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coefs stderr tvalues pvalues

Intercept 6.854 0.136 50.41 0.0000
Insul [T.After] -2.130 0.180 -11.83 0.0000
Temp -0.393 0.022 -17.49 0.0000

Temp:Insul [T.After] 0.115 0.032 3.59 0.0007

n=56 p=4 Residual SD=0.323 R-squared=0.93
We would predict that the gas consumption would fall by 0.393 for each 1°C in-
crease in temperature before insulation. After insulation, the fall in consumption per
degree is only 0.393 —0.115 = 0.278. The interpretation for the other two param-
eter estimates represent predicted consumption when the temperature is zero. Gas
consumption before at this temperature is 6.854 and 6.854-2.130 after. This is on
the lower edge of the observed range of temperatures and would not represent a typ-
ical difference. For other datasets, a continuous predictor value of zero might be far
outside the range and so these parameters would have little practical meaning.

The solution is to center the temperature predictor by its mean value and recom-

pute the linear model:
whiteside.Temp.mean()
4.875
whiteside[’cTemp’] = whiteside.Temp - whiteside.Temp.mean()
lmod = smf.ols(’'Gas ~ cTemp*Insul’, whiteside).fit()
1lmod. sumary ()
coefs stderr tvalues pvalues

Intercept 4.937 0.064 76.85 0.0000
Insul [T.After] -1.568 0.088 -17.87 0.0000
cTemp -0.393 0.022 -17.49 0.0000

cTemp:Insul [T.After] 0.115 0.032 3.59 0.0007

n=56 p=4 Residual SD=0.323 R-squared=0.93

Now we can say that the average consumption before insulation at the average tem-
perature was 4.94 and 4.94 — 1.57 = 3.37 afterwards. The other two coefficients are
unchanged and their interpretation remains the same. Thus we can see that centering
allows a more typical interpretation of the parameter estimates in the presence of
interaction.

We would not expect the installation to insulation to have constant absolute effect
on the use of fuel. As we might expect, the gains are higher at lower temperatures.
A significant interaction effect is what we expect. Instead, we might expect the
insulation to have a relative effect on the use of fuel. We can achieve this with a log

transformation on the response:
lmod = smf.ols('np.log(Gas) ~ Temp*Insul’, whiteside).fit(Q
1lmod. sumary ()

coefs stderr tvalues pvalues

Intercept 1.968 0.054 36.46 0.0000
Insul [T.After] -0.340 0.072 -4.75 0.0000
Temp -0.082 0.009 -9.20 0.0000

Temp:Insul [T.After] -0.011 0.013 -0.85 0.3983

n=56 p=4 Residual SD=0.128 R-squared=0.84

Now the interaction term is not significant and can be removed:
lmod = smf.ols(’np.log(Gas) ~ Temp+Insul’', whiteside).fit(Q
1lmod. sumary ()
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(b) The treatment levels are in a particular order. Plot the data to reveal whether
there is in any trend with this order that might be related to the other two
factors.

(c¢) Fit a model with decrease as the response and treatment, row and column posi-
tion as predictors. Keep the row and column variables numeric. What predic-
tors are significant?

(d) Create factor versions of the row and column variables. Refit the model and
determine which factors are significant. Comment on any differences with the
previous result.

(e) Use a test to compare the models of the previous two questions. What should
we conclude?

(f) Construct a model where the treatment is considered ordinal. Compare it to
a model where it is considered nominal. Hint: You may find the ord function
useful.

(g) Given the objective of trying to minimize the decrease, what recommendation
should be made for the level of sulphur?

5. The resceram data arise from an experiment to test the effects of resistor shape
on current noise. The resistors are mounted on plates and only three resistors will
fit on a plate although there are four different shapes to be tested.

(a) Display the data in a table that reveals the structure of the design. How many
times does each pair of shapes occur within the same plate?

(b) Plot the data and comment.

(c) Fit a model with both predictors. Compute the ANOVA table using both se-
quential (Type 1) and drop one (Type 3) sums of squares. Which one should
you use and what is the conclusion?

(d) All things being equal, which factor levels would you recommend to minimize
the noise?

(e) Compute the simultaneous 95% pairwise comparisons for the shapes. Can we
conclude that one shape is clearly the best for minimising noise?

6. The penicillin data derive from the production of penicillin which uses a raw
material, corn steep liquor, that is quite variable and can only be made in blends
sufficient for four runs. There are four processes, A, B, C and D, for the produc-
tion.

(a) Make two plots of the data where the treatment and blend are plotted differ-
ently. What can you conclude?

(b) Fit an RBD model and test for the significance of the factors. Remember to
rename the response.

(c) Make a residual-fitted plot and a QQ-plot. What do you conclude?

(d) Suppose another analyst decides to ignore the blend information. Compare
estimates and standard errors of the treatment effects in the two models. Which
is the best approach?
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(b) Make three plots of the data using the same response but varying the predictor.
Comment on whether the assumptions of linear modeling appear to be justified.

(c) Fit the appropriate linear model and display the ANOVA table. Which factors
are significant? Does it matter which type of ANOVA table is produced?

(d) Compute the Tukey pairwise comparison intervals for the inoculum. Is E
clearly the worst choice?

(e) Compute the relative efficiency compared to the CRD. Compute the relative
efficiency compared to a design that blocked only on shade. Should we block
on irrigation in future experiments?

2. The eggprod comes from a randomized block experiment to determine factors
affecting egg production.

(a) Plot the data with eggs as the response. Is there evidence of an interaction
effect?

(b) Fit the RBD model and use a residual-fitted plot to check the model assump-
tions.

(c) Is there a significant difference between the treatments? Is there a significant
difference between the blocks?

(d) Use the Tukey method to test for an interaction.

(e) How many pairwise comparisons exist among the treatments? Use Bonferroni
correction to determine whether any of the treatments may be distinguished.

(f) Compute the relative efficiency of this design compared to a CRD. Would it be
worth using the same blocking design in future experiments?

3. The morley data comes from a 19th century experiment to measure the speed of
light. Use the sm.datasets.get_rdataset to obtain the data and description.

(a) Plot the data with Speed as the response with a view to check whether there is
any trend within runs over the different experiments.

(b) Fit a linear model with speed as the response and run and experiment both in
the numeric forms. Examine the ANOVA output and the regression summary
output. Are the p-values the same? Explain.

(c) Convert the experiment variable to a factor. Why might this be reasonable?
Perform the appropriate test to determine whether there is a significant differ-
ence between experiments.

(d) Now change the run to a factor and test for the significance of both factors.

(e) As it happens, Morley collected all 100 observations in the order seen but were
later divided into ‘experiments’. Plot the data in run order and comment on
whether there is a trend.

4. The OrchardSprays data come from an experiment that was conducted to assess
the potency of various constituents of orchard sprays in repelling honeybees. Use
the sm.datasets.get_rdataset to obtain the data and description.

(a) Display the data in a table that reveals the Latin square design. Suppose we

permuted the levels of one of the factors. Would this remain a Latin square
design?
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(e) Compute the relative efficiency of this design over the CRD. What sample size
would a CRD need to be in order to achieve the same precision?

7. Is the standard Sudoku solution a Latin square? Does the Sudoku solution con-
tain any additional features that might be useful for design purposes? Propose a
situation where it could be helpful.
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Figure 17.4 Strip plots of rabbit diet data.

We fit the model and test the significance of the effects:
lmod = smf.ols(’gain ~ treat + block’, rabbit).fit()
sm.stats.anova_lm(lmod, typ=3) .round (3)

sum_sq df F PRCGF)
Intercept 1945.500 1.0 193.553 0.000
treat 158.727 5.0 3.158 0.038
block 595.735 9.0 6.585 0.001
Residual 150.773 15.0 NaN NaN

We use the drop one (Type 3) option here since to test either term, we need the other
term to be present in the model.

Now check the diagnostics:
sns.residplot(lmod. fittedvalues, 1lmod.resid)
plt.xlabel("Fitted values™")
plt.ylabel ("Residuals”)
p=sm.qqplot (lmod.resid, line="q")

The plots are not shown, as they show nothing of interest.

Now we check which treatments differ. The Tukey pairwise Cls need to be di-
rectly constructed because this is not a complete layout. We extract the information

about the treatment effects and the standard error:
1lmod. sumary ()

coefs stderr tvalues pvalues
Intercept 36.014 2.589 13.91 0.0000

treat[T.b] -1.742 2.242 -0.78 0.4493
treat[T.c] 0.400 2.242 0.18 0.8608
treat[T.d] 0.067 2.242 0.03 0.9767
treat[T.e] -5.225 2.242 -2.33 0.0341
treat[T. f] 3.300 2.242 1.47 0.1617
block[T.b10] 3.297 2.796 1.18 0.2567
block[T.b2] 4.133 2.694 1.53 0.1458
block[T.b3] -1.803 2.694 -0.67 0.5136
block[T.b4] 8.794 2.796 3.15 0.0067
block[T.b5] 2.306 2.796 0.82 0.4225
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block[T.b6] 5.408 2.694 2.01 0.0631
block[T.b7] 5.778 2.796 2.07 0.0565
block[T.b8] 9.428 2.796 3.37 0.0042
block[T.b9] -7.481 2.796 -2.68 0.0173

n=30 p=15 Residual SD=3.170 R-squared=0.86

We see that the standard error for the pairwise comparison of treatments is 2.24. No-
tice that all the treatment standard errors are equal because of the BIB. Now compute

the Tukey confidence intervals

mcoefs = np.append([0],1mod.params[1:6])

nmats = [chr(i) for i in range(ord(’a’),ord(’'f’)+1)]

p = len(mcoefs)

dp = set(itertools.combinations(range(0,p),2))

dcoef = []

namdiff = []

for cp in dp:
dcoef.append (mcoefs[cp[0]] - mcoefs[cp[1]1])
namdiff.append (nmats[cp[0]] + -’ + nmats[cp[1]])

thsd = pd.DataFrame({’'Difference’:dcoef},index=namdiff)

thsd["1b"] = thsd.Difference - \
get_tukeyQcrit(p,lmod.df_resid) * lmod.bse[1l]/np.sqrt(2)

thsd["ub"] = thsd.Difference + \
get_tukeyQcrit(p,lmod.df_resid) * lmod.bse[1l]/np.sqrt(2)

thsd.round (2)

Difference 1b ub
a-b 1.74 -5.53 9.02
b-c -2.14 -9.42 5.13
b-d -1.81 -9.08 5.47
e-f -8.53 -15.80 -1.25
b-e 3.48 -3.79 10.76
b-f -5.04 -12.32 2.23
c-e 5.62 -1.65 12.90
a-f -3.30 -10.58 3.98
c-d 0.33 -6.94 7.61
c-f -2.90 -10.18 4.38
a-e 5.23 -2.05 12.50
a-d -0.07 -7.34 7.21
d-e 5.29 -1.98 12.57
a-c -0.40 -7.68 6.88
d-f -3.23 -10.51 4.04

Only the e — f difference is significant.
Now let’s see how much better this blocked design is than the CRD. We compute

the relative efficiency:

lmodr = smf.ols(’gain ~ treat’, rabbit).fit(Q
lmodr .scale/1lmod.scale

3.0945

Blocking was well worthwhile here.

Exercises

1. The alfalfa data arise from a Latin square design where the treatment factor is
inoculum and the blocking factors are shade and irrigation.

(a) Display the data as a table that makes the Latin square structure apparent.
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3.8401

We see that the Latin square is 3.84 times more efficient than the CRD. This is a
substantial gain in efficiency. The Latin square may also be compared to designs
where we block only one of the variables. The efficiency relative to these designs is
less impressive, but still worthwhile.

17.3 Balanced Incomplete Block Design

In a complete block design, the block size is equal to the number of treatments. When
the block size is less than the number of treatments, an incomplete block design must
be used. For example, in the oat data, suppose six oat varieties were to be compared,
but each field had space for only four plots.

In an incomplete block design, the treatments and blocks are not orthogonal.
Some treatment contrasts will not be identifiable from certain block contrasts. This
is an example of confounding. This means that those treatment contrasts effectively
cannot be examined. In a balanced incomplete block (BIB) design, all the pairwise
differences are identifiable and have the same standard error. Pairwise differences
are more likely to be interesting than other contrasts, so the design is constructed to
facilitate this.

Suppose, we have four treatments (¢t = 4) designated A, B, C, D and the block
size, k = 3 and there are b = 4 blocks. Therefore, each treatment appears r = 3 times
in the design. One possible BIB design is:

Table 17.2 BIB design for four treatments with four blocks of size 3.

Each pair of treatments appears in the same block A = 2 times — this feature
means simpler pairwise comparison is possible. For a BIB design, we require:

b > t>k
rt = bk=n
AMt—1) = rk—1)

This last relation holds because the number of pairs in a block is k(k—1)/2 so
the total number of pairs must be bk(k — 1)/2. On the other hand, the number of
treatment pairs is z(¢t — 1) /2. The ratio of these two quantities must be A.

Since A has to be an integer, a BIB design is not always possible even when the
first two conditions are satisfied. For example, consider r =4, =3,b =6,k =2 and
then A = 2 which is OK, but if r=4,r =4,b =8,k =2, then A= 4/3 so no BIB is
possible. (Something called a partially balanced incomplete block design can then
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run(T. 2] -2.250 5.534 -0.41 0.6984
run([T. 3] 12.500 5.534 2.26 0.0647
run[T.4] -9.250 5.534 -1.67 0.1457
position[T.2] 26.250 5.534 4.74 0.0032
position[T. 3] 8.500 5.534 1.54 0.1755
position[T.4] 8.250 5.534 1.49 0.1866
material [T.B] -45.750 5.534 -8.27 0.0002
material [T.C] -24.000 5.534 -4.34 0.0049
material [T.D] -35.250 5.534 -6.37 0.0007

n=16 p=10 Residual SD=7.826 R-squared=0.95

We see that material B looks best (in terms of least wear) followed by material
D. Is the difference significant though? Which materials in general are significantly
better than others? We need the Tukey pairwise intervals to help determine this. The

width of the band is calculated in the usual manner:
from statsmodels.sandbox.stats.multicomp import get_tukeyQcrit
get_tukeyQcrit(4,6)*1mod.bse[1]/np.sqrt(2)

19.174

The width of the interval is 19.1. We can make a table of the material differences:
treatname = ’'material’

treatlevs = [’A’,’B’,’C’,’D’]

and

ii = 1lmod.params.index.str.match(treatname)
mcoefs = np.append([0], 1lmod.params[ii])
import itertools

dp = set(itertools.combinations(range(0,len(treatlevs)),2))
dcoef = []

namdiff = []
for cp in dp:

dcoef.append (mcoefs[cp[0]] - mcoefs[cp[1]1])

namdiff.append(treatlevs[cp[0]] + '-’ + treatlevs[cp[1]])
thsd = pd.DataFrame({’'Difference’:dcoef},index=namdiff)
cvband = get_tukeyQcrit(len(treatlevs),

lmod.df_resid) * 1lmod.bse[1]l/np.sqrt(2)

thsd["1b"] = thsd.Difference - cvband
thsd["ub"] = thsd.Difference + cvband
thsd.round (2)
Difference 1b ub

45.75 26.58 64.92

-21.75 -40.92 -2.58

-10.50 -29.67 8.67

11.25 -7.92 30.42

35.25 16.08 54.42

24.00 4.83 43.17

We see that the (B, D) and (D, C) differences are not significant at the 5% level,
but that all the other differences are significant.

If maximizing resistance to wear is our aim, we would pick material B but if
material D offered a better price, we might have some cause to consider switching to
D. The decision would need to be made with cost—quality trade-offs in mind.

Now we compute how efficient the Latin square is compared to other designs.

We compare to the completely randomized design:
Imodr = smf.ols(’wear ~ material’, abrasion).fit(Q)
Imodr .scale/1mod.scale

.'>.'>(wa>
NUOODON™
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the choice of methods I have presented in this book. One might expect the statis-
tical functionality of Python to grow over time.

If your sole objective is to do statistics, R is more attractive. Yet there are several
reasons why you might prefer Python. You may already know Python and use it for
other tasks. Indeed, it would be unusual for someone to solely do statistics. The data
in this text is already clean and ready to use. In practice, this is rarely the case, and
flexible software for obtaining and manipulating data is essential. You may already
be using Python for this purpose.

Python also has a place at the heart of Machine Learning (ML), but this is a
book about statistics rather than ML. But the aims of these two disciplines overlap
considerably to the extent that any data analyst should become familiar with the ideas
and methods of both. The datasets in this text are small by ML standards. I hope that
a reader coming to this book from an ML background would learn new statistical
perspectives on learning from data.

This book would not have been possible without several key open source Python

packages. I thank the authors and maintainers of these packages for their outstanding
work.
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4. How are the data coded? In particular, how are the categorical variables repre-
sented?

5. What are the units of measurement?

6. Beware of data entry errors and other corruption of the data. This problem is all
too common — almost a certainty in any real dataset of at least moderate size.
Perform some data sanity checks.

1.2 Initial Data Analysis

This is a critical step that should always be performed. It is simple but it is vital.
You should make numerical summaries such as means, standard deviations (SDs),
maximum and minimum, correlations and whatever else is appropriate to the spe-
cific dataset. Equally important are graphical summaries. There is a wide variety of
techniques to choose from. For one variable at a time, you can make boxplots, his-
tograms, density plots and more. For two variables, scatterplots are standard while
for even more variables, there are numerous good ideas for display including interac-
tive and dynamic graphics. In the plots, look for outliers, data-entry errors, skewed or
unusual distributions and structure. Check whether the data are distributed according
to prior expectations.

Getting data into a form suitable for analysis by cleaning out mistakes and aber-
rations is often time consuming. It often takes more time than the data analysis itself.
One might consider this the core work of data science. In this book, all the data will
be ready to analyze, but you should realize that in practice this is rarely the case.

Let’s look at an example. The National Institute of Diabetes and Digestive
and Kidney Diseases conducted a study on 768 adult female Pima Indians living
near Phoenix. The following variables were recorded: number of times pregnant,
plasma glucose concentration at 2 hours in an oral glucose tolerance test, diastolic
blood pressure (mmHg), triceps skin fold thickness (mm), 2-hour serum insulin (mu
U/ml), body mass index (weight in kg/(height in m?)), diabetes pedigree function,
age (years) and a test whether the patient showed signs of diabetes (coded zero if
negative, one if positive). The data may be obtained from UCI Repository of ma-
chine learning databases at archive.ics.uci.edu/ml.

Base Python has only limited functionality for numerical work. You will surely
need to import some packages before you can accomplish anything. It is common to

load all the packages you will need in a session at the beginning. We start with:
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import scipy as sp

import seaborn as sns

import statsmodels.formula.api as smf

You can wait until you need them but it can be helpful when you share or return
to your work later to have them all listed at the beginning so all will know which

packages you need. The as pd means we can refer to functions in the pandas with
the abbreviation pd.
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Chapter 1

Introduction

1.1 Before You Start

Statistics starts with a problem, proceeds with the collection of data, continues with
the data analysis and finishes with conclusions. It is a common mistake of inexperi-
enced statisticians to plunge into a complex analysis without paying attention to the
objectives or even whether the data are appropriate for the proposed analysis. As
Einstein said, the formulation of a problem is often more essential than its solution
which may be merely a matter of mathematical or experimental skill.

To formulate the problem correctly, you must:

1. Understand the physical background. Statisticians often work in collaboration
with others and need to understand something about the subject area. Regard this
as an opportunity to learn something new rather than a chore.

2. Understand the objective. Again, often you will be working with a collaborator
who may not be clear about what the objectives are. Beware of “fishing expedi-
tions” — if you look hard enough, you will almost always find something, but
that something may just be a coincidence.

3. Make sure you know what the client wants. You can often do quite different anal-
yses on the same dataset. Sometimes statisticians perform an analysis far more
complicated than the client really needed. You may find that simple descriptive
statistics are all that are needed.

4. Put the problem into statistical terms. This is a challenging step and where ir-
reparable errors are sometimes made. Once the problem is translated into the
language of statistics, the solution is often routine. This is where human intel-

ligence is decidedly superior to artificial intelligence. Defining the problem is
hard to program. That a statistical method can read in and process the data is not
enough. The results of an inapt analysis may be meaningless.

It is important to understand how the data were collected.

1. Are the data observational or experimental? Are the data a sample of convenience
or were they obtained via a designed sample survey? How the data were collected
has a crucial impact on what conclusions can be made.

2. Is there nonresponse? The data you do not see may be just as important as the
data you do see.

3. Are there missing values? This is a common problem that is troublesome and time
consuming to handle.
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Before doing anything else, one should find out the purpose of the study and
more about how the data were collected. However, let’s skip ahead to a look at the

data:
import faraway.datasets.pima
pima = faraway.datasets.pima.load()
pima.head ()
pregnant glucose diastolic triceps insulin bmi diabetes age test

0 6 148 72 35 0 33.6 0.627 50 1
1 1 85 66 29 0 26.6 0.351 31 0
2 8 183 64 0 0 23.3 0.672 32 1
3 1 89 66 23 94 28.1 0.167 21 0
4 0 137 40 35 168 43.1 2.288 33 1

Many of the datasets used in this book are supplied in the faraway package. See
the appendix for how to install this package. Any time you want to use one of these
datasets, you will need to import the package containing the data you require and
then load it.

The command pima.head() prints out the first five lines of the data frame. This
is a good way to see what variables we have and what sort of values they take. You
can type pima to see the whole data frame but 768 lines may be more than you want
to examine.

If you want more details about the dataset, you can use:
print (faraway.datasets.pima.DESCR)

We start with some numerical summaries:
pima.describe () .round (1)

pregnant glucose diastolic triceps insulin bmi diabetes age
count 768.0 768.0 768.0 768.0 768.0 768.0 768.0 768.0
mean 3.8 120.9 69.1 20.5 79.8 32.0 0.5 33.2
std 3.4 32.0 19.4 16.0 115.2 7.9 0.3 11.8
min 0.0 0.0 0.0 0.0 0.0 0.0 0.1 21.0
25% 1.0 99.0 62.0 0.0 0.0 27.3 0.2 24.0
50% 3.0 117.0 72.0 23.0 30.5 32.0 0.4 29.0
75% 6.0 140.2 80.0 32.0 127.2 36.6 0.6 41.0
max 17.0 199.0 122.0 99.0 846.0 67.1 2.4 81.0
test
count 768.0
mean 0.3
std 0.5
min 0.0
25% 0.0
50% 0.0
75% 1.0
max 1.0

The describe() command is a quick way to get the usual univariate summary in-
formation. We round to one decimal place for compact, easier to read output. At
this stage, we are looking for anything unusual or unexpected, perhaps indicating a
data-entry error. For this purpose, a close look at the minimum and maximum values
of each variable is worthwhile. Starting with pregnant, we see a maximum value
of 17. This is large, but not impossible. However, we then see that the next five
variables have minimum values of zero. No blood pressure is not good for the health

— something must be wrong. Let’s look at the first few sorted values:

pima[’diastolic’].sort_values() .head()
347 0
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Where do models come from? We distinguish several different sources:

1. Physical theory may suggest a model. For example, Hooke’s law says that the
extension of a spring is proportional to the weight attached. Models like these
usually arise in the physical sciences and engineering.

2. Experience with past data. Similar data used in the past were modeled in a partic-
ular way. It is natural to see whether the same model will work with the current
data. Models like these usually arise in the social sciences.

3. No prior idea exists — the model comes from an exploration of the data. We use
skill and judgment to pick a model. Sometimes it does not work and we have to
try again.

Models that derive directly from physical theory are relatively uncommon so that
usually the linear model can only be regarded as an approximation to a complex real-
ity. We hope it predicts well or explains relationships usefully, but usually we do not
believe it is exactly true. A good model is like a map that guides us to our destination.
For the rest of this chapter, we will stay in the special world of Mathematics where
all models are true.

2.2 Matrix Representation

We want a general solution to estimating the parameters of a linear model. We can
find simple formulae for some special cases but to devise a method that will work in
all cases, we need to use matrix algebra. Let’s see how this can be done.

We start with some data where we have a response Y and, say, three predictors,
X1, X, and X3. The data might be presented in tabular form like this:

Y1 X11 X12 X13
Y2  X21 X22  X23

Yn  Xnl Xn2 Xp3

where 7 is the number of observations, or cases, in the dataset.
Given the actual data values, we may write the model as:

yi =Bo+PBixit +Poxiz +Bsxs+& i=1,...,n.

It will be more convenient to put this in a matrix/vector representation. The regres-
sion equation is then written as:

y=Xp+e

where y = (y1,...,yn)', €= (€1,...,€)", B= (Bo,...,B3)! and:
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Estimation

2.1 Linear Model

Let’s start by defining what is meant by a linear model. Suppose we want to model
the response Y in terms of three predictors, X, X; and X3. One very general form for
the model would be:

Y = f(X1,X2,X3)+ €

where f is some unknown function and € is the error in this representation. € is
additive in this instance, but could enter in some even more general form. Still, if we
assume that f is a smooth, continuous function, that still leaves a very wide range of
possibilities. Even with just three predictors, we would need a substantial amount of
data to try to estimate f directly. With smaller datasets, we usually have to assume
that it has some more restricted form, perhaps linear as in:

Y =Bo+Bi1X1+B2Xo+P3X3+¢€

where B;, i = 0,1,2,3 are unknown parameters. Unfortunately this term is subject to
some confusion as engineers often use the term parameter for what statisticians call
the variables, Y, X; and so on. By is called the intercept term.

Thus the problem is reduced to the estimation of four parameters rather than
the infinite dimensional f. In a linear model the parameters enter linearly — the
predictors themselves do not have to be linear. For example:

Y =Bo+B1X; +BalogXs + B3 X1 X + €

1S a linear model, but:
Y = Bo+[51X1B2+8

B

is not. Some relationships can be transformed to linearity — for example, y = Box; €
can be linearized by taking logs. Linear models seem rather restrictive, but because
the predictors can be transformed and combined in any way, they are actually very
flexible. The term linear is often used in everyday speech as almost a synonym
for simplicity. This gives the casual observer the impression that linear models can
only handle small, simple datasets. This is far from the truth — linear models can
easily be expanded and modified to handle complex datasets. Linear is also used to
refer to straight lines, but linear models can be curved, by adding quadratic terms for
example. Truly nonlinear models are rarely absolutely necessary and most often arise
from a theory about the relationships between the variables, rather than an empirical
investigation.

15
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2.5 Examples of Calculating ﬁ

In a few simple models, it is possible to derive explicit formulae for f’):
1. Wheny=pu+¢,X=1andB=phence X’ X =171 =nso:

A

_ 1 _
B=(xTX)"IXTy=_1Ty=5
2. Simple linear regression (one predictor):

yi =Bo+Pixi + &

1 x €
Y1 1 (BO)+ 1
Yn 1 x, En

We can now apply the formula but a simpler approach is to rewrite the equation
as:

B/
/—’OH_ _
yi = Bo + P1X+P1(xi — X) + &
SO NOw:
1 x;1—x
0
x=1 .. xTx = ( " i )
1 X, — X 0 Z?ZI(Xi—X)z

Next work through the rest of the calculation to reconstruct the familiar estimate, that

1S.
B, — Y (xi — x)yi
LT X —%)?

In higher dimensions, it is usually not possible to find such explicit formulae for the
parameter estimates unless X7 X happens to be a simple form. So typically we need
computers to fit such models. Regression has a long history, so in the time before
computers became readily available, fitting even quite simple models was a tedious
time-consuming task. When computing was expensive, data analysis was limited. It
was designed to keep calculations to a minimum and restrict the number of plots.
This mindset remained in statistical practice for some time even after computing
became widely and cheaply available. Now it is a simple matter to fit a multitude of
models and make more plots than one could reasonably study. The challenge now for
the analyst is to choose among these intelligently to extract the crucial information

in the data.

2.6 Example

Now let’s look at an example concerning the number of species found on the various
Galédpagos Islands. As before, we start by loading the packages we will need in this
chapter:
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Data = Systematic Structure + Random Variation

n dimensions = p dimensions t (n— p) dimensions

2.4 Least Squares Estimation

The estimation of B can also be considered from a nongeometric point of view. We
define the best estimate of B as the one which minimizes the sum of the squared
eITors:

Y ei=e'e=(y—XB) (y—XB)

Differentiating with respect to 3 and setting to zero, we find that f’) satisfies:
xTxp=xTy

These are called the normal equations. We can derive the same result using the
geometric approach. Now provided X7 X is invertible:

B x"x)"'x"y
Xp = x(xTx)"'xTy
y = Hy

H = X(XTX)~'XT is called the hat matrix and is the orthogonal projection of y
onto the space spanned by X. H is useful for theoretical manipulations, but you
usually do not want to compute it explicitly, as it is an n X n matrix which could be
uncomfortably large for some datasets. The following useful quantities can now be
represented using H.

The predicted or fitted values are y = Hy = X B while the remduals are € =
y— XB y—39 = (I — H)y. The residual sum of squares (RSS) is /& =y (I —
H)'(I-H)y=y"(I-H)y.

Later, we will show that the least squares estimate is the best possible estimate
of B when the errors € are uncorrelated and have equal variance. We can express
this fact more compactly as var 8 = 6] meaning that the covariance matrix of € is a
diagonal matrix with values of 67 along that diagonal. B is unbiased and has variance
(XTX)~'62? provided var € = 6I. Since P is a vector, its variance is a matrix.

We also need to estimate 6. We find that EET€ = 6%(n — p), which suggests the
estimator:

., &8 RSS
O = —
n—p n—p

as an unbiased estimate of 6°. n— p is called the degrees of freedom of the model.
Sometimes you need the standard error for a particular component of 3 which can be

picked out as se(B;_;) = /(XTX);'6.





index-25_1.jpg





index-19_1.png
8 INTRODUCTION

Since there are three unknowns, we need only three distinct observations of the
set of three variables to find a unique solution for o,3 and y. Embarassingly for
Mayer, there were 27 sets of observations available. Astronomical measurements
were naturally subject to some variation and so there was no solution that fit all 27

observations. Let’s take a look at the first few lines of the data:
import faraway.datasets.manilius
manilius = faraway.datasets.manilius.load()
manilius.head ()

arc sinang cosang group
13.166667 0.8836 -0.4682
13.133333 0.9996 -0.0282
13.200000 0.9899 0.1421
14.250000 0.2221 0.9750
14.700000 0.0006 1.0000

Mayer’s solution was to divide the data into three groups so that observations within
each group were similar in some respect. He then computed the sum of the variables

within each group. We can also do this:
moon3 = manilius.groupby(’group’).sum()

W= O
W W = e

moon3

arc sinang cosang
group
1 118.133333 8.4987 -0.7932
2 140.283333 -6.1404 1.7443
3 127.533333 2.9777 7.9649

Now there are just three equations in three unknowns to be solved. The solution is:

moon3[’intercept’] = [9]*3

np.linalg.solve(moon3[[’intercept’,’sinang’,’cosang’]],
moon3[’arc’])

array([14.54458591, -1.48982207, 0.13412639])

Hence the computed values of o,  and y are 14.5, -1.49 and 0.134, respectively. One
might question how Mayer selected his three groups, but this solution does not seem
unreasonable.

Similar problems with more linear equations than unknowns continued to arise
until 1805, when Adrien Marie Legendre published the method of least squares. Sup-
pose we recognize that the equation is not exact and introduce an error term, €:

arc; = 0.+ Bsinang; + ycosang; +¢€;

where i = 1,...,27. Now we find o, 8 and y that minimize the sum of the squared
errors: Y €2. We will investigate this in much greater detail in the chapter to fol-
low, but for now we simply present the solution using the smf.ols function from

statsmodels:
mod = smf.ols(’arc ~ sinang + cosang’, manilius).fit(Q)
mod . params

Intercept 14.561624
sinang -1.504581
cosang 0.091365

We observe that this solution is quite similar to Mayer’s. The least squares solu-
tion is more satisfactory in that it requires no arbitrary division into groups. Carl
Friedrich Gauss claimed to have devised the method of least squares earlier but
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Sports writers come up with all kinds of explanations for this but the regression effect
is likely to be the unexciting cause. In the parents and children example, although it
does predict that successive descendants in the family will come closer to the mean,
it does not imply the same of the population in general since random fluctuations will
maintain the variation, so no need to get too pessimistic about mediocrity! In many
other applications of linear modeling, the regression effect is not of interest because
different types of variables are measured. Unfortunately, we are now stuck with the
rather gloomy word of regression thanks to Galton.

Regression methodology developed rapidly with the advent of high-speed com-
puting. Just fitting a regression model used to require extensive hand calculation. As
computing hardware has improved, the scope for analysis has widened. This has led

to an extensive development in the methodology and the scale of problems that can
be tackled.

Exercises

Not all the answers to the questions below can be derived from code illustrated in
this chapter. You may need to resort to internet Python resources.

1. The dataset teengamb concerns a study of teenage gambling in Britain.

(a) Turn the sex variable into a categorical variable with appropriate labels. Count
the number in each category.

(b) Use both the boxplot and the swarmplot functions from seaborn to plot the
status broken down by sex. Contrast the two plotting methods.

(c) Use both the distplot and the countplot functions from seaborn to show
the distributions of the verbal scores. Do not show the smoothed density on the
distplot. Contrast the two plotting methods - which is best here?

(d) Plot the gamble as the response and income as the predictor broken down by
sex. Make two plots, one with a single frame where sex is distinguished by
the color of the point and another where the sexes appear in different frames.
Which plot do you prefer and why?

(e) Construct a summary statistics table of numerical variables. Can you tell which
variable is highly skewed from the table?

2. The dataset uswages is drawn as a sample from the Current Population Survey in
1988.

(a) Construct a subset of the data with only the wage and four geographical vari-
ables.

(b) A weighted mean is given by Y w;y;/ Y w; for weights w and data y. Compute
the mean wage in the north-east using this formula.

(c) Compute the mean wage in the north-east using the groupby function from
pandas. This should also give you the mean wage for those not living in the
north-east.

(d) Compute the row sums for just the geographic variables. What value do they
take?
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(b)

(c)

(d)

Use the shift function from pandas to plot divorce rate from the current year
against the divorce rate for the previous year. Does this show that one could
reasonably predict the divorce rate for the following year by using the divorce
rate from the current year?

Fit a linear model with the divorce rate as the response and the year as the
predictor. In what year does the model predict the divorce rate to hit 100%? Is
this a reasonable prediction?

Use the scatterplot function from seaborn to make a plot with femlab on
the x-axis, divorce rate on the y-axis and the color of the point changing with

the year.
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(e) The subset matrix of geographic variables can be called a dummy matrix where
ones and zeroes are used to code a categorical variable. Reconstruct an area
categorical variable which takes the four possible values.

(f) Make a boxplot of the wage broken down by area.
(g) Repeat the previous plot but on a log scale. Which is preferable?

3. The dataset prostate is from a study on 97 men with prostate cancer who were
due to receive a radical prostatectomy.

(a) Use the pairplot function from seaborn to construct an array of scatterplots
of the first four variables.

(b) Compute the correlations of the first four variables.

(c) The 1bph variable is on the log scale. Many cases take the minimum value
of this variable. What value of benign prostatic hyperplasia do you think this
represents?

(d) Use the distplot function from seaborn to make a histogram of the ages
using the rug option. Create a version where the bin width is one year. Contrast
the two plots.

(e) Use the melt function from pandas with 1psa as the id variable to produce a
long version of the dataset. Now use replot to produce a grid of 8 scatterplots
of the data where 1psa is the response.

4. The dataset sat comes from a study entitled “Getting What You Pay For: The
Debate Over Equity in Public School Expenditures.”

(a) Verify that the sum of the verbal and math scores equals the total score.

(b) Compare the distributions of verbal and math scores using jointplot from
seaborn. Are they similar?

(¢) Standardize both the verbal and math scores. Plot the standardized scores with
verbal on the x-axis. Plot the y = x line.

(d) Fit a linear model with math as the response and verbal as the predictor. Show
the estimated slope and compare it with the correlation between these two vari-
ables. Comment.

(e) Fitanother linear model with the roles of the predictor and response exchanged.
Why is the estimated slope the same? Is the fitted line from this model and the
previous model the same?

(f) Make predictions for the following students. (i) Predict the math score of a
student scoring 2SDs above average on the verbal test. (ii) Predict the verbal
score of a student scoring 2SDs above average on the math test. (iii) Predict
the math score of a student with an average score on the verbal test. (iv) Predict
the math score of a student with no information about their verbal score.

5. The dataset divusa contains data on divorces in the United States from 1920 to
1996.

(a) Make a plot each with 1ineplot and scatterplot from seaborn. Put the
year on the x-axis and the divorce rate on the y-axis. Compare the two plots.
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dataset = | dataset = Il

dataset = lll dataset = IV

4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
X X

Figure 2.3 Four simulated datasets where R? is about 0.65. The plot on the upper
left is well behaved for R?. In the plot on the upper right the relationship is not linear.
In the lower two plots, a single outlier has a large effect, lessening the relationship
on the left and creating it on the right.

regression summary returns both values and it is worth paying attention to both of
them.

2.10 Identifiability

The least squares estimate is the solution to the normal equations:
xTxp=xTy

where X is an n x p matrix. If X7 X is singular and cannot be inverted, then there
will be infinitely many solutions to the normal equations and [ is at least partially
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Adjacent -0.0748 0.018 -4.226 0.000 -0.111 -0.038
Omnibus: 12.683 Durbin-Watson: 2.476
Prob(Omnibus): 0.002 Jarque-Bera (JB): 13.498
Skew: 1.136 Prob(JB): 0.00117
Kurtosis: 5.374 Cond. No. 1.90e+03
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly

specified.

[2] The condition number is large, 1.9e+03. This might indicate that there are
strong multicollinearity or other numerical problems.

For my tastes, this output contains rather too much information — certainly more
than we want to consider now. I have written an alternative called sumary which
produces a shorter version of this. Since we will be looking at a lot of regression
output, the use of this version makes this book several pages shorter. Of course, if
you prefer the above, feel free to add the extra “m” in the function call. You will

need to install (see Appendix) and import my package if you want to use my version:
import faraway.utils
1mod. sumary ()

coefs stderr tvalues pvalues
Intercept 7.068 19.154 0.37 0.7154

Area -0.024 0.022 -1.07 0.2963
Elevation 0.319 0.054 5.95 0.0000
Nearest 0.009 1.054 0.01 0.9932
Scruz -0.241 0.215 -1.12 0.2752
Adjacent -0.075 0.018 -4.23 0.0003

n=30 p=6 Residual SD=60.975 R-squared=0.77

We can identify several useful quantities in this output. Other statistical packages
tend to produce output quite similar to this. One useful feature of Python is that it is
possible to directly calculate quantities of interest. Of course, it is not necessary here
because the smf.ols () function does the job, but it is very useful when the statistic
you want is not part of the prepackaged functions. First, we create the X-matrix, by
first taking all but the first column in the DataFrame and then inserting a column of

onces.
X = galapagos.iloc[:,1:]
X.insert (0, ’intercept’,1)

Now let’s construct (X7 X)~!. The .T does transpose and @ does matrix multiplica-

tion. np.linalg.inv(A) computes A~
XtXi = np.linalg.inv(X.T @ X)

We can get B directly, using (X7X)~!x7y:
(XtXi @ X.T) @ galapagos.Species

0 7.068221
1 -0.023938
2 0.319465
3 0.009144
4 -0.240524
5 -0.074805

This is a very bad way to compute ﬁ It is inefficient because it is expensive to
compute a matrix inverse and we can avoid that here. It can be very inaccurate
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The QR decomposition is an alternative to the Moore-Penrose inverse method for
computing . It is the default choice of R. Any design matrix X can be written as:

OR

where Q is an n x n orthogonal matrix, that is 0’ Q = Q0! =TI and Ris a p x p upper
triangular matrix (R;; = 0 for i > j). The 0 is an (n — p) x p matrix of zeroes, while
Qy is the first p columns of Q.

The RSS = (y — XB)T (y — XB) = ||y — XB||* where || - || is the Euclidean length
of a vector. The matrix Q represents a rotation and does not change length. Hence:

rss= "y~ "xpi= (1)~ (§ )

2

where ( { ) = Q'y for vector f of length p and vector r of length n — p. From this

WE SEC.
RSS = ||f —RB|*+ |71

which can be minimized by setting B so that R = f.

Let’s see how this works for the Galdpagos data. First we compute the QR de-

composition:
q, r = np.linalg.qr(X)

We can compute f:
f = q.T @ galapagos.Species
f

array([-466.84219318, 381.40557435, 256.25047255, 5.40764552,
-119.49834019, 257.69436853])

Solving RB = f is computationally easy because of the triangular form of R. We use

the method of backsubstitution:

sp.linalg.solve_triangular(r, f£f)

array([ 7.06822071, -0.02393834, 0.31946476, 0.00914396, -0.24052423,
-0.07480483])

where the results match those seen previously.

We can ask statsmodels to use the QR method in preference to the default

Moore-Penrose with:

Ilmodform = smf.ols(
’Species ~ Area + Elevation + Nearest + Scruz + Adjacent’,
galapagos)

lmod = lmodform. fit(method="qr")

lmod . params

Intercept 7.068221

Area -0.023938
Elevation 0.319465
Nearest 0.009144
Scruz -0.240524
Adjacent -0.074805

The results are, as expected, the same.
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(g) If education were increased by one, holding experience constant, what would
be the change in the predicted wage?

(h) Fit a model with log(wages) as the response and education and experience as
predictors. Compare the residual standard error and R? for this model with
those seen in the first model. Which model do you think is best?

(1) If education were increased by one, holding experience constant, what would
be the change in the predicted wage using this logged model?

(j) Add the predictors ne, mw, we and so into the model. Fit the model using
the default Moore-Penrose method and the QR method. Why are the results
different? Compute the smallest eigenvalue of the X X matrix and comment.

(k) Compute the row sum (i.e., over individual men) for ne, mw, we and so.
What value does this take for all men? What relevance does this have to the
previous question?

3. The dataset prostate comes from a study on 97 men with prostate cancer who
were due to receive a radical prostatectomy.

(a) Fit a model with 1psa as the response and 1cavol as the predictor. Record the
residual standard error and the R2.

(b) Now add lweight, svi, lbph, age, lcp, pgg45 and gleason to the
model sequentially one at a time. For each model, record the residual standard
error and the R.

(c) Plot the trends in these two statistics. Comment on the results - do they change
monotonically as the number of predictors increases?

4. Using the prostate data, plot 1psa on the vertical and 1cavol on the horizon-
tal. Fit the regressions of 1psa on lcavol and 1cavol on 1psa. Display both
regression lines on the plot. At what point do the two lines intersect?

5. Thirty samples of cheddar cheese were analyzed for their content of acetic acid,
hydrogen sulfide and lactic acid. Each sample was tasted and scored by a panel of
judges and the average taste score produced. Use the cheddar data to answer the
following:

(a) Fit a regression model with taste as the response and the three chemical con-
tents as predictors. Report the values of the regression coefficients.

(b) Compute the correlation between the fitted values and the response. Square it.
Identify where this value appears in the regression output.

(c) Fit the same regression model but without an intercept term. What is the value
of R? reported in the output? Compute a more reasonable measure of the good-
ness of fit for this example.

(d) Compute the regression coefficients from the original fit using the QR decom-
position showing your code.

6. An experiment was conducted to determine the effect of four factors on the resis-
tivity of a semiconductor wafer. The data is found in wafer where each of the
four factors is coded as — or + depending on whether the low or the high setting
for that factor was used. Fit the linear model resist ~ x1 + x2 + x3 + x4.
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lmod . params

Intercept 15.200
gas -17.000
pack -21.375

The coefficients themselves do not change, but the residual SE does change slightly,
which causes small changes in the SEs of the coefficients, z-statistics and p-values,
but nowhere near enough to change our qualitative conclusions.

Exercises

1. The dataset teengamb concerns a study of teenage gambling in Britain. Treat
gambling as the response and the sex, status, income and verbal score as predic-
tors.

(a) Fit the linear model and present the output.
(b) What percentage of variation in the response is explained by these predictors?

(c) Which observation has the largest (positive) residual? Give the case number.
Use the idxmax () function from pandas.

(d) Compute the mean and median of the residuals. Use the mean() and median()
functions from pandas.

(e) Compute the correlation of the residuals with the fitted values. Will it always
be this value? Use the corr () function from pandas.

(f) Compute the correlation of the residuals with the income. Will it always be
this value?

(g) For all other predictors held constant, what would be the difference in predicted
expenditure on gambling for a male compared to a female?

2. The dataset uswages is drawn as a sample from the Current Population Survey in
1988.

(a) Fit a model with weekly wages as the response and years of education and
experience as predictors. Show the output.

(b) What are the minimum values of wages, education and experience seen in the
data? Use the min() function from pandas.

(c) What is the predicted wage for a worker with no education and no experience?
Comment.

(d) Verify by calculation that the squared correlation between the fitted values and
the response is equal to R.

(e) In view of the difficulty of modeling uneducated, inexperienced men, we might
try omitting the intercept term from the model. We can accomplish this with
a model formula like y ~ -1 + x. Fit the same predictors but without the
intercept term. What is the reported value of R>? How does this compare to
the squared correlation between the fitted values and the response?

(f) Compare the residual sum of squares for the two models we have fitted so far.
Which model fits best?
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(a) Extract the X matrix using the following code:

import patsy

X = patsy.dmatrix("x1l + x2 + x3 + x4",
data=wafer, return_type = ’dataframe’)

X

Examine this to determine how the low and high levels have been coded in the
model.

(b) Compute the correlation in the X matrix. Why are there some missing values
in the matrix?

(c) What difference in resistance is expected when moving from the low to the
high level of x17?

(d) Refit the model without x4 and examine the regression coefficients and stan-
dard errors? What stayed the same as the original fit and what changed?

(e) Explain how the change in the regression coefficients is related to the correla-
tion matrix of X.

7. An experiment was conducted to examine factors that might affect the height of
leaf springs in the suspension of trucks. The data may be found in truck.

(a) The five factors in the experiment are set to — and + but it will be more con-
venient for us to use —1 and +1. This can be achieved for the first factor by:
truck.B = np.where(truck.B == ’-',-1,+1)
Repeat for the other four factors.

(b) Fit alinear model for the height in terms of the five factors. Report on the value
of the regression coefficients.

(c) Fit a linear model using just factors B, C, D and E and report the coefficients.

How do these compare to the previous question? Show how we could have
anticipated this result by examining the X matrix.

(d) Construct a new predictor called A which is set to B+C+D+E. Fit a linear model
with the predictors A, B, C, D, E and 0. What is the difficulty with this
model?

(e) Fit the previous model using the QR decomposition method and comment on
the results.
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Residual for small '

Residual for large
model

Difference
between
two models

Large model space Small model

Space

Figure 3.1 Geometric view of the comparison between big model, €2, and small
model, ®. The squared length of the residual vector for the big model is RSSq, while
that for the small model is RSS,. By the Pythagoras theorem, the squared length of
the vector connecting the two fits is RSSy — RSSq. A small value for this indicates
that the small model fits almost as well as the large model and thus might be preferred
due to its simplicity.

would be a potentially good test statistic where the denominator is used for scaling
purposes.

As it happens, the same test statistic arises from the likelihood-ratio testing ap-
proach. We give an outline of the development: If L(p, 6|y) is the likelihood function,
then the likelihood-ratio statistic is:

maxg sca L(B,0ly)
maxg se L(B, oY)

The test should reject if this ratio is too large. Working through the details, we find
that for each model: X
L(B,6]y) < &6~"

which after some manipulation gives us a test that rejects if:

RSSy —RSSg

> a constant
RSSq

which is the same statistic suggested by the geometric view. Now suppose that the
dimension (or number of parameters) of {2 is p and the dimension of ® is g, then we
can use some more scaling to get an F'-statistic which has an F'-distribution under the
null hypothesis:

- (RSSy—RSSo)/(p—q) _,

RSSq/(n— p) p=an=p

Details of the derivation of this statistic may be found in more theoretically oriented
texts such as Sen and Srivastava (1990).
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unidentifiable. Unidentifiability will occur when X is not of full rank — that is
when its columns are linearly dependent. With observational data, unidentifiability
is usually caused by some oversight. Here are some examples:

1. A person’s weight is measured both in pounds and kilos and both variables are
entered into the model. One variable is just a multiple of the other.

2. For each individual we record the number of years of preuniversity education,
the number of years of university education and also the total number of years
of education and put all three variables into the model. There is an exact linear
relation among the variables.

3. We have more variables than cases, that is, p > n. When p = n, we may perhaps
estimate all the parameters, but with no degrees of freedom left to estimate any
standard errors or do any testing. Such a model is called saturated. When p > n,
then the model is sometimes called supersaturated. Such models are considered
in large-scale screening experiments used in product design and manufacture and
in bioinformatics where there are more genes than individuals tested, but there
is no hope of uniquely estimating all the parameters in such a model. Different
approaches are necessary.

Such problems can be avoided by paying attention. Identifiability is more of an
issue in designed experiments. Consider a simple two-sample experiment, where the
treatment observations are yy,...,y, and the controls are y, 11, ..., Vmuin. SUppose we
try to model the response by an overall mean u and group effects o; and ol;:

yji = MHFTO+E;j i=1,2 j=1,....m+n
Y1 1 1 O e,
e e y
1 1 O

o — |1 o 1 o
Yn+1 oLz

e ) ) ) e .
Ym+n 1 0 1

Now although X has three columns, it has only rank two — (u, 01, 0lp) are not
identifiable and the normal equations have infinitely many solutions. We can solve
this problem by imposing some constraints, u = 0 or o] + oy = 0, for example.

Statistics packages handle nonidentifiability differently. In the regression case
above, some may return error messages and some may fit models because rounding
error may remove the exact identifiability. In other cases, constraints may be applied
but these may be different from what you expect. Here is an example. Suppose we

create a new variable for the Galdpagos dataset — the difference in area between the

island and its nearest neighbor:
galapagos[’Adiff’] = galapagos[’Area’] - galapagos[’Adjacent’]

and add that to the model. We divide the model specification from the fitting (because

we are going to use a second fitting method soon).
lmodform = smf.ols(

’Species ~ Area+Elevation+Nearest+Scruz+Adjacent+Adiff’,
galapagos)
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6.2 Finding Unusual Observations

We may find that some observations do not fit the model well. Such points are called
outliers. Other observations change the fit of the model in a substantive manner.
These are called influential observations. It is possible for a point to have both these
characteristics. A leverage point is extreme in the predictor space. It has the potential
to influence the fit, but does not necessarily do so. It is important to first identify such
points. Deciding what to do about them can be difficult.

6.2.1 Leverage

h; = Hj; are called leverages and are useful diagnostics. Since var §; = (52(1 —hi), a
large leverage, h;, will make var €; small. The fit will be attracted toward y;. Large
values of h; are due to extreme values in the X-space. h; corresponds to a (squared)
Mahalanobis distance defined by X which is (x —%)7£~!(x — x) where X is the esti-
mated covariance of X. The value of h; depends only on X and not y, so leverages
contain only partial information about a case.

Since Y ; h; = p, an average value for &; is p/n. A rough rule is that leverages of
more than 2p/n should be looked at more closely.

We will use the savings dataset as an example here:
lmod = smf.ols(’sr ~ popl5 + pop75 + dpi + ddpi’, savings).fit()
diagv = lmod.get_influence()
hatv = pd.Series(diagv.hat_matrix_diag, savings.index)
hatv.sort_values().tail )
South Rhodesia 0.160809

Ireland 0.212236
Japan 0.223310
United States 0.333688
Libya 0.531457

We have shown the largest five leverages.
np.sumChatv)

5.0

We verify that the sum of the leverages is indeed five — the number of parameters
in the model.

Without making assumptions about the distributions of the predictors that would
often be unreasonable, we cannot say how the leverages would be distributed. Nev-
ertheless, we would like to identify unusually large values of the leverage. The half-
normal plot is a good way to do this.

Half-normal plots are designed for the assessment of positive data. They could be
used for |€|, but are more typically useful for diagnostic quantities like the leverages.
The idea is to plot the data against the positive normal quantiles.

The steps are:

1. Sort the data: xjj) < ...xp).

2. Compute u; = &~ (£4).

3. Plot x}; against u;.

We do not usually expect a straight line relationship since we do not necessarily
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(c) An alternative to weighting is transformation. Find transformations on Lab
and/or Field so that in the transformed scale the relationship is approximately
linear with constant variance. You may restrict your choice of transformation
to square root, log and inverse.

2. Using the divusa data, fit a regression model with divorce as the response and
unemployed, femlab, marriage, birth and military as predictors.

(a) Make two graphical checks for correlated errors. What do you conclude?

(b) Allow for serial correlation with an AR(1) model for the errors. What is the
estimated correlation? Does the GLS model change which variables are found
to be significant?

(c) Speculate why there might be correlation in the errors.

3. For the salmonella dataset, fit a linear model with colonies as the response
and log(dose+1) as the predictor. Check for lack of fit.

4. For the cars dataset, fit a linear model with dist as the response and speed as
the predictor. Check for lack of fit.

5. Using the stackloss data, fit a model with stack.loss as the response and
the other three variables as predictors. You can get the stackloss data using
{stackloss = sm.datasets.stackloss.load_pandas().data}. For each
of the following estimators, determine which cases have an absolute residual in
excess of five.

(a) Least squares
(b) Least absolute deviations

(¢) Huber method
(d) Least trimmed squares

Compare the results — how do the coefficients vary and which estimator do you
think is best in this situation?

6. Using the cheddar data, fit a linear model with taste as the response and the
other three variables as predictors.

(a) Suppose that the observations were taken in time order. Create a time variable.
Plot the residuals of the model against time, and comment on what can be seen.

(b) Fit a GLS model with the same form as above but do now allow for an AR(1)
correlation among the errors. Is there evidence of such a correlation?

(c¢) Fit a LS model but with time now as an additional predictor. Investigate the
significance of time in the model.

(d) The last two models have both allowed for an effect of time. Explain how they
do this differently.

(e) Suppose you were told, contrary to prior information, that the observations are
not in time order. How would this change your interpretation of the model
from (c)?

7. The crawl dataset contains data on a study looking at the age when babies learn
to crawl as a function of ambient temperatures. There is additional information
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coefs stderr tvalues pvalues
Intercept 7.068 19.154 0.37 0.7154

Area -0.024 0.022 -1.07 0.2963
Elevation 0.319 0.054 5.95 0.0000
Nearest 0.009 1.054 0.01 0.9932
Scruz -0.241 0.215 -1.12 0.2752
Adjacent -0.075 0.018 -4.23 0.0003

n=30 p=6 Residual SD=60.975 R-squared=0.77

Least squares works well when there are normal errors, but performs poorly for long-
tailed errors. Fit the robust regression using default from the RLM() function of

statsmodels which is Huber T:
X = lsmod.model.wexog

y = lsmod.model.wendog
rlmod = sm.RLM(y,X).£fit (O
rlmod. summary ()

coef std err 2z P>|z]
const 6.3626 12.366 0.515 0.607
Area -0.0061 0.014 -0.422 0.673
Elevation 0.2476 0.035 7.146 0.000
Nearest 0.3590 0.681 0.528 0.598
Scruz -0.1952 0.139 -1.404 0.160
Adjacent -0.0546 0.011 -4.774 0.000

The R? statistic is not given because it does not make sense in the context of a ro-
bust regression. We see that the same two predictors, Elevation and Adjacent, are
significant. The numerical values of the coefficients have changed somewhat and the
standard errors are generally smaller.

It is worth looking at the weights assigned by the final fit. We extract and show

those that are less than one. The remaining weights are all ones.
Wwts = rlmod.weights
wts[wts < 1]

Espanola 0.679642
Gardnerl 0.661450
Gardner? 0.850097
Pinta 0.537700
SanCristobal 0.414224
SantaCruz 0.174601
SantaMaria 0.307863

We can see that a few islands are substantially discounted in the calculation of the
robust fit. Provided we do not believe there are mistakes in the data for these cases,
we should think carefully about what might be unusual about these islands.

The main purpose in analyzing these data is likely to explain the relationship be-
tween the predictors and the response. Although the robust fit gives numerically dif-
ferent output, the overall impression of what predictors are significant in explaining
the response is unchanged. Thus the robust regression has provided some measure of
confirmation. Furthermore, it has identified a few islands which are not fit so well by
the model. If there had been more disagreement between the two sets of regression
outputs, we would know which islands are responsible and deserve a closer look. If
there is a substantial difference between the two fits, we find the robust one more
trustworthy.
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Chapter 6

Diagnostics

The estimation of and inference from the regression model depend on several as-
sumptions. These assumptions should be checked using regression diagnostics be-
fore using the model in earnest. We divide the potential problems into three cate-

gories:

Error We have assumed that € ~ N(0, o2l ) or, in words, that the errors are indepen-
dent, have equal variance and are normally distributed.

Model We have assumed that the structural part of the model, Ey = X, is correct.

Unusual observations Sometimes just a few observations do not fit the model. These
few observations might change the choice and fit of the model.

Diagnostic techniques can be graphical, which are more flexible but harder to
definitively interpret, or numerical, which are narrower in scope, but require less
intuition. When searching for a good model, the first one we try may prove to be in-
adequate. Regression diagnostics often suggest specific improvements, which means
model building is an iterative and interactive process. It is quite common to repeat
the diagnostics on a succession of models.

6.1 Checking Error Assumptions

We wish to check the independence, constant variance and normality of the errors,
€. The errors are not observable, but we can examine the residuals, €. These are not

interchangeable with the error, as they have somewhat different properties. Recall
that = X (X7X)~!XTy = Hy where H is the hat matrix, so that:

§=y—9=(I—H)y=(I-H)XP+({I—H)e=(I—H)e

Therefore, var &€ = var (I — H)e = (I — H)o? assuming that var € = 6°1. We see that
although the errors may have equal variance and be uncorrelated, the residuals do
not. Fortunately, the impact of this is usually small and diagnostics can reasonably
be applied to the residuals in order to check the assumptions on the error.

6.1.1 Constant Variance

It is not possible to check the assumption of constant variance just by examining
the residuals alone — some will be large and some will be small, but this proves
nothing. We need to check whether the variance in the residuals is related to some
other quantity.

75
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is called Huber’s method and is a compromise between least squares and LAD
regression. ¢ should be a robust estimate of 6. A value proportional to the median
of |€| is suitable.

M-estimation is related to weighted least squares. The normal equations tell us
that: A
X" (y—XB)=0

With weights and in nonmatrix form, this becomes:
n p
Zwixij()’i — injﬁj) =0 j=1,...p
i=1 j=1

Now differentiating the M-estimate criterion with respect to f3; and setting to zero
we get:

so we can make the identification of a weight function as w(u) = p’(u)/u. We find
for our choices of p above that:

1. LS: w(u) is constant and the estimator is simply ordinary least squares.

2. LAD: w(u) = 1/|u|. We see how the weight goes down as u moves away from zero
so that more extreme observations get downweighted. Unfortunately, there is an
asymptote at zero. This makes a weighting approach to fitting an LAD regression
infeasible without some modification.

3. Huber:
(1) = 1 if|ul <c
A = c/|u| otherwise

We can see that this sensibly combines the downweighting of extreme cases with
equal weighting for the middle cases.

There are many other choices for p that have been proposed. Computing an M-
estimate requires some iteration because the weights depend on the residuals. The
fitting methods alternate between fitting a WLS and recomputing the weights based
on the residuals until convergence. We can get standard errors via WLS by var ﬁ =
62(XTWX)~! but we need to use a robust estimate of 62.

We demonstrate the methods on the Galapagos Islands data. Using least squares

first:

import faraway.datasets.galapagos

galapagos = faraway.datasets.galapagos.load()

lsmod = smf.ols(
’Species ~ Area + Elevation + Nearest + Scruz + Adjacent’,
galapagos) . fit

lsmod. sumary ()
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72 CAUSATION

Consistency A similar effect has been found for different subjects under different
circumstances at different times and places. If smokers, male and female, Argen-
tinian and Swedish, both now and in the past tend to get lung cancer, then the
evidence is stronger. Replication by independent research groups is particularly
important in establishing causation.

Specificity The supposed causal factor is associated mostly with a particular re-
sponse and not with a wide range of other possible responses. If a particular lung
disease is only prevalent in workers in a particular industry and those workers do
not suffer from other problems any more than other industrial workers, then the
case 1s stronger.

Temporality The supposed causal factor is determined or fixed before the outcome
or response is generated. Sometimes it is not clear whether X causes Y or vice
versa. It helps if X happens before Y if we want to establish the direction of the
effect.

Gradient The response increases (or decreases) monotonely as the supposed causal
variable increases. In other words, “the more you do it, the worse it gets.” The
phenomenom of hormesis is an exception. For example, a low consumption of
alcohol may have health benefits relative to abstinence, but drinking too much
becomes progressively more harmful.

Plausibility There is a credible theory suggesting a causal effect. The observational
study might be part of an effort to support a particular theory.

Experiment A natural experiment exists where subjects have apparently been ran-
domly assigned values of the causal variable. For example, US states have dif-
ferent laws that have differential effects on the causal factor. Sometimes it is
reasonable to view this as a form of random assignment. Generally, we conduct
observational studies because experiments are not practical, but sometimes it is
possible to do related experiments. For example, animal experiments might tell
us something about effects for humans.

Not all of these might apply, but causation might still be present. All of these
might apply, but we may not be sure of causation. Nevertheless, these considerations

do add to the weight of evidence even though we cannot express the effect numeri-
cally.

Exercises

1. Use the teengamb data with gamble as the response. We focus on the effect of
sex on the response and so we include this predictor in all models. There are
eight possible models that include all, some, or none of the other three predictors.
Fit all these models and report on the coefficient and significance of sex in each
case. Comment on the stability of the effect.

2. Use the odor dataset with odor as the response and temp as a predictor. Consider
all possible models that also include all, some or none of the other two predictors.
Report the coefficient for temperature, its standard error, t-statistic and p-value in
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each case. Discuss what stays the same, what changes and why. Which model is
best?

3. Use the teengamb data for this question.

(a) Make a plot of gamble on income using a different plotting symbol depending
on the sex.

(b) Fit a regression model with gamble as the response and income and sex as
predictors. Display the regression fit on the plot.

(c) Use the method from the chapter to find matches on sex. Use the same pa-
rameters as in the chapter. How many matched pairs were found? How many
cases were not matched?

(d) Make a plot showing which pairs were matched.

(e) Compute the differences in gamble for the matched pairs. Is there a significant
non-zero difference?

(f) Plot the difference against income. In what proportion of pairs did the female
gamble more than the male?

(g) Do the conclusions from the linear model and the matched pair approach agree?

4. Thirty-nine MBA students were asked about happiness and how this related to
their income and social life. The data are found in happy.

(a) Fit a regression model with happy as the response and the other four variables
as predictors. Give an interpretation for the meaning of the love coefficient.

(b) The love predictor takes three possible values but mostly takes the value 2 or 3.
Create a new binary predictor called clove which takes the value zero if love
is 2 or less. Use this new predictor to replace love in the regression model and
interpret the meaning of the corresponding coefficient. Do the results differ
much from the previous model?

(c) Fit a model with only clove as a predictor and interpret the coefficient. How
do the results compare to the previous outcome?

(d) Make a plot of happy on work, distinguishing the value clove by using a
y g
plotting symbol. Use jittering to distinguish overplotted points.

(e) Use the command pd.crosstab(mba.clove,mba.work) to produce a crosstab-
ulation. If we wanted to match pairs on clove with the same value of work,
what is the maximum number of 1 to 1 matches we could achieve?

(f) For each value of work, compute the mean difference in happy for the two
levels of clove. Compute an average of these differences. Which coefficient
computed earlier would be the most appropriate comparison for this average?
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so if we treat the above as a regression equation, there will be some error from de-
partment to department. The error will have a variance in proportion to the num-
ber of voters because it will be like a variance of a sum rather than a mean. Since
the weights should be inversely proportional to the variance, this suggests that the

weights should be set to 1/EI. We fit a weighted least squares model:
wmod = smf.wls("A2 ~ A +B +C+D+E+F+G+H+J + K+N -1",
fpe, weights = 1/fpe.EI ).£fit(

Only the relative proportions of the weights matter — for example, suppose we mul-

tiply the weights by an arbitray 53:
wmod53 = smf.wls("A2 ~ A + B+ C+D+E+F + G+ H+ J + K+N-1",
fpe, weights = 53/fpe.EI ).£fit(Q

Now let’s examine the coefficients from these three models:
pd.DataFrame ([1mod.params, wmod.params, wmod53.params],
index=['no weights’,’weights’,’weights*53°’]).round(3)

A B C D E F G
no weights 1.075 -0.125 0.257 0.905 0.671 0.783 2.166
weights 1.067 -0.105 0.246 0.926 0.249 0.755 1.972
weights*53 1.067 -0.105 0.246 0.926 0.249 0.755 1.972
H J K N

-0.854 0.144 0.518 0.558
-0.566 0.612 1.211 0.529
-0.566 0.612 1.211 0.529

We see that using weights makes a difference but only the relative size of the weights
matters.

