to fetch IP details, 

//Set the flag to true after fetching. 

if(!dataFetched) 

{ 

fetchIPDetails(); 

dataFetched = true; 

} 

} 

//********************************************************************* 

//Fetch IP details from defined server 

//@param none 

//@return IP details 

//********************************************************************* 

void fetchIPDetails() 

{ 

if(client.connect(server, 80)) 

{ 

//Compose and send the HTTP GET request. 

client.print("GET "); 

client.print(path); 

client.println(" HTTP/1.1"); 

client.print("Host: "); 

client.println(server); 

client.println("Connection: close"); 

client.println(); 

//Wait and skip the HTTP headers to get to the JSON data. 

char endOfHeaders[] = "\r\n\r\n"; 

client.find(endOfHeaders); 

//Read and parse the JSON response. 

String payload = client.readStringUntil(’\n’); 

doc = JSON.parse(payload); 

//Check if the parsing was successful. 

if(JSON.typeof(doc) == "undefined") 

{ 

Serial.println("- Parsing failed!"); 

return; 

} 

//Extract and print the IP details. 

Serial.println("*** IP Details:"); 
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String query = doc["query"]; 

Serial.print("- IP Address: "); 

Serial.println(query); 

String city = doc["city"]; 

Serial.print("- City: "); 

Serial.println(city); 

String region = doc["regionName"]; 

Serial.print("- Region: "); 

Serial.println(region); 

String country = doc["country"]; 

Serial.print("- Country: "); 

Serial.println(country); 

Serial.println(""); 

} 

else 

{ 

Serial.println("- Failed to connect to server!"); 

} 

//Close the client connection once done. 

client.stop(); 

} 

//********************************************************************* 

Example:  Opta  Wi–Fi  2.  The  next  example,  WiFi  WebClient,  is  available  within  the Arduino  Mbed  OS  Opta  Boards  core.  Additional  instructions  are  provided  within  the  “Bluetooth  Low  Energy,  Wi–Fi  and  Ethernet  with  OPTA  (www.opta.findernet.com/en/).”  When compiled,  uploaded,  and  executed;  the  sketch  goes  to  the  designated  website  and  retrieves and  displays  the  website’s  contents  to  the  serial  monitor. 

//********************************************************************* 

//Web client: This sketch connects to a website (http://example.com) 

//using the WiFi module.  This example is written for a network using 

//WPA encryption. For WEP or WPA, change the Wifi.begin() call 

//accordingly. 

// 

//created 13 July 2010 by dlf (Metodo2 srl) 

//modified 31 May 2012 by Tom Igoe 

//********************************************************************* 

#include <WiFi.h> 

#include "arduino_secrets.h" 

//enter your sensitive data in the Secret tab/arduino_secrets.h 

char ssid[] = SECRET_SSID; 

//your network SSID (name) 

char pass[] = SECRET_PASS; 

//your network password (use for WPA, 
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//or use as key for WEP) 

int keyIndex = 0; 

//your network key Index number 

//(needed only for WEP) 

int status = WL_IDLE_STATUS; 

//if you don’t want to use DNS (and reduce your sketch size) 

//use the numeric IP instead of the name for the server: 

//IPAddress server(93,184,216,34);//IP address for example.com (no DNS) char server[] = "example.com"; 

//host name for example.com (using DNS) 

WiFiClient client; 

void setup() 

{ 

//Initialize serial and wait for port to open: 

Serial.begin(9600); 

while (!Serial) 

{ 

; //wait for serial port to connect. Needed for native USB port only 

} 

//check for the WiFi module: 

if(WiFi.status() == WL_NO_SHIELD) 

{ 

Serial.println("Communication with WiFi module failed!"); 

//don’t continue 

while (true); 

} 

//attempt to connect to Wifi network: 

while(status != WL_CONNECTED) 

{ 

Serial.print("Attempting to connect to SSID: "); 

Serial.println(ssid); 

//Connect to WPA/WPA2 network. Change line if using open or WEP 

//network: 

status = WiFi.begin(ssid, pass); 

//wait 3 seconds for connection: 

delay(3000); 

} 

Serial.println("Connected to wifi"); 

printWifiStatus(); 

Serial.println("\nStarting connection to server..."); 

//if you get a connection, report back via serial: 

if(client.connect(server, 80)) 

{ 

Serial.println("connected to server"); 

//Make a HTTP request: 

client.println("GET /index.html HTTP/1.1"); 
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client.print("Host: "); 

client.println(server); 

client.println("Connection: close"); 

client.println(); 

} 

} 

void loop() 

{ 

//if there are incoming bytes available 

//from the server, read them and print them: 

while (client.available()) 

{ 

char c = client.read(); 

Serial.write(c); 

} 

//if the server’s disconnected, stop the client: 

if(!client.connected()) 

{ 

Serial.println(); 

Serial.println("disconnecting from server."); 

client.stop(); 

//do nothing forevermore: 

while (true); 

} 

} 

//********************************************************************* 

void printWifiStatus() 

{ 

//print the SSID of the network you’re attached to: 

Serial.print("SSID: "); 

Serial.println(WiFi.SSID()); 

//print your board’s IP address: 

IPAddress ip = WiFi.localIP(); 

Serial.print("IP Address: "); 

Serial.println(ip); 

//print the received signal strength: 

long rssi = WiFi.RSSI(); 

Serial.print("signal strength (RSSI):"); 

Serial.print(rssi); 

Serial.println(" dBm"); 

} 

//*********************************************************************
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2.3.2

RS–485  Communication  (Opta  WiFi  and  Opta  RS485) 

The  RS–485  (TIA/EIA–485)  is  an  electrical  standard  providing  for  communication  between devices  in  a  noisy,  industrial  environment.  The  standard  does  not  define  a  specific  communication  protocol  but  provides  the  electrical  specifications  to  implement  specific  protocols such  as  MODBUS  RTU. 

The  RS–485  provides  for  one–way  (half–duplex)  communication  between  industrial devices  using  a  differential  signaling  scheme.  As  shown  in  Fig. 2.22, there  are  two  signal lines  designated .  A(− )  and.  B(+ )  and  also  a  shared  ground  connection.  A  logic  one  (Mark) is  signaled  with  a  low  signal  on  the .  A(− )  terminal  and  a  high  signal  on  the.  B(+ )  terminal. 

A  logic  low  (Space)  is  signaled  with  a  high  signal  on  the.  A(− )  terminal  and  a  low  signal  on the .  B(+ )  terminal.  A  twisted  pair  cable  is  used  to  connect  RS–485  compatible  devices. 

The  RS–485  standard  provides  for  cable  runs  up  to  1200  m,  at  data  rates  up  to  10  M 

bits/second,  and  up  to  32  RS–485  configured  units.  There  is  a  tradeoff  between  maximum data  rate  and  cable  length.  Depending  on  the  specific  application,  system  requirements, and  configuration;  termination  resistors  may  be  required  at  either  end  of  the  RS–485  cable run.  In  general,  long  cable  runs  transmitting  at  high  data  rates  require  termination  resistors. 

Typically  a  120.    resistor  is  used  for  termination  (Horowitz  and  Hill). 

Example.  In  this  example  we  connect  two  Opta  PLCs  equipped  with  RS—485  via  a  24 

AWG  twisted  pair  cable  and  common  ground.  See  Fig. 2.22. One  PLC  is  designated  and equipped  as  the  sender  and  the  other  as  a  receiver.  For  successful  communication  between the  sender  and  receiver  both  must  be  configured  with  the  same  data  Baud  rate.  Although  the two  Opta  are  shown  near  one  another  in  the  diagram,  in  an  industrial  setting  there  may  be some  distance  between  the  two  units. 5

The  overall  goal  of  the  example  is  to  link  the  sender  and  receiver  via  an  RS–485  link.  At the  sender  PLC,  the  user  will  insert  a  number  between  one  and  four  to  designate  which  relay to  toggle  on  the  receiver  PLC.  We  have  connected  a  red  10  mm  LED  to  each  relay  output. 

A  Unified  Modeling  Diagram  (UML)  activity  diagram  is  provided  in  Fig. 2.23  to  illustrate the  operation  of  the  sender  and  receiver  sketch. 

Aside–UML  activity  diagram:  The  activity  diagram  is  simply  a  UML  compliant  flow chart.  UML  is  a  standardized  method  of  documenting  systems.  The  activity  diagram  is  one of  the  many  tools  available  from  UML  to  document  system  design  and  operation.  The  basic symbols  used  in  a  UML  activity  diagram  for  a  processor  based  system  are  provided  in Fig. 2.24  (Fowler). 

5  Both  send  and  receive  sketches  are  available  from  “  Getting  Started  with  RS–485  on  Opta, www. 

opta.findernet.com. 
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Fig.  2.22  Arduino  Opta  RS–485.  Images  used  courtesy  of  the  Arduino  team  (CC  BY–NC–SA) (www.arduino.cc)
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Opta  RS485  Sender  sketch 

//****************************************************************** 

//Opta_RS485_Sender sketch 

//Source: Getting Started with RS-485 on OptaÃ‚â„¢ 

//Name: Opta_RS485_Sender 

//Purpose: Sends values input by user via the Serial monitor 

//to Receiver Opta. 

// 

//author Giampaolo Mancini, Arduino 

//@version 1.0 02/02/2023 

//****************************************************************** 

#include <ArduinoRS485.h> 

constexpr auto baudrate{115200}; 

//Calculate preDelay and postDelay in microseconds for stable 

//RS-485 transmission 

constexpr auto bitduration{1.f / baudrate}; 

constexpr auto wordlen{9.6f}; 

//or 10.0f depending on ch config 

constexpr auto preDelayBR{ bitduration * wordlen * 3.5f * 1e6 }; 

constexpr auto postDelayBR{ bitduration * wordlen * 3.5f * 1e6 }; 

void setup() 

{ 

Serial.begin(baudrate); 

while (!Serial); 

RS485.begin(baudrate); 

RS485.setDelays(preDelayBR, postDelayBR); 

} 

void loop() 

{ 

auto aval = Serial.available(); 

if(aval > 0) 

{ 

auto input = Serial.readStringUntil(’\r’); 

auto read = input.length(); 

//discard EOL 

while (aval > ++read) 

Serial.read(); 

auto incomingByte = input.toInt(); 

RS485.beginTransmission(); 

Serial.print("- Sending: "); 

Serial.println(incomingByte); 

RS485.write(incomingByte); 

RS485.endTransmission(); 

} 

} 

//******************************************************************
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Opta  RS485  Receiver  sketch 

//****************************************************************** 

//Opta_RS485_Receiver sketch 

//Source: Getting Started with RS-485 on OptaÃ‚â„¢ 

//Name: Opta_RS485_Receiver 

//Purpose: Captures values from Sender Opta and triggers 

//corresponding relay and status LED. 

// 

//@author Giampaolo Mancini, Arduino 

//@version 1.0 02/02/2023 

//****************************************************************** 

#include <ArduinoRS485.h> 

constexpr auto baudrate{115200}; 

//Calculate preDelay and postDelay in microseconds for stable RS-485 

//transmission constexpr auto bitduration{1.f / baudrate}; 

constexpr auto wordlen{ 9.6f }; 

//or 10.0f depending on ch config 

constexpr auto preDelayBR{ bitduration * wordlen * 3.5f * 1e6 }; 

constexpr auto postDelayBR{ bitduration * wordlen * 3.5f * 1e6 }; 

int idx{0}; 

bool newState{false}; 

int relays[]{D0, D1, D2, D3}; 

int leds[]{LED_D0, LED_D1, LED_D2, LED_D3}; 

bool statuses[]{ true, true, true, true }; 

void setup() 

{ 

for(int i = 0; i < 4; i++) 

{ 

pinMode(relays[i], OUTPUT); 

pinMode(leds[i], OUTPUT); 

} 

RS485.begin(baudrate); 

RS485.setDelays(preDelayBR, postDelayBR); 

Serial.begin(baudrate); 

//while (!Serial); 

} 

void loop() 

{ 

RS485.receive(); 

auto aval = RS485.available(); 

if(aval > 0) 

{ 

int readValue = RS485.read(); 

if(readValue > 4)

//manage out-of-range inputs 

readValue = readValue % 4; 

Serial.print("Command for relay: "); 

Serial.println(readValue); 

newState = true; 

idx = readValue - 1; 

//array indexes start at 0 

}
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RS485.noReceive(); 

if(newState) 

{ 

changeRelay(); 

newState = false; 

} 

} 

//****************************************************************** 

//void changeRelay()- changes relay and status LED state given the 

//received value. 

//****************************************************************** 

void changeRelay() 

{ 

auto status = statuses[idx] ? HIGH:LOW; //get current status 

digitalWrite(relays[idx], status); 

//apply new status to outputs 

digitalWrite(leds[idx], status); 

statuses[idx] = !statuses[idx]; 

//invert status array for update 

} 

//****************************************************************** 

Note  in  the  Opta  RS485  Receiver  sketch,  we  have  commented  out  the  “while(!Serial);” 

line  of  the  code.  If  left  in  the  sketch,  the  program  waits  for  the  Serial  Monitor  to  be  opened by  the  user.  We  load  the  receiver  sketch  to  the  receiver  designated  PLC  first.  We  then  load the  sender  sketch  to  the  sender  designated  PLC.  The  Serial  Monitor  on  the  sender  designated PLC  is  opened  to  insert  numbers  between  one  and  four  to  toggle  relay  status  on  the  receiver PLC.  The  completed  configuration  is  shown  in  Fig. 2.25. 

2.3.3

Bluetooth  Low  Energy  (BLE)  (Opta  WiFi) 

The  Arduino  Opta  WiFi  is  equipped  with  Bluetooth  features.  The  Classic  form  of  Bluetooth was  designed  to  provide  a  wireless  replacement  for  the  common  RS–232  serial  connection standard.  The  Arduino  Opta  WiFi  is  also  equipped  with  Bluetooth  Low  Energy  (BLE) features.  It  is  important  to  note  that  Bluetooth  Classic  and  BLE  features  are  not  compatible with  one  another. 6

Bluetooth  BLE  provides  for  low  transmit  power  (10  mW),  short  (maximum  100  m)  range RF  connections  to  replace  wires.  It  uses  the  crowded  Industrial,  Scientific,  and  Medical (ISM)  frequency  band  from  2.40  to  approximately  2.50  GHz.  The  BLE  band  is  divided into  40  different,  2  MHz  channels  as  shown  in  Fig. 2.26.  BT  BLE  employs  an  interesting frequency  hopping  technique  to  communicate.  Data  for  transmission  is  divided  into  packets at  data  rates  from  125  to  2  Mb/s.  The  device  transmits  a  packet  of  data  at  the  first  carrier frequency.  It  then  hops  to  a  different  carrier  frequency  for  the  next  packet  and  so  on  until 6  Portions  of  this  section  are  provided  with  permission  from  “Arduino  V:  Machine  Learning,”  S. 

Barrett,  Springer,  2022. 

[image: Image 26]
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Fig.  2.25  Arduino  opta  RS–485  panel 

the  entire  message  is  transmitted  as  shown  in  Fig. 2.26b.  Formally  the  BT  BLE  modulation technique  is  called  Direct  Sequence  Spread  Spectrum  (DSSS)  (www.bluetooth.com). 

BLE  uses  the  Generic  Attribute  (GATT)  Profile  to  establish  two  different  primary  roles for  a  BLE  connection:

• The  peripheral  or  server  role  provides  bulletin  board  features  where  data  is  posted  for reading. 

• The  central  or  client  role  can  read  and  interact  with  the  posted  data. 

In  Fig. 2.27  we  use  an  Arduino  Opta  WiFi  in  a  peripheral  server  role  to  collect  important greenhouse  information  such  as  external  temperature,  internal  temperature,  humidity,  and soil  moisture  content.  The  greenhouse  related  data  is  collected  and  organized  into  a  BLE 

service.  The  service  related  data  is  provided  as  BLE  configured  characteristics.  To  allow ease  of  access  to  the  information  from  an  external  central  client  device,  the  BLE  service  and characteristics  are  each  assigned  a  universally  unique  identifier  (UUID)  (www.bluetooth. 
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Fig.  2.26  Bluetooth  BLE  communication  concepts 

com).  If  we  were  to  expand  the  features  of  the  project  with  additional  services,  we  could group  them  into  a  profile. 

There  are  a  number  of  16  bit  pre–assigned  UUIDs.  The  UUIDs  represent  different  manufacturers  and  technology  companies  employing  Bluetooth–based  technologies.  Also,  UUIDs have  been  pre–assigned  to  common  Bluetooth  features  and  common  pre–assigned  data  types (e.g.  temperature,  pressure,  etc.)  (www.bluetooth.com):

• Bluetooth  members:  0xFxxx

• GATT  characteristic  and  object  type:  0x2xxx

• GATT  declarations:  0x28xx  and  0x29xx

• GATT  service:  0x18xx

• GATT  unit:  0x27xx

• protocol  identifier:  0x00xx

• SDO  GATT  service:  0xFFFx

• service  classes  and  profiles:  0x10xx  and  0x11xx. 

For  BLE  services  and  characteristics  without  a  16  bit  pre–assigned  UUID,  a  unique  128 

bit  UUID  code  is  used.  A  Bluetooth  unique  UUID  may  be  obtained  using  a  number  of  online UUID  generators. 

In  the  greenhouse  example,  a  cell  phone  is  configured  as  a  BLE  central  or  client.  Through the  BLE  wireless  radio  interconnect,  the  cell  phone  can  read  and  interact  with  the  greenhouse data  and  features. 

[image: Image 27]
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Fig.  2.27  Bluetooth  BLE  equipped  greenhouse 

2.3.3.1  ArduinoBLE  Library 

The  ArduinoBLE  Library  provides  for  a  wide  variety  of  BLE  configurations.  The  library is  downloaded  from  within  the  Arduino  IDE  using  the  Library  Manager.  The  library  is organized  into  different  classes  including  the  (www.arduino.cc):

• BLE  Class  used  to  enable  the  BLE  module, 

• BLE  Device  Class  to  get  information  about  connected  devices, 

• BLE  Service  Class  to  enable  services  and  interaction  with  services, 

• BLE  Characteristic  Class  to  enable  characteristics  and  interaction  with  them,  and

• BLE  Descriptor  Class  to  describe  characteristics. 

To  get  acquainted  with  the  library  we  continue  with  a  series  of  examples.  The  first  two examples  are  adapted  from  the  Arduino  BLE  Library.  In  the  third  example,  we  configure an  Arduino  Opta  WiFi  as  the  server  to  collect  and  post  greenhouse  data.  A  cell  phone  is
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configured  as  a  client  to  poll  and  interact  with  the  greenhouse  data.  The  cell  phone  is  equipped with  a  BLE  compatible  app  to  interact  with  the  Opta  WiFi.  This  example  is  provided  in  the Application  section  at  the  end  of  the  chapter. 

Example:  In  this  first  example  “LED,”  from  the  Arduino  BLE  Library,  a  cell  phone  serves as  a  central  client  to  control  an  LED  onboard  the  Nano  33  BLE  Sense  configured  as  a  server. 

To  get  better  acquainted  with  the  sketch,  we  study  the  Bluetooth  configuration  related code  steps.  In  Fig. 2.28  we  detail  these  steps  in  a  UML  activity  diagram. 

Fig.  2.28  Bluetooth  BLE 

configuration 

Include BLE functions 

#include<ArduinoBLE.h> 

setup() 

- initialize systems used in sketch 

- initialize BLE system 

BLE.begin() 

- set BLE radio name 

BLE.setLocalName 

- set BLE UUID 

BLE.setAdvertisedServiceUuid() 

- start advertising 

BLE.advertise() 

loop() 

- wait for BLE central client 

BLEDeviceCentral = BLE.central() 

- central client present and connected 

if (central) 

{ 

insert actions 

: 

while(central.connected ()) 

{ 

insert actions 

: 

} 

//when disconnected 

insert actions 

: 

} 
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//*********************************************************** 

//Opta_BLE_LED: This example creates a BLE peripheral with 

//service that contains a characteristic to control an LED. 

// 

//A generic BLE central phone app, like LightBlue or 

//nRF Connect is used to interact with the Arduino Opta 

//WiFi (AFX00002) hosted BLE services and characteristics 

//created in this sketch. 

// 

//This example code is in the public domain. 

//************************************************************ 

#include <ArduinoBLE.h> 

//Declare BLE LED Service 

//Link to 128 bit UUID 

BLEService ledService("19B10000-E8F2-537E-4F6C-D104768A1214"); 

//BLE LED Switch Characteristic - custom 128-bit UUID, read and 

//writable by central client device (cell phone) 

BLEByteCharacteristic switchCharacteristic 

("19B10001-E8F2-537E-4F6C-D104768A1214", BLERead | BLEWrite); const int ledPin = LED_BUILTIN; 

//Use builtin LED 

void setup() 

{ 

Serial.begin(9600); 

//status to serial monitor 

while (!Serial); 

pinMode(ledPin, OUTPUT); 

//set LED pin to output mode 

if(!BLE.begin())

//BLE initialization 

{ 

Serial.println("starting BLE failed!"); 

while (1); 

} 

//set advertised local name and service UUID: 

BLE.setLocalName("LED"); 

BLE.setAdvertisedService(ledService); 

//add the characteristic to the service 

ledService.addCharacteristic(switchCharacteristic); 

//add service 

BLE.addService(ledService); 

//set the initial value for the characeristic: 

switchCharacteristic.writeValue(0); 

//start advertising
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BLE.advertise(); 

Serial.println("BLE LED Peripheral"); 

} 

void loop() 

{ 

//listen for BLE clients (central) to connect: 

BLEDevice central = BLE.central(); 

//if a client (central) is connected to peripheral: 

if(central) 

{ 

Serial.print("Connected to client: "); 

//print the client’s MAC address: 

Serial.println(central.address()); 

//while the client (central) is still connected to 

//the Opta WiFi based server (peripheral): 

while (central.connected()) 

{ 

//if the remote client device wrote to the 

//Opta WiFi server characteristic, use the 

//value to control the LED: 

if(switchCharacteristic.written()) 

{ 

if(switchCharacteristic.value()) 

{ 

Serial.println("LED on"); 

//any value other than 0 

digitalWrite(ledPin, HIGH); 

//will turn the LED on 

} 

else 

{ 

Serial.println(F("LED off")); //a 0 value 

digitalWrite(ledPin, LOW); 

//will turn the LED off 

} 

} 

}//end while 

//when the central disconnects, print it out: 

Serial.print(F("Disconnected from central: ")); 

Serial.println(central.address()); 

}//end if(central) 

} 

//************************************************************ 

The  sketch  may  be  compiled  and  uploaded  to  the  Arduino  Opta  WiFi.  Once  uploaded, the  sketch  may  be  tested:
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• Open  the  Serial  Monitor  in  the  Arduino  IDE  to  monitor  sketch  status. 

• Using  a  cell  phone  as  a  client,  open  “nRF  Connect”  to  establish  Bluetooth  BLE  connection with  the  Opta  WiFi  based  server. 7

• Find  “LED”  in  the  nRF  scanner  list. 

• Tap  “Connect”  to  connect  the  client  (cell  phone)  to  the  server  (Arduino  Opta). 

• By  selecting  “Client”  and  the  up  arrow,  values  may  be  sent  from  the  client  to  the  server to  control  the  LED. 

• Select  “Write  Value”  and  “Unsigned.” 

• Sending  a  non–zero  turns  the  LED  on  while  sending  zero  turns  the  LED  off. 

Example:  In  this  example,  “battery  monitor,”  adapted  from  the  Arduino  BLE  Library,  the Arduino  Opta  WiFi  is  configured  as  a  server.  The  Arduino  Opta  WiFi  monitors  the  analog signal  on  Input  I1  (A0)  and  posts  this  characteristic  to  the  server  based  bulletin  board.  A  cell phone  based  client  equipped  with  BLE  compatible  app  is  used  to  poll  the  posted  data. 

To  simulate  a  battery,  a  1M  Ohm  potentiometer  is  connected  to  pin  A0.  The  potentiometer is  connected  between  10  VDC  and  ground.  The  potentiometer  wiper  arm  (center  terminal) is  connected  to  the  Input  I1  (A0)  pin. 

The  client/server  connection  is  tested  using  techniques  similar  to  those  provided  in  the previous  example. 

//************************************************************ 

//Opta_battery_monitor - This example creates a BLE server 

//(peripheral) with the standard battery service and level 

//characteristic. The Input I1 (A0) pin is used to monitor the 

//battery level. 

// 

//A generic BLE central phone app, like LightBlue or 

//nRF Connect is used to interact with the Arduino Opta WiFi 

//hosted BLE services and characteristics created in this 

//sketch. 

// 

//This example code is in the public domain. 

//************************************************************ 

#include <ArduinoBLE.h> 

BLEService batteryService("180F"); 

//BLE Battery Service 

//BLE Battery Level Characteristic 

//

- standard 16-bit characteristic UUID 

//

- remote clients get notifications if characteristic changes 

BLEUnsignedCharCharacteristic batteryLevelChar("2A19", 

BLERead | BLENotify); 

int battery; 

//battery reading 

int oldBatteryLevel = 0; 

//last battery level reading from A0 

long previousMillis = 0; 

//last time battery level checked (ms) 

void setup()

7  BLE  applications  such  as  nRF  connect  or  LightBlue  are  available  from  your  cell  phone  app  store. 
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{ 

Serial.begin(9600); 

//initialize serial communication 

while (!Serial); 

//init built-in LED pin 

pinMode(LED_BUILTIN,OUTPUT); 

//indicates when central is connected 

analogReadResolution(12); 

//set 12 to 16 bits 

if(!BLE.begin())

//initialize Bluetooth BLE device 

{ 

Serial.println("starting BLE failed!"); 

while (1); 

} 

//Set a local name for the BLE device. This name appears 

//in advertising packets. Name used by remote devices to 

//identify this BLE device. 

BLE.setLocalName("BatteryMonitor"); 

BLE.setAdvertisedService(batteryService); 

//add the service UUID 

//add the battery level characteristic 

batteryService.addCharacteristic(batteryLevelChar); 

BLE.addService(batteryService); 

//add battery service 

batteryLevelChar.writeValue(oldBatteryLevel); //set initial value 

//Start advertising BLE.  Continuously transmits BLE advertising 

//packets. Advertising will be visible to remote BLE central devices. 

BLE.advertise(); 

Serial.println("Bluetooth device active, waiting for connections..."); 

} 

void loop() 

{ 

BLEDevice central = BLE.central(); 

//wait for a BLE central 

//if a central client 

//is connected to peripheral 

if(central) 

{ 

Serial.print("Connected to central: "); 

Serial.println(central.address()); 

//print the central’s BT address 

digitalWrite(LED_BUILTIN, HIGH); 

//LED on when client connected 

//while client connected 

//check battery level every 200ms 

while(central.connected()) 

{ 

long currentMillis = millis(); 

//if 200ms have passed, 

//check the battery level 

if(currentMillis - previousMillis >= 200) 

{ 

previousMillis = currentMillis; 

updateBatteryLevel(); 

} 

} 

//when the central client disconnects, turn off the LED 

digitalWrite(LED_BUILTIN, LOW); 

Serial.print("Disconnected from central: "); 

Serial.println(central.address()); 

}
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} 

//************************************************************ 

//void updateBatteryLevel() - Read the current voltage level 

//on the A0 analog input pin. This is used here to simulate 

//the battery level. 

//************************************************************ 

void updateBatteryLevel() 

{ 

//Read the input on analog input I1 corresponding to A0: 

battery = analogRead(A0); 

int batteryLevel = map(battery, 0, 4095, 0, 100); 

if(batteryLevel != oldBatteryLevel) 

{

//if the battery level has changed 

Serial.print("Battery Level %: "); 

// print it 

Serial.println(batteryLevel); 

batteryLevelChar.writeValue(batteryLevel);  //update battery level 

//characteristic 

oldBatteryLevel = batteryLevel; 

//save level for comparison 

} 

} 

//************************************************************ 

2.4

Application:  Calibrating  the  Opta  ADC 

Scientific  instruments  potentially  need  calibration  to  a  known  benchmark.  In  this  section  we discuss  calibration  techniques  that  may  be  employed  for  a  specific  scenario.  The  techniques may  be  adapted  for  similar  situations. 

In  this  exercise,  a  10  MOhm  ten  turn  potentiometer  was  used  to  vary  the  input  voltage  to an  Opta  ADC  input.  One  end  of  the  potentiometer  was  connected  to  a  10  VDC  supply  and the  other  to  ground.  The  potentiometer  wiper  contact  was  connected  to  the  ADC  input.  The potentiometer  was  then  adjusted  for  different  input  voltages  ranging  from  0  to  10  VDC  at approximately  1  VDC  intervals.  Voltage  readings  from  both  an  external  calibrated  digital voltmeter  (DVM)  was  compared  to  the  readings  obtained  from  the  Opta.  Results  are  provided in  Fig. 2.29. Note  the  percent  difference  between  the  readings. 

To  calibrate  the  Opta  ADC,  both  the  DVM  and  the  Opta  ADC  voltage  readings  were plotted.  Assuming  that  both  devices  provide  a  linear  output  (as  evidenced  by  the  plots),  the output  of  the  Opta  ADC  is  first  scaled  by  constant  K.  The  scalar  multiplier  K  maps  the output  range  of  the  Opta  ADC  to  the  range  of  the  DVM.  Once  the  range  has  been  mapped, the  readings  may  now  need  to  be  shifted  by  a  constant  bias  B. 
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Fig.  2.29  Arduino  opta  ADC  calibration
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In  general,  the  scaling  and  bias  process  may  be  described  by  two  equations: 

.  VDV Mmax =  (VO ptamax ×  K ) +  B

.  VDV Mmi n =  (VO ptamin ×  K ) +  B

We  thus  have  two  equations  and  two  unknowns  to  solve  for  K  and  B.  These  factors  may be  implemented  within  the  Opta  ADC  sketch.  For  this  calibration  exercise  K  was  equal  to 1.10  V/V  and  B  was  0.  The  resulting  Opta  calibrated  voltage  is  shown  with  the  corresponding reduction  in  percent  difference. 

Additional  calibration  techniques  may  be  employed  to  further  reduce  the  percent  error between  the  calibrated  and  noncalibrated  readings.  For  example,  the  noncalibrated  values may  be  plotted  versus  the  calibrated  values  using  Excel.  Employing  Excel  tools,  a  trendline may  be  established  between  the  two  sets  of  values.  A  line  fitting  equation  (e.g.  linear, polynomial,  or  power  series)  relating  the  two  sets  of  values  can  be  obtained.  In  general,  the more  complex  the  line  fitting  equation  (e.g.  power  series),  the  lower  the  percent  difference between  the  two  sets  of  values. 

2.5

Summary 

We  began  the  chapter  with  a  brief  review  of  the  Arduino  Opta  series  of  micro  PLCs.  We explored  features  common  to  all  three  variants  and  employed  them  to  explore  fundamental input/output  control  concepts.  We  then  examined  and  applied  features  specific  to  a  given Arduino  Opta  variant.  Throughout  the  chapter  we  provided  illustrative  examples.  We  concluded  with  a  brief  introduction  to  DIN  rail-based  implementation  technology. 

2.6

Problems 

1.  What  is  the  difference  between  a  microcontroller  and  a  programmable  logic  controller? 

2.  Describe  the  Opta  host  processor  features. 

3.  Construct  a  feature  table  for  the  Opta  variants. 

4.  What  are  the  characteristics  of  the  Opta  digital  inputs  and  outputs. 

5.  What  is  a  DIN  rail?  How  is  it  used  in  industrial  control  applications? 

6.  What  is  switch  bouncing?  How  is  it  corrected  in  PLC  applications? 

7.  Create  UML  activity  diagrams  for  all  chapter  sketches. 

8.  Describe  different  techniques  for  ADC  calibration. 

9.  What  is  meant  by  the  internet  cloud? 

10.  What  are  the  differences  between  a  network  configuration  for  a  home  versus  a  large business? 

11.  What  is  an  ISP? 
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12.  Draw  the  schematic  of  a  home  internet  configuration  using  the  Cisco  System  icons. 

13.  Draw  the  schematic  of  a  large  business  internet  configuration  using  the  Cisco  System icons. 

14.  In  your  own  words  write  a  brief  summary  of  historical  network  development. 

15.  What  is  the  difference  between  ARPANET,  DARPANET,  and  NSFNET. 

16.  Summarize  the  differences  between  the  ISO/OSI  and  the  TCP/IP  layered  protocol models. 

17.  Describe  the  difference  in  how  IPv4  and  IPv6  addresses  are  allocated. 

18.  What  is  CIDR  addressing?  How  does  it  extend  the  IPv4  addressing  space? 

19.  What  is  the  mission  of  the  following  agencies:  ICANN,  IETF 

20.  What  is  a  MAC  address?  How  is  it  different  than  an  IP  address? 

21.  What  is  the  relationship  between  a  DNS  and  an  URL  address? 

22.  Describe  different  sources  of  cybersecurity  threats. 

23.  Describe  measures  to  counter  cybersecurity  threats. 

24.  Provide  a  working  definition  of  IoT  and  IIoT. 

25.  What  is  the  difference  between  IT  and  OT?  How  are  the  concepts  related. 
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Objectives:  After  reading  this  chapter,  the  reader  should  be  able  to  do  the  following:

• Describe  and  configure  Arduino  PLC  programming  software  and  related  tools; 

• List  and  describe  five  different  methods  of  programming  a  PLC  within  the  IEC  IEC61131– 

3  standard; 

• Summarize  the  fundamental  concepts  of  Ladder  Logic  (LD)  PLC  programming; 

• Describe  library  instructions  within  the  Arduino  PLC  IDE;  and

• Employ  the  Arduino  PLC  IDE  to  write,  compile,  and  execute  ladder  logic  programs  for the Opta series of PLCs. 

3.1

Overview 

In  this  chapter  we  explore  the  Arduino  PLC  IDE.  We  begin  with  a  review  of  the  five  PLC 

programming  languages  specified  within  the  IEC  IEC61131–3  standard  and  available  within the  Arduino  PLC  IDE.  We  then  narrow  our  focus  and  concentrate  on  ladder  logic  programming.  We  explore,  download,  and  configure  the  Arduino  PLC  IDE  and  related  tools.  We  then explore  the  fundamentals  of  ladder  logic  PLC  programming.  The  fundamentals  are  used  to complete  a  series  of  examples. 

