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Preface

Preface to the Third Edition

This third edition of mathematical problems collection, published in three volumes under the title of Engineering Mathematics by Example as Vol. I: Algebra and Linear Algebra, Vol. II: Calculus, and Vol. III: Special Functions and Transformations, is intended for undergraduate level students in science and engineering programs. In addition, practicing engineers and scientists may use the collection as the source for self study and refreshing the basic techniques in mathematics. 

Second edition of this volume is thoroughly reviewed to refine its existing book structure, to correct the errors, to improve explanation to the given solutions, and to add more problems and solutions. 

All that with the hope to minimize (if not avoid completely) the new errors. Actually, this third edition of Vol. I has grown up from 588 problems on approximately 300 pages to 869 problems on approximately 525 pages. The choice of problems was motivated by desire to present classic problem forms and applicable solving techniques. Each problem is used as a tutorial example to present typical ideas that have general usability. With no exceptions, all solutions are given with all details and steps, including the inline reminders of applied ideas and formulas. In addition, problems are organized in progressively increased difficulty while, occasionally, multiple methods are used to solve the same problem so that they could be compared. 

It is highly recommended that the first attempt to solve each given problem should be without reading its solution beforehand. Then, if not successful in the first attempt, the second attempt to solve the same problem should be done after reading its solution and closing the book again. Normally, each subsequent problem in this collection is a slight advancement of ideas learned in the previous problems. For that reason, it may be frustrating if too many problems are skipped without actually solving them. Probably the best results are achieved if the same problem is solved by multiple techniques learned in other examples, as it is said, all roads must lead to Rome. Thus, the gradual competence development should be result of a daily routine. Long breaks between working on the problems, for example if working only one day per week, naturally result in forgetting already used ideas and increased frustration by the need to re-learn again and again “what was the trick here ?!?”. In my humble opinion and experience, sporadic and irregular work on mathematical problems inevitably results in increased frustration and eventual surrender. 

My hopes are that my students and readers will find this third edition to be much closer to what they asked me for. By all means, I will welcome both positive and negative constructive critiques and possible recommendations for the future editions. 

Île-de-France, France

Robert Sobot

October 05, 2024
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Preface

Preface to the Second Edition

It is inevitable that first edition of any type of textbook, and especially textbooks for mathematics, includes quite a few errors that slipped by all preproduction reviews. In this second edition, errors are thoroughly reviewed and corrected, with hopes that not many new ones are created. 

As the original volume doubled, this second edition is split into three separate books, Vol. I, II, III. In order to reinforce natural development in the study, best effort is put to logically organize the presented examples and techniques so that subsequent problems reference the once already solved. 

Île-de-France, France

Robert Sobot

June 27, 2023

Preface to the First Edition

This tutorial book resulted from my lecture notes developed for undergraduate engineering courses in mathematics that I teach over the last several years at l’École Nationale Supérieure de l’Électronique et de ses Applications (ENSEA), Cergy in Val d’Oise department, France. 

My main inspiration to write this tutorial type collection of solved problems came from my

students who would often ask “How do I solve this? It is impossible to find the solution.” while struggling to logically connect all the little steps and techniques that are required to combine together before reaching solution. In the traditional classical school systems mathematics used to be thought with the help of systematically organized volumes of problems that help us develop “the way of thinking”. In other words, to learn how to apply the abstract mathematical concepts to everyday’s engineering problems. Same as for music, it is also true for mathematics that in order to reach high level of competence one must put daily effort into studying of typical forms over long period of time. 

In this tutorial book I choose to give not only the complete solutions to the given problems, but also to give guided hints to techniques being used at the given moment. Therefore, problems presented in this book do not provide review of the rigorous mathematical theory, instead the theoretical background is assumed, while this set of classic problems provides a playground to play and to adopt some of the main problem solving techniques. 

The intended audience of this book are primarily undergraduate students in science and engineering. At the same time, my hope is that students of mathematics at any level will find this book to be useful source of practical problems to practice. 

Île-de-France, France

Robert Sobot

November 30, 2020
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Functions of  x

 f  (x), g (x)

First derivatives of functions of  f (x),  g(x)
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Sine of  x
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Convolution product
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Im  (z)
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Fourier transform of  x(t)





 L f (t)

Laplace transform of  f (t)
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Laplace transform of  f (t)

 F −1 (X(ω))
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 L −1  F (s)

Inverse Laplace transform of  F (s)

 F

−

→

Apply Fourier transform

 LT

−→

Apply Laplace transform

l’H

=

Apply l’Hôpital rule

def

=

By definition equals

t=0

=

Calculated at  t = 0

 DF T

Discrete Fourier transform

 F F T

Fast Fourier transform

 δ(x)
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 (x)

Triangular distribution

 (x)

Square (rectangular) distribution

X T

Dirac comb whose period is  T
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Heaviside step function of  t
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xvi
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 A B
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=  x 2 −  x 1
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≡
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{ a 1 , a 2 , a 3 , . . . }

List of elements, vector, series

{ an}

List of elements, vector, series

R

The set of real numbers

C

The set of complex numbers

N

The set of natural numbers

Q

The set of rational numbers

 a ∈ C

Number  a  is included in the set of complex numbers

 a ∈ R

Number  a  is included in the set of real numbers

∀ x

For all values of  x



Angle, argument
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It follows that

 dy

Derivative of  y  relative to  x

 dx

 u

Partial derivative of  u(x, y, z, . . . )  relative to  x

 x

 u

Second partial derivative of  u(x, y, z, . . . ), relative to  x  then to  y x,y

 z∗

Complex conjugate of number  z

| x|

Absolute value of  x

 < x >, x

Average value of  x

 Am,n

Matrix A whose size is  m ×  n

 In

The identity square matrix whose size is  n ×  n

| A|

Determinant of matrix A

 AT

Transpose of matrix A

 

Difference between two variables

 

Main determinant of a matrix

 x

Cramer’s sub-determinant relative to variable  x

 a

Vector  a

∞  a

 i=0  i

Sum of elements { a 0 , a 1 , . . . , a∞}



 S(n) =  S

 n

 n =

 a

 i=1  i

Notations for finite sum of  n  elements

dB

Decibel

dBm

Decibel normalized to “10−3”, i.e., “milli” 

 H (j x)

Transfer function

 x →  a

Limiting to  a  from its right side (x-axis)



 x →  a

Limiting to  a  from its left side (x-axis)



 x →  a

Limiting to  a  from above (y-axis)

 x →  a

Limiting to  a  from below (y-axis)

 a ·  b, a ×  b

Multiplication operation of  a  and  b





hint

In-line hints

∴

Reads as “therefore,” “thus,” etc. 

⇒

Reads as “it follows that,” “by consequence,” etc. 

Part I

Algebra
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Numbers

1

Basic number operations and rules, assuming  a ∈ R and  a = 0, 

 a 0 def

= 1 , (a = 0 )

 a− n  def

= 1  , (a = 0 )

 an

 a 1 def

=  a

 (a b)n =  an bn

 an  def

=  a ·  a ·  a · · ·  a









 a n =  an =  an b− n, (b = 0 )

 n  times

 b

 bn

√

 n

 an+1 def

=  a ·  a ·  a · · ·  a

def





=  a ·  a ·  a · · ·  a





·  a =  an ·  a

 a m =  m an, (a ≥ 0 )

 (n+1 )  times

 n  times







 f (x)

;  f (x)≥0

 an+ m  def

=  a ·  a ·  a · · ·  a

| f (x)| def

=









= a ·  a ·  a · · ·  a





·  a ·  a ·  a · · ·  a





= an am

− f (x) ;  f (x)<  0

 (n+ m)  times

 n  times

 m  times





 m

 n

 an

def

=  an ·  an · · ·  an





=  a ·  a · · ·  a

=  anm =  am

 m  times

 (n× m)  times

 Fundamental theorem of arithmetic:  Every integer greater than 1 can be decomposed into a product of prime numbers. A prime number is an integer greater than 1 that cannot be decomposed into a product of two smaller positive integers. 

 Prime factorization:  is the decomposition of a positive integer into a product of primes. 
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Numbers

Problems

1.1

Number Factorization

Factorize into prime numbers the integers in P.1.1 to P.1.15. 

1.1. 16

1.2. 64

1.3. 4096

1.4. 9

1.5. 243

1.6. 2187

1.7. 5

1.8. 125

1.9. 3125

1.10. 49

1.11. 343

1.12. 2401

1.13. 2310

1.14. 900

1.15. 1925

1.2

Basic Number Operations

Calculate expressions in P.1.16 to P.1.23. 



1 0

1.16. 20

1.17. 

2





√

0

1.19.  (  3 +  π − 1 ) 0

1.18. 

−38



1.20.  ( cos  x) 0 , (x = ± π/

0

2 )

1.21. 

 e 3

















3

0

4

0

2

3

0

4

1.22. 

+  π

−

− 7 π

1.23. 

+  π

−

− 22

2

6

27

9

2

6

27

33

Calculate expressions in P.1.24 to P.1.37. 

1.24.  (−1 )−3

1.25.  (−1 ) 125

1.26.  (−1 ) 64

1.27.  (−1 )−2024

1.3 Fractional Powers and Radicals

5



1 −2

1.28.  (−2 )−3

1.29. 

2







1 −2

1 −1

 (−2 )−3 −  (−3 )−2

2 −3

1.30. 

+

1.31. 

2

2

 (−4 )−1

3





 (−2 )−1 +  (−3 )−1

900

−2

1.32. 

1.33. 

 (−3 )−1 −  (−6 )−1

1575









343

−1

225

−2

1.34. 

1.35. 

3773

1225

1.36. −4 × 104 + 2 .  5 × 105

1.37. 0 .  5−1+ 0 .  25−2+ 0 .  125−3+ 0 .  0625−4

Calculate expressions in P.1.38 to P.1.41. 

1.38. 23000 × 32000

1.39. 3200 × 4−300

1.40. 5−2000 × 23000

1.41. 2187−300 × 81300 × 27300

1.3

Fractional Powers and Radicals

Calculate expressions in P.1.42 to P.1.53. 

1

1.42. 8− 13

1.43. 125 3

1.44. 2401− 14

1





3

16

− 4

2

1

3

1

2

1.45. 

1.46. 

1.47. 

25

27

2−6







0 .  375

1

− 2

1.49. 

5





1

1.48. 

2

1 − 3

1.50. 

2

8

3

1024

+

256

4

27

1.51. 0 .  25−0 .  5

1.52. 25− 32

1.53. 0 .  001− 13

6

1

Numbers

Convert fractional into the equivalent root forms of expressions given in P.1.54 to P.1.65. 

1.54.  x− 25

1.55.  x− 320  y− 715

1

2

3

1.56.  x  8  y  25

 x− 12  y  4

1.57. 

5

 z− 78  v  3





 x− 52

−0 .  75

2

5

1.58. 

 z− 712

1.59. 

 x  3  y  12

3

 y  4



1

2

3

1.60. 

1

 n−1

 xn x

1.61.  x  3  x  4  x−1

 n−1

÷  xn 2









3

4

5

5

2

7

−1





1.62.  x

− 2

2  y  5  z  6 ÷  x  4  y  3  z  12

2

3



1

1.63. 

3

3

 x  4

÷  x−1 2





− 1











2

3



1 −2



−2





1.64. 

3

3

6

6

− 2

 x  4

÷  x−1 2

1.65. 

3

 x− 14

÷

 x− 12

Calculate expressions in P.1.66 to P.1.73. 

√

√

1.66. 

3 27

1.67. 

4 256

√



1.68. 

3 216

1.69. 

3 27 ,  000





√







2

√

√

1.70. 

3 4 a 2 b

1.71.  x x x  3  x  3  x x

√

√

√

√

√

1.73. 

 x

1.72. 

 a 3 x−4

 x a 1− x x a 3− x

 a xn ÷  n xa

1.4

Indeterminate Forms

Calculate and/or discuss expressions in P.1.74 to P.1.82. 

1.74. 1∞

1.75. 00

1.76. 0 · ∞

1.5 Absolute Numbers and Expressions

7

∞

1.77. ∞0

1.78. ∞ − ∞

1.79. ∞

0

27 ( 23 − 8 )

1.82. 





1.80. 

1.81. 

1

0

1 − 27 · 3−3

 (−2 )−3 + 18 64 − 26

1.5

Absolute Numbers and Expressions

Calculate expressions in P.1.84 to P.1.92. 

1.83. | x| = 5

1.84. | x − 3| = 7

| x|

1.85. 

1.86. |3 −  x|  >  4

 x

1.87. | x 2 − 1| = 1

1.88. || x| − 5|  >  4

| x| +  x

| x| + 2 x

1.89. 

1.90. 

+ | x| +  x

2

3

|









 x − |2 x||

| x − 2|

2

2

1.91. 

−

 >  0

 x−2+| x−2|

 x−2−| x−2|

|

1.92. 

+

 x| +  x

| x| + 1

2

2
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Numbers

Answers

The basic number theory, starting with the multiplication/division table, is the first prerequisite for any work in mathematics. Mastering mental numerical calculations is the very first step in developing practical sense for the abstract structures in mathematics that are eventually associated with the physical world. Prime numbers are the basic building blocks of all integers, and there are many different ways to decompose (factorize) an integer into its prime factors. The list of prime numbers that are less than 100 should be familiar to all engineers/scientists. Most basic factorization technique is to apply the divisibility rules by 2 ,  3 ,  5 ,  7 ,  10, and 11. That is, an integer number is divisible (a) by 2 if it is even, i.e., its last digit is 0 ,  2 ,  4 ,  6, or 8. 

(b) by 3 if the sum of its digits is divisible by 3. 

(c) by 5 if its last digit is 0 or 5. 

(d) by 7; there are many rules. For example, subtracting two times the last digit from the rest gives a multiple of 7, i.e., 224 is divisible by 7 because 22 −  ( 2 × 4 ) = 14, and 14 = 2 × 7 is divisible by 7. 

(e) by 10 if the last digit is 0. 

(f) by 11; there are many rules, such as subtract the last digit from the rest and the result is divisible by 11. For example, 1452 is divisible by 11 because 145−2 = 143, then 14−3 = 11 is obviously divisible by 11. 

The prime decomposition of a given integer may be done by systematically applying these rules until the factorization product contains only prime numbers. 

Reminder: Within the first hundred integers, the following are prime:

2 ,  3 ,  5 ,  7 ,  11 ,  13 ,  17 ,  19 ,  23 ,  29 ,  31 ,  37 ,  41 ,  43 ,  47 ,  53 ,  59 ,  61 ,  67 ,  71 ,  73 ,  79 ,  83 ,  89 ,  97

Note that number 1 is considered special and not included in the prime numbers list. 

1.1

Number Factorization

1.1. The last digit is 6; thus, 16 is divisible by 2, then the systematic iterative application of the division rules leads into:

16 = 2 ×  ( 8 ) = 2 ×  ( 2 × 4 ) = 2 × 2 × 2 × 2 = 24

The only prime factor is 2, and evidently, 16 is the fourth power of 2, or, equivalently, 2 is the fourth root of 16. 

1.2. The last digit is 4 (which is an even number); thus, 64 is divisible by 2, then the systematic iterative application of the division rules leads into:

1.1 Number Factorization

9

64 = 2 ×  ( 32 ) = 2 ×  ( 2 × 16 ) = 2 × 2 ×  ( 2 × 8 )

= 2 × 2 × 2 ×  ( 2 × 4 ) = 2 × 2 × 2 × 2 × 2 × 2

= 26

The only prime factor of 64 is 2, and evidently, 64 is the sixth power of 2, or, equivalently, two is the sixth root of 64. 

1.3. The last digit is 6 (which is an even number); thus, 4096 is divisible by 2, then the systematic iterative application of the division rules leads into:

4096 = 2 × 2048 = 2 × 2 × 1024 = 2 × 2 × 2 × 512

= 2 × 2 × 2 × 2 × 256 = 2 × 2 × 2 × 2 × 2 × 128

= 2 × 2 × 2 × 2 × 2 × 2 × 64 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 32

= 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 16 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 8

= 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 4 = 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2

× 2 × 2 × 2

= 212

The only prime factor of 4096 is 2, and evidently 4096 is the 12th power of 2, or, equivalently, 2 is the 12th root of 4096. 

1.4. Simple multiplication table contains the product 3 × 3 = 9, that is, 9 = 32. Thus, the only prime factor of 9 is 3, and evidently 9 is the square of 3, or, equivalently, 3 is the square root of 9. 

1.5. The last digit of 243 is not even; thus, 243 is not divisible by 2. The sum of its digits is 2 + 4 + 3 = 9 = 3 × 3 which is evidently divisible by 3. Thus, iterative application of the

division rules gives





243 = 3 × 81

again, not even but 8 + 1 = 9 = 3 × 3 × 27 = 3 × 3 × 3 × 9

= 3 × 3 × 3 × 3 × 3 = 35

The only prime factor of 243 is 3, and evidently, 243 is the fifth power of 3, or, equivalently, 3

is the fifth root of 243. 

1.6. The last digit of 2187 is not even; thus, 2187 is not divisible by 2. The sum of its digits is 2 + 1 + 8 + 7 = 18 = 3 × 6 which is evidently divisible by 3. Thus, iterative application of the division rules gives





2187 = 3 × 729

again, not even but 7 + 2 + 9 = 18 = 3 × 6
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= 3 × 3 × 243 = 3 × 3 × 3 × 81 = 3 × 3 × 3 × 3 × 27 = 3 × 3 × 3 × 3 × 3 × 9

= 3 × 3 × 3 × 3 × 3 × 3 × 3 = 37

The only prime factor of 2187 is 3, and evidently 2187 is the seventh power of three , or, 

equivalently, 3 is the seventh root of 2187. 

1.7. Number 5 is a prime number, and therefore its only prime factor as 5 = 5 × 1. 

1.8. The last digit of 125 is 5; thus, 125 is divisible by 5. Iterative application of the division rules gives





125 = 5 × 25

again, the last digit is five = 5 × 5 × 5 = 53

The only prime factor of 125 is 5, and evidently, 125 is the third power of 5, or, equivalently, 5 is the third root of 125. 

1.9. The last digit of 3125 is 5; thus, 3125 is divisible by 5. Iterative application of the division rules gives





3125 = 5 × 625

again, the last digit is 5 = 5 × 5 × 125 = 5 × 5 × 5 × 25

= 5 × 5 × 5 × 5 × 5

= 55

The only prime factor of 3125 is 5, and evidently 3125 is the fifth power of 5, or, equivalently, 5 is the fifth root of 3125. 

1.10. Simple multiplication table contains the product 7 × 7 = 49, that is, 49 = 72. Thus, the only prime factor of 49 is 7, and evidently 49 is the square of 7, or, equivalently, 7 is the square root of 49. 

1.11. The last digit is 3 (which is an odd number); thus, 343 is not divisible by 2. The sum of its digits is 3 + 4 + 3 = 10, which is not divisible by 3. The last digit is neither 0 nor 5; thus, 343 is not divisible neither by 5 nor by 10. Subtracting two times the last digit from the rest gives 34 −  ( 2 × 3 ) = 28 = 4 × 7, which is to say that 343 is divisible by 7. Then the systematic iterative application of the division rules leads into:

343 = 7 × 49 = 7 × 7 × 7 = 73

The only prime factor of 343 is 7, and evidently, 343 is the cube power of 7 or, equivalently, 7

is the cube root of 343. 

1.1 Number Factorization
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1.12. The last digit is 1 (which is an odd number); thus, 2401 is not divisible by 2. The sum of its digits is 2 + 4 + 0 + 1 = 7, which is not divisible by 3. The last digit is neither 0 nor 5; thus, 2401 is not divisible neither by 5 nor by 10. Subtracting two times the last digit from the rest gives 240 −  ( 2 × 1 ) = 238 = 7 × 34, which is to say that 2401 is divisible by 7. Then the systematic iterative application of the division rules leads into:





2401 = 7 × 343 = see A.1.11 = 7 × 73 = 74

The only prime factor of 2401 is 7, and evidently 2401 is the fourth power of 7, or, equivalently, 7 is the fourth root of 343. 

1.13. The last digit is 0 (which is an even number); thus, 2310 is divisible by 2, by 5, and consequently by 10 (whose prime factors are 2 and 5). Then the systematic iterative application of the division rules leads into:

2310 = 10 × 231 = 2 × 5 × 231





2 + 3 + 1 = 6 = 3 × 2 ,  which is divisible by three

= 2 × 5 × 3 × 77





see multiplication table

= 2 × 3 × 5 × 7 × 11

The five unique prime factors of 2310 are 2 ,  3 ,  5 ,  7, and 11. 

1.14. The last digit is 0 (which is an even number); thus, 900 is divisible by 2, by 5, and consequently by 10 (whose prime factors are 2 and 5). Then the systematic iterative application of the division rules leads into:

900 = 10 × 9 = 2 × 5 × 3 × 3

= 2 × 32 × 5

The three unique prime factors of 900 are 2 ,  3, and 5, where 32 is the only duplicity among the three factors. 

1.15. The last digit is 5 (which is an odd number); thus 1925 is not divisible by 2. The sum of its digits is 1 + 9 + 2 + 5 = 17, which is not divisible by 3. The last digit is 5; thus, 1925 is divisible by 5. Then the systematic iterative application of the division rules leads into:





1925 = 5 × 385 = again, divisible by 5 = 5 × 5 × 77 = 52 × 7 × 11

The three unique prime factors of 1925 are 5 ,  7, and 11, where 52 is the only duplicity among the three factors. 
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1.2

Basic Number Operations

1.16. By definition, as long as the base not equal zero nor infinity, zero powers equal one, as 20 = 1



1 0

1.17. See P.1.16, thus

= 1

2



0

1.18. 

−3

= 1

8

√

1.19.  (  3 +  π − 1 ) 0 = 1

1.20. Excluding the case 00, i.e.  (x = ± π/ 2 ), then  ( cos  x) 0 = 1







1.21. 

0

 m

 e 3

=  an

=  anm =  e 3·0 =  e 0 = 1









3

0

4

0

1.22. 

+  π

−

− 7 π

= 1 − 1 = 0

2

6

27

9







2

3

0

4

1.23. 

+  π

−

− 22

= 1 − 02 = 1

2

6

27

33

1.24. Powers of negative numbers are negative if the exponent is odd (because of non-

complete pairs of negative signs in the total product), and positive of the exponent is even (because of complete pairs of negative signs in the total product)





 (−1 )−3 =  a− n

def

= 1  , (a = 0 ) =

1

=

1

= 1 = −1

 an

 (−1 ) 3

 (−1 )(−1 )(−1 )

−1

1.25. Powers of negative numbers are negative if the exponent is odd; thus





 (−1 ) 125 = the exponent is odd = −1

1.26. Powers of negative numbers are positive if the exponent is even; thus





 (−1 ) 64 = the exponent is even = 1

1.2 Basic Number Operations
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1.27. Powers of negative numbers are positive if the exponent is even; thus





 (−1 )−2024 =

1

= the exponent is even = 1

 (−1 ) 2024





1

1.28.  (−2 )−3 =  (−1 · 2 )−3 =  (a b)n =  an bn =  (−1 )−3 ( 2 )−3 =  (−1 )

= −1

23

8







1 −2

1.29. 

=  a− n = 1 = 22 = 4

2

 an





1 −2

1 −1

1.30. 

+

= 22 + 2 = 6

2

2

1.31. While respecting the priority of arithmetic operations, double fractions, sign and parity of the exponents, it follows that





 (−2 )−3 −  (−3 )−2

2 −3

3

=  (−1 / 2 ) 3 −  (−1 / 3 ) 2 × 3

 (−4 )−1

3

−1 / 4

2





−1

=

 / 8 − 1 / 9 × 27 = 1 + 1 ×

−

4 × 27

1 / 4

8

8

9

8 2

= 17 × 27 = 17 × 3 × A9 = 51

72

2

A9 × 8 × 2

16

1.32. Negative exponent identity:  a− n ≡ 1 /an, thus











 (−2 )−1 +  (−3 )−1 = −1 − 1 ÷ −1 + 1 = −5 ÷ −1

 (−3 )−1 −  (−6 )−1

2

3

3

6

6

6





 a ÷  c =  a d = 5 × A6 = 5

 b

 d

 b c

A6

1.33. Fractions with large numbers are very much simplified after prime factorization, as 900

−2

2

= 1575

1575

900

where

1575 = 5 × 315 = 5 × 5 × 63 = 5 × 5 × 3 × 21 = 5 × 5 × 3 × 3 × 7





900 = see A.1.14 = 2 × 3 × 3 × 5
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so that







2

1575 2





= 32 × A5 × 5 × 7

= 5 × 5 × 7 × 7 = as simple as possible = 352

900

2 × 32 × A5

2 × 2

4

1.34. Given fraction, 





343

−1 = 3773

3773

343

as 377 −  ( 2 × 3 ) = 371 = 7 × 51 prime factorization leads to





3773 = 7 × 539 = 53 −  ( 2 × 9 ) = 35 = 7 × 5 = 7 × 7 × 77 = 7 × 7 × 7 × 11 = 73 × 11

and see A.1.11, 343 = 73, so that

3773 = 773× 11 = 11

343

73

1.35. Given fraction









225

−2

2

= 1225

1225

225

as, 

1225 = 5 × 245 = 5 × 5 × 49 = 5 × 5 × 7 × 7

225 = 5 × 45 = 5 × 5 × 9 = 5 × 5 × 3 × 3

then, 







2



1225 2

4

= 52 × 72

= 7

225

52 × 32

3

1.36. Numbers with the equal powers are easier to operate with

−4 × 104 + 2 .  5 × 105 = −4 × 104 + 2 .  5 × 10 × 104

= −4 × 104 + 25 × 104 = 21 × 104 = 2 .  1 × 105

1.37. Fractions are often easier to use then decimal, so that









1 −1

1 −2

1 −3

1

−4

0 .  5−1 + 0 .  25−2 + 0 .  125−3 + 0 .  0625−4 =

+

+

+

2

4

8

16

1.3 Fractional Powers and Radicals

15

= 2 + 42 + 83 + 164 = 2 +  ( 22 ) 2 +  ( 23 ) 3 +  ( 24 ) 4

= 2 + 24 + 29 + 216 = 2 + 16 + 512 + 65536

= 66066 (note the powers of two)

1.38. Exceedingly, large powers may surpass limits of calculators (try you phone calculator app here). Instead they are simplified, for example, by converting to the same exponent as

23000 × 32000 =  ( 23 ) 1000 ×  ( 32 ) 1000 = 81000 × 91000 = 721000

1.39. Following the same idea as in A.1.38, 



3 200

3200 × 4−300 = 3200 = 3200 = 3200 = 3200 =

 ( 43 ) 100

64100

 ( 82 ) 100

8200

8



8

1000

1.40. 5−2000 × 23000 =  ( 23 ) 1000 =

 ( 52 ) 1000

25

1.41. Given product

2187−300 × 81300 × 27300

may be simplified by prime factorization as

81300 × 27300 =  ( 34 ) 300 ×  ( 33 ) 300 =  ( 37 ) 300 = 

32100 = 1

2187300

 ( 37 ) 300

 ( 37 ) 300





32100

1.3

Fractional Powers and Radicals

Fractional powers are equivalent to roots, and they obey the same rules as “ordinary” powers. 

1.42. Given fractional power is resolved in the root form as



√



 n

8− 1

def

3 =

 a m

=  m an, (a ≥ 0 ) = 1

√ = 1

3 8

2

because 8 = 2 × 2 × 2 = 23 or, equivalently, as









 m

 n

8− 13 =  a− n

def

= 1  , (a = 0 ) = 1 = 1 =  an

=  anm =  am

= 1 = 1

 an

1

1

8 3

 ( 23 )  3

2H

H

3 / 3 1

2
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1.43. Given fractional power is resolved as





1

1

1

 m

 n

125 3 =  ( 5 × 5 × 5 )  3 =  ( 53 )  3 =

 an

=  anm =  am

= 5H

H

3 / 3 1 = 5

1.44. Given fractional power is resolved as









2401− 14 =  a− n

def

= 1  , (a = 0 ) =

1

= see A.1.12 = 1 = 1

 an

1

1

2401 4

7

 ( 7C4 )  C4

1.45. Given fractional power is resolved in the root form as





√

1

16 2 = 16 = 16

√

= 4

25

25

25

5

1.46. Given fractional power is resolved as







1

− 43

4

=

4

3×4

27 3 = 33 3 = 3

3 = 34 = 81

27

1.47. Given fractional power is resolved as



3

1

2

3





=

 m

6 3 3

26 2 =

 an

=  anm = 2 2 = 29 = 512

2−6

1.48. Given fractional power is resolved as





1

− 25

2

=

2



10 2 × 2

1024 5 = 210 5 = 2

5 = 24 = 16

1024

1.49. Given fractional power is resolved as













2

2



1 − 32

3

3

3

3×2

+ 8

= 3

23

2

2×3

4

3

2 +

= 22 2 +

= 2

2 + 4

4

27

33

3

9

= 8 + 4 = 8 × 9 + 4 = 76 = 2 × 38 = 2 × 2 × 19 = 19

9

9

4

2 × 2

2 × 2

1.50. Decimal numbers are transformed into fractions as

0 .  375 = 375 = 5 × 75 =

5 × 3 ×Z

Z

25

= 3

1000

10 × 100

2 × 5 × 4 × Z

Z

25

8

1.3 Fractional Powers and Radicals
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as well as, 

256 = 2 × 128 = 2 × 2 × 64 = 2 × 2 × 26 = 28

so that, 









3



1

0 .  375

8

8×3

= 1

= 1

8 = 1

256

28

2

8

1.51. A simple rational to root form transformation leads into



1 − 12

√

1

0 .  25−0 .  5 =

= 42 = 4 = 2

4

1.52. A simple rational to root form transformation leads into





−3

2×−3

25− 32 = 52

2 = 5

2 = 5−3 = 1 = 1

53

125

1.53. Fractional power of decimal numbers are straightforward to convert by following the number of zeros and/or decimal places







−1

−3 1 −1

0 .  001− 13 = 10−3

3 = 10

3 = 10 (−1 )(−1 ) = 101 = 10

Mastering “engineering prefixes” (e.g., milli, micro, kilo, mega, etc.) and the corresponding powers of ten are one of basic prerequisites in engineering mathematics. 

1.54. Fractional powers to root form transformations may be done as



1

− 1

1

5

 x− 25 =  x 2

5 =

= 1

= 1

√

 x 2

1

5

 x 2 5

 x 2

1.55. Fractional powers to root form transformations and their products may be done as 1   1

− 1 

− 1

1

20

1

15

1

 x− 320  y− 715 =  x 3

20

 y 7

15 =

=

1

=

1

√ 

 x 3

 y 7

1

1

20

 x 3 20

 y 7 15

 x 3 15  y 7

1.56. Fractional powers to root form transformations and their products may be done as

√ 

1

2

 x  8  y  25 = 8  x  25  y 2
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1.57. Fractional powers to root form transformations and their products or ratios may be done as

1 

1

4



√ 

3

√

 y 3

√

 x− 1

4

8

2  y  4 =  x

=

 x

 y 3

√

=  z 7 4  y 3

√ √

5

√

 z− 7

1

1

3

8  v  3

√ 3  v 5

√

 v 5

 x  3  v 5

8  z 7

8  z 7

1.58. Fractional powers to root form transformations and their products or ratios may be done as

 x− 52

1

1

 z− 712 = 1

=

1

√ 

√

3

5

3

7

 y  4

 x  2  y  4  z  12

 x 5 4  y 3 12  z 7

1.59. Fractional or decimal powers to root form transformations and their products or ratios may be done as











−





0 .  75

− 3

3 1

3

2

5

2

5

− 2

− 5

4

 x

4

3  y  12

=  x  3  y  12

=  x  3 4 2  y  12 4

=  x−12  y− 516 =

1

√ 

 x  16  y 5

1.60. Fractional powers may be resolved as



1







− 1

1

 n−1

1

 n−1

 xn x n−1

÷  xn 2

=  a ÷  b =  a =  a b−1 =  xn x n−1

 xn 2

 b





 an am

=  am+ n

=  

=  xn+ 1 n−1  x−  n 2

 n−1

 m

 an

=  anm





−

 (n−1 )  1

=  n 2− n+1

 n 2− n+1−

 n−1 

 n 2

 x n−1  x−  n 2

 n−1 =

 an am =  am+ n =  x

=  x 

 n−1

=  x−1 = 1 x

1.61. Simple fractional power transformations lead into





√

2

3

2

5

 x

+ 3 −1

3  x  4  x−1 =

 an am =  am+ n =  x  3 4

=  x  12 = 12  x 5

1.62. Simple fractional power transformations lead into









3

4

5

5

2

7

 a

 d

 x  2  y  5  z  6 ÷  x  4  y  3  z  12 =  a− n = 1  , 

÷  c =  a

 an

 b

 d

 b c

√  √

= 3

4

5

1

2

1

 x − 5

− 2

− 7

2

4  y  5

3  z  6

12 =  x  4  y  15  z  4 = 4  y  15  y 2 4  z

1.3 Fractional Powers and Radicals
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1.63. Simple fractional power transformations lead into

−1 







2

2

3



−2

− 2 



3

1

3

3

1

3

3

 x

− 1

4

÷  x−1 2

=  x  4

 x−1 2

=  x− 612  x−26 =  x−12 3

=  x−56 = 1

√6 x 5

1.64. Simple fractional power transformations lead into

−1 







2

3



−2

3

1

3

 a

 d

 x  4

÷  x−1 2

=

÷  c =  a

=  x( C3 / C4 2 )  C2  (−1 / C3 ) x(−1 )( 1 / C2 )( C2 / 3 ) b

 d

 b c

=  x−1−1

2

3 =  x− 56 =

1

√6 x 5

1.65. Given expression is gradually simplified as















−2









1





−

− 2 1

1

C6

C6

−1

1

3

2

1

1

1

1

2

 x  4 2

÷

 x  2

=  x  2 ÷  x  3 =  x  2 ÷  x  3

1

= 1

1

4

1

1

1

 x  4 ÷  x  3

=  x  4 ÷  x  12 =  x  4  x− 112



C2 1

√

= 1

1

1 1

1

 x − 1

4

12 =  x  A

12 6

=  x  6 =  x  2 3 =  x  3 = 6  x

where the final result is shown in a few equivalent forms. 

1.66. Simple roots are resolved by the multiplication table, as

√

√

√



√



1

3

 n

27 = 3 3 × 3 × 3 = 3 33 =  a

def

 m =  m an, (a ≥ 0 )

= 3C3 C3 = 31 = 3

1.67. Power of two sequences are other structures to keep in mind, (see A.1.1 to A.1.3)

√

√



√



16 2

4

 n

256 = 4 28 =  a

def

 m =  m an, (a ≥ 0 )

= 2 8 = 22 = 4

or, equivalently

√

√





1   1

1





= 4 28 = 4 24+4 = 24+4 4 =  am+ n =  an am = 24 4 24 4 = 2 · 2 = 4
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1.68. Factorizations are used to decompose numbers and rearrange the products as

√

√

√

√

√

3 216 = 3 2 × 108 = 3 2 × 2 × 54 = 3 2 × 2 × 2 × 27 = 3 2 × 2 × 2 × 3 × 3 × 3

√

√

√

C3 1

= 3 2 × 3 × 2 × 3 × 2 × 3 = 3 6 × 6 × 6 = 3 63 = 6 C3 = 6

Note that divisibility by 3 and 2 means also divisibility by 6. That is true because 2 and 3 are prime factors of 6. In general, if a number is divisible by a non-prime number, then it is also divisible by the factors of that non-prime number. 

1.69. Powers of 10 are straightforward; follow the number of zeros as



√







√ √

3 27 ,  000 = 3 27 × 1000 = 3 27 × 103 =  (a b)n =  an bn = 3 33 3 103 = 3 × 10 = 30

1.70. Often, only partial simplification is possible as

√

2

√

√



√

3

3

4 a 2 b

= 3 24  a 4 b 2 = 3 2 · 23 a 3 a b 2 = 3 2 ( 2 a) 3 a b 2 = 2 a  2 ab 2

1.71. Roots are easier to handle in the form of fractional powers; thus, starting from most inner roots, these nested structures are resolved as







√  √



√



 n

1

3

1

 x

 x x  3  x  3  x

 x =  a

def

 m =  m an, (a ≥ 0 )

=  x x x x  3  x x  2











=

4

3

3

 an am =  an+ m =  x

 x x  3

 x  2







C4 2 1

3 1

=

 m

 an

=  anm =  x xx  3 C 2

2

 x  3



147

=

5

1

5 1

1

 x

 x

+ 1

3  x  2 =  x x  3 2  x  2 =  x 1+ 56 2 =  x  63

√

= 7

1

 x  3 =  x 2+ 13 =  x 2  x  3 =  x 2 3  x

1.72. Basic power rules are applied in general as

√

√

 a

 n

 a

 n

 n 2 − a 2

 (n− a)(n+ a)

 xn ÷  n xa =  x a ÷  x n =  x a x−  an =  x an =  x an

1.73. Basic power rules are applied in general as

√

√

√



√



 x

 n

3 x−4

1− x

3− x

 a 3 x−4  x a 1− x x a 3− x =  a

def

 m =  m an, (a ≥ 0 )

=  a x a x a x

1.4 Indeterminate Forms
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C x

=

3 x−

 an am =  an+ m =  a

4+1− x+3− x

 x

=  a  C x =  a, (x = 0 )

1.4

Indeterminate Forms

1.74. Strictly speaking, there is ∞ term in the expression; thus, one argument may be that therefore 1∞ is not defined. However, equally valid argument is that this case is special

because number one is the neutral element for multiplication, thus 1∞ = 1 · 1 · 1 · · · = 1. The answer depends on the context. In the higher level mathematical theory, rigorous comparing

of infinities is still in the research domain, thus not considered here. 

1.75. Any number to the power of zero is assumed equal one, that is to say including 00 = 1. 

However, again, depending on the context, this expression may be declared undefined. 

1.76. Expression 0 · ∞ is not defined. That is to say, this product may produce any arbitrary number as the result. For example, consider the following two cases:

 ( 10 ) ·  ( 10 ) = 100

 ( 2 ) ·  ( 3 ) = 6









10

2

 ( 10 · 100 ) = 100

 ( 3 · 200 ) = 6

100

200









10

2

 ( 10 · 1000 ) = 100

 ( 3 · 2000 ) = 6

1000

2000

 (· · ·  ) (· · ·  ) = 100

 (· · ·  ) (· · ·  ) = 6





10

2

∞  ( 10 · ∞ ) = 100

∞  ( 3 · ∞ ) = 6

 ( 0 ) (∞ ) = 100

 ( 0 ) (∞ ) = 6

Which is to say that by starting with any arbitrary product of two numbers, it is possible to show that limit of 0 · ∞ product does not change, for example, 100 or 6 or anything else. 

This is because any nonzero number divided by infinity equal zero and any nonzero number

multiplied by infinity equal infinity. 

1.77. The form of “∞0” is assumed undefined. Through the properties of logarithmic

function, this power form may be converted into 0 / 0 or 0 · ∞, thus normally declared undefined. 

1.78. Difference of two infinite terms “ ∞ − ∞” is undetermined. Comparing different

infinites is still in the research domain. 

1.79. Ratio of two infinite terms “∞ /∞” is a classic undefined form. With simple algebra, it can be converted into “0 / 0” form, because 1 / 0 = ∞ and vice versa. 
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1.80. Ratio of two 0 terms “0 / 0” is a classic undefined form. With simple algebra, it can be converted into “∞ /∞” form. (Recall that 1 / 0 = ∞ and 1 /∞ = 0.)

1.81. Often, after following the priorities of operations, the result is in undermined form 27 ( 23 − 8 ) = 27 ( 0 ) = 0 (undefined)

1 − 27 · 3−3

1 − 27 / 27

0

1.82. Often, after following the priorities of operations, the result is in undermined form 1

1

 (−2 )−3 + 1

= −1 + 1

= 0 · ∞ (undefined)

8

64 − 26

8

8

0

1.5

Absolute Numbers and Expressions

1.83. By definition, the absolute value of a number is simply its distance to the origin point. 

That is to say, there are always  two  numbers with that property, one on the left (i.e., negative) and one on the right (i.e., positive) side of 0. For example, 



|

 x <  0

⇒  x = −5

 x| = 5 ⇒

 x ≥ 0

⇒  x = 5

because both “+5” and “−5” are five units distance from zero. In practice, for each absolute value term within the given expression, there are two distinct equations to solve. 

1.84. As same as for the simple numbers, any expression within the absolute value is resolved by two equations. First, on the negative side, the absolute brackets are replaced with the

ordinary brackets with the negative sign in front. Then, on the positive side, the absolute

brackets are simply replaced with the ordinary brackets as







|

 f (x) <  0 : | f (x)|

= −  f (x)

 f (x)| def

=





 f (x) ≥ 0 : | f (x)|

=  f (x)

which gives two equations to solve. In this example,  f (x) =  x − 3, so that two interval conditions are found as



|

 x − 3  <  0 ⇒  x <  3

∴ | x − 3| = − (x − 3 )

 x − 3| ∴

 x − 3 ≥ 0 ⇒  x ≥ 3

∴ | x − 3| =  x − 3

then, two equations are solved as

1.5 Absolute Numbers and Expressions
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Fig. 1.1 P.1.84, two distinct solutions of | x − 3| = 7 equation, one assuming  x <  3 and one assuming  x ≥ 3

Fig. 1.2 P.1.85, sign  (x)  is

a piecewise linear function

with one discontinuity at

 x = 0



|

 x <  3 :

− (x − 3 ) = 7 ∴  x − 3 = −7 ∴  x 1 = −4

 x − 3| = 7 ∴

 x ≥ 3 :

 x − 3 = 7 ∴  x 2 = 10

Therefore, there are two discrete solutions,  x 1 = −4 if  (x <  3 ), and  x 2 = 10 if  (x ≥ 3 ); see Fig. 1.1. In both cases, the | x − 3| = 7 is correct, as

| − 4 − 3| = 7 ⇒ | − 7| = 7 

|10 − 3| = 7 ⇒ |7| = 7 

1.85. Given expression may be simplified as follows. Once two equations are separated, the possible indefinite forms must be respected and the list of conditions updated, as, for example, division 0 by 0, 

⎧

⎫

⎪

|

⎪

 x|

⎪  x ≥ 0 ⇒ | x| =  x

∴

=  x = 1  (x = 0 )

⎪

⎪

⎪

|

⎨

⎬

 x|

 x

 x

=

= sign  (x)

 x

⎪

⎪

⎪

⎪

⎩

| x|

− x

⎪

⎪

 x <  0 :⇒ | x| = − x

∴

=

= −1  (x = 0 )⎭

 x

 x

Indeed, this | x| /x =  x/| x| = ±1 ratio is known as sign  (x)  function. By convention sign  ( 0 ) =

0, see Fig. 1.2. 

1.86. An inequality with abs function is split into two inequalities, thus two  intervals  as the solutions, 



|

3 −  x ≥ 0 ⇒  x ≤ 3

∴ |3 −  x| = 3 −  x ∴ 3 −  x >  4 ∴  x < −1

3 −  x|  >  4

3 −  x <  0 ⇒  x >  3

∴ |3 −  x| = − ( 3 −  x) ∴ − ( 3 −  x) >  4 ∴  x >  7

Therefore, instead of unique numbers, there are two  intervals x ∈ [−∞ , −1] and  x ∈ [7 , +∞]

that satisfy given inequality; see Fig. 1.3. That is to say, any number inferior than “−1” or superior to “+7” is valid solution. 
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Fig. 1.3 P.1.86, inequality

solutions are intervals

where determined by

constrains of the problem

Fig. 1.4 P.1.88—graphical interpretations of inequality

1.87. Higher-order functions have multiple zeros; thus, there are multiple solutions for the two equations to be solved. In this example,  f (x) =  x 2 − 1 by itself has two zeros, and therefore the interval conditions are resolved as



√

|

 x 2 − 1  <  0 ⇒  x < 

1

∴ | x 2 − 1| = − (x 2 − 1 )

 x 2 − 1| ∴

 x 2 − 1 ≥ 0 ⇒  x ≥ 3

∴ | x 2 − 1| =  x 2 − 1

then, in each case, the quadratic equation is solved as



√

 x < 

1 :

∴ − (x 2 − 1 ) = 1 ∴  x 2 + 1 = −1 ∴  x

|

1 ,  2 = 0

 x 2 − 1| = 1 ∴

√

 x ≥ 3

∴  x 2 − 1 = 1 ∴  x 3 ,  4 = ± 2

Therefore, one within each interval, there are two sets of discrete solutions,  x 1 ,  2 = 0

√

(multiplicity of two) if  (x <  3 )  and  x 3 ,  4 = ± 2 (two unique roots) if  (x ≥ 3 ). 

Reminder: The fundamental theorem of algebra states that every  n  order polynomial has exactly  n  roots in total, complex or real. Thus, second-order polynomial must have two roots, counting for multiplicity. 

1.88. There are two nested abs functions: | x| and || x| − 5|; thus, in total, there are four possible cases in

|| x| − 5|  >  4

systematically decomposed as follows starting with the inner abs function:
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Fig. 1.5 P.1.89, ramp

function equals 0 for the

negative arguments and

follows linear  x  for

positive arguments

 x ≥ 0 ⇒ | x| =  x

∴ |

 x − 5  <  0 ⇒ | x − 5| = − (x − 5 ) ∴ − x + 5  >  4

∴  x <  1

 x − 5|  >  4

 x − 5 ≥ 0 ⇒ | x − 5| =  x − 5 ∴  x − 5  >  4

∴  x >  9

 x <  0 ⇒ | x| = − x −

∴ | −

 x − 5  <  0 ⇒ | −  x − 5| = − (− x − 5 ) ∴  x + 5  >  4

∴  x > −1

 x − 5|  >  4

−  x − 5 ≥ 0 ⇒ | −  x − 5| = − x − 5 ∴ − x − 5  >  4

∴  x < −9

These four resulting inequalities must be satisfied at the same time; thus, the three intervals where  x  is located are summarized as (see Fig. 1.4a)

 x ∈ [−∞ , −9] and  x ∈ [−1 ≤  x ≤ 1] and  x ∈ [9 , +∞]

Note that the solution is not unique number, instead the intervals of solutions. This conclusion may be verified by plotting || x| − 5| vs. ”4.” The three regions where || x| − 5|  >  4 is satisfied are clearly visible; see Fig. 1.4b. Any number inferior than “−9,” or within  (−1 ,  1 )  interval, or superior than “+9” satisfies given inequality. 

1.89. Given function is simplified as

⎧

⎫

⎪

⎪

| x| +  x

⎪

⎪

 x ≥ 0 ⇒ | x| =  x

∴

=  x +  x = A2 x =  x ⎪

⎪

|

⎨

⎬

 x| +  x

2

2

A2

=


= ramp  (x)

2

⎪

⎪

⎪

⎪

⎩

| x| +  x

− x +  x

⎪

⎪

⎭

 x <  0 ⇒ | x| = − x

∴

=

= 0 = 0

2

2

2

This is one of possible definitions for the function known as the ramp  (x); see Fig. 1.5. 

1.90. Given expression may be simplified as follows:
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Fig. 1.6 P.1.90, piecewise

linear function that

changes its slope at the

origin, thus that is a point

where limits (and by

extension, derivatives) are

not defined

⎧

⎪

|

⎪

 x| + 2 x

⎪  x ≥ 0 ⇒ | x|= x

∴

+ | x| +  x= x + 2 x +  x +  x=3 x

|

⎨

 x| + 2 x

3

3

+ | x| +  x=

3

⎪

⎪

⎪

⎩

| x| + 2 x

− x + 2 x

 x <  0 ⇒ | x|= −  x

∴

+ | x| +  x=

−  x +  x= x

3

3

3

This result is an example of a general “piecewise linear” function; see Fig. 1.6. 

1.91. Given inequality

| x − |2 x||

|

−  x − 2|  >  0

| x| +  x

| x| + 1

may be systematically decomposed as follows:

 x ≥ 0 ⇒ | x| =  x ∴ | x| +  x =  x +  x = 2 x  and, |2 x| = 2 x

⎧

⎪

⎨  (x − 2 x) ≥ 0 ⇒ | −  x| ≥ 0

∴  x ≥ 0 

∴ ⎪ (x − 2 x) <  0 ⇒ | −  x|  <  0 ∴ n.a. 

⎩

(an absolute value is always positive)

∴

| x − |2 x||

|

| −

=  x − 2 x| =

 x| =  x  1 = 1

| x| +  x

 x +  x

2 x

2 A x

2

| x − |2 x||

| x − |2 x||

 x <  0 ⇒ | x| = − x ∴ | x| +  x = − x +  x = 0 ∴

=

= ∞ ∴ n.a. 

| x| +  x

0

and, 

 x ≥ 0 ⇒ | x| =  x ∴ | x| + 1 =  x + 1



|

 (x − 2 ) ≥ 0 ⇒ | x − 2| =  x − 2

∴  x ≥ 2

 x − 2| =

 (x − 2 ) <  0 ⇒ | x − 2| = − (x − 2 )

∴  x <  2

In summary, as  x ≥ 0, (otherwise, inequality is not defined due to infinity term) then
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Fig. 1.7 P.1.91, solution

interval where given

function is strictly positive

is in  x ∈  ( 1 ,  5 )

(a) 0 ≤  x ≤ 2 : note that within given interval  (x + 1 ) >  0

| x − |2 x||

|

−  x − 2|  >  0

| x| +  x

| x| + 1

1

−

−  (x − 2 ) >  0

2

 x + 1

 (x + 1 ) + 2 (x − 2 ) >  0

2 (x + 1 )

3 (x − 1 ) >  0 ⇒  x >  1

2 (x + 1 )

(b)  x ≥ 2 : note that within given interval  (x + 1 ) >  0

| x − |2 x||

|

−  x − 2|  >  0

| x| +  x

| x| + 1

1 −  x − 2  >  0

2

 x + 1

 (x + 1 ) − 2 (x − 2 ) >  0

2 (x + 1 )

5 −  x

 >  0 ⇒  x <  5

2 (x + 1 )

These sub-inequalities must be satisfied at the same time; see Fig. 1.7. 

| x − |2 x||

|

−  x − 2|  >  0

∴  x ∈  ( 1 ,  5 )

| x| +  x

| x| + 1

1.92. Given expression









 x − 2 + | x − 2| 2

2

+  x − 2 − | x − 2|

2

2
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may be simplified as follows. Absolute function | x − 2| term is decomposed into two cases as (a)  x − 2 ≥ 0 ∴  x ≥ 2 ⇒ | x − 2| =  (x − 2 )

















 x − 2 + | x − 2| 2

2

2

2

+  x − 2 − | x − 2|

=  x − 2 +  (x − 2 )

+  x − 2 −  (x − 2 )

2

2

2

2

$

%2 $

%2

= A2 (x−2 ) +  x−A2− x+A2 0 =  (x − 2 ) 2

A2

2

(b)  x − 2  <  0 ∴  x <  2 ⇒ | x − 2| = − (x − 2 ) x − 2 + | x − 2| 2

2

2

2

+  x − 2 − | x − 2|

=  x − 2 −  (x − 2 )

+  x − 2 +  (x − 2 )

2

2

2

2

$

%2 $

%2

=  x−A2− x+A2 0 + A2 (x−2 ) =  (x−2 ) 2

2

A2

In summary, 









 x − 2 + | x − 2| 2

2

+  x − 2 − | x − 2|

=  (x − 2 ) 2 , ∀ x

2

2

[image: Image 2]
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2

 Polynomial forms, identities, and terminology

1.  A monomial:  basic single term in the form of  axn, where  a  is multiplying coefficient,  x  is variable, and  n  is its nonnegative integer power (a.k.a “degree of monomial”), for example, 3 x 2 is a second-degree (quadratic) monomial. 

2.  A polynomial:  sum of monomials. The highest exponent of a monomial within the sum defines the degree of that polynomial, for example, 3 x 3 − 2 x 2 +  x − 1 is third-order polynomial that consists of four monomials. 0 monomial whose coefficient equals zero, for example, 0 xn = 0, which is true for any power  n. 

3.  A constant:  monomial whose power equals zero, for example, −2 x 0 = −2, which is true for any coefficient  a, often referred to as “zero–degree term.” 

4.  A binomial:  a sum of two monomials, one first-order and one zero-degree monomial, for example, x 1 −  x 0 =  x − 1, −2 x + 3  x 0,  x + 2  x 0, are binomials. Similar to prime numbers, binomials are basic factors of any higher-order polynomial. 

5.  A trinomial:  polynomial that consists of zero-, first- and second-order monomials, for example, x 2 − 2 x + 1, 2 x 2 −  x − 1, − x 2 − 3 x + 5 are trinomials, also known as quadratic polynomials. 

6.  Factorized form:  any  n  order polynomial may be transformed into its factorized form, i.e., product of  n  binomials, for example:

 (x − 1 )(x + 2 ) →  x 2 +  x − 2

 (x + 3 )(x − 5 )(x − 1 ) →  x 3 − 3 x 2 − 13 x + 15

are factored and developed forms of quadratic and cubic polynomials, respectively. The constant term  x 0 in each  (x −  x 0 )  binomial factor is referred to as the  root  of the given polynomial. Note that the minus sign is mandatory, while  x 0 may be either positive or negative. 
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Problems

2.1

Polynomial Expansion

Simplify polynomial expressions in P.2.1 to P.2.4

2.1.  (x − 1 ) +  ( 2 x + 1 )

2.2.  ( 2 x 2 − 3 x − 1 ) −  ( 2 x − 1 ) 2.3. −2 x 2 − 3 + 7 x 3 −  x +  x 2

2.4. − (x −  x 4 + 2 ) −  (x 2 − 2 )

Multiply polynomials in P.2.5 to P.2.18

2.5.  x(x − 1 )

2.6.  (x − 1 )(x − 1 )

2.7.  (x − 1 )(x + 1 )

2.8. − (x − 1 )(x + 2 )

2.9.  (x − 2 )(x + 2 )

2.10. − (x + 2 )(x − 3 )

2.11. − x(x + 2 )(x − 3 )

2.12.  ( 1 −  x)(x + 2 )(x − 3 )

2.13.  (x − 1 )(x 2 +  x + 1 )

2.14.  (x − 3 )(x 2 + 3 x + 9 )

2.15.  ( 3 x 2 − 5 x + 6 )( 2 x − 7 )

2.16.  (x 4 +  x 3 + 2 )(x 2 − 3 x + 4 )

2.17.  ( 3 y 2+2 x−6 xy)( 2 x 2+4 xy−2 y 3 ) 2.18.  (x −  y)(y −  z)(z −  x)

Given  P (x) =  x 2 +  x + 1 and  Q(x) =  x 3 − 1 in P.2.19 to P.2.21, calculate 2.19.  P (x) +  Q(x)

2.20.  P (x) −  Q(x)

2.21. 2 xP (x) − 2 Q(x)

2.22. − x P (x)Q(x)

Calculate parameters  a, b, c  so that  P (x) =  Q(x)  in P.2.23 to P.2.24, if 2.23.  P (x) =  x 3 − 2 x 2 + 3 , Q(x) =  (x + 1 )(ax 2 +  bx +  c) 2.24.  P (x) = 2 x 3 −  x 2 +  x + 4 , Q(x) =  (x − 2 )(ax 2 +  bx +  c)

2.2 Factorization
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2.2

Factorization

Factorize polynomials in P.2.25 to P.2.36 by extracting simple common factors 2.25. 5 a + 5 x

2.26. 2 a − 2

2.27. 7 a − 14

2.28. 3 a 2 + 9

2.29. 3 a + 6 b + 9

2.30. 6 x +  ax +  bx

2.31. 9 a 2 − 6 a + 12

2.32.  a 2 −  a 3

2.33. 3 a 2 − 6 a

2.34.  x 3 a 2 −  x 3

2.35. 3 a 3 + 2 a 2 +  a

2.36. 4 x 2 − 2 x +  xy

Factorize polynomials in P.2.37 to P.2.48 by extracting the factors and by grouping similar terms 2.37.  x 3 y 3 −  x 3 y +  x 4 y 3

2.38.  x 3 y 3 −  x 2 y 8

2.39. 6 x 2 y 2 − 4 xy 3

2.40. 5 x 3 − 15 x 2 y 3

2.41. 6 x 3 y − 9 x 2 y 2 + 3 x 3 y 2

2.42.  x 3 −  x 7 − 2 x 5

2.43.  a 3 b 2 + 2 a 4 b 2 − 4 ab 5

2.44. 3 a 3 b 3 − 9 a 2 b 4 + 12 a 5 b 4

2.45.  a(m +  n) +  b(m +  n)

2.46.  m(a −  b) +  n(a −  b)

2.47. 7 q(p −  q) + 2 p(q −  p)

2.48. 3 (x +  y) +  (x +  y) 2

Factorize polynomials in P.2.49 to P.2.54 by finding and grouping the common terms 2.49.  am −  an +  bm −  bn

2.50.  am −  an −  bm +  bn

2.51.  an −  ab −  mn +  mb

2.52. 5 ax + 5 ay −  x −  y

2.53. 2 x 2 + 2 xy −  x −  y

2.54. 4 ym − 4 yn −  m +  n

Factorize polynomials in P.2.55 to P.2.60

2.55.  ax 2 −  bx 2 −  bx +  ax −  a +  b

2.56. 6 by − 15 bx − 4 ay + 10 ax

2.57. 2 x 2 − 2 xy +  xz −  yz

2.58. 5 ax 2 − 10 ax −  bx + 2 b −  x + 2

2.59.  xyz +  x 2 y 2 − 3 x 4 y 5 − 3 x 3 y 4 −  xy −  z 2.60.  m 2 x 4− mnx 3+2 mx 2−2 nx+ n− mx
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2.61.  (x +  y +  z) 3 −  x 3 −  y 3 −  z 3

2.62.  (x 2 +  x + 1 )(x 3 +  x 2 + 1 ) − 1

Factorize polynomials in P.2.63 to P.2.67 by following the rules of powers 2.63.  a 2 n +  an

2.64.  a 3 x − 2 a 2 xbx

2.65. 2 xm+ n + 6 xn

2.66.  a 3 x + 3 a 2 x + 5 ax

2.67.  x 2 n+2 − 2 xn+1 + 1

2.68.  x 3 n − 4 x

Simplify expressions in P.2.69 to P.2.71

 xn+2

 x 3 n+2 +  x 3 n+1

 x +  x 2 +  x 3 + · · · +  xn

2.69. 

2.70. 

2 x xn

 x 2  x 3 n

2.71. 

1 + 1 + 1 + ··· + 1

 x

 x 2

 x 3

 xn

2.3

Binomial Theorem (Pascal’s Triangle)

Reminder: Formal expression for binomial expansion is

 n



 n



 n

 n

 (a +  b)n =

 an− kbk =

 akbn− k

 k

 k

 k=0

 k=0

Due to their symmetry, the polynomial coefficients are arranged in the form of Pascal’s triangle, Fig. 2.1. 

Each row lists polynomial coefficients of the corresponding  n-th binomial power. Note that each row coefficient is calculated as the sum of two neighboring coefficients left and right in the row above. 

For example, binomial square form is

 (ax) 2 ± 2 abx +  b 2 =  (ax ±  b) 2

By using Pascal’s triangle, develop binomial powers in P.2.72 to P.2.80

Fig. 2.1 Pascal’s triangle

showing the development

of binomial coefficients. 

For example, coefficients

of  (a +  b)n  for  n = 4 are

1 ,  4 ,  6 ,  4 ,  1

2.5 Difference of Squares

33

2.72.  (x + 1 ) 2

2.73.  ( 1 −  x) 2

2.74.  ( 2 x − 3 ) 2

2.75.  (a +  b) 3

2.76.  (− a −  bc) 4

2.77.  ( 2 x + 1 ) 4

2.78.  (xy −  z) 5

2.79.  (x + 2 ) 5

2.80.  (x − 1 ) 6

With the help of Pascal’s triangle, factorize quadratic and biquadratic polynomials given in P.2.81 to P.2.86

√

2.81.  x 2 − 2 x + 1

2.82.  x 2 − 6 x + 9

2.83.  x 2 − 2 2 x + 2

2.84. 4 x 2 − 12 x + 9

2.85.  x 4 − 2 x 2 + 1

2.86.  x 2 n+2 − 2 xn+1 + 1

2.4

Long Division

Divide polynomials in P.2.87 to P.2.94

2.87.  (x 2 − 2 x + 1 ) ÷  (x − 1 )

2.88.  (x 2 − 6 x + 9 ) ÷  (x − 3 )

2.89.  (x 2 +  x − 5 ) ÷  (x + 3 )

2.90.  ( 2 x 2 − 5 x + 3 ) ÷  ( 2 x − 3 ) 2.91.  ( 4 x 3 − 7 x 2 − 11 x + 5 ) ÷  ( 4 x + 5 ) 2.92.  ( 2 x 3 −7 x 2 +8 x −3 )÷ (x 2 −2 x +1 ) 2.93.  (x 4 − 2 x 3 − 7 x 2 + 8 x + 12 ) ÷  (x − 3 ) 2.94.  ( 6 x 3 + 10 x 2 + 8 ) ÷  ( 2 x 2 + 1 ) 2.5

Difference of Squares

Reminder: Difference of two squares identity is used in many practical situations

 a 2 −  b 2 =  (a −  b)(a +  b)

Factorize polynomials in P.2.95 to P.2.110

2.95.  x 2 − 49

2.96.  a 2 − 36

2.97. 16 x 2 − 9

2.98. 9 x 2 − 49

2.99. 25 −  x 2

2.100. 81 −  x 4

 x 2

9 x 2

2.101.  x 2 − 1

2.102. 

− 4

2.103. 

− 4 y 2

49

4

9

4

9
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49 x 2

2.105.  x 2 − 0 .  36

2.106.  x 2 − 0 .  0009

2.104. 

− 9 y 2

25

2.107. 0 .  04 x 2 − 0 .  25

2.108. 0 .  01 x 2 − 0 .  04 y 2

2.109.  x 4 y 2 − 0 .  01

2.110. 0 .  25 x 2 y 2 − 0 .  0001

2.111. 0 .  0625 x 4 y 2 −  (ab) 2

2.112.  a 8 b 6 c 2 − 4 b 2 c 4

Factorize expressions in P.2.113 to P.2.124

2.113.  (x − 3 ) 2 − 4

2.114.  (a + 5 ) 2 − 9

2.115.  y 2 −  (x −  y) 2

2.116.  x 2 −  (x +  y) 2

2.117.  (x + 2 ) 2 − 4 x 2

2.118. 9 x 2 −  (x − 1 ) 2

2.119.  (x −  y) 2 − 16 (x +  y) 2

2.120.  (x + 2 y) 2 − 9 (x − 2 y) 2

2.121. 4 (x −  y) 2 − 25 (x +  y) 2

2.122. 36 (x − 2 ) 2 − 25 (x + 1 ) 2

2.123.  (x +  y −  z) 2 −  (x −  y +  z) 2

2.124.  (x +  y − 3 ) 2 − 25 (x + 2 ) 2

Calculate products in P.2.125 to P.2.133  without using a calculator nor by direct multiplication 2.125. 98 × 102

2.126. 99 × 101

2.127. 83 × 77

2.128. 79 × 81

2.129. 18 × 22

2.130. 201 × 199

2.131. 1 .  05 × 0 .  95

2.132. 1 .  01 × 0 .  99

2.133. 9 .  9 × 10 .  1

2.6

Quadratic Polynomial: Viète Formulas

Formulas attributed to François Viète relate the coefficients of a polynomial to sums and products of its polynomial roots. They are rather practical, among other applications in mathematics, for rapid factorization of polynomials. 

 Quadratic polynomial: a general trinomial whose roots are  x 1 and  x 2 may be factorized as ax 2 +  bx +  c =  a x 2 +  b x +  c

=  a x 2 +  a 1 x +  a 2 = 0

 a

 a

where  a = 0, and written in terms of its roots as

 x 2 +  a 1 x +  a 2 =  (x −  x 1 )(x −  x 2 ) = 0

2.6 Quadratic Polynomial: Viète Formulas
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∴

and developed as

 (x −  x 1 )(x −  x 2 ) =  x 2 −  x x 2 −  xx 1 +  x 1 x 2 =  x 2 −  (x 1 +  x 2 ) x +  x 1 x 2 = 0

then, by the polynomial equivalence, it follows that

 a 1 = − (x 1 +  x 2 )  and  a 2 =  x 1 x 2

which is to say that the negative sum of roots equal  a 1 and that  x 1 , x 2 are factors of  a 2 coefficient. 

 Cubic polynomial: a general third-order polynomial whose roots are  x 1 , x 2 , x 3 may be written in its factorized form as

 x 3 +  a 1 x 2 +  a 2 x +  a 3 = 0

 (x −  x 1 )(x −  x 2 )(x −  x 3 ) = 0

 x 3 −  x 3  x 2 −  x 2  x 2 +  x 2 x 3  z −  x 1  x 2 +  x 1 x 3  z +  x 1 x 2  z −  x 1 x 2 x 3 = 0

 x 3 −  (x 1 +  x 2 +  x 3 ) x 2 +  (x 1 x 2 +  x 1 x 3 +  x 2 x 3 ) z −  x 1 x 2 x 3 = 0

which is to say by the polynomial equivalence that

 a 1 = − (x 1 +  x 2 +  x 3 )

 a 2 =  x 1 x 2 +  x 1 x 3 +  x 2 x 3

 a 3 = − x 1 x 2 x 3

Often, at least one of the simple  a 3 factors is therefore equal to one of the three roots, which then may be used to derive the other two roots by the long division. Evidently, Viète formulas may be developed for all higher-order polynomials. 

Factorize quadratic polynomials in P.2.134 to P.2.142

2.134.  x 2 − 6 x + 5

2.135.  x 2 − 9 x + 14

2.136.  x 2 − 6 x + 8

2.137. 2 x 2 + 3 x + 1

2.138. 3 x 2 − 14 x + 8

2.139. −2 x 2 +  x + 3

√

√

√

2.140. − x 2 + 5 x − 4

2.141. −6 x 2 + 5 x + 4

2.142.  x 2 +  (  2 + 3 )x + 6

A general form  ax 2 n +  bxn +  c  is known as biquadratic polynomial as in P.2.143 to P.2.148 and can be factorized by using techniques for quadratic polynomials after change of variable. 

2.143.  x 4 − 13 x 2 + 36

2.144.  x 4 − 10 x 2 + 9

2.145.  x 6 − 2 x 3 + 1

2.146.  x 6 + 3 x 3 + 2

2.147.  x 6 − 9 x 3 + 8

2.148. 2 x 2 m+2 − 11 xm+1+ 9
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2.7

Completing the Square

Reminder: Technique of completing the square helps to convert a quadratic polynomial of the form

 ax 2 +  bx +  c  to the form  a(x −  m) 2 +  n

where  m  and  n  some suitable constants. That is to say, completing the square creates a square trinomial inside of a quadratic expression. 

Factorize polynomials in P.2.149 to P.2.152

2.149.  x 4 + 4

2.150.  x 4 +  x 2 + 1

2.151.  x 5 +  x + 1

2.152.  (x + 1 )(x + 3 )(x + 5 )(x + 7 ) + 15

Solve quadratic equations in P.2.153 to P.2.158 by completing the squares. 

2.153.  x 2 + 6 x − 7 = 0

2.154. 2 x 2 −10 x −3 =

2.155. − x 2 − 6 x + 7 =

0

0

2.156.  x 2 + 3 x = 0

2.157. 2 x 2+6 x+2 = 0

2.158.  x 2 −  x − 6 = 0

2.8

Factor Theorem

Reminder: Given  n-th order polynomial

 Pn(x) =  anxn +  an−1 xn−1 + · · · +  a 1 x +  a 0 =  (x −  xn)(x −  xn−1 ) · · ·  (x −  x 1 ) where  xn, xn−1 , . . . , x 1 are zeros of  Pn(x) (in total, there are  n  zeros). 

1. Factorization of polynomials takes advantage of fundamental theorems in algebra (very

loosely interpreted as):

(a) The total number of polynomial roots  n (i.e., both real and complex) is equal to the polynomial degree  n, where the complex roots come in pairs, i.e., each complex root

is accompanied by its complex conjugate pair. Consequently, in odd order polynomials, 

there must be at least one real root (i.e., the one that does not have its pair). 

(b) Polynomial roots may be found among the factors of the  (an a 0 )  product. 

(c) If  (x − x 0 )  is one of  Pn(x)  factors, that is to say  x 0 is one of  Pn(x)  zeros, then  Pn(x 0 ) = 0. 

(continued)

2.8 Factor Theorem
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(continued)

2. The factor theorem states that  (x −  n)  is binomial factor of a polynomial  P (x)  if and only if P (n) = 0, that is to say  n  is one of the  P (x)  roots. Otherwise, if the value  P (n) =  r = 0, it is said that  R =  r/(x −  n)  is the reminder of division  P (x) ÷  (x −  n). 

Given  P (x) =  ax 2 +  bx +  c, calculate parameters  a, b, c, so that  P (x)  is divisible by binomials given in P.2.159 to P.2.162:

2.159.  (x − 1 )  and  (x + 1 )

2.160.  (x − 1 )  and  ( 2 −  x)

2.161. − (x − 1 )  and −  (x − 1 )

2.162. − ( 3 x − 1 )  and  ( 2 −  x)

Given  P (x) =  ax 3+ bx 2+ cx+ d  calculate parameters  a, b, c, d  so that  P (x)  is divisible by binomials given in P.2.163 to P.2.166:

2.163.  x, (x − 1 )  and  (x − 2 )

2.164.  (x + 1 ), (x − 1 )  and  (x − 2 )

2.165.  (x + 1 ), (x − 2 )  and  (x + 3 )

2.166.  ( 2 x − 5 ), ( 2 −  x)  and  (x + 4 )

By applying the factor theorem, factorize polynomials in P.2.167 to P.2.173

2.167.  x 3 − 1

2.168.  x 3 −  y 3

2.169.  x 3 + 1

2.170.  x 3 +  x + 2

2.171.  x 3 +  y 3

2.172.  x 6−14 x 4+49 x 2−36

2.173.  x 3+ x 2−4 x−4

Calculate the reminder of polynomial divisions in P.2.174 to P.2.177 without doing the actual division. 

2.174.  (x 4 −2 x 3 +3 x 2 −4 x +1 )÷ (x −1 ) 2.175.  (x 3 + 1 ) ÷  (x + 1 )













2.176. 

 x 1965−256 x 1961+1 ÷  x 2−4 x

2.177. 

 x 2024 − 2 x 2023−1 ÷  x 2−3 x+2

Given polynomials in P.2.178 to P.2.179, calculate parameter  k  so that  P (x, k)  is divisible by  Q(x). 

2.178.  P (x, k) = 4 x 5 +  k x 4 + 8 x 3 + 5 x 2 + 3 x + 2,  Q(x) =  x + 2. 

2.179.  P (x, k) =  x 3 − 3 k x + 4 (k 2 + 1 )x −  (k 3 + 5 ),  Q(x) =  (x − 1 )
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2.9

Partial Fraction Decomposition

Reminder: Partial fraction form of a rational function is very useful for calculating its integral. 

A general case of rational expression of two polynomials, for example,  k-th order  Pk(x)  and m-th order  Qm(x), where  m > k, may be written as

 Pk(x) =

 P (x)

 Qm(x)

 (x −  x 1 )(x −  x 2 )(x −  x 3 )n(ax 2 +  bx +  c)

=

 α

+

 β

+

 γ 1

+

 γ 2

+ · · · +

 γn

+

 δx +  η

 x −  x 1

 x −  x 2

 (x −  x 3 ) 1

 (x −  x 3 ) 2

 (x −  x 3 )n

 (ax 2 +  bx +  c)

where  α, β, γ , . . .  are the coefficient constants to be calculated and partial decomposition rational forms are created as follows:

1. For each unique zero of  Q(x), such as  x 1 , x 2, there is one rational term. 

2. For zeros with  n  multiplicity, such as  x 3, there is a series of  n  rational terms. 

3. When quadratic term  (ax 2 +  bx +  c)  has complex zeros, then its corresponding numerator must be linear binomial. 

Derive the partial fraction form of rational functions in P.2.180 to P.2.181

 x

1

 x − 1

2.180. 

2.181. 

2.182. 

 (x + 1 )(x − 4 )

 (x + 1 )(x + 2 )

 x 2 +  x

1

 x + 2

1

2.183. 

2.184. 

2.185. 

 x 2 − 1

 x 3 − 2 x 2

 x 3 − 1

 x 3 +  x − 1

2 x 2

4

2.186. 

2.187. 

2.188. 

 (x 2 + 2 ) 2

 x 4 − 1

 x 4 + 1

1

2.190. 

2.191. 

2.189. 

1

 x 3 (x − 1 ) 2

 x 3 +  x 2 − 16 x + 16

 x 3 (x 2 −  x + 1 ) 2

 x 2 − 4 x + 3

2.1 Polynomials
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2.1

Polynomials

2.1. Polynomial addition is done by adding monoms of the same order. 

 (x − 1 ) +  ( 2 x + 1 ) = 2 x +  x − 1 + 1 = 3 x 2.2. Rearrange the expression, and add monoms of the same orders, and respect negative signs before brackets as

 ( 2 x 2 − 3 x − 1 ) −  ( 2 x − 1 ) = 2 x 2 − 3 x − 1 − 2 x + 1 = 2 x 2 − 3 x − 2 x + 1 − 1

= 2 x 2 − 5 x =  x ( 2 x − 5 )

Writing a polynomial in its factorized form is good practice, so that the polynomial roots are obvious. 

2.3. Organizing a polynomial in its descending order is good practice, as

−2 x 2 − 3 + 7 x 3 −  x +  x 2 = 7 x 3−2 x 2 + x 2 −  x − 3 = 7 x 3 −  x 2 −  x − 3

2.4. Organizing a polynomial in its descending order is good practice, and respecting all negative signs, as

− (x −  x 4 + 2 ) −  (x 2 − 2 ) = − x +  x 4 − 2 −  x 2 + 2 =  x 4 −  x 2 −  x − 2 + 2

=  x(x 3 −  x − 1 )

2.5. As oppose to factorization, polynomial development is done by systematically multiplying individual monoms, as

 x(x − 1 ) =  x ·  x +  x ·  (−1 ) =  x 2 −  x 2.6. Polynomial development of binomial square, as

 (x − 1 )(x − 1 ) =  x ·  x +  x ·  (−1 ) − 1 ·  x − 1 ·  (−1 ) =  x 2 −  x −  x + 1 =  x 2 − 2 x + 1

which is well known high school identity, the square of a binomial. 

2.7. Polynomial development of two binomes

 (x − 1 )(x + 1 ) =  x ·  x +  x ·  ( 1 ) − 1 ·  x − 1 ·  ( 1 ) =  x 2 +  x −  x − 1 =  x 2 − 1
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which is well known high school identity, the difference of two squares. 

2.8. Managing negative signs is important, as





− (x − 1 )(x + 2 ) = −  x 2 + 2 x −  x − 2 = − x 2 −  x + 2

2.9. Compare with A.2.7, the difference of two squares, as

 (x − 2 )(x + 2 ) =  x 2 + 



2 x − 



2 x − 4 =  x 2 − 4 =  x 2 − 22

2.10. Negative sign within a product is equivalent to multiplication by “−1,” as





− (x + 2 )(x − 3 ) = −  x 2 − 3 x + 2 x − 6 = − x 2 +  x + 6

2.11. It is important to work out systematically all term products, for example, as









− x(x + 2 )(x − 3 ) = − x x 2 − 3 x + 2 x − 6 = − x x 2 −  x − 6 = − x 3 +  x 2 + 6 x or in some other order, as multiplication is a commutative operation. 

2.12. For example, starting with the left side product, 

 ( 1 −  x)(x + 2 )(x − 3 ) =  (x + 2 −  x 2 − 2 x)(x − 3 ) =  (− x 2 −  x + 2 )(x − 3 )

= − x 3 −  x 2 + 2 x + 3 x 2 + 3 x − 6 = − x 3 + 2 x 2 + 5 x − 6

Although equivalent, this example also illustrates the advantage of factorized form (i.e., 

product) versus developed form of a polynomial. In its factorized form, three roots of this

cubic polynomial are obvious,  x 1 = 1 , x 2 = −2 , x 3 = 3. 

2.13.  (x − 1 )(x 2 +  x + 1 ) =  x 3 +  x 2 +  x −  x 2 −  x − 1 =  x 3 − 1

2.14.  (x − 3 )(x 2 + 3 x + 9 ) =  x 3 + 

3

 x 2 + 



9 x − 

3

 x 2 − 



9 x − 27 =  x 3 − 27 =  x 3 − 33

2.15.  ( 3 x 2 − 5 x + 6 )( 2 x−7 ) = 6 x 3 − 21 x 2−10 x 2 + 35 x + 12 x−42 = 6 x 3−31 x 2 + 47 x−42

2.16.  (x 4 +  x 3 + 2 )(x 2 − 3 x + 4 ) =  x 6 − 3 x 5 + 4 x 4 = + x 5 − 3 x 4 + 4 x 3 = +2 x 2 − 6 x + 8

=  x 6 − 2 x 5 +  x 4 + 4 x 3 + 2 x 2 − 6 x + 8

2.1 Polynomials
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2.17.  ( 3 y 2 + 2 x − 6 xy)( 2 x 2 + 4 xy − 2 y 3 )

= 6 x 2 y 2 + 12 xy 3 − 6 y 5 + 4 x 3 + 8 x 2 y − 4 xy 3 − 12 x 3 y − 24 x 2 y 2 + 12 xy 2

= −18 x 2 y 2 + 8 xy 3 − 6 y 5 + 4 x 3 + 8 x 2 y − 12 x 3 y + 12 xy 4

2.18.  (x −  y)(y −  z)(z −  x) =  (xy −  xz −  y 2 +  yz)(z −  x)

= 

 xyz −  xz 2 −  y 2 z +  yz 2 −  x 2 y +  x 2 z +  xy 2 − 

 xyz

=  x 2 z +  yz 2 +  xy 2 −  xz 2 −  y 2 z −  x 2 y 2.19. Given  P (x) =  x 2 +  x + 1 and  Q(x) =  x 3 − 1

 P (x) +  Q(x) =  (x 2 +  x + 1 ) +  (x 3 − 1 ) =  x 3 − 1 +  x 2 +  x + 1 =  x(x 2 +  x + 1 ) 2.20. Given  P (x) =  x 2 +  x + 1 and  Q(x) =  x 3 − 1

 P (x) −  Q(x) =  (x 2 +  x + 1 ) −  (x 3 − 1 ) = − x 3 + 1 +  x 2 +  x + 1 = − x 3 +  x 2 +  x + 2

2.21. Given  P (x) =  x 2 +  x + 1 and  Q(x) =  x 3 − 1

2 xP (x) − 2 Q(x) = 2 x(x 2 +  x + 1 ) − 2 (x 3 − 1 ) = 

2

 x 3 + 2 x 2 + 2 x − 

2

 x 3 + 2

= 2 x 2 + 2 x + 2 = 2 (x 2 +  x + 1 )

2.22. Given  P (x) =  x 2 +  x + 1 and  Q(x) =  x 3 − 1, then polynomial development gives

− x P (x)Q(x) = − x(x 2 +  x + 1 )(x 3 − 1 ) =  (− x 3 −  x 2 −  x)(x 3 − 1 )

= − x 6 −  x 5 −  x 4 +  x 3 +  x 2 +  x = − x(x 5 +  x 4 +  x 3 −  x 2 −  x − 1 ) 2.23. Two polynomials are equal if each of their corresponding monomials are equal. First, product of  (x + 1 )  and parametric quadratic polynomial are

 Q(x) =  (x + 1 )(ax 2 +  bx +  c) =  ax 3 +  bx 2 +  cx +  ax 2 +  bx +  c

=  ax 3 +  (a +  b)x 2 +  (b +  c)x +  c ∴

if,  Q(x) =  P (x) ⇒  ax 3 +  (a +  b)x 2 +  (b +  c)x +  c =  x 3 − 2 x 2 + 3

 x 3 terms:

∴  a = 1

 x 0 terms:

∴  c = 3

 x 2 terms:  a +  b = −2 ∴ 1 +  b = −2 ∴  b = −3

 x 1 terms:  b +  c = 0 ∴ −3 + 3 = 0 
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In conclusion,  P (x) =  Q(x) ∴  x 3 − 2 x 2 + 3 =  (x + 1 )(x 2 − 3 x + 3 ) 2.24. Similarly to A.2.23, 

 Q(x) =  (x − 2 )(ax 2 +  bx +  c) =  ax 3 +  bx 2 +  cx − 2 ax 2 − 2 bx − 2 c ∴

if,  Q(x) =  P (x) ⇒  ax 3 +  (b − 2 a)x 2 +  (c − 2 b)x − 2 c = 2 x 3 −  x 2 +  x + 4

∴

 x 3 terms:

∴  a = 2

 x 0 terms:

− 2 c = 4 ∴  c = −2

 x 2 terms:  b − 2 a = −1 ∴  b − 4 = −1 ∴  b = 3

 x 1 terms:  c − 2 b = 1 ∴ −2 − 6 = 1 

In conclusion, there is no  Q(x)  that satisfies this  P (x) =  Q(x)  equation. 

2.2

Factorization

2.25. 5  a + 5  x = 5  (a +  x)

2.26. 2 a − 2 = 2 (a − 1 )

2.27. 7 a − 14 = 7 (a − 2 )

2.28. 3 a 2 + 9 = 3 (a 2 + 3 )

2.29. 3 a + 6 b + 9 = 3 (a + 2 b + 3 )

2.30. 6 x +  ax +  bx =  x( 6 +  a +  b)

2.31. 9 a 2 − 6 a + 12 = 3 ( 3 a 2 − 2 a + 4 )

2.32.  a 2 −  a 3 =  a 2 ( 1 −  a)

2.33. 3 a 2 − 6 a = 3 a(a − 2 )

2.2 Factorization
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2.34.  x 3 a 2 −  x 3 =  x 3 (a 2 − 1 ) =  x 3 (a + 1 )(a − 1 ) 2.35. 3 a 3 + 2 a 2 +  a =  a( 3 a 2 + 2 a + 1 ) 2.36. 4 x 2 − 2 x +  xy =  x( 4 x − 2 −  y)

2.37.  x 3 y 3 −  x 3 y +  x 4 y 3 =  x 3  y y 2 −  x 3  y +  x 3  x y y 2 =  x 3  y (y 2 − 1 +  xy 2 ) 2.38.  x 3 y 3 −  x 2 y 8 =  x 2 y 3 (x −  y 5 ) 2.39. 6 x 2 y 2 − 4 xy 3 = 2 xy 2 ( 3 x − 2 y) 2.40. 5 x 3 − 15 x 2 y 3 = 5 x 2 (x − 3 y 3 ) 2.41. 6 x 3 y − 9 x 2 y 2 + 3 x 3 y 2 = 3 x 2 y( 2 x − 3 y +  xy) 2.42.  x 3 −  x 7 − 2 x 5 =  x 3 ( 1 −  x 4 − 2 x 2 ) 2.43.  a 3 b 2 + 2 a 4 b 2 − 4 ab 5 =  ab 2 (a 2 + 2 a 3 − 4 b 3 ) 2.44. 3 a 3 b 3 − 9 a 2 b 4 + 12 a 5 b 4 = 3 a 2 b 3 (a − 3 b + 4 a 3 b) 2.45.  a(m +  n) +  b(m +  n) =  (m +  n)(a +  b) 2.46.  m(a −  b) +  n(a −  b) =  (a −  b)(m +  n) 2.47. 7 q(p −  q) + 2 p(q −  p) =  (p −  q)( 7 q − 2 p) 2.48. 3 (x +  y) +  (x +  y) 2 =  (x +  y)( 3 +  x +  y) 2.49.  a m −  a n +  b m −  b n =  a (m −  n) +  b (m −  n) =  (m −  n) (a +  b) 2.50.  am −  an −  bm +  bn =  a(m −  n) −  b(m −  n) =  (m −  n)(a −  b)
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2.51.  an −  ab −  mn +  mb =  a(n −  b) −  m(n −  b) =  (n −  b)(a −  m) 2.52. 5 ax + 5 ay −  x −  y = 5 a(x +  y) −  (x +  y) =  (x +  y)( 5 a − 1 ) 2.53. 2 x 2 + 2 xy −  x −  y = 2 x(x +  y) −  (x +  y) =  (x +  y)( 2 x − 1 ) 2.54. 4 ym − 4 yn −  m +  n = 4 y(m −  n) −  (m −  n) =  (m −  n)( 4 y − 1 ) 2.55.  ax 2 −  bx 2− bx +  ax −  a +  b =  x 2 (a− b) +  x(a −  b)− (a −  b) =  (a −  b)(x 2 +  x−1 ) 2.56. 6 by − 15 bx − 4 ay + 10 ax = 2 y( 3 b − 2 a) − 5 x( 3 b − 2 a) =  ( 3 b − 2 a)( 2 y − 5 x) 2.57. 2 x 2 − 2 xy +  xz −  yz = 2 x(x −  y) +  z(x −  y) =  (x −  y)( 2 x +  z) 2.58. 5 ax 2 − 10 ax −  bx + 2 b −  x + 2 = 5 ax(x − 2 ) −  b(x − 2 ) −  (x − 2 )

=  (x − 2 )( 5 ax −  b − 1 )

2.59.  xyz +  x 2 y 2 − 3 x 4 y 5 − 3 x 3 y 4 z −  xy −  z =  xy(xy +  z) − 3 x 3 y 4 (xy +  z) −  (xy +  z)

=  (xy +  z)(xy − 3 x 3 y 4 − 1 )

2.60.  m 2 x 4 −  mnx 3 + 2 mx 2 − 2 nx +  n −  mx =  mx 3 (mx −  n) + 2 x(mx −  n) −  (mx −  n)

=  (mx −  n)(mx 3 + 2 x − 1 )

2.61. As some prerequisite work is already done in the previous examples, 

 (x +  y +  z) 3− x 3 −  y 3 −  z 3 =  (x +  y +  z) 3 −  x 3 −  (y 3 +  z 3  ) a 3 −  b 3

=  (a −  b)(a 2 +  ab +  b 2 )  see P.2.168

=  a 3 + b 3 =  (a + b)(a 2 − ab + b 2 )





=  ( x +  y +  z −  x) (x +  y +  z) 2 +  (x +  y +  z) x +  x 2 − (y +  z)(y 2− yz +  z 2 )





=  (y +  z) (x +  y +  z) 2 +  (x +  y +  z) x +  x 2 −  y 2 +  yz −  z 2





=  (y +  z)  2 xy + 2 xz +  x 2 





+ y 2 + 2 yz

+ z 2 +  x 2 +  xy +  zx +  x 2

− y 2 +  yz

− z 2









=  (y +  z)  3 xy + 3 xz + 3 yz + 3 x 2 = 3 (y +  z) xy +  xz +  yz +  x 2





= 3 (y +  z) x(x +  y) +  z(x +  y) = 3 (y +  z)(x +  y)(x +  z)

2.2 Factorization
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2.62. By algebraic transformations, 







 x 2 +  x + 1  x 3 +  x 2 + 1 − 1 =  (x 2 + 1 +  x )(x 3 +  x 2 + 1  ) − 1









first, expand by  x 2 + 1

left to right as, 











=  x 2 + 1  x 3 +  x 2 + 1  x 2 + 1





then, expand by  x  as, 





+  x x 3 +  x x 2 + 1 −1





 x 4 − 1 ,  use difference of squares identity



















=

2

 x 2 + 1  x 3 +  x 2 + 1 +  x 2 + 1  x +  x 2 − 1  x 2 + 1













=  x 2 + 1  x 3 +  x 2

+1 +  x +  x 2

−1













=  x 2 + 1  x 3 + 2 x 2 +  x =  x x 2 + 1  x 2 + 2 x + 1





=  x x 2 + 1  (x + 1 ) 2

2.63.  a 2 n +  an =  an an +  an =  an (an + 1 ) 2.64.  a 3 x − 2 a 2 xbx =  a 2 x(ax − 2 bx) 2.65. 2 xm+ n + 6 xn = 2 xn(xm + 3 )

2.66.  a 3 x + 3 a 2 x + 5 ax =  ax(a 2 x + 3 ax + 5 ) 2.67. 

2

2

 x 2 n+2 − 2 xn+1 + 1 =  x 2 (n+1 ) − 2 xn+1 + 1 =  xn+1

− 2  xn+1 + 1 =  xn+1 − 1





2.68.  x 3 n − 4 x =  x(x 2 n − 1 ) =  x (xn) 2 − 1 =  x(xn − 1 )(xn + 1 ) xn+2

2.69. 

=  x

 xn+1 =  x

2 x xn

2

 xn+1

2

 x 3 n+2 +  x 3 n+1



 x 3 n+1  (x + 1 )

2.70. 

=

=  x + 1

 x 2  x 3 n

 x 



 x 3 n+1

 x
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2.71. Double fractions may be resolved in respect to the principal division line as





 x +  x 2 +  x 3 + · · · +  xn

 x +  x 2 +  x 3 + · · · +  xn xn

=

 x +  x 2 +  x 3 + · · · +  xn

=

1 + 1 + 1 + ··· + 1

 xn−1 +  xn−2 +  xn−3 + · · · + 1

 xn−1 +  xn−2 +  xn−3 + · · · + 1

 x

 x 2

 x 3

 xn

 xn





1 +  x 2 +  x 2 + · · · +  xn−1  xn+1

= ((((((((((((

=  xn+1

(((((((((((((

 xn−1 +  xn−2 +  xn−3 + · · · + 1

2.3

Binomial Theorem (Pascal’s Triangle)

2.72. Binomial powers are elegantly developed with the help of Pascal’s triangle; see Fig. 2.1. Each row shows polynomial coefficient, while powers of the two terms in the given binomial are systematically written in descending and ascending order, respectively. Given

binomial  (x + 1 )  and its power  n = 2, the polynomial coefficients are 1 ,  2 ,  1. The two terms making the binomial are  x  and 1; thus, the quadratic polynomial is developed as

 (x + 1 ) 2 = 1 ×  x 2 × 10 + 2 ×  x 1 × 11 + 1 ×  x 0 × 12

Obviously, powers of 1 are trivial, and  x  is in descending powers order starting with  n = 2. 

After cleaning the above result, 

 (x + 1 ) 2 =  x 2 + 2 x + 1

which is well-known high school identity. 

2.73. Given binomial  ( 1− x)  and its power  n = 2, the polynomial coefficients are 1 ,  2 ,  1. The two terms making the binomial are 1 and  (− x). Note how the negative sign of  x  is accounted for

 ( 1 −  x) 2 = 1 × 12 ×  (− x) 0 + 2 × 11 ×  (− x) 1 + 1 × 10 ×  (− x) 2

One way to thing about the development order is to think which term is “first” and which

is “second” within the binomial. In addition, each term keeps its sign at all time. Obviously, powers of 1 are trivial, and  (− x)  is in ascending powers order starting with  n = 0. After cleaning the above result, 

 ( 1 −  x) 2 = 1 − 2 x +  x 2 =  x 2 − 2 x + 1

which is well known high school identity. 

2.3 Binomial Theorem (Pascal’s Triangle)
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2.74. Given binomial  ( 2 x − 3 )  and its power  n = 2, the polynomial coefficients are 1 ,  2 ,  1. 

The two terms making the binomial are 2 x  and  (−3 ). Note how the negative sign of 3 is accounted for

 ( 2 x − 3 ) 2 = 1 ×  ( 2 x) 2 ×  (−3 ) 0 + 2 ×  ( 2 x) 1 ×  (−3 ) 1 + 1 ×  ( 2 x) 0 ×  (−3 ) 2

One way to thing about the development order is to think which term is “first” and which is

“second” within the binomial. In addition, each term keeps its sign at all time. Powers of 2 x are descending starting with  n = 2, and powers of  (−3 )  are ascending powers order starting with  n = 0. After cleaning the above result, 

 ( 2 x − 3 ) 2 =  ( 2 x) 2 + 2 ( 2 x)(−3 ) +  (−3 ) 2 = 4 x 2 − 12 x + 9

This development may be verified by direct multiplication as

 ( 2 x − 3 ) 2 =  ( 2 x − 3 )( 2 x − 3 ) =  ( 2 x)( 2 x) − 3 ( 2 x) − 3 ( 2 x) +  (−3 )(−3 ) = 4 x 2 − 12 x + 9

2.75. Given  (a +  b) 3, coefficients of the third-order binomial power are listed in Pascal’s triangle as 1 ,  3 ,  3 ,  1. Then, the powers of  a  and  b  are systematically written in the descending and ascending orders, respectively, as

 (a +  b) 3 = 1  a 3  b 0 + 3  a 2  b 1 + 3  a 1  b 2 + 1  a 0  b 3 =  a 3 + 3 a 2 b + 3 ab 2 +  b 3

2.76. Given  (− a −  bc) 4, coefficients of the fourth-order binomial power are listed in Pascal’s triangle as 1 ,  4 ,  6 ,  4 ,  1. Then, 

 (− a −  bc) 4

= 1  (− a) 4  (− bc) 0 + 4  (− a) 3  (− bc) 1 + 6  (− a) 2  (− bc) 2 + 4  (− a) 1  (− bc) 3 + 1  (− a) 0  (− bc) 4

=  a 4 + 4 a 3 bc + 6 a 2 b 2 c 2 + 4 ab 3 c 3 +  b 4 c 4

2.77. Given  ( 2 x + 1 ) 4, coefficients of the fourth-order binomial power are listed in Pascal’s triangle as 1 ,  4 ,  6 ,  4 ,  1. Then, 

 ( 2 x + 1 ) 4 = 1  ( 2 x) 4 10 + 4  ( 2 x) 3 11 + 6  ( 2 x) 2 12 + 4  ( 2 x) 1 13 + 1  ( 2 x) 0 14

= 16 x 4 + 32 x 3 + 24 x 2 + 8 x + 1

2.78. Given  (xy −  z) 5, coefficients of the fifth-order binomial power are listed in Pascal’s triangle as 1 ,  5 ,  10 ,  10 ,  5 ,  1. Then, 

 (xy −  z) 5

= 1  (xy) 5  (− z) 0 + 5  (xy) 4  (− z) 1 + 10  (xy) 3  (− z) 2 + 10  (xy) 2  (− z) 3
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+ 5  (xy) 1  (− z) 4 + 1  (xy) 0  (− z) 5

=  x 5 y 5 − 5 zx 4 y 4 + 10 z 2 x 3 y 3 − 10 z 3 x 2 y 2 + 5 z 4 xy −  z 5

2.79.  (x + 2 ) 5 = 1  x 5 20 + 5  x 4 21 + 10  x 3 22 + 10  x 2 23 + 5  x 1 24 + 1  x 0 25

=  x 5 + 10 x 4 + 40 x 3 + 80 x 2 + 80 x + 32

2.80.  (x − 1 ) 6 = 1  x 6  (−1 ) 0 + 6  x 5  (−1 ) 1 + 15  x 4  (−1 ) 2 + 20  x 3  (−1 ) 3+

15  x 2  (−1 ) 4 + 6  x 1  (−1 ) 5 + 1  x 0  (−1 ) 6

=  x 6 − 6 x 5 + 15 x 4 − 20 x 3 + 15 x 2 − 6 x + 1

2.81. Immediately after the common terms factorization, the binomial development is one of the first ideas to try when attempting to factorize a polynomial, that is to say, to verify if the given polynomial may be written in the form driven by Pascal’s triangle coefficients. 

Given quadratic polynomial has  x 2 and 1 terms. Therefore, one idea is to verify if  (x ± 1 ) 2

is identical to the given polynomial. Of course, for such a low polynomial order, one could

always apply trial and error by direct multiplication. However, the objective is to develop the general idea that may be used in the case of higher-order polynomials. 

In order to be binomial development, the second-order polynomial, i.e.,  n = 2 and 1 ,  2 ,  1

coefficients, after noting the negative sign of the middle term, should be in the form





 x 2 − 2 x + 1 = 1  x 2  (−1 ) 0 + 2  x 1  (−1 ) 1 + 1  x 0  (−1 ) 2 =  n = 2 =  (x − 1 ) 2 

Indeed, given  x 2 − 2 x + 1 is identical to the binomial square  (x − 1 ) 2. 

2.82.  x 2−6 x + 9 = 1  x 2  (−3 ) 0 + 2  x 1  (−3 ) 1 + 1  x 0  (−3 ) 2 =  (x − 3 ) 2

√

√

√

√

2.83.  x 2 − 2 2 x + 2 =  x 2 − 2 2 x +  (  2 ) 2 =  (x − 2 ) 2

2.84. 4 x 2 − 12 x + 9 =  ( 2 x) 2 − 2 ·  ( 3 · 2 x) + 32 =  ( 2 x − 3 ) 2

2.85.  x 4 − 2 x 2 + 1 =  (x 2 ) 2 − 2 x 2 + 1 =  (x 2 − 1 ) 2 =  (x + 1 ) 2 (x − 1 ) 2









2.86. 

2

 x 2 n+2 − 2 xn+1 + 1 =  x 2 (n+1 ) − 2 xn+1 + 1 =  xn+1

− 2  xn+1 + 1 =  ( xn+1 − 1 ) 2

2.4 Long Division
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2.87. Division of two polynomials follows the same procedure as division of any two large numbers. Of course, in sample cases, it is preferable to take advantage of identities and simple factorization techniques. Nevertheless, huge majority of polynomials are more complicated. 

Thus, mastering the long division technique is a mandatory prerequisite. There are multiple

techniques to organize the polynomial coefficients and visual tabulation of the intermediate results. Here, one possible way is to first rearrange all terms of the two given polynomials in descending powers. Then, if the last step results in zero, it is said that two polynomials are divisible; otherwise, there is reminder  r. 

Obviously, given division  (x 2−2 x+1 )÷ (x−1 )  is well-known binomial square, see A.2.72 and

A.2.73, so the result is already known. However, for the sake of introducing the long division technique, step-by-step procedure may be as follows:

1. Divide only the two highest power terms (underlined below), and write the result, that is to say  x 2 ÷  x =  x, so that

 (x 2 − 2 x + 1 ) ÷  (x − 1 ) =  x

2. Multiply  x  with the divisor polynomial  (x − 1 ), and write the product under dividend (x 2 − 2 x + 1 ) ÷  (x−1 ) =  x

 x 2 −  x

Multiply

3. Subtract terms that are aligned vertically, i.e.,  (x 2 − 2 x) −  (x 2 −  x) = − x, and then write down the next term from dividend, i.e., “+1.” 

 (x 2 − 2 x +1  ) ÷  (x − 1 ) =  x

− (x 2 −  x)

= 0 −  x +1

4. Now, calculate  (− x +1 )÷ (x −1 ). Next term in the solution polynomial is found as the ratio of two highest-order terms in these two polynomials − x ÷  x = −1; repeat multiplication step, so that

 (x 2 − 2 x + 1 ) ÷  (x − 1 ) =  x − 1

− (x 2 −  x)

−  x + 1

−  (− x + 1 )

= 0
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Because the last subtraction equals zero means that reminder of this division is

 r = 0 /(x −1 ) = 0. Since the reminder equal zero, it is true that  (x 2 −2 x +1 )÷ (x −1 ) =  x −1, which is already known from the binomial identity. 

Further understanding of binomial factors is that, in this example,  (x −1 )  factor also means that x − 1 = 0 ⇒  x = 1 is a zero (i.e., “root”) of  x 2 − 2 x + 1 polynomial. The use of word “zero” 

implies that calculated value of this polynomial at  x = 1 equals zero, as  P (x) =  x 2 − 2 x + 1, then for  x = 1 in  P (x), it follows that

 P ( 1 ) =  ( 1 ) 2 − 2 ( 1 ) + 1 = 1 − 2 + 1 = 0

This understanding of reminder is very useful in determining divisibility of a polynomial with a given binomial. That is to say, if reminder of polynomial division with a binomial  (x −  x 0 ) equal zero, then it is true that  x 0 is root of this polynomial, and vice versa. More examples on this topic are found in the following sections. 

2.88. Division  (x 2 − 6 x + 9 ) ÷  (x − 3 )  is also easy to resolve either by algebraic techniques or by binomial development; see A.2.82, but for the sake of exercise, it may be resolved as follows. 

1. Divide only the two highest power terms (underlined below), and write the result, that is to say  x 2 ÷  x =  x, so that

 (x 2 − 6 x + 9 ) ÷  (x − 3 ) =  x

2. Multiply  x  with the divisor polynomial  (x − 3 ), and write the product under dividend (x 2 − 6 x + 9 ) ÷  (x−3 ) =  x

 x 2 − 3 x

Multiply

3. Subtract terms that are aligned vertically, i.e.,  (x 2 − 6 x) −  (x 2 − 3 x) = −3 x, and then write down the next term from dividend, i.e., “+9.” 

 (x 2 − 6 x +9  ) ÷  (x − 3 ) =  x

− (x 2 − 6 x)

= 0 − 3 x +9

4. Now, calculate  (−3 x+9 )÷ (x−3 ). Next term in the solution polynomial is found as the ratio of two highest-order terms in these two polynomials −3 x ÷  x = −3; repeat multiplication step, so that

 (x 2 − 6 x + 9 ) ÷  (x − 3 ) =  x − 3

2.4 Long Division
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− (x 2 − 3 x)

− 3 x + 9

−  (−3 x + 9 )

= 0

Because the last subtraction equals zero means that reminder of this division is

 r = 0 /(x−3 ) = 0. Since the reminder equals zero, it is true that  (x 2−6 x+9 )÷ (x−3 ) =  x−3, as already known. 

Furthermore, in this example,  (x − 3 )  factor also means that  x − 3 = 0 ⇒  x = 3 is a zero (i.e., “root”) of  x 2 − 6 x + 9 polynomial. The use of word “zero” implies that calculated value of this polynomial at  x = 3 equals zero, as  P (x) =  x 2 − 6 x + 9, then for  x = 3 in  P (x), it follows that

 P ( 3 ) =  ( 3 ) 2 − 6 ( 3 ) + 9 = 9 − 18 + 9 = 0

That is to say,  x = 3 is one of this polynomial’s roots. 

2.89. Given division  (x 2 +  x − 5 ) ÷  (x + 3 )  is resolved by the long division technique as (x 2 +  x − 5 ) ÷  (x + 3 ) =  x − 2 +

1

 x + 3



 r

 x 2 + 3 x

− 2 x − 5

− 2 x − 6

= 1

The conclusion is that  (x 2 +  x − 5 )  is not divisible by  (x + 3 )  because  r = 1 /(x + 3 ) = 0. In other words,  x + 3 = 0 ⇒  x = −3 is  not  root of  P (x) =  x 2 +  x − 5 because P (−3 ) =  (−3 ) 2 +  (−3 ) − 5 = 9 − 3 + 5 = 11 = 0

2.90. Division  ( 2 x 2 − 5 x + 3 ) ÷  ( 2 x − 3 )  may be resolved as follows: 1. Divide 2 x 2 ÷ 2 x =  x, so that

 ( 2 x 2 − 5 x + 3 ) ÷  ( 2 x − 3 ) =  x 2. Multiply  x  with the divisor polynomial  ( 2 x − 3 ), and write the product under dividend
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 ( 2 x 2 − 5 x + 3 ) ÷  ( 2 x−3 ) =  x

2 x 2 − 3 x

Multiply

3. Subtract  ( 2 x 2 − 5 x) −  ( 2 x 2 − 3 x) = −2 x, then ( 2 x 2 − 5 x +3  ) ÷  ( 2 x − 3 ) =  x

− ( 2 x 2 − 3 x)

= 0 − 2 x +3

4. Division  (−2 x + 3 ) ÷  ( 2 x − 3 )  starts with −2 x ÷ 2 x = −1, so that ( 2 x 2 − 5 x + 3 ) ÷  ( 2 x − 3 ) =  x − 1

− ( 2 x 2 − 3 x)

− 2 x + 3

−  (−2 x + 3 )

= 0

Because the last subtraction equals zero means that reminder of this division is  r =

0 /( 2 x −3 ) = 0. Since the reminder equals zero, it is true that  ( 2 x 2 −5 x +2 )÷ ( 2 x −3 ) =  x −1. 

Furthermore, in this example,  (x − 1 )  factor also means that  x − 1 = 0 ⇒  x = 1 is a zero (i.e., “root”) of 2 x 2 − 5 x + 3 polynomial as  P (x) = 2 x 2 − 5 x + 3, then for  x = 1 in  P (x), it follows that

 P ( 1 ) = 2 ( 1 ) 2 − 5 ( 1 ) + 3 = 2 − 5 + 3 = 0

It is not difficult to verify that the two binomials are indeed the factors of given polynomial as ( 2 x − 3 )(x − 1 ) = 2 x 2 − 2 x − 3 x + 3 = 2 x 2 − 5 x + 3

and therefore the second root of this polynomial is at 2 x − 3 = 0 ⇒  x = 3 / 2, which is confirmed as

 P ( 3 / 2 ) = 2 ( 3 / 2 ) 2 − 5 ( 3 / 2 ) + 3 = 9 − 15 + 6 = 0

2

2

2

2.91. Given  ( 4 x 3 − 7 x 2 − 11 x + 5 ) ÷  ( 4 x + 5 ), long division gives ( 4 x 3 − 7 x 2 − 11 x + 5 ) ÷  ( 4 x + 5 ) =  x 2 − 3 x + 1

4 x 3 + 5 x 2

2.4 Long Division
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− 12 x 2 − 11 x

− 12 x 2 − 15 x

4 x + 5

4 x + 5

= 0

2.92. Apply the long division procedure as

1. Divide 2 x 3 ÷  x 2 = 2 x, so that

 ( 2 x 3 − 7 x 2 + 8 x − 3 ) ÷  (x 2 − 2 x + 1 ) = 2 x 2. Multiply 2 x  with the divisor polynomial  (x 2 − 2 x + 1 ), so that ( 2 x 3 − 7 x 2 + 8 x − 3 ) ÷  (x 2−2 x + 1 ) = 2 x 2 x 3 − 4 x 2 + 2 x

Multiply

3. Difference is  ( 2 x 3 − 7 x 2 + 8 x) −  ( 2 x 3 − 4 x 2 + 2 x) = −3 x 2 + 6 x, as ( 2 x 3 − 7 x 2 + 8 x −3  ) ÷  (x 2 − 2 x + 1 ) = 2 x

− ( 2 x 3 − 4 x 2 + 2 x)

= 0 − 3 x 2 + 6 x −3

4. Next term in the solution polynomial is found as −3 x 2 ÷  x 2 = −3, then

 ( 2 x 3 − 7 x 2 + 8 x − 3 ) ÷  (x 2 − 2 x + 1 ) = 2 x − 3

− ( 2 x 3 − 4 x 2 + 2 x)

− 3 x 2 + 6 x − 3

−  ( 3 x 2 − 6 x − 3 )

= 0

That is to say  r = 0 /(x 2 − 2 x + 1 ) = 0; in other words,  ( 2 x − 3 )  is one of the factors of  ( 2 x 3 − 7 x 2 + 8 x − 3 )  polynomial, and 2 x − 3 = 0 ⇒  x = 3 / 2 is one of its roots as P (x) = 2 x 3 − 7 x 2 + 8 x − 3; thus if  x = 3 / 2, then P ( 3 / 2 ) = 2 ( 3 / 2 ) 3 − 7 ( 3 / 2 ) 2 + 8 ( 3 / 2 ) − 3 = 27 − 63 + 12 − 3 = 0

4

4
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Furthermore, if  ( 2 x 3 −7 x 2 +8 x −3 )  is divisible by  (x 2 −2 x +1 ), then it must be also divisible with the factors of  (x 2 − 2 x + 1 ); see A.2.72 and A.2.73. As  x 2 − 2 x + 1 =  (x − 1 )(x − 1 ), then  x = 1 is also a double root of  ( 2 x 3 − 7 x 2 + 8 x − 3 ), as verified by P ( 1 ) = 2 ( 1 ) 3 − 7 ( 1 ) 2 + 8 ( 1 ) − 3 = 2 − 7 + 8 − 3 = 0

In summary, three roots of  ( 2 x 3 − 7 x 2 + 8 x − 3 )  are  x 1 = 1 , x 2 = 1 , x 3 = 3 / 2 because 2 x 3 − 7 x 2 + 8 x − 3 =  (x − 1 )(x − 1 )( 2 x − 3 ) Note that

 P (x) = 2 x 3 − 7 x 2 + 8 x − 3 =  (x − 1 )(x − 1 )( 2 x − 3 )

= 2  (x − 1 )(x − 1 )(x − 3 / 2 )

= 2  Q(x)

That is to say, polynomial  P (x) =  (x −1 )(x −1 )( 2 x −3 )  and polynomial  Q(x) =  (x −1 )(x −

1 )(x − 3 / 2 )  are  not  equal because  P (x) = 2 Q(x); nevertheless, they have the same roots. This is an example showing that a factorized constant has no influence on the polynomial roots. 

2.93. Higher-order polynomials are divided by long division as

1. Starting with division  x 4 ÷  x =  x 3, so that

 (x 4 − 2 x 3 − 7 x 2 + 8 x + 12 ) ÷  (x − 3 ) =  x 3

2. so that

 (x 4 − 2 x 3 − 7 x 2 + 8 x + 12 ) ÷  (x−3 ) =  x 3

 x 4 − 3 x 3

Multiply

3. difference is  (x 4 − 2 x 3 ) −  (x 4 − 3 x 2 ) =  x 3, then (x 4 − 2 x 3−7 x 2 + 8 x + 12 ) ÷  (x − 3 ) =  x 3

− (x 4 − 3 x 3 )

= 0 +  x 3 −7 x 2

4. and so on until the last division

 (x 4 − 2 x 3 − 7 x 2 + 8 x + 12 ) ÷  (x − 3 ) =  x 3 +  x 2 − 4 x − 4

2.5 Difference of Squares
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− (x 4 − 3 x 3 )

 x 3 − 7 x 2

−  (x 3 − 3 x 2 )

− 4 x 2 + 8 x

−  (−4 x 2 + 12 x)

− 4 x + 12

−  (−4 x + 12 )

= 0

Because the last subtraction equals zero means that  r = 0 /(x − 3 ) = 0, that is to say  x = 3 is zero of  P (x) =  x 4 − 2 x 3 − 7 x 2 + 8 x + 12. It is verified by setting  x = 3 in  P (x)  as P ( 3 ) =  ( 3 ) 4 − 2 ( 3 ) 3 − 7 ( 3 ) 2 + 8 ( 3 ) + 12 = 81 − 54 − 63 + 24 + 12 = 0

Thus, first of the four roots is  x 1 = 3, and the remaining three roots are found by following the same argument as in A.2.92, i.e., by searching for factors of  x 3 +  x 2 − 4 x − 4 polynomial. 

That can be done, for example, by the factor theorem; see Sect. 2.8. 

2.94. Given  ( 6 x 3 + 10 x 2 + 8 ) ÷  ( 2 x 2 + 1 ), while keeping the place of the missing monomial terms, long division gives

−3 x + 3

 ( 6 x 3 + 10 x 2 +0 x + 8 ) ÷  ( 2 x 2 + 1 ) = 3 x + 5 +

2 x 2 + 1



 r

6 x 3

+0 x 2 + 3 x

10 x 2 − 3 x + 8

10 x 2 +0 x + 5

−3 x + 3 = 0

In conclusion,  ( 6 x 3 +10 x 2 +8 )  is not divisible by  ( 2 x 2 +1 ), because  r =  (−3 x +3 )/( 2 x 2 +1 ) is not equal to zero. 

2.5

Difference of Squares

One of the best known polynomial identities to factorize difference of two terms. Recall squares of numbers, decimal and fractional forms. 

2.95.  x 2 − 49 =  x 2 − 72 =  (x + 7 )(x − 7 )
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2.96.  a 2 − 36 =  a 2 − 62 =  (a + 6 )(a − 6 )

2.97. 16 x 2 − 9 =  ( 4 x) 2 − 32 =  ( 4 x + 3 )( 4 x − 3 ) 2.98. 9 x 2 − 49 =  ( 3 x) 2 − 72 =  ( 3 x + 7 )( 3 x − 7 ) 2.99. 25 −  x 2 = 52 −  x 2 =  ( 5 +  x)( 5 −  x)

2.100. 81 −  x 4 = 92 −  (x 2 ) 2 =  ( 9 +  x 2 )( 9 −  x 2 ) =  ( 9 +  x 2 )( 3 +  x)( 3 −  x) 2.101.  x 2 − 1 =  x + 1

 x − 1
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7

7











 x 2

 x  2

2 2

 x

 x

2.102. 

− 4 =

−

=

+ 2

− 2

4

9

2

3

2

3

2

3







9 x 2

3 x

3 x

2.103. 

− 4 y 2 =

+ 2 y

− 2 y

4

9

2

3

2

3









49 x 2

7 x  2

7 x

7 x

2.104. 

− 9 y 2 =

−  ( 3 y) 2 =

+ 3

− 3

25

5

5

5










3 2

2.105.  x 2 − 0 .  36 =  x 2 − 9 36 =  x 2 −

=  x + 3

 x − 3





25 100

5

5

5

2.106.  x 2 − 0 .  0009 =  x 2 − 0 .  032 =  (x + 0 .  03 ) (x − 0 .  03 ) 2 x

2 x

2.107. 0 .  04 x 2 − 0 .  25 =  ( 0 .  2 x) 2 − 0 .  52 =

+ 5

− 5

= 1  ( 2 x + 5 )( 2 x − 5 )

10

10

10

10

100

2.108. 0 .  01 x 2 −0 .  04 y 2 = ( 0 .  1 x) 2− ( 0 .  2 y) 2 = ( 0 .  1 x +0 .  2 y)( 0 .  1 x −0 .  2 y)= 1  (x + 2 y)(x −2 y) 100





2.109. 

2

 x 4 y 2 − 0 .  01 =  x 2 y

− 0 .  12 =  (x 2 y + 0 .  1 )(x 2 y − 0 .  1 )

2.5 Difference of Squares
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2.110. 0 .  25 x 2 y 2 − 0 .  0001 =  ( 0 .  5 xy + 0 .  01 )( 0 .  5 xy − 0 .  01 ) 2







 x 2 y

 x 2 y

 x 2 y

2.111. 0 .  0625 x 4 y 2 −  (ab) 2 =  (x 2 y) 2 −  (ab) 2 =

−  (ab) 2 =

−  ab

+  ab

16

4

4

4















2

2

2.112.  a 8 b 6 c 2 −4 b 2 c 4 =  b 2 c 2  a 8 b 4 −4 c 2 =  b 2 c 2

 a 4 b 2

− 2 c

= b 2 c 2  a 4 b 2−2 c a 4 b 2+2 c

2.113.  (x − 3 ) 2 − 4 =  (x − 3 + 2 )(x − 3 − 2 ) =  (x − 1 )(x − 5 ) 2.114.  (a + 5 ) 2 − 9 =  (a + 5 + 3 )(a + 5 − 3 ) =  (a + 8 )(a + 2 ) 2.115.  y 2 −  (x −  y) 2 =  ( y +  x −  y)(y −  (x −  y)) =  x( 2 y −  x) 2.116.  x 2 −  (x +  y) 2 =  (x +  x +  y)( x −  x −  y) = − y( 2 x +  y) 2.117.  (x + 2 ) 2 − 4 x 2 =  (x + 2 + 2 x)(x + 2 − 2 x) =  ( 3 x + 2 )( 2 −  x) 2.118. 9 x 2 −  (x − 1 ) 2 =  ( 3 x +  x − 1 )( 3 x −  (x − 1 )) =  ( 4 x − 1 )( 2 x + 1 ) 2.119.  (x −  y) 2 − 16 (x +  y) 2 =  (x −  y + 4 x + 4 y)(x −  y − 4 x − 4 y)

=  ( 5 x + 3 y)(−3 x − 5 y) = − ( 5 x + 3 y)( 3 x + 5 y) 2.120.  (x + 2 y) 2 − 9 (x − 2 y) 2 =  (x + 2 y + 3 x − 6 y)(x + 2 y −  ( 3 x − 6 y))

=  ( 4 x − 4 y)( 8 y − 2 x) = 4 (x −  y)  2 ( 4 y −  x)

= 8  (x −  y)( 4 y −  x)

2.121. 4 (x −  y) 2 − 25 (x +  y) 2 =  ( 2 x − 2 y + 5 x + 5 y)( 2 x − 2 y − 5 x − 5 y)

=  ( 7 x + 3 y)(−3 x − 7 y) = − ( 7 x + 3 y)( 3 x + 7 y) 2.122. 36 (x − 2 ) 2 − 25 (x + 1 ) 2 =  ( 6 x − 12 + 5 x + 5 )( 6 x − 12 − 5 x − 5 ) =  ( 11 x − 7 )(x − 17 ) 2.123.  (x +  y −  z) 2 −  (x −  y +  z) 2 =  (x +  y −  z +  x −  y +  z)( x +  y −  z −  x +  y −  z)

= 2 x( 2 y − 2 z) = 4 x(y −  z)
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2.124.  (x +  y − 3 ) 2 − 25 (x + 2 ) 2 =  (x +  y − 3 + 5 x + 10 )(x +  y − 3 − 5 x − 10 )

=  ( 6 x +  y + 7 )(y − 4 x − 13 )

2.125. 98 × 102 =  ( 100 − 2 )( 100 + 2 ) = 1002 − 22 = 10 ,  000 − 4 = 9996

2.126. 99 × 101 =  ( 100 − 1 )( 100 + 1 ) = 1002 − 1 = 9999

2.127. 83 × 77 =  ( 80 + 3 )( 80 − 3 ) = 802 − 32 = 6400 − 9 = 6391

2.128. 79 × 81 =  ( 80 − 1 )( 80 + 1 ) = 802 − 1 = 6400 − 1 = 6399

2.129. 18 × 22 =  ( 20 − 2 )( 20 + 2 ) = 400 − 4 = 396

2.130. 201 × 199 =  ( 200 + 1 )( 200 − 1 ) = 40 ,  000 − 1 = 39 ,  999

2.131. 1 .  05 × 0 .  95 =  ( 1 + 0 .  05 )( 1 − 0 .  05 ) = 1 − 0 .  052 = 1 − 0 .  0025 = 0 .  9975

2.132. 1 .  01 × 0 .  99 =  ( 1 + 0 .  01 )( 1 − 0 .  01 ) = 1 − 0 .  012 = 1 − 0 .  0001 = 0 .  9999

2.133. 9 .  9 × 10 .  1 =  ( 10 − 0 .  1 )( 10 + 0 .  1 ) = 100 − 0 .  01 = 99 .  99

2.6

Quadratic Polynomial: Viète Formulas

2.134. Given  x 2 − 6 x + 5, by Viète formulas there should be  x 1 , x 2 pair so that x 1  x 2 = 5 and  x 1 +  x 2 = 6

Being prime number, “5” is divisible only with ±1 , ±5. By simple trial, its factors −1 and

−5 satisfy both equalities, i.e., their product equals  (−1 )(−5 ) = +5 and their sum is  (−1 ) +

 (−5 ) = −6. Thus, 

 x 2−6 x + 5 =  x 2−  ( 1 )x − 5 x + 5 =  x(x − 1 ) − 5 (x − 1 ) =  (x − 1 )(x − 5 ) Therefore, two roots of  x 2 − 6 x + 5 are  x 1 = 1 and  x 2 = 5, which are easily verified by P (x) =  x 2 − 6 x + 5 ∴  P ( 1 ) = 12 − 6 ( 1 ) + 5 = 1 − 6 + 5 = 0

∴  P ( 5 ) = 52 − 6 ( 5 ) + 5 = 25 − 30 + 5 = 0

2.6 Quadratic Polynomial: Viète Formulas
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It is very useful technique for factorizing quadratic polynomials. 

2.135. Given  x 2 − 9 x + 14, two factors of “+14” whose sum equals “−9” are “−2” and

“−7,” thus

 x 2−9 x + 14 =  x 2−2 x − 7 x + 14 =  x(x − 2 ) − 7 (x − 2 ) =  (x − 2 )(x − 7 ) Therefore, two roots of  x 2 − 9 x + 14 are  x 1 = 2 and  x 2 = 7. 

2.136. Given  x 2 − 6 x + 8, two factors of “+8” whose sum equals “−6” are “−2” and “−4,” 

thus, 

 x 2−6 x + 8 =  x 2−2 x − 4 x + 8 =  x(x − 2 ) − 4 (x − 2 ) =  (x − 2 )(x − 4 ) Therefore, two roots of  x 2 − 6 x + 8 are  x 1 = 2 and  x 2 = 4. 

2.137. Given 2 x 2 + 3 x + 1, the leading coefficient  a = 2 = 1 then, Method 1: factor the leading coefficient in trinomial as  ax 2 + bx + c =  a[ x 2 + (b/a)x + (c/a)], then apply Viète formulas as usual, i.e., search pair of  (c/a)  factors whose sum equals  (b/a), as





2 x 2 + 3 x + 1 = 2  x 2 + 3  x + 1

2

2





= two factors of 1 / 2 are “1” and “1 / 2”, thus: 1 × 1 = 1 and 1 + 1 = 3

2

2

2

2









= 2  x 2 +  x + 1 x + 1 = 2  x(x + 1 ) + 1 (x + 1 ) 2

2

2







= 2  (x + 1 ) x + 1

=  (x + 1 )( 2 x + 1 )

2

Method 2: in  ax 2+ bx+ c  factorize the  product (ac)  so that sum of its two factors equals  b, i.e., 2 x 2 + 3 x + 1 =  ac = 2 × 1 = 2 ∴ 1 × 2 = 2 and 1 + 2 = 3

= 2 x 2+3 x + 1 = 2 x 2+2 x +  x + 1 = 2 x(x + 1 ) +  x + 1

=  (x + 1 )( 2 x + 1 )

The two techniques are simply question of preference; nevertheless, with good grasp on prime factors, both techniques may be used mentally. 
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2.138. Search factors of  (ac)  whose sum equals  b, i.e., 





3 × 8 = 24 , (−12 ) ×  (−2 ) = 24 and

3 x 2−14 x + 8 =

 (−12 ) +  (−2 ) = −14

= 3 x 2−12 x − 2 x + 8 = 3 x(x − 4 ) − 2 (x − 4 )

=  (x − 4 )( 3 x − 2 )

2.139. Search factors of  (ac)  whose sum equals  b, i.e., 





−2 x 2+ x + 3 = −2 × 3 = −6 , (−2 ) + 3 = 1

= −2 x 2−2 x + 3 x + 3 = −2 x(x + 1 ) + 3 (x + 1 )

=  (x + 1 )( 3 − 2 x)

2.140. − x 2+5 x − 4 = − x 2+ x + 4 x − 4 = − x(x − 1 ) + 4 (x − 1 ) =  (x − 1 )( 4 −  x) 2.141. −6 x 2+5 x + 4 = −6 x 2−3 x + 8 x + 4 = −3 x( 2 x + 1 ) + 4 ( 2 x + 1 ) =  ( 2 x + 1 )( 4 − 3 x)

√

√

√

√

√

2.142. Given  x 2 +  (  2 +

3 )x +

6, there is nothing special of  b =

2 +

3; it is still

√ √

√

√

just a number. What is more, the product

2 3 =

2 · 3 =

6 is exactly as needed, thus

√

√

√

√

√

√

√

√

√

 x 2 +  (  2 +

3 )x +

6 =  x 2 +  x  2 +  x  3 +

2 × 3 =  x(x +

2 ) +

3 (x +

2 )

√

√

=  (x + 2 )(x + 3 )

√

√

√

√

√

Therefore, two roots of  x 2 +  (  2 +

3 )x +

6 are  x 1 = − 2 and  x 2 = − 3. 

2.143. In general, after rewriting  x 2 n  as  (xn) 2, this biquadratic polynomial form is converted into quadratic relative to  (xn), then by Viète formulas, it follows

 x 4−13 x 2 + 36 =  (x 2 ) 2−4 (x 2 ) − 9 (x 2 ) + 36 =  x 2 (x 2 − 4 ) − 9 (x 2 − 4 )

=  (x 2 − 4 )(x 2 − 9 ) =  (x + 2 )(x − 2 )(x + 3 )(x − 3 ) 2.144. After rewriting  x 2 n  as  (xn) 2, this biquadratic polynomial form is converted into quadratic relative to  (xn), and then by Viète formulas, it follows:

 x 4−10 x 2 + 9 =  x 4− x 2 − 9 x 2 − 9 =  x 2 (x 2 − 1 ) − 9 (x 2 − 1 ) =  (x 2 − 1 )(x 2 − 9 )

=  (x + 1 )(x − 1 )(x + 3 )(x − 3 )

2.7 Completing the Square
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2.145. This is biquadratic polynomial, as  x 6 =  (x 3 ) 2 so that x 6 − 2 x 3 + 1 =  (x 3 ) 2 − 2 (x 3 ) + 1 =  (x 3 − 1 ) 2





=  (x 3 − 1 ) =  (x − 1 )(x 2 +  x + 1 ),  see A.2.167

= [ (x 2 +  x + 1 )(x − 1 )]2 =  (x 2 +  x + 1 ) 2 (x − 1 ) 2

2.146. This is biquadratic polynomial, thus

 x 6+3 x 3 + 2 =  x 6 +  x 3 + 2 x 3 + 2 =  x 3 (x 3 + 1 ) + 2 (x 3 + 1 )





=  (x 3 + 1 )(x 3 + 2 ) = by long divisions and factor theorem, see A.2.169

√

√

√

=  (x + 1 )(x 2 −  x + 1 )(x + 3 2 )(x 2 −  x  3 2 + 3 4 ) 2.147. This is biquadratic polynomial, thus

 x 6+9 x 3 + 8 =  x 6+ x 3 + 8 x 3 + 8 =  x 3 (x 3 + 1 ) + 8 (x 3 + 1 )

=  (x 3 + 1 )(x 3 + 8 ) =  (x + 1 )(x 2 −  x + 1 )(x 3 + 8 )

=  (x + 1 )(x 2 −  x + 1 )(x + 2 )(x 2 − 2 x + 4 ) 2.148. This is biquadratic polynomial, thus



2





2 x 2 m+2 − 11 xm+1 + 9 = 2  xm+1

− 11  xm+1 + 9













=

2

2  xm+1

− 2  xm+1 − 9  xm+1 + 9









= 2 xm+1  xm+1 − 1 − 9  xm+1 − 1







=  xm+1 − 1 2 xm+1 − 9

2.7

Completing the Square

2.149. Factorization of higher-order polynomials usually requires multiple steps and techniques. Therefore, there is no unique path to the solution. Nevertheless, sometimes the

solutions are elegant, for example, when it is possible to complete difference of squares as in





 x 4 + 4 =  x 4 +4 x 2 + 4 −4 x 2 =  (x 2 + 2 ) 2 −  ( 2 x) 2 =  a 2 −  b 2 =  (a +  b)(a −  b)

=  (x 2 + 2 x + 2 )(x 2 − 2 x + 2 )

Note that both quadratic polynomial have negative discriminants; thus, all four zeros of  (x 4+4 ) are complex. 
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2.150. Similarly to P.2.149, it is possible to take advantage of difference of squares identity, as

 x 4 +  x 2 + 1 =  x 4 +2 x 2 + 1 − x 2 =  (x 2 + 1 ) 2 −  (x) 2 =  (x 2 −  x + 1 )(x 2 +  x + 1 ) thus, all four zeros of  (x 4 +  x 2 + 1 )  are complex. 

2.151. Following same idea as already done in the previous examples, 

 x 5 +  x + 1 =  x 5 − x 2 + x 2 +  x + 1 =  x 2 (x 3 − 1 ) +  x 2 +  x + 1





=  x 3 − 1 =  (x − 1 )(x 2 +  x + 1 )  see A.2.167

=  x 2 (x − 1 )(x 2 +  x + 1 ) +  (x 2 +  x + 1 )





=  (x 2 +  x + 1 ) x 2 (x − 1 ) + 1

=  (x 2 +  x + 1 )(x 3 −  x 2 + 1 )

where quadratic polynomial  (x 2 +  x + 1 )  has two complex zeros and cubic polynomial  (x 3 −

 x 2 + 1 )  has one real and two complex zeros (see Vol.II on function analysis). 

2.152. The change of variables technique in combination with other identities is very often used to simplify complicated forms, as

 (x + 1 )(x + 3 )(x + 5 )(x + 7 ) + 15 =  (x + 1 )(x + 7 ) (x + 3 )(x + 5 ) + 15

=  (x 2 + 8 x + 7 )(x 2 + 8 x + 15 ) + 15

=  (x 2 + 8 x + 7  )(x 2 + 8 x + 7 + 8 ) + 15





= substitution:  x 2 + 8 x + 7 =  t

=  t(t + 8 ) + 15 =  t 2 + 8 t + 15

=  t 2 + 3 t + 5 t + 15 =  t(t + 3 ) + 5 (t + 3 ) =  (t + 3 )(t + 5 )





= back substitution:  t =  x 2 + 8 x + 7





=  x 2 + 8 x + 7 + 3 )(x 2 + 8 x + 7 + 5





=  x 2 + 8 x + 10 )(x 2 + 8 x + 12







=  x 2 + 2 ( 4 )x +42 − 42 + 10  x 2 + 2 x + 6 x + 12









=  (x + 4 ) 2 − 6  (x + 2 )(x + 6 ) =  a 2 −  b 2 =  (a +  b)(a −  b)

√

√

=  (x + 4 − 6 )(x + 4 + 6 )(x + 2 )(x + 6 )

2.7 Completing the Square
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2.153. Complete the binomial square form by artificially adding the missing term to create binomial square, in this case “+32” and “−32,” as follows:

 x 2 + 6 x − 7 =  x 2 + 2 ( 3 )x +32





− 32 − 7

=  (x + 3 ) 2 − 16 = 0

 (x + 3 ) 2

− 16

Therefore, the quadratic equation may be solved as

 (x + 3 ) 2 = 16 ∴  x + 3 = ±4 ∴  x 1 ,  2 = −3 ± 4 ∴  x 1 = 1 , x 2 = −7

which is easily verified as

 P (x) =  x 2 + 6 x − 7 ∴  P ( 1 ) =  ( 1 ) 2 + 6 ( 1 ) − 7 = 1 + 6 − 7 = 0

∴  P ( 7 ) =  (−7 ) 2 + 6 (−7 ) − 7 = 49 − 42 − 7 = 0

2.154. Given 2 x 2 − 10 x − 3 = 0, the leading coefficient (i.e., “2”) may be factored. However, the leftover linear term coefficient “5” is a prime number, thus not divisible by “2” that would be necessary to factor and complete the square form. Instead, artificially create “5 / 2” term, as 5

2 x 2 − 10 x − 3 = 2  x 2 − 5 x − 3

= 2  x 2 − 2

 x − 3

2

2

2











2

2

=

5

5

5

2  x 2 − 2

 x +

−

− 3

2

2







2

2



2

 x − 52













2

2

= 2

 x − 5

− 25 − 3 = 2

 x − 5

− 31 = 0

2

4

2

2

4



2

 x − 5

− 31 = 0 ∴

2

4









√

2

31

31

31

 x − 5

= 31 ∴  x − 5 = ±

∴  x 1 ,  2 = 5 ±

= 5 ±

2

4

2

4

2

4

2

2.155. Factor the leading coefficient “−1” as





− x 2 − 6 x + 7 = −  x 2 + 2 ( 3 )x +32 −32 − 7





= −  (x + 3 ) 2 − 16 = 0

∴  (x + 3 ) 2 − 16 = 0

√

∴  x + 3 = ± 16
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∴  x 1 ,  2 = −3 ± 4

 x 1 = 1 , x 2 = −7

Note however that although the roots of  (− x 2 − 6 x + 7 )  and  (x 2 + 6 x − 7 )  are same, these two quadratic polynomials are not equal. 

2.156. Given  x 2 + 3 x = 0, there are multiple techniques, as

Method 1: Force the completing square form as











3

3 2

3 2

2

 x 2 + 3 x =  x 2 + 2

 x +

−

=  x + 3

− 9 = 0

2

2

2

2

4

∴  x + 3 = ±3 ∴  x 1 ,  2 = −3 ± 3 ∴  x 1 = 0 , x 2 = −3

2

2

2

2

Method 2: Of course, in this case, factorization is faster

 x 2 + 3 x =  x(x + 3 ) = 0 ∴  x 1 = 0 , x 2 = −3

2.157. Factorize the leading coefficient “2,” and artificially introduce “±3 / 2,” so that 3

3 2

3 2

2 x 2 + 6 x + 2 = 2  x 2 + 2

 x +

−

+ 1

2

2

2







2

= 2

 x + 3

− 9 + 1 = 0

2

4



√

−

∴

5

3 ±

5

 x + 3 = ±

∴  x 1 ,  2 =

2

4

2



2

2.158.  x 2 −  x − 6 = 0 ∴

 x − 1

− 25 = 0 ∴  x 1 = −2 , x 2 = 3

2

4

2.8

Factor Theorem

2.159. Two polynomials are identical if they are of the same order, and they have the same coefficients. As an extension, a polynomial is divisible by each of its binomial factors. Thus, given two binomial factors, the corresponding quadratic polynomial  P (x)  is

 P (x) =  (x − 1 )(x + 1 ) =  x 2 +  x −  x − 1 =  x 2 − 1

2.8 Factor Theorem
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Evidently, this quadratic polynomial is incomplete, and the linear term  x  is missing. The missing terms may be explicitly written in with the coefficient zero, as

 P (x) =  x 2 + 0  x − 1

Identity of two polynomials implies identical coefficients, that is, 

 P (x) =  ax 2 +  bx +  c =  x 2 + 0  x − 1

which is true only if  a = 1 , b = 0, and  c = −1. 

2.160. Two polynomials are identical if they are of the same order and they have the same coefficients. As an extension, a polynomial is divisible by each of its binomial factors. Thus, given two binomial factors, the corresponding quadratic polynomial  P (x)  is

 P (x) =  (x − 1 )( 2 −  x) = 2 x −  x 2 − 2 +  x = − x 2 + 3 x − 2

Identity of two polynomials implies identical coefficients, that is, 

 P (x) =  ax 2 +  bx +  c = − x 2 + 3 x − 2

which is true only if  a = −1 , b = 3, and  c = −2. 

2.161. Two polynomials are identical if they are of the same order and they have the same coefficients. As an extension, a polynomial is divisible by each of its binomial factors. Thus, given two binomial factors, the corresponding quadratic polynomial  P (x)  is











 P (x) = − (x − 1 ) − (x − 1 ) =  (−1 ) 2 (x − 1 ) 2 = see A.2.6 =  x 2 − 2 x + 1

Identity of two polynomials implies identical coefficients, that is, 

 P (x) =  ax 2 +  bx +  c =  x 2 − 2 x + 1

which is true only if  a = 1 , b = −2, and  c = 1. 

2.162. Two polynomials are identical if they are of the same order and they have the same coefficients. As an extension, a polynomial is divisible by each of its binomial factors. Thus, given two binomial factors, the corresponding quadratic polynomial  P (x)  is





 P (x) = − ( 3 x − 1 ) ( 2 −  x) = − ( 6 x − 3 x 2 − 2 +  x) = 3 x 2 − 7 x + 2

Identity of two polynomials implies identical coefficients, that is, 

 P (x) =  ax 2 +  bx +  c = 3 x 2 − 7 x + 2

which is true only if  a = 3 , b = −7, and  c = 2. 
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2.163. Third-order polynomial  P (x)  that is divisible by  x, (x − 1 )  and  (x − 2 )  must be in the form of products of its three binomial factors, that is, 

 P (x) =  (x +0 )(x − 1 )(x − 2 ) =  x(x 2 − 3 x + 2 ) =  x 3 − 3 x 2 + 2 x + 0

where  x  factor is written in its binomial form as  (x − 0 )  and the constant term took its place as zero. Therefore, 

 P (x) =  ax 3 +  bx 2 +  cx +  d =  x 3 − 3 x 2 + 2 x ∴  a = 1 , b = −3 , c = 2 ,  and  d = 0

2.164. Third-order polynomial  P (x)  that is divisible by  (x + 1 ), (x − 1 )  and  (x + 2 )  must be in the form of products of its three binomial factors, that is, 

 P (x) =  (x + 1 )(x − 1 )(x + 2 ) =  (x 2 − 1 )(x + 2 ) =  x 3 + 2 x 2 −  x − 2

Therefore, 

 P (x) =  ax 3 +  bx 2 +  cx +  d =  x 3 + 2 x 2 −  x − 2 ∴

 a = 1 , b = 2 , c = −1 ,  and  d = −2

2.165. Third-order polynomial  P (x)  that is divisible by  (x + 1 ), (x − 2 )  and  (x + 3 )  must be in the form

 P (x) =  (x + 1 )(x − 2 )(x + 3 ) =  x 3 + 2 x 2 − 5 x − 6

Therefore, 

 P (x) =  ax 3 +  bx 2 +  cx +  d =  x 3 + 2 x 2 − 5 x − 6 ∴  a = 1 , b = 2 , c = −5 and  d = −6

2.166. Third-order polynomial  P (x)  that is divisible by  ( 2 x − 5 ), ( 2 −  x), and  (x + 4 )  must have form

 P (x) =  ( 2 x − 5 )( 2 −  x)(x + 4 ) = −2 x 3 +  x 2 + 26 x − 40

Therefore, 

 P (x) =  ax 3+ bx 2+ cx +  d = − 2 x 3+ x 2+26 x − 40 ∴  a = −2 , b = 1 , c = 26 and  d = −40

2.167. Given  Q 3 (x) = 1 x 3 − 1, the only two factors of  a 3  a 0 = 1 ×  (−1 ) = −1 product are “+1” and “−1.” That is because “−1 × 1 = −1” and “1 ×  (−1 ) = −1.” Possible roots of Q 3 (x)  may be one of these two factors; thus, first step is to verify if  Q 3 (±1 ) = 0, as Q 3 (−1 ) =  (−1 ) 3 − 1 = −2 ∴  Q(−1 ) = 0

 Q 3 ( 1 ) =  ( 1 ) 3 − 1 = 0 ∴  x 1 = 1

2.8 Factor Theorem
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That is to say, because  Q( 1 ) = 0, it must be that  x 1 = 1 is one of its roots, by consequence (x − 1 )  is one of  Q 3 (x)  factors. Once the first root is known, then  Q 3 (x)  polynomial can be further factorized by long division as

 Q 3 (x) =  (x − 1 )(ax 2 +  bx +  c) ⇒  Q 3 (x) ÷  (x − 1 ) =  ax 2 +  bx +  c where  (ax 2+ bx+ c)  must be second-order polynomial that is left after a third-order polynomial is divided by a first-order polynomial, i.e., 

 ax 2 +  bx +  c =  Q 3 (x) ÷  (x −  x 1 ) ⇒  ax 2 +  bx +  c =  (x 3 − 1 ) ÷  (x − 1 ) The long polynomial division results in

 (x 3 − 1 ) ÷  (x − 1 ) =  x 2 +  x + 1

− (x 3 −  x 2 )

 x 2 − 1

−  (x 2 −  x)

 x − 1

−  (x − 1 )

= 0

Therefore,  Q 3 (x) =  x 3 − 1 =  (x − 1 )(x 2 +  x + 1 ). The quadratic polynomial factor may be itself further factorized by multiple methods. For example, its discriminant is negative; therefore, the last two roots of  Q 3 are complex. 

  =  b 2 − 4 ac = 12 − 4 × 1 × 1 = −3  <  0

∴

√

√

− b ±  

−1 ±  i  3

 x 2 ,  3 =

=

2 a

2

∴

 Q(x) =  x 3 − 1 =  (x − 1 )(x 2 +  x + 1 )



√  

√ 

=

3

3

 (x − 1 ) x + 1 +  i

 x + 1 −  i

2

2

Note that this procedure for factorizing higher-order polynomials is quite general, and it

illustrates the use of basic theorems of algebra. 

2.168. An important polynomial form is known as the  difference of two cubes. Given P (x) =  x 3 −  y 3, note that P.2.167 may be considered as special case where  y = 1. Then, similarly, by inspection of  P (x), it may be concluded that one of its roots must be  x 1 =  y, 
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that is because  P (y) = 0. Therefore,  P (x)  is divisible by  (x −  y). 

The long polynomial division results in

 (x 3 +0 x 2 y +0 xy 2 −  y 3 ) ÷  (x −  y) =  x 2 +  xy +  y 2

 x 3 −  x 2 y

 x 2 y +0 xy 2

 x 2 y −  xy 2

 xy 2 −  y 3

 xy 2 −  y 3

= 0 ∴  (x 3 −  y 3 ) =  (x −  y)(x 2 +  xy +  y 2 ) is one of basic polynomial identities, e.g., difference of squares, square of a binomial, etc.. 

2.169. Given  P 3 (x) = 1 x 3 + 1, the only two factors of  a 3  a 0 = 1 × 1 = 1 product are “+1” 

and “−1.” That is because “(−1 ) ×  (−1 ) = 1” and “1 × 1 = 1.” Possible roots of  P 3 (x)  may be one of these two factors; thus, first step is to verify if  P 3 (±1 ) = 0, as P 3 (−1 ) =  (−1 ) 3 + 1 = 0 ∴  x 1 = −1

 P 3 ( 1 ) =  ( 1 ) 3 + 1 = 2 ∴  P 3 ( 1 ) = 0

That is to say, because  P (−1 ) = 0, it must be that  x 1 = −1 is one of its roots; in other words, x −  (−1 )  is one of  P 3 (x)  factors, and furthermore  P 3 (x)  polynomial can be factorized as P 3 (x) =  (x + 1 )(ax 2 +  bx +  c) ⇒  P 3 (x) ÷  (x + 1 ) =  ax 2 +  bx +  c where  (ax 2 +  bx +  c)  must be second-order polynomial that is left after the factorization, i.e., ax 2 +  bx +  c =  P 3 (x) ÷  (x −  x 1 ) ⇒  ax 2 +  bx +  c =  (x 3 + 1 ) ÷  (x + 1 ) The long polynomial division results in

 (x 3 + 1 ) ÷  (x + 1 ) =  x 2 −  x + 1

− (x 3 +  x 2 )

−  x 2 + 1

−  (− x 2 −  x)

 x + 1

−  (x + 1 )

= 0

2.8 Factor Theorem
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Therefore,  R 3 (x) =  x 3 + 1 =  (x + 1 )(x 2 −  x + 1 ). The quadratic polynomial factor may be itself further factorized by multiple methods. For example, its discriminant is negative; therefore, the last two roots of  R 3 are complex, 

  =  b 2 − 4 ac =  (−1 ) 2 − 4 × 1 × 1 = −3  <  0

∴

√

√

− b ±  

3

 x 2 ,  3 =

= 1 ±  i

2 a

2

∴

 P (x) =  x 3 + 1 =  (x + 1 )(x 2 −  x + 1 )



√  

√ 

=

3

3

 (x + 1 ) x − 1 +  i

 x − 1 −  i

2

2

2.170. Given  R 3 (x) = 1 x 3 +  x + 2, factors of  a 3  a 0 = 1 × 2 = 1 product are “+1 , +2” 

and “−1 , −2.” Possible roots of  R 3 (x)  may be among these four factors. Thus, by inspection, R 3 (−1 ) = 0, as  (−13 ) +  (−1 ) + 2 = 0. The long polynomial division results in (x 3 +  x + 2 ) ÷  (x + 1 ) =  x 2 −  x + 2

− (x 3 +  x 2 )

−  x 2 +  x

−  (− x 2 −  x)

2 x + 2

−  ( 2 x + 2 )

= 0

Therefore,  (x 3 +  x + 2 ) =  (x + 1 )(x 2 −  x + 2 ), where the quadratic term has two complex zeros. 

2.171. Given  P (x) =  x 3 +  y 3, note that P.2.169 may be considered as special case where  y = 1. Then, similarly, by inspection of  P (x), it may be concluded that one of its roots must be  x 1 = − y, that is because  P (− y) = 0. Therefore,  P (x)  is divisible by  x− (− y) . 

The long polynomial division results in

 (x 3 +0 x 2 y +0 xy 2 +  y 3 ) ÷  (x +  y) =  x 2 −  xy +  y 2

 x 3 +  x 2 y

−  x 2 y +0 xy 2

− x 2 y −  xy 2
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 xy 2 +  y 3

 xy 2 +  y 3

= 0

Therefore,  (x 3 +  y 3 ) =  (x +  y)(x 2 −  xy +  y 2 ), and it is usually listed among other basic polynomial identities, e.g., difference of squares, square of a binomial, etc.. 

2.172. Given  P 6 (x) =  x 6 − 14 x 4 + 49 x 2 − 36, prime factors of 1  a 0 = −36 are

−36 = −1 × 36 = −2 × 18 = −2 × 2 × 9 = −2 × 2 × 3 × 3

Thus possible roots of  P 6 (x) =  x 6 − 14 x 4 + 49 x 2 − 36 may be among ±1 , ±2 , ±3 factors. 

Thus, by inspection, 

 P ( 1 ) =  ( 1 ) 6 − 14 ( 1 ) 4 + 49 ( 1 ) 2 − 36 = 1 − 14 + 49 − 36 = 0 ∴  x 1 = 1

 P ( 1 ) =  (−1 ) 6 − 14 (−1 ) 4 + 49 (−1 ) 2 − 36 = 1 − 14 + 49 − 36 = 0 ∴  x 2 = −1

 P (−2 ) =  (−2 ) 6 − 14 (−2 ) 4 + 49 (−2 ) 2 − 36 = 64 − 224 + 196 − 36 = 0 ∴  x 3 = −2

cont. 

 P ( 2 ) =  ( 2 ) 6 − 14 ( 2 ) 4 + 49 ( 2 ) 2 − 36 = 64 − 224 + 196 − 36 = 0 ∴  x 4 = −2





 P ( 3 ) =  ( 3 ) 6 − 14 ( 3 ) 4 + 49 ( 3 ) 2 − 4 × 32 = 32 34 − 14 × 32 + 49 − 4









= 32 34 − 14 × 32 + 5 × 32 = 32 × 32 32 − 14 + 5





= 32 × 32 32 − 32 = 0 ∴  x 5 = 3

and note that this polynomial has only even powers, as  (− x) 2 n =  x 2 n  thus  P (− x) =  P (x), that is to say  P (−3 ) = 0, and  x 6 = −3. As ti happens, all roots of this sixth-order polynomial are found by the factor theorem, without the need for long division. 

2.173. Given  P (x) =  x 3 +  x 2 − 4 x − 4, factors of “−4 × 1 = −4” are “{±1 , ±4 , ±2}.” That is because:

 (−1 ) × 4 = −4 ,  1 ×  (−4 ) = −4 , (−2 ) × 2 = −4

Thus,  P (x)  calculated for each factor is

 P (−1 ) =  ((−1 ) 3 +  (−1 ) 2 − 4 (−1 ) − 4 ) = 0 ∴  x 1 = −1

 P ( 1 ) =  (( 1 ) 3 +  ( 1 ) 2 − 4 ( 1 ) − 4 ) = −6 ∴  P ( 1 ) = 0

 P (−2 ) =  ((−2 ) 3 +  (−2 ) 2 − 4 (−2 ) − 4 ) = 0 ∴  x 2 = −2

2.8 Factor Theorem

71

 P ( 2 ) =  (( 2 ) 3 +  ( 2 ) 2 − 4 ( 2 ) − 4 ) = 0 ∴  x 3 = 2

 P (−4 ) =  ((−4 ) 3 +  (−4 ) 2 − 4 (−4 ) − 4 ) = −36 ∴  P (−4 ) = 0

 P ( 4 ) =  (( 4 ) 3 +  ( 4 ) 2 − 4 ( 4 ) − 4 ) = 60 ∴  P ( 4 ) = 0

Therefore, 

 P (x) =  x 3 +  x 2 − 4 x − 4 =  (x −  x 1 )(x −  x 2 )(x −  x 3 ) =  (x + 1 )(x + 2 )(x − 2 ) As it happens, all three roots are real. 

2.174. Given polynomial  P (x) =  (x 4 − 2 x 3 + 3 x 2 − 4 x + 1 )  and divisor  (x − 1 ), then by the factor theorem if the constant term x 0 = 1 of binomial  (x − 1 )  is root of  P (x) =

 (x 4 − 2 x 3 + 3 x 2 − 4 x + 1 )  and furthermore it must be true that  P ( 1 ) = 0. Equivalently, it is to say that reminder  r = 0, and by consequence, it could be concluded that  P (x)  is indeed divisible by  (x − 1 ). Direct calculation reveals that

 P ( 1 ) =  ( 1 ) 4 − 2 ( 1 ) 3 + 3 ( 1 ) 2 − 4 ( 1 ) + 1 = −1 = 0

Therefore,  x 0 = 1 is  not  the root of  P (x); consequently,  (x − 1 )  is not one of  P (x)  factors, because reminder of this division is

−1

 r =

= 0

 x − 1

2.175. Given polynomial  P (x) =  (x 3 + 1 )  and divisor  (x + 1 ) =  (x −  (−1 )), i.e.,  x 0 = −1, then by the factor theorem and following the same argument as in A.2.174, direct calculation reveals

 P (−1 ) =  (−1 ) 3 + 1 = 0

Therefore,  x 0 = −1 is indeed one of the roots of  P (x), because reminder

 r =

0

= 0

 x + 1

i.e.,  P (x)  is divisible by  (x + 1 ). As a matter of fact, by long division, it may be shown that (x 3 + 0 x 2 + 0  x + 1 ) ÷  (x + 1 ) =  x 2 −  x + 1

− (x 3 +  x 2 )

−  x 2 + 0  x

−  (− x 2 −  x)

 x + 1

−  (x + 1 )

= 0

72

2

Polynomials





2.176. Given polynomial  P (x) =  x 1965 − 256 x 1961 + 1 and its divisor  Q(x) =  x 2 − 4 x, it means that if  P (x)  is divisible by  Q(x), it must be divisible by all factors of  Q(x)  as well, where

 Q(x) =  x 2 − 4 x =  x(x − 4 ) =  (x − 0 )(x − 4 ) It is necessary therefore to calculate reminders for both  (x − 0 )  and  (x − 4 )  factors as P ( 0 ) = 



: 0

 ( 0 ) 1965 − 256



:0

 ( 0 ) 1961 + 1 = 1

 P ( 4 ) =  ( 4 ) 1965 − 256 ( 4 ) 1961 + 1 = 41965 − 44  ( 4 ) 1961 + 1





=  ab ac =  ab+ c = 41965 − 41961+4 + 1 = 



41965 − 



41965 + 1

= 1

In conclusion, neither  (x − 0 )  nor  (x − 4 )  are factors of the given 1965 th  order polynomial, because there is nonzero reminder

 r =

1

 x 2 − 4 x

As this 1965 th  order polynomial is divided by a second-order polynomial, the resulting polynomial must be 1965 − 2 = 1963 rd  order, that is, 

 P 1965 (x) =  N 1963 (x) + 1

 Q 2 (x)

 x 2 − 4 x

where  N 1963 (x)  is a 1963 rd  order polynomial. 

2.177. Given polynomial  P (x) =  (x 2024 − 2 x 2024 − 1 )  and its divisor  Q(x) =  (x 2 − 3 x + 2 ), it means that if  P (x)  is divisible by  Q(x), it must be divisible by all factors of  Q(x)  as well, where

 Q(x) =  x 2 − 3 x + 2 =  x 2 −  x − 2 x + 2 =  x(x − 1 ) − 2 (x − 1 ) =  (x − 1 )(x − 2 ) It is necessary to calculate reminders at two points, i.e., for both  (x − 1 )  and  (x − 2 )  factors as R( 1 ) =  P ( 1 ) = 



: 1

 ( 1 ) 2024 − 2



: 1

 ( 1 ) 2023 − 1 = 1 − 2 − 1 = −2

 R( 2 ) =  P ( 2 ) =  ( 2 ) 2024 − 2 ( 2 ) 2023 − 1 = 



22024 − 



22024 − 1 = −1

As there are two different values of  r  and there are two points in consideration,  x = 1 and x = 2, the conclusion is that simplest reminder must be in the form

 r(x) =

 R(x)

=

 ax +  b

 x 2 − 3 x + 2

 x 2 − 3 x + 2
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where polynomial  R(x) =  ax +  b  is resolved as





 x = 1 :  R( 1 ) = −2 =  a( 1 ) +  b

 a +  b = −2

∴

∴  a = 1 , b = −3

 x = 2 :  R( 2 ) = −1 =  a( 2 ) +  b

2 a +  b = −1

so that  R(x) =  x − 3. In conclusion, the reminder in division  P (x)/Q(x) r =

 x − 3

⇒  P (x) =  x 2024 − 2 x 2023 − 1 =  N 2022 (x) +

 x − 3

 x 2 − 3 x + 2

 Q(x)

 x 2 − 3 x + 2

 x 2 − 3 x + 2

where  N 2022 (x)  is a 2022 nd  order polynomial. This is because 2024 th  order polynomial is divided by a second-order polynomial, and the resulting polynomial must be 2024 − 2 =

2022 nd  order. 

2.178. Given parametrized polynomial  P (x, k) = 4 x 5 +  k x 4 + 8 x 3 + 5 x 2 + 3 x + 2 and its divisor  Q(x) =  x + 2, i.e., for  P (x)  to be divisible by  (x + 2 ), it is necessary that  P (−2 ) = 0. 

That is to say, 

 P (−2 ) = 4 (−2 ) 5 +  k(−2 ) 4 + 8 (−2 ) 3 + 5 (−2 ) 2 + 3 (−2 ) + 2

= −128 + 16 k − 64 + 20 − 6 + 2 = 0 ∴ 16 k − 176 = 0

∴  k = 176 = 2 × 88 = 2 × 8 × 11 = 11

16

2 × 8

2 × 8

so it must be  P (x) = 4 x 5 + 11 x 4 + 8 x 3 + 5 x 2 + 3 x + 2. Indeed, by long division, it may be shown that

4 x 5 + 11 x 4 + 8 x 3 + 5 x 2 + 3 x + 2 = 4 x 4 + 3 x 3 + 2 x 2 +  x + 1

 x + 2

2.179. Given parametrized polynomial  P (x, k) =  x 3 − 3 k x + 4 (k 2 + 1 )x −  (k 3 + 5 )  and its divisor  Q(x) =  x − 1, i.e., for  P (x, k)  to be divisible by  (x − 1 ), it is necessary that  P ( 1 ) = 0. 

Therefore, 

 r =  P ( 1 ) =  ( 1 ) 3 − 3 k( 1 ) + 4 (k 2 + 1 )( 1 ) −  (k 3 + 5 )

= 1 − 3 k + 4 k 2 + 4 −  k 3 − 5

= − k 3 + 4 k 2 − 3 k = − k(k 2 − 4 k + 3 ) = − k(k 2 −  k − 3 k + 3 )





= − k k(k − 1 ) − 3 (k − 1 ) = − k(k − 1 )(k − 3 ) = 0

Therefore, there are three values of  k  that produce  r = 0, i.e.,  k = 0 ,  1 ,  3, i.e., k = 0 :  P (x, k) =  x 3 + 4 x − 5

 k = 1 :  P (x, k) =  x 3 + 5 x − 6

 k = 3 :  P (x, k) =  x 3 + 31 x − 32
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Indeed, by long division, it may be confirmed that

 k = 0 :  P (x, k) =  x 3 + 4 x − 5 =  x 2 +  x + 5

 x − 1

 x − 1

 k = 1 :  P (x, k) =  x 3 + 5 x − 6 =  x 2 +  x + 6

 x − 1

 x − 1

 k = 3 :  P (x, k) =  x 3 + 31 x − 32 =  x 2 +  x + 32

 x − 1

 x − 1

2.9

Partial Fraction Decomposition

2.180. Given

 P (x) =

 x

 Q(x)

 (x + 1 )(x − 4 )

denominator  Q(x)  has two unique zeros at  x = −1 and  x = 4, thus for each zero, there is one constant,  A  and  B, respectively, as

 P (x) =

 x

=  A +  B =  A(x − 4 ) +  B(x + 1 ) =  Ax − 4 A +  Bx +  B

 Q(x)

 (x + 1 )(x − 4 )

 x + 1

 x − 4

 (x + 1 )(x − 4 )

 (x + 1 )(x − 4 )

=  (A +  B)x +  B − 4 A

 (x + 1 )(x − 4 )

Denominator  Q(x)  is unchanged; therefore, numerator  P (x)  is unchanged too, that is, 1 x ≡  (A +  B)x +  B − 4 A

Two polynomials are equal if coefficients of all monomials are equal. In the first-order

polynomial, there are two unknowns; thus, two equations as

term  x 1 : 1 =  A +  B ∴  A = 1 −  B

term  x 0 : 0 =  B − 4 A ∴  B = 4 A

∴

 B = 4 ( 1 −  B), ∴  B = 4 ∴  A = 1 − 4 = 1

5

5

5

In summary, 

 P (x) =

 x

=

1

+

4

 Q(x)

 (x + 1 )(x − 4 )

5 (x + 1 )

5 (x − 4 )

where, within an integral, decomposed form on the right side is easily integrated. 

2.9 Partial Fraction Decomposition
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2.181. Given

 P (x) =

1

 Q(x)

 (x + 1 )(x + 2 )

denominator  Q(x)  has two unique real zeros at  x = −1 and  x = −2, as 1

=  A +  B =  A(x + 2 ) +  B(x + 1 ) ∴  (A +  B) x +  ( 2 A +  B) = 1

 (x + 1 )(x + 2 )

 x + 1

 x + 2

 (x + 1 )(x + 2 )

∴  A +  B = 0 ∴  A = − B

∴ 2 A +  B = 1 ∴  B = −1 ∴  A = 1

Therefore, 

1

= 1 − 1

 (x + 1 )(x + 2 )

 x + 1

 x + 2

2.182. Given

 P (x) =  x − 1 =  x − 1

 Q(x)

 x 2 +  x

 x(x + 1 )

denominator  Q(x)  has two unique real zeros at  x = 0 and  x = −1; thus, for each zero, there is one constant,  A  and  B, respectively. Equality of polynomials before and after decomposition gives

 x − 1

=  A +  B =  A(x + 1 ) +  Bx

 x(x + 1 )

 x

 x + 1

 x(x + 1 )

∴  (A +  B) x +  A = 1

∴  A = −1

∴  A +  B = 1 ∴  B = 1 −  A = ∴  B = 2

Therefore, 

 x − 1 = −1 + 2

 x 2 +  x

 x

 x + 1

2.183. Given

 P (x) = 1 =

1

 Q(x)

 x 2 − 1

 (x − 1 )(x + 1 )

denominator  Q(x)  has two unique real zeros at  x = 1 and  x = −1; thus, for each zero, there is one constant,  A  and  B, respectively, as
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1

=

1

=  A +  B =  A(x + 1 )+ B(x − 1 ) ∴  (A+ B) x+ (A− B)=1

 x 2 − 1

 (x − 1 )(x + 1 )

 x − 1  x + 1

 (x − 1 )(x + 1 )

∴  A +  B = 0 ∴  A = − B

∴  A −  B = 1 ∴ 2 A = ∴  A = 1 ∴  B = −1

2

2

Therefore, 

1

= 1 1 − 1 1

 x 2 − 1

2  x − 1

2  x + 1

2.184. Given

 P (x) =  x + 2 =  x + 2

 Q(x)

 x 3 − 2 x 2

 x 2 (x − 2 )

denominator  Q(x)  has one unique zero at  x = 2 and one double zero  x = 0. Terms associated with the multiple real zeros are created in the form of constant over denominator in progressively increasing powers until the order of multiplicity (here two). Thus, in this case, constants  A  and  B  are assigned to  x 1 = 0 and  x 2 = 0 double zero, while constant  C  is assigned to  x 3 = 2 zero as

 P (x)





=  x + 2 =  x + 2 =  Q(x) =  x 2 (x − 2 ) ∴  x 1 ,  2 = 0 , x 3 = 2

 Q(x)

 x 3 − 2 x 2

 x 2 (x − 2 )

=  A +  B +  C =  Ax(x − 2 ) +  B(x − 2 ) +  Cx 2

 x

 x 2

 x − 2

 x 2 (x − 2 )

=  Ax 2 − 2 Ax +  Bx − 2 B +  Cx 2 =  (A +  C)x 2 +  (B − 2 A)x − 2 B

 x 2 (x − 2 )

 x 2 (x − 2 )

Denominator  Q(x)  is unchanged; therefore, numerator  P (x)  is unchanged after decomposition. A second-order polynomial has three terms, thus three unknowns as

0 x 2 + 1 x + 2 ≡  (A +  C)x 2 +  (B − 2 A)x − 2 B

∴

term  x 2 : 0 =  A +  C ∴  A = − C

term  x 1 : 1 =  B − 2 A

term  x 0 : 2 = −2 B ∴  B = −1

∴

 B = −1 , ∴ 1 =  (−1 ) − 2 A ∴  A = −1 ∴  C = 1

So that the original rational function with three poles is decomposed into the equivalent sum of three much simpler rational functions as

2.9 Partial Fraction Decomposition
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 P (x) =  x + 2 =  x + 2 = −1 − 1 + 1

 Q(x)

 x 3 − 2 x 2

 x 2 (x − 2 )

 x

 x 2

 x − 2

2.185. Given

 Pk(x) = 1

 Qm(x)

 x 3 − 1

denominator  Q(x)  has one unique real zero at  x = 1, as well as two complex conjugate zeros. 

To each real unique zero, there is one constant assigned (here  A), and two constants (here  B

and  C) are assigned to one complex conjugate pair of zeros as

 P (x)





=

1

= see A.2.167 =

1

 Q(x)

 x 3 − 1

 (x − 1 )(x 2 +  x + 1 )

=  A +  Bx +  C =  A(x 2 +  x + 1 ) +  (Bx +  C)(x − 1 ) x − 1

 x 2 +  x + 1

 (x − 1 )(x 2 +  x + 1 )

=  (A +  B)x 2 +  (A −  B +  C)x +  A −  C

 (x − 1 )(x 2 +  x + 1 )

Denominator  Q(x)  did not change; therefore, numerator  P (x)  must not change before and after decomposition, that is, 

1 ≡  (A +  B)x 2 +  (A −  B +  C)x +  A −  C

∴

term  x 2 : 0 =  A +  B ∴  A = − B

term  x 1 : 0 =  A −  B +  C ∴ 0 =  (− B) −  B +  C ∴  C = 2 B

term  x 0 : 1 =  A −  C ∴ 1 =  (− B) −  ( 2 B) ∴  B = − 13

 C = − 2

∴  A = 1

3

3

Finally, 

 P (x) = 1 =

1

=

1

−

 x + 2

 Q(x)

 x 3 − 1

 (x − 1 )(x 2 +  x + 1 )

3 (x − 1 )

3 (x 2 +  x + 1 )

Note that a complex conjugate pair results in one rational function with quadratic polynomial as its denominator. 

2.186. Given

 P (x) =  x 3 +  x − 1

 Q(x)

 (x 2 + 2 ) 2
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denominator  Q(x)  has duplicity of complex conjugate zeros. To each complex conjugate pair of zeros, there are two constants assigned (here  A, B, and  C, D). Note how denominator polynomials are assigned with progressively increasing powers until the duplicity (here, two) as

 P (x) =  x 3 +  x − 1 =  Ax +  B +  Cx +  D =  (Ax +  B)(x 2 + 2 ) +  Cx +  D

 Q(x)

 (x 2 + 2 ) 2

 x 2 + 2

 (x 2 + 2 ) 2

 (x 2 + 2 ) 2

=  Ax 3 +  Bx 2 +  (C + 2 A)x + 2 B +  D

 (x 2 + 2 ) 2

By equalizing polynomials before and after decomposition, it follows that

 x 3 +  x − 1 ≡  Ax 3 +  Bx 2 +  (C + 2 A)x + 2 B +  D

∴

term  x 3 :  A = 1

term  x 2 :  B = 0

term  x 1 : 1 =  C + 2 A ∴  C = −1

0

term  x 0 : −1 = 2

 B +  D ∴  D = −1

Finally, 

 P (x) =  x 3 +  x − 1 =  x −  x + 1

 Q(x)

 (x 2 + 2 ) 2

 x 2 + 2

 (x 2 + 2 ) 2

2.187. Given

 P (x) = 2 x 2

 Q(x)

 x 4 − 1

denominator  Q(x)  has two unique real zeros at  x = 1 and  x = −1, as well as two complex conjugate zeros. To each real unique zero, there is one constant assigned (here  A  and  B), and two constants (here  C  and  D) are assigned to one complex conjugate pair of zeros as P (x)





= 2 x 2 =  a 2 −  b 2 =  (a −  b)(a +  b) =

2 x 2

 Q(x)

 x 4 − 1

 (x 2 − 1 )(x 2 + 1 )

=

2 x 2

=  A +  B +  Cx +  D

 (x − 1 )(x + 1 )(x 2 + 1 )

 x − 1

 x + 1

 x 2 + 1

=  A(x + 1 )(x 2 + 1 ) +  B(x − 1 )(x 2 + 1 ) +  (Cx +  D)(x − 1 )(x + 1 ) (x − 1 )(x + 1 )(x 2 + 1 )

=  (A +  B +  C)x 3 +  (A −  B +  D)x 2 +  (A +  B −  C)x +  A −  B −  D

 (x − 1 )(x + 1 )(x 2 + 1 )
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By equalizing numerators and denominators before and after decomposition, it follows that

2 x 2 ≡  (A +  B +  C)x 3 +  (A −  B +  D)x 2 +  (A +  B −  C)x +  (A −  B −  D)

∴

term  x 3 : 0 =  A +  B +  C

term  x 2 : 2 =  A −  B +  D

term  x 1 : 0 =  A +  B −  C

term  x 0 : 0 =  A −  B −  D

The above system of four linear equations may be solved, for example, by the reduction

method. From first equation 0 =  A +  B +  C ∴  B = − A −  C, then 2 =  A −  B +  D ∴ 2 =  A −  (− A −  C) +  D = 2 A +  C +  D

0 =  A +  B −  C ∴ 0 =  A +  (− A −  C) −  C = −2 C ∴  C = 0

0 =  A −  B −  D ∴ 0 =  A −  (− A −  C) −  D = 2 A −@

 C −  D = 2 A −  D ∴ 2 A =  D

2 = 2 A +@

 C +  D ∴  D = 2 − 2 A

2 A =  D ∴ 2 A = 2 − 2 A ∴  A = 1

∴  D = 1

2

 B = − A −@

 C ∴  B = − 12

Finally, 

 P (x) = 2 x 2 =

2 x 2

=

1

−

1

+

1

 Q(x)

 x 4 − 1

 (x − 1 )(x + 1 )(x 2 + 1 )

2 (x − 1 )

2 (x + 1 )

 x 2 + 1

Note that a single complex conjugate pair results in one rational function with quadratic

polynomial in the denominator. 

2.188. Given

 P (x) = 4

 Q(x)

 x 4 + 1

numerator  Q(x)  has two complex pairs of zeros. Complete the squares to enforce biquadratic form, and then use difference of squares identities to rearrange resulting fourth-order

polynomial. 

 P (x) = 4 =

4

=

4 



 Q(x)

 x 4 + 1

 x 4 +2 x 2 + 1 −2 x 2

√

2

 (x 2 + 1 ) 2 −

2  x

=

4

√

√

=

 Ax +  B

√

+

 Cx +  D

√

 (x 2 + 1 −

2  x)(x 2 + 1 +

2  x)

 x 2 −

2  x + 1

 x 2 +

2  x + 1
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√

√

=  (Ax +  B)(x 2 + 2  x + 1 ) +  (Cx +  D)(x 2 − 2  x + 1 )

√

√

=

 (x 2 −

2  x + 1 )(x 2 +

2  x + 1 )

√

√

√

√

 (A +  C)x 3 +  (  2 A +  B −

2 C +  D)x 2 +  (A +  C +

2 B −

2 D)x +  B +  D

√

√

 (x 2 −

2  x + 1 )(x 2 +

2  x + 1 )

By equalizing polynomials before and after decomposition, it follows that

√

√

√

√

4 ≡  (A +  C)x 3 +  (  2 A +  B −

2 C +  D)x 2 +  (A +  C +

2 B −

2 D)x +  B +  D

∴

term  x 3 : 0 =  A +  C ∴  A = − C

√

√

√

term  x 2 : 0 =

2 A +  B −

2 C +  D ∴ 0 = −2 2 C +  B +  D

√

√

√

√

term  x 1 : 0 =  A +  C +

2 B −

2 D ∴ 0 = + 2 B −

2 D ∴  B =  D

term  x 0 : 4 =  B +  D ∴ 4 =  D +  D ∴  D = 2

∴  B = 2

√

√

√

∴ 0 = −2 2 C + 4 ∴  C = 2 ∴  A = − 2

Finally, 

√

√

 P (x)

−

=

4

=

2 x + 2

√

+

2 x + 2

√

 Q(x)

 x 4 + 1

 x 2 −

2  x + 1

 x 2 +

2  x + 1

2.189. Given, 

1

 x 3 (x − 1 ) 2

denominator  Q(x)  has five real zeros: one zero with the multiplicity of three ( x = 0), and one with the multiplicity of two ( x = 1). Terms associated with each multiple real zeros are created in the form of constant over denominator in progressively increasing powers until the order of multiplicity (here three and two). Thus, 

 P (x)





=

1

=  Q(x) =  x 3 (x − 1 ) 2 ∴  x 1 ,  2 ,  3 = 0 , x 4 ,  5 = 1

 Q(x)

 x 3 (x − 1 ) 2

=  A +  B +  C +  D +


 E

 x

 x 2

 x 3

 x − 1

 (x − 1 ) 2

=  A x 2 (x − 1 ) 2 +  B x(x − 1 ) 2 +  C (x − 1 ) 2 +  D x 3 (x − 1 ) +  E x 3

 x 3 (x − 1 ) 2

By equalizing polynomials before and after decomposition, it follows that

1 =  Ax 2  (x − 1 ) 2 +  Bx (x − 1 ) 2 +  C (x − 1 ) 2 +  Dx 3  (x − 1 ) +  Ex 3

=  (A +  D)x 4 +  (E − 2 A −  D +  B)x 3 +  (A − 2 B +  C)x 2 +  (B − 2 C)x +  C

2.9 Partial Fraction Decomposition
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Therefore, 

 A +  D = 0 ∴  D = − A

 E − 2 A −  D +  B = 0 ∴  E + 2 D −  D +  B = 0 ∴  E +  D +  B = 0

 A − 2 B +  C = 0

 B − 2 C = 0 ∴  B = 2 C

 C = 1 ∴  B = 2

and, by working backward, 

 C = 1  , B = 2  , ∴  A − 4 + 1 = 0 ∴  A = 3

∴  D = −3

 E +  D +  B = 0 ∴  E = 3 − 2 ∴  E = 1

So that the original rational function with three poles is decomposed into the equivalent sum of three much simpler rational functions as

1

= 3 + 2 + 1 − 3 +

1

 x 3 (x − 1 ) 2

 x

 x 2

 x 3

 x − 1

 (x − 1 ) 2

2.190. Given

1

 x 3 (x 2 −  x + 1 ) 2

denominator  Q(x)  has three real zeros: one zero with the multiplicity of three ( x = 0) and a complex conjugate pair of complex zeros with the multiplicity of two. Terms associated

with each multiple zeros are created in the form of constant over denominator in progressively increasing powers until the order of multiplicity (here three and two). Thus, 

1



=  A +  B +  C +  Ex +  D +

 Gx +  F





2

2

 x 3  x 2 −  x + 1

 x

 x 2

 x 3

 x 2 −  x + 1

 x 2 −  x + 1

=  Ax 2 (x 2− x+1 ) 2+ Bx(x 2− x+1 ) 2+ C(x 2− x+1 ) 2+ (Ex+ D)x 3 (x 2− x+1 )+ (Gx+ F )x 3



2

 x 3  x 2 −  x + 1

=  (A +  E)x 6 +  (B − 2 A −  E +  D)x 5 +  ( 3 A − 2 B +  C +  E −  D +  G)x 4 + · · ·



2

 x 3  x 2 −  x + 1

· · · +  ( 3 B−2 A−2 C+ D+ F )x 3+ (A−2 B+3 C)x 2+ (B−2 C)x+ C

By equalizing polynomials before and after decomposition, it follows that

 A +  E = 0 ∴  E = − A

 B − 2 A −  E +  D = 0 ∴  B − 2 A +  A +  D = 0 ∴  B −  A +  D = 0
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3 A − 2 B +  C +  E −  D +  G = 0 ∴ 3 A−2 B + C− A− D + G=0 ∴ 2 A−2 B+ C− D + G=0

3 B − 2 A − 2 C +  D +  F = 0

 A − 2 B + 3 C = 0

 B − 2 C = 0 ∴  B = 2 C

 C = 1 ∴  B = 2

and, by working backward, 

 C = 1  , B = 2

∴  A − 4 + 3 = 0 ∴  A = 1 ∴  E = −1

3 B − 2 A − 2 C +  D +  F = 0 ∴ 6 − 2 − 2 +  D +  F = 0 ∴  D +  F = −2

2 A − 2 B +  C −  D +  G = 0 ∴ 2 − 4 + 1 −  D +  G = 0 ∴  D −  G = −1

 B −  A +  D = 0 ∴ 2 − 1 +  D = 0 ∴  D = −1

∴  G = 0 ∴  F = −1

In summary, 

 A = 1 , B = 2 , C = 1 , D = −1 , E = −1 , F = −1 , G = 0

so that

1

=  A +  B +  C +  Ex +  D +

 Gx +  F





 x 3 (x 2 −  x + 1 ) 2

 x

 x 2

 x 3

 x 2 −  x + 1

2

 x 2 −  x + 1

= 1 + 2 + 1 −

 x + 1

−

1





 x

 x 2

 x 3

 x 2 −  x + 1

2

 x 2 −  x + 1

2.191. Given rational form

 x 3 +  x 2 − 16 x + 16

 x 2 − 4 x + 3

note that numerator polynomial is of higher order than the denominator. For that reason, first apply the long division then partial fraction decomposition as

 (x 3 +  x 2 − 16 x + 16 ) ÷  (x 2 − 4 x + 3 ) =  x + 5 +

 x + 1

 x 2 − 4 x + 3

 (− ) x 3 − 4 x 2 + 3 x

5 x 2 − 19 x + 16

 (− )

5 x 2 − 20 x + 15

 x + 1

2.9 Partial Fraction Decomposition
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Denominator  Q(x)  has two unique real zeros of  x = 1 and  x = 3, thus P (x) =  x + 1 =

 x + 1

=  A +  B

 Q(x)

 x 2 − 4 x + 3

 (x − 1 )(x − 3 )

 x − 1

 x − 3

=  A(x − 3 ) +  B(x − 1 ) =  (A +  B)x − 3 A −  B

 (x − 1 )(x − 3 )

 (x − 1 )(x − 3 )

By equalizing polynomials before and after decomposition, it follows that

 x + 1 ≡  (A +  B)x − 3 A −  B

∴

term  x 1 : 1 =  A +  B ∴  A = 1 −  B

term  x 0 : 1 = −3 A −  B ∴ 1 = −3 ( 1 −  B) −  B

∴

 B = 2

∴  A = −1

Finally, 

 P (x) =  x 3 +  x 2 − 16 x + 16 =  x + 5 − 1 + 2

 Q(x)

 x 2 − 4 x + 3

 x − 1

 x − 3

[image: Image 3]
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Problems

3.1

Linear Equations

Solve and comment on the solutions of equations in P.3.4 to P.3.9. 

3.1.  x + 1 = 2

3.2. −2 x + 3 = 3

3.3. 5 x − 1 = 5 x

3.4. 

3.5. 

3.6. 

1 + 3 x

1 −  x − 1 = 3 −  x

3 x + 14 = 5 x − 2  (x − 7 )

− 6 x + 3 =  x

3

3

4

12

4

3.7. 

1

3.9. 

 x

3.8. 

=  x 2

 x

2 x + 3

− 2 x + 3 =  x 2

 x − 1

4

− 2

= −7 x

 x − 2

 x + 2

4 −  x 2

 x − 2

2 x + 1

3

Solve “telescopic” forms of equations in P.3.11 to P.3.13

3.10. 1 −

2

= 0

1 −

1

= 1

3 −  x

3.11. 

2

1 −

1

1 −  x

1

= 5

1

= 16

12

37

3.12. 2 +

1

2 +

1

3.13. 

2 +

1

3 +

1

2 −  x

4 +

3

 x + 1
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3.2

System of Linear Equations

Solve systems of equations in P.3.14 to P.3.17





 x + 2 y

= 2 x − 5

 xy

= 10

3.14. 

3.15. 

 x −  y

= 3

 x +  y

= 2

⎧

⎧

⎪14

4

⎪

⎨

+ 24 = 10

⎪

⎪

+

1

= 1

 x

 y

⎨ x +  y − 1  x −  y + 1

3.16. ⎪

3.17. 

⎪

⎩ 7

⎪

− 18

= −

⎪

18

5

⎩

−

5

= 1

 x

 y

 x +  y − 1

2 (x −  y + 1 )

3.3

Linear Inequalities

Solve inequalities in P.3.19 to P.3.26

3.18. 

3.19. 

3.20. 

1

 x 2 − 2

 (x + 5 )(x − 5 ) >  0

 (x + 3 ) 2 ≤ 10 x + 6

+ 1  < 

 x

 x + 1

 x 2 +  x

3.21. 

3.22. 

3.23. 

−3 x 2 + 30 x − 75  >  0

 x 4 − 2 x 2 + 1  <  0

−2 x 2 + 4 x − 2  >  0





3.24. 

4 x 

3.26. 

2 x 2 − 5 x − 3

3.25. 

 (x + 2 ) | x − 2|

≤



 <  3

0

2 x + 4

 >  1

−2 x + 1

 x 2 + 2

3.4

System of Linear Inequalities

Solve systems of inequalities in P.3.27 to P.3.32

 y >  2 x

3.28. 

3.29. 

3.27. 

⎧



 y

 < − x − 3

⎪

⎪−

⎨ 2 (x + 1 ) ≥ 4

 y

≥ 2 x ;  y ≤ 2 x

⎪−2 x

≥ 6

 x

≤ 4 ;  x ≥ 4

⎪

⎩ x

≤ −3

3.4 System of Linear Inequalities
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3.30. 

3.31. 

3.32. 





⎧

−4 x + 6 y >  6

−2 x −  y < −1

⎪

⎪

⎪  x +  y

 <  6

⎪

⎪

2 x − 3 y

 >  3

4 x + 2 y

≤ 6

⎪

⎨ 5 x +  y ≥ 4

⎪  x + 4 y > −3

⎪

⎪

⎪

⎪

⎪  x

≤ 5

⎩  y

 <  4
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Answers

3.1

Linear Equations

“Linear” refers to polynomial form where the linear term, i.e.,  ax 1 is the highest-order monomial. 

Therefore, general form of linear equation is “ax +  b = 0,” where  a, b ∈ R , a >  0. Geometrical interpretation of this polynomial form is a simple straight line (thus “linear”) that may or may not cross the horizontal axis at one point. In other words, solution to linear equation (i.e., with a single variable) is a single number. If the variable is canceled however, then there may be either infinity of solutions (i.e., an identity) or no solution (i.e., impossible equation). Sometimes, it may appear that given equation is nonlinear due to higher-order monomial terms; however, they may eventually cancel leaving only the linear part of the equation. 

3.1. Given  x + 1 = 2, by balancing left and right sides of the equation, it follows x + 1 −1 = 2 −1 ∴  x = 1

which is evidently correct, because for  x = 1, given equation results in the identity 1 + 1 x=1

= 2 ∴ 2 = 2 

What does it mean geometrically? 

Left side of the given equation “x + 1” is a straight line. Thus, it is sufficient to calculate its two points, for example, at two arbitrary  x  values:

 x = 0 ⇒  x + 1 x=0

= 0 + 1 = 1 ∴  A :  ( 0 ,  1 )

 x = −1 ⇒  x + 1 x=-1

= −1 + 1 = 0 ∴  B :  (−1 ,  0 )

At the same time, the right side is simply a constant “2” that is independent of any  x  value. 

Graphically, it is represented by a horizontal line at  y = 2; see Fig. 3.1. To say that the left side of the equation (i.e., the “x + 1” line) equal to the right side of the equation (i.e., the

“2” line) is equivalent to say that the two lines share one point, the intersection point  O. 

Evidently, the intersect point is found at  (x, y) =  ( 1 ,  2 )  coordinate. In general, it is true that Fig. 3.1 P.3.1, graphical method

for solving equations, coordinates

of the intersection point satisfy

both left and the right sides of an

equation. Here, at point  O :  ( 1 ,  2 ), 

line  x + 1 crosses line 2 . 

Therefore,  x = 1 is the only real

solution of  x + 1 = 2 equation
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two nonparallel coplanar straight lines must intersect in one point. This example illustrates the basic idea behind the graphical method for solving either equations or systems of equations. 

3.2. Given −2 x + 3 = 3, by balancing left and right sides of the equation, it follows

−2 x + 3 −3 = 3 −3 ∴ 

−2  x = 0 ∴  x = 0



−2

−2

which is evidently correct, because for  x = 0, given equation results in the identity

−2 (  0 ) + 3 x=0

= 3 ∴ 3 = 3 

Following as same argument as in A.3.1, geometrical interpretation is as follows. 

Left side of the given equation “−2 x + 3” is a straight line. Thus, it is sufficient to calculate its two points, for example, at two arbitrary  x  values:

 x = 0 ⇒ −2 x + 3 x=0

= 0 + 3 = 3 ∴  A :  ( 0 ,  3 )

 x = 1 ⇒ −2 x + 3 x=1

= −2 + 3 = 1 ∴  B :  ( 1 ,  1 )

At the same time, the right side is simply a constant “3” that is independent of any  x  value. 

Graphically, it is represented by a horizontal line at  y = 3; see Fig. 3.2. To say that the left side of the equation (i.e., the “−2 x + 3” line) equal to the right side of the equation (i.e., the “3” 

line) is equivalent to say that the two lines share one point, the intersection point, as it happens here  A . Evidently, the intersect point is found (i.e., the solution) at  x = 0 coordinate. 

3.3. Given 5 x − 1 = 5 x, by balancing left and right sides of the equation, it follows 5 x − 1 −



5 x = 



5 x −



5 x ∴ −1 = 0

∴ this is a contradiction

In case as this one, the conclusion is that the given equality is contradictory, thus not possible for any value of the variable  x. Geometrically speaking, constant line at  y = −1 does not have any intersect points with the horizontal axis at  y = 0. 

Fig. 3.2 P.3.2, graphical method

for solving equations, coordinates

of the intersection point satisfy

both left and the right sides of an

equation. Here, at point  B :  ( 1 ,  1 ), 

line −2 x + 3 crosses line 3. 

Therefore,  x = 1 is the only real

solution of −2 x + 3 = 3 equation
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3.4. Given equation

1 −  x − 1 = 3 −  x

3

3

must be simplified as

1 −  x − 1 = 3 −  x ∴ 3 −  x + 1 = 3 −  x ∴ 4 −  x = 3 −  x ∴ 4 = 3

3

3

3

3

Conclusion: As it claims that 4 = 3, this equation is not possible; there are no valid solution for all  x. 

What does it mean geometrically? 

Left side of the given equation may be reduced to the basic form as

1 −  x − 1 = 3 −  (x − 1 ) = 4 −  x ∴ −  x + 4

3

3

3

3

3

which is a straight line. Thus, it is sufficient to calculate its two points, for example, at two arbitrary  x  values:

 x = 0 ⇒ −  x + 4 x=0

= −0 + 4 = 4 ∴  A :  ( 0 ,  4 / 3 )

3

3

3

3

3

 x = 1 ⇒ −  x + 4 x=1

= −1 + 4 = 1 ∴  B :  ( 1 ,  1 )

3

3

3

3

Similarly, the right side is

3 −  x = − x + 1

3

3

which is a straight line. Thus, it is sufficient to calculate its two points, for example, at two arbitrary  x  values:

Fig. 3.3 P.3.4, graphical method

for solving equations, two straight

lines are parallel; thus, no intercept

point is possible. In other words, 

this type of linear equation does not

have solution for all  x

3.1 Linear Equations
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 x = 0 ⇒ −  x + 1 x=0

= −0 + 1 = 1 ∴  C :  ( 0 ,  1 )

3

3

 x = 3 ⇒ −  x + 1 x=3

= −3 + 1 = 0 ∴  D :  ( 3 ,  0 )

3

3

Graphically, these two lines are  parallel; see Fig. 3.3, and therefore there are no intersect points for all  x, which is as same the earlier conclusion that 4 = 3. In general, it is true that two parallel coplanar straight lines do not have any intersect point, or equivalently, that type of linear equation does not have any solution. 

3.5. Given linear equation 3 x + 14 = 5 x − 2  (x − 7 ), after a few simple transformations, 3 x + 14 = 5 x − 2  (x − 7 ) ∴ 



3 x + Z

Z

14 − 



3 x − Z

Z

14 = 0 ∴ 0 = 0 

Conclusion: This equation is true for any  x; thus, there are infinitely many solutions. 

What does it mean geometrically? 

Left and right side of the equation may be better compared after simplification as

3 x + 14 (left side)

5 x − 2 (x − 7 ) = 5 x − 2 x + 14 =3 x + 14 (right side) which effectively states that the left and right sides of the given equation are the same line

“3 x + 14”; therefore, the equality is true for all  x. 

3.6. After a simple calculation, 

1 + 3 x − 6 x + 3 =  x

4

12

4

∴ 3 + 9 x − 6 x − 3 = 3 x





12





12

∴ 3 x = 3 x ∴  x =  x ∴ A x − A x = 0 ∴ 0 = 0 

Conclusion: This equation is an identity that is true for any  x; thus, there are infinitely many solutions. In other words, as the left side line  x  is as same as the right side line  x, it is said that the two lines lines are parallel (in this case on top of each other). 

3.7. As presented, given quadratic terms and rational function form, 

 x

− 2 x + 3 =  x 2

 x − 2

 x + 2

4 −  x 2

it is important to note that this equation is not defined for  x = ±2, because for each of the three rational terms on left and right side substituting either  x = +2 or  x = −2 results in polynomial division by zero. Therefore, it must be that  x = ±2, then
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Fig. 3.4 P.3.7, as calculated by

linear equation, there is only one

intersect point between these two

quadratic polynomials. It must be

excluded however, because it is the

discontinuity point in the original

form of given equation

 x

− 2 x + 3 =  x 2

 x − 2

 x + 2

4 −  x 2

 x(x + 2 ) −  ( 2 x + 3 )(x − 2 ) =  x 2

 (x − 2 )(x + 2 )

4 −  x 2

− x 2 + 3 x + 6 =  x 2

 x 2 − 4

4 −  x 2





−  x 2 − 3 x − 6





=  x 2

− 4 −  x 2

4 −  x 2

 x 2 − 3 x − 6 =  x 2

4 −  x 2

4 −  x 2

as denominator on the left side equals to denominator on the right side, for the total equality to be true, it must be true that two numerators are also equal, i.e., given equation is equivalent to

 x 2 − 3 x − 6 − x 2 =  x 2 − x 2

 x 2 − 3 x − 6 −  x 2 = 0

−3 x − 6 = 0 ∴  x = −2

which illustrates that the above quadratic equation reduces to a linear equation. However, this only solution must be also excluded because, as already stated,  x = −2. Thus, the conclusion is that equation given in this example does not have any solution. 

Geometrical interpretation of  x 2−3 x−6 =  x 2 equation clearly shows that the only intersection point between left side and right side quadratic polynomials is at  x = −2; see Fig. 3.4, which was already excluded. 

3.8. Note that given equation is not defined for  x = 1 due to division by zero on the left side, 1

=  x 2 ∴ 4 =  x 2 (x − 1 ) ∴  x 3 −  x 2 − 4 = 0

 x − 1

4

3.1 Linear Equations
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Fig. 3.5 P.3.8, there is only one

intersect point for

1 /(x − 1 ) =  x 2 / 4 at  x = 2. 

Alternatively, there is only one real

solution for  x 3 −  x 2 − 4 = 0, 

inevitably at  x = 2

A third-order polynomial must have at least one real zero, here by inspection at  x = 2 (or, strictly speaking, by the factor theorem), thus by long polynomial division

 (x 3 −  x 2 − 4 ) ÷  (x − 2 ) =  x 2 +  x + 2

− (x 3 − 2 x 2 )

 x 2 − 4

−  (x 2 − 2 x)

2 x − 4

−  ( 2 x − 4 )

= 0

where  x 2 +  x + 2 does not have real zeros (check its discriminant). Thus,  x = 2 is the only real solution to the given equation, and the other two are complex. 

By superimposing three polynomials graphs, the left side inverse term, the right side quadratic, and the equivalent third-order polynomial, it is clearly shown that  x = 2 is the only real solution, regardless which method is used; see Fig. 3.5. 

3.9. Similarly to P.3.8, given equation

 x

− 2 x + 3

2

= −7 x

 x − 2

2 x + 1

3

is not defined for  x = +2 nor  x = −1 / 2, because it results in polynomial division by zero. 

Then, 

 x

− 2 x + 3

2

= −7 x

 x − 2

2 x + 1

3

 x( 2 x + 1 ) − 2 ( 2 x + 3 )(x − 2 ) = −7 x (x − 2 )( 2 x + 1 )

3

−2 x 2 + 3 x + 12 = −7 x

 (x − 2 )( 2 x + 1 )

3
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Therefore, given equation is equivalent to

3 (−2 x 2 + 3 x + 12 ) = −7 x(x − 2 )( 2 x + 1 )

−6 x 2 + 9 x + 36 = −14 x 3 + 21 x 2 + 14 x

14 x 3 − 27 x 2 − 5 x + 36 = 0

Third-order polynomial must have at least one real zero, here by inspection at  x = −1 (or strictly speaking by the factor theorem). Long polynomial division gives

 ( 14 x 3 − 27 x 2 − 5 x + 36 ) ÷  (x + 1 ) = 14 x 2 − 41 x + 36

− ( 14 x 3 + 14 x 2 )

− 41 x 2 − 5 x

−  (−41 x 2 − 41 x)

36 x + 36

−  ( 36 x + 36 )

= 0

where 14 x 2 − 41 x + 36 does not have real zeros (check its discriminant). Thus,  x = −1 is the only real solution to the given equation. This example illustrates how an “innocently” looking equation with only linear  x  terms is equivalent to a higher-order nonlinear equation. This is consequence of inverse terms that, by definition, are nonlinear and were not canceled in the process. 

3.10. As given, 

1 −

2

= 0

3 −  x

telescopic form is nonlinear. This form of equation is common for problems that are iterative. 

In general, it is necessary to unfold this form as

1 −

2

= 0

3 −  x





1 =

2

balance both sides

3 −  x

3 −  x = 2 ∴ 3 − 2 =  x

∴  x = 1

That is to say, there is only one intersect point between telescopic polynomial on the left side and a constant 0 on the right side, at  x = 1. 
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Fig. 3.6 P.3.11, there is only one

intersect point between given

telescopic polynomial and a

constant 1 / 2 at  x = 2

3.11. As given, 

1 −

1

= 12

1 −

1

1 −  x

telescopic form is nonlinear. This form of equation is common for problems that are iterative. 

In general, it is necessary to unfold this form as





1 −

1

= 1 ∴

1

= 1 − 1 = 1 ∴

invert both sides

2

2

2

1 −

1

1 −

1

1 −  x

1 −  x





∴ 1 − 1 = 2 ∴ 1 − 2 = 1

invert both sides

1 −  x

1 −  x

∴ 1 −  x = −1

∴  x = 2

That is to say, there is only one intersect point between telescopic polynomial on the left side and a constant 1 / 2 on the right side at  x = 2; see Fig. 3.6. 

3.12. “Unfold” this form by invert-add fractions repetition as

1





= 5 ∴

invert both sides

∴ 2 +

1

= 12

12

5

2 +

1

2 +

1

2 −  x

2 +

1

2 −  x

1





= 12 − 2 = 2 repeat

5

5

2 +

1

2 −  x

∴ 2 + 1 = 5 ∴

1

= 1

2 −  x

2

2 −  x

2

∴ 2 −  x = 2

∴  x = 0
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3.13. “Unfold” this form by invert-add fractions repetition as

⇒ ∴

1

1

= 5 ∴

= 16 ∴

16

2 +

1

37

3 +

1

3+

1

4+ 3

 x+1

4 +

3

 x + 1

2 +

1

= 37 ∴

16

3 +

1

= 16 ∴

3 +

1

5

4 +

3

4 +

3

 x + 1

 x + 1

1

1

= 37 −

= 16 − 3 = 1 ∴

2

5

5

16

4 +

3

3 +

1

 x + 1

4 +

3

 x + 1

4 +

3

= 5 ∴

 x + 1

∴ ⇒

3

= 1

 x + 1

Therefore,  x + 1 = 3 ∴  x = 2

3.2

System of Linear Equations

Geometrical interpretation of solution to a system of two linear equations with two unknowns is that it represents spatial coordinates  (x, y)  of the intersection point of these two lines in the plane, that is to say, the only point that is shared by two lines. If two lines are not parallel, there must be one intersection point. However, if two lines are parallel, either all points are the solution (i.e., the two lines are superimposed) or none of the points are common (i.e., the two lines are parallel and separated by a distance). In the following examples, only the real solutions (i.e., only those that can be shown in  xy  plane) are illustrated. 

3.14. Linear systems of equations are resolved by multiple methods:

Method 1: the substitution method

 x + 2 y = 2 x − 5

 x −  y

= 3 ⇒  x = 3 +  y

∴  x + 2 y = 2 x − 5 ∴ 3 +  y + 2 y = 2 ( 3 +  y) − 5

∴ 3 y + 3 = 2 y + 1 ⇒ 3 y − 2 y = 1 − 3

∴  y = −2 ⇒  x −  (−2 ) = 3 and  x = 1

Thus, the solution of this system is  (x, y) =  ( 1 , −2 )  point. 

3.2 System of Linear Equations
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Fig. 3.7 P.3.14, Two linear

functions intersect at the common

point, in other words at coordinates

that satisfy both  y  equations, in this

example  (x, y) =  ( 1 , −2 )

Method 2: recall the obvious, both  (x, y)  variables are same in both equations. Thus, this system may be written explicitly as two linear functions of the same  x  variable, as x + 2 y = 2 x − 5 ⇒  y =  x − 5

2

 x −  y = 3 ⇒  y =  x − 3

The  y  variable is same; thus, the two  y  equations may be equalized as

 x − 5 =  x − 3 ⇒  x − 5 = 2 x − 6

2

6 − 5 = 2 x −  x ∴  x = 1

 y =  x − 3 ⇒  y = −2

The two  y  equations represent straight lines. Thus, their intersect point must be the desired (x, y)  solution; see Fig. 3.7. 

3.15. Given system of equations may be resolved by multiple methods. 

Method 1: derive two explicit  y(x)  equations as

⎧

⎪

⎨ xy

= 10 ⇒  y = 10

 x

⎪

⎩ x +  y = 2 ⇒  y = 2 −  x

Geometrical representation of these two  y(x)  functions clearly shows that there is no intersect point; thus the solution is an empty set; see Fig. 3.8. Recall that, arguably, the easiest technique to determine coordinates of two points at straight line is to look for the points where the line crosses the two axes. In other words, at  x = 0 straight line  y = 2 −  x  crosses  y–axis at y = 2 − 0 = 2, i.e.,  (x, y) =  ( 0 ,  2 ). Similarly, the crossing point with  x–axis is at  y = 0, that is to say at 0 = 2 −  x ⇒  x = 2, i.e.,  (x, y) =  ( 2 ,  0 ); see Fig. 3.8. 

Method 2: alternatively, by the substitution method, it follows that the given system is equivalent to
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Fig. 3.8 P.3.15, a case of linear

and inverse  y(x)  equations without

the intersection point, thus no real

domain solutions

⎫

⎪

 y = 10

⎬

 x

⎪ ∴  x + 10 = 2 ∴  x 2 − 2 x + 10 = 0

⎭

 x

 y = 2 −  x

Note that form of this system (due to the product of  xy  term) is unavoidably a quadratic equation in disguise. In this case, the resulting quadratic equation does not have real solutions due to its discriminant being negative   =  (−2 ) 2 − 4 · 1 · 10 = −36  <  0. Thus, there are no real solutions to this system. 

3.16. Given system

⎧

⎪14

⎪

⎨

+ 24 = 10

 x

 y

⎪

⎪

⎩ 7 − 18

= −5

 x

 y

is in the form of  f ( 1 /x,  1 /y)  thus may appear to be nonlinear; nevertheless, it may be resolved by multiple methods. 

Method 1: the change of variables. The two inverse functions of two original variables may be replaced by new variables, so that this nonlinear system relative to  (x, y)  is transformed into linear system relative to  (t, k)  as

⎧

⎪14

⎪

⎨

+ 24 = 10







 x

 y

14 t + 24 k = 10

⎪

∴

 t = 1  , k = 1

∴





⎪

⎩ 7

 x

 y

− 18

= −

7 t − 18 k

= −5 expand by  (×2 )

5

 x

 y

Now, the system is linear relative to  (t, k)  and may be resolved by the elimination method as 14 t + 24 k = 10





⇒

∴

 eq.( 1 ) −  eq.( 2 )

14 t − 36 k = −10

3.2 System of Linear Equations
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Fig. 3.9 P.3.16: graphical representations of the given system

∴ 60 k = 20 ∴  k = 1 ⇒  y = 1 = 3

3

 k



1

then, 14 t + 24

= 10 ∴ 14 t + 8 = 10 ∴  t = 1 ∴  x = 1 = 7

3

7

 t

Therefore, the solution of this system is  (x, y) =  ( 7 ,  3 )  point. 

Method 2: the original nonlinear system may be written as two explicit functions  y(x)  as 14 + 24 = 10 ⇒  y = 12 x

 x

 y

5 x − 7

7 − 18 = −5 ⇒  y = 18 x

 x

 y

7 + 5 x

Or, alternatively, linear version of the system may be written as

7 t + 12 k = 5 ⇒  k = 5 − 7 t

12

7 t − 18 k = −5 ⇒  k = 7 t + 5

18

Both pairs of functions and their intersection points are shown by graphs, nonlinear system in Fig. 3.9, and its equivalent linear system in Fig. 3.9a. Note that  ( 0 ,  0 )  is a trivial solution that is excluded in the original version of the system. 

3.17. Given system may be resolved by the change of variables method, where two

denominators are substituted with  (t, k)  as
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⎧

⎪

4

⎪

⎨

+

1

= 1

 x +  y − 1

 x −  y + 1

⎪

⎪

⎩

16

−

2

= 1

 x +  y − 1

 x −  y + 1





 t =

1

 , k =

1

 x +  y − 1

 x −  y + 1

cont. 

∴

⎧

⎪

⎨4 t +  k

= 1 ⇒  t = 1 −  k

4

⎪

⎩16 t − 2 k = 1

∴

Z 1 −  k

Z

16 4

− 2 k = 1 ∴ 4 − 6 k = 1 ∴  k = 1 ∴ 1 = 2

A4 1

2

 k



∴

1

4 t +

= 1 ∴ 4 t = 1 ∴  t = 1 ∴ 1 = 8

2

2

8

 t

And, back the original variables, 

⎧

⎪

⎪1

⎨ =  x +  y − 1 = 8



 t

 x +  y

= 9

⎪

∴

∴  x = 5 , y = 4

⎪

⎩1 =

 x −  y

= 1 ⇒  x =  y + 1

 x −  y + 1 = 2

 k

Therefore, solution to this system is  (x, y) =  ( 5 ,  4 )  point. 

3.3

Linear Inequalities

Solution to inequalities may be one or more  intervals, one or more points, or no solution at all. 

3.18. Given inequality may be resolved similarly to equations by balancing the left and right sides. This time however, it is very important to balance correctly ≤ or ≥ sides in respect to the negative terms (which was not an issue in the case of simple equations). Given strict inequality and factored form, straightforward technique is

 (x + 5 )(x − 5 ) >  0

3.3 Linear Inequalities
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Fig. 3.10 P.3.18, inequality

solution are two intervals,  x < −5

or  x >  5, where both boundary

points ( x = −5 and  x = 5) are  not

included (due to strict inequality

“< ”)

Reminder: Product of two numbers is negative only if these two numbers have opposite

signs, i.e., if  AB <  0 then either  A <  0 and  B >  0 or  A >  0 and  B <  0. Otherwise, when both numbers are either positive or negative, the product  AB  is positive. 

In this case, 

⎧

⎪

⎪ x + 5  >  0 ∴  x > −5

⎪

⎪

⎪

⎪

⎪

⎪

⎨ x − 5  >  0 ∴  x >  5

 (x + 5 )(x − 5 ) >  0 ⇒ ⎪

or, 

⎪

⎪

⎪

⎪

⎪

⎪ x + 5  <  0 ∴  x < −5

⎪

⎩ x − 5  <  0 ∴  x <  5

There are two possibilities, 

1.  x > −5 and  x >  5 conditions are satisfied at the same time if  x >  5, i.e., in  x ∈  ( 5 , +∞ ) where  x = 5 is not included due to the strict inequality. 

2.  x < −5 and  x <  5 conditions are satisfied at the same time if  x < −5, i.e., in  x ∈

 (−∞ , −5 )  where  x = −5 is not included due to the strict inequality. 

In summary, 

 (x + 5 )(x − 5 ) >  0 ⇒  x < −5 or  x >  5

Solutions of inequalities may be shown in graph form as shaded intervals where, e.g., solid

boundary lines and non-crossed points indicate that the associated boundary point  is  included, while dashed boundary lines and crossed points indicate that the boundary point is  not  included in the solution set. Here, both boundary points are not included (due to strict inequality “< ”); see Fig. 3.10. 

3.19. Given inequality may be resolved similarly to equations by balancing the left and right sides. This time however, it is very important to balance correctly ≤ and ≥ sides respective to the negative signs (which was not an issue in the case of simple equations). Straightforward technique is to keep the orientation of ≤ sign fixed and to balance the left and right sides as
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Fig. 3.11 P.3.19, inequality

solution is an interval  ( 1 ,  3 )  where

the two boundary points themselves

are also included in the solution set

due to non-strict inequality ≤

 (x + 3 ) 2 ≤ 10 x + 6

 x 2 + 6 x + 9 −10 x − 6 ≤ 10 x + 6 −10 x − 6

 x 2 − 4 x + 3 ≤ 0

 x 2 − 3 x −  x + 3 ≤ 0

 x(x − 3 ) −  (x − 3 ) ≤ 0

 (x − 1 )(x − 3 ) ≤ 0

In this case, 

⎧

⎪

⎪ x − 1 ≤ 0 ∴  x ≤ 1

⎪

⎪

⎪

⎪

⎪

⎪

⎨ x − 3 ≥ 0 ∴  x ≥ 3

 (x − 1 )(x − 3 ) ≤ 0 ⇒ ⎪

or, 

⎪

⎪

⎪

⎪

⎪

⎪ x − 1 ≥ 0 ∴  x ≥ 1

⎪

⎩ x − 3 ≤ 0 ∴  x ≤ 3

There are two possibilities, 

1. if  x ≤ 1 and  x ≥ 3 then there is no  x  that satisfies both conditions at the same time. 

2. if  x ≥ 1 and  x ≤ 3, then the solution includes all numbers within the  x ∈  ( 1 ,  3 )  interval, where both  x = 1 and  x = 3 points are included in the solution set. 

Solutions of inequalities may be shown in graph form as shaded intervals where, e.g., solid

boundary lines and non-crossed points indicate that the associated boundary point  is  included, while dashed boundary lines and crossed points indicate that the boundary point is  not  included in the solution set. Here, both boundary points are included (due to non-strict inequality “≤”); see Fig. 3.11. 

3.20. Given inequality of two rational functions, first,  x = 0 and  x = −1 are to be excluded due to division by zero, as

1 + 1

 x 2 − 2

 < 

=  x 2 − 2

 x

 x + 1

 x 2 +  x

 x(x + 1 )

This inequality may be resolved as follows:

3.3 Linear Inequalities
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∴ ⇒

1

 x 2 − 2 x − 3

+ 1

 x 2 − 2

 < 

0  < 

 x

 x + 1

 x(x + 1 )

 x(x + 1 )

 x + 1 +  x

 x 2 − 2

 x 2 +  x − 3 x − 3

 < 

0  < 

 x(x + 1 )

 x(x + 1 )

 x(x + 1 )

 x 2 − 2

 x(x + 1 ) − 3 (x + 1 )

0  < 

− 2 x + 1

0  < 

 x(x + 1 )

 x(x + 1 )

 x(x + 1 )





 x 2 − 2 − 2 x − 1

 (

 x + 1 )(x − 3 )

0  < 

0  < 

 (x = −1 )

 x(x + 1 )

 x(

 x + 1 )

∴ ⇒

In summary, 

 x − 3  >  0

 x

Both left and right side expressions must keep correct relationship to “> ” while moving from one side to the other. Ratio of  A/B  is positive only when both  A (i.e., numerator) and  B (i.e., denominator) have the same sign, thus

⎧

⎪

⎪ x − 3  >  0 ∴  x >  3

⎪

⎪

⎪

⎪

⎪

⎪

⎨ x

 >  0 ∴  x >  0

 x − 3  >  0 ⇒

or, 

 x

⎪

⎪

⎪

⎪

⎪

⎪

⎪ x − 3  <  0 ∴  x <  3

⎪

⎩ x

 <  0 ∴  x <  0

There are two possibilities:

1. if  x >  3 and  x >  0 then  x >  3 satisfies both conditions at the same time. 

2. if  x <  3 and  x <  0 then  x <  0 satisfies both conditions at the same time. 

In summary, 

 x − 3





 >  0 ⇒  x <  0 or  x >  3

 (x = −1 )

 x

Note that in this case boundary point ( x = 0) is  not  included (due to strict inequality “< ” 

and division by zero), boundary point ( x = 3) is  not  included due to strict inequality “> ” and (x = −1 )  is  not  included due to division by zero; see Fig. 3.12. 

3.21. Given inequality may be resolved by factorization as

−3 x 2 + 30 x − 75  >  0 ∴ −3 (x 2 − 10 x + 25 ) >  0

−3 (x 2 − 5 x − 5 x + 25 ) >  0
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Fig. 3.12 P.3.20, set of solutions

that does not include the two

boundary points,  x = 0 and  x = 3

as well as  x = −1

−3[ x(x − 5 ) − 5 (x − 5 )]  >  0

∴

− 3

 (x − 5 ) 2

 >  0 ∴ not possible

 <  0

 >  0

because the product of one negative and one positive terms is always negative (the squared

number is always positive). Therefore, there is no real solution to this inequality. 

3.22. Given inequality may be resolved by factorization as

 x 4 − 2 x 2 + 1  <  0

 (x 2 ) 2 − 2 x 2 + 1  <  0

 (x 2 − 1 ) 2  <  0

 (x + 1 ) 2

 (x − 1 ) 2

 <  0

∴ not possible

≥0

≥0

because, on the left side, there is product of two square terms, thus both positive, which is always greater or equal to zero, but not negative. 

3.23. Given inequality may be resolved by factorization as

−2 x 2 + 4 x − 2  >  0

−2 x 2 + 4 x − 2  >  0

−2 (x 2 − 2 x + 1 ) >  0

− 2

 (x − 1 ) 2

 >  0

∴ not possible

 <  0

 >  0

because product of one negative and one positive term is always negative. 

3.24. Given inequality may be resolved by factorization as

2 x 2 − 5 x − 3 ≤ 0

−2 x + 1

2 x 2 − 6 x +  x − 3 ≤ 0

−2 x + 1

3.3 Linear Inequalities
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Fig. 3.13 P.3.24, 

2 x(x − 3 ) +  (x − 3 ) ≤ 0

−2 x + 1

 (x − 3 )( 2 x + 1 ) ≤ 0

−2 x + 1

Note that division by zero occurs when  x = 1 / 2; thus, it must be excluded. Moreover, this inequality is possible only if numerator and denominator have opposite signs. As there are

three factors organized as  (AB)/C, they must be systematically examined to determine the total sign of the rational form as:

 x

 − 1 / 2

1 / 2

 − 3

 x −  3

 −

 −

 −

 −

 −

0

+

2 x + 1

 −

0

+

+

+

+

+

 − 2 x + 1

+

+

+

0

 −

 −

 −

total sign

+

0

 −

n.d. 

+

0

 −

In conclusion:

 ( 2 x + 1 )(x − 3 ) ≤

1

0 ∴ − 1 ≤  x < 

and  x ≥ 3

−2 x + 1

2

2

In this case, boundary point ( x = −1 / 2) is included (due to non-strict inequality “≤”), boundary point ( x = 1 / 2) is  not  included due to division by zero, and  (x = 3 )  is included due to non-strict inequality “≥”; see Fig. 3.13. 

3.25. Recall if | A|  < a  it means that  A ∈  (− a, a)  interval. In other words, given absolute value is equivalent to two inequalities as





4 x 

4 x





∈  (−3 ,  3 ) ∴ −3  < 

 <  3 ⇒

2 x + 4   <  3 ∴

4 x

2 x + 4

2 x + 4

⎧

⎪ 4 x

⎪

⎨

 <  3 ∴ 4 x <  6 x + 12 ∴ −2 x <  12 ∴  x < −6

2 x + 4

⎪

⎪

⎩ 4 x

 > −3 ∴ 4 x > −6 x − 12 ∴ 10 x > −12 ∴  x > − 6

2 x + 4

5

Note that in this case, both boundary points  x = −6 and  x = −6 / 5 are  not  included (due to strict inequality “<> ”); see Fig. 3.14. 
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Fig. 3.14 P.3.25, absolute

inequality set of solutions consists

of two intervals, while the two

boundary points are note included

due to strict inequality

3.26. Each absolute term is equivalent to two cases:





 (x + 2 ) | x − 2|

1)  x − 2 ≥ 0 ∴  x ≥ 2 ⇒ | x − 2| =  x − 2

 >  1

 x 2 + 2

2)  x − 2  <  0 ∴  x <  2 ⇒ | x − 2| = − (x − 2 ) Case 1: (x ≥ 2 ) , i.e., the absolute brackets are replaced with regular brackets, as Method 1: to say that the ratio  A/B >  1 is equivalent to say that  A > B, as (x + 2 )(x − 2 )

 x 2 1 − 4

 >  1 ∴  x 2 − 4  >  1 ∴

 x 2



 >  1

 x 2 + 2

 x 2 + 2

 x 2 1 + 2 x 2

Because as its form is  ( 1 −  n), the numerator is inferior to “1”; at the same time, as its form is  ( 1 +  n), the denominator is greater than “1”; thus, their ratio is always inferior to “1,” not greater. 

Method 2: a simple algebraic transformations results in

 (x + 2 )(x − 2 ) >  1 ∴  x 2 − 4  >  1

 x 2 + 2

 x 2 + 2

 x 2 − 4  > x 2 + 2

 x 2 − 4 −  x 2 − 2  >  0

− 6  >  0

Because obviously “−6” is negative, not positive. In conclusion, for  (x ≥ 2 ), there is no solution to this inequality; i.e., the solution is an empty set. 

 Case 2: (x <  2 ) , then | x − 2| = − (x − 2 ), as

 (x + 2 )(x − 2 )

− (x + 2 )(x − 2 )

 >  1 ∴

 >  1

 x 2 + 2

 x 2 + 2

4 −  x 2  >  1

 x 2 + 2

4 −  x 2  > x 2 + 2

√

√

4 − 2  >  2 x 2 ∴ 1  > x 2 ⇒

 x 2  < 

1 ∴ | x|  <  1

3.4 System of Linear Inequalities
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Fig. 3.15 P.3.26, absolute

inequality set of solutions bound

within a single  (−1 ,  1 )  interval, 

while the two boundary points are

not included due to strict inequality

In summary, the solution set of given inequality is

−1  < x < +1

Note that both boundary points  (x = ±1 )  are  not  included (due to strict inequality “< ”); see Fig. 3.15. 

3.4

System of Linear Inequalities

3.27. Given system of inequalities, 

 y >  2 x

 y < − x − 3

each line separates the space into two regions, one below and one above the boundary  y(x) line. Then, the superimposed region represents the solution set of this system of inequalities; see Fig. 3.16. Note that the boundary lines are not included in the solution set (due to strict nonequalities ‘ <> ’). In addition, coordinates of the intersection point  A =  (−1 , −2 )  are found as

2 x = − x − 3 ∴ 3 x = −3 ∴  x = −1

∴  y = 2 x = −2  ( or,  y = − x − 3 = −2  )

3.28. Given system of inequalities is resolved as

−2 (x + 1 ) ≥ 4 ∴ −2 +  x −  x − 1 ≥ 2 −2 +  x ∴ −3 ≥  x ∴  x ≤ −3

−2 x ≥ 6 ∴ −3 +  x −  x ≥ 3 −3 +  x ∴ −3 ≥  x ∴  x ≤ −3

 x ≤ −3 ∴  x ≤ −3

In conclusion, all three inequalities are satisfied in  (x ≤ −3 )  interval. While balancing inequalities, it is important to respect the negative sign of  x  variable relative to ≤≥ inequality signs, as illustrated in this example. 
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Fig. 3.16 P.3.27, set of solutions

for a system of inequalities is a

region bound by two boundary

lines where both inequalities are

satisfied at the same time. Each

boundary line separates the plane

into two regions, one above and

one below the line

Fig. 3.17 P.3.30, geometrical

interpretation of the empty solution

set for given system of inequalities, 

as no common region

3.29. Given system of inequalities, 

 y ≥ 2 x ;  y ≤ 2 x

 x ≤ 4 ;  x ≥ 4

The first two inequalities,  y ≥ 2 x  and  y ≤ 2 x, cover space both above and below  y = 2 x  line, thus the  whole space. Note that  y = 2 x  line is included in the solution set. The second two inequalities, however, add constrains that  x ≤ 4 and  x ≥ 4 at the same time. Therefore, there is  only one point x = 4 that satisfies all four inequalities, and consequently  y = 2 x = 8. The solution set is a single point  ( 4 ,  8 ). 

3.30. Given system of nonlinearities is balanced as

−

6 + 4 x

4 x + 6 y >  6 ∴  y > 

= 2  x + 1

6

3

2

2 x − 3 y >  3 ∴ 2 x − 3  > y ∴  y < 

 x − 1

3

3

and solved graphically as in Fig. 3.17. Obviously, there is no overlapping region; thus, the solution set is empty. 

3.4 System of Linear Inequalities
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Fig. 3.18 P.3.31, geometrical

interpretation of the solution set for

given system of inequalities, bound

in between of the two  y(x)  lines

3.31. Given system of inequalities is balanced as

−2 x −  y < −1 ∴ −2 x + 1  < y ∴  y > −2 x + 1

4 x + 2 y ≤ 6 ∴ 2 y ≤ 6 − 4 x ∴  y ≤ −2 x + 3

and solved graphically as in Fig. 3.18. Obviously, there is overlapping region bound by the two  y(x)  lines; thus, the solution set is well defined. Note that  y = −2 x + 1 line is not in the solution set due to strict inequality. 

3.32. Given system of five inequalities is balanced as

 x +  y <  6 ∴  y <  6 −  x

5 x +  y ≥ 4 ∴  y ≥ 4 − 5 x

 x + 4 y > −3 ∴  y > − 3 − 1  x

4

4

 x ≤ 5

 y <  4

and graphical solution is in Fig. 3.19. The solution set is bound by these five linear functions, where the intersection points are:

 A :  y = 4 and  y = −5 x + 4 ∴ −5 x + 4 = 4 ∴ −5 x = 0 ∴  x = 0 ⇒  ( 0 ,  4 ) B :  y = 4 and  y = − x + 6 ∴ − x + 6 = 4 ∴  x = 2 ⇒  ( 2 ,  4 ) C :  x = 5 and  y = − x + 6 ∴  y = −5 + 6 ∴  y = 1 ⇒  ( 5 ,  1 ) D :  x = 5 and  y =  (− x − 3 )/ 4 ∴  y =  (−5 − 3 )/ 4 ∴  y = −2 ⇒  ( 5 , −2 ) E :  y =  (− x − 3 )/ 4 and  y = −5 x + 4 ∴ −5 x + 4 =  (− x − 3 )/ 4

∴ −20 x + 16 = − x − 3

∴  x = 1 ∴  y = −5 + 4 ∴  y = −1 ⇒  ( 1 , −1 )

110

3

Linear Equations and Inequalities

Fig. 3.19 P.3.32, geometrical

interpretation of the solution set for

given system of inequalities, where

the common region is bound by five

lines

Note that due to strict inequalities, the following lines are  not  part of the solution set: y = 4

 y = − x + 6

 y = −  x + 3

4

which then excludes all intersect points as well. 

[image: Image 4]

Irrational Equations

4

 Irrational numbers and equations

The term “irrational equations” refers to equations where the unknown variable is argument of a radical function (e.g., square root, or any fractional exponent). It is important to understand implied conditions and limitations of even order radicals, such as square root, fourth root, etc.. Take a look at

√ x = ± a

where  a 2 =  x. To start with, it is implied that (a)  x ∈ R and (b) that  x ≥ 0. This is because even

√

order roots of negative argument result in a complex solution because, by definition, 

−1 =  j. 

Furthermore, there are  two  equally valid solutions for a square root operation, one positive and one negative. For that reason, irrational equations are specifically written in the following two forms: 2

 f (x) =  h(x) ≡  f (x) =  h(x)

and  h(x) ≥ 0







−

2

 f (x) =  g(x) ≡  f (x) = − g(x)

and  g(x) ≤ 0

√

Geometrical interpretation of these two forms is that positive (i.e., in the upper half plane) f (x)

√

may intersect only function  h(x) ≥ 0. Similarly, negative (i.e., in the lower half plane) −  f (x)  may intersect only function  g(x) ≤ 0, as illustrated in Fig. 4.1. 
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Fig. 4.1 Even order radical

√

function

 x  is not defined for

 x <  0. Furthermore, there are two

√

different possibilities, +  x ≥ 0 in

√

the upper half plane, and −  x ≤ 0

in the lower half plane. Evidently, 

√

given  h(x)  may intersect +  x  only

if  h(x) ≥ 0. Similarly, given  g(x)

√

may intersect −  x  only if

 g(x) ≤ 0

Problems

4.1

Irrational Numbers

4.1. Briefly explain the main properties of irrational numbers and their relation with other main groups of numbers. 

Which of the numbers given in P.4.2 to P.4.17 are irrational, briefly explain your reason. 

1

1

4.5. 

4.2. 

4.3. 0 .  25

4.4. 

2

3

0 .  10101010  . . . 

√

√

√

√

4.6. 

4

4.7. 

2

4.8. 

3

4.9. 

5

√

4

4.10.  π

4.11.  e

2

4.12. 

4.13. 

2

0

4.14. 

 π

√

√

4.15. 

4.16. 

3 8

4.17. 

3 9

1 .  010010001  . . . 

 π

Evaluate expressions given in P.4.18 to P.4.25. Which results are irrational, briefly explain your reason. 

√

√ √

√ √

4.18. 

4 + 5

4.19. 

√

√

4.20. 

2 7

4.21. 

8 2

4 +

5

√

√

√

1 +

5

355

3 +

5

4.22. 

4.23. 

4.24. 

4.25. 

4 36

2
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4.2

Irrational Equations Basic Forms

The term “irrational equations” refers to equations where the unknown variable is argument of a radical function (i.e., square root, or any fractional exponent). Solve irrational equations in P.4.26 to P.4.43. 





4.26. 

25 −  x 2 = 7 −  x

4.27. 1 +  x 2 − 9 =  x







4.28. 

2 x 2 + 7 =  x 2 − 4

4.29. 

12 −  x x 2 − 8 = 3

√

√

1

4.30. 

2 x + 8 +

 x + 5 = 7

√

√

2 +  x −

2 −  x

4.31. 

−

1

√

√

= 1

2 +  x +

2 −  x





4.32. 

 x 2 − 9 +  x 2 − 9 = 20

4.33.  x 2 − 2 x +  x 2 − 2 x + 6 = 6





√



√



√

√

4.34. 

2 x 2 +  x +

2 x 2 +  x − 1 =

13

4.35. 

5 + 3  x +

5 − 3  x = 3  x









16 x

 x − 1

4.36. 

 x − 1 −

1 − 1 = 1 − 1

4.37. 

5

+ 5

= 5

 x

 x

 x

 x − 1

16 x

2

√

√





4.38. 2 3  x + 5 6  x − 18 = 0

√

√

4.39. 

 x  5  x − 5  x

 x = 56

√

√

√

4.40. 92  x−1 − 4 · 32  x−1 + 3 = 0

4.41. 3 + 3 x + 1 =  x

√

√

√

√

√

4.42. 

4.43. 

 x + 2 +

 x − 2 =

2 x + 3

2  x + 1 =

3 x − 5

Evaluate forms in P.4.44 to P.4.45

√









2

√

2

√

5 + 1

5 − 1

 x − 9

 x + 3

√

4.44. 

−

4.45. 

√

÷ √

−  x

2

2

 x + 3  x + 9

 x 3 − 27
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Answers

4.1

Irrational Numbers

Among all numbers in mathematics, arguably, irrational equations

4.1. By the accepted categorization, real numbers R include rational numbers Q (i.e., all numbers that can be expressed as the ratio of two integers), and an additional group of numbers that are not rational, i.e., that cannot be expressed as the ratio of two integers, thus referred to as “irrational”; see Fig. 4.2. 

Probably the most obvious property of irrational numbers is that, when written in decimal

form, their stream of decimal digits is  non-repeatable and infinite. Although that property may seem obvious, there are still many numbers and expressions that are subject of ongoing

research to prove their irrationality. 

Due to their non-repeatable and infinite decimal digits, it is not possible to exactly place irrational numbers on the horizontal axis. One mathematical definition, given by Richard

Dedekind,  a is that irrational numbers are objects between two sets of rational numbers, on the right side, rational numbers that are superior, and on the left side, rational numbers that are inferior to the given irrational number. Most famous irrational numbers are  π  and  e. 

 a https://en.wikipedia.org/wiki/Richard_Dedekind

4.2. Any number that is explicitly written as ratio of two integers, where denominator is not zero, is by definition not irrational, and therefore including 1 / 2. 

4.3. Given number 0 .  25 has finite number of decimal digits and in rational form is written as 1 / 4. Thus, by definition, it is rational, not irrational. 

4.4. Fraction 1 / 3 written in decimal form equal 0 .  333  . . . . Even though there are infinite numbers of decimal digits, their pattern is repeatable. As 1 / 3 is a fraction of two integers, by definition is rational, not irrational. 

4.5. Even though 0 .  10101010  . . .  has infinite number of decimal digits, the sequence 10

repeats and therefore 0 .  10101010  . . .  is not irrational. 

√

4.6. Radicals may or may not be irrational. As

4 = 2 is the perfect square (i.e., an integer

√

√

that is the square of an integer, where

4 = 2 is principal solution of this radical, 

4 = −2

√

is the other). As this radical may be written in rational form as ratio of two integers 4 = 2 / 1, by definition, it is rational, not irrational. 

Fig. 4.2 P.4.1, classification of all

numbers: complex C, real R that

contain rational Q and irrational

numbers, integers Z, and natural N

4.1 Irrational Numbers
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√

4.7. First irrational number that was discovered is

2 while calculating diagonal of a square

whose side is one unit long. Then, by Pythagoras’ theorem, the right triangle’s hypotenuse

√

(whose two catheti are one unit long) equals

2. There are number of well-known rigorous

√

mathematical proofs that

2 = is indeed irrational. It is useful to know a few rational

approximations

√2 = 1 .  414213562373095048801···

≈ 99 ≈ 239 ≈ 355 ≈ 577 ≈ 665 857 etc. 

70

169

113

408

470 832

√

√ √

√

2 = 2 2

√ =

4

√ = 2√ = 1

√ = 0 .  707 106 781 186 547 524 400 · · ·

2

2

2

2

2

2 2

2

√

One of many methods to calculate digits of

2 is by telescopic (a.k.a continuous) fraction as

√2 = 1 +

1

2 +

1

2 +

1

2 + · · ·

√

4.8. Square root

3 (note that 3 is a prime number) is proved to be irrational. In its

geometrical interpretation, it equals to the diagonal of a cube whose side is one unit long; 

√

√

see Fig. 4.3. First the horizontal triangle’s hypotenuse is calculated as 2 =

12 + 12, then

the vertical triangle’s hypotenuse is

√

√



3 =

 (  2 ) 2 + 12 =

12 + 12 + 12; 

√

see Fig. 4.3 (right). Square root

3 value starts with non-repeating decimal digits as

√3 = 1 .  732050807568877293527···

It is useful to know a few rational approximations

√3 ≈ 97 ≈ 1351 ≈ 716035 etc. 

56

780

413 403

Fig. 4.3 P.4.8, geometrical

interpretation of irrational numbers

√2 as the square diagonal (in 2D

√

space), and

3 as the cube

diagonal (in 3D space). Calculated

by Pythagoras’ theorem of right

triangles, here one horizontal and

one vertical
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√

Among many other methods, digits of

3 may be calculated by telescopic fraction as

√3 = 1 +

1

1 +

1

2 +

1

1 +

1

2 + · · ·

√

4.9. Square root of prime number

5 is proved to be irrational. It equals to the diagonal

length of a rectangle whose one side is one unit long and the other side is two unit long. Its value starts with non-repeating decimal digits as

√5 = 2 .  236067977499789696409···

It is useful to know a few rational approximations

√5 ≈ 38 ≈ 161 ≈ 682 etc. 

17

72

305

√

Among many other methods, digits of

5 may be calculated by telescopic fraction as

√5 = 2 +

1

4 +

1

4 +

1

4 +

1

4 + · · ·

4.10. Probably the most famous irrational number  π  is found as the ratio of a circle’s circumference to its diameter. Its value starts with non-repeating decimal digits as

 π = 3 .  141 592 653 589 793 238 462 · · ·

It is useful to know a few rational approximations

 π ≈ 22 ≈ 333 ≈ 355 etc. 

7

106

113

√

Among many other methods, digits of

5 may be calculated by telescopic fraction as

 π = 3 +

1

7 +

1

15 +

1

1 +

1

292 +

1

1 + · · ·

as well as quite a few other telescopic fraction forms. 
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4.11. The number  e  is irrational number introduced by Jacob Bernoulli in 17 th  century. This is the last of the five famous terms in “the most beautiful equation in mathematics” known as Euler’s identity

 ejπ + 1 = 0

where numbers 0, 1,  e, and  π  are connected with the imaginary unit  j  2 = −1. This equation is among most important in engineering mathematics; for more examples, see Ch. 8 and Vol.III. 

It is also the base of the natural logarithm function ln  x. Its value starts with non-repeating decimal digits as

 e = 2 .  718 281 828 459 045 235 360 · · ·

The number  e  is found as the limit of the expression used to calculate of compound interest, n

lim

1 + 1

 n→∞

 n

√

Among many other methods, digits of

5 may be calculated by telescopic fraction as

 e = 2 +

1

1 +

1

2 +

1

1 +

1

1 +

1

4 + · · ·

√

4.12. Given

2 / 2, it is in the form of irrational numerator and integer denominator. The ratio

√

of such two number must be irrational, because

2 is irrational already. 

4.13. The result of division by zero, such as 4 / 0, is not defined; it is a very special case in the strict sense of number definitions. Irrational numbers are real numbers; thus, the result of division by zero should not be classified neither as rational nor irrational—the result is not defined. 

4.14. Decimal digits of the given number 1 .  010010001  . . .  continue until infinity; however, there is no repetitive pattern in the digit sequence (note the increase of number of zeros

between each two ones); thus, this number is classified as irrational. 

4.15. As  π  is a real nonzero number, division  π/π = 1, evidently not irrational. 

√

4.16. Radicals may or may not be irrational, in this case 3 8 = 2, which is evidently not irrational. 

√

4.17. Given radical 3 9 is not perfect cube; i.e., there is no integer, so that its cube equals

√

nine. Therefore, 3 9 must be irrational. 

√

√

4.18. Radicals may or may not be irrational, in this case

4 + 5 =

9 = 3, which is

evidently not irrational. 
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√

√

√

4.19. Sum of two radicals may or may not be irrational, in this case

4+ 5 = 2+ 5, which

√

is in the form of sum where one term (i.e., 

5) is irrational; thus, the sum is also irrational. 

√ √

√

4.20. Product of radicals may or may not be irrational; in this case, 

2 7 =

14 is

√

√

product of two irrational numbers (i.e., 

2 and

7) that cannot be further simplified; thus, 

√

this product should be irrational. The formal proof that

14 is irrational is done, for example, 

by contradiction, which is a method that is widely used among mathematicians. 

√ √

√

4.21. Product of two radicals may or may not be irrational; in this case, 

8 2 =

16 = 4

is the square root of a perfect square, thus not irrational. 

4.22. Irrational number  ϕ  known as  golden ratio  is defined as

√5

 ϕ = 1 +

= 1 .  618 033 988 749 894 848  . . . 

2

and is very often cited not only in mathematics but also in architecture, art, philosophy, nature, 

√

etc., and it is irrational due to

5 term. Among many other methods, digits of  ϕ  may be

calculated by telescopic fraction as

 ϕ = 1 +

1

1 +

1

1 +

1

1 +

1

1 + · · ·

4.23. Ratio of two integers is by definition rational number, 

355 = 3 .  1415929203539823009

113

even though that this particular ratio is close to  π . As a matter of fact, this rational number is one of the well-known approximations for  π  to the first six decimal places. 

√

√

4.24. Similar to golden ratio  ϕ, this expression 3 +

5 / 2 is irrational due to

5 term. 

4.25. Given radical may be simplified as

√

√

√ √

4 36 = 4 4 × 9 = 4 4 4 9

which is evidently irrational, because 36 is not perfect fourth power of any integer. 

4.2 Irrational Equations
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4.2
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4.26. Equations that include radicals may or may not result in irrational solutions. It is important to keep in mind, however, that the argument of square root must be  nonnegative, i.e., positive or zero. Given a simple case, square root may be eliminated by squaring both

sides of the equation, as

25 − x 2 = 7− x ⇒ 25− x 2 ≥ 0 ∴ | x| ≤ 5 or, −5 ≤  x ≤ 5

25 −  x 2 =  ( 7 −  x) 2 = 49 − 14 x +  x 2

0 = 2 x 2 − 14 x + 24 = 2 (x 2 − 7 x + 12 )

∴

0 =  x 2 − 7 x + 12

0 =  x 2 − 4 x − 3 x + 12

0 =  x(x − 4 ) − 3 (x − 4 )

0 =  (x − 3 )(x − 4 ) ⇒  x 1 = 3 , x 2 = 4

√

√

Note that

25 −  x 2 =

52 −  x 2 is equation of a positive half circle whose radius  r = 5. 

√

As the square root has two solutions, then − 25 −  x 2 is the negative half circle. Geometrical interpretation of equation in this example shows that a line 7 −  x  crosses positive half circle at x 1 = 3 and  x 2 = 4; see Fig. 4.4. This result illustrates one less known theorem in algebra that states the following: to say

 P(x) =  Q(x)  is equivalent to say that  P(x) =  Q 2 (x)  and  Q(x) ≥ 0

in other words

25 − x 2 = 7− x ≡ 25− x 2 =  ( 7− x) 2 and 7− x ≥ 0

Fig. 4.4 P.4.26, evidently, the

straight line “7 −  x” can intersect

only the positive half circle

√

“ 25 −  x 2,” while the negative

√

half circle “− 25 −  x 2” stays out

of its reach
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This result is evident in Fig. 4.4, as there are no intersect points for 7 −  x <  0 (i.e., below the horizontal axis), because this line cannot cross the negative half circle. 

4.27. With a simple transformation, 





1 +

 x 2 − 9 =  x ⇒

 x 2 − 9 =  x − 1

given equation form is converted into the form already discussed in A.4.26. Following the same idea, 

 x 2 −9 =  x −1 and  x −1 ≥ 0

 x 2 − 9 =  (x − 1 ) 2 =  x 2 − 2 x + 1

2 x = 10 ⇒  x 1 = 5

where the solution must also satisfy that  x − 1 ≥ 0 ∴  x ≥ 1. This may seem obvious; however, geometrical interpretation of this exemple illustrates that there is only one solution for the principal square root function; for  x 2 − 9 ≥ 0 (i.e., in the upper half plane) and for

√

 x ≥ 1, see Fig. 4.5. More precisely, it indicates that line  x −1 cannot cross x 2 − 9 for  x <  1. 

√

Note that

 x 2 − 9 is not equation of a half circle; it is equation of  upper half hyperbola. The

√

lower half hyperbola −  x 2 − 9 intersects with  x − 1 line only for  x <  1 condition. These are fine points about irrational equations and which solutions satisfy the implied conditions. 

4.28. In order to sort out which solutions are acceptable, following arguments in A.4.26, it follows that

2 x 2 +7 =  x 2 −4 ⇒ 2 x 2 +7 =  (x 2 −4 ) 2 and  x 2 −4 ≥ 0

that is to say, only solutions where  x 2 − 4 ≥ 0 are acceptable. Then, 

2 x 2 +7 =  x 2 −4

Fig. 4.5 P.4.27, straight line

“x − 1” can intersect only the

positive side (i.e.,  x ≥ 3) of

√

hyperbola

 x 2 − 9. The intersect

√

of “x − 1” with −  x 2 − 9 in the

lower half plane and  x ≤ −3 is

excluded, because it does not

satisfy  x ≥ 1 condition

4.2 Irrational Equations
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2 x 2 + 7 =  (x 2 − 4 ) 2 =  x 4 − 8 x 2 + 16

∴

0 =  x 4 − 10 x 2 + 9

0 =  x 4 −  x 2 − 9 x 2 + 9

0 =  x 2 (x 2 − 1 ) − 9 (x 2 − 1 )

0 =  (x 2 − 9 )(x 2 − 1 )

0 =  (x − 3 )(x + 3 )(x − 1 )(x + 1 )

Thus, there are four solutions to the given equation:  x 1 = −3 , x 2 = 3 , x 3 = −1 , x 4 = 1, and only the ones where  x 2 − 4 ≥ 0 are acceptable, that is

√

 x 2 − 4 ≥ 0 ∴  x 2 ≥ 4 ∴  x ≥ | 2| ∴  x ≥ |1 .  4142 · · · |

That is to say, only  x 1 = −3 , x 2 = 3 are acceptable, as illustrated in Fig. 4.6. 

4.29. Nested radical is resolved in stages, 





12 −  x x 2 − 8 = 3



12 −  x x 2 − 8 = 9

12 − 9 =  x x 2 − 8



3 =  x x 2 − 8

9 =  x 2 (x 2 − 8 )

9 =  x 4 − 8 x 2

0 =  x 4 − 8 x 2 − 9

Fig. 4.6 P.4.28, an example of

 x 2 − 4 curve that has intersect

√

points with both

2 x 2 + 7 in the

√

upper half plane, and − 2 x 2 + 7

in the lower half plane. 

Nevertheless, only solutions that

√

satisfy  x ≥ | 2| are valid, that is to

say in the upper half plane
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0 =  x 4 +  x 2 − 9 x 2 − 9

0 =  x 2 (x 2 + 1 ) − 9 (x 2 + 1 )

0 =  (x 2 − 9 )(x 2 + 1 )

0 =  (x − 3 )(x + 3 )(x 2 + 1 )

Thus there are two real zeros,  x 1 = 3,  x 2 = −3, and two complex zeros for  x 2 + 1 = 0. 

There are two conditions to be met, the first is obvious, 3 ≥ 0, and the second one follows the argument for nonnegative argument of square root, i.e., 



√

√

 x 2 − 8 ⇒  x 2 − 8 ≥ 0 ∴  x ≥

8 = 2 2 ≈ 2 .  8  . . . 

; therefore, there only real solution is  x = 3, because the other solution  x = −3 which is

√

inferior to 2 2 must be excluded. 

4.30. Given expression has two radicals, where the two square roots impose conditions

√2 x + 8 ⇒ 2 x + 8 ≥ 0 ∴  x ≥ −4

√ x + 5 ⇒  x + 5 ≥ 0 ∴  x ≥ −5

therefore, the first condition of given equation is that  x ≥ −4. Then, with the following algebraic transformations

√

√

2 x + 8 +

 x + 5 = 7

√

√

 ( 2 x + 8 ) + 2 2 x + 8  x + 5 +  (x + 5 ) = 49

√

√

3 x + 13 + 2 2 x + 8  x + 5 = 49



2 2 x 2 + 18 x + 40 = 36 − 3 x = 3 ( 12 −  x)

(4.1)

it is possible to apply the theorem introduced in A.4.26, so that (4.1) implies that 2 x 2 +18 x +40 = 3 ( 12− x) ≡ 2 x 2 +18 x +40 = 9 ( 12− x) 2 and 12− x ≥ 0

2

4

which is to say that the second initial condition in this example is  x ≤ 12. Which means that

(4.1) is further developed as

4 ( 2 x 2 + 18 x + 40 ) = 9 (x 2 − 24 x + 144 )

∴

− x 2 + 288 x − 1136 = 0

This quadratic polynomial may be factorized as follows. First, the product of the leading and free coefficients  (−1 )(−1136 ) = 1136 may be factorized as

4.2 Irrational Equations
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1136 = 2 × 2 × 2 × 2 × 71 or, 

= 4 × 284

because the sum 4 + 284 = 288 equal to the linear coefficient, thus

− x 2 + 288 x − 1136 = 0

− x 2 + 4 x + 284 x − 4 × 284 = 0

− x(x − 4 ) + 284 (x − 4 ) = 0

 (x − 4 )( 284 −  x) = 0

Therefore, two roots of this quadratic equation are  x 1 = 4 and  x 2 = 284. However, due to the two initial conditions,  x ≥ −4 and  x ≤ 12, the only acceptable solution is  x = 4. This conclusion is easily verified as

1.  x = 4 : is correct as

√

√

2 x + 8 +

 x + 5 = 7





2 ( 4 ) + 8 +

 ( 4 ) + 5 x=4

= 7

√

√

16 +

9 x=4

= 7

4 + 3 x=4

= 7 

2.  x = 284 : is, obviously, not correct solution of this equation as

√

√

2 x + 8 +

 x + 5 = 7





2 ( 284 ) + 8 +

 ( 284 ) + 5 x=284

= 7

√

√

576 +

289 x=284

= 7

24 + 17 x=284

= 7

4.31. Square roots in the given equation

1

√

√

−

1

√

√

= 1

2 +  x −

2 −  x

2 +  x +

2 −  x

imply that the initial conditions are

√2 +  x ⇒ 2 +  x ≥ 0 ∴  x ≥ −2

√2 −  x ⇒ 2 −  x ≥ 0 ∴  x ≤ 2

Radicals found in denominator may be transformed with the help of the difference of two

squares identity after expansion with the complementary term as
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√

√

1





√

√

2 +  x +

2 −  x

√

√

=  (a −  b)(a +  b) =  a 2 −  b 2

2 +  x −

2 −  x

2 +  x +

2 −  x

√

√

= 2 +  x + 2 −  x

 ( 2 +  x) −  ( 2 −  x)

√

√

= 2 +  x + 2 −  x ;  (x = 0 )

2 x

and similarly, 

√

√

1





√

√

2 +  x −

2 −  x

√

√

=  (a −  b)(a +  b) =  a 2 −  b 2

2 +  x +

2 −  x

2 +  x −

2 −  x

√

√

= 2 +  x − 2 −  x

 ( 2 +  x) −  ( 2 −  x)

√

√

= 2 +  x − 2 −  x ;  (x = 0 )

2 x

These transformations lead, after adding the last condition  (x = 0 ), into

1

√

√

−

1

√

√

= 1

2 +  x −

2 −  x

2 +  x +

2 −  x

√

√

√

√

2 +  x +

2 −  x − 2 +  x − 2 −  x = 1

2 x

2 x

√

√

√

√



2 +  x +

2 −  x −

2 +  x −

2 −  x = 1

2 x

√

2 2 −  x = 1

2 x

∴

√2 −  x =  x ≡ 2 −  x =  x 2 and  x >  0

That is to say, 

2 −  x =  x 2

 x 2 +  x − 2 = 0

 x 2 −  x + 2 x − 2 = 0

 x(x − 1 ) + 2 (x − 1 ) = 0

 (x − 1 )(x + 2 ) = 0

whose two roots are  x 1 = 1 and  x 2 = −2. Nevertheless, only  x = 1 satisfies all three initial conditions:  x ≥ −2,  x >  0, and  x ≤ 2. This conclusion is easily verified as
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1.  x = 1 : is correct as

1

√

√

−

1

√

√

= 1

2 +  x −

2 −  x

2 +  x +

2 −  x

1

√

√

−

1

√

√

x=1

= 1

2 +  ( 1 ) −

2 −  ( 1 )

2 +  ( 1 ) +

2 −  ( 1 )

1

√

√ −

1

√

√ x=1

= 1

3 −

1

3 +

1

√

√

√

√

 (  3 +

1 ) −  (  3 −

1 )

√

√ √

√

x=1

= 1

 (  3 −

1 )(  3 +

1 )

2 ( 1 )  x=1

= 1 

3 − 1

2.  x = −2 : is, obviously, not correct solution of this equation as

1

√

√

−

1

√

√

= 1

2 +  x −

2 −  x

2 +  x +

2 −  x

1

√

√

−

1

√

√

x=-2

= 1

2 +  (−2 ) −

2 −  (−2 )

2 +  (−2 ) +

2 −  (−2 )

1 − 1 x=-2= 1

−2

2

−1 x=-2

= 1

4.32. First initial condition for the given equation is due to square root



√



 x 2 − 9 ⇒  x 2 − 9 ≥ 0 ∴

 x 2 = | x|

∴ | x| ≥ 3

Method 1: a simple transformation, leads into

 x 2 −9+ x 2 −9 = 20



√

 x 2 − 9 = 29 −  x 2 ≡  x 2 − 9 =  ( 29 −  x 2 ) 2 and 29 −  x 2 ≥ 0 ∴  x ≤

29

so that

 x 2 − 9 =  ( 29 −  x 2 ) 2

 x 2 − 9 =  x 4 − 58 x 2 + 841





 x 4 − 59 x 2 + 850 = 0 bi–quadratic; change of variables  x 2 =  t

 t 2 − 59 t + 850 = 0
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Factors 850 = 2 × 5 × 5 × 17 or, 

= 25 × 34 so that 25 + 34 = 59, and

 t 2 − 25 t − 34 t + 850 = 0

 t (t − 25 ) − 34 (t − 25 ) = 0

√

√

 (t − 25 )(t − 34 ) = 0 ⇒  t 1 = 25 ∴  x = ±5 ,  and,  t 2 = 34 ∴  x =

34  > 

29

Therefore, two possible solutions are  x 1 ,  2

= ±5 because | ± 5| ≥ 3 and

√

±52 = 25 ≤  (  29 ) 2 = 29. 

Method 2: the change of variable technique can be used immediately as







 x 2 − 9 +  x 2 − 9 = 20

 x 2 − 9 =  t

 t +  t 2 = 20

 t 2 +  t − 20 = 0 



 t 2 + 5 t − 4 t − 20 = 0

factors − 20 = 5 ×  (−4 )


 t (t + 5 ) − 4 (t + 5 ) = 0

 (t + 5 )(t − 4 ) = 0

∴  x 1 = 4 , x 2 = −5

which leads into





 x 2 − 9 =  t ∴

 x 2 − 9 = 4 ∴  x 2 − 9 = 16 ∴  x = ±5





 x 2 − 9 =  t ∴

 x 2 − 9 = −5 ≡  x 2 − 9 = 25 and, − 5 ≥ 0

Obviously, if applied correctly, the results must be the same regardless of the method used. 

4.33. After a simple transformation of the given equation as



 x 2 − 2 x +6 +

 x 2 − 2 x + 6 = 6 +6



 x 2 − 2 x + 6 +

 x 2 − 2 x + 6 = 12

it is possible to apply the same ideas as in A.4.32. 



 x 2 − 2 x + 6 +

 x 2 − 2 x + 6 = 12

 x 2 −2 x +6 = 6+2 x − x 2 ≡  x 2 −2 x +6

=  ( 6 + 2 x −  x 2 ) 2 and, 6 + 2 x −  x 2 ≥ 0

where the signs of the last quadratic equation may be derived as

√

√

−

4 − 4 ( 1 )(−6 )

 (x 2 − 2 x − 6 ) = 0 ∴  xa,b = 2 ±

= 1 ± 7 ∴  a ≈ −1 .  65 and,  b ≈ 3 .  65

2
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Thus, in factorized form − (x 2 − 2 x − 6 ) = − (x −  a)(x −  b)  and its sign may be evaluated as x

 − 1 .  65 ... 

3 .  65  ... 

 − 1

 −

 −

 −

 −

 −

( x + 1 .  65 ... )

 −

0

+

+

+

( x −  3 .  65 ... )

 −

 −

 −

0

+

 −( x − a)( x − b)

 −

0

+

0

 −

which is to say that the condition 6 + 2 x −  x 2 ≥ 0 is satisfied within the interval  x ∈  ( 1 −

√

√

7 ,  1 +

7 ). Then, 









 x 2 − 2 x + 6 +

 x 2 − 2 x + 6 = 12

change of variable:

 x 2 − 2 x + 6 =  t

 t 2 +  t = 12

 t 2 +  t − 12 = 0

 t 2 + 4 t − 3 t − 12 = 0

 t (t + 4 ) − 3 (t + 4 ) = 0

 (t + 4 )(t − 3 ) = 0

That is to say,  t 1 = 3 and  t 2 = −4, and further

 x 2 −2 x +6 = 3

 x 2 − 2 x + 6 = 9

 x 2 − 2 x − 3 = 0

 x 2 − 3 x +  x − 3 = 0

 x(x − 3 ) +  x − 3 = 0

 (x − 3 )(x + 1 ) = 0 ∴  x 1 = −1 , x 2 = 3

and

 x 2 −2 x +6 = −4 ≡  x 2 −2 x +6 = 16 and, −4 ≥ 0

which leaves only  x 1 = −1 and  x 2 = 3 as valid solutions. For the sake of argument, let us try to calculate  x 3 ,  4 by ignoring the “−4 ≥ 0” requirement. That is, 

 x 2 −2 x +6 = −4

 x 2 − 2 x + 6 = 16

√4 − 4 ( 1 )(−10 )

√

√

 x 2 − 2 x − 10 = 0

∴  x 3 ,  4 = 2 ±

= 1 ± 11 ≥ 1 ± 7

2
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Fig. 4.7 P.4.33, illustration of

possible intersect points between a

√

constant −4 and ±  x 2 − 2 x + 6

curves. Evidently

√ x 2 − 2 x + 6 = −4 is not

possible

√

√

therefore excluded from the solution set due to the  x ∈  ( 1 − 7 ,  1 + 7 ). One could visualize the necessity of “−4 ≥ 0” requirement by illustration in the Fig. 4.7. Evidently, the −4 line

√

√

does not intersect

 x 2 − 2 x + 6 curve; instead, it intersects −  x 2 − 2 x + 6 curve, which is not the same thing. 

4.34. Nested radicals may be resolved as





√



√

2 x 2 +  x +

2 x 2 +  x − 1 =

13 ≡ 2 x 2 +  x +

2 x 2 +  x − 1 = 13 and, 

13 ≥ 0 

and, 



2 x 2 +  x +

2 x 2 +  x − 1 = 13

∴

2 x 2 + x −1 = −2 x 2 − x +13 ≡ 2 x 2 + x −1

=  (−2 x 2 −  x + 13 ) 2 and, − 2 x 2 −  x + 13 ≥ 0

where

√

√

−

−

−

1 ±

1 − 4 ( 2 )(−13 )

1 ±

105

 ( 2 x 2 +  x − 13 ) = 0

∴  xa,b =

=

4

4

∴

− ( 2 x 2 +  x − 13 ) = − (x −  x 1 )(x −  x 2 ) Thus, in factorized form − ( 2 x 2 +  x − 13 ) = − (x −  a)(x −  b)  and its sign may be evaluated as x

 a

 b

 − 1

 −

 −

 −

 −

 −

( x − a)

 −

0

+

+

+

( x − b)

 −

 −

 −

0

+

 −( x − a)( x − b)

 −

0

+

0

 −
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which is to say that the condition − ( 2 x 2+ x−13 ) ≥ 0 is satisfied within the interval  x ∈  (a, b). 

Then, 









2 x 2 +  x −1 +

2 x 2 +  x − 1 = 13 −1

change of variable:

2 x 2 +  x − 1 =  t

 t 2 +  t = 12 ∴  t 2 +  t − 12 = 0 ∴  t 2 + 4 t − 3 t − 12 = 0

∴  (t + 4 )(t − 3 ) = 0 ∴  t 1 = −4 , t 2 = 3

So that, 

2 x 2 + x −1 = −4 ≡ 2 x 2 + x −1 = 16 and −4 ≥ 0

2 x 2 + x −1 = 3 ≡ 2 x 2 + x −1 = 9 and 3 ≥ 0 

Therefore, two possible solutions are

2 x 2 +  x − 1 = 9 ∴ 2 x 2 +  x − 10 = 0 ∴  ( 2 x + 5 )(x − 2 ) = 0 ∴  x 1 = − 5  , x 2 = 2

2

where both roots are within the  x ∈  (a, b) =  (−2 .  81  . . . ,  2 .  31  . . . )  interval. 

4.35. Given equation form may be transformed into one of the already mastered forms by change of variable as



√



√

√ 

√



5 + 3  x +

5 − 3  x = 3  x

change of variable: 3  x =  t

√

√

5 +  t +

5 −  t =  t

Note that given positive signs of the two square roots, it must be that  t ≥ 0. In addition, real domain values of a square root imply that 5 +  t ≥ 0 ⇒  t ≥ −5 and 5 −  t ≥ 0 ⇒  t ≤ 5. Then, 

√

√

5 +  t +

5 −  t =  t

√

√

 ( 5 +  t) + 2 5 +  t  5 −  t +  ( 5 −  t) =  t 2

√

√

 ( 5 + C t) + 2 5 +  t  5 −  t +  ( 5 − C t) =  t 2

 ( 5 +  t)( 5 −  t) =  t 2 − 5 ≡  ( 5 +  t)( 5 −  t) 2



2

=  t 2 −

 t 2

5

and, 

− 5 ≥ 0

2

2

√

which leads into another initial condition  t ≥

10. Further, 



2

 t 2

 ( 5 +  t)( 5 −  t) =

− 5

2





25 −  t 2 =  t 4 − 5 t 2 + 



25

4
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 t 4 − 4 t 2 = 0 ∴  t 2 (t 2 − 16 ) = 0 ⇒  t 1 ,  2 = 0 , t 3 ,  4 = ±4

4

4

√

Condition that  t ≥

10 eliminates  t 1 ,  2 = 0. Condition that  t ≥ 0 eliminates  t 3 = −4, which leaves  t = 4 as the only solution. Returning back to the original variable, 

√

√

3  x =  t

∴ 3  x = 4 ⇒  x = 64

4.36. Each of the three terms in the given form of equation





 x − 1 −

1 − 1 = 1 − 1

 x

 x

 x

implies initial conditions due to square roots (i.e., its argument must be greater or equal to zero) and due to the inverse function of  x (i.e., division by zero is not accepted), as 1. division by zero must be avoided, thus

1 ∈ R ⇒  x = 0

 x

2. then, it has to be (while  x = 0 already)



 x − 1

∴  x − 1 =  x 2 − 1 =  (x − 1 )(x + 1 ) ≥ 0

 x

 x

 x

 x

recall how the sign of two or more terms in product/division form is determined, as

 x

 − 1

0

1

( x + 1)

 −

0

+

+

+

+

( x −  1)

 −

 −

 −

 −

0

+

 x

 −

 −

 −

n.a. 

+

+

( x −  1)( x + 1) /x

 −

0

+

n.a. 

0

+

In summary, 



 x − 1 ≥ 0 ⇒  x ∈  (−1 ,  0 )  or  x ≥ 1

 x

3. as well as



 x >  0 and  x −1 ≥ 0 ∴  x ≥ 1 ⇒  x ≥ 1

1 − 1 ∴ 1 − 1 =  x − 1 ≥ 0 ⇒

 x

 x

 x

 x <  0 and  x − 1 ≤ 0

∴  x ≤ 1 ⇒  x <  0
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In summary, 



1 − 1 ≥ 0 ⇒  x <  0 or  x ≥ 1

 x

While respecting the above conditions, 





 x − 1 −

1 − 1 = 1 − 1

 x

 x

 x















2

 x − 1

− 2

 x − 1

1 − 1 + 1 − 1

= 1 − 1

 x

 x

 x

 x

 x



 x 2 − 1 −

 x 3 −  x 2 −  x + 1

2

+  x − 1 =  x 2 − 2 x + 1

 x

 x 2

 x

 x 2



 x 2 +  x − 2 −

 x 2 (x − 1 ) −  (x − 1 )

2

=  (x − 1 ) 2

 x

 x 2

 x 2



 (x − 1 )(x + 2 ) −  (x − 1 ) 2 −

 (x − 1 )(x 2 − 1 )

2

= 0

 x

 x 2

 x 2

 (x − 1 )(x + 2 )



−  (x − 1 ) 2 − 2 (x − 1 ) (x + 1 ) = 0

 x

 x 2

 x





 x − 1



 x + 2 −  x − 1 − 2  (x + 1 ) = 0

 x

 x



√



 (x − 1 ) x 2 +  x + 1 − 2 x

 (x + 1 ) = 0 , (x = 0 )

 x

which is equivalent to the following two equations:



 (x − 1 ) = 0 or  x 2 +  x + 1 − 2 x

 (x + 1 ) = 0

The first equation gives simply  x 1 = 1, (it satisfies all initial conditions), and



 x 2 +  x + 1 − 2 x

 (x + 1 ) = 0

 x 2 +  x + 1 =

4 x 3 + 4 x 2



 x 2 +  x + 1 =

4 x 3 + 4 x 2

 x 4 + 2 x 3 + 3 x 2 + 2 x + 1 = 4 x 3 + 4 x 2





 x 4 − 2 x 3 −  x 2 + 2 x + 1 = 0

regroup and compete terms

 x 4 −  x 3 −  x 2 −  x 3 + x 2 +  x − x 2 +  x + 1 = 0

 x 2 (x 2 −  x − 1 )) −  x(x 2 −  x − 1 ) −  (x 2 −  x − 1 ) = 0

 (x 2 −  x − 1 ) 2 = 0
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Therefore, 

√

√

1 − 4 ( 1 )(−1 )

5

 x 2 −  x − 1 = 0

∴  x 2 ,  3 = 1 +

= 1 +

2

2

√

√

1 − 4 ( 1 )(−1 )

5

 x 4 ,  5 = 1 −

= 1 −

2

2

√

In summary, as  x ≥ 1 condition eliminates  x 4 ,  5, then solutions are  x 1 = 1,  x 2 ,  3 =  ( 1 +

5 )/ 2

(double root). 

4.37. Given equation form is not defined for  x = 1 (division by zero), and











16 x

 x − 1

5

+ 5

= 5

16 x

change of variable: 5

=  t

 x − 1

16 x

2

 x − 1

 t + 1 = 5

∴ 2 t 2 − 5 t + 2 = 0

 t

2

2 t

which is equivalent to

16 x

 t = 0 ⇒ 5

= 0 ∴ 16 x = 0 ∴  x = 0

 x − 1

 x − 1

and

2 t 2 − 5 t + 2 = 0 ∴ 2 t 2 − 4 t −  t + 2 = 0 ∴ 2 t (t − 2 ) −  (t − 2 ) = 0

∴  (t − 2 )( 2 t − 1 ) = 0

 t 1 = 1  , t 2 = 2

2

Return to the original variable gives



16 x

5

t=1/2

= 1

 x 1 − 1

2

16 x

= 1 = 1 ∴ 512 x 1 =  x 1 − 1 ∴  x 1 = 1

 x 1 − 1

25

32

511

and



16 x

5

t=2

= 2

 x 2 − 1

16 x 2 = 32 ∴  x 2 =  x 2 − 1 ∴  x 2 = 2

 x 2 − 1

2
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4.38. Recall that even radicals imply that their argument is nonnegative, which is not the

√

case for odd radicals. Given equation has 6  x, therefore  x ≥ 0. Change of variable transforms irrational into a quadratic form as

√

√

√



2 3  x + 5 6  x − 18 = 0

 n xm =  xm/n







√



2

2  x 1 / 6

+ 5  x 1 / 6 − 18 = 0  (ab)c =  abc,  6  x =  t

2 t 2 + 5 t − 18 = 0 ∴ 2 t 2 − 4 t + 9 t − 18 = 0 ∴ 2 t (t − 2 ) + 9 (t − 2 ) = 0

 (t − 2 )( 2 t + 9 ) = 0

That is to say,  t 1 = 2 and  t 2 = −9 / 2. Return to the original variable gives

√6 x = 2 ⇒  x = 26 ∴  x = 64

√



6

6  x = − 9 ≡  x = − 9

and − 9 ≥ 0

2

2

2

In summary,  x = 64 is the solution. 

√

4.39. As there is one

 x  term, one initial condition is  x ≥ 0, and

√  √

 x  5  x − 5  x

 x = 56

√

√

 x 6 / 5 − 5  x 3 / 2 = 56 



 x 3 / 5 −  x 3 / 10 = 56

change variable:  x 3 / 10 =  t

 t 2 −  t = 56

∴  t 2 −  t − 56 = 0 ∴  t 2 + 7 t − 8 t − 56 = 0

∴  t(t + 7 ) − 8 (t + 7 ) = 0 ∴  (t + 7 )(t − 8 ) = 0

That is, 

 t 1 = −7 ⇒  x 3 / 10 = −7 ≡  x =  (−7 ) 10 / 3 and − 7 ≥ 0

 t 2 = 8 ⇒  x 3 / 10 = 8

∴  x = 810 / 3 = 230 / 3 = 210 = 1 024

4.40. One convenient change of variable may be as

√

√

92  x−1 − 4 · 32  x−1 + 3 = 0

√



√



√



2

32  x−1

− 4 · 32  x−1 + 3 = 0 change of variable: 32  x−1 =  t

 t 2 − 4 t + 3 = 0

∴  t 2 −  t − 3 t + 3 = 0 ∴  t(t − 1 ) − 3 (t − 1 ) = 0

∴  (t − 1 )(t − 3 ) = 0 ∴  t 1 = 1 , t 2 = 3
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So that the original variable solution is

√







32  x 1−1 = 1 ≡

 a 0 = 1

∴ 2  x 1 − 1 = 0 ∴  x 1 = 1

√







32  x 2−1 = 3 ≡

 a 1 =  a

∴ 2  x 2 − 1 = 1 ∴  x 2 − 1 = 1 ∴  x 2 = 5

4

4

4.41. Given equation, the initial constrain is that 3 x + 1 ≥ 0, thus  x ≥ −1 / 3, then

√

√

3 +

3 x + 1 =  x ∴

3 x + 1 =  x − 3 ≡ 3 x + 1 =  (x − 3 ) 2 and  x − 3 ≥ 0 ∴  x ≥ 3

then

3 x + 1 =  (x − 3 ) 2 ∴ 3 x + 1 =  x 2 − 6 x + 9 ∴  x 2 − 9 x + 8 = 0 ∴  (x − 8 )(x − 1 ) = 0

which implies that  x 1 = 8 and  x 2 = 1. Due to  x ≥ 3 condition,  x 2 is not acceptable; thus, x = 8 is the only solution. 

4.42. The initial conditions forced by two square roots are

√



 x + 1 ∴  x + 1 ≥ 0 ∴  x ≥ −1

√

∴  x ≥ 5

3 x − 5 ∴ 3 x − 5 ≥ 0 ∴  x ≥ 5

3

3

Then, 

√

√

√

√

2  x + 1 =

3 x − 5 ∴ 2  x + 1 = 3 x − 5 ∴

 x + 1 = 3 x − 5

2

 x + 1 = 9 x 2 − 30 x + 25

4

9 x 2 − 34 x + 21 = 0

5

 (x − 3 )( 9 x − 7 ) = 0

∴  x 1 = 3 , x 2 = 7  < 

9

3

Therefore, the only solution is  x = 3. Graphical interpretation of this solution is illustrated in Fig. 4.8. 

4.43. Given equation is constrained by

√

⎫

 x + 2 ∴  x + 2 ≥ 0 ∴  x ≥ −2

⎪

⎪

√

⎬

 x − 2 ∴  x − 2 ≥ 0 ∴  x ≥ 2

∴  x ≥ 2

√

⎪

⎪

⎭

2 x + 3 ∴ 2 x + 3 ≥ 0 ∴  x ≥ − 32
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Fig. 4.8 P.4.42, illustration of

multiple initial conditions. Given

 x ≥ −1 and  x ≥ 5 / 3 combined

conditions, evidently it is sufficient

that the solution satisfies  x ≥ 5 / 3

condition. Both radicals are in the

upper half plane

Then, 

√

√

√

 x + 2 +

 x − 2 =

2 x + 3

√

√

A x + 2 + 2  x + 2  x − 2 + A x − 2 = Z

Z

2 x + 3

 (x + 2 )(x − 2 ) = 32

 x 2 − 4 = 9 ∴  x 2 = 25 ∴  x = ± 5

4

4

2

As per the initial constrains, the only solution is  x = 5 / 2. 

4.44. By simple use of difference of two square identity, 

√







2

√

2

5 + 1





−

5 − 1

 a 2 −  b 2 =  (a −  b)(a +  b)

2

2

√

√

√

√



5 + 1 − 5 − 1

5 + 1 + 5 − 1

2

2

2

2

√

√



√5 + 1−

√5 + 1 5+1+ 5−1

2

2

√

2 5

√

= 5

2

√

In summary, this expression reduces to

5. 
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4.45. Radical terms force the following constrains:

√ x ∴  x ≥ 0

√

√

 x 3 − 27 = 0

∴

 x 3 = 27 ∴  x = 3

√

√



 x + 3  x + 9 = 0

 x =  t

≡  t 2 + 3 t + 9 ≥ 0 

Then, recall identities for difference of two squares and difference of two cubes, so that the given expression is transformed as



√

 x − 9

√ 



√

÷

 x + 3

√

−  x a 2 −  b 2 =  (a −  b)(a +  b)

 x + 3  x + 9

 x 3 − 27





 a 3 −  b 3 =  (a −  b)(a 2 +  ab +  b 2 )

√

√

√





 ( x − 3 )( x + 3 )

√

√

÷

 x + 3

√

√

−

 a

 d

 x

÷  c =  a

 x + 3  x + 9

 ( x − 3 )(x + 3  x + 9 )

 b

 d

 b c

√

√

√

√

 ( x − 3 )(



 x + 3 )

√

√

 ( x − 3 )(((((((

 x + 3  x + 9 )

√

−  x

((((((

 x + 3  x + 9





 x + 3

√

√ 

√



 ( x − 3 ) 2 −

 x

⇒  x − 3 ≥ 0 ∴  x ≥ 9

√





√ x − 3 −

√ x

 x 2 = | x| =  x,  if  x ≥ 0

− 3 , (x ≥ 9 )

In summary, given expression is valid only for  x ≥ 9 where it is constant “−3.” 

[image: Image 5]
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Problems

5.1

Logarithmic and Exponential Functions

Sketch graphs and show important points of basic exponential and logarithmic functions in P.5.1 to P.5.12. 

5.1.  f (x) = 2 x

5.2.  f (x) =  ex

5.3.  f (x) = 10 x

5.4.  f (x) = log  (x)

5.5.  f (x) = ln (x)

5.6.  f (x) = log (x)

2

5.7.  f (x) = 2− x

5.8.  f (x) =  e− x

5.9.  f (x) = 10− x

5.10.  f (x) = ln2 (− x)

5.11.  f (x) = ln (− x)

5.12.  f (x) = log (− x)

Knowing forms of basic exponential and logarithmic functions (see P.5.1 to P.5.12), deduce and sketch graphs of functions in P.5.13 to P.5.21. 

5.13.  f (x) = 2 x − 2

5.14.  f (x) = 2 ln (x) − 1

5.15.  f (x) = 3 ln (− x) + 3

√

5.16.  f (x) = 2  x 2

5.17.  f (x) =  e ln  x

5.18.  f (x) = 3 x + 3− x





5.19.  f (x) = | log  x|

5.20. 





5.21.  f (x) = 3 ln (− x + 2 ) + 3

2

 f (x) = 5| x| − 2

5.2

Simple Logarithmic Calculations

Without using calculator, calculate logarithms in P.5.22 to P.5.39. 

√

1

3

5.22. 

5.23. log

1000

log

0 .  1

5.24. log

512

2

3 81
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√

1

5

5.25. 

5.26. log√ 8

log

2

5.27. log

 a 2

 a

2 128

5.28. log

10

5.29. log 100

5.30. log 1000

10

10

10

5.31. log 16

1

1

2

5.32. log

5.33. log

25 625

8 4

√

5.34. 25log5 3

5.35. log

5

243

5

5.36. log2 / 3 32





5.39. 

5.37. 

log2  ( 4 )

5.38. 

log  ( 4 )







1 /

1

2

 / 2

log

log

log

8

4

2  ( 16 )

5.3

Exponential Equations

Solve and comment on the solutions of equations in P.5.40 to P.5.67. 

5.40. 2 x = 8

5.41. 3 x = 81

5.42. 9 x = 27

5.43. 2 x−1 = 16

5.44. 2 x−5 = 3

5.45.  e 7−4 x = 6





2 2 x

3 2 x−1

5.46. 

= 16

5.47. 

= 9

3

81

4

16



1 − x

5.48. 

= 1

5.49. 2 · 3 x+1 − 4 · 3 x−2 = 450

2

64

5.50. 2 x−1 − 2 x−3 = 3 x−2 − 3 x−3

5.51. 3 · 4 x + 1 9 x+2 = 6 · 4 x+1 − 1 9 x+1

3

2

5.52. 23 x−2 − 23 x−3 − 23 x−4 = 4

5.53. 0 .  5 x 2−20 x+61 .  5 = 8

√2

5.54.  ( 11 x − 11 ) 2 = 11 x + 99

 x+1

5.55. 4 x = 2  x

√

√

√

√

5.56. 4  x−2 + 16 = 10 · 2  x−2

5.57. 4 x+  x 2−2 − 5 · 2 x−1+  x 2−2 = 6

5.58. 23 x  3 x − 23 x−1 3 x+1 = −288

5.59.  e 2 x − 3 ex + 2 = 0





5.60. 5 x+1 − 5 x−1 = 24

5.61. 

 x 2−1

 x 2 −  x − 1

= 1

√

√

2+  x+ x

√

2 ( 1+  x)

5.62. 

 x

1

81 x − 16 x − 2 × 9 x( 9 x − 4 x) + 36 x = 0

5.63. 

√

3 3 1+  x

= 81

3
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√  x



√  x

5.64. 

5 +

24

+

5 −

24

= 10



√ 





 x

√

 x

5.65. 

7 +

48

+

7 −

48

= 14

5.66. 2 (x + 1 )( 3 x + 1 )x −  (x − 1 ) =  ( 3 x + 1 )x+1

5.67. 312 x−1 − 96 x − 1 − 274 x−1 + 813 x+1 = 2192

Solve systems of equations in P.5.68 to P.5.71. 

2 x  3 y = 12

2 x  4 y = 512

5.68. 

5.69. 

2 y  3 x = 18

8 x = 211 4 y

√

√

√

√

 x

 y

 a

 a 2 = 10  a 7

3 x−1 = 3 9 y

5.70. 

√

√

5.71. √

√

√

 x

5

 a 5 =  y a 4

25 x+1 3 53 y−1 = 5 x  15 5

5.4

Logarithmic Equations

Solve and comment on the solutions of equations in P.5.72 to P.5.85. 

5.72. log  x = 4

5.73. log  x = 3

2

5.74. log  x = 5

5.75. ln ( 3 x − 10 ) = 2

5.76. ln (x 2 − 1 ) = 3

5.77. log (x 2 − 1 ) = 3

5.78. ln  x + ln (x − 1 ) = 1

5.79. ln ( ln  x) = 1

√

5.80. log  (x + 1 ) = 1

4

5.81. log ( 5 −  x) + 2 log 3 −  x = 1

5.82. log (x 2 + 19 ) − log (x − 8 ) = 2

5.83. log  (x − 1 ) + log  (x + 2 ) = 2

2

2

√

5.84. log  ( 5 x 2 )  log2  x = 1

5.85. log  x −  ( log  x)−1 = 1

 x

5

5.86. log  x  log  x  log  x  log  x = 2

3

9

27

81

3

5.87. log  ( 21 .  5 x−2 .  5 + 21 .  5 x−0 .  5 − 0 .  01 · 53 x+1 ) = 3 x − 1

5
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Solve systems of equations in P.5.88 to P.5.91. 

 x +  y = 5

3 x  2 y = 576

5.89. 

5.88. 

log  (y −  x) = 2

log  x + log  y = 5

2

 y

 x

2

2 log  y + 4 = 3 x

log (x− y)−2 log 2 = 1 − log (x+ y)

5.90. 

5.91. 

 x + log  y = 3

log  x − log 3 = log 7 − log  y

5.5

Exponential-Logarithmic Equations

Solve equations in P.5.95 to P.5.94. 

5.92.  x log3  x = 9

5.93. 4 ( log4  x) 2 +  x log4  x = 512

5.94. 52 ( log5 2+ x) − 2 = 5 x+log5 2

5.95.  x 2 log2  x = 10 x

5.6

Exponential Inequalities

Solve and comment on the solutions of inequalities in P.5.96 to P.5.99. 



1 1 /x

5.97. 1  <  3| x 2− x|  <  9

5.96. 2 x+2  > 

4



5.98. 

9 x − 3 x+2  >  3 x − 9

5.99. 92 x+2 3 x 2−1 − 10 · 30 .  5 x 2+1 9 x+3 ≤ 0

5.7

Logarithmic Inequalities

Solve and comment on the solutions of inequalities in P.5.100 to P.5.103. 

 x − 1

5.101. 

5.100. 

log

 x 2  <  1

log

 >  0

2 x+3

 x + 2

5.102. log

 ( 2 x + 2 ) <  1

5.103. log ( 5 x +  x + 20 ) > x −  x  log 2

2 x 2− x

5.1 Logarithmic and Exponential Functions
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Answers

5.1

Logarithmic and Exponential Functions

Among all functions in mathematics, arguably, logarithmic and exponential forms are most challenging for the beginners. Nevertheless, mastery of their basic forms and properties is the key for many other practical problems. In this section, exponential and logarithmic functions are reviewed from the visual perspective, in addition to some of the basic transformation techniques. 

5.1. Regardless of its base, exponential functions cross vertical axis at  (x, y) =  ( 0 ,  1 )  point. 

Note that exponential functions are always positive; see Fig. 5.1. In addition, at  x = 1

exponential function equals to its base, i.e., 2,  e, 10, etc. Exponential functions limit to “0” 

as  x → −∞ and limit to +∞ as  x → ∞. 

5.2. Exponential function with base  e  has basically the same general form as the other exponential function, where its value at  x = 1 equals to  e. See Fig. 5.1 where three typical exponential functions are compared. 

5.3. Exponential function with base 10 has basically the same form as the other exponential function, where its value at  x = 1 equals to 10. See Fig. 5.1 where three typical exponential functions are compared. 

5.4. Logarithmic function with the base 2, see Fig. 5.2, has basically the same general form as logarithmic functions with some other base. Note that all basic logarithmic functions are defined for  x >  0; they cross the horizontal axis at  (x, y) =  ( 1 ,  0 )  point, and their respective value equals to “1” when  x  equals to their base, i.e., 2,  e, 10, etc. Logarithmic function limit to −∞ as  x → 0 from the positive side and limit to +∞ as  x → ∞. Note rotational symmetry relative to exponential functions. Due to its relatively slow rise to infinity, in the communication theory, logarithmic functions are sometimes referred to as “compression” 

functions. 

Fig. 5.1 P.5.1 to P.5.3, all

exponential functions with positive

argument follow the same form:

strictly greater than zero for all  x, 

limit to zero on the left and to plus

infinity on the right side, and

exponent to zero equals one. Any

number or function may be used as

the base as well as the exponent; 

however, most commonly used

bases are 2,  e, and 10
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Fig. 5.2 P.5.4 to P.5.6, being the

inverse to exponential functions, all

logarithms follow the same form:

defined for strictly positive

arguments, limit to negative infinite

while approaching zero and to plus

infinity on the right side, and all

logarithms of one equal zero. Any

positive number or function may be

used as the base as well as the

argument; however, most

commonly used bases are 2,  e

(a.k.a. “natural log” or ln), and 10

Fig. 5.3 P.5.7 to P.5.9, exponents

of negative arguments are mirrored

image of its original form. Still, 

exponents of negative argumenta

are strictly greater than zero for all

 x, limit to plus infinity on the left

and to zero on the right side, and

exponent to zero equals one

5.5. Logarithmic function with the base  e, see Fig. 5.2, has basically the same general form as logarithmic functions with some other base. 

5.6. Logarithmic function with the base 10, see Fig. 5.2, has basically the same general form as logarithmic functions with some other base. 

5.7. Regardless of its base, basic exponential functions with negative argument, see Fig. 5.3, 

are simple mirrored version of their respective form with the positive argument. 

5.8. Regardless of its base, basic exponential functions with negative argument, see Fig. 5.3, 

are simple mirrored version of their respective form with the positive argument. 

5.9. Regardless of its base, basic exponential functions with negative argument, see Fig. 5.3, 

are simple mirrored version of their respective form with the positive argument. 

5.10. Regardless of its base, basic logarithmic functions with negative argument, see Fig. 5.4, 

are simple mirrored version of their respective form with the positive argument. 
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Fig. 5.4 P.5.10 to P.5.12, 

logarithms of negative arguments

are mirrored image of its original

form: They are defined for  x

strictly less then zero, limit to

negative infinity on the right and to

positive infinity on the left side, and

logarithms of one equal zero

Fig. 5.5 P.5.13, as for any

arbitrary function  f (x), adding a

constant to all of its points, i.e., 

 f (x) ±  a, results in vertical shift of

the original curve without affecting

its form. For example, 20 = 1

therefore 20 − 2 = −1 as

illustrated here

5.11. Regardless of its base, basic logarithmic functions with negative argument, see Fig. 5.4, 

are simple mirrored version of their respective form with the positive argument. 

5.12. Regardless of its base, basic logarithmic functions with negative argument, see Fig. 5.4, 

are simple mirrored version of their respective form with the positive argument. 

5.13. Starting from the basic exponential form 2 x, function  f (x) = 2 x − 2 is found as 2 x simply shifted down along the vertical axis by “−2”; see Fig. 5.5. 

5.14. Starting with the basic form of ln (x), first it is multiplied by “2” to create 2 ln (x)  then shifted by “−1” along the vertical axis to create 2 ln (x)−1; see Fig. 5.6. For a simple sketch, it is sufficient to consider only a few typical points and to follow their movement. For example, ln ( 1 ) = 0 therefore 2 ln ( 1 ) = 0 and ln (e) = 1 therefore 2 ln (e) = 2. Then, 2 ln (e) − 1 = 1, etc. 

5.15. Starting with the basic form of ln (− x), first it is multiplied by “3” to create 3 ln (− x) then shifted by “+3” along the vertical axis to create 3 ln (− x) + 3; see Fig. 5.7. For a simple sketch, it is sufficient to consider only a few typical points and to follow their movement. For example, ln (−1 ) = 0 therefore 3 ln (−1 ) = 0 and ln (− e) = 1 therefore 3 ln (− e) = 3. Then, 3 ln (− e) + 3 = 6, 3 ln (−1 ) + 3 = 3, etc. 

144

5

Logarithmic and Exponential Functions

Fig. 5.6 P.5.14, given any

arbitrary  f (x), multiple

transformations may be done in

succession. A function multiplied

by a constant increases its absolute

amplitude at every point (except at

zero point, of course). Then adding

a constant is equivalent to vertical

shift without changing the

multiplied curve’s form

Fig. 5.7 P.5.15, multiple

transformations of arbitrary  f (x)

may include vertical “mirroring” by

replacing argument  x  with − x, 

which then may be followed by

adding a constant, or any other

transformation, for example, 

multiplication by a constant, then

adding a constant as illustrated here

Fig. 5.8 P.5.16, as the

√

consequence of

 x 2 = | x|, given

function  f (x)  follows 2 x  for  x ≥ 0; 

however, it follows 2− x  for  x ≤ 0. 

Note, for example, that for  x = 1, 

the function computes the value

2 x  x=1

= 21 = 2. On the left side, 

however, for  x = −1, it computes

as 2− x  x=-1

= 2− (−1 ) = 21 = 2, that is

to say  f (x)  is en even function

5.16. Simple transformation shows that



√

 f (x) = 2 x; 

 x ≥ 0

 f (x) = 2  x 2 = 2| x| ∴

 f (x) = 2− x; 

 x ≤ 0

√

Therefore, function  f (x) = 2  x 2 is created by plotting only positive part of 2 x  and negative part of 2− x; see Fig. 5.8. 

5.1 Logarithmic and Exponential Functions

145

Fig. 5.9 P.5.18, to add any two

functions, in this example 3 x  and

3− x , is to add their respective

values at each point  x  separately, 

and therefore point by point to

create  f (x). For example, at  x = 0, 

the sum is calculated as

3 x + 3− x  x=0

= 30 + 3−0 = 1 + 1 = 2

Fig. 5.10 P.5.19, given any

arbitrary function, here log2  x, 

graph of its absolute value is

deduced by following definition of

an absolute value: (a) for  f (x) ≥ 0, 

simply keep  f (x)  as is; (b) for

 f (x) ≤ 0, replace every negative

value  f (x 0 ) = − a  with its positive

version | f (x 0 )| = + a, as

illustrated here. Visually, all points

below the horizontal axis (i.e., 

negative) are flipped above the axis

(i.e., positive)

5.17. Knowing the basic function forms, first, argument of a logarithmic function must be strictly positive, thus  x >  0. Then, the relationship between exponential and logarithmic functions is that they are inverse to each other (similar like “+” and “−” or × and ÷), that is to say

 f (x) = A e Aln x =  x;  (x >  0 )

In conclusion, this is a simple  f (x) =  x  function that is strictly defined only for  x >  0 side. 

5.18. Starting with the basic functions 3 x  and 3− x, their sum may be sketched as in Fig. 5.9. 

For example, 30 = 1 and 3−0 = 1 thus 30 + 3−0 = 2, and the rest of the sum is sketched by

following the asymptotic limits. 

5.19. Starting from the basic form “log  x” and knowing that absolute value of a positive 2

arguments stays the same, while absolute value of a negative argument is multiplied by “−1” 

and becomes positive, then | log  x| is sketched as in Fig. 5.10. 

2

5.20. As already seen in P.5.16, exponent with the absolute argument may be created by combining exponent 5 x  for  x ≥ 0 and exponent 5− x  for  x ≤ 0 to create 5| x|; see Fig. 5.11a (left). Then, the final form of 5| x| − 2 can be deduced by the following series of transformations





5± x → 5| x| → 5| x| − 2 → 5| x| − 2
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Fig. 5.11 P.5.20—step-by-step transformations of |5| x| − 2|

Fig. 5.12 P.5.21, subsequent

transformations of ln  x  create

3 ln (− x + 2 ) + 3. In the first step, 

ln  x  is mirrored around the vertical

axis to create ln (− x). Then the

multiplication by 3 to increase the

amplitude, followed by the right

shift by two horizontally and the up

shift by 3 vertically

As the last transformation, the negative interval (shaded region) of 5| x| − 2 is simply mirrored to the positive side; see Fig. 5.11a (right). 

5.21. Starting from the basic function ln (− x), the final form of ‘3 ln (− x + 2 ) + 3’ can deduced by the following series of transformations

ln (− x) → 3 ln (− x) → 3 ln (− x + 2 ) → 3 ln (− x + 2 ) + 3

that appears as amplitude multiplied by “3,” then “3 ln (− x)” function is shifted to the right by

“2” and moved up by “3”; see Fig. 5.12. 

5.2

Simple Logarithmic Calculations

Problems in this section are intended for practicing hand calculations of logarithms with arbitrary base. The goal is to develop basic hand calculation skills needed for solving mathematical problems that include logarithmic functions. 
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Reminder: Arbitrary base logarithms are converted to rational functions of ln (x)  as log  b = ln  b

 a

ln  a

5.22. Given  x = log  ( 1 / 81 ), argument of an logarithm with the arbitrary base may be 3

resolved by using the powers of the same base as

1

H

1

 x = log

∴ 3 x = H

log3 ( 1 / 81 )

∴ 3 x = 1 = 1 = 3−4 ∴  x = log

= −4

3

A3

81

81

34

3 81

which is result of a simple deduction as: if 3 x = 3−4, then it must be that  x = −4 (because of the same power base). 

5.23. Note that the logarithm’s base is 0 .  1, and by following the same reasoning as in P.5.22, 

it follows that

 x = log

1000 ∴ 0 .  1 x = 1000 = 103 =

1

= 0 .  1−3 ∴  x = log 1000 = −3

0 .  1

10−3

0 .  1

√

√



√

5.24. 

1 / 3

 x = log 3 512 ∴ 2 x = 3 512 = 29

= 23 ∴  x = log 3 512 = 3

2

2

1

1

5.25. 

H

 x = log

∴ 2 x = H

log2 ( 1 / 128 )

∴ 2 x = 1 = 1 = 2−7 ∴  x = log

= −7

2

A2

128

128

27

2 128

√ 

√

√ 

 x

H

6

5.26.  x = log√ 8 ∴

2

= Z2 H

log√ 8

2

= 8 =

2

∴  x = log√ 8 = 6

2

Z

2

√

√

√

5.27. 

5

5

 x = log

 a 2 ∴  ax = 5  a 2 =  a 2 / 5 ∴  x = log

 a 2 = 2

 a

 a

5

5.28.  x = log 10 ∴ 10 x = 10 ∴  x = 1

10

5.29.  x = log 100 ∴ 10 x = 100 ∴  x = 2

10

5.30.  x = log 1 000 ∴ 10 x = 1 000 ∴  x = 3

10

In addition, writing “log” without specific index number assumes the base 10, while writing

“ln” assumes the base  e. Note that, for example,  x = log 1 000 000 may be found by simply counting the zeros, therefore  x = 6,  x = log 1 000 therefore  x = 3, etc. 

5.31.  x = log 16 ∴ 2 x = 16 ∴ 2 x = 24 ∴  x = log 16 = 4

2

2

1

1

1

5.32.  x = log

= log

= log 25−2 = −2

25 ∴  x = log

= −2

25



: 1

log

625

25 252

25

25

25 625

where logarithm of its base always equals to “1” and identity “log  ab =  b  log  a” is used to simplify powers of logarithm’s argument. 
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1

1

1

1

5.33. log

= log √

= log √ = log 8−2 / 3 = −2

8 ∴ log

= −2

8



: 1

log

4

8 3

8

8

8

8

64

3 82

3

4

3



5.34. 

log

H

25log5 3 = 52

5 3 = 5 ( 2 log5 3 ) = A5 H

log5 32

∴ 25log5 3 = 9

√

√

5.35. log

5 = log 51 / 2 = 1

5 ∴ log

5 = 1

5

5



: 1

log

2

5

5

2

−5

5.36. 

243

35

2



>1

2

243

log

= log

= log

= −5 

log

∴ log

= −5

2 / 3

2

2

2

2

32

 / 3 25

 / 3

3

 / 3 3

 / 3 32

































1 −2





>1

1



5.37. 

log2  ( 4 ) = log  ( 4 ) = 

= −2 

log

= |−2| ∴

log2  ( 4 ) = 2

1 / 2

1 / 2

log1 / 2

1

2





 / 2

1 / 2





2











−



2



5.38. 

1





>1

1

√

√

log  ( 4 ) =

log

= −2 

log

= −2 ∴

log  ( 4 ) =  j

2

1 / 2

1 / 2

1

1

2

 / 2 2

 / 2







5.39. Given a general composed “telescopic” form  x = log log log

, start unfold-

8

4

2  ( 16 )

ing it from the inside (as the “Russian doll”), as



















 x = log log log

= log log log 24

= log log 4

8

4

2  ( 16 )

8

4

2

8

4



: 1

log2  ( 2 )





= log

4

⇒  x = log  ( 1 )

8



: 1

log4

8

∴

H

8 x = A8 H

log8  ( 1 ) ⇒ 8 x = 1 = 80 ∴  x = 0

∴







log

log

log

=0

8

4

2  ( 16 )

5.3

Exponential Equations

Sometimes the two sides of exponential equation may be transformed to the same base, and then the two exponents must also be equal. Otherwise, if the two sides of equation are in the exponential form with different bases, then the equation may be resolved by applying logarithm with the corresponding base. 

5.40. 2 x = 8 ∴ 2 x = 23 ∴  x = 3

5.41. 3 x = 81 ∴ 3 x = 34 ∴  x = 4

5.42. 9 x = 27 ∴ 32 x = 33 ∴ 2 x = 3 ∴  x = 32

5.3 Exponential Equations
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5.43. 2 x−1 = 16 ∴ 2 x−1 = 24 ∴  x − 1 = 4 ∴  x = 5





5.44. 2 x−5 = 3 ∴ HH

log

= log 3 ∴  x − 5 = log 3 = ln 3 ∴  x = 5 ln 2 + ln 3

2 A

2 x−5

2

2

ln 2

ln 2





5.45.  e 7−4 x = 6 ∴ @

ln A e 7−4 x = ln 6 ∴ 7 − 4 x = ln 6 ∴ 7 − ln 6 = 4 x ∴  x = 7 − ln 6

4



 x





2 2 x

22

4  x

4 2

5.46. 

= 16 ∴

= 42 ∴

=

∴  x = 2

3

81

32

92

9

9







3 2 x−1

3 2 x−1

3 2

5.47. 

= 9 ∴

=

∴ 2 x − 1 = 2 ∴  x = 3

4

16

4

4

2



1 − x

5.48. 

= 1 ∴ 2 x = 1 ∴ 2 x = 1 ∴ 2 x = 2−6 ∴  x = −6

2

64

64

26

5.49. Given form may be transformed by factorization while recalling the rules of powers, as an

2 · 3 x+1 − 4 · 3 x−2 = 450

=  an a− m =  an− m

 am





3 x−2

2 · 3 x+1− x+2 − 4 = 2 · 3 · 3 · 5 · 5

3 x−2 · 50 = 2 · 3 · 3 · 5 · 5

3 x−2 · 2 · 5 · 5 = 2 · 32 · 5 · 5

∴

 x − 2 = 2

∴  x = 4

5.50. Given form may be transformed by factorization while recalling the rules of powers, as an

2 x−1 − 2 x−3 = 3 x−2 − 3 x−3

=  an a− m =  an− m

 am









2 x−3 2 x−1− x+3 − 1 = 3 x−3 3 x−2− x+3 − 1

2 x−3 · 3 = 3 x−3 · 2

2 x−3 = 3 x−3

2

3

2 x−4 = 3 x−4



2  x−4





= 1  an = 1 ⇒  n = 0

3

∴
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 x − 4 = 0 ∴  x = 4

5.51. Following same idea as in A.5.50, 

3 · 4 x + 1 9 x+2 = 6 · 4 x+1 − 1 9 x+1

3

2

1 9 x+1 + 1 9 x+2 = 6·4 x+1 − 3·4 x

2

3









1

9 x+1

+ 1 9 x+2− x−1 = 4 x+1 6 − 3 · 4 x− x−1

2

3

9 x+1 · 7 = 4 x+1 · 



21 3

2

4 2

9 x+1 = 3

4 x+1

2



3 2 (x+1 )





= 3  ab =  a ⇒  b = 1

2

2

∴

2 (x + 1 ) = 1 ∴

 x = − 12

5.52. Given form may be transformed by factorization while recalling the rules of powers, as 23 x−2 − 23 x−3 − 23 x−4 = 4

 ab ac =  ab+ c

23 x 2−2 − 23 x 2−3 − 23 x 2−4 = 22





1

23 x

− 1 − 1

= 22

4

8

16

23 x = 22 · 16 ∴ 23 x = 26 ∴ 3 x = 6 ∴  x = 2

5.53. After power transformations and factorization, given equation is resolved as

0 .  5 x 2−20 x+61 .  5 = 8

√2



1  x 2−20 x+61 .  5 = 23 2−1 / 2

2

2− (x 2−20 x+61 .  5 ) = 25 / 2

∴

− (x 2 − 20 x + 61 .  5 ) = 52

− x 2 + 20 x − 64 = 0

− x 2 + 4 x + 16 x − 64 = 0
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− x(x − 4 ) + 16 (x − 4 ) = 0 ∴  (x − 4 )( 16 −  x) = 0 ∴  x 1 = 4 , x 2 = 16

5.54. Binomial square development and change of variable result in

 ( 11 x − 11 ) 2 = 11 x + 99

112 x − 22 · 11 x + 121 = 11 x + 99





112 x − 23 · 11 x + 22 = 0

change of variable: 11 x =  t

 t 2 − 23 t + 22 = 0

 t 2 −  t − 22 t + 22 = 0 ∴  (t − 1 )(t − 22 ) = 0 ∴  t 1 = 1 , t 2 = 22

so that

11 x 1 = 1

∴  x 1 = 0





11 x 2 = 22

see A.5.44

∴ HHH

log Z

22 ∴  x

22 = ln 22

11 Z

11 x 2 = log11

2 = log11

ln 11

5.55. A simple power transformation leads into quadratic form, as

 x+1

 x+1

4 x = 2  x

∴ 22 x = 2  x ∴ 2 x =  x + 1 ∴ 2 x 2 −  x − 1 = 0

 x

∴  (x − 1 )( 2 x + 1 ) = 0 ∴  x 1 = 1 , x 2 = −12

5.56. Change of variable technique leads into quadratic equation, as

√

√

√



4  x−2 + 16 = 10 · 2  x−2

 x − 2 =  t

22 t + 16 = 10 · 2 t







2

2 t

− 10 · 2 t + 16 = 0 2 t =  r

 r 2 − 10 r + 16 = 0 ∴  (r − 2 )(r − 8 ) = 0 ∴ 2 t 1 = 2 ∴  t 1 = 1 ,  2 t 2 = 8 ∴  t 2 = 3

so that

 x 1 − 2 = 1 ∴  x 1 −2 = 1 ∴  x 1 = 3

 x 2 − 2 = 3 ∴  x 2 −2 = 9 ∴  x 2 = 11

5.57. Change of variable leads into quadratic equation as

√

√





4 x+  x 2−2 − 5 · 2 x−1+  x 2−2 = 6

 xab =  (xa)b =  (xb)a
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√



√



√



2

2 x+  x 2−2

− 5 · 2−1 · 2 x+  x−2 = 6 2 x+  x 2−2 =  t

 t 2 − 5  t − 6 = 0 ∴ 2 t 2 − 5 t − 12 = 0 ∴  (t − 4 )( 2 t + 3 ) = 0

2

∴  t 1 = 4 , t 2 = −32

so that

√





2 x 1+  x 2−2

1

= 22 ∴  x 1 +  x 2 − 2 = 2 ∴

 x 2 − 2 = 2 −  x

1

1

1

√





2 x 2+  x 2−2

2

= −3 ∴

2 f (x) >  0

∴  t 2 = −3

2

2

which is to say



 x 2 − 2 = 2 −  x

− 2 =  ( 2 −  x

1

1

≡  x 21

1 ) 2

and 2 −  x 1 ≥ 0 ∴  x 1 ≤ 2



 x 2 − 2 = 4 − 4 x

∴  x

1

1 + 

 x 21

1 = 3

2

as the only solution. 

5.58. Transformations based on power identities lead into

23 x  3 x − 23 x−1 3 x+1 = −288



 x

23 3

− 23 x 2−1 3 x 31 = −288









 x

 x

23 3

− 3 23 3 = −288

2

24 x − 3 24 x = −288

2

−1 24 x = −288

2

24 x = 576 = 242

∴  x = 2

5.59. This exponential equation is in reality quadratic equation in disguise; by the change of variables technique, it is converted into a simple quadratic equation as





2

 e 2 x − 3 ex + 2 = 0 ∴

 ex

− 3  ex + 2 = 0 ∴  t =  ex

∴  t 2 − 3 t + 2 = 0

 t 2 − 2 t −  t + 2 = 0

 t (t − 2 ) −  (t − 2 ) = 0

 (t − 2 )(t − 1 ) = 0 ∴  t 1 = 2 , t 2 = 1
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 Case t 1 = 2: ∴  ex 1 = 2 ∴ ln  ex 1 = ln 2 ∴  x 1 = ln 2



 Case t 2 = 2: ∴  ex 2 = 1 ∴ ln  ex 2 = ln 1 ∴  x 1 = 0

5.60. After factorization of 52 term, it follows that

5 x+1 − 5 x−1 = 24

5 x−152 − 5 x−1 = 24





5 x−1 52 − 1 = 24

5 x−1 × 24 = 24 ∴ 5 x−1 = 1 = 50 ∴  x − 1 = 0 ∴  x = 1



 x 2−1

5.61. Given  f (x) =  x 2 −  x − 1

= 1, note that its general form of this function is

 ab = 1, which is equivalent to logarithmic form

ln  ab = ln 1 ∴  b  ln  a = 0

where argument of a logarithmic function must be strictly positive, that is to say  a >  0. In this problem, it must be that  x 2 −  x − 1  >  0. Roots of this polynomial are

√

√

5

5

 x 2 −  x − 1 = 0 ∴  x 1 = 1 −

and  x 2 = 1 +

2

2

where inequality  x 2 −  x − 1  >  0 defines two intervals:  x < x 1 and  x > x 2. 

By consequence, in this problem, equation  ab = 1 is possible in two cases: (1) if  a >  0 and b = 0, or (2)  a = 1. Thus, 

 Case 1 : ab = 1 ⇒  a >  0 and  b = 0, that is to say







 x 2 −  x − 1  >  0 ∴  (x 2 − 1 ) −  x >  0

 x 2−1

 x 2 −  x − 1

= 1 ∴

 x 2 − 1

= 0 ∴  x = ±1

which is to say

 x = 1 : ⇒  x 2 − 1 = 0 ∴  (x 2 − 1 ) −  x = 0 − 1  >  0 ∴ −1  >  0

 x = −1 : ⇒  x 2 − 1 = 0 ∴  (x 2 − 1 ) −  x = 0 − 1 = 0 −  (−1 )  = 0 ∴ 1  >  0 

therefore,  x = −1 satisfies both conditions. 

 Case 2 : ab = 1 ⇒  a = 0, thus

 x 2 −  x − 1 = 1 ∴  x 2 −  x − 2 = 0 ∴  x 2 − 2 x +  x − 2 = 0 ∴  x(x − 2 ) +  x − 2 = 0

∴  (x + 1 )(x − 2 ) = 0 ∴  x = −1 , x = 2

Thus, in total  x = −1 (double root) and  x = 2. These three solutions for  f (x) = 1 are illustrated in Fig. 5.13. 
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Fig. 5.13 P.5.61, arbitrary base

and exponent are subject to

multiple conditions. In this

example, all values within the strict

interval  x ∈  (x 1 , x 2 )  are not

allowed. Solutions of  f (x) = 1 are

the intersect points between  f (x)

and  g(x) = 1, as illustrated here

(Note that the even order roots do

not cross the horizontal line, see

Vol. II on functions)

5.62. After factorization, this equation is transformed into quadratic equation as

81 x − 16 x − 2 × 9 x( 9 x − 4 x) + 36 x = 0

 ( 34 )x −  ( 24 )x − 2 × 92 x + 2 × 9 x  4 x) +  ( 62 )x = 0

34 x − 24 x − 2 × 34 x + 2 × 32 x  22 x + 62 x = 0

34 x − 2 × 34 x − 24 x + 2 × 62 x + 62 x = 0

−34 x − 24 x + 3 × 62 x = 0 



34 x + 24 x − 3 × 62 x = 0

factor 24 x

34 x + 

24 x − 32 x

22 x

3

= 0

24 x



24 x

2Z

4 x  2 x

2



3 2 x

2 x

−

3

3

+ 1 = 0

2

2

Thus, change of variable leads to



√

3 2 x

5

 t =

∴  t 2 − 3 t + 1 = 0 ∴  t + 1 ,  2 = 3 ±

2

2

Return to the original variable gives





√

√

√

3 2 x

 x

= 9

= 3 ± 5 ∴

9

3 ±

5

5 ) − ln 2

 x 1 ,  2 ln

= ln

∴  x 1 ,  2 = ln ( 3 ±

2

4

2

4

2

ln 9 − ln 4
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√

5.63. Transformations of the power forms, while respecting

 x

∴  x ≥ 0, leads into

quadratic equation as

√

√

2+  x+ x

√





 x√

1

2 ( 1+  x)

3 3 1+  x

= 81  xa xb =  xa+ b; 1 =  x− n

3

 xn

√

1 +  x√

− 2+  x+ x

√

3 2 1+  x  3 2 ( 1+  x) = 34

√

1 +  x√ − 2+  x+ x

√

3 2 1+  x  2 ( 1+  x) = 34

√

√

√

√

 ( 1+  x) 2+2 x(

1 

+  x)− (

1 

+  x)( 2+  x+ x)

√

3

2 ( 1+  x) 2

= 34

which is equivalent to

√

√

 ( 1 +

 x) + 2 x −  ( 2 +

 x +  x)

√

= 4

2 ( 1 +

 x)

√

 x − 1 = 8 + 8  x

√





 x − 9 2

 x − 9

 x =  x − 9 ≡  x =

and

≥ 0 ∴  x ≥ 17

8

8

8

i.e.,  x ≥ 17, so that





 x − 9 2

 x =

8

 x 2 − 82 x + 81 = 0 ∴  x 2 −  x − 81 x + 81 = 0 ∴  (x − 1 )(x − 81 ) = 0

which leaves  x = 81 as the only solution. 

5.64. By using the change of variables technique, given equation is converted as



√  x



√  x

5 +

24

+

5 −

24

= 10







√

√

 x





5 −

24

√

 x

5 +

24 

√

+

5 −

24

= 10

5 −

24

⎛

√

√

⎞ x



√  x

⎝  ( 5 + 24 )( 5 − 24 )



√

⎠ +

5 −

24

= 10

5 −

24

√

 x 



25 − 24

√

 x



√

+

5 −

24

= 10

5 −

24





1

√

 x



√  +

=

 x

5 −

24

10

5 −

24
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√  x

This form is converted into quadratic equation with

5 −

24

=  t  change, as

1

√

+  t = 10 ∴  t 2 − 10  t + 1 = 0 ∴  t 1 ,  2 = 5 ± 24

 t

Return to the original variable results in



√  x



√  x

√

5 −

24

=  t ∴

5 −

24

= 5 − 24 ∴  x = 2



√  x

√

∴

5 −

24

= 5 + 24 =

1√ ∴  x = −2

5 −

24





 x− n = 1 ;  (a −  b)(a +  b) =  a 2 −  b 2

 xn

5.65. Transformation based on the difference of two squares leads into quadratic equation as



√ 





 x

√

 x

7 +

48

+

7 −

48

= 14









√ 



√

 x

√

 x

7 +

48

7 +

48

+

7 −

48 

√

= 14

7 +

48





⎛ 

√ 

√ ⎞ x

√  x

7 −

48 7 +

48

7 +

48

+ ⎝



√

⎠ = 14

7 +

48







√ 

√

 x

 x

49 − 48

7 +

48

+ 

√

= 14

7 +

48



√ 





 x



√  x

7 +

48

+

1



√  = 14

7 +

48

=  t

 x

7 +

48

that is to say

√4·48

√

 t + 1 − 14 = 0 ∴  t 2 − 14 t + 1 = 0 ∴  t 1 ,  2 = 14 ±

= 7 ± 48

 t

2

and return to the original variable, 



√  x

√

7 +

48

= 7 + 48 ∴  x 1 = 2



√ 





 x

√

− x

√

7 +

48

=

1



√  =

=

 x

7 −

48

7 −

48

∴  x 2 = −2

7 −

48
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5.66. Given equation 2 (x + 1 )( 3 x + 1 )x −  (x − 1 ) =  ( 3 x + 1 )x+1, note that it must be (see P.5.61)

1

3 x + 1  >  0 ∴  x >  3

then, this function may be converted into the following form, 

2 (x + 1 )( 3 x + 1 )x −  (x − 1 ) =  ( 3 x + 1 )x+1

2 (x + 1 )( 3 x + 1 )x −  ( 3 x + 1 )x+1 =  x − 1

2 (x + 1 )( 3 x + 1 )x −  ( 3 x + 1 )( 3 x + 1 )x =  x − 1





 ( 3 x + 1 )x  2 (x + 1 ) −  ( 3 x + 1 ) =  x − 1

− (x − 1 )( 3 x + 1 )x =  x − 1

Note that  ( 3 x + 1 )x >  0 for all  x >  1 / 3 and − (x − 1 )  =  (x − 1 ); thus the last equation is possible only if  x = 1, i.e., 

 x = 1 : − ( 1 − 1 )( 3 ( 1 ) + 1 ) 1 = 1 − 1 ∴ − ( 0 )( 4 ) = 0 

In conclusion,  x = 1. This solution may be illustrated by finding the intersection point between the left and right sides of equation (see Fig. 5.14), i.e., 

 f 1 (x) = 2 (x + 1 )( 3 x + 1 )x −  (x − 1 ) f 2 (x) =  ( 3 x + 1 )x+1

5.67. Transformations of the power forms lead into quadratic equation as

312 x−1 − 96 x − 1 − 274 x−1 + 813 x+1 = 2192

312 x−1 − 312 x−2 − 312 x−3 + 312 x+4 = 2192





312 x  3−1 − 3−2 − 3−3 + 34 = 2192





1

312 x

− 1 − 1 + 81 = 2192

3

9

27

Fig. 5.14 P.5.66, nonlinear

equations may be resolved

graphically, where the left side of

the equation is one function, here


 f 1 (x), and the right side is another

function, here  f 2 (x). To say that

 f 1 (x) =  f 2 (x)  is to say that they

have a common point, here at

 x = 1, which is the desired solution
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so that





2192

312 x

= 



2192 1

∴ 312 x = 33

∴ 12 x = 3 ∴  x = 1

27

4

5.68. Given system is resolved as







2 x  3 y

= 12

 x

 y

 x

− y

∴ 2 x  3 y = 



12 2

∴

2

3

= 2 ∴

2

2

= 2

2 y  3 x

= 18

2 y  3 x





18 3

3

2

3

3

3

3

so that, 



2  x− y = 2 ∴  x −  y = 1 ∴  x = 1 +  y

3

3

which can be back-substituted as

21+ y  3 y = 12 ∴ 2 · 2 y  3 y = 12 ∴ 6 y = 6 ∴  y = 1

∴  x = 2

5.69. Transformations of the power terms lead into







2 x  4 y

= 512

2 x  22 y

= 29

2 x+2 y

= 29

∴

∴

8 x

= 211 4 y

23 x  2−2 y

= 211

23 x−2 y

= 211

which is equivalent to the following linear system



 x + 2 y

= 9

∴ 4 x = 20 ∴  x = 5 ∴  y = 2

3 x − 2 y

= 11

5.70. Following same idea as in A.5.69

√ √

√ ⎫



 x a y a 2 = 10  a 7⎬

 a 1 /x+2 /y

=  a 7 / 10

√

√





 x

⎭ ∴

 a 5

=  y a 4

 a 5 /x−4 /y

= 1  x 0 = 1

which is equivalent to

1 + 2 = 7

 x

 y

10

5 − 4 = 0 ∴ 1 = 4 ⇒ 4 + 2 = 7 ∴ 

14 2 = 7 1 ∴  y = 4 ∴  x = 5

 x

 y

 x

5 y

5 y

 y

10

5 y





10 2

5.71. Transformations of the power term forms and grouping similar ones lead into
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√

√

⎫

⎫

⎫

 x−1

2 y

3 x−4 y−3

3 x−1

= 3 9 y ⎬

3

⎬

⎬

2

= 3 3

3

6

= 1

√

√

√

5

⎭ ∴

6 (x+1 )+5 ( 3 y−1 )

15 x+1 ⎭ ∴

5 y−3 x

⎭

25 x+1 3 53 y−1

= 5 x  15 5

5

15

= 5 15

5 5

= 1

which is equivalent to



3 x − 4 y

= 3

∴  y = 3 ∴  x = 5

−3 x + 5 y = 0

5.4

Logarithmic Equations

Logarithmic and exponential functions reverse each other, similar as add/subtract, or multiply/divide do; thus, the general strategy for solving these types of equations is to apply opposite function to both left and right side of equation. 

Reminder: Given a logarithmic equation, its solution is found by rising both left and right side of the equation as

H

log  f (x) =  b ⇒

H

log a f (x) =  ab ⇒  f (x) =  ab

 a

A a

or given exponential function

 af (x) =  b ⇒ log  af (x) = log  b ⇒  f (x)

 a = log  b ⇒  f (x) = log  b

 a

 a



: 1

log a

 a

 a

5.72. 

H

log  x = 4 ∴

H

log2 x = 24 ∴  x = 24 = 16

2

A2

5.73. log  x = 3 ∴

5.74. log  x = 5 ∴

5.75. ln ( 3 x − 10 ) = 2 ∴  e ln ( 3 x−10 ) =  e 2 ∴ 3 x − 10 =  e 2 ∴  x =  e 2 + 10

3



5.76. ln (x 2 − 1 ) = 3 ∴  e ln (x 2−1 ) =  e 3 ∴  x 2 − 1 =  e 3 ∴  x = ±  e 3 + 1

5.77. log (x 2 − 1 ) = 3 ∴





5.78. ln  x + ln (x − 1 ) = 1 ∴ ln  x(x − 1 ) = 1 ∴  e ln (x(x−1 )) =  e ∴  x 2 −  x =  e

√1 + 4 e

 x 2 −  x −  e = 1 ∴  x 1 ,  2 = 1 ± 2
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5.79. ln ( ln  x) = 1 ∴  e ln ( ln  x) =  e ∴ ln  x =  e ∴  e ln  x =  ee ∴  x =  ee 5.80. 

H

log  (x + 1 ) = 1 ∴

H

log4 (x+1 ) = 41 ∴  x + 1 = 4 ∴  x = 3

4

A4

5.81. Logarithmic functions imply conditions



log ( 5 −  x)

∴ 5 −  x >  0 ∴  x <  5

∴  x <  3

log ( 3 −  x)

∴ 3 −  x >  0 ∴  x <  3

so that logarithmic identity transformations lead to

√





log ( 5 −  x) + 2 log 3 −  x = 1

 n  log  x = log  xn





log ( 5 −  x) + log ( 3 −  x) = 1

log  a + log  b = log (ab); log 10 = 1





log  ( 5 −  x)( 3 −  x) = log 10

∴

 ( 5 −  x)( 3 −  x) = 10 ∴  x 2 − 8 x + 5 = 0

√

√

∴

64 − 4 ( 1 )( 5 )

 x 1 ,  2 = 8 ±

= 4 ± 11

2

√

which leaves  x = 4 −

11 as the only solution that satisfies  x <  3 condition. 

5.82. Following same idea as in A.5.81, first,  (x 2+19 )  argument is always positive; thus there are no constrains. However,  (x − 8 )  argument must be positive thus  x >  8. Then, logarithmic identity transformations lead to





log (x 2 + 19 ) − log (x − 8 ) = 2

log 100 = 2

 x 2 + 19

log

= log 100 ∴  x 2 + 19 = 100

 x − 8

 x − 8

∴

 x 2 − 100 x + 819 = 0 ∴  x 2 − 9 x − 91 x + 819 = 0 ∴  (x − 9 )(x − 91 ) = 0

which is to say  x 1 = 9 and  x 2 = 91. 

5.83. The two logarithmic functions impose limits as  x − 1  >  0 ∴  x >  1 and  x + 2  > 0 ∴  x > −2, thus  x >  1, so that

log  (x − 1 ) + log  (x + 2 ) = 2

2

2





log  (x − 1 )(x + 2 ) = 2

2

AH

2 H

log2 ((x−1 )(x+2 )) = 22

 (x − 1 )(x + 2 ) = 4 ∴  (x − 2 )(x + 3 ) = 0

which leaves  x = 2 as the only solution because −3  <  1. 
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5.84. The change of log base identity may be used to transform given equation as





log  ( 5 x 2 )  log2  x = 1

 x

5

log  b = ln  a

 a

ln  b

ln ( 5 x 2 ) 

ln  x  ln  x = 1



ln  x

ln 5 ln 5





ln ( 5 x 2 )  ln  x = ln 5 ln 5

ln (ab) = ln  a + ln  b





ln 5 + ln  x 2 ln  x = ln2 5





2 ln2  x + ln 5 ln  x − ln2 5 = 0

change variable: ln  x =  t

so that



− ln 5 ± ln2 5 − 4 ( 2 )(− ln2 5 )

− ln 5 ± 3 ln 5

2 t 2 + ln 5  t − ln2 5 = 0

∴  t 1 ,  2 =

∴  t 1 ,  2 =

4

4

− ln 5 + 3 ln 5





√

 t 1 =

= 1 ln 5 =  a  ln  b = ln  ba = ln 5

4

2

√

√

∴ ln  x = ln 5 ∴  x 1 = 5

− ln 5 − 3 ln 5





1

 t 2 =

= − ln 5 =  a  ln  b = ln  ba = ln

4

5

∴

1

ln  x = ln

∴  x 2 = 1

5

5

5.85. Change of variable transforms this log equation into its equivalent quadratic form as

√

log  x −  ( log  x)−1 = 1





1

−1





log  x −

log  x

= 1 change of variable: log  x =  t

2



 t

−1

 t −

= 1 ∴  t 2 −  t − 2 = 0 ∴  (t − 2 )(t + 1 ) = 0 ∴  t 1 = 2 , t 2 = −1

2

so that

log  x 1 = 2 ∴  x 1 = 100 ,  log  x 2 = −1 ∴  x 2 = 1

10

5.86. The change of log base identity may be used to transform given equation as





log  x  log  x  log  x  log

 x = 2

3

9

27

81

log  b = ln  a

3

 a

ln  b

ln  x  ln  x  ln  x  ln  x = 2

ln 3 ln 9 ln 27 ln 81

3
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1

1

1

1

 ( ln  x) 4

= 2

ln 3 ln 32 ln 33 ln 34

3

1

 ( ln  x) 4

= 2





24 8  ( ln 3 ) 4

3





 ( ln  x) 4 =  ( 2 ln 3 ) 4

even powers

∴ ln  x = ±2 ln 3

∴

ln  x 1 = 2 ln 3 = ln 9 ∴  x 1 = 9

1

ln  x 2 = −2 ln 3 = ln

∴  x 2 = 1

9

9

5.87. Logarithmic and the power identities lead into





log  ( 21 .  5 x−2 .  5 + 21 .  5 x−0 .  5 − 0 .  01 · 53 x+1 ) = 3 x − 1

5

 n log n x =  x

AH

5 H

log5 ( 21 .  5 x−2 .  5+21 .  5 x−0 .  5−0 .  01 · 53 x+1 ) = 53 x−1

21 .  5 x−2 .  5 + 21 .  5 x−0 .  5 − 0 .  01 · 53 x+1 = 53 x−1

23 x/ 22−5 / 2 + 23 x/ 22−1 / 2 = 53 x 5−1 + 1 53 x 51

100









1

23 x/ 2 2−5 / 2 + 2−1 / 2 = 53 x

+ 5

5

100









4 · 23 x/ 2 2−5 / 2 + 2−1 / 2 = 53 x

square both sides



2

16 · 23 x  2−5 / 2 + 2−1 / 2

= 56 x



25

25 3 x





16 · 23 x

= 253 x

∴

= 25 ∴ 3 x = 1 ∴  x = 1





32 2

2

2

3

5.88. This example illustrates a typical case where one of the equations is linear and the other transcendental. One possible technique is to use the change of variable as

⎫

⎫

 x +  y

= 5 ⎪

⎬

 x +  y

= 5 ⎪

⎬ 



ln  x =

⎪ ∴ ln  x

⎪

change of variable:

 t

log  x + log  y

= 5⎭

+ ln  y = 5⎭

ln  y

 y

 x

2

ln  y

ln  x

2

As there are two log functions, there are two conditions that must be respected: for ln  x ⇒  x > 0 and for ln  y ⇒  y >  0. Failing to immediately recognize these two conditions would imply the final solutions to this system that are not correct. Thus, the second equation is transformed into its equivalent quadratic form as

 t + 1 = 5 ∴ 2 t 2 − 5 t + 2 = 0 ∴ 2 t 2 −  t − 4 t + 2 = 0 ∴  (t − 2 )( 2 t − 1 ) = 0

 t

2

 t 1 = 2 , t 2 = 12
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and therefore, 

ln  x = 2 ∴ ln x = 2 ln y ∴  x = ln y 2 ∴  x =  y 2

ln  y

which is to say that the equivalent system of equations is resolved as



√

√

 x +  y

= 5

−

−

∴

1 ±

1 − 4 ( 1 )(−5 )

1 ±

21

 y 2 +  y − 5 = 0 ∴  y 1 ,  2 =

=

 x

=  y 2

2

2

However, 

√

√

−1 + 1 − 4 ( 1 )(−5 )

−1 + 21

 y 1 =

=

 >  0 

2

2

√

√

−1 − 1 − 4 ( 1 )(−5 )

−1 − 21

 y 2 =

=

 <  0

2

2

which leaves  y 1 as the only valid solution of this quadratic equation that may be used as log argument in ln  y; thus, the first  (x 1 , y 1 )  solution is

√

−1 + 21

 y 1 =



2

√

√

−1 + 21

21

 x 1 = 5 −  y 1 = 5 −

= 11 −

 >  0 

2

2

Nevertheless, as there is quadratic (or square root) relation between  x  and  y, it is also possible x +  y

= 5





√



√



√

∴

 y >  0

∴  x +  x − 5 = 0 ∴

change of variable:

 x =  t

 y

= ±  x

√

−1 + 21

 t 2 +  t − 5 = 0 ∴  t 1 =

2

so that the second  (x 2 , y 2 )  solution is

√

√

√

√

√

√

−1 + 21

21 − 1

21 − 1

21 + 1

21

 x 2 =

∴  x 2 =

= 21 − 2

= 11 −

 >  0 

2

2

2

4

2

√

√

21

−1 + 21

 y 2 = 5 −  x 2 = 5 − 11 −

=



2

2

Note high symmetry of forms in this example that is consequence of quadratic/square root

relationships between two variables  x  and  y  constrained by log functions. Misunderstanding of this kind of relationships is the principal source of many calculation errors. 
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5.89. Exponent may be used to eliminate log function of the same base, as







3 x  2 y

= 576

3 x  2 y

= 576

3 x  2 y

= 576

∴

∴

log  (y −  x) = 2

 y −  x

= 4

2

A2HH

log2 (y− x)

= 22

Which leads into





3 x  2 y = 576

 y =  x + 4

∴ 3 x  2 x+4 = 576 ∴ 3 x  2 x 24 = 576 ∴ 6 x = 36





∴  x = 2  y =  x + 4

∴  y = 6

5.90. Due to log function, there is one limitation as log  y ⇒  y >  0, then 2 log  y + 4 = 3 x

2 log  y + 4 = 3 x

∴

 x + log  y

= 3

log  y

= 3 −  x

So that, 

2 ( 3 −  x) + 4 = 3 x ∴ 5 x − 10 = 0 ∴  x = 2

log  y = 3 − 2 = 1 ∴  y = 10

5.91. Due to four log functions, there are the following conditions

log (x −  y) ⇒  x −  y >  0 ∴  x > y

log (x +  y) ⇒  x +  y >  0 ∴  x > − y

log  x ⇒  x >  0

log  y ⇒  y >  0

which may be summarized as 0  < y < x. Thus, 





log (x −  y) − 2 log 2 = 1 − log (x +  y)

log (x −  y) + log (x +  y) = 1 + 2 log 2

∴

log  x − log 3

= log 7 − log  y

log  x + log  y

= log 7 + log 3

Which is equivalent to











log  (x− y)(x+ y)

= 1+ log 4

Z

Z

10Z

log (x 2− y 2 )

= 101+log4

 x 2− y 2

= 101Z

Z

10Z

log4

∴

∴

log (xy)

= log 21

 xy

= 21

 xy

= 21

that is to say



 x 2 −  y 2

= 40



∴  x 2 = 40 +  y 2 ∴

40 +  y 2 y = 21 ∴  ( 40 +  y 2 ) y 2 = 212

 xy

= 21
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and





 y 4 + 40 y 2 − 212 = 0

biquadratic, change of variable:  y 2 =  t

 t 2 + 40 t − 441 = 0 ∴  t 2 − 9 t + 49 t − 441 = 0 ∴  (t − 9 )(t + 49 ) = 0

then

 y 2 = 9 ∴  y

= −49

1

1 = 3

but,  y 22

 x 1  y 1 = 21 ∴  x 1 = 21 = 7

3

which satisfies the initial conditions between  x  and  y. 

5.5

Exponential-Logarithmic Equations

Equations that contain various composite exp/log forms are resolved with successive use of identities that gradually simplify the original form. 

5.92. By using the identities for log and exp functions, it follows









 x log3  x = 9 ∴ log  x log3  x = log 9 ∴ log  x log3  x = log 32

3

3

3

3

∴ log  x  log  x = 2

3

3

3



: 1

log3



√

√

∴

2

log  x  log  x = 2 ∴

log  x

= 2 ∴ log  x = ± 2 ∴ 3log3  x = 3± 2

3

3

3

3

√

∴  x = 3± 2

5.93. By exploiting exponential/logarithmic identities, it follows that





4 ( log4  x) 2 +  x log4  x = 512

 ab 2 =  ab b =  (ab)b



log

AH

4 H

log4  x

4  x +  x log4  x = 512

 x  log  x +  x log4  x = 512

4

2  x log4  x = 512

 x log4  x = 256









log

 x log4  x = log 256

4

4

log  ab =  b  log  a,  256 = 44



2

log  x  log  x = H

log  x

= 4 ∴ log  x = ±2

4

4

H

log4A44 = 4 ∴

4

4

AH

4 H

log4  x = 4±2 ∴  x = 4±2

 x 1 = 42 = 16 , x 2 = 4−2 = 1

16
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5.94. As a consequence of exponential and logarithmic identities, any real number can be written as exponent of an arbitrary base logarithm, e.g., 2 = 5log5 2, thus

52 ( log5 2+ x) − 2 = 5 x+log5 2





 b

 ab+ c =  ab ac;  a =  n log n a;  xab =  xa 52 log5 2 52 x − 5log5 2 = 5 x  5log5 2



2

5log5 2

52 x − 5log5 2 − 5 x  5log5 2 = 0





AH

5 H

log52 5log5 2 52 x − 1 − 5 x = 0





2 5log5 2 52 x − 1 − 5 x = 0

AH

5 H

log52 52 x − 5 x − 1 = 0

2 × 52 x − 5 x − 1 = 0

By the change of variables technique, the last equation is converted into a quadratic equation. 







2

2 × 5 x

− 5 x − 1 = 0 5 x =  t

2 t 2 −  t − 1 = 0

2 t 2 − 2 t +  t − 1 = 0

2 t (t − 1 ) +  (t − 1 ) = 0

 (t − 1 )( 2 t + 1 ) = 0 ∴

 t 1 = 1 or  t 2 = − 1 ∴

2

5 x = − 1 not possible because 5 x >  0 ∀ x

2

5 x = 1 ∴  x = 0

This solution may be illustrated by finding the intersection point between the left and right sides of equation (see Fig. 5.15), i.e., 

 f 1 (x) = 52 ( log5 2+ x) − 2

 f 2 (x) = 5 x+log5 2

5.95. After applying identities related to log (x)  and exp (x)  functions x 2 log2  x = 10 x ∴ log  x 2 log2  x = log ( 10 x) log  xn =  n  log  x,  log (ab) = log  a + log  b

2 log2  x  log  x = 

: 1

log 10

+ log  x

2 log3  x − log  x − 1 = 0

5.5 Exponential-Logarithmic Equations
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Fig. 5.15 P.5.94, nonlinear

equations may be resolved

graphically, where the left side of

the equation is one function, here

 f 1 (x), and the right side is another

function, here  f 2 (x). To say that

 f 1 (x) =  f 2 (x)  is to say that they

have a common point, here at

 x = 0, which is the desired solution

change of variable, log  x =  t  results in cubic equation that is resolved as 2 t 3 −  t − 1 = 0 ∴  t 1 = 1 see Viète formulas in Ch. 2

then, by long division

 ( 2 t 3 −  t − 1 ) ÷  (t − 1 ) = 2 t 2 + 2 t + 1

− ( 2 t 3 − 2 t 2 )

2 t 2 −  t

−  ( 2 t 2 − 2 t)

 t − 1

−  (t − 1 )

= 0

Roots of 2 t 2 + 2 t + 1 = 0 are complex as

1

 t 2 ,  3 = − 1 ±  j

2

2

Therefore, 

log  x =  t ⇒  x = 10 t ∴  t 1 = 1 ⇒  x 1 = 10

1

 t 2 ,  3 = − 1 ±  j

⇒  x 2 ,  3 = 10− ( 1∓ j)/ 2

2

2

In summary, one solution,  x 1, is real, and the other two,  x 2 and  x 3, are complex conjugate. 
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5.6

Exponential Inequalities

Similar to their equation counterparts, exponential inequalities result in nonunique answers. Instead, the solution set consists of one or multiple intervals. In general, exponential forms are considered easier to solve, because basic exponential functions are well defined and positive. 

5.96. The main idea is to transform the inequality terms until it is possible to compare powers of the same base, i.e., 



1 1 /x

−1 /x

2 x+2  > 

∴ 2 x+2  >  4−1 /x ∴ 2 x+2  >  22

∴ 2 x+2  >  2−2 /x

4

Therefore, this inequality is equivalent to

 x + 2  > − 2 ∴  x + 2 + 2  >  0

 x

 x

Note that for this inequality  x  = 0 due to division by zero in inverse function “2 /x,” it is necessary to examine two intervals:

1.  x >  0 : Obviously, within this interval, the inequality is always satisfied, because all three terms on the left side are positive. Therefore, one solution is the interval  x >  0. 

2.  x <  0 : Within this interval, the two terms that include  x  are obviously negative, while

“+2” term is always positive. Thus, 

 x + 2 + 2  >  0 ∴  x 2 + 2 x + 2  >  0

 x

 x

Note that, given  x <  0 interval, numerator “x 2 + 2 x + 2” is always positive, while denominator “x” is always negative. Consequently, rational term on the left side of

inequality is always negative, not positive. 

In conclusion, solution to this inequality is “x >  0” interval. 

5.97. Given double strict inequality with the absolute expression | x 2 −  x| = | x(x − 1 )|, there are two expressions to be considered:

⎧

⎪

⎪

⎪ x(x − 1 ) >  0 ∴

 x >  0 and  x − 1  >  0 ∴  x >  1 ⇒ | x 2 −  x| =  x 2 −  x

⎪

⎪

⎪

⎪

⎪

⎪

 x <  0 and  x − 1  <  0 ∴  x <  0 ⇒ | x 2 −  x| =  x 2 −  x

⎨

| x(x − 1 )| = ⎪ x 2 −  x <  0 ∴

 x >  0 and  x − 1  <  0 ∴ 0  < x <  1

⎪

⎪

⎪

⎪

⎪

⎪

⇒ | x 2 −  x| = − (x 2 −  x)

⎪

⎪

⎩

 x <  0 and  x − 1  >  0 ⇒ (empty interval)

Therefore, 
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1.  x >  1 or  x <  0 : 1  <  3 x 2− x <  9

1  <  3 x 2− x ∴ 

: 0

log 1  <  H

3

H

log3 A3 x 2− x ∴ 0  < x 2 −  x ⇒  x >  1 or  x <  0

3 x 2− x <  9 ∴ 3 x 2− x <  32 ∴  x 2 −  x <  2 ∴  x 2 − x − 2  <  0 ∴  x 2 −2 x +  x − 2  <  0

∴  x(x − 2 ) +  x − 2  <  0

 (x − 2 )(x + 1 ) <  0 ⇒  x > −1 and  x <  2

 x < −1 and  x >  2 (empty interval)

2. 0  < x <  1 : 1  <  3− (x 2− x) <  9

1  <  3− (x 2− x) ∴ 

:0

log 1  <  H

3

H

log3 A3− (x 2− x) ∴ 0  < − (x 2 −  x) ∴  x 2 −  x <  0 ⇒ 0  < x <  1

3− (x 2− x) <  9 ∴ 3− (x 2− x) <  32 ∴  x −  x 2  <  2 ∴ − x 2 +  x − 2  <  0   (x ∈ ∀ x) In summary, the solution set is in interval (note strict inequalities)

⎫

−1  < x <  2

⎪

⎪

⎬

 x >  1 or  x <  0⎪ ∴  x ∈  (−1 ,  2 )  interval, where,  x  =  (−1 ,  0 ,  1 ,  2 )

⎪

⎭

0  < x <  1

This solution set is illustrated by non-shaded region in Fig. 5.16a (left). As a comparison, the rational term itself that is bounded by “1” and “9” is shown in Fig. 5.16a (right), where points excluded due to strict inequalities are crossed. 

5.98. Following the idea of reducing all terms to the same base, we write

9 x −3 x+2  >  3 x −9



2

32 x − 3 x 32  >  3 x − 32 

Fig. 5.16 P.5.97 —inequalities define an intervals not a single number
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32 x − 3 x 32  > 

32 x − 2 × 3 x 32 + 34

2 × 3 x 32 − 3 x 32  >  34

3 x 32  >  34 2 ∴  x >  2

5.99. Terms may be grouped to arrive at the same base, as

92 x+2 3 x 2−1 − 10 · 30 .  5 x 2+1 9 x + 3 ≤ 0

34 (x+1 )  3 x 2−1 − 10 · 30 .  5 x 2+1 32 x + 3 ≤ 0

 x 2 +4 x+2

3 · 3 x 2+4 x+2 − 10 · 3

2

+ 3 ≤ 0









3 · 3 x 2+4 x+2 − 10 · 3 x 2+4 x+2 + 3 ≤ 0

change of variable:

3 x 2+4 x+2 =  t

so that, 

3 t 2 − 10 t + 3 ≤ 0 ∴ 3 t 2 − 1 t − 9 t + 3 ≤ 0 ∴  (t − 3 )( 3 t − 1 ) ≤ 0

Recall that the product of two terms  AB ≤ 0 when  A  and  B  terms have opposite signs, which may be analyzed as

 t

1 / 3

3

(3 t −  1)

 −

0

+

+

+

( t −  3)

 −

 −

 −

0

+

( t −  3)(3 t −  1)

+

0

 −

0

+

to show that 3 t 2 − 10 t + 3 ≤ 0 is satisfied within interval  t ∈  ( 1 / 3 ,  3 ), end points are included, and after returning to the original variable, 



3 x 2+4 x+2 = 1 = 3−1 ∴ 3 x 2+4 x+2 = 3−2 ∴  x 2 + 4 x + 2 = −2

3

∴  (x + 2 ) 2 = 0 ∴  x 1 ,  2 = −2



3 x 2+4 x+2 = 3 ∴ 3 x 2+4 x+2 = 32 ∴  x 2 + 4 x + 2 = 2 ∴  x(x + 4 ) = 0

∴  x 3 = 0 , x 4 = −4

In conclusion: After  t →  x  transformation, interval  t ∈  ( 1 / 3 ,  3 )  maps back into  x ∈  (−4 ,  0 ) interval that satisfies the given inequality. Note that point  x = −2 is within the interval  x ∈

 (−4 ,  0 ), and, moreover, it is double root; thus the overall sign does not change (see Vol. II on function analysis). 
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5.7

Logarithmic Inequalities

Similar to their equation counterparts, logarithmic inequalities result in nonunique answers, and the solution set consists of one or multiple intervals. In general, solving logarithmic forms is a bit more involved due to constrains of basic logarithmic functions. 

5.100. Logarithmic function is positive when its argument is superior to one, i.e., 

 x − 1

log

 >  0 ∴  x − 1  >  1 where,  x  = −2

 x + 2

 x + 2

The solution set may be deduced as follows:

 x − 1

−3

 >  1 ∴  x − 1 − 1  >  0 ∴ A

 x − 1 − A x − 2  >  0 ∴

 >  0 ∴  x + 2  <  0

 x + 2

 x + 2

 x + 2

 x + 2

∴  x < −2

Therefore,  x < −2 is the solution set. 

5.101. Given inequality

log

 x 2  <  1 ∴

ln  x 2

 <  1

2 x+3

ln ( 2 x + 3 )

Note that logarithm’s argument must be strictly positive, thus  x  = 0. It is important to distinguish logarithms whose base is inferior to “1” from those whose base is superior to

“1.” Note that two logarithmic functions with the inverse bases are symmetric relative to the horizontal axis. Also, note that “1” can be written as an arbitrary base logarithm of that base, for example, 

1 = log

 ( 2 x + 3 )

2 x+3

 Case 1: 0  <  2 x + 3  <  1

⎫

⎪

0  <  2 x + 3

∴  x > −3⎬

2 ⎪ ⇒ −3  < x <  1

⎭

2

2 x + 3  <  1

∴  x < −1

Then, 

log

 x 2  <  1

2 x+3

log

 x 2  <  log

 ( 2 x + 3 )

2 x+3

2 x+3

∴  x 2  >  2 x + 3 ∴  x 2 − 2 x − 3  >  0 ∴  x 2 − 3 x +  x − 3  >  0

∴  x(x − 3 ) +  x − 3  >  0 ∴  (x + 1 )(x − 3 ) >  0
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Fig. 5.17 P.5.101—solution interval may exclude single point(s)

 (x + 1 ) >  0 and  (x − 3 ) >  0 ∴  x >  3

(note,  x <  1 )

or, 

 (x + 1 ) <  0 and  (x − 3 ) <  0 ∴  x < −1

 Case 2: 2 x + 3  >  1 ∴  x > −1, then

log

 x 2  <  1

2 x+3

log

 x 2  <  log

 ( 2 x + 3 ) ∴  x 2  <  2 x + 3 ∴  x 2 − 2 x − 3  <  0

2 x+3

2 x+3

∴

 (x + 1 ) >  0 and  (x − 3 ) <  0 ∴ −1  < x <  3

or, 

 (x + 1 ) <  0 and  (x − 3 ) >  0 (empty interval)

Therefore, the complete solution set is  x ∈  (−3 / 2 ,  3 )  interval, where points that are  not included due to strict inequalities are  (x  = −3 / 2 , −1 ,  0 ,  3 ). This solution set is illustrated by non-shaded region in Fig. 5.17a (left). As a comparison, the arbitrary base logarithm term itself that is bounded by “1” is shown in Fig. 5.17a (right), where points excluded due to strict inequalities are crossed. 

5.102. Logarithm function of an arbitrary base may be evaluated by converting given function into ratio of two logarithmic functions as





log

 ( 2 x + 2 ) <  1

∴ ln ( 2 x + 2 ) <  1

2 x 2− x

log  b = ln  b

 a

ln  a

ln ( 2 x 2 −  x)

Basic properties of log (x)  function are  x >  0, if  ( 0  < x <  1 ), log ( 1 ) = 0 then log  x <  0, and if  (x >  1 )  then log  x >  0. Thus, 
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1. Rational function is not defined when denominator equals to zero, i.e., the result of division is either infinity or undetermined, thus

ln ( 2 x 2 −  x)  = 0 ∴ 2 x 2 −  x  = 1 ∴ 2 x 2 −  x − 1  = 0

∴  x  = 1 , x  = −12

1

ln ( 2 x 2 −  x) <  0 ∴ 0  < x( 2 x − 1 ) <  1 ∴ 0  < x <  2

and this logarithm function is defined for positive argument, i.e., 

1

2 x 2 −  x >  0 ∴  x( 2 x − 1 ) >  0 ∴  x <  0 or,  x >  2

2. Similarly, logarithm in the numerator is defined for

2 x + 2  >  0 ∴  x > −1 and, 

ln ( 2 x + 2 ) <  0 ∴ 0  <  2 x + 2  <  1 ∴  x < − 12

3. Condition of inequality gives

 f (x) = ln ( 2 x + 2 ) <  1 ∴ ln ( 2 x + 2 ) <  ln ( 2 x 2 −  x) ln ( 2 x 2 −  x)

∴ 2 x + 2  <  2 x 2 −  x

∴ 0  <  2 x 2 − 3 x − 2

∴ 0  <  2 (x + 1 )(x − 2 )

which is satisfied when  x >  2, because values  x < −1 are already excluded. 

In summary, the solution set is

−

1

1  < x <  0 and

 < x <  1 and  x >  2

2

This solution set is illustrated by non-shaded region in Fig. 5.18a (left). As a comparison, the arbitrary base logarithm term itself that is bounded by “1” is shown in Fig. 5.18a (right), where points excluded due to strict inequalities are crossed. 

5.103. Due to log function term, there is condition

log ( 5 x +  x + 20 ) ⇒ 5 x +  x + 20  >  0 ⇒  x > −20 

 ( because  ( 5 x >  0 ∀ x)  plus positive  (x + 20 )  term )
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Fig. 5.18 P.5.102 —example of multiple solution intervals

Then, the inequality may be resolved by grouping log terms together, so that the combined

argument may be liberated, as

log ( 5 x +  x + 20 ) > x −  x  log 2

log ( 5 x +  x + 20 ) > x − log 2 x

log ( 5 x +  x + 20 ) + log 2 x > x









Z

Z

10Z

log 5 x + x+20 ) 2 x

 >  10 x

10 x =  ( 2 · 5 )x

 ( 5 x +  x + 20 )



2 x > 



2 x  5 x





5 x +  x + 20  > 



5 x  0

∴  x > −20

Part II

Trigonometry and Complex Algebra

[image: Image 6]
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Important to know:

1.  Cartesian coordinate system:  consists of two perpendicular coordinate lines (axis) whose intersect point is called the origin. The two axis are used to measure signed (i.e., both positive and negative) distances from the origin point in each of the two perpendicular directions. 

2.  Absolute value of a difference  is commutative; the order of two different terms is not relevant as

| a −  b| = | b −  a|

which is easily interpreted as the geometrical distance (i.e., the line length) between points  a  and b. 

3.  Pythagoras’ theorem:  given a right triangle  (a, b, c), where  a  and  b  are catheti and  c  is hypotenuse, then its three side lengths are related as

 c 2 =  a 2 +  b 2

4.  Thales’ theorem:  if  A B  is the diameter of a circle, then a right angle is formed at any given point on the circle, e.g.,  C ,  D, or  E (see Fig. 6.1), so that  A B  is hypotenuse of a right triangle. 

5.  Right triangle altitude theorem:  given a right triangle  (a, b, c), then its height  h  on hypothenuse c  is related to the two catheti  a  and  b  as

 h 2 =  ab

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
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Fig. 6.1 Illustration of Thales’

theorem showing that any given point

on a circle forms a right triangle with

the circle’s diameter. Together with

Pythagoras’ theorem it is considered

fundamental to geometry and by

extension to mathematics in general. 

Probably the simplest proof of

Thales’ theorem is by looking at the

sum of angles within two isosceles

triangles formed by a line segment

(i.e., radius) connecting the circle

center and given point

Problems

6.1

Points

Given the coordinates of two points in P.6.1 to P.6.6, calculate their respective distances from the origin of a Cartesian coordinate system, as well as the distance between them. 

√

6.1.  ( 0 ,  1 );  ( 1 ,  0 )

6.2.  ( 3 ,  0 );  ( 0 ,  4 )

6.3.  (  2 ,  0 );  ( 0 ,  1 )

6.4.  (−1 , −1 );  ( 1 ,  1 )

6.5.  ( 4 ,  1 );  ( 1 ,  5 )

6.6.  ( 2 , −3 );  ( 5 ,  1 )

Given the coordinates of two points in P.6.7 to P.6.12, calculate coordinates of a point on the  x-axis so that it is found at equal distance from each of the two given points. Repeat the same exercise for a point on the  y-axis. 

6.7.  ( 2 , −3 );  ( 5 ,  1 )

6.8.  ( 7 , −4 );  ( 1 , −2 )

6.9.  ( 2 , −4 );  ( 6 , −2 )

6.10. 

6.11. 

6.12.  (−2 ,  4 );  ( 1 ,  1 )

 (−6 ,  0 );  ( 4 , −2 )

 (−5 ,  3 );  (−2 , −4 )

Given  A ;  B;  c  as in P.6.13 to P.6.18, calculate the missing  x  or  y  coordinate of point  A  so that its distance to point  B  equals  c, if

6.13. 

6.14. 

6.15. 

 (x,  3 );  (−4 ,  8 ); 13

 (x,  10 );  ( 4 ,  2 ); 17

 (x,  5 );  (−1 , −2 ); 25

6.2 Line
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6.16. 

6.17. 

6.18. 

 (−2 , y);  ( 2 ,  3 ); 5

 ( 6 , y);  ( 2 , −1 ); 5

 ( 10 , y);  (−2 , −3 ); 13

Given coordinates of three vertex points as in P.6.19 to P.6.24, calculate the areas of the constructed triangles. 

6.19.  ( 0 ,  0 );  ( 3 ,  0 );  ( 0 ,  5 ) 6.20.  ( 0 ,  0 );  (−3 ,  0 );  (−3 ,  4 ) 6.21.  (−1 ,  1 );  ( 4 ,  1 );  (−1 ,  5 ) 6.22.  (−3 ,  0 );  ( 3 ,  0 );  ( 0 ,  5 ) 6.23.  (−2 ,  3 );  ( 8 , −2 );  ( 3 ,  8 ) 6.24.  (−2 ,  0 );  ( 6 ,  2 );  ( 2 ,  6 ) Given  (x, y, z)  coordinates of a 3D point as in P.6.25 to P.6.30, calculate its distance to the origin as well as the area of the right triangle whose hypotenuse is a line segment connecting the origin with the given point. 

6.25.  (−3 ,  4 ,  0 )

6.26.  ( 0 , −4 , −4 )

6.27.  ( 2 ,  0 ,  5 )

6.28.  ( 1 ,  1 ,  1 )

6.29.  (−2 ,  3 ,  5 )

6.30.  ( 3 , −1 , −4 )

6.2

Line

Given the coordinates of two points  A ;  B  as in P.6.31 to P.6.36, 

1. Derive the equation of line  y(x)  that crosses these two points. 

2. What are the coordinates of two points where  y(x)  crosses the  x- and  y-axes? 

3. Derive the equation of line  yp(x)  that is normal (perpendicular) to line  y(x). 

6.31.  ( 0 ,  0 );  ( 1 ,  1 )

6.32.  ( 1 , −1 );  ( 0 ,  0 )

6.33.  ( 0 ,  1 );  ( 1 ,  0 )

6.34.  ( 1 ,  2 );  (−2 , −1 )

6.35. 

6.36.  ( 0 ,  1 );  ( 0 ,  4 )

 ( 5 / 2 ,  3 );  (−3 / 2 , −5 )





Given an angle and point coordinates  θ, (x, y)  as in P.6.37 to P.6.42, derive the equation of line y(x)  that creates angle  θ  with the horizontal axis and given point  A . 
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6.37. 

0 , ( 0 ,  0 )

6.38. 

 π/ 4 , ( 2 ,  2 )

6.39. 





− π/ 4 , ( 3 / 2 , −3 / 2 )







√



6.40. 

3 π/ 4 , ( 5 , −2 )

6.41. 



√



6.42. 

150◦ , (  3 ,  1 )

2 π/ 3 , (−3 3 ,  6 )

Given a point and line equation  (x, y);  f (x, y) = 0 as in P.6.43 to P.6.48, 

1. Derive the equation of line  y (x)  through a given point that is parallel to a given line. 

2. Derive the equation of line  y⊥ (x)  through a given point that is normal to a given line. 

6.43.  ( 2 ,  3 );  x +  y − 2 = 0

6.44.  ( 7 , −4 ); 9 x + 7 y − 25 = 0

6.45.  ( 1 ,  2 ); 2 x + 3 y − 1 = 0

6.46.  (−1 , −2 );  x +  y − 3 = 0

√

√

6.47.  ( 0 , π );  y − 2 π x − 1 = 0

6.48.  ( 2 , − 10 );  y − 5 −  x = 0

Given linear equation  f (x, y, p) = 0 as in P.6.49 to P.6.54, 

1. Calculate parameter  p  so that the given line is parallel with the horizontal axis. 

2. Recalculate parameter  p  so that the given line is parallel with the vertical axis. 

6.49.  p x +  y + 1 = 0

6.50. 2 y −  x = 0

 p

√2

6.51. 

 y −  x − 2 π = 0

6.52.  (p + 1 )x +  y + 1 = 0

 p

6.53.  x −  y(p − 2 ) + 2 ( 1 −  p) = 0

6.54.  ( 2 p + 1 )x +  ( 3 p − 5 )y + 4 p = 0

Given equations of two sides and one vertex point coordinate  (x, y)  of a right triangle as in P.6.55 to P.6.60, derive the line equation  y(x)  of the third side and calculate the triangle’s area. 

6.55.  y = 1 , x +  y = 0 , ( 0 ,  0 )

6.56.  x = 0 ,  3 x + 2 y = 6 , ( 2 ,  0 ) 6.57.  y = 4 , x −  y = −1 , (−4 , −3 )

6.58.  x = 6 , −8 x + 7 y = −13 , ( 6 , −3 ) 6.59.  x + 5 y = −12 ,  2 x − 3 y = 2 , ( 8 , −4 ) 6.60. 4 y +  x − 15 = 0 , y −  x = 5 , ( 2 ,  7 )
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6.3

Circle

Basic vocabulary and definitions related to circle (see Fig. 6.2) include: 1.  Circle:  a curved line in a plane made of points that are all at the same distance from a given point, the center. 

2.  Disc:  the surface of the plane bound by a circle. 

3.  Radius:  the distance  r  between any point of the circle and the center. 

4.  Circumference:  the length of the circle. 

5.  Arc:  the portion  s  of circle between two given points  A  and  B. 

6.  Chord:  a straight line segment  A B. 

7.  Diameter:  a chord that passes through the center of a circle, which happens when points  A  and  B

are on the opposite sides of the circle. Equivalently, diameter  d  is the longest chord of that circle and it equals to double the radius  r  length. 

8.  Tangent:  a straight line  a  that touches the circle at only one point. (It is always perpendicular to the radius at that point.)

9.  Sector:  the “pizza cut” shaded portion of a disk bound by two radii and an arc. 

10.  Segment:  the surface “cut off” from the sector in between the chord and arc lines. 

11.  Radian:  the unit of angle denoted by the symbol “rad” is defined relative to the sector whose radius  r  and arc  s  are of equal length. 

6.61. What is the definition of radian and how is it used to calculate the circle area and length of an arbitrary arc? 

6.62. Given an arc  s  whose radius is  r 1 and the central angle  θ =  π/ 3, derive radius  r  of a circle whose circumference  C  equal to the given arc’s length  s. 

6.63. A circle and square have equal circumferences. Derive the ratio of their areas. 

6.64. Given radius  r  and central angle  θ , derive area  Pθ  of the associated circular sector. 

6.65. Given radius  r, central angle  θ , and its chord  h, derive the area of the associated circular segment. 

Fig. 6.2 Unit of rad is by definition

the angle  θ  where the length of arc  s

equals to the radius  r  of the given

circle. Then, a half-circle covers the

 π  rad angle and full circle 2 π  rad. 

Conversion between units of “rad” 

and “◦” is that the circumference of a

circle equals 360◦ ≡ 2 π  rad; thus, any

intermediate angle is converted by

this simple proportion. The tangent

line  a  is always normal to the radius

at that point
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Fig. 6.3 Geometric figures for P.6.67 and P.6.68

6.66. Given two concentric circles so that the chord of the larger circle equal  l  and it touches the inner circle, calculate the area of annulus (the region between two concentric circles). 

6.67. The longer cathetus of a right triangle serves as a half-circle diameter; see Fig. 6.3a. 

Given only lengths of the shorter cathetus  a  and chord  h, derive the arc length  l  of this half-circle. 

6.68. A circle is centered over the equilateral triangle whose side length is 3 a  so that each triangle side is split in three equal segments; see Fig. 6.3b. Derive the area  P  of  overlapping surface  as formed by this circle and triangle. 

6.4

Intersects

Given two pairs of coordinate points (one for each line) as in P.6.69 to P.6.74, calculate their intersect point assuming (a) two straight lines, or (b) two segments. 

6.69.  (−1 ,  1 ), ( 1 ,  1 )  and  ( 0 ,  0 ), ( 0 ,  2 ) 6.70.  (−1 ,  1 ), ( 1 ,  1 )  and  ( 2 ,  0 ), ( 2 ,  2 ) 6.71.  ( 0 ,  2 ), ( 0 ,  0 )  and  ( 2 ,  0 ), ( 2 ,  2 ) 6.72.  ( 0 ,  2 ), ( 2 ,  2 )  and  ( 2 ,  0 ), ( 0 ,  0 ) 6.73.  (−1 ,  0 ), ( 1 ,  2 )  and  ( 1 ,  1 ), ( 0 ,  1 ) 6.74.  (−1 ,  3 ), ( 1 ,  2 )  and  ( 2 ,  0 ), ( 1 , −1 )

6.4 Intersects
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Sketch graphs of circles given in P.6.75 to P.6.82 and calculate its  x- and  y-axis intersect points. 

6.75.  x 2 +  y 2 = 1

6.76.  x 2 +  y 2 = 4

6.77.  (x − 1 ) 2 +  y 2 = 1

6.78.  x 2 +  (y + 1 ) 2 = 1

6.79.  (x + 1 ) 2 +  (y + 1 ) 2 = 1

6.80.  (x − 2 ) 2 +  (y + 1 ) 2 = 1

6.81.  (x − 4 ) 2 +  (y − 2 ) 2 = 16

6.82.  (x − 3 ) 2 +  (y − 4 ) 2 = 25

Given a circle and line equations as in P.6.83 to P.6.88, calculate: (a) Their intersect points

(b) The arc length between intersect points

(c) The area of the triangle formed by the two intersect points and center

(d) The area of the circular sector

(e) The area of the circular segment

(f) The slope coefficients of tangent lines at these two intersect points. 

6.83.  x 2 +  y 2 = 1 , − x +  y = 0

6.84.  x 2 − 2 x + 1 +  y 2 = 1 , x +  y = 0

6.85.  x 2 + 2 x + 1 +  y 2 + 2 y = 0 , x +  y = −1 6.86.  (x − 2 ) 2 +  y 2 + 2 y = 0 , y = 1

√

6.87.  (x − 2 ) 2 +  y 2 = 4 , y +  x = 2 ( 1 + 2 ) 6.88.  (x − 2 ) 2+ (y − 2 ) 2= 4 ,  3 x+4 y =14

Given two circle equations as in P.6.89 to P.6.94, calculate: 1. Their intersect points

2. The chord length (the line segment bound by the two intersect points)

3. The overlapping area between the two circles

√

√

6.89.  x 2 +  y 2 = 1 , (x − 1 ) 2 +  (y − 1 ) 2 = 1

6.90.  x 2+ y 2=1 , (x − 2 ) 2+ (y+ 2 ) 2=1

6.91.  x 2 +  y 2 = 1 , x 2 +  (y + 1 ) 2 = 4

6.92.  x 2+  (y − 3 ) 2= 1 , x 2+  (y + 1 ) 2 = 4

6.93.  x 2+ y 2=1 , ( 2 x−1 ) 2+ ( 2 y−1 ) 2= 4

6.94.  x 2 +  y 2= 1 , (x − 1 ) 2+ (y + 1 ) 2= 4
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Fig. 6.4 Geometrical figures for P.6.98 and P.6.99

6.95. Calculate parameter  p  so that line  yt =  px + 10 is tangent to circle  x 2 +  y 2 = 20. 

6.96. Given circle  x 2 +  y 2 − 4 x − 6 y − 12 = 0, derive the equation of two tangent lines: one that is parallel with 4 x − 3 y − 12 = 0 and one that is vertical to 3 x − 4 y − 10 = 0. 

6.97. Given circle  x 2 +  y 2 − 2 x − 24 = 0, derive the equation of its tangent(s) that intersects line 7 x −  y = 0 at  α = 45◦ angle. 

6.98. There is a half-circle constructed above each side of a right triangle  (a, b, c); see Fig. 6.4a. This geometrical figure is known as “The lunes of Alhazen,” a general case of “lune of Hippocrates.” Calculate  the ratio  of triangle  (a, b, c)  area, versus  the total area  of two crescent-shaped shaded areas. 

6.99. A point  X  is arbitrarily positioned on the half-circle diameter  A B  line; then other two half-circles are constructed above diameters  A X  and  X B, respectively; see Fig. 6.4b. 

Calculate the ratio between the  shaded area (a.k.a “arbelos”) of the half-circle  A B  versus the area of the inscribed circle whose diameter is  X C . 

6.100. A circle’s diameter  A D  is split into three equal line segments,  A B,  BC , and  C D. 

Then, two shaded and one non-shaded subsurface are constructed by using half-circles as in

Fig. 6.5a. Calculate the ratio of the shaded versus non-shaded areas. 

6.101. An equilateral triangle whose side length is  a = 2  A B  contains incircle. Then, the second circle is constructed with radius  r =  a/ 2 and its center at one of the triangle’s vertices A ; see Fig. 6.5b. Calculate the overlapping shaded area between these two circles bound by arcs  s 1 and  s 2. 

6.4 Intersects
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Fig. 6.5 Geometric figures for P.6.100 and P.6.101
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Answers

6.1

Points

It is highly recommended to sketch solutions to each of the examples in this chapter, similar to Figs. 6.6a and b. 

6.1. Given coordinates of any number of points  A 1 :  (x 1 , y 1 ),  A 2 :  (x 2 , y 2 ),  A 3 :  (x 3 , y 3 ). . . , their respective distances to the origin  O, or to any other point in space, are resolved by Pythagoras’ theorem. The basic idea is always the same: any given point may be associated

with the corresponding right triangle  (a, b, c). A right triangle may be constructed relative to either the origin  O (see Fig. 6.6a) or some other point (see Fig. 6.6b). In any case, evidently, the distance between given point and either the origin or some other point

equal to the length of its hypotenuse, while catheti lengths are derived from  (x, y)  coordinates. 

Therefore, the corresponding lengths of the right triangle’s sides (thus always positive

numbers, i.e., absolute values) are derived as

1.  A :  (x, y) =  ( 0 ,  1 )  to  O :  ( 0 ,  0 ) a

= | x − 0| = | x| = 0



∴  c =  a 2 +  b 2 = 1

 b

= | y − 0| = | y| = |1| = 1

In conclusion, as  a = 0, then  A :  ( 0 ,  1 )  is a point located on the vertical axis at  y = 1, thus the trivial case of  A O = 1. 

Fig. 6.6 P.6.1—Illustration of right triangles in the context of analytical geometry

6.1 Points
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2.  B :  (x, y) =  ( 1 ,  0 )  to  O :  ( 0 ,  0 ) a

= | x − 0| = | x| = |1| = 1



∴  c =  a 2 +  b 2 = 1

 b

= | y − 0| = | y| = 0

In conclusion, as  b = 0, then  B :  ( 1 ,  0 )  is a point located on the horizontal axis at  x = 1, thus the trivial case of  BO = 1. 

3.  A :  (x 1 , y 1 ) =  ( 0 ,  1 )  to  B :  (x 2 , y 2 ) =  ( 1 ,  0 ) ; the catheti lengths are derived as the difference between their respective  xy  coordinates (see Fig. 6.6b), as a

= | x





2 −  x 1| = |1 − 0| = |1| = 1

√

∴  c =  a 2 +  b 2 = 12 + 12 = 2

 b

= | y 2 −  y 1| = |0 − 1| = | − 1| = 1

Therefore, as per Pythagoras’ theorem of a right triangle whose both catheti lengths equal

√

to one, the distance  A B =

2 (note, irrational number). Again, the absolute difference

of two numbers on the same axis is interpreted as the  length (thus, positive, i.e., absolute, number) of the line segment between these two numbers. This obvious but very important

observation is the key for correctly interpreting line segment length relative to its start/end points and to think of a length as the absolute value of a number. 

6.2. As already discussed in A.6.1, Fig. 6.6a and b, the corresponding lengths of the right triangle’s sides are derived as

1.  A :  (x, y) =  ( 3 ,  0 )  to  O :  ( 0 ,  0 ) a

= | x − 0| = | x| = |3| = 3



∴  c =  a 2 +  b 2 = 3

 b

= | y − 0| = | y| = 0

In conclusion, as  b = 0, then  A :  ( 3 ,  0 )  is a point located on the horizontal axis at  x = 3, thus the trivial case  A O = 3. 

2.  B :  (x, y) =  ( 0 ,  4 )  to  O :  ( 0 ,  0 ) a

= | x − 0| = | x| = 0



∴  c =  a 2 +  b 2 = 4

 b

= | y − 0| = | y| = |4| = 4

In conclusion, as  a = 0, then  B :  ( 0 ,  4 )  is a point located on the vertical axis at  y = 4, thus the trivial case  BO = 4. 

3.  A :  (x 1 , y 1 ) =  ( 3 ,  0 )  to  B :  (x 2 , y 2 ) =  ( 0 ,  4 ) ; the catheti lengths are derived as differences of their respective  xy  coordinates, as



 a

= | x





2 −  x 1| = |0 − 3| = | − 3| = 3

∴  c =  a 2 +  b 2 = 32 + 42 = 5

 b

= | y 2 −  y 1| = |4 − 0| = |4| = 4

188

6

Analytic Geometry

Therefore, as per Pythagoras’ theorem of a right triangle whose catheti lengths equal to

three and four (note,  ( 3 ,  4 ,  5 )  is one of Pythagorean triples, three positive integers that create a right triangle), distance  A B = 5 . 

6.3. As already discussed in A.6.1, the required distances are derived as follows:

√

1.  A :  (x, y) =  (  2 ,  0 )  to  O :  ( 0 ,  0 )

√

√ 

 a

= | x − 0| = | x| = | 2| = 2



√

∴  c =  a 2 +  b 2 = 2

 b

= | y − 0| = | y| = 0

√

√

that is to say,  A :  (  2 ,  0 )  is a point located on the horizontal axis at  x =

2 and  A O =

√2. 

2.  B :  (x, y) =  ( 0 ,  1 )  to  O :  ( 0 ,  0 ) a

= | x − 0| = | x| = 0



∴  c =  a 2 +  b 2 = 1

 b

= | y − 0| = | y| = |1| = 1

That is to say,  B :  ( 0 ,  1 )  is a point located on the vertical axis at  y = 1, and  BO = 1. 

√

3.  A :  (x 1 , y 1 ) =  (  2 ,  0 )  to  B :  (x 2 , y 2 ) =  ( 0 ,  1 ) ; then, 

√

√

√ 

 a

= | x



2 −  x 1| = |0 −

2| = | −

2| =

2

√

√

∴  c =  a 2 +  b 2 = 2 + 1 = 3

 b

= | y 2 −  y 1| = |1 − 0| = |1| = 1

√

Therefore, as per Pythagoras’ theorem of a right triangle whose catheti lengths equal to

2

√

and one, distance  A B =

3 (note, irrational number). 

6.4. As already discussed in A.6.1, the required distances are derived as follows: 1.  A :  (x, y) =  (−1 , −1 )  to  O :  ( 0 ,  0 ) a

= | x − 0| = | x| = | − 1| = 1



√

∴  c =  a 2 +  b 2 = 2

 b

= | y − 0| = | y| = | − 1| = 1

√

Therefore, the length  A O =

2 (irrational number), i.e., hypotenuse of a right triangle

whose catheti lengths equal to one. 

2.  B :  (x, y) =  ( 1 ,  1 )  to  O :  ( 0 ,  0 ) a

= | x − 0| = | x| = |1| = 1



√

∴  c =  a 2 +  b 2 = 2

 b

= | y − 0| = | y| = |1| = 1

6.1 Points
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√

Therefore, the length  BO =

2 (irrational number), i.e., hypotenuse of a right triangle

whose catheti lengths equal to one. 

3.  A :  (x 1 , y 1 ) =  (−1 , −1 )  to  B :  (x 2 , y 2 ) =  ( 1 ,  1 ) ; then a

= | x





2 −  x 1| = |1 −  (−1 )| = |2| = 2

√

√

∴  c =  a 2 +  b 2 = 22 + 22 = 8 = 2 2

 b

= | y 2 −  y 1| = |1 −  (−1 )| = |2| = 2

√

Therefore, the length  A B = 2 2 (irrational number), i.e., hypotenuse of a right triangle whose catheti lengths equal to two. 

6.5. The required distances are derived as

1.  A :  (x, y) =  ( 4 ,  1 )  to  O :  ( 0 ,  0 ) a

= | x − 0| = | x| = |4| = 4





√

∴  c =  a 2 +  b 2 = 42 + 12 = 17

 b

= | y − 0| = | y| = |1| = 1

√

Therefore, the length  A O =

17, i.e., hypotenuse of a right triangle whose catheti lengths

equal to one and four. 

2.  B :  (x, y) =  ( 1 ,  5 )  to  O :  ( 0 ,  0 ) a

= | x − 0| = | x| = |1| = 1





√

∴  c =  a 2 +  b 2 = 52 + 12 = 26

 b

= | y − 0| = | y| = |5| = 5

√

Therefore, the length  BO =

26, i.e., hypotenuse of a right triangle whose catheti lengths

equal to one and five. 

3.  A :  (x 1 , y 1 ) =  ( 4 ,  1 )  to  B :  (x 2 , y 2 ) =  ( 1 ,  5 ) a

= | x





2 −  x 1| = |1 − 4| = | − 3| = 3

∴  c =  a 2 +  b 2 = 32 + 42 = 5

 b

= | y 2 −  y 1| = |5 − 1| = |4| = 4

Therefore, the length  A B = 5, i.e., hypotenuse of a right triangle whose catheti lengths equal to three and four (Pythagorean triple). 

6.6. The required distances are derived as

1.  A :  (x, y) =  ( 2 , −3 )  to  O :  ( 0 ,  0 ) a

= | x − 0| = | x| = |2| = 2





√

∴  c =  a 2 +  b 2 = 22 + 32 = 13

 b

= | y − 0| = | y| = | − 3| = 3
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√

Therefore, the length  A O =

13, i.e., hypotenuse of a right triangle whose catheti lengths

equal to two and three. 

2.  B :  (x, y) =  ( 5 ,  1 )  to  O :  ( 0 ,  0 ) a

= | x − 0| = | x| = |5| = 5





√

∴  c =  a 2 +  b 2 = 52 + 12 = 26

 b

= | y − 0| = | y| = |1| = 1

√

Therefore, the length  BO =

26, i.e., hypotenuse of a right triangle whose catheti lengths

equal to one and five. 

3.  A :  (x 1 , y 1 ) =  ( 2 , −3 )  to  B :  (x 2 , y 2 ) =  ( 5 ,  1 ) a

= | x





2 −  x 1| = |5 − 2| = |3| = 3

∴  c =  a 2 +  b 2 = 32 + 42 = 5

 b

= | y 2 −  y 1| = |1 −  (−3 )| = |4| = 4

Therefore, the length  A B = 5, i.e., hypotenuse of a right triangle whose catheti lengths equal to three and four (Pythagorean triple). 

6.7. As already shown in A.6.1 to A.6.6, the distance between two points equal to length  c  of the associated right triangle’s hypotenuse. Consequently, to say that two points are at the same distance form the third, it is to say that their respective hypotenuses  c 1 and  c 2 to that point are of equal length. 

1. To say that an arbitrary point  C  is on the horizontal axis is to say that its vertical coordinate y = 0. Thus, given a point on the horizontal axis  C :  (x,  0 )  and two points  A :  ( 2 , −3 ) and  B :  ( 5 ,  1 ) (see Fig. 6.7a), by Pythagoras’ theorem it follows that



⎫

 c

⎬

1

= |2 −  x|2 + | − 3 − 0|2







∴

|

|

⎭

if  c 1= c 2 ⇒

2 −  x|2+| − 3|2 =

5 −  x|2+12

 c 2

= |5 −  x|2 + |1 − 0|2

so that





| − 3|2 + |2 −  x|2 = 12 + |5 −  x|2

9 +  ( 4 − 4 x +  x 2 ) = 1 +  ( 25 − 10 x +  x 2 ) 6 x = 13

∴  x = 13

6

In conclusion, point  C :  ( 13 / 6 ,  0 )  on the horizontal axis is located at the same distance from both  A :  ( 2 , −3 )  and  B :  ( 5 ,  1 ). 

 Verification:



⎫

⎧







√

 c

⎬

⎨

325

5 · 5 · 13

1

= |2 −  x|2 + 9

= |2 − 13 / 6|2 + 9 =

=

= 5 13



36

6 · 6

6





⎭ ∴ ⎩



√

 c

= |

172 +

5 · 5 · 13 = 5

2

= |5 −  x|2 + 1

5 − 13 / 6|2 + 1 =

1 =

13

62

6 · 6

6
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Fig. 6.7 P.6.7—distances between arbitrary points are resolved by right triangles 2. To say that an arbitrary point  C  is on the vertical axis is to say that its horizontal coordinate x = 0. Thus, given a point on the vertical axis  C :  ( 0 , y)  and two points  A :  ( 2 , −3 )  and B :  ( 5 ,  1 ) (see Fig. 6.7b), by Pythagoras’ theorem it follows that



⎫

 c

⎬

1

= |2 − 0|2 + | y −  (−3 )|2







⎭ ∴ if  c 1 =  c 2 ⇒ 22 + | y + 3|2 = 52 + | y − 1|2

 c 2

= |5 − 0|2 + | y − 1|2

so that





22 + | y + 3|2 =

52 + | y − 1|2

4 +  (

 y 2 + 6 y + 9 ) = 25 +  (

 y 2 − 2 y + 1 )

8 y = 13

∴  y = 13

8

In conclusion, point  C :  ( 0 ,  13 / 8 )  on the vertical axis is located at the same distance from both  A :  ( 2 , −3 )  and  B :  ( 5 ,  1 ). 

 Verification:



⎫

⎧







√

 c

⎬

⎨

1625

1

= 4 + | y + 3|2

= 4 +  ( 13 / 8 + 3 ) 2 = 4 + 372 =

= 5 5 · 13



82

64

8



⎭ ∴ ⎩



√

 c 2

= 25 + | y − 1|2

= 25 + |13 / 8 − 1|2 = 52 + 52 = 5 5 · 13

82

8

Note that given  c 1 =  c 2 it must be that  (A , B, C )  is an  isosceles triangle. 

6.8. Following the same idea as in A.6.7, 

1. To say that an arbitrary point  C  is on the horizontal axis is to say that its vertical coordinate y = 0. Thus, given a point on the horizontal axis  C :  (x,  0 )  and two points  A :  ( 7 , −4 )
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and  B :  ( 1 , −2 ), by Pythagoras’ theorem it follows that



⎫

 c

⎬

1

= | − 4 − 0|2+|7 −  x|2







⎭ ∴ if  c 1= c 2 ⇒ | − 4|2+|7− x|2= | − 2|2+|1 −  x|2

 c 2

= | − 2 − 0|2+|1 −  x|2

so that





| − 4|2 + |7 −  x|2 = | − 2|2 + |1 −  x|2

16 +  ( 49 − 14 x +  x 2 ) = 4 +  ( 1 − 2 x +  x 2 ) 12 x = 60

∴  x = 5

In conclusion, point  C :  ( 5 ,  0 )  on the horizontal axis is located at the same distance from both  A :  ( 7 , −4 )  and  B :  ( 1 , −2 ). 

2. To say that an arbitrary point  C  is on the vertical axis is to say that its horizontal coordinate x = 0. Thus, given a point on the vertical axis  C :  ( 0 , y)  and two points  A :  ( 7 , −4 )  and B :  ( 1 , −2 ), by Pythagoras’ theorem it follows that



⎫

 c

⎬

1

= |7 − 0|2 + | y −  (−4 )|2







⎭ ∴ if  c 1 =  c 2 ⇒ 72 + | y + 4|2 = 1 + | y + 2|2

 c 2

= |1 − 0|2 + | y −  (−2 )|2

so that





72 + | y + 4|2 =

1 + | y + 2|2

49 +  (

 y 2 + 8 y + 16 ) = 1 +  (

 y 2 + 4 y + 4 )

4 y = −60

∴  y = −15

In conclusion, point  C :  ( 0 , −15 )  on the vertical axis is located at the same distance from both  A :  ( 7 , −4 )  and  B :  ( 1 , −2 ). 

6.9. Following the same idea as in A.6.7, 

1. To say that an arbitrary point  C  is on the horizontal axis is to say that its vertical coordinate y = 0. Thus, given a point on the horizontal axis  C :  (x,  0 )  and two points  A :  ( 2 , −4 ) and  B :  ( 6 , −2 ), by Pythagoras’ theorem it follows that



⎫

 c

⎬

1

= | − 4 − 0|2+|2 −  x|2







∴

| −

| −

⎭

if  c 1= c 2 ⇒

4|2+|2 −  x|2 =

2|2+|6 −  x|2

 c 2 =

| − 2 − 0|2+|6 −  x|2

so that





| − 4|2 + |2 −  x|2 = | − 2|2 + |6 −  x|2
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16 +  ( 4 − 4 x +  x 2 ) = 4 +  ( 36 − 12 x +  x 2 ) 8 x = 20

∴  x = 52

In conclusion, point  C :  ( 5 / 2 ,  0 )  on the horizontal axis is located at the same distance from both  A :  ( 2 , −4 )  and  B :  ( 6 , −2 ). 

2. To say that an arbitrary point  C  is on the vertical axis is to say that its horizontal coordinate x = 0. Thus, given a point on the vertical axis  C :  ( 0 , y)  and two points  A :  ( 2 , −4 )  and B :  ( 6 , −2 ), by Pythagoras’ theorem it follows that



⎫

 c

⎬

1

= |2 − 0|2 + | y −  (−4 )|2







⎭ ∴ if  c 1 =  c 2 ⇒ 22 + | y + 4|2 = 6 + | y + 2|2

 c 2

= |6 − 0|2 + | y −  (−2 )|2

so that





22 + | y + 4|2 =

6 + | y + 2|2

4 +  (

 y 2 + 8 y + 16 ) = 36 +  (

 y 2 + 4 y + 4 )

4 y = 20

∴  y = 5

In conclusion, point  C :  ( 0 ,  5 )  on the vertical axis is located at the same distance from both A :  ( 2 , −4 )  and  B :  ( 6 , −2 ). 

6.10. Following the same idea as in A.6.7, 

1. To say that an arbitrary point  C  is on the horizontal axis is to say that its vertical coordinate y = 0. Thus, given a point on the horizontal axis  C :  (x,  0 )  and two points  A :  (−6 ,  0 ) and  B :  ( 4 , −2 ), by Pythagoras’ theorem it follows that



⎫

 c

⎬

1

= |0 − 0|2 + | − 6 −  x|2







⎭ ∴ if  c 1 =  c 2 ⇒ | − 6 −  x|2 = | − 2|2 + |4 −  x|2

 c 2

= | − 2 − 0|2 + |4 −  x|2

so that





| − 6 −  x|2 = | − 2|2 + |4 −  x|2

36 + 12 x +  x 2 = 4 +  ( 16 − 8 x +  x 2 )

20 x = −16

∴  x = −45

In conclusion, point  C :  (−4 / 5 ,  0 )  on the horizontal axis is located at the same distance from both  A :  (−6 ,  0 )  and  B :  ( 4 , −2 ). 

2. To say that an arbitrary point  C  is on the vertical axis is to say that its horizontal coordinate x = 0. Thus, given a point on the vertical axis  C :  ( 0 , y)  and two points  A :  (−6 ,  0 )  and B :  ( 4 , −2 ), by Pythagoras’ theorem it follows that
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⎫

 c

⎬

1

= | − 6 − 0|2 + | y − 0|2







⎭ ∴ if  c 1 =  c 2 ⇒ | − 6|2 + | y|2 = |4|2 + | y + 2|2

 c 2

= |4 − 0|2 + | y −  (−2 )|2

so that





| − 6|2 + | y|2 = |4|2 + | y + 2|2

36 + 

 y 2 = 16 +  (

 y 2 + 4 y + 4 )

4 y = 16

∴  y = 4

In conclusion, point  C :  ( 0 ,  4 )  on the vertical axis is located at the same distance from both A :  (−6 ,  0 )  and  B :  ( 4 , −2 ). 

6.11. Following the same idea as in A.6.7, 

1. To say that an arbitrary point  C  is on the horizontal axis is to say that its vertical coordinate y = 0. Thus, given a point on the horizontal axis  C :  (x,  0 )  and two points  A :  (−5 ,  3 ) and  B :  (−2 , −4 ), by Pythagoras’ theorem it follows that



⎫

 c

⎬

1

= |3 − 0|2 + | − 5 −  x|2



⎭ ∴

 c 2

= | − 4 − 0|2 + | − 2 −  x|2





if  c 1 =  c 2 ⇒

|3|2 + | − 5 −  x|2 = | − 4|2 + | − 2 −  x|2

so that





|3|2 + | − 5 −  x|2 = | − 4|2 + | − 2 −  x|2

9 +  ( 25 + 10 x +  x 2 ) = 16 +  ( 4 + 4 x +  x 2 ) 6 x = −14

∴  x = −73

In conclusion, point  C :  (−7 / 3 ,  0 )  on the horizontal axis is located at the same distance from both  A :  (−5 ,  3 )  and  B :  (−2 , −4 ). 

2. To say that an arbitrary point  C  is on the vertical axis is to say that its horizontal coordinate x = 0. Thus, given a point on the vertical axis  C :  ( 0 , y)  and two points  A :  (−5 ,  3 )  and B :  (−2 , −4 ), by Pythagoras’ theorem it follows that



⎫

 c

⎬

1

= | − 5 − 0|2 + | y − 3|2



⎭ ∴

 c 2

= | − 2 − 0|2 + | y −  (−4 )|2





if  c 1 =  c 2 ⇒

| − 5|2 + | y − 3|2 = | − 2|2 + | y + 4|2

so that
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| − 5|2 + | y − 3|2 = | − 2|2 + | y + 4|2

25 +  (

 y 2 − 6 y + 9 ) = 4 +  (

 y 2 + 8 y + 16 )

14 y = 14

∴  y = 1

In conclusion, point  C :  ( 0 ,  1 )  on the vertical axis is located at the same distance from both A :  (−5 ,  3 )  and  B :  (−2 , −4 ). 

6.12. Following the same idea as in A.6.7, 

1. To say that an arbitrary point  C  is on the horizontal axis is to say that its vertical coordinate y = 0. Thus, given a point on the horizontal axis  C :  (x,  0 )  and two points  A :  (−2 ,  4 ) and  B :  ( 1 ,  1 ), by Pythagoras’ theorem it follows that



⎫

 c

⎬

1

= |4 − 0|2+| − 2 −  x|2







⎭ ∴ if  c 1= c 2 ⇒ |4|2+| − 2 −  x|2 = |1|2+|1 −  x|2

 c 2 =

|1 − 0|2+|1 −  x|2

so that





|4|2 + | − 2 −  x|2 = |1|2 + |1 −  x|2

16 +  ( 4 + 4 x +  x 2 ) = 1 +  ( 1 − 2 x +  x 2 ) 6 x = −18

∴  x = −3

In conclusion, point  C :  (−3 ,  0 )  on the horizontal axis is located at the same distance from both  A :  (−2 ,  4 )  and  B :  ( 1 ,  1 ). 

2. To say that an arbitrary point  C  is on the vertical axis is to say that its horizontal coordinate x = 0. Thus, given a point on the vertical axis  C :  ( 0 , y)  and two points  A :  (−2 ,  4 )  and B :  ( 1 ,  1 ), by Pythagoras’ theorem it follows that



⎫

 c

⎬

1

= | − 2 − 0|2+| y − 4|2







⎭ ∴ if  c 1= c 2 ⇒ | − 2|2+| y − 4|2 = |1|2+| y − 1|2

 c 2 =

|1 − 0|2+| y − 1|2

so that





| − 2|2 + | y − 4|2 = |1|2 + | y − 1|2

4 +  (

 y 2 − 8 y + 16 ) = 1 +  (

 y 2 − 2 y + 1 )

6 y = 18

∴  y = 3

In conclusion, point  C :  ( 0 ,  3 )  on the vertical axis is located at the same distance from both A :  (−2 ,  4 )  and  B :  ( 1 ,  1 ). 
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Fig. 6.8 P.6.13, given a point  B  in

2D space, there is an infinity of points

around it at the same distance. That

case is known as the circle. However, 

given additional constrains to the

point’s distance, for example, that

 y = 3, then due to the symmetry there

are only two points that satisfy both

distance and  y  coordinate conditions

6.13. To say that an arbitrary point  A  is at distance  c  from a given point  B  is to say that the hypotenuse of the associated right triangle is equal to  c; see Fig. 6.6b. Thus, given points A :  (x 1 , y 1 ) =  (x,  3 )  and  B :  (x 2 , y 2 ) =  (−4 ,  8 )  that are separated by distance  c = 13, then by Pythagoras’ theorem it follows that

 c 2 = | x 2 −  x 1|2 + | y 2 −  y 1|2

132 = | − 4 −  x|2 + |8 − 3|2

132 = 16 + 8 x +  x 2 + 25

 x 2 + 8 x − 128 = 0

 x 2 − 8 x + 16 x − 128 = 0

 x(x − 8 ) + 16 (x − 8 ) = 0

 (x − 8 )(x + 16 ) = 0

∴  x 1 = −16 , x 2 = 8

which is to say that there are two points  A 1 :  (−16 ,  3 )  and  A 2 :  ( 8 ,  3 )  that are at the same distance from point  B :  (−4 ,  8 ) (see Fig. 6.8), which is equivalent to say on the same circle centered at  B :  (−4 ,  8 ). Note that the sides of right triangles are  ( 5 ,  12 ,  13 ), i.e., second Pythagorean triple. 

6.14. Following the same idea as in A.6.13, given points  A :  (x,  10 )  and  B :  ( 4 ,  2 )  separated by  c = 17, then by Pythagoras’ theorem it follows that

 c 2 = | x 2 −  x 1|2 + | y 2 −  y 1|2

172 = |4 −  x|2 + |2 − 10|2

172 = 16 − 8 x +  x 2 + 64

 x 2 − 8 x − 209 = 0

 x 2 − 19 x + 11 x − 209 = 0

 x(x − 19 ) + 11 (x − 19 ) = 0
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 (x − 19 )(x + 11 ) = 0

∴  x 1 = −11 , x 2 = 19

which is to say that there are two points  A 1 :  (−11 ,  10 )  and  A 2 :  ( 19 ,  10 )  at the same distance from  B :  ( 4 ,  2 ). The sides of right triangles are  ( 8 ,  15 ,  17 ), i.e., another Pythagorean triple. 

6.15. Given points  A :  (x,  5 )  and  B :  (−1 , −2 )  that are separated by  c = 25, then c 2 = | x 2 −  x 1|2 + | y 2 −  y 1|2

252 = | − 1 −  x|2 + | − 2 − 5|2

252 = 1 − 2 x +  x 2 + 49

 x 2 + 2 x − 575 = 0

 x 2 + 25 x − 23 x − 209 = 0

 x(x + 25 ) − 23 (x + 25 ) = 0

 (x + 25 )(x − 23 ) = 0

∴  x 1 = −25 , x 2 = 23

which is to say that there are two points  A 1 :  (−25 ,  5 )  and  A 2 :  ( 23 ,  5 )  at the same distance from  B :  (−1 , −2 ). The sides of right triangles are  ( 7 ,  24 ,  25 ), i.e., another Pythagorean triple. 

6.16. Given points  A :  (−2 , y)  and  B :  ( 2 ,  3 )  that are separated by  c = 5, then c 2 = | x 2 −  x 1|2 + | y 2 −  y 1|2

52 = |2 −  (−2 )|2 + |3 −  y|2

25 = 16 + 9 − 6 y +  y 2

 y 2 − 6 y = 0

 y(y − 6 ) = 0

∴  y 1 = 0 , y 2 = 6

which is to say that there are two points  A 1 :  (−2 ,  0 )  and  A 2 :  (−2 ,  6 )  at the same distance from point  B :  ( 2 ,  3 ). Sides of the two associated triangles are  ( 3 ,  4 ,  5 ), i.e., Pythagorean triple. 

6.17. Given points  A :  ( 6 , y)  and  B :  ( 2 , −1 )  that are separated by  c = 5, then c 2 = | x 2 −  x 1|2 + | y 2 −  y 1|2

52 = |2 − 6|2 + | − 1 −  y|2

25 = 16 + 1 + 2 y +  y 2

 y 2 + 2 y − 8 = 0

 y 2 + 4 y − 2 y − 8 = 0
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 y(y + 4 ) − 2 (y + 4 ) = 0

 (y + 4 )(y − 2 ) = 0

∴  y 1 = −4 , y 2 = 2

There are two points  A 1 :  ( 6 , −4 )  and  A 2 :  ( 6 ,  2 )  at the same distance from point  B :  ( 2 , −1 ). 

The sides of right triangles are  ( 3 ,  4 ,  5 ), i.e., Pythagorean triple. 

6.18. Given points  A :  ( 10 , y)  and  B :  (−2 , −3 )  that are separated by  c = 13, then c 2 = | x 2 −  x 1|2 + | y 2 −  y 1|2

132 = | − 2 − 10|2 + | − 3 −  y|2

169 = 144 + 9 + 6 y +  y 2

 y 2 + 6 y − 16 = 0

 y 2 + 8 y − 2 y − 16 = 0

 y(y + 8 ) − 2 (y + 8 ) = 0

 (y + 8 )(y − 2 ) = 0

∴  y 1 = −8 , y 2 = 2

There are two points  A 1 :  ( 10 , −8 )  and  A 2 :  ( 10 ,  2 )  at the same distance from point  B : (−2 , −3 ). Sides of the two associated triangles are  ( 5 ,  12 ,  13 ), i.e., Pythagorean triple. 

6.19. Given three points  A :  ( 0 ,  0 ) ,  B :  ( 3 ,  0 ) , and  C :  ( 0 ,  5 ), three sides of this triangle are:

1.  A B :



 a

= | x





2 −  x 1| = |3 − 0| = |3| = 3

∴  c 1 =  a 2 +  b 2 = 32 + 02 = 3

 b

= | y 2 −  y 1| = |0 − 0| = |0| = 0

i.e., this side is horizontal because | y| = | y 2 −  y 1| = 0. 

2.  A C :



 a

= | x





2 −  x 1| = |0 − 0| = |5| = 0

∴  c 2 =  a 2 +  b 2 = 02 + 52 = 5

 b

= | y 2 −  y 1| = |5 − 0| = |5| = 5

i.e., this side is vertical because | x| = | x 2 −  x 1| = 0; the two points are one above the other. 

3.  BC :



 a

= | x





2 −  x 1| = |3 − 0| = |3| = 3

√

∴  c 3 =  a 2 +  b 2 = 32 + 52 = 34

 b

= | y 2 −  y 1| = |5 − 0| = |5| = 5

i.e., this is the longest side. It is a good idea to verify if this is a right triangle, by Pythagoras’

theorem
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 c 2 ? 

=  c 2 +  c 2

3

1

2

34 = 32 + 52 = 34 

which confirms that these three points form a right triangle. Therefore, its area is equal to half of the rectangular area formed by the two catheti. This is because the diagonal of a rectangle formed by  c 1 ×  c 2 is identical to hypotenuse  c 3 and at the same time it splits the rectangular surface into two identical right angle triangles. Thus, area  P  is

 P =  c 1  c 2 = 3 · 5 = 15

2

2

2

6.20. Given three points  A :  ( 0 ,  0 ) ,  B :  (−3 ,  0 ) , and  C :  (−3 ,  4 ), three sides of this triangle are:

1.  A B :



 a

= | x





2 −  x 1| = | − 3 − 0| = | − 3| = 3

∴  c 1 =  a 2 +  b 2 = 32 + 02 = 3

 b

= | y 2 −  y 1| = |0 − 0| = |0| = 0

i.e., this side is horizontal because | y| = | y 2 −  y 1| = 0. 

2.  A C :



 a

= | x





2 −  x 1| = | − 3 − 0| = | − 3| = 3

∴  c 2 =  a 2 +  b 2 = 32 + 42 = 5

 b

= | y 2 −  y 1| = |4 − 0| = |4| = 4

3.  BC :



 a

= | x





2 −  x 1| = | − 3 −  (−3 )| = |0| = 0

∴  c 3 =  a 2 +  b 2 = 02 + 42 = 4

 b

= | y 2 −  y 1| = |4 − 0| = |4| = 4

i.e., this side is vertical because | x| = | x 2 −  x 1| = 0; the two points are one above the other. 

Note that lengths of these three sides  ( 3 ,  4 ,  5 )  are well-known Pythagorean triple, which confirms that these three points form a right triangle. Therefore, its area  P  is equal to P =  c 1  c 2 = 3 · 4 = 6

2

2

6.21. Given three points  A :  (−1 ,  1 ) ,  B :  ( 4 ,  1 ) , and  C :  (−1 ,  5 ), three sides of this triangle are:
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1.  A B :



 a

= | x





2 −  x 1| = |4 −  (−1 )| = |5| = 5

∴  c 1 =  a 2 +  b 2 = 52 + 02 = 5

 b

= | y 2 −  y 1| = |1 − 1| = |0| = 0

i.e., this side is horizontal because | y| = | y 2 −  y 1| = 0l. 

2.  A C :



 a

= | x





2 −  x 1| = | − 1 −  (−1 )| = |0| = 0

∴  c 2 =  a 2 +  b 2 = 02 + 42 = 4

 b

= | y 2 −  y 1| = |5 − 1| = |4| = 4

i.e., this side is vertical because | x| = | x 2 −  x 1| = 0; the two points are one above the other. 

3.  BC :



 a

= | x





2 −  x 1| = | − 1 − 4| = | − 5| = 5

√

∴  c 3 =  a 2 +  b 2 = 52 + 42 = 41

 b

= | y 2 −  y 1| = |5 − 1| = |4| = 4

i.e., this is the longest side. Verification if this is a right triangle, 

 c 2 ? 

=  c 2 +  c 2

3

1

2

41 = 52 + 42 = 41 

confirms that these three points form a right triangle. Therefore, its area  P  is equal to half of the rectangular area formed by the two catheti, as

 P =  c 1  c 2 = 5 · 4 = 10

2

2

6.22. Given three points  A :  (−3 ,  0 ) ,  B :  ( 3 ,  0 ) , and  C :  ( 0 ,  5 ), three sides of this triangle are:

1.  A B :



 a

= | x





2 −  x 1| = |3 −  (−3 )| = | − 6| = 6

∴  c 1 =  a 2 +  b 2 = 62 + 02 = 6

 b

= | y 2 −  y 1| = |0 − 0| = |0| = 0

i.e., this side is horizontal because | y| = | y 2 −  y 1| = 0. 

2.  A C :



 a

= | x





2 −  x 1| = |0 −  (−3 )| = |3| = 3

√

∴  c 2 =  a 2 +  b 2 = 32 + 52 = 34

 b

= | y 2 −  y 1| = |5 − 0| = |4| = 5
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3.  BC :



 a

= | x





2 −  x 1| = |3 − 0| = |3| = 3

√

∴  c 3 =  a 2 +  b 2 = 32 + 52 = 34

 b

= | y 2 −  y 1| = |0 − 5| = | − 5| = 5

Note that, as  c 2 =  c 3, these three points form an isosceles triangle with base at  c 1, which can be visualized as two right triangles “back to back”; see Fig. 6.9. Due to its symmetry, the height line  h  to the base of an isosceles triangle splits the base line in half. Thus, one cathetus of right triangle is equal  c 1 / 2 = 3. Also, for the reason of symmetry, the height line  h  of an isosceles triangle serves as the other cathetus of two right triangles. The height  h  is then calculated as c

2

1

 h 2 =  c 2 −

= 34 − 9 ∴  h = 5

3

2

As there are two right triangle areas, the total area of an isosceles triangle is  P = 5 · 3 = 15. 

6.23. Given three points  A :  (−2 ,  3 ) ,  B :  ( 8 , −2 ) , and  C :  ( 3 ,  8 ), three sides of this triangle are:

1.  A B :



 a

= | x





2 −  x 1| = | − 2 − 3| = | − 5| = 5

√

∴  c 1 =  a 2 +  b 2 = 52 + 102 = 125

 b

= | y 2 −  y 1| = |8 −  (−2 )| = |10| = 10

2.  A C :



 a

= | x





2 −  x 1| = |8 − 3| = |5| = 5

√

∴  c 2 =  a 2 +  b 2 = 52 + 52 = 50

 b

= | y 2 −  y 1| = |3 −  (−2 )| = |5| = 5

Fig. 6.9 P.6.22, by definition, at least

two sides of an isosceles triangle are

of equal length. The special case of all

three sides being equal is known as

equilateral triangle. For each side, 

there is one height segment that is

vertical to that side and connects to

the opposite vertex. The three height

segments intersect in a single point

known as “orthocenter” that splits

these height segments in proportion
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3.  BC :



 a

= | x





2 −  x 1| = |8 −  (−2 )| = |10| = 10

√

∴  c 3 =  a 2 +  b 2 = 102 + 52 = 125

 b

= | y 2 −  y 1| = |3 − 8| = | − 5| = 5

Evidently, as sides  A B =  BC , this is an isosceles triangle with the base  A C . Therefore, the

√

intersect of height  h  and the base is at  A C / 2 =

50 / 2, then, 

2

 h 2 =  A B −  (A C / 2 ) 2

225

 h 2 = 125 − 50 = 225

∴  h =

= 15

√

4

2

2

2

Therefore, area  P  of an isosceles triangle is twice the area of the two right triangles whose catheti are  h  and  A C / 2, (Fig. 6.10) as

√



 A C

50





50 25

 P =  h

= 15

√

= 15

= 75

2

2

2

2

2

2

6.24. Given three points  A :  (−2 ,  0 ) ,  B :  ( 6 ,  2 ) , and  C :  ( 2 ,  6 ), three sides of this triangle are:

1.  A B :



 a

= | x





2 −  x 1| = |6 −  (−2 )| = |8| = 8

√

∴  c 1 =  a 2 +  b 2 = 82 + 22 = 68

 b

= | y 2 −  y 1| = |2 − 0| = |0| = 2

2.  A C :



 a

= | x





2 −  x 1| = |2 −  (−2 )| = |4| = 4

√

∴  c 2 =  a 2 +  b 2 = 42 + 62 = 52

 b

= | y 2 −  y 1| = |6 − 0| = |6| = 6

Fig. 6.10 P.6.23, isosceles triangle

arbitrarily positioned in 2D space. 

Sides  c 1 and  c 3 are of equal length; 

thus,  c 2 side is the base side. Height  h

and half-base side are used to

calculate the area of one right

triangle. Due to symmetry, there are

two right triangles in total; thus, the

total area of an isosceles triangle is

equal to the area of a  c 2 ×  h  rectangle
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3.  BC :



 a

= | x





2 −  x 1| = |2 − 6| = | − 4| = 4

√

∴  c 3 =  a 2 +  b 2 = 42 + 42 = 32

 b

= | y 2 −  y 1| = |6 − 2| = |4| = 4

Evidently, as all three sides have different lengths this triangle is irregular. Then, the idea is to split it into two right triangles by construction of the height line  h  at any of triangle’s sides. 

For example, a point on the  BC  side splits it into  x 1 and  x 2 line segments that define two right triangles:  (x 1 h c 1 )  and  (x 2 h c 2 ) (see Fig. 6.11). Then by inspection it follows that h 2 =  c 2 −  x 2 = 68 −  x 2

1

1

1

∴ 68 −  x 2 = 52 −  x 2

1

2

 h 2 =  c 2 −  x 2 = 52 −  x 2

2

2

2

√

 c 3 =  x 1 +  x 2 =

32

This system of two equations may be resolved as

√

√

 x 1 +  x 2 =

32 ⇒  x 2 =

32 −  x 1

 x 2 −  x 2 = 68 − 52 ⇒  (x

1

2

1 +  x 2 )(x 1 −  x 2 ) = 16

√ 

√



32  x 1 −  (  32 −  x 1 ) = 16

∴  x 1 = 24

√

= 6

√

32

2

√

∴  x 2 = 32 −  x 1 = 2

√2

The last unknown is the actual value of  h (it serves as the second cathetus), as






6

2

√

√

 h 2 = 68 −  x 2 = 68 − √

= 50 ∴  h = 50 = 5 2

1

2

To conclude, the sum of two right triangle areas is

⎫

⎪

⎪

 P

⎪

1

=  h x 1 = 5

√2 6 3 =15 ⎪

2



⎬

2 

√2

∴

⎪

 P =  P 1 +  P 2 = 20

⎪

⎪

 P

⎪

2

=  h x 2 = 5

√2 2 =5 ⎭

2

2 

√2
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Fig. 6.11 P.6.24, the area of an

irregular triangle may be resolved by

splitting it into two right angle areas. 

One of the three height segments  h

splits the facing side into two

segments  x 1 and  x 2. Once the

resulting two-equation system is

resolved and the length  h  calculated, 

the total triangle area is the sum of

two right triangle areas

Fig. 6.12 P.6.25, a point in 3D space

forms a cuboid relative to the origin

point. The diagonal of that cuboid is

aligned with the hypotenuse of the

vertical  (d 1 z d 2 )  right triangle. At

the same time its cathetus  d 1 is

aligned with the hypotenuse of a

planar  (x y d 1 )  right triangle

6.25. The given coordinates  (x, y, z) =  (−3 ,  4 ,  0 )  of a point in 3D space are relative to the origin. The diagonal of a cuboid formed by the origin and given point as in Fig. 6.12 may be resolved in two steps: first, its projection in 2D  xy  plane as in Fig. 6.12 (left) and then in 3D

space as in Fig. 6.12 (right). 

1.  (x, y)  plane: the diagonal  d 1 of the base rectangle, Fig. 6.12 (left), is derived by Pythagoras’

theorem from  (x, y)  coordinates, as

 d 2 =  x 2 +  y 2 =  (−3 ) 2 + 42 = 25 ∴  d

1

1 = 5

2. Vertical plane: the  z  coordinate and  d 1 serve as catheti of the right triangle whose diagonal is  d 2; see Fig. 6.12 (right). However, to say that  z = 0 (as in this case) is to say that the given point is contained strictly in the  (x, y)  plane. Or, equivalently, there is no cuboid, only the base rectangle. Formally, it may be also stated that  d 2 =  d 1. 

3. Right triangle area: there is only a right triangle in the  (x, y)  plane; thus, its area is  P =

| x| · | y| / 2 = 3 · 4 / 2 = 6. 

6.26. Following the explanations in A.6.25, to say that  x = 0 in  A :  (x, y, z) =  ( 0 , −4 , −4 ) is to say that there is no 3D cuboid; all points are contained strictly in the vertical  (y, z)  plane. 

1.  (y, z)  plane: diagonal  d 2 of the vertical rectangle is derived by Pythagoras’ theorem from (y, z)  coordinates, as

6.1 Points
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√

 d 2 =  y 2 +  z 2 =  (−4 ) 2 +  (−4 ) 2 = 32 ∴  d 32

2

2 =

2. Right triangle area: There is only a right triangle in the  (y, z)  plane; thus, its surface is P = | y| · | z| / 2 = 4 · 4 / 2 = 8. 

6.27. Following the explanations in A.6.25, to say that  y = 0 in  A :  (x, y, z) =  ( 2 ,  0 ,  5 )  is to say that there is no 3D cuboid; all points are contained strictly in the vertical  (x, z)  plane. 

1.  (x, z)  plane: diagonal  d 2 of the vertical rectangle is derived by Pythagoras’ theorem from (x, z)  coordinates, as

√

 d 2 =  x 2 +  z 2 = 22 + 52 = 29 ∴  d

29

2

2 =

2. Right triangle area: there is only a right triangle in the  (x, z)  plane; thus, its surface is P = | x| · | z| / 2 = 2 · 5 / 2 = 5. 

6.28. Given point in 3D space  A :  (x, y, z) =  ( 1 ,  1 ,  1 ), then 1.  (x, y)  plane: Diagonal  d 1 of the planar rectangle is derived by Pythagoras’ theorem from (x, y)  coordinates, as

√

 d 2 =  x 2 +  y 2 = 12 + 12 = 2 ∴  d

2

1

1 =

2. Vertical plane: the  z  coordinate and  d 1 serve as catheti to  d 2 to form a right triangle; thus

√

 d 2 =  d 2 +  z 2 = 2 + 12 = 3 ∴  d

3

2

1

2 =

3. Right triangle area: the vertical right triangle in  (x, y, z)  is formed by  d 1 and  z  as catheti

√

and  d 2 as hypotenuse; thus, its area is  P = | d 1| · | z| / 2 =

2 / 2

6.29. Given point in 3D space  A :  (−2 ,  3 ,  5 ), then 1.  (x, y)  plane: the diagonal  d 1 of the planar rectangle is derived by Pythagoras’ theorem from (x, y)  coordinates, as

√

 d 2 =  x 2 +  y 2 =  (−2 ) 2 + 32 = 13 ∴  d

13

1

1 =

2. Vertical plane: the  z  coordinate and  d 1 serve as catheti to  d 2 to form a right triangle; thus

√

 d 2 =  d 2 +  z 2 = 13 + 52 = 38 ∴  d

38

2

1

2 =

3. Right triangle area: the vertical right triangle in  (x, y, z)  is formed by  d 1 and  z  as catheti

√

and  d 2 as hypotenuse; thus, its area is  P = | d 1| · | z| / 2 = 5 13 / 2
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6.30. Given point in 3D space  A :  ( 3 , −1 , −4 ), then 1.  (x, y)  plane: diagonal  d 1 of the plane rectangle is derived by Pythagoras’ theorem from (x, y)  coordinates, as

√

 d 2 =  x 2 +  y 2 = 32 +  (−1 ) 2 = 10 ∴  d

10

1

1 =

2. vertical plane: the  z  coordinate and  d 1 serve as catheti to  d 2 to form a right triangle; thus

√

 d 2 =  d 2 +  z 2 = 10 +  (−4 ) 2 = 38 ∴  d

26

2

1

2 =

3. right triangle area: vertical right triangle in  (x, y, z)  is formed by  d 1 and  z  as catheti and  d 2

√

as hypotenuse; thus, its area is  P = | d 1| · | z| / 2 = 2 10

Reminder: Note how distance to the origin develops as the number of space dimensions

increases from 1D to 2D to 3D, . . . 

√

1D: line,  A :  (x) d 1 = | x| def

=  x 2





2D: plane surface,  A :  (x, y) d 2 =

 d 2 +  y 2 =

 x 2 +  y 2

1





3D: volume,  A :  (x, y, z) d 3 =

 d 2 +  z 2 =

 x 2 +  y 2 +  z 2

2

Humans cannot visualize higher-order space dimensions so that each axis is perpendic-

ular to all others, but the mathematical trend continues to  n  dimensions. 

6.2

Line

The mathematical area of analytic geometry formalizes relationships between abstract mathematical objects, such as  y =  f (x), with physical objects, such as set of points in space. Mastering visual connections between analytic and physical forms of the same objects may be considered as the prerequisite for any advanced mathematical topic. 

6.31. Any point in 2D space is set by its two coordinate  (x, y)  pair. For example,  ( 1 ,  2 )  pair is to say that  x = 1 and  y = 2 and it may be written formally as  y( 1 ) = 2 (reads as follows: when  x = 1, then  y = 2 or, more formally, “y  of one is two”). As it is well known, infinitely many lines may share one given point but only one line can cross two given points. Thus, in

order to the find general equation of the line crossing two points, it is necessary to write one separate equation for each point that expresses the relation of its  (x, y)  pair. 

1.  Line equation: the first-order (or,  linear) polynomial in the form  ax +  b  and its variants are equivalent to a line in 2D space whose  (x, y)  relation may be written in the analytic l form as

6.2 Line
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 y(x) =  ax +  b (explicit form)

or, 

 cx +  dy +  e = 0 (implicit form)

where  a, b, c, d, e ∈ R. Given two points  A :  ( 0 ,  0 )  and  B :  ( 1 ,  1 ), there are two equations as

 A :  (x, y) =  ( 0 ,  0 ):

 y(x) =  ax +  b

0 =  a · 0 +  b ⇒  b = 0

 B :  (x, y) =  ( 1 ,  1 ):





 y(x) =  ax +  b

 b = 0

1 =  a · 1 + 0 ⇒  a = 1

As  a = 1 and  b = 0, the general equation of a line crossing  A :  ( 0 ,  0 )  and  B :  ( 1 ,  1 )  is y 1 (x) =  x

To note: this equation states that the two coordinates are always equal, i.e.,  y =  x. 

Geometrically, it is to say that relative to the origin this line forms a right triangle whose catheti are of equal length. 

Reminder:  Special right triangles  are constructed with 0 ,  30◦ ,  45◦ ,  60◦ , and 90◦ or, equivalently 0 , π/ 6 , π/ 4 , π/ 3 , andπ/ 2 angles. One angle being 90◦, recall that the sum of internal angles of a triangle in Euclidian space is 180◦. For example, two

catheti being of equal length implies that two facing angles are equal too, which is to

say they must be 45◦ each. 

2.  Line intersects with axes:  to say that line intersects the horizontal or vertical axes is to say that  y = 0 (i.e., it intersects the horizontal axis), or  x = 0 (i.e., it intersects the vertical axis); see Fig. 6.13a. In the general case, the intersect points  (x 0 ,  0 )  and  ( 0 , y 0 )  are derived as

 y = 0 : 0 =  a x 0 +  b ⇒  x 0 = −  ba

 x = 0 :  y 0 =  a · 0 +  b ⇒  y 0 = − b

as  b = 0, then  y =  x  line intersects both axes at the origin  (x 0 , y 0 ) =  ( 0 ,  0 ). 

3.  Line slope:  or equivalently its angle, is one of the key parameters not only for the current topic, but also for the whole mathematics. In the linear equation form “ax +  b,” it is the value of  a  that controls its line slope. The parameter  b  is simply the amount of vertical offset
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Fig. 6.13 P.6.31—parameters of a line and its perpendicular line

from the origin. It is important to adapt interpretation of the parameter  a (“the slope”) as the change (also, “the sensitivity”) of  y  elevation for every  unit change  of  x  distance; see Fig. 6.13a. 

Formally, the “change”    is the difference between values at the ‘end’ and the “beginning.” 

That is,  x =  x 2 −  x 1 and  y =  y 2 −  y 1. The slope is then the ratio  r (or “gain” in engineering terms: the output equals gain times input) as

−A b

 y =  r x ∴  r  def

=  y =

=  a

 x

−A b/a

which is to say that the slope of a line is equal to  a; in this example  y = 1 ·  x  the slope a = 1. Note that the slope of a line does not depend at which point or for what size of  

it is calculated. Again, the right triangle is used to define the slope (a.k.a. “derivative” in calculus). 

 Perpendicular line: to say that one line is perpendicular to the other is to say that the two lines form a right angle; formally to say that the product of their slopes  a 1 and  a 2 equals

“−1” as

 a

def

1 a 2 = −1

∴  a 2 = − 1 (i.e., negative inverse of each other)

 a 1

In this example, the slope of  y =  x  is  a 1 = 1; therefore, its perpendicular line  yp  has slope of  a 2 = −1 / 1 = −1, or  yp = − x +  n, where  n ∈ R; see Fig. 6.13b. 

Reminder: It is important to note that  any  line in the form of  yp =  (−1 /a) x +  n  is perpendicular to  y =  ax +  m, where  a, n, m ∈ R. 

6.2 Line
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6.32. Following up on the discussion in A.6.31, given two points  A :  ( 1 , −1 )  and  B : ( 0 ,  0 )

1.  Line equation: there are two equations as

(a)  B :  (x, y) =  ( 0 ,  0 ):

 y(x) =  ax +  b

0 =  a · 0 +  b ⇒  b = 0

(b)  A :  (x, y) =  ( 1 , −1 ):





 y(x) =  ax +  b

 b = 0

−1 =  a · 1 + 0 ⇒  a = −1

Thus, as  (a, b) =  (−1 ,  0 ), then the equation of a line crossing both  A :  ( 1 , −1 )  and B :  ( 0 ,  0 )  is

 y(x) = − x

2.  Line intersects with axes:  the intersect points  (x 0 ,  0 )  and  ( 0 , y 0 )  are derived as y = 0 : 0 = − x 0 ⇒  x 0 = 0

 x = 0 :  y 0 = 0 ⇒  y 0 = 0

as  b = 0, then  y = − x  line intersects both axes at the origin  (x 0 , y 0 ) =  ( 0 ,  0 ). 

3.  Line slope: as  y = −1 ·  x, its slope is  a = −1. 

 Perpendicular line: given  a 1 = −1, then the slope of  yp  is

 a 2 = − 1 ⇒  a 2 = 1

 a 1

therefore, perpendicular lines are in the form of  yp =  x +  m, where  m ∈ R. 

6.33. Following up on the discussion in A.6.31, given two points  A :  ( 0 ,  1 )  and  B :  ( 1 ,  0 ) 1.  Line equation: there are two equations as

 A :  (x, y) =  ( 0 ,  1 ):

 y(x) =  ax +  b

1 =  a · 0 +  b ⇒  b = 1

 B :  (x, y) =  ( 1 ,  0 ):





 y(x) =  ax +  b

 b = 1
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0 =  a · 1 + 1 ⇒  a = −1

Thus, as  (a, b) =  (−1 ,  1 ), then the equation of a line crossing both  A :  ( 0 ,  1 )  and  B : ( 1 ,  0 )  is

 y(x) = − x + 1

2.  Line intersects with axes:  the intersect points  (x 0 ,  0 )  and  ( 0 , y 0 )  are derived as y = 0 : 0 = − x 0 + 1 ⇒  x 0 = 1

 x = 0 :  y 0 = 0 + 1 ⇒  y 0 = 1

i.e., intersect points with axes of this line are at  (x 0 ,  0 ) =  ( 1 ,  0 )  and  ( 0 , y 0 ) =  ( 0 ,  1 ). 

3.  Line slope: as  y = −1 ·  x + 1, its slope is  a = −1. 

 Perpendicular line: given  a 1 = −1, then the slope of  yp  is

 a 2 = − 1 ⇒  a 2 = 1

 a 1

therefore, perpendicular lines are  yp =  x +  m, where  m ∈ R. 

6.34. Given two points  A :  ( 1 ,  2 )  and  B :  (−2 , −1 ) 1.  Line equation: there are two equations at  A :  (x, y) =  ( 1 ,  2 )  and  B :  (−2 , −1 ): 2 =  a · 1 +  b

−1 =  a ·  (−2 ) +  b

3 = 3 a ⇒  a = 1

∴ 2 = 1 +  b ⇒  b = 1

Thus, as  (a, b) =  ( 1 ,  1 ), then the equation of a line crossing both  A :  ( 1 ,  2 )  and  B : (−2 , −1 )  is

 y(x) =  x + 1

2.  Line intersects with axes:  the intersect points  (x 0 ,  0 )  and  ( 0 , y 0 )  are derived as y = 0 : 0 =  x 0 + 1 ⇒  x 0 = −1

 x = 0 :  y 0 = 0 + 1 ⇒  y 0 = 1

i.e., intersect points of this line are at  (x 0 ,  0 ) =  (−1 ,  0 )  and  ( 0 , y 0 ) =  ( 0 ,  1 ). 

3.  Line slope: as  y = 1 ·  x + 1, its slope is  a = 1. 

6.2 Line
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 Perpendicular line: given  a 1 = 1, then the slope of  yp  is

 a 2 = − 1 ⇒  a 2 = −1

 a 1

therefore, perpendicular lines are in the form of  yp = − x +  m, where  m ∈ R. 

6.35. Given two points  A :  ( 5 / 2 ,  3 ))  and  B :  (−3 / 2 , −5 ) 1.  Line equation: there are two equations at  A :  ( 5 / 2 ,  3 ))  and  B :  (−3 / 2 , −5 ): 3 =  a · 5 +  b

2 

−5 =  a · −3 +  b

2

8 = 4 a ⇒  a = 2

∴ 3 = 5 +  b ⇒  b = −2

As  (a, b) =  ( 2 , −2 )  then line equation at  A :  ( 5 / 2 ,  3 ))  and  B :  (−3 / 2 , −5 )  is y(x) = 2 x − 2

2.  Line intersects with axes:  the intersect points  (x 0 ,  0 )  and  ( 0 , y 0 )  are derived as y = 0 : 0 = 2 x 0 − 2 ⇒  x 0 = 1

 x = 0 :  y 0 = 0 − 2 ⇒  y 0 = −2

i.e., this line intersecting at  (x 0 ,  0 ) =  ( 1 ,  0 )  and  ( 0 , y 0 ) =  ( 0 , −2 ). 

3.  Line slope: as  y = 2 ·  x − 2, its slope is  a = 2. 

 Perpendicular line: given  a 1 = 2, then the slope of  yp  is

 a 2 = − 1 ⇒  a 2 = − 1

 a 1

2

therefore, perpendicular lines are in the form of  yp = − x/ 2 +  m, where  m ∈ R. 

6.36. Given two points  A :  ( 0 ,  1 ))  and  B :  ( 0 ,  4 ) ,it is evident that both points are on the vertical axis. In other words, on vertical line  x = 0. By consequence, there is only one intersect point with the horizontal axis at the origin  ( 0 ,  0 ). By definition, as  x  is fixed to zero thus due to division by zero of  y/x =  y/ 0 = ∞, that is to say a vertical line has infinite slope. 

Naturally, a line perpendicular to the vertical axis is the horizontal axis,  y = 0. Or, formally, its slope is a negative inverse of the infinity, which is zero. 

6.37. Given zero angle is to say that the line is horizontal, and given point  A :  ( 0 ,  0 )  is to say that the line crosses the origin; therefore,  y = 0, the horizontal axis. 
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6.38. Given  π/ 4 angle is to say that line is aligned with the hypotenuse of a right triangle whose catheti are equal. Given point  A :  ( 2 ,  2 ), i.e.,  x =  y, forms a right triangle with the origin  O :  ( 0 ,  0 ). In conclusion,  y =  x; see A.6.31. 

6.39. Given − π/ 4 angle is to say that line is aligned with the hypotenuse of a right triangle whose catheti are equal. Given point  A :  ( 3 / 2 , −3 / 2 ), i.e.,  y = − x  forms a right triangle with the origin  O :  ( 0 ,  0 )  whose hypotenuse is a line slanted at − π/ 4 (i.e.,  π/ 4 clockwise); see A.6.32. 

6.40. Given angle 3 π/ 4 is supplementary with − π/ 4 because their sum equals  π. Recall that the sides of  180◦ form a straight line. That being so, to say that the slope of a line is equal 3 π/ 4 is equivalent to saying that its slope equals − π/ 4 as measured relative to the horizontal axis; see Fig. 6.14. There is an infinity of parallel lines with the slope of − π/ 4, but only one that includes  A :  ( 5 , −2 )  point. 

In order to derive the analytic form of this line, first, coordinates of a second point on this line must be deduced. Given slope and angle, there are an infinity of right triangles that may be constructed. One possible right triangle whose hypotenuse is aligned with the given angle may be constructed as follows:

1.  Horizontal cathetus:  horizontal line at  A :  ( 5 , −2 )  intersects the  y-axis at  B :  ( 0 , −2 ). 

Thus, that is the location of the right angle vertex. This cathetus length is therefore  a =

 A B = 5. 

2.  Vertical cathetus:  given  B, then the second cathetus  b  may be formed along the  y-axis. 

When the hypotenuse slope equals − π/ 4, it is to say that two catheti must be of the same length, i.e., five. As the third vertex is five units apart, starting from the initial point  B : ( 0 , −2 ), it follows that it must be at  C :  ( 0 ,  3 )  so that  b =  BC = 5. 

3.  Hypotenuse  of the newly formed right triangle is aligned with the  y(x) =  ax +  b  line, where its two parameters  a, b ∈ R are resolved at  A :  ( 5 , −2 )  and  C :  ( 0 ,  3 )  points as C :  ( 0 ,  3 ) ∴ 3 =  a · 0 +  b ⇒  b = 3

Fig. 6.14 P.6.40, illustration of

supplementary angles (two angles

whose sum is  π ). Any right triangle

whose hypotenuse is aligned with the

given line may be used to derive its

slope. Hypotenuse’s angle of 45◦, 

either positive or negative, implies

that catheti of its right triangle are of

the same length

6.2 Line
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 A :  ( 5 , −2 ) ∴ −2 =  a · 5 + 3

 b = 3

5 a = −5 ⇒  a = −1

∴  y = − x + 3

Note that this line may be seen as  y = − x (the origin crossing line whose slope equal “−1”) that is translated up by three. As already mentioned, there are infinitely many parallel lines y = − x +  b  with the same slope  a = −1, but only one that is translated by  b = 3 and therefore crosses  ( 5 , −2 )  point. 

6.41. Given angle 2 π/ 3 is supplementary with − π/ 3 (i.e., −60◦). Hence, to say that the slope of a line is equal 2 π/ 3 (i.e., measured as positive) is to say that its slope equals  α = −60◦

(i.e., measured as negative slope). It is useful to remember that  π/ 3 is one of friendly angles that form special right triangles. If one angle in the right triangle is  α =  π/ 3, then the second angle must be  β =  π/ 2 −  π/ 3 =  π/ 6. This special right triangle is constructed by setting the cathetus to hypotenuse ratio  a :  c = 1 : 2; see Fig. 6.15. Consequently, 



√

√

√

 b =

 c 2 −  a 2 =

4 − 1 =

3

that is to say

 a :  c :  b = 1 : 2 :

3

and, due to similarity of triangles, this proportion is true for any  a  length, which is here normalized to “one.” One possible right triangle whose hypotenuse is aligned with the given

angle may be constructed as follows. 

√

1.  Horizontal cathetus:  horizontal line at  A :  (−3 3 ,  6 )  intersects the  y-axis at  B :  ( 0 ,  6 ). 

Thus, that is the location of the right angle vertex. This cathetus length is therefore  a =

√

 A B = 3 3. 

2.  Vertical cathetus:  given  B, then the second cathetus  b  may be formed along the  y-axis. 

In this special right triangle, the horizontal and vertical catheti are proportional as  a :  b =

√

√ √

1 :

3; hence,  b = 3 3 3 = 9. As the third vertex is nine units apart, starting from the

initial point  B :  ( 0 ,  6 ), it follows that it must be at  C :  ( 0 , −3 )  so that  b =  BC = 9. 

Fig. 6.15 P.6.41, illustration of a

special right triangle whose internal

angles are 30◦ ,  90◦, and 60◦. Given

that shorter cathetus length is

normalized to one and hypotenuse

length to two, then the other cathetus’

√

length is

3, i.e., √

 a :  c :  b = 1 : 2 :

3 (note the

√

irrational number

3). Due to

triangle similarity, this proportion is

true for any other length of  a =  A B
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3.  Hypotenuse  of the newly formed right triangle is aligned with the  y(x) =  ax +  b  line, 

√

where its two parameters  a, b ∈ R are resolved at  A :  (−3 3 ,  6 )  and  C :  ( 0 , −3 )  define the hypotenuse and at the same time are found on the  y(x) =  ax +  b  line as C :  ( 0 , −3 ) ∴ −3 =  a · 0 +  b ⇒  b = −3

√

√





 A :  (−3 3 ,  6 ) ∴ 6 =  a ·  (−3 3 ) − 3

 b = −3

√

√3

√

√

9 3 = −3 3  a ⇒  a = − 3

√

√ = − 3 ∴  y = − 3  x − 3

3

3

√

Note that this line may be seen as  y = − 3  x (the origin crossing line whose slope equal

√

“− 3”) that is translated down by three. As already mentioned, there are infinitely many

√

√

parallel lines  y = − 3  x +  b  with the same slope  a = − 3, but only one that is translated

√

by  b = −3 and therefore crosses  (−3 3 ,  6 )  point. 

6.42. Following the same idea as in A.6.41, given angle  θ = 150◦ is supplementary with

“−30◦,” it is to say that its slope may be measured as  α = −30◦ (i.e., negative slope). The remaining angle in this special right triangle therefore must be  β = 60◦. 

√

1.  Horizontal cathetus:  given point  A :  (  3 ,  1 ) (in the first quadrant: positive  x, positive  y)

√

means that the horizontal line crosses the  y-axis at  ( 0 ,  1 ); thus,  b =

3. (Note symmetry

of triangles in the first versus second quadrant, etc . assuming the same slope.)

√

√

2.  Vertical cathetus:  given horizontal cathetus  b =

3 and negative slope at  A :  (  3 ,  1 ), 

it has to be that  b  is  longer  of the two catheti, and then by the proportions of this special triangle, the vertical cathetus along the  y-axis must be  a = 1 and hypotenuse  c = 2. Hence, the vertex of this special right triangle is on the vertical axis at  ( 0 ,  2 ). 

√

3.  Hypotenuse:  two points  (  3 ,  1 )  and  ( 0 ,  2 )  are on hypotenuse, that is to say on the  y(x) =

 ax +  b  line as well, 

 ( 0 ,  2 )

∴ 2 =  a · 0 +  b ⇒  b = 2

√

√





 (  3 ,  1 )

∴ 1 =  a ·  (  3 ) + 2  b = 2

√

√

√

√

3

3

3

3  a = −1 ⇒  a = − 1

√

√ = −

∴  y = −

 x + 2

3

3

3

3

 Verification:

√

√

√3 √

 A :  (  3 ,  1 ) ∴  y(  3 ) = −

3 + 2 = −1 + 2 = 1 

3

6.43. The explicit form of a given line  x +  y − 2 = 0 is

 x +  y − 2 = 0 ∴  y = − x + 2 thus, its slope is  a = −1

6.2 Line
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Fig. 6.16 P.6.43, given line a  y  and

all of its parallel lines  y, then

perpendicular line  y⊥ is normal to all

of them. By extension, all lines

parallel to  y⊥ are also normal to  y

1.  Parallel line:  to say “parallel line” is to say “with the same slope.” There is an infinity of parallel lines with  a = −1 in the form of  y = − x +  n, n ∈ R, but only one that crosses a given point, as

 A :  ( 2 ,  3 ) ∴ 3 = −1 ( 2 ) +  n ∴  n = 5 ∴  y = − x + 5

2.  Perpendicular line:  by definition, given a line slope  a, then the slope of the perpendicular line  a⊥ is calculated by definition as

 a a

def

⊥ = −1 ∴  a⊥ = − 1

 a

There is an infinity of vertical lines with given  a⊥ in the form of  y⊥ =  a⊥  x +  m, m ∈ R, but only one that crosses a given point, (Fig. 6.16) as





 A :  ( 2 ,  3 ) ∴  y⊥ =  a⊥  x +  m a = −1 ∴  a⊥ = 1

3 = 1 ( 2 ) +  m ∴  m = 1 ∴  y⊥ =  x + 1

6.44. Following the same idea as in A.6.43, the explicit form of a given line 9 x +7 y −25 = 0

is

9 x + 7 y − 25 = 0 ∴  y = − 9  x + 25 thus, its slope is  a = − 9

7

7

7

1.  Parallel line:  in the form of  y = − ( 9 / 7 ) x + n, n ∈ R, and one that crosses a given point, A :  ( 7 , −4 ) ∴ −4 = − 9  ( 7 ) +  n ∴  n = 5 ∴  y = − 9  x + 5

7

7
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2.  Perpendicular line:  by definition, the slope of a perpendicular line is

 a⊥ = − 1 = 7

 a

9

where  a⊥ in the form of  y⊥ =  a⊥  x +  m, m ∈ R, and one that crosses a given point, A :  ( 7 , −4 ) ∴ ∴ −4 =  ( 7 / 9 ) ( 7 ) +  m ∴  m = − 85 ∴  y = 7  x − 85

9

9

9

6.45. Following the same idea as in A.6.43, the explicit form of a given line 2 x + 3 y − 1 = 0

is

2 x + 3 y − 1 = 0 ∴  y = − 2  x + 1 thus, its slope is  a = − 2

3

3

3

1.  Parallel line:  in the form of  y = − ( 2 / 3 ) x + n, n ∈ R, and one that crosses a given point, A :  ( 1 ,  2 ) ∴ 2 = − 2  ( 1 ) +  n ∴  n = 8 ∴  y = − 2  x + 8

3

3

3

3

2.  Perpendicular line:  by definition, the slope of a perpendicular line is

 a⊥ = − 1 = 3

 a

2

where  a⊥ in the form of  y⊥ =  a⊥  x +  m, m ∈ R, and one that crosses a given point, A :  ( 1 ,  2 ) ∴ ∴ 2 = 3  ( 1 ) +  m ∴  m = 1 ∴  y⊥ = 3  x + 1

2

2

2

2

6.46. The explicit form of a given line  x +  y − 3 is

 x +  y − 3 ∴  y = − x + 3 thus, its slope is  a = −1

1.  Parallel line:  in the form of  y = − x +  n, n ∈ R, and one that crosses a given point, A :  (−1 , −2 ) ∴ −2 = − (−1 ) +  n ∴  n = −3 ∴  y = − x − 3

2.  Perpendicular line:  by definition, the slope of a perpendicular line is

 a⊥ = − 1 = 1

 a

where  a⊥ in the form of  y⊥ =  a⊥  x +  m, m ∈ R, and one that crosses a given point, A :  (−1 , −2 ) ∴ ∴ −2 =  (−1 ) +  m ∴  m = −1 ∴  y⊥ =  x − 1

6.2 Line
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6.47. The explicit form of a given line  x +  y − 3 is

 y − 2 π x − 1 = 0 ∴  y = 2 π x + 1 thus, its slope is  a = 2 π

1.  Parallel line:  in the form of  y = 2 πx +  n, n ∈ R, and one that crosses a given point, A :  ( 0 , π) ∴  π = 2 π( 0 ) +  n ∴  n =  π ∴  y = 2 πx +  π

2.  Perpendicular line:  by definition, the slope of a perpendicular line is

 a⊥ = − 1 = − 1

 a

2 π

where  a⊥ in the form of  y⊥ =  a⊥  x +  m, m ∈ R, and one that crosses a given point, A :  ( 0 , π) ∴ ∴  π = − 1  ( 0 ) +  m ∴  m =  π ∴  y⊥ = − 1  x +  π

2 π

2 π

6.48. The explicit form of a given line  x +  y − 3 is

√

√

 y −

5 −  x = 0 ∴  y =  x +

5 thus, its slope is  a = 1

1.  Parallel line:  in the form of  y =  x +  n, n ∈ R, and one that crosses a given point, 

√

√

√

√

 A :  ( 2 , − 10 ) ∴ − 10 =  ( 2 ) +  n ∴  n = −2 − 10 ∴  y =  x − 2 − 10

2.  Perpendicular line:  by definition, the slope of a perpendicular line is

 a⊥ = − 1 = −1

 a

where  a⊥ in the form of  y⊥ =  a⊥  x +  m, m ∈ R, and one that crosses a given point, 

√

√

√

√

 A :  ( 2 , − 10 ) ∴ ∴ − 10 = −1 ( 2 ) +  m ∴  m = 2 − 10 ∴  y⊥ = − x + 2 − 10

6.49. The given line may be written in its explicit form as

 p x +  y + 1 = 0

∴  y = − p x − 1

1. To say that a line is parallel with the  x-axis is to say that it is horizontal, in other words that its slope equal zero, and thus, 

 y = − p x − 1 ⇒ − p = 0 ∴  p = 0

∴  y = −1
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2. To say that a line is parallel with the  y-axis is to say that it is vertical, in other words that its slope is infinite, and thus, 

 y = − p x − 1 ⇒  p = ±∞

6.50. The given line may be written in its explicit form as

2 y −  x = 0

∴  y =  x

 p

2 p

1. To say that a line is parallel with the  x-axis is to say that it is horizontal, in other words that its slope equal zero, and thus, 

 y =  x

⇒ 1 = 0 ∴  p = ∞ ∴  y = 0

2 p

2 p

2. To say that a line is parallel with the  y-axis is to say that it is vertical; in other words its slope is infinite, and thus, 

 y =  x

⇒ 1 = ∞ ∴  p = 0

2 p

2 p

6.51. The given line may be written in its explicit form as

√2  y − x−2 π =0 ∴  y =  p√  x+ 2 πp

√

 p

2

2

1. To say that a line is parallel with the  x-axis is to say that it is horizontal, in other words that its slope equal zero, and thus, 

 y =  p

√  x + 2 π p

√

⇒  p

√ = 0 ∴  p = 0 ∴  y = 0

2

2

2

2. To say that a line is parallel with the  y-axis is to say that it is vertical; in other words its slope is infinite, and thus, 

 y =  p

√  x + 2 π p

√

⇒  p

√ = ∞ ∴  p = ±∞

2

2

2

6.52. The given line may be written in its explicit form as

 (p + 1 )x +  y + 1 = 0

∴  y = − (p + 1 )x − 1

6.2 Line
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1. To say that a line is parallel with the  x-axis is to say that it is horizontal, in other words that its slope equal zero, and thus, 

− (p + 1 ) = 0 ⇒  p + 1 = 0 ∴  p = −1 ∴  y = −1

2. To say that a line is parallel with the  y-axis is to say that it is vertical; in other words its slope is infinite, and thus, 

− (p + 1 ) = ∞ ⇒  p = ±∞

6.53. The given line may be written in its explicit form as

 x −  y(p − 2 ) + 2 ( 1 −  p) = 0

∴  y =

 x

+ 2 ( 1 −  p)

 p − 2

 p − 2

1. To say that a line is parallel with the  x-axis is to say that it is horizontal, in other words that its slope equal zero, and thus, 

1

= 0 ⇒  p − 2 = ∞ ∴  p = ±∞

 p − 2

2. To say that a line is parallel with the  y-axis is to say that it is vertical; in other words its slope is infinite, and thus, 

1

= ∞ ⇒  p − 2 = 0 ∴  p = 2

 p − 2

6.54. The given line may be written in its explicit form as

 ( 2 p + 1 )x +  ( 3 p − 5 )y + 4 p = 0

∴  y = −2 p + 1  x − 4 p

3 p − 5

3 p − 5

1. To say that a line is parallel with the  x-axis is to say that it is horizontal, in other words that its slope equal zero, and thus, 

−2 p + 1 = 0 ⇒ 2 p + 1 = 0 ∴  p = −1

3 p − 5

2

2. To say that a line is parallel with the  y-axis is to say that it is vertical; in other words its slope is infinite, and thus, 

−2 p + 1 = ∞ ⇒ 3 p − 5 = 0 ∴  p = 5

3 p − 5

3
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6.55. Given two lines and one vertex

 y 1 = 1 i.e., horizontal line, zero slope:  a 1 = 0

 x +  y = 0

∴  y 2 = − x  i.e., slope:  a 2 = −1

 A :  ( 0 ,  0 )

as  a 1  a 2 = −1, it means  y 1 and  y 2 do not form a right angle. Hence, there are two possibilities to create a right angle: one is with a line perpendicular to  y 1 and the other with a line perpendicular to  y 2. 

1. As line  y 1 = 1 is horizontal, then its perpendicular line must be vertical, i.e.,  x =  n, n ∈ R. 

Furthermore,  A :  ( 0 ,  0 )  limits  x = 0 as the only vertical line. In summary, the equations of this right triangle’s sides are

 x = 0 (vertical cathetus)

 y 1 = 1 (horizontal cathetus)

 y 2 = − x (hypotenuse)

(a) Vertices are found at intersect points as

 A : ( 0 ,  0 )

 B :  y 1 =  y 2 ∴  x = −1 ∴  B : (−1 ,  1 ) C :  x = 0 , y 1 = 1 ∴  C : ( 0 ,  1 )

(b) Line segments of two catheti are deduced as

 A :  (x 1 , y 1 ) =  ( 0 ,  0 )  to  C :  (x 2 , y 2 ) =  ( 0 ,  1 ) x

= | x 2 −  x 1| = |0 − 0| = 0

∴  a :  A C = 1

 y

= | y 2 −  y 1| = |1 − 0| = 1

and

 B :  (x 1 , y 1 ) =  (−1 ,  1 )  to  C :  (x 2 , y 2 ) =  ( 0 ,  1 ) x

= | x 2 −  x 1| = |0 −  (−1 )| = 1

∴  b :  BC = 1

 y

= | y 2 −  y 1| = |1 − 1| = 0

So that area is computed as (recall: half area of rectangle  a ·  b)

 P =  a b = 1 · 1 = 1

2

2

2

6.2 Line
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 Verification:  for the sake of completeness, this triangle must satisfy Pythagoras’ theorem where its hypotenuse is the line segment

 A :  (x 1 , y 1 ) =  ( 0 ,  0 )  to  B :  (x 2 , y 2 ) =  (−1 ,  1 ) x

= | x



2 −  x 1| = | − 1 − 0| = 1



∴  c :  A B =  (x) 2 +  (y) 2 = 12 + 12

 y

= | y 2 −  y 1| = |1 − 0| = 1

√

= 2

thus, it must be that

 c 2 =  a 2 +  b 2

√

 (  2 ) 2 =  ( 12 + 12 )

2 = 2 

2. As line  y 2 = − x  has slope  a 2 = −1, its perpendicular line must be  y⊥ =  x +  m, m ∈ R. 

Furthermore,  A :  ( 0 ,  0 )  limits  x = 0 and  y = 0; hence,  m = 0 and  y⊥ =  x. In summary, equations of this right triangle’s sides are then

 y 1 = 1 (hypotenuse)

 y 2 = − x (cathetus)

 y 3 =  x (cathetus)

(a) Vertices are found at intersect points as

 A : ( 0 ,  0 )

 B :  y 1 =  y 2 ∴  x = −1 ∴  B :  (−1 ,  1 ) C :  y 1 =  y 3 ∴ 1 =  x ∴  C :  ( 1 ,  1 ) (b) Line segments of two catheti are deduced as

 A :  (x 1 , y 1 ) =  ( 0 ,  0 )  to  B :  (x 2 , y 2 ) =  (−1 ,  1 ) x

= | x 2 −  x 1| = | − 1 − 0| = 1

√

∴  a :  A B = 2

 y

= | y 2 −  y 1| = |1 − 0| = 1

and

 A :  (x 1 , y 1 ) =  ( 0 ,  0 )  to  C :  (x 2 , y 2 ) =  ( 1 ,  1 ) x

= | x 2 −  x 1| = |1 − 0 )| = 1

√

∴  b :  A C = 2

 y

= | y 2 −  y 1| = |1 − 0| = 1
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So that area is computed as (recall: half area of rectangle  a ·  b)

√ √

2

2

 P =  a b =

= 1

2

2

6.56. Given two lines and one vertex

 x = 0 i.e., vertical line, infinite slope:  a 1 = ∞

3 x + 2 y = 6

∴  y 2 = −3  x + 3 i.e., slope:  a 2 = −3

2

2

 A :  ( 2 ,  0 )

as  a 1  a 2 = −1, it means  x = 0 and  y 2 do not form a right angle. Hence, there are two possibilities to create a right angle: one is with a line perpendicular to  x = 0 and the other with a line perpendicular to  y 2. 

1. As  x = 0 is vertical, its perpendicular line must be a horizontal line. Furthermore,  A : ( 2 ,  0 )  limits  y 3 = 0 as the only horizontal line. In summary, the lines forming this right triangle are

 x = 0 (vertical cathetus)

 y 2 = − 3  x + 3 (hypotenuse)

2

 y 3 = 0 (horizontal cathetus)

(a) Vertices are found at intersect points as

 A : ( 2 ,  0 )

 B :  x = 0 , y 2 = − 3  x + 3 ∴  B : ( 0 ,  3 ) 2

 C :  x = 0 , y = 0 ∴  C : ( 0 ,  0 )

(b) Line segments of two catheti are deduced as

 A :  (x 1 , y 1 ) =  ( 2 ,  0 )  to  C :  (x 2 , y 2 ) =  ( 0 ,  0 ) x

= | x 2 −  x 1| = |0 − 2| = 2

∴  a :  A C = 2

 y

= | y 2 −  y 1| = |0 − 0| = 0

and

 B :  (x 1 , y 1 ) =  ( 0 ,  3 )  to  C :  (x 2 , y 2 ) =  ( 0 ,  0 ) x

= | x 2 −  x 1| = |0 − 0| = 0

∴  b :  A C = 3

 y

= | y 2 −  y 1| = |0 − 3| = 3

6.2 Line
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So that area is computed as (recall: half area of rectangle  a ·  b)

 P =  a b = 2 · 3 = 3

2

2

 Verification:  for the sake of completeness, this triangle must satisfy Pythagoras’ theorem where its hypotenuse is the line segment

 A :  (x 1 , y 1 ) =  ( 2 ,  0 )  to  B :  (x 2 , y 2 ) =  ( 0 ,  3 ) x

= | x



2 −  x 1| = |0 − 2| = 2



∴  c :  BC =  (x) 2 +  (y) 2 = 22 + 32

 y

= | y 2 −  y 1| = |3 − 0| = 3

√

= 13

thus, it must be that

 c 2 =  a 2 +  b 2

√

 (  13 ) 2 =  ( 22 + 32 )

13 = 13 

2. As line  y 2 has slope  a 2 = −3 / 2, its perpendicular line must be  y⊥ =  ( 2 / 3 ) x +  m, m ∈ R. 

Furthermore,  A :  ( 2 ,  0 )  limits perpendicular line to

 A :  ( 2 ,  0 )

∴ 0 = 2  ( 2 ) +  m ∴  m = −4 ∴  y⊥ = 2  x − 4

3

3

3

3

In summary, the line equations of this right triangle are

 x = 0 (hypotenuse)

 y 2 = − 3  x + 3 (cathetus)

2

 y⊥ = 2  x − 4 (cathetus)

3

3

(a) Vertices are found at intersect points as

 A : ( 2 ,  0 )

 B :  x = 0 , y 2 = − 3  x + 3 ∴  B : ( 0 ,  3 ) 2

 C :  x = 0 ∴  y⊥ ( 0 ) = 2  ( 0 ) − 4 ∴  C : ( 0 , −4 / 3 ) 3

3

(b) Line segments of two catheti are deduced as
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 A :  (x 1 , y 1 ) =  ( 2 ,  0 )  to  B :  (x 2 , y 2 ) =  ( 0 ,  3 ) x

= | x 2 −  x 1| = |0 − 2| = 2

√

∴  a :  A B = 13

 y

= | y 2 −  y 1| = |3 − 0| = 3

and

 A :  (x 1 , y 1 ) =  ( 2 ,  0 )  to  C :  (x 2 , y 2 ) =  ( 0 , −4 / 3 )



√

 x

= | x 2 −  x 1| = |0 − 2 )| = 2

∴

52

 b :  A C =

 y

= | y

3

2 −  y 1| = | − 4 / 3 − 0| = 4 / 3

So that area is computed as (recall: half area of rectangle  a ·  b)

√ √

13

52

 P =  a b =

= 13

2

6

3

6.57. Given two lines and one vertex

 y 1 = 4 i.e., horizontal line, slope:  a 1 = 0

 x −  y = −1

∴  y 2 =  x + 1 i.e., slope:  a 2 = 1

 A :  (−4 , −3 )

as  a 1  a 2 = −1, it means  y 1 and  y 2 do not form a right angle. Hence, there are two possibilities to create a right angle: one is with a line perpendicular to  y 1 and the other with a line perpendicular to  y 2. 

1. As  y 1 = 4 is horizontal, its perpendicular line must be vertical. Furthermore,  A :  (−4 , −3 ) limits  x = −4 as the only vertical line. In summary, the line equations of this right triangle are

 y 1 = 4 (horizontal cathetus)

 x = −4 (vertical cathetus)

 y 2 =  x + 1 (hypotenuse)

(a) Vertices are found at intersect points as

 A : (−4 , −3 )

 B :  x = −4 , y 1 = 4 ∴  B : (−4 ,  4 )

 C :  y 1 =  y 2 ∴ 4 =  x + 1 ∴  C : ( 3 ,  4 ) (b) Line segments of two catheti are deduced as

6.2 Line
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 A :  (x 1 , y 1 ) =  (−4 , −3 )  to  B :  (x 2 , y 2 ) =  (−4 ,  4 ) x

= | x 2 −  x 1| = | − 4 −  (−4 )| = 0

∴  a :  A B = 7

 y

= | y 2 −  y 1| = |4 −  (−3 )| = 7

and

 B :  (x 1 , y 1 ) =  (−4 ,  4 )  to  C :  (x 2 , y 2 ) =  ( 3 ,  4 ) x

= | x 2 −  x 1| = |3 −  (−4 )| = 7

∴  b :  BC = 7

 y

= | y 2 −  y 1| = |4 − 4| = 0

So that area is computed as (recall: half area of rectangle  a ·  b)

 P =  a b = 7 · 7 = 49

2

2

2

 Verification:  for the sake of completeness, this triangle must satisfy Pythagoras’ theorem where its hypotenuse is the line segment

 A :  (x 1 , y 1 ) =  (−4 , −3 )  to  C :  (x 2 , y 2 ) =  ( 3 ,  4 ) x

= | x



2 −  x 1| = |3 −  (−4 )| = 7



∴  c :  A C =  (x) 2 +  (y) 2 = 72 + 72

 y

= | y 2 −  y 1| = |4 −  (−3 )| = 7

√

= 98

thus, it must be that

 c 2 =  a 2 +  b 2

√

 (  98 ) 2 =  ( 72 + 72 )

98 = 98 

2. As slope of  y 2 is  a 2 = 1, then the slope of its perpendicular line must be  y⊥ = − x+ m, m ∈

R. Furthermore,  A :  (−4 , −3 )  limits perpendicular line to

 A :  (−4 , −3 )

∴ −4 = − (−3 ) +  m ∴  m = −7 ∴  y⊥ = − x − 7

In summary, the line equations of this right triangle are

 y 1 = 4 (hypotenuse)

 y 2 =  x + 1 (cathetus)

 y⊥ = − x − 7 (cathetus)
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(a) Vertices are found at intersect points as

 A : (−4 , −3 )

 B :  y 1 =  y⊥ ∴ 4 = − x − 7 ∴  B : (−11 ,  4 ) C :  y 1 =  y 2 ∴ 4 =  x + 1 ∴  C : ( 3 ,  4 ) (b) Line segments of two catheti are deduced as

 A :  (x 1 , y 1 ) =  (−4 , −3 )  to  B :  (x 2 , y 2 ) =  (−11 ,  4 ) x

= | x



2 −  x 1| = | − 11 −  (−4 )| = 7

√

∴  a :  A B = 72 + 72 = 7 2

 y

= | y 2 −  y 1| = |4 −  (−3 )| = 7

and

 A :  (x 1 , y 1 ) =  (−4 , −3 )  to  C :  (x 2 , y 2 ) =  ( 3 ,  4 ) x

= | x



2 −  x 1| = |3 −  (−4 )| = 7

√

∴  b :  A C = 72 + 72 = 7 2

 y

= | y 2 −  y 1| = |4 −  (−3 )| = 7

So that area is computed as (recall: half area of rectangle  a ·  b)

√

√

2 · 7 2

 P =  a b = 7

= 49

2

2

6.58. Given two lines and one vertex

 x = 6 i.e., vertical line, slope:  a 1 = ∞

−8 x + 7 y = −13 ∴  y 2 = 8  x − 13 i.e., slope:  a 2 = 8

7

7

7

 A :  ( 6 , −3 )

as  a 1  a 2 = −1, it means  x = 6 and  y 2 do not form a right angle. Hence, there are two possibilities to create a right angle: one is with a line perpendicular to  x = 6 and the other with a line perpendicular to  y 2. 

1. As  x = 6 is vertical, its perpendicular line must be horizontal. Furthermore,  A :  ( 6 , −3 ) limits  y 3 = −3 as the only horizontal line. In summary, the line equations of this right triangle are

 x = 6 (vertical cathetus)

 y 2 = 8  x − 13 (hypotenuse)

7

7

 y 3 = −3 (horizontal cathetus)

6.2 Line
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(a) Vertices are found at intersect points as

 A : ( 6 , −3 )

 B :  x = 6 , y 2 = 8  x − 13 ∴  y 2 = 8  ( 6 ) − 13 ∴  B : ( 6 ,  5 ) 7

7

7

7

 C :  y 2 =  y 3 ∴ 8  x − 13 = −3 ∴  x = −1 ∴  C : (−1 , −3 ) 7

7

(b) Line segments of two catheti are deduced as

 A :  (x 1 , y 1 ) =  ( 6 , −3 )  to  B :  (x 2 , y 2 ) =  ( 6 ,  5 ) x

= | x 2 −  x 1| = |6 − 6| = 0

∴  a :  A B = 8

 y

= | y 2 −  y 1| = | − 5 −  (−3 )| = 8

and

 A :  (x 1 , y 1 ) =  ( 6 , −3 )  to  C :  (x 2 , y 2 ) =  (−1 , −3 ) x

= | x 2 −  x 1| = | − 1 − 6| = 7

∴  b :  A C = 7

 y

= | y 2 −  y 1| = | − 3 −  (−3 )| = 0

So that area is computed as (recall: half area of rectangle  a ·  b)

 P =  a b = 7 · 8 = 28

2

2

 Verification:  for the sake of completeness, this triangle must satisfy Pythagoras’ theorem where its hypotenuse is the line segment

 B :  (x 1 , y 1 ) =  ( 6 ,  5 )  to  C :  (x 2 , y 2 ) =  (−1 , −3 ) x

= | x



2 −  x 1| = | − 1 − 6| = 7



∴  c :  BC =  (x) 2 +  (y) 2 = 72 + 82

 y

= | y 2 −  y 1| = | − 3 − 5| = 8

√

= 113

thus, it must be that

 c 2 =  a 2 +  b 2

√

 (  113 ) 2 =  ( 72 + 82 )

113 = 113 

2. As slope of  y 2 is  a 2 = 8 / 7, then the slope of its perpendicular line must be  y⊥ = − ( 7 / 8 )x +

 m, m ∈ R. Furthermore,  A :  ( 6 , −3 )  limits perpendicular line to
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 A :  ( 6 , −3 )

∴ −3 = −7 ( 6 ) +  m ∴  m = 9 ∴  y⊥ = −7  x + 9

8

4

8

4

In summary, the line equations of this right triangle are

 x = 6 (hypotenuse)

 y 2 = 8  x − 13 (cathetus)

7

7

 y⊥ = − 7  x + 9 (cathetus)

8

4

(a) Vertices are found at intersect points as

 A : ( 6 , −3 )

 B :  x = 6 ∴  y 2 = 8  ( 6 ) − 13 ∴  y 2 = 5 ∴  B : ( 6 ,  5 ) 7

7





230

53

 C :  y 2 =  y⊥ ∴ 8  x − 13 = − 7  x + 9 ∴  x = 230 ∴  C :

 , 

7

7

8

4

113

113 113

(b) Line segments of two catheti are deduced as

 C :  (x 1 , y 1 ) =  ( 230 / 113 ,  53 / 113 )  to  B :  (x 2 , y 2 ) =  ( 6 ,  5 ) x

= | x 2 −  x 1| = |6 − 230 / 113| = 448

113

∴  a :  C B = 64

√

 y

= | y

113

2 −  y 1| = |5 − 53 / 113| = 512

113

and

 A :  (x 1 , y 1 ) =  ( 6 , −3 )  to  C :  (x 2 , y 2 ) =  ( 230 / 113 ,  53 / 113 ) x

= | x 2 −  x 1| = |230 / 113 − 6| = 448

113

∴  b :  A C = 56

√

 y

= | y

113

2 −  y 1| = |53 / 113 −  (−3 )| = 392

113

So that area is computed as (recall: half area of rectangle  a ·  b)

64

 P =  a b = 1 √

· 56

√

= 1 792

2

2

113

113

113

6.59. Given two lines and one vertex

 x + 5 y = −12

∴  y 1 = − x − 12 i.e., slope:  a 1 = −1

5

5

5

2 x − 3 y = 2

∴  y 2 = 2 x − 2 i.e., slope:  a 2 = 2

3

3

3

 A :  ( 8 , −4 )

6.2 Line
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as  a 1  a 2 = −1, it means  y 1 and  y 2 do not form a right angle. Hence, there are two possibilities to create a right angle: one is with a line perpendicular to  y 1 and the other with a line perpendicular to  y 2. 

1. As slope  a 1 = −1 / 5, then the slope of its perpendicular line must be  y 3 = 5 x + m, m ∈ R. 

Furthermore,  A :  ( 8 , −4 )  limits the perpendicular line to

 A :  ( 8 , −4 )

∴ −4 = 5 ( 8 ) x +  m ∴  m = −44 ∴  y 3 = 5 x − 44

In summary, as  y 1 ⊥  y 3, the line equations of this right triangle are

 y 1 = −  x − 12 (cathetus)

5

5

 y 2 = 2 x − 2 (hypotenuse)

3

3

 y 3 = 5 x − 44 (cathetus)

(a) Vertices are found at intersect points as

 A : ( 8 , −4 )

 B :  y 1 =  y 2 ∴ −  x − 12 = 2 x − 2 ∴  x = −2 ∴  B : (−2 , −2 ) 5

5

3

3

 C :  y 2 =  y 3 ∴ 2 x − 2 = 5 x − 44 ∴  x = 10 ∴  C : ( 10 ,  6 ) 3

3

(b) Line segments of two catheti are deduced as

 A :  (x 1 , y 1 ) =  ( 8 , −4 )  to  B :  (x 2 , y 2 ) =  (−2 , −2 ) x = | x



2 −  x 1| = | − 2 − 8| = 10



∴  a :  A B =  (x) 2+ (y) 2 = 102+22

 y

= | y 2 −  y 1| = | − 2 −  (−4 )| = 2

√

= 104

and

 A :  (x 1 , y 1 ) =  ( 8 , −4 )  to  C :  (x 2 , y 2 ) =  ( 10 ,  6 ) x

= | x



2 −  x 1| = |10 − 8| = 2



∴  b :  A C =  (x) 2 +  (y) 2 = 22 + 102

 y

= | y 2 −  y 1| = |6 −  (−4 )| = 10

√

= 104

So that area is computed as (recall: half area of rectangle  a ·  b)

√

√

104 104

 P =  a b =

= 52

2

2
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 Verification:  for the sake of completeness, this triangle must satisfy Pythagoras’

theorem where its hypotenuse is the line segment

 B :  (x 1 , y 1 ) =  (−2 , −2 )  to  C :  (x 2 , y 2 ) =  ( 10 ,  6 ) x

= | x



2 −  x 1| = |10 −  (−2 )| = 12



∴  c :  BC =  (x) 2 +  (y) 2 = 122 + 82

 y

= | y 2 −  y 1| = |6 −  (−2 )| = 8

√

= 208

thus, it must be that

 c 2 =  a 2 +  b 2

√

√

√

 (  208 ) 2 =  (  104 ) 2 +  (  104 ) 2

208 = 104 + 104

208 = 208 

2. As slope  a 2 = 2 / 3, then the slope of its perpendicular line must be  y 3 = − ( 3 / 2 )x +

 m, m ∈ R. Furthermore,  A :  ( 8 , −4 )  limits perpendicular line to A :  ( 8 , −4 )

∴ −4 = −3  ( 8 ) x +  m ∴  m = 8 ∴  y 3 = −3 x + 8

2

2

In summary, as  y 2 ⊥  y 3, the line equations of this right triangle are

 y 1 = −  x − 12 (hypotenuse)

5

5

 y 2 = 2 x − 2 (cathetus)

3

3

 y 3 = − 3  x + 8 (cathetus)

2

(a) Vertices are found at intersect points as

 A : ( 8 , −4 )

 B :  y 1 =  y 2 ∴ −  x − 12 = 2 x − 2 ∴  x = −2 ∴  B : (−2 , −2 ) 5

5

3

3

 C :  y 2 =  y 3 ∴ 2 x − 2 = − 3  x + 8 ∴  x = 4 ∴  C : ( 4 ,  2 ) 3

3

2

(b) Line segments of two catheti are deduced as

6.2 Line
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 C :  (x 1 , y 1 ) =  ( 4 ,  2 )  to  B :  (x 2 , y 2 ) =  (−2 , −2 ) x

= | x



2 −  x 1| = | − 2 − 4| = 6



∴  a :  C B =  (x) 2 +  (y) 2 = 62 + 42

 y

= | y 2 −  y 1| = | − 2 − 2| = 4

√

= 52

and

 A :  (x 1 , y 1 ) =  ( 8 , −4 )  to  C :  (x 2 , y 2 ) =  ( 4 ,  2 ) x

= | x 2 −  x 1| = |4 − 8| = 4

√

∴  b :  A C = 52

 y

= | y 2 −  y 1| = |2 −  (−4 )| = 6

So that area is computed as (recall: half area of rectangle  a ·  b)

√ √

52 52

 P =  a b =

= 26

2

2

6.60. Given two lines and one vertex

4 y +  x − 15 = 0

∴  y 1 = − x + 15 i.e., slope:  a 1 = −1

4

4

4

 y −  x = 5

∴  y 2 =  x + 5 i.e., slope:  a 2 = 1

 A :  ( 2 ,  7 )

as  a 1  a 2 = −1, it means  y 1 and  y 2 do not form a right angle. Hence, there are two possibilities to create a right angle: one is with a line perpendicular to  y 1 and the other with a line perpendicular to  y 2. 

1. As slope  a 1 = −1 / 4, then the slope of its perpendicular line must be  y 3 = 4 x + m, m ∈ R. 

Furthermore,  A :  ( 2 ,  7 )  limits a perpendicular line to

 A :  ( 2 ,  7 )

∴ 7 = 4 ( 2 ) x +  m ∴  m = −1 ∴  y 3 = 4 x − 1

In summary, as  y 1 ⊥  y 3, the line equations of this right triangle are

 y 1 = −  x + 15 (cathetus)

4

4

 y 2 =  x + 5 (hypotenuse)

 y 3 = 4 x − 1 (cathetus)
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(a) Vertices are found at intersect points as

 A : ( 2 ,  7 )

 B :  y 1 =  y 2 ∴ −  x + 15 =  x + 5 ∴  x = −1 ∴  B : (−1 ,  4 ) 4

4





19 59

 C :  y 1 =  y 3 ∴ −  x + 15 = 4 x − 1 ∴  x = 19 ∴  C :

 , 

4

4

17

17 17

(b) Line segments of two catheti are deduced as

 C :  (x 1 , y 1 ) =  ( 19 / 17 ,  59 / 17 )  to  B :  (x 2 , y 2 ) =  (−1 ,  4 )

⎫

⎪


 x

= | x

⎪

2 −  x 1| = | − 1 − 19 / 17| = 36 ⎬

17



∴

⎪

 a :  C B =

 (x) 2 +  (y) 2 =

9

√

⎪

17

 y

= | y

⎭

2 −  y 1| = |4 − 59 / 17| = 9

17

and

 A :  (x 1 , y 1 ) =  ( 2 ,  7 )  to  C :  (x 2 , y 2 ) =  ( 19 / 17 ,  59 / 17 ) x

= | x 2 −  x 1| = |19 / 17 − 2| = 15



17

∴  b :  A C =  (x) 2 +  (y) 2 = 15

√

 y

= | y

17

2 −  y 1| = |59 / 17 − 7| = 60

17

So that area is computed as (recall: half area of rectangle  a ·  b)

9

15

 P =  a b = 1 √

√

= 135

2

2

17

17

34

2. As slope  a 2 = 1, then the slope of its perpendicular line must be  y 3 = − x +  m, m ∈ R. 

Furthermore,  A :  ( 2 ,  7 )  limits perpendicular line to

 A :  ( 2 ,  7 )

∴ 7 = − ( 2 ) x +  m ∴  m = 9 ∴  y 3 = − x + 9

In summary, as  y 2 ⊥  y 3, the line equations of this right triangle are

 y 1 = −  x + 15 (hypotenuse)

4

4

 y 2 =  x + 5 (cathetus)

 y 3 = − x + 9 (cathetus)

(a) Vertices are found at intersect points as

 A : ( 2 ,  7 )

 B :  y 1 =  y 2 ∴ −  x + 15 =  x + 5 ∴  x = −1 ∴  B : (−1 ,  4 ) 4

4

6.3 Circle
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 C :  y 1 =  y 3 ∴ −  x + 15 = − x + 9 ∴  x = 7 ∴  C : ( 7 ,  2 ) 4

4

(b) Line segments of two catheti are deduced as

 A :  (x 1 , y 1 ) =  ( 2 ,  7 )  to  B :  (x 2 , y 2 ) =  (−1 ,  4 ) x

= | x 2 −  x 1| = | − 1 − 2| = 3



√

∴  a :  C B =  (x) 2 +  (y) 2 = 3 2

 y

= | y 2 −  y 1| = |4 − 7| = 3

and

 A :  (x 1 , y 1 ) =  ( 2 ,  7 )  to  C :  (x 2 , y 2 ) =  ( 7 ,  2 ) x

= | x 2 −  x 1| = |7 − 2| = 5



√

∴  b :  A C =  (x) 2 +  (y) 2 = 5 2

 y

= | y 2 −  y 1| = |2 − 7| = 5

So that area is computed as (recall: half area of rectangle  a ·  b)

√ √

 P =  a b = 1 3 2 5 2 = 15

2

2

6.3

Circle

6.61. Once it was established that the ratio of a circle’s circumference  C  to its diameter  d  is constant regardless of circle’s size, i.e., 

 π =  C

∴  C =  d π = 2  r π

 d

it may be stated that a circumference (i.e., the full circle’s length) is computed as radius multiplied by the associated angle, that is to say if

 C =  r ·  ( 2  π)  then, in general  s =  r ·  θ  or,  θ =  sr which, in the special case of  r =  s, leads into  θ = 1 and that specific angle is declared as the unit of 1 rad. Naturally, angles may be measured in degrees and the two units are easily converted by a simple proportion: full circle is split into 360◦, and thus, circumference  C  may be written in both units as

A r · 360◦ ≡ A r · 2  π  rad ∴ 360◦ ≡ 2  π  rad ∴ 180◦ ≡  π  rad ∴ rad ≡ 180◦ ≈ 57 .  295  . . . ◦

 π

By inspection of Fig. 6.2 it may be estimated that it takes approximately 3  s  to cover one half-circle  C/ 2 length or, to be exact, it takes exactly  π ·  s. Note that arc is longer than chord, i.e.,  s > A B. 
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Irrational constant  π  also appears in the area of a circle as  P =  π r 2 (see Vol. II). In addition, it is very convenient to introduce “unit circle” whose  r = 1 where  C = 2 π  and all other variables are similarly normalized to  r = 1, i.e.,  P =  π, etc .; see chapter in trigonometry. 

6.62. As introduced in A.6.61, 

 π ⎫

 s

=  r

⎬

1 θ =  r 1 3

∴



 π =

⎭

 s =  C ⇒  r 1

 r  2

 π ∴

 r =  r 1

3

6

 C

=  r  2 π

6.63. By definitions of a circle with radius  r  and square whose side is  a, 

⎫

 C◦

=  C ∴  r  2 π = 4 2  a ∴  a =  r π ⎪

⎪

2

⎪

⎬

 P

∴  P =  a 2 =  r 2 π  2 =  π

◦

=  r 2  π

⎪

⎪

⎪

 P

 r 2  π

4

⎭

◦

4  r 2

 π

 P =  a 2

6.64. As introduced in A.6.61, in general, area  Pθ  of  circular sector  bound by   θ  rad is a “pizza slice” portion of the circle area as in Fig. 6.2, and it may be derived by a simple proportion. A circle area covers a full angle of 2 π , and consequently, the sector area is directly proportional to its   θ  as well, which may be expressed by proportion as

 P = 2 π ∴

 θ

 θ

 Pθ = 

 π r 2

=  r 2

 Pθ

 θ

2

 π

2

Note that as arc length is  r θ , then area  Pθ  of the circular sector may be expressed as θ

 r θ

 s

 Pθ =  r 2

=  r

=  r

2

2

2

6.65. Circular segment is created by cutting out a triangle  (A OB)  from circular sector bound by two radii  r  and arc  s; see Fig. 6.17. Equally, it is surface bound by arc  s  and chord h =  A B. Knowing sector area  Pθ  as derived in A.6.64 and area  P of triangle  (A OB), then the circular segment area  P  is

 P =  Pθ −  P

where

1. Sector area  Pθ  is

 θ

 Pθ =  r 2 2

6.3 Circle
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Fig. 6.17 P.6.65, illustration of a

circular segment. It is defined by

circle radius  r, central angle  θ  that

forms arc  s, and chord  h =  A B  at

two intersect points at circle. The area

of the circular segment is derived as a

leftover cutout from the associated

circular sector left after the isosceles

triangle  (r, r, h)  is removed

2. Isosceles triangle  (A OB)  area  P consists of two right triangle areas. Knowing radius r  and chord  h =  A B, then three sides of a right triangle are

⎫

⎪



 a =  h (cathetus) ⎬



2

∴

⎪

 b =

 c 2 −  a 2 =

 r 2 −  h 2

⎭

4

 c =  r (hypotenuse)

As there are two right triangles, then  P area is



 a b

 P = 2

=  h r 2 −  h 2

2

2

4

In summary, by this two-step procedure circular segment area is derived as



 θ

 P =  Pθ −  P =  r 2

−  h r 2 −  h 2

2

2

4

6.66. Given chord length  l =  A B  as in Fig. 6.18, then the shaded area  P  between two circles is computed as large disk area minus small disk area:

 P =  r 2  π −  r 2  π =  (r 2 −  r 2 ) π

2

1

2

1

At the same time, by Pythagoras’ theorem, the right triangle formed by  r 2 as hypotenuse and l/ 2 with  r 1 as catheti must obey relation





 l

2

 l

2

 r 2 =

+  r 2

∴  r 2 −  r 2 =

2

2

1

2

1

2

Therefore, by back substituting  r 2 −  r 2, it follows that

2

1

 P =  (r 2 −  r 2 ) π =  l 2  π

2

1

4
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Fig. 6.18 P.6.66, chord  l =  A B

constructed as tangent to the inner

circle forms a right triangle. Due to

the equivalent relationship between a

circle and a right triangle (Thales’ and

Pythagoras’ theorems), in order to

calculate annulus (the region between

two concentric circles), it is sufficient

to know the cord’s length  l

Fig. 6.19 P.6.67, given right triangle

 (a, b, (x +  y)), half-circle over its

diagonal  b  forms another right

triangle  (b, h, x)  at the intersect

point  A (Thales’ theorem)

6.67. Given angle  π  of demicircle, the circular arc length is then  l =  r π, where  r =  b/ 2

is half length of the longer cathetus; see Fig. 6.19. In respect to the intersect point (yet to be determined) with the arc, hypotenuse is  c =  x +  y; thus, 

 l =  b π

2

where cathetus  b  is unknown. Recall that any point on a circle is vertex of a right angle. The given geometrical form may be decomposed into three right triangles as

 b 2 =  x 2 +  h 2

(6.1)

 a 2 =  y 2 +  h 2

(6.2)

 (x +  y) 2 =  a 2 +  b 2 ∴ (6.1) + (6.2) → (6.3)

(6.3)

 (x +  y) 2 =  x 2 +  y 2 + 2 h 2

 x 2 + A2 xy + 

 y 2 =  x 2 + 

 y 2 + A2 h 2 ∴  xy =  h 2 ∴  y =  h 2 ∴ (6.4) → (6.2)

(6.4)

 x

 b 2 =  x 2 +  h 2 ∴  x 2 =  b 2 −  h 2 ∴ (6.5) → (6.6)

(6.5)

 a 2 =  h 4 +  h 2

(6.6)

 x 2

6.3 Circle
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 a 2 =

 h 4

+  h 2

 b 2 −  h 2

The only unknown variable is  b:

 a 2 =

 h 4

+  h 2 ∴  a 2 −  h 2 =

 h 4

∴  b 2 −  h 2 =

 h 4

 b 2 −  h 2

 b 2 −  h 2

 a 2 −  h 2

 b 2 =  h 2 + 1 =  h 2 +  a 2 −  h 2 ∴  b 2 =  a 2  h 2 ∴  b =

 a h

√

 h 2

 a 2 −  h 2

 a 2 −  h 2

 a 2 −  h 2

 a 2 −  h 2

Therefore, 

 l =  b π =

 a h π

√

2

2

 a 2 −  h 2

6.68. As described, a circle superimposed over a large equilateral triangle constructs a hexagon; see Fig. 6.20. As each side of the large equilateral triangle equals 3 a, then each side of a newly created hexagon corresponds to line segment length  A B =  a. As all three angles of the equilateral triangle are  π/ 3, then there are in total six smaller equilateral triangles in the circle. Finally, as positioned, it has to be that circle radius  r =  a  as well. This is due to the circle center being at the intersect of three height lines in the large equilateral triangle. 

The total overlapping area  P  is then the sum of this hexagon’s area  Ph  and combined area  P 3

of three circular segments as outlined in Fig. 6.20. 

1. Circle area is  P 1 =  r 2 π =  a 2  π. 

2. Hexagon area  Ph  consists of six equilateral triangles whose side length is  a. Area of equilateral triangle is computed as two areas of a right triangle whose sides are catheti

 a/ 2 and  b  and hypotenuse  a; see Fig. 6.20. First, 





√

 a  2

3

 a 2 =  b 2 +

∴  b =  a 2 −  a 2 ∴  b =  a

2

4

2

then, as each of six equilateral triangles consists of two right angle triangles, then

√

√

 a

 a a

3

3

 Ph = 6

 b = 6 3

= 3

 a 2

2

2

2

2

3. By inspection of Fig. 6.20, however, it may be deduced that the total overlapping area  P

may be expressed either as the sum of combined areas  P 3 and  Ph  or as disk area  P 1 reduced by the area of three remaining circular segments that are left outside of hexagon. Formally. 
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Fig. 6.20 P.6.68, in combination

with a circle whose  r =  a, equilateral

triangle whose side length equal 3 a

forms a hexagon. This highly

symmetrical structure is due to the

circle being centered at the intersect

of three height lines in an equilateral

triangle (not shown)





 P =  Ph +  P 3

hexagon plus three arc segments

as well as





 P =  P 1 −  P 3

disk area minus three arc segments

After adding these two equations it follows that

2 P =  P 1 +  P 2 ∴  P =  P 1 +  P 2

2

∴ 

√







3

√

 P = 1  a 2 π + 3

 a 2

=  a 2 2 π + 3 3

2

2

4

It is interesting to find that it was not necessary to explicitly calculate arc segment areas as they are evenly split inside and outside of the overlapping area. 

6.4

Intersects

6.69. The given two points  A :  (−1 ,  1 )  and  B :  ( 1 ,  1 )  define one line, and two points C :  ( 0 ,  0 )  and  D :  ( 0 ,  2 )  define another line. Analytical forms of these two lines in function of their  (x, y)  coordinates (see A.6.31) are therefore

 A :  (x 1 , y 1 ) =  (−1 ,  1 );  B :  (x 2 , y 2 ) =  ( 1 ,  1 ) y 1 =  ax 1 +  b

∴ 1 =  a(−1 ) +  b

∴ 2 b = 2 ⇒  b = 1 ∴  a = 0 ⇒  y = 1

 y 2 =  ax 2 +  b

∴ 1 =  a( 1 ) +  b

6.4 Intersects
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and the second line is

 C :  (x 1 , y 1 ) =  ( 0 ,  0 );  D :  (x 2 , y 2 ) =  ( 0 ,  2 ) y 1 =  ax 1 +  b

∴ 0 =  a( 0 ) +  b

⇒  b = 0 and  b = 2 ∴ it is possible only at  x = 0

 y 2 =  ax 2 +  b

∴ 2 =  a( 0 ) +  b

In conclusion, the given two pairs of points define two lines: one horizontal  y = 1 and one vertical  x = 0. 

To say that two lines intersect is to say that there is one point  I :  (x, y)  that belongs to both lines. Visually (i.e., geometrically) two lines may:

(a) Intersect at only one shared point, thus only one  I  solution. 

(b) Be parallel, thus no shared points. 

(c) Be on top of each other (an identity), and thus,  all  points are shared, there is an infinity of I  solutions. 

There are two types of intersects:

1.  Line intersects:  both lines are assumed infinitely long; that is to say they consist of infinitely many points whose coordinates  x, y  are computed as  y =  ax+ b, a, b ∈ R. In this example, analytical forms of the two lines are

 y = 1 therefore,  x ∈  (−∞ , +∞ )  and  y = 1

(6.7)

 x = 0 therefore,  x = 0 and  y ∈  (−∞ , +∞ )

(6.8)

in respect to (6.8) Eq. (6.7) is possible only for  x = 0, therefore  (x, y) =  ( 0 ,  1 )  is their shared point (i.e., intersect). At the same time, in respect to (6.7) Eq. (6.8) is possible only for  y = 1; therefore,  (x, y) =  ( 0 ,  1 )  is their shared point (i.e., intersect). 

In conclusion, as two results are not contradictory, the line–line intersect point is  I :  ( 0 ,  1 ); see Fig. 6.21. 

Fig. 6.21 P.6.69, intersect point at

 ( 0 ,  1 )  of  x = 0 and  y = 1 lines in

comparison to the intersect of line

segments  A B  and  C D
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2.  Line segment intersects:  at least one of the two lines is limited to the interval  between  given points, i.e.,  x ∈  (x 1 , x 2 )  and  y ∈  (y 1 , y 2 )  intervals that define the  line interval. That being the case, if exists, the intersect point must be confined within these  x  and  y  intervals as A :  (x 1 , y 1 ) =  (−1 ,  1 );  B :  (x 2 , y 2 ) =  ( 1 ,  1 )

∴ segment is limited within intervals

 x ∈  (x 2 , x 1 ) =  (−1 ,  1 )  and

 y ∈  (y 2 , y 1 ) =  ( 1 ,  1 ) ⇒  y = 1

as well as

 C :  (x 1 , y 1 ) =  ( 0 ,  0 );  D :  (x 2 , y 2 ) =  ( 0 ,  2 )

∴ segment is limited within intervals

 x ∈  (x 2 , x 1 ) =  ( 0 ,  0 ) ⇒  x = 0 and y ∈  (y 2 , y 1 ) =  ( 2 ,  0 )

Coordinate  x = 0 of  I :  ( 0 ,  1 )  is within the  x ∈  (−1 ,  1 )  interval, as well as the  y = 1

coordinate that is within the  y ∈  ( 0 ,  2 )  interval; thus,  I :  ( 0 ,  1 )  point is shared by these two segments; see Fig. 6.21. 

6.70. Following up discussion in A.6.69, given two pairs of points  A :  (−1 ,  1 )  with  B : ( 1 ,  1 )  and  C :  ( 2 ,  0 )  with  D :  ( 2 ,  2 ), analytical forms of these two lines are A :  (x 1 , y 1 ) =  (−1 ,  1 );  B :  (x 2 , y 2 ) =  ( 1 ,  1 ) A :  y 1 =  ax 1 +  b

∴ 1 =  a(−1 ) +  b

∴

2 b = 2

⇒  b = 1

 B :  y

∴ 1 =  a(−1 ) + 1 ⇒  a = 0 ∴  y = 1

2 =  ax 2 +  b

∴ 1 =  a( 1 ) +  b

evidently it is a horizontal line, and the second line is

 C :  (x 1 , y 1 ) =  ( 2 ,  0 );  D :  (x 2 , y 2 ) =  ( 2 ,  2 ) C :  y 1 =  ax 1 +  b

∴ 0 =  a( 2 ) +  b

∴  x = 2 and 0 = 2 ∴ i.e., vertical line at  x = 2

 D :  y 2 =  ax 2 +  b

∴ 2 =  a( 2 ) +  b

In conclusion, the given two pairs of points define two lines: one horizontal  y = 1 and one vertical  x = 2. 

Intersects points are as follows. 

1.  Line intersects:  both lines are assumed infinitely long, as

 y = 1 therefore,  x ∈  (−∞ , +∞ )  and  y = 1

(6.9)
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Fig. 6.22 P.6.70, intersect point at

 ( 2 ,  0 )  is valid for two lines  x = 2 and

 y = 1. However, the line segment

 A B, x ∈  (−1 ,  1 )  does not include

point  ( 2 ,  0 ); thus, the given two line

segments do not intersect

 x = 2 therefore,  x = 2 and  y ∈  (−∞ , +∞ )

(6.10)

in respect to (6.10) Eq. (6.9) is possible only for  x = 2, therefore  (x, y) =  ( 2 ,  1 ). At the same time, in respect to (6.9) Eq. (6.10) is possible only for  y = 1; therefore,  (x, y) =

 ( 2 ,  1 ). 

In conclusion, as two results are not contradictory, the line–line intersect point is  I :  ( 2 ,  1 ); see Fig. 6.22. 

2.  Line segment intersects:  as there is only one intersect point  I :  ( 2 ,  1 )  for given lines, it must be either the same intersect point for these two line segments, or they do not intersect. 

If exists, the intersect point must be confined within these  x  and  y  intervals as A :  (x 1 , y 1 ) =  (−1 ,  1 );  B :  (x 2 , y 2 ) =  ( 1 ,  1 )

∴ segment is limited within intervals

 x ∈  (x 2 , x 1 ) =  (−1 ,  1 )  and

 y ∈  (y 2 , y 1 ) =  ( 1 ,  1 ) ⇒  y = 1

The second line is at

 C :  (x 1 , y 1 ) =  ( 2 ,  0 );  D :  (x 2 , y 2 ) =  ( 2 ,  2 )

∴ segment is limited within intervals

 x ∈  (x 2 , x 1 ) =  ( 2 ,  2 ) ⇒  x = 2 and y ∈  (y 2 , y 1 ) =  ( 2 ,  0 )

In conclusion,  x  coordinate of point  I :  ( 2 ,  1 )  is outside of  x ∈  (−1 ,  1 )  interval; thus, these two line segments do not share any point; see Fig. 6.22. 

6.71. Given two pairs of points  A :  ( 0 ,  2 )  with  B :  ( 0 ,  0 )  and  C :  ( 2 ,  0 )  with  D :  ( 2 ,  2 ), then following up discussions in A.6.69 to A.6.70, evidently these two lines are both vertical (thus, parallel) and separated; one is at  x = 0 and one at  x = 2. That being the case, there are no intersect points neither line–line nor (consequently) for their line intervals. 
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6.72. Given two pairs of points  A :  ( 0 ,  2 )  with  B :  ( 2 ,  2 )  and  C :  ( 2 ,  0 )  with  D :  ( 0 ,  0 ), then following up discussions in A.6.69 to A.6.71, evidently these two lines are both horizontal (thus, parallel) and separated; one at  y = 0 and one at  y = 2. That being the case, there are no intersect points neither line–line nor (consequently) for their line intervals. 

6.73. Given two pairs of points  A :  (−1 ,  0 )  with  B :  ( 1 ,  2 )  and  C :  ( 1 ,  1 )  with  D :  ( 0 ,  1 ), then

 A :  (x 1 , y 1 ) =  (−1 ,  0 );  B :  (x 2 , y 2 ) =  ( 1 ,  2 )

∴ segment is limited within intervals

 x ∈  (x 2 , x 1 ) =  (−1 ,  1 )  and  y ∈  (y 2 , y 1 ) =  ( 0 ,  2 ) and the line equation is



 A :  y 1 =  ax 1 +  b ∴ 0 =  a(−1 ) +  b

∴ 2 a = 2 ⇒  a = 1 ∴  b = 1

 B :  y 2 =  ax 2 +  b ∴ 2

=  a( 1 ) +  b

therefore, this line equation is  y =  x + 1 . The second line is at

 C :  (x 1 , y 1 ) =  ( 1 ,  1 );  D :  (x 2 , y 2 ) =  ( 0 ,  1 ) ∴ segment is limited within intervals x ∈  (x 2 , x 1 ) =  ( 0 ,  1 )  and  y ∈  (y 2 , y 1 ) =  ( 1 ,  1 ) ⇒  y = 1

1.  Line intersects:  these two lines,  y = 1 and  y =  x + 1, share the same  y  coordinate at y

= 1

∴  x + 1 = 1 ⇒  x = 0 and  y = 1

 y

=  x + 1

In conclusion, there is only one line–line intersect point at  I :  ( 0 ,  1 ). 

2.  Line segment intersects:  as there are the following limitations derived above, then x

∈  (−1 ,  1 ) ⇒  x ∈  ( 0 ,  1 ) (it satisfies both limits) x

∈  ( 0 ,  1 )

and



 y

∈  ( 0 ,  2 ) ⇒  y ∈  ( 0 ,  2 ) (it satisfies both limits) y

= 1

Thus, if the  I :  ( 0 ,  1 )  point is within the  x  and  y  intervals, then it is also a segment–

segment intersect. As  x ∈  ( 0 ,  1 )  and  y ∈  ( 0 ,  2 ), it follows that  I :  ( 0 ,  1 )  is the only segment–segment intersect point as well (it is the first point in the  x ∈  ( 0 ,  1 )  interval). 
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6.74. Given two pairs of points  A :  (−1 ,  3 )  with  B :  ( 1 ,  2 )  and  C :  ( 2 ,  0 )  with  D :  ( 1 , −1 ), then

 A :  (x 1 , y 1 ) =  (−1 ,  3 );  B :  (x 2 , y 2 ) =  ( 1 ,  2 )

∴ segment is limited within intervals

 x ∈  (x 2 , x 1 ) =  (−1 ,  1 )  and  y ∈  (y 2 , y 1 ) =  ( 2 ,  3 ) and the line equation is



 A :  y 1 =  ax 1 +  b ∴ 3 =  a(−1 ) +  b

∴ 2 a = −1 ⇒  a = −1 ∴  b = 5

 B :  y

2

2

2 =  ax 2 +  b

∴ 2 =  a( 1 ) +  b

therefore, this line equation is  y = − x/ 2 + 5 / 2 . The second line is at C :  (x 1 , y 1 ) =  ( 2 ,  0 );  D :  (x 2 , y 2 ) =  ( 1 , −1 ) ∴ segment is limited within intervals x ∈  (x 2 , x 1 ) =  ( 1 ,  2 )  and  y ∈  (y 2 , y 1 ) =  (−1 ,  0 ) and the line equation is



 C :  y 1 =  ax 1 +  b ∴

0

=  a( 2 ) +  b

∴  a = 1 ∴  b = −2

 D :  y 2 =  ax 2 +  b ∴ −1 =  a( 1 ) +  b

therefore, this line equation is  y =  x − 2

1.  Line intersects:  these two lines,  y = − x/ 2 + 5 / 2 and  y =  x − 2, share the same  (x, y) points at

⎫

⎪

 y

= − x + 5⎬

2

2

∴

+ 5 ⇒

⎪

 x − 2 = −  x

 x = 3 and  y = 1

⎭

2

2

 y

=  x − 2

In conclusion, there is one line–line intersect point at  I :  ( 3 ,  1 ). 

2.  Line segment intersects:  as there are the following limitations derived above, then x

∈  (−1 ,  1 )

 I :  ( 3 ,  1 ) ⇒  x = 1 (it satisfies both limits)

 x

∈  ( 1 ,  2 )

and



 y

∈  ( 2 ,  3 )

 I :  ( 3 ,  1 ) ⇒  y = 1 (none  y  satisfies both limits) y

∈  (−1 ,  0 )

Thus,  I :  ( 3 ,  1 )  is outside of both bounding intervals; therefore, there is no segment–

segment intersect point. 
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Fig. 6.23 P.6.75, illustration of the

equivalence between Thales’ and

Pythagoras’ theorems. The explicit

form of the circle equation is positive

for  y ≥ 0 and negative for  y ≤ 0

because of the square root property. 

Side lengths of a right triangle are all

positive numbers; thus, only positive

(principal) value of the square root is

taken

6.75. The analytical equation of a circle centered at  ( 0 ,  0 )  is in the same form as Pythagoras’

theorem:

 x 2 +  y 2 =  r 2 a circle centered at  ( 0 ,  0 )  whose radius is  r a 2 +  b 2 =  c 2 Pythagorian triangle whose hypotenuse equal  c

where  A :  (x, y)  is an arbitrary point on circle,  r  is its radius, and  (a, b, c)  are the catheti and hypotenuse of the right triangle at point  B :  (a, b); see Fig. 6.23. 

Reminder: Recall the property of square root operation:



√

 y = +  f (x)

 y 2 =  f (x) ⇒

√

 y = −  f (x)

that is to say, the square root operation generates  two solutions, one positive and one

√

√

negative, e.g., 

4 = 2 and

4 = −2 because  (±2 ) 2 = 4. 

If the circle equation is to be written explicitly, there are  two  equations—one for the upper half-circle ( y ≥ 0) and one for the lower half-circle ( y ≤ 0) (see Fig. 6.23)—as



 y = +  r 2 −  x 2



 y = −  r 2 −  x 2

In conclusion,  x 2 +  y 2 = 1 is the equation of a circle whose  r = 1 and its center is at the origin ( 0 ,  0 ). 

Intersect points with the  x, y  axes are

 x = 0  x 2 +  y 2 = 1 ∴  y 2 = 1 ∴  y = ±1

6.4 Intersects
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 y = 0  x 2 +  y 2 = 1 ∴  x 2 = 1 ∴  x ± 1

that is to say, there are two intersect points with the  x-axis (where  y = 0) at  ( 1 ,  0 )  and  (−1 ,  0 ). 

Also, there are two intersect points with the  y-axis (where  x = 0) at  ( 0 , −1 )  and  ( 0 ,  1 ). 

6.76. Following up to discussion in A.6.75, 

 x 2 +  y 2 = 22

is the equation of a circle whose  r = 2 and its center is at the origin  ( 0 ,  0 ). Intersect points with  x, y  axes are

 x = 0  x 2 +  y 2 = 4 ∴  y 2 = 4 ∴  y = ±2

 y = 0  x 2 +  y 2 = 4 ∴  x 2 = 4 ∴  x ± 2

that is to say, there are two intersect points with the  x-axis (where  y = 0) at  ( 2 ,  0 )  and  (−2 ,  0 ). 

Also, there are two intersect points with the  y-axis (where  x = 0) at  ( 0 , −2 )  and  ( 0 ,  2 ). 

6.77. Recall that adding a constant to the  x  or  y  coordinate simply translates that function horizontally or vertically, respectively. Thus, the given circle equation may be written in

general form as

 (x −  x 0 ) 2 +  (y −  y 0 ) 2 = 12

 (x − 1 ) 2 +  (y − 0 ) 2 = 12

which is to say, its radius is  r = 1 and the circle center is at  x − 1 = 0 ∴  x 0 = 1 and  y 0 = 0

coordinates, i.e., it is translated horizontally to  O :  ( 1 ,  0 ); see Fig. 6.24. Intersect points are calculated at  x = 0 and  y = 0 as

 x = 0 :  (x − 1 ) 2 +  y 2 = 1 ∴  (−1 ) 2 +  y 2 = 1 ⇒  y = 0

 y = 0 :  (x − 1 ) 2 +  y 2 = 1 ∴  (x − 1 ) 2 = 1 ∴  x − 1 = ±1 ⇒  x 1 = 0 and  x 1 = 2

In summary, there is only one intersect point at the  y-axis at  ( 0 ,  0 )  and two intersect points at the  x-axis at  ( 0 ,  0 )  and  ( 2 ,  0 ). 

Reminder: a circle with radius  r  may be shifted from the origin point  (x, y) =  ( 0 ,  0 )  to an arbitrary  (x, y) =  (a, b)  position by adding these constants to the  (x, y)  coordinates as

 (x −  a) 2 +  (y −  b) 2 =  r 2

where constants  (a, b) ∈ R themselves may be either positive or negative. Evidently, by setting  a = 0 and  b = 0 the circle is translated back to the origin. 

246

6

Analytic Geometry

Fig. 6.24 P.6.77, the general form of

a circle equation is written as follows:

 (x −  x 0 ) 2 +  (y −  y 0 ) 2 =  r 2 explicitly states that the circle radius equals  r

and its center is translated to

 O :  (x 0 , y 0 )  coordinates. Note that by

themselves  x 0 , y 0 numbers may be

zero, positive or negative; however, 

the preceding minus signs in  (x −  x 0 )

and  (y −  y 0 )  are extra

6.78. Adding a constant to  x  or  y  coordinate simply translates that function horizontally or vertically respectively. Thus, the given circle equation

 x 2 +  (y + 1 ) 2 = 12

states that the circle radius is  r = 1 and the circle center is at  x = 0 and  y +1 = 0 ∴  y = −1

coordinates, i.e., it is translated down to  O :  ( 0 , −1 ). Intersect points are calculated at  x = 0

and  y = 0 as

 x = 0 :  x 2 +  (y + 1 ) 2 = 1 ∴  (y + 1 ) 2 = 1 ∴  y + 1 = ±1 ⇒  y 1 = 0 and  y 1 = −2

 y = 0 :  x 2 +  (y + 1 ) 2 = 1 ∴  x 2 + 12 = 1 ⇒  x = 0

In summary, there is only one intersect point at the  x-axis at  ( 0 ,  0 )  and two intersect points at the  y-axis at  ( 0 ,  0 )  and  ( 0 , −2 ). 

6.79. The given circle equation

 (x + 1 ) 2 +  (y + 1 ) 2 = 12

states that the circle radius is  r = 1 and the circle center is at  x + 1 = 0 ∴  x = −1 and y + 1 = 0 ∴  y = −1 coordinates, i.e., it is shifted vertically down and horizontally left to O :  (−1 , −1 ). Intersect points are calculated at  x = 0 and  y = 0 as x = 0 :  (x + 1 ) 2 +  (y + 1 ) 2 = 1 ∴ 12 +  (y + 1 ) 2 = 1 ∴  y + 1 = 0 ⇒  y = −1

 y = 0 :  (x + 1 ) 2 +  (y + 1 ) 2 = 1 ∴  (x + 1 ) 2 + 12 = 1 ∴  x + 1 = 0 ⇒  x = −1

In summary, there are only two intersect points in total, one with the  x-axis at  (−1 ,  0 )  and one with the  y-axis at  ( 0 , −1 ). 

6.4 Intersects
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6.80. The given circle equation

 (x − 2 ) 2 +  (y + 1 ) 2 = 12

states that the circle radius is  r = 1 and the circle center is at  x − 2 = 0 ∴  x = 2, and y + 1 = 0 ∴  y = −1 coordinates, i.e., it is shifted to  O :  ( 2 , −1 ). Intersect points are calculated at  x = 0 and  y = 0 as

 x = 0 :  (x − 2 ) 2 +  (y + 1 ) 2 = 1 ∴  (−2 ) 2 +  (y + 1 ) 2 = 1

∴  (y + 1 ) 2 = −3 ⇒ no real solution

 y = 0 :  (x − 2 ) 2 +  (y + 1 ) 2 = 1 ∴  (x − 2 ) 2 + 12 = 1 ∴  x − 2 = 0 ⇒  x = 2

In summary, there is only one intersect point with  x-axis at  ( 2 ,  0 ). 

6.81. The given circle equation

 (x − 4 ) 2 +  (y − 2 ) 2 = 42

states that the circle radius is  r = 4 and the circle center is at  x − 4 = 0 ∴  x = 4, and y − 2 = 0 ∴  y = 2 coordinates, i.e., it is translated to  O :  ( 4 ,  2 ). Intersect points are calculated at  x = 0 and  y = 0 as

 x = 0 :  (x − 4 ) 2 +  (y − 2 ) 2 = 16 ∴  (−4 ) 2 +  (y − 2 ) 2 = 16 ∴  (y − 2 ) 2 = 0 ⇒  y = 2

 y = 0 :  (x − 4 ) 2 +  (y − 2 ) 2 = 16 ∴  (x − 4 ) 2 +  (−2 ) 2 = 16

√

∴  (x − 4 ) 2 = 12 ⇒  x = 4 ± 2 3

In summary, there is only one intersect point at the  y-axis at  ( 0 ,  2 )  and two intersect points at

√

√

the  x-axis at  ( 4 − 2 3 ,  0 )  and  ( 4 + 2 3 ,  0 ). 

6.82. The given circle equation

 (x − 3 ) 2 +  (y − 4 ) 2 = 52

states that the circle radius is  r = 5 and the circle center is at  x − 3 = 0 ∴  x = 3, and y − 4 = 0 ∴  y = 4 coordinates, i.e., it is translated to  O :  ( 3 ,  4 ). Intersect points are calculated at  x = 0 and  y = 0 as

 x = 0 :  (x − 3 ) 2 +  (y − 4 ) 2 = 25 ∴  (−3 ) 2 +  (y − 4 ) 2 = 25 ∴  (y − 4 ) 2 = 16

⇒  y = 4 ± 4 ∴  y 1 = 0  , y 2 = 8

 y = 0 :  (x − 3 ) 2 +  (y − 4 ) 2 = 25 ∴  (x − 3 ) 2 +  (−4 ) 2 = 25 ∴  (x − 3 ) 2 = 9

⇒  x = 3 ± 3 ∴  x 1 = 0  , x 2 = 6
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In summary, there is two intersect points with  x-axis at  ( 0 ,  0 )  and  ( 6 ,  0 ), and two intersect points with  y-axis at  ( 0 ,  0 )  and  ( 0 ,  8 ). 

6.83. Given the circle and line

(a) Intersect points are

√



 x 2 +  y 2

= 1 ∴  y = ± 1 −  x 2



∴ ± 1 −  x 2 =  x ∴ 1 −  x 2 =  x 2 ∴ 2 x 2 = 1

− x +  y = 0 ∴  y =  x

√

∴

2

 x 1 ,  2 = ± 2

as  y

=  x, then there are two intersect points between this circle and line:

√

√

√

√

 (− 2 / 2 , − 2 / 2 )  and  (  2 / 2 ,  2 / 2 ); see Fig. 6.25. 

(b)  The arc length: as  y =  x  and  r = 1, then the center of this circle at  ( 0 ,  0 )  is also on  y =  x line; in other words this circuit is split in two half-circles; thus, each arc is long:

 l  def

=  rθ =  r π  r=1

=  π

(c)  Area of the triangle bound by the two intersection points and center: as two intersect and center points are aligned, this is a trivial case of the “side view” of a triangle, in other words a line; thus, area  P = 0. 

(d)  Area of the circular sector: equals half-circle (see A.6.64), i.e., P  def

=  r 2 θ =  r 2 π  r=1

=  π

2

2

2

(e)  Area of the circular segment : as a circle diameter is the longest chord, then in this trivial case the area between the chord and arc is the same as the area of circular sector,  P =  π/ 2. 

(f)  Coefficients of tangent lines at these two intersection points: the equation of the intersect line is  y =  x; therefore, its slope coefficient is  a = 1. By definition, the tangent line  yt is perpendicular; that is to say its slope coefficient is  at = −1, and  yt = − x. As  y =  x cuts the circle in two symmetrical halves, there are two parallel tangent lines, one at each intersect point. 

6.84. Given the circle and line

(a) Intersect points are

√



 x 2 − 2 x + 1 +  y 2 = 1 ∴  (x − 1 ) 2 +  y 2 = 1

∴  yc = ±  x( 2 −  x)

⇒

 x +  y = 0

∴  yl = − x





∴

 x  coordinate is the intersect of two lines



 yc =  yl ∴ ±  x( 2 −  x) = − x ∴ 2 x −  x 2 =  x 2 ∴ 2 x(x − 1 ) = 0 ∴  x 1 = 0 , x 2 = 1

6.4 Intersects
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Fig. 6.25 P.6.83, circle at the origin

 x 2 +  y 2 = 1 and line − x +  y = 0

intersect at two points. Tangent lines

are perpendicular to the associated

radius. The longest chord is

equivalent to the circle diameter

That is to say, circle center is at  O :  ( 1 ,  0 ). As  y = − x  and  r = 1, then the  y  coordinates of two intersect points between this circle and line (see Fig. 6.26) are (x, y) =  ( 0 ,  0 ) :

∴  x = 0 and  y = − x ⇒  y = 0 intersect point is at  ( 0 ,  0 ) (x, y) =  ( 1 , −1 ) :

∴  x = 1 and  y = − x ⇒  y = −1 intersect point is at  ( 1 , −1 ) (b)  The arc length: by inspection of Fig. 6.26, evidently the arc angle is  θ =  π/ 2; thus, the arc length is

 s  def

=  r θ  r=1

=  π 2

(c)  Area of the triangle bound by the two intersection points and center: this right triangle is formed by two catheti of length  a = 1 and  b = 1, and then the right triangle area is P =  a b/ 2 = 1 / 2. 

(d)  Area of the circular sector: the central arc angle is  π/ 2; thus, the circular sector area is 1 / 4 of the full disk area, i.e.,  P =  (r 2 π)/ 4 =  π/ 4. 

(e)  Area of the circular segment: as already calculated areas of the circular sector, as well as the associated triangle, then the desired area is computed as the difference of these

two (imagine the leftover after the right triangle is cut off from the pizza-shaped circular sector), i.e., 

 P =  π − 1 =  π − 2

4

2

4

(f)  Coefficients of tangent lines at these two intersection points: as the circle touches the  y-

axis at  ( 0 ,  0 ), that is to say that the  y-axis is its tangent, i.e., the vertical  x = 0 line. The circle also touches the  ( 1 , −1 )  point; that is to say that  y = −1 is its horizontal tangent. 

6.85. General form of circle equation is derived as





 x 2 + 2 x + 1 +  y 2 + 2 y +1 = 0 +1

 (a +  b) 2 =  a 2 + 2 ab +  b 2

 (x + 1 ) 2 +  (y + 1 ) 2 = 1
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Fig. 6.26 P.6.84, intersect points

form 90◦ angle relative to the circle

center at  ( 1 ,  0 ). The area of the

circular segment is derived as a

leftover cutout from the associated

circular sector left after the isosceles

triangle is removed









2

2

 x −  (−1 ) +  y −  (−1 )

=  (  1 ) 2

which states t that  r = 1 and the circle center is at  (x, y) =  (−1 , −1 ). 

(a) Thus, the  x  coordinates of circle and line intersect points are





 (x + 1 ) 2 +  (y + 1 ) 2

= 1 ∴  y 1 = −1 ± 1 −  (x + 1 ) 2

⇒

 x +  y

= −1 ∴  y 2 = − x − 1

by the equality of two lines



 y 1 =  y 2 ∴ −1 ±

1 −  (x + 1 ) 2 = − x − 1



± 1 −  (x + 1 ) 2 = − x

1 −  (x + 1 ) 2 =  x 2

1 −  x 2 =  x 2 + 2 x + 1

2 x(x + 1 ) = 0 ∴

 x 1 = 0 , x 2 = −1

which leads into the  y  coordinate of two intersect points (see Fig. 6.27) as x 1 = 0

∴  y = − x − 1 x=0

= −1 ∴ intersect point is at  ( 0 , −1 )

 x 2 = −1

∴  y = − x − 1 x=-1

= 0 ∴ intersect point is at  (−1 ,  0 )

(b)  The arc length: as  y = −1 −  x  and  r = 1, by inspection of Fig. 6.27, evidently the arc angle is  θ =  π/ 2; thus, the arc length is  s =  r θ =  π/ 2. 

(c)  Area of the triangle bound by the two intersection points and center: this right triangle is formed by two catheti of length  a = 1 and  b = 1, and then the right triangle area is P =  a b/ 2 = 1 / 2. 

(d)  Area of the circular sector: the arc angle is  π/ 2; thus, the circular sector area is 1 / 4 of the circle area, i.e.,  P =  (r 2 π)/ 4 =  π/ 4. 

6.4 Intersects
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Fig. 6.27 P.6.85, intersect points

form 90◦ angle relative to the circle

center at  (−1 , −1 ). The area of the

circular segment is derived as a

leftover cutout from the associated

circular sector left after the isosceles

triangle is removed

(e)  Area of the circular segment: as already calculated areas of the circular sector as well as the associated triangle, then the area of the circular segment is computed as the difference of these two areas as

 P =  π − 1 =  π − 2

4

2

4

(f)  Coefficients of tangent lines at these two intersection points: as the circle touches the  y-

axis at  ( 0 , −1 ), that is to say that the  y-axis is its tangent, i.e., it is a vertical  x = 0 line. 

The circle also touches the  (−1 ,  0 )  point; that is to say that  y = 0 is its horizontal tangent. 

6.86. General form of circle equation is derived as

 (x − 2 ) 2 +  y 2 + 2 y +1 = 0 +1

 (x − 2 ) 2 +  (y + 1 ) 2 = 1

which states that  r = 1 and the circle center is at  (x, y) =  ( 2 , −1 ). Given the circle and line intersect as





 (x − 2 ) 2 +  (y + 1 ) 2 = 1 ∴

 y 1 = −1 ±

1 −  (x − 2 ) 2

⇒

 y 2 = 1

by the equality of two lines



 y 1 =  y 2 ∴ −1 ±

1 −  (x − 2 ) 2 = 1



± 1 −  (x − 2 ) 2 = 2

1 −  (x − 2 ) 2 = 4

 (x − 2 ) 2 = −3 ∴ no real solution

and therefore there are no intersect points, consequently, no arc, no circular sector, etc. 
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6.87. General form of circle equation is derived as

 (x − 2 ) 2 +  y 2 = 4 ∴  (x − 2 ) 2 +  (y − 0 ) 2 = 22

thus,  r = 2 and the circle center is at  (x, y) =  ( 2 ,  0 ). Given the circle and line intersect as



⎫

 (x − 2 ) 2 +  y 2 = 4 ∴

 y

⎬

1 = ±

4 −  (x − 2 ) 2

√

√

⎭ ⇒

 y +  x = 2 ( 1 +

2 ) ∴

 y 2 = 2 ( 1 +

2 ) −  x

by the equality of two lines, the  x  coordinate of the intersect points is



√

 y 1 =  y 2 ∴ ± 4 −  (x − 2 ) 2 = 2 ( 1 +

2 ) −  x



√

2

4 −  (x − 2 ) 2 = 2 ( 1 +

2 ) −  x



√ 

√



− x 2 + 4 x =  x 2 − 4 1 + 2  x + 4 2 2 + 3



√ 

√



0 = 2 x 2 − 4 1 +

2  x − 4 x + 4 2 2 + 3



√ 

√



2 x 2 − 4 2 2 + 2  x + 4 2 2 2 + 3 = 0



√



√

2

 x −  (  2 + 2 )

= 0  x 1 ,  2 = 2 + 2

√



which is to say that the circle and line share only one double point at  x 1 ,  2 =

2 + 2 whose

 y  coordinate is then

√



√

√



√

 x 1 ,  2 =

2 + 2

∴  y +  x = 2 ( 1 + 2 ) ∴  y +

2 + 2 = 2 ( 1 +

2 )

√

√



√

 y = 2 ( 1 +

2 ) −

2 + 2 =

2

√

√ 

∴ intersect point is at

2 + 2  ,  2

As there is only one intersect point between  y 1 circle and  y 2 line, that is to say at this point this line is tangent to the circle, and therefore, there are no intersect areas. 

6.88. As the general form given circle is

 (x − 2 ) 2 +  (y − 2 ) 2 = 22

thus  r = 2 and the circle center is at  O :  ( 2 ,  2 ). Line 3 x + 4 y = 14 at  x = 2 results in 3 x + 4 y = 14 ∴  y = 14 − 3 x ∴  y  x=2

= 2

4

which is to say that this line includes the circle’s center at  O :  ( 2 ,  2 )  or, in other words, the circle is split in half. 
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(a) Circle and line intersect as



⎫

 (x − 2 ) 2 +  (y − 2 ) 2 = 4 ∴

 y

⎪

1 = 2 ±

4 −  (x − 2 ) 2⎬ ⇒

⎪

 y

⎭

2 = 14 − 3 x

4

by the equality of two lines,  x  coordinates of intersect points are



2 ±

4 −  (x − 2 ) 2 = 14 − 3 x

4



± 4 −  (x − 2 ) 2 = 6 − 3 x

4





6 − 3 x  2

4 −  (x − 2 ) 2 =

4

− x 2 + 4 x = 9  (x 2 − 4 x + 4 )

16

−16 x 2 + 64 x = 9 x 2 − 36 x + 36

25 x 2 − 100 x + 36 = 0 ∴  x 1 = 2  , x 2 = 18

5

5

Coordinates of two intersect points are therefore





2 16

 x

x=2/5

1 = 2

∴  y = 14 − 3 x = 16 ∴ intersect point is at

 , 

5

4

5

5

5





18 4

 x

x=18/5

2 = 18

∴  y = 14 − 3 x = 4 ∴ intersect point is at

 , 

5

4

5

5

5

(b)  The arc length: as  r = 2 and this circle is cut in half, thus each arc is  l =  rπ = 2 π. 

(c)  Area of the triangle bound by the two intersection points and center: as two intersect and center are aligned, this is a trivial case of only a line projection of triangle; thus, area P = 0. 

(d)  Area of the circular sector: as the circle is cut in half, the area of each circular sector is P =  r 2 π/ 2 = 2 π. 

(e)  Area of the circular segment: in this trivial case as well as the circular sector,  P = 2 π. 

(f)  Coefficients of tangent lines at these two intersection points: the slope of the intersect line is  a = −3 / 4; therefore, the slopes of both tangent are  a = 4 / 3. 

6.89. Given two circles  c 1 :  x 2 +  y 2 = 1 and  c 2 :  (x − 1 ) 2 +  (y − 1 ) 2 = 1, evidently, they are centered at  ( 0 ,  0 )  and  ( 1 ,  1 ), respectively, and both radius  r = 1; see Fig. 6.28. 

Furthermore, their intersect points with  x- and  y-axes, respectively, are as follows. 

 x-axis, i.e.,  y = 0:

 x 2 +  y 2 = 1 ∴  x 2 y=0

= 1 ∴  x = ±1 ∴  (−1 ,  0 )  and  ( 1 ,  0 )
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Fig. 6.28 P.6.89, intersect area of

two circles

y=0

 (x − 1 ) 2 +  (y − 1 ) 2 = 1 ∴  (x − 1 ) 2 + 1 = 1 0 ∴  x = 1 ∴  ( 1 ,  0 ) y-axis, i.e.,  x = 0:

 x 2 +  y 2 = 1 ∴  y 2 x=0

= 1 ∴  y = ±1 ∴  ( 0 , −1 )  and  ( 0 ,  1 )

 (x − 1 ) 2 +  (y − 1 ) 2 = 1 ∴  (y − 1 ) 2 + 1 x=0

= 1 0 ∴  y = 1 ∴  ( 0 ,  1 )

As it happens, these two circles intersect at  ( 0 ,  1 )  and  ( 1 ,  0 )  points. 

1.  Chord: given two intersect points  ( 0 ,  1 )  and  ( 1 ,  0 ), the corresponding chord is therefore the hypotenuse of the right triangle whose both catheti  a =  b = 1, which is to say  h =

√

√

 a 2 +  b 2 =

2. 

2.  Overlapping area: consists of two segments bound by the chord; each segment area is calculated (see A.6.85) as area of the circular sector minus the corresponding triangle area. The right triangle sets  θ =  π/ 2, and thus, sector area is  P 1 =  r 2 θ/ 2 =  π/ 4. The corresponding triangle area is  P =  ab/ 2 = 1 / 2 so that the total overlapping area  P  is π − 2

 P = 2

=  π − 2

4 2

2

√

√

6.90. Given two circles  c 1 :  x 2 +  y 2 = 1 and  c 2 :  (x −

2 ) 2 +  (y +

2 ) 2 = 1, evidently, 

√

√

 c 1 is centered at  ( 0 ,  0 )  and  c 2 at  (  2 , − 2 ), respectively, and both radius  r = 1. Furthermore, their intersect points are derived as follows:



 x 2 +  y 2 = 1 ∴  y = ± 1 −  x 2

√

√



√

√

 (x −

2 ) 2 +  (y +

2 ) 2 = 1 ∴  y = ± 1 −  (x −

2 ) 2 −

2

equality of these two equations is





√

√ 



± 1 −  x 2 = ± 1 −  (x − 2 ) 2 − 2 both sides squared, as
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√



√ √

1 −  x 2 = 1 −  (x −

2 ) 2 + 2 − 2 1 −  (x −

2 ) 2 2

√ 

√

√

1 −  x 2 0 = −2 2 − x 2 + 2 2  x − 1 −  x 2 + 2 x  2 + 1

√ 

√



0 = −2 2

− x 2 + 2 2 x − 1 −  x

that is to say



√

√

√

− x 2 + 2 2 x − 1 =  x

∴ − x 2 + 2 2 x − 1 =  x 2

∴ 2 x 2 − 2 2 x + 1 = 0



√ 

√

2

∴ 1

2

2 x −

2

∴  x 1 ,  2 =

2

2

which means there is only one intersect point at the  y  coordinate

√ 2



√

2

2

 x 2 +  y 2 = 1 ∴

+  y 2 = 1 ∴  y = 1 − 1 =

2

2

2

That being the case, there are two possible positions for two circles to have only one intersect point. Either the two circles only touch from the outside and therefore the overlapping area equals zero or the smaller circle is completely covered by the larger circle while making the one point contact from the inside. In that case the overlapping area is equal to the area of the inner smaller circle. 

One possible method to verify if two circles are touching from the outside is to find out if the two centers are separated by distance equal to the sum of two radii forming a straight line. 

Given the coordinates of two center points, their distance  d  is by Pythagoras’ theorem

√







2

√

2

 d 2 =  (x) 2 +  (y) 2 =  (x 2 −  x 1 ) 2 +  (y 2 −  y 1 ) 2 =  (  2−0

+  (− 2−0 = 4 ∴  d = 2

which is exactly the sum of two radii. In summary, there is only one common point

√

√

 (  2 / 2 , − 2 / 2 )  between these two circles touching from the outside; by consequence there is zero length arc, zero area sector, and zero overlapping area. 

6.91. Given two circles  c 1 :  x 2 +  y 2 = 1 and  c 2 :  x 2 +  (y + 1 ) 2 = 4, evidently,  c 1 is centered at  ( 0 ,  0 )  with  r 1 = 1 and  c 2 at  ( 0 , −1 ), respectively, with  r 2 = 2. Furthermore, their intersect point(s) are derived as follows:



 x 2 +  y 2 = 1 ∴  y = ± 1 −  x 2



 x 2 +  (y + 1 ) 2 = 4 ∴  y = −1 ±

4 −  x 2

by the equality of these two equations





± 1 −  x 2 = −1 ± 4 −  x 2
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± 4 −  x 2 ± 1 −  x 2 = 1 both sides squared, as







 ( 4 −  x 2 ) +  ( 1 −  x 2 ) + 2  ( 4 −  x 2 )( 1 −  x 2 ) = 1

 (+ ) ×  (+ ) =  (+ ), (− ) ×  (− ) =  (+ ) ( 4 − x 2 )( 1− x 2 ) = −2+ x 2

 ( 4 −  x 2 )( 1 −  x 2 ) =  (x 2 − 2 ) 2

 x 4 − 5 x 2 + 4 =  x 4 − 4 x 2 + 4

∴  x 2 = 0 ⇒  x = 0

that is to say the  y  coordinate of the intersect point(s) is

 x 2 +  y 2 = 1

∴ 02 +  y 2 x=0

= 1 ∴  y 1 ,  2 = ±1

Point  (x 1 , y 1 ) =  ( 0 ,  1 )  should belong to both circles as x 2 +  y 2 = 1

∴ 02 + 12 = 1 

 x 2 +  (y + 1 ) 2 = 4

∴ 02 +  ( 1 + 1 ) 2 = 4 

therefore, it is indeed an intersect point. Then, point  (x 2 , y 2 ) =  ( 0 , −1 )  also should be found to both circles as

 x 2 +  y 2 = 1

∴ 02 +  (−1 ) 2 = 1 

 x 2 +  (y + 1 ) 2 = 4

∴ 02 +  (−1 + 1 ) 2 = 4 ∴ 0 = 4

However, point  ( 0 , −1 )  is the center of  c 2, therefore not the intersect; see Fig. 6.29. Both circles are centered around the  x = 0 vertical axis, where the  c 1 domain is  y ∈  (−1 ,  1 ). 

Circle  c 2 is centered at  ( 0 , −1 )  with  r = 2; thus, its domain is  y ∈  (−3 ,  1 ). By consequence, there is only one intersect point at  ( 0 ,  1 )  so that the smaller circle is completely covered by the larger circle while making the one point contact from the inside. That being the case, the overlapping area equals the area of the smaller circle. 

In summary, there is only one common point  ( 0 ,  1 )  between these two circles touching from the outside; by consequence there is zero length arc and zero area sector. However, the

overlapping area equal  P =  r 2 π =  π. 

1

Fig. 6.29 P.6.91, two circles with

only one intersect point. In this case

the overlapping area is equal to the

area of the inner smaller circle
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6.92. Given two circles  c 1 :  x 2 +  (y − 3 ) 2 = 1 and  c 2 :  x 2 +  (y + 1 ) 2 = 4, evidently,  c 1

is centered at  ( 0 ,  3 )  with  r 1 = 1 and  c 2 at  ( 0 , −1 )  with  r 2 = 2. As both circles are centered around the vertical axis  x = 0, then the  y  domain of  c 1 is 3−1 ≤  y 1 ≤ 3+1 and its  x  domain is x 1 ∈  (−1 ,  1 ), that is,  y 1 ∈  ( 2 ,  4 ). At the same time the  y  domain of  c 2 is −1−2 ≤  y 2 ≤ −1+2

that is,  y 2 ∈  (−3 ,  1 ), and its  x  domain is  x 2 ∈  (−2 ,  2 ). In conclusion, these two circles are completely separated without any intersect points. 

6.93. Given two circles  c 1 :  x 2 +  y 2 = 1 and  c 2 :  ( 2 x − 1 ) 2 +  ( 2 y − 1 ) 2 = 4, evidently  c 1

is centered at  ( 0 ,  0 )  with  r = 1, while the explicit form of  c 2 is ( 2 x − 1 ) 2 +  ( 2 y − 1 ) 2 = 4









2

2

2  x − 1

+ 2  y − 1

= 4

2

2









2

2

4  x − 1

+ 4  y − 1

= 4 1

2

2









2

2

 x − 1

+  y − 1

= 1

2

2

that is to say, it is centered at  ( 1 / 2 ,  1 / 2 )  with  r = 1. 

1.  Intersect points  are resolved as follows:

 x 2 +  y 2 = 1 ∴  y 2 = 1 −  x 2

 ( 2 x − 1 ) 2 +  ( 2 y − 1 ) 2 = 4 ⇒





4 x 2 − 4 x + 1 + 4 y 2 − 4 y + 1 − 4 = 0

substitute  y 2 and  y

Fig. 6.30 P.6.93—two circles partially overlapping
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4 x 2 − 4 x − 2 + 4 ( 1 −  x 2 ) − 4 1 −  x 2 = 0

1 − 2 x = 2 1 −  x 2

1 − 4 x + 4 x 2 = 4 − 4 x 2

√7


8 x 2 − 4 x − 3 = 0

∴  x 1 ,  2 = 1 ±4

 y  coordinates are therefore



√ 2

1 ±

7

 x 2 +  y 2 = 1 ∴

+  y 2 = 1

4

√



√

7

4 ±

7

 y 2 = 4 ±

∴  y 1 ,  2 = ±

8

8

That is to say (see Fig. 6.30a), there are two intersect points (pay attention to double ±

signs in  y  coordinates) as

⎛

√ 

√ ⎞

⎛

√



√ ⎞

7

4 +

7

7

4 −

7

 (x

⎝1 −

⎠

⎝1 +

⎠

1 , y 1 ) =

 , 

 , (x 2 , y 2 ) =

 , −

4

8

4

8

2.  Chord: given two intersect points  (x 1 , y 1 )  and  (x 2 , y 2 ), as per Pythagoras’ theorem, the chord length  s  is calculated

7

 s 2 =  (x) 2 +  (y) 2 =  (x 2 −  x 1 ) 2 +  (y 2 −  y 1 ) 2 = 7 + 7 ∴  s =

4

4

2

where the two catheti lengths  (x) 2 and  (y) 2 (see Fig. 6.30a) are calculated as

√

√

√

√

√

7

7

7 − 1 + 7

7

 x =  x 2 −  x 1 = 1 +

− 1 −

= 1 +

=

∴  (x) 2 = 7

4

4

4

2

4

and

⎛ 

√



√ ⎞2

⎛

⎛

√



√ ⎞⎞2

4 −

7

4 +

7

4 −

7

4 +

7

 (y) 2 =  (y

⎝

⎠

⎝

⎝

⎠⎠

2 −  y 1 ) 2 =

−

−

= − 1

+

8

8

8

8





 (a +  b) 2 =  a 2 + 2 ab +  b 2 , (−1 ) 2 = 1



√ 

√



√

√

= A4 −

√7 + A4 1 +

√7 + 4− 7 4+ 7

4 −

7 4 +

7

2

= 1 + 2

A8

A8 1

8

8

8

8



√

√





= 1 + 2 1  ( 4 − 7 )( 4 + 7 ) (a −  b)(a +  b) =  (a 2 −  b 2 ) 8 4
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√

= 1 + 1 16 − 7 ∴  (y) 2 = 7

4

4

3.  Overlapping area: consists of  two symmetrical  segments bound by chord  s  and arc  l. 

Each segment area is calculated as the area of the circular sector  P 1 =  r 2  θ/ 2 minus the corresponding isosceles triangle area  P 2 bound by chord  s  as the base and radii  r  as two sides of equal length; see A.6.85 and Fig. 6.30b. 

(a)  Isosceles triangle area P 2: consists of  two  right triangles whose hypotenuse is  r, one cathetus is  a =  s/ 2, and the other cathetus  b  is calculated by Pythagoras’ theorem as a b

4 r 2 −  s 2

 b 2 =  r 2 −  a 2 = 4 r 2 −  s 2 ∴  P 2 = 2

=  s b =  s

4

2

2

2

4





√

4 − 7

= 1 7

7

7

2 =

=

2

2

4

64

8

(b)  Circular sector P 1 =  r 2  θ/ 2: in the general case when the central angle  θ =  π/ 2, it is necessary to recall the trigonometric definition of the sin (α)  function; see Vol. I Chap. 7. 

Reminder: Given a right triangle whose hypotenuse length is  c  and  a  is the length of the cathetus  opposite  to angle  α, then  α  is derived by definition as a

sin  α  def

=  a ∴  α = arcsin

 c

 c

In this example, each of the two right triangles includes one angle that is equal to  θ/ 2

(see Fig. 6.30b), which by definition is derived as

 θ

 s/ 2

 s/ 2

sin

def

=  s/ 2 ∴  θ = arcsin

∴  θ = 2 arcsin

2

 r

2

 r

 r

√

∴

 s

7

 θ = 2 arcsin

= 2 arcsin

 (≈ 138 .  6◦ )

2

8

which should be converted in radians as per proportion of circle measured in radians

and degrees, as

138 .  6◦ =  θ rad ∴

138 .  6◦

 θ rad = 2 π

≈ 2 .  42 rad

360◦

2 π

360◦

therefore, the circular sector area  P 1 is calculated (with the angle in rad) as



 θ

7

 P 1 =  r 2

= arcsin

 , (≈ 1 .  21 )

2

8
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Fig. 6.31 P.6.94—irregular overlapping surface between two circles thus, for a given chord and  r = 1 segment area  Pθ  is



√

7

7

 Pθ =  P 1 −  P 2 = arcsin

−

 , (≈ 0 .  88 )

8

8

In conclusion, the total overlapping area consists of two symmetrical  Pθ  areas, i.e. 