Now there is one remaining difficulty, unrelated to the weighting, in that pro-
portions are supposed to be between zero and one. We can impose an ad hoc fix
by truncating the coefficients that violate this restriction either to zero or one as ap-
propriate. We achieve this by modifying the response (using variables with fixed

coefficient one) and omitting variables that have fixed coefficient zero:
y = fpe.A2 - fpe.A - fpe.G - fpe.K

x - fpe.IOC[: ’[“C“’“D"’"E“,“F“’“N“]]

wmod = sm.WLS(y, X, weights = 1/fpe.EI ).£fit(
wmod . params

C 0.225773
D 0.969977
E 0.390204
F 0.744240
N 0.608539

We see that voters for the Communist candidate D apparently almost all voted for
the Socialist Mitterand in the second round. However, we see that around 20% of the
voters for the Gaullist candidate C voted for Mitterand. This is surprising since these
voters would normally favor the more right wing candidate, Giscard. This appears
to be the decisive factor. We see that of the larger blocks of smaller candidates, the
Ecology party voters, E, roughly split their votes as did the first round non-voters.
The other candidates had very few voters, and so their behavior is less interesting.

This analysis is somewhat crude, and more sophisticated approaches are dis-
cussed in Anderson and Loynes (1987). We bake the weights into the variables

first:
y = fpe.A2
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MATCHING 67

and suppose that this Z was linked to T by:
Zi=Yo+nTi+¢;

Z is sometimes called a confounding variable. Substituting the latter into the former,
we find the coefficient for T is B7 + B57Y1. Compare this to the B; in the initial model
where we do not include Z. There are two ways in which the conclusion could be
the same for the two models. We could have B3 = 0 when Z has no effect on the
response or Y; = 0 where the treatment has no effect on Z. Otherwise Z will have
an effect on our conclusions and the initial model which excludes Z will provide a
biased estimate of the treatment effect. In a designed experiment, we have y; = 0 by
the randomization in the assignment of 7.

Does such a third variable Z exist for the New Hampshire voting example? Con-
sider the proportion of votes for Howard Dean, a Democratic candidate in the previ-

ous presidential campaign in 2004. We add this term to the model:
lmodz = smf.ols(’pObama ~ trt+Dean’,newhamp).fit()
lmodz . sumary ()

coefs stderr tvalues pvalues
Intercept 0.221 0.011 19.65 0.0000
trt -0.005 0.008 -0.61 0.5407
Dean 0.523 0.042 12.55 0.0000

n=276 p=3 Residual SD=0.054 R-squared=0.42

We see that the effect of the voting system is no longer statistically significant with a
p-value of 0.54. The proportion voting for Dean shows a positive relationship to the
proportion voting for Obama. We can also see that this third variable is related to our

“treatment’ variable:
lmodc = smf.ols(’Dean ~ trt’,newhamp).fit()
lmodc. sumary ()

coefs stderr tvalues pvalues
Intercept 0.251 0.006 41.99 0.0000
trt 0.090 0.010 9.18 0.0000

n=276 p=2 Residual SD=0.079 R-squared=0.24
We can see that there is an active confounder in this situation. What should we

conclude? In the next section, we show how we can use counterfactual notions to
clarify the effect of the voting system on preferences for Obama.

5.5 Matching

People vote for candidates based on political and character preferences. The pro-
portion of voters choosing Howard Dean in the previous Democratic primary tells
us something about the aggregate preferences of the voters in each ward in the 2008
primary. Suppose that we had been allowed to do an experiment in 2008 and we were
permitted to assign the voting systems to the wards. How would we do this?
Consider a clinical trial where we compare a treatment to a control. We have a
pool of available subjects who differ in identifiable ways such as sex, age, overall
health condition and so on that might affect the response. We could simply randomly
divide the pool in two, assigning one group to the treatment and one to the control.
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choose this option after observing a positive relationship in a plot of |§;| against
Xi.

2. When the Y; are the averages of n; observations, then var y; = var g; = o2 /ni,
which suggests w; = n;. Responses that are averages arise quite commonly, but
take care that the variance in the response really is proportional to the group size.
For example, consider the life expectancies for different countries. At first glance,
one might consider setting the weights equal to the populations of the countries,

but notice that there are many other sources of variation in life expectancy that
would dwarf the population size effect.

3. When the observed responses are known to be of varying quality, weights may be
assigned w; = 1/var (y;).

Elections for the French presidency proceed in two rounds. In 1981, there were
10 candidates in the first round. The top two candidates then went on to the second
round, which was won by Francois Mitterand over Valéry Giscard-d’Estaing. The
losers in the first round can gain political favors by urging their supporters to vote
for one of the two finalists. Since voting is private, we cannot know how these votes
were transferred; we might hope to infer from the published vote totals how this
might have happened. Anderson and Loynes (1987) published data on these vote

totals in every fourth department of France:
import faraway.datasets. fpe
fpe = faraway.datasets.fpe.load()

fpe.head O

EI A B K A2 B2 N
Ain 260 51 64 ... 3 105 114 17
Alpes 75 14 17 .. 1 32 31 5
Ariege 107 27 18 1 57 33 6
Bouches.du.Rhone 1036 191 204 ... 6 466 364 30
Charente.Maritime 367 71 76 ce. 2 163 142 17

A and B stand for Mitterand’s and Giscard’s votes in the first round, respectively,
while A2 and B2 represent their votes in the second round. C-K are the first round
votes of the other candidates while EI denotes electeur inscrits or registered vot-
ers. All numbers are in thousands. The total number of voters in the second round
was greater than the first — we can compute the difference as N. We will treat this
group like another first round candidate (although we could reasonably handle this
differently).

Now we can represent the transfer of votes as:
A2 =BsA+BpB+PBcC+PBpD+BeE +PrF +PcG +BuH +BsJ + BxK + ByN

where [3; represents the proportion of votes transferred from candidate i to Mitterand
in the second round. We can equally well do this for Giscard-d’Estaing but then the
B’s will simply be the remaining proportions so it’s not necessary to do both. Our first
model is suggested by this equation, where we use -1 in the model formula because

there is no intercept.
Imod = smf.wls("A2 ~ A + B+ C+D+E+F+G+H+J +K+N -1",
fpe) . fit O

We would expect the transfer proportions to vary somewhat between departments,
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X 1lmod.model . wexog

y 1lmod.model . wendog

gmod = sm.GLSAR(y, X, rho=1)
res=gmod.iterative_fit(maxiter=6)
gmod.rho.round(3)

array([0.582])

We see that the estimated value of p is very similar to the OLS residual calculation.

We examine the model summary:
res.summary () . tables[1]

coef std err t P>|t| [0.025 0.975]
const -0.2315 0.050 -4.658 0.000 -0.330 -0.133
x1 0.0634 0.077 0.823 0.412 -0.089 0.216
X2 -0.2120 0.143 -1.488 0.139 -0.494 0.070
x3 0.0066 0.072 0.092 0.927 -0.136 0.149
x4 -0.0144 0.058 -0.247 0.805 -0.130 0.101
x5 0.0577 0.076 0.760 0.448 -0.092 0.208
X6 0.2321 0.170 1.366 0.174 -0.104 0.568
x7 0.0490 0.082 0.596 0.552 -0.114 0.212
x8 0.1249 0.055 2.266 0.025 0.016 0.234

The standard errors of f’) are much larger, and only one of the predictors is statis-
tically significant in the output. However, there is substantially collinearity between
the predictors so this should not be interpreted as “no predictor effect”. Also you
should understand that correlation between the predictors and correlation between
the errors are different phenomena and there is no necessary link between the two. It
is not surprising to see significant autocorrelation in this example because the prox-
ies can only partially predict the temperature and we would naturally expect some
carryover effect from one year to the next.

Another situation where correlation between errors might be anticipated is where
observations are grouped in some way. Other examples where correlated errors can
arise are in spatial data where the relative locations of the observations can be used
to model the error correlation. In other cases, one may suspect a correlation between
errors but have no structure to suggest a parameterized form such as serial correlation
or compound symmetry. The problem is that there are too many pairwise correlations
to be estimated and not enough data to do it.

8.2 Weighted Least Squares

Sometimes the errors are uncorrelated, but have unequal variance where the form
of the inequality is known. In such cases, ¥ is diagonal but the entries are not
equal. Weighted least squares (WLS) is a special case of GLS and can be used in
this situation. We set ¥ = diag(1/wy,...,1/w,), where the w; are the weights so
S = diag(y/1/wi,...,+/1/wy,). We then regress |/w;y; on \/w;x; (although the col-
umn of ones in the X-matrix needs to be replaced with ,/w;). When weights are used,
the residuals must be modified to use \/w;€;. We see that cases with low variability
get a high weight and those with high variability a low weight. Some examples:

1. Errors proportional to a predictor: var (g;) o< x; suggests w; = x; L. One might
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We start by looking at the standard deviations of the principal components, SD(z;):
np.sqrt(pca.explained_variance_) .round(2)

array([15.99, 4.07, 2.97, 2. , 1.69, 1.5, 1.3, 1.25, 1.11, 0.53])
Sometimes, it can also be helpful to consider what proportion each principal compo-

nent contributes to the total variation. We can check this with:
pca.explained_variance_ratio_.round(3)

array([0.867, 0.056, 0.03 , 0.014, 0.01 , 0.008, 0.006, 0.005, 0.004, 0.001])

We can see that the first PC explains a large fraction of the total variation. The second
PC explains much less and later PCs hardly anything. Given that these measurements
describe the shape of a human, we are not surprised. We may vary in size but we are
all similar in shape. If we were to add some animals or aliens into our data, we might
expect more variation in the other PCs.

Instead of ten variables, we could use just a single variable, formed by a linear
combination described by the first PC, which would represent the ten-dimensional
data quite well.

The first column of the rotation matrix, u;, is a linear combination describing
the first principal component given by rot [0, : ] which we print neatly on one row

with:
rot = pca.components_
pd.DataFrame (rot[0,:],index=cfat.columns).round(3).T

neck chest abdom hip thigh knee ankle biceps forearm wrist
0.122 0.502 0.658 0.42 0.28 0.121 0.056 0.145 0.074 0.039

We see that the chest, abdomen, hip and thigh measures dominate the first principal
component. However, the reason for this may simply be that these measures are
larger and so more variable than the wrist or ankle circumferences. We might prefer
to scale the variables for size by converting to standard units, that is, subtracting the

mean and dividing by the standard deviation. We can achieve this as follows:
from sklearn.preprocessing import scale

scalfat = pd.DataFrame(scale(cfat))

pcac = PCAQ)

pcac.fit(scalfat)

pcac.explained_variance_ratio_.round(2)

array([0.702, 0.073, 0.067, 0.049, 0.03 , 0.028, 0.02 , 0.016, 0.008, 0.006])

We can see that, after scaling, the proportion of variablity explained by the first
component drops to 70.2%. The remaining variation is more evenly spread over

the other components. Here is the first principal component:
rot = pcac.components_
pd.DataFrame(rot[0,:],index=cfat.columns) .round(3).T

neck chest abdom hip thigh knee ankle biceps forearm wrist
0.327 0.339 0.334 0.348 0.333 0.329 0.247 0.322 0.27 0.299

It has very similar coefficients for all the variables. It is useful to interpret this as
“overall size” since it is roughly proportional to a mean across all these (standard-
ized) variables. One interpretation of this dominant first principal component is that
body shapes in men are mostly proportional. Bigger men tend to be just larger all-
round versions of smaller men.

The other principal components describe how the data vary in ways orthogonal

to this first PC. For example, we might look at the second principal component:
pd.DataFrame (rot[1l,:],index=cfat.columns).round(3).T
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n=252 p=3 Residual SD=4.435 R-squared=0.68

We have a simple model that fits almost as well as the ten-predictor model. We
have given names to the two predictors. We can interpret it similarly to the previous
model but it is easier to explain to others. Future studies might be done more cheaply
because we might only need these two measures.

However, for this explanatory use of PCR to work, we typically need the predic-
tors to measure quantities for which linear combinations are interpretable — usually
the predictors would need to have the same units. So if we had used the age and
weight variables found in the fat data example, it would have been far more diffi-
cult to interpret the linear combinations. Even in the homogeneous predictor case,
we need some luck and imagination to get interpretable PCs. These requirements
restrict the utility of PCR for explanatory purposes. It is worth trying but you might
not get anything useful from it.

We can sometimes make better predictions with a small number of principal com-
ponents in Z than a much larger number of variables in X. Success requires that we
make a good choice of the number of components. To illustrate the use of PCR and
the other shrinkage methods in this chapter, we will use a set of data where the em-
phasis is on prediction but the explanatory aspects of the methods can be useful in
gaining intuition about the structure of the data. A Tecator Infratec Food and Feed
Analyzer working in the wavelength range of 850 to 1050 nm by the near-infrared
transmission (NIT) principle was used to collect data on samples of finely chopped
pure meat and 215 samples were measured. For each sample, the fat content was
measured along with a 100-channel spectrum of absorbances. Since determining
the fat content via analytical chemistry is time consuming, we would like to build a
model to predict the fat content of new samples using the 100 absorbances which can
be measured more easily. See Thodberg (1993) for more details.

The true performance of any model is hard to determine based on just the fit to
the available data. We need to see how well the model does on new data not used
in the construction of the model. For this reason, we will partition the data into two
parts — a training sample consisting of the first 172 observations that we will use to
build and estimate the models and a testing sample of the remaining 43 observations.
We will use the test sample only to evaluate the performance of our models and not
to select them.

We load in the data and make the split into training and testing samples: Let’s

start with the least squares fit:

import faraway.datasets.meatspec

meatspec = faraway.datasets.meatspec.load()
trainmeat = meatspec.iloc[:172,]

testmeat = meatspec.iloc[173:,]

A linear model with all the predictors is a good place to start. We use the

LinearRegression function from linear_model module in scikit-learn. The
function has far fewer features than those in statsmodels, but it works consistently
with other functions in scikit-1learn and so it is more convenient to use it here. In

this function, the score is the R2.
from sklearn import linear_model
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biceps 0.111 0.159 0.70 0.4853
forearm 0.345 0.186 1.86 0.0645
wrist -1.353 0.471 -2.87 0.0045

n=252 p=11 Residual SD=4.071 R-squared=0.74

It is difficult to say much about which factors might influence body fat percentage
because there are clear indications of collinearity. The signs of the coefficients and
their significance vary in a less than credible way. Why would abdomen circum-
ference have a positive effect, while hip circumference has negative effect? Now

consider the output where we use only the first two principal components:
pcscores = pca.fit_transform(scale(cfat))

xmat = sm.add_constant(pcscores[:,:2])

lmod = sm.OLS(fat.brozek, xmat).fit()

1lmod. sumary ()

coefs stderr tvalues pvalues
const 18.938 0.329 57.54 0.0000
x1 1.838 0.124 14.80 0.0000
X2 -3.543 0.386 -9.18 0.0000

n=252 p=3 Residual SD=5.225 R-squared=0.55

We have lost some explanatory power in going from ten down to two predictors.
But these two predictors are now orthogonal, meaning we can now interpret these
without collinearity worries. As previously discussed, the first PC can be viewed
as a measure of overall size. We can see this is associated with higher body fat.
The second PC shows a negative association, meaning that men who carry relatively
more of their substance in their extremities tend to be leaner. These would tend to
be men who are more muscular so this result accords with what one might expect.
So the PCR here has allowed us a meaningful explanation, whereas the full predictor
regression was opaque.

One objection to the previous analysis is that the two PCs still use all ten pre-
dictors, so there has been no saving in the number of variables needed to model the
response. Furthermore, we must rely on our subjective interpretation of the meaning
of the PCs. To answer this, one idea is to take a few representive predictors based on
the largest coefficients seen in the PCs. For example, we might pick out the abdomen
circumference to represent the first PC and the difference between abdomen and an-
kle circumference for the second PC. The latter pair show the largest coefficients in
absolute value (—0.40 and 0.62) for the second PC. Abdomen does not quite have
the largest coefficient in the first PC (hip does), but it’s a close choice and means we
need only two predictors in the following model. We need to scale the predictors so

that ankle and abdomen are on the standard units scale.

xmat = pd.concat([scalfat.iloc([:,2],
scalfat.iloc[:,6] - scalfat.iloc[:,2]],axis=1)

xmat.columns = [’'overall’, 'muscle’]

xmat = sm.add_constant (xmat)

Imod = sm.OLS(fat.brozek, xmat).fit()

1lmod. sumary ()

coef stderr tvalues pvalues
const 18.938 0.279 67.79 0.0000
overall 5.751 0.328 17.55 0.0000
muscle -0.993 0.313 -3.17 0.0017
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you haven’t seen enough data to be aware of extremes. This is of particular con-
cern in financial applications where stock prices are characterized by mostly small
changes (normally distributed) but with infrequent large changes (usually falls).
It is difficult to accommodate these possibilities within the model since we have
insufficient information. It is wise for the users of prediction models to consider
the consequences of the unexpected in more qualitative ways.

Exercises

1. For the prostate data, fit a model with 1psa as the response and the other vari-
ables as predictors.

(a) Suppose a new patient with the following values arrives:

lcavol 1lweight age 1bph svi lcp
1.44692 3.62301 65.00000 0.30010 0.00000 -0.79851
gleason pgg4s
7.00000 15.00000
Predict the 1psa for this patient along with an appropriate 95% uncertainty

interval.

(b) Repeat the last question for a patient with the same values except that he is age
20. Explain why the interval is wider.

(c) For the model of the previous question, remove all the predictors that are not
significant at the 5% level. Now recompute the predictions of the previous
question. Are the intervals wider or narrower? Which predictions would you
prefer? Explain.

2. Using the teengamb data, fit a model with gamble as the response and the other
variables as predictors.

(a) Predict the amount that an average male with average (given these data) status,
income and verbal score would gamble along with an appropriate 95% interval.

(b) Repeat the prediction for males with maximal values (for this data) of status,
income and verbal score. Which interval is wider and why is this result ex-
pected?

(c) Fit a model with sqrt (gamble) as the response but with the same predictors.
Now predict the response and give a 95% prediction interval for the individual
in (a). Take care to give your answer in the original units of the response.

(d) Repeat the prediction for the model in (c) for a female with status=20,
income=1, verbal = 10. What is wrong with the prediction interval?

3. The snail dataset contains percentage water content of the tissues of snails grown
under three different levels of relative humidity and two different temperatures.

(a) Use the command xtabs(water ~ temp + humid, snail)/4 to produce a
table of mean water content for each combination of temperature and humidity.

Can you use this table to predict the water content for a temperature of 25°C
and a humidity of 60%? Explain.
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This means that problems are being caused by more than just one linear combination.

Now check the variance inflation factors (VIFs). For the first variable this is:

from patsy import dmatrix

X = dmatrix("Age+Weight+HtShoes+Ht+Seated+Arm+Thigh+Leg",
seatpos, return_type='dataframe’)

lmod = sm.OLS(X[’Age’],X.drop(’Age’,axis=1)).£fit(Q

lmod.rsquared, 1/(1-1lmod.rsquared)

(0.4995, 1.9979)

which is moderate in size — the VIF for orthogonal predictors is one. Now we

compute all the VIFs:

from statsmodels.stats.outliers_influence \
import variance_inflation_factor

vif = [variance_inflation_factor(X.values, i) \
for i in range(X.shape[l])]

pd.Series(vif, X.columns)

Intercept 741.029693

Age 1.997931
Weight 3.647030
HtShoes 307.429378
Ht 333.137832
Seated 8.951054
Arm 4.496368
Thigh 2.762886
Leg 6.694291

The intercept value should always be ignored since it makes little sense for a VIF.
There is much variance inflation. For example, we can interpret v/307.4 = 17.5 as
telling us that the standard error for height with shoes is 17.5 times larger than it
would have been without collinearity. We cannot apply this as a correction because
we did not actually observe orthogonal data, but it does give us a sense of the size of
the effect.

There is substantial instability in these estimates. Measuring the hipcenter is
difficult to do accurately and we can expect some variation in these values. Suppose
the measurement error had a SD of 10 mm. Let’s see what happens when we add a

random perturbation of this size to the response:
seatpos[’hiperb’] = seatpos.hipcenter+ \
np.random.normal (scale=10,size=38)
lmod = smf.ols(
"hipcenter ~ Age+Weight+HtShoes+Ht+Seated+Arm+Thigh+Leg’,
seatpos) .fit ()
lmodp = smf.ols(
"hiperb ~ Age+Weight+HtShoes+Ht+Seated+Arm+Thigh+Leg’,
seatpos) .fit(Q
pd.DataFrame ([1mod.params, lmodp.params],
index=[’'original’, ’'perturbed’]) .round(3)
Intercept Age Weight HtShoes Ht Seated Arm Thigh Leg
original 436.432 0.776 0.026 -2.692 0.601 0.534 -1.328 -1.143 -6.439
perturbed 430.322 0.746 0.067 -4.824 2.636 0.857 -1.393 -1.860 -5.779

We see large changes in some of the coefficients, indicating their sensitivity to the

response values caused by the collinearity. We compare the R?’s for the two models:
lmod.rsquared, lmodp.rsquared

(0.687, 0.669)
We see that these are similar.
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Chapter 5

Explanation

Linear models can be used for prediction or explanation. Prediction is not simple but
it is conceptually easier than explanation. We have been deliberately vague about the
meaning of explanation. Sometimes explanation means causation but sometimes it
is just a description of the relationships between the variables. Causal conclusions
require stronger assumptions than those used for predictive models. This chapter
looks at the conditions necessary to conclude a causal relationship and what can be
said when we lack these conditions.

5.1 Simple Meaning

Start by loading the packages used in this chapter:
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import scipy as sp

import statsmodels.api as sm

import statsmodels.formula.api as smf
import faraway.utils

Let’s consider the Galdpagos Islands example:
import faraway.datasets.galapagos
galapagos = faraway.datasets.galapagos.load()
lmod = smf.ols(
’Species ~ Area + Elevation + Nearest + Scruz + Adjacent’,
galapagos) . fit ()
1mod. sumary ()

coefs stderr tvalues pvalues
Intercept 7.068 19.154 0.37 0.7154

Area -0.024 0.022 -1.07 0.2963
Elevation 0.319 0.054 5.95 0.0000
Nearest 0.009 1.054 0.01 0.9932
Scruz -0.241 0.215 -1.12 0.2752
Adjacent -0.075 0.018 -4.23 0.0003

n=30 p=6 Residual SD=60.975 R-squared=0.77
What is the meaning of the coefficient for Elevation § = 0.319?

In a few examples, mostly from the physical sciences or engineering, 3 might
represent a real physical constant. For example, we might attach weights to a spring
and measure the extension. Here B; will estimate a physical property of the spring. In
such examples, the model is a representation of a physical law. But for the Galdpagos
data, our model has no such strong theoretical underpinning. It is an empirical model

61
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(b) Fit a regression model with the water content as the response and the temper-
ature and humidity as predictors. Use this model to predict the water content
for a temperature of 25°C and a humidity of 60%?

(c) Use this model to predict water content for a temperature of 30°C and a hu-
midity of 75%? Compare your prediction to the prediction from (a). Discuss
the relative merits of these two predictions.

(d) The intercept in your model is 52.6%. Give two values of the predictors for
which this represents the predicted response. Is your answer unique? Do you
think this represents a reasonable prediction?

(e) For a temperature of 25°C, what value of humidity would give a predicted
response of 80% water content.

4. We can obtain the number of monthly deaths from lung diseases for people in the
UK from 1974 to 1979 with

import statsmodels.api as sm

deaths = sm.datasets.get_rdataset("deaths","MASS") .data
deaths.head()

(a) Make an appropriate plot of the data. At what time of year are deaths most
likely to occur?

(b) Fit an autoregressive model of the same form used for the airline data. Are all
the predictors statistically significant?

(c¢) Use the model to predict the number of deaths in January 1980 along with a
95% prediction interval.

(d) Use your answer from the previous question to compute a prediction and inter-
val for February 1980.

(e) Compute the fitted values. Plot these against the observed values. Note that

you will need to select the appropriate observed values. Do you think the
accuracy of predictions will be the same for all months of the year?

5. For the fat data used in this chapter, a smaller model using only age, weight,
height and abdom was proposed on the grounds that these predictors are either
known by the individual or easily measured.

(a) Compare this model to the full 13 predictor model used earlier in the chapter.
Is it justifiable to use the smaller model?

(b) Compute a 95% prediction interval for median predictor values and compare
the results to the interval for the full model. Do the intervals differ by a practi-
cally important amount?

(¢) For the smaller model, examine all the observations from case numbers 25 to
50. Which two observations seem particularly anomalous?

(d) Recompute the 95% prediction interval for median predictor values after these
two anomalous cases have been excluded from the data. Did this make much
difference to the outcome?
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Furthermore, the solution of dropping the intercept only works when there is a
single factor and does not generalize to the multiple factor case. For these reasons,
we prefer the approach of dropping one of the dummy variables to dropping the
intercept.

It is not necessary to explicitly form the dummy variables as statsmodels via

patsy can produce these directly by just including the factor in the model formula:
lmod = smf.ols(’'ptsd ~ csa’, sexab).fit()
1lmod. sumary ()

coefs stderr tvalues pvalues
Intercept 11.941 0.518 23.07 0.0000
csa[T.NotAbused] -7.245 0.811 -8.94 0.0000

n=76 p=2 Residual SD=3.473 R-squared=0.52

We can check that csa is a factor variable:

sexab.csa.dtype, sexab.ptsd.dtype
(dtype(’0’), dtype(’float64’))

This happens automatically when a variable takes non-numeric values. The dummy
variables are created but one is dropped to ensure identifiability. This is known as
the reference level. In this example, the reference level is “Abused”. At first glance,
one might be perplexed as “Abused” does not appear in the model summary output.
However, the mean response for the reference level is encoded in the intercept of
11.941. The parameter estimate for “NotAbused” of —7.245 is not the mean response
for this level but the difference from the reference level. Hence the mean response
for the “NotAbused” level is 11.941 —7.245 = 4.696. Earlier in our analysis, we
dropped the dummy variable d; to get the same output.

We can also create dummy variables in pandas:

sac = pd.concat([sexab,pd.get_dummies(sexab.csa)],axis=1)
sac.iloc[[0,44,45,75],:]

cpa ptsd csa Abused NotAbused
1 2.04786 9.71365 Abused 1 0
45 5.11921 11.12798 Abused 1 0
46 1.49181 6.14200 NotAbused 0 1
76 0.81138 7.12918 NotAbused 0 1

and fit the model:
1lmod = smf.ols(’'ptsd ~ Abused’, sac).fit(Q)
1lmod. sumary ()
coefs stderr tvalues pvalues
Intercept 4.696 0.624 7.53 0.0000
Abused 7.245 0.811 8.94 0.0000

n=76 p=2 Residual SD=3.473 R-squared=0.52

The choice of reference level is arbitrary. In some examples, there is a natural
choice for the reference level as a control or no-treatment level. In the current ex-
ample, “NotAbused” is the natural choice for the reference level. The default choice
of reference level is the first level in alphabetical order, which would be “Abused”
in this example. Because this choice is inconvenient, we change the reference level

using the relevel command:

Imod = smf.ols(
'ptsd ~ C(csa,Treatment (reference="NotAbused"))’,
sexab).fit ()

1lmod. sumary ()
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1lmod. sumary ()

coefs stderr tvalues pvalues
const 5.546 0.270 20.53 0.0000
x1 6.395 0.403 15.87 0.0000
X2 -0.850 0.450 -1.89 0.0630

n=76 p=2 Residual SD=3.473 R-squared=0.52
Warning: Strong collinearity - design may be singular

We can see a warning about singularities. Although some model output is pro-
duced, its meaning is somewhat obscure under these circumstances. In particular,
the NotAbused level appears not to be significant. As will be seen below, this is
misleading and should be ignored. The cause of this identifiability problem can be
revealed by studying the X model matrix. We show only the first, two in the middle,

and last rows:
sm.add_constant (X)[[0,44,45,75], :]

array([[1., 1., O.],

[1., 1., 0.1,
[1., 0., 1.1,
(1., 0., 1.1DD

We can see that the sum of the second and third columns equals the first column.
This means that X is not of full rank, having a rank of two, not three. Hence not all
the parameters can be identified. This should not be surprising since we are trying to
use three parameters to model only two groups.

We have more parameters than we need, so the solution is to get rid of one of

them. Once choice would be to eliminate dj:
lmod = sm.OLS(sexab.ptsd,sm.add_constant(df2)).£fit(Q
1lmod. sumary ()

coefs stderr tvalues pvalues

const 11.941 0.518 23.07 0.0000
csa -7.245 0.811 -8.94 0.0000

n=76 p=2 Residual SD=3.473 R-squared=0.52

Compare this to the output of the t-test. The intercept of 11.941 is the mean of the
first group (“Abused”) while the parameter for d2 represents the difference between
the second and first group, i.e., 11.941 —7.245 = 4.696. The ¢-value for d2 of —8.94
is the test statistic for the test that the difference is zero and is identical (excepting
the sign) to the test statistic from the t-test computed previously.

An alternative approach is to eliminate the intercept term:
lmod = sm.OLS(sexab.ptsd,X).fit ()
1lmod. sumary ()

coefs stderr tvalues pvalues

x1 11.941 0.518 23.07 0.0000
x2 4.696 0.624 7.53 0.0000

n=76 p=2 Residual SD=3.473 R-squared=0.52

The advantage of this approach is that the means of the two groups are directly sup-
plied by the parameter estimates of the two dummy variables. However, we do not
get the t-test for the difference. The tests in the output correspond to hypotheses
claiming the mean response in the group is zero. These are not interesting because
these hypotheses are unbelievable.
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Car drivers like to adjust the seat position for their own comfort. Car designers
would find it helpful to know where different drivers will position the seat depend-
ing on their size and age. Researchers at the HuMoSim laboratory at the Univer-
sity of Michigan collected data on 38 drivers. They measured age in years, weight
in pounds, height with shoes and without shoes in centimeters, seated height arm
length, thigh length, lower leg length and hipcenter, the horizontal distance of the
midpoint of the hips from a fixed location in the car in millimeters. We fit a model

with all the predictors:
import faraway.datasets.seatpos
seatpos = faraway.datasets.seatpos.load()
lmod = smf.ols(
’hipcenter ~ Age+Weight+HtShoes+Ht+Seated+Arm+Thigh+Leg’,
seatpos) . fit ()
1lmod. sumary ()
coefs stderr tvalues pvalues
Intercept 436.432 166.572 2.62 0.0138

Age 0.776  0.570 1.36 0.1843
Weight 0.026 0.331 0.08 0.9372
HtShoes -2.692 9.753 -0.28 0.7845
Ht 0.601 10.130 0.06 0.9531
Seated 0.534 3.762 0.14 0.8882
Arm -1.328 3.900 -0.34 0.7359
Thigh -1.143 2.660 -0.43 0.6706
Leg -6.439 4.714 -1.37 0.1824

n=38 p=9 Residual SD=37.720 R-squared=0.69
This model already shows the signs of collinearity. The R? is not small, but none of

the individual predictors is significant. We take a look at the pairwise correlations:
seatpos.iloc[:,:-1].corr().round(3)

Age Weight HtShoes Ht Seated Arm Thigh Leg
Age 1.000 0.081 -0.079 -0.090 -0.170 0.360 0.091 -0.042
Weight 0.081 1.000 0.828 0.829 0.776 0.698 0.573 0.784
HtShoes -0.079 0.828 1.000 0.998 0.930 0.752 0.725 0.908
Ht -0.090 0.829 0.998 1.000 0.928 0.752 0.735 0.910
Seated -0.170 0.776 0.930 0.928 1.000 0.625 0.607 0.812
Arm 0.360 0.698 0.752 0.752 0.625 1.000 0.671 0.754
Thigh 0.091 0.573 0.725 0.735 0.607 0.671 1.000 0.650
Leg -0.042 0.784 0.908 0.910 0.812 0.754 0.650 1.000

There are several large pairwise correlations between predictors. Now we check the

eigendecomposition of X7 X (not including the intercept in X):

X = 1lmod.model .wexog[:,1:]

XTX = X.T @ X

evals, evecs = np.linalg.eig(XTX)

evals = np.flip(np.sort(evals))

evals

array([3.65367136e+06, 2.14794802e+04, 9.04322529e+03, 2.98952599e+02,
1.48394821e+02, 8.11739742e+01, 5.33619434e+01, 7.29820918e+00])

The function np.linalg.eig does not necessarily sort the eigenvalues in descend-

ing order — we have enforced that. Now we compute the condition numbers:

np.sqrt(evals[0]/evals[1:])

array([ 13.04226011, 20.10032434, 110.55122882, 156.91171478,
212.15649705, 261.66697969, 707.5491072 1)

There is a wide range in the eigenvalues, and several condition numbers are large.
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problem is exact collinearity. There is no unique least squares estimate of 3. The
solution may require removing some predictors.

