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Preface

This book aims to provide an overview of the recent research devoted to numerical simulations of physical systems and processes by discussing the tools used in the analyses. It contains 17 chapters, organized into 3 sections: 1.  Section 1 - Computational Fluid Dynamics, Magnetohydrodynamics, Solid State. 

2.  Section 2 - Computational Many-body problem, Condensed Matter, and Molecular Dynamics. 

3.  Section 3 - Computational Molecular Biophysics, Cellular Structure Prediction, and Reaction–Diffusion Systems. 

Section 1 starts with a review of particle-based multiscale and hybrid methods applied to fluid mechanics, e.g.  molecular dynamics, direct simulation Monte Carlo, lattice Boltzmann method, dissipative particle dynamics and smoothed-particle hydrodynamics. Thereupon, it will focus on numerical methods in the field of computational fluid dynamics,  including the new  Repeated  Replacement  Method  (RRM)    and  iterative  techniques  for  finite  element  Navier–Stokes  approximations  in incompressible  fluid  dynamics.  Several  methods  and  mathematical  models    are  discussed  in  the  encompassing  context  of magnetohydrodynamics modeling of the solar atmosphere, non-isothermal solidification of a metal alloy,  electronic nature of compressibility in solids. This section ends with an illustration of solid state modeling applied to a papermaking process. Section 2 starts by reviewing of macroscopic transport equations in many-body systems which pose fundamental theoretical challenges in many domains ranging from inter and intra-cellular transport to diffusion in porous media. This section addresses various aspects of the many-body problem in molecular dynamics simulations and condensed matter.  Section 3, starts by reviewing computational modeling in biology, covering a wide range of scales from organisms to electrons in atoms, also including the utility of molecular dynamics and quantum mechanical methods in biophysical and biochemical modeling. Next, overviews physics-based cellular structure prediction,  focusing on a recently developed RNA statistical mechanical model (the Vfold model) and  an application of Random Matrix Theory in the identification of gene expression. The last two chapters is devoted to new models for coupled systems of bulk-surface reaction–diffusion equations which have  many applications in fluid dynamics and biological processes. 

Editor

Olga Moreira, Ph.D. 
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INTRODUCTION

Computational mathematics involves mathematical research in areas of science where computing plays a central and essential role, emphasizing algorithms, numerical methods, and symbolic computations. Computation in research is prominent. Computational physics is a field that utilizes both existing physics formulas and numerical algorithms to make large-scale calculations with computers that would be extremely time consuming and tedious to perform by hand. Essentially, it is a branch of physics that is concerned with making mathematical models and solutions by using computers and programming. The mathematical models that physicists aim to create often involve vast amounts of information that require very powerful computers to process. The exact classification of computational physics in the overall field of physics is often debated. Some consider it to be a branch of theoretical physics, as it tends to be involved with areas of physics that are still deeply theoretical with little solid experimental support. Others believe that it should be considered a branch of experimental physics, as the data used typically comes from experiments. For the most part, though, scientists agree that it falls somewhere in between the two disciplines, and has both theoretical and experimental components. 

Modern physics relies heavily on computers to work out much of the complex mathematical aspects of experiments and theories. Physics fields such as astrophysics, fluid mechanics, and accelerator physics both depend on programming and computation. In accelerator physics, for example, computers must monitor, record, and analyze vast quantities of information each time that particles are collided in a particle accelerator. Computational solid-state physics attempts to discover the link between the atomic properties of solids and their large-scale properties by analyzing large amounts of information about solids at the molecular level. 

There  are  many  other  tasks  solved  through  computation  that  can  be  loosely  grouped  under  the  field  of  computational physics. Often, such tasks as solving differential and integral equations or evaluating very large matrices are used to make calculations about physical systems. These tasks could easily be classified either as pure mathematics, which is mathematics performed purely for the sake of mathematics. However, when performed to discern information related to physics, they can just as easily fall into the category of computational physics. 

Many colleges offer courses in computational physics, though any pre-collegiate instruction in the field is rare. Introductory college courses tend to teach basic programming principles and how to apply them to problems relating to physics. Later courses, often taught at the graduate level, teach how to manipulate and solve large problems made up of large quantities of data through the use of algorithms and advanced programming practices. 

 Challenges in computational physics

Physics problems are in general very difficult to solve exactly. This is due to several (mathematical) reasons: lack of algebraic and/or analytic solubility, complexity, and chaos. For example, - even apparently simple problems, such as calculating the wave function of an electron orbiting an atom in a strong electric field (Stark effect), may require great effort to formulate a practical algorithm (if one can be found); other cruder or brute-force techniques, such as graphical methods or root finding, may be required. On the more advanced side, mathematical perturbation theory is also sometimes used. 

 Divisions

It is possible to find a corresponding computational branch for every major field in physics, for example computational mechanics and computational electrodynamics. Computational mechanics consists of computational fluid dynamics (CFD), computational solid mechanics and computational contact mechanics. One subfield at the confluence between CFD and electromagnetic modelling is computational magneto hydrodynamics. The quantum many-body problem leads naturally to the large and rapidly growing field of computational chemistry. 

Computational solid state physics is a very important division of computational physics dealing directly with material science. A field related to computational condensed matter is computational statistical mechanics, which deals with the simulation of models and theories that are difficult to solve otherwise. Computational statistical physics makes heavy use of Monte Carlo-like methods. More broadly, (particularly through the use of agent based modeling and cellular automata) it also concerns itself with (and finds application in, through the use of its techniques) in the social sciences, network theory, and mathematical models for the propagation of and the spread of forest fires. On the more esoteric side, numerical relativity is a (relatively) new field interested in finding numeric solutions to the field equations of general (and special) relativity, and computational particle physics deals with problems motivated by particle physics. Computational astrophysics is the application of these techniques and methods to astrophysical problems and phenomena. Some of the most important applications of computation in astrophysics are given below. 

 Stellar structure and evolution

Calculating multidimensional stellar models of rapidly rotating stars, modeling the effects of hydro dynamical processes such as convection from first principles, and understanding how stars generate magnetic fields through dynamo processes. 

 Radiation transfer and stellar atmospheres

Computational methods are required to calculate the propagation of light through the outer layers of a star, including its interaction with matter through absorption, emission, and scattering of photons. The calculation of cross sections for the interaction of light with matter for astrophysical relevant ions is itself a challenging computational problem. 

 Astrophysical fluid dynamics

The dynamics of most of the visible matter in the universe can be treated as a compressible fluid. Time-dependent and multidimensional solutions to the fluid equations, including the effects of gravitational, magnetic, and radiation fields, require numerical methods. A vast range of problems are addressed in this way, from convection and dynamo action in stellar and planetary interiors, to the formation of galaxies and the large scale structure of the universe

 Planetary, stellar, and galactic dynamics

The most challenging problems today include accurate integration of the orbits of the planets over the age of the solar system, studying the dynamics of globular clusters including the effect of stellar evolution and the formation of binaries, studying galaxy mergers and interaction, and computing structure formation in the universe through the gravitational clustering of collision less dark matter. 

 Computational physics: “physics of the third kind” 

Computational physics has emerged as the new third branch of physics besides the traditional branches of experimental and theoretical physics. The purpose of computational physics is not to crunch numbers, but to gain insight. This is particularly true if scientific workstations and supercomputers are coupled to sophisticated tools of visualization. During the last decade we have witnessed an almost exponential growth in computing power. This unparalled growth has redefined the classes of physics problems we are able to solve. What seemed at the forefront of research ten years ago can now be done on a high-speed scientific workstation? Today’s massively parallel supercomputers allow us to address, at a fundamental rather than phenomenological level, some of the most challenging theoretical problems of modern-day physics. 

 The physical world: interacting quantum many-particle systems

One basic problem that is common to many areas of physics -- and other natural sciences such as chemistry -- is the quantum many-particle problem. Theorists working in atomic, condensed matter, nuclear and astrophysics (and some areas of elementary xviii

particle physics) face a very similar challenge: how to describe, usually at the quantum level, the features of many particle systems in terms of more basic interacting constituent particles. There are essentially two different approaches to the quantum many-particle problem which might be termed phenomenological and fundamental. In the first case, one tries to simplify the physical system to such an extent that the arising physical “model” can be solved analytically or with little computational effort. This approach is often the first stage in the development of a theory. As the field begins to mature, attention shifts from simple intuitive models to a “fundamental’” understanding, i.e. one attempts to describe physical systems “ab initio” starting from the most basic equations and physical principles. Computational physicists prefer the second approach. Almost all interacting quantum many-particle systems cannot be formulated perturbative; in fact, the interesting physical phenomenon (e.g. the ground state energy of the quantum system) is usually an infinite sum of perturbative diagrams. This means that the perturbative machinery of quantum field theory (Feynman diagrams etc.) is essentially useless, and the quantum field equations must be solved by new approximation schemes without invoking perturbation theory. Because of the complexity of quantum mechanical many-body problems this implies a numerical implementation on massively parallel architectures and requires substantial advances in both science and computational algorithms. 

 Computational Physics:  Interdisciplinary Research

The essence of computational physics lies in the observation that many of the fundamental equations of physics have a similar mathematical structure: for example, the many-particle Schrodinger and Dirac equations as well as the nonrelativistic or relativistic hydrodynamics equations are all partial differential equations in space and time. All of the above-mentioned basic equations of physics can be implemented on spatial coordinate lattices; there will still be differences between many of the physics problems to be studied, for example short-range vs. long-range interactions, uniform vs. non-uniform lattice spacing etc. Nevertheless, with careful planning, computational physicists are capable of developing numerical methods and algorithms that can be utilized in a transparent manner in many subfields of physics. Computational physics is truly interdisciplinary. 

Computational Complexity Theory

Computational complexity theory is an area of mathematics and computer science that is concerned with the resources necessary to solve problems on a computer system. A number of techniques are available to determine the resource requirements of a problem. Some problems might not be feasible on existing computer systems because of their resource demands. Researchers classify problems by difficulty and can divide computations into polynomial (P) versus nonterministic polynomial (NP) problems. 

Solving a computation requires resources such as time, storage space and hardware. A computer system might have limitations that make a problem functionally impossible to solve because it does not have the available resources. As computer technology improves, a previously unsolvable problem might become solvable with the help of new technology and research in the field of computational complexity theory. The solvability of a problem is not necessarily determined by its complexity but on the algorithms used to solve it. 

In computational complexity theory, a P problem is one that can be solved in polynomial time with a straightforward algorithm. It might still require substantial resources, but it is both solvable and checkable by computer. Such problems could be thought of as quickly solvable as long as a computer has the available resources to handle the necessary computations. 

NP problems are more complex. It is not possible to apply a single algorithm, and it might be necessary to use more advanced options, such as parallel Turing machines that can explore several options. The problem might be solvable this way, but it will require substantially more resources. Such problems might be easier for human operators who are capable of advanced logical thinking, because the tipping point is often one of logic rather than sheer computation difficulty. The traveling salesman problem, in which the goal is to find the most efficient route between a numbers of cities along a route, is a classic example of an NP problem in computational complexity theory. 

Classification of P versus NP problems through computational complexity theory can be a complex task, and problems might shift back and forth across the divide. A small set of computational problems do not fit neatly in either category and are sometimes classified as neither in order to reflect this. It might eventually be possible to develop an algorithm to solve an NP problem, and in some cases, it might apply to other problems that have a similar structure. In others, however, it might be problem-specific. The process of exploring such programs and developing approaches to solve them is an important area of mathematics and computer science that contributes to the development of advanced, high-powered computer systems. 

Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) is the study of the behavior of fluids, liquid and gaseous, by the use of powerful computers running numerical methods software. Knowledge of the interaction of solids with surrounding flowing fluids is of key interest in the design of many mechanical devices. CFD has expanded the topics to which fluid dynamic studies and experiments may be applied. 

Traditionally, computational fluid dynamics studies were conducted in wind tunnels or flowing water tanks with real or model planes, cars, and boats. With the use of CFD, the mechanisms of such diverse events as volcanic eruptions, hurricanes, standing vortexes in water or in the air, ocean currents, the course of wildfires and more are potential targets. A limit to these studies is knowledge of the variables that must be defined for each system. Minimum variables include temperature, pressure, and compositions for systems undergoing chemical reactions at a defined boundary. 

xix
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CFD software is based on the solution of the Navier-Stokes equations, or simplifications of them. The variables of interest are defined for one known boundary in the system. A virtual grid of either two or three dimensions is placed over the system, and the equations are solved for the properties of the incoming and outgoing fluid at each virtual boundary. The development of CFD software paralleled the availability of computational power, as the algorithms require repeated calculation and optimization until solutions are found. 

Vehicle design is a frequent goal of fluid dynamics experiments. Air flows around cars effect performance, fuel consumption and noise level. Airplanes, boats, and especially space vehicles rely on these studies for predicting heat or ice buildup as well as streamlining to reduce frictional losses. 

Heat dissipation is a major topic in computational fluid dynamics. All electronic components are susceptible to heat buildup and are often enclosed in small boxes with limited airflow. By the use of CFD models, designers can reroute components to better airflow and cooling. 

The study of boundary layer conditions are tackled by computational fluid dynamics. The boundary layer refers to the very thin layer of fluid that is static along the surface of a solid that is in the path of a moving fluid. In this microenvironment is where corrosion, heat transfer, and component concentration levels are most critical. 

The  acquisition  of  skills  to  work  in  the  field  of  computational  fluid  dynamics  usually  requires  education  in  chemical engineering or similar pursuits. A thorough understanding of mass transfer, heat transfer, kinetics and fluid dynamics is necessary. 

The use of commercial CFD application packages is often taught by the software company or the skills are developed on the job. 

Quantitative Physics

Quantitative physics is the branch of physics that involves research by repeated measurement and mathematical analysis of experimental results. It differs from some branches of theoretical physics, for instance, such as quantum mechanics or string theory research, where much of the underlying theory cannot be tested in the real world, or in a laboratory on Earth with current technology as of 2011. Any field of quantitative research like quantitative physics derives its conclusions from a statistical analysis of large amounts of experimental data. This data is often so vast and complex, however, that computers are used to do mathematical modeling of the data to interpret it better. An example of the use of quantitative physics would include that of climate studies run on supercomputers to predict climatological changes from various natural thermodynamic forces at play on, in, or near the Earth, as well as from changes in solar activity over long periods of time. 
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The study of physics at its core is the measurement of changes in matter and energy, and this makes most physics research quantitative physics in one form or another. Quantitative study is also important in physics because many of the physical laws, such as the speed of light or gravitational pull of the Earth, cannot be quantitatively defined just by human observation with the five senses. It is possible to observe a falling body, but, without precisely measuring its rate of descent, no clear picture is arrived at for how strong gravity actually is. Quantitative research physics, therefore, uses mathematics as an abstract way of understanding forces at work in the universe. 

Processes that involve quantitative study, however, are not always intended to represent everyday reality. Physics determines the ideal conditions under which matter, energy, space, and time interact through repeated measurement and observation, and then determines the probability of events occurring. Physics equations used for this are based on abstract mathematical concepts that are only proven true with large numbers of repeated experiments. Quantitative physics, for instance, can predict the surface area of a spherical planet in space, but there is no such thing as a perfect sphere or any other perfect geometric shape in the natural world, so the process is, to some degree, an approximation. 

Ideal representations in physics, such as the ballistic trajectory of a bullet through the air, are based on quantitative physics principles of gravitational pull and air resistance, but they can only predict a general trajectory for a bullet, not the actual, precise spot upon which it will land. Using equations and formula in quantitative physics often involves averaging out some of the variables that come into play or using mathematical shortcuts to negate their effect on the equation. This is because the goal is to understand the laws of nature in principle over that of specific, random applications. 

Computational physics often complements quantitative physics in the laboratory, where equations cannot be formally or adequately tested in real world experiments. Often algorithms are used to streamline such calculations. Algorithms are a set of mathematical rules that the computer uses to reduce the number of calculations needed to solve a problem down to a finite series of steps. Computer assistance for quantitative physics is usually employed in areas where very complex interactions take place, such as in materials science, nuclear accelerator research, and molecular dynamics in biology. 
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INTRODUCTION

Navier–Stokes solvers and the particle-based direct simulation 

Monte Carlo (DSMC) method for the axial force coefficient at 

Multiscale and hybrid methods have been successfully  the altitude of 83 km. This difference can be explained as the applied to fluid mechanics problems in recent years. The  flow is subject to different Knudsen numbers; therefore, the reason for combining different length and timescales is to  continuum approach breaks down. 

overcome limitations of numerical approaches and increase 

computational efficiency. The Navier–Stokes equations are 

Particle-based methods, such as molecular dynamics 

well suited for continuum flows but are limited at micro- or  (MD), are derived from atomistic observations and therefore nanoscales. The Knudsen number is the ratio of the mean free  valid on much smaller physical length scales. It is, however, path over a characteristic length scale and indicates whether  not feasible to employ these approaches on the continuum level the continuum model or the molecular approach should be  as the computational cost becomes prohibitively expensive. 

applied. Karniadakis et al. (2006) stated that the continuum  Therefore, particle-based hybrid and multiscale methods were model is not valid for Kn>0.001 for gaseous flows. Gad-el Hak  actively developed over the last two decades. MD is capable of (2001) divided the flow regimes in which the no-slip boundary  simulating the assumed correct behaviour of the slip boundary condition fails for 10−3≤Kn≤10−1, and the slip condition is  conditions, and it starts to behave as a continuous medium at expected at solid boundaries. The transition regime can be  around 10–20 atomic diameter taken from the wall (Asproulis given between 10−1≤Kn≤101, and flows are classified as free  et al. 2012). For channels exceeding a couple of hundred molecular flows when the Knudsen numbers are higher than  atomic diameters in their height (Asproulis et al. 2012; Xu ten. One of the most well-known space applications subject  and Li 2007), computational efficiency is expected to be high to all of these Knudsen number regimes is the Earth re-entry  by using multiscale methods. In addition to this, experimental vehicle. The Stardust sample return capsule, a NASA project  capabilities such as micron-resolution particle image operating from 1999 to 2006, was specifically designed for  velocimetry  (μ-PIV)  (Santiago  et  al.  1998;  Tretheway  and collecting cosmic dust samples. Mitcheltree et al. (1997)  Meinhart 2002) can still only operate at microscales. Advances reviewed numerical and experimental studies on this capsule  towards smaller scales are hampered by the diffraction limit, to investigate the differences between continuum and particle- noise in the particle image, interaction between fluid and seed based approaches for various Knudsen numbers. They also  particles, and the effects of the Brownian motion. Multiscale reported that above the Earth at 130 km, the molecular effects  approaches are situated between pure particle simulations become dominant (Kn> 10), and when the capsule is passing  and experiments and able to obtain results in an efficient and through the dense atmosphere, the medium starts to behave  confident manner; however, relatively few studies have been as a continuum. They observed discrepancies between the  published concerning this overlapping region. 

Micro- and nanofluidics became important in recent years 

Citation: Teschner, T., Könözsy, L. & Jenkins, K.W. Microfluid Nano-

as can be seen by the advent of MEMS, μ-TAS and lab-on-a-

fluid (2016), Progress in particle-based multiscale and hybrid meth-

Chip devices (Gad-el Hak 2001; Ho and Tai 1998; Manz et 

ods for flow applications 20: 68, doi:10.1007/s10404-016-1729-y. 

al.1993). All of them are operating at length scales in which 

the continuum approach may not be valid. Squires and Quake 
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(2005)  investigated  the  flow  physics  at  these  small  scales  theory, we obtain the equipartition theorem for single atoms as in terms of dimensionless numbers. They investigated the 

inertial effects (Reynolds number), advection and diffusion 

(Péclet number), interfacial tension (Capillary number), elastic 



(3)

effects occurring in deformable objects such as polymers 

(Deborah, Weissenberg and Elasticity number), density-driven  where v  is the velocity of the atom,  k  is the Boltzmann coni

B

flows (Grashof and Rayleigh number) and the validity of the  stant and  T is the temperature. While we can conserve the over-continuum model (Knudsen number) concluding that the  all momentum of a system by using Eq. (1), we cannot control behaviour of the fluid flow at microscales differs due to the  the temperature. Therefore, it is common practice to rescale increased surface-to-volume ratio. More information can be  the velocity according to Eq. (3) or to use a thermostat. One found in the papers of Bayraktar and Pidugu (2006) focusing  widely used thermostat is that of Berendsen et al. (1984) where on flow physics in microchannels, and Gravesen et al. (1993)  the equation of motion, Eq. (1), is coupled to a heat bath as investigated micropumps, microvalves and microsensors. 

Koo and Kleinstreuer (2003) categorised the literature on 

microchannels  into  “flow  instabilities”,  “viscous  changes” 

and “no changes compared to macroscale”. Understanding 



(4)

the  fundamental  different  behaviours  of  the  fluid  flow  at  where T  is the target temperature,  T is the current (computed) microscales is mandatory to appreciate the need for multiscale 

0

temperature and γ is the strength at which the equation should 

methods.  The  combination  of  two  or  more  fluid  dynamic  relax towards T . The atoms are initialised with a random ve-approaches may accurately describe the fluid flow behaviour 

0

locity at a temperature  T obeying the Maxwell–Boltzmann dis-

at the atomistic level with a particle-based approach while  tribution as

simulating  the  bulk  of  the  fluid  domain  with  an  efficient 

Navier–Stokes solver. 

In this paper, we present practical examples that set the 

scene for multiscale methods and we discuss the main findings 



(5)

in recent years related to several particle-based multiscale and 

hybrid methods including molecular dynamics (MD), direct 

Boundary conditions are not straight forward in MD 

simulation Monte Carlo (DSMC), lattice Boltzmann method  simulations and require special attention. Where possible, (LBM), dissipative particle dynamics (DPD) and smoothed- periodic boundary conditions are applied. Particles can leave particle hydrodynamics (SPH). Each method has been  and enter the domain seamlessly. The problem arises when discussed separately in its own section where a brief overview  dealing with open boundary conditions. Particles may be has been given on the method and its governing equations.  inserted or removed easily; however, the force evaluation near Each section presents the current state-of-the-art research  the boundary results in an incorrect interaction potential due followed by an interim conclusion. We summarise our findings  to the missing particles beyond the boundaries which may on particle-based multiscale and hybrid methods in the last  propagate into the domain. One remedy may be to sample the section. 

force near the boundary via a second simulation where periodic 

boundaries are applied, see, for example, Steijl and Barakos 

MOLECULAR DYNAMICS METHOD

(2012). This, however, requires a second set of simulation data 

for describing correct boundary conditions. Solid boundaries 

Molecular dynamics models the movement of atoms at the  are less problematic to impose. Atoms may be placed rigidly atomistic  scale.  We  invoke  Newton’s  second  law  for  every  in a lattice structure to model a wall. Asproulis and Drikakis atom  i directly as

(2011) pointed out the danger of using non-physical, high 

mass values to effectively freeze atoms into position in that 

it produces incorrect slip length behaviour. Asproulis and 





(1)

Drikakis (2010) showed that using spring potentials for atoms 

on solid boundaries produces more realistic values for the slip 

The inter-atomic forces are replaced by the derivative  length. See also Thompson and Troian (1997) for a description of the inter-atomic potential. The most used one is the 12–6  on solid boundaries and Delgado-Buscalioni et al. (2015) for Lennard–Jones (LJ) potential

an overview on open boundary conditions. 

Review on hybrid and multiscale molecular 





(2)

dynamics methods

where ϵ is the depth of the potential well, σ is the distance at 

which the potential between two atoms is zero and r  is the  In 1995, O’Connell and Thompson (1995) conducted the first ij

distance between two atoms. In theory, we have to sum over  coupled computation of MD and continuum mechanics. Ever all atoms for each atom to obtain V  which is computationally  since there has been a broad interest in this field as indicated ij

by the growing number of publications. They investigated the 

expensive and proportional to 

. We define a cut-off  flow in a channel and split it into a continuum (Navier–Stokes) distance r  after which we neglect the inter-atomic interactions. 

cut

and atomistic (MD) region, separated by a hybrid solution 

This is possible because the potential [Eq. (2)] asymptotically  interface (HSI) running parallel to the solid boundaries approaches zero for large values of r  and therefore, the 

ij

across the channel. The HSI is a buffer layer in which both 

computational time reduces to 

. From kinetic gas  descriptions are valid and it provides boundary conditions 
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for each other. In this way, information from one description  velocity and energy of the added/removed particles, F  as the ij

is passed to the other and an information exchange can take  force between two atoms  i and  j (and F  as the force acting on a i

place. The buffer region introduced by the HSI is needed to  singular atom  i ), ⟨JQ⟩ as the molecular energy flux, E  as the p,i

obtain smooth profiles for the primitive variables across the  potential energy of atom  i and 〈 〉 as a time average. Π and  q interface. The MD and continuum region were coupled by  have been defined in Eqs. (9) and (10), respectively. We can see using constrained dynamics, and the exchange of variables was  from Table 1 that density, momentum and energy are directly done by state, i.e. velocity and density were imposed directly  imposed on the atoms from the continuum when coupling at the HSI. Their test case was the start-up Couette flow, for  by states is used. The macroscopic quantities for density, which good agreement between MD and continuum could be  momentum and energy are obtained for each computational observed. Hadjiconstantinou and Patera (1997) investigated  cell individually in the HSI by averaging over the atoms inside the flow around a square cylinder inside a channel and coupled  the cell  c. 

non-equilibrium molecular dynamics (NEMD) with a spectral 

Fluxes  have  to  be  calculated  first  before  they  can  be 

element solver in the wake of the cylinder. The solution at the  imposed on the continuum or atomistic side, as shown in Table interface was iteratively obtained by the Schwarz alternating  2. To conserve the overall mass, momentum and energy, it is method. Since the coupling region was chosen away from the  necessary to remove or add atoms in the HSI. Since particles wall, both NEMD and Navier–Stokes solutions were valid and  are free to move and interact inside computational cells, their could be compared against a full Navier–Stokes simulation.  energy level will change locally inside the cell. The energy Good agreement was achieved between the full continuum and  level is associated with the temperature of that cell and so hybrid computation although the accuracy was limited due  by randomly inserting and deleting atoms, the temperature to statistical fluctuations, boundary condition imposition by  may change and the overall conservation of energy is not NEMD and mismatch of the transport coefficient in the two  guaranteed. Delgado-Buscalioni and Coveney (2003a, b) models. Following up on their research, Hadjiconstantinou  introduced the USHER algorithm to remove this shortcoming. 

(1999) investigated the moving contact-line problem (two  In their algorithm, particles are introduced into a cell at a immiscible but otherwise identical fluids) in a microchannel  predefined  energy  level  which  has  been  determined  by  a for low Reynolds numbers. The continuum domain was placed  steepest-descent approach so as to conserve the total energy. 

at the channel centre, and the walls were resolved by MD. The  The USHER algorithm is equally applicable to coupling by initial velocity distribution was obtained via a full continuum  states and fluxes. Both approaches were successfully applied, solution, and therefore, only a few Schwartz iterations were  see O’Connell and Thompson (1995), Hadjiconstantinou and necessary to converge the multiscale approach to its final  Patera (1997), Hadjiconstantinou (1999), Nie et al. (2004), solution. Comparison between a full MD solution showed a  Wang and He (2007) for state coupling and Flekkøy et al. 

similar behaviour as in their previous study (Hadjiconstantinou  (2000), Delgado-Buscalioni and Coveney (2003a, 2004) and and Patera 1997), where the overall trend was matched with  Delgado-Buscalioni et al. (2005a, b) for flux coupling. 

fluctuations noticeably present. 

Flekkøy et al. (2000) introduced a different approach to  Table 1: Coupling by states couple the atomistic and continuum region by imposing fluxes 

in the HSI. The Navier–Stokes equations are written in the 

following form





(6)





(7)



(8)

Table 2: Coupling by fluxes

where we define Π and  q as follows



(9)



(10)

where μ and λ are the dynamic and bulk viscosities,  T is the 

temperature and k  is the thermal conductivity. We can compare 

c

the differences of coupling by states and fluxes in Tables 1 and 

2, where we have defined ρ,u and  e as the macroscopic density, 

velocity and total energy,  A as the cross-sectional area across 

Delgado-Buscalioni et al. (2005b) demonstrated the need 

which the flux is evaluated, V  as the volume of the cell inside  to incorporate the fluctuating component of the fluxes as they c

the HSI, n the normal vector on  A,  m as the mass of an atom,  can impact the overall solution of the coupling scheme. They s as the number of added/removed particles, v′  and ε′ as the  modified the boundary conditions for the continuum which did i
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not influenced the flux conservation but allowed for fluctuations  first letter indicates the direction from continuum to atomistic during the exchange. Applied to the oscillatory shear flow, the  and the second from atomistic to continuum.  V and  FV  were influence of the fluctuations was clearly seen and qualitatively  found to be stable for both small and large sampling intervals. 

good results achieved. Markesteijn et al. (2014) coupled the   VF performed well for small sampling intervals, while the Landau-Lifhitz fluctuating hydrodynamic (LL-FH) equations  purely flux-based  FF scheme was claimed to be weakly stable. 

with MD motivated by the fact that a peptide immersed in  A stability analysis was carried out which confirmed the above water showed a strong correlation between its deformation  findings and showed an amplification factor of unity for the  FF 

(dihedral  angle)  and  the  density  fluctuation.  Tested  in  two  scheme which, in combination with statistical noise, caused simulations (rectangular domain with separated LL-FH and  the weakly stable nature. 

MD domain), one with zero mean and one with a drift velocity 

When dealing with multiscale methods, there are 

on the continuum side, while in both cases the MD domain  several ways to link the atomistic level with the continuum. 

was initialised with no net momentum, the MD solution was  The one used and discussed so far is known as the domain approaching  the  continuum  solution  while  fluctuations  were  decomposition (DD), where the computational domain is split preserved. 

into sub-domains for which either an atomistic or continuum 

O’Connell  and  Thompson  used  constrained  dynamics  description is used while the coupling happens at the HSI. 

to exchange data at the HSI. They introduced a coupling  An alternative description is the heterogeneous multiscale strength parameter ξ which in their study was set to ξ=0.01.  method (HMM) (Weinan et al. 2003) where the entire domain They  observed  that  higher  values  negatively  influenced  the  is covered by a continuum solver and the microscopic part results although increasing ξ would cause lower computational  enters the computation locally at nodes where the continuum times. Nie et al. (2004) were able to use a value of unity for the  description is invalid. Asproulis et al. (2012) developed the coupling strength in conjunction with an external force applied  point-wise coupling (PWC) based on the HMM and showed to the particles in the HSI to prevent them from escaping. Wang  that this approach delivered good results for the velocity and He (2007) derived an equation for ξ allowing them to  profiles  in  a  start-up  Couette  flow.  In  their  investigation, dynamically update the value of ξ, while Kamali and Kharazmi  they placed the local atomistic regions at the wall nodes and (2013) used yet another approach and imposed an arithmetic  analysed a range of parameter in the Lennard–Jones potential, relation on ξ driven by the molecular time step. The simulation  as well as different channel heights and wall geometries. As was initialised with ξ(t =0)=0.1 and increased ξ via a third- evident, the approach lends itself to create bespoke multiscale MD

order polynomial until ξ=1  was  reached  at  a  user-defined  flow domains and use the atomistic description only where it time  step. They  argued  that  fluctuations  at  the  beginning  of  is necessary. 

the exchange were responsible for the divergence. Using a 

Borg  et  al.  (2013)  extended  the  idea  of  PWC  to  field-

low coupling strength parameter at the beginning suppressed  wise coupling (FWC). It operates in a similar fashion to the possible divergence and the results converged as the coupling  PWC approach and combines its strength with the domain parameter was increased. 

decomposition. Sub-domains (fields) are placed continuously 

One of the challenges in coupling the continuum with  in the continuum domain but do not need to coincide with the an atomistic description is partially due to the imposition of  continuum nodes as in the PWC. In a series of 6 steps, the boundary conditions from the continuum onto the atomistic  continuum solver projects its solution on the atomistic level level. While molecular data are easily averaged and imposed on  for which a new solution is obtained and imposed back onto the continuum, the reverse is not as evident due to the disparate  the continuum. The stresses are corrected afterwards. As with degree of freedoms. Praprotnik et al. (2005) developed the  the PWC, the atomistic domain can be tailored to the flow field adaptive resolution scheme (AdResS) in which MD is coupled  and freely placed inside the macroscopic domain. Applied to a with a coarse-grained version of MD which is able to blend  1D Poiseuille flow with Newtonian and non-Newtonian fluids, between the two descriptions, changing the degrees of freedom  they showed that by using only one microelement (field) near on the fly. The inter-molecular force is blended between the  the wall, the resolution was enhanced while further elements two descriptions as

needed to be placed inside the fluid domain to reduce the error 

compared to a full MD solution. 

The Couette flow is usually used to test hybrid schemes 

as it is easy to set up and has an analytical solution. It does 





(11)

not require a complex computational domain, and hence, 

where   w( x) is a blending function taking values from zero  unstructured meshes, as are widely used in continuum CFD 

to unity, and α and β are the centre of masses of the two  solvers, are not usually used. Borg and Reese (2008) set out to interacting molecules. The superscript ex denotes the explicit  develop a framework that incorporates unstructured meshes and treatment (MD) and cg the coarse-grained version. While  described their implementation in the open-source CFD solver removing degrees of freedom and effectively increasing the  openFOAM (Open Field Operation and Manipulation, http://

molecular size, the approach is blended from a microscopic  www.openfoam.com/) towards a general purpose coupling to a mesoscopic level at which boundary conditions may be  approach. Although the implementation has been described imposed easier than on a pure MD boundary. 

in detail, no actual simulations were presented. Macpherson 

Ren (2007) investigated the stability of the state and  and Reese (2008) introduced the arbitrary interacting cell flux  coupling  scheme  as  well  as  a  combination  of  the  two.  algorithm (AICA) which was designed to obtain the particles Specifically, the 

inside the cut-off radius r , i.e. for building neighbour lists, 

 VV,  FV,  VF and  FF coupling schemes were 

cut

investigated, where we have 

within an unstructured framework. Geometrical constraints as 

 V = velocity (state),  F = flux and the  well as parallel implementation issues have been addressed and 
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discussed in detail. Using an unstructured mesh for a domain  approximated. HMMs approximating first-order derivatives decomposition-based multiscale approach would require the  are therefore first order, while zeroth-order schemes only HSI to handle complex interfaces. Borg et al. (2010) used  approximated scalar transport coefficients. With increasing a state controller to impose macroscopic conditions on the  order, the noise may become dominant and they have stated atomistic level. It has an  actuator which is controlling the  that second-order schemes are currently the limit. To reduce atoms, e.g. changing their velocity, and a  sensor which is  noise, a filter may be applied as done in their study using measuring the atomistic properties which are then used to  the Savitzky–Golay filter which could allow higher-order drive the actuator in an iterative procedure. They successfully  approximation. Strictly speaking, hybrid–hybrid schemes applied this technique to handle the exchange of boundary data  are possible where, for example, velocity is obtained with inside  the  HSI  for  a  Couette  flow  with  an  obstacle  attached  the second-order Laplacian scheme, while the temperature to the lower wall (inside the atomistic region). This method  could be supplied by a full continuum simulation without any is, however, not only applicable for (complex) multiscale  coupling. This hybrid–hybrid scheme was then tested in a boundary data exchange but could also be used to impose non- gravity driven microchannel, and good results were achieved periodic boundary conditions in pure MD simulations. 

after fine tuning the MD cell dimensions. It was found, similar 

Steijl and Barakos (2012) reviewed and improved the  to Borg et al. (2013), that the MD cells configuration played treatment of non-periodic boundaries. Here, the cut-off  a crucial part in the accuracy of the overall solution and could distance of particles close to the boundary may exceed the  deteriorate if inadequate dimensions were chosen. 

boundary itself and hence will exhibit a lower inter-molecular 

force. They stated that neglecting this force could contribute 





(13)

30–40 % in density fluctuation. To remove this shortcoming,  So far we have limited our discussion to monoatomic flows, a similar MD simulation is usually conducted for which the  but extension to multispecies flow may be simply achieved normal force of the particle component can be evaluated which  by accounting for each atomic mass as done by Kim et al. 

is sampled and then imposed on particles in the simulation of  (2012). Instead of treating each atom equally, summing over its interest. Furthermore, the authors also treated the tangential  mass and force due to the Lennard–Jones potential allows for force component which has its equivalent in the continuum  several species to be considered. They validated their approach stress.  They  applied  their  methodology  to  a  channel  flow  for an incompressible flow with argon in a Couette flow and with the continuum domain in the centre and MD domains  then used the same set-up but different weight ratios for the at the walls and obtained good agreement with the analytical  two types of atoms which otherwise satisfied the properties solution  for  the  Poiseuille  flow.  Holland  et  al.  (2014)  used  of argon. Incompressible flows have not been widely used for MD to simulate a small portion of a channel and obtained  multiscale simulations, mainly due to high statistical scatter the boundary conditions at the wall from it. They extended  at low-speed flows. Ko et al. (2014) proposed an array of the channel to a high aspect ratio and imposed the boundary  solutions to overcome this shortcoming. The first approach conditions from their MD data. The results showed that  mentioned simulated the same geometry with different initial without the MD data, the continuum solver did not produce  conditions for a number of times and then averaged the results. 

the correct physical behaviour, while with the MD data, a  Clearly, for a large number of simulations it is expected that cheap pre-simulation technique was found to reproduce the  the noise will substantially reduce, but this gain comes with a expected results for geometrical similar, high aspect ratio  high computationally cost. The second approach made use of channels. Even when placing an obstacle at the channel centre,  a spatial regression which took data from neighbouring cells the profile for velocity, density and pressure were accurately  to improve the results in the cell at which information was captured compared to a full MD simulation. 

exchanged. The third and final approach made use of temporal 

Alexiadis et al. (2013) developed a novel Laplacian- regression where data from the same cell, at which information based HMM in which the shear stresses are directly obtained  was exchanged, were collected over the sampling time. The from MD computations (an alternative is to use the Irving– solution with the lowest statistical noise was obtained using Kirkwood equation which is commonly employed). The idea  several simulations and averaging the results; however, behind their approach is to solve for the Laplacian term, i.e. the  this approach can be repeated arbitrarily often to arrive at a momentum equation of the Navier–Stokes equations becomes

defined noise threshold. The spatial and temporal regression 

techniques are more difficult to converge as sampling data 





(12)

are not abundantly available. However, encouraging results 

were obtained for the Couette flow and could pave the way 

We have simply solved for the Laplacian term and collected  for incompressible, hybrid schemes. Cosden and Lukes (2013) the rest of the equation in Ω(R), where R is the macroscopic  combined several aforementioned methods and developed an position vector. We can do the same on the atomistic level  open-source MD-CFD solver based on openFOAM for the with r being the atomistic position vector as and thus have  continuum computation and LAMMPS (Large-scale Atomic/

found a way to approximate the right-hand side of the Navier– Molecular Massively Parallel Simulator, http://lammps.sandia. 

Stokes equation, i.e. Ω(R) and, therefore, have solved for  gov/, see also Plimpton 1995) for the MD part. Coupling the stresses implicitly. Alexiadis et al. (2014) introduced the  by state (constrained dynamics) was used, and the particle hybrid taxonomy to classify HMMs based on their order of  insertion method of Delgado-Buscalioni and Coveney (2003b) approximation going from the atomistic to the continuum level.  was employed in the HSI. They validate their open-source The order of approximation is equal to the order of the gradient  solver against the start-up Couette flow. 

that is being approximated. The Laplacian-based scheme is 

second-order in their taxonomy as a second-order gradient is 

In the introduction to this section, we have mentioned 

the work of Hadjiconstantinou (1999) in which the moving 
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contact-line problem was studied using a multiscale approach.  geometries have been presented, but simulations making use The  contact  line  was  created  between  two  immiscible  fluid  of complex HSIs and unstructured meshes are not known to phases which has been achieved, on the MD side, by removing  us. This may be circumvented by using PWC or FWC as the the attractive force in Eq. (2), i.e. by flipping the minus to a  underlying mesh can be structured or unstructured; however, positive sign. This was only done for the potential between  the  domain  decomposition  approach  would  benefit  from  a the two phases, while inter-phase potentials followed the  more general description for flows where the domain can be standard  form  of  Eq.  (2).  The  topic  of  immiscible  fluids  is  split into different domains, as, for example, in the case of a little studied in the context of multiscale simulations but has  wall-bounded flow. The imposition of boundary data between recently gained some interest in the field of polymer blends.  atomistic and continuum domains remains challenging. We Fermeglia and Pricl (2007) investigated the miscibility of  will discuss in Sects. 5and 6 how the inclusion of a description such compounds found in industrial applications where MD  between MD and the Navier–Stokes equations can remove was  used  to  obtain  coefficients  which  were  mapped  onto  some of the noise while simplifying the overall coupling a mesoscale model. A widely found polymer blend in the  procedure. 

automotive industry is formed of polymethylmethacrylate 

and polycarbonate, also referred to as PC-PMMA. They  DIRECT SIMULATION MONTE CARLO METH-investigated a 70/30 mix of PC-PMMA for different shear  OD

rates and found that the miscibility was invariant with respect 

to shear. The blend remained immiscible and only changed  The direct simulation Monte Carlo (DSMC) method is its morphology, where spherical-like structures were found  consistent with the Boltzmann equation but not derived directly for low shear rates which elongated under higher shear. Only  from it (Palharini 2014; Shen 2005). It is a method developed using a compatibiliser may the two phases be mixed. Similar  for rarefied gas conditions, i.e. where the mean molecular results were found for polycarbonate–acrylonitrile-butadiene- diameter is much smaller than the mean molecular path. In styrene (PC–ABS) blends. Furthermore, the inhomogeneous  DSMC, real atoms are grouped together and represented by density  field  distribution  was  mapped  onto  a  FEM  solver  a single particle which is then used for the simulation. The which then produced homogeneously distributed variables  procedure of a DSMC simulation is as follows: on the macroscale. Posocco et al. (2012), who investigated  Populate mesh with particles, initialise simulation self-assembled monolayers composed of hydrocarbon 

and  perfluorocarbon  as  a  surfactant  on  gold  nanoparticles,    •  Advect particles mentioned the importance of multiscale modelling in the    •  Index particles

context of immiscible flow domains. In their multiscale study,    •  Perform particle collisions MD was utilised to obtain parameters for a mesoscale model 

(in this case dissipative particle dynamics, see also Sect. 5).    •  Sample flow properties These  parameters  had  direct  influence  on  the  morphology    •  If  t=t  proceed, else go to step 2

max

on the mesoscale. The authors concluded that by influencing    •  Output solution

the parameters on the microscale, which can be easily done, 

In step 1, particles are randomly seeded in the mesh 

3D patterns can be controlled and created on the mesoscale.  obeying computational constraints. Each cell should have Furthermore, they stressed that tailored nanoparticles of  about 20–30 particles for low statistical noise (Bird 1994; complex nature may be studied and created for medical  Palharini 2014), and the time step Δt needs to be small in applications. Hence, a multiscale approach may offer new  comparison with the local mean collision time (Shen2005). In insight into the morphology of polymer blends, but its  step 2, particles are advected according to the temporal scheme application may be far reaching and enabling the creating of  used and could be as simple as with r  being the 

new materials. 

p

particle coordinates at time  n or n+1 and v  its corresponding 

Further reviews dealing exclusively with multiscale 

p

velocity. Step 3 determines the cell in which each particle 

MD schemes can be found in Kalweit and Drikakis (2008),  currently resides. The collisions between particles are carried Delgado-Buscalioni (2010) and Mohamed and Mohamad  out in step 4, and the macroscopic flow properties are obtained (2010). 

in step 5. This process is repeated until the maximum time 

step is achieved or, if a steady solution is sought, after a time 

Interim conclusion on hybrid and multiscale 

asymptotic solution is achieved. 

molecular dynamics methods

While the particles are advected deterministically, the 

Multiscale MD computations have allowed to accurately  collisions occur statistically. The most common collision capture the flow physics at the microscale while extending the  technique used nowadays is the no time counter (NTC) method computable domain into the mesoscale (Xu and Li 2007), where  introduced by Bird (1989) which removed unrealistic collisions experimental measurements are feasible (Santiago et al. 1998;  rates found in highly non-equilibrium flows in its predecessor, Tretheway and Meinhart 2002) and could provide validation  the time counter (TC) method, previously introduced by the data. Experiments may be performed at the microscale for low- same author. First, the total number of collisions per cell is speed flows, and hence, incompressible multiscale methods  calculated as

need to be further developed to cope with statistical scatter. 

Most of the coupling schemes presented were either tested 





(14)

for  the  Couette  flow  (steady  and  unsteady),  the  oscillatory 

shear flow or the Poiseuille flow. Efforts towards more complex  where  N is the number of simulated particles inside the cell, is the average number of particles during the sampling time, 

[image: Image 27]

[image: Image 28]

[image: Image 29]

[image: Image 30]

[image: Image 31]

[image: Image 32]

[image: Image 33]

[image: Image 34]

[image: Image 35]

[image: Image 36]

[image: Image 37]

[image: Image 38]

[image: Image 39]

[image: Image 40]

[image: Image 41]

[image: Image 42]

[image: Image 43]

[image: Image 44]

[image: Image 45]

Progress In Particle-Based Multiscale and Hybrid Methods for Flow Applications

9

F  is the number of real atoms represented by each simulated 

N

tion which yields 

and Eqs. (20) and (21) can thus be 

particle,  σ  is the total collision cross section and obtained 

T

solved. 

from an appropriate molecular model, c  is the relative speed 

r

and V  is the cell volume. The simplest of molecular models 

c

The  macroscopic  flow  properties  are  then  obtained  with  the 

to obtain σ  is the Hard Sphere (HS) model where we have 

T

following relations

and 

and d  being the 

2

diameters of the colliding particles. Its simplicity comes at the 

cost of lacking physical soundness, and various models have 





(22)

been introduced in the past to overcome these shortcomings, a 

detailed description of which can be found in Shen (2005) and 

Bird (1994). 

(23)

For each cell, we calculate N  and loop over it. At each in-

coll

stance, we select a particle pair and test whether collision oc-

(24)

curs via

where  n represents the number density. Boundary conditions 

are easily imposed in the DSMC method. The simplest 

form is periodic boundaries in which particles re-enter the 





(15)

computational domain via a periodic interface. If a particle 

Equation (15) gives the collision probability. It is compared  travels past a solid boundary during the advection step, its against a random number R

normal velocity component to the boundary is simply reversed 

∈[0;1] and if P >R  is true, the 

n

coll

n

selected particles are accepted for collision. We should note  and the position updated accordingly. At open boundaries, that  (σ c )  is difficult to estimate a priori and so is subject  particles are removed when they exit the domain. At inflow T r max

boundaries, one needs to determine the velocity and number 

to be updated if 

. This does not tamper with  flux of particles. A popular choice to obtain the velocity of the validity of the solution as it appears in the nominator of Eq.  the particles is the acceptance–rejection method in which a (14) and denominator of Eq. (15). 

random velocity is drawn from a suitable distribution function 

The collision occurs elastically, and energy is conserved. The   f( v). This velocity will be accepted if 

, where f  

max

velocities of the particles prior to collision are

is the maximum value of  f( v) and R  a uniformly distributed 

n

random number. The number flux of particles across an open 

boundary can be calculated as





(16)

(25)



(17)

where  β is related to the most probable thermal speed as 

where we have the centre of mass velocity as

with  R being the specific gas constant and  T the 

temperature and K  is a normalisation constant and given by

t





(18)



(26)

and the relative velocity is

where  S is given by S=βV,  V being the normal component 

of the velocity on the boundary and we have introduced  erf() 



(19)

as the error function. For further information on boundary 

conditions, the reader may wish to consult Bird (1994), