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Introduction

Computers have been used for several decades to solve the partial differential equations of Physics. To this end, numerous computational methods have been developed. In the field of electromagnetics, some, such as the asymptotic methods, solve an approximation of the Maxwell equations. Others solve the exact Maxwell equations numerically, or a set equivalent to the Maxwell equations. The latter methods are the most widely used. They can be grouped in two classes: firstly, the methods based on the solution of integral equations, secondly, the finite methods that solve the Maxwell equations in a direct manner by discretizing the physical space with elementary volumes. 

The integral equations have been extensively used since the 1960s. They permit realistic problems of practical interest to be solved with relatively modest computers. The most known integral method is the method of moments developed by Harrington [1] in frequency domain. The integral equations are equivalent to the Maxwell equations, the boundary conditions, and the initial conditions of the problem to be solved. They are solved on part of the physical space reduced to a surface or a region of space, depending on the problem. These numerical techniques do not require absorbing boundary conditions (ABCs) and will no longer be mentioned in the following. 

Several finite methods have been developed for solving the Maxwell equations in a discretized space. The most popular is the finite-difference time-domain method (FDTD) introduced by K. S. Yee [2]. The finite volume method (FVTD), the transmission line matrix (TLM) method, and the finite elements method (FEM), are finite methods as well. 

With all these numerical techniques the physical space is split into elementary cells, elements, or volumes, that must be smaller than both the shortest wavelength of interest and the smallest details of the geometry of the objects to be placed within the part of space of interest. Since the computers are not able, and will never be able, to handle an infinite number of elementary cells or elements, these methods only allow the Maxwell equations to be solved within a finite part of space. This is inconsistent with the requirements of most problems of electromagnetics that are unbounded problems. Consider for instance v
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two typical problems of numerical electromagnetics, first the calculation of the radiation pattern of an antenna, second the interaction of an incident wave with a scattering structure. In both cases the radiated field propagates toward the free space surrounding the structure of interest; in other words, the physical boundary conditions should be placed at infinity. If the Maxwell equations are solved within a finite volume bounded with arbitrarily conditions, the solution is erroneous. In order to overcome such contradictory requirements, that is a physical unbounded space to be replaced with a finite computational domain, the so-called absorbing boundary conditions have been introduced. 

The absorbing boundary conditions (ABCs) simulate or replace the infinite space that surrounds a finite computational domain. The replacement is never perfect. The solution computed within an ABC is only an estimate to the solution that would be computed within a really infinite domain. Moreover, the ABCs cannot replace sources of electromagnetic fields, they only absorb fields produced by sources located inside the surrounded domain. From this, sources cannot be placed outside the ABCs. As a corollary, the ABCs can be implemented only upon concave surfaces. 

Various ABCs have been developed over the years in the field of electromagnetics, from the extrapolation [3] or the radiating boundary [4] in the 1970s to the perfectly matched layer (PML) [5] and the complementary operators method (COM) [6] in the 1990s. This book is devoted to the presentation of the PML ABC, initially introduced in

[5] for use with the FDTD method. Since then, the PML ABC has been the subject of numerous works reported in the literature, with the objective of improving it, extending it to other numerical techniques of electromagnetics, and extending it to the solution of partial differential equations governing other domains of physics, such as acoustics, seismic, or hydrodynamics. The book is organized as follows:

– Chapter 1 discusses the requirements that must be fulfilled by the ABCs in view of replacing a theoretical infinite space with a finite computational domain. This chapter also reviews the ABCs that were used before the introduction of the PML ABC. 

– Chapter 2 introduces the PML concept in the two-dimensional case. 

– Chapter 3 extends the PML ABC to three dimensions and to general media. The PML

medium is interpreted in terms of stretched coordinates and dependent currents, and the complex frequency shifted stretching factor is introduced. 

– Chapter 4 derives the different forms of time domain equations, namely the split PML, the CPML, the NPML, the uniaxial PML, for a vacuum, lossy media, and more general anisotropic and dispersive media. 

– Chapter 5 is devoted to the FDTD method. The FDTD equations are provided for the various forms of PML media. Propagation and reflection of waves in the discretized FDTD-PML space are derived theoretically and discussed, with a special emphasize on the case of evanescent waves. 

– Chapter 6 presents the application of the PML ABC to two typical problems of numerical electromagnetics solved with the FDTD method, namely a wave-structure
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interaction problem and a waveguide problem. The origin of spurious reflections from the PML is discussed and remedies are given so as to optimize the PML performance. 

– Chapter 7 briefly reviews the extensions of the PML concept to other systems of coordinates, other numerical techniques, and other partial differential equations of Physics. 

– Chapter 8 reviews the key points to keep in mind as implementing the PML in the context of modern computers that are by far more powerful than the ones used when the PML was introduced. Furthermore, a simple semi-empirical method is described for designing the PML. It can be used in any application where an absorbing boundary condition is required. 
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The Requirements for the Simulation of Free

1

Space and a Review of Existing Absorbing

Boundary Conditions

Answering two questions is the principal objective of this introductory chapter. The first question is: why is the simulation of free space needed in numerical electromagnetics? 

The second one is: which requirements have to be satisfied by the methods that simulate free space? In addition, the methods developed for simulating free space before the introduction of the Perfectly Matched Layer concept are briefly reviewed. 

1.1

The Maxwell Equations and the Boundary Conditions

The electric and magnetic fields  E  and  H  in material media are governed by the Maxwell equations

−

→

−

→

 ∂

∇ ×

 H

 E = −  μ

(1.1a)

 ∂t

−

→

−

→

 ∂

∇ ×

 E

 H =  ε

+  J

(1.1b)

 ∂t

with two Gauss laws satisfied at any time:

−

→

∇ ·  μ H = 0

(1.2a)

−

→

∇ ·  ε E =  ρ

(1.2b)
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1 The Requirements for the Simulation of Free Space …

Permittivity ε and permeability μ are scalar quantities in isotropic media and tensor quantities in anisotropic media,  J  is a current density, and ρ is a charge density. 

The Maxwell equations (1.1) are a set of two first-order partial differential equations connecting the time derivatives of  E  and  H  fields to some partial space derivatives of their components. As known, this set of two equations can be merged into one second-order partial differential equation, namely the wave equation. As any partial differential equation or set of partial differential equations, the Maxwell equations are satisfied by an infinite number of solutions. In other words, there are an infinite number of physical problems that satisfy Eq. (1.1). But there is only one solution that satisfies the following two additional conditions:

1.  initial conditions, that is  E  and  H  fields impressed within a given volume at an initial time, 

2.  boundary conditions, that is  E  and  H  fields impressed at any time upon the whole surface enclosing the given volume. 

The evolution in time of the initial  E  and  H  fields is governed by Eq. (1.1) in conjunction with the boundary conditions. Initial  E  and  H  fields are physical fields that satisfy (1.2). 

It is trivial to prove, by multiplying (1.1) with nabla operator, that the evolution in time preserves the satisfaction of (1.2). Solving a problem of electromagnetics, especially by means of numerical methods, consists of using the Maxwell equations (1.1) to advance in time the electromagnetic fields within a given part of space bounded with impressed boundary conditions, from an initial time to a later final time. This is summarized in Fig. 1.1. In principle, the finite methods are well suited to the solution of such problems. 

The volume of interest is discretized with a finite number of elementary volumes, called cells or elements, depending on the method. Nevertheless, an important difficulty arises as using finite methods, because in most applications the domain is, at least in theory, of infinite extend. This is discussed in the following. 

1.2

The Actual Problems to Be Solved with Numerical

Methods

Ideally, a problem well suited to finite methods is like in Fig. 1.1, with a domain of resolution of the Maxwell equations as small as possible, limited to the region of interest, that is the region where the field has to be computed. This allows the number of elementary volumes and then the number of unknown fields to be as small as possible, or alternatively the discretization of space to be as fine as possible. Unfortunately, most problems encountered in numerical electromagnetics significantly differ from this ideal case. In most cases the domain of interest is not bounded with an impressed boundary condition. Instead, the region of interest is open, at least in part, to the surrounding free

1.2

The Actual Problems to Be Solved with Numerical Methods

3

Initial time

Later or final time

Finite volume

Initial conditions

Fields at  t >  t 0

at  t =  t 0

Maxwell 

Equations

 E( r,  t) 

 E( r,  t 0) 

 H( r,  t) 

 H( r,  t 0) 

Boundary conditions

Fig. 1.1 Evolution on time of the electromagnetic field governed by the Maxwell equations within a space domain bounded with boundary conditions

space. This means that the boundary condition is rejected to infinity, or equivalently that the computational domain is, in theory, infinite. 

A popular problem involving an infinite domain is the calculation of the radiation pattern of an antenna. Only fields in the vicinity of the antenna are needed—the far fields can be obtained by a near-field to far-field transformation—but the antenna radiates in the surrounding free space. If an arbitrary boundary condition is placed at finite distance from the antenna, the radiated field is reflected toward the inner domain, resulting in the addition of a spurious field to the solution in the vicinity of the antenna. In theory, this difficulty could be overcome with time domain methods, by working with a large domain in such a way that the fields reflected from the arbitrary boundary enter the region of interest after the end of the calculation. In actual applications, such a solution is not realistic, because the required computational domain would be so large that the problem could not be handled by the computers. From this, for the calculation of the field near an antenna with a finite method, the infinite space surrounding the antenna must be replaced with an appropriate boundary condition placed at a distance as short as possible from the antenna. This boundary condition must allow the fields computed in the domain to be a satisfactory approximation to the fields that would be obtained if the computational domain were infinite. Such a boundary condition is called an absorbing boundary condition (ABC) because it must remove the reflection of fields toward the inner domain, that is the ABC must absorb the radiated outgoing fields. 

Problems that are close to antenna problems are the calculations of the interaction of an incident wave with a structure of interest. Such problems include radar cross-section (RCS) calculations and electromagnetic compatibility (EMC) calculations. The field scattered by the structure is radiated toward the surrounding infinite space. An ABC placed as close as possible to the structure is needed so as to replace the infinite free space and allow the overall domain to be as small as possible. This permits the computational resources to be devoted to the use of a discretization of the structure as fine as possible. 
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Beside problems open in totality to free space, there exist some problems that are only partially open. Examples can be found in the field of waveguides where most of the computational domain is bounded with the walls of waveguides. The domain is in general only open in one direction, for instance at one end of the waveguide. Nevertheless, an ABC is also needed in such partially open problems so as to limit to a reasonable size the computational domain. 

1.3

The Requirements to Be Satisfied by the Absorbing

Boundary Conditions

Let us consider the field radiated from a small dipole antenna. In spherical coordinates ( r, θ, φ), the  E  and  H  fields are given by:













−

→

−  jIle− jωr/c

1

−

→

1

 ω 2 −

→

 E (r, θ, ϕ) =

2 cos  θ

+  jω u r + sin  θ

+  jω −

 u θ

4 πε 0 ω

 r 3

 cr 2

 r 3

 cr 2

 c 2 r
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 H (r, θ, ϕ) =  Ile− jωr/c  sin  θ

+  jω u ϕ

(1.3b)

4 π

 r 2
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where ω is the angular frequency,  l  is the dipole length, and  I  is the magnitude of the current upon the dipole. As known, far from the dipole ( r >> wavelength), the radiated field

(1.3) is like a homogeneous plane wave whose magnitude decreases as 1/ r. Conversely, at distances of the order of, or shorter than, the wavelength, the field is not homogeneous and its magnitude rapidly decreases with distance. 

The behavior of the field radiated by a dipole is general. Far from any radiating or scattering structure the field is like a plane wave in a vacuum, with a magnitude decreasing as 1/ r. This is known as the Sommerfield radiation condition. Conversely, in the vicinity of the structure the field is not homogeneous and rapidly decreases with distance and its form is complex. Especially, this is the case around scattering structures stricken by an incident pulse. Strongly evanescent fields are present at frequencies lower than the resonance of the structure, up to a distance of the order of its size. 

Other problems where evanescent fields are present near the domain of interest, are waveguide problems. Within a waveguide, both traveling and evanescent waves can exist. 

Below a cutoff angular frequency ω cutoff  the TE and TM modes are evanescent in the longitudinal direction of the waveguide. As an example, within a parallel-plate guide each mode is the superposition of two waves whose space dependence is of the form: e− ηj ω  cosh  χy

sinh  χx

 c

 eη ωc

(1.4a)

where  x  and  y  are the longitudinal and transverse directions, η = ± 1, and:
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 ω 2 cutoff

sinh  χ = ±

− 1 , 

(1.4b)

 ω 2

with, for mode  n  and a guide of transverse size  a:

 ωcutoff =  nπc

(1.4c)

 a

From this brief overview of the fields radiated or scattered in typical open problems of numerical electromagnetics, it appears that the requirements that an absorbing boundary condition must satisfy strongly depend on its location with respect to the source of the field:

• if the ABC is placed far from the source, the ABC only has to absorb homogeneous plane waves propagating with the speed of light  c. In general, the plane waves strike the boundary at oblique incidence. 

• if the ABC is placed in the vicinity of the source, the ABC must be able to absorb non homogeneous evanescent waves. One might think that this requirement is more severe than only absorbing homogeneous traveling waves. 

Equivalently, the above can be reformulated as follows:

• if the ABC is only able to absorb homogeneous plane waves, it must be placed out of the evanescent region surrounding the source (antenna, scattering structure, waveguide). 

• if the ABC is able to absorb evanescent fields, it can be placed close to the source, in the evanescent region. In that case, the overall computational domain is significantly smaller. 

1.4

The Existing ABCs Before the Introduction of the PML ABC

From a general point of view, there exist two categories of absorbing boundary conditions:

• the global ABCs based on the fact that the field at any point on the boundary of a given volume can be expressed as a retarded-time integral of the field upon a surface enclosing all the sources [1]. Such global ABCs are computationally expensive and are only marginally used in numerical electromagnetics [2]. 

• the local ABCs with which the field on the boundary is expressed as a function of the field in the vicinity of the considered point, that is in function of the field at the closest points of the mesh with finite methods. All the ABCs used in the past in computer
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codes are local ABCs, and the perfectly matched layer ABC also can be regarded as a local ABC. 

Various local ABCs have been proposed over the years, in parallel to the growing use of finite methods in numerical electromagnetics. Most conditions are designed for the absorption of traveling waves. Implicitly this means that they must be placed some distance from the sources, outside the evanescent region. 

The ABC described in [3] for the FDTD method, denoted as radiating boundary, assumes that the field around a scattering structure is like the field radiated from a short dipole antenna. The field outside the computational domain, needed for the advance of the field on the boundary of the domain, is obtained from formulas of the dipole, assuming that the dipole is located at the center of the domain. 

The ABC of Engquist–Majda [4], presented in 1977, is based on an approximation of the wave equation, valid for traveling waves propagating toward the boundary. The approximation is called a one-way wave equation. Different orders of approximation are possible, the first two ones read:

 ∂Eu

 ∂

− 1  Eu = 0

(1.5a)

 ∂x

 c ∂t

 ∂ 2 Eu

 ∂ 2

 ∂ 2

− 1  Eu +  c Eu = 0 , 

(1.5b)

 ∂x∂t

 c ∂t 2

2  ∂y 2

where  Eu  is any component of the  E  field. Equations (1.5a) and (1.5b) give the space derivatives of the field in the direction  x  normal to the boundary. With time-marching methods this permits the field on the boundary to be advanced in time. Notice that (1.5a)

is satisfied rigorously by a plane wave striking the boundary at normal incidence. The discretized counterpart of (1.5a) in the FDTD method is nothing but an extrapolation in space and time, assuming that the field on the boundary is a plane wave at normal incidence. Equation (1.5b) takes account of the transverse derivative of the field, resulting in a better approximation for waves at oblique incidence. The reflection coefficient of ABCs based on one-way wave equations, for a plane wave at incidence θ, is:





1 − cos  θ n

 r =

(1.6)

1 + cos  θ

where  n  is the order of the approximation,  n = 1 with (1.5a) and  n = 2 with (1.5b). 

The implementation of (1.5b) in the FDTD method was presented by Mur in 1981 [5]. 

This ABC, known as the Mur ABC, has been the most popular ABC in numerical electromagnetics for more than one decade. The Engquist–Majda ABC was generalized by Trefethen and Halpern [6], so as to permit the nulls of the reflection coefficient to be placed at oblique incidences. This allows a small reflection to be achieved up to wide angles of incidence. 
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Another ABC later introduced [7] is the Higdon ABC based on a linear operator that differs from (1.5a) with the introduction of a term cos α i. This allows the reflection of a plane wave to vanish at incidence α i  in place of normal incidence with (1.5a). Applying several times the operator, the n-order Higdon operator is obtained:

 n





 ∂

 ∂

cos  αi

−  c

 E

 ∂

 u = 0

(1.7)

 t

 ∂x

 i=1

whose reflection coefficient vanishes at the α i  angles. As with Trefethen–Halpern ABC, a small reflection of traveling waves can be achieved up to wide incidences. 

Finally, the above ABCs allow excellent reflection coefficients to be achieved, especially by using a high order ABC with  n > 2. Nevertheless, the Achille tendon of all these ABCs is in the fact that they were designed to absorb homogeneous traveling waves. 

This is not well suited to the realistic problems to be solved by means of numerical techniques, because in most physical problems the electromagnetic field in the region of interest involves both traveling and evanescent waves. This explains why the global performance of the one-way wave and operator ABCs cannot be improved significantly by increasing the order of the ABC over order 2. Especially, these ABCs cannot be placed close to the sources, that is in the evanescent region, whatever may be their order. In most cases this results in a computational domain significantly larger than the region of interest, i.e. the domain is larger than the optimum domain that would be used with an ideal ABC that could absorb both traveling and evanescent waves and could be placed nearby the region of interest. 

Another ABC based on a quite different principle has been used with the FDTD method

[8, 9]. This ABC is based on a matched medium that absorbs without reflection the electromagnetic waves striking the vacuum-medium interface at normal incidence. A layer of this medium is placed in the outer FDTD cells of the computational domain, so as to absorb the outgoing waves. In this matched medium, the Maxwell equations are replaced with:

−

→

 ∂

−

→

−

→

 ε

 E

0

+  σ E = ∇ ×  H

(1.8a)

 ∂t

−

→

 ∂

−

→

 μ H

0

+  σ∗−

→

 H = − ∇ ×  E

(1.8b)

 ∂t

where σ* is a non physical parameter that allows the absorption of the magnetic field to be symmetrized with respect to the absorption of the electric field, provided that the following relationship holds:

 σ

 σ∗

=

 . 

(1.9)

 ε 0

 μ 0
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With condition (1.9), called the matching condition, the impedance of a plane wave in the medium equals the impedance in a vacuum. This results in zero reflection at an interface between a vacuum and this medium, at normal incidence only. More precisely, in the conditions where the conductivity is large enough so as to realize an actual ABC [9], 

the reflection coefficient is identical to the first order of (1.6). This matched layer ABC

has been used mainly in the field of electromagnetic compatibility, where its performance is close to that of the second order Mur ABC. 

In summary to this chapter, at the beginning of the 1990s, there existed various absorbing boundary conditions. These ABCs were highly effective as long as the waves to be absorbed were traveling waves. But they were essentially non effective for the absorption of evanescent waves. Two novel ABCs introduced in the 1990s widely improved the simulation of free space in numerical electromagnetics. The principal reason is because these novel ABCs are able to deal with evanescent waves. These ABCs are the complementary operator method [10] and the perfectly matched layer [11]. 
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The Two-Dimensional Perfectly Matched

2

Layer

In this chapter, the Perfectly Matched Layer absorbing boundary condition is introduced in the two-dimensional (2D) case. The 2D case is simple and important because the absorption of plane waves by a PML or any other ABC is essentially a 2D problem. With a 3D computational domain, the interaction of a plane wave with a PML is a true 3D

problem in the edge and corner regions, but it remains a 2D problem in the walls that form most of the outer boundary of the domain. 

2.1

A Medium Without Reflection at Normal and Grazing

Incidences

Starting from medium (1.8), a new medium can be obtained by modifying the equations so as to extend the zero-reflection at normal incidence to zero-reflection at grazing incidence. 

We consider a 2D problem without field variation in  z  direction, in the TE case where

 E  field is lying in the ( x,  y) plane and  H  field is parallel to  z  direction. In that case, equations (1.8) reduce to:

 ∂

 ∂

 ε Ex

 Hz

0

+  σE

(2.1a)

 ∂

 x =

 t

 ∂y

 ∂E

 ∂

 ε

 y

 Hz

0

+  σE

(2.1b)

 ∂

 y = −

 t

 ∂x

 ∂

 ∂

 ∂E

 μ Hz

 Ex

 y

0

+  σ∗ H

−

(2.1c)

 ∂

 z =

 t

 ∂y

 ∂x
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Between a vacuum and this medium, the reflection coefficient is given by (1.6) with  n

= 1. The reflection is zero at normal incidence and total at grazing incidence. Let us now consider a fictitious medium obtained from (2.1) by removing conductivity σ in (2.1a)

and by splitting (2.1c) into two new equations as follows:

 ∂

 ∂(H

 ε Ex

 zx +  Hzy)

0

=

(2.2a)

 ∂t

 ∂y

 ∂E

 ∂(H

 ε

 y

 zx +  Hzy)

0

+  σE

(2.2b)

 ∂

 y = −

 t

 ∂x

 ∂

 ∂E

 μ Hzx

 y

0

+  σ∗ H

(2.2c)

 ∂

 zx = −

 t

 ∂x

 ∂H

 ∂

 μ

 zy

 Ex

0

=

(2.2d)

 ∂t

 ∂y

The  H  field is split into two contributions, called subcomponents, denoted as  Hzx and  Hzy. One can consider that the two contributions are also present in (2.1) or in any physical media, but in the case of (2.2) one subcomponent,  Hzx, is absorbed, while the other one,  Hzy, is not absorbed. 

The propagation of plane waves in medium (2.2) and the reflection from a vacuum-medium interface can be predicted without algebraic derivation in two special cases where the propagation is parallel to the  x  or  y  coordinates. To this end, let components  Ey  and Hz  of a plane wave propagating in  x  direction be set as an initial condition in the medium, and let us denote  Hz  as  Hzx. The space derivatives in  y  direction equal zero, so that the time evolution of the field in the medium is only governed by (2.2b) and (2.2c). These equations are like (2.1b) and (2.1c), so that the wave will propagate in medium (2.2)

like in medium (2.1), with the same attenuation, and no  Ex  nor  Hzy  components will be generated. If we now consider as an initial condition a plane wave ( Ex,  Hzy) propagating in  y  direction, the derivatives in  x  direction equal zero so that the propagation is only governed by (2.2a) and (2.2d). These equations are identical to their counterparts in a vacuum. From this, the initial wave will propagate as if the medium were a vacuum, without attenuation. 

Let us now consider the reflection coefficient from a vacuum-medium interface. 

Assume that a plane wave propagates in the vacuum in  x  direction and strikes the interface, that is wave A in Fig. 2.1. Since a wave without  y  dependence is governed in (2.2) by the same equations as in (2.1), the incident wave will penetrate into the medium without reflection. At normal incidence the reflection coefficient from medium (2.2) equals zero. 

Consider now an initial field equal to the field of a plane wave propagating in  y  direction in a vacuum. Assume this field is set on both sides of the interface, with  Hz  denoted as  Hzy  in the right-hand side medium, that is wave B in Fig. 2.1. In medium (2.2) this field is governed by (2.2a) and (2.2d) that are identical to the equations in a vacuum. In
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consequence, wave B is governed by the same equations on the two sides of the interface. 

It will remain a plane wave, as if medium (2.2) were not present. No additional field will be generated on the left-hand side of the interface. Thus, the reflection coefficient from medium (2.2) equals zero at grazing incidence. 

In conclusion, it has been shown without mathematics that the reflection coefficient from an interface normal to  x  direction, between a vacuum and medium (2.2), equals zero at two incidence angles, 0 and 90°. This is summarized in Fig. 2.2. The derivations in the next two paragraphs will show that the reflection equals zero at any incidence in the range 0–90°. 

Vacuum

Medium (2-2)

Wave  A 

y 

x 

Wave  B

Fig. 2.1 Plane waves at normal and grazing incidences with respect to the interface between a vacuum and medium (2.2)

Reflection   r() 

1 

Unknown curve

 r(90°) = 0

0 

45 ° 

90 °  Incidence angle 

 r(0) = 0

-1

Fig. 2.2 A simple inspection of equations (2.2) shows that the reflection factor from a vacuum-medium (2.2) interface is zero at normal and grazing incidences
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2.2

The PML Medium in the 2D TE Case

We now consider a more general medium that holds as a special case the medium (2.2). 

This is the PML medium for the 2D TE case:

 ∂

 ∂(H

 ε Ex

 zx +  Hzy)

0

+  σ

(2.3a)

 ∂

 y Ex =

 t

 ∂y

 ∂E

 ∂(H

 ε

 y

 zx +  Hzy)

0

+  σ

(2.3b)

 ∂

 xEy = −
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 ∂x

 ∂

 ∂E
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 y

0
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(2.3c)

 ∂t

 x Hzx = −  ∂x

 ∂H

 ∂

 μ

 zy

 Ex

0

+  σ∗

(2.3d)

 ∂t

 y Hzy =  ∂y

where parameters  α

∗

∗

 x, αx , αy, αy

are homogeneous to electric and magnetic conductiv-

ities. Medium (2.3) reduces to (2.2) in the case where  α

∗

 y =  αy

= 0 .  Let us now search

for plane wave solutions of (2.3) of the following form: Ex =  E 0 xejω− jkxx− jkyy

(2.4a)

 Ey =  E 0 yejωt− jkxx− jkyy

(2.4b)

 Hzx =  H 0 zxejωt− jkxx− jkyy

(2.4c)

 Hzy =  H 0 zyejωt− jkxx− jkyy

(2.4d)

where  kx  and  ky  are the components of the wave vector, and ω is the angular frequency. 

Inserting (2.4) into system (2.3) yields: σ

 ωε

 y

0

1 +

 E 0 x = −  ky(H 0 zx +  H 0 zy)

(2.5a)

 jωε 0





 σ

 ωε

 x

0

1 +

 E 0 y =  kx(H 0 zx +  H 0 zy)

(2.5b)

 jωε 0
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 ωμ

 x

0

1 +

 H 0 zx =  kxE 0 y

(2.5c)

 jωμ 0



 σ∗ 

 ωμ
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0

1 +

 H 0 zy = −  kyE 0 x. 

(2.5d)

 jωμ 0

Let us now define
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 σx

 σ∗
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 x

 x = 1 +

 s∗ = 1 +

(2.6a)

 jε

 x

0 ω

 jμ 0 ω

 σ

 σ∗

 y

 y

 sy = 1 +

 s∗ = 1 +

(2.6b)

 jε

 y

0 ω

 jμ 0 ω

that will be called the stretching coefficients, for reasons explained later. By denoting as H 0 z =  H 0 zx +  H 0 zy  the magnitude of the sum  Hz =  Hzx +  Hzy, Eqs. (2.5c) and (2.5d)

can merge and (2.5) can be rewritten as

 k

 ωε

 y

0 E 0 x = −

 H 0 z

(2.7a)

 sy

 ωε 0 E 0 y =  kx H 0 z

(2.7b)

 sx

 k

 ωμ

 y

0 H 0 z =  kx E 0 y −

 E 0 x

(2.7c)

 s∗ x

 s∗ y

Then, by inserting  E 0 x  and  E 0 y  from (2.7a) and (2.7b) into (2.7c), we obtain: k 2

 ω 2 ε

 y

0 μ 0 =

 k 2

 x

+

(2.8)

 sxs∗ x

 sys∗ y

Solutions of the form (2.4) can exist in the medium (2.3) provided that condition (2.8)

holds. This is the equation of dispersion that connects the angular frequency ω to the possible  k  vectors in the 2D PML medium. Notice that (2.8) is like its counterpart in a vacuum, with only  kx  replaced with  kx/ sxs∗ x  and  ky  replaced with  ky/ sys∗ y. The following wave numbers satisfy (2.8):

 ω 

 kx =

 sxs∗

 c

 x  cos  θ

(2.9a)

 ω 

 ky =

 sys∗

 c

 y  sin  θ

(2.9b)

where θ is a free parameter, and  c  is the speed of light. These wave numbers allow the field in the PML medium to be expressed explicitly. Inserting (2.9) into (2.4), the components of the field are of the following form, where ψ is either  Ex,  Ey,  Hzx, or  Hzy:

√

√



 ψ =  ψ

− j ω

 s

 s

 c

 x s∗

 x  cos  θ x+

 y s∗

 y  sin  θ y

0 ejωt e

(2.10)

If the two couples of conductivities ( σ

∗

∗

 x, σx ) and ( σy, σy ) satisfy the matching

condition (1.9), then  s

∗

∗

 x =  sx

and  sy =  sy , so that (2.10) becomes:

 ψ =  ψ

 (x  cos  θ+ y  sin  θ) −  σx

 ε

cos  θ x −  σy

 ε

sin  θ y

0 ejωt e− j ωc

 e

0 c

 e

0 c

 . 

(2.11)

14

2 The Two-Dimensional Perfectly Matched Layer

The first two exponentials are identical to the waveform in a vacuum. The phase of the wave propagates in direction θ with celerity  c, as in a vacuum. Two absorbing terms are present. The magnitude of the wave decreases in  x  and  y  directions, according to conductivities σ x  and σ y, respectively. If one conductivity equals zero the wave magnitude is constant in the corresponding direction. Especially, if σ y = 0 the magnitude of the field components does not depend on the location upon a line perpendicular to  x. In consequence, the variations of the phase and magnitude upon such a line in the PML are like the variations of the phase and magnitude in a vacuum. This is a necessary condition in view of removing the reflection from a vacuum-PML interface normal to  x. It never holds with physical lossy media. 