√ 

7

7

 P = 2 arcsin

−

 , (≈ 1 .  76 )

8

8

6.94. Given two circles  c 1 :  x 2 +  y 2 = 1 and  c 2 :  (x − 1 ) 2 +  (y + 1 ) 2 = 4, evidently c 1 is centered at  ( 0 ,  0 )  with  r = 1, and  c 2 is centered at  ( 1 , −1 )  with  r = 2. In reference to Fig. 6.31a, the smaller circle  c 1 is overlapped with the larger circle  c 2, except for the crescent-shaped area  s  in between the two arcs over the same chord. These two arcs, however, are set by two different angles  θ 1 and  θ 2; see Fig. 6.31b. This example may be resolved by the following calculation steps:

1. Intersect point(s) coordinates

2. Chord length

3. Segment area of smaller circle,  r = 1

4. Segment area of the larger circle,  r = 2

5. Area of the crescent-shaped area  Ps

6. The total area equals to smaller circle area minus  Ps

which gives the overlapping area between these two circles as outlined in Fig. 6.31a. 

1.  Intersect points coordinates  are resolved as by equalizing the two circle curves, as x 2 +  y 2 = 1 ∴  y 2 = 1 −  x 2
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 (x − 1 ) 2 +  (y + 1 ) 2 = 4





 x 2 − 2 x + 1 +  y 2 + 2 y + 1 − 4 = 0

substitute  y 2 and  y



 x 2 − 2 x − 2 +  ( 1 −  x 2 ) + 2 1 −  x 2 = 0 

− ( 1 + 2 x) = −2 1 −  x 2

1 + 4 x + 4 x 2 = 4 − 4 x 2

√

−1 ± 7

8 x 2 + 4 x − 3 = 0

∴  x 1 ,  2 =

4

and  y  coordinate are therefore, 



√ 

−

2

1 ±

7

 x 2 +  y 2 = 1 ∴

+  y 2 = 1

4

√



√

7

4 ±

7

 y 2 = 4 ±

∴  y 1 ,  2 = ±

8

8

In summary, there are two intersect points (pay attention to double ± signs in  y 1 ,  2

coordinates; they are symmetric) as

⎛

√



√ ⎞

⎛

√ 

√ ⎞

7

4 −

7

7

4 +

7

 (x

⎝−1 −

⎠

⎝−1 +

⎠

1 , y 1 ) =

 , −

 , (x 2 , y 2 ) =

 , 

4

8

4

8

2.  Chord length: given two intersect points  (x 1 , y 1 )  and  (x 2 , y 2 ) (see Fig. 6.31a), the chord length  l  is calculated as

7

 l 2 =  (x) 2 +  (y) 2 =  (x 2 −  x 1 ) 2 +  (y 2 −  y 1 ) 2 = 7 + 7 ∴  l =

4

4

2

where the two catheti lengths  (x) 2 and  (y) 2 were calculated as

√

√

√

√

√

−1 + 7

−1 − 7

−1 + 7 + 1 + 7

7

 x =  x 2 −  x 1 =

−

=

=

∴  (x) 2 = 7

4

4

4

2

4

and

⎛

√



√ ⎞2

⎛

√



√ ⎞2

4 +

7

4 −

7

4 −

7

4 +

7

 (y) 2 =  (y

⎝

⎠

⎝

⎠

2 −  y 1 ) 2 =

+

=

+

8

8

8

8





 (a +  b) 2 =  a 2 + 2 ab +  b 2 , (−1 ) 2 = 1
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√ 

√



√

√

= A4 −

√7 + A4 1 +

√7 + 4− 7 4+ 7

4 −

7 4 +

7

2

= 1 + 2

A8

A8 1

8

8

8

8



√

√





= 1 + 2 1  ( 4 − 7 )( 4 + 7 ) (a −  b)(a +  b) =  (a 2 −  b 2 ) 8 4

√

= 1 + 1 16 − 7 ∴  (y) 2 = 7

4

4

3.  Segment area of smaller circle P , with r 1 = 1 is calculated as the area of the circular sector P 1 =  r 1  θ 1 minus the corresponding isosceles triangle area  P 12 bound by chord  l  as the base and radii  r 1 as two sides of equal length; see A.6.93 and Fig. 6.31b. 

(a)  Isosceles triangle area P 12: consists of two right triangles whose hypotenuse is  r 1, one cathetus is  a =  l/ 2, and the other cathetus  b  is calculated by Pythagoras’ theorem as 2



1

7

1

 b 2 =  r 2 −  a 2 = 1 −

= 1

∴  b =

1

2

2

8

8





√

∴

 a b

7

1

7

7

 P 12 = 2

=  l b = 1

= 1

=

2

2

2

2

8

2

16

8

(b)  Circular sector P 1 =  r 2  θ

1

1 / 2: where  θ  is in rad. In general case when the central angle

 θ =  π/ 2, it is necessary to recall the trigonometric definition of the sin (α)  function; see Vol. I Chap. 7. Here, each of the two right triangles includes one angle that is equal to θ 1 / 2 (see Fig. 6.31b), which by definition is derived as θ 1

 l/ 2

 l/ 2

sin

def

=  l/ 2 ∴  θ 1 = arcsin

∴  θ 1 = 2 arcsin

2

 r 1

2

 r 1

 r 1



∴

7

 θ 1 = 2 arcsin

 (≈ 138 .  6◦ )

8

which should be converted in radians as per proportion of circle measured in radians

and degrees, as

138 .  6◦ =  θ rad ∴

138 .  6◦

 θ rad = 2 π

≈ 2 .  42 rad

360◦

2 π

360◦

therefore, the circular sector area  P 1 is calculated (with the angle in rad) as



 θ 1

7

 P 1 =  r 2

= arcsin

 , (≈ 1 .  21 )

1 2

8

thus, for a given chord and  r 1 = 1 segment area  Pθ  is

1



√

7

7

 Pθ =  P

−

 , (≈ 0 .  88 )

1

1 −  P 12 = arcsin

8

8
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4.  Segment area of the larger circle P , with r 2 = 2 is calculated as the area of the circular sector  P 2 =  r 2  θ 2 minus the corresponding isosceles triangle area  P 22 bound by chord  l  as the base and radii  r 2 as two sides of equal length; see A.6.85 and Fig. 6.31b. 

(a)  Isosceles triangle area P 22: consists of two right triangles whose hypotenuse is  r 2, one cathetus is  a =  l/ 2, and the other cathetus  b  is calculated by Pythagoras’ theorem as 2



1

7

25

 b 2 =  r 2 −  a 2 = 4 −

= 1

∴  b =

2

2

2

8

8





√

 a b

7

25

175

7

 P 22 = 2

=  l b = 1

= 1

= 5

2

2

2

2

8

2

16

8

(b)  Circular sector P 2 =  r 2  θ

2

2 / 2: where  θ  is in rad. Here, each of the two right triangles

includes one angle that is equal  θ 2 / 2 (see Fig. 6.31b), which by definition is derived as θ 2

 l/ 2

 l/ 2

sin

def

=  l/ 2 ∴  θ 2 = arcsin

∴  θ 2 = 2 arcsin

2

 r 2

2

 r 2

 r 2



∴

7

 θ 2 = 2 arcsin

 (≈ 55 .  8◦ )

32

which should be converted in radians as per proportion of circle measured in radians

and degrees, as

138 .  6◦ =  θ rad ∴

55 .  8◦

 θ rad = 2 π

≈ 0 .  97 rad

360◦

2 π

360◦

therefore, the circular sector area  P 2 is calculated (with the angle in rad) as



 θ 2

7

 P 2 =  r 2

= 4 arcsin

 , (≈ 1 .  95 )

2 2

32

thus, for a given chord and  r 2 = 2 segment area  Pθ  is

2



√

7

7

 Pθ =  P

− 5

 , (≈ 0 .  29 )

2

2 −  P 22 = 4 arcsin

32

8

5.  Area of the crescent-shaped area Ps: is the difference between the larger segment (with r = 2) and smaller segment (with  r = 1), as so that



√



√

7

7

7

7

 Ps =  Pθ −  P = 4 arcsin

− 5

− arcsin

+

2

 θ 1

32

8

8

8





√

=

7

7

7

4 arcsin

− arcsin

− 4

≈ 0 .  59

32

8

8

6.  Smaller circle area minus Ps: finally, the nonoverlapped crescent-shaped area  Ps  should be deduced from the smaller circle area; thus, the total overlapping area  P  is
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√

7

7

7

 P =  r 2 π −  P

+ arcsin

+ 4

≈ 2 .  55

1

 s =  π − 4 arcsin

32

8

8

which may be very roughly visually estimated by inspection of Fig. 6.31b. 

6.95. Given  yt =  px + 10 and  x 2 +  y 2 = 20, it is to say that slope of tangent line  yt  is p, and that circle whose  r 2 = 20 is centered at the origin  ( 0 ,  0 ). In the context of analytic geometry and Pythagoras’ theorem, tangent lines to circle may be resolved by exploiting the

right triangle and circle properties; see Fig. 6.32a. 

1.  Tangent line yt =  px +  n, p, n ∈ R, whose slope is therefore  p, intersects the horizontal axis at point  x 0 when  yt = 0, as

 yt =  px +  n ∴ for  yt = 0

∴  x 0 = −  np

2.  Radius line segment yr  whose slope is  m  connects the origin  O :  ( 0 ,  0 )  and  P :  (a, b) points is

 yr =  mx =  b x

 a

and it is perpendicular to tangent line  yt , that is to say

 b

 p = − 1 = −  a ⇒  x 0 = −  n =  n =  n

 m

 b

 p

 a/b

 a

3.  Circle: coordinates of point  P :  (x, y) =  (a, b)  may be derived from the circle equation as x 2 +  y 2 =  r 2 



 x ·  x +  y ·  y =  r 2

at point  P :  (x, y) =  (a, b)  then for

 y = 0

∴  ax 0 +  b( 0 ) =  r 2 ∴  a =  r 2

 x 0

and after substituting  x 0, 

 a =  r 2

∴

∴  b =  r 2 = 20 = 2

 n b

 a =  ar 2

 nb

 n

10

 a

4.  Right triangle  at point  P  is

 a 2 +  b 2 =  r 2

2

 r 2

 a 2 =  r 2 −

= 20 − 4 = 16 ∴  a = ±4

 n
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Fig. 6.32 P.6.95—circle and its tangent lines

5.  Tangent equations: as there are two values for  a, then

 p = −  a = ±2 then,  yt =  px +  n = ±2 x + 10

 b

there are two tangent lines that satisfy  p = ±2 parameter; see Fig. 6.32b

6.96. The explicit form of the given circle equation is

 x 2 +  y 2 − 4 x − 6 y − 12 = 0

 x 2 − 2 · 2 x + 22 +  y 2 − 2 · 3 y + 32 = 12 + 22 + 32

 (x − 2 ) 2 +  (y − 3 ) 2 = 52

∴ center:  ( 2 ,  3 ), r = 5



 y = 3 ±

25 −  (x − 2 ) 2

Then, 

(1) Explicit form of linear equation is

4 x − 3 y − 12 = 0

∴  y = 4 x − 12

∴ its slope is  m = 4

3

3

and its parallel line therefore must have the same slope  m = 4 / 3. 

(a) The tangent line is perpendicular to the radius  r  line, so that their intersect point is on the circle. To say that the radius line  yr  is perpendicular to tangent is to say that its slope is  mr = −1 /m  and, in addition, the radius line must include the circle’s center point  C :  ( 2 ,  3 ); thus, 

 yr = − 3  x +  n

∴ at center  (x, y) =  ( 2 ,  3 )  is has to be

4
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3 = − 3 2 +  n ∴  n = 9

∴  yr = −3 x + 9

4

2

4

2

(b) Intersect points of radius line  yr  with circle are found by equating the two as 3 ±

25 −  (x − 2 ) 2 = − 3  x + 9

4

2



± − x 2 + 4 x + 21 = −3 x + 3

4

2

− x 2 + 4 x + 21 = 9  x 2 − 9 x + 9

16

4

4

25  (x − 6 )(x + 2 ) = 0  x 1 = −2 , x 2 = 6

16

where  y  coordinates of these two intersect points may be computed at, for example, 

radius line as

 x 1 = −2  y 1 = − 3  (−2 ) + 9 = 6

∴  (x 1 , y 1 ) =  (−2 ,  6 )

4

2

 x 2 = 6  y 2 = − 3  ( 6 ) + 9 = 0

∴  (x 2 , y 2 ) =  ( 6 ,  0 )

4

2

(c) To say that tangent  yt  is parallel with the given line  y  is to say that both lines have the same slope  m; thus, the tangent equation is in the form

 yt = 4  x +  n

3

where the parameter  n  is calculated at two intersect points as

 (x 1 , y 1 ) =  (−2 ,  6 )  6 = 4  (−2 ) +  n

∴  n = 26 ∴  yt = 4  x + 26

3

3

3

3

 (x 2 , y 2 ) =  ( 6 ,  0 )  0 = 4  ( 6 ) +  n

∴  n = −8 ∴  yt = 4  x − 8

3

3

There are two tangent lines that are parallel with the given line; see Fig. 6.33a. 

(2) Explicit form of linear equation is

3 x − 4 y − 10 = 0

∴  y = 3 x − 10

∴ its slope is  m = 3

4

4

therefore, all parallel lines must have slope  m = 3 / 4 and all perpendicular lines must have slope  mt = −1 /m = −4 / 3. 

(1) First, there is only one parallel line  yp =  mx +  n  that crosses the circle’s center point ( 2 ,  3 )

 (x, y) =  ( 2 ,  3 ) :

∴ 3 = 3 ( 2 ) +  n ∴  n = 3 ∴  yp = 3 x + 3

4

2

4

2
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Fig. 6.33 P.6.96—circle and its tangents

(2) Then, intersect points of  yp  line and circle are common to the line and circle, thus 3 ±

25 −  (x − 2 ) 2 = 3  x + 3

4

2



2

−

3

 x 2 + 4 x + 21 =

 x + 3 − 3

4

2

− x 2 + 4 x + 21 = 9  x 2 − 9 x + 9

16

4

4

25 (x 2 − 4 x − 12 ) = 0 ∴ 25 (x + 2 )(x − 6 ) = 0

∴  x 1 = −2 , x 2 = 6

so that  y  coordinates of the intersect points are

 x 1 = −2 :

∴  yp = 3 (−2 ) + 3 = 0 ∴  (x 1 , y 1 ) =  (−2 ,  0 ) 4

2

 x 2 = 6 :

∴  yp = 3 ( 6 ) + 3 = 6 ∴  (x 2 , y 2 ) =  ( 6 ,  6 ) 4

2

(3) Finally, two tangent lines  yt =  mt x +  k (i.e., perpendicular to both given line and  yp) also cross these two intersect points (see Fig. 6.33b), as a result (x 1 , y 1 ) =  (−2 ,  0 ) :

∴ 0 = −4 (−2 ) +  k ∴  k = −8 ∴  yt = −4 x − 8

3

3

3

3

 (x 2 , y 2 ) =  ( 6 ,  6 ) :

∴ 6 = −4 ( 6 ) +  k ∴  k = 14 ∴  yt = −4 x + 14

3

3

There are two tangent lines that are vertical to the given line; see Fig. 6.33b. 
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Fig. 6.34 P.6.97—circle and its tangent at given angle  θ

6.97. In the context of right triangles and circles, i.e., without using vector or complex algebra, one possible technique to resolve this example may consist of the following steps:

1. The explicit form of the given circle equation is

 x 2 +  y 2 − 2 x − 24 = 0

 x 2 − 2 x +1 +  y 2 = 24 +1

 (x − 1 ) 2 +  y 2 = 25

∴ thus, the circle center is at  (x, y) =  ( 1 ,  0 )  and  r = 5

2. The given line may be translated to the circle center as





7 x −  y = 0 ∴  y = 7 x

crossing point  (x, y) =  ( 0 ,  0 ), thus





 yy = 7 (x − 1 )

a parallel line that crosses point  (x, y) =  ( 1 ,  0 ). 

3. Perpendicular line  yx  to  yy  must have negative inverse slope coefficient, i.e., m=7 ∴  mx= − 1 / 7 ∴  yx = − 1  x

vertical line at point  (x, y) =  ( 0 ,  0 ), thus

7





 yx = − 1  (x − 1 )

its parallel line translated to  (x, y) =  ( 1 ,  0 ). 

7

4. As  yx  and  yy  are perpendicular, that is to say they from right angle, and they may be seen as a coordinate system that is rotated relative to the original system so that it is aligned with y = 7 x; see Fig. 6.34a. 

Line that is   π/ 4 rotated relative to  yy (and also to  yx) by consequence has to be hypotenuse of a isosceles right triangle. In order to determine its equation, either its slope factor or two points in space should be known. 

6.4 Intersects
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The slope of  y = 7 x, and inevitably any of its parallel versions such as  yy = 7 (x − 1 ), is by definition  m =  y/x = 7. Then, by definition of a hypotenuse slope, if  x = 1

it must be that  y = 7. In other words, relative to  ( 0 ,  0 )  origin one point that is certainly found on  y = 7 x  line must be at  (x, y) =  ( 1 ,  7 ). By the same argument, slope of yx =  y/x = −1 / 7 then another point may be  (x, y) =  ( 7 , −1 ) (note 90◦ rotation between  yx  and  yy). 

However, if  (x, y) =  ( 0 ,  0 )  origin is translated horizontally to  (x, y) =  ( 1 ,  0 ), then all points found of either hypotenuse or its parallel line (yet to be determined) are also

horizontally translated (i.e., only  x  coordinate is increased) by one, then  A :  ( 1 ,  7 )  moves to  A :  ( 2 ,  7 )  and  B :  ( 7 , −1 )  moves to  B :  ( 8 , −1 ) 5. Given two points,  A :  ( 2 ,  7 )  and  B :  ( 8 , −1 ), the line equation of any line parallel to hypotenuse  yt =  ax +  b  is derived as (where  n  must be calculated at circle line) A :  ( 2 ,  7 ) ∴

7 =  a( 2 ) +  b

 B :  ( 8 , −1 ) ∴

−1 =  a( 8 ) +  b

8 = −6 a

∴  a = −8 4 = −4

∴  y

 x +  n



 t = − 4

6 3

3

3

6. Tangent points on the circle are found as intersects of a line  ym  that is perpendicular to yt  that crosses the circle center at  ( 1 ,  0 ). This line therefore must be in the form  ym =

 ( 3 / 4 ) x +  m

 (x,  7 ) =  ( 1 ,  0 ) : 0 = 3  ( 1 ) +  m ∴  m = − 3 ∴  ym = 3  x − 3

4

4

4

4

7. Tangent points on circle, by the equality between circle and  ym  equations are



 (x − 1 ) 2 +  y 2 = 25 ∴  y = ± 25 −  (x − 1 ) 2

 ym = 3  x − 3

4

4



± 25 −  (x − 1 ) 2 = 3  x − 3

4

4

− x 2 + 2 x + 24 = 9  x 2 − 18 x + 9

16

16

16

−25 (x − 5 )(x + 3 ) = 0 ∴  x 1 = −3  x 2 = 5

16

so that  y  coordinates of intersect points are

 x 1 = −3 : ∴  y 1 = 3  (−3 ) − 3 = −3 ∴  (x 1 , y 1 ) =  (−3 , −3 ) 4

4

 x 2 = 5 : ∴  y 2 = 3  ( 5 ) − 3 = 3 ∴  (x 2 , y 2 ) =  ( 5 ,  3 ) 4

4
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8. All information is now available to derive two tangent lines  yt  touching circle at  (x 1 , y 1 ) and  (x 2 , y 2 )  points, while being  45◦ relative to  y = 7 x  line, as (x 1 , y 1 ) =  (−3 , −3 ) :

∴ −3 = −4  (−3 ) +  n ∴  n = 7 ∴  yt = −4  x + 7

3

3

 (x 2 , y 2 ) =  ( 5 ,  3 ) :

∴ 3 = −4  ( 5 ) +  n ∴  n = −29 ∴  yt = −4  x − 29

3

3

3

3

In this special case example, the idea is to take advantage of symmetrical properties of

isosceles right triangles that are constricted with two 45◦ angles. However, in general case when some other arbitrary angle is set, one must use rotational transformations based on

trigonometric functions. 

6.98. Given lunes of Alhazen figure can be decomposed into the following sub-figures. 

1. Right triangle  (abc)  area is

 P 1 =  ab

2

2. Circular sector area above cathetus  a  is a half-circle, 



 a  2  π

 P  def

2 =  r  2 π =

=  a 2  π

2

2

2

8

3. Circular sector area above cathetus  b  is a half-circle, 



 b  2  π

 P  def

3 =  r  2 π =

=  b 2  π

2

2

2

8

4. Circular sector area above hypotenouse  c  is a half-circle, 



 c  2  π

 P  def

4 =  r  2 π =

=  c 2  π

2

2

2

8

Total area  Pt  of covered surface in Fig. 6.4a is the sum of two circular sectors above catheti and  (abc), i.e., 

 Pt =  P 1 +  P 2 +  P 3 =  ab +  a 2  π +  b 2  π =  ab +  π (a 2 +  b 2 ) 2

8

8

2

8

The sum of two crescent-shaped shaded areas  P  is derived by “cutting out” area of circular sector above hypotenuse from  Pt , i.e., 

 P =  Pt −  P 4 =  ab +  π (a 2 +  b 2 ) −  c 2  π =  ab +  π (a 2 +  b 2 −  c 2 ) 2

8

8

2

8
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By Pythagoras’ theorem, right triangle  (a, b, c)  obeys relation

 a 2 +  b 2 =  c 2 ∴  a 2 +  b 2 −  c 2 = 0

which is to say that

 P =  Pt −  P 4 =  ab +  π ( 

: 0

 a 2 +  b 2 −  c 2  ) =  ab =  P 1

2

8

2

It is interesting to find out that area of lunes of Alhazen equal to the right triangle’s area, and that it is not function of triangle size nor of  π . 

6.99. Let us simply segment notations as follows:  A X =  a,  BX =  b,  BC =  c,  A C =  d, and  BX =  h. Then, given figure can be decomposed into the following sub-figures. 

1. Circle whose diameter is  h, its area is



 h  2

 P  def

0 =  r  2  π =

 π

2

2. Circular sector area above  A B =  (a +  b)  equal to a half-circle area, a +  b  2  π

 P  def

1 =  r  2 π =

=  (a +  b) 2  π

2

2

2

8

3. Circular sector area above  a  equal to a half-circle area, 



 a  2  π

 P  def

2 =  r  2 π =

=  a 2  π

2

2

2

8

4. Circular sector area above  b  equal to a half-circle area, 



 b  2  π

 P  def

3 =  r  2 π =

=  b 2  π

2

2

2

8

Arbelos area  Pa  in Fig. 6.35 is constructed by cutting out two smaller half-circles from the large half-circle, i.e., 

Fig. 6.35 P.6.99, Arbelos area is

constructed by cutting out two smaller

half-circles from the large half-circle
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 Pa =  P 1 −  P 2 −  P 3 =  (a +  b) 2  π −  a 2  π −  b 2  π =  π

 a 2+A2 ab +  b 2 −  a 2 −  b 2 =  ab π

8

8

8

A8 4

4





At the same time,  (a +  b), c, d )  is a right triangle (recall, one vertex  C  is on the circle line) where  h  is one of its height line segments. Then, by Pythagoras’ theorem it is true that (a +  b) 2 =  c 2 +  d 2

 c 2 =  b 2 +  h 2

 d 2 =  a 2 +  h 2

∴

 a 2 + 2 ab +  b 2 =  b 2 +  h 2 +  a 2 +  h 2





 h 2 =  ab

a.k.a. right triangle altitude theorem

which is to say that



 h  2

 Pa =  ab π =  h 2  π =

 π =  P 0 ∴

 Pa = 1

4

4

2

 P 0

6.100. Let us simply segment notations as follows:  A D =  a,  A B =  a/ 3, and  A C = 2 a/ 3. 

1. Non-shaded area  P 1 in the upper (or, symmetrically lower)  A D  half-circle is computed as area  P 2 of  A C  half-circle after cutting out  P 3 area of  A B  half-circle, i.e., 2 a  2

 a  2

 a 2 π

 P 1 =  P 2 −  P 3 = 1

 π − 1

 π = 1

2

6

2

6

2 12

therefore, due to symmetry, the total non-shaded area  P  in the outer circle is doubled, i.e., P =  a 2 π

12

In summary, non-shaded area  P  covers 1 / 3 of the outer circle area, because the outer circle full area is  P 0 =  (a/ 2 ) 2 π, then

 a 2

 P



 π

0 = 4 1 = 3 ∴  P 0 = 3  P 1

 P 1

 a 2

 π





12 3

2. Shaded area  P 3 in the upper (or lower) half-circuit is computed as the outer circle’s half-area minus  P 1, i.e., 

6.4 Intersects
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 a  2

1

 a  2

 P 3 = 1

 π −  a 2 π = 1  a 2 π = 1

 π =  P 0 ∴

 P 0 = 3  P 1

2

2

12

24

3 2

2

3

Due to symmetry, the same ratio is valid for the lower half-circle, thus for the full circle as well. In conclusion, given circle area is divided into three equal areas, two shaded and one non-shaded. 

6.101. As the given triangle is equilateral, let us simply segment notations as  A B =  A C =

 a/ 2. Then, required area may be deduced with the following steps:

1. Preliminary reminder work: in the general of an isosceles triangle, height  h  line is vertical to the base side  a  and their intersect point is at  a/ 2. By doing so, there are two identical right triangles formed, and then by Pythagoras’ theorem it follows that



√

 a  2

3

 a 2 =  h 2 +

∴  h =

 a

2

2

∴

 a h

 P = 2

=  a h

2

In this example, there are quite a few isosceles triangle to follow; nevertheless, their heights are derived in the same manner. In addition, in the special case of an equilateral triangle all three angles are   π/ 3, that is to say, 1 / 6 of the full 2 π  circle. 

2. In this example, there is an equilateral triangle formed whose side is  a/ 2; see Fig. 6.36a. 

By consequence, area  P 1 of circular sector whose  r =  a/ 2 is 1 / 6 of the corresponding full circle area, i.e., 



 a  2

 P 1 = 1

 π =  a 2 π

6

2

24

Fig. 6.36 P.6.101—equilateral triangle with external circle and incircle
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3. Area  P 2 of corresponding the equilateral triangle whose side is  a/ 2 is then

√

√ ⎫

3

3 ⎪

 h

⎪

√

√

1

=  a

=  a

⎬

2 2

4

3  a

3



∴  P 2 =  a

=  a 2

1

 a

⎪

⎪

4

4

16

 P

⎭

2

=  h 1 2 2

4. The area  P 3 of the circular segment whose radius is  r =  a/ 2 and chord  a/ 2 is therefore the leftover of sector area after cutting out the triangle, i.e., 

√3

 P 3 =  P 1 −  P 2 =  a 2 π −  a 2

24

16

5. Recall that the three height lines of an equilateral triangle intersect so that each line is split in  h/ 3 and 2 h/ 3 segments; see

Fig. 6.36b. Accordingly, the radius of the

√

incircle is  r =  h/ 3 =  a  3 / 6, and area  P 4 of an isosceles triangle whose sides are

√

√

 (a  3 / 6 , a/ 2 , a  3 / 6 )  is

⎫



√ 2

 a  2

3

⎪

⎪

 h 2 +

=

 a

∴

 h

√ ⎪

⎬

2

2 =

 a

4

6

4 3

 a

⎪ ∴  P 4 =  a

√

=  a 2√

4

 a ⎪

⎪

4 3

16 3

 P

⎭

4 =  h 2 4

6. In this case, because the three height lines  h  split the circle in three equal sectors, the area

√

of the circular sector whose  r =  a  3 / 6 is 1 / 3 of the total circle area, i.e., 

√ 2

 a  3

 P 5 = 1

 π =  a 2  π

3

6

36

√

7. The area  P 6 of the circular segment whose radius is  r =  a  3 / 6 is therefore the leftover of sector area  P 5 after cutting out the triangle, i.e., 

 P 6 =  P 5 −  P 4 =  a 2  π −  a 2

√

36

16 3

8. Area  P  in between two arcs is therefore

√

√



3

3

√

 P =  P 6 +  P 3 =  a 2  π −  a 2

√ +  a 2 π −  a 2

= 5  a 2 π −  a 2

+ 3

36

16 3

24

16

72

16

3



√ 

=  a 2 5 π − 6 3

72

[image: Image 7]
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All problems in this chapter are to be solved without the use of calculator. Instead, the principal objective is to master the use of “unit circle” and “special” angles, see Fig. 7.1. 

Among many trigonometric identities, some are more often used than the others, for example

 Pythagorean identities

 a 2 +  b =  c 2 (Pythagoras’s theorem )

sin2  α + cos2  β = 1 (Pythagoras’s theorem in disguise, for  c = 1)



| sin  α| = 1 − cos2  α



| cos  α| = 1 − sin2  α

tan  α = sin  α

cos  α

 Sum to product identities, 

sin (α +  β) = sin  α  cos  β + cos  α  sin  β

sin (α −  β) = sin  α  cos  β − cos  α  sin  β

cos (α +  β) = cos  α  cos  β − sin  α  sin  β

cos (α −  β) = cos  α  cos  β + sin  α  sin  β





if,  α =  β, (note: double angle), 

sin 2 α = 2 sin  α  cos  α

cos 2 α = cos2  α − sin2  α

 Product to sum identities, 





sin  α  sin  β = 1

cos (α −  β) − cos (α +  β)

2
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Fig. 7.1 Trigonometry, special

angles in the unit circle





cos  α  cos  β = 1

cos (α +  β) + cos (α −  β)

2 



sin  α  cos  β = 1

sin (α +  β) + sin (α −  β)

2

 Square to double angle identities, 

sin2  α = 1 − cos ( 2 α)

2

cos2  α = 1 + cos ( 2 α)

2

Problems

Problems in this chapter are grouped in five sections. Firstly, definitions and basic calculations with angles expressed either in degrees (◦) or radians (rad) are practiced, followed by basic identities, equations, and inequalities. These examples are considered classic on this topic, so they should be mastered by all engineering and science students. 

7.1

Trigonometric Definitions

7.1 Briefly explain the concept of “similar triangles” (thus, “similar figures” in general) and comment on their most important properties. 

7.2 Using right angle triangles and Pythagoras’s theorem illustrate the definitions of sin  x, cos  x, and tan  x

7.3 Sketch the unit circle and illustrate how angles in  I I ,  I I I , and  I V  quadrant are related to angles found in the first quadrant. 

7.2 Basic Calculations
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7.4 With the help of Pythagoras’ theorem and unit circle, calculate sin  x, cos  x, and tan  x  for each of the following special angles in the first quadrant: 0◦ ,  30◦ ,  45◦ ,  60◦, and 90◦. 

7.2

Basic Calculations

Convert degrees into radians and vice versa in P.7.5 to P.7.14

7.5 30◦

7.6 45◦

7.7 60◦

7.8 90◦

7.9 300◦

7.10

7.11

3 π

5 π

7.13

7.14 2◦

330◦

−18◦

7.12

4

12

With the help of unit circle, see Fig. 7.1, calculate exact values of terms in P.7.15 to P.7.24. 

 π





7 π

7.15 tan

7.16 sin

−3 π

3

7.17 cos

6

4

7.18 cos 150◦

7.19 sin 120◦

 π

 π

7.20 sin

sin2

6

3

 π

 π

 π

 π

 π

 π

 π

 π

7.21 sin

cos

+ cos tan

7.22 cos

cos

+ sin cos

4

4

6

3

4

6

4

6





 π

 π

 π

 π

7.23 sin2

− 1 /  tan2

7.24 sin

sin2

3

3

6

3

In each of examples in P.7.25 to P.7.28, is it possible to have angle  α  so that both conditions are satisfied at the same time? In yes, in which quadrant? 

7.25 sin  α = − 1 and cos  α = 3

7.26 sin  α =

4

√

and cos  α =

1

√

5

5

17

17

√

√

√

15

5

3

7.27 sin  α = −

and cos  α =

7.28 sin  α = −13 and cos  α = −3

5

5

14

14

Calculate trigonometric terms in P.7.29 to P.7.40

7.29

7.30

7.31

7.32

tan (−45◦ )

tan (−60◦ )

cos  (−7 π/ 6 )

sin  (−315◦ )
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7.33

7.34

7.35

7.36

tan  (−12 π)

sin ( 120◦ )

cos ( 150◦ )

tan ( 225◦ )

7.37

7.38

7.39

7.40

tan ( 300◦ )

tan ( 480◦ )

tan ( 840◦ )

cos ( 1320◦ )

7.3

Basic Identities

Problems in this section are resolved with the help of identities. The actual list of trigonometric identities is much longer, however, the sum to product transformations, and vice versa are among most often used. In addition, identities involving double angle arguments are heavily used in calculus. 

Given  α  in P.7.41 to P.7.46, calculate sin  α, cos  α  and tan  α

7.41  α = 15◦

7.42  α = 75◦

7.43  α = 105◦

7.44  α =  π/ 12

7.45  α = 5 π/ 12

7.46  α = 7 π/ 12

7.47 Calculate the exact values of cos  α  and tan  α  given that

3 π

sin  α = − 1 et  π < α < 

3

2

Calculate expressions given in P.7.48 to P.7.57, 

7.48 sin 20◦ cos 10◦ + cos 20◦ sin 10◦

7.49 cos 43◦ cos 13◦ + sin 43◦ sin 13◦









5 π

7 π

1

7.50 −4 sin

cos

7.51

+ 2 sin 1 +  π  cos 1 +  π

12

12

2

6

3















5 π

 π

5 π

3 π

7.52 4 sin

cos

7.53 4 cos

cos

8

8

8

8









7 π

13 π

7.55 tan 20◦ tan 40◦ tan 80◦

7.54 −4 sin

sin

12

12

7.56 8 sin 20◦ sin 40◦ sin 80◦

7.57 8 cos 10◦ cos 50◦ cos 70◦

7.58 Calculate sin (x +  y)  and sin (x −  y)  given that cos  x = 4 / 5 and sin  y = −3 / 5, where  x is in IV quadrant and  y  is in III quadrant. 
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7.59 Simplify the following expression

√





 π

2 cos  α − 2 cos

+  α

4





 π

√

2 sin

+  α − 2 sin  α

4

Convert given trigonometric forms of products into forms of sums, and given trigonometric sums into forms of products, P.7.60 to P.7.64

7.60 sin  α  sin  β

7.61 cos  α  cos  β

7.62 sin  α  cos  β

7.63 sin  x + sin  y

7.64 cos  x + cos  y

7.65 Given functions with double–angle arguments cos 2 α, sin 2 α  and tan 2 α, derive identities that include only functions of angle argument  α. 

7.4

Equations

Solve equations in P.7.66 to P.7.73. 

7.66 sin  x = 0

7.67 cos  x = 0

7.68 sin  x = sin  α

7.69 sin  x = cos  x

7.70 sin  x = sin 2 x

7.71

2 sin2  x + sin  x = 0

7.72 cos  (x +  π/ 6 ) = sin  (x −  π/ 3 )

√

√

√

7.73 Solve for  α  in I quadrant if: tan  α =

6 +

3 −

2 − 2. 

Solve equations in P.7.74 to P.7.75 within given intervals π

 π

7.74 cos

−  x = cos

; 0  < x ≤ 2 π

7.75 sin  ( 3 x) = sin  x−  π ; − π < x ≤  π

3

6

2
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7.5

Inequalities

Solve the following inequalities for  x. 

7.76 2 cos  x + 1  <  0

7.78 cos  x − sin  x <  1

7.80 | sin  x| ≥ 12

√3

7.77 2 sin  x − 1  >  0

7.79 sin 3 x −

≥ 0

7.81

2

| sin  x| ≤ sin  x + 2 cos  x

7.1 Trigonometric Definitions
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Answers

7.1

Trigonometric Definitions

Building upon middle and high school knowledge of Pythagoras’s theorem, the following examples try to emphasize its connection with fundamental trigonometric definitions and identities. Specifically, the mastery of similar right angled triangles is essential for resolving much more complicated problems. 

7.1 Two figures are said to be similar if one figure can be derived from the other by operations of uniform scaling, translation, rotation and/or reflection. For example, starting with triangle OMN  in Fig. 7.2, triangle  OP Q  is derived after multiplying each side of  OMN  by factor of two, similarly any other triangle can be derived by using factor  n, for example triangle  OKL. 

By inspection of Fig. 7.2 it is evident that, except for the scaling factors, the original triangular form  did not change, thus, all derived figures are  similar. By Pythagoras’ theorem it is easily verified that all three triangles are indeed right–angled whose corresponding sides are proportional to each other. That proportionality of matching sides among similar right–angled triangles is the key to define trigonometric functions of sin  x,  cos  x,  tan  x, . . .  etc. 

Similarity includes angles as well. Note that  α  is shared by all similar triangles. Consequently, knowing two angles in a triangle the third angle  β  is calculated so that their sum adds to 90◦ +  α +  β = 180◦. In conclusion, direct consequence of similarity is that not only all side lengths are proportional but also their corresponding angles are  equal. The similarity of right–angled triangles is among most important and exploited properties in mathematics. 

Fig. 7.2 P.7.1, triangles are similar

if their corresponding angles are of

the same size. That being the case, 

then lengths of all three

corresponding sides are

proportional with the same factor. 

For example, if the length of side  a

is increased  n  times, then the other

two sides are also increased by the

same factor. Similarly, ratios among

the three sides of the same triangle

stay the same for all similar

triangles. Consequently, it is very

convenient to define these

proportionality factors among the

three sides of the same triangle as

one measure of all similar triangles. 

For example, ratios  a/c,  b/c, or

 b/a  are equal for all other  n  sized

similar triangles. Thus, the absolute

side of a triangle becomes

irrelevant. 
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7.2 There are three basic proportions (ratios) among right triangle sides, see Fig. 7.2. 

1. The cathetus  a  forming  α (i.e. adjacent) and hypotenuse  c (the side opposite the right angle) are related as segment lengths

 ON =  OQ =  OL =  a = 2 ×  a = ··· =  n ×  a = const. 

 OM

 OP

 OK

 c

2 ×  c

 n ×  c

2. The cathetus opposite  α  and hypotenuse are related as

 MN =  PQ =  KL =  b = 2 ×  b = ··· =  n ×  b = const. 

 OM

 OP

 OK

 c

2 ×  c

 n ×  c

3. The cathetus opposite and adjacent to  α  are related as

 MN =  PQ =  KL =  b = 2 ×  b = ··· =  n ×  b = const. 

 ON

 OQ

 OL

 a

2 ×  a

 n ×  a

These constant ratios of triangle sides relative to  α  are so important that they are named as adjacent

=  a =

opposite

opposite

cos  α, 

=  b = sin  α, 

=  b = tan  α

hypotenuse

 c

hypotenuse

 c

adjacent

 a

Similarly, the equivalent ratios exist relative to  β, as

adjacent

=  b =

opposite

opposite

cos  β, 

=  a = sin  β, 

=  a = tan  β

hypotenuse

 c

hypotenuse

 c

adjacent

 b

These ratios related to  α  et  β  do not change when triangles are rotated, scaled, translated and/or reflected. It is only important to keep track of which is “adjacent” and which is “opposite” side relative to the angle under consideration. In addition, it is useful to notice that by knowing sin  x and cos  x, the third ratio, i.e. tan  x  is also known because

opposite

sin  x = (((((

hypotenuse = opposite = tan x

cos  x

adjacent

adjacent

(((((

hypotenuse

Very special case, when hypotenuse  c = 1, is extensively used as the normalized size for all similar triangles. Note that, given  c = 1,  length  of adjacent cathetus becomes  numerically equal  to the ratio named cos  α, i.e. 

 a = cos α ∴  a =  c  cos α ∴  ( if  c = 1 ) a = cos α

 c

Equally, given  c = 1,  length  of opposite cathetus becomes  numerically equal  to the ratio named sin  α, i.e. 

 b = sin α ∴  b =  c  sin α ∴  ( if  c = 1 ) b = sin α

 c
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Finally, it is useful to visualize length of adjacent cathetus as  horizontal projection  of hypotenuse, and length of opposite cathetus as  vertical projection  of hypotenuse relative to  α. 

7.3 Trigonometric functions of sin and cos are commonly summarized in a graph known as

“unit circle”, see Fig. 7.1. Note that any point at the circle is found as  x 2 +  y 2 =  c 2, i.e. by Pythagoras’ theorem. The circle radius, i.e. hypotenuse of the associated right–angled triangle, is normalized to one. Consequently, the length of adjacent cathetus becomes numerically equal cos  α  and the length of opposite cathetus becomes numerically equal to sin  α, because cos  α = adjacent = adjacent ∴ adjacent = cos  α

hypotenuse

1

sin  α = opposite = opposite ∴ opposite = sin  α

hypotenuse

1

Special angles 0◦ ,  30◦ ,  45◦ ,  60◦ and 90◦ are found in the  I  quadrant, see Fig. 7.1. Relative to the first quadrant, special angles in the  I I  quadrant are rotated by 90◦, i.e. 

30◦ + 90◦ = 120◦

45◦ + 90◦ = 135◦

60◦ + 90◦ = 150◦

90◦ + 90◦ = 180◦

Angles in the  I I I  quadrant are rotated again by another 90◦, i.e. 180◦thus

30◦ + 180◦ = 210◦

45◦ + 180◦ = 225◦

60◦ + 180◦ = 240◦

90◦ + 180◦ = 270◦

Angles in the  I V  quadrant are rotated again in total of 270◦, thus

30◦ + 270◦ = 300◦

45◦ + 270◦ = 315◦

60◦ + 270◦ = 330◦

90◦ + 270◦ = 360◦ = 0◦

The symmetry among these “key” angles and their right triangles are visible in the graph, see Fig. 7.1. Thus, the signed length (i.e. positive or negative) of its horizontal and vertical catheti equate to their corresponding numerical values of sin  α (vertical) and cos  α (horizontal). 
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For example, an arbitrary angle  β = 90◦ +  α  in the second quadrant, see Fig. 7.3a, and its corresponding  α  angle in the first quadrant create similar right–angled triangles that are rotated by 90◦, see Fig. 7.3b. Thus, there are quite a few identities between  I  and  I I  quadrant angles, see Fig. 7.3c and Fig. 7.3d (keep in mind, hypotenuse length  c = 1, and lengths of adjunct and opposite catheti are signed), for example





sin  α +  π = sin  β = cos  α

2





− cos  α +  π = − cos  β = sin  α

2

where, in the  I I  quadrant horizontal axis (and therefore lengths) are measured negative, thus the negative sign of cos  β. In conclusion, by knowing sin  α  and cos  α  in the first quadrant, it is easy to conclude that cos  α = sin (α + 90◦ )  and sin  α = − cos (α + 90◦ ), see Fig. 7.3c. For example, note positive and negative signs of the corresponding catheti lengths in

⎫

cos 120◦

= − sin 30◦ = −1⎪

⎪

⎬

√

2

3 /

√

√

∴

2

tan 120◦ =

= − 3

3 ⎪

⎪

−1 / 2

sin 120◦

= cos 30◦ =

⎭

2

Similarly, for example, angles in the fourth quadrant are negative values of the equivalent

angles in the second quadrant. That is because, (compare catheti lengths in Fig. 7.3c to Fig. 7.4b), 

cos  α = cos (− α)  and sin  α = − sin (− α)

and, after rotation of 180◦ between second and fourth quadrants it follows that

cos (± α) = − cos (π ±  α)

sin (π −  α) = − sin (− α) = sin  α

because cos (π ±  α)  by itself is negative, then the additional ‘−’ in front makes it positive, which is exactly as cos (± α). In conclusion, knowing “key” angles in the first quadrant, the unit circle is used to visually deduce sin and cos values of their corresponding angles in the other three quadrants. Note that the alternative method of blindly memorizing all possible

relationships within the four quadrants is extremely challenging (and arguably completely

useless) exercise for most humans. 

7.4 Angles between 0◦ and 90◦ are said to be “in the first quadrant” of the unit circle, see Fig. 7.1. They are used to calculate trigonometric functions of angles in other three quadrants by rotating their respective right–angled triangles into the first quadrant. Specifically, right–

angled triangles containing 30◦ ,  45◦ ,  60◦, and 90◦ are special and fundamental to trigonometry calculations and transformations, see Fig. 7.5. 
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Fig. 7.3 P.7.3 – sin/cos relationships in the first and second quadrants Fig. 7.4 P.7.3 – relationships between angles in the second and fourth quadrants

286

7

Trigonometry

Fig. 7.5 Trigonometry, special

angles in the unit circle

 Case: x = 0◦

In this special case, right–angled triangle whose hypothenuse equals one, degenerates into

a horizontal line segment. Consequently, the hypotenuse is found “on top” of adjacent

(horizontal) cathetus, thus the two horizontal line segments are equal. At the same time, the opposite (vertical) cathetus of the triangle is reduced to zero. Then, by definitions, it follows that:

cos 0◦ = 

adjacent

= 1 ,  sin 0◦ =

0

= 0 ,  tan 0◦ = sin 0◦ = 0 = 0

(((((

hypotenuse

hypotenuse

cos 0◦

1

 Case: x = 30◦ =  π/ 6

Special right triangle in Fig. 7.5 (right) is constructed so that its hypotenuse is two times longer than one of the two catheti. Due to symmetry, two angles must be in the same proportion, as, 90◦ +  α +  β = 180◦;  α = 2 β ∴ 90◦ + 3 β = 180◦

 β = 30◦ ∴  α = 60◦

In addition, right triangle is normalized to  a = 1 and  c = 2, then by Pythagoras’ theorem

√

22 = 12 +  b 2 ∴  b =

3

Further, by definitions:

√3

cos 30◦ = adjacent =

 , 

sin 30◦ = opposite = 1  , 

tan 30◦ = opposite = 1

√

hypotenuse

2

hypotenuse

2

adjacent

3

 Case: x = 60◦ =  π/ 3

The same special right triangle in Fig. 7.5 (right) is used, as

√

√

3

3

cos 60◦ = adjacent = 1  , 

sin 60◦ = opposite =

 , 

tan 60◦ = opposite =

hypotenuse

2

hypotenuse

2

adjacent

1
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 Case: x = 45◦ =  π/ 4

Special right triangle in Fig. 7.5 (left) is constructed so that its two catheti are equal, and therefore two angles must be in the same proportion. By Pythagora’s theorem, it follows that

√

 c 2 = 12 + 12 =

2

Furthermore, 

cos 45◦ = adjacent = 1

√  ,  sin 45◦ = opposite = 1

√  ,  tan 45◦ = opposite = 1 =1

hypotenuse

2

hypotenuse

2

adjacent

1

 Case: x = 90◦

Similar to the  Case: x = 0◦, this special right triangle is constructed when its hypothenuse is found “on top” of the opposite cathetus, thus the two vertical line segments are equal. During that process, length of the adjacent cathetus of the triangle is reduced to zero. Thus, 

cos 90◦ =

0

= 0 ,  sin 90◦ = 

opposite

= 1 ,  tan 90◦ = opposite = 1 = ∞

hypotenuse

(((((

hypotenuse

adjacent

0

7.2

Basic Calculations

Knowing the identity 180◦ =  π  rad, then by simple proportion it must be that

HH

30◦ 1

HH

45◦ 1

7.5 X

7.6

X

=  α ∴  α =  π

=  α ∴  α =  π

180◦ 6

 π

6

XX

180◦ 4

 π

4



60◦ 1

HH

45◦ 1

7.7

7.8



=  α ∴  α =  π

=  α ∴  α =  π

180◦ 3

 π

3

XX

180◦ 4

 π

4

XX

300◦ 5



330◦ 11

7.9 XX

7.10

X

=  α ∴  α = 5 π

=  α ∴  α = 11 π

180◦ 3

 π

3



180◦ 6

 π

6

−

18◦ 1

 α

7.11

7.12

= 3

 π

∴



=  α ∴  α = −  π

X

 α = 135◦

180◦ 10

 π

10

X

180◦ 45◦

A4 1

 π

 α



2◦ 1

7.13 XX

= 5

 π

∴  α = 75◦

7.14

=  α ∴  α =  π

180◦ 15

Z

Z

12 1 

 π



180◦ 90

 π

90
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Fig. 7.6 P.7.16, angles in the

second and fourth quadrant that are

aligned by  π  have their sine values

numerically equal but with the

opposite signs. Visually, their

respective right triangles are

similar, and with the vertical catheti

(i.e. sine) of the opposite sign

7.15 By inspection of the unit circle in Fig. 7.1   π/ 3 is in the first quadrant, thus

√

 π

3 / 2

√

tan

= sin (π/ 3 ) =

= 3

3

cos (π/ 3 )

1 / 2

7.16 By inspection of unit circle in Fig. 7.1  7 π/ 6 in the third quadrant, so that 7 π

6 π +  π

sin

= sin

= sin  π +  π ≡ 210◦

6

6

6

Being in the third quadrant,  (π +  π/ 6 )  has both vertical (sin) and horizontal (cos) catheti negative, see Fig. 7.6, thus







7 π

 π

sin

= sin  π +  π = − sin

= −1

6

6

6

2









√

 π

 π

2

7.17 cos − 3 π

= cos

±  π = − cos

= −

4

4

4

2

√3

7.18 cos 150◦ = cos ( 180◦ − 30◦ ) = − cos 30◦ = − 2

√3

7.19 sin 120◦ = cos ( 90◦ + 30◦ ) = cos 30◦ = 2

√ 2

 π

 π

3

3

7.20 sin

sin2

= 1

= 1 = 3

6

3

2

2

2 4

8

√

 π

 π

 π

 π

1

3 √

7.21 sin

cos

+ cos tan

= 1

√ √ +

3 = 1 + 3 = 2

4

4

6

3

2

2

2

2

2
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√

√



 π

 π

 π

 π

3

3

3

7.22 cos

cos

+ sin cos

= 1

√

+ 1

√

=

4

6

4

6

2 2

2 2

2

√ 2

 π

3

7.23 sin2

−

1

=

−

1



= 3 − 1 = 9 − 4 = 5

3

 π

√ 2

tan2

2

4

3

12

12

3

3





√ 2

 π

 π

3

3

7.24 sin

sin2

= 1

= 1

= 3

6

3

2

2

2 4

8

7.25 Assuming  a, b  to be two catheti and  c = 1, then by Pythagoras’ theorem, a = cos  α, b = sin  α ∴  a 2 +  b 2 = 12 ∴ cos2  α + sin2  α = 12

which may be seen as the trigonometric form of Pythagoras’ theorem. A simple verification

gives







2

3 2

sin2  α + cos2  α = − 1

+

= 1 + 9 = 



10 2 = 2 = 1

5

5

25

25





25 5

5

that is to say, it is not possible to have angle  α  whose sin  α = −1 / 5 and cos  α = 3 / 5. 









4

2

1

2

7.26 sin2  α + cos2  α = √

+ √

= 16 + 1 = 17 = 1 

17

17

17

17

17

Both vertical (sin  α) and horizontal (cos  α) projections are positive, therefore  α  is in the  I quadrant. 

√ 





2

√

2

15

5

7.27 sin2  α + cos2  α = −

+

= 15 + 5 = 



20 4 = 4 = 1

5

5

25

25





25 5

5

√

√

that is to say, it is not possible to have angle  α  whose sin  α = − 15 / 5 and cos  α = 5 / 5. 







√ 

2

2

3

7.28 sin2  α + cos2  α = − 13

+ −3

= 169 + 27 = 196 = 1 

14

14

196

196

196

Both vertical (sin  α) and horizontal (cos  α) projections are negative, therefore  α  is in the  I I I quadrant. 
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Fig. 7.7 P.7.31, starting with zero

angle, any other given angle may be

measured either in the positive or in

the negative direction. The sum of

these two measurements adds to

2 π . It is only matter of the

convenience which one of the two

numbers is being used at any given

moment

7.29 By inspection of the unit circle in Fig. 7.1, sin and cos of a negative angle are

√

− sin ( 45◦ )

Z2 / 2

tan (−45◦ ) = sin (−45◦ ) =

= − sin ( 45◦ ) = − Z

√

= −1

cos (−45◦ )

cos ( 45◦ )

cos ( 45◦ )

ZZ

2 / 2

7.30 By inspection of the unit circle in Fig. 7.1, sin and cos of a negative angle are

√

− sin ( 60◦ )

3 / C2

√

tan (−60◦ ) = sin (−60◦ ) =

= − sin ( 60◦ ) = −

= − 3

cos (−60◦ )

cos ( 60◦ )

cos ( 60◦ )

1 / C2

7.31 Given −7 π/ 6 angle is equivalent to 5 π/ 6 in the positive direction, or 150◦, see Fig. 7.7. 

Either way, by inspection of unity circle it follows that









√

5 π

3

cos − 7 π

= cos

= cos ( 150◦ ) = −

6

6

2

7.32 Given −315◦ angle is equivalent to 45◦ from the positive side, thus

√2

sin  (−315◦ ) = sin ( 45◦ ) = 2

7.33 Given −12 π  angle is equivalent to  (−6 × 2 π) = 0, thus

tan  (−12 π) = tan  ( 0 ) = sin 0 = 0 = 0

cos 0

1

7.34 Given 120◦ angle may be written as the sum of 90◦ and 30◦, as

√





3

sin ( 120◦ ) = sin ( 90◦ + 30◦ ) = cos (α) = sin ( 90◦ +  α) = cos ( 30◦ ) = 2

7.2 Basic Calculations

291

7.35 Angle of 150◦ angle may be written as difference of 180◦ and 30◦, as

√





3

cos ( 150◦ ) = cos ( 180◦ − 30◦ ) = cos (π ±  α) = − cos (α) = − cos ( 30◦ ) = − 2

7.36 Angle of 225◦ may be written as the sum of 180◦ and 45◦, as

√

− sin ( 45◦ )

Z2 / 2

tan ( 225◦ ) = tan ( 180◦ + 45◦ ) = sin ( 180◦ + 45◦ ) =

= sin ( 45◦ ) = Z

√

= 1

cos ( 180◦ + 45◦ )

− cos ( 45◦ )

cos ( 45◦ )

ZZ

2 / 2

7.37 Angle of 300◦ may be written as difference of 360◦ and 60◦. Adding either positive or negative full circle (i.e. 2 π ) changes nothing, thus





tan ( 300◦ ) = tan (

360◦ − 60◦ ) = ± n × 2 π +  α =  α = tan (−60◦ ) = sin (−60◦ ) cos (−60◦ )





= cos (− α) = cos (α),  sin (− α) = − sin (α)

√

−

3

√

=

sin ( 60◦ ) = −  / C2 = − 3

cos ( 60◦ )

1 / C2

7.38 Angle of 480◦ may be written as combination of 360◦, 120◦, and 60◦, as

tan ( 480◦ ) = tan (

360◦ + 120◦ ) = tan ( 180◦ − 60◦ ) = tan (−60◦ ) = sin (−60◦ ) cos (−60◦ )

√

−

2

√

=

sin ( 60◦ ) = −  / C2 = − 3

cos ( 60◦ )

1 / C2

7.39 Angle of 840◦ may be written, for example, as the combination of 360◦, 180◦, 120◦, and 60◦, 

tan ( 840◦ ) = tan (

2 × 360◦ + 120◦ ) = tan ( 120◦ ) = tan ( 180◦ − 60◦ ) = tan (−60◦ )

√

= − tan ( 60◦ ) = − 3

7.40 Angle of 1320◦ may be written, for example, as the combination of 360◦, 240◦, 180◦, and 60◦, 

cos ( 1320◦ ) = cos (

3 × 360◦ + 240◦ ) = cos ( 180◦ + 60◦ ) = − cos ( 60◦ ) = − 12
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7.3

Basic Identities

7.41 Trigonometric functions involving sums or differences may be resolved with the help of trigonometric identities. For example, angle of 15◦ can be written as  ( 45◦ − 30◦ ), so that sin 15◦ = sin ( 45◦ − 30◦ )





sin (α −  β) = sin  α  cos  β − cos  α  sin  β√ √ √

=

2

3

2 1

sin 45◦ cos 30◦ − cos 45◦ sin 30◦ =

−

2

2

2 2

√ √

= 2 (  3 − 1 )

4





cos 15◦ = cos ( 45◦ − 30◦ )

cos (α −  β) = cos  α  cos  β + sin  α  sin  β

= cos 45◦ cos 30◦ + sin 45◦ sin 30◦

√ √

√

√ √

= 2 3 + 2 1 = 2 (  3 + 1 )

2

2

2 2

4

√

S 2 √

√

S  (  3 − 1 )

3 − 1

tan 15◦ = sin 15◦ =

S

4

√

√

cos 15◦

S 2 √

3 − 1

S  (  3 + 1 )

S

4

√

√

√

√

√

=  (  3 − 1 )(  3 − 1 )

√

√

= 3 − 2 3 + 1 = A2 ( 2 − 3 ) = 2 − 3

 (  3 + 1 )(  3 − 1 )

3 − 1

A2

7.42 Angle of 75◦ may be decomposed as  ( 45◦ + 30◦ ), so that

sin 75◦ = sin ( 45◦ + 30◦ ) = sin 45◦ cos 30◦ + cos 45◦ sin 30◦

√ √

√

√ √

= 2 3 + 2 1 = 2 (  3 + 1 )

2

2

2 2

4

cos 75◦ = cos ( 45◦ + 30◦ ) = cos 45◦ cos 30◦ − sin 45◦ sin 30◦

√ √

√

√ √

= 2 3 − 2 1 = 2 (  3 − 1 )

2

2

2 2

4
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√

S 2 √

√

S  (  3 + 1 )

3 + 1

tan 75◦ = sin 75◦ =

S

4

√

√

cos 75◦

S 2 √

3 + 1

S  (  3 − 1 )

S

4

√

√

√

√

√

=  (  3 + 1 )(  3 + 1 )

√

√

= 3 + 2 3 + 1 = A2 ( 2 + 3 ) = 2 + 3

 (  3 + 1 )(  3 − 1 )

3 − 1

A2

7.43 Angle of 105◦ may be seen as  ( 60◦ + 45◦ ), so that

sin 105◦ = sin ( 60◦ + 45◦ ) = sin 60◦ cos 45◦ + cos 60◦ sin 45◦

√ √

√

√ √

= 3 2 + 1 2 = 2 (  3 + 1 )

2

2

2 2

4

cos 105◦ = cos ( 60◦ + 45◦ ) = cos 60◦ cos 45◦ − sin 60◦ sin 45◦

√

√ √

√

√

= 1 2 − 3 2 = 2 ( 1 − 3 )

2 2

2

2

4

√

S 2 √

√

S  (  3 + 1 )  1 + 3

tan 105◦ = sin 105◦ =

S

4

√

√

cos 105◦

S 2

√

1 +

3

S  ( 1 − 3 )

S

4

√

√

√

√

√

=  (  3 + 1 )(  3 + 1 )

√

√ = 3 + 2 3 + 1 = A2 ( 2 + 3 ) = − ( 2 + 3 )

 ( 1 −

3 )( 1 +

3 )


1 − 3

HH

−2 −1

7.44 Angle of  π/ 12 may be seen as  (π/ 3 −  π/ 4 ), so that





√ √

√

√

 π

 π

 π

 π

 π

 π

3

2

2

2 √

sin

= sin

−  π = sin cos

− cos sin

=

− 1

=

 (  3 − 1 )

12

3

4

3

4

3

4

2

2

2 2

4





√

√ √

√

 π

 π

 π

 π

 π

 π

2

3

2

2 √

cos

= cos

−  π = cos cos

+ sin sin

= 1

+

=

 (  3 + 1 )

12

3

4

3

4

3

4

2 2

2

2

4

√

 π

S 2 √

√

√

√

 π

sin

S  (  3 − 1 )

3 − 1

3 − 1 )(  3 − 1 )

√

tan

=

12 = S

4

√

√

=  (√

√

= 2 − 3

12

 π

cos

S 2 √

3 − 1

 (  3 + 1 )(  3 − 1 )

12

S  (  3 + 1 )

S

4
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7.45 Angle of 5 π/ 12 may be seen as  (π/ 4 +  π/ 6 ), so that









√

5 π

 π

2 √

sin

= sin

+  π = · · · =

 (  3 + 1 )

12

4

6

4









√

5 π

 π

2 √

cos

= cos

+  π = · · · =

 (  3 − 1 )

12

4

6

4





√





5 π

S 2 √

sin

5 π

 (  3 + 1 )

12

S

√

tan

=



=

S

4

√

= · · · = 2 + 3

12

5 π

S

√

cos

2

12

S  (  3 − 1 )

S

4

7.46 Angle of 7 π/ 12 may be seen as  (π/ 3 +  π/ 4 ), so that









√

7 π

 π

2 √

sin

= sin

+  π = · · · =

 (  3 + 1 )

12

3

4

4









√

7 π

 π

2

√

cos

= cos

+  π = · · · =

 ( 1 −

3 )

12

3

4

4









7 π

sin

√

7 π

12

3 + 1

√

tan

=



= · · · =

√ = − ( 2 + 3 )

12

7 π

1 −

3

cos

12

7.47 Knowing the trigonometric form of Pythagoras’ theorem

cos2  α + sin2  α = 12

and given

3 π

sin  α = − 1 et  π < α < 

3

2

it follows that



2

cos2  α + sin2  α = 1 ∴ cos2  α = 1 − sin2  α = 1 − − 13



√

√

8

2

cos  α =

1 − 1 ∴ cos  α =

= 2

9

3

3

However,  α  is in the  third  quadrant, therefore cos  x  is  negative, see Fig. 7.1, i.e. cos  α =

√

−2 2 / 3, 
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√

−1 / 3

2

tan  α = sin  α =

√

= 1

√ =

cos  α

−2 2 / 3

2 2

4

7.48 Inter–products of sin (x)  and cos (x)  may be resolved with trigonometric identities, as sin 20◦ cos 10◦ + cos 20◦ sin 10◦ =









sin  α  cos  β = 1 sin (α +  β) + sin (α −  β)

2

= 1 sin ( 20◦ + 10◦ ) + 1 sin ( 20◦ − 10◦ ) + 1 sin ( 10◦ + 20◦ ) + 1 sin ( 10◦ − 20◦ ) 2

2

2

2





= 1 sin ( 30◦ ) + 1

sin ( 10◦ ) + 1 sin ( 30◦ ) + 1



sin (−10◦ ) = sin (− x) = − sin (x)

2

2

2

2

= sin 30◦ = 12

7.49 Inter–products of sin (x)  and cos (x)  may be resolved with trigonometric identities, as cos 43◦ cos 13◦ + sin 43◦ sin 13◦ =

⎧

⎫

⎪





⎪

⎨

⎪

cos  α  cos  β = 1 cos (α +  β) + cos (α −  β) ⎪

⎬

2

⎪

⎪

⎩

⎪

⎪

sin  α  sin  β = 1  ( cos (α −  β) − cos (α +  β)) ⎭

2

= 1 cos ( 43◦ + 13◦ ) + 1 cos ( 43◦ − 13◦ ) + 1 cos ( 43◦ − 13◦ ) − 1 cos ( 43◦ + 13◦ ) 2

2

2

2

√

= 1

3



cos ( 56◦ ) + 1 cos ( 30◦ ) + 1 cos ( 30◦ ) − 1

cos ( 56◦ ) = cos 30◦ =

2

2

2

2

2

7.50 Inter–products of sin (x)  and cos (x)  may be resolved with trigonometric identities, as









−

5 π

7 π

4 sin

cos

= sin  α  cos  β = 1 sin (α +  β) + sin (α −  β)

12

12

2











= −

1

5 π

5 π

A4 2

sin

+ 7 π + sin

− 7 π

A2

12

12

12

12













= −





12 π

2 sin

+ sin − A2 π

sin (− x) = − sin (x)





12

Z

Z

12 6









= −

 π

2 0 − sin

= −2 −1 = 1

6

2
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7.51 Inter–products of sin (x)  and cos (x)  may be resolved with trigonometric identities, as 1





+ 2 sin 1 +  π  cos 1 +  π = sin  α  cos  β = 1 sin (α +  β) + sin (α −  β) 2

6

3

2











= 1 + sin 1 +  π + 1 +  π + sin A1 +  π − A1 −  π

2

6

3

6

3











= 1 + sin 2 +  π + sin − π

2

2

6









= 1 +

 π

 π

sin

+ 2 − sin

2

2

6







 π





sin

+  x = cos (x),  see the unit circle and Fig. 7.3c

2



= 1 + cos  ( 2 ) − 1

2

2

= cos ( 2 )

7.52 Inter–products of sin (x)  and cos (x)  may be resolved with trigonometric identities, as 5 π

 π

4 sin

cos

= sin  α  cos  β = 1  ( sin (α +  β) + sin (α −  β)) 8

8

2











= 1

5 π

5 π

A4

sin

+  π + sin

−  π

A2

8

8

8

8









√







=

3 π

 π

2

2 sin

+ sin

= (see the unit circle) = 2

+ 1

4

2

2

√

= 2 + 2

7.53 Inter–products of sin (x)  and cos (x)  may be resolved with trigonometric identities, as 5 π

3 π

4 cos

cos

= cos  α  cos  β = 1  ( cos (α +  β) + cos (α −  β)) 8

8

2











= 1

5 π

5 π

A4

cos

+ 3 π + cos

− 3 π

A2

8

8

8

8







√ 





=

 π

2

2 cos  (π ) + cos

= (see the unit circle) = 2 −1 +

4

2

√

= 2 − 2

7.54 Inter–products of sin (x)  and cos (x)  may be resolved with trigonometric identities, as













−

7 π

13 π

4 sin

sin

= sin  α  sin  β = 1  ( cos (α −  β) − cos (α +  β)) 12

12

2
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= −

1

7 π

7 π

A4 2

cos

− 13 π − cos

+ 13 π

A2

12

12

12

12











= −





20 5 π

2 cos − A6 π

−

Z

cos

Z

12 2





12 3









= −

 π

5 π

2

− cos



*0

cos

2

3











= −2 − cos − π

= −2 −1 = 1

3

2

7.55 After replacing tan (x)  functions with their equivalent sin (x)/  cos (x)  ratios, the product identities can be used to resolve numerator and denominator separately, as

sin 40◦ sin 80◦

tan 20◦ tan 40◦ tan 80◦ = sin 20◦

cos 20◦ cos 40◦ cos 80◦

Then, numerator products are, 





sin 20◦ sin 40◦ sin 80◦ = sin  α  sin  β = 1  ( cos (α −  β) − cos (α +  β)) 2





= 1 cos ( 20◦ − 40◦ ) − cos ( 20◦ + 40◦ )  sin 80◦

2 



= 1 

: cos 20◦

cos (−20◦ )

− cos ( 60◦ )  sin 80◦

2

= 1 [cos 20◦ sin 80◦ − cos ( 60◦ )  sin 80◦]

2





sin  α  cos  β = 1  ( sin (α +  β) + sin (α −  β)) 2



√





3 / 2

= 1 1 sin 100◦ +

:

sin 60◦

−

: 1 / 2

cos 60◦

sin 80◦

2

2



√



= 1

3

sin ( 90◦ + 10◦ ) +

− sin ( 90◦ − 10◦ )

4

2





sin ( 90◦ +  α) = sin ( 90◦ −  α), (see unit circle)



√



= 1

3

((((((

(

sin ( 90◦ + 10◦ ) +

−((((((

(

sin ( 90◦ − 10◦ )

4

2

√

= 3

8
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Similarly, note that cos ( 90◦ + 10◦ ) = − cos ( 90◦ − 10◦ ), as per unit circle, so that cos 20◦ cos 40◦ cos 80◦ = 1 cos ( 20◦ + 40◦ ) + cos ( 20◦ − 40◦ )  cos 80◦

2 



= 1 

: 1 / 2

cos 60◦

+

: cos 20◦

cos (−20◦ )

cos 80◦

2 



= 1 1 cos 80◦ + cos 20◦ cos 80◦

2 2





= 1 1

1

cos 80◦ +

cos 100◦ + 1 

: 1 / 2

cos 60◦

2 

2

! " 

2

! " 2

cos ( 90−10 )◦

cos ( 90+10 )◦

= 18

Therefore, 

√3 / 8 √

tan 20◦ tan 40◦ tan 80◦ =

= 3

1 / 8

7.56 In the similar manner as in P.7.55, 

#

$

8 sin 20◦ sin 40◦ sin 80◦ = 4 cos ( 20◦ − 40◦ ) − cos ( 20◦ + 40◦ )  sin 80◦

#

$

= 4 sin 80◦ cos (−20◦ ) − sin 80◦ cos 60◦





= 4 sin 80◦ cos ( 20◦ ) − 1 sin 80◦

2





=

1

4

sin 100◦ + 1 sin 60◦ − 1 sin 80◦

2

2

2





sin 100◦ = sin ( 90◦ + 10◦ ) = sin ( 90◦ − 10◦ ) = sin 80◦



√



√

=

sin ( 90◦ + 10◦ )

3

sin ( 90◦ − 10◦ )

A4 +

−

= 3

2

A4



2

7.57 In the similar manner as in P.7.55, 

#

$

8 cos 10◦ cos 50◦ cos 70◦ = 4 cos 60◦ + cos 40◦ cos 70◦





=

1

4

cos 70◦ + cos 40◦ cos 70◦

2





=

1

4

cos 70◦ + 1 cos 110◦ + 1 cos 30◦

2

2

2



√ 

=

1

3

4

cos 70◦ + 1 cos 110◦ + 1

2

2

2 2
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cos 110◦ = cos ( 90◦ + 20◦ ) = − cos ( 90◦ − 20◦ ) = − cos 70◦



√ 

=

3

A2 

cos 70◦ − 

cos 70◦ + A2

√

= 3

7.58 Given Pythagoras’ theorem, unit circle in Fig. 7.1 and the sum/difference identities, then

⎧

⎫

⎪

⎪

⎨sin2  x + cos2  x = 1

⎪

⎪

⎬

⎪sin  (x +  y) = sin  x  cos  y + cos  x  sin  y

⎪

⎩

⎪

⎪

⎭

sin  (x −  y) = sin  x  cos  y − cos  x  sin  y

⎧



⎫

⎪

⎪

cos  x

= 4 /

sin  x

= −3  ( IV )

5

∴ sin  x = 1 −  ( 4 / 5 ) 2 = 3 / 5

⎬

⎨

5



⎭ ∴ ⎪

sin  y

= −3 / 5 ∴ cos  y = 1 −  (−3 / 5 ) 2 = 4 / 5

⎪

⎩cos  y = −4  ( III )

5

Therefore, 









4

sin  (x +  y) = sin  x  cos  y + cos  x  sin  y = − 3

−4 +

−3 = 12 − 12 = 0

5

5

5

5

25

25









4

sin  (x −  y) = sin  x  cos  y − cos  x  sin  y = − 3

−4 −

−3 = 12 + 12 = 24

5

5

5

5

25

25

25

7.59 Given Pythagoras’ theorem, the unit circle in Fig. 7.1 and the sum/difference identities, it follows that

√





√





2

 π

 π

2

cos  α − cos

+  α

2 cos  α − 2 cos

+  α

2

4

4









 π

√

=





√

2 sin

+  α − 2 sin  α

 π

2

4

2 sin

+  α −

sin  α

4

2

%

& 

cos (α +  β) = cos  α  cos  β − sin  α  sin  β

sin (α +  β) = sin  α  cos  β + cos  α  sin  β





 π

 π

 π

A2 

cos

cos  α − 

cos

cos  α + sin

sin  α

=

4

4

4





 π

 π

 π

A2 sin cos  α +

sin  α −

sin  α

4



cos 4



cos 4

 π

sin

sin  α

=

4

= tan  α

 π

sin

cos  α

4
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7.60 Given the sum/difference identities, 

cos (α −  β) = cos  α  cos  β + sin  α  sin  β

cos (α +  β) = cos  α  cos  β − sin  α  sin  β

it follows that

cos (α −  β) − cos (α +  β) = (((((

cos  α  cos  β + sin  α  sin  β − (((((

cos  α  cos  β + sin  α  sin  β

= 2 sin  α  sin  β

∴





sin  α  sin  β = 1 cos (α −  β) − cos (α +  β)

2

7.61 Given the sum/difference identities, 

cos (α +  β) = cos  α  cos  β − sin  α  sin  β

cos (α −  β) = cos  α  cos  β + sin  α  sin  β

it follows that

cos  (α +  β) + cos  (α −  β) = cos  α  cos  β − 



sin  α  sin  β + cos  α  cos  β + 



sin  α  sin  β

= 2 cos  α  cos  β

∴

cos  α  cos  β = 1  ( cos  (α +  β) + cos (α −  β)) 2

7.62 Given the sum/difference identities, 

sin (α +  β) = sin  α  cos  β + cos  α  sin  β

sin (α −  β) = sin  α  cos  β − cos  α  sin  β

it follows that

sin  (α +  β) + sin  (α −  β) = sin  α  cos  β + 

cos  α  sin  β + sin  α  cos  β − 

cos  α  sin  β

= 2 sin  α  cos  β

∴

sin  α  cos  β = 1  ( sin (α +  β) + sin (α −  β)) 2

Note that identities in P.7.60 to P.7.62 are fundamental for RF electronics and communication theory. 
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7.63 Given the sum identities, 





sin  α  cos  β = 1 sin (α +  β) + sin (α −  β)

∴ sin (α +  β) + sin (α −  β) = 2 sin  α  cos  β

2

⎧

⎧

⎫

⎪

⎪

⎨

& 

⎪

⎪

⎪

⎪

 α +  β

=  x

⎨ α =  x +  y ⎬

2

⎪

∴

⎪

⎩ α −  β =  y

⎪

⎪

⎩

⎪

⎪

 β

=  x −  y ⎭

2

∴









 x +  y

 x −  y

sin  x + sin  y = 2 sin

cos

2

2

Or, in general









 α +  β

 α −  β

sin  α + sin  β = 2 sin

cos

2

2

7.64 Given the sum identities





cos  α  cos  β = 1 cos (α +  β) + cos (α −  β)

∴ cos (α +  β) + cos (α −  β) = 2 cos  α  cos  β

2

⎧

⎧

⎫

⎪

⎪

⎨

& 

⎪

⎪

⎪

⎪

 α +  β

=  x

⎨ α =  x +  y ⎬

∴

2

⎪

⎪

⎩ α −  β =  y

⎪

⎪

⎩

⎪

⎪

 β

=  x −  y ⎭

2

∴









 x +  y

 x −  y

cos  x + cos  y = 2 cos

cos

2

2

Or, in general









 α +  β

 α −  β

cos  α + cos  β = 2 cos

cos

2

2

7.65 Given trigonometric identities

sin (α +  β) = sin  α  cos  β + cos  α  sin  β

cos (α +  β) = cos  α  cos  β − sin  α  sin  β

end setting  α =  β  it follows that

sin  (α +  α) = sin 2 α = sin  α  cos  α + cos  α  sin  α = 2 sin  α  cos  α
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cos  (α +  α) = cos 2 α = cos  α  cos  α − sin  α  sin  α = cos2  α − sin2  α

∴

tan 2 α = sin 2 α = sin  α  cos  α + cos  α  sin  α =

sin  α  cos  α + cos  α  sin  α





cos 2 α

cos  α  cos  α − sin  α  sin  α

sin  α

cos  α  cos  α  1 − sin  α

cos  α  cos  α

sin  α 



cos  α + 

cos  α  sin  α

= cos  α 



cos  α





cos  α  cos  α

1 − tan2  α

= 2 tan  α

1 − tan2  α

Furthermore, 

⎧

& 

⎪

⎪

cos2  α + sin2  α = 1

⎨2 sin2  α = 1 − cos 2 α

∴ sin2  α = 1 − cos 2 α

∴

2

cos2  α − sin2  α = cos 2 α

⎪

⎪

⎩2 cos2  α = 1 + cos 2 α

∴ cos2  α = 1 + cos 2 α

2

In addition, 

cos  α

sin  α  cos2  α

cos2  α

1

sin 2 α = 2 sin  α  cos  α

= 2

= 2 tan  α

= 2 tan  α

cos  α

cos  α

1

cos2  α + sin2  α

cos2  α + sin2  α

cos2  α

cos2  α

= 2 tan  α

1 + tan2  α







cos2  α  1 − sin2  α

cos2  α

cos 2 α = cos2  α − sin2  α = cos2  α − sin2  α =





1

cos2  α + sin2  α



cos2  α  1 + sin2  α

cos2  α

= 1 − tan2  α

1 + tan2  α

These identities are often used to integrate rational functions by trigonometric substitutions. 

7.4

Equations

7.66 Equations that include periodic functions have periodic solution set. Sinusoidal function crosses the horizontal axis every integer multiple of ± π  starting with  x = 0, that is to say sin  x = 0 ∴  x =  nπ,  where,  n = 0 , ±1 , ±2 , . . . 
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7.67 Equations that include periodic functions have periodic solution set. Cosine function crosses the horizontal axis every integer multiple of ± π  starting with  x =  π/ 2, that is to say π

cos  x = 0 ∴  x =  ( 2 k + 1 ) ,  where,  k = 0 , ±1 , ±2 , . . . 

2

7.68 Solving trigonometric equations is often done by deriving factorized form of the equation (similar to P.7.63), then by exploiting the general property: if  A ×  B ×  C = 0, then either  A = 0 or  B = 0 or  C = 0. Thus, 

sin  x = sin  α ∴ sin  x − sin  α = 0 ∴











 α +  β

 α −  β

sin  α − sin  β = 2 cos

sin

2

2









 x +  α

 x −  α

2 cos

sin

= 0

2

2

Therefore, 





 x +  α

 π

cos

= 0 ∴  x +  α =  ( 2 n + 1 )

∴  x = − α +  ( 2 n + 1 )π

2

2

2





 x −  α

sin

= 0 ∴  x −  α =  kπ ∴  x =  α + 2 kπ

2

2

where,  (k, n) = 0 , ±1 , ±2 , . . .  but not necessarily at the same time. 

7.69 By exploiting the equivalence relationship between sin  x  and cos  x  functions (i.e. their argument difference of  π/ 2), their equality may be resolved as





sin  x = cos  x ∴ cos  x −  π = cos  x ∴  x −  π = ± x + 2 nπ

2

2

because  x  takes both positive and negative signs. Therefore, there are two possible solutions that must be reviewed as follows. 

case ‘ +  x‘ :

∴  x −  π =  x + 2 nπ ∴ no solution

2

case ‘ −  x‘ :

∴  x −  π = − x + 2 nπ ∴ 2 x = 2 nπ +  π ∴  x =  nπ +  π

2

2

4

where,  n = 0 , ±1 , ±2 , . . .  For example, within the interval  n = −2 , −1 ,  0 ,  1 the solution set
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Fig. 7.8 P.7.69, being periodic

functions, both sine and cosine

curves repeat from negative to

positive infinity. The solution set

periodically repeats from negative

to positive infinity

⎧

⎪

⎪

⎪

⎪ n = −2

∴  x = −2 π +  π = −8 π +  π = −7 π

⎪

⎪

⎪

4

4

4

4

⎪

⎪

⎪

⎪

⎨ n = −1

∴  x = − π +  π = −4 π +  π = −3 π

4

4

4

4

 x =  nπ +  π ∴

4

⎪

⎪

⎪

⎪

⎪ n = 0

∴  x =  π

⎪

⎪

⎪

4

⎪

⎪

⎪

⎩ n = 1

∴  x =  π +  π = 4 π + 5 π = 5 π

4

4

4

4

√

is shown in Fig. 7.8. Both sin (x)  and cos (x)  equal to ± 2 / 2 at these points. 

7.70 After converting this equation into its factorized form, it follows that

sin  x = sin 2 x ∴ sin 2 x − sin  x = 0











 α +  β

 α −  β

sin  α − sin  β = 2 cos

sin

2

2





3 x

 x

2 cos

sin

= 0

2

2

∴



3 x

 π

 π

1 )  cos

= 0 ∴ 3 x =  ( 2 n + 1 )

∴  x =  ( 2 n + 1 )

2

2

2

3



 x

2 )  sin

= 0 ∴  x =  kπ ∴  x = 2 kπ

2

2

where,  n, k = 0 , ±1 , ±2 , . . .  For example, within the interval  n = −2 , −1 ,  0 ,  1 ,  2 the solution set

⎧

⎪

⎪

⎨ k = −1

∴  x = −2 π

 x = 2 kπ ∴ ⎪ n = 0

∴  x = 0

⎪

⎩ n = 1

∴  x = 2 π
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Fig. 7.9 P.7.70 – trigonometric equalities have periodic set of solutions as well as, 

⎧

⎪

 π

⎪

⎪ n = −2

∴  x =  (−4 + 1 )

= − π

⎪

⎪

3

⎪

⎪

⎪

⎪

 π

⎪

⎪

= − π

⎪ n = −1

∴  x =  (−2 + 1 )

⎪

⎪

3

3

⎨

 π

 π

 x =  ( 2 n + 1 )

∴

 n = 0

∴  x =  ( 0 + 1 )

=  π

3

⎪

⎪

⎪

3

3

⎪

⎪

⎪

 π

⎪

⎪

⎪ n = 1

∴  x =  ( 2 + 1 )

=  π

⎪

⎪

3

⎪

⎪

⎪

⎩

 π

 n = 2

∴  x =  ( 4 + 1 )

= 5 π

3

3

The two solution sets where sin  x = sin 2 x  are shown in Fig. 7.9a (left). In addition, equation f (x) = sin  x − sin 2 x = 0

is shown explicitly in Fig. 7.9a (right) with the same solution set. 

7.71 Using the same idea as in P.7.68 to P.7.70, factorized form of this equation is 2 sin2  x + sin  x = 0 ∴  ( 2 sin  x + 1 )  sin  x = 0

∴  ( 2 sin  x + 1 ) = 0 or sin  x = 0

Therefore, 

 Equation 1:  sin  x = 0

sin  x = 0 ∴  x =  nπ  where  n = 0 , ±1 , ±2 , . . . 
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Fig. 7.10 P.7.71, the solution

points of the equality in the form of

2 sin2  x + sin  x = 0 within the

given interval. The solution set

periodically repeats from negative

to positive infinity

 Equation 2: ( 2 sin  x + 1 ) = 0



 π

 ( 2 sin  x + 1 ) = 0 ∴ sin  x + 1 = 0 ∴ sin  x + sin

= 0 ∴

2

6









 x +  π/ 6

 x −  π/ 6

2 sin

cos

= 0

2

2

Again, there are two equations to solve. 

1. Roots of sin function are found at multiples of  π , i.e. 0 , ± π, ±2 π, . . . 





 x +  π/ 6

sin

= 0 ∴  x +  π/ 6 =  kπ ∴

 x = −  π + 2 kπ  where  k = 0 , ±1 , ±2 , . . . 

2

2

6

2. Roots of cos function are at odd multiples of  π/ 2, i.e. ± ( 2 m + 1 )π/ 2





 x −  π/ 6

 π

cos

= 0 ∴  x −  π/ 6 =  ( 2 m + 1 )

∴

 x =  ( 2 m + 1 )π +  π

2

2

2

6

where  m = 0 , ±1 , ±2 , . . . . The complete solution set is summarized in graph of  f (x) =

2 sin2  x + sin  x, Fig. 7.10. One stream of the solutions (i.e. the intersect points) is generated for  n = 0 , ±1 , ±2 , . . . , second for  k = 0 , ±1 , ±2 , . . . , and third for  m = 0 , ±1 , ±2 , . . . 

7.72 Periodicity of tan  x = sin  x/  cos  x  function is periodic by  nπ, thus we can solve this equation as follows

cos  (x +  π/ 6 ) = sin  (x −  π/ 3 )

%

& 

cos (α +  β) = cos  α  cos  β − sin  α  sin  β

sin (α −  β) = sin  α  cos  β − cos  α  sin  β

7.4 Equations
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Fig. 7.11 P.7.72, phase shifted

sine and cosine curves have

periodic phase shifted set of

solutions. Difference between the

two functions is an example of

“constructive wave interference” in

engineering









 π

 π

 π

 π

cos  (x)  cos

− sin  (x)  sin

= sin  (x)  cos

− cos  (x)  sin

6

6

3

3

√

√

3

1

1

3

cos  (x)

− sin  (x) = sin  (x) − cos  (x)

A2

A2

A2

A2

√

√

√

3

3  / 2

A2 3 cos  x = A2 sin  x ∴ tan  x =

=

= sin (π/ 3 ) = sin (x)

1

1  / 2

cos (π/ 3 )

cos (x)

Both sin (x)  and cos (x)  cross the horizontal axis with the periodicity of  π , therefore x =  π +  nπ  where  n = 0 , ±1 , ±2 , . . . 

3

The solution set of cos  (x +  π/ 6 ) = sin  (x −  π/ 3 )  equation is illustrated in Fig. 7.11 to show the intersecting points, as well as  f (x) = cos  (x +  π/ 6 ) − sin  (x −  π/ 3 ). 

7.73 By using algebraic transformations, trigonometric identities and the unit circle, 

√

√

√

√ √

√

√

√

tan  α =

6 +

3 −

2 − 2 =

3 2 +

3 −

2 −  (  2 ) 2

√

√ √

√ √



√

√

√ 

=

2 − 1

3

2 + 1 −

2

2 + 1 = √

2 + 1

3 −

2

2 − 1





 (a −  b)(a +  b) =  a 2 −  b 2

√

√

√

√

3 − 2

= 3 − 2

√

2 = 2

2

√

= sin 60◦ − sin 45◦

2 − 1

2

2

sin 45◦ − sin 30◦

− 1

2

2











 x +  y

 x −  y

sin  x − sin  y = 2 cos

sin

2

2

















105◦

15◦

 ( 180 − 75 )◦

A2 cos

cos

cos 90◦ − 75◦

=

2



sin

2







=

2





=

2





75◦

15◦

75◦

75◦

A2 cos

cos

cos

2



sin

2

2

2
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cos ( 90◦ −  α) = sin  α





75◦

sin





=

2



=

75◦

tan

∴  α = 75◦ = 37 .  5◦

75◦

2

2

cos

2

which is in the  I  quadrant. 

7.74 Factorized form is derived as







 π

 π

cos

−  x = cos

3

6







 π

 π

cos

−  x − cos

= 0

3

6











 α +  β

 α −  β

cos  α − cos  β = −2 sin

sin

2

2

⎛

⎞

⎛

⎞

 π −

 π

 x +  π

−  x −  π

−

⎜

⎟

⎜

⎟

2 sin ⎝ 3

6 ⎠ sin ⎝ 3

6 ⎠ = 0

2

2









−

 π − 2 x

 π − 6 x

2

sin

sin

= 0

! " 

4



! 

" 

12



! 

" 

 A

 B

 C

Obviously, −2 = 0 leaving either  B = 0 or  C = 0 terms to be zero, where

if, sin  θ = 0 ∴  θ =  nπ, n = 0 , ±1 , ±2 , . . . 

Fig. 7.12 P.7.74, two points

solution within the given interval. 

The solution set periodically repeats

from negative to positive infinity

7.4 Equations
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Therefore, within the interval 0 ≤  x <  2 π, 

 n = 0 :

 B :  π − 2 x = 0 ∴  x =  π ∈ [0 ,  2 π] 

4

2

 C :  π − 6 x = 0 ∴  x =  π ∈ [0 ,  2 π] 

12

6

 n = 1 :

 B :  π − 2 x =  π ∴  x = − 3 π <  0

4

2

 C :  π − 6 x =  π ∴  x = − 11 π <  0

12

6

 n = −1 :

 B :  π − 2 x = − π ∴  x = 5 π >  2 π

4

2

 C :  π − 6 x = − π ∴  x = 13 π >  2 π

12

6

In conclusion, within the interval 0  < x ≤ 2 π, there are only two solutions, see Fig. 7.12. 





 π π

 x =

 , 

6

2

7.75 Similarly to P.7.74, 





sin ( 3 x) = sin  x −  π 2





sin ( 3 x) − sin  x −  π = 0

2











 x +  y

 x −  y

sin  x − sin  y = 2 cos

sin

2

2









3 x +  x −  π

3 x −  x +  π

2 cos

2

sin

2

= 0

2

2









8 x −  π

4 x +  π

2

cos

sin

= 0

!" 

4



! 

" 

4



! 

" 

 A

 B

 C

Obviously, 2 = 0 leaving either  B = 0 or  C = 0 terms to be zero. Term  C  is a sin  θ  function, and  B  is in the form of cos  θ , where

if, cos  θ = 0 ∴  θ = ±  π , ± 3 π , . . .  in general:  θ =  π ±  nπ, n = 0 ,  1 ,  2 , . . . 

2

2

2
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if, sin  θ = 0 ∴  θ =  nπ, n = 0 , ±1 , ±2 , . . . 

Therefore, within the interval − π < x ≤  π, 

 n = 0 :

 B : 8 x −  π =  π ∴  x = 3 π ∈ [− π, π] 

4

2

8

 C : 4 x +  π = 0 ∴  x = −  π ∈ [− π, π] 

4

4

 n = 1 :

 B : 8 x −  π =  π +  π ∴  x = 7 π ∈ [− π, π] 

4

2

8

 C : 4 x +  π =  π ∴  x = 3 π ∈ [− π, π] 

4

4

 n = −1 :

 B : 8 x −  π =  π −  π ∴  x = −  π ∈ [− π, π] 

4

2

8

 C : 4 x +  π = − π ∴  x = − 5 π < − π

4

4

 n = 2 :

 B : 8 x −  π =  π + 2 π ∴  x = 11 π > π

4

2

8

 C : 4 x +  π = 2 π ∴  x = 7 π > π

4

4

 n = −2 :

 B : 8 x −  π =  π − 2 π ∴  x = − 5 π ∈ [− π, π] 

4

2

8

 C : 4 x +  π = −2 π ∴  x = − 9 π < − π

4

4

In conclusion, within the interval − π < x ≤  π, there are six solutions (see Fig. 7.13), 





3 π  6 π  7 π

 x = − 5 π , − 2 π , −  π , 

 , 

 , 

8

8

8

8

8

8
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Fig. 7.13 P.7.75, the set of

solutions within the given interval. 

Note that these two functions have

different periods. The solution set

periodically repeats from negative

to positive infinity

7.5

Inequalities

7.76 A simple inequality may be solved by the use unit circle as follows

2 cos  x + 1  <  0

cos  x < − 12

By inspection of unit circle, see Fig. 7.1, boundaries of the solution set are defined by equality, i.e. 

 x 1 = 4 π ± 2 nπ  and  x 2 = − 4 π ± 2 nπ

3

3

where, for a simple cos (x)  function, periodicity is 2 π . It is evident from the unit circle that cos  x (i.e. the horizontal projection length) is less than ‘−1 / 2’ within the interval

−4 π

4 π

 <x < 

or, equivalently

3

3











−3 π −  π

3 π

 <x < 

+  π

 π ≡ − π ≡ 180◦

3

3

3

3

 x < − π ±  π + 2 nπ

3

where  n = 0 , ±1 , ±2 , . . . , see Fig. 7.14. 

7.77 Similarly to P.7.76, 

√

2 sin  x −

2  >  0√2

sin  x >  2
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Fig. 7.14 P.7.76, in comparison to

discrete points for equalities, 

inequality solution set is an

 interval. Shaded regions indicate

intervals  x ∈  (−4 π/ 3 , −2 π/ 3 ), 

 x ∈  ( 2 π/ 3 ,  4 π/ 3 ), etc, where

cos  x < −1 / 2, in this case it is a

strict inequality. The solution

intervals repeat every 2 π

Fig. 7.15 P.7.77 – inequality set of solutions

this inequality is satisfied for

 π +

5 π

2 nπ < x < 

+ 2 nπ  where,  n = 0 , ±1 , ±2 , . . . 

6

6

as illustrated in Fig. 7.15a. The interval solution sets are marked by shaded areas that are periodic in Fig. 7.15a (left). This periodicity may be equivalently illustrated by unit circle in Fig. 7.15a (right) where, due to periodicity, the solution sets are superimposed above sin  x =

√2 / 2 value (which is vertical projection for sin x) and marked by shaded area. 

7.78 Similar to P.7.66 to P.7.77. 

-- √

-

2

cos  x − sin  x <  1 --× 2

7.5 Inequalities
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Fig. 7.16 P.7.78 – inequality set of solutions

√

√

√

2

2

2

cos  x −

sin  x < 

2

2

2

√

 π

 π

2

sin

cos  x − cos

sin  x < 

4

4

2





sin  α  cos  β − cos  α  sin  β = sin (α −  β)





√

 π

2

sin

−  x < 

4

2

By inspection of unit circle, see Fig. 7.1, it is evident that

√2

sin  x =

⇒  x =  π  or,  x = −5 π

2

4

4

Therefore, 

 π −

 π

 x < 

∴  x >  0 + 2 nπ, n = 0 , ±1 , ±2 , . . .  and

4

4

 π −

3 π

 x > − 5 π ∴  x < 

+ 2 nπ, n = 0 , ±1 , ±2 , . . . 

4

4

2

The solution set is illustrated in Fig. 7.16a (left). Alternatively, the solution set may be shown in unit circle, where the periodic nature of the solution set is more evident, as intervals of 0  < x <  3 π/ 2 and −2 π < x −  π/ 2 are overlapped and repeated with 2 pi  periodicity. Note that, due to strict inequality, boundary points are not included in the solution set, i.e.  x = 2 nπ

and  x = 3 π/ 2. 

7.79 Note that sin (x) = sin (x + 2 π), i.e. it is periodic by  T = 2 π. Multiplication of sine argument by a number superior to one reduces sine period proportionally, that is to say sin ( 3 x) is periodic with  T = 2 π/ 3, see Fig. 7.17a. Given inequality may be then resolved as follows. 
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Fig. 7.17 P.7.79 – inequality sets of solution intervals

√3

sin 3 x −

≥ 0

2



 π

sin 3 x − sin

≥ 0

3











 α +  β

 α −  β

sin  α − sin  β = 2 cos

sin

2

2

⎛

⎞

⎛

⎞

⎜3 x +  π ⎟

⎜3 x −  π ⎟

2 cos ⎝

3 ⎠ sin ⎝

3 ⎠ ≥ 0

2

2









9 x +  π

9 x −  π

2 cos

sin

≥ 0

6

6

Therefore, as per unit circle, if cos  x ≥ 0 ∴  x ≤ ± π/ 2, and if sin ≥ 0 ∴ 0 ≤  x ≤  π, then 9 x +  π

cos

≥ 0 ∴ − π ≤ 9 x +  π ≤  π ∴ −4 π ≤  x ≤ 2 π

6

2

6

2

9

9

and, 





9 x −  π

sin

≥ 0 ∴ 0 ≤ 9 x −  π ≤  π ∴  π ≤  x ≤ 7 π

6

6

9

9

The two intervals overlap if  π/ 9 ≤  x ≤ 2 π/ 9, see diagram in Fig. 7.17b (top). 

The second possibility is, if cos  x ≤ 0 ∴  π/ 2 ≤  x ≤ 3 π/ 2, and if sin ≤ 0 ∴ − π ≤  x ≤

0, then





9 x +  π

cos

≤ 0 ∴  π ≤ 9 x +  π ≤ 3 π ∴ 2 π ≤  x ≤ 8 π

6

2

6

2

9

9

and, 
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9 x −  π

sin

≤ 0 ∴ − π ≤ 9 x −  π ≤ 0 ∴ −5 π ≤  x ≤  π

6

6

9

9

Therefore, the two intervals do  not  overlap, i.e. the solution set is empty, see diagram in Fig. 7.17b (bottom). In summary, including the periodicity of  T = 2 nπ/ 3 the solution set is

 π ± 6 nπ ≤  x ≤ 2 π ± 6 nπ

9

9

9

9

where,  n = 0 , ±1 , ±2 , . . . , see Fig. 7.17. 

7.80 Inequalities that include absolute functions are equivalent to two inequalities Fig. 7.18, 

as

| sin  x| ≥ 1 ∴ −1 ≥ sin  x ≥ 1

2

2

2

By inspection of unit circle, see Fig. 7.1 the solutions is simply

−5 π + 2 nπ ≤  x ≤ − π + 2 nπ

6

6

and, 

 π + 2 nπ ≤  x ≤ 5 π + 2 nπ

6

6

where  n = 0 , ±1 , ±2 , . . . 

Fig. 7.18 P.7.80 – inequality sets of solutions
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Fig. 7.19 P.7.81, absolute values

of a function are positive, i.e. in the

upper half of the graph. Inequality

solution intervals are marked by

shaded surface bound by two  x

points. The solution interval repeat

every 2 π

7.81 Absolute value functions are split into two cases. 

 Case 1:  sin  x >  0

∴ | sin  x| = sin  x, thus



sin  x = 

sin  x + 2 cos  x ∴ 2 cos  x = 0 ∴  x =  π + 2 nπ,  where  n = 0 , ±1 , ±2 , . . . 

2

 Case 2:  sin  x <  0

∴ | sin  x| = − sin  x, thus

− sin  x = sin  x + 2 cos  x ∴ 2 sin  x + 2 cos  x = 0 ∴ sin  x + cos  x = 0

Using same idea as in P.7.78, 

-- √

-

2

sin  x + cos  x = 0 --× 2

√

√

2

2

sin  x +

cos  x = 0

2

2

 π

 π

cos

sin  x + sin

cos  x = 0

4

4





cos  α  sin  β + sin  α  cos  β = sin (α +  β)





∴ sin  x +  π = 0 ∴  x +  π = 0

4

4

∴  x = − π + 2 nπ,  where  n = 0 , ±1 , ±2 , . . . 

4

The two streams of periodic solutions are illustrated in Fig. 7.19, where the periodic solution set interval is

− π + 2 nπ ≤  x ≤  π + 2 nπ

4

2

[image: Image 8]

Complex Algebra

8

 Basic forms and identities of complex numbers: geometrical interpretations of Pythagorean triangles, vector addition, and complex numbers are illustrated in Fig. 8.1. 

 j  2 = −1

 z =  a +  j b = Re  (z) +  j  Im  (z)

 z∗ =  a −  j b

| z|2 =  z z∗ =  (a +  jb)(a −  jb) =  a 2 +  b 2 = Re  (z) 2 + Im  (z) 2

 z 1 =  a +  j b  and  z 2 =  c +  j d ∴ if  z 1 =  z 2 ⇒  a =  c  and  b =  d arg (z) =  θ = atan2  ( Im  (z) ,  Re  (z)) = atan2  (b, a) Euler’s formula: through right triangles in Fig. 8.1 and the unit circle in Fig. 7.1, Euler’s formula gives relation between the exponential and trigonometric forms of a complex number, as

 z = | z| ejθ = | z|  ( cos  θ +  j  sin  θ)

∴ (given )| z| = 1

⎧



⎪

⎪

⎪

⎪ cos  θ =  ejθ +  e− jθ

 ejθ

= cos  θ +  j  sin  θ

⎨

2

⇒

 e− jθ

= cos  θ −  j  sin  θ

⎪

⎪

⎪

⎪

⎩ sin  θ

=  ejθ −  e− jθ

2 j
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Fig. 8.1 Pythagoras’ theorem

(unit circle), vectors, complex

numbers

Problems

8.1

Basic Calculations

Calculate | z| and arg (z)  of complex numbers in P.8.1 to P.8.5:

8.1. 

8.2. 

8.3. 

8.4. 

8.5. 

 z =  j

 z =  j  2

 z =  j  3

 z =  j  4

 z =  j  5

Simplify expressions in P.8.6 to P.8.11:

8.6.  j  2 +  j  3 +  j  4

8.7.  j −5 +  j −17 +  j  36

8.8.  ( 2 j ) 2 +  (−2 j )−4

8.10. 

 j  102 +  j  101

8.9.  j  5 +  j−4 +  j 121

8.11. 

 j  125 +  (− j ) 60 +  j  83

 j  100 −  j  99

Determine real and imaginary parts of complex numbers in P.8.12 to P.8.20:

1

1 +  j

8.12.  j + 1

8.13. 

8.14. 

√

 j

2 j

2

√

1 +  j  3

1 +  j

1 −  j

8.15. 

8.16. 

8.17. 

2

1 −  j

2 + 3 j

8.18. 

8.19. √

√

8.20. 

1 +  j  3 1 −  j  3

−41 + 63 j

 ( 3 + 4 j )( 3 − 4 j )

− 6 j + 1

2

2

50

1 − 7 j

8.3 Polar Form
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Calculate expressions in P.8.21 to P.8.30:

8.21.  ( 1 +  i) 4 +  ( 1 −  i) 4

8.22.  ( 1 +  j ) 50

8.23.  ( 1 −  j ) 100





√





1

1 +  j  4

 (j

3 − 1 ) 2

4

12

8.24. 

+

√

8.25. 

8.26. 

√

 j

2

 ( 2 j ) 2

 j

3 − 1

√











 ( 1 +  j ) 2024

2

2

1 +  j  1000

1 −  j  1000

8.27. 4

+  j

√

8.28. 

√

+

√

 ( 1 −  j ) 2025

 j

2

2

2



√ 



√ 

1 +

√



√



 j

3 6 066

1 −  j  3 6 066

3

108

12

216

8.29. 

+

8.30. 

+  j

−

+ 1

2

2

2

2

4

2 j

8.2

Complex Plane

Given complex numbers in P.8.31 to P.8.43, sketch their positions in the complex plane: 8.31.  z 1 = 1

8.32. 

8.33.  z 3 =  j

8.34. 

 z 2 = −1

 z 4 = − j

√

√

√

√

3

1

2

2

3

8.35.  z

8.36. 

8.37. 

5 =

+  j

 z 6 =

+  j

 z 7 = 1 +  j

2

2

2

2

2

2

√

√

√

√

√

2

2

3

1

2

2

8.38.  z

8.39. 

8.40. 

8 = −

+  j

 z 9 = −

+  j

 z 10 = −

−  j

2

2

2

2

2


2

√

√

√

√

2

2

3

1

3

8.41.  z

8.42. 

8.43. 

11 =

−  j

 z 12 =

−  j

 z 13 = − 1 −  j

2

2

2

2

2

2

8.44. Given  z =  ( 2 j )n  sketch its trajectory as  n = 0 ,  1 ,  2 ,  3 , . . . . 

8.3

Polar Form

Convert complex numbers given in P.8.45 to P.8.55 into their equivalent polar forms: 8.45.  j

8.46.  j  2024

8.47. 2 −  j

8.48. 

 ( 2 −  j ) 6
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√ 

1 +  j  3 10

8.50. 

√

8.51. 

8.49. 





1

3 −  j  3

 ( 1 +  j ) 6 −  ( 1 −  j ) 6

1 −  j

√ −

3

2

 ( 1 +  j ) 6 ( 1 −  j ) 6

8.52. 





8.53. 

8.54. 





3

6





 π

 π  3

+ 1 +  j

 ( 1 −  j ) 2  j + 1 4

√

8 cos

−  j  sin

1 +  j

2 j

2

2

6

6

 ( 1 +  j ) 200 ( 6 + 2 j ) −  ( 1 −  j ) 198 ( 3 −  j ) 8.55.  ( 1 +  j) 196 ( 23 − 7 j) +  ( 1 −  j) 194 ( 10 + 2 j) 8.4

Euler Identity

Given complex numbers in P.8.56 to P.8.67, convert them into their equivalent trigonometric form by Euler’s equation. Calculate the product  z z∗. Compare with P.8.31 to P.8.43. 

8.56.  z =  ej  0

8.57. 

8.58. 

8.59. 

 z =  ej π 6

 z =  ej π 4

 z =  ej π 3

8.60. 

8.61. 

8.62. 

8.63.  z =  ej π

 z =  ej π 2

 z =  ej  3 π 4

 z =  ej  5 π 6

8.64. 

8.65. 

8.66. 

8.67. 

 z =  ej  5 π 4

 z =  ej  3 π 2

 z =  ej  7 π 4

 z =  ej  11 π 6

Given numbers in P.8.68 to P.8.75, calculate their respective | z| and arg (z). 

8.68. 

8.69. 

8.70. 

8.71.  √

2

 z = 1  ej π 3

 z = −2  e− j  5 π 6

 z = − 1  ej  7 π 4

 z =

2  ej π 4

2

2

8.72. 



8.73.  



8.74.  



8.75. 

3

5

4



3

 z = 3  ej π 3

 z = 4  e− j  5 π 6

 z = 0 .  2  ej  7 π 4

 z = −3  e− j π 6

8.6 Complex Equations
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8.5

Rational Powers

Given complex roots of numbers in P.8.76 to P.8.44

√

√

√

√

8.76. 

1

8.77. 

3 1

8.78. 

4 1

8.79. 

6 1









8.80. 

 j

8.81. 

− j

8.82. 

3  j

8.83. 

4  j



8.84. 

5  j

8.85. 



8.86. 



8.87. 



1 /( 2 j )

 ( 1 −  j ) 3

3 1 /( 1 +  j) 2

8.6

Complex Equations

Give the geometrical interpretation of equations in P.8.88 to P.8.93:

8.88. | z − 1| = 9

8.89. | z − 3 j | = 1

8.90. | z + 2 −  j | = 4





 z − 1 

8.92. 





8.93. 

8.91. 



 z − 5 + 2 j 

 z + 1  = 2





| z + 2| + | z − 2| = 5

2 z − 1  = 1

Solve for real  x  and  y  in P.8.94 to P.8.97:

1

8.94.  ( 2 + 3 j )x +  ( 3 + 2 j )y = 1

8.95. 

= 1 +

1

 x +  jy

2 +  j

−2 + 4 j

8.96. 5 x − 3 jy + 2 j = 6 −  j x −  y

8.97.  j x 2+ ( 1−2 j )xy+ ( 1− j )y 2 = 4+2 j

Solve equations in P.8.98 to P.8.105:

8.98.  z 2 =  j

8.99.  z 2 = − j

8.100.  z 2 = 5 + 12 j

8.101.  z 4

+ 8 +

√

8.102. 

√



 j z 6 + 8

1 

8.103. 

= 3

8 3  j = 0

| z| =  

8 j −  z 6

 z  = |1 −  z|
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1 +  j n

1 −  j n

8.104. Given  z(n) =

√

+

√

calculate  z(n + 4 ) +  z(n). 

2

2

8.105. Resolve parameter  p  so that three roots of the following equation are at vertices of an equilateral triangle:

 z 3 −  ( 1 +  p +  j p)z 2 +  p( 1 +  j +  j p)z −  j p 2 = 0

8.1 Basic Complex Number Forms
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Answers

8.1

Basic Complex Number Forms

Note that  j n  powers produce  periodic  results, which may be interpreted as a rotation of vector  j relative to the origin of the complex plane. In general, the same with the real numbers, the  zn  power operation of a complex number rises its modulus to | z| n  power and at the same time  multiplies its argument θ (phase)  as  nθ , thus rotation. 

8.1. As the general algebraic form of a complex number is  z =  a +  j b, a, b ∈ R, then to say that  z =  j  is the same as saying that Re  (z) =  a = 0 and Im  (z) =  b = 1, as z = 0 + 1 ×  j ∴ Re  (z) = 0 and Im  (z) = +1

One of a complex number geometrical interpretations is that its modulus | z| is equivalent to the hypothenuse of a Pythagorean triangle (see Fig. 8.1), where the length of the horizontal cathetus equals Re  (z)  and the vertical cathetus equals Im  (z); therefore, by Pythagoras’

theorem





 c 2 =  a 2 +  b 2

Pythagoras’ theorem

∴





| z| = Re  (z) 2 + Im  (z) 2 =  a 2 +  b 2 = 02 + 12 = 1  ( i.e., a  real  number ) By knowing two catheti of a Pythagorean triangle, the argument of arg (z) =  θ  is calculated as the ratio of the vertical and horizontal catheti, commonly known as the “slope” or “tan  θ ” as

“slope” ≡ tan  θ  def

=  b = Im  (z) = 1 = ∞ (i.e., vertical line)

 a

Re  (z)

0

Note that calculation of  θ  may be ambiguous if the catheti length signs are ignored; that is because there are two possibilities for arg (z)  as

arg (z) = tan  θ = 1 = Im  (z) = sin  θ = ±∞ ∴ cos  θ = 0 ∴  θ = ±  π

0

Re  (z)

cos  θ

2

or, equivalently

tan  θ = ±∞ ∴  θ = arctan (±∞ ) = ±  π 2

For that reason, keeping the number signs is important, which is resolved by using the modified arctan (x)  named atan2  (b, a)  function. Note that atan2  (b, a)  is a function of two arguments: vertical  b  and horizontal  a  catheti signed lengths, where their respective signs are explicitly included. By doing so, arg (z)  are placed in the correct quadrant. That is to say, 

+1

tan  θ  def

= Im  (z) ∴  θ  def

= atan2  ( Im  (z) ,  Re  (z)) = atan2  ( +1 ,  0 ) = arctan

∴  θ = + π

Re  (z)

0

2
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Fig. 8.2 P.8.1 to P.8.5, for any

number  z  on the unit circle

( r = 1), it is evident that its

module equals one, i.e., 

| ± 1| = 1, | ±  j| = 1. Thus, by

knowing only its arg (z)  such

number may be correctly placed

in space, as expressed by

Euler’s identity. Real numbers

may be seen as the special case

of complex numbers that are

found on the horizontal (real)

axis, i.e., whose Im  (z) = 0

which is to say that Im  (j )  is  positive  and Re  (j )  is zero; therefore, its argument must be positive. A complex plane is illustrated by a unit circle where the position of an arbitrary complex number  z  is shown with its argument  θ ; see Fig. 8.2. It is evident that  z =  j  is found at  θ = + π/ 2,  z = −1 at  θ = ± π,  z = − j  at  θ = − π/ 2, and  z = 1 at  θ = 0 rad. 

Note the difference between arg (z) = + π/ 2 and arg (z) = − π/ 2. In addition, arguments may be measured either in positive or negative direction, whichever is more convenient, for example, θ = − π/ 2 ≡ +3 π/ 2. 

8.2. Algebraic form  z =  j  2 is identical to

 z =  j  2 def

= −1 = −1 + 0 ×  j ∴ Re  (z) = −1 and Im  (z) = 0

∴



| z| = Re  (z) 2 + Im  (z) 2 =  (−1 ) 2 + 02 = 1  ( i.e., a real number ) tan  θ  def

= Im  (z) ∴  θ  def

= atan2  ( Im  (z) ,  Re  (z)) = atan2  ( 0 , −1 ) ∴  θ = ± π

Re  (z)

To say that Re  (z) = −1 and Im  (z) = 0 is to say that in the complex plane coordinates of z = −1 are  (−1 ,  0 )  therefore  θ = ± π (see Fig. 8.2), and evidently  j  2 = −1 is a  real  negative number. Equivalently, it may be interpreted as if the operation of square power  j  2 rotates  j to 2 arg  j =  π. In general, real negative numbers may be seen as complex numbers whose arg (z) = ± π. 

8.3. Algebraic form  z =  j  3 is identical to

 z =  j  3 =  j  2  j =  (−1 ) j = 0 − 1 ×  j = − j ∴ Re  (z) = 0 and Im  (z) = −1

∴



| z| = Re  (z) 2 + Im  (z) 2 = 02 +  (−1 ) 2 = 1  ( i.e., a real number ) tan  β  def

= Im  (z) ∴  β  def

= atan2  ( Im  (z) ,  Re  (z)) = atan2  ( −1 ,  0 ) ∴  β = − π

Re  (z)

2

8.1 Basic Complex Number Forms
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To say that Re  (z) = 0 and Im  (z) = −1 is to say that in the complex plane coordinates of z = − j  are  ( 0 , −1 )  therefore  β = − π/ 2 ≡ 3 π/ 2; see Fig. 8.2. 

8.4. Algebraic form  z =  j  4 is identical to

 z =  j  4 =  j  2  j  2 =  (−1 ) (−1 ) = 1 + 0 ×  j = 1 ∴ Re  (z) = +1 and Im  (z) = 0

∴





| z| = Re  (z) 2 + Im  (z) 2 = 12 + 02 = 1  ( i.e., a real number ) tan  β  def

= Im  (z) ∴  β  def

= atan2  ( Im  (z) ,  Re  (z)) = atan2  ( 0 , +1 ) ∴  β = 0 ≡ ±2 π

Re  (z)

To say that Re  (z) = +1 and Im  (z) = 0 is to say that in the complex plane coordinates of z = 1 are  ( 1 ,  0 )  therefore  β = 0 ≡ ±2 π (see Fig. 8.2), and evidently  j  4 = 1 is a  real  positive number. In general, real positive numbers may be seen as complex numbers whose arg (z) = 0

or equivalently arg (z) = 2 n π, n ∈  ( 0 , ±1 , ±2 , . . .). 

8.5. Algebraic form  z =  j  5 is identical to

 z =  j  5 =  j  4  j =  ( 1 ) (j ) = 0 + 1 ×  j =  j see A.8.1. In conclusion, powers of  j  are  periodic (therefore, equivalence with the trigonometric functions). After each full ±2 π  rotation, a complex number  j  returns to the initial position, as

 j  0 def

= 1 ∴  θ = 0◦  (±360◦ )

 j  1 =  j ∴  θ = +90◦  (−270◦ )

 j  2 = −1 ∴  θ = ±180◦

 j  3 = − j ∴  θ = −90◦  (+270◦ )

 j  4 = 1 ∴  θ = 0◦  (±360◦ )

 j  5 =  j ∴  θ = +90◦  (−270◦ )

 ... 

This periodicity is conveniently exploited in practical problems involving powers of complex numbers. Again, real numbers are only a subset of complex numbers whose imaginary part

equal zero, that is to say, their argument is  θ = 0◦ for positive and  θ = ± π  for negative numbers. 
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8.6. As shown in A.8.1 to A.8.5, the powers of  j  may be simplified as 2

 j  2 +  j  3 +  j  4 =  j  2 +  j j  2 +  j  2

= −1 +  j (−1 ) +  (−1 ) 2 = −1 −  j + 1 = − j

8.7. As shown in A.8.1 to A.8.5, due to its periodicity of four, powers  j n  may be simplified as









 j −5 +  j −17 +  j  36 =

 m

 n

 a− n = 1  , an m =  an

=  am , an+ m =  anam

 an

= 1 + 1 +  j 36 = 1 +

1

+  j 4×9

 j  5

 j  17

 j  1+4

 j  1+4×4







= 1 +

1

+

9

 j  4

=  j 4 = 1 ,  1 n = 1

 j j  4

4

 j j  4

= 1 +

1

+

2

 ( 1 ) 9 = 2 + 1 =  j

+ 1 = 1 − 2 j

 j

 j ( 1 ) 4

 j

 j j

Thus, Re  (z) = 1 ,  Im  (z) = −2, which is in the  I V  quadrant, and





√

|1 − 2 j| = Re  (z) 2 + Im  (z) 2 = 12 +  (−2 ) 2 = 5

arg (z) = atan2  (−2 ,  1 ) (≈ −63 .  43◦ ≈ −1 .  107rad ) 8.8. Negative powers are equivalent to inverse positive powers, as

 ( 2 j ) 2 +  (−2 j )−4 = −4 +

1

= −4 + 1 = −63

 (−1 ) 4 ( 2 ) 4 (j ) 4

16

16

As Re  (z) = −63 / 16 ,  Im  (z) = 0, is a negative real number, | − 63 / 16| = 63 / 16 and arg (z) =

atan2  ( 0 , −63 / 16 ) = ± π. 

8.9. Large exponents of complex numbers are interpreted as multiple full circle rotations plus the “last” position on the unit circle. Due to periodicity of  j  every four powers (see A.8.5), 

30

 j  5 +  j −4 +  j  121 =  j  1+4 + 1 +  j  1+4×30 =  j j  4 + 1 +  j 

 j  4

=  j + 1 +  j = 1 + 2 j

 j  1+4



 j  4

That is to say, Re  (z) = 1 ,  Im  (z) = 2 are both positive thus in the  I  quadrant, and |1 + 2 j | =

√5 and arg (z) = atan2 ( 2 ,  1 )(≈ 63 .  43◦ ≈ 1 .  107rad ). 

8.10. Powers of a negative number may be positive (if the power is even) or negative (if the power is odd), as

8.1 Basic Complex Number Forms

327

 j  125 +  (− j ) 60 +  j  83 =  j  1+4×31 + 

 (−1 ) 60  j  4×15 +  j  3+4×20





= −1 n = −1 if  n  is odd , and − 1 n = +1 if  n  is even







31

15

20

=  j 

 j  4

+ 

 j  4

+  j j 2 

 j  4

= A j + 1 − A j = 1

As Re  (z) = 1 ,  Im  (z) = 0 is a positive number on the horizontal axis, then |1| = 1 and arg (z) = atan2  ( 0 ,  1 ) = 0◦. 

8.11. As an illustration, any applicable method to simplify complex expressions may be used, as

Method 1:

 j  102 +  j  101





=  j 2  j 4×25 +  j j 4×25 =  j 2 +  j =  z z∗ =  (a +  ib)(a −  ib) =  a 2 +  b 2 = | z|2

 j  100 −  j  99

 j  4×25 −  j  3  j  4×24

1 −  j  3

−

= 1 +  j  1 −  j = 

−1 +  j +  j + ]1 = A2 j =  j

1 +  j  1 −  j

1 + 1

A2

Method 2:

− j

−1



 j  102 +  j  101

 j  99  j  3 +  j  2

−

−

=



7



7

1 −  j

1 −  j





=

= A2 j =  j

 j  100 −  j  99

 j  99  j − 1

−1 +  j −1 −  j

A2

As Re  (j ) = 0 ,  Im  (j ) = 1 is a positive number on the vertical axis, then |1| = 1 and arg (z) = atan2  (+1 ,  0 ) = + π/ 2. 

8.12. In the algebraic form real and imaginary parts of a complex number may be separated as

 j

 z =  j + 1

=  j −  j = 0

 j

 j

Therefore, Re  (z) = 0, Im  (z) = 0, which is at the origin point. 

8.13. In the algebraic form real and imaginary parts of a complex number may be separated as

 j

 z = 1

= − j

2 j

 j

2

Therefore, Re  (z) = 0, Im  (z) = 1 −  j/ 2, which is a point on the negative part of the vertical axis. 
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8.14. In the algebraic form real and imaginary parts of a complex number may be separated as

√

√

√

2

2

2

 z = 1 +  j

√

2

√ =

+  j

2

 j  2

2

2

2

√

√

Therefore, Re  (z) =

2 / 2, Im  (z) =

2 / 2, which is a point in the  I  quadrant. 

8.15. In the algebraic form real and imaginary parts of a complex number may be separated as

√

√

3

3

 z = 1 +  j

= 1 +  j

2

2

2

√

Therefore, Re  (z) = 1 / 2, Im  (z) =

3 / 2, which is a point in the  I  quadrant. 

8.16. In the algebraic form real and imaginary parts of a complex number may be separated as

1 +  j

 z = 1 +  j

= 2 j =  j

1 −  j  1 +  j

2

Therefore, Re  (z) = 0, Im  (z) = 1, which is a point on the positive part of the vertical axis. 

8.17. In the algebraic form real and imaginary parts of a complex number may be separated as

2 − 3 j 



 z = 1 −  j

 z z∗ = | z|2 = Re  (z) 2 + Im  (z) 2

2 + 3 j  2 − 3 j

=  ( 1 −  j)( 2 − 3 j) = −1 + 5 j = − 1 − 5

 j

13

13

13

13

Therefore, Re  (z) = −1 / 13, Im  (z) = −5 / 13, which is a point in the  I I I  quadrant. 

8.18. The difference of two squares identity is in the form of  z z∗ product, as ( 3 + 4 j )( 3 − 4 j ) = 32 −  ( 4 j ) 2 = 9 + 16 = 25

Note that the product of two complex conjugate numbers is a real number, that is, Re  (z) =

25 ,  Im  (z) = 0, which is a positive number on the horizontal axis, |25| = 25 and arg (z) =

atan2  ( 0 ,  25 ) = 0◦. In general, the product of two complex conjugate numbers equal the square of its module, as
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 z =  a +  j b ⇒  z∗ def

=  a −  jb

∴

−1

 z z∗ =  (a +  j b)(a −  j b) =  a 2 − 

 j 

 ab + 

 j 

 ab −  (j b) 2 =  a 2 − 

7



 j  2  b 2

=  a 2 +  b 2 = | z|2

which is equivalent to Pythagoras’ theorem. 

8.19. The product of two complex conjugate numbers in algebraic form is resolved:

√

√

√

1 +  j  3 1 −  j  3





=

3 ) 2

 (a +  b)(a −  b) =  a 2 −  b 2 = 12 −  (j

= 1 + 3 = 1

2

2

4

4

As Re  ( 1 ) = 1 ,  Im  ( 1 ) = 0 is a positive number on the horizontal axis, thus |1| = 1 and arg (z) = atan2  ( 0 ,  1 ) = 0◦. 

8.20. Real and imaginary parts may be separated as

−41 + 63 j − 6 j + 1 = −41 + 63

1 + 7 j

 j + 6 j + 1

= −41 + 63 j − 6 j − 42 + 1 + 7 j

50

1 − 7 j

50

50

1 − 7 j  1 + 7 j

50

50

1 + 49

= 

−41 + 63 j +



41 − 13 j = 63 − 13 j =  j

50

50

As Re  (j ) = 0 ,  Im  (j ) = 1 a positive number on the vertical axis, thus |1| = 1 and arg (z) =

atan2  (+1 ,  0 ) = + π/ 2. 

8.21. General algebra identities may be used as well:













2

2

 ( 1 +  j ) 4 +  ( 1 −  j ) 4 =  ( 1 +  j ) 2

+  ( 1 −  j) 2 =  (a ±  b) 2 =  a 2 ± 2 ab +  b 2





=  ( 1 + 2 j − 1 ) 2 +  ( 1 − 2 j − 1 ) 2 = 4 j 2 + 4 j 2 =  j 2 = −1

= −4 − 4 = −8

As Re  (z) = −8 ,  Im  (z) = 0 is a negative real number on the horizontal axis, then | − 8| = 8

and arg (z) = atan2  ( 0 , −8 ) = ± π. 

8.22. Binomial powers of complex numbers in algebra form may be developed as





 ( 1 +  j ) 50 =  ( 1 +  j ) 2×25

 ab c =  (ab)c =  (ac)b









=

25

25

 ( 1 +  j ) 2

=  ( 12 + 2 j + 

 j  2 )

=  ( 2 j) 25 = 225 ×  j ×

 j  4×6

= 225  j
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As Re 225  j = 0 ,  Im 225  j = 225 is a positive number on the vertical axis, then |225| = 225





and arg (z) = atan2 225 ,  0 = + π/ 2. It is useful to note that the square power of  ( 1+ j ) 2 = 2 j . 

8.23. Similarly to A.8.22, 









50

50

 ( 1 −  j ) 100 =  ( 1 −  j ) 2×50 =  ( 1 −  j ) 2

= 1 − 2 j − 1 =  (−2 j) 50

12

=  (−1 ) 50 ( 2 ) 50 (j) 2+4×12 = 250 ×  j 2 × 

 j  4

= −250









As Re −250 = −250 ,  Im −250 = 0 is a negative number on the horizontal axis, | − 250| =





250 and arg (z) = atan2 0 , −250 = ± π. It is useful to note that the square power of  ( 1− j ) 2 =

−2 j. 

8.24. The inverse of  j  is − j , and the fourth power may be factorized as a “square of a square” 

as







2

1

4

 ( 1 +  j ) 2

+ 1 +  j

√

=  j  1 +

= − j +  ( 2 j) 2 = − j − 4 = −1 −  j

 j

2

 j j

22

4

4

√

As Re  (−1 −  j ) = −1 ,  Im  (−1 −  j ) = −1 is in the  I I I  quadrant, then | − 1 −  j | =

2 and

arg (z) = atan2  (−1 , −1 ) = −135◦ ≡ +5 π/ 4. 

8.25. The binomial square of a complex number may be developed as

√

√

√

√

 (j

3 − 1 ) 2

−

= 1 − 2 j  3 − 3 = 2 − 2 j  3 = 1 +

3

 j

 ( 2 j ) 2

−4

−4

2

2

√

√

As Re  (z) = 1 / 2 ,  Im  (z) = 3 / 2 is in the  I  quadrant, then |1 / 2 +  j  3 / 2| = 1 which is on the unit

√



circle, and arg (z) = atan2

3 / 2 ,  1 / 2 =  π/ 3. 

8.26. As the preparation work, note that



√ 

√







arg − 1+ j  3 def

= atan2

3 , −1 = a special angle (see Fig. 7.5 (right) and Fig. 7.1  ) = 2 π

3

is in the  I I  quadrant. An argument of this number is arg  z = 2 π/ 3, which is one of the special angles, implying that

2 π

arg (z) = 2 π ∴ arg (z 3 ) = 3

= 2 π

3

3

This case is very convenient, because arg (z 3 ) = 2 π  means that  z 3 is a real positive number and may be exploited as

8.1 Basic Complex Number Forms
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4

12

√

=

412√

=

412√

=

412



√

√ 

 j

3 − 1

 (−1 +  j  3 ) 12

 (−1 +  j  3 ) 3×4

4

 (−1 +  j  3 ) 2  (−1 +  j  3 )

=

412



√

√  =

412





4

√

√

4

 (−1 ) 2 − 2 j  3 + 3 j  2 ) (−1 +  j  3 )

2  (−1 −  j  3 ) (−1 +  j  3 )





 (a −  b)(a +  b) =  a 2 −  b 2 , j  2 = −1







12

22

=

412

= 4 = 22 ,  8 = 23 =   = 212 = 4 096

 ( 1 + 3 ) 4

4

23

As Re  ( 4 096 ) = 4 096 ,  Im  ( 4 096 ) = 0 is a positive number on the horizontal axis, then

|4096| = 4096 and arg (z) = atan2  ( 0 ,  4096 ) = 0◦. 

8.27. The given expression may be simplified as

√











 ( 1 +  j ) 2024

2

2

 ( 1 +  j ) 2×1012

1

 j  2

 ( 2 j ) 1012

2

4

+  j

√

= 4

√

= 4

−  j

√

 ( 1 −  j ) 2025

 j

2

 ( 1 −  j ) 2×1012+1

 j

2  j

 (−2 j ) 1012 ( 1 −  j )

2



253

 ( 2 j ) 4







=

2253 1

1 +  j

4 2 



−1 = −2

253

 (−2 j ) 4

 ( 1 −  j )

2



2253  ( 1 −  j )  1 +  j

= −1 −  j

√

As Re  (−1 −  j ) = −1 ,  Im  (−1 −  j ) = −1 is a in the  I I I  quadrant, thus | − 1 −  j | =

2

and arg (z) = atan2  (−1 , −1 ) = −3 π/ 4. 

8.28. Large exponents may be factorized so that the binomial square is used, as

















500 

500

1 +  j  1000

1000

2×500

2×500

√

+ 1 −  j

√

= 1 +  j

√

+ 1 −  j

√

= A2 j

+ −A2 j

2

2

2

2

A2

A2



=

125

2 

 j  4

= 2

As Re  ( 2 ) = 2 ,  Im  ( 2 ) = 0 is a positive number on the horizontal axis, then |2| = 2 and arg (z) = atan2  ( 0 ,  2 ) = 0◦. 

8.29. Following the same idea as in A.8.26, as the preparation work, note that



√ 





1

3

√





arg

+ j

def

= atan2

3 / 2 ,  1 / 2 = a special angle (see Fig. 7.5 (right) and Fig. 7.1  )=  π

2

2

3

is in the  I  quadrant. An argument of this number is arg  z =  π/ 3, which is one of the special angles, implying that
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 π

arg (z) =  π ∴ arg (z 3 ) = 3

=  π

3

3

This case is very convenient, because arg (z 3 ) =  π  means that  z 3 is a real negative number, and as 6 066 = 3 × 2 022 it may be exploited



√ 





6 066

√

6 066

1 +  j  3

+ 1 −  j  3

2

2



√

√ 





2 022

√

√

2 022

=  ( 1 +  j  3 ) 2 ( 1 +  j  3 )

+  ( 1 −  j  3 ) 2 ( 1 −  j  3 )

23

23



√

√ 





2 022

√

√

2 022

=  (−2 + 2 j  3 )( 1 +  j  3 )

+  (−2 − 2 j  3 )( 1 −  j  3 )

8

8



√

√ 



√

√ 

−

2 022

−

2 022

=

A2 ( 1 −  j  3 )( 1 +  j  3 )

+

A2 ( 1 +  j  3 )( 1 −  j  3 )

8 4

8 4





 (a −  b)(a +  b) =  a 2 −  b 2 , j  2 = −1









2 022

2 022

= −1 −  (−3 )

+ −1 −  (−3 )

=  (−1 ) 2022 +  (−1 ) 2022 = 1 + 1 = 2

4

4

As Re  ( 2 ) = 2 ,  Im  ( 2 ) = 0 is a positive number on the horizontal axis, then |2| = 2 and arg (z) = atan2  ( 0 , +2 ) = 0◦. 

√



8.30. Similarly as in A.8.29, note that arg

3 / 2 +  j/ 2 = + π/ 6; see Fig. 7.5 (right) and Fig. 7.1. Therefore, the argument of its sixth power is  π  resulting in a real negative number. In

√

√

addition, the following factorizations are useful: 1 /( 2 j ) = − j/ 2, 12 = 2 3, 108 = 6 × 18, 

216 = 6 × 36, and 6 = 3 × 2. So that

√







108

√

216

3 +  j

−

12 + 1

2

2

4

2 j

√







6×18

√

6×36

=

3 + 1

4 × 3

 j

 j

−

+ 1

2

2

4

2 j j

√







3 

√

2×18



3 2×36

=

3 + 1

A2 3

1

 j

−

−  j

2

2

A4 2

2

√







2×18

√

2×36

=  (  3 +  j) 3

−  (  3 −  j) 3

23

23





 (a +  b) 3 =  a 3 + 3 a 2 b + 3 ab 2 +  b 3 ,  see Fig. 2.1

8.2 Complex Plane
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√

√







2×18

√

√

2×36

= 

3 3 + 8 A9 j − 

3 3 − A j

− 

3 3 − 8 A9 j − 

3 3 + A j

23

23















2×18

−

2×36

18

36

= 8 j

−

8 j

= 82 j 2

− 

 (−1 ) 2 82  j  2

=  (−1 ) 18− (−1 ) 36

23

23

26

26

= 0

Therefore, Re  ( 0 ) = 0 ,  Im  ( 0 ) = 0 is a point at the complex plane origin. 

8.2

Complex Plane

Given the algebraic form of a complex number, its module may be calculated simply by Pythagoras’

theorem and shown in the unit circle (see Figs. 7.1 and 8.1), where the horizontal axis is interpreted as Re  (z)  and the vertical axis as Im  (z). 

8.31. Given  z = 1, then (see Fig. 8.3)



 z 1 = 1 ∴ Re  (z) = 1 ,  Im  (z) = 0 ∴ | z| =

 ( 0 ) 2 +  ( 1 ) 2 = 1





arg (z) = atan2  ( 0 , +1 )

on the positive side of the horizontal axes



=

0

arctan

= 0

1

8.32. Given  z 2 = −1, then (see Fig. 8.3)



 z 2 = −1 ∴ Re  (z) = −1 ,  Im  (z) = 0 ∴ | z| =

 ( 0 ) 2 +  (−1 ) 2 = 1





arg (z) = atan2  ( 0 , −1 )

on the negative side of the horizontal axes



= ±

0

 π + arctan

= ± π

1

Fig. 8.3 P.8.31 to P.8.43, in the

complex plane, the exponential

form of complex numbers is

represented by the unit circle

and angular direction. Angles

may be measured either in

positive (counterclockwise) or

negative (clockwise) directions. 

All angles may be rotated to

their correlated angles in the

first quadrant, as formalized by

various trigonometric identities. 

For example,  z 13 =   z 7 ±  π
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8.33. Given  z 3 =  j , then (see Fig. 8.3)



 z 3 =  j ∴ Re  (z) = 0 ,  Im  (z) = 1 ∴ | z| =

 ( 1 ) 2 +  ( 0 ) 2 = 1





arg (z) = atan2  ( 1 ,  0 )

on the positive side of the vertical axes



=

1

arctan

= arctan  (∞ ) =  π

0

2

8.34. Given  z 4 = − j , then (see Fig. 8.3)



 z 4 = − j ∴ Re  (z) = 0 ,  Im  (z) = −1 ∴ | z| =

 ( 1 ) 2 +  ( 0 ) 2 = 1





arg (z) = atan2  (−1 ,  0 )

on the negative side of the vertical axes





−

=

1

arctan

= − arctan  (∞ ) = − π

0

2

√

8.35. Given  z

3

5 =

 / 2 +  j  1 / 2, then (see Fig. 8.3)

√

√

√ 



3

1

3

3 2

2

 z 5 =

+  j

∴ Re  (z) =

 ,  Im  (z) = 1 ∴ | z| =

+ 1

= 1

2

2

2

2

2

2



√ 





1

3





1 / C2

arg (z) = atan2

 , 

in the  I  quadrant

= arctan √

=  π

2

2

3 / C2

6

√

√

8.36. Given  z

2

2

6 =

 / 2 +  j / 2, then (see Fig. 8.3)

√

√

√

√

√  √ 

2

2

2

2

2 2

2 2

 z 6 =

+  j

∴ Re  (z) =

 ,  Im  (z) =

∴ | z| =

+

= 1

2

2

2

2

2

2

√ √ 

√



2

2





Z2 / 2

arg (z) = atan2

 , 

in the  I  quadrant

= arctan

Z

√

1

=  π

2

2

ZZ

2 / 2

4

√

8.37. Given  z

3

7 = 1 / 2 +  j

 / 2, then (see Fig. 8.3)

√

√

√ 

3

3

1 2

3 2

 z 7 = 1 +  j

∴ Re  (z) = 1 ,  Im  (z) =

∴ | z| =

+

= 1

2

2

2

2

2

2

√



√ 

3 1





3 / C2

arg (z) = atan2

 , 

in the  I  quadrant

= arctan

=  π

2

2

1 / C2

3

8.2 Complex Plane
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√

√

8.38. Given  z

2

2

8 = −

 / 2 +  j / 2, then (see Fig. 8.3)

√

√

√

√

√   √ 

2

2

2

2

2 2

2 2

 z 8 = −

+  j

∴ Re  (z) = −

 ,  Im  (z) =

∴ | z| =

+ −

= 1

2

2

2

2

2

2

√

√ 

2

2





arg (z) = atan2

 , −

in the  I I  quadrant

2

2





Z

√2

= ±

 / 2

 π + arctan

Z

H√

= ± π + arctan (−1 ) = 3 π

−HH

2 / 2 −1

4

√

8.39. Given  z

3

9 = −

 / 2 +  j  1 / 2, then (see Fig. 8.3)

√

√

√   

3

1

3

3 2

1 2

 z 9 = −

+  j

∴ Re  (z) = −

 ,  Im  (z) = 1 ∴ | z| =

−

+

= 1

2

2

2

2

2

2



√ 

1

3





arg (z) = atan2

 , −

in the  I I  quadrant

2

2





1

√

= ±

 / C2

 π + arctan

√

= ± π + arctan (−1 /  3 ) = 5 π

− 3 / C2

6

√

√

8.40. Given  z

2

2

10 = −

 / 2 −  j / 2, then (see Fig. 8.3)

√

√

√

√

√   √ 

2

2

2

2

2 2

2 2

 z 10 = − −

− j

∴ Re  (z) = −

 ,  Im  (z) = −

∴ | z|=

−

+ −

=1

2

2

2

2

2

2

√

√ 

2

2





arg (z) = atan2 −

 , −

in the  I I I  quadrant

2

2

√



2

= ±

 / 2

 π + arctan 

−√ 1 = 5 π ≡ −3 π



− 2 / 2

4

4

√

√

8.41. Given  z

2

2

11 =

 / 2 −  j / 2, then (see Fig. 8.3)

√

√

√

√

√   √ 

2

2

2

2

2 2

2 2

 z 11 =

−  j

∴ Re  (z) =

 ,  Im  (z) = −

∴ | z| =

+ −

= 1

2

2

2

2

2

2

√ √ 

2

2





arg (z) = atan2 −

 , 

in the  I V  quadrant

2

2

√



2

=

 / 2

arctan 

−√ −1 = − π



2 / 2

4
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√

8.42. Given  z

3

12 =

−  j  1, then (see Fig. 8.3)

2

2

√

√

√   

3

1

3

3 2

2

 z 12 =

−  j

∴ Re  (z) =

 ,  Im  (z) = − 1 ∴ | z| =

+ −1

= 1

2

2

2

2

2

2



√ 

3





arg (z) = atan2 − 1  , 

in the  I V  quadrant

2

2





−1

√

=

 / C2

arctan

√

= arctan (−1 /  3 ) = − π

3 / C2

6

√

8.43. Given  z

3

13 = −1 / 2 −  j

 / 2, then (see Fig. 8.3)

√

√

√ 

3

3

2

3 2

 z 13 = − 1 −  j

∴ Re  (z) = −1 ,  Im  (z) = −

∴ | z| =

−1

+ −

= 1

2

2

2

2

2

2

√



3





arg (z) = atan2 −

 , − 1

in the  I I I  quadrant

2

2

√ 

−





3

√

= ±

 / C2

 π + arctan

= ± π + arctan

3 = 4 π ≡ − 2 π

−1 / C2

3

3

8.44. As powers on the complex number increases, both its modulus and its argument

increase as

 n = 0 :  ( 2 j ) 0 = 1 , ∴ Re  (z) = 1 ,  Im  (z) = 0

 n = 1 :  ( 2 j ) 1 = 2 j, ∴ Re  (z) = 0 ,  Im  (z) = 2

 n = 2 :  ( 2 j ) 2 = 4 j  2 = −4 , ∴ Re  (z) = −4 ,  Im  (z) = 0

 n = 3 :  ( 2 j ) 3 = 8 j  3 = −8 j, ∴ Re  (z) = −0 ,  Im  (z) = −8

 n = 4 :  ( 2 j ) 4 = 16 j  4 = 16 , ∴ Re  (z) = 16 ,  Im  (z) = 0

 n = 5 :  ( 2 j ) 5 = 32 j  5 = 32 j, ∴ Re  (z) = 0 ,  Im  (z) = 32

 ... 

thus, as  n → ∞, it creates a progressively expanding spiraling trajectory where | z| → ∞ and arg (z) → ∞ × 2 π; see Fig. 8.4

8.3 Polar Form
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Fig. 8.4 P.8.44, illustration of a

trajectory taken by a complex

number as its power increases. 

As | z| is greater than one, then

both module and phase tend to

infinity as the power increases, 

thus following exponential

spiral

8.3

Polar Form

8.45. The polar form of a complex number  z  is formed with its | z| and its arg (z). That is to say, given the algebraic form of  z  it is necessary to calculate | z| and arg (z)  by applying Pythagoras’ theorem and the unit circle. 

Reminder: Polar (exponential) form of complex numbers (see Figs. 7.1, 8.1, and 8.2)

 z =  a +  j b = | z|  ejθ

where

| z|2 =  z z∗ =  a 2 +  b 2 and,  θ = atan2  ( Im  (z) ,  Re  (z)) = atan2  (b, a) It is important to note that, by itself, the geometrical interpretation of  ejθ  is a circle whose r = 1. In other words, it can be used to describe  all  complex numbers whose module

| z| = 1 because each point on a circle defines a right triangle, as per Thales’ theorem as in Chap. 6. Given   θ , all complex numbers whose module | z| = 1 are located on the line crossing the origin at distance of | z|. Often, the term  ejθ  is referred to as the “phase”; it can also be imagined as the “unit of distance” (similar to 1m) but in the direction of   θ

(similar to a compass), where  z  is the actual distance from the origin. 

 z =  j ∴ Re  (z) = 0 ,  Im  (z) = 1



| z| = 02 + 12 = 1

arg (z) = atan2  (+1 ,  0 ) =  π 2

∴

 z = 1  ej π/ 2
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8.46. The exponential form greatly simplifies power calculations, due to periodic  j  4 = 1, and then

506

 z =  j  2024 =  j  4×506 =  j  4

= 1506 = 1

therefore, | z| = 1 ,  and   z = 2 π = 0

∴

 z =  ej  0

that is to say, number  z = 1 is located at the unit circle in the direction of  0, the same with all the other positive real numbers. 

8.47. The algebraic form of  z  may be converted into its equivalent polar form as z = 2 −  j ∴ Re  (z) = 2 ,  Im  (z) = −1



√

| z| =  ( 22 +  (−1 ) 2 ) = 5







1

arg (z) = atan2  (−1 ,  2 )

in the  I V  quadrant, ≈ −26 .  56◦ = − arctan 2

∴ √

 z =

5  e− j  arctan ( 1 / 2 )

√

that is to say, number  z  is located at

5 distance from the origin in the direction of

 (− arctan  ( 1 / 2 )). 

8.48. The algebraic form of  z  may be converted into its equivalent polar form as Method 1: as already found in A.8.47

√

√

 z =

5  e− j  arctan ( 1 / 2 )

and | z| =

5

√

6





 z 6 =

5  e− j  arctan ( 1 / 2 )

= 53  e− j  6 arctan ( 1 / 2 )  in the  III  quadrant, ≈ −159 .  39◦

Method 2: by using algebraic transformations

 z =  ( 2 −  j ) 6 =  ( 2 −  j ) 2×3 =  ( 4 − 4 j − 1 ) 3 =  ( 3 − 4 j ) 2  ( 3 − 4 j ) =  ( 9 − 24 j − 16 )( 3 − 4 j )

=  (−7 − 24 j)( 3 − 4 j) = −21 + 28 j − 72 j − 96 = −117 − 44 j Therefore, 

 z = −117 − 44 j ∴ Re  (z) = −117 ,  Im  (z) = −44



| z| =  (−117 ) 2 +  (−44 ) 2 = 125 = 53

8.3 Polar Form
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44

arg (z) = atan2  (−44 , −117 )

in the  I I I  quadrant, ≈ −159 .  39◦ = ± π + arctan 117

∴





 z = 53  ej ± π+arctan ( 44 / 117 )

that is to say, number  z  is located at “125” distance from the origin in the direction of   (± π +



arctan ( 44 / 117 ) . 

8.49. As the preparation work (see A.8.29), note that



√ 

√  



arg 1 +  j  3 def

= atan2

3 ,  1 = a special angle (see Fig. 7.5 (right) and Fig. 7.1  ) =  π 3

which is to say that its third power is a real negative number. Similarly, binomial square power ( 1 ±  j ) 2 = ±2 j . Therefore, 



√ 

√

√

1 +  j  3 10

3 ) 3×3 ( 1 +  j  3 ) 



 z =

=  ( 1 +  j

see A.8.26

1 −  j

 ( 1 −  j ) 2×5

√

√





−

√

=  (−8 ) 3 ( 1 +  j  3 )

512 1 +  j  3  j

see A.8.5 =

= 16  (  3 −  j)

 (−2 j ) 5

−32

 j

 j



√ 

∴ | z| = 32 ,  and arg (z) = atan2 −1 ,  3 = − π  see Fig. 7.1

6

∴  z = 32  e− j π 6

8.50. Real and imaginary parts of a given number may be derived as



√





√ √





√ 



√ 

1

3 −  j  3

2 −

3 (  3 −  j )  3

2 − 3 +  j  3 3

3 3

 z = √ −

=

√

=

√

= 1

√ −1 +  j

3

2

2 3

2 3

3

2

2

where



√ 

1

√ −1 +

3

 j

(in the  I I  quadrant)

3

2

2







|1|

∴



√







1

3





√ −1 +  j



and its phase  θ (see Fig. 7.1) is

3

2

2

= 1

√3

√



 θ = atan2

3 / 2 , −1 / 2 = 2 π

3

This is one of special angles, which is to say that the argument of its third power is zero, a real positive number, as

340

8

Complex Algebra





√ 3



√ 

1

3

√ −1 +

3

3

 j

= 1

√

−1 +  j

= 1

√

3

2

2

27

2

2







27

=1

∴

 z =

1

√

 ej  0

27

8.51. The given expression may be resolved with binomial squares as

−8 j − −8 j

 z =  ( 1 +  j ) 6 −  ( 1 −  j ) 6 =  ( 1 +  j ) 2×3 −  ( 1 −  j ) 2×3 =  ( 2 j ) 3 −  (−2 j ) 3 =

 ( 1 +  j ) 6 ( 1 −  j ) 6

 ( 1 +  j ) 2×3 ( 1 −  j ) 2×3

 ( 2 j ) 3 (−2 j ) 3

 (−8 j )( 8 j )

−

=

8 j − 8 j = − 1

 j

 (−8 j )( 8 j )

4

∴

 z = 1  e− l π 2

4

8.52. The given expression may be resolved with binomial squares as













3

1 −  j

 j  6

3 ( 1 −  j )

6

3

3

1

6

 z =

+ 1 +  j

=

+  j − 1

=

−  j −  j + 1

1 +  j  1 −  j

2 j

 j

2

−2

2

2

2

2

= 26  ( 1 −  j) 2×3 = 26  (−2 j) 3 = 29  j

∴

|29  j| = 29 and  j =  ej π 2 ∴  z = 29  ej π 2 = 512  ej π 2

8.53. The given expression may be resolved as





 ( 1 −  j ) 2  j + 1 4



4

 z =

√

= 1 −2 j (j + 1 ) = 24  ( 1 −  j) 4 = 1  (−4 )

2

2

64

64

4

= −1 a real negative number

∴

| − 1| = 1 and,  θ =  π

∴  z =  ejπ

8.54. The given expression is already in Euler’s trigonometric form as





 π

 π  3

 z = 8 cos

−  j  sin

6

6

∴









| z| = 8 and  θ 0 = − π

∴  θ = 3 − π = − π

∴  z = 8  e− j π 2

= −8 j

6

6

2
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8.55. Following the same ideas as A.8.29 and after, the algebraic form of  z  may be converted into its equivalent exponential form as

 z =

 ( 1 +  j ) 200 ( 6 + 2 j ) −  ( 1 −  j ) 198 ( 3 −  j )

=  ( 1+ j) 2×100 2 ( 3+ j) −  ( 1− j) 2×99 ( 3− j) ( 1 +  j ) 196 ( 23 − 7 j ) +  ( 1 −  j ) 194 ( 10 + 2 j ) ( 1+ j ) 2×98 ( 23−7 j ) +  ( 1− j ) 2×97 2 ( 5 + j )

=  ( 2 j) 100 2 ( 3 +  j) −  (−2 j) 99 ( 3 −  j) = 299 × 4 ( 3 +  j) − 299 j ( 3 −  j) ( 2 j ) 98 ( 23 − 7 j ) +  (−2 j ) 97 2 ( 5 +  j )

−298 ( 23 − 7 j) − 298 j ( 5 +  j)

= 2Z

99 ( 12 + 4 j − 3 j − 1 ) = 2 ( 11 +  j)  11 +  j =

 ( 11 +  j ) 2

−

298 ( 23 − 7 j + 5 j − 1 )

−2 ( 11 −  j)  11 +  j

− ( 11 −  j)( 11 +  j)

= 121 + 22 j − 1 = 120 + 22 j = −60 + 11 j = −60 − 11

 j

− ( 121 + 1 )

−122

61

61

61

Therefore, 

11

 z =

11 +  j

= −60 −  j

− ( 11 −  j)

61

61

∴

√

|

|

11 +  j |

122

 z| =

= √

= 1 , (i.e., on the unit circle)

| − 1||11 −  j|

122







11

arg (z) = atan2  (−11 / 61 , −60 / 61 )

in the  I I I  quadrant, ≈ −169 .  61◦ = ± π + arctan 60

∴





 z = 1  ej ± π+arctan ( 11 / 60 )



that is to say, number  z  is located on the unit circle in the direction of   (± π + arctan ( 11 / 60 ) . 

8.4

Euler Identity

Reminder: Euler’s formula shows explicitly the relationship between the exponential form of a complex number  z  to basic trigonometric functions, as

 z =  a +  j b = | z| ejθ = | z|  ( cos  θ +  j  sin  θ) where sine and cosine functions are derived from the right triangle defined by  z  on the unit circle. Special case of  θ =  π  is (arguably) considered as one of the most beautiful equations in sciences, 

 ejπ + 1 = 0

(continued)
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(continued)

that combines in one simple relation five of the most important numbers in mathematics:

 e, j, π,  0 ,  1. 

8.56. Recall that (see Fig. 8.1) the real part of a complex number numerically equals the length of horizontal cathetus, and its imaginary part numerically equals the length of the

vertical cathetus. By Euler’s equation, the phase and module of a complex number are found

by inspection, as

 z =  ej  0 ⇒





 z = | z| ejθ =  ej  0 ∴ | z| = 1 ,  arg (z) =  θ = 0

on the positive side of the horizontal axis





 z = | z|  ( cos  θ +  j  sin  θ) = 1  ( cos 0 +  j  sin 0 ) see the unit circle

= 1 +  j  0 = 1 (see A.8.31)

By definition, complex conjugate numbers have opposite signs of their imaginary parts, i.e if z =  a +  j b  then  z∗ =  a −  j b  then, 

 z z∗ =  (a +  j b)(a −  j b) =  a 2 − H

 j  H

 ab + H

 j  H

 ab −  j  2 b 2 =  a 2 +  b 2 = | z|2

Therefore, in Euler’s form









 z = |1| cos 0 +  j  sin 0

∴  z∗ = cos 0 −  j  sin 0 = 1 cos (− x) = cos (x),  sin (− x) = − sin  x or, 

 z =  ej  0 ∴  z∗ =  e− j  0 = 1

in other words, the complex conjugate of a real number is the same real number. This is because to say “real number” is to say “Im  (z) = 0.” It is useful to keep in mind that the product of z z∗ = | z|2, which may be verified as

 z z∗ =  ej  0  e− j  0 =  e(j  0 )+ (− j  0 ) =  e 0 = 1 = |1|2 = | z|2 or, z z∗ =  ( cos 0 +  j  sin 0 ) ( cos 0 −  j  sin 0 ) = 1 × 1 = 12 = | z|2

8.57. By inspection, 

 z =  ej π 6 ⇒





 z = | z| ejϕ =  ej π 6 ∴ | z| = 1 ,  arg (z) =  ϕ =  π

in the  I  quadrant

6





 π

 π





 z = | z|  ( cos  ϕ +  j  sin  ϕ) = 1 cos

+  j  sin

see the unit circle

6

6

√

= 3 + 1

 j

(see P.8.35 )

2

2
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Therefore, in Euler’s form

 π

 π

 π

 π

 z = cos

+  j  sin

∴  z∗ = cos

−  j  sin

6

6

6

6

or, 

 z =  ej π 6 ∴  z∗ =  e− j π 6

The product of  z z∗ = | z|2 is confirmed as

 z z∗ =  ej π

 )+ (− j π )

6  e− j π 6 =  e(j π 6

6

=  e 0 = 1 = |1|2 = | z|2 or, 







√

√



 π

 π

 π

 π

3

1

3

1

 z z∗ = cos

+  j  sin

cos

−  j  sin

=

+  j

−  j

6

6

6

6

2

2

2

2

√

√

= 3 −

3

3

1

 j

+  j

−  j 2 = 3 + 1 = 1 = 12 = | z|2

4

4

4

4

4

4

8.58. By inspection, 

 z =  ej π 4 ⇒





 z = | z| ejϕ =  ej π 4 ∴ | z| = 1 ,  arg (z) =  ϕ =  π

in the  I  quadrant

4





 π

 π





 z = | z|  ( cos  ϕ +  j  sin  ϕ) = 1 cos

+  j  sin

see the unit circle

4

4

√

√

= 2 +

2

 j

(see A.8.36)

2

2

Therefore, 

 π

 π

 π

 π

 z = cos

+  j  sin

∴  z∗ = cos

−  j  sin

4

4

4

4

or, 

 z =  ej π 4 ∴  z∗ =  e− j π 4

And the product of  z z∗ = | z|2 is verified as

 z z∗ =  ej π

 )+ (− j π )

4  e− j π 4 =  e(j π 4

4

=  e 0 = 1 = |1|2 = | z|2 or, 







√

√  √

√ 

 π

 π

 π

 π

2

2

2

2

 z z∗ = cos

+  j  sin

cos

−  j  sin

=

+  j

−  j

4

4

4

4

2

2

2

2

√

√

= 1 −

2

2

1

 j

+  j

−  j 2 = 1 + 1 = 1 = 12 = | z|2

2

4

4

2

2

2
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8.59. By inspection, 

 z =  ej π 3 ⇒





 z = | z| ejϕ =  ej π 3 ∴ | z| = 1 ,  arg (z) =  ϕ =  π

in the  I  quadrant

3





 π

 π





 z = | z|  ( cos  ϕ +  j  sin  ϕ) = 1 cos

+  j  sin

see the unit circle

3

3

√

= 1 +

3

 j

(see A.8.37)

2

2

Therefore, 

 π

 π

 π

 π

 z = cos

+  j  sin

∴  z∗ = cos

−  j  sin

3

3

3

3

or, 

 z =  ej π 3 ∴  z∗ =  e− j π 3

And  z z∗ = | z|2 is calculated as

 z z∗ =  ej π

 )+ (− j π )

3  e− j π 3 =  e(j π 3

3

=  e 0 = 1 = |1|2 = | z|2 or, 









√  

√ 

 π

 π

 π

 π

1

3

1

3

 z z∗ = cos

+  j  sin

cos

−  j  sin

=

+  j

−  j

3

3

3

3

2

2

2

2

√

√

= 1 −

3

3

3

 j

+  j

−  j 2 = 1 + 3 = 1 = 12 = | z|2

4

4

4

4

4

4

8.60. By inspection, 

 z =  ej π 2 ⇒





 z = | z| ejα =  ej π 2 ∴ | z| = 1 ,  arg (z) =  α =  π

on the positive side of the vertical axis

2





 π

 π





 z = | z|  ( cos  α +  j  sin  α) = 1 cos

+  j  sin

see the unit circle

2

2

= 0 +  j (see A.8.33)

Therefore, 

 π

 π

 π

 π

 z = cos

+  j  sin

∴  z∗ = cos

−  j  sin

2

2

2

2

or, 

 z =  ej π 2 ∴  z∗ =  e− j π 2

8.4 Euler Identity
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And  z z∗ = | z|2 is confirmed as

 z z∗ =  ej π

 )+ (− j π )

2  e− j π 2 =  e(j π 2

2

=  e 0 = 1 = |1|2 = | z|2 or, 







 π

 π

 π

 π

 z z∗ = cos

+  j  sin

cos

−  j  sin

=  ( 0 +  j  1 ) ( 0 −  j  1 )

2

2

2

2

= − j 2 12 = 1 = 12 = | z|2

8.61. By inspection, 

 z =  ej  3 π 4 ⇒





 z = | z| ejϕ =  ej  3 π 4 ∴ | z| = 1 ,  arg (z) =  ϕ = 3 π

in the  I I  quadrant

4





3 π

3 π





 z = | z|  ( cos  ϕ +  j  sin  ϕ) = 1 cos

+  j  sin

see the unit circle

4

4

√

√

= − 2 +

2

 j

(see A.8.38)

2

2

Therefore, 

3 π

3 π

3 π

3 π

 z = cos

+  j  sin

∴  z∗ = cos

−  j  sin


4

4

4

4

or, 

 z =  ej  3 π 4 ∴  z∗ =  e− j  3 π 4

Also, the product of  z z∗ = | z|2 as

 z z∗ =  ej  3 π

 )+ (− j  3 π )

4

 e− j  3 π 4 =  e(j  3 π 4

4

=  e 0 = 1 = |1|2 = | z|2 or, 







√

√   √

√ 

3 π

3 π

3 π

3 π

2

2

2

2

 z z∗ = cos

+  j  sin

cos

−  j  sin

= −

+  j

−

−  j

4

4

4

4

2

2

2

2

= 1 +S 1

1

1

 j

−S j −  j 2 = 1 + 1 = 1 = 12 = | z|2

2

SS2

SS2

2

2

2

8.62. By inspection, 

 z =  ej  5 π 6 ⇒





 z = | z| ejϕ =  ej  5 π 6 ∴ | z| = 1 ,  arg (z) =  ϕ = 5 π

in the  I I  quadrant

6





5 π

5 π





 z = | z|  ( cos  ϕ +  j  sin  ϕ) = 1 cos

+  j  sin

see the unit circle

6

6

√

= − 3 + 1

 j

(see P.8.39)

2

2
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Therefore, 

5 π

5 π

5 π

5 π

 z = cos

+  j  sin

∴  z∗ = cos

−  j  sin

6

6

6

6

or, in polar form

 z =  ej  5 π 6 ∴  z∗ =  e− j  5 π 6

Also, the product of  z z∗ = | z|2 as

 z z∗ =  ej  5 π

 )+ (− j  5 π )

6

 e− j  5 π 6 =  e(j  5 π 6

6

=  e 0 = 1 = |1|2 = | z|2 or, 







√

√



5 π

5 π

5 π

5 π

3

1

3

1

 z z∗ = cos

+  j  sin

cos

−  j  sin

= −

+  j

−

−  j

6

6

6

6

2

2

2

2

√

√

@

@

= 3 +

3

3

1

 j @ −  j @ −  j 2 = 3 + 1 = 1 = 12 = | z|2

4

@

4

@

4

4

4

4

8.63. By inspection, 

 z =  ej π ⇒





 z = | z| ejβ =  ej π ∴ | z| = 1 ,  arg (z) =  β =  π

on the negative part of horizontal axis





 z = | z|  ( cos  β +  j  sin  β) = 1  ( cos  π +  j  sin  π) see the unit circle

= −1 +  j  0 (see A.8.33)

Therefore, 

 z = cos  π +  j  sin  π ∴  z∗ = cos  π −  j  sin  π

or, 

 z =  ej π ∴  z∗ =  e− j v

The product  z z∗ = | z|2 as

 z z∗ =  ej π e− j π =  e(j π)+ (− j π) =  e 0 = 1 = |1|2 = | z|2 or, z z∗ =  ( cos  π +  j  sin  π) ( cos  π −  j  sin  π) =  (−1 +  j  0 ) (−1 −  j  0 ) = 1 = 12 = | z|2

8.64. By inspection, 

 z =  ej  5 π 4 ⇒





 z = | z| ejϕ =  ej  5 π 4 ∴ | z| = 1 ,  arg (z) =  ϕ = 5 π ≡ − 3 π

in the  I I I  quadrant

4

4





5 π

5 π





 z = | z|  ( cos  ϕ +  j  sin  ϕ) = 1 cos

+  j  sin

see the unit circle

4

4
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√

√

= − 2 −

2

 j

(see A.8.40)

2

2

Therefore, 

5 π

5 π

5 π

5 π

 z = cos

+  j  sin

∴  z∗ = cos

−  j  sin

4

4

4

4

or, 

 z =  ej  5 π 4 ∴  z∗ =  e− j  5 π 4

And  z z∗ = | z|2 as

 z z∗ =  ej  5 π

 )+ (− j  5 π )

4

 e− j  5 π 4 =  e(j  5 π 4

4

=  e 0 = 1 = |1|2 = | z|2 or, 







√

√   √

√ 

5 π

5 π

5 π

5 π

2

2

2

2

 z z∗ = cos

+  j  sin

cos

−  j  sin

= −

−  j

−

+  j

4

4

4

4

2

2

2

2

= 1 −S 1

1

1

 j

+S j −  j 2 = 1 + 1 = 1 = 12 = | z|2

2

SS2

SS4

2

2

2

8.65. By inspection, 

 z =  ej  3 π 2 ⇒





 z = | z| ejθ =  ej  3 π 2 ∴ | z|=1 ,  arg (z) =  θ = 3 π ≡ −  π

on the negative side of the vertical axis

2

2





3 π

3 π





 z = | z|  ( cos  θ +  j  sin  θ) = 1 cos

+  j  sin

see the unit circle

2

2

= 0 −  j  1 (see A.8.34)

Therefore, 

3 π

3 π

3 π

3 π

 z = cos

+  j  sin

∴  z∗ = cos

−  j  sin

2

2

2

2

or, 

 z =  ej  3 π 2 ∴  z∗ =  e− j  3 π 2

And  z z∗ = | z|2 as

 z z∗ =  ej  3 π

 )+ (− j  3 π )

2

 e− j  3 π 2 =  e(j  3 π 2

2

=  e 0 = 1 = |1|2 = | z|2 or, 







3 π

3 π

3 π

3 π

 z z∗ = cos

+  j  sin

cos

−  j  sin

=  ( 0 −  j  1 ) ( 0 +  j  1 )

2

2

2

2

= − j 2 1 = 1 = 12 = | z|2
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8.66. By inspection, 

 z =  ej  7 π 4 ⇒





 z = | z| ejϕ =  ej  7 π 4 ∴ | z| = 1 ,  arg (z) =  ϕ = 7 π ≡ −  π

in the  I V  quadrant

4

4





7 π

7 π





 z = | z|  ( cos  ϕ +  j  sin  ϕ) = 1 cos

+  j  sin

see the unit circle

4

4

√

√

= 2 −

2

 j

(see A.8.41)

2

2

Therefore, 

7 π

7 π

7 π

7 π

 z = cos

+  j  sin

∴  z∗ = cos

−  j  sin

4

4

4

4

or, 

 z =  ej  7 π 4 ∴  z∗ =  e− j  7 π 4

And  z z∗ = | z|2 as

 z z∗ =  ej  7 π

 )+ (− j  7 π )

4

 e− j  7 π 4 =  e(j  7 π 4

4

=  e 0 = 1 = |1|2 = | z|2 or, 







√

√  √

√ 

7 π

7 π

7 π

7 π

2

2

2

2

 z z∗ = cos

+  j  sin

cos

−  j  sin

=

−  j

+  j

4

4

4

4

2

2

2

2

= 1 +S 1

1

1

 j

−S j −  j 2 = 1 + 1 = 1 = 12 = | z|2

2

SS2

SS2

2

2

2

8.67. By inspection, 

 z =  ej  11 π 6 ⇒





 z = | z| ejϕ =  ej  11 π 6 ∴ | z| = 1 ,  arg (z) =  ϕ = 11 π ≡ −  π

in the  I V  quadrant

6

6





11 π

11 π





 z = | z|  ( cos  ϕ +  j  sin  ϕ) = 1 cos

+  j  sin

see the unit circle

6

6

√

= 3 − 1

 j

(see A.8.42 )

2

2

Therefore, 

11 π

11 π

11 π

11 π

 z = cos

+  j  sin

∴  z∗ = cos

−  j  sin

6

6

6

6

or, 

 z =  ej  11 π 6 ∴  z∗ =  e− j  11 π 6
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Also,  z z∗ = | z|2 as

 z z∗ =  ej  11 π

 )+ (− j  11 π )

6

 e− j  11 π

6

=  e(j  11 π 6

6

=  e 0 = 1 = |1|2 = | z|2 or, 







√

√



11 π

11 π

11 π

11 π

3

1

3

1

 z z∗ = cos

+  j  sin

cos

−  j  sin

=

−  j

+  j

6

6

6

6

2

2

2

2

√

√

= 3 −

3

3

1

 j

+  j

−  j 2 = 3 + 1 = 1 = 12 = | z|2

4

4

4

4

4

4

8.68. Given the exponential form, by definition





 z = 1  ej π 3 ∴ | z| = 1 and arg (z) =  π

in the  I  quadrant

2

2

3

8.69. Negative real numbers are replaced by their exponential form as well, so that

 z = −2  e− j  5 π

 )

6

= −1 × 2 ×  e− j  5 π 6 =  ejπ × 2 ×  e− j  5 π 6 = 2  ej (π−5 π 6 = 2  ej π 6

∴





| z| = 2 and arg (z) =  π

in the  I  quadrant

6

8.70. Similar to A.8.69, 

 z = − 1  ej  7 π

 )

4

= −1 × 1 ×  ej  7 π 4 =  ejπ × 1 ×  ej  7 π 4 = 1  ej (π+7 π 4 = 1  ej  11 π 4

2

2

2

2

2









= 1

8 π

 ej (  8 π + 3 π )

4

4

=

= 2 π ≡ 0◦ = 1  ej  3 π 4

in the  I I I  quadrant

2

4

2

∴

| z| = 1 and arg (z) = 3 π

2

4

8.71. By definition

√



√  







2

2

2

 z =

2  ej π

×2

4

=

2

 ej π 4

= 2  ej π 4

= 2  ej π 2

on the positive side of the vertical axis

or, in trigonometric form





=

 π

 π

2 cos

+  j  sin

= 2  ( 0 +  j  1 ) = 2 j

2

2

therefore, 

| z| = 2 and arg (z) =  π 2
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8.72. By definition, 



3





 z = 3  ej π

×3

3

= 33  ej π 3

= 27  ejπ  on the negative side of the horizontal axis

therefore, 

| z| = 27 and arg (z) =  π

8.73. Given polar form



5





 z = 4  e− j  5 π 6

= 45  e− j  25 π 6 = 22×5  e− j  12×2 π+ π

6

= 12 × 2 π ≡ 0◦ = 210  e− j π 6





= 1024  e− j π 6

in the  I V  quadrant

therefore, 

| z| = 210 = 1024 and arg (z) = − π 6

8.74. By definition, 







4

1 4





 z = 0 .  2  ej  7 π

×4

4

=

 ej  7 π 4

= 1  ej 2 π×3+ π

2 π × 3 ≡ 0◦

5

625





= 1  ejπ  on the negative side of the horizontal axis

625

therefore, 

| z| = 1 and arg (z) =  π

625

8.75. Similar to A.8.69, 



3

 z = −3  e− j π

×3

6

=  (−3 ) 3  e− j π 6

= −27  e− j π 2 = −1 × 27 ×  e− j π 2 =  ejπ × 27 ×  e− j π 2





= 27  ej(π− π )

2

= 27  ej π 2

on the positive side of the vertical axis

therefore, 

| z| = 27 and arg (z) =  π 2

8.5 Rational Powers
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Rational Powers

√

8.76. As a real number, the square root of unity is straightforward to calculate,  z =

1 = ±1. 

However, as given by one of the complex algebra theorems, the complex roots of unity are very important for general calculations. 

Reminder: The general  n-order root of unity is a set of solutions in the form of

√



1

 n

1

1 = 1  n =  ej k  2 π n =  ej k  2 πn , k = 0 ,  2 , . . . n − 1

Consequently, for  k = 0 it follows that  e 0 = 1 is the first root of unity. Note that arguments of  n  roots are evenly distributed around the unit circle in 2 π/n  steps. 

In the polar form, as  n = 2, then two square roots  zi  of unity are

 j  0 2 π

 k = 0 :  z 1 =  e

2 =  e 0 = cos 0 +  j  sin 0 = 1

 j  1 2 π

 k = 1 :  z 2 =  e

2 =  ej π = cos  π +  j  sin  π = −1

which are two roots located on the horizontal (real) axis in complex plane. 

8.77. If considered only as a real number, the cube root of unity is simply equal to one. 

However, in complex domain unity is expressed in polar form as

1 =  ej k  2 π , k = 0 , ±1 , ±2 , . . . 

and its geometrical interpretation is as the intersect point on the positive side of the horizontal (real) axis and the unit circle. Consequently, regardless in which direction, every full turn around the circle falls on the same point (thus, the periodicity every 2 π  angle). 

For that reason, in the polar form, as  n = 3, then three roots  zi  of unity are (see Fig. 7.1)

 k = 0 :  z 1 =  ej  0 2 π 3 =  e 0 = cos 0 +  j  sin 0 = 1

2 π

2 π

√

 k = 1 :  z 2 =  ej  1 2 π 3 =  ej  2 π 3 = cos

+  j  sin

= 1 (− 3 +  j)

3

3

2

4 π

4 π

√

 k = 2 :  z 3 =  ej  2 2 π 3 =  ej  4 π 3 = cos

+  j  sin

= 1 (− 3 −  j) =  z∗

3

3

2

2

where the three roots, starting with the principal root  z 1 = 1, are evenly distributed every 120◦

around the unit circle (see Fig. 8.5), as they form vertices of an equilateral triangle. 
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Fig. 8.5 P.8.77, complex cube

roots of unity. One root is real

and the other two are complex

conjugate. The three roots are

evenly distributed every 120◦

and obviously placed on the unit

√

circle, i.e., | 3 1| = 1. 

Geometrical interpretation of

three roots is that they form

vertices of an equilateral

triangle

 Verification:

 z 3 = 13 = 1

1



3

 j  2 π  3

 z 3 =  ej  2 π 3

=  e

=  ej  2 π = 1

2

3









3

3

− j  2 π  3

 z 3 =  ej  4 π 3

=  e− j  2 π 3

=  e

=  e− j  2 π = 1

3

3

8.78. Following up discussion in A.8.77, the fourth root of unity in polar form is calculated with  n = 4 so that four complex roots  zi  of unity are

 j  0 2 π

 k = 0 :  z 1 =  e

4 2 =  e 0 = cos 0 +  j  sin 0 = 1

 j  1 2 π

 π

 π

 k = 1 :  z 2 =  e

4 2 =  ej π 2 = cos

+  j  sin

=  j

2

2

 j  2 2 π

 k = 2 :  z 3 =  e

4 =  ej π = cos  π +  j  sin  π = −1

 j  3 2 π

3 π

3 π

 k = 3 :  z 4 =  e

4 2 =  ej  3 π 2 = cos

+  j  sin

= − j

2

2

that are evenly distributed every 90◦ around the unit circle; see Fig. 7.1. 

8.79. Following up discussion in A.8.77, the sixth root of unity in polar form is calculated with  n = 6 so that four complex roots  zi  of unity are separated by 2 π/ 6 =  π/ 3 angle, as j  0 2 π





 k = 0 :  z 1 =  e

6 3 =  e 0 = cos 0 +  j  sin 0 = 1 on the positive side of the horizontal axis j  1 2 π

 π

 π

√ 



 k = 1 :  z 2 =  e

6 3 =  ej π 3 = cos

+  j  sin

= 1 ( 1 +  j  3 )  in the  I  quadrant

3

3

2

8.5 Rational Powers
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Fig. 8.6 P.8.79, six complex

roots  z 1 to  z 6 at its vertices. The

six roots are distributed every

60◦ and obviously placed on the

√

unit circle, i.e., | 3 1| = 1. 

Geometrical interpretation of

three roots is that they form

vertices of a hexagon

 j  2 2 π

2 π

2 π

√ 



 k = 2 :  z 3 =  e

6 3 =  ej  2 π 3 = cos

+  j  sin

= 1 (−1 +  j  3 )  in the  II  quadrant

3

3

2

 j  3 2 π





 k = 3 :  z 4 =  e

6 =  ej π = cos  π+ j  sin  π = −1 on the negative side of the horizontal axis j  4 2 π

4 π

4 π

√ 



 k = 4 :  z 5 =  e

6 3 =  ej  4 π 3 = cos

+  j  sin

= −1 ( 1 +  j  3 )  in the  III  quadrant

3

3

2

 j  5 2 π

5 π

5 π

√ 



 k = 5 :  z 6 =  e

6 3 =  ej  5 π 3 = cos

+  j  sin

= 1 ( 1 −  j  3 )  in the  IV  quadrant

3

3

2

where the six roots are evenly distributed every 60◦ around the unit circle, thus forming a

hexagon; see Fig. 8.6. 

8.80. Radicals in general are converted into fractional powers, and one possible technique to account for all complex roots is to recall that for real numbers unity is the neutral element in respect to the operation of multiplication, i.e.,  x × 1 =  x, x ∈ R. However, in complex domain that is true only for | x| × |1|, whereas the argument of complex product is equal  to sum  of the multiplication terms. That is, as for the square root operation  n = 2, two roots are found as











1

1

1

 j k  2 π

 j =  (j × 1 )

+  kπ)

2 =  ej π 2 2 1 2 =

see A.8.76 =  ej π 4  e

2 =  ej(π 4

;  k = 0 ,  1

Then, two roots  zi  are computed in the  I  and  I I I  quadrants as



√

 π



 π



2

 k = 0 :  z 1 = cos

+ 0 π +  j  sin

+ 0 π

=

 ( 1 +  j )

4

4

2



√





 π



 π



5 π 

5 π 

2

 k = 1 :  z 2 = cos

+ 1 π + j  sin

+ 1 π = cos

 π + j  sin

= −

 ( 1+ j )

4

4

4

4

2
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therefore,  z 2 = − z 1 as

√

√

2

2

5 π

Re  (z) = ±

 ,  Im  (z) = ±

 , | z| = 1 and arg (z) =  π , 

2

2

4

4

Note that the square root of a complex number computes the square root of its module; 

however, its principal argument (i.e., when  n = 0) is divided by two. Geometrically, as its argument is positive, the square root operation results in a  clockwise  rotated complex number. 

8.81. Following the same idea as in A.8.80,  n = 2; thus, 1

−

1

1

 j k  2 π

 j =  (− j )

+  k π)

2 1 2 =  e− j π 2 2  e

2 =  ej(− π 4

;  k = 0 ,  1

Then, two complex roots  zi  are found to be in the  I V  and  I I  quadrants as



√









2

 k = 0 :  z 1 = cos −  π + 0 π +  j  sin −  π + 0 π

=

 ( 1 −  j )

4

4

2



√











3 π 

3 π 

2

 k = 1 :  z 2 = cos −  π + 1 π + j  sin −  π + 1 π

= cos

 π + j  sin

= −

 ( 1− j )

4

4

4

4

2

therefore,  z 2 = − z 1 as

√

√

2

2

3 π

Re  (z) = ±

 ,  Im  (z) = ±

 , | z| = 1 and arg (z) = −  π , 

2

2

4

4

Here, the square root operation results in a half-argument rotation in the positive (i.e., 

 counterclockwise) direction (because it is a half of a negative argument). Interestingly enough, as opposed to real numbers, there is no problem to calculate square roots of a “negative” 

complex number. In fact, there is no such thing as a “negative complex number” in the same

sense as for the real numbers. Instead, there is only a number in the direction of its argument. 

Thus, the equivalence between complex numbers and vectors: both abstract object are seen as

the interpretation of a “number with direction.” 

8.82. Following the same idea as in A.8.77, for the third root  n = 3; thus, 1

1

3  j  1

+ k  2 π )

3 =  (ej π 2  )  3  ek  2 π 3 =  ej ( π 6

3

;  k = 0 ,  1 ,  2

Three complex roots  zi  are computed as (see Fig. 7.1)

 π

 π

√

 k = 0 :  z 1 =  ej π 6 = cos

+  j  sin

= 1 (  3 +  j)

6

6

2

5 π

5 π

√

 k = 1 :  z

+ 2 π )

2 =  ej ( π 6

3

= cos

+  j  sin

= 1 (− 3 +  j)

6

6

2

3 π

3 π

 k = 2 :  z

+ 4 π )

3 =  ej ( π 6

3

= cos

+  j  sin

= − j

2

2
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therefore, 

√

√

|

3

3

1

5 π  3 π

 z| = 1; Re  (z) =

 , −

 ,  0; Im  (z) = 1  , , −1; arg (z) =  π , 

 , 

2

2

2 2

6

6

2

The geometrical interpretation of these three roots is as vertices of an equilateral triangle that is rotated by  π/ 6 inside the unit circle. 

8.83. For the fourth root  n = 4, thus



1

1

4  j  1

+ k π )

4 =  (ej π 2  )  4  ek  2 π 4 =  ej ( π 8

2

;  k = 0 ,  1 ,  2 ,  3

As  π/ 8 is not one of the special angles in Fig. 7.1, its exact sine and cosine functions may be derived by using the square to double-angle identities (see Chap. 7), as 2  π/ 8 =  π/ 4, then two identities

sin2  α = 1 − cos ( 2 α) ; 

cos2  α = 1 + cos ( 2 α)

2

2

may be used as

√



 π



 π 



2 



√ 

 π

1 

√ 

sin2

= 1 1 − cos

= 1 1 −

= 1 2 − 2 ∴ sin

=

2 −

2

8

2

4

2

2

4

8

4



 π



 π 

 π

1 

√ 

cos2

= 1 1 + cos

∴ cos

=

2 +

2

8

2

4

8

4

Four complex roots are distributed every 90◦ around the unit circle as





 π

 π

1 

√ 

1 

√ 

 k = 0 :  z 1 =  ej π 8 = cos

+  j  sin

=

2 +

2 +  j

2 −

2

8

8

4

4













cos  θ +  π = − sin  θ; sin  θ +  π = cos  θ

(see Chap. 7)

2

2 



 π

 π

1 

√ 

1 

√ 

 k = 1 :  z

+  π )

2 =  ej ( π 8

2

= − sin

+  j  cos

= −

2 −

2 +  j

2 +

2

8

8

4

4





 π

 π

1 

√ 

1 

√ 

 k = 2 :  z

+ π)

3 =  ej ( π 8

= − cos

−  j  sin

= −

2 +

2 −  j

2 −

2

8

8

4

4





 π

 π

1 

√ 

1 

√ 

 k = 3 :  z

+ 3 π )

4 =  ej ( π 8

2

= sin

−  j  cos

=

2 −

2 −  j

2 +

2

8

8

4

4

The geometrical interpretation of these four roots is as vertices of a square that is rotated by π/ 8 inside the unit circle. 

8.84. For the fifth root  n = 5, thus



1

1

5  j  1

+ k  2 π )

5 =  (ej π 2  )  5  ek  2 π 5 =  ej ( π 10

5

;  k = 0 ,  1 ,  2 ,  3 ,  4
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Fig. 8.7 P.8.84, five complex

roots  z 1 to  z 5 at its vertices. The

five roots are distributed every

2 π/ 5 and obviously placed on

√

the unit circle, i.e., | 5 1| = 1. 

Geometrical interpretation of

three roots is that they form

vertices of a pentagon

As  π/ 10 is not one of the special angles in Fig. 7.1, its exact sine and cosine functions may be derived by using a combination of trigonometric identities for multiple angles, for example, sin ( 3 α) = 3 sin  α − 4 sin3  α; 

cos ( 2 α) = 1 − 2 sin2  α

may be used to derive exact sine and cosine functions

 π

√

sin

= 1  (  5 − 1 )

10

4 

 π

√

cos

= 1 10 + 2 5

10

4

Then, with the rotational identities, five complex roots  zi  are distributed every 2 π/ 5 around the unit circle as



 π

 π

√

1 √

 k = 0 :  z 1 =  ej π 10 = cos

+  j  sin

= 1 10 + 2 5 +  j (  5 − 1 )

10

10

4

4





 π

 π

 k = 1 :  z

+ 2 π )

2 =  ej ( π

10

5

= cos

+  j  sin

=  j

2

2











9 π

9 π

√

1 √

 k = 2 :  z

+ 4 π )

3 =  ej ( π

10

5

= cos

+  j  sin

= −1 10 + 2 5 +  j (  5 − 1 )

10

10

4

4











13 π

13 π

√

1 √

 k = 3 :  z

+ 6 π )

4 =  ej ( π

10

5

= cos

+  j  sin

= −1 10 − 2 5 −  j (  5 + 1 )

10

10

4

4











17 π

17 π

√

1 √

 k = 4 :  z

+ 8 π )

5 =  ej ( π

10

5

= cos

+  j  sin

= 1 10 − 2 5 −  j (  5 + 1 )

10

10

4

4

The geometrical interpretation of these five roots is as vertices of a pentagon that is rotated by π/ 10 inside the unit circle; see Fig. 8.7. 

8.85. The given square root may be transformed as

8.5 Rational Powers
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√

1  j







= 2 − j

see A.8.81

2 j j

2

therefore, two complex roots  zi  are distributed every  π  around the unit circle as

√

√ √

2 

2

2

 k = 0 :  z 1 =

− j =

 ( 1 −  j ) = 1  ( 1 −  j )

2

2

2

2

√

√ √

2 

2

2

 k = 1 :  z 2 =

− j =

 (−1 +  j ) = − 1  ( 1 −  j ) = − z 1

2

2

2

2

8.86. The explicit algebraic form of a complex number is converted into its exponential equivalent by Pythagoras’ theorem as



√

 z = 1 −  j ∴ Re  (z) = 1 ,  Im  (z) = −1 ∴ | z| = |1 −  j | =

12 +  (−1 ) 2 =

2





∴ arg ( 1− j) = atan2  ( Im  (z) ,  Re  (z)) = atan2  (−1 ,  1 ) = − π  in the  IV  quadrant 4

therefore, its exponential form is

√

√

√

3

3

1 −  j =

2  e− j π 4

∴  ( 1 −  j) 2 =  (  2  e− j π 4  ) 2 = 4 8  e− j  3 π 8

so that, for square root  n = 2, thus two complex roots  zi  are calculated as



√

√

√

 ( 1 −  j ) 3

1 = 4 8  e− j  3 π

+ kπ)

8

 ej kπ = 4 8  ej(− 3 π 8

 , k = 0 ,  1

As “−3 π/ 8” is not one of the special angles in Fig. 7.1, its exact sine and cosine functions may be derived by using the square to double-angle identities (see A.8.83), as 2 ×  (−3 π/ 8 ) =

−3 π/ 4; then two identities

sin2  α = 1 − cos ( 2 α) ; 

cos2  α = 1 + cos ( 2 α)

2

2

may be used to calculate





√







3 π



3 π 



2 



√ 

√

sin2

= 1 1 − cos

= 1 1 +

= 1 2 + 2 ∴ sin −3 π = −1 2 + 2

8

2

4

2

2

4

8

2











3 π



3 π 

√

cos2

= 1 1 + cos

∴ cos −3 π = 1 2 − 2

8

2

4

8

2

then, two complex roots are

√

√   









√



√ 

 k = 0 :  z

 )

1 = 4 8  ej (− 3 π

8

= 4 8 cos −3 π + j  sin −3 π

= 1

√

2 −

2+ j

2 + 2

8

8

4 2

√

√ 















5 π

5 π

√

√

 k = 1 :  z

 )

2 = 4 8  ej (  5 π

8

= 4 8 cos

+  j  sin

= − 1

√

2 −

2 +  j

2 +

2

8

8

4 2

where  z 2 = − z 1 as it is usual for all square roots. 
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8.87. Similar to A.8.86, first, 

1

=

1

= −1

1

 j =  ejπ

 ej π 2 = 1  ejπ+  π 2 = 1  ej  3 π 2 = 1  e− j π 2

 ( 1 +  j ) 2

1 + 2 j − 1

2

2

2

2

2

so that





1

√

1 

1

3

 e− j π

3

+ k  2 π

2

1 = 3

 e− j π 2 3  ej k  2 π 3 = 1

√  e− j π 6

3

2

2

3 2

Three complex roots  zi  are computed as





 π

 π

√

 k = 0 :  z 1 = 1

√  e− j π 6 = 1

√

cos

−  j  sin

= 1

√  (  3 −  j)

3 2

3 2

6

6

2 3 2





 π

 π

 k = 1 :  z 1 = 1

√  ej π 2 = 1

√

cos

+  j  sin

= 1

√  j

3 2

3 2

2

2

3 2





7 π

7 π

√

 k = 2 :  z 1 = 1

√  ej  7 π 6 = 1

√

cos

+  j  sin

= − 1

√  (  3 +  j)

3 2

3 2

6

6

2 3 2

The geometrical interpretation of these three roots is as vertices of an equilateral triangle that

√

is rotated by − π/ 6 inside the circle whose radius  r = 1 /  3 2. 

8.6

Complex Equations

8.88. A complex number  z =  x + jy  is represented by a point in the  x, y  Cartesian coordinate system, where Re  (z)  is on the horizontal  x-axis and Im  (z)  is on the vertical  y-axis. As  z∗ =

 x −  jy, then  z z∗ =  x 2 +  y 2 = | z|2, and | z| = | z∗|. That being said, then

| z − 1| = 9 ⇒

 (z − 1 )(z∗ − 1 ) = 92

 (x +  jy − 1 )(x −  jy − 1 ) = 92

 (x − 1 ) 2 +  y 2 = 92

(8.1)

As in Chap. 6 (see A.6.75), analytic equation (8.1) describes a circle whose  r = 9, and its center is at  (x, y) =  ( 1 ,  0 )  position. In conclusion, all points on the circle satisfy a given complex equation. 

8.89. Following the same idea as in A.8.88, 

| z − 3 j| = 1 ⇒

 (x +  jy − 3 j )(x −  jy + 3 j ) = 12

8.6 Complex Equations
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 x +  j (y − 3 ) x −  j (y − 3 ) = 1

 x 2 +  (y − 3 ) 2 = 1

(8.2)

Analytic equation (8.2) describes a circle whose  r = 1, and its center is at  (x, y) =  ( 0 ,  3 ) position. In conclusion, all points on this circle satisfy a given complex equation. 

8.90. Following the same idea as in A.8.88, 

| z + 2 −  j| = 4 ⇒

 (x +  jy + 2 −  j )(x −  jy + 2 +  j ) = 42







 (x + 2 ) +  j (y − 1 ) (x + 2 ) −  j (y − 1 ) = 42

 (x + 2 ) 2 +  (y − 1 ) 2 = 42

(8.3)

Analytic equation (8.3) describes a circle whose  r = 4, and its center is at  (x, y) =  (−2 ,  1 ) position. In conclusion, all points on this circle satisfy a given complex equation. 

8.91. Assuming  z =  x +  jy, then



| z − 1| = | x − 1 +  jy| =  (x − 1 ) 2 +  y 2



| z + 1| = | x + 1 +  jy| =  (x + 1 ) 2 +  y 2

so that





 z − 1





 z + 1  = 2



 (x − 1 ) 2 +  y 2 = 2

 (x + 1 ) 2 +  y 2





 (x − 1 ) 2 +  y 2 = 4  (x + 1 ) 2 +  y 2





5 2

5 2 



 x 2 + 10  x +

+  y 2 = −1 +

perfect square techique

3

3

3







2

4 2

 x + 5

+  y 2 =

(8.4)

3

3

Analytic equation (8.4) describes a circle whose  r = 4 / 3, and its center is at  (x, y) =

 (−5 / 3 ,  0 )  position. In conclusion, all points on this circle satisfy a given complex equation. 

8.92. Assuming  z =  x +  jy, then



| z − 5 + 2 j| = | x +  jy − 5 + 2 j| =  (x − 5 ) 2 +  (y + 2 ) 2



|2 z − 1| = |2 (x +  jy) − 1| = |2 x − 1 +  j 2 y| =  ( 2 x − 1 ) 2 + 4 y 2
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so that





 z − 5 + 2 j 





2 z − 1  = 1



 (x − 5 ) 2 +  (y + 2 ) 2 = 1

 ( 2 x − 1 ) 2 + 4 y 2

 (x − 5 ) 2 +  (y + 2 ) 2 =  ( 2 x − 1 ) 2 + 4 y 2

 x 2 − 10 x + 25 +  y 2 + 4 y + 4 = 4 x 2 − 4 x + 1 + 4 y 2

3 x 2 + 6 x + 3 y 2 − 4 y = 28





 x 2 + 2 x +1 +  y 2 − 4  y + 4 = 28 +1 + 4

perfect square techique

3

9

3

9





 (x + 1 ) 2 +  y − 2 = 97

(8.5)

3

9

√

Analytic equation (8.5) describes a circle whose  r =

97 / 3, and its center is at  (x, y) =

 (−1 ,  2 / 3 )  position. In conclusion, all points on this circle satisfy a given complex equation. 

8.93. The given equation

| z + 2| + | z − 2| = 5

(8.6)

is a well-known equation form of ellipse in complex plane whose focal points are  x 1 = −2

and  x 2 = 2. 

Reminder: Equations for circle and ellipse in the Cartesian system are





 (x −  x 0 ) 2 +  (y −  y 0 ) 2 =  r 2

circle centered at  (x 0 , y 0 )  with radius  r

(8.7)

 x 2





+  y 2 = 1 ellipse whose semiaxes are  a  and  b

(8.8)

 a 2

 b 2

where two nonequal semiaxes  a =  b  in (8.8) “distort” the perfect circle form; otherwise, if  a =  b =  r, then (8.8) becomes circle equation (8.7) again. 

Assuming  z =  x +  jy, one possible way to derive (8.8) from (8.6) may be as follows:

| z + 2| + | z − 2| = 5  



| x +  jy + 2| + | x +  jy − 2| = 5 | z| = Re  (z) 2 + Im  (z) 2





 (x + 2 ) 2 +  y 2 +

 (x − 2 ) 2 +  y 2 = 5





2

 (x + 2 ) 2 +  y 2 = 5 −

 (x − 2 ) 2 +  y 2

8.6 Complex Equations
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 x 2 + 4 x + 4 + 

 y 2 = 25 − 10  (x − 2 ) 2 +  y 2 +  x 2 − 4 x + 4 + 

 y 2



8 x − 25 = −10  (x − 2 ) 2 +  y 2

64  x 2 − ((((

(

16 × 25  x + 252 = 100  x 2 − 



400  x + 400 + 100  y 2

225 = 36  x 2 + 100  y 2 or, equivalently

 x 2

+  y 2 = 1

 ( 5 / 2 ) 2

 ( 3 / 2 ) 2

which shows explicitly two semiaxes as  a = 5 / 2 and  b = 3 / 2. In conclusion, all points on this ellipse satisfy a given complex equation. 

8.94. By separating real and complex parts of this complex equation, as

 ( 2 + 3 j )x +  ( 3 + 2 j )y = 1

2 x + 3 j x + 3 y + 2 jy = 1

 ( 2 x + 3 y) +  ( 3 x + 2 y)j = 1 + 0 j

then, by the equality of real and imaginary parts on both sides, it follows that

2 x + 3 y = 1

3 x + 2 y = 0

This system of linear equations may be solved by any known method, for example, 

Method 1: by the elimination method

2 x + 3 y = 1 ⇒  y = 1 − 2  x

3

3

3 x + 2 y = 0





1

3 x + 2

− 2  x = 0

3

3

5  x + 2 = 0 ∴  x = −2 ⇒  y = 3

3

3

5

5

Method 2: by Cramer’s rule (see Sect. 10.5) as
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⎫

2 3

 

= 

⎪



⎪

3 2 = 4 − 9 = −5 = 0⎪

⎪

⎪



⎪

⎪



⎪

⎬

1 3

 x

=  

∴  x =  x = −2 and  y =  y = 3

0 2 = 2 − 0 = 2

⎪

⎪

 

5

 

5



⎪

⎪



⎪

⎪

2 1

⎪

⎪

 y

=  

⎭

3 0 = 0 − 3 = −3

8.95. One possible technique to resolve the given equation may be to transform its right side so that both sides are in the same form, for example, 

1

= 1 +

1

 x +  jy

2 +  j

−2 + 4 j

−

=

A2 + 4 j + A2 +  j =

5 j

=

5 j

=

1

=

1

 ( 2 +  j )(−2 + 4 j )

−4 + 8 j − 2 j − 4

−8 + 6 j

−8

6

 j

+ 6A j

− 8

5 j

5A j

5

5 j j

∴

1

=

1

 x +  j y

6 + 8

 j

5

5

By inspection, this equation is possible only if real and imaginary parts on both sides are equal, i.e., 

 x = 6 and  y = 8

5

5

8.96. Following the same idea as in A.8.94, 

5 x − 3 jy + 2 j = 6 −  j x −  y

5 x +  y +  j (x − 3 y + 2 ) = 6 + 0  j

then, by the equivalence of real and imaginary parts on both sides, it follows that

5 x +  y = 6 ⇒  y = 6 − 5 x

 x − 3 y + 2 = 0 ∴  x − 3 ( 6 − 5 x) + 2 = 0

 x = 1 ∴  y = 1

8.97. The given nonlinear complex equation may be transformed into a system of nonlinear equations that is subsequently resolved by the elimination method:

 j x 2 +  ( 1 − 2 j )xy +  ( 1 −  j )y 2 = 4 + 2 j
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 xy +  y 2 +  j (x 2 − 2 xy −  y 2 ) = 4 + 2 j

(8.9)

by the equivalence of real and imaginary parts on both sides in (8.9), it follows that xy +  y 2 = 4

(8.10)

 x 2 − 2 xy −  y 2 = 2

(8.11)

from 2×(8.10) + (8.10) ⇒  x 2 +  y 2 = 10

(8.12)

from (8.10) + (8.10) ⇒  x 2 −  xy = 6

(8.13)

which may be resolved by the elimination method as

from (8.13) ⇒  x(x −  y) = 6 ∴  y =  x − 6 =  x 2 − 6

(8.14)

 x

 x



2

 x 2 − 6

 x 2 − 6

from (8.14) → (8.10) ⇒  x

+

= 4

(8.15)

 x

 x





 (x 2 − 6 ) 2 =  x 2  ( 10 −  x 2 )

 x 2 =  t

(8.16)





 t 2 − 11 t + 18 = 0

Vietè formulas

 t 2 − 2 t − 9 t + 18 = 0 ∴

√

 (t − 2 )(t − 9 ) = 0 ∴  x 1 ,  2 = ±3 , x 3 ,  4 = ± 2

By back substitution of  x 1 ,  2 ,  3 ,  4 into (8.12), it follows that

√

√

 x 2 +  y 2 = 10 ∴  y 1 ,  2 = ±1 , y 3 ,  4 = ± 8 = ±2 2

 Verification:

 j x 2 +  ( 1 − 2 j )xy +  ( 1 −  j )y 2 = 4 + 2 j

 ( 3 ,  1 ) : 9  j + ( 1 − 2 j )  3+ ( 1 −  j ) = 4+2 j ∴ 3+1+ j ( 9 − 6 − 1 ) = 4+2 j (−3 , −1 ) : 9  j + ( 1 − 2 j )  3+ ( 1 −  j ) = 4+2 j ∴ 3+1+ j ( 9 − 6 − 1 ) = 4+2 j 

√

√

 (− 2 ,  2 2 ) : 2  j + ( 1 − 2 j ) (−4 )+ ( 1 −  j ) 8 = 4+2 j ∴ −4+8+ j ( 2+8 − 8 ) = 4+2 j 

√

√

 (  2 , −2 2 ) : 2  j + ( 1 − 2 j ) (−4 )+ ( 1 −  j ) 8 = 4+2 j ∴ −4+8+ j ( 2+8 − 8 ) = 4+2 j 8.98. Complex equations and inequalities obey the same rules as ordinary real equations and inequalities. The fundamental theorem of algebra states that in complex domain a nonzero

single-variable polynomial whose degree is  n  must have exactly  n  complex roots. As already discussed in Chap. 3, multiplicity of a root is included. Recall that real numbers are only a special case of complex numbers whose Im  (z) = 0. In addition, the imaginary unit  j  is
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treated as any other constant, while keeping in mind values of its powers. 

Therefore, by following the same logic as with real equations, for example, a simple quadratic

√

equation  x 2 = 4 ∴ | x| =

4

∴  x 1 ,  2 = ±2, has two roots, then the given quadratic

equation of complex variable  z  must also have two roots  z 1 and  z 2; see A.8.80. Or this equation may be resolved as





√



1

 z 2 =  j ∴

 z 2 =

 j =  j  2

 x 2 = | x|



1

|

1

 z| =  j  2 =  ej π 2 2 = 1  ej π 4

∴ | z| = 1 ,  and arg (| z| ) =  π 4





∴

its trigonometric form (see the unit circle)

√

√

|

 π

 π

2

2

 z| = cos

+  j  sin

=

+  j

4

4

2

2

∴ √ √ 

√

√

√

√ 

2

2

2

2

2

2

 z = ±

+  j

⇒  z 1 =

+  j

;  z 2 = −

+  j

2

2

2

2

2

2

Two roots are located diametrically opposite in the complex plane, i.e., in the  I  and  I I I quadrants; see Fig. 8.8. 

 Verification:  for the sake of completeness, these two solution may be verified as

√

√ 2

√ √

2

2

ZZ2ZZ2

 (z

2

2

1 ) 2 =

+  j

= + 2  j

− =  j

2

2

4

2 A2

4

√

√ 





2

√

√

2

2

2

2

2

 (z 2 ) 2 = −

+  j

=  (−1 ) 2

+  j

=  (z 1 ) 2 =  j

2

2

2

2

Fig. 8.8 P.8.98, quadratic

equation of a complex variable  z

has two roots that are

symmetrically positioned in the

complex plane, in the case of

 z 2 =  j  in the  I  and  I I I

quadrant. As the module | z| = 1

both roots are found on the unit

circle
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8.99. Similarly to A.8.81, two roots  z 1 and  z 2 of a given complex equation are





√



1

 z 2 = − j ∴

 z 2 =

− j =  (− j) 2

 x 2 = | x|



1

|

1

 z| =  (− j )  2 =  e− j π 2 2 = 1  e− j π 4

∴ | z| = 1 ,  and arg (| z| ) = − π 4





∴

its trigonometric form (see the unit circle)

√

√

|

 π

 π

2

2

 z| = cos

−  j  sin

=

−  j

4

4

2

2

∴ √ √ 

√

√

√

√ 

2

2

2

2

2

2

 z = ±

−  j

⇒  z 1 =

−  j

;  z 2 = −

−  j

2

2

2

2

2

2

Two roots are located diametrically opposite in the complex plane, in the  I I  and  I V

quadrants; see Fig. 8.9. 

 Verification:  for the sake of completeness, these two solution may be verified as

√

√ 2

√ √

2

2

ZZ2ZZ2

 (z

2

2

1 ) 2 =

−  j

= − 2  j

− = − j

2

2

4

2 A2

4

√

√ 





2

√

√

2

2

2

2

2

 (z 2 ) 2 = −

−  j

=  (−1 ) 2

−  j

=  (z 1 ) 2 = − j

2

2

2

2

8.100. The given equation may be resolved by multiple methods:

 z 2 = 5 + 12 j

Fig. 8.9 P.8.99, quadratic

equation of a complex variable  z

has two roots that are

symmetrically positioned in the

complex plane, in the case of

 z 2 = − j  in the  I I  and  I V

quadrant. As the module | z| = 1

both roots are found on the unit

circle
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Method 1: by writing the polar form of  z 2, as



12 



5 + 12 j ∴ |5 + 12 j | =

52 + 122 = 13 ,  arg ( 5 + 12 j ) = arctan

in the  I  quadrant

5

therefore, 

√

 z 2 = 5 + 12 j = 13  ej  arctan ( 12 / 5 ) ∴  z = ± 13  ej  arctan ( 12 / 5 ) 2

∴

√ 









arctan ( 12 / 5 )

arctan ( 12 / 5 )

 z 1 =

13 cos

+  j  sin

= 3 + 2 j

2

2

√ 









arctan ( 12 / 5 )

arctan ( 12 / 5 )

 z 2 = − 13 cos

+  j  sin

= −3 − 2 j

2

2

where the last simplification may be done numerically, or with the trigonometric identities

that are not presented in this book. 

Method 2: being a complex number, the algebraic form of  z  must be

 z =  a +  bj, (a, b) ∈ R

therefore, 

 z 2 =  a 2 + 2 abj −  b 2 =  (a 2 −  b 2 ) +  ( 2 ab) j By the equivalence of real and imaginary parts on both sides of this equation it follows that z 2 = 5 + 12 j =  (a 2 −  b 2 ) +  ( 2 ab) j ∴ 2 ab = 12 ∴  ab = 6 ⇒  a = 6 b 6 2

 a 2 −  b 2 = 5 ∴

−  b 2 = 5

 b

The last equation is biquadratic, as

36 −  b 2 = 5 ∴ 36 −  b 4 = 5 b 2

 b 2

 b 4 + 5 b 2 − 36 = 0

 b 4 + 9 b 2 − 4 b 2 − 36 = 0

 b 2 (b 2 + 9 ) − 4 (b 2 + 9 ) = 0

 (b 2 − 4 )(b 2 + 9 ) = 0

 (b − 2 )(b + 2 )(b 2 + 9 ) = 0

As  b ∈ R, only two real roots are acceptable, that is to say, 
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Fig. 8.10 P.8.101, fourth order

equation of a complex variable  z

has four roots that are

symmetrically positioned in the

complex plane. As the module

| z| = 2, all four roots are found

on a circle whose  r = 2

 b 1 ,  2 = ±2 ∈ R , (((((((

 b 3 ,  4 = ±3 j ∈ C ∴  a = 6 = 6 = ±3

 b

±2

 z 1 = 3 + 2 j ;  z 2 = −3 − 2 j

Therefore, 



√

| z 1 ,  2| = 32 + 22 = 13





arg (z 1 ) = atan2  ( 2 ,  3 ) ,  in the  I  quadrant, ≈ 33 .  69◦





arg (z 2 ) = atan2  (−2 , −3 ) ,  in the  I I I  quadrant, ≈  π + 33 .  69◦ ≈ 213 .  69

∴√  







 z 1 =

13 cos arctan ( 2 / 3 ) +  j  sin arctan ( 2 / 3 )

√  







 z 2 = − 13 cos arctan ( 2 / 3 ) +  j  sin arctan ( 2 / 3 ) 8.101. One possible method to solve this equation may be as follows:

√

√

 z 4 + 8 + 8 3  j = 0 ∴  z 4 = −8 − 8 3  j = | z 0|  ej ϕ 0

√

√



√ 

where | z 0| = | − 8 − 8 3  j |, Re  (z 0 ) = −8, Im  (z 0 ) = −8 3, and  ϕ 0 = arg −8 − 8 3  j , thus



√

√

√

√ √

| z 0| =  (−8 ) 2 +  (−8 3 ) 2 = 64 + 3 × 64 = 4 × 64 = 4 64 = 16

√







 ϕ 0 = atan2 − 3 , −1 = − 2 π

in the  I I I  quadrant

3





arg (z 0 ) = − 2 π = 4 π

in the  I I I  quadrant

3

3

∴  z 4 = 16  ej  4 π 3
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Being a 4th-order polynomial, there are in total four roots that may be resolved in two steps as follows:



12

 z 4 = 16  ej  4 π 3 ∴  z 2 = ± 16  ej  4 π 3

= ±4  ej  2 π 3

1 ,  2

 z 2 = 4  ej  2 π 3

1

 z 2 = −4  ej  2 π

 )

3

=  ejπ  4  ej  2 π 3 = 4  ej (π+2 π 3 = 4  ej  5 π 3

2

then repeat the square root operation, as



12

 z 1 = ± 4  ej  2 π 3

= ±2  ej π 3



12

 z 2 = ± 4  ej  5 π 3

= ±2  ej  5 π 6

so that

 z

+ 0 π )

1 = 2  ej π 3 ≡ 2  ej ( π 3

2

 z

+ 1 π )

2 = 2  ej  5 π

6

≡ 2  ej (π 3 2

 z

+ 2 π )

3 = −2  ej π 3 =  ej π  2  ej π 3 = 2  ej  4 π

3

≡ 2  ej (π 3 2

 z

+ 3 π )

4 = −2  ej  5 π

6

=  ej π  2  ej  5 π 6 = 2  ej  11 π 6 ≡ 2  ej (π 3 2

The four roots are symmetrically distributed on the circle whose  r = 2; see Fig. 8.10. Starting with  z 1, the general form of the roots may be expressed as





 π

 π

 j

+  k

! 







" 

 π

 π

 π

 π

 z

3

2

 k = 2  e

= 2 cos

+  k

+  j  sin

+  k

3

2

3

2

where  k = 0 ,  1 ,  2 ,  3

As already demonstrated in this chapter, this kind of root distribution is general. For example, in the case of second-order equation, its two roots are separated by a 2 π/ 2 =  π  angle. Or, if third-order equation, its three roots are separated by 2 π/ 3, etc. 

In summary, 

! 



" 

 π

 π

√

 k = 0 :  z 1 = 2 cos

+  j  sin

= 1 +  j  3

3

3

! 







" 

 π

 π

√

 k = 1 :  z 2 = 2 cos

+  π +  j  sin

+  π

= − 3 +  j

3

2

3

2

! 







" 

 π

 π

√

 k = 2 :  z 3 = 2 cos

+  π +  j  sin

+  π

= −1 −  j  3

3

3

#







$

 π

 π

√

 k = 3 :  z 4 = 2 cos

+ 3 π +  j  sin

+ 3 π

= 3 −  j

3

2

3

2
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 Verification:  each of the four solutions  z 1 ,  2 ,  3 ,  4 should be verified, for example, 

√

 z 4 + 8 + 8 3  j = 0

2




5 π 

 j

4

√

2  e

6

+ 8 + 8 3  j = 0

10 π

 j

√

16  e

3

+ 8 + 8 3  j = 0





6 π

 j

0 + 4 π

√

16  e

3

3

+ 8 + 8 3  j = 0

#







$

4 π

4 π

√

16

cos

+  j  sin

+ 8 + 8 3  i = 0

3

3



√



3

√

16 − 1 −

 j

+ 8 + 8 3  i = 0

2

2

√

√

−8 −H

8 HH

3  j + 8 + H

8 HH

3  j = 0

0 = 0 

8.102. Given



|

1

 z| =  

 z  = |1 −  z|

then, from the left side equality it follows that



|

1

 z| =  

 z 

∴ | z| = 1

because “1 = 1 / 1” is the only real number that is equal to its inverse. Further, 

| z| = |1 −  z| = 1 and therefore | z| = 1 ∴ | z|2 = 1 as well as |1 −  z| = 1 ∴ |1 −  z|2 = 1





|1 −  z|2 = | x|2 =  x x∗ =  ( 1 −  x)( 1 −  x)∗





complex conjugate of a real number is the same number

=  ( 1 −  z)( 1 −  z∗ ) = 1 −  z∗ −  z +  zz∗ = 1 −  z∗ −  z + | z|2 = 1 ⇒

 z∗ +  z = 1

Thus, as | z| = 1 ∴ | zz∗| = | z|2 = 1 there is the following system to solve for  z =  a +  j b  as



⎧

 zz∗

= 1

⎨  a 2 +  b 2 = 1

∴

√3

 z +  z∗

= 1

⎩ 2 a

= 1 ∴  a = 1 ⇒  b =

2

2
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In summary, there are two solutions:

√

√

3

3

 z 1 = 1 +  j

and its complex conjugate  z 2 = 1 −  j

2

2

2

2

8.103. The given equation may be transformed into its equivalent as

 j z 6 + 8

√

= 3

8 j −  z 6

√

 j z 6 + 8 =

3  ( 8 j −  z 6 )

√

√





 j z 6 +  z 6 3 =

3 8 j − 8

 j = − 1 j

√

√

 z 6  (



 j +

3 ) = 8 j (



3 +  j )

 z 6 = 8  j

The exponential form and Euler’s equation are efficient for calculating powers and roots of

complex numbers, as

 z 6 = 8  j = 8  ej π 2 ⇒



√

√  



 π

 π

 z = 6 8  ej π 2 =

2  ej π 12 =

2 cos

+  j  sin

(see A.7.44)

12

12

√

√





= 1  (  3 + 1 ) +  j (  3 − 1 )  principal root

2

All six roots  zi (see A.8.79) are separated by  π/ 3 and may be resolved as

√





 j  0 2 π

√

 π

 π

√

√



 k = 0 :  z 1 =

2  ej π 12  e

6 3 = 2 cos

+  j  sin

= 1  (  3 + 1 ) +  j (  3 − 1 )

12

12

2

√

√  



5 π

5 π

√

√



 k = 1 :  z 2 =

2  ej  5 π

12

= 2 sin

+  j  cos

= 1  (  3 − 1 ) +  j (  3 + 1 )

12

12

2

√

√  



3 π

3 π

 k = 2 :  z 3 =

2  ej  3 π 4 =

2 sin

+  j  cos

= −1 +  j

4

4

√

√  



 π

 π

√

√



 k = 3 :  z 4 =

2  ej  13 π

12

= 2 − cos

−  j  sin

= −1  (  3 + 1 ) +  j (  3 − 1 )

12

12

2

√

√  



 π

 π

√

√



 k = 4 :  z 5 =

2  ej  13 π

12

= 2 − sin

−  j  cos

= −1  (  3 − 1 ) +  j (  3 + 1 )

12

12

2

√

√  



 π

 π

 k = 5 :  z 6 =

2  e− j π 4 =

2 cos

−  j  sin

= 1 −  j

4

4

In summary, there are six roots located on circle whose  r = 2, where sine and cosine functions of multiple  π/ 12 are derived by the similarity rules with the principal  π/ 12 angle. 
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8.104. The given function of  n  is resolved as









1 +  j n

1 −  j n

 z(n) =

√

+

√

∴

2

2





















1 +  j n+4

1 −  j n+4

1 +  j  4 1 +  j n

1 −  j  4 1 −  j n

 z(n + 4 ) =

√

+

√

=

√

√

+

√

√

2

2

2

2

2

2













 n

 n

=

1 +  j

1 −  j

see A.8.21 = −

√

−

√

∴  z(n + 4 ) +  z(n) = 0

2

2

8.105. In the general case of a third-order polynomial equation whose roots are  z 1 , z 2, and  z 3

its factorized may be expanded as follows (Fig. 8.11):

 (z −  z 1 )(z −  z 2 )(z −  z 3 ) = 0

 z 3 −  z 3  z 2 −  z 2  z 2 +  z 2 z 3  z −  z 1  z 2 +  z 1 z 3  z +  z 1 z 2  z −  z 1 z 2 z 3 = 0

 z 3 −  (z 1 +  z 2 +  z 3 ) z 2 +  (z 1 z 2 +  z 1 z 3 +  z 2 z 3 ) z −  z 1 z 2 z 3 = 0

(8.17)

Recall that these are Viète formulas that relate the coefficients of a polynomial to sums and products of its roots; see Sect. 2.6. To say that three roots of a complex equation are at vertices of an equilateral triangle is to say that they are distributed every 2 π/ 3 relative to the triangle’s incenter (i.e., center of incircle, which is a well-known property of equilateral triangles). 

Thus, starting with  z 1 at an arbitrary initial position (phase) arg (z 1 ) =  θ  on the unit circle, it may be stated that





 z 1 =  ejθ ∴

 ejα ejβ =  ej(α+ β)

∴  z 2 =  ejθ ej  2 π 3 ∴  z 3 =  ejθ ej  4 π 3

That being said, in this special case of an equilateral triangle, the coefficients of (8.17) must be







 z 1 +  z 2 +  z 3 =  ejθ +  ejθ ej  2 π 3 +  ejθ ej  4 π 3 =  ejθ  1 +  ej  2 π 3 +  ej  4 π 3

see the unit circle



√

√ 

=

1

3

1

3

 ejθ  A1 − CC +  j

− C −  j

C2

2

CC2

2





= 0 regardless of  z 1 initial  θ







 z 1 z 2+ z 1 z 3+ z 2 z 3 =  z 2  ej  2 π 3 + z 2  ej  4 π 3 + z 2  ej  6 π 3 =  z 2  ej  2 π 3 1+ ej  2 π 3 + ej  4 π 3

see the unit circle

1

1

1

1







=0





= 0 regardless of  z 1 initial  θ

 z 1 z 2 z 3 =  ejθ ejθ ej  2 π 3  ejθ ej  4 π 3 =  ej  3 θ 



*1

 ej 2 π =  ej  3 θ

In this special case, the given specific third-order polynomial equation

 z 3 −  ( 1 +  p +  j p) z 2 +  p( 1 +  j +  j p) z −  j p 2 = 0

(8.18)
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also must have two coefficients always equal zero, and then by the equivalence of general

(8.17) and specific (8.18) equations it follows that z 3 −  z 1 +  z 2 +  z 3





 z 2 +  z 1 z 2 +  z 1 z 3 +  z 2 z 3





 z −  z 1 z 2 z 3 = 0 ⇒

=0

=0

 z 3 −  ( 1 +  p +  j p)





 z 2 +  p( 1 +  j +  j p)





 z −  j p 2 = 0

=0

=0

∴

 z 3 −  j p 2 = 0

One possible method to derive  p  that satisfies the above conditions and (8.17) is to separate its real and imaginary parts to zero, as

 z 3 −  ( 1 +  p +  j p) z 2 +  p( 1 +  j +  j p) z −  j p 2 = 0

 z 3 −  z 2 −  pz 2 −  j p z 2 +  p z +  jpz +  j p 2  z −  j p 2 = 0

 z (z 2 −  z −  pz +  p) +  j p (p z +  z −  z 2 −  p) = 0

obviously  p = 0 and  z = 0, then

 z 2 −  z −  pz +  p = 0

 p z +  z −  z 2 −  p = 0

 z(z − 1 ) −  p(z − 1 ) = 0

 p (z − 1 ) −  z (z − 1 ) = 0



 (z − 1 )(z −  p) = 0

∴  z = 1 ,  and,  p =  z

 (z − 1 )(p −  z) = 0

In conclusion, for any initial phase  θ , parameter  p =  z  satisfies (8.17). 

 Verification:

 z 3 −  ( 1 +  p +  j p) z 2 +  p( 1 +  j +  j p) z −  j p 2 = 0

∴ if,  p =  z  then

 z 3 −  ( 1 +  z +  j z) z 2 +  z( 1 +  j +  j z) z −  j z 2 = 0



 z 3 − S

 z 2 − 

 z 3 − 

 j 

 z 3 + S

 z 2 + Z

 j  Z

 z 2 + 

 j 

 z 3 − Z

 j  Z

 z 2 = 0

0 = 0 
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Fig. 8.11 P.8.105, equilateral

triangle with three complex

roots  z 1 , z 2, and  z 3 at its

vertices. Parameter  p  that

satisfies given equation must be

valid for all initial  θ , not only

for the obvious choice of  θ = 0, 

i.e.,  z 1 = 1 , ∈ R. Being a

complex equation with complex

coefficient, all three roots may

be complex. In other words, the

triangle may be rotated at any  θ , 

which is possible only if  p =  z

[image: Image 9]

Bode Plot

9

 Decibel unit:  is used as a  relative  measure  G  between two quantities  A 1 and  A 2. In general, there are two types of quantities: a quantity proportional to power (e.g., in electrical engineering power is P =  V I , the product of voltage and current) and only to voltage (or current) by itself. The former type has the multiplying factor of “10,” while the latter has the multiplying factor of “20,” as A 2

 A 2

 G

def

def

dB = 10 log

or  G dB = 20 log

 A 1

 A 1

The multiplying factor “20” is the consequence of logarithmic identity log  xn =  n  log  x; see Ch. 5. 

In the case of voltage (current) case, for example, 



 P

2

2

 V 2  I 2

 V  2 /R

 V 2

 V 2

 G

def

2

dB = 10 log

= 10 log

= 10 log

= 10 log

= 20 log

 P 1

 V 1  I 1

 V  2  R

 V

 V

1

1

1

assuming normalized resistance  R. 

 “ dBm ” unit:  is used as an  absolute  measure  G  of quantity  A 2 normalized to 10−3 (i.e., “milli” on the engineering scale, thus the “m” in dBm)

 A 2

 A 2

 G

def

def

dBm = 10 log

or  G dBm = 20 log

10−3

10−3

Nevertheless, a  unit step  between any two measured values is numerically the same whether measured in dB or dBm units, which very much simplifies the summing operations that involve both dB and dBm. 

 Decibel scale (power):  note the relationship between the number of zeros in the ratio and the calculated value. 
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Ratio

Calculation

[dB]

Ratio

Calculation

[dB]

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

1/1000

10 log ( 1 / 1000 ) = 10 ×  (−3 )

−30

1/8

10 log ( 1 / 8 ) = 10 ×  (−0 .  9 )

-9

1/100

10 log ( 1 / 100 ) = 10 ×  (−2 )

−20

1/4

10 log ( 1 / 4 ) = 10 ×  (-0 .  6 )

−6

1/10

10 log ( 1 / 10 ) = 10 ×  (−1 )

−10

1/2

10 log ( 1 / 2 ) = 10 ×  (−0 .  3 )

−3

1

10 log ( 1 / 1 ) = 10 ×  ( 0 )

0

1

10 log ( 1 / 1 ) = 10 ×  ( 0 )

0

10

10 log ( 10 ) = 10 ×  ( 1 )

10

2

10 log ( 2 ) = 10 ×  ( 0 .  3 )

3

100

10 log ( 100 ) = 10 ×  ( 2 )

20

4

10 log ( 4 ) = 10 ×  ( 0 .  6 )

6

1000

10 log ( 1000 ) = 10 ×  ( 3 )

30

8

10 log ( 8 ) = 10 ×  ( 0 .  9 )

9

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

 . 

Note that each subsequent 10 times increase of measured variable is equivalent to addition of 10 dB

for quantities proportional to power, or to 20 dB for quantities proportional to voltage. On the other hand, each subsequent  division  of measured variable by factor 10 is equivalent to  addition  of −10 dB

for quantities proportional to power, or to −20 dB for quantities proportional to voltage. Thus the common expression “ −20 dB per decade.” Similarly, each 2 times increase of measured variable is equivalent to addition of 3 dB for quantities proportional to power, or to 6 dB for quantities proportional to voltage. In addition, each division of measured variable by factor 2 is equivalent to addition of −3 dB for quantities proportional to power, or to −6 dB for quantities proportional to voltage. 

 Basic building blocks of transfer functions:  in engineering, instead of using letter  i  as the complex number, letter  j  is used instead (the “i” is already used to indicate AC current). Being a rational complex function, any  H (j x)  transfer function may be factorized into (or synthesized from) the following five basic, first-order complex functions:

 H 1 (j x) =  a 0

(9.1)

 x

 H 2 (j x) = ± j

(9.2)

 x 0

 H 3 (j x) =

1

(9.3)

±  x

 j x 0

 x

 H 4 (j x) = 1 ±  j

(9.4)

 x 0

 H 5 (j x) =

1

 x

(9.5)

1 ±  j x 0

where  a 0 , x 0 = const. ∈ R and  j  2 ≡  i 2 = −1. Note that  H 2 to  H 5 are written in the form of the  ratio x/x 0. This is very convenient because Bode plots are then normalized to  x 0 and by consequence have the same form for various  x 0 values. That being the case, Bode plots are derived over a few-decade interval centered around  x 0. For example, if variable  x  is in the four-decade interval  x ∈  ( 10−2  x 0 to 102  x 0 ), it is to say that the full Bode plot shows magnitude and phase for x = 0 .  01  x 0 to  x = 100  x 0 values. 

 Logarithmic scale graphs:  one of the main advantages of using “compressed” graph forms, such as

“log scale” graphs, is that variables stretching over multiple orders of magnitude (e.g., a frequency)

9.1 Basic Functions

377

may be displayed on the same plot and still have the same resolution for small and for large values. 

In comparison, a linear graph covering, for example, an interval from one to one million is practically useless if the intervals of interest are both from one to ten as well as from hundred thousand to million. 

Magnitude expressions (i.e., “transfer functions”) of nontrivial (e.g., multistage) systems may be factorized into the product of  H 1 to  H 5 factors. Then, after applying the logarithm of a product identity log (x 1 x 2 · · ·  xn) = log  x 1 + log  x 2 + · · · + log  xn  the same magnitude expressions are written in the form of a sum. For example, given  n  stage amplifier with  Ai  gain of each stage, then the total gain  A is

 A =  A 1  A 2  A 3  . . . An

which may be computationally difficult for hand analysis. Then again, the same equation may be written in the form of a sum as

log  A = log  A 1 + log  A 2 + log  A 2  . . . + log  An which is the main idea used to produce Bode plots. Being derived for logarithmic functions, Bode plot displays strictly positive arguments. Therefore, magnitude and phase plots are evaluated as the log argument limit to zero, to  x 0, and to infinity values. 

Problems

9.1

Basic Functions

Sketch piecewise linear approximation Bode plots of complex functions in P.9.1 to P.9.12. Without loss of generality, all examples in this chapter assume that quantity  x  is proportional to voltage (current), i.e., with the multiplication factor of 20. 

 x

9.1.  z(x) = −2

9.2.  z(x) = 1

9.3.  z(x) =  j

10

2

 x

 x

9.4.  z(x) =  j

9.5.  z(x) =

1

9.6.  z(x) = 1 +  j

10

 j x/ 5

10

 x

 x

9.7.  z(x) = 1 −  j  2

9.8.  z(x) = 1 −  j  10

9.9.  z(x) =

1

 x

1 +  j  2

9.10. 

9.12. 

 z(x) =

1

9.11.  z(x) =

1

 x

 x

1 −  j

 z(x) =

1

 x

1 +  j

2

1 −  j

10

10
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9.2

Examples

Sketch Bode plots of functions in P.9.13 to P.9.22. 









 x

 x

9.13.  z(x) =  (− j x) j

9.14.  z(x) =  j

 (j  10 x)

10

10







 x

 x

9.15.  z(x) =  ( 1 −  j x) j

9.16.  z(x) =  ( 1 +  j x)

10

 j

9 x

9.17.  z(x) = −  x 2 −  j x

9.18.  z(x) =  x 2 −  j

+ 1

10

10

10





 x

1 +  j x

9.19.  z(x) =  ( 1 −  j x)  1 +  j

9.20.  z(x) = 500

100

100 −  j x

10 +  j x

2 +  j x

9.21.  z(x) = 100

9.22.  z(x) = 20 000

100 +  j x

220  j x + 4 000 −  x 2
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Answers

9.1

Basic Functions

9.1. Given  z(x) = −2, Bode plot of this function may be derived as follows. 

(a)  module (gain) plot: general form of  z(x)  is (9.1), a real constant function, thus

| z(x)| = |−2| = 2 ⇒ | z(x)|dB = 20 log 2 = 6 dB

which is to say that module graph is a constant 6 dB line, see Fig. 9.1 (top). 

(b)  phase plot: as  z(x) = −2 + 0  j , then i Im  (z) = 0 and Re  (z) <  0, therefore by definition (see Ch. 8)





Im  (z)

 θ (z) = arctan

= atan2  ( 0 , −2 ) = 180◦ = ± π = const. 

Re  (z)

therefore its phase graph  θ (z)  is also a constant line at  θ =  π, see Fig. 9.1 (bottom). 

(c)  Bode plot interpretation: being a real constant  a 0 (a.k.a. “gain”) is not function of variable x. Negative gain of “−2”, however, indicates that the system’s output/input gain equal two with the phase inversion of  π  at the output, as for instance in the inverting amplifier. 

9.2. Given  z(x) = 1 / 10 is a positive constant where 1 / 10  <  1, then (a)  module (gain) plot: general form of  z(x)  is (9.1), i.e. a real constant function, thus







|

1

 z(x)| =  

= 10−1 ∴

log  an =  n  log  a ⇒ | z(x)|dB = 20 log 10−1

10  = 1

10

= −20 log 10

= −20 dB

which is to say that module graph is a constant −20 dB line, see Fig. 9.2 (top). 

Fig. 9.1 P.9.1, Bode plot of a

simple transfer function in form of

a real constant as in (9.1). Both

magnitude and phase functions are

constant, while negative gain “−2” 

is interpreted as “signal phase

inversion” (or, simply “inversion”)

of  θ = ± π
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Bode plot

Fig. 9.2 P.9.2, Bode plot of a real

constant transfer function in form

of (9.1). As both magnitude and

phase functions are constant, the

positive sign of gain is interpreted

as “non–inverting”, quantified by

the  θ = 0◦

Fig. 9.3 P.9.3, Bode plot of a

transfer function in linear form

(9.2) where  x 0 = 2. Due to

Re  (z) = 0 and Im  (z) >  0 the

phase function is constant

 θ = + π/ 2. As  x → 0 then

magnitude limits to negative

infinity because of:

lim x→0 log (x) → −∞ which is

implied by the slope of linear gain

function

(b)  phase plot: Im  (z) = 0 and Re  (z) >  0, therefore by definition (see Ch. 8)





Im  (z)

 θ (z) = arctan

= atan2  ( 0 ,  1 / 10 ) = 0◦ = const. 

Re  (z)

therefore its phase graph  θ (z)  is a constant line equal to 0◦, see Fig. 9.2 (bottom). 

(c)  Bode plot interpretation: a real constant  a 0 (a.k.a. “gain”) is not function of variable  x, and to say that “a 0 = 1 / 10  <  1” is to say that gain as  measured in  dB  is negative. At the same time, positive 1 / 10  >  0 sign implies that  θ (z) = 0◦, in other words, there is no phase inversion at the output, e.g. as in the non–inverting amplifier. 

9.3. Given  z(x) =  j x/ 2 is a linear function of  x, then

(a) 0 dB  point: by comparison with the general form (9.2),  x 0 = 2 then x

2

 z(x) =  j

∴  z(x)  x=2

=  j =  j ⇒ | z( 2 )| = | j| = 1 ∴ 20 log | z( 2 )| = 20 log 1 = 0 dB

2

2

which is to say that  x =  x 0 is the point where | z(x 0 )| = 0 dB, i.e. it is the point where the gain function cross the horizontal axis, see Fig. 9.3 (top). 
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(b)  magnitude (gain) plot: as Re  (z) = 0 and Im  (z) >  0 then





|

 x 

 x

 z(x)| =  j  =  x

∴

lim | z(x)| = lim

= 0 ⇒ | z( 0 )|dB = 20 log 0 = −∞

2

2

 x→0

 x→0 2

 x

lim | z(x)| = lim

= 1 ⇒ | z( 2 )|dB = 20 log 1 = 0 dB

 x→2

 x→2 2

 x

lim | z(x)| = lim

= +∞ ⇒ | z(+∞ )|dB

 x→+∞

 x→+∞ 2

= 20 log (+∞ ) = +∞

In log–log scale (in decibels) magnitude is a linear function of  x, thus, in order to plot the line it is sufficient to calculate coordinates of two points. As  x 0 = 2, it is handy to compute x =  x 0 / 10 = 0 .  2 (ten times smaller, i.e. one decade below) and  x = 10 x 0 = 20 (ten times greater, i.e. one decade above) so that, 







0 .  2

1

 z(x = 0 .  2 ) = 20 log

= 20 log

= −20 dB

2

10



20

 z(x = 20 ) = 20 log

= 20 log  ( 10 ) = +20 dB

2

which is to say that gain increases 20 dB for each ten fold increase of  x, Fig. 9.3 (top). 

(c)  phase plot: as Re  (z) = 0 and Im  (z) >  0, thus  z(x)  is in the first quadrant, then Im  (z)

 x/ 2

 θ (z) = arctan

= atan2  (x/ 2 ,  0 ) = arctan

=  π = const. 

Re  (z)

0

2

therefore phase graph  θ (z)  is a constant line at  π/ 2, see Fig. 9.3 (bottom). 

(d)  Bode plot interpretation: gain of this function, as measured in dB, is directly proportional to the variable  x. For any tenfold increase of  x  there is “+20 dB/dec” added to gain. Phase, however is constant and fixed to  π/ 2 (i.e. it is the phase of + j ). Physical interpretation of a constant nonzero phase may be that given a sinusoidal function at the input, there is

a delay (or, advance) that equals one quarter of the sinusoidal period, i.e.  T / 4. Note that this phase difference is  relative, normalized to period  T = 2 π  for any absolute sinusoidal frequency. 

9.4. Given  z(x) =  j x/ 10 is a linear function of  x, then

(a) 0 dB  point: by comparison with the general form (9.2),  x 0 = 10 then x





10

 z(x) =  j

∴  z(x)  x=10

=  j

=  j ⇒ | z( 2 )| = | j| = 1 ∴ 20 log | z( 10 )| = 20 log 1 = 0 dB

10





10

which is to say that  x =  x 0 is the point where | z(x 0 )| = 0 dB, i.e. it is the point where the gain function cross the horizontal axis, see Fig. 9.4 (top). 

(b)  magnitude (gain) plot: as Re  (z) = 0 and Im  (z) >  0 then
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Fig. 9.4 P.9.4, Bode plot of

transfer function in linear form

(9.2) with  x 0 = 10. Phase function

is constant  θ =  π/ 2. As  x → 0

then magnitude limits to negative

infinity, thus this form of function

is not possible to sketch exactly at

 x = 0. Note that Bode plot of this

type of function looks same for any

 x 0 = 0





|

 x 

 x

 z(x)| =  j

=  x

∴

lim | z(x)| = lim

= 0 ⇒ | z( 0 )|dB = 20 log 0 = −∞

10

10

 x→0

 x→0 10

 x

lim | z(x)| = lim

= 1 ⇒ | z( 10 )|dB = 20 log 1 = 0 dB

 x→10

 x→10 10

 x

lim | z(x)| = lim

= +∞ ⇒ | z(+∞ )|dB

 x→+∞

 x→+∞ 10

= 20 log (+∞ ) = +∞

In log–log scale this function (in decibels) is linear. In order to plot a line, as  x 0 = 10

then calculate coordinates of two points, e.g. at  x =  x 0 / 10 = 1 (ten times smaller, i.e. one decade below) and  x = 10 x 0 = 100 (ten times greater, i.e. one decade above) as, 1

 z(x = 1 ) = 20 log

= −20 dB

10





100

 z(x = 100 ) = 20 log

= 20 log  ( 10 ) = +20 dB

10

which is to say that module increases 20 dB for each ten fold increase of  x, Fig. 9.4 (top). 

(c)  phase plot: as Re  (z) = 0 and Im  (z) >  0, then









Im  (z)

 x/ 10

 θ (z) = arctan

= atan2  (x/ 10 ,  0 ) = arctan

=  π = const. 

Re  (z)

0

2

therefore phase graph  θ (z) =  π/ 2 is a constant line, see Fig. 9.4 (bottom). Compare with the plots in Figs. 9.1, 9.2, and 9.3. 

(d)  Bode plot interpretation: gain of this function, as measured in dB, is directly proportional to variable “x”. For any tenfold increase of  x  there is “20 dB” increase in gain. It is to say that, if  x  represents frequency for instance, a sinusoid whose frequency is below  x 0 = 10

is  suppressed  more and more as its frequency is lower and lower. However, as  x → +∞, sinusoids above  x 0 = 10 are  amplified  more and more. Even though all sinusoids have the same phase delay, this non even amplification results in distortion of multi–tone signals

such as voice, where for example 20 Hz tone is suppressed while at the same 20 kHz is

well amplified. 
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9.5. Given function has  j  factor on its denominator, as such it may be rewritten as j

1

 z(x) =

1

= − j

 j x/ 5  j

 x/ 5

to explicitly show that its form (9.3) is the inverse of the form (9.2), then (a) 0dB  point: by comparison with (9.3), see also A.9.4, the 0 dB point is at  x 0 = 5. 

(b)  magnitude (gain) plot: as Re  (z) = 0 and Im  (z) <  0, then





|

1

1

 z(x)| = − j



∴ lim | z(x)| = lim

 x/ 5  =

1

 x/ 5

 x→0

 x→0  x/ 5

= +∞ ⇒ | z( 0 )|dB = 20 log ∞ = ∞

1

lim | z(x)| = lim

= 1 ⇒ | z( 10 )|dB = 20 log 1 = 0 dB

 x→5

 x→5  x/ 5

1

lim | z(x)| = lim

= 0 ⇒ | z(+∞ )|dB

 x→+∞

 x→+∞  x/ 5

= 20 log ( 0 ) = −∞

In log–log scale, this function (in decibels) is linear. Thus, computation of | z(x)| at  x =

 x 0 / 10 = 0 .  5 and  x = 10 x 0 = 50 (i.e. two decades interval) results in 1

 z(x = 0 .  5 ) = 20 log

= 20 dB

0 .  5 / 5





1

 z(x = 50 ) = 20 log

= −20 dB

50 / 5

which is to say that module  decreases  20 dB for each ten fold increase of  x, Fig. 9.5 (top). 

(c)  phase plot: as Re  (z) = 0 and Im  (z) <  0 then







Im  (z)

5 /x

 θ (z) = arctan

= atan2  (−5 /x,  0 ) = − arctan

= − π = const. 

Re  (z)

0

2

therefore its phase graph  θ (z) −  π/ 2 is a constant line, see Fig. 9.5 (bottom). Compare Bode plot with plots in Fig. 9.4. 

(d)  Bode plot interpretation: gain of this function, as measured in dB, is directly proportional to variable “− x”. For any tenfold increase of  x  there is “−20 dB” reduction in gain. It is to say that, if  x  represents frequency for instance, sinusoid whose frequency is below  x 0 = 5

is  amplified  more and more as its frequency is lower and lower. However, as  x → +∞, sinusoids above  x 0 = 5 are  attenuated  more and more. Even though all sinusoids have the same phase delay, this non even amplification results in distortion of multi–tone signals

such as voice, where for example 20 Hz tone is well amplified while at the same 20 kHz is

suppressed. 
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Fig. 9.5 P.9.5, Bode plot of

function in the form of (9.3) with

 x 0 = 5. In logarithmic scale, 

magnitude is a linear function of  x

crossing 0 dB at  x =  x 0 = 5 with

the negative slope of −20 dB / dec

while the phase is constant and

negative, due to ‘− j ’ factor

9.6. Given  z(x) = 1 +  j x/ 10, where both Re  (z) >  0 and Im  (z) >  0 are non zero, then piecewise linear approximation may be derived as follows. 

(a)  module limits: by definition, 













2

|



 x 

 x

 z(x)| = 1 +  j

= | z(x)| = Re  (z) 2 + Im  (z) 2 = 1 +

(9.6)

10

10

thus magnitude limits may be evaluated at two extremes as well as relative to  x 0 = 10, (1)  x   10: that is to say, piecewise linear approximation in  x ∈  ( 0 , x 0 )  interval x

2

lim | z(x)| = lim

1 +

= 1 ⇒ | z(x)|dB ≈ 20 log 1 = 0 dB

 x→0

 x→0

10

(2)  x = 10: that is to say, exactly at  x =  x 0





 x

2

√

√

lim | z(x)| = lim

1 +

= 2 ⇒ | z(x)|dB = 20 log 2 = +3 dB

 x→10

 x→10

10

Note that at  x =  x 0 the exact value of | z(x)| = +3 dB, indicating the maximal piecewise linear approximation’s error relative to | z(z 0 )| ≈ 0 dB. 

(3)  x  10: that is to say, piecewise linear approximation in  x ∈  (x 0 , +∞ )  interval x

2

lim | z(x)| = lim

1 +

= +∞ ⇒ | z(x)|dB = 20 log (+∞ ) = +∞

 x→+∞

 x→+∞

10

(b)  magnitude (gain) plot: piecewise linear segments of (9.6) are connected as follows (1)  x → 0 : | z(x)|dB ≈ 0 dB

(2)  x    x 0 : that is to say to evaluate | z(x)|  at least one decade below x 0, ie.  x =  x 0 / 10 =

1 or below where linear approximation is acceptable as









2

2

|

1

1

 z(x)|

x=1

dB = 20 log

1 +

= 1  1 ⇒ 1 +

≈ 1

10

10

10

≈ 20 log 1 = 0 dB
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(3)  x   x 0 : that is to say to evaluate | z(x)|  at least one decade above x 0, ie.  x = 10 x 0 =

100 or above where linear approximation is acceptable because





 x





2

2

=

 x

 x

 x = 10 x 0 = 10  x 0 = 10  1 ⇒ 1 +

≈

 x 0

 x 0

 x 0

 x 0

so that, as  x   x 0, then









2

2



|

 x

 x

 x

 z(x)|



dB = 20 log

1 +

≈ 20 log

≈ 20 log

 x



0

 x 0

 x 0



 a



= log = log  a − log  b;  x >  0 = 20 log  x − 20 log  x

 b

0



const. 

In conclusion, for  x   x 0, module | z(x)|dB function asymptotically follows function z(x) =  x/x 0 (on log scale) that crosses horizontal axis 0 dB at  x =  x 0. 

Therefore, piecewise linear approximation of  z(x) = 1 +  j x/ 10 is:

0  < x ≤ 10 : | z(x)|dB ≈ 0

 x = 10 : | z(x)|dB = +3 dB (this is the exact value)

 x ≥ 10 : | z(x)|dB ≈  x ( positive unity slope )

which is to say that the largest error of piecewise linear approximation is +3 dB at  x = 10

point, where the approximated value is zero and the exact value of | z(x)| is +3 dB, see Fig. 9.6 (top). 

(c)  phase plot: both Re  (z)  and Im  (z)  parts are nonzero and positive, thus Im  (z)

 x

 θ (z) = arctan

= atan2  (x/ 10 ,  1 ) = arctan

(9.7)

Re  (z)

10

∴



 x

lim  θ (x) = lim arctan

= arctan ( 0 ) = 0◦

 x→0

 x→0

10





 x

1

lim  θ (x) = lim arctan

= arctan

=  π = 45◦

 x→10

 x→10

10

1

4



 x

lim  θ (x) = lim arctan

= arctan (∞ ) =  π = 90◦

 x→+∞

 x→+∞

10

2

Note that  θ (x 0 ) = 45◦, which is true for any  x 0  >  0 of this type function. Piecewise linear segments of (9.7) are then connected as follows

(1)  x → 0 :  θ(x) = 0◦

(2)  x = 1 : i.e., at or below  x 0 / 10



1

 θ (x = 1 ) = arctan

= 5 .  7◦ ≈ 0◦

10
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Fig. 9.6 P.9.6, Bode plot of

function in the form of (9.4) with

 x 0 = 10. Phase plot is made over at

least four decades centered at

 θ (x 0 ) =  π/ 4 point. As shown, 

phase takes one decade up to reach

 π/ 2, and one decade down to reach

zero. Compare piecewise linear

segments with the superimposed

exact functions: largest magnitude

error is 3 dB and largest phase error

is 5 .  7◦

(3)  x = 100 : i.e., at or above 10 x 0





100

 θ (x = 100 ) = arctan

= arctan ( 10 ) = 84 .  3◦ ≈ 90◦ =  π

10

2

Therefore, piecewise linear approximation of  θ (x) = arctan (x/ 10 )  is: 0  < x ≤ 1 :  θ(x) ≈ 0

 x = 1 :  θ(x) = 5 .  7◦ ≈ 0

 x = 10 :  θ(x) = 45◦ =  π (this is the exact value)

4

 x = 100 :  θ(x) = 84 .  3◦ ≈ 90◦

 x >  100 :  θ(x) ≈ 90◦

which is to say, relative to the exact function, the largest piecewise linear approximation’s phase error is 5 .  7◦ at  x =  x 0 / 10 and 10  x 0 points, see Fig. 9.6 (bottom). Practical technique to construct a piecewise linear phase plot is to draw a straight line connecting

 ( 0 .  1 x 0 ,  0 )  and  ( 10 x 0 ,  90◦ )  points. By doing so,  θ = 45◦ point is correctly placed at x =  x 0 coordinate. The rest of the graph consists of two constant segments, one at 0◦ in (−∞ ,  0 .  1 x 0 )  and one at 90◦ in  ( 10 x 0 , +∞ )  intervals. Note that both ±3 dB and  θ = ±45◦

are at  x =  x 0 coordinate, this is a general property of Bode plot. 

(d)  Bode plot interpretation: gain profile of this function is nonlinear. Sinusoids below  x 0 = 10

are not affected as gain is 0 dB (i.e. “1”), however above  x 0 = 10 sinusoids are amplified more and more as  x → +∞. At the same time, phase delay becomes noticeable at around

 x =  x 0 / 10, reaches  θ =  π/ 4 (i.e. T / 8) at  x =  x 0 and reaches maximum phase delay at around 10 x 0. Within this interval from  x 0 / 10 to 10 x 0 sinusoids have progressively increased phase delay. Overall, if variable  x  represents a frequency, this function’s profile results in both phase and magnitude distortions of multi–tone signals. 
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Fig. 9.7 P.9.7, Bode plot of

function in the form of (9.4) with

 x 0 = 2. Phase plot takes one

decade above to reach − π/ 2, and

one decade below  x 0 to reach zero. 

Note that due to ‘− j ’, phase is

negative. Further, gain equal unity

(i.e. 0 dB) up to  x 0 where

| z(x 0 )| = +3 dB, then the

magnitude increases at 20 dB / dec

rate to the infinity

9.7. Given  z(x) = 1 −  j x/ 2, where both Re  (z)  and Im  (z)  are non zero, then piecewise linear approximation may be derived as follows. 

(a)  module limits: by definition







2
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 x

 z(x)| = 1 −  j  =

1 +

(9.8)

2

2

then, 





 x  2

lim | z(x)| = lim

1 +

= 1 ⇒ | z( 0 )|dB = 20 log 1 = 0 dB

 x→0

 x→0
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 x  2

√

√

lim | z(x)| = lim

1 +

= 2 ⇒ | z( 2 )|dB = 20 log 2 = +3 dB

 x→2

 x→2

2





 x  2

lim | z(x)| = lim

1 +

= +∞ ⇒ | z(+∞ )|dB = 20 log (+∞ ) = +∞

 x→+∞

 x→+∞

2

(b)  magnitude (gain) plot: piecewise linear segments of (9.8) are connected as follows (1)  x → 0 : | z(x)|dB = 0dB

(2)  x    x 0 : i.e., at or below  x =  x 0 / 10 = 0 .  2











2

2  



|

0 .  2

1

 z(x)|dB = 20 log 1 +

= 20 log 1 +

see A.9.6

2

10

≈ 20 log 1 = 0 dB

(3)  x   x 0 : at or above of  x = 10 x 0 = 2, 
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dB = 20 log

1 +

≈ 20 log

≈ 20 log
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0
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 x 0



 a



= log = log  a − log  b = 20 log  x − 20 log  x
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0



const. 
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In conclusion, for  x   x 0, module | z(x)|dB function asymptotically follows function x (on log scale) that crosses horizontal axis at  x =  x 0. 

Therefore, piecewise linear approximation of  z(x) = 1 −  j x/ 2 is:

0  < x ≤ 2 : | z(x)|dB ≈ 0 dB

 x = 2 : | z(x)|dB = +3 dB (this is the exact value)

 x ≥ 2 : | z(x)|dB ≈  x ( positive unity slope )

which is to say that the largest error of piecewise linear approximation is +3 dB at  x = 2

coordinate, where the approximated value is zero and the exact value of | z(x)| is +3 dB, Fig. 9.7 (top). 

(c)  phase plot: as Re  (z)  is positive and Im  (z)  is negative, thus in the fourth quadrant Im  (z)

 x

 θ (z) = arctan

= atan2  (− x/ 2 ,  1 ) = − arctan

(9.9)

Re  (z))

2

∴





 x

lim  θ (x) = lim − arctan

= − arctan ( 0 ) = 0◦

 x→0

 x→0

2







 x

1

lim  θ (x) = lim − arctan

= − arctan

= − π = −45◦

 x→2

 x→2

2

1

4





 x

lim  θ (x) = lim

− arctan

= − arctan (∞ ) = − π = −90◦

 x→+∞

 x→+∞

2

2

Piecewise linear segments of (9.9) are then connected as follows

(1)  x → 0 :  θ(x) = 0◦

(2)  x = 0 .  2 : i.e. at or below  x 0 / 10





0 .  2

 θ (x = 0 .  2 ) = − arctan

= − arctan ( 0 .  1 ) = −5 .  7◦ ≈ 0

2

(3)  x = 20 : i.e., at or above 10 x 0



20

 θ (x = 20 ) = − arctan

= − arctan ( 10 ) = −84 .  3◦ ≈ −90◦ = − π

2

2

Therefore, piecewise linear approximation of  θ (x) = − arctan (x/ 2 )  is: 0  < x ≤ 0 .  2 :  θ(x) ≈ 0◦

 x = 0 .  2 :  θ(x) = −5 .  7◦ ≈ 0◦

 x = 2 :  θ(x) = −45◦ = −  π (this is the exact value)

4

 x = 20 :  θ(x) = −84 .  3◦ ≈ −90◦

 x >  20 :  θ(x) ≈ −90◦
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which is to say, the largest error of piecewise linear approximation is 5 .  7◦ at  x =  x 0 / 10

and 10  x 0 points, Fig. 9.7 (bottom). Note that both +3 dB and  θ = −45◦ are at  x =  x 0

coordinate. Compare piecewise linear approximation with Fig. 9.6, as well as with the superimposed exact functions: largest magnitude error is 3 dB and largest phase error

is 5 .  7◦. 

9.8. Given  z(x) = 1 −  j x/ 10, where both Re  (z)  and Im  (z)  are non zero, then piecewise linear approximation may be derived as

(a)  module limits: by definition
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10

(b)  magnitude (gain) plot: piecewise linear segments of (9.10) are connected as follows (1)  x → 0 : | z(x)|dB = 0

(2)  x    x 0 : i.e., at or below  x =  x 0 / 10 = 1



2

|

1

 z(x)|dB = 20 log 1 +

≈ 20 log 1 = 0

10

(3)  x  10 : at or above  x = 10 x 0 = 100, 







2



|

 x

 x

 z(x)|



dB = 20 log

1 +

≈ 20 log

 x

= 20 log  x − 20 log  x 0



0

 x 0

const. 

In conclusion, for  x   x 0, module | z(x)|dB function asymptotically follows function x (on log scale) that crosses 0 dB horizontal axis at  x =  x 0. 

Therefore, piecewise linear approximation of  z(x) = 1 −  j x/ 10 is:

0  < x ≤ 10 : | z(x)|dB ≈ 0 dB

 x = 10 : | z(x)|dB = +3 dB (this is the exact value)

 x ≥ 10 : | z(x)|dB ≈  x
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which is to say, the largest error of piecewise linear approximation is 3 dB at  x = 10 point, Fig. 9.8 (top). 

(c)  phase plot: as Re  (z) >  0 and Im  (z) <  0, thus in the fourth quadrant Im  (z)

 x

 θ (z) = arctan

= atan2  (− x/ 10 ,  1 ) = − arctan

(9.11)

Re  (z)
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∴





 x

lim  θ (x) = lim − arctan

= − arctan ( 0 ) = 0◦

 x→0

 x→0
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 x

lim  θ (x) = lim − arctan

= − arctan  ( 1 ) = − π = −45◦

 x→10

 x→10

10

4





 x

lim  θ (x) = lim

− arctan

= − arctan (∞ ) = − π = −90◦

 x→+∞

 x→+∞

10

2

Piecewise linear segments of (9.11) are connected as follows

(1)  x → 0 :  θ(x) = 0◦

(2)  x = 1 : i.e., at or below  x =  x 0 / 10 = 1





 θ (x = 1 ) = arctan − 1

= −5 .  7◦ ≈ 0◦

10

(3)  x = 100 : i.e., at or above  x = 10 x 0 = 100





100

 θ (x = 100 ) = − arctan

= − arctan ( 10 ) = −84 .  3◦ ≈ −90◦ = − π

10

2

Therefore, piecewise linear approximation of  θ (x) = − arctan (x/ 10 )  is: 0  < x ≤ 1 :  θ(x) ≈ 0◦

 x = 1 :  θ(x) = −5 .  7◦ ≈ 0◦

 x = 10 :  θ(x) = −45◦ = −  π (this is the exact value)

4

 x = 100 :  θ(x) = −84 .  3◦ ≈ −90◦

 x >  100 :  θ(x) ≈ −90◦

which is to say, the largest error of piecewise linear approximation is 5 .  7◦ at  x =  x 0 / 10

and 10  x 0 points, Fig. 9.8 (bottom). Note that both +3 dB and  θ = −45◦ are at  x =  x 0

coordinate. Compare with other functions in the form of (9.4). 

9.9. Given  z(x) = 1 /( 1 +  j x/ 2 ), where both Re  (z)  and Im  (z)  are non zero, then piecewise linear approximation may be derived as
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Fig. 9.8 P.9.8, Bode plot of

function in the form of (9.4) with

 x 0 = 10. Phase plot takes one

decade above to reach − π/ 2, and

one decade below  x 0 to reach zero. 

Further, gain equal unity (i.e. 0 dB)

up to  x 0 where | z(x 0 )| = +3 dB, 

then the magnitude increases at

20 dB / dec rate to the infinity. 

Compare with Fig. 9.7

(a)  magnitude (gain) plot: (9.12) is inverse complex, 
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 x→+∞



 x  2

1 + 2

Then, piecewise linear segments are connected as follows

(1)  x → 0 : | z(x)|dB = 0

(2)  x    x 0 : that is to say,  x/x →

0

0 ⇒ 1 +  (x/x 0 ) 2 ≈ 1

|

1

 z(x)|dB = 20 log 

≈ 20 log 1 = 0

 x  2

1 + 2

(3)  x   x 0 : that is to say,  x/x 

0

1 ⇒ 1 +  (x/x 0 ) 2 ≈  (x/x 0 ) 2



|

1

1

 x 0 

 z(x)|dB = 20 log 

≈ 20 log   ≈ 20 log  

 x

2

 x

2

 x

1 +  x 0

 x 0
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Bode plot



 a



= log = log  a − log  b = 20 log  x −20 log  x

 b

0



const. 

In conclusion, for  x   x 0, module | z(x)|dB function asymptotically follows function

“− x” (on log scale) that crosses 0 dB horizontal axis at  x =  x 0. 

Therefore, piecewise linear approximation of | z(x)| = |1 /( 1 +  j x/ 2 )| is: 0  < x ≤ 2 : | z(x)|dB ≈ 0

 x = 2 : | z(x)|dB = −3 dB (this is the exact value)

 x >  2 : | z(x)|dB ≈ − x (on log scale)

which is to say, the largest error of magnitude piecewise linear approximation is −3 dB at

 x = 2 point, see Fig. 9.9 (top). 

(b)  phase plot: Re  (z)  and Im  (z)  parts of an inverse function may be separated as, 1 −  j x/ 2

 x/ 2

 z(x) =

1

=

1

−  j

∴

1 +  j x/ 2 1 −  j x/ 2

1 +  (x/ 2 ) 2

1 +  (x/ 2 ) 2

− x/ 2

Re  (z) =

1

and Im  (z) =

1 +  (x/ 2 ) 2

1 +  (x/ 2 ) 2

therefore,  θ (z)  limits are











Im  (z)

− x/ 2

 x

 θ (z) = arctan

= arctan

= − arctan

(9.13)
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∴
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lim  θ (x) = lim − arctan

= − arctan ( 0 ) = 0◦

 x→0
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2





 x
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 x
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− arctan

= − arctan (∞ ) = − π = −90◦

 x→+∞

 x→+∞

2

2

Piecewise linear segments of (9.13) are connected as follows

 x    x 0 :  θ(z) ≈ − arctan  ( 0 ) = 0◦

 x = 0 .  1 x 0 :  θ(z) = − arctan  ( 0 .  1 ) = −5 .  7◦ ≈ 0

 x =  x 0 :  θ(z) = − arctan 1 = −45◦

 x = 10 x 0 :  θ(z) = − arctan 10 = −84 .  3◦ ≈ 90◦

 x   x 0 :  θ(z) ≈ − arctan ∞ = −90◦

which is to say, the largest error of phase piecewise linear approximation is 5 .  7◦ at x =  x 0 / 10 and 10  x 0 points, Fig. 9.9 (bottom). Note that  θ = −45◦ is found at  x =  x 0

cooridante. 
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Fig. 9.9 P.9.9, Bode plot of

function in the form of (9.5) with

 x 0 = 2. Once normalized to  x 0, its

general form is identical as of all

other plots of the same type (9.5)

9.10. Given  z(x) = 1 /( 1 +  j x/ 10 ), where both Re  (z)  and Im  (z)  are non zero, then piecewise linear approximation may be derived as

(a)  magnitude (gain) plot: being inverse complex function
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2
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Then, piecewise linear segments are connected as follows

(1)  x → 0 : | z(x)|dB = 0 dB

(2)  x    x 0 : that is to say,  x/x →

0

0 ⇒ 1 +  (x/x 0 ) 2 ≈ 1

|

1

 z(x)|dB = 20 log 

≈ 20 log 1 = 0 dB

 x

2

1 + 10

(3)  x   x 0 : that is to say,  x/x 

0

1 ⇒ 1 +  (x/x 0 ) 2 ≈  (x/x 0 ) 2
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≈ 20 log   = 20 log  x 0

−20 log  x

 x

2

 x

1 +

const. 

 x 0

In conclusion, for  x   x 0, module | z(x)|dB function asymptotically follows function

“− x” (on log scale) that crosses 0 dB horizontal axis at  x =  x 0. 

Therefore, piecewise linear approximation of | z(x)| = |1 /( 1 +  j x/ 10 )| is: 0  < x ≤ 10 : | z(x)|dB ≈ 0

 x = 10 : | z(x)|dB = −3 dB (this is the exact value)

 x >  10 : | z(x)|dB ≈ − x (on log scale)

which is to say, the largest error of piecewise linear approximation is −3 dB at  x = 10

point, Fig. 9.10 (top). 

(b)  phase plot: real and imaginary parts of an inverse function may be separated as, 1 −  j x/ 10
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therefore, as the real part of this inverse complex function is positive and its imaginary part is negative, phase  θ (z)  limits in the fourth quadrant are
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(9.15)
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 x→+∞

10

2

Piecewise linear segments of (9.15) are connected as follows

 x    x 0 :  θ(z) ≈ − arctan  ( 0 ) = 0◦

 x = 0 .  1 x 0 :  θ(z) = − arctan  ( 0 .  1 ) = −5 .  7◦ ≈ 0◦

 x =  x 0 :  θ(z) = − arctan 1 = −45◦

 x = 10 x 0 :  θ(z) = − arctan 10 = −84 .  3◦ ≈ −90◦
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Fig. 9.10 P.9.10, Bode plot of

function in the form of (9.5) with

 x 0 = 10. Once normalized to  x 0, its

general form is identical as of all

other plots of the same type (9.5). 

Compare with Fig. 9.9

 x   x 0 :  θ(z) ≈ − arctan ∞ = −90◦

which is to say, the largest error of piecewise linear approximation is 5 .  7◦ at  x =  x 0 / 10

and 10  x 0 points, Fig. 9.10 (bottom). Note that  θ = −45◦ is found at  x =  x 0. 

9.11. Given  z(x) = 1 /( 1 −  j x/ 2 ), where both Re  (z)  and Im  (z)  are non zero, then piecewise linear approximation may be derived as

(a)  magnitude (gain) plot: (9.16) is inverse complex, 
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Then, piecewise linear segments of (9.16) are connected as follows

(1)  x → 0 : | z(x)|dB = 0 dB

(2)  x    x 0 : that is to say,  x/x →

0

0 ⇒ 1 +  (x/x 0 ) 2 ≈ 1
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 z(x)|dB = 20 log 

≈ −20 log 1 = 0 dB

 x  2

1 + 2

(3)  x   x 0 : that is to say,  x/x 

0

1 ⇒ 1 +  (x/x 0 ) 2 ≈  (x/x 0 ) 2
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≈ 20 log   = 20 log  x 0

−20 log  x

 x

2

 x

1 +

const. 

 x 0

In conclusion, for  x   x 0, module | z(x)|dB function asymptotically follows function

“− x” (on log scale) that crosses 0 dB horizontal axis at  x =  x 0. 

Therefore, piecewise linear approximation of | z(x)| = |1 /( 1 −  j x/ 2 )| is: 0  < x ≤ 2 : | z(x)|dB ≈ 0 dB

 x = 2 : | z(x)|dB = −3 dB (this is the exact value)

 x >  2 : | z(x)|dB ≈ − x (on log scale)

which is to say, the largest error of piecewise linear approximation is −3 dB at  x = 2

point, Fig. 9.11 (top). 

(b)  phase plot: real and imaginary parts of an inverse function may be separated as, 1 +  j x/ 2
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therefore, as both real and imaginary parts of this inverse complex function are positive, 

phase  θ (z)  limits in the first quadrant are
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(9.17)
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Piecewise linear segments of (9.17) are connected as follows

 x    x 0 :  θ(z) ≈ arctan  ( 0 ) = 0◦
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Fig. 9.11 P.9.11, Bode plot of a

function in the form of (9.5) with

 x 0 = 2. Note the phase function

and compare with Fig. 9.10

 x = 0 .  1 x 0 :  θ(z) = arctan  ( 0 .  1 ) = 5 .  7◦ ≈ 0◦

 x =  x 0 :  θ(z) = arctan 1 = 45◦

 x = 10 x 0 :  θ(z) = arctan 10 = 84 .  3◦ ≈ 90◦

 x   x 0 :  θ(z) ≈ arctan ∞ = 90◦

which is to say, see piecewise linear approximation in Fig. 9.11 (bottom). Note that  θ =

45◦ is found at  x =  x 0 coordinate. 

9.12. Given  z(x) = 1 /( 1 −  j x/ 10 ), where both Re  (z)  and Im  (z)  are non zero, then piecewise linear approximation may be derived as

(a)  magnitude (gain) plot: (9.18) is inverse complex, 









|



1



 z(x)| = 

 x  =

1





(9.18)





1 −  j



 x

2

10

1 + 10

and its limits are

1

lim | z(x)| = lim 

= 1 ⇒ | z( 0 )|dB = 20 log 1 = 0 dB

 x→0

 x→0

 x

2

1 + 10

√

1

2

1

lim | z(x)| = lim 

= 1

√ =

⇒ | z( 10 )|dB = 20 log √ = −3 dB

 x→10

 x→10

 x

2

2

2

2

1 + 10

1

lim | z(x)| = lim 

= 0 ⇒ | z(+∞ )|dB = 20 log 0 = −∞

 x→+∞

 x→+∞



 x

2

1 + 10

398

9

Bode plot

Then, piecewise linear segments are connected as follows

(1)  x → 0 : | z(x)|dB = 0 dB

(2)  x    x 0 : that is to say,  x/x →

0

0 ⇒ 1 +  (x/x 0 ) 2 ≈ 1

|

1

 z(x)|dB = 20 log 

≈ 20 log 1 = 0 dB

 x

2

1 + 10

(3)  x   x 0 : that is to say,  x/x 

0

1 ⇒ 1 +  (x/x 0 ) 2 ≈  (x/x 0 ) 2
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≈ 20 log   = 20 log  x 0

−20 log  x

 x

2

 x

1 +

const. 

 x 0

In conclusion, for  x   x 0, module | z(x)|dB function asymptotically follows function

“− x” (on log scale) that crosses 0 dB horizontal axis at  x =  x 0. 

Therefore, piecewise linear approximation of | z(x)| = |1 /( 1 −  j x/ 10 )| is: 0  < x ≤ 10 : | z(x)|dB ≈ 0 dB

 x = 10 : | z(x)|dB = −3 dB (this is the exact value)

 x >  10 : | z(x)| dB ≈ − x (on log scale)

which is to say, the largest error of piecewise linear approximation is −3 dB at  x = 10

point, Fig. 9.12 (top). 

(b)  phase limits: real and imaginary parts of an inverse complex function may be explicitly separated as, 

1 +  j x/ 10

 x/ 10

 z(x) =

1

=

1

+  j

∴

1 −  j x/ 10 1 +  j x/ 10

1 +  (x/ 10 ) 2

1 +  (x/ 10 ) 2

 x/ 10

Re  (z) =

1

and Im  (z) =

1 +  (x/ 10 ) 2

1 +  (x/ 10 ) 2

therefore, as both real and imaginary parts of this inverse complex function are positive, 

phase  θ (z)  limits in the first quadrant are











Im  (z)

 x/ 10

1

 x

 θ (z) = arctan

= atan2

 , 

= arctan

Re  (z)



1 +  (x/ 10 ) 2 

1 +  (x/ 10 ) 2

10

(9.19)

∴





 x

lim  θ (x) = lim arctan

= arctan ( 0 ) = 0◦

 x→0

 x→0

10





 x

lim  θ (x) = lim arctan

= arctan 1 =  π = 45◦

 x→10

 x→10

10

4
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Fig. 9.12 P.9.12, Bode plot of a

function in the form of (9.5) with

 x 0 = 10. Note the phase function

and compare with Fig. 9.11





 x

lim  θ (x) = lim

arctan

= arctan (∞ ) =  π = 90◦

 x→+∞

 x→+∞

10

2

Piecewise linear segments of (9.19) are connected as follows

 x    x 0 :  θ(z) ≈ arctan  ( 0 ) = 0◦

 x = 0 .  1 x 0 :  θ(z) = arctan  ( 0 .  1 ) = 5 .  7◦ ≈ 0

 x =  x 0 :  θ(z) = arctan 1 = 45◦

 x = 10 x 0 :  θ(z) = arctan 10 = 84 .  3◦ ≈ 90◦

 x   x 0 :  θ(z) ≈ arctan ∞ = 90◦

Compare this function with the others in this section, with the attention on phase signs. 

9.2

Examples

9.13. Given complex function





 x

 z(x) =  (− j x) j

(9.20)

10

its Bode plot may be derived by multiple techniques. General idea to resolve Bode plot is

to factorize given function  z(x)  into its basic factors (9.1) to (9.5). Then, by the logarithmic identity a simple product is converted into the sum of log terms that are easily added in the magnitude and phase plots. It is instructional to try the following two techniques. 

Method 1:  z(x)  is already factorized so that it consists of two basic terms in the form (9.2). 

Logarithmic form of factorized (9.20) is then















 x

 x

 x

 x

20 log  z(x) = 20 log

− j

 j

= 20 log − j

+ 20 log  j

(9.21)

1

10

1







10







2

 x 0=1

2

 x 0=10
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Bode plot

which shows that its first 0 dB point is at  x 0 = 1 and second at  x 0 = 10. Note that separation between these two points is one decade. In general, if the separation between pole/zero points of a rational function is less than one decade then the linear approximation method becomes

less accurate and the exact numerical calculations may be the only method acceptable. 

(a) Magnitude of each term is resolved, see A.9.4, as

(1) − j x/ 1: linear magnitude with +20 dB / dec slope crossing 0 dB at  x 0 = 1, (2)  j x/ 10: linear magnitude with +20 dB / dec slope crossing 0 dB at  x 0 = 10

The total magnitude | z(x)| is then a simple two term sum of magnitudes on logarithmic scale. To say that two linear functions are added, it is to say that the summation may be

done at two points only. For example, at

 x = 1 : −20 dB + 0 dB = −20 dB

 x = 10 : 0 dB + 20 dB = 20 dB

These two points are sufficient to draw a straight line as the sum, indicated with

 

in

Fig. 9.13 (top). Another way of computing the sum is to say that two linear segments with

+20 dB / dec gain (i.e. slope) add up to +40 dB / dec gain (i.e. slope). The 0 dB point of the sum line is calculated as the geometric mean of two crossing points. In this case, as two

√

√

functions cross 0 dB at ‘1’ and ‘10’, then the sum’s 0 dB point is at  x 0 =

12 · 102 =

10. 

(b) Similarly, phase functions of two individual segments in (9.20) are

 x

 x

 θ (z) = − arctan

+ arctan

1



10







2

 x 0=1

2

 x 0=10

are resolved, see A.9.4, by adding each linear segment. In this case both phases are constant, thus the sum at any point is  π/ 2 −  π/ 2 = 0, as indicated with

 

in

Fig. 9.13 (bottom). 

This example illustrates the general technique for adding linear segments of multiple

magnitude and phase terms within each logarithmic interval. In this example, as there are

only two linear functions there is only one interval from negative to positive infinity where the summing operation is done. 

Method 2: given  z(x)  may be first simplified as





 x

 z(x) =  (− j x) j

=  x 2  >  0 ∈ R ∴  θ = 0◦

(9.22)

10

10

and





 x 2

 x

2

 x

√

20 log | z(x)| = 20 log

= 20 log √

= 40 log √

∴  x 0 = 10

10

10

10

√

which is linear function with +40 dB / dec slope that crosses  x 0 =

10 point. Evidently, both

methods result in the same Bode plot Fig. 9.13. Nevertheless, when beneficial both methods
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Fig. 9.13 P.9.13, Bode plot of a

two term function in the form (9.2). 

To add linear segments it is

sufficient to compute sums at any

two points and to draw straight line. 

Or, to simply say that magnitudes

of +20 dB / dec and +20 dB / dec

linear segments add up to

+40 dB / dec gain. Similarly, phases

‘ π/ 2’ and ‘− π/ 2’ add up to zero

are used within more complicated non–trivial problems. Being non complex positive  z(x)

function, it is natural to find zero phase (e.g. as in a real resistor). 

9.14. Given complex function in the form of product as











 x

 x

 x

 z(x) =  j

 (j  10 x) = 10  j

 j

(9.23)

10

10

1

may be resolved similarly to A.9.13, 

Method 1: after factorization of the constant “10”, then  z(x)  consists of one constant factor

(9.1) and two (9.2) factors. Logarithmic form of factorized (9.23) is then x

 x

 x

 x

20 log  z(x) = 20 log 10  j

 j

= 20 log 10 + 20 log  j

+ 20 log  j

1

10








1







10







1

 a 0=10

2

 x 0=1

2

 x 0=10

(9.24)

which explicitly shows that “DC gain” factor is  a 0 = 10, first 0 dB point of  z(x)  is at  x 0 = 1

and second at  x 0 = 10. Note that separation between these two points is one decade. 

(a) Magnitude of each term is resolved, see A.9.4, as

(1) 10: constant magnitude is 20 log 10 = +20 dB, 

(2)  j x/ 1: linear magnitude with +20 dB / dec slope crossing 0 dB at  x 0 = 1, (3)  j x/ 10: linear magnitude with +20 dB / dec slope crossing 0 dB at  x 0 = 10

The total magnitude | z(x)| is then a simple sum of these three magnitudes on logarithmic scale, indicated with    in Fig. 9.14 (top). Note how the constant gain factor  a 0 = 20 dB

√

is added across the interval and consequently 0 dB point is moved from

10 to  x 0 = 1. 

(b) Similarly, phase of  z(x)  in (9.23) consists of three individual linear segments as x

 x

 θ (z) = atan2  ( 0 ,  10 ) + arctan

+ arctan







1







10







1

 θ =0

2

 x 0=1

2

 x 0=10
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Bode plot

Fig. 9.14 P.9.14, Bode plot of a

three term function. Adding

multiple linear segments is

straightforward: it is sufficient to

compute the total sums at two

points and to draw the summing

line. Total phase of ± π  implies the

“signal inversion” as in the

inverting amplifier

Fig. 9.15 P.9.15—summing operation of piecewise linear segments is done within two intervals. In this case, from negative infinity to  x = 1, then from  x = 1 to positive infinity for the magnitude. Phase segments are added from negative infinity to  x = 0 .  1, and from  x = 10 to positive infinity. Within  x ∈  ( 0 .  1 ,  10 )  interval the phase function is approximated linearly

That is to say, the total phase  θ  is a simple sum of these three terms on logarithmic scale. In this case all three terms are constant, thus the sum at any point is a simple 0+ π/ 2+ π/ 2 =

 π , indicated with    in Fig. 9.14 (bottom). 

Method 2: given  z(x)  may be first simplified as





 x

 z(x) =  j

 (j  10 x) = − x 2  <  0 ∈ R ∴  θ = ± π

10

and magnitude is

 x

20 log | z(x)| = 20 log | −  x 2| = 20 log  x 2 = 40 log

∴  x 0 = 1

1

which is a linear function with +40 dB / dec slope that crosses  x 0 = 1 point. Evidently, both methods result in the same Bode plot Fig. 9.14. Being non complex negative  z(x)  function, it is natural to find ± π  phase, i.e. the “signal inversion”. 
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9.15. Given complex function in factorized form as





 x

 z(x) =  ( 1 −  j x) j

(9.25)

10

consists of two basic factors (9.2) and (9.4). Logarithmic form of (9.25) is then x

 x

 x

 x

20 log  z(x) = 20 log

1 −  j

 j

= 20 log 1 −  j

+ 20 log  j

(9.26)

1

10

1







10







4

 x 0=1

2

 x 0=10

which shows its two 0 dB points at  x 0 = 1 and at  x 0 = 10. Note that separation between these two points is one decade. 

(a) Magnitude of each factor is resolved, see A.9.4 and A.9.8, for example as (1)  z 1 (x) = 1 −  j x/ 1: i.e.  x 0 = 1, then magnitude segments are 2

|



 x 

 x

 z 1 (x)| = 1 −  j  = 20 log 1 +

∴ 0  < x ≤ 1 : | z 1 (x)|dB ≈ 0 dB

1

1

 x = 1 : | z 1 (x)|dB = 3 dB

 x >  1 : | z 1 (x)|dB ≈  x

These piecewise linear segments are indicated with 4 in Fig. 9.15a (top). 

(2)  z 2 (x) =  j x/ 10: i.e.  x 0 = 10, is indicated with

2

in Fig. 9.15a (top). Its two

defining points may be computed at  x = 1 as −20 dB and at  x = 10 as 0 dB, i.e. 

+20 dB / dec. 

The total magnitude is then | z(x)| = | z 1 (x)| + | z 2 (x)| on logarithmic scale, indicated with

 

in Fig. 9.15a (top). In this case, there are two segments to consider: left and right of x 0 = 1 point. Thus, total piecewise magnitudes (i.e. gains) calculated within these two segments are

 x ≤ 1 : | z 1 (x)| + | z 2 (x)| = 0 + 20 dB / dec = 20 dB / dec x ≥ 1 : | z 1 (x)| + | z 2 (x)| = +20 dB / dec + 20 dB / dec = +40 dB / dec As same as in A.9.13, the +40 dB / dec line segment is measured as −20 dB at  x = 1 and

√

as +20 dB at  x = 10, thus it crosses 0 dB point at  x 0 =

10. 

(b) Similarly, phases of two factors in (9.25) are approximated as



 x

 z 1 (x) = 1 −  j x/ 1 :  θ 1 (z) = atan2  (− x/ 10 ,  1 ) = − arctan 10

∴

cont. 

0  < x   0 .  1 :  θ 1 (x) ≈ − arctan ( 0 ) = 0◦
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Bode plot

 x = 1 :  θ 1 (x) − arctan  ( 1 ) = −  π = −45◦

4

 x  10 :  θ 1 (x) ≈ − arctan (∞ ) = −  π = −90◦

2

indicated with 4 in Fig. 9.15a (bottom), and, 





 x/ 10

 θ 2 (z) = atan2  (x/ 10 ,  0 ) = arctan

=  π = const. 

0

2

indicated with 2 in Fig. 9.15a (bottom). That being said, the total piecewise approximation of (9.25) phase in logarithmic scale is the sum computed within each interval as θ (z) ≈  θ 1 (z) +  θ 2 (z) ∴ 0  < x   0 .  1 :  θ(z) ≈ 0 +  π =  π

2

2

 x = 1 :  θ(z) ≈ −  π +  π =  π

4

2

4

 x  10 :  θ(z) ≈ −  π +  π = 0

2

2

where the total phase follows linear segment within the 0 .  1 ≤  x ≤ 10 interval, indicated with

 

in Fig. 9.15a (bottom). Note that this is a general technique to resolve phase within two decades interval centered around  x 0, where  θ(x 0 ) = ± π/ 4 depending on the Im  (z)  sign. Comparison of piecewise linear approximations with the exact functions is shown in Fig. 9.15b. 

9.16. Given complex function may be rewritten as





 x j

 z(x) =  ( 1 +  j x)

=  ( 1 +  jx) (− jx)

(9.27)

 j j

so that it consists of two basic factors (9.2) and (9.4). Logarithmic form of (9.27) is then x

 x

 x

 x

20 log  z(x) = 20 log

1 +  j

− j

= 20 log 1 +  j

+ 20 log − j

(9.28)

1

1

1







1







4

 x 0=1

2

 x 0=1

which shows a double 0 dB point at  x 0 = 1, i.e. these two  x 0 points overlap. 

(a) Magnitude of each factor is resolved, see for example A.9.4 and A.9.8, as (1)  z 1 (x) = 1 +  j x/ 1: i.e.  x 0 = 1 as







2

|



 x 

 x

 z 1 (x)| = 1 +  j  = 20 log 1 +

∴ 0  < x ≤ 1 : | z 1 (x)|dB ≈ 0 dB

1

1

 x = 1 : | z 1 (x)|dB = 3 dB

 x >  1 : | z 1 (x)|dB ≈  x
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These piecewise linear segments are indicated with 4 in Fig. 9.16a top. 

(2)  z 2 (x) = − j x/ 1: i.e.  x 0 = 1, is linear. Two points to calculate | z 2 (x)| may be at x =  x 0 / 10 = 0 .  1 and  x = 10 x 0 = 10 as, 









|



 x 

 z





2 (x)| = − j

=  x ∴ 20 log | z(x = 0 .  1 )| = 20 log

1

−0 .  1

1  = 20 log 0 .  1 = −20 dB





20 log | z(x = 10 )| = 20 log −10

1  = 20 log 10 = +20 dB

which is to say that magnitude increases linearly as  x  with the slope of +40 dB over two decades centered at  x 0 = 1, or equivalently +20 dB / dec, indicated with 2 in Fig. 9.16a top. 

The total logarithmic magnitude is then | z(x)| = | z 1 (x)| + | z 2 (x)|, indicated with    in Fig. 9.16a (top). In this case, there are two intervals to consider: left and right of  x 0 = 1

point. Thus, total piecewise magnitude (i.e. gain) is calculated within each of these two

intervals as

 x ≤ 1 : | z 1 (x)| + | z 2 (x)| = 0 + 20 dB / dec = 20 dB / dec x ≥ 1 : | z 1 (x)| + | z 2 (x)| = +20 dB / dec + 20 dB / dec = +40 dB / dec (b) Similarly, phases of two factors in (9.27) are approximated as



 x

 z 1 (x) = 1 +  j x/ 1 :  θ 1 (z) = atan2  (x/ 1 ,  1 ) = arctan 1

∴

0  < x   0 .  1 :  θ 1 (x) ≈ arctan ( 0 ) = 0◦

 x = 1 :  θ 1 (x) = arctan  ( 1 ) =  π = 45◦

4

 x  10 :  θ 1 (x) ≈ arctan (∞ ) =  π = 90◦

2

indicated with 4 in Fig. 9.16a bottom, and, 



 x/ 1

 θ 2 (z) = atan2  (− x/ 1 ,  0 ) = − arctan

= − π = const. 

0

2

indicated with 2 in Fig. 9.16a bottom. That being said, the total piecewise approximation of (9.27) phase in logarithmic scale is the sum computed within each interval as θ (z) ≈  θ 1 (z) +  θ 2 (z) ∴ 0  < x   0 .  1 :  θ(z) ≈ 0 −  π = −  π

2

2

 x = 1 :  θ(z) ≈ +  π −  π = −  π

4

2

4

 x  10 :  θ(z) ≈ +  π + −  π = 0

2

2
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Fig. 9.16 P.9.16—summing operation of piecewise linear segments is done within two intervals. In this case, from negative infinity to  x = 1, then from  x = 1 to positive infinity for the magnitude. Phase segments are added from negative infinity to  x = 0 .  1, and from  x = 10 to positive infinity. Within  x ∈  ( 0 .  1 ,  10 )  interval the phase function is approximated linearly

where the total phase is approximated by linear segment within the 0 .  1 ≤  x ≤ 10 interval, indicated with    in Fig. 9.16a (bottom). Comparison of piecewise linear approximations with the exact functions is shown in Fig. 9.16b. 

9.17. Given complex function may be factorized as





− 

 j x

 x

 z(x) = −  x 2 −  j x =  (j x) 2 =  j x j x = − x 2 = −  j x

−  j

10

10

1

1







= −  x

 j

1 −  j x

(9.29)

1

10

so that two basic factors (9.2) and (9.4) are explicitly shown. Two 0 dB points of  z(x)  are at x 0 = 1 and  x 0 = 10 so that logarithmic form of (9.29) is then x

 x

 x

 x

20 log  z(x) = 20 log

1 −  j

− j

= 20 log 1 −  j

+ 20 log − j

(9.30)

10

1

10







1







4

 x

2

0 =10

 x 0=1

(a) Magnitude of each factor is resolved, see for example A.9.4 and A.9.8, as (1)  z 1 (x) = 1 −  j x/ 10: i.e.  x 0 = 10 as







2

|



 x 

 x

 z 1 (x)| = 1 −  j

= 20 log 1 +

∴ 0  < x ≤ 10 : | z 1 (x)|dB ≈ 0 dB

10

10

 x = 10 : | z 1 (x)|dB = 3 dB

 x ≥ 10 : | z 1 (x)|dB ≈  x
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These piecewise linear segments are indicated with 4 in Fig. 9.17a top. 

(2)  z 2 (x) = − j x/ 1: i.e.  x 0 = 1, is linear (see A.9.16)









|



 x 

 z





2 (x)| = − j

=  x ∴ 20 log | z(x = 0 .  1 )| = 20 log

1

−0 .  1

1  = 20 log 0 .  1 = −20 dB





20 log | z(x = 10 )| = 20 log −10

1  = 20 log 10 = +20 dB

as indicated with 2 in Fig. 9.17a top. 

The total logarithmic magnitude is then | z(x)| = | z 1 (x)| + | z 2 (x)|, indicated with    in Fig. 9.17a (top). In this case, there are two intervals to consider: left and right of  x 0 = 10

point. Thus, total piecewise magnitude (i.e. gain) is calculated within each of these two

intervals as

 x ≤ 10 : | z 1 (x)| + | z 2 (x)| = 0 + 20 dB / dec = 20 dB / dec x ≥ 10 : | z 1 (x)| + | z 2 (x)| = +20 dB / dec + 20 dB / dec = 40 dB / dec (b) Similarly, phases factors in (9.29) are approximated as



 x

 z 1 (x) = 1 −  x/ 10 :  θ 1 (z) = atan2  (− x/ 10 ,  1 ) = − arctan 10

∴

0  < x   1 :  θ 1 (x) ≈ − arctan ( 0 ) = 0◦

 x = 10 :  θ 1 (x) = − arctan  ( 1 ) = −  π = −45◦

4

 x  100 :  θ 1 (x) ≈ − arctan (∞ ) = −  π = −90◦

2

indicated with 4 in Fig. 9.17a bottom, and, 



 x/ 1

 θ 2 (z) = atan2  (− x/ 1 ,  0 ) = − arctan

= − π = const. 

0

2

as indicated with

2

in Fig. 9.17a bottom. That being said, the total piecewise

approximation of (9.29) phase in logarithmic scale is the sum computed within each interval as

 θ (z) ≈  θ 1 (z) +  θ 2 (z) ∴ 0  < x   1 :  θ(z) ≈ 0 −  π = −  π

2

2

 x = 10 :  θ(z) ≈ −  π −  π = − 3 π

4

2

4

 x  100 :  θ(z) ≈ −  π −  π = − π

2

2
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Bode plot

Fig. 9.17 P.9.17—the summing operation of piecewise linear segments for magnitude and phase where the total phase is approximated by linear segment within the 1 ≤  x ≤ 100 interval, indicated with    in Fig. 9.17a (bottom). Comparison of piecewise linear approximations with the exact functions is shown in Fig. 9.17b. 

9.18. Given complex function may be factorized as







9 x

 j x

 x

 x

 x j x

 x

 z(x) =  x 2 −  j

+ 1 = − jx

−  j +  j

+ 1 = − j

+ 1 +  j

+ 1

10

10

10 1

1

10

1 10

10







=

 x

 x

1 +  j

1 −  j

(9.31)

10

1

so that two 0 dB points at  x 0 = 1 and at  x 0 = 10 are explicitly shown as per basic form (9.4). 

Logarithmic form of (9.31) is then















 x

 x

 x

 x

20 log  z(x) = 20 log

1 +  j

1 −  j

= 20 log 1 +  j

+ 20 log 1 −  j

10

1

10







1







4

 x

4

0 =10

 x 0=1

(9.32)

Note that these two points are separated by one decade. 

(a) Magnitude of each term is resolved as

(1)  z 1 (x) = 1 +  j x/ 10: i.e.  x 0 = 10 as







2

|



 x 

 x

 z 1 (x)| = 1 +  j

= 20 log 1 +

∴ 0  < x ≤ 10 : | z 1 (x)|dB ≈ 0dB

10

10

 x = 10 : | z 1 (x)|dB = 3 dB

 x >  10 : | z 1 (x)|dB ≈  x
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These piecewise linear segments are indicated with 4 in Fig. 9.18a top. 

(2)  z 2 (x) = 1 −  j x/ 1: i.e.  x 0 = 1. 







2

|



 x 

 x

 z 2 (x)| = 1 −  j  = 20 log 1 +

∴ 0  < x ≤ 1 : | z 2 (x)|dB ≈ 0 dB

1

1

 x = 1 : | z 2 (x)|dB = 3 dB

 x >  1 : | z 2 (x)|dB ≈  x

These piecewise linear segments are indicated with 4 in Fig. 9.18a top. 

The total magnitude is then | z(x)| = | z 1 (x)| + | z 2 (x)| on logarithmic scale, indicated with

 

in Fig. 9.18a (top). In this case, there are three intervals to consider as 0  < x ≤ 1 : | z 1 (x)| + | z 2 (x)| = 0 + 0 = 0

1 ≤  x ≤ 10 : | z 1 (x)| + | z 2 (x)| = 0 + 20 dB / dec = 20 dB / dec x ≥ 10 : | z 1 (x)| + | z 2 (x)| = +20 dB / dec + 20 dB / dec = 40 dB / dec (b) Similarly, phases of two factors in (9.31) are approximated as



 x

 z 1 (x) = 1 −  j x/ 1 :  θ 1 (z) = atan2  (− x/ 1 ,  1 ) = − arctan

∴

1

0  < x   0 .  1 :  θ 1 (x) ≈ − arctan ( 0 ) = 0◦

 x = 1 :  θ 1 (x) = − arctan  ( 1 ) = −  π = −45◦

4

 x  10 :  θ 1 (x) ≈ − arctan (∞ ) = −  π = −90◦

2

indicated with 4 in Fig. 9.18a bottom, and, 



 x

 z 2 (x) = 1 +  j x/ 10 :  θ 2 (z) = atan2  (x/ 10 ,  1 ) = − arctan

∴

10

0  < x   1 :  θ 1 (x) ≈ arctan ( 0 ) = 0◦

 x = 10 :  θ 1 (x) = arctan  ( 1 ) =  π = 45◦

4

 x  100 :  θ 1 (x) ≈ arctan (∞ )

=  π = 90◦

2

indicated with 4 in Fig. 9.18a bottom. That being said, the total piecewise approximation of (9.31) phase in logarithmic scale is the sum computed at the boundaries of five intervals as

 θ (z) ≈  θ 1 (z) +  θ 2 (z) ∴ 0  < x ≤ 0 .  1 :  θ(z) ≈ 0 + 0 = 0
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Bode plot

Fig. 9.18 P.9.18—the summing operation of piecewise linear segments for magnitude and phase x = 1 :  θ(z) ≈ −  π + 0 = −  π

4

4

 x = 10 :  θ(z) ≈ −  π +  π = −  π

2

4

4

 x = 100 :  θ(z) ≈ −  π +  π = 0

2

2

 x ≥ 100 :  θ(z) ≈ −  π +  π = 0

2

2

indicated with    in Fig. 9.18a (bottom). Comparison of piecewise linear approximations with the exact functions is shown in Fig. 9.18b. Evidently, phase function is forced to change multiple times as the two 0 dB points are close. For that reason difference between

the exact phase function and its respective linear approximations is visibly larger. In

general, these approximation errors increase when the pole/zero separations of rational

functions are less than one decade. 

9.19. This function is already factorized





 x

 z(x) =  ( 1 −  j x)  1 +  j

(9.33)

100

then its logarithmic form is















 x

 x

 x

 x

20 log  z(x) = 20 log

1 +  j

1 −  j

= 20 log 1 +  j

+ 20 log 1 −  j

100

1

100







1







4

 x

4

0 =100

 x 0=1

(9.34)

so that two 0 dB points at  x 0 = 1 and  x 0 = 100 are explicitly shown as per basic form (9.4). 

Note that these two points are separated by two decades. 

9.2 Examples
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(a) Magnitude of each term is resolved as

(1)  z 1 (x) = 1 +  j x/ 100: i.e.  x 0 = 100 as





2

|

 x

 z 1 (x)| = |1 +  j x/ 100| = 20 log 1 +

∴ 0  < x ≤ 100 : | z 1 (x)|dB ≈ 0 dB

100

 x = 100 : | z 1 (x)|dB = 3 dB

 x ≥ 100 : | z 1 (x)|dB ≈  x

These piecewise linear segments are indicated with 4 in Fig. 9.19a top. 

(2)  z 2 (x) = 1 −  j x/ 1: i.e.  x 0 = 1. 







2

|



 x 

 x

 z 2 (x)| = 1 −  j  = 20 log 1 +

∴ 0  < x ≤ 1 : | z 2 (x)|dB ≈ 0 dB

1

1

 x = 1 : | z 2 (x)|dB = 3 dB

 x ≥ 1 : | z 2 (x)|dB ≈  x

These piecewise linear segments are indicated with 4 in Fig. 9.19a top. 

The total magnitude is then | z(x)| = | z 1 (x)| + | z 2 (x)| on logarithmic scale, indicated with

 

in Fig. 9.19a (top). In this case, there are three segments to consider as 0  < x ≤ 1 : | z 1 (x)| + | z 2 (x)| = 0 + 0 = 0

1 ≤  x ≤ 100 : | z 1 (x)| + | z 2 (x)| = 0 + 20 dB / dec = 20 dB / dec x ≥ 100 : | z 1 (x)| + | z 2 (x)| = +20 dB / dec + 20 dB / dec = 40 dB / dec (b) Similarly, phases of two factors in (9.33) are approximated as



 x

 z 1 (x) = 1 −  j x/ 1 :  θ 1 (z) = atan2  (− x/ 1 ,  1 ) = − arctan

∴

1

0  < x ≤ 0 .  1 :  θ 1 (x) ≈ − arctan ( 0 ) = 0◦

 x = 1 :  θ 1 (x) = − arctan  ( 1 ) = −  π = −45◦

4

 x  10 :  θ 1 (x) ≈ − arctan (∞ ) = −  π = −90◦

2

indicated with 4 in Fig. 9.19a bottom, and, 





 x

 z 2 (x) = 1 +  j x/ 100 :  θ 2 (z) = atan2  (x/ 100 ,  1 ) = − arctan

∴

100

0  < x ≤ 10 :  θ 1 (x) ≈ arctan ( 0 ) = 0◦

 x = 100 :  θ 1 (x) = arctan  ( 1 ) =  π = 45◦

4
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Fig. 9.19 P.9.19—the summing operation of piecewise linear segments for magnitude and phase x ≥ 1000 :  θ 1 (x) ≈ arctan (∞ ) =  π = 90◦

2

indicated with 4 in Fig. 9.19a bottom. Then, the total piecewise approximation of (9.33)

phase in logarithmic scale is the sum computed at the boundaries of four segments as

 θ (z) ≈  θ 1 (z) +  θ 2 (z) ∴ 0  < x ≤ 0 .  1 :  θ(z) ≈ 0 + 0 = 0

 x = 10 :  θ(z) ≈ −  π + 0 = −  π

2

2

 x = 1000 :  θ(z) ≈ −  π +  π = 0

2

2

 x ≥ 1000 :  θ(z) ≈ −  π +  π = 0

2

2

indicated with    in Fig. 9.19a (bottom). Comparison of piecewise linear approximations with the exact functions is shown in Fig. 9.19b. 

9.20. This rational function may be factorized to explicitly show gain factor  a 0, its zero (i.e. 

numerator’s Re  (z) = Im  (z)), and its pole (i.e. denominator ’s Re  (z) = Im  (z)) as x

 x

1 +  j x

1 +  j

1 +  j

 z(x) = 500

= 

500 5

1



= 5

1

(9.35)

100 −  j x

 x

 x



100 1 −  j

1 −  j

100

100

Gain factor equal  a 0 = 5, zero is at  x 0 = 1, and pole is at  x 0 = 100. Note the two decades separation between zero and pole. 

(a) Logarithmic form (9.35) is then

9.2 Examples
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⎡

⎤

 x

⎢ 1 +  j

⎥ 

 a



20 log  z(x) = 20 log ⎣5

1

=

 x ⎦

log

log (ab−1 ) = log  a − log  b

1 −  j

 b

100









=

 x

 x

20 log 5 +20 log 1 +  j

−20 log 1 −  j

(9.36)



1







100







1

 a

4

0 =5

 x 0=1

4

 x 0=100

(b) Evidently, summation terms in (9.36) are in basic forms (9.1) and (9.4), see P.9.1 to P.9.12. In addition, denominator of rational function (9.35) corresponds to the negative term in (9.36). 

(a) Magnitude of each term in (9.36) is resolved as

(1)  z 1 (x) =  a 0 = 5:

∴ | z 1 (x)| = |5| = 20 log 5 ≈ 14 dB

This piecewise linear segments is indicated with 1 in Fig. 9.20a top. 

(2)  z 2 (x) = 1 +  j x/ 1: i.e.  x 0 = 1. 







2

|



 x 

 x

 z 2 (x)| = 1 +  j  = 20 log 1 +

∴ 0  < x ≤ 1 : | z 2 (x)|dB ≈ 0 dB

1

1

 x = 1 : | z 2 (x)|dB = 3 dB

 x ≥ 1 : | z 2 (x)|dB ≈  x

These piecewise linear segments are indicated with 4 in Fig. 9.20a top. 

(3)  z 3 (x) = 1 −  j x/ 100: i.e.  x 0 = 100. Note that Im  (z) <  0 as well as the negative sign of | z 3| in (9.36), thus





2

|

 x

 z 3 (x)| = − |1 −  j x/ 100| = −20 log 1 + 100

∴ 0  < x ≤ 100

: | z 3 (x)|dB ≈ 0 dB

 x = 100 : | z 3 (x)|dB = −3 dB

 x ≥ 100 : | z 3 (x)|dB ≈ − x

These piecewise linear segments are indicated with 4 in Fig. 9.20a top. 

The total magnitude on logarithmic scale is then | z(x)| = | z 1 (x)| + | z 2 (x)| + | z 3 (x)|, indicated with    in Fig. 9.20a (top). In this case, there are three intervals to consider 0  < x ≤ 1 : | z 1 (x)| + | z 2 (x)| + | z 3 (x)| ≈ 14 dB + 0 + 0 = 14 dB

 x = 100 : | z 1 (x)| + | z 2 (x)| + | z 3 (x)| ≈ 14 dB + 40 dB + 0 = 54 dB

 x ≥ 100 : | z 1 (x)| + | z 2 (x)| + | z 3 (x)| ≈ 54 dB + 

20 dB / dec − 

20 dB / dec = 54 dB

(b) Similarly, phases of three factors in (9.35) are approximated as

 z 1 (x) = 5  >  0 ∈ R :

⇒  θ 1 (x) = 0
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indicated with 1 in Fig. 9.20a bottom, 



 x

 z 2 (x) = 1 +  j x/ 1 :  θ 2 (z) = atan2  (x/ 1 ,  1 ) = arctan

∴

1

0  < x   0 .  1 :  θ 2 (x) ≈ arctan ( 0 ) = 0◦

 x = 1 :  θ 2 (x) = arctan  ( 1 ) =  π = 45◦

4

 x  10 :  θ 2 (x) ≈ arctan (∞ ) =  π = 90◦

2

indicated with

4

in Fig. 9.20a bottom. Again, note the negative sign of this

denominator term in its logarithmic form so that





 x

 z 3 (x) = 1 −  j x/ 100 :  θ 3 (z) = −atan2  (− x/ 100 ,  1 ) = arctan

∴

100

0  < x ≤ 10 :  θ 3 (x) ≈ arctan ( 0 ) = 0◦

 x = 100 :  θ 3 (x) = arctan  ( 1 ) =  π = 45◦

4

 x ≥ 1000 :  θ 3 (x) ≈ arctan (∞ ) =  π = 90◦

2

indicated with 4 in Fig. 9.20a bottom. Therefore, the total piecewise approximation of (9.35) phase in logarithmic scale is the sum computed at the boundaries of four segments as

 θ (z) ≈  θ 1 (z) +  θ 2 (z) +  θ 3 (z) ∴ 0  < x ≤ 0 .  1 :  θ(z) ≈ 0 + 0 + 0 = 0

 x = 10 :  θ(z) ≈ 0 +  π + 0 =  π

2

2

 x = 1000 :  θ(z) ≈ 0 +  π +  π =  π

2

2

 x ≥ 1000 :  θ(z) ≈ 0 +  π +  π =  π

2

2

indicated with    in Fig. 9.20a (bottom). Comparison of piecewise linear approximations with the exact functions is shown in Fig. 9.20b. 

9.21. This function may be factorized into its basic factors that explicitly show positions of its pole (i.e. numerator’s Re  (z) = Im  (z)), its zero (i.e. denominator’s Re  (z) = Im  (z)), and its gain factor  a 0 as follows. 





 x

 x

10 +  j x

10 1 +  j

1 +  j

 z(x) = 100

= 

100

10



= 10

10

(9.37)

100 +  j x

 x

 x



100 1 +  j

1 +  j

100

100

where, DC gain is  a 0 = 10, zero is at  x 0 = 10, and pole at  x 0 = 100. Note one decade separation between pole and zero positions. 
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Fig. 9.20 P.9.20—the summing operation of piecewise linear segments for magnitude and phase (a) Logarithmic form of factorized (9.37) is then

⎡

⎤

 x

⎢

1 +  j

⎥ 

 a



20 log  z(x) = 20 log ⎣10

10

=

 x ⎦

log

log (ab−1 ) = log  a − log  b

1 +  j

 b

100









=

 x

 x

20 log 10 +20 log 1 +  j

−20 log 1 +  j

(9.38)



10







100







1

 a 0=10

4

 x 0=10

4

 x 0=100

(b) Summation terms in (9.38) are in basic forms (9.1) and (9.4), see P.9.1 to P.9.12. In addition, denominator of rational function (9.37) corresponds to the negative term in

(9.38). 

(a) Magnitude of each term in (9.38) is resolved as

(1)  z 1 (x) =  a 0 = 10:

∴ | z 1 (x)| = |10| = 20 log 10 = 20 dB

This piecewise linear segments is indicated with 1 in Fig. 9.21a top. 

(2)  z 2 (x) = 1 +  j x/ 10: i.e.  x 0 = 10. 







2

|



 x 

 x

 z 2 (x)| = 1 +  j

= 20 log 1 +

10

10

∴ 0  < x ≤ 10 : | z 2 (x)|dB ≈ 0 dB

 x = 10 : | z 2 (x)|dB = 3 dB

 x ≥ 10 : | z 2 (x)|dB ≈  x

These piecewise linear segments are indicated with 4 in Fig. 9.21a top. 

(3)  z 3 (x) = 1 +  j x/ 100: i.e.  x 0 = 100 (the negative term in (9.38)) as 2

|

 x

 z 3 (x)| = − |1 +  j x/ 100| = −20 log 1 + 100
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∴ 0  < x ≤ 100 : | z 3 (x)|dB ≈ 0 dB

 x = 100 : | z 3 (x)|dB = −3 dB

 x ≥ 100 : | z 3 (x)|dB ≈ − x

These piecewise linear segments are indicated with 4 in Fig. 9.21a top. 

The total magnitude on logarithmic scale is then | z(x)| = | z 1 (x)| + | z 2 (x)| + | z 3 (x)| , indicated with    in Fig. 9.21a (top). There are three intervals to consider as 0  < x ≤ 10 : | z 1 (x)| + | z 2 (x)| + | z 3 (x)| = 20 dB + 0 + 0 ≈ 20 dB

 x = 100 : | z 1 (x)| + | z 2 (x)| + | z 3 (x)| ≈ 20 dB + 20 dB + 0 = 40 dB

 x ≥ 100 : | z 1 (x)| + | z 2 (x)| + | z 3 (x)| ≈ 40 dB + 

20 dB / dec − 

20 dB / dec = 40 dB

(b) Similarly, phases of three factors in (9.37) are approximated as

 z 1 (x) = 10  >  0 ∈ R :

⇒  θ 1 (x) = 0

indicated with 1 in Fig. 9.21a bottom, 



 x

 z 2 (x) = 1 +  j x/ 10 :  θ 2 (z) = atan2  (x/ 1 ,  1 ) = arctan

∴

10

0  < x ≤ 1 :  θ 2 (x) ≈ arctan ( 0 ) = 0◦

 x = 10 :  θ 2 (x) = arctan  ( 1 ) =  π = 45◦

4

 x ≥ 100 :  θ 2 (x) ≈ arctan (∞ ) =  π = 90◦

2

indicated with 4 in Fig. 9.21a bottom, and the negative term in (9.38), thus x

 z 3 (x) = 1 +  j x/ 100 :  θ 3 (z) = −atan2  (x/ 100 ,  1 ) = − arctan

∴

100

0  < x ≤ 10 :  θ 3 (x) ≈ − arctan ( 0 ) = 0◦

 x = 100 :  θ 3 (x) = − arctan  ( 1 ) = −  π = −45◦

4

 x ≥ 1000 :  θ 3 (x) ≈ − arctan (∞ )

= − π = −90◦

2

indicated with

4

in Fig. 9.21a bottom. Thus, the total piecewise approximation

of (9.37) phase in logarithmic scale is the sum computed at the boundaries of five intervals

 θ (z) ≈  θ 1 (z) +  θ 2 (z) +  θ 3 (z) ∴ 0  < x ≤ 1 :  θ(z) ≈ 0 + 0 + 0 = 0

 x = 10 :  θ(z) ≈ 0 +  π + 0 =  π

4

4
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Fig. 9.21 P.9.21—the summing operation of piecewise linear segments for magnitude and phase x = 100 :  θ(z) ≈ 0 +  π −  π =  π

2

4

4

 x = 1000 :  θ(z) ≈ 0 +  π −  π = 0

2

2

 x >  1000 :  θ(z) ≈ 0 +  π −  π = 0

2

2

indicated with

 

in Fig. 9.21a (bottom). Comparison of piecewise linear approxi-

mations with the exact functions is shown in Fig. 9.21b. 

9.22. This second order rational function may be factorized into its basic factors that explicitly show positions of poles (i.e. numerator’s Re  (z) = Im  (z)) and zeros (i.e. denominator’s Re  (z) = Im  (z)) as follows. 

2 +  j x





2 +  j x

 H (j ω) = 2 000

=  (jx) 2 = − x 2 = 2 000

220 j x + 4 000 −  x 2

 j  2 x 2 + 220 j x + 4 000

=

2 +  j x

2 +  j x

2 000

= 2 000

 j  2 x 2 + 20 j x + 200 j x + 4 000

 j x ( 20 +  j x) + 200  ( 20 +  j x)





 x

2 1 +  j

=

2 +  j x

2 000

= 

2 000

2









 ( 20 +  j x)( 200 +  j x)

 x

 x





20 1 +  j



200 1 +  j

20

200

 x

1 +  j

=

2







 x

 x

(9.39)

1 +  j

1 +  j

20

200

where, a zero is at  x 0 = 2, first pole at  x 0 = 20, and the second pole at  x 0 = 200. Note one decade separation between zero–pole–pole locations, and also that the two poles are real. As a side note, second order rational function with complex poles is very important form. 
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(a) Logarithmic form of factorized (9.39) is then

⎡

⎤

 x

⎢

1 +  j

⎥

20 log  z(x) = 20 log ⎣

2







 x

 x

⎦

1 +  j

1 +  j

20

200













= +

 x

 x

 x

20 log 1 +  j

−20 log 1 +  j

−20 log 1 +  j

(9.40)

2







20







200







4

 x 0=2

4

 x 0=20

4

 x 0=200

(b) Summation terms in (9.40) are in basic forms (9.1) and (9.4), see P.9.1 to P.9.12. In addition, denominator of rational function (9.39) corresponds to the negative term in

(9.40). 

(a) Magnitude of each term in (9.40) is resolved as

(1)  z 1 (x) = 1 +  j x/ 2: i.e.  x 0 = 2. 







2

|



 x 

 x

 z 1 (x)| = 1 +  j  = 20 log 1 +

∴ 0  < x ≤ 2 : | z 1 (x)|dB ≈ 0 dB

2

2

 x = 2 : | z 1 (x)|dB = 3 dB

 x ≥ 2 : | z 1 (x)|dB ≈  x

These piecewise linear segments are indicated with 4 in Fig. 9.22a top. 

(2)  z 2 (x) = 1 +  j x/ 20: i.e.  x 0 = 20 (the negative term in (9.40)) as 2

|

 x

 z 2 (x)|= − |1+ j x/ 20| = − 20 log 1+

∴ 0 <x ≤ 20 : | z 2 (x)|dB ≈ 0 dB

20

 x=20 : | z 2 (x)|dB = −3 dB

 x≥20 : | z 2 (x)|dB ≈ − x

These piecewise linear segments are indicated with 4 in Fig. 9.22a top. 

(3)  z 3 (x) = 1 +  j x/ 200: i.e.  x 0 = 200 (the negative term in (9.40)) as 2

|

 x

 z 3 (x)| = − |1 +  j x/ 200| = −20 log 1 + 200

∴ 0  < x ≤ 200 : | z 3 (x)|dB ≈ 0 dB

 x = 200 : | z 3 (x)|dB = −3 dB

 x ≥ 200 : | z 3 (x)|dB ≈ − x

These piecewise linear segments are indicated with 4 in Fig. 9.22a top. 

9.2 Examples

419

The total magnitude on logarithmic scale is then | z(x)| = | z 1 (x)| + | z 2 (x)| + | z 3 (x)| , indicated with    in Fig. 9.22a (top). There are four intervals to consider as 0  < x ≤ 2 : | z 1 (x)| + | z 2 (x)| + | z 3 (x)| = 0 + 0 + 0 = 0 dB

 x = 20 : | z 1 (x)| + | z 2 (x)| + | z 3 (x)| ≈ 20 dB + 0 + 0 = 20 dB

 x = 200 : | z 1 (x)| + | z 2 (x)| + | z 3 (x)| ≈ 40 dB − 20 dB + 0 = 20 dB

 x = 2000 : | z 1 (x)| + | z 2 (x)| + | z 3 (x)| ≈ 60 dB − 40 dB − 20 dB = 0 dB

 x ≥ 2000 : | z 1 (x)| + | z 2 (x)| + | z 3 (x)| ≈ 20 dB / dec − 20 dB / dec

− 20 dB / dec = −20 dB / dec

(b) Similarly, phases of three factors in (9.39) are approximated as

 x

 x

 x

 θ (z) = + arctan

− arctan

− arctan

(9.41)

2



20







200







4

 x 0=2

4

 x 0=20

4

 x 0=200

so that, 



 x

 z 1 (x) = 1 +  j x/ 2 :  θ 1 (z) = atan2  (x/ 2 ,  1 ) = arctan

∴

2

0  < x ≤ 0 .  2 :  θ 2 (x) ≈ arctan ( 0 ) = 0◦

 x = 2 :  θ 2 (x) = arctan  ( 1 ) =  π = 45◦

4

 x ≥ 20 :  θ 2 (x) ≈ arctan (∞ ) =  π = 90◦

2

indicated with 4 in Fig. 9.22a bottom, 



 x

 z 2 (x) = 1 +  j x/ 20 :  θ 2 (z) = −atan2  (x/ 20 ,  1 ) = − arctan

∴

20

0  < x ≤ 2 :  θ 2 (x) ≈ − arctan ( 0 ) = 0◦

 x = 20 :  θ 2 (x) = − arctan  ( 1 ) = −  π = −45◦

4

 x ≥ 200 :  θ 2 (x) ≈ − arctan (∞ )

= − π = −90◦

2

indicated with 4 in Fig. 9.22a bottom and negative sign in (9.39). 





 x

 z 3 (x) = 1 +  j x/ 200 :  θ 2 (z) = −atan2  (x/ 200 ,  1 ) = − arctan

∴

200

0  < x ≤ 20 :  θ 3 (x) ≈ − arctan ( 0 ) = 0◦
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Fig. 9.22 P.9.22—the summing operation of piecewise linear segments for magnitude and phase x = 200 :  θ 3 (x) = − arctan  ( 1 ) = −  π = −45◦

4

 x ≥ 2000 :  θ 3 (x) ≈ − arctan (∞ )

= − π = −90◦

2

indicated with 4 in Fig. 9.22a bottom and negative sign in (9.41). 

Thus, the total piecewise approximation of (9.41) phase in logarithmic scale is the sum computed at the boundaries of five intervals

 θ (z) ≈  θ 1 (z) +  θ 2 (z) +  θ 3 (z) ∴ 0  < x ≤ 0 .  2 :  θ(z) ≈ 0 − 0 − 0 = 0

 x = 2 :  θ(z) ≈  π − 0 − 0 =  π

4

4

 x = 20 :  θ(z) ≈  π −  π − 0 =  π

2

4

4

 x = 200 :  θ(z) ≈  π −  π −  π = −  π

2

2

4

4

 x ≥ 2 000 :  θ(z) ≈  π −  π −  π = −  π

2

2

2

2

indicated with

 

in Fig. 9.22a (bottom). Comparison of piecewise linear approxi-

mations with the exact functions is shown in Fig. 9.22b. 

Part III

Linear Algebra
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Linear Algebra

10

Problems

Exercises in this chapter are grouped into nine sections. Vector definitions and operations are followed by examples of linear transformations, determinants, and Cramer’s rule. Then, modern interpretation of vectors and space is given in the form of matrix transformations, eigenvalues, and eigenvectors. 

Finally, linear algebra exercises are summarized by using one of the many methods to calculate the inverse matrix and powers of diagonalizable matrices. 

10.1

Vector Definitions

Problems in P.10.1 to P.10.5 are a short review of vector definitions. 

10.1. By a simple sketch, illustrate geometrical interpretation of 3D, 2D, 1D, and 0D spaces, where “xD” refers to number of dimensions. 

10.2. What are the “preferred” forms of vector representations in physics, mathematics, and informatics? 

10.3. Given three basis vectors (i.e., orthogonal)  i, 

 j , 

 k, sketch these three vectors in a single

graph. Comment on the space defined by these three basis vectors. 

⎡ ⎤

⎡ ⎤

⎡ ⎤

⎡ ⎤

⎡ ⎤

⎡ ⎤

 ix

1

 jx

0

 kx

0

 i = ⎣ i ⎦ ⎣ ⎦  ⎣ ⎦ ⎣ ⎦  ⎣ ⎦ ⎣ ⎦

 y

= 0

 j =

 jy

= 1

 k =

 ky

= 0

 iz

0

 jz

0

 kz

1

10.4. Given four points in 2D space:  A =  (−2 ,  2 ),  B =  ( 1 ,  4 ),  C =  ( 5 ,  6 ),  D =  ( 3 ,  1 ), 

−→

−→

(a) Sketch a graph showing  AB  and  CD  vectors. 

−→

−→

(b) Write the matrix form of  AB  and  CD  vectors
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10.5. Sketch a graph that shows the following vectors:













3

−4

−3

 a =

 b =

 c =

3

3

−4

10.2

Vector Operations

Some of the basic vector calculations are in P.10.6 to P.10.8

10.6. Calculate the magnitude of 

 p, that is to say | 

 p| if

(a) 

 p =  ( 0 ,  1 )

(b) 

 p =  ( 3 ,  4 )

(c) 

 p =  (−3 ,  1 )

(d) 

 p =  ( 2 ,  3 ,  6 )

10.7. Given vector







 x

3

 x =

 x

=

 xy

2

sketch diagram of  a, 

 b,  c, if

(a)  a = 2  x

(b) 

 b = 2 

 x

(c)  c = − 3  x

3

4

10.8. Sketch a graph to illustrate the additions in 1D and 2D spaces. As an example, show the following vector additions:







1

3

(a) 2 + 3 = 5 and 2 − 3 = −1

(b)  c =  a + 

 b  if  a =

and 

 b =

2

−1

Given data in P.10.9 to P.10.13, while using the matrix form of vectors, calculate the final vector coordinates. 

−→

−→

10.9. Given coordinates of points  A  and  B  in 2D space calculate coordinates of  AB  and  BA, 

−→

−→

then calculate | AB| and | BA|; note that  O =  ( 0 ,  0 ). 

(a)  A( 4 ,  1 ), B( 1 , −3 )

(c)  A(−1 , −3 ), B( 4 ,  2 )

(b)  A( 2 ,  3 ), B(−1 ,  4 )

(d)  A( 1 , −2 ), B( 3 ,  2 )

−→

10.10. Given coordinates of points  A  and  B  in 3D space calculate coordinates of  AB  and

−→

−→

−→

 BA, then calculate | AB| and | BA|; note that  O =  ( 0 ,  0 ,  0 ). 

(a)  A( 4 ,  1 ,  6 ), B( 2 ,  4 , −2 )

−→

−→

(b)  OA =  ( 2 ,  3 ,  4 ), OB =  ( 3 ,  0 , −1 ) 10.11. Given  a =  ( 2 , −3 ), 

 b =  ( 3 , −1 ), calculate  c =  a + 

 b, 

 d =  a − 

 b. 
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10.12. Given  A( 2 ,  3 ,  1 ), B( 3 , −1 ,  0 ), C =  (−1 , −2 ,  1 ), D =  (−3 ,  3 , −2 ), calculate:

−→ −→

−→ −→

(a) 

 m =  AB +  CD

(b)  n =  AB −  CD

10.13. Given  a =  (−1 ,  2 ), 

 b =  ( 3 ,  2 ),  c =  (−2 , −3 ), calculate: (a) 

 p =  a + 

 b, 

(b) 

 m = 2 a − 

 b, 

(c)  n = 3 a − 

 b −  c, 

(d)  r = 2

 b − 1 / 2  c

√

10.14. Vectors  a  and 

 b  create angle  θ =  π/ 6. Given that | a| =

3 and |

 b| = 1, calculate

angle  α  between vectors 

 p =  a + 

 b  et 

 q =  a − 

 b. 

10.3

Linear Transformations

Two or more vectors are said to be linearly independent if none of them can be written as a linear combination of the others. 

Reminder: Linear combination of two vectors is written as









 x

 y

 ax 1 +  by 1

 z =  a 

 x +  b 

 y =  a

1

+  b

1

=

 x 2

 y 2

 ax 2 +  by 2

where  (a, b)  are coefficients,  (x 1 , x 2 )  are coordinates of x, and  (y 1 , y 2 )  are coordinates of 

 y. 

10.15. Explain briefly the similarities and differences between a  function f (x)  and a  linear transformation L( v)  operation. What is the relationship between linear transformations and space? 

10.16. Given, as an example, vector  v = −2 i + 

 j , with a simple diagram:

(a) Show that the numerical form of  v = −2 i + 

 j  stays the same after an arbitrary linear

transformation  L( v). 

(b) Calculate the matrix form of  L( v)  used in your example. 

10.17. Show the geometrical interpretation of linear transformation  L(

 x)  given that









3 1

−1

 L =

and 

 x =

1 2

2
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10.18. With a simple 2D graph, illustrate each of linear space transformations per-

formed as:

(a) Rotation 90◦ counterclockwise

(b) Shear 45◦ clockwise

(c) First rotation 90◦ counterclockwise, then shear 45◦ clockwise

10.19. Given vectors  a =  ( 2 ,  1 ), 

 b =  ( 1 ,  0 ), write 

 m =  ( 9 ,  1 )  as linear combination of  a

and 

 b. 

10.20. Given vectors 

 u =  ( 3 , −1 ),  v =  ( 1 , −2 ), 

 w =  (−1 ,  7 ), write 

 m = 

 u +  v + 

 w  as linear

combination of 

 u  and  v. 

10.4

Determinants

Given two or more vectors in a matrix form, its determinant may be interpreted as a multiplication factor that measures the signed (i.e., positive or negative) size of the 2D surface (or multidimensional volume) enclosed by these vectors. Specifically, positive/negative sign of the determinant indicates the order in which the vectors are taken. As an analogy, “positive” and “negative” 2D surfaces may be associated with the two sides of a sheet of paper. That is to say, the two surfaces have same absolute value, but opposite orientations. 

Reminder: it can be easily shown that the second-order determinant of matrix  A  made of two vectors 

 x  and 

 y  is calculated as the difference between products along its two diagonals: positive along blue and negative along red direction, as

where det (A), or   A, or | A| reads as the “determinant of matrix  A” (not “the absolute value of A” or “delta  A”). The determinant’s value may be positive, negative, or zero. 

In general, higher-order determinants may be calculated by two principal methods: by calculating cross-products or by the method of cofactor expansions. 

Reminder: Method 1: by calculating cross-products. Following the same idea as for second-order determinants,  n-th order determinants may be calculated by writing the extended determinant form. That is to say, to repeat first  (n − 1 )  columns on the right side of its  n ×  n determinant. By doing so it is possible to visually complete  n  positive (blue) and  n  negative (red) diagonals, then to calculate all cross-products as (e.g., as in 3 × 3 determinant):

(continued)
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(continued)

Reminder: Method 2: by cofactor expansions along  i-th row of  n-th order determinant  A. 

Given matrix  A  as

⎡

⎤

 a 11  a 12 · · ·  a 1 n

⎢

⎢  a

⎥

 k

21  a 22 · · ·  a 2 n ⎥



 A = ⎢

∴ |

⎣  . 

⎥

 A| =

 (−1 )i+ j a

 . 

 ij | Ai,j |

 . 

⎦

 i=1

 an 1  an 2 · · ·  ann

where  (i, j ) minor  determinant that is usually denoted as | Ai,j | is a  (n − 1 ) ×  (n − 1 )  matrix obtained from  A  by deleting the  i-th row and the  j -th column while keeping their common term aij . Then, the same operation may be repeated with the  (n − 1 ) ×  (n − 1 )  matrix until 2 × 2

matrix is achieved. By doing so, higher-order matrices are systematically converted into a linear combination (i.e., a sum) of second-order determinants. In addition, the choice of  i-th row and the  j -th column is a matter of convenience. 

Calculate determinants given in P.10.21 to P.10.34, 















3 0 

1 2 

4 2 

2 −1

10.21. 















0 2 

10.22.  1 −1

10.23.  2 1

10.24.  1 0











√

√ 

3 −3 2 

1  i 

sin  α  cos  α 

10.25. 









√

√ 

3

2 2 

10.26.  − i  1

10.27.  −cos α  sin α 













2 3 4 

1 2 1

1 2 2

10.28.  5 −2 1 

10.29.  1 0 2 

10.30.  2 0 2 













1

2 3 

1 2 0 

2 2 1 

















3 2 1 

2 3 1

5 0 4

1 3 5

10.31.  4 5 6 

10.32.  3 −1

2 

10.33.  8 0 −7 

10.34.  7 9 11 

















8 9 7 

1 1 −3

3 2 1 

13 15 17 
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What is the geometrical interpretation of matrices given P.10.35 to P.10.37? 













3 0

1

2

4 2

10.35. 

10.36. 

10.37. 

0 2

1 −1

2 1

10.5

Cramer’s Rule

Solve second-order systems of linear equations in P.10.38 to P.10.41

10.38. 

10.39. 

10.40. 

10.41. 

 a +  b = 7

4 x 1 − 3 x 2 = 0

 x + 2 y = −5

 x + 2 y = −8

2 a + 2 b = 14

2 x 1 + 3 x 2 = 18

3 x −  y = 13

2 x −  y = −1

Solve third-order systems of linear equations in P.10.42 to P.10.47

10.42. 5 x − 5 y − 15 z = 40

10.43. 2 x − 3 y −  z = 5

10.44.  x +  y +  z = 3

4 x − 2 y − 6 z = 19

 x +  y + 2 z = 7

 x −  y +  z = 5

3 x − 6 y − 17 z = 41

2 x −  y −  z = 1

− x +  y −  z = 10

10.45.  x +  y +  z = 36

10.46.  x +  y = 7

10.47. 5 x − 13 y + 13 z = 8

2 x −  z = −17

 y +  z = 8

 x − 3 y +  z = 4

6 x − 5 z = 7

− x + 2 z = 7

− x + 2 y − 5 z = 3

Problems of curve fitting are translated into the problem of solving system of equations, P.10.48 to P.10.49. 

10.48. By using the curve fitting method derive a linear function  f (x) =  ax +  b  that best fits given coordinates of two points:  A =  (−2 ,  20 );  B =  ( 1 ,  5 )  in 2D space. Can you fit quadratic function  g(x) =  ax 2 +  bx +  c  for the same two data points? Any other nonlinear function? 

10.49. By using the curve fitting method derive a quadratic function  f (x) =  ax 2 +  bx +  c that best fits given coordinates of three data points:  A =  (−2 ,  20 );  B =  ( 1 ,  5 );  C =  ( 3 ,  25 ) in 2D space. Can you fit a fourth-order polynomial function for the same three data points? 

Any other nonlinear function? 

In P.10.50 to P.10.51, given  a, b, and  c  show that they are linearly independent, then write  c  as linear combination of  a  and 

 b. 

10.6 Vector Space
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10.50.  a =  ( 3 , −2 ),  b =  (−2 ,  1 ),  c =  ( 7 , −4 )10.51.  a =  ( 1 ,  2 ),  b =  ( 3 ,  4 ),  c =  ( 0 , −2 ) In P.10.52 to P.10.53, calculate parameter  λ  so that the given vectors are linearly independent: 10.52.  a =  ( 3 , λ), 

 b =  ( 2 ,  6 )

10.53.  a =  ( 6 ,  8 ,  4 ), 

 b =  ( 3 ,  4 ,  2 ),  c =

 (λ,  0 ,  1 )

10.6

Vector Space

In P.10.54 to P.10.59 calculate matrix–vector products and show its geometric interpretation. 









√ 





√ 

1

1

3

1

1

1 + 3

1

1

1 −

3

10.54. 

10.55. 

10.56. 

2 −1

0

2 −1

2

2 −1

2

















2 −1

−5

2 −3

3

1 1

3

10.57. 

10.58. 

10.59. 

3

2

3

1

2

−2

2 2

1

In P.10.60 to P.10.65 calculate matrix–matrix products and show its geometric interpretation. 



















1

1

2 −1

2 −1

2 −3

2 −3

1

1

10.60. 

10.61. 

10.62. 

2 −1

3

2

3

2

1

2

1

2

2 −1



















2 −1

1

1

2 −3

2 −1

1

1

2 −3

10.63. 

10.64. 

10.65. 

3

2

2 −1

1

2

3

2

2 −1

1

2

In P.10.66 to P.10.69, calculate the products of non-square matrices. 

⎡ ⎤

⎡ ⎤



1

1



10.66. 

1 2 3

⎣ 2 ⎦

10.67. ⎣ 2 ⎦  1 2 3

3

3



⎡

⎤

⎡

⎤

1

2

1

2





3

0 1

3

0 5

10.68. 

⎣

⎦

⎣

⎦

−

5 −1

10.69. 

5 −1

2 −1 4

−2 −1 4

0

1

0 −6
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10.7

Eigenvalues and Eigenvectors

The geometrical interoperation of a matrix is that it describes the transformation of the space itself and by consequence all objects within. In some cases, however, there are vectors that do not change their direction before and after the transformation. If existing, these vectors are very useful in many engineering applications. 

Reminder: Eigenvectors may be described as vectors that do not change their direction after some space transformation. By definition, if the following equation is satisfied:

 A  v =  λ  v

then,  λ ∈ C is a constant referred to as  eigenvalue, and  v  is its associated  eigenvector  of matrix A. 

Furthermore, the eigenvalues and eigenvectors definition equation may be rewritten as

 A  v =  λ  v ⇒  A  v −  λ  v = 0 ⇒  (A −  λ I )  v = 0

where  I  is the  identity matrix (i.e., a square matrix of the same size as  A  with the ones on the main diagonal and zeros elsewhere). In order to satisfy this equation, as  v = 0, it must be that the  determinant  of  (A −  λ I )  equals zero; thus, 

det  (A −  λ I ) = 0

is formal definition of  the characteristic polynomial  of matrix  A. 

In P.10.70 to P.10.71 derive  v  and its associated eigenvalue  λ  if existing: 3 −3

3

3 −3

2

10.70.  A =

 ,  v =

10.71.  A =

 v =

2 −4

1

2 −4

1

Given matrices in P.10.72 to P.10.76, calculate their respective eigenvalues  λ  and eigenvectors  v, if existing. 













6 −1

−6 3

10 −5

10.72. 

10.73. 

10.74. 

2

3

4 5

5

2









2 −5

cos  π/ 6 − sin  π/ 6

10.75. 

10.76. 

4

6

sin  π/ 6

cos  π/ 6
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In P.10.77 to P.10.78 prove that  v  is eigenvector of its associated matrix  A, then determine its eigenvalue  λ, 

⎡

⎤

⎡ ⎤

⎡

⎤

⎡

⎤

−2 −9 −1

2

−2 −9 −1

4

10.77.  A = ⎣ 2 −6 −5 ⎦  ,  v = ⎣ 1 ⎦

10.78.  A = ⎣ 2 −6 −5 ⎦  ,  v = ⎣ −3 ⎦

−4 −3 4

1

−4 −3 4

7

Given matrix in P.10.79 to P.10.82, calculate eigenvalue(s)  λ  and eigenvector(s), if existing. 

⎡

⎤

⎡

⎤

3 0 0

2 0 0

10.79. ⎣ 0 5 1 ⎦

10.80. ⎣ 0 4 5 ⎦

0 4 2

0 4 3

⎡

⎤

⎡

⎤

4

6 10

2 2 −2

10.81. ⎣

3 10 13 ⎦

10.82. ⎣

1 3 −1 ⎦

−2 −6 −8

−1 1 1

Calculate eigenvalues  λ  and eigenvectors  v  for matrices in P.10.83 to P.10.88. Note eigenvalues of these matrices have “algebraic multiplicity” (geometric multiplicity is left for another time). 













1 0

2 0

2 3

10.83. 

10.84. 

10.85. 

2 1

0 2

0 2

⎡

⎤

⎡

⎤

⎡

⎤

3 2 4

1 0 2

1 −2 −1

10.86. ⎣ 2 0 2 ⎦

10.87. ⎣ −1 1 3 ⎦

10.88. ⎣

1

7

1 ⎦

4 2 3

0 0 2

−2 −4 3

10.8

Matrix Inversion

Similar to “regular numbers” where a number multiplied by its inverse equal to one, matrices may have their inverse, so that their product equals to “identity matrix,” that is to say a matrix whose diagonal elements are all equal one and all the other elements equal zero. 

Reminder: inverse  A−1 of a matrix  A  exists only if its determinant does not equal zero, i.e.: A A−1 =  A−1  A =  I,  if  A = 0

where  I  is identity matrix. Note that multiplication of matrix and inverse is commutative. 
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Given matrices in P.10.89 to P.10.91 calculate their respective inverse matrices. 









⎡

⎤

1 2

4 −2

1 2 3

10.89. 

10.90. 

3 4

2

3

10.91. ⎣ 4 5 4 ⎦

3 2 1

10.9

Powers of Diagonalizable Matrices

Examples in P.10.92 to P.10.97 are not to be solved by “brute force” matrix multiplication; instead the goal is to master one of the general procedures for calculating matrix powers. 



2



5



5

2 0

2 0

2 0

10.92. 

10.93. 

10.94. 

0 2

0 5

−1 3

⎡

⎤3

⎡

⎤4

⎡

⎤10

2 0 2

2 0 0

1 0 0

10.95. ⎣ −1 2 1 ⎦

10.96. ⎣ 0 2 1 ⎦

10.97. ⎣ 0 0 1 ⎦

0 1 4

0 1 2

0 1 0
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Answers

10.1

Vector Definitions

10.1. The geometrical interpretation of space is based on the definition of a  point, which is visualized as a sphere whose radius equals  zero (Fig. 10.1). Thus, assuming nothing else exists, a point would represent “0-order space” annotated as  R 0. 

(a)  Line:  multiple points aligned next to each other form a  line. Therefore, it takes  infinitely points to create a line of any  finite  length  L. If nothing else exists, a line represents  one-dimensional  space, annotated as  R 1. The position of any point relative to the one that is chosen to be the  origin (thus numbered as “0”) is associated with a unique number showing the distance from the origin, which is either in positive (“+”) or negative (“−”) direction. 

(b)  Surface:  it takes infinitely lines in parallel to create a finite two-dimensional  surface, annotated as  R 2. An analogy to  R 2 space would be a sheet of paper whose thickness equals zero. In this case, the position of any point making the surface relative to the origin is described by two numbers, which are referred to as “coordinates” and written as a two-number pair  (x, y), one for “negative–positive” and one for “south–north” distance. 

(c)  Volume:  a stack of surfaces creates a  volume, annotated as  R 3 space. A visual analogy would be a book where the position of any point is described by  three  numbers,  (x, y, z), one for “negative–positive,” one for “south–north,” and one for “up–down” distance. 

Although human visualization of space is limited to three dimensions, note that in mathe-

matics, however, there is no limit on the order of space. Each dimension is described by one variable  x, y, z, . . . (thus one equation). In linear algebra, a  n-dimensional matrix may be seen a compact form of writing a system of  n  equations, thus describing  n-dimensional space. 

Note that each lower-order space can be seen as one of possible projections (“shadows”) of

the higher-order space. For example, if looked from “straight ahead” a line looks like a point. 

Looked from “a side” a surface looks like a line. Looked from one direction, a cube (3D)

appears as a square (2D), or a sphere (3D) casts a shadow like a circle (2D), etc. 

Fig. 10.1 P.10.1, geometrical interpretation of a point, line, surface, etc. Each point may be associated with a single number (as in 1D line), two numbers (as two  xy  coordinates on a 2D surface), three numbers (as spatial  xyz  coordinates in 3D volume), etc. Although higher-dimensional space is not humanly possible to visualize in the same way, the mathematics is all the same
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10.2. A vector signifies a variable that has  two  properties: magnitude and direction. That is to say, a simple number is not a vector because it has only magnitude (“length”) but not direction. 

In physics, “vector” takes the geometrical interpretation in graphical form of a “directed

arrow” that indicates both magnitude (i.e., the arrow length) and direction (i.e., from its tail to the head). 

In mathematics, a vector variable is annotated in algebraic form as

1 D :  a =  a 

 x i

2 D :  a =  a 



 x i +  ay j

3 D :  a =  a 





 x i +  ay j +  azk

4 D :  a =  a 





 x i +  ay j +  azk +  a 0 

 m

etc. 

where  (ax, ay, az, a 0 , ...)  are vector magnitudes as measured along the orthonormal directions ( i, 

 j , 

 k, 

 m, ...)  respectively (also referred to as the “unit vectors”). 

In informatics, the preferred way of representing a vector is in one-column matrix form, as, for example, 

⎡

⎤

3 .  14

 a = ⎣ −5 ⎦

2

where the column list may be interpreted as a list of orthonormal (i.e., orthogonal and

normalized) coordinates in each direction relative to the origin  ( 0 ,  0 ,  0 )  of, in this case, 3D

space. 

10.3. As defined, the three unit vectors are used to define 3D space and are written in a form of 3 × 3 matrix as

⎡

⎤

1 0 0

 ( i, 

 j , 

 k) = ⎣ 0 1 0 ⎦

0 0 1

where the first column is for  i, the second column is for 

 j , and the third column is for 

 k

unit vector (Fig. 10.2). The rows are then coordinates in each of three normal directions, here Fig. 10.2 P.10.3, 3D space as

defined by three orthonormal

vectors  ( i, 

 j , 

 k). Each unit vector

may be represented either

graphically or as a one-column

matrix, for example,  i = [1 ,  0 ,  0], 

 j = [0 ,  1 ,  0], etc. 
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Fig. 10.3 P.10.4—graphical interpretation of vectors

 (x, y, z). This resulting matrix where all elements along the main diagonal equal one and all other matrix elements equal zero is known as “identity matrix” with properties similar to the number one. 

10.4. By convention, vectors are oriented in direction from the first to the second coordinate. 

(a) Given four points in 2D space:  A =  (−2 ,  2 ),  B =  ( 1 ,  4 ),  C =  ( 5 ,  6 ),  D =  ( 3 ,  1 ), vectors

−→

−→

 AB  and  CD  are as shown in Fig. 10.3a. 

(b) By writing vectors in matrix form it is assumed that all vectors originate at  ( 0 ,  0 )  point, i.e., it is sufficient to write only the end coordinates. Geometrically, that means vectors are translated so that their origin is at  ( 0 ,  0 )  point, for example, as the final position of RQ; 

see Fig. 10.3b. 



−→

3

 RQ = 2

−→

−→

Similarly, after being translated to the origin, see Fig. 10.4, vectors  AB  and  CD  are written as







−→

3

−→

−2

 AB =

and  CD =

2

−5

−→

−→

where “ 3’‘ is the horizontal projection of  AB, “ 2” is the vertical projection of  AB, and they are both positive as oriented relative to the vector origin at  (−2 ,  2 ). And, “ −2” is

−→

−→

the horizontal projection of  CD, “ −5” is the vertical projection of  AB, and they are both negative as oriented relative to the vector origin at  ( 5 ,  6 ). By definition, translated vectors are still identical: they have the same magnitude and direction. 
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Fig. 10.4 P.10.4, vectors located

at arbitrary positions may be

translated to the origin by

“measuring” their horizontal and

vertical projections. For example, 

vector defined by two points:

 A(−2 ,  2 )  and  B( 1 ,  4 ), may be

written in matrix form as [3 ,  2]

Fig. 10.5 P.10.5, graphical

representation of three vectors

given in matrix form

10.5. Given













3

−4

−3

 a =

 , 

 b =

 ,  c =

3

3

−4

By convention, vector matrix form lists coordinates  (x, y, z, ...)  relative to the origin ( 0 ,  0 ,  0 , ...)  in either vertical order (column vector) or horizontal order (row vector) and, therefore the three vectors are as in Fig. 10.5. 

10.2

Vector Operations

10.6. By Pythagoras’ theorem, given  px,  py, and  pz  vector projections, it follows that





√

(a) 

 p =  ( 0 ,  1 ) ∴ | 

 p| =

02 + 12 = 1



(c) 

 p =  (−3 ,  1 ) ∴ | 

 p| =

32 + 12 =

10



(b) 

 p =  ( 3 ,  4 ) ∴ | 

 p| =

32 + 42 = 5

(d) 

 p =  ( 2 ,  3 ,  6 ) ∴ | 

 p| =

22 + 32 + 62 = 7

10.7. Multiplying vector by a constant does not change the vector’s orientation, only its magnitude; see Fig. 10.6. The constant multiplies all vector components, in 2D case both xx  and  xy. 
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Fig. 10.6 P.10.7, geometrical

interpretation of vector

multiplication by a constant. Each

vector coordinate is multiplied by

the constant. Multiplication of a

vector by negative constant changes

its direction but not the orientation

Fig. 10.7 P.10.8—comparison of number and vector addition operations x

3

2 × 3

6

(a)  a = 2 

 x = 2

 x

= 2

=

=

 xy

2

2 × 2

4













 x

3

2 / 3 × 3

2

(b) 

 b = 2 

 x = 2

 x

= 2

=

=

3

3

 x

2

4

 y

3

2

 / 3 × 2

 / 3













 x


3

−3 / 4 × 3

−9 / 4

(c)  c = − 3 

 x = − 3

 x

= −3

=

=

4

4

 xy

4

2

−3 / 4 × 2

−3 / 2

10.8. Geometrically, vector addition is done by a simple chaining of the vectors. Vector representing the total sum starts at the tail of the first and ends at the head of the last vector in this chain. 

(a) Note that all vectors in 1D space are collinear (i.e., parallel, because there is only one direction possible); therefore, their direction is already known. As a consequence, their

magnitudes are sufficient. In the more general sense, real and complex numbers are also

seen as vectors relative in the origin. As illustrated in Fig. 10.7a, the sum of two numbers equals to the simple sum of their respective magnitudes. 

2 + 3 = 5 and 2 +  (−3 ) = −1
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(b) In 2D space not all vectors are collinear, which is to say that in general, the sum of

two vectors is not equal to the simple sum of their magnitudes. Instead, the rules of

triangles must be applied; see Fig. 10.7b. Note that in vector matrix notification it is vector coordinates (projections) that add in the same manner as the “regular” numbers. 

For example, given that













 a

1

 b

3

 a =

 x

=

and 

 b =

 x

=

 ay

2

 by

−1

it follows that

















 a

 b

1

3

1 + 3

4

 c

 c =  a + 

 b =

 x

+

 x

=

+

=

=

=

 x

 ay

 by

2

−1

2 − 1

1

 cy

−→

−→

−→

10.9. Given  AB  and  BA = − AB, their geometrical and matrix representations in 2D are as follows. 

−→

(a) Coordinates of  AB  are calculated as the difference between their end and starting points, i.e., 













−→

1

4

 ( 1 − 4 )

−3

 AB = − −

=

=

3

1

 (−3 − 1 )

−4











−→

4

1

 ( 4 − 1 )

3

 BA =

−

=

=

1

−3

 ( 1 −  (−3 ))

4

−→

−→

By inspection of graph in Fig. 10.8, both | AB| and | BA| are hypothenuse of the same right-angled triangle, thus calculated by Pythagoras’ theorem as

−→

−→





| AB| = | BA| = | xB −  xA|2 + | yB −  yA|2 = 32 + 42 = 5

(b) Similarly, 













−→

−1

2

 (−1 − 2 )

−3

 AB =

−

=

=

4

3

 ( 4 − 3 )

1













−→

2

−1

 ( 2 −  (−1 ))

3

 BA =

−

=

=

3

4

 ( 3 − 4 )

−1

Thus, 

−→

−→





| AB| = | BA| = | xB −  xA|2 + | yB −  yA|2 = 32 + 12 = 2

(c) Likewise, 











−→

4

−1

 ( 4 −  (−1 ))

5

 AB =

−

=

=

2

−3

 ( 2 −  (−3 ))

5
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Fig. 10.8 P.10.9, geometrical

−→

interpretation of vector  AB  given

by two points  A( 4 ,  1 )  and  B( 1 , −3 )

−→

in space. The resulting vector  AB

is aligned with the hypotenuse of

right triangle; thus, 

−→

−→

| AB| = | BA| = 5 as per

Pythagoras’ theorem













−→

−1

4

 (−1 − 4 )

−5

 BA = − −

=

=

3

2

 (−3 − 2 )

−5

Thus, 

−→

−→





√

| AB| = | BA| = | xB −  xA|2 + | yB −  yA|2 = 52 + 52 = 5 2

(d) And, 











−→

3

1

 ( 3 − 1 )

2

 AB =

−

=

=

2

−2

 ( 2 −  (−2 )

4













−→

1

3

 ( 1 − 3 )

−2

 BA = − −

=

=

2

2

 (−2 − 2 )

−4

so that, 

−→

−→





| AB| = | BA| = | xB −  xA|2 + | yB −  yA|2 = 22 + 22 = 2

−→

−→

−→

10.10. Given  AB  and  BA = − AB, their geometrical and matrix representations in 3D are as follows. 

−→

(a) Coordinates of  AB  are calculated as the difference

⎡

⎤ ⎡ ⎤

⎡

⎤

⎡

⎤

−→

2

4

 ( 2 − 4 )

−2

 AB = ⎣ 4 ⎦ − ⎣ 1 ⎦ = ⎣  ( 4 − 1 ) ⎦ = ⎣ 3 ⎦

−2

6

 (−2 − 6 )

−8

⎡ ⎤ ⎡

⎤

⎡

⎤

⎡

⎤

−→

4

2

 ( 4 − 2 )

2

 BA = ⎣ 1 ⎦ − ⎣ 4 ⎦ = ⎣

 ( 1 − 4 ) ⎦ = ⎣ −3 ⎦

6

−2

 ( 6 −  (−2 ))

8
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Fig. 10.9 P.10.10, vector in 3D

space is aligned with the diagonal

of a cuboid. The length of each

cuboid side is equal to its

corresponding orthogonal

coordinate

−→

−→

By inspection of graph in Fig. 10.9, both | AB| and | BA| are aligned with 3D hypothenuse of right-angled triangle that is aligned with the diagonal of a cuboid; thus, by Pythagoras’

theorem

−→

−→





√

| AB| = | BA| = | xB −  xA|2 + | yB −  yA|2 + | zB −  zA|2 = 22 + 32 + 82 = 77

(b) Relative to the point of origin, 

⎡

⎤ ⎡ ⎤

⎡

⎤

⎡

⎤

−→

3

2

 ( 3 − 2 )

1

 AB = ⎣ 0 ⎦ − ⎣ 3 ⎦ = ⎣  ( 0 − 3 ) ⎦ = ⎣ −3 ⎦

−1

4

 (−1 − 4 )

−5

⎡ ⎤ ⎡

⎤

⎡

⎤

⎡

⎤

−→

2

3

 ( 2 − 3 )

−1

 BA = ⎣ 3 ⎦ − ⎣ 0 ⎦ = ⎣

 ( 3 − 0 ) ⎦ = ⎣ 3 ⎦

4

−1

 ( 4 −  (−1 ))

5

−→

−→

By inspection of Fig. 10.9,  AB  coincides with the diagonal of a cuboid; thus, | AB| and

−→

| BA| as

−→

−→





√

| AB| = | BA| = | xB −  xA|2 + | yB −  yA|2 + | zB −  zA|2 = 12 + 32 + 52 = 35

10.11. Given that  a =  ( 2 , −3 )  and 

 b =  ( 3 , −1 )  are already placed at the origin, 













2

3

5

 c =  a + 

 b = − +

=

3

−1

−4













2

3

−1

 c =  a − 

 b = − −

=

3

−1

−2

10.12. Given  A( 2 ,  3 ,  1 ), B( 3 , −1 ,  0 ), C =  (−1 , −2 ,  1 ), D =  (−3 ,  3 , −2 ), first, all vectors are translated to the origin as:
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⎡

⎤ ⎡ ⎤

⎡

⎤

⎡

⎤

−→

3

2

 ( 3 − 2 )

1

 AB = ⎣ −1 ⎦ − ⎣ 3 ⎦ = ⎣  (−1 − 3 ) ⎦ = ⎣ −4 ⎦

0

1

 ( 0 − 1 )

−1

⎡

⎤ ⎡

⎤

⎡

⎤

⎡

⎤

−→

−3

−1

 (−3 −  (−1 ))

−2

 CD = ⎣ 3 ⎦ − ⎣ −2 ⎦ = ⎣  ( 3 −  (−2 )) ⎦ = ⎣ 5 ⎦

−2

1

 (−2 − 1 )

−3

Then, 

⎡

⎤ ⎡

⎤

⎡

⎤

−→ −→

1

−2

−1

 (a) 

 m =  AB +  CD = ⎣ −4 ⎦ + ⎣ 5 ⎦ = ⎣ 1 ⎦

−1

−3

−4

⎡

⎤ ⎡

⎤

⎡

⎤

−→ −→

1

−2

3

 (b)  n =  AB −  CD = ⎣ −4 ⎦ − ⎣ 5 ⎦ = ⎣ −9 ⎦

−1

−3

2

10.13. Similarly to A.10.12, 







−1

3

2

(a) 

 p =  a + 

 b =

+

=

2

2

4













−1

3

 ( 2 ×  (−1 ) − 3 )

−5

(b) 

 m = 2 a − 

 b = 2

−

=

=

2

2

 ( 2 × 2 − 2 )

2















−1

3

−2

 ( 3 ×  (−1 ) − 3 −  (−2 ))

−4

(c)  n = 3 a − 

 b −  c = 3

−

−

=

=

2

2

−3

 ( 3 × 2 − 2 −  (−3 ))

7















3

−2

 ( 2 × 3 − 1 / 2 ×  (−2 ))

7

(d)  r = 2

 b − 1  c = 2

− 1

=

=

2

2

2

−3

 ( 2 × 2 − 1 / 2 ×  (−3 ))

11 / 2

10.14. By inspection of Fig. 10.10a

Fig. 10.10 P.10.14—angular difference of two vectors
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 a = 

 ax + 

 ay

 b =  bx +  by

where the horizontal and vertical projections are calculated as

√ √

| 

 π

3

 ax| = | a| cos

= 3

= 3

6

2

2

√

√

| 

 π

1

3

 ay| = | a| sin

= 3 =

6

2

2

| 

 bx| = 1

| 

 by| = 0

Method 1: matrix forms of the two vectors are therefore







3



 / 2

1

 a = √

 b =

3 / 2

0

then, 









3

5



 / 2

1

 / 2

 p =  a + 

 b = √

+

= √

3 / 2

0

3 / 2









3

1



 / 2

1

 / 2

 q =  a − 

 b = √

−

= √

3 / 2

0

3 / 2

which leads to 

 p  and 

 q  as in Fig. 10.10b. By inspection of two right-angled triangles where p

and 

 q  form their respective hypothenuses, angle  θ  between 

 p  and 

 q  is then

 θ =  α −  β ∴

√

√

√

⎫

tan  α = 3 / 2 =

3 ∴  α = arctan 3 =  π = 60◦⎬

1 / 2

3

√

√

√

⎭ ∴  θ = 40 .  89◦

tan  β = 3 / 2 = 3 ∴  α = arctan 3 = 19 .  1◦

5 / 2

5

5

Method 2: alternatively, 







5

√

√



 / 2

 p = √

∴ |  p| =  ( 5 / 2 ) 2 +  (  3 / 2 ) 2 = 7

3 / 2







1

√



 / 2

 q = √

∴ | q| =  ( 1 / 2 ) 2 +  (  3 / 2 ) 2 = 1

3 / 2

Then by the law of cosines for triangle formed by 

 p  and 

 q, see Fig. 10.11, it follows that the

third side of that triangle is  a = 2. Then, by Pythagoras’ theorem

√

√

√

 a 2 =  b 2 +  c 2 − 2 bc  cos  θ ∴ 22 =  (  7 ) 2 + 12 − 2 7 cos  θ ∴ 2 7 θ = 4
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Fig. 10.11 P.10.14, the law of

cosines for triangles may be applied

to resolve angular difference  θ

between vectors 

 p  and 

 q

Fig. 10.12 P.10.15—graphical interpretations of “function” and “transformation” calculation “machines” 

∴

2

cos  θ = 2

√

∴  θ = arctan √ = 40 .  89◦

7

7

10.3

Linear Transformations

10.15. In its basic form, a  function  is equivalent to a machine that for any given number input  x  performs an operation  f (x)  and produces the corresponding output  y. Similarly, for any given vector input  v linear operation L( v)  performs an operation and produces the corresponding vector output 

 w, as illustrated in Fig. 10.12a. 

Another way to visualize linear transformation is to visualize the input vector  v  being displaced in space until it overlaps with the output vector 

 w; see Fig. 10.12b. By doing so, however, 

linear operation  L( v)  displaces  all  vectors in  R 2 vector space, that is to say it displaces  all points of the 2D surface. That is because coordinates of any single point in space may be interpreted as coordinates of vector from the origin to that point. 

For example, see Fig. 10.13, while linear transformation  L( v)  displaces basis vector  i =  ( 1 ,  0 ) into its transformed version  L( i) =  ( 1 ,  3 ), at the same time basis vector j =  ( 0 ,  1 )  is also

transformed into  L( 

 j ) =  ( 2 , −1 ). As  all points on the surface  are simultaneously displaced, then surface may be imagined as being “elastic” and that  L( v) “stretched” it entirely. That

[image: Image 270]
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Fig. 10.13 P.10.15, illustration of

a linear space transformation

before and after. As all points in the

original  R 2 space are displaced by

 L( v)  transformation, the new space

appears as “stretched” 

being so, as they originated from  i =  ( 1 ,  0 )  and 

 j =  ( 0 ,  1 )  basis vectors then it is true that

 L( i)  and  L( 

 j ), respectively, represent basis vectors in the transformed “stretched” space. 

In summary, for a transformation to be  linear  it must obey the following rules:

(a) After the transformation all grid lines must stay straight. 

(b) All grid lines must stay parallel and equidistant because the distance between them must always be one basis vector, both before and after  L( v)  transformation. 

(c) The origin point must not move. 

As the consequence of the linearity, the  numerical form  of an arbitrary vector 

 x =  f ( i, 

 j )





 does not change  in the transformed space, i.e.,  L(

 x) =  f L( i ), L( 

 j ) . For example, if vector

 x = 2 i + 3  j  then it transforms into  L( x) = 2 L( i) + 3 L(  j). 

10.16. By the means of  L(

 x)  transformation  R 2 space as defined by basis vectors  ( i, 

 j ), 

see Fig. 10.14 (left), may be transformed, for example, into  R 2 space as in Fig. 10.14 (right). 

The question is then: what is the form of linear transformation matrix  L  that causes that transformation? 

Observe the relationship between the original and transformed greed lines. In order to better visualize it, the original grid is kept in the background of the transformed space. By definition, each square of the original grid represents unit size as defined by basis vectors  ( i, j ). 

Next, by following the basis vectors  ( i, 

 j )  it can be deduced how the original  R 2 space is

rotated, flipped, and stretched so that basis vectors  ( i, 

 j )  are transformed into  L( i ), L( 

 j ), 

respectively. 

By inspection of the transformed space grid, expression for transformed  L( v)  may be compared with the original vector  v. In order to be truly linear transformation, the numerical forms of these two equations must stay the same, i.e., 

if in the original space,  v = −2 i + 

 j

then in the transformed space,  L( v) = −2 L( i ) +  L( 

 j )

At the same time, coordinates of basis vectors  L( i )  and  L( 

 j )  in the transformed 2D space,  if

 expressed in the units of transformed space,  are





1

0

 L( i ) =

and, 

 L( 

 j ) =

0

1

[image: Image 271]

10.3 Linear Transformations

445

Fig. 10.14 P.10.16, graphical interpretation of linear transformation  L( v)  and relation between original and transformed basis vectors. Numerically, expressions of vector  v  do not change before and after the transformation. In addition, coordinates of transformed vectors may be expressed both in original and in transformed basis vector units as their dot product is  L( i ) ·  L( 

 j ) = 1 · 0 + 0 · 1 = 0; by definition they are orthonormal. 

However,  if measured in the units of original non-transformed space  where  i =  ( 1 ,  0 )  and j =  ( 0 ,  1 ), i.e., by using the background grid in Fig. 10.14 to read coordinates of  L( i),  L( j), and  L( v), it follows that

 L( i ) =  ( 1 ,  3 ), 

 L( 

 j ) =  ( 2 , −1 ),  and  L( v) =  ( 0 , −7 ) Therefore, the transformation matrix  L  in this particular example is











1

2

1

2

 L( i ) =

 L( 

 j ) =

∴  L =

3

−1

3 −1

It can be verified that the numerical form of  v  did not change, because















1

2

−2

2

0

 L( v) = −2 L( i ) +  L( 

 j ) = −2

+

=

+

=



3

−1

−6

−1

−7

Thus, in compact matrix form, transformation of an arbitrary 

 x  is













 x

1

2

 x

 x =

 x

∴  L( x) =  L  x =  L( i) L(  j)  x =

 x

 xy

3 −1

 xy

In this interpretation, space transformations may be formalized as the matrix–vector product. 

10.17. Given data, and following discussion in A.10.16, it follows that 3

1

−1

 L( i ) =

 L( 

 j ) =

and 

 x =

=  (−1 )  i + 2  j

1

2

2
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Fig. 10.15 P.10.17, illustration of

linear transformation and 

 x

coordinates before and after

transformation

Fig. 10.16 P.10.18—basic space transformations

The form of linear transformation form is then







3 1

−1

 L(

 x) =  L 

 x =

=  (−1 )L( i) + 2 L(  j)

1 2

2

or, if measured in the units of original space:













3

1

 (−1 ) × 3 + 2 × 1

−1

 L(

 x) =  (−1 )

+ 2

=

=

1

2

 (−1 ) × 1 + 2 × 2

3

The relation between the original and transformed space is illustrated in Fig. 10.15. 

10.18. Movement of basis vectors  ( i, 

 j )  may be followed on graphs (see A.10.16) as:

(a) Rotation 90◦ counterclockwise: see Fig. 10.16a. Transformed basis vector coordinates as measured in non-transformed units are











0

−1

0 −1

 L( i ) =

and  L( 

 j ) =

∴  L =

1

0

1

0

which is transformation matrix that performs 90◦ rotation counterclockwise of  all  points in  R 2 space, therefore including basis vectors  i  and 

 j . 

(b) Shear 45◦ clockwise: this operation of shear bends the space so that horizontal vectors are unchanged while vertical vectors lean “−45◦”; see Fig. 10.16b; thus, 1

1

1 1

 L( i ) =

and  L( 

 j ) =

∴  L =

0

1

0 1

[image: Image 274]
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Fig. 10.17 P.10.18, illustration of

“first rotation 90◦ counterclockwise

then shear 45◦ clockwise” 

combination of two

transformations. The resulting

matrix  L, however, performs both

transformations simultaneously

Fig. 10.18 P.10.19, linear

combination of two vectors, 

−

→

−

→

−

→

 A =  a + 7  b

which is transformation matrix that performs shear of  all  points in  R 2 space. 

(c) First rotation 90◦ counterclockwise then shear 45◦ clockwise: linear transformations may be performed one after another, where the order of transformations is  not  interchangeable. 

The first step is rotation  L 1 then sheer  L 2; see Fig. 10.17. The final position is then 0 −1

1 1

1 1

0 −1

1 −1

 L 1 =

;  L

∴  L =  L

=

1

0

2 =

0 1

2  L 1 =

0 1

1

0

1

0

which is matrix that performs this rotation plus shear of  all  points in  R 2 space. 

Multiple transformations are formalized as being equivalent to the product of subsequent

transformation matrices where  transformation that is done first is written on the right side. 

Note that in this interpretation,  L  is matrix that does both transformations  simultaneously 10.19. Given vectors  a =  ( 2 ,  1 ), 

 b =  ( 1 ,  0 ), and 

 m =  ( 9 ,  1 )  this type of problems may be

solved by either geometric or numerical methods. 

Method 1: create triangle defined by  a  and 

 m  vectors; see Fig. 10.18. By inspection of vector

addition graph, it is evident that



 m =  a + 7

 b

Method 2: general form of a linear combination is

−

→

−

→

−

→

 m =  n a +  k b

where  n  and  k  are coefficients to be calculated; therefore, 







9

=

2

1

 n

+  k

1

1

0

448

10

Linear Algebra

which is the matrix form of the following system of equations:

9 = 2 n + 1  k

(10.1)

1 = 1  n + 0  k

(10.2)

This system of linear equations may be solved by the elimination of variables method as

from (10.2):  n = 1 ∴ from (10.1): 9 = 2 +  k ⇒  k = 7

−

→

−

→

−

→

In conclusion,  m =  a + 7  b . 

10.20. Given vectors 

 u =  ( 3 , −1 ),  v =  ( 1 , −2 ), 

 w =  (−1 ,  7 ), then, similarly to A.10.19, 













3

1

−1

3

 m = 

 u +  v + 

 w = − +

+

=

1

−2

7

4



 m =  n

 u +  k  v

∴











3

=

3

1

 n

+  k

4

−1

−2

which is the matrix form of the following system of equations:

3 = 3 n + 1 k

(10.3)

4 = −1 n − 2 k

(10.4)

This system of linear equations may be solved by using multiple methods. For example, 

Method 1: the elimination method

from (10.3):  k = 3 − 3 n ∴ from (10.4): 4 = − n − 2 ( 3 − 3 n) ⇒  n = 2

from (10.4): 4 = −2 − 2 k ⇒  k = −3

Therefore, 

 m = 2

 u − 3 v. 

Method 2: Cramer’s rule (see Sect. 10.5) gives, 
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⎫

3

1 

 

= 

⎪





⎪

−1 −2  = −5 = 0⎪

⎪

⎪

−10



⎪

⎪

 n =  n =

= 2





⎪

⎬

3

1 

 

−5

 





 n

= 

∴

4 −2  = −10

⎪

⎪



⎪

⎪





⎪

⎪

 k =  k = 15 = −3

3 3 

⎪

⎪

 

−5

 





⎭

 k

= −1 4 = 15

Therefore, 

 m = 2

 u − 3 v

10.4

Determinants

10.21. Given a second-order matrix  A, its determinant is calculated as

The geometrical interpretation is that this transformation  A  increases surface of 2D space six times. 

10.22. Given a second-order matrix  A, its determinant is calculated as

The geometrical interpretation is that this transformation  A  increases surface of 2D space three times, and at the same time 2D space is flipped over, thus negative sign. 

10.23. Given a second-order matrix  A, its determinant is calculated as

Geometrically, this linear transformation  A  forces 2D space (i.e., a surface) to collapse onto 1D

space (i.e., a line), i.e., one of the two coordinates is “flattened.” In general, a zero determinant indicates a loss of at least one dimension in space. 





2 −1 

10.24. 



1

0  = 2 × 0 − 1 ×  (−1 ) = 1
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√

√ 

3 −3 2 

√

√

√

√

√

√

√

10.25.  √

√ 

3 × 2 2 −

3 ×  (−3 2 ) = 2 6 + 3 6 = 5 6

3

2 2  =





1  i 

10.26. 



− i  1  = 1 −  (− i) ×  i = 1 − 1 = 0





sin  α  cos  α 

10.27. 



− cos  α  sin  α  = sin  α  sin  α −  (− cos  α)  cos  α = sin2  α + cos2  α = 1

10.28. Given a third-order matrix  A, its determinant may be calculated by multiple methods. 

Method 1: cross-products as

Method 2: expansion along 1st row as (may be done by any row or column)

The geometrical interpretation is that this matrix transforms 3D space so that its volume is increased ten times and the space is “inverted inside–out” (as per the negative sign of its

determinant). 

10.29. Given a third-order matrix  A, its determinant may be calculated as, 

Method 1: cross-products as

Method 2: expansion, for example, along the 1st column is
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10.30. Given a third-order matrix  A, its determinant may be calculated as, 

Method 1: cross-products as

Method 2: expansion, for example, along the 2nd row is

10.31. Given a third-order matrix  A, its determinant may be calculated as, 

Method 1: cross-product

Method 2: the cofactor expansion
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The volume of this 3D space is increased 21 times and “inverted inside–out.” 

10.32. Given a third-order matrix  A, its determinant may be calculated as, 

Method 1: cross-product

Method 2: the cofactor expansion

The geometrical interpretation is that this matrix transforms 3D space so that its volume is increased 39 times. 

10.33. Given a third-order matrix  A, its determinant may be calculated as, 

Method 1: cross-product

Method 2: any column or row could be chosen for cofactor expansion. It is beneficial, however, to choose one that contains zeros, so that the amount of calculations is reduced. 

In this example, the second column has two zeros, so the expansion is minimized as
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The geometrical interpretation is that this matrix transforms 3D space so that its volume is increased 134 times. 

10.34. Given a third-order matrix  A, its determinant may be calculated as, 

Method 1: cross-product

Method 2: the cofactor expansion

The geometrical interpretation is that this matrix transforms 3D space so that at least one or more dimensions are lost (as indicated by zero determinant). That is to say, 3D space collapsed into 2D, 1D, or even point space. 

10.35. Transformation of basis vectors  ( i, 

 j )  shows how the whole space is transformed. 

Given transformation





3 0

 L = 0 2

note that this transformation simply multiplies the space by factor three in  i  direction (first column vector) and by factor two in 

 j  direction (second column vector), because

[image: Image 275]

[image: Image 276]
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Fig. 10.19 P.10.35, positive

determinant value indicates the

space area multiplication factor

without the sign inversion (i.e., 

“page flipping”)

Fig. 10.20 P.10.36, negative

determinant value indicates the

space area multiplication factor and

“page flipping” as well; note the

left/right inversion of unit vectors









3 0

3

0

 L =

∴  L( i) =

and  L( 

 j ) =

0 2

0

2

It should be observed, see Fig. 10.19, that:

(1) Relative position between basis vectors did not change, i.e.,  L( 

 j )  is still on left relative to

 L( i). In other words, this transformation does not “flip” 2D space like a page in a book. 

(2) The unit square area is increased by 3 × 2 = 6 positive factor. This (positive, zero, 

or negative) space area multiplication factor is the geometrical interpretation of the

determinant. 

Therefore, this matrix’s determinant is



|

3 0

 L| = 



0 2  = 3 × 2 − 0 × 0 = 6

10.36. Given transformation





1

2

 L = 1 −1

performs multiple operations simultaneously. By following basis vectors, it could be deduced that 2D surface is rotated and flipped over; see Fig. 10.20. 











1

2

1

2

 L =

∴  L( i) =

and  L( 

 j ) =

1 −1

1

−1

and its determinant is





|

1

2

 L| =

= 1 ×  (−1 ) − 1 × 2 = −3

1 −1

The geometrical interpretation is that the unit area is increased by a factor of “−3,” that is to say, 2D surface is also “flipped over,” which is implied by the negative determinant. 

[image: Image 277]
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Fig. 10.21 P.10.37, after applying

given transformation  L, zero

determinant indicates the loss of at

least one spatial dimension

10.37. Given transformation









4 2

4

2

 L(

 x) =

∴  L( i) =

and  L( 

 j ) =

∴  L( i) = 2  L(  j)

2 1

2

1

and therefore its determinant is





|

4 2

 L| =

= 4 × 1 − 2 × 2 = 0

2 1

Note that  L( i )  and  L( 

 j )  are  collinear  because one is a simple multiple of the other, which is

easily shown by factoring “2” as





4

2

 L( i ) =

= 2

= 2  L(  j)

2

1

After the transformation  L, 2D surface collapsed into 1D line; see Fig. 10.21. In the paper page analogy, a 2D surface is rotated sidewise so that only its side is visible, i.e., line. This reduction of spatial dimension is the geometrical interpretation of the case when the determinant equals zero. An alternative interpretation is that at least one of the equations (i.e., row) within  L  is not independent. 

10.5

Cramer’s Rule

Reminder: The extended matrix that corresponds to the given system of equations is transformed into extended unit matrix, so that the solution vector [ a, b, c] is found by inspection, for example, as

⎡

⎤

1 0 0  a

1  x+ 0  y+ 0  z =  a

 x =  a

⎣ 0 1 0  b ⎦ ∴ 0  x+ 1  y+ 0  z =  b ∴  y =  b

0 0 1  c

0  x+ 0  y+ 1  z =  c

 z =  c

Systematically, each constant on the diagonal is transformed into “1” and all other constants into “0,” in the lower triangle below the diagonal, and in the upper triangle above the diagonal. 
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10.38. Given system of linear equations

4 x 1 − 3 x 2 = 0

2 x 1 + 3 x 2 = 18

there are multiple methods to calculate its set of solutions. Each method has its advantages and disadvantages depending on the system’s size and its coefficients. For the moment, note

the column vector on the right side of equations that is colored. 

Method 1: Cramer’s rule is a formula to solve a system of linear equations with as many equations as unknowns. Therefore, for the second-order system of equations there are three

determinants to calculate: one “principal” ( ) and one “sub-determinant”:  x  and  

for

1

 x 2

each of the two variables. Sub-determinants are created by replacing its respective column

with the column vector on the right side of the equation system (colored). Thus, 









4 −3 0

4 −3

 A =

∴   = 



2

3 18

2 3  = 4 × 3 − 2 ×  (−3 ) = 18 = 0

where nonzero determinant implies the existence of a unique set of solutions, 





0 −3 

 





 x =

1

18 3  = 0 × 3 − 18 ×  (−3 ) = 3 × 18





4 0 

 





 x =

2

2 18  = 4 × 18 − 2 ×  ( 0 ) = 4 × 18

Then, by Cramer’s rule the solution set is derived as

 x 1 =  x 1 = 3 × 



18 = 3;  x 2 =  x 1 = 4 ×

18 = 4

 





18

 





18

Method 2: the extended matrix rows’ (i.e., the right-side column vector is included)

transformations. In order to follow transformations, rows are numbered as “  ( 1 )” and “  ( 2 ), ” 

while the associated arithmetic operations are simply “ + , − , ÷ , ×.” For example, notation

“ ←  ( 1 ) ÷ 4” reads as “divide each coefficient in the first row on the left by four, including the colored vector column,” or ‘ ←  ( 2 ) − 2 ×  ( 1 )” reads as “multiply each coefficient of the first row on the left by negative two and add to the second row on the left.” 

The objective is to transform the initial systems’ matrix into the unit matrix (i.e., where

all diagonal coefficients equal one, and all other coefficients equal to zero). It is done

by systematically converting each coefficient term, starting with the  (a 1 ,  1 )  coefficient, then by converting the lower triangle coefficients, and finally the upper triangle coefficients are converted. For example, 









4 −3 0

←  ( 1 ) ÷ 4

1 −3 / 4 0

 A =

=

2

3 18

2

3 18

←  ( 2 ) − 2 ×  ( 1 )
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= 1 −3 / 4 0

= 1 −3 / 4 0

←  ( 1 ) + 3 / 4 ×  ( 2 )

0 9 / 2 18

←  ( 2 ) ÷ 9 / 2

0

1 4





= 1 0 3

0 1 4

The last extended matrix form reads row by row as the following system of equations:

1 ×  x 1 − 0 ×  x 2 = 3 ⇒  x 1 = 3

0 ×  x 1 + 1 ×  x 2 = 4 ⇒  x 2 = 4

Method 3: the classic variable elimination, it is efficient hand method for small size systems as

4 x 1 − 3 x 2 = 0

(10.5)

2 x 1 + 3 x 2 = 18

(10.6)

from (10.5)  x 1 = 3  x 2

(10.7)

4

3

then by substitution of  x 1 in (10.6): A2

 x

= 4

A 2 + 3 x 2 = 18 ∴  x 2 = 2 ×



18 2

4 2

9

and, by substitution of  x 2 in (10.7):  x 1 = 3 A4 = 3

A4

Naturally, both methods deliver the same set of solutions. 

10.39. Given second-order system, 

 x + 2 y = −5

3 x −  y = 13

Method 1: Cramer’s rule, the system of equations may be written in the form of a vector–

matrix product, i.e., 





⎫

1

2 

  = 

⎪





⎪

3 −1  = −7

⎪

⎪

⎪

−21













⎪

⎪

⎪

⎬  x =  x =

= 3

1

2

 x





 

−7

= −5

∴

−5 2

 





3 −1

 y

13

 x =  13 −1  = −21⎪

⎪



⎪

⎪





⎪

⎪  y =  y = 28 = −4

1 −5 

⎪

⎪

 

−7

 





⎭

 y =  3 13  = 28
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Method 2: by the variable elimination, 

 x + 2 y = −5

3 x −  y = 13 ×2

 x + 2 y = −5

(10.8)

6 x − 2 y = 26

(10.9)

∴  ((10.8) + (10.9) )

 x + 2 y = −5

7 x = 21

∴  x = 3 ∴  ( back to (10.8) )

3 + 2 y = −5

∴  y = −4

10.40. Given second-order system, 

 x + 2 y = −8

2 x −  y = −1

Method 1: Cramer’s rule, 





⎫

1

2 

  = 

⎪





⎪

2 −1  = −5 ⎪

⎪

⎪













⎪

⎪

⎪

⎬  x =  x = 10 = −2

1

2

 x





 

−5

= −8

∴

−8 2

 





2 −1

 y

−1

 x =  −1 −1  = 10⎪

⎪



⎪

⎪





⎪

⎪  y =  y = 15 = −3

1 −8 

⎪

⎪

 

−5

 





⎭

 y =  2 −1  = 15

Method 2: the elimination method

 x + 2 y = −8

2 x −  y = −1

×2

 x + 2 y = −8

4 x − 2 y = −2

∴

5 x = −10

∴  x = −2

10.5 Cramer’s Rule

459

−2 + 2 y = −8

∴  y = −3

Method 3: or, by the extended matrix transformations









1

2 −8

←  ( 1 ) 

1

2 −8

 A =

=

2 −1 −1

←  ( 2 ) − 2 ×  ( 1 )

0 −5 15

←  ( 2 ) ÷  (−5 )









= 1 2 −8

←  ( 1 ) − 2 ×  ( 2 ) = 1 0 −2

0 1 −3

0 1 −3

The last extended matrix form reads row by row as

1 ×  x − 0 ×  y = −2 ⇒  x = −2

0 ×  x + 1 ×  y = −3 ⇒  y = −3

10.41. Given second-order system, 

 a +  b = 7

2 a + 2 b = 14

Method 1: Cramer’s rule, 











1 1

 x





=

7

∴

1 1

  = 



2 2

 y

14

2 2  = 0

Consequently, the conclusion is that this system of equations does  not  have a unique set of solutions. It should be noted that the two equations are not independent, and the second

equation is simply two times the first equation, i.e., not independent. 

10.42. Given third-order system, 

 (x)

 (y)

 (z)

5 x − 5 y − 15 z = 40  ( 1 )

4 x − 2 y − 6 z = 19  ( 2 )

3 x − 6 y − 17 z = 41  ( 3 )

Method 1: the extended matrix transformations, 

⎡

⎤

5 x − 5 y − 15 z = 40

5 −5 −15 40

4 x − 2 y − 6 z = 19 ⇒ ⎣ 4 −2 −6 19 ⎦

3 x − 6 y − 17 z = 41

3 −6 −17 41
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Therefore, 

⎡

⎤

⎡

⎤

5 −5 −15 40

←  ( 1 ) ÷ [5]

1 −1 −3 8

⎣ 4 −2 −6 19⎦

⇒ ⎣ 4 −2 −6 19 ⎦ ←  ( 2 ) − 4 ×  ( 1 ) ⇒

3 −6 −17 41

3 −6 −17 41

←  ( 3 ) − 3 ×  ( 1 )

⎡

⎤

⎡

⎤

1 −1 −3

8

1 −1 −3

8

⎣ 0 2 6 −13⎦ ←  ( 2 ) ÷ [2] ⇒ ⎣0 1 3 −13 / ⎦

2

⇒

0 −3 −8

17

0 −3 −8

17

←  ( 3 ) + 3 ×  ( 2 )

⎡

⎤

⎡

⎤

1 −1 −3

8

←  ( 1 ) +  ( 2 )

1 0 0

3 / 2

⎣ 0 1 3 −13 / ⎦

⎣

⎦

2

⇒

0 1 3 −13 / 2

←  ( 2 ) − 3 ×  ( 3 ) ⇒

0

0

1 −5 / 2

0 0 1 −5 / 2

⎡

⎤

1 0 0

3 / 2

1 x + 0 y + 0 z = 3 / 2





⎣

3

0 1 0

1 ⎦ ∴

0 x + 1 y + 0 z = 1

∴ { x, y, z} =

 ,  1 , − 5

2

2

0 0 1 −5 / 2

0 x + 0 y + 1 z = −5 / 2

Method 2: Cramer’s rule. 
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Therefore, 

−25

 x =  x = 15 = 3 ; 

 y =  y = 10 = 1; 

 z =  z =

= −5

 

10

2

 

10

 

10

2

Method 3: the cofactor expansion to calculate determinants then applies Cramer’s rule. Note that numbers in the third column are rather large, so

Then, 

−25

 x =  x = 15 = 3 ; 

 y =  y = 10 = 1; 

 z =  z =

= −5

 

10

2

 

10

 

10

2
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10.43. Given third-order system of equations

2 x − 3 y −  z = 5

 x +  y + 2 z = 7

2 x −  y −  z = 1

Method 1: Cramer’s rule

Then, 

 x =  x = 

−14 7 = 7; 

 y =  y = 



20 −2 = −2; 

 z =  z = 

−38 19 = 19

 



−10 5

5

 



−10

 



−10 5

5

10.44. Given third-order system of equations

 x +  y +  z = 3

 x −  y +  z = 5

− x +  y −  z = 10

Method 1: Cramer’s rule, 





1 1 1  1 1

  =  1 −1 1  1 −1 = 1 − 1 + 1 − 1 − 1 + 1 = 0





−1 1 −1  −1 1

which is to say that this system does not have a unique set of solutions. It should be noted that the second and third equation’s coefficients are not independent; there is a simple “−1” factor
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between the two. 

Method 2: it may be more obvious that the second and third equations are contradictory if the system is solved by the elimination as, 

 x +  y +  z = 3 ⇒  x = 3 −  y −  z

 x −  y +  z = 5

− x +  y −  z = 10

 ( 3 −  y −  z) −  y +  z = 5 ⇒ −2 y + 3 = 5 ∴  y = −1

− ( 3 −  y −  z) +  y −  z = 10 ⇒ 2 y − 3 = 10

2 (−1 ) − 3 = 10 ⇒ −5 = 10

which, obviously, is false. Therefore, there is no unique set of solutions to this system. 

10.45. Given third-order system of equations, note the positions of “0” coefficients that keep places of the “missing” variables

 x +  y +  z =

36

2 x + 0 y −  z = −17

6 x + 0 y − 5 z =

7

Method 1: for example, by the matrix transformations

⎡

⎤

⎡

⎤

1 1

1

36

←  ( 1 ) 

1

1

1

36

⎣ 2 0 −1 −17⎦ ←  ( 2 ) − 2 ×  ( 1 )

⇒ ⎣ 0 −2 −3 −89 ⎦ ←  ( 2 ) ÷  (−2 )

⇒

6 0 −5

7

6

0 −5

7

←  ( 3 ) − 6 ×  ( 1 )

⎡

⎤

⎡

⎤

1

1

1

36

1 1

1 36

⎣ 0 1 3 /

⎦

⎣

⎦

2

89 / 2

⇒ 0 1 3 / 2 89 / 2

⇒

0 −6 −11 −209

←  ( 3 ) + 6 ×  ( 2 )

0 0 −2 58

←  ( 3 ) ÷ [−2]

⎡

⎤

⎡

⎤

1 1 1

36

←  ( 1 ) −  ( 2 )

1 0 −1 / 2 −17 / 2

←  ( 1 ) + 1 / 2 ( 3 )

⎣ 0 1 3 /

⎦

⎣

⎦

2

89 / 2

⇒ 0 1 3 / 2 89 / 2

←  ( 2 ) − 3 / 2 ( 3 ) ⇒

0 0 1 −29

0 0

1 −29

⎡

⎤

1 0 0 −23

⎣ 0 1 0 88 ⎦ ∴

{ x, y, z} = {−23 ,  88 , −29}

0 0 1 −29
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10.46. Given third-order system of equations

 x +  y = 7

 y +  z = 8

− x + 2 z = 7

Method 1: for example, by the matrix transformations

⎡

⎤

⎡

⎤

1 1 0 7

←  ( 1 ) 

1 1 0 7

⎣ 0 1 1 8 ⎦ ←  ( 2 ) 

⇒ ⎣ 0 1 1 8 ⎦

⇒

−1 0 2 7

←  ( 3 ) +  ( 1 )

0 1 2 14

←  ( 3 ) −  ( 2 )

⎡

⎤

⎡

⎤

1 1 0 7

←  ( 1 ) −  ( 2 )

1 0 −1 −1

←  ( 1 ) +  ( 3 )

⎣ 0 1 1 8 ⎦

⇒ ⎣ 0 1 1 8 ⎦

⇒

0 0 1 6

0 0

1

6

⎡

⎤

⎡

⎤

1 0 0 5

1 0 0 5

⎣ 0 1 1 8 ⎦ ←  ( 2 ) −  ( 3 )

⇒ ⎣ 0 1 0 2 ⎦

0 0 1 6

0 0 1 6

∴

{ x, y, z} = {5 ,  2 ,  6}

Method 2: by Cramer’s rule, 





1 1 0  1 1

  =  0 1 1  0 1 = 2 +  (−1 ) + 0 − 0 − 0 − 0 = 1 = 0





−1 0 2  −1 0





7 1 0  7 1

 





 x =  8 1 1 8 1 = 14 + 7 + 0 − 0 − 0 − 16 = 5





7 0 2  7 0





1 7 0  1 7

 





 y =  0 8 1

0 8 = 16 +  (−7 ) + 0 − 0 − 7 − 0 = 2





−1 7 2  −1 7





1 1 7  1 1

 





 z =  0 1 8

0 1 = 7 +  (−8 ) + 0 −  (−7 ) − 0 − 0 = 6





−1 0 7  −1 0

∴  x =  x = 5 = 5  y =  y = 2 = 2  z =  z = 6 = 6

 

1

 

1

 

1

⎡ ⎤

5

that is to say,  v = ⎣ 2 ⎦ or,  (x, y, z) =  ( 5 ,  2 ,  6 ) 6
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10.47. Given third-order system of equations

5 x − 13 y + 13 z = 8

 x − 3 y +  z = 4

− x + 2 y − 5 z = 3

Method 1: by Cramer’s rule, 





5 −13 13 

  =  1 −3 1 





−1

2 −5 













=

−3 1

1

1

1 −3

 (−1 ) 1+1 5 











2 −5  +  (−1 ) 1+2  (−13 )  −1 −5  +  (−1 ) 1+3 13  −1

2 

= 5 × 13 + 13 ×  (−4 ) + 13 ×  (−1 ) = 0

which is to say that this system does not have a unique set of solutions. 

10.48. Two points  A, B  must be found on the linear equation  f (x)  simultaneously; there is one equation corresponding to each point  (x, y); therefore, 

∴  ax +  b =  f (x)

 (x, y) =  (−2 ,  20 )

∴  a(−2 ) +  b = 20

 (x, y) =  ( 1 ,  5 )

∴  a( 1 ) +  b = 5

Therefore, the matrix form of the problem is

 a

 b

 f (x)

−2 a + b =

20

 a + b =

5

Method 1: for example, by the elimination

−2 a +  b = 20

 a +  b = 5 ⇒  a = 5 −  b

−2 ( 5 −  b) +  b = 20 ⇒ 3 b − 10 = 20 ∴  b = 10 ∴  a = −5

∴ { a, b} = {−5 ,  10}

which is to say that  f (x) = −5 x + 10. 

 Verification:
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 f (−2 ) = −5 (−2 ) + 10 = 20 

 f ( 1 ) = −5 ( 1 ) + 10 = 5 

Note that, given two points there is only one unique linear function that crosses both points. 

However, there are infinitely many higher-order nonlinear functions that cross these two points. 

It may be shown, for example, by deriving quadratic fitting function as, 

∴  ax 2 +  bx +  c =  f (x)

 (x, y) =  (−2 ,  20 )

∴  a(−2 ) 2 +  b(−2 ) +  c = 20

 (x, y) =  ( 1 ,  5 )

∴  a( 1 ) 2 +  b( 1 ) +  c = 5

Therefore, the matrix form of the problem is

 a

 b

 c

 f (x)

4 a −2 b + c =

20

 a + b + c =

5

that is to say, there are three unknown variables  (a, b, c)  and only two equations; consequently, the system does not have a unique set of solutions. That being the case, one variable is always dependent on the other two, for example, 

4 a − 2 b +  c = 20

 a +  b +  c = 5 ⇒  a = 5 −  b −  c

4 ( 5 −  b −  c) − 2 b +  c = 20 ⇒  b = −  c 2





 a = 5 − −  c −  c ∴  a = 5 −  c

2

2





∴ { a, b, c} = 5 −  c , −  c , c

2

2

which is to say, as  c  is a parameter there are infinitely many quadratic functions of the form f (x) =  ax 2 +  bx +  c  that cross the two given points. A couple of examples, see Fig. 10.22, 

are as follows:

 c = −1 :  f 1 (x) =  ax 2 +  bx +  c = 11  x 2 + 1  x − 1

2

2

 c = 0 :  f 2 (x) =  ax 2 +  bx +  c = 5 x 2

 c = 4 :  f 3 (x) =  ax 2 +  bx +  c = 3 x 2 − 2 x + 4

etc. 

In conclusion, there are infinitely many curves that cross given two points, but linear function is the only unique fitting “curve.” 
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Fig. 10.22 P.10.48, given two

points, there is only one linear

function that provides a unique

solution. Any other higher-order

polynomial, for example, quadratic, 

is not unique due to unresolved

parameters

10.49. All three points  A , B, C  must be found on the quadratic equation  f (x)  simultaneously; there is one equation for each point  (x, y), and therefore, three equations as

∴  ax 2 +  bx +  c =  f (x)

 (x, y) =  (−2 ,  20 )

∴  a(−2 ) 2 +  b(−2 ) +  c = 20

 (x, y) =  ( 1 ,  5 )

∴  a( 1 ) 2 +  b( 1 ) +  c = 5

 (x, y) =  ( 3 ,  25 )

∴  a( 3 ) 2 +  b( 3 ) +  c = 25

so that the matrix form of the problem is

 a

 b

 c

4 a −2 b + c = 20

 a + b + c = 5

9 a +3 b + c = 25

that is to say, 

 A  v = 

 b

where, 

⎡

⎤

⎡ ⎤

⎡ ⎤

4 −2 1

 a

20

 A = ⎣ 1

1 1 ⎦  v = ⎣  b ⎦ and 

 b = ⎣ 5 ⎦

9

3 1

 c

25

Method 1: for example, by matrix transformations. Note that the order of equations (i.e., rows) may be changed (e.g., notation  ( 1 ) ↔  ( 2 )  reads as “swap positions of the first and second row”) because the order of equations in the original system is written arbitrary to start with, 

⎡

⎤

⎡

⎤

4 −2 1 20

 ( 1 ) ↔  ( 2 )

1

1 1 5

⎣ 1 1 1 5 ⎦

⇒ ⎣ 4 −2 1 20 ⎦ ←  ( 2 ) − 4 ×  ( 1 )

9

3 1 25

9

3 1 25
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Fig. 10.23 P.10.49, unique

quadratic curve that fits three given

points in space

⎡

⎤

⎡

⎤

1

1

1 5

1 1 1 5

⎣ 0 −6 −3 0⎦ ←  ( 2 ) ÷  (−6 )

⇒ ⎣ 0 1 1 /

⎦

2

0

9

3

1 25

9 3 1 25

←  ( 3 ) − 9 ×  ( 1 )

⎡

⎤

⎡

⎤

1

1

1

5

1 1

1

5

⎣ 0 1 1 /

⎦

⎣

⎦

2

0

⇒ 0 1 1 / 2

0

0 −6 −8 −20

←  ( 3 ) + 6 ×  ( 2 )

0 0 −5 −20

←  ( 3 ) ÷  (−5 )

⎡

⎤

⎡

⎤

1 1 1 5

←  ( 1 ) −  ( 2 )

1 0 1 / 2 5

⎣ 0 1 1 / ⎦

⎣

⎦

2 0

⇒ 0 1 1 / 2 0

←  ( 2 ) − 1 / 2 ( 3 )

0 0 1 4

0 0 1 4

⎡

⎤

⎡

⎤

1 0 1 / 2

5

←  ( 1 ) − 1 / 2 ( 3 )

1 0 0

3

⎣ 0 1 0 −2⎦

⇒ ⎣ 0 1 0 −2 ⎦ ∴ { a, b, c} = {3 , −2 ,  4}

0 0 1

4

0 0 1

4

which is to say that  f (x) = 3 x 2 − 2 x + 4; see Fig. 10.23. Following the discussion in A.10.48

there are infinitely many higher-order parametric curves that cross these three points; however, being parametrized does not represent a unique set of solutions. 

10.50. To say that two or more vectors are linearly independent is to say that they are not parallel, or to say that their first derivatives (slopes) are not the same (see chapters in Vol. II on calculus) or, equivalently, to say that the system’s determinant is   = 0. Given, 













3

−2

7

 a =



−

 b =

 c =

2

1

4

(a) Linear combination is

 c =  k a +  n b

∴













7

3

−2

−

=  k

+  n

4

−2

1
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which is the matrix form of the following system of equations:

7 = 3 k − 2 n

−4 = −2 k +  n

Therefore, the determinant is calculated as





3 −2 







  = 



−

3 × 1 − −2 ×  (−2 ) = −1 = 0

2

1  =

which is to say that equations (i.e., vectors) are indeed independent. More precisely, 

Cramer’s rule gives, 





⎫

7 −2 

⎪

−1

 





⎪

=

=

 k

= −

⎪

 k =  k

1

4

1  = −1⎬

 

−1



∴





3

7 

⎪

⎪

 





⎪

⎭

 n

= −

 n =  n = 2 = −2

2 −4  = 2

 

−1

which is to say,  c =  a − 2

 b

(b) Given











1

3

0

 a =

 b =

 c =

2

4

−2

Linear combination is











0

1

3

 c =  k a +  n

 b ∴

−

=  k

+  n

2

2

4

which is the matrix form of the following system of equations:

0 =  k + 3 n

−2 = 2 k + 4 n

Therefore, the determinant is calculated as



1 3 

  = 



2 4  = −2 = 0

which is to say that equations (i.e., vectors) are indeed independent. Cramer’s rule gives, 





⎫

0 3 

⎪

 





⎪

= 6 = −

 k

= −

⎪

 k =  k

3

2 4  = 6 ⎬

 

−2



∴





1

0 

⎪

⎪

−2

 





⎪

⎭

 n

= 

 n =  n =

= 1

2 −2  = −2

 

−2

which is to say,  c = −3 a + 

 b
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10.51. To say that two or more vectors are linearly independent is to say that they are not parallel, or to say that their first derivatives are not same, or to say that the system’s determinant is   = 0. Given, 











1

3

0

 a =

 b =

 c =

2

4

−2

(a) Linear combination is

 c =  k a +  n b

∴









0

1

3

−

=  k

+  n

2

2

4

which is the matrix form of the following system of equations:

0 = 1 k + 3 n

−2 = 2 k + 4 n

Therefore, the determinant is calculated as



1 3 







  = 



1 × 4 − 2 × 3 = −2 = 0

2 4  =

which is to say that equations (i.e., vectors) are indeed independent. More precisely, 

Cramer’s rule gives, 





⎫

0 3 

⎪

 





⎪

= 6 = −

 k

= −

⎪

 k =  k

3

2 4  = 6 ⎬

 

−2



∴





1

0 

⎪

⎪

−2

 





⎪

⎭

 n

= 

 n =  n =

= 1

2 −2  = −2

 

−2

which is to say,  c = −3 a + 

 b

(b) Given











1

3

0

 a =

 b =

 c =

2

4

−2

Linear combination is











0

1

3

 c =  k a +  n

 b ∴

−

=  k

+  n

2

2

4
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which is the matrix form of the following system of equations:

0 =  k + 3 n

−2 = 2 k + 4 n

Therefore, the determinant is calculated as



1 3 

  = 



2 4  = −2 = 0

which is to say that equations (i.e., vectors) are indeed independent. Cramer’s rule gives, 





⎫

0 3 

⎪

 





⎪

= 6 = −

 k

= −

⎪

 k =  k

3

2 4  = 6 ⎬

 

−2



∴





1

0 

⎪

⎪

−2

 





⎪

⎭

 n

= 

 n =  n =

= 1

2 −2  = −2

 

−2

which is to say,  c = −3 a + 

 b

10.52. Parallel vectors are said to be “collinear” (i.e., the angle between them is either zero or π ), as opposed to “orthogonal” (i.e., the angle between them is ± π/ 2), or any other arbitrary angle between the them. Recalling that the slope of a linear function is calculated as its first derivative, then another method to establish spatial relationship (i.e., parallel, orthogonal, etc.) between two vectors is to calculate and compare their respective first derivatives; see chapters in Vol. II on calculus. 

Reminder: One or more vectors are linearly independent if they are  not collinear. One possible way to formalize that statement is to write

if 

 x =  k 

 y ⇒  (

 x, 

 y)  are collinear

where  k  is the multiplying constant. Alternatively, the determinant of matrix that

includes collinear vectors equals zero. 

Given







3

2

 a =

 b =

 λ

6

Method 1: saying that vectors  a  and 

 b are  collinear is to say that, for example, 







3

2

 a =  k 

 b ∴

=  k

 λ

6
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where  k  is the multiplying parameter not equal to zero. Then, this system of equations is 3

= 2 k

∴

3

 k = 3 / 2 and as  λ = 6 k ∴  λ = A6 3

= 9

 λ

= 6 k

A2

so that given  λ = 9











3

2

3

2

 a =

 , 

 b =

∴

= 3

∴ if  λ = 9 then  a = 3  b

9

6

9

2

6

2

In conclusion, given two vectors are independent if  λ = 9. 

Method 2: given







2

3

 b =  k a ∴

=  k

6

 λ

The determinant is then calculated as









3 2

  =  a  b = 



 λ  6  = 3 × 6 − 2 λ = 18 − 2 λ = 0 ∴  λ = 9

In conclusion, for any  λ = 9 these two vectors are independent (i.e., not parallel). Otherwise for  λ = 9 they are dependent (i.e., parallel), which is the consequence of a simple 3 / 2

multiplication factor between the two vectors. 

10.53. Method 1: given vectors

⎡ ⎤

⎡ ⎤

⎡ ⎤

6

3

 λ

 a = ⎣ 8 ⎦  b = ⎣ 4 ⎦  c = ⎣ 0 ⎦

4

2

1

by inspection, it is evident that  a  may be factored as

⎡ ⎤

⎡ ⎤

6

3

 a = ⎣ 8 ⎦ = 2 ⎣ 4 ⎦ ≡ 2  b

4

2

which is to say that  ( a, 

 b)  are collinear (i.e., dependent) regardless of  λ. 

Method 2: the determinant of matrix of these three vectors is

= + 6 × 4 × 1 + 3 × 0 × 4 +  λ × 8 × 2





6 3  λ  6 3

− 4 × 4 ×  λ − 2 × 0 × 6 − 1 × 8 × 3

  =  8 4 0  8 4





=



24 + HH

16 λ − HH

16 λ − 



24 = 0

4 2 1  4 2

[image: Image 278]
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that is to say, the determinant equals zero regardless of  λ; consequently, these three vectors are dependent for any value of  λ. 

10.6

Vector Space

Modern interpretation of matrices is illustrated by multidimensional space, where column–vectors are assembled together into a matrix, which then depicts various transformations of the given space. 

In order to visualize these transformations, it is sufficient to follow the base vector transformations. 

Note that base vectors define “unit volume of their respective space.” That is to say, in the case of 1D

space it is “unit” line length, in the case of 2D space it is “unit” square surface, and in the case of 3D

or higher-order space it is “unit volume.” It is assumed that the space is perfectly “stretchable” in any direction and to any distance and direction. A banal example of a 2D space (epitomized as a plain sheet of paper) transformation may be a simple rotation by 90◦ clockwise relative to one of its corner points; see Sect. 10.3. 

10.54. Given the matrix–vector product, 





1

1

3

2 −1

0

it may be calculated as a linear combination. 













1

1

3

1

1

3

 L  v =

= 3

+ 0

=

2 −1

0

2

−1

6

Geometric interpretation of this operation may be illustrated by vector  v = 3 i + 0 

 j  that is

transformed to  L( v) = 3  L( i) + 0  L( 

 j ) ≡ 3 i + 6 

 j  by the means of space transformation  L, 

see Fig. 10.24. Note that coordinates of transformed  L(  i )  and  L( 

 j )  are set by the columns

of  L  transformation matrix. 

Therefore, the result of the matrix–vector product  L(  v ) =  ( 3 ,  6 )  is shown in the units of the original (i.e., non-transformed basis vectors  i  and 

 j , as illustrated in Fig. 10.24. 

Fig. 10.24 P.10.54, geometrical

interpretation of linear

transformation

 L( v) = 3  L( i) + 0  L( 

 j )

[image: Image 279]
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Fig. 10.25 P.10.55, geometrical

interpretation of transformation

whose result is  L  v =  λ  v. As the  v

stayed collinear after

transformation  L, it is said that  v

eigenvector vector of matrix  L

10.55. Given the matrix–vector product, 





√ 

1

1

1 +

3

2 −1

2

it may be calculated as a linear combination. 





√ 









√ 

1

1

1 +

3

√

1

1

3 +

3

 L  v =

=  ( 1 + 3 )

+ 2

=

√

2 −1

2

2

−1

2 3

Note however that, 



! 



! 

√

√ 



√

√

3

√

3

3

√

3 3

3 +

3 =

3

√ + 1 = 3 √ √ + 1 = 3

+ 1

3

3

3

3

√ 

√ 

= 3 1 + 3

that is to say, 





√ 

√

√ 



√ 

1

1

1 +

3

3  ( 1 +

3 )

√

1 +

3

√

 L  v =

=

√

= 3

= 3  v

2 −1

2

2 3

2

In other words, after the space transformation  L  this particular vector  v  stayed  collinear; it was

√

simply multiplied by a constant “ 3”; see Fig. 10.25. Compare with the vector  v  in P.10.54

subjected to the same space transformation  L. 

Reminder: If matrix  L  does not affect direction of a certain vector  v, as L  v =  λ  v

then it is said that this particular vector  v  is  eigenvector  of its associated transformation matrix  L, and constant  λ  is referred to as  eigenvalue  of this matrix  L. Existence of eigenvalues and eigenvectors for a given matrix is a very important property. Not all

matrices have eigenvalues and subsequently do not have eigenvectors. 

[image: Image 280]
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Fig. 10.26 P.10.56, geometrical

interpretation of transformation

whose result is  L  v =  λ  v. As the  v

stayed collinear after

transformation  L, even though it

changed its direction, it is said that

 v  eigenvector vector of matrix  L

10.56. Given the matrix–vector product, 





√ 

1

1

1 −

3

2 −1

2

it may be calculated as a linear combination. 





√ 









√ 

1

1

1 −

3

√

1

1

3 −

3

 L  v =

=  ( 1 − 3 )

+ 2

=

√

2 −1

2

2

−1

−2 3

Note however that, 



! 



! 

√

√ 



√

√

√

3

√

3

3 −

3 = − 3 − 3

√ + 1 = − 3 − 3

√ √ + 1 = − 3 −3

+ 1

3

3

3

3

√ 

√ 

= − 3 1 − 3

that is to say, 





√ 

√

√ 



√ 

1

1

1 −

3

− 3  ( 1 − 3 )

√

1 −

3

√

 L  v =

=

√

= − 3

= − 3  v

2 −1

2

−2 3

2

In other words, after the space transformation  L  this particular vector  v  stayed  collinear; it was

√

simply multiplied by a constant “− 3”; see Fig. 10.26 (compare with P.10.54). In conclusion, 

√

this particular constant  λ = − 3 happens to be  eigenvalue, and therefore, this particular vector  v  is its associated  eigenvector  of the given transformation matrix  L. 

10.57. Given the matrix–vector product, 







2 −1

−5

3

2

3

it may be calculated as a linear combination. 

[image: Image 281]
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Fig. 10.27 P.10.57, geometrical

interpretation of linear

transformation

 L( v) = −5  L( i) + 3  L( 

 j )

Fig. 10.28 P.10.58, geometrical

interpretation of linear

transformation

 L( v) = 3  L( i) − 2  L( 

 j )

















2 −1

−5

2

−1

−13

 L  v =

= −5

+ 3

=

3

2

3

3

2

−9

That is, vector  v = −5 i + 3 

 j  is transformed to  L( v) = −5  L( i) + 3  L( 

 j ) ≡ −13 i − 9 

 j  by the

means of space transformation  L; see Fig. 10.27. Note that coordinates of transformed  L(  i ) and  L( 

 j )  are set by the columns of  L  transformation matrix. The result of the matrix–vector product  L(  v ) =  (−13 , −9 )  is shown in the units of the original (i.e., non-transformed basis vectors  i  and 

 j , as illustrated in Fig. 10.27. 

10.58. Given the matrix–vector product, 







2 −3

3

1

2

−2

it may be calculated as a linear combination. 

















2 −3

3

2

−3

12

 L  v =

= 3

+  (−2 )

=

1

2

−2

1

2

−1

That is, vector  v = 3 i − 2 

 j  is transformed to  L( v) = 3  L( i) − 2  L( 

 j ) ≡ 12 i − 

 j  by the

means of space transformation  L; see Fig. 10.28. Note that coordinates of transformed  L(  i ) and  L( 

 j )  are set by the columns of  L  transformation matrix. The result of the matrix–vector product  L(  v ) =  ( 12 , −1 )  is shown in the units of the original (i.e., non-transformed basis vectors  i  and 

 j , as illustrated in Fig. 10.28. 

[image: Image 283]
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Fig. 10.29 P.10.59, geometrical

interpretation of linear

transformation

 L( v) = 4  L( i) = 4  L( 

 j )  that results

in loss of spatial dimension

10.59. Given the matrix–vector product, 





1 1

3

2 2

1

it may be calculated as a linear combination. 













1 1

3

1

1

4

1

 L  v =

= 3

+ 1

=

= 4

= 4  L( i ) = 4  L(  j )

2 2

1

2

2

8

2

It is to be noted that the two rows of transformation matrix are  not independent, that is to say, one can be derived as the multiple of the other. 

Consequently,  L(  i )  and  L( 

 j )  are collinear, and furthermore, the transformed vector  L(v)

is aligned with both of them at the same time. Another hint is that determinant | L| = 0. The geometrical interpretation of this case is that the original 2D space collapsed into 1D space; see Fig. 10.29. This is the general consequence of transformations whose determinant equals zero. 

10.60. Given the matrix–matrix product, 







1

1

2 −1

2 −1

3

2

geometrically, it may be interpreted as “linear transformation of linear transformation,” i.e., two transformations happening at the same time. That is to say, in practical sense, the matrix–

matrix product may be decomposed into two matrix–vector products. Then, the two resulting

vectors are simply combined in the final matrix as, 











1

1

2 −1 =  ix jx

2 −1

3

2

 iy jy

That is to say, 



















1

1

2

1

1

 ( 2 + 3 )

5

 i :

= 2

+ 3

=

=

2 −1

3

2

−1

 ( 4 − 3 )

1

[image: Image 284]

478

10

Linear Algebra

Fig. 10.30 P.10.60, geometrical

interpretation transformation

resulting from a two-matrix

multiplication























1

1

−1

1

1

 (−1 + 2 )

1

 j :

=  ( −1 )

+ 2

=

=

2 −1

2

2

−1

 (−2 − 2 )

−4

so that the final result is











1

1

2 −1 = 5 1

2 −1

3

2

1 −4

The overall transformation is illustrated in Fig. 10.30 where narrow line arrows represent first transformations of  i  and 

 j  at  (  1 ,  2 )  and  (  1 , −1 ) (i.e., left-side matrix), as measured by the units of the original space. Then, wide line arrows represent the final destination of  i  and j

after second transformations (i.e., right-side matrix). 

10.61. Given the matrix–matrix product







2 −1

2 −3

3

2

1

2

then, it follows











2 −1

2 −3 =  ix jx

3

2

1

2

 iy jy

where, 

















2 −1

2

2

−1

 ( 4 − 1 )

3

 i :

= 2

+

=

=

3

2

1

3

2

 ( 6 + 2 )

8























2 −1

−3

2

−1

 (−6 − 2 )

−8

 j :

=  (−3 )

+ 2

=

=

3

2

2

3

2

 (−9 + 4 )

−5

Therefore, 
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2 −1

2 −3 = 3 −8

3

2

1

2

8 −5

10.62. Given the matrix–matrix product







2 −3

1

1

1

2

2 −1

it follows that











2 −3

1

1

=  ix jx

1

2

2 −1

 iy jy

where, 





















2 −3

1

2

−3

 ( 2 − 6 )

−4

 i :

=

+ 2

=

=

1

2

2

1

2

 ( 1 + 4 )

5























2 −3

1

2

−3

 ( 2 + 3 )

5

 j :

=

+  (−1 )

=

=

1

2

−1

1

2

 ( 1 − 2 )

−1

Therefore, 











2 −3

1

1

= −4 5

1

2

2 −1

5 −1

10.63. Given the matrix–matrix product







2 −1

1

1

3

2

2 −1

it follows that











2 −1

1

1

=  ix jx

3

2

2 −1

 iy jy

where, 



















2 −1

1

2

−1

 ( 2 − 2 )

0

 i :

=

+ 2

=

=

3

2

2

3

2

 ( 3 + 4 )

7





















2 −1

1

2

−1

 ( 2 + 1 )

3

 j :

=

+  (−1 )

=

=

3

2

−1

3

2

 ( 3 − 2 )

1

Therefore, 











2 −1

1

1

= 0 3

3

2

2 −1

7 1
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By comparison with P.10.60 note that matrix–matrix multiplication is  not  commutative operation. 

10.64. Given the matrix–matrix product







2 −3

2 −1

1

2

3

2

it follows that











2 −3

2 −1 =  ix jx

1

2

3

2

 iy jy

where, 





















2 −3

2

2

−3

 ( 4 − 9 )

−5

 i :

= 2

+ 3

=

=

1

2

3

1

2

 ( 2 + 6 )

8























2 −3

−1

2

−3

 (−2 − 6 )

−8

 j :

=  (−1 )

+ 2

=

=

1

2

2

1

2

 (−1 + 4 )

3

Therefore, 











2 −3

2 −1 = −5 −8

1

2

3

2

8

3

By comparison with P.10.61 note that matrix–matrix multiplication is  not  commutative operation. 

10.65. Given the matrix–matrix product







1

1

2 −3

2 −1

1

2

it follows that











1

1

2 −3 =  ix jx

2 −1

1

2

 iy jy

where, 

















1

1

2

1

1

 ( 2 + 1 )

3

 i :

= 2

+

=

=

2 −1

1

2

−1

 ( 4 − 1 )

3























1

1

−3

1

1

 (−3 + 2 )

−1

 j :

=  (−3 )

+ 2

=

=

2 −1

2

2

−1

 (−6 − 2 )

−8

Therefore, 
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1

1

2 −3 = 3 −1

2 −1

1

2

3 −8

By comparison with P.10.65 note that matrix–matrix multiplication is  not  commutative operation. 

10.66. Two non-square matrices are multiplied as the same as the two square matrices while keeping in mind that

Reminder: product  C  of two non-square matrices  A, B  is possible if the  number of columns n  in the left-side matrix is equal to the  number or rows k  in the matrix on the right side. The resulting matrix has the number of rows  m  and the number of columns  l, as

 Am,n Bn,l =  Cm,l

which is not necessarily a square matrix. 

Given the matrix product of two vectors, 

⎡ ⎤



1

1 2 3 ⎣ 2 ⎦

3

note that left-side matrix is in “1 ,  3” format and the right-side matrix is in “3 ,  1” format; thus, the resulting product must be a matrix sized as “1 ,  1,” because the number of rows on the left is “1” and the number of columns on the right-side vector is also “1.” Therefore, 

⎡ ⎤



1







1 2 3 ⎣ 2 ⎦ = 1 · 1 + 2 · 2 + 3 · 3 = 14

3

10.67. Given the matrix product of two vectors, 

⎡ ⎤

1

⎣



2 ⎦  1 2 3

3

note that left-side matrix is in “3 ,  1” format and the right side matrix is in “1 ,  3” format; thus, the resulting product must be a matrix sized as “3 ,  3,” because the number of rows on the left is “3” and the number of columns on the right-side vector is also “3.” Therefore, 

⎡ ⎤

⎡

⎤

⎡

⎤



1

1 · 1 1 · 2 1 · 3

1 2 3

1 2 3 ⎣ 2 ⎦ = ⎣ 2 · 1 2 · 2 2 · 3 ⎦ = ⎣ 2 4 6 ⎦

3

3 · 1 3 · 2 3 · 3

3 6 9
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10.68. Given matrix–product of two vectors, 



⎡

⎤

1

2

3

0 1 ⎣

⎦

−

5 −1

2 −1 4

0

1

note that left-side matrix is in “2 ,  3” format and the right-side matrix is in “3 ,  2” format; thus, the resulting product must be a matrix sized as “2 ,  2”; therefore, 



⎡

⎤

1

2





3

0 1 ⎣

⎦

 ix jx

−

5 −1

=

2 −1 4

 i

0

1

 y jy

where, 



⎡ ⎤

1

















3

0 1

3

0

1

3

 i :

⎣ ⎦

−

5

=

+ 5

+ 0

=

2 −1 4

−2

−1

4

−7

0



⎡

⎤

2













3

0 1

3

0

1

7

 j :

⎣

⎦

−

−1 = 2

+  (−1 )

+

=

2 −1 4

−2

−1

4

1

1

So that, 



⎡

⎤

1

2





3

0 1 ⎣

⎦

3 7

−

5 −1

=

2 −1 4

−7 1

0

1

10.69. Given the matrix product of two vectors, 

⎡

⎤

1

2





⎣

3

0 1

5 −1 ⎦ −2 −1 4

0

1

note that left-side matrix is in “3 ,  2” format and the right-side matrix is in “2 ,  3” format; thus, the resulting product must be a matrix sized as “3 ,  3,” as

⎡

⎤

⎡

⎤

1

2





 ix jx kx

⎣

3

0 1

5 −1 ⎦

⎣

⎦

−

=

 i

2 −1 4

 y jy ky

0

1

 iz jz kz

where, 

⎡

⎤

⎡ ⎤

⎡

⎤

⎡

⎤

1

2





1

2

−1



3

 i : ⎣ 5 −1 ⎦

⎣ ⎦

⎣

⎦

⎣

⎦

−

= 3 5 +  (−2 ) −1 =

17

2

0

1

0

1

−2
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⎡

⎤

⎡ ⎤

⎡

⎤

⎡

⎤

1

2





1

2

−2



0

 j : ⎣ 5 −1 ⎦

⎣ ⎦

⎣

⎦

⎣

⎦

−

= 0 5 +  (−1 ) −1 =

1

1

0

1

0

1

−1

⎡

⎤

⎡ ⎤

⎡

⎤

⎡ ⎤

1

2



1

2

9



1

 k : ⎣ 5 −1 ⎦

= ⎣ 5 ⎦ + 4 ⎣ −1 ⎦ = ⎣ 1 ⎦

4

0

1

0

1

4

Therefore, 

⎡

⎤

⎡

⎤

1

2





−1 −2 9

⎣

3

0 1

5 −1 ⎦

⎣

⎦

−

=

17

1 1

2 −1 4

0

1

−2 −1 4

10.7

Eigenvalues and Eigenvectors

10.70. Simple calculation of the matrix–vector product is













3 −3

3

 ( 3 × 3 − 1 × 3 )

6

3

 A  v =

=

=

= 2

=  λ  v

2 −4

1

 ( 2 × 3 − 4 × 1 )

2

1

Therefore,  v  is eigenvector of matrix  A  and its associated eigenvalue is  λ = 2. 

10.71. A simple calculation of the matrix–vector product is













3 −3

2

 ( 2 × 3 − 1 × 3 )

3

2

 A  v =

=

=

=  λ

2 −4

1

 ( 2 × 2 − 4 × 1 )

0

1

Therefore,  v  is  not  eigenvector of matrix  A  because there is no eigenvalue  λ  for which the definition equation is possible. 

10.72. Given





6 −1

2

3

one possible procedure to calculate its eigenvalues and eigenvectors (if exist) may be, 

1.  Eigenvalues λ: the roots of characteristic polynomial are eigenvalues, as:

det  (A −  λ I ) = 0

∴

484

10

Linear Algebra















6 −1

1 0 

6 −1

 λ  0 

det  (A −  λ I ) = 

−  λ





−



2

3

0 1  =  2

3

0  λ 





=  6 −  λ −1





2 3 −  λ  =  ( 6 −  λ)( 3 −  λ) − 2 (−1 ) =  λ 2 − 9 λ + 20

=  λ 2 − 5 λ − 4 λ + 20 =  λ(λ − 5 ) − 4 (λ − 5 ) =  (λ − 5 )(λ − 4 ) = 0

∴  λ 1 = 4 , λ 2 = 5

Therefore, two distinct eigenvalues of matrix  A  are  λ 1 = 4 , λ 2 = 5. 

2.  Eigenvectors  v =  (x, y)  are calculated for each eigenvalue  λ 1 ,  2 so that (A −  λi I ) 

 vi = 0  (i = 1 ,  2 )

 Case λ 1 = 4 :













6 −1

1 0

 x

6 − 4

−1

 x

 (A −  λ 1  I ) 

 v 1 =

− 4

=

2

3

0 1

 y

2 3 − 4

 y







= 2 −1

 x

= 0

2 −1

 y

0

therefore, the objective is to calculate  ( x, y)  coordinates of  v 1. Evidently, rows of this simple 2D matrix are not independent, which implies that this system of equations must

have parametrized set of solutions. It may be resolved in the extended matrix form as









2 −1 0

←  ( 1 ) ÷ 2 = 1 −1 / 2 0

2 −1 0

2 −1 0

←  ( 2 ) − 2 ( 1 )





= 1 −1 / 2 0

←  ( 1 )

0

0 0

⇒ 0 x + 0 y = 0 !!! 

That is to say, as the consequence of two equations being dependent, the second equation

collapses into its trivial case. Thus, because it is multiplied by zero, coordinate  y  may take arbitrary value (except the infinity) and the second equation is still correct. That being the case, it may be parametrized as  y =  t , where  t  is an arbitrary parameter. By substitution of  y  in ←  ( 1 ), it follows that

1  x − 1  y = 0 ∴ 1  x − 1  t = 0 ⇒  x = 1  t

2

2

2

which is to say, the first equation is correct for any value of  y  as long as  y  is two times the value of  x. It means that parametrized form of  v 1 is











 t

1



 x

 / 2

 / 2

1

 v 1 =

=

=  t

=

 y

 t

1

2

after the arbitrary value of parameter  t  is set to  t = 2 as a convenient way to derive integer coordinates. 
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 Case λ 2 = 5 :  same procedure as for  λ 1 results in













6 −1

1 0

 x

6 − 5

−1

 x

 (A −  λ 2  I ) 

 v 2 =

− 5

=

2

3

0 1

 y

2 3 − 5

 y







= 1 −1

 x

= 0

2 −2

 y

0

Therefore, 









1 −1 0

=

1 −1 0

2 −2 0

←  ( 2 ) − 2 ( 1 )

0

0 0

⇒ 0 x + 0 y = 0 ∴  y =  t

and, 

1  x − 1  y = 0 ∴  x − 1  t = 0 ⇒  x =  t

which is to say that  y  must equal to  x, and therefore parametrized form of  v 2 is t

1

1

 v 2 =

=  t

=

 t

1

1

after the arbitrary value of parameter  t  is set to  t = 1 as a convenient way to derive integer coordinates. 

3.  Verification:













6 −1

1

 ( 1 · 6 + 2 ·  (−1 ))

4

1

 A 

 v 1 =

=

=

= 4

=  λ

2

3

2

 ( 1 · 2 + 2 · 3 )

8

2

1 

 v 1 













6 −1

1

 ( 1 · 6 + 1 ·  (−1 ))

5

1

 A 

 v 2 =

=

=

= 5

=  λ

2

3

1

 ( 1 · 2 + 1 · 3 )

5

1

2 

 v 2 

10.73. Given





−6 3

4 5

1.  Eigenvalues λ: the roots of characteristic polynomial are eigenvalues, as:

det  (A −  λ I ) = 0













∴

−6 3

1 0

−6 3

 λ  0

det  (A −  λ I ) = 

−  λ





−



4 5

0 1  = 

4 5

0  λ 





=  −6 −  λ

3





4 5 −  λ  =  (−6 −  λ)( 5 −  λ) − 4 · 3 =  λ 2 +  λ − 42

=  λ 2 − 6 λ + 7 λ − 42 =  λ(λ − 6 ) + 7 (λ − 6 ) =  (λ − 6 )(λ + 7 ) = 0
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Therefore, 

 λ 1 = 6 , λ 2 = −7

In summary, two distinct eigenvalues of matrix  A  are  λ 1 = 6 , λ 2 = −7. 

2.  Eigenvectors  v =  (x, y)  are calculated for each eigenvalue  λ 1 ,  2 so that (A −  λi I ) 

 vi = 0  (i = 1 ,  2 )

 Case λ 1 = 6 :













−6 3

1 0

 x

−6 − 6

3

 x

 (A −  λ 1  I ) 

 v 1 =

− 6

=

4 5

0 1

 y

4 5 − 6

 y







= −12 3

 x

= 0

4 −1

 y

0

therefore, the objective is to calculate  ( x, y)  coordinates of  v 1. Evidently, rows of this simple 2D matrix are not independent, which implies that this system of equations must

have parametrized set of solutions. It may be resolved in the extended matrix form as









−12 3 0

←  ( 1 ) ÷ [−12] = 1 −1 / 4 0

4 −1 0

4 −1 0

←  ( 2 ) − 4 ( 1 )





= 1 −1 / 4 0

0

0 0

⇒ 0 x + 0 y = 0 !!! 

That is to say, as the consequence of two equations being dependent, the second equation

collapses into its trivial case. Thus, see A.10.72,  y =  t , where  t  is an arbitrary parameter. 

By substitution of  y  in first row, it follows that

1  x − 1  y = 0 ∴ 1  x − 1  t = 0 ⇒  x = 1  t

4

4

4

which is to say that the first equation is correct for any value of  y  as long as it is four times the value of  x. It means that parametrized form of  v 1 is











 t

1



 x

 / 4

 / 4

1

 v 1 =

=

=  t

=

 y

 t

1

4

after the arbitrary value of parameter  t  is set to  t = 4 as a convenient way to derive integer coordinates. 

 Case λ 2 = −7 :  repeated procedure results in













−6 3

1 0

 x

−6 + 7

3

 x

 (A −  λ 2  I ) 

 v 2 =

−  (−7 )

=

4 5

0 1

 y

4 5 + 7

 y







= 1 3

 x

= 0

4 12

 y

0
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Therefore, 









1 3 0

=

1 3 0

4 12 0

←  ( 2 ) − 4 ( 1 )

0 0 0

⇒ 0 x + 0 y = 0 ∴  y =  t

and, 

1  x + 3  y = 0 ∴  x + 3  t = 0 ⇒  x = −3 t

which is to say, in plain words, that  x  must equal to “−3 y.” Therefore,  v 2 is















−3 t

−3

−3

 v 2 =

=  t

=

 t

1

1

after the arbitrary value of parameter  t  is set to  t = 1 as a convenient way to derive integer coordinates. 

3.  Verification:













−6 3

1

 ( 1 ·  (−6 ) + 4 · 3 )

6

1

 A 

 v 1 =

=

=

= 6

=  λ

4 5

4

 ( 1 · 4 + 5 · 4 )

24

4

1 

 v 1 



















−6 3

−3

 ((−3 ) ·  (−6 ) + 1 · 3 )

21

−3

 A 

 v 2 =

=

=

= −7

=  λ

4 5

1

 ((−3 ) · 4 + 1 · 5 )

−7

1

2 

 v 2 

10.74. Given





10 −5

5

2

1.  Eigenvalues λ: the roots of characteristic polynomial are eigenvalues, as:

det  (A −  λ I ) = 0

∴        

10 −5

1 0 

10 −5

 λ  0 

det  (A −  λ I ) = 

−  λ





−



5

2

0 1  = 

5

2

0  λ 





=  10 −  λ −5





5 2 −  λ  =  ( 10 −  λ)( 2 −  λ) − 5 ·  (−5 ) =  λ 2 − 12 λ + 45

= 0

∴  λ 1 = 6 − 3 j, λ 2 = 6 + 3 j (j 2 = −1 )

Therefore, two distinct eigenvalues of matrix  A  are  λ 1 = 6 − 3 j, λ 2 = 6 + 3 j . 

2.  Eigenvectors  v =  (x, y)  are calculated for each eigenvalue  λ 1 ,  2 so that (A −  λi I ) 

 vi = 0  (i = 1 ,  2 )
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 Case λ 1 = 6 − 3 j :





10 −  ( 6 − 3 j )

−5

 x

 (A −  λ 1  I ) 

 v 1 =

5 2 −  ( 6 − 3 j )

 y







= 4 + 3 j

−5

 x

= 0

5 −4 + 3 j

 y

0

Complex matrices may be solved as the same as the matrices with real coefficients, as









4 + 3 j

−5 0

←  ( 1 ) · [4 − 3 j] = 25 −20 + 15 j  0 ←  ( 1 ) ÷ 25

5 −4 + 3 j  0

5

−4 + 3 j  0









= 1 −4 / 5 + 3 / 5  j  0

= 1 −4 / 5 + 3 / 5  j  0

5

−4 + 3 j  0

←  ( 2 ) − 5 ( 1 )

0

0 0

= ⇒ 0 x + 0 y = 0 ∴  y =  t

and, 

1  x +  (−4 / 5 + 3 / 5  j ) y = 0 ∴  x +  (−4 / 5 + 3 / 5  j ) t = 0 ⇒  x =  ( 4 / 5 − 3 / 5  j ) t so that, 















4



 x

 ( 4 / 5 − 3 / 5  j ) t

 / 5 − 3 / 5  j

4 − 3  j

 v 1 =

=

=  t

=

 y

 t

1

5

after the arbitrary value of parameter  t  is set to  t = 5 as a convenient way to derive integer coordinates. 

 Case λ 2 = 6 + 3 j :











10 −  ( 6 + 3 j )

−5

 x

4 − 3 j

−5

 x

0

 (A −  λ 2  I )  v 2 =

=

=

5 2 −  ( 6 + 3 j )

 y

5 −4 − 3 j

 y

0

Again, 









4 − 3 j

−5 0

←  ( 1 ) · [4 + 3 j] = 25 −20 − 15 j  0 ←  ( 1 ) ÷ 25

5 −4 − 3 j  0

5

−4 − 3 j  0









= 1 −4 / 5 − 3 / 5  j  0

= 1 −4 / 5 − 3 / 5  j  0

5

−4 − 3 j  0

←  ( 2 ) − 5 ( 1 )

0

0 0

= ⇒ 0 x + 0 y = 0 ∴  y =  t

and, 

1  x +  (−4 / 5 − 3 / 5  j ) y = 0 ∴  x +  (−4 / 5 − 3 / 5  j ) t = 0 ⇒  x =  ( 4 / 5 + 3 / 5  j ) t
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so that, 















4



 x

 ( 4 / 5 + 3 / 5  j ) t

 / 5 + 3 / 5  j

4 + 3  j


 v 2 =

=

=  t

=

 y

 t

1

5

after the arbitrary value of parameter  t  is set to  t = 5 as a convenient way to derive integer coordinates. 

10.75. Given





2 −5

4

6

1.  Eigenvalues λ: the roots of characteristic polynomial are eigenvalues, as:

det  (A −  λ I ) = 0

∴ 



2 −  λ

−5 

det  (A −  λ I ) = 



4 6 −  λ  =  ( 2 −  λ)( 6 −  λ) − 4 ·  (−5 ) =  λ 2 − 8 λ + 32 = 0

∴  λ 1 = 4 − 4 j, λ 2 = 4 + 4 j (j 2 = −1 )

Therefore, two distinct eigenvalues of matrix  A  are  λ 1 = 4 − 4 j, λ 2 = 4 + 4 j . 

2.  Eigenvectors  v =  (x, y)  are calculated for each eigenvalue  λ 1 ,  2 so that (A −  λi I ) 

 vi = 0  (i = 1 ,  2 )

 Case λ 1 = 4 − 4 j :











2 −  ( 4 − 4 j )

−5

 x

−2 + 4 j

−5

 x

0

 (A −  λ 1  I ) 

 v 1 =

=

=

4 6 −  ( 4 − 4 j )

 y

4 2 + 4 j

 y

0

Complex matrices may be solved as same as matrices with real coefficients, as









−2 + 4 j

−5 0

←  ( 1 ) · [−2 − 4 j] = 20 10 + 20 j  0 ←  ( 1 ) ÷ 20

4 2 + 4 j  0

4

2 + 4 j  0









= 1 1 / 2 +  j  0

= 1 1 / 2 +  j  0

4 2 + 4 j  0

←  ( 2 ) − 4 ( 1 )

0

0 0

= ⇒ 0 x + 0 y = 0 ∴  y =  t

and, 

1  x +  ( 1 / 2 +  j ) y = 0 ∴  x +  ( 1 / 2 +  j ) t = 0 ⇒  x =  (−1 / 2 −  j ) t
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so that, 

















 x

 (−1 / 2 −  j ) t

−1 / 2 −  j

−1 − 2  j

 v 1 =

=

=  t

=

 y

 t

1

2

after the arbitrary value of parameter  t  is set to  t = 2 as a convenient way to derive integer coordinates. 

 Case λ 2 = 4 + 4 j :











2 −  ( 4 + 4 j )

−5

 x

−2 − 4 j

−5

 x

0

 (A −  λ 2  I ) 

 v 2 =

=

=

4 6 −  ( 4 + 4 j )

 y

4 2 − 4 j

 y

0

Complex matrices may be solved as the same as the matrices with real coefficients, as









−2 − 4 j

−5 0

←  ( 1 ) · [−2 + 4 j] = 20 10 − 20 j  0 ←  ( 1 ) ÷ 20

4 2 − 4 j  0

4

2 − 4 j  0









= 1 1 / 2 −  j  0

= 1 1 / 2 −  j  0

4 2 − 4 j  0

←  ( 2 ) − 4 ( 1 )

0

0 0

= ⇒ 0 x + 0 y = 0 ∴  y =  t

and, 

1  x +  ( 1 / 2 −  j ) y = 0 ∴  x +  ( 1 / 2 −  j ) t = 0 ⇒  x =  (−1 / 2 +  j ) t so that, 

















 x

 (−1 / 2 +  j ) t

−1 / 2 +  j

−1 + 2  j

 v 2 =

=

=  t

=

 y

 t

1

2

after the arbitrary value of parameter  t  is set to  t = 2 as a convenient way to derive integer coordinates. 

10.76. Given





√



cos  π/ 6 − sin  π/ 6

3

=

 / 2 −1 / 2

√

sin  π/ 6

cos  π/ 6

1 / 2

3 / 2

1.  Eigenvalues λ: the roots of characteristic polynomial are eigenvalues, as :

det  (A −  λ I ) = 0

∴
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√



3 /



√

2 −  λ

−1 / 2

√

√

det  (A −  λ I ) = 

√



3 / 2 −  λ)(  3 / 2 −  λ) + 1 / 4 =  λ 2 −

3  λ + 1 = 0

1 /

=  (

2

3 / 2 −  λ

√

√

∴  λ

3

3

1 =

 / 2 − 1 / 2  j, λ 2 =

 / 2 + 1 / 2  j (j  2 = −1 )

√

√

Therefore, two distinct eigenvalues of matrix  A  are  λ

3

3

1 =

 / 2 − 1 / 2  j, λ 2 =

 / 2 + 1 / 2  j . 

2.  Eigenvectors  v =  (x, y)  are calculated for each eigenvalue  λ 1 ,  2 so that (A −  λi I ) 

 vi = 0  (i = 1 ,  2 )

√

 Case λ

3

1 =

 / 2 − 1 / 2  j :

√

√



3 / 2 −  (  3 / 2 − 1 / 2  j )

−1 / 2

 x

 (A −  λ

√

√

1  I ) 

 v 1 =

1 / 2 3 / 2 −  (  3 / 2 − 1 / 2  j )

 y







1

=  / 2  j −1 / 2

 x

= 0

1 / 2 1 / 2  j

 y

0

Complex matrices may be solved as the same as the matrices with real coefficients, as









1 / 2  j −1 / 2 0

←  ( 1 ) · [−2  j] = 1  j  0

1 / 2 1 / 2  j  0

1 / 2 1 / 2  j  0

←  ( 2 ) − 1 / 2 ( 1 )





= 1  j  0

0 0 0

⇒ 0 x + 0 y = 0 ∴  y =  t

1  x +  j y = 0 ∴  x +  j t = 0 ⇒  x = − j t

















 x

− j t

− j

− j

 v 1 =

=

=  t

=

 y

 t

1

1

after the value of parameter  t  is conveniently set to  t = 1. 

√

 Case λ

3

2 =

 / 2 + 1 / 2  j :

√

√



3 / 2 −  (  3 / 2 + 1 / 2  j )

−1 / 2

 x

 (A −  λ

√

√

2  I ) 

 v 2 =

1 / 2 3 / 2 −  (  3 / 2 + 1 / 2  j )

 y







= −1 / 2  j −1 / 2

 x

= 0

1 / 2 −1 / 2  j

 y

0

Complex matrices may be solved as the same as the matrices with real coefficients, as









−1 / 2  j −1 / 2 0

←  ( 1 ) · [2  j] = 1 − j  0

1 / 2 −1 / 2  j  0

1 / 2 −1 / 2  j  0

←  ( 2 ) − 1 / 2 ( 1 )

492

10

Linear Algebra





= 1 − j  0

0

0 0

⇒ 0 x + 0 y = 0 ∴  y =  t

and, 

1  x −  j y = 0 ∴  x −  j t = 0 ⇒  x =  j t

so that, 













 x

 j t

 j

 j

 v 2 =

=

=  t

=

 y

 t

1

1

after the value of parameter  t  is conveniently set to  t = 1. 

10.77. Given, 

⎡

⎤

⎡ ⎤

−2 −9 −1

2

 A = ⎣ 2 −6 −5 ⎦  ,  v = ⎣ 1 ⎦

−4 −3 4

1

The matrix vector product is

⎡

⎤ ⎡ ⎤

⎡

⎤

⎡

⎤

−2 −9 −1

2

 ((−2 ) · 2 +  (−9 ) · 1 +  (−1 ) · 1 )

−14

 A  v = ⎣ 2 −6 −5 ⎦ ⎣ 1 ⎦ = ⎣

 ( 2 · 2 +  (−6 ) · 1 +  (−5 ) · 1 ) ⎦ = ⎣ −7 ⎦

−4 −3 4

1

 ((−4 ) · 2 +  (−3 ) · 1 + 4 · 1 )

−7

⎡ ⎤

2

= −7 ⎣ 1 ⎦ =  λ  v

1

Therefore,  v  is eigenvector and  λ = −7 is eigenvalue of  A. 

10.78. Given, 

⎡

⎤

⎡

⎤

−2 −9 −1

4

 A = ⎣ 2 −6 −5 ⎦  ,  v = ⎣ −3 ⎦

−4 −3 4

7

The matrix vector products is

⎡

⎤ ⎡

⎤

⎡

⎤

⎡

⎤

−2 −9 −1

4

 ((−2 ) · 4 +  (−9 ) ·  (−3 ) +  (−1 ) · 7 ) 12

 A  v = ⎣ 2 −6 −5 ⎦ ⎣ −3 ⎦ = ⎣

 ( 2 · 4 +  (−6 ) ·  (−3 ) +  (−5 ) · 7 ) ⎦ = ⎣ −9 ⎦

−4 −3 4

7

 ((−4 ) · 4 +  (−3 ) ·  (−3 ) + 4 · 7 )

21

⎡

⎤

4

= 3 ⎣ −3 ⎦ =  λ  v

7
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Therefore,  v  is eigenvector and  λ = 3 is eigenvalue of  A. 

10.79. Given, 

⎡

⎤

3 0 0

⎣ 0 5 1 ⎦

0 4 2

1.  Eigenvalues λ: the roots of characteristic polynomial are eigenvalues, as:





3 −  λ

0

0 

det  (A −  λ I ) = 

0 5 −  λ

1  (take advantage of zeros to calculate  )





0

4 2 −  λ 





=

5 −  λ

1

· ·

· ·

 ( 3 −  λ) 











4 2 −  λ  − 0  · ·  + 0  · · 





=  ( 3 −  λ) ( 5 −  λ)( 2 −  λ) − 4

= − λ 3 + 10 λ 2 − 27 λ + 18 = 0

Three roots of this characteristic polynomial are:  λ 1 = 1 , λ 2 = 3 , λ 3 = 6. 

2.  Eigenvectors  v =  (x, y)  are calculated for each eigenvalue  λ 1 ,  2 ,  3 so that, (A −  λi I ) 

 vi = 0  (i = 1 ,  2 ,  3 )

 Case λ 1 = 1 :

⎡

⎤ ⎡ ⎤

⎡ ⎤

2 0 0

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

1  I ) 

 v 1 =

0 4 1

 y

= 0

0 4 1

 z

0

by writing the extended matrix form, 

⎡

⎤

⎡

⎤

2 0 0 0

←  ( 1 ) ÷ [2]

1 0 0 0

⎣ 0 4 1 0 ⎦ ←  ( 2 ) ÷ [4] = ⎣ 0 1 1 / ⎦

4 0

0 4 1 0

0 4 1 0

←  ( 3 ) − 4 ( 2 )

⎡

⎤

1 0 0 0

⎣ 0 1 1 / ⎦

4 0

0 0 0 0

⇒ 0 x + 0 y + 0 z = 0 ∴  z =  t

and, by substituting  z  in rows (1) and (2)

1  x + 0  y + 0  z = 0 ⇒  x = 0

0  x + 1  y + 1 / 4  z = 0 ⇒  y = −1 / 4  t
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so that, 

⎡ ⎤

⎡

⎤

⎡

⎤

⎡

⎤

 x

0

0

0

 v

⎣ ⎦

⎣

⎦

⎣

⎦

⎣

⎦

1 =

 y

= −1 / 4  t =  t

−1 / 4 = −1

 z

 t

1

4

after the arbitrary value of parameter  t  is set to  t = 4 as a convenient way to derive integer coordinates. 

 Case λ 2 = 3 :

⎡

⎤ ⎡ ⎤

⎡ ⎤

0 0

0

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

2  I ) 

 v 2 =

0 2

1

 y

= 0

0 4 −1

 z

0

by writing the extended matrix form, 

⎡

⎤

0 0

0 0

⇒ 0 x + 0 y + 0 z = 0 ∴  x =  t

⎣ 0 2 1 0 ⎦ ←  ( 2 ) ÷ [2]

0 4 −1 0

←  ( 3 ) ÷ [4]

⎡

⎤

0 0

0 0

 x =  t

⎣ 0 1 1 / ⎦

2 0

0 1 −1 / 4 0

that is to say  x =  t, then from rows (2) and (3) it follows that

0  x + 1  y + 1 / 2  z = 0 ⇒  y = 1 / 2  z

0  x + 1  y − 1 / 4  z = 0 ⇒  y = −1 / 4  z

which is possible only if  z = 0 followed by  y = 0. Consequently

⎡ ⎤

⎡ ⎤

⎡ ⎤

⎡ ⎤

 x

 t

1

1

 v

⎣ ⎦

⎣ ⎦

⎣ ⎦

⎣ ⎦

2 =

 y

= 0 =  t

0

= 0

 z

0

0

0

after the value of parameter  t  is conveniently set to  t = 1. 

 Case λ 3 = 6 :

⎡

⎤ ⎡ ⎤

⎡ ⎤

−3 0 0

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

3  I ) 

 v 3 =

0 −1

1

 y

= 0

0

4 −4

 z

0

by writing the extended matrix form, 
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⎡

⎤

⎡

⎤

−3 0 0 0

←  ( 1 ) ÷ [−3]

1 0

0 0

⎣ 0 −1 1 0⎦ ←  ( 2 ) ÷ [−1] = ⎣ 0 1 −1 0⎦

=

0

4 −4 0

0 4 −4 0

←  ( 3 ) − 4 ( 2 )

⎡

⎤

1 0

0 0

⎣ 0 1 −1 0⎦

0 0

0 0

⇒ 0 x + 0 y + 0 z = 0 ∴  z =  t

that is to say  z =  t, then from rows (1) and (2) it follows that

1  x + 0  y + 0  z = 0 ⇒  x = 0

0  x + 1  y − 1  z = 0 ⇒  y =  z =  t

in other words, as long as  y =  z  any arbitrary value (except infinity) of  t  is valid. 

Consequently, 

⎡ ⎤

⎡ ⎤

⎡ ⎤

⎡ ⎤

 x

0

0

0

 v

⎣ ⎦

⎣ ⎦

⎣ ⎦

⎣ ⎦

3 =

 y

=  t =  t

1

= 1

 z

 t

1

1

after the value of parameter  t  is conveniently set to  t = 1. 

3.  Verification:

⎡

⎤ ⎡

⎤

⎡

⎤

⎡

⎤

⎡

⎤

3 0 0

0

3 · 0 + 0 ·  (−1 ) + 0 · 4

0

0

⎣ 0 5 1 ⎦ ⎣ −1⎦ = ⎣0 · 0 + 5 ·  (−1 ) + 1 · 4⎦ = ⎣−1⎦ = 1 ⎣−1⎦ =  λ 1  v 1 

0 4 2

4

0 · 0 + 4 ·  (−1 ) + 2 · 4

4

4

⎡

⎤ ⎡ ⎤

⎡

⎤

⎡ ⎤

⎡ ⎤

3 0 0

1

3 · 1 + 0 · 0 + 0 · 0

3

1

⎣ 0 5 1 ⎦ ⎣ 0 ⎦ = ⎣0 · 1 + 5 · 0 + 1 · 0⎦ = ⎣0⎦ = 3 ⎣0⎦ =  λ 2  v 2 

0 4 2

0

0 · 1 + 4 · 0 + 2 · 0

0

0

⎡

⎤ ⎡ ⎤

⎡

⎤

⎡ ⎤

⎡ ⎤

3 0 0

0

3 · 0 + 0 · 1 + 0 · 1

0

0

⎣ 0 5 1 ⎦ ⎣ 1 ⎦ = ⎣0 · 0 + 5 · 1 + 1 · 1⎦ = ⎣6⎦ = 6 ⎣1⎦ =  λ 3  v 3 

0 4 2

1

0 · 0 + 4 · 1 + 2 · 1

6

1

10.80. Given, 

⎡

⎤

2 0 0

⎣ 0 4 5 ⎦

0 4 3

1.  Eigenvalues λ: the roots of characteristic polynomial are eigenvalues, as:





2 −  λ

0

0 

det  (A −  λ I ) = 

0 4 −  λ

5  (take advantage of zeros to calculate  )





0

4 3 −  λ 
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=

4 −  λ

5

· ·

· ·

 ( 2 −  λ) 











4 3 −  λ  − 0  · ·  + 0  · · 





=  ( 2 −  λ) ( 4 −  λ)( 3 −  λ) − 20

= − λ 3 + 9 λ 2 − 6 λ − 16 = 0

Three roots (see chapters on algebra) of this characteristic polynomial are:

 λ 1 = −1 , λ 2 = 2 , λ 3 = 8. 

2.  Eigenvectors  v =  (x, y)  are calculated for each eigenvalue  λ 1 ,  2 ,  3 so that, (A −  λi I ) 

 vi = 0  (i = 1 ,  2 ,  3 )

 Case λ 1 = −1 :

⎡

⎤ ⎡ ⎤

⎡ ⎤

3 0 0

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

1  I ) 

 v 1 =

0 5 5

 y

= 0

0 4 4

 z

0

by writing the extended matrix form, 

⎡

⎤

⎡

⎤

3 0 0 0

←  ( 1 ) ÷ [3]

1 0 0 0

⎣ 0 5 5 0 ⎦ ←  ( 2 ) ÷ [5] = ⎣ 0 1 1 0⎦

0 4 4 0

0 4 4 0

←  ( 3 ) − 4 ( 2 )

⎡

⎤

1 0 0 0

⇒  x = 0

⎣ 0 1 1 0 ⎦

0 0 0 0

⇒ 0 x + 0 y + 0 z = 0 ∴  z =  t

and, by substituting  z =  t  in row (2)

0  x + 1  y + 1  z = 0 ⇒  y = − t

so that, 

⎡ ⎤

⎡

⎤

⎡

⎤

⎡

⎤

 x

0

0

0

 v

⎣ ⎦

⎣

⎦

⎣

⎦

⎣

⎦

1 =

 y

= − t =  t

−1 = −1

 z

 t

1

1

after the arbitrary value of parameter  t  is set to  t = 1 as a convenient way to derive integer coordinates. 

 Case λ 2 = 2 :

⎡

⎤ ⎡ ⎤

⎡ ⎤

0 0 0

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

2  I ) 

 v 2 =

0 2 5

 y

= 0

0 4 1

 z

0
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by writing the extended matrix form, 

⎡

⎤

⎡

⎤

0 0 0 0

⇒  x =  t

0 0 0 0

⎣ 0 2 5 0 ⎦ ←  ( 2 ) ÷ [2] = ⎣0 1 5 / ⎦

2 0

0 4 1 0

←  ( 3 ) ÷ [4]

0 1 1 / 4 0

which is to say that  x =  t  and from rows (2) and (3)

0  x + 1  y + 5 / 2  z = 0 ⇒  y = −5 / 2  z

0  x + 1  y + 1 / 4  z = 0 ⇒  y = −1 / 4  z

which is possible only if  z = 0 , then it follows that  y = 0 . That being the case, 

⎡ ⎤

⎡ ⎤

⎡ ⎤

⎡ ⎤

 x

 t

1

1

 v

⎣ ⎦

⎣ ⎦

⎣ ⎦

⎣ ⎦

2 =

 y

= 0 =  t

0

= 0

 z

0

0

0

after the arbitrary value of parameter  t  is set to  t = 1 as a convenient way to derive integer coordinates. 

 Case λ 3 = 8 :

⎡

⎤ ⎡ ⎤

⎡ ⎤

−6 0 0

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

3  I ) 

 v 3 =

0 −4

5

 y

= 0

0

4 −5

 z

0

by writing the extended matrix form, 

⎡

⎤

⎡

⎤

−6 0 0 0

←  ( 1 ) ÷ [−6]

1 0

0 0

⎣ 0 −4 5 0⎦ ←  ( 2 ) ÷ [−4] = ⎣ 0 1 −5 / ⎦

4 0

=

0

4 −5 0

0 4 −5 0

←  ( 3 ) − 4 ( 2 )

⎡

⎤

1 0

0 0

⇒  x = 0

⎣ 0 1 −5 / ⎦

4 0

0 0

0 0

⇒ 0 x + 0 y + 0 z = 0 ∴  z =  t

which is to say that  z =  t  and from row (2)

0  x + 1  y − 5 / 4  z = 0 ⇒  y = 5 / 4  t

That being the case, 

⎡ ⎤

⎡

⎤

⎡

⎤

⎡ ⎤

 x

0

0

0

 v

⎣ ⎦

⎣ 5

⎦

⎣ 5 ⎦

⎣ ⎦

3 =

 y

=

 / 4  t

=  t

 / 4

= 5

 z

 t

1

4
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after the arbitrary value of parameter  t  is set to  t = 4 as a convenient way to derive integer coordinates. 

3.  Verification:

⎡

⎤ ⎡

⎤

⎡

⎤

⎡

⎤

⎡

⎤

2 0 0

0

2 · 0 + 0 ·  (−1 ) + 0 · 1

0

0

⎣ 0 4 5 ⎦ ⎣ −1⎦ = ⎣0 · 0 + 4 ·  (−1 ) + 5 · 1⎦ = ⎣ 1⎦ = −1 ⎣−1⎦ =  λ 1  v 1 

0 4 3

1

0 · 0 + 4 ·  (−1 ) + 3 · 1

−1

1

⎡

⎤ ⎡ ⎤

⎡

⎤

⎡ ⎤

⎡ ⎤

2 0 0

1

2 · 1 + 0 · 0 + 0 · 0

2

1

⎣ 0 4 5 ⎦ ⎣ 0 ⎦ = ⎣0 · 1 + 4 · 0 + 5 · 0⎦ = ⎣0⎦ = 2 ⎣0⎦ =  λ 2  v 2 

0 4 3

0

0 · 1 + 4 · 0 + 3 · 0

0

0

⎡

⎤ ⎡ ⎤

⎡

⎤

⎡ ⎤

⎡ ⎤

2 0 0

0

2 · 0 + 0 · 5 + 0 · 4

0

0

⎣ 0 4 5 ⎦ ⎣ 5 ⎦ = ⎣0 · 0 + 4 · 5 + 5 · 4⎦ = ⎣40⎦ = 8 ⎣5⎦ =  λ 3  v 3 

0 4 3

4

0 · 0 + 4 · 5 + 3 · 4

32

4

10.81. Given, 

⎡

⎤

4

6 10

⎣ 3 10 13 ⎦

−2 −6 −8

1.  Eigenvalues λ: the roots of characteristic polynomial are eigenvalues, as:





4 −  λ

6

10 

det  (A −  λ I ) = 

3 10 −  λ

13 





−2

−6 −8 −  λ 











=

10 −  λ

13

3

13

3 10 −  λ

 ( 4 −  λ) 











−6 −8 −  λ  − 6  −2 −8 −  λ  + 10  −2

−6 





=  ( 4 −  λ) ( 10 −  λ)(−8 −  λ) −  (−6 ) × 13





− 6 3 (−8 −  λ) −  (−2 ) × 13





+ 10 3 ×  (−6 ) −  (−2 )( 10 −  λ)

=  (− λ 3 + 6 λ 2 − 6 λ − 8 ) +  (−12 + 18 λ) +  ( 20 − 20 λ)

= − λ 3 + 6 λ 2 − 8 λ = 0

Roots of this characteristic polynomial may be found as, 

− λ 3 + 6 λ 2 − 8 λ = 0

− λ(λ 2 − 6 λ + 8 ) = 0

− λ(λ 2 − 4 λ − 2 λ + 8 ) = 0
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− λ λ(λ − 4 ) − 2 (λ − 4 ) = 0

− λ(λ − 2 )(λ − 4 ) = 0

∴

 λ 1 = 0 , λ 2 = 2 , λ 3 = 4

2.  Eigenvectors  v =  (x, y)  are calculated for each eigenvalue  λ 1 ,  2 ,  3 so that, (A −  λi I ) 

 vi = 0  (i = 1 ,  2 ,  3 )

 Case λ 1 = 0 :

⎡

⎤ ⎡ ⎤

⎡ ⎤

4

6 10

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

1  I ) 

 v 1 =  A  v 1 =

3 10 13

 y

= 0

−2 −6 −8

 z

0

by writing the extended matrix form, 

⎡

⎤

⎡

⎤

4

6 10 0

←  ( 1 ) ÷ [4]

1 3 / 2 5 / 2 0

⎣ 3 10 13 0 ⎦

= ⎣ 3 10 13 0 ⎦ ←  ( 2 ) − 3 ×  ( 1 )

−2 −6 −8 0

−2 −6 −8 0

←  ( 3 ) ÷ [−2]

⎡

⎤

⎡

⎤

1 3 / 2 5 / 2 0

1 3 / 2 5 / 2 0

= ⎣ 0 11 /

⎦

⎣

⎦

2 11 / 2 0

←  ( 2 ) × 2 / 11 = 0 1 1 0

0 3 / 2 3 / 2 0

←  ( 3 ) × 2 / 3

0 1 1 0

←  ( 3 ) −  ( 2 )

⎡

⎤

1 3 / 2 5 / 2 0

⇒ 1  x + 3 / 2  y + 3 / 2  z = 0

= ⎣ 0 1 1 0 ⎦ ⇒ 0  x + 1  y + 1  z = 0

0 0 0 0

⇒  z =  t

That is to say, from rows (2) and (1) it follows that

 y +  z = 0 ∴  y = − z ∴  y = − t

 x + 3  y + 5  z = 0 ∴  x − 3  t + 5  t = 0 ∴  x +  t = 0 ∴  x = − t 2

2

2

2

so that

⎡ ⎤

⎡

⎤

⎡

⎤

⎡

⎤

 x

− t

−1

−1



 v

⎣ ⎦

⎣

⎦

⎣

⎦

⎣

⎦

1 =

 y

= − t =  t −1 = −1

 z

 t

1

1

after the arbitrary value of parameter  t  is set to  t = 1 as a convenient way to derive integer coordinates. 
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 Case λ 2 = 2 :

⎡

⎤ ⎡ ⎤

⎡ ⎤

2

6

10

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

2  I ) 

 v 2 =

3

8

13

 y

= 0

−2 −6 −10

 z

0

by writing the extended matrix form, 

⎡

⎤

⎡

⎤

2

6

10 0

←  ( 1 ) ÷ [2]

1

3

5 0

⎣ 3 8 13 0 ⎦

= ⎣ 3 8 13 0 ⎦ ←  ( 2 ) − 3 ( 1 )

−2 −6 −10 0

−2 −6 −10 0

←  ( 3 ) + 2 ( 1 )

⎡

⎤

⎡

⎤

1

3

5 0

1 3 5 0

⇒ 1  x + 3  y + 5  z = 0

= ⎣ 0 −1 −2 0 ⎦ ←  ( 2 ) ÷ [−1] = ⎣ 0 1 2 0 ⎦ ⇒ 0  x + 1  y + 2  z = 0

0

0

0 0

0 0 0 0

⇒  z =  t

That is to say, from (2) and (1) row

 y + 2 z = 0 ∴  y = −2 z ∴  y = −2 t

 x + 3 y + 5 z = 0 ∴  x − 6 t + 5 t = 0 ∴  x −  t = 0 ∴  x =  t and, 

⎡ ⎤

⎡

⎤

⎡

⎤

⎡

⎤

 x

 t

1

1



 v

⎣ ⎦

⎣

⎦

⎣

⎦

⎣

⎦

2 =

 y

= −2 t =  t −2 = −2

 z

 t

1

1

after the arbitrary value of parameter  t  is set to  t = 1 as a convenient way to derive integer coordinates. 

 Case λ 3 = 4 :

⎡

⎤ ⎡ ⎤

⎡ ⎤

0

6

10

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

3  I ) 

 v 3 =

3

6

13

 y

= 0

−2 −6 −12

 z

0

by writing the extended matrix form, 

⎡

⎤

⎡

⎤

0

6

10 0

←  ( 1 ) ↔  ( 2 )

3

6

13 0

←  ( 1 ) ÷ [3]

⎣ 3 6 13 0 ⎦

= ⎣ 0 6 10 0 ⎦

−2 −6 −12 0

−2 −6 −12 0

←  ( 3 ) ÷ [−2]

⎡

⎤

⎡

⎤

1 2 13 / 3 0

1 2 13 / 3 0

= ⎣ 0 6 10 0 ⎦ ←  ( 2 ) ÷ [6] = ⎣ 0 1 5 / ⎦

3 0

1 3

6 0

←  ( 3 ) −  ( 1 )

0 1 5 / 3 0

←  ( 3 ) −  ( 2 )
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⎡

⎤

1 2 13 / 3 0

⇒ 1  x + 2  y + 13 / 3  z = 0

= ⎣ 0 1 5 / ⎦

3 0

⇒ 0  x + 1  y + 5 / 3  z = 0

0 0

0 0

⇒  z =  t

That is to say, from rows (2) and (1) it follows that

 y + 5  z = 0 ∴  y = − 5  z ∴  y = − 5  t

3

3

3

 x + 2 y + 13  z = 0 ∴  x − 10  t + 13  t = 0 ∴  x +  t = 0 ∴  x = − t 3

3

3

so that

⎡ ⎤

⎡

⎤

⎡

⎤

 x

− t

−3



 v

⎣ ⎦

⎣

⎦

⎣

⎦

3 =

 y

= −5 t/ 3 = −5

 z

 t

3

after the arbitrary value of parameter  t  is set to  t = 3 as a convenient way to derive integer coordinates. 

3.  Verification:

⎡

⎤ ⎡

⎤

⎡

⎤

⎡ ⎤

4

6 10

−1

4 ·  (−1 ) + 6 ·  (−1 ) + 10 · 1

0

 A 

 v

⎣

⎦ ⎣

⎦

⎣

⎦

⎣ ⎦

1 =

3 10 13

−1 =

3 ·  (−1 ) + 10 ·  (−1 ) + 13 · 1

= 0

−2 −6 −8

1

−2 ·  (−1 ) +  (−6 ) ·  (−1 ) +  (−8 ) · 1

0

⎡

⎤

−1

= 0 ⎣ −1 ⎦ =  λ 1 

 v 1 (i.e. zero times any vector, including  v 1) 

1

⎡

⎤ ⎡

⎤

⎡

⎤

⎡

⎤

4

6 10

1

4 · 1 + 6 ·  (−2 ) + 10 · 1

2

 A 

 v

⎣

⎦ ⎣

⎦

⎣

⎦

⎣

⎦

2 =

3 10 13

−2 =

3 · 1 + 10 ·  (−2 ) + 13 · 1

= −4

−2 −6 −8

1

−2 · 1 +  (−6 ) ·  (−2 ) +  (−8 ) · 1

2

⎡

⎤

1

= 2 ⎣ −2 ⎦ =  λ 2 

 v 2 

1

⎡

⎤ ⎡

⎤

⎡

⎤

⎡

⎤

4

6 10

−3

4 ·  (−3 ) + 6 ·  (−5 ) + 10 · 3

−12

 A 

 v

⎣

⎦ ⎣

⎦

⎣

⎦

⎣

⎦

3 =

3 10 13

−5 =

3 ·  (−3 ) + 10 ·  (−5 ) + 13 · 3

= −20

−2 −6 −8

3

−2 ·  (−3 ) +  (−6 ) ·  (−5 ) +  (−8 ) · 3

12

⎡

⎤

−3

= 4 ⎣ −5 ⎦ =  λ 3 

 v 3 

3
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10.82. Given, 

⎡

⎤

2 2 −2

⎣ 1 3 −1⎦

−1 1 1

1.  Eigenvalues λ: the roots of characteristic polynomial are eigenvalues, as:





2 −  λ

2

−2 

det  (A −  λ I ) = 

1 3 −  λ

−1 





−1

1 1 −  λ 









=

3 −  λ

−1

1

−1

1 3 −  λ

 ( 2 −  λ) 











1 1 −  λ  − 2  −1 1 −  λ  − 2  −1

1 





=  ( 2 −  λ) ( 3 −  λ)( 1 −  λ) −  (−1 )





− 2 1 ( 1 −  λ) − 1





− 2 1 −  (−1 )( 3 −  λ)

=  (− λ 3 + 6 λ 2 − 12 λ + 8 ) + 2 λ +  (−8 + 2 λ)

= − λ 3 + 6 λ 2 − 8 λ = 0

Roots of this characteristic polynomial may be found as (see A.10.81), 

 λ 1 = 0 , λ 2 = 2 , λ 3 = 4

2.  Eigenvectors  v =  (x, y)  are calculated for each eigenvalue  λ 1 ,  2 ,  3 so that, (A −  λi I ) 

 vi = 0  (i = 1 ,  2 ,  3 )

 Case λ 1 = 0 :

⎡

⎤ ⎡ ⎤

⎡ ⎤

2 2 −2

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

1  I ) 

 v 1 =  A  v 1 =

1 3 −1

 y

= 0

−1 1 1

 z

0

by writing the extended matrix form, 

⎡

⎤

⎡

⎤

2 2 −2 0

 ( 1 ) ↔  ( 2 )

1 3 −1 0

⎣ 1 3 −1 0⎦

= ⎣ 2 2 −2 0 ⎦ ←  ( 2 ) − 2 ( 1 )

−1 1 1 0

←  ( 3 ) +  ( 2 )

0 4

0 0

⎡

⎤

⎡

⎤

1

3 −1 0

1

3 −1 0

= ⎣ 0 −4 0 0 ⎦

= ⎣ 0 −4 0 0 ⎦

0

4

0 0

←  ( 3 ) +  ( 2 )

0

0

0 0
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⇒ 1  x + 3  y −  z = 0

⇒ 0  x − 4  y + 0  z = 0

⇒  z =  t

That is to say, from rows (2) and (1) it follows that

−4 y = 0 ∴  y = 0

 x + 3 ( 0 ) −  t = 0 ∴  x =  t

so that

⎡ ⎤

⎡ ⎤

⎡ ⎤

⎡ ⎤

 x

 t

1

1



 v

⎣ ⎦

⎣ ⎦

⎣ ⎦

⎣ ⎦

1 =

 y

= 0 =  t  0 = 0

 z

 t

1

1

after the arbitrary value of parameter  t  is set to  t = 1 as a convenient way to derive integer coordinates. 

 Case λ 2 = 2 :

⎡

⎤ ⎡ ⎤

⎡ ⎤

0 2 −2

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

2  I ) 

 v 2 =

1 1 −1

 y

= 0

−1 1 −1

 z

0

by writing the extended matrix form, 

⎡

⎤

⎡

⎤

0 2 −2 0

 ( 1 ) ↔  ( 2 )

1 1 −1 0

⎣ 1 1 −1 0⎦

= ⎣ 0 2 −2 0 ⎦

−1 1 −1 0

←  ( 3 ) +  ( 2 )

0 2 −2 0

←  ( 3 ) −  ( 2 )

⎡

⎤

1 1 −1 0

⇒ 1  x + 1  y − 1  z = 0

= ⎣ 0 2 −2 0 ⎦ ⇒ 0  x + 2  y − 2  z = 0

0 0

0 0

⇒  z =  t

That is to say, from (2) and (1) row

2 y − 2 z = 0 ∴  y =  t

 x +  y −  z = 0 ∴  x +  t −  t = 0 ∴  x = 0

and, 

⎡ ⎤

⎡ ⎤

⎡ ⎤

⎡ ⎤

 x

0

0

0



 v

⎣ ⎦

⎣ ⎦

⎣ ⎦

⎣ ⎦

2 =

 y

=  t =  t  1 = 1

 z

 t

1

1
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after the arbitrary value of parameter  t  is set to  t = 1 as a convenient way to derive integer coordinates. 

 Case λ 3 = 4 :

⎡

⎤ ⎡ ⎤

⎡ ⎤

−2 2 −2

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

3  I ) 

 v 3 =

1 −1 −1

 y

= 0

−1 1 −3

 z

0

by writing the extended matrix form, 

⎡

⎤

⎡

⎤

−2 2 −2 0

←  ( 1 ) ↔  ( 2 )

1 −1 −1 0

⎣ 1 −1 −1 0⎦

= ⎣ −2 2 −2 0 ⎦ ←  ( 2 ) ÷ [−2]

−1 1 −3 0

←  ( 3 ) +  ( 2 )

0

0 −2 0

←  ( 3 ) ÷ [−2]

⎡

⎤

1 −1 −1 0

⇒ 1  x − 1  y − 1  z = 0

= ⎣ 1 −1 1 0 ⎦ ⇒ 1  x − 1  y + 1  z = 0

0

0

1 0

⇒  z = 0

That is to say, from rows (1) and (2) it follows that

 x −  y − 0 = 0 ∴  x =  y =  t

 x −  y + 0 = 0 ∴  x =  y =  t

so that

⎡ ⎤

⎡ ⎤

⎡ ⎤

⎡ ⎤

 x

 t

1

1



 v

⎣ ⎦

⎣ ⎦

⎣ ⎦

⎣ ⎦

3 =

 y

=  t =  t  1 = 1

 z

0

0

0

after the arbitrary value of parameter  t  is set to  t = 1 as a convenient way to derive integer coordinates. 

3.  Verification:

⎡

⎤ ⎡ ⎤

⎡

⎤

⎡ ⎤

⎡ ⎤

2 2 −2

1

2 · 1 + 2 · 0 +  (−2 ) · 1

0

1

 A 

 v

⎣

⎦ ⎣ ⎦

⎣

⎦

⎣ ⎦

⎣ ⎦

1 =

1 3 −1

0

= 1 · 1 + 3 · 0 +  (−1 ) · 1 = 0 = 0 0 =  λ 1 

 v 1

−1 1 1

1

 (−1 ) · 1 + 1 · 0 + 1 · 1

0

1

(i.e., zero times any vector, including  v 1) 

⎡

⎤ ⎡ ⎤

⎡

⎤

⎡ ⎤

⎡ ⎤

2 2 −2

0

2 · 0 + 2 · 1 +  (−2 ) · 1

0

0

 A 

 v

⎣

⎦ ⎣ ⎦

⎣

⎦

⎣ ⎦

⎣ ⎦

2 =

1 3 −1

1

= 1 · 0 + 3 · 1 +  (−1 ) · 1 = 2 = 2 1 =  λ 2 

 v 2 

−1 1 1

1

 (−1 ) · 0 + 1 · 1 + 1 · 1

2

1

⎡

⎤ ⎡ ⎤

⎡

⎤

⎡ ⎤

⎡ ⎤

2 2 −2

1

2 · 1 + 2 · 1 +  (−2 ) · 0

4

1

 A 

 v

⎣

⎦ ⎣ ⎦

⎣

⎦

⎣ ⎦

⎣ ⎦

3 =

1 3 −1

1

= 1 · 1 + 3 · 1 +  (−1 ) · 0 = 4 = 4 1 =  λ 3 

 v 3 

−1 1 1

0

 (−1 ) · 1 + 1 · 1 + 1 · 0

0

0
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10.83. Given





1 0

2 1

it follows that, 

1.  Eigenvalues λ: the roots of characteristic polynomial are eigenvalues, as:

det  (A −  λ I ) = 0

∴ 



1 −  λ

0 

det  (A −  λ I ) = 



2 1 −  λ  =  ( 1 −  λ)( 1 −  λ) − 2 · 0 = 0

∴  λ 1 = 1 , λ 2 = 1

That is to say, there is  duplicity  of eigenvalues  λ 1 =  λ 2 = 1. 

2.  Eigenvectors  v =  (x, y)  may be calculated as

 (A −  λi I ) 

 vi = 0  (i = 1 ,  2 )

 Case λ 1 =  λ 2 = 1 :









0 0 0

 ( 1 ) ↔  ( 2 )

1 0 0

⇒  x + 0 ·  y = 0 ∴  x = 0

 (A −  λ 1  I )  v 1 = 2 0 0 ←  ( 2 ) ÷ [2] = 0 0 0 ⇒  y =  t that is to say, all vectors are of the form











 x

0

0

0

 v 1 =

=

=  t

=

 y

 t

1

1

after the arbitrary value of parameter  t  is set to  t = 1 as a convenient way to derive integer coordinates. Since all eigenvectors are generated by a single eigenvector (by changing  t), it is said that eigenspace has dimension “1.” 

3.  Verification:











1 0

0

1 · 0 + 0 · 1

0

 A 

 v 1 =

=

=

=  λ

2 1

1

2 · 0 + 1 · 1

1

1 

 v 1 

10.84. Given





2 0

0 2

it follows that, 
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1.  Eigenvalues λ: the roots of characteristic polynomial are eigenvalues, as:

det  (A −  λ I ) = 0

∴ 



2 −  λ

0 

det  (A −  λ I ) = 



0 2 −  λ  =  ( 2 −  λ)( 2 −  λ) − 0 · 0 = 0

∴  λ 1 = 2 , λ 2 = 2

That is to say, there is  duplicity  of eigenvalues  λ 1 =  λ 2 = 2. 

2.  Eigenvectors  v =  (x, y)  may be calculated as

 (A −  λi I ) 

 vi = 0  (i = 1 ,  2 )

 Case λ 1 =  λ 2 = 2 :





0 0 0

⇒ 0 x + 0 y = 0

 (A −  λ 1  I )  v 1 = 0 0 0 ⇒ 0 x + 0 y = 0

Consequently, both coordinates  (x, y)  may be arbitrary, that is to say, two possible eigenvectors are as follows:









 x

 t

1

1

 x =  t ⇒  y = 0 ∴  v 1 =

=

=  t

=

 y

0

0

0









 x

0

0

0

 y =  t ⇒  x = 0 ∴  v 2 =

=

=  t

=

 y

 t

1

1

after the arbitrary value of parameter  t  is set to  t = 1. Since there are two distinct eigenvectors, it is said that eigenspace has dimension “2.” 

3.  Verification:













2 0

1

2 · 1 + 0 · 0

2

1

 A 

 v 1 =

=

=

= 2

=  λ

0 2

0

0 · 1 + 2 · 0

0

0

1 

 v 1 













2 0

0

2 · 0 + 0 · 1

0

0

 A 

 v 2 =

=

=

= 2

=  λ

0 2

1

0 · 0 + 2 · 1

2

1

2 

 v 2 

10.85. Given





2 3

0 2

it follows that, 

1.  Eigenvalues λ: the roots of characteristic polynomial are eigenvalues, as:
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det  (A −  λ I ) = 0

∴ 



2 −  λ

3 

det  (A −  λ I ) = 



0 2 −  λ  =  ( 2 −  λ)( 2 −  λ) − 0 · 3 = 0

∴  λ 1 = 2 , λ 2 = 2

That is to say, there is  duplicity  of eigenvalues  λ 1 =  λ 2 = 2. 

2.  Eigenvectors  v =  (x, y)  may be calculated as

 (A −  λi I ) 

 vi = 0  (i = 1 ,  2 )

 Case λ 1 =  λ 2 = 2 :









0 3 0

 ( 1 ) ↔  ( 2 )

0 0 0

⇒  x =  t

 (A −  λ 1  I )  v 1 =

=

0 0 0

0 3 0

⇒ 3 y = 0 ∴  y = 0

that is to say, all vectors are of the form











 x

 t

1

1

 v 1 =

=

=  t

=

 y

0

0

0

after the arbitrary value of parameter  t  is set to  t = 1 as a convenient way to derive integer coordinates. Since all eigenvectors are generated by a single eigenvector (by changing  t), it is said that eigenspace has dimension “1.” 

3.  Verification:













2 3

1

2 · 1 + 3 · 0

2

1

 A 

 v 1 =

=

=

= 2

=  λ

0 2

0

0 · 1 + 2 · 0

0

0

1 

 v 1 

10.86. Given, 

⎡

⎤

3 2 4

⎣ 2 0 2 ⎦

4 2 3

1.  Eigenvalues λ: the roots of characteristic polynomial are eigenvalues, as:

det  (A −  λ I ) =





3 −  λ  2

4 









= 

− λ

2

2

2

2 − λ



2 − λ

2  =  ( 3 −  λ) 















2 3 −  λ − 2 4 3 −  λ + 4 4 2

4

2 3 −  λ 













=  ( 3 −  λ) − λ( 3 −  λ) − 4 − 2 2 ( 3 −  λ) − 8 + 4 4 + 4 λ
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=  ( 3 −  λ) λ 2 − 3 λ − 4 − 2 −2 λ − 2 + 16 + 16 λ

= − λ 3 + 6 λ 2 + 15 λ + 8 = − (λ − 8 )(x + 1 ) 2 = 0

Three roots of this characteristic polynomial are:  λ 1 = 8 , λ 2 = −1 , λ 3 = −1, i.e., there is second-order multiplicity of  λ 2 ,  3 eigenvalue. 

2.  Eigenvectors  v =  (x, y)  are calculated for each eigenvalue  λ 1 ,  2 ,  3 so that, (A −  λi I ) 

 vi = 0  (i = 1 ,  2 ,  3 )

 Case λ 1 = 8 :

⎡

⎤ ⎡ ⎤

⎡ ⎤

−5 2 4

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

1  I ) 

 v 1 =

2 −8

2

 y

= 0

4

2 −5

 z

0

It can be verified that determinant | A − 8 I | = 0 indicating that at least two equations are correlated, i.e., not independent. Consequently Cramer’s rule cannot deliver a complete

solution of this system of equations. By writing the extended matrix form and doing row

transformations, 

⎡

⎤

⎡

⎤

−5 2 4 0

←  ( 1 ) ÷ [−5]

1 −2 / 5 −4 / 5 0

⎣ 2 −8 2 0⎦ ←  ( 2 ) ÷ [2] = ⎣ 1 −4

1 0 ⎦ ←  ( 2 ) −  ( 1 )

4

2 −5 0

4

2 −5 0

←  ( 3 ) − 4 ( 2 )

⎡

⎤

⎡

⎤

1 −2 / 5 −4 / 5 0

1 −2 / 5 −4 / 5 0

= ⎣ 0 −18 /

⎦

⎣

⎦

5

9 / 5 0

← −5 / 9  ( 2 ) = 0

2 −1 0

0

18 −9 0

←  ( 3 ) ÷ [9]

0

2 −1 0

←  ( 3 ) −  ( 2 )

⎡

⎤

1 −2 / 5 −4 / 5 0

= ⎣ 0

2 −1 0 ⎦

0

0

0 0

⇒  z =  t

and, by substituting  z =  t  in rows (1) and (2)

 x − 2  y − 4  z = 0 ⇒  x = 2  y + 4  z

5

5

5

5

0  x + 2 y −  z = 0 ⇒  z = 2 y

∴  x = 2  y + 4 2 y = 2 y ⇒  x =  z =  t

5

5

so that,  x =  t,  y =  t/ 2 and  z =  t, 

⎡ ⎤

⎡

⎤

⎡

⎤

⎡ ⎤

 x

 t

1

2

 v

⎣ ⎦

⎣

⎦

⎣

⎦

⎣ ⎦

1 =

 y

=  t/ 2 =  t

1 / 2

= 1

 z

 t

1

2
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after the arbitrary value of parameter  t  is set to  t = 2 as a convenient way to derive integer coordinates. 

 Case λ 2 ,  3 = −1 : (double eigenvalue)

⎡

⎤ ⎡ ⎤

⎡ ⎤





4 2 4

 x

0

 A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

2 ,  3  I

 v 2 ,  3 = 2 1 2

 y

= 0

4 2 4

 z

0

by writing the extended matrix form, 

⎡

⎤

⎡

⎤

⎡

⎤

4 2 4 0

←  ( 1 ) ÷ [2]

2 1 2 0

2 1 2 0

⎣ 2 1 2 0 ⎦

= ⎣ 2 1 2 0 ⎦ ←  ( 2 ) −  ( 1 ) = ⎣ 0 0 0 0 ⎦

4 2 4 0

←  ( 3 ) ÷ [2]

2 1 2 0

←  ( 3 ) −  ( 1 )

0 0 0 0

which is to say that, aside from the trivial solution  x =  y =  z = 0, any other linear combinations that satisfy row (1) are valid solutions, for example, 

− y − 2 z

2 x +  y + 2 z = 0 ⇒  x =

2

∴

⎡

⎤

⎡

⎤

⎡

⎤

 t

1

1

if  y = 0 :  x = − z ∴  x =  t, z = − t ⇒  v

⎣

⎦

⎣

⎦

⎣

⎦

2 =

0

=  t

0

=

0

− t

−1

−1

⎡

⎤

⎡

⎤

⎡

⎤

 t

1

1

if  z = 0 :  x = −  y ∴  x =  t, y = −2  t ⇒  v

⎣

⎦

⎣

⎦

⎣

⎦

3 =

−2  t =  t −2 = −2

2

0

0

0

after the arbitrary value of parameter  t  is set to  t = 1 as a convenient way to derive integer coordinates. 

3.  Verification:

⎡

⎤ ⎡ ⎤

⎡

⎤

⎡ ⎤

⎡ ⎤

3 2 4

2

3 · 2 + 2 · 1 + 4 · 2

16

2

⎣ 2 0 2 ⎦ ⎣ 1 ⎦ = ⎣2 · 2 + 0 · 1 + 2 · 2⎦ = ⎣ 8⎦ = 8 ⎣1⎦ =  λ 1  v 1 

4 2 3

2

4 · 2 + 2 · 1 + 3 · 2

16

2

⎡

⎤ ⎡

⎤

⎡

⎤

⎡

⎤

⎡

⎤

3 2 4

1

3 · 1 + 2 · 0 + 4 ·  (−1 )

−1

1

⎣ 2 0 2 ⎦ ⎣ 0 ⎦ = ⎣2 · 1 + 0 · 0 + 2 ·  (−1 )⎦ = ⎣ 0⎦ = −1 ⎣ 0⎦ =  λ 2  v 2 

4 2 3

−1

4 · 1 + 2 · 0 + 3 ·  (−1 )

1

−1

⎡

⎤ ⎡

⎤

⎡

⎤

⎡

⎤

⎡

⎤

3 2 4

1

3 · 1 + 2 ·  (−2 ) + 4 · 0

−1

1

⎣ 2 0 2 ⎦ ⎣ −2⎦ = ⎣2 · 1 + 0 ·  (−2 ) + 2 · 0⎦ = ⎣ 2⎦ = −1 ⎣−2⎦ =  λ 3  v 3 

4 2 3

0

4 · 1 + 2 ·  (−2 ) + 3 · 0

0

0
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10.87. Given, 

⎡

⎤

1 0 2

⎣ −1 1 3⎦

0 0 2

1.  Eigenvalues λ: the roots of characteristic polynomial are eigenvalues, as:

det  (A −  λ I ) =





1 −  λ

0

2 







= 

1 −  λ

3

· ·

−1 1 −  λ

−1 1 −  λ

3  =  ( 1 −  λ) 

















0 2 −  λ  − 0  · ·  + 2  0

0 

0

0 2 −  λ 





=  ( 1 −  λ)( 1 −  λ)( 2 −  λ) − 0 + 2 −1 · 0 − 0 ( 1 −  λ) =  ( 1 −  λ)( 1 −  λ)( 2 −  λ) Three roots of this characteristic polynomial are:  λ 1 = 2 , λ 2 = 1 , λ 3 = 1, i.e. there is second order multiplicity of  λ 2 ,  3 eigenvalue. 

2.  Eigenvectors  v =  (x, y)  are calculated for each eigenvalue  λ 1 ,  2 ,  3 so that, (A −  λi I ) 

 vi = 0  (i = 1 ,  2 ,  3 )

 Case λ 1 = 2 :

⎡

⎤ ⎡ ⎤

⎡ ⎤

−1 0 2

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

1  I ) 

 v 1 =

−1 −1 3

 y

= 0

0

0 0

 z

0

By writing the extended matrix form and doing row transformations, 

⎡

⎤

⎡

⎤

−1 0 2 0

←  ( 1 ) ÷ [−1]

1

0 −2 0

⇒ 1  x + 0  y − 2  z = 0

⎣ −1 −1 3 0⎦ ←  ( 2 ) −  ( 1 ) = ⎣0 −1 1 0⎦ ⇒ 0  x − 1  y + 1  z = 0

0

0 0 0

⇒  z =  t

0

0

0 0

⇒  z =  t

and, by substituting  z =  t  in rows (1) and (2)

 x − 2 t = 0 ⇒  x = 2 t

− y +  t = 0 ⇒  y =  t

so that, 

⎡ ⎤

⎡ ⎤

⎡ ⎤

⎡ ⎤

 x

2 t

2

2

 v

⎣ ⎦

⎣ ⎦

⎣ ⎦

⎣ ⎦

1 =

 y

=

 t

=  t

1

= 1

 z

 t

1

1
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after the arbitrary value of parameter  t  is set to  t = 1 as a convenient way to derive integer coordinates. 

 Case λ 2 = 1 : (double eigenvalue)

⎡

⎤ ⎡ ⎤

⎡ ⎤

0 0 2

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

2  I ) 

 v 2 ,  3 =

−1 0 3

 y

= 0

0 0 1

 z

0

by writing the extended matrix form, 

⎡

⎤

⎡

⎤

0 0 2 0

 ( 1 ) ↔  ( 2 )

1 0 −3 0

←  ( 1 ) + 3 ( 3 )

⎣ −1 0 3 0⎦ ←  ( 2 ) ÷ [−1] = ⎣0 0 2 0⎦ ←  ( 2 ) − 2 ( 3 ) 0 0 1 0

0 0

1 0

⎡

⎤

1 0 0 0

⇒ 1  x + 0  y + 0  z = 0 ∴  x = 0

= ⎣ 0 0 0 0 ⎦ ⇒  y =  t

0 0 1 0

⇒ 0  x + 0  y + 1  z = 0 ∴  z = 0

⎡ ⎤

⎡ ⎤

⎡ ⎤

⎡ ⎤

 x

0

0

0

 v

⎣ ⎦

⎣ ⎦

⎣ ⎦

⎣ ⎦

2 =

 y

=  t =  t

1

= 1

 z

0

0

0

after the value of parameter  t  is conveniently set to  t = 1. Since the third eigenvector may be generated only by changing the value of  t, it is said that this eigenspace has dimension

“2.” 

3.  Verification:

⎡

⎤ ⎡ ⎤

⎡

⎤

⎡ ⎤

⎡ ⎤

1 0 2

2

1 · 2 + 0 · 1 + 2 · 1

4

2

⎣ −1 1 3⎦ ⎣1⎦ = ⎣ (−1 ) · 2 + 1 · 1 + 3 · 1⎦ = ⎣2⎦ = 2 ⎣1⎦ =  λ 1  v 1 

0 0 2

1

0 · 2 + 0 · 1 + 2 · 1

2

1

⎡

⎤ ⎡ ⎤

⎡

⎤

⎡ ⎤

⎡ ⎤

1 0 2

0

1 · 0 + 0 · 1 + 2 · 0

0

0

⎣ −1 1 3⎦ ⎣1⎦ = ⎣ (−1 ) · 0 + 1 · 1 + 3 · 0⎦ = ⎣1⎦ = 1 ⎣1⎦ =  λ 2  v 2 

0 0 2

0

0 · 0 + 0 · 1 + 2 · 0

0

0

10.88. Given, 

⎡

⎤

1 −2 −1

⎣ 1 7 1 ⎦

−2 −4 3
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1.  Eigenvalues λ: the roots of characteristic polynomial are eigenvalues, as:





1 −  λ −2 −1 

det  (A −  λ I ) = 

1 7 −  λ

1 





−2 −4 3 −  λ 













=

7 −  λ

1

1

1

1 7 −  λ

 ( 1 −  λ) 











−4 3 −  λ  −  (−2 )  −2 3 −  λ  +  (−1 )  −2 −4 

cont. 











=  ( 1 −  λ) ( 7 −  λ)( 3 −  λ) −  (−4 ) + 2  ( 3 −  λ) −  (−2 ) − −4 −  (−2 )( 7 −  λ)

= − λ 3 + 11 λ 2 − 35 λ + 25 = − (λ − 5 )(λ − 5 )(λ − 1 ) Three roots of this characteristic polynomial are:  λ 1 = 1 , λ 2 = 5 , λ 3 = 5, i.e., there is second-order multiplicity of  λ 2 ,  3 eigenvalue. 

2.  Eigenvectors  v =  (x, y)  are calculated for each eigenvalue  λ 1 ,  2 ,  3 so that, (A −  λi I ) 

 vi = 0  (i = 1 ,  2 ,  3 )

 Case λ 1 = 1 :

⎡

⎤ ⎡ ⎤

⎡ ⎤

0 −2 −1

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

1  I ) 

 v 1 =

1

6

1

 y

= 0

−2 −4 2

 z

0

By writing the extended matrix form and doing row transformations, 

⎡

⎤

⎡

⎤

0 −2 −1 0

 ( 1 ) ↔  ( 2 )

1

6

1 0

⎣ 1 6 1 0 ⎦

= ⎣ 0 −2 −1 0 ⎦

−2 −4 2 0

←  ( 3 ) + 2 ( 2 )

0

8

4 0

←  ( 3 ) + 4 ( 2 )

⎡

⎤

1

6

1 0

⇒ 1  x + 6  y + 1  z = 0

= ⎣ 0 −2 −1 0 ⎦ ⇒ 0  x − 2  y − 1  z = 0

0

0

0 0

⇒  z =  t

and, by substituting  z =  t  in row (2) then in row (1)

−2 y −  t = 0 ∴  y = − ( 1 / 2 ) t

 x + 6  (−1 / 2 ) t +  t = 0 ∴  x = 2 t

so that, 
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⎡ ⎤

⎡

⎤

⎡

⎤

⎡

⎤

 x

2 t

2

4

 v

⎣ ⎦

⎣

⎦

⎣

⎦

⎣

⎦

1 =

 y

= − ( 1 / 2 ) t =  t

− ( 1 / 2 ) = −1

 z

 t

1

2

after the arbitrary value of parameter  t  is set to  t = 2 as a convenient way to derive integer coordinates. 

 Case λ 2 = 5 : (double eigenvalue)

⎡

⎤ ⎡ ⎤

⎡ ⎤

−4 −2 −1

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

2  I ) 

 v 2 ,  3 =

1

2

1

 y

= 0

−2 −4 −2

 z

0

by writing the extended matrix form, 

⎡

⎤

⎡

⎤

−4 −2 −1 0

 ( 1 ) ↔  ( 2 )

1

2

1 0

⎣ 1 2 1 0 ⎦

= ⎣ −4 −2 −1 0 ⎦ ←  ( 2 ) + 4 ( 1 )

−2 −4 −2 0

←  ( 2 ) + 2 ( 2 )

0

0

0 0

⇒  z =  t

⎡

⎤

⎡

⎤

1 2 1 0

1 2 1 0

⇒ 1  x + 2  y + 1  z = 0

= ⎣ 0 6 3 0 ⎦ ←  ( 2 ) ÷ [3] = ⎣ 0 2 1 0 ⎦ ⇒ 0  x + 2  y + 1  z = 0

0 0 0 0

⇒  z =  t

0 0 0 0

⇒  z =  t

and, by substituting  z =  t  in row (2) then in row (1)

2 y +  t = 0 ∴  y = − ( 1 / 2 ) t

 x + 2  (−1 / 2 ) t +  t = 0 ∴  x = 0

so that, 

⎡ ⎤

⎡

⎤

⎡

⎤

⎡

⎤

 x

0

0

0

 v

⎣ ⎦

⎣

⎦

⎣

⎦

⎣

⎦

2 =

 y

=  (−1 / 2 ) t =  t

−1 / 2 = −1

 z

 t

1

2

after the arbitrary value of parameter  t  is set to  t = 2 as a convenient way to derive integer coordinates. Since the third eigenvector may be generated only by changing the value of  t, it is said that this eigenspace has dimension “2.” 

3.  Verification:

⎡

⎤ ⎡

⎤

⎡

⎤

⎡

⎤

⎡

⎤

1 −2 −1

4

1 · 4 +  (−2 ) ·  (−1 ) +  (−1 ) · 2

4

4

⎣ 1 7 1 ⎦ ⎣ −1⎦ = ⎣

1 · 4 + 7 ·  (−1 ) + 1 · 2 ⎦ = ⎣ −1 ⎦ = 1 ⎣ −1 ⎦ =  λ 1  v 1

−2 −4 3

2

 (−2 ) · 4 +  (−4 ) ·  (−1 ) + 3 · 2

2

2

⎡

⎤ ⎡

⎤

⎡

⎤

⎡

⎤

⎡

⎤

1 −2 −1

0

1 · 0 +  (−2 ) ·  (−1 ) +  (−1 ) · 2

0

0

⎣ 1 7 1 ⎦ ⎣ −1⎦ = ⎣

1 · 0 + 7 ·  (−1 ) + 1 · 2 ⎦ = ⎣ −5 ⎦ = 5 ⎣ −1 ⎦ =  λ 2  v 2

−2 −4 3

2

 (−2 ) · 0 +  (−4 ) ·  (−1 ) + 3 · 2

10

2
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10.8

Matrix Inversion

10.89. Given





1 2

 A = 3 4

1.  det(A):



1 2 

  = 



3 4  = 1 · 4 − 2 · 3 = −2 = 0 ∴  A−1 exists

2. One possible method of matrix inversion is by Gaussian elimination, i.e., by writing the

extended matrix form and doing row transformations. Starting with the “  A |  I ” extended form the objective is to derive “I |  A−1” form, as









1 2 1 0

⇒

1

2

1 0

3 4 0 1

←  ( 2 ) − 3 ( 1 )

0 −2 −3 1

←  ( 2 ) ÷ [−2] ⇒

" #$ % " #$ %

 A

 I









1 2 1

0

←  ( 1 ) − 2 ( 2 ) ⇒ 1 0 −2 1

0 1 3 / 2 −1 / 2

0 1

3 / 2 −1 / 2

" #$ % " #$ %

 I

 A−1

Therefore, 





−2

1

 A−1 =

3 / 2 −1 / 2

3.  Verification:















1 2

−2

1

1 ·  (−2 ) + 2 ·  ( 3 / 2 )  1 · 1 + 2 ·  (−1 / 2 ) 1 0

 AA−1 =

=

=

3 4

3 / 2 −1 / 2

3 ·  (−2 ) + 4 ·  ( 3 / 2 )  3 · 1 + 4 ·  (−1 / 2 ) 0 1

10.90. Given





4 −2

 A = 2 3

1.  det(A):





4 −2 

  = 



2

3  = 4 · 3 − 2 ·  (−2 ) = 16 = 0 ∴  A−1 exists

2. One possible method of matrix inversion is by Gaussian elimination, i.e., by writing the

extended matrix form and doing row transformations. Starting with the “  A |  I ” extended form the objective is to derive “I |  A−1” form, as
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4 −2 1 0

←  ( 1 ) ÷ [4] ⇒ 1 −1 / 2 1 / 4 0

⇒

2

3 0 1

2

3 0 1

←  ( 2 ) − 2 ( 1 )

" #$ % " #$ %

 A

 I









1 −1 / 2 1 / 4 0

1 −1 / 2 1 / 4 0

←  ( 1 ) + 1 / 2 ( 2 ) ⇒

0

4 −1 / 2 1

←  ( 2 ) ÷ [4] ⇒

0

1 −1 / 8 1 / 4





1 0

3 / 16 1 / 8

0 1 −1 / 8 1 / 4

" #$ % " #$ %

 I

 A−1

Therefore, 





3 / 16 1 / 8

 A−1 = −1 / 8 1 / 4

3.  Verification:















4 −2

3 / 16 1 / 8

4 · 3 / 16 +  (−2 ) ·  (−1 / 8 )  4 · 1 / 8 +  (−2 ) · 1 / 4

1 0

 AA−1 =

=

=

2

3

−1 / 8 1 / 4

2 · 3 / 16 + 3 ·  (−1 / 8 )

2 · 1 / 8 + 3 · 1 / 4

0 1

or, by linear combination



















4 −2

3 / 16

=

4

−2

 ( 12 / 16 + 1 / 4 )

1

3 / 16

+ −1 / 8

=

=

2

3

−1 / 8

2

3

 ( 6 / 16 − 3 / 8 )

0



















4 −2

1 / 8

=

4

−2

 ( 4 / 8 − 1 / 2 )

0

1 / 8

+ 1 / 4

=

=

2

3

1 / 4

2

3

 ( 2 / 8 + 3 / 4 )

1

10.91. Given

⎡

⎤

1 2 3

 A = ⎣ 4 5 4 ⎦

3 2 1

1.  det(A):





1 2 3 

  =  4 5 4  = −3 − 2 (−8 ) + 3 (−7 ) = −8 = 0 ∴  A−1 exists 3 2 1 

2. One possible method of matrix inversion is by Gaussian elimination, i.e., by writing the

extended matrix form and doing row transformations. Starting with the “  A |  I ” extended form the objective is to derive “I |  A−1” form, as
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⎡

⎤

1 2 3 1 0 0

⎣ 4 5 4 0 1 0 ⎦ ←  ( 2 ) − 4 ( 1 ) ⇒

3 2 1 0 0 1

←  ( 3 ) − 3 ( 1 )

" #$ % " #$ %

 A

 I

⎡

⎤

1

2

3

1 0 0

⎣ 0 −3 −8 −4 1 0⎦ ←  ( 2 ) ÷ [−3] ⇒

0 −4 −8 −3 0 1

←  ( 2 ) ÷ [−4]

⎡

⎤

1 2 3 1

0

0

⎣ 0 1 8 /

⎦

3 4 / 3 −1 / 3

0

⇒

0 1 2 3 / 4

0 −1 / 4

←  ( 3 ) −  ( 2 )

⎡

⎤

1 2

3

1

0

0

⎣ 0 1 8 /

⎦

3

4 / 3 −1 / 3

0

⇒

0 0 −2 / 3 −7 / 12

1 / 3 −1 / 4

←  ( 3 )[−3 / 2]

⎡

⎤

1 2 3 1

0 0

⎣ 0 1 8 /

⎦

3 4 / 3 −1 / 3 0

←  ( 2 ) − 8 / 3 ( 3 ) ⇒

0 0 1 7 / 8 −1 / 2 3 / 8

⎡

⎤

1 2 3

1

0

0

←  ( 1 ) − 2 ( 2 )

⎣ 0 1 0 −1

1 −1 ⎦

⇒

0 0 1 7 / 8 −1 / 2 3 / 8

⎡

⎤

1 0 3

3 −2

2

←  ( 1 ) − 3 ( 3 )

⎣ 0 1 0 −1

1 −1 ⎦

⇒

0 0 1 7 / 8 −1 / 2 3 / 8

⎡

⎤

1 0 0

3 / 8 −1 / 2 7 / 8

⎣ 0 1 0 −1

1 −1 ⎦

0 0 1

7 / 8 −1 / 2 3 / 8

" #$ % " 

#$

%

 I

 A−1

Therefore, 

⎡

⎤

3 / 8 −1 / 2 7 / 8

 A−1 = ⎣ −1

1 −1 ⎦

7 / 8 −1 / 2 3 / 8

3.  Verification:

⎡

⎤ ⎡

⎤

⎡

⎤

1 2 3

3 / 8 −1 / 2 7 / 8

1 0 0

 AA−1 = ⎣ 4 5 4 ⎦ ⎣ −1

1 −1 ⎦ = · · · = ⎣ 0 1 0 ⎦

3 2 1

7 / 8 −1 / 2 3 / 8

0 0 1
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10.9

Powers of Diagonalizable Matrices

Reminder: In general, the calculation of matrix powers is a very time-consuming process. 

However, one special type of matrices may be raised to powers by the process of “diagonalization.” By definition, 

1. Square matrix  A  is diagonalizable if it is similar to a diagonal matrix. This is conditioned by the existence of two extra matrices: an invertible matrix  P  and a diagonal matrix  D. If they exist, then it is possible to write these products

 D =  P −1 AP  or, equivalently

 A =  P D P −1

where:

(a)  P  is a matrix that has its inverse, i.e.,  P P −1 =  I  exists. 

(b)  D  is a diagonal matrix

2. In this form, for example, 

 A 5 =  AAAAA =  (P D 

 P −1 )(P D 

 P −1 )(P D 

 P −1 )(P D 

 P −1 )(P D P −1 )

=  P DDDDDP −1 =  P D 5 P −1

That is to say, the problem of calculating  A 5 is replaced with the problem of calculating  D 5 and calculation of  P −1 matrix, which may be easier to calculate. 

10.92. Given



2

2 0

0 2

note that this matrix is already in diagonal form; therefore, 



2









2 0

= 22 0 = 4 0

0 2

0 22

0 4

10.93. Given, 



5

2 0

0 5

note that this matrix is already diagonal; therefore, 



5









2 0

= 25 0 = 32

0

0 5

0 55

0 3125
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10.94. Given





2 0

 A = −1 3

note that this matrix is not diagonal; however, it may be possible to diagonalize it. 

1. Eigenvalues of  A  are roots of characteristic polynomial as













2 0

1 0

2 −  λ

0

det (A −  λI ) = −

−  λ

=

=  ( 2 −  λ)( 3 −  λ) = 0

1 3

0 1

−1 3 −  λ

Therefore, two eigenvalues are  λ 1 = 2 and  λ 2 = 3. 

2. Eigenvectors are, 





0 0 0

⇒  x =  t

 λ 1 = 2 :  A −  λ 1 I = 0 ∴

−1 1 0 ⇒ − x +  y = 0 ∴  x =  y =  t







∴ 

 x

 t

1

 v 1 =

=

=

 y

 t

1

after the arbitrary  t = 1 as convenient value, and





−1 0 0 ⇒ − x + 0 y = 0 ∴  x = 0

 λ 2 = 3 :  A −  λ 2 I = 0 ∴

−1 0 0 ⇒ − x + 0 y = 0 ∴  y =  t







∴ 

 x

0

0

 v 2 =

=

=

 y

 t

1

after the arbitrary  t = 1 as convenient value. Note that two eigenvectors are linearly independent; in other words, matrix  A  is diagonalizable. 

3. Diagonal matrix  D  consists of eigenvalues as









 λ

2 0

 D =

1

0

=

0  λ 2

0 3

4. Matrix  P  and its  P −1, by definition, are









1 0

 P = 

 v 1 

 v 2 = 1 1

where, det  P  is:



1 0 

det  P = 



1 1  = 1 = 0

Therefore, its inverse matrix exists and consequently  A  is diagonalizable. The inverse of  P

may be derived by transformation “P | I →  I | P −1” as
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1 0 1 0

= 1 0 1 0

∴

1 0

 P −1 =

1 1 0 1

←  ( 2 ) −  ( 1 )

0 1 −1 1

−1 1

5. Now, the fifth power of diagonalizable matrix  A  is

















1 0

25 0

1 0

1 0

32

0

1 0

 A 5 =  P D 5  P −1 =

=

1 1

0 35

−1 1

1 1

0 243

−1 1











= 32 0

1 0

=

32

0

32 243

−1 1

−211 243

which may be verified by repetitive matrix multiplications. Note that for higher-order ma-

trices the above method may be much more efficient than the “brute force” multiplications. 

10.95. Given

⎡

⎤

2 0 2

 A = ⎣ −1 2 1 ⎦

0 1 4

then, 

1. Eigenvalues of  A  are roots of characteristic polynomial as





2 −  λ

0

2 

| A −  λI| =  −1 2 −  λ

1 





0

1 4 −  λ 







=

2 −  λ

1

· ·

−1 2 −  λ

 ( 2 −  λ) 











1 4 −  λ  − 0  · ·  + 2  0

1 









=  ( 2 −  λ) ( 2 −  λ)( 4 −  λ) − 1 + 2 −1 ( 1 ) = − λ 3 + 8 λ 2 − 19 λ + 12

= − (λ − 1 )(λ − 3 )(λ − 4 ) = 0

Three distinct eigenvalues are  λ 1 = 1,  λ 2 = 3, and  λ 3 = 4; thus, matrix  A  is diagonalizable. 

2. Eigenvectors are therefore, 

 Case λ 1 = 1 :

⎡

⎤ ⎡ ⎤

⎡ ⎤

1 0 2

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

1  I ) 

 v 1 =

−1 1 1

 y

= 0

0 1 3

 z

0

by writing the extended matrix form, 

⎡

⎤

⎡

⎤

1 0 2 0

1 0 2 0

⎣ −1 1 1 0⎦ ←  ( 2 ) +  ( 1 ) = ⎣ 0 1 3 0⎦

0 1 3 0

0 1 3 0

←  ( 3 ) −  ( 2 )
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⎡

⎤

1 0 2 0

⎣ 0 1 3 0 ⎦

0 0 0 0

⇒  z =  t

and, by substituting  z  in rows (1) and (2)

1  x + 0  y + 2  z = 0 ⇒  x = −2 t

0  x + 1  y + 3  z = 0 ⇒  y = −3  t

so that, 

⎡ ⎤

⎡

⎤

⎡

⎤

⎡

⎤

 x

−2 t

−2

−2

 v

⎣ ⎦

⎣

⎦

⎣

⎦

⎣

⎦

1 =

 y

= −3  t =  t

−3 = −3

 z

 t

1

1

after the arbitrary value of parameter  t  is set to  t = 1 as a convenient way to derive integer coordinates. 

 Case λ 2 = 3 :

⎡

⎤ ⎡ ⎤

⎡ ⎤

−1 0 2

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

1  I ) 

 v 1 =

−1 −1 1

 y

= 0

0

1 1

 z

0

by writing the extended matrix form, 

⎡

⎤

⎡

⎤

−1 0 2 0

←  ( 1 ) ÷ [−1]

1

0 −2 0

⎣ −1 −1 1 0⎦ ←  ( 2 ) −  ( 1 ) = ⎣ 0 −1 −1 0⎦

0

1 1 0

0

1

1 0

←  ( 3 ) +  ( 2 )

⎡

⎤

1

0 −2 0

⎣ 0 −1 −1 0⎦

0

0

0 0

⇒  z =  t

and, by substituting  z  in rows (1) and (2)

1  x + 0  y − 2  z = 0 ⇒  x = 2 t

0  x − 1  y − 1  z = 0 ⇒  y = − t

so that, 

⎡ ⎤

⎡

⎤

⎡

⎤

⎡

⎤

 x

2 t

2

2

 v

⎣ ⎦

⎣

⎦

⎣

⎦

⎣

⎦

2 =

 y

= − t =  t

−1 = −1

 z

 t

1

1
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after the arbitrary value of parameter  t  is set to  t = 1 as a convenient way to derive integer coordinates. 

 Case λ 3 = 4 :

⎡

⎤ ⎡ ⎤

⎡ ⎤

−2 0 2

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

1  I ) 

 v 1 =

−1 −2 1

 y

= 0

0

1 0

 z

0

by writing the extended matrix form, 

⎡

⎤

−2 0 2 0

⇒ − 2  x + 0  y + 2  z = 0 ∴  x =  z =  t

⎣ −1 −2 1 0⎦ ⇒ − 1  x + −2  y + 1  z = 0 ∴  y = 0  ( because  x =  z) 0

1 0 0

⇒ 0  x + 1  y + 0  z = 0 ∴  y = 0

so that, 

⎡ ⎤

⎡ ⎤

⎡ ⎤

⎡ ⎤

 x

 t

1

1

 v

⎣ ⎦

⎣ ⎦

⎣ ⎦

⎣ ⎦

1 =

 y

= 0 =  t

0

= 0

 z

 t

1

1

after the arbitrary value of parameter  t  is set to  t = 1 as a convenient way to derive integer coordinates. These three eigenvectors are easily verified by definition. 

3. Diagonal matrix  D  consists of eigenvalues as

⎡

⎤

⎡

⎤

 λ 1 0 0

1 0 0

 D = ⎣ 0  λ

⎦

⎣

⎦

2

0

= 0 3 0

0 0  λ 3

0 0 4

4. Matrix  P  and its  P −1, by definition, are

⎡

⎤





−2 2 1

 P =  v

⎣

⎦

1 

 v 2  v 3 =

−3 −1 0

1

1 1

where, det  P  is:

⎡

⎤

−2 2 1

det (P ) = ⎣ −3 −1 0 ⎦ = −2 (−1 ) − 2 (−3 ) +  (−3 + 1 ) = 6 = 0

1

1 1

Therefore, its inverse matrix exists and consequently  A  is diagonalizable. The inverse of  P

may be derived by transformation “P | I →  I | P −1” (note: if multiple transformations are listed at the same time, then “  () ↔  ()” is the last to do) as
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⎡

⎤

⎡

⎤

−2 2 1 1 0 0

←  ( 1 ) + 2 ( 3 )

1 1 1 0 0 1

⎣ −3 −1 0 0 1 0⎦ ←  ( 2 ) + 3 ( 3 ) = ⎣0 2 3 0 1 3⎦ ←  ( 2 ) ÷ [2]

1

1 1 0 0 1

 ( 3 ) ↔  ( 1 )

0 4 3 1 0 2

←  ( 3 ) − 2 ( 2 )

⎡

⎤

1 1

1 0

0

1

= ⎣ 0 1 3 /

⎦

2 0 1 / 2 3 / 2

0 0 −3 1 −2 −4

←  ( 3 ) ÷ [−3]

⎡

⎤

1 1 1

0 0 1

= ⎣ 0 1 3 /

⎦

2

0 1 / 2 3 / 2

←  ( 2 ) − 3 / 2 ( 3 )

0 0 1 −1 / 3 2 / 3 4 / 3

⎡

⎤

1 1 1

0

0

1

←  ( 1 ) −  ( 3 )

= ⎣ 0 1 0 1 /

⎦

2 −1 / 2 −1 / 2

0 0 1 −1 / 3

2 / 3

4 / 3

⎡

⎤

⎡

⎤

1 1 0

1 / 3 −2 / 3 −1 / 3

←  ( 1 ) −  ( 2 )

1 0 0 −1 / 6 −1 / 6

1 / 6

= ⎣ 0 1 0 1 /

⎦

⎣

⎦

2 −1 / 2 −1 / 2

= 0 1 0 1 / 2 −1 / 2 −1 / 2

0 0 1 −1 / 3

2 / 3

4 / 3

0 0 1 −1 / 3

2 / 3

4 / 3

⎡

⎤

−1 / 6 −1 / 6 1 / 6

∴  P −1 = ⎣ 1 /

⎦

2 −1 / 2 −1 / 2

−1 / 3 2 / 3 4 / 3

5. The third power of this diagonalizable matrix  A  is

⎡

⎤ ⎡

⎤

⎤

−

3 ⎡

2

2 1

1 0 0

−1 / 6 −1 / 6 1 / 6

 A 3 =  P D 3  P −1 = ⎣ −3 −1 0 ⎦ ⎣ 0 3 0 ⎦ ⎣ 1 /

⎦

2 −1 / 2 −1 / 2

1

1 1

0 0 4

−1 / 3 2 / 3 4 / 3

⎡

⎤ ⎡

⎤ ⎡

⎤

−2 2 1

1 0 0

−1 / 6 −1 / 6 1 / 6

= ⎣ −3 −1 0 ⎦ ⎣ 0 27 0 ⎦ ⎣ 1 /

⎦

2 −1 / 2 −1 / 2

1

1 1

0 0 64

−1 / 3 2 / 3 4 / 3

⎡

⎤ ⎡

⎤

−2 54 64

−1 / 6 −1 / 6 1 / 6

= ⎣ −3 −27 0 ⎦ ⎣ 1 /

⎦

2 −1 / 2 −1 / 2

1

27 64

−1 / 3 2 / 3 4 / 3

⎡

⎤

6 16 58

= ⎣ −13 14 13 ⎦

−8 29 72

which may be verified by repetitive matrix multiplications of  A. 

10.96. Given

⎡

⎤

2 0 0

 A = ⎣ 0 2 1 ⎦

0 1 2
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then, 

1. Eigenvalues of  A  are roots of characteristic polynomial as



⎤

2 −  λ

0

0





|

2 −  λ

1

 A −  λI | = 

0 2 −  λ

1 ⎦ =  ( 2 −  λ) 







1 2 −  λ 

0

1 2 −  λ





=  ( 2 −  λ) ( 2 −  λ)( 2 −  λ) − 1 = − (λ − 1 )(λ − 2 )(λ − 3 ) = 0

Therefore, the three distinct eigenvalues are  λ 1 = 1,  λ 2 = 2, and  λ 3 = 3. Consequently, matrix  A  is diagonalizable. 

2. Eigenvectors are therefore, 

 Case λ 1 = 1 :

⎡

⎤ ⎡ ⎤

⎡ ⎤

1 0 0

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

1  I ) 

 v 1 =

0 1 1

 y

= 0

0 1 1

 z

0

by writing the extended matrix form, 

⎡

⎤

⎡

⎤

1 0 0 0

1 0 0 0

⇒  x = 0

⎣ 0 1 1 0 ⎦

= ⎣ 0 1 1 0 ⎦ ⇒  y = − z = − t

0 1 1 0

←  ( 3 ) −  ( 2 )

0 0 0 0

⇒  z =  t

so that, 

⎡ ⎤

⎡

⎤

⎡

⎤

⎡

⎤

 x

0

0

0

 v

⎣ ⎦

⎣

⎦

⎣

⎦

⎣

⎦

1 =

 y

= − t =  t

−1 = −1

 z

 t

1

1

after the arbitrary value of parameter  t  is set to  t = 1 as a convenient way to derive integer coordinates. 

 Case λ 2 = 2 :

⎡

⎤ ⎡ ⎤

⎡ ⎤

0 0 0

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

1  I ) 

 v 1 =

0 0 1

 y

= 0

0 1 0

 z

0

by writing the extended matrix form, 

⎡

⎤

0 0 0 0

⇒  x =  t

⎣ 0 0 1 0 ⎦ ⇒  z = 0

0 1 0 0

⇒  y = 0
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so that, 

⎡ ⎤

⎡ ⎤

⎡ ⎤

⎡ ⎤

 x

 t

1

1

 v

⎣ ⎦

⎣ ⎦

⎣ ⎦

⎣ ⎦

2 =

 y

= 0 =  t

0

= 0

 z

0

0

0

after the value of parameter  t  is conveniently set to  t = 1. 

 Case λ 3 = 3 :

⎡

⎤ ⎡ ⎤

⎡ ⎤

−1 0 0

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

1  I ) 

 v 1 =

0 −1

1

 y

= 0

0

1 −1

 z

0

by writing the extended matrix form, 

⎡

⎤

−1 0 0 0

⇒  x = 0

⎣ 0 −1 1 0⎦ ⇒  y =  z =  t

0

1 −1 0

⇒  y =  z =  t

so that, 

⎡ ⎤

⎡ ⎤

⎡ ⎤

⎡ ⎤

 x

0

0

0

 v

⎣ ⎦

⎣ ⎦

⎣ ⎦

⎣ ⎦

1 =

 y

=  t =  t

1

= 1

 z

 t

1

1

after the arbitrary value of parameter  t  is set to  t = 1 as a convenient way to derive integer coordinates. These three eigenvectors are easily verified by definition. 

3. Diagonal matrix  D  consists of eigenvalues as

⎡

⎤

⎡

⎤

 λ 1 0 0

1 0 0

 D = ⎣ 0  λ

⎦

⎣

⎦

2

0

= 0 2 0

0 0  λ 3

0 0 3

4. Matrix  P  and its  P −1, by definition, are

⎡

⎤





0 1 0

 P =  v

⎣

⎦

1 

 v 2  v 3 =

−1 0 1

1 0 1

where, det  P  is:

⎡

⎤

0 1 0

det (P ) = ⎣ −1 0 1 ⎦ = − (−1 )( 1 ) − 1 = 2 = 0

1 0 1
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Therefore, its inverse matrix exists and consequently  A  is diagonalizable. The inverse of  P

may be derived by transformation “P | I →  I | P −1” as

⎡

⎤

⎡

⎤

0 1 0 1 0 0

1 0 1 0 0 1

⎣ −1 0 1 0 1 0⎦

= ⎣ 0 1 0 1 0 0 ⎦

1 0 1 0 0 1

 ( 3 ) →  ( 1 )

−1 0 1 0 1 0

←  ( 3 ) +  ( 1 )

⎡

⎤

⎡

⎤

1 0 1 0 0 1

1 0 1 0 0 1

←  ( 1 ) −  ( 3 )

= ⎣ 0 1 0 1 0 0 ⎦

= ⎣ 0 1 0 1 0 0 ⎦

0 0 2 0 1 1

←  ( 3 ) ÷ [2]

0 0 1 0 1 / 2 1 / 2

⎡

⎤

1 0 0 0 −1 / 2 1 / 2

= ⎣ 0 1 0 1

0 0 ⎦

0 0 1 0

1 / 2 1 / 2

Therefore, 

⎡

⎤

0 −1 / 2 1 / 2

 P −1 = ⎣ 1

0 0 ⎦

0

1 / 2 1 / 2

5. Thus, the fourth power of this diagonalizable matrix  A  is

⎡

⎤ ⎡

⎤4 ⎡

⎤

0 1 0

1 0 0

0 −1 / 2 1 / 2

 A 4 =  P D 4  P −1 = ⎣ −1 0 1 ⎦ ⎣ 0 2 0 ⎦ ⎣ 1

0 0 ⎦

1 0 1

0 0 3

0

1 / 2 1 / 2

⎡

⎤ ⎡

⎤ ⎡

⎤

0 1 0

1 0 0

0 −1 / 2 1 / 2

= ⎣ −1 0 1 ⎦ ⎣ 0 16 0 ⎦ ⎣ 1

0 0 ⎦

1 0 1

0 0 81

0

1 / 2 1 / 2

⎡

⎤ ⎡

⎤

0 16 0

0 −1 / 2 1 / 2

= ⎣ −1 0 81 ⎦ ⎣ 1

0 0 ⎦

1 0 81

0

1 / 2 1 / 2

⎡

⎤

16 0 0

= ⎣ 0 41 40 ⎦

0 40 41

which may be verified by repetitive matrix multiplications of  A. 

10.97. Given

⎡

⎤

1 0 0

 A = ⎣ 0 0 1 ⎦

0 1 0

then, 
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Method 1:

1. Eigenvalues of  A  are roots of characteristic polynomial as



⎤

1 −  λ  0 0





|

− λ  1

 A −  λI | = 

0 − λ

1 ⎦ =  ( 1 −  λ) 





1 − λ

0

1 − λ

=  ( 1 −  λ)(λ 2 − 1 ) = − (λ − 1 )(λ − 1 )(λ + 1 ) = 0

Therefore, the three eigenvalues are  λ 1 ,  2 = 1 (double value),  λ 3 = −1. It is necessary to verify if there are three independent eigenvectors or not. 

2. Eigenvectors are therefore, 

 Case λ 3 = −1 :

⎡

⎤ ⎡ ⎤

⎡ ⎤

2 0 0

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

1  I ) 

 v 1 =

0 1 1

 y

= 0

0 1 1

 z

0

by writing the extended matrix form, 

⎡

⎤

⎡

⎤

2 0 0 0

←  ( 1 ) ÷ [2]

1 0 0 0

⇒  x = 0

⎣ 0 1 1 0 ⎦

= ⎣ 0 1 1 0 ⎦ ⇒  y = − z = − t

0 1 1 0

0 1 1 0

⇒  y = − z = − t

so that, 

⎡ ⎤

⎡

⎤

⎡

⎤

⎡

⎤

 x

0

0

0

 v

⎣ ⎦

⎣

⎦

⎣

⎦

⎣

⎦

3 =

 y

= − t =  t

−1 = −1

 z

 t

1

1

after the arbitrary value of parameter  t  is set to  t = 1 as a convenient way to derive integer coordinates. 

 Case λ 1 ,  2 = 1 :

⎡

⎤ ⎡ ⎤

⎡ ⎤

0

0

0

 x

0

 (A −  λ

⎣

⎦ ⎣ ⎦

⎣ ⎦

1  I ) 

 v 1 =

0 −1

1

 y

= 0

0

1 −1

 z

0

by writing the extended matrix form, 

⎡

⎤

0

0

0 0

⇒  x =  t

⎣ 0 −1 1 0⎦ ⇒  y =  z

0

1 −1 0

⇒  y =  z

Thus, there are two possible nontrivial (i.e.,  x =  y =  z = 0) normalized solutions, 
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 t = 1 : ⇒  y =  z = 0

 t = 0 : ⇒  y =  z = 1

so that, 

⎡ ⎤

⎡ ⎤

1

0

 v

⎣ ⎦

⎣ ⎦

1 =

0

 ,  v 2 =

1

0

1

There are three distinct eigenvectors; therefore,  A  is diagonalizable (may be verified by multiplication). 

3. Diagonal matrix  D  consists of eigenvalues as

⎡

⎤

⎡

⎤

 λ 1 0 0

1 0

0

 D = ⎣ 0  λ

⎦

⎣

⎦

2

0

= 0 1 0

0 0  λ 3

0 0 −1

4. Matrix  P  and its  P −1, by definition, 

⎡

⎤





1 0

0

 P =  v

⎣

⎦

1 

 v 2  v 3 =

0 1 −1

0 1

1

where, det  P  is:

⎡

⎤

1 0

0

det (P ) = ⎣ 0 1 −1 ⎦ =  ( 1 )( 1 + 1 ) = 2 = 0

0 1

1

Therefore, its inverse matrix exists and consequently  A  is diagonalizable. The inverse of  P

may be derived by transformation “P | I →  I | P −1” as

⎡

⎤

⎡

⎤

1 0

0 1 0 0

1 0

0 1

0 0

⎣ 0 1 −1 0 1 0⎦

= ⎣ 0 1 −1 0 1 0 ⎦

0 1

1 0 0 1

 ( 3 ) −  ( 2 )

0 0

2 0 −1 1

←  ( 3 ) ÷ [2]

⎡

⎤

⎡

⎤

1 0

0 1

0 0

1 0 0 1

0 0

= ⎣ 0 1 −1 0

1 0 ⎦ ←  ( 2 ) +  ( 3 ) = ⎣ 0 1 0 0

1 /

⎦

2 1 / 2

0 0

1 0 −1 / 2 1 / 2

0 0 1 0 −1 / 2 1 / 2

Therefore, 

⎡

⎤

1

0 0

 P −1 = ⎣ 0

1 /

⎦

2 1 / 2

0 −1 / 2 1 / 2
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5. Thus, the tenth power of diagonalizable matrix  A  is

⎡

⎤ ⎡

⎤10 ⎡

⎤

1 0

0

1 0

0

1

0 0

 A 10 =  P D 10  P −1 = ⎣ 0 1 −1 ⎦ ⎣ 0 1

0 ⎦

⎣ 0 1 /

⎦

2 1 / 2

0 1

1

0 0 −1

0 −1 / 2 1 / 2

⎡

⎤ ⎡

⎤ ⎡

⎤

1 0

0

1 0 0

1

0 0

= ⎣ 0 1 −1 ⎦ ⎣ 0 1 0 ⎦ ⎣ 0 1 /

⎦

2 1 / 2

0 1

1

0 0 1

0 −1 / 2 1 / 2

⎡

⎤ ⎡

⎤

1 0

0

1

0 0

= ⎣ 0 1 −1 ⎦ ⎣ 0 1 /

⎦

2 1 / 2

0 1

1

0 −1 / 2 1 / 2

⎡

⎤

1 0 0

= ⎣ 0 1 0 ⎦

0 0 1

Method 2:: Instead of diagonalization, it can be noted that

⎡

⎤

⎡

⎤

10

⎡

⎤2 5

⎡

⎤5

⎡

⎤

1 0 0

1 0 0

1 0 0

1 0 0

⎣

⎢

⎥

0 0 1 ⎦

= ⎣⎣ 0 0 1 ⎦ ⎦ = ⎣ 0 1 0 ⎦ = ⎣ 0 1 0 ⎦

0 1 0

0 1 0

0 0 1

0 0 1

Method 3:: or, a simple exchange of the last two rows

⎡

⎤10

⎡

⎤10

⎡

⎤

1 0 0

1 0 0

1 0 0

⎣ 0 0 1 ⎦ ←  ( 2 ) ↔  ( 3 ) = ⎣0 1 0⎦ = ⎣0 1 0⎦

0 1 0

0 0 1

0 0 1

Algebraic Identities

A

1.  Logarithmic identities

log (ab) = log  a + log  b

log  an =  n  log  a

log  a = ln  a

 b

ln  b

2.  Exponential formulas

 a 0 def

= 1 , (a = 0 )

 a 1 def

=  a

 an  def

=  a ·  a ·  a · · ·  a







 n  times

 an+1 def

=  a ·  a ·  a · · ·  a





=  a ·  a ·  a · · ·  a





·  a =  an ·  a

 (n+1 )  times

 n  times

 an+ m  def

=  a ·  a ·  a · · ·  a





=  a ·  a ·  a · · ·  a





·  a ·  a ·  a · · ·  a





=  an am

 (n+ m)  times

 n  times

 m  times





 m

 n

 an

def

=  an ·  an · · ·  an





=  a ·  a · · ·  a

=  anm =  am

 m  times

 (n× m)  times

 a− n  def

= 1  , (a = 0 )

 an

 (a b)n =  an bn



 a n =  an =  an b− n, (b = 0 )

 b

 bn

√

 n

 a

def

 m =  m an, (a ≥ 0 )
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Trigonometric Identities

B

1.  Pythagoras’ identity

sin2  α + cos2  α = 1

2.  Rotation identities formulas

cos (− α) = cos  α

sin (α +  π) = − sin  α

sin (− α) = − sin  α





cos  α ±  π = ∓ sin  α

tan (− α) = − tan  α

2





cos (α +  π) = − cos  α

sin  α ±  π = ∓ cos  α

2

3.  The angle addition and subtraction formulas

sin (α ±  β) = sin  α  cos  β ± cos  α  sin  β

cos (α ±  β) = cos  α  cos  β ∓ sin  α  sin  β

tan (α ±  β) = tan  α ± tan  β

1 ∓ tan  α  tan  β

4.  Small–angle approximations: valid for angles  α ≤ 10◦ (or close to) ≈ 0 , then cos  α ≈ 1

sin  α ≈  α

tan  α ≈  α

5.  Power reduction formulas:

sin2  α = 1 − cos ( 2 α)

2

cos2  α = 1 + cos ( 2 α)

2
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6.  Double and triple–angle formulas

sin ( 2 α) = 2 sin  α  cos  α =  ( sin  α + cos  α) 2 − 1 =

2 tan  α

1 + tan2  α

cos ( 2 α) = cos2  α − sin2  α = 2 cos2  α − 1 = 1 − 2 sin2  α = 1 − tan2  α

1 + tan2  α

tan ( 2 α) =

2 tan  α

1 − tan2  α

 π



 π



sin ( 3 θ ) = 3 sin  θ − 4 sin3  θ = 4 sin  θ  sin

−  θ  sin

+  θ

3

3

 π



 π



cos ( 3 θ ) = 4 cos3  θ − 3 cos  θ = 4 cos  θ  cos

−  θ  cos

+  θ

3

3

 π



 π



tan ( 3 θ ) = 3 tan  θ − tan3  θ = tan  θ  tan

−  θ  tan

+  θ

1 − 3 tan2  θ

3

3

7.  Half–angle formulas: can be derived as







 α 

1 − cos 2  α

 α

1 − cos  α

sin2  α = 1 − cos ( 2 α) ∴ sin2

=

2 = 1 − cos  α ∴ sin = ±

2

2

2

2

2

2







 α 

1 + cos 2  α

 α

1 + cos  α

cos2  α = 1 + cos ( 2 α) ∴ cos2

=

2 = 1 + cos  α ∴ cos = ±

2

2

2

2

2

2

∴ 

 α

1 − cos  α

tan2

= ±

2

1 + cos  α
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