©  The  Author(s),  under  exclusive  license  to  Springer  Nature  Switzerland  AG  2025 

87

S.  F.  Barrett,  Arduino  VII,  Synthesis  Lectures  on  Digital  Circuits  &  Systems, 

https://doi.org/10.1007/978-3-031-68609-2_3 

88

3

Arduino PLC IDE and Ladder Logic

3.2

Arduino  Opta  Programming  Tools 

In  Chap. 2  we  used  the  Arduino  IDE  to  program  various  features  and  functions  within  the Opta  PLC  series.  In  this  section  we  explore  the  Arduino  PLC  IDE  and  related  software  tools to  program  the  Opta  PLC  series.  The  Arduino  PLC  IDE  allows  for  programming  Opta  PLCs using  the  five  different  languages  within  the  IEC  IEC61131–3  standard.  These  include:

• Ladder  Diagram  (LD)

• Sequential  (SFC)

• Function  Block  Diagram  (FBD)

• Structured  Text  (ST)

• Instruction  List  (IL). 

All  of  these  languages  are  powerful  and  important;  however,  we  concentrate  on  LD 

programming.  In  the  next  several  sections  we  provide  a  brief  introduction  to  this  powerful, graphical  programming  technique. 

3.3

Getting  Started–Arduino  PLC  IDE 

Complete  the  following  steps  to  download  and  configure  software  tools,  load  configuration software  to  the  Opta  PLC,  establish  communication  between  the  host  laptop/PC,  and  activate the  PLC  IDE  license 1:

• Software  download  and  installation. The  Arduino  PLC  IDE  and  accompanying  tools are  available  for  download  from  arduino.cc. There  are  two  different  software  packages required: 

–  Arduino_PLC_IDE_Tools 

–  Setup_Arduino_PLC_IDE 

Once  downloaded,  install  the  Arduino_PLC_IDE_Tools  first  followed  by  the Setup_Arduino_PLC_IDE. 

• Arduino  PLC  IDE.  With  setup  complete,  open  the  Arduino  PLC  IDE  by  clicking  on  its icon.  You  should  be  greeted  by  the  screen  shown  in  Fig. 3.1a. 

• Insert  a  project  name,  verify  the  target  device  is  “Opta  1.0”  and  click  “OK.”  A  project window  shown  in  Fig. 3.1b  will  appear. 

• Windows  Device  Manager.  With  an  Opta  PLC  connected  to  the  support  laptop/PC  via the  USB  C  cable,  go  to  the  Windows  Device  Manager  to  determine  the  two  USB  COM

1  This  section  is  adapted  from  “Arduino  PLC  IDE  Setup  &  Device  License  Activation,” arduino.cc. 
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(a) Arduino PLC IDE welcome screen. 

(b) New project screen. 

Fig.  3.1  PLC  IDE  welcome  screen.  (Figure  adapted  and  used  with  permission  of  Arduino  team (CC  BY–NC–SA)  (www.arduino.cc).)
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channels  used  by  the  Opta  PLC.  Access  the  Device  Manager  via  Windows  System  . −

Control  Panel .− Hardware  and  Sound.− Device  Manager.− Ports  (COM  &  LPT).  Two USB  Serial  Devices  should  be  shown  in  use  by  the  Opta  PLC.  The  higher  COM  number is  used  by  the  MODBUS  link  and  the  lower  number  is  the  standard  link.  Note  these  two COM  numbers  for  upcoming  use. 

• Establish  communication.  To  connect  the  support  laptop/PC  to  the  Opta  PLC  select  On-

–line. − Set  up  communication.  This  opens  up  a  new  panel  called  “Device  Link  Manager Config.”  Choose  “MODBUS”  and  “Properties.”  Verify  MODBUS  is  using  the  higher COM  number  noted  earlier.  Close  the  panel  with  “OK.”  Go  to  On–line  .− connect  to establish  a  communication  link  between  the  host  laptop/PC  and  the  Arduino  Opta. 

• Download  Runtime  software.  To  download  the  PLC  Runtime  configuration  software to  the  Opta  PLC,  return  to  the  Arduino  PLC  IDE.  Go  to  the  “Opta  Configuration”  panel and  scroll  to  the  bottom  left  corner.  In  the  “Other”  subpanel  select  the  lower  COM 

number  used  by  the  Opta  PLC  (determined  earlier  using  the  Device  Manager)  and  click 

“Download.”  The  Runtime  sketch  will  compile  and  load  to  the  PLC.  This  may  take  a little  time.  Progress  may  be  monitored  via  the  “Output”  panel. 

• License  Activation.  Opta  is  designated  a  pre–licensed  PLC  IDE  product.  Therefore,  a software  key  is  not  needed.  When  establishing  communication  the  “Opta  Configuration” 

panel  should  reflect  “Status  OK.” 

This  completes  the  steps  required  to  download  and  configure  software  tools,  load  configuration  software  to  the  Opta  PLC,  establish  communication  between  to  the  host  laptop/PC, and  activate  the  PLC  IDE  license. 

3.4

Running  a  Simple  Program 

To  compile  and  download  a  simple  program:

• Go  to  the  Project  panel  in  the  Arduino  PLC  IDE.  Double  click  on  Main.  This  opens  a panel  showing  a  simple  counter  program. 

• Compile  the  program  by  going  to  Project.− Compile. 

• Download  the  compiled  program  to  the  Opta  using  On–Line.− Download  Code. 

• The  count  (cnt)  variable  may  be  monitored  using  the  Watch  window.  Go  to  View.− Tool Windows  .− Watch.  Configure  the  Watch  window  by  double  clicking  on  the  Insert  new item  icon.  A  new  panel  will  appear  to  insert  the  label  name  (cnt)  and  location  (main). 

This  completes  the  software  installation  and  configuration  and  running  a  first  program. 

Note  within  the  PLC  IDE  under  Help  is  an  extensive  (250+  pages)  “Arduino  PLC  User’s Manual”  for  reference.  In  the  next  section  we  explore  basic  ladder  logic  concepts. 
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3.5

Structure  of  Arduino  PLC  IDE  Program 

Figure  3.2a  demonstrates  the  flow  of  an  Arduino  PLC  IDE  program.  The  program  executes the  “Initialize”  portion  of  the  program  once  and  then  executes  programs  within  each  of  the task  categories  (Fast,  Slow,  Background)  at  the  time  intervals  shown. 

Figure  3.2b  shows  program  hierarchy  within  the  Arduino  PLC  IDE.  A  project  contains sections  for  Main,  Global  variables,  and  Tasks.  The  Task  area  is  subdivided  into  categories previously  described  (Initialize,  Fast,  Slow,  Background).  Within  each  Task  area  are  individual  programs.  A  program  consists  of  a  sequence  of  networks  (ladder  rungs). 

The  network/ladder  rung  consists  of  a  horizontal  power  link  connecting  the  left  power rail  to  the  right  power  rail.  Between  the  two  power  rails  are  the  activities  processed  by  the network.  These  include  contacts  (inputs)  on  the  left  and  coils  (outputs)  on  the  right.  The power  link  may  also  include  additional  activities  from  the  Arduino  IDE  PLC  Project  Library as  shown in Fig.  3.3. 

A  program  is  built  up  as  a  series  of  network/rungs  to  accomplish  program  steps.  When the  program  is  compiled  and  executed,  the  network/rungs  are  sequentially  executed.  Each network  may  be  viewed  as  an  IF–THEN  statement.  IF  the  contacts  and  the  logic  on  the power  link  are  TRUE–THEN  the  coil  output  is  true.  Let’s  take  a  closer  look  at  ladder program  components. 

3.5.1

Contacts,  Coils,  Branches,  and  Blocks 

Provided  in  Fig. 3.4  is  a  partial  illustration  of  ladder  logic  components.  The  contacts  are typically  a  normally  open  (NO)  or  normally  closed  (NC)  momentary  contact  switch.  As  we see  in  upcoming  examples,  the  contacts  may  also  be  control  signals  from  prior  ladder  rungs. 

Coils  serve  as  the  output  for  ladder  networks  (rungs).  As  seen  in  Fig. 3.4,  control  signals, coils  maybe  motors,  lights,  horns,  etc. 

Inputs  maybe  configured  in  series/parallel  combinations.  A  series  connection  of  input contacts  imply  a  logical  AND  statement.  That  is  both  contacts  must  be  at  logical  TRUE  to assert  the  output  coil.  A  parallel  connection  of  input  contacts  imply  a  logical  OR  statement. 

In  the  parallel  configuration  either  contact  may  be  logical  TRUE  to  assert  the  coil.  The  series and  parallel  contact  configurations  may  be  mixed  to  implement  complex  logic  configurations. 

The  coil  outputs  may  also  be  configured  in  a  parallel  configuration.  For  a  parallel  output coil  configuration  both  coils  are  asserted  simultaneously  (e.g.  a  motor  and  indicator  lamp). 

Shown in Fig.  3.4  are  the  extensive  library  functions  defined  within  the  Arduino  PLC  IDE. 

Note  the  extensive  operations,  blocks,  and  standard  functions.  We  use  these  in  upcoming examples.  Let’s  take  a  closer  look  at  counters  and  timers. 
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(b) PLC program structure. 

Fig.  3.2  Arduino  PLC  IDE  program  flow
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Fig.  3.3  Arduino  PLC  IDE  project  library 

3.5.1.1  Counters 

The  Arduino  PLC  IDE  features  nine  different  predefined  counters  as  shown  in  Fig. 3.5. There are  counters  that  count  down  (CTD),  count  up  (CTU),  and  up–down  counters  (CTUD). 

Each  counter  may  either  use  signed  16  bit  integers  (INT),  signed  32  bit  integers  (DINT),  or unsigned  32  bit  counters  (DUINT).  We  explore  the  count–down  timer  (CTD)  in  some  detail. 

Lessons  learned  may  be  applied  to  other  counter  types. 2

The  CTD  timer  is  a  signed,  16  bit  counter.  The  CTD  counts  down  by  one  (decrements) for  each  positive  transition  on  the  count–down  (CD)  input.  The  CTD  has  three  inputs  and two  outputs:

• CD  (Bool),  input,  count  down  on  positive  edge. 

• LD  (Bool),  input,  preset  counter  input,  rising  edge  on  LD  sets  Counter  Value  (CV)  to Preset  Value  (PV). 

• PV  (Int),  input,  Preset  Value,  desired  initial  count  of  timer  for  count  down. 

• Q  (Bool),  output,  count–down  timer  output.  Set  to  logic  one  when  counter  value  (CV) equals  zero.  Remains  at  zero  until  LD  positive  edge. 

• CV  (Int),  output,  current  value  of  counter. 

Reference  Fig. 3.5  for  a  timing  diagram  illustrating  counter  operation. 

2  Detailed  information  for  each  counter  type  is  accessible  from  within  the  Arduino  PLC  IDE  Library. 
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Fig.  3.4  Ladder  logic  network  components
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Counter Current Value Type 

Counter Type 
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DINT

UDINT 
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CTD 

CTD_DINT 

CTD_UDINT 

up 

CTU 

CTU_DINT 

CTU_UDINT 

up-down 

CTUD 

CTUD_DINT 
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INT: signed, 16  bits 

DINT : signed, 32 bits 

DUINT:  unsigned 32 bits 

CTD  -   signed , 16 bit down counter 

Counts down  by one for each positive  

Q 

transition on the count down (CD) input. 

3 

< CTD name> 

PV 

CTD 

CD 

Q 

CV 

321 

LD 

LD 

PV 

CV 

CD 

1

2 

2

2

4 1 

2

Q  (BOOL):  count-down  output 

Notes: 

PV (INT): preset value 

1. Rising edge LD sets CV to value of PV. 

CV (INT): counter current 

2. Rising edge CD decrements CV. 

LD (BOOL): preset counter input 

3. When CV = 0, output Q set. 

CD (BOOL): count-down on positive edge 

4. Q remains 0 until LD positive edge. 

Fig.  3.5  Arduino  PLC  IDE  counters 

3.5.1.2  Timers 

The  Arduino  PLC  IDE  features  two  different  predefined  timers:  Off–delay  Timer  (TOF) and  On–delay  Timer  (TON)  as  shown  in  Fig. 3.6. The  TOF  timer  delays  the  deactivation  of output  Q  by  the  preset  time  (PT)  value  in  milliseconds.  The  TON  timer  provides  a  delay  of PT  milliseconds  after  IN  becomes  True  before  Q  becomes  True. 3

3.5.2

LD  Editor 

Provided  in  Fig. 3.7  is  a  summary  of  launching  a  new  ladder  logic  (LD)  program  within  the Arduino  PLC  IDE  and  how  to  add  and  edit  program  rungs. 

3  Detailed  information  for  each  timer  type  is  accessible  from  within  the  Arduino  PLC  IDE. 
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TOF  - Off-delay Timer: provides delayed output (Q) 

deactivation (milliseconds) with respect to input IN. 
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IN  (BOOL):  timer input source 

Notes: 

PT (UDINT): preset time value (ms) 

1. If IN is True, Q is True. 

Q (BOOL):    timer output 

2. Q becomes False after Preset Time (PT) milliseconds. 

ET(UDINT): elapsed time 

3. Q remains False while IN remains False. 

- timer current value 

(a) TOF - Off-delay Timer 

TON  -   On-delay Timer: provides delayed output (Q) 

(milliseconds) of the input IN. 
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PT 

ET 

IN 

1

1 

2

3 

IN  (BOOL):  timer input source 

Notes: 

PT (UDINT): preset time value (ms) 

1. If IN is False, Q is False. 

Q (BOOL):    timer output 

2. Q becomes True as IN remains TRUE for PT milliseconds. 

ET(UDINT): elapsed time 

3. Q remains True until IN remains True. 

- timer current value 

(b) TON - On-delay Timer 

Fig.  3.6  Arduino  PLC  IDE  timers 

3.6

LD  Program  Examples 

In  this  section  we  provide  several  examples  to  illustrate  the  use  of  ladder  logic  programming to  provide  basic  control.  Figure  3.8  provides  the  schematic  used  in  the  upcoming  examples. 

In  the  Application  section  of  the  chapter  we  assemble  the  circuit  into  a  DIN  rail  mounted Test  Fixture. 
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LD Program Examples

97

New Program:

- In Project panel, click on Project name. 

- Project -> New Object -> New Program 

- Program type: LD 

- Program name: <insert name> 

- New single network ladder logic program appears 

- Click on program to edit 

Label: provides reference 

Comment: 

Coil:

name for network: 

- Click on location 

- Click on existing coil 

- Click on network 

- Scheme->Object->New-> 

- Scheme->Object->New->coil 

- Scheme->Network->Label  

Comment->insert comments in panel 

- Added in parallel 

0001  Label 

Comment 

Contact:

Branch:

- Click on insertion point 

- Click on device location for branch 

- Scheme->Object->New->contact 

- Scheme->Object->New->Branch 

New network: 

- Choose: serial or parallel 

Scheme -> Network-> 

New -> Location 

Block:

Edit network:

- Select insertion point 

- Double click network 

- Scheme->Object->New->Block 

- Edit 

- Choose type from insertion list 

0002 

insertion point 

Edit coil or contact:

Variable/Constant/Expression:

- Double click on coil or contact 

- Select insertion point 

- Select element 

- Scheme->Object->New-> 

Variable/Constant/Expression 

- Edit 

Fig.  3.7  Ladder  logic  network  editing 

Figure  3.9  provides  the  steps  to  launch  an  LD  program.  Follow  the  UML  diagram  to  build the  first  ladder  logic  program.  In  the  program,  when  the  User  pushbutton  is  pressed  the  first output  relay  is  activated  as  shown  in  Fig. 3.10b. 

Extend  this  basic  example  to  implement  and  test  the  ladder  logic  circuits  provided  in Fig. 3.10a  through  d. 

Figure  3.11  provides  a  basic  counter  configuration.  In  the  example  a  count–down  counter (CTD)  is  configured  to  start  at  the  count  of  seven.  The  count  is  initially  loaded  by  pressing PB1  connected  to  the  preset  counter  input  (LD).  The  CTD  decrements  for  every  push  button press  of  PB2.  When  the  counter  reaches  zero,  output  Q  goes  to  logic  high  and  illuminates the  LED  connected  to  Output_1. 

Figure  3.12a  provides  a  basic  Off–delay  Timer  (TOF)  configuration.  In  the  example  the TOF  is  configured  with  a  two  second  (2000  ms)  delay.  When  pushbutton  PB3  is  pressed the  Q  output  goes  logic  high  illuminating  the  LED  at  Output_2.  When  PB3  is  released  the

[image: Image 31]
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10K pot 1 

10K pot 2 

10K pot  3 



Fig.  3.8  Ladder  logic  test  circuit.  Images  used  courtesy  of  the  Arduino  Team  (CC  BY–NC–SA) (www.arduino.cc) 

LED  stays  illuminated  for  another  two  seconds.  In  Fig. 3.12b  note  how  the  output  Q  from the  count–down  timer  CTD1  serves  as  the  enable  signal  for  the  TOF  timer  in  place  of  PB3. 

Figure  3.13  provides  analog–to–digital  (ADC)  conversion  example.  A  greater  than  (.  > ) comparison  operator  is  used  to  compare  the  analog  voltage  provided  by  a  potentiometer connected  to  Input  5  (Pot  2)  to  a  threshold  value  of  30,000.  Input  5  is  configured  for  16–bit analog  conversion  so  values  range  from  0  to  65,535  (.0  to  2 (b−1 ))  depending  on  the  position of  the  potentiometer  knob.  When  the  Input  5  value  exceeds  30,000  to  LED  connected  to Output_2  illuminates.  The  Pot2  value  may  be  observed  using  the  Watch  Window.  The
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Fig.  3.9  Ladder  logic  program 
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Resources panel 

0001 
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Name: USER 

Name    Variable 
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O1       Output_1 
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O3       Output_3 

O4       Output_4 

(a) Configuration: User button (User_Button) input, Relay 1 output (Output1). 

Action:  When PB1 depressed, Relay1 asserted. 
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O1       Output_1 
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O2       Output_2 

I3        PB3       Digital 

O3       Output_3 

I4        PB4       Digital 

O4       Output_4 

(b) Configuration: Push button 1 (PB1) input, Relay 1 output (Output1). 

Action:  When PB1 depressed, Relay1 asserted. 

Resources panel 

0001 

Resources panel 

Local IO Mapping 

Local IO Mapping 

PB1 

PB2 

Output_1 

Programmable Inputs 

Relay outputs 

Name  Variable   IO Type 

Name    Variable 

I1        PB1       Digital 

O1       Output_1 

I2        PB2       Digital 

O2       Output_2 

I3        PB3       Digital 

O3       Output_3 

I4        PB4       Digital 

O4       Output_4 

(c) Configuration: Push buttons 1, 2 (PB1, PB2) input, Relay 1 output (Output1). 

Action:  Implements IF (PB1 AND PB2), THEN Relay1 asserted. 

Resources panel 

0001

PB1

Output_1

Resources panel 

Local IO Mapping 

Local IO Mapping 

Programmable Inputs 

Relay outputs 

Name  Variable   IO Type 

Name    Variable 

PB2 

I1        PB1       Digital 

O1       Output_1 

I2        PB2       Digital 

O2       Output_2 

I3        PB3       Digital 

O3       Output_3 

I4        PB4       Digital 

O4       Output_4 

(d) Configuration: Push buttons 1, 2 (PB1, PB2) input, Relay 1 output (Output1). 

Action:  Implements IF (PB1 OR PB2), THEN Relay1 asserted. 

Fig.  3.10  Basic  ladder  logic  examples 

potentiometer  represents  any  number  of  analog  sensors  (e.g.  light,  temperature,  etc.).  We discuss  a  wide  variety  of  analog  sensors  in  the  next  chapter. 

3.7

Application  I:  Test  Fixture 

Provided  in  Fig. 3.14a  is  the  test  fixture  to  easily  inject  input  signals  and  track  outputs  from an  Opta  PLC  executing  a  ladder  logic  program.  The  test  fixture  consists  of  a  series  of  three  10 

Kohm  potentiometers,  four  light  emitting  diodes  (LEDs),  and  four  pushbuttons  configured as  shown in Fig.  3.14b.  The  circuit  is  housed  within  a  plastic  chassis  box  mounted  to  a  DIN 

rail  via  DIN  rail  mounting  adaptors.  The  completed  fixture  is  shown  in  3.15. 

[image: Image 32]
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Application II: Greenhouse Temperature Sensing System
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Fig.  3.11  Basic  ladder  logic  counter  example 

3.8

Application  II:  Greenhouse  Temperature  Sensing  System 

Figure  3.16  provides  a  ladder  logic  implementation  of  a  system  to  detect  when  a  given physical  variable  (e.g.  temperature,  water  level,  etc.)  is  too  high,  too  low,  or  within  a  desired range.  We  use  the  Test  Fixture  to  test  the  ladder  logic  program. 

Here  is  a  summary  of  ladder  logic  operation:

• Resource  definitions  for  Programmable  Inputs  and  Relay  Outputs  are  shown  at  the  top left  and  right  of  the  figure.  Also,  local  variables  of  type  Bool  are  declared  for  EN_Ladder, LE_OUT,  and  GE_OUT. 

• Rung/network  0001  contains  two  contacts  PB1  (NO)  and  PB2  (NC).  The  PB1  input serves  as  the  Start  PB  for  the  process  while  PB2  serves  as  the  STOP  PB.  When  PB1  is pressed,  the  coil  EN_Ladder  is  asserted  and  seals  the  PB1  switch  ON  via  the  parallel branch  containing  EN_Ladder.  The  process  remains  active  until  PB2  STOP  is  pushed. 

• Rung/Network  0002  contains  the  greater  than  (.  > )  comparison  operator.  It  is  used  to compare  the  analog  voltage  provided  by  a  potentiometer  connected  to  Input  5  (Pot  1) to  a  threshold  value  of  60,000.  Input  5  is  configured  for  16–bit  analog  conversion  so values  range  from  0  to  65,535  (.0  to  2 (b−1 )).  When  the  Input  5  value  exceeds  60,000  the Red  LED  illuminates.  The  Pot2  value  may  be  observed  using  the  Watch  Window.  It  is important  to  note  the  potentiometer  represents  any  number  of  analog  sensors. 

[image: Image 33]
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(a) TOF example. 

(b) Count down counter output as input for TOF. 

Fig.  3.12  Basic  ladder  logic  timer  examples

[image: Image 34]
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Fig.  3.13  Basic  ladder  logic  ADC  example

• Rung/Network  0003,  0004,  and  0006  work  together  to  illuminate  a  Green  LED  if  the potentiometer  connected  to  Input  5  (Pot  1)  provides  an  output  between  60,000  and 30,000.  Note  how  the  LE_OUT  and  the  GE_OUT  signals  are  ANDed  together  to  form the  Green_LED  output. 

• Rung/Network  0005  illuminate  a  Blue  LED  if  the  potentiometer  connected  to  Input  5 

(Pot  1)  provides  an  output  less  than  30,000. 

3.9

Summary 

In  this  chapter  we  explored  the  Arduino  PLC  IDE.  We  began  with  a  review  of  the  five PLC  programming  languages  specified  within  the  IEC  IEC61131–3  standard  and  available within  the  Arduino  PLC  IDE.  We  then  narrowed  our  focus  and  concentrated  on  ladder logic  programming.  We  explored,  downloaded,  and  configured  the  Arduino  PLC  IDE  and related  tools.  We  then  explored  the  fundamentals  of  ladder  logic  PLC  programming.  The fundamentals  were  used  to  complete  a  series  of  examples. 
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10K pot 1 

10K pot 2 



10K pot  3

Fig.  3.14  Ladder  logic  test  fixture 

3.10

Problems 

1.  The  Arduino  PLC  IDE  allows  for  programming  Opta  PLCs  using  the  five  different languages  within  the  IEC  IEC61131–3  standard.  Prepare  a  table  listing  each  type  of programming  language  along  with  its  pros  and  cons. 4

2.  Describe  the  difference  between  ladder  logic  contacts,  coils,  branches,  and  blocks.  Provide  an  example  of  each. 

4  Accessible  via  the  Arduino  PLC  IDE  help  tab. 

[image: Image 35]
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Fig.  3.15  Ladder  logic  test  fixture  on  DIN  rail 
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Fig.  3.16  Ladder  logic  sensing  system
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3.  In  Chap. 1  we  provided  an  example  to  sequentially  blink  the  four  LEDs  on  the  front  of Opta  PLC.  Provide  a  ladder  logic  program  to  accomplish  the  sequential  blinking  with 500  ms  delays. 

4.  Modify  the  ladder  logic  program  above  so  the  LEDs  sequentially  cycle  left  to  right  and then  back  right  to  left. 

5.  There  are  many  predefined  operations,  blocks,  and  standard  functions  defined  with  the PLC  IDE  Library.  Provide  a  summary  table  of  these  library  elements. 

6.  Describe  the  difference  between  the  TOF  and  the  TON  timers.  Write  a  ladder  logic program  to  demonstrate  the  difference  between  the  two  timers. 

7.  Design  a  ladder  logic  program  providing  a  signal  when  12  cans  on  a  conveyor  has  passed a  sensor.  The  signal  is  used  to  start  a  new  box.  The  boxes  are  packed  144  per  palette. 

Provide  a  signal  when  144  boxes  have  been  filled  with  cans. 

8.  Develop  a  ladder  logic  circuit  to  indicate  the  fluid  level  in  a  vat.  Provide  output  signals when  the  vat  is  nearing  empty  or  nearing  full.  An  analog  sensor  is  used  to  indicate  vat fluid  level. 

9.  A  small  corporation  is  owned  by  four  individuals.  The  distribution  of  the  corporation shares  is  as  follows:  Mr.  Quine  owns  four  shares,  Mrs.  Karnaugh  owns  three  shares,  Mr. 

Boole  owns  two  shares,  and  Ms.  McCluskey  owns  one  share.  You  are  to  build  a  voting machine  that  will  be  used  when  the  owners  vote  on  corporate  issues.  Each  of  the  owners has  a  switch  that  is  closed  to  record  a  ‘yes’  vote  and  opened  to  record  a  no’  vote.  When one  of  the  owners  casts  a  yes’  vote,  that  vote  is  weighted  by  the  number  of  the  owner’s shares.  For  example,  when  Mrs.  Karnaugh  votes  yes’,  her  vote  counts  three  times  that  of Ms.  McCluskey.  The  output  of  the  voting  machine  will  be  a  visual  indication–maybe  a LED  that  is  lit?  When  the  result  of  any  vote  is  a  yes’  by  the  majority  of  the  shareholders. 

If  the  issue  does  not  get  a  majority  vote,  the  indicator  LED  will  not  light.  If  the  issue results  in  a  tie  vote,  a  separate  LED  will  be  lit  to  indicate  this  tie  result.  Develop  a  ladder logic  program  to  implement  the  voting  machine. 5
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Objectives:  After  reading  this  chapter,  the  reader  should  be  able  to: 

•  Apply  the  voltage  and  current  input/output  parameters  toward  properly  interfacing  input sensors  and  output  actuators  to  an  Arduino  Opta  PLC; 

•  Interface  a  wide  variety  of  input  and  output  devices  to  an  Arduino  Opta  PLC; 

•  Describe  operational  amplifier  (op  amp)  function,  ideal  characteristics,  and  common configurations; 

•  Apply  op  amp  concepts  in  the  design  of  a  transducer  interface;  and 

•  Apply  chapter  concepts  interface  multiple  input  and  output  devices  to  the  Opta  PLC. 

4.1

Overview 

The  Opta  PLC  may  be  used  in  industrial,  Internet  of  Things  (IoT),  and  hybrid  applications. 

We  find  sensors  and  actuators  at  a  variety  of  common  voltages  (e.g.  5  VDC).  In  this  chapter we  explore  how  to  connect  these  input  sensors  and  output  actuators  to  an  Opta  PLC.  We begin  with  a  review  of  the  Opta  input  and  output  characteristics.  We  then  explore  a  wide variety  of  digital  and  analog  input  sensors  and  output  actuators.  We  employ  an  operational amplifier–based  transducer  interface  design  process  to  interface  input  sensors  to  the  Opta PLC. 1

1  The  information  on  embedded  system  design  first  appeared  in  “Microcontroller  Fundamentals for  Engineers  and  Scientists,”  Morgan  and  Claypool  Publishers,  2006.  It  has  been  adapted  with permission.  Although  first  developed  for  embedded  systems  design,  concepts  provided  here  apply  to Opta–based  PLC  system  design. 

©  The  Author(s),  under  exclusive  license  to  Springer  Nature  Switzerland  AG  2025 

107
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4.2

Opta  Input  and  Output  Operating  Parameters 

In  Chap. 2  we  provided  a  summary  of  Opta  PLC  inputs  and  relay  outputs.  This  information is  provided  here  for  convenience. 

4.2.1

Programmable  Digital/Analog  Inputs 

The  Arduino  Opta  series  is  equipped  with  eight  inputs  designated  I1–I8.  Each  input  can be  configured  as  a  digital  input  or  an  analog  input.  In  Chaps. 2  and  3  we  described  how  to configure  the  inputs  using  the  Arduino  IDE  and  the  Arduino  PLC  IDE.  We  discuss  each configuration  in  turn  (Opta). 

4.2.1.1  Digital  Input 

The  Arduino  Opta  input  pins  are  designated  I1–I8  on  the  PLC  case.  A  digital  input  value may  range  from  0  to  24  VDC.  Values  less  than  4.46  VDC  are  considered  logic  low  while those  greater  than  6.6  VDC  are  considered  logic  high.  The  inputs  are  equipped  with  over voltage  protection. 

4.2.1.2  Analog  Inputs 

When  configured  as  an  analog  input,  the  input  signal  ranging  from  0  to  10  VDC  is  converted to  a  corresponding  digital  value.  The  corresponding  digital  value  may  be  configured  for 12–16  bits  of  resolution. 

The  maximum  allowable  voltage  to  the  Arduino  Opta  PLC  is  10  VDC.  However,  the internal  host  PLC  processor  performing  the  ADC  has  a  maximum  allowable  voltage  of  3 

VDC.  Therefore,  the  voltage  for  ADC  conversion  provided  to  the  Opta  PLC  input  is  scaled internally  by  a  factor  of  0.30.  When  a  measurement  is  taken,  the  result  must  be  rescaled  by this  value. 

4.2.2

Relay  Outputs 

The  Arduino  Opta  is  equipped  with  four  normally  open  (NO)  mechanical  relay  contacts. 

The  relay  contacts  are  rated  at  250  VAC,  10A.  Since  they  are  AC  contacts,  current  can  flow in  either  direction  through  the  relay.  The  relay  outputs  are  not  fused.  The  relay  outputs  have the  following  characteristics  (Opta):
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•  Response  time  from  logic  0  to  1:  6  ms 

•  Response  time  from  logic  1  to  0:  4  ms 

•  Bounce  time  NO:  3  ms 

•  Bounce  time  NC:  6  ms 

4.3

Input  Sensors 

A  PLC  is  typically  used  in  applications  where  data  is  collected  by  input  sensors,  the  data  is then  processed  by  the  host  algorithm,  and  then  a  control  decision  and  accompanying  signals are  provided  by  the  PLC  to  output  peripheral  actuators.  The  input  sensors  may  be  digital  or analog  in  nature. 

4.3.1

Digital  Input  Sensors 

Digital  sensors  provide  a  single  digital  input  signal  or  a  series  of  digital  logic  pulses  with sensor  data  encoded.  The  sensor  data  may  be  encoded  in  any  of  the  parameters  associated with  a  digital  signal  such  as  logic  level,  duty  cycle,  frequency,  period,  pulse  length,  or  pulse rate.  In  the  next  several  sections  we  describe  how  to  interface  a  wide  variety  of  digital  input devices  including  switches  and  sensors  to  the  Arduino  Opta  PLC.  We  begin  with  switches. 

4.3.2

Switches 

Switches  come  in  a  variety  of  types.  A  system  designer  chooses  the  appropriate  switch  for  a specific  application.  Switch  varieties  commonly  used  in  control  applications  are  illustrated in  Fig. 4.1.  Here  is  a  brief  summary  of  the  different  types: 

•  Slide switch:  A  slide  switch  has  two  different  positions:  on  and  off.  The  switch  is  manually moved  to  one  position  or  the  other.  For  control  applications,  slide  switches  are  available in  a  panel  mounted  package.  Also,  small  slide  switches  are  available  that  fit  in  the  profile of  a  common  integrated  circuit  size  dual  inline  package  (DIP).  A  bank  of  four  or  eight DIP  switches  in  a  single  package  is  commonly  available.  Slide  switches  may  be  used  to select  specific  parameters  at  system  startup. 

Fig.  4.1  Switch  types
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•  Momentary  contact  pushbutton  switch:  A  momentary  contact  pushbutton  switch comes  in  two  varieties:  normally  opened  (NO)  and  normally  closed  (NC).  A  normally open  switch,  as  its  name  implies,  does  not  normally  provide  an  electrical  connection between  its  contacts.  When  the  pushbutton  portion  of  the  switch  is  depressed,  the  connection  between  the  two  switch  contacts  is  made.  The  connection  is  held  while  the  switch is  depressed.  When  the  push  button  is  released,  the  connection  is  opened.  The  opposite is  true  for  a  normally  closed  switch.  For  control  applications,  pushbutton  switches  are available  in  a  small  tact  type  switch  configuration  or  panel/chassis  mounted  configurations.  Posh  button  style  switches  are  commonly  used  in  ladder  logic  coding  to  start  and stop  a  control  process. 

•  Push on/push off switches:  This  type  of  switch  is  also  available  in  a  normally  open or  normally  closed  configuration.  For  the  normally  open  configuration,  the  switch  is depressed  to  make  connection  between  the  two  switch  contacts.  The  pushbutton  must  be depressed  again  to  release  the  electrical  connection. 

•  Hexadecimal rotary switches:  Small  profile  rotary  switches  are  available  for  controller applications.  These  switches  commonly  have  sixteen  rotary  switch  positions.  As  the switch  is  rotated  to  each  position,  a  unique  four–bit  binary  code  is  provided  at  the  switch contacts.  These  switches  are  used  to  select  specific  parameters  at  system  startup. 

4.3.2.1  Switch  Debouncing 

Mechanical  switches  do  not  make  a  clean  transition  from  one  position  (on)  to  another  (off). 

When  a  switch  is  moved  from  one  position  to  another,  it  makes  and  breaks  contact  multiple times.  This  activity  may  go  on  for  tens  of  milliseconds.  A  processor  such  as  the  Opta  PLC 

is  relatively  fast  as  compared  to  the  action  of  the  switch.  Therefore,  the  processor  may recognize  each  switch  bounce  as  a  separate  and  erroneous  transition. 

To  correct  the  switch  bounce  phenomena  additional  external  hardware  components  may be  used  or  software  techniques  may  be  employed.  Software  switch  debouncing  is  accomplished  by  inserting  a  30–50  ms  lockout  delay  in  the  function  responding  to  input  changes. 

The  delay  prevents  the  processor  from  responding  to  the  multiple  switch  transitions  related to  bouncing. 

The  programming  and  interface  between  a  switch  and  the  Opta  PLC  is  described  in Chaps. 2  and  3. 

4.3.3

Optical  Encoder 

An  optical  encoder  consists  of  a  small  plastic  transparent  disk  with  opaque  lines  etched  into the  disk  surface.  A  stationary  optical  emitter  and  detector  pair  is  placed  on  either  side  of  the disk.  As  the  disk  rotates,  the  opaque  lines  break  the  continuity  between  the  optical  source
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Fig.  4.2  Optical  encoder 

stationary optical 

source and detector 

rotating

pair 

disk 

D 

S 

Detector output 

a) Incremental tachometer encoder 

Ch A 

Ch B 

b) Incremental quadrature encoder 

and  detector.  The  signal  from  the  optical  detector  is  monitored  to  determine  the  rate  of  disk rotation  as  shown  in  Fig. 4.2. 

Optical  encoders  are  available  in  a  variety  of  types  depending  on  the  information  desired. 

There  are  two  major  types  of  optical  encoders:  incremental  encoders  and  absolute  encoders. 

An  absolute  encoder  is  used  when  it  is  required  to  retain  position  information  when  power is  lost.  The  absolute  encoder  is  equipped  with  multiple  data  tracks  to  determine  the  precise location  of  the  encoder  disk  (Sick  Stegmann). 

An  incremental  encoder  is  used  in  applications  where  a  velocity  or  a  velocity  and  direction information  is  required.  The  incremental  encoder  types  may  be  further  subdivided  into tachometers  and  quadrature  encoders.  An  incremental  tachometer  encoder  consists  of  a single  track  of  etched  opaque  lines  as  shown  in  Fig. 4.2a. It  is  used  when  the  velocity  of  a rotating  device  is  required.  To  calculate  velocity,  the  number  of  detector  pulses  are  counted in  a  fixed  amount  of  time.  Since  the  number  of  pulses  per  encoder  revolution  is  known, velocity  may  be  calculated. 

The  quadrature  encoder  contains  two  tracks  shifted  in  relationship  to  one  another  by  90◦

.  . 

This  allows  the  calculation  of  both  velocity  and  direction.  To  determine  direction,  one  would monitor  the  phase  relationship  between  Channel  A  and  Channel  B  as  shown  in  Fig. 4.2b. 

In  the  Application  section  we  explore  motor  speed  control  using  an  optical  tachometer. 
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4.4

Analog  Input  Sensors 

Analog  input  sensors  provide  a  DC  voltage  that  is  proportional  to  the  physical  parameter being  measured.  The  analog  voltage  is  converted  to  a  corresponding  binary  representation. 

With  analog  sensors,  signal  preprocessing  may  be  required  to  convert  the  sensor  output  to an  analog  DC  voltage  suitable  for  measurement  by  the  Opta  PLC. 

4.4.1

Flex  Sensor 

An  analog  flex  sensor  is  shown  in  Fig. 4.3a. The  flex  sensor  provides  a  change  in  resistance for  a  change  in  sensor  flexure.  At  0◦

. 

flex,  the  sensor  provides  10  k.    of  resistance.  For 

90◦

. 

flex,  the  sensor  provides  30–40  k.    of  resistance.  Since  the  Opta  PLC  cannot  measure resistance  directly,  the  change  in  flex  sensor  resistance  must  be  converted  to  a  change  in  a DC  voltage.  This  is  accomplished  using  the  voltage  divider  network  shown  in  Fig. 4.3c. For increased  flex,  the  DC  voltage  will  increase.  The  voltage  and  hence  flex  can  be  measured using  the  analog–to–digital  converter  subsystem. 

0.25 in (0.635 cm) 

4.5 in (11.43 cm) 

a) flex sensor physical dimensions 

VDD = 5 VDC 

10K fixed 

resistor 

flex sensor:

--   0 degree flex, 10K

-- 90 degree flex, 30-40K 

b) flex action 

c) equivalent circuit 

Fig.  4.3  Flex  sensor

[image: Image 37]
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4.4.2

Ultrasound  Sensor 

The  ultrasonic  sensor  pictured  in  Fig. 4.4  is  based  on  the  concept  of  ultrasound  or  sound waves  that  are  at  a  frequency  above  the  human  range  of  hearing  (20  Hz  to  20  kHz).  The ultrasonic  sensor  pictured  in  Fig. 4.4c  emits  a  sound  wave  at  42  kHz.  The  sound  wave reflects  from  a  solid  surface  and  returns  back  to  the  sensor.  The  amount  of  time  for  the  sound wave  to  transit  to  the  surface  and  back  to  the  sensor  may  be  used  to  determine  the  range from  the  sensor  to  the  wall. 

Pictured  in  Fig. 4.4c  and  d  is  an  ultrasonic  sensor  manufactured  by  Maxbotix,  the  LV– 

Max  Sonar—EZ  series,  MB1010–000.  The  sensor  provides  an  output  that  is  linearly  related to  range  in  three  different  formats:  (a)  a  serial  RS–232  compatible  output  at  9600  bits  per second,  (b)  a  pulse  width  modulated  (PWM)  output  at  a  147  us/inch  duty  cycle,  and  (c) Fig.  4.4  Ultrasonic  sensor.  Sensor  image  used  courtesy  of  SparkFun  electronics  (CC  BY–NC–SA) (www.sparkfun.com)
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an  analog  output  at  a  resolution  of  approximately  10  mV/inch  when  Vcc  is  5.0  VDC.  The sensor  is  powered  from  a  2.5  to  5.5  VDC  source  (www.sparkfun.com). 

In  this  example  we  use  the  sensor’s  analog  output  to  determine  range. 

//********************************************************** 

//ultrasonic - demonstration of Maxbotix LV-MaxSonar-EZ 

//

MB1010 

//Connections: 

//MB1010: 

//  +5 VDC 

//  Ground 

//  Analog Output to Opta I1 

//  Commom ground between MB1010 and Opta 

//Source: \url{www.maxbotix.com} 

//Adapted for use with Opta PLC inputs - S. Barrett, 12.27.23 

//********************************************************** 

int

sensorValueA0; 

//from ultrasound sensor 

float 

inches, voltageA0; 

void setup() 

{ 

Serial.begin(9600); 

analogReadResolution(12); 

//set 12 to 16 bits 

} 

void loop() 

{ 

//Read the input on analog input I1 corresponding to A0: 

sensorValueA0 = analogRead(A0); 

float voltageA0 = (float)(sensorValueA0) * (10.0/4095.0); 

//Print out value from I1 

Serial.print("I1 value: "); 

Serial.print(sensorValueA0); 

Serial.print(" corresponding to "); 

//Print voltage as float with 2 decimal digits 

Serial.print(voltageA0, 4); 

Serial.println(" Volts"); 

//inches = (float) (sensorValueA0) * 5.0/25.4; 

//inches = (sensorValueA0)/0.009766; 

//to inches 

inches = voltageA0 * 102.4; 

//Print range 

Serial.print("Range:"); 

Serial.print(" "); 

Serial.print(inches); 
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Serial.println(" inches"); 

delay(2000); 

} 

//********************************************************** 

4.4.3

Temperature  Sensors 

There  are  several  sensor  types  that  may  be  used  to  measure  temperature  including  thermocouples,  thermistors,  and  integrated  circuit  (IC)  based  sensors.  Due  to  their  linearity  and ease  of  use,  we  concentrate  on  the  IC  based  sensors.  Provided  in  Fig. 4.5  is  a  summary  of common  integrated  circuit  (IC)  based  temperature  sensors.  The  sensors  may  be  used  over  a wide  temperature  range  and  provide  an  output  voltage  as  a  linear  function  of  temperature. 

The  sensors  are  available  in  an  IC  type  or  small  transistor  style  packaging. 

Example: LM34 Temperature Sensor.  In  this  example  we  use  the  LM34  Precision  Fahrenheit  Temperature  Sensors  manufactured  by  Texas  Instruments  to  measure  temperature.  The LM34  provides  10  mV  of  output  per  degree  Fahrenheit.  The  output  pin  of  the  LM34  is provided  to  input  pin  I1  (A0)  on  the  Arduino  Opta  PLC  for  temperature  readings.  Provided below  is  an  Arduino  IDE  based  sketch  to  measure  the  output  from  the  LM34,  convert  the LM34  output  to  temperature,  and  display  the  result  on  the  Serial  Monitor. 2

Temperature 

Temperature 

Accuracy 

Scale 

Supply 

Sensor 

Range 

over Range 

Factor

Voltage 

LM34 

-50o to 300o F

+/- 1 to 1/2oF 

10.0 mV/oF

+5 to +20 V* 

LM35 

-55o to 150o C

+/- 1 to 1/2oC 

10.0 mV/oC

+4 to +20 V* 

TMP35 

10o to 125o C



+/- 2oC

10.0 mV/oC

+2.7 to +5.5V

TMP36 

-40o to 125o C



+/- 2oC

10.0 mV/oC

+2.7 to +5.5V 

TMP37 

5o to 100o C



+/- 2oC

20.0 mV/oC

+2.7 to +5.5V 

*Requires negative supply for temperature readings below 0

Fig.  4.5  Integrated  circuit  temperature  sensors.  (LM34,  LM35  www.ti.com, TMP35,  36,  37  temperature  sensors  www.analog.com)

2  As  discussed  in  Chap. 2,  calibration  of  the  ADC  system  with  a  known  calibrated  source  may  be required. 
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//********************************************************** 

//Opta_LM34 

// 

//Measures temperature using LM34 

// - LM34 provides 10 mV/degree F 

// 

//S. Barrett, 12.27.23 

//This example code is in the public domain. 

int

sensorValueA0; 

//from ultrasound sensor 

float 

degrees, voltageA0; 

void setup() 

{ 

Serial.begin(9600); 

analogReadResolution(12); 

//set 12 to 16 bits 

} 

void loop() 

{ 

//Read the input on analog input I1 corresponding to A0: 

sensorValueA0 = analogRead(A0); 

float voltageA0 = (float)(sensorValueA0) * (10.0/4095.0); 

//Print out value from I1 

Serial.print("I1 value: "); 

Serial.print(sensorValueA0); 

Serial.print(" corresponding to "); 

//Print voltage as float with 2 decimal digits 

Serial.print(voltageA0, 2); 

Serial.println(" Volts"); 

degrees = voltageA0 * 100.0; 

//Print range 

Serial.print("Temp:"); 

Serial.print(" "); 

Serial.print(degrees); 

Serial.println(" degrees (F)"); 

delay(2000); 

} 

//********************************************************** 

Example:  LM34  Temperature  Sensor  with  ladder  logic.  In  this  example  an  LM34  is used  to  measure  ambient  temperature.  When  the  temperature  exceeds  90◦

. 

Fahrenheit,  a  fan 

turns  on.  The  fan  remains  on  until  the  ambient  temperature  drops  below  70◦

. 

Fahrenheit.  The

[image: Image 38]
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difference  between  the  fan  on  setting  and  off  setting  is  called  hysteresis.  The  two  values  are different  to  ensure  the  fan  is  not  constantly  turning  on  and  off  near  the  set  point.  The  circuit diagram  is  provided  in  Fig. 4.6  and  the  accompanying  ladder  logic  program  in  Fig. 4.7. 

The  LM34  temperature  sensor  output  is  fed  directly  to  Opta  input  I3.  The  fan  and  LEDs (Y,  G,  B)  are  connected  to  Opta  relay  outputs  1–4.  The  thresholds  to  turn  the  fan  on  and  off are  determined  by: 

•  Equating  the  temperature  reading  to  LM34  output  (e.g.  90◦.  provides  900  mV). 

•  Determining  the  output  from  a  12–bit  ADC  for  this  voltage. 

•  The  ADC  output  at  the  specified  voltage  is  the  threshold. 

.  t hr es hol d =  ( 0 .  900 / 10 .  0 ) × 4096 ) = 370

Fig.  4.6  LM34  fan  controller. 

Images  used  courtesy  of  the 

Arduino  Team  (CC 

BY–NC–SA)  (www.arduino. 

cc)

10K pot 1 

10K pot 2 

10K pot  3
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Resources panel 

PB1 (Start)

PB2 (Stop) 

EN_Ladder

0001 

Resources panel 

Local IO Mapping 

Local IO Mapping 

Programmable Inputs 

Relay outputs 

Name  Variable   IO Type 

Name    Variable 

EN_Ladder 

I1        PB1       Digital 

O1       Fan 

I2        PB2       Digital 

O2       Yellow_LED

I3        PB3       Digital 

O3       Green_LED 

I4        PB4       Digital 

O4       Blue_LED 

Yellow_LED 

I5        LM34    Analog    

0002  EN_Ladder 

GT 

I6        Pot1      Analog 

EN  ENO 

I7        Pot2      Analog 

LM34 

I8        Pot3      Analog 

Fan

> 

370 

0003  EN_Ladder 

Yellow_LED 

LE 

EN  ENO 

LM34 

LE_OUT

<= 

370 

0004  EN_Ladder 

Yellow_LED 

GE 

EN  ENO 

LM34 

GE_OUT

>= 

290 

0005  EN_Ladder 

Yellow_LED 

LT 

EN  ENO 

LM34 

Blue_LED

< 

290 

0006  EN_Ladder 

Yellow_LED 

AND 

EN  ENO 

LE_OUT 

GREEN_LED

> 

GE_OUT 

Notes: 

1. ADC inputs set for 12 bits. 

2. ADC resolution: 10 VDC/212 = 2.44  mV/step 

3. LM34 provides 10.0 mV/oF 

4. LM34 provides output of 900 mV at 90oF.  With a 12 bit ADC 

this corresponds to an ADC output of 370. 

5. LM34 provides output of 700 mV at 70oF.  With a 12 bit ADC 

this corresponds to an ADC output of 290. 

Fig.  4.7  LM34  fan  controller  ladder  logic 

4.4.4

Light  Sensor 

There  are  many  different  types  of  sensors  used  to  detect  light  including  photoresistors, photovoltaic  cells,  photodiodes,  and  phototransistors.  When  choosing  a  light  sensor  it  is important  to  match  the  sensor  characteristics  to  the  desired  wavelength  of  light.  Shown  in Fig. 4.8  is  a  portion  of  the  electromagnetic  spectrum.  The  visible  light  spectrum  ranges  from approximately  380–760  nm.  Each  visible  color  has  a  defined  range  of  wavelengths.  The ultraviolet  and  infrared  spectrums  are  adjacent  to  the  visible  spectrums. 
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Fig.  4.8  Light  spectrum 

visible 

(Miller)

ultraviolet

infrared 

10 nm

1000 nm 

red 630 - 760 nm 

violet 380 - 450 nm 

blue 450 - 490 nm 

green 490 - 560 nm 

yellow 560 - 590 nm 

orange 590 - 630 nm 

4.4.4.1  Photoresistor 

A  photoresistor  may  be  known  by  several  different  names  including  photoconductive  cells, photo  cells,  and  light  dependent  resistors.  They  are  constructed  from  different  types  of semiconductor  material  each  responsive  to  different  light  wavelengths  in  the  infrared  (IR), visible,  or  ultraviolet  (UV)  bands.  When  light  of  the  appropriate  wavelength  impinges  on the  semiconductor  material,  current  carriers  are  released  and  the  resistance  of  the  material is  decreased.  The  photoresistor  may  be  used  in  applications  to  detect  day  and  night,  light  or dark  environments,  or  to  detect  the  presence  of  an  object. 

Example:  PDV–P8001  Cadmium  Sulfide  Cell.  In  this  example  we  use  a  PDV–P8001 

Cadmium  Sulfide  (CdS)  photoconductive  photocell  to  determine  when  night  has  arrived. 

The  cell  is  sensitive  to  light  in  the  visible  range  (400–700  nm).  The  resistance  of  the  cell ranges  from  200  k.    when  in  darkness  to  approximately  400.    when  fully  illuminated  (API). 

To  interface  to  the  Arduino  Opta  a  100  k.    resistor  is  placed  in  series  with  the  cell  as shown in Fig.  4.9a  to  implement  a  voltage  divider  circuit.  The  node  between  the  photocell  and the  resistor  is  connected  to  Arduino  Opta  ADC  input  I1  (A0).  The  threshold  for  determining day  versus  night  is  experimentally  determined.  The  results  are  provided  to  the  Serial  Monitor for  display.  The  example  sketch  was  created  using  the  Arduino  IDE. 

//******************************************************************* 

//opta_photocell 

// - Reads analog voltage at A0 connected to PDV-P8001 circuit 

// - Photocell in series with 100k Ohm resistor 

//S. Barrett, 01.05.24 

//This example code is in the public domain. 

int photo_reading; 

int photo_threshold = 50; 

void setup() 

{ 

Serial.begin(9600); 

analogReadResolution(12); 

//set 12 to 16 bits
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} 

void loop() 

{ 

//Read the input on analog input I1 corresponding to A0: 

photo_reading = analogRead(A0); 

//Print out value from I1 

Serial.print("Photo sensor reading: "); 

Serial.println(photo_reading); 

if(photo_reading > photo_threshold)//night 

{ 

Serial.println("Night"); 

} 

else 

{ 

Serial.println("Day"); 

} 

delay(2000); 

} 

//******************************************************************* 

VCC = 12 VDC 

Rf 

100K

+Vcc

-

to A0 

Vout = - (I Rf) 

+ 

CdS photoconductive photocell: 

I 

--   night, 200 KOhm 

-Vcc

--   bright daylight, 400 Ohms 

a) CdS photoconductive photocell 

b) Transimpedance amplifier 

(current-to-voltage converter) 

VCC = 5 VDC 

Rf 

Rf 

+Vcc

+Vcc

-

-

I 

Vout = - (I Rf) 

Vout = - (I Rf) 

+ 

+ 

-Vcc

-Vcc

c) Photodiode with transimpedance amplifier. 

d) Phototransistor with transimpedance amplifier. 

Fig.  4.9  Light  sensors
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4.4.4.2  Photodiode  and  Phototransistor 

The  photodiode  and  phototransistor  are  semiconductor  devices  that  generate  current  in  the presence  of  light.  They  are  typically  used  with  an  op  amp  based  transimpedance  amplifier (Fig. 4.9b)  to  convert  the  current  to  a  voltage. 3

The  photodiode  (Fig. 4.9c)  is  used  in  the  reverse  bias  or  photoconductive  mode.  The generated  current  flowing  through  the  feedback  resistor  (.  R f )  provides  the  output  voltage (.  Vout ).  The  phototransistor  generates  more  current  but  responds  slower  in  response  to  light changes. 

Optical  links  are  used  to  isolate  one  circuit  from  another,  provide  a  communication  link, or  provide  isolation  in  an  industrial  application.  An  optical  link  may  be  formed  by  using  an LED  coupled  with  a  photodiode  or  phototransistor  responsive  to  the  LED  wavelength  via an  optical  fiber. 

Example: Optical fiber link.  Industrial  Fiber  Optics  manufacturers  a  series  of  optical  emitters  (LEDs)  at  a  wide  variety  of  wavelengths  (e.g.  IF–E93  (green),  IF–E97  (red),  IF–E92B 

(blue)).  They  also  manufacture  a  wide  variety  of  optical  detectors  including  photo  diodes (e.g.  IF–D91B),  transistors  (e.g.  IF–D92B),  and  Darlingtons  (e.g.  IF–D93B)  (Industrial  Fiber Optics). 

In  this  application  we  use  an  optical  fiber  to  couple  a  light  emitting  diode  to  a  photodiode to  form  an  optical  data  link.  We  start  with  some  background  information  on  optical  fibers. 

Optical  fibers  are  used  to  link  two  devices  via  light  rather  than  an  electronic  signal.  In  a typical  application  an  electronic  signal  is  converted  to  light,  transmitted  down  the  optical fiber,  and  converted  back  to  an  electronic  signal. 

As  shown  in  Fig. 4.10a  an  optical  fiber  consists  of  several  concentric  layers  of  material including  the  core  where  light  is  transmitted,  the  cladding,  the  buffer,  and  the  protective outer  jacket.  Light  is  transmitted  through  the  fiber  via  the  concept  of  total  internal  reflection. 

The  core  material  is  more  optically  dense  than  the  cladding  material.  At  shallow  entry  angles the  light  reflects  from  the  core/cladding  boundary  and  stays  within  the  fiber  core  as  shown  in (b).  This  allows  for  the  transmission  of  light  via  fiber  for  long  distances  with  limited  signal degradation. 

To  provide  an  interface  between  an  electronic  signal  and  the  fiber,  an  optical  emitter  is used  as  shown  in  (c).  The  optical  emitter  contains  a  light  emitting  diode  (LED)  as  the  light source.  At  the  far  end  of  the  optical  fiber  an  optical  detector  is  used  to  convert  the  light  signal back  to  an  electronic  one. 

As  previously  mentioned,  it  is  important  to  note  that  optical  emitters,  detectors,  and  fibers are  available  in  a  variety  of  wavelengths.  It  is  essential  that  the  emitter,  detector,  and  fiber are  capable  at  operating  at  the  same  optical  wavelengths. 

3  Operational  amplifiers  are  discussed  later  in  the  chapter. 

[image: Image 39]
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buffer

jacket 

cladding 

core 

a) optical fiber layers 

b) total internal reflection 

optical fiber

electronic digital 

signal in 

optical emitter 

electronic digital 

(LED inside) 

signal out 

c) optical communication link 

optical detector 

(detector electronics inside) 

Fig.  4.10  Optical  fibers 

Example: Optical fiber link.  In  this  example  we  use  a  transistor  (PN2222)  to  switch  the  red LED  (660  nm,  IF-E97,  .  V f = 1 .  7 , I f  40 mA)  on/off.  The  transistor  is  driven  by  an  Opto PLC  relay  output  as  shown  in  Fig. 4.11. On  the  receiving  end  we  use  a  photodiode  (IF–91B) with  a  transimpedance  amplifier  to  convert  the  light  signal  back  to  an  electronic  signal. 

We  use  an  Arduino  IDE  based  sketch  to  generate  a  digital  signal.  The  resulting  input  and output  waveforms  for  the  optical  link  are  shown  in  Fig. 4.11.  The  0  VDC  reference  point  for each  signal  is  shown  as  cursors  on  the  left  side  of  the  image.  Note  the  signal  inversion  from input  to  output.  Later  in  the  chapter  we  explore  how  to  use  operational  amplifier  building blocks  to  condition  the  signal  to  desired  characteristics. 

[image: Image 40]
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optical fiber 

optical emitter 

(LED inside) 

optical detector 

(detector inside) 

12 VDC

12 VDC 

1 M

from 



12 VDC 

control 

270 

algorithm 

+12V

from 

F-E97 

control 

660 nm 

+ 

algorithm 

2 

red LED 

-

7 

6 

(1.9V@40 mA) 

V

3 

out 

from Opta 

+  4 

Relay 

IF-D91B

10K

Output 

270 

from Opta 

-12V 

Relay 

F-E97 

TL071 

+ 

660 nm 

Output 

red LED 

(1.9V@40 mA) 

Fig.  4.11  Interface  for  optical  fibers
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//**************************************************************************** 

//Opta_opto_link 

// 

//S. Barrett, 01.15.24 

//This example code is in the public domain. 

int

opto_high_time, opto_low_time; 

void setup() 

{ 

Serial.begin(9600); 

//serial monitor BAUD rate 

pinMode(D0, OUTPUT); 

//Initialize Relays outputs 

pinMode(LED_D0, OUTPUT); 

//Initialize Opta LEDs 

} 

void loop() 

{ 

digitalWrite(D0, HIGH); 

//Relay 1 on 

digitalWrite(LED_D0, HIGH); 

//LED 1 on 

delay(25); 

//PWM: high baseline 

digitalWrite(D0, LOW); 

//Relay 1 off 

digitalWrite(LED_D0, LOW); 

//LED 1 off 

delay(75); 

//PWM: low baseline 

} 

//***************************************************************** 

4.4.5

Tilt  Sensor 

CTi  Sensors  manufactures  a  series  of  dual–axis  inclinometers  equipped  with  three–access accelerometers.  The  sensor  outputs  may  either  be  digital  or  analog.  We  explore  the  TILT– 

15–S–90  that  provides 

◦

. ±90.  inclinometer  sensing  for  both  the  X  and  Y  axis.  The  sensor may  be  powered  from  4.1  to  38  VDC.  We  use  a  12  VDC  supply  to  power  the  sensor.  We  also use  the  sensor’s  analog  output.  The  sensor  provides  25  mV  per  degree  over  the  full 

◦

. ±90. 

range.  The  analog  output  voltage  ranges  from  0.25  V  to  4.75  VDC  (www.CTiSensors.com). 

Example: Tilt sensor In  this  example  we  use  a  CTi  TILT–15–X–90  sensor  to  measure  the angle  between  a  stationary  and  movable  strut  as  shown  in  Fig. 4.12.  We  use  the  sensor’s analog  OutX  output.  The  sensor  provides  0.25V  at  minus  90◦

◦

. 

tilt  and  4.75V  at  plus  90.  . It  

has  a  sensitivity  of  25  mV  per  degree  at  tilt  measurements  between  the  two  extremes. 

The  OutX  signal  is  fed  to  Arduino  Opta  input  I1  (A0).  The  value  from  the  ADC  converter is  mapped  to  an  angular  value.  At  0.25  V  the  ADC  output  is  approximately  51;  whereas,  at 4.75  V  the  ADC  output  is  approximately  972.  We  use  these  values  with  the  Arduino  map function  to  convert  the  ADC  readings  to  an  angular  value  between  minus  90  and  plus  90◦

.  . 

[image: Image 42]
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+90 degrees 

horizontal stationary strut 

bearing ring 

0 degrees 

(between struts) 

12 VDC 

Ground

OutX - to A0




movable strut 

-90 degrees 

X 

Fig.  4.12  CTi  TILT–15–S–90  sensor  (www.CTiSensors.com) 

//*********************************************************************** 

//tilt_test: 

//- CTi tilt sensor analog output OUTX is connected to Arduino 

//  UNO R3 pin A0. 

//- The sketch reads ADC value at A0, maps to degree, and displays 

//  value on the Serial Monitor every second. 

//This example code is in the public domain. 

int analogPin = A0; 

//sensor OUTX 

int value=0; 

//value read from A0 

int tilt; 

//angular displacement 

void setup() 

{ 

Serial.begin(9600); 

//configure Serial Monitor 

} 

void loop() 

{ 

value = analogRead(analogPin); 

//read the input pin 

Serial.print("Sensor reading: "); 
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Serial.println(value); 

//sensor reading 

tilt = map(value, 51, 972, -90, 90); 

Serial.print("Tilt reading: "); 

Serial.println(tilt); 

//tilt value 

Serial.println(" "); 

delay(1000); 

} 

//*********************************************************************** 

4.4.6

Environmental  Sensors 

In  this  section  we  concentrate  on  the  MQ  series  of  gas  and  environmental  sensors.  The  MQ 

series  of  sensors  consists  of  a  metal  oxide  semiconductor  active  element.  The  electrical resistance  of  the  active  element  varies  in  the  presence  of  a  specific  gas  or  gases.  A  sample of  available  MQ  sensors  is  shown  in  Fig. 4.13  (www.mysensors.org). 

An  MQ  sensor  is  typically  used  in  a  voltage  divider  circuit  as  shown  in  Fig. 4.14a.  In  the presence  of  a  specific  gas  or  gases,  the  resistance  of  the  sensing  element  (.  RS)  varies.  The value  of  .  RS  is  in  series  with  a  fixed  load  resistor  (.  RL )  forming  a  voltage  divider  network. 

The  output  voltage  is  an  indication  of  the  gas  concentration.  Many  of  the  sensors  in  the MQ  series  require  a  heater  voltage  as  shown  in  Fig. 4.14b.  Figure  4.14c shows  the physical configuration  of  the  MQ  series  of  sensors.  SparkFun  provides  a  breakout  board  to  allow an  MQ  sensor  to  interface  with  a  standard  prototype  board  (www.mysensors.org, www. 

SparkFun.com). 

To  develop  an  interface  circuit  for  an  MQ  sensor,  complete  the  following  steps: 

•  Choose  a  specific  detectable  gas  of  interest. 

•  Choose  an  appropriate  sensor  from  Fig. 4.13. 

•  Determine  key  interface  parameters  as  provided  in  Fig. 4.13. 

•  Implement  the  interface  circuit  as  shown  in  Fig. 4.14b. 

•  Select  an  appropriate  value  of  load  resistor  (.  RL).  A  suggested  value  of  load  resistance is  provided  in  the  sensor’s  data  sheet. 4 It  is  recommended  to  use  a  potentiometer  that includes  the  value  of  suggested  load  resistance  as  the  load  resistor.  This  will  allow  the adjustment  of  circuit  sensitivity  to  a  specific  level  of  gas  concentration. 

•  Write  an  Arduino  sketch  to  read  the  analog  output  voltage  from  the  sensor  interface circuit,  set  a  threshold  for  detection,  and  illuminate  an  LED  and  sound  a  buzzer  when  the gas  is  detected. 

Example. MQ sensor.  In  this  example  we  develop  an  interface  circuit  and  an  Arduino  Opta PLC  IDE  sketch  as  a  smoke  detector.  We  use  the  MQ–4  sensor  as  the  active  element.  The 4  Data  sheets  for  many  of  the  MQ  sensors  are  provided  at  www.mysensors.org. 
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MQ-2

liquefied petroleum gas (LPG), propane, hydrogen, methane 

V  < 24V, V  = 5V, R  = 31 ohms, P  < 900 mW, preheat: 48 hours 

C

H

H

H

MQ-3

alcohol, benzene, methane, hexane, LPG, carbon monoxide 

V  = 5V, V  = 5V, R  = 33 ohms, P  < 750 mW, preheat: 24 hours 

C

H

H

H

MQ-4 

high sensitivity to methane and natural gas, lower sensitivity to alcohol and smoke V  = 5V, V  = 5V, R  = 33 ohms, P  < 750 mW, preheat: 24 hours 

C

H

H

H

MQ-6

liquefied petroleum gas (LPG) 

V  < 24V, V  = 5V, R  = 26 ohms, P  < 950 mW, preheat: 24 hours 

C

H

H

H

MQ-7

carbon monoxide 

V  = 5V,  R  = 33 ohms, P  < 350 mW, preheat: 48 hours 

C

H

H

V  : alternates between 5V for 60s and 1.4V for 90s 

H

MQ-8 

hydrogen 

V  = 5V, V  = 5V, R  = 29 ohms, P  < 900 mW, preheat: 48 hours 

C

H

H

H

MQ-9 

methane, propane, carbon monoxide 

V <10V, R  = 31 ohms, P  < 350 mW, preheat: 48 hours 

C < 

H

H

V  : alternates between 5V for 60s and 1.5V for 90s 

H

MQ-131 

ozone 

V  = 5V, V  = 6V, R  = 31 ohms, P  < 1,100 mW, preheat: 24 hours 

C

H

H

H

MQ-135 

ammonia, nitrogen oxide, alochol, benzene, smoke, carbon dioxide 

V  = 5V, V  = 5V, R  = 33 ohms, P  < 800 mW, preheat: 24 hours 

C

H

H

H

MQ-138 

hexane, benzene, ammonia, alcohol, smoke, carbon monoxide 

V  = 5V, V  = 5V, R  = 31 ohms, P  < 800 mW, preheat: 24 hours 

C

H

H

H

MQ-214 

methane, LPG, butane, propane 

V  = 6V 

C

Fig. 4.13  MQ  sensor  series.  Data  sheets  for  many  of  the  MQ  sensors  are  provided  at  www.mysensors. 

org 

manufacturer’s  data  sheet  recommends  a  load  resistance  of  20  k.  .  A  100  k.    potentiometer, set  for  20  k.  ,  serves  as  the  load  resistor  as  shown  in  Fig. 4.15  or  a  fixed  resistor  may  be used.  In  clear  air  Vout  is  below  1.0  V.  In  the  presence  of  smoke  Vout  approaches  2.0  V. 

The  ladder  logic  sketch  provided  in  Fig. 4.16  senses  Vout  and  activates  a  Sonalert  when smoke  is  detected  at  a  set  sensitivity  level.  The  threshold  value  for  activation  is  set  for  Vout at  1.0  VDC. 

The  MQ  series  of  sensors  may  be  calibrated  to  provide  a  reading  in  gas  parts  per  million, or  “PPM.”  The  interested  reader  is  referred  to  procedures  in  the  appropriate  data  sheet (Egironi  4). 

[image: Image 43]
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sensing element 

A

B



RS 

+ 

V_ C 

RL

V = R  (V )/ (R  + R ) 

O 

L

C

S

L

a) electrical resistance (RS) of the sensing element varies in the presence of a specific gas or gases. 

sensing element 

A

B



RS 

H

H



RH 

+ 

V_ C 

RL

V = R  (V )/ (R  + R ) 

O 

L

C

S

L

b) many of the MQ series of sensors require an applied heater voltage. 

c) MQ sensors and MQ breakout board 

(Sensor images courtesy of SparkFun Electronics, Inc. CC BY-NC-SA (www.sparkfun.com)). 

Fig.  4.14  MQ  sensor  interface

[image: Image 44]
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MQ-4 sensor 

Sonalert 

SparkFun BOB-08891 

sensing element 

Vout 

A1

B1 

RS 

to 

+

12 VDC 

7805 

H1

GND 

voltage 

1.0 VDC 

regulator 

RH MQ-4 

0.1 uF 

R  = 100 kOhm 

L

potentiometer 

DVM 

set for 20 kOhm 

-

Fig.  4.15  MQ  sensor  test  circuit.  Sensor  images  courtesy  of  Sparkfun  electronics,  (CC  BY–NC–SA) (www.sparkfun.com)
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Fig.  4.16  MQ  sensor  ladder  logic  sketch 

4.4.7

Greenhouse  Sensors 

In  Chap. 5  we  explore  a  variety  of  sensors  to  measure  the  temperature,  humidity,  soil  moisture,  and  rain  barrel  water  level  within  an  instrumented  greenhouse. 

4.5

Output  Devices  and  Actuators 

An  external  device  should  not  be  connected  to  a  controller  without  first  performing  careful interface  analysis  to  ensure  the  voltage,  current,  and  timing  requirements  of  the  controller and  the  external  device  are  compatible.  In  this  section,  we  describe  interface  considerations for  a  wide  variety  of  external  devices.  We  begin  with  the  interface  for  a  single  light  emitting diode. 

4.6

Light  Emitting  Diodes  (LEDs) 

An  LED  is  typically  used  as  a  logic  or  status  indicator  to  inform  the  presence  of  a  logic  one or  a  logic  zero  at  a  specific  pin  of  a  microcontroller.  An  LED  has  two  leads:  the  anode  or positive  lead  and  the  cathode  or  negative  lead. 

To  properly  bias  an  LED,  the  anode  lead  must  be  biased  at  a  level  approximately  1.7–2.2  V 

higher  than  the  cathode  lead.  This  specification  is  known  as  the  forward  voltage  (.  V f ) of the
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Vcc 

Vcc = 5 VDC 

PLC Relay Output 

V

I
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DIODE 

R2 
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IDIODE

R 

= 330 1W 
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_ 
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1 

a) Interface circuit. 

c) LED interface for PLC 

b) LED interface 

(V

= 2 V, I

= 30 mA) 

(V

= 2 V, I

= 15 mA) 

DIODE

DIODE

DIODE

DIODE

Fig.  4.17  LED  interface 

LED.  The  LED  current  must  also  be  limited  to  a  safe  level  known  as  the  forward  current (.  I f ).  The  diode  voltage  and  current  specifications  are  usually  provided  by  the  manufacturer. 

A  generic  interface  circuit  for  a  controller  is  provided  in  Fig. 4.17a.  A  logic  high  control signal  from  a  controller  is  applied  to  the  transistor  base.  The  NPN  transistor  acts  as  a  switch and  allows  collector  current  flow  from  the  voltage  source  (Vcc)  through  the  load  to  ground. 

The  value  of  the  limiting  resistor  .  R 2 is  calculated  based  on  the  desired  load  voltage  and current.  The  resistor .  R 2 is  calculated  as: 

.  R 2 =  (Vcc −  VL O AD )/IL O AD

The  value  of.  R 1 is  determined  to  ensure  VBE  is  greater  than  0.7  VDC.  An  example  of  an LED  biasing  circuit  is  provided  in  Fig. 4.17b.  An  NPN  transistor  such  as  a  2N2222  (PN2222 

or  MPQ2222)  is  used.  A  resistor  value  of  220.    is  calculated  for.  R 2. 

Figure  4.17c  provides  the  PLC  interface  circuit  for  a  10  mm  LED  with  the  voltage  and current  characteristics  shown.  The  source  voltage  is  set  for  12  VDC. 

4.7

Annunciators–Sonalerts,  Beepers,  Buzzers 

In  Fig. 4.15, we  use  a  Sonalert  (Mallory  #PK–27N25WQ,  3–28  VDC)  to  provide  an  audible warning  of  detected  smoke.  The  Sonalert  may  be  directly  driven  by  the  Opta  PLC  relay output.  Sonalerts,  beepers,  and  buzzers  are  available  in  a  wide  variety  of  audible  frequencies. 

4.8

Electromechanical  Devices 

In  this  section  we  discuss  the  interface  of  a  number  of  electromechanical  devices  including DC  motors,  linear  actuators,  pumps,  and  solenoid  controlled  valves. 
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4.9

DC  Motors 

Often  a  controller  is  used  to  control  a  high  power  motor  load.  To  properly  interface  the  motor to  the  controller,  we  must  be  familiar  with  the  different  types  of  motor  technologies.  Motor types  are  illustrated  in  Fig. 4.18. 

•  DC motor:  A  DC  motor  has  a  positive  and  negative  terminal.  When  a  DC  power  supply of  suitable  current  rating  is  applied  to  the  motor  it  will  rotate.  If  the  polarity  of  the  supply is  switched  with  reference  to  the  motor  terminals,  the  motor  will  rotate  in  the  opposite direction.  The  speed  of  the  motor  is  roughly  proportional  to  the  applied  voltage  up  to  the rated  voltage  of  the  motor. 

•  Servo motor:  A  servo  motor  provides  a  precision  angular  rotation  for  an  applied  pulse width  modulation  duty  cycle.  As  the  duty  cycle  of  the  applied  signal  is  varied,  the  angular displacement  of  the  motor  also  varies.  This  type  of  motor  is  used  to  change  mechanical positions  such  as  the  steering  angle  of  a  wheel. 

•  Stepper motor:  A  stepper  motor  as  its  name  implies  provides  an  incremental  step  change in  rotation  (typically  2.5◦

. 

per  step)  for  a  step  change  in  control  signal  sequence.  The  motor is  typically  controlled  by  a  two  or  four  wire  interface.  For  the  four  wire  stepper  motor, the  microcontroller  provides  a  four  bit  control  sequence  to  rotate  the  motor  clockwise.  To turn  the  motor  counterclockwise,  the  control  sequence  is  reversed.  For  low  power  control signals,  MOSFETs  or  power  transistors  are  used  to  provide  for  the  proper  voltage  and current  requirements  of  the  pulse  sequence.  Many  PLCs  have  the  capability  to  drive  the stepper  motor  directly. 

Space  does  not  allow  a  full  discussion  of  all  motor  types.  We  will  concentrate  on  those common  in  industrial  control  applications.  Let’s  take  a  closer  look  at  several  motor  types. 

4.10

DC  Motor  Speed  and  Direction  Control 

As  shown in Fig.  4.18a, the  speed  of  a  DC  motor  is  varied  by  changing  the  effective  voltage delivered.  At  the  rated  motor  voltage,  the  motor  runs  a  full  speed.  When  fifty  percent  of  the rated  motor  voltage  is  delivered  to  the  motor,  it  runs  at  approximately  50%  of  rated  speed, etc.  The  effective  voltage  delivered  to  the  motor  is  controlled  by  pulse  width  modulation (PWM). 
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Fig.  4.18  Motor  types 

4.10.1  Pulse  Width  Modulation 

Motor  speed  may  be  varied  by  changing  the  applied  motor  voltage.  PWM  control  signal techniques  may  be  used  to  precisely  control  the  motor  speed.  With  PWM  the  duty  cycle  of the  motor  control  signal  is  varied. 

The  duty  cycle  of  the  PWM  signal  expressed  as  a  percentage  (high  time/period  *  100) will  also  be  the  percentage  of  the  motor  supply  voltage  applied  to  the  motor,  and  hence  the percentage  of  rated  full  speed  at  which  the  motor  will  rotate.  We  explore  DC  motor  control techniques  in  the  Application  section  later  in  the  chapter. 

Example.  This  is  provided  as  an  illustrative  example.  It  is  not  practical  for  a  real  world application  due  to  the  mechanical  characteristics  of  the  Opta’s  mechanical  relay  outputs. 

With  that  said,  there  are  important  concepts  here  to  explore. 

The  baseline  Opta  PLC  is  not  equipped  with  a  dedicated  hardware  based  pulse  width modulation  system 5.  Instead,  we  use  a  technique  called  “bit  banging”  to  emulate  a  PWM 

system  using  software.  Bit  banging  may  be  employed  in  many  applications  when  a  software emulation  replaces  a  dedicated  hardware  system  (e.g.  UART,  SPI,  etc.). 

A  Brother  12  VDC,  1,500  RPM  DC  motor  equipped  with  an  optical  tachometer  is  used. 

The  hardware  configuration  for  the  example  is  provided  in  Fig. 4.19. 

5  In  Chap. 6,  we  explore  Opta  expansion  modules  that  provide  dedicated  PWM  support. 

[image: Image 46]
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Ground 

Green, I (Index) 

Yellow, B 

Black, A 

White, -5 to - 9 VDC 

Gray, Ground 

Red, +5 to +9 VDC 

Fig.  4.19  Opta  DC  motor  demonstration  circuit.  Images  used  courtesy  of  the  Arduino  team  (CC 

BY–NC–SA)  (www.arduino.cc) 

//**************************************************************************** 

//Opta_motor_demo 

//- 12 VDC, 1500 RPM motor 

//- Demonstrates ‘bit bang’ PWM 

//- PWM duty cycle provides motor 8 VDC and ˜1000 RPM 

// 

//S. Barrett, 01.15.24 

//***************************************************************************** 

int

i; 

int

motor_high_time, motor_low_time; 

int

troubleshoot = 0; 

//turns serial monitor on/off 

void setup() 

{ 

Serial.begin(9600); 

//serial monitor BAUD rate 

pinMode(D0, OUTPUT); 

//Initialize Relays outputs

4.10
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pinMode(LED_D0, OUTPUT); 

//Initialize Opta LEDs 

digitalWrite(D0, HIGH); 

//Relay 1 on 

digitalWrite(LED_D0, HIGH); 

//LED 1 on 

delay(motor_high_time); 

//PWM: high baseline 

digitalWrite(D0, LOW); 

//Relay 1 off 

digitalWrite(LED_D0, LOW); 

//LED 1 off 

delay(motor_low_time); 

//PWM: low baseline 

} 

void loop() 

{ 

Serial.println("Duty cycle:25%"); 

for(i = 0; i <= 99; i++)

//duty cycle: 25% 

{ 

digitalWrite(D0, HIGH); 

//Relay 1 on 

digitalWrite(LED_D0, HIGH); 

//LED 1 on 

delay(25); 

//PWM: high baseline 

digitalWrite(D0, LOW); 

//Relay 1 off 

digitalWrite(LED_D0, LOW); 

//LED 1 off 

delay(75); 

//PWM: low baseline 

} 

Serial.println("Duty cycle:50%"); 

for(i = 0; i <= 99; i++)

//duty cycle: 50% 

{ 

digitalWrite(D0, HIGH); 

//Relay 1 on 

digitalWrite(LED_D0, HIGH); 

//LED 1 on 

delay(50); 

//PWM: high baseline 

digitalWrite(D0, LOW); 

//Relay 1 off 

digitalWrite(LED_D0, LOW); 

//LED 1 off 

delay(50); 

//PWM: low baseline 

} 

Serial.println("Duty cycle:75%"); 

for(i = 0; i <= 99; i++)

//duty cycle: 75% 

{ 

digitalWrite(D0, HIGH); 

//Relay 1 on 

digitalWrite(LED_D0, HIGH); 

//LED 1 on 

delay(75); 

//PWM: high baseline 

digitalWrite(D0, LOW); 

//Relay 1 off 

digitalWrite(LED_D0, LOW); 

//LED 1 off 

delay(25); 

//PWM: low baseline 

} 

} 

//*****************************************************************
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4.10.2  H  Bridge  Direction  Control 

For  a  DC  motor  to  operate  in  both  the  clockwise  and  counter  clockwise  direction,  the  polarity of  the  DC  motor  supplied  must  be  changed.  To  operate  the  motor  in  the  forward  direction, the  positive  battery  terminal  must  be  connected  to  the  positive  motor  terminal  while  the negative  battery  terminal  must  be  provided  to  the  negative  motor  terminal.  To  reverse  the motor  direction  the  motor  supply  polarity  must  be  reversed. 

An  H–bridge  is  a  circuit  employed  to  perform  this  polarity  switch.  The  H–bridge  circuit consists  of  four  electronic  switches  as  shown  In  Fig. 4.20. For  forward  motor  direction switches  1  and  4  are  closed;  whereas,  for  reverse  direction  switches  2  and  3  are  closed. 

Low  power  H–bridges  (500  mA)  come  in  a  convenient  dual  in  line  package  (e.g.,  754110). 

For  higher  power  motors,  a  H–bridge  may  be  constructed  from  discrete  components  as  shown in  Fig. 4.20.  The  ZTX451  and  ZTX551  are  NPN  and  PNP  transistors  with  similar  characteristics.  The  11DQ06  are  Schottky  diodes.  For  driving  higher  power  loads,  the  switching devices  are  sized  appropriately. 

If  PWM  signals  are  used  to  drive  the  base  of  the  transistors  (from  microcontroller  pins  pin 2  and  pin  3),  both  motor  speed  and  direction  may  be  controlled  by  the  circuit.  The  transistors motor 

motor 

supply 
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sw1

sw2 

sw1
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+

-

+

-
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sw3

sw4 
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1000uF 

200 

200 

11DQ06 

ZTX451 

ZTX451 

-

+

M 

11DQ06 

FWD

REV 

470 

ZTX551 

ZTX551 

470 

Fig.  4.20  H–bridge  control  circuit
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used  in  the  circuit  must  have  a  current  rating  sufficient  to  handle  the  current  requirements of  the  motor  during  start  and  stall  conditions. 

4.11

Linear  Actuator 

A  linear  actuator  is  a  specially  designed  motor  that  converts  rotary  to  linear  motion.  The linear  actuator  is  equipped  with  a  mechanical  rod  that  is  extended  when  asserted  in  one direction  and  retracted  when  the  polarity  of  assertion  is  reversed.  An  H–bridge  may  be  used to  control  a  linear  actuator  as  shown  in  Fig. 4.21. In  this  circuit  the  Opta  provides  forward and  reverse  signals  for  the  H–bridge  in  response  to  user  input.  Linear  actuator  forward  and reverse  switches  are  provided  at  Opta  inputs  A0  and  A1. 

a) linear actuator 

Micro Linear Actuator 

Mini Electric Waterproof 

Input voltage: 12 VDC 

supply voltage, 

Stroke length: 50 mm 

12 VDC 

Load capacity: 60 N 

No-load speed: 15 mm/s 

Opta PLC 

Opta PLC 

relay output1  relay output2 

+  +

+  +

H-bridge 

H-bridge 

Forward 

Reverse 

12 VDC 

1000uF 

200 

200 

11DQ06 

ZTX451 

ZTX451 

-

+

LA 

Forward 

Reverse 

11DQ06 

(from Opta 

ZTX451

ZTX451 

(from Opta 

Output 1) 

470 

ZTX551 

ZTX551 

470

Output 2) 

b) H-bridge control circuit. 

Fig.  4.21  Linear  actuator  control  circuit  (O’Berto)

138

4

Input Sensors, Output Actuators, and Interfacing

//************************************************************ 

//Opta_linear_actuator2 

//************************************************************ 

void setup() 

{ 

pinMode(PIN_A0, INPUT); 

//Opta I1: FWD 

pinMode(PIN_A1, INPUT); 

//Opta I2: REV 

pinMode(LED_D0, OUTPUT); 

//Opta LED1: FWD_LED 

pinMode(LED_D1, OUTPUT); 

//Opta LED2: REV_LED 

pinMode(D0, OUTPUT); 

//Opta D0: FWD_OUT 

pinMode(D1, OUTPUT); 

//Opta D1: REV_OUT 

} 

void loop() 

{ 

if(digitalRead(PIN_A0)) 

{ 

digitalWrite(LED_D0, HIGH); 

digitalWrite(D0, HIGH); 

delay(100); 

digitalWrite(LED_D0, LOW); 

digitalWrite(D1, LOW); 

delay(100); 

} 

else if(digitalRead(PIN_A1)) 

{ 

digitalWrite(LED_D1, HIGH); 

digitalWrite(D1, HIGH); 

delay(100); 

digitalWrite(LED_D1, LOW); 

digitalWrite(D1, LOW); 

delay(100); 

} 

else 

{ 

digitalWrite(LED_D0, LOW); 

digitalWrite(D0, LOW); 

digitalWrite(LED_D1, LOW); 

digitalWrite(D1, LOW); 

delay(100); 

} 

} 

//************************************************************
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4.12

Stepper  Motor  Control 

Stepper  motors  are  used  to  provide  a  discrete  angular  displacement  in  response  to  a  control signal  step.  There  are  a  wide  variety  of  stepper  motors  including  bipolar  and  unipolar  types with  different  configurations  of  motor  coil  wiring.  Due  to  space  limitations  we  only  discuss the  unipolar,  five  wire  stepper  motor.  The  internal  coil  configuration  for  this  motor  is  shown in  Fig. 4.22b. 

Often,  a  wiring  diagram  is  not  available  for  the  stepper  motor.  Based  on  the  wiring configuration  (Reference  Fig. 4.22b),  one  can  find  out  the  common  line  for  both  coils.  It has  a  resistance  that  is  one–half  of  all  of  the  other  coils.  Once  the  common  connection  is found,  one  can  connect  the  stepper  motor  into  the  interface  circuit.  By  changing  the  other connections,  one  can  determine  the  correct  connections  for  the  step  sequence.  To  rotate  the motor  either  clockwise  or  counterclockwise,  a  specific  step  sequence  must  be  sent  to  the motor  control  wires  as  shown  in  Fig. 4.22c and  f. 

A  microcontroller  does  not  have  sufficient  capability  to  drive  the  motor  directly.  Therefore,  an  interface  circuit  is  required  as  shown  in  Fig. 4.22d. The  Opta  PLC  relay  outputs  have a  sufficient  current  rating  to  drive  the  stepper  motor  directly  as  shown  in  (e).  The  speed  of motor  rotation  is  determined  by  how  fast  the  control  sequence  is  completed. 

1 

2 

3 

step 

4 

a) stepper motor rotates 

A (BR) C(RD)

(OR)

B(GR)  D(YL) 

a fixed angle per step. 

b) coil configuration. 

c) step sequence. 

12 VDC 

12 VDC 

12 VDC 

12 VDC 

12 VDC 

Opta 

Opta 

Opta 

Opta 

Relay Out 1 

Relay Out 2 

Relay Out 3 

Relay Out 4 

A(BR)

B(GR)

C(RD)

D(YL) 

A 

TIP130 

10K 

1N4001 

B 

TIP130 

10K 

C 

TIP130 

10K 

D 

TIP130 

10K 

(OR) 

d) microcontroller stepper motor interface circuit. 

e) Opta PLC stepper motor interface circuit. 

Fig.  4.22  Unipolar  stepper  motor  control.  Images  used  courtesy  of  the  Arduino  team  (CC  BY–NC– 

SA)  (www.arduino.cc)
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Fig.  4.23  Unipolar  stepper 

motor  control  circuit 

pot delay 
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A(YL)

B(RD)
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D(BR) 

1N4001 

(OR) 

Example:  The  Opta  PLC  relay  outputs  have  a  sufficient  current  rating  to  drive  the  stepper motor  directly.  In  the  following  example,  we  use  the  Opta  PLC  to  control  a  five  wire  JRP 

42BYG016  stepper  motor.  The  motor  requires  12  VDC,  160  mA  per  phase.  As  shown  in Fig. 4.23  a  pushbutton  switch  is  used  to  determine  motor  direction  (forward/reverse)  and  a potentiometer  is  used  to  set  the  step  delay. 

//********************************************************** 

//Opta_stepper2 

// 

//Purpose: Test output relays of the Opta with stepper motor 

//

- Use pushbutton (Opta I1) to set motor forward 

//

- Use pushbutton (Opta I2) to set motor forward 

//

- Use potentiometer (Opta I3) to set additional step 

// 

delay (pot_delay) 

// 

//author Arduino 

//Modified: S. Barrett, 11.17.24
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// 

// This is Open Source software. 

//********************************************************** 

unsigned int step_delay = 100; 

unsigned int pot_delay; 

unsigned int last_step = 1; 

unsigned int next_step; 

void setup() 

{ 

Serial.begin(9600); 

analogReadResolution(12); //4095 is the max value with 12 bits 

pinMode(PIN_A0, INPUT); 

//Opta inputs I1: FWD 

pinMode(PIN_A1, INPUT); 

//Opta inputs I2: REV 

pinMode(D0, OUTPUT); 

//Initialize Relays outputs 

pinMode(D1, OUTPUT); 

pinMode(D2, OUTPUT); 

pinMode(D3, OUTPUT); 

pinMode(LED_D0, OUTPUT);  //Initialize Opta LEDs 

pinMode(LED_D1, OUTPUT); 

pinMode(LED_D2, OUTPUT); 

pinMode(LED_D3, OUTPUT); 

} 

void loop() 

{ 

pot_delay = analogRead(A2); 

//Print out the value of pot_delay read from I3 

Serial.print("Pot delay (ms): "); 

Serial.println(pot_delay); 

if(digitalRead(PIN_A0))

//Forward 

{ 

while(digitalRead(PIN_A0)) 

//while FWD switch pressed 

{ 

if(last_step == 1) 

{ 

//Closes/opens contact relay 1 and turns on/off LED 1 

Serial.println("Forward - step 1"); 

digitalWrite(D0, HIGH); 

//Sets relay 1 on 

digitalWrite(LED_D0, HIGH); 

delay(step_delay + pot_delay); 

digitalWrite(D0, LOW); 

//Sets relay 1 off 

digitalWrite(LED_D0, LOW); 

delay(step_delay + pot_delay); 

next_step = 2; 

} 

else if (last_step == 2) 

{ 

//Closes/opens contact relay 2 and turns on/off LED 2 

Serial.println("Forward - step 2"); 

digitalWrite(D1, HIGH); 

//Sets relay 2 on

142

4

Input Sensors, Output Actuators, and Interfacing

digitalWrite(LED_D1, HIGH); 

delay(step_delay + pot_delay); 

digitalWrite(D1, LOW); 

//Sets relay 2 off 

digitalWrite(LED_D1, LOW); 

delay(step_delay + pot_delay); 

next_step = 3; 

} 

else if (last_step == 3) 

{ 

//Closes/opens contact relay 3 and turns on/off LED 3 

Serial.println("Forward - step 3"); 

digitalWrite(D2, HIGH); 

//Sets relay 3 on 

digitalWrite(LED_D2, HIGH); 

delay(step_delay + pot_delay); 

digitalWrite(D2, LOW); 

//Sets relay 3 off 

digitalWrite(LED_D2, LOW); 

delay(step_delay + pot_delay); 

next_step = 4; 

} 

else if (last_step == 4) 

{ 

//Closes/opens contact relay 4 and turns on/off LED 4 

Serial.println("Forward - step 4"); 

digitalWrite(D3, HIGH); 

//Sets relay 4 on 

digitalWrite(LED_D3, HIGH); 

delay(step_delay + pot_delay); 

digitalWrite(D3, LOW); 

//Sets relay 4 off 

digitalWrite(LED_D3, LOW); 

delay(step_delay + pot_delay); 

next_step = 1; 

} 

else 

{ 

; 

} 

last_step = next_step; 

}//end while 

}//end if 

if(digitalRead(PIN_A1))

//Reverse 

{ 

while(digitalRead(PIN_A1)) 

//while REV switch pressed 

{ 

if(last_step == 4) 

{ 

//Closes/opens contact relay 4 and turns on/off LED 4 

Serial.println("Reverse - step 4"); 

digitalWrite(D3, HIGH); 

//Sets relay 4 on 

digitalWrite(LED_D3, HIGH); 

delay(step_delay + pot_delay); 

digitalWrite(D3, LOW); 

//Sets relay 4 off 

digitalWrite(LED_D3, LOW); 

delay(step_delay + pot_delay); 

next_step = 3; 
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} 

else if (last_step == 3) 

{ 

//Closes/opens contact relay 3 and turns on/off LED 3 

Serial.println("Reverse - step 3"); 

digitalWrite(D2, HIGH); 

//Sets relay 3 on 

digitalWrite(LED_D2, HIGH); 

delay(step_delay + pot_delay); 

digitalWrite(D2, LOW); 

//Sets relay 3 off 

digitalWrite(LED_D2, LOW); 

delay(step_delay + pot_delay); 

next_step = 2; 

} 

else if (last_step == 2) 

{ 

//Closes/opens contact relay 2 and turns on/off LED 2 

Serial.println("Reverse - step 2"); 

digitalWrite(D1, HIGH); 

//Sets relay 2 on 

digitalWrite(LED_D1, HIGH); 

delay(step_delay + pot_delay); 

digitalWrite(D1, LOW); 

//Sets relay 2 off 

digitalWrite(LED_D1, LOW); 

delay(step_delay + pot_delay); 

next_step = 1; 

} 

else if (last_step == 1) 

{ 

//Closes/opens contact relay 1 and turns on/off LED 1} 

Serial.println("Reverse - step 1"); 

digitalWrite(D0, HIGH); 

//Sets relay 1 on 

digitalWrite(LED_D0, HIGH); 

delay(step_delay + pot_delay); 

digitalWrite(D0, LOW); 

//Sets relay 1 off 

digitalWrite(LED_D0, LOW); 

delay(step_delay + pot_delay); 

next_step = 4; 

} 

else 

{ 

; 

} 

last_step = next_step; 

}//end while 

}//end if 

} 

//****************************************************
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4.12.1  Sequencer  Control  Logic 

In  many  control  applications,  a  sequencer  is  used  to  implement  a  repeatable  fixed  sequence of  control  signals  as  shown  in  Fig. 4.24a. 

A  sequencer  is  implemented  using  a  series  of  binary  counters  operating  at  different  clock frequencies.  The  output  from  the  counters  are  provided  to  combinational  logic  circuitry  to generate  the  desired  control  signal  sequence  as  shown  in  Fig. 4.24b. 

To  implement  a  binary  counter  in  ladder  logic,  cross  coupled  timers  (e.g.  TON)  are used.  The  output  of  the  configuration  provides  a  square  wave  output  as  shown  in  Fig. 4.24c (BharadwajReddy). 

4.12.2  Stepper  Motor  Control–Ladder  Logic  Sequencer 

To  implement  a  stepper  motor  controller  in  ladder  logic,  two  counters  (A_Light  and  B_Light) are  used.  The  first  counter  operates  at  twice  the  frequency  of  the  second  counter.  The  two counters  with  their  accompanying  inverted  outputs  (A_Light’  and  B_Light’)  provide  the output  sequence  shown  in  Fig. 4.25a. 

To  achieve  the  desired  stepper  motor  control  signal  as  shown  in  Fig. 4.25c,  the  outputs from  the  counters  are  combined  using  combinational  logic  as  shown  in  Fig. 4.25b. The example  implemented  with  the  Arduino  PLC  IDE  is  shown  in  Figs. 4.26  and  4.27. 

4.13

DC  Solenoid  Control 

A  solenoid  provides  a  mechanical  insertion  (or  extraction)  when  asserted.  Often  the  solenoid is  coupled  with  valves  to  control  fluid  flow.  The  solenoid  may  be  directly  driven  by  the  Opta PLC  relay  outputs. 

Example:  Water  valve  control:  Solenoid  controlled  water  valves  are  available  from Adafruit  (www.adafruit.com). There  are  plastic  (#997)and  brass  (#996)  valves  available. 

The  plastic  valve  activates  from  6  VDC  at  160  mA  to  12  VDC  at  320  mA  while  the  brass valve  activates  from  6  VDC  at  1.6  A  to  12  VDC  at  3  A.  An  interface  circuit  for  the  plastic water  solenoid  valve  is  provided  in  Fig. 4.28. 

4.14

Transducer  Interface  Design  (TID) 

A  transducer  is  used  to  convert  a  physical  variable  such  as  temperature,  pressure,  or  light intensity  to  a  voltage  for  data  collection  and  analysis  by  a  controller.  The  controller  accepts voltages  between  its  power  supply  value  and  ground  for  analog–to–digital  conversion.  It  is
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Fig.  4.24  Sequencer  control  logic
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Fig.  4.25  Stepper  motor  controller  in  ladder  logic
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Fig.  4.26  Stepper  motor  controller  in  ladder  logic.  Using  PLC  IDE 

the  responsibility  of  the  system  designer  to  ensure  transducer  outputs  are  properly  conditioned  to  meet  these  constraints. 6

The  signal  conditioning  circuitry  is  called  the  transducer  interface.  The  objective  of  the transducer  interface  circuit  is  to  scale  and  shift  the  electrical  signal  range  to  efficiently  map the  output  of  the  input  transducer  to  the  input  range  of  the  analog–to–digital  converter  which 6  The  section  on  transducer  interface  design  is  adapted  from  “Electrical  Signals  and  Systems,”  Department  of  Electrical  Engineering,  United  States  Air  Force  Academy. 

[image: Image 49]
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Step 1 
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Fig.  4.27  Stepper  motor  controller  in  ladder  logic.  Using  PLC  IDE 

is  typically  0–5  VDC  or  0–3.3  VDC  for  microcontrollers  and  0–10  VDC  from  the  Arduino Opta  PLC. 

Figure  4.29  shows  the  transducer  interface  circuit  using  an  input  transducer.  This  process assumes  a  linear  input  transducer.  The  output  of  the  input  transducer  is  first  scaled  by  constant K.  As  an  example,  in  the  figure,  we  use  a  microphone  as  the  input  transducer  whose  output ranges  from.−5 VDC  to.+5 VDC.  The  input  to  the  analog–to–digital  converter  ranges  from 0  VDC  to  5  VDC.  The  scalar  multiplier  with  constant  K  maps  the  output  range  of  the  input

[image: Image 50]
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Fig.  4.28  Water  valve  interface  circuit  (www.adafruit.com).  Illustration  used  with  permission Fig. 4.29  Signal  conditioning  for  ADC.  A  block  diagram  of  the  signal  conditioning  for  an  analog–to– 

digital  converter.  The  range  of  the  sensor  voltage  output  is  mapped  to  the  analog–to–digital  converter input  voltage  range.  The  scalar  multiplier  maps  the  magnitudes  of  the  two  ranges  and  the  bias  voltage is  used  to  align  two  limits 

transducer  to  the  input  range  of  the  converter.  Naturally,  we  need  to  multiply  all  input  signals by .1 / 2 to  accommodate  the  mapping. 

Once  the  range  has  been  mapped,  the  signal  now  needs  to  be  shifted.  Note  that  the  scale factor  maps  the  output  range  of  the  input  transducer  as  .−2 .  5 VDC  to  .+2 .  5 VDC  instead of  0  VDC  to  5  VDC.  The  second  portion  of  the  circuit,  the  bias  stage,  shifts  the  range  by 2.5  VDC,  thereby  completing  the  correct  mapping.  Actual  implementation  of  the  circuit components  are  accomplished  using  operational  amplifiers. 

In  general,  the  scaling  and  bias  process  may  be  described  by  two  equations: 

.  V 2max =  (V 1max ×  K ) +  B

.  V 2min =  (V 1min ×  K ) +  B
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The  variable  .  V 1max represents  the  maximum  output  voltage  from  the  input  transducer. 

This  voltage  occurs  when  the  maximum  physical  variable  (.  X max)  is  presented  to  the  input transducer.  This  voltage  must  be  scaled  by  the  scalar  multiplier  (K)  and  then  a  DC  offset bias  voltage  (B)  is  added  to  provide  the  voltage .  V 2max to  the  input  of  the  ADC  converter. 

Similarly,  The  variable  .  V 1min represents  the  minimum  output  voltage  from  the  input transducer.  This  voltage  occurs  when  the  minimum  physical  variable  (.  X min) is presented to  the  input  transducer.  This  voltage  must  be  scaled  by  the  scalar  multiplier  (K)  and  then have  a  DC  offset  bias  voltage  (B)  added  to  produce  voltage  .  V 2min to  the  input  of  the  ADC 

converter. 

Usually,  the  values  of  .  V 1max and  .  V 1min are  provided  with  the  documentation  for  the transducer.  Also,  the  values  of  .  V 2max and  .  V 2 min  are  known.  They  are  the  high  and  low reference  voltages  for  the  ADC  system  (usually  5  and  0  VDC  for  a  microcontroller).  We thus  have  two  equations  and  two  unknowns  to  solve  for  K  and  B.  The  circuits  to  scale  by  K 

and  add  the  offset  B  are  usually  implemented  with  operational  amplifiers. 

Example:  A  photodiode  is  a  semiconductor  device  that  provides  an  output  current  corresponding  to  the  light  impinging  on  its  active  surface.  The  photodiode  is  used  with  a transimpedance  amplifier  to  convert  the  output  current  to  an  output  voltage.  A  photodiode/transimpedance  amplifier  provides  an  output  voltage  of  0  V  for  maximum  rated  light intensity  and .−2 .  50 VDC  output  voltage  for  the  minimum  rated  light  intensity. 

Calculate  the  required  values  of  K  and  B  for  this  light  transducer  so  it  may  be  interfaced to  a  microcontroller’s  ADC  system. 

.  V 2max =  (V 1max ×  K ) +  B

.  V 2 mi n =  (V 1 min ×  K ) +  B

. 5 .  0  V =  ( 0  V ×  K ) +  B

. 0  V

=  (−2 .  50  V ×  K ) +  B

The  values  of  K  and  B  may  then  be  determined  to  be  2  and  5  VDC,  respectively.  The transducer  interface  circuit  is  then  implemented  using  operational  amplifiers  (op  amps). 

Example:  It  was  determined  that  the  values  of  K  and  B  were  2  and  5  VDC,  respectively. 

The  two–stage  op  amp  circuitry  provided  in  Fig. 4.30  implements  these  values  of  K  and B.  The  first  stage  provides  an  amplification  of  .−2 due  to  the  use  of  the  inverting  amplifier configuration.  In  the  second  stage,  a  summing  amplifier  is  used  to  add  the  output  of  the  first stage  with  a  bias  of.−5 VDC.  Since  this  stage  also  introduces  a  minus  sign  to  the  result,  the overall  result  of  a  gain  of  2  and  a  bias  of .+5 VDC  is  achieved. 

4.15

Operational Amplifier Overview

151

Rf = 20K 

Rf = 10K 

+Vcc

Ri = 10K

+V

-

cc

Ri = 10K 

-

Vin 

+ 

-Vcc 

Vout 

Ri = 10K 

+ 

-Vcc 

-V

bias = 5 VDC

cc 

10K 

Fig.  4.30  Operational  amplifier  implementation  of  the  transducer  interface  design  (TID)  example circuit 

4.15

Operational  Amplifier  Overview 

The  operational  amplifier  or  op  amp  is  used  extensively  in  applications  to  interface  transducers.  We  begin  the  section  exploring  op  amp  origins  and  development.  We  then  describe the  ideal  op  amp  and  use  it  as  a  benchmark  for  real  world,  nonideal  op  amps.  We  investigate  how  to  compensate  for  nonideal  op  amp  parameters.  Next,  we  review  common  op  amp circuit  configurations  used  extensively  in  instrumentation  applications.  We  use  the  circuit configurations  to  explore  transducer  interface  and  applications. 