The components of the field can be expressed explicitly. Using (2.7) and (2.9), and with  E  2

2

2

0

=  E 0 x +  E 0 y , where  E 0 is the  E  field modulus, we obtain: s∗ y

 E 0 x = − 1

sin  θE 0

(2.12a)

 w

 sy



 s∗

 E

 x

0 y = 1

cos  θE 0

(2.12b)

 w

 sx

 ε 0

 H 0 z = 1

 E 0

(2.12c)

 w

 μ 0



 s∗

 s∗ y

 w =

 x  cos2  θ +

sin2  θ, 

(2.12d)

 sx

 sy

and in addition, using (2.5c) and (2.5d):

 H 0 zx =  H 0 z  cos2  θ

(2.13a)

 H 0 zy =  H 0 z  sin2  θ

(2.13b)

Denoting as  H 0 the modulus of the  H  field, that is  H 0 =  H 0z, in the case where the matching condition (1.9) holds for both (σ x, σ x*) and (σ y, σ y*), we have  w = 1 and

(2.12c) yields:



 E 0

 μ

=

0  , 

(2.14)

 H 0

 ε 0

so that the impedance of the wave is like in a vacuum, and like in the matched medium

(1.8). Moreover, from (2.11), (2.12a), (2.12b), the  E  field is perpendicular to the direction of propagation of the phase θ, as in a vacuum. From this, at a vacuum-PML interface normal to  x, if σ y = σ y* = 0 the phase and magnitude of  E  and  H  fields in the PML

can equal the phase and magnitude of  E  and  H  fields in the vacuum, provided that the

2.3

Reflection of Waves from a Vacuum-PML Interface …

15

angles θ in the two media are equal. Thus, in the interface a transmitted wave can match in a perfect manner any incident wave. No reflected wave is needed to ensure continuity of the tangential components of the field in the interface, in other words the reflection coefficient is zero. This is confirmed by algebraic derivations in the next paragraph. 

2.3

Reflection of Waves from a Vacuum-PML Interface

and from a PML-PML Interface

In this paragraph the reflection coefficient is derived for an interface between two PML

media. This includes the case of a vacuum-PML interface since a vacuum is nothing but a special PML medium where  σ

∗

∗

 x =  σx

=  σy =  σy = 0. An absorbing boundary condition

surrounding a computational domain will be composed of vacuum-PML interfaces on the walls of the domain, and of more general PML-PML interfaces in the corners of the domain. PML-PML interfaces also will be present in actual use of the PML ABC in numerical methods where the conductivity will grow from one cell or element to the next, so that there will be inner PML-PML interfaces within the PML ABC. 

Let us consider an interface between two PML media (Fig. 2.3), denoted as PML

(σ

∗

∗

∗

∗

 x 1,  σx 1 , σ y 1,  σy 1 ) and PML (σ x 2,  σx 2 , σ y 2,  σy 2 ). As at an interface between physical media, the ratio of the reflected wave to the incident wave, and the ratio of the transmitted wave to the incident wave, are invariant in the interface. Using (2.4) this results in the equality of the components of the wave vectors lying in the interface, that is: ky 1 =  kyr =  ky 2

(2.15)

where  ky 1,  kyr,  ky 2 are the  y  components of the wave vectors of the incident, reflected, and transmitted waves, respectively. For the reflected wave, using (2.9b) this yields: θr =  π −  θ 1

(2.16)

as at any physical interface. From (2.9a) we have then  kxr = −  kx 1. For the transmitted wave, (2.9b) and (2.15) yield:





 sy 1 s∗ sin  θ

 s

sin  θ

 y 1

1 =

 y 2 s∗

 y 2

2

(2.17)

Consider now the reflection and transmission between two PML media (2.3). As with physical media, components  Ey  and  Hz  lying in the interface are continuous because their space derivatives in direction  x  perpendicular to the interface are used in the governing equations (2.3). From this, using (2.4) and setting  x = 0 in the interface, the following relationships hold with the magnitudes of the incident, reflected, and transmitted waves: E 0 y 1 +  E 0 yr =  E 0 y 2

(2.18a)
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 x = 0

Fig. 2.3 An interface between two PML media

 H 0 z 1 +  H 0 zr =  H 0 z 2

(2.18b)

Using (2.7b) for replacing  H 0 z  with  E 0 y  in (2.18b), defining the reflection and transmission coefficients as  r =  E 0 yr/ E 0 y 1 and  t =  E 0 y 2/ E 0 y 1, and with  kxr = −  kx 1, the set

(2.18) becomes:

1 +  r =  t

(2.19a)

 sx 1  ( 1 −  r) =  sx 2  t

(2.19b)

 kx 1

 kx 2

from which:

 r =  sx 1 kx 2 −  sx 2 kx 1

(2.20)

 sx 1 kx 2 +  sx 2 kx 1

After replacement of  kx 1 and  kx 2 with (2.9), we have then: s∗

 s∗

 x 2 cos  θ

 x 1 cos  θ

 s

2 −

 s

1

 r =

 x 2

 x 1





(2.21)

 s∗

 s∗

 x 2 cos  θ

 x 1 cos  θ

 s

2 +

1

 x 2

 sx 1

Consider the special case where the transverse conductivities σ y  and  σ ∗

 y  are equal in

the two PML media, that is s y 1 = s y 2 and  s∗ =  s∗ Then, from (2.17), we have: y 1

 y 2
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 θ 1 =  θ 2

(2.22)

This is the Snell-Descartes law at an interface between two PML media whose transverse conductivities are equal. If in addition we assume that the matching condition (1.9)

holds in both PMLs, that is  s

∗

 x =  sx , reflection (2.21) reduces to:

 r = 0

(2.23)

Thus, at an interface normal to  x  between two PML media satisfying the matching condition (1.9) and whose transverse conductivities (σ y, σ y*) are equal, the reflection coefficient is zero at any incidence angle and any frequency. Obviously, that is true at an interface between a vacuum and a PML(σ x, σ x*, 0, 0). Especially, the medium (2.2)

designed so as to be reflectionless at normal and grazing incidences, as drawn in Fig. 2.2, 

is reflectionless at all the incidence angles as well. 

In the case where the transverse conductivities of the two PML media are equal, so that (2.22) holds, if the longitudinal conductivities do not satisfy (1.9)  r  becomes: sx 1 −  sx 2

 s∗

 s∗

 r =

 x 1

 x 2





(2.24)

 sx 1 +  sx 2

 s∗

 s∗

 x 1

 x 2

The reflection does not equal zero and depends on frequency, but it does not depend on the incidence angle. This noteworthy feature has been verified by numerical experiments in [1]. 

In conclusion to this paragraph, there is no reflection from an interface between two matched PML media whose transverse conductivities are equal. This also holds in the important special case of an interface between a vacuum and a PML whose transverse conductivities equal zero. In the above, only the 2D TE case has been considered. In the 2D TM case, with  Ez,  Hx,  Hy  components in place of  Ex,  Ey,  Hz, a PML can be found in the same way, by splitting  Ez  in place of  Hz [1]. This PML also produces no reflection from vacuum-PML of PML-PML interfaces. 

2.4

The Perfectly Matched Layer Absorbing Boundary

Condition

The PML medium permits an absorbing boundary condition to be realized to absorb plane waves on a plane boundary. To this end, let a layer of PML medium be placed between a vacuum and a perfect electric condition (PEC), as shown in Fig. 2.4. The transverse conductivity is zero so as to cancel the reflection from the interface. An incident plane wave penetrates into the PML where its direction of propagation θ is left unchanged from

(2.22). The wave is absorbed according to the real exponential depending on conductivity

[image: Image 22]
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

Reflected wave

PML

Perfect electric 

Incident wave

conductor (PEC)



Fig. 2.4 The PML ABC on a plane boundary

σ x  in (2.11). The wave is then reflected back to the vacuum from the PEC condition. 

Finally, the apparent reflection in the vacuum is given by the absorption corresponding to path 2 δ in the PML, where δ is the PML thickness:

−2  σx  cos  θ δ

 R(θ) =  e

 ε 0 c

(2.25)

The set (PML, PEC) in Fig. 2.4 is the PML ABC. Its reflection coefficient (2.25)

does not equal zero despite the zero reflection from the vacuum-PML interface. Several remarks can be done about this reflection coefficient:

• As with previous ABCs (1.6),  R(θ) tends to unity as the incidence tends to the grazing incidence. This is not a serious drawback in most problems solved with numerical methods. 

• The reflection  R(θ) can be lowered at will. In some way this could be thought of as being equivalent to increasing the order of analytical ABCs whose reflection is given by (1.6). 

• Lowering  R(θ) can be achieved either by increasing the thickness of the layer δ or by increasing the conductivity σ x. In theory the two methods are equivalent. As will be shown and discussed later, that is not true in actual numerical methods, because sharp variations of the conductivity in a discrete space result in spurious numerical reflections. Choosing the conductivity and the thickness of the PML is a major question in applications, because contradictory requirements hold. First the thickness of the PML must be as thin as possible so as to reduce the computational cost, second the variations of the conductivity must be small enough to reduce the spurious reflection, and thirdly the theoretical reflection (2.25) must be as small as possible. In actual implementations of the PML ABC, the conductivity varies in the PML from a small
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value in the interface to a larger value on the outer side. Denoting as ρ the coordinate in the direction normal to the interface, and σρ the conductivity in the PML, the reflection coefficient is then:

 R(θ) = [ R( 0 )]cos  θ

(2.26a)

where  R(0) is the reflection a normal incidence:



−

 δ

2 1

 σ

 R( 0 ) =  e

 ε

 ρ (ρ)d ρ

0 c

0

(2.26b)

The choice of the profile of conductivity σ(ρ) is discussed in details in Chap. 6 for the application of the PML ABC to the FDTD method. 

In actual problems solved by numerical methods, the boundary of the domain is not a plane, as in Fig. 2.4, but a concave surface enclosing a computational domain. The PML

media allow such concave ABCs to be realized. This is depicted in Fig. 2.5. The ABC

is composed of various PML media in such a way that the reflection is zero from all the inner interfaces in the domain. This is the case at the vacuum-PML interfaces, like in Fig. 2.4, where transverse conductivities equal zero on both sides of the interfaces. This is also the case at the PML-PML interfaces in the corner regions, where the transverse conductivities of the two PMLs are equal. For instance, the transverse conductivities  σx and σ x* equal  σx 1 and σ x 1*, respectively, on both sides of interface B1B2. 

Since no reflection is produced from the interfaces, the reflection from the walls of the domain is given by (2.26). In the corner regions the absorption is larger because the two exponential in (2.11) are present. In numerical methods, the PML ABC is designed by considering the absorption in the walls (2.26). 

2.5

Evanescent Waves in PML Media

Solution (2.9) of the wave equation (2.8) is like the solution usually considered in physical media. In facts, the most general solutions of (2.8) are of the form ω 

 kx =

 sxs∗

 c

 x C(χ, θ )

(2.27a)

 ω 

 ky =

 sys∗

 c

 y S (χ, θ )

(2.27b)

where  S(χ, θ) and  C(χ, θ) are the generalized sine and cosine C(χ, θ) = cosh  χ  cos  θ +  j  sinh  χ  sin  θ

(2.28a)
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Fig. 2.5 The PML ABC on the outer boundary of a concave volume

 S(χ, θ) = cosh  χ  sin  θ −  j  sinh  χ  cos  θ, (2.28b)

and χ and θ are free parameters, with − ∞ < χ < ∞ and 0 < θ < 2π. Notice that C(θ, χ)2 + S(θ, χ)2 = 1. Two cases are of special interest. First, if cosh χ = 1, then  C(θ, χ)

= cos θ and  S(θ, χ) = sin θ, so that (2.27) reduces to (2.9). This case corresponds to traveling waves propagating in direction θ with respect to the  x  axis. Second, if cos θ =

1, then  C(θ, χ) = cosh χ and  S(θ, χ) = −  j  sinh χ. By inserting  kx  and  ky  into (2.4), and by assuming that the matching condition (1.9) holds in the PML, the field components are of the form:





 ψ =  ψ jω t−cosh χ x+  σy

−  σx

 c

 ε

sinh  χ y

 ε

cosh  χ x

0 e

0 cω  sinh  χ y e−  ωc

 e

0 c

(2.29)

In the special case  σx =  σy = 0, this waveform reduces to the well-known wave propagating in  x  direction and evanescent in  y  direction. In the PML, additional terms are present in the phase and in the absorption. 

Let us now consider the general solution (2.27), with any χ and θ. This will yield non uniform waves having any direction of propagation and any direction of evanescence with respect to the coordinate axes, and then with respect to PML media perpendicular either to  x  or  y. Let us assume that (1.9) holds and that the PML is perpendicular to  x  with σ y

= σ y* = 0, i.e.  sx =  sx* and  sy =  sy* = 1. From (2.27) the components of the wave are of the form:
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Fig. 2.6 Direction of phase
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 ψ =  ψ jω t−cosh χ (x  cos θ+ y  sin  θ)−  σx c

 ε

0  e

0 cω  sinh  χ  sin  θ x

−  σx  cosh  χ  cos  θ x

 e−  ω  sinh  χ (y  cos  θ− x  sin  θ) c

 e ε 0 c

(2.30)

Using the system of coordinates ( X,  Y ) forming an angle θ with respect to the ( x,  y) system (Fig. 2.6), Eq. (2.30) can be rewritten as: ψ =  ψ jω t−cosh χ X−  σx

−  σx

 c

 ε

sinh  χY

 ε

cosh  χ  cos  θ x

0  e

0  cω  sinh  χ  sin  θ x e−  ωc

 e

0 c

(2.31)

In (2.31) the exponential terms depending on  X  and  Y  are exactly the waveform of a wave propagating in  X  direction and evanescent in  Y  direction in a vacuum. Two additional terms depending on  x  and σ x  are present: first a phase term, second an absorbing term. It is worth noticing from (2.31) that:

• The evanescent waves are absorbed in the PML medium, due to the last exponential in (2.31). The absorption is larger than that of traveling waves, because cosh χ > 1 for evanescent waves instead of cosh χ = 1 for traveling waves. As will be discussed later, this may result in a spurious reflection from PMLs in numerical methods, because for strongly evanescent waves (cosh χ  1) the absorption is enormous. 

• The absorption of evanescent waves whose direction of propagation is parallel to the interface and direction of evanescence is perpendicular to the interface, that is θ =

±π/2 in (2.31), are not absorbed. This is a drawback is some applications, as will be illustrated in Chap. 6 with waveguide problems. 

• The phase of evanescent waves depends on frequency, due to the term depending on σ x in the first exponential of (2.31). For strongly evanescent waves (sinh χ  1) the phase may rapidly vary with distance at low frequency. Again, this may result in spurious reflections in numerical methods. 

Let us now consider the components of the field in the PML medium. They are identical to (2.12) and (2.13), with only the replacement of cos θ and sin θ with C(χ, θ) and S(χ, 
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θ). If the matching condition (1.9) holds, in the ( X,  Y) coordinates defined in Fig. 2.6 the

 H  field (2.12c) is left unchanged while the  E  components become: E 0 X =  j  sinh  χE 0

(2.32a)

 E 0 Y = cosh  χE 0 , 

(2.32b)

that are nothing but the components of a wave propagating in  X  direction and evanescent in  Y  direction in a vacuum. Thus, in a PML perpendicular to  x, i.e. if σ y = 0, evanescent waves are like in a vacuum, with only the addition of phase and absorbing terms depending on  x. 

Consider now an interface between two PML media, with a nonuniform wave propagating from medium 1 toward medium 2. We assume in the following that the matching condition (1.9) holds in both media. The components of the wave vectors of the incident, reflected, and transmitted waves are equal in the interface, i.e. (2.15) holds. Using (2.27b)

this yields  S(χ r, θ r) =  S(χ1, θ1), and if in addition the transverse conductivities σy are equal,  S(χ2, θ2) =  S(χ1, θ1), where χ r, θ r, χ2, θ2 are the unknown χ and θ of the reflected and transmitted waves. By solving for the unknowns χ and θ the equation  S(χ, θ) =  S(χ1, θ1), which is equivalent to two real equations (real and imaginary parts), the following two solutions corresponding to the reflected and transmitted waves are obtained: χr = −  χ 1  θr =  π −  θ 1

(2.33a)

 χ 2 =  χ 1  θ 2 =  θ 1

(2.33b)

These equations are the generalization of (2.16) and (2.22) to nonhomogeneous waves. 

From (2.27a) and (2.33a) we have  kxr = −  kx 1, as with traveling waves. From (2.33b)

the evanescence coefficient cosh χ and the direction of propagation θ are left unchanged through PML-PML or vacuum-PML interfaces. 

The reflection coefficient can be found by enforcing the continuity of components  Ey and  Hz  lying in the interface. This yields (2.18). Using (2.7b), Eqs. (2.19) and (2.20)

are obtained. Then, with (2.27a) reflection (2.21) is obtained with C(χ1, θ1) and C(χ2, θ2) in place of cos θ1 and cos θ2. Finally, provided that (1.9) holds and the transverse conductivities are equal, so that (2.33b) holds, we have r = 0

(2.34)

In summary to this paragraph, evanescent waves are not reflected from the interface between a vacuum and a PML medium, or more generally from the interface between two PML media whose transverse conductivities are equal. In the PML such waves are absorbed according to the coefficient in (2.30) and (2.31). This PML attenuation is added to the natural decrease of evanescent waves. Finally, in a PML we can write:
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| ψ

−  σx

 ε

cosh  χ  cos  θ x

 PML| = | ψvacuum| e

0 c

 , 

(2.35)

where ψvacuum is the waveform in a vacuum. The absorption is larger than the absorption of purely traveling waves that correspond to the special case cosh χ = 1 in (2.35). 

The coefficient in (2.35) is of primary importance for the interpretation of the spurious reflection from PML ABCs in numerical methods [2]. 
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Generalizations and Interpretations

3

of the Perfectly Matched Layer

In this chapter, the perfectly matched layer absorbing boundary condition is generalized to three dimensions and to more general physical media. The first part is devoted to the 3D PML in the case where the inner medium is filled with a vacuum. The second part presents two interpretations of the PML medium, in terms of stretched coordinates and in terms of dependent currents. In the third part the PML is generalized to other physical media, especially to anisotropic media. The fourth part addresses the case where the inner medium is non homogeneous. In the fifth part the absorbing medium called uniaxial PML

is presented. Finally, the sixth part introduces the CFS-PML medium obtained from the normal PML medium by means of a modification of the stretching coefficient. 

3.1

The Three-Dimensional PML Matched to a Vacuum

As discussed in the previous chapter about the 2D case, the absence of reflection from a vacuum-PML interface is closely related to the fact that plane waves in the PML can propagate without attenuation in the direction parallel to the interface. In 3D, a similar property can be obtained by a straightforward generalization of equations (2.3). The six components of the field are split into 12 subcomponents and the six Cartesian equations are split into 12 subequations, with two independent conductivities assigned to the two subequations resulting from each equation:

 ∂E

 ∂(H

 ε

 xy

 zx +  Hzy)

0

+  σ

(3.1a)

 ∂

 y Exy =

 t

 ∂y
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 ∂

 ∂(H

 ε Exz

 yz +  Hyx)

0

+  σ

(3.1b)

 ∂

 z Exz = −

 t

 ∂z

 ∂E

 ∂(H

 ε

 yz

 xy +  Hxz )

0

+  σ

(3.1c)

 ∂

 z Eyz =

 t

 ∂z

 ∂E

 ∂(H

 ε

 yx

 zx +  Hzy)

0

+  σ

(3.1d)

 ∂

 xEyx = −

 t

 ∂x

 ∂

 ∂(H

 ε Ezx

 yz +  Hyx)

0

+  σ

(3.1e)

 ∂

 x Ezx =

 t

 ∂x

 ∂E

 ∂(H

 ε

 zy

 xy +  Hxz )

0

+  σ

(3.1f)

 ∂

 y Ezy = −

 t

 ∂y

 ∂H

 ∂(E

 μ

 xy

 zx +  Ezy)

0

+  σ∗

(3.1g)

 ∂t

 y Hxy = −

 ∂y

 ∂

 ∂(E

 μ Hxz

 yz +  Eyx)

0

+  σ∗

(3.1h)

 ∂t

 z Hxz =

 ∂z

 ∂H

 ∂(E

 μ

 yz

 xy +  Exz )

0

+  σ∗

(3.1i)

 ∂t

 z Hyz = −

 ∂z

 ∂H

 ∂(E

 μ

 yx

 xz +  Ezy)

0

+  σ∗

(3.1j)

 ∂t

 x Hyx =

 ∂x

 ∂

 ∂(E

 μ Hzx

 yx +  Eyz )

0

+  σ∗

(3.1k)

 ∂t

 x Hzx = −

 ∂x

 ∂H

 ∂(E

 μ

 zy

 xy +  Exz )

0

+  σ∗

(3.1l)

 ∂t

 y Hzy =

 ∂y

By inserting a plane wave solution in (3.1), with subcomponents of the form ψ =  ψ 0 ejωte− jkxx− jkyy− jkzz, 

(3.2)

and by defining  su  and  s∗ u  as

 σu

 σ∗

 s

 u

 u = 1 +

;  s∗ = 1 +

 (u =  x, y, z), 

(3.3)

 jωε

 u

0

 jωμ 0

we obtain 12 equations connecting the angular frequency ω, the wave numbers  kx,  ky,  kz, and the magnitudes of the subcomponents  E 0 xy,  E 0 xz, …,  H 0 zx,  H 0 zy. For example, the first two Eqs. (3.1a) and (3.1b) yield jωε 0 syE 0 xy = −  jky(H 0 zx +  H 0 zy) (3.4a)

3.1

The Three-Dimensional PML Matched to a Vacuum

27

 jωε 0 szE 0 xz =  jkz(H 0 yz +  H 0 yx). 

(3.4b)

Dividing (3.4a) and (3.4b) with  sy  and  sz, respectively, and with  E 0 x =  E 0 xy +  E 0 xz, H 0 z =  H 0 zx +  H 0 zy, and  H 0 y =  H 0 yz +  H 0 yx, the two equations (3.4) can be merged into a single equation. By proceeding similarly with the other five couples of equations derived from (3.1c)–(3.1l), the following set is obtained: k

 ωε

 y

0 E 0 x = −

 H 0 z +  kz H 0 y

(3.5a)

 sy

 sz

 ωε 0 E 0 y = − kz Hox +  kx Hoz

(3.5b)

 sz

 sx

 k

 ωε

 y

0 E 0 z = −  kx H 0 y +

 H 0 x

(3.5c)

 sx

 sy

 k

 ωμ

 y

0 H 0 x =

 E 0 z −  kz E 0 y

(3.5d)

 s∗ y

 s∗ z

 ωμ 0 H 0 y =  kz E 0 x −  kx E 0 z (3.5e)

 s∗ z

 s∗ x

 k

 ωμ

 y

0 H 0 z =  kx E 0 y −

 E 0 x

(3.5f)

 s∗ x

 s∗ y

Let us now define two vectors  k

∗

 s  and  ks

as follows:

−

→



 T

 ks =  kx/sx, ky/sy, kz/sz

(3.6a)

−

→



 T

 k∗ =

 , 

 , 

 s

 kx/s∗ x ky/s∗ y kz/s∗ z

(3.6b)

Then, (3.5) can be rewritten as

−

→

−

→ −

→

 ε 0 ωE 0 = −  ks ×  H 0

(3.7a)

−

→

−

→ −

→

 μ 0 ωH 0 =  k∗ ×

 s

 E 0

(3.7b)

where  E 0 and  H 0 are vectors of components  E 0 x,  E 0 y,  E 0 z, and  H 0 x,  H 0 y,  H 0 z, respectively. System (3.7) is like its counterpart in a vacuum, with vectors (3.6) in place of the wave vector  k. Notice that  E  and  H  fields are perpendicular from (3.7), as in a vacuum. 

Using  H 0 from (3.7b) into (3.7a) yields

−

→

−

→ −

→ −

→

 ε 0 μ 0 ω 2 E 0 = −  ks ×  k∗ ×

 s

 E 0

(3.8)
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that can be rewritten as

−

→

−→ −→ −→ −→ −→ −→

 ε 0 μ 0 ω 2 E 0 = −  ks ·  E 0 ·  k∗ +

·

 s

 ks ·  k∗ s

 E 0

(3.9)

From (3.7a)  ks  is perpendicular to  E  field, so that:



−

→ −

→−

→

 ε 0 μ 0 ω 2 −  ks ·  k∗ s E 0 = 0

(3.10)

This yields the following equation of dispersion

 k 2

 ε

 y

0 μ 0 ω 2 =

 k 2

 x

+

+  k 2 z , 

(3.11)

 sxs∗ x

 sys∗ y

 szs∗ z

which is the generalization of (2.8). Wave numbers satisfying (3.11) can be written in the form:

 ω 

 kx =

 sxs∗

 c

 x  sin  θ  cos  ϕ

(3.12a)

 ω 

 ky =

 sys∗

 c

 y  sin  θ  sin  ϕ

(3.12b)

 ω 

 kz =

 szs∗

 c

 z  cos  θ

(3.12c)

where θ and φ are free parameters. 

Let us now assume that the matching condition (1.9) holds for the three couples of conductivities of the PML medium. Then, from (3.3) and (3.6) we have  ks =  ks*, and from (3.7)  ks  is perpendicular to  E  and  H. Moreover, using (3.11) and (3.7a) or (3.7b)

leads to (2.14), i.e. the impedance is matched to that of a vacuum. And finally, (3.12)

shows that  ks  is oriented in direction (θ, φ), so that the ( E,  H) plane is perpendicular to direction (θ, φ). 

Using now (3.2) and (3.12), any component or subcomponent is of the form: ψ =  ψ

 (x  sin  θ  cos  ϕ+ y  sin  θ  sin  ϕ+ z  cos  θ) −  σx ε

sin  θ  cos  ϕ x −  σy

 ε

sin  θ  sin  ϕ y −  σz

 ε

cos  θ z

0  ejωt e− j ωc

 e

0 c

 e

0 c

 e

0 c

(3.13)

From this, the phase propagates in direction (θ, φ) with celerity  c, as in a vacuum. 

Denoting as η x, η y, η z, the angles that direction (θ, φ) forms with the axes of coordinates, 

(3.13) can be rewritten in a more symmetric form with respect to the directions of space: ψ =  ψ

 (x  cos η

−  σx  cos  η

−  σy  cos  η

−  σz  cos  η

 x + y  cos  ηy + z  cos  ηz )

 ε

 x x

 ε

 y y

 ε

 z z

0  ejωt e− j ωc

 e

0 c

 e

0 c

 e

0 c

(3.14)
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Equations (3.13) or (3.14) show that the attenuation in the 3D PML can be controlled at will in the three directions. As an example, the attenuation in  x  and  y  directions can be vanished by choosing σ x = σ y = 0. In such a case the phase propagates as in a vacuum,  E

and  H  fields are perpendicular to the direction of propagation of the phase, and the wave is only attenuated in  z  direction. In that case, at a vacuum-PML interface perpendicular to z  the transmitted wave can be perfectly matched to the incident wave, so that no reflected wave is needed to satisfy continuity of  E  and  H  fields in the interface. 

To prove mathematically the absence of reflection from a PML-PML interface, let us consider an interface perpendicular to z. The equality of the wave numbers in the interface can be expressed as:

 kx 1 =  kxr =  kx 2

(3.15a)

 ky 1 =  kyr =  ky 2

(3.15b)

where indexes 1,  r, and 2, denote the incident, reflected, and transmitted waves, respectively. From (3.12a), (3.12b), (3.15), the direction of the reflected wave (θ > π/2) is

 ϕr =  ϕ 1 and  θr =  π −  θ 1

(3.16)

as at any physical interface. In addition, from (3.12c) we have  kzr = −  kz 1. For the wave transmitted into the PML (θ < π/2), (3.12a), (3.12b), (3.15), yield: sx 1 s∗ sin  θ

 s

sin  θ

 x 1

1 cos  ϕ 1 =

 x 2 s∗

 x 2

2 cos  ϕ 2

(3.17a)





 sy 1 s∗ sin  θ

 s

sin  θ

 y 1

1 sin  ϕ 1 =

 y 2 s∗

 y 2

2 sin  ϕ 2

(3.17b)

Assume now that the incident field is polarized in such a way that the  E  field is perpendicular to z direction ( E  parallel to the interface). Only components  Ex  and  Ey  are present. Continuity of the field components lying in the interface ( x = 0) yields E 0 x 1 +  E 0 xr =  E 0 x 2

(3.18a)

 E 0 y 1 +  E 0 yr =  E 0 y 2

(3.18b)

 H 0 x 1 +  H 0 xr =  H 0 x 2

(3.18c)

 H 0 y 1 +  H 0 yr =  H 0 y 2

(3.18d)
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Moreover, using (3.7b) and  E 0 z = 0 we have in both media:

−  k∗

 H

 sz E 0 y

0 x =

(3.19a)

 μ 0 ω

 H 0 y =  k∗ szE 0 x

(3.19b)

 μ 0 ω

This allows the  H  field to be replaced with the  E  field in (3.18c) and (3.18d). Using then (3.6) and  kzr = −  kz 1, Eqs. (3.18c) and (3.18d) become: kz 1  E 0 y 1 −  kz 1 E 0 yr =  kz 2 E 0 y 2

(3.20a)

 s∗

 s∗

 s∗

 z 1

 z 1

 z 2

 kz 1  E 0 x 1 −  kz 1 E 0 xr =  kz 2 E 0 x 2

(3.20b)

 s∗

 s∗

 s∗

 z 1

 z 1

 z 2

If we define the reflection and transmission coefficients as  rx =  E 0 xr/ E 0 x 1,  ry =  E 0 yr/

 E 0 y 1,  tx =  E 0 x 2/ E 0 x 1,  ty =  E 0 y 2/ E 0 y 1, Eqs. (3.18a), (3.18b), (3.20) can be rewritten as: 1 +  rx =  tx

(3.21a)

1 +  ry =  ty

(3.21b)

 kz 1 s∗  (

 z 2 1 −  rx) =  kz 2 s∗

 z 1 tx

(3.21c)





 kz 1 s∗

=

 z 2 1 −  ry

 kz 2 s∗ z 1 ty

(3.21d)

This system yields  rx =  ry  and  tx =  ty. Denoting then as  rs  the common value of the reflection, i.e.  rs =  rx =  ry, we have

 kz 1 s∗ −  kz 2 s∗

 r

 z 2

 z 1

 s =

(3.22)

 kz 1 s∗ +  k

 z 2

 z 2 s∗

 z 1

and with (3.12c):





 sz 1 /s∗ cos  θ 1 −

 sz 2 /s∗ cos  θ 2

 r

 z 1

 z 2

 s = 



(3.23)

 sz 1 /s∗ cos  θ

 s

cos  θ

 z 1

1 +

 z 2 /s∗

 z 2

2

Assume now that the transverse conductivities σ x  and σ y  are equal on the two sides of the interface. Then, (3.17) reduces to:

 ϕ 1 =  ϕ 2 and  θ 1 =  θ 2

(3.24)
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The direction of propagation of the phase is left unchanged at the interface between two PML media having the same transverse losses. If in addition the matching condition

(1.9) holds for the longitudinal conductivity σ z, then (3.23) becomes: rs = 0

(3.25)

If we now consider the polarization with  H  field perpendicular to  z  direction ( H  parallel to the interface), a derivation similar to the previous one yields the following reflection coefficient in place of (3.22):

 rp =  kz 2 sz 1 −  kz 1 sz 2

(3.26)

 kz 2 sz 1 +  kz 1 sz 2

Notice that (3.26) is identical to (2.20), because the  H  field is also parallel to the interface in the 2D TE case. In the case of matched PML media with the same transverse conductivities, using (3.12) and (3.17) in (3.26) also leads to zero reflection from 3D

interfaces, that is  rp = 0. Finally, since any polarization of the incident wave can be split into two nonparallel polarizations,  r = 0 for any incident wave. 

