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Linear Models with R

 A Hands-On Way to Learning Data Analysis

Part  of  the  core  of  statistics,  linear  models  are  used  to make predictions and explain the relationship between the

response  and  the  predictors.  Understanding  linear  models is  crucial  to  a  broader  competence  in  the  practice  of statistics.  Linear Models with R, Third Edition explains how to use linear models in physical science, engineering, social

science,  and  business  applications.  The  book  incorporates several  improvements  that  reflect  how  the  world  of  R  has greatly  expanded  since  the  publication  of  the  second

edition. 

New to the Third Edition

40% more content with more explanation and examples

throughout

New  chapter  on  sampling  featuring  simulation-based

methods

Model assessment methods discussed

Explanation  chapter  expanded  to  include  introductory

ideas about causation

Model interpretation in the presence of transformation

Crossvalidation for model selection

Chapter on regularization now includes the elastic net

More on multiple comparisons and the use of marginal means

Discussion of design and power

Like  its  widely  praised,  best-selling  predecessor,  this

edition  combines  statistics  and  R  to  seamlessly  give  a coherent exposition of the practice of linear modeling. The

text  offers  up-to-date  insight  on  essential  data  analysis topics,  from  estimation,  inference,  and  prediction  to

missing  data,  factorial  models,  and  block  designs. 

Numerous  examples  illustrate  how  to  apply  the  different methods using R. 

Julian  J.  Faraway  is  a  professor  of  statistics  in  the Department  of  Mathematical  Sciences  at  the  University  of Bath.  He  is  an  applied  statistician  with  particular
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fungicides, fuel filters, marketing, obesity and wastewater-

based epidemiology. He earned a PhD in statistics from the

University of California, Berkeley. 

CHAPMAN & HALL/CRC

Texts in Statistical Science Series

Joseph K. Blitzstein,  Harvard University, USA

Julian J. Faraway,  University of Bath, UK

Martin Tanner,  Northwestern University, USA

Jim Zidek,  University of British Columbia, Canada

Recently Published Titles

Fundamentals of Mathematical Statistics

 Steffen Lauritzen

Modelling Survival Data in Medical Research, Fourth

Edition

 David Collett

Applied Categorical and Count Data Analysis, Second

Edition

 Wan Tang, Hua He, and Xin M. Tu

Geographic Data Science with Python

 Sergio Rey, Dani Arribas-Bel, and Levi John Wolf

Models for Multi-State Survival Data

Rates, Risks, and Pseudo-Values

 Per Kragh Andersen and Henrik Ravn

Spatio–Temporal Methods in Environmental

Epidemiology with R, Second Edition

 Gavin Shaddick, James V. Zidek, and Alex Schmidt A Course in the Large Sample Theory of Statistical

Inference

 W. Jackson Hall and David Oakes

Statistical Inference, Second Edition

 George Casella and Roger Berger

Nonparametric Statistical Methods Using R, Second

Edition

 John Kloke and Joesph McKean

Generalized Linear Mixed Models

Modern Concepts, Methods and Applications, Second

Edition

 Walter W. Stroup, Marina Ptukhina, and Julie Garai

Analysis of Categorical Data with R, Second Edition

 Christopher R. Bilder, Thomas M. Loughin

Applied Nonparametric Statistical Methods, Fifth

Edition

 Nigel C. Smeeton, Neil H. Spencer, and Peter Sprent

Linear Models with R, Third Edition

 Julian J. Faraway

For more information about this series, please visit:

https://www.routledge.com/Chapman–HallCRC-Texts-in-

Statistical-Science/book-series/CHTEXSTASCI

Linear Models with R

Third Edition

Julian J. Faraway

[image: Image 3]

Designed cover image: © Julian J. Faraway

First edition published 2004

Second edition published 2014

Third edition published 2025

by CRC Press

2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press

4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

 CRC Press is an imprint of Taylor & Francis Group, LLC

© 2025 Julian J. Faraway

Reasonable  efforts  have  been  made  to  publish  reliable  data  and  information, but the author and publisher cannot assume responsibility for the validity of all materials  or  the  consequences  of  their  use.  The  authors  and  publishers  have attempted  to  trace  the  copyright  holders  of  all  material  reproduced  in  this publication  and  apologize  to  copyright  holders  if  permission  to  publish  in  this form  has  not  been  obtained.  If  any  copyright  material  has  not  been acknowledged  please  write  and  let  us  know  so  we  may  rectify  in  any  future reprint. 

Except  as  permitted  under  U.S.  Copyright  Law,  no  part  of  this  book  may  be reprinted,  reproduced,  transmitted,  or  utilized  in  any  form  by  any  electronic, mechanical,  or  other  means,  now  known  or  hereafter  invented,  including photocopying,  microfilming,  and  recording,  or  in  any  information  storage  or retrieval system, without written permission from the publishers. 

For  permission  to  photocopy  or  use  material  electronically  from  this  work, access  www.copyright.com  or  contact  the  Copyright  Clearance  Center,  Inc. 

(CCC),  222  Rosewood  Drive,  Danvers,  MA  01923,  978-750-8400.  For  works that 

are 

not 

available 

on 

CCC 

please 

contact

mpkbookspermissions@tandf.co.uk

 Trademark  notice:  Product  or  corporate  names  may  be  trademarks  or registered  trademarks  and  are  used  only  for  identification  and  explanation without intent to infringe. 

 Library of Congress Cataloging-in-Publication Data

Names: Faraway, Julian James, author. 

Title: Linear models with R / Julian J. Faraway. 

Description:  Third  edition.  |  Boca  Raton,  FL  :  CRC  Press,  2025.  |  Series: Chapman  &  Hall/CRC  texts  in  statistical  science  |  Includes  bibliographical references and index. 

Identifiers:  LCCN  2024035763  (print)  |  LCCN  2024035764  (ebook)  |  ISBN

9781032583983  (hbk)  |  ISBN  9781032584164  (pbk)  |  ISBN  9781003449973

(ebk)

Subjects: LCSH: Analysis of variance. | Regression analysis. 

Classification:  LCC  QA279.  F37  2025  (print)  |  LCC  QA279  (ebook)  |  DDC

519.5/3802855133–dc23/eng/20241129

LC record available at https://lccn.loc.gov/2024035763

LC ebook record available at https://lccn.loc.gov/2024035764

ISBN: 978-1-032-58398-3 (hbk)

ISBN: 978-1-032-58416-4 (pbk)

ISBN: 978-1-003-44997-3 (ebk)

DOI: 10.1201/9781003449973

Typeset in CMR10 font

by KnowledgeWorks Global Ltd. 

 Publisher's  note:  This  book  has  been  prepared  from  camera-ready  copy provided by the authors. 

Access 

the 

[Instructor 

and 

Student 

Resources/Support 

Material]:

[https://routledgetextbooks.com/textbooks/instructor_downloads/?]

Contents

Preface

1 Introduction

1.1 Before You Start

1.2 Initial Data Analysis

1.3 When to Use Linear Modeling

1.4 History

2 Estimation

2.1 Linear Model

2.2 Matrix Representation

2.3 Estimating β

2.4 Least Squares Estimation

2.5 Examples of Calculating  ^

 β

2.6 Example

2.7 Intercept

2.8 QR Decomposition

2.9 Gauss–Markov Theorem

2.10 Goodness of Fit

2.11 Identifiability

2.12 Orthogonality

3 Inference

3.1 Hypothesis Tests to Compare Models

3.2 Testing Examples

3.3 Confidence Intervals for β

3.4 Problems with Inference

4 Sampling

4.1 Simulation

4.2 Sampling Model

4.3 Permutation Tests

4.4 Bootstrap Confidence Intervals

5 Prediction

5.1 Confidence and Prediction Intervals for Predictions

5.2 Predicting Body Fat

5.3 Prediction Model Assessment

5.4 Autoregression

5.5 What Can Go Wrong with Predictions? 

6 Explanation and Causation

6.1 Explanation by Prediction

6.2 Confounding and Simpson's Paradox

6.3 Counterfactuals

6.4 Insulation Example

6.5 Designed Experiments

6.6 New Hampshire Primary Example

6.7 Qualitative Support for Causation

6.8 Summary

7 Diagnostics

7.1 Checking Error Assumptions

7.2 Finding Unusual Observations

7.3 Checking the Systematic Structure of the Model

7.4 Discussion

8 Predictor Issues

8.1 Errors in the Predictors

8.2 Changes of Scale

8.3 Collinearity

9 Modeling with the Error

9.1 Generalized Least Squares

9.2 Weighted Least Squares

9.3 Testing for Lack of Fit

9.4 Robust Regression

10 Transformation

10.1 Choosing a Transform on the Response

10.2 Algorithms for Transforming the Response

10.3 Transforming the Predictors

10.4 Segmented Regression

10.5 Polynomials

10.6 Splines

10.7 Additive Models

11 Model Selection

11.1 Models with a Hierarchy

11.2 Testing-Based Procedures

11.3 Criterion-Based Procedures

11.4 Crossvalidation

11.5 Summary

12 Regularization

12.1 Principal Components

12.2 Partial Least Squares

12.3 Ridge Regression

12.4 Lasso

12.5 Elastic Net

13 Insurance Redlining — A Complete Example

13.1 Ecological Correlation

13.2 Initial Data Analysis

13.3 Full Model and Diagnostics

13.4 Sensitivity Analysis

13.5 Discussion

14 Missing Data

14.1 Types of Missing Data

14.2 Deletion

14.3 Single Imputation

14.4 Multiple Imputation

15 Categorical Predictors

15.1 A Two-Level Factor

15.2 Factors and Quantitative Predictors

15.3 More Lessons from the Hips Study

15.4 Interpretation with Interaction Terms

15.5 Factors With More Than Two Levels

15.6 Contrasts and Factor Codings

16 One Factor Models

16.1 The Model

16.2 An Example

16.3 Analysis of Variance

16.4 Other Factor Codings

16.5 Diagnostics

16.6 Pairwise Comparisons

16.7 False Discovery Rate

16.8 Design Considerations

17 Models with Several Factors

17.1 Two Factors with No Replication

17.2 Estimated Marginal Means and Multiple

Comparisons

17.3 Ordinal Factors

17.4 Two Factors with Replication

17.5 Two Factors with an Interaction

17.6 Design for Two Factor Experiments

17.7 Larger Factorial Experiments

18 Experiments with Blocks

18.1 Randomized Block Design

18.2 Latin Squares

18.3 Balanced Incomplete Block Design

Appendix

Bibliography

Index

Preface

This  is  a  book  about  linear  models  in  Statistics.  A  linear model describes a continuous response in terms of a linear

combination  of  predictors.  You  can  use  a  linear  model  to make  predictions  or  explain  the  relationship  between  the response  and  the  predictors.  Linear  models  are  very

flexible and widely used in applications in physical science, 

engineering, social science and business. Linear models are

part of the core of Statistics, and understanding them well

is  crucial  to  a  broader  competence  in  the  practice  of statistics. 

This  is  not  an  introductory  textbook.  You  will  need  some basic prior knowledge of statistics as might be obtained in

one or two courses at the university level. You will need to

be familiar with essential ideas such as hypothesis testing, 

confidence  intervals,  likelihood  and  parameter  estimation. 

You  will  also  need  to  be  competent  in  the  mathematical methods  of  calculus  and  linear  algebra.  This  is  not  a particularly  theoretical  book  as  I  have  preferred  intuition over  rigorous  proof.  Nevertheless,  successful  statistics

requires an appreciation of the principles, and it is my hope that  the  reader  will  absorb  these  through  the  many

examples I present. 

This  book  is  written  in  three  languages:  English, 

Mathematics  and  R.  My  motivation  in  writing  the  first

edition  of  this  text  was  to  combine  these  three  seamlessly to  allow  coherent  exposition  of  the  practice  of  linear modeling.  This  was  uncommon  in  the  past,  but  this  has become popular in the now large number of statistics books

that  integrate  R.  Clearly  it  is  a  method  that  works,  but  it does  require  the  reader  to  become  somewhat  fluent  in  R. 

This  is  not  a  book  about  learning  R  but  like  any  foreign language,  one  becomes  proficient  by  practicing  it  rather than by memorizing the dictionary. The reader is advised to

look elsewhere for a basic introduction to R but should not

hesitate  to  dive  into  this  book  and  pick  it  up  as  you  go.  I shall try to help. See the appendix to get started. 

The book website can be found at:

https://julianfaraway.github.io/faraway/LMR/

The  first  edition  of  this  text  appeared  in  2004  with  the second  edition  coming  out  in  2014.  During  the  first  ten years the world of R expanded enormously. I added several

new topics and reorganized the presentation. Now another

ten years have passed and it is time for another revision. 

1. I  am  conscious  of  the  many  teachers  who  use  this

textbook  as  a  supplement  to  their  course.  I  have

resisted  making  substantial  changes  to  the  order  and

content  to  avoid  disrupting  these  users  of  my  text.  My

intention has been to add depth and additional content (which can be skipped if desired). 

2. Several new topics have been added:

A  new  sampling  chapter  has  been  created  from

content in the previous inference chapter. This now

also  contains  an  introduction  to  simulation.  The

chapter could be regarded as optional in that future

material does not depend on it much. 

Model assessment has been added to the prediction

chapter. 

I have expanded the explanation chapter with more

discussion  on  causation.  Such  a  weighty  topic

cannot  be  covered  in  a  single  book  chapter  but  I

have aimed to introduce some of the basic ideas in

the field. 

The  transformation  chapter  now  has  more  about

interpretation  with  transforms  while  the  model

selection chapter now includes crossvalidation. 

I have renamed some chapters. In particular, I have

replaced shrinkage with regularization which is the

more common term now. This chapter now includes

a section on the elastic net. 

The  closing  chapters  now  have  more  material  on

multiple  comparison  and  marginal  means.  I  have

added sections on design and power. 

I  have  substantially  revised  the  exercises.  These  are now  more  structured  in  form.  Solutions  are  now

available to qualified instructors. 

3. It is a testament to the stability of the R and the wisdom

of  R  core  team  that  the  vast  majority  of  the  second

edition  R  code  still  runs  perfectly.  Changes  are  more

likely  to  occur  in  the  contributed  packages.  There  are many  thousands  of  R  packages  available  on  CRAN  and

elsewhere.  Some  of  these  are  excellent  and  useful  for

linear  modeling,  but  I  have  avoided  their  use  where

base  R  could  do  the  job.  I  have  used  some  longer

established  R  packages  where  necessary  but  mostly

confined  their  use  to  a  single  chapter.  It  is  my  hope that  this  edition  will  last  another  ten  years  without

significant breakage. 

4. Many  recent  modelling  textbooks  have  used  tidyverse

extensively, but I have chosen not to do this. Tidyverse

packages are surely useful for data science, specifically

the manipulation of data. While this manipulation is an

essential skill, the data for this text comes ready to use. 

A  skilled  R  user  needs  a  good  understanding  of  base  R

and  this  is  sufficient  for  this  text.  Although  the  ggplot2

graphical package is formally part of the tidyverse, it is

older  and  has  its  own  distinct  syntax.  I  have  used  this package throughout the book. 

My  thanks  go  to  many  past  students  and  readers  of  the first  and  second  editions  whose  comments  and  questions

have  helped  me  make  many  improvements  to  this  edition. 

Thanks to the builders of R (R Core Team (2023)) who made all this possible. 

Chapter 1

Introduction

DOI: 10.1201/9781003449973-1

1.1 Before You Start

Statistics  starts  with  a  problem,  proceeds  with  the

collection  of  data,  continues  with  the  data  analysis  and finishes  with  conclusions.  It  is  a  common  mistake  of

inexperienced  statisticians  to  plunge  into  a  complex

analysis  without  paying  attention  to  the  objectives  or  even whether the data are appropriate for the proposed analysis. 

As Einstein said, the formulation of a problem is often more

essential than its solution which may be merely a matter of

mathematical or experimental skill. 

To formulate the problem correctly, you must:

1. Understand  the  physical  background.  Statisticians

often  work  in  collaboration  with  others  and  need  to

understand  something  about  the  subject  area.  Regard

this  as  an  opportunity  to  learn  something  new  rather

than a chore. 

2. Understand  the  objective.  Again,  often  you  will  be working with a collaborator who may not be clear about

what the objectives are. Beware of “fishing expeditions” 

— if you look hard enough, you will almost always find

something,  but  that  something  may  just  be  a

coincidence. 

3. Make  sure  you  know  what  the  client  wants.  You  can

often  do  quite  different  analyses  on  the  same  dataset. 

Sometimes  statisticians  perform  an  analysis  far  more

complicated than the client really needed. You may find

that  simple  descriptive  statistics  are  all  that  are

needed. 

4. Put  the  problem  into  statistical  terms.  This  is  a

challenging  step  and  where  irreparable  errors  are

sometimes  made.  Once  the  problem  is  translated  into

the language of statistics, the solution is often routine. 

Difficulties  with  this  step  explain  why  artificial

intelligence  techniques  have  yet  to  make  much  impact

in application to statistics. Defining the problem is hard

to  program.  That  a  statistical  method  can  read  in  and process the data is not enough. The results of an inapt

analysis may be meaningless. 

It  is  important  to  understand  how  the  data  were

collected. 

1. Are  the  data  observational  or  experimental?  Are  the

data a sample of convenience or were they obtained via

a designed sample survey. How the data were collected has a crucial impact on what conclusions can be made. 

2. Is there nonresponse? The data you do not see may be

just as important as the data you do see. 

3. Are  there  missing  values?  This  is  a  common  problem

that is troublesome and time consuming to handle. 

4. How  are  the  data  coded?  In  particular,  how  are  the categorical variables represented? 

5. What are the units of measurement? 

6. Beware of data entry errors and other corruption of the

data.  This  problem  is  all  too  common  —  almost  a

certainty  in  any  real  dataset  of  at  least  moderate  size. 

Perform some data sanity checks. 

1.2 Initial Data Analysis

This is a critical step that should always be performed. It is simple  but  it  is  vital.  You  should  make  numerical

summaries  such  as  means,  standard  deviations  (SDs), 

maximum  and  minimum,  correlations  and  whatever  else  is

appropriate  to  the  specific  dataset.  Equally  important  are graphical summaries. There is a wide variety of techniques

to  choose  from.  For  one  variable  at  a  time,  you  can  make boxplots,  histograms,  density  plots  and  more.  For  two

variables,  scatterplots  are  standard  while  for  even  more variables,  there  are  numerous  good  ideas  for  display

including  interactive  and  dynamic  graphics.  In  the  plots, look  for  outliers,  data-entry  errors,  skewed  or  unusual

distributions  and  structure.  Check  whether  the  data  are distributed according to prior expectations. 

Getting data into a form suitable for analysis by cleaning

out  mistakes  and  aberrations  is  often  time  consuming.  It often  takes  more  time  than  the  data  analysis  itself.  In  this book,  all  the  data  will  be  ready  to  analyze,  but  you  should realize that in practice this is rarely the case. 

Let's  look  at  an  example.  The  National  Institute  of

Diabetes  and  Digestive  and  Kidney  Diseases  conducted  a

study  on  768  adult  female  Pima  Indians  living  near

Phoenix. The following variables were recorded: number of

times pregnant, plasma glucose concentration at 2 hours in

an  oral  glucose  tolerance  test,  diastolic  blood  pressure (mmHg),  triceps  skin  fold  thickness  (mm),  2-hour  serum

insulin (mu U/ml), body mass index (weight in kg/(height in

m2)),  diabetes  pedigree  function,  age  (years)  and  a  test whether the patient showed signs of diabetes (coded zero if

negative,  one  if  positive).  The  data  may  be  obtained  from the  UCI  Repository  of  Machine  Learning  Databases  at

archive.ics.uci.edu/ml. 

Before  doing  anything  else,  one  should  find  out  the

purpose  of  the  study  and  more  about  how  the  data  were collected. However, let's skip ahead to a look at the data:

data (pima, package = “faraway”)

head (pima)

pregnant glucose diastolic triceps insulin bmi diabetes age 

test

1          6     148        72      35       0 33.6   0.627 50   

1

2          1      85        66      29       0 26.6   0.351 31   

0

3          8     183        64       0       0 23.3   0.672 32   

1

4          1      89        66      23      94 28.1   0.167 21   

0

5          0     137        40      35     168 43.1   2.288 33   

1

6          5     116        74       0       0 25.6   0.201 30   

0

The  data(pima,  package=“faraway”)  makes  the  data  available from  the  faraway  package.  An  alternative  is  to  just  type library(faraway)  which  makes  all  the  data  and  functions specific  to  this  book  available.  You  do  need  to  install  this package  first  as  explained  in  Appendix  A.   If  you  get  an error  message  about  data  not  being  found,  it  may  be  that you have forgotten to install the package. 

The  command  head(pima)  prints  out  the  first  six  lines  of the data frame. This is a good way to see what variables we

have and what sort of values they take. You can type pima to

see  the  whole  data  frame  but  768  lines  may  be  more  than you want to examine. 

We start with some numerical summaries:

summary (pima)

pregnant        glucose       diastolic         triceps

Min.   : 0.00   Min.   : 0     Min.   : 0.0     Min.   : 0.0

1st Qu.: 1.00   1st Qu.: 99    1st Qu.: 62.0    1st Qu.: 0.0

Median : 3.00   Median :117    Median : 72.0    Median :23.0

Mean   : 3.85   Mean   :121    Mean   : 69.1    Mean   :20.5

3rd Qu.: 6.00   3rd Qu.:140    3rd Qu.: 80.0    3rd Qu.:32.0

Max.   :17.00   Max.   :199    Max.   :122.0    Max.   :99.0

   insulin           bmi           diabetes           age Min.   : 0.0    Min.   : 0.0    Min.   :0.078    Min.   :21.0

1st Qu.: 0.0    1st Qu.:27.3    1st Qu.:0.244    1st Qu.:24.0

Median : 30.5   Median :32.0    Median :0.372    Median :29.0

Mean   : 79.8   Mean   :32.0    Mean   :0.472    Mean   :33.2

3rd Qu.:127.2   3rd Qu.:36.6    3rd Qu.:0.626    3rd Qu.:41.0

Max.   :846.0   Max.   :67.1    Max.   :2.420    Max.   :81.0

test

Min.   :0.000

1st Qu.:0.000

Median :0.000

Mean   :0.349

3rd Qu.:1.000

Max.   :1.000

The  summary()  command  is  a  quick  way  to  get  the  usual univariate  summary  information.  At  this  stage,  we  are

looking  for  anything  unusual  or  unexpected,  perhaps

indicating a data-entry error. For this purpose, a close look

at  the  minimum  and  maximum  values  of  each  variable  is worthwhile. Starting with pregnant, we see a maximum value

of  17.  This  is  large,  but  not  impossible.  However,  we  then see  that  the  next  five  variables  have  minimum  values  of zero.  No  blood  pressure  is  not  good  for  the  health  —

something must be wrong. Let's look at the sorted values:

sort (pima $ diastolic)

[1]   0   0   0    0    0    0    0    0    0    0    0    0   

0    0    0    0

[17]   0   0   0    0    0    0    0    0    0    0    0    0   

0    0    0    0

[33]   0   0   0   24   30   30   38   40   44   44   44   44   

46   46   48   48

...etc... 

We  see  that  the  first  35  values  are  zero.  The  description that comes with the data says nothing about it but it seems

likely that the zero has been used as a missing value code. 

For  one  reason  or  another,  the  researchers  did  not  obtain the  blood  pressures  of  35  patients.  In  a  real  investigation, one would likely be able to question the researchers about

what really happened. Nevertheless, this does illustrate the

kind  of  misunderstanding  that  can  easily  occur.  A  careless statistician  might  overlook  these  presumed  missing  values and  complete  an  analysis  assuming  that  these  were  real observed  zeros.  If  the  error  was  later  discovered,  they might  then  blame  the  researchers  for  using  zero  as  a

missing  value  code  (not  a  good  choice  since  it  is  a  valid value for some of the variables) and not mention it in their

data  description.  Unfortunately  such  oversights  are  not

uncommon,  particularly  with  datasets  of  any  size  or

complexity. 

The 

statistician 

bears 

some 

share 

of

responsibility for spotting these mistakes. 

We set all zero values of the five variables to NA which is

the missing value code used by R:

pima $ diastolic [ pima $ diastolic == 0] = NA

pima $ glucose [ pima $ glucose == 0] = NA

pima $ triceps [ pima $ triceps == 0] = NA

pima $ insulin [ pima $ insulin == 0] = NA

pima $ bmi [ pima $ bmi == 0] = NA

The  variable  test  is  not  quantitative  but  categorical.  Such variables  are  also  called   factors.  However,  because  of  the numerical  coding,  this  variable  has  been  treated  as  if  it

were  quantitative.  It  is  best  to  designate  such  variables  as factors  so  that  they  are  treated  appropriately.  Sometimes people forget this and compute stupid statistics such as the

“average zip code.” 

pima $ test = factor (pima $ test)

summary (pima $ test)

0   1

500 268

We  now  see  that  500  cases  were  negative  and  268  were positive. It is even better to use descriptive labels:

levels (pima $ test) = c (“negative”, “positive”)

summary (pima)

pregnant         glucose        diastolic         triceps

Min.   : 0.000   Min.   : 44.0   Min.   : 24.0    Min.   : 7.00

1st Qu.: 1.000   1st Qu.: 99.0   1st Qu.: 64.0    1st Qu.: 

22.00

Median : 3.000   Median :117.0   Median : 72.0    Median : 

29.00

Mean   : 3.845   Mean   :121.7   Mean   : 72.4    Mean   : 

29.15

3rd Qu.: 6.000   3rd Qu.:141.0   3rd Qu.: 80.0    3rd Qu.: 

36.00

Max.   :17.000   Max.   :199.0   Max.   :122.0    Max.   : 

99.00

NA's   : 5.0    NA's   : 35.0    NA's   

:227.00

insulin            bmi           diabetes            age

Min.   : 14.00   Min.   :18.20   Min.   :0.0780    Min. 

:21.00

1st Qu.: 76.25   1st Qu.:27.50   1st Qu.:0.2437    1st 

Qu.:24.00

Median :125.00   Median :32.30   Median :0.3725    Median 

:29.00

Mean   :155.55   Mean   :32.46   Mean   :0.4719    Mean   

:33.24

3rd Qu.:190.00   3rd Qu.:36.60   3rd Qu.:0.6262    3rd 

Qu.:41.00

Max.   :846.00   Max.   :67.10   Max.   :2.4200    Max. 

:81.00

NA's   :374.00   NA's   :11.00

test

negative:500

positive:268

Now  that  we  have  cleared  up  the  missing  values  and

coded  the  data  appropriately,  we  are  ready  to  do  some plots.  Perhaps  the  most  well-known  univariate  plot  is  the histogram:

hist (pima$diastolic , xlab = “Diastolic”, main = “”)

as  seen  in  the  first  panel  of  Figure  1.1.  We  see  a  bell-shaped  distribution  for  the  diastolic  blood  pressures

centered  around  70.  The  construction  of  a  histogram

requires  the  specification  of  the  number  of  bins  and  their spacing  on  the  horizontal  axis.  Some  choices  can  lead  to histograms  that  obscure  some  features  of  the  data.  R

specifies the number and spacing of bins given the size and

distribution of the data, but this choice is not foolproof and misleading  histograms  are  possible.  For  this  reason,  some prefer  to  use  kernel  density  estimates,  which  are

essentially  a  smoothed  version  of  the  histogram  (see

Simonoff  (1996)  for  a  discussion  of  the  relative  merits  of histograms and kernel estimates):

[image: Image 4]

plot (density (pima $ diastolic , na . rm = TRUE) , main = “”) Long Description for Figure 1.1

Figure  1.1   The  first  panel  shows  a  histogram  of  the diastolic  blood  pressures,  the  second  shows  a  kernel

density  estimate  of  the  same,  while  the  third  shows  an index plot of the sorted values. 

The  kernel  estimate  may  be  seen  in  the  second  panel  of

Figure  1.1.  We  see  that  this  plot  avoids  the  distracting blockiness  of  the  histogram.  Another  alternative  is  to

simply plot the sorted data against its index:

plot (sort (pima $ diastolic) , ylab = “Sorted Diastolic ”)

The  advantage  of  this  is  that  we  can  see  all  the  cases individually.  We  can  see  the  distribution  and  possible

outliers.  We  can  also  see  the  discreteness  in  the

measurement  of  blood  pressure  —  values  are  rounded  to

the  nearest  even  number  and  hence  we  see  the  “steps”  in the plot. 

[image: Image 5]

Now  we  show  a  couple  of  bivariate  plots,  as  seen  in

Figure 1.2:

plot (diabetes ~ diastolic , pima)

plot (diabetes ~ test , pima)

Long Description for Figure 1.2

Figure  1.2   The  first  panel  shows  scatterplot  of  the diastolic blood pressures against diabetes function and the

second shows boxplots of diabetes function broken down by

test result. 

First,  we  see  the  standard  scatterplot  showing  two

quantitative  variables.  Second,  we  see  a  side-by-side

boxplot  suitable  for  showing  a  quantitative  with  a

qualitative variable. 

The  base  graphics  system  in  R  is  fine  for  producing

standard  plots.  A  useful  alternative  is  provided  by  the

[image: Image 6]

ggplot2 package of (Wickham, 2016) which you will need to install  as  described  in  Appendix  A.  Here's  how  we  can produce versions of the same plots:

library (ggplot2)

ggplot (pima , aes (x = diastolic)) + geom _ histogram ()

ggplot (pima , aes (x = diastolic)) + geom _ density ()

ggplot (pima , aes (x = diastolic , y = diabetes)) + geom _ 

point ()

In each case, the first part of the command specifies where

the  data  comes  from  (the  data  frame  is  pima)  and  an

 aesthetic  using  aes.  The  aesthetic  specifies  what  you  see such  as  position  in  the   x  or   y  direction  or  aspects  such  as shape  or  color.  The  second  part  of  the  command  in  each case is specifying the particular geometry for the plot. The

results  are  shown  in  Figure  1.3.  The  relative  advantage  of ggplot2  is  more  apparent  in  producing  more  complex  plots involving  more  than  just  two  variables.  For  example,  we show two different ways that the varying test can be shown

in the relationship between diastolic and diabetes:

Long Description for Figure 1.3

[image: Image 7]

Figure 1.3  Plots of the pima data using ggplot2. 

ggplot (pima , aes (x = diastolic , y = diabetes , shape = 

test)) +

geom _ point () +

theme (legend . position = “top”, 

legend . direction = “horizontal”)

ggplot (pima , aes (x = diastolic , y = diabetes)) +

geom _ point (size =1) + facet _ grid (~ test)

Notice  how  the  first  plot,  shown  in  Figure  1.4,  has  a  third element,  a   theme  specifying  an  option  regarding  the appearance  of  the  plot.  In  this  case,  we  specify  where  the legend  should  appear.  The  second  plot  uses  two  panels. 

Sometimes  this  is  the  better  option  when  crowded  plots make  different  symbols  hard  to  distinguish.  I  have  also reduced  the  point  size  in  the  second  plot  to  make  this easier. Full details can be seen in Wickham (2016). 

Long Description for Figure 1.4

Figure 1.4  Two ways of a distinguishing a factor variable in a bivariate scatter plot. 

Good  graphics  are  vital  in  data  analysis.  They  help  you avoid  mistakes  and  suggest  the  form  of  the  modeling  to come.  They  are  also  important  in  communicating  your

analysis to others. Many in your audience or readership will

focus  on  the  graphs.  This  is  your  best  opportunity  to  get your  message  over  clearly  and  without  misunderstanding. 

In  some  cases,  the  graphics  can  be  so  convincing  that  the formal  analysis  becomes  just  a  confirmation  of  what  has already been seen. 

1.3 When to Use Linear Modeling

Linear  modeling  is  used  for  explaining  or  modeling  the relationship  between  a  single  variable   Y,  called  the response, outcome, output or  dependent variable; and one or  more   predictor,  input,  independent  or   explanatory variables,  X 1, … ,  Xp, where  p is the number of predictors. 

We recommend you avoid using the words  independent and dependent  variables  for   X  and   Y  as  these  are  easily confused  with  the  broader  meanings  of  terms.  Regression analysis is another term used for linear modeling although regressions can also be nonlinear. 

When  p = 1, it is called  simple regression but when  p > 1

it  is  called   multiple  regression  or  sometimes   multivariate regression.  When  there  is  more  than  one  response,  then  it is  called   multivariate  multiple  regression  or  sometimes

(confusingly) multivariate regression. We will not cover this in this book, although you can just do separate regressions

on each  Y. 

The  response  should  be  a  continuous  variable.  In

practice,  measured  variables  are  usually  rounded  and  are, strictly speaking, discrete. Some responses may be counted

but take a large number of possible values. In both cases, it

is  reasonable  to  treat  such  a  response  as  continuous  even though this is not strictly true. Consider a response such as

the  monthly  number  of  US  dollars  spent  on  food  by  an individual.  It's  acceptable  not  to  include  the  cents  and although  number  of  dollars  is  an  integer  value,  we  can reasonably treat this variable as continuous. Now consider

a binary response, such as the test variable in the pima data. 

This  is  strongly  discrete  and  should  not  be  modeled  using the  techniques  in  this  book.  A   logistic  regression  could  be used,  but  this  will  not  be  covered  here.  Explanatory

variables  can  be  continuous,  discrete  or  categorical.  The handling  of  categorical  explanatory  variables  with  more

than  two  levels  requires  special  handling  —  we  leave  this until Chapter 15. 

Regression analyses have two main objectives:

1. Prediction  of  future  or  unseen  responses  given

specified values of the predictors. 

2. Assessment  of  the  effect  of,  or  relationship  between, explanatory  variables  and  the  response.  We  would  like

to infer causal relationships if possible. 

You  should  be  clear  on  the  objective  for  the  given  data because  some  aspects  of  the  resulting  analysis  may  differ. 

Regression  modeling  can  also  be  used  in  a  descriptive

manner  to  summarize  the  relationships  between  the

variables.  However,  most  end  users  of  data  have  more

specific  questions  in  mind  and  want  to  direct  the  analysis toward a particular set of goals. 

It  is  rare,  except  in  a  few  cases  in  the  precise  physical sciences, to know (or even suspect) the true model. In most

applications,  the  model  is  an  empirical  construct  designed to  answer  questions  about  prediction  or  causation.  It  is usually  not  helpful  to  think  of  regression  analysis  as  the search  for  some  true  model.  The  model  is  a  means  to  an end, not an end in itself. 

1.4 History

In  the  18th  century,  accurate  navigation  was  a  difficult problem of commercial and military interest. Although, it is

relatively  easy  to  determine  latitude  from  Polaris,  also known as the North Star, or from the Sun, finding longitude

then was difficult. Various attempts were made to devise a

method  using  astronomy.  Contrary  to  popular  supposition, the  Moon  does  not  always  show  the  same  face  and  moves such  that  about  60%  of  its  surface  is  visible  at  some  time. 

This  suggested  a  method  of  using  the  orientation  of  the Moon to determine longitude. 

Tobias  Mayer  collected  data  on  the  locations  of  various landmarks  on  the  Moon,  including  the  Manilius  crater,  as

they  moved  relative  to  the  earth.  He  derived  an  equation describing the motion of the moon (called  libration) taking the form:

arc =  β +  α sinang +  γ cosang

(1.1)

He wished to obtain values for the three unknowns  α,  β and γ. The variables arc, sinang and cosang can be observed using a telescope. A full explanation of the story behind the data

and  the  derivation  of  the  equation  can  be  found  in  Stigler

(1986). 

Since  there  are  three  unknowns,  we  need  only  three

distinct  observations  of  the  set  of  three  variables  to  find  a unique  solution  for   α,  β  and   γ.  Embarrassingly  for  Mayer, there  were  27  sets  of  observations  available.  Astronomical measurements were naturally subject to some variation and

so  there  was  no  solution  that  fit  all  27  observations.  Let's take a look at the first few lines of the data:

data (manilius, package = “faraway”)

head (manilius)

arc   sinang cosang group

1   13.167   0.8836 -0.4682    1

2   13.133   0.9996 -0.0282    1

3   13.200   0.9899 0.1421     1

4   14.250   0.2221 0.9750     3

5   14.700   0.0006 1.0000     3

6   13.017   0.9308 -0.3654    1

Mayer's solution was to divide the data into three groups so that  observations  within  each  group  were  similar  in  some respect. He then computed the sum of the variables within

each group. We can also do this:

(moon3 = aggregate (manilius [,1:3] , list (manilius$group) , 

sum))

Group.1    arc sinang cosang

1         1 118.13 8.4987 -0.7932

2         2 140.28 -6.1404 1.7443

3         3 127.53 2.9777  7.9649

Now there are just three equations in three unknowns to be

solved. The solution is:

solve (cbind (9 , moon3 $ sinang , moon3 $ cosang) , moon3 $ 

arc)

[1] 14.54459 -1.48982   0.13413

Hence  the  computed  values  of   α,  β  and   γ  are  -1.49,  14.5

and  0.134,  respectively.  One  might  question  how  Mayer

selected  his  three  groups,  but  this  solution  does  not  seem completely unreasonable, although it is suboptimal. 

Similar  problems  with  more  linear  equations  than

unknowns  continued  to  arise  until  1805,  when  Adrien

Marie  Legendre  published  the  method  of  least  squares. 

Suppose  we  recognize  that  the  equation  is  not  exact  and introduce an error term,  ϵ:

arc i =  β +  α sinang i +  γ cosang i +  ϵi (1.2)

where   i = 1, … , 27. Now we find  α,  β and  γ that minimize the  sum  of  the  squared  errors:  ∑  ϵ 2.  We  will  investigate this in much greater detail in the chapter to follow but for

now we simply present the solution using R:

lmod = lm (arc ~ sinang + cosang , manilius)

coef (lmod)

(Intercept)      sinang     cosang

14.561624   -1.504581   0.091365

We  observe  that  this  solution  is  quite  similar  to  Mayer's. 

The  least  squares  solution  is  more  satisfactory  in  that  it requires  no  arbitrary  division  into  groups.  Carl  Friedrich Gauss claimed to have devised the method of least squares

earlier but without publishing it. At any rate, he did publish in  1809  showing  that  the  method  of  least  squares  was,  in some sense, optimal. 

For  many  years,  the  method  of  least  squares  was

confined  to  the  physical  sciences  where  it  was  used  to resolve  problems  of  overdetermined  linear  equations.  The equations were derived from theory and least squares was

used as a method to fit data to these equations to estimate

coefficients  like   α,  β  and   γ  above.  It  was  not  until  later  in the  19th  century  that  linear  equations  (or  models)  were suggested  empirically  from  the  data  rather  than  from

theories of physical science. This opened up the field to the

social and life sciences. 

Francis  Galton,  a  nephew  of  Charles  Darwin,  was

important in this extension of statistics into social science. 

He  coined  the  term   regression  to  mediocrity  in  1875  from

[image: Image 8]

which the rather peculiar term  regression derives. Let's see how  this  terminology  arose  by  looking  at  one  of  the

datasets he collected at the time on the heights of parents

and children in Galton (1886).  We load the HistData package of historical statistical datasets and plot some of the data as seen  in  Figure  1.5.   You  will  need  to  install  this  package using  install.packages(“HistData”)  if  you  have  not  already done so. 

data (GaltonFamilies , package = “HistData”)

plot (childHeight ~ midparentHeight , GaltonFamilies)

Long Description for Figure 1.5

Figure  1.5   The  height  of  the  child  is  plotted  against  a combined parental height defined as (father's height + 1.08

× mother's height)/2. 

We  see  that  midparentHeight,  defined  as  the  father's  height plus  1.08  times  the  mother's  height  divided  by  two,  is

correlated  with  the  childHeight,  both  in  inches.  Now  we might propose a linear relationship between the two of the

form:

childHeight =  α +  β midparentHeight +  ϵ

(1.3)

We  can  estimate   α  and  β  using  R  and  plot  the  resulting  fit as follows:

lmod = lm (childHeight ~ midparentHeight, GaltonFamilies)

coef (lmod)

(Intercept) midparentHeight

22.63624         0.63736

abline (lmod)

For  the  simple  case  of  a  response   y and a single predictor x, we can write the equation in the form:

 y − ¯ y

( x − ¯ x)

=  r

 SDy

 SDx

(1.4)

where   r  is  the  correlation  between   x  and   y.  The  equation can  be  expressed  in  words  as:  the  response  in  standard units  is  the  correlation  times  the  predictor  in  standard units. We can verify that this produces the same results as

above  by  rearranging  the  equation  in  the  form   y =  α +  βx and computing the estimates:

(beta = with (GaltonFamilies , 

cor (midparentHeight , 

childHeight) * sd (childHeight) / sd (midparentHeight)))

[1] 0.63736

(alpha = with (GaltonFamilies , 

mean (childHeight) - beta * mean (midparentHeight)))

[1] 22.636

Now  one  might  naively  expect  that  a  child  with  parents who  are,  for  example,  one  standard  deviation  above

average in height, to also be one standard deviation above

average  in  height,  give  or  take.  The  supposition  would  set r = 1 in the equation and leads to a line which we compute and plot below:

(beta1 = with (GaltonFamilies , 

sd (childHeight) / sd (midparentHeight)))

[1] 1.9859

(alpha1 = with (GaltonFamilies, 

mean (childHeight) - beta1 * mean (midparentHeight)))

[1] -70.689

abline (alpha1 , beta1 , lty =2)

The resulting dashed line is added to Figure 1.5.  The lines cross at the point of the averages. We can see that a child

of tall parents is predicted by the least squares line to have a height which is above average but not quite as tall as the

parents  as  the  dashed  line  would  have  you  believe. 

Similarly,  children  of  below  average  height  parents  are predicted to have a height which is still below average but

not  quite  as  short  as  the  parents.  This  is  why  Galton  used

the phrase “regression to mediocrity” and the phenomenom is sometimes called the regression effect. 

This applies to any ( x,  y) situation like this. For example, in  sports,  an  athlete  may  have  a  spectacular  first  season only  to  do  not  quite  as  well  in  the  second  season.  Sports writers  come  up  with  all  kinds  of  explanations  for  this  but the regression effect is likely to be the unexciting cause. In the parents and children example, although it does predict

that  successive  descendants  in  the  family  will  come  closer to the mean, it does not imply the same of the population in

general  since  random  fluctuations  will  maintain  the

variation,  so  there  is  no  need  to  get  too  pessimistic  about mediocrity!  In  many  other  applications  of  linear  modeling, the  regression  effect  is  not  of  interest  because  different types of variables are measured. Unfortunately, we are now

stuck  with  the  rather  gloomy  word  of  regression  thanks  to Galton. 

Regression  methodology  developed  rapidly  with  the

advent  of  high-speed  computing.  Just  fitting  a  regression model  used  to  require  extensive  hand  calculation.  As

computing  hardware  has  improved,  the  scope  for  analysis has  widened.  This  has  led  to  an  extensive  development  in the  methodology  and  the  scale  of  problems  that  can  be tackled. 

Exercises

Some general tips about the exercises:

I  assume  some  knowledge  of  R.  If  you  are  a  complete beginner, 

you'll 

need 

to 

work 

through 

some

introductory  tutorials  first.  But  it  is  not  necessary  or worthwhile  to  spend  too  much  time  learning  R  in

general. Some of the R methods to answer the questions

can  be  seen  in  the  code  used  in  the  chapter.  In  some cases, you will need to search the vast resources of the

internet to find the coding method you need. As long as

you  take  the  time  to  understand  each  snippet  of  code, you will gain in R proficiency. 

Some datasets are built-in to base R. For example, if you

type  cars,  the  dataset  will  appear.  Other  datasets  are found in my R package called faraway which you need to

install  (once  only)  and  load  up  with  library(faraway)

(every  R  session).  You  can  read  about  installing

packages  in  the  Appendix.   In  some  cases,  the  data comes from another R package which I will identify. 

You  can  find  information  about  a  dataset  using,  for

example,  help(cars).  This  will  tell  you  about  the

variables,  background  to  the  data  and  the  source.  You

will  need  to  look  at  this  help  page  for  every  new

dataset. 

You  will  find  it  helpful  to  construct  a  document  with your  answers  containing  the  code,  output  and  your

written  text.  Rmarkdown  and  Quarto  are  two  ways  to

accomplish  this  within  Rstudio.  Jupyter  notebooks  can

also be used for this purpose. 

1. The  dataset  teengamb  concerns  a  study  of  teenage gambling in Britain. 

(a) Turn  the  sex  variable  into  a  categorical  variable

with appropriate labels. Count the number in each

category. 

(b) Make  a  boxplot  to  compare  the  distribution  of

status  broken  down  by  sex.  Use  both  the  base

graphics and ggplot2 methods. Compare the output. 

(c) Produce  a  scatterplot  of  status  against  sex  using

geom_point()  from  ggplot2.  Does  the  number  of

points  appearing  on  the  plot  match  with  your

answer from (a)? Explain. 

(d) Use  the  hist()  function  to  plot  the  verbal  scores

and  comment  on  any  deficiencies  in  the  output. 

Use the plot() function on the table() output of the

verbal  scores.  Comment  on  the  plot.  Now  use

barplot()  and  comment  on  the  form  of  the  plot.  In

all three plots, take care with the labeling. 

(e) Plot  gamble  as  the  response  and  income  as  the

predictor broken down by sex. Make two plots, one

with  a  single  frame  where  sex  is  distinguished  by

the color of the point and another where the sexes

appear  in  different  frames.  Which  plot  do  you

prefer and why? 

(f) Construct  a  summary  statistics  table.  Can  you  tell

which  variable  is  most  highly  skewed  from  the

table? 

2. The  dataset  uswages  is  drawn  as  a  sample  from  the Current Population Survey in 1988. 

(a) A  data  frame  containing  a  subset  of  just  the  first three variables can be obtained with:

usw = uswages[,c(“wage”,“educ”,“exper”)]

Construct  a  subset  of  the  data  with  only  the  wage

and the four geographical variables. 

(b) A  weighted  mean  is  given  by  sum(w  *  y)/sum(w)  for variable y and weights w. Compute the mean wage

in the north east using this formula. 

(c) The tapply(y, g, f) function where y is a vector, g is

a grouping variable and f is a function is useful for

computing  summaries  on  subsets  of  the  data.  Use

it  to  compute  the  mean  wage  in  the  north  east. 

Check that it matches your answer to the previous

question. 

(d) Compute  the  row  sums  for  just  the  geographic

variables. What value do they take and why? Note

that  dd[,-1]  is  the  data  frame  dd  without  the  first

column. 

(e) The  subset  matrix  of  geographic  variables  can  be

called a dummy matrix where ones and zeroes are

used to code a categorical variable. Reconstruct an

area  categorical  variable  which  takes  the  four

possible values. Hint: The command:

apply(dummym,1,which.max)

where  dummym  is  the  matrix  of  dummies  will  return an index vector of the categories. 

(f) Make a boxplot of the wage broken down by area. 

Comment on the distributions. 

(g) Repeat the previous plot but on a log scale. Which

is preferable? 

3. The  dataset  prostate  is  from  a  study  on  97  men  with prostate  cancer  who  were  due  to  receive  a  radical

prostatectomy. 

(a) Use  the  pairs()  function  to  construct  an  array  of

scatterplots  of  the  first  four  variables.  Which

variable  has  a  notable  feature  in  its  distribution? 

Hint: dd[,1;3] picks the first three variables of data

frame dd. 

(b) Compute  the  correlations  of  the  first  four

variables.  Does  the  distributional  feature  noted  in

the  previous  question  have  an  impact  on  the

meaning of the correlation? 

(c) The  lbph  variable  is  on  the  log  scale.  What

proportion of cases take the minimum value of this

variable.  What  value  of  bph  do  you  think  this

represents? 

(d) Make  a  histogram  of  the  ages.  Create  a  version

where  the  bin  width  is  one  year.  Contrast  the  two

plots. 

(e) Use  the  xtabs()  function  to  display  the  joint

distribution  of  the  gleason  and  svi  variables.  What

combination is most common? 

4. The  dataset  sat  comes  from  a  study  entitled   Getting What  You  Pay  For:  The  Debate  Over  Equity  in  Public School Expenditures. 

(a) Verify  that  the  sum  of  the  verbal  and  math  scores equals the total score. 

(b) Make  a  scatterplot  of  math  against  verbal  scores

and add the  y =  x line. How do the distributions of the two variables differ? 

(c) Standardize  both  the  verbal  and  math  scores  using

the  scale()  function.  Plot  the  standardized  scores

with  verbal  on  the  x-axis.  Plot  the   y =  x  line. 

Compute  the  correlation  between  math  and  verbal

scores  and  display  it  in  the  upper  left  of  the  plot. 

The text() and paste0() functions may be useful for

this purpose. 

(d) Fit  a  linear  model  using  lm()  with  math  as  the

response  and  verbal  as  the  predictor.  Show  the

fitted  line  on  the  plot.  Print  out  the  coefficients  of the line. 

(e) Fit  another  linear  model  with  the  roles  of  the

predictor  and  response  exchanged.  Show  the  plot

with the fitted line and the coefficients. 

(f) Show  that  the  two  fitted  lines  for  (d)  and  (e)

intersect at the point of the averages. 

(g) Make predictions for the following students. 

i. 

Predict  the  math  score  of  a  student  scoring

20 points above average on the verbal test. 

ii. 

Predict the verbal score of a student scoring

20 points above average on the math test. 

iii. 

Predict  the  math  score  of  a  student  with  an

average score on the verbal test. 

iv. 

Predict  the  math  score  of  a  student  with  no

information about their verbal score. 

5. The  dataset  divusa  contains  data  on  divorces  in  the United  States  from  1920  to  1996.  Make  a  numerical

and  graphical  summary  of  the  data  as  in  the  first

question. 

(a) Make two plots with the year on the x-axis and the

divorce rate on the y-axis. Use points for the cases

in one plot and lines joining the cases in successive

years in the other. Contrast the two plots. 

(b) Plot the divorce rate from the current year against

the  divorce  rate  for  the  previous  year.  Does  this

show that one could reasonably predict the divorce

rate  for  the  following  year  by  using  the  divorce

rate from the current year? 

(c) Fit  a  linear  model  using  lm()  with  the  divorce  rate as  the  response  and  the  year  as  the  predictor.  In

what  year  does  the  model  predict  the  divorce  rate

to hit 100%? Is this a reasonable prediction? 

(d) Use  ggplot2  to  make  a  plot  with  femlab  on  the  x-

axis, divorce rate on the y-axis and the color of the

point  changing  with  the  year.  Comment  on  the pattern. 

Chapter 2

Estimation

DOI: 10.1201/9781003449973-2

2.1 Linear Model

Let's  start  by  defining  what  is  meant  by  a  linear  model. 

Suppose we want to model the response  Y in terms of three predictors,  x 1,  x 2  and   x 3.  One  very  general  form  for  the model would be:

 Y =  f( x 1,  x 2,  x 3) +  ε

(2.1)

where  f is some unknown function and  ϵ is the error in this representation.  ϵ  is  additive  in  this  instance,  but  could enter  in  some  even  more  general  form.  Still,  if  we  assume that   f  is  a  smooth,  continuous  function,  that  still  leaves  a very  wide  range  of  possibilities.  Even  with  just  three predictors,  we  would  need  a  very  large  amount  of  data  to

try to estimate  f directly. So we usually have to assume that it has some more restricted form, perhaps linear as in:

 Y =  β 0 +  β 1 x 1 +  β 2 x 2 +  β 3 x 3 +  ε

(2.2)

where 

β i, 

 i = 0, 1, 2, 3  are  unknown   parameters. 

Unfortunately  this  term  is  subject  to  some  confusion  as engineers  often  use  the  term   parameter  for  what statisticians  call  the  variables,  Y,  x 1 and so on. β0 is called the  intercept term. 

Thus  the  problem  is  reduced  to  the  estimation  of  four parameters  rather  than  the  infinite  dimensional   f.  In  a linear model the  parameters enter linearly — the predictors themselves do not have to be linear. For example:

 Y =  β 0 +  β 1 x 1 +  β 2 log  x 2 +  β 3 x 1 x 2 +  ε

(2.3)

is a linear model, but:

 Y =  β 0 +  β 1 xβ 2

1 +  ε

(2.4)

is  not.  Some  relationships  can  be  transformed  to  linearity

— for example,  y =  β 0 xβ 1 ε can be linearized by taking logs. 

Another  example  that  might  appear  to  be  nonlinear  is  a polynomial model such as:

 Y =  β 0 +  xβ 1 +  x 2 β 2 +  x 3 β 3 +  ε

(2.5)

But the parameters enter linearly, so this is a linear model. 

Linear  models  seem  rather  restrictive,  but  because  the

predictors  can  be  transformed  and  combined  in  any  way, they are actually very flexible. The term  linear is often used in everyday speech as almost a synonym for simplicity. This

gives the casual observer the impression that linear models

can only handle small simple datasets. This is far from the

truth — linear models can easily be expanded and modified

to  handle  complex  datasets.  Linear  is  also  used  to  refer  to straight  lines,  but  linear  models  can  be  curved  as  in  the polynomial. 

Explicitly 

nonlinear 

models 

are 

rarely

absolutely  necessary  and  most  often  arise  from  a  theory about  the  relationships  between  the  variables,  rather  than an  empirical  investigation.  A  Taylor  series  expansion  of  a nonlinear  form  produces  a  polynomial,  so  we  see  that  a linear model can approximate a nonlinear model. 

Where  do  models  come  from?  We  distinguish  several

different sources:

1. Physical  theory  may  suggest  a  model.  For  example, Hooke's  law  says  that  the  extension  of  a  spring  is

proportional  to  the  weight  attached.  Models  like  these

usually  arise  in  the  physical  sciences  and  engineering. 

This  is  the  best  source  for  a  model  and  we  should

prefer  this  if  possible.  If  you  have  information

regarding  the  form  of  the  relationship  between  the

variables, it is best to use it. 

2. Experience with past data. Similar data used in the past

were  modeled  in  a  particular  way.  It  is  natural  to  see whether  the  same  model  will  work  with  the  current

data.  Models  like  these  usually  arise  in  the  social, 

biological  and  medical  sciences  and  are  sometimes

called  empirical  models.  Sometimes  practitioners  have

some  understanding  of  which  variables  are  important

and  how  they  are  qualitatively  related.  You  should  use this knowledge to suggest a possible model. 

3. No  prior  idea  exists  —  the  model  comes  from  an

exploration  of  the  data.  We  use  skill  and  judgment  to develop  an  empirical  model.  Sometimes  it  does  not

work  and  we  have  to  try  again.  This  is  the  least

desirable  case  as  it  introduces  additional  uncertainty

into  the  process  and  will  affect  the  quality  of  our

conclusions. 

Models  that  derive  directly  from  physical  theory  are

relatively  uncommon  so  that  usually  the  linear  model  can only be regarded as an approximation of a complex reality. 

We  hope  it  predicts  well  or  explains  relationships  usefully but  usually  we  do  not  believe  it  is  exactly  true.  A  good model  is  like  a  map  that  guides  us  to  our  destination.  For the rest of this chapter, we will stay in the special world of Mathematics where all models are true. 

2.2 Matrix Representation

We want a general solution to estimating the parameters of

a  linear  model.  We  can  find  simple  formulae  for  some

special  cases  but  to  devise  a  method  that  will  work  in  all cases,  we  need  to  use  matrix  algebra.  Let's  see  how  this can be done. 

We  start  with  some  data  where  we  have  a  response   Y

and, say, three predictors,  x 1,  x 2 and  x 3. The data might be presented in tabular form like this:

 y 1  x 11  x 12  x 13

 y 2  x 21  x 22  x 23

…

…

 yn xn 1  xn 2  xn 3

(2.6)

where   n  is  the  number  of  observations,  or   cases,  in  the dataset. 

Given the actual data values, we may write the model as:

⎜⎟ yi= β 0+ β 1 xi 1+ β 2 xi 2+ β 3 xi 3+ εii=1,…,  n.(2.7)It will be more convenient to put this in a matrix/vectorrepresentation. The regression equation is then written as: y= Xβ+ ε(2.8)or in full as:⎛ y 1⎞⎛1 x 11 x 12 x 13⎞⎛ β 0⎞⎛ ε 1⎞ y 21 xβε=21 x 22 x 231+⎝2…⎠⎝…………⎠⎝ β 2⎠⎝…⎠ yn 1 xn 1 xn 2 xn 3 β 3 εn(2.9)The column of ones incorporates the intercept term. Noticethat if we identify  x 1 with  x, x 2 with  x 2 and  x 3 with  x 3, thiscan represent the cubic polynomial model mentionedabove.The most simple example is the  null model where there isno predictor and just a mean  y= μ+ ε:

⎜⎟⎛ y 1⎞⎛10⎞⎛ ε 1⎞ y 210 ε 2 y 310 β 0 ε 3⎝ y 411 β 1 ε 4 y 5⎠⎝11⎠⎝ ε 5⎠ y 6=11()+⎛⎞⎛⎞⎛⎞= μ+⎝ y 1…⎠⎝1…⎠⎝ ε 1…⎠ yn 1 εn(2.10)Another simple case concerns a binary predictor. Forexample, sex can be male or female. Models with suchpredictors are less obviously of the linear model form, butin fact they can be written in this way, by use of dummyindicator variables. Consider an example where there arethree observations from the first group followed by threefrom the second group. The model can be written as ε 6(2.11)The mean for the first group is β0 and the second group hasmean  β 0+ β 1, so that β1 represents the difference betweenthe two groups. When we add a binary predictor to a

model,  we  choose  to  code  one  level  as  ‘0’  and  the  other level  as  ‘1’.  Other  choices  are  reasonable  here  as  we  shall see. 

2.3 Estimating β

The  regression  model,  y =  Xβ +  ε, partitions the response into a systematic component  Xβ and a random component

 ϵ.  We  would  like  to  choose  β  so  that  the  systematic  part explains as much of the response as possible. Geometrically

speaking, the response lies in an  n-dimensional space, that is,  y ∈ IR n  while   β ∈ IR p  where   p  is  the  number  of parameters.  If  we  include  the  intercept  then   p  is  the number of predictors plus one. It is easy to get confused as

to whether  p is the number of predictors or parameters, as different authors use different conventions, so be careful. 

The  problem  is  to  find  β  so  that   Xβ  is  as  close  to   Y  as possible. The best choice, the estimate  ^

 β, is apparent in the

geometrical  representation  seen  in  Figure  2.1.   ^

 β is, in this

sense, the best estimate of β within the model space. The  ^

 β

values  are  sometimes  called  the  regression  coefficients. 

The  response  predicted  by  the  model  is  ^

 y =  X ^ β  or   Hy

where   H  is  an  orthogonal  projection  matrix.  The  ^

 y  are

called   predicted  or   fitted  values.  The  difference  between the actual response and the predicted response is denoted

by ^

 ε and is called the  residual. 

[image: Image 9]

Long Description for Figure 2.1

Figure  2.1   Geometrical  representation  of  the  estimation β.  The  data  vector   y  is  projected  orthogonally  onto  the model  space  spanned  by   X.  The  fit  is  represented  by projection  ^

 y =  X ^ β with the difference between the fit and the data represented by the residual vector ^

 ε. 

The  conceptual  purpose  of  the  model  is  to  represent,  as accurately  as  possible,  something  complex,  y,  which  is   n-

dimensional,  in  terms  of  something  much  simpler,  the

model,  which  is   p-dimensional.  Thus  if  our  model  is successful, the structure in the data should be captured in

those   p  dimensions,  leaving  just  random  variation  in  the residuals which lie in an ( n −  p)-dimensional space. 

2.4 Least Squares Estimation

The  estimation  of  β  can  also  be  considered  from  a

nongeometric point of view. We define the best estimate of

β  as  the  one  which  minimizes  the  sum  of  the  squared errors:

∑ ε 2 i =  εTε = ( y− Xβ) T( y− Xβ) (2.12)

Differentiating  with  respect  to  β  and  setting  to  zero,  we find that  ^

 β satisfies:

 XT X ^

 β =  XT y

(2.13)

These  are  called  the   normal  equations.  We  can  derive  the same  result  using  the  geometric  approach.  Now  provided

 XT X is invertible:

^ β = ( XTX)−1 XTy

(2.14)

 X ^

 β =  X( XT X)−1 XT y

(2.15)

^ y =  Hy

(2.16)

 H =  X( XT X)−1 XT   is  called  the   hat  matrix  and  is  the orthogonal  projection  of   y  onto  the  space  spanned  by   X  as seen  in  Figure  2.1.  H  is  useful  for  theoretical manipulations,  but  you  usually  do  not  want  to  compute  it explicitly,  as  it  is  an   n ×  n  matrix  which  could  be uncomfortably large for some datasets. The following useful

quantities can now be represented using  H. 

The predicted or fitted values are

^ y =  X^ β =  Hy

(2.17)

It is more precise to use the term fitted values since these

are the predicted values of  y corresponding to the observed values  of   X  according  to  the  model  fit.  Predictions  can  be made  for  new  values  of   X  not  already  seen  in  the  data. 

These  would  not  be  fitted  values.  In  practice,  both  terms are  used  although  the  fitted  value  is  a  special  kind  of predicted value. The residuals are

^ ε =  y −  X^ β =  y − ^ y = ( I −  H) y

(2.18)

The residual sum of squares (RSS) is:

 n

∑^ ε 2 = ^ εT^ ε=  yT( I − H) T( I − H) y =  yT( I − H) y i=1

(2.19)

Now let's make some assumptions about the error  ϵ. We set E ε = 0  with  the  idea  that  the  error  should  be  roughly equally likely to be positive as negative. This is not a strong assumption  —  see  Section  2.7.   We  will  also  assume  the errors   ϵ  are  uncorrelated  and  have  constant  variance: var  ε =  σ 2 I.  This  var  ε  is  a  matrix  where  the  offdiagonal elements  are  zero  (uncorrelated)  and  is  constant  on  the diagonal  (constant  variance).  This  is  a  strong  pair  of assumptions. We will discuss methods for checking these in

Chapter  7  and  how  to  proceed  if  the  assumptions  do  not hold in Chapter 9. 

Using  the  fact  that  the  expectation  of  a  linear

combination  is  the  linear  combination  of  the  expectations, we can see that:

E ^

 β = ( XT X)−1 XT  E y = ( XT X)−1 XT Xβ =  β

(2.20)

This shows that  ^

 β is unbiased. All the sensible competitors

to least squares are biased so this is considerable benefit to using  the  least  squares  estimator.  In  Section  2.9,   we  will show that the least squares estimate is, in some sense, the

best possible estimate of β. 

We can also compute its variance as:

var ^ β = ( XTX)−1 σ 2

(2.21)

where var  ε =  σ 2 I. Notice that var  ^

 β is a matrix where the

offdiagonal  elements  contain  the  covariances  between  the components of  ^

 β. In general, these will not be zero so there

will be some correlation between the parameter estimates. 

Equation  2.21  is  not  practical  since  we  do  not  know   σ 2. 

We need to estimate it. With some calculation, we can show

that E^

 εT ^ ε =  σ 2( n −  p), which suggests the estimator:

^ σ 2 = ^ εT ^ ε = RSS

 n −  p

 n −  p

(2.22)

as an unbiased estimate of  σ 2.  n −  p is called the  degrees of freedom  of  the  model.  Sometimes  you  need  the  standard error for a particular component of  ^

 β which can be picked

out as  se( ^

 βi−1) = √( XTX)−1

 ii ^

 σ. 

2.5 Examples of Calculating  ^

 β

In  a  few  simple  models,  it  is  possible  to  derive  explicit formulae for  ^

 β:

1. In  the  null  model  where   y =  μ +  ε,  X = 1  and   β =  μ

hence  X T X = 1 T 1 =  n so:

^ β = ( XTX)−1 XTy = 1 1 Ty = ¯ y n

(2.23)

We see that the sample mean of a univariate sample is

the least squares estimate. 

2. Simple linear regression (one predictor):

 yi =  β 0 +  β 1 xi +  εi

(2.24)

⎜⎟⎛1 x 1−¯ x⎞ X=⎝ β′0 yi…⎠ n 00∑ n 1 x= β 0 i=1( xi−¯ x)2 n−¯ x+ β 1¯ x+ Xβ 1( xi−¯ x) TX=(+ εi⎛⎞⎛⎞⎛⎞=()+⎝ y 1…⎠⎝1 x 1…⎠ β 0 β⎝ ε 1…⎠ y 1 n 1 xnεn(2.25)We can now apply the formula but a simpler approachis to rewrite the equation as:(2.26)so now:)(2.27)Next work through the rest of the calculation toreconstruct the familiar estimate, that is:

^

∑( x

 β

 i − ¯

 x) yi

1 = ∑( xi − ¯ x)2

(2.28)

In higher dimensions, it is usually not possible to find such

explicit  formulae  for  the  parameter  estimates  unless   X T X

happens  to  be  a  simple  form.  So  typically  we  need

computers  to  fit  such  models.  Regression  has  a  long

history,  so  in  the  time  before  computers  became  readily available,  fitting  even  quite  simple  models  was  a  tedious time consuming task. When computing was expensive, data

analysis  was  limited.  It  was  designed  to  keep  calculations to  a  minimum  and  restrict  the  number  of  plots.  This

mindset remained in statistical practice for some time even

after computing became widely and cheaply available. Now

it is a simple matter to fit a multitude of models and make

more plots than one could reasonably study. The challenge

now  for  the  analyst  is  to  choose  among  these  intelligently to extract the crucial information in the data. 

2.6 Example

Now  let's  look  at  an  example  concerning  the  number  of species  found  on  the  various  Galápagos  Islands.  There  are 30  cases  (islands)  and  seven  variables  in  the  dataset.  We start by reading the data into R and examining it:

data (gala , package = “faraway”)

head (gala [ , -2])

Species Area Elevation Nearest Scruz Adjacent

Baltra              58 25.09      346     0.6   0.6     1.84

Bartolome           31 1.24       109     0.6  26.3   572.33

Caldwell             3 0.21       114     2.8  58.7     0.78

Champion            25 0.10        46     1.9  47.4     0.18

Coamano              2 0.05        77     1.9   1.9   903.82

Daphne.Major        18 0.34       119     8.0   8.0     1.84

The  variables  are  Species  —  the  number  of  species  found on the island, Area — the area of the island (km2), Elevation

—  the  highest  elevation  of  the  island  (m),  Nearest  —  the distance from the nearest island (km), Scruz — the distance

from  Santa  Cruz  Island  (km),  Adjacent  —  the  area  of  the adjacent island (km2). We have omitted the second column

(which  has  the  number  of  endemic  species)  because  we

shall  not  use  this  alternative  response  variable  in  this analysis. 

The  data  were  presented  by  Johnson  and  Raven  (1973)

and  also  appear  in  Weisberg  (1985).  I  have  filled  in  some missing  values  for  simplicity  (see  Chapter  14  for  how  this can  be  done).  Fitting  a  linear  model  in  R  is  done  using  the lm()  command.  Notice  the  syntax  for  specifying  the

predictors  in  the  model.  This  is  part  of  the   Wilkinson–

 Rogers notation. In this case, since all the variables are in the gala data frame, we must use the data= argument:

lmod = lm (

Species ~ Area + Elevation + Nearest + Scruz + Adjacent, 

data = gala)

summary (lmod)

Call:

lm(formula = Species ~ Area + Elevation + Nearest + Scruz +

Adjacent, data = gala)



Residuals:

Min     1Q   Median      3Q      Max

-111.68 -34.90    -7.86   33.46   182.58



Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.06822    19.15420    0.37    0.7154

Area        -0.02394    0.02242   -1.07    0.2963

Elevation    0.31946    0.05366    5.95 0.0000038 ***

Nearest      0.00914    1.05414    0.01    0.9932

Scruz       -0.24052    0.21540   -1.12    0.2752

Adjacent    -0.07480    0.01770   -4.23    0.0003 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ’’1



Residual standard error: 61 on 24 degrees of freedom

Multiple R-squared: 0.766,             Adjusted R-squared: 

0.717

F-statistic: 15.7 on 5 and 24 DF,      p-value: 6.84e-07

For  my  tastes,  this  output  contains  rather  too  much

information. In future output, I will not display the function call,  the  residual  information  and  significance  stars.  Since we will be looking at lot of regression output, this will make the book several pages shorter. 

We  can  identify  several  useful  quantities  in  this  output. 

Other  statistical  packages  tend  to  produce  output  quite similar  to  this.  One  useful  feature  of  R  is  that  it  is  possible to  directly  calculate  quantities  of  interest.  Of  course,  it  is not  necessary  here  because  the  lm()  function  does  the  job, but it is very useful when the statistic you want is not part

of  the  prepackaged  functions.  First,  we  extract  the   X-

matrix:

X = model . matrix (

~ Area + Elevation + Nearest + Scruz + Adjacent , 

data = gala)

and here is the response y:

y = gala $ Species

Now  let's  construct  ( X T X)−1.  t()  does  transpose  and  %*%

does  matrix  multiplication.  solve(A)  computes   A−1  while solve(A,b) solves  Ax =  b:

xtxi = solve (t (X) % * % X)

We can get  ^

 β directly, using ( XT X)−1 XT y:

xtxi % * % t (X) % * % y

[,1]

1         7.068221

Area     -0.023938

Elevation 0.319465

Nearest   0.009144

Scruz    -0.240524

Adjacent -0.074805

This  is  a  very  bad  way  to  compute  ^

 β.  It  is  inefficient  and

can  be  very  inaccurate  when  the  predictors  are  strongly correlated.  One  should  avoid  numerically  inverting

matrices  unless  it  is  absolutely  necessary.  Such  problems are  exacerbated  by  large  datasets.  A  better,  but  not

perfect, way is:

solve (crossprod (X , X) , crossprod (X , y))

              [,1]

1         7.068221

Area     -0.023938

Elevation 0.319465

Nearest   0.009144

Scruz    -0.240524

Adjacent -0.074805

where crossprod(X,y) computes  X T y. Here we get the same result  as  lm()  because  the  data  are  well-behaved.  In  the long  run,  you  are  advised  to  use  carefully  programmed

code  such  as  found  in  lm()  which  uses  the  QR

decomposition.  To  see  more  details,  consult  a  text  such  as

Thisted (1988) or read Section 2.8. 

We  can  extract  the  regression  quantities  we  need  from

the  model  object.  Commonly  used  are  residuals(),  fitted(), df.residual() which gives the degrees of freedom, deviance()

which gives the RSS and coef() which gives the  ^

 β. You can

also  extract  other  needed  quantities  by  examining  the

model object and its summary:

names (lmod)

[1] “coefficients" “residuals"   “effects"   “rank" 

[5] “fitted.values" “assign"     “qr"        “df.residual" 

[9] “xlevels"       “call"       “terms"     “model" 

lmodsum = summary (lmod)

names (lmodsum)

[1] “call"          “terms"        “residuals" “coefficients" 

[5] “aliased"       “sigma"        “df"         “r.squared" 

[9] “adj.r.squared" “fstatistic"   “cov.unscaled" 

We  can  estimate   σ  using  the  formula  in  the  text  above  or extract it from the summary object:

sqrt (deviance (lmod) / df . residual (lmod))

[1] 60.975

lmodsum$sigma

[1] 60.975

We  can  also  extract  ( X T X)−1  and  use  it  to  compute  the standard  errors  for  the  coefficients.  (diag()  returns  the diagonal of a matrix):

xtxi = lmodsum $ cov . unscaled

sqrt (diag (xtxi)) * 60.975

(Intercept)       Area   Elevation    Nearest      Scruz   

Adjacent

19.154139   0.022422    0.053663   1.054133   0.215402   

0.017700

or get them from the summary object:

lmodsum $ coef [ ,2]

(Intercept)       Area   Elevation    Nearest      Scruz   

Adjacent

19.154198   0.022422    0.053663   1.054136   0.215402   

0.017700

2.7 Intercept

The  intercept  β0  may  seem  much  less  interesting  than  the other  parameters  β i  which  tell  us  something  about  the contributions  of  their  respective  predictors.  We  may  be tempted  to  simplify  our  model  by  removing  it,  but  this  is usually a mistake for two reasons. 

Firstly, consider an example with a simple linear model

 y =  β 0 +  β 1 x +  ε

(2.29)

We  would  like  to  assume  that  E ε = 0,  but  we  understand that there are other unmeasured predictors that affect the

response   y  that  are  absorbed  into   ϵ  so  we  have  E ε =  c for c ≠ 0  and  we  do  not  know   c.  But  we  can  subtract  this   c from  ϵ and add it to β0:

 y = ( β 0 +  c) +  β 1 x + ( ε −  c) (2.30)

which maintains the same fit and the new error term,  ε −  c, has mean zero. Hence, β0 is not just the predicted response

when   x = 0  —  it  takes  care  of  all  the  known  or  unknown predictors  we  could  not  measure.  This  is  useful  and  so  we would like to keep β0 in the model. 

Secondly, consider an example where our model predicts

weight  from  height  for  adults.  Now  a  pedantic  person

might  argue  that  a  person  with  a  height  of  zero  should  be predicted to have a weight of zero and therefore β0 should

be  set  to  zero  (i.e.  removed  from  the  model).  In  reply,  we argue that we have no intention to use the model outside of

the  usual  range  of  adult  heights.  Furthermore,  setting  β0

would  restrict  us  to  a  one-parameter  model  of   y =  β 1 x which  would  not  have  the  same  flexibility  to  fit  the  data. 

The predictions from such a model would almost surely be inferior to the usual two parameter model. 

In  general,  we  advise  keeping  an  intercept  in  the  linear model  unless  special  circumstances  apply.  Models  derived from theory may not have an intercept term — for example, 

Newton's  second  law  states  that   F =  ma.  In  a  strictly controlled  experiment  involving  this  law,  you  would  not have  an  intercept  term.  Otherwise,  if  in  doubt,  keep  the intercept  term.  There  is  usually  little  to  be  gained  from removing it. 

2.8 QR Decomposition

This  section  might  be  skipped  unless  you  are  interested  in the  actual  calculation  of  ^

 β  and  related  quantities.  Any

design matrix  X can be written as:

 R

 X =  Q (0) =  QfR

(2.31)

where   Q  is  an   n ×  n  orthogonal  matrix,  that  is QT Q =  QQT =  I and  R is a  p ×  p upper triangular matrix (

 Rij = 0 for  i >  j). The 0 is an ( n −  p) ×  p matrix of zeroes while  Qf is the first  p columns of  Q. 

The  RSS = ( y −  Xβ) T ( y −  Xβ) =∥  y −  Xβ ∥2 where ∥ ⋅ ∥

is the Euclidean length of a vector. The matrix  Q represents

 f

 r

 RSS =∥  f −  Rβ ∥ ∥2+∥ r∥2a rotation and does not change length. Hence:2 fRRSS=∥ QTy− QTXβ∥2=( r)−(0) β(2.32)()where = QTy for vector  f of length  p and vector  r oflength  n− p. From this we see:(2.33)which can be minimized by setting β so that  Rβ= f.Let's see how this works for the Galápagos data. First wecompute the QR decomposition:qrx = qr (X)The components of the decomposition must be extracted byother functions. For example, we can extract the  Q matrixusing qr.Q:dim (qr . Q (qrx))[1] 30   6Notice that we do not need the whole  n× n matrix for thecomputation. The first  p columns suffice so qr.q returns

what we call  Qf. We can compute  f: (f = t (qr . Q (qrx)) % * % y)

[,1]

[1,] -466.8422

[2,]  381.4056

[3,]  256.2505

[4,]    5.4076

[5,] -119.4983

[6,]  257.6944

Solving  Rβ =  f is easy because of the triangular form of  R. 

We use the method of backsubstitution:

backsolve (qr . R (qrx) ,f)

[,1]

[1,]  7.068221

[2,] -0.023938

[3,]  0.319465

[4,]  0.009144

[5,] -0.240524

[6,] -0.074805

where the results match those seen previously. 

2.9 Gauss–Markov Theorem

^ β  is  a  plausible  estimator,  but  there  are  alternatives. 

Nonetheless,  there  are  three  good  reasons  to  use  least squares:

1. It results from an orthogonal projection onto the model

space. It makes sense geometrically. 

2. If  the  errors  are  independent  and  identically  normally distributed,  it  is  the  maximum  likelihood  estimator. 

Loosely  put,  the  maximum  likelihood  estimate  is  the value  of  β  that  maximizes  the  probability  of  the  data that was observed. 

3. The  Gauss–Markov  theorem  states  that  ^

 β  is  the  best

linear unbiased estimate (BLUE). 

To understand the Gauss–Markov theorem, we first need to

understand  the  concept  of  an   estimable  function.  A  linear combination of the parameters  ψ =  cT β is estimable if and only if there exists a linear combination  aT y such that: EaT y =  cT β

∀ β

(2.34)

Estimable 

functions 

include 

predictions 

of 

future

observations,  which  explains  why  they  are  well  worth

considering. If  X is of full rank, then all linear combinations are estimable. 

Suppose   Eε = 0  and  var  ε =  σ 2 I.  Suppose  also  that  the structural  part  of  the  model,  EY =  Xβ is correct. (Clearly these  are  big  assumptions  and  so  we  will  address  the

implications  of  this  later.)  Let   ψ =  cT β  be  an  estimable function; then the Gauss–Markov theorem states that in the

class of all unbiased linear estimates of  ψ, 

 ψ =  cT ^ β has the

minimum variance and is unique. 

We  prove  this  theorem.  Suppose   aT y  is  some  unbiased estimate of  cT β so that:

 EaT y =  cT β

∀ β

(2.35)

 aT Xβ =  cT β

∀ β

(2.36)

which means that  aT X =  cT . This implies that  c must be in the range space of  XT which in turn implies that  c is also in the range space of  X T X which means there exists a  λ such that  c =  X T Xλ so:

 cT ^

 β =  λT XT X ^ β =  λT XT y

(2.37)

Now we can show that the least squares estimator has the

minimum  variance  —  pick  an  arbitrary  estimate   aT y  and compute its variance:

var ( aTy) = var ( aTy −  cT ^ β +  cT ^ β)

= var ( aTy −  λTXTy +  cT ^ β)

= var ( aTy −  λTXTy) + var ( cT ^ β) + 2 cov( aTy −

(2.38)

but

cov( aTy −  λTXTy,  λTXTy) = ( aT −  λTXT) σ 2 IXλ

= ( aTX −  λTXTX) σ 2 Iλ

= ( cT −  cT) σ 2 Iλ = 0

(2.39)

so

var ( aTy) = var ( aTy −  λTXTy) + var ( cT ^ β) (2.40)

Now since variances cannot be negative, we see that:

var ( aTy) ≥ var ( cT ^ β)

(2.41)

In other words,  cT ^

 β has minimum variance. It now remains

to show that it is unique. There will be equality in the above relationship if var ( aT y −  λT X T y) = 0 which would require that  aT −  λT X T = 0 which means that  aT y =  λT X T y =  cT ^

 β

.  So  equality  occurs  only  if   aT y =  cT ^

 β  so  the  estimator  is

unique. This completes the proof. 

The Gauss–Markov theorem shows that the least squares

estimate  ^

 β  is  a  good  choice,  but  it  does  require  that  the errors  are  uncorrelated  and  have  equal  variance.  Even  if the  errors  behave,  but  are  nonnormal,  then  nonlinear  or biased estimates may work better. So this theorem does not

tell  one  to  use  least  squares  all  the  time;  it  just  strongly suggests  it  unless  there  is  some  compelling  reason  to  do otherwise. Situations where estimators other than ordinary

least squares should be considered are the following:

1. When  the  errors  are  correlated  or  have  unequal

variance, generalized least squares should be used. See

Section 9.1. 

2. When  the  error  distribution  is  long-tailed,  then  robust estimates might be used. Robust estimates are typically

not linear in  y. See Section 9.4. 

3. When  the  predictors  are  highly  correlated  (collinear), then  biased  estimators  such  as  ridge  regression  might

be preferable. See Chapter 12. 

2.10 Goodness of Fit

It is useful to have some measure of how well the model fits

the data. One common choice is  R 2, the so-called  coefficient of determination or  percentage of variance explained: R 2 = 1 − ∑(^ yi −  yi)2 = 1 −

RSS

∑( yi − ¯ y)2

Total   SS(Corrected   for   Mea

(2.42)

Its  range  is  0 ≤  R 2 ≤ 1  —  values  closer  to  1  indicating better fits. For simple linear regression  R 2 =  r 2 where  r is the correlation between  x and  y. An equivalent definition is: R 2 = ∑(^ yi − ¯ y)2

∑( yi − ¯ y)2

(2.43)

or

 R 2 = cor2(^ y,  y)

(2.44)
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The  graphical  intuition  behind   R 2  is  seen  in  Figure  2.2. 

Suppose  you  want  to  predict   y.  If  you  do  not  know   x,  then your  best  prediction  is  ¯

 y,  but  the  variability  in  this

prediction  is  high.  If  you  do  know   x,  then  your  prediction will  be  given  by  the  regression  fit.  This  prediction  will  be less variable provided there is some relationship between  x and   y.  R 2  is  one  minus  the  ratio  of  the  sum  of  squares  for these two predictions. Thus for perfect predictions the ratio

will be zero and  R 2 will be one. 

Long Description for Figure 2.2

Figure 2.2  When  x is not known, the best predictor of  y is

¯ y and the variation is denoted by the solid line with arrows. 

When  x is known, we can predict  y more accurately by the dashed  line.  R 2  is  related  to  the  ratio  of  these  two variances. 

Some  care  is  necessary  if  there  is  no  intercept  in  your model.  The  denominator  in  the  first  definition  of   R 2  has  a

null  model  with  an  intercept  in  mind  when  the  sum  of squares  is  calculated.  Unfortunately,  R  uses  this  definition and  will  give  a  misleadingly  high   R 2.  If  you  must  have  an R 2, use the cor2(^ y,  y) definition when there is no intercept. 

What  is  a  good  value  of   R 2?  It  depends  on  the  area  of application.  In  the  biological  and  social  sciences,  variables tend  to  be  more  weakly  correlated  and  there  is  a  lot  of noise.  We  would  expect  lower  values  for   R 2  in  these  areas

— a value of, say, 0.6 might be considered good. In physics

and  engineering,  where  most  data  come  from  closely

controlled  experiments,  we  typically  expect  to  get  much higher   R 2s  and  a  value  of  0.6  would  be  considered  low. 

Some  experience  with  the  particular  area  is  necessary  for you to judge your  R 2s well. 

It  is  a  mistake  to  rely  on   R 2  as  a  sole  measure  of  fit. 

Consider  the  following  dataset  that  has  four  (x,y)  pairs from Anscombe (1973):

head (anscombe)

x1   x2   x3 x4  y1   y2    y3   y4

1   10   10   10 8 8.04 9.14  7.46 6.58

2    8    8    8 8 6.95 8.14  6.77 5.76

3   13   13   13 8 7.58 8.74 12.74 7.71

4    9    9    9 8 8.81 8.77  7.11 8.84

5   11   11   11 8 8.33 9.26  7.81 8.47

6   14   14   14 8 9.96 8.10  8.84 7.04

We  compute  some  mean  and  sd  of  each  variable  and  the correlation in each ( x,  y) pair:

apply (anscombe , 2 , mean)

    x1     x2     x3     x4     y1     y2     y3     y4

9.0000 9.0000 9.0000 9.0000 7.5009 7.5009 7.5000 7.5009

apply (anscombe, 2, sd)

x1     x2     x3     x4     y1     y2     y3     y4

3.3166 3.3166 3.3166 3.3166 2.0316 2.0317 2.0304 2.0306

with (anscombe, c (cor (x1 , y1) , cor (x2 , y2) , cor (x3 , 

y3) , cor (x4 , y4)))

[1] 0.81642 0.81624 0.81629 0.81652

We see that each ( x,  y) pair has the same means, the same SDs  and  the  same  correlation.  For  one  predictor  linear models,  R 2 =  ρ 2 so a linear model fit to each ( x,  y) pair will result in the same  R 2. From a numerical perspective, these four  sets  of  data  appear  to  be  very  similar.  But  when  we plot  the  data,  as  seen  in  Figure  2.3,   a  very  different conclusion is revealed:

acn = colnames (anscombe)

for (i in 1:4) {

plot (anscombe [ , i ] , anscombe [ , i +4], 

xlab = acn [ i ] , ylab = acn [ i +4])

lmod = lm (anscombe [ , i +4] ~ anscombe [ , i ])

abline (lmod)

}

[image: Image 11]

Long Description for Figure 2.3

Figure 2.3  The Anscombe quartet: The first plot on the upper left shows the standard linear relationship while on

the  upper  right  we  see  that  the  true  relationship  is

somewhat  quadratic  which  shows  us  that   R 2  doesn't  tell us  much  whether  we  have  the  right  model.  On  the  lower left, the fit looks good except for an outlier demonstrating

how sensitive  R 2 is to a few extreme values. On the lower right, the whole relationship is driven by a single point. 

We see that it is a mistake to rely on  R 2 as a sole measure of  fit  in  a  linear  model  (or  a  correlation  in  describing  the relationship  between  two  variables).  This  example

illustrates  the  importance  of  graphics  in  understanding

linear models. 

An alternative measure of fit is ^

 σ. This quantity is directly

related  to  the  standard  errors  of  estimates  of  β  and

predictions.  The  advantage  is  that  ^

 σ  is  measured  in  the

units of the response and so may be directly interpreted in

the  context  of  the  particular  dataset.  This  may  also  be  a disadvantage  in  that  one  must  understand  the  practical

significance  of  this  measure  whereas   R 2,  being  unitless,  is easy to understand. The R regression summary returns both

values and it is worth paying attention to both of them. 

2.11 Identifiability

The  least  squares  estimate  is  the  solution  to  the  normal equations:

 XT X ^

 β =  XT y

(2.45)

where  X is an  n ×  p matrix. If  X T X is singular and cannot be  inverted,  then  there  will  be  infinitely  many  solutions  to the  normal  equations  and  ^

 β  is  at  least  partially

unidentifiable.  Unidentifiability  will  occur  when   X  is  not  of

full rank — that is when its columns are linearly dependent. 

With  observational  data,  unidentifiability  is  usually  caused by some oversight. Here are some examples:

1. A person's weight is measured both in pounds and kilos

and  both  variables  are  entered  into  the  model.  One

variable is just a multiple of the other. 

2. For  each  individual  we  record  the  number  of  years  of preuniversity  education,  the  number  of  years  of

university education and also the total number of years

of education and put all three variables into the model. 

There is an exact linear relation among the variables. 

3. We  have  more  variables  than  cases,  that  is,  p >  n. 

When   p =  n,  we  may  perhaps  estimate  all  the parameters,  but  with  no  degrees  of  freedom  left  to

estimate any standard errors or do any testing. Such a

model is called  saturated.  When  p >  n, then the model is  sometimes  called   supersaturated.  Such  models  are considered  in  large-scale  screening  experiments  used

in 

product 

design 

and 

manufacture 

and 

in

bioinformatics  where  there  are  more  genes  than

individuals  tested,  but  there  is  no  hope  of  uniquely

estimating all the parameters in such a model. Different

approaches are necessary. 

Such  problems  can  be  avoided  by  paying  attention. 

Identifiability is more of an issue in designed experiments. 

Consider  a  simple  two-sample  experiment,  where  the

⎜⎟treatment observations are  y 1,…,  yn and the controls are yn+1,…,  ym+ n. Suppose we try to model the response by anoverall mean  μ and group effects  α 1 and  α 2: yj= μ+ αi+ εji=1,2 j=1,…,  m+ n⎛⎛ ε⎞ y 11⎞⎛110⎞……………⎛⎞… yn 110=+⎝ μα 1⎠…⎝ yn+1101 α……⎠⎝………⎠2… y⎝⎠ m+ n 101 εm+ n(2.46)Now although  X has three columns, it has only rank two— ( μ,  α 1,  α 2) are not identifiable and the normal equationshave infinitely many solutions. We can solve this problemby imposing some constraints,  μ=0 or  α 1+ α 2=0, forexample.Statistics packages handle nonidentifiability differently.In the regression case above, some may return errormessages and some may fit models because rounding errormay remove the exact identifiability. In other cases,constraints may be applied but these may be different fromwhat you expect. By default, R fits the largest identifiable

model  by  removing  variables  in  the  reverse  order  of appearance in the model formula. 

Here  is  an  example.  Suppose  we  create  a  new  variable

for the Galápagos dataset — the difference in area between

the island and its nearest neighbor:

gala $ Adiff = gala $ Area - gala $ Adjacent

and add that to the model:

lmod = lm (Species ~ Area + Elevation + Nearest + Scruz + 

Adjacent +

Adiff , gala)

summary (lmod)

Coefficients: (1 not defined because of singularities)

Estimate  Std. Error t value Pr(>|t|)

(Intercept)  7.06822   19.15420    0.37   0.7154

Area        -0.02394    0.02242   -1.07   0.2963

Elevation    0.31946    0.05366    5.95   <1e-04

Nearest      0.00914    1.05414    0.01   0.9932

Scruz       -0.24052    0.21540   -1.12   0.2752

Adjacent    -0.07480    0.01770   -4.23   0.0003

Adiff             NA         NA      NA       NA



Residual standard error: 61 on 24 degrees of freedom

Multiple R-squared: 0.766,            Adjusted R-squared: 0.717

F-statistic: 15.7 on 5 and 24 DF,    p-value: <1e-04

We  get  a  message  about  a  singularity  because  the  rank  of the  design  matrix   X  is  six,  which  is  less  than  its  seven columns.  The  default  behaviour  is  to  drop  sufficient

predictors  to  remove  the  singularity.  Predictors  occurring later  in  the  model  formula  are  prefered  for  removal  —  in this case, Adiff. 

In  most  cases,  the  cause  of  unidentifiability  can  be revealed with some thought about the variables, but, failing

that,  an  eigendecomposition  of   X T X  will  reveal  the  linear combination(s) that gave rise to the unidentifiability — see

Section  12.1.   If  you  are  know  about  eigendecompositions, the calculation is:

X = model . matrix (lmod)

xtx = t (X) % * % X

edec = eigen (xtx)

signif (edec $ values ,3)

[1] 5.35e+07 3.65e+07 2.26e+06 1.68e+05 3.29e+03 1.01e+01 

1.48e-09

These  are  the  eigenvalues.  The  last  one  is  practically  zero which  indicates  that  the  matrix  has  rank  6  (less  than  the full dimension of 7). We can look at the last eigenvector to

find the offending linear combination:

round (edec $ vectors [ ,7] ,3)

[1]   0.000 -0.577   0.000   0.000   0.000   0.577   0.577

This shows that 0.577(Adiff - Area - Adjacent) = 0 or more

simply  that  Adiff  =  Area  +  Adjacent.  The  offending  linear combination has been found. 

Lack  of  identifiability  is  obviously  a  problem,  but  it  is usually easy to identify and work around. More problematic

are  cases  where  we  are  close  to  unidentifiability.  To

demonstrate  this,  suppose  we  add  a  small  random

perturbation to the third decimal place of Adiff by adding a

random variate from  U[−0.005, 0.005] where  U denotes the uniform  distribution.  Random  numbers  are  by  nature

random  so  results  are  not  exactly  reproducible.  However, you  can  make  the  numbers  come  out  the  same  every  time by setting the seed on the random number generator using

set.seed(). I have done this here so you will not wonder why

your answers are not exactly the same as mine, but it is not

strictly necessary. 

set . seed (123)

Adiffe = gala$Adiff+0.001 * (runif (30) -0.5)

and now refit the model:

lmod = lm (Species ~ Area + Elevation + Nearest + Scruz +

Adjacent + Adiffe, gala)

summary (lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.30e+00   1.94e+01    0.17     0.87

Area       -4.51e+04   4.26e+04   -1.06     0.30

Elevation   3.13e-01   5.39e-02    5.81   <1e-04

Nearest     3.83e-01   1.11e+00    0.35     0.73

Scruz      -2.62e-01   2.16e-01   -1.21     0.24

Adjacent    4.51e+04   4.26e+04    1.06     0.30

Adiffe      4.51e+04   4.26e+04    1.06     0.30



Residual standard error: 60.8 on 23 degrees of freedom

Multiple R-squared: 0.777,               Adjusted R-squared: 

0.719

F-statistic: 13.3 on 6 and 23 DF,       p-value: <1e-04

Notice  that  now  all  parameters  are  estimated,  but  the

standard errors are very large because we cannot estimate

them  in  a  stable  way.  We  set  up  this  problem  so  we  know the cause but in general we need to be able to identify such

situations. We do this in Section 8.3. 

2.12 Orthogonality

Orthogonality  is  a  useful  property  because  it  allows  us  to more  easily  interpret  the  effect  of  one  predictor  without regard  to  another.  Suppose  we  can  partition   X  in  two, X = [ X 1| X 2] such that  XT 1 X 2 = 0. So now: Y =  Xβ +  ε =  X 1 β 1 +  X 2 β 2 +  ε

(2.47)

and

 XT

 XT

 XT X = ( 1  X 1  XT 1 X 2

1  X 1

0

 XT

)=( 0  XT )

2  X 1  X T

2  X 2

2  X 2

(2.48)

which means:

^ β 1 = ( XT 1 X 1)−1 XT 1 y

^ β 2 = ( XT 2 X 2)−1 XT 2 y

(2.49)

Notice that  ^

 β 1 will be the same regardless of whether  X 2 is in  the  model  or  not  (and  vice  versa).  So  we  can  interpret

the effect of  X 1 without a concern for  X 2. Unfortunately, the decoupling  is  not  perfect.  Suppose  we  wish  to  test

 H 0 :  β 1 = 0.  We  have  RSS/ df = ^ σ 2  that  will  be  different depending  on  whether   X 2  is  included  in  the  model  or  not, but  the  difference  in   F  is  not  liable  to  be  as  large  as  in nonorthogonal cases. 

If the covariance between vectors  x 1 and  x 2 is zero, then

∑ j( xj 1 − ¯ x 1)( xj 2 − ¯ x 2) = 0.  This  means  that  if  we  center the  predictors,  a  covariance  of  zero  implies  orthogonality. 

As  can  be  seen  in  the  second  example  in  Section  2.5,   we can  center  the  predictors  without  essentially  changing  the model provided we have an intercept term. 

Orthogonality is a desirable property, but will only occur

when   X  is  chosen  by  the  experimenter.  It  is  a  feature  of  a good  design.  In  observational  data,  we  do  not  have  direct control  over   X  and  this  is  the  source  of  many  of  the interpretational 

difficulties 

associated 

with

nonexperimental data. 

Here  is  an  example  of  an  experiment  to  determine  the

effects of column temperature, gas/liquid ratio and packing

height  in  reducing  the  unpleasant  odor  of  a  chemical

product  that  was  sold  for  household  use.  Read  the  data  in and display:

data (odor , package = “faraway”)

odor

odor temp gas pack

1     66   -1 -1     0

2     39    1 -1     0

 3     43   -1   1    0

4     49    1   1    0

5     58   -1   0   -1

6     17    1   0   -1

7     -5   -1   0    1

8    -40    1   0    1

9     65    0 -1    -1

10      7    0   1   -1

11     43    0 -1     1

12    -22    0   1    1

13    -31    0   0    0

14    -35    0   0    0

15    -26    0   0    0

The  three  predictors  have  been  transformed  from  their

original  scale  of  measurement,  for  example,  temp  =

(Fahrenheit-80)/40  so  the  original  values  of  the  predictor were 40, 80 and 120. The data is presented in John (1971)

and  give  an  example  of  a   central  composite  design.  We compute the covariance of the predictors:

cov (odor [ , -1])

temp     gas    pack

temp 0.57143 0.00000 0.00000

gas  0.00000 0.57143 0.00000

pack 0.00000 0.00000 0.57143

The  matrix  is  diagonal.  Even  if  temp  was  measured  in  the original  Fahrenheit  scale,  the  matrix  would  still  be

diagonal, but the entry in the matrix corresponding to temp

would  change.  Now  fit  a  model,  while  asking  for  the

correlation of the coefficients:

lmod = lm (odor ~ temp + gas + pack , odor)

summary (lmod , cor = T)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)     15.2        9.3    1.63     0.13

temp           -12.1       12.7   -0.95     0.36

gas            -17.0       12.7   -1.34     0.21

pack           -21.4       12.7   -1.68     0.12



Residual standard error: 36 on 11 degrees of freedom

Multiple R-Squared: 0.334,      Adjusted R-squared: 0.152

F-statistic: 1.84 on 3 and 11 DF,          p-value: 0.199



Correlation of Coefficients:

(Intercept) temp gas

temp 0.00

gas 0.00         0.00

pack 0.00        0.00 0.00

We see that, as expected, the pairwise correlation of all the

coefficients is zero. Notice that the SEs for the coefficients are equal due to the balanced design. Now drop one of the

variables:

lmod = lm (odor ~ gas + pack , odor)

summary (lmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)    15.20       9.26    1.64     0.13

gas           -17.00      12.68   -1.34     0.20

pack          -21.37      12.68   -1.69     0.12



Residual standard error: 35.9 on 12 degrees of freedom

Multiple R-Squared: 0.279,              Adjusted R-squared: 

0.159

F-statistic: 2.32 on 2 and 12 DF,         p-value: 0.141

The coefficients themselves do not change, but the residual SE does change slightly, which causes small changes in the

SEs  of  the  coefficients,  t-statistics  and  p-values,  but nowhere 

near 

enough 

to 

change 

our 

qualitative

conclusions. 

Exercises

Read the general tips about completing the exercises at the

beginning of the exercise section in Chapter 1. 

1. The  dataset  teengamb  concerns  a  study  of  teenage

gambling in Britain. Treat the expenditure on gambling

as the response and the sex, status, income and verbal

score as predictors. 

(a) Fit the linear model and present the output. 

(b) What  percentage  of  variation  in  the  response  is

explained by these predictors? 

(c) Which  observation  has  the  largest  (positive)

residual? Give the case number. 

(d) Compute  the  mean  and  median  of  the  residuals. 

What values should be expected? 

(e) Compute  the  correlation  of  the  residuals  with  the

fitted values. Will it always be this value? Why? 

(f) Compute  the  correlation  of  the  residuals  with  the

income. Will it always be this value? Why? 

(g) For all other predictors held constant, what would

be  the  difference  in  predicted  expenditure  on

gambling for a male compared to a female? 

2. The  dataset  uswages  is  drawn  as  a  sample  from  the

Current Population Survey in 1988. 

(a) Fit a model with weekly wages as the response and

years  of  education  and  experience  as  predictors. 

Show the output. 

(b) What are the minimum values of wages, education

and experience seen in the data? 

(c) What  is  the  predicted  wage  for  a  worker  with  no

education and no experience? Comment. 

(d) Verify  by  calculation  that  the  squared  correlation

between the fitted values and the response is equal

to  R 2. 

(e) In  view  of  the  difficulty  of  modeling  uneducated, 

inexperienced  men,  we  might  try  omitting  the

intercept term from the model. We can accomplish

this  with  a  model  formula  like  y  ∼-1  +  x.  Fit  the

same  predictors  but  without  the  intercept  term. 

What  is  the  reported  value  of   R 2?  How  does  this compare  to  the  squared  correlation  between  the

fitted values and the response? 

(f) Compare  the  residual  sum  of  squares  for  the  two

models  we  have  fitted  so  far.  Which  model  fits

best? 

(g) If  education  were  increased  by  one,  holding

experience  constant,  what  would  be  the  change  in

the predicted wage? 

(h) Fit  a  model  with  log(wages)  as  the  response  and

education  and  experience  as  predictors.  Compare

the  residual  standard  error  and   R 2  for  this  model with those seen in the first model. Which model do

you think is best? 

(i)

(i) If  education  were  increased  by  one,  holding

experience  constant,  what  would  be  the  change  in

the predicted wage using this logged model? 

(j)

(j) Add  the  predictors  ne,  mw,  we  and  so  into  the

model  and  refit  the  model.  Why  is  a  problem  seen

in the output? 

(k) (k) Compute  the  row  sum  (i.e.,  over  individual

men)  for  ne,  mw,  we  and  so.  What  value  does  this

take for all men? What relevance does this have to

the previous question? 

3. The  dataset  prostate  comes  from  a  study  on  97  men

with prostate cancer who were due to receive a radical

prostatectomy. 

(a) Fit a model with lpsa as the response and lcavol as

the  predictor.  Record  the  residual  standard  error

and the  R 2. 

(b) Now  add  lweight,  svi,  lbph,  age,  lcp,  pgg45  and

gleason to the model sequentially one at a time. For

each model, record the residual standard error and

the  R 2. 

(c) Plot the trends in these two statistics. Comment on the  results  –  do  they  change  monotonically  as  the

number of predictors increases? 

4. Using the prostate data, plot lpsa against lcavol. Fit the

regressions of lpsa on lcavol and lcavol on lpsa. Display

both  regression  lines  on  the  plot.  At  what  point  do  the two lines intersect? 

5. Thirty  samples  of  cheddar  cheese  were  analyzed  for

their content of acetic acid, hydrogen sulfide and lactic

acid. Each sample was tasted and scored by a panel of

judges  and  the  average  taste  score  produced.  Use  the

cheddar data to answer the following:

(a) Fit  a  regression  model  with  taste  as  the  response

and  the  three  chemical  contents  as  predictors. 

Report the values of the regression coefficients. 

(b) Compute  the  correlation  between  the  fitted  values

and  the  response.  Square  it.  Identify  where  this

value appears in the regression output. 

(c) Fit  the  same  regression  model  but  without  an

intercept term. What is the value of  R 2 reported in

the  output?  Compute  a  more  reasonable  measure

of the goodness of fit for this example. 

(d) Compute  the  regression  coefficients  from  the

original  fit  using  the  QR  decomposition  showing

your R code. 

6. An  experiment  was  conducted  to  determine  the  effect of  four  factors  on  the  resistivity  of  a  semiconductor

wafer. The data is found in wafer where each of the four

factors is coded as - or + depending on whether the low

or  the  high  setting  for  that  factor  was  used.  Fit  the linear model resist ∼ x1 + x2 + x3 + x4. 

(a) Extract  the   X  matrix  using  the  model.matrix

function.  Examine  this  to  determine  how  the  low

and high levels have been coded in the model. 

(b) Compute  the  correlation  in  the   X  matrix.  Why  are there some missing values in the matrix? 

(c) What  difference  in  resistance  is  expected  when

moving from the low to the high level of x1? 

(d) Refit  the  model  without  x4  and  examine  the

regression  coefficients  and  standard  errors.  What

stayed  the  same  as  the  original  fit  and  what

changed? 

(e) Explain  how  the  change  in  the  regression

coefficients  is  related  to  the  correlation  matrix  of

 X. 

7. An  experiment  was  conducted  to  examine  factors  that

might affect the height of leaf springs in the suspension

of  trucks.  The  data  may  be  found  in  truck.  The  five

factors  in  the  experiment  are  set  to  -  and  +  but  it  will be  more  convenient  for  us  to  use  −1 and +1. This can

be achieved for the first factor by:

truck$B = sapply(truck$B, function(x) ifelse(x=="-",-1,1)) Repeat for the other four factors. 

(a) Fit a linear model for the height in terms of the five

factors.  Report  on  the  value  of  the  regression

coefficients. 

(b) Fit  a  linear  model  using  just  factors  B,  C,  D  and  E

and report the coefficients. How do these compare

to the previous question? Show how we could have

anticipated this result by examining the  X matrix. 

(c) Construct  a  new  predictor  called  A  which  is  set  to B+C+D+E. Fit a linear model with the predictors A, B, 

C,  D,  E  and  O.  Do  coefficients  for  all  six  predictors appear in the regression summary? Explain. 

(d) Extract  the  model  matrix   X  from  the  previous model.  Attempt  to  compute  ^

 β  from  ( XT X)−1 XT y. 

What went wrong and why? 

(e) Use  the  QR  decomposition  method  as  seen  in

Section  2.8  to  compute  ^

 β.  Are  the  results

satisfactory? 

(f) Use the function qr.coef to correctly compute  ^

 β. 

8. In  Equation  (2.11),  a  model  where  three  observations from each of two groups is shown. 

(a) Write down the model matrix. 

(b) Use  the  normal  equations  to  derive  the  estimators of the parameters. 

(c) Now  suppose  that  the  first  group  is  coded  as  −1

and the second group as +1. Write down the model

matrix. 

(d) Derive  the  estimators  for  this  new  coding  and

compare to the original coding. 

Chapter 3

Inference

DOI: 10.1201/9781003449973-3

In this chapter we show how to make hypothesis tests and

construct  confidence  intervals.  These  inferential  methods are the building blocks for drawing conclusions using linear

models and data. We start with the construction and finish

with a consideration of the problems that can arise. 

If you simply wish to estimate the parameters β, it is not

essential to assume any distributional form for the errors  ϵ. 

However,  if  we  want  to  make  any  confidence  intervals  or perform  any  hypothesis  tests  using  the  most  commonly

used  methods,  we  will  need  to  do  this.  We  are  going  to assume that the errors are normally distributed. Often this

is  quite  reasonable  but  we  will  discuss  in  Section  7.1  how we can check this assumption and how we might deal with

data  where  the  normality  assumption  is  not  justifiable  in

Section 9.4. 

If  we  have  chosen  to  use  least  squares  estimation,  we should  already  have  assumed  that  the  errors  are

independent and identically distributed (i.i.d.) with mean 0

and  variance   σ 2,  so  we  have   ε ∼  N(0,  σ 2 I).  Now  since y =  Xβ +  ε,  we  have   y ∼  N( Xβ,  σ 2 I)  which  is  a  compact description  of  the  regression  model.  From  this  we  find, using  the  fact  that  linear  combinations  of  normally

distributed values are also normal, that:

^ β = ( XTX)−1 XTy ∼  N( β, ( XTX)−1 σ 2) (3.1)

3.1 Hypothesis Tests to Compare Models

Given  several  predictors  for  a  response,  we  might  wonder whether all are needed. Consider a larger model, Ω, and a

smaller  model,  ω,  which  consists  of  a  subset  of  the predictors  that  are  in  Ω.  If  there  is  not  much  difference  in the fit, we would prefer the smaller model on the principle

that simpler explanations are preferred. On the other hand, 

if  the  fit  of  the  larger  model  is  appreciably  better,  we  will prefer  it.  We  will  take   ω  to  represent  the  null  hypothesis and  Ω  to  represent  the  alternative.  A  geometrical  view  of the problem may be seen in Figure 3.1. 

[image: Image 12]

Long Description for Figure 3.1

Figure  3.1   Geometric  view  of  the  comparison  between big  model,  Ω,  and  small  model,  ω.  The  squared  length  of the residual vector for the big model is  RSS Ω while that for the  small  model  is   RSSω.  By  Pythagoras'  theorem,  the squared  length  of  the  vector  connecting  the  two  fits  is RSSω −  RSS Ω.  A  small  value  for  this  indicates  that  the small model fits almost as well as the large model and thus

might be preferred due to its simplicity. 

If RSS ω − RSSΩ is small, then the fit of the smaller model is  almost  as  good  as  the  larger  model  and  so  we  would prefer  the  smaller  model  on  the  grounds  of  simplicity.  On the other hand, if the difference is large, then the superior

fit  of  the  larger  model  would  be  preferred.  This  suggests that something like:

RSS ω − RSSΩ

RSSΩ

(3.2)

would  be  a  potentially  good  test  statistic  where  the

denominator is used for scaling purposes. 

As  it  happens,  the  same  test  statistic  arises  from  the likelihood-ratio testing approach. We give an outline of the

development: If  L( β,  σ| y) is the likelihood function, then the likelihood-ratio statistic is:

max β,  σ∈Ω  L( β,  σ| y) max β,  σ∈ ω L( β,  σ| y) (3.3)

The  test  should  reject  if  this  ratio  is  too  large.  Working through the details, we find that for each model:

 L(^ β,  σ| y) ∝ ^ σ− n

(3.4)

which  after  some  manipulation  gives  us  a  test  that  rejects if:

RSS ω − RSSΩ > a constant

RSSΩ

(3.5)

which  is  the  same  statistic  suggested  by  the  geometric view.  Now  suppose  that  the  dimension  (or  number  of

parameters) of Ω is  p and the dimension of  ω is  q; then we can  use  some  more  scaling  to  get  an   F-statistic  which  has an  F-distribution under the null hypothesis:

(RSS

 F =

 ω − RSSΩ)/( p −  q) ∼  F

RSS

 p− q,  n− p

Ω/( n −  p)

(3.6)

Details  of  the  derivation  of  this  statistic  may  be  found  in

more  theoretically  oriented  texts  such  as  Sen  and

Srivastava (1990). 

Thus we would reject the null hypothesis if  F >  F ( α) p− q,  n− p. 

The  degrees  of  freedom  of  a  model  are  (usually)  the

number of observations minus the number of parameters so

this test statistic can also be written:

(RSS

 F =

 ω − RSSΩ)/( dfω −  df Ω)

RSSΩ/ df Ω

(3.7)

where  df Ω =  n −  p and  dfω =  n −  q. The same test statistic applies  not  just  to  when   ω  is  a  subset  of  Ω,  but  also  to  a subspace.  This  test  is  very  widely  used  in  regression  and analysis  of  variance.  When  it  is  applied  in  different

situations,  the  form  of  test  statistic  may  be  reexpressed  in various ways. The beauty of this approach is you only need

to  know  the  general  form.  In  any  particular  case,  you  just need  to  figure  out  which  models  represent  the  null  and alternative  hypotheses,  fit  them  and  compute  the  test

statistic. The test is very versatile. 