4.15.1  Operational  Amplifier  Origins 

The  operational  amplifier  or  op  amp  is  a  two  input,  single  output  amplifier.  The  output  is an  amplified  version  of  the  difference  between  the  two  inputs.  It  is  quite  common  in  bio– 

related  instrumentation  applications  for  signal  amplification,  conditioning,  filtering,  and  may be  used  for  mathematical  operations. 

The  first  op  amps  were  developed  in  the  1940s  using  vacuum  tube  technology.  In  1947 

John  Ragazzini  in  his  paper  “Analysis  of  Problems  in  Dynamics  by  Electronic  Circuits” 

was  the  first  to  use  the  term  operational  amplifier.  He  and  is  co–authors  wrote  “The  term 

‘operational  amplifier’  is  a  generic  term  applied  to  amplifiers  whose  gain  functions  are such  as  to  enable  them  to  perform  certain  useful  operations  such  as  summation,  integration, differentiation,  or  a  combination  of  such  operations  (Ragazzini).” 

Op  amp  development  continued  for  several  decades  with  improvement  in  features  and implementation  technology.  The  first  monolithic,  i.e.  single  chip,  integrated  circuit  op  amp, the  uA702,  was  designed  by  Bob  Widlar  of  Fairchild  Semiconductor.  It  was  released  in 1963.  An  improved  op  amp,  the  uA709,  also  designed  by  Widlar,  was  released  in  1965. 

Widlar  also  designed  the  LM101  for  the  National  Semiconductor  Company.  The  uA741  op
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amp  was  released  by  Fairchild  Semiconductor  in  1968.  It  quickly  became  quite  popular  and is  still  in  production  today.  An  op  amp  with  a  single  polarity  power  supply,  the  LM324, was  released  in  1972.  It  too  is  still  quite  popular  today  and  is  used  in  multiple  applications (Jung). 

4.15.2  Ideal  Characteristics 

A  generic  ideal  operational  amplifier  is  illustrated  in  Fig. 4.31.  The  op  amp  is  an  active device  (requires  power  supplies)  equipped  with  two  inputs,  a  single  output,  and  several  DC 

voltage  source  inputs  (Sedra  and  Smith,  Faulkenberry). 

The  two  op  amp  inputs  are  labeled  Vp,  or  the  noninverting  input,  and  Vn,  the  inverting input.  The  output  of  the  op  amp  is  determined  by  taking  the  difference  between  Vp  and  Vn and  multiplying  the  difference  by  the  op  amp’s  open  loop  gain  (.  Avol).  This  gain  is  typically a  large  value  much  greater  than  50,000. 

Due  to  the  large  value  of  .  Avol,  it  does  not  take  much  of  a  difference  between  Vp  and Vn  before  the  op  amp  will  saturate.  When  an  op  amp  saturates,  it  does  not  damage  the  op amp,  but  the  output  is  limited  to  values  slightly  less  than  the  supply  voltages  .±.  Vcc.  This will  clip  the  output,  and  hence  distort  the  signal,  at  levels  slightly  less  than. ± Vcc. To prevent saturation,  op  amps  are  typically  used  in  a  closed  loop,  negative  feedback  configuration. 

Example: Comparator level detector.  The  comparator  level  detector  is  a  common  op  amp building  block.  It  is  configured  in  an  open  loop  configuration.  One  input  is  tied  to  a  reference voltage  threshold.  The  threshold  setting  is  typically  provided  by  a  potentiometer  connected between  the  supply  voltage  and  ground.  The  input  signal  is  provided  to  the  other  input  as shown in Fig.  4.32  (Stout  and  Kaufman). 
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Fig.  4.31  Ideal  operational  amplifier  characteristics
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Fig.  4.32  Op  amp  comparator  level  detector  circuit 

When  the  input  signal  is  higher  than  the  threshold  voltage,  the  op  amp  saturates  toward the  positive  supply  value.  When  the  input  signal  is  less  than  threshold  signal,  the  op  amp saturates  toward  the  negative  supply  value.  A  comparator  circuit  may  be  used  to  restore  a degraded  digital  signal  to  its  original  values.  In  this  case  a  single–sided  op  amp  such  as  the LM324  may  be  used  with  supply  voltages  of  5  VDC  and  ground  for  a  5  VDC  digital  system. 

An  ideal  operational  does  not  exist  in  the  real  world.  However,  it  is  a  good  first  approximation  for  use  in  developing  op  amp  application  circuits.  As  shown  in  Fig. 4.31  an  op  amp has  the  following  ideal  characteristics  (Sedra  and  Smith): 

•  Input  currents  In  and  Ip  equal  to  zero; 

•  Infinite  input  impedance; 

•  Vp  and  Vn  input  voltages  equal  to  one  another; 

•  Extremely  high  open  loop  gain; 

•  Output  impedance  of  zero; 

•  Infinite  bandwidth; 

•  High  slew  rate;  and 

•  Infinite  common  mode  rejection. 

We  use  these  ideal  conditions  as  a  close  approximation  when  developing  characteristic equations  for  different  op  amp  configurations. 

4.15.3  Nonideal  Characteristics 

Ideal  op  amps  do  not  exist  in  the  real  world  although  some  come  close.  To  better  understand nonideal  op  amp  features,  we  explore  their  origins  and  potential  compensation  methods (Sedra  and  Smith,  Faulkenberry,  Stout  and  Kaufman). 
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•  Frequency Response:  Ideally  we  desire  an  infinite  bandwidth  or  frequency  response. 

That  is,  we  want  the  op  amp  to  provide  the  same  amplification  response  across  the  frequency  spectrum.  Due  to  internal  capacitance  and  internal  configurations,  the  frequency response  usually  has  a  lower  and  upper  3  dB  point.  A  3  dB  point  is  a  frequency  where the  op  amp  gain  is  down  3  dB  from  its  passband  value.  In  a  specific  application  an  op amp  should  be  chosen  that  operates  at  the  desired  frequencies. 

•  Gain Bandwidth Product:  The  Gain  Bandwidth  Product  (GBP)  is  a  metric  that  describes the  tradeoff  between  op  amp  voltage  gain  and  desired  frequency  of  operation.  The  GBP  is a  fixed  value  parameter  for  a  specific  op  amp.  Therefore,  as  the  desired  gain  is  increased the  corresponding  bandwidth  decreases  and  vice  versa.  To  provide  a  reasonable  gain  and bandwidth  combination,  the  op  amp  is  typically  used  in  closed  loop  configurations  as described  in  the  next  section. 

•  Offset Voltage:  Typically  an  op  amp  consists  of  multiple  stages.  The  first  stage  consists of  a  differential  transistor  pair  with  matched  characteristics  for  the  positive  and  negative portion  of  the  amplifier.  Any  mismatch  between  the  two  input  transistor  characteristics  is amplified.  This  leads  to  an  op  amp  output  voltage  even  when  both  inputs  are  at  zero  volts. 

Some  op  amps  are  equipped  with  offset  null  compensation  inputs.  A  potentiometer  may be  connected  between  these  inputs  to  provide  an  offset  compensation  for  the  mismatched inputs. 

•  Bias Current:  The  differential  amplifier  input  described  above  requires  small  bias  currents  to  maintain  the  input  transistors  in  an  active  state.  If  each  of  the  input  bias  currents flow  through  the  same  equivalent  resistance,  they  are  canceled  out  by  the  differential input  amplifier  configuration.  A  compensation  resistor,.  R p =  Ri || R f ,  may  be  connected between  the  positive  input  lead .  Vp  and  ground  to  minimize  this  effect.  The  resistors .  Ri and .  R f  are  the  input  and  feedback  resistors. 

•  Input resistance:  Ideally  we  want  the  input  resistance.  Ri  to  be  very  high.  This  prevents loading  down  a  previous  op  amp  stage  or  having  the  current  stage  affect  another  stage’s operation.  This  effect  can  be  minimized  by  the  wise  choice  of  .  Ri  values  and  using  a voltage  follower  configuration  between  stages.  The  voltage  follower  provides  no  gain but  provides  high  input  impedance.  We  explore  the  voltage  follower  configuration  in  the next  section. 

•  Common  Mode  Rejection  Ratio  (CMRR):  Ideally  the  op  amp  should  amplify  the difference  between  its  two  inputs  while  cancelling  any  voltages  common  to  both  inputs. 

This  allows  for  the  cancellation  of  noise  common  to  both  inputs.  The  Common  Mode Rejection  Ratio  or  CMRR  is  a  metric  comparing  an  op  amp’s  differential  gain  (.  Ad ) to its common  mode  gain  (.  Acm).  It  is  expressed  as: 

.  C M R R = 20  log(|  Ad | /|  AC M | )

•  Slew Rate:  Ideally  the  op  amp  should  amplify  a  signal  with  high  fidelity  even  for  high output  amplitudes  rapidly  changing  at  high  frequencies.  The  slew  rate  is  a  parameter provided  in  volts  per  microsecond  describing  the  op  amp’s  capability  to  do  this. 
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4.15.4  Configurations 

As  described  in  previous  sections,  the  op  amp  has  a  very  large  open  loop  gain  which  minimizes  bandwidth  and  also  the  differential  voltage  applied  to  the  inputs.  Therefore,  op  amps are  typically  used  in  a  closed  loop  configuration  with  a  controlled  gain  to  perform  a  variety  of functions.  A  sample  of  classic  operational  amplifier  configurations  are  provided  in  Fig. 4.33 

(Faulkenberry). 
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Fig.  4.33  Classic  operational  amplifier  configurations.  Adapted  from  [Faulkenberry]

156

4

Input Sensors, Output Actuators, and Interfacing

It  should  be  emphasized  that  the  equations  provided  with  each  operational  amplifier circuit  are  only  valid  if  the  circuit  configurations  are  identical  to  those  shown.  Even  a  slight variation  in  the  circuit  configuration  may  have  a  dramatic  effect  on  circuit  operation. 

It  is  important  to  analyze  each  operational  amplifier  circuit  using  the  following  steps: 

•  Write  the  node  equation  at  Vn  for  the  circuit. 

•  Apply  ideal  op  amp  characteristics  to  the  node  equation. 

•  Solve  the  node  equation  for  Vo. 

As  an  example,  we  provide  the  analysis  of  the  noninverting  amplifier  circuit  in  Fig. 4.34. 

This  same  analysis  technique  may  be  applied  to  all  of  the  circuits  in  Fig. 4.33  to  arrive  at  the equations  for  Vout  provided. 

A  brief  description  of  each  configurations  follows. 

•  Inverting amplifier:  The  inverting  amplifier  provides  a  gain  determined  by  .  Av = −

 R f /Ri .  As  indicated  by  the  minus  sign,  the  amplifier  inverts  the  polarity  of  the  input signal  to  produce  the  output  signal.  The  value  of  .  Ri  should  be  kept  high  to  maintain  a high  input  impedance.  Also,  the  gain  should  be  limited  to  prevent  saturation  of  the  output signal. 

•  Voltage follower:  The  voltage  follower  circuit  provides  a  high  impedance  buffer  for  use between  op  amp  stages  in  multi–stage  designs.  As  the  name  implies,  the  output  signal follows  the  input  signal. 

•  Noninverting amplifier:  The  noninverting  amplifier  provides  a  noninverted  gain.  The value  of.  Ri  should  be  kept  high  to  maintain  a  high  input  impedance.  Also,  the  gain  should be  limited  to  prevent  saturation  of  the  output  signal. 
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Fig.  4.34  Operational  amplifier  analysis  for  the  non–inverting  amplifier.  Adapted  from  (Faulkenberry)
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•  Difference amplifier:  The  difference  amplifier  provides  the  amplified  difference  of  its two  input  signals.  Voltages  common  to  both  inputs  are  not  amplified  (e.g.  noise). 

•  Summing amplifier:  The  summing  amplifier  provides  the  amplified  sum  of  the  input signals.  The  input  values  of  .  Ri  may  be  chosen  to  determine  the  relative  proportions  of each  input  signal  within  the  output  signal.  Also  note  the  signal  inversion  at  the  output.  The individual  value  of  the  input  resistances  (.  R 1 , R 2 , R 3)  should  be  kept  high  to  maintain high  input  impedance. 

•  Transimpedance amplifier:  The  transimpedance  amplifier  translates  a  current  input  to a  voltage  output.  This  configuration  is  commonly  used  to  convert  the  current  output  from certain  transduces  to  a  voltage  suitable  for  conversion  by  a  microcontroller. 

•  Integrator:  The  integrator  performs  the  mathematical  integration  of  the  input  signal. 

•  Differentiator:  The  differentiator  performs  the  mathematical  integration  of  the  input signal. 

TMP36 Interface.  An  Analog  Devices  TMP36  low  voltage  temperature  sensor  is  used  to measure  the  interior  temperature  of  a  greenhouse.  The  TMP36  will  be  interfaced  to  the  Opta PLC  ADC  using  a  transducer  interface  circuit.  The  TMP36  is  a  linear  sensor  providing  a  10 

mV  per  degree  Centigrade  output  and  measures  temperatures  between .−40 to .+125 ◦C.  It provides  750  mV  of  output  at  25 ◦

.  C. www.analog.com. 

To  design  the  interface  circuit,  the  minimum  and  maximum  value  of  the  temperature variable  and  corresponding  output  voltage  must  be  known.  A  spreadsheet  is  provided  in Fig. 4.35  to  determine  these  values.  Using  two  equations  developed  from  the  transducer interface  design  process,  the  values  of  K  and  B  are  determined  to  be  6.06  V/V  and.−0 .  606 V 

respectively.  A  block  diagram  and  corresponding  circuit  diagram  is  provided  in  Fig. 4.36. 

4.16

Application:  DC  Motor  Speed  Control 

The  goal  of  this  example  is  to  stabilize  the  speed  of  a  DC  motor  using  several  different concepts  discussed  in  this  chapter.  A  block  diagram  of  a  circuit  to  stabilize  motor  speed  is shown in Fig.  4.37. 

The  control  algorithm  is  hosted  on  an  Opta  PLC.  It  takes  as  input  the  desired  motor speed.  The  algorithm  provides  a  pulse  width  modulated  (PWM)  signal  to  control  motor speed.  Motor  speed  is  measured  in  real  time  using  an  optical  tachometer.  The  actual  motor speed  is  provided  as  another  input  to  the  Opta  PLC.  The  control  algorithm  compares  desired to  actual  motor  speed  to  update  the  PWM  control  signal.  The  PWM  signal  parameters  (on time  and  off  time)  are  varied,  which  adjusts  the  effective  voltage  supplied  to  the  motor,  to operate  the  motor  at  the  desired  speed. 

[image: Image 51]
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Fig.  4.35  TMP36  temperature  sensor 

This  is  provided  as  an  illustrative  example.  It  is  not  practical  for  a  real  world  application due  to  the  mechanical  characteristics  of  the  Opta’s  mechanical  relay  outputs.  With  that  said, there  are  important  concepts  here  to  explore. 7

The  Opta  PLC  is  not  equipped  with  a  dedicated  hardware  based  pulse  width  modulation system.  Instead,  we  use  a  technique  called  “bit  banging”  to  emulate  a  PWM  system  using software.  Bit  banging  may  be  employed  in  many  applications  when  a  software  emulation replaces  a  dedicated  hardware  system  (e.g.  UART,  SPI,  etc.). 

7  We  revisit  this  example  in  Chap. 6  using  a  dedicated  PWM  system. 

4.16

Application: DC Motor Speed Control

159

Rf = 60.6 K 

Rf = 10K 

+Vcc

Ri = 10K

+V

-

cc

Ri = 10K 

-

to Opta 

+ 

Vcc 

ADC 

+ 

input

Ri = 10K 

-Vcc 

-V

10K 

set for 

cc 

0.606 VDC 

Fig.  4.36  TMP36  temperature  sensor  interface 

Fig.  4.37  Opta  DC  motor  control.  Images  used  courtesy  of  the  Arduino  team  (CC  BY–NC–SA) (www.arduino.cc)
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4.16.1  Motor  Control  Hardware  Configuration 

The  hardware  configuration  for  the  example  is  provided  in  Fig. 4.38. A  DC–DC  converter may  be  used  to  provided. ±(VDC  from  12  VDC  for  the  op  amp.  This  technique  may  be  used in  applications  powered  from  a  single  polarity  supply  (e.g.  greenhouse). 
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a) DC motor interface circuit. 

b) LM324 comparator signal conditioning. 

Fig.  4.38  Opta  DC  motor  control  circuit
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A  Brother  12  VDC,  1,500  RPM  DC  motor  equipped  with  an  optical  tachometer  is  used. 

The  optical  tachometer  provides  two  sinusoidal  outputs  (A,  B)  and  an  index  signal  I.  The signal  I  provides  a  0.7  VDC  index  signal  once  per  motor  revolution.  An  LM324  op  amp comparator  circuit  changes  the  0.7  VDC  signal  to  an  approximate  9  VDC  signal  as  shown in  Fig. 4.39.  The  conditioned  signal  may  be  used  as  a  direct  measurement  of  actual  motor speed  by  measuring  the  difference  in  time  between  the  first  and  second  edge. 

Fig.  4.39  Optical  tachometer  index  pulse  generator
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4.16.2  Motor  Control  Software  Configuration 

The  UML  activity  diagram  for  the  motor  control  algorithm  is  provided  in  Fig. 4.40  and  the accompanying  Arduino  IDE  sketch  is  provided.  The  desired  and  actual  motor  speed  are provided  in  units  of  ms/rev  to  be  compatible  with  the  optical  tachometer  output.  When  a difference  between  these  two  values  is  measured,  motor  speed  is  adjusted  by  varying  the  on and  off  time  of  the  PWM  signal. 

Fig.  4.40  Opta  DC  motor 
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//**************************************************************************** 

//Opta_motor_control 

//- tracks and compensates for motor speed in ms/rev 

//- 12 VDC, 1500 RPM motor 

//- Desired motor speed: 1000 RPM 

//- PWM duty cycle provides motor 8 VDC and ˜1000 RPM 

//- 1000 RPM = 16.7 RPS = 60 ms/rev 

// 

//S. Barrett, 01.08.24 

//***************************************************************************** 

int

motor_speed_pin = A0; 

//monitors comparator output 

double

desired_motor_rpm = 1000.0; 

//motor speed in RPM 

unsigned int  desired_motor_mspr; 

//motor speed ms/rev 

unsigned int  pulse_threshold = 1024; 

//ADC level for high pulse 

unsigned int  first_edge, second_edge; 

//comparator signal edges 

int

actual_motor_speed_mspr; 

//measured motor speed [ms/rev] 

int

delta = 0; 

//delta = desired - actual speed 

int

delta_add = 0; 

//motor speed change 

//initial PWM parameters 

int

motor_high_time = 100, motor_low_time = 40; 

int

troubleshoot = 0; 

//turns serial monitor on/off 

void setup() 

{ 

Serial.begin(9600); 

//serial monitor BAUD rate 

analogReadResolution(12); 

//set 12 to 16 bits 

pinMode(D0, OUTPUT); 

//Initialize Relays outputs 

pinMode(LED_D0, OUTPUT); 

//Initialize Opta LEDs 

pinMode(motor_speed_pin, INPUT); 

//monitors comparator output 

//desired motor speed [ms/rev] 

desired_motor_mspr = (unsigned int)((60.0/desired_motor_rpm)*1000.0); 

//update motor speed 

digitalWrite(D0, HIGH); 

//Relay 1 on 

digitalWrite(LED_D0, HIGH); 

//LED 1 on 

delay(motor_high_time); 

//PWM: high baseline 

digitalWrite(D0, LOW); 

//Relay 1 off 

digitalWrite(LED_D0, LOW); 

//LED 1 off 

delay(motor_low_time); 

//PWM: low baseline 

} 

void loop() 

{ 

if(troubleshoot) 

{ 

Serial.print("Desired motor speed [ms/rev]:"); 

Serial.println(desired_motor_mspr); 

} 

//Update motor speed 

digitalWrite(D0, HIGH); 

//Relay 1 on 

digitalWrite(LED_D0, HIGH); 

//LED 1 on 

motor_high_time = motor_high_time + delta_add;  //PWM: high update 

if(motor_high_time < 0)  motor_high_time = 0; 

delay(motor_high_time); 
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if(troubleshoot) 

{ 

Serial.print("High time:"); 

Serial.println(motor_high_time); 

} 

//process pin while high 

while(analogRead(motor_speed_pin) >= pulse_threshold) 

{ 

; 

} 

//Measure motor speed [ms/rev] 

//Get time hack first edge 

//process pin while low 

while(analogRead(motor_speed_pin) < pulse_threshold) 

{ 

; 

} 

first_edge = millis(); 

//capture first edge 

//process pin while high 

while(analogRead(motor_speed_pin) >= pulse_threshold) 

{ 

; 

} 

second_edge = millis(); 

//capture second edge 

if(troubleshoot) 

{ 

Serial.print("Second edge: "); 

Serial.println(second_edge); 

} 

//measured motor speed [ms/rev] 

actual_motor_speed_mspr = second_edge - first_edge; 

if(troubleshoot) 

{ 

Serial.print("Actual motor speed: "); 

Serial.println(actual_motor_speed_mspr); 

} 

//Calculate delta 

//+ delta: motor too slow, speed up 

//- delta: motor too fast, slow down 

delta = desired_motor_mspr - actual_motor_speed_mspr; 

if(troubleshoot) 

{ 

Serial.print("Delta: "); 

Serial.println(delta); 

} 

if(delta > 0)

//motor slow, speed up 

delta_add = - delta/2; 

else if (delta < 0)

//motor fast, slow down 

delta_add = + delta/2; 

else

//motor at desired speed
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delta_add = 0; 

digitalWrite(D0, LOW); 

//PWM: low time update 

digitalWrite(LED_D0, LOW); 

motor_low_time = motor_low_time - delta_add; 

if(motor_low_time < 0)  motor_low_time = 0; 

delay(motor_low_time); 

if(troubleshoot) 

{ 

Serial.print("Low time:"); 

Serial.println(motor_low_time); 

} 

if(troubleshoot) 

{ 

Serial.print("Delta add: "); 

Serial.println(delta_add); 

Serial.println(); 

} 

} 

//***************************************************************** 

4.17

Summary 

In  this  chapter  we  explored  how  an  Opta  PLC  may  be  used  in  industrial,  Internet  of  Things (IoT),  and  hybrid  applications.  We  explored  how  to  connect  input  sensors  and  output  actuators  to  an  Opta  PLC.  We  began  with  a  review  of  the  Opta  input  and  output  characteristics. 

We  then  explored  a  wide  variety  of  digital  and  analog  input  sensors  and  output  actuators. 

We  also  employed  an  operational  amplifier–based  transducer  interface  design  process  to interface  input  sensors  to  the  Opta  PLC. 

4.18

Problems 

1.  What  will  happen  if  a  controller  is  used  outside  of  its  prescribed  operating  envelope? 

2.  Discuss  the  difference  between  the  terms  “sink”  and  “source”  as  related  to  current loading  of  a  microcontroller. 

3.  What  is  switch  bounce?  Describe  techniques  to  minimize  switch  bounce. 

4.  What  is  the  difference  between  an  incremental  encoder  and  an  absolute  encoder? 

Describe  applications  for  each  type. 

5.  Describe  an  application  for  a  flex  sensor.  Provide  a  supporting  circuit  and  software  with all  components  specified. 
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6.  Describe  an  application  for  a  fluid  level  sensor.  Provide  a  supporting  circuit  with  all components  specified. 

7.  Why  is  a  transimpedance  amplifier  typically  used  with  a  photodiode  circuit? 

8.  What  are  the  advantages  and  disadvantages  of  using  the  Arduino  Opta  PLC  relay  outputs in  a  given  application? 

9.  Construct  a  table  of  different  switch  types.  Provide  an  application  for  each  type. 

10.  What  is  the  purpose  of  a  two  channel  incremental  quadrature  encoder? 

11.  What  is  ultrasound?  How  might  an  ultrasound  sensor  be  used  in  an  industrial  environment? 

12.  What  is  the  advantage  of  the  TMP36  temperature  sensor  over  other  sensors  that  measure negative  temperatures? 

13.  Describe  an  industrial  application  for  a  tilt  sensor. 

14.  Describe  an  application  for  an  optical  isolator  circuit.  Provide  a  supporting  circuit  with all  components  specified. 

15.  Describe  an  application  for  an  environmental  sensing  circuit.  Provide  a  supporting circuit  with  all  components  specified. 

16.  What  are  the  ideal  operational  amplifier  characteristics?  What  prevents  an  op  amp  from performing  in  an  ideal  manner? 

17.  In  your  own  words  describe  each  of  the  op  amp  nonideal  parameters. 

18.  Derive  each  of  the  output  equations  for  the  classic  operational  amplifier  configurations. 

19.  Draw  a  UML  activity  diagram  for  the  LM34  ladder  logic  program. 

20.  For  the  LM34  ladder  logic  program  set  the  fan  on  and  off  thresholds  with  a  potentiometer. 

21.  Write  and  test  a  ladder  logic  program  for  the  linear  actuator  circuit  discussed  in  the chapter. 
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Objectives:  After  reading  this  chapter,  the  reader  should  be  able  to  do  the  following: 

•  Apply  instrumentation,  IoT,  and  Opta  PLC  concepts  to  design  a  control  system; 

•  Describe  tools  used  to  systematically  design  hardware  and  software  tools  for  a  control project;  and 

•  Implement  the  control  system  with  both  the  Arduino  IDE  and  PLC  IDE. 

5.1

Objective 

The  objective  of  this  chapter  is  to  demonstrate  in  action  the  concepts  discussed  in  this  book. 

Simply  put,  our  goal  is  to  provide  the  theory,  design,  and  construction  of  a  passively  heated greenhouse.  We  equip  the  greenhouse  with  instrumentation  to  monitor  and  control  key parameters.  Using  IoT  concepts  key  parameters  will  be  monitored  and  controlled  remotely. 

Via  a  greenhouse  controller  example  we  demonstrate  how  to  interface  different  sensors  and actuators  to  an  Arduino  Opta  PLC.  These  examples  may  be  used  and  adapted  for  many  other non–greenhouse  systems. 1

We  begin  the  chapter  with  the  theory  of  greenhouse  design.  The  reader  is  assumed  to  have no  background  in  this  area.  This  section  was  compiled  from  a  number  of  excellent  sources listed  at  the  end  of  the  chapter.  We  then  present  the  design  and  construction  of  a  passively heated  greenhouse.  In  our  example  an  existing  eight  by  eight  foot  garden  shed  is  converted into  a  greenhouse.  This  is  a  do  it  yourself  (DIY)  project. 

1  This  chapter  was  adapted  for  the  Arduino  Opta  PLC  with  permission  from  “Internet  of  Things,”  S. 

Barrett,  Springer,  2021. 

©  The  Author(s),  under  exclusive  license  to  Springer  Nature  Switzerland  AG  2025 
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S.  F.  Barrett,  Arduino  VII,  Synthesis  Lectures  on  Digital  Circuits  &  Systems, 

https://doi.org/10.1007/978-3-031-68609-2_5 
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Prior  to  this  project,  the  author  had  no  background  in  greenhouse  design  and  construction. 

However,  it  was  a  project  considered  for  some  time.  The  chapter  then  provides  details  on an  Arduino  Opta  based  greenhouse  control  system.  Finally,  key  greenhouse  parameters are  made  available  for  monitoring  and  control  using  Arduino–based  IoT  concepts.  Prior to  continuing,  the  reader  is  encouraged  to  review  microcontroller–based  system  design concepts  provided  in  Appendix  B. 

5.2

Greenhouse  Theory 

There  is  considerable  information  available  to  guide  the  design  of  a  passive  greenhouse. 

A  passive  greenhouse  uses  solar  energy  to  either  extend  the  growing  season  for  plants  or to  grow  plants  year  round.  Equally  important  is  to  provide  for  greenhouse  cooling  and ventilation  during  hot  summer  months.  The  information  provided  here  is  a  compilation  of the  excellent  sources  listed  at  the  end  of  this  chapter.  A  thorough  review  of  these  sources  is recommended. 

Passive  heating  uses  the  energy  of  the  sun  to  heat  the  interior  of  the  greenhouse  during the  day.  The  heat  energy  is  stored  using  a  large  thermal  mass  such  as  barrels  filled  with  water as  shown  in  Fig. 5.1. When  the  temperature  drops  at  night,  the  energy  stored  in  the  water  is released  into  the  greenhouse  to  mitigate  internal  temperature  fluctuations. 

The  British  Thermal  Unit  (BTU)  is  the  energy  required  to  raise  one  pound  of  water  a degree  Fahrenheit.  So  during  the  day,  the  water  barrels  absorb  energy.  At  night  a  drop  of one  degree  per  pound  of  water  would  release  one  BTU  of  heat  energy. 

To  efficiently  capture  the  solar  energy,  greenhouse  windows  should  face  south.  Windows may  be  included  on  the  east  and  west  sides  as  well.  Typically,  the  north  facing  wall  is  not equipped  with  windows  but  is  thoroughly  insulated. 

The  south  facing  windows  ideally  should  be  inclined  at  an  angle.  A  general  rule  of thumb  is  to  take  your  location’s  latitude  and  add  ten  degrees.  I  live  in  Laramie,  Wyoming (.41 .  3114◦  N ,  105 .  5911◦  W );  therefore,  ideally  the  south  facing  windows  should  be  inclined at  51◦

.  . 

To  determine  the  amount  of  water  required  for  passive  energy  storage  several  rules  of thumb  are  used: 

•  To  extend  the  growing  season,  2.5  gallons  of  water  needs  to  be  stored  for  every  square foot  of  glazing  material  (windows). 

•  To  grow  plants  year  round,  five  gallons  of  water  needs  to  be  stored  for  every  square  foot of  glazing  material. 

•  It  is  worth  noting  that  a  gallon  of  water  weighs  8.3  pounds. 

[image: Image 55]
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Fig.  5.1  Greenhouse  concepts
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To  maximize  the  collection  of  solar  energy,  it  was  decided  to  place  windows  on  the  south, east,  and  west  walls  of  the  greenhouse.  In  this  specific  example,  an  eight  foot  by  eight  foot by  eight  foot  existing  garden  shed  was  converted  to  a  greenhouse. 

A  combination  of  mobile  home  glass  windows  and  plexiglass  bubble  (RV  skylight)  windows  were  installed.  The  total  glazing  area  was  36.2  square  feet.  To  provide  for  year  round growing,  180  gallons  of  water  is  required  for  passive  storage.  A  total  of  24  five  gallon, black  plastic  buckets  were  used.  The  balance  of  water  storage  was  accomplished  using  a  55 

gallon  rain  barrel.  The  buckets  were  placed  on  shelves  within  the  greenhouse.  Realize  the greenhouse  floor  will  be  supporting  180  gallons  (1,500  pounds)  of  water.  Ensure  the  floor  is adequately  supported  to  do  this.  I  included  some  additional  2” .× 4”  support  framing  under the  floor  for  this  purpose. 

The  shed  has  traditional  2” .× 4”  framing  covered  by  half  inch  thick  exterior  wallboard. 

The  roof  of  the  shed  was  peaked  and  covered  with  roofing  shingles  as  shown  in  Fig. 5.2  top left.  The  north  facing  wall  of  the  shed  is  insulated  with  R–13  insulation. 

The  shed’s  interior  is  insulated  and  covered  with  wallboard  in  non–window  locations. 

The  interior  roof  was  also  insulated  and  covered  with  1”.× 4”  pine  planks.  The  interior  was painted  white  for  reflectivity.  The  shed  floor  was  covered  with  a  quarter  inch  black  rubber mat.  A  12  VDC  exhaust  fan  was  installed  in  the  east  facing  eave.  Finally,  windows  were covered  on  the  shed  interior  with  eighth  inch  plexiglass  to  provide  an  additional  thermal barrier.  The  greenhouse  exterior  and  interior  are  shown  in  Fig. 5.2. 2

5.3

Water  Harvesting 

A  rain  barrel  is  used  to  capture  water  for  greenhouse  use.  Typically  the  roof  of  the  greenhouse or  a  nearby  structure  is  used  to  capture  rain  and  direct  it  to  a  containment  barrel.  A  rule  of thumb  for  determining  how  much  roof  area  is  needed  is  a  half–gallon  of  water  may  be collected  per  square  foot  of  roof  area  for  one  inch  of  rain  fall.  The  gutter  system  on  the  roof is  helpful  for  directing  the  captured  water  to  the  rain  barrel. 

Water  entering  the  rain  barrel  should  be  filtered  to  remove  leaves,  twigs,  roof  material, etc.  Once  collected  the  water  is  distributed  for  greenhouse  use  by  employing  a  small  water pump.  A  gravity  feed  system  may  be  used;  however,  the  rain  barrel  may  need  to  be  set  at a  prohibitive  height  to  obtain  suitable  water  pressure  (Watson). 3 For  this  project  we  use  a commercially  available  50  gallon,  plastic  rain  barrel  for  water  catchment. 

2  Springer  is  a  global  publisher.  Due  to  the  wide  range  of  applicable  building  codes  and  standards  and permitting  requirements,  please  check  with  local  requirements  concerning  permitting  and  installation requirements. 

3  Check  local  rules  and  codes  to  determine  if  water  harvesting  is  permitted  in  your  location. 
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Fig.  5.2  Greenhouse  project 

5.4

Greenhouse  Control  System  Requirements 

The  Greenhouse  Control  System  (GCS)  has  the  following  requirements: 

•  Self–contained  solar  power  with  a  12  VDC  battery  backup, 

•  Compartmentalized  for  systematic  design  and  expansion,  and
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Fig.  5.3  Greenhouse  control  system 

•  Arduino  Opta  PLC  based  technology  for  greenhouse  instrumentation  and  control. 

The  GCS  block  diagram  is  shown  in  Fig. 5.3. 

In  keeping  with  a  compartmentalized  design,  the  GCS  has  three  subsystems: 

•  Solar  power  system; 

•  Greenhouse  Control  System;  and 

•  Arduino  Opta  PLC  based  IoT  interface. 

Each  subsystem  is  discussed  in  turn. 
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5.5

Solar  Power  System 

The  Solar  Power  Systems  was  discussed  in  “Arduino  I:  Getting  Started.”  An  excerpt  is included  here  with  permission  for  completeness. 

The  solar  power  system  consists  of  a  solar  panel,  a  solar  power  manager,  a  rechargeable battery,  and  fuses  for  circuit  protection.  In  this  project  we  use  the  DFRobot  DFR0580  Solar Power  Manager  for  a  12  VDC  lead–acid  battery.  With  an  18  VDC,  100  W  solar  panel  and  a 12  VDC  lead–acid  battery;  the  DFR0580  can  provide  regulated  output  voltages  of  5  VDC  at 5  amps  and  12  VDC  at  8  amps.  This  is  suitable  for  the  GCS  project  (www.DFRobot.com). 

A  diagram  of  the  solar  power  system  is  shown  in  Fig. 5.4. 

A  distribution  panel  was  designed  for  the  power  system  and  is  shown  in  Fig. 5.5. The various  components  are  connected  together  as  shown  in  the  figure  with  an  automotive  style fuse  block  and  automotive  style  blade  fuses.  The  panel  is  housed  in  a  QILIPSU  plastic, hinged  16.1” .× 12.2”.× 7.1”  enclosure. 

5.6

Greenhouse  Control  System 

As  shown in Fig.  5.3, the  following  requirements  have  been  set  for  the  Greenhouse  Control portion  of  the  GCS  system: 

•  Monitor  the  water  level  in  the  rain  barrel  (analog  input  I3); 

•  Monitor  humidity  level  within  the  greenhouse  (analog  input  I4); 

•  Monitor  plant  soil  moisture  (analog  input  I5); 

•  Monitor  indoor  greenhouse  temperature  (analog  input  I6); 

•  Monitor  outdoor  greenhouse  temperature  (analog  input  I7); 

•  Monitor  battery  voltage  level  (analog  input  I8); 

•  Activate  vent  fan,  vent  van  LED,  and  open  vents  when  the  internal  greenhouse  temperature is  above  a  desired  value  (relay  output  1); 

Arduino Opta PLC 

DFRobot 

Solar Power Manager 

ALLPOWERS, 

Weize,  12V 5 Amp 

100W 18V solar panel 

lead acid rechargeable battery 

Fig.  5.4  Solar  power  system.  Images  courtesy  of  AllPowers,  DFRobot,  Weize,  and  Arduino
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Fig.  5.5  Solar  power  distribution  panel.  Arduino  illustrations  used  with  permission  of  the  Arduino team  (CC  BY–NC–SA)  [www.arduino.cc] 

•  Activate  misting  system,  misting  system  LED  when  the  internal  humidity  level  falls below  the  desired  value  and/or  plant  soil  moisture  is  low  (relay  output  2);  and 

•  Provide  two  status  LEDs  S1  and  S2  to  report  program  status  (relay  outputs  3  and  4). 

To  meet  these  requirements  the  instrumentation  system  shown  in  Fig. 5.6  is  used.  Each component  is  discussed  in  turn. 

5.6.1

Milone  E–Tape  Fluid  Sensor 

Milone  Technologies  manufacture  a  line  of  continuous  fluid  level  sensors.  The  sensor  resembles  a  ruler  and  provides  a  near  linear  response.  The  sensor  reports  a  change  in  resistance  to indicate  the  distance  from  sensor  top  to  the  fluid  surface.  To  convert  the  resistance  change  to
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Fig.  5.6  Greenhouse  control  system.  Arduino  illustrations  used  with  permission  of  the  Arduino  team (CC  BY–NC–SA)  [www.arduino.cc] 

a  voltage  change,  the  Milone  0–5  VDC  Resistance  to  Voltage  Module  is  used.  The  module shown  in  Fig. 5.7a(left)  is  powered  from  12  VDC.  The  output  from  the  module  ranges  up  to 5  VDC  (www.milonetech.com). A  sample  sketch  to  collect  data  from  this  sensor  is  provided in  the  Application  section  of  the  chapter. 
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Fig.  5.7  (left)Milone  Technologies  eTape  liquid  level  sensor.  Image  courtesy  of  Milone  Technology (www.milonetech.com). (center)  Honeywell  HIH–4030  sensor.  Image  courtesy  of  Sparkfun  (CY  BY 

2.0)  (www.sparkfun.com). (right)  Sparkfun  soil  moisture  sensor.  Image  courtesy  of  Sparkfun  (CY 

BY  2.0)  (www.sparkfun.com)
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5.6.2

Humidity  Sensor 

A  Honeywell  HIH–4030  sensor  is  used  to  measure  greenhouse  humidity.  The  sensor  provides an  output  voltage  that  may  be  mapped  to  a  corresponding  relative  humidity  (RH)  value.  The RH  value  provides  a  measurement  of  the  mount  of  water  vapor  in  the  air.  The  RH  is  expressed as  a  value  from  0  to  100  percent  RH.  The  interface  circuit  for  the  RH  sensor  is  shown  in Fig. 5.7a(middle). 

The  sensor  provides  an  output  voltage  to  indicate  RH.  The  voltage  is  processed  and  corrected  for  temperature  using  the  following  equations  provided  by  the  manufacturer  (Honeywell). 

.  Vout =  (Vsupply ) ∗  ( 0 .  0062 ∗  sensor R H ) + 0 .  16

The  sensor  RH  value  is  corrected  for  temperature: 

.  T r ue R H

=  sensor RH/( 1 .  0546 − 0 .  00216 T )

with  T  expressed  in  degrees  Centigrade.  A  sample  sketch  to  collect  data  from  this  sensor  is provided  in  the  Application  section  of  the  chapter. 

5.6.3

Soil  Moisture  Sensor 

A  Sparkfun  soil  moisture  sensor  (SEN–13637)  is  used  to  monitor  plant  soil  moisture  content. 

The  sensor  is  powered  by  a  5  VDC  source.  The  interface  circuit  is  shown  in  Fig. 5.7a(right). 

Sensor  sample  ladder  logic  code  is  provided  Fig. 5.7b.  A  sample  sketch  to  collect  data  from this  sensor  is  provided  in  the  Application  section  of  the  chapter. 

5.6.4

LM34  Interior  Greenhouse  Temperature  Sensor 

To  monitor  the  interior  and  exterior  greenhouse  temperature  a  pair  of  LM34  Precision Fahrenheit  Temperature  sensors  are  used.  The  LM34  provides  10  mV  of  output  per  degree Fahrenheit.  As  configured,  the  LM34s  report  Fahrenheit  temperatures  down  to  zero  degrees. 

A  design  to  provide  temperature  sensing  below  zero  degrees  is  provided  as  an  end  of  chapter exercise.  The  LM34  measuring  external  temperature  should  be  housed  in  a  weather  protective enclosure  as  shown  in  Fig. 5.8.  Sample  ladder  logic  code  is  provided  for  the  sensors  in Fig. 5.8c. 
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Fig.  5.8  Interior  and  exterior  greenhouse  monitor 

5.6.5

Misting  System  and  LED 

The  greenhouse  misting  system  is  shown  in  Fig. 5.9. A  Hylaea  misting  system  consisting  of  a  12  VDC  fluid  pump  and  misting  delivery  hardware  is  provided  in  the  kit  (www. 

mistcoolingkit.com). 

A  1N4001  diode  serves  as  protection  for  the  inductive  load.  The  12  VDC  source  is supplied  by  the  DF  Robot  DFR0580  Solar  Power  Management  Module  OUT  2  rated  at  12V, 8A.  An  LED  indicator  circuit  is  also  provided  to  indicate  when  the  pump  is  running. 
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5.6.6

Vent  Fan  and  LED 

The  greenhouse  vent  fan  system  is  shown  in  Fig. 5.10.  A  Baosity  recreational  vehicle  12 

VDC  vent  fan  is  mounted  in  the  east  eave  of  the  greenhouse  roof.  It  provides  for  safe  venting of  the  greenhouse  interior  when  it  becomes  too  hot. 

A  1N4001  diode  serves  as  protection  for  the  inductive  load.  The  12  VDC  source  is supplied  by  the  DF  Robot  DFR0580  Solar  Power  Management  Module  OUT  2  rated  at 12  V,  8  A.  An  LED  indicator  circuit  is  also  provided  to  indicate  when  the  vent  is  running. 

5.6.7

GCS  System  Code 

The  UML  activity  diagram  for  the  GCS  system  code  is  provided  in  Fig. 5.11.  An  Arduino IDE  sketch  follows.  It  provides  a  template  for  basic  control  system  operation.  It  may  be customized  for  your  local  climate  conditions. 

//***************************************************************** 

//Opta_GH_control 

// 

//Monitors: 

//I1: Start - Green PB (digital) 

//I2: Stop - Red PB (digital)

[image: Image 64]
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//I3: Water level (analog) - Milone e-Tape sensor 

//I4: Humidity (analog) - Honeywell HIH sensor 

//I5: Soil moisture (analog) - Sparkfun moisture sesnor 

//I6: Internal temperature (analog) - LM34 

//I7: External temperature (analog) - LM34 

//I8: Battery voltage level (analog) - 1/2V from 12V lead acid batt 

// 

//Controls: 

//Out 1: Water pump for misting system 

//Out 2: Vent fan for excessive internal temperature 

// 

//Status: 

//Out 1: Pump LED 

//Out 2: Vent fan LED 

//Out 3: Status 1 LED 

//Out 4: Status 2 LED 

// 

//Notes: 

//- Opta Wi-Fi required for BlueTooth BLE link 

//- Thresholds based on 12 bit ADC, Vmax = 10 VDC 

// 

//Last revised:  02.02.24  S. Barrett 

//************************************************************ 

unsigned int troubleshoot = 1; 

//1: serial monitor status prints 

//set status thresholds 

unsigned int keep_going = 0; 

//loop variable for start/stop
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unsigned int water_level_th = 1024; //water level threshold 

unsigned int humidity_th = 1024; 

//humidity level threshold 

unsigned int moisture_th = 1024; 

//mositure level threshold 

unsigned int int_temp_th = 370; 

//GH int temp threshold 

unsigned int ext_temp_th = 370; 

//GH ext temp threshold 

unsigned int batt_lvl_th = 2458; 

//batt level threshold 

//status values 

unsigned int water_level; 

//water level value 

unsigned int humidity; 

//humidity level value 

unsigned int moisture; 

//mositure level value 

unsigned int int_temp; 

//GH int temp value 

unsigned int ext_temp; 

//GH ext temp value 

unsigned int batt_lvl; 

//batt level value 

unsigned int loop_cnt =0; 

//loop counter 

void setup() 

{ 

if(troubleshoot)Serial.begin(9600); //configure Serial Monitor 

analogReadResolution(12); 

//ADC set 12 to 16 bits 

pinMode(PIN_A0, INPUT); 

//Init Start input I1 

pinMode(PIN_A1, INPUT); 

//Init Stop input I2 

pinMode(LED_D0, OUTPUT); 

//Initialize status LEDs 1 to 4 

pinMode(LED_D1, OUTPUT); 

pinMode(LED_D2, OUTPUT); 

pinMode(LED_D3, OUTPUT); 

pinMode(D0, OUTPUT); 

//Initialize relays outputs 

pinMode(D1, OUTPUT); 

pinMode(D2, OUTPUT); 

pinMode(D3, OUTPUT); 

} 

void loop() 

{ 

if(troubleshoot) Serial.print("loop begin: "); 

if(troubleshoot) Serial.println(loop_cnt); 

if((digitalRead(PIN_A0))||(keep_going))//start or keeping going 

{ 

keep_going = 1; 

//seal start PB 

if(troubleshoot) Serial.println("keep going"); 

//Update status 

water_level = analogRead(A2); 

//I3 

humidity 

= analogRead(A3); 

//I4 

moisture 

= analogRead(A4); 

//I5 

int_temp 

= analogRead(A5); 

//I6 

ext_temp 

= analogRead(A6); 

//I7
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batt_lvl 

= analogRead(A7); 

//I8 

if(troubleshoot) 

{ 

if(troubleshoot) Serial.print("water level: "); 

if(troubleshoot) Serial.println(water_level); 

if(troubleshoot) Serial.print("humidity: "); 

if(troubleshoot) Serial.println(humidity); 

if(troubleshoot) Serial.print("moisture: "); 

if(troubleshoot) Serial.println(moisture); 

if(troubleshoot) Serial.print("int temp: "); 

if(troubleshoot) Serial.println(int_temp); 

if(troubleshoot) Serial.print("ext temp: "); 

if(troubleshoot) Serial.println(ext_temp); 

if(troubleshoot) Serial.print("batt lvl: "); 

if(troubleshoot) Serial.println(batt_lvl); 

} 

//Update controls and status LEDs 

//vent fan 

if(int_temp >= int_temp_th) 

{ 

digitalWrite(D1, HIGH); 

//vent van on 

if(troubleshoot) Serial.println("vent fan on"); 

} 

else 

{ 

digitalWrite(D1, LOW); 

//vent van off 

if(troubleshoot) Serial.println("vent fan off"); 

} 

//soil moisture 

if(moisture <= moisture_th) 

{ 

digitalWrite(D0, HIGH); 

//mist pump on 

if(troubleshoot) Serial.println("mist pump on"); 

} 

else 

{ 

digitalWrite(D0, LOW); 

//mist pump off 

if(troubleshoot) Serial.println("mist pump off"); 

} 

//battery level 

if(batt_lvl <= batt_lvl_th) 

{ 

digitalWrite(D2, HIGH); 

//Status LED 1 on 

if(troubleshoot) Serial.println("battery low"); 
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} 

else 

{ 

digitalWrite(D2, LOW); 

//Status LED 1 off 

if(troubleshoot) Serial.println("battery ok"); 

} 

//Convert sensor readings to actual values 

//Update BLE status report 

} 

else 

{ 

if(troubleshoot) Serial.println("keep going - no"); 

keep_going = 0; 

//stop 

//flash Opta panel LEDs 

digitalWrite(LED_D0, HIGH); 

delay(100); 

digitalWrite(LED_D0, LOW); 

delay(100); 

digitalWrite(LED_D1, HIGH); 

delay(100); 

digitalWrite(LED_D1, LOW); 

delay(100); 

digitalWrite(LED_D2, HIGH); 

delay(100); 

digitalWrite(LED_D2, LOW); 

delay(100); 

digitalWrite(LED_D3, HIGH); 

delay(100); 

digitalWrite(LED_D3, LOW); 

delay(100); 

digitalWrite(LED_D0, LOW); 

digitalWrite(LED_D1, LOW); 

digitalWrite(LED_D2, LOW); 

digitalWrite(LED_D3, LOW); 

delay(100); 

} 

//Stop PB check 

if(digitalRead(PIN_A1)) 

{ 

keep_going = 0; 

//respond to stop PB
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if(troubleshoot) Serial.println("Stop PB"); 

} 

delay(2000); 

//2 second delay 

if(troubleshoot) Serial.println(" "); 

loop_cnt++; 

} 

//************************************************************ 

5.6.8

GCS  Printed  Circuit  Board 

The  layout  for  the  GCS  printed  circuit  board  (PCB)  and  the  actual  circuit  board  design  are provided  in  Fig. 5.12. The  PCB  is  mounted  to  a  DIN  rail  using  DIN  rail  mounting  adaptors (Molence  C45  35 .× 15  mm  bracket). 

5.6.9

Enclosure 

The  completed  GCS  System  is  mounted  within  a  QILIPSU  hinged  cover,  stainless  steel  latch, junction  box  with  mounting  plate.  The  layout  of  the  junction  box  is  provided  in  Fig. 5.13 

and  the  final  result  is  provided  in  Fig. 5.14. 

5.7

Testing 

The  final  project  step  is  to  thoroughly  test  all  system  features.  A  test  plan  is  developed  to test  and  document  the  proper  operation  of  each  system  feature  and  the  overall  system.  A test  plan  for  the  Greenhouse  Control  System  is  provided  in  Fig. 5.15.  Should  a  test  fail,  the software  is  corrected.  The  test  plan  is  then  restarted. 

In  developing  and  testing  software  for  a  system,  it  is  not  always  possible  or  desirable  to have  close  access  to  the  system.  For  example,  in  the  development  of  control  software  for a  greenhouse,  the  greenhouse  is  not  always  readily  available  as  shown  in  Fig. 5.16. Also, different  weather  conditions  are  not  conveniently  available  to  test  the  control  algorithm under  a  variety  of  conditions.  In  these  situations  a  simulator  may  be  used  to  substitute  for the  system.  The  simulator  provides  the  necessary  inputs  and  signals  in  place  of  the  system  so that  software  may  be  developed.  I  have  used  the  technique  when  developing  control  systems for  a  high  end  expensive  audio  amplifier  system  and  also  for  industrial  door  controllers. 

In  this  vein,  a  Greenhouse  simulator  was  developed  as  shown  In  Fig. 5.17.  For  the  simulator,  potentiometers  were  used  as  sensor  simulators  and  LEDs  were  used  for  the  pump
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(a) GCS PCB layout. 

(b)  GCS PCB design. 

Fig.  5.12  Greenhouse  printed  circuit  board 

and  fan.  The  completed  test  circuit  is  shown  in  Fig. 5.18.  The  simulator  allows  exhaustive testing  of  different  weather  conditions  and  control  system  operation. 

5.8

Application:  Greenhouse  Control  System–Ladder  Logic 

Provided  in  Fig. 5.19  is  the  beginning  of  a  Greenhouse  Control  System  in  ladder  logic. 

Complete  the  control  system. 
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Fig.  5.13  GCS  panel  layout 

5.9

Application:  Opta  WiFi  Bluetooth  BLE  Greenhouse  Monitor 

In  the  following  example,  we  develop  a  Bluetooth  BLE  application  to  gather  greenhouse data  and  make  it  available  for  viewing  on  a  client  cell  phone.  As  before,  we  use  a  greenhouse simulator  as  a  substitute  during  software  development. 

In  this  example  we  use  the  Arduino  Opta  WiFi  (AFX00002)  as  a  server  for  greenhouse parameters  and  make  them  available  to  BLE  peripheral  clients.  A  cell  phone  serves  as  a client.  Through  a  BLE  app  (e.g.  nRF  Connect,  LightBlue),  the  cellphone  is  used  to  read greenhouse  parameters  and  to  control  a  simulated  vent  fan  or  water  pump. 

Provided  in  the  sketch  below  is  the  Greenhouse  Control  System.  Additions  have  been made  to  convert  sensor  readings  to  actual  values  of  temperature,  humidity,  etc.  Adapt  the example  provided  in  Chap. 2  to  monitor  greenhouse  parameters  and  control  the  mist  pump and  vent  fan  from  a  cell  phone. 
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Fig.  5.14  GCS  system 

//***************************************************************** 

//Opta_GH_control2 

// 

//Monitors: 

//I1: Start - Green PB (digital) 

//I2: Stop - Red PB (digital) 

//I3: Water level (analog) - Milone e-Tape sensor 

//I4: Humidity (analog) - Honeywell HIH sensor 

//I5: Soil moisture (analog) - Sparkfun moisture sesnor 

//I6: Internal temperature (analog) - LM34 

//I7: External temperature (analog) - LM34 

//I8: Battery voltage level (analog) - 1/2V from 12V lead acid batt
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Test #

Description

Expected Status 

Results 

1

Start program 

Program should bypass main loop 

until Start PB pressed. 

When Start PB pressed, program 

should continuously process main loop. 

2

Data collection. 

Within main loop, program should 

potentiometers). 

Program should respond to changes in 

3



Vent fan



When internal temperature measurement 

exceeds threshold setting, vent fan and LED 

will come on. 

Fan and LED turns off when internal temperature 

falls below threshold setting. 

4

Mist pump 

When soil moisture measurement falls below 

threshold setting, mist pump and LED will come on. 

Mist pump and LED turns off when soil moisture 

is above threshold setting. 

5

Battery status 

When battery voltage measurement falls below 

threshold setting, Status LED 1 will come on. 

Status LED 1 turns off when battery voltage 

is above threshold setting. 

6

Stop  program 

When Stop PB is pressed, program stops 

values changes. 

Opta status LEDs will sequentially flash. 

Fig.  5.15  GCS  test  plan 

// 

//Controls: 

//Out 1: Water pump for misting system 

//Out 2: Vent fan for excessive internal temperature 

// 

//Status: 

//Out 1: Pump LED 

//Out 2: Vent fan LED 

//Out 3: Status 1 LED 

//Out 4: Status 2 LED 

// 

//Notes: 

//- Opta Wi-Fi required for BlueTooth BLE link 

//- Thresholds based on 12 bit ADC, Vmax = 10 VDC 

// 

//Last revised:  02.02.24  S. Barrett 

//************************************************************ 

unsigned int troubleshoot = 1; 

//1: serial monitor status prints 

//set status thresholds 

unsigned int keep_going = 0; 

//loop variable for start/stop 

unsigned int water_level_th = 1024; //water level threshold 

unsigned int humidity_th = 1024; 

//humidity level threshold

[image: Image 69]
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Fig.  5.16  Greenhouse  availability.  Mother  nature  had  other  plans unsigned int moisture_th = 1024; 

//moisture level threshold 

unsigned int int_temp_th = 370; 

//GH int temp threshold 

unsigned int ext_temp_th = 370; 

//GH ext temp threshold 

unsigned int batt_lvl_th = 2458; 

//batt level threshold 

//status values 

unsigned int water_level; 

//water level value 

unsigned int humidity; 

//humidity level value 

unsigned int moisture; 

//mositure level value 

unsigned int int_temp; 

//GH int temp value 

unsigned int ext_temp; 

//GH ext temp value 

unsigned int batt_lvl; 

//batt level value 

unsigned int loop_cnt =0; 

//loop counter 

float

actual_water_level; 

//water level value 

unsigned int actual_humidity; 

//humidity level value 

unsigned int actual_moisture; 

//mositure level value 

unsigned int actual_int_temp; 

//GH int temp value 

unsigned int actual_ext_temp; 

//GH ext temp value 

unsigned int actual_batt_lvl; 

//batt level value 

float

int_degrees, ext_degrees; 
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(b) PCB testing. Connections for second row of sensors. 

Fig.  5.17  GCS  text  fixture  layout 

void setup() 

{ 

if(troubleshoot)Serial.begin(9600); //configure Serial Monitor 

analogReadResolution(12); 

//ADC set 12 to 16 bits 

pinMode(PIN_A0, INPUT); 

//Init Start input I1 

pinMode(PIN_A1, INPUT); 

//Init Stop input I2
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Fig.  5.18  GCS  text  fixture 

pinMode(LED_D0, OUTPUT); 

//Initialize status LEDs 1 to 4 

pinMode(LED_D1, OUTPUT); 

pinMode(LED_D2, OUTPUT); 

pinMode(LED_D3, OUTPUT); 

pinMode(D0, OUTPUT); 

//Initialize relays outputs 

pinMode(D1, OUTPUT); 

pinMode(D2, OUTPUT); 

pinMode(D3, OUTPUT); 

} 

void loop() 

{ 

if(troubleshoot) Serial.print("loop begin: "); 

if(troubleshoot) Serial.println(loop_cnt); 

if((digitalRead(PIN_A0))||(keep_going))//start or keeping going 

{ 

keep_going = 1; 

//seal start PB 

if(troubleshoot) Serial.println("keep going"); 

//Update status 

water_level = analogRead(A2); 

//I3 

humidity 

= analogRead(A3); 

//I4 

moisture 

= analogRead(A4); 

//I5 

int_temp 

= analogRead(A5); 

//I6 

ext_temp 

= analogRead(A6); 

//I7 

batt_lvl 

= analogRead(A7); 

//I8
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Fig.  5.19  Greenhouse  control  system  in  ladder  logic 

if(troubleshoot) 

{ 

if(troubleshoot) Serial.print("water level: "); 

if(troubleshoot) Serial.println(water_level); 

if(troubleshoot) Serial.print("humidity: "); 

if(troubleshoot) Serial.println(humidity); 

if(troubleshoot) Serial.print("moisture: "); 

if(troubleshoot) Serial.println(moisture); 

if(troubleshoot) Serial.print("int temp: "); 
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if(troubleshoot) Serial.println(int_temp); 

if(troubleshoot) Serial.print("ext temp: "); 

if(troubleshoot) Serial.println(ext_temp); 

if(troubleshoot) Serial.print("batt lvl: "); 

if(troubleshoot) Serial.println(batt_lvl); 

} 

//Update controls and status LEDs 

//vent fan 

if(int_temp >= int_temp_th) 

{ 

digitalWrite(D1, HIGH); 

//vent van on 

if(troubleshoot) Serial.println("vent fan on"); 

} 

else 

{ 

digitalWrite(D1, LOW); 

//vent van off 

if(troubleshoot) Serial.println("vent fan off"); 

} 

//soil moisture 

if(moisture <= moisture_th) 

{ 

digitalWrite(D0, HIGH); 

//mist pump on 

if(troubleshoot) Serial.println("mist pump on"); 

} 

else 

{ 

digitalWrite(D0, LOW); 

//mist pump off 

if(troubleshoot) Serial.println("mist pump off"); 

} 

//battery level 

if(batt_lvl <= batt_lvl_th) 

{ 

digitalWrite(D2, HIGH); 

//Status LED 1 on 

if(troubleshoot) Serial.println("battery low"); 

} 

else 

{ 

digitalWrite(D2, LOW); 

//Status LED 1 off 

if(troubleshoot) Serial.println("battery ok"); 

} 

//Convert sensor readings to actual values 

//I3: water level - determine for actual 

//convert to voltage 

actual_water_level = water_level/4096.0 * 10.0; 

//5 VDC = 12" fluid 

actual_water_level = actual_water_level/5.0 *12.0; 

if(troubleshoot) 

{ 

Serial.print("Water level [in]: "); 
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Serial.println(actual_water_level); 

} 

//I4: humidity [%] 

//actual_humidity 

float humidity_voltage = ((float)(humidity) /4096.0) * 10.0; 

//convert to RH per data sheet 

//float sensor_RH_flt  = ((humidity_voltage/5.0)*161.0) - 25.81; 

float sensor_RH_flt  = (((humidity_voltage/5.0) - 0.16) * (1/0.0062)); 

//convert temp reading to C 

float int_temp_C = (float)(((float)(actual_int_temp) - 32.0) * (5.0/9.0)); 

//compensate for temp per data sheet 

float true_RH = sensor_RH_flt/(1.0546 - (0.00216 * int_temp_C)); 

if(troubleshoot) 

{ 

Serial.print("Humidity: "); 

Serial.println(humidity); 

Serial.print("Humidity voltage: "); 

Serial.println(humidity_voltage); 

Serial.print("sensor RH flt: "); 

Serial.println(sensor_RH_flt); 

Serial.print("Int Temp F: "); 

Serial.println(actual_int_temp); 

Serial.print("Int Temp C: "); 

Serial.println(int_temp_C); 

Serial.print("Relative Humidity: "); 

Serial.println(true_RH); 

} 

//I5: moisture - determine for actual configuration 

actual_moisture = moisture; 

if(troubleshoot) 

{ 

Serial.print("soil moisture: "); 

Serial.println(actual_moisture); 

} 

//I6: interior temp degrees F 

float voltageI6 = (float)(int_temp) * (10.0/4095.0); 

int_degrees = voltageI6 * 100.0; 

actual_int_temp = (unsigned int)(int_degrees); 

if(troubleshoot) 

{ 

Serial.print("I6 value: "); 

//Print out value from I6 

Serial.print(voltageI6, 2); 

//voltage two digits 

Serial.println(" Volts"); 

Serial.print("Int Temp:"); 

Serial.print(" "); 

Serial.print(int_degrees); 

Serial.println(" degrees (F)"); 

Serial.print("Int Temp:"); 

Serial.print(" "); 

Serial.print(actual_int_temp); 
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Serial.println(" degrees (F)"); 

} 

//I7: exterior temp degrees F 

//I8: battery level % of 12 VDC 

actual_batt_lvl = (batt_lvl * 100)/batt_lvl_th; 

//I8 

if(troubleshoot) 

{ 

Serial.print("Battery [%]: "); 

Serial.println(actual_batt_lvl); 

} 

//Update BLE status report 

} 

else 

{ 

if(troubleshoot) Serial.println("keep going - no"); 

keep_going = 0; 

//stop 

//flash Opta panel LEDs 

digitalWrite(LED_D0, HIGH); 

delay(100); 

digitalWrite(LED_D0, LOW); 

delay(100); 

digitalWrite(LED_D1, HIGH); 

delay(100); 

digitalWrite(LED_D1, LOW); 

delay(100); 

digitalWrite(LED_D2, HIGH); 

delay(100); 

digitalWrite(LED_D2, LOW); 

delay(100); 

digitalWrite(LED_D3, HIGH); 

delay(100); 

digitalWrite(LED_D3, LOW); 

delay(100); 

digitalWrite(LED_D0, LOW); 

digitalWrite(LED_D1, LOW); 

digitalWrite(LED_D2, LOW); 

digitalWrite(LED_D3, LOW); 

delay(100); 

} 

//Stop PB check 

if(digitalRead(PIN_A1)) 

{ 

keep_going = 0; 

//respond to stop PB 

if(troubleshoot) Serial.println("Stop PB"); 
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} 

delay(2000); 

//2 second delay 

if(troubleshoot) Serial.println(" "); 

loop_cnt++; 

} 

//************************************************************ 

5.10

Summary 

The  goal  of  this  chapter  was  to  demonstrate  in  action  the  concepts  discussed  in  this  book. 

Simply  put,  our  goal  is  to  provide  the  theory,  design,  and  construction  of  a  passively  heated greenhouse.  We  equip  the  greenhouse  with  instrumentation  to  monitor  and  control  key parameters.  Using  IoT  concepts  key  parameters  will  be  monitored  and  controlled  via  a remote  computer. 

5.11

Problems 

1.  Provide  a  design  to  allow  the  LM34  to  sense  negative  temperatures. 

2.  Provide  a  detailed  structure  chart  for  the  GCS  system  code. 

3.  Provide  the  overall  GCS  system  code. 

4.  Develop  the  overall  system  software  for  the  GCS  System. 

5.  Develop  a  test  plan  to  insure  requirements  have  been  met  for  the  GCS  system. 

6.  What  are  the  critical  variables  that  should  be  regularly  monitored? 

7.  If  the  greenhouse  is  within  10  m  of  your  home,  design  a  system  to  report  critical  variables to  your  home  PC.  Explain  in  detail  your  choice  of  technology. 

8.  If  the  greenhouse  is  within  10  m  of  your  home,  design  a  system  to  report  critical  variables to  your  cell  phone.  Explain  in  detail  your  choice  of  technology. 

9.  If  the  greenhouse  is  within  50  m  of  your  home,  design  a  system  to  report  critical  variables to  your  home  PC.  Explain  in  detail  your  choice  of  technology. 

10.  Design  a  system  to  log  and  plot  the  internal  and  external  greenhouse  temperature  every hour. 
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Objectives:  After  reading  this  chapter,  the  reader  should  be  able  to  do  the  following: 

•  Describe  the  function  of  Opta  expansions; 

•  Summarize  the  features  of  the  Opta  expansions; 

•  Configure  an  Arduino  Opta  with  appropriate  expansions; 

•  Develop  sketches  for  the  Opta  expansions  using  the  Arduino  IDE;  and 

•  Develop  applications  to  showcase  the  unique  features  of  the  Opta  expansions. 

6.1

Overview 

In  my  humble  opinion,  the  Arduino  company  has  been  highly  successful  in  their  ongoing efforts  to  make  complex  technology  available  to  all.  New  developments  are  being  released almost  continuously  over  an  extended  period  of  time.  As  evidence,  the  recent  release  of  Opta expansions  has  extended  the  features  of  an  already  powerful  line  of  programmable  logic controllers.  In  this  chapter  we  highlight  the  unique  features  provided  by  the  expansions. 1 

6.2

Opta  Expansions 

Arduino  has  recently  released  a  series  of  hardware  expansion  modules  to  extend  and  enhance the  Opta  PLC  capabilities.  Provided  in  Fig. 6.1  is  a  summary  of  Opta  expansion  features. 

There  are  currently  three  expansions  available: 

1  I  am  thankful  to  Chuck  Glaser,  Editor,  and  Prasanna  Kumar  Narayanasamy,  Production  Editor,  who paused  the  production  schedule  to  allow  inclusion  of  this  chapter. 
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S.  F.  Barrett,  Arduino VII,  Synthesis  Lectures  on  Digital  Circuits  &  Systems, 

https://doi.org/10.1007/978-3-031-68609-2_6 
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Fig.  6.1  Opta  expansion  features.  Images  used  courtesy  of  the  Arduino  team  (CC  BY–NC–SA) (www.arduino.cc) 

•  Arduino  Opta  Digital  Expansion  D1608E,  AFX00005 

•  Arduino  Opta  Digital  Expansion  D1608S,  AFX00006 

•  Arduino  Opta  Analog  Expansion  A0602,  AFX00007. 

6.2 Opta  Expansions
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6.2.1

Digital  Expansions  D1608E  and  D1608S 

The  D1608E  and  D1608S  have  16  programmable  inputs  and  eight  relay  outputs.  The  D1608E 

expansion  is  equipped  with  electromechanical  relays  rated  at  250  VAC  and  6  amps.  The  relay response  time  when  transitioning  from  logic  0  to  1  is  5  ms  and  3  ms  when  transitioning  from logic  1  to  0. 

The  D1608S  expansion  is  equipped  with  solid  state  relays  (SSR)  rated  at  24  VDC  and  3 

amps.  The  relay  response  time  when  transitioning  from  logic  0  to  1  is  0.02  ms  and  0.2  ms when  transitioning  from  logic  1  to  0. 

6.2.2

Analog  Expansion  A0602 

The  A0602  analog  expansion  is  equipped  with  the  following  features: 

•  Inputs  I1  and  I2  which  are  programmable  for: 

–  0–10  V 

–  4–20  mA 

–  Resistance  temperature  detectors  (RTD),  both  2–wire  and  3–wire 

•  Inputs  I3  to  I6  which  are  programmable  for: 

–  0–10  V 

–  4–20  mA 

•  Outputs  O1  and  O2  (and  I1–I6) 2: 

–  0–10  V:  The  maximum  output  current  is  9  mA. 

–  4–20  mA 

•  Outputs  P1–P4  that  are  configured  as  pulse  width  modulations  outputs.  The  PWM  voltage (.  VPW M )  must  be  provided  to  the  A0602  expansion.  The  PWM  frequency  and  duty  cycle (0–100%)  is  fully  programmable.  The  output  current  limit  for  each  PWM  channel  is  100 

mA. 

2  Analog  inputs  can  also  be  programmed  as  output  channels. 
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6.3

Getting  Started 

In  this  section  we  describe  required  hardware  and  software  configurations. 

6.3.1

Hardware  Configuration 

The  expansion  modules  are  snapped  together  as  shown  in  Fig. 6.2.  The  small  “AUX”  access panel  located  on  the  right  side  of  the  Opta  PLC  and  the  expansions  must  be  carefully  removed. 

The  units  are  then  connected  via  the  “AUX  connector.”  The  Opta  PLC  and  the  expansions conveniently  mount  to  a  DIN  rail.  Up  to  five  expansions  may  be  connected  to  an  Opta  PLC. 

Once  connected,  power  must  be  provided  to  each  expansion  as  shown  in  Fig. 6.2.  The  supply voltage  may  be  12–24  VDC. 

Fig.  6.2  Opta  expansion  connections.  Images  used  courtesy  of  the  Arduino  team  (CC  BY–NC–SA) (www.arduino.cc) 
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6.3.1.1  Opta  Expansion  Communication 

The  Opta  PLC  communicates  with  the  expansions  via  the  Inter–Integrated  Circuit  (I2C) subsystem  aboard  the  Opta  host  controller.  The  I2C  connections  between  the  Opta  PLC  and the  expansions  are  made  via  the  “AUX”  connector.  The  I2C  subsystem  allows  the  system designer  to  connect  a  number  of  I2C  configured  devices  together  into  a  system  using  a two–wire  interconnecting  scheme.  Each  device  has  its  own  unique  address  and  may  both transmit  and  receive  over  the  two–wire  bus  at  frequencies  up  to  400  kHz.  This  allows  the device  to  freely  exchange  information  with  other  devices  in  a  small  area  network.  The  I2C 

is  alternately  known  as  the  Two  Wire  Interface  (TWI)  protocol  (Philips). 

6.3.2

Software  Configuration 

There  are  a  number  of  examples  available  in  the  Arduino  IDE  “Arduino_Opta_Blueprint” 

library.  The  library  is  available  for  download  via  the  Library  Manager.  Once  the  library  is downloaded,  upload  and  execute  the  sketch  “UpdateExpansionFW”  and  follow  the  instructions  provided  via  the  Serial  Monitor.  The  sketch  detects  each  connected  expansion  and individually  updates  their  resident  firmware.  You  will  be  prompted  to  update  each  expansion. 

6.4

Arduino  Opta  Blueprint  Library 

In  this  section  we  work  through  a  number  of  examples  provided  in  the  “Arduino_Opta_ 

Blueprint”  library.  Along  the  way  we  provide  additional  background  material  to  enhance your  understanding  of  Opta  expansion  operation. 

6.4.1

GetExpansion 

The  “getExpansion”  sketch  polls  each  expansion  connected  to  the  Opta  in  turn  and  reports on  the  type  and  I2C  address  of  each  expansion.  In  the  example  the  sketch  is  applied  to  the Opta  expansion  configuration  provided  in  Fig. 6.2. 

//************************************************************************************ 

//FILENAME: getExpansions.ino 

//AUTHOR: 

Daniele Aimo 

//DATE: 

20231020 

//REVISION: 0.0.1 

//DESCRIPTION: Retrieve list of expansions chained to Opta Controller and their type 

//PRODUCT:  Arduino Opta 

//LICENSE:  Copyright (c) 2024 Arduino SA 

//

This Source Code Form is subject to the terms fo the Mozilla Public 

//

License (MPL), v 2.0. You can obtain a copy of the MPL 

//

at \url{http://mozilla.org/MPL/2.0/.} 

//Modified: S. Barrett, Nov 2024 

//************************************************************************************ 

#include "OptaBlue.h" 
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void setup() 

{ 

Serial.begin(115200); 

delay(2000); 

OptaController.begin(); 

while (!Serial)

//wait for serial monitor 

{ 

; 

} 

} 

void loop() 

{ 

OptaController.update(); 

//determines Opta expansion configuration 

Serial.print("Number of expansions: "); 

//get the number of connected expansions 

Serial.println(OptaController.getExpansionNum()); 

//for each expansion get and print the type and the I2C address of each expansion for(int i = 0; i < OptaController.getExpansionNum(); i++) 

{ 

Serial.print("Expansion n. "); 

Serial.print(i); 

Serial.print(" type "); 

printExpansionType(OptaController.getExpansionType(i)); 

Serial.print(" I2C address "); 

Serial.println(OptaController.getExpansionI2Caddress(i)); 

} 

Serial.println(" "); 

delay(2000); 

} 

//************************************************************************************ 

void printExpansionType(ExpansionType_t t) 

{ 

if(t == EXPANSION_NOT_VALID) 

{ 

Serial.print("Unknown! (Might be an Unregistered custom expansion?)"); 

} 

else if(t == EXPANSION_OPTA_DIGITAL_MEC) 

{ 

Serial.print("Opta --- DIGITAL [Mechanical]

---"); 

} 

else if(t == EXPANSION_OPTA_DIGITAL_STS) 

{ 

Serial.print("Opta --- DIGITAL [Solid State] ---"); 

} 

else if(t == EXPANSION_DIGITAL_INVALID) 

{ 

Serial.print("Opta --- DIGITAL [!!Invalid!!] ---"); 

} 

else if(t == EXPANSION_OPTA_ANALOG) 

{ 

Serial.print("Opta ˜˜˜ ANALOG ˜˜˜ "); 

} 

else 

{ 

Serial.print("Unknown!"); 

} 

} 

//************************************************************************************ 

Figure  6.3  provides  the  information  retrieved  from  polling  the  Opta  expansion  configuration. 

6.4.2

SetDigital 

The  “setDigital”  sketch  demonstrates  how  to  set  digital  outputs  on  a  specific  expansion. 

The  sketch  determines  the  number  and  type  of  expansions  connected  to  the  Opta  PLC.  The 
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Fig.  6.4  Controlling  a  load  with  setDigital  sketch  (CC  BY–NC–SA)  (www.arduino.cc) 

sketch  then  blinks  LEDs  associated  with  the  digital  outputs  in  a  specific  sequence  associated with  the  specific  expansion.  The  expansion  closes  a  “switch”  between  the  output  terminals associated  with  the  LEDs  (e.g.  O1,  O2,  etc.)  which  allows  the  LED  to  illuminate.  The 

“switch”  is  either  a  mechanical  relay  (Expansion  D1608E)  or  a  solid  state  relay  (Expansion D1608S).  The  configuration  for  connecting  an  external  load  (e.g.  an  LED)  is  shown  in Fig. 6.4. 

//****************************************************************************** 

//FILENAME: setDigital.ino 

//AUTHOR: 

Daniele Aimo 

//EMAIL: 

d.aimo@arduino.cc 

//DATE: 

20231116 

//DESCRIPTION: Sketch shows how to set the digital values of Digital 

//

Expansion digital output pins 

//LICENSE:  Copyright (c) 2024 Arduino SA 

//

This Source Code Form is subject to the terms fo the Mozilla 

//

Public License (MPL), v 2.0. You can obtain a copy of the MPL 

//

at \url{http://mozilla.org/MPL/2.0/.} 

//Modified: S. Barrett, Nov 2024 

//****************************************************************************** 

#include "OptaBlue.h" 

using namespace Opta; 

void setup() 

{ 

Serial.begin(115200); 

delay(2000); 

OptaController.begin(); 

while (!Serial)

//wait for serial monitor
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{ 

; 

} 

} 

void loop() 

{ 

OptaController.update(); 

static long int start_m = millis(); 

static bool st = true; 

if(millis() - start_m > 1000)

//loops every 1s (1000 ms) 

{ 

start_m = millis(); 

for(int i = 0; i < OPTA_CONTROLLER_MAX_EXPANSION_NUM; i++) 

{ 

DigitalMechExpansion mechExp = OptaController.getExpansion(i); 

DigitalStSolidExpansion stsolidExp = OptaController.getExpansion(i); 

if(mechExp)

//Expansion with mechanical relays 

{

//get and print information about expansion 

printExpansionInfo(mechExp.getIndex(), mechExp.getType(), 

mechExp.getI2CAddress()); 

//implements two states 

//state 1: pin 0 2 4 6 are turned off 

//and pin 1 3 5 7 are  

turned on 

if(st) 

{ 

mechExp.digitalWrite(0, LOW); 

//turn off pin 0 

mechExp.digitalWrite(1,HIGH); 

//turn on pin 1 

mechExp.digitalWrite(2, LOW); 

//turn off pin 2 

mechExp.digitalWrite(3,HIGH); 

//turn on pin 3 

mechExp.digitalWrite(4, LOW); 

//turn off pin 4 

mechExp.digitalWrite(5,HIGH); 

//turn on pin 5 

mechExp.digitalWrite(6, LOW); 

//turn off pin 6 

mechExp.digitalWrite(7,HIGH); 

//turn on pin 7 

//once all pin are set, send new status to expansion 

mechExp.updateDigitalOutputs(); 

} 

else 

{ 

//state 2: pin 0 2 4 6 are turned on 

//and pin 1 3 5 7 are turned off 

mechExp.digitalWrite(0,HIGH); 

//turn off pin 0 

mechExp.digitalWrite(1, LOW); 

//turn on pin 1 

mechExp.digitalWrite(2,HIGH); 

//turn off pin 2 

mechExp.digitalWrite(3, LOW); 

//turn on pin 3 

mechExp.digitalWrite(4,HIGH); 

//turn off pin 4 

mechExp.digitalWrite(5, LOW); 

//turn on pin 5 

mechExp.digitalWrite(6,HIGH); 

//turn off pin 6 

mechExp.digitalWrite(7, LOW); 

//turn on pin 7 

//once all pin are set, send new status to expansion 

mechExp.updateDigitalOutputs(); 

}//end else 

}//end (if mechExp) 

if(stsolidExp)

//Expansion with solid state relays 

{ 

printExpansionInfo(stsolidExp.getIndex(), stsolidExp.getType(), 
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stsolidExp.getI2CAddress()); 

//if present state solid expansion 

//will use a different pattern 

if(st) 

{ 

stsolidExp.digitalWrite(0,HIGH); 

stsolidExp.digitalWrite(1, LOW); 

stsolidExp.digitalWrite(2, LOW); 

stsolidExp.digitalWrite(3,HIGH); 

stsolidExp.digitalWrite(4,HIGH); 

stsolidExp.digitalWrite(5, LOW); 

stsolidExp.digitalWrite(6, LOW); 

stsolidExp.digitalWrite(7,HIGH); 

//once all pin are set, send the new status to the expansion 

stsolidExp.updateDigitalOutputs(); 

} 

else 

{ 

//in the second state 

//pin 0 2 4 6 are turned on 

//and pin 1 3 5 7 are turned off 

stsolidExp.digitalWrite(0,LOW); 

stsolidExp.digitalWrite(1,HIGH); 

stsolidExp.digitalWrite(2,HIGH); 

stsolidExp.digitalWrite(3,LOW); 

stsolidExp.digitalWrite(4,LOW); 

stsolidExp.digitalWrite(5,HIGH); 

stsolidExp.digitalWrite(6,HIGH); 

stsolidExp.digitalWrite(7,LOW); 

//once all pin are set send the new status to the expansion 

stsolidExp.updateDigitalOutputs(); 

} 

} 

} 

if(st) 

{ 

st = false; 

} 

else 

{ 

st = true; 

} 

} 

} 

//****************************************************************************** 

void printExpansionType(ExpansionType_t t) 

{ 

if(Serial) 

{ 

if(t == EXPANSION_NOT_VALID) 

{ 

Serial.print("Unknown!"); 

} 

else if(t == EXPANSION_OPTA_DIGITAL_MEC) 

{ 

Serial.print("DIGITAL [Mechanical]"); 

} 

else if(t == EXPANSION_OPTA_DIGITAL_STS) 
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{ 

Serial.print("DIGITAL [Solid State]"); 

} 

else if(t == EXPANSION_DIGITAL_INVALID) 

{ 

Serial.print("DIGITAL [!!Invalid!!]"); 

} 

else if(t == EXPANSION_OPTA_ANALOG) 

{ 

Serial.print("ANALOG"); 

} 

else 

{ 

Serial.print("Unknown!"); 

} 

} 

} 

//****************************************************************************** 

void printExpansionInfo(uint8_t index, ExpansionType_t type, uint8_t i2c_address) 

{ 

if(Serial) 

{ 

Serial.print("Expansion[" + String(index) + "]:"); Serial.print(" type "); 

printExpansionType(type); 

Serial.print(", I2C address: "); 

Serial.println(i2c_address); 

} 

} 

//****************************************************************************** 

6.4.3

GetDigital 

The  “getDigital”  sketch  demonstrates  how  to  read  digital  inputs  on  a  specific  expansion. 

The  sketch  determines  the  number  and  type  of  expansions  connected  to  the  Opta  PLC.  The sketch  then  reads  the  inputs  from  each  expansion  and  reports  whether  they  are  logic  high (H)  or  logic  low  (L).  In  this  example  a  momentary  contact  pushbutton  switch  is  connected to I6 as  shown in Fig.  6.5. 

//****************************************************************************** 

//FILE NAME: 

getDigital.ino 

//AUTHOR: 

Daniele Aimo 

//EMAIL:

d.aimo@arduino.cc 

//DATE:

20231116 

//DESCRIPTION: This sketch shows how to get the digital values of Digital 

//

Expansion digital input pins 

//LICENSE: 

Copyright (c) 2024 Arduino SA 

//

This Source Code Form is subject to the terms fo the Mozilla 

//

Public License (MPL), v 2.0. You can obtain a copy of the MPL 

//

at \url{http://mozilla.org/MPL/2.0/.} 

//Modified: 

S. Barrett, Nov 2024

*/ 

//****************************************************************************** 

[image: Image 78]
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Fig.  6.5  Test  circuit  for 

getDigital  sketch  (CC 

BY–NC–SA)  (www.arduino. 

cc) 

#include "OptaBlue.h" 

using namespace Opta; 

void setup() 

{ 

Serial.begin(115200); 

delay(2000); 

OptaController.begin(); 

while (!Serial)

//wait for serial monitor 

{ 

; 

} 

} 

void loop() 

{ 

OptaController.update(); 

Serial.println(); 

for(int i = 0; i < OPTA_CONTROLLER_MAX_EXPANSION_NUM; i++) 

{ 

DigitalMechExpansion mechExp = OptaController.getExpansion(i); 

DigitalStSolidExpansion stsolidExp = OptaController.getExpansion(i); 

if(mechExp) 

{ 

printExpansionInfo(mechExp.getIndex(), mechExp.getType(), 

mechExp.getI2CAddress()); 

mechExp.updateDigitalInputs(); 

for(int k = 0; k < OPTA_DIGITAL_IN_NUM; k++) 
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{ 

PinStatus v = mechExp.digitalRead(k); 

//returns pin status of pin k 

if(v == HIGH) 

{ 

Serial.print("H"); 

} 

else 

{ 

Serial.print("L"); 

} 

Serial.print(’ ’); 

} 

Serial.println(); 

} 

if(stsolidExp) 

{ 

printExpansionInfo(stsolidExp.getIndex(), stsolidExp.getType(), 

stsolidExp.getI2CAddress()); 

stsolidExp.updateDigitalInputs(); 

for(int k = 0; k < OPTA_DIGITAL_IN_NUM; k++)  //returns pin status of pin k 

{ 

PinStatus v = stsolidExp.digitalRead(k); 

if(v == HIGH) 

{ 

Serial.print("H"); 

} 

else 

{ 

Serial.print("L"); 

} 

Serial.print(’ ’); 

} 

Serial.println(); 

} 

} 

delay(1000); 

} 

//****************************************************************************** 

void printExpansionType(ExpansionType_t t) 

{ 

if(t == EXPANSION_NOT_VALID) 

{ 

Serial.print("Unknown!"); 

} 

else if(t == EXPANSION_OPTA_DIGITAL_MEC) 

{ 

Serial.print("DIGITAL [Mechanical]"); 

} 

else if(t == EXPANSION_OPTA_DIGITAL_STS) 

{ 

Serial.print("DIGITAL [Solid State]"); 

} 

else if(t == EXPANSION_DIGITAL_INVALID) 

{ 

Serial.print("DIGITAL [!!Invalid!!]"); 

} 

else if(t == EXPANSION_OPTA_ANALOG) 

{ 
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Serial.print("ANALOG"); 

} 

else 

{ 

Serial.print("Unknown!"); 

} 

} 

//****************************************************************************** 

void printExpansionInfo(uint8_t index, ExpansionType_t type, uint8_t i2c_address) 

{ 

Serial.print("Expansion[" + String(index) + "]:"); Serial.print(" type "); 

printExpansionType(type); 

Serial.print(", I2C address: "); 

Serial.println(i2c_address); 

} 

//****************************************************************************** 

void printUint16(uint16_t v) 

{ 

if(v < 10) 

{ 

Serial.print(" 

"); 

} 

else if(v < 100) 

{ 

Serial.print(" 

"); 

} 

else if(v < 1000) 

{ 

Serial.print("  "); 

} 

else if(v < 10000) 

{ 

Serial.print(" "); 

} 

Serial.print(v); 

} 

//****************************************************************************** 

The  switch  connected  to  I6  is  pressed  momentarily  and  released.  The  resulting  logic  high (H)  signal  is  reported  via  the  Serial  Monitor.  The  results  of  testing  the  sketch  is  provided  in Fig. 6.6. 

6.4.4

ADC 

The  sketch  “ADC”  is  used  to  test  the  analog  input  of  the  Arduino  Opta  Analog  Expansion A0602.  This  expansion  module  is  equipped  with  six  analog  programmable  inputs  with  16–bit ADC  resolution. 
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Fig.  6.7  DROK  SG–03  signal  generator  (CC  BY–NC–SA)  (www.arduino.cc) We  use  a  DROK  SG–03  Signal  Generator  to  provide  a  0–10  VDC  or  a  4–20  mA  signal to  the  analog  expansion  inputs  as  shown  in  Fig. 6.7. 

//***************************************************************************** 

//FILE NAME: 

ADC.ino 

//AUTHOR: 

Daniele Aimo 

//DATE:

20231211 

//DESCRIPTION: This sketch shows how to use Opta Analog ADC channel 

//

This will work only on Opta Analog Expansions 

//LICENSE: 

Copyright (c) 2024 Arduino SA 

//

This Source Code Form is subject to the terms of the Mozilla 

//

Public License (MPL), v 2.0. You can obtain a copy of the MPL 

//

at \url{http://mozilla.org/MPL/2.0/.} 

//Modified: 

S. Barrett, Nov 2024

*/ 

//***************************************************************************** 

#include "OptaBlue.h" 

#define PERIODIC_UPDATE_TIME 500 

#define DELAY_AFTER_SETUP 5000 

using namespace Opta; 

int8_t oa_index = -1; 

void setup() 

{ 

Serial.begin(115200); 
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delay(2000); 

OptaController.begin(); 

while (!Serial)

//wait for serial monitor 

{ 

; 

} 

for(int i = 0; i < OptaController.getExpansionNum(); i++) 

{ 

for(int k = 0; k < OA_AN_CHANNELS_NUM;k++) 

{ 

//all input channels initialized as VOLTAGE ADC 

AnalogExpansion::beginChannelAsAdc(OptaController, 

i, 

//the device 

k, 

//specific output channel 

OA_VOLTAGE_ADC, //ADC type 

true, 

//enable pull down 

false, 

//disable rejection 

false, 

//disable diagnostic 

0); 

//disable averaging 

} 

} 

} 

void loop() 

{ 

OptaController.update(); 

optaAnalogTask(); 

} 

//***************************************************************************** 

void printExpansionType(ExpansionType_t t) 

{ 

if(t == EXPANSION_NOT_VALID) 

{ 

Serial.print("Unknown!"); 

} 

else if(t == EXPANSION_OPTA_DIGITAL_MEC) 

{ 

Serial.print("Opta --- DIGITAL [Mechanical]

---"); 

} 

else if(t == EXPANSION_OPTA_DIGITAL_STS) 

{ 

Serial.print("Opta --- DIGITAL [Solid State] ---"); 

} 

else if(t == EXPANSION_DIGITAL_INVALID) 

{ 

Serial.print("Opta --- DIGITAL [!!Invalid!!] ---"); 

} 

else if(t == EXPANSION_OPTA_ANALOG) 

{ 

Serial.print("˜˜˜ Opta  ANALOG ˜˜˜"); 

} 

else 

{ 

Serial.print("Unknown!"); 

} 

} 

//***************************************************************************** 
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void printExpansionInfo() 

{ 

static long int start = millis(); 

if(millis() - start > 5000) 

{ 

start = millis(); 

Serial.print("Number of expansions: "); 

Serial.println(OptaController.getExpansionNum()); 

for(int i = 0; i < OptaController.getExpansionNum(); i++) 

{ 

Serial.print("Expansion n. "); 

Serial.print(i); 

Serial.print(" type "); 

printExpansionType(OptaController.getExpansionType(i)); 

Serial.print(" I2C address "); 

Serial.println(OptaController.getExpansionI2Caddress(i)); 

} 

} 

} 

//***************************************************************************** 

void optaAnalogTask() 

{ 

static long int start = millis(); 

if(millis() - start > PERIODIC_UPDATE_TIME) 

{ 

start = millis(); 

for(int i = 0; i < OptaController.getExpansionNum(); i++) 

{ 

AnalogExpansion exp = OptaController.getExpansion(i); 

if(exp) 

{ 

Serial.println("\nAnalog Expansion n. " +  String(exp.getIndex())); for(int j = 0; j < OA_AN_CHANNELS_NUM; j++) 

{ 

Serial.print(" - ch " + String(j)); 

int value = 

exp.analogRead((uint8_t)j); 

Serial.println(" -> ADC " + String(value)); 

//convert to voltage - 16 bit, 10V max 

float ADC_voltage =(((float)(value))/65535.0) * 10.0; 

Serial.print("CH voltage:  "); 

Serial.println(ADC_voltage); 

Serial.println(); 

} 

Serial.println(); 

} 

} 

} 

} 

//***************************************************************************** 

The  results  of  testing  the  sketch  is  provided  in  Fig. 6.8.  The  DROK  signal  generator  was connected  to  channel  2.  The  ADC  reading  was  converted  to  an  analog  result  as  shown  in  the sketch  above. 
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6.4.5

Digital–To–Analog  (DAC) 

The  Opta  Analog  expansion  is  equipped  with  eight  digital–to–analog  (DAC)  channels.  These outputs  may  be  configured  as  current  or  voltage  DACs.  The  outputs  are  accessible  via  I1,  I2, I3,  I4,  O1,  I5,  I6,  and  O2  terminals.  The  DAC  outputs  have  13  bits  of  resolution  and  have  a voltage  range  from  0  to  11  V  with  a  maximum  current  rating  of  9  mA. 

In  the  following  sketch  the  DAC  channels  are  configured  as  voltage  DACs  to  provide  a ramp  voltage  from  0  to  10  V.  The  resulting  waveforms  are  shown  in  Fig. 6.9.  The  waveforms are  captured  using  a  DATAQ  Instruments  DI–1100  Data  Acquisition  Starter  Kit  (www.dataq. 

com). 

//******************************************************************************* 

//FILE NAME: 

simple DAC adapted from DAC.ino 

//AUTHOR:

Daniele Aimo 

//EMAIL:

d.aimo@arduino.cc 

//DATE:

20231211 

//DESCRIPTION:  This example shows how to use the OptaBlue library to control 

//

the Opta Analog expansion. The example shows how to set the 

//

DAC value for each channel. All channels are configured as 

//

as voltage DACs. 

//LICENSE: 

Copyright (c) 2024 Arduino SA 

//

This Source Code Form is subject to the terms of the Mozilla 

//

Public License (MPL), v 2.0. You can obtain a copy of the MPL 

//

at \url{http://mozilla.org/MPL/2.0/.} 

//Modified: 

S. Barrett, Nov 2024 

//******************************************************************************* 

#include "OptaBlue.h" 

#define PERIODIC_UPDATE_TIME 500 

#define DELAY_AFTER_SETUP 200 

void setup() 

{ 

Serial.begin(115200); 

delay(2000); 

OptaController.begin(); 

for(int device = 0; device < OptaController.getExpansionNum(); device++) 

{ 

for(int ch = 0; ch < OA_AN_CHANNELS_NUM; ch++) 

{ 

AnalogExpansion::beginChannelAsDac(OptaController, 

device, 

ch, 

OA_VOLTAGE_DAC, 

true, 

false, 

OA_SLEW_RATE_0); 

} 

} 

} 

void loop() 

{ 

OptaController.update(); 

printExpansionInfo(); 
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optaAnalogTask(); 

} 

//******************************************************************************* 

void printExpansionType(ExpansionType_t t) 

{ 

if (t == EXPANSION_NOT_VALID) 

{ 

Serial.print("Unknown!"); 

} 

else if (t == EXPANSION_OPTA_DIGITAL_MEC) 

{ 

Serial.print("Opta --- DIGITAL [Mechanical]

---"); 

} 

else if (t == EXPANSION_OPTA_DIGITAL_STS) 

{ 

Serial.print("Opta --- DIGITAL [Solid State] ---"); 

} 

else if (t == EXPANSION_DIGITAL_INVALID) 

{ 

Serial.print("Opta --- DIGITAL [!!Invalid!!] ---"); 

} 

else if (t == EXPANSION_OPTA_ANALOG) 

{ 

Serial.print("˜˜˜ Opta  ANALOG ˜˜˜"); 

} 

else 

{ 

Serial.print("Unknown!"); 

} 

} 

//******************************************************************************* 

void printExpansionInfo() 

{ 

static long int start = millis(); 

if(millis() - start > 500) 

{ 

start = millis(); 

Serial.print("Number of expansions: "); 

Serial.println(OptaController.getExpansionNum()); 

for(int i = 0; i < OptaController.getExpansionNum(); i++) 

{ 

Serial.print("Expansion n. "); 

Serial.print(i); 

Serial.print(" type "); 

printExpansionType(OptaController.getExpansionType(i)); 

Serial.print(" I2C address "); 

Serial.println(OptaController.getExpansionI2Caddress(i)); 

} 

} 

} 

//******************************************************************************* 

void optaAnalogTask() 

{ 

static long int start = millis(); 
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//using this the code inside the if will run every PERIODIC_UPDATE_TIME ms 

//assuming the function is called repeatedly in the loop() function */ 

if(millis() - start > PERIODIC_UPDATE_TIME) 

{ 

start = millis(); 

static uint16_t dac_value = 0; 

dac_value += 100; 

//0.134 V step 

if(dac_value > 7500)

//max value: 10.0 V 

{ 

dac_value = 0; 

} 

for(int i = 0; i < OptaController.getExpansionNum(); i++) 

{ 

AnalogExpansion exp = OptaController.getExpansion(i); 

if(exp) 

{ 

Serial.println("Setting dac value " + String(dac_value) + 

" on expansion n. " + String(exp.getIndex())); 

for(int ch = 0; ch < OA_AN_CHANNELS_NUM; ch++) 

{ 

exp.setDac(ch, dac_value); 

} 

} 

} 

} 

} 

//******************************************************************************* 

6.4.6

Resistor  Temperature  Detector  (RTD)  Temperature  Measurement 

There  are  several  sensor  types  that  may  be  used  to  measure  temperature  including  integrated  circuit  (IC)  based  sensors,  thermocouples,  resistor  temperature  detectors  (RTD),  and 

thermistors. 3  In  this  example  we  use  an  RTD  to  measure  ambient  temperature. 

Resistance  Temperature  Detectors  or  RTDs  provide  for  the  precise  measurement  of  temperature.  An  RTD  consists  of  a  precision  trimmed  piece  of  metal  or  a  coil  of  wire  wrapped around  a  ceramic  or  glass  core.  The  RTD  is  calibrated  to  have  a  specific  resistance  at  a  given temperature.  For  example,  a  PT100  RTD  has  a  resistance  of  100.    at  .0  ◦C  and  a  PT1000 

has  a  resistance  of  1000.    at.0  ◦C  (Omega). 

RTDs  are  available  in  a  2,  3,  and  4–wire  configuration.  A  3–wire  version  is  shown  in Fig. 6.10a  and  b.  Using  a  three  or  four  wire  configuration,  the  value  of.  RRT D  resistance  may be  isolated  from  the  resistance  of  the  wire  leads. 

The  connection  of  an  RTD  to  the  Opta  analog  expansion  is  shown  in  Fig. 6.10c.  In  the following  sketch,  a  PT100  (Adafruit  #3290)  is  used  to  measure  temperature.  The  measured temperature  is  provided  in  Centigrade  and  Fahrenheit. 

3  We  explore  these  sensors  in  “Arduino  VIII:  Machine  Control”. 
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Fig.  6.10  Resistance  temperature  detectors  or  RTDs
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//*************************************************************************** 

//FILE NAME: 

RTD.ino 

//AUTHOR: 

Daniele Aimo 

//EMAIL:

d.aimo@arduino.cc 

//DATE:

20231222 

//DESCRIPTION: This example shows how to use RTD on Opta Analog expansion 

//

driven by Opta OptaController. 

//LICENSE: 

Copyright (c) 2024 Arduino SA 

//

This Source Code Form is subject to the terms fo the Mozilla 

//

Public License (MPL), v 2.0. You can obtain a copy of the MPL 

//

at \url{http://mozilla.org/MPL/2.0/.} 

//NOTES:

In case of more than one Opta Analog expansion this sketch 

//

works on the first one (the one closest to the OptaController) 

//Modified: 

S. Barrett, Nov 2024 

//*************************************************************************** 

#include "OptaBlue.h" 

#define PERIODIC_UPDATE_TIME 2000 

#define DELAY_AFTER_SETUP 1000 

// RTD constants 

float a = 0.0039083; 

float b = -0.0000005775; 

int8_t oa_index = -1; 

void setup() 

{ 

Serial.begin(115200); 

delay(2000); 

Serial.println("*** Opta Analog RTD example ***"); 

OptaController.begin(); 

while (!Serial)

//wait for serial monitor 

{ 

; 

} 

for(int i = 0; i < OptaController.getExpansionNum(); i++) 

{ 

for(int k = 0; k < OA_AN_CHANNELS_NUM;k++) 

{ 

//all channels are initialized in the same way as RTD 

AnalogExpansion::beginChannelAsRtd(OptaController, 

i, // the device 

k, // the output channel you are using 

true, // use 3 wire RTD 

1.2); // current used on RTD in mA 

//set the sampling time for RTD to 1000 ms (default) 

AnalogExpansion::beginRtdUpdateTime(OptaController, 

i, 

1000); 

} 

} 

} 

void loop() 

{ 

OptaController.update(); 

//printExpansionInfo(); 

optaAnalogTask(); 

} 
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//*************************************************************************** 

void printExpansionType(ExpansionType_t t) 

{ 

if(t == EXPANSION_NOT_VALID) 

{ 

Serial.print("Unknown!"); 

} 

else if(t == EXPANSION_OPTA_DIGITAL_MEC) 

{ 

Serial.print("Opta --- DIGITAL [Mechanical]

---"); 

} 

else if(t == EXPANSION_OPTA_DIGITAL_STS) 

{ 

Serial.print("Opta --- DIGITAL [Solid State] ---"); 

} 

else if(t == EXPANSION_DIGITAL_INVALID) 

{ 

Serial.print("Opta --- DIGITAL [!!Invalid!!] ---"); 

} 

else if(t == EXPANSION_OPTA_ANALOG) 

{ 

Serial.print("˜˜˜ Opta  ANALOG ˜˜˜"); 

} 

else 

{ 

Serial.print("Unknown!"); 

} 

} 

//*************************************************************************** 

void printExpansionInfo() 

{ 

static long int start = millis(); 

if(millis() - start > 5000) 

{ 

start = millis(); 

Serial.print("Number of expansions: "); 

Serial.println(OptaController.getExpansionNum()); 

for(int i = 0; i < OptaController.getExpansionNum(); i++) 

{ 

Serial.print("Expansion n. "); 

Serial.print(i); 

Serial.print(" type "); 

printExpansionType(OptaController.getExpansionType(i)); 

Serial.print(" I2C address "); 

Serial.println(OptaController.getExpansionI2Caddress(i)); 

} 

} 

} 

//*************************************************************************** 

void optaAnalogTask() 

{ 

static long int start = millis(); 

if(millis() - start > PERIODIC_UPDATE_TIME) 

{ 

start = millis(); 
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for(int i = 0; i < OptaController.getExpansionNum(); i++) 

{ 

AnalogExpansion aexp = OptaController.getExpansion(i); 

if(aexp) 

{ 

Serial.println("Expansion n. " + String(aexp.getIndex())); 

for(int j = 0; j < 8; j++) 

{ 

float value = aexp.getRtd((uint8_t)j); 

Serial.print("ch "); 

Serial.print(j); 

Serial.print(" -> "); 

Serial.print(value); 

Serial.print(" ?"); 

float temp = (-(1.0 / 100.0) * (50.0 * a - 10*sqrt(b * value + 

25.0 * pow(a, 2.0) - 100.0 * b))) / b; 

Serial.print(" -> "); 

Serial.print(temp); 

Serial.print(" C"); 

Serial.println(); 

Serial.print(" "); 

} 

Serial.println(); 

} 

} 

} 

} 

//*************************************************************************** 

6.4.7

Pulse  Width  Modulation  (PWM) 

The  Opta  analog  expansion  is  equipped  with  four  PWM  channels  designated  P1  to  P4.  The PWM  voltage  is  set  by  applying  the  desired  voltage  to  the.  PPW M  terminal.  The  PWM  duty cycle  (0–100%)  and  baseline  frequency  (up  to  10  kHz)  is  programmable.  The  maximum current  output  is  100  mA. 

In  the  following  sketch  all  four  PWM  channels  are  programmed  with  a  varying  duty  cycle and  hence  a  varying  effective  voltage.  The  circuit  configuration  and  resulting  waveforms are  shown  in  Fig. 6.11.  The  waveforms  are  captured  using  a  DATAQ  Instruments  DI–1100 

Data  Acquisition  Starter  Kit  (www.dataq.com). 

//**************************************************************************** 

//FILE NAME: 

Pwm.ino 

//AUTHOR: 

Daniele Aimo 

//EMAIL:

d.aimo@arduino.cc 

//DATE:

20231205 

//DESCRIPTION: This sketch shows basic PWM usage with the OptaBlue library. 

//LICENSE: 

Copyright (c) 2024 Arduino SA 

//

This Source Code Form is subject to the terms of the Mozilla 

//

Public License (MPL), v 2.0. You can obtain a copy of the MPL 

//

at \url{http://mozilla.org/MPL/2.0/.} 

//Modified: 

S. Barrett, Nov 2024 

//**************************************************************************** 

#include "OptaBlue.h" 
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a) PWM power connection. 

Fig.  6.11  Results  of  testing  the  PWM  sketch  (CC  BY–NC–SA)  (www.arduino.cc) 
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void setup() 

{ 

Serial.begin(115200); 

delay(2000); 

OptaController.begin(); 

while (!Serial)

//wait for serial monitor 

{ 

; 

} 

} 

void loop() 

{ 

OptaController.update(); 

printExpansionInfo(); 

optaAnalogTask(); 

} 

//**************************************************************************** 

void printExpansionType(ExpansionType_t t) 

{ 

if(t == EXPANSION_NOT_VALID) 

{ 

Serial.print("Unknown!"); 

} 

else if(t == EXPANSION_OPTA_DIGITAL_MEC) 

{ 

Serial.print("Opta --- DIGITAL [Mechanical]

---"); 

} 

else if(t == EXPANSION_OPTA_DIGITAL_STS) 

{ 

Serial.print("Opta --- DIGITAL [Solid State] ---"); 

} 

else if(t == EXPANSION_DIGITAL_INVALID) 

{ 

Serial.print("Opta --- DIGITAL [!!Invalid!!] ---"); 

} 

else if(t == EXPANSION_OPTA_ANALOG) 

{ 

Serial.print("˜˜˜ Opta  ANALOG ˜˜˜"); 

} 

else 

{ 

Serial.print("Unknown!"); 

} 

} 

//**************************************************************************** 

void printExpansionInfo() 

{ 

static long int start = millis(); 

if(millis() - start > 5000) 

{ 

start = millis(); 

Serial.print("Number of expansions: "); 

Serial.println(OptaController.getExpansionNum()); 

for(int i = 0; i < OptaController.getExpansionNum(); i++) 

{ 
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Serial.print("Expansion n. "); 

Serial.print(i); 

Serial.print(" type "); 

printExpansionType(OptaController.getExpansionType(i)); 

Serial.print(" I2C address "); 

Serial.println(OptaController.getExpansionI2Caddress(i)); 

} 

} 

} 

//**************************************************************************** 

//The optaAnalogTask function runs every 2000 ms. It sets the pwm parameters 

//for all the channels with a period equal to 10 ms (100 Hz) and a variable 

//duty cycle from 10 to 70% 

void optaAnalogTask() 

{ 

static long int start = millis(); 

static bool stop_pwm = false; 

if(millis() - start > 2000) 

{ 

if(Serial.available()) 

{ 

while(Serial.available()) 

{ 

Serial.read(); 

} 

stop_pwm = !stop_pwm; 

} 

start = millis(); 

static uint16_t period = 10000; 

static uint16_t pulse = 0; 

static bool rising  = 1; 

if(rising) 

{ 

pulse += 1000; 

if(pulse > 7000) 

{ 

rising = 0; 

} 

} 

else 

{ 

pulse -= 1000; 

if(pulse <= 1000) 

{ 

rising = 1; 

} 

} 

for(int i = 0; i < OptaController.getExpansionNum(); i++) 

{ 

AnalogExpansion aexp = OptaController.getExpansion(i); 

if(aexp) 

{ 

if(stop_pwm) 

{ 

Serial.println("PWM stopped"); 

aexp.setPwm(OA_FIRST_PWM_CH, 0, pulse); 

aexp.setPwm(OA_FIRST_PWM_CH + 1, 0, pulse); 

aexp.setPwm(OA_FIRST_PWM_CH + 2, 0, pulse); 

aexp.setPwm(OA_FIRST_PWM_CH + 3, 0, pulse); 
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} 

else 

{ 

Serial.println("PWM started"); 

aexp.setPwm(OA_FIRST_PWM_CH, period, pulse); 

aexp.setPwm(OA_FIRST_PWM_CH + 1, period, pulse); 

aexp.setPwm(OA_FIRST_PWM_CH + 2, period, pulse); 

aexp.setPwm(OA_FIRST_PWM_CH + 3, period, pulse); 

} 

} 

} 

for(int i = 0; i < OptaController.getExpansionNum(); i++) 

{ 

AnalogExpansion aexp = OptaController.getExpansion(i); 

if(aexp) 

{ 

Serial.println("PWM ch 0 period " + 

String(aexp.getPwmPeriod(OA_FIRST_PWM_CH))+ 

" pulse " + aexp.getPwmPulse(OA_FIRST_PWM_CH)); 

Serial.println("PWM ch 1 period " + 

String(aexp.getPwmPeriod(OA_FIRST_PWM_CH + 1)) + 

" pulse " + aexp.getPwmPulse(OA_FIRST_PWM_CH + 1)); 

Serial.println("PWM ch 2 period " + 

String(aexp.getPwmPeriod(OA_FIRST_PWM_CH + 2)) + 

" pulse " + aexp.getPwmPulse(OA_FIRST_PWM_CH + 2)); 

Serial.println("PWM ch 3 period " + 

String(aexp.getPwmPeriod(OA_FIRST_PWM_CH + 3))+ 

" pulse " + aexp.getPwmPulse(OA_FIRST_PWM_CH + 2)); 

} 

} 

} 

} 

//**************************************************************************** 

6.5

Application:  Motor  Speed  Control  with  Pulse  Width  Modulation As  discussed  in  the  Application  section  of  Chap. 4,  motor  speed  may  be  varied  by  changing the  applied  motor  voltage.  PWM  control  signal  techniques  may  be  used  to  precisely  control the  motor  speed.  With  PWM  the  duty  cycle  and  hence  the  effective  voltage  applied  to  the motor  is  varied. 

In  this  example  we  revisit  the  Brother  12  VDC,  1,500  RPM  DC  motor  equipped  with  an optical  tachometer  from  Chap. 4.  However,  due  to  the  100  mA  current  limit  of  the  PWM 

outputs  (P1–P4),  additional  hardware  interface  electronics  are  required  as  shown  in  Fig. 6.12. 

A  software  generated  PWM  signal  is  generated  using  the  PWM  sketch.  The  PWM  signal is  routed  to  the  gate  (G)  of  an  IRF530  power  MOSFET.  The  motor  is  connected  between the  12  VDC  motor  power  supply  and  the  drain  (D)  connection.  A  reverse–biased  1N4001 

diode  is  used  for  circuit  protection.  The  MOSFET  source  (S)  is  connected  to  ground.  Motor speed  is  monitored  using  techniques  discussed  in  Chap. 4. 

[image: Image 85]

232

6  Opta  Expansions 

Fig.  6.12  DC  motor  demonstration  circuit.  Images  used  courtesy  of  the  Arduino  team  (CC  BY–NC-

–SA)  (www.arduino.cc) 
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The  goal  of  this  example  is  to  stabilize  the  speed  of  a  DC  motor  using  several  different concepts  discussed  earlier  in  the  book. 

Activities: 

1.  Construct  and  test  the  interface  circuit  shown  in  Fig. 6.12. 

2.  Use  the  PWM  sketch  to  vary  the  speed  of  the  motor. 

3.  Write  a  test  sketch  to  stabilize  the  DC  motor  at  a  specific  motor  speed. Hint:  Adapt  the motor  speed  control  sketch  provided  in  Chap. 4  and  include  PWM  features  from  the  Opta analog  expansion. 

6.6

Summary 

In  this  chapter  we  provided  a  brief  introduction  to  the  recently  released  series  of  Opta  PLC 

hardware  expansion  modules.  The  modules  extend  and  enhance  the  Opta  PLC  capabilities. 

6.7

Problems 

1.  Develop  a  one  page  summary  of  Opta  digital  and  analog  expansion  modules.  Include  all related  parameters  (e.g.  voltage,  current,  etc.). 

2.  Sketch  a  UML  activity  diagram  for  every  sketch  in  this  chapter. 

3.  Use  the  ADC  sketch  to  measure  ambient  temperature  using  an  LM34  Precision  Fahrenheit Temperature  Sensor  manufactured  by  Texas  Instruments.  The  LM34  provides  10  mV  of output  per  degree  Fahrenheit.  Convert  the  LM34  output  to  temperature  and  display  the result  on  the  Serial  Monitor  in  both  Centigrade  and  Fahrenheit.  Provide  a  circuit  diagram and  an  Arduino  sketch. 

4.  It  is  desired  to  monitor  the  output  from  the  DAC  sketch  with  10  mm  red  LEDs (.  V f  =  2 V ,    I f  = 30  mA).  Provide  a  circuit  diagram  for  the  interface  circuit  and an  Arduino  sketch. 

5.  It  is  desired  to  monitor  the  output  from  the  PWM  sketch  with  10  mm  red  LEDs (.  V f  =  2 V ,    I f  = 30  mA).  Provide  a  circuit  diagram  for  the  interface  circuit  and an  Arduino  sketch. 

6.  Within  the  Arduino  Opta  Blueprint  Library  is  a  sketch  “genericDigital.”  Sketch  a  UML 

activity  diagram  for  this  sketch. 

7.  Within  the  Arduino  Opta  Blueprint  Library  is  a  sketch  “genericAnalog.”  Sketch  a  UML 

activity  diagram  for  this  sketch. 
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Safety 

A

In  this  Appendix 1 a  review  of  safety  concepts  are  provided  for  ready  reference.  The  information  provided  is  condensed  from  the  Electrical  Safety  Foundation  International  (ESFI) and  several  other  sources.  “The  Electrical  Safety  Foundation  International  is  the  premier non–profit  organization  dedicated  exclusively  to  promoting  electrical  safety  at  home  and in  the  workplace.  Since  1994,  ESFI  has  led  the  way  in  promoting  electrical  safety  across North  America.  Over  the  years,  ESFI  has  become  highly  regarded  by  industry,  media  and consumer  safety  partners  alike  by  constantly  reinvigorating  the  way  electrical  safety  is addressed.  ESFI  creates  unique  awareness  and  educational  resources  designed  to  meet  the diverse  needs  of  a  variety  of  at–risk  groups.  The  Electrical  Safety  Foundation  International is  dedicated  exclusively  to  promoting  electrical  safety  at  home  and  in  the  workplace  through education,  awareness,  and  advocacy  (https://esfi.org).” 

In  the  next  several  sections  we  review  the  background  information  on  the  effects  of electricity  on  the  human  body  and  present  electrical  safety  procedures  for  safe  equipment operation.  You  must  strictly  adhere  to  these  procedures  when  working  on  book  associated activities.  With  this  in  mind,  we  provide  laboratory  safe  operating  procedures  and  also electric  shock  treatment  procedures. 

Safety  is  paramount  and  is  everybody’s  business! 

1  This  Appendix  was  adapted  with  permission  from  “Arduino  VI:  Bioinstrumentation,”  S.  Barrett, Springer,  2024. 

©  The  Editor(s)  (if  applicable)  and  The  Author(s),  under  exclusive  license  to  Springer 235

Nature  Switzerland  AG  2025 

S.  F.  Barrett,  Arduino  VII,  Synthesis  Lectures  on  Digital  Circuits  &  Systems, 

https://doi.org/10.1007/978-3-031-68609-2 
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Appendix A: Safety

A.1

Physiological  Effects  of  Electricity 

For  an  electrically  induced  physiological  effect  to  occur,  your  body  must  become  part  of  an electrical  circuit.  Current  must  enter  at  some  point  on  your  body  and  exit  via  another  point. 

Through  safe  laboratory  procedures  and  proper  equipment  design,  current  is  prevented  from entering  the  body. 

From  an  electrical  point  of  view  the  body  is  a  resistor.  The  resistance  of  skin  ranges  from 15  KOhms  to  1  MOhms  per  square  centimeter.  However,  the  resistance  may  decrease  to one  percent  of  its  dry  value  when  it  is  wet.  Beyond  the  skin  barrier,  the  internal  resistance is  approximately  200.    per  limb  and  100.    per  trunk  as  shown  in  Fig. A.1.  Application  of Ohm’s  Law  (.  voltage =  curr ent ×  r esistance)  shows  a  voltage  of  300  V  applied  across the  body  with  dry  skin  will  result  in  a  current  of  approximately  10  mA.  The  same  current flow  will  result  at  much  lower  values  of  voltage  when  your  skin  is  moist  or  wet  (Webster 2020). 

When  the  body  comes  in  contact  with  voltage,  it  is  current  flow  through  the  body  that causes  physiological  damage  and  potentially  death.  The  body  may  be  exposed  to  harmful currents  via  macroshock  or  microshock.  In  macroshock  the  body  is  exposed  to  a  high  voltage level.  Microshocks  provide  low  level,  yet  harmful  currents  to  the  heart.  Microshocks  result from  leakage  current  within  an  AC  powered  circuit.  Leakage  currents  are  small  currents  that flow  between  two  conductors  at  different  potentials.  Even  if  the  conductors  are  well  insulated, leakage  currents  may  occur  due  to  capacitive  and  resistive  effects.  Leakage  currents  flow into  the  body  and  the  heart  due  to  catheters  or  internal  conductive  monitoring  leads  (Webster 2020). 
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Fig.  A.2  Safety  design 

Shock  of  either  type  is  prevented  via  a  combination  of  proper  power  system  design and  distribution,  proper  equipment  grounding,  proper  equipment  design,  and  safe  operating practices  and  processes.  As  shown  in  Fig. A.2,  a  person  is  protected  from  both  types  of  shock via  these  equipment  design  concepts  (Webster  2020,  Baretich  2015):

• A  reliable  equipment  chassis  ground  to  ground; 

• Reduction  of  leakage  current  through  properly  insulated  equipment  conductors; 

• Equipment  double  insulation  with  a  nonconductive  external  covering  or  chassis; 

• Equipment  operation  at  the  lower  AC  or  DC  voltage  practical;  and

• Use  of  isolation  amplifiers  when  using  conductive  leads. 

Equipment  powered  from  an  AC  source  must  use  a  three  conductor  power  cord.  The ground  conductor  is  connected  to  the  equipment’s  metal  chassis  and  also  to  Earth  ground via  a  sound  and  reliable  electrical  distribution  system.  Also,  equipment  operation  at  the lowest  possible  AC  or  DC  voltage  further  reduces  shock  hazard.  The  lower  voltage  coupled with  a  high,  intact  skin  resistance  reduce  the  potential  from  harmful  current  (Webster  2020). 

Not  much  current  flow  is  required  to  produce  a  physiological  effect.  The  table  below shows  that  currents  as  low  as  0.5  mA  illicit  a  perceptible  physiological  response.  Note  that as  more  current  flows  through  the  body  the  physiological  effect  is  more  severe  (Webster 2020,  ANSI/AAMI  ESI–1993)  (Table  A.1). 

[image: Image 90]

[image: Image 91]

[image: Image 92]

[image: Image 93]

[image: Image 94]

[image: Image 95]

[image: Image 96]

[image: Image 97]

[image: Image 98]

[image: Image 99]

[image: Image 100]

[image: Image 101]

[image: Image 102]

[image: Image 103]

[image: Image 104]

[image: Image 105]

[image: Image 106]

[image: Image 107]

[image: Image 108]

[image: Image 109]

[image: Image 110]

[image: Image 111]

[image: Image 112]

[image: Image 113]

[image: Image 114]

[image: Image 115]

[image: Image 116]

[image: Image 117]

[image: Image 118]

[image: Image 119]

238

Appendix A: Safety

Table  A.1  60  Hz  AC  current  response 

Low  range  [mA]

High  range  [mA]

Physiological  response 

0.5

3

Start  to  feel  the  energy,  tingling 

sensation 

3

10

Experience  pain,  muscle 

contraction 

10

40

Grip  paralysis  threshold–called 

“let–go”  current 

30

75

Respiratory  systems  shuts  down 

100

200

Experience  heart  fibrillation 

200

500

Heart  clamps  tight 

Over  1,500

Tissue  and  organs  burn 

“Let. —go  current”  is  the  maximum  current  at  which  you  can  voluntarily  withdraw  from the  current  source.  At  higher  current  levels  the  muscles  involuntarily  contract  and  you  can’t let  go  of  the  current  source.  At  current  levels  as  low  as  10  mA  respiratory  paralysis  may result. 

At  approximately  50  mA  ventricular  fibrillation  may  result.  Ventricular  fibrillation  is a  condition  where  the  ventricles  of  the  heart  quiver  instead  of  pump.  It  is  caused  by  an interruption  of  the  normal  electrical  cardiac  conduction  cycle.  Defibrillation  action  is  usually required  to  bring  the  heart  to  a  complete  stop  so  that  the  normal  cardiac  conduction  cycle may  resume.  At  even  higher  levels  of  current  sustained  myocardial  contraction  and  severe burns  may  occur.  Currents  as  low  as  10  mA  through  the  body  may  result  in  death. 

A.2

Electrical  Safety  Principles 

The  following  is  a  list  of  electrical  safety  “do’s”  and  “don’ts”  compiled  from  several  different electrical  safety  sources. 

• Two  or  more  individuals  must  be  present  in  a  laboratory  at  a  given  time  to  monitor  one another’s  safety. 

• Remove  jewelry  (rings,  watches,  necklaces,  long  earrings,  etc.)  when  working  with  electrical  or  mechanical  equipment. 

• Watch  out  for  loose  wires. 

• Work  with  one  hand  behind  your  back.  This  will  prevent  electrical  current  from  entering one  hand  passing  through  your  heart  and  out  the  other  hand. 

• Be  aware  of  capacitors.  The  retain  charge  even  when  equipment  is  turned  off. 

• Use  a  three  conductor  electrical  system  with  an  Earth  ground
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• Keep  fingers  out  of  “live”  chassis. 

• Don’t  install  components  when  the  power  is  on. 

• Don’t  work  with  wet  or  oily  hands. 

• Don’t  cut  live  wires. 

• Double  check  circuit  wiring  before  energizing  a  circuit

• Make  sure  that  all  members  of  your  laboratory  group  realize  when  a  circuit  is  being energized. 

• Repair  or  replace  leads  with  loose  connectors. 

• Avoid  touching  rotating  parts  or  allowing  wires  to  touch  them. 

• Safety  is  everybody’s  business! 

A.3

Shock  Rescue  Procedures 

In  response  to  an  electrical  accident,  follow  these  procedures  immediately:

• Call  for  help. 

• De. —energize  the  circuit. 

• Separate  the  person  from  the  energy  source. 

• Make  sure  you  and  the  victim  are  in  a  safe  zone.— not  in  contact  with  any  electrical source,  away  from  downed  or  broken  wires. 

• Never  grab  the  person  or  pull  the  person  off  the  current  with  your  hands;  you  might become  part  of  the  circuit  and  become  injured  as  well. 

• Use  a  dry  wood  broom,  leather  belt,  plastic  rope  or  something  similar  that  is  non. —

conductive  such  as  wood  or  plastic  cane  with  hook  on  the  end  to  free  the  person  from  the energy  source. 

• Administer  first  aid,  apply  mouth. —to. —mouth  resuscitation  and/or  CPR;  know  what  to do

• Keep  the  victim  lying  down,  warm  and  comfortable  to  maintain  body  heat  until  help arrives.  Do  not  move  the  person  in  case  of  injury  to  neck  or  back. 

• If  the  victim  is  unconscious,  put  him/her  on  side  to  let  fluids  drain. 

• Make  sure  the  victim  receives  professional  medical  attention  (person  shocked  could  have heart  failure  hours  later)
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Embedded  Systems  Design 

B

Objectives:  After  reading  this  appendix,  the  reader  should  be  able  to  do  the  following:

• Define  an  embedded  system; 

• List  all  aspects  related  to  the  design  of  an  embedded  system; 

• Provide  a  step–by–step  approach  to  embedded  system  design; 

• Discuss  design  tools  and  practices  related  to  embedded  systems  design;  and

• Apply  embedded  system  design  practices  in  the  design  of  a  microcontroller  system employing  several  interacting  subsystems. 

B.1

Overview 

In  this  chapter, 2 we  begin  with  a  definition  of  just  what  is  an  embedded  system.  We  then explore  the  process  of  how  to  successfully  (and  with  low  stress)  develop  an  embedded  system prototype  that  meets  established  requirements. 

2  The  information  on  embedded  system  design  first  appeared  in  “Microcontroller  Fundamentals for  Engineers  and  Scientists,”  Morgan  and  Claypool  Publishers,  2006.  It  has  been  adapted  with permission.  Although  first  developed  for  embedded  systems  design,  concepts  provided  here  apply  to Opta. —based  PLC  system  design. 
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B.2

What  is  an  Embedded  System? 

An  embedded  system  contains  a  microcontroller  to  accomplish  its  job  of  processing  system  inputs  and  generating  system  outputs.  The  link  between  system  inputs  and  outputs  is provided  by  a  coded  algorithm  stored  within  the  processor’s  resident  memory.  What  makes embedded  systems  design  so  interesting  and  challenging  is  the  design  must  also  take  into account  the  proper  electrical  interface  for  the  input  and  output  devices,  limited  on. —chip resources,  human  interface  concepts,  the  operating  environment  of  the  system,  cost  analysis,  related  standards,  and  manufacturing  aspects  (Anderson).  Through  careful  application of  this  material  you  will  be  able  to  design  and  prototype  embedded  systems. 

B.3

Embedded  System  Design  Process 

In  this  section,  we  provide  a  step. —by. —step  approach  to  develop  the  first  prototype  of  an embedded  system  that  will  meet  established  requirements.  There  are  many  formal  design processes  that  we  could  study.  We  concentrate  on  the  steps  that  are  common  to  most.  We purposefully  avoid  formal  terminology  of  a  specific  approach  and  instead  concentrate  on the  activities  that  are  accomplished  as  a  system  prototype  is  developed.  The  design  process we  describe  is  illustrated  in  Fig. B.1  using  a  Unified  Modeling  Language  (UML)  activity diagram.  We  discuss  the  UML  activity  diagrams  later  in  the  appendix. 

B.3.1

Project  Description 

The  goal  of  the  project  description  step  is  to  determine  what  the  system  is  ultimately  supposed to  do.  To  achieve  this  step  you  must  thoroughly  investigate  what  the  system  is  supposed  to do.  Questions  to  raise  and  answer  during  this  step  include  but  are  not  limited  to  the  following:

• What  is  the  system  supposed  to  do? 

• Where  will  it  be  operating  and  under  what  conditions? 

• Are  there  any  restrictions  placed  on  the  system  design? 

To  answer  these  questions,  the  designer  interacts  with  the  client  to  ensure  clear  agree-ment  on  what  is  to  be  done.  If  you  are  completing  this  project  for  yourself,  you  must  still carefully  and  thoughtfully  complete  this  step.  The  establishment  of  clear,  definable  system requirements  may  require  considerable  interaction  between  the  designer  and  the  client.  It is  essential  that  both  parties  agree  on  system  requirements  before  proceeding  further  in  the design  process.  The  final  result  of  this  step  is  a  detailed  listing  of  system  requirements  and related  specifications. 
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Fig.  B.1  Embedded  system 
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B.3.2

Background  Research 

Once  a  detailed  list  of  requirements  has  been  established,  the  next  step  is  to  perform  background  research  related  to  the  design.  In  this  step,  the  designer  will  ensure  they  understand all  requirements  and  features  required  by  the  project.  This  will  again  involve  interaction between  the  designer  and  the  client.  The  designer  will  also  investigate  applicable  codes, guidelines,  protocols,  and  standards  related  to  the  project.  This  is  also  a  good  time  to  start thinking  about  the  interface  between  different  portions  of  the  project  particularly  the  input and  output  devices  peripherally  connected  to  the  microcontroller.  The  ultimate  objective  of this  step  is  to  have  a  thorough  understanding  of  the  project  requirements,  related  project aspects,  and  any  interface  challenges  within  the  project. 

B.3.3

Pre. —Design 

The  goal  of  the  pre. —design  step  is  to  convert  a  thorough  understanding  of  the  project into  possible  design  alternatives.  Brainstorming  is  an  effective  tool  in  this  step.  Here,  a  list of  alternatives  is  developed.  Since  an  embedded  system  typically  involves  both  hardware and/or  software,  the  designer  can  investigate  whether  requirements  could  be  met  with  a hardware  only  solution  or  some  combination  of  hardware  and  software.  Generally,  speaking a  hardware  only  solution  executes  faster;  however,  the  design  is  somewhat  fixed  once  fielded. 

On  the  other  hand,  a  software  implementation  provides  flexibility  and  a  typically  slower execution  speed.  Most  embedded  design  solutions  will  use  a  combination  of  both  hardware and  software  to  capitalize  on  the  inherent  advantages  of  each. 

Once  a  design  alternative  has  been  selected,  the  general  partition  between  hardware  and software  can  be  determined.  It  is  also  an  appropriate  time  to  select  a  specific  hardware  device to  implement  the  prototype  design.  If  a  microcontroller  technology  has  been  chosen,  it  is now  time  to  select  a  specific  controller.  This  is  accomplished  by  answering  the  following questions:

• What  microcontroller  systems  or  features  i.e.,  ADC,  PWM,  timer,  etc.)  are  required  by the  design? 

• How  many  input  and  output  pins  are  required  by  the  design? 

• What  is  the  maximum  anticipated  operating  speed  of  the  microcontroller  expected  to  be? 

B.3.4

Design 

With  a  clear  view  of  system  requirements  and  features,  a  general  partition  determined between  hardware  and  software,  and  a  specific  microcontroller  chosen,  it  is  now  time  to
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tackle  the  actual  design.  It  is  important  to  follow  a  systematic  and  disciplined  approach to  design.  This  will  allow  for  low  stress  development  of  a  documented  design  solution  that meets  requirements.  In  the  design  step,  several  tools  are  employed  to  ease  the  design  process. 

They  include  the  following:

• Employing  a  top. —down  design,  bottom  up  implementation  approach, 

• Using  a  structure  chart  to  assist  in  partitioning  the  system, 

• Using  a  Unified  Modeling  Language  (UML)  activity  diagram  to  work  out  program  flow, and

• Developing  a  detailed  circuit  diagram  of  the  entire  system. 

Let’s  take  a  closer  look  at  each  of  these.  The  information  provided  here  is  an  abbreviated version  of  the  one  provided  in  “Microcontrollers  Fundamentals  for  Engineers  and  Scientists.” 

The  interested  reader  is  referred  there  for  additional  details  and  an  in. —depth  example (Barrett  and  Pack). 

Top  down  design,  bottom  up  implementation.  An  effective  tool  to  start  partitioning the  design  is  based  on  the  techniques  of  top. —down  design,  bottom. —up  implementation.  In this  approach,  you  start  with  the  overall  system  and  begin  to  partition  it  into  subsystems.  At this  point  of  the  design,  you  are  not  concerned  with  how  the  design  will  be  accomplished but  how  the  different  pieces  of  the  project  will  fit  together.  A  handy  tool  to  use  at  this  design stage  is  the  structure  chart.  The  structure  chart  shows  the  hierarchy  of  how  system  hardware and  software  components  will  interact  and  interface  with  one  another.  You  should  continue partitioning  system  activity  until  each  subsystem  in  the  structure  chart  has  a  single  definable function. 

UML  Activity  Diagram.  Once  the  system  has  been  partitioned  into  pieces,  the  next  step in  the  design  process  is  to  start  working  out  the  details  of  the  operation  of  each  subsystem we  previously  identified.  Rather  than  beginning  to  code  each  subsystem  as  a  function,  we will  work  out  the  information  and  control  flow  of  each  subsystem  using  another  design  tool: the  Unified  Modeling  Language  (UML)  activity  diagram.  The  activity  diagram  is  simply  a UML  compliant  flow  chart.  UML  is  a  standardized  method  of  documenting  systems.  The activity  diagram  is  one  of  the  many  tools  available  from  UML  to  document  system  design and  operation.  The  basic  symbols  used  in  a  UML  activity  diagram  for  a  microcontroller based  system  are  provided  in  Fig. B.2  (Fowler). 

To  develop  the  UML  activity  diagram  for  the  system,  we  can  use  a  top. —down,  bottom. —up,  or  a  hybrid  approach.  In  the  top. —down  approach,  we  begin  by  modeling  the  overall  flow  of  the  algorithm  from  a  high  level.  If  we  choose  to  use  the  bottom. —up  approach,  we would  begin  at  the  bottom  of  the  structure  chart  and  choose  a  subsystem  for  flow  modeling. 

The  specific  course  of  action  chosen  depends  on  project  specifics.  Often,  a  combination  of both  techniques,  a  hybrid  approach,  is  used.  You  should  work  out  all  algorithm  details  at the  UML  activity  diagram  level  prior  to  coding  any  software.  If  you  can  not  explain  system operation  at  this  higher  level,  first,  you  have  no  business  being  down  in  the  detail  of  devel-
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Fig.  B.2  UML  activity  diagram 
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oping  the  code.  Therefore,  the  UML  activity  diagram  should  be  of  sufficient  detail  so  you can  code  the  algorithm  directly  from  it  (Dale). 

In  the  design  step,  a  detailed  circuit  diagram  of  the  entire  system  is  developed.  It  will serve  as  a  roadmap  to  implement  the  system.  It  is  also  a  good  idea  at  this  point  to  investigate available  design  information  relative  to  the  project.  This  would  include  hardware  design examples,  software  code  examples,  and  application  notes  available  from  manufacturers.  At the  completion  of  this  step,  the  prototype  design  is  ready  for  implementation  and  testing. 

B.3.5

Implement  Prototype 

To  successfully  implement  a  prototype,  an  incremental  approach  should  be  followed.  Again, the  top. —down  design,  bottom. —up  implementation  provides  a  solid  guide  for  system  implementation.  In  an  embedded  system  design  involving  both  hardware  and  software,  the  hardware  system  including  the  microcontroller  should  be  assembled  first.  This  provides  the software  the  required  signals  to  interact  with.  As  the  hardware  prototype  is  assembled  on  a prototype  board,  each  component  is  tested  for  proper  operation  as  it  is  brought  online.  This allows  the  designer  to  pinpoint  malfunctions  as  they  occur. 

Once  the  hardware  prototype  is  assembled,  coding  may  commence.  As  before,  software should  be  incrementally  brought  online.  You  may  use  a  top  down,  bottom  up,  or  hybrid approach  depending  on  the  nature  of  the  software.  The  important  point  is  to  bring  the software  online  incrementally  such  that  issues  can  be  identified  and  corrected  early  on. 

It  is  highly  recommended  that  low  cost  stand. —in  components  be  used  when  testing the  software  with  the  hardware  components.  For  example,  push  buttons,  potentiometers, and  LEDs  may  be  used  as  low  cost  stand. —in  component  simulators  for  expensive  input
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instrumentation  devices  and  expensive  output  devices  such  as  motors.  This  allows  you  to insure  the  software  is  properly  operating  before  using  it  to  control  the  actual  components. 

B.3.6

Preliminary  Testing 

To  test  the  system,  a  detailed  test  plan  must  be  developed.  Tests  should  be  developed  to verify  that  the  system  meets  all  of  its  requirements  and  also  intended  system  performance  in an  operational  environment.  The  test  plan  should  also  include  scenarios  in  which  the  system is  used  in  an  unintended  manner.  As  before  a  top. —down,  bottom. —up,  or  hybrid  approach can  be  used  to  test  the  system. 

Once  the  test  plan  is  completed,  actual  testing  may  commence.  The  results  of  each  test should  be  carefully  documented.  As  you  go  through  the  test  plan,  you  will  probably  uncover a  number  of  run  time  errors  in  your  algorithm.  After  you  correct  a  run  time  error,  the  entire test  plan  must  be  performed  again.  This  ensures  that  the  new  fix  does  not  have  an  unintended effect  on  another  part  of  the  system.  Also,  as  you  process  through  the  test  plan,  you  will probably  think  of  other  tests  that  were  not  included  in  the  original  test  document.  These  tests should  be  added  to  the  test  plan.  As  you  go  through  testing,  realize  your  final  system  is  only as  good  as  the  test  plan  that  supports  it! 

Once  testing  is  complete,  you  might  try  another  level  of  testing  where  you  intentionally try  to  “jam  up”  the  system.  In  another  words,  try  to  get  your  system  to  fail  by  trying combinations  of  inputs  that  were  not  part  of  the  original  design.  A  robust  system  should continue  to  operate  correctly  in  this  type  of  an  abusive  environment.  It  is  imperative  that you  design  robustness  into  your  system.  When  testing  on  a  low  cost  simulator  is  complete, the  entire  test  plan  should  be  performed  again  with  the  actual  system  hardware.  Once  this is  completed  you  should  have  a  system  that  meets  its  requirements! 

B.3.7

Complete  and  Accurate  Documentation 

With  testing  complete,  the  system  design  should  be  thoroughly  documented.  Much  of  the documentation  will  have  already  been  accomplished  during  system  development.  Documentation  will  include  the  system  description,  system  requirements,  the  structure  chart, the  UML  activity  diagrams  documenting  program  flow,  the  test  plan,  results  of  the  test plan,  system  schematics,  and  properly  documented  code.  To  properly  document  code,  you should  carefully  comment  all  functions  describing  their  operation,  inputs,  and  outputs.  Also, comments  should  be  included  within  the  body  of  the  function  describing  key  portions  of the  code.  Enough  detail  should  be  provided  such  that  code  operation  is  obvious.  It  is  also extremely  helpful  to  provide  variables  and  functions  within  your  code  names  that  describe their  intended  use. 
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You  might  think  that  a  comprehensive  system  documentation  is  not  worth  the  time  or effort  to  complete  it.  Complete  documentation  pays  rich  dividends  when  it  is  time  to  modify, repair,  or  update  an  existing  system.  Also,  well. —documented  code  may  be  often  reused  in other  projects:  a  method  for  efficient  and  timely  development  of  new  systems. 

B.4

Summary 

In  this  appendix,  we  discussed  the  design  process,  related  tools,  and  applied  the  process  to a  real  world  design.  It  is  essential  to  follow  a  systematic,  disciplined  approach  to  embedded systems  design  to  successfully  develop  a  prototype  that  meets  established  requirements. 
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