In summary, in the general 3D case no reflection is produced from the interface between two PML media whose transverse conductivities are equal and whose conductivities satisfy the matching condition (1.9). 

3.2

The Three-Dimensional PML Absorbing Boundary

Condition

The 3D PML ABC [1] is a trivial generalization of the 2D one. In the PML matched to a vacuum, the transverses conductivities equal zero and (1.9) holds for the longitudinal conductivities. The PML is bounded with a PEC condition, as in Fig. 2.4. Denoting as ρ

the direction perpendicular to the interface and σρ the conductivity in this direction, from

(3.14) the reflection from a PML of thickness δ with a conductivity depending on ρ is given by (2.26). 

On the outer boundary of a concave computational domain, PML media with transverse conductivities equal to zero are set on the six walls, so as to cancel the reflection from the vacuum-PML interfaces. In the edge and corner regions, the conductivities are chosen as depicted in Fig. 3.1. This allows the transverse conductivities to be equal at all the PML-PML interfaces, so that no reflection is produced from these inner interfaces. For example, in the corner shown in Fig. 3.1, through the interface between the PML(0, 0, σ

∗

 y 1,  σy , 

σ

∗

∗

∗

∗

 z 2,  σz 2 ) and the PML(σ x  2,  σx 2 , σy1,  σy 1 , σ z 2,  σz 2 ), the transverse conductivities σ y and σ z  are equal, ensuring then zero reflection. 
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Fig. 3.1 A corner of the
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3.3

Interpretation of the PML Medium in Terms of Stretched

Coordinates

Different interpretations and formulations of PML media have been presented and discussed in the literature. The most important and useful is the interpretation in terms of stretched coordinates. This interpretation facilitates the extension of the PML concept to more general media and to other partial differential equations of physics. 

Let us consider subequations (3.1a) and (3.1b). By replacing the time derivatives with j ω and by adding these two subequations, a unique equation is obtained, with components  Ex,  Hy,  Hz  in place of the subcomponents. Merging similarly the other five sets of subequations results in the following six equations that are equivalent to (3.1) for the considered angular frequency ω:

 ∂Hz

 ∂Hy

 jωε 0 Ex = 1

− 1

(3.27a)

 sy ∂y

 sz ∂z

 ∂Hx

 ∂Hz

 jωε 0 Ey = 1

− 1

(3.27b)

 sz ∂z

 sx ∂x

 ∂Hy

 ∂Hx

 jωε 0 Ez = 1

− 1

(3.27c)

 sx ∂x

 sy ∂y

 ∂Ez

 ∂Ey

 jωμ 0 Hx = − 1

+ 1

(3.27d)

 s∗  ∂

 ∂

 y

 y

 s∗ z

 z
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 ∂Ex

 ∂Ez

 jωμ 0 Hy = − 1

+ 1

(3.27e)

 s∗  ∂

 ∂

 z

 z

 s∗ x x

 ∂Ey

 ∂Ex

 jωμ 0 Hz = − 1

+ 1

(3.27f)

 s∗  ∂

 ∂

 x

 x

 s∗ y y

where  s  and  s* parameters are coefficients (3.3) and field components are the sum of the corresponding subcomponents in (3.1), for instance  Ex =  Exy +  Exz  and  Hz =  Hzx +

 Hzy. Consider now coefficients  sy  and  sz  that may vary with  y  and  z, and let the following change of variables be defined as

 dy =  sy(y)dy dz =  sz(z)dz, 

(3.28)

or equivalently:

 y 2



 z 2



 y =

 sy(y)dy z =

 sz(z)dz

(3.29)

 y 1

 z 1

that corresponds to a stretch of coordinates, where  y 1,  y 2,  z 1,  z 2 are the limits of the stretched region. Then, Eq. (3.27a) can be rewritten as:

 ∂Hz

 ∂Hy

 jωε 0 Ex =  ∂y −  ∂z

(3.30)

which is nothing but the  x  component of the Maxwell-Ampere equation in a vacuum, in the stretched coordinates defined with (3.28). Applying the same procedure to the other five equations of (3.27), the PML medium can be regarded as a vacuum where the coordinates are stretched with the complex factors (3.3). In the general case, the stretching factors are different for the Maxwell-Ampere and Maxwell-Faraday equations. 

If the PML medium is matched the stretching factors are the same for the two equations. 

The stretching factors of the three directions of space can be different. Especially, if two conductivities equal zero (σ x = σy = 0 for example), only the third direction is stretched ( z  in this example). This is the case in the walls of a computational domain where the PML is equivalent to a stretch of the coordinate perpendicular to the interface. Notice that the stretch of distances is consistent with equations (3.5). Here the wave numbers are stretched with the inverse of coefficients (3.3). This corresponds to a stretch of wavelength with factors (3.3). 

With the interpretation in terms of stretched coordinates, the required condition for the absence of reflection from a vacuum-PML can be reformulated. The coordinates must only be stretched in the direction perpendicular to the interface. More generally, at a PML-PML interface the transverse stretches must be identical on the two sides of the interface, an extra stretch can only be added in the direction normal to the interface. 
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The interpretation of the PML medium in terms of stretched coordinates was initially presented in [2–4]. In [2] the PML medium is described by a formalism derived from this interpretation. 

3.4

Interpretation in Terms of Dependent Currents

The time domain equations of the PML (3.1) are known as the split equations or the split PML, because these 12 equations are obtained by splitting the six components of the Maxwell equations. Other formulations without splitting have been found, such as the unsplit formulation [4, 5]. To derive this formulation, let us rewrite for example (3.27b)

as

 ∂Hx

 ∂Hz

 jωε 0 szsxEy =  sx

−  s

(3.31)

 ∂

 z

 z

 ∂x

In the special case where σy = σz = 0 (wall PML perpendicular to  x) this yields in time domain:

 ∂



 E

 ∂

 ∂

 σ ∂

 ε

 y

 Hx

 Hz

 x

0

+  σ

−

+

 H

 ∂

 x Ey =

 xdt

(3.32)

 t

 ∂z

 ∂x

 ε 0  ∂z

Similar equations can be derived from (3.27) for the time derivatives of  Ez,  Hy,  Hz. 

The equations for  Ex  and  Hx  are like in a vacuum. With time domain numerical methods, these equations can be used for the advance on time of the six components of the field in the PML. 

From a physical point of view, Eq. (3.32) shows that a wall PML medium—having only one non zero conductivity—can be regarded as a physical lossy medium with dependent electric and magnetic current densities [5] proportional to the integral of the longitudinal components of the field ( Ex  and  Hx  in a PML perpendicular to  x). This allows computational codes to deal with the six components of the fields, but with two additional quantities corresponding to integrals like the one in (3.32). 

3.5

The PML Matched to General Media

In previous chapters, we only considered PML media matched to a vacuum. These PMLs can only be used to absorb outgoing waves on the boundary of computational domains surrounded with a vacuum. This is the case in many applications of computational electromagnetics, but in some other cases it is worth setting the PML within a medium that may be lossy or anisotropic. In the following, the PML medium is generalized to PML media matched to any physical media. This is done in frequency domain. The corresponding time domain equations are derived in the next chapter. 
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A trivial generalization is the PML matched to dielectric media. In that case, by replacing ε0 with ε in previous paragraphs, the derivations are left unchanged and the conclusions are the same. No reflection is produced from the interface between a dielectric of permeability ε and a PML governed by Eqs. (3.1) or (3.7) with ε0 replaced with ε. 

This also holds if μ0 is replaced with μ. In the case where ε0 or μ0 are replaced with complex numbers ε or μ in (3.7), the derivations following (3.7) remain valid. From this, the frequency domain equations of a PML matched to any isotropic medium can be obtained by stretching the coordinates, as in the case of a vacuum. 

In the case of anisotropic media, either lossy or not, a frequency-domain PML can also be obtained by stretching the coordinates. This can be proved, rigorously. To this end, let us consider an electrically and magnetically anisotropic medium where permittivity ε and permeability μ are real or complex tensors. In frequency and wave vector domains, the Maxwell equations read

−

→

−

→ −

→

 ωεE 0 = −  k ×  H 0

(3.33a)

−

→

−

→ −

→

 ωμH 0 =  k ×  E 0

(3.33b)

Assume now that the coordinates are stretched by factors like (3.3). As in a vacuum, the stretch consists in using transformation (3.28) in the derivatives of the curls of the Maxwell equations. We assume that the electric and magnetic stretches are equal, that is the matching condition (1.9) holds. This results in the following equations that replace

(3.33), with  ks  vector (3.6) in place of  k  vector:

−

→

−

→ −

→

 ωεE 0 = −  ks ×  H 0

(3.34a)

−

→

−

→ −

→

 ωμH 0 =  ks ×  E 0

(3.34b)

The equation of dispersion obtained by combining the two equations (3.34) is identical to that obtained from equations (3.33), with  ks  in place of  k. From this,  ks  in any stretched medium is identical to  k  in the corresponding nonstretched medium. This can be written as:

−

→  

−

→  

 ks  

≡  k  

(3.35)

 PML

 medium

where ≡ means that the two vectors are solutions of the same equation of dispersion. In the special case where the PML is only stretched in  z  direction, we have: kx| PML ≡  kx| medium

(3.36a)





 k  



 y

≡  k

(3.36b)

 PML

 y medium
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 kz| PML ≡  sz kz| medium

(3.36c)

The phase and attenuation in  x  and  y  directions are like in the anisotropic medium. 

Conversely, the complex stretch  sz  attenuates the wave in  z  direction. This attenuation is added to the physical attenuation if the anisotropic medium is lossy. 

Consider now the reflection from a medium-PML interface perpendicular to  z, with stretch only in  z  direction within the PML. The equality of transverse wave numbers

(3.15) also holds, so that  k 1 x =  k 2 x =  ks 2 x  and  k 1 y =  k 2 y =  k s2 y, where  k 1 is the wave vector of the incident wave in the anisotropic medium, and  ks2 is the  ks  vector of the wave transmitted into the PML. Since  k 1 and  ks2 are solutions of the same equation of dispersion, as expressed by (3.35), their third components  k 1 z  and  ks 2 z  are equal. Then, we have:

−

→

−

→

 ks 2 =  k 1

(3.37)

The transverse fields are continuous across the interface, so that in the case where the incident  E  field is perpendicular to  z  direction, set (3.18) also holds. To derive the reflection coefficient,  H  field is replaced with  E  field in (3.18c) and (3.18d) by using the Maxwell equations in the two media. Consider for instance (3.18c). Using (3.33b) and

(3.34b), and replacing  ks 2 with  k 1 from (3.37) in the right-hand side, we obtain:



−→



−→



−→

 μ−1−

→

 k 1 ×  E 01

+  μ−1−

→

 kr ×  E 0 r

=  μ−1−

→

 k 1 ×  E 02

(3.38)

 x

 x

 x

where  kr  is the wave vector of the reflected wave. This equation is nothing but the equation that would be obtained if the media on the two sides of the interface were identical. This also holds with the equation derived from (3.18d). Finally, the system (3.18) that gives the reflected field  E o r  is like at an interface between two identical media. From this, for the considered polarization, there is no reflection between any anisotropic medium and its PML counterpart obtained by stretching the coordinate perpendicular to the interface. The same conclusion also holds with the other polarization, where the  H  field is perpendicular to  z. 

Obviously, the absence of reflection also holds in the more general case of an interface between two PML media obtained by stretching the same anisotropic medium, provided that the transverse stretches of coordinates are the same in the two media. In that case,  ks

vectors in the two PMLs are identical, in place of (3.35), and  ks 1 replaces  k 1 in (3.37). 

This yields a set of four equations (3.18) like at an interface between two identical PML

media. 

The time domain equations corresponding to the frequency domain PML (3.34) are derived in Chap. 4 for lossy, anisotropic, and dispersive media. 
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3.6

The PML Matched to Nonhomogeneous Media

In some applications of numerical methods, a PML is needed on the boundary of a computational domain composed of several media. In this paragraph, we consider the case where a PML is set perpendicularly to the interface between two physical media, as shown in Fig. 3.2. For example, this is the case in computational domains that extend both in the air and in the ground. 

We assume that two general anisotropic media are separated with an interface normal to x, and that two PMLs perpendicular to  z  have been obtained by stretching the  z  coordinate with the same factor  sz. Let us consider an incident wave in medium 1 with wave vector

 ka1. Relationship (3.37) holds for  ka1 and the  ks  vector of the wave transmitted into PML

1, with only changes in notations. Here:

−

→

−→

 ks 1 =  ka 1

(3.39)

At the interface between PML 1 and PML 2, we have  k 1 y =  kry =  k 2 y  and  k 1 z =  krz

=  k 2 z. From this  ks 1 y =  ksry =  ks 2 y, and since the stretch of  z  is the same in the two PMLs,  ks 1 z =  ksrz =  ks 2 z. Finally, using (3.39):

 ks 2 y =  ksry =  ka 1 y ks 2 z =  ksrz =  ka 1 z (3.40)

Consider now the wave transmitted in medium 2, with wave vector  ka2. Equality of the components of the  k  vectors in the interface between the two media yields: x 

 ka1

PML 1

 ka1

 k

 k

 ar

1 ,  ks1

 kr ,  ksr

Medium 1

 z 

Medium 2

 k2 ,  ks2

 ka2

PML 2

Fig. 3.2 PML for nonhomogeneous media
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 ka 2 y =  kary =  ka 1 y ka 2 z =  karz =  ka 1 z (3.41)

Thus, from (3.40) and (3.41) two components of  ka2 and  ks2 are equal, so that the third components are also equal from (3.35). This holds for the reflected wave as well, and finally we can write:

−

→

−

→ −

→

−→

 ksr =  kar ks 2 =  ka 2

(3.42)

Consider now the continuity of transverse components at the interface between PML 1

and PML 2. For the  E  polarization perpendicular to  x  direction, the set (3.18) holds with z coordinate in place of  x  because the interface is perpendicular to  x  instead of  z. Using

(3.34), Eq. (3.18d) becomes



−→



−→



−→

 μ −1−

→

−1−

→

−1−

→

1

 ks 1 ×  E 01

+  μ 1  ksr ×  E 0 r =  μ 2  ks 2 ×  E 02

(3.43)

 y

 y

 y

that can be rewritten with (3.39) and (3.42):



−→



−→



−→

 μ −1−→

−1−

→

−1−

→

1

 ka 1 ×  E 01

+  μ 1  kar ×  E 0 r =  μ 2  ka 2 ×  E 02

(3.44)

 y

 y

 y

This is the equation that would be obtained at the interface between the nonstretched media 1 and 2. This also holds for the  z  component of (3.18). Finally (3.18) yields a set of equations identical to the set corresponding to the interface between the two nonstretched media. The conclusion is that the reflection coefficient between the two PMLs equals the reflection coefficient between the two media. This also holds for the transmission coefficient, and obviously for the other polarization of the incident wave as well. 

In summary, in a nonhomogeneous computational domain like the one in Fig. 3.2, continuity of the reflection and transmission coefficients between media of the inner domain is ensured within the PML. This means that the reflected and transmitted waves are continuous at the inner domain-PML interface. No spurious field is produced. The simulation of free space is perfect in the presence of the media interface, provided that the two PMLs are stretched with the same factor. 

3.7

The Uniaxial PML Medium

With the split PML (3.1) the equations governing the medium differ from the Maxwell equations, the PML is termed as nonMaxwellian in the literature. This renders its implementation difficult in such numerical methods as the finite element method. To overcome this problem, other formulations were developed like the one reported in Sect. 3.4. But the most popular unsplit PML is the uniaxial PML initially presented in [6] for use with the finite element method (FEM). This is an anisotropic Maxwellian medium where the field
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differs from that in the initial PML by a scale factor, but whose non-reflecting absorption is preserved. 

The uniaxial PML can be derived from the PML (3.5) by means of the following change of variables:

 E =

=

=

0 x

 sxE 0 x E 0 y

 syE 0 y E 0 z

 szE 0 z

(3.45a)

 H  =

=

=

0 x

 s∗ xH 0 x H  0 y

 s∗ yH 0 y H  0 z

 s∗ zH 0 z

(3.45b)

With this, Eq. (3.5a) becomes:

 ωε  1

0

 E = − 1  kyH  + 1  kzH 

 s

0 x

0 z

0 y

(3.46)

 x

 sys∗ z

 szs∗ y

If the matching condition holds,  sx =  s∗ , 

 , 

 x sy =  s∗

 y sz =  s∗

 z , so that (3.46) can be

rewritten as:

 s

 ωε ysz

0

 E = −  kyH  +  kzH 

 s

0 x

0 z

0 y

(3.47)

 x

Similar equations are found from the other five equations of (3.5). The resulting system can be rewritten as:

−

→

−

→

 ωε 0 εsE = −

0

 k ×  H  0

(3.48a)

−

→

−

→

 ωμ 0 μsH =

0

 k ×  E 0

(3.48b)

where tensors  εs  and  μs  read:

⎡  s

⎤

 y sz

0

0

 sx

 ε

⎢

⎥

 s =  μs = ⎣ 0

 szsx

0

 s

⎦

(3.49)

 y

 s

0

0

 x sy

 sz

Equations (3.48) are the frequency domain Maxwell equations of an anisotropic medium of permittivity and permeability (3.49), called the uniaxial PML medium. Equations (3.48) can be used in a natural way with the frequency domain finite elements method [7]. Time domain equations will be derived in the next chapter. 

The absence of reflection from an interface located between two split PMLs whose transverse conductivities are equal is preserved with the uniaxial PML. In a computational domain surrounded with a PML ABC, the fields computed with the split PML (3.1) and with the uniaxial PML are identical in the inner domain, while in the PMLs they differ with ratios equal to the scaling factors in (3.45). The split PML is a stretch of coordinates while the uniaxial PML is a stretch of fields. 
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3.8

The Complex Frequency Shifted PML

In previous paragraphs, the stretching factors always are assumed of the form (3.3). In facts, the absence of reflection from a vacuum-PML interface, or more generally from PML-PML interfaces, also holds with any stretching factor. This is because the derivations in (3.15)–(3.25), and later with more general media, are valid with any  sx,  sy,  sz. What is required is only that the transverse stretches are equal on the two sides of the interface, and that the electric and magnetic stretches are equal, i.e.  s

∗

 u =  su

for  u =  x,  y,  z. From

this, any other stretching factor can be envisaged in PMLs. Obviously, a requirement is that the stretching factor renders the PML lossy. 

The simplest stretching factor is a real constant. Such a pure real stretch of the coordinate perpendicular to the interface produces no absorption. It has been used implicitly in the past in FDTD computer codes where the cells were stretched so as to move away the ABC while letting unchanged the overall number of cells (see discussion on the location of traditional ABCs in Chap. 1). Use of this stretch is limited for numerical reasons because it rapidly degrades the sampling of the shortest wavelengths. A real stretch was also introduced in the context of the PML concept either to increase the natural decrease of evanescent waves [8], or to reduce the conductivity in the PML [9]. This simply consists in replacing unity in (3.3) with a real constant larger than unity. Nevertheless, use of a real stretch in a PML is also limited in magnitude because it increases the numerical reflection of traveling waves from the PML, due to the coarser sampling of shortest wavelengths. As shown in the following, a better solution to deal with evanescent waves is provided with the complex frequency shifted (CFS) PML. 

The CFS PML was introduced by Kuzuoglu and Mittra [10] with the intention of rendering the PML medium causal. They added a degree of freedom α u  to the stretching factor. With in addition a real stretch κ u  in place of unity in (3.3), the CFS PML factors are defined as:

 σu

 su =  κu +

 (u =  x, y, z)

(3.50)

 αu +  jωε 0

Notice that α u  is homogeneous to a conductivity. In the following we assume that the PML medium is a wall PML perpendicular to  x  direction, only stretched in  x  direction. It is obvious from (3.50) that he features of the CFS-PML medium depend on the ratio of the frequency of interest to the frequency

 αx

 fα =

(3.51)

2 πε 0

For  f >> f α, parameter α x  is negligible in (3.50), so that the medium is a regular PML. 

Conversely, for  f << f α the stretch of  x  coordinate is real and the medium no longer absorbs the waves. 
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Due to the absence of absorption at low frequency, the CFS PML could appear as of little interest for use as an ABC in numerical methods. In fact, it is very well suited to the optimum absorption of frequency spectra composed of both evanescent and traveling waves present in many realistic physical problems. As derived in Chap. 2, the theoretical absorption of evanescent waves within a regular PML (2.35) may be so enormous that it cannot be properly sampled in space by finite methods. This results in a strong or even total numerical reflection from the PML ABC. As shown in the following, the CFS PML

based on the stretching factor (3.50) allows the enormous absorption of evanescent waves to be reduced to a more reasonable value that can be sampled by numerical methods without significant spurious reflection [11]. 

We are now mainly interested in the waveform within the CFS PML. We consider the 2D case that has been generalized to evanescent waves in Chap. 2. In the CFS PML the wave numbers (2.27) also hold, with  su  factors (3.50) instead of (2.6). By inserting these wave numbers into the sinusoidal waveform (2.4), the counterpart of (2.30) is obtained for a matched CFS-PML perpendicular to  x (σ y = 0). If in addition the ( X,  Y ) coordinates defined in Fig. 2.6 are used, the CFS-PML waveform can be expressed as follows: ψ =  ψ jω t−cosh χ X

− j ω κ

 C(χ,θ) x

 c

sinh  χY

 c

 x −1+

 σx

 jωε

0  e

 e−  ωc

 e

0+ αx

(3.52)

The first two exponentials are nothing but the waveform of a nonhomogeneous wave propagating in  X  direction and evanescent in  Y  direction in a vacuum. The additional exponential accounts for the CFS-PML. As expected, at high frequency, i.e. if  f >> fα, with κ x = 1 the waveform (3.52) reduces to the waveform in the split PML (2.31). 

Conversely, if  f << f α, (3.52) can be rewritten as ω

 ψ =  ψ

− j ω κ

cosh  χ  cos  θ x

 κ

sinh  χ  sin  θ x

 c

 x −1+  σx

 αx

 c

 x −1+  σx

 αx

 vacuume

 e

(3.53)

where  ψvacuum  is the product of the first two exponentials in (3.52). The first exponential in (3.53) is an additional phase term. The second exponential is an absorbing term. Its argument is negative for waves evanescent toward +  x [11], because the signs of θ and χ

are opposite in that case (either θ > 0 and χ < 0 or θ < 0 and χ > 0). The attenuation rate mainly depends on σ x  sinh χ/α x. In the case where κ x = 1 using (3.51) the magnitude of the wave can be rewritten as

 f

 σ

|

 x

 ψ

sinh  χ  sin  θ x

 f

 ε

 PML| = | ψvacuum| e α  0 c

(3.54)

Notice that the behaviour of the wave in  x  direction could also be obtained by inserting the wave number  kx (2.27a) into exp(− j kxx). For  f << f α this yields the following attenuation coefficient





 ω κ

sinh  χ  sin  θ x

 C

 c

 x +  σx

 αx

 x =  e

(3.55)
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Coefficient (3.55) gives the overall decrease of the wave in  x  direction, while the coefficients in (3.53) and (3.54) only give the extra decrease due to the CFS-PML. The natural decrease is included in ψvacuum. 

Since sinh χ = 0 for traveling waves, only evanescent waves are attenuated below f  α. Strictly speaking, coefficients (3.54) and (3.55) are not absorbing coefficients. It is evident from (3.55) that they only account for the natural decrease of the evanescent wave upon the stretched length  (κx +  σx/αx)x. Whatever the interpretation of these coefficients may be, what is important is that the extra attenuation in (3.54) is far smaller than its counterpart in a normal PML (2.35) for strongly evanescent waves and  f << fα. This is because sinh χ ≈ cosh χ for χ >> 1 so that coefficients in (3.54) and (2.35) are about equal for  f =  f  α, and then coefficient in (3.54) is far closer to unity for  f <<  f  α. From this, and by means of an adequate choice of the transition frequency (3.51), the CFS

PML can allow the attenuation to be reasonable, i.e. neither too strong nor too weak, at both the evanescent and traveling frequencies present in actual physical problems. This is illustrated in the following with a waveguide problem. 

Let us consider a parallel-plate waveguide where the modes are evanescent (1.4) below the cutoff frequency. Notice that the waveform (1.4a) is consistent with the general waveform in a vacuum, given by (2.30) with σ x = 0. For a wave evanescent toward +  x, (1.4a)

corresponds to θ = π/2 and χ < 0, or θ = − π/2 and χ > 0, in (2.30). Far below cutoff

(1.4c), the following holds:

 ω  sinh  χ = ± nπc  for  ω << nπc

(3.56)

 a

 a

so that the CFS-PML attenuation in (3.54) no longer depends on frequency. By an adequate choice of the free parameter α x  this attenuation can be set equal to that of traveling waves at  f >  f  α and normal incidence. This is realized by equating the argument of the exponential in (3.54) with the argument of exp(− σ xx/ε0c). Using (3.51) and since θ =

± π/2 and θ χ < 0 in the guide, this yields

 σ

 σ

−  x = −2 πε 0  x  1  nπc

(3.57)

 ε 0 c

 αx ε 0 c  2 π a

This equation gives α x  that renders the attenuation of low frequency evanescent waves equal to that of high frequency traveling waves:

 π

 α

 cε 0

0 =  n

(3.58)

 a

From (3.51), (3.58), and (1.4c), frequency  f  α corresponding to α0 is then: fα 0 =  nc =  fcutoff

(3.59)

2 a
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Fig. 3.3 Coincidence of the
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Thus, with α x = α0 (3.58) the frequency  f  α of the transition between the two regimes of the CFS PML is also the frequency  f cutoff  of the transition between the evanescent and traveling waves of the considered mode in the waveguide. This is summarized in Fig. 3.3. 

In summary, with α x (3.58) the absorption is about uniform at all the frequencies, with the exception of a narrow band centred about the cutoff frequency where the attenuation vanishes because at the cutoff the propagation is parallel to the vacuum-PML interface. 

As will be shown in Chap. 5, a uniform attenuation is preferable in numerical methods, because an enormous attenuation as that produced by the regular PML (2.35) results in a strong numerical reflection. The CFS PML is very well suited to the considered waveguide problem. This also holds in other physical problems where evanescent waves are present at low frequency with the product ω sinh χ about constant like in (3.56), allowing then the attenuation to be about uniform and reasonable at all the frequencies of interest. This is the case in wave-structure interaction problems and in problems involving Floquet modes. 

Both problems are addressed in Chap. 6. 
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Time Domain Equations for the PML Medium

4

In Chap. 3, the PML medium matched to a vacuum has been introduced in time domain

(3.1), from which the frequency domain equations (3.5) were derived. The PML (3.1) is known as the split PML. In the first part of the present chapter, it is shown that other time domain equations can be derived from (3.5), which yields other time domain PMLs matched to a vacuum. These time domain PMLs are the convolutional PML (CPML) and the near PML (NPML). The field components are not split in the CPML and in the NPML, but auxiliary variables are needed to account for the PML medium, as with the dependent current interpretation addressed in Sect. 3.4. In this first part of the chapter, time domain equations are also provided for the uniaxial PML (3.48) matched to a vacuum. 

The other parts of this chapter are devoted to the derivation of time domain counterparts of the frequency domain equations of the PML matched to general media (3.34). More precisely, in the second part of the chapter, time domain equations are derived for the split PML, the CPML, the NPML, and the uniaxial PML, in the case of a PML matched to isotropic lossy media. In the third part, time domain equations are provided for PMLs matched to anisotropic media. And in the fourth part, PMLs matched to dispersive media are addressed. 