A more challenging problem arises when X’ X is close to singular but not exactly
so. This is known as collinearity or sometimes, multicollinearity. Collinearity leads
to imprecise estimates of . The signs of the coefficients can be the opposite of
what intuition about the effect of the predictor might suggest. The standard errors
are inflated so that ¢-tests may fail to reveal significant factors. The fit becomes very
sensitive to measurement errors where small changes in y can lead to large changes
in B

Collinearity can be detected in several ways:

1. Examination of the correlation matrix of the predictors may reveal values close to

—1 or +1 indicating large pairwise collinearities.

2. A regression of x; on all other predictors gives R?. R? close to one indicates
a problem because it means one predictor can almost be predicted exactly by a
linear combination of other predictors. Repeat for all predictors. The offending
linear combination may be discovered by examining the regression coefficients of
these regressions.

3. Examine the eigenvalues of X X vy > > kp > 0. Zero eigenvalues denote
exact collinearity, while the presence of some small eigenvalues indicates multi-
collinearity. The condition number Kk measures the relative sizes of the eigenvalues
and is defined as:

A1

K= x,

where ¥ > 30 is considered large. Other condition numbers, /A;/A; are also
worth considering because they indicate whether more than just one independent
linear combination is to blame. Alternative calculations involve standardizing the
predictors and/or including the intercept term in X.

The effect of collinearity can be seen by this expression for var B it

We can see that if the predictor x; does not vary much, then the variance of B j will
be large. If R% is close to one, then the variance inflation factor (1 — R%)_1 will be

large and so var ﬁ j will also be large.

This equation also tells us which designs will minimize the variance of the re-
gression coefficients if we have the ability to choose the X. Orthogonality means
that R% = 0 which minimizes the variance. Also we can maximize Sy x; by spread-
ing X as much as possible. The maximum is attained by placing half the points at
the minimum practical value and half at the maximum. Unfortunately, this design
assumes the linearity of the effect and would make it impossible to check for any
curvature. So, in practice, we might put some design points in the middle of the
range to allow checking of the fit.
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coefs stderr tvalues pvalues

Intercept 4.696 0.624 7.53 0.0000
C(csa, Treatment(reference="NotAbused")) [T.Abused] 7.245 0.811 8.94 0.0000

n=76 p=2 Residual SD=3.473 R-squared=0.52

A comparison of the outputs reveals that the fitted values and residuals are the
same for either choice — the residual standard error and R? will be the same. But
the parameterization is different.

Although we have only managed to construct a z-test using linear modeling, a
good understanding of how factor variables are handled is essential for the more
sophisticated models to follow.

14.2 Factors and Quantitative Predictors

We can see from our analysis that women who have suffered childhood sexual abuse
tend to have higher levels of PTSD than those who have not. However, we also have
information about varying levels of childhood physical abuse (cpa) which may also
have an effect on PTSD. We need models that can express how a factor variable like
csa and a quantitative variable like cpa might be related to a response.

Suppose we have a response y, a quantitative predictor x and a two-level factor
variable represented by a dummy variable d:

0 reference level
d =
1 treatment level

Several possible linear models may be considered here:

1. The same regression line for both levels: y = Bg + Bix+ € or is written as y ~ X.
This model allows no effect for the factor.

2. A factor predictor but no quantitative predictor: y = Bg + B2d + €. This is written
asy ~ d.

3. Separate regression lines for each group with the same slope: y = B+ Bix +
Bod +e€oris writtenasy ~ x + d. In this case B, represents the vertical distance
between the regression lines (i.e., the effect of the treatment).

4. Separate regression lines for each group with the different slopes: y = By + Bix +
Bod +PBsx.d+€ oris written asy ~ X + d + d:xory ~ x*d. To form the
slope interaction term d:x in the X-matrix, multiply x by d elementwise. Any
interpretation of the effect of the factor will now also depend on the quantitative
predictor.

Estimation and testing work just as they did before. Interpretation is easier if we can
eliminate the interaction term.

We start with the separate regression lines model — ptsd ~ cpa*csa:
lmod4 = smf.ols(’ptsd ~ csa*cpa’, sexab).fit()
1lmod4 . sumary ()

coefs stderr tvalues pvalues
Intercept 10.557 0.806 13.09 0.0000
csa[T.NotAbused] -6.861 1.075 -6.38 0.0000
cpa 0.450 0.208 2.16 0.0342
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Now the practical problem is that we usually cannot apply both treatment and control
at the same time. We only get to see one of the two outcomes: (y?, y,l) The outcome
we do not see is called the counterfactual. How near can we come to approximating
this quantity 9; that we normally cannot observe?

There are some difficulties with the counterfactual definition of causality. For
some variables, like a treatment in a clinical trial, it is easy to conceive how a differ-
ent version of the treatment might have been applied or how we might change future
treatments. But some variables are difficult or impossible to actually change. For ex-
ample, suppose we are interested in the effect of gender on some outcome. Although
it seems reasonable to ask how an outcome might have differed if the subject were
male rather than female, this is not a change that would be easy to make. Similarly,
with the Galdpagos example, although it seems natural to think about how physi-
cal geography might affect species diversity, we cannot actually change the physical
geography.

Although we cannot see both the outcome and the counterfactual outcome, we
may come close in some circumstances. For example, suppose the treatment is a
skin cream. We could apply the treatment to one side of the face and leave the other
as a control. Or we could apply the control first (which might be no treatment)
and then apply the cream later. We could then observe the difference in the post-
and pre-treatment responses. However, even in such cases, it is easy to see that
some assumptions will be necessary about how local the effect of the treatment is in
time and space. We will also need to be wary of external variables that might have
differential effects. If these assumptions are reasonable, then we may proceed but in
many other circumstances we will have doubts or it simply may not be possible to
apply more than one treatment to a unit.

5.3 Designed Experiments

In a designed experiment, we have control over T. For example, suppose we wish
to compare two physical exercise regimes. The experimental units are the people we
use for the study. There may be some other potential predictors which we can control
such as the amount of time spent excercising or the type of equipment used. Some
other predictors might not be controlled, but can be measured, such as the physical
characteristics of the people. Still other predictors may not be controlled or mea-
sured. We may know about these predictors, or we may be unaware of them. Other
possible variables, such as the temperature in the room, might be held constant. Our
control over the conditions of the experiment allows us to make stronger conclusions
from the analysis. Randomization is the key to success.

Consider the easiest case where we will vary only 7. We have some number of
subjects available for the experiment. Although we would like to know the individual
causal effects 9;, this is not possible because only one level of T can be assigned to
a given subject at a given moment in time. However, we can aspire to estimate the
average value of 0 over the group. We should randomly assign subjects to treatment
or control. Typically, we will do this so that there are an equal number of units in
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(a) Compute the condition numbers and variance inflation factors. Comment on
the degree of collinearity observed in the data.

(b) Cases 39 and 42 are unusual. Refit the model without these two cases and
recompute the collinearity diagnostics. Comment on the differences observed
from the full data fit.

(c¢) Fit a model with brozek as the response and just age, weight and height as

predictors. Compute the collinearity diagnostics and compare to the full data
fit.

(d) Compute a 95% prediction interval for brozek for the median values of age,
weight and height.

(e) Compute a 95% prediction interval for brozek for age=40, weight=200 and
height=73. How does the interval compare to the previous prediction?

(f) Compute a 95% prediction interval for brozek for age=40, weight=130 and
height=73. Are the values of predictors unusual? Comment on how the in-
terval compares to the previous two answers.
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Chapter 8

Problems with the Error

We have assumed that the error € is independent and identically distributed (i.i.d.).
Furthermore, we have also assumed that the errors are normally distributed in order
to carry out the usual statistical inference. We have seen that these assumptions can
often be violated and we must then consider alternatives. When the errors are depen-
dent, we can use generalized least squares (GLS). When the errors are independent,
but not identically distributed, we can use weighted least squares (WLS), which is a
special case of GLS. Sometimes, we have a good idea how large the error should be,
but the residuals may be much larger than we expect. This is evidence of a lack of fit.
When the errors are not normally distributed, we can use robust regression.

8.1 Generalized Least Squares

Until now we have assumed that var € = 62/, but sometimes the errors have non-
constant variance or are correlated. Suppose instead that var € = 6°X where 67 is
unknown but X is known — in other words, we know the correlation and relative
variance between the errors, but we do not know the absolute scale of the variation.
For now, it might seem redundant to distinguish between ¢ and X, but we will see
how this will be useful later.

We can write ¥ =SS, where S is a triangular matrix using the Choleski decom-
position, which be can be viewed as a square root for a matrix. We can transform the
regression model as follows:

y = XB+e
s7ly = S7'xXB+S57le
y/ — X/B+8/

Now we find that:
var € =var (S~ le) =5 (vare)S™ T =S 16?5878 T = 6?1

So we can reduce GLS to ordinary least squares (OLS) by a regression of y/ = S~y
on X’ = S71X which has error € = S~ 1€ that is i.i.d. We have transformed the
problem to the standard case. In this transformed model, the sum of squares is:

(S~y=S"'xB) (s7ly-ST'XB)=(—XB)' 'S (y—XB)=(y—XB)" ="' (y—XB)

which is minimized by:

A

B — (XTZ_IX)_IXTZ_ly
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Figure 5.1 The fit for the simple model with just elevation as a predictor is shown as
the solid line. The predicted response as elevation varies and the other four predictors
held at their mean values is shown as a dashed line.

Unfortunately, our revised interpretation merely brings to light further difficul-
ties. The idea of holding variables constant makes no sense for observational data
such as in our Galdpagos example. These observables are not under our control. We
cannot change them except by some fantastic feat of engineering. There are also
likely to be other variables which we have not measured and may not be aware of
that also have some connection to the species diversity. We cannot possibly hold
these constant.

Furthermore, our explanation contains no notion of causation. We can predict
that taller islands have greater species diversity, but we should not say altitude causes
it. In the next section, we look at how causality might be established. For now we
are able to make predictions and compare these predictions to develop some insights.
The comparisons give some meaning to the regression coefficients but the informa-
tion is conditional and tentative.

5.2 Causality

The meaning of causality has occupied philosophers for centuries. We take the view
that the causal effect of an action is the difference between the outcomes where the
action was or was not taken. For example, suppose a study compares a treatment
with a control as applied to a set of patients. Let 7 = O for the control and T = 1 for
the treatment. Now let y! be the response for patient i when T applies. The causal
effect for patient i is then defined as

8=y —»?
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Chapter 4

Prediction

Prediction is one of the main uses for regression models. We use subject matter
knowledge and the data to build a model y = X + €. We may have transformed
some of the variables or omitted some data points but suppose we have settled on
a particular form for the model. Given a new set of predictors, xg, the predicted
response is:

Yo =xo P
However, we need to assess the uncertainty in this prediction. Decision makers need
more than just a point estimate to make rational choices. If the prediction has a wide
CI, we need to allow for outcomes far from the point estimate. For example, suppose
we need to predict the high water mark of a river. We may need to construct barriers
high enough to withstand floods much higher than the predicted maximum. Financial

projections are not so useful without a realistic estimate of uncertainty because we
need to make sensible plans for when events do not turn out as well as we predict.

4.1 Confidence Intervals for Predictions

There are two kinds of predictions made from regression models. One is a predicted
mean response and the other is a prediction of a future observation. To make the
distinction clear, suppose we have built a regression model that predicts the rental
price of houses in a given area based on predictors such as the number of bedrooms
and closeness to a major highway. There are two kinds of predictions that can be
made for a given xop:

1. Suppose a specific house comes on the market with characteristics xg. Its rental
price will be xg B+ €. Since E€ = 0, the predicted price is xg B, but in assessing
the variance of this prediction, we must include the variance of €.

2. Suppose we ask the question — “What would a house with characteristics xy rent
for on average?”. This selling price is x}, B and is again predicted by x} 8 but now
only the variance in B needs to be taken into account.

Most times, we will want the first case, which is called “prediction of a future value,”

while the second case, called “prediction of the mean response” is less commonly
required. We have:

var (x3 B) = x5 (XTX) " xo0?

A future observation is predicted to be xg ﬁ + €. We do not know the future € but
we expect it has mean zero so the point prediction is xg; B. It is usually reasonable to
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13.6 Discussion

Complete case analysis is a safe choice for dealing with missing data provided there
is not too high a proportion of missing data. By discarding low quality predictors
with a high proportion of missing data, one can limit the proportion of cases with
missing values.

Single imputation can be relatively simple to implement. It works best when
there is a relatively low proportion of missing cases. But this is also a situation where
complete case analysis is acceptable. The drawbacks may outweigh the advantages
of this method.

Multiple imputation is the best choice for extracting the maximum of informa-
tion from the data. Unfortunately, there are substantial costs both in human time in
implementing the imputation models and in computing time which will be a large
multiple of the effort required for a complete case dataset.

In situations where prediction rather than explanation is the goal, one must con-
sider the possibility of missing values in the future cases where predictions will be
made. A complete case approach will mean failing to predict an outcome where
any of the predictors are missing. This may be unacceptable and will require some
imputation. If we use multiple imputation, this will complicate the implementation
particularly if the prediction will occur beyond our involvement in the project. An
alternative approach is to develop a prediction for every pattern of missing values.
This is called the pattern submodel method. If we have p predictors, this may mean
up to 2”7 models. When p is beyond a handful, this would limit our ability to craft
the prediction models by hand.

Missing values are too big a topic to do justice in this chapter. See Little and
Rubin (2002), Schafer (1997) and Raghunathan (2015) for more about missing data
methods.

Exercises

1. The dataset kanga contains data on the skulls of historical kangaroo specimens.
Ignore the sex and species variables for the purposes of this question.

(a) Report on the distribution of missing values within the data according to case
and variable.

(b) Determine a combination of variable and case deletions that retains the most
information.

(c) Compute correlation matrix. For the variables you chose to delete in the pre-
vious part question, observe the correlation with other variables. Do you think

the other variables will adequately represent the effect of the dropped vari-
ables?

(d) Which two variables would you be most reluctant to drop?

(e) Perform a principal components analysis using three different missing value
procedures. In all cases, standardize the variables and report the first princi-
pal component. (i) Complete case analysis, (i1) Single imputation using mean
value fill-in, (i11) Multiple imputation (but only do one random imputation -
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Figure 7.3 Simulation—extrapolation estimation of the unbiased slope in the pres-
ence of measurement error in the predictors. We predict p = 4.0 at a variance of zero.

different scales, it is possible to run into calculation errors. Most methods work
more reliably when variables are on roughly similar scales.

Suppose we reexpress x; as (x; + a)/b. Rescaling x; leaves the - and F-tests and

62 and R? unchanged and B,- — bﬁi. Rescaling y in the same way leaves the ¢- and
F-tests and R? unchanged, but 6 and B will be rescaled by b.

To demonstrate this, we use the savings data:
import faraway.datasets.savings
savings = faraway.datasets.savings.load()
lmod = smf.ols(’sr ~ popl5 + pop75 + dpi + ddpi’, savings).fit(Q)
1mod. sumary ()

coefs stderr tvalues pvalues
Intercept 28.566 7.355 3.88 0.0003

popl5 -0.461 0.145 -3.19 0.0026
pop75 -1.691 1.084 -1.56 0.1255
dpi -0.000 0.001 -0.36 0.7192
ddpi 0.410 0.196 2.09 0.0425

n=50 p=5 Residual SD=3.803 R-squared=0.34

The coefficient for income is rather small — let’s measure income in thousands of

dollars instead and refit:
lmod = smf.ols(’sr ~ popl5 + pop75 + I(dpi/1000) + ddpi’,
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Chapter 14

Categorical Predictors

Predictors that are qualitative in nature, for example, eye color, are sometimes de-
scribed as categorical or called factors. The different categories of a factor variable
are called levels. For example, suppose we recognize eye colors of “blue”, “green”,
“brown” and “hazel”, then we would say eye color is a factor with four levels.

We wish to incorporate these predictors into the regression analysis. We start with
the example of a factor with just two levels, then show how to introduce quantitative
predictors into the model and end with an example using a factor with more than two
levels.

14.1 A Two-Level Factor

The data for this example come from a study of the effects of childhood sexual abuse
on adult females reported in Rodriguez et al. (1997): 45 women treated at a clinic,
who reported childhood sexual abuse (csa), were measured for post-traumatic stress
disorder (ptsd) and childhood physical abuse (cpa) both on standardized scales.
Thirty-one women treated at the same clinic, who did not report childhood sexual
abuse, were also measured. The full study was more complex than reported here and
so readers interested in the subject matter should refer to the original article.

Load the necessary packages:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
import statsmodels. formula.api as smf
import seaborn as sns
from scipy import stats
import faraway.utils

We take a look at the data and produce a summary subsetted by csa:
import faraway.datasets.sexab
sexab = faraway.datasets.sexab.load()
sexab.head ()
cpa ptsd csa
1 2.04786 9.71365 Abused
2 0.83895 6.16933 Abused
3 -0.24139 15.15926 Abused
4 -1.11461 11.31277 Abused
5 2.01468 9.95384 Abused

It is also helpful to have within group statistics:
lfuncs = ['min’, 'median’, 'max’]
sexab.groupby(’csa’).agg({’'cpa’: lfuncs,’ptsd’: lfuncs}).round(1l)
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fat.insert (0, ’Intercept’,1)
x0 = fat.iloc[:,np.r_[0,4:7,9:19]].median()
pd.DataFrame(x0).T

The final line is simply to print the vector horizontally:

Intercept age weight height neck chest
1.0 43.0 176.5 70.0 38.0 99.65
abdom hip thigh knee

90.95 99.3 59.0 38.5

ankle biceps forearm wrist

22.8 32.05 28.7 18.3

Fit the model and make the prediction:

lmod = smf.ols(’'brozek ~ age + weight + height + neck + \
chest + abdom + hip + thigh + knee + ankle + biceps + \
forearm + wrist’, fat).fit()

x0 @ 1lmod.params

17.493

The predicted body fat for this “typical” man is 17.5%. The same result may be

obtained more directly using the predict function:
1lmod.predict (x0)

Now if we want a 95% CI for the prediction, we must decide whether we are
predicting the body fat for one particular man or the mean body fat for all men have

these same characteristics. Here are the two intervals:
lmod.get_prediction(x0).summary_f£frame ()

mean mean_se mean_ci_lower mean_ci_upper obs_ci_lower obs_ci_upper
0 17.49322 0.278665 16.944255 18.042185 9.61783  25.36861

The prediction interval (marked with obs) ranges from 9.6% body fat up to 25.4%.
This is a wide interval since there is a large practical difference between these two
limits. One might question the value of such a model. The model has an R? of 0.75,
but perhaps it is not sufficient for practical use. The confidence interval for the mean
response is much narrower, indicating we can be quite sure about the average body
fat of the man with the median characteristics. Such information might be useful
from a public health perspective where we are concerned about populations rather
than individuals.

Extrapolation occurs when we try to predict the response for values of the pre-
dictor which lie outside the range of the original data. There are two different types
of extrapolation — quantitative and qualitative. Quantitative extrapolation concerns
xo that are far from the original data. Prediction intervals become wider as we move
further from the original data. For multivariate xg, the concept of distance from the
original data is harder to define. In higher dimensions, most predictions will be sub-
stantial extrapolations. Let’s see what happens with a prediction for values at the

95th percentile of the data:
x1 = fat.iloc[:,np.r_[0,4:7,9:19]].quantile (0.95)
pd.DataFrame(x1l).T

age weight height neck chest abdom hip thigh knee
0.95 67.0 225.65 74.5 41.845 116.34 110.76 112.125 68.545 42.645
ankle biceps forearm wrist
0.95 25.445 37.2 31.745 19.8

lmod.get_prediction(xl).summary_f£frame ()

mean mean_se mean_ci_lower mean_ci_upper obs_ci_lower obs_ci_upper
0 30.018044 0.988499 28.07072 31.965369 21.924066  38.112023
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assume that the future € is independent of ﬁ So a 100(1 — a) % CI for a single future
response is:

Y0 j:t,gff)(s 1 —I—xg(XTX)_le

There is a conceptual difference here because previous confidence intervals have
been for parameters. Parameters are considered to be fixed but unknown — they are
not random under the Frequentist approach we are using here. However, a future
observation is a random variable. For this reason, it is better to call this a prediction
interval. We are saying there is a 95% chance that the future value falls within this
interval, whereas it would be incorrect to say that for a parameter.

The CI for the mean response for given xy is:

Po 126 [xT (XTX)~xg

This CI is typically much narrower than the prediction interval. Although we would
like to have a narrower prediction interval, we should not make the mistake of using
this version when forming intervals for predicted values.

4.2 Predicting Body Fat

Measuring body fat is not simple. Muscle and bone are denser than fat so an estimate
of body density can be used to estimate the proportion of fat in the body. Measuring
someone’s weight is easy but volume is more difficult. One method requires sub-
merging the body underwater in a tank and measuring the increase in the water level.
Most people would prefer not to be submerged underwater to get a measure of body
fat so we would like to have an easier method. In order to develop such a method,
researchers recorded age, weight, height, and 10 body circumference measurements
for 252 men. Each man’s percentage of body fat was accurately estimated by an un-
derwater weighing technique. Can we predict body fat using just the easy-to-record
measurements?
We load the packages for this chapter:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import scipy as sp

import statsmodels.api as sm

import statsmodels.formula.api as smf
import faraway.utils

We load in the data and fit a model using all 13 predictors.
import faraway.datasets.fat
fat = faraway.datasets.fat.load()

We use brozek as the response (Brozek’s equation estimates percent body fat from
density). Normally, we would start with an exploratory analysis of the data and a
detailed consideration of what model to use, but let’s be rash and just fit a model and
start predicting.

Let’s consider the typical man, exemplified by the median value of all the predic-
tors. It’s convenient to first create a column for the intercept:
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race 0.007 0.003 2.45 0.0189
fire 0.028 0.010 2.96 0.0053
theft -0.003 0.003 -1.21 0.2354
age 0.006 0.003 1.98 0.0554

np.log(income) -0.316 0.390 -0.81 0.4234

n=44 p=6 Residual SD=0.385 R-squared=0.68
There are some important differences between these two fits. For example, theft
and age are significant in the first fit, but not in the second. Also, the regression
coefficients are now all closer to zero. The situation is analogous to the errors in
variables case. The bias introduced by the fill-in method can be substantial and may
not be compensated by the attendant reduction in variance. For this reason, mean
imputation is not recommended except where the fraction of filled values is small.

Missing values may also arise for categorical variables. We can impute with the
most common level or category of the variable. Alternatively, a missing value can
simply be regarded as an additional level of the variable so, for example, we might
have male, female and unknown levels.

A more sophisticated alternative to mean imputation is to use regression methods
to predict the missing values of the covariates. Let’s try to fill in the missing race

values:

Ilmodr = smf.ols(
’race ~ fire + theft + age + np.log(income)’,
chmiss) . fit ()

mv = chmiss.race.isna()

lmodr . predict (chmiss) [mv]

60646 -15.945180

60651 21.418063

60616 72.607239

60617 27 .977170

Notice that the first prediction is negative. One trick that can be applied when the
response is bounded between zero and one is the logit transformation:

y —log(y/(1—1y))

This transformation maps the interval to the whole real line. The logit function and

its inverse can be defined:
def logit(x): return(np.log(x/(1-x)))
def ilogit(x): return(np.exp(x)/(l+np.exp(x)))

We now fit the model with a logit-transformed response and then back transform the
predicted values, remembering to convert our percentages to proportions and vice

versa at the appropriate times:

lmodr = smf.ols(
’logit(race/100) ~ fire + theft + age + np.log(income)’,
chmiss) . fit ()

(ilogit (lmodr.predict(chmiss))*100) [mv]

60646 0.456738

60651 10.142346

60616 87.219223

60617 15.781989

We can see how our predicted values compare to the actual values:
chredlin.race.iloc[np.where(chmiss.race.isna())]
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Figure 7.2 Stopping distances and speeds of cars. The least squares fit is shown as
a solid line. The fits with three progressively larger amounts of measurement error
on the speed are shown as dotted lines, where the slope gets shallower as the error
increases.

plt.xlabel ("Speed"”)

plt.ylabel("Distance")

xr = np.array(ax.get_xlim(Q))

np.random.seed (123)

ax.plot(xr, est[1l] + est[0] * xr,label="0")

estl = np.polyfit(cars.speed + np.random.normal(size=50),
cars.dist, 1)

ax.plot(xr, estl[1] + estl[0] * xr, 'k--',label="1")

est2 = np.polyfit(cars.speed + np.random.normal (scale=2,size=50),
cars.dist, 1)

ax.plot(xr, est2[1] + est2[0] * xr, 'k-.’,label="2")

est5 = np.polyfit(cars.speed + np.random.normal (scale=5,size=50),
cars.dist, 1)

ax.plot(xr, est5[1] + est5[0] * xr, ’'k:’,label="5")

plt.legend(title="$\delta$’)

We can see that the slope becomes shallower as the amount of noise increases. We

extract the four sets of parameter estimates, est, estl, est2, est5 and print

them as a neat table:
ee = pd.DataFrame. from_records([est, estl, est2, est5],

columns=["slope","intercept”])
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Figure 10.2 Model performance on the testing and training samples for the fat den-
sity data.

The RMSE values for the training sample are seen to be consistently substantially
lower than those seen in the test sample. This illustrates the overconfidence that
would result from using the same data for both fitting and evaluation.

The usage of sample splitting varies in practice according to the needs and mo-
tivations of the individuals involved. In a low-trust environment, unscrupulous an-
alysts may consider a very large number of potential models and use the same data
to both fit and choose the model. They conceal their search process and report only
the final model and its purported performance. Unfortunately, it is not unheard of
for researchers to gain acceptance for academic papers or consultants to sell models
to industry clients on this basis. The miscreants receive their reward well before the
truth behind their over-hyped models is revealed by fresh data. It is also easy enough
to engage in much the same behaviour through ignorance rather than malpractice.

To protect against this malpractice, the data is split by some trusted guardian and
only the training sample is given to the analysts. Analysts are invited to develop and
submit a model based only on the training sample. The guardian then makes the
predictions on the test sample and reports the result. The RMSE (or other measure
of performance) on the test sample represents an unbiased estimate of its perfor-
mance on future data. This is the mechanism used in prediction competitions like
M4 Makridakis, Spiliotis, and Assimakopoulos (2018).

Viewed from this perspective, we have already cheated a little in the example
above since we have submitted not one model but fourteen for evaluation. This will
be fine for the purposes of choosing the best model, but the observed RMSE will
now be biased downwards since we have chosen the smallest from those available.

Since our set of candidate models is small, the bias will not be large but if we were
to substantially expand the set of possibilities, the problem would become worse.
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originally missing data. Unfortunately, the outcome will be influenced by the
order in which we impute the variables. To mitigate this effect, we repeat the cycle
several times. In the implementation below, this is called the burn-in period and is
expressed as the number of skips. Ten complete cycles have been recommended
by several authors.

5. Once we are past the setup period, we can generate multiple complete imputed
data sets. We will want to skip through a few cycles before making a set of im-
putations. For each imputed set, we fit the original model and save the fitted
coefficients and standard errors. The number of imputed datasets required de-
pends on the intended use. If your focus is on parameter estimates and standard
errors, about 50 should suffice. But if your dataset is not large and your model not
complicated, you can easily afford to do more.

6. We now use a combining rule to the imputed estimates. We take the average over
the imputed estimates as the point estimate. We use the estimated variances in the
imputed estimates to form a single estimated standard error.

We demonstrate the method below. We have used 10 skips for burn-in and 50

imputations.

import statsmodels.imputation.mice as smi

imp = smi.MICEData(chmiss)

fm = ’'involact ~ race + fire + theft + age + np.log(income)’
mmod = smi.MICE(fm, sm.OLS, imp)

results = mmod. fit (10, 50)

print(results.summary())

Results: MICE

Method: MICE Sample size: 47
Model : OLS Scale 0.14
Dependent variable: involact Num. imputations 50
Coef. Std.Err. t P>|t]| [0.025 0.975] FMI
Intercept 0.2402 1.1318 0.2123 0.8319 -1.9780 2.4585 0.1066
race 0.0069 0.0028 2.4862 0.0129 0.0015 0.0123 0.0992
fire 0.0313 0.0099 3.1647 0.0016 0.0119 0.0507 0.1229
theft -0.0046 0.0031 -1.4553 0.1456 -0.0107 0.0016 0.2976
age 0.0064 0.0030 2.1470 0.0318 0.0006 0.0123 0.0927
np.log(income) -0.1985 0.4111 -0.4829 0.6291 -1.0042 0.6072 0.1131

The FMI column represents the fraction of missing information. This will be
larger for predictors where the imputed variances are more variable between imputa-
tions. This indicates greater uncertainty for the effect of these predictors due to the
pattern of missing values. In this case, the theft predictor is most heavily affected —
we see that it is not statistically significant as it was in the complete data case.

There are many other multiple imputation methods although there is a more lim-
ited selection available with Python implementations.
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So our first two predictions are good, but the other two are somewhat wide of the
mark. We still need to impute the missing values for the other predictors which will
take us some manual effort.

Like the mean fill-in method, the regression fill-in method will also introduce a
bias toward zero in the coefficients while tending to reduce the variance. The success
of the regression method depends somewhat on the collinearity of the predictors —
the filled-in values will be more accurate the more collinear the predictors are. How-
ever, for collinear data one might consider deleting a predictor riddled with missing
values rather than imputing because other variables that are strongly correlated will
bear the predictive load.

There is some difference of opinion whether to use response values in imputing
missing predictor values. Given that the goal of the linear model is to predict or
explain the response using the predictors, it seems unreasonable to do this.

13.5 Multiple Imputation

The single imputation methods described above cause bias, while deletion causes a
loss of information from the data. Multiple imputation is a way to reduce the bias
caused by single imputation. The problem with single imputation is that the imputed
value, be it a mean or a regression-predicted value, tends to be less variable than the
value we would have seen because the imputed value does not include the variation
that would normally be seen in observed data. The idea behind multiple imputation is
to reinclude that variation — we add back on a perturbation to the imputed value. Hot
deck imputation is an old idea where a randomly sampled value from the complete
values for that predictor is used as the imputation. With more computing power, we
can do better than this.
We describe here the Multiple Imputation Chained Equation (MICE) method:

1. Use the mean single imputation method to temporarily fill the missing values as
in the previous section.

2. For each variable containing missing values, we build a regression model to pre-
dict these values using the other variables. We created such a model for predicting
race in the previous section. Instead of using the mean predicted value, we gen-
erate a randomly perturbed value. There are various sensible ways to do this. We
could use a predictive distribution, a bootstrap-based method or by perturbing the
parameter estimates using a Gaussian distribution based on the estimate standard
error. The implementation below uses the latter method by default.

3. We cycle through all the variables, imputing the missing values using the per-
turbed samples from the model to predict that variable. Where we have categorical
variables, we may need models that are not described in this book. For example,
if we have a two level factor, we would need a logistic regression model.

4. At the end of one cycle through the variables, we will have replaced all of the
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(c) Consider all possible subsets of the full model and find the one with the best
value of AIC. Is the set of models of each size the same as that chosen by
RFE? Would the best model from the RFE generated sequence produce the
same choice as from the exhaustive search?

(d) What model is chosen when adjusted R? is the criterion?
(e) Explain why sample splitting might be problematic for this dataset.

2. Using the teengamb dataset with gamble as the response and the other variables
as predictors. Focus on the effect of sex on the response and include this predictor
in all models. There are eight possible models that include all, some, or none of
the other three predictors. Fit all these models and report on the coefficient and
significance of sex in each case as well as the adjusted R? and AIC values.

(a) Does the significance of sex vary according to the model chosen?

(b) Which model is chosen by the Adjusted R? criterion? By AIC?

(c) Four of the models have distinctly better fits from the other four. What distin-
guishes these models?

(d) Make a plot of income against amount gambled which distinguishes male from
female subjects. Discuss how the amount gambled by males and females varies
according to income.

3. Using the divusa dataset, fit a model with divorce as the response, and the other
variables as predictors with the exception of year.

(a) Which predictors are not significant at the 5% level?

(b) Remove the insignificant predictors and perform an F-test to compare the re-
duced model to the original model.

(c) Consider all models with 4 predictors from the original set of 5. For each
model (including the full model), compute the adjusted R?, AIC, the predicted
value of the response at the maximum observed values of the predictors along
with standard error for this prediction. Comment on the results.

4. Using the trees data, fit a model with 1log(Volume) as the response and a
second-order polynomial (including the interaction term) in log(Girth) and
log(Height).

(a) What terms are significant in the quadratic model? Does the model fit badly?

(b) Consider smaller models for the data.

5. Using the stackloss data, fit a model with stack.loss as the response and
the other three variables as predictors. You can get the stackloss data using
{stackloss = sm.datasets.stackloss.load_pandas().data}

(a) Fit the model using least squares. Use hypothesis testing to select a model.

(b) Now fit the model using least absolute deviations. Which model would you
select if this estimation method is used?

(c) Would it be possible to use an estimation method other than LS with the AIC-
criterion based choice of model? Could we use the sample splitting or CV
approach?
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Harrell (2015) has extensive advice on model validation using sample splitting
and crossvalidation. Bootstrap methods are also strongly recommended. Steyerberg
(2009) also provides advice on model selection and validation in clinical applica-
tions.

10.6 Summary

Model selection is a means to an end and not an end itself. When the aim is to
construct a model that explains the relationships in the data, automatic variable se-
lection is not helpful. Even when prediction is the goal, some human intelligence is
sometimes necessary in supervising the process.

Hypothesis testing-based methods can be useful when choosing within a small set
of possible models or when models are hierarchically structured. When considering
a larger set of models, testing-based methods use a restricted search through the
model space and use a dubious method for choosing between models when tests
are repeated many times. Criterion-based methods typically involve a wider search
and compare models in a preferable manner. Sample splitting methods provide a
flexible alternative and are helpful particularly in low-trust situations. They are also
inefficient methods of model selection particularly when the sample size is not large.
Cross-validation addresses some of the inefficiency and instability of sample splitting
methods. For data which are not extremely large in size and where the model space
is not especially large, our preference is for criterion-based methods such as AIC.

Accept the possibility that several models may be suggested which fit about as
well as each other. If this happens, consider:

1. Do the models have similar qualitative consequences?
2. Do they make similar predictions?
3. What is the cost of measuring the predictors?

4. Which has the best diagnostics?

If you find models that seem roughly comparable, but lead to quite different con-
clusions, then it is clear that the data cannot answer the question of interest un-
ambiguously. Be alert to the possibility that a model contradictory to the tentative
conclusions might be out there.

Exercises

1. Use the prostate data with 1psa as the response and the other variables as pre-
dictors.

(a) Fit the full model and determine which predictors have p-values less than 5%.
Now use the backward elimination method to choose a model based on a 5%
cutoff for the p-value. Do the two procedures pick the same set of predictors?
Is this guaranteed to happen for all datasets?

(b) Use Recursive Feature Elimination to generate a sequence of models of de-
creasing size. Does this generate the same sequence of models as backward
elimination? Explain why these might be different in general.
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an improvement, we should notice that the slow result will arrive well before we have
even typed anything more efficient. Of course, this may not be true for examples with
bigger data.

The function np.random. seed ensures that the random numbers used to gener-
ate the permutations will come out the same for you if you try this. If you don’t do
this, you will get a slightly different result each time because of the random selection
of the permutations. That’s alright — setting the seed is only necessary for exact
reproducibility.

Our estimated p-value using the permutation test is 0.54, which is close to the
normal theory-based value of 0.55. We could reduce variability in the estimation of
the p-value simply by computing more random permutations. Since the permutation
test does not depend on the assumption of normality, we might regard it as superior
to the normal theory based value. In this case, the results are very similar and not
close to any decision boundary. But if there was some crucial difference in the con-
clusion and there was some evidence of nonnormal errors, then we would prefer the
permutation-based test.

Tests involving just one predictor also fall within the permutation test framework.
We permute that predictor rather than the response. Let’s test the Scruz predictor in

the model. We can extract the needed information from:
1lmod. tvalues[2], 1lmod.pvalues([2]

(-1.022 0.3156)

Now we perform 4000 permutations of Scruz and check what fraction of the ¢-

statistics exceeds —1.09 in absolute value:

tstats = np.zeros(4000)

np.random.seed (123)

for i in range(0, 4000):
galapagos[’ssamp’] = np.random.permutation(galapagos.Scruz)
lmodi = smf.ols(’Species ~ Nearest + ssamp’,

galapagos) . fit ()

tstats[i] = 1lmodi. tvalues[2]

np .mean(np. fabs(tstats) > np.fabs(lmod.tvalues[2]))

0.297

The outcome is very similar to the observed normal-based p-value of 0.32. Again, in
case of serious disagreement, we would prefer the permutation-based result.

The idea of permutation tests works well in conjunction with the principle of
random allocation of units in designed experiments. When the values of X really
have been randomly assigned to the experimental units which then produce response
Y, it is easy to justify a permutation-based testing procedure to check whether there
truly is any relation between X and Y. In practice, many will simply use the normal
assumption-based tests but this can be done in the knowledge that the permutation
tests will tend to agree, provided the assumption is justifiable.

3.4 Sampling

The method of data collection affects the conclusions we can draw. The mathematical
model Y = XB + € describes how the response Y is generated. If we specified B, we
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(d) Compute the predicted value of taste for H2S varying from its minimum to
its maximum value while the other two predictors are held fixed at their mean
values. Plot the resulting prediction line on top of a scatterplot of H2S and

taste. What is this kind of plot called? How does it compare with the partial
residual plot of the previous question?

(e) Produce the partial regression plot for H2S. Comment and contrast with the
previous two plots.

6. Using the mba data, fit a model with happy as the response and the other four
variables as predictors.

(a) Construct the residual-fitted plot. Do the linear model assumptions appear to
be broken? Why are there diagnoal lines of points on the plot?

(b) Construct the QQ-plot and comment.

(c) Two rows in the dataset are identical. Identify these two rows. Does this
indicate that the linear model assumptions are broken?

(d) Construct the partial residual plot for sex. Does this plot have any practical
value?

(e) Compute the mean of the partial residuals (from the previous question) when
sex=1. Why is this value the same as the regression coefficient for sex?

7. Using the tvdoctor data, fit a model with 1ife as the response and the other two
variables as predictors.

(a) Make scatterplots with life as the response and each of the predictors. Show
the univariate regression line (but no confidence band) on each plot. Comment.

(b) Construct the partial residual plots for both predictors. Contrast these with the
two plots of the previous question.

(c¢) Use alog transform on both predictors and refit the model. Present both partial
residual plots and comment.

(d) How helpful were partial residual plots in finding the best transformation on
the predictors in this example?

8. For the divusa data, fit a model with divorce as the response and the other
variables, except year as predictors. Check for serial correlation.

9. Consider a sequence of regression models with only one predictor where the sam-
ple size takes integer value between 10 and 50. Compute the Bonferroni critical
value for each of these models. Make a plot of your findings. What was the mini-
mum observed value of the critical value and for what sample size did it occur?
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10.3 Criterion-Based Procedures

If we have some idea about the purpose for which a model is intended, we might
propose some measure of how well a given model meets that purpose. We would
choose that model among those possible that optimizes that criterion.

We might have the idea to pick the model that is closest to the true relationship
between the variables. With this in mind, we could pick a model g, parameterized by
0, that is close to the true model f. We could measure the distance between g and f

by
1(4,) = [ rtoyiog (S0 )

This is known as the Kullback-Leibler information (or distance). It will be positive
except when g = f when it will be zero. Unfortunately, it is impractical for direct

implementation because we do not know f. If we knew f, we would simply use f.
We can substitute in the MLE of 0 and rearrange to obtain:

(£,8) = [ f)10g f@dx— [ f(x)logg(xlB)dx

The first term is a constant that doesn’t depend on the model we choose g. Akaike
(1974) showed that EI( f,g) can be estimated by

—logL(8) + p+ constant

where p is the number of parameters in the model and the constant depends on the
unknown true model. For “historical” reasons, Akaike multiplied this by two to
obtain ‘“‘an information criterion” (AIC):

AIC = —2L(0) +2p

For linear regression models, the first term, —2L(8) is equal to nlog(RSS/n) plus
another constant. Since the constants are the same for a given data set and assumed
error distribution, they can be ignored for regression model comparisons on the same
data. Additional care is necessary for other types of comparisons. See Burnham and
Anderson (2002) for more detail.

We choose the model which minimizes the AIC. The first term in the AIC is
based on RSS which is made smaller by improving the fit. Adding more predictors,
provided they are not collinear, will achieve this but we are dissuaded from going too
far with this by the second term, called the penalty term, 2p. Hence, we see that AIC
naturally provides a balance between fit and complexity in model selection.

An important idea in Statistics and Machine Learning is the bias-variance trade-
off. In the context of model selection, a model which is too small will tend to have
biased predictions because it is insufficiently flexible to represent the relationship
between the predictors and the response. In contrast, a model which is too large will
tend to overfit the response which will lead to greater variance in its prediction. The

AIC represents a particular choice of this tradeoff.
Many other criteria have been proposed. One well-known alternative is the Bayes
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Missing Data

13.1 Types of Missing Data

Here are some of the ways that missing data can arise in a regression setting:

Missing cases Sometimes we fail to observe a complete case (x;,y;). Indeed, when
we draw a sample from a population, we do not observe the unsampled cases.
When missing data arise in this manner, there is no difficulty since this is the
standard situation for much of statistics. But sometimes there are cases we in-
tended to sample but failed to observe. If the reason for this failure is unrelated to
what would have been observed, then we simply have a smaller sample and can
proceed as normal. But when data are not observed for reasons that have some
connection to what we would have seen, then we have a biased sample. Some-
times, given enough information about the mechanism for missingness, we can
make corrections and achieve valid inferences.

Incomplete values Suppose we run an experiment to study the lifetimes of light
bulbs. We might run out of time waiting for all the lightbulbs to die and decide
to end the experiment. These incomplete cases would provide the information
that a bulb lasted at least some amount of time, but we would not know how
long it would have lasted had we waited until it died. Similar examples arise in
medical trials where patient final outcomes are not known. Such cases are said
to be censored. Methods like survival analysis or reliability analysis can handle
such data.

Missing values Sometimes we observe some components of a case but not others.
We might observe the values of some predictors but not others. Perhaps the pre-
dictors are observed but not the response.

In this chapter, we address the missing value problem. Biased sampling due to miss-
ing cases can sometimes be mitigated by covariate adjustment, while methods for
analyzing censored data may be found in other books.

What can be done? Finding the missing values is the best option, but this may not
be possible because the values were never recorded or were lost in the data collection
process. Next, ask why the data are missing. We can distinguish several kinds of
missingness:

Missing Completely at Random (MCAR) The probability that a value is missing
is the same for all cases. If we simply delete all cases with missing values from
the analysis, we will cause no bias, although we may lose some information.

Missing at Random (MAR) The probability of a value is missing depends on a

211
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be modified. Consequently, a block effect must be included in the model used for
inference about the treatments, even if the block effect turns out not to be significant.

17.1 Randomized Block Design

We have one treatment factor, T at ¢ levels and one blocking factor, B at r levels. The
model is:

Yij :,U-l-’Ci-l-Bj-l-Eij

where 1; is the treatment effect and p; is the blocking effect. There is one observa-
tion on each treatment in each block. This is called a randomized complete block
design (RCBD). The analysis is then very similar to a two-factor experiment with
no replication. We have a limited ability to detect an interaction between treatment
and block. We can check for a treatment effect. We can also check the block effect,
but this is only useful for future reference. Blocking is a feature of the experimental
units and restricts the randomized assignment of the treatments. This means that we
cannot regain the degrees of freedom devoted to blocking even if the blocking effect
is not significant.
Load the packages:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import statsmodels.api as sm

import statsmodels. formula.api as smf
import seaborn as sns

from scipy import stats

import faraway.utils

We illustrate this with an experiment to compare eight varieties of oats. The
growing area was heterogeneous and so was grouped into five blocks. Each variety
was sown once within each block and the yield in grams per 16-ft row was recorded.
The data come from Anderson and Bancroft (1952).

We start with a look at the data:
import faraway.datasets.oatvar
oatvar = faraway.datasets.oatvar.load()

oatvar.pivot(index = ’variety’, columns=’'block’, values='yield’)
block I IT TIII IV \"
variety

1 296 357 340 331 348
2 402 390 431 340 320
3 437 334 426 320 296
4 303 319 310 260 242
5 469 405 442 487 394
6 345 342 358 300 308
7 324 339 357 352 220
8 488 374 401 338 320

Color plots of the data can be obtained in seaborn by:

sns.boxplot (x="variety", y="yield", data=oatvar)

sns.boxplot (x="block"”, y="yield"”, data=oatvar)

sns.catplot(x='variety’,y="yield’,hue='block’, data=oatvar,
kind="point’)

sns.catplot(x="block’,y="yield’ ,hue='variety’, data=oatvar,





index-111_3.jpg





index-173_1.png
162 MODEL SELECTION
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Figure 10.1 AIC and adjusted R? for models with varying numbers of predictors
using the state data.

Alternatively, we can compute and plot the adjusted R? statistic:
adjr2 =1 - (rss/(50 - np.arange(1,9)))/(rss[0]1/49)
plt.plot(np.arange(1,8),adjr2[1:])
plt.xlabel (’ Number of Predictors’)

plt.ylabel (’Adjusted RA2’)

The model chosen from these methods is the same — we pick the four predictor
model using Population, Murder, HSGrad, Frost.

This method of computing the RSS for all possible subset models works fine
when there are not too many predictors. The number of possible subsets is 29 where g
is the number of predictors. As g grows, this computation may become prohibitively
time consuming. We can use more efficient programming techniques and algorithms
but eventually we will need to give up on evaluating all possible subsets.

A less time-consuming method is to generate a sequence of models where there
is one model for each number of predictors. We will not be able to exhaustively
search all the possible subsets for a given number of predictors, but we might hope
to generate a good choice less expensively. The scikit-learn package has a simple
way to achieve this. The first step is to standardize the variables so they have a zero

mean and unit standard deviation:

from sklearn.preprocessing import scale

scalstat = pd.DataFrame(scale(statedata), index=statedata.index,
columns=statedata.columns)

The advantage of this rescaling is that the absolute size of the regression coefficient

can be viewed as its relative importance within the model.

from sklearn import linear_model

reg = linear_model.LinearRegression(fit_intercept=False)

X = scalstat.drop(’LifeExp’,axis=1)

reg.fit(X, scalstat.LifeExp)

reg.coef_

array([ 0.17227607, -0.00998072, 0.0153566 , -0.82807917, 0.29440196,
-0.22207364, -0.004693 1)

Note that the intercept is zero:
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3.5 Confidence Intervals for 3

Confidence intervals (ClIs) provide an alternative way of expressing the uncertainty
in the estimates of 3. They take the form:

A

Bi+ 1 Vse(B:)

Consider this model for the Galapagos data:
lmod = smf.ols(’'Species ~ Area + Elevation + Nearest + \
Scruz + Adjacent’, galapagos).fit()

We can construct individual 95% CIs for B4,., for which we need the 2.5% and
97.5% percentiles of the ¢-distribution with 30 — 6 = 24 degrees of freedom. These
are returned using the sp.stats.t.interval where the first argument is the cov-

erage and the second the degrees of freedom:

qt = np.array(sp.stats.t.interval (0.95,24))
lmod.params[1] + 1lmod.bse[1l]*qt
array([-0.07179, 0.10105])

CIs have a duality with two-sided hypothesis tests. If the interval contains zero, this
indicates that the null hypothesis Hy : Barea = 0 would not be rejected at the 5%
level. We can see from the summary that the p-value is 29.6% — greater than 5%
— confirming this point. Indeed, any point null hypothesis lying within the interval
would not be rejected.

The CI for Bagd jacent is:

lmod.params[5] + lmod.bse[5]*qt
array([-0.06883, 0.06746])

Because zero is not in this interval, the null is rejected. Nevertheless, this CI is
relatively wide in the sense that the upper limit is about three times larger than the
lower limit. This means that we are not really that confident about what the exact
effect of the area of the adjacent island on the number of species really is, even
though the statistical significance means we are confident it is negative. A convenient

way to obtain all the univariate intervals is:
1mod.conf_int ()

0 1
Intercept -32.464101 46.600542
Area -0.070216 0.022339
Elevation 0.208710 0.430219
Nearest -2.166486 2.184774
Scruz -0.685093 0.204044

Adjacent -0.111336 -0.038273

The advantage of the confidence interval relative to the corresponding hypothesis
test is that we get information about plausible ranges for the parameters. This is
particularly valuable when the parameter is directly interpretable (for example, as
the difference between two treatments).

The selection of a particular level of confidence level, say 95%, means we can
only make tests at the 5% level. The hypothesis test approach does give a p-value
which allows us to see how the acceptance or rejection of the null hypothesis depends
on the choice of level. Even so, it is dangerous to read too much into the relative
sizes of p-values in determining the practical importance of a predictor because there
is a temptation to view small p-values as indicating an important (rather than just
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could generate Y using a computer simulation, but how can this be related to real
data?

For designed experiments, we can view nature as the computer generating the
observed responses. We input X and record Y. With no cost or time constraints, we
could repeat this as many times as we liked, but in practice we collect a sample of
fixed size. Our inference then tells us something about the B underlying this natural

ProcCess.

For observational studies, we envisage a finite population from which we draw
the sample that is our data. We want to say something about the unknown population
value of B, using estimated values B that are obtained from the sample data. We
prefer that the data be a simple random sample of the population. We also assume
that the size of the sample is a small fraction of the population size. We can also
accommodate more complex random sampling designs, but this would require more
complex inferential methods.

Sometimes, researchers may try to select a representative sample by hand. Quite
apart from the obvious difficulties in doing this, the logic behind the statistical infer-
ence depends on the sample being random. This is not to say that such studies are
worthless, but that it would be unreasonable to apply anything more than descriptive
statistical techniques. Confidence in the conclusions from such data is necessarily
suspect.

A sample of convenience is where the data are not collected according to a sam-
pling design. In some cases, it may be reasonable to proceed as if the data were
collected using a random mechanism. For example, suppose we take the first 400
people from the phone book whose names begin with the letter P. Provided there is
no ethnic effect, it may be reasonable to consider this a random sample from the pop-
ulation defined by the entries in the phone book. Here we are assuming the selection
mechanism is effectively random with respect to the objectives of the study. The data
are as good as random. Other situations are less clear-cut and judgment will be re-
quired. Such judgments are easy targets for criticism. Suppose you are studying the
behavior of alcoholics and advertise in the media for study subjects. It seems very
likely that such a sample will be biased, perhaps in unpredictable ways. In cases such
as this, a sample of convenience is clearly biased in which case conclusions must be
limited to the sample itself. This situation reduces to the following case.

Sometimes, the sample is the complete population. In this case, one might ar-
gue that inference is not required since the population and sample values are one
and the same. For the galapagos data, the sample is effectively the population or a
large and biased proportion thereof. Permutation tests make it possible to give some
meaning to the p-value when the sample is the population or for samples of conve-
nience although one has to be clear that the conclusion applies only to the particular
sample. Another approach that gives meaning to the p-value when the sample is the
population involves the imaginative concept of “alternative worlds” where the sam-
ple or population at hand is supposed to have been randomly selected from parallel
universes. This argument is more speculative.
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(b) Fit a model with the main effects only. What factors are statistically significant
relative to this model?

(c) Fit a model with all the two way interactions. Which interactions are statisti-
cally significant?

(d) Which of the two models should be preferred?
(e) Make the residual-fitted plot for the main effects model and comment.
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of interest. Some might hope that this procedure could distinguish between important
and unimportant predictors, but it does not do this in general.

Testing-based procedures are relatively cheap computationally and easy to un-
derstand, but they do have some drawbacks:

1. Because of the “one-at-a-time” nature of adding/dropping variables, it is possible
to miss the “optimal” model.

2. The p-values used should not be treated too literally. There is so much multiple
testing occurring that the validity is dubious. The removal of less significant pre-
dictors tends to increase the significance of the remaining predictors. This effect
leads one to overstate the importance of the remaining predictors.

3. The procedures are not directly linked to final objectives of prediction or explana-
tion and so may not really help solve the problem of interest. With any variable
selection method, it is important to keep in mind that model selection cannot
be divorced from the underlying purpose of the investigation. Variable selection
tends to amplify the statistical significance of the variables that stay in the model.
Variables that are dropped can still be correlated with the response. It would be
wrong to say that these variables are unrelated to the response; it is just that they
provide no additional explanatory effect beyond those variables already included
in the model.

4. Stepwise variable selection tends to pick models that are smaller than desirable
for prediction purposes. To give a simple example, consider the simple regression
with just one predictor variable. Suppose that the slope for this predictor is not
quite statistically significant. We might not have enough evidence to say that it is
related to y, but it still might be better to use it for predictive purposes.

Except in simple cases where only a few models are compared or in highly struc-
tured heirarchical models, testing-based variable selection should not be used. We
include it here because the method is still used, but should be discouraged. Hypoth-
esis testing is best used for comparing just two models. One might stretch to a few
more comparisons, but industrial scale usage destroys the justification for hypothesis
testing without achieving a useful result.

The discussion above pertains mostly to prediction problems. For investigations
where explanation is the goal, variable selection has a different role. Ideally one
is focused on the potentially causal effect of a single predictor of interest. Other
predictors are included in the model with the purpose of adjusting for their effect.
We include these other predictors to ensure that the perceived effect of the predictor
of interest cannot be explained by these other predictors. We might make some small
gain in efficiency by removing unnecessary other predictors, but this would have little
importance regarding the primary goal of determining the effect of the predictor of
interest. Hence, in explanatory problems, the inclusion of other predictors is based
on our assessment of their relationships with the other variables. We do not benefit
from automated model selection in this situation.
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(d) Remove all the predictors that are not significant at the 5% level. Test this
model against the original model. Which model is preferred?

2. Thirty samples of cheddar cheese were analyzed for their content of acetic acid,
hydrogen sulfide and lactic acid. Each sample was tasted and scored by a panel of
judges and the average taste score produced. Use the cheddar data to answer the
following:

(a) Fit a regression model with taste as the response and the three chemical con-

tents as predictors. Identify the predictors that are statistically significant at the
5% level.

(b) Acetic and H2S are measured on a log scale. Fit a linear model where all three
predictors are measured on their original scale. Identify the predictors that are
statistically significant at the 5% level for this model.

(c) Can we use an F-test to compare these two models? Explain. Which model
provides a better fit to the data? Explain your reasoning.

(d) If H2S is increased 0.01 for the model used in (a), what change in the taste
would be expected?

(e) What is the percentage change in H2S on the original scale corresponding to an
additive increase of 0.01 on the (natural) log scale?

3. Using the teengamb data, fit a model with gamble as the response and the other
variables as predictors. The dataset teengamb concerns a study of teenage gam-
bling in Britain. Treat gambling as the response and the sex, status, income and
verbal score as predictors.

(a) Fit the model and display the output.
(b) Which variables are statistically significant at the 5% level?
(c) What interpretation should be given to the coefficient for sex?

(d) Compute the 95% confidence intervals. How is it possible to answer (a) with
just this information?

(e) Fit a model with just income as a predictor and use an F-test to compare it to
the full model.

(f) Test whether status and verbal may be dropped from the full model.
4. Using the sat data:

(a) Fit a model with total sat score as the response and expend, ratio and
salary as predictors. Test the hypothesis that B4, = 0. Test the hypothesis
that Bsaiary = Bratio = Bexpend = 0. Do any of these predictors have an effect on
the response?

(b) Now add takers to the model. Test the hypothesis that B, ., = 0. Compare
this model to the previous one using an F'-test. Demonstrate that the F-test and
t-test here are equivalent.

5. Find a formula relating R? and the F-test for the regression.

6. Thirty-nine MBA students were asked about happiness and how this related to
their income and social life. The data are found in mba.
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reg.intercept_

0.0

because we have standardized the data. We can see that the coefficient of Murder
is the largest, while that of Area is the smallest indicating their relative importance
in the model. The next step is to use Recursive Feature Elimination (RFE) which
recursively eliminates the least important variable from the model, refits and repeats.
The method is very similar to the backward elimination process presented earlier.
The difference is that backward elimination is used to choose the model, while RFE

merely gives a sequence of candidate models:

from sklearn.feature_selection import RFE
selector = RFE(reg, n_features_to_select=1)
selector = selector.fit(X, scalstat.LifeExp)
selector.ranking_

array([4, 6, 5, 1, 2, 3, 7D

These give the preference order for the predictors. We can see these with:
X.columns[np.argsort(selector.ranking_)].tolist()

[’Murder’, ’HSGrad’, ’'Frost’, ’Population’, ’'Illiteracy’, ’Income’, ’Area’]

As it happens, this generates the same sequence of candidate models as the exhaus-
tive search. This is not guaranteed in general. We could now use AIC to select the
model which, in this case, will make exactly the same choice. This example has
such a small number of predictors that we would prefer the more exhaustive search
described earlier, but in examples with more predictors, the method would be more
useful.

Variable selection methods are sensitive to outliers and influential points. In this
particular dataset, a check of the usual regression diagnostics reveals that Alaska has
very high leverage. If we exclude this point and rerun the model selection procedures,
you will find that a different set of predictors is selected. The selection methods are
also sensitive to the transformation used on the variables. In this case, the Area and
Population variables are quite skewed and we might apply a log transformation. If
we do this and redo the model selection, yet another set of predictors is chosen. We
recommend that analysts start by fitting a model with all the predictors and perform
the regression diagnostics. Any unusual points or transformations should be dealt
with before doing the model selection.

10.4 Sample Splitting

As we have seen, using the same data to fit and evaluate a model leads us to pick
the most complex model from any set, as this will show the best apparent fit to the
data. We can compensate for this by penalizing model complexity as seen in the
AIC-based method. An alternative and more direct approach involves splitting the
data into two parts. The first part, called the training sample, is used for fitting the
model and the second, called the testing sample, is used for evaluating the model.
For prediction problems, the true test of a model is in how well it predicts future
observations. The test sample serves the role of this future sample. We use the
predictor values in the test sample to predict the response and then compare this to
the test sample responses.
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Figure 13.1 Missing values in the simulated Chicago insurance data.

chredlin).fit O

1mod. sumary ()

coefs stderr tvalues pvalues

Intercept -1.186
race 0.010
fire 0.040
theft -0.010
age 0.008

np.log(income) 0.346

1.100
0.002
0.009
0.003
0.003
0.400

-1.08
3.82
4.55

-3.65
3.04
0.86

0.2876
.0004
.0000
.0007
.0041
.3925

OO OO O

n=47 p=6 Residual SD=0.335 R-squared=0.75

If we really had missing values, we would not be able to see such output in
practice. Now compare this to a fit to the missing version of the data:

Imodm = smf.ols(

’involact ~ race + fire + theft + age + np.log(income)’,

chmiss).fit ()
lmodm. sumary ()

coefs stderr tvalues pvalues

Intercept -2.407
race 0.011
fire 0.045
theft -0.016
age 0.009

np.log(income) 0.844

1.419
0.003
0.011
0.006
0.003
0.532

-1.70
3.23
4.21

-2.89
2.65
1.59

0.1046
0.0040
0.0004
0.0087
0.0149
0.1272

n=27 p=6 Residual SD=0.339 R-squared=0.79

The default behavior of the smf. ols function is to omit any case with missing values.
We are left with only 27 complete cases for the regression which is the only indication
that cases have been dropped (same is true for the full summary output). One can add
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block 4.0 33395.500 8348.875 6.245 0.001
Residual 28.0 37433.300 1336.904 NaN NaN

We have used grams as the response which is identical to yield. Unfortunately,
yield is a keyword in Python which has a particular meaning. You will receive a
perplexing error if you use it as a variable in some statistical models. Be warned.

We see that both effects are significant. It would not matter if we transposed the
order of variety and block in the model. The balanced design ensures that we get the
same outcome. Try this and verify that this does not change the ANOVA table (apart
from transposing the lines for the variables).

Now suppose we unfortunately lost the first observation in the dataset:
oatl = oatvar.iloc[1l:,]
lmod = smf.ols(’grams ~ variety + block’, oatl).fit(Q)
sm.stats.anova_lm(lmod) .round (4)

df sum_sq mean_sq F PR(CF)
variety 7.0 75901.6308 10843.0901 9.4538 0.0000
block 4.0 38017.9080 9504.4770 8.2867 0.0002
Residual 27.0 30967.6920 1146.9516 NaN NaN

Now try reversing the order of the variables in the model.:
lmod = smf.ols(’grams ~ block + variety’, oatl).fit()
sm.stats.anova_lm(lmod) .round (4)

df sum_sq mean_sq F PR(CF)
block 4.0 38580.6415 9645.1604 8.4094 0.0002
variety 7.0 75338.8973 10762.6996 9.3837 0.0000
Residual 27.0 30967.6920 1146.9516 NaN NaN

We see that the two tables are not the same. The line for the residual is the same
because the residuals are the same for both models. The lines for the variables are
different (even considering the transposition in order).

The ANOVA table corresponds to a sequential testing of models. In the previous
model this corresponds to the sequence:

y ~ 1
y ~ block
y ~ block+variety

The sums of squares are taken from the difference between successive pairs of mod-
els in this list. The denominator in both F-tests is the mean square from the full
model, here 1147. In the balanced case, the order made no difference. When the
designed is unbalanced, the order matters.

In the unbalanced case, we might prefer a different testing strategy where the
model of alternative hypothesis is always the full model, in this case, y ~ block +
variety. We compute the sums of squares relative to models where one variable is
omitted from this full model. We can obtain the ANOVA table corresponding to this

strategy with:
sm.stats.anova_lm(lmod, typ=3).round(4)

sum_sq df F PR(CGF)

Intercept 358745.3601 1.0 312.7816 0.0000

block 38017.9080 4.0 8.2867 0.0002

variety 75338.8973 7.0 9.3837 0.0000
7.0

Residual  30967.6920 2 NaN NaN
In SAS, this is known as “Type 3 sum of squares” while the default (sequential)
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statistically significant) effect. Confidence intervals are better in this respect because
they tell us about the size of the effect.

3.6 Bootstrap Confidence Intervals

The F-based and z-based confidence regions and intervals we have described depend

on the assumption of normality. The bootstrap method provides a way to construct
confidence statements without this assumption.

To understand how this method works, think about how we might determine the
distribution of an estimator without using the mathematical methods of distribution
theory. We could repeatedly generate artificial data from the true model, compute the
estimate each time and gather the results to study the distribution. This technique,
called simulation, is not available to us for real data, because we do not know the
true model. Nevertheless, it will reveal the path to a practical solution.

Simulation

The idea is to sample from the known distribution and compute the estimate,
repeating many times to find as good an estimate of the sampling distribution of the
estimator as we need. For the regression problem, it is easiest to start with a sample
from the error distribution since these are assumed to be independent and identically
distributed:

1. Generate € from the known error distribution.

2. Form y = X + € from the known P and fixed X.
3. Compute ﬁ

We repeat these three steps many times. We can estimate the sampling distribution
of B using the empirical distribution of the generated B, which we can estimate as ac-
curately as we please by simply running the simulation long enough. This technique
is useful for a theoretical investigation of the properties of a proposed new estimator.
We can see how its performance compares to other estimators. However, it is of no
value for the actual data since we do not know the true error distribution and we do
not know the true f.

Bootstrap

The bootstrap emulates the simulation procedure above except instead of sam-
pling from the true model, it samples from the observed data. Remarkably, this
technique is often effective. It sidesteps the need for theoretical calculations that
may be extremely difficult or even impossible. See Efron and Tibshirani (1993) for a
book-length treatment of the topic. To see how the bootstrap method compares with
simulation, we spell out the steps involved. In both cases, we consider X fixed.

The bootstrap method mirrors the simulation method, but uses quantities we do
know. Instead of sampling from the population distribution, which we do not know
in practice, we resample from the data:

A

1. Generate €* by sampling with replacement from €, ...,§,.
2. Form y* = X[§+£*.
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the optional argument missing="drop’ to the call which will cause the fit to fail.
This would be wise if you have not previously checked for missing values.

We see can that the standard errors are larger for the missing version, because we
have less data to fit the model and so the estimates are less precise. We can compute

the ratio of the standard errors between the two models as:
Imodm.bse/1mod. bse

Intercept 1.289846
race 1.383112
fire 1.220096
theft 1.969479
age 1.254731
np.log(income) 1.328592

Given that standard errors are proportional to /n, we would expect a ratio of around
\/47/27 = 1.32 in this example. This is roughly correct although we can see that
it would not be sensible to attempt a correction to the standard errors for missing
data based on the ratio. Nevertheless, it does provide us with a guide to how much
precision we have lost due to missing data and whether it might be worthwhile to
attempt retrieval of the missing data, collect additional data or try more sophisticated
missing data methods.

Deleting missing cases is the simplest strategy for dealing with missing data.
It avoids the complexity and possible biases introduced by the more sophisticated
methods that we will discuss. The drawback is that we are throwing away infor-
mation that might allow more precise inference. A decision on whether deletion is
an acceptable missing data strategy depends on the circumstances. If relatively few
cases contain missing values, if deleting missing cases still leaves a large dataset or
if you wish to communicate a simple data analysis method, the deletion strategy is
satisfactory.

13.4 Single Imputation

A simple solution to the problem is to fill in or impute the missing values. For

example, we can fill in the missing values by the variable means:
cmeans = chmiss.mean(axis=0); cmeans.to_frame().T.round(2)

race fire theft age 1involact income
0 35.61 11.42 32.65 59.97 0.65 10.74

We do not fill in missing values in the response because this is the variable we are
trying to model. The cases with a missing response still have some value in imputing

the other missing predictor values. Now refit:
mchm = chmiss.copy()
mchm.race.fillna(cmeans[’'race’],inplace=True)
mchm. fire.fillna(cmeans[’fire’],inplace=True)
mchm. theft.fillna(cmeans[’theft’],inplace=True)
mchm.age.fillna(cmeans[’age’],inplace=True)
mchm.income. fillna(cmeans[’'income’],inplace=True)
imod = smf.ols(
’involact ~ race + fire + theft + age + np.log(income)’,
mchm) . fit ()
imod. sumary ()

coefs stderr tvalues pvalues
Intercept 0.530 1.088 0.49 0.6292
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Figure 3.2 Bootstrap regression coefficient density for Ba,.q; 95% confidence in-
terval is shown as dotted lines.

Bootstrap methods can also be used for hypothesis testing although permutation
tests are generally better for this purpose. There are alternative resampling methods.
We can resample (X, Y) pairs rather than residuals although this seems less attractive,
particularly when X is regarded as fixed, such as in designed experiments. There are

also more sophisticated methods for constructing the confidence intervals. For more
on this, see Efron and Tibshirani (1993) or Davison and Hinkley (1997).

Exercises

1. The dataset prostate comes from a study on 97 men with prostate cancer who
were due to receive a radical prostatectomy.

(a) Fit a model with 1psa as the response and the other variables as predictors.
Show the output.

(b) Compute 90 and 95% Cls for the parameter associated with age. Using just
these intervals, what could we have deduced about the p-value for age in the
regression summary?

(c) In the text, we made a permutation test corresponding to the F-test for the
significance of all the predictors. Execute the permutation test corresponding
to the z-test for age in this model.
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Observed

Figure 7.1 Measurement error: true vs. observed data.

For observational data, 6)% is (almost) the sample variance of X4 while for a con-
trolled experiment we can view it as just a numerical measure of the spread of the
design. A similar distinction should be made for cov(x#,8) although in many cases,
it will be reasonable to assume that this is zero.

Now B; = ¥.(x; — X)yi/ ¥.(x; — ¥)* and after some calculation we find that:

There are two main special cases of interest:

1. If there is no relation between X* and 9, c,5 = 0, this simplifies to:

A 1
Efi=p———

So [§1 will be biased toward zero, regardless of the sample size. If G% is small

relative to G)ZC, then the problem can be ignored. In other words, if the variability
in the errors of observation of X is small relative to the range of X, then we need
not be too concerned. For multiple predictors, the usual effect of measurement
errors is also to bias the ﬁ in the direction of zero.

2. In controlled experiments, we need to distinguish two ways in which error in x
may arise. In the first case, we measure x so although the true value is K, we
observe x°. If we were to repeat the measurement, we would have the same KA,
but a different x°. In the second case, you fix x? — for example, you make up
a chemical solution with a specified concentration x°. The true concentration
would be x*. Now if you were to repeat this, you would get the same x°, but the

x4 would be different. In this latter case we have:

6,5 = cov(X' —§,8) = —o3

and then we would have E 31 = B;. So our estimate would be unbiased. This
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5. Use transformations to find a good model for volume in terms of girth and
height using the trees data. Think about the formula for the volume of a cylin-
der and use this as the starting point. Plot the transformed data in 2D and 3D. You

can load the data with:
trees = sm.datasets.get_rdataset("trees", "datasets')

with the data found as trees.data and documentation seen with
{print(trees.__doc__}.

6. Use the odor data for this question.

(a) Fit a second order response surface for the odor response using the other three
variables as predictors. How many parameters does this model use and how
many degrees of freedom are left?

(b) Fit a model for the same response but now excluding any interaction terms
but including linear and quadratic terms in all three predictors. Compare this
model to the previous one. Is this simplification justified?

(c) Use the previous model to determine the values of the predictors which result
in the minimum predicted odor.

7. Use the cheddar data for this question.

(a) Fit an additive model for a response of taste with the other three variables as
predictors. Plot the residuals against the fitted values and each of the predictors.
Is any transformation of the predictors suggested?

(b) Use the Box—Cox method to determine an optimal transformation of the re-
sponse. Would it be reasonable to leave the response untransformed?

(c) Use the optimal transformation of the response and refit the additive model.
Does this make any difference to the transformations suggested for the predic-
tors?

8. Use the cars data with distance as the response and speed as the predictor.

(a) Plot distance against speed.
(b) Show a linear fit to the data on the plot.
(c) Show a quadratic fit to the data on the plot.

(d) Now use sqrt(dist) as the response and fit a linear model. Show the fit on
the same plot.
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9.7 More Complex Models

Regression analysis relies on the skill of the human analyst to make judgments about
graphical displays and to incorporate subject area knowledge. When the purpose of
the analysis is explanation or the sample size is relatively small, regression analysis
compares well to more complex alternatives. The linear model produces interpretable
parameters which are essential if we want to gain some understanding of the relation-
ship between the variables. If we do not have much data, it is hard to justify a more
complex approach.

For larger datasets where prediction is the goal, more complex models using
methods from machine learning may be more effective when the primary goal is
prediction. This is because these methods will be able to fit the data more flexibly
while keeping the number of parameters under control.

Exercises

1. The aatemp data come from the U.S. Historical Climatology Network. They are
the annual mean temperatures (in degrees F) in Ann Arbor, Michigan going back
about 150 years.

(a) Is there a linear trend?

(b) Observations in successive years may be correlated. Fit a model that estimates
this correlation. Does this change your opinion about the trend?

(c) Fit a polynomial model with degree 10 and plot your fitted model on top of the

data. Do any difficulties arise? Use this model to predict the temperature in
2020.

(d) Suppose someone claims that the temperature was constant until 1930 and then
began a linear trend. Fit a model corresponding to this claim. Is this better than
a simple linear model?

(e) Make a cubic spline fit with six basis functions evenly spaced on the range.
Plot the fit in comparison to the previous fits. Does this model fit better than
the straight-line model?

2. The cornnit data on the relationship between corn yield (bushels per acre) and
nitrogen (pounds per acre) fertilizer application were studied in Wisconsin in
1994. Use transformations to find a good model for predicting yield from ni-
trogen. Use a goodness-of-fit test to check your model. Tip: The response is
called yield which is a keyword in Python. Use the pandas, rename () function
to avoid unexpected problems.

3. Using the ozone data, fit a model with 03 as the response and temp, humidity
and ibh as predictors. Use the Box—Cox method to determine the best transfor-
mation on the response.

4. Use the pressure data to fit a model with pressure as the response and
temperature as the predictor using transformations to obtain a good fit using
informal exploratory methods.
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speed, labeled a through o. Response is percentage of shrinkage per specimen. There
were two levels of each factor. The “+” indicates the high level of a factor and the
“—"" indicates the low level.

A full factorial would take 2> runs, which is highly impractical, thus a design
with only 16 runs was used where the particular runs have been chosen specially so as
to estimate the mean and the 15 main effects. We assume that there is no interaction
effect of any kind. The data come from Box et al. (1988).

Here is the data:
import faraway.datasets.speedo
speedo = faraway.datasets.speedo.load()

speedo

h d 1 b j £fnaiemock g o y
1 - - + - 4+ + - - 4+ + - 4+ - - + 0.4850
2 + - - - - 44 + - - 4+ 4+ 4+ + - - 0.5750
3 - + - - 4+ - 4+ - 4+ - 4+ 4+ - 4+ - 0.0875
4 + + + - - - - - - - - 4+ + + + 0.1750
5 - - + + - - 4+ - 4+ 4+ - - + + - 0.1950
6 + - - + + - - - - + 4+ - - + + 0.1450
7 - + - + - + - - 4+ - + - + - + 0.2250
8 + + + + + + + - - - - - - - - 0.1750
9 - - + - 4+ + - 4+ - - 4+ - 4+ 4+ - 0.1250
10 + - - - - + 4+ + + - - - - 4+ + 0.1200
11 - + - - + - 4+ + - 4+ - - + - 4+ 0.4550
12 + + + - - - - + + 4+ + - - - - 0.5350
13 - - + + - - + 4+ - - + 4+ - - + 0.1700
14 + - - + + - - + + - - 4+ + - - 0.2750
15 - + - + - + - + - 4+ - + - + - 0.3425
16 + + + + + + + + + + + + + + + 0.5825

Perhaps you can see the pattern in the design. We can fit and examine a main-effects-

only model:
lmod = smf.ols(’y ~ h+d+l+b+j+f+n+a+i+e+m+c+k+g+0o’, speedo).fit()
1lmod. sumary ()

coefs stderr tvalues pvalues

Intercept 0.582 inf 0.00 nan
h[T.-] -0.062 inf -0.00 nan
d[T.-] -0.061 inf -0.00 nan
1[T.-] -0.027 inf -0.00 nan
b[T.-] 0.056 inf 0.00 nan
JIT.-] 0.001 inf 0.00 nan
f[T.-] -0.074 inf -0.00 nan
n[T.-] -0.007 inf -0.00 nan
al[T.-] -0.068 inf -0.00 nan
1[T.-] -0.043 inf -0.00 nan
e[T.-] -0.245 inf -0.00 nan
m[T.-] -0.028 inf -0.00 nan
c[T.-] -0.090 inf -0.00 nan
k[T.-] -0.068 inf -0.00 nan
glT.-] 0.140 inf 0.00 nan
o[T.-] -0.006 inf -0.00 nan

n=16 p=16 Residual SD=inf R-squared=1.00

There are no degrees of freedom, because there are as many parameters as cases. We
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3. Nonconstant variance. A failure to address this violation of the linear model as-
sumptions may result in inaccurate inferences. In particular, prediction uncer-
tainty may not be properly quantified. Even so, excepting serious violations, the
adequacy of the inference may not be seriously compromised.

4. Normality. This is the least important assumption. For large datasets, the infer-
ence will be quite robust to a lack of normality as the central limit theorem will
mean that the approximations will tend to be adequate. Unless the sample size is
quite small or the errors very strongly abnormal, this assumption is not crucial to
suCcess.

Although it is not part of regression diagnostics, it is worthwhile also mentioning
that an even more important assumption is that the data at hand are relevant to the
question of interest. This requires some qualitative judgment and is not checkable by
plots or tests.

Excercises

1. Using the sat dataset, fit a model with the total SAT score as the response and
expend, salary, ratio and takers as predictors. Perform regression diagnostics on
this model to answer the following questions. Display any plots that are relevant.
Do not provide any plots about which you have nothing to say. Suggest possible
improvements or corrections to the model where appropriate.

(a) Check the constant variance assumption for the errors.

(b) Check the normality assumption.

(c¢) Check for large leverage points.

(d) Check for outliers.

(e) Check for influential points.

(f) Check the structure of the relationship between the predictors and the response.

2. Using the teengamb dataset, fit a model with gamble as the response and the
other variables as predictors.

(a) Produce the residual-fitted plot and comment.
(b) Check the normality assumption. Is there an outlier?

(c) Compute the two forms of the standardized residual. One where the raw resid-
ual is normalized only by the scale and one where the raw residual is normal-
ized using both the scale and the leverage. Plot the ratio of these two residuals
against the index of observation. Comment on the variation of this ratio.

(d) Compute the standard deviation of the two types of residual discussed in the
previous question. What value is expected?

(e) Compute the (externally) studentized residual and make a QQ plot. Apart from
the change in scale on the y-axis, is there any difference between this plot and
the one from (b)?

(f) Compute the Bonferroni cut-off and use it to identify the outliers in this model.
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expectancy as one might expect. Even so, some variables such as income, are not
significant, contrary to what one might expect.

At each stage we remove the predictor with the largest p-value over 0.05.
lmod.pvalues.idxmax (), lmod.pvalues.max()

(’Area’, 0.9649)

Area is the first to go:

lmod = smf.ols(’'LifeExp ~ Population + Income + Illiteracy + \
Murder + HSGrad + Frost’, statedata).fit()

lmod.pvalues.idxmax (), lmod.pvalues.max()

(’Illiteracy’, 0.9340)

Now Illiteracy leaves the model:

lmod = smf.ols(
"LifeExp ~ Population + Income + Murder + HSGrad + Frost’,
statedata).fit ()

lmod.pvalues.idxmax (), lmod.pvalues.max()

(’Income’, 0.9153)

Followed by income.
lmod = smf.ols(
’LifeExp ~ Population + Murder + HSGrad + Frost’,

statedata).fit ()
lmod.pvalues.idxmax (), lmod.pvalues.max()

(’Population’, 0.0520)

Population might be the last variable to remove.
lmod = smf.ols(

’LifeExp ~ Murder + HSGrad + Frost’, statedata).fit()
1lmod. sumary ()

coefs stderr tvalues pvalues
Intercept 71.036 0.983 72.25 0.0000
Murder -0.283 0.037 -7.71 0.0000
HSGrad 0.050 0.015 3.29 0.0020
Frost -0.007 0.002 -2.82 0.0070

n=50 p=4 Residual SD=0.743 R-squared=0.71

The final removal of the Population variable is a close call. We may want to con-
sider including this variable if interpretation is made easier. Notice that the R? for
the full model of 0.74 is reduced only slightly to 0.71 in the final model. Thus the
removal of four predictors causes only a minor reduction in fit.

It is important to understand that the variables omitted from the model may still

be related to the response. For example:
lmod = smf.ols(
"LifeExp ~ Illiteracy + Murder + Frost’, statedata).fit(Q)
1lmod. sumary ()
coefs stderr tvalues pvalues
Intercept 74.557 0.584 127.61 0.0000
Illiteracy -0.602 0.299 -2.01 0.0500
Murder -0.280 0.043 -6.45 0.0000
Frost -0.009 0.003 -2.94 0.0052

n=50 p=4 Residual SD=0.791 R-squared=0.67

We see that illiteracy does have some association with life expectancy. It is true
that replacing illiteracy with high school graduation rate gives us a somewhat better
fitting model, but it would be insufficient to conclude that illiteracy is not a variable
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The 0., 1s sometimes called the “p-to-remove” and does not have to be 5%. If
prediction performance is the goal, then a 15 to 20% cutoff may work best, although
methods designed more directly for optimal prediction should be preferred.

Forward Selection just reverses the backward method. We start with no variables
in the model and then for all predictors not in the model, we check their p-values if
they are added to the model. We choose the one with lowest p-value less than o,;;.
We continue until no new predictors can be added.

Stepwise Regression is a combination of backward elimination and forward se-
lection. This addresses the situation where variables are added or removed early in
the process and we want to change our mind about them later. At each stage a vari-
able may be added or removed and there are several variations on exactly how this is
done.

We illustrate backward elimination on some data on the 50 states from the 1970s.

First we load the packages:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import scipy as sp

import statsmodels.api as sm

import statsmodels.formula.api as smf
import faraway.utils

The data were collected from U.S. Bureau of the Census. We will take life ex-
pectancy as the response and the remaining variables as predictors. We turn the

State variable into the row index for convenience:

import faraway.datasets.statedata

statedata = faraway.datasets.statedata.load()
statedata.index = statedata[’State’]

statedata = statedata.drop(’'State’,1l)

statedata.head ()

State Population Income Illiteracy LifeExp Murder HSGrad Frost Area
AL 3615 3624 2.1 69.05 15.1 41.3 20 50708

AK 365 6315 1.5 69.31 11.3 66.7 152 566432
AZ 2212 4530 1.8 70.55 7.8 58.1 15 113417
AR 2110 3378 1.9 70.66 10.1 39.9 65 51945
CA 21198 5114 1.1 71.71  10.3 62.6 20 156361
We fit the model:

lmod = smf.ols(’'LifeExp ~ Population + Income + Illiteracy + \
Murder + HSGrad + Frost + Area’, statedata).fit(Q
1lmod. sumary ()

coefs stderr tvalues pvalues
Intercept 70.943 1.748 40.59 0.0000

Population 0.000 0.000 1.77 0.0832
Income -0.000 0.000 -0.09 0.9293
Illiteracy 0.034 0.366 0.09 0.9269
Murder -0.301 0.047 -6.46 0.0000
HSGrad 0.049 0.023 2.10 0.0420
Frost -0.006 0.003 -1.82 0.0752
Area -0.000 0.000 -0.04 0.9649

n=50 p=8 Residual SD=0.745 R-squared=0.74

The signs of some of the coefficients match plausible expectations concerning
how the predictors might affect the response. Higher murder rates decrease life
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(g) Determine a transform of the response which results in a satisfactory residual-
fitted plot.

3. For the prostate data, fit a model with 1psa as the response and the other vari-
ables as predictors.

(a) Make the residual-fitted plot and comment.
(b) Check for large leverage points.

(c) Display the regression summary and identify all the predictors which are not
statistically significant. Fit a model with all these predictors removed. Con-
struct the residual-fitted plot and compare to that for the full model.

(d) Recompute the leverages and plot. Identify any unusually large leverages.

(e) For any unusual cases identified in the previous question, display the predictor
values converted to standard units. Which predictors made these cases un-
usual?

(f) Compare the regression summaries for the reduced model with and without
any points identified as having large leverage.

4. For the swiss data, fit a model with Fertility as the response and the other
variables as predictors. Note that you will need to change one of the variable
names. In R, six diagnostic plots are readily available for a linear model. In this
question, you will reproduce all six.

(a) Make a residual-fitted plot. Overlay a smooth fitted curve using lowess.

(b) Make a QQ plot of the standardized residuals.

(c) A ‘scale-location’ plot. This has the square root of the absolute standardized
residuals on the vertical, the fitted values on the horizontal with an overlaid
lowess smooth.

(d) On the horizontal axis, plot the index of the observations. At each observation,
draw a vertical bar to the height of the Cook’s statistic. Label the largest Cook’s
statistic.

(e) Plot the standardized residuals on the vertical and the leverages on the horizon-
tal. Overlay a lowess smoothed line.

(f) Plot the Cook’s distance on the vertical and h/(1-h) (where h is the leverage)
on the horizontal.

5. Using the cheddar data, fit a model with taste as the response and the other
three variables as predictors.

(a) Make a plot of acetic against taste showing the univariate regression line on the
p g g g
plot along with a confidence band. Does acetic appear significant in predicting
taste?

(b) Make the partial residual plot for acetic with respect to the full model with all
three predictors. Show a confidence band on the plot. Contrast the plot with
that from the previous question. Under what circumstances would these plots
present a similar configuration of points?

(c) Produce the partial residual plot for H2S. Interpret the plot.
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Chapter 10

Model Selection

For all but the simplest cases we are confronted with a choice of possible regression
models for our data. We may even have expanded the choice of possible models by
introducing new variables derived from those available originally by making transfor-
mations, creating interactions or adding polynomial terms. In the machine learning
world, the predictors are often called features. The process of creating new variables
or features is called feature engineering. In this context, model selection might be
called feature selection.

Model selection is not always necessary. Sometimes there is one established
model derived from physical theory or empirical experience. In other cases, we
commit to a particular model as part of a designed experiment. This would be usual
in clinical trials. We might consider whether this model is adequate given the data but
we will not start by considering alternative models. Also, if the number of predictors
is relatively small compared to the number of observations, there may not be much
benefit from model selection and it might be justifiable not to trouble with it.

Let’s suppose we do want to actively choose a model. Our problem is then in
selecting the “best” subset of predictors. More information should only be helpful
so one might wonder why we do not simply include all the available variables in the
model. However, we may wish to consider a smaller model for several reasons. The
principle of Occam’s Razor states that among several plausible explanations for a
phenomenon, the simplest is best. Applied to regression analysis, this implies that
the smallest model that fits the data adequately is best.

Another consideration is that unnecessary predictors will add noise to the estima-
tion of other quantities that interested us. Degrees of freedom will be wasted. More
precise estimates and predictions might be achieved with a smaller model. In some
cases, collecting data on additional variables can cost time or money so a smaller
prediction model may be more economical.

Model selection is a process that should not be separated from the rest of the
analysis. Other parts of the data analysis can have an impact. For example, outliers
and influential points can do more than just change the current model — they can
change the model we select. It is important to identify such points. Also transforma-
tions of the variables can have an impact on the model selected. Some iteration and
experimentation are often necessary to find better models.

Although Occam’s Razor is a compelling heuristic, we must focus our effort on
the main objective of regression modeling. We might obtain better predictions by
using larger models so although smaller models might be appealing, we do not wish
to compromise on predictive ability. For investigations that focus on the explanatory
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Hence the F-statistic is:
1mod.mse_model/ 1lmod.mse_resid
15.69

and the p-value is
l-sp.stats.f.cdf(1lmod. fvalue, 1lmod.df_model, 1lmod.df_resid)

6.84e-07
This is just for demonstration purposes — in practice, we will use the first method of
calculation.

Testing one predictor

Can one particular predictor be dropped from the model? The null hypothesis is
then Hy : B; = 0. Let Q be the model with all the predictors of interest which has
p parameters and let ® be the model with all the same predictors except predictor i.
Let’s test whether Area can be dropped from the full model by testing the hypothesis
that the corresponding parameter is zero. Using the general method, we fit a model

without Area and obtain this:

lmods = smf.ols(’Species ~ Elevation + Nearest + \
Scruz + Adjacent’, galapagos).fit()

sm.stats.anova_lm(lmods, 1lmod)

df_resid ssr df_diff ss_diff F Pr(>F)
0 25.0 93469.08399 0.0 NaN NaN NaN
1 24.0 89231.36633 1.0 4237.71766 1.139792 0.296318

The NaNs in the output can be ignored. The p-value of 0.296 indicates that the null
hypothesis cannot be rejected here.
An alternative approach is to use a ¢-statistic for testing the hypothesis:

t; = Bi/se(B;)

and check for significance using a ¢-distribution with n — p degrees of freedom. It can
be shown that t,-2 is equal to the appropriate F-statistic computed using the method
shown above. We can see the ¢-statistic and p-value in usual regression summary

output:
1lmod. sumary ()
coefs stderr tvalues pvalues

Intercept 7.068 19.154 0.37 0.7154

Area -0.024 0.022 -1.07 0.2963
Elevation 0.319 0.054 5.95 0.0000
Nearest 0.009 1.054 0.01 0.9932
Scruz -0.241 0.215 -1.12 0.2752
Adjacent -0.075 0.018 -4.23 0.0003

n=30 p=6 Residual SD=60.975 R-squared=0.77
We can verify that this is indeed the same result. Of course, it is easier to obtain the
summary output, so we will use this method from now on.

It is important to be precise about what hypothesis is being tested. For example,

consider another test of Hy : Barea = O:
lmods = smf.ols(’Species ~ Elevation + Nearest + Scruz’,
galapagos) . fit ()
sm.stats.anova_lm(lmods, 1lmod)
df_resid ssr df_diff ss_diff F Pr(GF)
0 26.0 158291.628568 0.0 NaN NaN NaN
1 24.0 89231.366330 2.0 69060.262238 9.287352 0.00103
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A failure to reject the null hypothesis is not the end of the game — you must still
investigate the possibility of nonlinear transformations of the variables and of outliers
which may obscure the relationship. Even then, you may just have insufficient data
to demonstrate a real effect, which is why we must be careful to say “fail to reject”
the null rather than “accept” the null. It would be a mistake to conclude that no real
relationship exists. This issue arises when a pharmaceutical company wishes to show
that a proposed generic replacement for a brand-named drug is equivalent. It would
not be enough in this instance just to fail to reject the null. A higher standard would
be required.

When the null is rejected, this does not imply that the alternative model is the best
model. We do not know whether all the predictors are required to predict the response
or just some of them. Other predictors might also be added or existing predictors
transformed or recombined. Either way, the overall F-test is just the beginning of an
analysis and not the end.

Let’s illustrate this test using the Galapagos Islands dataset introduced in the last

chapter. As before, we load all the packages we will use in this chapter:
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import scipy as sp

import statsmodels.api as sm

import statsmodels. formula.api as smf

import faraway.utils

We fit the same model as before with the number of species as the response and

the geographic variables as predictors.

import faraway.datasets.galapagos

galapagos = faraway.datasets.galapagos.load()

Ilmod = smf.ols(’'Species ~ Area + Elevation + Nearest + \
Scruz + Adjacent’, galapagos).fit()

We can obtain the F-statistic and corresponding p-value from the model object.
lmod. fvalue, 1lmod. f_pvalue

(15.69, 6.84e-07)
From this we see directly the result of the test of whether any of the predictors have
significance in the model — that is, whether B; = B> = B3 = B4 = B5s = 0. Since the
p-value of 6.84 x 10~ is so small, this null hypothesis is rejected.

Another way to do it:
lmodr = smf.ols(’Species ~ 1’, galapagos).fit()
lmod. compare_f_test (lmodr)
(15.69, 6.84e-07, 5.0)

Just for verification purposes, we can also do it directly using the F'-testing for-
mula. The total sum of squares (which comes from fitting the null model) and the

residual sum of squares are:
lmod.centered_tss, 1lmod.ssr
(381081, 89231)

the respective degrees of freedom are:
Imod.df_model, 1lmod.df_resid

(5, 24)

and the mean squares (dividing the sum of squares by the degrees of freedom are)

Ilmod.mse_model, 1lmod.mse_resid
(58370, 3718)
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clear-cut, as in this example. There are particular difficulties in explaining such
evidence to non-mathematically trained people.

After all this analysis, the reader may be feeling somewhat dissatisfied. It seems
we are unable to come to any truly definite conclusions, and everything we say has
been hedged with “ifs” and “buts.” Winston Churchill once said:

Indeed, it has been said that democracy is the worst form of Government except
all those other forms that have been tried from time to time.

We might say the same about statistics with respect to how it helps us reason in the
face of uncertainty. It is not entirely satisfying, but the alternatives are worse.

Exercises

A good exercise for this chapter requires a real dataset with some practical questions
of interest.

In general, a full answer requires you to perform a complete analysis of the data
including an initial data anaysis, regression diagnostics, a search for possible trans-
formations and a consideration of model selection. A report on your analysis needs
to be selective in its content. You should include enough information for the steps
leading to your selection of model to be clear and reproducible by the reader. But
you should not include everything you tried. Dead ends can be reported in passing
but do not need to be described in full detail unless they contain some message of

interest. Above all, your analysis should have a clear statement of the conclusion of
your analysis.
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(a) Make plots of the response against each of the predictors. Under what condi-
tions do the highest intensities occur?

(b) If all predictors are considered, how many possible two way interactions exist?
Will it be possible to estimate all of these?

(c¢) Fit a model with all the predictors but main effects only. Which effects are
significant? What effects are large and what are small?

(d) Fit a model with only predictors with large effects from the previous model.
Use an F-test to compare these two models.

(e) Fit a model with just the large-effect predictors and their two-way interactions.
You should receive a warning about a singularity. How many parameters can
be estimated in this model?

(f) Print out the data matrix for just the large-effect predictors. Do all possible
combinations of these predictors occur?

(g) What settings should be used for the predictors that matter if maximizing in-
tensity is the goal?

4. Inthe rats data, we model the survival time in terms of the poison and treatment.

(a) Plot the data in two different ways, each time showing both predictors. Is there
evidence of interaction?

(b) Fita model with both poison and treatment as predictors. Construct the residual-
fitted plot and comment.

(¢) Find a common transformation on the response that solves the problem re-
vealed in the previous question.

(d) Test the significance of the predictors.
(e) Apply the Tukey non-additivity test for independence.

(f) What treatment and poison combination minimizes the survival time? How
confident are you in this choice?

5. The peanut data come from a fractional factorial experiment to investigate factors
that affect an industrial process using carbon dioxide to extract oil from peanuts.

(a) Make plots of the data, one predictor at a time. What tends to maximize solu-
bility?

(b) Fit a model with main effects only. Which factors significantly increase solu-
bility?

(c) Fit a model with all two-way interactions. What can be said about which inter-
actions may have an effect on solubility?

(d) Fit the best model using only two predictors. What can be said about the best
predictor settings to maximize solubility?

(e) The client wishes to find a more precise setting of the predictors beyond high-
/low to optimize the response. What should the client do to achieve this?

6. The “High School and Beyond” data is found in hsb.

(a) Plot the data using boxplots for each variable with math as the response.
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this probability varies in a systematic way, then our conclusions may be off the mark.
It would be a very good idea to obtain some individual level data.

We have demonstrated statistical significance for the effect of race on the re-
sponse. But statistical significance is not the same as practical significance. The
largest value of the response is only 2.2% and most other values are much smaller.
Using our preferred models, the predicted difference between 0% minority and 100%
minority is about 1%. So while we may be confident that some people are affected,
there may not be so many of them. We would need to know more about predictors
like insurance renewal rates to say much more but the general point is that the size of
the p-value does not tell you much about the practical size of the effect.

There is also the problem of a potential latent variable that might be the true cause
of the observed relationship. Someone with first-hand knowledge of the insurance
business might propose one. This possibility always casts a shadow of doubt on our
conclusions.

Another issue that arises in cases of this nature is how much the data should be

aggregated. For example, suppose we fit separate models to the two halves of the

city. Fit the model to the south of Chicago:

lmods = smf.ols(’involact ~ race + fire + theft + age’,
chredlin.loc[chredlin.side == ’s’,:1).£fit(

1lmods . sumary ()

coefs stderr tvalues pvalues
Intercept -0.234 0.238 -0.99 0.3380

race 0.006 0.003 1.81 0.0873
fire 0.048 0.017 2.87 0.0107
theft -0.007 0.008 -0.79 0.4423
age 0.005 0.005 0.99 0.3348

n=22 p=5 Residual SD=0.351 R-squared=0.74

and now to the north:
lmodn = smf.ols(’involact ~ race + fire + theft + age’,

chredlin.loc[chredlin.side == ’'n’,:]).fit(Q
lmodn. sumary ()

coefs stderr tvalues pvalues
Intercept -0.319 0.227 -1.40 0.1759

race 0.013 0.004 2.81 0.0109
fire 0.023 0.014 1.65 0.1135
theft -0.008 0.004 -2.07 0.0517
age 0.008 0.003 2.37 0.0280

n=25 p=5 Residual SD=0.343 R-squared=0.76

We see that race is significant in the north, but not in the south. By dividing the
data into smaller and smaller subsets, it is possible to dilute the significance of any
predictor. On the other hand, it is important not to aggregate all data without regard
to whether it is reasonable. Clearly a judgment has to be made and this can be a point
of contention in legal cases.

There are some special difficulties in presenting this during a court case. With
scientific inquiries, there is always room for uncertainty and subtlety in presenting
the results, particularly if the subject matter is not contentious. In an adversarial
proceeding, it is difficult to present statistical evidence when the outcome is not
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breaks. But is this choice significantly better than the others? We can answer this

question by computing the Tukey HSD intervals which have width:
get_tukeyQcrit(6,48) * 1lmod.bse[0]

1.3725048838137048

We compute all the pairwise intervals:

import itertools

dp = set(itertools.combinations(range(0,6),2))

dcoef = []

namdiff = []

for cp in dp:
dcoef.append(lmod.params[cp[0]] - 1lmod.params[cp[1]1])
namdiff.append (lmod.params.index[cp[0]] + ’-" + \

lmod.params.index[cp[1]1])

thsd = pd.DataFrame({’'Difference’:dcoef},index=namdiff)
thsd["1b"] = thsd.Difference - get_tukeyQcrit(6,48) * 1lmod.bse[0]
thsd["ub"] = thsd.Difference + get_tukeyQcrit(6,48) * 1lmod.bse[0]
thsd.round (3)
Difference 1b ub
wool[A] :tension[H]-wool[B]:tension[H] 0.554 -0.818 1.927
wool[B] :tension[H]-wool[A]:tension[L] -2.245 -3.618 -0.873
wool[B] :tension[H]-wool[B]:tension[L] -0.936 -2.308 0.437
wool[A] :tension[M]-wool[B]:tension[M] -0.473 -1.845 0.900
wool[B] :tension[H]-wool[A]:tension[M] -0.524 -1.896 0.849
wool [B] :tension[H]-wool[B]:tension[M] -0.996 -2.369 0.376
wool[A] :tension[L]-wool[A]:tension[M] 1.722 0.349 3.094
wool[A] :tension[H]-wool[B]:tension[M] -0.442 -1.815 0.930
wool[A] :tension[L]-wool[B]:tension[L] 1.309 -0.063 2.682
wool[A] :tension[L]-wool[B]:tension[M] 1.249 -0.124 2.621
wool[A] :tension[H]-wool[A]:tension[M] 0.030 -1.342 1.403
wool[A] :tension[H]-wool[B]:tension[L] -0.382 -1.754 0.991
wool[B] :tension[L]-wool[A]:tension[M] 0.412 -0.960 1.785
wool[A] :tension[H]-wool[A]:tension[L] -1.691 -3.064 -0.319
wool[B] :tension[L]-wool[B]:tension[M] -0.061 -1.433 1.312

We see that no pairwise difference involving medium or high tensions is significant.
So the advice should be to avoid running the machine at low tension if possible. If
we must make a choice, using wool B at high tension is most likely to be the best
choice. But if there are cost differences between A and B or difficulties in running
the machines at high tension, then we can see that other choices may be reasonable.

16.4 Larger Factorial Experiments

Suppose we have factors o, 3,7, ... atlevels lq,l,ly,. ... A full factorial experiment
has at least one run for each combination of the levels. The number of combinations
is lalply. .., which could easily be very large. The biggest model for a full factorial
contains all possible interaction terms, which range from second-order, or two-way,
as encountered earlier in this chapter, to high order interactions involving several
factors. For this reason, full factorials are rarely executed for more than three or four
factors.

There are some advantages to factorial designs. If no interactions are significant,
we get several one-way experiments for the price of one. Compare this with doing
a sequence of one-way experiments. It is sometimes better to use replication for
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Figure 16.6 Diagnostic plots for the warpbreaks data. The plot on the left comes
from the untransformed response while that on the right results from a square-rooted
response.

coefs stderr tvalues pvalues

Intercept 4.856 0.327 14.87 0.0000
wool[T.B] -0.554 0.462 -1.20 0.2361
tension[T.L] 1.691 0.462 3.66 0.0006
tension[T.M] -0.030 0.462 -0.07 0.9477

wool[T.B]:tension[T.L] -0.755 0.653 -1.16 0.2534
wool[T.B]:tension[T.M] 1.027 0.653 1.57 0.1225

n=54 p=6 Residual SD=0.980 R-squared=0.36

In this output, we see that the main effect term for wool is significant. The reason for
the discrepancy is that the two tests of wool are different. The former test compares
the wool choice averaged over all levels of tension while the latter makes the compar-
ison at the reference level of tension (low in this case). So there is no simple answer
to the question of whether the choice of wool makes a difference to the response. In
the presence of a significant interaction, it is better not to consider main effects alone
but consider the effect of the two factors together.

The regression output above does not make it easy to interpret the nature of the
interaction. Sometimes it can be easier to think of the model having just one com-
bined factor with a number of levels equal to the product of the two factor levels. We

can achieve this as follows:
Ilmod = smf.ols(

'np.sqrt(breaks) ~ wool:tension-1’, warpbreaks).fit(Q
1lmod. sumary ()

coefs stderr tvalues pvalues
wool[A]:tension[H] 4.856 0.327 14.87 0.0000
wool[B]:tension[H] 4.302 .327 13.17 0.0000
wool[A]:tension[L] 6.548 .327 20.05 0.0000
wool[B]:tension[L] 5.238 .327 16.04 0.0000
wool[A] :tension[M] 4.826 .327 14.77 0.0000
wool[B]:tension[M] 5.299 .327 16.22 0.0000

O O O O O

n=54 p=6 Residual SD=0.980 R-squared=0.36
We can see that wool B at high tension produces the lowest expected number of
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Figure 12.5 Partial residual plots for race and fire.

12.4 Sensitivity Analysis

How robust is our conclusion to the choice of covariates used to adjust the response?
In the full model used earlier, we used all four covariates but we may wonder how
sensitive our findings are to this choice. Certainly, one might question whether we
should adjust the response for the average income of the zip code. Other objections
or uncertainties might be raised by use of the other covariates also.

We can investigate these concerns by fitting other models that vary the choice
of adjusting covariates. In this example, there are four such covariates and so there
are only 16 possible combinations in which they may be added to the model. It is
practical to fit and examine all these models.

The mechanism for creating all 16 models is rather complex and you may wish

to skip to the output. First we create all subsets of (1,2,3,4).

import itertools

inds = [1, 2, 3, 4]

clist = []

for i in range(0, len(inds)+1):
clist.extend(itertools.combinations(inds, 1))

Now we fit all 16 possible models:

X = chredlin.iloc[:,[0,1,2,3,5]1].copyQ

X.loc[:,’income’] = np.log(chredlin[’income’])

betarace = []

pvals = []

for k in range(0, len(clist)):
lmod = sm.OLS(chredlin.involact,

sm.add_constant(X.iloc[:,np.append(0,clist[k])]1)).£fitQ

betarace.append(lmod.params[1])
pvals.append (1mod.pvalues[1])

Construct the variable names

vlist = ['race’]

varnames = np.array([’race’,’fire’,’theft’,’age’,’logincome’])

for k in range(l, len(clist)):
vlist.append(’+’.join(varnames[np.append(0,clist[k]1)]1))

and create the output:

pd.DataFrame ({’beta’ :np.round(betarace ,4),
’pvals’:np.round(pvals,4)}, index=vlist)
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Figure 9.7 Regression spline fit to the simulated data.

minimize the sum of squares. Unfortunately, the unhelpful solution is f(x;) = y;.
This “join the dots” regression is almost certainly too rough. Instead, suppose we
choose f to minimize a modified least squares criterion:

~Y (= F)P 4 [ 17

where A > 0 controls the amount of smoothing and [[f"(x)]?dx is a roughness
penalty. When f is rough, the penalty is large, but when f is smooth, the penalty
is small. Thus the two parts of the criterion balance fit against smoothness. This is
the smoothing spline fit.

While recovery of an unknown function from data is an intriguing mathematical
challenge, it is important not to get diverted from the goal of the analysis. Where
explanation is the purpose, we may be looking for some supposed feature of the
function such as a maximum or point of inflexion. For such an aim, one needs to
focus rather than simply to attempt to estimate the function in general.

9.6 Additive Models

Searching for good transformations on the predictors is difficult when there are mul-
tiple predictors. Changing the transformation on one predictor may change the best
choice of transformation on another predictor. Fortunately, there is a way to simulta-
neously choose the transformations. An additive model takes the form :

y = 0H‘fl(Xl)‘|‘f2(X2)‘|""‘|'fp(Xp)‘|'$

The linear terms of the form B;X; have been replaced with more flexible functional
forms f;(X;). Models that can handle a nonnormal response are called Generalized
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Figure 12.2 Plots of the Chicago insurance data.

axl.scatter(chredlin.race, chredlin. fire)
axl.set_xlabel ("Race")
axl.set_ylabel ("Fire")

ax2 = fig.add_subplot (122)
ax2.scatter(chredlin.race, chredlin.theft)
ax2.set_xlabel ("Race")

ax2.set_ylabel ("Theft")

fig.tight_layout ()

We can see that there is indeed a relationship between the fire rate and the per-
centage of minorities. We also see that there is large outlier that may have a dis-
proportionate effect on the relationship between the theft rate and the percentage of
minorities.

The question of which variables should also be included in the regression so
that their effect may be adjusted for is difficult. Statistically, we can do it, but the
important question is whether it should be done at all. For example, it is known that
the incomes of women in the United States and other countries are generally lower
than those of men. However, if one adjusts for various predictors such as type of job
and length of service, this gender difference is reduced or can even disappear. The
controversy is not statistical but political — should these predictors be used to make
the adjustment?
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In statsmodels, this residual is called the externally studentized residual and
can be obtained as one of the objects returned from the get_influence() function
as seen below.

Since t; ~ t,_,_1, We can calculate a p-value to test whether case i is an outlier.
This is fine if we only test one preselected case. However, if we had n = 100 and
tested all the cases, we would expect to find around five outliers using this procedure
if we used a 5% significance level. Even though we might explicity test only one
or two large ¢;s, we are implicitly testing all cases since we need to consider all the
residuals to find out which ones are large. Some adjustment of the level of the test is
necessary to avoid identifying an excess of outliers.

Suppose we want a level o test. Now P(all tests accept) = 1— P(at least one
rejects) > 1 — Y ; P(test i rejects) = 1 —nol. So this suggests that if an overall level
o test is required, then a level a./n should be used in each of the tests. This method
is called the Bonferroni correction and is used in contexts other than outliers. Its
biggest drawback is that it is conservative — it finds fewer outliers than the nominal
level of confidence would dictate. The larger that » is, the more conservative it gets.

Let’s compute studentized residuals for the savings data and pick out the largest:
stud = pd.Series(diagv.resid_studentized_external, savings.index)

(pd.Series.idxmax(abs(stud)), np.max(abs(stud)))
(’Zambia’, 2.85)

The largest residual of 2.85 is rather large for a standard normal scale, but is it an

outlier? Compute the Bonferroni critical value:
abs(sp.stats.t.ppf(0.05/(2*50) ,44))
3.53

Since 2.85 is less than 3.53, we conclude that Zambia is not an outlier. For simple
regression, the minimum critical value occurs at n = 23 taking the value 3.51. This
indicates that it is not worth the trouble of computing the outlier test p-value unless
the studentized residual exceeds about 3.5 in absolute value.

Some points to consider about outliers:

1. Two or more outliers next to each other can hide each other.

2. An outlier in one model may not be an outlier in another when the variables have
been changed or transformed. You will usually need to reinvestigate the question
of outliers when you change the model.

3. The error distribution may not be normal and so larger residuals may be expected.
For example, day-to-day changes in stock indices seem mostly normal, but larger
changes occur from time to time.

4. Individual outliers are usually much less of a problem in larger datasets. A sin-
gle point will not have the leverage to affect the fit very much. It is still worth
identifying outliers if these types of observations are worth knowing about in the
particular application. For large datasets, we need only to worry about clusters
of outliers. Such clusters are less likely to occur by chance and more likely to
represent actual structure. Finding these clusters is not always easy.

What should be done about outliers?

1. Check for a data-entry error first. These are relatively common. Unfortunately,
the original source of the data may have been lost or may be inaccessible. If you
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We can compute the correlations between the Legendre polynomial terms with:
np.corrcoef(X[:,1:5].T).round(3)

array([[1. , 0.303, 0.076, 0.17 ],
[0.303, 1. , 0.29 , 0.232],
[0.076, 0.29 , 1. , 0.35 1,

[0.17 , 0.232, 0.35 , 1. 11)

We see that these correlations are generally small. If the predictor values were evenly
spaced, the correlations would be practically zero due to the defining property of
Legendre polynomials. It would be desirable to have zero correlation since it would
result in orthogonality. This is particularly useful if one wants to choose the appro-
priate degree for the polynomials. With an orthogonal design, the coefficients do not
change as other terms are added or removed from the model. This makes it possible
to choose the degree with a single fit of the model.

It is possible to create an orthogonal design even with an unevenly spaced predic-
tor, but one must question whether this is worth the effort. Orthogonal polynomials
were popular years ago when computing was expensive. Using such a model also re-
quires additional effort with keeping track of scaling. The benefits do not outweigh
the costs.

Usually it is a bad idea to eliminate lower order terms from the model before the
higher order terms even if they are not statistically significant. This follows from
the hierarchy principle. Usually, the removal of an unneeded input from a model is
beneficial since less information is required to make predictions. But in this case, we
still need the input so no such advantage is gained. Futhermore, an additive change
in scale would change the t-statistic of all but the highest order term. We would not
want the conclusions of our study to be sensitive to such changes in the scale which
ought to be inconsequential. For example, suppose we transform ddpi by subtracting

10 and refit the quadratic model:

ethanol['Ec’] = ethanol.E - 0.9

lmodc = smf.ols(’NOx ~ Ec + I(Ec**2) + C’, ethanol).fit()
lmodc. sumary ()

coefs stderr tvalues pvalues
Intercept 2.404 0.168 14.32 0.0000

Ec 0.049 0.257 0.19 0.8488
I(Ec ** 2) -29.090 1.478 -19.68 0.0000
C 0.064 0.014 4.63 0.0000

n=88 p=4 Residual SD=0.484 R-squared=0.82

We see that the quadratic term remains unchanged from the previous uncentered
form of this model, but the linear term is now insignificant. There is no good reason
to remove the linear term in this model, but not in the previous version. If you
do remove lower order terms from, say, a quadratic model, be aware that this has
some special meaning. Setting the intercept to zero means the regression passes
through the origin while setting the linear term to zero would mean that the response
is optimized at a predictor value of zero.

You can also define polynomials in more than one variable. These are sometimes
called response surface models. A second degree model would be:

y = Bo+PBix1 +Barxz + ﬁuﬁ + Bzzxg + Br2x1%2
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manufacture an object to a specification. It is often possible to adjust the mean to
the desired level but a high variance will be detrimental to production quality.
Even so, let us examine the main effects, bearing in mind that we do not have

constant variance of the errors, making the comparisons less than optimal.
Ilmod = smf.ols(’psize ~ operator+resin’, pvc).fitQ
1lmod. sumary ()

coefs stderr tvalues pvalues
Intercept 36.240 0.523 69.34 0.0000

operator[T.2] -0.263 0.405 -0.65 0.5206
operator[T.3] -1.506 0.405 -3.72 0.0006
resin[T.2] -1.033 0.661 -1.56 0.1263
resin[T.3] -5.800 0.661 -8.77 0.0000
resin[T.4] -6.183 0.661 -9.35 0.0000
resin[T.5] -4.800 0.661 -7.26 0.0000
resin[T.6] -5.450 0.661 -8.24 0.0000
resin[T.7] -2.917 0.661 -4.41 0.0001
resin[T.8] -0.183 0.661 -0.28 0.7830

n=48 p=10 Residual SD=1.145 R-squared=0.86
Suppose that we valued a small particle size. In this case, operator 3 produces the
best results overall. If we have a choice, we would also prefer resin car 4 for the
smallest particle size. However, sometimes we may not have control over a factor.
For example, the resin cars might be disposable and we cannot reliably produce one
to a particular specification. In such cases, there is no point in identifying which is
best in the experiment. Nevertheless, we would still include the factor in the model
because it would allow us to estimate the operator effects more precisely.

We can construct pairwise confidence intervals for the treatment factors using
the Tukey method. First we construct the width of the interval for the operator

differences:
from statsmodels.sandbox.stats.multicomp import get_tukeyQcrit
get_tukeyQcrit(3,38) * 1lmod.bse[l] / np.sqrt(2)

We can compute all the pairwise differences among operators with:
p = np.append (0, 1lmod.params[1:3])
np.add.outer(p,-p)

array([[ O. , 0.2625 , 1.50625],
[-0.2625 , O. , 1.24375],
[-1.50625, -1.24375, O. 1D

We see that operators 1 and 2 are not significantly different, but operator 3 is different
from both. There are more significant differences among the resin cars although this
may not be of specific interest.

The analysis above is appropriate for the investigation of specific operators and
resin cars. These factors are being treated as fixed effects. If the operators and resin
cars were randomly selected from larger populations of those available, they should
be analyzed as random effects. This would require a somewhat different analysis not
covered here. However, we can at least see from the analysis above that the variation
between resin cars is greater than that between operators.

It is important that the observations taken in each cell are genuine replications.
If this is not true, then the observations will be correlated and the analysis will
need to be adjusted. It is a common scientific practice to repeat measurements and
take the average to reduce measurement errors. These repeat measurements are not
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We might want to know the value of E that leads to maximum output of NOx. We can

use simple calculus to maximize the quadratic:
-1mod2.params[1]/(2*1mod2.params[2])

0.9008

Although it’s not necessary here, we can use numerical optimization to find the max-
imum:

f2 = np.polyld(lmod2.params[[2,1,0]1])

from scipy.optimize import minimize_scalar

result = minimize_scalar (-£2)

result.x

0.9008

We define the polynomial using the polyld() function noting that the coefficients
are expected with the highest degree first. Since the {minimize_scalar ()} func-
tion computes the minimum, we need to negate the function to get the maximum.
Reassuringly, the result is the same. Notice that we are able to perform this opti-
mization without reference to C since the model uses the predictors in a separable
way.

We might check that the model fits the data well with a residual check such as:
plt.scatter(ethanol.E, 1lmod2.resid)

The plot (not shown) indicates some remaining structure that suggests a more flexible
function than the quadratic is required. We might prefer a quartic rather than a cubic

to get the shape we expect for predicting NOX:

1lmod4 = smf.o0ls(’NOx ~ E + I(E**2) +I(E**3) + I(E**4) + C’,
ethanol) . fit ()

1lmod4 . sumary ()

coefs stderr tvalues pvalues
Intercept 161.782 16.249 9.96 0.0000

E -821.333 77.013 -10.66 0.0000
I(E ** 2) 1,496.858 133.971 11.17 0.0000
I(E ** 3) -1,156.081 101.392 -11.40 0.0000
I(E ** 4) 321.154 28.205 11.39 0.0000
C 0.055 0.009 6.27 0.0000

n=88 p=6 Residual SD=0.305 R-squared=0.93

The residual checks are much more satisfactory and the fit, judging by the R-squared,
is certainly better. Yet there are some drawbacks. The estimated coefficients are very
large. Sometimes this happens because taking higher powers of numbers tends to
make them either very large (if much greater than one in absolute value) or very small
(if much smaller than one). The corresponding coefficients will need to compensate
for this to achieve a sensible response. But this is not the problem with this data.
The large values of the coefficients are due to the strong collinearities between the
polynomial terms. This has negative consequences for the stability of the estimation
and predictions.

In this example, we observe that the predicted response cannot be negative. A

simple way to ensure this is to use a logged response:
lmodl = smf.ols(’np.log(NOx) ~ E + I(E**2) + C’, ethanol).fit()
1lmodl . sumary ()

coefs stderr tvalues pvalues

Intercept -13.935 0.519 -26.87 0.0000
E 32.799 1.131 29.01 0.0000
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Chapter 16

Models with Several Factors

In this chapter, we show how to model data with more than one categorical predic-
tor. Sometimes the data can arise from observational studies but such data more
commonly arises from designed experiments, often called factorial designs. If all
possible combinations of the levels of the factors occur at least once, then we have a
full factorial design. Repeated observations for the same combination of factor levels
are called replicates.

We start with models involving two factors with no replication. It is possible
that the factors can interact, but this is difficult to investigate without replication.
We consider examples with and without significant interaction and discuss how they
should be interpreted. Replication can be expensive, so sometimes it is better to use

the experimental resources to investigate more factors. This leads us to an example
with many factors but no replication.

16.1 Two Factors with No Replication

Load the packages:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import statsmodels.api as sm

import statsmodels.formula.api as smf
import seaborn as sns

from scipy import stats

import faraway.utils

Mazumdar and Hoa (1995) report an experiment to test the strength of a thermo-

plastic composite depending on the power of a laser and the speed of a tape:
import faraway.datasets.composite
composite = faraway.datasets.composite.load()

composite

strength laser tape
1 25.66  40W slow
2 29.15 50W slow
3 35.73 60W slow
4 28.00 40W medium
5 35.09 50W medium
6 39.56 60W medium
7 20.65 40w fast
8 29.79  S50W fast
9 35.66 60W fast

We can plot the data with seaborn to produce a color display (not shown)
sns.catplot(x="laser", y="strength", hue="tape",

253





index-150_2.png
=70
=72
7
7
-80
—82

_
pooyyy) boj

1
1
1
1
1
1
1
1
1
1
1
+
1
1
1
1
1
1
1
1
1
1
1

-99
~100
~101
-102
~103
~104





index-207_1.jpg





index-265_2.png
Strength

40.0

37.5

35.0

27.5

25.0

225

20.0

— fast
=== medium

40W

50W
l aser

60W





index-206_1.png
EXERCISES 195

it to the model of the previous question. Explain why the F-test is valid here.
Should this model be preferred?

(f) Now include Age and Weight in the set of predictors. Repeat the PCA but first
scale the predictors. Explain why scaling is reasonable. How many compo-
nents should be chosen?

(g) Produce the loadings on the first and second PCs. Interpret.
(h) Fit a two-predictor linear model inspired by the last PCA analysis. Comment.

2. Use the seatpos data with all variables (scaled) as predictors except hipcenter.
Use the robust PCA method to identify any unusual cases. Say what is unusual

about them.

3. Fit PLS models to the seatpos data with all variables as predictors but with
hipcenter as the response.

(a) Use unscaled predictors. Select an appropriate number of components.

(b) Now scale the predictors to standard units. Select an appropriate number of
components.

(c) Which version should be preferred - scaled or unscaled?

4. Fit a ridge regression model to the seatpos data with hipcenter as the response
and all other variables as (scaled) predictors.

(a) Produce the ridge trace plot with each curve labeled with the predictor name.
You will need to choose the range of alpha carefully.

(b) Use crossvalidation to choose the optimum amount of shrinkage.

(c) Extract the estimated coefficients at the crossvalidated choice of alpha. Inter-
pret.

5. Fit a LASSO regression model to the seatpos data with hipcenter as the response
and all other variables as (scaled) predictors.

(a) Determine the optimal value of the smoothing parameter using crossvalidation.

(b) Make a plot of the estimated coefficients as a function of alpha. Label the
coefficient paths. Show the optimal choice of alpha. Is there anything unusual
about the plot?

(c) Extract and interpret the coefficients at the optimum value of alpha.
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data=composite, kind="point")

Alternatively, we can plot using matplotlib which gives us more control over the
appearance at the cost of some complexity. We find it helpful to create a numeric

version of the laser variable.
composite[’'Nlaser’] = np.tile([40,50,60],3)
faclevels = np.unique(composite. tape)

lineseq = ['-’,’--",":"]
for i in np.arange(len(faclevels)):
j = (composite.tape == faclevels[i])

plt.plot(composite.Nlaser[j], composite.strength[j],
lineseq[i],label=faclevels[i])
plt.legend )
plt.xlabel ("Laser™)
plt.ylabel ("Strength")
plt.xticks ([40,50,60],["40W","50W","60W"])

We can reverse the roles of 1laser and tape as in this seaborn plot (not shown):
sns.catplot (x="tape"”, y="strength"”, hue="laser",
data=composite, kind="point")

We can also plot it using matplotlib. We use the numerical values for the tape

speed.
composite[’Ntape’] = np.repeat([6.42,13,27], 3)
faclevels = np.unique(composite.laser)
for i in np.arange(len(faclevels)):
j = (composite.laser == faclevels[i])
plt.plot(composite.Ntape[j], composite.strength[j],
lineseq[i],label=faclevels[i])
plt.legend )
plt.xlabel ("Tape")
plt.ylabel ("Strength")
plt.xticks ([6.42,13,27],["slow","medium”," fast"])
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Figure 16.1 Plots for the composite data — the role of the predictors is reversed in
each plot.
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from patsy import dmatrix
dm = dmatrix(’~ C(tape,Poly) + C(laser,Poly)’, composite)
np.asarray(dm) . round (2)

array([[ 1. , -0.71, 0.41, -0.71, 0.41],
. , -0.71, 0.41, -0. , -0.82],
[1. , -0.71, 0.41, 0.71, 0.41],
. , -0. , -0.82, -0.71, 0.41],
. , -o0. , -0.82, -0. , -0.82],
. , -0. , -0.82, 0.71, 0.41],
[1. , 0.71, 0.41, -0.71, 0.41],
. , 0.71, 0.41, -0. , -0.82],
[1. , 0.71, 0.41, 0.71, 0.41]11D)

We see the linear term is proportional to (—1,0, 1) representing a linear trend across
the levels, while the quadratic term is proportional to (1, —2, 1) representing a quadratic
trend.

We see that the quadratic term for laser power is not significant, while there is
a quadratic effect for tape speed. One of the drawbacks of a model with factors is
the difficulty of extrapolating to new conditions. The information gained from the
ordered factors suggests a model with numerical predictors corresponding to the level

values.
lmodn = smf.ols(
"strength ~ np.log(Ntape) + I(np.log(Ntape)**2) + Nlaser",
composite).fit()
lmodn. sumary ()
coefs stderr tvalues pvalues

Intercept -55.050 13.338 -4.13 0.0091
np.log(Ntape) 46.593 10.499 4.44 0.0068
I(np.log(Ntape) ** 2) -9.238 2.028 -4.55 0.0061
Nlaser 0.611 0.060 10.11 0.0002

n=9 p=4 Residual SD=1.479 R-squared=0.96

We use the log of tape speed, as this results in roughly evenly spaced levels. This
model fits about as well as the two-factor model, but has the advantage that we make
predictions for values of tape speed and laser power that were not used in the exper-
iment. The earlier analysis with factors alone helped us discover this model, which
we may not otherwise have found.

16.2 Two Factors with Replication

Consider the case when the number of observations per combination of factor levels
is the same and greater than one. Such a layout results in an orthogonal design matrix.
With the benefit of replication, we are now free to fit and test the full model:

Yijk = M+ 0 + B+ (aB)ij + € ji

The interaction effect is tested by fitting a model without the (af3);; term and com-
puting the usual F-test. If the interaction effect is found to be significant, we do not
test the main effects even if they appear not to be significant.

In an experiment to study factors affecting the production of the polyvinyl chlo-
ride (PVC) plastic, three operators used eight different devices called resin railcars
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Xxr = np.array([0,1])
plt.plot(xr,1lmod.params[0] + xr*lmod.params[1l])

We see that there is a clear statistically significant relationship between the per capita
annual income and the proportion who are US born. What does this say about the
average annual income of people who are US born and those who are naturalized
citizens? If we substitute usborn=1 into the regression equation, we get 68642 —
46019 = $22,623, while if we put usborn=0, we get $68,642. This suggests that on
average, naturalized citizens earn three times more than US born citizens. In truth,
information from the US Bureau of the Census indicates that US born citizens have
an average income just slightly larger than naturalized citizens. What went wrong
with our analysis?

The ecological inference from the aggregate data to the individuals requires an
assumption of constancy. Explicitly, the assumption would be that the incomes of
the native born do not depend on the proportion of native born within the state (and
similarly for naturalized citizens). This assumption is unreasonable for these data
because immigrants are naturally attracted to wealthier states.

This assumption is also relevant to the analysis of the Chicago insurance data
since we have only aggregate data. We must keep in mind that the results for the
aggregated data may not hold true at the individual level.

12.2 Initial Data Analysis

Start by reading the data in and examining it:

import faraway.datasets.chredlin

chredlin = faraway.datasets.chredlin.load()
chredlin.head )

zip race fire theft age involact income side

0 60626 10.0 6.2 29 60.4 0.0 11.744 n
1 60640 22.2 9.5 44 76.5 0.1 9.323 n
2 60613 19.6 10.5 36 73.5 1.2 9.948 n
3 60657 17.3 7.7 37 66.9 0.5 10.656 n
4 60614 24.5 8.6 53 81.4 0.7 9.730 n
Summarize:
chredlin.drop(’zip’,1).describe () .round(2)

race fire theft age 1involact income
count 47.00 47.00 47.00 47.00 47.00 47 .00
mean 34.99 12.28 32.36 60.33 0.61 10.70
std 32.59 9.30 22.29 22.57 0.63 2.75
min 1.00 2.00 3.00 2.00 0.00 5.58
25% 3.75 5.65 22.00 48.60 0.00 8.45
50% 24.50 10.40 29.00 65.00 0.40 10.69
75% 57.65 16.05 38.00 77.30 0.90 11.99
max 99.70 39.70 147.00 90.10 2.20 21.48

and for the categorical predictor, side:
chredlin.side.value_counts ()

n 25
S 22

We see that there is a wide range in the race variable, with some zip codes almost
entirely minority or non-minority. This is good for our analysis since it will reduce
the variation in the regression coefficient for race, allowing us to assess this effect
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Now we update the model with the new predictor formed from the products of the

main effects:

composite[’crossp’] tapecoefs * lasercoefs

tmod smf.ols("strength ~ tape + laser + crossp",
composite).fit()

tmod. sumary ()

coefs stderr tvalues pvalues
Intercept 21.948 1.491 14.72 0.0007
tape[T.medium] 6.675 2.239 2.98 0.0585
tape[T.slow] 1.791 1.498 1.20 0.3178
laser[T.50W] 7.087 1.618 4.38 0.0220
laser[T.60W] 13.168 2.014 6.54 0.0073
Crossp -0.034 0.050 -0.67 0.5503

n=9 p=6 Residual SD=1.745 R-squared=0.97

The p-value of 0.5503 indicates a nonsignificant interaction. So for these data, we
might reasonably assume (0.);; = 0. The major drawback is that the test makes the
assumption that the interaction effect is multiplicative in form. We have no particular
reason to believe it takes this form, and so this alternative hypothesis may not be
looking in the right place. Although judging whether lines on a plot are parallel
requires some subjective judgment, it may be a more reliable method of checking for
interaction here.

Now that the issue of interactions has been addressed, we can check the signifi-

cance of the main effects:
sm.stats.anova_lm(tmod)

df sum_sq mean_sq F PR(>F)
tape 2.0 48.918689 24.459344 8.034443 0.062401
laser 2.0 224.183822 112.091911 36.820124 0.007745
Crossp 1.0 1.370111 1.370111 0.450056 0.550338
Residual 3.0 9.132933 3.044311 NaN NaN

We see that both factors are significant.

The treatment coding does not take advantage of the ordered nature of both fac-
tors. Factors without an ordering to the levels are called nominal, while those that
possess a natural ordering are called ordinal. We can declare both to be ordered

factors and refit:

cat_type pd.api.types.CategoricalDtype(
categories=['slow’, 'medium’,’fast’],ordered=True)

composite[’'tape’] composite.tape.astype(cat_type)

from patsy.contrasts import Poly

1mod smf.ols("strength ~ C(tape,Poly) + C(laser,Poly)",
composite).fit()

1lmod. sumary ()

coefs stderr tvalues pvalues

Intercept 31.032 0.540 57.45 0.0000
C(tape, Poly).Linear -1.047 0.936 -1.12 0.3259
C(tape, Poly).Quadratic -3.900 0.936 -4.17 0.0140
C(laser, Poly) .Linear 8.636 0.936 9.23 0.0008
C(laser, Poly).Quadratic -0.381 0.936 -0.41 0.7047

n=9 p=5 Residual SD=1.620 R-squared=0.96

Instead of a coding with respect to a reference level, we have linear and quadratic
terms for each factor. The coding is:
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Chapter 12

Insurance Redlining — A Complete Example

In this chapter, we present a relatively complete data analysis. The example is inter-
esting because it illustrates several of the ambiguities and difficulties encountered in
statistical practice.

Insurance redlining refers to the practice of refusing to issue insurance to certain
types of people or within some geographic area. The name comes from the act of
drawing a red line around an area on a map. Now few would quibble with an in-
surance company refusing to sell auto insurance to a frequent drunk driver, but other
forms of discrimination would be unacceptable.

In the late 1970s, the US Commission on Civil Rights examined charges by sev-
eral Chicago community organizations that insurance companies were redlining their
neighborhoods. Because comprehensive information about individuals being refused
homeowners insurance was not available, the number of FAIR plan policies written
and renewed in Chicago by zip code for the months of December 1977 through May
1978 was recorded. The FAIR plan was offered by the city of Chicago as a default
policy to homeowners who had been rejected by the voluntary market. Information
on other variables that might affect insurance writing such as fire and theft rates was
also collected at the zip code level. The variables are:

race racial composition in percentage of minority

fire fires per 100 housing units

theft thefts per 1000 population

age percentage of housing units built before 1939

involact new FAIR plan policies and renewals per 100 housing units
income median family income in thousands of dollars

side north or south side of Chicago

The data come from Andrews and Herzberg (1985) where more details of the
variables and the background are provided.

12.1 Ecological Correlation

Notice that we do not know the races of those denied insurance. We only know the
racial composition in the corresponding zip code. This is an important difficulty that
needs to be considered before starting the analysis.

When data are collected at the group level, we may observe a correlation between
two variables. The ecological fallacy is concluding that the same correlation holds

197
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Figure 9.2 Log-likelihood plot for the Box—Cox transformation of the Galdpagos
data is shown on the left and the log-additive transformation on the 1leafburn data
is shown on the right.

probably the reason — there can be little justification for actually making such an
extreme transformation.

2. If some y; < 0, we can add a constant to all the y. This can work provided the
constant is small, but this is an inelegant solution.

3. If max;y;/ min;y; is small, then the Box—Cox will not have much real effect be-
cause power transforms are well approximated by linear transformations over
short intervals far from the origin.

4. There is some doubt whether the estimation of A counts as an extra parameter to
be considered in the degrees of freedom. This is a difficult question since A is not
a linear parameter and its estimation is not part of the least squares fit.

The Box—Cox method is not the only way of transforming the predictors. Another
family of transformations is given by go(y) = log(y + o). We can illustrate the value
of this using some data from Steel and Torrie (1980) on the burn time of tobacco
leaves as a function of three chemical constituents: nitrogen, chlorine and potassium.

The method of calculation follows the same path:

import faraway.datasets.leafburn

leafburn = faraway.datasets.leafburn.load()

from patsy import dmatrix

X = dmatrix(’nitrogen + chlorine + potassium’,data=leafburn)

n = leafburn.shape[0]

alpha = np.linspace(-0.999,0,100)

llk = np.empty (100)

for i in range(0, 100):
lmod = sm.OLS(np.log(leafburn.burntime+alphali]),X).£fit(Q
11k[i] = -(n/2)*np.log(lmod.ssr) - \

np.sum(np.log(leafburn.burntime + alphaf[i]))

fig, ax = plt.subplots()

ax.plot(alpha,llk)

ax.set_xlabel(r’$\alpha$’)

ax.set_ylabel(’log likelihood’)

maxi = llk.argmax()
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the number of predictors p exceeds the number of observations. The use of lasso
in applications where effects are not sparse, as in many socioeconomic examples, is
less compelling.

Furthermore, in this example, there is probably no additional cost in measuring

all the frequencies as opposed to just a few of them. However, in other applications,
where there is some cost in recording additional predictors, the lasso method would

be especially valuable. The lasso can be regarded as an effective form of model
selection in such cases.

11.5 Other Methods

There are other choices within the scikit-1learn package that can be called shrink-
age methods. The Elastic-Net method combines the ridge and lasso ideas by having
both an L; and an L, penalty. This allows for some predictors to be dropped as in
lasso while still retaining the regularization advantages of ridge. The Least Angle
Regression (LARS) method is related to lasso in its preference for models with a re-
duced number of predictors. The Orthogonal Matching Pursuit method goes further
than lasso in just encouraging the elimination of predictors — it specifies a maxi-
mum number of nonzero coefficients. The scikit-learn package also contains a
Bayesian regression implementation. By imposing weakly informative priors on the
parameters we achieve a similar effect to ridge regression. It is possible to make an
exact identification between the two methods.

There are many other methods for predicting a continuous response as a function
of some predictors. Neural networks, support vector machines, random forests and
more can all be used for regression problems. But these methods do not use the
linear form for the combination of the predictors. Although these methods can be
very effective in prediction, they do not have the interpretable parameter of the model
coefficients which is a key advantage of the methods described in this chapter. For
all four methods, we can see clearly how new predictions will be generated as more
data is collected because of the transparent linear form.

Exercises

1. Use the seatpos data with hipcenter as the response.

(a) Use the predictors: HtShoes, Ht, Seated, Arm, Thigh and Leg. Per-
form a PCA on these unscaled predictors and compute the standard deviations
of the principal components. How many components should be chosen?

(b) What are the loadings on the first principal component? Give an interpretation.

(c) Fit a linear model with all six predictors. Report on the R-squared. Which
predictors are statistically significant?

(d) Fit a linear model with all six principal components. How does the overall
fit differ from the linear model of the previous question? Which principal
components are statistically significant?

(e) Fitalinear model with only the height as a predictor. Make an F-test comparing
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C(school) [28] -5.828595
C(school)[31] 3.824053
C(school) [40] -4.985458
C(school) [45] -4.639201
C(school) [50] -2.652027

We see that eight schools are identified with all except school 31 marked as signifi-
cantly below average.

The Bonferroni correction is known to be conservative, but even were we to use
one of the more generous alternatives, the familywise error rate restriction imposes
a high bar on the identification of significant effects. As the number of levels being
compared increases, this requirement becomes ever more stringent.

An alternative approach is to control the false discovery rate (FDR) which is the
proportion of effects identified as significant which are not real. The best known
method of doing this is due to Benjamini and Hochberg (1995).

Given sorted p-values p(;) for i = 1,...,m the procedure finds the largest i for
which p;) < ou /m. All tests corresponding to P@) up to and including this i are

declared significant. We compute this for our example:

selsch = np.argsort(lmod.pvalues) [np.sort(lmod.pvalues) < \

np.arange(1,50)*0.05/49]

1lmod.params.index[selsch]

Index([’C(school)[28]°, ’'C(school)[31]’, ’C(school)[21]’, ’C(school)[1]’,
’C(school) [45]°, ’C(school)[40]’, ’C(school)[16]’, ’C(school)[50]’,
"C(school) [47]°, ’C(school)[49]’, ’C(school)[4]’, ’'C(school)[36]’,
"C(school) [46]°, ’'C(school)[14]’, ’C(school)[24]’, ’C(school)[27]’,
’C(school)[34]°, ’'C(school)[9]’],

We see that 18 schools are identified compared to the 8 by the previous procedure.
FDR is less stringent than FWER in identifying significant effects. A more conve-
nient method of computing the adjusted p-values is:

reject, padj, _, _ = multipletests(lmod.pvalues, method="fdr_bh")
1lmod.params[reject]

C(school)[1] -3.368450

C(school) [4] -2.661928

C(school) [9] 2.245764

...edited...

C(school) [49] 2.796405
C(school) [50] -2.652027

FDR methods are more commonly used where large numbers of comparisons are
necessary as often found in imaging or bioinformatics applications. In examples
such as these, we expect to find some significant effects and FDR is a useful tool in
reliably identifying them.

Exercises

1. In the pulp data, the brightness of the paper produced varies according to four
operators.

(a) Make an appropriate plot of the data. Comment on the content.

(b) Fita one-factor model for the bright response. Is there a significant difference
between operators?

(c) Test for a difference in variance in the operators.
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(d) Fit a one-factor model for the recovery times and test for a difference between
the two groups.

(e) Try a square root transformation on the response. Is the residual-fitted plot
satisfactory?

(f) Isthere a significant difference among the treatment groups on the transformed
scale?

(g) Suppose there is no discernable difference between the four treatments other
than a possible difference in recovery time. Which treatment would you choose
to reduce recovery time? Can you say what the probability is that you have
made the right choice?

6. Data on the butterfat content of milk from Canadian cows of five different breeds
can be found in the butterfat dataset. Consider only mature cows.

(a) Filter the data to just mature cows. Plot the data and interpret what you see.
(b) Test for a difference between the breeds.

(c) Make a residual-fitted plot and a qqg-plot of the residuals. Do you think your
plot in (a) would be sufficient to make the same conclusions?

(d) Compute the leverages and observe. How could these be computed using just
the number of parameters and observations?

(e) Produce a plot to check for differences in butterfat between breeds. Which
pairwise differences are not statistically significant?

(f) Is there a best breed for producing butterfat? Is there a worst?

7. Five suppliers cut denim for a jeans manufacturer. The amount of waste relative
to a target was collected weekly as seen in the denim dataset.

(a) Plot the data to determine which supplier wastes the least. Which supplier is
best in terms of minimizing maximum weekly waste?

(b) Is there a significant difference in wastage between the suppliers?
(c) Check the regression diagnostics commenting on any violations.

(d) Remove two outliers and repeat the test for a significant difference. Which
supplier has the lowest predicted wastage under this model?

(e) Check for significant pairwise differences between suppliers. Which pairs are
significantly different?

(f) Which supplier would you pick if there was no other relevant difference be-
tween them? What if the cost of the suppliers was in numerical order with the
first the most expensive and the fifth the cheapest?
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(d) If brighter paper is better, can any one operator be considered clearly the best
operator? How about the worst operator?

2. Inthe chickwts data, newly hatched chicks were randomly allocated into six feed
supplement groups. Their weights in grams after six weeks is the response. The
data can be obtained via the datasets.get_rdataset functionin statsmodels.

(a) Plot the data and comment.

(b) Fit a model with the weight gain as the response and the feed as a predictor. Is
there a difference between the feeds?

(c) Examine the model summary output. Which feed is the reference level? Which
feeds have estimated effects higher than this reference level?

(d) How many pairwise comparisons are possible for this experiment? Use the
Bonferroni correction to compute adjusted p-values from the model output.
Which feeds are significantly different from the reference level?

3. The PlantGrowth data shows the weight of plants for three different treatments.
The data can be obtained via the datasets.get_rdataset functionin statsmodels.

(a) Make a plot of the data and comment.
(b) Does the treatment group make a difference to the weight of the plant?

(c) Use Bartlett’s method to test for a difference in variance between the three
groups.

(d) Bartlett’s test requires normality of the errors. Is this a reasonable assumption
here?

(e) The control treatment is the existing standard and it would be expensive to
change this. Is there enough evidence to switch to one of the other two treat-
ments to achieve a higher weight?

4. Using the infmort data, perform a one-way ANOVA with income as the re-
sponse and region as the predictor.

(a) Plot the data and comment on the distributions seen.

(b) Fit a model to predict income using the region. Is there a significant difference
between regions?

(c) Examine the model summary output. Which region is the reference level? Is
there a significant difference between Africa and the Americas?

(d) Make a multiple pairwise comparison. What regions are different?
(e) Make a residual-fitted plot and comment.

(f) Make an appropriate transform on the response and redo the multiple compar-
1sons.

5. The anaesthetic data provides the time to restart breathing unassisted in recov-
ering from general anaesthetic for four treatment groups.

(a) Produce a boxplot depicting the data. Comment on any features of interest.
(b) Make a swarmplot of the data. Compare this with the previous plot.
(c) Modify the previous plot so that tick marks on the y-axis are integers.
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Chapter 9

Transformation

Transformations of the response and/or predictors can improve the fit and correct
violations of model assumptions such as nonconstant error variance. We may also
consider adding additional predictors that are functions of the existing predictors like
quadratic or crossproduct terms.

9.1 Transforming the Response

We start with some general considerations about transforming the response. Suppose
that you are contemplating a logged response in a simple regression situation:

logy =Bo+PBix+¢

In the original scale of the response, this model becomes:

y = exp(Bo + P1x) - exp(e) ©.1)

In this model, the errors enter multiplicatively and not additively as they usually do.
So the use of standard regression methods for the logged response model requires
that we believe the errors enter multiplicatively in the original scale. Alternatively,
for small €, exp(€) ~ 1 + €. Substituting this into (9.1) would result in a model with
additive errors but with nonconstant variance.

If we propose the model:

y =exp(Bo+Pix)+¢

then we cannot linearize this model directly, and nonlinear regression methods might
need to be applied. However, we might also use the exp(€) =~ 1 + € approximation to
get a weighted linear model.

In practice, we may not know how the errors enter the model additively, multi-
plicatively or otherwise. The best approach is to try different transforms to get the
structural form of the model right and worry about the error component later. We can
then check the residuals to see whether they satisfy the conditions required for linear
regression. If there is a problem, we have several potential solutions as discussed in
earlier chapters.

Although you may transform the response, you will probably need to express
predictions in the original scale. This requires back-transforming. For example, in
the logged model above, your prediction would be exp(o). If your prediction con-
fidence interval in the logged scale was [/, u], then you would use [exp!l,expu]. This
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246 ONE-FACTOR MODELS

group medians rather than means should be used. A significant difference would
indicate nonconstant variance.

Most tests and confidence intervals (Cls) are relatively insensitive to nonconstant

variance so there is no need to take action unless the Levene test is significant at the
1% level.

Applying this to the diet data, we find:
coagulation[’'meds’] = \
coagulation.groupby(’diet’).transform(np.median)
coagulation[’'mads’] = abs(coagulation.coag - coagulation.meds)
lmodb = smf.ols(’mads ~ diet’, coagulation).fit()
sm.stats.anova_lm(lmodb)

df sum_sq mean_sq F PR(>F)
diet 3.0 4.333333 1.444444 0.649189 0.592646
Residual 20.0 44.500000 2.225000 NaN NaN

Since the p-value is large, we conclude that there is no evidence of a nonconstant
variance. The stats.levene function from scipy can be used to achieve the same
result using the same syntax as the following test.

An alternative test is due to Bartlett:

stats.bartlett(coagulation.coag[coagulation.diet == "A"],
coagulation.coag[coagulation.diet == "B"],
coagulation.coag[coagulation.diet == "C"],
coagulation.coag[coagulation.diet == "D"])

BartlettResult(statistic=1.668, pvalue=0.644)
Again, no difference is found. Levene’s test is more robust to outliers.

15.4 Pairwise Comparisons

After detecting some difference in the levels of the factor, interest centers on which
levels or combinations of levels are different. It does not make sense to ask whether
a particular level is significant since this begs the question of “significantly different
from what?”. Any meaningful test must involve a comparison of some kind.

A pairwise comparison of level i and j can be made using a CI for o; — o using:

(AX,' — 6(,- + tg]{zse(ai — d,)

where se(&; — ;) = 6+/1/J;+1/J; and df = n—1I in this case. A test for o; = O.;
amounts to seeing whether zero lies in this interval or not. For example, let’s find a
95% CI for B— A. From the model output, we can see that the difference is 5.0 with
a standard error of 1.53. For differences not involving the reference level of A, more

effort would be required to calculate these values. The interval is:
lmod.params [1] + \
np.array([-1, 1]) * stats.t.ppf(0.975,20) * 1lmod.bse[1]

array([1.814, 8.186])
Since zero is not in the interval, the difference is significant. This is fine for just
one test, but we are likely to be interested in more than one comparison. Suppose

we do all possible pairwise tests when o = 5% and the null hypothesis is in fact
true. In the blood coagulation data, there are four levels and so six possible pairwise
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244 ONE-FACTOR MODELS

import patsy
p = patsy.dmatrix(’~ diet’, coagulation)
p[[0,4,10,16],:]

array([[1., 0., 0., O0.],

[1., 1., 0., 0.1,

[1., 0., 1., 0.],

[1., 0., 0., 1.1DD
We have selected only the first observation of each group to print. The three test
statistics for the group levels correspond to comparisons with the reference level
A. Although these are interesting, they do not specifically answer the question of
whether there is a significant difference between any of the levels. This test can be

obtained as:
sm.stats.anova_1lm(1lmod)

df sum_sq mean_sq F PR(>F)
diet 3.0 228.0 76.0 13.571429 0.000047
Residual 20.0 112.0 5.6 NaN NaN

We see that there is indeed a difference in the levels although this test does not tell
us which levels are different from others.

We can fit the model without an intercept term as in:
lmodi = smf.ols("coag ~ diet-1", coagulation).fit(Q)
lmodi . sumary ()

coefs stderr tvalues pvalues
diet[A] 61.000 1.183 51.55 0.0000
diet[B] 66.000 0.966 68.32 0.0000
diet[C] 68.000 0.966 70.39 0.0000
diet[D] 61.000 0.837 72.91 0.0000

n=24 p=4 Residual SD=2.366 R-squared=0.67

We can directly read the level means. To generate the usual test that the means of the

levels are equal, we would need to fit the null model and compare using an F-test:
lmodnull = smf.ols("coag ~ 1", coagulation).fit(Q)
sm.stats.anova_lm(lmodnull, 1mod)

df_resid ssr df_diff ss_diff F Pr(>F)
0 23.0 340.0 0.0 NaN NaN NaN
1 20.0 112.0 3.0 228.0 13.57 0.000047

We get the same F-statistic and p-value as in the first coding.

We can also use a sum coding:
from patsy.contrasts import Sum
lmods = smf.ols("coag ~ C(diet,Sum)"”, coagulation).fit()
lmods . sumary ()

coefs stderr tvalues pvalues
Intercept 64.000 0.498 128.54 0.0000

C(diet, Sum)[S.A] -3.000 0.974 -3.08 0.0059
C(diet, Sum)[S.B] 2.000 0.845 2.37 0.0282
C(diet, Sum)[S.C] 4.000 0.845 4.73 0.0001

n=24 p=4 Residual SD=2.366 R-squared=0.67

So the estimated overall mean response is 64 while the estimated mean response
for A is three less than the overall mean, that is, 61. Similarly, the means for B and
C are 66 and 68, respectively. Since we are using the sum constraint, we compute
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242 ONE-FACTOR MODELS

for i # 1 represents the difference between level i and level one. Level one is then
called the reference level or baseline level. This can be achieved using treatment
contrasts as discussed in the previous chapter.

3. Set ) ;a; = 0, now u represents the mean response over all levels and o;, the
difference from that mean. This requires the use of sum contrasts.

The choice of constraint from those listed above or otherwise will determine the
coding used to generate the X-matrix. Once that is done, the parameters (effects)
can be estimated in the usual way along with standard errors. No matter which valid
constraint and coding choice is made, the fitted values and residuals will be the same.
Once the effects are estimated, the natural first step is to test for differences in the
levels of the factor. An explicit statement of the null and alternative hypotheses would
depend on the coding used. If we use the treatment coding with a reference level,
then the null hypothesis would require that oy, = - - - = o = 0. For other codings, the
statement would differ. It is simpler to state the hypotheses in terms of models:

Hy: yij
Hy: vy

U Eij
ll+(x,,‘+8,'j

We compute the residual sum of squares and degrees of freedom for the two models
and then use the same F-test as we have used for regression. The outcome of this test
will be the same no matter what coding/restriction we use. If we do not reject the
null, we are almost done — we must still check for a possible transformation of the
response and outliers. If we reject the null, we might investigate which levels differ.

15.2 An Example

First load the packages:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt
import statsmodels.api as sm

import statsmodels. formula.api as smf
import seaborn as sns

from scipy import stats

import faraway.utils

Twenty-four animals were randomly assigned to four different diets and blood
samples were taken in a random order. The blood coagulation time was measured.

These data come from Box et al. (1978):

import faraway.datasets.coagulation

coagulation = faraway.datasets.coagulation.load()
coagulation.head ()

coag diet
1 62 A
2 60 A
3 63 A
4 59 A
5 63 B

Some preliminary graphical analysis is essential before fitting. The most popular
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Chapter 15

One-Factor Models

In the models considered previously, we have always had at least one quantitative
predictor. For the remainder of the book, we focus on qualitative predictors. In this
chapter, we consider only one qualitative predictor. Although this may seem like a
simple situation, we shall see it holds some interest as well as forming the basis for
the chapters to follow.

Linear models with only categorical predictors (or factors) have traditionally
been called analysis of variance (ANOVA) problems. The idea is to partition the
overall variance in the response due to each of the factors and the error. This tradi-
tional approach is exemplified by Scheffé (1959).

Some insight can be gained by considering the problem from this perspective, but
historically this required an increasingly complex set of specialized formulae for each
type of model depending on the configuration of factors. Unbalanced designs due to
missing or observational data caused a particular difficulty. We avoid these problems
by continuing with our current approach by putting the model into the y = X3 + €
format and then using the inferential methods we have already developed.

The terminology used in ANOVA-type problems is sometimes different. Predic-
tors are now all qualitative and are now typically called factors, which have some
number of levels. The regression parameters are now often called effects. We shall
consider only models where the parameters are considered fixed, but unknown —

called fixed-effects models. Random-effects models are used where parameters are
taken to be random variables and are not covered in this text.

15.1 The Model

Suppose we have a factor a occurring ati = 1,...,7 levels, with j = 1,...,J; obser-
vations per level. We use the model:

Yij =M+ O +E&ij

The parameters are not identifiable. For example, we could add some constant to u
and subtract the same constant from each o; and the fit would be unchanged. Some
restriction is necessary. Here are some possibilities:

1. Drop u from the model and use I different dummy variables to estimate o; for
i =1,...,1. This is feasible but does not extend well to models with more than
one factor as more than one parameter needs to be dropped.

2. Set oy = 0, then u represents the expected mean response for the first level and o;

241
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EXERCISES 239

7. The wealth in billions of dollars for 232 billionaires is given in fortune.

(a) Plot the wealth as a function of age using a different plotting symbol for the
different regions of the world.

(b) Plot the wealth as a function of age with a separate panel for each region.
(c) Determine a transformation on the response to facilitate linear modeling.
(d) What is the relationship of age and region to wealth?

(e) Check the assumptions of your model using appropriate diagnostics.

8. Ankylosing spondylitis is a chronic form of arthritis. A study was conducted to
determine whether daily stretching of the hip tissues would improve mobility. The
data are found in hips. The flexion angle of the hip before the study is a predictor,
and the flexion angle after the study is the response.

(a) Plot the data using different plotting symbols for the treatment and the control
status.

(b) Fit a model to determine whether there is a treatment effect.

(c) Compute the difference between the flexion before and after and test whether
this difference varies between treatment and control. Contrast this approach to
your previous model.

(d) Check for outliers. Explain why we might remove the three cases with fbef
less than 90. Refit an appropriate model and check for a treatment effect.

(e) What is the estimated size of the treatment effect? Give a 95% confidence
interval.

(f) Both legs of each subject have been included in the study as separate observa-
tions. Explain what difficulties this causes with the model assumptions.

(g) Compute the average angles for each subject and repeat the modeling with this
reduced dataset. Point out any differences in the conclusions.
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236 CATEGORICAL PREDICTORS

(k—1). The contribution to the model matrix is then given by BC. Other columns of
the model matrix might include a column of ones for the intercept and perhaps other
predictors.

Treatment coding

Consider a five-level factor that will be coded using four dummy variables. This

contrast matrix describes the coding, where the columns represent the dummy vari-

ables and the rows represent the levels:

from patsy.contrasts import Treatment

levels = [1,2,3,4]

contrast = Treatment(reference=0).code_without_intercept(levels)
print(contrast.matrix)

[[0. 0. 0. 0.]
[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]]

This treats the first level as the standard level to which all other levels are compared
so a control group, if one exists, would be appropriate for this level. The parameter
for the dummy variable then represents the difference between the given level and
the first level. The levels are assigned to a factor in alphabetical order by default.

Sum coding

This coding uses a contrast matrix of the form:
from patsy.contrasts import Sum
contrast = Sum().code_without_intercept(levels)
print(contrast.matrix)

[[ 1. 0. 0. 0.]
[ 0. 1. 0. 0.]
[ 0. 0. 1. 0.]
[ 0. 0. 0. 1.]
[-1. -1. -1. -1.]]

We can see five representative rows of the design matrix for the last fitted model:
mm = patsy.dmatrix(’~ C(Cactivity,Sum)’, f£ff)
ii = [1, 25, 49, 75, 99]
pd.DataFrame(mm[ii,:], index=ff.activity.iloc[ii],
columns=[’intercept’,’isolated’,’low’,’high’,’one’])
intercept isolated 1low high one

activity

many 1.0 -1.0 -1.0 -1.0 -1.0
isolated 1.0 1.0 0.0 0.0 0.0
one 1.0 0.0 0.0 0.0 1.0
low 1.0 0.0 1.0 0.0 0.0
high 1.0 0.0 0.0 1.0 0.0

There are other choices of coding — anything that spans the K — 1 dimensional
space will work. The Helmert and difference codings are readily available in patsy
but anything can be coded by specifying the contrast matrix. The choice of coding
does not affect the R?, 6° and overall F-statistic. It does affect the B and you do need
to know what the coding is before making conclusions about B





index-246_1.png
ALTERNATIVE CODINGS OF QUALITATIVE PREDICTORS 235

1mod. sumary ()

coefs stderr tvalues pvalues
Intercept 4.119 0.056 72.99 0.0000
activity[T.low] -0.120 0.080 -1.50 0.1370
activity[T.high] -0.517 0.080 -6.48 0.0000
activity[T.one] 0.023 0.080 0.29 0.7695
activity[T.many] 0.024 0.081 0.30 0.7670

n=124 p=5 Residual SD=0.282 R-squared=0.36

The magnitudes of the effects do not change that much, but the standard errors are
substantially larger. The value of including thorax in this model is to increase the
precision of the estimates.

14.5 Alternative Codings of Qualitative Predictors

Sometimes an alternative coding of factor variables can be useful. Consider the
previous model where we used the default treatment coding. Another choice is the

sum coding:
smod = smf.ols(’np.log(longevity) ~ C(Cactivity,Sum)’, ££).£fitQO
smod . sumary ()

coefs stderr tvalues pvalues

Intercept 4.001 0.025 157.88 0.0000
C(activity, Sum)[S.isolated] 0.118 0.051 2.33 0.0214
CCactivity, Sum)[S.low] -0.002 0.051 -0.03 0.9741
C(activity, Sum)[S.high] -0.399 0.051 -7.90 0.0000
C(Cactivity, Sum)[S.one] 0.141 0.051 2.80 0.0060

n=124 p=5 Residual SD=0.282 R-squared=0.36
The fit of this model is the same — statistics such as the residual standard error and
R? are identical, but the parameter estimates are different. In the treatment coding,
we set a reference level, in this case “isolated”. Using the previous model output,
the estimated effect for this level is given by the intercept term, 4.119, while the
effect for “low” is given by 4.119-0.120=3.999. For the sum coding, the intercept
represents the mean of the mean effects (so for a balanced design, this would be the
overall mean). In this case, this value is 4.001. For the “low” level, we compute the
difference from this, 4.001-0.002=3.999. Hence the estimated effects are the same
for both codings but the parameterization is different.

Under the sum coding, the factor effects sum to zero. To avoid identifiability
problems, the dummy variable corresponding to the last level is omitted. For this
reason, we do not see a parameter estimate for many in the model output. But we

can compute the effect for this level by using the sum to zero constraint. We have:
np.sum(smod.params[1:])
-0.142

So the estimated effect for “many” is 0.142 above the overall mean.

In general, let B be an n X k dummy variable matrix where B;; = 1 if case i falls
in class j and is zero otherwise. We might use B to form part of the model matrix.
However, the row sums of B are all one. Since an intercept term would also be
represented by a column of ones, all the parameters would not be identifiable.

The coding is then determined by a contrast matrix C which has dimension k X
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(e) Use an F-test to compare this to the previous model. What does the outcome
of the test mean?

(f) Compute the group means by dose and supp together. What does this suggest?

4. In this question, we investigate whether there is any difference between the north
and south sides of Chicago in the chredlin data.

(a) Fit a model with involact as the response and the predictors, race, fire, theft,
income(logged) interacting with side. Explain what the interaction terms rep-
resent in this situation.

(b) Test whether any of the interaction effects are significant.
(c) Is there evidence of any effect due to side?

(d) Fit a model with the five predictors for just the south side. Fit the same model
for the north side. How can we test whether the coefficients in these two models
are the same?

5. Use the uswages data with wages as the response.

(a) Fit a model with wage as the response and the four regional indicators as pre-
dictors. Explain why a warning message is seen in the model output.

(b) Fit the same model but without an intercept term. Why is there no error mes-
sage now? Verify that the coefficient for the northeast is equal to the mean

wage in the northeast. Demonstrate how the same number can be calculated
from the model in (a).

(c) Make a plot where wage (on a log scale) is the response and education is the
predictor. Distinguish the race using the plotting character. How effective is
this plot?

(d) Make a plot where two boxplots for each level of race appear for each number
of years of education. How does this compare to the previous plot?

(e) Fit a model where logged wages is the response. Use an interaction between
race and education. Which terms are not statistically significant?

(f) Now fit a model where ony race is used as a predictor. Use an F-test to compare
this model to the previous model.

(g) Fit the best model - it may be one of the two above or a third model.

6. The dataset clot contains the clotting times of blood varying as percentage con-
centration of prothrombin-free plasma. There are two lots of thromboplastin.

(a) Plot the data with time as the response using a different plotting symbol ac-
cording to the lot.

(b) Find the transformation of the two continuous variables to form a linear rela-
tionship.

(c) Does the time to clot vary according to concentration differently in the two
lots?

(d) Check the assumptions of your model using regression diagnostics.

(e) At what percentage concentration is the predicted time the same for the two
lots?
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Exercises

1. This question uses the teengamb data with gamble as the response and the other
variables as possible predictors.

(a) Considering just income and sex as potential predictors, make plots of the
data in two distinct ways. Judging from just the plots, do you think there is an
interaction effect? Why?

(b) Fit a model allowing for an interaction effect. Is the interaction significant?

(c) What is the interpretation of the sex parameter in this model? It is not statisti-
cally significant. What does this indicate?

(d) The data already has sex as a dummy variable. Create a factor where the levels
are labelled male and female and where female is the reference level. Now fit
the model again. What does this model say about the relationship between
income and gambling for females?

(e) Fit a model which checks for an interaction between sex and each of three
quantitative predictors: income, status and verbal.

(f) Should we prefer this model to the previous simpler model?

2. The infmort data shows the relationship between infant mortality and income in
different regions of the world.

(a) Make a plot showing the relationship between income and infant mortality.
Show the region on different facets and the oil variables with a different plot-
ting color. Use a log scale for the income.

(b) Which country is a clear outlier?

(¢) Fit a model which includes interactions between income and oil, and, income
and region. Include all the data.

(d) Which interactions are statistically significant?

(e) Repeat the model fitting and testing but with the outlier excluded. What differ-
ence does this make?

(f) Interpret the chosen model. In particular, does infant mortality increase or
decrease with income? Also is infant mortality in Africa higher because of

lower incomes?

3. Obtain the ToothGrowth data with
tgdf = sm.datasets.get_rdataset("ToothGrowth")

tg = tgdf.data
and documentation with
print(tgdf.__doc__)

(a) Plot the data with len as the response, dose as the predictor and with supp
distinguished in the plotting character.

(b) Fit a model with len as the response and with dose and supp as predictors
along with their interaction. Can this model be simplified?

(c) Make a residual-fitted plot. Does this show any problems?

(d) Fit a model where there is a quadratic term in dose as well as interaction(s)
with supp. Is there are difference in curvature between the two groups?
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Figure 14.4 Plot of longevity in days and thorax length in millimeters of fruitflies
divided into five treatment groups. Longevity for the high sexual activity group ap-
pears to be lower.

coefs stderr tvalues pvalues

Intercept -50.242 21.801 -2.30 0.0230
activity[T.low] -7.750 33.969 -0.23 0.8199
activity[T.high] -11.038 31.287 -0.35 0.7249
activity[T.one] 6.517 33.871 0.19 0.8478
activity[T.many] -1.139 32.530 -0.04 0.9721
thorax 136.127 25.952 5.25 0.0000
thorax:activity[T.low] 0.874 40.425 0.02 0.9828
thorax:activity[T.high] -11.127 38.120 -0.29 0.7709
thorax:activity[T.one] -4.677 40.652 -0.12 0.9086
thorax:activity[T.many] 6.548 39.360 0.17 0.8682

n=124 p=10 Residual SD=10.713 R-squared=0.65

Since “isolated” is the reference level, the fitted regression line within this group
is longevity= —50.2 4+ 136.1xthorax. For “many,” it is longevity= (—50.2 —
1.1)4 (136.146.5)*thorax. Similar calculations can be made for the other groups.
We can take a closer look at the design matrix to see how the variables are coded.
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