 Random and Fixed Parts of the Model

We have made the assumption that the error,  ϵ, is random. 

More  specifically,  we  have  assumed  that  it  is  normally distributed  (other  choices  are  possible,  but  entail  much greater  difficulty).  One  consequence  of  this  is  that  the response,  y,  is  also  normally  distributed.  We  have  treated the predictors,  X, as fixed. The parameters β are also fixed but unknown. 

Why  do  we  assume  that   X  is  fixed?  There  are  two reasons.  Firstly,  in  a  designed  experiment,  X  is  fixed because  we  deliberately  choose  the  predictor  values.  This distinguishes a designed experiment from an observational

study.  Secondly,  even  if  the  data  come  from  an

observational  study,  such  as  the  Galápagos  dataset,  it  still makes sense to treat  X as fixed even though it might seem just  as  random  as   y.  The  reason  is  that  our  inferences  are conditional on the fixed value of the predictors. If we make

a prediction about the response, we ask what would  y be if X were this? For explanatory questions, we ask how would y change as  X changes from one set of values to another. In both cases, we behave as if  X were chosen. 

Suppose  we  collect  some  data  on  adult  heights  and

weights  and  build  a  linear  model  to  predict  weights  from heights. When we make a prediction, we specify the height

of the new individual and then predict the weight using the

model. If we consider both the height and the weight to be

random, we could predict both the height and the weight of

a new individual with no other information. This may be an

interesting problem but it is not a regression problem. 

Measurement  error  gives  rise  to  a  related  source  of

confusion.  It  is  natural  to  identify   ϵ  with  measurement error on  y. It is then reasonable to ask about measurement error on  X — we consider this in Section 8.1.  But it is rare that measurement is the only source of error in a model. In

most  cases,  we  recognize  that  there  are  other  known  or unknown  sources  of  variation  in   y,  typically  due  to unmeasured  or  unavailable  predictors.  In  the  Galápagos

example,  it  is  easy  to  think  of  other  variables  that  might affect  the  response.  Measurement  error  is  often  small

relative to these other sources of variation. 

3.2 Testing Examples

 Test of all the predictors

Are any of the predictors useful in predicting the response? 

Let the full model (Ω) be  y =  Xβ +  ε where  X is a full-rank

 n ×  p matrix and the reduced model ( ω) be  y =  μ +  ε. We estimate  μ by ¯

 y. We write the null hypothesis as:

 H 0 :  β 1 = …  βp−1 = 0

(3.8)

Now  RSSΩ = ( y −  X ^

 β) T ( y −  X ^ β) = ^ εT ^ ε,  the  residual  sum of 

squares 

for 

the 

full 

model, 

while

RSS ω = ( y − ¯ y) T ( y − ¯ y) =  TSS,  which  is  called  the  total sum of squares corrected for the mean. The  F-statistic is: (TSS − RSS)/( p − 1)

 F =

RSS/( n −  p)

(3.9)

We  would  now  refer  to   Fp−1,  n− p for a critical value or a  p-

value.  Large  values  of   F  would  indicate  rejection  of  the null.  Traditionally,  the  information  in  the  above  test  is presented in an  analysis of variance or ANOVA table. Most statistical  computing  packages  produce  a  variant  on  this. 

See Table 3.1 for a typical layout. It is not really necessary to specifically compute all the elements of the table. As the

originator of the table, Fisher said (in Wishart (1934)) “it is not  a  mathematical  theorem,  but  rather  a  convenient  way of  arranging  the  arithmetic.”  Since  he  had  to  do  his

calculations by hand, the table served a necessary purpose, but it is not essential now. 

Source

Deg. of Freedom Sum of Squares Mean Square F

Regression  p − 1

 SSreg

 SSreg/( p − 1) F

Residual

 n −  p

RSS

 RSS/( n −  p)

Total

 n − 1

TSS

Table 3.1:  Analysis of variance table. 

A failure to reject the null hypothesis is not the end of the

game  —  you  must  still  investigate  the  possibility  of

nonlinear  transformations  of  the  variables  and  of  outliers which  may  obscure  the  relationship.  Even  then,  you  may just  have  insufficient  data  to  demonstrate  a  real  effect, which is why we must be careful to say “fail to reject” the

null rather than “accept” the null. It would be a mistake to

conclude  that  no  real  relationship  exists.  This  issue  arises when  a  pharmaceutical  company  wishes  to  show  that  a

proposed  generic  replacement  for  a  brand-named  drug  is

equivalent.  It  would  not  be  enough  in  this  instance  just  to fail to reject the null. A higher standard would be required. 

When  the  null  is  rejected,  this  does  not  imply  that  the alternative  model  is  the  best  model.  We  do  not  know

whether  all  the  predictors  are  required  to  predict  the response or just some of them. Other predictors might also

be added or existing predictors transformed or recombined. 

Either  way,  the  overall   F-test  is  usually  just  the  beginning of an analysis and not the end. 

Let's  illustrate  this  test  using  the  Galápagos  Islands

dataset  introduced  in  the  last  chapter.  We  fit  the  same model as before with the number of species as the response

and the geographic variables as predictors. 

data (gala , package = “faraway”)

lmod = lm (Species ~ Area + Elevation + Nearest + Scruz +

Adjacent , gala)

We  can  obtain  the  result  of  the  test  of  all  predictors  by fitting the null model and the using the anova function:

nullmod = lm (Species ~ 1 , gala)

anova (nullmod , lmod)

Analysis of Variance Table



Model 1: Species ~ 1

Model 2: Species ~ Area + Elevation + Nearest + Scruz + 

Adjacent


Res.Df    RSS Df Sum of Sq    F Pr(>F)

1     29 381081

2     24 89231 5      291850 15.7 6.8e-07

We can see directly the result of the test of whether any of

the  predictors  have  significance  in  the  model  —  that  is, whether   β 1 =  β 2 =  β 3 =  β 4 =  β 5 = 0.  Since  the   p-value  of 6.8 × 10−7 is so small, this null hypothesis is rejected. 

Just  for  demonstration  purposes,  we  can  also  do  it

directly using the  F-testing formula. We have collected the necessary  quantities  into  a  list  for  convenient  display  and computation. 

td = list (rss0 = deviance (nullmod) , rss = deviance (lmod) , df0 = df . residual (nullmod) , df = df . residual 

(lmod))

str (td)

List of 4

$ rss0: num   381081

$ rss : num   89231

$ df0 : int   29

$ df : int    24

(fstat <- with (td ,((rss0 - rss) / (df0 - df)) / (rss / df)))

[1] 15.699

1 - pf (fstat , td $ df0 - td $ df , td $ df)

[1] 6.8379e-07

The  information  also  appears  in  the  final  line  of  the summary(lmod) output. 

 Testing one predictor

Can  one  particular  predictor  be  dropped  from  the  model? 

The null hypothesis is then  H 0 :  βi = 0. Let Ω be the model with  all  the  predictors  of  interest  which  has   p  parameters and let  ω be the model with all the same predictors except predictor  i. Let's test whether Area can be dropped from the full model by testing the hypothesis that the corresponding

parameter  is  zero.  Using  the  general  method,  we  fit  a model without Area and obtain this:

lmods = lm (Species ~   Elevation + Nearest + Scruz + Adjacent 

, 

gala)

anova (lmods , lmod)

Analysis of Variance Table

 

Model 1:   Species ~ Elevation + Nearest + Scruz + Adjacent

Model 2:   Species ~ Area + Elevation + Nearest + Scruz + 

Adjacent

Res.Df     RSS Df Sum of Sq    F Pr(>F)

1     25   93469

2     24   89231 1       4238 1.14    0.3

The   p-value  of  0.3  indicates  that  the  null  hypothesis cannot be rejected here. 

An  alternative  approach  is  to  use  a   t-statistic  for  testing the hypothesis:

 ti = ^ βi/ se(^ βi)

(3.10)

and check for significance using a  t-distribution with  n −  p degrees of freedom. It can be shown that  t 2 i is equal to the appropriate   F-statistic  computed  using  the  method  shown above.  We  can  see  the   t-statistic  and   p-value  in  usual regression summary output:

summary (lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.06822    19.15420    0.37   0.7154

Area       -0.02394     0.02242   -1.07   0.2963

Elevation    0.31946    0.05366    5.95   <1e-04

Nearest      0.00914    1.05414    0.01   0.9932

Scruz      -0.24052     0.21540   -1.12   0.2752

Adjacent   -0.07480     0.01770   -4.23   0.0003



Residual standard error: 61 on 24 degrees of freedom Multiple R-squared: 0.766,              Adjusted R-squared: 

0.717

F-statistic: 15.7 on 5 and 24 DF,        p-value: <1e-04

We can verify that this is indeed the same result. Of course, 

it is easier to obtain the summary output so we will use this

method from now on. 

It  is  important  to  be  precise  about  what  hypothesis  is being  tested.  For  example,  consider  another  test  of

 H 0 :  β Area = 0:

summary (lm (Species ~ Area , gala))

Estimate Std. Error t value Pr(>|t|)

(Intercept)    63.7829    17.5244    3.64 0.00109

Area            0.0820     0.0197    4.16 0.00027



Residual standard error: 91.7 on 28 degrees of freedom

Multiple R-squared: 0.382,              Adjusted R-squared: 

0.36

F-statistic: 17.3 on 1 and 28 DF,       p-value: 0.000275

We  see  a  very  different   p-value  of  0.00027  which  changes the  conclusion  of  the  hypothesis  test.  The  null  is  firmly rejected. 

From  this  we  can  see  that  it  is  very  important  that  we specify  which  other  predictors  are  included  in  the  models specifying  the  null  and  alternative.  It  is  not  sufficient simply to state the null hypothesis as  H 0 :  β Area = 0. 

Now  we  may  ask,  what  is  the  effect  of  area  on  the

number  of  species?  We  postpone  discussion  until  Chapter

6,  but  we  can  at  least  see  that  the  question  will  have  no

simple answer. 

In  some  circumstances,  one  might  consider  a  one-sided test. For example, in the previous model one might suggest

an  alternative  hypothesis  of   H 0 :  β Area = 0  on  the  grounds that  a  larger  island  could  only  result  in  more  species.  The p-value  in  the  output  is  for  the  two-sided  test  and  is computed directly as:

2 * pt (4.16 , df =28 , lower . tail = FALSE)

[1] 0.00027323

For one-sided test, we get half that probability:

pt (4.16 , df =28 , lower . tail = FALSE)

[1] 0.00013662

Although  one-sided  tests  may  seem  reasonable  in  some

circumstances,  we  see  the  p-value  is  half  that  of  a  two-sided test. If this makes the difference between significance

and non-significance, the result will be open to the criticism that  the  choice  of  the  one-sided  test  was  made  to  attain significance.  For  this  reason,  one-sided  tests  are  rarely seen  in  practice  as  one  needs  a  strong  argument  to  justify their  use.  Typically,  this  would  need  to  be  regarded  as conventional  for  the  proposed  use  and  best  declared  in advance of collecting the data. 

 Testing a pair of predictors

Suppose  we  were  interested  in  whether  the  area  of  either the current island or the adjacent island had any relation to

the  response.  This  corresponds  to  a  null  hypothesis  of H 0 :  β Area =  β Adjacent = 0  where  we  shall  also  specify  that the  other  three  predictors  are  included  in  the  model.  We

can test this by fitting a model without these two terms and constructing the  F-test:

lmods = lm (Species ~   Elevation + Nearest + Scruz , gala)

anova (lmods , lmod)

Analysis of Variance Table



Model 1: Species ~ Elevation + Nearest + Scruz

Model 2: Species ~ Area + Elevation + Nearest + Scruz + 

Adjacent

Res.Df    RSS Df Sum of Sq    F Pr(>F)

1     26 158292

2     24 89231 2       69060 9.29 0.001

The null hypothesis is rejected because the  p-value is small. 

This tells us that such a simplification to remove these two

predictors is not justifiable. 

Now you may wonder whether we could have divined the

same result from looking at the regression summary output

where the corresponding  p-values for the two terms are 0.3

and  0.0003.  We  have  the  problem  of  making  a  decision

based  on  two   p-values  rather  than  one.  There  is  no  simple way to combine these. Furthermore, each of these  p-values corresponds to a test where the other predictor is included

in the model. So in short, if you want to test two (or more)

predictors,  you  need  to  use  the  single   F-test.  You  cannot reliably use the two (in this case)  t-tests. 

 Testing a subspace

Some  tests  cannot  be  expressed  simply  in  terms  of  the inclusion or exclusion of subsets of predictors. Consider an

example  where  we  test  whether  the  areas  of  the  current and  adjacent  island  can  be  added  together  and  used  in place  of  the  two  separate  predictors.  Such  a  test  can  be expressed as the hypothesis that:

 H 0 :  β Area =  β Adjacent

(3.11)

The model corresponding to this null hypothesis represents

a  linear  subspace  of  the  full  model.  We  can  test  this  by specifying  the  null  model  and  applying  the   F-test procedure:

lmods = lm (Species ~ I (Area + Adjacent) + Elevation + Nearest 

+

Scruz , gala)

anova (lmods , lmod)

Analysis of Variance Table



Model 1: Species ~ I(Area + Adjacent) + Elevation + Nearest + 

Scruz

Model 2: Species ~ Area + Elevation + Nearest + Scruz + 

Adjacent

Res.Df    RSS Df Sum of Sq    F Pr(>F)

1     25 109591

2     24 89231 1       20360 5.48 0.028

The function I() ensures that the argument is evaluated (in

this case actual addition) rather than interpreted as part of

the  model  formula.  The   p-value  of  0.028  indicates  that  the

null can be rejected here and the proposed simplification to a single combined area predictor is not justifiable. 

Another  example  of  subspace  testing  occurs  when  we

want to test whether a parameter can be set to a particular

value. For example:

 H 0 :  β Elevation = 0.5

(3.12)

This  specifies  a  particular  subspace  of  the  full  model.  We can  set  a  fixed  term  in  the  regression  equation  using  an offset. We fit this model and compare it to the full:

lmods = lm (Species ~ Area + offset (0.5 * Elevation) + Nearest 

+

Scruz + Adjacent , gala)

anova (lmods , lmod)

Analysis of Variance Table



Model 1: Species ~ Area + offset(0.5 * Elevation) + Nearest + 

Scruz +   Adjacent

Model 2: Species ~ Area + Elevation + Nearest + Scruz + 

Adjacent

Res.Df    RSS Df Sum of Sq    F Pr(>F)

1     25 131312

2     24 89231 1       42081 11.3 0.0026

We  see  that  the   p-value  is  small  and  the  null  hypothesis  is rejected. A simpler way to test such point hypotheses is to

use a  t-statistic:

 t = (^ β −  c)/ se(^ β) (3.13)

where   c  is  the  point  hypothesis.  So  in  our  example  the statistic and corresponding  p-value are:

(tstat = (0.31946 -0.5) / 0.05366)

[1] -3.3645

2 * pt (tstat , 24)

[1] 0.0025722

We  can  see  the   p-value  is  the  same  as  before  and  if  we square the  t-statistic

tstat ^2

[1] 11.32

we  find  we  get  the  same   F-value  as  above.  This  latter approach  is  preferred  in  practice  since  we  do  not  need  to fit  two  models  but  it  is  important  to  understand  that  it  is equivalent  to  the  result  obtained  using  the  general   F-

testing approach. 

 Tests we cannot do

We  cannot  test  a  non-linear  hypothesis  like   H 0 :  βjβk = 1

using  the   F-testing  method.  We  would  need  to  fit  a nonlinear  model,  and  that  lies  beyond  the  scope  of  this book. 

Also we cannot compare models that are not nested using

an   F-test. For example, if one model has Area and Elevation

as predictors while another has Area, Adjacent and Scruz, we cannot  use  the   F-test.  We  can  ask  which  model  is preferable.  Methods  for  doing  this  will  be  discussed  in

Chapter 11. 

Another  difficulty  occurs  when  the  models  we  compare

use  different  datasets.  This  can  arise  when  values  of  some variables are missing as different models may use different

cases  depending  on  which  are  complete.  F-tests  are  not directly  possible  here.  Methods  for  dealing  with  this  are presented in Chapter 14. 

3.3 Confidence Intervals for β

Confidence  intervals  (CIs)  provide  an  alternative  way  of expressing the uncertainty in the estimates of β. For linear

models, they take the form:

^ βi ±  t( α/2)

 n− p  se( ^

 βi)

(3.14)

Consider this model for the Galápagos data:

lmod = lm (Species ~ Area + Elevation + Nearest + Scruz +

Adjacent , gala)

summary (lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.06822    19.15420    0.37   0.7154

Area       -0.02394     0.02242   -1.07   0.2963

Elevation    0.31946    0.05366    5.95   <1e-04

Nearest      0.00914    1.05414    0.01   0.9932

Scruz      -0.24052     0.21540   -1.12   0.2752

Adjacent   -0.07480     0.01770   -4.23   0.0003



Residual standard error: 61 on 24 degrees of freedom

Multiple R-squared: 0.766,               Adjusted R-squared: 

0.717

F-statistic: 15.7 on 5 and 24 DF,       p-value: <1e-04

Let's  construct  individual  95%  CIs  for   βArea  for  which  we need  the  2.5%  and  97.5%  percentiles  of  the   t-distribution with  30 − 6 = 24  degrees  of  freedom.  Because  these  are

symmetric about zero, we need only:

qt (0.975 , 30-6)

[1] 2.0639

We take the estimate and standard error from the summary

output to get:

-0.02394 + c (-1 ,1) *   2.0639 * 0.02242

[1] -0.070213   0.022333

CIs  have  a  duality  with  two-sided  hypothesis  tests.  If  the interval  contains  zero,  this  indicates  that  the  null

hypothesis   H 0 :  βArea = 0  would  not  be  rejected  at  the  5%

level.  We  can  see  from  the  summary  that  the   p-value  is 29.6% — greater than 5% — confirming this point. Indeed, 

any  point  null  hypothesis  lying  within  the  interval  would not be rejected. 

The CI for  βAdjacent is:

-0.07480 + c (-1 ,1) *   2.0639 * 0.01770

[1] -0.111331 -0.038269

Because  zero  is  not  in  this  interval,  the  null  is  rejected. 

Nevertheless, this CI is relatively wide in the sense that the upper limit is about three times larger than the lower limit. 

This means that we are not really that confident about what

the  exact  effect  of  the  area  of  the  adjacent  island  on  the number  of  species  really  is,  even  though  the  statistical significance  means  we  are  confident  it  is  negative.  A

convenient way to obtain all the univariate intervals is:

confint (lmod)

2.5 %    97.5 %

(Intercept) -32.464101 46.600542

Area         -0.070216  0.022339

Elevation     0.208710  0.430219

Nearest      -2.166486  2.184774

Scruz        -0.685093  0.204044

Adjacent     -0.111336 -0.038273

The  advantage  of  the  confidence  interval  relative  to  the corresponding  hypothesis  test  is  that  we  get  information about  plausible  ranges  for  the  parameters.  This  is

particularly  valuable  when  the  parameter  is  directly

interpretable  (for  example,  as  the  difference  between  two treatments). 

The selection of a particular level of confidence level, say

95%,  means  we  can  only  make  tests  at  the  5%  level.  The hypothesis  test  approach  does  give  a   p-value  which  allows us  to  see  how  the  acceptance  or  rejection  of  the  null hypothesis  depends  on  the  choice  of  level.  Even  so  it  is dangerous  to  read  too  much  into  the  relative  sizes  of   p-

values  in  determining  the  practical  importance  of  a

predictor  because  there  is  a  temptation  to  view  small   p-

values  as  indicating  an  important  (rather  than  just

statistically  significant)  effect.  Confidence  intervals  are better in this respect because they tell us about the size of

the effect. 

If you are interested in more than one parameter, you can

construct a 100(1 −  α) % confidence region for β using: (^ β −  β) T XT X(^ β −  β) ≤  p^ σ 2 F ( α) p,  n− p

(3.15)

These  regions  are  ellipsoidally  shaped.  Because  these

ellipsoids  lie  in  higher  dimensions,  they  cannot  easily  be visualized except for the two-dimensional case. 

Let's see how these compare to the univariate confidence

intervals.  For  example,  we  can  construct  the  joint  95%

confidence region for  βArea and  βAdjacent. First, we load the ellipse  package  of  Murdoch  and  Chow  (2023)  for  drawing confidence ellipses (which is not part of base R and so may

need  to  be  installed  using  install.packages(“ellipse”))  and make the plot:

library (ellipse)

plot (ellipse (lmod , c (2 ,6)) , type = “l”, ylim = c (-0.13 

,0))

points (coef (lmod) [2] , coef (lmod) [6] , pch =19)

We  have  added  the  point  of  the  least  squares  estimates which lies at the center of the ellipse as seen in Figure 3.2. 

[image: Image 13]

We  can  also  add  the  univariate  confidence  intervals  for both dimensions seen as dotted lines:

abline (v = confint (lmod) [2 ,] , lty =2)

abline (h = confint (lmod) [6 ,] , lty =2)

Long Description for Figure 3.2

Figure  3.2   95%  Confidence  ellipse  and  intervals  for βArea. and  βAdjacent. The central dot represents the point of the estimates. 

We can determine the outcome of various hypotheses from the  plot.  The  joint  hypothesis   H 0 :  βArea =  βAdjacent = 0  is rejected  because  the  origin  does  not  lie  inside  the  ellipse. 

The  hypothesis   H 0 :  βArea = 0 is not rejected because zero does  lie  within  the  vertical  dashed  lines  whereas  the

horizontal  dashed  lines  do  not  encompass  zero  and  so

 H 0 :  βAdjacent = 0 is rejected. We must also specify that all the  other  three  predictors  are  part  of  the  model  used  to make these tests and confidence statements. 

Now in this particular example, we find no disagreement

between  the  two  univariate  tests  and  the  bivariate  tests. 

But  imagine  a  situation  where  the  origin  lay  in  the  region marked  A  on  the  plot.  The  point  of  the  null  hypothesis would lay outside the ellipse and so the bivariate test would

reject  while  both  univariate  tests  would  fail  to  reject.  The situation  would  reverse  for  a  null  hypothesis  in  the  region marked B. 

In  both  cases,  the  correct  answer  to  the  joint  hypothesis is  given  by  the  position  relative  to  the  ellipse  and  not  the lines.  If  you  want  to  test  multiple  parameters,  you  need  to use a joint testing procedure and not try to combine several

univariate  tests.  In  higher  dimensions,  confidence  ellipses are  not  easily  visualized  so  our  example  here  is  of  more educational  than  practical  value.  Nevertheless,  it  should serve as a caution in interpreting a collection of univariate

hypothesis tests or confidence intervals. 

3.4 Problems with Inference

The technical aspects of hypothesis testing and confidence intervals  can  be  mastered  with  practice  but  using  them  in an  appropriate  manner  is  far  from  easy.  There  are  many problems  that  can  arise  or  ways  in  which  these  methods can be misused. 

The  inference  is  only  so  good  as  the  model  and  data  on which  it  is  based.  The  linear  model  makes  several

assumptions about the systematic relationship between the

predictors  and  the  response.  Assumptions  are  also  made

about the form of the error. In Chapter 7, we describe some methods for checking the model assumptions, but these are

not exhaustive and problems with the model may invalidate

the  inference.  We  may  also  assume  that  the  data  is  a sample  from  some  population  about  which  we  are  making

inferences. The data may not be an unbiased sample or the

idea  of  a  sample  being  drawn  from  a  population  may  not even be sensible (e.g. the Galápagos data and model). 

The  Prosecutor's  Fallacy  arises  in  a  legal  context  when the probability of some evidence given the innocence of the

defendant  is  very  small.  The  fallacy  is  in  believing  that probability of innocence given the evidence is very small. In

probability  terms,  this  is  the  belief  that   p( B| A) =  p( A| B). 

In  hypothesis  testing,  the  p-value  is  the  probability  of observing the test statistic value (or a value more extreme)

given  that  the  null  hypothesis  is  true.  The  fallacy  is  in believing  the   p-value  represents  the  probability  that  the null  hypothesis  is  true.  It  does  not.  In  general,  we  cannot

find  this  probability  using  Frequentist  methods  although  it might be possible with a Bayesian approach. 

A related issue is the belief that a large p-value indicates

a  low  probability  that  the  alternative  hypothesis  is  true. 

Again  this  is  false  for  the  same  reason.  The  correct  view can  be  expressed  as  “the  absence  of  evidence  is  not

evidence of absence”. 

Confidence  intervals  may  seem  more  straightforward

than  hypothesis  tests,  but  there  is  still  potential  for misinterpretation.  It  is  easy  to  think  that  there  is  a  95%

chance that the parameter β lies in the confidence interval

 [a,  b] but this would be wrong. In our conceptual model, β is a  fixed  (and  unknown)  quantity  —  we  cannot  assign  it  a probability. It is the interval that is random. This mistake is not as dangerous as those with p-values. 

Proclaiming  a  result  to  be  significant  may  seem

impressive  but  one  should  remember  that  statistical

significance  is  not  the  same  as  practical  significance. 

Particularly with larger datasets, it is possible to have small effects  with  small  p-values.  But  viewed  in  the  context  of  a real-world  problem,  the  effect  may  not  be  worth  worrying about.  A  related  mistake  is  the  belief  that  a  very  small  pvalue indicates a very strong predictor effect. 

A  p-value  smaller  than  0.05  has  become  an  established

criterion  for  declaring  a  result  “statistically  significant”. 

Many  research  journals  require  or  strongly  prefer  articles to  achieve  this  level  of  significance  for  publication.  Yet there is very little difference between a p-value of 0.04 and

a  p-value  of  0.06  —  very  small  changes  to  the  data  could cause  this  difference.  The  hard  cutoff  of  0.05  encourages many  kinds  of  bad  behavior.  Sometimes  researchers

declare  p-values  just  above  5%  as  “marginally  statistically significant”  or  “trending  towards  significance”  with  the notion that if just a little more data became available, they

would  achieve  a  p-value  below  5%.  Unfortunately,  it  does not work that way. 

We  have  already  seen  that  many  tests  can  be  made.  We shall  see  there  are  many  choices  in  the  data  analysis  that can  lead  to  a  large  number  of  potential  tests.  When  we declare  a  critical  value  of  0.05,  we  accept  that  if  the  null hypothesis is true, the test will reject 5% of the time. But if we  keep  making  tests,  we  are  almost  sure  to  achieve

significance  if  we  are  sufficiently  inventive  in  our  analysis. 

Unfortunately,  it  is  very  tempting  to  report  only  the

significant  results  and  keep  quiet  about  the  unsignificant ones.  This  is  sometimes  called  “researcher  bias”  or  “p-hacking”. We can defend against this behavior by requiring

researchers to “pre-register” their proposed analysis of the

data  before  it  is  collected.  This  ensures  that  only  one analysis  is  done  and  the  resulting   p-value  is  more believable. 

In many cases, the assertion of the null hypothesis is not

credible.  We  may  know  that  the  predictors  have  some

effect  on  the  response  but  we  do  not  know  the  size  of  the effect. In situations like this, hypothesis testing may not be helpful  since  a  significant  result  simply  requires  a  large

enough  sample  to  have  the  power  to  detect  the  effect. 

Confidence 

intervals 

are 

a 

better 

tool 

in 

these

circumstances. 

There is substantial debate about the value of p-values. A

critical view may be found in Wasserstein and Lazar (2016)

with  a  reply  in  Wasserstein,  Schirm,  and  Lazar  (2019). 

Certainly,  there  are  many  ways  to  misuse  p-values  but  the alternatives  also  have  problems.  Certainly,  it  is  sensible  to be cautious but much has been learned in the last century

using these methods. 

Exercises

1. For  the  prostate  data,  fit  a  model  with  lpsa  as  the response and the other variables as predictors:

(a)

Compute  90  and  95%  CIs  for  the  parameter

associated with age. Using just these intervals, what

could  we  deduce  about  the   p-value  for  age  in  the regression summary? 

(b)

Compute and display a 95% joint confidence region

for  the  parameters  associated  with  age  and  lbph. 

Plot  the  origin  on  this  display.  The  location  of  the

origin  on  the  display  tells  us  the  outcome  of  a

certain  hypothesis  test.  State  that  test  and  its

outcome. 

(c)

Remove all the predictors that are not significant at

the  5%  level.  Test  this  model  against  the  original

model. Which model is preferred? 

2. Thirty samples of cheddar cheese were analyzed for their content  of  acetic  acid,  hydrogen  sulfide  and  lactic  acid. 

Each sample was tasted and scored by a panel of judges

and  the  average  taste  score  produced.  Use  the  cheddar

data to answer the following:

(a)

Fit  a  regression  model  with  taste  as  the  response

and  the  three  chemical  contents  as  predictors. 

Identify  the  predictors  that  are  statistically

significant at the 5% level. 

(b)

Acetic  and  H2S  are  measured  on  a  log  scale.  Fit  a

linear  model  where  all  three  predictors  are

measured  on  their  original  scale.  Identify  the

predictors that are statistically significant at the 5%

level for this model. 

(c)

Can we use an  F-test to compare these two models? 

Explain.  Which  model  provides  a  better  fit  to  the

data? Explain your reasoning. 

(d)

If  H2S  is  increased  0.01  for  the  model  used  in  (a), 

what change in the taste would be expected? 

(e)

What  is  the  percentage  change  in  H2S  on  the

original scale corresponding to an additive increase

of 0.01 on the (natural) log scale? 

3. Using  the  teengamb  data,  fit  a  model  with  gamble  as  the response and the other variables as predictors. 

(a)

Which  variables  are  statistically  significant  at  the

5% level? 

(b)

What  interpretation  should  be  given  to  the

coefficient for sex? 

(c)

Fit  a  model  with  just  income  as  a  predictor  and  use

an  F-test to compare it to the full model. 

4. Using the sat data:

(a)

Fit a model with total sat score as the response and

expend,  ratio  and  salary  as  predictors.  Test  the

hypothesis that  βsalary = 0. Test the hypothesis that

 βsalary =  βratio =  βexpend = 0.  Do  any  of  these predictors have an effect on the response? 

(b)

Now  add  takers  to  the  model.  Test  the  hypothesis

that  βtakers = 0. Compare this model to the previous

one  using  an   F-test.  Demonstrate  that  the   F-test and  t-test here are equivalent. 

5. Find  a  formula  relating   R 2  and  the   F-test  for  the regression. 

6. In  the  punting  data,  we  find  the  average  distance  punted and  hang  times  of  10  punts  of  an  American  football  as related  to  various  measures  of  leg  strength  for  13

volunteers. 

(a)

Fit a regression model with Distance as the response

and the right and left leg strengths and flexibilities

as  predictors.  Which  predictors  are  significant  at the 5% level? 

(b)

Use  an  F-test  to  determine  whether  collectively

these  four  predictors  have  a  relationship  to  the

response. 

(c)

Relative to the model in (a), test whether the right

and left leg strengths have the same effect. 

(d)

Construct 

a 

95% 

confidence 

region 

for

( βRStr,  βLStr). Explain how the test in (c) relates to this region. 

(e)

Fit  a  model  to  test  the  hypothesis  that  total  leg

strength as defined by adding the right and left leg

strength  is  sufficient  to  predict  the  response  in

comparison  to  using  individual  left  and  right  leg

strengths. 

(f)

Relative to the model in (a), test whether the right

and left leg flexibilities have the same effect. 

(g)

Test for left–right symmetry by performing the tests

in (c) and (f) simultaneously. 

(h)

Fit a model with Hang as the response and the same

four predictors. Can we make a test to compare this

model to that used in (a)? Explain. 

Chapter 4

Sampling

DOI: 10.1201/9781003449973-4

Statistical inference is based on sampling ideas. We discuss

how  to  sample  from  the  proposed  model  and  how  this  can be  useful.  We  also  demonstrate  how  ideas  about  sampling from  the  fitted  model  lead  to  inference  based  on

permutation  and  bootstrapping.  These  provide  alternatives to and strengthen the standard testing approach. 

4.1 Simulation

One  of  the  distinguishing  features  of  the  statistical

approach to the analysis of data is the use of a  generating model. When we write the linear model as:

 y =  Xβ +  ε,  ε ∼  N(0,  σ 2 I) (4.1)

we  are  specifying  how  we  think  the  response   y  has  been generated.  We  are  making  a  claim  about  the  relationship between the variables. Not everything is specified as we do

not know the values of the parameters β and  σ. We use the data to learn about the parameters and use this to answer

questions  of  interest.  Machine  Learning(ML)  methods

typically  do  not  have  a  generating  model.  While  linear regression  does  count  as  an  ML  method,  ML  users  are

usually  not  interested  in  inference  about  the  parameters. 

Often, no standard errors, tests or confidence intervals are

computed  and  the  focus  is  on  prediction  for  which  ^

 β

suffices. 

One  advantage  of  a  generating  model  is  that  we  do  not need  real  data  to  make  some  progress.  We  can  use

 simulation  from  the  generating  model  to  create  artificial datasets.  We  can  learn  much  about  the  properties  of  the methods  we  use  and  we  can  experiment  with  different

designs for collecting the data. In longer term projects, we

have  the  opportunity  before  the  data  is  collected  to

experiment.  We  can  use  this  chance  to  anticipate

difficulties and improve the study design. 

Let's  consider  a  simple  example.  Suppose  we  have  a

linear  model  with  a  single  predictor   x  with  values  evenly spaced on the interval [0,1]. It is a good idea to declare the quantities we might vary in the simulation first:

n = 30

nsim = 1000

sig = 1

where  n  is  the  sample  size,  nsim  is  the  number  of simulations and sig is the SD of the error. We simulate data

from the model:

 yi =  xi +  εi,  i = 1, …  n,  ε ∼  N(0,  σ 2) (4.2)

Here  we  have   β 0 = 0  and  β1  which  are  known.  For  real data,  we  would  not  know  these  values.  We  create  the

evenly spaced  x:

x = seq (0 , 1 , length . out = n)

These  are  not  random  as  discussed  in  Section  3.1.  The random response can be generated with:

set . seed (101)

y = x + rnorm (n ,0 , sig)

I have set the random number seed so we all get the same

results  as  explained  on  page  32.  We  can  fit  the  model  and extract the summary output row for β1 with:

lmod = lm (y ~ x)

summary (lmod) $ coef [2 ,]

We plot the simulated data and the fitted regression line in

the first panel of Figure 4.1. 

plot (x , y)

abline (lmod)

[image: Image 14]

Long Description for Figure 4.1

Figure 4.1  Simulated data from a simple linear model is shown on the left. The (estimated) sampling distribution of

^ β 1 is shown on the right. 

Next  we  create  a  space  to  store  the  results  from  each simulation run:

slope = matrix (NA , nsim ,4)

In  this  example,  we  create  a  matrix  with  4  columns  for  4

pieces  of  model  output  above  and  nsim  rows  for  each  run. 

Now we perform the simulation:

for (i in 1: nsim) {

y = x + rnorm (n ,0 , sig)

lmod = lm (y ~ x)

slope [i ,] = summary (lmod) $ coef [2 ,]

}

In each of the nsim runs, we generate new random data, fit the  linear  model  and  then  save  the  results.  We  can  learn various interesting facts. We can compute the mean and SD

of the simulated  ^

 β 1:

c (mean (slope [ ,1]) , sd (slope [ ,1]))

[1] 1.0104 0.5968

We  see  that  the  mean  is  close  to  the  true  value  of  one which is reassuring. Why is it not exactly one? 

1. The simulation is a random process and we must expect

some  variability  in  the  results.  We  can  reduce  this

variability 

by 

increasing 

nsim. 

Even 

without

optimization,  this  simulation  runs  very  quickly  and  we

could  easily  afford  to  increase  nsim  without  waiting  for too long. It is a good idea to choose a small value of nsim

on  your  first  attempt  and  time  the  run  using  the

system.time()  function.  You  can  use  this  information  to compute how large an nsim you can afford. 

2. Even  if  we  made  nsim  extremely  large,  there  is  no

general  guarantee  that  the  mean  simulated  value  will

converge on the true value. In this case, it will, because

statistical  theory  tells  us  that  the  least  squares

estimators  are  unbiased  as  seen  in  Equation  2.20.  In

other  cases,  such  a  theoretical  calculation  may  not  be possible  and  the  simulation  will  provide  us  with  useful information about the possible bias of our predictor. 

From  Equation  2.21,  we  can  compute  the  expected  SD  of the estimator (using the known  σ = 1):

X = model . matrix (lmod)

sqrt (solve (t (X) % * % X) [2 ,2])

[1] 0.61171

We  see  that  this  is  close  to  the  simulated  value  of  0.5968. 

Although,  the  variance  estimate  is  unbiased,  this  won't exactly be true of the SD. Nevertheless, we expect to come

close.  Again,  we  are  comparing  to  the  theoretical

calculation that will not be available. We can also compute

the mean of simulated standard errors for  ^

 β 1 with:

mean (slope [ ,2])

[1] 0.60318

We are reassured to see that we get a very similar value. In

situations where the theoretical calculation is not possible, 

this  provides  some  confirmation  that  we  have  correctly

calculated the standard error. 

We can also display the  sampling distribution of  ^

 β 1 with:

dd = density (slope [ ,1])

plot (dd $x , dd $y , type = “l", 

xlab = expression (hat (beta) [1]) , ylab = “density”)

We  see  the  approximately  normally-shaped  distribution

centered on 1 in the second panel of Figure 4.1.  With a real dataset,  we  only  have  one  ^

 β 1 and we never get to see the

actual  sampling  distribution  because  the  true  model  is  not known.  Even  so,  the  inference  about  β1  is  based  on  our knowledge  of  the  properties  of  the  sampling  distribution. 

The nice aspect of simulation is we can generate and view these distributions. 

More interesting information may be obtained from the  p-

values.  We  can  compute  the  fraction  of  simulation  runs  in which a statistically significant result was found for the test of  H 0 :  β 1 = 0:

mean (slope [ ,4] < 0.05)

[1] 0.347

The  logical  expression  slope[,4]  <  0.05  evaluates  to  TRUE  if the p-value was less than 0.05. Taking the mean of a logical

vector first converts TRUE/FALSE to 1/0 so that the mean is the proportion  of  true  values.  In  this  case,  we  see  that  only 34.7% of the runs have statistically significance. This is an

estimate  of  the   power  of  the  test.  Most  experimenters would  like  to  see  at  least  80  or  90%  power  so  this  is  an indication  that  our  proposed  experiment  is  underpowered. 

One  solution  would  be  to  increase  the  sample  size  above the  current  n=30.  We  could  use  the  simulation  method  to make a suitable choice. 

Perhaps we would like to increase the power without also

increasing  the  sample  size.  We  might  achieve  this  by

changing the design. Suppose we set half to  x = 0 and the other half to  x = 1:

x = rep (c (0 ,1) , each = n / 2)

Now we repeat the simulation:

slope2 = matrix (NA , nsim ,4)

for (i in 1: nsim) {

  y = x + rnorm (n ,0 , sig)

lmod = lm (y ~ x)

slope2 [i ,] = summary (lmod) $ coef [2 ,]

}

Now we check the results:

c (mean (slope2 [ ,1]) , sd (slope2 [ ,1]))

[1] 1.01815 0.36468

The  estimator  appears  unbiased  as  before  but  the  SD  is substantially  smaller.  Again,  we  could  compute  this

theoretically with:

X = model . matrix (lmod)

sqrt (solve (t (X) % * % X) [2 ,2])

[1] 0.36515

We can estimate the power again with:

mean (slope2 [ ,4] < 0.05)

[1] 0.781

The  power  is  now  much  higher  and  close  to  an  acceptable value. There is a price to be paid in using this design with

all  the   x  at  edge  of  the  range.  If  the  actual  relationship  is quadratic as in the the upper right panel of Figure 2.3,  we would  have  no  hope  of  detecting  this.  The  original  design would have allowed this possibility. 

In  all  the  examples  so  far,  it  is  possible  to  compute  the results  using  statistical  theory.  This  is  preferable  to simulation  in  that  it  provides  an  exact  answer  for  all possible  inputs.  But  theory  is  relatively  limited  in  the situations  for  which  exact  answers  are  possible  while

simulation  can  tackle  any  generating  model.  For  example, we could handle non-normally distributed errors. 

Another advantage of simulation is that it provides some

validation  for  your  software  coding.  These  examples  have been  relatively  straightforward,  but  in  more  complex

situations,  it  is  sadly  easy  to  make  a  coding  error.  In  a simulated example, we expect some specified answers so a

divergence  greater  than  the  sampling  variation  might  lead us  to  suspect  a  mistake  and  suggest  a  correction. 

Unfortunately, it is still possible for coding errors to evade detection with these checks, particularly when the outcome

meets our preconceptions. 

The  example  above  concerns  a  designed  experiment  but

simulation  can  provide  some  intuitions  for  observational studies  also.  Consider,  the  Galápagos  example  and  the

model we have used previously:

data (gala , package = “faraway”)

lmod = lm (Species ~ Area + Elevation + Nearest + Scruz +

Adjacent , gala)

Let's  consider  the  predictors  as  fixed  and  pretend  that  ^

 β

and  ^

 σ  from  the  model  fit  are  correct.  This  gives  us  a generating model for the response:

Species ∼  N( X ^

 β,  σ 2 I)

(4.3)

[image: Image 15]

We can simulate a response using this model:

simy = fitted (lmod) +

rnorm (nrow (gala) , 0 , summary (lmod) $ sigma)

We  compare  the  simulated  response  with  the  observed

response in Figure 4.2. 

plot (gala $ Species, simy, xlab = “Observed response” , 

ylab = “Simulated Response”)

abline (0 ,1)

Long Description for Figure 4.2

Figure 4.2  Simulated response from the fitted generating model  is  compared  with  the  observed  response  for  the

Galapagos data. 

Ideally,  we  would  not  be  able  to  distinguish  the  observed from  the  simulated  data.  If  our  model  is  correct,  it  should generate believable fake data. This is not true here. We see

that about 10 simulated responses are below zero which is

not a possible value as we cannot have a negative number of species. On inspection, we would see that the generated

responses  are  not  integers.  Furthermore,  there  does  not appear  to  be  a  linear  relationship  between  the  variables. 

Finally,  the  maximum  observed  response  of  444  species  is much larger than that seen in the simulated responses. This

indicates that the actual responses may be more variable or

more  likely  to  show  more  extreme  values.  We  have  strong evidence that something is wrong with our model. 

Although  this  method  provides  some  insight,  we  do  not

recommend  it  for  general  use.  We  shall  see  some  more

direct  methods  of  diagnosing  problems  with  the  model  in

Chapter 7.  Also, we have randomly generated just a single sample  of  the  simulated  response.  We  would  want  to  do more  simulations  to  avoid  being  too  influenced  by  a  single randomly generated response. We will develop this idea in

the  sections  to  follow  in  this  chapter.  Nevertheless,  this does  suggest  a  useful  check  for  statistical  models  in

general  –  they  should  generate  responses  that  look  like what  was  observed.  If  they  do  not,  something  may  be

wrong with the model. 

4.2 Sampling Model

The  method  of  data  collection  affects  the  conclusions  we can draw. The generating model  Y =  Xβ +  ε describes how the  response   Y  is  generated.  If  we  specify  β  and  the distribution,  we  can  generate   Y  using  simulation  as demonstrated  in  the  previous  section.  Each  simulation  run

produces  a  ^

 β  that  can  be  accumulated  to  estimate  the

sampling  distribution  of  the  estimator  and  related

quantities.  Preferably  and  provided  the  ideal  assumptions hold,  we  can  use  mathematics  to  get  the  sampling

distribution. The data we see is but a single draw from this

claimed  generating  model.  We  can  use  this  to  make

statistical  inference  about  the  unknown  parameters  and

other  quantities  of  interest.  This  is  good  in  theory,  but,  in practice,  how  reasonable  is  it  to  regard  the  data  as  a sample drawn from the generating model? 

For  designed  experiments,  we  might  reasonably  view

nature as the computer generating the observed responses. 

We input  X and record  y. With no cost or time constraints, we  could  repeat  this  as  many  times  as  we  like,  but  in practice  we  collect  a  sample  of  fixed  size.  Our  inference then tells us something about the β underlying this natural

process. Of course, the generating model may be incorrect

or other problems may arise, but our conception of how the

data arise is defensible. 

For  observational  studies,  sometimes  we  can  envisage  a

finite  population from which we draw the  sample that is our data.  We  want  to  say  something  about  the  unknown

population  value  of  β,  using  estimated  values  ^

 β  that  are

obtained from the sample data. We prefer that the data be

a  simple random sample of the population. We also assume that  the  size  of  the  sample  is  a  small  fraction  of  the population  size.  We  can  also  accommodate  more  complex

random  sampling  designs,  but  this  would  require  more

complex  inferential  methods.  In  this  case,  the  claim  of  a generating  model  can  be  justified  as  there  is  a  known random process by which the data are produced. 

When  data  arise  from  a  designed  experiment  or  sample

survey,  we  have  some  confidence  in  the  idea  of  a

generating  model  process.  Our  conclusions  will  have

greater  strength  and  wider  scope.  Unfortunately,  not  all data comes in this way and yet we still want to make some

stronger  conclusions.  We  do  not  attempt  an  exhaustive

survey  of  types  of  data  but  can  identify  a  range  of

circumstances, from unfavorable to favorable. 

A   representative  sample  consists  of  data  selected manually  with  the  intention  of  capturing  all  aspects  of  the population. Although this could, in principle, be done well, 

it  is  subject  to  bias  and  will  not  be  convincing  to  skeptical readers. The logic behind the statistical inference depends

on  the  sample  being  random  which  is  not  a  justifiable assumption  here.  We  can  use  our  statistical  methods  but there  will  be  significant  doubt  about  whether  our

conclusions extend beyond the particular sample. 

A   sample  of  convenience  is  where  the  data  are  not collected according to a sampling design. In some cases, it

may be reasonable to proceed as if the data were collected

using a random mechanism. For example, suppose we take

the  first  400  people  from  a  phone  company  listing  whose names  begin  with  the  letter  P.  Provided  there  is  no  ethnic effect,  it  may  be  reasonable  to  consider  this  a  random sample  from  the  population  defined  by  the  entries  in  the

list.  Here  we  are  assuming  the  selection  mechanism  is effectively  random  with  respect  to  the  objectives  of  the study. The data are as good as random. Other situations are

less  clear-cut  and  judgment  will  be  required.  Such

judgments  are  easy  targets  for  criticism.  Suppose  you  are studying  the  behavior  of  alcoholics  and  advertise  in  the media  for  study  subjects.  It  seems  very  likely  that  such  a sample  will  be  biased,  perhaps  in  unpredictable  ways.  In cases  such  as  this,  a  sample  of  convenience  is  clearly biased  in  which  case  conclusions  must  be  limited  to  the sample itself. 

Governments,  corporations  and  other  organizations

collect  data  as  an  essential  aspect  of  their  operations.  The data  is  not  collected  for  the  purpose  of  statistical  analysis and  is  often  comprehensive  in  nature  in  that  all  or  most subjects  are  recorded.  Such  data  is  sometimes  called  an administrative sample.  Census data is a particular example but  ease  of  access  and  storage  means  that  such  all-inclusive datasets are commonplace. 

In the situation of the representative sample, the sample

of  convenience  or  the  administrative  sample,  we  might

regard  the  data  as  the  complete  population.  We  recognize that  there  may  be  data  of  interest  that  we  have  not

observed  in  a  non-random  manner.  For  this  reason,  we

restrict  our  strongest  conclusions  to  the  sample.  We

recognise  that  extending  our  conclusions  beyond  this  will require  qualitative  arguments  and  additional  assumptions. 

If  we  have  all  the  data  from  one  hospital,  our  conclusions

primarily  apply  to  that  hospital.  We  can  make  claims  that the  results  apply  more  generally  but  these  arguments  will be weaker. 

What statistical inference is reasonable when our sample

is the complete population? One might argue that inference

is not required and descriptive methods are all that can be

justified. Nevertheless, we might observe some structure or

relations in the data. We might suppose that such structure

might  not  have  occurred  by  chance.  If  we  are  willing  to make  such  arguments  based  on  chance  occurrence,  then

supposing  a  generating  model  for  the  data  provides  the necessary mechanism for the reasoning. Another approach

that gives meaning to the inference when the sample is the

population involves the imaginative concept of “alternative

worlds”  where  the  sample  or  population  at  hand  is

supposed  to  have  been  randomly  selected  from  a   super population.  Given  that  statisticians  are  inclined  to  believe that  any  observed  data  could  have  turned  out  differently, this concept is not so much of a stretch. 

For  the  gala  data,  all  the  islands  of  any  reasonable  size are included so the the sample is effectively the population. 

We  are  interested  in  how  the  number  of  species  on  each island is related to the geographic predictors. Our previous

analysis  suggests  there  is  some  form  of  relationship.  Our conclusions  will  be  about  the  Galápagos  islands  although we  hope  they  suggest  what  might  be  seen  in  comparable geographic  situations.  We  can  justify  our  inference  based on  a  conceptual  generating  model.  Alternatively,  we  can

make  a  different  argument  based  on  permutation  tests,  as we shall see in the next section. 

4.3 Permutation Tests

The  tests  we  have  considered  thus  far  are  based  on  the assumption  of  normal  errors.  Arguments  based  on  the

central  limit  theorem  mean  that  even  if  the  errors  are  not normal,  inference  based  on  the  assumption  of  normality

can  be  approximately  correct  provided  the  sample  size  is large  enough.  Unfortunately,  it  is  not  possible  to  say  how large  the  sample  has  to  be  or  how  close  to  normality  the error  distribution  has  to  be  before  the  approximation  is satisfactory.  Permutation  tests  offer  an  alternative  that needs no assumption of normality. 

We  can  put  a  different  interpretation  on  the  hypothesis tests  we  are  making.  For  the  Galápagos  dataset,  we  might suppose that if the number of species had no relation to the

five  geographic  variables,  then  the  observed  response

values  would  be  randomly  distributed  between  the  islands without relation to the predictors. The  F-statistic is a good measure of the association between the predictors and the

response 

with 

larger 

values 

indicating 

stronger

associations. We might then ask what the chance would be

under this assumption that an  F-statistic would be observed as  large  or  larger  than  the  one  we  actually  observed.  We could compute this exactly by computing the  F-statistic for all possible ( n!) permutations of the response variable and see  what  proportion  exceeds  the  observed   F-statistic.  This

is  a  permutation  test.  If  the  observed  proportion  is  small, then  we  must  reject  the  contention  that  the  response  is unrelated to the predictors. 

Let's  see  how  we  can  apply  the  permutation  test  to  the Galápagos  data.  We  choose  a  model  with  just  Nearest  and Scruz so as to get a  p-value for the  F-statistic that is not too small (and therefore less interesting):

lmod = lm (Species ~ Nearest + Scruz , gala)

lms = summary (lmod)

We  can  extract  the   F-statistic  in  a  way  that  will  be convenient for later computation:

lms$fstatistic

value      numdf   dendf

0.60196   2.00000 27.00000

1 - pf (lms $ fstatistic [1] , lms $ fstatistic [2] , lms $ 

fstatistic [3])

value

0.55493

This  is  the   p-value  based  on  the  linear  generating  model with normal errors. Under the null hypothesis, the number

of species has no relation to the geographic predictors. We

can  generate  data  under  this  null  model  by  making  a

permutation  of  the  response.  This  makes  very  few

assumptions  as  there  is  no  relationship  to  the  predictors and  no  assumed  distribution  for  the  response.  Ideally,  we would  consider  all  the  possible  permutations  but  30!  is about  2 × 1032  so  this  is  not  practical.  For  this  reason,  we

will  use  the  function  sample()  to  generate  random permutations of the response. 

We  generate  4000  randomly  selected  permutations,  fit

the model and save the  F-statistic. 

nreps = 4000

set . seed (123)

fstats = numeric (nreps)

for (i in 1: nreps) {

lmods = lm (sample (Species) ~ Nearest + Scruz , gala)

fstats [ i ] = summary (lmods) $ fstat [1]

}

Here  is  the  proportion  that  exceeds  the   F-statistic  for  the original data:

mean (fstats > lms $ fstat [1])

[1] 0.55825

This  should  take  just  a  few  seconds  on  any  relatively  new computer. We could speed this process up, noting that the

 X-matrix  does  not  change  in  all  4000  regressions,  so  we could avoid repeating a lot of the calculations by using the

update  function.  However,  when  considering  such  an

improvement,  we  should  notice  that  the  slow  result  will arrive  well  before  we  have  even  typed  anything  more

efficient. Of course, this may not be true for examples with

bigger data. 

The  function  set.seed  ensures  that  the  random  numbers

used  to  generate  the  permutations  will  come  out  the  same for  you  if  you  try  this.  If  you  don't  do  this,  you  will  get  a slightly  different  result  each  time  because  of  the  random

selection of the permutations. That's all right — setting the seed is only necessary for exact reproducibility. 

Our estimated  p-value using the permutation test is 0.56, which is close to the normal theory-based value of 0.55. We

could  reduce  variability  in  the  estimation  of  the   p-value simply by computing more random permutations. Since the

permutation  test  does  not  depend  on  the  assumption  of

normality,  we  might  regard  it  as  superior  to  the  normal theory-based value. In this case, the results are very similar and  not  close  to  any  decision  boundary.  But  if  there  was some  crucial  difference  in  the  conclusion  and  there  was some evidence of non-normal errors, then we would prefer

the permutation-based test. 

Tests  involving  just  one  predictor  also  fall  within  the permutation  test  framework.  We  permute  that  predictor

rather  than  the  response.  Let's  test  the  Scruz  predictor  in the model. We can extract the needed information from:

summary (lmod) $ coef [3 ,]

Estimate Std. Error    t value   Pr(>|t|)

-0.44064    0.40253   -1.09467    0.28333

Now  we  perform  4000  permutations  of  Scruz  and  check

what  fraction  of  the   t-statistics  exceeds  −1.09  in  absolute value:

tstats = numeric (nreps)

set . seed (123)

for (i in 1: nreps) {

lmods = lm (Species ~ Nearest + sample (Scruz) , gala)

tstats [ i ] = summary (lmods) $ coef [3 ,3]

}

mean (abs (tstats) > abs (lms $ coef [3 ,3]))

[1] 0.26775

The  outcome  is  very  similar  to  the  observed  normal-based p-value  of  0.28.  Again,  in  a  case  of  serious  disagreement, we would prefer the permutation-based result. 

The  idea  of  permutation  tests  works  well  in  conjunction with the principle of random allocation of units in designed

experiments.  When  the  values  of   X  really  have  been randomly  assigned  to  the  experimental  units  which  then

produce  response   Y,  it  is  easy  to  justify  a  permutation-based testing procedure to check whether there truly is any

relation between  X and  Y. 

It is no coincidence that the  p-values computed based on the  assumption  of  normal  errors  and  those  based  on

permutations  are  so  close.  This  is  shown  in  Freedman  and

Lane  (1983).  For  this  reason,  most  will  use  the  normal

assumption-based  tests  because  these  are  quicker  and

easier to compute. This can be done in the knowledge that

the  permutation  tests  will  tend  to  agree,  provided  the normality assumption is justifiable. 

4.4 Bootstrap Confidence Intervals

The   F-based  and   t-based  confidence  regions  and  intervals we have described depend on the assumption of normality. 

The  bootstrap  method  provides  a  way  to  construct

confidence statements without this assumption. 

In  Section  4.1,   we  describe  how  to  simulate  from  the generating model. Although insightful, the method does not

provide answers for a given dataset. The bootstrap method uses  a  similar  idea  but  samples  from  the  data  rather  than the generating model. An outline of the simulation method

for a linear model is:

1. Generate  ϵ from the known error distribution. 

2. Form  y =  Xβ +  ε from the known β and fixed  X. 

3. Compute  ^

 β. 

We  repeat  these  three  steps  many  times.  We  can  estimate the  sampling  distribution  of  ^

 β  using  the  empirical

distribution  of  the  generated  ^

 β, which we can estimate as

accurately  as  we  please  by  simply  running  the  simulation long enough. 

The  bootstrap  emulates  the  simulation  procedure  above

except instead of sampling from the true model, it samples

from the observed data. Remarkably, this technique is often

effective.  It  sidesteps  the  need  for  theoretical  calculations that  may  be  extremely  difficult  or  even  impossible.  See

Efron and Tibshirani (1993) for a book-length treatment of the topic. To see how the bootstrap method compares with

simulation,  we  spell  out  the  steps  involved.  In  both  cases, we consider  X fixed. 

The bootstrap method mirrors the simulation method, but

uses  quantities  we  do  know.  Instead  of  sampling  from  the population  distribution,  which  we  do  not  know  in  practice, we resample from the data:

1. Generate   ϵ*  by  sampling  with  replacement  from

^ ε 1, … ,  εn. 

2. Form  y∗ =  X ^

 β +  ε∗. 

3. Compute  ^

 β∗ from ( X,  y∗). 

For  very  small   n,  it  is  possible  to  compute  ^

 β∗  for  every

possible  sample  from  ^

 ε 1, … ,  εn,  but  usually  we  can  only

take  as  many  samples  as  we  have  computing  power

available.  This  number  of  bootstrap  samples  can  be  as

small as 50 if all we want is an estimate of the variance of

our estimates but needs to be larger if confidence intervals

are wanted. 

To implement this, we need to be able to take a sample of

residuals with replacement. sample() is good for generating

random samples of indices:

sample (10 , replace = TRUE)

[1] 7 9 9 2 5 7 4 1 8 9

You will likely get a different result because the outcome is, by definition, random. To make sure we both get the same

result,  we  have  set  the  random  number  generator  seed

using set.seed. Here we have used 4000 replications which

should  take  less  than  a  minute  to  compute.  We  set  up  a matrix  coefmat  to  store  the  results.  We  need  the  residuals and  fitted  values  from  the  model  which  we  save  as  resids and  preds.  We  repeatedly  generate  bootstrapped  responses as  booty.  The  update  function  is  more  efficient  since  we  are only changing the response, not the predictors. The  X-part

of  the  computation  does  not  need  to  be  repeated  every time. 

set . seed (123)

nb = 4000

coefmat = matrix (NA , nb ,6)

resids = residuals (lmod)

preds = fitted (lmod)

for (i in 1: nb) {

booty = preds + sample (resids , rep = TRUE)

bmod = update (lmod , booty ~ .)

coefmat [i ,] = coef (bmod)

}

colnames (coefmat) = c (“Intercept” , colnames (gala [ ,3:7])) coefmat = data . frame (coefmat)

The  results  are  saved  and  formed  into  a  data  frame  with named  columns.  We  then  compute  the  empirical  2.5%  and

97.5% 

percentiles 

of 

the 

bootstrapped 

regression

coefficients.  These  form  the  95%  bootstrap  confidence

intervals for β:

apply (coefmat ,2 , function (x) quantile (x , c (0.025 

,0.975)))

Intercept      Area   Elevation  Nearest    Scruz  

Adjacent

2.5%      -24.534  -0.062786    0.22861  -1.7133 -0.60604 

-0.104252

97.5%      41.439   0.018535    0.42110   2.0547  0.17248 

-0.040944

Compare  these  to  those  computed  using  normal  theory

earlier  in  the  chapter.  The  position  of  zero,  inside  or outside  the  interval,  is  the  same  for  both  methods  so

[image: Image 16]

qualitatively,  the  results  are  similar  even  though  the

numerical values differ somewhat. 

We  can  plot  the  estimated  densities  of  two  of  the

coefficients  along  with  the  confidence  intervals  as  seen  in

Figure 4.3. 

library (ggplot2)

ggplot (coefmat , aes (x = Area)) + geom _ density () +

geom _ vline (xintercept = c (-0.0628 , 0.0185) , lty 

=2)

ggplot (coefmat , aes (x = Adjacent)) + geom _ density () +

geom _ vline (xintercept = c (-0.104 , -0.0409) , lty 

=2)

Long Description for Figure 4.3

Figure  4.3   Bootstrap  regression  coefficient  densities  for βArea and  βAdjacent; 95% confidence intervals are shown as dotted lines

We  see  in  both  cases  that  the  bootstrap  density  is symmetrical  and  similar  to  a  normal  density.  This  is  not always  so  and  our  method  for  computing  the  bootstrap

confidence intervals does not rely on symmetry. 

Bootstrap  methods  can  also  be  used  for  hypothesis

testing although permutation tests are generally better for

this  purpose.  There  are  alternative  resampling  methods. 

We  can  resample  ( X,  Y )  pairs  rather  than  residuals although  this  seems  less  attractive,  particularly  when   X  is regarded  as  fixed,  such  as  in  designed  experiments.  There are  also  more  sophisticated  methods  for  constructing  the

confidence  intervals.  For  more  on  this,  see  Efron  and

Tibshirani (1993) or Davison and Hinkley (1997). 

As  with  permutation  tests,  bootstrap  methods  are  not

frequently  seen  in  the  analysis  of  linear  models.  If  the errors appear to be normal, the bootstrap method will give

us  very  similar  results  to  the  standard  results  but  require more  time  and  effort.  If  the  errors  are  found  to  be

noticeably  non-normal,  then  the  analyst  may  transform

some variables to change the model. Even so, the bootstrap

remains a useful tool in some non-standard conditions. 

Exercises

1. Use the generating model from Equation 4.2 but replace

the normal distribution with the Cauchy distribution. Use

the  rcauchy()  function  to  achieve  this.  What  is  the  mean and variance of a Cauchy distribution? 

Simulate  data  from  this  model  as  in  the  text  using  4000

runs,  saving  ^

 β  and   SE(^ β)  from  each  run.  Present summary  statistics  on  these  simulated  values.  Comment

on the results. 

2. Generate  evenly-spaced   x  on  [0,1]  with  a  sample  size  of 30. Generate the response  y using:

 y =  ε where  ε ∼  t 3/√3

(The  divisor  of  √3  ensures  the  error  has  variance  one). 

Although  the  predictor  has  nothing  to  do  with  the

response, fit the model y ∼ x. Use 4000 simulation runs, 

saving the information from each run as in the chapter. 

(a)

Make  a  plot  of  ( x,  y) pairs from the last simulation run together with the fitted line. Are the long-tailed

errors apparent? 

(b)

What  is  the  mean  of  the  simulated  ^

 β 1? What value

is expected? 

(c)

What is the SD of the simulated  ^

 β 1? How does this

compare to the mean of simulated  SE( ^

 β 1)? 

(d)

What  fraction  of  the  simulation  runs  shows  a

significant result for the test of  H 0 :  β 1 = 0? 

(e)

How sensitive is the inference to a divergence from

the normality assumption in the error? 

3. Generate  evenly-spaced   x  on  [0,1]  with  a  sample  size  of 30. Generate the response  y using  y =  ε where the errors are  normally  distributed  and  have  mean  zero,  but

successive  errors  have  correlation  0.9.  You  can  achieve this using:

arima.sim(n=30,list(order=c(1,0,0),ar=0.9))

Although  the  predictor  has  nothing  to  do  with  the

response, fit the model y ∼ x. Use 4000 simulation runs, 

saving the information from each run as in the chapter. 

(a)

Make  a  plot  of  ( x,  y) pairs from the last simulation run together with the fitted line. Are the correlated

errors apparent? 

(b)

What  is  the  mean  of  the  simulated  ^

 β 1? What value

is expected? 

(c)

What is the SD of the simulated  ^

 β 1? How does this

compare to the mean of simulated  SE( ^

 β 1)? 

(d)

What  fraction  of  the  simulation  runs  shows  a

significant result for the test of  H 0 :  β 1 = 0? 

(e)

How sensitive is the inference to a divergence from

the uncorrelated errors assumption? 

4. Generate  evenly-spaced   x  on  [0,1]  with  a  sample  size  of 30. Generate the response  y using  y =  ε where the errors are normally distributed, are uncorrelated and have mean

zero but have SD proportional to  x. 

Although  the  predictor  has  nothing  to  do  with  the response, fit the model y ∼ x. Use 4000 simulation runs, 

saving the information from each run as in the chapter. 

(a)

Make  a  plot  of  ( x,  y) pairs from the last simulation run  together  with  the  fitted  line.  Is  the  unequal

error variance apparent? 

(b)

What  is  the  mean  of  the  simulated  ^

 β 1? What value

is expected? 

(c)

What is the SD of the simulated  ^

 β 1? How does this

compare to the mean of simulated  SE( ^

 β 1)? 

(d)

What  fraction  of  the  simulation  runs  shows  a

significant result for the test of  H 0 :  β 1 = 0? 

(e)

How  sensitive  is  the  inference  to  unequal  variance

in the errors? 

5. Create a small two sample dataset with:

edf = data.frame(y=c(1.21,1.13,1.42,1.01,1.11, 

0.94,1.23,1.04), 

g=c(0,0,0,0,1,1,1,1))

In  this  question,  we  will  execute  an  exact  permutation test without using random number generation. 

(a)

Fit the linear model with y as the response and g as

the  predictor.  What  is  the  F-statistic  and  p-value? 

Demonstrate  how  to  extract  the  value  of  the  F-

statistic from the model summary using R code. 

(b)

Use 

the 

combn() 

function 

to 

generate 

all

combinations  of  four  elements  selected  from  a  set

of eight. How many combinations exist? 

(c)

Why use combinations instead of permutations? 

(d)

Compute  and  save  the  F-statistic  for  the  model

fitted  to  each  combination  of  the  data  where  four

observations  are  allocated  to  the  first  group  and

four observations are allocated to the second. 

(e)

Compute  the  fraction  of  the  70  combination  F-

statistics  that  exceeds  the  value  observed  in  the

original  model.  How  does  this  relate  to  the  p-value

for  the  F-statistic  for  the  original  model?  What  are

the  relative  merits  of  the  normal  theory  and  the

combinatorial approach? 

6. Thirty-nine  MBA  students  were  asked  about  happiness

and  how  this  related  to  their  income  and  social  life.  The data are found in mba. Fit a regression model with happy as

the response and the other four variables as predictors. 

(a)

Which  predictors  were  statistically  significant  at

the 1% level? 

(b)

Use  the  table  function  to  produce  a  numerical

summary of the response. What assumption used to

perform  the  t-tests  seems  questionable  in  light  of

this summary? 

(c)

Use  the  permutation  procedure  described  in

Section  4.3  to  test  the  significance  of  the  money

predictor. 

(d)

Plot  a  histogram  of  the  permutation  t-statistics. 

Make  sure  you  use  the  probability  rather  than

frequency version of the histogram. 

(e)

Overlay 

an 

appropriate 

 t-density  over  the

histogram.  Hint:  Use  grid  <  -  seq(-3,  3,  length  =

300)  to  create  a  grid  of  values,  then  use  the  dt

function  to  compute  the  t-density  on  this  grid  and

the lines function to superimpose the result. 

(f)

Use  the  bootstrap  procedure  from  Section  4.4  to compute  90%  and  95%  confidence  intervals  for

 βmoney.  Does  zero  fall  within  these  confidence

intervals?  Are  these  results  consistent  with

previous tests? 

Chapter 5

Prediction

DOI: 10.1201/9781003449973-5

Prediction is one of the main uses for linear models. We use

subject  matter  knowledge  and  the  data  to  build  a  model y =  Xβ +  ε.  We  may  have  transformed  some  of  the variables or omitted some data points but suppose we have

settled on a particular form for the model. Given a new set

of predictors,  x 0, the predicted response is:

^ y

^

0 =  xT 0  β

(5.1)

Sometimes, a point prediction is all the user wants. Indeed, 

some  methods  for  estimating  β,  including  most  machine

learning  procedures,  do  not  produce  any  uncertainty

estimates. 

In  other  situations,  decision  makers  need  more  than  just a point estimate to make rational choices. If the prediction

has high variability, we need to allow for outcomes far from the  point  estimate.  For  example,  suppose  we  need  to

predict  the  high  water  mark  of  a  river.  We  may  need  to construct  barriers  high  enough  to  withstand  floods  much higher  than  the  predicted  maximum.  Financial  projections are not so useful without a realistic estimate of uncertainty

because we need to make sensible plans for when events do

not  turn  out  as  well  as  we  predict.  Computing  a  point prediction  is  relatively  easy  once  we  have  a  model,  but adequately  expressing  the  uncertainty  in  that  prediction  is more challenging. 

5.1 Confidence and Prediction Intervals for

Predictions

There  are  two  kinds  of  predictions  made  from  regression models. One is a predicted mean response and the other is

a  prediction  of  a  future  observation.  To  make  the

distinction clear, suppose we have built a regression model

that  predicts  the  rental  price  of  houses  in  a  given  area based  on  predictors  such  as  the  number  of  bedrooms  and closeness  to  a  major  highway.  There  are  two  kinds  of

predictions that can be made for a given  x 0:

1. Suppose  a  specific  house  comes  on  the  market  with

characteristics  x 0. Its rental price will be  xT 0  β +  ε. Since Eε = 0, the predicted price is  xT ^

0  β, but in assessing the

variance  of  this  prediction,  we  must  include  the

variance of  ε. 

2. Suppose  we  ask  the  question  —  “What  would  a  house with  characteristics   x 0  rent  for  on  average?”  This selling  price  is   xT

^

0  β  and  is  again  predicted  by   xT 0  β  but now  only  the  variance  in  ^

 β  needs  to  be  taken  into

account. 

Most  times,  we  will  want  the  first  case,  which  is  called

“prediction of a future value,” while the second case, called

“prediction  of  the  mean  response”  is  less  commonly

required. We have:

var ( xT ^

0  β) =  xT 0 ( X T X)−1 x 0 σ 2

(5.2)

A  future  observation  is  predicted  to  be   xT ^

0  β +  ε.  We  do

not know the future  ε but we expect it has mean zero so the point  prediction  is   xT ^

0  β.  It  is  usually  reasonable  to  assume

that the future  ε is independent of  ^

 β. So a 100(1 −  α) % CI

for a single future response is:

^ y 0 ±  t( α/2)

 n− p ^

 σ√1 +  xT 0( XTX)−1 x 0

(5.3)

There  is  a  conceptual  difference  here  because  previous confidence intervals have been for parameters. Parameters

are  considered  to  be  fixed  but  unknown  —  they  are  not random under the Frequentist approach we are using here. 

However,  a  future  observation  is  a  random  variable  which may eventually be observed. For this reason, it is better to

call this a  prediction interval. We are saying there is a 95%

chance  that  the  future  value  falls  within  this  interval whereas it would be incorrect to say that for a parameter. 

The CI for the mean response for a given  x 0 is:

^ y 0 ±  t( α/2)

 n− p ^

 σ√ xT 0( XTX)−1 x 0

(5.4)

This  CI  is  typically  much  narrower  than  the  prediction interval.  Although  we  would  like  to  have  a  narrower

prediction  interval,  we  should  not  make  the  mistake  of using  this  version  when  forming  intervals  for  predicted values. 

5.2 Predicting Body Fat

Measuring  body  fat  is  not  simple.  Muscle  and  bone  are denser than fat so an estimate of body density can be used

to estimate the proportion of fat in the body. Density is the

ratio  of  weight  to  volume.  Measuring  someone's  weight  is easy  but  volume  is  more  difficult.  One  method  requires

submerging  the  body  underwater  in  a  tank,  measuring  the change in weight and applying Archimedes' principle. Most

people  would  prefer  not  to  be  submerged  underwater  to

get  a  measure  of  body  fat  so  we  would  like  to  have  an easier  method.  In  order  to  develop  such  a  method, 

researchers  recorded  age,  weight,  height,  and  10  body

circumference  measurements  for  252  men.  Each  man's

percentage  of  body  fat  was  accurately  estimated  by  an

underwater  weighing  technique.  See  Johnson  (1996)  for full details. Can we predict body fat using just the easy-to-record measurements? 

We  load  in  the  data  and  fit  a  model  using  all  thirteen predictors. 

data (fat , package = “faraway”)

lmod = lm (brozek ~ age + weight + height + neck + chest +

abdom + hip + thigh + knee + ankle + biceps + forearm +

wrist , data = fat)

We use brozek as the response (Brozek's equation estimates

percent  body  fat  from  density).  Normally,  we  would  start with  an  exploratory  analysis  of  the  data  and  a  detailed consideration  of  what  model  to  use  but  let's  be  rash  and just fit a model and start predicting. 

Let's consider the typical man, exemplified by the median

value of all the predictors. 

x = model . matrix (lmod)

(x0 = apply (x ,2 , median))

(Intercept)      age    weight   height    neck

1.00    43.00    176.50    70.00   38.00

chest    abdom       hip    thigh    knee

      99.65    90.95     99.30    59.00   38.50

ankle   biceps   forearm    wrist

22.80    32.05     28.70    18.30

(y0 = sum (x0 * coef (lmod)))

[1] 17.493

Note  that   x 0  must  include  a  leading  1  if  there  is  an intercept  in  the  model.  The  predicted  body  fat  for  this

“typical”  man  is  17.5%.  The  same  result  may  be  obtained more directly using the predict function:

predict (lmod , new = data . frame (t (x0)))

1

17.493

The  predict  function  is  quite  fussy  about  the  new  value argument being in the form of a data frame with the same

format as the data used to fit the model. 

Now  if  we  want  a  95%  CI  for  the  prediction,  we  must decide  whether  we  are  predicting  the  body  fat  for  one particular man or the mean body fat for all men have these

same characteristics. Here are the two intervals:

predict (lmod , new = data . frame (t (x0)) , interval = 

“prediction”)

fit    lwr    upr

1 17.493 9.6178 25.369

predict (lmod , new = data . frame (t (x0)) , interval = 

“confidence”)

fit    lwr    upr

1 17.493 16.944 18.042

The  prediction  interval  ranges  from  9.6%  body  fat  up  to 25.4%.  This  is  a  wide  interval  since  there  is  a  large practical  difference  between  these  two  limits.  One  might

question the value of such a model. The model has an  R 2 of 0.75  but  perhaps  it  is  not  sufficient  for  practical  use.  The confidence  interval  for  the  mean  response  is  much

narrower,  indicating  that  we  can  be  quite  sure  about  the average  body  fat  of  the  man  with  the  median

characteristics.  Such  information  might  be  useful  from  a public  health  perspective  where  we  are  concerned  about

populations rather than individuals. 

Extrapolation occurs when we try to predict the response

for  values  of  the  predictor  which  lie  outside  the  range  of the  original  data.  Let's  see  what  happens  as  we  move

towards more extreme values of the predictors. We make a

prediction for values at the 95th percentile of the data:

(x1 = apply (x ,2 , function (x) quantile (x ,0.95)))

(Intercept)       age    weight   height     neck

1.000    67.000   225.650   74.500   41.845

chest     abdom       hip    thigh     knee

116.340   110.760   112.125   68.545   42.645

ankle    biceps   forearm    wrist

25.445    37.200    31.745   19.800

Compute the prediction interval:

predict (lmod , new = data . frame (t (x1)) , interval = 

“prediction”)

fit    lwr    upr

1 30.018 21.924 38.112

and the confidence interval:

predict (lmod , new=data.frame (t (x1)) , interval = 

“confidence”)

     fit    lwr    upr

1 30.018 28.071 31.965

We  can  see  that  the  confidence  interval  for  the  mean

response  is  now  almost  4%  wide  compared  with  the  just over  1%  width  seen  in  the  middle  of  the  data.  This  is  a considerable  increase  in  uncertainty.  The  prediction

interval  is  only  slightly  wider  because  this  interval  is dominated  by  the  new  error   ε  rather  than  the  uncertainty in the estimation of β. 

Although  we  are  making  a  prediction  for  a  large

individual  here,  this  is  not  an  extrapolation  because  this individual  is  within  the  range  of  data  on  which  the  model was  built.  As  we  move  outside  the  range  into  genuine

extrapolation,  the  intervals  will  become  wider  but  this  will not reflect the true uncertainty in prediction. For example, 

the tallest individual in the data is 6ft 6in (1.97m) tall and the  lightest  individual  weighs  199lbs  (54kg).  Suppose,  we make  a  prediction  for  a  new  individual  with  both  these characteristics — they are very tall and very light. 

We  would  have  two  problems  in  making  this  prediction. 

The  first  is  not  related  to  extrapolation.  We  only  have  two predictors  whereas  our  model  requires  13  predictors.  We can  either  obtain  the  missing  11  predictor  values  or  fit another  model  using  only  the  two  predictors  we  have.  The second  problem  is  that  this  is  a  clear  extrapolation. 

Although  the  individual  predictor  values  are  within  the range  of  the  data,  the  combination  of  the  two  is  very unusual to the extent that we might wonder whether such a

person  could  exist.  There  would  be  no  numerical  difficulty

in computing the prediction but we would rightly beskeptical about the results.In our hypothetical example, it is obvious that the newcase has an unusual combination of predictor values butwhen there are a large number of predictors, it can bedifficult to judge what distinguishes a small and reasonableextrapolation from a large and unreasonable extrapolation. 5.3 Prediction Model AssessmentHow well does the prediction model work? As we use ourmodel in the future, we will generate predictions ^ yj andthen subsequently observe ~ yj for  j=1,…,  m. A naturalmeasure of performance is the root mean squared error(RMSE):1 mRMSE=∑(^ y⎷ mj−~ yj)2 j=1(5.5)As a demonstration, let's suppose we observe the exactsame data again, make the predictions and compute theRMSE:predpi = predict (lmod , newdata = fat, interval = “prediction”)sqrt (mean ((fat $ brozek - predpi [ , “fit" ]) ^2))[1] 3.8756

This  is  very  similar  to  the  residual  standard  error  for  the model of  ^

 σ = 3.99. Naturally, we cannot expect future data

to  be  exactly  like  past  data  so  this  RMSE  is  the  best  that could  be  expected  and  actual  performance  on  truly  new

data  is  likely  to  be  worse,  perhaps  much  worse.  How  can we discover this? One solution is to wait until the new data

is  available  and  compute  the  performance.  We  might  want to  know  sooner.  We  can  create  “new”  data  by  withholding some  of  our  original  data  and  using  this  to  evaluate  the prediction performance as if this were new data. We would

select  at  random  about  20%  of  the  observations  for  this purpose.  It  is  important  only  to  use  this   validation  set  for checking  the  performance  and  not  to  use  it  for  model

building or estimation — otherwise it is not new data. 

There are two disadvantages to using a validation set. We

give  up  some  of  our  data  and  so  our  model  building  and estimation will not be as effective. The price for discovering the  performance  of  the  model  is  a  model  that  will  not perform  as  well.  If  you  have  a  very  large  dataset,  this  will not be such a problem but for smaller datasets, it would be

costly. The second problem is that the validation set is not

truly new data as we are sure the validation set is similar to the data used for model building. In practice, new data will

come from new sources which may differ from the original

sample and thus provide our prediction model with a more

realistic test. 

In  spite  of  the  disadvantages,  analysts  may  feel

compelled  to  have  a  validation  set  as  more  convincing

evidence  of  the  utility  of  their  prediction  model,  particular in  environments  where  exaggeration  and  subsequent

distrust  are  common.  In  our  example,  we  have  considered only  one  possible  model  and  a  validation  set  would  not  be helpful.  We  shall  see  that  it  is  common  to  select  a  model from  a  much  larger  set  of  possible  models.  In  these

circumstances,  the  validation  set  is  more  valuable  in

assessing model performance. We will return to the topic in

Chapter 11. 

We  are  also  interested  in  the  accuracy  of  our  prediction uncertainty  assessments.  We  produce  95%  prediction

intervals so we would hope that 95% of our observed future

values  fall  within  these  intervals.  Unrealistically,  we  can demonstrate this on our observed data:

mean ((fat $ brozek > predpi [, “lwr"]) & 

(predpi [ , “upr" ] > fat $ brozek))

[1] 0.97222

We see that about 97% of the observed responses are both

higher than the lower limit and lower than the upper limit. 

That's  close  enough  to  the  95%  we  would  expect.  We  can illustrate  what  might  go  wrong  by  incorrectly  using

confidence intervals rather than prediction intervals:

predci = predict (lmod , newdata = fat , interval = 

“confidence”)

mean ((fat $ brozek > predci [ , “lwr” ]) & 

(predci [ , “upr”] > fat $ brozek))

[1] 0.31349

[image: Image 17]

We  see  that  only  31%  of  the  responses  fall  within  their interval.  This  demonstrates  the  sort  of  error  that  would occur  if  you  wrongly  used  confidence  intervals  for  single future  responses.  More  importantly,  even  if  we  select  the right  kind  of  interval,  it  shows  what  will  happen  if  your uncertainty  intervals  are  too  narrow.  This  could  happen  if our  new  data  varies  from  that  represented  by  our  original sample  and  our  model  has  failed  to  capture  the  additional uncertainty. In practice, prediction models may need to be

updated continually as new data comes in. 

5.4 Autoregression

Consider  the  data  shown  in  the  first  panel  of  Figure  5.1

which  shows  the  monthly  number  of  airline  passengers

from  the  early  years  of  air  travel.  This  is  an  example  of  a time series where a response variable is followed over time. 

We  may  want  to  predict  future  values  of  the  time  series. 

Linear modeling can be used for this purpose. 

Long Description for Figure 5.1

Figure  5.1   Airline  passenger  numbers,  1949  through 1961. An exponential fit is shown on the left. On the right, 

the fit of an autoregression is shown using dashed lines. 

We  can  see  an  increasing  trend  which  looks  more  than

linear.  We  can  also  see  some  seasonal  variation  which  is increasing over time. For these reasons, we will model the

logged passenger numbers. As a first attempt, we might fit

a linear function of time to predict this response:

data (airpass , package = “faraway”)

plot (pass ~ year , airpass, type = “l” , ylab = “Passengers”) lmod = lm (log (pass) ~ year, airpass)

lines (exp (predict (lmod)) ~ year , airpass)

We  can  see  that  fit  captures  the  general  upward  trend  in numbers but does nothing to model the seasonal variation. 

Suppose  we  wish  to  predict  passenger  numbers  for  the

next month. We might expect this to depend on the current

month.  The  seasonal  variation  suggests  we  also  use  the observed  numbers  from  12  months  ago  and  since  we  are

already  considering  the  monthly  change  from  the  current month,  it  makes  sense  to  look  at  this  change  from  a  year ago.  Hence  we  use  the  numbers  from  13  months  ago  as

well. We combine these in a regression model:

 yt =  β 0 +  β 1 yt−1 +  β 12 yt−12 +  β 13 yt−13 +  εt (5.6)

This  is  an  example  of  an   autoregressive  process.  The response  depends  on  past  values  of  the  response.  The   yt− i are  called   lagged  variables.  We  construct  a  matrix  of lagged  variables  using  the  embed  function.  We  need  the current response plus up to 13 lagged variables. We name

the  columns  of  the  matrix  in  a  convenient  way  and  form  a data frame before fitting the model above:

lagdf = embed (log (airpass $ pass),14)

colnames (lagdf) = c (“y” , paste0 (“lag” ,1:13))

lagdf = data . frame (lagdf)

armod = lm (y ~ lag1 + lag12 + lag13 , data . frame (lagdf))

summary (armod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)   0.1385     0.0536    2.58    0.011

lag1          0.6923     0.0619   11.19 < 2e-16

lag12         0.9215     0.0347   26.53 < 2e-16

lag13        -0.6321     0.0677   -9.34 4.2e-16



Residual standard error: 0.0416 on 127 degrees of freedom

Multiple R-squared: 0.989,                Adjusted R-squared: 

0.989

F-statistic: 3.89e+03 on 3 and 127 DF,     p-value: <2e-16

We  see  all  three  lagged  variables  are  strongly  significant and the fit judged from the  R 2 is strong. It is redundant to also include a year term in the model as this linear change

over  time  is  now  modeled  using  the  lag  one  variable.  We check the fit to the data and observe it in the second panel

of Figure 5.1. 

plot (pass ~ year, airpass, type = “l", ylab = “Passengers”)

lines (airpass$year [14:144], exp (predict (armod)), lty =2) Now  suppose  we  want  to  predict  future  values.  The  last observation in our data is:

lagdf [nrow (lagdf),]

y   lag1   lag2   lag3   lag4   lag5   lag6   lag7    

lag8

131 6.0684 5.9661 6.1334 6.2305 6.4069 6.4329 6.2823 6.157 

6.1334

lag9 lag10 lag11 lag12 lag13

131 6.0379 5.9687 6.0331 6.0039 5.8916

The  current  response  becomes  the  lag  one  value  and  the other  two  values  also  shift.  A  95%  prediction  interval  for the (logged) number of passengers is:

predict (armod , data . frame (lag1 =6.0684 , lag12 =6.0331 , 

lag13 =6.0039) , interval = “prediction”)

fit      lwr    upr

1 6.104 6.0206 6.1873

Now if we want to predict the next month, we will need to

plug  in  the  predicted  value  of  6.104  along  with  two  other shifted lag values. Subsequent predictions will also need to

be computed in this recursive manner. 

The  validity  of  future  predictions  depends  on  the

assumption  that  future  data  will  follow  this  model.  In particular,  we  assume  that  passenger  numbers  will

continue  to  increase  linearly  with  time.  This  assumption  is almost  never  true  in  the  long  run  and  at  best  we  might hope it holds true in the short run. 

Forecasting  in  time,  as  in  this  example,  is  a  specialized topic  which  lies  beyond  the  scope  of  this  book.  Sometimes

one can use linear models for this purpose but the reader is

advised to consult a text on the topic such as Hyndman and

Athanasopoulos (2018). 

5.5 What Can Go Wrong with Predictions? 

Prediction is famously difficult and there are many ways to

go  wrong.  Let's  consider  some  of  the  ways  that  mistaken predictions can arise. 

We might have a bad model. Sometimes we can do better. 

We can be diligent in our choice of methods and take care

to  consider  the  assumptions  carefully.  We  will  present  a suite  of  diagnostic  tools  that  will  allow  us  to  check  the model.  We  can  consider  transforming  variables  and  using different functional forms for the model. But in spite of our

careful efforts, we may settle on a poor model. 

A related issue is  model uncertainty. We have substantial uncertainty about what form the model should take. We can

account  for   parametric  uncertainty  using  the  methods  we have described but these are based on the assumption of a

known  model.  The   model  uncertainty  is  much  harder  to quantify. Our predictions are more uncertain as a result but

by how much we cannot say. 

We  might  have  bad  data.  Ideally,  we  would  have  a

designed  experiment  or  a  random  sample  with  a  known

sampling  mechanism  from  the  population  of  interest. 

Unfortunately, we may not be so fortunate. We may have a

biased  sample  of  data  or  the  values  may  be  measured  or recorded  with  substantial  error.  Voluntary  response

surveys  can  yield  data  on  our  topic  of  interest  but  the people who choose to respond may be quite different from

those  who  choose  not  to  respond  or  simply  don't  see  the survey.  The  possibilities  for  error  are  almost  limitless  and we  resist  the  temptation  to  enumerate  them  as  this  would make for a long chapter. 

We 

have 

have 

already 

discussed 

quantitative

extrapolation.  This  happens  when  we  try  to  predict

outcomes  for  cases  with  predictor  values  much  different from what we saw in the data. This is a practical problem in

assessing  the  risk  from  low  exposure  to  substances  which are dangerous in high quantities. For example, much of the

data  on  asbestos  risk  comes  from  people  who  have  been highly  exposed  due  to  their  past  work.  We  can  measure their exposure using the length of the time they worked in

such occupations. But it is hard to get good data on people

with  low  exposure  from  housing  or  office  work  as  we

cannot  measure  the  predictor  with  any  accuracy.  It  is

reasonable  to  be  concerned  about  asbestos  risk  but

quantifying it is difficult. 

Qualitative extrapolation is distinct from the quantitative

form.  We  try  to  predict  outcomes  for  observations  that come from a different population. For example, the data for

the  body  fat  example  comes  from  US  men.  Would  it  be

reasonable  to  use  this  model  to  predict  body  fat  for

Canadian  men?  This  is  a  qualitative  extrapolation  because the population is not the same, but it does seem justifiable. 

Now suppose we used the models above to predict body fat

for  women.  This  may  not  work  well  because  men  and women  have  different  physiology.  A  related  problem  is

 model aging. The model was built on past data but we use it with current data. Changes may have occurred over time

which  degrade  the  predictive  performance  of  the  model.  A decision about whether such extrapolations are reasonable

is  often  difficult  and  we  will  not  know  until  when  collect more data. 

In  this  chapter,  we  have  assumed  a  single  model.  In

practice,  analysts  choose  from  many  possible  models.  In

Chapter  11,   we  discuss  model  selection  but  we  can transform  the  variables  or  exclude  some  observations  in many  different  ways  to  generate  many  fitted  models.  If prediction  is  our  goal,  we  may  be  tempted  to  choose  the one model among the many possible that fits our available

data best. This is usually a mistake but there is an incentive for analysts to produce predictive models that promise the

greatest  accuracy.  Even  careful  analysts  who  moderate

their  choice  of  model  are  vulnerable  to  this  problem  of overfitting.  This  can  lead  to  unrealistically  small  ^

 σ

producing  prediction  intervals  which  are  unreasonably

narrow.  When  new  data  arrives  and  we  make  our

predictions, we will find that we were too optimistic. 

Our  models  contain  some  chance  for  more  extreme

observations depending on our assumptions about the error

distribution.  If  we  use  more  long-tailed  error  distributions, we  can  model  the  probability  of  more  extreme  events. 

Nevertheless,  something  extreme  may  occur  that  our

model,  based  on  past  data,  could  never  anticipate.  We might  see  a  new  observation  that  does  not  come  from  our generating model. Such events are sometimes called  black

 swans, a term popularized by Taleb (2007),  particularly for financial  applications.  It  is  sensible  to  consider  that statistical  models  of  prediction  based  on  past  data  can never  be  entirely  reliable.  Use  other  means  to  consider possible  extreme  events  and  make  contingency  plans  to

address these. 

Perhaps  the  reader  may  now  be  feeling  dispirited  about prediction  models  and  wonder  whether  we  should  consult

an  astrologer.  Although  prediction  models  can  fail,  they have  a  long  record  of  success  in  many  applications.  Doing nothing is often not an option — we must predict to decide

on an action. 

Exercises

1. For  the  prostate  data,  fit  a  model  with  lpsa  as  the response and the other variables as predictors. 

(a)

Suppose  a  new  patient  with  the  following  values

arrives:

lcavol lweight      age      lbph       svi      lcp

1.44692 3.62301 65.00000   0.30010   0.00000 -0.79851

gleason    pgg45

7.00000 15.00000

Predict  the  lpsa  for  this  patient  along  with  an

appropriate 95% CI. 

(b)

Repeat the last question for a patient with the same

values  except  that  the  patient  is  age  20.  Explain

why the CI is wider. 

(c)

For  the  model  of  the  previous  question,  remove  all

the  predictors  that  are  not  significant  at  the  5%

level.  Now  recompute  the  predictions  of  the

previous  question.  Are  the  CIs  wider  or  narrower? 

Which predictions would you prefer? Explain. 

2. Using  the  teengamb  data,  fit  a  model  with  gamble  as  the response and the other variables as predictors. 

(a)

Predict the amount that a male with average (given

these  data)  status,  income  and  verbal  score  would

gamble along with an appropriate 95% CI. 

(b)

Repeat  the  prediction  for  a  male  with  maximal

values  (for  this  data)  of  status,  income  and  verbal

score.  Which  CI  is  wider  and  why  is  this  result

expected? 

(c)

Fit  a  model  with  sqrt(gamble)  as  the  response  but

with the same predictors. Now predict the response

and  give  a  95%  prediction  interval  for  the

individual  in  (a).  Take  care  to  give  your  answer  in

the original units of the response. 

(d)

Repeat  the  prediction  for  the  model  in  (c)  for  a

female  with  status=20,  income=1,  verbal  =  10. 

Comment on the credibility of the result. 

3. The  snail  dataset  contains  percentage  water  content  of the tissues of snails grown under three different levels of

relative humidity and two different temperatures. 

(a)

Use  the  command  xtabs(water  ∼  temp  +  humid, 

snail)/4  to  produce  a  table  of  mean  water  content

for each combination of temperature and humidity. 

Can you use this table to predict the water content

for  a  temperature  of  25∘C  and  a  humidity  of  60%? 

Explain. 

(b)

Fit  a  regression  model  with  the  water  content  as

the  response  and  the  temperature  and  humidity  as

predictors.  Use  this  model  to  predict  the  water

content for a temperature of 25∘C and a humidity of

60%. 

(c)

Use  this  model  to  predict  water  content  for  a

temperature  of  30∘C  and  a  humidity  of  75%. 

Compare your prediction to the prediction from (a). 

Discuss the relative merits of these two predictions. 

(d)

The  intercept  in  your  model  is  52.6%.  Give  two

values  of  the  predictors  for  which  this  represents

the predicted response. Is your answer unique? Do

you think this represents a reasonable prediction? 

(e)

For  a  temperature  of  25∘C,  what  value  of  humidity

would  give  a  predicted  response  of  80%  water

content. 

4. The  dataset  mdeaths  reports  the  number  of  deaths  from lung diseases for men in the UK from 1974 to 1979. 

(a)

Make an appropriate plot of the data. At what time

of year are deaths most likely to occur? 

(b)

Fit an autoregressive model of the same form used

for  the  airline  data.  Are  all  the  predictors

statistically significant? 

(c)

Use  the  model  to  predict  the  number  of  deaths  in

January 1980 along with a 95% prediction interval. 

(d)

Use  your  answer  from  the  previous  question  to

compute  a  prediction  and  interval  for  February

1980. 

(e)

Compute  the  fitted  values.  Plot  these  against  the

observed  values.  Note  that  you  will  need  to  select

the  appropriate  observed  values.  Do  you  think  the

accuracy  of  predictions  will  be  the  same  for  all

months of the year? 

5. For  the  fat  data  used  in  this  chapter,  a  smaller  model using  only  age,  weight,  height  and  abdom  was  proposed  on the grounds that these predictors are either known by the

individual or easily measured. 

(a)

Compare  this  model  to  the  full  thirteen-predictor

model used earlier in the chapter. Is it justifiable to

use the smaller model? 

(b)

Compute  a  95%  prediction  interval  for  median

predictor  values  and  compare  to  the  results  to  the

interval for the full model. Do the intervals differ by

a practically important amount? 

(c)

For the smaller model, examine all the observations

from  case  numbers  25  to  50.  Which  two

observations seem particularly anomalous? 

(d)

Recompute  the  95%  prediction  interval  for  median

predictor  values  after  these  two  anomalous  cases

have  been  excluded  from  the  data.  Did  this  make

much difference to the outcome? 

6. In  this  question,  we  demonstrate  the  use  of  a  validation set on the fat data. 

(a)

Fit the the full 13 predictor model with brozek as the

response as in the chapter. Construct the predicted

values for all the data and the associated prediction

intervals.  Compute  the  RMSE  of  prediction.  Your

answer should match that in the chapter. 

(b)

Calculate  the  fraction  of  prediction  intervals  that

contain  their  observed  response.  Your  answer

should match that in the chapter. 

(c)

Split  the  fat  data  into  two  parts.  The  first  50  rows should  go  into  a  validation  set  and  the  remainder

should be retained for fitting the model (sometimes

called  the  training  set).  Construct  the  predicted

values and prediction intervals for the training set. 

Comment on the choice of the first 50 rows for the validation set. 

(d)

Compute  the  RMSE  on  the  training  set.  Compute

the  fraction  of  prediction  intervals  containing  the

response  for  the  training  set.  Comment  on  the

results. 

(e)

Compute  the  predicted  values  using  the  model

based on the training set, but using new data from

the  validation  set.  Calculate  the  corresponding

RMSE  and  coverage  fraction.  Comment  on  the

results. 

7. The  wfat  dataset  contains  comparable  fat  density  and body  measures  for  women.  The  variables  available  are

similar  but  not  the  same.  In  particular,  only  the  fat percentage computed using the Siri method is in the wfat

dataset. 

(a)

Fit  the  the  full  13  predictor  model  with  siri  as  the response as in the chapter. Construct the predicted

values  for  the  all  the  data  and  the  associated

prediction  intervals.  Compute  the  RMSE  of

prediction.  Also  compute  the  coverage  fraction  for

the prediction intervals on the observed response. 

(b)

Now  predict  the  response  and  compute  the

prediction intervals for the women in the wfat data, 

but  using  the  model  fit  using  the  men  in  the  fat

data.  Compute  the  RMSE  of  prediction.  Also

compute  the  coverage  fraction  for  the  prediction intervals  on  the  observed  response.  Compare  the

results to that found in (a). 

(c)

Make  a  plot  comparing  the  observed  response  to

the predicted responses in (b). Draw the  y =  x line on  the  plot.  Comment  on  the  nature  of  the

differences in the two variables. 

(d)

Compute  the  mean  difference  between  the

observed  and  predicted  responses  in  (c).  Repeat

the same calculation for the values in (a). 

(e)

Compute the mean width of the prediction intervals

from (a) and from (c). Comment on the difference. 

(f)

What 

does 

this 

question 

illustrate 

about

extrapolation and validation? 

Chapter 6

Explanation and Causation

DOI: 10.1201/9781003449973-6

Linear  models  can  be  used  for  prediction  or  explanation. 

Prediction is not easy but explanation is more difficult. We

start  with  the  idea  of  quantifying  the  direction  of  the association  between  a  predictor  and  the  response.  We  can use  ideas  from  prediction  to  achieve  this  without

committing to any possible causal relationship between the

two.  Although  we  must  be  justifiably  cautious,  we  would like  to  establish  evidence  for  real  causal  relationships. 

Causality is a difficult issue which deserves at least a book-

length  treatment.  Our  modest  objective  is  to  introduce

some  topics  in  causality  as  a  step  towards  a  stronger understanding.  We  discuss  the  issue  of  confounding  and

how  we  might  tackle  it.  We  introduce  the  notion  of

counterfactuals  and  how  these  can  support  causal

reasoning.  We  explain  why  randomization  in  designed

experiments  is  so  powerful  in  arguing  for  causation.  We illustrate these ideas with two examples. 

6.1 Explanation by Prediction

Let's consider the Galápagos Islands example:

data (gala, package = “faraway”)

lmod = lm (Species ~ Area + Elevation + Nearest + Scruz

+ Adjacent , gala)

summary (lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept)  7.06822    19.15420    0.37   0.7154

Area        -0.02394     0.02242   -1.07   0.2963

Elevation    0.31946     0.05366    5.95   <1e-04

Nearest      0.00914     1.05414    0.01   0.9932

Scruz       -0.24052     0.21540   -1.12   0.2752

Adjacent    -0.07480     0.01770   -4.23   0.0003



Residual standard error: 61 on 24 degrees of freedom

Multiple R-squared: 0.766,                  Adjusted R-squared: 0.717

F-statistic: 15.7 on 5 and 24 DF,          p-value: <1e-04

What  is  the  meaning  of  the  coefficient  for  Elevation

^ β = 0.31946? 

In  a  few  examples,  mostly  from  the  physical  sciences  or engineering,  β  might  represent  a  real  physical  constant. 

For  example,  we  might  attach  weights  to  a  spring  and

measure  the  extension.  Here  ^

 β 1  will  estimate  a  physical

property  of  the  spring.  In  such  examples,  the  model  is  a representation  of  a  physical  law.  But  for  the  Galápagos data,  our  model  has  no  such  strong  theoretical

underpinning.  It  is  an  empirical  model  that  we  hope  is  a good  approximation  to  reality. 

 β 1  has  no  direct  physical

meaning in this example. 

Let's start with a simple interpretation:  a unit increase in x 1   will  produce  a  change  of  ^ β 1   in  the  response  y.  This statement  is  rather  imprecise  regarding  the  nature  of  the relationship  between   x 1  and   y  so  let's  be  more  specific: Compare  two  islands  where  the  second  island  has  an

elevation  one  meter  higher  than  the  first.  We  predict  that the second island will have 0.32 species more than the first. 

Let's set aside the fact that the number of species can only

take  integer  values  because  the  model  is  only  intended  as an  approximation.  Sometimes  it  is  helpful  to  scale  the predictor  change.  We  could  specify  that  the  second  island was  100m  higher  than  the  first  resulting  in  a  predicted difference  of  about  32  species.  This  is  easier  to

communicate,  but  there  are  more  serious  problems  with

this interpretation. 

Consider  an  alternative  model  for  the  number  of  species that uses only the elevation variable:

lmode = lm (Species ~ Elevation , gala)

summary (lmode)

Estimate Std. Error t value Pr(>|t|)

(Intercept)    11.3351    19.2053    0.59     0.56

Elevation       0.2008     0.0346    5.80   <1e-04



Residual standard error: 78.7 on 28 degrees of freedom

Multiple R-squared: 0.545,             Adjusted R-squared: 

0.529

F-statistic: 33.6 on 1 and 28 DF,       p-value: <1e-04

We can see that the predicted difference for an increase of

100m in elevation is now about 20 species more, in contrast

[image: Image 18]

to  the  32  found  for  the  larger  model.  The  different  values illustrate  why  we  cannot  interpret  a  regression  coefficient for  a  given  predictor  without  reference  to  the  other

predictors included in the model. We show the two fits for

the elevation in Figure 6.1:

plot (Species ~ Elevation , gala)

abline (lmode)

pm = expand . grid (Area = mean (gala $ Area) , 

Elevation = range (gala $ Elevation) , 

Nearest = mean (gala $ Nearest) , 

Scruz = mean (gala $ Scruz) , 

Adjacent = mean (gala $ Adjacent))

pp = predict (lmod , newdata = pm)

lines (pm$Elevation , pp , lty =2)

Long Description for Figure 6.1

Figure  6.1   The  fit  for  the  simple  model  with  just elevation  as  a  predictor  is  shown  as  the  solid  line.  The predicted  response  as  elevation  varies  and  the  other  four

predictors  are  held  at  their  mean  values  is  shown  as  a dashed line. 

To  show  the  relationship  between  elevation  and  the

response  for  the  full  five-predictor  model,  we  fix  the  other predictors  at  some  typical  values.  We  have  chosen  the

means in this example. Other choices may be sensible. For

a  categorical  predictor,  you  might  pick  the  most  common level.  We  then  compute  the  predicted  response  for  the

minimum  and  maximum  of  elevation  (using  the  range()

function)  with  the  other  predictors  fixed  at  our  chosen values. We have a linear fit so it is sufficient to draw a line from  the  minimum  to  the  maximum  but  if  you  had  a

transformed predictor such as a quadratic, you would need

to adapt the calculation. 

This is called an  effect plot (which might not include the solid line for the single predictor model). It is a good way of visualizing the meaning of the model for a given predictor. 

In  this  instance,  we  can  see  how  the  predicted  number  of species  varies  greatly  as  the  elevation  changes.  We  would be  justified  in  calling  this  a  strong  effect.  In  other examples, we may not see much change in the response as

the predictor varies — this would be a weak effect. This is

helpful in distinguishing practically significant effects from statistically  significant  effects  which  are  not  always  the same. We can even compare the effects from one model to

another  models  as  we  have  done  in  the  example.  The

effects  package  of  Fox  and  Weisberg  (2019)  is  helpful  for

constructing  these  plots  while  we  use  the  termplot() function in Section 7.3 for a related purpose. 

We need to be more specific in our interpretation, which

should  now  read:   a  unit  increase  in   x 1   with  the  other (named) predictors held constant will produce a change of

^ β 1  in the response y. For the simple one-predictor model, we  do  not  control  the  other  predictors.  For  islands  with higher elevation, we also expect greater area, which might

also  affect  the  response.  This  explains  why  the  two

predictions are different in Figure 6.1. 

Although 

effect 

plots 

are 

helpful, 

our 

revised

interpretation  merely  brings  to  light  further  difficulties. 

The  idea  of  holding  variables  constant  makes  no  sense  for observational  data  such  as  in  our  Galápagos  example. 

These  observables  are  not  under  our  control.  We  cannot change them except by some fantastic feat of engineering. 

There  are  also  likely  to  be  other  variables  which  we  have not measured and may not be aware of that also have some

connection  to  the  species  diversity.  We  cannot  possibly hold these constant. 

Furthermore,  our  explanation  contains  no  notion  of

causation.  We  can  predict  that  taller  islands  have  greater species  diversity  but  we  should  not  say  altitude  causes  it. 

We can have prediction without causation. For example, we

may predict that grey-haired people are older but the grey

hair does not cause them to be older. For now we are able

to  make  predictions  and  compare  these  predictions  to

develop  some  insights.  The  comparisons  give  some

meaning  to  the  regression  coefficients  but  the  information is  conditional  and  tentative.  In  the  next  sections,  we explore  the  problems  with  strengthening  an  explanation

into a causal conclusion. 

6.2 Confounding and Simpson's Paradox

The  problem  of   confounding  is  a  frequent  obstacle  to establishing  a  causal  relation  between  variables.  We  have just seen in our example how our expression of the effect of

elevation  on  the  number  of  species  depends  on  other

variables.  Confounding  concerns  the  impact  of  these  other variables. To illustrate the problem, we simulate some data. 

We use simulated data to make the problem clear because

in  real  data  other  aspects  can  make  it  harder  to  see.  We generate  an  evenly  spaced  predictor,  a  two-level  group

variable and a response with a moderate amount of noise:

x = seq (0 ,1 , length . out =100)

z = rep (c (0 ,1) , each =50)

set . seed (321)

y = -x + z + rnorm (100 , mean =0 , sd =0.1)

edf = data . frame (response =y , predictor =x , group = z)

We can plot this data as seen in Figure 6.2:

plot (response ~ predictor , edf , pch = group)
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Long Description for Figure 6.2

Figure  6.2   Simulated  data  showing  the  relationship between  a  predictor  and  response  divided  into  two  groups distinguished  by  the  plotting  symbol.  The  solid  line  shows the fit using just the predictor while the dashed lines shows

the fit which distinguishes the group. 

Let's predict the response using only the predictor and add

the fitted line to the plot:

lmod1 = lm (response ~ predictor , edf)

summary (lmod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.2470      0.0573   -4.31 3.9e-05

predictor     0.5063     0.0991    5.11 1.6e-06



Residual standard error: 0.289 on 98 degrees of freedom

Multiple R-squared: 0.21,                Adjusted R-squared: 

0.202

F-statistic: 26.1 on 1 and 98 DF,       p-value: 1.59e-06

abline (lmod1)

We see from the solid line in the plot and the linear model

summary that there is a clear positive relationship between

the  predictor  and  the  response.  A  careless  analyst  might conclude that increases in the predictor cause the response

to  increase,  but  this  would  be  rash.  Now  we  include  the group in the model:

lmod2 = lm (response ~ predictor + group , edf)

summary (lmod2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)   0.0128     0.0225    0.57     0.57

predictor    -1.0844     0.0700 -15.49    <2e-16

group         1.0711     0.0408   26.24   <2e-16



Residual standard error: 0.102 on 97 degrees of freedom

Multiple R-squared: 0.903,                  Adjusted R-squared: 0.901

F-statistic: 449 on 2 and 97 DF,           p-value: <2e-16

We see that the fitted coefficient for the predictor is clearly negative. We can add the fitted lines for the two groups:

cc = coef (lmod2)

abline (cc [1] , cc [2] , lty =2)

abline (cc [1]+ cc [3] , cc [2] , lty =3)

This is an example of  Simpson's Paradox — the direction of the  relationship  between  two  variables  is  different  when the  data  is  considered  together  as  in  the  first  model  or divided into groups as in the second model. In our example, 

the two variables are quantitative but in other examples of

the paradox, one or both of these variables are categorical. 

It  is  called  a  paradox  because  such  behavior  might  not seem possible but we can see from the example that it can

happen. 

Simpson's  paradox  is  a  specific  example  of  a  more

general  problem  known  as   confounding.  A  confounder  is  a third  variable,  like  the  group  in  our  example,  that,  when taken  into  account  in  the  modeling,  changes  the

relationship  between  two  variables.  It  is  also  sometimes called  a   lurking  variable.  The  strength  of  the  relationship may  change  or  disappear.  In  Simpson's  paradox,  the

change  is  more  extreme  in  that  the  direction  of  the

relationship  is  reversed.  The  nature  of  a  confounder  is depicted  in  Figure  6.3.   The  directions  of  the  arrows indicate the direction of the potential causal effects. 

The predictor may cause the response. This is the main

subject of our interest. 

We  have  good  reasons  to  believe  that  the  confounder

has  a  causal  effect  on  the  response.  A  correlation  is insufficient  as  we  need  reasons  beyond  our  current

data to believe a causal relationship exists. 

There  is  a  correlation  or  association  between  the

confounder  and  the  predictor.  The  confounder  may

cause the predictor but this is not essential. 
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Figure  6.3   The  diagram  illustrates  confounding.  The arrows indicate the directions of potential causal effects. 

The  diagram  is  a  good  way  to  express  our  causal  beliefs about  the  relationships  between  a  set  of  variables.  The relationships  may  be  linear  or  not  —  that  is  a  feature  not expressed by the diagram. Statistical methods alone cannot

determine causation. We may specify an  x and  y in a linear model  or  compute  their  correlation  but  assertions  about causality  need  to  come  from  outside  the  data  using  our knowledge  of  subject  matter.  The  diagram  suggests  which models  to  use  in  our  analysis.  The  model  fits  tell  us  about the  strength  of  the  relationships  indicated  by  the  paths  in the diagram. 