4.1

Time Domain PML Matched to a Vacuum

In the following, three sets of time domain equations are derived from frequency domain equations (3.5), namely the split PML, the CPML, and the NPML. Equations for the uniaxial PML are derived from (3.48). 
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4 Time Domain Equations for the PML Medium

4.1.1

The Split PML

Since the introduction of the PML concept [1], the time domain equations of the split PML (3.1) have been widely used in computational electromagnetics. Nevertheless, in a recent paper [2], it was shown that the requirements of the split PML can be reduced to only eight variables to be stored in the walls of the PML, in place of ten variables with (3.1). These new equations are derived in the following. To this end, let us consider a PML perpendicular to  x, where σ y = σ z = 0 so that the loss term is only present in Eqs. (3.1d)–(3.1e) and (3.1j)–(3.1k). Let us define two auxiliary variables as t





 χex(t) = 1

 E t dt

(4.1a)

 μ

 x

0 −∞

 t



 χhx(t) = 1

 H

 ε

 x(t )dt

(4.1b)

0 −∞

where  Ex =  Exy +  Exz  and  Hx =  Hxy +  Hxz. By integrating on time Eqs. (3.1c), (3.1f), 

(3.1i), (3.1l), we can write:

 ∂χhx

 ∂χhx

 Eyz =

 E

(4.2)

 ∂

 zy = −

 z

 ∂y

 ∂χex

 ∂χex

 Hyz = −

 H

(4.3)

 ∂

 zy =

 z

 ∂y

This shows that subcomponents  Eyz  and  Ezy  can be obtained at any time from a unique quantity  χhx. Similarly,  Hyz  and  Hzy  can be obtained from  χex. From this, the four Eqs. (3.1c)–(3.1f) can be replaced with only three equations, namely (4.1b) and two modified Eqs. (3.1d) and (3.1e):

 ∂E
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(4.4a)

 ∂
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 ∂x

 ∂x∂y

 ∂

 ∂H
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(4.4b)

 ∂

 x Ezx =

 t

 ∂x

 ∂x∂z

Similarly (3.1i)–(3.1l) are replaced with (4.1a) and two dual equations of (4.4). Finally, system (3.1) reduces to eight equations involving eight variables to be stored,  Ex, χ ex,  Eyx, Ezx,  Hx, χ hx,  Hyx,  Hzx. In the edge and corner regions, the number of variables cannot be reduced so that (3.1) must be used in numerical methods. 

4.1 Time Domain PML Matched to a Vacuum
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4.1.2

The Convolutional PML

The convolutional PML (CPML) is a set of time domain equations [3] derived from frequency domain equations (3.5). The major interest of the CPML equations is its easy generalization to any physical medium. Consider for instance (3.5a), or equivalently

(3.27a). In time domain the latter can be written as:

 ∂

 ∂

 ∂H

 ε Ex

 Hz

 y

0

=  s

−  s

(4.5)

 ∂

 y (t) ∗

 z (t) ∗

 t

 ∂y

 ∂z

where * is the convolution product, and  sy(t)  and  sz(t)  are the inverse Laplace transforms of the inverses of the stretching factors  sy(ω) and  sz(ω). Consider now stretching factors of the form (3.3). The inverse Laplace transform of the inverse of (3.3) reads: su(t) =  δ(t) +  ζu(t)

(4.6a)

where δ(t) is the Dirac function, and

 σ

 ζ

 u −  σu

 ε t

 u(t) = −

 e

0  u(t)

(4.6b)

 ε 0

where  u( t) is the unit step function. Then, Eq. (4.5) can be rewritten as
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 ∂

 ∂H

 ε Ex
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 y
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+  ψ

 ∂

 hzy −  ψhyz

(4.7)

 t

 ∂y
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where:

 ∂

 ψ

 Hz

 hzy =  ζy(t) ∗

(4.8a)
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 ψ

 y

 hyz =  ζz (t) ∗

(4.8b)

 ∂z

Five equations similar to (4.7) are obtained from (3.5b)–(3.5f) for the time derivatives of the other five components of the field. This system is equivalent to the Maxwell equations, with the addition of auxiliary quantities ψ ezy, ψ eyz, … , ψ hxy, ψ hyx. There are 12

additional quantities in the case of a PML medium stretched in the three dimensions. In the walls of a PML, where only one direction is stretched, there are only four ψ variables, for instance ψ eyz, ψ exz, ψ hxz, ψ hyz  in a PML perpendicular to  z. In the walls, the storage requirements are then the same as with the split PML (3.1), while in the edge and corner regions 18 variables have to be stored and advanced, instead of 12 with (3.1). 

In time domain methods, the advance of the auxiliary quantities requires a convolution. 

In general, this is a large computational burden. In the case of exponential impulses like (4.6b) the convolution is recursive and can be performed with a small number of operations. This is illustrated with the FDTD method in Chap. 5. 
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In the case where the CFS stretching factor (3.50) is used, the inverse Laplace transform (4.6) is replaced with:

 δ(t)
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 u(t)

(4.9a)

 u
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 ε 0 κ 2 u

and Eq. (4.5) yields in place of (4.7)
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 ε Ex

 Hz

 y

0
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− 1
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 hzy −  ψhyz

(4.10)

 t

 κy ∂y

 κz ∂z

where ψ hzy  and ψ hyz  are also given by (4.8). 

4.1.3

The Near PML

The Near PML (NPML) was introduced [4] with the intention of simplifying the implementation of the PML ABC in problems where the inner medium is the gyrotropical ionosphere. It was called a Near PML because it is equivalent to a true PML only in the case where the conductivity does not depend on space coordinates. Nevertheless, numerical experiments in [4] showed no more reflection from the NPML ABC than from the regular PML ABC. The absence of reflection from vacuum-NPML or NPML-NPML

interfaces was proved theoretically later [5, 6]. 

Let us start from Eqs. (3.5) or (3.27). Assuming that the conductivities and then the stretching factors are constant in the PML, (3.27a) can be rewritten as
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(4.12b)
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Similar manipulations can be done with (3.5b)–(3.5f), resulting in the definition of 12 variables ξ e  and ξ h  in addition to the six components of the field. The time domain counterparts of (4.12a) reads
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 ∂
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 ε Ex
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(4.13)

 ∂t

 ∂y

 ∂z

and by using (3.3) the time domain counterpart of (4.12b) can be written as:
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Equation (4.13) and the other five equations obtained from (3.5b)–(3.5f) are identical to the Maxwell equations, with  E  and  H  components replaced with auxiliary quantities ξ e and ξ h  in the curls. From this, in computational methods the algorithm used in the inner domain can also be used in the NMPL. In addition, two differential equations have to be solved per component, for instance (4.14) for  Ex. 

As assumed in the above as incorporating the stretching factors in the space derivatives in (4.11), the NPML is identical to the true PML only in the case where the stretching factors do not depend on space coordinates. Nevertheless, as proved in [5, 6], at the interface between two NPMLs having different conductivities, or between a vacuum and a NPML, there is no reflection. From this, for use as an ABC in numerical methods, the NPML is equivalent to a true PML, because in that case the conductivity is constant in the elementary volumes or cells, so that the actual PML ABC is a juxtaposition of different NPMLs of constant conductivity with no reflection from their interfaces. 

As with the CPML, in the general case there are 18 variables in the NPML, instead of 12 with the split PML. Nevertheless, in the walls of the NPML only ten variables have to be computed and stored, as with the split PML. For instance, in a wall NPML

perpendicular to  z, only ξ exz, ξ eyz, ξ hxz, ξ hyz  differ from the field components, because  sx

=  sy = 1. The NPML can be implemented easily in any physical medium. For example, if the permittivity ε0 is replaced with a tensor in (4.13) and in the corresponding  Ey  and Ez  equations, the algorithm used in the inner domain is left unchanged in the NPML. 

The only modification is the solution of 12 differential equations like (4.14) in the NPML

(four equations in the walls). 

4.1.4

The Uniaxial PML Medium

Let us consider frequency domain equations (3.48) of the uniaxial PML. In the following the prime is omitted, the fields in the uniaxial PML are simply denoted as  Ex, …,  Hz. 

The first component of (3.48a) can be rewritten as:

 sysz

 ∂Hz

 ∂Hy

 jωε 0

 Ex =

−


(4.15)

 sx

 ∂y

 ∂z
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In time domain, a convolution is needed in the left-hand member. To remove it, an auxiliary variable  Dx  is introduced [7]

 sz

 Dx =  ε 0

 Ex, 

(4.16)

 sx

so that (4.15) becomes:
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 jωsyDx =

−

(4.17)
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Replacing then  sx,  sy,  s z, with their explicit values (3.3) and performing an inverse Fourier transform, that is replacing  j ω with the time derivative, the time domain counterparts of (4.16) and (4.17) read:
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Five similar sets of two equations are derived from the remaining five components of

(3.48). Equation (4.19) is like a component of the Maxwell-Ampere equation in a lossy medium, and (4.18) is a differential equation, so that the uniaxial PML can be regarded as a lossy medium with a set of six differential equations. 

The application of the uniaxial PML to the FDTD method is described in [7]. In some papers, the uniaxial PML is denoted as unsplit PML, although other unsplit PMLs do exist, namely the CPML and the NPML. But the uniaxial PML has the unique feature of being Maxwellian, that is satisfying the Maxwell equations. 

4.2

Time Domain PML for Lossy Media

In the following, the time domain equations of the PML matched to an isotropic lossy medium are derived. As in the case of a vacuum, four versions of the PML for lossy media are derived, namely the split PML, the CPML, the NPML, and the uniaxial PML. 

4.2.1

Split PML for Lossy Media

Let us consider the frequency domain Maxwell equations of a lossy medium of conductivity σ. As shown in Chap. 3 for any general medium, the equations of the corresponding PML are obtained by stretching the coordinates. From this, the PML equations for lossy media read
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The  x  component of (4.20a) can be written as
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As in a vacuum, (4.21) can be split into two subequations with  E o x  component split into two subcomponents  E o xy  and  E o xz:
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By replacing the stretching factor s y  with (3.3), Eq. (4.22a) becomes σσy

 jωε 0 +  σ +  σy +

 E 0 xy = −  jkyH 0 z

(4.23)

 jωε 0

Since dividing with  j ω in frequency domain corresponds to integrating on time, the time domain counterpart of (4.23) is:
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 t
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From (4.22b) a similar equation gives the time derivative of subcomponent  Exz. The  y and z components of (4.20a) can also be split into subequations, with  Ey  and  Ez  split into subcomponents, resulting in four equations similar to (4.24). Finally, since Eq. (4.20b)

is like in a PML matched to a vacuum, the time domain equations in the split PML

matched to a lossy medium are those in the PML matched to a vacuum (3.1), with only the modification of the first six Eqs. (3.1a)–(3.1f) according to (4.24). The modification consists of the addition of the conductivity of the medium σ to the PML conductivity, and the addition of an extra term proportional to the medium conductivity, the PML

conductivity, and the integral on time of the corresponding electric subcomponent. 

As shown in the next chapter, the six equations like (4.24) can be discretized easily with the FDTD method. The above PML for lossy media was first presented in [8]. This was probably the first extension of the PML absorbing boundary to a medium that differs from a vacuum or a dielectric. 

52

4 Time Domain Equations for the PML Medium

4.2.2

CPML for Lossy Media

Equation (4.21) in the PML matched to lossy media can be rewritten in time domain as:

 ∂

 ∂

 ∂H

 ε Ex

 Hz

 y

0

+  σE
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(4.25)

 ∂
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that is similar to (4.5), with only the addition of the term σ  Ex  in the left-hand side of the equation. From this, the convolutions and the corresponding ψ variables defined in the case of the PML matched to a vacuum are left unchanged in the presence of a loss term in the medium. This yields the following counterpart of (4.10):
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(4.26)

 t

 κy ∂y

 κz ∂z

where ψ quantities are also given by (4.8). Equation (4.26) is like that in the lossy medium, with the addition of the ψ quantities to the curl. Two similar equations are obtained for the evolution on time of  Ey  and  Ez  components. The three equations governing the components of the  H  field are left unchanged in comparison with the CPML matched to a vacuum. The implementation of the CPML in marching on time finite methods is easy. The discretized equations are like in the corresponding lossy medium, with only the trivial addition of ψ variables governed by equations like (4.8). 

4.2.3

NPML for Lossy Media

In that case, with the variable changes (4.12b), Eq. (4.21) becomes in time domain:

 ∂

 ∂ξ

 ∂ξ

 ε Ex

 hzy

 hyz

0

+  σE

−

(4.27)

 ∂

 x =

 t

 ∂y

 ∂z

where ξ hzy  and ξ hyz  are governed by (4.14) as well. Two similar equations hold for the evolution in time of  Ey  and  Ez  components. Finally, the six equations governing the field components in the PML are identical to the Maxwell equations of the lossy medium, with ξ variables substituted to the  E  or  H  components in the curls. From this, the implementation of a NPML matched to a lossy medium is trivial in finite methods. Only the advance of the ξ e  and ξ h  quantities by means of differential equations like (4.14), that are independent of the medium, has to be added to the algorithm. 

4.2.4

Uniaxial PML for Lossy Media

A uniaxial PML for isotropic lossy media was presented in [9]. In frequency domain it can be obtained from the PML matched to a vacuum by replacing ε0 with the complex
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permittivity of the medium. From this, Eq. (3.48a) is replaced with σ

−

→

−

→ −

→

 ωε 0 1 +

 εsE 0 = −  k ×  H 0

(4.28)

 jωε 0

whose first component can be written as
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 sysz
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 jωε 0 1 +
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−

(4.29)

 jωε 0

 sx

 ∂y

 ∂z

Let us now define two auxiliary variables as:

 D =

 x

 syDx

(4.30a)

 sz

 Dx =  ε 0

 Ex

(4.30b)

 sx

Then (4.29) can be rewritten as
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or in time domain:
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Moreover, (4.30) yields in time domain:
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Equations (4.32) and (4.33b) are like (4.19) and (4.18) in the uniaxial PML matched to a vacuum, and (4.33a) is a special case of (4.33b). Then, these three equations can be discretized easily with finite methods. In marching on time methods, (4.32) is used to advance on time  D x, then (4.33a) is used to advance  Dx, and finally (4.33b) permits  Ex  to be advanced. Two sets similar to (4.32), (4.33) are obtained from (4.28) for the advance of components  Ey  and  Ez. And since (3.48b) also holds in the lossy uniaxial PML, the equations for the advance of the magnetic field are like in the uniaxial PML matched to a vacuum. 
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4.3

Time Domain PML for Anisotropic Media

To derive time domain equations from the frequency domain equations (3.34) of a PML

matched to any general medium two methods can be used:

1. incorporating the stretching coefficients in the left-hand side of equations (3.34). 

2. incorporating the stretching coefficients in the right-hand side of equations (3.34). 

With the isotropic lossy medium considered in the previous paragraph, method 1 corresponds to the split PML, while method 2 corresponds to the CPML and the NPML. With such a simple medium, the latter method is trivial and yields time domain equations close to the equations of the nonstretched lossy medium. That is also true when more general physical media are considered. Obtaining time domain equations is trivial and always possible by incorporating the stretching factors in the right-hand side of (3.34), whatever the medium may be. 

4.3.1

Split PML for Anisotropic Media

Several papers were published in the literature on the generalization of the split PML

to anisotropic media [10–15]. Two approaches are possible for nondispersive media. The first one consists of deriving equations and subequations involving only components and subcomponents of the  E  and  H  fields. The second one is based on use of fields  D  and  B

that are split in place of  E  and  H. Discussions about the former approach can be found in [13]. The latter approach, which is more general and more easily derived, is presented in the following. To this end, the first component of (3.34) is rewritten as k

 ω

 y

 D 0 x = −

 H 0 z +  kz H 0 y

(4.34a)

 sy

 sz

where  D 0 x  is the  x  component of the left-hand member of (3.34a):

−→

 D 0 x =  εE 0

(4.34b)

 x

Equation (4.34a) and component  D 0 x  can be split as k

 ω

 y

 D 0 xy = −

 H 0 z

(4.35a)

 sy

 ωD 0 xz =  kz H 0 y

(4.35b)

 sz
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This yields the time domain equations that govern subcomponents  Dxy  and  Dxz

 ∂Dxy

 σ

 ∂

+  y

 Hz

 D

(4.36a)

 ∂

 xy =

 t

 ε 0

 ∂y

 ∂Dxz

 σ

 ∂H

+  z

 y

 D

(4.36b)

 ∂

 xz = −

 t

 ε 0

 ∂z

Four similar equations are obtained from the other two components of (3.34a). With marching on time methods, this permits the six subcomponents of  D  to be advanced. 

Assuming that the medium is nondispersive, field  E  can then be computed by solving for

 E  the algebraic equation:

−

→

−

→

 D =  ε E

(4.37)

where each  D  component is the sum of the corresponding two subcomponents. If only the permittivity is anisotropic in (3.34), (3.34b) is like in a vacuum and yields the same split Eqs. (3.1g)–(3.1l). In the case where the permittivity is a tensor, a  B  field is introduced in (3.34b) and split into subcomponents as done in the above with  D. This yields dual equations of (4.36), (4.37). 

4.3.2

CPML for Anisotropic Media

In time domain, the first component of frequency domain equation (3.34a) can be written as:

−→

 ∂ ε E

 ∂H

 ∂H

 x =

 z

 y

 s

−  s

(4.38)

 ∂

 y (t) ∗

 z (t) ∗
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 ∂z

where it is assumed that tensor ε is not frequency dependent. The convolutions are identical to those in a PML matched to a vacuum (4.5), so that (4.38) can be rewritten as

−→

 ∂ ε E

 ∂H

 ∂H

 x = 1

 z − 1

 y +  ψ

 ∂

 hzy −  ψhyz

(4.39)

 t

 κy ∂y

 κz ∂z

where the ψ parameters again are given by (4.8). This equation is nothing but the corresponding equation in the anisotropic nonstretched medium, with the addition of ψ variables. Five similar equations are obtained from (3.34). Finally, the time domain equations of the PML are those of the corresponding anisotropic medium with only the addition of ψ variables to the curls, as in (4.39). The ψ variables are governed by the same Eq. (4.8) as in a CPML matched to a vacuum. From this, the implementation of the CPML for anisotropic media in marching on time finite methods is straightforward. 
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4.3.3

NPML for Anisotropic Media

With the variable changes (4.12b), the  x  component of Eq. (3.34a) becomes in time domain:

−→

 ∂ ε E

 ∂ξ

 ∂ξ

 x =

 hzy −  hyz

(4.40)

 ∂t

 ∂y

 ∂z

where ξ hzy  and ξ hyz  are governed by (4.14) as well. Five similar equations hold for the evolution in time of  Ey,  Ez,  Hx,  Hy, and  Hz  components. Finally, the six equations governing the field components in the PML are identical to the Maxwell equations of the anisotropic medium, with ξe and ξ h  variables instead of  E  or  H  components in the curls. 

That is true whatever the tensors ε and μ may be. From this, the implementation of the NPML matched to any anisotropic medium is trivial in finite methods. Only the advance of the ξ quantities with equations like (4.14) has to be added to the algorithm. 

4.4

Time Domain PML for Dispersive Media

In some physical media, the permittivity or the permeability depends on frequency. These media may be isotropic or anisotropic. Two important classes of material dispersion are the Debye relaxation and the Lorentzian resonance where ε depends on frequency. 

Another example of dispersive medium is the gyrotropic, i.e. anisotropic, Ionosphere. In such media, use of the split PML would not be easy nor effective, because a convolution would be present in (4.37). In the following we limit our purpose to the CPML and NPML cases whose time domain equations derivation is straightforward. The isotropic uniaxial PML is also addressed. 

4.4.1

Time Domain CPML and NPML for Isotropic or Anisotropic

Dispersive Media

Obtaining time domain equations for the CPML and NPML is trivial. In the case of a CPML matched to a dispersive anisotropic medium, the first component of (3.34a) is like

(4.38), with a convolution in the left-hand member due to the frequency dependence of the permittivity tensor:
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→
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The convolutions in the right-hand member are identical to those in the CPML matched to a vacuum (4.5), so that (4.41) can be rewritten as



−

→

 ∂ ε ∗  E

 ∂H

 ∂H

 x = 1

 z − 1

 y +  ψ
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 hzy −  ψhyz

(4.42)

 t

 κy ∂y

 κz ∂z

where ψ variables are given by (4.8). Five similar equations hold for the other five components of the field. Once again, the CPML equations are like the ones in the corresponding non stretched medium, with the addition of ψ variables to the curls. If a numerical algorithm is available for the inner domain, implementing the corresponding PML is straightforward. 

Similarly, in the NPML the first component of (3.34a) yields:



−

→

 ∂ ε ∗  E

 ∂ξ

 ∂ξ

 x =

 hzy −  hyz

(4.43)

 ∂t

 ∂y

 ∂z

so that the equations in the NPML are identical to those in the corresponding inner domain with ξe and ξ h  variables (4.12b), (4.14), in place of  E  or  H  components in the curls. 

4.4.2

Time Domain Uniaxial PML for Isotropic Dispersive Media

Use of the uniaxial PML with the FDTD method was reported [9] in the case of isotropic dispersive media where ε = ε0 ε r(ω). In that case, (4.15) is replaced with sysz

 ∂Hz

 ∂Hy

 jωε 0 εr(ω)

 Ex =

−

(4.44)

 sx

 ∂y
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that is close to (4.29) in the lossy medium case. It can be solved by the variable changes D =  ε

 x

 r (ω)Dx

(4.45a)

 sz

 Dx =  ε 0

 Ex

(4.45b)

 sx

so that (4.44) becomes:
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−

(4.46)

 jωε

 x

0
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Equations (4.45b) and (4.46) are identical to (4.30b) and (4.31) and yield time domain equations (4.33b) and (4.32). Equation (4.45a) is like the auxiliary equation used in the corresponding non stretched dispersive medium [9], so that its time domain counterpart is like in this medium. 
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The finite-difference time-domain method (FDTD) [1] is probably the most used numerical technique in electromagnetics. The basic FDTD scheme introduced by Yee in 1966

[2] is simple and versatile. It has been extended to most existing physical media, such as anisotropic, dispersive, chiral, and even nonlinear media. The original Yee scheme is a second-order approximation of the Maxwell equations, both in time and space. 

More sophistical schemes have been developed over the years, mainly with the intention of reducing the numerical dispersion of the Yee scheme. Four order schemes, pseudospectral time-domain (PSTD) schemes, multi-resolution time-domain (MRTD) schemes, all are schemes with widely smaller numerical dispersion [1]. But they are more complex and less versatile, so that nowadays the basic Yee scheme remains the most popular in applications. In this chapter we only address the implementation of the PML

ABC in the Yee scheme. PMLs for other FDTD schemes can be found in the literature. 

References are provided in Chap. 7. 

5.1

FDTD Schemes for the PML Matched to a Vacuum

FDTD schemes for the split PML, the CPML, the NPML, and the uniaxial PML, are derived in the following. 
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5.1.1

FDTD Scheme for the Split PML

In the three-dimensional PML, 12 sub-components have to be advanced on time (3.1) in each FDTD cell. The regular FDTD grid [1] is left unchanged, simply two subcomponents are computed at the location of each component. For instance,  Exy  and  Exz  are computed at  Ex  nodes of the regular FDTD grid. Discretization of (3.1) is straightforward. As an example, for the advance of  Exy  from time  n  to time  n + 1 at grid node ( i + 1/2,  j,  k), Eq. (3.1a) yields, with usual FDTD notations [1]:





 E  n+1

 n

 xy

=  A

 i+1 / 2 ,j,k

 y Exy i+1 / 2 ,j,k
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where coefficients  Ay  and  By, evaluated at  Ex  node ( i + 1/2,  j,  k), are of the form Au(σu) = 2 ε 0 −  σut

(5.2a)

2 ε 0 +  σut

 Bu(σu) =

2 ε 0

 , 

(5.2b)

2 ε 0 +  σut

or alternatively with an exponential discretization:

− σ t

 A

 u ε

 u(σu) =  e

0

(5.3a)

 ε 0 ( 1 −  Au)

 Bu(σu) =

(5.3b)

 σut

Eleven equations similar to (5.1) are obtained for the advance of the other 11

subcomponents. 

In the walls of the PML (Fig. 3.1), two conductivities equal zero. From this, two sets of two subequations merge into single equations identical to the equations in a vacuum. For example, in a wall PML perpendicular to  x, subequations (3.1a)–(3.1b) and (3.1g)–(3.1h)

merge into two equations where  Exy  and  Exz  are replaced with  Ex, and  Hxy  and  Hxz  are replaced with  Hx. From this, only ten variables have to be advanced in time and stored in the walls of the PML. In the edges of the domain, where one conductivity equals zero, the conductivities that govern the two subcomponents of each couple of subcomponents are different, so that the 12 subcomponents must be computed and stored separately. This also holds in the corners where three different conductivities are present in each cell. Finally, with the split PML (3.1), ten quantities have to be stored in the walls that represent most of the PML, and 12 quantities in the remaining parts. 

For the advance of components in the vacuum-PML interface, equations like (5.1) have to be slightly modified because the space derivative in the direction perpendicular to the
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interface involves one node in the vacuum and one node in the PML. The right equations are obtained by considering that the vacuum is nothing but a special case of PML media where the subcomponents are merged. From this, the two subcomponents are replaced with the corresponding component at the node in the vacuum. For example,  Hzx +  Hzy  is replaced with  Hz  in one bracket of (5.1) at an interface perpendicular to  y. Similarly, at the nodes in the vacuum located half a cell from the interface, a component involved in the space derivative of the regular FDTD equation is in the interface, that is in the PML. 

This component is replaced with the sum of the corresponding two subcomponents. 

In the case where the regular split equations (3.1) are replaced in the walls with the eight-variable split PML derived in Sect. 4.1.1, Eqs. (4.1) and (4.4) have to be discretized for the advance of the χ variables and the remaining subcomponents of the field. This can be done easily. For example (4.1a) and (4.4a) yield, respectively:
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(5.5)

where Δ Hzx/Δ x  is the discretized space derivative of  Hzx  in  x  direction, and  Ax  and  Bx are given by (5.2) or (5.3). 

5.1.2

FDTD Scheme for the Convolutional PML

The six convolutional PML equations like (4.5) involve convolutions of the space derivatives of the field components with ζ u( t) functions given either by (4.6b) for the regular PML of by (4.9b) for the CFS PML. In both cases ζ u( t) is an exponential function. This makes it possible to perform a recursive convolution. Consider the convolution  g(t) of an exponential exp(−  a t) with a function  f ( t):

 t



 g(t) =

 f t  e− a(t− t )dt

(5.6)

0

It can be shown easily that, provided that Δ t  is small enough in order that the variation of  f ( t) is small during interval [ t,  t + Δ t], so as to approximate it with  f ( t + Δ t/2), the following holds:

 g(t +  t) =  e− atg(t) +  f (t +  t/ 2 )  1 −  e− at (5.7)

 a
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This will permit the calculation of the ψ functions in (4.8) at FDTD time  n + 1 in function of their values at previous time  n. 

Consider now Eq. (4.10). It can be discretized as
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where the space index ( i + 1/2,  j,  k), where all the variables are localized, is omitted. 

The advance in time of ψ functions can be performed using recursive formula (5.7). In the CFS PML case, (4.8a), (4.9b) and (5.7) lead to, at node ( i + 1/2,  j,  k):  n+1 / 2
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where:
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 u(σu +  κuαu)

Five equations like (5.8) are obtained for the advance of the other five components of the field, and 11 equations like (5.9) for the advance of the other ψ variables. For the six ψ e  variables,  p  and  q  are also given by (5.10), provided that the matching condition holds. In summary, using six equations like (5.8) and 12 equations like (5.9), the CPML

algorithm consists in computing the  E  components and ψ e  variables at times  n,  n + 1, and the  H  components and ψ h  variables at times  n − 1/2,  n + 1/2. Notice that the  H

field in (5.9) is not centered in time. The average with previous value could be used, but in actual FDTD calculations (5.9) yields quite satisfactory results. 

5.1.3

FDTD Scheme for the NPML

The FDTD discretization of the NPML equations is straightforward. The six equations for the advance of the components of the field, like (4.13), are nothing but the Maxwell equations. They are discretized as Maxwell equations, with ξ e  or ξ h  variables in the right-hand side in place of  E  or  H  components. The ξ variables are advanced in time with differential equations (4.14) and five similar sets. For instance, (4.14a) yields for ξ hzy ξn+1 / 2 =  A

+  B Hn+1 / 2 −  Hn−1 / 2

(5.11)

 hzy

 yξ n−1 / 2

 hzy

 y

 z

 z

where  Ay  and  By  are given by (5.2) or (5.3). 
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In summary, using the six regular FDTD equations and 12 equations like (5.11), the NPML algorithm consists of computing the  E  components and ξ e  variables at times  n,  n

+ 1, and the  H  components and ξ h  variables at times  n − 1/2,  n + 1/2. Notice that the ξ variables can be advanced at all the points of the grid just after the advance of the  E

or  H  corresponding component, so that no previous values of  E  or  H  need to be stored. 

For example, ξ hzy  can be advanced with (5.11) just after advancing  Hz, in the same space loop. 

5.1.4

FDTD Scheme for the Uniaxial PML

The time domain equations of the uniaxial PML are composed of a set identical to the Maxwell equations in a lossy medium, with in addition a set of six differential equations. 

The  Dx  Eq. (4.19) can be discretized as follows:  n+1 / 2

 n+1 / 2
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+  

−

 x
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 tBy

(5.12)
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 z

where  Ay  and  By  are given by (5.2) or (5.3). The differential equation (4.18) is discretized in [3] as
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that leads to
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where:

 C = 2 ε 0 −  σzt ;  F = 2 ε 0 +  σxt ;  G = 2 ε 0 −  σxt (5.15)

2 ε 0 +  σzt

2 ε 0 +  σzt

2 ε 0 +  σzt

Assuming that  Ex  and auxiliary variable  Dx  are known at time  n, and that  H  components are known at time  n + 1/2, Eq. (5.12) allows  Dx  to be advanced to  n + 1. Then, 

(5.14) provides us with  Ex  at time  n + 1. Equations like (5.12) and (5.14) hold for  Ey and  Ez, with corresponding  Dy  and  Dz. Finally, dual discretized equations can be derived in the same way for the advance of the  H  field from n − 1/2 to n + 1/2, with also three auxiliary variables and three auxiliary equations. 

We notice that in the most general PML where three conductivities are different there are 12 variables to be stored and advanced in time, as with the split PML. Conversely, in the walls of a PML, where two stretching factors equal unity, only eight quantities have to be stored and advanced. Consider for instance a wall perpendicular to  x, then in tensor
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(3.49) only  sx  differs from unity so that only  sx  is present in the  Ey  and  Ez  counterparts of

(4.15). These two equations are then like equations in a regular lossy medium so that no auxiliary equation is needed for the advance of  Ey  and  Ez. Finally, in the walls of a PML, an auxiliary variable is only required for the longitudinal components, that is  Ex  and  Hx in a wall normal to  x  direction. In terms of memory, the requirements of the uniaxial PML are then identical to those of the split PML with the eight-variable discretization in Sect. 4.1.1. 

5.1.5

A Comparison of the Requirements of the Different Versions

of the PML ABC

The computational requirements of the different PMLs are compared in Table 5.1. The requirements are those of the wall PML that corresponds to most of the PML ABC

with a 3D computational domain. Storage requirements and numbers of additions and multiplications per time step are given for one FDTD cell. 

In term of storage requirements, the uniaxial PML and the eight-variable split PML are the least demanding. In term of computational time, multiplications are more costly than additions, so that the best two PMLs are probably the uniaxial PML and the regular split PML. Choosing the best PML in view of building a computational code may depend on such parameters as the computer where the code will be used, the encoding method, and the envisaged extensions to general media. Nevertheless, nowadays the NPML appears as a very attractive choice in many cases since it combines a moderate number of operations per cells with an easy and trivial extension to any dispersive or anisotropic medium. 

5.2

FDTD Schemes for PMLs Matched to Lossy Isotropic Media

As in the above for the PML matched to a vacuum or any isotropic lossless medium, in the case of a PML matched to a lossy medium, various FDTD schemes can be used. They are based on the different time domain equations presented in Sect. 4.2. 

Table 5.1 Number of variables to be stored and number of operations per FDTD cell in the walls of the different PML versions

Storage

Operations

Multiplications

Additions

Regular split PML

10

56

16

40

Eight-variable split PML

8

60

18

42

Uniaxial PML

8

48

20

28

CPML

10

56

20

36

NPML

10

52

20

32
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Consider first the split PML. Equation (4.24) can be discretized easily as follows at  Ex mesh nodes:

⎡ 



⎤

 n+1 / 2

 n+1 / 2





 t 

  Hzx

+  Hzy

 σσy

 En+1 =

 σ +  σ

+

 σ +  σ ⎣

+

⎦

 xy
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 y En

 xy

 B

 Sn+1 / 2

(5.16)

 ε

 y

 xy

0

 y

 ε 0

where  Sxy  is an auxiliary variable computed at  Exy  nodes, and  A  and  B  are given by (5.2)

or (5.3) with σ + σ y  in place of σ u. The auxiliary variable  Sxy  is the integral in (4.24). It is advanced in time with:

 Sn+1 / 2 =

+  

 xy

 Sn−1 / 2

 xy

 tEnxy

(5.17)

Five FDTD equations like (5.16) are obtained for the advance of the other five electric subcomponents. The advance of the magnetic subcomponents is left unchanged in comparison with a PML matched to a vacuum. In the most general case, six auxiliary variables  S  have to be stored and advanced in time. In the walls of a PML ABC, only two  S  variables are present. 

In the case of the CPML, Eq. (4.26) is like in a CPML matched to a vacuum (4.10)

with an additional term σ  Ex  on the left-hand side. It can be discretized as the equation in a regular lossy medium:
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 n+1 / 2

 t

1  Hz

 Hy

 En+1 =
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− 1

+  ψn+1 / 2 −  ψn+1 / 2
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 A(σ )Enx
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(5.18)

 ε

 hzy

 hyz

0

 κy
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 κz
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where  A  and  B  are (5.2) or (5.3) with σ in place of σ u  and ψ quantities are advanced in time with (5.9). Two similar equations hold for  Ey  and  Ez. Thus, the advance of the

 E  field in the PML is like in the corresponding nonstretched lossy medium with two ψ h variables added to the discretized components of the  H  curl. And the advance of the  H

field is like in the CPML matched to a vacuum. 

Consider now the NPML. Equation (4.27) is like in the corresponding nonstretched lossy medium, so that the FDTD advance of  Ex  is performed with the FDTD equation of the lossy medium, with ξ h  quantities instead of the  H  components in the curl. This also holds for  Ey  and  Ez. In addition, the same equations as in a PML matched to a vacuum

(5.11) are used for advancing the ξ variables. 

Finally, consider the uniaxial PML. The advance of  Ex  component involves three equations, namely (4.32), (4.33a), (4.33b). The first one and the last one are like (4.19) and

(4.18) in a PML matched to a vacuum. So, firstly  D x  is advanced using (5.12) with  D x in place of  Dx  and σ in place of σ y. Secondly  Dx  is advanced with the discretized form of (4.33a):

2 ε 0 −  σyt





 Dn+1 =

+

2 ε 0

−

 , 

 x

 Dn

 D n+1

 D n

(5.19)

2 ε

 x

 x

 x

0 +  σyt

2 ε 0 +  σyt

and finally,  Ex  is advanced with (5.14).  Ey  and  Ez  are advanced in the same way. 
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5.3

FDTD Schemes for PMLs Matched to Anisotropic Media

The split PML time domain equations (4.36) are like the split equations (3.1a)–(3.1b) in a PML matched to a vacuum, with  D  in place of  E. The FDTD equations are also like those in a vacuum, for instance of the form (5.1) for (4.36a). This allows the six subcomponents of auxiliary field  D  to be advanced in time, that is  D n advanced to  D n+1. Then,  E n+1 is computed by solving for the  E  components the algebraic system (4.37). If the permittivity is also anisotropic, the advance of  H  field by one time step is similar, with  B  and  H  in place of  D  and  E. 

With the CPML or the NPML, obtaining the discretized equations of the corresponding PML is straightforward, provided that the time domain equations and their discretized counterparts do exist in the considered anisotropic medium. Like with a PML matched to a vacuum or to an isotropic lossy medium, described in details in the above:

• in the CPML, the FDTD equations are the same as in the corresponding medium, with only the addition of ψ variables to the discretized curls. The ψ variables are advanced in time with (5.9)–(5.10) that do not depend on the constitutive parameters of the medium. 

• in the NPML, the FDTD-PML equations are the same as in the corresponding medium, with ξ variables instead of  E  and  H  components in the curls. The ξ variables are advanced with equations like (5.11) that do not depend on the constitutive parameters of the medium. 

In terms of effort to encoding the scheme, the CPML and the NPML are very attractive, because most of the code used in the inner domain can be reused in the PML ABC. The only modification in the PML is the addition of the advance of the auxiliary variables ψ

or ξ, and the introduction of these variables in the right-hand side of the FDTD equations. 

5.4

FDTD Schemes for PMLs Matched to Dispersive Media

In the cases of the CPML and the NPML, the comments in the previous paragraph also hold. The FDTD equations in the PML are identical to those in the dispersive medium, with only the addition of ψ variables to the curls in the CPML, and with ξ variables instead of  E  and  H  components in the curls of the NPML. So, once again, on condition that a FDTD scheme is available for the dispersive medium, deriving the FDTD scheme for the corresponding CPML or NPML is trivial, even in the case where the medium is dispersive and anisotropic. 

In the case of the uniaxial PML matched to isotropic dispersive media reported in [4], 

using (4.45)–(4.46) three time domain equations are obtained for each component of the  E

field, as using (4.30)–(4.31) in the PML for lossy media. Since (4.45b) and (4.46) are like
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(4.30b) and (4.31), the FDTD advance of component  Ex  is also performed in three steps. 

Two steps are like in the lossy case. The third step that replaces (5.19) is governed by the time domain counterpart of (4.45a) that involves the frequency-dependent permittivity of the medium. For the discretization of this equation, the reader is referred to [1, 4]. 

5.5

Profiles of Conductivity in the PML ABC

As mentioned in Sect. 2.4, in numerical methods a spurious reflection is produced from vacuum-PML and PML-PML interfaces. To reduce this reflection the conductivity in the PML must grow from a small value in the vacuum-PML interface to a larger value beside the PEC that ends the PML. Two profiles of conductivity are of current use, namely the polynomial profile and the geometrical profile [5]. Only the electric conductivity is considered in the following. The magnetic conductivity can be obtained using the matching condition (1.9). 

With the polynomial profile, the PML conductivity σρ, either σ x, σ y, or σ z, varies as ρ  n

 σρ(ρ) =  σm

(5.20)

 δ

where  n  is the degree of the polynomial, δ is the PML thickness, ρ is the distance from the interface, and σ m  is the conductivity on the outer side of the PML (for ρ = δ). Using

(2.26b) the theoretical reflection at normal incidence is then: R( 0 ) =  e− ( 2 /(n+1 )) (σmδ/ε 0 c) (5.21)

From this, for a given reflection  R(0), σ m  reads

 (

 σ

 n + 1 )ε 0 c

 m = −

ln  R( 0 )

(5.22)

2 δ

The actual conductivity implemented at FDTD mesh node of index  L ( L = 0 in the interface) is computed as

 ρ(L)+ ρ/ 2



 σρ(L) = 1

 σ

 ρ

 ρ(u)du

(5.23)

 ρ(L)− ρ/ 2

where Δρ is the space step. At mesh points of indexes  L = 0, ½, 1, …,  N − ½, this leads to

 σ

 ε

 σ

 m

0 c  ln  R( 0 )

 ρ( 0 ) =

= −

(5.24a)

 (n + 1 ) 2 n+1 Nn

2 n+2 ρN n+1





 σρ(L >  0 ) =  σρ( 0 ) ( 2 L + 1 )n+1 −  ( 2 L − 1 )n+1

(5.24b)

where  N  is the number of FDTD cells in the PML thickness. 
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With a geometrical profile the conductivity grows as a geometrical progression of the form



 σρ(ρ) =  σ 0  g 1 /ρ  ρ

(5.25)

so that the conductivity is multiplied with factor  g  from one FDTD cell to the next. The corresponding normal reflection (2.26b) is then

 R( 0 ) =  e− ( 2 /ε 0 c)[ (gN −1 )/  ln  g] σ 0 ρ, (5.26)

and for a given reflection  R(0), σ0 reads

 ε

 σ

0 c

ln  g

0 = −

ln  R( 0 )

(5.27)

2 ρ gN − 1

Finally, using (5.23) the numerical conductivity at indexes  L = 0, ½, 1, …,  N − ½

reads

√





 g − 1

 ε  1 − √ g  ln  R( 0 )

 σ

0 c

 ρ( 0 ) =  σ 0

=





(5.28a)

ln  g

2 ρ gN − 1

 ε

 σ

 g − 1

0 c( 1 −  g)  ln  R( 0 )

 ρ(L >  0 ) =  σ 0 √

 gL =



 gL

(5.28b)

 g  ln  g

2 ρ√ g gN − 1

The polynomial profile is the most used in the literature, with degrees ranging from 2

to 5. The geometrical profile has an interesting property. The ratio of successive numerical conductivities (5.28b) is constant throughout the PML. Since a PML with a growing conductivity is nothing but a juxtaposition of successive PMLs with different conductivities, a spurious reflection occurs from every inner interface. This reflection mainly depends on the ratio of the successive conductivities. From this, the constant ratio of the geometrical profile is better suited to reduce the spurious reflection. This is especially the case when evanescent waves are present. In that case, the geometrical profile allows the PML thickness to be thinner than with the polynomial profile. This was investigated in [5, 6], and is discussed in Chap. 6. 

5.6

The PML ABC in the Discretized FDTD Space

In previous chapters, the properties of PML media are derived in the continuous space. 

In view of application as an ABC, the most important feature is the absence of reflection from the interface between an inner medium and its corresponding PML. Unfortunately, in the discretized space of the FDTD method, or more generally with any finite method, things are a little different. An amount of reflection is produced from vacuum-PML, or from PML-PML, interfaces, despite the fact that the continuous theory predicts no

[image: Image 26]
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reflection. It can be shown easily by means of numerical experiments that this spurious reflection may be either quite small, smaller than − 80 dB for example, or quite large, close to total reflection. It also appears that the reflection strongly depends on parameters such as the thickness of the PML expressed in cells, the conductivity profile σρ(ρ) in the PML, or the separation between the PML and the object of interest. All this implies that a theory is needed in view of predicting the spurious reflection, so as to be able to control it and to optimize the parameters of the PML ABC. 

Figures 5.1, 5.2 and 5.3 report results of three experiments. The first one, Fig. 5.1, 

deals with the reflection of traveling plane waves from a plane PML boundary like the one in Fig. 2.4. The plotted results are comparisons of the theoretical reflection (2.26) with the observed reflection from FDTD simulations, for two values of the normal reflection

(2.26b). As observed, the actual FDTD reflection significantly differs from the theoretical reflection. Notice that the smaller the theoretical reflection  R(0), the larger the difference between the actual value and the theoretical value. 

The second experiment is provided in Fig. 5.2. In that case, a 20-cell long thin plate is placed within a domain surrounded with a PML ABC. A unit-step incident wave strikes the plate. What is reported in Fig. 5.2 is the field normal to the surface of the plate at its end. Beside a reference solution computed within a very large domain, denoted as the exact solution, results are given for various plate-PML separations, from 2 FDTD cells to 20 FDTD cells. As clearly observed, the results strongly depart from the reference solution when the PML-plate separation is small. From the discussion in Chap. 1 about the location of ABCs with respect to the sources, such a behavior in function of the plate-PML separation suggests that the PML does not absorb properly the evanescent fields that Fig. 5.1 Comparison of the theoretical reflection R(θ) with results of FDTD experiments, for  R(0)

= − 60 dB and  R(0) = − 100 dB. The PML is four cells in thickness with a parabolic profile of conductivity ( n = 2 in (5.20))

[image: Image 27]
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 Hi
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E 

Test point

4-cell PML

Fig. 5.2 Electric field normal to the surface of a 20-cell long 2D thin plate. The space step is 5 cm, the PML conductivity is linear ( n = 1 in (5.20)), and the incident wave is of the form [1 − exp(t/τ)], where τ = 1 ns

surround the plate. This will be confirmed later in this chapter by means of the theory of the numerical reflection. 

The last experiment shows the field radiated from a short dipole antenna. The upper part of Fig. 5.3 compares the fields computed using Higdon operators and three PML

ABCs of thicknesses 4, 8, 12 FDTD cells, respectively. As observed, the PML ABC

yields about perfect results, even with a 4-cell-thick PML. Nevertheless, in frequency domain it appears that the results strongly depart from the analytical solution below a certain frequency with the 4- and 8-cell thick PMLs. This will be interpreted later with the theory of the numerical reflection. 

In the following, the theory of the propagation and reflection of waves in the FDTD

PML is derived in the 2D case. As mentioned in Chap. 2, use of a PML medium as an ABC is mainly a 2D problem, even in 3D applications. Moreover, in realistic applications of the FDTD method, the theory cannot predict with great accuracy the reflection from a PML ABC, because the waves that will strike the ABC are not known before the calculation. The objective of the numerical theory is only to allow us to understand why an amount of spurious reflection is present, so as to be able to design the parameters of

[image: Image 28]
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Fig. 5.3 Electric field radiated by a short dipole. Some FDTD results are compared with analytical results in time domain (upper part) and in frequency domain (lower part). The conductivity in the PMLs varies geometrically (5.25) with g = 2.15 and  R(0) = − 40 dB. The dipole and the point of observation are 2 FDTD cells from the PML ABC

the PML in view of reducing its thickness and placing it as close as possible to the region of interest of the computational domain. To this end, the 2D case is sufficient. 
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5.6.1

Propagation of Plane Waves in the Split FDTD-PML

In this paragraph, we consider the split PML, in the 2D case of Chap. 2. The CPML, the NPML, and the uniaxial PML, will be addressed later. The stretching factor is (2.6), the case of the CFS-PML factor (3.50) will also be addressed later. 

Let us consider the 2D FDTD equations corresponding to the continuous equations

(2.3), in the case where the matching condition (1.9) holds:
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with A and B from (5.2) or (5.3). By enforcing a plane wave of the form (2.4) in (5.29), 

we obtain
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where  kx  and  ky  are the components of the wave vector in the discretized space, and: u =  ejωt/ 2 −  Aue− jωt/ 2  (u =  x, y) (5.31)

2 j

System (5.30) is identical to (2.5) with the changes kuu

 ku → 1 sin

 (u =  x, y)

(5.32a)

 u

2
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 u  1

 su =  s∗ →

 (

 u

 u =  x, y)

(5.32b)

 ωt Bu

so that the solutions of (5.30) can be obtained from the solutions of (2.5) with the changes

(5.32). This yields the following equation of dispersion in the FDTD PML
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where

 u =  u/Bu (u =  x, y), 

(5.34)

and the following wave numbers, in the general case of nonhomogeneous waves: kxx

 x

sin

=

 xC(χ, θ)

(5.35a)

2

 ct

 kyy

 y
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(5.35b)

2

 ct

Notice that (5.35) yields (2.27) if the space and time steps vanish. Also, since (5.30) is identical to (2.5) with changes (5.32), components (2.12) remain valid in the discretized space, so that the ratio  E 0/ H 0 (2.14) is left unchanged, it equals the impedance of a vacuum, as in the continuous PML. 

5.6.2

Reflection from a PML-PML Interface

Let us now consider the transmission and reflection of a wave at an interface between two infinite PMLs, with uniform conductivities σ x 1 and σ x 2 in the PMLs and σ x 0 in the interface (Fig. 5.4). As in the continuous case, the  ky  wave numbers in the two media are equal, that is  ky 1 =  kyr =  ky 2. From this and from (5.35b), the set (2.33) also holds. 

Because in the FDTD grid there are  Ey  nodes in the interface, the same  Ey  values are used in the two media for the advance of field components half a cell from the interface, so that continuity of  Ey  is retained in the interface. This reads  Ey 1 +  Eyr =  Ey 2, or with  x = 0 in the interface,  E 0 y 1 +  E 0 yr =  E 0 y 2, as in the continuous case (2.18a). There is no  Hz  node in the interface. In place of (2.18b), a second equation connecting the incident, reflected, and transmitted waves is provided with the FDTD equation of the interface (5.29b)
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Fig. 5.4 An interface between, a two infinite PML media of conductivities σ x 1 and σ x 2, b a vacuum and a  N-cell thick PML ABC with conductivity growing in the PML (from [6], with permission of IEEE)

where  Ax 0 and  Bx 0 are (5.2), (5.3) for conductivity σ x 0. Consider now components  Ey  and Hz. At location  x  in medium 1, with  x = 0 in the interface they can be written as Ey 1 +  Eyr =  E 0 y 1 e− jkx 1 x +  E 0 yre− jkxrx ejωt− jky 1 y (5.37a)





 Hz 1 +  Hzr =  H 0 z 1 e− jkx 1 x +  H 0 zre− jkxrx ejωt− jky 1 y, (5.37b)

and in medium 2:

 Ey 2 =  E 0 y 2 ejωt− jkx 2 x− jky 1 y (5.38a)

 Hz 2 =  H 0 z 2 ejωt− jkx 2 x− jky 1 y (5.38b)

Moreover, using (5.30b), (5.34) and (5.35a),  H 0 z  can be expressed as ε 0 1

 H 0 z =

 E

 μ

0 y, 

(5.39)

0  C(χ , θ )

so that  H 0 z 1,  H 0 zr,  H 0 z 2 can be replaced with  E 0 y 1,  E 0 yr,  E 0 y 2, in (5.37b) and (5.38b). 

Defining then  R  as the ratio of the reflected to the incident  E  fields in the interface, that is  R =  E 0y r/ E 0 y 1, we have  E 0y r =  R E 0 y 1 and from the continuity of  Ey  in the interface, 
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 E 0 y 2 = (1 +  R)  E 0 y 1. Finally, since with (2.33) we have  kxr = −  kx 1 and C(χ1, θ1) = −

C(χ r, θ r) = C(χ2, θ2), Eqs. (5.37) and (5.38) become Ey 1 +  Eyr =  E 0 y 1  e− jkx 1 x +  Rejkx 1 x ejωt− jky 1 y (5.40a)
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Using these field components in (5.36), we obtain:

 ( 1 +  R)ejωt/ 2 =  Ax 0 ( 1 +  R)e− jωt/ 2
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By solving for  R, the reflection from the PML-PML interface is then 2 j
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(5.43)

2 j

1

 x 0 +  ct

 

 e− jkx 2 x/ 2 +  e− jkx 1 x/ 2

 x C(χ 1 ,θ 1 )

The exponentials involving  kx  wave numbers can be removed using (5.35a). This leads to

 R = − 2 jx 0 +  x 2 −  jx 2 −  x 1 −  jx 1

(5.44)

2 jx 0 +  x 2 −  jx 2 +  x 1 −  jx 1

where:
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(5.45)
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1 , θ 1 ) 2  x 2

Notice that  R  depends on conductivities σ x 1, σ x 2, σ x 0 from Ω x 1, Ω x 2, Ω x 0 (5.34). It also depends on the incidence angle θ1 and on the evanescence parameter χ1 from Λ x 1, Λ x 2 (5.45). As can be shown, (5.43) holds as a special case (χ1 = 0, so that C(χ1, θ1) =

cos θ1) the reflection coefficient given in [7, 8]. 

An important simplification of (5.44) is obtained in the case where the parameter cosh χ1 of the incident wave is large enough (strongly evanescent waves). In that case Λ xi →  j Ω xi  so that  R  tends to:

76

5 The PML ABC for the FDTD Method

 x 0 −  x 1

 R∝ = −

(5.46)

 x 0

Moreover, by assuming that ωΔ t << 1 and σ x Δ t/ε0 << 1 for all the conductivities, two assumptions that usually hold in PMLs, the Ω xi  parameters can be approximated as xi ≈ 1  (jωt +  σxit/ε 0 )

(5.47)

2 j

so that (5.46) becomes

 σx 1 −  σx 0

 R∝ =

(5.48)

 jωε 0 +  σx 0

Finally, at a vacuum-PML interface (σ x 1 = 0) the limit of  R  as cosh χ1 tends to infinity reads:

 R∞ =

 jσx 0 /ε 0 ω

(5.49)

1 −  jσx 0 /ε 0 ω

An example of reflection  R  from (5.44) is shown in Fig. 5.5, for the incidence θ1 =

± π/4 and cosh χ1 in the range 1–1000 (θ1 = + π/4 and χ1 < 0 or θ1 = − π/4 and χ1 > 0, so that the wave propagates and is evanescent toward +  x). As observed, from traveling waves (cosh χ1 = 1) to strongly evanescent waves (large cosh χ1),  R  grows up to  R∝. In accordance with (5.49), the strongly evanescent waves are reflected in totality ( R = − 1) at frequencies far smaller than cutoff

 σx 0

 fc =

(5.50)

2 πε 0

that equals 10 MHz in the case of Fig. 5.5. 

Validity of (5.46)–(5.48) is that of the assumption Λ xi →  j  Ω xi  for  i = 1, 2. Using

(5.47) and with χ1 = χ2 and θ1 = θ2 from (2.23), this yields the condition





|

2 j

 C(χ





1 , θ 1 )|  >> ct

 x  jωt +  σ

 (i = 1 ,  2 ). 

(5.51)

 xi t/ε 0

At low frequency, for  f << σ xi/2πε0, (5.51) reduces to: cosh  χ 1  >>  2 cε 0

 (i = 1 ,  2 )

(5.52)

 σxix

Condition (5.52) can be interpreted by considering the absorption coefficient of a plane wave in a continuous PML (2.35). If (5.52) holds the exponential coefficient in (2.35) is close to zero for  x = Δ x. This means that the evanescent wave in the PMLs must be absorbed in totality upon a range shorter than the FDTD cell size Δ x, i.e. within one cell. 

This is summarized in Fig. 5.6. This cannot be achieved, resulting in a strong numerical reflection from the interface. Notice that in the case of an interface between a vacuum
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Fig. 5.5 Reflection (5.44) from the interface between a vacuum and an infinite PML medium, for incidence θ = ± π/4 and various values of the evanescence coefficient cosh χ, from traveling waves (cosh χ = 1) to strongly evanescent waves (large cosh χ) (from [6], with permission of IEEE) Fig. 5.6 Theoretical decrease

of a wave in the PML medium

versus the FDTD grid, for

various evanescence

parameters χ

(σ x 1 = 0) and a PML, (5.52) requires cosh χ1 to be infinite. In fact, in that special case, using (5.47) in (5.44) it can be shown easily that a sufficient condition for the reflection to be total below frequency  f c (5.50), is that (5.52) holds for conductivity σ x 0 (and for σ x 2 because σ x 0 < σ x 2). In the general case, for  f > σ xi/2πε0 (5.51) shows that smaller values of cosh χ1 make  R∞ valid. This also holds with a vacuum-PML interface for  f > f c, as observed in Fig. 5.5. 

Let us now consider the case of homogeneous waves, where  C(χ1, θ1) = cos θ1. 

Assuming as in the above that ωΔ t << 1 and σ x Δ t/ε0 << 1, the following approximation to (5.44) can be derived:

 R ≈ − cos  θ 1  ( 2 σx 0 −  σx 1 −  σx 2 )x 4 ε 0 c

− cos2  θ 1  (σx 1 +  σx 2 + 2 jωε 0 )(σx 2 −  σx 1 )x 2

(5.53)

16 ε 2 c 2

0
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The first order term does not depend on frequency. At an interface between a vacuum and a PML of constant conductivity (σ x 1 = 0 and σ x 0 = σ x 2), this term is proportional to the PML conductivity σ x 2. In the case where σ x 0 = (σ x 1 + σ x 2)/2 the first-order term vanishes and the reflection is proportional to  x 2, as noted in [7]. With σ x 1, σ x 2, σ x 0, Δ x, θ in Fig. 5.5, (5.53) yields  R = − 97.46 dB for ωε0 << σ x 2, in accordance with the low frequency plateau of the traveling wave curve in the figure. 

In summary, at a single interface between two infinite PMLs the refection of homogeneous traveling waves mainly depends on the difference of the two conductivities. At a vacuum-PML interface the reflection can be reduced by decreasing the conductivity in the PML. But for a PML of finite thickness the overall absorption is then decreased. 

This is why a conductivity growing from a small value in the vacuum-PML interface to a larger value beside the outer side of the PML is used in actual FDTD PMLs. The reflection coefficient for such PMLs of finite thickness is derived in the next paragraph. 

The most important conclusion of the present paragraph is that evanescent waves may be strongly reflected from FDTD PMLs. This reflection is total below frequency (5.50) if

(5.52) holds. This is the case in Fig. 5.2 where the low frequencies are strongly reflected when the PML is close to the plate, that is within the evanescent region, resulting in a late time spurious reflection in time domain. Such a strong reflection of evanescent waves is present in most physical problems. From this, one could conclude that the PML ABC

suffers from the same drawback as the previously used ABCs that could not be placed within the evanescent regions. In fact, some remedies discussed later will render the PML

ABC capable of absorbing evanescent waves with a relatively small spurious reflection, so that it can be placed within evanescent regions, close to the region of interest of actual calculations. 

5.6.3

Reflection from a N-Cell Thick PML

We now consider an incident wave with parameters χ1, θ1, and a PML  N  cells in thickness with a nonuniform conductivity, i.e. a conductivity depending on the mesh index  L

(Fig. 5.4). The wave transmitted into the PML is of the form (2.12), (2.13), with the sine and cosine replaced with (2.28). At every interface,  ky  is left unchanged and (2.33) holds, so that  ky =  ky 1, χ = χ1, and θ = θ1, in the whole PML. The incident and reflected waves can be written as with a single interface (5.37a), (5.40a). Denoting by  T ( L) an unknown quantity at row  L, let the electric field  Ey  be written as: Ey(L) =  E 0 y 1 T (L)ejωt− jky 1 y (L = 1 , . . . , N − 1 ) (5.54)
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Similarly, at row  L + 1/2, using (2.12), (2.13) and (5.39), let the magnetic field be written as:

 ε

1

 H

0

 z (L + 1 / 2 ) =

 E

 T (L + 1 / 2 )

 μ

0 y 1

0

 C(χ 1 , θ 1 )

 jωt− jk

 e

 y 1 y (L = 0 , . . . , N − 1 )

(5.55a)

 Hzx(L + 1 / 2 ) =  C(χ 1 , θ 1 ) 2 Hz(L + 1 / 2 ) (L = 0 , . . . , N − 1 ) (5.55b)

And finally, at the end of the PML:

 Ey(N ) = 0

(5.56)

Inserting (5.40a) and (5.54) into the  N  FDTD equations of the advance on time of  Ey, and (5.55) into the  N  equations of the advance of  Hzx (5.29c), from  L = 0 to  L =  N − 1, we obtain a set of 2  N  equations for the 2  N  unknowns  R,  T (1/2), …,  T ( N − 1/2). After eliminating the incident wave number using (5.35a), this set can be written in the form

⎛
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(5.57)
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where  M  is the tridiagonal matrix
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and:

 α =  ct

1

;  D(L) =

1

 x C(χ 1 , θ 1 )

2 jx(L)





 ωt

 U = 1 +  αD( 0 )

1 −  Q 2 −  jQ ;  Q = 1 sin

 α

2





 V = − 1 +  αD( 0 )

1 −  Q 2 +  jQ

System (5.57) can be solved recursively for the unknown of interest  R. Notice that the reflection depends on the conductivity profile σ x( L) in the PML through Ω x( L). 
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For strongly evanescent waves, i.e. if cosh χ1 is large enough, α vanishes and then all the nondiagonal terms of matrix  M  vanish, and finally (5.57) reduces to the scalar equation  R U =  V. Under the same conditions as in the previous paragraph (ωΔ t << 1

and σ x(0) Δ t/ε0 << 1) reflection  R  from (5.57) also tends to the limit  R∞ (5.49), with just σ x(0) in place of σ x 0. The reflection is total below frequency σ x(0)/2πε0, on condition that (5.52) holds for σ x(0). 

In conclusion, the FDTD reflection from a vacuum-PML interface can be predicted easily with (5.57) for any N-cell thick PML with conductivity varying in the PML. What is of primordial importance is that the strongly evanescent waves are totally reflected below frequency (5.50) that is proportional to the conductivity in the interface σ x(0). 

Such a reflection is observed clearly with the field radiated from a dipole in the lower part of Fig. 5.3, where frequency  f c (5.50) equals 50.3 MHz with the 4-cell PML and 2.25 MHz with the 8-cell PML. In time domain this means that a total reflection will appear after a delay  tc  of the order of the inverse of  f c (5.50). This is exactly what is observed in Fig. 5.2. Thus, the conductivity in the interface σ x(0) is a critical parameter as designing a PML ABC, especially in problems of interaction of an incident wave with a scattering structure that are discussed in the next chapter. 

Figure 5.7 shows a comparison of the continuous reflection (2.26a) with the discrete reflection (5.57) for the same PMLs as in Fig. 5.1. The agreement of Fig. 5.1 with Fig. 5.7, 

that is of FDTD experiments with reflection (5.57), is good. The small difference is due to uncertainties in the measurements of the FDTD reflection. 

Fig. 5.7 Comparison of the theoretical reflection  R(θ) with low frequency limit of the reflection of traveling waves (5.57), for  R(0) = − 60 dB and  R(0) = − 100 dB

5.6 The PML ABC in the Discretized FDTD Space

81

5.6.4

Reflection from the CPML, the NPML, and the Uniaxial PML

The numerical reflection  R  in the 2D TE case is derived for the uniaxial PML and the CPML in [9], and for the NPML in [10]. The derivations are close to that of the split PML in the previous paragraph, details can be found in the two papers. The results are as follows:

• the numerical reflection from the uniaxial PML and from the NPML are identical, rigorously, to that from the split PML. This means that the uniaxial PML and NPML

reflections are also given by (5.44) for a single interface between two infinite PMLs, and by (5.57) for a PML of finite size like the ones used as an ABC in the FDTD

method. The equality is rigorous on condition that the same discretization, either a linear one (5.2) or an exponential one (5.3), is used in the three PMLs. 

• the numerical reflection from a convolutional PML (CPML) is also given by (5.44) and

(5.57), but with a little change in two parameters. Coefficients  Au  and  Bu  defined in

(5.2), (5.3) and used both in (5.44) and in (5.57) through  u (5.34) must be replaced with:

 Au = 1;  Bu = 1 +

 qu

(5.58)

 κu

1 −  pue− jωt

where  pu  and  qu  are given by (5.10) and κ u  is a real stretch.  Bu  in (5.58) is valid for a CFS-PML with stretching factor (3.50) and for a regular stretch (2.6) with κ u = 1 and α u = 0. Then, even with a regular stretch the reflection from the CPML differs from that of the split PML, the uniaxial PML, or the NPML. From a few experiments provided in

[9] it seems that the reflection of homogeneous waves from the CPML is slightly smaller than that from the other three PML implementations. Nevertheless, the difference is not significant. The interest of the CPML implementation is mainly in using a CFS stretching factor (3.50) in place of (2.6). 

5.6.5

Reflection from the CFS-PML

The complex frequency shifted PML (CFS-PML) consists in using the stretching factor

(3.50) in place of the regular factor (2.6). The factor (3.50) can be used with the uniaxial PML [11] or with the NPML, but the most used implementation is the convolutional CFS-PML [12]. As stated in the previous paragraph, in that case the numerical reflection is given by (5.44) and (5.57) with (5.58). 
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Let us now consider the case where the parameter cosh χ1 of the incident wave is large (strongly evanescent waves). By a derivation similar to that performed with the regular PML in Sect. 5.6.2, it can be shown easily that reflection (5.44) tends to j αx 0+ σx 0

 ε

 σx 0

 R∞ =

0 ω

(5.59)

1 −  j αx 0+ σx 0

 α

 ε

 x 0 +  σx 0

0 ω

where σ x 0 and α x 0 are σ x  and α x  in the interface. An example of reflection  R  from (5.44)

with (5.58) is shown in Fig. 5.8 for the same PMLs as in Fig. 5.5. This figure clearly shows that the total reflection of strongly evanescent waves can be removed with the CFS-PML. The reflection of low frequencies is bounded with a limit  R∞ given by the second ratio in (5.59). In addition, notice that the reflection departs from  R∞ below a certain frequency. This is because the theoretical absorption decreases below  f  α (3.51), 

resulting in a smaller numerical reflection. 

Figure 5.9 shows another comparison of the regular PML with the CFS PML [9]. 

The upper part shows that the CFS reflection can be widely smaller than the regular one around and below  f  α (= 18 MHz). However, the CFS reflection grows at low frequency, in the region where the coefficient in (3.54) grows and becomes close to unity. Thus, for the absorption of evanescent waves, the CFS PML is only better in a band of frequency. 

This is in accordance with (3.54). Because the coefficient in (3.54) only depends on the product ω sinh χ, the CFS PML can also improve the absorption in a band of cosh χ as illustrated in the lower part of Fig. 5.9. 

Fig. 5.8 Reflection (5.44) from the interface between a vacuum and an infinite CFS PML medium, for various values of the evanescence coefficient cosh χ, from traveling waves (cosh χ = 1) to strongly evanescent waves (large cosh χ) (from [9], with permission of IEEE)
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Fig. 5.9 Reflection of evanescent waves (5.57) from PMLs. Comparison of the regular PML with the CFS PML, in function of frequency for cosh χ = 10 (upper part), and in function of cosh χ for frequency 10 MHz (lower part) (from [9], with permission of IEEE) In summary to the results in Figs. 5.8 and 5.9, the CFS PML can widely improve the absorption of evanescent fields. Nevertheless, this improvement depends on many parameters, namely ω, sinh χ, σ x/α x, and θ. Especially, ω and sinh χ are critical parameters in

(3.54), so that one could fear that wide-band applications could not be achieved. Fortunately, as discussed in Sect. 3.8, in many physical problems ω and sinh χ depend on each other in a favorable manner. More precisely, the product ω sinh χ does not depend on frequency. This allows a reasonable coefficient (3.54) to be achieved at any evanescent frequency, resulting in a quite good absorption of evanescent waves in realistic problems. Such an achievement is illustrated in the next chapter for wave structure interaction problems and waveguide problems. 
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in Wave-Structure Interaction and Waveguide

Problems

In this chapter, use of the PML ABC in two typical applications of the FDTD method is described with details. The numerical reflection observed from the PML is interpreted and the PML parameters are optimized so as to reduce the computational cost of the PML

while preserving a satisfactory simulation of free space. 

The considered applications are, first a typical wave structure interaction problem like the ones faced in electromagnetic compatibility (EMC), second a waveguide problem. 

6.1

Wave-Structure Interaction Problems

Numerous applications of the FDTD method are wave-structure interaction problems, in the fields or Radar Cross Section (RCS), Bioelectromagnetics, or Electromagnetic Compatibility (EMC). In the latter case, typical problems are calculations of the fields and currents induced upon an object of interest by such incident waves as a lightning pulse or a nuclear electromagnetic pulse. These problems are open because the scattered field radiates toward the surrounding free space, so that an ABC is needed to limit the size of the computational domain. 

To compute acceptable results in EMC problems, it is known that such ABCs as the one-way wave equation [1, 2] or the matched layer [3, 4] must be placed some distance from the scattering structure, out of the evanescent region. In general, the required distance is of the order of the largest size of the structure. With the PML ABC, simple numerical experiments easily show that the PML either can be placed quite close to the structure, or must be placed some distance away, depending on the PML parameters. In the latter case, the overall computational domain is as large as with previously used ABCs, while in
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the former case it is dramatically reduced. Thus, the design of the PML strongly impacts the overall size of the computational domain. In the following the optimization of PMLs to be placed in the evanescent region, close to the structure, is addressed. Two optimum PMLs are possible, the first one based on use of the regular stretching factor (3.3), the second one based on the CFS factor (3.50). 

6.1.1

The General Shape of the Results Computed with a PML

Placed Close to a Structure

Various examples of wave-structure interaction results computed with PMLs close to the structure of interest can be found in [5–7]. If the PML is not properly designed, an important amount of spurious reflection occurs. This reflection cannot be explained with the continuous PML theory. It results from the FDTD discretization of space. The numerical reflection was analyzed empirically in [6] and interpreted theoretically later [8, 9]. In all the numerical experiments the electric field on the surface of scattering structures is correct for some time and then strongly departs from the exact solution. An example is shown in Fig. 5.2. In frequency domain, the electric field on the surface always is shaped as in Fig. 6.1. Below a certain frequency  fc  depending on the conductivity implemented in the vacuum-PML interface σ x(0), a strong reflection is observed, i.e. the results strongly depart from the exact solution computed with a PML or any ABC set far away from the structure. From  fc  to the resonance frequency of the structure, the results oscillate about the exact solution. And finally, above the resonance frequency no significant numerical reflection is present. 

Strong reflection

Cutoff frequency

Electric 

field

Oscillating reflection

Frequency

Exact solution

Resonance

Fig. 6.1 Typical shape of the electric field normal to the surface of a scattering structure, computed with a FDTD PML ABC placed close to the structure (from [9], with permission of IEEE)
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6.1.2

Interpretation of the Numerical Reflection

The shape of the spurious fields that contaminate the electric field on the surface of the structure (Fig. 6.1) can be interpreted easily by means of the theory of the numerical reflection derived in Sect. 5.6. First, frequency  fc  found on a pure empirical basis [6]

is nothing but frequency (5.50) derived from the numerical theory. This means that the strong spurious field below  fc  in Fig. 6.1 is due to the total reflection of evanescent waves whose cosh χ is large enough so as condition (5.52) holds. In general, below  f c  the field on the surface is several times larger than its exact value, because there are multiple reflections between the structure and the PML. Thus, when the regular stretching factor

(3.3) is used, conductivity σ x(0) in the vacuum-PML interface is a critical parameter that plays a key role in the design of PMLs to be placed in the evanescent region. 

To interpret the oscillatory reflection in Fig. 6.1, we must have an estimate of the parameter cosh χ of the evanescent waves surrounding the scattering structure. Assuming that these waves decay as

 e−  ω  sinh  χd

 c

(6.1)

where  d  is the distance from the structure, an estimate of sinh χ can be found by observing that the characteristic length of the decay of evanescent waves around a structure is of the order of its largest size at any frequency lower than the resonance. For a structure of largest size  w  this means that (6.1) is small for  d =  w, so that we can write: ω  sinh χ w =  p

(6.2)

 c

where  p  is of the order of, or larger than, unity. For our purpose, the exact value of  p  is of little importance, what is important is the frequency dependence of cosh χ. From (6.2)

we have



cosh  χ =

1 +  p 2 c 2

(6.3)

 ω 2 w 2

which shows that cosh χ is close to unity at the resonance frequency of the structure ω0

=  πc/ w. Finally, (6.3) can be rewritten as cosh2  χ 0 − 1  f  2

cosh  χ =

1 +

0

(6.4)

 f  2

where cosh χ0 is the value of cosh χ at the resonance  f 0. Notice that cosh χ and sinh χ

vary as 1/ f  for  f <<  f  0, like in a waveguide for  f <<  f cutoff (1.4b). Also, notice that ω sinh χ (6.2) does not depend on frequency, as a consequence of the fact that the characteristic length of the decay of evanescent waves is not frequency dependent. 
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Calculation of the numerical reflection from a PML with (5.57) and (6.4) clearly shows that the oscillatory reflection in Fig. 6.1 is due to the reflection of evanescent waves of the form (6.4). A detailed analysis can be found in [9]. At frequencies higher than  f c the evanescent waves penetrate within the PML with only a small reflection from the vacuum-PML interface. Then, in the PML where the conductivity grows from one FDTD

cell to the next, these frequencies are partially reflected from the inner interfaces of the PML. As frequency grows the reflection is mainly due to an electric conductivity or a magnetic conductivity, i.e. the reflection is either positive or negative. From this, the field computed on the structure, which is the addition of the exact field with the reflected field, oscillates about the exact field in function of frequency, as represented in Fig. 6.1. 

Figure 6.2 shows an attempt to reconstructing a FDTD result in [6] by means of the numerical reflection (5.57) and assumption (6.4). The upper part from [6] gives the normal electric field on a 2D 20-cell thin plate surrounded with various 4-cell PMLs set two cells from it. The lower part shows quantity 1 −  R  computed by (5.57) and (6.4) for the same four PMLs as in the FDTD calculation, at incidence 60°. As observed, the oscillatory region closely resembles that of the FDTD result. The low frequency plateau is also like its FDTD counterpart, although its magnitude, which does not depend on θ ( R = − 1 in this region), is lower than the FDTD one. The difference is due to multiple reflections between the PML and the structure so that the field upon the structure is not simply 1 −

 R. In conclusion, although such little arbitrary parameters as cosh χ0 are of concern, the theory of numerical reflection allows all the characteristics of the FDTD results to be well reconstructed and interpreted in the evanescent region of the frequency spectrum, below the resonance frequency. This clearly demonstrates that the spurious reflection in interaction problems is due to evanescent fields with frequency dependence like (6.2). 

6.1.3

Design of the PML Using a Regular Stretching Factor

In this paragraph, we consider PMLs with stretching factors (3.3). A practical method for designing a PML to be placed very close to the scattering structure, only two FDTD

cells from it, has been proposed in [6, 10]. The design of the PML is based on the existence of three critical parameters that impact the reflection from the PML ABC placed in evanescent fields. 

The first critical parameter is the conductivity in the interface σ x(0) that must be small enough in order that all the frequencies of interest are above frequency  f c (5.50), because below  f c  the reflection of strongly evanescent waves is total from the vacuum-PML

interface. This can be written as

 σx( 0 ) = 2 πε 0 f min

(6.5)

 θ
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Fig. 6.2 Comparison of the normal electric field computed by the FDTD method on a 20-cell thin plate (upper part) with quantity 1 −  R  computed using (5.57) and (6.4) with cosh χ0 = 1.1 (lower part) (from [6] and |9], with permission of IEEE) where  f min is the smallest frequency of interest and θ is a margin factor that will not be larger than 10 in actual computations. For time domain calculations,  f min is about the inverse of the duration of the computation  Dc, so that (6.5) can be rewritten as σx( 0 ) = 2 πε 0

(6.6)

 θDc

The second critical parameter is the rate of increase of the conductivity in the PML, from σ x(0) in the vacuum-PML interface to its maximum value on the outer side of the PML. The magnitude of the numerical reflection in the oscillatory region in Fig. 6.1

depends on the ratio of successive conductivities. The larger this ratio, the larger the magnitude of the oscillatory reflection. This can be verified easily by means of FDTD

experiments [6] and by means of numerical theory [9]. 
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The third critical parameter is the theoretical reflection at normal incidence  R(0) which must be large enough so as to absorb the traveling waves. In EMC applications, moderate absorptions are sufficient, of the order of 40 dB. 

As a consequence of the three critical parameters, in a PML placed close to a scattering structure, in the evanescent region, the conductivity must grow from a small value given by (6.6), to a value large enough so as to render  R(0) equal to a prescribed value, while the step of increase of the conductivity from one FDTD cell to the next must remain smaller than another prescribed value. From these three constraints, the profile of conductivity that yields the thinner PML, in terms of FDTD cells, is the geometrical profile of conductivity

(5.25). Conversely, with a polynomial profile the ratio of successive conductivities varies in the PML, leading to a thicker PML for a given level of residual reflection [6, 10]. 

The values to be set to the critical parameters in actual applications were estimated empirically [6, 10]. Fortunately, it was observed that they do not depend too much on the geometry and size of the scattering structure, with the exception of the ratio  g  of the geometrical profile of conductivity that depends on the size of the structure expressed in FDTD cells. Five consistent sets of critical parameters are given in [6, 10] in function of a synthetic parameter that expresses the expected accuracy of the results. Once the critical parameters θ,  g,  R(0) are chosen, the PML thickness  N, in cells, is given by the following formula obtained using (5.28a) and (6.6):







√



 θ

 N = 1 ln 1 −  c

 g − 1 ln  R( 0 )

 Dc

(6.7)

ln  g

4 π

 x

With the critical parameters in [10], quite good results can be obtained on structures that are several hundred cells in length, with PMLs that are typically 10–15 cells in thickness. Two examples are shown in Figs. 6.3 and 6.4. The electric field at several points on a 500-cell thin plate and on a 237-cell-long airplane is shown. The results were computed with the five sets of critical parameters corresponding to the five accuracies proposed in

[10]. From the poorest accuracy to the highest one, the values of the synthetic parameter, denoted as  p, read − 2, − 1, 0, + 1, + 2, respectively. The PML-plate separation was only 2 FDTD cells. For every calculation the thickness of the PML and the three critical parameters ( g,  R(0) in dB, and θ) are reported in the figures. With the best accuracy ( p

= + 2) the results are superimposed to the exact solution computed with an ABC placed far from the structure (not shown in the figures). With the medium accuracy ( p = 0) they are quite close to the exact solution. The corresponding PML thicknesses equal 15 cells with the plate, and 12 cells with the airplane. Even with the poorest accuracy ( p = − 2) the results can be viewed as acceptable in the context of EMC applications. 

In summary, the critical parameters given in [10] permit reliable calculations to be performed with relatively thin PMLs placed only two FDTD cells from the scattering structure. In comparisons with previous ABCs that must be placed far from the structure

[11], the computational times are typically reduced with a factor of 10 or more, while the results are better and more reliable. 
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Fig. 6.3 Electric field at three locations on a 500-50-cell plate stricken by an incident wave of the form [1 – exp(t/τ)] with τ = 1 ns. The space step is 1 cm. The PML ABC is placed 2 FDTD cells from the plate. Results are graphed for the five PMLs corresponding to the five consistent sets of PML parameters proposed in [10]. The  p = + 2 results are superimposed to the exact solution (from

[10], with permission of IEEE)

Some refinements based on [12] allow the thickness of the above optimized PML to be reduced by 2–3 FDTD cells [10]. They are not discussed here, because a new major improvement to the simulation of free space with a PML ABC is now at hand for solving wave-structure interaction problems [13, 14]. This improvement consists of using the CFS

stretching factor (3.50) in place of the regular factor (3.3). 

6.1.4

Design of the PML Using the CFS Stretching Factor

With the stretching factor (3.50), the attenuation of evanescent waves (3.54) at frequencies lower than  f  α (3.51) is widely smaller than with the regular stretching factor. Moreover, since around scattering structures ω sinh χ is constant from (6.2), in a CFS-PML placed close to a structure the attenuation (3.54) does not depend on frequency below  f  α. In consequence, by means of an adequate choice of  f  α (3.51), or equivalently of α x, the attenuation can be set equal to that of high frequency (  f >>  f  α) traveling waves that is like in a regular PML. This results in a reasonable attenuation of evanescent waves in

[image: Image 50]
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Fig. 6.4 Electric field at four locations on a 126-237-60-cell airplane structure stricken by an incident wave of the form [1 – exp(t/τ)] with τ = 2 ns. The cell size is 25 × 16.66 × 16.66 cm. The PML

ABC is placed 2 FDTD cells from the airplane. Results are graphed for the five PMLs corresponding to the five consistent sets of PML parameters proposed in [10]. The  p = + 2 results are superimposed to the exact solution (from [10], with permission of IEEE) the PML, neither too small nor too high, so as to remove the strong numerical reflection present when using the regular stretching factor. 

To make equal the absorptions of evanescent waves (at  f <<  f  α) and traveling waves (at  f >>  f  α), let us equal the coefficient in (3.54) with the attenuation in a regular PML at normal incidence exp(− σ xx/ε0 c). This yields

 f σx

 σx

sinh  χ  sin  θ x = −

 x

(6.8)

 fα ε 0 c

 ε 0 c

where  χθ <  0 because for waves evanescent toward +  x, θ and χ are of opposite signs

[15]. Using (3.51) and (6.2), the following α x  is obtained: αx =  c εo | p  sin  θ|

(6.9)

 w

6.1

Wave-Structure Interaction Problems

93

Quantities  p  and sin θ are unknown parameters of the evanescent waves that surround the scattering structure. What we know is that they are of the order of unity, so that we can say that the optimum α x  that permits the absorptions of evanescent and traveling waves to be equal is about:

 α 0 =  c ε 0

(6.10)

 w

Frequency  fα  corresponding to α0 can be found from (3.51). Inserting the resonance frequency of the structure of size  w, that is  f 0 =  c/ 2 w, we obtain fα 0 =  f 0

(6.11)

 π

which shows that the resonance is close to frequency (3.51) if α x = α0. As in the case of the waveguide problem discussed in Chap. 3, the frequency of the transition between the two regimes of the CFS-PML is close to the frequency separating the evanescent waves with the traveling waves. Figure 3.3 is valid for the wave-structure interaction problem, with only a correction with factor π from (6.11). 

Figure 6.5 shows a FDTD experiment, for the same 20-cell thin plate problem as in Fig. 6.2. The upper part shows the  E  field at the end of the plate, for different values of α x, from α x = 0 to α x = 10α0. The 4-cell-thick PML is placed 2 cells from the plate. For α x = 0 the result is close to that in Fig. 6.2. As α x  grows the reflection at low frequency decreases. For α x = α0 the result is about undistinguishable from the exact solution. For α x = 10α0 the result departs from the reference, both at low frequency and around the resonance (150 MHz) where the attenuation is too small. The lower part of Fig. 6.5 shows an attempt to reconstructing the numerical reflection of the evanescent waves by means of the numerical theory (5.57) and assumption (6.2). As with the regular stretching factor in Fig. 6.2, the reconstruction is in a good agreement with the actual FDTD calculations. 

More details about the interpretation of the results in this example can be found in [15]. 

Figure 6.6 shows a 3D numerical experiment with a 500-cell thin plate stricken with a unit-step incident wave. As in the 2D case of Fig. 6.5, the improvement is dramatic with α x  value (6.10). For α x < α0 a strong reflection of low frequency evanescent waves is observed. For α x > α0 the absorption around the resonance frequency of the plate is too small (oscillations in the result). This confirms that the best value of α x  is close to (6.10). 

By increasing the thickness of the CFS-PML, which equals four FDTD cells in Fig. 6.6, 

the results for α x = α0 become closer to the exact solution. With a 6-cell CFS-PML the results are as good as with the 10-cell regular PML in Fig. 6.3. One may think that the accuracy could be improved at will by increasing the thickness of the CFS-PML. That is not true. Actually, as the thickness grows the computed results tend to a limit which slightly differs from the exact solution. This is because the absorption of traveling waves is smaller than the prescribed  R(0) at frequencies around transition  f  α0. 

[image: Image 51]
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Fig. 6.5 Comparison of the normal electric field computed using the FDTD method (upper part) with quantity 1 −  R  computed using (5.57) and (6.4) with cosh χ0 = 1.1 (lower part), for a CFS-PML

ABC and a 20-cell thin plate (from [15], with permission of IEEE) In order to improve and control the accuracy of the results computed with α x = α0, various solutions were envisaged and tested [13, 14]. These investigations have shown that:

• using a parameter α x  decreasing from the vacuum-PML interface to the outer boundary of the PML is an improvement. Doing this, the transition frequency  f  α decreases from a value fα1 >  f  α0 in the interface to a value  f  α2 <  f  α0 on the outer boundary. This improves the attenuation in the critical region of the transition between evanescent and traveling waves, close to  f  α0. 

• the ratio σ x(0)/α x(0) is a critical parameter, where σ x(0) and α x(0) are σ x  and α x implemented in the vacuum-CFS-PML interface. The following must hold:

 σx( 0 ) ≤ 1

(6.12)

 αx( 0 )
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Fig. 6.6 E field on a 500-50-cell plate computed with a CFS-PML ABC placed 2 cells from it, with various values of the CFS-PML parameter α (from [14], with permission of IEEE) From this, an optimum CFS-PML has been proposed as follows [13, 14]. In the PML, from the interface to the outer boundary, α x  decreases geometrically from 50 α0 to α0/5, and the conductivity grows geometrically by a factor of ten, from σ x(0) to 10 σ x(0). For a PML of thickness  N, the ratio  g  is given by  g = 101/ N , and the conductivity is set by means of (5.27) in order that the normal reflection equals a prescribed value  R(0) = −

40 dB. 

Results computed with such profiles of α x  and σ x  are shown in Fig. 6.7 for the 500-cell plate, with various thicknesses of the PML, from 3 FDTD cells to 6 FDTD cells. 

As observed, with the 5-cell PML the results are about superimposed to the reference solution. With the 4-cell PML the results are as good as those computed with the optimum 10-cell regular PML in Fig. 6.3. The performance of the CFS-PML is widely better than that of the regular PML for this example. This also holds with other structures, as shown in Fig. 6.8 for the same airplane as in Fig. 6.4. The results are quite good with a CFS-PML

only 3 cells in thickness, and are perfect (superimposed to the exact solution) with a 4-cell CFS-PML. With other incident waves like nuclear pulses or lightning pulses whose low frequency content is poorer, the results are better than with the unit-step wave. Several tests were performed with plates of various lengths, from 100 to 1000 cells. The required thickness of the CFS-PML, in FDTD cells, does not depend too much on this length, so that the results in Figs. 6.7 and 6.8 can be viewed as representative of the worst case for scattering structures than can be handled by current computers, that is for structures 200–1000 FDTD cells in size. From this, the conclusion is that a CFS-PML placed two
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FDTD cells from the structure, with conductivity, α x  parameter, and  R(0) prescribed in the above, allows the following solutions to be computed:

• reference solutions with a 6-cell CFS-PML. 

• accurate solutions with a 4-cell CFS-PML. 

• acceptable solutions with a 3-cell CFS-PML. 

Fig. 6.7 E field on a 500-50-cell plate computed with the optimized CFS PML. The conductivity grows geometrically in the PML, from σ1 to 10 σ1, and α decreases geometrically from 50 α0 to α0/

5. Results are graphed for PMLs 3, 4, 5, 6 cells in thickness, set 2 cells from the plate, with  R(0) =

− 40 dB

Fig. 6.8 E field on a 126-237-60 airplane computed with the optimized CFS PML. The computational conditions are like in Fig. 6.7
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This is significantly better than with the optimized PML based on the regular stretching factor. The thickness of the PML is reduced with a factor larger than 2. As a conclusion, in wave-structure interaction problems, the optimized CFS-PML placed only two cells from the scattering structure allows the cost of the simulation of free space to be negligible in comparison with the cost of the region of interest of the computational domain. 

6.2

Waveguide Problems

Modes in waveguides are evanescent in the longitudinal direction below the cutoff frequency. For a 2D parallel plate, the waveform and the evanescence parameter χ are given by (1.4). The phase propagates in the transverse direction  y  and the magnitude decreases in the longitudinal direction  x, according to (1.4a). Consider a PML perpendicular to  x with the stretching factor (2.6). The waveform in the PML is given by (2.30) with θ =

± π/2 and θχ < 0. For instance, in the case θ = π/2:





 ψ =  ψ jω t−cosh χ y−  σx

 ω

 c

 ε

sinh  χ x

0  e

0 cω  sinh  χ x e c

(6.13)

The real exponential in (6.13) is the natural decrease of an evanescent wave in a vacuum. There is no additional attenuation in the PML, because the propagation of the phase is parallel to the vacuum-PML interface (cos θ = 0). Nevertheless, the waveform in the PML differs from the waveform in a vacuum (1.4) due to the presence of an additional term in the phase. This term grows as the frequency decreases. If the frequency is small enough, the phase varies rapidly with distance. This may result in a strong numerical reflection from the PML if the variation is rapid in comparison with the size of the FDTD cell, because then the discretized space cannot sample accurately the field. This phenomenon was first analysed in [16]. Finally, two spurious reflections occur as using a PML ABC to absorb the evanescent waves at the end of a waveguide (Figs. 6.9 and 6.10). 

First the PML does not absorb these waves, in theory, so that they are reflected from the PEC that ends the PML. This mainly results in the reflection of frequencies that are close to the cutoff, because their natural decrease is weak. Second, at low frequency a strong numerical reflection occurs from the vacuum-PML interface, due to the phase term in

(6.13). This has been illustrated clearly in [16], where FDTD experiments and results of calculations with the FDTD numerical theory have been reported. The reflection from the interface is also clearly visible in Fig. 6.10 where the low frequency reflection is larger than the natural decay of the waves. 
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Physical reflection from the PEC 

Frequency close to cutoff

 y 

Low frequency (f << fcutoff) 

PML

 x 

Numerical reflection from the interface

Fig. 6.9 Reflection of evanescent waves from a PML ending a waveguide. The phase varies in the transverse direction  y  and the amplitude is evanescent in the longitudinal direction  x. The lines with arrows symbolize planes of constant phase of the incident and reflected waves. The arrows are oriented toward the decrease of the magnitude, to the right for the incident waves, to the left for the reflected waves

Fig. 6.10 Reflection of the TM1 mode from a PML ABC ending a 2D parallel-plate waveguide. 

The cutoff frequency equals 3.75 GHz (waveguide width 40 mm). The FDTD results are computed with a regular stretching factor (2.6) in the PML. The natural decrease is for a range equal to two PML thicknesses

6.2.1

Improvement of the Absorption by Means of a Real Stretch

of Coordinate

In order to increase the decay of evanescent waves in the PML, a real stretch was introduced [17] in the stretching factor (2.6), like the parameter κ in the CFS factor (3.50). 

This extends the physical thickness of the PML so that the natural decay of the waves is increased. A factor κ growing from the vacuum-PML interface to the outer boundary of the PML is used, but the maximum value of the stretch is limited because large FDTD

cells result in numerical reflection of the highest frequencies. Moreover, the method does
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not reduce the strong reflection due to the phase term in (6.2). Nevertheless, this simple modification of the PML results in a reduction of the overall reflection, but limited to a band of frequency below the cutoff, as illustrated in [17]. 

6.2.2

Improvement of the Absorption by Using a CFS Stretching

Factor

A far better method to absorb effectively the evanescent waves at the end of a waveguide

[18] consists of using the CFS stretching factor (3.50). Above frequency  f  α (3.51) the CFS-PML is like a regular PML, but below  f  α the CFS-PML reduces to a real stretch of coordinates and the waveform becomes (3.53), (3.54). In the case of a waveguide the evanescent waves (θ = π/2) are absorbed in the CFS-PML, due to the real exponential in (3.53), (3.54), and the phase term that tends to infinity at low frequency in (6.13) is removed. From this, the two kinds of spurious reflections present with a regular PML

(Fig. 6.9) are removed below  f  α. 

As discussed at the end of Chap. 3, because the product ω sinh χ is constant far below the cutoff frequency of the considered mode, the absorption of evanescent waves in (3.54)

is not frequency dependent. This absorption can be set equal to that of traveling waves at f >>  f  α by choosing α x  equal to α0 (3.58). Then  f  α coincides with the cutoff frequency

(3.59) so that the CFS-PML is very well suited to the absorption of the entire spectrum of waves present in the waveguide (Fig. 3.3). 

Results in Fig. 6.11 show the effect of the value of α x  on the reflection from a CFS-PML. With α x = α0 the improvement is dramatic in comparison with the regular PML

(Fig. 6.10), the reflection drops below − 80 dB with the 8-cell thick CFS-PML used in the experiment. Only a narrow band of frequencies is reflected around the cutoff frequency. 

This is because sinh χ vanishes as frequency tends to the cutoff, so that the absorbing term in (3.54) tends to unity. For α x  larger than α0 the reflection grows because the attenuation in (3.54) is too small (  f  α too large in the exponential). 

From other experiments reported in [18] the reflection is not too much sensitive to the design of the PML. A quite small reflection in the evanescent region (− 80 dB or less) is obtained with a polynomial profile of conductivity of moderate power (2 or 3), a theoretical reflection  R(0) of the order of − 200 dB, and a PML thickness in 6–10 cells. 

In the above, it is assumed implicitly that only one mode is present in the waveguide, because the optimum α x (3.58) depends on the order  n  of the mode. In the case where several modes are present, α x  cannot be optimum for all the modes. This has never been experienced in the literature. A way to solve this problem is suggested by Fig. 6.11 where the reflection in the evanescent region is about − 60 dB from α x = α0/4 to 4 α0. This suggests that the reflection is not very sensitive to the value of α x  in the vicinity of α0. 

From this, when several modes are present, a good compromise may be choosing α x  as the geometric average value of α0 of the lowest cutoff frequency with α0 of the highest
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Fig. 6.11 Reflection of the TM1 mode from a PML ABC ending the same parallel-plate waveguide as in Fig. 6.10. The stretching factor is the CFS factor (3.50). Various parameters α are considered around the optimum value α0 (3.58). The reflections have been computed theoretically using (5.57)

and (1.4), with in addition a FDTD simulation for the case α = α0. Notice the perfect agreement of the simulation with (5.57) (from [18], with permission of IEEE) cutoff frequency. As long as the ratio of these two cutoff frequencies is not too large, all the modes will be absorbed with a small reflection (about − 60 dB in the case of Fig. 6.11

if the ratio of cutoffs is not larger than 16). Another solution that could be envisaged if several modes are present may be use of a parameter α x  decreasing in the PML, like the one used in the optimized CFS-PML for wave-structure interaction problems in the previous section. 

6.3

Concluding Remarks to the Application of the PML ABC

to FDTD Problems

In the above the optimization of the PML ABC has been addressed in two cases that are important applications of the FDTD method. The optimized PMLs do absorb the evanescent waves so that they can be placed in the evanescent regions, that is as close as possible to the region of interest, namely the scattering structure or the end of the waveguide. The PML performance is then far better than that of previously used ABCs that reflect the evanescent waves. 

What has to be noticed is that optimizing a PML for a given application of the FDTD

method requires a good understanding of the propagation and absorption of waves in the
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PML, especially of evanescent waves, both in the continuous theoretical space and in the FDTD discretized space. Another required knowledge is the general form of the waves to be absorbed. All this permits the origin of the numerical reflection from FDTD PMLs to be analyzed, and then an optimum PML to be designed accordingly. 

As shown with two problems in the above, nowadays the CFS-PML based on the

stretching factor (3.50) seems the best way in view of optimizing PML’s in realistic problems. This is because in most physical applications, at least as long as wide band or time domain calculations are of concern, both evanescent and traveling waves are involved. As long as the evanescence coefficient varies as the inverse of frequency, as in waveguides and around scattering structures, the CFS-PML permits the absorption to be reasonable and about constant in the whole spectrum, resulting in a small numerical reflection at any frequency, even with relatively thin PMLs placed in the close vicinity of the region of interest. The CFS-PML is a naturally optimized PML well suited to the physics in waveguide and wave-structure interaction problems. This is also the case in other problems, for instance in the scattering by periodic corrugated surfaces where the scattered wave can be expanded in Floquet modes [19] that are like (1.4a), with (1.4b) replaced with



2

sinh  χ = ±

sin  θ +  nπc

− 1

(6.14)

 bω

where θ is the incidence of the incident wave and  b  is the half-period. From (6.14), ω

sinh χ is constant at low frequency. This leads to the optimum value of α x  given by the same formula as in the waveguide case (3.58), with half-period  b  in place of width  a. 
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In previous chapters, the PML ABC has been derived in Cartesian coordinates for solving the Maxwell equations, and the only numerical method that has been considered in details is the Yee FDTD method. In the following, some extensions of the PML concept to other coordinates and other numerical techniques are briefly reviewed. The possible combination of the PML with the Huygens absorbing boundary condition (HABC) is also briefly presented. 

7.1

The Perfectly Matched Layer in Other Systems

of Coordinates

Several papers can be found in the literature about the extension of the PML medium to various systems of coordinates, mainly in the context of the FDTD method. In [1–8]

PML ABCs are derived for cylindrical and spherical coordinates, generalized curvilinear coordinates, and nonorthogonal coordinates. In [9] the PML ABC is extended to the body of revolution (BOR) FDTD method. In most cases the PML is derived by means of a stretch of coordinates in the direction normal to the interface. 

Paper [4] discusses an important issue on the PML ABC. It is shown by means of theoretical derivations that the FDTD-PML in cylindrical and spherical coordinates must be concave. The stability is not ensured with convex PMLs. This is in accordance with the intuitive feeling that the PML can absorb radiated fields but cannot replace sources. Each point in a volume space bounded with a PML must be in direct visibility from any other point of this volume, i.e. the interface between the inner medium and the PML must be
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either plane, that is the Cartesian case, or concave, in the general case. This is a limitation to the use of the PML ABC in some special problems addressed in [10]. 

7.2

The Perfectly Matched Layer with Other Numerical

Techniques

Introduced in the context of the FDTD method, the PML ABC has been rapidly extended to other techniques used in numerical electromagnetics. To do this, the interpretation in terms of stretched coordinates [11, 12] has been very fruitful. 

First, PML ABCs have been derived for other finite-difference schemes than the Yee second order scheme addressed in Chaps. 5 and 6. A PML ABC for the four-order scheme is described in [13]. In [14] the PML is used with the pseudospectral time-domain (PSTD) method. The PML ABC is also used with the finite-volume time-domain (FVTD) method

[15] and with the finite-difference frequency-domain (FDFD) method [12, 16]. It is also of current use with the unconditionally stable ADI-FDTD method [17, 18]. 

In the Transmission Line Matrix (TLM) method, the PML ABC has been implemented in two ways: first by surrounding the TLM computational domain with a layer of FDTD

cells where the PML is placed [19], second by implementing a true TLM-PML, that is a PML medium discretized with the TLM method [20, 21]. 

One of the early extensions of the PML concept was the introduction of the uniaxial PML (3.48), (3.49) for use as an ABC in the frequency-domain finite-element method

[22]. As discussed in Chap. 3 the uniaxial PML corresponds to a stretch of fields in place of the stretch of coordinates of the regular PML. Conversely to the regular PML, the uniaxial PML is Maxwellian, i.e. it is governed by the regular Maxwell equations of an anisotropic medium with permittivity and permeability tensors (3.49). From this it can be implemented in the FEM method in a natural way [23]. The PML ABC can also be used with the time-domain finite-element method [24]. 

Use of the PML ABC has been reported with the paraxial (parabolic) equation method. 

Initially developed in the context of seismic [25], it is also used in numerical electromagnetics [26]. The PML ABC has also been implemented in the Beam Propagation method based on the finite difference solution of the Helmoltz equation [27]. 

The PML ABC has been used for nonlinear calculations in the case of the propagation of solitons, with the FDTD method [28, 29]. In that case, a special difficulty lies in the fact that the permittivity is field dependent in the medium, so that the matching condition

(1.9) to be satisfied by the PML conductivities is also field dependent. At least in the cases reported in [28, 29], this problem has been overcome easily by using a simple iterative procedure. 

Finally, in the domain of electromagnetics, use of the PML ABC has been reported in particle in cell (PIC) finite difference calculations where moving charged particles are taken into account [30]. 

[image: Image 58]
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In all the numerical methods, the PML ABC widely improves the simulation of free space in comparison with previously used ABCs. Nevertheless, the PML ABC is never perfect in the discretized space, especially when evanescent waves are of concern. No analyze of the numerical reflection like that in [31] has been published in the literature for other methods than the FDTD one. But we can predict that what is observed with the FDTD method is also valid with the other techniques, i.e. when the waves are so strongly evanescent that they must be absorbed upon less than one cell, one volume, or one element, as schematized in Fig. 5.6, the numerical scheme cannot properly sample the wave, resulting in a strong numerical reflection. To assess the prediction, numerical experiments were performed with the TLM method [32] for the same problem as the one used with the FDTD method to compute the results in Fig. 5.3 (lower part). The TLM results are plotted in Fig. 7.1. As observed, Fig. 7.1 looks like Fig. 5.3. Especially, with both methods the results are correct at high frequency and then depart from the exact solution below frequency  f c (5.50) that equals 50.3 and 2.25 MHz for the 4-cell and 8-cell PMLs. This means that the strongly evanescent waves are reflected from the vacuum-PML interface as in the case of the FDTD method. From this, what is stated in Chap. 6 about the choice and optimization of FDTD PMLs could also be applied to the choice and optimization of the TLM-PML. That is probably true with other numerical techniques, although no explicit study of the numerical reflection has been reported in the literature. 

Fig. 7.1 Electric field radiated from a short dipole, computed with the TLM method [32]. The computational set up is the same as in Fig. 5.3
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7.3

Use of the Perfectly Matched Layer with Other Equations

of Physics

By means of a complex stretch of coordinates, the PML ABC has been extended to most partial differential equations that govern other domains of physics where unbounded problems have to be solved. In the literature, a number of papers can be found on use of the PML ABC, such as [33, 34] in acoustics, [35] in elastodynamics, [25] in seismic, or

[36, 37] in hydrodynamics. 

7.4

Use of the Perfectly Matched Layer with the Huygens

Absorbing Boundary Condition (HABC)

The multiple absorbing surfaces (MAS) condition [38], and the re-radiating boundary condition (rRBC) [39, 40] are two absorbing boundary conditions introduced independently in 2003 and 2004. Both rely on the same principle that consists of cancelling the outgoing field by means of equivalent currents that radiate a field equal in magnitude and opposite in sign to the outgoing field to be cancelled. The principle of the MAS and rRBC

is simple and attractive, but the outgoing field cannot be known rigorously on the surface where the equivalent currents are impressed, a Huygens surface [39]. From this, estimates of the outgoing field and then of the equivalent currents are obtained using an analytical operator. The cancellation is not perfect, which results in a certain amount of reflection from the ABCs. 

The two ABCs were generalized [41, 42] in the form of an ABC called the Huygens absorbing boundary condition (HABC). The operator used to estimate the outgoing field may be either an original operator or one of the operators previously used with analytical ABCs [43], for instance the Higdon operators [44]. It can be shown [41] that the reflection from the HABC is then the same as the reflection from the operator implemented as a traditional ABC, so that one may think that the HABC is not an advance in comparison with analytical ABCs, especially concerning the poor performance of most analytical ABCs with evanescent waves. 

However, the major interest of the HABC is that it can be easily combined with another ABC, especially with a PML. To do this, the HABC is placed in the inner domain, in front of the PML, as depicted in Fig. 7.2. This permits the traveling waves to be absorbed by the HABC while the PML can be especially designed for the absorption of the evanescent waves. This may be of interest in some special problems, as illustrated in [41] with a combination of an HABC with a CFS-PML in a waveguide problem where both traveling waves and evanescent waves are present at low frequency, below frequency (3.51) where the CFS-PML is just a real stretch of coordinates, with no absorption of traveling waves. 

In this problem, a simple HABC based on a Higdon operator permits the traveling waves to be absorbed. Another use of the HABC is illustrated in [45], where the HABC, also
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Fig. 7.2 Combination of

PML

HABC and PML absorbing

boundary conditions

OBJECT

HABC

HABC

PML

based on a Higdon operator for the absorption of traveling waves, is combined with a pure real stretch of coordinates, i.e. a large stretch of the FDTD cells. Then the physical space outside the HABC is large enough to allow the evanescent waves to decrease to negligible magnitudes. The HABC, due its flexibility of use, has the potential of challenging the PML ABC in many problems [41, 42], and its combination with a PML has the potential of extending the domain of application of the PML for special purpose applications. 
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8

Computers

The PML absorbing boundary condition was introduced in the early 1990s when the computers were not as powerful as they are today. At the time, solving the Maxwell equations in an unbounded space with such numerical methods as FDTD or FEM was a challenging problem. In comparison to previously used ABCs, the PML provided the users with such possibilities as increasing the dynamic range in the FDTD domain, solving problems of larger size, or using a finer discretization. An alternative view of the PML is that it did not really offer the possibility of solving problems that otherwise could not be solved, but it rather allowed solving open problems as if the computers were more powerful than they were, by an order of magnitude or more. From this, due to the considerable increase of the power of computers as time has elapsed, one may think that the need of the PML is lesser today than it was two or three decades ago. That is true, but in part only, because as the computers become more powerful, users want to solve more complex problems with finer discretization and more accurate results. However, solving unbounded problems using the PML is nowadays less challenging than it was three decades ago. Which means that even if the implementation of the PML is not optimum, concerning such parameters as its thickness or its distance from the region of interest of the space domain, in many cases computers nowadays permit realistic physical problems to be solved, with accurate enough solutions. 

The PML implementations described in Chap. 6, elaborated when the computers could address FDTD domains limited to one or a few hundred cells in sizes, have not been adopted by users of the FDTD method, at least from the numerous papers that reported FDTD calculations in the literature. In this chapter, the optimum implementation of the PML ABC is revisited in the 2020s perspective. Firstly, the key points to be kept in mind when implementing the PML are reviewed and summarized. This mainly includes:
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• the progress of computers over the years, and the resulting impact on the maximum size of the FDTD domain, 

• the evolution of the size of the PML with the overall size of the FDTD domain, 

• the theoretical absorption of evanescent waves in the PML, 

• the critical question of the separation between the PML and the radiating source, 

• the critical parameters that impact the numerical reflection from the PML. 

Secondly, a simple method to design the PML is described. It is a semi-empirical method that does not provide with a ready to use PML as the optimum PMLs in Chap. 6, but it can be used with any application of the FDTD method, and even if it may not be rigorously optimum in term of PML thickness, this is no longer a serious drawback since the PML

thickness is not a parameter as critical as it was in the past, today it has a smaller impact on the computational requirements when the FDTD domain sizes are of the order of one thousand cells or more. 

8.1

The Progress of Computers Over the Past 30 Years

Over the past three decades, computer advances have been achieved in several directions. 

Introduction of multithreads processors and use of graphic cards offered the possibility of parallel computing that permitted dramatic reductions of CPU times. Even in the domain of personal computers (PC), the advance has been large, as illustrated in Table 8.1 that provides with typical processor frequencies and random-access memory (RAM) sizes of PCs from 1995 to 2020. The progress of frequency of processors is relatively modest, of the order of a factor of 10 over the 25 years, but introduction of multi-thread processors allowed a further reduction of CPU times with at least another factor of 10. Inversely, the increase of the available RAM over the 25 years has been dramatic, the RAM available on a PC has been multiplied with a factor of the order of 10,000. 

Table 8.1 also provides with the maximum size of the cubic FDTD domain that can be contained in the RAM, which is the maximum size of the FDTD domain that can be processed using a PC. From less than 100 × 100 × 100 cells in 1995 to more than 1000 ×

1000 × 1000 cells nowadays. The progress of PCs in CPU time is lesser, but CPU time Table 8.1 Evolution of

Year

Frequency

RAM memory

FDTD domain (cells)

frequency of processors and

RAM of personal computers, 

1995

200 MHz

10 Mb

75 × 75 × 75

and maximum size of the

2000

1 GHz

100 Mb

160 × 160 × 160

FDTD domain that can be

2006

2 GHz

2 Gb

450 × 450 × 450

contained in the RAM

2013

3 GHz

10 Gb

750 × 750 × 750

2020

3 GHz

64 Gb

1350 × 1350 × 1350
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is no longer a parameter as critical as it was when using time sharing on main frame computers. Nowadays, CPU times of several hours or even several days are not a critical issue on PCs or on such more powerful individual computers relying on graphic cards allowing massively parallel computing. 

8.2

The Evolution of the Size of the PML with the Size

of the FDTD Domain

As the volume of a FDTD domain, expressed in cells, is growing, the volume of the corresponding PML grows slower. With a PML of constant thickness, simply because the whole domain grows as the cube of its size while the PML volume grows approximately as the square of that size (as  r 3 and  r 2, respectively, if the domain was a sphere of radius r). In actual calculations, the PML thickness must slightly grow with the size of the domain, as with the optimum PMLs of Chap. 6, but the growth of the thickness is not proportional to the growth of the size of the domain, by far, so that the ratio of the volume of the PML over the volume of the overall domain is decreasing with the domain size. In Table 8.2, the number of PML cells is compared to the overall number of cells in a cubic FDTD domain, for PMLs of thicknesses  N  and FDTD domains of  Nv ×  Nv ×  Nv  cells, from  N = 5 to 50 and from  Nv = 100 to 2000 cells. The percentage of PML cells in the cubic FDTD domain reads





 (Nv) 3 −  (Nv − 2 N) 3

 P = 100

 (Nv) 3

As can be seen in Table 8.2, and in graphic form in Fig. 8.1, when the sizes of the FDTD domains were of the order of 100 × 100 × 100 cells, the PML thickness expressed in cells,  N, was a critical parameter. A 10 cell thick PML filled about half of the overall FDTD domain, and even a 5 cells thick PML filled a quarter of the domain. Optimizing the PML thickness was thus of primordial importance. This was the principal motivation of works [1–6]. Nowadays, with the possibility of more than 1000 cells in size domains, the PML fills about 10% of the domain with a PML 20 cells in thickness, and no more than 30% of the domain with a PML 50 cells in thickness. The impact of the optimization Table 8.2 Percentage of PML cells in a FDTD domain in function of the PML thickness  N  from  N

= 5 to 50 cells

FDTD domain

N = 5

N = 10

N = 15

N = 20

N = 30

N = 50

100 × 100 × 100

27.1

48.8

65.7

78.4

93.6

–

1000 × 1000 × 1000

2.97

5.88

8.73

11.53

16.94

27.10

2000 × 2000 × 2000

1.20

2.97

4.43

5.88

8.73

14.26

[image: Image 60]
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Fig. 8.1 Percentage of a cubic

FDTD domain filled with PML

cells as a function of the PML

thickness

of the PML thickness is thus of lesser importance, a few cells added to the PML thickness has only a marginal impact on the overall computational memory and CPU time requirements. That is true using PC computers, and even more using more powerful computers with which the available RAM is larger and CPU times smaller, and thus larger FDTD

domains can be addressed. The semi-empirical method to design the PML, presented in Sect. 8.9, has been elaborated in this perspective, i.e. assuming the thickness of the PML

is not a parameter as critical as it was in the past, due to its small impact on the overall computational cost. 

8.3

The PMLs in the Literature

As early as the initial work [7], it appeared that the performance of the PML may surpass any other existing ABC, but also that the performance strongly depends on some of its parameters, such as its thickness expressed in FDTD cells, its profile of conductivity, its situation with respect with the region of interest of the computational domain, and obviously its theoretical absorption at normal incidence  R(0). This is because the PML

is perfect in the theoretical continuous space, but in the discretized space of the FDTD

method, it produces an amount of numerical reflection that depends on the addressed problem and on its own parameters. More explicitly, it appeared that to take advantage of using it, the PML should be optimized in function of the problem to be solved. 

Several works were published in the literature to improve the PML, i.e. to reduce its numerical reflection. Some were based on modified stretching factors, as the high-order PML [8]. However, these approaches were rarely used in the literature, probably because of the higher cost per PML cell and the addition of at least one free parameter to be set. Some others relied on pure empirical studies, as the optimum PML in [9]. But these
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PMLs are only optimum for the case studied in the paper, although [9] has been later used by several authors in other contexts. 

In view of the PML optimization, the most important work is certainly the one of De Moerloose and Stuchly published in 1995 [10]. Despite it addressed a very special problem at the end of a waveguide, this short paper showed that evanescent waves may play a capital role in the reflection of the electromagnetic fields from PMLs. This suggested that the key to optimize use of PMLs was the behavior of evanescent waves in PML

media and their reflection from such media. This led to discovering [3, 11] that in the continuous world of the theoretical PML, the absorption of evanescent waves is larger than the absorption of traveling waves. This is not a drawback in the continuous world, but in the discretized space of such numerical methods as FDTD, this may result in a strong numerical reflection from PMLs. Simply because the skin depth of the evanescent waves in PMLs may be shorter than the space step of the discretized space, resulting in a poor sampling of those waves, and thus in numerical reflection from interfaces between PML rows with different conductivities. Reducing the reflection of evanescent waves and optimizing the PML in wave-structure interaction problems and waveguide problems were reported in a set of papers [3–6, 12] whose results are summarized in Chaps. 5 and 6. It appears that no similar work has been reported in the literature on optimizing PMLs in other types of applications. 

Concerning the papers in the literature not devoted to the PML itself but where the PML is used for simulating the infinite space, in most cases little details are provided on the PML. Its thickness in FDTD cells is often reported but in general such parameters as the profile of conductivity and the theoretical absorption at normal incidence  R(0) are not provided. When they are provided, the profile is a polynomial profile (5.20) and  R(0) is quite small, lower than  R(0) = 10−5 in many cases. In most cases the PML is situated some distance away the region of interest, i.e. away the scattering object in EMC or RCS

problems, and thus not in the close vicinity of the object (two or a few FDTD cells) as with the optimized PMLs in Chap. 6. The situation of the PML is thus close to that preconized with such analytical ABCs as the Engquist–Majda or Higdon ABCs [13, 14], 

i.e. in the region where the evanescent fields have decreased enough. The advantage of the PML in term of reduction of the computational domain, and thus computational cost, is not fully used, i.e. in many cases a roughly similar accuracy in the results could be achieved with analytical ABCs and little extra computational cost. This is obviously not desirable. In Sect. 8.7 the reduction of the computational domain that can be achieved by setting the PML as close as possible to the region of interest is discussed with more details. 
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8.4

The 3D Evanescent Waves in a Vacuum and in a PML

Evanescent waves are the most general solutions of the Maxwell equations [15]. The evanescent solution in a vacuum and in a PML is provided in Chap. 2 in the 2D case where the direction of propagation, the direction of evanescence, and the electric field, are lying in the 2D plane. In the general 3D case, the waveform of an evanescent wave in a vacuum [15, 16] can be expressed as

 ψ

 X

 Y

 vacuum(X , Y , Z , t) =  ψ 0  ejωt e− jω  cosh  χ

 c

 e− ω  sinh  χ

 c

(8.1)

where ψ is any component of the electromagnetic field, ω is the angular frequency,  t  is the time,  c  is the speed of light, χ is the coefficient of evanescence,  X  and  Y  are two arbitrary directions of space perpendicular to each other. The phase propagates in direction  X  while the magnitude is evanescent in direction  Y, it decreases exponentially in direction +  Y  or

−  Y, depending on the sign of χ. The magnitude is uniform in direction  Z. The case χ =

0 is the special case of traveling waves, with  E  and  H  fields uniform in any plane ( Y,  Z). 

Let us now consider the system of coordinates ( x,  y,  z) in Fig. 8.2, with propagation X  in direction (θ, φ) and direction of evanescence  Y  defined with the angle η formed by Y  and the intersection y of the planes perpendicular to  X  and  z. Let a PML be placed above z = 0, with absorption in direction  z, i.e. with conductivities σ x = σ y = 0, and conductivity σ z  assumed as uniform. By extending [16] to PML media, it can be shown that the waveform of the evanescent waves in the PML read

 ψ

 j σz

 ε

sinh  χ  sin  θ  sin  η z −  σz

 ε

cosh  χ  cos  θ z

 PML(X , Y , Z , t) =  ψvacuum(X , Y , Z , t)e  0 c

 e

0 c

(8.2)

As in 2D, one exponential factor in (8.2) is complex and rotates the phase of the wave as it propagates, while the other is real and governs the absorption. The phase term is slightly different to that in (2.31), due to the presence of sin η in the exponent. This is because the 2D case in Sect. 2.5 corresponds to the special case η = π/2, i.e. sin η = 1

in (8.2). The absorption is identical to that in (2.31), rigorously, and again it just differs from that of traveling waves (2.11) with the presence of cosh χ. Finally, the theoretical overall absorption of a PML of thickness δ and uniform conductivity σ z  is thus, for any evanescent wave

−2  σz  cosh  χ  cos  θ δ

 R(θ) =  e

 ε 0 c

(8.3)

that may be far larger than that of traveling waves if the incident wave is strongly evanescent, i.e. if cosh χ >> 1. As in 2D in [3], and by extending [16] to PML media, it can be shown that the 3D evanescent waves (8.2) can penetrate into the PML without reflection from the interface, regardless of their direction of propagation  X  and direction of evanescence  Y. Obviously, this is true in the continuous space, but in the discretized space of
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Fig. 8.2 The directions  X  of propagation of the phase,  Y  of evanescence, and  Z. Starting from axes ( x,  y,  z), a rotation by φ around  z  gives axes  x , y , z ,  from which a rotation by π/2 − θ around  y gives axes ( X,  y,  z), and finally a rotation by η around  X  gives orthogonal axes ( X,  Y,  Z) the FDTD method an amount of reflection is produced, especially if the evanescence is large, i.e. if cosh χ >> 1. 

Let us first consider the propagation of evanescent waves in a vacuum. There is a limitation on the value of cosh χ of evanescent waves that can propagate in a FDTD grid. 

For the waves to be well sampled, the variations of both the phase and the magnitude must be small over one FDTD space step Δ, i.e. the exponents of the two exponentials in

(8.1) must be smaller than a value of the order of unity. Thus, since cosh χ > |sinh χ|, the value of cosh χ in a FDTD grid must be smaller than

cosh  χ max =  c

(8.4)

 ω

For the wave to be well sampled in the PML grid, the variations of the additional exponentials in (8.2) must be small over the step Δ. The worst cases, that is the largest exponents in (8.2), can be considered by making sin θ = 1, sin η = 1, sinh χ ~ cosh χ, and cos θ = 1. For the absorption and the variation of the phase to be small, the conductivity σ z  must be smaller than

 ε

 σ

0 c

 z _ max =

(8.5)

cosh  χ

Finally, assuming that the propagation in the vacuum part of the FDTD grid is well sampled, i.e. cosh χ is bounded with cosh χmax (8.4), for the reflection to be small from a vacuum-PML interface, conductivity σ z  must be smaller than σz_max (8.5) with cosh χ

replaced with cosh χmax (8.4). This yield

118

8

Using the PML in the Context of Modern Computers

 σz _max =  ε 0 ω

(8.6)

from which, the condition for the numerical reflection to be small can be rewritten as σz << ε 0 ω

(8.7)

Condition (8.7), derived in the continuous physical space, is equivalent to the condition found in Chap. 5 in the 2D FDTD discretized space for the reflection of strongly evanescent waves from a PML to be total. The reflection is total if frequency is lower than  fc

(5.50), i.e., if ε0ω << σ z, and it is small if (8.7) holds. Relation (8.7), or its equivalent

(5.50), is fundamental in the design of a PML. The conductivity in the interface σ z  in the first row of the PML, denoted as σ x 0 in (5.50) and σρ(0) in (5.20)–(5.28), must satisfy

(8.7) for all the frequencies of interest, that is for the lowest frequency in the expected FDTD solution. 

8.5

Numerical Reflection from the Different PMLs

Several implementations of the PML can be used with the stretching factor (2.6). The initial split PML, the uniaxial PML where the field is stretched instead of the coordinates, the convolutional CPML, and finally the Near PML (NPML). Their computational requirements are compared in Table 5.1. Concerning their numerical reflections in the FDTD grid, they are compared in [4, 17]. The reflections from the split PML, from the uniaxial PML, and from the Near PML, are identical, rigorously, all are given by (5.44)

from a single interface and (5.57) from a PML with growing conductivity. The reflection from the CPML is different in theory, it is also given by (5.44) and (5.57), but with substitution (5.58). This is true with both the normal stretching factor (2.6) and the CFS

stretching factor (3.50), the former being just the special case α u = 0 of the latter. With the normal factor (2.6), that is with what is usually called the CPML, substitution (5.58)

has little effect on the numerical reflection, it is not rigorously equal to that of the split, uniaxial, or Near PML, but it is quite close for both traveling and evanescent waves [4]. 

From this, when using the stretching factor (2.6) the actual reflection from the PML does not significantly depend on the implementation, either the split PML, the uniaxial PML, the CPML, or the Near PML. The choice of the implementation should be rather done considering the requirements of the implementations in Table 5.1, or other features that render easier the implementation in the specific problem. 

Concerning the CFS-PML which is a CPML with the stretching factor (3.50), things are quite different. Because of the α u  coefficient, below frequency (3.51) the stretch is real, the traveling waves are not absorbed, and the absorption of evanescent waves is governed by the exponential factor in (3.54) that produces a decrease of the magnitude added to the natural decrease of the wave. This can be exploited when the evanescence coefficient is related to the frequency by means of a relationship like (6.2) that means that
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the product ω sinh χ is constant in the evanescent region of the spectrum. More details are provided in the next section. 

8.6

The Optimized PMLs

Chapter 6 summarizes the optimized PML ABCs proposed in [5, 6, 12], in important applications of the FDTD method. The optimized PMLs do absorb the evanescent waves with little numerical reflection, so that they can be placed in the evanescent region, that is as close as possible to the region of interest, i.e. close to the scattering or radiating structure or the end of the waveguide. The PML performance is then far better than that of previously used ABCs, it allows the overall computational domain and then the needed RAM and CPU time to be widely reduced in comparison with analytical ABCs. 

Optimized PMLs relying on the standard stretching coefficient (2.6) have been designed for wave-structure interaction problems in [5], based on theoretical and empirical investigations. However, as shown in [6, 12] and summarized in Chap. 6, the CFS-PML

based on the stretching factor (3.50) appears as the best way in view of optimizing PMLs in some realistic problems. More specifically, when the evanescence coefficient of the waves varies as the inverse of frequency, as in (6.2), which is the case in waveguides and around scattering structures. Then, the absorbing coefficient in (3.54) does not depend on frequency, it can be chosen at will in such a way that the absorption of evanescent waves be the same as that of traveling waves. This results in (6.8) and the value of α0 coefficient (6.10). For this α0, the transition frequency (3.51) between the two regimes of the stretching factor (3.50) equals the resonance frequency of the structure, which is also the transition between traveling and evanescent waves. Finally, the CFS-PML permits the theoretical absorption to be reasonable and about constant in the whole spectrum, resulting in a small numerical reflection at any frequency, even with thin PMLs placed in the close vicinity of the region of interest [6]. In some sense, the CFS-PML is a naturally optimized PML well suited to the physics in wave-structure interaction problems and probably more generally in radiating structure problems. However, this is not true in all applications, as illustrated in Chap. 6 with a waveguide problem where the uniform absorption holds rigorously for only one mode. Another drawback to this CFS-PML is its complex optimization that requires a good knowledge of the evanescent waves in the problem to be solved, with many experiments to be performed to adjust empirically some parameters in the transition region between the high frequency traveling waves and the low frequency evanescent waves [6]. For these reasons, in the following Sects. 8.9–8.11, the CFS-PML

is not used, i.e. with the semi-empirical method it is assumed that the stretching factor of the PML is the usual stretching factor (2.6) that leads to PMLs with a minimum number of free parameters. This renders easier the design of the PMLs and allows the method to be used with any application where an ABC is required. 
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8.7

Discussion of the Separation Between the PML

and the Source of the Radiated Field, and Impact

on the Overall Computational Requirements

As recalled in the above, in most papers of the literature the PML is located some distance away the region of interest, i.e. some distance away the source of the field radiated to the outer infinite space. On the other hand, the optimum PMLs described in Chap. 6 were designed assuming that they are in close vicinity of the source, with source-PML separation equal to two FDTD cells only. In other words, in most papers the PML is located out of the evanescent region, or at least in the region where the evanescent waves have significantly decreased, while the optimum PMLs are located in the strongly evanescent region. Obviously, the computational requirements in the two cases are different, since in the former case the computational domain is by far larger, even if in the latter case the optimum PML is thicker. This is discussed with more details in the following. 

Figure 8.3 compares two 3D computational domains that may be used to solve the same physical problem, which is the field radiated by a source of size  L, where  L  is expressed in FDTD cells. In case A the PML of thickness δA cells is  L/2 from the cube that just fits the source. In case B, the PML of thickness δB cells is located  s = 2 cells from the cube. The numbers of cells in the 3D cubic volumes can be computed using β

= 1 in the following formulae





 NtotalA = 8 L 3 +  β  24 L 2 δA + 24 Lδ 2 +

 A

8 δ 3 A

(8.8)





 NtotalB =  (L + 2 s) 3 +  β  6 (L + 2 s) 2 δB + 12 (L + 2 s)δ 2 +

 B

8 δ 3 B

(8.9)

where the quantities within the brackets are the cells in the PMLs. Parameter β has been introduced to take account that one PML cell need more memory and CPU time than one cell of vacuum, assuming that memory and CPU time are multiplied with the same factor β that depends on the encoding. Usually, β < 2. Relationships (8.8) and (8.9) give thus equivalent numbers of cells of vacuum that would consume the same computational resources as the original problems A and B. i.e. they allow memories and CPU times of calculations A and B to be compared for any value of β. 

Table 8.3 reports the ratios  NtotalA/NtotalB  for source regions of sizes  L = 100, 300, 1000, three values of parameter β, and two values of the PML thicknesses δA and δB

assumed as equal, i.e. δA = δB = 10 or 50 cells. For β = 1,  NtotalA/NtotalB  is the ratio of the numbers of cells of the domains, rigorously. For β = 1.5 or 2,  NtotalA/NtotalB  is the ratio of the equivalent numbers of cells of vacuum corresponding to β. One can see that the ratio is weakly dependent on the extra computational cost of PML cells (β = 1.5 or 2), and that it grows with the size of the source. With sources larger than 300 cells, the number of FDTD cells in domain B, or its equivalent in cells of vacuum, is at least of the order of 5 times smaller than in domain A. 
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FDTD Domain A

FDTD Domain B

Separation  s = 2 cells

L/2

L/2

Source

Source

L 

PML thickness B

PML thickness A

Fig. 8.3 Two 3D FDTD domains with the same radiating source of size  L  inside. In domain A, the PML of thickness δA cells is located  L/2 from the source. In domain B the PML of thickness δB

cells is located 2 cells from the source

Table 8.3 “Ratio  NtotalA/NtotalB” of the numbers of cells in FDTD domains A and B. The PML

thicknesses equal either 10 or 50 cells in both domains

Source size L

PML thicknesses

PML factor β = 1

PML factor β =

PML factor β = 2

(cells)

δA = δB (cells)

1.5

100

10

5.58

5.21

4.95

100

50

3.18

3.00

2.90

300

10

7.00

6.75

6.53

300

50

5.20

4.79

4.53

1000

10

7.68

7.57

7.47

1000

50

6.88

6.54

6.27

In actual computations, if the PML is thin and not designed for the absorption of evanescent waves, the separation  L/2 assumed in domain A between the source and the PML is in many cases not enough for the reflection from the PML to be negligible in the source region. It means that the PML must be placed further from the source, which further increases the ratios in Table 8.3. In the case of highly elongated sources, the ratios computed with a cubic source region can also be greatly larger than those in Table 8.3. 

Finally, other parameters could slightly modify the ratios in Table 8.3, but in any case, using a PML as close as possible to the source of the field results in a dramatic reduction of the computational requirements, even if the PML must be thicker when it is close to the source region, i.e. in the strongly evanescent region. 
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Table 8.4 PML thickness δB so that the overall number of cells of the FDTD domain B,  NtotalB, is equal to the number of cells of the FDTD domain A,  NtotalA, where the PML of thickness δA = 10

or 50 cells is  L/2 from a cubic source region, as in Fig. 8.3

Source size L

PML thickness

Thickness δB if β

Thickness δB if β

Thickness  δB  if β

(cells)

δA (cells)

= 1

= 1.5

= 2

300

10

158

128

110

300

50

198

175

162

1000

10

508

402

338

1000

50

548

451

394

Another view of the benefit of a PML close to the source can be found by computing the PML thickness δB which makes the number of cells in domain B equal to the number of cells in domain A, i.e. δB such that  N totalB =  N totalA. That is solving for the unknown δB the equation









 NtotatB L, s, β, δB, δ 2 , δ 3 =

 , δ 3

 B

 B

 NtotalA L, β, δA, δ 2 A A

(8.10)

which can be done numerically. The results for the domains  L = 300 and  L = 1000 are reported in Table 8.4. It can be seen that for the domains to be equal the PML thickness in domain B should be quite large, larger than 100 cells with a source region of 300 cells and larger than 300 cells with a source region of 1000 cells. This shows that even with a PML thickness poorly optimized, for instance larger than 50 cells, the PML close to the source, as in domain B, allows a large reduction of the computational requirements in comparison with a PML placed far from the source, as in domain A. In other words, it is clear that the best location of a PML, i.e. the less costly, is in the close vicinity of radiating sources, even if the PML had to be several tens of cells in thickness. This allows us to take advantage of the ability of a PML to absorb evanescent fields with little reflection. 

8.8

The Critical Parameters of the PML

With the normal stretching factor (2.6) considered in the following, the numerical reflection from a PML (5.57) depends on four parameters, the theoretical reflection of traveling waves at normal incidence  R(0), the conductivity σρ(0) implemented in the vacuum-PML

interface, the thickness  N  of the PML, and either the power  n  of the polynomial profile of conductivity (5.20) or the ratio  g  of the geometrical profile (5.25). With both profiles, the four parameters are not independent, they are connected through relationships (5.24a)

and (5.28a), respectively. This can be summarized as





 f R( 0 ), σρ( 0 ), N , n or g = 0

(8.11)
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There is a fundamental difference between the four parameters. Reflection  R(0) and conductivity σρ(0), at least their order of magnitude, can be set in function of the problem to be solved, more precisely in function of the expected accuracy and of the lowest frequency of the solution to be computed, respectively. Inversely, there is no guideline to choosing thickness  N  and power  n  or ratio g. More explicitly: 1. the theoretical reflection at normal incidence in the continuous space,  R(0), can be chosen in function of the application. In typical EMC applications, such a  R(0) =

− 40 dB is in most cases consistent with the expected accuracy in the computed results, while when computing radiation patterns or radar cross sections  R(0) = −

60 dB or even – 80 dB may be desirable. In any case, an unneeded small  R(0) is counterproductive, since the smaller the theoretical reflection the larger the numerical reflection, especially that of evanescent waves. 

2. the strongly evanescent waves are reflected in totality from the vacuum-PML interface at frequencies far lower than frequency  fc (5.50), with σ x 0 replaced with σ ρ(0) in that formula. Or equivalently if (8.7) does not hold for σ ρ(0). In consequence, for the reflection to be small enough, σ ρ(0) must be chosen in function of the lowest frequency of interest of the problem  f min. Or in function of the duration  Dc  of the FDTD calculation, since  f min ∼ 1 /Dc. This can be written in the form (6.6) in Chap. 6

 σρ( 0 ) = 2  π ε 0

(8.12)

 θ Dc

which is equivalent to say that the cutoff frequency  fc (5.50) must be fc =  f min

(8.13)

 θ

where θ is a margin factor. Intuitively, one may think that the larger θ the smaller the reflection of frequencies of the order of  f min. This can be confirmed by using (5.49)

and (5.50), with which it can be seen that from a vacuum-PML interface, the reflection of frequencies higher than  fc, but close to  fc, is proportional to σρ(0) if cosh χ is large, i.e. the reflection is proportional to the inverse of θ. From this, margin θ can be chosen in function of the desired amount of residual reflection of the lowest frequencies of interest. With the optimum PMLs in Chap. 6 and in [5], θ is in the interval 3–10. 

With the simple method described in next section θ = 10 is used, but it may be larger, for instance θ = 30 if a very high accuracy is desired for frequencies close to  f min. 

The impact of the value of θ on the PML thickness  N, and then on the computational requirements, is small with the geometrical profile with which  N  is given by (6.7)

where θ is within a logarithm. With the polynomial profile, using (5.24a) and (6.6)

yields the following thickness  N  in function of  Dc,  n, and θ
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1 /n+1

 N = −  c  ln  R( 0 ) θDc

(8.14)

2 n+3 πρ

with which the impact of θ is higher, as will be illustrated in Sect. 8.10. 

3. the conductivity σ ρ( L) in the PML must grow slowly enough to produce negligible reflection from successive rows of the PML grid. The condition is more severe for evanescent waves than for traveling waves, due to the presence of cosh χ which may be large in the absorbing exponential in (8.2). For the optimum PMLs in Chap. 6, profiles of conductivity growing geometrically were chosen because with those profiles the ratio of successive conductivities is constant throughout the PML, which appeared to be favorable to the reduction of the numerical reflection and thus of the PML thickness. 

In the following, numerical experiments are provided with both geometrical profiles and polynomial profiles, and the choice of one or the other profile is discussed with more details in Sect. 8.10. Concerning ratio  g  or power  n  of the conductivity, there is no guideline to choose them, but once  R(0) and σ ρ(0) have been set, there is only one remaining free parameter, either thickness  N  or profile parameter  g  or  n, since they depend on each other through (8.11), i.e. through either (5.24a) or (5.28a). This is at the root of the design of the PML described in the next section, where to design the PML the values of  n  or  g  will be computed in function of  R(0) and σρ(0), for a set of thicknesses  N. The values of  n  and  g  can be explicitly derived from (5.24a) and

(5.28a), respectively. For the polynomial profile, (5.24a) can be rewritten as ( 2 N)n =  B/N

(8.15)

where

 ε 0  c  ln[ R( 0 )]

 B = −

(8.16)

4  ρ σρ( 0 )

from which with conductivity σρ(0) and reflection  R(0), the power of the profile in function of the PML thickness  N  read

 (B) − log  (N)

 n = log10

10

(8.17)

log  (

10 2 N )

For the geometrical profile, (5.28a) can be rewritten as follows, with again  B  from

(8.16)

 gN − 1 = 2 B

(8.18)

1 − √ g

Equation (8.18) can be easily solved numerically for ratio  g  in function of the thickness N. 
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8.9

The Semi-empirical Method to Design the PML

From the previous section, the PML cannot be chosen a priori, there is no theory to do this, just guidelines from some parameters of the problem to be solved. Moreover, the numerical reflection from a PML depends on the spectrum of the evanescent waves in the addressed problem, which is not known before the calculation and may differ from one application to another, as illustrated with wave-structure interaction and waveguide problems in Chap. 6. In other words, numerical experiments must be performed to design the PML, before the application calculations, especially if the problem is not like the kind of problems that are usually addressed. For problems of scattering of waves by an object, numerous experiments have conducted to the elaboration of the optimum PML [5]

that is summarized in Chap. 6. But it was elaborated when computers could contain a few hundred cells in size FDTD domains, so that they may not be valid nowadays when FDTD domains may be more than one thousand cells in size. 

A more general approach is described in the following to help users of FDTD method choose the parameters of the PML. The method is partially empirical, but with a number of numerical experiments considerably reduced in comparison with a pure empirical method. The method is simple and may not provide with a PML as optimum as the ones in Chap. 6 for wave-structure coupling, in term of reduction of the computational cost, but as discussed in the above this is no longer a problem as critical as it was when the computers were not able to accommodate FDTD domains larger than a few hundred cells in size. The starting point of the method is relationship (8.11), i.e. the fact that a PML

depends on three independent parameters only, at least with simple profiles of conductivity as the polynomial and geometrical profiles defined in Chap. 5, the first one being the most used in the literature. However, optimizing the PML on a pure empirical basis for a new problem or a new kind of problems might require a huge number of expensive experiments, proportional to the combinations of the three parameters. The further step of the method relies on what has been noticed in the previous section, the fact that two out of the three independent parameters can be chosen a priori, in function of the desired accuracy of the solution and of the desired lowest frequency in the solution. This permits the number of experiments to be dramatically reduced, by performing only experiments with a small set of values of the remaining free parameter, instead of with all the combinations of the three parameters. 

More explicitly, the approach to design the PML to be used for a given problem consists in choosing  R(0) and σρ(0) in function of the problem, and then performing a set of numerical experiments with several values of thickness  N  and the corresponding profile parameter  n  or  g  given by (8.17) or (8.18) as a function of  N,  R(0) and σρ(0). This permits the minimum thickness that provides accurate enough solutions to be found. More specifically, the method consists in the following three steps:
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1. Choose the reflection  R(0), for instance  R(0) = − 40 dB in EMC problems, or  R(0)

= − 60 or − 80 dB in RCS or antenna problems where the desired dynamic range is higher. 

2. Choose the conductivity σρ(0) in the vacuum-PML interface using parameter θ =

10 in (8.12). In most cases, this value ensures a very small reflection of evanescent waves within the desired duration of computation  Dc, as illustrated in the following experiments. Larger θ may be needed in some specific problems. 

3. Perform a few numerical experiments with the problem to be solved, or the kind of problem to be solved, that is with the object under interest and the source of the field. 

As discussed in Sect. 8.7, to reduce as much as possible the computational burden, the PML should be placed as close as possible to the region of interest, which is in many cases an object composed with FDTD cells, PEC cells, dielectric cells, lossy cells, or more complex media such as a Human Body Phantom composed with Debye media FDTD cells. In principle, the shortest separation between the object and the PML can be reduced to one cell only, but two or three cells permit surfaces to be placed one cell from the object, either a Huygens surface to radiate an incident wave, or a surface where the radiated field can be recorded in view of close field to far field transformation, or both surfaces. Then, perform the numerical experiments with different thicknesses  N, for instance  N = 20, 25, 30, 35, 40, … cells, using  n  or  g  given by (8.17) or (8.18), until the computed results at one or a few nodes of the FDTD grid no longer are changed. As  N  is growing, ratio  g  or power  n  are decreasing, so that the reflections from the successive rows of the PML grid are decreasing, and thus the computed results tend to a limit which is the solution in free space. 

8.10

Illustration of the Semi-empirical Method

Illustrations of the design of a PML are reported in Figs. 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.10

and 8.11. In the computer code the PML was encoded as a CPML, but non distinguishable results would be obtained with the split PML, the uniaxial PML, or the NPML (Sect. 8.5). 

The stretching factor is (2.6). An incident plane wave strikes a perfect electric conductor (PEC) parallelepiped of sizes 1000 × 100 × 10 FDTD cells (Fig. 8.4). The cell is cubic with  x =  y =  z = 1 m and the time step  t = 1 .  666 ns. Calculations have been performed with the following two incident waves, propagating downward and polarized in  x  direction (Fig. 8.4). 





 t − 4 τ  2

 E 1 (t) = exp

V / m  ( τ = 3000 ns )

(8.19)

 τ





 E 2 (t) = 1 −  e−  tτ  V / m  ( τ = 10 ns ) (8.20)
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Fig. 8.4 The 1000 × 100 × 10-cell PEC object

Fig. 8.5  Ez  field at the observation node, for the Gaussian incident wave (8.19), computed with the polynomial profile of conductivity, and with PML thicknesses  N = 20, 30, 35, 40 FDTD cells. Entire results (left part) and enlarged late time part (right part)

Fig. 8.6  Ez  field at the observation node, for the Gaussian incident wave (8.19), computed with the geometrical profile of conductivity, and with PML thicknesses  N = 20, 30, 35, 40 FDTD cells. Entire results (left part) and enlarged late time part (right part)
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Fig. 8.7 For curves plotted in Fig. 8.5 (polynomial profile) and in Fig. 8.6 (geometrical profile), differences between curves  N = 40 and  N = 35, and between curves  N = 35 and  N = 30

Fig. 8.8 Ratios of successive

conductivities at the electric

and magnetic rows, i.e. σρ( L)/

σρ( L − 1/2) at electric nodes

and σρ( L + 1/2)/σρ( L) at

magnetic nodes, where

according to (1.9) σρ at

magnetic nodes is σρ =

σρ * ε0/μ0

Fig. 8.9  Ez  field at the observation node, for the unit-step incident wave (8.20), computed with the polynomial profile of conductivity, and with PML thicknesses  N = 20, 30, 35, 40 FDTD cells. Entire results (left part) and enlarged late time part (right part)
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Fig. 8.10  Ez  field at the observation node, for the unit-step incident wave (8.20), computed with the geometrical profile of conductivity, and with PML thicknesses  N = 20, 30, 35, 40 FDTD cells. 

Entire results (left part) and enlarged late time part (right part)

Fig. 8.11 Same calculations

as those in Fig. 8.9 (right part), 

but with margin θ = 30 instead

of θ = 10

The theoretical absorption of the PML is  R(0) = − 80 dB and the duration of the calculations is 50,000 time steps, i.e. about 80,000 ns. The electric field  Ez  normal to the PEC surface at a corner of the object (Fig. 8.4) is plotted in the figures. The conductivity in the interface, from (8.12) with θ = 10 and  Dc = 8 × 10−5 s, is σρ(0) = 0.694 × 10−7 S/

m. In accordance with the discussion in Sect. 8.7, the separation between the PML and the PEC object equals two cells, with the Huygens surface generating the incident wave set one cell from the object. It can be easily shown that such a disposal allows the overall number of cells in the FDTD domain to be reduced by about two orders of magnitude in comparison with a domain where the object-PML separation equals half the length of the object, i.e. 500 cells. This reduction is by far larger than the ones reported in Table 8.3 for a cubic object, because here the object is highly elongated. The experiments have been performed with PMLs 10, 15, 20, 25, 30, 35, 40 cells in thickness. For the polynomial and
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Table 8.5 Power  n  of the polynomial profile and ratio  g  of the geometrical profile computed using

(8.17) and (8.18) in function of the thickness  N  cells of the PML, with  R(0) = − 80 dB and σρ(0)

= 0.694 × 10−7 S/m

Thickness  N

10

15

20

25

30

35

40

Power  n

3.032

2.551

2.274

2.087

1.950

1.843

1.756

Ratio  g

3.276

2.123

1.726

1.530

1.415

1.339

1.286

geometrical profiles of conductivity, the corresponding powers  n  and ratios  g, computed using (8.17) and (8.18) respectively, are provided in Table 8.5. 

Figure 8.5 reports the electric field at the outputted node with PML thicknesses 20, 30, 35, 40 cells, for the Gaussian incident wave (8.19), computed using the polynomial profile with power  n  from Table 8.5. At early times the results of the different thicknesses are superimposed, but as the time is growing some differences appear. As expected, the results of the different thicknesses tend to a limit, with thicknesses 35 and 40 cells they are about undistinguishable on the figures, even on the magnified figure (right part). 

Figure 8.6 shows results of similar calculations as in Fig. 8.5, with same PML thicknesses  N, but with geometrical profiles of conductivity. The differences between the thicknesses are larger than in Fig. 8.5, and they appear slightly early. Differences between curves  N = 30, 35, 40 in Figs. 8.5 and 8.6 are plotted in Fig. 8.7, for the polynomial profile (left part) and the geometrical profile (right part). The differences are extremely small for at least one third of the time domain, in particular at the initial peak. At late time, the maximum differences between curves  N = 40 and  N = 35 are about 0.3% of the peak value with the polynomial profile, and 0.8% with the geometrical profile. For this problem, the polynomial profile appears as slightly better than the geometrical profile, both tend to a limit, but for the same thickness  N  the polynomial profile is better. 

Fig. 8.12 Design of the PML for the same problem as in Fig. 6.3, i.e. a 500-50-cell PEC plate stricken by a unit-step incident wave. Calculations with geometrical profiles of ratios  g  from (8.18), 

with margin θ = 10, and PML thicknesses  N = 10, 15, 20, 25, 30 cells

8.10
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Figure 8.8 compares the ratios of successive conductivities at the rows of the PML

grid, separated by half a cell, for the two profiles and with a PML 40 cells in thickness. 

With the geometric profile the ratio is constant, in accordance with (5.28), it equals the square root of ratio  g, except the first ratio σρ(1/2)/σρ(0). Inversely, with the polynomial profile the ratio grows from the end of the PML towards the vacuum-PML interface. In most part of the PML its ratio is shorter than that of the geometrical profile, which may be at the origin of its better performance at late times. With the polynomial profile, the ratio σρ(1/2)/σρ(0) is large, about 6.5, but it appears it does not significantly degrade the computed results at late time. 

Figure 8.9 reports results computed with the polynomial profile, as Fig. 8.5, but with the unit-step incident wave (8.20) instead of the Gaussian wave. Again, the results tend to a limit as thickness  N  is growing. Results with the geometrical profile, with same PML

thicknesses, are plotted in Fig. 8.10. With both profiles the differences between curves  N

= 30, 35, 40 at late time are slightly larger than with the Gaussian pulse (Figs. 8.5, 8.6

and 8.7), due to the frequency spectrum of the unit-step which is growing as frequency is decreasing, i.e. the low frequencies are dominant with the unit-step wave. As with the Gaussian pulse, the polynomial profile yields slightly better results, however its limit appears as inclined in the right part of Fig. 8.9, when in theory it should be horizontal. 

This is also due to the frequency spectrum where the low frequencies are dominant, so that the reflections of the lowest frequencies of interest are not small enough with margin θ = 10. This is confirmed with the experiment performed with θ = 30 instead of 10, plotted in Fig. 8.11. At late time the curves are horizontal for  N = 35 or 40. Notice that powers  n  in Fig. 8.11 are larger than in Fig. 8.9, because σρ(0) from (8.12) is three times smaller, but this does not significantly change the differences between curves  N = 30 or 35 and  N = 40. 

As a summary, for this example with a 1000-cell object, i.e. a 1000-cell radiating structure, the semi-empirical method provides with a PML that ensures accurate solutions by means of a small number of experiments using a small set of values of thickness N, no more than 3–4 experiments. Even in the case where the experiments have to be performed with two values of margin θ, as with the polynomial profile and the unit-step incident wave that is perhaps the worst case due to the spectrum of the wave, the number of experiments remains limited to a value lower than 10. For this problem, the polynomial profile appears as slightly better than the geometrical profile, but this may not be true with all problems, for the reason discussed below. 

Figure 8.12 reports calculations performed for the design of a PML using the above semi-empirical method, for the same 500-50-cell PEC plate of zero thickness as in Fig. 6.3. In that figure, results of calculations with the five values of the accuracy parameter  p  of the optimized PML [5] are compared, from the lowest accuracy  p = − 2 to the highest  p = + 2. In Fig. 8.12, calculations have been performed using the geometrical profile with ratio  g  from (8.18),  R(0) = − 40 dB, margin θ = 10, and PML thicknesses  N

= 10, 15, 20, 25, 30 cells, close to the ones in Fig. 6.3. Comparing Fig. 8.12 with Fig. 6.3

[image: Image 69]
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shows that their results are consistent, with 10–15 cells in thickness PMLs the accuracy is poor, but may be acceptable in EMC problems, with PMLs thicker than 25, the accuracy is high. Thus, the semi-empirical method leads to similar PMLs as the optimized PML

in [5], i.e. to PML thicknesses of the order of 30 cells if high accuracy is desired with the PML located two cells only from the object. The advantage of the semi-empirical method is that it can be applied to any application of the FDTD method and any size of the FDTD domain, while the optimized PML [5] has been designed, mainly empirically, for the interaction of an incident wave with an object limited in size to a few hundred cells, due to the limitations of the computers at the time of work [5]. 

Figure 8.13 shows the evolution of thicknesses  N  of the polynomial profile (8.14) and of the geometrical profile (6.7) in function of margin θ while keeping power  n  or ratio  g constant. It may help choose either the polynomial profile or the geometrical profile. The figure is plotted with powers  n  and ratios  g  corresponding to  N = 20 or 40 cells for θ

= 10, i.e. provided in Table 8.5, or computed using (8.17) or (8.18). The figure shows that increasing θ with the geometrical profile has a relatively small impact on thickness N, as mentioned in Sect. 8.8, while with the polynomial profile the same increase of θ

has a larger impact on  N. This suggests that the geometrical profile may provide with thinner PMLs than the polynomial profile when keeping  n  or  g  constant and increasing θ, that is when large values of θ are needed, if for instance very high accuracy is desired at the lowest frequencies. More generally, since increasing  Dc  in (8.12) is equivalent to increase θ, if very long time calculations have to be performed, the geometrical profile may provide better results with the same thickness  N, inversely to what is observed in Figs. 8.5 and 8.6 where the polynomial profile appears as slightly better. 

Fig. 8.13 Evolution of the

thickness  N  of the PML as a

function of margin θ while

keeping power  n  or ratio

 g  constant, equal to the values

in the figure. The space step

equals 1 m and  R(0) = −

80 dB
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8.11

Summary of the Semi-empirical Method

There is no available theory that permits the design of an ideal PML for a specific application. In practice the design is mainly performed by means of empirical investigations. 

The semi-empirical method described and illustrated in the above also is an empirical method, but with a reduced number of free parameters, which widely reduces the number of experiments needed to achieve a PML suited to the problem of interest. The main features of the semi-empirical method are summarized in the following:

• the design of the PML for a specific application is simple. It relies on the basic stretching factor (2.6), with which the PML depends only on three independent parameters that can be reduced to only one free parameter, due to the possibility of setting two out of the three parameters in function of two known parameters of the problem to be solved, the desired absorption of the PML  R(0), or equivalently the desired dynamic range in the solution, and the desired lowest frequency in the solution. 

• only a few experiments are needed to design the PML, due to the reduction of the number of free parameters from three to one, in contrast to the numerous experiments needed with a pure empirical design using the three parameters, and even many more needed experiments with the additional free parameters resulting from use of a real stretch of coordinates or a frequency shift, not even to mention high-order stretching factors. 

• no real stretch of coordinates nor frequency shift (3.50), the stretching factor is the simplest one (2.6). 

• no necessary knowledge of the shape of the evanescent waves in the spectrum of the radiated field, such waves being at the origin of most of the reflection from PMLs in the discretized space of numerical methods. The semi-empirical method is thus a general-purpose method, inversely to such optimized PMLs as [5] that have been designed for specific problems where the shape of the spectrum of evanescent waves is assumed as known a priori, before the actual calculations. 

• because no need of any knowledge of the evanescent waves in the solution, the method is well suited to explore new or unusual applications of the FDTD method where an ABC is required to simulate the surrounding free space. 

• the designed PML can be located as close as possible to the region of interest of the computational domain, only a few FDTD cells away. In contrast to the case where the PML is situated far from the region of interest, sometimes at a distance of the order of the size of the radiating structure, it permits a dramatic reduction of the overall FDTD

domain, and consequently of the CPU time, or inversely a large reduction of the FDTD

space step and thus a significant improvement of the accuracy of the computed results. 

• a drawback of the semi-empirical method is that it cannot use some possibilities of the PML that permit its thickness to be significantly reduced in some applications, such as use of a real stretch of coordinates to damp the evanescent waves, or use of

134

8

Using the PML in the Context of Modern Computers

a frequency shift (3.50) that is naturally optimized to some applications [6, 12]. In other words, the semi-empirical method cannot challenge PMLs which have more free parameters allowing the PML thicknesses to be thinner. But this achievement is at the price of an increase of the number of free parameters, resulting in a dramatic increase of the needed preliminary experiments to design the PML. Moreover, nowadays when the FDTD domains can be more than 1000 FDTD cells in size, the thickness of the PML is no longer a critical parameter, as discussed in Sects. 8.2 and 8.7, i.e. its impact on the overall computational time is small, not to say negligible. So that the drawback of the thickness of the PML that is not optimum is nowadays vanishing. What remains essential in the design of a PML, is that the PML can be located as close as possible to the radiating source, and the semi-empirical method allows this objective to be achieved with a reasonable empirical study. 
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