When  we  are  aware  of  and  can  measure  possible

confounders,  we  can  allow  for  their  effect  by  including them  in  the  model.  Our  biggest  worry  is  confounders  that we  do  not  know  about.  These  are  the  hidden  danger  in making causal conclusions from observational data. 

It is important that the confounder either causes or is just

correlated  with  the  predictor.  When  the  dashed  line  in

Figure  6.3  points  in  the  opposite  direction,  that  is  the predictor  causes  the  third  variable,  it  is  not  a  confounder

but a  mediator. This would happen if the third variable was the  response  at  an  intermediate  point  during  the  study while  the  main  response  is  measured  at  the  end  of  the study.  Another  scenario  arises  if  the  response  causes  the third  variable.  In  this  case,  it  would  be  a   collider.  In  both these situations, a different analysis is required that is not covered  in  this  chapter.  A  less  serious  problem  occurs when  the  potential  confounder  has  no  causal  relation  with the  response.  Including  it  in  the  model  will  make  the conclusions  less  precise  but  it  will  not  invalidate  the conclusions.  When  considering  the  inclusion  of  third

variables  in  the  model,  one  must  think  about  their

relationship  to  the  predictor  and  the  response.  It  is  not  an automated  process  and  requires  an  understanding  of  the

subject matter. 

We  will  demonstrate  confounding  in  an  example  in

Section  6.4,   but  first  we  introduce  another  fundamental concept in causality. 

6.3 Counterfactuals

There  are  different  definitions  of  causality.  One  definition, that is sympathetic to statisticians, is that the causal effect of an action is the difference between the outcomes where

the  action  was  or  was  not  taken.  For  example,  suppose  a study  compares  a  treatment  with  a  control  as  applied  to  a set of patients. Let  T = 0 for the control and  T = 1 for the treatment. Now let  yTi  be the response for patient  i when  T

applies. The causal effect for patient  i is then defined as:

 δi =  y 1 i −  y 0 i (6.1)

The practical problem is that we usually cannot apply both

treatment and control at the same time. We only get to see

one  of  the  two  outcomes:  ( y 0 i,  y 1 i). The outcome we do not see is called the  counterfactual. It is natural to ask, “What would  have  happened  if  I  had  not  done  that?”.  This  is  an example of counterfactual thinking. 

Although  we  cannot  see  both  the  outcome  and  the

counterfactual  outcome,  we  may  come  close  in  some

circumstances.  For  example,  suppose  the  treatment  is  a

skin cream. We could apply the treatment to one side of the

face and leave the other as a control. Or we could apply the

control first (which might be no treatment) and then apply

the  cream  later.  We  could  then  observe  the  difference  in the  post-  and  pre-treatment  responses.  However,  even  in such cases, it is easy to see that some assumptions will be

necessary about how local the effect of the treatment is in

time and space. 

In  any  investigation  where  we  want  to  establish  the

causal  effect  of  some  treatment,  we  should  seek  out

comparisons  where  only  the  treatment  is  varied  and  all other  aspects  are  held  as  constant  as  possible.  Although perfection  may  not  be  possible,  this  principle  of

counterfactual  reasoning  will  strengthen  the  evidence  for causation. 

There  are  some  difficulties  with  the  counterfactual

definition of causality. For some variables, like a treatment

in  a  clinical  trial,  it  is  easy  to  conceive  of  how  a  different version  of  the  treatment  might  have  been  applied  or  how we might change future treatments. But some variables are

difficult  or  impossible  to  actually  change.  For  example, suppose  we  are  interested  in  the  effect  of  sex  on  some outcome.  Although  it  seems  reasonable  to  ask  how  an

outcome might have differed if the subject was male rather

than  female,  this  is  not  a  change  that  would  be  easy  to make.  Similarly,  with  the  Galápagos  example,  although  it seems natural to think about how physical geography might

affect  species  diversity,  we  cannot  actually  change  the physical geography. 

The idea of confounding and counterfactuals can help us

evaluate the strength of some claims. Young people who go

into  higher  education,  either  college  or  university,  tend  to have  substantially  higher  incomes  in  the  long  run  than people  who  do  not.  Does  getting  a  degree  cause  you  to have  a  higher  income?  This  may  not  be  true.  Academic

ability  is  a  potential  confounder  because  that  ability  will make people more likely to go on to higher education and, 

independently,  help  them  secure  higher  income  jobs. 

Counterfactual  thinking  suggests  we  compare  students  of

similar  academic  ability  who  sometimes  choose  higher

education and sometimes do not. This is not so easily done

as  we  need  to  identify  a  group  of  people  who  might  make either choice. 

Now  let's  see  how  we  can  use  the  ideas  of  confounding and counterfactuals in a practical example. 

6.4 Insulation Example

A British heating engineer studied the effect of cavity wall

insulation  on  his  home.  He  recorded  his  weekly  gas  usage in  the  winter  heating  season  both  before  and  after  the insulation  was  installed.  He  also  recorded  the  weekly

temperature. We load the data and display the first and last

observation in each group:

data (whiteside , package = “MASS”)

ii = c (1 ,26 ,27 ,56)

whiteside [ ii ,]

Insul Temp Gas

1  Before -0.8 7.2

26 Before 10.2 2.6

27  After -0.7 4.8

56  After  9.7 1.5

Full  details  may  be  found  by  typing:  help(whiteside, 

package="MASS”). A plot of the data may be seen in Figure 6.4. 

plot (Gas ~ Temp , data = whiteside , pch = unclass (Insul), 

xlab = “Weekly Temperature (Celsius)” , ylab = “Gas 

Usage”)

legend (“topright” , legend = c (“Before” , “After”) , pch = 

1:2)
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Long Description for Figure 6.4

Figure 6.4  Whiteside gas insulation data. 

We  may  obtain  a  simple  comparison  of  gas  usage  before and after insulation with:

lmodp = lm (Gas ~ Insul , whiteside)

summary (lmodp)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)    4.750      0.194   24.53 < 2e-16

InsulAfter    -1.267      0.265   -4.79 1.4e-05



Residual standard error: 0.988 on 54 degrees of freedom

Multiple R-squared: 0.298,                 Adjusted R-squared: 0.285

F-statistic: 22.9 on 1 and 54 DF,         p-value: 1.36e-05

To  understand  the  coefficient,  we  must  look  at  the  coding of the insulation variable. We look at our four chosen rows

of the model matrix:

model . matrix (lmodp) [ ii ,]

(Intercept) InsulAfter

1              1          0

26             1          0

27             1          1

56             1          1

From  this  we  see  that  before  has  been  coded  as  zero  and after  has  been  coded  as  one.  Our  interpretation  of  the model output is that weekly gas usage has been decreased

by  1.267  units  after  insulation.  The  difference  is  clearly statistically significant. 

A skeptical reader might point out that the second winter

might have been generally warmer than the first winter and

this  explains  the  lower  gas  usage.  Fortunately,  we  have access  to  the  weekly  temperatures  so  we  can  investigate this. Is the temperature a confounder? From Figure 6.3, we must  consider  the  two  relationships  with  the  confounder. 

We  can  see  that  lower  temperatures  are  associated  with higher  gas  usage  but,  more  importantly,  a  knowledge  of physics  means  we  know  that  lower  temperatures  will  cool the  house  more  and  lead  to  higher  gas  usage  to  keep  the indoor temperature up. This information allows us to assert

that  the  effect  of  temperature  is  causal  on  the  response. 

Does temperature also have a causal effect on the predictor

(the  use  of  insulation)?  Clearly  it  does  not.  Furthermore, the  presence  of  insulation  does  not  affect  the  external temperature.  The  two  winters  do  have  a  different

temperature  distribution  so  there  is  some  association.  We do  not  require  that  the  confounder  cause  the  predictor  —

an  association  is  sufficient  for  this  relationship.  We conclude that the temperature is a confounder. 

We  might  also  introduce  the  year,  which  has  two  levels here,  as  a  variable.  The  year  causes  the  insulation  in  the sense  that  the  insulation  is  absent  in  the  first  year  and present in the second. The year causes the temperature in

the  sense  that  the  weather  varies  from  one  winter  to  the next. This explains why there is an association between the

insulation and the temperature. 

It is just as well that the temperature varies from week to

week.  Otherwise,  we  would  not  be  able  to  distinguish  its effect from the insulation. 

We  can  now   control  or   adjust  for  the  effect  of temperature on gas usage by including it in the model:

lmod = lm (Gas ~ Insul + Temp , whiteside)

summary (lmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)   6.5513     0.1181    55.5   <2e-16

InsulAfter   -1.5652     0.0971   -16.1   <2e-16

Temp         -0.3367     0.0178   -18.9   <2e-16



Residual standard error: 0.357 on 53 degrees of freedom

Multiple R-squared: 0.91,                  Adjusted R-squared: 0.906

F-statistic: 267 on 2 and 53 DF,        p-value: <2e-16

We can display this fit on the plot with:

cc = coef (lmod)

abline (cc [1] , cc [3])

abline (cc [1]+ cc [2] , cc [3] , lty =2)

We  see  that  the  linear  form  for  the  relationship  in  the  two groups  looks  reasonable.  The  form  is  not  specified  by

Figure 6.3 so it is our responsibility to make an appropriate choice here. 

We see that gas usage does decline with temperature in a

statistically  significant  manner.  If  we  consider  any  fixed temperature  in  the  range,  we  see  that  the  predicted

difference  in  gas  usage  is  1.5652  units  less  after  the insulation  has  been  installed.  We  see  the  advantage  of including  temperature  in  the  model  is  that  we  can  make this argument. 

Now  consider  the  problem  from  a  counterfactual

perspective.  Ideally,  we  would  compare  gas  usage  in  the house before and after insulation where nothing else about

the  house,  the  behavior  of  the  occupants  or  the

environment is different. In this ideal, we would have both

the  observed  (factual)  and  counterfactual  measurement. 

We would like some replicates but assessment of the effect

of insulation would be straightforward. This is not practical

because  we  do  not  control  the  external  environment  and the installation of the insulation is time consuming. We can

do  the  next  best  thing.  We  can  compare  weeks  when  the temperature was the same before and after the installation

of the insulation. We can identify these pairs of weeks with:

matgas = merge (

whiteside [whiteside $ Insul == “Before” , -1] , 

whiteside [whiteside $ Insul == “After” , -1] , 

by = “Temp ” , 

suffixes = c (“Before”,“After”))

matgas

Temp GasBefore GasAfter

1 -0.7       6.9      4.8

2  2.5       6.0      4.0

3  2.5       6.0      3.5

4  3.9       4.7      3.9

5  4.2       5.8      3.5

6  4.3       5.2      3.5

7  6.2       4.5      2.8

8  7.5       4.0      2.6

9  7.5       3.9      2.6

10 8.0       4.0      2.7

We  have  created  two  datasets  split  on  the  insulation

variable  and  merged  them  with  the  temperature  as  the

“key”.  Any  case  where  the  same  temperature  does  not

appear  in  both  the  before  and  after  sets  is  discarded, leaving  us  with  10  pairs  of  observations.  We  can  now

consider  the  difference  between  these  before  and  after

observations using a paired two-sample t-test:

t . test (matgas $ GasBefore - matgas $ GasAfter)

One Sample t-test



data: matgas$GasBefore - matgas$GasAfter

t = 10.3, df = 9, p-value = 2.7e-06

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

1.3353 2.0847

sample estimates:

mean of x

1.71

We have an estimated reduction of 1.71 units per week due

to  insulation  and  the   p-value  indicates  the  difference  is

significant. This method is known as  matched pairs. 

The  model-based  estimate  was  a  reduction  of  1.57  units per  week.  In  general,  the  model-based  estimator  is

preferred.  Both  approaches  estimate  the  same  quantity  —

the  effect  of  insulation  after  allowing  for  the  effect  of temperature.  The  model-based  estimate  uses  all  56

observations while the matched pair approach uses only 20

—  it  will  be  more  efficient,  estimate  differences  with greater  precision  and  conduct  tests  with  more  power.  In this case, we have been able to find a good number of exact

matched  pairs,  but  depending  on  the  precision  with  which the confounder is measured and how many confounders are

simultaneously considered, it may not be possible to find a

good number of exact pairs. Relaxing the criterion to close

matching  may  be  necessary  to  get  enough  pairs.  Software such  as  the  Matching  package  of  Sekhon  (2011)  may  be helpful for this purpose. 

The matched pair perspective points out another problem

that  may  arise.  Suppose  we  were  to  use  this  approach  on the data in Figure 6.2.  The two groups do not overlap in the predictor  range  and  there  would  be  no  matched  pairs.  We would be entirely reliant on extrapolation for the validity of the  model-based  comparison.  This  also  illustrates  one

advantage of the matched pair approach in that it does not

depend on us specifying the correct functional form for the

model.  In  Figure  6.2  and  the  Whiteside  example,  linear  is correct but we cannot rely on this in general. 

In  some  cases,  we  may  have  perfect  overlap  in  that  the confounder distribution is the same for both groups. In this

instance, there would be no confounding and no adjustment

for  the  confounder  would  be  necessary  to  get  an  unbiased estimate  of  the  treatment  effect.  In  our  example,  we  can compute the mean temperature in the two groups:

with (whiteside , tapply (Temp , Insul , mean))

Before After

5.3500 4.4633

We see that they are not so different, and from Figure 6.4, we  see  that  distributions  in  temperature  are  not  far  apart for the two groups. There is some confounding but it is not

substantial.  Even  so,  we  would  still  want  to  make  the adjustment  for  a  second  reason.  Consider   SE( ^

 β)  for  the

estimated  difference  due  to  insulation.  In  the  simple  two-sample analysis we tried first, we found this SE was 0.265

while  after  the  adjustment,  it  was  0.097.  We  see  that  the model  adjustment  has  made  the  estimate  much  more

precise. 

This  increase  in  precision  suggests  another  potential

improvement.  Suppose  we  have  another  variable  which

does  affect  the  response  but  has  no  relationship  with  the predictor, either directly or through some ancestor like the

year in our example. At first glance, such a variable might

appear  to  have  no  relevance  to  our  study  but  we  can  see that including it in the model will be worthwhile because it

will  tend  to  increase  the  precision  of  our  estimates  even  if it has no confounding effect. 

Although  we  have  sharpened  our  argument  that  the installation  of  insulation  reduces  gas  usage,  there  are  still holes  in  our  argument.  We  might  substitute  any  other

variable  that  has  some  effect  on  gas  usage  and  changes from year to year. This may have some confounding effect. 

If  we  are  able  to  measure  it,  we  can  adjust  for  it. 

Unfortunately,  this  may  not  be  possible  or  we  might  not even know about the variable. Since the possibility of such

variables  will  always  exist  and  we  cannot  discount  their existence,  we  can  never  achieve  a  fully  convincing  causal argument.  Although  perfection  is  not  achievable,  we  can improve the quality of evidence for causation. Furthermore, 

we can use other arguments, as discussed in Section 6.7 to make  our  case  more  convincing.  In  this  example,  the

physics  of  radiation  supports  our  claims  for  the  effect  of insulation. 

6.5 Designed Experiments

In  a  designed  experiment,  we  have  control  over  the

treatment  T. The treatment should have at least two levels so that some aspect of comparison is possible. When there

are two levels, these are often called treatment and control, 

where the former is the new treatment and the latter is the

standard  or  default  treatment.  This  is  slightly  confusing since treatment is used as the name for the variable and a

level  within  that  variable.  There  are   experimental  units  to which  the  treatment  is  applied.  Although  we  would  prefer that  these  units  be  as  homogeneous  as  possible,  we

recognize that they may vary in ways we may or may not be able  to  identify.  In  addition,  although  we  will  attempt  to maintain  consistent  conditions  for  the  experiment,  other variables  may  affect  the  response.  We  may  or  may  not  be able to identify these variables. 

For  example,  suppose  we  wish  to  compare  the  effect  of two  physical  exercise  regimes  on  resting  heart  rate.  The experimental units are the people we use for the study. 

We  can  measure  some  characteristics  of  these  people, 

such as their sex or weight, but they will vary in other

ways  that  we  do  not  know  but  that  also  affect  the

response. 

There may be some other potential predictors which we

can control such as the type of equipment used. Unless

we have some interest in their effect, we want to keep

these constant. 

Other  variables  such  as  the  outdoor  temperature

cannot be controlled but can be measured. 

In  a   completely  randomized  design,  we  randomly  assign the  treatments  to  the  experimental  units.  We  might  often fix  the  number  of  units  for  each  level  of  the  treatment  but

this  is  not  essential.  This  experiment  is  depicted  in  Figure

6.5:  The  other  variables  include  both  those  that  are


characteristics  of  the  experimental  unit  and  those  that represent  varying  conditions  during  the  experiment.  They include  variables  we  measure,  know  about  but  cannot

measure, or are unaware of. The other variables must have
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some  effect  on  the  response,  otherwise  they  have  no

interest  to  us.  The  most  important  benefit  of  the

randomization is that these other variables are independent

of  the  treatment.  This  means  we  expect  no  confounding

effect  from  these  variables,  even  the  ones  we  cannot

measure or do not know about. 

Figure  6.5   Completely  Randomized  Design.  Other variables  may  affect  the  response  but  are  independent  of the  response  due  to  the  random  assignment  of  the

treatment. 

From  the  counterfactual  perspective,  we  would  like

balance  among  the  different  treatment  levels  of  the

experiment.  The  random  choice  of  the  treatments

administered to the experimental units will tend to produce

a balanced allocation but there is no guarantee of this. For

example,  suppose  that  in  our  exercise  study,  unknown  to us,  about  half  the  subjects  are  sporty  and  half  are  lazy. 

There is a good chance that these two types of subject will

be  roughly  equally  balanced  between  the  two  treatments, but  perhaps  we  are  unlucky  and  this  is  not  so.  We  are  not concerned  for  we  have  a  compelling  argument  to  use.  A permutation  test  (see  Section  4.3)  can  be  used  to  test  the

null  hypothesis  of  no  difference  between  the  groups.  The justification  of  the  permutation  test  relies  on  the  observed allocation  being  chosen  randomly  from  all  possible

allocations  to  groups.  By  using  randomization,  we

implement  this  assumption.  It  is  true  we  could  get  an unbalanced  allocation  by  chance  but  we  also  understand

that  we  will  reject  true  null  hypotheses  by  chance.  So  this possibility  is  built  into  the  reasoning  behind  the  test. 

Remember  that  the  permutation  test  tends  to  agree  with the 

normal-based 

test 

provided 

the 

linear 

model

assumptions  are  justified.  So  it  is  usually  reasonable  that we  use  the  normal-based  test  rather  than  actually  do  the work required for the permutation test. 

It  is  reasonable  to  include  the  other  measured  variables in  the  model.  They  cannot  have  a  causal  effect  on  the treatment  due  to  the  randomization  so  they  are  not

confounders.  They  may  explain  some  variation  in  the

response,  and  by  including  them  in  the  model,  we  obtain more  precise  estimates  of  the  effects  of  interest  by

reducing the variation. Sometimes variables of this type are

called   covariates  although  the  terminology  is  not consistently applied and some authors will use this term to

refer to predictors that are not the main focus of study. 

It  is  important  not  to  include  variables  that  might  be caused  by  the  response.  Such  variables  may  be  called

 colliders  and  including  them  in  the  model  will  likely invalidate the conclusions. 

Sometimes, experimental units differ in identifiable ways. 

For  example,  some  subjects  may  be  male  and  others

female. We may wish to incorporate this into the design by

restricting  the  randomization.  The  obvious  strategy  is  to randomize  separately  the  assignment  of  the  treatments

among males and females. This will ensure that the groups

are  balanced  by  sex.  In  this  example,  sex  is  called  a blocking  variable.  Such  designs  are  covered  in  detail  in

Chapter  18.   In  other  cases,  there  may  be  variables  which are  not  properties  of  the  experimental  units  (like  sex)  but can  be  assigned  (like  time  of  exercise).  In  both  situations, we will want to arrange the design so that it is  orthogonal. 

This  concept  is  explained  in  Section  2.12.   This  is  not essential for causal conclusions but it does greatly simplify

them. 

We have considered a binary treatment variable  T but the same  goes  for  continuous  potential  causal  variables.  Some additional  assumptions  or  care  in  the  modeling  may  be

necessary regarding the functional form of the relationship

— for example, that  T has a linear effect on the response. 

Designed experiments are much better for making causal

conclusions than observational studies. There are two main

drawbacks.  Practicality  or  ethical  considerations  may

prevent random allocation of the treatment. The restricted

conditions  of  the  experiment  may  mean  that  our

conclusions  hold  only  in  this  narrow  setting  and  may  not follow in the wider world. 

6.6 New Hampshire Primary Example

In  this  example,  establishing  the  confounding  variable involves  greater  complications.  It  is  also  different  in  that our  motivation  is  to  find  a  confounding  variable  that

provides  a  more  plausible  explanation  for  the  observed

data. 

On  the  8th  January  2008,  primaries  to  select  US

presidential  candidates  were  held  in  New  Hampshire.  In

the  Democratic  party  primary,  Hillary  Clinton  defeated

Barack  Obama  contrary  to  the  expectations  of  pre-election opinion  polls.  Two  different  voting  technologies  were  used in  New  Hampshire.  Some  wards  (administrative  districts)

used  paper  ballots,  counted  by  hand,  while  others  used optically  scanned  ballots,  counted  by  machine.  Among  the paper  ballots,  Obama  had  more  votes  than  Clinton  while Clinton  defeated  Obama  on  just  the  machine-counted

ballots.  Since  the  method  of  voting  should  make  no  causal difference  to  the  outcome,  suspicions  were  raised

regarding  the  integrity  of  the  election.  The  data  was

derived  from  Herron  et  al.  (2008)  where  a  more  detailed analysis may be found. 

data (newhamp, package = “faraway”)

aggregate (cbind (Obama, Clinton) ~ votesys, newhamp, sum)

votesys Obama Clinton

1         D 86353   96890

2         H 16926   14471

We focus our interest on the voting system variable votesys

which  can  either  be  ‘D’  for  digital  or  ‘H’  for  hand.  We  use the  proportion  voting  for  Obama  in  each  ward  as  the

response. Strictly speaking this is a binomial response and

we should model it accordingly. Nevertheless, the normal is a good approximation for the binomial given a large enough

sample and probabilities not close to zero or one. We have

that  in  this  sample.  Even  so,  a  binomial  variance  is

 np(1 −  p)  for  proportion   p  and  sample  size   n.  Both  these vary  in  this  example  and  so  the  assumption  of  equal

variance  is  violated.  We  can  fix  this  problem  by  using weights as described in Section 9.2,  but this would make no appreciable difference to our discussion here so we ignore

it. 

Let  us  fit  a  linear  model  with  just  voting  system  as  a predictor.  We  create  an  indicator  variable  for  this

treatment  where  one  represents  hand  and  zero  represents digital voting:

lmodu = lm (pObama ~ votesys , newhamp)

summary (lmodu)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)  0.35252    0.00517   68.15 < 2e-16

votesysH     0.04249    0.00851    4.99 1.1e-06



Residual standard error: 0.0682 on 274 degrees of freedom

Multiple R-squared: 0.0834,                Adjusted R-squared: 0.0801

F-statistic: 24.9 on 1 and 274 DF,        p-value: 1.06e-06

We  can  tell  from  the  H  at  the  end  of  votesysH  that  hand ballots  are  coded  as  one  and  digital  ballots  are  coded  as zero. The model takes the form:

 yi =  β 0 +  β 1 Ti +  εi (6.2)

When digital voting is used, the predictor is set to zero and

the predicted proportion is therefore  ^

 β 0 = 35%. When hand

voting  is  used,  the  prediction  is  ^

 β 1 = 4%  higher.  We  see

from  the  very  small   p-value  of  0.0000011  that  this difference  is  statistically  significant.  So  we  are  quite  sure that Obama received a higher proportion of the vote in the

hand  voting  wards  —  an  amount  sufficient  to  make  a

difference  in  close  elections.  The  question  is  why?  Did  the voting method have some causal effect on the outcome? 

Suppose  that  the  correct  model  involved  some  third

variable  Z that had a causal effect on the vote and took the form:

 yi =  β∗0 +  β∗1 Ti +  β∗2 Zi +  εi (6.3)

and suppose that this  Z was linked to  T by:

 Zi =  γ 0 +  γ 1 Ti +  ε′ i (6.4)

 Z  would  be  a   confounding  variable.  Substituting  the  latter into  the  former,  we  find  the  coefficient  for   T  is   β∗1 +  β∗2 γ 1. 

Compare this to the β1 in the initial model where we do not

include   Z.  There  are  two  ways  in  which  the  conclusion could  be  the  same  for  the  two  models.  We  could  have

 β∗2 = 0  when   Z  has  no  effect  on  the  response  or   γ 1 = 0

where the treatment has no relation to  Z. Otherwise  Z will have  an  effect  on  our  conclusions  and  the  initial  model which  excludes   Z  will  provide  a  biased  estimate  of  the treatment effect. In a designed experiment, we have  γ 1 = 0

by  the  randomization  in  the  assignment  of   T.  But  there  is no  reason  to  believe  that  the  voting  method  has  been

randomly assigned. 

Does such a third variable  Z exist for the New Hampshire voting  example?  Consider  the  proportion  of  votes  for

Howard  Dean,  a  Democratic  candidate  in  the  previous

presidential  campaign  in  2004.  We  plot  the  data  in  Figure

6.6:

plot (pObama ~ Dean , newhamp , pch = unclass (votesys))

legend (“topleft” , legend = c (“Digital” , “Hand”) , pch = 

1:2)
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Figure  6.6   Proportion  of  primary  votes  for  Obama  in 2008 compared to votes for Dean in 2004 distinguished by

voting  method  denoted  by  the  plotting  symbols.  The

horizontal  lines  show  the  fits  not  using  Dean  while  the sloped lines show the fit that accounts for Dean. 

We see a positive association between the votes for Obama

and Dean. We see that both Obama and Dean tended to do

better  in  the  hand-voting  wards  compared  to  the  digital-voting wards. We can show the difference between the two

voting systems according to the Obama vote with:

ccu = coef (lmodu)

abline (h = c (ccu [1] , ccu [1] + ccu [2]) , lty =1:2)

We add Dean to the model:

lmodz = lm (pObama ~ votesys +   Dean , newhamp)

summary (lmodz)

Coefficients:

            Estimate Std. Error t value Pr(>|t|) (Intercept) 0.22112     0.01125   19.65   <2e-16

votesysH    -0.00475    0.00776   -0.61     0.54

Dean         0.52290    0.04165   12.55   <2e-16



Residual standard error: 0.0544 on 273 degrees of freedom

Multiple R-squared: 0.419,                  Adjusted R-squared: 0.415

F-statistic: 98.4 on 2 and 273 DF,         p-value: <2e-16

We  see  that  the  effect  of  the  voting  system  is  no  longer statistically  significant  with  a   p-value  of  0.54.  The proportion voting for Dean shows a positive relationship to

the  proportion  voting  for  Obama.  We  can  show  the  two

lines for the fit according to the voting system with:

ccz = coef (lmodz)

abline (ccz [1] , ccz [3])

abline (ccz [1]+ ccz [2] , ccz [3] , lty =2)

We see that these two lines are close, indicating that there

is  not  much  difference  due  to  the  voting  system  once  we take the Dean vote into account. 

We  can  also  check  that  this  third  variable  is  related  to our “treatment” variable. 

summary (lm (Dean ~ votesys , newhamp))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.25129     0.00599   41.99   <2e-16

votesysH     0.09034    0.00985    9.18   <2e-16



Residual standard error: 0.0789 on 274 degrees of freedom

Multiple R-squared: 0.235,                Adjusted R-squared: 

0.232

F-statistic: 84.2 on 1 and 274 DF,       p-value: <2e-16

We  have  the  necessary  statistical  conditions  for  a

demonstration  of  confounding  but  we  still  need  to  think about  the  causal  arguments  for  the  relationship  between the  variables.  Does  the  vote  for  Dean  cause  the  vote  for Obama? Not exactly but we can conceive of an unmeasured

political sentiment variable which might guide the choice of

candidate.  In  this  case,  voters  that  liked  Dean  tended  to like  Obama.  Our  argument  still  works  if  the  association between  the  preference  for  the  two  candidates  were

negative rather than positive. We just need an association, 

positive  or  negative.  Since  the  Dean  2004  vote  preceded the  Obama  2008  votes,  the  direction  of  “cause”  is

established. 

The  vote  for  Dean  is  associated  but  did  not  cause  the voting  method.  We  have  some  justification  for  the  Dean vote being a confounding variable. Looking closer, there is

a  clear  difference  between  the  wards  according  to

population:

aggregate (population ~ votesys , newhamp , mean)

votesys population

1         D     6248.1

2         H     1687.2

We  see  that  the  hand  voting  wards  are  much  smaller  in population  on  average.  It  is  plausible  that  smaller  wards might not want the expense of digital voting machines and

opt  for  the  hand  voting  method.  It  is  also  plausible  that smaller wards might have different political preferences to

larger  wards.  It's  also  conceivable  that  there  was  some other property of the wards that might lead them to prefer

hand  voting  and  Dean  or  the  complement.  Either  way,  we claim  there  are  some  properties  of  the  ward  which  would cause  both  the  voting  method  and  the  vote  for  Dean.  This would explain the association between the two variables. 

There is a weakness in our argument in that perhaps the

same  supposed  shadowy  powers  that  conspired  against

Obama  in  2008  did  the  same  for  Dean  in  2004.  In  this scenario, the voting method had a causal effect on the vote

for  Dean  which  would  then  be  a  mediator  and  not  a

confounder. Our contention that the disparity in the Obama

vote  according  to  voting  method  is  caused  by  political preferences  and  not  by  some  conspiracy  fits  with  the

observed  data  but  does  not  exclude  the  possibility  of  the more  sensational  claim.  We  see  that  in  examples  such  as these,  the  statistical  methods  are  straightforward  but  the reasoning is more problematic. 

6.7 Qualitative Support for Causation

In  observational  studies,  there  is  a  limit  to  what  can  be achieved  with  statistical  manipulations.  Sir  Bradford  Hill was a central figure in establishing the causal link between

smoking and lung cancer. In Hill (1965) he laid out several general  considerations  that  can  reinforce  the  case  for  a causal link:

Strength By this, we do not mean a high correlation or a small  p-value but that  ^

 β is large in practical terms. 

Known covariates can be adjusted for, while unobserved and unsuspected confounding variables could easily lead

to small effects. It is less credible that some variable

whose existence was previously unknown could

counteract a large effect. 

Consistency A similar effect has been found for different subjects under different circumstances at different times

and places. If smokers, male and female, Argentinian and

Swedish, both now and in the past tend to get lung

cancer, then the evidence is stronger. Replication by

independent research groups is particularly important in

establishing causation. 

Specificity The supposed causal factor is associated mostly with a particular response and not with a wide range of

other possible responses. If a particular lung disease is

only prevalent in workers in a particular industry and

those workers do not suffer from other problems any

more than other industrial workers, then the case is

stronger. 

Temporality The supposed causal factor is determined or fixed before the outcome or response is generated. 

Sometimes it is not clear whether  X causes  Y or vice versa. It helps if  X happens before  Y if we want to establish the direction of the effect. 

Gradient The response increases (or decreases)

monotonely as the supposed causal variable increases. In

other words, “the more you do it, the worse it gets.” The

phenomenon of  hormesis is an exception. For example, a

low consumption of alcohol may have health benefits relative to abstinence but drinking too much becomes

progressively more harmful. 

Plausibility There is a credible theory suggesting a causal effect. The observational study might be part of an effort

to support a particular theory. 

Experiment A natural experiment exists where subjects

have apparently been randomly assigned values of the

causal variable. For example, US states have different

laws that have differential effects on the causal factor. 

Sometimes it is reasonable to view this as a form of

random assignment. Generally, we conduct observational

studies because experiments are not practical but

sometimes it is possible to do related experiments. For

example, animal experiments might tell us something

about effects for humans. 

Not  all  of  these  might  apply,  but  causation  might  still  be present. All of these might apply, but we may not be sure of

causation. Nevertheless, these considerations do add to the

weight  of  evidence  even  though  we  cannot  express  the

effect numerically. 

6.8 Summary

We  have  demonstrated  the  predictive  interpretation  of

regression coefficients. We have introduced the problem of

confounding  and  how  counterfactual  ideas  can  clarify

causal  arguments.  We  have  four  ways  to  tackle

confounding:

1.  Randomization  is  the  most  effective  method  in  that deals  with  all  possible  confounders,  even  the  ones  we

do  not  know  about.  It  requires  a  designed  experiment

so  that  we  have  control  over  the  assignment  of

treatments to the experimental units. 

2.  Restriction  means  that  we  hold  the  confounder constant.  This  requires  that  we  have  control  over  the

confounder  or  that  we  carry  out  separate  analyses  for

each level of the confounder. 

3.  Matching  is  useful  for  a  two-level  treatment  where  we can  find  pairs  of  observations  with  the  same  values  of the  confounder(s).  Opportunities  are  limited  by  the

number and type of confounder. 

4.  Statistical  Control  uses  a  model  to  control  for  the effects  of  the  confounders.  We  need  to  have  measured

the  confounders  and  choose  the  appropriate  form  of

model. 

All  the  methods  have  some  drawbacks  and  may  not  be

appropriate for use in any given situation. 

More  advanced  methods  are  available  depending  on  the

data and subject matter. We have mentioned mediators and

colliders.  Methods  such  as  differences  in  differences, 

propensity 

score 

matching, 

regression 

discontinuity

designs  and  instrumental  variables  can  be  useful  in

strengthening  causal  arguments.  For  an  accessible

overview,  see  Pearl  and  Mackenzie  (2018);   however  be aware  that  many  statisticians  would  not  agree  the  strong

assertions made in this text. Another readable text from an

economics  perspective  is  provided  by  Angrist  and  Pischke

(2009).  For  a  survey  of  causal  methods,  see  Hernán  and

Robins (2022). 

In general, in most cases it is very difficult to establish an inarguable  case  for  causation.  But  one  can  make  stronger arguments  in  favor  of  causal  claims  using  the  appropriate choice of methods. 

Exercises

1. Use  the  teengamb  data  with  gamble  as  the  response.  Focus on  the  effect  of  sex  on  the  response  and  so  include  this predictor  in  all  models.  There  are  eight  possible  models that  include  all,  some,  or  none  of  the  other  three

predictors.  Fit  all  these  models  and  report  on  the

coefficient and significance of sex in each case. Comment

on the stability of the effect. 

2. Use the odor dataset with odor as the response and temp as

a predictor. Consider all possible models that also include

all, some or none of the other two predictors. Report the

coefficient  for  temperature,  its  standard  error,  t-statistic and   p-value  in  each  case.  Discuss  what  stays  the  same, what changes and why. Which model is best? 

3. Use the teengamb data for this question. 

(a)

Make  a  plot  of  gamble  on  income  using  a  different

plotting symbol depending on the sex. 

(b)

Fit  a  regression  model  with  gamble  as  the  response

and  income  and  sex  as  predictors.  Display  the

regression fit on the plot. 

(c)

Create all the matched pairs between a male and a

female with the same income using:

mattg = merge(

teengamb[teengamb$sex == 1,c(3,5)], 

teengamb[teengamb$sex == 0,c(3,5)], 

by="income", 

suffixes = c(“female”,“male”))

mattg

How  many  matched  pairs  were  found?  How  does

this  compare  to  the  number  of  individuals  in  the

dataset? 

(d)

Conduct  a  paired  t-test  for  the  difference  between

male  and  female  gamblers.  What  assumption  of

such a test is clearly not justified in this case. 

(e)

Using  the  model  from  (b),  estimate  the  difference

in  the  response  between  males  and  females, 

adjusting for income. How does the answer compare

to that in (d)? 

(f)

Plot  the  differences  in  the  amount  gambled  in  the

matched  pairs  against  income.  Does  the  difference

tend to vary with income? 

(g)

Plot  gamble  against  income.  Fit  a  line  to  just  females and  display  the  fit  on  the  plot.  Do  the  same  for

males.  Compare  the  two  lines  and  comment.  How does this relate to the answer to (f)? 

4. Thirty-nine  MBA  students  were  asked  about  happiness

and  how  this  related  to  their  income  and  social  life.  The data are found in mba. 

(a)

Fit  a  regression  model  with  happy  as  the  response

and  the  other  four  variables  as  predictors.  Give  an

interpretation  for  the  meaning  of  the  love

coefficient. 

(b)

The  love  predictor  takes  three  possible  values  but

mostly  takes  the  value  2  or  3.  Create  a  new

predictor  called  clove  which  takes  the  value  zero  if

love  is  2  or  less.  Use  this  new  predictor  to  replace love  in  the  regression  model  and  interpret  the

meaning  of  the  corresponding  coefficient.  Do  the

results differ much from the previous model? 

(c)

Fit  a  model  with  only  clove  as  a  predictor  and

interpret  the  coefficient.  How  do  the  results

compare to the previous outcome? 

(d)

Make  a  plot  of  happy  on  work,  distinguishing  the

value clove by using a plotting symbol. Use jittering

to distinguish overplotted points. 

(e)

Use  the  command  xtabs(∼  clove  +  work,  happy)  to

produce  a  crosstabulation.  If  we  wanted  to  match

pairs  on  clove  with  the  same  value  of  work,  what  is

the  maximum  number  of  1  to  1  matches  we  could achieve? 

(f)

For  each  value  of  work,  compute  the  mean

difference  in  happy  for  the  two  levels  of  clove. 

Compute  an  average  of  these  differences.  Fit  the

linear  model  that  estimates  this  difference  without

using matched pairs and compare. 

5. The sat data shows the relationship between spending on

education and test results in the United States. 

(a)

Plot the total SAT score against the teacher salary. 

Show  the  regression  line  on  the  plot.  Comment  on

the nature of the relationship. Does this represent a

causal effect? 

(b)

Is  the  relationship  seen  in  the  previous  plot

statistically significant? 

(c)

Use  the  symbols()  function  in  base  plot  or  the  size

aesthetic in ggplot to make a plot of sat total score

against teacher salary where the size of the point is

proportional  to  the  proportion  of  test  takers. 

Interpret the plot. 

(d)

Fit  a  model  predicting  SAT  total  scores  using  the

proportion of test takers. What is the nature of the

relationship? Would it be reasonable to assume that

the relationship is causal? 

(e)

What  is  the  correlation  between  teacher  salaries

and  the  proportion  of  test  takers.  Is  the  the

relationship causal? 

(f)

Fit  a  model  predicting  total  SAT  scores  using

teacher  salaries  and  the  proportion  of  takers. 

Compare  this  with  the  output  from  (b).  Is  this  an

example of confounding and/or Simpson's paradox? 

6. This  question  investigates  variations  on  the  newhamp  data analysis seen in the chapter. 

(a)

Fit the central model of pObama ∼ votesys + Dean and

show the summary output. 

(b)

In the main analysis, the proportion for Obama was

the response and the remaining proportion was for

Clinton  and  other  candidates.  To  focus  on  the

Obama-Clinton  rivalry,  replace  the  response  with

the  proportion  voting  for  Obama  out  of  the  total

voting for Obama or Clinton. Does this make much

difference to the conclusions? 

(c)

John  Kerry  was  the  eventual  winner  in  the

Democratic  nomination  race  in  2004.  Investigate

the  effect  of  replacing  Dean  with  Kerry  in  our

model. 

(d)

Replace the Dean vote with the poverty rate. Is the

poverty rate a confounder? 

(e)

Investigate  pci,  white  and  population  as  potential

confounders. 

Chapter 7

Diagnostics

DOI: 10.1201/9781003449973-7

The estimation of and inference from the regression model

depend  on  several  assumptions.  These  assumptions  should

be  checked  using   regression  diagnostics  before  using  the model  in  earnest.  We  divide  the  potential  problems  into three categories:

Error We have assumed that  ε ∼  N(0,  σ 2 I) or in words, that the errors are independent, have equal variance and

are normally distributed. 

Model We have assumed that the structural part of the

model,  Ey =  Xβ, is correct. 

Unusual observations Sometimes just a few observations

do not fit the model. These few observations might

change the choice and fit of the model. 

Diagnostic  techniques  can  be  graphical,  which  are  more

flexible  but  harder  to  definitively  interpret,  or  numerical, which  are  narrower  in  scope  but  require  less  intuition. 

When searching for a good model, the first one we try may

prove  to  be  inadequate.  Regression  diagnostics  often suggest  specific  improvements,  which  means  model

building  is  an  iterative  and  interactive  process.  It  is  quite common  to  repeat  the  diagnostics  on  a  succession  of

models. 

7.1 Checking Error Assumptions

We wish to check the independence, constant variance and

normality  of  the  errors,  ϵ.  The  errors  are  not  observable, but  we  can  examine  the  residuals, 

 ε.  These  are  not

interchangeable  with  the  errors,  as  they  have  somewhat

different  properties.  Recall  that  ^

 y =  X( XT X)−1 XT y =  Hy

where  H is the hat matrix, so that:

^ ε =  y − ^ y = ( I −  H) y = ( I −  H) Xβ + ( I −  H) ε = ( I −  H) ε

(7.1)

Therefore, var ^

 ε = var ( I −  H) ε = ( I −  H) σ 2 assuming that var  ε =  σ 2 I.  We  see  that  although  the  errors  may  have equal  variance  and  be  uncorrelated,  the  residuals  do  not. 

The  impact  of  this  is  usually  small  and  diagnostics  can reasonably be applied to the residuals in order to check the

assumptions  on  the  error  but  we  can  also  modify  the

residuals to adjust for this effect. 

 Constant Variance

It  is  not  possible  to  check  the  assumption  of  constant variance just by examining the residuals alone — some will

be  large  and  some  will  be  small,  but  this  proves  nothing. 

We  need  to  check  whether  the  variance  in  the  residuals  is related to some other quantity. 

A violation of the assumption of constant variance in the

errors  has  consequences.  Least  squares  will  not  be  the most  efficient  estimator  of   β.  Weighted  least  squares, discussed  in  Section  9.2,   will  be  superior.  Even  under  the standard  assumptions,  the  prediction  error  variance

becomes greater the further the point of prediction is from

the mean of the predictors. But if the variance of the errors

is not constant, there is an additional effect. The prediction error  will  depend  on  the  point  of  prediction   x 0  in  another way.  In  regions  where  the  error  variance  is  less,  the uncertainty should be less and vice versa. If we do not take

account  of  the  nonconstant  variance,  the  prediction

intervals  will  be  either  too  narrow  or  too  wide  depending on  where  we  are  predicting.  Nonconstant  variance  is  not the  worst  violation  of  the  model  assumptions,  but  it  will cause some problems with the conclusions. 

The most useful diagnostic is a plot of  ^

 ε against ^ y. If all is

well, you should see constant symmetrical variation (known

as  homoscedasticity)  in  the  vertical  (^

 ε)  direction. 

Nonconstant  variance  is  also  called  heteroscedasticity. 

Nonlinearity in the structural part of the model can also be

detected in this plot. In Figure 7.1, three distinct cases are illustrated. 

[image: Image 24]

Figure 7.1  Residuals vs. fitted plots — the first suggests no  change  to  the  current  model  while  the  second  shows nonconstant  variance  and  the  third  indicates  some

nonlinearity,  which  should  prompt  some  change  in  the

structural form of the model. 

It  is  also  worthwhile  to  plot  ^

 ε  against   xi  for  potential

predictors  that  are  in  the  current  model  as  well  as  those not  used.  The  same  considerations  in  these  plots  should apply.  For  plots  of  residuals  against  predictors  not  in  the model,  any  observed  structure  may  indicate  that  this

predictor should be included in the model. 

We illustrate this using the savings dataset:

data (savings , package = “faraway”)

lmod = lm (sr ~ pop15 + pop75 + dpi + ddpi , savings)

The  basic  plot,  as  seen  in  the  first  panel  of  Figure  7.2, shows residuals against fitted values. It is worth adding the

^ ε = 0 line to help with the interpretation. 

plot (fitted (lmod) , residuals (lmod) , 
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xlab = “Fitted ” , ylab = “Residuals”)

abline (h =0)

Figure 7.2  Residual vs. fitted plot for the savings data is

√

shown on the left and the corresponding 

|^ ε| against ^ y on

the right. Both plots are satisfactory. 

We  see  no  cause  for  alarm  in  this  plot.  If  we  would  like  to examine  the  constant  variance  assumption  more  closely,  it

√

helps  to  plot 

|^ ε|  against  ^ y.  Once  we  have  excluded  the possibility of non-linearity in the first plot and the residuals look roughly symmetric, then we can effectively double the

resolution  by  considering  the  absolute  value  of  the

residuals. For truly normal errors, |^

 ε| would follow what is

known  as  a  half-normal  distribution  (since  it  has  a  density which is simply the upper half of a normal density). Such a

distribution is quite skewed, but this effect can be reduced by the square root transformation. 

plot (fitted (lmod) , sqrt (abs (residuals (lmod))) , 

xlab = “Fitted” , ylab = “Root absolute residuals”)

The  plot,  as  seen  in  the  second  panel  of  Figure  7.2,   shows approximately constant variation. A quick numerical test to

check  nonconstant  variance  can  be  achieved  using  this

regression:

summary (lm (sqrt (abs (residuals (lmod))) ~ fitted (lmod)))

Estimate Std. Error t value Pr(>|t|)

(Intercept)      2.1622     0.3479    6.22   <1e-04

fitted(lmod)    -0.0614     0.0348   -1.77    0.084



Residual standard error: 0.634 on 48 degrees of freedom

Multiple R-squared: 0.061,           Adjusted R-squared: 0.0414

F-statistic: 3.12 on 1 and 48 DF,          p-value: 0.0838

This  test  is  not  quite  right,  as  some  weighting  should  be used  and  the  degrees  of  freedom  should  be  adjusted,  but there  does  not  seem  to  be  a  clear  problem  with

nonconstant variance. Another difficulty is that it only tests for  a  linear  trend  in  the  variation.  A  formal  test  may  be good at detecting a particular kind of nonconstant variance

but may have little power to detect another. Residual plots

are more versatile because unanticipated problems may be

spotted. 

A  formal  diagnostic  test  may  have  a  reassuring  aura  of exactitude  about  it,  but  one  needs  to  understand  that  any such  test  may  be  powerless  to  detect  problems  of  an

unsuspected nature. Graphical techniques are usually more

effective  at  revealing  structure  that  you  may  not  have suspected.  Of  course,  sometimes  the  interpretation  of  the plot  may  be  ambiguous,  but  at  least  we  can  be  sure  that nothing  is  seriously  wrong  with  the  assumptions.  For  this reason,  we  usually  prefer  a  graphical  approach  to

diagnostics, with formal tests reserved for the clarification

of indications discovered in the plots. 

It  is  often  hard  to  judge  residual  plots  without  prior experience  so  it  is  helpful  to  generate  some  artificial  plots where the true relationship is known. The following four for

loops show:

1. Constant variance

2. Strong nonconstant variance

3. Mild nonconstant variance

4. Nonlinearity

par (mfrow = c (3 ,3))

n = 50

for (i in 1:9) {x =      runif (n)   ;   plot (x , rnorm (n))}

for (i in 1:9) {x =      runif (n)   ;   plot (x , x * rnorm 

(n))}

for (i in 1:9) {x =      runif (n)   ;   plot (x , sqrt ((x)) * 

rnorm (n))}

for (i in 1:9) {x =      runif (n)   ;   plot (x , cos (2 * x * 

pi) + rnorm (n))}

par (mfrow = c (1 ,1))

Repeat,  varying  the  sample  size  and  sd  to  get  an  idea  of how the plots might vary even when we know the true data

generating mechanism. Type help(Distributions) to see how to generate data from different distributions to get an even

broader picture. 

The  artificial  generation  of  plots  is  a  good  way  to

“calibrate”  diagnostic  plots.  It  is  often  hard  to  judge whether  an  apparent  feature  is  real  or  just  random

variation.  Repeated  generation  of  plots  under  a  known

model,  where  there  is  or  is  not  a  violation  of  the

assumption that the diagnostic plot is designed to check, is

helpful in making this judgment. 

Now  look  at  some  residuals  against  predictor  plots  for the savings data:

plot (savings $ pop15 , residuals (lmod), 

xlab = “Population under 15” , ylab = “Residuals”)

abline (h =0)

plot (savings $ pop75 , residuals (lmod) , 

xlab = “Population over 75 ” , ylab = “Residuals”)

abline (h =0)

The  plots  may  be  seen  in  Figure  7.3.   Two  groups  can  be seen in the first plot. Let's compare and test the variances

in  these  groups.  Given  two  independent  samples  from

normal  distributions,  we  can  test  for  equal  variance  using the test statistic of the ratio of the two variances. The null distribution  is  an   F  with  degrees  of  freedom  given  by  the two samples:

var.test (residuals (lmod) [savings $ pop15 > 35], 

residuals (lmod) [savings $ pop15 < 35])

F test to compare two variances



[image: Image 26]

data: residuals(lmod)[savings$pop15 > 35] and residuals(lmod)

[savings$pop15 < 35]

F = 2.7851, num df = 22, denom df = 26, p-value = 0.01358

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

1.2410 6.4302

sample estimates:

ratio of variances

2.7851

Figure  7.3   Residuals  vs.  predictor  plots  for  the  savings data. 

A significant difference is seen. 

When  problems  are  seen  in  these  diagnostic  plots,  some modification  of  the  model  is  suggested.  If  some  nonlinearity  is  observed,  perhaps  in  conjunction  with  non-

constant variance, a transformation of the variables should

be  considered.  The  shape  of  the  plot  may  suggest  the

transformation to be used. See Chapter 10 for more. If the problem  is  solely  one  of  non-constant  variance  with  no suggestion  of  non-linearity  then  the  use  of  weighted  least squares (see Section 9.1) may be more appropriate. 

Sometimes,  when  non-constant  variance  is  seen  in  the

plot  of  ^

 ε  against  ^ y,  a  transformation  of  the  response   y  to h( y) where  h() can be chosen so that var  h( y) is constant. 

To see how to choose  h consider this expansion:

 h( y)

=  h( Ey) + ( y −  Ey) h′( Ey) + ⋯

var  h( y) = 0 +  h′( Ey)2var  y + ⋯

We  ignore  the  higher  order  terms.  For  var  h( y)  to  be constant we need:

 h′( Ey) ∝ (var  y)−1/2

(7.2)

which suggests:

 h( y) = ∫

 dy

== ∫  dy

√var  y

SD y

(7.3)

For  example  if  var  y = var  ε ∝ ( Ey)2,  then   h( y) = log  y  is suggested while if var  y ∝ ( Ey), then  h( y) = √ y. 

In  practice,  you  need  to  look  at  the  plot  of  the  residuals and fitted values and take a guess at the relationship. When

looking at the plot, we see the change in  SD( y) rather than var  y, because the SD is in the units of the response. If your initial guess is wrong, you will find that the diagnostic plot in  the  transformed  scale  is  unsatisfactory.  You  can  simply try  another  transformation  —  some  experimentation  is

sensible. 

Sometimes  it  can  be  difficult  to  find  a  good

transformation.  For  example,  when   yi ≤ 0  for  some   i, square  root  or  log  transformations  will  fail.  You  can  try, say,  log( y +  δ),  for  some  small   δ  but  this  makes interpretation difficult. 

Consider  the  residual  vs.  fitted  plot  for  the  Galápagos data:

data (gala , package = “faraway”)

lmod = lm (Species ~ Area + Elevation + Scruz +

Nearest + Adjacent , gala)

plot (fitted (lmod) , residuals (lmod), 

xlab = “Fitted ” , ylab = “Residuals”)

abline (h =0)

We  can  see  non-constant  variance  (and  evidence  of  non-

linearity)  in  the  first  plot  of  Figure  7.4.   The  square  root transformation  is  often  appropriate  for  count  response

data.  The  Poisson  distribution  is  a  good  model  for  counts and  that  distribution  has  the  property  that  the  mean  is

[image: Image 27]

equal  to  the  variance,  thus  suggesting  the  square  root transformation. We try that:

Figure  7.4   Residual  vs.  fitted  plots  for  the  Galápagos data  before  (left)  and  after  (right)  a  square  root

transformation of the response. 

lmod = lm (sqrt (Species) ~ Area + Elevation + Scruz +

Nearest + Adjacent , gala)

plot (fitted (lmod) , residuals (lmod) , 

xlab = “Fitted ” , ylab = “Residuals”)

abline (h =0)

We see in the second plot of Figure 7.4 that the variance is now constant and the signs of non-linearity have gone. Our

guess  at  a  variance  stabilizing  transformation  worked  out here, but had it not, we could always have tried something

else. 

 Normality

[image: Image 28]

The tests and confidence intervals we use are based on the

assumption of normal errors. The residuals can be assessed

for normality using a  Q–Q plot. This compares the residuals to “ideal” normal observations. We plot the sorted residuals

against  Φ−1(  i

 n+1 )  for   i = 1, … ,  n.  Let's  try  it  out  on  the savings data:

lmod = lm (sr ~ pop15 + pop75 + dpi + ddpi , savings)

qqnorm (residuals (lmod) , ylab = “Residuals” , main = “”)

qqline (residuals (lmod))

See the first plot of Figure 7.5 — qqline() adds a line joining the  first  and  third  quartiles  so  that  it  is  not  influenced  by outliers. 

Normal 

residuals 

should 

follow 

the 

line

approximately. Here, the residuals look normal. 

Figure 7.5  Normality checks for the savings data. A Q–Q

plot is shown on the left and a histogram on the right. 

Histograms  and  boxplots  are  not  very  good  for  checking normality:

hist (residuals (lmod) , xlab = “Residuals ” , main = “”)

The  histogram  seen  in  the  second  plot  of  Figure  7.5  does not have the expected bell shape. This is because we must

group  the  data  into  bins.  The  choice  of  width  and

placement of these bins can have a substantial effect on the

appearance  of  the  histogram,  making  interpretation

problematic. A Q-Q plot does not require these choices. 

We can get an idea of the variation to be expected in Q–Q

plots  in  the  following  simulation.  We  generate  data  from different distributions:

1. Normal

2. Lognormal — an example of a skewed distribution

3. Cauchy  —  an  example  of  a  long-tailed  (leptokurtic)

distribution

4. Uniform  —  an  example  of  a  short-tailed  (platykurtic) distribution

We  generate  nine  replicates  at  a  time  from  each  of  these test cases:

par (mfrow = c (3 ,3))

n = 50

for (i in 1:9) {x =      rnorm (n) ; qqnorm (x) ; qqline (x)}

for (i in 1:9) {x =      exp (rnorm (n)) ; qqnorm (x) ; qqline (x)}

for (i in 1:9) {x =      rcauchy (n) ; qqnorm (x) ; qqline (x)}
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for (i in 1:9) {x =      runif (n) ; qqnorm (x) ; qqline (x)}

par (mfrow = c (1 ,1))

In  Figure  7.6,   you  can  see  examples  of  the  latter  three cases:

Figure 7.6  Q–Q plots of simulated data for, respectively, a  skewed  distribution,  a  long-tailed  distribution  and  a short-tailed distribution. 

It  is  not  always  easy  to  diagnose  the  problem  in  Q–Q

plots.  Sometimes  extreme  cases  may  be  a  sign  of  a  long-tailed error like the Cauchy distribution or they can be just

outliers. If removing such observations just results in other

points becoming more prominent in the plot, the problem is

likely due to a long-tailed error. 

When  the  errors  are  not  normal,  least  squares  estimates may  not  be  optimal.  They  will  still  be  best  linear  unbiased estimates,  but  other   robust  estimators,  as  discussed  in

Section  9.4,   may  be  more  effective.  Also  tests  and confidence intervals are not exact. However, we can appeal

to the central limit theorem which will ensure that the tests

and  confidence  intervals  constructed  will  be  increasingly accurate approximations for larger sample sizes. Hence, we

can  afford  to  ignore  the  issue,  provided  the  sample  is sufficiently  large  or  the  violation  not  particularly  severe. 

Where  there  are  long-tailed  errors,  one  needs  to  be

concerned about prediction. Prediction intervals may give a

false sense of security regarding the possibility of extreme

observations.  With  a  long-tailed  error  distribution,  these will  happen,  sooner  or  later.  In  applications,  such  as finance  or  insurance,  where  extreme  observations  may

result  in  catastrophic  losses,  one  cannot  rely  on  normal-based modeling. 

When  non-normality  is  found,  the  resolution  depends  on

the  type  of  problem  found.  For  short-tailed  distributions, the consequences of non-normality are not serious and can

reasonably be ignored. For skewed errors, a transformation

of  the  response  may  solve  the  problem.  For  long-tailed errors, we might just accept the non-normality and base the

inference  on  the  assumption  of  another  distribution  or  use resampling  methods  such  as  the  bootstrap  or  permutation tests.  Alternatively,  we  might  use  robust  methods,  which give  less  weight  to  outlying  observations  but  may  again require resampling for the inference. 

Also you may find that other diagnostics suggest changes

to  the  model.  In  this  changed  model,  the  problem  of  nonnormal  errors  might  not  occur  so  it  is  best  to  address  any non-linearity and non-constant variance problems first. 

The Shapiro–Wilk test is a formal test for normality:

shapiro.test (residuals (lmod))

Shapiro-Wilk normality test



data: residuals(g)

W = 0.987, p-value = 0.8524

The  null  hypothesis  is  that  the  the  residuals  are  normal. 

Since the  p-value is large, we do not reject this hypothesis. 

We  can  only  recommend  this  in  conjunction  with  a  Q–Q

plot at best. The  p-value is not very helpful as an indicator of  what  action  to  take.  With  a  large  dataset,  even  mild deviations  from  non-normality  may  be  detected,  but  there would be little reason to abandon least squares because the

effects  of  non-normality  are  mitigated  by  large  sample

sizes. For smaller sample sizes, formal tests lack power. 

 Correlated Errors

It  is  difficult  to  check  for  correlated  errors  in  general because  there  are  just  too  many  possible  patterns  of

correlation  that  may  occur.  We  do  not  have  enough

information to make any reasonable check. But some types

of  data  have  a  structure  which  suggests  where  to  look  for problems.  Data  collected  over  time  may  have  some

correlation  in  successive  errors.  Spatial  data  may  have correlation  in  the  errors  of  nearby  measurements.  Data

collected in blocks may show correlated errors within those

blocks. 

We  illustrate  the  methods  with  an  example  of  some

temporal  data.  In  general,  the  methods  of  time  series

analysis can be used but we will use methods more specific

to  the  regression  diagnostics  problem.  A  combination  of graphical and numerical methods is available. 

The  issue  of  global  warming  has  attracted  significant

interest  in  recent  years.  Reliable  records  of  annual

temperatures  taken  with  thermometers  are  only  available

back to the 1850s. Information about temperatures prior to

this  can  be  extracted  from  proxies  such  as  tree  rings.  We can build a linear model to predict temperature since 1856

and  then  subsequently  use  this  to  predict  earlier

temperatures based on proxy information. The data we use

here has been derived from Jones and Mann (2004).  I have selected  only  proxies  with  mostly  complete  data.  I  have imputed some missing values and used some smoothing for

ease  of  demonstration.  Researchers  seriously  interested  in historical  climate  should  refer  to  the  original  data  —  see the R help page for details. 

We  start  by  fitting  a  model  with  the  temperature  as  the response and the eight proxies as predictors. A full analysis

would  involve  other  steps  but  we  focus  on  the  issue  of correlated errors here. 

data (globwarm, package = “faraway”)

lmod = lm (nhtemp ~ wusa + jasper + westgreen + chesapeake +

tornetrask + urals + mongolia + tasman , globwarm)

There  are  missing  values  for  nhtemp  prior  to  1856.  The default  behavior  in  R  when  performing  a  regression  with missing  values  is  to  omit  any  case  that  contains  a  missing value. Hence this model uses only data from 1856 through

2000. 

[image: Image 30]

For temporal data such as these, it is sensible to plot the

residuals  against  the  time  index.  The  plot  is  shown  in  the first  panel  of  Figure  7.7.  We  have  specified  a  missing valueless version of the data frame so that the years match

up to the residuals. 

plot (residuals (lmod) ~ year , na.omit (globwarm), 

ylab="Residuals”)

abline (h=0)

Figure  7.7   Diagnostic  plots  for  correlated  errors  in  the global warming data. 

If the errors were uncorrelated, we would expect a random

scatter  of  points  above  and  below  the   ε = 0  line.  In  this plot,  we  see  long  sequences  of  points  above  or  below  the line.  This  is  an  indication  of  positive  serial  correlation.  An alternative approach to checking for serial correlation is to

plot  successive  pairs  of  residuals  which  we  see  in  the second panel of Figure 7.7. 

n = length (residuals (lmod))

plot (tail (residuals (lmod), n-1) ~ head (residuals (lmod), n-1), 

xlab= expression (hat (epsilon) [i]), 

ylab=expression (hat (epsilon) [i+1]))

abline (h=0 , v=0 , col=grey (0.75))

We  can  see  a  positive  correlation  again  indicating  positive serial  correlation.  If  you  have  some  doubt  as  to  the

significance of the correlation, we can model it directly:

summary (lm (tail (residuals (lmod),n -1) ~

head (residuals (lmod),n -1) -1))

Estimate Std. Error t value 

Pr(>|t|)

head(residuals(lmod), n - 1)     0.5951     0.0693    8.59   

<1e-04



Residual standard error: 0.139 on 143 degrees of freedom

Multiple R-squared: 0.34,           Adjusted R-squared: 0.336

F-statistic: 73.7 on 1 and 143 DF,          p-value: <1e-04

We  omitted  the  intercept  term  because  the  residuals  have mean zero. The serial correlation is confirmed. You can plot

more  than  just  successive  pairs  if  you  suspect  a  more complex dependence. 

The Durbin–Watson test uses the statistic:

∑ n

 DW =

 i=2(^

 εi − ^ εi−1)2

∑ ni=1 ^ ε 2 i

(7.4)

The null hypothesis is that the errors are uncorrelated. The

null  distribution  based  on  the  assumption  of  uncorrelated errors follows a linear combination of  χ 2 distributions. The

test  is  implemented  in  the  lmtest  package  of  Zeileis  and

Hothorn (2002). The run test is an alternative. 

We can compute the Durbin–Watson statistic:

library (lmtest)

dwtest (nhtemp ~ wusa + jasper + westgreen + chesapeake +

tornetrask + urals + mongolia + tasman , data = 

globwarm)

Durbin-Watson test



data:  nhtemp ~ wusa + jasper + westgreen + chesapeake +

tornetrask + urals + mongolia + tasman

DW = 0.817, p-value = 1.4e-15

alternative hypothesis: true autocorrelation is greater than 0

where  the  p-value  indicates  strong  evidence  of  serial

correlation.  In  this  example,  we  are  not  surprised  to  see that  the  errors  are  correlated.  We  do  not  expect  that  the proxies will model temperature perfectly and that higher or

lower  temperatures  in  one  year  might  carry  over  to  the next. We return to the analysis of this data in Section 9.1. 

Sometimes, serial correlation can be caused by a missing

covariate.  For  example,  suppose  that  there  is  a  quadratic relation  between  a  predictor  and  the  response  but  we  use only  a  linear  term  in  that  predictor.  The  diagnostics  will

show serial correlation in the residuals but the real source of the problem is the missing quadratic term. 

Although  it  is  possible  that  difficulties  with  correlated errors  can  be  removed  by  changing  the  structural  part  of the  model,  sometimes  we  must  build  the  correlation

directly  into  the  model.  This  can  be  achieved  using  the method of generalized least squares — see Chapter 9. 

The consequences of correlated errors can be serious for

the  inference.  Usually  the  problem  is  one  of  positive

correlation  which  means  each  observation  does  not  carry as  much  new  information  as  it  would  with  independent

errors. The effective sample size becomes smaller than the

number  of  observations  which  results  in  standard  errors that are smaller than they should be. This leads to smaller

p-values 

than 

are 

correct 

and 

hence 

over-stated

significance  for  conclusions.  Least  squares  is  also  less efficient  than  the  appropriate  generalized  least  squares  in this  instance.  Of  the  three  error  problems,  nonconstant variance, 

nonnormal 

errors 

and 

correlated 

errors, 

correlated errors may be the worst problem of the three. 

7.2 Finding Unusual Observations

We  may  find  that  some  observations  have  large  residuals and  do  not  fit  the  model  well.  Such  points  are  called outliers. A  leverage point is extreme in the predictor space. 

It  has  the  potential  to  influence  the  fit,  but  does  not necessarily  do  so.  Some  observations  change  the  fit  of  the model in a substantive manner. These are called  influential

observations.  Such  observations  are  typically  some combination of outlier and leverage point. It is important to

first  identify  such  points.  Deciding  what  to  do  about  them can be difficult. 

 Leverage

 hi =  Hii  are  called   leverages  and  are  useful  diagnostics. 

Since  var ^

 εi =  σ 2(1 −  hi),  a  large  leverage,  hi,  will  make var ^ εi  small.  The  fit  will  be  attracted  toward   yi.  Large values  of   hi  represent  extreme  values  in  the   X-space.  hi corresponds  to  a  (squared)  Mahalanobis  distance  defined

by  X which is ( x − ¯

 x) T ^Σ−1( x − ¯ x) where  ^Σ is the estimated covariance of  X. The value of  hi depends only on  X and not y  and  so  they  are  distinct  from  outliers  which  have relatively unusual values of  y. 

Since  ∑ i hi =  p, an average value for  hi is  p/ n. A rough rule  is  that  leverages  of  more  than  2 p/ n  should  be  looked at more closely. 

We will use the savings dataset as an example here:

lmod = lm (sr ~ pop15 + pop75 + dpi + ddpi , savings)

hatv = hatvalues (lmod)

head (hatv)

Australia    Austria    Belgium    Bolivia     Brazil     

Canada

0.067713   0.120384   0.087482   0.089471   0.069559   

0.158402

sum (hatv)

[1] 5

We verify that the sum of the leverages is indeed five — the number of parameters in the model. 

Without  making  assumptions  about  the  distributions  of

the predictors that would often be unreasonable, we cannot

say  how  the  leverages  would  be  distributed.  Nevertheless, we  would  like  to  identify  unusually  large  values  of  the leverage. The half-normal plot is a good way to do this. 

Half-normal  plots  are  designed  for  the  assessment  of

positive  data.  They  could  be  used  for  |^

 ε|,  but  are  more

typically useful for diagnostic quantities like the leverages. 

The  idea  is  to  plot  the  data  against  the  positive  normal quantiles. 

The steps are:

1. Sort the data:  x[1] ≤ …  x[ n]. 

2. Compute  ui = Φ−1(  n+ i

2 n+1 ). 

3. Plot  x[ i] against  ui. 

We do not usually expect a straight line relationship since

we do not necessarily expect a positive normal distribution

for  quantities  like  leverages.  We  are  looking  for  outliers, which will be apparent as points that diverge substantially

from the rest of the data. 

We demonstrate the half-normal plot on the leverages for

the  savings  data.  The  halfnorm()  function  comes  from  the faraway package. 

countries = row . names (savings)

[image: Image 31]

faraway :: halfnorm (hatv , labs = countries, ylab = 

“Leverages”)

The  package::function()  construct  in  R  is  a  way  to  access  a function  in  a  package  without  first  loading  the  whole

package.  The  advantages  are  that  we  avoid  any  naming

conflicts  and  that  it  makes  it  clear  where  the  function  has originated. Naturally, the package needs to be installed for

this  to  work.  The  plot  is  the  first  shown  in  Figure  7.8.  I have plotted the country name instead of just a dot for the

largest two cases, respectively, to aid identification. We see that  Libya  has  large  leverage,  perhaps  large  enough  to have  some  substantive  effect.  A  closer  look  would  be

sensible. 

Figure  7.8   A  Half-normal  plot  for  the  leverages  on  the left  and  a  Q–Q  plot  for  the  standardized  residuals  on  the right. 

Leverages can also be used in scaling residuals. We have var ^ εi =  σ 2(1 −  hi) which suggests the use of:

^ ε

 r

 i

 i = ^ σ√1 −  hi

(7.5)

These  are  called   standardized  residuals.  If  the  model assumptions  are  correct,  var  ri = 1 and correlations of the form   cor( ri,  rj)  tend  to  be  small.  Standardization  can  only correct  for  the  natural  non-constant  variance  in  residuals when  the  errors  have  constant  variance.  If  there  is  some underlying heteroscedasticity in the errors, standardization

cannot  correct  for  it.  We  now  compute  and  plot  the

standardized residuals for the savings data:

qqnorm (rstandard (lmod))

abline (0 ,1)

We  have  displayed  the  Q–Q  plot  of  the  standardized

residuals  in  the  second  plot  of  Figure  7.8.  Because  these residuals  have  been  standardized,  we  expect  the  points  to approximately  follow  the   y =  x  line  if  normality  holds. 

Another advantage of the standardized form is that we can

judge the size of the residual easily. An absolute value of 2

would  be  large  but  not  exceptional  for  a  standardized

residual whereas a value of 4 would be very unusual under

the standard normal. 

Some authors recommend using standardized rather than raw  residuals  in  all  diagnostic  plots.  However,  in  many cases,  the  standardized  residuals  are  not  very  different from the raw residuals except for the change in scale. Only

when  there  are  unusually  large  leverages  will  the

differences be noticeable in the shape of the plot. 

 Outliers

An  outlier  is  a  point  that  does  not  fit  the  current  model well.  We  need  to  be  aware  of  such  exceptions.  An  outlier test  is  useful  because  it  enables  us  to  distinguish  between truly unusual observations and residuals that are large, but

not  exceptional.  Outliers  may  or  may  not  affect  the  fit substantially.  We  simulate  some  data  to  illustrate  the

possibilities:

set.seed (123)

testdata = data.frame (x =1:10 , y =1:10+ rnorm (10))

lmod = lm (y ~ x , testdata)

The  first  example  adds  an  outlier  with  a  central  predictor value:

p1 = c (5.5,12)

lmod1 = lm (y ~ x, rbind (testdata, p1))

plot (y ~ x , rbind (testdata , p1))

points (5.5 ,12 , pch=4 , cex=2)

abline (lmod)

abline (lmod1, lty=2)

The plot, seen in the first panel of Figure 7.9,  shows a solid regression  line  for  the  fit  without  the  additional  point marked with a cross. The dashed line shows the fit with the

[image: Image 32]

extra point. There is not much difference. In particular, the

slopes are very similar. This is an example of a point which

is an outlier, but does not have large leverage or influence. 

Long Description for Figure 7.9

Figure  7.9   In  all  three  plots,  the  additional  point  is marked  with  a  cross.  The  solid  line  is  the  fit  using  the  10

original points and the dashed line is the fit with the added

point. 

The  second  example  introduces  an  extra  point  well

outside the range of  X:

p2 = c (15 ,15.1)

lmod2 = lm (y ~ x , rbind (testdata , p2))

plot (y ~ x , rbind (testdata , p2))

points (15,15.1 , pch=4 , cex=2)

abline (lmod)

abline (lmod2, lty=2)

The plot, seen in the second panel of Figure 7.9, shows that the  additional  point  makes  little  difference  to  the  fitted

regression line. This point has large leverage but is not an outlier and is not influential. 

The third example puts the point in a different position on

the response scale. 

p3 = c (15,5.1)

lmod3 = lm (y ~ x , rbind (testdata , p3))

plot (y ~ x , rbind (testdata , p3))

points (15,5.1 , pch=4 , cex=2)

abline (lmod)

abline (lmod3, lty=2)

The  plot,  seen  in  the  third  panel  of  Figure  7.9,  shows  that this 

additional 

point 

changes 

the 

regression 

line

substantially.  Although  this  point  still  has  a  large  residual, the  residuals  for  the  other  points  are  also  made  much larger  with  the  addition  of  this  point.  Hence  this  point  is both an outlier and an influential point. We must take care

to discover such points because they can have a substantial

effect  on  the  conclusions  of  the  analysis.  Just  looking  at  ^

 εi

misses  difficult  observations,  like  that  seen  in  the  third example, which pull the regression line closer so that they

conceal their true status. To detect such points, we exclude

point   i  and  recompute  the  estimates  to  get  ^

 β( i)  and  ^ σ 2( i)

where  ( i)  denotes  that  the   ith  case  has  been  excluded. 

Hence:

^ y

^

( i) =  xTi β( i)

(7.6)

If  ^

 y( i) −  yi  is  large,  then  case   i  is  an  outlier.  To  judge  the size  of  a  potential  outlier,  we  need  an  appropriate  scaling. 

We find:

v^ar ( yi − ^ y( i)) = ^ σ 2( i)(1 +  xTi( XT( i) X( i))−1 xi) (7.7)

and  so  we  define  the  studentized  (sometimes  called

jackknife or crossvalidated) residuals as:

 y

 t

 i − ^

 y( i)

 i = ^ σ( i)(1 +  xTi( XT( i) X( i))−1 xi)1/2

(7.8)

which  are  distributed   tn− p−1  if  the  model  is  correct  and ε ∼  N(0,  σ 2 I).  Fortunately,  there  is  an  easier  way  to compute  ti:

^ ε

(  n− p−1 )1/2

 t

 i

 i =

=  r

^

 i

 σ( i)√1 −  hi

 n −  p −  r 2 i

(7.9)

which avoids doing  n regressions. 

Since   ti ∼  tn− p−1,  we  can  calculate  a   p-value  to  test whether case  i is an outlier. This is fine if we only test one preselected case. However, if we had  n = 100 and tested all the  cases,  we  would  expect  to  find  around  five  outliers using  this  procedure  if  we  used  a  5%  significance  level. 

Even though we might explicitly test only one or two large

 ti s,  we  are  implicitly  testing  all  cases  since  we  need  to consider all the residuals to find out which ones are large. 

Some  adjustment  of  the  level  of  the  test  is  necessary  to avoid identifying an excess of outliers. 

Suppose we want a level  α test. We have:

 P(all tests accept) = 1 −  P(at least one rejects)

≥ 1 − ∑ P(test i rejects)

 i

= 1 −  nα

(7.10)

This suggests that if an overall level  α test is required, then a level  α/ n should be used in each of the tests. This method is  called  the   Bonferroni  correction  and  is  used  in  contexts other  than  outliers.  Its  biggest  drawback  is  that  it  is conservative  —  it  finds  fewer  outliers  than  the  nominal level  of  confidence  would  dictate.  The  larger  that   n  is,  the more conservative it gets. 

Let's  compute  studentized  residuals  for  the  savings  data and pick out the largest:

stud = rstudent (lmod)

stud [which.max (abs (stud))]

Zambia

2.8536

The  largest  residual  of  2.85  is  rather  large  for  a  standard normal  scale,  but  is  it  an  outlier?  Compute  the  Bonferroni critical value:

abs (qt (.05 / (50 * 2),44))

[1] 3.5258

We  divide  by  50  because  there  are  50  observations.  We divide  by  two  because  it  is  a  two-sided  test.  There  are 50 − 5 − 1 = 44  degrees  of  freedom  where  the  −1  is  for leave-out-one  in  the  residual  calculation.  Since  2.85  is  less than  3.53,  we  conclude  that  Zambia  is   not  an  outlier.  For simple  regression,  the  minimum  critical  value  occurs  at n = 33  taking  the  value  3.49.  This  indicates  that  it  is usually not worth the trouble of computing the outlier test

 p-value  unless  the  studentized  residual  exceeds  about  3.5

in absolute value. 

Some points to consider about outliers:

1. Two or more outliers next to each other can hide each

other,  because  when  one  is  omitted,  the  other  still  has sufficient influence to affect the fit. 

2. An  outlier  in  one  model  may  not  be  an  outlier  in

another  when  the  variables  have  been  changed  or

transformed. You will usually need to reinvestigate the question of outliers when you change the model. 

3. The error distribution may not be normal and so larger

residuals  may  be  expected.  For  example,  day-to-day

changes in stock indices seem mostly normal, but much

larger changes occur from time to time. 

4. Individual  outliers  are  usually  much  less  of  a  problem in  larger  datasets.  A  single  point  will  not  have  the

leverage  to  affect  the  fit  very  much.  It  is  still  worth identifying  outliers  if  these  types  of  observations  are worth  knowing  about  in  the  particular  application.  For

large datasets, we need only to worry about clusters of

outliers.  Such  clusters  are  less  likely  to  occur  by

chance  and  more  likely  to  represent  actual  structure. 

Finding these clusters is not always easy. 

What should be done about outliers? 

1. Check  for  a  data-entry  error  or  other  mistakes  first. 

These  are  relatively  common.  Unfortunately,  the

original  version  of  the  data  may  have  been  lost  or  the provider  may  be  inaccessible  so  that  some  judgment

may  be  required.  If  you  can  be  sure  that  the  point  is truly a mistake and was not actually observed, then the

solution is simple: discard or correct it. 

2. Examine  the  physical  context  —  why  did  it  happen? 

Sometimes,  the  discovery  of  an  outlier  may  be  of

singular  interest.  Some  scientific  discoveries  spring

from noticing unexpected aberrations. Another example of the importance of outliers is in the statistical analysis

of  credit  card  transactions.  Outliers  may  represent

fraudulent  use.  In  such  examples,  the  discovery  of

outliers is the main purpose of the modeling. 

3. Exclude the point from the analysis but try reincluding

it later if the model is changed. The exclusion of one or

more  observations  may  make  the  difference  between

getting a statistically significant result. This can lead to

a  difficult  decision  about  what  exclusions  are

reasonable.  To  avoid  any  suggestion  of  dishonesty, 

always  report  the  existence  of  outliers  even  if  you  do not  include  them  in  your  final  model.  Be  aware  that

casual or dishonest exclusion of outliers is regarded as

serious research malpractice. 

4. Suppose  you  find  outliers  that  cannot  reasonably  be

identified as mistakes or aberrations, but are viewed as

naturally  occurring.  You  need  to  make  a  strategic

decision about outliers. Do you care about them? If so, 

you  will  want  to  model  why  they  occur.  You  may  want

to  use  a  longer-tailed  error  distribution.  If  you  don't care  about  the  outliers  and  want  to  reliably  model  the bulk of your data, it is best to use robust regression, as

explained in Section 9.4. 

5. Routine  outlier  rejection  in  conjunction  with  least

squares  is  not  a  good  method  of  estimation.  Some

adjustment  to  the  inferential  methods  is  necessary  in

such  circumstances.  In  particular,  the  uncertainty assessment for prediction needs to reflect the fact that

extreme values can occur. 

6. It  is  dangerous  to  exclude  outliers  in  an  automatic manner. 

The 

National 

Aeronautics 

and 

Space

Administration (NASA) launched the  Nimbus 7 satellite

to  record  atmospheric  information.  After  several  years

of  operation  in  1985,  the  British  Antarctic  Survey

observed  a  large  decrease  in  atmospheric  ozone  over

the  Antarctic.  On  further  examination  of  the  NASA

data,  it  was  found  that  the  data  processing  program

automatically 

discarded 

observations 

that 

were

extremely  low  and  assumed  to  be  mistakes.  Thus  the

discovery  of  the  Antarctic  ozone  hole  was  delayed

several  years.  Perhaps,  if  this  had  been  known  earlier, the  chlorofluorocarbon  (CFC)  phaseout  would  have

been  agreed  upon  earlier  and  the  damage  could  have

been limited. See Stolarski et al. (1986) for more. 

Here  is  an  example  of  a  dataset  with  multiple  outliers. 

Data  are  available  on  the  log  of  the  surface  temperature and  the  log  of  the  light  intensity  of  47  stars  in  the  star cluster CYG OB1, which is in the direction of Cygnus. These

data  appear  in  Rousseeuw  and  Leroy  (1987).  Read  in  and plot the data:

data (star, package = “faraway”)

plot (star $ temp, star $ light , xlab = “log (Temperature)” , ylab = “log (Light Intensity)”)

[image: Image 33]

There  appears  to  be  a  positive  correlation  between

temperature  and  light  intensity,  but  there  are  four  stars that  do  not  fit  the  pattern.  We  fit  a  linear  regression  and add the fitted line to the plot:

lmod = lm (light ~ temp , star)

abline (lmod)

The  plot  is  seen  in  Figure  7.10  with  the  regression  line  in solid  type.  This  line  does  not  follow  the  bulk  of  the  data because  it  tries  to  fit  the  four  unusual  points.  We  check whether the outlier test detects these points:

Figure  7.10   Regression  line  including  four  leftmost points is solid and excluding these points is dashed. 

range (rstudent (lmod))

[1] -2.0494   1.9058

No outliers are found even though we can see them clearly

in the plot. The four stars on the upper left of the plot are

giants. See what happens if these are excluded: lmodi = lm (light ~ temp , data=star , subset=(temp >3.6))

abline (lmodi, lty=2)

This  illustrates  the  problem  of  multiple  outliers.  We  can visualize the problems here and take corrective action, but

for  higher  dimensional  data  this  is  much  more  difficult. 

Robust  regression  methods  would  be  superior  here.  See

Section 9.4. 

 Influential Observations

An influential point is one whose removal from the dataset

would  cause  a  large  change  in  the  fit.  An  influential  point may  or  may  not  be  an  outlier  and  may  or  may  not  have large leverage but it will tend to have at least one of these

two  properties  and  probably  both.  In  Figure  7.9,   the  third panel  shows  an  influential  point  but  in  the  second  panel, the added point is not influential. 

There  are  several  measures  of  influence.  A  subscripted

( i) indicates the fit without case  i. We might consider the change in the fit  X T ( ^

 β − ^ β( i)) = ^ y − ^ y( i), but there will be  n of  these  length   n  vectors  to  examine.  For  a  more  compact diagnostic,  we  might  consider  the  change  in  the

coefficients  ^

 β − ^ β( i). There will be  n ×  p of these to look at. 

The  Cook  statistics  are  popular  influence  diagnostics

because  they  reduce  the  information  to  a  single  value  for each case. They are defined as:

(^ y − ^ y

 D

( i)) T (^

 y − ^ y( i))

 i

=

 p^ σ 2

= 1

 h

 r 2

 i

 p i  1 −  hi

The  first  term,  r 2 i,  is  the  residual  effect  and  the  second  is the leverage. The combination of the two leads to influence. 

A  half-normal  plot  of   Di  can  be  used  to  identify  influential observations.  Some  have  recommended   Di > 1  as  a criterion for an influential point. 

Continuing with our study of the savings data:

lmod = lm (sr ~ pop15 + pop75 + dpi + ddpi, savings)

cook = cooks.distance (lmod)

faraway :: halfnorm (cook, 3, labs = countries, 

ylab = “Cook's distances”)

The  Cook  statistics  may  be  seen  in  the  first  plot  of  Figure

7.11.  I  have  identified  the  largest  three  values.  We  now

exclude  the  largest  one  (Libya)  and  see  how  the  fit

changes:

[image: Image 34]

Figure  7.11   Half-normal  plot  of  the  Cook  statistics  and

^ β − ^ β( i) 's for pop15 for the savings data. 

lmodi = lm (sr ~ pop15 + pop75 + dpi + ddpi , savings, 

subset =(cook < max (cook)))

summary (lmodi)

Estimate Std. Error t value Pr(>|t|)

(Intercept)   24.524046   8.224026    2.98   0.0047

pop15         -0.391440   0.157909   -2.48   0.0171

pop75         -1.280867   1.145182   -1.12   0.2694

dpi           -0.000319   0.000929   -0.34   0.7331

ddpi           0.610279   0.268778    2.27   0.0281



Residual standard error: 3.79 on 44 degrees of freedom

Multiple R-squared: 0.355, Adjusted R-squared: 0.297

F-statistic: 6.07 on 4 and 44 DF,          p-value: 0.000562

Compared to the full data fit:

summary (lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept)   28.566087   7.354516    3.88 0.00033

pop15         -0.461193   0.144642   -3.19 0.00260

pop75         -1.691498   1.083599   -1.56 0.12553

dpi           -0.000337   0.000931   -0.36 0.71917

ddpi           0.409695   0.196197    2.09 0.04247



Residual standard error: 3.8 on 45 degrees of freedom

Multiple R-squared: 0.338, Adjusted R-squared: 0.28

F-statistic: 5.76 on 4 and 45 DF,          p-value: 0.00079

Among  other  changes,  we  see  that  the  coefficient  for  ddpi changed by about 50%. We do not like our estimates to be

so sensitive to the presence of just one country. It would be

rather  tedious  to  leave  out  each  country  in  turn,  so  we examine the leave-out-one differences in the coefficients:

plot (dfbeta (lmod) [ ,2] , ylab = “Change in pop15 coef”)

abline (h=0)

We  have  plotted  the  change  in  the  second  parameter

estimate,  ( ^

 βpop 15)  when  a  case  is  left  out,  as  seen  in  the second  panel  of  Figure  7.11.   This  plot  should  be  repeated for  the  other  variables.  Japan  sticks  out  on  this  particular plot so we examine the effect of removing it:

lmodj = lm (sr ~ pop15 + pop75 + dpi + ddpi , savings , 

subset =(countries ! = “Japan”))

summary (lmodj)

Estimate Std. Error t value Pr(>|t|)

(Intercept)   23.940171   7.783997    3.08   0.0036

pop15         -0.367901   0.153630   -2.39   0.0210

pop75         -0.973674   1.155450   -0.84   0.4040

dpi           -0.000471   0.000919   -0.51   0.6112

ddpi           0.334749   0.198446    1.69   0.0987



[image: Image 35]

Residual standard error: 3.74 on 44 degrees of freedom

Multiple R-squared: 0.277,           Adjusted R-squared: 0.211

F-statistic: 4.21 on 4 and 44 DF,          p-value: 0.00565

Comparing  this  to  the  full  data  fit,  we  observe  several qualitative  changes.  Notice  that  the  ddpi  term  is  no  longer significant and that the  R 2 value has decreased a lot. 

R  provides  an  easy  way  to  produce  a  useful  selection  of residual plots as seen in Figure 7.12 using: plot (lmod)

Long Description for Figure 7.12

Figure 7.12  Standard selection of diagnostic plots for the savings  data.  The  solid  line  in  three  of  the  plots  is  a smoothed fit to the points. This is for guidance only. 

The  first  plot  shows  the  usual  residual  vs.  fitted  plot  with the  addition  of  smoothed  fitted  line  to  aid  interpretation. 

The  second  plot  is  the  Q–Q  plot  of  the  standardized

residuals.  A  few  more  extreme  cases  have  been  labeled. 

√

The  third  plot  shows 

|^ ε| against  ^ y, again with an added

smoothed  fit.  The  fourth  plot  shows  the  standardized

residuals  against  the  leverage.  As  the  Cook  statistics

represent  a  function  of  these  two  variables,  we  can  plot contours.  Any  point  that  lies  beyond  these  contours  might well be influential and require closer attention. 

7.3 Checking the Systematic Structure of the

Model

Diagnostics  can  also  be  used  to  detect  deficiencies  in  the structural  part  of  the  model,  given  by   EY =  Xβ.  The residuals  are  the  best  clues  because  signs  of  remaining systematic structure here indicate that something is wrong. 

A  good  diagnostic  can  often  also  suggest  how  the  model can  be  improved.  Formal  lack  of  fit  tests  can  be  used  in limited  circumstances,  usually  requiring  replication.  See

Section  9.3.   But  such  tests,  even  if  they  are  available,  do not indicate how to improve the model. 

We have already discussed plots of  ^

 ε against ^ y and  xi. We

have  used  these  plots  to  check  the  assumptions  on  the error,  but  they  can  also  suggest  transformations  of  the variables  which  might  improve  the  structural  form  of  the model. 

We can also make plots of  y against each  xi. Indeed these should  be  part  of  any  exploratory  analysis  before  model fitting begins. The drawback to these plots is that the other

predictors  often  affect  the  relationship  between  a  given predictor  and  the  response.  Partial  regression  or   added variable  plots  can  help  isolate  the  effect  of   xi  on   y.  We regress   y  on  all   x  except   xi,  and  get  residuals  ^

 δ.  These

represent   y  with  the  other   X-effect  taken  out.  Similarly,  if we  regress   xi  on  all   x  except   xi,  and  get  residuals  ^

 γ,  we

have  the  effect  of   xi with the other  X-effect taken out. The added  variable  plot  shows  ^

 δ  against  ^ γ.  Look  for  non-

linearity and outliers and/or influential observations in the

plot. 

We  illustrate  using  the  savings  dataset  as  an  example

again.  We  construct  a  partial  regression  (added  variable) plot for pop15:

d = residuals(lm (sr ~ pop75 + dpi + ddpi, savings))

m = residuals(lm (pop15 ~ pop75 + dpi + ddpi, savings))

plot (m, d, xlab = “pop15 residuals” , ylab = “Savings 

residuals”)

The  plot,  shown  in  the  first  panel  of  Figure  7.13,  shows nothing  remarkable.  There  is  no  sign  of  non-linearity  or

[image: Image 36]

unusual  points.  An  interesting  feature  of  such  plots  is revealed  by  considering  the  regression  line.  We  compute this  for  the  plot  and  notice  that  it  is  the  same  as  the corresponding coefficient from the full regression:

coef (lm (d ~ m))

(Intercept)           m

5.4259e-17 -4.6119e-01

lmod = lm (sr ~ pop15 + pop75 + dpi + ddpi , savings)

coef (lmod)

(Intercept)        pop15        pop75          dpi        ddpi 28.5660865   -0.4611931   -1.6914977   -0.0003369   0.4096949

abline (0, coef (lmod) [‘pop15’])

Long Description for Figure 7.13

Figure 7.13  Partial regression (left) and partial residual (right) plots for the savings data. 

The  partial  regression  plot  provides  some  intuition  about the  meanings  of  regression  coefficients.  We  are  looking  at

the  marginal  relationship  between  the  response  and  the predictor  after  the  effect  of  the  other  predictors  has  been removed. Multiple regression is difficult because we cannot

visualize  the  full  relationship  because  of  the  high

dimensionality.  The  partial  regression  plot  allows  us  to focus  on  the  relationship  between  one  predictor  and  the response, much as in simple regression. 

 Partial  residual  plots  serve  as  an  alternative  to  added variable  plots.  We  construct  the  response  with  the

predicted effect of the other  X removed:

 y − ∑ x ^

^

^

 jβj = ^

 y + ^ ε− ∑ xjβj =  xiβi + ^ ε

 j≠ i

 j≠ i

(7.11)

The  partial  residual  plot  is  then  ^

 ε + ^ βixi  against   xi.  Again

the slope on the plot will be  ^

 βi and the interpretation is the

same.  Partial  residual  plots  are  believed  to  be  better  for non-linearity  detection  while  added  variable  plots  are

better for outlier/influential detection. 

A  partial  residual  plot  is  easy  to  construct.  The  termplot centers  the   xi  so  that  ^

 ε + ^ βi( xi − ¯ xi)  can  be  called  partial residuals and have mean zero. 

termplot (lmod , partial . resid = TRUE , terms =1)

We see two groups in the plot, seen in the second panel of

7.13. It suggests that there may be a different relationship in the two groups. We investigate this:

mod1 = lm (sr ~ pop15 + pop75 + dpi + ddpi , savings , 

subset =(pop15 > 35))

summary (mod1)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.433969  21.155028    -0.12     0.91

pop15        0.273854   0.439191     0.62     0.54

pop75       -3.548477   3.033281    -1.17     0.26

dpi          0.000421   0.005000     0.08     0.93

ddpi         0.395474   0.290101     1.36     0.19



Residual standard error: 4.45 on 18 degrees of freedom

Multiple R-squared: 0.156,           Adjusted R-squared: 

-0.0319

F-statistic: 0.83 on 4 and 18 DF,          p-value: 0.523

mod2 = lm (sr ~ pop15 + pop75 + dpi + ddpi, savings , 

subset=(pop15 < 35))

summary (mod2)

Estimate Std. Error t value Pr(>|t|)

(Intercept)   23.961795   8.083750    2.96   0.0072

pop15         -0.385898   0.195369   -1.98   0.0609

pop75         -1.327742   0.926063   -1.43   0.1657

dpi           -0.000459   0.000724   -0.63   0.5326

ddpi           0.884394   0.295341    2.99   0.0067



Residual standard error: 2.77 on 22 degrees of freedom

Multiple R-squared: 0.507,           Adjusted R-squared: 0.418

F-statistic: 5.66 on 4 and 22 DF,          p-value: 0.00273

In  the  first  regression  on  the  subset  of  underdeveloped countries,  we  find  no  relation  between  the  predictors  and the  response.  We  know  from  our  previous  examination  of

these  data  that  this  result  is  not  attributable  to  outliers  or unsuspected transformations. In contrast, there is a strong

relationship  in  the  developed  countries.  The  strongest

predictor  is  growth  together  with  some  relationship  to  the proportion  of  population  under  15.  This  latter  effect  has been reduced from prior analyses because we have reduced

the range of this predictor by the subsetting operation. The

graphical analysis has shown a relationship in the data that

a purely numerical analysis might easily have missed. 

Sometimes  it  can  be  helpful  to  introduce  extra

dimensions  into  diagnostic  plots  with  the  use  of  color, plotting symbol or size. Alternatively, plots can be faceted. 

The  ggplot2  package  is  convenient  for  this  purpose.  Here are a couple of examples:

savings$status = ifelse (savings$pop15 > 35 , “young", “old”) library (ggplot2)

ggplot (savings, aes (x=ddpi, y=sr, shape=status)) + geom_point ()

ggplot (savings, aes (x=ddpi, y=sr)) + geom _ point () +

facet_grid (~ status) + stat_smooth (method="lm”)

The  plots  in  Figure  7.14  show  how  we  can  distinguish  the two  levels  of  the  status  variable  derived  from  the

population  proportion  under  15  in  two  different  ways.  In this  case,  the  second  set  of  plots  is  more  effective.  Note how we have added a regression line with 95% confidence

bands, making it clear how the relationship differs between

the two groups. 

[image: Image 37]

Long Description for Figure 7.14

Figure 7.14  Introducing another dimension to diagnostic plots. Shape is used to denote the status variable on the left while faceting is used on the right. 

In previous editions of this text, I have suggested the use

of interactive dynamic graphics as a means of exploring the

data  to  suggest  suitable  models.  These  approaches  had

much  promise  but  their  use  in  regression  diagnostics  has been  limited  in  practice.  The  reason  for  this  is  that regression diagnostics require the production of quick and

useful  graphics  that  can  shared  if  needed.  Interactive

graphics  require  a  substantial  amount  of  setup.  They  can be  useful  in  communicating  work  as  others  can  interact with  the  data  without  specialized  computing  knowledge. 

But this is not helpful for quick model checking. 

Non-graphical  techniques  for  checking  the  structural form  of  the  model  usually  involve  proposing  alternative transformations  or  recombinations  of  the  variables.  This approach is explored in Chapter 10. 

7.4 Discussion

Some assumptions are more important than others because

some  violations  are  more  serious  in  that  they  can  lead  to very  misleading  conclusions.  We  can  order  these

assumptions according to their importance:

1. The  systematic  form  of  the  model.  If  you  get  this

seriously  wrong,  then  predictions  will  be  inaccurate

and  any  explanation  of  the  relationship  between  the

variables may be biased in misleading ways. 

2. Dependence  of  errors.  The  presence  of  strong

dependence means that there is less information in the

data  than  the  sample  size  may  suggest.  Furthermore, 

there is a risk that the analyst will mistakenly introduce

systematic  components  to  the  model  in  an  attempt  to

deal  with  an  unsuspected  dependence  in  the  errors. 

Unfortunately, it is difficult to detect dependence in the

errors  using  regression  diagnostics  except  in  special

situations  such  as  temporal  data.  For  other  types  of

data,  the  analyst  will  need  to  rely  on  less  testable

assumptions  about  independence  based  on  contextual

knowledge. 

3. Nonconstant  variance.  A  failure  to  address  this violation of the linear model assumptions may result in

inaccurate 

inferences. 

In 

particular, 

prediction

uncertainty  may  not  be  properly  quantified.  Even  so, 

excepting  serious  violations,  the  adequacy  of  the

inference may not be seriously compromised. 

4. Normality.  This  could  be  the  least  important

assumption.  For  larger  datasets,  the  inference  will  be

quite  robust  to  a  lack  of  normality  as  the  central  limit theorem will mean that the approximations will tend to

be  adequate.  Unless  the  sample  size  is  quite  small  or the  errors  very  strongly  abnormal,  this  assumption  is

not  crucial  to  success.  We  do  need  to  be  concerned

about long-tailed errors when prediction is the purpose

of the model. In this situation, the possibility of extreme

events  needs  to  be  reflected  in  our  statement  of

prediction uncertainty. 

We 

should 

remember 

that 

although 

regression

diagnostics  are  good  for  checking  the  technical  quality  of the  model  specification,  there  are  other  qualitative  checks we  should  make  before  we  can  feel  confident  in  making conclusions.  We  need  to  ask  whether  the  data  at  hand  are relevant to the question of interest. We should consider the

source  and  quality  of  the  data  as  discussed  in  Section  4.2. 

This  requires  some  subjective  judgement  and  is  not

checkable by plots or tests. 

Regression  diagnostics  are  a  small  data  concern.  For much  larger  datasets,  there  is  little  concern  about

individual  points  affecting  the  fit.  The  issues  of  inference are  different  and  so  the  assumptions  regarding  the  error are  not  too  important.  The  more  data  we  have,  the  more systematic  structure  we  can  and  must  model.  In  these

scenarios,  linear  modeling  will  be  stable  but  better

performance may be obtained using more flexible methods

from machine learning. 

Exercises

1. Using the sat dataset, fit a model with the total SAT score as  the  response  and  expend,  salary,  ratio  and  takers  as predictors.  Perform  regression  diagnostics  on  this  model to answer the following questions. Display any plots that

are  relevant.  Do  not  provide  any  plots  about  which  you have  nothing  to  say.  Suggest  possible  improvements  or

corrections to the model where appropriate. 

(a)

Check  the  constant  variance  assumption  for  the

errors. 

(b)

Check the normality assumption. 

(c)

Check for large leverage points. 

(d)

Check for outliers. 

(e)

Check for influential points. 

(f)

Check the structure of the relationship between the

predictors and the response. 

2. Using  the  teengamb  dataset,  fit  a  model  with  gamble  as  the response and the other variables as predictors. 

(a)

Produce the residual-fitted plot and comment. 

(b)

Check  the  normality  assumption.  Is  there  an

outlier? 

(c)

Compute  the  standardized  and  the  studentized

residuals.  Plot  the  ratio  of  these  two  residuals

against  the  index  of  observation.  Comment  on  the

variation of this ratio. 

(d)

Compute the standard deviation of the two types of

residual  discussed  in  the  previous  question.  What

value is expected? 

(e)

Compute  the  studentized  residual  and  make  a  QQ

plot. Apart from the change in scale on the y-axis, is

there  any  difference  between  this  plot  and  the  one

from (b)? 

(f)

Compute  the  Bonferroni  cut-off  and  use  it  to

identify the outliers in this model. 

(g)

Determine  a  transform  of  the  response  which

results in a satisfactory residual-fitted plot. 

3. For  the  prostate  data,  fit  a  model  with  lpsa  as  the response and the other variables as predictors. 

(a)

Make the residual-fitted plot and comment. 

(b)

Check for large leverage points. 

(c)

Display the regression summary and identify all the

predictors which are not statistically significant. Fit

a  model  with  all  these  predictors  removed. 

Construct  the  residual-fitted  plot  and  compare  to

that for the full model. 

(d)

Recompute  the  leverages  and  plot.  Identify  any

unusually large leverages. 

(e)

For  any  unusual  cases  identified  in  the  previous

question,  display  the  predictor  values  converted  to

standard units. Which predictors made these cases

unusual? 

(f)

Compare the regression summaries for the reduced

model  with  and  without  any  points  identified  as

having large leverage. 

4. For  the  swiss  data,  fit  a  model  with  Fertility  as  the response  and  the  other  variables  as  predictors.  Six

diagnostic  plots  are  readily  available  for  a  linear  model, lmod.  In  this  question,  you  will  reproduce  all  six  using basic plotting commands. 

(a)

The  command  plot(lmod,1)  makes  a  residual-fitted

plot. 

Reconstruct 

this 

using 

base 

plotting

commands. Overlay a smooth fitted curve using the

panel.smooth() function. No need to label the points. 

What should be concluded from the plot? 

(b)

The  plot(lmod,2)  makes  a  QQ  plot  of  the

standardized  residuals.  Reconstruct  this  plot  but

there is no need to label points. Interpret the plot. 

(c)

We get the  scale-location plot with plot(lmod,3). This has  the  square  root  of  the  absolute  standardized

residuals  on  the  vertical,  the  fitted  values  on  the

horizontal  with  an  overlaid  smooth.  Reconstruct

this  plot  and  comment.  Put  the  smooth  on  the  plot

but no labels. 

(d)

From  plot(lmod,4)  we  get  the  index  of  the

observations on the horizontal. At each observation, 

we  draw  a  vertical  bar  to  the  height  of  the  Cook's

statistic.  Reproduce  this  plot  with  the  label  for  the

largest Cook's statistic. 

(e)

From  plot(lmod,5)  we  get  a  plot  with  the

standardized  residuals  on  the  vertical  and  the

leverages  on  the  horizontal.  Overlay  a  smoothed

line. Comment on the plot. 

(f)

From  plot(lmod,6)  we  get  a  plot  of  the  Cook's

distance  on  the  vertical  and  h/(1-h)  (where  h  is  the

leverage) on the horizontal. Reproduce this plot. No

need  get  the  diagonal  lines,  tick  labels  on  the

horizontal  or  the  labeled  extreme  points.  Interpret

the plot. 

5. Using  the  cheddar  data,  fit  a  model  with  taste  as  the response and the other three variables as predictors. 

(a)

Make  a  plot  of  taste  against  acetic  showing  the

univariate  regression  line  on  the  plot  along  with  a

confidence  band.  Does  acetic  appear  significant  in predicting taste? 

(b)

Make  the  partial  residual  plot  for  acetic  with

respect  to  the  full  model  with  all  three  predictors. 

Contrast  the  plot  with  that  from  the  previous

question.  Under  what  circumstances  would  these

plots present a similar configuration of points? 

(c)

Produce the partial residual plot for H2S. Interpret

the plot. 

(d)

Compute  the  predicted  value  of  taste  for  H2S

varying  from  its  minimum  to  its  maximum  value

while  the  other  two  predictors  are  held  fixed  at

their mean values. Plot the resulting prediction line

on  top  of  a  scatterplot  of  H2S  and  taste.  What  is

this  kind  of  plot  called?  How  does  it  compare  with

the partial residual plot of the previous question? 

(e)

Produce  the  partial  regression  plot  for  H2S. 

Comment and contrast with the previous two plots. 

6. Using the mba data, fit a model with happy as the response

and the other four variables as predictors. 

(a)

Construct  the  residual-fitted  plot.  Do  the  linear

model  assumptions  appear  to  be  broken?  Why  are

there diagonal lines of points on the plot? 

(b)

Construct the QQ-plot and comment. 

(c)

Two rows in the dataset are identical. Identify these

two  rows.  Does  this  indicate  that  the  linear  model

assumptions are broken? 

(d)

Construct the partial residual plot for sex. Does this

plot have any practical value? 

7. Using  the  tvdoctor  data,  fit  a  model  with  life  as  the response and the other two variables as predictors. 

(a)

Make  scatterplots  with  life  as  the  response  and

each  of  the  predictors.  Show  the  univariate

regression  line  (but  no  confidence  band)  on  each

plot. Comment. 

(b)

Construct  the  partial  residual  plots  for  both

predictors. Contrast these with the two plots of the

previous question. 

(c)

Use a log transform on both predictors and refit the

model.  Present  both  partial  residual  plots  and

comment. 

(d)

How  helpful  were  partial  residual  plots  in  finding

the  best  transformation  on  the  predictors  in  this

example? 

8. For  the  divusa  data,  fit  a  model  with  divorce  as  the response  and  the  other  variables,  except  year  as

predictors. Check for serial correlation. 

9. Consider  a  sequence  of  regression  models  with  only  one predictor  where  the  sample  size  takes  an  integer  value

between  10  and  50.  Compute  the  Bonferroni  critical value  for  each  of  these  models.  Make  a  plot  of  your

findings.  What  was  the  minimum  observed  value  of  the

critical value and for what sample size did it occur? 

Chapter 8

Predictor Issues
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We  consider  three  concerns  that  can  arise  with  the

predictors.  When  the  predictors  are  measured  with  error, this  has  consequences  for  the  estimation  of  effects. 

Sometimes,  rescaling  the  predictors  can  make  the

interpretation  of  models  easier.  Predictors  can  sometimes be  strongly  correlated  with  each  other  which  makes  it

difficult  to  determine  their  individual  effect.  Transforming the  predictors  and  response  can  result  in  a  better  model but we leave this topic to Chapter 10. 

8.1 Errors in the Predictors

Measurement  error  in  the  response   y  is  built  into  the regression  model   y =  Xβ +  ϵ  with  the   ε  term.  It  is  usually the  case  that   ε  also  includes  the  effects  of  other unmeasured or unused variables. Measurement error in the

response is mixed into this and usually cannot be separated

out.  This  section  concerns  the  problem  of  measurement

error  in   X.  We  suppose  that  there  is  a  true   X  and  an

observed   X  which  are  not  the  same.  The  response   y  is driven  by  the  true   X.  It  is  not  unreasonable  that  there might be errors in measuring  X. For example, consider the problem  of  determining  the  effects  of  being  exposed  to  a potentially  hazardous  substance  such  as  second-hand

tobacco  smoke.  Such  an  exposure  would  be  a  predictor  in such  a  study,  but  it  is  very  hard  to  measure  this  exactly over a period of years. 

One should not confuse errors in predictors with treating

 X as a random variable. For observational data,  X could be regarded  as  a  random  variable,  but  the  regression

inference proceeds conditionally on a fixed value for  X. For more  on  this,  see  Section  3.1.   For  example,  suppose  we conducted  a  study  where  the  blood  sugar  level  of  the

participants  was  a  predictor.  Since  the  participants  are sampled from a larger population, the blood sugar level is a

random variable. However, once we select the participants

and measure the blood sugar levels, these become fixed for

the  purposes  of  the  regression.  But  our  interest  in  this section  is  the  situation  where  we  are  not  able  to  measure the blood sugar levels accurately. In this case, the value we

record  will  not  be  the  same  as  the  value  that  possibly affects the response. 

Suppose  that  what  we  observe  is  ( xO

 i ,  yO

 i )  for   i = 1, …  n

which are related to the true values ( xAi,  yAi):

[image: Image 38]

 yOi =  yAi +  ϵi

 xOi =  xAi +  δi

where the errors  ε and  δ are independent. The situation is depicted in Figure 8.1.  The true underlying relationship is: Long Description for Figure 8.1

Figure 8.1  Measurement error: true vs. observed data. 

 yAi =  β 0 +  β 1 xAi

(8.1)

but we only see ( xO

 i ,  yO

 i ). Putting it together, we get:

 yOi =  β 0 +  β 1 xOi + ( ϵi −  β 1 δi) (8.2)

Suppose  we  use  least  squares  to  estimate  β0  and  β1.  Let's assume   Eϵi =  Eδi = 0  and  that  var  ϵi =  σ 2 ϵ,  var  δi =  σ 2 δ. 

Let:

 σ 2 x = ∑( xAi − ¯ xA)2/ n

 σxδ =  cov( xA,  δ)

(8.3)

For  observational  data,  σ 2 x is (almost) the sample variance of   XA  while  for  a  controlled  experiment  we  can  view  it  as just  a  numerical  measure  of  the  spread  of  the  design.  A similar  distinction  should  be  made  for   cov( xA,  δ)  although in  many  cases,  it  will  be  reasonable  to  assume  that  this  is zero. 

Now  ^

 β 1 = ∑( xi − ¯ x) yi/ ∑( xi − ¯ x)2  and  after  some calculation we find that:

 σ 2

 E ^

 β

 x +  σxδ

1 =  β 1  σ 2 x +  σ 2 + 2

 δ

 σxδ

(8.4)

There are two main special cases of interest:

1. If  there  is  no  relation  between   XA  and   δ,  σxδ = 0,  this simplifies to:

1

 E ^

 β 1 =  β 1 1 +  σ 2/ δσ 2 x

(8.5)

So  ^

 β 1  will  be  biased  toward  zero,  regardless  of  the sample  size.  If   σ 2 δ  is  small  relative  to   σ 2 x,  then  the problem  can  be  ignored.  In  other  words,  if  the

variability  in  the  errors  of  observation  of   X  is  small relative  to  the  range  of   X,  then  we  need  not  be  too concerned.  For  multiple  predictors,  the  usual  effect  of measurement  errors  is  also  to  bias  the  ^

 β  in  the

direction of zero. 

2. In  controlled  experiments,  we  need  to  distinguish  two ways in which error in  x may arise. In the first case, we measure  x so although the true value is  xA, we observe x 0.  If  we  were  to  repeat  the  measurement,  we  would have the same  xA, but a different  x 0. In the second case, you  fix   xO  —  for  example,  you  make  up  a  chemical solution  with  a  specified  concentration   xO.  The  true concentration  would  be   xA.  Now  if  you  were  to  repeat this,  you  would  get  the  same   xO,  but  the   xA  would  be different. In this latter case we have:

 σxδ =  cov( X 0 −  δ,  δ) = − σ 2 δ

(8.6)

and  then  we  would  have   E ^

 β 1 =  β 1.  So  our  estimate

would  be  unbiased.  This  seems  paradoxical,  until  you

notice  that  the  second  case  effectively  reverses  the

roles of  xA and  xO and if you get to observe the true  X, then  you  will  get  an  unbiased  estimate  of  β1.  See

Berkson (1950) for a discussion of this. 

If  the  model  is  used  for  prediction  purposes,  we  can

make the same argument as in the second case above. 

In  repeated  “experiments,”  the  value  of   x  at  which  the prediction  is  to  be  made  will  be  fixed,  even  though

these  may  represent  different  underlying  “true”  values

of  x. 

In cases where the error in  X can simply not be ignored, we  should  consider  alternatives  to  the  least  squares

estimation  of  β.  The  simple  least  squares  regression

equation can be written as:

 y − ¯ y

( x − ¯ x)

=  r

 SDy

 SDx

(8.7)

so  that  ^

 β 1 =  rSDy/ SDx. Note that if we reverse the roles of   x  and   y,  we  do  not  get  the  same  regression  equation. 

Since  we  have  errors  in  both   x  and   y  in  our  problem,  we might  argue  that  neither  one,  in  particular,  deserves  the role of response or predictor and so the equation should be

the  same  either  way.  One  way  to  achieve  this  is  to  set

^ β 1 =  SDy/ SDx.  This  is  known  as  the   geometric  mean functional  relationship.  More  on  this  can  be  found  in

Draper  and  Smith  (1998).  Another  approach  is  to  use  the SIMEX  method  of  Cook  and  Stefanski  (1994),  which  we illustrate below. 

Consider some data on the speed and stopping distances

of  cars  in  the  1920s.  We  plot  the  data,  as  seen  in  Figure

8.2, and fit a linear model:

data (cars)

plot (dist ~ speed , cars , ylab = “distance”)

lmod = lm (dist ~ speed , cars)

summary (lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept)    -17.579      6.758   -2.60    0.012

speed            3.932      0.416    9.46   <1e-04



Residual standard error: 15.4 on 48 degrees of freedom

Multiple R-squared: 0.651,           Adjusted R-squared: 0.644

F-statistic: 89.6 on 1 and 48 DF,          p-value: <1e-04

abline (lmod)

[image: Image 39]

Figure  8.2   Stopping  distances  and  speeds  of  cars.  The least squares fit is shown as a solid line. The fits with three progressively larger amounts of measurement error on the

speed  are  shown  as  dotted  lines,  where  the  slope  gets shallower as the error increases. 

We could explore transformations and diagnostics for these

data,  but  we  will  just  focus  on  the  measurement  error issue. 

Now 

we 

investigate 

the 

effect 

of 

adding

measurement  error  to  the  predictor.  We  plot  the  modified fits in Figure 8.2:

set.seed (99)

lmod1 = lm (dist ~ I (speed + rnorm (50)) , cars)

coef (lmod1)

(Intercept) I(speed + rnorm(50))

-16.7913               3.9459

abline (lmod1 , lty =2)

lmod2 = lm (dist ~ I (speed +2 * rnorm (50)), cars)

coef (lmod2)

(Intercept) I(speed + 2 * rnorm(50))

-10.6935                   3.4653

abline (lmod2 , lty =3)

lmod5 = lm (dist ~ I (speed +5 * rnorm (50)) , cars)

coef (lmod5)

(Intercept) I(speed + 5 * rnorm(50))

13.8692                   1.9549

abline (lmod5 , lty =4)

We  can  see  that  the  slope  becomes  shallower  as  the

amount of noise increases. 

Suppose we knew that the predictor, speed, in the original

data  had  been  measured  with  a  known  error  variance,  say 0.5.  Given  what  we  have  seen  in  the  simulated

measurement  error  models,  we  might  extrapolate  back  to

suggest  an  estimate  of  the  slope  under  no  measurement

error. This is the idea behind SIMEX. 

Here  we  simulate  the  effects  of  adding  normal  random

error  with  variances  ranging  from  0.1  to  0.5,  replicating the experiment 1000 times for each setting:

vv = rep (1:5 / 10 , each =1000)

slopes = numeric (5000)

for (i in 1:5000) {

slopes [i]= lm (dist~I (speed + sqrt (vv [i]) * rnorm (50)), 

cars) $ coef [2]

}

Now  we  plot  the  mean  slopes  for  each  variance.  We  are assuming  that  the  data  have  variance  0.5  so  the  extra variance is added to this:

betas = c (coef (lmod) [2] , colMeans (matrix (slopes , 

nrow=1000)))

[image: Image 40]

variances = c (0 ,1:5 / 10) +0.5

plot (variances , betas , xlim = c (0 ,1) , ylim = c (3.86 ,4)) Figure  8.3   Simulation–extrapolation  estimation  of  the unbiased slope in the presence of measurement error in the

predictors. We predict  ^

 β = 4.0 at a variance of zero. 

We fit a linear model and extrapolate to zero variance:

gv = lm (betas ~ variances)

coef (gv)

(Intercept)   variances

3.99614    -0.12839

points (0 , gv$coef [1] , pch=3)

The  predicted  value  of  ^

 β at variance equal to zero, that is

no  measurement  error,  is  4.0.  Better  models  for

extrapolation  are  worth  considering;  see  Cook  and

Stefanski (1994) for details. The method is implemented in

the simex package of Lederer and Seibold (2019):

library (simex)

set . seed (123)

lmod = lm (dist ~ speed , cars , x = TRUE)

simout = simex (lmod , “speed” , sqrt (0.5) , B =1000)

simout

SIMEX-Variables: speed

Number of Simulations: 1000



Coefficients:

(Intercept)       speed

-18.01        3.96

The  results  are  about  the  same,  bearing  in  mind  that  the method  relies  on  simulation  and  hence  random  generation so the output will not be identical. 

In  practice,  many  analysts  do  not  take  account  of

measurement  errors  in  the  predictors.  It  is  not  easy  to model,  particularly  when  there  are  other  common

complications to be considered as well. One can argue that

if  the  measurement  error  is  relatively  small,  it  will  not make  much  difference  to  the  conclusions.  We  can  check

this  by  adding  random  perturbations  to   X  with  some variance similar to the perceived measurement error. If the

changes  caused  by  these  perturbations  are  not  large,  we can feel some confidence in our conclusions. Otherwise, we

may need to work harder to model the measurement error. 

In  our  example,  the  effect  of  increasing  measurement

error was to decrease the size of the effect as expressed by

the  regression  coefficient.  For  this  reason,  we  might  be tempted  to  claim  that  our  analysis  is  conservative  in  the sense  it  will  understate  the  true  sizes  of  effects. 

Unfortunately,  this  is  not  guaranteed  to  be  true.  If  the measurement errors are correlated with the observations in

an  inconvenient  way,  our  estimated  effects  may  be

exaggerated. Again some simulation may provide intuition. 

8.2 Changes of Scale

Sometimes  we  want  to  change  the  scale  of  the  variables. 

Perhaps we need to change the units of measurement, say

from  inches  to  centimeters.  A  change  of  scale  is  often helpful when variables take values which are all very large

or  all  very  small.  For  example,  we  might  find

^ β = 0.000000351.  It  can  be  misleading  to  deal  with quantities  like  this  because  it's  easy  to  lose  track  of  the number  of  leading  zeroes.  Humans  deal  better  with

interpreting  moderate  sized  numbers  like  ^

 β = 3.51.  So  to

avoid confusing yourself or your readers, a change of scale

can be beneficial. 

In more extreme cases, a change of scale can be needed

to ensure numerical stability. Although many algorithms try

to  be  robust  against  variables  of  widely  different  scales,  it is  possible  to  run  into  calculation  errors.  Most  methods work  more  reliably  when  variables  are  on  roughly  similar scales. 

Suppose we reexpress  xi as ( xi +  a)/ b. Rescaling  xi leaves the   t-  and   F-tests  and  ^

 σ 2 and  R 2 unchanged and  ^

 βi →  b^ βi. 

Rescaling   y  in  the  same  way  leaves  the   t-  and   F-tests  and R 2 unchanged, but ^ σ and  ^

 β will rescaled by  b. 

To demonstrate this, we use the savings data:

data (savings, package = “faraway”)

lmod = lm (sr ~ pop15+pop75+dpi+ddpi , savings)

summary (lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept)   28.566087   7.354516    3.88 0.00033

pop15         -0.461193   0.144642   -3.19 0.00260

pop75         -1.691498   1.083599   -1.56 0.12553

dpi           -0.000337   0.000931   -0.36 0.71917

ddpi           0.409695   0.196197    2.09 0.04247



Residual standard error: 3.8 on 45 degrees of freedom

Multiple R-squared: 0.338,                 Adjusted R-squared: 0.28

F-statistic: 5.76 on 4 and 45 DF,          p-value: 0.00079

The  coefficient  for  income  is  rather  small  —  let's  measure income in thousands of dollars instead and refit:

lmod = lm (sr ~ pop15 + pop75 + I (dpi / 1000) + ddpi , 

savings)

summary (lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept)     28.566      7.355    3.88 0.00033

pop15           -0.461      0.145   -3.19 0.00260

pop75           -1.691      1.084   -1.56 0.12553

I(dpi/1000)     -0.337      0.931   -0.36 0.71917

ddpi             0.410      0.196    2.09 0.04247



Residual standard error: 3.8 on 45 degrees of freedom

Multiple R-squared: 0.338,            Adjusted R-squared: 0.28

F-statistic: 5.76 on 4 and 45 DF,     p-value: 0.00079

We see that only the coefficient for dpi and its SE changed. 

The  size  of  the  coefficient  is  now  more  convenient  for interpretation. 

One rather thorough approach to scaling is to convert all the  variables  to  standard  units  (mean  0  and  variance  1) using the scale() command:

scsav = data . frame (scale (savings))

lmod = lm (sr ~ . , scsav)

summary (lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.01e-16   1.20e-01    0.00   1.0000

pop15      -9.42e-01   2.95e-01   -3.19   0.0026

pop75      -4.87e-01   3.12e-01   -1.56   0.1255

dpi        -7.45e-02   2.06e-01   -0.36   0.7192

ddpi        2.62e-01   1.26e-01    2.09   0.0425



Residual standard error: 0.849 on 45 degrees of freedom

Multiple R-squared: 0.338,                 Adjusted R-squared: 0.28

F-statistic: 5.76 on 4 and 45 DF,          p-value: 0.00079

As may be seen, the intercept is zero. This is because the

regression  plane  always  runs  through  the  point  of  the

averages,  which  because  of  the  centering,  is  now  at  the origin.  Such  scaling  has  the  advantage  of  putting  all  the predictors  and  the  response  on  a  comparable  scale,  which makes  comparisons  simpler.  It  also  allows  the  coefficients to  be  viewed  as  a  kind  of  partial  correlation  —  the  values will  always  be  between  minus  one  and  one.  It  also  avoids some numerical problems that can arise when variables are

of  very  different  scales.  The  interpretation  effect  of  this scaling is that the regression coefficients now represent the

effect  of  a  one  standard  unit  increase  in  the  predictor  on the  response  in  standard  units.  If  you  or  your  readers  are

not  familiar  with  the  scale  of  measurement  for  a  variable, this is helpful since an increase of one standard unit can be

universally  understood.  In  contrast,  if  the  scale  is  well known, using standard units might make the interpretation

more opaque. Another objection is that our standardization

uses  the  mean  and  SD  from  the  sample  which  may  not  be similar to those for the population of interest. Furthermore, 

if  you  plan  to  use  the  model  for  prediction,  standard  units will be inconvenient since you will need to retain the mean

and  SD  and  convert  the  new  predictor  values  using  this information. 

When the predictors are on comparable scales, it can be

helpful to construct a plot of the estimates with confidence

intervals as seen in Figure 8.4. 

edf = data.frame (coef (lmod) , confint (lmod)) [-1 ,]

names (edf) = c (’ Estimate ’ , ’ lb ’ , ’ ub ’)

library (ggplot2)

p = ggplot (aes (y = Estimate , ymin = lb , ymax = ub , x = row 

. names (edf)) , 

data = edf) + geom _ pointrange ()

p + coord _ flip () + xlab (“Predictor”) +

geom _ hline (yintercept =0 , col = gray (0.75))

[image: Image 41]

Figure  8.4   Plot  of  the  standardized  coefficients  for  the savings model; 95% confidence intervals are shown. 

In the presence of binary predictors, scaling might be done

differently. For example, we notice that the countries in the

savings data divide into two clusters based on age. We can

set a division at 35% for pop15:

savings$age = ifelse (savings$pop15 > 35 , 0 , 1)

so  that  younger  countries  are  coded  as  zero  and  older countries  as  one.  A  binary  predictor  taking  the  values  of 0/1  with  equal  probability  has  a  standard  deviation  of  one half.  This  suggests  scaling  the  other  continuous  predictors by  two  SDs  rather  than  one.  When  adding  more  than  one variable  to  the  dataframe,  the  transform()  command  can

make the operation shorter and clearer:

savings = transform (savings , 

dpis = (dpi - mean (dpi)) / (2 * sd (dpi)) , 

ddpis = (ddpi - mean (ddpi)) / (2 * sd (ddpi)))

summary (lm (sr ~ age + dpis + ddpis , savings))

Estimate Std. Error t value Pr(>|t|)

(Intercept)       6.82       1.01    6.75   <1e-04

age               5.28       1.58    3.33   0.0017

dpis             -1.56       1.61   -0.97   0.3361

ddpis             2.47       1.11    2.23   0.0309



Residual standard error: 3.8 on 46 degrees of freedom

Multiple R-squared: 0.325,          Adjusted R-squared:   0.281

F-statistic: 7.37 on 3 and 46 DF,   p-value: 0.000391

Now  the  interpretation  of  the  coefficients  becomes  easier. 

The  predicted  difference  between  older  and  younger

countries is a savings rate 5.28% higher in the former. This

is a difference of two standard deviations. The same change

of two standard deviations in ddpi means a difference of one

in  the  new  scale  of  ddpis.  So  we  could  say  that  a  typical country  with  a  high  growth  rate  has  a  savings  rate  2.47%

higher than one with a low growth rate. Now ddpi is really a

continuous  variable  so  this  interpretation  is  just  for

convenient  intuition.  Another  way  to  achieve  a  similar

effect is to use a −1 /+1 coding rather than 0/1 so that the

standard scaling can be used on the continuous predictors. 

See Gelman (2008) for more details. 

Sometimes nonlinear transformations of the variables are

appropriate,  but  these  result  in  a  fundamental  change  in the  model.  All  the  statistics  in  the  model  summary  may  be affected. These are discussed in Chapter 10. 

8.3 Collinearity

When  some  predictors  are  linear  combinations  of  others, then  X T X is singular, and we have a lack of identifiability as  discussed  in  Section  2.11.  Another  name  for  this

problem  is  exact  collinearity.  There  is  no  unique  least squares  estimate  of  β.  The  solution  may  require  removing some predictors. 

A more challenging problem arises when  X T X is close to singular but not exactly so. This is known as collinearity or

sometimes,  multicollinearity.  Collinearity  leads  to  highly variable estimates of β. The signs of the coefficients can be

the  opposite  of  what  intuition  about  the  effect  of  the predictor  might  suggest.  The  standard  errors  are  inflated so  that   t-tests  may  fail  to  reveal  significant  factors.  The  fit becomes very sensitive to measurement errors where small

changes in  y can lead to large changes in  ^

 β. 

Collinearity can be detected in several ways:

1. Examination of the correlation matrix of the predictors

may  reveal  values  close  to  −1  or  +1  indicating  large

 pairwise collinearities. 

2. A  regression  of   xi  on  all  other  predictors  gives   R 2 i.  R 2 i close to one that indicates a problem because it means

one  predictor  can  almost  be  predicted  exactly  by  a

linear  combination  of  other  predictors.  Repeat  for  all

predictors.  The  offending  linear  combination  may  be

discovered  by  examining  the  regression  coefficients  of

these regressions. 

3. Examine  the  eigenvalues  of   X T X,  λ 1 ≥ ⋯ ≥  λp ≥ 0. 

Zero  eigenvalues  denote  exact  collinearity  while  the

presence 

of 

some 

small 

eigenvalues 

indicates

multicollinearity. The condition number  κ measures the relative sizes of the eigenvalues and is defined as:

 κ = √  λ 1

 λp

(8.8)

where   κ ≥ 30  is  considered  large.  Other  condition numbers,  √ λ 1/ λi  are  also  worth  considering  because they  indicate  whether  more  than  just  one  independent

linear combination is to blame. Alternative calculations

involve  standardizing  the  predictors  and/or  including

the intercept term in  X. 

The  effect  of  collinearity  can  be  seen  by  this  expression for var  ^

 βj:

var ^

) 1

 βj =  σ 2 ( 1

1 −  R 2 ∑

 j

 i( xij − ¯

 xj)2

(8.9)

We can see that if the predictor  xj does not vary much, then the  variance  of  ^

 βj will be large. If  R 2 j is close to one, then

the  variance inflation factor (1 −  R 2 j)−1 will be large and so var ^ βj will also be large. 

This  equation  also  tells  us  which  designs  will  minimize the  variance  of  the  regression  coefficients  if  we  have  the ability  to  choose  the   X.  Orthogonality  means  that   R 2 j = 0

which minimizes the variance. Also we can minimize var  ^

 βj

by  spreading  out  the  values  of   xj as much as possible. The maximum  is  attained  by  placing  half  the  points  at  the minimum  practical  value  and  half  at  the  maximum. 

Unfortunately,  this  design  assumes  the  linearity  of  the effect  and  would  make  it  impossible  to  check  for  any

curvature. So, in practice, we might put some design points

in the middle of the range to allow checking of the fit. 

Car  drivers  like  to  adjust  the  seat  position  for  their  own comfort. Car designers would find it helpful to know where

different  drivers  will  position  the  seat  depending  on  their size  and  age.  Researchers  at  the  HuMoSim  laboratory  at the  University  of  Michigan  collected  data  on  38  drivers. 

They measured age in years, weight in pounds, height with

shoes and without shoes in centimeters, seated height arm

length,  thigh  length,  lower  leg  length  and  hipcenter,  the horizontal distance of the midpoint of the hips from a fixed

location  in  the  car  in  millimeters.  We  fit  a  model  with  all the predictors:

data (seatpos, package = “faraway”)

lmod = lm (hipcenter ~ . , seatpos)

summary (lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 436.4321   166.5716    2.62    0.014

Age           0.7757     0.5703    1.36    0.184

Weight        0.0263     0.3310    0.08    0.937

HtShoes      -2.6924     9.7530   -0.28    0.784

Ht            0.6013    10.1299    0.06    0.953

Seated        0.5338     3.7619    0.14    0.888

Arm          -1.3281     3.9002   -0.34    0.736

Thigh        -1.1431     2.6600   -0.43    0.671

Leg          -6.4390     4.7139   -1.37    0.182



Residual standard error: 37.7 on 29 degrees of freedom

Multiple R-squared: 0.687,                 Adjusted R-squared: 0.6

F-statistic: 7.94 on 8 and 29 DF,          p-value: <1e-04

This  model  already  shows  the  signs  of  collinearity.  The   R 2

is  not  small,  but  none  of  the  individual  predictors  is significant. We take a look at the pairwise correlations:

round (cor (seatpos [ , -9]) ,2)

Age Weight HtShoes    Ht  Seated Arm Thigh  Leg

Age        1.00   0.08   -0.08 -0.09   -0.17 0.36 0.09 -0.04

Weight     0.08   1.00    0.83  0.83    0.78 0.70 0.57  0.78

HtShoes   -0.08   0.83    1.00  1.00    0.93 0.75 0.72  0.91

Ht        -0.09   0.83    1.00  1.00    0.93 0.75 0.73  0.91

Seated    -0.17   0.78    0.93  0.93    1.00 0.63 0.61  0.81

Arm        0.36   0.70    0.75  0.75    0.63 1.00 0.67  0.75

Thigh      0.09   0.57    0.72  0.73    0.61 0.67 1.00  0.65

Leg       -0.04   0.78    0.91  0.91    0.81 0.75 0.65  1.00

There  are  several  large  pairwise  correlations  between

predictors. Now we check the eigendecomposition of  X T X

(not including the intercept in  X):

x = model.matrix (lmod) [, -1]

e = eigen (t(x) % * % x)

signif (e$values ,2)

[1] 3.7e+06 2.1e+04 9.0e+03 3.0e+02 1.5e+02 8.1e+01 5.3e+01 

7.3e+00

sqrt (e$val [1] / e$val)

[1]   1.000   13.042   20.100 110.551 156.912 212.156 261.667 

707.549

There  is  a  wide  range  in  the  eigenvalues  and  several

condition numbers are large. This means that problems are

being  caused  by  more  than  just  one  linear  combination. 

Now  check  the  variance  inflation  factors  (VIFs).  For  the first variable this is:

summary (lm (x[ ,1] ~ x[, -1])) $r . squared

[1] 0.49948

1 / (1 -0.49948)

[1] 1.9979

which  is  moderate  in  size  —  the  VIF  for  orthogonal

predictors  is  one.  Now  we  compute  all  the  VIFs  in  one  go, using a function from the faraway package:

faraway :: vif (x)

Age   Weight HtShoes        Ht   Seated      Arm    Thigh     

Leg

1.9979   3.6470 307.4294 333.1378   8.9511   4.4964   2.7629   

6.6943


There  is  much  variance  inflation.  For  example,  we  can

interpret  √307.4 = 17.5  as  telling  us  that  the  standard error  for  height  with  shoes  is  17.5  times  larger  than  it would have been without collinearity. We cannot apply this

as  a  correction  because  we  did  not  actually  observe

orthogonal  data,  but  it  does  give  us  a  sense  of  the  size  of the effect. 

There  is  substantial  instability  in  these  estimates. 

Measuring the hipcenter is difficult to do accurately and we

can  expect  some  variation  in  these  values.  Suppose  the measurement  error  had  a  SD  of  10  mm.  Let's  see  what

happens when we add a random perturbation of this size to

the response:

set . seed (1001)

lmod = lm (hipcenter +10 * rnorm (38) ~ . , seatpos)

summary (lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 470.6171   173.4018    2.71    0.011

Age           0.9637     0.5937    1.62    0.115

Weight        0.0143     0.3445    0.04    0.967

HtShoes      -6.9894    10.1530   -0.69    0.497

Ht            5.3762    10.5452    0.51    0.614

Seated       -0.6604     3.9161   -0.17    0.867

Arm          -2.4361     4.0601   -0.60    0.553

Thigh        -0.9929     2.7691   -0.36    0.723

Leg          -5.6918     4.9071   -1.16    0.256



Residual standard error: 39.3 on 29 degrees of freedom

Multiple R-squared: 0.677,           Adjusted R-squared:     

0.587

F-statistic: 7.58 on 8 and 29 DF,    p-value: <1e-04

Although  the   R 2  and  standard  error  are  very  similar  to the  previous  fit,  we  see  much  larger  changes  in  the

coefficients,  indicating  their  sensitivity  to  the  response values caused by the collinearity. 

We  have  too  many  variables  that  are  trying  to  do  the same job of explaining the response. If we have information

available in predictors that may be related to the response, 

it is natural to want to include them in a model. When the model  is  being  used  for  explanatory  or  causal  purposes, this  can  be  a  mistake  if  we  have  a  set  of  variables  which contain  roughly  the  same  information.  We  can  reduce  the collinearity  by  carefully  removing  some  of  the  variables  —

we  want  to  retain  information  about  some  feature  of

interest  but  without  explaining  it  in  redundant  ways.  We can then make a more stable estimation of the coefficients

and come to a more secure conclusion regarding the effect

of the remaining predictors on the response. We should not

conclude  or  suggest  that  the  variables  we  drop  have

nothing to do with the response. They contain very similar

information to the variables we do use. 

Examine  the  full  correlation  matrix  above.  Consider  just the correlations of the length variables:

round (cor (x [,3:8]) ,2)

HtShoes   Ht Seated Arm Thigh Leg

HtShoes    1.00 1.00  0.93 0.75 0.72   0.91

Ht         1.00 1.00  0.93 0.75 0.73   0.91

Seated     0.93 0.93  1.00 0.63 0.61   0.81

Arm        0.75 0.75  0.63 1.00 0.67   0.75

Thigh      0.72 0.73  0.61 0.67 1.00   0.65

Leg        0.91 0.91  0.81 0.75 0.65   1.00

These six variables are strongly correlated with each other

— any one of them might do a good job of representing the

other.  We  pick  height  as  the  simplest  to  measure.  We  are not  claiming  that  the  other  predictors  are  not  associated with  the  response,  just  that  we  do  not  need  them  all  to predict the response:

lmod2 = lm (hipcenter ~ Age + Weight + Ht, seatpos) summary (lmod2)

Estimate  Std. Error t value Pr(>|t|)

(Intercept) 528.29773  135.31295     3.90 0.00043

Age           0.51950    0.40804     1.27 0.21159

Weight        0.00427    0.31172     0.01 0.98915

Ht           -4.21190    0.99906    -4.22 0.00017



Residual standard error: 36.5 on 34 degrees of freedom

Multiple R-squared: 0.656,           Adjusted R-squared: 0.626

F-statistic: 21.6 on 3 and 34 DF,          p-value: <1e-04

Comparing  this  with  the  original  fit,  we  see  that  the  fit  is very  similar  in  terms  of   R 2,  but  many  fewer  predictors  are used. Further simplification is clearly possible. 

If  you  want  to  keep  all  your  variables  in  the  model,  you should  consider  alternative  methods  of  estimation  such  as ridge regression as described in Section 12.3. 

The effect of collinearity on prediction is less serious. The

accuracy of the prediction depends on where the prediction

is  to  be  made.  The  greater  the  distance  is  from  the

observed data, the more unstable the prediction. Of course, 

this  is  true  for  all  data  but  collinear  data  covers  a  much smaller  fraction  of  the  the  predictor  space  than  it  might first appear. This means that predictions tend to be greater

extrapolations  than  with  data  that  are  closer  to  the

orthogonality. 

Exercises

1. Using  the  faithful  data,  fit  a  regression  of  duration  on waiting. Assuming that there was a measurement error in

waiting of 30 seconds, use the SIMEX method to obtain a

better estimate of the slope. 

2. Using the divusa data:

(a)

Fit a regression model with divorce as the response

and  unemployed,  femlab,  marriage,  birth  and  military

as  predictors.  Compute  the  condition  numbers  and

interpret their meanings. 

(b)

For  the  same  model,  compute  the  VIFs.  Is  there

evidence  that  collinearity  causes  some  predictors

not to be significant? Explain. 

(c)

Does  the  removal  of  insignificant  predictors  from

the model reduce the collinearity? Investigate. 

3. For  the  longley  data,  fit  a  model  with  Employed  as  the response and the other variables as predictors. 

(a)

Compute and comment on the condition numbers. 

(b)

Compute and comment on the correlations between

the predictors. 

(c)

Compute the variance inflation factors. 

(d)

Now  using  the  odor  data,  fit  a  model  using  odor  as

the response and the other variables as predictors. 

Compute  the  collinearity  statistics  as  in  parts  (a-c)

and comment. 

4. Using the cheddar data, fit a linear model with taste as the response and the other three variables as predictors. 

(a)

Is the predictor Lactic statistically significant in this

model? 

(b)

Give  the  R  command  to  extract  the   p-value  for  the test of  βlactic = 0. Hint: look at summary()$coef. 

(c)

Add normally distributed errors to Lactic with mean

zero  and  standard  deviation  0.01  and  refit  the

model.  Now  what  is  the   p-value  for  the  previous test? 

(d)

Repeat  this  same  calculation  of  adding  errors  to

Lactic  1000  times  within  a  for  loop.  Save  the   p-

values into a vector. Report on the average  p-value. 

What  proportion  of   p-values  exceeds  0.05?  Does

this  much  measurement  error  make  a  qualitative

difference to the conclusions? 

(e)

Repeat  the  previous  question  but  with  a  standard

deviation of 0.1. Does this much measurement error

make an important difference? 

5. Use  the  mba  dataset  with  happy  as  the  response  and  the other variables as predictors. Display the model output. 

(a)

Rescale  all  the  variables  to  have  mean  zero  and

variance  one.  Refit  the  model.  What  parts  of  the

summary output are unchanged by the rescaling? 

(b)

What  is  the  connection  between  VIFs  and  the  SEs

of the model in (a)? 

(c)

Rescale  all  the  variables  by  dividing  through  by

their maximum values. After this transformation, all

the  variables  should  lie  in  [0,1].  Compare  the

output 

to 

that 

previous 

model. 

Give 

an

interpretation  for  the  meaning  of  the  regression

coefficients under this scaling. 

(d)

Leaving  all  other  variables  unchanged,  transform

the  money  variable  using  the  rank()  function.  Refit

the model using this ranked money predictor. What

aspects  of  the  model  have  changed?  Is  this  a

reasonable transformation? Discuss. 

6. Use  the  fat  data,  fitting  the  model  described  in  Section

5.2. 

(a)

Compute  the  condition  numbers  and  variance

inflation  factors.  Comment  on  the  degree  of

collinearity observed in the data. 

(b)

Cases  39  and  42  are  unusual.  Refit  the  model

without  these  two  cases  and  recompute  the

collinearity 

diagnostics. 

Comment 

on 

the

differences observed from the full data fit. 

(c)

Fit a model with brozek as the response and just age, 

weight  and  height  as  predictors.  Compute  the

collinearity diagnostics and compare to the full data

fit. 

(d)

Compute a 95% prediction interval for brozek for the

median values of age, weight and height. 

(e)

Compute  a  95%  prediction  interval  for  brozek  for

age=40,  weight=200  and  height=73.  How  does  the

interval compare to the previous prediction? 

(f)

Compute  a  95%  prediction  interval  for  brozek  for

age=40,  weight=130  and  height=73.  Are  the  values  of

predictors  unusual?  Comment  on  how  the  interval

compares to the previous two answers and how this

relates to collinearity. 

Chapter 9

Modeling with the Error

DOI: 10.1201/9781003449973-9

Previously,  we  have  assumed  that  the  error   ε  is independent 

and 

identically 

distributed 

(i.i.d.). 

Furthermore,  we  have  also  assumed  that  the  errors  are

normally  distributed  in  order  to  carry  out  the  usual

statistical  inference.  We  have  seen  that  these  assumptions can  often  be  violated  and  we  must  then  consider

alternatives.  When  the  errors  are  dependent,  we  can  use generalized  least  squares  (GLS).  When  the  errors  are independent,  but  not  identically  distributed,  we  can  use weighted  least  squares  (WLS),  which  is  a  special  case  of GLS.  Sometimes,  we  have  a  good  idea  of  how  large  the error should be, but the residuals may be much larger than

we expect. This is evidence of a  lack of fit. When the errors are not normally distributed, we can use  robust regression. 

9.1 Generalized Least Squares

Until  now  we  have  assumed  that  var  ε =  σ 2 I,  but sometimes  the  errors  have  nonconstant  variance  or  are

correlated.  Suppose  instead  that  var  ε =  σ 2Σ  where   σ 2  is unknown  but  Σ  is  known  —  in  other  words,  we  know  the correlation  and  relative  variance  between  the  errors,  but we  do  not  know  the  absolute  scale  of  the  variation.  For now, it might seem redundant to distinguish between  σ and Σ, but we will see how this will be useful later. 

We  can  write  Σ =  SS T ,  where   S  is  a  triangular  matrix using  the  Choleski  decomposition,  which  is,  loosely

speaking, like a square root for a matrix. We can transform

the regression model as follows:

 y =  Xβ +  ε

 S−1 y =  S−1 Xβ +  S−1 ε

 y′ =  X′ β +  ε′

(9.1)

Now we find that:

var  ε′ = var ( S−1 ε) =  S−1( var  ε) S− T =  S−1 σ 2 SSTS− T =  σ

(9.2)

So we can reduce GLS to ordinary least squares (OLS) by a

regression  of   y′ =  S −1 y  on   X ′ =  S −1 X  which  has  error ε′ =  S−1 ε that is i.i.d. We have transformed the problem to

the  standard  case.  In  this  transformed  model,  the  sum  of squares is:

( S−1 y −  S−1 Xβ) T( S−1 y −  S−1 Xβ) =

( y −  Xβ) TS− TS−1( y −  Xβ) =

( y −  X

(9.3)

which is minimized by:

^ β = ( XT Σ−1 X)−1 XT Σ−1 y

(9.4)

We find that:

var ^ β = ( XT Σ−1 X)−1 σ 2

(9.5)

Since   ε′ =  S −1 ε,  diagnostics  should  be  applied  to  the residuals,  S −1 ^

 ε. If we have the right Σ, then these should

be approximately i.i.d. 

The  main  problem  in  applying  GLS  in  practice  is  that  Σ

may  not  be  known  and  we  have  to  estimate  it.  Let's  take

another look at the global warming data first considered in

Section  7.1.   We  found  evidence  of  serial  correlation  by looking  at  successive  residuals.  We  demonstrate  how  we

can  model  this  using  GLS.  We  start  with  the  OLS  solution by fitting a linear model:

data (globwarm , package = “faraway”)

lmod = lm (nhtemp ~ wusa + jasper + westgreen + chesapeake +

tornetrask + urals + mongolia + tasman , globwarm)

summary (lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.24256    0.02701   -8.98 < 1e-04

wusa         0.07738    0.04293    1.80 0.07365

jasper      -0.22879    0.07811   -2.93 0.00399

westgreen    0.00958    0.04184    0.23 0.81917

chesapeake  -0.03211    0.03405   -0.94 0.34735

tornetrask   0.09267    0.04505    2.06 0.04161

urals        0.18537    0.09143    2.03 0.04457

mongolia     0.04197    0.04579    0.92 0.36100

tasman       0.11545    0.03011    3.83 0.00019



Residual standard error: 0.176 on 136 degrees of freedom

(856 observations deleted due to missingness)

Multiple R-squared: 0.476,           Adjusted R-squared: 0.446

F-statistic: 15.5 on 8 and 136 DF,          p-value: <1e-04

In  data  collected  over  time  such  as  this,  successive  errors could  be  correlated.  We  can  calculate  this  by  computing the  correlation  between  the  vector  of  residuals  with  the first and then the last term omitted. 

cor (residuals (lmod) [ -1] , 

residuals (lmod) [ - length (residuals (lmod)) ])

[1] 0.58334

We see a correlation of 0.58 between successive residuals. 

The simplest way to model this is the autoregressive form:

 εi+1 =  ϕεi +  δi

(9.6)

where   δi ∼  N(0,  τ  2).  The  nlme  package  of  Pinheiro  and

Bates (2000) contains a GLS fitting function. We can use it

to fit this model:

library (nlme)

glmod = gls (nhtemp ~ wusa + jasper + westgreen + chesapeake +

tornetrask + urals + mongolia + tasman , 

correlation = corAR1 (form = ~ year) , 

data = na.omit (globwarm))

summary (glmod)

Generalized least squares fit by REML

Correlation Structure: AR(1)

Formula: ~year

Parameter estimate(s):

Phi

0.71099



Coefficients:

Value Std.Error t-value p-value

(Intercept)   -0.230106 0.067024 -3.4332 0.0008

wusa           0.066738 0.098772  0.6757 0.5004

jasper        -0.202443 0.188028 -1.0767 0.2835

westgreen     -0.004403 0.089853 -0.0490 0.9610

chesapeake    -0.007353 0.073498 -0.1000 0.9205

tornetrask     0.038352 0.094825  0.4044 0.6865

urals          0.241422 0.228710  1.0556 0.2930

mongolia       0.056950 0.104898  0.5429 0.5881

tasman         0.120349 0.074570  1.6139 0.1089



Residual standard error: 0.20457

Degrees of freedom: 145 total; 136 residual

The  lm  function  drops  missing  value  cases  (which  is  what we  want)  but  gls  complains  so  we  have  removed  these

cases using the na.omit function. We notice that the residual

standard error  ^

 σ is a little larger in the GLS case as might

be expected. The standard errors of  ^

 β are much larger and

none of the predictors is statistically significant in the GLS

output.  However,  there  is  substantial  collinearity  between the  predictors  so  this  should  not  be  interpreted  as  “no predictor  effect”.  Correlation  between  the  predictors  and correlation  between  the  errors  are  different  phenomena

and  there  is  no  necessary  link  between  the  two,  but  both can  have  an  effect  on  the  standard  errors  of  the

coefficients. We see that the estimated value of  ϕ is 0.71. It is  not  surprising  to  see  significant  autocorrelation  in  this example  because  the  proxies  can  only  partially  predict  the temperature and we would naturally expect some carryover

effect  from  one  year  to  the  next.  We  check  the  confidence intervals for this term:

intervals (glmod , which = “var-cov”)

Approximate 95% confidence intervals



Correlation structure:

lower    est.   upper

Phi 0.50998 0.71099 0.83837



 Residual standard error:

lower    est.   upper

0.15407 0.20457 0.27163

We  see  from  the  interval,  (0.51, 0.84),  that  this  term  is clearly  different  from  zero  and  that  there  is  significant positive correlation. For this example, we might investigate

whether a more sophisticated model should apply to errors

perhaps  using  a  so-called  ARMA  model.  This  can  be

implemented using the corARMA function. 

Another  situation  where  correlation  between  errors

might be anticipated is where observations are grouped in

some  way.  For  example,  consider  an  experiment  to

compare  eight  varieties  of  oats.  The  growing  area  was

heterogeneous  and  so  was  grouped  into  five  blocks.  Each variety  was  sown  once  within  each  block  and  the  yield  in grams  per  16-ft  row  was  recorded.  The  data  come  from

Anderson  and  Bancroft  (1952).   It  is  reasonable  to  expect that  the  observations  within  a  block  might  have  errors which are correlated, that is  cor( εi,  εj) is  ρ if  i and  j are in the  same  block  while  zero  otherwise.  This  is  called  the compound symmetry assumption and is modeled as follows:

data (oatvar , package = “faraway”)

glmod = gls (yield ~ variety, oatvar, 

correlation = corCompSymm (form = ~ 1 | block))

intervals (glmod)

Approximate 95% confidence intervals



Correlation structure:

lower est.    upper

Rho 0.065964 0.396 0.74937

We  see  that  there  is  good  evidence  of  a  non-zero correlation  of  around  0.4  between  the  errors  within  the blocks. There are other ways to model the block effect and

we return to this dataset in Section 18.1. 

Other  examples  where  correlated  errors  can  arise  are  in spatial data where the relative locations of the observations

can be used to model the error correlation. In other cases, 

one  may  suspect  a  correlation  between  errors  but  have  no structure  to  suggest  a  parameterized  form  such  as  serial correlation  or  compound  symmetry.  The  problem  is  that

there  are  too  many  pairwise  correlations  to  be  estimated and not enough data to do it. 

9.2 Weighted Least Squares

Sometimes  the  errors  are  uncorrelated,  but  have  unequal variance where the form of the inequality is known. In such

cases, Σ is diagonal but the entries are not equal. Weighted

least  squares  (WLS)  is  a  special  case  of  GLS  and  can  be used in this situation. We set

1

0

 w 1

Σ =

⋱

0

1

 wn

(9.7)

where the  wi are the  weights so

1

0

√ w 1

 S =

⋱

0

1

√ wn

(9.8)

We  then  regress  √ wiyi on √ wixi (although the column of ones in the  X-matrix needs to be replaced with √ wi). When weights  are  used,  the  residuals  must  be  modified  to  use

√ wi^ εi.  We  see  that  cases  with  low  variability  get  a  high weight  and  those  with  high  variability  a  low  weight.  Some examples:

1. Errors  proportional  to  a  predictor:  var ( εi) ∝  xi suggests   wi =  x−1

 i .  One  might  choose  this  option  after

observing a positive relationship in a plot of |^

 εi| against

 xi. 

2. When  the   Yi  are  the  averages  of   ni  observations,  then var  yi = var  εi =  σ 2/ ni,  which  suggests   wi =  ni. 

Responses that are averages arise quite commonly, but

take  care  that  the  variance  in  the  response  really  is proportional  to  the  group  size.  For  example,  consider

the  life  expectancies  for  different  countries.  At  first glance, one might consider setting the weights equal to

the  populations  of  the  countries,  but  notice  that  there

are  many  other  sources  of  variation  in  life  expectancy that would dwarf the population size effect. 

3. When  the  observed  responses  are  known  to  be  of

varying 

quality, 

weights 

may 

be 

assigned

 wi = 1/var ( yi). 

Elections  for  the  French  presidency  proceed  in  two

rounds.  In  1981,  there  were  10  candidates  in  the  first round. The top two candidates then went on to the second

round,  which  was  won  by  François  Mitterand  over  Valéry Giscard-d'Estaing.  The  losers  in  the  first  round  can  gain political favors by urging their supporters to vote for one of the  two  finalists.  Since  voting  is  private,  we  cannot  know how  these  votes  were  transferred;  we  might  hope  to  infer from  the  published  vote  totals  how  this  might  have

happened. Anderson  and  Loynes  (1987)  published  data  on these vote totals in every fourth department of France:

data (fpe, package = “faraway”)

fpe

EI   A    B    C    D E F G    H   J   K   A2 B2 N

Ain      260   51   64 36 23   9   5   4   4 3 3 105 114 17

Alpes     75   14   17  9  9   3   1   2   1 1 1 32 31 5

... 

A  and  B  stand  for  Mitterand's  and  Giscard's  votes  in  the first  round,  respectively,  while  A2  and  B2  represent  their votes  in  the  second  round.  C-K  are  the  first  round  votes  of the  other  candidates  while  EI  denotes   electeur  inscrits  or registered  voters.  All  numbers  are  in  thousands.  The  total number of voters in the second round was greater than the

first  —  we  can  compute  the  difference  as  N.  We  will  treat this  group  like  another  first  round  candidate  (although  we could reasonably handle this differently). 

Now we can represent the transfer of votes as:

 A 2 =  βAA +  βBB +  βCC +  βDD +  βEE +  βFF +  βGG +  βH

(9.9)

where  β i  represents  the  proportion  of  votes  transferred from candidate  i to Mitterand in the second round. We can equally  well  do  this  for  Giscard-d'Estaing  but  then  the  β's will  simply  be  the  remaining  proportions  so  it's  not

necessary  to  do  both.  We  would  expect  these  transfer

proportions  to  vary  somewhat  between  departments,  so  if we  treat  the  above  as  a  regression  equation,  there  will  be some error from department to department. The error will

have  a  variance  in  proportion  to  the  number  of  voters because  it  will  be  like  a  variance  of  a  sum  rather  than  a mean. Since the weights should be inversely proportional to

the  variance,  this  suggests  that  the  weights  should  be  set to  1/EI.  Notice  also  that  the  equation  has  no  intercept, hence  the  -1  in  the  model  formula.  We  fit  the  appropriate model:

lmod = lm (A2 ~ A + B + C + D + E + F + G + H + J + K +N -1 , 

fpe , weights =1 / EI)

coef (lmod)

       A        B         C         D         E         F        

G

1.06713 -0.10505   0.24596   0.92619   0.24940   0.75511   

1.97221

H        J         K         N

-0.56622 0.61164    1.21066   0.52935

Note that the weights do matter — see what happens when

we leave them out:

lm (A2 ~ A + B + C + D + E + F + G + H + J + K +N -1 , fpe) $ 

coef

A        B         C         D         E         F        

G

1.07515 -0.12456   0.25745   0.90454   0.67068   0.78253   

2.16566

H        J         K         N

-0.85429 0.14442    0.51813   0.55827

which  causes  substantial  changes  for  some  of  the  lesser candidates.  Furthermore,  only  the  relative  proportions  of the weights matter — for example, suppose we multiply the

weights by 53:

lm (A2 ~ A + B + C + D + E + F + G + H + J + K + N -1, fpe, 

weights = 53 / EI) $coef

A        B         C         D         E         F        

G

1.06713 -0.10505   0.24596   0.92619   0.24940   0.75511   

1.97221

H        J         K         N

-0.56622 0.61164    1.21066   0.52935

This makes no difference. 

Now  there  is  one  remaining  difficulty,  unrelated  to  the weighting, in that proportions are supposed to be between

zero  and  one.  We  can  impose  an   ad  hoc  fix  by  truncating the coefficients that violate this restriction either to zero or one as appropriate. This gives:

lm (A2 ~ offset (A+G+K)+C+D+E+F+N-1 , fpe , weights=1/EI) $coef C       D       E       F       N

0.22577 0.96998 0.39020 0.74424 0.60854

The offset function means no coefficient will be fit which is

the same as saying the coefficient will be one. We see that

voters for the Communist candidate D apparently almost all

voted  for  the  Socialist  Mitterand  in  the  second  round. 

However,  we  see  that  around  20%  of  the  voters  for  the Gaullist candidate C voted for Mitterand. This is surprising

since  these  voters  would  normally  favor  the  more  right wing  candidate,  Giscard.  This  appears  to  be  the  decisive factor.  We  see  that  of  the  larger  blocks  of  smaller

candidates,  the  Ecology  party  voters,  E,  roughly  split  their votes  as  did  the  first  round  non-voters.  The  other

candidates had very few voters and so their behavior is less

interesting. 

This  analysis  is  somewhat  crude  and  more  sophisticated

approaches  are  discussed  in  Anderson  and  Loynes  (1987). 

The  pcls()  function  in  the  mgcv  package  of  Wood  (2017)

provides  a  solution  to  the  constrained  least  squares

problem  which  in  this  case  requires  0 ≤ ^

 βi ≤ 1.  The

solution obtained is:

library (mgcv)

M = list (w=1 / fpe $EI , X=model.matrix (lmod), y=fpe$A2, 

Ain=rbind (diag (11) ,- diag (11)) , C=matrix (0 ,0 ,0) , 

    array (0,0), S=list () , off=NULL , p=rep (0.5 ,11) , bin=c (rep(0 ,11) , rep (-1 ,11)))

a = pcls (M)

names (a) = colnames (model.matrix (lmod))

round (a ,3)

A     B     C     D     E     F     G     H     J     K     

N

1.000 0.000 0.208 0.969 0.359 0.743 1.000 0.367 0.000 1.000 

0.575

The results are quite similar for the candidates C, D, E and

N  who  have  substantial  numbers  of  votes,  but  the

coefficients for small party candidates vary much more. 

In  examples  where  the  form  of  the  variance  of   ε  is  not completely  known,  we  may  model  Σ  using  a  small  number of parameters. For example:

sd  εi =  γ 0 +  xγ 11

(9.10)

might seem reasonable in a given situation. Notice that we

do  not  need  a  coefficient  in  front  of   x 1 as the specification of weights is invariant to multiplication by a constant. 

Consider, for example, the cars data used in Chapter 8: lmod = lm (dist ~ speed , cars)

plot (residuals (lmod) ~ speed , cars)

The  plot  (not  shown)  reveals  that  the  variation  in  the residuals  increases  with  speed.  One  solution  to  this

problem  is  to  set  the  weights  according  to  the  above  form

and  simultaneously  estimate  β  and   γ  using  maximum likelihood methods. We can achieve this as follows:

wlmod = gls (dist ~ speed , data = cars , 

weight = varConstPower (1 , form = ~ speed))

summary (wlmod)

Variance function:

Structure: Constant plus power of variance covariate

Formula: ~speed

Parameter estimates:

const power

3.1604 1.0224



Coefficients:

Value Std.Error t-value p-value

(Intercept) -11.0854    4.0524 -2.7355 0.0087

speed         3.4842    0.3202 10.8799 0.0000



Correlation:

(Intr)

speed -0.9



Standardized residuals:

Min       Q1       Med        Q3       Max

-1.45206 -0.68982 -0.13083    0.63750   3.07570



Residual standard error: 0.76368

Degrees of freedom: 50 total; 48 residual

We  see  that  ^

 γ 0 = 3.16 and  ^ γ 1 = 1.0224. Since the latter is so  close  to  1,  we  can  see  that  this  variance  function  takes quite a simple form. 

9.3 Testing for Lack of Fit

[image: Image 42]

How can we tell whether a model fits the data? If the model

is correct, then  ^

 σ 2 should be an unbiased estimate of  σ 2. If

we have a model that is not complex enough to fit the data

or  simply  takes  the  wrong  form,  then  ^

 σ 2  will  tend  to

overestimate   σ 2.  The  situation  is  illustrated  in  Figure  9.1

where the residuals from the incorrect constant fit will lead

to  an  overestimate  of   σ 2.  Alternatively,  if  our  model  is  too complex  and  overfits  the  data,  then  ^

 σ 2  will  be  an

underestimate. 

Figure  9.1   True  quadratic  fit  shown  with  the  solid  line and incorrect linear fit shown with the dotted line. Estimate

of  σ 2 will be unbiased for the quadratic model but too large for the linear model. 

This  suggests  a  possible  testing  procedure  —  we  should compare ^

 σ 2 to  σ 2. But this requires us to know  σ 2. In a few cases,  we  might  actually  know   σ 2  –  for  example,  when

measurement  error  is  the  only  source  of  variation  and  we know  its  variance  because  we  are  very  familiar  with  the measurement device. This is rather uncommon because we

usually have more than just measurement error. 

We  might  compare  the  ^

 σ 2  from  our  chosen  regression

model  to  one  obtained  from  another  model.  But  this  may just be the same as the  F-test introduced in Chapter 3. This would  indicate  a  preference  between  the  two  models  but could  not  tell  us  that  the  preferred  model  fit  the  data.  We need to make a comparison to some model-free estimate of

 σ 2. 

We can do this if we have repeated values of the response

for one or more fixed values of  x. These replicates do need to  be  truly  independent.  They  cannot  just  be  repeated

measurements  on  the  same  subject  or  unit.  For  example, the cases in the data may be people and the response might

be  blood  pressure.  We  might  sensibly  repeat  these

measurements  of  blood  pressure.  But  such  repeated

measures would only reveal the within-subject variability or

the measurement error. We need different people but with

the same predictor values. This would give us the between-

subject variability and allow us to construct an estimate of

 σ 2 that does not depend on a particular model. 

Let   yij  be  the   ith  observation  in  the  group  of  true replicates   j.  The  “pure  error”  or  model-free  estimate  of   σ 2

is given by  SSpe/ dfpe where:

 SSpe = ∑ ∑( yij − ¯ yj)2

 j

 i

(9.11)

where  ¯

 yj is the mean within replicate group  j. The degrees of 

freedom 

are

 dfpe = ∑ j(# replicatesj − 1) =  n − # groups. 

There is a convenient way to compute the estimate. Fit a

model  that  assigns  one  parameter  to  each  group  of

observations  with  fixed   x; then the  ^

 σ 2 from this model will

be  the  pure  error  ^

 σ 2.  This  model  is  saturated  and  tells  us

nothing  interesting  about  the  relationship  between  the

predictors  and  the  response.  It  simply  fits  a  mean  to  each group  of  replicates.  Values  of   x  with  no  replication  will  be fit  exactly  and  will  not  contribute  to  the  estimate  of   σ 2. 

Comparing  this  model  to  the  regression  model  using  the standard  F-test gives us the lack-of-fit test. 

The  data  for  this  example  consist  of  13  specimens  of

90/10  Cu–Ni  alloys  with  varying  percentages  of  iron

content. The specimens were submerged in seawater for 60

days and the weight loss due to corrosion was recorded in

units of milligrams per square decimeter per day. The data

come  from  Draper  and  Smith  (1998).   We  load  in  and  plot the data, as seen in Figure 9.2:

data (corrosion, package="faraway”)

[image: Image 43]

plot (loss ~ Fe, corrosion, 

xlab = “Iron content", ylab = “Weight loss”)

Figure  9.2   Linear  fit  to  the  Cu–Ni  corrosion  data  is shown on the left. Group means are denoted by plus signs. 

A polynomial fit to the data is shown on the right. 

We fit a straight-line model:

lmod = lm (loss ~ Fe, corrosion)

summary (lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept)     129.79       1.40    92.5   <1e-04

Fe              -24.02       1.28   -18.8   <1e-04



Residual standard error: 3.06 on 11 degrees of freedom

Multiple R-squared: 0.97,           Adjusted R-squared: 0.967

F-statistic: 352 on 1 and 11 DF,          p-value: <1e-04

Now we show the regression line on the plot:

abline (coef (lmod))

We  have  an   R 2  of  97%  and  an  apparently  good  fit  to  the data.  We  now  fit  a  model  that  reserves  a  parameter  for each  group  of  data  with  the  same  value  of   x.  This  is accomplished by declaring the predictor to be a factor. We

will describe this in more detail in Chapter 16: lmoda = lm (loss ~ factor (Fe) , corrosion)

The  fitted  values  are  the  means  in  each  group  and  we  put these on the plot:

points (corrosion$Fe , fitted(lmoda), pch =3)

We can now compare the two models in the usual way:

anova (lmod , lmoda)

Analysis of Variance Table



Model 1: loss ~ Fe

Model 2: loss ~ factor(Fe)

Res.Df Res.Sum Sq Df Sum Sq F value Pr(>F)

1     11      102.9

2      6       11.8 5    91.1    9.28 0.0086

The low p-value indicates that we must conclude that there

is  a  lack  of  fit.  The  reason  is  that  the  pure  error  SD

√(11.8/6) = 1.4,  is  substantially  less  than  the  regression standard  error  of  3.06.  We  might  investigate  models  other than  a  straight  line  although  no  obvious  alternative  is suggested by the plot. Before considering other models, we

would  first  find  out  whether  the  replicates  are  genuine. 

Perhaps  the  low  pure  error  SD  can  be  explained  by  some correlation in the measurements. They may not be genuine

replicates.  Another  possible  explanation  is  that  an unmeasured third variable is causing the lack of fit. 

When  there  are  replicates,  it  is  impossible  to  get  a

perfect  fit.  Even  when  there  is  a  parameter  assigned  to each group of  x-values, the residual sum of squares will not be zero. For the factor-based model above, the  R 2 is 99.7%. 

So even this saturated model does not attain a 100% value

for   R 2.  For  these  data,  it  is  a  small  difference  but  in  other cases, the difference can be substantial. In these cases, one

should  realize  that  the  maximum   R 2  that  may  be  attained might  be  substantially  less  than  100%  and  so  perceptions about  a  good  value  for   R 2  should  be  downgraded appropriately. 

These  methods  are  good  for  detecting  lack  of  fit,  but  if the null hypothesis is accepted, we cannot conclude that we

have the true model. After all, it may be that we just did not have enough data to detect the inadequacies of the model. 

All we can say is that the model is not contradicted by the

data. 

When there are no replicates, it may be possible to group

the responses for similar  x, but this is not straightforward. 

It  is  also  possible  to  detect  lack  of  fit  by  less  formal, graphical methods as described in Chapter 7. 

A  more  general  question  is  how  good  a  fit  do  you  really want?  By  increasing  the  complexity  of  the  model,  it  is possible  to  fit  the  data  more  closely.  By  using  as  many parameters as data points, we can fit the data exactly. Very

little  is  achieved  by  doing  this  since  we  learn  nothing

beyond  the  data  and  any  predictions  made  using  such  a model will tend to have high variance. The question of how

complex  a  model  to  fit  is  difficult  and  fundamental.  For example,  we  can  fit  the  mean  responses  for  the  previous example exactly using a sixth order polynomial:

lmodp = lm (loss ~ Fe+I (Fe^2) + I (Fe^3) + I (Fe^4) + I (Fe^5) 

+ I (Fe^6), 

data = corrosion)

Now look at this fit:

plot (loss ~ Fe, data = corrosion, ylim = c (60 , 130))

points (corrosion$ Fe, fitted (lmoda), pch =3)

grid = seq (0 ,2 , len=50)

lines (grid , predict (lmodp , data . frame (Fe = grid)))

as  shown  in  the  right  panel  of  Figure  9.2.   The  fit  of  this model is excellent — for example:

summary (lmodp) $ r . squared

[1] 0.99653

but  it  is  clearly  ridiculous.  There  is  no  plausible  reason corrosion  loss  should  suddenly  drop  at  1.7  and  thereafter increase  rapidly.  This  is  a  consequence  of  overfitting  the data. This illustrates the need not to become too focused on

measures  of  fit  like   R 2.  The  fit  needs  to  reflect  knowledge of the subject matter and simplicity in modeling is a virtue. 

9.4 Robust Regression

When  the  errors  are  normally  distributed,  least  squares regression  is  best.  But  when  the  errors  follow  some  other distribution,  other  methods  of  model  fitting  may  be

considered.  Short-tailed  errors  are  not  so  much  of  a problem  but  long-tailed  error  distributions  can  cause

difficulties  because  a  few  extreme  cases  can  have  a  large effect on the fitted model. 

It is important to think about the cause of these extreme

values. In some cases, they are mistakes and we just want

some  way  of  automatically  excluding  them  from  the

analysis.  In  other  cases,  the  extreme  values  really  were observed  and  are  part  of  the  process  we  are  trying  to model. Robust regression is designed to estimate the mean

relationship  between  the  predictors  and  response, 

 EY =  Xβ. It doesn't worry about where the outliers come from, but the analyst does need to think about this. 

We  developed  methods  of  detecting  outliers  in  Section

7.2.  We  could  use  these  methods  to  remove  the  largest

residuals  as  outliers  and  then  just  use  least  squares.  This does  not  work  very  well  if  there  are  multiple  outliers  as such  points  can  mutually  influence  the  fit  and  effectively hide  their  presence.  Furthermore,  outlier  rejection-based methods  tend  not  to  be  statistically  efficient  for  the estimation  of  β.  Robust  regression  works  better  if  you  are dealing with more than one or two outliers. 

In  this  section,  we  present  two  popular  types  of  robust regression. 

 M-Estimation

M-estimates  modify  the  least  squares  idea  to  choose  β  to minimize:

 n

∑ ρ( yi −  xTiβ)

 i=1

(9.12)

Some possible choices among many for  ρ are:

1.  ρ( x) =  x 2 is simply least squares. 

2.  ρ( x) = | x|  is  called  least  absolute  deviation  (LAD) regression or  L 1 regression. 

3. 

 ρ( x) = {  x 2/2

if | x| ≤  c

 c| x| −  c 2/2 otherwise

(9.13)

is called Huber's method and is a compromise between

least squares and LAD regression.  c should be a robust estimate of  σ. A value proportional to the median of |^

 ε|

is suitable. 

M-estimation  is  related  to  weighted  least  squares.  The

normal equations tell us that:

 XT ( y −  X ^ β) = 0

(9.14)

With weights and in non-matrix form this becomes:

 n

 p

∑ wixij( yi − ∑ xijβj) = 0  j = 1,… p i=1

 j=1

(9.15)

Now  differentiating  the  M-estimate  criterion  with  respect to β j and setting to zero we get:

 n

 p

∑ ρ′( yi − ∑ xijβj) xij = 0  j = 1,… p i=1

 j=1

(9.16)

Now let  ui =  yi − ∑ pj=1  xijβj to get: n

 p

∑  ρ′( ui)  x

∑ x

 u

 ij( yi −

 ijβj) = 0

 j = 1, …  p

 i=1

 i

 j=1

(9.17)

so  we  can  make  the  identification  of  a  weight  function  as w( u) =  ρ′( u)/ u. We find for our choices of  ρ above that: 1. LS:   w( u)  is  constant  and  the  estimator  is  simply ordinary least squares. 

2. LAD:   w( u) = 1/| u|.  We  see  how  the  weight  goes  down as   u  moves  away  from  zero  so  that  more  extreme observations get downweighted. Unfortunately, there is

an asymptote at zero. This makes a weighting approach

to  fitting  an  LAD  regression  infeasible  without  some

modification. 

3. Huber:

 w( u) = { 1

if | u| ≤  c

 c/| u| otherwise

(9.18)

We  can  see  that  this  sensibly  combines  the

downweighting  of  extreme  cases  with  equal  weighting

for the middle cases. 

There  are  many  other  choices  for   ρ  that  have  been proposed.  Computing  an  M-estimate  requires  some

iteration because the weights depend on the residuals. The

fitting  methods  alternate  between  fitting  a  WLS  and

recomputing  the  weights  based  on  the  residuals  until

convergence.  We  can  get  standard  errors  via  WLS  by

v^ar ^ β = ^ σ 2( XTWX)−1  but  we  need  to  use  a  robust estimate of  σ 2. 

We  demonstrate  the  methods  on  the  Galápagos  Islands

data. Using least squares first:

data (gala, package = “faraway”)

lsmod = lm (Species ~ Area + Elevation + Nearest +

Scruz + Adjacent , gala)

summary (lsmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept)  7.06822   19.15420    0.37   0.7154

Area        -0.02394    0.02242   -1.07   0.2963

Elevation    0.31946    0.05366    5.95   <1e-04

Nearest      0.00914    1.05414    0.01   0.9932

Scruz       -0.24052    0.21540   -1.12   0.2752

Adjacent    -0.07480    0.01770   -4.23   0.0003



Residual standard error: 61 on 24 degrees of freedom

Multiple R-squared: 0.766,           Adjusted R-squared: 0.717

F-statistic: 15.7 on 5 and 24 DF,          p-value: <1e-04

Least  squares  works  well  when  there  are  normal  errors, but  performs  poorly  for  long-tailed  errors.  The  Huber

method is the default choice of the rlm() function, which is

part of the MASS package of Venables and Ripley (2002). 

rlmod = MASS :: rlm (Species ~ Area + Elevation +

Nearest + Scruz + Adjacent , gala)

summary (rlmod)

Coefficients:

Value Std. Error   t value

(Intercept)  6.361 12.390       0.513

Area        -0.006 0.015       -0.421

Elevation    0.248 0.035        7.132

Nearest      0.359 0.682        0.527

Scruz       -0.195 0.139       -1.401

Adjacent    -0.055 0.011       -4.765



Residual standard error: 29.7 on 24 degrees of freedom

The  R 2 statistic is not given because it does not make sense in the context of a robust regression.  p-values are not given although  we  can  use  the  asymptotic  normality  of  the

estimator  to  make  approximate  inferences  using  the  t-

values. We see that the same two predictors, Elevation and

Adjacent,  are  significant.  The  numerical  values  of  the

coefficients  have  changed  somewhat  and  the  standard

errors are generally smaller. 

It is worth looking at the weights assigned by the final fit. 

We  extract  and  name  the  smallest  10  weights.  The

remaining weights are all ones. 

wts = rlmod $ w

names (wts) = row . names (gala)

head (sort (wts) ,10)

SantaCruz   SantaMaria SanCristobal       Pinta   Gardner1

0.17458      0.30783      0.41423     0.53758    0.66130

Espanola     Gardner2       Baltra   Bartolome   Caldwell

0.67950      0.85004      1.00000     1.00000    1.00000

We can see that a few islands are substantially discounted

in  the  calculation  of  the  robust  fit.  Provided  we  do  not believe  there  are  mistakes  in  the  data  for  these  cases,  we should  think  carefully  about  what  might  be  unusual  about these islands. 

The  main  purpose  in  analyzing  these  data  is  likely  to explain  the  relationship  between  the  predictors  and  the

response.  Although  the  robust  fit  gives  numerically different  output,  the  overall  impression  of  what  predictors are  significant  in  explaining  the  response  is  unchanged. 

Thus  the  robust  regression  has  provided  some  measure  of confirmation.  Furthermore,  it  has  identified  a  few  islands which  are  not  fit  so  well  by  the  model.  If  there  had  been more  disagreement  between  the  two  sets  of  regression

outputs, we would know which islands are responsible and

deserve  a  closer  look.  If  there  is  a  substantial  difference between  the  two  fits,  we  find  the  robust  one  more

trustworthy. 

Robust  regression  is  not  a  panacea.  M-estimation  does

not  address  large  leverage  points.  It  also  does  not  help  us choose which predictors to include or what transformations

of the variables to make. For this data, we have seen that a

transformation of the response may be helpful which would

completely  change  the  robust  fit.  Hence  robust  methods

are  just  part  of  the  regression  modeling  toolkit  and  not  a replacement. 

We  can  also  do  LAD  regression  using  the  quantreg

package  of  Koenker  (2023).   The  default  option  does  LAD

while other options allow for quantile regression:

library (quantreg)

l1mod = rq (Species ~ Area + Elevation + Nearest + Scruz + 

Adjacent , 

data = gala)

summary (l1mod)

Coefficients:

coefficients lower bd upper bd

(Intercept)   1.31445    -19.87777 24.37411

Area         -0.00306     -0.03185  0.52800

Elevation     0.23211      0.12453  0.50196

Nearest       0.16366     -3.16339  2.98896

Scruz        -0.12314     -0.47987  0.13476

Adjacent     -0.05185     -0.10458  0.01739

Again,  there  is  some  change  in  the  coefficients.  The

confidence  intervals  now  suggest  that  adjacent  is  not

significant. 

For  this  example,  we  do  not  see  any  big  qualitative

difference  in  the  coefficients  and  for  want  of  evidence  to the  contrary,  we  might  stick  with  least  squares  as  the easiest to work with. Had we seen something different, we

would  need  to  find  out  the  cause.  Perhaps  some  group  of observations  was  not  being  fit  well  and  the  robust

regression excluded these points. 

 Least Trimmed Squares

The  Huber  and   L 1 methods will still fail if the large errors are  sufficiently  numerous  and  extreme  in  value.  For

example,  very  bad  data  entry  errors  might  be  made  or

measurement  equipment  might  malfunction  in  a  serious

way.  We  need  methods  that  still  fit  the  correct  data  well even  in  the  presence  of  such  problems.  Least  trimmed

squares  (LTS)  is  an  example  of  a   resistant  regression method.  Resistant  methods  are  good  for  dealing  with  data where we expect a certain number of bad observations that

we want to have no weight in the analysis. 

LTS  minimizes  the  sum  of  squares  of  the   q  smallest residuals, ∑ qi=1 ^ ε 2( i) where  q is some number less than  n and ( i)  indicates  sorting.  This  method  has  a  high   breakdown point  because  it  can  tolerate  a  large  number  of  outliers depending  on  how   q  is  chosen.  The  ltsreg()  function  is found in the MASS package of Venables and Ripley (2002). 

Let's see how it works on the Galapagos data:

set . seed (123)

ltsmod = MASS :: ltsreg (Species ~ Area + Elevation +

Nearest + Scruz + Adjacent , gala)

coef (ltsmod)

(Intercept)       Area   Elevation    Nearest       Scruz

12.506684   1.545358    0.016725   0.523487   -0.094072

Adjacent

-0.142592

The  default  choice  of   q  is  ⌊ n/2⌋ + ⌊( p + 1)/2⌋  where  ⌊ x⌋

indicates  the  largest  integer  less  than  or  equal  to   x.  A genetic  algorithm  is  used  by  default  to  compute  the

coefficients  and  is  non-deterministic.  If  you  repeat  the  fit, you will get a slightly different result. This is why we have

set  the  random  number  generator  seed  to  ensure  you  get the same result as we did. It's not necessary to set the seed

unless you want to have exact reproducibility. 

An exhaustive search method can be used:

ltsmod = MASS :: ltsreg (Species ~ Area + Elevation +

Nearest + Scruz + Adjacent , gala , nsamp = “exact”)

coef (ltsmod)

(Intercept)       Area   Elevation    Nearest       Scruz

9.381145   1.543658    0.024125   0.811109   -0.117732

 Adjacent

-0.197923

This  takes  only  a  few  seconds  on  a  modern  computer.  For larger  datasets,  it  will  take  much  longer  so  this  method might  be  impractical  and  the  default  method  might  be

required. 

This  really  does  make  substantial  differences  to  the

coefficients.  For  example,  the  Area  coefficient  is  now

substantially  larger  while  the  Elevation  coefficient  is

substantially smaller than that seen in the least squares fit. 

However,  we  do  not  have  the  standard  errors  for  the  LTS

regression  coefficients.  We  now  use  a  general  method  for inference  that  is  especially  useful  when  such  theory  is lacking  —  the  bootstrap.  We  introduced  this  method  in

Section 4.4.  The outline of the method is: 1. Generate   ε*  by  sampling  with  replacement  from

^ ε 1, … ,  εn. 

2. Form  y∗ =  X ^

 β +  ε∗. 

3. Compute  ^

 β∗ from ( X,  y∗). 

We repeat this bootstrap process 1000 times. We construct

a matrix of coefficients in which to save the results:

bcoef = matrix (0 ,1000 ,6)

for (i in 1:1000) {

newy = predict (ltsmod) + residuals (ltsmod) [ sample (30 , 

rep = T) ]

brg = MASS :: ltsreg (newy ~ Area + Elevation + Nearest +

Scruz + Adjacent , gala , nsamp = “best”)

    bcoef [i ,] = brg $ coef

}

It is not convenient to use the nsamp="exact" since that would require  1000  times  the  time  it  takes  to  make  the  original estimate. This may take an hour or so. Being impatient, we

compromised  and  used  the  second  best  option  of

nsamp="best". This likely means that our bootstrap estimates of  variability  will  be  somewhat  on  the  high  side.  This illustrates a common practical difficulty with the bootstrap

—  it  can  take  a  long  time  to  compute.  Fortunately,  this problem recedes as processor speeds increase. 

We  can  make  a  95%  confidence  interval  for  this

parameter by taking the empirical quantiles:

colnames (bcoef) = names (coef (ltsmod))

apply (bcoef ,2 , function (x) quantile (x , c (0.025 ,0.975))) (Intercept)   Area Elevation Nearest     Scruz 

Adjacent

2.5%         2.0868  1.4976 -0.015118 0.18872 -0.269049 

-0.23375

97.5%       24.9500  1.6230  0.065377 1.94555  0.080291 

-0.15138

Zero lies outside the interval for Area, Nearest and Adjacent so we are confident that there is an effect for these predictors

although  the  Nearest  is  marginal.  We  can  get  a  better picture  of  the  distribution  by  looking  at  the  density  and marking  the  confidence  interval.  The  ggplot2  package

produces clear density plots:

library (ggplot2)

bcoef = data . frame (bcoef)
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p1 = ggplot (bcoef , aes (x = Area)) + geom _ density () +

xlim (1.45 , 1.65)

p1 + geom _ vline (xintercept = c (1.4976 ,1.6230) , linetype = 

“dashed”)

p2 = ggplot (bcoef , aes (x = Adjacent)) + geom _ density () +

xlim (-0.25 , -0.13)

p2 + geom _ vline (xintercept = c (-0.23375 , -0.15138) , 

linetype = “dashed”)

See Figure 9.3.  We see that the distribution is more peaked than a normal distribution with some long tails. This would

be  more  accurate  if  we  took  more  bootstrap  resamples

although  1000  is  sufficient  for  our  needs  here.  The

conclusion is that the area variable is significant. That is in contrast to the conclusion from the least squares fit. Which

estimates  are  best?  An  examination  of  the  Cook  distances for  the  least  squares  fit  shows  the  island  of  Isabela  to  be very  influential.  If  we  exclude  this  island  from  the  least squares fit, we find that:

Figure  9.3   Bootstrap  distribution  of  ^

 βArea  and  ^ βAdjacent

with 95% confidence intervals. 

limod = lm (Species ~ Area + Elevation + Nearest +

Scruz + Adjacent , gala , 

subset =(row . names (gala) ! = “Isabela”))

summary (limod)

Estimate Std. Error t value Pr(>|t|)

(Intercept)    22.5861    13.4019    1.69   0.1055

Area            0.2957     0.0619    4.78   <1e-04

Elevation       0.1404     0.0497    2.82   0.0096

Nearest        -0.2552     0.7217   -0.35   0.7269

Scruz          -0.0901     0.1498   -0.60   0.5534

Adjacent       -0.0650     0.0122   -5.32   <1e-04



Residual standard error: 41.6 on 23 degrees of freedom

Multiple R-squared: 0.871,           Adjusted R-squared: 0.843

F-statistic: 31.2 on 5 and 23 DF,          p-value: <1e-04

This fit is much closer to the LTS fit in that Area and Adjacent are  very  significant  predictors.  Thus,  there  are  two  routes to  the  same  goal.  We  can  use  regression  diagnostics  in conjunction  with  least  squares  to  identify  bad  or  unusual points or we can use robust methods. The former approach

is  more  flexible  and  allows  for  the  discovery  of  a  wider class  of  problems,  but  it  is  time  consuming  and  does

require human intervention. When data need to be quickly

analyzed, perhaps without expert assistance or when large

numbers of datasets need to be fitted, robust methods give

some protection against aberrant data. 
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Another interesting point is that the M-estimate failed to

identify  the  unusual  island,  Isabela,  and  gave  similar

results  to  the  full  data  least  squares  fit.  We  can  show similar  behavior  on  another  dataset  —  consider  the  star data  presented  in  Section  7.2.  We  compute  the  least squares, Huber and LTS fits and display them in Figure 9.4: data (star , package = “faraway”)

plot (light ~ temp , star)

gs1 = lm (light ~ temp , star)

abline (coef (gs1))

gs2 = MASS :: rlm (light ~ temp , star)

abline (coef (gs2) , lty =2)

gs3 = MASS :: ltsreg (light ~ temp , star , nsamp = “exact”)

abline (coef (gs3) , lty =5)

Figure  9.4   Regression  fits  compared.  Least  squares  is the  solid  line,  Huber  is  the  dotted  line  and  LTS  is  the dashed line. Only LTS finds the fit in the bulk of the data. 

Only LTS managed to capture the trend in the main group of  points.  The  Huber  estimate  is  almost  the  same  as  the least squares estimate. 

Summary

1. Robust  estimators  provide  protection  against  long-

tailed  errors,  but  they  cannot  overcome  problems  with

the choice of model and its variance structure. 

2. Robust estimates supply  ^

 β and possibly standard errors

without  the  associated  inferential  methods.  Software

and methodology for this inference require extra work. 

The  bootstrap  is  a  general-purpose  inferential  method

which is useful in these situations. 

3. Robust  methods  can  be  used  in  addition  to  least

squares  as  a  confirmatory  method.  You  have  cause  to

worry if the two estimates are far apart. The source of

the difference should be investigated. 

4. Robust  estimates  are  useful  when  data  need  to  be  fit automatically  without  the  intervention  of  a  skilled

analyst. 

5. Robust  methods  are  less  widely  used  than  might  be

expected. When prediction is the goal, we need to take

account  of  long-tailed  errors  in  assessing  uncertainty. 

We  don't  need  a  method  that  avoids  having  to  think

about  the  large  errors.  When  explanation  is  the  goal, 

we miss the sophisticated inferential tools available for

least  squares  estimation.  Finally,  for  larger  datasets, unusual observations have less influence on the fit and

the need for robust estimation is reduced. This is not to

say 

robust 

methods 

are 

not 

useful 

in 

some

circumstances but these are not that frequent. 

Exercises

1. Researchers  at  the  National  Institutes  of  Standards  and Technology  (NIST)  collected  the  pipeline  data  on

ultrasonic  measurements  of  the  depths  of  defects  in  the Alaska  pipeline  in  the  field.  The  depths  of  the  defects were  then  remeasured  in  the  laboratory.  These

measurements were performed in six different batches. It

turns  out  that  this  batch  effect  is  not  significant  and  so can  be  ignored  in  the  analysis  that  follows.  The

laboratory measurements are more accurate than the in-

field  measurements,  but  more  time  consuming  and

expensive. We want to develop a regression equation for

correcting the in-field measurements. 

(a)

Fit  a  regression  model  Lab  ∼  Field.  Check

graphically for non-constant variance. 

(b)

We  wish  to  use  weights  to  account  for  the  non-

constant  variance.  Here  we  split  the  range  of  Field

into  12  groups  of  size  nine  (except  for  the  last

group  which  has  only  eight  values).  Within  each

group, we compute the variance of Lab as varlab and

the mean of Field as meanfield. Supposing pipeline is

the  name  of  your  data  frame;  the  following  R  code will make the needed computations:

i = order(pipeline$Field)

npipe = pipeline[i,]

npipe$ff = gl(12,9)[-108]

meanfield = with(npipe,tapply(Field,ff,mean))

varlab = with(npipe,tapply(Lab,ff,var))

Suppose  we  guess  that  the  the  variance  in  the

response  is  linked  to  the  predictor  in  the  following

way:

 var( Lab) =  a 0 Fielda 1

(9.19)

Regress  log(varlab)  on  log(meanfield)  to  estimate   a 0

and   a 1.  Use  this  to  determine  appropriate  weights in  a  WLS  fit  of  Lab  on  Field.  Show  the  regression

summary and compare to the fit from (a). 

(c)

Graphically  compare  the  fitted  values  from  the

model in (a) with the model in (b). 

(d)

An  alternative  to  weighting  is  transformation.  Find

transformations  on  Lab  and/or  Field  so  that  in  the

transformed scale the relationship is approximately

linear with constant variance. You may restrict your

choice  of  transformation  to  square  root,  log  and

inverse. 

2. Using  the  divusa  data,  fit  a  regression  model  with  divorce as the response and unemployed, femlab, marriage, birth and

military as predictors. 

(a)

Display  the  model  summary  and  state  which

predictors are statistically significant. 

(b)

Make  two  graphical  checks  for  correlated  errors. 

What do you conclude? 

(c)

Compute  the  correlation  between  successive

residuals for the model in (a). 

(d)

Allow for serial correlation with an AR(1) model for

the errors. Use maximum likelihood to estimate the

parameters  in  the  GLS  fit  by  gls(...,  method="ML",. 

..).  What  is  the  estimated  correlation?  Does  the

GLS model change which variables are found to be

significant? 

(e)

Speculate  about  why  there  might  be  correlation  in

the errors. 

3. For the salmonella dataset, fit a linear model with colonies as the response and log(dose+1) as the predictor. 

(a)

Fit the model and show the fitted line on top of the

data. 

(b)

Check for lack of fit. 

(c)

Is there a significant relationship between the dose

and the number of colonies? 

4. For the cars dataset, fit a linear model with distance as the response and speed as the predictor. 

(a)

Display  the  model  summary  output.  Are  both

predictors  significant?  Does  this  mean  that  the

model fits? 

(b)

Show  the  residual  vs.  fitted  plot  and  comment  on

what it says about the fit of the model. 

(c)

How  many  cases  have  a  unique  value  of  speed  and

how many are replicated? 

(d)

Check for lack of fit. 

(e)

Physical  considerations  regarding  reaction  time

(linear  in  speed)  and  kinetic  energy  (quadratic  in

speed)  suggest  a  model  of  the  form:  dist  ∼-1  +

speed + I(speed^ 2). Fit this model and compare it to

the original linear model. Which is best? 

5. Using the stackloss data, fit models with stack.loss as the response  and  the  other  three  variables  as  predictors

using different methods. 

(a)

Fit  the  model  using  least  squares.  Display  the

model  output  and  state  which  predictors  are

statistically  significant.  Make  a  Q-Q  plot  of  the

residuals.  Plot  the  Cook  statistics.  Do  any  cases

stand out? 

(b)

Fit  the  least  squares  model  again  but  without  any

case(s)  identified  as  unusual  in  (a).  Check  which

predictors  are  statistically  significant  now.  Check for outliers and influential points again. 

(c)

Fit  the  model  (with  all  the  cases)  using  least

absolute 

deviations. 

Which 

predictors 

have

confidence bounds that do not include zero? Make a

Q-Q  plot  of  the  residuals.  Which  point(s)  are

unusual? 

(d)

Use  the  Huber  method  with  default  settings  to  fit

the  same  model.  Which  predictors  appear  to  be

significant? 

(e)

Fit  the  model  using  least  trimmed  squares  using

the exact method. Make a Q-Q plot of the residuals

and comment. 

(f)

Make  a  table  showing  the  estimated  coefficients

from all 5 model fits. Comment on the results. 

6. Using the cheddar data, fit a linear model with taste as the response and the other three variables as predictors. 

(a)

Suppose  that  the  observations  were  taken  in  time

order.  Create  a  time  variable.  Plot  the  residuals  of

the  model  against  time  and  comment  on  what  can

be seen. 

(b)

Fit a GLS model with same form as above but now

allow for an AR(1) correlation among the errors. Is

there evidence of such a correlation? 

(c)

Fit an LS model but with time now as an additional

predictor. Investigate the significance of time in the

model. 

(d)

The last two models have both allowed for an effect

of time. Explain how they do this differently. 

(e)

Suppose  you  were  told,  contrary  to  prior

information,  that  the  observations  are  not  in  time

order.  How  would  this  change  your  interpretation

of the model from (c)? 

7. The crawl dataset contains data on a study looking at the

age  when  babies  learn  to  crawl  as  a  function  of  ambient temperatures.  There  is  additional  information  about  the

number of babies studied each month and the variation in

the  response.  Make  an  appropriate  choice  of  weights  to investigate  the  relationship  between  crawling  age  and

temperature. 

8. The gammaray dataset shows the x-ray decay light curve of

a gamma ray burst. Build a model to predict the flux as a

function of time that uses appropriate weights. 

9. Use  the  fat  data,  fitting  the  model  described  in  Section

5.2. 

(a)

Fit  the  model  and  display  the  summary  output. 

Make a Q-Q plot – are any outliers apparent? 

(b)

Fit  the  same  model  but  now  using  Huber's  robust

method. Plot the residuals from the two fits against

each  other.  Are  they  much  different?  Compare  the

fitted coefficients from the two fits. How similar are they? 

(c)

Identify which two cases have the lowest weights in

the  Huber  fit.  What  is  unusual  about  these  two

points? 

(d)

Plot weight against height. Identify the two outlying

cases. Are these the same as those identified in the

previous  question?  Do  robust  methods  help  with

unusual  response  values  or  unusual  predictor

values? 

Chapter 10

Transformation

DOI: 10.1201/9781003449973-10

Transformations  of  the  response  and/or  predictors  can

improve the fit and correct violations of model assumptions

such as non-constant error variance. We may also consider

adding  additional  predictors  that  are  functions  of  the

existing predictors like quadratic or cross-product terms. 

10.1 Choosing a Transform on the Response

There  are  several  reasons  to  consider  a  transformation  of the  response.  One  might  simply  wish  to  improve  the  fit  of the  model.  Theoretical  or  prior  knowledge  about  the

relationship  between  the  variables  may  strongly  suggest  a particular choice of transformation. It is also reasonable to

use  graphical  methods  and  consideration  of  regression

diagnostics  to  devise  an  effective  transformation.  In  this section, we look at several commonly used transformations. 

We  consider  the  motivation  and  consequences  of  these

choices.  Alternatively,  you  might  prefer  more  algorithmic

ways  to  determine  a  transformation  as  discussed  in  the next section. 

 Log Transform

There are several reasons to consider a log transformation

of  the  response.  If  the  response  varies  over  orders  of magnitude, it is usually helpful to make this transformation. 

If you proceed without transformation, the diagnostic plots

will  very  likely  indicate  problems  with  the  model

assumptions and the fit will be poor. You can check it both

ways  but  past  experience  suggests  the  transformation  will help. 

The  log  transformation  has  a  special  interpretation. 

Consider  the  prediction  equation  and  the  transformation

back to the original scale:

log ^ y = ^ β 0 + ^ β 1 x 1 + ⋯ + ^ βpxp (10.1)

^ y =  e^ β 0 e^ β 1 x 1 ⋯  e^ βpxp (10.2)

Changes in the predictors will multiply the response on the

original  scale.  For  example,  suppose   y  is  individual  annual income  and  we  are  interested  in  the  effect  of  having  a

particular  educational  qualification.  It  is  more  natural  that this  would  have  a  multiplicative  effect  (e.g.  an  increase  of 10%)  rather  than  an  additive  effect  (e.g.  an  increase  of

$10,000).  Another  example  of  this  can  be  found  in  Section

15.4. 

More specifically, an increase of one in  x 1 would multiply the  predicted  response  (in  the  original  scale)  by   e ^ β 1.  One might  consider  adding  exp ^

 β  as  a  column  in  the

presentation of the linear model output. 

One might be concerned about the modeling of errors. Do

we  make  assumptions  about  whether  the  errors  are

additive  or  multiplicative?  In  which  scale?  This  concern  is even  greater  when  transforms  other  than  logarithms  are

used.  The  best  approach  is  to  try  different  transforms  to get the structural form of the model right and worry about

the error component later. We can then check the residuals

to  see  whether  they  satisfy  the  conditions  required  for linear  regression.  If  there  is  a  problem,  we  have  several potential solutions as discussed in earlier chapters. 

In some examples, we may believe the response follows a

gamma  or  a  lognormal  distribution.  Although  one  can

analyze  these  as  generalized  linear  models  (not  discussed in  this  text),  the  log  transformation  on  the  response  will reasonably allow normal linear modeling. 

We  might  also  make  log  transformations  on  some

predictors which naturally leads to considering the effect of

multiplicative,  rather  than  additive,  changes  of  the

predictor.  For  example,  suppose  we  have  a  ^

 β 1 log  x 1

component in our prediction equation. If we increase  x 1 by, say,  10%,  this  is  like  multiplying  by  1.1  and  the  change  in the contribution of this term to the prediction is  ^

 β 1 log(1.1). 

If we also have a log transformation on the response, this is

a multiplicative effect. 

The  presence  of  some  zero  values  in  the  response  will cause  difficulty.  If  we  press  ahead  and  depending  on  how we  do  it,  R  may  throw  an  error  or  it  may  fit  the  model ignoring  these  cases.  Ignoring  the  cases  would  typically cause a bias so we need to consider this more carefully. If

there  are  relatively  few  such  cases,  a  transformation  of log( y +  c) might be reasonable. Choosing too small a value of  c will mean that the log( c) used for the zeroes might be a large negative number and thus become an outlier. On the

other  hand,  choosing  too  large  a  value  of   c  will  move  the response  into  the  range  where  log( y +  c)  is  approximately linear.  A  sensible  starting  choice  for   c  would  be  half  the smallest non-zero response value but some experimentation

is required. Be aware that this is an ad hoc solution without

good  theoretical  justification.  Another  approach  to

choosing   c  is  described  in  the  next  section  using  the logtrans() function. 

If you have a large number of zero responses, you should

consider a different modeling approach. For example, if the

response  is  the  time  spent  imprisoned  for  an  individual, many  response  values  will  be  zero.  There  is  a  family  of models using the phrase  zero inflated which may be useful. 

One  final  point  is  that  we  do  not  much  care  what  base logarithms are used. Mathematicians tend to prefer natural

logs  but  base  2  or  base  10  logs  are  used  in  other  areas  of application without a problem. 

 Square Root Transform

The  square  root  transform  may  be  regarded  as  a  milder version  of  the  log  suitable  for  less  skewed  responses.  It  is often chosen when the response is a positive integer count. 

The  reason  for  this  is  explained  in  Section  7.1,   as  it  is  the variance  stabilizing   transformation  appropriate  when var  y ∝ ( Ey).  This  relation  holds  for  a  Poisson  distributed response  which  is  often  suitable  for  integer  responses.  If the response values are not mostly in the single digits, the

square  root  transformation  and  a  linear  model  will  be  a reasonable  approximation.  But  if  the  response  values  are small  numbers,  the  data  is  too  discrete  and  the

approximation  will  not  be  good  enough.  You  will  need  to use  a  Poisson  generalized  linear  model  as  described  in

Faraway (2016) and many other texts. 

 Logit Transform

For  responses  that  are  proportions  or  percentages,  the

logit  transformation  can  be  helpful.  For  example,  consider the  savings  data.  The  response  is  a  savings  rate  defined  as personal savings divided by disposable income. Suppose we

specify  that  you  cannot  have  negative  savings  or  savings more than disposable income. Since the data are countries

rather  than  individuals,  this  is  quite  reasonable.  This requires the response, when defined as a proportion, to lie

in [0,1]. Let's fit our usual model and make a prediction for

a  new  country  that  has  predictors  that  are  unusual  but  do occur in the data:

data (savings , package = "faraway")

lmod = lm (sr / 100 ~ pop15 + pop75 + dpi + ddpi , savings)

newctry = with (savings , data . frame (pop15 = max (pop15) , 

pop75 = max (pop75) , dpi = max (dpi) , ddpi = min (ddpi)))

predict (lmod , newdata = newctry) * 100

1

-2.6133

We  have  divided  the  response  by  100  to  convert  to  a

proportion  and  scaled  it  back  to  a  percentage  for  our predicted value. We have a prediction outside the allowable

range for the response. We can use the logistic transform:

logit( p) = log( p/(1 −  p))

(10.3)

for a response  p which lies in (0, 1). Let's fit the model with this  transformed  response,  make  the  prediction  and

transform back to the original scale:

library (faraway)

tmod = lm (logit (sr / 100) ~ pop15 + pop75 + dpi + ddpi , 

data = savings)

ilogit (predict (tmod , newdata = newctry)) * 100

     1

2.3004

The  logit()  function  and  ilogit()  function  come  from  the faraway  package  although  they  are  easy  to  define  yourself. 

The  ilogit()  function  inverts  the  logistic  transformation. 

The  prediction  is  small,  as  we  expect,  but  is  positive.  The logistic 

transformation 

ensures 

that 

the 

predicted

proportion values lie in (0, 1). 

In  the  range  of  approximately  (0.2, 0.8),  the  logistic

transformation  is  approximately  linear  in   p.  Hence,  when the proportions considered do not have values close to zero

or one, the logistic transformation will not have much effect

on  the  result.  In  the  savings  data,  there  are  some  small response  values  and  the  realistic  chance  of  predictions going 

outside 

the 

(0, 1)  range,  so  the  logistic

transformation was helpful. 

Sometimes, a response is a number of successes out of a

number  of  trials.  For  example,  in  the  newhamp  example  of

Section  6.6,   the  response  was  the  number  of  voters  for  a candidate  out  of  the  total  number  of  votes  cast  in  that district. It would be most natural to consider that this has a binomially  distributed  response.  In  such  situations,  it  is usual  to  use   logistic  regression.  This  is  a  method  beyond the scope of this book but is covered in Faraway (2016) and many  other  texts.  In  some  circumstances,  we  have  a

simpler solution. 

When  the  number  of  trials  in  the  binomial  response  is large enough (say  n > 25), using a normal approximation is reasonable.  Furthermore,  when  we  convert  the  number  of

successes out of the number of trials to a proportion which is  not  too  close  to  zero  or  one,  we  can  reasonably  use  a linear model without using the logistic transform. This was

the approach taken in the analysis in Section 6.6. 

When  the  proportions  venture  outside  the  midrange,  the

logistic transformation will be helpful. A particular problem

arises  when  the  number  of  successes   y  out  of   n  trials equals  zero  or  one  for  some  cases  as  the  logistic

transformation is not defined for  p = 0 or  p = 1. A solution is to use the so-called empirical logit:

elogit( y,  n) =  log(( y + 0.5)/( n −  y + 0.5)) (10.4)

This may be effective if there are not many such cases but

it is undesirable and a sign that we have reached the limits

of reasonable approximations. 

When  the  number  of  trials  for  each  cases  varies,  the

variance  for  a  binomial  proportion  is   p(1 −  p)/ n  and  will vary  from  a  case  to  case.  Furthermore,  when   p  varies substantially,  the  variance  will  also  vary  more.  One  might consider  using  weighted  least  squares  from  Section  9.2  to account for this if the effect is substantial. 

The most extreme case is when the group size is one. In

this instance,  y = 0 or  y = 1. It would be a clear mistake to use  a  linear  model  for  such  data.  A  logistic  regression would be advised. In some applications,  y is the continuous

response to some treatment for individuals. Some might be tempted to classify individuals into “responders” for higher

values of  y and “non-responders” for lower values of  y. The response  then  becomes  0/1.  This  is  sometimes  called  a

 responder  analysis.  This  is  not  advisable  as  the categorization  of  the  continuous   y  into  0/1  entails  a substantial  loss  of  information.  It  would  be  better  to consider  why  some  might  respond  more  and  some  might

respond less instead of making an arbitrary division. 

 Back Transformation

Although  you  may  transform  the  response,  you  will

probably  need  to  express  predictions  in  the  original  scale. 

This  requires  back  transforming.  For  example,  in  the

logged  model  above,  your  prediction  would  be  exp(^

 y 0).  If

your  prediction  interval  in  the  logged  scale  was   [l,u],  then you  would  use  [exp  l, exp  u].  This  interval  will  not  be symmetric,  but  this  may  be  desirable.  For  example,  the untransformed  prediction  intervals  for  the  Galápagos  data went  below  zero  in  Section  5.1.   Transformation  of  the response  avoids  this  problem.  Some  caution  is  necessary when  using  transformations  which  are  not  entirely

monotonic.  For  example,  suppose  we  use  the  square  root transformation on the response and your computed interval

is  [−1, 1].  A  transformation  back  to  the  original  scale requires  squaring  these  values,  but  this  results  in  the interval [1,1] which is not plausible. 

Regression  coefficients  will  need  to  be  interpreted  with respect  to  the  transformed  scale.  Excepting  the  special case  of  the  log  transformation,  there  is  no  straightforward way  of  back  transforming  them  to  values  that  can  be

interpreted  in  the  original  scale.  You  cannot  directly

compare  regression  coefficients  for  models  where  the

response transformation is different. Difficulties of this type may  dissuade  you  from  transforming  the  response  even  if this  requires  the  use  of  another  type  of  model,  such  as  a generalized linear model. 

For  transformations  on  the  response  and  predictors,  it

may  be  helpful  to  construct  an  effect  plot  as  described  in

Section 6.1. 

10.2 Algorithms for Transforming the Response

The  Box–Cox  method  is  a  way  to  determine  a  power

transformation  on  the  response.  It  is  designed  for  strictly positive  responses  and  chooses  the  transformation  to  find the  best  fit  to  the  data.  The  method  transforms  the

response   y →  gλ( y)  where  the  family  of  transformations indexed by  λ is:

 λ ≠ 0

 gλ( y) = {  yλ−1

 λ

log  y λ = 0

(10.5)

We  have   gλ( y) → log( y)  as   λ → 0  so  that  for  fixed   y > 0, gλ( y)  is  continuous  in   λ.  We  choose   λ  using  maximum likelihood.  The  profile  log-likelihood  assuming  normality  of the errors is:

 L( λ) = −  n 2 log(RSS λ/ n) + ( λ − 1)∑log yi (10.6)

where  RSS λ  is  the  residual  sum  of  squares  when   gλ( y)  is the  response.  You  can  numerically  maximize  this  to

compute  ^

 λ.  If  the  purpose  of  the  regression  model  is

prediction,  then  use   yλ  as  the  response  (no  need  to  use ( yλ − 1)/ λ,  as  the  rescaling  is  just  for  the  continuity).  If explaining  the  model  is  important,  you  should  round   λ  to the nearest interpretable value. For example, if  ^

 λ = 0.46, it

would  be  hard  to  explain  what  this  new  response  means, but √ y might be easier. 

Transforming the response can make the model harder to

interpret  so  we  do  not  want  to  do  it  unless  it  is  really necessary.  One  way  to  check  this  is  to  form  a  confidence interval for  λ. A 100(1 −  α) % confidence interval for  λ is:

{ λ :  L( λ) >  L(^ λ) − 1 (1− α)}

2  χ 21

(10.7)

This  interval  can  be  derived  by  inverting  the  likelihood ratio test of the hypothesis that  H 0 :  λ =  λ 0 which uses the statistic 

2( L(^ λ) −  L( λ 0))  having  approximate  null distribution   χ 21. The confidence interval also tells you how much  it  is  reasonable  to  round   λ  for  the  sake  of interpretability. 

We check whether the response in the savings data needs

transformation.  We  will  need  the  boxcox  function  from  the MASS  package.  Try  it  out  on  the  savings  dataset  and  plot the results:

lmod = lm (sr ~ pop15 + pop75 + dpi + ddpi , savings)

MASS :: boxcox (lmod, plotit=T)

MASS :: boxcox (lmod, plotit=T, lambda=seq (0.5, 1.5, by=0.1)) The  first  plot  shown  in  Figure  10.1  is  too  broad.  We narrowed the range of  λ in the second plot so that we can read off the confidence interval more easily. The confidence

interval for  λ runs from about 0.6 to about 1.4. We can see that there is no good reason to transform. 

[image: Image 46]

Figure  10.1   Log-likelihood  plots  for  the  Box–Cox transformation  of  the  savings  data.  The  second  plot  shows the  same  function  but  the  narrower  range  of   λ  focuses  on the region of interest. 

Now  consider  the  Galápagos  Islands  dataset  analyzed

earlier:

data (gala , package = "faraway")

lmod = lm (Species ~ Area + Elevation + Nearest +

Scruz + Adjacent , gala)

MASS :: boxcox (lmod , lambda = seq (-0.25 ,0.75 , by =0.05) , plotit = T)

The  plot  is  shown  in  the  left  panel  of  Figure  10.2.   We  see that  perhaps  a  cube  root  transformation  might  be  best

here.  A  square  root  is  also  a  possibility,  as  this  falls  just within  the  confidence  intervals.  Certainly  there  is  a  strong need to transform. 

[image: Image 47]

Figure  10.2   Log-likelihood  plot  for  the  Box–Cox transformation  of  the  Galápagos  data  is  shown  on  the  left and  the  log-additive  transformation  on  the  leafburn  data  is shown on the right. 

Some  general  considerations  concerning  the  Box–Cox

method are:

1. The Box–Cox method gets upset by outliers. If you find

^ λ = 5, then this is probably the reason. There can be little  justification  for  actually  making  such  an  extreme transformation.  It  is  important  to  do  the  usual

exploratory  data  analysis  before  you  start  considering

transformations. 

2. If  some   yi ≤ 0, we can add a constant  c to all the  y to make  them  all  positive.  We  do  not  want  too  add  too

much  because  this  will  distort  the  interpretation

excessively.  See  the  discussion  of  this  point  in  the previous section. 

3. If  max i yi/ min i yi  is  small,  say  less  than  10,  then  the Box–Cox  will  not  have  much  real  effect  because  power

transforms 

are 

well 

approximated 

by 

linear

transformations over short intervals far from the origin. 

If  the  range  of  the  response  is  small  in  this  relative manner,  the  additional  complication  of  the  Box–Cox

method may not be worth the trouble. 

4. There is some doubt whether the estimation of  λ counts as  an  extra  parameter  to  be  considered  in  the  degrees of  freedom.  This  is  a  difficult  question  since   λ  is  not  a linear  parameter  and  its  estimation  is  not  part  of  the least squares fit. 

The Box–Cox method is not the only way of transforming

the response. Another family of transformations is given by

 gα( y) = log( y +  α). We can illustrate the value of this using some data from Steel and Torrie (1980) on the burn time of tobacco leaves as a function of three chemical constituents. 

The  logtrans  function  in  the  MASS  package  performs  the computation in a similar manner to the Box-Cox procedure:

data (leafburn , package = "faraway")

lmod = lm (burntime ~ nitrogen + chlorine + potassium , 

leafburn)

MASS :: logtrans (lmod , plotit = TRUE , 

alpha = seq (- min (leafburn $ burntime) +0.001 ,0 , by 

=0.01))

The  plot  is  shown  in  the  right  panel  of  Figure  10.2.  The Box-Cox analysis of this model recommends  ^

 λ = −0.34 and

the  confidence  interval  bounds  this  away  from  zero  so  it seems  we  cannot  use  the  more  interpretable  log

transformation.  But  the  plot  shows  that  we  can  use  a  log transformation  provided  we  subtract  about  0.85  from  the response.  This  value  may  be  interpretable  as  a  start-up time for the fire to get going. 

10.3 Transforming the Predictors

Let's start with some strategic concerns with transforming

the  predictors.  We  cannot  entirely  separate  the  choice  of transformation  on  the  predictors  from  the  transformation on  the  response.  As  far  as  possible,  it  is  easier  if  we  can settle  on  a  transform  for  the  response  first  because  the reasonable  choices  for  the  predictors  are  more  complex. 

When the choice of transform on the response is guided by

our  theoretical  or  empirical  knowledge  about  the

relationship 

between 

the 

variables, 

it 

is 

more

straightforward to make this choice first. In contrast, if we

are  focused  on  achieving  the  best  possible  fit,  it  will  be difficult to make the choices of transformation sequentially

and more experimentation will be necessary. 

We can distinguish between transformations that replace

the  predictor  with  a  transformed  value  and  those  that  add multiple  terms  involving  the  predictor.  For  the  first

approach  where  we  replace  x  by  some  f(x),  we  can  take  a Box–Cox  style  approach,  choosing  the  transformation  to

minimize the RSS. However, this is usually not the best way to  find  good  transformations  on  the  predictors.  Instead, think  about  how  you  expect  the  predictor  to  affect  the response.  Use  graphical  methods  such  as  partial  residual plots  to  select  transforms  for  the  predictors.  Some

experimentation is reasonable. 

A  more  flexible  approach  is  to  replace  x  with  more  than one  term  —  f(x)  +  g(x)  +.  ...  This  allows  more  flexibility since  each  additional  term  carries  a  parameter.  Adding  a quadratic  term  so  that   x  and   x 2  both  appear  as  predictors in  the  model  is  the  simplest  example  of  this  second

approach.  All  the  methods  discussed  below  use  this

approach. 

Sometimes, analysts are tempted to replace a continuous

variable  x with a binary variable where zero represents low values  of   x  and  one  represents  high  values  of   x.  For example,  when   x  is  annual  income,  we  can  talk  about  low income  people  compared  with  high  income  people. 

Although this simplification may seem attractive, there will

usually  be  a  substantial  loss  of  information.  Most

continuous  predictors  have  a  continuous  effect  on  the

response. Even when there is a breakpoint in the predictor

where  there  is  a  marked  change  in  the  effect  on  the

response,  it  is  better  to  model  this  in  a  principled  manner as we shall discuss in the next section. 

More  generally,  we  might  consider  transforming  the

predictors together using:

 y =  f( x 1, … ,  xp) +  ε

(10.8)

We  want   f()  to  be  very  flexible.  We  can  achieve  this  by introducing  a  very  large  number  of  parameters  into  the specification.  Machine  learning  (ML)  methods  such  as

neural networks take this approach. 

The  advantages  are  that  one  can  obtain  much  more

flexible  fits  to  the  data.  In  more  complex,  larger  datasets where  the  true  relationship  is  not  known  and  not  linear, this is a more appealing approach. It avoids a lot of manual

labor  in  searching  for  good  predictions  which  becomes

increasingly  difficult  for  larger  datasets.  For  big  data problems, this often results in superior predictions. 

There  are  also  disadvantages  to  this  approach.  The

models  are  not  easily  interpretable  as  we  cannot

disentangle the effect of one predictor on the response. ML

models  do  not  allow  inference  as  they  do  not  produce

standard  errors,  let  alone  test  statistics  or  confidence intervals.  They  are  often  good  for  prediction  but  not  so good for explanation. 

10.4 Segmented Regression

Sometimes  we  have  reason  to  believe  that  different  linear fits  apply  in  different  regions  of  the  data.  For  example,  in the  analysis  of  the  savings  data,  we  observed  that  there were  two  groups  in  the  data  and  we  might  want  to  fit  a
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different  model  to  the  two  parts.  Suppose  we  focus

attention  on  just  the  pop15  predictor  for  ease  of

presentation.  We  fit  the  two  regression  models  depending on  whether  pop15  is  greater  or  less  than  35%.  The  two  fits are seen in Figure 10.3. 

lmod1 = lm (sr ~ pop15 , savings , subset=(pop15 < 35))

lmod2 = lm (sr ~ pop15 , savings , subset=(pop15 > 35))

plot (sr ~ pop15 , savings, 

xlab = "Pop ' n under 15" , ylab = "Savings Rate") abline (v =35 , lty =5)

segments   (20 , lmod1$coef [1]+ lmod1$coef [2] * 20, 

35 , lmod1$coef [1]+ lmod1$coef [2] * 35)

segments   (48 , lmod2$coef [1]+ lmod2$coef [2] * 48, 

35 , lmod2$coef [1]+ lmod2$coef [2] * 35)

Figure 10.3  Subset regression fit is shown with the solid line,  while  the  broken  stick  regression  is  shown  with  the dotted line. 

A possible objection to this subsetted regression fit is that the two parts of the fit do not meet at the join. If we believe the  fit  should  be  continuous  as  the  predictor  varies,  we should consider the broken stick regression fit. Define two

 basis functions:

 Bl( x) = { c −  x  if  x <  c 0

otherwise

(10.9)

and:

 Br( x) = { x −  c  if  x >  c 0

otherwise

(10.10)

where  c marks the division between the two groups.  Bl and Br  form  a  first-order  spline  basis  with  a  knotpoint  at   c. 

Sometimes   Bl  and   Br  are  called  hockey-stick  functions because of their shape. We can now fit a model of the form:

 y =  β 0 +  β 1 Bl( x) +  β 2 Br( x) +  ε

(10.11)

using  standard  regression  methods.  The  two  linear  parts are  guaranteed  to  meet  at   c.  Notice  that  this  model  uses only  three  parameters  in  contrast  to  the  four  total

parameters  used  in  the  subsetted  regression  illustrated

before.  A  parameter  has  been  saved  by  insisting  on  the continuity of the fit at  c. 

We  define  the  two  hockey-stick  functions,  compute  and

display the fit:

lhs = function (x) ifelse (x < 35,35 - x ,0)

rhs = function (x) ifelse (x < 35,0 , x -35)

lmod = lm (sr ~ lhs(pop15) + rhs (pop15) , savings)

x = seq (20 ,48 , by=1)

py = lmod$coef [1] + lmod$coef [2] * lhs (x) + lmod$coef [3] * 

rhs (x)

lines (x,py, lty=2)

The two (dotted) lines now meet at 35, as shown in Figure

10.3.  The  intercept  of  this  model  is  the  value  of  the

response at the join. 

We  might  question  which  fit  is  preferable  in  this

particular  instance.  For  the  high  pop15  countries,  we  see that the imposition of continuity causes a change in sign for

the  slope  of  the  fit.  We  might  argue  that  because  the  two groups  of  countries  are  so  different  and  there  are  so  few countries  in  the  middle  region,  we  might  not  want  to

impose  continuity  at  all.  In  some  examples  (not  this  one), we  can  use  the  lack  of  continuity  to  make  causal  claims. 

This  is  the   regression  discontinuity  design.  Cases  below  a threshold  receive  a  treatment  and  those  above  receive  a control.  Cases  just  either  side  of  the  threshold  might

reasonably be assumed similar so that any discontinuity at the threshold would be an indication of a treatment effect. 

We can have more than one knotpoint simply by defining

more  basis  functions  with  different  knotpoints.  Segmented regression  is  sometimes  called   broken  stick  regression. 

Allowing  the  knotpoints  to  be  parameters  is  worth

considering,  but  this  will  result  in  a  nonlinear  model.  This can be implemented using the segmented package in R which

is derived from Muggeo (2003). 

10.5 Polynomials

Another way of generalizing the  Xβ part of the model is to add polynomial terms. In the one-predictor case, we have:

 y =  β 0 +  β 1 x + ⋯ +  βdxd +  ε

(10.12)

which allows for a more flexible relationship. We usually do

not  believe  the  polynomial  exactly  represents  any

underlying  reality,  but  it  can  allow  us  to  model  expected features  of  the  relationship.  A  quadratic  term  allows  for  a predictor  to  have  an  optimal  setting.  For  example,  there may  be  a  best  temperature  for  baking  bread  –  a  hotter  or colder  temperature  may  result  in  a  less  tasty  outcome.  If you  believe  a  predictor  behaves  in  this  manner,  it  makes sense to add a quadratic term. 

There are two algorithmic ways to choose  d. We can keep adding  terms  until  the  added  term  is  not  important. 

Alternatively,  we  can  start  with  a  large   d  and  eliminate unimportant  starting  with  the  highest  order  term,  refitting the model if that term is eliminated. 

In practice, it is better to take a more informal approach

using subject matter knowledge. We usually do not want to

consider  d greater than two or three because interpretation becomes difficult (and estimation can be unstable). 

An  engineer  conducted  an  experiment  where  fuel  was

burned  in  a  single-cylinder  engine.  For  various  settings  of the  engine  compression  and  equivalence  ratio,  the

emissions  of  nitrogen  oxides  were  recorded.  We  load  the data from the built-in lattice package with:

data (ethanol , package = "lattice")

Details on the source can be found on the help page for the

dataset. We start with a plot of one of the variables as seen

in the first panel of Figure 10.4:

plot (NOx ~ E , ethanol)

[image: Image 49]

Figure 10.4  Linear and quadratic fits to the ethanol data are  seen  in  the  left  panel.  A  quadratic  fit  to  the  logged response is shown on the right. 

In  spite  of  the  obvious  pattern  seen  in  the  plot,  we  fit  a model with only linear terms:

lmodl = lm (NOx ~ C + E , ethanol)

summary (lmodl)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.55910     0.66240    3.86 0.00022

C          -0.00711     0.03114   -0.23 0.81994

E          -0.55714     0.60146   -0.93 0.35691



Residual standard error: 1.14 on 85 degrees of freedom

Multiple R-squared: 0.011,          Adjusted R-squared:  

-0.0123

F-statistic: 0.471 on 2 and 85 DF,    p-value: 0.626

Neither  predictor  is  significant  and  the  F-test  for  the overall regression is not significant. The  R 2 is very small. If

we look only at this output, we might stop there and claim that  there  is  no  relationship  between  the  variables.  We display the fit for a mean value of C on the plot:

ndf = with (ethanol , expand.grid (C=mean (C), E=range (E)))

ndf$pv = predict (lmodl , newdata=ndf)

lines (pv ~ E , ndf , lty=2)

We  only  need  the  predicted  values  at  the  minimum  and

maximum  values  of  E  because  the  fit  is  linear  and  can  be drawn by joining the two points. 

Any analyst taking the trouble to plot the data and check

the  regression  diagnostics  would  spot  the  problem. 

Furthermore, the engineer might well expect there to be an

optimum  value  of  E  and  expect  the  model  to  accommodate this.  Notice  that  the  start  small  strategy  for  choosing  the degree of the polynomial  d would fail here since the linear term in E is not statistically significant. 

We add a quadratic term in E:

lmod2 = lm (NOx ~ C + E + I (E^2) , ethanol)

summary (lmod2)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -21.2030     1.2398 -17.10    <1e-04

C             0.0635     0.0137    4.63   <1e-04

E            52.4110     2.7037   19.39   <1e-04

I(E^2)      -29.0899     1.4782 -19.68    <1e-04



Residual standard error: 0.484 on 84 degrees of freedom

Multiple R-squared: 0.824,           Adjusted R-squared: 0.817

F-statistic: 131 on 3 and 84 DF,          p-value: <1e-04

We  see  this  makes  a  dramatic  difference  to  the  model  as now all the predictors are significant and the  R 2 is high. We add the fit to the plot:

ndf = with (ethanol, expand.grid (C=mean (C) , 

E=seq (min (E), max (E) , length=50)))

ndf $ pv = predict (lmod2 , newdata = ndf)

lines (pv ~ E , ndf , lty=1)

The  solid  curve  seen  in  the  first  panel  of  Figure  10.4  is  a much  better  fit  to  the  data  and  yet  it  is  not  entirely satisfactory.  The  points  are  mostly  above  the  curve  in  the middle and below it at the ends. 

One  possible  route  to  improving  the  fit  is  transforming the response. Let's try a log transform:

lmodlog2 = lm (log (NOx) ~ C + E + I (E ^2) , ethanol)

summary (lmodlog2)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -13.93511    0.51852  -26.87    <1e-04

C             0.02960    0.00573    5.17    <1e-04

E            32.79897    1.13074   29.01    <1e-04

I(E^2)      -18.16503    0.61822  -29.38    <1e-04



Residual standard error: 0.202 on 84 degrees of freedom

Multiple R-squared: 0.913,           Adjusted R-squared: 0.91

F-statistic: 293 on 3 and 84 DF,          p-value: <1e-04

The fit, as expressed by the  R 2 is superior in this model. We need  to  be  careful  comparing  models  with  responses  on

different scales so let's look at the fit as seen in the second panel of Figure 10.4. 

plot (log (NOx) ~ E , ethanol)

ndf = with (ethanol , 

expand.grid (C=mean (C), E= seq (min (E), max (E), 

length=50)))

ndf $ pv = predict (lmodlog2, newdata = ndf)

lines (pv ~ E , ndf , lty =1)

We see a better fit to the data. 

We  may  want  to  report  the  optimal  value  of   E  for maximizing  the  response.  The  optimum  of  a  quadratic

 y =  a +  bx +  cx 2  occurs  at   x = − b/(2 c)  using  simple calculus. We can calculate this:

cc = coef (lmodlog2)

- cc [3] / (2 * cc [4])

E

0.90281

The  predicted  maximum  response  also  depends  on  the

value of C but the optimum choice of E does not depend on

C. 

Usually  it  is  a  bad  idea  to  eliminate  lower  order  terms from  the  model  before  the  higher  order  terms  even  if  they are not statistically significant. An additive change in scale would  change  the  t-statistic  of  all  but  the  highest  order term. We would not want the conclusions of our study to be

sensitive  to  such  changes  in  the  scale  which  ought  to  be inconsequential.  For  example,  suppose  we  transform  E  by subtracting 0.9 and refit the quadratic model:

ethanol$Ec = ethanol$E - 0.9

lmodlogc = lm (log (NOx) ~ C + Ec + I (Ec^2), ethanol)

summary (lmodlogc)

Estimate Std. Error t value Pr(>|t|)

(Intercept)   0.87028    0.07023   12.39   <1e-04

C             0.02960    0.00573    5.17   <1e-04

Ec            0.10191    0.10760    0.95   0.35

I(Ec^2)     -18.16503    0.61822  -29.38   <1e-04



Residual standard error: 0.202 on 84 degrees of freedom

Multiple R-squared: 0.913,           Adjusted R-squared: 0.91

F-statistic: 293 on 3 and 84 DF,          p-value: <1e-04

We see that the quadratic term remains unchanged, but the

linear  term  is  now  insignificant.  Since  there  is  often  no necessary  importance  to  zero  on  a  scale  of  measurement, there  is  no  good  reason  to  remove  the  linear  term  in  this model  but  not  in  the  previous  version.  If  you  do  remove lower  order  terms  from,  say,  a  quadratic  model,  be  aware that this has some special meaning. Setting the intercept to

zero means the regression passes through the origin while

setting  the  linear  term  to  zero  would  mean  that  the

response is optimized at a predictor value of zero. When it

comes to polynomials, respect the hierarchy. 

You have to refit the model each time a polynomial term

is added or removed which is inconvenient and for large  d

there  can  be  a  problem  with  numerical  stability. 

Orthogonal  polynomials  get  around  this  problem  by

defining:

 z 1 =  a 1 +  b 1 x

 z 2 =  a 2 +  b 2 x +  c 2 x 2

 z 3 =  a 3 +  b 3 x +  c 3 x 2 +  d 3 x 3

etc.  where  the  coefficients   a,  b,  c,  …  are  chosen  so  that zTizj = 0  when   i ≠  j.  The  expressions   z  are  called orthogonal 

polynomials. 

The 

value 

of 

orthogonal

polynomials  has  declined  with  advances  in  computing

speeds  although  they  are  still  worth  knowing  about

because  of  their  numerical  stability  and  ease  of  use.  The poly()  function  constructs  orthogonal  polynomials.  Since

adding  a  cubic  term  would  not  provide  for  the  shape  of curve we want, we go as far as the quartic with  d = 4: lmodlogq = lm (log (NOx) ~ C + poly (E ,4) , ethanol)

summary (lmodlogq)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.14123     0.06491    2.18 0.03245

C            0.02751    0.00515    5.34 < 1e-04

poly(E, 4)1 -0.62463    0.18017   -3.47 0.00084

poly(E, 4)2 -6.14277    0.18642  -32.95 < 1e-04

poly(E, 4)3 -0.02174    0.18148   -0.12 0.90493

poly(E, 4)4 0.89298     0.18033    4.95 < 1e-04



Residual standard error: 0.18 on 82 degrees of freedom

Multiple R-squared: 0.933,           Adjusted R-squared: 0.929

F-statistic: 228 on 5 and 82 DF,          p-value: <1e-04

We can see the cubic term is not significant and would not

improve  the  model  but  the  quartic  term  is  significant  and we  achieve  a  slightly  better  fit.  Determining  the  optimum for E is now more troublesome so we may question whether

this complication is worth it. 

You  can  also  define  polynomials  in  more  than  one

variable.  These  are  sometimes  called   response  surface models. A second degree model would be:

 y =  β 0 +  β 1 x 1 +  β 2 x 2 +  β 11 x 21 +  β 22 x 22 +  β 12 x 1 x 2

(10.13)

an example of which could be fit as:

lmod = lm (log(NOx) ~ polym (C,E, degree=2), ethanol)

summary (lmod)

Estimate Std. Error t value 

Pr(>|t|)

(Intercept)                          0.4794     0.0183   26.23   

<1e-04

polym(C, E,   degree   =   2)1.0     1.1293     0.1778    6.35   

<1e-04

polym(C, E,   degree   =   2)2.0     0.1412     0.1724    0.82   

0.415

polym(C, E,   degree   =   2)0.1    -0.4032     0.1756   -2.30   

0.024

polym(C, E,   degree   =   2)1.1    -9.7469     1.6333   -5.97   

<1e-04

polym(C, E,   degree   =   2)0.2    -6.3011     0.1788  -35.25   

<1e-04



Residual standard error: 0.171 on 82 degrees of freedom

Multiple R-squared: 0.939,           Adjusted R-squared: 0.935

F-statistic: 253 on 5 and 82 DF,          p-value: <1e-04

The  quadratic  term  in  E  (denoted  as  0.2)  is  significant and the coefficient is negative indicating a maximum in

this variable. 

The  quadratic  term  in  C  (denoted  as  2.0)  is  not

significant  but  the  linear  term  in  this  variable  is

significant. There will be a linear trend in this variable where the response increases with C. 

The  crossproduct  term  (denoted  as  1.1)  is  significant

indicating  that  the  fitted  surface  will  not  be  aligned with  the  coordinate  axes.  Furthermore,  we  could  not

optimize E without reference to C because of this term. 

The fit is somewhat better than any seen previously but

we are using more parameters. 

We  can  construct  a  perspective  plot  of  the  fitted  surface as  follows.  We  compute  the  fit  on  a  10 × 10  grid  of  values covering  the  range  of  the  predictors  and  see  the  result  in

Figure 10.5. 

Cgrid = with (ethanol , seq (min (C) , max (C) , length=10))

Egrid = with (ethanol , seq (min (E) , max (E) , length=10))

pgrid = expand.grid (C = Cgrid , E=Egrid)

pv = predict (lmod , pgrid)

persp (Cgrid , Egrid , matrix (pv , 10 , 10) , theta=45 , 

xlab = "C" , ylab = "E" , zlab = "NOx" , ticktype = "detailed" , shade = 0.25)

[image: Image 50]

Figure 10.5  Perspective plot of the quadratic surface fit to the ethanol data. 

10.6 Splines

Polynomials  have  the  advantage  of  smoothness,  but  the

disadvantage is that each data point affects the fit globally. 

This  is  because  the  power  functions  used  for  the

polynomials take nonzero values across the whole range of

the  predictor.  In  contrast,  the  segmented  regression

method  localizes  the  influence  of  each  data  point  to  its particular  segment  which  is  good,  but  we  do  not  have  the same  smoothness  as  with  the  polynomials.  There  is  a  way we  can  combine  the  beneficial  aspects  of  both  these

methods  —  smoothness  and  local  influence  —  by  using   B-spline basis functions. 

We  can  see  why  splines  might  be  helpful  by  using  a

simulated example. Suppose we know the true model is:

[image: Image 51]

 y = sin3(2 πx 3) +  ε, 

 ε ∼  N(0, (0.1)2)

(10.14)

The  advantage  of  using  simulated  data  is  that  we  can  see how close our methods come to the truth. We generate the

data and display them in the first plot of Figure 10.6. 

funky = function(x) sin(2*pi*x^3)^3

x = seq (0 ,1 , by =0.01)

y = funky (x) + 0.1 * rnorm (101)

matplot (x , cbind (y, funky (x)) , type = "pl" , 

ylab = "y", pch=20 , lty=1, col=1, cex=0.5)

Long Description for Figure 10.6

Figure  10.6   Data  and  true  function  shown  on  the  left. 

Orthogonal  polynomial  of  order  4  (dashed)  and  order  12

(solid) shown on the right. 

We see how orthogonal polynomial bases of orders 4 and 12 do in fitting these data:

g4 = lm (y ~ poly (x ,4))

g12 = lm (y ~ poly (x ,12))

matplot (x , cbind (y , g4$fit , g12$fit) , type="pll" , ylab="y" , lty=c (1 ,2) , col=1 , cex=0.5)

The two fits are shown in the second panel of Figure 10.6. 

We  see  that  order  4  is  a  clear  underfit;  order  12  is  much better although the fit is too wiggly in the first section and misses the point of inflection around  x = 0.8. 

We may define a cubic B-spline basis on the interval  [a,b]

by  the  following  requirements  on  the  interior  basis

functions with knotpoints at  t 1, … ,  tk:

1. A given basis function is nonzero on an interval defined

by  four  successive  knots  and  zero  elsewhere.  This

property ensures the local influence property. 

2. The  basis  function  is  a  cubic  polynomial  for  each

subinterval between successive knots. 

3. The basis function is continuous and is also continuous

in  its  first  and  second  derivatives  at  each  knotpoint. 

This property ensures the smoothness of the fit. 

4. The basis function integrates to one over its support. 

The basis functions at the ends of the interval are defined

a little differently to ensure continuity in derivatives at the edge of the interval. A full definition of B-splines and more

details  about  their  properties  may  be  found  in  de  Boor

(2002). The segmented regression is an example of the use

of linear splines. 

We  now  create  the  B-spline  basis  which  will  be  cubic

unless we specify otherwise. We can specify the number of

knots  which  will  be  placed  according  to  the  quantiles  of  x. 

Alternatively,  one  can  specify  the  knot  locations.  I  have chosen  the  knot  locations  to  put  more  in  the  regions  of greater curvature. Since I have specified 9 knots, there will

be  9 + 3 = 12  (3  because  cubic  splines)  basis  functions. 

This  is  for  comparability  to  the  orthogonal  polynomial  fit. 

Spline  functions  are  found  in  the  splines  package  which comes with standard distribution of R. 

library (splines)

cknots = c (0 ,0.2 ,0.4 ,0.5 ,0.6 ,0.7 ,0.8 ,0.85 ,0.9)

lmodb = lm (y ~ bs (x , knots=cknots) -1)

matplot (x , model . matrix (lmodb) , type="l" , col=1) smf = predict (lmodb , interval="confidence")

matplot (x , cbind (y , smf) , type="plll" , 

ylab="y" , pch=20 , lty=c (1 ,1 ,2 ,2) , col=1)

The  basis  functions  are  seen  in  the  first  panel  of  Figure

10.7  while  the  fit  appears  in  the  second  panel.  The  basis

functions  sum  to  one  pointwise  so  they  will  be  collinear with an intercept term. For this reason, we have used -1 in

the model formula to exclude the intercept. 

[image: Image 52]

Long Description for Figure 10.7

Figure 10.7  Cubic spline basis function on the left; cubic spline fit to the data on the right. 

We  see  that  the  fit  comes  very  close  to  the  truth.  We might  simply  want  to  find  a  smooth  fit  to  the  data  but sometimes we want to investigate whether certain features

of  the  data  exist  or  might  be  ascribed  to  just  random variation. For this purpose, we have also computed the 95%

confidence  region  for  the  curve.  From  this,  we  can  verify that describing the curve has a flat response, a maximum, a

point  of  inflexion,  and  then  a  minimum  is  justifiable  given the  relatively  tight  confidence  bands.  We  have  cheated  a little  in  this  example.  How  did  we  know  that  12  basis functions  was  about  right?  In  some  cases,  where  the

response  is  linear  in  the  predictor,  this  would  be  far  too many.  For  more  complex  patterns  of  response,  this  might

not  be  enough.  One  can  use  an  informal  exploratory approach of trying differing amounts of flexibility in the fit. 

This method can also use our subject matter knowledge of

the data to consider how flexible a fit would be reasonable. 

A  second  way  in  which  we  have  cheated  was  to  put  more knots  in  the  more  variable  region  of  the  response  and  less in  the  flatter  regions.  We  may  not  have  known  this  in advance  and  certainly  not  known  the  true  function  as  in this 

sandbox 

example. 

Some 

experimentation 

and

exploration  is  reasonable  but  more  automated  methods  of deciding this would be preferable. 

A  related  alternative  to  regression  splines  is  smoothing splines.  Suppose  the  model  is   yi =  f( xi) +  εi,  so  in  the spirit  of  least  squares,  we  might  choose  ^

 f to minimize the

sum  of  squares.  Unfortunately,  the  unhelpful  solution  is

^

 f( xi) =  yi.  This  “join  the  dots”  regression  is  almost certainly  too  rough.  Instead,  suppose  we  choose  ^

 f  to

minimize a modified least squares criterion:

1 ∑( Y

 n

 i −  f( xi))2 +  λ ∫ [ f ′′( x)]2 dx (10.15)

where   λ > 0  controls  the  amount  of  smoothing  and

∫[ f ′′( x)]2 dx  is  a   roughness  penalty.  When   f  is  rough,  the penalty is large, but when  f is smooth, the penalty is small. 

[image: Image 53]

Thus  the  two  parts  of  the  criterion  balance  fit  against smoothness.  This  is  the   smoothing  spline  fit.  We  illustrate this  in  Figure  10.8.  We  have  used  the  default  choice  of smoothing which is derived from crossvalidation. The point

of  inflexion  is  captured  well  but  the  smoother  part  of  the function on the left is fit too roughly. 

ssf = smooth . spline (x , y)

matplot (x , cbind (y , ssf$y) , type = "pl", ylab = "y" , lty=1 , pch=20 , col=1 , cex=0.5)

Figure 10.8  Smoothing spline fit to the simulated data. 

There  are  many  other  curve  fitting  methods.  One  useful alternative  is  the  lowess()  function,  found  in  base  R,  which uses  locally-weighted  polynomial  regression.  The  special

feature  of  this  method  is  that  it  is  robust  to  outliers.  The smoothed  curve  seen  on  some  diagnostic  plots  uses

panel.smooth() which is based on lowess(). 

The  usefulness  of  these  curve  fitting  methods  is  limited when  there  is  only  one  predictor.  It  is  pleasing  to  see  a curve  superimposed  on  a  scatterplot  but  the  inferential value  is  limited.  We  can  use  confidence  bands  (when  the method  can  produce  these)  to  check  whether  certain

features are reliably present. Prediction within the range of

the  data  is  easily  done  but  extrapolation  is  problematic when  the  method  is  based  on  local  fitting.  Using  these methods  when  there  are  multiple  predictors  can  be  more rewarding as we shall see in the next section. 

10.7 Additive Models

Searching  for  good  transformations  on  the  predictors  is difficult  when  there  are  multiple  predictors.  Changing  the transformation  on  one  predictor  may  change  the  best

choice of transformation on another predictor. Fortunately, 

there 

is 

a 

way 

to 

simultaneously 

choose 

the

transformations. An  additive model takes the form:

 y =  α +  f 1( X 1) +  f 2( X 2) + ⋯ +  fp( Xp) +  ε

(10.16)

The linear terms of the form  βiXi have been replaced with more flexible functional forms  fi( Xi). The mgcv package can be  used  to  fit  such  models.  The  ozone  data  contains  daily ozone measurements from Los Angeles. We investigate how

[image: Image 54]

the  ozone  level  varies  with  the  humidity,  the  temperature and the day of the year. 

library (mgcv)

data (ozone, package = "faraway")

gmod = gam (O3 ~ s (humidity) + s (temp) + s (doy) , 

data=ozone)

plot (gmod)

The  fitted  functions   fi  are  computed  using  smoothing splines  and  are  shown  in  Figure  10.9.   Crossvalidation  is used to choose the amount of smoothing. 

For humidity, we see the chosen transformation is linear. 

For  temperature,  we  see  two  linear  trends  about  and

below 60F. 

For doy, the day of the year, we see a relationship with

two peaks during the year. 

Long Description for Figure 10.9

Figure 10.9  Fitted functions using the additive model for the  ozone  data.  The  95%  confidence  bands  are  shown  as

dotted lines. 

The density of the predictor data is shown by the  rug at the bottom  of  each  panel.  In  this  example,  the  data  is  quite evenly spaced so this won't be a problem. We also see 95%

confidence  bands  for  the  chosen  transformations.  These

indicate  the  range  of  plausible  fits  and  confirm  the

impression  of  a  segmented  fit  for  the  temperature  and  the periodic  variation  with  the  day  of  the  year.  Inference regarding  the  significance  of  predictors  and  the  making  of predictions  can  now  proceed  within  the  additive  model

framework as explained in Wood (2017).  Alternatively, one can  use  the  plots  as  an  exploratory  tool  to  choose

transformations  on  the  predictors.  In  this  example,  we

might  pick  linear  for  the  humidity,  a  segmented  linear  fit for temperature with a breakpoint at 60 and some choice of

sinusoidal terms for the day of year. 

The 

additive 

modeling 

approach 

does 

not 

pick

transformations on the response. One would need to make

this  choice  empirically  or  based  on  theory  or  experience about the way in which the predictors affect the response. 

It  is  also  possible  to  consider  bivariate  transformations  of two predictors if one wants to incorporate interactions into

the model. 

Discussion

Regression analysis relies on the skill of the human analyst

to  make  judgements  about  graphical  displays  and  to

incorporate  subject  area  knowledge.  When  the  purpose  of

the  analysis  is  explanation  or  the  sample  size  is  relatively small,  regression  analysis  compares  well  to  more  complex alternatives.  The  linear  model  produces  interpretable

parameters  which  are  essential  if  we  want  to  gain  some understanding of the relationship between the variables. If

we  do  not  have  much  data,  it  is  hard  to  justify  a  more complex approach. 

For  larger  datasets  where  prediction  is  the  goal,  more recently  developed  complex  models  using  methods  from

machine  learning  may  be  more  effective.  This  is  because these  methods  will  be  able  to  fit  the  data  more  flexibly while keeping the number of parameters under control. See

Friedman,  Hastie,  and  Tibshirani  (2008).  The  additive model  approach  is  nice  because  it  does  have  the  flexibility to  achieve  better  fits  to  more  complex  data  while  still retaining the interpretational benefits. 

Exercises

1. The aatemp data come from the U.S. Historical Climatology

Network.  They  are  the  annual  mean  temperatures  (in

degrees F) in Ann Arbor, Michigan, going back about 150

years. 

(a)

Fit  a  line  to  the  data.  Is  there  a  significant  linear trend? 

(b)

Observations 

in 

successive 

years 

may 

be

correlated.  Fit  a  model  that  estimates  this

correlation.  Does  this  change  your  opinion  about the trend? 

(c)

Fit  a  polynomial  model  with  degree  10  and  use

backward  elimination  to  reduce  the  degree  of  the

model. Plot your fitted model on top of the data. 

(d)

Use  the  model  selected  in  the  previous  question  to

predict  the  temperatures  up  to  2020.  Plot  the

predictions from 1854 up to 2020. 

(e)

Suppose someone claims that the temperature was

constant  until  1930  and  then  began  a  linear  trend. 

Fit a model corresponding to this claim. What does

the fitted model say about this claim? 

(f)

Make  a  cubic  spline  fit  with  six  basis  functions

evenly  spaced  on  the  range.  Plot  the  fit  in

comparison to the previous fits. Does this model fit

better than the straight-line model? 

2. The  cornnit  data  on  the  relationship  between  corn  yield (bushels  per  acre)  and  nitrogen  (pounds  per  acre)

fertilizer  application  were  studied  in  Wisconsin  in  1994. 

Use  transformations  to  find  a  good  model  for  predicting yield  from  nitrogen.  Use  a  goodness-of-fit  test  to  check your model. 

3. Using  the  ozone  data,  fit  a  model  with  O3  as  the  response and temp, humidity and ibh as predictors. Use the Box–Cox

method  to  determine  the  best  transformation  on  the

response. 

4. Use  the  pressure  data  to  fit  a  model  with  pressure  as  the response  and  temperature  as  the  predictor  using

transformations to obtain a good fit. 

5. Use  transformations  to  find  a  good  model  for  Volume  in terms of Girth and Height using the trees data. 

6. Use the odor data for this question. 

(a)

Fit  a  second  order  response  surface  for  the  odor

response  using  the  other  three  variables  as

predictors.  (Hint:  user  the  polym()  function).  How

many  parameters  does  this  model  use  and  how

many degrees of freedom are left? 

(b)

Fit  a  model  for  the  same  response  but  now

excluding any interaction terms but including linear

and  quadratic  terms  in  all  three  predictors. 

Compare  this  model  to  the  previous  one.  Is  this

simplification justified? 

(c)

Use  the  previous  model  to  determine  the  values  of

the  predictors  which  result  in  the  minimum

predicted odor. 

7. Use the cheddar data for this question. 

(a)

Fit  an  additive  model  for  a  response  of  taste  with

the  other  three  variables  as  predictors.  Is  any

transformation of the predictors suggested? 

(b)

Use  the  Box–Cox  method  to  determine  an  optimal

transformation  of  the  response.  Would  it  be

reasonable to leave the response untransformed? 

(c)

Use the optimal transformation of the response and

refit  the  additive  model.  Does  this  make  any

difference to the transformations suggested for the

predictors? 

8. Use  the  cars  data  with  distance  as  the  response  and speed as the predictor. 

(a)

Plot distance against speed. 

(b)

Show a linear fit to the data on the plot. 

(c)

Show a quadratic fit to the data one the plot. 

(d)

Now  use  sqrt(dist)  as  the  response  and  fit  a  linear

model. Show the fit on the same plot. 

(e)

Compute the default smoothing spline fit to the plot

and display on a fresh plot of the data. How does it

compare to the previous fits? 

Chapter 11

Model Selection

DOI: 10.1201/9781003449973-11

For  all  but  the  simplest  cases  we  are  confronted  with  a choice of possible regression models for our data. We may

even  have  expanded  the  choice  of  possible  models  by

introducing  new  variables  derived  from  those  available

originally by making transformations, creating interactions

or  adding  polynomial  terms.  In  this  chapter,  we  consider the problem of selecting the “best” model. 

The choice of the response,  y, depends on the objective of our  study.  We  must  be  clear  on  what  we  are  trying  to predict  or  explain.  This  motivates  the  choice  of  response variable. We cannot make this decision algorithmically. We

can  transform  the  response  variable  as  described  in

Chapter  10.   This  can  be  viewed  as  part  of  the  model selection  and  has  important  consequences  for  the

predictive  performance  and  interpretation  of  the  model.  It also has an effect on the predictors we might think best to

include in the model. Let us suppose we make this choice of

response  and  possible  transformation  and  focus  on  the choice of predictors. 

Having  chosen  the  response,  we  now  have  a   variable selection  problem,  as  it  is  known  in  statistics.  In  machine learning  circles,  predictors  are  often  called   features  and  a feature  selection  problem  arises.  Much  the  same  set  of problems  arises,  although  typically  machine  learners  are dealing with larger datasets. In this book, we consider only

linear  models  with  a  continuous  response  but  the  variable or  feature  selection  problem  applies  across  many  other

model  classes.  The  ideas  and  techniques  we  discuss  here are readily adaptable to these wider problems. 

The choice of methods also depends on whether your goal

is  prediction  or  explanation.  If  you  aim  for  a  predictive model,  you  can  focus  your  efforts  on  selecting  the

predictors  to  obtain  superior  numerical  performance  for

your  predictions.  Explanation  of  the  response  is  a  quite different  problem  as  we  are  usually  interested  in  how

specified  predictors  affect  the  response.  The  inclusion  of predictors in the model is determined more by the purpose

of  our  study  rather  than  their  numerical  association  with the  response.  The  two  problems  are  not  entirely  distinct. 

The  ability  to  make  good  predictions  would  be  a  desirable characteristic  of  an  explanatory  model.  Also  one  of  the major  advantages  of  a  linear  model  in  a  prediction  setting is  that  is  relatively  transparent  allowing  us  to  see  how predictors  explain  the  response.  This  can  be  helpful  in improving the underlying processes that generate the data. 

Models are sometimes used to make predictions that affect people. The public may want to know how a prediction was

constructed so explainability is important. 

Not  all  variables  in  the  dataset  are  eligible  predictors. 

Most  predictive  models  are  intended  to  predict  future

events.  Only  predictors  that  will  be  available  to  us  before the  future  response  occurs  will  be  of  any  value.  For

example,  we  might  want  to  predict  road  traffic.  We  know that road traffic accidents will affect the level of traffic. We can determine this effect from past data but since we don't

know  when  these  accidents  will  occur  in  the  future,  we cannot use them in a predictive model. Notice that if we are

interested  in  explanatory  models  for  traffic,  it  would  be entirely  reasonable  to  use  the  accident  information. 

Another example of this type of error is seen in our analysis

of the fat data to follow. 

We  may  prefer  some  predictors  over  alternatives. 

Sometimes,  the  time  and  expense  of  collecting  data  may differ  greatly  between  predictors.  We  would  prefer  to  use cheaper 

predictors 

if 

we 

can 

obtain 

satisfactory

performance.  In  this  scenario,  we  would  use  a  more

focused  strategy  for  variable  selection  than  the  more

generic  techniques  described  later.  Missing  values  are  a

common  problem  with  real  data  and  explored  in  Chapter

14.  Although  missing  values  can  be  accommodated,  they

are  problematic  and  we  may  not  wish  to  use  a  predictor that is often missing. 

Why  not  just  use  all  the  available  predictors?  More information  should  only  be  helpful  so  one  might  wonder why  not.  However,  we  may  wish  to  consider  a  smaller


model.  We  will  see  that  unnecessary  predictors  add  noise to  the  estimation.  Although  we  might  fit  our  current  data well,  the  prediction  performance  on  future  data  will  be superior  without  redundant  predictors.  Furthermore,  we

may  find  that  using  fewer  predictors  is  less  expensive  in time and effort. The principle of Occam's Razor states that

among  several  plausible  explanations  for  a  phenomenon, 

the  simplest  is  best.  This  is  especially  relevant  to

explanatory  models  where  the  razor  implies  that  the

smallest model that fits the data adequately is best. 

Model selection is a process that should not be separated

from  the  rest  of  the  analysis.  Other  parts  of  the  data analysis  can  have  an  impact.  For  example,  outliers  and influential points can do more than just change the current

model  —  they  can  change  the  model  we  select.  It  is

important  to  identify  such  points.  Also  transformations  of the  variables  can  have  an  impact  on  the  model  selected. 

Some iteration and experimentation are often necessary to

find better models. 

Sometimes  we  can  consider  any  subset  of  the  available

predictors  as  a  potential  model  but  in  some  circumstances there  is  a  structure  on  the  predictors  that  constrains  the choice as we shall see in the next section. 

11.1 Models with a Hierarchy

Some  models  have  a  natural  hierarchy.  For  example,  in polynomial models,  x 2 is a higher order term than  x. When selecting variables, it is important to respect the hierarchy. 

Lower order terms usually should not be removed from the

model  before  higher  order  terms  in  the  same  variable. 

There are two common situations where this can arise:

Consider the polynomial model:

 y =  β 0 +  β 1 x +  β 2 x 2 +  ϻ

(11.1)

Suppose  we  fit  this  model  and  find  that  the  regression summary shows that the term in  x is not significant but the term  in   x 2  is.  If  we  then  remove  the   x  term,  our  reduced model would become:

 y =  β 0 +  β 2 x 2 +  ϻ

(11.2)

However, suppose we make a scale change  x →  x +  a; then the model would become:

 y =  β 0 +  β 2 a 2 + 2 β 2 ax +  β 2 x 2 +  ϻ

(11.3)

The  first  order   x  term  has  now  reappeared.  Scale  changes should not make any important change to the model, but in

this  case  an  additional  term  has  been  added.  This  is  not desirable. This illustrates why we should not remove lower

order  terms  in  the  presence  of  higher  order  terms.  We would  not  want  interpretation  to  depend  on  the  choice  of scale.  Removal  of  the  first-order  term  here  corresponds  to the  hypothesis  that  the  predicted  response  is  symmetric about and has an optimum at  x = 0. Usually this hypothesis is not meaningful and should not be considered. Only when

this hypothesis makes sense in the context of the particular

problem  could  we  justify  the  removal  of  the  lower  order term.  Another  consideration  is  that  even  if  we  remove  the first order  x term, we still need to know  x to construct the second order term so there is no saving in the information

required to make a prediction. 

For  models  with  interactions,  consider  the  example  of  a second-order response surface model:

 y =  β 0 +  β 1 x 1 +  β 2 x 2 +  β 11 x 21 +  β 22 x 22 +  β 12 x 1 x 2 +  ϻ

(11.4)

We  would  not  normally  consider  removing  the   x 1 x 2

interaction  term  without  simultaneously  considering  the

removal  of  the   x 21  and   x 22  terms.  A  joint  removal  would correspond  to  the  clearly  meaningful  comparison  of  a

quadratic surface and a linear one. Just removing the  x 1 x 2

term would correspond to a surface that is aligned with the coordinate axes. This is harder to interpret and should not

be  considered  unless  some  particular  meaning  can  be

attached.  Any  rotation  of  the  predictor  space  would

reintroduce  the  interaction  term  and,  as  with  the

polynomials,  we  would  not  ordinarily  want  our  model

interpretation  to  depend  on  the  particular  basis  for  the predictors. 

The term  hierarchical models in statistics often applies to data  where  there  is  a  nested  grouped  structure  such  as students  within  classes  within  schools.  We  are  not

considering models for this kind of data here. 

11.2 Testing-Based Procedures

The  short  version  of  this  section  is  that  testing-based procedures  should  (usually)  not  be  used.  Despite  this

advice,  such  procedures  are  widely  used  and  we  describe how  they  work  here.  We  will  explain  the  drawbacks  later. 

Feel  free  to  simply  skip  to  the  next  section.  The  defining characteristic  of  these  procedures  is  that  they  use

hypothesis  testing  in  a  sequential  manner  to  choose

between pairs of models. 

 Backward Elimination is the simplest of all these variable selection  procedures  and  can  be  easily  implemented

without  special  software.  In  situations  where  there  is  a complex  hierarchy,  backward  elimination  can  be  run

manually  while  taking  account  of  what  variables  are

eligible for removal. 

We  start  with  all  the  predictors  in  the  model  and  then remove  the  predictor  with  a  t-statistic  possessing  the

highest  p-value greater than  αcrit. Next refit the model and remove  the  remaining  least  significant  predictor  provided its   p-value  is  greater  than   αcrit.  Sooner  or  later,  all

“nonsignificant”  predictors  will  be  removed  and  the

selection process will be complete. 

The  αcrit is sometimes called the “p-to-remove” and does not  have  to  be  5%.  If  prediction  performance  is  the  goal, then  a  15  to  20%  cutoff  may  work  best,  although  methods designed  more  directly  for  optimal  prediction  should  be preferred. 

 Forward  Selection  just  reverses  the  backward  method. 

We  start  with  no  variables  in  the  model  and  then  for  all predictors not in the model, we check their  p-values if they are  added  to  the  model.  We  choose  the  one  with  lowest   p-

value  less  than   αcrit.  We  continue  until  no  new  predictors can be added. 

 Stepwise  Regression  is  a  combination  of  backward elimination  and  forward  selection.  This  addresses  the

situation where variables are added or removed early in the

process and we want to change our mind about them later. 

At  each  stage  a  variable  may  be  added  or  removed  and there are several variations on exactly how this is done. 

We  illustrate  backward  elimination  on  some  data  on  the 50 states from the 1970s. The data were collected from the

U.S. Bureau of the Census. We will take life expectancy as

the response and the remaining variables as predictors:

data (state)

statedata = data.frame (state. x77, row.names=state.abb)

lmod = lm(Life.Exp ~ ., statedata)

summary (lmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)    7.09e+01   1.75e+00   40.59 < 2e-16

Population     5.18e-05   2.92e-05    1.77    0.083

Income        -2.18e-05   2.44e-04   -0.09    0.929

Illiteracy     3.38e-02   3.66e-01    0.09    0.927

Murder        -3.01e-01   4.66e-02   -6.46    8.7e-08

HS.Grad        4.89e-02   2.33e-02    2.10    0.042

Frost         -5.74e-03   3.14e-03   -1.82    0.075

Area          -7.38e-08   1.67e-06   -0.04    0.965



Residual standard error: 0.745 on 42 degrees of freedom

Multiple R-squared: 0.736,           Adjusted R-squared: 0.692

F-statistic: 16.7 on 7 and 42 DF,          p-value: 2.53e-10

The  signs  of  some  of  the  coefficients  match  plausible

expectations  concerning  how  the  predictors  might  affect

the response. Higher murder rates decrease life expectancy

as  one  might  expect.  Even  so,  some  variables,  such  as income,  are  not  significant,  contrary  to  what  one  might expect. 

At each stage we remove the predictor with the largest  p-

value over 0.05. Area is the first to go:

lmod = update (lmod , . ~ . - Area)

summary (lmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.10e+01   1.39e+00   51.17 < 2e-16

Population  5.19e-05   2.88e-05    1.80    0.079

Income     -2.44e-05   2.34e-04   -0.10    0.917

Illiteracy  2.85e-02   3.42e-01    0.08    0.934

Murder     -3.02e-01   4.33e-02   -6.96  1.5e-08

HS.Grad     4.85e-02   2.07e-02    2.35    0.024

Frost      -5.78e-03   2.97e-03   -1.94    0.058



Residual standard error: 0.736 on 43 degrees of freedom

Multiple R-squared: 0.736,            Adjusted R-squared: 0.699

F-statistic:   20 on 6 and 43 DF,    p-value: 5.36e-11

lmod = update (lmod,. ~ . - Illiteracy)

summary (lmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.11e+01   1.03e+00   69.07 < 2e-16

Population  5.11e-05   2.71e-05    1.89    0.066

Income     -2.48e-05   2.32e-04   -0.11    0.915

Murder     -3.00e-01   3.70e-02   -8.10  2.9e-10

HS.Grad     4.78e-02   1.86e-02    2.57    0.014

Frost      -5.91e-03   2.47e-03   -2.39    0.021



Residual standard error: 0.728 on 44 degrees of freedom

Multiple R-squared: 0.736,         Adjusted R-squared: 0.706

F-statistic: 24.5 on 5 and 44 DF,          p-value: 1.02e-11

lmod = update (lmod , . ~ . - Income)

summary (lmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.10e+01   9.53e-01   74.54 < 2e-16

Population  5.01e-05   2.51e-05    2.00    0.052

Murder     -3.00e-01   3.66e-02   -8.20  1.8e-10

HS.Grad     4.66e-02   1.48e-02    3.14    0.003

Frost      -5.94e-03   2.42e-03   -2.46    0.018



Residual standard error: 0.72 on 45 degrees of freedom

Multiple R-squared: 0.736,        Adjusted R-squared: 0.713

F-statistic: 31.4 on 4 and 45 DF,          p-value: 1.7e-12

lmod = update (lmod , . ~ . - Population)

summary (lmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 71.03638    0.98326   72.25   <2e-16

Murder      -0.28307    0.03673   -7.71    8e-10

HS.Grad      0.04995    0.01520    3.29    0.002

Frost       -0.00691    0.00245   -2.82    0.007



Residual standard error: 0.743 on 46 degrees of freedom

Multiple R-squared: 0.713,           Adjusted R-squared: 0.694

F-statistic:   38 on 3 and 46 DF,          p-value: 1.63e-12

The  final  removal  of  the  Population  variable  is  a  close  call. 

We  may  want  to  consider  including  this  variable  if

interpretation is made easier. Notice that the  R 2 for the full model of 0.736 is reduced only slightly to 0.713 in the final

model.  Thus  the  removal  of  four  predictors  causes  only  a minor reduction in fit. 

It  is  important  to  understand  that  the  variables  omitted from  the  model  may  still  be  related  to  the  response.  For example:

summary (lm (Life . Exp ~ Illiteracy + Murder + Frost , 

statedata))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 74.55672    0.58425  127.61    <2e-16

Illiteracy  -0.60176    0.29893   -2.01    0.0500

Murder      -0.28005    0.04339   -6.45    6e-08

Frost       -0.00869    0.00296   -2.94    0.0052



Residual standard error: 0.791 on 46 degrees of freedom

Multiple R-squared: 0.674,           Adjusted R-squared: 0.653

F-statistic: 31.7 on 3 and 46 DF,          p-value: 2.91e-11

We  see  that  illiteracy  does  have  some  association  with life expectancy. It is true that replacing illiteracy with high school  graduation  rate  gives  us  a  somewhat  better  fitting model,  but  it  would  be  insufficient  to  conclude  that

illiteracy  is  not  a  variable  of  interest.  This  demonstrates one  failing  of  the  method  in  that  it  cannot  reliably

distinguish between important and unimportant predictors. 

Testing-based 

procedures 

are 

relatively 

cheap

computationally  and  easy  to  understand,  but  they  have

some serious drawbacks:

1. The  procedures  are  not  directly  linked  to  final

objectives  of  prediction  or  explanation  and  so  may  not really  help  solve  the  problem  of  interest.  With  any

variable  selection  method,  it  is  important  to  keep  in

mind that model selection cannot be divorced from the

underlying  purpose  of  the  investigation.  Variables  that

are dropped can still be correlated with the response. It

would  be  wrong  to  say  that  these  variables  are

unrelated to the response; it is just that they provide no

additional  explanatory  effect  beyond  those  variables

already included in the model. 

2. Because 

of 

the 

“one-at-a-time” 

nature 

of

adding/dropping  variables,  it  is  possible  to  miss  the

“optimal” model. 

3. The  p-values used should not be treated literally. There is so much multiple testing occurring that the validity is

dubious.  The  removal  of  less  significant  predictors

tends  to  increase  the  significance  of  the  remaining

predictors.  This  effect  leads  one  to  overstate  the

importance of the remaining predictors. 

4. Stepwise  variable  selection  tends  to  pick  models  that are  smaller  than  desirable  for  prediction  purposes.  To

give  a  simple  example,  consider  the  simple  regression

with just one predictor variable. Suppose that the slope

for  this  predictor  is  not  quite  statistically  significant. 

We  might  not  have  enough  evidence  to  say  that  it  is

related  to   y  but  it  still  might  be  better  to  use  it  for predictive purposes. 

Except  in  situations  where  only  a  few  models  are

compared  or  in  highly  structured  hierarchical  models, 

testing-based  variable  selection  should  not  be  used.  It  is understandable  that  researchers  would  like  an  automated

procedure  that  would  guarantee  them  a  good  predictive

model  or  tell  them  which  predictors  are  important  and

which  are  not.  Unfortunately,  testing-based  procedures

only  appear  to  achieve  this.  We  include  it  here  because these methods are still used but should be discouraged. 

11.3 Criterion-Based Procedures

If we have some idea about the purpose for which a model

is intended, we might propose some measure of how well a

given  model  meets  that  purpose.  We  could  choose  that model among those possible that optimize that criterion. 

The  residual  sum  of  squares  (RSS)  measures  how  close

the predictions of the model based on the data come to the

observed  values.  We  might  pick  the  subset  of  predictors which  minimizes  the  RSS.  Unfortunately,  the  solution  to this  problem  is  to  choose  all  the  predictors.  As  we  have seen earlier, adding a predictor to a model can only reduce

the RSS so using RSS as a criterion will always produce the

same  answer.  The  same  objection  applies  to   R 2  as  a criterion  since  it  is  a  function  of  RSS  with  TSS  remaining constant across models with the same response. 

We  now  have  two  options.  We  can  develop  a  better

criterion,  as  we  do  in  the  remainder  of  this  section.  The alternative is to realize that fitting and evaluating a  model on  the  same  set  of  data  is  not  effective.  We  need  another set of data which we describe in Section 11.4. 

The  Akaike  information  criterion  (AIC)  is  the  most

popular  criterion  in  use  and  applies  across  a  wider  class than  just  linear  models.  It  is  motivated  by  information theory  and  we  provide  a  sketch  of  the  justification  of  the method here. 

It  would  be  natural  to  pick  a  model   g,  parameterized  by θ,  that  is  close  to  the  true  model   f.  We  could  measure  the distance between  g and  f by

 I( f,  g) = ∫  f( x) log (  f( x) ) dx g( x| θ)

(11.5)

This  is  known  as  the  Kullback-Leibler  information  (or

distance). It will be positive except when  g =  f, when it will be  zero.  Unfortunately,  it  is  impractical  for  direct

implementation  because  we  do  not  know   f.  We  can substitute in the MLE of  θ and rearrange to obtain:

^ I( f,  g) = ∫  f( x)log f( x) dx − ∫  f( x)log g( x|^ θ) dx (11.6)

The  first  term  is  a  constant  that  doesn't  depend  on  the   g model  we  choose. Akaike  (1974)  showed  that   E ^

 I( f,  g) can

be estimated by

− log  L(^ θ) +  p + constant

(11.7)

where  L is the likelihood and  p is the number of parameters in  the  model.  The  constant  depends  on  the  unknown  true model.  For  “historical”  reasons,  Akaike  multiplied  this  by two to obtain “an information criterion” (AIC):

 AIC = −2 log  L(^ θ) + 2 p (11.8)

For 

linear 

models, 

the 

−2  max  log-likelihood, 

−2 L(^ θ) =  n  log( RSS/ n)+  another  constant.  Since  the constant  is  the  same  for  a  given  data  set,  response  and assumed  error  distribution,  this  and  the  previous  constant can  be  ignored  for  regression  model  comparisons  on  the same  data.  Additional  care  is  necessary  for  other  types  of comparisons.  See  Burnham  and  Anderson  (2002)  for  more detail. For linear models, we have:

 AIC =  n  log( RSS/ n) + 2 p

(11.9)

We  choose  the  model  which  minimizes  the  AIC.  The  first term in the AIC is based on RSS which is made smaller by

improving  the  fit.  Adding  more  predictors,  provided  they are  not  collinear,  will  achieve  this  but  we  are  dissuaded from going too far with this by the second term, called the

 penalty term, 2 p. Hence, we see that AIC naturally provides a balance between fit and complexity in model selection. 

Many  other  criteria  have  been  proposed.  Most  well-

known  among  the  alternatives  is  the  Bayes  information

criterion (BIC) which is −2 max log-likelihood +  p  log  n. BIC

penalizes  larger  models  more  heavily  and  so  will  tend  to prefer  smaller  models  in  comparison  to  AIC.  AIC  and  BIC

are  often  used  as  selection  criteria  for  other  types  of models  too.  There  is  some  debate  regarding  the  relative merits  of  these  two  criteria  although  AIC  is  generally considered better when prediction is the aim. 

We demonstrate some model selection methods on the fat

dataset introduced in Section 5.2.  Read help(fat) for details on  the  variables.  Our  objective  is  to  predict  the  body  fat using the Brozek measure. We notice that there is another

measure  of  body  fat  due  to  Siri.  Clearly  it's  not  a  useful predictor for the Brozek measure. Let's try including all the

other variables as predictors:

data (fat , package = "faraway")

lmod = lm (brozek ~ . - siri , fat)

summary (lmod) $ adj . r . squared

[1] 0.98639

The adjusted R-squared is very high so apparently we have

a very good predictive model. Unfortunately, we have made

a  serious  error  in  including  two  ineligible  predictors: density and free. A careful reading of the help page reveals

these are both functions of the response. 

We  exclude  these  two  variables  and  choose  from  the

remaining set of 14 predictors. We notice that one of these, 

adiposity  (also  known  as  the  body  mass  index  (BMI))  is  a function of weight and height. Provided this function is not a linear  combination,  we  are  free  to  add  as  many  such

combinations as we please. Some subject matter knowledge will help in suggesting these. 

The  leaps  package  of  Lumley  and  Miller  (2020)

exhaustively  searches  all  possible  combinations  of  the

predictors.  For  each  size  of  model   p,  it  finds  the  variables that produce the minimum RSS. 

library (leaps)

msobj = regsubsets (brozek ~ age + weight + height + adipos +

neck + chest + abdom + hip + thigh + knee 

+

ankle + biceps + forearm + wrist , 

data = fat , nvmax=14)

smsobj = summary (msobj)

The leaps package was the first of the many thousands of R

packages  now  available  on  CRAN.  It  was  based  on  even

older  software.  This  ancient  history  explains  why  we  need to specify the maximum size of model nvmax as 14 (the same

as  the  number  of  predictors)  when  the  default  value  is  8. 

With 14 predictors, there are 214 possible models to search

through.  Although  the  algorithm  used  in  leaps  is  cleverly implemented  to  avoid  having  to  explicitly  fit  all  these models,  this  would  have  taken  a  long  time  to  execute  on  a computer  available  at  the  time  of  development.  We  can

search through much larger numbers of models now. 

We can get the best model with one predictor as:

smsobj $ which [1 ,]

(Intercept)     age   weight   height   adipos     neck     

chest

TRUE   FALSE    FALSE    FALSE    FALSE    FALSE     

FALSE

abdom     hip    thigh     knee    ankle   biceps   

forearm

TRUE   FALSE    FALSE    FALSE    FALSE    FALSE     

FALSE

wrist

FALSE

We  see  that  abdom  is  the  sole  predictor.  We  can  get  the coefficients of a selected model also. For example, the best

model with eight predictors has:

coef (msobj ,8)

(Intercept)         age      weight        neck      abdom       

hip      thigh

-20.062134    0.059216   -0.084135   -0.431893   0.877207   

-0.186410   0.286443

forearm       wrist

0.482546   -1.404869

Notice that abdom is not among the coefficients. There is no

monotonicity in the predictors chosen as we move along the

best models for each number of predictors. Predictors may

drop  in  and  drop  out  with  the  number  of  predictors.  This should make it apparent that there is no sense in which this

procedure  separates  “important”  predictors  from  “non-

important”  predictors.  We  also  notice  that  some  of  the coefficients  are  negative  which  is  contrary  to  the

reasonable  expectation  that  larger  people  have  more  body fat.  This  is  due  to  the  large  collinearity  between  the predictors. This also explains some of the instability in the

choice of predictors. 
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We can plot the RSS for the best model for each predictor

size with:

plot (1:14 , smsobj $ rss , xlab = "Number of predictors" , ylab = "RSS")

We  see  in  the  first  panel  of  Figure  11.1  that  the  RSS

decreases  monotonely  with  the  number  of  predictors  with the  benefit  of  each  additional  predictor  becoming

progressively  less.  There  is  not  much  improvement  in  the fit beyond two or three predictors. If we are willing to trade a little predictive performance for practical ease of use, we

might pick the two predictor model:

coef (msobj ,2)

(Intercept)     weight     abdom

-41.34812   -0.13645   0.91514

Long Description for Figure 11.1

Figure  11.1   Measures  of  fit  for  the  best  model  for  each number of predictors for the fat density data. RSS is shown

on the left and AIC on the right. 

The  prediction  would  be  based  on  a  contrast  between

weight  and  waist  measurement.  Both  predictors  are  easily measured. 

But  let's  suppose  we  are  determined  to  get  the  best

predictive model. We compute and plot the AIC:

n = nobs (lmod)

AIC = n * log (smsobj$rss/n) + (2:15)*2

plot (AIC ~ I (1:14), ylab = "AIC" , xlab = "Number of Predictors")

We see in Figure 11.1 that the AIC is minimized by a choice of eight predictors as shown in the previous output. 

There  can  be  some  confusion  about  the  computation  of

AIC  due  to  the  constant  term.  Our  selected  model  with eight predictors has an AIC of:

AIC [8]

1] 703.08

There are functions that compute the AIC directly from the

model.  For  example,  we  can  fit  our  chosen  model  and  get the AIC:

lmod8 = lm (brozek ~ age + weight + neck + abdom + hip +

thigh + forearm + wrist , data = fat)

extractAIC (lmod8)

[1]   9.00 703.08

We  get  the  same  result.  This  is  useful  when  comparing small  numbers  of  models  outside  of  the  exhaustive  search method  we  have  used  here.  However,  if  we  use  another

function with the same purpose:

AIC (lmod8)

[1] 1420.2

we get a very different value. This is because AIC() includes

the  constant  term  which  for  linear  models  is   n +  n  log(2 π) and counts the scale term as an additional parameter. If we

adjust for this:

AIC (lmod8) - n - n * log (2 * pi) - 2

[1] 703.08

we get the same outcome. It does not matter which of these

two  versions  we  use  provided  we  are  consistent.  They  will both  choose  the  same  model.  A  bigger  difficulty  arises when  we  want  to  compare  models  where  different

distributions  have  been  used  for  the  response  or  for  AICs computed  by  different  software.  We  cannot  avoid  looking more closely before using these values. 

If  there  are   q  potential  predictors,  then  there  are  2 q possible  models.  For  larger   q,  this  might  be  too  time consuming  and  we  may  need  to  economize  by  limiting  the search.  In  such  cases,  the  step()  function  is  a  cheaper alternative.  The  function  does  not  evaluate  the  AIC  for  all possible  models  but  uses  a  search  method  that  compares models sequentially. Thus it bears some comparison to the

stepwise  method  described  above,  but  only  in  the  method of search — there is no hypothesis testing. 

lmod = lm (brozek ~ age + weight + height + adipos + neck +

chest + abdom + hip + thigh + knee + ankle +

biceps + forearm + wrist , fat)

step (lmod)

Start: AIC=712.72

brozek ~ age + weight + height + adipos + neck + chest + abdom 

+

hip + thigh + knee + ankle + biceps + forearm + wrist



Df Sum of Sq    RSS   AIC

- knee       1         0   3784   711

- adipos     1         1   3785   711

- chest      1         2   3786   711

- height     1         4   3789   711

- ankle      1         9   3794   711

- biceps     1        14   3798   712

<none>                     3784   713

- hip       1        35    3819   713

- weight    1        42    3827   714

- thigh     1        45    3829   714

- age       1        57    3842   715

- neck      1        66    3851   715

- forearm   1        86    3871   716

- wrist     1       142    3926   720

- abdom     1      1689    5474   804



(intermediate steps removed)



Call:

lm(formula = brozek ~ age + weight + neck + abdom + hip + thigh 

+

forearm + wrist, data = fat)

 

Coefficients:

(Intercept)           age           weight      neck     abdom hip

-20.0621        0.0592          -0.0841   -0.4319    0.8772   

-0.1864

thigh       forearm            wrist

0.2864        0.4825          -1.4049

The  first  step  compares  all  models  with  one  fewer

predictor  than  the  full  model  as  well  as  the  model  with  no predictors  removed  (which  is  the  full  model  at  this  step). 

We  see  that  the  greatest  reduction  in  AIC  is  achieved  by the  removal  of  the  knee  predictor.  The  algorithm  now

reduces  to  the  model  without  the  knee  predictor  and

repeats  the  selection  process.  At  some  step,  no  further reduction  in  AIC  can  be  achieved  and  the  algorithm  is terminated. 

In  this  example,  the  model  selected  is  the  same  as  with the  exhaustive  search.  This  is  not  guaranteed  in  all  cases although  the  choice  is  not  likely  to  be  far  from  the optimum.  The  step()  function  approach  has  another

advantage other than speed over the leaps-based exhaustive

search.  It  handles  categorical  predictors  with  more  than two levels correctly. 

Another  commonly  used  criterion  is  adjusted   R 2,  written R 2 a. Recall that  R 2 = 1 −  RSS/ TSS. Adding a variable to a model can only decrease the RSS and so only increase the

 R 2.  Hence   R 2  by  itself  is  not  a  good  criterion,  because  it would always choose the largest possible model. We have:
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 RSS/( n −  p)

^ σ 2

 R 2

)

 mo
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= 1 − (  n − 1 (1 −  R 2) = 1 −

 TSS/( n − 1)

 n −  p

^ σ 2 n

(11.10)

Adding  a  predictor  will  only  increase   R 2 a  if  it  has  some predictive  value.  We  can  see  this  because  minimizing  the standard  error  for  prediction  means  minimizing  ^

 σ 2  which

then means maximizing  R 2 a. 

Now  let's  see  which  model  the  adjusted   R 2  criterion

selects  using  the  plot  shown  in  the  first  panel  of  Figure

11.2:

plot (1:14 , smsobj $ adjr2 , xlab = "No . of Predictors" , ylab = "Adjusted R - squared")

which . max (smsobj $ adjr2)

[1] 8

Long Description for Figure 11.2

Figure 11.2  The adjusted  R 2 for the fat density models is at the left and the  Cp plot for the same data at the right. 

We see that the same model is selected as we found using

the AIC criterion. 

Our  final  criterion  is  Mallow's   Cp  statistic.  The justification  for  this  criterion  follows  a  somewhat  different heuristic  from  the  fit-complexity  tradeoff  used  for  AIC  and similar criteria. It also allows for some judgement from the

analyst rather than being completely automated. 

A  good  model  should  predict  well,  so  the  average  mean square error of prediction might be a good criterion:

1 ∑ E(^ y

 σ 2

 i −  Eyi)2

 i

(11.11)

which can be estimated by the  Cp statistic:

 RSS

 C

 p

 p =

+ 2 p −  n

^ σ 2

(11.12)

where  ^

 σ 2  is  from  the  model  with  all  predictors  and   RSSp indicates the  RSS from a model with  p parameters. For the full  model   Cp =  p exactly. If a  p predictor model fits, then E( RSSp) = ( n −  p) σ 2 and then  E( Cp) ≈  p. A model with a bad  fit  will  have   Cp much bigger than  p. It is usual to plot Cp against  p. We desire models with small  p and  Cp around or  less  than   p.  Cp,  R 2 a  and  AIC  all  trade-off  fit  in  terms  of RSS against complexity ( p). 

The   Cp  plot  can  be  constructed  as  follows.  We  have omitted the one predictor model (which fits badly) to focus

the plot on the area of greatest interest. 

plot (3:15 , smsobj $ cp [ -1] , xlab = "No . of Parameters" , ylab = "Cp Statistic")

abline (0 ,1)

as  seen  in  the  second  panel  of  Figure  11.2.   There  are several  models  that  are  on  or  below  the   Cp =  p  line, indicating  good  fits.  Some  larger  models  with  10  or  more parameters  (9  predictors)  fit  in  the  sense  that  they  are  on or below the  Cp =  p line, but we would not opt for these in the  presence  of  smaller  models  that  fit.  We  might  choose between  the  7,  8  and  9  parameter  models.  Of  these,  the  9

parameter  (or  8  predictor)  model  has  the  lowest   Cp  value (and  is  the  same  we  have  selected  previously),  but  we might prefer the 7 parameter model. The reasoning is that

this  model  has   Cp ≈  p  indicating  there  are  sufficient predictors  to  avoid  bias  and  choosing  more  predictors

would be redundant. By choosing a smaller  p we reduce the variance in the prediction. 

We  will  see  other  criteria  that  use  a  penalty  in  Chapter

12.  In  particular,  the  lasso  method  described  in  Section

12.4 has the side effect of variable selection. 

 Outliers and Transformations Affect Variable

 Selection

Variable  selection  methods  are  sensitive  to  outliers  and influential points. Let's check for high leverage points:

h = lm . influence (lmod) $ hat

tail (sort (h))

41     175      31      86      39      42

0.21855 0.27165 0.32518 0.35683 0.43751 0.96277

We  can  see  that  a  couple  of  points  have  high  leverage. 

Taking a closer look:

fat [ c (39 ,42) , c (" height" ," weight") ]

height weight

39    72.25 363.15

42    29.50 205.00

We see that the first is unusually heavy while the second is

unusually  short.  What  happens  to  the  chosen  model  if  we exclude these two cases? 

rmod = lm (brozek ~ age + weight + height + adipos + neck +

chest + abdom + hip + thigh + knee + ankle +

biceps + forearm + wrist , fat , subset = - c (39 

,42))

smod = step (rmod , trace =0)

coef (smod)

(Intercept)         age      adipos         neck       chest abdom

3.316749    0.059609    0.580987    -0.375390   -0.198748   

0.793454

hip     forearm       wrist

-0.177776    0.284385   -1.717211

We  find  that  although  eight  predictors  are  chosen  as

before, two of the predictors are different. There are other

regression  diagnostics  which  might  suggest  removing

another point. This might lead to other chosen models. This

illustrates  the  complexity  of  model  selection  as  it  interacts with other aspects of the model building process. 

Transformations  will  also  affect  the  model  selection. 

Transformations  of  the  predictors  such  as  polynomial  or interaction terms can be accommodated effectively as extra

predictors  and  our  methods  so  far  can  handle  this. 

Transforming  the  response  is  different.  For  the  fat  density model, we would not want to predict a density below zero. 

One  simple  way  to  ensure  this  is  to  use  a  log

transformation:

logmod = lm (log (brozek) ~ age + weight + height + adipos +

neck + chest + abdom + hip + thigh + knee +

ankle + biceps + forearm + wrist , 

fat , subset = -182)

We  have  removed  a  case  because  one  of  the  observed

responses  is  zero  (which  does  not  seem  physically

believable  and  log(0)  is  a  nuisance).  We  now  apply  the model selection process:

llmod = step (logmod , trace =0)

coef (llmod)

(Intercept)        age         neck       abdom          hip     

thigh

1.7264141    0.0059619   -0.0398109   0.0468428   -0.0284745   

0.0293071

forearm        wrist

0.0262240   -0.0890080

Now 

only 

seven 

predictors 

are 

selected, 

further

demonstrating that the variable selection process does not

work independently of other aspects of model building. 

 Comparing Models with Different Responses

Our  chosen  model  on  the  full  data  without  transformation on  the  response  was  labeled  lmod8  above.  The  model

without  the  two  influential  points  was  called  smod  and  the model with a logged response was called llmod. We are able

to compute the AIC for all three models:

sapply (list (original = lmod8 , outlier = smod , logged = 

llmod) , 

extractAIC)

original outlier logged

[1,]       9.00    9.00   8.00

[2,]     703.08 693.18 -610.45

The  third  model  used  only  eight  parameters  compared  to the nine used by the first two. Unfortunately, we can't use

these  values  to  make  a  choice  as  the  response  is  different in all three cases, making AIC-based comparison invalid. A

better  choice  is  the  adjusted   R 2  as  it  is  a  scale-free measure:

sapply (list (original = lmod8 , outlier = smod , logged = 

llmod) , 

\(x) summary (x) $ adj . r . squared)

original   outlier    logged

0.73833   0.73822   0.63356

This  suggests  that  the  first  two  models  are  close

competitors,  with  the  third  being  far  inferior.  Yet  there other  concerns.  If  we  exclude  mistaken  points  from  data, the  model  should  improve.  If  we  exclude  points  which  are merely  larger  residuals,  the  fit  will  improve  but  the  future performance  will  disappoint  because  the  future  data  will also  include  more  extreme  points.  A  model  that  uses  a reduced  dataset  may  have  superior  values  of  the  criterion but  may  not  really  be  better  in  practice.  Similarly,  the model  with  the  logged  response  solves  the  problem  of

negative  predictions  and  will  have  tighter  prediction

intervals  for  smaller  values  which  may  be  what  is  needed. 

There are substantive qualitative issues in comparing these

models  that  cannot  be  resolved  with  just  a  simple

numerical comparison. 

11.4 Crossvalidation

The fit to the current data typically gives an over-optimistic assessment  of  model  performance  on  future  data.  The

larger  the  model,  the  worse  the  problem  gets.  In  the

previous  section,  we  tackled  this  by  including  a  model complexity  term  in  the  measure  of  fit  criterion.  In  this section,  we  take  a  different  approach  by  creating  some future  data  to  evaluate  the  model.  In  Section  5.3,  we introduced  the  idea  of  a  validation  set  where  part  of  the

original  data  was  withheld  and  used  solely  for  assessment purposes. We can adapt this idea to model selection. 

 Train-Test Split

We divide the data into two parts. The larger part is usually

called  the   training  set  and  is  used  for  estimating  the models. The smaller part is usually called the  test set and is used  to  assess  the  model.  A  good  measure  of  fit  would  be the mean squared error(RMSE) on the test data:

 n

∑(^ yi− yi)2/ n

 i=1

(11.13)

The  ^

 yi are the predicted responses in the test data using a model  estimated  from  the  training  data  and  the   yi  are  the responses  in  the  test  data.  The  model  with  the  smallest RMSE  is  selected.  This  strategy  is  effective  and  widely used, particularly for machine learning applications. 

Let's  see  how  it  works  on  the  fat  density  data.  We  don't want  to  consider  all  214  subset  model,  so  we  restrict attention  to  the  best  fitting  model  for  each  number  of predictors.  We  repeat  the  exhaustive  search  method  from the previous section:

npred = 14

msobj = regsubsets (brozek ~ age + weight + height + adipos +

neck + chest + abdom + hip + thigh + knee 

+

ankle + biceps + forearm + wrist , 

data = fat , nvmax = npred)

smsobj = summary (msobj)

We extract the predictor names and set up a vector to store

the calculated RMSE:

pnames = colnames (smsobj $ which) [ -1]

rmsett = rep (NA , npred)

We randomly split the data into training and test sets:

n = nrow (fat)

set . seed (314)

ttsel = sample (n,(2*n) / 3)

We have chosen 2/3 of the data for the training set and 1/3

for  the  test  set.  There  is  no  best  choice  here  —  an  80-20

split would also be a common choice. We have set the seed

so  that  the  results  are  reproducible  but  the  split  needs  to be  random.  We  loop  over  all  the  model  sizes.  We  extract the  chosen  predictors  for  each  model  size  and  paste  them into  a  formula  object  using  as.formula().  We  fit  each  model using the training data and predict using the test data. We

compute the RMSE for each model size:

for (i in 1: npred) {

varsels = pnames [smsobj$which [i, -1]]

modformula = as . formula (paste ("brozek ~ " , 

paste (varsels, collapse = 

"+")))

trainmod = lm (modformula , data=fat , subset = ttsel)

predtest = predict (trainmod , newdata=fat [ - ttsel ,])
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rmsett [i] = sqrt (mean ((predtest - fat$brozek [ - ttsel ]) 

^2))

}

We  plot  the  RMSE  in  Figure  11.3  and  compare  it  with  the RMSE computed by estimating and testing on the full data:

matplot (1: npred , cbind (rmsett , sqrt (smsobj $ rss / n)), 

type = "l" , xlab = "No . of Predictors" , ylab = 

"RMSE")

legend (" topright" , legend = c (" Train - Test" , "All Data") 

, 

lty = 1:2)

Long Description for Figure 11.3

Figure  11.3   RMSE  for  a  sequence  of  optimal  models using both the full data and a train-test split

As we have seen previously, RMSE estimated and tested on

the  full  data  is  monotonely  decreasing  with  the  number  of predictors  and  will  always  pick  the  largest  model.  The RMSE  using  the  train-test  split  does  not  suffer  from  this

fault  and  attains  a  minimum  using  less  than  the  full  set  of predictors. In this case, the chosen number of predictors is:

which.min (rmsett)

[1] 5

This  is  less  than  the  eight  commonly  selected  in  the

previous  section  but  we  cannot  say  which  is  best  since there is no true answer available. 

There  are  two  drawbacks  to  this  approach.  The  division of  the  data  is  random.  Repeat  this  process  again  (without setting  a  random  seed)  and  you  will  likely  get  a  different answer.  Also,  the  division  of  the  data  means  there  is  less information  used  to  estimate  and  evaluate  the  model.  The process  is  both  inefficient  and  variable  —  we  see  that  the estimated  RMSE  using  the  train-test  does  not  change

smoothly with the number of predictors. We can reduce the

instability  by  repeating  the  process  for  different  train-test splits  and  averaging  the  outcomes.  This  is  increases  the cost  of  the  procedure  and  we  shall  see  there  are  better solutions.  If  you  have  a  large  amount  of  data,  these

problems  are  less  apparent,  which  explains  why  this

procedure  is  commonly  used  in  machine  learning

applications. 

 Leave-out-one Crossvalidation

We  could  put  all  but  one  case  in  the  training  set,  estimate the model and predict the one case we have left in the test

set.  We  could  repeat  this  process  for  all  the  cases  and compute  the  average.  This  is  called  leave-out-one

crossvalidation  (LOO-CV).  At  first  glance,  it  might  appear that  we  must  fit   n  models  to  compute  this  criterion  but fortunately we can compute this MSE from the full data fit

with:

1  n

 CV

∑(^ yi− yi)2

 LOO =  n

1 −  h

 i=1

 i

(11.14)

This  uses  the  same  computational  trick  as  is  used  for studentized  residuals  as  seen  in  Section  7.2.  This  only works  for  linear  models.  More  complex  models  would

require much more extensive computation. 

Let's  see  how  this  works  on  the  fat  density  data.  We consider the same set of models as before:

loocv = rep (NA, npred)

for (i in 1:npred) {

varsels = pnames [smsobj$which [i, -1]]

modformula = as.formula (paste ("brozek ~" , 

paste (varsels , collapse = 

"+")))

mmod = lm (modformula , data=fat)

h = lm . influence (mmod)$hat

loocv [i] = sqrt (mean ((residuals (mmod)/(1-h))^2))

}

We  take  the  square  root  for  comparability  to  the  previous results. Notice that we do not have a random split as before

which  is  a  significant  benefit  of  LOO-CV.  We  plot  the

[image: Image 58]

results comparing with the RMSE for the full data as before

in Figure 11.4:

matplot (1: npred , cbind (loocv , sqrt (smsobj$rss / n)) , 

type = "l" , xlab = "No . of Predictors" , ylab="RMSE")

legend (" top" , legend = c (" LOO-CV" , "All Data") , lty = 

1:2)

Long Description for Figure 11.4

Figure  11.4   RMSE  for  a  sequence  of  optimal  models estimated using LOO-CV and the full data. 

The  LOO-CV  RMSE  has  a  clear  unique  minimum.  The

RMSE  is  a  little  higher  than  the  all  data  RMSE  for  a  few predictors. As the number of predictors increases, the LOOCV  RMSE  is  substantially  higher.  This  accords  with

expected  behavior  for  the  true  RMSE  of  prediction.  The model chosen is:

which.min (loocv)

[1] 8

We  get  a  familiar  answer.  Before  discussing  the  relative benefits  of  LOO-CV,  we  move  onto  another  form  of

crossvalidation. 

 K-fold Crossvalidation

We can compromise between splitting our data in two with

a  train-test  split  and  splitting  it  into   n  parts  with  LOO-CV. 

We  split  the  data  randomly  into   K  parts  where  a  common choice is  K = 10. We hold out one of the  K parts, estimate the  model  using  the  remaining  data  and  evaluate  on  the hold-out  sample.  We  repeat  over  each  of  the   K  parts  and average the outcome. Thus the K-fold CV criterion is:

 K

 CV

∑

 K = 1

 MSE

 K

 j

 j=1

(11.15)

where   MSEj is the MSE with fold  j held out as described above. 

The function cv.glm() found in the boot package (which is

found in the standard R install) can compute this. Following

a similar template to the previous calculations:

library (boot)

cv10 = rep (NA , npred)

for (i in 1: npred) {

varsels = pnames [ smsobj $ which [i , -1]]

modformula = as.formula (paste ("brozek ~" , 

paste (varsels, collapse = 

"+")))

set . seed (999)

mmod = glm (modformula , data=fat)

cv10 [ i ] = sqrt (cv . glm (fat, mmod, K=10) $ delta [1])

}

We  have  chosen   K = 10  folds.  We  have  set  the  random number  seed  within  the  loop.  This  ensures  that  for  each number  of  predictors,  we  have  the  same  random  division into 10 folds. If we set the random number outside the loop, 

these  would  differ,  leading  to  greater  variation  in  the criterion  as  it  changes  with  the  number  of  predictors. 

Another  wrinkle  is  that  cv.glm()  requires  that  we  fit  the model  with  glm()  rather  than  lm().  This  makes  no  practical difference  in  this  usage.  Finally  we  have  taken  the  square root as before for comparability. We can plot the result:

matplot (1: npred , cbind (cv10 , sqrt (smsobj$rss / n)) , 

type = "l" , xlab = "No . of Predictors", ylab = 

"RMSE")

legend ("top" , legend = c ("CV-10 " , "All Data"), lty = 1:2) As we see in Figure 11.5, we get a similar outcome as with the LOO-CV. In this case, the result will differ according to

the  random  division  into  10  parts.  If  you  repeat  the

calculation,  you  will  find  that  there  is  much  less  variation than with the train-test split. The model selected is:

which.min (cv10)

[image: Image 59]

[1] 8

Long Description for Figure 11.5

Figure  11.5   RMSE  for  a  sequence  of  optimal  models using 10-fold crossvalidation and the full data. 

This  is  the  same  as  before  although  this  is  subject  to  the random division. 

We  prefer  both  forms  of  crossvalidation  to  the  train-test split for the purposes of model selection. Experience shows

that  these  procedures  more  reliably  select  the  best  model. 

The  K-fold  crossvalidation  is  usually  better  than  the  LOOCV. Although for linear models, LOO-CV is faster, this is not

true  for  a  wider  class  of  models.  K-fold  crossvalidation typically  provides  a  less  variable  assessment  of  model

performance.  For  much  larger  datasets,  computational

concerns might lead us to prefer the train-test split. 

 Conflicting Purposes of Data Splitting and Crossvalidation

There  are  at  least  three  different  reasons  why  analysts might use a train-test split or crossvalidation. Although the

computations  may  appear  similar,  it  is  important  to

distinguish  these  purposes  because  they  cannot  be

achieved simultaneously. 

In model evaluation or assessment, we try to measure the

effectiveness  of   one  model.  We  might  divide  the  data  into training  and  test,  use  the  former  to  build  and  estimate  a model  and  the  latter  to  test  it.  Now  suppose  we  find  the model  inadequate  in  the  testing  phase  and  decide  to

change it. The problem with this is that the test set has now

been used to help build the model. We can do this but now

the  assessment  using  the  test  set  will  be  biased  and  will typically  be  over-optimistic  because  the  chosen  model  has been influenced by the test set. 

We can also use the procedures of this section for model

selection.  We  make  a  choice  from  a  set  of  candidate

models.  Because  we  will  make  this  choice  based  on  some measure  of  fit,  this  will  tend  to  be  over-optimistic  because we  choose  the  best-fitting  model  from  the  set.  We  might make a good model selection but we cannot simultaneously

get good model assessment. 

A third reason to use data splitting is the problem of  post-selection  inference.  Variable  selection  is  just  one component  of  model  building  which  also  includes  choices about 

transformations 

and 

dealing 

with 

unusual

observations.  We  effectively  consider  a  large  number  of possible models before choosing one that appears to fit the

data  well.  This  process  tends  to  give  us  a  smaller  ^

 σ  and

consequently  smaller  standard  errors.  Our  test  statistics are  more  likely  to  be  significant  and  our  confidence

intervals 

will 

be 

unrealistically 

narrow. 

One

straightforward  solution  to  this  problem  is  to  build  and select  the  model  on  the  training  set  but  estimate  it  on  the test  set.  The  division  of  labor  for  the  train-test  split  is different for this objective. 

We  can  pick  one  and  only  one  of  these  three  objectives. 

Attempting to achieve more than one will not work. 

11.5 Summary

Model selection is a means to an end and not an end itself. 

The  aim  is  to  construct  a  model  that  predicts  well  or explains  the  relationships  in  the  data.  Automatic  variable selections  are  not  guaranteed  to  be  consistent  with  these goals.  Use  these  methods  as  a  guide  only  and  use  your judgment to make use of other information. 

From the mathematical perspective, we can define a  true

 model. It is tempting to frame model selection as a search for the true model and evaluate methods on how well they

achieve this under different scenarios. In practice, it would

be  unusual  to  deal  with  a  situation  where  a  true  model might  really  exist  and  be  discoverable.  Instead,  we  settle for  models  which  are  good,  or  at  least  adequate, 

approximations  to  a  truth  we  are  unlikely  to  ever  fully

know. If the chosen model helps us make good predictions or make the right decisions, we are satisfied. 

Hypothesis testing-based methods use a restricted search

through  the  space  of  potential  models  and  use  a  dubious method for choosing between models when repeated many

times.  We  strongly  suggest  that  you  avoid  such  methods except under limited circumstances. 

Backward elimination or exhaustive search generate a set

of  models  which  are  best  fitting  for  that  number  of

predictors. We then have a choice of criteria such as AIC or

Adjusted   R 2  or  the  use  of  crossvalidation  to  choose  within this  candidate  set.  The  criteria  are  less  expensive  to compute but crossvalidation is more robust. 

Sometimes  we  might  consider  several  models  that  fit

about as well as each other. Consider:

1. Do the models have similar qualitative consequences? 

2. Do they make similar predictions? 

3. What is the cost of measuring the predictors? 

4. Which has the best diagnostics? 

If  you  find  models  that  seem  roughly  comparable,  but

lead to quite different conclusions, then it is clear that the data cannot answer the question of interest unambiguously. 

Be alert to the possibility that a model contradictory to the

tentative conclusions might be out there. 

Exercises

1. Use  the  prostate  data  with  lpsa  as  the  response  and  the other variables as predictors for this question. 

(a)

Fit  the  full  model  and  determine  which  predictors

have p-values less than 5%. 

(b)

Now  use  the  backward  elimination  method  to

choose  a  model  based  on  a  5%  cutoff  for  the  p-

value.  Compare  your  answer  to  that  from  (a)  —  is

there a difference? 

(c)

Use  the  step()  function  to  generate  a  sequence  of

models  of  decreasing  size.  Use  the  k  option  to

ensure the sequence ends with the null model. Does

this generate the a sequence of models comparable

to backward elimination? 

(d)

Use  the  leaps  package  to  generate  the  optimal  set

of models for each number of predictors. Is the set

of  models  the  same  as  the  sequence  produced  by

step()? Will this always be so? 

(e)

Which  model  consisting  of  a  subset  of  the

predictors has the smallest AIC? 

(f)

Explain  why  sample  splitting  might  be  problematic

for this dataset. 

2. Use  the  teengamb  dataset  with  gamble  as  the  response  and the  other  variables  as  predictors.  Focus  on  the  effect  of sex  on  the  response  and  include  this  predictor  in  all models. 

(a)

There  are  eight  possible  models  that  include  all, 

some,  or  none  of  the  other  three  predictors.  Fit  all

these  models  and  report  on  the  coefficient  and

significance  of  sex  in  each  model.  Does  the

significance  of  sex  vary  according  to  the  model

chosen? 

(b)

Compute  the  adjusted   R 2  and  AIC  for  each  of  the models.  Which  model  is  selected  by  each  of  these

criteria? 

(c)

Four  of  the  models  have  distinctly  better  fits  than

the other four. What distinguishes these models? 

(d)

Make  a  plot  of  income  against  amount  gambled

which  distinguishes  male  from  female  subjects. 

Discuss  how  the  amount  gambled  by  males  and

females  varies  according  to  income  and  how  it

relates to the previous model selection. 

3. For  the  divusa  data,  fit  a  model  with  divorce  as  the response  and  the  other  variables,  except  year  as

predictors. 

(a)

Which  predictors  are  not  significant  at  the  5%

level? 

(b)

Remove the insignificant predictors and perform an

F-test to compare the reduced model to the original

model. 

(c)

Consider  all  models  with  4  predictors  from  the

original  set  of  five.  For  each  model  (including  the

full  model),  compute  the  adjusted   R 2,  AIC,  the predicted  value  of  the  response  at  the  maximum

observed  values  of  the  predictors  along  with

standard error for this prediction. Comment on the

results. 

4. Fit a quadratic model using the polym() function for volume in  terms  of  girth  and  height  using  the  trees  data.  Use  a log-scale  for  all  variables  and  include  a  cross-product term. 

(a)

What terms are significant in the quadratic model? 

Does the model fit badly? 

(b)

Fit  the  corresponding  linear  model  and  use  an  F-

test to compare it to the quadratic model. 

(c)

Use  the  step()  function  on  the  quadratic  model  to

select  the  model  with  the  smallest  AIC.  Also

compute  the  AIC  directly  on  the  quadratic  and

linear  models.  Comment  on  which  method  works

best. 

(d)

Refit  the  quadratic  model  without  using  polym()  by

spelling out all five terms. Use the step() function to

select  a  model  with  the  smallest  AIC.  Does  step()

respect the hierarchical model? 

(e)

Use  the  model  selection  strategy  in  the  leaps

package.  Does  the  sequence  of  models  selected

respect  the  polynomial  hierarchy?  What  model  has

the smallest adjusted  R 2? 

5. Using the stackloss data, fit a model with stack.loss as the response and the other three variables as predictors. 

(a)

Use  least  squares  to  fit  the  model  and  make  the

best subset selection using AIC. 

(b)

Use the Huber method with the rlm() function from

the  MASS  package  to  fit  the  model.  Recursively

remove  terms  from  the  model  where  the   t-value  is sufficiently  small.  What  model  is  suggested  by  this

process? 

(c)

Would it be reasonable to use adjusted  R 2 or AIC to

select  the  model  when  using  the  Huber  method  to

fit the model? 

(d)

Use  the  least  absolute  deviations  fitting  function

ltsreg()  from  the  the  quantreg  package  to  fit  the

model. Can we recursively reduce the model based

on variable significance using this method? 

(e)

For  a  least  absolute  deviation  fit,  suggest  an

appropriate  measure  of  fit.  Use  leave-out-one

crossvalidation  to  estimate  this  measure  for  the

three-predictor model. 

6. Use the seatpos data with hipcenter as the response and all the other variables as predictors. 

(a)

Use  the  AIC  criterion  and  the  step()  function  to

choose the best model. 

(b)

Use  the  exhaustive  search  from  leaps()  to  find  the

model  with  the  smallest  AIC.  How  does  the  fit

compare to the model found in (a)? 

(c)

Use  LOO-CV  to  select  the  best  model  from  the

sequence  generated  by  the  exhaustive  search

procedure. 

7. In  Section  10.6,  we  considered  data  generated  from  the model:

 y = sin3(2 πx 3) +  ϻ, 

 ϻ ∼  N(0, (0.1)2)

(a)

Generate  data  from  this  model  as  in  the  text  with

101 evenly-spaced  x in [0,1] and a random number

seed of 101. 

(b)

For each degree of freedom from 3 to 22, fit the B-

spline  model  with  that  degree.  For  each  model, 

calculate,  save  and  plot  the  AIC  as  it  varies  with

degrees of freedom. 

(c)

For  the  model  achieving  the  minimum  AIC, 

compute the fit and show it on top of the data. Does

the fit seem a reasonable choice? 

8. Use  the  newhamp  data  with  pObama  as  the  response  and povrate,  pci,  Dean,  Kerry,  white,  absentee,  population  as predictors. 

(a)

Use  the  leaps  package  to  generate  the  sequence  of

best models for each number of predictors. 

(b)

Use  a  train-test  split  with  2/3  of  the  data  in  the

training set. Plot the estimated RMSE for each size

model  and  compare  it  to  the  RMSE  computed  on

the full data. Which model is chosen as best? 

(c)

Use LOO-CV to choose a model. Plot the estimated

RMSE  compared  to  the  full  data  RMSE.  Choose  a

model. 

(d)

Use  10-fold  crossvalidation  to  evaluate  the  models

in the sequence. Plot the results and select a model. 

9. Use the wfat data with siri as the response and all other

variables as predictors. 

(a)

Use  the  stepwise  procedure  to  select  a  model  with

the  smallest  AIC.  What  model  is  selected  and  how

many  variables  would  need  to  be  measured  to  use

this model for prediction? 

(b)

Compute  the  median  value  of  all  the  variables. 

Compute  the  predicted  value  and  SE  for  the  full

model  and  optimal  model  at  this  median  of  the

predictors. 

(c)

The  step()  function  uses  backward  elimination

starting  from  the  full  model  by  default.  But  it  can

also  use  a  forward  selection  procedure  starting

with the null model. Apply forward selection to the

data.  Compare  the  model  choice  to  that  found  in (a). 

(d)

The  step()  function  can  combine  the  forward  and

backward  methods  in  a  both  option.  Execute  this

option  and  compare  the  model  chosen  to  those

found previously. 

(e)

It is easy to measure height and weight (and hence

bmi).  The  researcher  decides  to  force  these

variables  into  the  model  with  the  hope  that  fewer

other variables might be needed. Use the options in

the  step()  function  to  force  height,  weight  and  bmi

into  the  model  and  then  choose  the  remaining

predictors to minimize AIC. 

(f)

Use BIC rather than AIC to select a model. Does the

chosen model use fewer predictors? If so, why? 

Chapter 12

Regularization
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Sometimes  it  can  seem  like  you  have  too  many  predictors. 

If you use them all in your regression model, problems can

arise. Explanation can be difficult due to collinearity as we

saw  in  Section  8.3.  Prediction  performance  can  also  be degraded  by  using  too  many  predictors.  But  more

predictors  should  mean  more  information.  That  should  be helpful.  In  this  chapter,  we  will  look  at  four  methods  that allow  us  to   regularize  this  additional  information  into  a more useful form. 

12.1 Principal Components

Principal  components  analysis  (PCA)  is  a  popular  method for  finding  low-dimensional  linear  structure  in  higher

dimensional data. It is over 100 years old. It has a range of

purposes  but  let's  see  how  it  can  be  helpful  in  regression problems. 

Designed experiments typically have predictors which are

mutually 

orthogonal. 

This 

makes 

the 

fitting 

and
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interpretation  of  these  models  simpler.  For  observational data, predictors are often substantially correlated. It would

be  nice  if  we  could  transform  these  predictors  to

orthogonality as it could make interpretation easier. 

For example, consider the dimensions of the human body

as measured in a study on 252 men as described in Johnson

(1996)  as  seen  in  Figure  12.1.  We  analyzed  this  data  in

Section 5.2 where more details about motivation behind the data collection can be found. 

data (fat , package="faraway")

plot (neck ~ knee , fat)

plot (chest ~ thigh , fat)

plot (hip ~ wrist , fat)

Long Description for Figure 12.1

Figure  12.1   Circumferences  in  centimeters  for  body dimensions of 252 men. 

We  see  that  the  body  circumferences  are  strongly

correlated.  Although  we  may  have  many  predictors,  there may  be  less  information  than  the  number  of  predictors

might  suggest.  PCA  aims  to  discover  this  lower  dimension of variability in higher dimensional data. 

Suppose  we  center  the  matrix  of  predictors   X  by subtracting the mean for each variable so that the columns

of   X  have  mean  zero.  We  use  an   X  that  does  not  include  a column  of  ones  for  an  intercept  term.  We  now  find  the orthogonal directions of greatest variation in the data:

1. Find  vector   u 1  such  that  var ( Xu 1)  is  maximized subject to  uT 1  u 1 = 1. 

2. Find   u 2  such  that  var ( Xu 2)  is  maximized  subject  to uT 1 u 2 = 0 and  uT 2 u 2 = 1. 

3. Keep finding directions of greatest variation orthogonal

to those directions we have already found. 

For  low  dimensions,  the  process  can  be  iterated  until  all dimensions  have  been  exhausted.  For  high  dimensional

problems,  we  can  stop  when  the  remaining  variation  is

negligible. 

Let's  write   zi =  Xui.  The   zi  are  known  as  the  principal components.  We  can  gather  together  the  terms  in  the

matrix form  Z =  XU where  Z and  U have columns  zi and  ui respectively.  U  is  called  the  rotation  matrix.  We  can  think of  Z as a version of the data rotated to orthogonality. 

A  simple  example  will  help  illustrate  the  concepts.  We take  only  two  variables  and  center  them  by  subtracting their means:
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tcfat = fat [ , c ("chest", "thigh") ]

tcfat = sweep (tcfat, 2, colMeans(tcfat))

We compute the PC decomposition:

prtc = prcomp (tcfat)

and look at the rotation matrix  U:

prtc$rotation

PC1      PC2

chest 0.88278  0.46978

thigh 0.46978 -0.88278

The first principal component is a linear combination of the

variables:  0.88chest  +  0.47thigh.  We  can  display  this

direction  on  top  of  the  data.  It  is  helpful  to  show  this  on  a plot where distance is on the same scale in both directions

as seen in Figure 12.2:

MASS::eqscplot (tcfat [,1] , tcfat [,2] , xlab = "chest", ylab= 

"thigh")

Long Description for Figure 12.2

Figure 12.2  PCA applied to bivariate data. The solid line is the axis of the first principal component. The dashed line

represents the second PC. 

We  can  compute  the  slopes  of  the  lines  representing  the directions of the first and second principal components:

dirpc = prtc $ rotation [2 ,] / prtc $ rotation [1 ,]

These two lines are then displayed with:

abline (0 , dirpc [1])

abline (0 , dirpc [2], lty =2)

We  can  see  that  the  axis  of  the  first  principal  component lies  along  the  direction  of  greatest  variation  in  the  data. 

The  second  principal  component  is  orthogonal  to  the  first. 

The  variation  in  these  directions  can  be  obtained  from  the summary:

summary (prtc)

Importance of components:

PC1   PC2

Standard deviation     9.395 3.220

Proportion of Variance 0.895 0.105

Cumulative Proportion  0.895 1.000

The  principal  component  scores   Z =  XU  are  found  in prtc$x  and  we  can  verify  that  the  SDs  for  the  scores correspond to those found in the summary. 

apply (prtc$x ,2 , sd)

PC1    PC2

9.3949 3.2205

The 

computation 

of 

a 

PCA 

requires 

an

eigendecomposition  of   cov( X)  which  we  may  compute (noting that we have already centered X):

X = as.matrix (tcfat)

evd = eigen (t(X) %*% X / (nrow (X)-1))

The eigenvectors:

evd$vectors

[,1]     [,2]

[1,] -0.88278  0.46978

[2,] -0.46978 -0.88278

produce the rotation matrix. Note that the sign of the first

principal  component  is  different  from  our  calculation

above.  This  does  not  matter  since  we  want  the  axis  of  the principal  component  —  we  care  not  which  of  the  two

directions it is. 

The  eigenvalues  give  the  variances  of  the  components. 

We compute the SD for comparison:

sqrt (evd$values)

[1] 9.3949 3.2205

which corresponds to the summary output above. 

You  are  recommended  to  use  prcomp  rather  than  eigen  for convenience and safety in the numerical calculation. These

ideas extend to higher dimensions as we shall now see. 

We consider only the ten circumference measurements in

the  fat  dataset  and  compute  the  principal  components

decomposition:

cfat = fat [ ,9:18]

prfat = prcomp (cfat)

dim (prfat$rot)

[1] 10 10

dim (prfat$x)

[1] 252   10

The  $rot  component  is  the  rotation  matrix   U  while  the principal components are found in the $x component which

we  have  called   Z. We can learn how effective the PCA has been from the summary output:

summary (prfat)

Importance of components:

PC1     PC2     PC3     PC4     PC5    

PC6

Standard deviation     15.990 4.06584 2.96596 2.00044 1.69408 

1.49881

Proportion of Variance 0.867  0.05605 0.02983 0.01357 0.00973 

0.00762

Cumulative Proportion   0.867 0.92304 0.95287 0.96644 0.97617 

0.98378

PC7     PC8     PC9    PC10

Standard deviation     1.30322 1.25478 1.10955 0.52737

Proportion of Variance 0.00576 0.00534 0.00417 0.00094

Cumulative Proportion  0.98954 0.99488 0.99906 1.00000

The summary gives the standard deviations of the principal

components   uTi X  for   i = 1, … , 10.  We  also  see  that  the first principal component explains 86.7% of the variation in

the  data  while  the  last  few  components  account  for  very little of the variation. Instead of ten variables, we could use just  a  single  variable,  formed  by  a  linear  combination described  by  the  first  PC,  which  would  represent  the  ten-dimensional data quite well. 

The  first  column  of  the  rotation  matrix,  u 1,  is  a  linear combination describing the first principal component:

round (prfat $ rot [ ,1] ,2)

neck   chest   abdom    hip   thigh   knee   ankle   biceps

0.12    0.50    0.66   0.42    0.28   0.12    0.06     0.15

forearm   wrist

0.07    0.04

We  see  that  the  chest,  abdomen,  hip  and  thigh  measures dominate  the  first  principal  component.  However,  the

reason  for  this  may  simply  be  that  these  measures  are larger  and  so  more  variable  than  the  wrist  or  ankle

circumferences.  We  might  prefer  to  scale  the  variables  for size by converting to standard units, that is, subtracting the mean 

and 

dividing 

by 

the 

standard 

deviation. 

Mathematically,  we  compute  the  eigendecomposition  on

the  correlation  rather  than  the  covariance  matrix.  We  can achieve this as follows:

prfatc = prcomp (cfat, scale = TRUE)

summary(prfatc)

Importance of components:

PC1     PC2     PC3     PC4     PC5    

PC6

Standard deviation     2.6498 0.85301 0.81909 0.70114 0.54708 

0.52831

Proportion of Variance 0.7021 0.07276 0.06709 0.04916 0.02993 

0.02791

Cumulative Proportion  0.7021 0.77490 0.84199 0.89115 0.92108 

0.94899

PC7     PC8     PC9   PC10

Standard deviation     0.45196 0.40539 0.27827 0.2530

Proportion of Variance 0.02043 0.01643 0.00774 0.0064

Cumulative Proportion  0.96942 0.98586 0.99360 1.0000

round (prfatc$rot [ ,1] ,2)

neck   chest   abdom    hip   thigh   knee   ankle   biceps

0.33    0.34    0.33   0.35    0.33   0.33    0.25     0.32

forearm   wrist

0.27    0.30

We can see that, after scaling, the proportion of variability

explained  by  the  first  component  drops  to  70.2%.  The

remaining  variation  is  more  evenly  spread  over  the  other components. The first principal component has very similar

coefficients for all the variables. It is useful to interpret this as  “overall  size”  since  it  is  roughly  proportional  to  a  mean across 

all 

these 

(standardized) 

variables. 

One

interpretation of this dominant first principal component is

that  body  shapes  in  men  are  mostly  proportional.  Bigger men  tend  to  be  just  larger  all-around  versions  of  smaller men. 

The  other  principal  components  describe  how  the  data

vary  in  ways  orthogonal  to  this  first  PC.  For  example,  we might look at the second principal component:

round (prfatc $ rot [ ,2] ,2)

neck   chest   abdom     hip   thigh   knee   ankle   biceps

0.00   -0.27   -0.40   -0.25   -0.19   0.02    0.62     0.02

forearm   wrist

0.36    0.38

which  is  roughly  a  contrast  between  the  body  center

measures of chest, abdomen, hip and thigh circumferences

against  the  extremities  of  forearm,  wrist  and  ankle

measures.  This  could  be  viewed  as  a  relative  measure  of

where the body is carrying its weight. This represents only 7.3% of the total variation so it is not substantial but is the largest component of variation after the first PC. 

Like variances, principal components analysis can be very

sensitive to outliers so it is essential to check for these. In addition  to  the  usual  graphical  checks  of  the  data,  it  is worth  checking  for  outliers  in  higher  dimensions.  Such

outliers  can  be  hard  to  find.  For  example,  consider

someone with a weight of 50kg and a height of 2m. Neither

value is individually exceptional but the combination would

be  very  unlikely  and  possibly  an  error.  Mahalanobis

distance  is  a  measure  of  the  distance  of  a  point  from  the mean  that  adjusts  for  the  correlation  in  the  data..  It  is defined as

 di = √( x −  μ) T Σ−1( x −  μ) (12.1)

where   μ  is  a  measure  of  center  and  Σ  is  a  measure  of covariance.  Since  we  are  concerned  about  outliers,  it  is sensible to use robust measures of center and covariance —

these  are  provided  by  the  cov.rob()  function  from  the  MASS

package of Venables and Ripley (2002). 

library (MASS)

robfat = cov . rob (cfat)

md = mahalanobis (cfat , center = robfat$center , cov = 
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robfat$cov)

n = nrow (cfat) ; p = ncol (cfat)

plot (qchisq (1: n / (n+1) ,p) , sort (md) , 

xlab = expression (paste (chi^2 , "quantiles")) , 

ylab = "Sorted Mahalanobis distances")

abline (0 ,1)

The  mahalanobis  function  returns   d 2 i.  If  the  data  are multivariate normal with dimension  m, then we expect  d 2 to follow a  χ 2 m distribution. We can check this graphically with a  Q–Q  plot  as  seen  in  Figure  12.3.  We  see  that  there  are some outliers and that we can investigate the sensitivity of

the  PCA  to  these  values  by  re-analyzing  the  data  after removing  these  points.  If  you  do  this,  you  will  find  that  it makes  a  substantive  difference,  especially  to  the  second PC.  An  alternative  to  this  outlier  detection  approach  is  to use  robust PCA methods. 

Figure  12.3   Q–Q  plot  of  the  Mahalanobis  distances  for the body circumference data. 

So  far  we  have  not  tried  to  link  the  predictors  to  the response in a regression model. Indeed, PCA is widely used

in other applications — see Joliffe (2002) for a book length treatment.  Now  let's  see  how  we  can  use  PCA  for

regression. We might have a model y ∼ X. We replace this

by y ∼ Z where typically we use only the first few columns

of   Z.  This  is  known  as   principal  components  regression  or PCR.  The  technique  is  used  in  two  distinct  ways  for

explanation and prediction purposes. 

When  the  goal  of  the  regression  is  to  find  simple,  well-fitting  and  understandable  models  for  the  response,  PCR

 may  help.  The  PCs  are  linear  combinations  of  the predictors. For example, the purpose in collecting the body

fat data was to model the percentage of body fat described

by  the  response,  brozek.  We  analyzed  this  data  before  in

Section 5.2 but we are using fewer predictors here. Here is the  model  output  where  we  use  all  ten  circumference

predictors:

lmoda = lm (fat $ brozek ~ . , data = cfat)

summary (lmoda)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)  7.22875    6.21431    1.16 0.24588

neck        -0.58195    0.20858   -2.79 0.00569

chest       -0.09085    0.08543   -1.06 0.28866

abdom        0.96023    0.07158   13.41 < 2e-16

hip         -0.39135    0.11269   -3.47 0.00061

thigh        0.13371    0.12492    1.07 0.28554

knee        -0.09406    0.21239   -0.44 0.65828

ankle        0.00422    0.20318    0.02 0.98344

biceps       0.11120    0.15912    0.70 0.48533

forearm      0.34454    0.18551    1.86 0.06450

wrist       -1.35347    0.47141   -2.87 0.00445



Residual standard error: 4.07 on 241 degrees of freedom

Multiple R-squared: 0.735,      Adjusted R-squared: 0.724

F-statistic: 66.9 on 10 and 241 DF,          p-value: <2e-16

It  is  difficult  to  say  much  about  which  factors  might influence  body  fat  percentage  because  there  are  clear

indications of collinearity. The signs of the coefficients and their  significance  vary  in  a  less  than  credible  way.  Why would  abdomen  circumference  have  a  positive  effect  while hip  circumference  has  negative  effect?  Now  consider  the output  where  we  use  only  the  first  two  principal

components:

lmodpcr = lm (fat $ brozek ~ prfatc $ x [ ,1:2])

summary (lmodpcr)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)            18.938      0.329   57.54   <2e-16

prfatc$x[, 1:2]PC1      1.842      0.124   14.80   <2e-16

prfatc$x[, 1:2]PC2     -3.551      0.387   -9.18   <2e-16



Residual standard error: 5.22 on 249 degrees of freedom

Multiple R-squared: 0.549,      Adjusted R-squared: 0.546

F-statistic: 152 on 2 and 249 DF,          p-value: <2e-16

We  have  lost  some  explanatory  power  in  going  from  ten down  to  two  predictors.  But  these  two  predictors  are  now orthogonal,  meaning  we  can  now  interpret  these  without

collinearity  worries.  As  previously  discussed,  the  first  PC

can be viewed as a measure of overall size. We can see this

is associated with higher body fat. The second PC shows a negative  association,  meaning  that  men  who  carry

relatively more of their substance in their extremities tend

to  be  leaner.  These  would  tend  to  be  men  who  are  more muscular  so  this  result  accords  with  what  one  might

expect.  So  the  PCR  here  has  allowed  us  a  meaningful

explanation  whereas  the  full  predictor  regression  was

opaque. 

One objection to the previous analysis is that the two PCs

still  use  all  ten  predictors  so  there  has  been  no  saving  in the  number  of  variables  needed  to  model  the  response. 

Furthermore, we must rely on our subjective interpretation

of  the  meaning  of  the  PCs.  To  answer  this,  one  idea  is  to take  a  few  representative  predictors  based  on  the  largest coefficients  seen  in  the  PCs.  For  example,  we  might  pick out  the  abdomen  circumference  to  represent  the  first  PC

and 

the 

difference 

between 

abdomen 

and 

ankle

circumference for the second PC. The latter pair shows the

largest  coefficients  in  absolute  value  (−0.40  and  0.62)  for the  second  PC.  Abdomen  does  not  quite  have  the  largest coefficient  in  the  first  PC  (hip  does)  but  it's  a  close  choice and  means  we  need  only  two  predictors  in  the  following model.  We  need  to  scale  the  predictors  so  that  ankle  and abdomen are on the standard units scale. 

lmodr = lm (fat$brozek ~ scale (abdom) +

I (scale(ankle) - scale (abdom)) , data = cfat)

summary (lmodr)

Coefficients:

Estimate Std. Error t value 

Pr(>|t|)

(Intercept)                        18.938      0.279   67.79   

<2e-16

scale(abdom)                        5.763      0.328   17.55   

<2e-16

I(scale(ankle) - scale(abdom))     -0.995      0.314   -3.17   

0.0017



Residual standard error: 4.43 on 249 degrees of freedom

Multiple R-squared: 0.675,      Adjusted R-squared: 0.673

F-statistic: 259 on 2 and 249 DF,          p-value: <2e-16

We have a simple model that fits almost as well as the ten-

predictor  model.  We  can  interpret  it  similarly  to  the

previous model but it is easier to explain to others. Future

studies might be done more cheaply because we might only

need these two measures. 

However,  for  this  explanatory  use  of  PCR  to  work,  we

typically  need  the  predictors  to  measure  quantities  for which  linear  combinations  are  interpretable  —  usually  the predictors would need to have the same units. So if we had

used  the  age  and  weight  variables  found  in  the  fat  data example,  it  would  have  been  far  more  difficult  to  interpret the  linear  combinations.  Even  in  the  homogeneous

predictor  case,  we  need  some  luck  and  imagination  to  get interpretable PCs. These requirements restrict the utility of

PCR  for  explanatory  purposes.  It  is  worth  trying  but  you might not get anything useful from it. 

We  can  sometimes  make  better  predictions  with  a  small

number  of  principal  components  in   Z  than  with  a  much larger  number  of  variables  in   X.  Success  requires  that  we

make  a  good  choice  of  the  number  of  components.  To illustrate  the  use  of  PCR  and  the  other  shrinkage  methods in  this  chapter,  we  will  use  a  set  of  data  where  the emphasis  is  on  prediction  but  the  explanatory  aspects  of the  methods  can  be  useful  in  gaining  intuition  about  the structure  of  the  data.  A  Tecator  Infratec  Food  and  Feed Analyzer  working  in  the  wavelength  range  of  850  to  1050

nm  by  the  near-infrared  transmission  (NIT)  principle  was used to collect data on samples of finely chopped pure meat

and 215 samples were measured. For each sample, the fat

content  was  measured  along  with  a  100-channel  spectrum

of  absorbances.  Since  determining  the  fat  content  via

analytical  chemistry  is  time  consuming,  we  would  like  to build  a  model  to  predict  the  fat  content  of  new  samples using  the  100  absorbances  which  can  be  measured  more

easily. See Thodberg (1993) for more details. 

The true performance of any model is hard to determine

based  on  just  the  fit  to  the  available  data.  We  need  to  see how  well  the  model  does  on  new  data  not  used  in  the construction of the model. For this reason, we will partition

the  data  into  two  parts  —  a   training  set  consisting  of  the first 172 observations that we will use to build and estimate

the models and a  test set of the remaining 43 observations. 

It would be more typical to make the split randomly rather

systematically  in  this  example.  As  long  as  there  was  no trend due to the order in which the data was presented, our

split will be satisfactory. 

Let's start with the least squares fit:

data (meatspec , package = "faraway") trainmeat = meatspec [1:172 ,]

testmeat = meatspec [173:215 ,]

modlm = lm (fat ~ . , trainmeat)

summary (modlm) $r.squared

[1] 0.99702

We  see  that  the  fit  of  this  model  is  already  very  good  in terms of  R 2. How well does this model do in predicting the observations  in  the  test  sample?  We  need  a  measure  of performance — we use root mean square error (RMSE):

 n

∑(^ yi − yi)2/ n

 i=1

(12.2)

Let's define this as an R function:

rmse = function (x,y) sqrt (mean ((x-y) ^2))

We find for the training sample that the RMSE is:

rmse (fitted (modlm) , trainmeat$fat)

[1] 0.69032

while for the test sample:

rmse (predict (modlm , testmeat) , testmeat $ fat)

[1] 3.814

We  see  that  the  performance  is  much  worse  for  the  test sample.  This  is  not  unusual,  as  the  fit  to  the  data  we  have

almost  always  gives  an  over-optimistic  sense  of  how  well the  model  will  do  with  future  data.  In  this  case,  the  actual error  is  about  five  times  greater  than  the  model  itself suggests. 

Now,  it  is  quite  likely  that  not  all  100  predictors  are necessary to make a good prediction. In fact, some of them

might  just  be  adding  noise  to  the  prediction  and  we  could improve  matters  by  eliminating  some  of  them.  We  use  the default stepwise model selection:

modsteplm = step (modlm , trace =0)

rmse (modsteplm $ fit , trainmeat $ fat)

[1] 0.7095

rmse (predict (modsteplm , testmeat) , testmeat $ fat)

[1] 3.5902

The model selection step removed 28 variables. Of course, 

the  nominal  fit  got  a  little  worse  as  it  always  will  when predictors  are  removed,  but  the  realistic  performance

improved somewhat from 3.81 to 3.59. 

Now  let's  compute  the  PCA  on  the  training  sample

predictors:

meatpca = prcomp (trainmeat [ , -101])

We  can  examine  the  standard  deviations  of  the  principal components:

round (meatpca$sdev ,3)

[1] 5.055 0.511 0.282 0.168 0.038 0.025 0.014 0.011 0.005 

0.003

.... 
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[91] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.000

We see that the first PC accounts for about ten times more

variation  than  the  second.  The  contribution  drops  off

sharply.  This  suggests  that  most  of  the  variation  in  the predictors can be explained with just a few dimensions. 

The  linear  combinations   ui (or  loadings) can be found in the  rotation  matrix  meatpca$rotation.  We  plot  these  vectors against  the  predictor  number  (which  represents  the  range of frequencies in this case) in Figure 12.4 using: matplot (1:100 , meatpca $ rot [ ,1:3] , type = "l" , xlab = "Frequency" , ylab = " " , col =1)

Figure  12.4   Eigenvectors  for  the  PCA  of  the  meat spectrometer  data.  The  solid  line  corresponds  to  the  first PC, the dashed line is for the second PC and the dotted line

is for the third PC. 

These  vectors  represent  the  linear  combinations  of  the

predictors  that  generate  the  PCs.  We  see  that  the  first  PC

comes  from  an  almost  constant  combination  of  the

frequencies.  It  measures  whether  the  predictors  are

generally  large  or  small.  The  second  PC  represents  a

contrast  between  the  higher  and  lower  frequencies.  The

third is more difficult to interpret. It is sometimes possible, as in this example, to give some meaning to the PCs. This is

typically a matter of intuitive interpretation. Sometimes, no

interpretation  can  be  found  and  we  must  be  satisfied  with the possibility of improved prediction. 

We can do the PCR with output from prcomp() but the pls

package  of  Liland,  Mevik,  and  Wehrens  (2023)  contains several  features  which  makes  the  computation  more

straightforward. We start by fitting a PCR considering up to

50 components:

library (pls)

pcrmod = pcr (fat ~ . , data = trainmeat , ncomp =50)

Let's use the first four PCs to predict the response:

rmse (predict (pcrmod , ncomp =4) , trainmeat $ fat)

[1] 4.0647
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We  do  not  expect  as  good  a  fit  using  only  four  variables instead of the 100. Even so, considering that, the fit is not

much worse than the results from much bigger models. 

PCR is an example of  regularization estimation. Let's see where  the  name  comes  from.  We  plot  the  100  slope

coefficients for the full least squares fit:

plot (modlm $ coef [ -1] , xlab = "Frequency" , 

ylab = "Coefficient" , type = "l")

which is shown in the left panel of Figure 12.5. We see that the  coefficients'  range  is  in  the  thousands  and  that  the adjacent coefficients can be very different. This is perhaps

surprising  because  one  might  expect  that  adjacent

frequencies  might  have  a  very  similar  effect  on  the

response. We plot the coefficients from the four-component

fit in the panel on the right of Figure 12.5. 

coefplot (pcrmod , ncomp =4 , xlab = "Frequency" , main = " ")

Figure  12.5   Coefficients  for  the  least  squares  fit  on  the left and for the PCR with four components on the right. 

Here  we  see  that  the  range  of  these  coefficients  is  much smaller  than  the  thousands  seen  for  the  ordinary  least squares  fit.  Instead  of  wildly  varying  coefficients  in  the least  squares  case,  we  have  a  more  stable  result.  This  is why  the  effect  is  known  as  regularization  or  sometimes shrinkage.  Furthermore,  there  is  smoothness  between adjacent  frequencies  as  knowledge  of  the  science  behind this data might suggest. 

Why use four PCs here and not some other number? The

standard  advice  for  choosing  the  number  of  PCs  to

represent  the  variation  in   X  is  to  choose  the  number beyond  which  all  the  PC  standard  deviations  are  relatively small.  A  good  way  to  determine  this  number  is  to  make  a scree  plot,  which  simply  makes  an  index  plot  of  the standard deviations. We show here the square roots of the

eigenvalues  and  only  the  first  ten  values  to  focus  on  the area of interest; see Figure 12.6:

plot (meatpca$sdev [1:10] , type = "l" , 

ylab = "SD of PC" , xlab = "PC number")
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Figure 12.6  Scree plot of the standard deviations of the first ten principal components. 

We could make a case for using only the first PC, but there

is another identifiable “elbow” at five indicating the choice

of  four  PCs.  Now  let's  see  how  well  the  test  sample  is predicted:

rmse (predict (pcrmod , testmeat , ncomp =4) , testmeat $ fat)

[1] 4.534

which  is  not  at  all  impressive.  It  turns  out  that  we  can  do better by using more PCs — we figure out how many would

give the best result on the test sample:

pcrmse = RMSEP (pcrmod , newdata = testmeat)

plot (pcrmse , main = " ")

which . min (pcrmse $ val)

[1] 28

pcrmse $ val [28]

[1] 1.8549

The plot of the RMSE is seen in Figure 12.7.  The best result occurs  for  28  PCs  for  which  the  RMSE  is  far  better  than anything achieved thus far. In practice, we would not have

access  to  the  test  sample  in  advance  and  so  we  would  not know  to  use  28  components.  We  could,  of  course,  reserve part  of  our  original  dataset  for  testing.  This  is  sometimes called  a   validation  sample.  This  is  a  reasonable  strategy, but  the  downside  is  that  we  lose  this  sample  from  our estimation  which  degrades  its  quality.  Furthermore,  there is the question of which and how many observations should

go  into  the  validation  sample.  We  can  avoid  this  dilemma with  the  use  of   K-fold  crossvalidation  (CV).  We  divide  the data into  K parts, equal or close in size. This method is also discussed in Section 11.4. For each part, we use the rest of the data as the training set and that part as the test set. We evaluate  the  criterion  of  interest,  RMSE  in  this  case.  We repeat for each part and average the result. 
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Figure 12.7  RMS for the test sample on the left and RMS

estimated  using  CV  for  varying  numbers  of  PCs  on  the

right. 

The  pcr()  function  can  compute  this  CV.  By  default,  the data  is  randomly  divided  into  ten  parts  for  the  CV.  The random  division  means  that  the  outcome  is  not

deterministic.  We  have  set  the  random  number  generator

seed using set.seed() (and the choice of 123 is arbitrary) so

that  you  will  get  the  same  result  as  here.  You  do  not  need to set the seed unless you want the results to be completely

reproducible. 

set . seed (123)

pcrmod = pcr (fat ~ . , data = trainmeat , 

validation = "CV" , ncomp =50)

pcrCV = RMSEP (pcrmod , estimate = "CV")

plot (pcrCV , main = " ")

which . min (pcrCV $ val)

[1] 20

The number of components starts the count from zero so 20

means 19 components:

ypred = predict (pcrmod , testmeat , ncomp =19)

rmse (ypred , testmeat $ fat)

[1] 2.2926

The crossvalidated estimates of the RMSE are shown in the

right  panel  of  Figure  12.7  with  the  minimum  occurring  at 19  components.  This  gives  an  RMSE  on  the  test  sample, 2.29, which approaches but does not attain the optimum of

1.85 derived from foreknowledge of the test set. 

The  random  division  used  by  CV  does  have  some

undesirable consequences. If you run the PCR many times, 

you will see a range of results which lead to a variation in

prediction  performance.  For  larger  datasets,  this  variation tends  to  be  smaller  but  it  is  quite  noticeable  in  this example. An alternative to the 10-fold crossvalidation used

above is  leave-out-one crossvalidation where only one case is  left  on  each  iteration.  This  requires   n  computations rather  than  10  computations  so  it  will  take  longer  to compute.  For  a  small  dataset  like  this  on  a  modern

computer,  this  is  not  an  important  concern.  There  is  no random  component  to  this  computation  so  we  will  get  the same result every time. We can implement this with:

pcrmod = pcr (fat ~ . , data = trainmeat , 

validation = "LOO" , ncomp =50)

We  can  then  choose  the  number  of  components  as  before. 

The  properties  of   K-fold  and  leave-out-one  crossvalidation are  not  identical  and  one  or  both  can  fail  under  some circumstances. 

12.2 Partial Least Squares

Partial least squares (PLS) is a method for relating a set of

input  variables   X 1, … ,  Xm  and  outputs   Y 1, … ,  Yl.  PLS

regression  is  comparable  to  PCR  in  that  both  predict  the response using some number of linear combinations of the

predictors.  The  difference  is  that  while  PCR  ignores   Y  in determining  the  linear  combinations,  PLS  regression

explicitly chooses them to predict  Y as well as possible. 

We will consider only univariate PLS, i.e.,  l = 1 so that  Y

is scalar. We will look for models of the form:

^ y =  β 1 T 1 + ⋯ +  βkTk

(12.3)

where the  Ti's are mutually orthogonal linear combinations of the  X s. See Figure 12.8
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Figure  12.8   Schematic  representation  of  partial  least squares. 

Various  algorithms  have  been  presented  for  computing

PLS. Most work by iteratively determining the  Ti s to predict y well, but at the same time maintaining orthogonality. One criticism  of  PLS  is  that  it  solves  no  well-defined  modeling problem,  which  makes  it  difficult  to  distinguish  between the  competing  algorithms  on  theoretical  rather  than

empirical grounds. Garthwaite (1994) presents an intuitive algorithm,  but  de  Jong  (1993)  describes  the  SIMPLS

method,  which  is  among  the  best  known.  Several  other

algorithms exist. 

As with PCR, we must choose the number of components

carefully. CV can be helpful in doing this. We apply PLS to

the meat spectroscopy data using CV to select the number

of  components.  We  compute  the  PLS  on  all  models  up  to size 50. We have set the random generator seed to ensure

reproducibility  in  light  of  the  random  division  of  the validation samples. We plot the linear combination used for
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a  four-component  model  in  the  left  panel  of  Figure  12.9. 

The crossvalidated estimates of the RMSE are shown in the

right panel. 

set . seed (123)

plsmod = plsr (fat ~ . , data = meatspec [1:172 ,] , ncomp =50 

, 

validation = "CV")

coefplot (plsmod , ncomp =4 , xlab = "Frequency")

plsCV = RMSEP (plsmod , estimate = "CV")

plot (plsCV , main = "")

Figure  12.9   Coefficients  of   X  for  a  four-component  PLS

model  are  shown  on  the  left.  Estimated  CV  error  is  shown on the right. 

We  see  that  the  effective  linear  combination  of  the

predictors  in  the  four-component  model  is  similar  to  the PCR  indicating  the  shrinkage  effect.  As  before,  four

components do not appear to be enough — we need around

15 components as suggested by the crossvalidated estimate of the RMSE. We need fewer components than PCR, which

is  expected  since  we  are  using  information  about  the

response. 

Now  we  determine  the  performance  on  the  training  set

for the 15-component model:

ypred = predict (plsmod , ncomp =15)

rmse (ypred , trainmeat $ fat)

[1] 1.8898

which is similar to PCR, but now see how we do on the test

set:

ytpred = predict (plsmod , testmeat , ncomp =15)

rmse (ytpred , testmeat $ fat)

[1] 1.9718

which is better than the 2.29 achieved by PCR. 

We have not checked any diagnostics in this analysis. PLS

and  PCR  are  just  as  sensitive  to  assumptions  as  OLS  so these are still mandatory in any full analysis. 

PCR  and  PLS  are  particularly  attractive  methods  when

there  are  large  numbers  of  predictors,  p,  relative  to  the sample size,  n. They can still work even when  p >  n. This is not uncommon in some applications such as bioinformatics

where  data  may  give  information  on  a  large  number  of

genes for a small sample of individuals. 

PLS tends to have an advantage over PCR for prediction

problems  because  PLS  constructs  its  linear  combination

explicitly  to  predict  the  response.  On  the  other  hand,  PCR

is  better  suited  for  developing  insights  by  forming  linear combinations that have interesting interpretations. 

Although  both  methods  use  the  idea  of  dimension

reduction,  there  is  usually  no  reduction  in  the  number  of variables  used  since  every  predictor  contributes  to  the linear  combinations.  If  you  are  hoping  to  save  the  cost  of measuring  predictors  in  order  to  build  a  cheaper  but  still effective  prediction  model,  the  criterion-based  variable

selection  as  described  in  Chapter  11  or  the  lasso  method described later in this chapter will be more useful. 

12.3 Ridge Regression

Ridge regression makes the assumption that the regression

coefficients  (after  normalization)  should  not  be  very  large. 

This  is  a  reasonable  assumption  in  applications  where  you have  a  large  number  of  predictors  and  you  believe  that many  of  them  have  some  effect  on  the  response.  Hence

shrinkage  is  embedded  in  the  method.  Ridge  regression  is particularly  effective  when  the  model  matrix  is  collinear and  the  usual  least  squares  estimates  of  β  appear  to  be unstable. 

Suppose that the predictors have been centered by their

means and scaled by their standard deviations and that the

response has been centered. The ridge regression estimate

chooses the β that minimizes:

( y −  Xβ) T ( y −  Xβ) +  λ ∑  β 2 j j

(12.4)

for  some  choice  of   λ ≥ 0.  The   penalty  term  is  ∑ j β 2 j.  We want  to  keep  this  term  small.  Ridge  regression  is  an

example of a  penalized regression because of the presence of this term. The ridge regression estimates of βs are given

by:

^ β = ( XTX +  λI)−1 XTy

(12.5)

The   λI introduces a “ridge” down the   X T X matrix, hence the  name  of  the  method.  An  equivalent  expression  of  the problem is that we choose β to minimize:

 p

( y −  Xβ) T ( y −  Xβ) subject   to ∑  β 2 j ≤  t 2

 j=1

(12.6)

We  find  the  least  squares  solution  subject  to  an  upper bound  on  the  size  of  the  coefficients.  The  use  of  ridge regression can also be justified from a Bayesian perspective

where  a  prior  distribution  on  the  parameters  puts  more weight on smaller values. 
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The nature of the ridge solution is seen in the first panel

of  Figure  12.10.   The  OLS  fit  that  minimizes  the  residual sum  of  squares  (RSS)  is  achieved  at  ^

 βLS.  We  can  draw

confidence ellipses around the least squares solution  ^

 βLS of

increasing size. Points on these ellipses represent solutions

for β which are progressively less desirable in terms of fit. 

We  grow  the  ellipses  until  they  intersect  with  a  circle  of radius   t  centered  at  the  origin.  This  point  of  intersection will  satisfy  ∑ pj=1  β 2 j =  t 2  and  be  the  best  fitting  solution subject  to  this  requirement.  Of  course,  if  ^

 βLS  is  already

inside  the  circle,  the  ridge  and  OLS  solutions  are  identical but usually  t is small enough that this rarely occurs. 

Figure 12.10  Ridge and lasso regression are illustrated. 

On  the  left,  confidence  ellipses  of  increasing  level  are plotted  around  the  least  squares  estimate.  The  largest

ellipse intersects the circle of radius  t at the ridge estimate. 

On the right, the largest ellipse intersects the square at the lasso estimate. 

 λ  (or   t)  may  be  chosen  by  automatic  methods,  but  it  is also sensible to plot the values of  ^

 β as a function of  λ. You

should  pick  the  smallest  value  of   λ  that  produces  stable estimates of β. 

We  demonstrate  the  method  on  the  meat  spectroscopy

data;  λ = 0 corresponds to least squares while we find that as  λ → ∞:  ^

 β → 0. The response, training and test datasets

need to be mean-centered. 

library (MASS)

rgmod = lm.ridge (fat ~., trainmeat, 

lambda = seq (0 , 5e-8 , len=21))

matplot (rgmod $ lambda , coef (rgmod) , type="l" , 

xlab = expression (lambda), 

ylab = expression (hat (beta)), col=1)

Some  experimentation  was  necessary  to  determine  the

appropriate  range  of   λ.  The   ridge  trace  plot  is  shown  in

Figure  12.11.   We  can  select  the  value  of   λ  using generalized  crossvalidation  (GCV)  which  is  similar  to  CV

but is easier to compute. 
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Figure 12.11  Ridge trace plot for the meat spectroscopy data.  The  generalized  crossvalidation  choice  of   λ  is  shown as a vertical line. 

which . min (rgmod $ GCV)

1.75e-08

8

abline (v =1.75 e -08)

We will use the generalized crossvalidation (GCV) estimate

of  1.75 × 10−8.  First,  we  compute  the  training  sample

performance. This ridge regression both centers and scales

the predictors, so we need to do the same in computing the

fit.  Furthermore,  we  need  to  add  back  in  the  mean  of  the response because of the centering:

ypred = cbind (1, as.matrix (trainmeat[ , -101])) %*%

coef(rgmod) [8,]

rmse (ypred, trainmeat$fat)

[1] 0.80244

which  is  comparable  to  the  above,  but  for  the  test  sample we find:

ypred = cbind (1 , as . matrix (testmeat [ , -101])) % * %

coef (rgmod) [8 ,]

rmse (ypred , testmeat $ fat)

[1] 4.1011

which  is  dismayingly  poor.  However,  a  closer  examination of  the  predictions  reveals  that  just  one  of  the  ridge predictions is bad:

c (ytpred [13] , ypred [13] , testmeat $ fat [13])

[1] 35.690 11.164 34.800

The  PLS  prediction  (first)  is  close  to  the  truth  (third),  but the ridge prediction is bad. If we remove this case:

rmse (ypred [ -13] , testmeat $ fat [ -13])

[1] 1.9795

we  get  a  good  result.  Of  course,  one  poor  prediction  can ruin your reputation so PLS did better here in coping with

the outlier. 

Ridge  regression  estimates  of  coefficients  are  biased. 

Bias is undesirable, but it is not the only consideration. The mean-squared  error  (MSE)  can  be  decomposed  in  the

following way:

 E(^

 β −  β)2 = ( E(^

 β −  β))2 +  E(^

 β −  E ^

 β)2

(12.7)

Thus  the  MSE  of  an  estimate  can  be  represented  as  the square  of  the  bias  plus  the  variance.  Sometimes  a  large reduction in the variance may be obtained at the price of an

increase in the bias. If the MSE is substantially reduced as

a consequence, then we may be willing to accept some bias. 

This  is  the  trade-off  that  ridge  regression  makes  —  a reduction  in  variance  at  the  price  of  an  increase  in  bias. 

This is a common dilemma. 

Frank  and  Friedman  (1993)  compared  PCR,  PLS  and ridge  regression  and  found  the  best  results  for  ridge

regression.  Of  course,  for  any  given  dataset  any  of  the methods  may  prove  to  be  the  best,  so  picking  a  winner  is difficult. 

12.4 Lasso

The  lasso  method  is  apparently  very  similar  to  the  ridge regression method. We choose  ^

 β to minimize:

 p

( y −  Xβ) T ( y −  Xβ) subject   to ∑ | βj| ≤  t j=1

(12.8)

where the penalty term differs in form from the ridge case. 

This  method  was  introduced  by  Friedman,  Hastie,  and

Tibshirani  (1996).  There  is  no  explicit  solution  to  this

problem as in the ridge regression case although it can be

found  quite  efficiently  as  described  within  the  context  of  a more general method called  least angle regression as given in  Efron,  Hastie,  Johnstone,  and  Tibshirani  (2004).  The LASSO  name  is  an  acronym  derived  from  Least  Angle

Shrinkage and Selection Operator

The  important  difference  between  lasso  and  ridge

regression  is  in  the  nature  of  the  solutions  which  is illustrated in Figure 12.10.  For the lasso, the  L 1 constraint of ∑ pj=1 | βj| ≤  t defines a square in two dimensions as seen in  the  figure.  In  higher  dimensions,  it  defines  a  polytope with  vertices  on  the  coordinates'  axes  and  edges  where some  number  of  the  coordinate  values  will  be  zero.  In  the figure,  we  can  see  that  the  expanding  ellipses  touch  the square at a vertex. We can see that, depending on the value

of  ^

 βLS,  the  correlation  of  variables  which  determines  the orientation of the ellipse and the value of  t, that a solution on a vertex will occur frequently. In higher dimensions, the

solution will also commonly lie on an edge or vertex of the

polytope.  As   t  increases,  more  variables  are  added  to  the model  and  their  coefficients  become  larger.  For  large

enough   t,  the  restriction  of  ∑ pj=1 | βj| ≤  t is redundant and the least squares solution is returned. 

For  the  lasso,  for  moderate  values  of   t,  many  ^

 βj tend to

be  zero.  The  use  of  lasso  is  most  appropriate  when  we believe  the  effects  are   sparse  —  that  the  response  can  be explained  by  a  small  number  of  predictors  with  the  rest having no effect. This means that lasso can be regarded as

a  type  of  variable  selection  method  because  when  ^

 βj = 0, 

the  corresponding  predictor   xj  is  effectively  eliminated from the regression. In contrast, ridge regression does not

eliminate any variables; it only makes the  ^

 βj smaller. 

The lars package of Hastie and Efron (2022) can be used to compute lasso solutions. We demonstrate its application

to the state data from the variable selection chapter:

library (lars)

data (state)

statedata = data.frame (state.x77 , row.names = state.abb)

lmod = lars (as.matrix (statedata [, -4]) , statedata$Life)

The  lars  function  requires  the  matrix  of  predictors  as  its first argument and does not accept a formula argument. As

before,  we  use  the  other  variables  to  predict  the  life expectancy. The results can be plotted, as seen in the first

panel of Figure 12.12:

plot (lmod)
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Long Description for Figure 12.12

Figure  12.12   Lasso  plots  for  the  state  data.  The coefficients  as  a  function  of   t  are  shown  in  the  first  panel. 

The  crossvalidated  selection  of   t  is  shown  in  the  second panel.  t has been scaled by the least squares solution. 

The  horizontal  axis  for   t  has  been  scaled  by  the  maximum possible  value  for  ∑ pj=1 | βj|  given  by  the  least  squares solution. For the smallest value of  t, only predictor #4, the murder  rate,  is  active.  As   t  increases,  a  second  predictor, the high school graduation rate enters. The population and

days  of  frost  enter  later.  The  remaining  three  variables  do not enter the model until  t is very close to the least squares solution.  As   t  increases,  we  see  the  sizes  of  the  estimated coefficients also increase. 

The  choice  of   t  can  be  made  using  crossvalidation.  The default  method  for  lars  uses  a  10-fold  method  where  the data are randomly divided into 10 groups. Nine groups are

used  to  predict  the  one  group  for  each  group  in  turn  and the  overall  prediction  performance  is  computed.  The  CV

criterion  along  with  a  standard  error  estimated  can  be computed.  As  in  previous  examples  where  the  10-fold

division  is  randomly  selected,  we  set  the  random  number generator seed to ensure reproducibility. 

set . seed (123)

cvlmod = cv . lars (as . matrix (statedata [ , -4]) , statedata $ Life)

The plot is shown in the second panel of Figure 12.12. We see  that  a  (fractional)  value  for   t  of  around  0.65  is recommended. Referring to the first panel of Figure 12.12, we see this leads to a model containing four predictors. The

minimizing  fraction  and  corresponding  coefficients  may  be obtained as:

cvlmod $ index [ which . min (cvlmod $ cv) ]

[1] 0.65657

predict (lmod , s =0.65657 , type = "coef" , mode = "fraction") $ coef

Population        Income    Illiteracy       Murder       

HS.Grad

0.000023453   0.000000000   0.000000000 -0.239879419   

0.035288870

Frost          Area

-0.001694991   0.000000000

We  see  the  same  variables  are  selected  as  in  the  previous analyses.  However,  the  coefficients  are  shrunk  somewhat

from the corresponding least squares solution:

coef (lm (Life . Exp ~ Population + Murder + HS . Grad + Frost 

, 

statedata))

(Intercept)   Population      Murder      HS.Grad       Frost

71.02712853   0.00005014 -0.30014880   0.04658225 -0.00594329

Lasso  is  most  useful  for  problems  with  much  larger

numbers  of  variables  such  as  the  ongoing  spectroscopy

example  of  this  chapter.  We  compute  the  lasso  fit  for  the training data:

trainy = trainmeat$fat

trainx = as . matrix (trainmeat [ , -101])

lassomod = lars (trainx , trainy)

We now compute the crossvalidation choice of  t:

set . seed (123)

cvout = cv . lars (trainx , trainy)

cvout $ index [ which . min (cvout $ cv) ]

[1] 0.010101

For  this  choice  of   t,  we  compute  the  predicted  values  for the test data:

testx = as . matrix (testmeat [ , -101])

predlars = predict (lassomod , testx , s =0.0101 , mode = 

"fraction")

The RMSE may now be computed:

rmse (testmeat$fat , predlars$fit)

[1] 2.1323
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The result is competitive with those previously achieved. 

It  is  interesting  to  compute  the  coefficients  of  the

selected fit and examine them, as seen in Figure 12.13: predlars = predict (lassomod , s=0.0101 , type = "coef", mode="fraction")

plot (predlars$coef , type = "h" , ylab = "Coefficient") sum (predlars$coef ! = 0)

[1] 20

Figure  12.13   Coefficients  of  the  CV-selected  lasso  fit  to the spectroscopy data. 

We see that only 20 frequencies are used in predicting the

response.  The  competing  methods  in  this  chapter  used

every frequency except for the stepwise method which still

used most of the frequencies. 

For  this  example,  there  is  probably  no  additional  cost  in measuring  all  the  frequencies  as  opposed  to  just  a  few  of

them. However, in other applications, where there is some cost  in  recording  additional  predictors,  the  lasso  method would  be  especially  valuable.  The  lasso  is  particularly useful when we believe the effects are  sparse, i.e., that few of the predictors have an effect. For example, this arises in

the  analysis  of  gene  expression  data  where  we  have  good reason to believe that only a small number of genes have an

influence on the quantity of interest. Lasso is also useful in that it still works when the number of predictors  p exceeds the number of observations. The use of lasso in applications

where  effects  are  not  sparse,  as  in  many  socioeconomic examples, is less compelling. 

12.5 Elastic Net

The  Elastic  Net  method  is  a  combination  of  the  ridge  and lasso methods. The ridge regression estimate chooses the β

that minimizes:

( y −  Xβ) T ( y −  Xβ) +  λ((1 −  α) ∑  β 2 j/2 +  α ∑ | βj|) j

 j

(12.9)

The parameter  α controls the mix of the two penalty terms. 

If  we  set   α = 0,  we  get  ridge  regression  while  a  choice  of α = 1  corresponds  to  lasso  regression.  We  can  choose  a value  of   α  in  between  zero  and  one  to  get  the  potential

benefit  of  both  regularizing  terms.  The  parameter   λ

controls the overall strength of the penalty. 

The glmnet package provides the implementation based on

the  work  of  Friedman  et  al.  (2010).  In  the  context  of  our running  spectroscopy  example,  we  can  perform  ridge

regression with:

library (glmnet)

rrfit = glmnet (trainx , trainy , alpha = 0)

We can use crossvalidation as before to choose  λ, examine the  coefficients  and  make  predictions  on  new  data. 

Although the method is essentially the same as that used in

the  lm.ridge()  function  of  the  MASS  package,  the  scaling  of the variables and parameters is different. For this reason, it is  not  straightforward  to  get  the  same  result  from  both packages and it is best to use only one implementation. The

glmnet  package  has  more  features,  especially  for  non-

gaussian responses such as we consider here. 

We can compute the lasso fit with:

lasfit = glmnet (trainx , trainy , alpha = 1)

The  choice  of  alpha=1  is  the  default  but  we  have  stated  it explicitly  here.  Again,  it  is  not  easy  to  construct  identical output  compared  to  the  lars  package  output  because  of

differences  in  scaling.  For  the  small  dataset  considered here, it does not make much difference which package you

choose.  For  larger  datasets,  the  computational  algorithm used in glmnet tends to be faster. 
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Let's  demonstrate  the  use  of  the  elastic  net  in  a  new situation  by  choosing   α = 0.5.  We  start  with  the crossvalidation:

cvmod = cv.glmnet (trainx , trainy , alpha = 0.5)

Let's  take  a  look  at  the  selected  coefficients  as  seen  in

Figure 12.14:

coeflas = as.matrix (coef (cvmod, s = "lambda.min")) plot (coeflas, type = "h" , ylab = "Coefficient")

Figure 12.14  Elastic net coefficients for the spectroscopy data

We  see  that  the  profile  of  coefficients  is  stable  with adjacent  coefficients  being  similar.  We  compute  the

number of non-zero coefficients:

sum (coeflas ! = 0)

[1] 81

We  see  that  relatively  few  coefficients  are  zero  in  contrast to  the  lasso  solution.  Given  the  nature  of  the  data,  this  is not  concerning  because  we  do  not  believe  the  response  is driven by a small number of variables. Finally, we make the

prediction on the test set:

penfit = predict (cvmod , newx = testx , s = "lambda.min") rmse (penfit , testmeat$fat)

[1] 2.8725

The  performance  is  somewhere  between  the  ridge  and

lasso results as one might expect. 

One  should  not  read  too  much  into  the  relative

performance  of  the  methods  on  just  one  example  dataset. 

Each  of  these  methods  have  different  strengths  and

weaknesses  and  their  performance  will  vary  according  to the structure and type of the data. 

Exercises

1. Use the seatpos data with hipcenter as the response. 

(a)

Use  the  predictors:  HtShoes,  Ht,  Seated,  Arm,  Thigh, 

and,  Leg.  Perform  a  PCA  on  these  unscaled

predictors  and  compute  the  standard  deviations  of

the  principal  components.  How  many  components

should be chosen? 

(b)

What  are  the  loadings  on  the  first  principal

component? Give an interpretation. 

(c)

Fit a linear model with all six predictors. Report on

the  R-squared.  Which  predictors  are  statistically

significant? 

(d)

Fit a linear model with all six principal components. 

How  does  the  overall  fit  differ  from  the  linear

model  of  the  previous  question?  Which  principal

components are statistically significant? 

(e)

Fit  a  linear  model  with  only  the  height  as  a

predictor. Make an F-test comparing it to the model

of  the  previous  question.  Explain  why  the  F-test  is

valid here. Should this model be preferred? 

(f)

Now include Age and Weight in the set of predictors. 

Repeat  the  PCA  but  first  scale  the  predictors. 

Explain  why  scaling  is  reasonable.  How  many

components should be chosen? 

(g)

Show the loadings on the first and second PCs and

interpret. 

(h)

Fit a two predictor linear model inspired by the last

PCA analysis. Comment. 

2. Use  the  seatpos  data  with  all  variables  (scaled)  as predictors except hipcenter. Use the Mahalanobis method

to identify any unusual cases. Say what is unusual about

them. 

3. We use the seatpos data to explore Principal Components

Regression. 

(a)

Using the predictors, HtShoes, Ht, Seated, Arm, Thigh, 

and  Leg,  perform  a  PCR.  Use  crossvalidation  to

choose the number of predictors. 

(b)

Predict  the  response  of  your  chosen  model  for  the

predictor values:

Age    Weight   HtShoes        Ht   Seated

64.800   263.700   181.080   178.560   91.440

Arm     Thigh       Leg

35.640    40.950    38.790

(c)

Repeat (a) but use the Age and Weight variables also. 

(d)

Repeat  (b)  with  the  additional  two  predictors  and

best choice of number of components. 

4. We use the seatpos data to explore Partial Least Squares. 

(a)

Fit a PLS model with hipcenter as the response and

unscaled  versions  of  the  other  predictors.  Use  CV

to select the best number of components. 

(b)

Repeat  the  calculation  of  (a)  but  with  scaled

variables. 

(c)

Which  version  should  be  preferred  —  scaled  or

unscaled? 

(d)

For  the  scaled  model  with  the  best  number  of

components, predict the response for the predictor

values of 3(b). 

5. In  this  question,  we  fit  a  ridge  regression  model  to  the seatpos  data  with  hipcenter  as  the  response  and  all  other variables as predictors. 

(a)

Fit the ridge regression model with  λ varying in the

range  [0,1].  Produce  the  ridge  trace  plot.  Why  is

the plot unsatisfactory? 

(b)

Redo  the  ridge  regression  plot  without  the

offending  coefficient.  Judging  from  the  plot,  what

choice of  λ seems best? 

(c)

Use generalized crossvalidation to make the choice. 

Compare this to your choice from (b). 

(d)

Fit  the  standard  linear  model  to  the  data  and

predict the response for the predictor values:

Age    Weight   HtShoes        Ht   Seated

64.800   263.700   181.080   178.560   91.440

Arm     Thigh       Leg

35.640    40.950    38.790

(e)

Now  compute  the  predicted  response  for  the

predictor  values  of  (d)  for  the  ridge  regression

model  with   λ = 0.  Why  should  we  get  the  same

answer? 

(f)

Compute  the  prediction  for   λ = 1  and  compare  to the previous prediction. 

(g)

Fit  the  model  and  show  the  trace  plot  using  a

scaled  version  of  the  data.  Make  a  comparison  to

the previous analysis. 

6. In  this  question,  we  apply  a  LASSO  model  to  the  seatpos data with hipcenter as the response and all other variables

as predictors. 

(a)

Fit the default LASSO model and show a plot of the

coefficients. What do the numbers of the right axis

represent? 

(b)

Which predictor is the first to enter the model? 

(c)

Use CV to choose the best model. 

(d)

Show  the  fitted  coefficients  for  the  CV  choice  of

fraction. How do these compare to the linear model

using only those predictors selected by LASSO. 

(e)

Compute  the  predicted  value  for  the  predictor

values of Q5d. 

(f)

Refit the model without scaling the variables using

the  normalize  =  FALSE  option.  Comment  on  the

difference with the original fit. 

7. Take  the  fat  data,  and  use  the  percentage  of  body  fat, siri,  as  the  response  and  the  other  variables,  except

brozek  and  density  as  potential  predictors.  Remove  every tenth observation from the data for use as a test sample. 

Use the remaining data as a training sample building the

following models:

(a)

Linear regression with all predictors

(b)

Linear regression with variables selected using AIC

(c)

Principal component regression

(d)

Partial least squares

(e)

Ridge regression

Use  the  models  you  find  to  predict  the  response  in  the test  sample.  Make  a  report  on  the  performances  of  the models. 

8. Some  near  infrared  spectra  on  60  samples  of  gasoline and  corresponding  octane  numbers  can  be  found  by

data(gasoline, package=“pls”). Compute the mean value for

each  frequency  and  predict  the  response  for  the  best

model using the five different methods from Question 4. 

9. The dataset kanga contains data on the skulls of historical kangaroo specimens. 

(a)

Compute a PCA on the 18 skull measurements. You

will  need  to  exclude  observations  with  missing

values.  What  percentage  of  variation  is  explained

by the first principal component? 

(b)

Provide  the  loadings  for  the  first  principal

component. What variables are prominent? 

(c)

Repeat the PCA but with the variables all scaled to

the  same  standard  deviation.  How  do  the

percentage  of  variation  explained  and  the  first

principal  component  differ  from  those  found  in  the

previous PCA? 

(d)

Give  an  interpretation  of  the  second  principal

component. 

(e)

Compute  the  Mahalanobis  distances  and  plot

appropriately to check for outliers. 

(f)

Make a scatterplot of the first and second principal

components  using  a  different  plotting  symbol

depending on the sex of the specimen. Do you think

these  two  components  would  be  effective  in

determining the sex of a skull? 

Chapter 13

Insurance Redlining — A

Complete Example

DOI: 10.1201/9781003449973-13

In  this  chapter,  we  present  a  relatively  complete  data analysis.  The  example  is  interesting  because  it  illustrates several  of  the  ambiguities  and  difficulties  encountered  in statistical practice. 

Insurance  redlining  refers  to  the  practice  of  refusing  to issue  insurance  to  certain  types  of  people  or  within  some geographic area. The name comes from the act of drawing

a red line around an area on a map. Now few would quibble

with  an  insurance  company  refusing  to  sell  auto  insurance to  a  frequent  drunk  driver,  but  other  forms  of

discrimination would be unacceptable. 

In  the  late  1970s,  the  US  Commission  on  Civil  Rights

examined 

charges 

by 

several 

Chicago 

community

organizations  that  insurance  companies  were  redlining

their  neighborhoods.  Because  comprehensive  information

about individuals being refused homeowners insurance was

not available, the number of FAIR plan policies written and renewed  in  Chicago  by  zip  code  for  the  months  of

December 1977 through May 1978 was recorded. The FAIR

plan  was  offered  by  the  city  of  Chicago  as  a  default  policy to  homeowners  who  had  been  rejected  by  the  voluntary

market.  Information  on  other  variables  that  might  affect insurance  writing  such  as  fire  and  theft  rates  was  also collected at the zip code level. The variables are:

race racial composition in percentage of minority

fire fires per 100 housing units

theft thefts per 1000 population

age percentage of housing units built before 1939


involact new FAIR plan policies and renewals per 100

housing units

income median family income in thousands of dollars

side north or south side of Chicago

The data come from Andrews and Herzberg (1985) where more  details  of  the  variables  and  the  background  are

provided. 

13.1 Ecological Correlation

Notice  that  we  do  not  know  the  races  of  those  denied insurance.  We  only  know  the  racial  composition  in  the

corresponding zip code. This is an important difficulty that

needs to be considered before starting the analysis. 

When  data  are  collected  at  the  group  level,  we  may

observe a correlation between two variables. The ecological

fallacy is concluding that the same correlation holds at the

individual  level.  For  example,  in  countries  with  higher  fat intakes in the diet, higher rates of breast cancer have been

observed.  Does  this  imply  that  individuals  with  high  fat intakes  are  at  a  higher  risk  of  breast  cancer?  Not

necessarily.  Relationships  seen  in  observational  data  are subject to confounding, but even if this is allowed for, bias

is  caused  by  aggregating  data.  We  consider  an  example

taken from US demographic data:

data (eco , package = "faraway")

plot (income ~ usborn , data = eco,   xlab="Proportion US born" 

, 

ylab="Mean Annual 

Income")

In  the  first  panel  of  Figure  13.1,  we  see  the  relationship between  1998  per  capita  income  dollars  from  all  sources and  the  proportion  of  legal  state  residents  born  in  the United  States  in  1990  for  each  of  the  50  states  plus  the District  of  Columbia  (D.C.).  We  can  see  a  clear  negative correlation. We can fit a regression line and show the fitted

line on an extended range:
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Figure  13.1   1998  annual  per  capita  income  and proportion US born for 50 states plus D.C. The plot on the

right  shows  the  same  data  as  on  the  left,  but  with  an extended scale and the least squares fit shown. 

lmod = lm (income ~ usborn , eco)

summary (lmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)    68642       8739    7.85 3.2e-10

usborn        -46019       9279   -4.96 8.9e-06



Residual standard error: 3490 on 49 degrees of freedom

Multiple R-squared: 0.334,      Adjusted R-squared: 0.321

F-statistic: 24.6 on 1 and 49 DF,          p-value: 8.89e-06

plot (income ~ usborn , data = eco , xlab = "Proportion US 

born" , 

ylab = "Mean Annual Income" , 

xlim = c (0 ,1) , ylim = c (15000 ,70000) , xaxs = "i") abline (coef (lmod))

We  see  that  there  is  a  clear  statistically  significant relationship between the per capita annual income and the

proportion who are US born. What does this say about the

average  annual  income  of  people  who  are  US  born  and

those who are naturalized citizens? If we substitute usborn=1

into  the  regression  equation,  we  get  68642 − 46019  =

$22,623,  while  if  we  put  usborn=0,  we  get  $68,642.  This suggests  that  on  average,  naturalized  citizens  earn  three times  more  than  US  born  citizens.  In  truth,  information from  the  US  Bureau  of  the  Census  indicates  that  US  born citizens  have  an  average  income  just  slightly  larger  than naturalized citizens. What went wrong with our analysis? 

The  ecological  inference  from  the  aggregate  data  to  the individuals requires an assumption of constancy. Explicitly, 

the  assumption  would  be  that  the  incomes  of  the  native born do not depend on the proportion of native born within

the  state  (and  similarly  for  naturalized  citizens).  This assumption  is  unreasonable  for  these  data  because

immigrants are naturally attracted to wealthier states. 

This  assumption  is  also  relevant  to  the  analysis  of  the Chicago insurance data since we have only aggregate data. 

We  must  keep  in  mind  that  the  results  for  the  aggregated data may not hold true at the individual level. 

13.2 Initial Data Analysis

Start  by  reading  the  data  in  and  examining  it.  It's  a  good idea to familiarize yourself with the variables, their format

and their scale. 

data (chredlin, package = "faraway") head (chredlin)

race fire theft age involact income side

60626   10.0 6.2     29 60.4     0.0 11.744    n

60640   22.2 9.5     44 76.5     0.1 9.323     n

60613   19.6 10.5    36 73.5     1.2 9.948     n

60657   17.3 7.7     37 66.9     0.5 10.656    n

60614   24.5 8.6     53 81.4     0.7 9.730     n

60610   54.0 34.1    68 52.6     0.3 8.231     n

A numerical summary of the data is always helpful. We can

check  whether  the  means  or  medians  are  about  what  we

might expect given background knowledge of the data. We

should  pay  particular  attention  to  the  minimums  and

maximums  since  these  can  reveal  extreme  values.  Also

check whether there are missing values. 

summary (chredlin)

race            fire           theft            age

Min.   : 1.00   Min.   : 2.00   Min.   : 3.0    Min.   : 2.0

1st Qu.: 3.75   1st Qu.: 5.65   1st Qu.: 22.0   1st Qu.:48.6

Median :24.50   Median :10.40   Median : 29.0   Median :65.0

Mean   :34.99   Mean   :12.28   Mean   : 32.4   Mean   :60.3

3rd Qu.:57.65   3rd Qu.:16.05   3rd Qu.: 38.0   3rd Qu.:77.3

Max.   :99.70   Max.   :39.70   Max.   :147.0   Max.   :90.1

involact         income      side

Min.   :0.000   Min.   : 5.58   n:25

1st Qu.:0.000   1st Qu.: 8.45   s:22

Median :0.400   Median :10.69

Mean   :0.615   Mean   :10.70

3rd Qu.:0.900   3rd Qu.:11.99

Max.   :2.200   Max.   :21.48

We see that there is a wide range in the race variable, with

some  zip  codes  almost  entirely  minority  or  non-minority. 

This  is  good  for  our  analysis  since  it  will  reduce  the variation in the regression coefficient for race, allowing us

to  assess  this  effect  more  accurately.  If  all  the  zip  codes were homogeneous, we would never be able to discover an

effect  from  these  aggregated  data.  We  also  note  some

skewness  in  the  theft  and  income  variables.  The  response involact  has  a  large  number  of  zeros.  This  is  not  good  for the  assumptions  of  the  linear  model  but  we  have  little choice  but  to  proceed.  We  will  not  use  the  information about north versus south side until later. 

Numerical  summaries  alone  are  insufficient.  Plots  of  the response  against  each  of  the  predictors  will  provide

essential  understanding  for  choosing  appropriate  models

later. Let's construct these plots:

library (ggplot2)

ggplot (chredlin , aes (race , involact)) + geom_point () +

stat_smooth (method = "lm")

ggplot (chredlin , aes (fire , involact)) + geom_point () +

stat_smooth (method = "lm")

ggplot (chredlin , aes (theft , involact)) + geom_point () +

stat_smooth (method = "lm")

ggplot (chredlin , aes (age , involact)) + geom_point () +

stat_smooth (method = "lm")

ggplot (chredlin , aes (income , involact)) + geom_point () +

stat_smooth (method = "lm")

ggplot (chredlin , aes (side , involact)) +

geom_point (position = position_jitter (width = .2 , height 

=0))

The plots are seen in Figure 13.2.  We have superimposed a linear  fit  to  each  pair  of  variables  with  a  95%  confidence

[image: Image 75]

band  shown  in  grey.  Strong  relationships  can  be  seen  in several of the plots. We can see some outlier and influential

points. We can also see that the fitted line sometimes goes

below  zero  which  is  problematic  since  observed  values  of the  response  cannot  be  negative.  Jittering  has  been  added in the final plot to avoid overplotting of symbols. Let's focus on the relationship between involact and race:

Long Description for Figure 13.2

Figure 13.2  Plots of the Chicago insurance data. 

summary (lm (involact ~ race, chredlin))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)  0.12922     0.09661    1.34     0.19

race         0.01388     0.00203    6.84  1.8e-08



Residual standard error: 0.449 on 45 degrees of freedom

Multiple R-squared: 0.509,       Adjusted R-squared: 0.499

F-statistic: 46.7 on 1 and 45 DF,        p-value: 1.78e-08

We  can  clearly  see  that  homeowners  in  zip  codes  with  a high  percentage  of  minorities  are  taking  the  default  FAIR

plan insurance at a higher rate than other zip codes. That is

not in doubt. However, can the insurance companies claim

that  the  discrepancy  is  due  to  greater  risks  in  some  zip codes?  The  insurance  companies  could  claim  that  they

were  denying  insurance  in  neighborhoods  where  they  had

sustained  large  fire-related  losses  and  any  discriminatory effect was a by-product of legitimate business practice. We

plot  some  of  the  variables  involved  by  this  question  in

Figure 13.3. 

ggplot (chredlin , aes (race , fire)) + geom_point () +

stat_smooth (method = "lm")

ggplot (chredlin , aes (race , theft)) + geom_point () +

stat_smooth (method = "lm")
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Figure  13.3   Relationship  between  fire,  theft  and  race  in the Chicago data. 

We can see that there is indeed a relationship between the

fire rate and the percentage of minorities. We also see that

there  is  a  large  outlier  that  may  have  a  disproportionate effect  on  the  relationship  between  the  theft  rate  and  the percentage of minorities. 

The  question  of  which  variables  should  also  be  included in the regression so that their effect may be adjusted for is

difficult.  Statistically,  we  can  do  it,  but  the  important question is whether it should be done at all. For example, it

is  known  that  the  incomes  of  women  in  the  United  States and other countries are generally lower than those of men. 

However, if one adjusts for various predictors such as type

of  job  and  length  of  service,  this  sex  difference  is  reduced or can even disappear. The controversy is not statistical but

political  —  should  these  predictors  be  used  to  make  the adjustment? 

For the present data, suppose that the effect of adjusting

for  income  differences  was  to  remove  the  race  effect.  This would  pose  an  interesting,  but  non-statistical  question.  I have  chosen  to  include  the  income  variable  in  the  analysis just to see what happens. 

I  have  decided  to  use  log(income)  partly  because  of

skewness in this variable, but also because income is better

considered on a multiplicative rather than additive scale. In

other  words,  $1,000  is  worth  a  lot  more  to  a  poor  person than  a  millionaire  because  $1,000  is  a  much  greater

fraction of the poor person's wealth. 

13.3 Full Model and Diagnostics

We start with the full model:

lmod = lm (involact ~ race + fire + theft + age + log (income), chredlin)

summary (lmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.18554    1.10025   -1.08 0.28755

race         0.00950    0.00249    3.82 0.00045

fire         0.03986    0.00877    4.55 4.8e-05

theft       -0.01029    0.00282   -3.65 0.00073

age          0.00834    0.00274    3.04 0.00413

log(income) 0.34576     0.40012    0.86 0.39254



Residual standard error: 0.335 on 41 degrees of freedom

Multiple R-squared: 0.752,      Adjusted R-squared: 0.721

F-statistic: 24.8 on 5 and 41 DF,       p-value: 2.01e-11
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Before  leaping  to  any  conclusions,  we  should  check  the model assumptions. These two diagnostic plots are seen in

Figure 13.4:

plot (lmod ,1:2)

Long Description for Figure 13.4

Figure  13.4   Diagnostic  plots  of  the  initial  model  for  the Chicago insurance data. 

The  diagonal  streak  in  the  residual-fitted  plot  is  caused  by the large number of zero response values in the data. When

 y = 0, the residual ^ ϵ = −^ y = − xT ^

 β, hence the line. Turning

a  blind  eye  to  this  feature,  we  see  no  particular  problem. 

The  Q–Q  plot  looks  fine  too.  This  is  reassuring  since  we know  from  the  form  of  the  response  with  so  many  zero values, that it cannot possibly be normally distributed. We'll rely on the central limit theorem, the size of the sample and
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the  lack  of  long-tailed  or  skewed  residuals  to  be

comfortable with the reported  p-values. 

We  now  look  for  transformations.  We  try  some  partial

residual plots as seen in Figure 13.5:

termplot (lmod, partial.resid=TRUE , terms=1:2)

Figure 13.5  Partial residual plots for race and fire. 

These  plots  indicate  no  need  to  transform.  It  would  have been inconvenient to transform the race variable since that

would have made interpretation more difficult. Fortunately, 

we do not need to worry about this. We examined the other

partial  residual  plots  and  experimented  with  polynomials for  the  predictors.  No  transformation  of  the  predictors appears to be worthwhile. 

We choose to avoid a transformation of the response. The

zeros in the response would have restricted the possibilities

and  furthermore  would  have  made  interpretation  more

difficult.  A  square  root  transformation  is  possible  but whatever  slim  advantage  this  might  offer,  it  makes

explanation more problematic. 

13.4 Sensitivity Analysis

How  robust  is  our  conclusion  to  the  choice  of  covariates used to adjust the response? In the full model used earlier, 

we  used  all  four  covariates  but  we  may  wonder  how

sensitive  our  findings  are  to  this  choice.  Certainly,  one might  question  whether  we  should  adjust  the  response  for the  average  income  of  the  zip  code.  Other  objections  or uncertainties  might  be  raised  by  the  use  of  the  other covariates also. 

We can investigate these concerns by fitting other models

that  vary  the  choice  of  adjusting  covariates.  In  this

example,  there  are  four  such  covariates  and  so  there  are only 16 possible combinations in which they may be added

to  the  model.  It  is  practical  to  fit  and  examine  all  these models. 

The  mechanism  for  creating  all  16  models  is  rather

complex  and  you  may  wish  to  skip  to  the  output.  The  first line  creates  all  subsets  of  (1, 2, 3, 4).  The  second  line creates the predictor part of the model formulae by pasting

together  the  chosen  variables.  We  then  iterate  over  all  16

models, saving the terms of interest for the race variable:

listcombo = unlist (sapply (0:4, function (x)

combn (4, x, simplify = FALSE)) , recursive = 

FALSE)

predterms = lapply (listcombo , function (x)

paste (c ("race", c ("fire" , "theft" , "age" , "log (income)") [x]) , 

collapse = " + "))

coefm = matrix (NA ,16 ,2)

for (i in 1:16) {

lmi = lm (as.formula (paste ("involact ~ " , predterms 

[[i]])) , 

data = chredlin)

coefm [i,] = summary (lmi)$coef [2 , c (1 ,4) ]

}

rownames (coefm) = predterms

colnames (coefm) = c ("beta", pvalue")

round (coefm,4)

beta pvalue

race                              0.0139 0.0000

race+fire                         0.0089 0.0002

race+theft                        0.0141 0.0000

race+age                          0.0123 0.0000

race+log(income)                  0.0082 0.0087

race+fire+theft                   0.0082 0.0002

race+fire+age                     0.0089 0.0001

race+fire+log(income)             0.0070 0.0160

race+theft+age                    0.0128 0.0000

race+theft+log(income)            0.0084 0.0083

race+age+log(income)              0.0099 0.0017

race+fire+theft+age               0.0081 0.0001

race+fire+theft+log(income)       0.0073 0.0078

race+fire+age+log(income)         0.0085 0.0041

race+theft+age+log(income)        0.0106 0.0010

race+fire+theft+age+log(income)   0.0095 0.0004

The output shows the  ^

 β 1 and the associated  p-values for all

16  models.  We  can  see  see  that  the  value  of  ^

 β 1  varies

somewhat  with  a  high  value  about  double  the  low  value. 

But in no case does the  p-value rise above 5%. So although we  may  have  some  uncertainty  over  the  magnitude  of  the effect, we can be sure that the significance of the effect is

not sensitive to the choice of adjusters. 

Suppose  the  outcome  had  not  been  so  clear  cut  and  we were able to find models where the predictor of interest (in

this  case,  race)  was  not  statistically  significant.  The investigation  would  then  have  become  more  complex

because  we  would  need  to  consider  more  deeply  which

covariates  should  be  adjusted  for  and  which  not.  Such  a discussion  is  beyond  the  scope  of  this  book,  but  illustrates why causal inference is a difficult subject. 

We  should  also  be  concerned  about  whether  our

conclusions  are  sensitive  to  the  inclusion  or  exclusion  of  a small number of cases. Influence diagnostics are useful for

this purpose. We start with a plot of the differences in the

coefficient  caused  by  the  removal  of  one  point.  These  can be seen for the race variable in Figure 13.6. 

diags = data.frame (lm.influence (lmod)$coef)

ggplot (diags, aes (row.names (diags), race)) +

geom_linerange (aes (ymax=0 , ymin=race)) +

theme (axis.text.x=element_text (angle=90)) +

xlab ("ZIP") + geom_hline (yintercept=0)
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Figure  13.6   Leave-out-one  change  in  coefficient  values for  ^

 βrace. 

The  ggplot  function  requires  the  data  in  the  form  of  a  data frame.  We  extract  the  relevant  component  from  the  the

lm.influence  call  for  this  purpose.  We  can  see  that  the largest  reduction  is  about  0.001  which  would  be

insufficient  to  change  the  statistical  significance  of  this term. 

It  is  also  worth  considering  the  influence  on  the

adjustment 

covariates. 

We 

plot 

the 

leave-out-one

differences in  ^

 β for theft and fire:

ggplot (diags, aes (x=fire, y=theft)) +

geom_text (label=row.names (diags))

Let's  also  take  a  look  the  standardized  residuals  and

leverage  which  can  be  conveniently  constructed  using  the default plot function for a linear model object:

plot (lmod ,5)
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See  Figure  13.7  where  zip  codes  60607  and  60610  stick out.  It  is  worth  looking  at  other  leave-out-one  coefficient plots  also.  We  also  notice  that  there  is  no  standardized residual extreme enough to call an outlier. Let's take a look

at the two cases:

chredlin [ c (" 60607 " ," 60610 ") ,]

race fire theft age involact income side

60607 50.2 39.7   147 83.0     0.9 7.459     n

60610 54.0 34.1    68 52.6     0.3 8.231     n

Long Description for Figure 13.7

Figure  13.7   Plot  of  the  leave-out  one  coefficient differences  is  shown  on  the  left.  Plot  of  the  standardized residuals against the leverages is shown on the right

These  are  high  theft  and  fire  zip  codes.  See  what  happens when we exclude these points:

match (c ("60607" , "60610"), row.names (chredlin))

[1] 24   6

lmode = lm (involact ~ race + fire + theft + age + log 

(income), 

chredlin , subset = - c (6 ,24))

summary (lmode)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.57674    1.08005   -0.53    0.596

race         0.00705    0.00270    2.62    0.013

fire         0.04965    0.00857    5.79    1e-06

theft       -0.00643    0.00435   -1.48    0.147

age          0.00517    0.00289    1.79    0.082

log(income) 0.11570     0.40111    0.29    0.775



Residual standard error: 0.303 on 39 degrees of freedom

Multiple R-squared: 0.804,      Adjusted R-squared: 0.779

F-statistic:   32 on 5 and 39 DF,          p-value: 8.19e-13

The predictors theft and age are no longer significant at the

5%  level.  The  coefficient  for  race  is  reduced  compared  to the full data fit but remains statistically significant. 

So  we  have  verified  that  our  conclusions  are  also  robust to the exclusion of one or perhaps two cases from the data. 

This is reassuring since a conclusion based on the accuracy

of  measurement  for  a  single  case  would  be  a  cause  for concern.  If  this  problem  did  occur,  we  would  need  to  be particularly  sure  of  these  measurements.  In  some

situations,  one  might  wish  to  drop  such  influential  cases but  this  would  require  strong  arguments  that  such  points were in some way exceptional. In any case, it would be very

important to disclose this choice in the analysis. 

Now  if  we  try  very  hard  to  poke  a  hole  in  our  result,  we can find this model where two cases have been dropped:

modalt = lm (involact ~ race + fire + log (income) , chredlin , subset=-c (6,24))

summary (modalt)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.57674    1.08005   -0.53    0.596

race         0.00705    0.00270    2.62    0.013

fire         0.04965    0.00857    5.79    1e-06

theft       -0.00643    0.00435   -1.48    0.147

age          0.00517    0.00289    1.79    0.082

log(income) 0.11570     0.40111    0.29    0.775



Residual standard error: 0.303 on 39 degrees of freedom

Multiple R-squared: 0.804,      Adjusted R-squared: 0.779

F-statistic:   32 on 5 and 39 DF,          p-value: 8.19e-13

In  this  model,  race  no  longer  meets  the  threshold  for significance.  However,  there  is  no  compelling  reason  to advocate  for  this  model  against  the  large  weight  of  other alternatives we have considered. 

This illustrates a wider problem with regression modeling

in  that  the  data  usually  do  not  unequivocally  suggest  one particular  model.  It  is  easy  for  independent  analysts  to apply  similar  methods  but  in  different  orders  and  in

somewhat  different  ways  resulting  in  different  model

choices.  See  Faraway  (1994)  for  some  examples.  For  this reason,  the  good  analyst  explores  the  data  thoroughly  and considers  multiple  models.  One  might  settle  on  one  final model,  but  confidence  in  the  conclusions  will  be  enhanced if  it  can  be  shown  that  competing  models  result  in  similar conclusions. Our analysis in this chapter demonstrates this

concern  for  alternatives  but  there  is  an  unavoidable

reliance on human judgement. An unscrupulous analyst can explore  a  large  number  of  models  but  report  only  the  one that favors a particular conclusion. 

A related concept is  model uncertainty. We surely do not know  the  true  model  for  this  data  and  somehow  our

conclusions  should  reflect  this.  The  regression  summary

outputs  provide  standard  errors  and   p-values  that  express our uncertainty about the parameters of the model but they

do  not  reflect  the  uncertainty  about  the  model  itself.  This means  that  we  will  tend  to  be  more  confident  about  our inferences than is justified. There are several possible ways

to  mitigate  this  problem.  One  simple  approach  is  data

splitting  as  is  used  in  the  running  example  on  the  meatspec data in Chapter 12.  Another idea is to bootstrap the whole data  analysis  as  demonstrated  by  Faraway  (1992). 

Alternatively, it may be possible to use  model averaging as in Raftery, Madigan, and Hoeting (1997). 

13.5 Discussion

There  is  some  ambiguity  in  the  conclusion  here.  These

reservations  have  several  sources.  There  is  some  doubt

because  the  response  is  not  a  perfect  measure  of  people being  denied  insurance.  It  is  an  aggregate  measure  that raises  the  problem  of  ecological  correlations.  We  have

implicitly  assumed  that  the  probability  that  a  minority homeowner  would  obtain  a  FAIR  plan  after  adjusting  for the  effect  of  the  other  covariates  is  constant  across  zip codes.  This  is  unlikely  to  be  true.  If  the  truth  is  simply  a

variation  about  some  constant,  then  our  conclusions  will still  be  reasonable,  but  if  this  probability  varies  in  a systematic way, then our conclusions may be off the mark. 

It would be a very good idea to obtain some individual level

data. 

We  have  demonstrated  statistical  significance  for  the

effect of race on the response. But statistical significance is not the same as practical significance. The largest value of

the response is only 2.2% and most other values are much

smaller.  Using  our  preferred  models,  the  predicted

difference  between  0%  minority  and  100%  minority  is

about 1%. So while we may be confident that some people

are affected, there may not be so many of them. We would

need to know more about predictors like insurance renewal

rates  to  say  much  more  but  the  general  point  is  that  the size  of  the   p-value  does  not  tell  you  much  about  the practical size of the effect. 

There  is  also  the  problem  of  a  potential  latent  variable that  might  be  the  true  cause  of  the  observed  relationship. 

Someone  with  first-hand  knowledge  of  the  insurance

business might propose one. This possibility always casts a

shadow of doubt on our conclusions. 

Another  issue  that  arises  in  cases  of  this  nature  is  how much the data should be aggregated. For example, suppose

we fit separate models to the two halves of the city. Fit the

model to the south of Chicago:

lmod = lm (involact ~ race + fire + theft + age, 

subset =(side == "s") , chredlin)

summary (lmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.23441    0.23774   -0.99    0.338

race         0.00595    0.00328    1.81    0.087

fire         0.04839    0.01689    2.87    0.011

theft       -0.00664    0.00844   -0.79    0.442

age          0.00501    0.00505    0.99    0.335



Residual standard error: 0.351 on 17 degrees of freedom

Multiple R-squared: 0.743,      Adjusted R-squared: 0.683

F-statistic: 12.3 on 4 and 17 DF,          p-value: 6.97e-05

and now to the north:

lmod = lm (involact ~ race+fire+theft+age , 

subset =(side == "n") , chredlin)

summary (lmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.31857    0.22702   -1.40    0.176

race         0.01256    0.00448    2.81    0.011

fire         0.02313    0.01398    1.65    0.114

theft       -0.00758    0.00366   -2.07    0.052

age          0.00820    0.00346    2.37    0.028



Residual standard error: 0.343 on 20 degrees of freedom

Multiple R-squared: 0.756,      Adjusted R-squared: 0.707

F-statistic: 15.5 on 4 and 20 DF,          p-value: 6.52e-06

We  see  that  race  is  significant  in  the  north,  but  not  in  the south. By dividing the data into smaller and smaller subsets

it is possible to dilute the significance of any predictor. On the  other  hand,  it  is  important  not  to  aggregate  all  data without  regard  to  whether  it  is  reasonable.  Clearly  a

judgment  has  to  be  made  and  this  can  be  a  point  of contention in legal cases. 

There  are  some  special  difficulties  in  presenting  this

during  a  court  case.  With  scientific  inquiries,  there  is always room for uncertainty and subtlety in presenting the

results, particularly if the subject matter is not contentious. 

In  an  adversarial  proceeding,  it  is  difficult  to  present statistical evidence when the outcome is not clear-cut, as in

this example. There are particular difficulties in explaining

such evidence to non-mathematically trained people. 

After  all  this  analysis,  the  reader  may  be  feeling

somewhat  dissatisfied.  It  seems  we  are  unable  to  come  to any  truly  definite  conclusions  and  everything  we  say  has been hedged with “ifs” and “buts.” Winston Churchill once

said:

Indeed,  it  has  been  said  that  democracy  is  the  worst

form  of  Government  except  all  those  other  forms  that

have been tried from time to time. 

We might say the same about statistics with respect to how

it  helps  us  reason  in  the  face  of  uncertainty.  It  is  not entirely satisfying but the alternatives are worse. 

Exercises

The  exercises  for  the  other  chapters  consist  of  specific questions  with  definite  answers.  But  while  these  exercises are helpful in building skills in statistical data analysis, they

are  only  parts  of  the  larger  whole  seen  in  a  statistical investigation of a real-world problem. 

In  the  bigger  picture,  we  start  by  understanding  the

background  to  the  data  and  the  qualitative  questions  that are  being  asked  by  those  knowledgeable  in  the  particular application.  We  choose  statistical  methods  designed  to

answer those questions. We need to translate the statistical

answers  we  find  into  general  communicable  feedback  that will  be  useful  to  those  interested  in  the  application.  We cannot  practice  this  process  with  a  numbered  list  of

specific  questions  —  we  need  to  construct  a  project  with sufficient  background  detail  and  realistic  non-statistical questions.  The  student  needs  to  confront  the  problems  of formulating 

the 

statistical 

questions, 

choosing 

the

appropriate methodology and communicating the results. 

Good statistical data analysis projects should be uniquely

constructed.  An  off-the-shelf  project  will  not  work  because previous analyses will be easily found via internet searches

and  more-or-less  replicated,  even  if  they  are  not  of  high quality. 

We  need  fresh  data  and  we  need  to  look  on  the  less

travelled  parts  of  the  internet.  Many  scientific  papers publish  their  data.  Although  the  published  analyses  may address a different topic, the data and the background can

be  adapted  to  create  a  new  problem.  Another  idea  is  to merge two datasets with the same units as this will create a

unique combination. Sometimes, we can simulate data from

a known analysis in which we create new variations. This is

also  helpful  when  the  original  data  is  confidential.  Real data  often  comes  with  imperfections.  It's  best  to  leave these in to allow for a realistic experience. 

Questions  should  be  posed  in  natural  not  statistical

language. 

This 

is 

more 

realistic 

since 

statistical

practitioners  often  need  to  translate  the  informal  into  a formal  statistical  question.  There  are  two  main  choices  in the  required  format.  One  can  ask  for  an  entirely

reproducible report using markdown or Jupyter notebooks. 

This exposes the whole process to examination. In contrast, 

statistical  reports  for  more  general  consumption  do  not contain code and output. One can also ask for the results to

be  presented  this  way  with  the  reproducible  part  as  a separate  document.  Strong  guidance  on  the  length  of  the report  will  be  necessary.  Students  quickly  learn  how  to produce  large  quantities  of  output  but  reducing  this  to  a concise quality report is more challenging. 

Assessing  statistical  reports  is  not  straightforward. 

Students will inevitably do substantially different analyses. 

Some aspects may be definitively wrong but other attempts

may represent supportable alternative analyses. Qualitative

feedback on choices is always helpful but assigning a grade

or  mark  involves  some  subjective  judgement.  It  may  be

appropriate to view the report more like a humanities essay

and  use  assessment  methods  from  that  field  of  study. 

Beyond the classroom, statistical reports will usually not be

assessed  with  subdivided  numerical  scores,  so  the

subjective approach is more realistic. 

Chapter 14

Missing Data

DOI: 10.1201/9781003449973-14

Missing  values  in  data  is  a  frequent  problem  in  linear modeling  that  cannot  be  ignored.  It  can  lead  to  bias  and inefficient  estimation.  In  this  chapter,  we  survey  methods of dealing with missing data. 

14.1 Types of Missing Data

Here are some of the ways that missing data can arise in a

regression setting:

Missing cases Sometimes we fail to observe a complete

case ( xi,  yi). Indeed, when we draw a sample from a population, we do not observe the unsampled cases. 

When missing data arise in this manner, there is no

difficulty since this is the standard situation for much of

statistics. But sometimes there are cases we intended to

sample but failed to observe. If the reason for this failure

is unrelated to what would have been observed, then we

simply have a smaller sample and can proceed as normal. 

But when data are not observed for reasons that have

some connection to what we would have seen, then we have a biased sample. Sometimes, given enough

information about the mechanism for missingness, we

can make corrections and achieve valid inferences. 

Incomplete values Suppose we run an experiment to

study the lifetimes of light bulbs. We might run out of

time waiting for all the light bulbs to die and decide to

end the experiment. These incomplete cases would

provide the information that a bulb lasted at least some

amount of time but we would not know how long it would

have lasted had we waited until it died. Similar examples

arise in medical trials where patient final outcomes are

not known. Such cases are said to be  censored. In

biomedical applications, the methods of  survival analysis are applicable. For engineering applications, the same or

similar methods are used but are called  reliability

analysis. Social scientists might call it  event history

analysis. Actuaries have long used these methods for life

insurance problems. 

Missing values Sometimes we observe some components

of a case but not others. We might observe the values of

some predictors but not others. Perhaps the predictors

are observed but not the response. 

In this chapter, we cover the missing value problem. Biased

sampling due to missing cases can sometimes be mitigated

by  covariate  adjustment  while  methods  for  analyzing

censored data may be found in other books. 

What can be done? Finding the missing values is the best option,  but  this  may  not  be  possible  because  the  values were  never  recorded  or  were  lost  in  the  data  collection process.  Next,  ask  why  the  data  are  missing.  We  can

distinguish several kinds of missingness:

Missing Completely at Random (MCAR) The probability

that a value of a specified variable is missing is the same

for all cases. If we simply delete all cases with missing

values from the analysis, we will cause no bias, although

we may lose some information. 

Missing at Random (MAR) The probability of a value

being missing depends on a known mechanism. For

example, in social surveys, certain groups are less likely

to provide information than others. As long as we know

the group membership of the individual being sampled, 

then this is an example of MAR. We can delete these

missing cases provided we adjust for the group

membership by including this as a factor in the

regression model. We will see later how we may do better

than simply deleting such cases. 

Missing not at Random (MNAR) The probability that a

value is missing depends on some unobserved variable

or, more seriously, on what value would have been

observed. For example, people who have something to

hide are typically less likely to provide information that

might reveal something embarrassing or illegal. 

Dealing with the MNAR case is difficult or even impossible

so we confine our attention to MAR or MCAR problems. 

The distinction between MCAR, MAR and MNAR is due to

Rubin  (1976)  but  many  have  found  the  choice  of  names confusing.  In  Hand  (2020),   an  alternative  terminology  is presented:

Not Data Dependent (NDD) meaning that values are

missing for reasons unrelated to the data. 

Seen Data Dependent (SDD) meaning that values are

missing for reasons related to the data which you have

available. 

Unseen Data Dependent (UDD) meaning that values are

missing for reasons related to data that you cannot see. 

Determining  the  type  of  missingness  for  data  usually

requires judgement alone. There are no obvious diagnostic

methods  to  check  since  the  data  we  need  for  such  checks are missing. 

14.2 Deletion

In  this  section,  we  focus  on  deleting  cases  (rows)  with missing  values  but  it  may  be  sensible  to  delete  variables (columns).  If  a  variable  has  a  large  proportion  of  missing values,  it  may  not  contribute  much  value  to  the  predictive or  explanatory  purposes  of  a  model.  Some  judgment  is

required in making this decision but having more complete

data  on  correlated  variables  would  make  the  decision  to remove a variable with many missing cases easier. 

Suppose  some  of  the  values  in  the  Chicago  insurance

dataset  were  missing.  I  randomly  declared  some  of  the

observations missing in this modified dataset:

data (chmiss , package = "faraway") chmiss

race fire theft age involact income

60626 10.0  6.2     29 60.4      NA 11.744

60640 22.2  9.5     44 76.5     0.1  9.323

60613 19.6 10.5     36   NA     1.2  9.948

60657 17.3  7.7     37   NA     0.5 10.656

--- etc ---

60645   3.1 4.9     27   NA     0.0 13.731

Sometimes,  we  are  warned  that  there  are  missing  values and  we  should  always  be  alert  to  this  possibility  in  our initial data analysis. Missing values are not always encoded

as NA. See for example the pima dataset analyzed in Section

1.2  where  a   0  code  was  used.  It  is  sensible  to  check  any

documentation  about  the  data  for  information  about

missing values and their coding. For a small dataset, simply

looking  at  the  data  reveals  the  problem.  For  larger

datasets,  we  might  use  the  standard  summary  reports  on missing values:

summary (chmiss)

race            fire           theft            age

Min.   : 1.00   Min.   : 2.0    Min.   : 3.0    Min.   : 2.0

1st Qu.: 3.75   1st Qu.: 5.6    1st Qu.: 22.0   1st Qu.:48.3

Median :24.50   Median : 9.5    Median : 29.0   Median :64.4

Mean   :35.61   Mean   :11.4    Mean   : 32.7   Mean   :60.0

3rd Qu.:57.65   3rd Qu.:15.1    3rd Qu.: 38.0   3rd Qu.:78.2

Max.   :99.70   Max.   :36.2    Max.   :147.0   Max.   :90.1

NA's   :4       NA's   :2       NA's   :4       NA's   :5

involact         income

Min.   :0.000   Min.   : 5.58

1st Qu.:0.000   1st Qu.: 8.56

Median :0.500   Median :10.69

Mean   :0.648   Mean   :10.74

3rd Qu.:0.925   3rd Qu.:12.10

Max.   :2.200   Max.   :21.48

NA's   :3       NA's   :2

We can see missing values in all variables. It is also helpful to see how many missing values appear in each case. 

rowSums (is . na (chmiss))

60626   60640   60613   60657   60614   60610   60611   60625   

60618   60647   60622

1       0       1       1       0       0       0       0    

1       1       0

60631   60646   60656   60630   60634   60641   60635   60639   

60651   60644   60624

0       1       0       0       1       0       0       0    

1       1       0

60612   60607   60623   60608   60616   60632   60609   60653   

60615   60638   60629

0       1       0       1       1       0       1       0    

0       0       1

60636   60621   60637   60652   60620   60619   60649   60617   

60655   60643   60628

0       1       0       0       1       0       1       1    

0       0       1

60627   60633   60645

0       0       1

We see there is at most one missing value in each row. We

can  also  plot  the  missing  value  information  as  seen  in

Figure  14.1.  In  this  example,  the  missing  cases  are  evenly scattered  throughout  the  data.  In  some  cases,  the  missing values  are  concentrated  in  some  variables  or  cases.  This can  make  it  easier  to  drop  variables  from  the  analysis  or

[image: Image 81]

delete  cases  without  losing  much  information.  But  in  this example,  deleting  the  missing  cases  will  lose  20  out  of  47

observations. 

image (is . na (chmiss), axes=FALSE, col=gray (1:0))

axis (2, at=0:5/5, labels=colnames (chmiss), las=1)

axis (1, at=0:46/46, labels=row.names (chmiss), 

las=2 , cex.axis=0.75)

Figure  14.1   Missing  values  in  the  simulated  Chicago insurance data. 

Let's  see  what  happens  when  we  use  a  deletion  strategy. 

First consider the full data fit for comparison purposes:

data (chredlin, package="faraway")

modfull = lm (involact ~ . , chredlin)

summary (modfull)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.62909    0.51199   -1.23   0.2264

race         0.00890    0.00264    3.37   0.0017

fire         0.03907    0.00864    4.52  5.3e-05

theft       -0.01021    0.00292   -3.49   0.0012

age          0.00842    0.00292    2.88   0.0063

income       0.02470    0.03209    0.77   0.4461

sides        0.02403    0.12505    0.19   0.8486



Residual standard error: 0.339 on 40 degrees of freedom

Multiple R-squared: 0.751,      Adjusted R-squared: 0.714

F-statistic: 20.1 on 6 and 40 DF,          p-value: 1.12e-10

Of  course,  we  would  not  be  able  to  see  such  output  in practice. Now compare this to a fit to the missing version of

the data:

modmiss = lm (involact ~ . , chmiss)

summary (modmiss)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.11648    0.60576   -1.84 0.07947

race         0.01049    0.00313    3.35 0.00302

fire         0.04388    0.01032    4.25 0.00036

theft       -0.01722    0.00590   -2.92 0.00822

age          0.00938    0.00349    2.68 0.01390

income       0.06870    0.04216    1.63 0.11808



Residual standard error: 0.338 on 21 degrees of freedom

(20 observations deleted due to missingness)

Multiple R-squared: 0.791,      Adjusted R-squared: 0.741

F-statistic: 15.9 on 5 and 21 DF,          p-value: 1.59e-06

The  default  behavior  of  the  lm  function  is  to  omit  any  case with  missing  values.  We  are  left  with  only  27  complete cases  for  the  regression.  We  can  see  that  the  standard errors  are  larger  for  the  missing  version  because  we  have

less  data  to  fit  the  model  and  so  the  estimates  are  less precise. 

We can obtain a list of the missing cases with:

na.action (modmiss)

60626 60613 60657 60618 60647 60646 60634 60651 60644 60607 

60608 60616 60609 60629

1     3     4     9    10    13    16    20    21    24    

26    27    29    33

60621 60620 60649 60617 60628 60645

35    38    40    41    44    47

Note  that  we  do  not  always  use  all  the  variables  in  the dataframe so the deleted cases from the model may be less

than  the  number  of  rows  in  the  dataframe  with  missing values. 

R  handles  missing  values  in  different  ways.  Simple

functions such as:

mean(c(1,NA,3))

[1] NA

fail  if  there  are  any  missing  values.  One  needs  to  ask explicitly for their deletion:

mean (c (1 , NA ,3) , na . rm = TRUE)

[1] 2

For  linear  models  and  some  other  modeling  functions,  the default behavior is taken from the options:

options () $ na.action

[1] "na.omit" 

which  means  that  all  cases  which  contain  a  missing  value are omitted from data so that a complete dataset is passed

to  the  fitting  algorithm.  One  disadvantage  is  that information  about  the  missing  cases  is  not  retained  in  the derived model quantities such as:

length (residuals (modmiss))

[1] 27

where  the  original  dataset  contains  47  cases.  One  can

retain  placeholders  for  these  missing  values  with  another na.action:

modexc = lm (involact ~ . , chmiss , na . action = na . 

exclude)

head (residuals (modexc))

60626     60640   60613   60657      60614     60610

NA -0.033276      NA      NA   0.663164 -0.533699

In  some  cases,  the  default  removal  of  missing  values  may not  be  acceptable  and  some  intervention  may  be  required. 

This would arise in more non-interactive analyses where we

might  want  the  model  fitting  to  fail  in  the  presence  of missing data because this may be a sign of a more serious

problem.  We  can  ensure  failure  of  the  model  fit  with  the na.fail option:

try (

expr ={

lm (involact ~ . , chmiss , na . action = na . fail)

}

)

Error in na.fail.default(list(involact = c(NA, 0.1, 1.2, 0.5, 

0.7, 0.3,   :

missing values in object

The  try()  construction  is  useful  when  we  suspect  an  R

expression may exit with an error. This is not a big problem

in  interactive  use  because  we  can  immediately  deal  with the  error  as  we  see  fit.  In  a  script,  usually  no  further commands  would  be  executed  but  using  try()  will  report the error but continue the execution. See the help page for

try() and tryCatch() for more details on error handling. 

Deleting  missing  cases  is  the  simplest  strategy  for

dealing  with  missing  data.  Some  writers  call  this  the

 listwise  deletion  or  the   complete  case  strategy.  It  avoids the complexity and possible biases introduced by the more

sophisticated  methods  that  we  will  discuss.  The  drawback is that we are throwing away information that might allow

more  precise  inference.  A  decision  on  whether  deletion  is an  acceptable  missing  data  strategy  depends  on  the

circumstances.  If  relatively  few  cases  contain  missing

values, if deleting missing cases still leaves a large dataset or  if  you  wish  to  communicate  a  simple  data  analysis

method, the deletion strategy is satisfactory. 

14.3 Single Imputation

A  simple  solution  to  the  problem  is  to  fill  in  or   impute  the missing  values.  For  example,  we  can  fill  in  the  missing values by the variable means:

(cmeans = colMeans (chmiss , na . rm = TRUE))

race     fire    theft      age involact  income

35.60930 11.42444 32.65116 59.96905 0.64773 10.73587

mchm = chmiss

for (i in c (1:4 ,6)) mchm [ is . na (chmiss [ , i ]) ,i ] = 

cmeans [ i ]

We  do  not  fill  in  missing  values  in  the  response  because this is the variable we are trying to model. The cases with a

missing  response  still  have  some  value  in  imputing  the other missing predictor values. Now refit:

imod = lm (involact ~ . , mchm)

summary (imod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.07080     0.50945    0.14    0.890

race         0.00712    0.00271    2.63    0.012

fire         0.02874    0.00939    3.06    0.004

theft       -0.00306    0.00275   -1.11    0.272

age          0.00608    0.00321    1.90    0.066

income      -0.02709    0.03168   -0.86    0.398



Residual standard error: 0.384 on 38 degrees of freedom

(3 observations deleted due to missingness)

Multiple R-squared: 0.682,      Adjusted R-squared: 0.64

F-statistic: 16.3 on 5 and 38 DF,          p-value: 1.41e-08

There  are  some  important  differences  between  these  two

fits.  For  example,  theft  and  age  are  significant  in  the  first fit,  but  not  in  the  second.  Also,  the  regression  coefficients are now all closer to zero. The situation is analogous to the

errors  in  variables  case.  The  bias  introduced  by  the  fill-in method can be substantial and may not be compensated for

by  the  attendant  reduction  in  variance.  For  this  reason, mean  imputation  is  not  recommended  except  where  the

fraction  of  filled  values  is  very  small.  But  in  this  situation, deletion is easier to use and justify. 

Missing  values  may  also  arise  for  categorical  variables. 

We can impute with the most common level or category of

the  variable.  Alternatively,  a  missing  value  can  simply  be regarded  as  an  additional  level  of  the  variable  so,  for example, we might have male, female and unknown levels. 

A more sophisticated alternative to mean imputation is to

use regression methods to predict the missing values of the

covariates. Let's try to fill in the missing race values:

lmodr = lm (race ~ fire + theft + age + income , chmiss)

chmiss [ is . na (chmiss $ race) ,]

race   fire theft age involact income

60646     NA    5.7    11 27.9     0.0 16.250

60651     NA   15.1    30 89.8     0.8 10.510

60616     NA   12.2    46 48.0     0.6  8.212

60617     NA   10.8    34 58.0     0.9 11.156

predict (lmodr, chmiss [is.na (chmiss$race),])

60646    60651    60616    60617

-17.847   26.360   70.394   32.620

Notice  that  the  first  prediction  is  negative.  One  trick  that can be applied when the response is bounded between zero

and one is the logit transformation:

 y → log( y/(1 −  y))

(14.1)

This  transformation  maps  the  interval  to  the  whole  real line.  The  logit  function  and  its  inverse  are  defined  in  the faraway  package.  We  now  fit  the  model  with  a  logit-

transformed  response  and  then  back  transform  the predicted values, remembering to convert our percentages

to proportions and vice versa at the appropriate times:

library (faraway)

lmodr = lm (logit (race / 100) ~ fire + theft + age + income , chmiss)

ilogit (predict (lmodr , chmiss [ is . na (chmiss $ race) ,])) 

* 100

60646    60651    60616    60617

0.41909 14.73202 84.26540 21.31213

We can see how our predicted values compare to the actual

values:

chredlin$race [is.na (chmiss$race)]

[1]   1.0 13.4 62.3 36.4

Our  first  two  predictions  are  good,  but  the  other  two  are somewhat  wide  of  the  mark.  We  still  need  to  impute  the missing  values  for  the  other  predictors  which  will  take  us some manual effort. 

Like the mean fill-in method, the regression fill-in method

will also introduce a bias toward zero in the coefficients. It also  will  reduce  variance  estimates  leading  to  smaller  pvalues  and  narrow  confidence  intervals  than  can  be

justified.  The  success  of  the  regression  method  depends somewhat on the collinearity of the predictors — the filled-in  values  will  be  more  accurate  the  more  collinear  the predictors  are.  However,  for  collinear  data  one  might

consider  deleting  a  predictor  riddled  with  missing  values rather  than  imputing  because  other  variables  that  are

strongly  correlated  will  bear  the  predictive  load.  Even  so, this method is superior to mean-value imputation. 

14.4 Multiple Imputation

The single imputation methods described above cause bias

while  deletion  causes  a  loss  of  information  from  the  data. 

Multiple  imputation  is  a  way  to  reduce  the  bias  caused  by single  imputation.  The  problem  with  single  imputation  is that  the  imputed  value,  be  it  a  mean  or  a  regression-predicted value, tends to be less variable than the value we

would  have  seen  because  the  imputed  value  does  not

include  the  error  variation  that  would  normally  be  seen  in observed  data.  The  idea  behind  multiple  imputation  is  to reinclude  that  error  variation  —  we  add  back  on  the  error to  the  imputed  value.  Of  course,  if  we  only  did  this  once, the outcome would be an inferior single imputation method

so we repeat the imputation multiple times. 

Multiple imputation is implemented in several R packages

including  the  Amelia  package  of  Honaker,  King,  and

Blackwell (2011). There are various methods of performing

the  imputation,  depending  on  the  variable  type.  A  basic assumption  is  that  the  data  is  multivariate  normal.  The methodology is quite robust to this assumption but we need

to  make  modifications  in  some  cases.  Heavily  skewed

variables  are  best  log-transformed  before  imputation  and categorical  variables  need  to  be  declared  for  special

treatment.  These  issues  do  not  apply  for  the  insurance

data.  It  is  not  thought  necessary  to  repeat  the  imputation many times — we have used 25 in this instance:

library (Amelia)

set . seed (123)

chimp = amelia (chmiss , m =25)

You will notice that we have included the whole data frame

in  the  imputation  even  though  this  includes  the  income variable  that  we  shall  not  be  using.  This  variable  may contain  information  that  may  be  helpful  in  predicting

missing values in the variables we do include. Furthermore, 

inclusion  makes  the  MAR  assumption  more  tenable.  It  is also important that the imputation model used for imputing

the  values  be  at  least  as  rich  as  the  model  we  fit  to  the data. 

The Amelia package provides a convenient function for the

plotting of the pattern of missing values in the data:

missmap (chimp)

The  plot  (not  shown  here)  is  similar  to  Figure  14.1  but reorders  the  variables  according  the  proportion  of  missing values.  It  is  also  sensible  to  check  the  summary  of  the imputation with:

summary (chimp)

Amelia output with 25 imputed datasets. 

Return code: 1

Message: Normal EM convergence. 



Rows after Listwise Deletion: 27

Rows after Imputation: 47

Patterns of missingness in the data:   7



Fraction Missing for original variables:

-----------------------------------------



Fraction Missing

race               0.085106

fire               0.042553

theft              0.085106

age                0.106383

involact           0.063830

income             0.042553

We  have  deleted  information  on  the  chain  lengths  for  the EM  calculations  for  brevity.  We  see  there  is  no  problem with  the  EM  convergence.  We  also  get  some  other  useful information. 

We  can  now  fit  the  linear  model  to  each  of  the  25

imputed datasets and store the results about  ^

 β and  se(^

 β). 

imods = with (

chimp , 

lm (involact ~ race + fire + theft + age)

)

hatbeta = sapply (imods , coef)

sebeta = sapply (imods , function (x) summary (x) $ coef [ ,2]) We  can  combine  the  results  to  get  estimates  of  the

coefficients and their standard errors. Let  ^

 βij and  sij be the

estimates and standard errors for the  ith imputed result for i = 1, … ,  m  and  for  the   jth  parameter.  The  combined estimate  of  ^

 β  is  obtained  by  averaging  over  the

imputations:

^

1

 β

^

 j =

∑ β

 m

 ij

 i

(14.2)

and the combined standard errors are given by:

1

 s 2

∑

 j =

 s 2

 m

 ij + var  ^

 βj(1 + 1/ m)

 i

(14.3)

where  var  ^

 βj is the sample variance over the imputed  ^ βij. 

The mi.meld function makes these calculations:

cr = mi.meld (q=hatbeta , se=sebeta, byrow=FALSE)

We can compute the  t-statistics as:

cr$tstat = cr$q.mi / cr$se.mi

and display the results with:

dframe = t (do . call (rbind , cr))

dimnames (dframe) [[2]] = c ("estimate" , "SE" ,"t - 

statistic")

dframe

estimate        SE t-statistic

(Intercept) -0.2364977 0.1635680     -1.4459

race         0.0077599 0.0020430      3.7984

fire         0.0352359 0.0084288      4.1804

theft       -0.0086759 0.0046981     -1.8467

age          0.0072145 0.0025165      2.8668

Comparing  the  results  to  the  full  data  fit  seen  in  the  last chapter,  we  see  that  the  results  are  quite  close  excepting that the theft predictor is no longer statistically significant. 

We  can  improve  the  imputation.  All  the  variables  in  this problem  have  a  lower  bound  of  zero.  The  imputation  is based on a multivariate normal which has no bounds. Now

consider the race variable which has missing values for four

cases:

(ii = which (is.na (chmiss$race)))

[1] 13 20 27 41

Let's  see  what  values  are  imputed  in  the  first  imputed dataset:

chimp$imputations [[1]]$race [ii]

[1] -10.187   10.844   60.802   53.524

We see that the first imputed value is negative which is not

a  valid  value  for  a  percentage.  We  can  impose  bounds  for the variables as follows:

bds = cbind (1:6 , rep (0 ,6) ,c (100 , rep (1000 ,5)))

[,1] [,2] [,3]

[1,]      1    0  100

[2,]      2    0 1000

[3,]      3    0 1000

[4,]      4    0 1000

[5,]      5    0 1000

[6,]      6    0 1000

The  first  column  indexes  the  variables  in  the  order  they appear  in  the  dataframe.  The  second  column  is  the  lower

bound which is zero for all variables here. The third column is the upper bound. Only race has an upper bound of 100%

while  the  others  are  set  to  an  unfeasibly  large  value  that will never be breached. We run the imputation with:

bimp = amelia (chmiss , m=25 , bounds = bds)

The rest of the analysis proceeds as before. In this example, 

it does not make a big difference to the results, bearing in

mind this is a new random realization. 

Another  solution  to  the  bounded  variable  problem  is  to use transformation. We could make the transformations on

the  data  but  that  would  have  other  consequences.  It  is possible to make the transformation just for the imputation

to make the data closer to multivariate normal and finesse

the problem of bounds. In our example, we rescale the race

to [0,1]:

chmiss$race = chmiss$race/100

and  specify  transformation  to  be  used  during  the

imputation:

timp = amelia (chmiss, m=25 , lgstc=1 , sqrts=2:6)

The lgstc=1 indicates that we want the first variable, race to get  the  logistic  transformation  described  in  Equation

(14.1). This transforms a [0,1] bounded variable to the real

line. The sqrts=2:6 means that variables 2 through 6 get the

square  root  transform.  Only  positive  variables  can  receive this  transform.  When  they  are  transformed  back  by

squaring,  the  result  is  guaranteed  to  be  positive.  This enforces  positive  values  for  the  imputations  of  these

variables.  Using  a  log  transform  would  also  work  but  a square  root  is  better  for  variables  which  are  not  very skewed. 

The  Amelia  package  can  also  make  imputations  for

categorical 

variables. 

For 

larger 

problems, 

the

computations  can  be  usefully  parallelized  using  the

multiple cores found on most computers. 

See  Little  and  Rubin  (2002),   Schafer  (1997)  or

Raghunathan (2015) for more about missing data methods. 

The mice R package is also popular for handling missing data

problems. 

Exercises

1. The dataset kanga contains data on the skulls of historical kangaroo specimens. Ignore the sex and species variables

for the purposes of this question. 

(a)

Report  on  the  distribution  of  missing  values  within

the data according to case and variable. 

(b)

Determine  a  combination  of  variable  and  case

deletions that retains the most information. 

(c)

Compute  the  correlation  matrix.  For  the  variables

you  chose  to  delete  in  the  previous  part  of  the

question,  observe  the  correlation  with  other

variables.  Do  you  think  the  other  variables  will

adequately  represent  the  effect  of  the  dropped

variables? 

(d)

Which two variables would you be most reluctant to

drop? 

(e)

Compute  the  principal  components  analysis  (PCA), 

omitting  all  missing  cases,  where  all  the  variables

have  been  scaled  to  have  SD  1.  Report  on  the

standard deviation of the principal components. 

(f)

Perform  multiple  imputation  25  times,  applying

PCA  in  the  same  manner  to  each  of  the  imputed

datasets.  Combine  the  standard  deviations  of  the

principal  components  in  the  imputed  datasets. 

Compare your answer to the values obtained in the

previous question. 

2. The  dataset  galamiss  contains  the  Galapagos  data

frequently featured as an example in this text as gala but

with the original missing values left in. 

(a)

Fit  a  linear  model  using  gala  with  the  number  of

species  as  the  response  and  the  five  geographic

predictors as in earlier examples. 

(b)

Fit  the  same  model  to  galamiss  using  the  deletion

strategy for missing values. Compare the fit to that

in (a). 

(c)

Use  mean  value  single  imputation  on  galamiss  and

again fit the model. Compare to previous fits. 

(d)

Use  a  regression-based  imputation  using  the  other

four  geographic  predictors  to  fill  in  the  missing

values in galamiss. Fit the same model and compare to previous fits. 

(e)

Use  multiple  imputation  to  handle  missing  values

and fit the same model again. Compare to previous

fits. 

3. The pima dataset contains information on 768 adult female

Pima Indians living near Phoenix. 

(a)

The  analysis  in  Chapter  1  suggests  that  zero  has been used as a missing value code for several of the

variables.  Suppose  we  ignore  this  and  fit  a  linear

model with  diastolic as the response and the other

variables as predictors. Display the summary of this

fit and comment on the validity of the model. 

(b)

Show the residual-fitted plot for the model of (a). Is

the  unusual  appearance  due  to  the  issue  with  the

missing value code? 

(c)

Replace  the  suspect  zero  values  with  NA.  Describe

the distribution of missing values in the data. 

(d)

Fit  a  linear  model  with  diastolic  as  the  response

and  the  other  variables  as  predictors.  Show  the  fit

summary and compare to the model from (a). Is this

model  more  reliable?  What  assumptions  about  the

missing values are needed? 

(e)

The  triceps  and  insulin  predictors  have  large

numbers  of  missing  values.  If  we  eliminated  these

variables,  we  would  have  many  more  complete

cases.  In  the  context  of  the  model  summary  from (d), comment on whether it would be reasonable to

eliminate these variables. 

(f)

Fit the model of (d) but exclude triceps and insulin

as predictors. Can you use an F-test to compare this

model  with  the  previous  model?  Explain  and

suggest what might be done to achieve this. 

(g)

Create an indicator variable for whether the insulin

predictor  is  missing  or  not.  Do  the  same  for  the

triceps  variable.  Fit  a  model  with  diastolic  as  the

response  and  the  other  variables  as  predictors  but

replace  the  insulin  and  triceps  variables  with  these

indicator  variables.  Comment  on  the  meaning  of

these indicators and their significance in the model. 

4. In this question, we simulate data from known models to

investigate missingness mechanisms. 

(a)

Generate   xi  for  i=1,…,100  from   U[ 0,1].  Generate yi =  xi +  εi  where   ε  is  standard  normal.  Compute the  least  squares  estimate  of  slope  ^

 β.  Repeat  this

process  1000  times,  storing  ^

 β  for  each  iteration. 

Report the mean and SD of the simulated  ^

 β. Are the

results as expected? 

(b)

Repeat  the  data  generation  process  from  (a)  but

with  the  following  modification:  Set   xi =  NA  with probability  0.5.  Does  this  cause  a  bias  in  the

results?  How  is  the  precision  of  estimation

affected?  What  is  the  name  for  this  missing  value scenario? 

(c)

Repeat  the  data  generation  process  from  (a)  but

with  the  following  modification:  Set   xi =  NA  with probability  xi. Hence larger  x are more likely to be missing values. Does this bias the outcome? What is

the name for this situation? 

(d)

Repeat  the  data  generation  process  from  (a)  but

with  the  following  modification:  Set   xi =  NA  with probability  ey/(1 +  ey). Does this bias the outcome? 

What is the name for this situation? 

Chapter 15

Categorical Predictors

DOI: 10.1201/9781003449973-15

Predictors  that  are  qualitative  in  nature,  for  example,  eye color,  are  sometimes  described  as   categorical  or  called factors.  The  different  categories  of  a  factor  variable  are called levels. For example, suppose we recognize eye colors

of “blue”, “green”, “brown” and “hazel”; then we would say

eye color is a factor with four levels. 

We  wish  to  incorporate  these  predictors  into  the

regression  analysis.  We  start  with  the  example  of  a  factor with  just  two  levels;  then  show  how  to  introduce

quantitative  predictors  into  the  model  and  end  with  an example using a factor with more than two levels. 

15.1 A Two-Level Factor

Ankylosing Spondylitis(AS) is a chronic form of arthritis. A

study was conducted at the Royal Mineral Hospital in Bath

to  determine  whether  daily  stretching  of  the  hip  tissues would  improve  mobility.  39  typical  AS  patients  were

randomly  allocated  to  the  control  (standard  treatment)

group  or  the  treatment  group  in  a  1:2  ratio.  Responses were  flexion  and  rotation  angles  at  the  hip  measured  in degrees.  Larger  numbers  indicate  more  flexibility.  These same angles were measured at the start of the study so the

degree of improvement could be assessed. More details and

another analysis can be found in Chatfield (1995). 

We take a look at the first and last two lines of the data:

data (hips, package="faraway")

rbind (head (hips,2), tail (hips,2))

fbef faft rbef raft     grp side person

1     125 126    25   36   treat right     1

2     120 127    35   37   treat left      1

77    116 120    36   30 control right    39

78    113 121     4    2 control left     39

To  simplify  the  problem,  we  won't  use  the  rotation  angle information.  Furthermore,  we'll  ignore  that  each  subject contributes a right and a left hip to the study, although we

will return to this issue later. Now plot the data — as seen

in the first panel of Figure 15.1. 

plot ( faft ~ fbef , hips , pch = unclass (grp), 

xlab = "Flexion Before (degrees)", 

ylab = "Flexion After (degrees)")

abline (0 ,1)

legend ("bottomright" , legend = c ("Control" , "Treatment") , pch = 1:2)

[image: Image 82]

Figure 15.1  Flexion of the hip before and after is shown for  the  two  groups  on  the  left.  A  comparison  of  the

response  (after  the  removal  of  two  subjects)  for  the  two groups is shown on the right. 

The unclass() function maps a factor to the integers 1, 2, …

according to the number of levels and in alphabetical order

by  default.  Here  it  used  to  specify  the  plotting  character. 

We  have  added  the   x =  y  line  which  indicates  hips  that have  shown  no  change.  Cases  above  the  line  indicate  an improvement. We notice three cases on the left of the plot

where there has been a dramatic improvement in mobility. 

Let's remove those cases which are:

hips [hips$fbef < 90 ,]

fbef faft rbef raft     grp  side person

49     78 121    35   34   treat right     25

50     77 126    30   32   treat  left     25

70     81 111    14   13 control  left     35

We see the cases are from subjects 25 and 35. We exclude these two subjects from the data. 

hips = hips [ ! (hips $ person % in % c (’ 25 ’ , ’ 35 ’)) ,]

We  need  to  be  careful  about  excluding  these  cases.  We discuss this in Section 15.3. 

Was  the  treatment  effective?  We  plot  the  response

distribution of the two groups:

plot (faft ~ grp , hips , 

xlab = "Group" , ylab = "Flexion After")

We  see  that  those  in  the  treatment  group  have  higher

levels of the response than those in the control group in the

left panel of Figure 15.1.  We can test this difference: t . test (faft ~ grp , hips , var . equal = TRUE)

Two Sample t-test



data: faft by grp

t = -4.29, df = 72, p-value = 5.4e-05

alternative hypothesis: true difference in means between

group control and group treat is not equal to 0

95 percent confidence interval:

-14.6445 -5.3555

sample estimates:

mean in group control   mean in group treat

114                   124

and find there is a significant difference. We have specified

that  the  variance  is  equal  in  the  two  groups.  The

assumption  is  reasonable  here,  but  it  also  ensures

comparability with the linear modeling to follow. 

Our  strategy  is  to  incorporate  qualitative  predictors within  the   y =  Xβ +  ε  framework.  We  can  then  use  the estimation,  inferential  and  diagnostic  techniques  that  we have  already  learned  in  a  generic  way.  This  also  avoids having  to  learn  a  different  set  of  formulae  for  each  new type of qualitative predictor configuration. 

To put qualitative predictors into the  y =  Xβ +  ε form we need  to  code  the  qualitative  predictors.  We  can  do  this using   dummy  variables.  For  a  categorical  predictor  (or factor)  with  two  levels,  we  can  define  dummy  variables   d 1

and  d 2:

 di = {0 is not level i

1

is level i

(15.1)

Let's  create  these  dummy  variables  and  fit  them  using  a linear model:

d1 = ifelse (hips $ grp == "treat", 1 ,0)

d2 = ifelse (hips $ grp == "control", 1 ,0)

lmod = lm (faft ~ d1 + d2 , hips)

summary (lmod)

Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value  Pr(>|t|)

(Intercept)   114.00       1.95   58.37  < 2e-16

d1             10.00       2.33    4.29  5.4e-05

d2                NA         NA      NA       NA



Residual standard error: 9.16 on 72 degrees of freedom Multiple R-squared: 0.204,           Adjusted R-squared: 0.193

F-statistic: 18.4 on 1 and 72 DF,          p-value: 5.43e-05

We  can  see  a  warning  about  singularities  and  that  the parameter  for  the  second  dummy  variables  has  not  been

estimated.  The  cause  of  this  problem  can  be  revealed  by studying the  X model matrix:

model . matrix (lmod)

(Intercept) d1 d2

1            1  1 0

2            1  1 0

... 

77           1  0 1

78           1  0 1

We can see that the sum of the second and third columns

equals  the  first  column.  This  means  that   X  is  not  of  full rank,  having  a  rank  of  two,  not  three.  Hence  not  all  the parameters can be identified. This should not be surprising

since  we  are  trying  to  use  three  parameters  to  model  only two groups. 

We have more parameters than we need so the solution is

to get rid of one of them. One choice would be to eliminate

 d 1:

lmod = lm (faft ~ d2 , hips)

summary (lmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)   124.00       1.27   97.61 < 2e-16

d2            -10.00       2.33   -4.29 5.4e-05



Residual standard error: 9.16 on 72 degrees of freedom Multiple R-squared: 0.204,           Adjusted R-squared: 0.193

F-statistic: 18.4 on 1 and 72 DF,          p-value: 5.43e-05

Compare  this  to  the  output  of  the  t-test.  The  intercept  of 124  is  the  mean  of  the  first  group  (treatment)  while  the parameter  for  d2  represents  the  difference  between  the

second and first group, i.e., 124 − 10 = 114. The  t-value for d2  of  −4.29  is  the  test  statistic  for  the  test  that  the difference  is  zero  and  is  identical  to  the  test  statistic  from the  t-test  computed  previously.  One  assumption  of  the

linear  model  is  that  the  variances  of  the  errors  are  equal which  explains  why  we  specified  this  option  when

computing the  t-test earlier. 

An  alternative  approach  is  to  eliminate  the  intercept

term:

lmod = lm (faft ~ d1 + d2 -1 , hips)

summary (lmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

d1   124.00       1.27    97.6   <2e-16

d2   114.00       1.95    58.4   <2e-16



Residual standard error: 9.16 on 72 degrees of freedom

Multiple R-squared: 0.994,            Adjusted R-squared: 0.994

F-statistic: 6.47e+03 on 2 and 72 DF,          p-value: <2e-16

The advantage of this approach is that the means of the two

groups are directly supplied by the parameter estimates of

the two dummy variables. However, we do not get the t-test

for  the  difference.  The  tests  in  the  output  correspond  to hypotheses  claiming  the  mean  response  in  the  group  is

zero.  These  are  not  interesting  because  these  hypotheses are unbelievable. 

Furthermore,  the  solution  of  dropping  the  intercept  only works when there is a single factor and does not generalize

to  the  multiple  factor  case.  Another  unpleasant  side  effect is that the  R 2 is not correctly computed when the intercept is  omitted.  For  these  reasons,  we  prefer  the  approach  of dropping  one  of  the  dummy  variables  to  dropping  the

intercept. 

It is not necessary to explicitly form the dummy variables

as R can produce these directly by just including the factor

in the model formula:

lmod = lm (faft ~ grp , hips)

summary (lmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)   114.00       1.95   58.37 < 2e-16

grptreat       10.00       2.33    4.29 5.4e-05



Residual standard error: 9.16 on 72 degrees of freedom

Multiple R-squared: 0.204,              Adjusted R-squared: 

0.193

F-statistic: 18.4 on 1 and 72 DF,       p-value: 5.43e-05

We can check that grp is a factor variable:

class (hips$grp)

[1] "factor" 

This  sometimes  happens  automatically  when  a  variable

takes  non-numeric  values  although  it  can  be  imposed

directly  if  necessary  using  the  factor()  command.  The

dummy variables are created but one is dropped to ensure identifiability. The level corresponding to the dummy that is

dropped  is  known  as  the   reference  level.  In  this  example, the reference level is control. At first glance, one might be

perplexed  as  control  does  not  appear  in  the  model

summary  output.  However,  the  mean  response  for  the

reference  level  is  represented  in  the  intercept  of  114.  The parameter  estimate  for  treatment  (treat)  of  10  is  not  the mean  response  for  this  level  but  the  difference  from  the reference level. Hence the mean response for the treatment

level is 114 + 10 = 124. We could drop the dummy variable

 d 2 as defined earlier to get the same output. 

The choice of reference level is arbitrary. In this example, 

there  is  a  natural  choice  for  the  reference  level  as  the control  or  no-treatment  level.  The  default  choice  of

reference  level  by  R  is  the  first  level  in  alphabetical  order, which  would  be  control  in  this  example.  We  change  the reference level using the relevel command:

hips$grp = relevel (hips$grp , ref = "treat")

lmod = lm (faft ~ grp , hips)

summary (lmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)   124.00       1.27   97.61 < 2e-16

grpcontrol    -10.00       2.33   -4.29 5.4e-05



Residual standard error: 9.16 on 72 degrees of freedom

Multiple R-squared: 0.204,           Adjusted R-squared: 0.193

F-statistic: 18.4 on 1 and 72 DF,          p-value: 5.43e-05

A comparison of the outputs reveals that the fitted values and residuals are the same for either choice — the residual

standard  error  and   R 2  will  be  the  same.  But  the parameterization  is  different.  Since  we  prefer  the  original parameterization, we reset the reference level:

hips $ grp = relevel (hips $ grp , ref = "control")

Although  we  have  only  managed  to  construct  a   t-test using linear modeling, a good understanding of how factor

variables  are  handled  in  R  is  essential  for  the  more

sophisticated models to follow. 

15.2 Factors and Quantitative Predictors

We have seen there is no significant difference in the mean

response  between  the  treatment  and  control  groups  of

patients. However, we also have information about varying

levels of prior flexibility (fbef) which will have an effect on the  response.  We  need  models  that  can  express  how  a

factor variable like grp and a quantitative variable like fbef might  be  related  to  a  response.  A  predictor,  such  as  fbef, that  has  some  effect  on  the  response  but  which  is  not  the main focus of the study is sometimes called a  covariate. 

Suppose we have a response  y, a quantitative predictor  x and  a  two-level  factor  variable  represented  by  a  dummy variable  d:

 d = {0 reference level

1 treatment level

(15.2)

Several possible linear models may be considered here:

1. The 

same 

regression 

line 

for 

both 

levels:

 y =  β 0 +  β 1 x +  ε,  or  as  is  written  in  R,  y  ∼  x.  This model allows no effect for the factor. 

2. A  factor  predictor  but  no  quantitative  predictor:

 y =  β 0 +  β 2 d +  ε. This is written as y ∼ d in R. 

3. Separate regression lines for each group with the same

slope:  y =  β 0 +  β 1 x +  β 2 d +  ε, or as is written in R, y ∼

x  +  d.  In  this  case  β2  represents  the  vertical  distance between  the  regression  lines  (i.e.,  the  effect  of  the

treatment). 

4. Separate  regression  lines  for  each  group  with  the

different  slopes:   y =  β 0 +  β 1 x +  β 2 d +  β 3 x.  d +  ε,  or  as is written in R, y ∼ x + d + d:x or y ∼ x*d. To form the

slope interaction term d:x in the  X-matrix, multiply  x by d  elementwise.  Any  interpretation  of  the  effect  of  the factor  will  now  also  depend  on  the  quantitative

predictor. 

Estimation  and  testing  work  just  as  they  did  before. 

Interpretation  is  easier  if  we  can  eliminate  the  interaction term. 

We start with the separate regression lines model. faft ∼

fbef*grp  is  an  equivalent  model  formula  which  expands  to

the version seen below:

lmod4 = lm (faft ~ fbef+grp+fbef:grp, hips)

summary (lmod4)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)       13.558     17.620    0.77     0.44

fbef               0.902      0.158    5.71  2.5e-07

grptreat          19.621     20.055    0.98     0.33

fbef:grptreat     -0.132      0.177   -0.75     0.46



Residual standard error: 5.59 on 70 degrees of freedom

Multiple R-squared: 0.711,       Adjusted R-squared: 0.699

F-statistic: 57.5 on 3 and 70 DF,          p-value: <2e-16

We can discover the coding by examining the  X-matrix:

model.matrix (lmod4)

(Intercept) fbef grpcontrol fbef:grpcontrol

1            1 125           0               0

2            1 120           0               0

... 

77           1 116           1             116

78           1 113           1             113

The  interaction  term  fbef:grpcontrol  is  represented  in  the fourth  column  of  the  matrix  as  the  product  of  the  second and  third  columns.  We  show  the  fitted  regression  lines  in the first panel of Figure 15.2:

plot (faft ~ fbef , hips , pch = unclass (grp) , 

xlab = "Flexion Before (degrees)" , 

ylab = "Flexion After (degrees)")

(cc = coef (lmod4))

(Intercept)      fbef   grptreat fbef:grptreat

13.55816   0.90193   19.62133      -0.13226

[image: Image 83]

abline (cc [1] , cc [2])

abline (cc [1]+ cc [3] , cc [2]+ cc [4] , lty =2)

Long Description for Figure 15.2

Figure 15.2  In all the three panels, the control cases are marked  with  a  circle  and  treatment  with  a  triangle.  The separate  lines  model  fit  is  shown  in  the  first  panel,  the parallel  lines  model  fit  seen  in  the  second  panel  and  the residuals versus fitted plot in the third. 

The  two  lines  are  not  parallel  indicating  that  the  effect  of the  treatment  varies  according  to  the  predictor,  fbef.  In some  fields,  fbef  would  be  called  a   moderator  because  it varies  the  relative  effect  of  the  different  treatments. 

Sometimes,  these  researchers  would  restrict  the  meaning

of   covariate  to  those  predictors  that  do  not  have  a moderating  effect.  However,  this  distinction  is  not

universally  respected  and  covariate  might  mean  any

predictor. 

The model can be simplified because the interaction term

is not significant. We reduce to this model:

lmod3 = lm (faft ~ fbef + grp , hips)

summary (lmod3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 25.2241      8.0799    3.12   0.0026

fbef          0.7972     0.0718   11.11   <2e-16

grptreat      4.7097     1.4958    3.15   0.0024



Residual standard error: 5.58 on 71 degrees of freedom

Multiple R-squared: 0.709,           Adjusted R-squared: 0.701

F-statistic: 86.6 on 2 and 71 DF,          p-value: <2e-16

We see a significant difference between the two groups and

there  is  a  significant  effect  due  to  fbef.  We  put  the  two parallel regression lines on the plot, as seen in the second

panel of Figure 15.2. 

plot (faft ~ fbef , hips , pch = unclass (grp) , 

xlab = "Flexion Before (degrees)" , 

ylab = "Flexion After (degrees)")

(cc=coef (lmod3))

(Intercept)      fbef   grptreat

25.22413   0.79717    4.70968

abline (cc [1] , cc [2])

abline (cc [1]+ cc [3] , cc [2] , lty =2)

The  slope  of  both  lines  is  0.79,  but  the  treat  line  is  4.7

higher  than  the  control  line.  From  the  t-test  earlier,  the unadjusted estimated effect of the treatment is 10. So after

adjusting for the effect of fbef, our estimate of the effect of the treatment is more than halved in size. 

We  can  also  compare  confidence  intervals  for  the  effect of grp:

confint (lmod3) [3,]

 2.5 % 97.5 %

1.7272 7.6922

compared  to  the  (5.36, 14.6)  found  for  the  unadjusted

difference.  We  observe  that  the  intervals  with  adjustment are  narrower.  Thus  we  see  that  adjusting  for  a  covariate can increase the precision of the estimate of an effect. This

may  be  true  even  if  the  estimate  itself  does  not  change much. 

The  usual  diagnostics  should  be  checked.  It  is  worth

checking  whether  there  is  some  difference  related  to  the categorical variable as we do here:

plot (fitted (lmod3) , residuals (lmod3) , pch = as . numeric 

(hips $ grp) , 

xlab = "Fitted" , ylab = "Residuals")

abline (h =0)

We  see  in  the  final  panel  of  Figure  15.2  that  there  are  no clear  problems.  We  can  also  see  that  the  variation  in  the two groups is about the same. If this were not so, we would

need  to  make  some  adjustments  to  the  analysis,  possibly using weights. 

We  have  seen  that  the  effect  of  grp  can  be  adjusted  for fbef.  The  reverse  is  also  true.  Consider  a  model  with  just fbef. 

lmod1 = lm (faft ~ fbef , hips)

summary (lmod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 20.1859      8.3958     2.4    0.019

fbef          0.8691     0.0721    12.1   <2e-16

 

Residual standard error: 5.91 on 72 degrees of freedom

Multiple R-squared: 0.669,           Adjusted R-squared: 0.664

F-statistic: 145 on 1 and 72 DF,          p-value: <2e-16

After adjusting for the effect of grp, we see that the size of the effect of fbef from lmod3 is reduced from 0.869 to 0.797. 

In  this  example,  the  factor  treatment  group  is  the  main subject of interest and the quantitative fbef is the covariate. 

So  in  this  case,  this  observation  is  not  worthwhile.  But  in other  examples,  the  roles  of  the  factor  and  the  covariate may be different. 

In  conclusion,  we  have  shown  that,  after  adjusting  for initial  hip  mobility,  the  treatment  results  in  a  five  degree improvement  in  hip  flexion  relative  to  the  control  group. 

Because the patients were randomly assigned to treatment

and  control,  we  have  greater  confidence  that  this  is  a causal  effect.  The  experiment  used  a  particular  set  of subjects  from  one  location  under  some  chosen  conditions. 

Further  study  would  be  necessary  to  show  that  the

treatment was effective in a wider context. 

15.3 More Lessons from the Hips Study

There  is  much  unfinished  business  with  the  hip  study.  We take  the  opportunity  to  explore  some  issues  raised  in  the analyses. Most of these topics in this section don't fit in any particular chapter but are worth knowing. On first reading, 

you might want to skip to the next section. 

 Removing Cases

Many designed studies and some observational studies will have  exclusion  criteria  regarding  the  initial  state  of  the subjects  that  are  specified  in  advance  of  data  collection. 

For example, in the hip study, subjects suffering from other

conditions that might affect their response to the treatment

might  be  excluded  from  consideration  in  the  study.  One does not want to make these criteria too narrow since this

will  restrict  how  much  we  can  reasonably  generalize  the conclusions. 

The  two  subjects  we  excluded  suffered  from  unusually

low initial mobility and the experimenters might reasonably

not have included them in the study. However, since we are

seeing these cases, we can assume they were not excluded. 

For  these  three  legs,  we  see  an  unusually  large

improvement  from  a  low  baseline.  We  might  not  expect

such a dramatic improvement from a stretching exercise or

control  treatment.  This  might  lead  us  to  question  whether some  measurement  mistake  has  been  made  or  whether

some  unrelated  intervention  has  caused  this  improvement. 

This may provide a justification for removing the cases but

we cannot say more without further information. 

If  we  do  decide  to  remove  the  cases,  we  must  be

completely  transparent  about  our  actions  and  provide  full reporting.  We  might  provide  the  results  of  the  fit  of  our chosen  model  to  the  complete  data  for  comparison.  In

highly  regulated  pharmaceutical  trials,  experimenters  are strongly constrained regarding the exclusion of cases but in

other  fields  more  latitude  is  allowed  but  full  disclosure  is always expected. 

The most extreme implementation of our decision to drop

two  subjects  would  be  to  delete  these  rows  from  our

original  copy  of  the  data,  stored  externally  from  R.  This would  be  foolish  since  we  could  not  easily  reverse  the decision  and  may  be  considered  deceptive  as  if  we  had something  to  hide.  One  might  created  an  edited  copy  with the  cases  removed  but,  for  the  sake  of  reproducibility,  we should not edit the data at all. Instead, we can exclude the

cases  near  the  beginning  of  our  R  script  as  we  have  done here. This makes it very clear what we have done. 

 Value of Random Allocation

The  subjects  in  the  study  were  randomly  allocated  to  the new  treatment  or  the  control  group.  In  Section  6.5,   we explain the benefit of random allocation in ensuring there is

no  correlation  between  the  choice  of  treatment  and  a

potential  confounder.  This  allows  us  to  make  stronger

conclusions about the causal effect of the treatment on the

response.  Some  of  these  confounders  might  be  suspected, but unmeasured, and some may be unknown. In this study, 

there is one clear confounder that we have measured — the

pre-treatment response. Subjects with more initial mobility

are  likely  to  have  better  final  mobility.  Without

randomization,  we  might  be  concerned  that  subjects  with more  initial  mobility  might  be  assigned  to  one  of  the  two

treatment  groups  and  lead  to  confounding.  We  can  check for this by fitting this model:

cmod = lm (fbef ~ grp , hips)

summary (cmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept)     111.36       1.95   57.05   <1e-04

grptreat          6.64       2.33    2.85   0.0057



Residual standard error: 9.16 on 72 degrees of freedom

Multiple R-squared: 0.101,           Adjusted R-squared: 0.0889

F-statistic: 8.12 on 1 and 72 DF,          p-value: 0.0057

We  see  that  there  is  a  significant  difference  with  initial mobility  6.6  degrees  higher  in  the  treatment  group

compared to the control group. One possible explanation is

that  the  experimenters  made  some  error  in  randomization leading to a bias. A more generous and plausible conclusion

is that this is simply a somewhat unusual chance allocation

that  has  led  to  an  imbalance.  The  lesson  is  that

 randomization does not ensure balance. On average it does, but it is not guaranteed. 

By  including  fbef  in  the  model,  we  adjust  for  the

imbalance  and  the  unfortunate  randomization  is  not  a

serious  problem.  For  all  the  unmeasured  confounders, 

randomization  will  do  its  work.  Although,  a  more  balanced allocation  with  respect  to  any  confounder  is  more  likely, some  may  result  in  an  imbalance  like  the  one  above  (or perhaps  favouring  the  control  group)  and  we  will  not  be able to adjust because the confounder is unmeasured (and

even  unknown).  In  such  cases,  randomization  provides  us

with  a  different  argument.  Statistical  inference  reflects uncertainty  regarding  the  conclusion.  The  validity  of  that inference  is  based  on  the  randomization  which  can  be

justified using the permutation testing described in Section

4.3. 

Randomization  can  also  be  used  to  justify  not  adjusting for  the  known  covariate  as  seen  in  Section  15.1  but  this would  not  be  an  efficient  use  of  the  known  information.  In the  hips  study,  there  is  an  imbalance  and  the  adjustment corrects  for  this.  Even  if  there  were  no  imbalance, 

including  a  covariate  which  is  predictive  of  the  response reduces variation and allows for more precise estimation as

seen  in  the  confidence  intervals  for  lmod3  above.  Only covariates which have no predictive value for the response

should be discarded. 

Imbalance between the treatment groups is not beneficial

and  although  we  can  make  adjustments,  we  might  want  to avoid it in the first place. We can do this by computing the

average hip flexion for each subject and sorting them:

phipfbef = aggregate (fbef ~ person , hips , mean)

ii = order (phipfbef $ fbef)

head (phipfbef [ ii ,])

person    fbef

20       20    98.0

18       18    99.5

27       28   102.5

32       33   103.5

35       37   104.0

3         3   105.0

Since  we  have  decided  on  two  subjects  in  treatment  for every one in control, we would take the first three subjects

with  the  lowest  hip  flexion,  nos.  20,  18  and  27  and

randomly  assign  two  to  treatment  and  one  to  control.  We would  repeat  for  the  next  three,  nos.  32,  35  and  3  and  so on.  We  would  still  have  a  random  allocation  but  a  strong degree  of  balance  would  be  ensured.  This  technique  is

known  as   blocking  and  modelling  for  such  experiments  is described in Chapter 18. 

There  are  important  drawbacks  to  this  approach.  We

would  need  to  introduce  the  person  into  the  model.  Since there are 37 subjects, this results in many extra parameters

which  would  cost  us  precision.  Compared  to  the  adjusting for  the  covariate  approach  above,  it  will  not  be  worth  it. 

The  second  problem  is  that  most  studies  are  conducted

sequentially  over  time.  The  subjects  are  not  all  known initially  and  become  available  over  time.  Furthermore,  the treatments may require time and resources, so they need to

be  spread  out  over  time  and  we  cannot  keep  the  initial subjects  waiting.  The  blocking  approach  above  will  not  be possible. 

There  is  one  form  of  blocking  that  would  be  very

beneficial  in  such  studies  if  practical.  We  could  randomly treat one leg with the new treatment and one leg with the

control. Since almost all potential confounders would apply

to the whole person, we would achieve balance across all of

these,  even  the  ones  we  have  no  knowledge  of. 

Unfortunately,  it  is  not  always  practical  to  apply  two

treatments  to  the  same  subjects  —  that  seems  to  be  the case in the present example. 

 Change Score

When  considering  before  and  after  measurements  of  the

same unit, it is natural to consider a  change score which is the  difference  between  these  two  values.  In  our  example, we might use the model:

chmod = lm (faft - fbef ~ grp , hips)

summary (chmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)     2.64       1.24    2.12    0.038

grptreat        3.36       1.49    2.26    0.027



Residual standard error: 5.84 on 72 degrees of freedom

Multiple R-squared: 0.0665,           Adjusted R-squared: 

0.0535

F-statistic: 5.13 on 1 and 72 DF,          p-value: 0.0265

This  reveals  a  statistically  significant  treatment  effect  of 3.4 degrees. 

Previously, we used the model faft ∼ fbef+grp+fbef:grp. In

this context, fbef is called the  baseline which measures the condition  of  the  unit  prior  to  treatment.  The  model  is sometimes  called  a   baseline  adjustment  model.  There  are several  reasons  to  prefer  the  baseline  adjustment

approach:

1. The  change  score  model  does  not  allow  for  the

possibility  of  an  interaction.  It  is  plausible  that  the

improvement  of  a  patient  might  depend  on  their  initial condition  —  for  example,  more  seriously  affected

patients  might  have  greater  room  for  improvement. 

One  might  include  fbef  on  the  right  of  the  model

formula  but  this  effectively  reverts  to  the  baseline

adjustment approach. 

2. Sometimes, as in this example, there is an imbalance in

the  baseline  between  the  treatment  groups.  The

baseline  adjustment  approach  allows  for  this  while  the

change score method does not. 

3. The  baseline  adjustment  approach  is  usually  more

powerful,  i.e.  more  likely  to  find  a  treatment  effect

where one truly exists. 

 Importance of a Control Group

Let's  focus  on  the  control  group  in  the  experiment.  This group  was  assigned  to  a  standard  treatment.  In  other

settings,  typically  a  drug  trial,  a   placebo  is  used  for  the control group. This is a treatment that appears real but has

no  active  ingredient.  Sometimes  the  appearance  of

treatment, even if it has no intrinsic value, may result in an improved outcome. 

Since we have already verified that there is no interaction

with  the  flexion  before  treatment,  it  is  reasonable  to consider  the  change  in  response  for  just  the  control  group without  reference  to  fbef.  We  perform  a  one  sample  t-test on the change in the response for just the control group:

t.test (faft - fbef ~ 1 , data=hips , 

subset = (grp == "control"))

One Sample t-test



data: faft - fbef

t = 2.98, df = 21, p-value = 0.0071

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

0.79784 4.47489

sample estimates:

mean of x

2.6364

We see that there is a statistically significant improvement

averaging  2.6  degrees  in  the  control  group  due  to  the standard treatment. 

In  this  example,  we  showed  an  improvement  due  to  the

new  treatment  relative  to  the  standard  control  treatment. 

Yet  without  a  control  group  this  would  not  have  been

possible. We may have seen an improvement in the treated

subjects but we would not know if this was better or worse

than  the  existing  approaches.  Another  reason  for  using  a control  group  is  to  isolate  the   regression  effect  as discussed in Section 1.4. 

When  investigating  a  promising  new  treatment,  it  can

seem wrong to assign some subjects to a control group. But

as this example shows, it is important to the overall success

of  an  experiment  to  have  a  control  group.  The  control group can be smaller. In this example, it was only a third of

subjects.  But  it  needs  to  be  large  enough  to  serve  its purpose.  In  some  cases,  controls  can  come  from  prior

experiments  or  data  but  one  needs  to  ensure  that  the controls  are  comparable  to  the  subjects  in  the  current experiment. 

 More Covariates

Thus  far,  we  have  kept  our  analysis  simple  with  just  one quantitative  predictor  and  one  factor  predictor  but  now let's  consider  more  complex  models.  Suppose  we  were

interested  in  whether  the  leg  side  (left  or  right)  made  a difference to the outcome. Also, it is possible that the initial rotation  angle  of  the  subject  has  some  additional  effect  on the outcome. We might consider the following model:

lmode = lm (faft ~ fbef*grp*side + rbef , hips)

summary(lmode)

Estimate Std. Error t value Pr(>|t|)

(Intercept)               -5.8911    22.2767   -0.26    0.792

fbef                       1.0451     0.2010    5.20   <1e-04

grptreat                  28.1179    26.4030    1.06    0.291

sideleft                  31.5709    36.2269    0.87    0.387

rbef                       0.1694     0.0817    2.07    0.042

fbef:grptreat             -0.2219     0.2341   -0.95    0.347

fbef:sideleft             -0.2947     0.3239   -0.91    0.366

grptreat:sideleft         -4.2037    41.1446   -0.10    0.919

fbef:grptreat:sideleft     0.0700     0.3636    0.19    0.848



Residual standard error: 5.5 on 65 degrees of freedom

Multiple R-squared: 0.741,           Adjusted R-squared: 0.709

F-statistic: 23.2 on 8 and 65 DF,          p-value: <1e-04

This  model  generates  nine  parameters  —  some  we  have

seen  previously  but  this  model  is  more  complex.  The

interpretation of the parameters is more involved. 

The rbef enters as a simple quantitative predictor which has one slope parameter. 

There  are  two  levels  of  grp  and  two  levels  of  side.  The fbef*grp*side  term  in  the  model  expresses  a  full

interaction  between  these  factors  and  fbef.  Instead  of

the two lines in our previous analysis (lmod4), there will

be four lines, each with an intercept and slope. 

The  reference  levels  are  control  for  grp  and  right  for side. We know this because neither level appears in the

output. 

The  first  two  parameters  in  the  model  give  the

intercept  and  slope  for  the  reference  line  which  is  for the right leg of the control subjects. 

The  grptreat  term  represents  the  increment  to  the

intercept for the treatment level (for the right leg). The

sideleft  represents  the  increment  to  the  intercept  for

the left leg (for the control group). 

Similarly, 

the 

fbef:grptreat 

represents 

the

corresponding increment to the slope for the treatment

group  while  fbef:sideleft  represents  the  increment  to

the slope for the left leg. 

When we consider the left leg and the treatment group, 

there  is  an  additional  increment  to  the  intercept  of

grptreat:sideleft 

and 

to 

the 

slope 

of

fbef:grptreat:sideleft

Further  details  on  interpreting  interaction  terms  between factors may be found in Section 17.4. 

Looking  at  the  output,  we  see  that  terms  involving  side are  not  statistically  significant.  We  must  be  careful  about making direct conclusions from this because of the multiple

testing  and  complications  in  interpreting  the  parameters. 

Even so, it does suggest a simpler model:

lmods = lm (faft ~ fbef * grp + rbef , hips)

anova (lmods , lmode)

Analysis of Variance Table



Model 1:   faft ~ fbef * grp + rbef

Model 2:   faft ~ fbef * grp * side + rbef

Res.Df    RSS Df Sum of Sq    F Pr(>F)

1     69   2069

2     65   1966 4        103 0.85    0.5

We  see  that  the  simpler  model  without  side  is  preferred. 

We are not surprised since it seemed unlikely that the side

of the leg would make any difference. 

Our modeling also reveals that rbef may have some effect

on  the  response  where  we  see  it  has  a  statistically

significant effect in the model above. However, if we add it

to  the  much  simpler  model  (lmod3)  that  we  settled  on

earlier, we find:

lmodr = lm (faft ~ fbef + grp + rbef , hips)

summary (lmodr)

Estimate Std. Error t value Pr(>|t|)

(Intercept)    26.6436     8.0012    3.33 0.00139

fbef            0.7531     0.0750   10.05 < 1e-04

grptreat        5.1359     1.4933    3.44 0.00099

rbef            0.1371     0.0774    1.77 0.08088



Residual standard error: 5.49 on 70 degrees of freedom Multiple R-squared: 0.722,           Adjusted R-squared: 0.71

F-statistic: 60.5 on 3 and 70 DF,          p-value: <1e-04

The  rbef  term  is  no  longer  statistically  significant. 

Nevertheless,  it  is  better  to  retain  it  in  the  model  for  a couple of reasons. The purpose of the study is to determine

the  effect  of  the  new  treatment  for  AS  patients.  Statistical hypothesis testing imposes a higher standard of evidence to

conclude  that  it  does  have  a  positive  effect  relative  to  the control.  We  are  not  directly  interested  in  which  baseline predictors,  such  as  fbef  or  rbef,  have  an  effect  on  the outcome.  There  is  an  advantage  to  including  them  when

they do have an effect because they increase the precision

and decrease bias in the estimation of the treatment effect. 

But  they  don't  have  to  be  statistically  significant  to  be worthwhile  inclusions.  There  is  some  evidence  of  an  effect for rbef and it is plausible that it would have an effect. We

should include it. 

Compared  to  the  model  without  rbef  which  we  fit  earlier as lmod3, we see that the residual standard error is slightly

smaller  which  leads  to  slightly  superior  estimates  in  the current model. This results in a somewhat higher estimated

treatment effect of 5.1 degrees. 

Some  judgement  is  necessary  about  what  baseline

covariates  to  include.  Including  worthless  covariates  will reduce the degrees of freedom and increase variation. 

There  are  two  remaining  variables  in  the  data  frame

which we have yet to consider — raft and person. We should

not  include  raft  as  a  predictor  in  our  models  because  it  is

determined  after  treatment.  This  would  make  it  worthless in  a  prediction  model  because  we  could  not  know  it  in advance.  Also  it  is  a  response/outcome  and  would  tend  to be  correlated  with  our  main  response  of  interest,  faft. 

Including  raft  as  a  predictor  would  lead  to  highly

misleading  estimates  of  the  treatment  effect.  It  is  sensible to  consider  raft  as  an  additional  response  variable  as  we demonstrate later in this section. 

It  would  also  not  be  helpful  to  introduce  person  as  a predictor  in  our  model.  There  are  37  levels  of  the  factor person  in  the  data.  As  we  shall  shortly  show,  this  would introduce  36  additional  parameters  into  the  data.  Also

person would be collinear with grp because the subjects only

have observations in one of the two groups. We do measure

some  baseline  covariates  on  the  subjects  and  these  will need  to  carry  the  burden  of  predicting  the  effect  of

subjects. 

 Correlated Response

The  units  in  the  hips  study  are  individual  legs  and  each subject  has  two  legs.  One  of  the  linear  model  assumptions is  that  the  errors  are  independent.  We  might  reasonably suspect  that  this  does  not  hold.  We  can  check  this  by assembling  the  residuals  from  our  chosen  model  and

comparing these for left and right legs:

resmatrix = matrix (residuals (lmodr) , 37 , 2 , byrow = TRUE) plot (resmatrix [ ,1] , resmatrix [ ,2] , 

[image: Image 84]

xlab = "right residual" , ylab = "left residual") abline (h =0 , v =0)

We see some positive correlation in the residuals in Figure

15.3. We can confirm this with a correlation test:

cor . test (resmatrix [ ,1] , resmatrix [ ,2])

Pearson's product-moment correlation



data: resmatrix[, 1] and resmatrix[, 2]

t = 2.76, df = 35, p-value = 0.0091

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.11480 0.65703

sample estimates:

cor

0.42308

Figure 15.3  Residuals for pairs of legs from the hip study model

We can average the two legs for each individual to avoid

the correlated response problem:

phips = aggregate (cbind (faft, fbef) ~ person, hips, mean) phips$grp = hips$grp [ match (phips$person, hips$person)]

head (phips)

person    faft    fbef     grp

1        1   126.5   122.5   treat

2        2   135.0   135.0   treat

3        3   114.0   105.0   treat

4        4   124.0   122.0   treat

5        5   130.5   124.0   treat

6        6   120.0   117.5   treat

The  aggregate()  function  is  used  to  take  the  mean  within each  person  for  both  faft  and  fbef.  The  match()  function  is useful in reconstructing the treatment group at the person

level. Now we fit a model to this aggregated data:

pmod = lm (faft ~ fbef + grp , phips)

summary (pmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.1984     10.5460    1.73    0.093

fbef          0.8603     0.0938    9.17    1e-10

grptreat      4.2910     1.8016    2.38    0.023



Residual standard error: 4.7 on 34 degrees of freedom

Multiple R-squared: 0.778,           Adjusted R-squared: 0.765

F-statistic: 59.5 on 2 and 34 DF,          p-value: 7.83e-12

This  should  be  compared  to  the  leg  level  model  lmod3.  The parameter estimates are quite similar. The standard errors

are  somewhat  larger  giving  rise  to  larger  p-values.  This  is expected  because  now  we  have  only  37  observations

instead  of  74.  The  conclusions  from  this  model  are  more reliable  because  we  have  removed  the  correlated  errors

problem  seen  in  the  leg  level  model.  In  this  instance,  the overall  conclusions  regarding  the  effectiveness  of  the

treatment  are  about  the  same.  In  other  cases,  using

correlated  data  may  overstate  statistical  significance  and lead to overconfident conclusions. 

By averaging across legs, we have lost some information. 

We  may  want  to  model  the  response  at  the  leg-level  but allow  for  the  correlation  between  legs.  We  can  accomplish this  using  generalized  least  squares  as  introduced  in

Section 9.1. Within each person, we have correlated errors for the two legs  cor( εL,  εR) =  ρ. We can fit this model using the  nlme  package  of  Pinheiro  and  Bates  (2000).   The  error structure  where  all  the  errors  within  a  group  (a  person  in this example) have the same correlation is called  compound symmetry. 

library(nlme)

gmod = gls (faft ~ fbef + grp , data=hips, 

correlation = corCompSymm (form = ~ 1|person))

summary (gmod)

Generalized least squares fit by REML

Model: faft ~ fbef + grp



Correlation Structure: Compound symmetry

Formula: ~1 | person

Parameter estimate(s):

Rho

0.44698



Coefficients:

Value Std.Error t-value p-value

(Intercept) 32.643    8.7569 3.7276 0.0004

fbef         0.731    0.0775 9.4205 0.0000

grptreat     5.152    1.8035 2.8565 0.0056



Residual standard error: 5.65

Degrees of freedom: 74 total; 71 residual

We  find  ^

 ρ = 0.45  which  is  similar  to  the  observed

correlation  between  the  errors  in  the  least  squares  model. 

We can trust the inference on the treatment effect because

the  correlated  errors  have  been  built  into  the  model.  We find  a  statistically  significant  treatment  effect  of  5.2

degrees. 

It  is  also  possible  to  treat  the  person  as  a  so-called random  effect  and  use  the  lme()  function  from  the  nlme package  (or  the  lmer()  function  in  the  lme4  package)  to produce essentially the same fit as the previous model. This

lies  beyond  the  scope  of  this  text  and  is  discussed  in

Faraway (2016). 

 Multivariate Response Models

There  are  two  measures  of  hip  mobility  in  the  study  —

flexion and rotation. We could repeat our previous analysis

for  the  rotation  response  or  we  might  try  to  combine  the two  responses  into  a  single  analysis.  Given  two  response vectors y1 and y2, we might bind them together into a two-column  response  matrix  Y.  We  could  state  a  multivariate form of the linear model:

Y =  Xβ +  ε

(15.3)

where Y, β and  ε are now two column matrices rather than the vectors seen in the standard linear model. 

There  is  no  strong  consensus  about  what  to  call  this

model.  You  may  hear  variations  on  multivariate/multiple

linear/regression model but these are easily confused with

the  standard  model  where  there  is  one  response  but

several  predictors.  Some  authors  may  insist  there  is  a correct terminology but it is wise to make it clear that the

response is multivariate. 

Using  the  same  reasoning  as  for  the  univariate  response model, the least squares estimate of β is

^ β = ( XTX)−1 XTY

(15.4)

For  example,  we  can  have  a  bivariate  response  model  and compute the least squares estimates with:

mmod = lm (cbind (faft , raft) ~ rbef + fbef + grp , hips)

coef (mmod)

faft      raft

(Intercept) 26.64364 -3.261828

rbef          0.13715 0.740708

fbef          0.75308 0.098761

grptreat      5.13586 4.782655

As  expected, 

 β  is  a  4 × 2  matrix.  We  can  get  a  more

detailed output with:

summary (mmod)

Response faft :



Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 26.6436      8.0012    3.33 0.00139

rbef          0.1371     0.0774    1.77 0.08088

fbef          0.7531     0.0750   10.05 3.3e-15

grptreat      5.1359     1.4933    3.44 0.00099



Residual standard error: 5.49 on 70 degrees of freedom

Multiple R-squared: 0.722,           Adjusted R-squared: 0.71

F-statistic: 60.5 on 3 and 70 DF,          p-value: <2e-16



Response raft :



Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.2618      8.3535   -0.39   0.6974

rbef          0.7407     0.0808    9.16 1.3e-13

fbef          0.0988     0.0783    1.26   0.2112

grptreat      4.7827     1.5590    3.07   0.0031



Residual standard error: 5.73 on 70 degrees of freedom

Multiple R-squared: 0.622,           Adjusted R-squared: 0.606

F-statistic: 38.4 on 3 and 70 DF,          p-value: 8.66e-15

The two linear model summaries are the same as you would

get  from  the  two  univariate  linear  models.  Other  than  the convenience  of  fitting  two  models  for  the  price  of  one,  not much  has  been  gained.  For  both  responses,  the  treatment effect is clearly positive. 

More interesting inference is possible:

anova (mmod)

Analysis of Variance Table



Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.998      18382      2     69 < 2e-16

rbef         1 0.634        60      2     69 8.9e-16

fbef         1 0.679        73      2     69 < 2e-16

grp          1 0.226        10      2     69 0.00015

Residuals   70

The  anova()  function  recognizes  the  argument  as  a

multivariate  linear  model.  For  example,  the  grp  factor  has two parameters, one for each of the responses. We want to

test  the  null  hypothesis  that  both  these  parameters  are zero.  This  cannot  be  accomplished  within  the  F-testing

framework  derived  previously.  Several  multivariate  tests

are  available  with  the  Pillai  trace  test  being  the  default choice  here.  In  this  example,  we  see  that  the  null

hypothesis  is  rejected.  You  can  find  details  of  the

estimation  and  inference  in  multivariate  response  linear models in Johnson and Wichern (2002) and in the appendix

of Fox and Weisberg (2019).  The R help page for anova.mlm() contains information about the different tests available. 

Although  the  opportunity  to  use  these  multivariate

models  is  not  uncommon,  you  do  not  see  them  much  used in  practice.  It  is  true  that  greater  power  may  be  obtained by using the Pillai trace test and we can avoid some of the

pitfalls of multiple testing as demonstrated in Figure 3.2.  In contrast, modeling each of the responses separately makes

it easier to see the effect of the predictors and assess their significance. Furthermore, we would not be constrained to

use  the  same  set  of  predictors  for  each  response.  The greater  flexibility  and  ease-of-use  makes  the  univariate approach more appealing. 

In some examples, we may observe multiple responses on

the  same  individual  which  is  sometimes  called   repeated measures.  Sometimes,  these  responses  are  recorded  over time  which  results  in   longitudinal  data.  In  such  cases, provided  the  data  takes  a  standard  and  relatively  simple format, it is possible to use multivariate response methods

to  form  models  and  make  inferences.  In  general,  such

examples  are  more  generally  handled  by   linear  mixed models as described in Faraway (2016) and elsewhere. 

15.4 Interpretation with Interaction Terms

A  homeowner  in  England  recorded  his  weekly  natural  gas consumption, in thousands of cubic feet, during two winter

heating  seasons.  For  the  second  season,  cavity  wall

insulation  had  been  installed.  The  homeowner  also

recorded  the  average  weekly  temperature  in  degrees

Celsius  because  this  would  also  affect  gas  consumption. 

The data may be found in the MASS package. 

data (whiteside , package = "MASS")

We plot the data in Figure 15.4:

library (ggplot2)

ggplot (aes (x=Temp , y=Gas) , data=whiteside) + geom_ point 

[image: Image 85]

()+

facet_grid (~ Insul)+geom_smooth (method="lm")

Long Description for Figure 15.4

Figure  15.4   Weekly  gas  consumption  as  a  function  of weekly  temperature  before  and  after  the  installation  of cavity wall insulation. 

We  can  see  that  less  gas  is  used  after  the  insulation  is installed  but  the  difference  varies  by  temperature.  The relationships  appear  linear  so  we  fit  a  model  with  an interaction term:

lmod = lm (Gas ~ Temp*Insul , whiteside)

summary (lmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)         6.8538     0.1360   50.41 < 2e-16

Temp               -0.3932     0.0225  -17.49 < 2e-16

InsulAfter         -2.1300     0.1801  -11.83 2.3e-16

Temp:InsulAfter     0.1153     0.0321    3.59 0.00073



Residual standard error: 0.323 on 52 degrees of freedom

Multiple R-squared: 0.928,           Adjusted R-squared: 0.924

F-statistic: 222 on 3 and 52 DF,          p-value: <2e-16

We  see  that  the  interaction  term  is  statistically  significant meaning that we cannot simplify the model (a fact that we

conveniently  ignored  in  our  previous  analysis  in  Section

6.4.) We would predict that the gas consumption would fall

by  0.393  for  each  1∘C  increase  in  temperature  before

insulation.  After  insulation,  the  fall  in  consumption  per degree is only 0.393 − 0.115 = 0.278. But the interpretation

for the other two parameter estimates is more problematic

since  these  represent  predicted  consumption  when  the

temperature  is  zero.  This  is  on  the  lower  edge  of  the observed range of temperatures and would not represent a

typical  difference.  For  other  datasets,  a  continuous

predictor value of zero might be far outside the range and

so these parameters would have little practical meaning. 

One solution is to center the temperature predictor by its

mean value and recompute the linear model:

mean (whiteside $ Temp)

[1] 4.875

whiteside$ctemp = whiteside$Temp - mean (whiteside$Temp)

lmodc = lm (Gas ~ ctemp*Insul , whiteside)

summary(lmodc)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)          4.9368     0.0642   76.85 < 2e-16

ctemp               -0.3932     0.0225  -17.49 < 2e-16

InsulAfter          -1.5679     0.0877  -17.87 < 2e-16

ctemp:InsulAfter     0.1153     0.0321    3.59 0.00073



Residual standard error: 0.323 on 52 degrees of freedom

Multiple R-squared: 0.928,           Adjusted R-squared: 0.924

F-statistic: 222 on 3 and 52 DF,          p-value: <2e-16

Now  we  can  say  that  the  consumption  at  the  average

winter  temperature  before  insulation  at  the  average

temperature  was  4.94  and  4.94 − 1.57 = 3.37  afterwards. 

The  other  two  coefficients  are  unchanged  and  their

interpretation  remains  the  same.  Thus  we  can  see  that

centering  allows  a  more  natural  interpretation  of  the

parameter estimates in the presence of interaction. 

As  it  happens,  there  is  another  solution  to  dealing  with the  interaction  issue  for  this  particular  example.  We  can apply a log transformation to the response:

lmodlog = lm (log(Gas) ~ Temp*Insul, whiteside)

drop1 (lmodlog, test="F")

Single term deletions



Model:

log(Gas) ~ Temp * Insul

Df Sum of Sq   RSS AIC F value Pr(>F)

<none>                  0.855 -226

Temp:Insul 1     0.0119 0.867 -227   0.73    0.4

We  see  that  the  interaction  is  not  significant  and  can  be removed:

lmodlogp = lm (log (Gas) ~ Temp+Insul, whiteside)

summary (lmodlogp)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.99675     0.04227    47.2 < 2e-16

Temp        -0.08743    0.00636   -13.8 < 2e-16

InsulAfter -0.39277     0.03474   -11.3 9.7e-16



Residual standard error: 0.128 on 53 degrees of freedom

Multiple R-squared: 0.838,           Adjusted R-squared: 0.832

F-statistic: 137 on 2 and 53 DF,          p-value: <2e-16

All the remaining terms are clearly significant. 

The structural part of this model states that:

log Gas =  β 0 +  βInsul +  βtemp  Temp

(15.5)

which we can write as:

Gas =  eβ 0 eβInsuleβtemp  Temp

(15.6)

Hence  the  effect  of  the  insulation  is  to  multiply  the response  by   e−0.393 = 0.675.  So  a  readily  understood conclusion of this analysis is that the effect of insulation is to  reduce  gas  consumption  by  32.5%.  Using  a  logged

response  makes  sense  when  you  think  the  predictors  have a  multiplicative,  rather  than  additive,  effect  on  the

response. 

This 

was 

the 

motivation 

for 

the 

log-

transformation  in  this  example  and  not  from  any

dissatisfaction with the diagnostics on the original model. 

15.5 Factors With More Than Two Levels

Suppose  we  have  a  factor  with   f  levels;  then  we  create f − 1 dummy variables  d 2, … ,  df where: di = {0 is not level i

1

is level i

(15.7)

Level one is the reference level. 

We demonstrate the use of multilevel factors with a study

on the sexual activity and the life span of male fruitflies by

Partridge and Farquhar (1981): 125 fruitflies were divided randomly into five groups of 25 each. The response was the

longevity  of  the  fruitfly  in  days.  One  group  was  kept solitary,  while  another  was  kept  individually  with  a  virgin female each day. Another group was kept with eight virgin

females  per  day.  As  an  additional  control,  the  fourth  and fifth  groups  were  kept  with  one  or  eight  pregnant  females per  day.  Pregnant  fruitflies  will  not  engage  in  sexual activity.  The  thorax  length  of  each  male  was  measured  as this  was  known  to  affect  longevity.  The  five  groups  are labeled isolated, low, high, one and many, respectively. The

purpose  of  the  analysis  is  to  determine  the  difference between  the  five  groups  if  any.  We  start  with  a  plot  of  the data, as seen in Figure 15.5. 

data (fruitfly, package = "faraway")

[image: Image 86]

plot (longevity ~ thorax, fruitfly, pch=unclass (activity))

legend (0.63 ,100, levels (fruitfly$activity), pch =1:5)

Figure 15.5  Plot of longevity in days and thorax length in millimeters  of  fruitflies  divided  into  five  treatment  groups. 

Longevity  for  the  high  sexual  activity  group  appears  to  be lower. 

With  multiple  levels,  it  can  be  hard  to  distinguish  the groups. Sometimes it is better to plot each level separately. 

This  can  be  achieved  nicely  with  the  help  of  the  ggplot2

package:

library (ggplot2)

[image: Image 87]

ggplot (aes (x = thorax , y = longevity) , data=fruitfly) +

geom_point () + facet_wrap (~ activity)

The  plot,  shown  in  Figure  15.6,   makes  it  clearer  that longevity for the high sexual activity group is lower. 

Figure 15.6  Plot of longevity in days and thorax length in millimeters of fruitflies with each treatment group shown in

a separate panel. 

We fit and summarize the most general linear model:

lmod = lm (longevity ~ thorax*activity, fruitfly) summary (lmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)            -50.242     21.801   -2.30    0.023

thorax                 136.127     25.952    5.25 7.3e-07

activityone              6.517     33.871    0.19    0.848

activitylow             -7.750     33.969   -0.23    0.820

activitymany            -1.139     32.530   -0.04    0.972

activityhigh           -11.038     31.287   -0.35    0.725

thorax:activityone      -4.677     40.652   -0.12    0.909

thorax:activitylow       0.874     40.425    0.02    0.983

thorax:activitymany      6.548     39.360    0.17    0.868

thorax:activityhigh    -11.127     38.120   -0.29    0.771




Residual standard error: 10.7 on 114 degrees of freedom

Multiple R-squared: 0.653,           Adjusted R-squared: 0.626

F-statistic: 23.9 on 9 and 114 DF,          p-value: <2e-16

Since  isolated is the reference level, the fitted regression line within this group is longevity= −50.2 + 136.1∗ thorax. 

For   many,  it  is  longevity= (−50.2 − 1.1) + (136.1 + 6.5)∗

thorax.  Similar  calculations  can  be  made  for  the  other groups. Examine:

model.matrix (lmod)

to see how the coding is done. Some diagnostics should be

examined by:

plot (lmod)

There  is  perhaps  some  heteroscedasticity,  but  we  will  let this  be  until  later  for  ease  of  presentation.  Now  we  see whether  the  model  can  be  simplified.  The  model  summary

output  is  not  suitable  for  this  purpose  because  there  are four t-tests corresponding to the interaction term while we

want  just  a  single  test  for  this  term.  We  can  obtain  this using:

anova (lmod)

Analysis of Variance Table



Response: longevity

Df Sum Sq Mean Sq F value Pr(>F)

thorax            1  15003   15003  130.73 < 2e-16

activity          4   9635    2409   20.99 5.5e-13

thorax:activity   4     24       6    0.05    0.99

Residuals       114  13083      115

This  is  a  sequential  analysis  of  variance  (ANOVA)  table. 

Starting  from  a  null  model,  terms  are  added  and

sequentially  tested.  The  models  representing  the  null  and alternatives  are  listed  in  Table  15.1.   We  wish  to successively  simplify  the  full  model  and  then  interpret  the result.  The  interaction  term  thorax:activity  is  not

significant, indicating that we can fit the same slope within

each group. No further simplification is possible. 

Null

Alternative

y∼ 1

y∼ thorax

y∼ thorax

y∼ thorax+activity

y∼ thorax+activity

y∼ thorax+activity+thorax:activity

Table  15.1:   Models  compared  in  the  sequential ANOVA. 

We  notice  that  the  F-statistic  for  the  test  of  the interaction  term  is  very  small  and  its   p-value  close  to  one. 

For these data, the fitted regression lines to the five groups happen to be very close to parallel. This can, of course, just happen by chance. In some other cases, unusually large pvalues  have  been  used  as  evidence  that  data  have  been tampered  with  or  “cleaned”  to  improve  the  fit.  Most

famously, Ronald Fisher suspected Gregor Mendel of fixing

the  data  in  some  genetics  experiments  because  the  data seemed too good to be true. See Fisher (1936). 

We now refit without the interaction term:

lmodp = lm (longevity ~ thorax + activity , fruitfly)

Do  we  need  both  thorax  and  activity?  We  could  use  the output  above  which  suggests  both  terms  are  significant. 

However,  thorax  is  tested  by  itself  and  then  activity  is tested  once  thorax  is  entered  into  the  model.  We  might prefer  to  check  whether  each  predictor  is  significant  once the  other  has  been  taken  into  account.  We  can  do  this using:

drop1 (lmodp , test = "F")

Single term deletions



Model:

longevity ~ thorax + activity

Df Sum of Sq   RSS AIC F value Pr(>F)

<none>                13107 590

thorax    1     12368 25476 670   111.3 <2e-16

activity 4       9635 22742 650    21.7 2e-13

The  drop1()  command  tests  each  term  relative  to  the  full model.  This  shows  that  both  terms  are  significant  even after allowing for the effect of the other. Now examine the

model coefficients:

summary (lmodp)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)       -48.75      10.85   -4.49 1.6e-05

thorax            134.34      12.73   10.55 < 2e-16

activityone         2.64       2.98    0.88     0.38

activitylow        -7.01       2.98   -2.35     0.02

activitymany        4.14       3.03    1.37     0.17

activityhigh      -20.00       3.02   -6.63  1.0e-09



Residual standard error: 10.5 on 118 degrees of freedom

Multiple R-squared: 0.653,           Adjusted R-squared: 0.638

F-statistic: 44.4 on 5 and 118 DF,          p-value: <2e-16

“Isolated” is the reference level. We see that the intercepts

of  “one”  and  “many”  are  not  significantly  different  from this reference level. We also see that the low sexual activity group, “low,” survives about seven days less. The p-value is

0.02  and  is  enough  for  statistical  significance  if  only  one comparison  is  made.  However,  we  are  making  more  than

one comparison, and so, as with outliers, a Bonferroni-type

adjustment  might  be  considered.  This  would  erase  the

statistical significance of the difference. However, the high

sexual  activity  group,  “high,”  has  a  life  span  20  days  less than the reference group and this is strongly significant. 

Returning to the diagnostics:

plot (residuals (lmodp) ~ fitted (lmodp) , 

[image: Image 88]

pch = unclass (fruitfly $ activity) , 

xlab = "Fitted" , ylab = "Residuals")

abline (h =0)

is seen in the first panel of Figure 15.7.  We have some nonconstant variance although it does not appear to be related

to  the  five  groups.  A  log  transformation  can  remove  the heteroscedasticity:

lmodl = lm (log (longevity) ~ thorax+activity, fruitfly)

plot (residuals (lmodl) ~ fitted (lmodl), 

pch = unclass (fruitfly$activity), 

xlab = "Fitted" , ylab = "Residuals")

abline (h =0)

Figure  15.7   Diagnostic  plots  for  the  fruitfly  data  before and after log transformation of the response. 

as  seen  in  the  second  panel  of  Figure  15.7.  One disadvantage  of  transformation  is  that  it  can  make

interpretation  of  the  model  more  difficult.  Let's  examine the model fit:

summary (lmodl)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)       1.8442     0.1988    9.28 1.0e-15

thorax            2.7215     0.2333   11.67 < 2e-16

activityone       0.0517     0.0547    0.95    0.346

activitylow      -0.1239     0.0546   -2.27    0.025

activitymany      0.0879     0.0555    1.59    0.116

activityhigh     -0.4193     0.0553   -7.59  8.4e-12



Residual standard error: 0.193 on 118 degrees of freedom

Multiple R-squared: 0.702,           Adjusted R-squared: 0.69

F-statistic: 55.7 on 5 and 118 DF,          p-value: <2e-16

Notice that the  R 2 is higher for this model, but the p-values are  similar.  Because  of  the  log  transformation,  we  can interpret the coefficients as having a multiplicative effect:

exp (coef (lmodl) [3:6])

activityone   activitylow activitymany activityhigh

1.05311       0.88350      1.09189      0.65754

Compared  to  the  reference  level,  we  see  that  the  high sexual activity group has 0.66 times the life span (i.e., 34%

less). 

Why  did  we  include  thorax  in  the  model?  Its  effect  on longevity  was  known,  but  because  of  the  random

assignment of the flies to the groups, this variable will not

bias  the  estimates  of  the  effects  of  the  activities.  We  can verify that thorax is unrelated to the activities:

lmodh = lm (thorax ~ activity , fruitfly)

anova (lmodh)

Analysis of Variance Table

 

Response: thorax

Df Sum Sq Mean Sq F value Pr(>F)

activity    4 0.026    0.006    1.11   0.36

Residuals 119 0.685    0.006

However,  look  what  happens  if  we  omit  thorax  from  the model for longevity:

lmodu = lm (log (longevity) ~ activity , fruitfly)

summary (lmodu)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)       4.1193     0.0564   72.99 < 2e-16

activityone       0.0234     0.0798    0.29     0.77

activitylow      -0.1195     0.0798   -1.50     0.14

activitymany      0.0240     0.0806    0.30     0.77

activityhigh     -0.5172     0.0798   -6.48  2.2e-09



Residual standard error: 0.282 on 119 degrees of freedom

Multiple R-squared: 0.359,           Adjusted R-squared: 0.338

F-statistic: 16.7 on 4 and 119 DF,          p-value: 6.96e-11

The magnitudes of the effects do not change that much but

the  standard  errors  are  substantially  larger.  The  value  of including thorax in this model is to increase the precision of the estimates. 

15.6 Contrasts and Factor Codings

This  section  can  be  skipped  on  first  reading  since  it  is  not essential for the understanding of subsequent topics. 

As  we  have  seen,  we  cannot  discuss  the  effect  of  a

particular  level  of  a  factor  in  isolation  as  the  estimation necessarily requires that this be discussed relative to some

other  levels  of  the  factor.  We  have  some  choice  in specifying which combinations of levels we find interesting. 

Consider a factor with  I levels with parameters  αi for levels i = 1, … ,  I.  A   contrast, c,  is  a  linear  combination  of  the parameters  ∑ i ciαi  where  ∑ i ci = 0.  In  general,  we  can uniquely  estimate  contrasts.  The  idea  is  that  we  specify contrasts  with  an  interpretation  appropriate  to  the  given example and use this to determine the coding of the factor

levels. 

In  the  default  R  coding  of  the  factor  levels,  the  contrasts are of the form  αj −  α 1 where  cj = 1,  c 1 = −1 and all other ci = 0. When we discuss the effect of level  j, we mean the difference  between  level   j  and  level  one  which  is  the reference level. But we could do this differently. Sometimes

an  alternative  coding  of  factor  variables  can  lead  to  other helpful interpretations of the parameter estimates. 

We can numerically represent a factor with a dummy (or

indicator)  variable  matrix,  B,  of  dimension   n ×  I,  where Bij = 1  if  case   i  falls  in  level   j  and  is  zero  otherwise.  We might  hope  to  use   B  to  form  part  of  the  model  matrix. 

However, we cannot just insert it as the row sums of  B are all one. Since an intercept term would also be represented

by  a  column  of  ones,  the  parameters  would  not  be

identifiable.  Removing  the  intercept  term  is  one  solution, but this will not work well if there is more than one factor. 

A more general solution is to reduce the rank of the dummy

variable  matrix  by  one.  Simply  deleting  one  column  would do  as  in  the  default  coding,  but  any  solution  that  avoids

collinear dummy variables will work. The choice should be based  on  convenience  of  interpretation  and  numerical

stability. 

The  coding  can  be  determined  by  a   contrast  matrix   C

which  has  dimension   I × ( I − 1).  Some  examples  of   C  are given  below.  The  contribution  to  the  model  matrix  is  then given  by   BC.  Other  columns  of  the  model  matrix  might include  a  leading  column  of  ones  for  the  intercept  and perhaps other predictors. 

Let's  illustrate  the  choices  using  the  fruitfly  data  of  the previous section. We compute the response means for each

of the five levels of the activity factor:

(gpmeans = aggregate (longevity ~ activity, fruitfly, mean))

activity longevity

1 isolated    63.560

2      one    64.800

3      low    56.760

4     many    64.542

5     high    38.720

We'll  see  how  the  codings  represents  these  means  in

different ways. 

Treatment Coding

This is the default choice in R. Let's fit the model with just the one factor for clarity:

lmodt = lm (longevity ~ activity , fruitfly)

coef (lmodt)

(Intercept)   activityone   activitylow activitymany 

activityhigh

   63.56000       1.24000      -6.80000      0.98167    

-24.84000

The  reference  level  is   isolated.  We  see  that  the  mean  for this  level  of  63.56  is  represented  by  the  intercept  term  in the  model.  The  parameter  estimate  for   one  is  1.24, representing  the  difference  between  this  level  and  the

reference  level.  We  have  63.56+1.24=64.8  which  is  the

mean  response  for   one.  We  can  do  similar  calculations  for the  other  levels.  Introducing  more  variables  to  the  model would  complicate  these  calculations  but  the  key  point  is that  the  parameter  estimates  represent  differences  from  a reference level. 

Sum Coding

Sum coding might be preferred when there is no natural

reference  level.  We  set  this  coding,  refit  the  model  and display the parameter estimates:

contrasts (fruitfly$activity) = contr.sum (5)

lmods = lm(longevity ~ activity , fruitfly)

coef(lmods)

(Intercept)   activity1   activity2   activity3   activity4

57.67633     5.88367     7.12367    -0.91633     6.86533

The intercept represents the mean of the group means. We

can also compute this directly as:

mean (gpmeans$longevity)

[1] 57.676

Note  that  this  is  not  exactly  the  same  as  the  overall response mean as the group sizes are not all the same. 

The parameter estimate of 5.88 for the first activity level, isolated,  represents  the  difference  for  the  mean  of  this group from the mean of the group means. For this reason, 

this  coding  is  also  called  the   deviation  contrast.  We  can verify this as 57.68 + 5.88 = 63.56. 

We can do similar calculations for the other levels but the

key  point  is  that  the  parameter  estimates  represent

difference  from  an  overall  mean.  This  would  be  useful  in situations  where  there  is  no  control  or  obvious  choice  of reference  level.  For  example,  if  the  levels  were  the  50

states  of  the  USA,  we  might  not  want  to  pick  out  any  one state as a reference level but we might want to compare to

some average across states. 

The effect of the last level does not appear in the output

but  can  be  computed  with  the  knowledge  that  the  effects must sum to zero. In this case, the effect is:

sum (coef (lmods) [ -1])

[1] 18.956

We  can  confirm  this  is  correct  by  observing  that

57.68 − 18.96 = 38.72 as appearing in the output earlier. 

Let's  see  how  the  contribution  of  columns   X*  to  the design matrix is constructed. We have the dummy variable

matrix   B  and  contrast  matrix   C  to  get   X ∗ =  BC  The  sum coding uses a  C (for our five level factor):

contr.sum (5)

[,1] [,2] [,3] [,4]

1      1    0    0    0

2      0    1    0    0

3      0    0    1    0

4      0    0    0    1

5     -1   -1   -1   -1

It's not obvious from this what contrasts of the parameters

will be estimated. We need to look at the inverse of  C to see these combinations.  C is not a square matrix so we actually need  the  generalized  inverse.  A  more  detailed  explanation

of  how  this  works  can  be  found  in  Venables  and  Ripley

(2002).  The  functions  ginv()  for  generalized  inverses  and

fractions()  for  representing  decimals  as  fractions,  found  in the MASS library are helpful here:

library (MASS)

fractions (ginv (contr . sum (5)))

[,1] [,2] [,3]   [,4]   [,5]

[1,] 4/5 -1/5 -1/5    -1/5   -1/5

[2,] -1/5 4/5 -1/5    -1/5   -1/5

[3,] -1/5 -1/5 4/5    -1/5   -1/5

[4,] -1/5 -1/5 -1/5    4/5   -1/5

Consider  the  parameter  representing  the  first  level, 

 isolated, as computed above. We claimed this represented a deviation from an overall mean:

5

 α 1 − ∑  αi/5

 i=1

(15.8)

We can write this as:

4 α 1/5 −  α 2/5 −  α 3/5 −  α 4/5 −  α 5/5

(15.9)

We see that this is the first row in the generalized inverse

of  C. Similar calculations can be done with the other levels except  for  the  last  level  whose  value  is  implicitly

determined by the other levels. 

When  calculations  were  done  manually  in  the  era  before cheap  computing,  sum  coding  was  the  default  choice, 

particularly  in  balanced  designs,  as  this  was  more

straightforward for human calculators. 

Helmert Coding

The coding here is:

(CH = contr . helmert (5))

[,1] [,2] [,3] [,4]

1     -1   -1   -1   -1

2      1   -1   -1   -1

3      0    2   -1   -1

4      0    0    3   -1

5      0    0    0    4

Notice that the columns of the contrast matrix are mutually

orthogonal. We can verify this with:

t (CH) % * % CH

[,1] [,2] [,3] [,4]

[1,]      2    0    0    0

[2,]      0    6    0    0

[3,]      0    0   12    0

[4,]      0    0    0   20

This has particular computational advantages in speed and

stability that can be valuable in some circumstances. This is

the  most  compelling  reason  to  use  this  coding.  It  also  has some interpretation:

fractions (ginv (contr . helmert (5)))

[,1] [,2] [,3] [,4] [,5]

[1,] -1/2    1/2     0     0   0

[2,] -1/6 -1/6     1/3     0   0

[3,] -1/12 -1/12 -1/12   1/4   0

[4,] -1/20 -1/20 -1/20 -1/20 1/5

We  see  that  the  contrasts  involve  linear  combinations  of successively  more  parameters.  This  coding  has  is  useful  in special circumstances, particularly with ordinal factors. 

Discussion

There  are  other  reasonable  choices  of  coding  and

contrast  matrices.  The  codingMatrices  package  of  Venables

(2023)  provides  additional  choices  and  utility  functions. 

The attached vignette provides more explanation. 

This  section  is  quite  complicated  and  one  may  wonder

whether it is necessary to engage with this topic. To a large

extent,  one  can  sidestep  the  issue  provided  a  sensible choice  of  coding  is  used  (the  default  will  suffice).  The choice  of  coding  does  not  affect  the   R 2, 

 σ 2,  overall   F-

statistic,  the  predicted  or  fitted  values.  You  can  make predictions without concerns. Most tests will be unaffected. 

The choice of coding does affect the parameter estimates for  a  factor.  You  need  to  understand  this  in  order  to interpret  them  correctly.  If  you  want  to  make  hypothesis tests about the individual parameters for a factor, you need

to know what they mean. If you test a main effect (a single

factor term) in a model with interactions terms, the coding

determines  what  is  being  tested.  For  this  reason,  we

recommend  you  avoid  doing  such  a  test  unless  you  are

clear on the meaning. 

In  Section  6.1,  we  described  a  way  of  interpreting parameter  estimates  in  linear  models  based  on  prediction. 

We can take the same approach in models that use factors

using the idea of  marginal means. We will demonstrate this approach  in  subsequent  chapters.  This  avoids  some  of  the interpretational  difficulties  associated  with  the  choice  of coding. 

Exercises

1. Using the teengamb data, model gamble as the response. 

(a)

Considering  just  income  and  sex  as  potential

predictors,  make  plots  of  the  data  in  two  distinct

ways  —  with  a  single  frame  and  with  two  frames. 

Judging from just the plots, do you think there is an

interaction effect? Why? 

(b)

Fit a model allowing for an interaction effect. Is the

interaction significant? 

(c)

What  is  the  interpretation  of  the  sex  parameter  in

this  model?  It  is  not  statistically  significant.  What

does this indicate? 

(d)

The  data  already  has  sex  as  a  dummy  variable. 

Create  a  factor  where  the  levels  are  labelled  male

and female and where female is the reference level. 

Now fit the model again. What does this model say

about  the  relationship  between  income  and

gambling for females? 

(e)

Fit  a  model  which  checks  for  an  interaction

between  sex  and  each  of  three  quantitative

predictors:  income,  status  and  verbal.  Which

interactions are significant? 

(f)

Should we prefer this model to the previous simpler

model? 

2. Using  the  infmort  data,  model  the  infant  mortality  in terms of the other variables. 

(a)

Make  a  plot  showing  the  relationship  between

income  and  infant  mortality.  Show  the  region  on

different  facets  and  the  oil  variables  with  a

different  plotting  color.  Use  a  log  scale  for  the

income. 

(b)

Which country is a clear outlier? 

(c)

Fit  a  model  which  includes  interactions  between

income and oil, and, income and region. Include all

the  data  and  use  any  suitable  transformations. 

Identify the reference levels. Which countries are in the reference levels for both factors? 

(d)

Which interactions are statistically significant? 

(e)

Repeat  the  model  fitting  and  testing  but  with  the

previously  identified  outlier  excluded.  Does  this

change  the  significance  of  the  model  terms?  Are

there noticeable changes to the coefficients? 

(f)

Fit  a  model  without  the  outlying  country  and

without  the  insignificant  interaction  where  no  oil

exports is the reference level. Answer the following:

(i)  What  is  the  interpretation  of  the  income  only

coefficient?  (ii)  What  is  the  interpretation  of  the

income by oil interaction coefficient in concert with

the  income  only  coefficient?  (iii)  What  three

continents might be grouped together in contrast to

a fourth continent? 

3. In this question, we model the ToothGrowth data. 

(a)

Plot  the  data  with  len  as  the  response,  dose  as  the

predictor and with supp distinguished in the plotting

character. Comment on the relationship. 

(b)

Fit  a  model  with  len  as  the  response  and  with  dose

and  supp  as  predictors  along  with  their  interaction. 

Can this model be simplified? 

(c)

Make  a  residual-fitted  plot.  Does  this  show  any

problems? 

(d)

Fit a model where there is a quadratic term in dose

as  well  as  interaction(s)  with  supp.  Is  there  any

difference in curvature between the two groups? 

(e)

Use  an  F-test  to  compare  this  to  the  previous

model. What does the outcome of the test mean? 

(f)

Compute  the  group  means  by  dose  and  supp  in

combination using the xtabs() command. What does

this suggest? 

4. Investigate  whether  the  side  variable  can  be  used  in  a model for all the chredlin data rather than as a subsetting

variable as in the analysis in the text. 

(a)

Fit  a  model  with  involact  as  the  response  and  the

predictors, 

race, 

fire, 

theft, 

income(logged)

interacting  with  side.  Explain  what  the  interaction

terms represent in this situation. 

(b)

Test  whether  any  of  the  interaction  effects  are

significant. 

(c)

Is there evidence of any effect due to side? 

(d)

Fit  a  model  with  the  five  predictors  for  just  the

south  side.  Fit  the  same  model  for  the  north  side. 

Can  we  test  whether  the  coefficients  in  these  two

models are the same? 

5. Use the uswages data with wages as the response. 

(a)

Fit a model with wage as the response and the four

regional  indicators  as  predictors.  Explain  why  a

warning message is seen in the model output. 

(b)

Fit  the  same  model  but  without  an  intercept  term. 

Why is there no error message now? Verify that the

coefficient  for  the  northeast  is  equal  to  the  mean

wage  in  the  northeast.  Demonstrate  how  the  same

number can be calculated from the model in (a). 

(c)

Make  a  plot  where  wage  (on  a  log  scale)  is  the

response 

and 

education 

is 

the 

predictor. 

Distinguish  the  race  using  the  plotting  character. 

How effective is this plot? 

(d)

Make  a  plot  where  two  boxplots  for  each  level  of

race appear for each number of years of education. 

How does this compare to the previous plot? 

(e)

Fit  a  model  where  logged  wages  is  the  response. 

Use  an  interaction  between  race  and  education. 

Which terms are not statistically significant? 

(f)

Now  fit  a  model  where  only  race  is  used  as  a

predictor.  Use  an  F-test  to  compare  this  model  to

the previous model. 

(g)

Fit the best model — it may be one of the two above

or a third model. Interpret the coefficients. 

6. The  dataset  clot  contains  the  clotting  times  of  blood varying  as  a  response  and  the  percentage  concentration

of prothrombin-free plasma as a predictor. There are two lots of thromboplastin. 

(a)

Plot  the  data  using  a  different  plotting  symbol

according to the lot. Comment. 

(b)

Find  the  transformation  of  the  two  continuous

variables to form a linear relationship. 

(c)

Does  the  time  to  clot  vary  according  to

concentration differently in the two lots? 

(d)

Check  the  assumptions  of  your  model  using

regression diagnostics. 

(e)

At  what  percentage  concentration  is  the  predicted

time the same for the two lots? 

7. The  wealth  in  billions  of  dollars  for  232  billionaires  is given in fortune. 

(a)

Plot  the  wealth  as  a  function  of  age  using  a

different plotting symbol for the different regions of

the world. 

(b)

Plot the wealth as a function of age with a separate

panel for each region. 

(c)

Determine  a  transformation  on  the  response  to

facilitate linear modeling. 

(d)

What  is  the  relationship  of  age  and  region  to

wealth? 

(e)

Check  the  assumptions  of  your  model  using

appropriate diagnostics. 

Chapter 16

One Factor Models

DOI: 10.1201/9781003449973-16

We  introduced  factors  with  more  than  two  levels  in  the previous  chapter.  A  model  with  only  one  factor  as  a

predictor  is  apparently  very  simple  but  we  demonstrate

several ideas that extend to more complex models involving

more factors in the chapters to come. We look at  analysis of variance  which  is  a  long-established  approach  to  models with  only  factor  predictors.  We  show  how  the  models  can be  parameterized  in  different  ways  according  our  needs. 

We  often  want  to  make  multiple  comparisons  in  these

models and we must take care to keep control of the size of

the  tests.  We  look  at  how  large  a  sample  is  needed  to answer our study questions. 

16.1 The Model

Suppose we have a factor  α occurring at  i = 1, … ,  I levels, with  j = 1, … ,  Ji observations per level. We use the model:

 yij =  μ +  αi +  εij (16.1)

The parameters are not identifiable. For example, we could

add  some  constant  to   μ  and  subtract  the  same  constant from  each   αi  and  the  fit  would  be  unchanged.  It's reasonable  to  state  the  model  in  this  form,  but  some

constraint is necessary. Here are some possibilities:

No intercept Drop  μ from the model and use  I different dummy variables to estimate  αi for  i = 1, … ,  I. This is feasible but does not extend well to models with more

than one factor as more than one parameter needs to be

dropped. 

Treatment coding Set  α 1 = 0; then  μ represents the expected mean response for the first level and  αi for  i ≠ 1

represents the difference between level  i and level one. 

Level one is then called the  reference level or  baseline level. This is the default choice in R. 

Sum coding Set ∑ i αi = 0; now  μ represents the mean response over all levels and  αi, the difference from that mean. 

The  choice  of  constraint  from  those  listed  above  or

otherwise will determine the coding used to generate the  X-

matrix.  Once  that  is  done,  the  parameters  (effects)  can  be estimated in the usual way along with standard errors. No

matter  which  valid  constraint  and  coding  choice  is  made, the fitted values and residuals will be the same. 

Once the parameters are estimated, the natural first step

is  to  test  for  differences  in  the  levels  of  the  factor.  An explicit  statement  of  the  null  and  alternative  hypotheses would depend on the coding used. If we use the treatment

coding  with  a  reference  level,  then  the  null  hypothesis would  require  that   α 2 = ⋯ =  αI = 0.  For  other  codings, the  statement  would  differ.  To  avoid  confusion  about  the parameterization,  it  is  better  to  state  the  hypotheses  in terms of models:

 H 0 :  yij =  μ +  εij

(16.2)

 H 1 :

 yij =  μ +  αi +  εij

(16.3)

We  compute  the  residual  sum  of  squares  and  degrees  of freedom for the two models and then use the same F-test as

we  have  used  for  regression.  The  outcome  of  this  test  will be the same whether we use the treatment, sum or another

reasonable  coding.  If  we  make  the  choice  to  drop  the

intercept term (as in the first of the three constraints listed above),  we  will  have  a  problem  since  the  null  model

requires  this  term.  If  we  do  not  reject  the  null,  we  are almost  done  —  we  must  still  check  the  linear  model

assumptions  as  we  might  consider  a  transformation  of  the response  or  the  presence  of  outliers.  If  we  reject  the  null, we must investigate which levels differ. 

16.2 An Example

Twenty-four  animals  were  randomly  assigned  to  four

different  diets  and  blood  samples  were  taken  in  a  random order.  The  blood  coagulation  time  was  measured.  These

data come from Box et al. (1978):

data (coagulation , package="faraway")

coagulation

coag diet

1    62    A

2    60    A

...etc... 

23   63    D

24   59    D

Some  preliminary  graphical  analysis  is  essential  before

fitting. The default plotting method in base R graphics is the side-by-side  boxplot.  Although  this  plot  has  strong  visual impact  for  comparison,  a  stripchart  can  be  better  for

smaller datasets:

plot (coag ~ diet, coagulation, ylab="coagulation time") stripchart (coag ~ diet, coagulation, vertical=TRUE , 

method = "stack", xlab = "diet", ylab="coagulation time") The  boxplot  in  Figure  16.1  shows  how  the  four  levels  vary but  there  is  something  odd  about  the  display  of  diet  C
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because  the  median  and  upper  quartile  are  the  same.  The stripchart shows the ties in the data in diets C and D. 

Figure 16.1  A boxplot on the left and a stripchart on the right showing the blood coagulation data. 

We  are  looking  for  several  features  in  these  plots.  We must  check  for  equality  of  variance  in  the  groups,  which seems  satisfied  in  this  example.  We  are  looking  for

evidence  of  skewness  showing  a  lack  of  normality.  This might suggest a transformation of the response. There is no

such  concern  in  this  example.  Finally,  we  should  look  for outliers — there are none to be seen in this example. 

It  is  not  worth  considering  diagnostics  for  influence,  as the  leverages  depend  explicitly  on   Ji.  If  there  is  only  one observation  for  a  given  level,  that  is   Ji = 1,  then  the estimate  of  the  effect  for  that  level  will  be  based  on  that

single point. That point is clearly influential without further investigation. 

Now  let's  fit  the  model  using  the  default  treatment

coding:

lmod = lm (coag ~ diet , coagulation)

summary (lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept)   6.10e+01   1.18e+00   51.55 < 1e-04

dietB         5.00e+00   1.53e+00    3.27 0.00380

dietC         7.00e+00   1.53e+00    4.58 0.00018

dietD         2.72e-15   1.45e+00    0.00 1.00000



Residual standard error: 2.37 on 20 degrees of freedom

Multiple R-squared: 0.671,           Adjusted R-squared: 0.621

F-statistic: 13.6 on 3 and 20 DF,          p-value: <1e-04

Rounding  error  results  in  a  rather  unfortunate  formatting of the results. The coefficients can be more cleanly seen as:

round (coef (lmod) ,1)

(Intercept)   dietB   dietC   dietD

61       5       7       0

Group A is the reference level and has a mean of 61, groups

B,  C  and  D  are  5,  7  and  0  seconds  larger,  respectively,  on average.  Examine  the  design  matrix  to  understand  the

coding:

model.matrix (lmod)

The three test statistics for the group levels correspond to

comparisons with the reference level A. Although these are

interesting, they do not specifically answer the question of

whether there is a significant difference between any of the levels. This test can be obtained as:

anova(lmod)

Analysis of Variance Table



Response: coag

Df Sum Sq Mean Sq F value   Pr(>F)

diet       3    228    76.0    13.6 0.000047

Residuals 20    112     5.6

We  see  that  there  is  indeed  a  difference  in  the  levels although this test does not tell us which levels are different from others. 

16.3 Analysis of Variance

In  Section  2.3,  we  introduced  a  geometrical  approach  to estimation  in  linear  models  and  developed  this  for

inference  in  Section  3.1.  In  Figure  2.1,  we  decompose  the response   y  into  the  fitted  values  ^

 y  and  residuals   ε  which

together form a right-angled triangle. Pythagoras' theorem

tells  us  that  the  squared  length  of  the  hypotenuse  equals the  sum  of  the  squared  lengths  of  the  other  two  sides.  We can compute these squared lengths as sums of squares. 

The total sum of squares  SSTotal is a measure of the total variation  in  the  response   y,  without  reference  to  the predictor. It is given by:

 I

 Ji

 SS

∑∑

 Total =

( yij − ¯ y⋅⋅)2

 i=1  j=1

(16.4)

where  ¯

 y⋅⋅ is the overall mean. We can decompose this into

two parts,  SSTreat, which represents the variation between the  fitted  values,  and   SSError,  which  expresses  the variation in the residuals. These are:

 SSTotal =  SSTreat

+  SSError

(16.5)

 I

 I

 Ji

= ∑  J

∑∑

 i(¯

 yi⋅ − ¯ y⋅⋅)2

+

( yij − ¯ yi⋅)2

 i=1

 i=1  j=1

(16.6)

where ¯

 yi⋅ is the mean in group  i. 

Let's  compute  these  sums  of  squares  for  the  coagulation data:

(SSTotal = with (coagulation , sum ((coag - mean (coag)) ^2)))

[1] 340

We need to compute the group means (¯

 yi⋅):

(gpmean = with (coagulation , tapply (coag , diet , mean)))

A B C D

61 66 68 61

These correspond to the fitted values computed previously. 

We also need the group sizes ( Ji):

(gpsize = table (coagulation $ diet))

A B C D

4 6 6 8

Now  add  the  information  to  the  data  frame  so  that  each row has the corresponding mean and group size:

coagulation$gpmean = gpmean [unclass(coagulation$diet)]

coagulation$ssize = gpsize [unclass(coagulation$diet)]

head (coagulation)

coag diet gpmean gpsize

1     62    A     61      4

2     60    A     61      4

3     63    A     61      4

4     59    A     61      4

5     63    B     66      6

6     67    B     66      6

Now we can compute the sums of squares:

(SSTreat = with (coagulation , sum ((gpmean - mean (coag)) 

^2)))

[1] 228

and

(SSError = with (coagulation , sum ((coag - gpmean) ^2)))

[1] 112

We can also find these two sums of squares in the “Analysis

of  Variance  Table”  for  the  model.  We  can  compute   R 2,  the proportion of variance explained as:

SSTreat / SSTotal

[1] 0.67059

The ratio of  SSTreat to  SSError expresses the evidence about a  difference  between  the  treatments.  The  larger  it  is,  the stronger the evidence. We need to scale this by the degrees

of freedom for each component, which are  I − 1 and  n −  I respectively:

(SSTreat/(4-1))/(SSError/(24-4))

[1] 13.571

This is the  F-statistic as displayed in the ANOVA table. 

Notice  that  we  have  not  used  the   y =  Xβ +  ε  model framework and we need no matrix algebra with  X. We could compute  all  these  quantities  using  manual  calculation. 

These  techniques  go  back  over  a  hundred  years  and  the ability  to  perform  the  calculations  easily  was  essential  for much of that time. 

Linear  models  with  only  categorical  predictors  (or

factors)  have  traditionally  been  called  analysis  of  variance (ANOVA)  problems.  The  strategy  is  to  partition  the  overall variance in the response due to each of the factors and the

error.  This  approach  is  exemplified  by  Scheffé  (1959)  and is seen in older textbooks. 

Some  good  insights  can  be  gained  by  considering  the

problem in this way — see Gelman (2005) for a computing-era  perspective.  For  a  one-factor  model,  the  mathematical expressions  are  simple  enough.  But  as  we  consider  more complex models with more factors and perhaps unbalanced

layouts, an increasingly complex set of specialized formulae

is  needed.  Instead,  we  take  the  much  simpler  regression-

based  approach  by  putting  the  model  into  the   y =  Xβ +  ε

format  and  then  using  the  inferential  methods  we  have

already developed in the rest of this book. 

The  terminology  used  in  ANOVA-type  problems  is

sometimes different. Predictors are now all qualitative and

are  now  typically  called   factors,  which  have  some  number of   levels.  The  regression  parameters  are  now  often  called effects.   We  shall  consider  only  models  where  the parameters  are  considered  fixed,  but  unknown  —  called

 fixed-effects  models.  Random-effects  models  are  used where  parameters  are  taken  to  be  random  variables  and

are not covered in this text. 

16.4 Other Factor Codings

By  default,  R  uses  treatment  coding.  This  computes  the effect  relative  to  a  reference  level  (which  is  diet  A  in  this example). We can do this differently. 

We can fit the model without an intercept term as in:

lmodi = lm (coag ~ diet -1 , coagulation)

summary (lmodi)

Estimate Std. Error t value Pr(>|t|)

dietA     61.000      1.183    51.5   <1e-04

dietB     66.000      0.966    68.3   <1e-04

dietC     68.000      0.966    70.4   <1e-04

dietD     61.000      0.837    72.9   <1e-04



Residual standard error: 2.37 on 20 degrees of freedom

Multiple R-squared: 0.999,           Adjusted R-squared: 0.999

F-statistic: 4.4e+03 on 4 and 20 DF,          p-value: <1e-04

This  gives  us  the  level(group)  means.  The   R 2  is  not correctly calculated because of the absence of an intercept. 

The  tests  correspond  to  a  null  hypothesis  of  zero  response which  is  useless  in  this  example.  Furthermore,  leaving  out the intercept only works when we have just one factor. This

is not a good solution. 

If you want the group means and their uncertainties, you

can  get  more  useful  output  from  the  emmeans  package  of

Lenth (2023):

library (emmeans)

emmeans (lmod , ~ diet)

diet emmean    SE df lower.CL upper.CL

A        61 1.183 20     58.5     63.5

B        66 0.966 20     64.0     68.0

C        68 0.966 20     66.0     70.0

D        61 0.837 20     59.3     62.7



Confidence level used: 0.95

This provides the 95% confidence intervals which are more

useful in this context. 

We can also use a sum coding:

options (contrasts = c ("contr . sum"," contr.poly")) lmods = lm (coag ~ diet , coagulation)

summary (lmods)

Estimate Std. Error t value Pr(>|t|)

(Intercept)     64.000      0.498  128.54 < 1e-04

diet1           -3.000      0.974   -3.08 0.00589

diet2            2.000      0.845    2.37 0.02819

diet3            4.000      0.845    4.73 0.00013



Residual standard error: 2.37 on 20 degrees of freedom Multiple R-squared: 0.671,           Adjusted R-squared: 0.621

F-statistic: 13.6 on 3 and 20 DF,          p-value: <1e-04

The  estimated  overall  mean  response  is  64  while  the

estimated  mean  response  for  A  is  three  less  than  the

overall mean, that is, 61. Similarly, the means for B and C

are  66  and  68,  respectively.  Since  we  are  using  the  sum constraint,  we  compute  ^

 αD = −(−3 + 2 + 4) = −3  so  the

mean for D is 64 − 3 = 61. Notice that ^

 σ and the  R 2 are the

same as before. The advantage of this coding is that we are

not  required  to  specify  a  reference  level  and  the

comparisons are relative to an overall mean. 

We set the options to use sum coding for this model. Any

subsequent  fits  would  use  this  coding.  We  might  prefer  to change  back  to  the  treatment  coding  to  avoid  any

confusion:

options (contrasts = c ("contr . treatment"," contr.poly")) We  can  use  any  of  these  three  methods  and  obtain

essentially the same results. Dropping the intercept is least

convenient since an extra step is needed to generate the F-

test.  Furthermore,  the  approach  would  not  extend  well  to experiments  with  more  than  one  factor,  as  additional

constraints  would  be  needed.  The  other  two  methods  can be  used  according  to  taste.  The  treatment  coding  is  most appropriate  when  the  reference  level  is  set  to  a  possible control  group.  For  more  discussion  of  these  codings,  see

Section  15.6.   We  will  use  the  treatment  coding  by  default, as does R, for the rest of this book. 

[image: Image 90]

16.5 Diagnostics

There are fewer diagnostics to do for ANOVA models, but it

is still important to plot the residuals and fitted values and to make the Q–Q plot of the residuals. It makes no sense to

transform  the  predictor,  but  it  is  reasonable  to  consider transforming  the  response.  Diagnostics  are  shown  for  the current model in Figure 16.2. 

qqnorm (residuals (lmod), main= "")

qqline (residuals (lmod))

plot (jitter (fitted (lmod)), residuals (lmod), 

xlab = "Fitted" , ylab = "Residuals")

abline (h =0)

Figure 16.2  Diagnostics for the blood coagulation model. 

Because the data in our example are integers and the fitted

values  happen  to  be  integers  also,  some  discreteness  is obvious  in  the  Q–Q  plot.  Discrete  data  cannot  be  exactly

normally  distributed.  However,  here  the  residuals  are approximately  normal  and  so  we  can  go  ahead  with  the

inference  without  much  concern  as  experience  shows  this will  be  sufficiently  accurate.  The  discreteness  in  the

residuals  and  fitted  values  also  shows  up  in  the  residual-fitted plot. We have jittered the points so that they can seen separately. 

If  one  is  seriously  concerned  with  the  normality

assumption  with  consequences  for  the  inference  and  even the  validity  of  least  squares  estimation,  one  can  resort  to the nonparametric Kruskal-Wallis rank sum test:

kruskal.test (coag ~ diet, coagulation)

Kruskal-Wallis rank sum test



data: coag by diet

Kruskal-Wallis chi-squared = 17, df = 3, p-value = 7e-04

We  find  a  significant  difference  between  the  diets.  We  are reluctant  to  use  such  a  test  because  of  the  large  loss  of power  relative  to  the  standard  parametric  test.  It  is  better to consider transformations of the response to reduce nonnormality.  When  problems  arise,  it  is  sensible  to  try

alternative  solutions  before  resorting  to  nonparametric

methods. 

The assumption of homogeneity of the error variance can

be  examined  using  Levene's  test.  It  computes  the  absolute values of the residuals and uses these as the response in a

new  one-way  ANOVA.  To  reduce  the  possible  influence  of outliers, group medians rather than means should be used. 

A  significant  difference  would  indicate  non-constant

variance.  Most  tests  and  confidence  intervals  (CIs)  are relatively insensitive to non-constant variance so there is no need  to  take  action  unless  the  Levene  test  is  significant  at the 1% level. 

Applying this to the coagulation data, we find:

med = with (coagulation , tapply (coag , diet , median))

ar = with (coagulation , abs (coag - med [diet]))

anova (lm (ar ~ diet , coagulation))

Analysis of Variance Table



Response: ar

Df Sum Sq Mean Sq F value Pr(>F)

diet       3    4.3     1.4    0.65   0.59

Residuals 20   44.5     2.2

Since  the  p-value  is  large,  we  conclude  that  there  is  no evidence of a non-constant variance. 

An alternative test is due to Bartlett:

bartlett.test (coag ~ diet, coagulation)

Bartlett test of homogeneity of variances



data: coag by diet

Bartlett's K-squared = 1.668, df = 3, p-value = 0.6441

Again,  no  difference  is  found.  Levene's  test  is  more  robust to outliers. 

If  you  do  find  a  difference  in  variance,  one  can  take  a weighted  least  squares  approach  as  in  Section  9.2.   A simpler solution is:

oneway.test (coag ~ diet , coagulation , var.equal = FALSE)

One-way analysis of means (not assuming equal variances)

 

data: coag and diet

F = 16.7, num df = 3.00, denom df = 9.95, p-value = 0.00032

This  uses  an  extension  to  the  Welch  approximation, 

commonly used for the 2-sample t-test, to the many groups

case. 

16.6 Pairwise Comparisons

After  detecting  some  difference  in  the  levels  of  the  factor, interest  centers  on  which  levels  or  combinations  of  levels are  different.  It  does  not  make  sense  to  ask  whether  a particular level is significant since this begs the question of

“significantly  different  from  what?”  Any  meaningful  test must involve a comparison of some kind. 

A pairwise comparison of level  i and  j can be made using a CI for  αi −  αj using:

^ αi − ^ αj ±  tα/2

 df se( ^

 αi − ^ αj)

(16.7)

where   se(^

 αi − ^ αj) = ^ σ√1/ Ji + 1/ Jj and df =  n −  I in this case. A test for  αi =  αj amounts to seeing whether zero lies in this interval or not. For example, let's find a 95% CI for

 B −  A.  From  the  model  output,  we  can  see  that  the difference  is  5.0  with  a  standard  error  of  1.53.  For

differences  not  involving  the  reference  level  of  A,  more

effort  would  be  required  to  calculate  these  values.  The interval is:

5 + c (-1 ,1) * qt (0.975 , 24 -4) * 1.53

[1] 1.8085 8.1915

Since  zero  is  not  in  the  interval,  the  difference  is

significant. This is fine for just one test, but we are likely to be interested in more than one comparison. Suppose we do

all  possible  pairwise  tests  when   α = 5%  and  the  null hypothesis  is  in  fact  true.  In  the  blood  coagulation  data, there  are  four  levels  and  so  six  possible  pairwise

comparisons.  Even  if  there  was  no  difference  between  the four  levels,  there  is  still  about  a  20%  chance  that  at  least one significant difference will be found. 

For  experiments  with  more  levels,  the  true  type  I  error gets  even  higher.  Using  the  t-based  CIs  for  multiple

comparisons is called the least significant difference (LSD)

method, but it can hardly be recommended. Now one might

be  tempted  to  argue  that  we  could  choose  which

comparisons  are  interesting  and  so  reduce  the  amount  of testing  and  thus  the  magnitude  of  the  problem.  If  we  only did  a  few  tests,  then  the  Bonferroni  adjustment  (see

Section  7.2)  could  be  used  to  make  a  simple  correction. 

However,  the  determination  of  which  comparisons  are

“interesting” is usually made after seeing the fitted model. 

This  means  that  all  other  comparisons  are  implicitly  made even if they are not explicitly computed. On the other hand, 

if  it  can  be  argued  that  the  comparisons  were  decided before  seeing  the  fit,  then  we  could  make  the  case  for  the

simple  adjustment.  However,  this  is  rarely  the  case  and furthermore  it  might  be  difficult  to  convince  others  that this  really  was  your  intention.  We  must  usually  find  a  way to adjust for  all pairwise comparisons. 

There  are  many  ways  to  make  the  adjustment,  but

 Tukey's honest significant difference (HSD) is the easiest to understand.  It  depends  on  the  studentized  range

distribution which arises as follows. Let  X 1, … ,  Xn be i.i.d. 

 N( μ,  σ 2) and let  R =max i Xi− min i Xi be the range. Then R/^ σ has the studentized range distribution  qn,  ν where  ν is the number of degrees of freedom used in estimating  σ. 

The Tukey CIs are:

 q

^ α

 I,  df

 i − ^

 αj ±

^ σ√(1/ J

√

 i + 1/ Jj)

2

(16.8)

When  the  level  sample  sizes   Ji  are  very  unequal,  Tukey's HSD  test  may  become  too  conservative.  We  compute  the

Tukey HSD bands for the B-A difference. The critical value

from  the  studentized  range  distribution  is  obtained  from the qtukey() function:

se = summary (lmod) $ sigma

5 + c (-1 ,1) *

qtukey (0.95 , 4 , 24 -4) / sqrt (2) * se * sqrt (1 / 4 +1 

/ 6)

[1] 0.72455 9.27545

The  emmeans  package  has  a  convenient  way  to  do  multiple comparisons  for  a  wide  range  of  models.  It  is  described extensively in Lenth (2023). We can obtain all the intervals and tests with:

rem = emmeans (lmod , pairwise ~ diet)

summary (rem $ contrasts , infer = TRUE)

contrast estimate   SE df lower.CL upper.CL t.ratio p.value

A - B          -5 1.53 20    -9.28   -0.725 -3.273  0.0183

A - C          -7 1.53 20   -11.28   -2.725 -4.583  0.0010

A - D           0 1.45 20    -4.06    4.056  0.000  1.0000

B - C          -2 1.37 20    -5.82    1.824 -1.464  0.4766

B - D           5 1.28 20     1.42    8.577  3.912  0.0044

C - D           7 1.28 20     3.42   10.577  5.477  0.0001



Confidence level used: 0.95

Conf-level adjustment: tukey method for comparing a family of 4 

estimates

P value adjustment: tukey method for comparing a family of 4 

estimates

We  see  that  only  the   A −  D  and   B −  C  intervals  contain zero and have  p-values greater than 0.05. 

This  confirms  our  impression  of  which  differences  are

significant.  Confidence  intervals  for  the  group  means  can be plotted as seen in Figure 16.3. 

plot (rem$emmeans , comparisons = TRUE , adjust = "tukey")

[image: Image 91]

Figure  16.3   95%  confidence  intervals  for  the  group means  in  the  coagulation  model.  Arrows  can  be  used  for comparing  levels  with  overlap  indicating  a  non-significant difference. 

When  comparing  two  levels,  check  whether  the  arrows

overlap.  In  this  example,  A  and  D  overlap  as  do  B  and  C. 

This  indicates  non-significant  differences.  If  it  is  not  clear, refer  to  the  numerical  output  for  confirmation.  An

alternative  way  to  display  the  information  that  includes   p-

values is (plot not shown):

pwpp (rem)

The Tukey method assumes the worst by focusing on the

largest  difference.  There  are  other  competitors  like  the Newman–Keuls,  Duncan's  multiple  range  and  the  Waller–

Duncan  procedure,  which  are  less  pessimistic  or  do  not consider  all  possible  pairwise  comparisons.  For  a  detailed

description  of  the  many  available  alternatives  see  Bretz, 

Hothorn, and Westfall (2010) and the R package multcomp. 

 Other comparisons

All  pairwise  comparisons  is  the  most  commonly  used  but there are other possibilities. For example, in the PlantGrowth data,  we  compare  a  control  group  with  two  treatments, 

with 10 runs for each level:

table (PlantGrowth$group)

ctrl trt1 trt2

10   10   10

We can model how the weight gain varies with these three

levels:

pmod = lm (weight ~ group , PlantGrowth)

summary (pmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)    5.032      0.197   25.53   <2e-16

grouptrt1     -0.371      0.279   -1.33    0.194

grouptrt2      0.494      0.279    1.77    0.088



Residual standard error: 0.623 on 27 degrees of freedom

Multiple R-squared: 0.264,          Adjusted R-squared: 0.21

F-statistic: 4.85 on 2 and 27 DF,   p-value: 0.0159

In  such  experiments,  we  can  make  the  case  that  we  are only  interested  in  comparing  the  new  treatments  with  the control  group.  We  only  consider  a  new  treatment  if  it  is significantly  different  from  the  control.  We  might  not  be interested  in  comparing  the  new  treatments  with  each

other. 

Conveniently,  the  control  group  is  the  reference  level  so the  treatment  versus  control  differences  are  directly

estimated  and  tested  in  the  summary  output.  We  cannot use the displayed  p-values directly because we are making two  comparisons  and  some  adjustment  is  necessary.  The

Bonferroni  adjustment  is  easy  to  implement  —  we  just

multiply  the  two   p-values  by  the  number  of  comparisons. 

Here, we double them. As it happens, the original  p-values are  already  greater  than  0.05  so  the  adjustment  does  not change  the  conclusion  that  there  are  no  significant

differences  between  the  treatments  and  the  control. 

(Notice  that  the  F-test  does  return  a  significant  result which suggests there may be a difference between the two

treatments  but  we  have  specified  earlier  that  we  are  not interested in that). 

The  Bonferroni  adjustment  is  conservative  and  we  can

make  a  more  accurate  adjustment  using  the  emmeans()

function:

emmeans (pmod , trt . vs . ctrl ~ group) $ contrasts

contrast    estimate    SE df t.ratio p.value

trt1 - ctrl   -0.371 0.279 27  -1.331 0.3296

trt2 - ctrl    0.494 0.279 27   1.772 0.1582



P value adjustment: dunnettx method for 2 tests

Because  we  only  make  comparisons  with  a  control  group, we  can  do  better  than  Tukey.  In  this  situation,  Dunnett's method  is  appropriate.  We  see  that  the  resulting   p-values are  somewhat  less  than  twice  the   p-values  in  the (unadjusted)  summary  output  demonstrating  the  improved

accuracy.  One  can  also  verify  that,  they  are  also  smaller than the corresponding Tukey-based values. 

Not  all  interesting  comparisons  are  pairwise.  In  the coagulation  example,  perhaps  diets  A  and  B  contain  one ingredient  while  diets  C  and  D  do  not.  We  would  be

interested  in  comparing  the  average  of  A  and  B  with  the average  of  C  and  D.  We  can  express  such  comparisons

using a contrast ∑ i ciαi where ∑ i ci = 0. Let's specify our example contrast with:

c1 = c (-1 / 2 , -1 / 2 , 1 / 2 , 1 / 2)

It would be all right to use c(1,1,-1,-1) here. The scale and

sign  of  the  contrast  would  be  different  but  the  sum  would still  be  zero.  Now  let's  specify  two  more  contrasts  for  an example:

c2 = c (-1 / 2 ,1 / 2 ,1 / 2 , -1 / 2)

c3 = c (-1 ,1 ,0 ,0)

The contrast between A/D and B/C is given by c2 while c3 is

simply  the  B-A  pairwise  difference.  We  estimate  all  these contrasts with:

lmod = lm (coag ~ diet, coagulation)

rem = emmeans (lmod, ~ diet)

con = contrast (rem, method = list (c1 , c2 , c3))

summary (con, adjust = "none")

contrast                estimate    SE df t.ratio p.value

c(-0.5, -0.5, 0.5, 0.5)        1 0.996 20   1.004 0.3273

c(-0.5,  0.5, 0.5, -0.5        6 0.996 20   6.025 <.0001

c(-1, 1, 0, 0)                 5 1.528 20   3.273 0.0038

Considered one at a time, these are all t-tests for which the

usual  computations  apply.  The  pairwise  comparison  also

appears in the summary output for the model we computed

before.  But  we  are  making  three  comparisons.  Since  we have picked out these contrasts after fitting the model, we

must adjust for all possible contrasts which goes beyond all

pairwise comparisons. 

The  appropriate  adjustment  uses  Scheffé's  method  from

Scheffé (1959).  The critical value is:

√( I −1) F 1− α

 I,  n− I

(16.9)

with   p-values  computable  from  the  corresponding  null distribution. We compute this with:

summary (con , adjust="scheffe", scheffe.rank=3)

contrast                estimate    SE df t.ratio p.value

c(-0.5, -0.5, 0.5, 0.5)        1 0.996 20   1.004 0.7994

c(-0.5, 0.5, 0.5, -0.5)        6 0.996 20   6.025 0.0001

c(-1, 1, 0, 0)                 5 1.528 20   3.273 0.0323



P value adjustment: scheffe method with rank 3

The  scheffe.rank  argument  should  be  set  to  the  degrees  of freedom  for  factor  which   I − 1  or  4-1=3  in  this  example. 

We see no significant difference for the first contrast but a

clear  difference  for  the  second.  Comparing  the  third

contrast with the Tukey-based value shows a slightly larger

 p-value  as  would  be  expected  because  a  wider  range  of comparisons  is  being  adjusted  for.  You  can  compare  as

many contrasts as you like with this method. 

16.7 False Discovery Rate

Consider  some  data  taken  from  the  Junior  School  Project collected  from  primary  (US  term  is  elementary)  schools  in

inner London. The data is described in detail in Mortimore

et  al.  (1988).  We  focus  on  just  two  of  the  variables  in  the

data  —  the  school,  of  which  there  are  49,  and  the

mathematics  test  scores  for  students  from  these  schools. 

Suppose  we  are  interested  in  deviations  from  the  average and so we center the scores:

data (jsp , package="faraway")

jsp$mathcent = jsp$math - mean(jsp$math)

A more pleasing plot of the data can be obtained using the

ggplot2  package  as  seen  in  Figure  16.4.   We  have  to  rotate the school labels so they can be distinguished. 

library (ggplot2)

ggplot (aes (x=school , y=mathcent) , data=jsp) + geom _ 

boxplot()+

theme (axis . text . x = element_text (angle = 90)) +

ylab ("Centered Math Scores")

[image: Image 92]

Figure 16.4  Variation-centered math scores by school. 

Let's  choose  the  parameterization  that  omits  the  intercept term:

lmod = lm (mathcent ~ school-1 , jsp)

summary (lmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

school1   -3.3685     0.7686   -4.38 1.2e-05

school2    0.6714     1.2287    0.55 0.58481

...much output omitted... 

school50 -2.6520      0.7336   -3.62 0.00030



Residual standard error: 7.37 on 3187 degrees of freedom

Multiple R-squared: 0.0821,           Adjusted R-squared: 

0.0679

F-statistic: 5.81 on 49 and 3187 DF,          p-value: <2e-16

Since  we  have  centered  the  response,  the  t-tests,  which check  for  differences  from  zero,  are  meaningful.  We  can see  there  is  good  evidence  that  schools  1  and  50  are

significantly  below  average  while  the  evidence  is  that school  2  is  above  average  but  not  statistically  significant. 

We can test for a difference between the schools:

anova (lm (mathcent ~ school , jsp))

Analysis of Variance Table



Response: mathcent

Df Sum Sq Mean Sq F value Pr(>F)

school      48 15484      323    5.94 <2e-16

Residuals 3187 173212      54

We  find  a  strongly  significant  difference.  This  comes  as little  surprise  as  the  sample  size  is  large,  giving  us  the power  to  detect  quite  small  differences.  Furthermore,  we may  have  strong  prior  reasons  to  expect  differences

between the schools. A more interesting question is, which

schools  show  clear  evidence  of  under-  or  over-

performance? 

There  are  too  many  pairwise  comparisons  on  which  to

focus  our  interest.  Instead  let  us  ask  which  schools  have means  significantly  different  from  the  average.  The

parameterization we have chosen makes these comparisons

easy but we would expect about 5% of these differences to

be significant even if the null hypothesis held. 

Some adjustment is necessary. One approach is to control

the   familywise  error  rate  (FWER)  which  is  the  overall probability  of  falsely  declaring  a  difference  (where  none exists).  The   Bonferroni  correction  is  a  simple  way  to  do this.  We  just  multiply  the  unadjusted   p-values  by  the number  of  comparisons.  Any  probability  computed  above

one  is  truncated  to  one.  Let's  see  which  schools  have adjusted  p-values less than 5%:

pvals = summary (lmod)$coef [,4]

padj = p.adjust (pvals , method="bonferroni")

coef (lmod) [padj < 0.05]

school1 school16 school21 school28 school31 school40 school45

-3.3685  -3.7374  -3.6185  -5.8286   3.8241  -4.9855  -4.6392

school50

-2.6520

We  see  that  eight  schools  are  identified,  with  all  except school 31 marked as significantly below average. 

The  Bonferroni  correction  is  known  to  be  conservative

but  even  were  we  to  use  one  of  the  more  generous

alternatives, the familywise error rate restriction imposes a

high  bar  on  the  identification  of  significant  effects.  As  the number  of  levels  being  compared  increases,  this

requirement becomes ever more stringent. 

An  alternative  approach  is  to  control  the   false  discovery rate  (FDR)  which  is  the  proportion  of  effects  identified  as significant  which  are  not  real.  The  best  known  method  of doing this is due to Benjamini and Hochberg (1995). 

Given  sorted   p-values   p( i) for  i = 1, … ,  m the procedure finds  the  largest   i  for  which   p( i) ≤  αi/ m.  All  tests corresponding to  p( i) up to and including this  i are declared significant. We compute this for our example:

names (which (sort (pvals) < (1:49) * 0.05 / 49))

[1] "school28" "school31" "school21" "school1" "school45" 

"school40" 

[7] "school16" "school50" "school47" "school49" "school4" 

"school36" 

[13] "school46" "school14" "school24" "school27" "school34" 

"school9" 

We see that 18 schools are identified compared to the 8 by

the previous procedure. FDR is less stringent than FWER in

identifying significant effects. A more convenient method of

computing the adjusted  p-values is:

padj = p . adjust (pvals , method = "fdr")

coef (lmod) [ padj < 0.05]

school1 school4 school9 school14 school16    school21   

school24

-3.3685 -2.6619    2.2458 -3.2898 -3.7374     -3.6185      

2.6238

school27 school28 school31 school34 school36  school40   

school45

-2.3058 -5.8286    3.8241   1.9359   2.3605   -4.9855     

-4.6392

school46 school47 school49 school50

3.0636   2.3969   2.7964 -2.6520

The  emmeans  package  has  a  convenient  method  of

calculation:

lmod = lm(mathcent ~ school , jsp)

rem = emmeans(lmod , ~ school)

tr = test(rem , null=0 , adjust="fdr")

tr [tr$p.value < 0.05,]

school emmean    SE   df t.ratio p.value

1       -3.37 0.769 3187  -4.383  0.0001

4       -2.66 0.869 3187  -3.064  0.0098

9        2.25 0.914 3187   2.456  0.0384

14      -3.29 1.124 3187  -2.926  0.0121

16      -3.74 1.013 3187  -3.691  0.0016

21      -3.62 0.769 3187  -4.708 <.0001

24       2.62 0.929 3187   2.825  0.0155

27      -2.31 0.863 3187  -2.672  0.0232

28      -5.83 1.064 3187  -5.478 <.0001

31       3.82 0.713 3187   5.366 <.0001

34       1.94 0.769 3187   2.519  0.0341

36       2.36 0.781 3187   3.021  0.0104

40      -4.99 1.264 3187  -3.943  0.0007

45      -4.64 1.111 3187  -4.174  0.0003

46       3.06 1.032 3187   2.968  0.0114

47       2.40 0.730 3187   3.284  0.0056

49       2.80 0.869 3187   3.219  0.0064

50      -2.65 0.734 3187  -3.615  0.0019

We have selected only the significant schools. 

FDR  methods  are  more  commonly  used  where  large

numbers of comparisons are necessary as is often found in

imaging or bioinformatics applications. In examples such as

these, we expect to find some significant effects and FDR is

a useful tool in reliably identifying them. 

16.8 Design Considerations

In  previous  examples,  we  have  begun  our  involvement  in the process after the collection of the data. We have had no

say in the choice of variables, the number of cases and the

way  in  which  these  are  configured.  The  conduct  of  an

experiment  or  observational  study  has  an  impact  on  the choice  of  analysis.  There  may  be  flaws  which  damage  the prospects  of  making  reliable  and  useful  conclusions  from the analysis of the data. Now suppose we are involved from

the  beginning  of  the  process  and  focus  on  experiments, where  we  have  some  control.  This  is  in  contrast  to

observational studies where we have much less choice. 

For  the  purposes  of  this  chapter,  we  consider  only  one factor experiments. The number of factor levels is driven by

the  purpose  of  the  study.  We  would  prefer  to  limit  the number  of  levels  which  will  allow  us  to  more  efficiently discriminate between the levels we do consider. 

The   experimental  units  are  the  objects  to  which  the treatments  (factor  levels)  are  applied  —  these  may  be

people  in  a  clinical  trial  or  fields  in  an  agricultural experiment.  The  defining  feature  of  an  experiment  is  that we  have  control  over  the  treatment  assignment.  If  we  do not, it is an observational study. 

We  would  prefer  the  experimental  units  to  be  as

homogeneous  as  possible.  We  understand  that  the  units

may  vary  but  we  are  unable  to  measure  differences

between  the  units  that  may  affect  the  response.  If  we  can identify  these  differences,  a  different  design  based  on blocking the experimental units as described in Chapter 18

would  usually  be  superior.  An  important  requirement  in

running experiments is that we try to keep the environment

as  constant  as  possible  to  avoid  introducing  other  sources of variation. 

Having  decided  on  the  number  of  factor  levels,  we  must decide  on  the  number  of  replicates  per  level  or, 

equivalently,  the  total  size  of  the  experiment.  We  need  to run a large enough experiment to have a reasonable chance

of  distinguishing  between  the  factor  levels.  In  contrast, running  a  larger  experiment  than  necessary  would  be  a

waste  of  resources.  In  experiments  involving  humans  or

animals,  we  must  balance  the  potential  benefits  of  the experiment  against  the  potential  harm  to  the  subjects. 

Choosing  a  sample  size  may  involve  ethical  concerns

beyond the economic issues. 

To  choose  the  sample  size  for  the  design,  we  must

consider the power of the test. The power is the probability

that  we  reject  the  null  hypothesis  of  no  effect  when  the alternative  hypothesis  is  true.  These  two  hypotheses  are stated in Equation (16.3). If the null hypothesis is true, the F-statistic  follows  an  F-distribution  with   I − 1  and   n −  I degrees of freedom. When the alternative hypothesis holds, 

the  F-statistic  follows  a  non-central  F-distribution  with  an additional  parameter  called  the   non-centrality  parameter which measures the distance between a specific alternative

hypothesis  and  the  null  hypothesis.  We  can  compute

quantiles  and  probabilities  for  this  distribution  using  the same  qf()  and  pf()  functions  with  an  extra  argument  ncp giving  the  non-centrality  parameter.  The  distribution  is more  spread  out  than  the  comparable  central  F-distribution. 

Let   μi  be  the  expected  mean  response  for  factor  level   i. 

There  are  many  ways  in  which  an  alternative  hypothesis could  differ  from  the  null  hypothesis  of  equal   μi's.  We  can make mathematical progress if we measure the alternative

in terms of ∑ Ii( μi − ¯ μ)2 which equals zero when the null is true. The non-centrality parameter is given by:

 I

 J ∑( μi − ¯ μ)2/ σ 2

 i

(16.10)

where  J is the number of replicates per group. We can use this  to  compute  the  power  of  a  proposed  design  to  detect group differences. 

Suppose  we  plan  another  experiment  that  is  similar  to

that  generating  the  coagulation  data.  Again,  we  propose  to compare  4  treatments.  The  power.anova.test()  function  can be  used  to  compute  the  power  of  a  proposed  design. 

Suppose, 

we 

use 

J=6 

replicates 

corresponding

approximately  to  the  existing  data.  The  group  means  are 61,  66,  68  and  61  which  have  a  variance  of  about  13.  We call this the  between variance. The error variance  σ 2 can be chosen  considering  that  ^

 σ = 2.37.  We  set  this   within

 variance  to  6.  We  have  used  rounded  numbers  to emphasize  that  this  is  an  approximate  calculation  used  to generate a sensible plan for the new experiment and would

never  be  an  exact  matter.  Finally,  we  must  specify  the significance level to be used — we choose the conventional

0.05:

power . anova . test (groups = 4 , 

n = 6, 

between . var = 13 , 

within . var = 6 , 

                       sig . level = 0.05)

Balanced one-way analysis of variance power calculation



groups   =   4

n   =   6

between.var   =   13

within.var   =   6

sig.level   =   0.05

power   =   0.99899



NOTE: n is number in each group

Our power is 99.9% which is very high. This is because the

between  variance  is  much  larger  than  the  within  variance so  it  will  be  very  easy  for  us  to  distinguish  group

differences.  Suppose  we  believe  that  the  new  experiment will be more challenging with a lower between variance of

8.  We  are  trying  to  detect  a  smaller  effect.  Instead  of specifying  the  group  size  as  6,  let's  specify  the  power.  A common choice for the power is 0.8 or 80%. In other words, 

we want our new experiment to have an 80% chance to be

successful in detecting a statistically significant difference. 

The  80%  is  a  conventional  choice  (much  as  5%  is  for  the significance  level).  You  do  not  have  to  choose  80%  but many  researchers  do  this.  Given  this  power,  how  many

replicates do we need? 

power . anova . test (groups = 4 , 

between . var = 8 , 

within . var = 6 , 

sig . level = 0.05 , 

power = 0.8)

Balanced one-way analysis of variance power calculation

 

groups   =   4

n   =   3.8564

between.var   =   8

within.var   =   6

sig.level   =   0.05

power   =   0.8



NOTE: n is number in each group

Although the answer is a non-integer, we cannot use this in

practice. We round up to  J = 4 replicates. We see that we can  run  a  smaller  experiment  to  detect  a  smaller  target effect  and  still  have  a  good  chance  of  detecting  a  real difference. 

In  making  the  choice  of  between  variance,  it  may  be

helpful to consider what would be a  practical difference in treatments.  For  example,  a  patient  would  not  notice  a  1%

reduction  in  pain  but  might  find  a  10%  reduction

worthwhile. In medical applications, the  minimum clinically important  difference  (MCID)  is  the  smallest  change  that the subject would perceive as meaningful. The same idea is

applicable  in  non-medical  contexts.  Determining  this  is  a non-statistical  judgement  but  powering  a  study  to  detect smaller differences than this would be wasteful. 

In the coagulation example, we have the big advantage of

relevant  prior  data  from  a  past  experiment  to  help  us choose  the  between  and  within  variances.  Without  this

information,  it  becomes  harder  to  justify  our  choices.  The power of the test depends only on the ratio of the between

and  within  variances.  This  ratio  is  also  proportional  to  the

F-statistic.  You  can  verify  this  by,  say,  doubling  both variances  in  the  power  calculation.  You  will  get  the  same answer. The ratio can be scaled and expressed as:

√∑ J

 d =

 i=1 ( μi − ¯

 μ)2/ J . 

 σ 2

(16.11)

This  is   Cohen's  d  which  is  described  in  Cohen  (1988). 

Versions  of  this  exist  for  other  types  of  experiment.  It represents a standardized effect size. 

Suppose we set  d = 1 which corresponds to an effect size which  is  about  the  same  as  the  typical  difference  between two responses within the same group. We can compute the

sample size corresponding to this choice for the  J = 4 case with:

J = 4

d = 1

power . anova . test (groups = J , 

between . var = d ^2 * (J / (J -1)) , 

within . var = 1 , 

sig . level = 0.05 , 

power = 0.8)

groups   =   4

n   =   3.8564

between.var   =   1.3333

within.var   =   1

  sig.level   =   0.05

power   =   0.8

There 

are 

a 

couple 

of 

complications 

because

power.anova.test()  does  not  accept  Cohen's  d  directly.  We need  to  square   d  because  the  function  uses  the  variance and not the SD scale. Also the definition  d uses a J divisor rather than the more usual J-1 so we need to allow for that. 

We can see this gives the same sample size as our previous

calculation  because  the  ratio  of  the  variances  happens  to correspond exactly to  d = 1. Other R packages, such as pwr due  to  Champely  (2020),   are  more  convenient  for  this calculation. 

Cohen  recommended  various  choices  of   d  based  on experience  in  a  large  number  of  experiments.  He

recommended  choices  of   d = 0.1  for  a  “small”  effect, d = 0.25  for  a  “medium”  effect  and   d = 0.4  for  a  “large” 

effect. For example, for the small effect:

d = 0.1

power.anova.test (groups = J , 

between.var = d^2 * (J/(J-1)) , 

within.var = 1 , 

sig.level = 0.05 , 

power = 0.8)

groups = 4

n = 273.54

between.var = 0.013333

within.var = 1

sig.level = 0.05

power = 0.8

We see that we would require a very large experiment with 274 replicates per group. An effect size of  d = 0.1 is indeed small and perhaps the type of difference that might not be

noticed  at  the  individual  level  but  might  be  more

interesting as mean differences at the population scale. The

experiment  will  be  expensive  but  we  need  to  be  realistic about what is necessary to have a good chance of success. 

If  we  have  less  resource,  we  need  to  be  less  ambitious. 

Using Cohen's  d provides some justification for a proposed sample  size  but  it  is  better  to  use  information  about practical differences and variances where possible. 

We  should  perform  power  calculations  before  the

experiment, not after. For example, suppose a critic of our

coagulation  experiment  claims  the  small   p-value  is  due  to chance  and  that  our  experiment  did  not  have  sufficient power.  We  might  be  tempted  to  compute  the  power

retrospectively  using  the  information  from  the  data  and model  fit.  We  already  did  something  very  close  to  this  and found a power of 99.9%. This may seem to rebut the claims

of the critic convincingly but this is not true. We see above

that the power is a function of the ratio of the between and

within variances. This ratio is proportional to the observed

 F-statistic  which  is  in  turn  a  function  of  the   p-value.  Thus the  post hoc power (i.e. calculated after the experiment) is simply  a  re-expression  of  the   p-value.  The  smaller  the   p-

value,  the  higher  the  power  (and  vice  versa).  The

calculation is worthless. 

In  some  scientific  disciplines  it  has  become  standard practice  to   preregister  the  study.  Details  of  the  proposed experiment and analysis are spelled out and publicly stored

in a manner preventing editing after the event. One would

expect  to  find  the  power,  calculated  using  information

available 

in 

advance 

of 

the 

experiment, 

in 

this

preregistration.  This  is  the  best  way  to  communicate  the power  —  the  omission  of  this  calculation  cannot  be  fixed later in a convincing way. 

One  may  lack  sufficient  resources  to  conduct  a  high

power  study  but  be  tempted  to  proceed  anyway  with  the idea  that  there  is  at  least  some  chance  of  success.  This decision  will  be  greeted  differently  depending  on  the  area of  application.  Scientists  would  take  a  negative  view.  Due to the low power, you are not likely to achieve a significant

result.  This  would  be  a  waste  of  resources.  A  greater concern  is  that  if  you  are  fortunate  enough  to  get  a statistically  significant  result  from  such  a  study,  there  is  a relatively  high  chance  of  it  being  a  false  positive;  i.e.  the null hypothesis is rejected when it is true. In non-scientific applications or unpublished scientific pilot studies, one may

take  the  view  that  the  limited  information  gained  from  the study  is  still  worthwhile  and  may  improve  decisions  that cannot be delayed indefinitely. 

Having  decided  the  sample  size,  one  must  allocate  the

treatments to the experimental units. It is very important to

the  validity  of  the  conclusions  that  this  be  done  in  a completely  randomized  manner.  For  example,  suppose  we

have   J = 4  and  we  have  decided  on  6  replicates  per  level for a total sample size of 24. We might generate a random

allocation with:

sample (LETTERS [1:4] , 24 , replace = TRUE)

[1] "A" "A" "C" "B" "C" "A" "C" "D" "C" "D" "B" "B" "A" "A" "C" 

"B" "A" "A" "A" "D" 

[21] "C" "C" "D" "B" 

This does not guarantee an equal number of replicates per

level.  This  problem  arises  in  the  coagulation  example

where the replicate sizes for the four treatment groups are

not equal. This is undesirable because we will estimate the

effect  of  some  levels  more  precisely  than  others.  We  can ensure a balanced layout with:

sample (rep (LETTERS [1:4] ,6))

[1] "C" "C" "B" "A" "C" "B" "D" "B" "A" "D" "A" "B" "D" "D" 

"A" "C" "A" "D" "C" "D" 

[21] "B" "C" "A" "B" 

If  you  repeat  this,  you  will  get  a  different  random  result. 

That is intentional. All the levels of the each factor appear

exactly 6 times. This sequence is equally likely to be chosen

from  all  the  possible  sequences  where  each  treatment

appears 6 times. 

Some concerns arise when an experiment is conducted in

time order. It is possible that experimental conditions vary

with  time  so  it  is  sensible  to  record  this  information  for future  investigation.  Another  difficulty  is  that  the  number of runs assigned to each level are not balanced during the

experiment.  For  example,  in  the  sequence  above,  after  8

runs,  C  has  appeared  3  times  but  D  only  once.  One  could avoid this problem by randomizing in blocks. For example, 

we could use:

sapply (1:6 , function(x) sample(LETTERS[1:4]))

[,1]   [,2]   [,3]   [,4]   [,5]   [,6]

[1,]   "B"    "A"    "D"    "C"    "A"    "B" 

[2,]   "A"    "D"    "B"    "B"    "C"    "A" 

[3,]   "D"    "B"    "A"    "D"    "D"    "C" 

[4,]   "C"    "C"    "C"    "A"    "B"    "D" 

The  experimental  order  is  read  columnwise.  We  see  that each treatment appears once and only once in each block of

four.  This  design  has  some  advantages.  If  we  stopped  the experiment  early  after  completing  some  blocks,  we  would have  a  balanced  layout.  Furthermore,  if  there  are  time trends, our design would avoid confounding with known or

unknown  time-related  predictors.  The  major  drawback  is

that  this  is  no  longer  a  completely  randomized  design

because the randomization has been restricted. It is now a

 randomized block design which is discussed in Chapter 18. 

This may or may not be better — we will explain later. 

Exercises

1. In  the  pulp  data  the  brightness  of  the  paper  produced varies according four operators. 

(a)

Make an appropriate plot of the data. Comment on

the content. 

(b)

Fit  a  one  factor  model  for  the  bright  response.  Is

there a significant difference between operators? 

(c)

Test for a difference in variance in the operators. 

(d)

If brighter paper is better, can any one operator be

considered  clearly  the  best  operator?  How  about

the worst operator? 

2. In the chickwts data, newly hatched chicks were randomly

allocated  into  six  feed  supplement  groups.  Their  weights in grams after six weeks is the response. 

(a)

Plot the data and comment. 

(b)

Fit  a  model  with  the  weight  gain  as  the  response

and  the  feed  as  a  predictor.  Is  there  a  difference

between the feeds? 

(c)

Examine the model summary output. Which feed is

the  reference  level?  Which  feeds  have  estimated

effects higher than this reference level? 

(d)

How  many  pairwise  comparisons  are  possible  for

this  experiment?  Use  the  Tukey  method  to

determine  which  feeds  are  significantly  different

from the reference level. 

(e)

Restrict 

attention 

to 

only 

those 

pairwise

comparisons  involving  the  reference  level,  casein. 

Adjust the  p-values for that set of comparisons. Are

the   p-values  bigger  or  smaller  than  that  found  in the previous question? Why? 

3. The PlantGrowth data shows the weight of plants for three

different treatments. 

(a)

Make a plot of the data and comment. 

(b)

Does  the  group  make  a  difference  to  the  weight  of

the plant? 

(c)

Use  Bartlett's  method  to  test  for  a  difference  in

variance between the three groups. 

(d)

Bartlett's  test  requires  normality  of  the  errors.  Is

this a reasonable assumption here? 

4. Using  the  infmort  data,  perform  a  one-way  ANOVA  with income as the response and region as the predictor. Which

pairs  of  regions  are  different?  Now  check  for  a  good

transformation  on  the  response  and  repeat  the

comparison. 

5. The  anaesthetic  data  provides  the  time  to  restart

breathing  unassisted  in  recovering  from  general

anaesthetic for four treatment groups. 

(a)

Produce a boxplot depicting the data. Comment on

any features of interest. 

(b)

Make a stripchart of the data. 

(c)

Produce  a  plot  which  shows  the  individual  data

points  without  overplotting  using  the  ggplot2

package. 

(d)

Fit  a  one-factor  model  for  the  recovery  times  and

test for a difference between the two groups. 

(e)

Check the diagnostic plots for this model. 

(f)

Try  the  Box-Cox  transformation  method.  Explain

what went wrong. 

(g)

Try  a  square  root  transformation  on  the  response. 

Are  the  diagnostics  satisfactory?  Is  there  a

significant difference among the treatment groups? 

6. Data on the butterfat content of milk from Canadian cows

of  five  different  breeds  can  be  found  in  the  butterfat dataset. Consider only mature cows. 

(a)

Plot the data and interpret what you see. 

(b)

Test for a difference between the breeds. 

(c)

Make  a  residual-fitted  plot  and  a  qq-plot  of  the

residuals.  Do  you  think  your  plot  in  (a)  would  be

sufficient to make the same conclusions? 

(d)

Compute and show the leverages. How could these

be  computed  using  just  the  number  of  parameters

and observations? 

(e)

Produce a plot to check for differences in butterfat

between breeds. Which pairwise differences are not

statistically significant? 

(f)

Is  there  a  best  breed  for  producing  butterfat?  Is

there a worst? 

7. Five  suppliers  cut  denim  for  a  jeans  manufacturer.  The amount of waste relative to a target was collected weekly

as seen in the denim dataset. 

(a)

Plot  the  data  to  determine  which  supplier  wastes

the  least.  Which  supplier  is  best  in  terms  of

minimizing maximum weekly waste? 

(b)

Is there a significant difference in wastage between

the suppliers? 

(c)

Check  the  regression  diagnostics  commenting  on

any violations. 

(d)

Remove  two  outliers  and  repeat  the  test  for  a

significant  difference.  Which  supplier  has  the

lowest predicted wastage under this model? 

(e)

Check  for  significant  pairwise  differences  between

suppliers. Which pairs are significantly different? 

(f)

Which supplier would you pick if there was no other

relevant  difference  between  them?  What  if  the

outliers  really  happened  and  are  not  just  data

errors? 

8. An  experimenter  plans  a  study  under  4  different

scenarios. The size of the test comparing the groups will

always  be  0.05.  We  vary,  in  turn,  the  effect  size,  the power, the sample size and the number of groups. Study

the  help  page  for  power.anova.test()  to  learn  how  to

extract  the  sample  size  or  power  from  the  returned

object. 

(a)

Cohen's  d  varies  between  0.1  and  1  in  10  evenly

spaced  steps.  For  a  power  of  0.8  and  4  treatment

groups, compute the required sample size to detect

a difference in the groups for each value of d. What is  the  recommended  sample  size  for  a   large

(according to Cohen) effect size? 

(b)

Cohen's  d=0.25  and  the  power  varies  between  0.5

and  0.9  in  steps  of  0.05.  There  are  four  treatment

groups. Compute the corresponding sample size for

the  experiment  for  each  of  the  power  levels.  What

sample size is required for a power of 1? 

(c)

Let  Cohen's  d=0.25  and  the  sample  size  vary  from

10  to  50  in  steps  of  5.  There  are  four  treatment

groups.  Compute  the  power  for  each  of  these

sample  sizes.  In  what  range  would  a  power  of  0.8

be attained? 

(d)

For  Cohen's  d=0.4  and  power=0.8,  vary  the

number of group in integer steps between 2 and 10. 

For  each  group  size,  compute  the  required  sample

size  for  the  experiment.  What  number  of  groups  is

easiest to distinguish? 

Chapter 17

Models with Several Factors

DOI: 10.1201/9781003449973-17

In  this  chapter,  we  show  how  to  handle  models  with  more than  one  categorical  predictor.  Sometimes  the  data  can

arise  from  observational  studies  but  such  data  more

commonly  arises  from  designed  experiments,  often  called

factorial  designs.  If  all  possible  combinations  of  the  levels of  the  factors  occur  at  least  once,  then  we  have  a  full factorial  design.  Repeated  observations  for  the  same

combination of factor levels are called  replicates. 

We  start  with  models  involving  two  factors  with  no

replication.  It  is  possible  that  the  factors  can  interact  but this  is  difficult  to  investigate  without  replication.  We consider  examples  with  and  without  significant  interaction and discuss how they should be interpreted. We investigate

the design of experiments with two factors. Replication can

be  expensive  so  sometimes  it  is  better  to  use  the

experimental  resources  to  investigate  more  factors.  This leads  us  to  an  example  with  many  factors  but  no

replication. 

17.1 Two Factors with No Replication

Mazumdar and Hoa (1995) report an experiment to test the strength  of  a  thermoplastic  composite  depending  on  the

power of a laser and the speed of a tape:

data (composite , package = "faraway")

composite

strength laser   tape

1      25.66   40W   slow

2      29.15   50W   slow

3      35.73   60W   slow

4      28.00   40W medium

5      35.09   50W medium

6      39.56   60W medium

7      20.65   40W   fast

8      29.79   50W   fast

9      35.66   60W   fast

The  data  has  been  plotted  in  Figure  17.1  with  roles  of  the two factors shown in both ways to give better insight. 

library (ggplot2)

ggplot (composite , 

aes (x=laser , y=strength , group=tape , 

linetype=tape)) +

geom_line () +

theme (legend.position = "top", 

legend . direction = "horizontal")

ggplot (composite, 

aes (x = tape , y = strength, group = laser, linetype 

= laser)) +

geom_line () +

theme (legend.position = "top" , 

legend.direction = "horizontal")

[image: Image 93]

Figure  17.1   Plots  for  the  composite  data  —  a  different predictor occupies the horizontal in each panel. 

We can see in the first plot that medium tape speed is best

for  strength  while  in  the  second  we  see  that  the  60W

setting  for  laser  is  best.  When  there  is  little  or  no interaction effect, we would expect the lines in each plot to

be  approximately  parallel  (i.e.,  a  constant  distance  apart). 

This  would  be  a  sign  that  the  effects  are  additive.  Of course,  we  must  allow  for  a  certain  amount  of  noise

clouding  the  observation,  but  in  this  example,  the  lines  do appear to be roughly parallel. 

A general model for this type of data is:

 yij =  μ +  αi +  βj + ( αβ) ij +  εij (17.1)

where   i = 1, …  I  and   j = 1, …  J.  The   αβ  terms  represent interactions between the levels of  α and β. 

We fit this model to the current example:

lmod = lm (strength ~ laser + tape + laser : tape , composite) summary(lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept)              25.66        NaN     NaN      NaN

laser50W                  3.49        NaN     NaN      NaN

laser60W                 10.07        NaN     NaN      NaN

tapemedium                2.34        NaN     NaN      NaN

tapefast                 -5.01        NaN     NaN      NaN

laser50W:tapemedium       3.60        NaN     NaN      NaN

laser60W:tapemedium       1.49        NaN     NaN      NaN

laser50W:tapefast         5.65        NaN     NaN      NaN

laser60W:tapefast         4.94        NaN     NaN      NaN



Residual standard error: NaN on 0 degrees of freedom

Multiple R-squared:     1,           Adjusted R-squared:   NaN

F-statistic: NaN on 8 and 0 DF,          p-value: NA

We  have  parameter  estimates  but  nothing  else.  The  model has as many parameters as cases so a perfect fit has been

achieved.  No  further  inference  is  possible  and  little  has been gained from this model. 

We  cannot  check  for  an  interaction  directly  by  adding

such  a  term  to  the  model  but  Tukey's  nonadditivity  test provides  another  way  of  investigating  for  an  interaction. 

The model:

 yij =  μ +  αi +  βj +  ϕαiβj +  εijk (17.2)

is  fit  to  the  data  and  then  we  test  if   ϕ = 0.  This  is  a nonlinear  model  because  it  involves  a  product  of

parameters,  ϕαiβj which is difficult to fit in general. We get around this problem by fitting the model in stages. First we

fit the model with no interaction and extract the estimates

of  the  main  effects,  noting  that  the  first  level  is  the reference level:

lmod = lm (strength ~ laser + tape , composite)

(cc = coef (lmod))

(Intercept)   laser50W   laser60W   tapemedium   tapefast

23.9178     6.5733    12.2133       4.0367    -1.4800

(lasercoefs = c (0 , cc [2:3]) [ unclass (composite$laser)])

laser50W laser60W            laser50W laser60W          

laser50W laser60W

0.0000     6.5733 12.2133    0.0000     6.5733 12.2133    

0.0000     6.5733 12.2133

(tapecoefs = c (0 , cc [4:5]) [ unclass (composite $ tape) ])

tapemedium tapemedium tapemedium  

tapefast

0.0000     0.0000     0.0000       4.0367     4.0367     4.0367  

-1.4800

tapefast   tapefast

-1.4800    -1.4800

Now  we  update  the  model  with  the  new  predictor  formed from the products of the main effects:

tmod = update (lmod , . ~ . + I (lasercoefs * tapecoefs))

anova (tmod)

Analysis of Variance Table



Response: strength

Df Sum Sq Mean Sq F value Pr(>F)

laser                         2 224.2    112.1   36.82 0.0077

tape                          2   48.9    24.5    8.03 0.0624

I(lasercoefs * tapecoefs)     1    1.4     1.4    0.45 0.5503

Residuals                     3    9.1     3.0

The   p-value  of  0.55  indicates  a  nonsignificant  interaction. 

So for these data, we might reasonably assume ( αβ) ij = 0. 

The major drawback is that the test makes the assumption

that the interaction effect is multiplicative in form. We have no particular reason to believe it takes this form and so this alternative  hypothesis  may  not  be  looking  in  the  right place. Although judging whether lines on a plot are parallel

requires  some  subjective  judgment,  it  is  a  more  general method of checking for interaction here. 

Now  that  the  issue  of  interactions  has  been  addressed, we can check the significance of the main effects:

anova (lmod)

Analysis of Variance Table



Response: strength

Df Sum Sq Mean Sq F value Pr(>F)

laser      2 224.2    112.1   42.69 0.002

tape       2   48.9    24.5    9.32 0.031

Residuals 4    10.5     2.6

We see that both factors are significant. 

Let's  look  at  the  size  and  direction  of  the  laser  and  tape effects. We examine the summary output:

summary (lmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)    23.92       1.21   19.80 3.8e-05

laser50W        6.57       1.32    4.97 0.00766

laser60W       12.21       1.32    9.23 0.00077

tapemedium      4.04       1.32    3.05 0.03799

tapefast       -1.48       1.32   -1.12 0.32594



Residual standard error: 1.62 on 4 degrees of freedom

Multiple R-squared: 0.963,           Adjusted R-squared: 0.926

F-statistic:   26 on 4 and 4 DF,          p-value: 0.00401

We focus on the laser effects. We see that for the reference

level  of  laser  at  40W  and  tape  speed  set  to  slow,  the expected  response  is  23.92.  If  laser  power  is  increased  to 50W,  the  response  increases  by  6.57  and  an  increase  to 60W  results  in  a  response  increased  by  12.21.  If  we

changed  the  tape  speed,  the  baseline  response  would

change  but  the  relative  differences  would  be  unchanged. 

We  see  that  the  response  increases  in  an  approximately linear  way  with  laser  power.  We  saw  earlier  that  the  laser effect  was  statistically  significant.  The  summary  output contains  pairwise  comparisons  of  50W  versus  40W  and

60W versus 40W but we should not use the stated  p-values for  testing  this  due  to  the  multiple  comparison  problem described in Section 16.6. 

17.2 Estimated Marginal Means and Multiple

Comparisons

Although  relative  comparisons  are  useful,  we  might  also wish  for  an  absolute  statement  of  how  the  response  is expected to vary with laser power. A convenient expression

of  this  can  be  obtained  using  the  emmeans  package  of  Lenth

(2023):

library (emmeans)

rem = emmeans (lmod , pairwise ~ laser)

rem$emmeans

laser emmean    SE df lower.CL upper.CL

40W     24.8 0.936 4      22.2     27.4

50W     31.3 0.936 4      28.7     33.9

60W     37.0 0.936 4      34.4     39.6



Results are averaged over the levels of: tape

Confidence level used: 0.95

The expected response for 40W of laser power is 24.8. This

has been averaged over the three levels of tape speed. We

can verify this calculation with:

composite$predval = predict (lmod)

with (composite, tapply(predval, laser, mean))

40W    50W    60W

24.770 31.343 36.983

The  emmeans  stands  for  estimated  marginal  means. 

 Estimated  means  we  have  used  the  expected  (predicted) values.  Marginal  means  we  have  averaged  over  the  levels of  the  other  factor.  This  is  conceptually  distinct  from averaging over the responses as:

with (composite, tapply (strength, laser, mean))

40W    50W    60W

24.770 31.343 36.983

In  this  example,  the  result  is  the  same  because  of  the balanced design. The confidence intervals for the estimated

marginal  means  use  ^

 σ  from  the  model  and  not  the

confidence  interval  for  the  mean  using  just  the  three observations for each power level. 

Although it is good to have the expected response as the

laser  power  varies,  we  may  also  want  to  specify  the  tape speed rather than averaging over the three. The averaging

would  make  sense  if  all  three  speeds  are  equally  likely  to appear in operation but in some situations we may choose a

particular  tape  speed.  We  can  obtain  the  expected

responses for each level of tape speed with:

emmeans (lmod , pairwise ~ laser | tape)

tape = slow:

laser emmean   SE df lower.CL upper.CL

40W     23.9 1.21 4      20.6     27.3

50W     30.5 1.21 4      27.1     33.8

60W     36.1 1.21 4      32.8     39.5



tape = medium:

...edited out... 

tape = fast:

...edited out... 



Confidence level used: 0.95

Note that these are predicted and not observed values. We

can check this:

composite [1:3 ,]

strength laser tape predval

1      25.66   40W slow 23.918

2      29.15   50W slow 30.491

3      35.73   60W slow 36.131
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Furthermore,  the  confidence  intervals  are  the  confidence intervals for the mean response which we can again check:

predict (lmod, newdata=composite, interval="confidence") [1:3,]

fit    lwr    upr

1 23.918 20.564 27.271

2 30.491 27.138 33.844

3 36.131 32.778 39.484

What  have  we  achieved?  Suppose  we  ask  what  response

can  be  expected  for  laser  at  40W  and  tape  speed  at  low. 

The  data  would  tell  us  just  25.66  but  the  model-based approach  gives  us  a  prediction  23.9  along  with  a  95%

confidence  interval.  The  latter  is  more  useful.  The  model allows  us  to   borrow  strength  from  the  rest  of  the  data  to express an uncertain prediction. 

Is there a difference between the different laser powers? 

We answer this graphically in Figure 17.2:

plot (rem , comparisons = TRUE , adjust = "tukey")

Figure  17.2   Comparison  of  composite  strengths  for different  laser  powers.  Confidence  intervals  for  the  mean response  averaged  over  tape  speed  are  shown  as  shaded

areas. The arrows help detect pairwise difference with lack

of overlap indicating a significant difference. 

We  see  the  estimated  marginal  means  computed  earlier

along with their confidence intervals. The arrows are useful

for  detecting  pairwise  difference.  The  lack  of  overlap

suggests  all  the  pairwise  differences  are  statistically

significant.  We  can  show  the  pairwise  comparisons

numerically with:

summary (rem $ contrasts , infer = TRUE)

contrast estimate   SE df lower.CL upper.CL t.ratio p.value

40W - 50W   -6.57 1.32 4     -11.3   -1.858 -4.968 0.0167

40W - 60W  -12.21 1.32 4     -16.9   -7.498 -9.231 0.0017

50W - 60W   -5.64 1.32 4     -10.4   -0.925 -4.263 0.0281



Results are averaged over the levels of: tape

Confidence level used: 0.95

Conf-level adjustment: tukey method for comparing a family of 3 

estimates

P value adjustment: tukey method for comparing a family of 3 

estimates

All pairwise comparisons are statistically significant. 

The  laser  levels  are   ordinal  and  we  might  reasonably restrict  attention  to  comparisons  between  consecutive

levels. We can achieve this with:

remc = emmeans (lmod , consec ~ laser)

summary (remc $ contrasts , infer=TRUE)

contrast estimate   SE df lower.CL upper.CL t.ratio p.value

50W - 40W    6.57 1.32 4      2.19       11   4.968 0.0131

60W - 50W    5.64 1.32 4      1.26       10   4.263 0.0222



Results are averaged over the levels of: tape

Confidence level used: 0.95

Conf-level adjustment: mvt method for 2 estimates

P value adjustment: mvt method for 2 tests

Yet  another  adjustment,  the  multivariate-t  method  (mvt)  is appropriate  here.  Compared  to  the  pairwise  comparisons, 

we  save  just  one  comparison  so  the  gain  in  efficiency  is small.  The   p-values  are  slightly  smaller  and  confidence intervals  slightly  narrower  than  before.  The  relative

advantage  of  this  method  would  be  more  apparent  for

factors with more levels. 

This approach might be particularly helpful if we wish to

combine levels of a factor. We might also have an instance

where  the  incremental  effect  of  increasing  the  factor  level tails  off  and  we  might  want  to  know  when  to  stop.  These two  scenarios  are  not  relevant  here.  As  before,  we  see  a significant  difference  between  the  levels.  We  can  also

perform a similar set of comparisons on the tape speeds. 

17.3 Ordinal Factors

The  treatment  coding  does  not  take  advantage  of  the

ordered nature of both factors. Factors without an ordering

to  the  levels  are  called   nominal  while  those  that  possess  a natural ordering are called  ordinal. We can declare both to be  ordered factors and refit:

composite$laser = as.ordered (composite$laser) composite$tape = as.ordered (composite$tape)

lmod = lm (strength ~ laser + tape, composite)

summary (lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept)     31.032      0.540   57.45 < 1e-04

laser.L          8.636      0.936    9.23 0.00077

laser.Q         -0.381      0.936   -0.41 0.70466

tape.L          -1.047      0.936   -1.12 0.32594

tape.Q          -3.900      0.936   -4.17 0.01404



Residual standard error: 1.62 on 4 degrees of freedom

Multiple R-squared: 0.963,           Adjusted R-squared: 0.926

F-statistic:   26 on 4 and 4 DF,          p-value: 0.00401

Instead  of  a  coding  with  respect  to  a  reference  level,  we have linear and quadratic terms for each factor. The coding

is:

round (model . matrix (lmod) ,2)

(Intercept) laser.L laser.Q tape.L tape.Q

1             1   -0.71    0.41 -0.71    0.41

2             1    0.00   -0.82 -0.71    0.41

3             1    0.71    0.41 -0.71    0.41

4             1   -0.71    0.41  0.00   -0.82

5             1    0.00   -0.82  0.00   -0.82

6             1    0.71    0.41  0.00   -0.82

7             1   -0.71    0.41  0.71    0.41

8             1    0.00   -0.82  0.71    0.41

9             1    0.71    0.41  0.71    0.41

We  see  the  linear  term  is  proportional  to  (−1, 0, 1)

representing  a  linear  trend  across  the  levels  while  the quadratic  term  is  proportional  to  (1, −2, 1)  representing  a quadratic trend. 

We  see  that  the  quadratic  term  for  laser  power  is  not significant while there is a quadratic effect for tape speed. 

One  of  the  drawbacks  of  a  model  with  factors  is  the

difficulty  of  extrapolating  to  new  conditions.  The

information  gained  from  the  ordered  factors  suggests  a

model with numerical predictors corresponding to the level

values (the values for the tape speed are obtained from the

R help page for composite). 

composite$Ntape = rep (c (6.42 ,13 ,27) , each =3)

composite$Nlaser = rep (c (40 ,50 ,60) ,3)

lmodn = lm (strength ~ Nlaser + poly (log (Ntape) ,2) , 

composite)

summary (lmodn)

Estimate Std. Error t value Pr(>|t|)

(Intercept)              0.4989     3.0592    0.16 0.87684

Nlaser                   0.6107     0.0604   10.11 0.00016

poly(log(Ntape), 2)1    -1.8814     1.4791   -1.27 0.25933

poly(log(Ntape), 2)2    -6.7364     1.4791   -4.55 0.00609



Residual standard error: 1.48 on 5 degrees of freedom

Multiple R-squared: 0.961,           Adjusted R-squared: 0.938

F-statistic: 41.5 on 3 and 5 DF,          p-value: 0.000587

We  use  the  log  of  tape  speed,  as  this  results  in  roughly evenly  spaced  levels.  This  model  fits  about  as  well  as  the two-factor  model  but  has  the  advantage  that  we  make

predictions  for  values  of  tape  speed  and  laser  power  that were not used in the experiment. The earlier analysis with

factors alone helped us discover this model, which we may

not otherwise have found. 

17.4 Two Factors with Replication

Consider  the  case  when  the  number  of  observations  per combination  of  factor  levels  is  the  same  and  greater  than one.  Such  a  layout  results  in  an  orthogonal  design  matrix. 

With  the  benefit  of  replication,  we  are  now  free  to  fit  and test the full model:

 yijk =  μ +  αi +  βj + ( αβ) ij +  εijk (17.3)

The  interaction  effect  is  tested  by  fitting  a  model  without the  ( αβ) ij  term  and  computing  the  usual  F-test.  If  the interaction  effect  is  found  to  be  significant,  we  do  not  test the main effects even if they appear not to be significant. 

In an experiment to study factors affecting the production

of the polyvinyl chloride (PVC) plastic, three operators used

eight different devices called resin railcars to produce PVC. 

For  each  of  the  24  combinations,  two  samples  were

produced. The response is the particle size of the product. 

The experiment is described in Morris and Watson (1998). 

We make plots with respect to each of the predictors, as

seen in Figure 17.3:

data (pvc, package="faraway")

library (ggplot2)

p = ggplot (pvc , aes (x=operator , y=psize)) + geom_point () +

stat_summary (fun = "mean" , geom="line" , aes (group=resin))

op1means = with (pvc [ pvc $ operator == 1 ,] , 

sapply (split (psize , resin) , mean))
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tdf = data . frame (x=rep (0.9 ,8) ,y=op1means , label =1:8)

p + geom_text (data=tdf , aes (x=x , y=y , label=label))

ggplot (pvc , aes (x=resin , y=psize , shape=operator)) + 

geom_point () +

stat_summary (fun = "mean" , geom="line" , aes (group = operator , linetype=operator)) 

+

theme (legend . position="top" , 

legend . direction="horizontal")

Figure  17.3   PVC  data  plotted  by  operators  on  the  left and  by  resin  railcars  on  the  right.  Lines  connect  the average  responses  for  the  levels.  The  railcar  number

appears to the left of each line on the first plot. 

In the first plot, we have drawn lines connecting the mean

values for each level of the resin. We can see from this plot

that  particle  sizes  tend  to  be  largest  for  the  first  operator and  smallest  for  the  third.  We  see  that  the  variance  of  the response  is  about  the  same  for  each  operator.  This  is

convenient since equality of the variance is one assumption of the linear model. We have annotated the plot to label the

eight levels so that they can be readily distinguished. Note

that  it  is  difficult  to  distinguish  eight  different  plotting symbols or lines so we have not attempted this. We can see

that  the  lines  are  approximately  parallel  which  leads  us  to expect that there is little interaction between the two plots. 

In  the  second  plot,  there  are  eight  levels  of  resin.  For each  level,  we  observe  two  responses  from  each  of  the three operators. Since three levels are easier to distinguish, we have plotted these with a separate symbol. As with the

first plot, lines join the averages for each level. We can see varying  response  by  resin.  The  variances  within  the  levels seem  approximately  equal  which  is  again  reassuring. 

Furthermore,  the  three  lines  are  approximately  parallel, suggesting little interaction. 

The  trouble  with  interaction  plots  is  that  we  always

expect  there  to  be  some  random  variation  so  it  is

sometimes difficult to distinguish true interaction from just

noise.  Fortunately,  in  this  case,  we  have  replication  so  we can  directly  test  for  an  interaction  effect.  We  fit  the  full model and check the significance of the factors:

lmod = lm (psize ~ operator * resin , pvc)

anova (lmod)

Analysis of Variance Table



Response: psize

Df Sum Sq Mean Sq F value Pr(>F)

operator        2   20.7    10.4    7.01   0.004

resin           7 283.9     40.6   27.44 5.7e-10

operator:resin 14   14.3     1.0    0.69   0.760

Residuals      24   35.5     1.5

We  see  that  the  interaction  effect  is  not  significant.  This now allows a meaningful investigation of the significance of

the  main  effects.  We  see  that  both  main  effects  are

significant. 

Now  one  may  be  tempted  to  remove  the  interaction  and

then retest the main effects:

anova (lm (psize ~ operator + resin , pvc))

Analysis of Variance Table



Response: psize

Df Sum Sq Mean Sq F value Pr(>F)

operator   2   20.7    10.4     7.9 0.0014

resin      7 283.9     40.6    30.9 8.1e-14

Residuals 38    49.8    1.3

One  gets  a  somewhat  different  result  although  the

conclusions are the same. The difference lies in the ^

 σ 2 used

in the denominator of the F-tests (1.5 in the first table and

1.3  in  the  second).  The  first  version  has  been  shown  to achieve greater power and is the preferred method. 

We check the diagnostics, as seen in Figure 17.4: qqnorm (residuals (lmod) , main = "")

qqline (residuals (lmod))

plot (fitted (lmod) , residuals (lmod) , 

xlab = "Fitted" , ylab = "Residuals")

abline (h =0)

plot (residuals (lmod) ~ operator , pvc , ylab = "Residuals")
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Long Description for Figure 17.4

Figure  17.4   Diagnostics  plots  for  the  full  model  for  the PVC data. 

The  Q–Q  plot  suggests  that  the  errors  are  somewhat  long-tailed. We can see some symmetry in the residuals vs. fitted

plot.  For  each  combination  of  the  factors,  the  mean  of  the two replicates is the fitted value. The two residuals for that pair will be mirror images. A closer look at the more distant

pairs  reveals  that  they  derive  from  operator  3  as  seen  in the third panel of Figure 17.4. 

Although  the  plot  is  fairly  convincing,  we  can  test  for  a difference  in  the  variance.  For  each  pair  of  observations coming  from  a  particular  combination  of  operator  and

resin,  we  compute  the  two  residuals.  One  will  be  positive and  the  other  negative  due  to  the  symmetry  previously

noted.  We  take  √| ε|  as  the  new  response.  This  measures the  spread  in  the  pair  with  the  square  root  transformation reducing  the  skewness  in  the  distribution.  Note  that  we

need only need one observation from each pair since these are identical. 

pvce = pvc [(1:24) * 2 ,]

pvce$res = sqrt (abs (residuals(lmod)) [(1:24) * 2])

vmod = lm (res ~ operator + resin, pvce)

anova (vmod)

Analysis of Variance Table



Response: res

Df Sum Sq Mean Sq F value Pr(>F)

operator   2 1.490    0.745   15.12 0.00032

resin      7 0.638    0.091    1.85 0.15545

Residuals 14 0.690    0.049

This  confirms  a  significant  difference  in  variation  for  the operators.  It  also  tells  us  there  is  no  strong  evidence against constant variation among the resin cars. 

This  may  be  the  most  important  finding  from  such  an

experiment  because  consistency  in  manufacturing  is  very

important.  In  many  situations,  one  wishes  to  manufacture an object to a specification. It is often possible to adjust the mean  to  the  desired  level  but  a  high  variance  will  be detrimental to production quality. 

Even so, let us examine the main effects, bearing in mind

that we do not have constant variance of the errors, making

the comparisons less than optimal. 

lmod = lm (psize ~ operator+resin , pvc)

summary (lmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)   36.240      0.523   69.34 < 2e-16

operator2     -0.263      0.405   -0.65 0.52059

operator3     -1.506      0.405   -3.72 0.00064

resin2        -1.033      0.661   -1.56 0.12630

resin3        -5.800      0.661   -8.77 1.1e-10

resin4        -6.183      0.661   -9.35 2.1e-11

resin5        -4.800      0.661   -7.26 1.1e-08

resin6        -5.450      0.661   -8.24 5.5e-10

resin7        -2.917      0.661   -4.41 8.2e-05

resin8        -0.183      0.661   -0.28 0.78302



Residual standard error: 1.14 on 38 degrees of freedom

Multiple R-squared: 0.859,           Adjusted R-squared: 0.826

F-statistic: 25.8 on 9 and 38 DF,          p-value: 1.47e-13

Suppose  that  we  valued  a  small  particle  size.  In  this  case, operator  3  produces  the  best  results  overall.  If  we  have  a choice,  we  would  also  prefer  resin  car  4  for  the  smallest particle size. However, sometimes we may not have control

over  a  factor.  For  example,  the  resin  cars  might  be

disposable  and  we  cannot  reliably  produce  one  to  a

particular  specification.  In  such  cases,  there  is  no  point  in identifying  which  is  best  in  the  experiment.  Nevertheless, we  would  still  include  the  factor  in  the  model  because  it would  allow  us  to  estimate  the  operator  effects  more

precisely. 

We  can  construct  pairwise  confidence  intervals  for  the

treatment factors using the Tukey method:

rem = emmeans(lmod, pairwise ~ operator)

summary (rem $ contrasts , infer=TRUE)

contrast              estimate    SE df lower.CL upper.CL 

t.ratio p.value

operator1 - operator2    0.263 0.405 38   -0.725     1.25   

0.648 0.7944

operator1 - operator3    1.506 0.405 38    0.519     2.49   

3.721 0.0018

operator2 - operator3    1.244 0.405 38    0.257     2.23   

3.072 0.0107



Results are averaged over the levels of: resin

Confidence level used: 0.95

Conf-level adjustment: tukey method for comparing a family of 3 

estimates

P value adjustment: tukey method for comparing a family of 3 

estimates

We see that operators 1 and 2 are not significantly different

but  operator  3  is  different  from  both.  There  are  more significant  differences  among  the  resin  cars  although  this may not be of specific interest. 

The analysis above is appropriate for the investigation of

specific  operators  and  resin  cars.  These  factors  are  being treated as  fixed effects. If the operators and resin cars were randomly  selected  from  larger  populations  of  those

available,  they  should  be  analyzed  as   random  effects.  This would  require  a  somewhat  different  analysis  not  covered here. However, we can at least see from the analysis above

that  the  variation  between  resin  cars  is  greater  than  that between operators. 

It  is  important  that  the  observations  taken  in  each  cell are  genuine  replications.  If  this  is  not  true,  then  the observations will be correlated and the analysis will need to

be  adjusted.  It  is  a  common  scientific  practice  to  repeat measurements 

and 

take 

the 

average 

to 

reduce

measurement  errors.  These  repeat  measurements  are  not

independent  observations.  Data  where  the  replicates  are correlated can be handled with repeated measures models. 

For  example,  in  this  experiment  we  would  need  to  take some  care  to  separate  the  two  measurements  for  each

operator and resin car. Some knowledge of the engineering

might be necessary to achieve this. 

17.5 Two Factors with an Interaction

An  industrial  experiment  examined  the  number  of  warp

breaks  in  yarn  depending  on  two  types  of  wool  and  three levels of tension used in a weaving machine. The data may

be found in Tukey (1977). 

Simple plots of the data can be obtained from:

plot (breaks ~ wool , warpbreaks)

with (warpbreaks , interaction . plot (wool , tension , 

breaks))

The plots should be repeated, reversing the roles of the two

predictors.  More  informative  but  harder-to-construct  plots of the data are shown in Figure 17.5. 

library (ggplot2)

ggplot (warpbreaks , aes (x = wool , y = breaks , shape = 

tension)) +

geom _ point (position = position _ jitter (width = .1)) +

stat _ summary (fun = "mean" , geom = "line" , aes (group = tension , linetype = tension)) 

+

theme (legend . position = "top" , 

legend . direction = "horizontal")

ggplot (warpbreaks , aes (x = tension , y = breaks , shape = 


wool)) +

[image: Image 97]

geom _ point (position = position _ jitter (width = .1)) +

stat _ summary (fun = "mean" , geom = "line" , aes (group = wool , linetype = wool)) +

theme (legend . position = "top" , 

legend . direction = "horizontal")

Figure  17.5   Plots  of  the  warpbreak  data.  Lines  join  the mean  responses  for  levels  of  the  factor  not  plotted  on  the horizontal axis. Some horizontal jittering has been added to

distinguish tied cases. 

There  is  some  evidence  of  non-constant  variation.  We  can also see there may be some interaction between the factors

as the lines joining the mean response at each level are not

close to parallel. 

We  can  now  fit  a  model  with  an  interaction  effect  and check the diagnostics:

lmod = lm (breaks ~ wool * tension , warpbreaks)

plot (residuals (lmod) ~ fitted (lmod) , 

[image: Image 98]

xlab = "Fitted" , ylab = "Residuals")

abline (h =0)

The  residuals  vs.  fitted  plot  shown  in  the  first  panel  of

Figure 17.6 reveals increasing variation with the response. 

Given that the response is a counted variable, a square root

transformation is the suggested solution:

lmod = lm (sqrt (breaks) ~ wool * tension , warpbreaks)

plot (residuals (lmod) ~ fitted (lmod) , 

xlab = "Fitted" , ylab = "Residuals")

abline (h =0)

Figure  17.6   Diagnostic  plots  for  the  warpbreaks  data. 

The  plot  on  the  left  comes  from  the  untransformed

response  while  that  on  the  right  results  from  a  square-rooted response. 

The  diagnostic  plot  shown  in  the  second  panel  of  Figure

17.6 shows an improvement. 

We can now test for the significance of the effects:

anova (lmod)

Analysis of Variance Table



Response: sqrt(breaks)

Df Sum Sq Mean Sq F value Pr(>F)

wool          1    2.9    2.90    3.02 0.08854

tension       2   15.9    7.95    8.28 0.00082

wool:tension 2     7.2    3.60    3.75 0.03067

Residuals    48   46.1    0.96

We see that there is a significant interaction effect between

the factors. This means we cannot express the effect of the

choice  of  wool  independently  of  the  setting  of  the  tension. 

We  must  interpret  their  effects  together.  One  may  also notice  that  the  main  effect  for  wool  is  not  significant  but this  does  not  mean  that  the  choice  of  wool  has  no  effect. 

Let's consider the estimated marginal means for wool:

remw = emmeans (lmod , pairwise ~ wool)

NOTE: Results may be misleading due to involvement in 

interactions

We receive a warning because we appear to be considering

main effects in the presence of an interaction. Suppose we

argue  that  we  cannot  control  the  tension  and  all  three levels are equally likely in practice. Under such conditions, 

averaging over the tensions is sensible:

summary (remw $ emmeans , type = "response")

wool response   SE df lower.CL upper.CL

A        29.3 2.04 48     25.3     33.5

B        24.5 1.87 48     20.9     28.4



Results are averaged over the levels of: tension

Confidence level used: 0.95

Intervals are back-transformed from the sqrt scale

We  are  on  a  square  root  scale  for  the  response. 

Transforming  back  to  the  original  response  scale  for  the marginal means is easier to interpret. We see that A has a

higher predict number of breaks than B but we cannot test

the significance of the difference from this output. We can

achieve this with:

summary (remw $ contrasts)

contrast estimate    SE df t.ratio p.value

A - B       0.464 0.267 48   1.738 0.0885



Results are averaged over the levels of: tension

Note: contrasts are still on the sqrt scale

We  cannot  sensibly  backtransform  the  A-B  difference. 

Furthermore,  we  are  only  making  one  comparison  so  no

multiple adjustment is used. The test is the same as in the

ANOVA table earlier. 

Suppose  we  can  choose  the  level  of  tension  for

manufacturing  (or  at  least  have  some  control  over  it).  In this  case,  we  need  to  compare  wool  A  and  B  for  different levels of tension:

remwt = emmeans (lmod , pairwise ~ wool | tension)

There  is  no  warning  now  because  this  approach  allows

for  an  interaction  effect.  Let's  look  at  the  marginal  means of wool for each level of tension:

summary (remwt $ emmeans , type = "response")

tension = L:

 wool response   SE df lower.CL upper.CL

A        42.9 4.28 48     34.7     51.9

B        27.4 3.42 48     21.0     34.8



tension = M:

wool response   SE df lower.CL upper.CL

A        23.3 3.15 48     17.4     30.1

B        28.1 3.46 48     21.5     35.5



tension = H:

wool response   SE df lower.CL upper.CL

A        23.6 3.17 48     17.6     30.4

B        18.5 2.81 48     13.3     24.6



Confidence level used: 0.95

Intervals are back-transformed from the sqrt scale

We  have  back-transformed  to  the  original  scale.  We  see that A at low tension is the worst for breaks while B at high

tension is best. But are all these differences significant? We can check:

summary (remwt$contrasts , infer=TRUE)

tension = L:

contrast estimate    SE df lower.CL upper.CL t.ratio p.value

A - B       1.309 0.462 48    0.381    2.238   2.835 0.0067



tension = M:

contrast estimate     SE df lower.CL upper.CL t.ratio p.value

A - B       -0.473 0.462 48   -1.401    0.456 -1.023 0.3113



tension = H:

contrast estimate    SE df lower.CL upper.CL t.ratio p.value

A - B       0.554 0.462 48   -0.375    1.483   1.200 0.2361



Note: contrasts are still on the sqrt scale

Confidence level used: 0.95

No  adjustment  is  used  because  there  is  only  one

comparison  within  each  level.  We  see  that  there  is  only  a significant difference between wool types for low tension. If

we  pick  high  tension,  which  seems  to  be  best,  we  find  no difference between A and B. 

We  could  repeat  this  analysis  reversing  the  role  of  wool and  tension.  The  difference  between  the  two  approaches

lies  in  how  much  control  we  have  over  the  choice  of  wool and  tension.  Suppose  we  are  equally  able  to  select  any  of the six combinations of wool and tension. Which should we

choose? 

rem = emmeans (lmod , ~ wool * tension)

summary (rem , type = "response")

wool   tension response   SE df lower.CL upper.CL

A      L           42.9 4.28 48     34.7     51.9

B      L           27.4 3.42 48     21.0     34.8

A      M           23.3 3.15 48     17.4     30.1

B      M           28.1 3.46 48     21.5     35.5

A      H           23.6 3.17 48     17.6     30.4

B      H           18.5 2.81 48     13.3     24.6



Confidence level used: 0.95

Intervals are back-transformed from the sqrt scale

The B/H combination is best but is it clearly superior to the

alternatives?  We  consider  all  pairwise  comparisons.  Since there  are  effectively  6  levels,  we  have  15  pairwise

combinations.  We  can  display  the  information  numerically with:

contrast (rem , "pairwise")

contrast estimate    SE df t.ratio p.value

A L - B L  1.3094 0.462 48   2.835 0.0689

A L - A M  1.7216 0.462 48   3.727 0.0064

A L - B M  1.2489 0.462 48   2.704 0.0931

A L - A H  1.6912 0.462 48   3.661 0.0078

A L - B H  2.2454 0.462 48   4.861 0.0002

B L - A M  0.4122 0.462 48   0.892 0.9465

B L - B M -0.0605 0.462 48  -0.131 1.0000

B L - A H  0.3818 0.462 48   0.827 0.9611

B L - B H  0.9359 0.462 48   2.026 0.3432

A M - B M -0.4727 0.462 48  -1.023 0.9078

A M - A H -0.0304 0.462 48  -0.066 1.0000

A M - B H  0.5238 0.462 48   1.134 0.8648

B M - A H  0.4423 0.462 48   0.958 0.9289

B M - B H  0.9964 0.462 48   2.157 0.2766

A H - B H  0.5542 0.462 48   1.200 0.8348

Focusing  on  the  five  comparisons  of  the  B/H  combination with  the  other  combinations,  we  see  that  four  out  of  these five  are  not  significant.  All  things  being  equal,  we  would select the B/H combination but we would not be confident

that  it  is  surely  better  than  most  of  the  other  choices. 

Further data collection would be advisable. 

17.6 Design for Two Factor Experiments

Many  of  the  considerations  discussed  in  Section  16.8  still apply.  Again  we  assume  that  our  experimental  units  are either  homogeneous  or  that  differences  cannot  be  readily measured. The main decision is the sample size. 

In  the  composite  example,  there  was  only  one  observation for each combination of the factor levels. The sample size is

determined  by  the  product  of  the  number  of  factor  levels and is fixed. Such experiments are only sensible when you

are confident that the variance between the factor levels is

significantly  larger  than  the  variance  within  a  particular combination of factor levels. This is most likely to be true in engineering  and  physical  science  applications.  If  you  do  a replicate, you expect to get a very similar response. This is

unlikely  to  be  true  in  social  science  or  biomedical

applications  where  within  variability  tends  to  be  high.  In these  areas,  such  small  experiments  are  unlikely  to  be worthwhile.  In  the  warpbreaks  example,  we  see  that  there was  considerable  within  variation  and  so  the  use  of  nine replicates  was  justified.  But  why  nine?  How  can  we  make such a decision in advance of the experiment? 

Choosing  the  sample  size  for  a  two  factor  experiment  is more  complicated  because  we  want  to  investigate  the

differences  within  two  factors  and  their  interaction.  The easiest  approach  is  to  consider  the  one  factor  experiment where  we  have  a  level  for  each  combination  of  the  two factors.  For  example,  in  the  warpbreaks  example,  this  would give  us  a  2 × 3 = 6  level  factor.  We  can  now  choose

between the one factor methods used in Section 16.8.  If we have  the  benefit  of  similar  past  data,  we  can  use  these  to suggest  suitable  values  for  the  variation.  We  should  also consider  the  smallest  practical  differences  we  are

interested  in  finding.  If  we  have  less  prior  information,  we might use the Cohen's  d suggestions. 

For example, suppose we plan a new experiment which is similar  to  the  warpbreaks  case.  We  can  get  the  variation between by computing the six group means (on the square

root scale we used above):

gm = aggregate (sqrt (breaks) ~ wool + tension , warpbreaks , 

mean)

var (gm $‘sqrt (breaks)‘)

[1] 0.57767

The variation within comes from:

lmod = lm (sqrt (breaks) ~ wool*tension , warpbreaks)

summary (lmod)$sigma ^2

[1] 0.96019

We would like a power of 80% to detect these group mean

differences. We compute:

power . anova . test (groups = 6 , 

between . var = 0.578 , 

within . var = 0.96 , 

sig . level = 0.05 , 

power = 0.8)

groups   =   6

n   =   5.2646

between.var   =   0.578

within.var   =   0.96

sig.level   =   0.05

power   =   0.8

This  suggests  six  replicates  per  combination.  The  total sample size would be 6 × 6 = 36. 

We  remind  the  reader  that  we  cannot  use  a  calculation like  this  to  reasonably  compute  the  power  of  the  actual

warpbreaks  experiment.  This  would  be  an  example  of   post

 hoc power which is invalid for reasons discussed in Section

16.8. 

There are some drawbacks. We may want to test the main

effects  for  the  two  factors  and  we  may  want  to  test  the interaction.  The  sample  size  here  is  chosen  for  a  different test  which  does  not  correspond  to  any  of  these  tests.  The recommended replicate size of six represents a saving over

the  nine  used  in  the  prior  experiment.  This  may  be

adequate  to  detect  that  some  difference  between  the  six group  means  exists.  However,  in  making  the  pairwise

comparisons  earlier,  we  found  that  nine  replicates  were insufficient  to  distinguish  many  pairs.  If  we  are  strongly interested in these pairwise comparisons, we might replace

the  group  size  of  6  above  with  2  in  the  calculation.  This suggests  a  replicate  size  of  14.  The  calculation  is  very approximate  and  could  be  done  more  correctly  but  it  does indicate  that  using  6  replicates  may  be  too  economical depending on our objectives. 

It  is  possible  to  compute  the  power  for  detecting

differences in the first factor and then again for the second

factor.  The  sample  size  can  then  be  adjusted  to  obtain  a satisfactory  power  for  both.  This  approach  is  implemented in  the  pwr2  package  of  Lu,  Liu,  and  Koestler  (2017). 

Computing the power to detect an interaction is beyond our

scope in this text. 

Suppose  we  want  to  perform  a  new  experiment  with  the

same  setup  as  warpbreaks.  To  generate  a  completely

randomized design, create a data frame with all the desired runs and randomize the order:

des = expand . grid (wool = c ("A" ,"B") , tension = c ("L" ,"M" ,"H") , 

replicate =1:9)

des = des [ sample (nrow (des)) , -3]

head (des)

wool tension

39      A       M

26      B       L

9       A       M

31      A       L

28      B       M

3       A       M

We  have  shown  the  first  six  runs  of  our  particular  random generation  (yours  will  be  different).  We  see  that  some combinations occur more than once and others not at all so

that  during  a  time-ordered  experiment,  the  combinations

will  not  necessarily  be  balanced  until  the  end.  One  might consider  randomizing  in  blocks  of  six  to  ensure

intermediate 

balance 

(or 

because 

of 

experimental

restrictions)  but  this  would  constitute  a   randomized  block design as described in the next chapter. The analysis would need some modification. 

17.7 Larger Factorial Experiments

Suppose  we  have  factors   α,  β,  γ, … at levels  lα,  lβ,  lγ, …. A full  factorial  experiment  has  at  least  one  run  for  each combination  of  the  levels.  The  number  of  combinations  is lαlβlγ …,  which  could  easily  be  very  large.  The  biggest

model  for  a  full  factorial  contains  all  possible  interaction terms,  which  range  from  second-order,  or  two-way,  as

encountered  earlier  in  this  chapter,  to  high  order

interactions  involving  several  factors.  For  this  reason,  full factorials  are  rarely  executed  for  more  than  three  or  four factors. 

There  are  some  advantages  to  factorial  designs.  For

example, suppose we have four factors at two levels each. A

full factorial design would have 16 runs. If we assume there

are  no  interactions,  we  have  four  main  effects  and  one intercept  parameter  to  estimate.  This  leaves  16-5=11

degrees of freedom for the error. Compare this with doing

a sequence of four one-way experiments. To get 11 degrees

of  freedom  for  the  error  for  each  experiment,  we  would need 14 runs for each experiment for a total of 56 runs. We

get much greater efficiency from the factorial design. 

The  analysis  of  full  factorial  experiments  is  an  extension of  that  used  for  the  two-way  ANOVA.  Typically,  there  is little  or  no  replication  due  to  cost  concerns  so  it  is necessary  to  assume  that  some  higher  order  interactions are zero in order to free up degrees of freedom for testing

the  lower  order  effects.  Experience  suggests  that  large third  or  higher  order  interactions  are  relatively  rare  in practice so this assumption is not unreasonable. 

Fractional Factorials

Fractional factorials use only a fraction of the number of

runs in a full factorial experiment. This is done to save the

cost  of  the  full  experiment  or  to  make  only  a  few  runs

because  the  experimental  material  is  limited.  It  is  often possible  to  estimate  the  lower  order  effects  with  just  a fraction.  Consider  an  experiment  with  seven  factors,  each at two levels:

Effect

meanmain2-way3-way 4 5 6 7

Number of parameters

1

7

21

35 35 21 7 1

Table  17.1:   Number  of  parameters  in  a  two-

level, seven-factor experiment. 

If  we  are  going  to  assume  that  higher  order  interactions are  negligible  then  we  do  not  really  need  27 = 128 runs to estimate the remaining parameters. We could perform only

eight  runs  and  still  be  able  to  estimate  the  seven  main effects,  though  none  of  the  interactions.  If  we  also  wanted to  estimate  the  two-way  interactions,  we  might  hope  to achieve  this  with  a  32  runs  experiment  since  we  have

1+7+21=29  parameters  to  estimate.  Unfortunately,  in  this particular  example,  a  design  that  would  allow  the  unique estimation  of  all  the  two-way  interactions  is  not  feasible. 

Constructing  designs  in  these  circumstances  is  a

challenging task which is addressed by an area of statistics

known  as   design  of  experiments.  See  Hamada  and  Wu

(2000) for an example of this. 

In  fractional  factorial  experiments,  we  try  to  estimate many parameters with as few data points as possible. This

means  there  are  often  not  many  degrees  of  freedom  left. 

We  require  that   σ 2  be  small;  otherwise  there  will  be  little chance  of  distinguishing  significant  effects.  Fractional

factorials  are  popular  in  engineering  applications  where the  experiment  and  materials  can  be  tightly  controlled. 

Fractional factorials are commonly found in product design

because  they  allow  for  the  screening  of  a  large  number  of factors.  Factors  identified  in  a  screening  experiment  can then  be  more  closely  investigated.  In  the  social  sciences and  medicine,  the  experimental  materials,  often  human  or animal,  are  much  less  homogeneous  and  less  controllable, so   σ 2 tends to be relatively large. In such cases, fractional factorials are of no value. 

Here  is  an  example.  Speedometer  cables  can  be  noisy

because  of  shrinkage  in  the  plastic  casing  material.  An experiment  was  conducted  to  find  out  what  caused

shrinkage  by  screening  a  large  number  of  factors.  The

engineers  started  with  15  different  factors:  liner  outside diameter,  liner  die,  liner  material,  liner  line  speed,  wire braid  type,  braiding  tension,  wire  diameter,  liner  tension, liner  temperature,  coating  material,  coating  die  type,  melt temperature,  screen  pack,  cooling  method  and  line  speed, labeled  a  through  o.  Response  is  percentage  of  shrinkage per  specimen.  There  were  two  levels  of  each  factor.  The

“+” indicates the high level of a factor and the “-” indicates the low level. 

A  full  factorial  would  take  215  runs,  which  is  highly impractical;  thus  a  design  with  only  16  runs  was  used where the particular runs have been chosen specially so as

to  estimate  the  mean  and  the  15  main  effects.  We  assume that  there  is  no  interaction  effect  of  any  kind.  The  data come from Box et al. (1988). 

Here is the data:

data (speedo , package = "faraway")

speedo

h   d   l   b   j   f   n   a   i   e   m   c   k   g   o   

y

1    -   -   +   -   +   +   -   -   +   +   -   +   -   -   +   

0.4850

2    +   -   -   -   -   +   +   -   -   +   +   +   +   -   -   

0.5750

3    -   +   -   -   +   -   +   -   +   -   +   +   -   +   -   

0.0875

4    +   +   +   -   -   -   -   -   -   -   -   +   +   +   +   

0.1750

5    -   -   +   +   -   -   +   -   +   +   -   -   +   +   -   

0.1950

6    +   -   -   +   +   -   -   -   -   +   +   -   -   +   +   

0.1450

7    -   +   -   +   -   +   -   -   +   -   +   -   +   -   +   

0.2250

8    +   +   +   +   +   +   +   -   -   -   -   -   -   -   -   

0.1750

9    -   -   +   -   +   +   -   +   -   -   +   -   +   +   -   

0.1250

10   +   -   -   -   -   +   +   +   +   -   -   -   -   +   +   

0.1200

11   -   +   -   -   +   -   +   +   -   +   -   -   +   -   +   

0.4550

12   +   +   +   -   -   -   -   +   +   +   +   -   -   -   -   

0.5350

13   -   -   +   +   -   -   +   +   -   -   +   +   -   -   +   

0.1700

14   +   -   -   +   +   -   -   +   +   -   -   +   +   -   -   

0.2750

15   -   +   -   +   -   +   -   +   -   +   -   +   -   +   -   

0.3425

16   +   +   +   +   +   +   +   +   +   +   +   +   +   +   +   

0.5825

Perhaps  you  can  see  the  pattern  in  the  design.  We  can  fit and examine a main-effects-only model:

lmod = lm (y ~ . , speedo)

summary (lmod)

Estimate Std. Error t value Pr(>|t|)

(Intercept)    0.582500         NA      NA       NA

h-            -0.062188         NA      NA       NA

d-            -0.060938         NA      NA       NA

l-            -0.027188         NA      NA       NA

b-             0.055937         NA      NA       NA

j-             0.000937         NA      NA       NA

f-            -0.074062         NA      NA       NA

n-            -0.006563         NA      NA       NA

a-            -0.067813         NA      NA       NA

i-            -0.042813         NA      NA       NA

e-            -0.245312         NA      NA       NA

m-            -0.027812         NA      NA       NA

c-            -0.089687         NA      NA       NA

k-            -0.068437         NA      NA       NA

g-             0.140312         NA      NA       NA

o-            -0.005938         NA      NA       NA



n = 16, p = 16, Residual SE = NaN, R-Squared = 1

F-statistic:   NaN on 15 and 0 DF,          p-value: NA

There  are  no  degrees  of  freedom,  because  there  are  as many  parameters  as  cases.  We  cannot  do  any  of  the  usual

tests. It is important to understand the coding here, so look at the  X-matrix:

model.matrix (lmod)

(Intercept) h d l b j f n a i e m c k g o

1           1 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

...etc... 

We  see  that  “+”  is  coded  as  zero  and  “-”  is  coded  as  one. 

This unnatural ordering is because of the order of “+” and

“-” in the ASCII alphabet. 

We  do  not  have  any  degrees  of  freedom  so  we  can  not make  the  usual  F-tests.  We  need  a  different  method  to determine  significance.  Suppose  there  were  no  significant effects  and  the  errors  were  normally  distributed.  The

estimated effects would then just be linear combinations of

the  errors  and  hence  normal.  We  now  make  a  normal

quantile plot of the main effects with the idea that outliers

represent significant effects:

qqnorm (coef (lmod) [ -1] , pch = names (coef (lmod) [ -1]) , 

main = " ")

See  Figure  17.7.   Notice  that  “e”  and  possibly  “g”  are extreme.  Since  the  “e”  effect  is  negative,  the  “+”  level  of

“e” increases the response. Since shrinkage is a bad thing, 

increasing  the  response  is  not  good  so  we  would  prefer whatever  “wire  braid”  type  corresponds  to  the  “-”  level  of

“e”.  The  same  reasoning  for  “g”  leads  us  to  expect  that  a larger  value  (assuming  that  is  “+”)  would  decrease

shrinkage. 
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Figure  17.7   Q–Q  plots  of  effects  for  speedometer  cable analysis. 

A  half-normal  plot,  as  described  in  Section  7.2,   is  better for detecting extreme points:

faraway :: halfnorm (coef (lmod) [ -1] , labs = names (coef 

(lmod) [ -1]))

We might now conduct another experiment focusing on the

effects of “e” and “g.” 

A Latin square (see Section 18.2) where all predictors are considered  as  factors  is  another  example  of  a  fractional factorial. 

Exercises

1. Data on the butterfat content of milk from Canadian cows

of  five  different  breeds  and  two  different  ages  can  be found in the butterfat dataset. 

(a)

Plot  the  data  twice,  once  with  the  breed  on  the  x-

axis  and  once  with  age  on  the  x-axis.  Which  breed

produces  the  most  butterfat?  Is  there  visual

evidence of an interaction? 

(b)

Determine whether there is an interaction between

breed and age. 

(c)

Determine 

whether 

there 

is 

a 

statistically

significant  difference  between  breeds  and  also

ages. 

(d)

Present  regression  diagnostics  for  your  chosen

model and comment whether the assumptions have

been met. 

(e)

Is  the  best  breed  in  terms  of  butterfat  content

clearly superior to the second best breed? 

2. The barley data may be found in the lattice package. 

(a)

Plot  the  data  with  yield  as  the  response.  Put  one

factor  on  the  x-axis,  use  facets  to  distinguish

another and a different plotting color to distinguish

the  third.  Take  care  to  make  the  tick  labels

readable. 

(b)

Were the yields in 1931 generally better? Are there

any clear exceptions to this? 

(c)

Fit  a  model  with  all  interactions  including  the

three-way  interaction.  Can  you  test  the  three  way

interaction? 

(d)

Fit  a  model  with  only  main  effects  and  two-way

interactions. Which interactions are significant? 

(e)

The  strongest  interaction  is  associated  with  what

feature of the plot of the data? 

(f)

For  simplicity,  fit  a  model  with  main  effects  and

only  the  large  year  by  site  interaction.  Identify  the

reference levels of all three factors. 

(g)

Suppose you planned to purchase one of these sites

to  grow  barley.  Which  one  would  you  choose  and

why? 

(h)

Suppose we have a field in Minnesota in the 1930's. 

What variety of barley should we plant? 

3. In this question, we will determine the important factors

in the sono dataset where the Intensity is the response and

the other variables are predictors. 

(a)

Make  plots  of  the  response  against  each  of  the

predictors.  Under  what  conditions  do  the  highest

intensities occur? 

(b)

If all predictors are considered, how many possible

two-way  interactions  exist?  Will  it  be  possible  to

estimate all of these? 

(c)

Fit a model with all the predictors but main effects

only. Which effects are significant? What effects are

large and what small? 

(d)

Fit  a  model  with  only  predictors  with  large  effects

from the previous model. Use an F-test to compare

these two models. 

(e)

Fit a model with just the large-effect predictors and

their  two-way  interactions.  You  should  receive  a

warning about a singularity. How many parameters

can be estimated in this model? 

(f)

Print  out  the  data  matrix  for  just  the  large-effect

predictors.  Do  all  possible  combinations  of  these

predictors occur? 

(g)

What  settings  should  be  used  for  the  predictors

that matter if maximizing intensity is the goal? 

4. In the rats data, we will model the survival time in terms

of the poison and treatment. 

(a)

Plot  the  data  in  two  different  ways,  each  time

showing  both  predictors.  Is  there  evidence  of

interaction? 

(b)

Fit  a  model  with  both  poison  and  treatment  as

predictors.  Construct  the  residual-fitted  plot  and

comment. 

(c)

Find a common transformation on the response that

solves  the  problem  revealed  in  the  previous

question. 

(d)

Test the significance of the predictors. 

(e)

Test for an interaction. 

(f)

What  treatment  and  poison  combination  minimizes

the survival time? How sure are you in this choice? 

5. The  peanut  data  come  from  a  fractional  factorial

experiment to investigate factors that affect an industrial

process using carbon dioxide to extract oil from peanuts. 

(a)

Make  plots  of  the  data,  one  predictor  at  a  time. 

What tends to maximize solubility? 

(b)

Fit  a  model  with  main  effects  only.  Which  factors

significantly increase solubility? 

(c)

Fit a model with all two-way interactions. What can

be said about which interactions may have an effect

on solubility? 

(d)

Fit the best model using only two predictors. What

can  be  said  about  the  best  predictor  settings  to

maximize solubility? 

(e)

The  client  wishes  to  find  a  more  precise  setting  of

the  predictors  beyond  high  or  low  to  optimize  the

response. What should they do to achieve this? 

6. The “High School and Beyond” data is found in hsb. 

(a)

Model  the  math  score  in  terms  of  the  five  factors:

gender,  race,  ses,  schtyp  and  prog.  Include  all

second-order  interactions  but  no  higher  order

interactions.  How  many  regression  parameters

does  your  model  use?  Explain  how  this  can  be

calculated in terms of the number of levels for each factor. 

(b)

Determine  whether  some  two-way  interactions  can

be eliminated using the anova function. 

(c)

Determine  whether  some  two-way  interactions  can

be eliminated but now using the drop1 function. Why

do  the  results  differ  from  the  previous  question? 

Which method of testing should be preferred? 

(d)

Fit  a  model  with  only  main  effects  and  compare  it

to  the  model  with  all  two-way  interactions.  Which

model should be preferred? 

(e)

Determine  which  main  effects  are  statistically

significant. 

(f)

Check  the  regression  diagnostics  for  the  main

effects only model and report on any anomalies. 

7. This question is based on the speedo dataset. 

(a)

Fit the model as stated in the chapter and print out

the estimated coefficients. 

(b)

Show the model matrix for this model. 

(c)

Change to sum contrasts for the factors by using

options(contrasts = c("contr.sum", "contr.poly")) Refit  the  model  and  print  out  the  coefficients. 

Describe how they differ from those in (a). Does the

choice  of  contrasts  affect  the  conclusions  of  the analysis? 

(d)

Print  out  the  model  matrix  and  explain  how  it

differs from that seen in (b). 

(e)

Suppose  only  the  ‘a‘  effect  is  real  and  no  other

factors  affect  the  response.  Create  a  coefficient

vector  where  all  entries  are  zero  except  that

corresponding  to  the  ‘a‘  level  which  is  one. 

Compute  the  predicted  values  for  this  choice  of

coefficient. 

(f)

Generate an artificial y by adding normal noise with

SD=0.1. Fit the model and present the half normal

plot. Does the procedure find the significant effect? 

(g)

Repeat  the  previous  question  but  with  SD=1.  (It  is

sensible  to  regenerate  the  noise  several  times  to

get a sense of what happens in general)

(h)

Repeat  the  previous  question  but  generate  noise

with a standard Cauchy distribution using rcauchy(). 

Comment  on  how  effective  the  modeling  approach

would be under these circumstances. 

Chapter 18

Experiments with Blocks

DOI: 10.1201/9781003449973-18

In  a  completely  randomized  design  (CRD),  the  treatments are  assigned  to  the  experimental  units  at  random.  This  is appropriate when the units are homogeneous, as has been

assumed  in  the  designs  leading  to  the  one-  and  two-way analyses  of  variances  (ANOVAs).  Sometimes,  we  may

suspect  that  the  units  are  heterogeneous,  but  we  cannot describe  the  form  the  difference  takes  —  for  example,  we may know that patients in a group are not identical, but we

may have no further information about them. In this case, it

is  still  appropriate  to  use  a  CRD.  Of  course,  the

randomization will tend to spread the heterogeneity around

to avoid systematic bias, but the real justification lies in the randomization test discussed in Section 4.3.  Under the null hypothesis,  there  is  no  link  between  a  factor  and  the response.  In  other  words,  the  responses  have  been

assigned to the units in a way that is unlinked to the factor. 

This  corresponds  to  the  randomization  used  in  assigning the  levels  of  the  factor  to  the  units.  This  is  why  the

randomization  is  crucial  because  it  allows  us  to  make  this argument.  Now  if  the  difference  in  the  response  between levels of the factor seems too unlikely to have occurred by

chance,  we  can  reject  the  null  hypothesis.  The  normal-

based  inference  is  approximately  equivalent  to  the

permutation-based  test.  Since  the  normal-based  inference

is much quicker, we usually prefer to use that. 

When  the  experimental  units  are  heterogeneous  in  a

known  way  and  can  be  arranged  into   blocks  where  the within-block  variation  is  small,  but  the  between-block

variation is large, a  block design can be more efficient than a CRD. We prefer to have a block size equal to the number

of  treatments.  If  this  cannot  be  done,  an   incomplete  block design must be used. 

Sometimes 

the 

blocks 

are 

determined 

by 

the

experimenter.  For  example,  suppose  we  want  to  compare

four  treatments  and  have  20  patients  available.  We  might divide  the  patients  into  five  blocks  of  four  patients  each where  the  patients  in  each  block  have  some  relevant

similarity. We might decide this subjectively in the absence

of  specific  information.  In  other  cases,  the  blocks  are predetermined  by  the  nature  of  the  experiment.  For

example,  suppose  we  want  to  test  three  crop  varieties  on five  fields.  Restrictions  on  planting,  harvesting  and

irrigation equipment might allow us only to divide the fields

into three strips. The fields are the blocks. 

In  a  randomized  block  design,  the  treatment  levels  are assigned  randomly  within  a  block.  This  means  the

randomization 

is 

restricted 

relative 

to 

the 

full

randomization used in the CRD. This has consequences for

the  inference.  There  are  fewer  possible  permutations  for the  random  assignment  of  the  treatments;  therefore,  the computation  of  the  significance  of  a  statistic  based  on  the permutation test would need to be modified. Consequently, 

a  block  effect  must  be  included  in  the  model  used  for inference  about  the  treatments,  even  if  we  later  discover that the block effect is not significant. 

18.1 Randomized Block Design

We  have  one  treatment  factor,  τ  at   t  levels  and  one blocking factor, β at  r levels. The model is:

 yij =  μ +  τi +  βj +  εij

(18.1)

where   τi  is  the  treatment  effect  and  β j  is  the  blocking effect. There is one observation on each treatment in each

block.  This  is  called  a  randomized  complete  block  design (RCBD).  The  analysis  is  then  very  similar  to  a  two-factor experiment with no replication. We have a limited ability to

detect an interaction between treatment and block. We can

check  for  a  treatment  effect.  We  can  also  check  the  block effect, but this is only useful for future reference. Blocking is  a  feature  of  the  experimental  units  and  restricts  the randomized assignment of the treatments. This means that

we  cannot  regain  the  degrees  of  freedom  devoted  to blocking even if the blocking effect is not significant. 

We  illustrate  this  with  an  experiment  to  compare  eight varieties of oats. The growing area was heterogeneous and

so  was  grouped  into  five  blocks.  Each  variety  was  sown once within each block and the yield in grams per 16-ft row

was  recorded.  The  data  come  from  Anderson  and  Bancroft

(1952). 

We start with a look at the data:

data(oatvar, package="faraway")

xtabs(yield ~ variety + block , oatvar)

block

variety      I II    III    IV     V

1    296 357   340   331   348

2    402 390   431   340   320

3    437 334   426   320   296

4    303 319   310   260   242

5    469 405   442   487   394

6    345 342   358   300   308

7    324 339   357   352   220

8    488 374   401   338   320

Simple  plots  of  the  data  can  be  obtained  in  base  graphics by:

plot(yield ~ variety , oatvar)

plot(yield ~ block , oatvar)

with(oatvar , interaction.plot (variety , block , yield))

with(oatvar , interaction.plot (block , variety , yield))

Alternatively, we can use ggplot2:

library(ggplot2)

ggplot (oatvar, aes (x = variety, y=yield, group=block, 
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linetype=block)) +

geom_line () +

theme (legend.position="top" , 

legend.direction="horizontal")

ggplot (oatvar , aes (x=block , y=yield , group=block , 

linetype=block)) +

geom_line ()

See  Figure  18.1.  There  is  no  indication  of  outliers, skewness  or  non-constant  variance.  Nor  is  there  any  clear evidence  of  an  interaction  effect.  We  can  move  onto  the modeling:

Figure 18.1  Interaction plots of oat variety data. 

lmod = lm(yield ~ block + variety , oatvar)

anova (lmod)

Analysis of Variance Table



Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

block      4 33396     8349    6.24   0.001

variety    7 77524    11075    8.28 1.8e-05

Residuals 28 37433     1337

Both effects are significant. The ANOVA table corresponds

to a sequential testing of models, here corresponding to the

sequence:

y ~ 1

y ~ block

y ~ block+variety

So  here  the   p-value  0.001  corresponds  to  a  comparison  of the first two models in this list, while the  p-value of 1.8e-05

corresponds  to  the  test  comparing  the  second  two.  The

denominator  in  both  F-tests  is  the  mean  square  from  the full  model,  here  1337.  This  means  that  a  test  of  the  block effect that leaves out the variety effect is not the same:

anova (lm (yield ~ block , oatvar))

Analysis of Variance Table



Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

block      4 33396     8349    2.54 0.057

Residuals 35 114957    3284

There is a difference in significance in this case. This latter test is incorrect for testing the blocking effect. 

Notice  that  if  we  change  the  order  of  the  terms  in  the ANOVA,  it  makes  no  difference  because  of  the  orthogonal design:

anova (lm (yield ~ variety + block , oatvar))

Analysis of Variance Table

 

Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

variety    7 77524    11075    8.28 1.8e-05

block      4 33396     8349    6.24   0.001

Residuals 28 37433     1337

By  way  of  comparison,  see  what  happens  if  we  omit  the first  observation  in  the  dataset  —  this  might  happen  in practice if this run is lost:

anova (lm (yield ~ block + variety , subset = -1 , oatvar))

Analysis of Variance Table



Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

block      4 38581     9645    8.41 0.00015

variety    7 75339    10763    9.38 7.3e-06

Residuals 27 30968     1147

anova (lm (yield ~ variety + block , subset = -1 , oatvar))

Analysis of Variance Table



Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

variety    7 75902    10843    9.45 6.8e-06

block      4 38018     9504    8.29 0.00017

Residuals 27 30968     1147

As there is one missing observation, the design is no longer

orthogonal  and  the  order  does  matter,  although  it  would not change the general conclusions. If we want to test for a

treatment  effect,  we  would  prefer  the  first  of  these  two tables  since  in  that  version  the  blocking  factor  is  already included  when  we  test  the  treatment  factor.  Since  the

blocking  factor  is  an  unalterable  feature  of  the  chosen
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design, this is as it should be. A convenient way to test all

terms relative to the full model is:

drop1 (lm (yield ~ variety + block , subset = -1 , oatvar) , 

test = "F")

Single term deletions



Model:

yield ~ variety + block

Df Sum of Sq    RSS   AIC F value   Pr(F)

<none>                30968   284

variety 7      75339 106307   319    9.38 7.3e-06

block    4     38018 68986    308    8.29 0.00017

Check the diagnostics, as seen in Figure 18.2:

plot (lmod , which =1:2 , caption = NULL)

Figure 18.2  Diagnostic plots for the oat variety data. 

An  examination  of  which  varieties  give  the  highest  yields and  which  are  significantly  better  than  others  can  now

follow. 

We did assume that the interactions were not significant. 

We looked at the interaction plots, but we can also execute

the Tukey non-additivity test:

varcoefs = c (0 , coef (lmod) [6:12])

blockcoefs = c (0 , coef (lmod) [2:5])

ab = rep (varcoefs , each =5) * rep (blockcoefs ,8)

h = update (lmod ,. ~ .+ ab)

anova (h)

Analysis of Variance Table



Response: yield

Df Sum Sq Mean Sq F value Pr(>F)

block      4  33396     8349    6.06 0.0013

variety    7  77524    11075    8.03 2.8e-05

ab         1    213     213     0.15 0.6974

Residuals 27  37220     1379

Because  the   p-value  of  the  treatment  times  block  effect  is 0.6974, we accept the null hypothesis of no interaction. Of

course, the interaction may be of a non-multiplicative form, 

but there is little we can do about that. 

 Multiple Comparisons

We  are  interested  in  the  relative  performance  of  the

varieties.  We  do  not  care  so  much  about  the  blocks  —  we need  to  allow  for  them  in  the  analysis  but  the  blocks  are specific  to  this  experiment  and  not  of  general  interest.  We can  compute  the  estimated  marginal  means  using  the

emmeans package of Lenth (2023):

library (emmeans)

rem = emmeans (lmod , pairwise ~ variety)

rem $ emmeans

variety emmean   SE df lower.CL upper.CL

1          334 16.4 28      301      368

2          377 16.4 28      343      410

3          363 16.4 28      329      396

4          287 16.4 28      253      320

5          439 16.4 28      406      473

6          331 16.4 28      297      364

7          318 16.4 28      285      352

8          384 16.4 28      351      418



Results are averaged over the levels of: block

Confidence level used: 0.95

We  see  that  variety  5  produces  the  greatest  yield  and variety  4  the  lowest  yield.  These  means  are  produced  by averaging  the  predicted  values  over  the  blocks.  Since  we have  no  particular  interest  in  the  blocks,  this  is

satisfactory.  If  the  blocks  happen  to  be  representative  of the  wider  population,  the  predicted  yields  will  be

reasonable. 

We can look at pairwise differences graphically as seen in

Figure 18.3:

library (ggplot2)

plot (rem $ emmeans , comparisons = TRUE , adjust = "tukey") +

coord_flip ()
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Figure  18.3   95%  confidence  intervals  for  the  variety means  in  the  oatvar  model.  Arrows  can  be  used  for

comparing  levels  with  overlap  indicating  a  non-significant difference. 

In  contrast  to  versions  of  this  plot  seen  in  previous chapters,  we  have  flipped  the  axes  because  of  the  larger number  of  levels.  The  default  plot  uses  ggplot2  but  this package merely needs to be installed and does not need to

be  loaded.  If  we  want  to  modify  the  plot,  we  need  to  load ggplot2. We see that variety 5 has the highest yield and only

the pairwise comparisons with variety 2 and 8 do not show

a  statistically  significant  difference.  One  can  see  the numerical display of this same information with:

summary (rem $ contrasts , infer = TRUE)

We refrain from printing this out as there are 8 × 7/2 = 28

pairwise comparisons. 

One  might  contemplate  a  smaller  set  of  comparisons  in

some scenarios. Suppose that variety 5 is the market leader

but  we  have  7  less  expensive  competitors  to  consider.  We would only be interested in comparisons with variety 5 and

each  of  the  other  varieties.  Furthermore,  suppose  we  are only  interested  in  whether  the  less  expensive  varieties  are worse  than  variety  5.  This  suggests  a  one-sided  tests.  We can execute this restricted set of comparisons and test type

with:

remtc = emmeans (lmod , trt . vs . ctrlk ~ variety , ref = 5 , side = " <")

summary (remtc $ contrasts , adjust = "bonferroni")

contrast                  estimate     SE   df t.ratio p.value variety1   -   variety5     -105.0   23.1   28 -4.541 0.0003

variety2   -   variety5      -62.8   23.1   28 -2.716 0.0392

variety3   -   variety5      -76.8   23.1   28 -3.321 0.0088

variety4   -   variety5     -152.6   23.1   28 -6.599 <.0001

variety6   -   variety5     -108.8   23.1   28 -4.705 0.0002

variety7   -   variety5     -121.0   23.1   28 -5.232 0.0001

variety8   -   variety5      -55.2   23.1   28 -2.387 0.0839



Results are averaged over the levels of: block

P value adjustment: bonferroni method for 7 tests

P values are left-tailed

We have used Bonferroni to make the adjustment as Tukey

is only for all pairwise comparisons. Since we have reduced

the  number  of  comparisons  and  made  the  test  one-sided, we get sharper, as in smaller,  p-values. Now only variety 8

manages to approach variety 5 in the sense that we cannot

declare  it  significantly  worse.  This  is  not  a  statement  of equivalence  for  which  a  different  approach  would  be

necessary  but  we  have  narrowed  the  set  of  reasonable competitors. 

 Design Considerations for RCBDs

Let's  consider  whether  a  block  design  is  worthwhile.  In some experiments, there are constraints that require us to

use  a  block  design.  In  other  situations,  we  could  use  a completely  randomized  design  and  ignore  the  blocks. 

Provided  we  use  proper  randomization,  either  choice  is

valid. The question is which design is more efficient. 

We  have  seen  that  the  power  of  tests  and  the  width  of confidence intervals depends on the error variance  ^

 σ 2. The

smaller  this  is,  the  better.  We  should  compare  the  ^

 σ 2  for

designs  with  the  same  sample  size.  We  define   relative efficiency as ^ σ 2

/^

 CRD σ 2 RCBD. The quantities can be computed

by fitting models with and without the blocking effect. For

the example above:

lmcrd = lm(yield ~ variety , oatvar)

lmrbd = lm(yield ~ block+variety , oatvar)

(summary (lmcrd)$sig/summary (lmrbd)$sig) ^2

[1] 1.6556

The relative efficiency is 1.66. So a CRD would require 66%

more  observations  to  obtain  the  same  level  of  precision  as an RCBD. 

The  efficiency  is  not  guaranteed  to  be  greater  than  one. 

Only use blocking where there is some heterogeneity in the

experimental  units.  The  decision  to  block  is  a  matter  of

judgment  prior  to  the  experiment.  There  is  no  guarantee that it will increase precision. 

This information can be used for planning the sample size

of future experiments. The number of blocks is equal to the

number  of  replicates  per  level  of  the  treatment  factor.  We can  use  the  methods  for  selecting  sample  sizes  for  one factor experiments described in Section 16.8. The proposed sample  size  can  then  be  scaled  down  using  the  relative efficiency.  This  is  an  approximate  method  and  there  exist more 

sophisticated 

methods 

that 

require 

more

assumptions. 

Having  decided  on  a  sample  size,  we  can  generate  a

random design. For an experiment like the oatvar data:

sapply (levels (oatvar $ block) , function (x) sample (8))

I II III IV V

[1,]   1  2    4 8 5

[2,]   8  5    8 1 1

[3,]   6  4    5 6 8

[4,]   7  7    2 2 4

[5,]   4  6    6 3 2

[6,]   3  1    7 5 6

[7,]   5  3    1 4 7

[8,]   2  8    3 7 3

Each  column,  representing  a  block,  has  a  random

permutation of the treatment levels. 

18.2 Latin Squares

Latin  squares  can  be  useful  when  there  are  two  blocking variables.  For  example,  in  a  field  used  for  agricultural experiments, the level of moisture may vary across the field

in one direction and the fertility in another. In an industrial experiment,  suppose  we  wish  to  compare  four  production

methods  (the  treatments)  —  A,  B,  C  and  D.  We  have

available four machines 1, 2, 3 and 4, and four operators, I, 

II, III and IV. An example of a Latin square design is shown

in Table 18.1. 

1

2

3

4

I

A

B

C

D

II

B

D

A

C

III

C

A

D

B

IV

D

C

B

A

Table  18.1:   A  4 × 4  Latin  square  showing  the treatments  (A  to  D)  used  for  different  combinations

of two factors. 

Each  treatment  is  assigned  to  each  block  once  and  only once.  We  should  choose  randomly  from  all  the  possible

Latin square layouts. The R package magic of Hankin (2005)

can be used to generate such squares. 

Let   τ  be  the  treatment  factor  and  β  and   γ  be  the  two blocking factors; then the model is:

 yijk =  μ +  τi +  βj +  γk +  εijk i,  j,  k = 1, … ,  t

(18.2)

All  combinations  of   i,j  and   k  do  not  appear.  To  test  for  a treatment  effect,  fit  a  model  without  the  treatment  effect and compare using the F-test. The Tukey pairwise CIs are:

 q

^ τ

 t,( t−1)( t−2)

 l − ^

 τm ±

^ σ√2/ t

√2

(18.3)

The  Latin  square  can  be  even  more  efficient  than  the

RCBD provided that the blocking effects are sizable. There

are  some  variations  on  the  Latin  square.  The  Latin  square can  be  replicated  if  more  runs  are  available.  We  need  to have  both  block  sizes  to  be  equal  to  the  number  of

treatments. This may be difficult to achieve. Latin rectangle

designs  are  possible  by  adjoining  Latin  squares.  When

there  are  three  blocking  variables,  a  Graeco–Latin  square may be used but these rarely arise in practice. 

The  Latin  square  can  also  be  used  for  comparing  three treatment  factors.  Only   t 2  runs  are  required  compared  to the  t 3 required if all combinations were run. (The downside is  that  you  cannot  estimate  the  interactions  if  they  exist.) This  is  an  example  of  a   fractional  factorial  as  discussed  in

Section 17.7. 

In  an  experiment  reported  by  Davies  (1954),   four materials,  A,  B,  C  and  D,  were  fed  into  a  wear-testing machine. The response is the loss of weight in 0.1 mm over

the testing period. The machine could process four samples

at  a  time  and  past  experience  indicated  that  there  were some differences due to the positions of these four samples. 

Also  some  differences  were  suspected  from  run  to  run. 

Four  runs  were  made.  We  can  display  the  layout  of  the data:

data (abrasion, package="faraway")

xtabs (wear ~ run + position , abrasion)

position

run     1   2    3     4

1   235 236 218    268

2   251 241 227    229

3   234 273 274    226

4   195 270 230    225

We  can  view  the  Latin  square  structure  corresponding  to this table:

matrix (abrasion$material ,4 ,4 , byrow = TRUE)

[,1]   [,2]   [,3]   [,4]

[1,]   "C"    "D"    "B"    "A" 

[2,]   "A"    "B"    "D"    "C" 

[3,]   "D"    "C"    "A"    "B" 

[4,]   "B"    "A"    "C"    "D" 

Plot the data:

ggplot (abrasion , aes (x = run , y=wear , shape=position , 

group=material)) +

geom_point () + geom_line (aes (linetype=material))

ggplot (abrasion , aes (x = position , y = wear , shape=run , 

group=material)) +

geom_point () + geom_line (aes (linetype=material))

Examine  the  plots  in  Figure  18.4.  There  appear  to  be differences  in  all  variables.  No  outliers,  skewness  or

[image: Image 103]

unequal variance are apparent. There is no obvious sign of

interaction. 

Long Description for Figure 18.4

Figure 18.4  Amount of wear depending on material, run and position. 

Now  fit  the  Latin  square  model  and  test  each  variable relative to the full model:

lmod = lm (wear ~ material+run+position, abrasion)

drop1 (lmod , test="F")

Single term deletions



Model:

wear ~ material + run + position

Df Sum of Sq RSS    AIC F value Pr(>F)

<none>                 368 70.1

material 3       4622 4989 105.9   25.15 0.00085

run      3        987 1354 85.0     5.37 0.03901

position 3       1468 1836 89.9     7.99 0.01617

We  see  that  all  variables  are  statistically  significant. 

There  are  clear  differences  between  the  materials.  We

checked  the  diagnostics  on  the  model,  which  showed

nothing remarkable. We examine the coefficients:

summary (lmod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept)   254.75       6.19   41.17 1.4e-08

materialB     -45.75       5.53   -8.27 0.00017

materialC     -24.00       5.53   -4.34 0.00489

materialD     -35.25       5.53   -6.37 0.00070

run2           -2.25       5.53   -0.41 0.69842

run3           12.50       5.53    2.26 0.06466

run4           -9.25       5.53   -1.67 0.14566

position2      26.25       5.53    4.74 0.00318

position3       8.50       5.53    1.54 0.17545

position4       8.25       5.53    1.49 0.18661



Residual standard error: 7.83 on 6 degrees of freedom

Multiple R-squared: 0.951,            Adjusted R-squared: 0.877

F-statistic: 12.8 on 9 and 6 DF,     p-value: 0.00283

We  see  that  material  B  looks  best  (in  terms  of  least  wear) followed by material D. 

 Pairwise Comparisons

We  start  with  a  look  at  the  estimated  marginal  means  for the material:

rem = emmeans (lmod, pairwise ~ material)

rem$emmeans

 material emmean   SE df lower.CL upper.CL

A           266 3.91 6       256      275

B           220 3.91 6       210      230

C           242 3.91 6       232      251

D           230 3.91 6       221      240



Results are averaged over the levels of: run, position

Confidence level used: 0.95

B  has  the  lowest  estimated  mean  wear.  This  has  been

averaged  over  run  and  position  which  is  sensible  since these  are  block  variables.  Are  these  difference  significant? 

We  can  check  the  pairwise  comparisons  using  the  usual

Tukey adjustment:

rem $ contrasts

contrast estimate   SE df t.ratio p.value

A - B        45.8 5.53 6    8.267 0.0007

A - C        24.0 5.53 6    4.337 0.0190

A - D        35.2 5.53 6    6.370 0.0029

B - C       -21.8 5.53 6   -3.930 0.0295

B - D       -10.5 5.53 6   -1.897 0.3206

C - D        11.2 5.53 6    2.033 0.2743



Results are averaged over the levels of: run, position

P value adjustment: tukey method for comparing a family of 4 

estimates

The  B-D  is  one  of  the  two  non-significant  differences.  If maximizing  resistance  to  wear  is  our  aim,  we  would  pick material B but if material D offered a better price, we might

have  some  cause  to  consider  switching  to  D.  The  decision would need to be made with cost–quality trade-offs in mind. 

The  different  materials  have  been  evaluated  using  a

wear-testing  machine  that  will  impose  much  greater

friction  on  the  material  than  would  be  experienced  in normal  wear.  The  numerical  predictions  and  contrasts  are only  appropriate  under  the  extreme  conditions  of  the

machine. In normal use, we might assume that the relative

wear is maintained. If we use a log scale for the response, 

pairwise  differences  correspond  to  ratios  on  the  original scale  (because  log  a − log  b = log  a/ b)  .  We  can  implement this:

logmod = lm (log (wear) ~ material + run + position , abrasion) emmeans (logmod , pairwise ~ material , 

type = "response") $ contrasts

contrast   ratio       SE df null t.ratio p.value

A / B      1.211   0.0295 6     1   7.853 0.0009

A / C      1.102   0.0268 6     1   3.973 0.0281

A / D      1.153   0.0281 6     1   5.827 0.0045

B / C      0.910   0.0222 6     1  -3.880 0.0312

B / D      0.952   0.0232 6     1  -2.026 0.2766

C / D      1.046   0.0255 6     1   1.854 0.3367



Results are averaged over the levels of: run, position

P value adjustment: tukey method for comparing a family of 4 

estimates

Tests are performed on the log scale

The software notices the use of the log scale and, provided

we specify type=“response”, we get ratio comparisons. In this

case, we can estimate that the use of material A results in

21%  more  wear  than  material  B.  We  might  reasonably

make this claim under normal usage conditions. 

 Design Considerations

Now  we  compute  how  efficient  the  Latin  square  is compared  to  other  designs.  We  compare  to  the  completely randomized design:

lmodr = lm (wear ~ material , abrasion)

(summary (lmodr) $ sig / summary (lmod) $ sig) ^2

[1] 3.8401

We  see  that  the  Latin  square  is  3.84  times  more  efficient than  the  CRD.  This  is  a  substantial  gain  in  efficiency.  The Latin  square  may  also  be  compared  to  designs  where  we block  only  one  of  the  variables.  The  efficiency  relative  to these designs is less impressive, but still worthwhile. 

The  sample  size  question  is  not  usually  relevant  here

because the experimental conditions determine the design. 

If  more  resources  are  available,  one  might  run  more  than one  Latin  square  with  a  different  randomized  layout  in each. This would introduce another blocking factor into the

analysis. 

Generating  a  random  Latin  square  is  an  interesting

problem  in  combinatorics  discussed  in  Jacobson  and

Matthews  (1996).  We  can  generate  random  Latin  squares

by first creating any Latin square. For example:

s = 4

dm = matrix (NA ,s , s)

for(i in 1:s) {

dm[i ,] = ((0:(s-1)) + (i -1)) %% s

}

dm

[,1] [,2] [,3] [,4]

[1,]      0    1    2    3

[2,]      1    2    3    0

[3,]      2    3    0    1

[4,]      3    0    1    2

Now  we  randomize  the  row  order,  randomize  the  column

order and then randomize the treatment assignment:

dm = dm[sample (1: s),]

dm = dm[, sample (1: s)]

matrix (sample (LETTERS [1: s]) [dm +1] , s , s)

[,1]   [,2]   [,3]   [,4]

[1,]   "D"    "B"    "C"    "A" 

[2,]   "A"    "D"    "B"    "C" 

[3,]   "C"    "A"    "D"    "B" 

[4,]   "B"    "C"    "A"    "D" 

This method does not generate a sample from the set of all

Latin  squares  of  the  chosen  size  although  it  might  be considered  adequate  for  our  purposes.  This  can  be  done

with  the  rlatin()  function  of  the  magic  R  package  of  Hankin

(2005). 

18.3 Balanced Incomplete Block Design

In  a  complete  block  design,  the  block  size  is  equal  to  the number of treatments. When the block size is less than the

number of treatments, an incomplete block design must be

used. For example, in the oat data, suppose six oat varieties

were to be compared, but each field had space for only four

plots. 

In an incomplete block design, the treatments and blocks

are   not  orthogonal.  Some  treatment  contrasts  will  not  be identifiable from certain block contrasts. This is an example

of   confounding.  This  means  that  those  treatment  contrasts

effectively  cannot  be  examined.  In  a  balanced  incomplete block  (BIB)  design,  all  the  pairwise  differences  are

identifiable  and  have  the  same  standard  error.  Pairwise differences  are  more  likely  to  be  interesting  than  other contrasts, so the design is constructed to facilitate this. 

Suppose,  we  have  four  treatments  ( t = 4)  designated  A, B, C, D and the block size,  k = 3 and there are  b = 4 blocks. 

Therefore,  each  treatment  appears   r = 3  times  in  the design. One possible BIB design is:

Block 1

A

B

C

Block 2

A

B

D

Block 3

A

C

D

Block 4

B

C

D

Table 18.2:  BIB design for four treatments with four

blocks of size three. 

Each pair of treatments appears in the same block  λ = 2

times — this feature means simpler pairwise comparison is

possible. For a BIB design, we require:

 b ≥  t >  k

(18.4)

 rt =  bk =  n

(18.5)

 λ( t − 1) =  r( k − 1)

(18.6)

This last relation holds because the number of pairs in a

block  is   k( k − 1)/2  so  the  total  number  of  pairs  must  be bk( k − 1)/2.  On  the  other  hand,  the  number  of  treatment pairs is  t( t − 1)/2. The ratio of these two quantities must be λ.  The  requirement  that  these  design  parameters  be integer  means  that  a  BIB  design  may  not  exist  for  some desired  combinations.  We  will  come  back  to  the  design

choices at the end of the section. 

The model we fit is the same as for the RCBD:

 yij =  μ +  τi +  βj +  εij

(18.7)

In  our  example,  a  nutritionist  studied  the  effects  of  six diets, “a” through “f,” on weight gains of domestic rabbits. 

From  past  experience  with  sizes  of  litters,  it  was  felt  that only  three  uniform  rabbits  could  be  selected  from  each available  litter.  There  were  ten  litters  available  forming

blocks  of  size  three.  The  data  come  from  Lentner  and

Bishop (1986). Examine the data:

data (rabbit , package= "faraway")

xtabs (gain ~ treat+block , rabbit)

block

treat b1      b10    b2     b3     b4     b5     b6     b7     

b8     b9

a 0.0    37.3   40.1    0.0   44.9    0.0    0.0   45.2   

44.0    0.0

b 32.6    0.0   38.1    0.0    0.0    0.0   37.3   40.6    

0.0   30.6

c 35.2    0.0   40.9   34.6   43.9   40.9    0.0    0.0    

0.0    0.0

d 0.0    42.3    0.0   37.5    0.0   37.3    0.0   37.9    

0.0   27.5

e 0.0     0.0    0.0    0.0   40.8   32.0   40.5    0.0   

38.5   20.6

f 42.2   41.7    0.0   34.3    0.0    0.0   42.8    0.0   

51.9    0.0

The  zero  values  correspond  to  no  observation.  The  BIB

structure  is  apparent  —  each  pair  of  diets  appears  in  the same block exactly twice so  λ = 2. 

Now  plot  the  data,  as  seen  in  Figure  18.5.  In  the  first plot,  we  can  distinguish  the  six  levels  of  treatment  with  a different plotting character. In the second plot, it is difficult to  distinguish  the  ten  levels  of  block  with  different  shapes so we have used a simple dot. Some jittering is necessary to

distinguish  the  points.  There  is  nothing  remarkable  about the  content  of  the  plots  as  we  see  no  evidence  of  outliers, skewness or non-constant variance. 

ggplot (rabbit , aes (y = gain , x = block , shape = treat)) + 

geom _ point () +

theme (legend.position = "top" , 
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legend.direction = "horizontal")

ggplot (rabbit , aes (y = gain , x = treat)) +

geom_point (position = position_jitter (width = .1))

Figure 18.5  Strip plots of rabbit diet data. 

We fit the model and test the significance of the effects:

lmod = lm (gain ~ block+treat , rabbit)

drop1 (lmod , test="F")

Single term deletions



Model:

gain ~ block + treat

Df Sum of Sq RSS   AIC F value Pr(>F)

<none>              151 78.4

block   9       596 747 108.4    6.59 0.00076

treat   5       159 309 90.0     3.16 0.03817

It  is  best  to  use  the  drop1  function  in  preference  to  anova. 

This is because the order of the terms in the model makes a

difference because the design is not orthogonal (because of

the incompleteness). To test either term, we need the other term to be present in the model. 

Now check the diagnostics:

plot (lmod , which =1:2)

The plots are not shown, as they show nothing of interest. 

 Pairwise Comparisons

We  compare  the  treatments  using  the  estimated  marginal

means:

rem = emmeans(lmod , pairwise ~ treat)

rem$emmeans

treat emmean   SE df lower.CL upper.CL

a       39.0 1.56 15     35.7     42.3

b       37.3 1.56 15     33.9     40.6

c       39.4 1.56 15     36.1     42.7

d       39.1 1.56 15     35.7     42.4

e       33.8 1.56 15     30.5     37.1

f       42.3 1.56 15     39.0     45.6



Results are averaged over the levels of: block

Confidence level used: 0.95

We  see  that  the  greatest  gain  is  seen  with  treatment  f. 

These  are  computed  using  predictions  averaged  over  the

ten blocks. This is substantially different from the marginal

means for the data:

with (rabbit , tapply (gain , treat , mean))

a     b     c     d     e     f

42.30 35.84 39.10 36.50 34.48 42.58

Each treatment appears only 5 times overall and cannot be balanced  over  the  10  blocks.  The  estimated  marginal

means  are  more  reliable  predictions  for  the  treatment

levels  because  they  are  balanced  over  the  blocks.  The

difference  between  the  two  sets  of  means  is  because  we have an incomplete design. 

We can also compute the pairwise differences

rem$contrasts

contrast estimate   SE df  t.ratio p.value

a - b      1.7417 2.24 15    0.777 0.9674

a - c     -0.4000 2.24 15   -0.178 1.0000

a - d     -0.0667 2.24 15   -0.030 1.0000

a - e      5.2250 2.24 15    2.331 0.2414

a - f     -3.3000 2.24 15   -1.472 0.6857

b - c     -2.1417 2.24 15   -0.955 0.9250

b - d     -1.8083 2.24 15   -0.807 0.9618

b - e      3.4833 2.24 15    1.554 0.6379

b - f     -5.0417 2.24 15   -2.249 0.2729

c - d      0.3333 2.24 15    0.149 1.0000

c - e      5.6250 2.24 15    2.509 0.1824

c - f     -2.9000 2.24 15   -1.294 0.7840

d - e      5.2917 2.24 15    2.360 0.2307

d - f     -3.2333 2.24 15   -1.442 0.7028

e - f     -8.5250 2.24 15   -3.803 0.0176



Results are averaged over the levels of: block

P value adjustment: tukey method for comparing a family of 6 

estimates

Only  the  e-f  difference  is  significant.  This  suggests  no strong difference between the treatments. 

 Design Considerations

Now let's see how much better this blocked design is than the CRD. We compute the relative efficiency:

lmodt = lm (gain ~ treat , rabbit)

(summary (lmodt) $ sig / summary (lmod) $ sig) ^2

[1] 3.0945

Blocking was well worthwhile here. 

Constructing  BIB  designs  can  be  problematic.  Typically, 

we will start with the number of treatments,  t and the block size   k  where   k <  t.  We  want  to  pick  the  number  of  blocks such that a BIB design is possible. For example, if we have

 t = 4 and  k = 2, we must have integer solutions to 4 r = 2 b and   λ =  r/3. We can readily see that  r = 3 is the smallest solution, resulting in  b = 6 and  λ = 1. 

Unfortunately,  even  if  we  do  satisfy  the  requirements  of the  integer  equations,  a  design  is  not  guaranteed  to  exist. 

For  example,  when   t = 15,  k = 5,  b = 21,  r = 3  and   λ = 2, the  equations  are  satisfied  but  no  design  can  be

constructed  (tedious  to  prove  since  we  require  an

exhaustive search). 

When  we  have  determined  that  a  BIB  design  might  be

possible  for  a  given  combination  of  design  parameters,  we must  still  randomly  select  from  the  set  of  those  available for  that  combination.  In  the  rabbit  example,  the  number  of ways  of  picking  3  treatments  from  the  6  possible  for  each block is ( 6 )

3 = 20. We must pick 10 of these that also satisfy

the  design  balance  requirements.  This  is  tricky  but  the

optBlock() function from the AlgDesign R package of Wheeler

(2022) can do this. 

If no BIB design is possible for your situation, you might use  a  partially  balanced  incomplete  block  design.  An

interesting  non-statistical  use  of  BIBs  is  for  competitions where  not  all  contestants  (treatments)  can  fit  in  the  same race  (block  size).  You  will  need  to  run  several  races (blocks);  that  allows  each  contestant  to  compete  against another an equal number of times ( λ). 

Exercises

1. The  alfalfa  data  arise  from  a  Latin  square  design  where the  treatment  factor  is  inoculum  and  the  blocking  factors are shade and irrigation. 

(a)

Display  the  data  as  a  table  that  makes  the  Latin

square structure apparent. 

(b)

Make  three  plots  of  the  data  using  the  same

response  but  varying  the  predictor.  Comment  on

whether the assumptions of linear modeling appear

to be justified. 

(c)

Fit  the  appropriate  linear  model  and  display  the

ANOVA table. Which factors are significant? Does it

matter  which  order  the  factors  appear  in  the

model? 

(d)

Compute  the  Tukey  pairwise  comparison  intervals

for the inoculum. Is E clearly the worst choice? 

(e)

Compute  the  relative  efficiency  compared  to  the

CRD. Compute the relative efficiency compared to a

design that blocked only on shade. Should we block on irrigation in future experiments? 

2. The eggprod comes from a randomized block experiment to

determine factors affecting egg production. 

(a)

Plot  the  data  with  eggs  as  the  response.  Is  there

evidence of an interaction effect? 

(b)

Fit the RBD model and use a residual-fitted plot to

check the model assumptions. 

(c)

Is  there  a  significant  difference  between  the

treatments?  Is  there  a  significant  difference

between the blocks? 

(d)

Use  the  Tukey  method  to  test  for  an  interaction. 

(Hint:  Be  careful  about  the  order  of  the  levels  for

the treatment.)

(e)

Can any of the treatments be distinguished? 

(f)

Compute  the  relative  efficiency  of  this  design

compared  to  a  CRD.  Would  it  be  worth  using  the

same blocking design in future experiments? 

3. The  morley  data  can  be  viewed  as  a  randomized  block experiment  with  Run  as  the  treatment  factor  and  Expt  as the blocking factor. 

(a)

Plot  the  data  with  Speed  as  the  response  with  a

view  to  check  whether  there  is  any  trend  within

runs over the different experiments. 

(b)

Fit  a  linear  model  with  speed  as  the  response  and

run  and  experiment  both  in  the  numeric  forms. 

Examine  the  ANOVA  output  and  the  regression

summary  output.  Are  the  p-values  the  same? 

Explain. 

(c)

Convert  the  experiment  variable  to  a  factor.  Why

might  this  be  reasonable?  Perform  the  appropriate

test  to  determine  whether  there  is  a  significant

difference between experiments. 

(d)

Now  change  the  run  to  a  factor  and  test  for  the

signficance of both factors. 

(e)

As it happens, Morley collected all 100 observations

in  the  order  seen.  The  division  into  experiments  is

due  to  a  later  analyst.  Plot  the  data  in  run  order

and comment on whether there is a trend. 

(f)

Fit a model to check for a linear trend in run order. 

Contrast the outcome to the previous analyses. 

4. The OrchardSprays data arise from a Latin square design. 

(a)

Display  the  data  in  a  table  that  reveals  the  Latin

square  design.  Suppose  we  permuted  the  levels  of

the  one  of  the  factors.  Would  this  remain  a  Latin

square design? 

(b)

The treatment levels are in a particular order. Plot

the  data  to  reveal  whether  there  is  in  any  trend

with  this  order  that  might  be  related  to  the  other

two factors. 

(c)

Fit  a  model  with  decrease  as  the  response  and

treatment,  row  and  column  position  as  predictors. 

Keep  the  row  and  column  variables  numeric.  What

predictors are significant? 

(d)

Now  create  factor  versions  of  the  row  and  column

variables.  Refit  the  model  and  determine  which

factors are significant. Comment on any differences

with the previous result. 

(e)

Use  a  test  to  compare  the  models  of  the  previous

two questions. What should we conclude? 

(f)

Now  construct  a  model  where  the  treatment  is

considered ordinal. Compare it to a model where it

is  considered  nominal.  Hint:  You  may  find  the

‘unclass()‘ function useful. 

(g)

Given  the  objective  of  trying  to  minimize  the

decrease,  what  recommendation  should  be  made

for the level of sulphur? 

5. The  resceram  data  arise  from  an  experiment  to  test  the effects  of  resistor  shape  on  current  noise.  The  resistors are mounted on plates and only three resistors will fit on

a  plate  although  there  are  four  different  shapes  to  be tested. 

(a)

Display  the  data  in  a  table  that  reveals  the

structure of the design. How many times does each

pair of shapes occur within the same plate? 

(b)

Plot the data and comment. 

(c)

Fit  a  model  with  both  predictors.  Compute  the

ANOVA  table  using  both  the  sequential  and  drop

one method. Which one should you use and what is

the conclusion? 

(d)

All  things  being  equal,  which  factor  levels  would

you recommend to minimize the noise? 

(e)

Compute 

the 

simultaneous 

95% 

confidence

intervals  for  the  pairwise  comparisons  of  the

shapes.  Can  we  conclude  that  one  shape  is  the

clearly the best for minimizing noise? 

6. The  penicillin  data  derive  from  the  production  of

penicillin  which  uses  a  raw  material,  corn  steep  liquor, that  is  quite  variable  and  can  only  be  made  in  blends sufficient for four runs. There are four processes, A, B, C

and D, for the production. 

(a)

Make suitable plots of the data. 

(b)

Fit  an  RBD  model  and  check  for  differences

between the treatments and between the blends. 

(c)

Make  a  residual-fitted  plot  and  a  QQ-plot.  What  do

you conclude? 

(d)

Suppose  another  analyst  decides  to  ignore  the

blend 

information. 

Compare 

estimates 

and

standard  errors  of  the  treatment  effects  in  the  two

models. Which is the best approach? 

(e)

Compute  the  relative  efficiency  of  this  design  over

the CRD. What sample size would a CRD need to be

in order to achieve the same precision? 

7. Use  the  penicillin  data  from  the  previous  question.  Test for  the  signficance  of  the  treatment  effect  using  a

permutation test. Some hints:

You  will  need  to  restrict  the  randomization  of  the

permutation to within the blocks. 

Constructing  such  a  random  permutation  is  possible

with repeated use of sample(4). 

Examine  the  output  of  the  anova  function  using  names  to learn how to extract the relevant F-statistic. 

8. Is the standard Sudoku solution a Latin square? Does the

Sudoku  solution  contain  any  additional  features  that

might be useful for design purposes? Propose a situation

where it could be helpful. 

9. An 

experiment 

compares 

four 

treatments. 

The

experiment takes time and only four runs are possible on

a  given  day.  The  experimenter  plans  to  use  each  of  the four  treatments  once  on  each  day  for  four  successive

days.  The  experimental  equipment  is  cleaned  after  each

use but residues from the previous treatment on that day

may  affect  the  next  run.  A  Latin  square  design  with  the following form is proposed:

1

2

3

4

I

A

B

C

D

1

2

3

4

II

B

C

D

A

III

C

D

A

B

IV

D

A

B

C

What  is  wrong  with  this  design?  Propose  another

superior Latin square design of the same size. 

0. An experimenter plans to compare 10 treatments but the

block  size  is  insufficient  to  accommodate  all  10

treatments.  For  each  of  the  following  block  sizes, 

determine the number of blocks  b, number of replicates  r and number of times each pair appears in the same block, 

 λ that correspond to a possible BIB design. 

(a)

Block size  k = 3

(b)

Block size  k = 4

(c)

Block size  k = 5

Appendix

Installation of R

R  may  be  obtained  free  of  charge  from  the  R  project  at

www.r-project.org. 

How to Learn R

The R website provides extensive resources for learning R. 

Several free introductory guides can be found along with a

list  of  the  many  books  about  R  which  are  now  available.  I have  assumed  a  basic  knowledge  of  R  for  readers  of  this text  but  it  is  not  necessary  to  learn  it  in  detail  before starting on this book. Many readers are able to pick up the

language  from  the  examples  in  the  text  with  reference  to the help pages. For example, for more information on the lm

function, type within R:

help (lm)

More advanced users may find the R mailing lists and online

forums  such  as  Stack-Exchange  helpful  for  more  difficult questions. 

Packages

This book uses some functions and data that are not part

of  base  R.  These  are  collected  in   packages  which  you  may

need  to  install.  You  can  find  out  which  packages  are already installed in your  library by:

library ()

Some  packages  such  as  MASS,  mgcv,  nlme  and  splines  come with  the  base  installation  so  you  will  not  need  to  install them.  If  you  have  not  already  done  so,  you  will  need  to select  a  location  from  which  to  download  additional

packages by setting your CRAN (Comprehensive R Archive

Network) mirror by:

chooseCRANmirror ()

You  can  then  install  packages.  You  will  surely  need  to install  the  faraway  package  which  contains  data  and

functions specific to this text:

install.packages ("faraway")

You  may  also  wish  install  the  other  packages  used  in  this text  which  are:  Amelia,  ellipse,  emmeans,  ggplot2,  glmnet, HistData,  lars,  leaps,  lmtest,  Matching,  pls,  quantreg,  simex.  All these  packages  are  used  infrequently  (except  for  ggplot2), so  you  might  delay  installation  until  you  need  them.  Note that  you  only  need  to  install  packages  once  on  a  given computer unless you upgrade the version of R. The standard

GUIs  for  Windows  and  Mac  provide  menu-based  methods

for  package  installation  and  maintenance  which  you  may

find more convenient. 

Any  time  you  want  to  use  these  particular  data  or

functions, you will need to load the package. For example, 

library (faraway)

makes the data from this text available. If you get an error

message about some data or functions not being found, it's

quite possible that you have forgotten to load the necessary

package. 

Customization

There  are  several  ways  to  customize  the  look  of  R.  I  set the  following  options  to  achieve  the  output  seen  in  this book:

options (width =70 , digits =5 , scipen =2)

The  width=70  controls  the  width  of  the  printed  output.  You may wish to increase this, depending on your screen or the

width  of  your  page.  The  digits=5  reduces  the  number  of digits  shown  when  printing  numbers  from  the  default  of seven. This does not reduce the precision with which these

numbers are internally stored. One might take this further

—  anything  more  than  two  or  three  significant  digits  in  a displayed  table  is  usually  unnecessary  and  more

importantly,  distracting.  scipen=2  penalizes  the  use  of

scientific  notation  in  reporting  numbers.  This  notation  has its  uses  but  can  make  it  harder  to  appreciate  the  size  of  a number. 

I  have  also  edited  the  output  in  the  text  to  remove

extraneous output or to improve the formatting. 

Updates and Errata

The  code  and  output  shown  in  this  book  were  generated under R version 4.3. R is regularly updated and improved so

more  recent  versions  may  show  some  differences  in  the output. Sometimes these changes can break the code in the

text. This is more likely to occur in the additional packages. 

Please 

refer 

to 

the 

book 

website 

at

/https://julianfaraway.github.io/faraway/LMR/  for  information about such changes or errors found in the text. 

Interfaces

The R website provides a GUI for both Mac and Windows

installations.  Much  more  functionality  can  be  found  in

Rstudio  which  is  a  comprehensive  IDE  for  R.  Visual  Studio Code also has extensive R functionality and may be a better

choice  for  those  already  familiar  with  this  software.  ESS

runs within the Emacs environment and might be preferred

by  devotees  of  Emacs.  Customizations  to  write  R  for  many popular text editing programs are available. 

Reproducible Research

It  is  important  that  you  be  able  to  reproduce  your

analysis  in  the  future  if  needed.  Sometimes,  other  people will  need  to  verify  your  findings  or,  more  likely,  you yourself  will  need  to  modify  or  update  your  analysis.  At  a minimum  you  should  maintain  a  commented  set  of  R

commands that will reproduce your analysis. 

Sometimes  you  will  want  to  produce  a  document  that

includes  the  R  commands,  text  describing  the  analysis  and the output including graphs. This might look something like

the  text  of  this  book.  At  the  time  of  writing,  Rmarkdown  is perhaps  the  most  popular  software  for  this  purpose.  This can  be  conveniently  used  within  Rstudio  but  can  be  used

independently.  Quarto  is  an  evolution  of  Rmarkdown  that encompasses  languages  beyond  R  and  is  adding  new

functionality.  Jupyter  notebooks  also  allow  for  markdown-based text interleaved with code and output. This may be a

good  choice  if  you  are  already  familiar  with  these

notebooks.  The  older  Sweave  tool  allows  you  to  embed  R

within a LaTeXdocument but this may now be dominated by

Rmarkdown which has this functionality and more. Underlying

these  markdown  based  tools  is  the  knitr  package  which

allows for finer level control. 

Do  not  use  Rmarkdown  or  similar  for  all  your  R  work. 

Sometimes  a  simple  R  script  is  more  appropriate,  say,  for writing functions or doing simulations. 
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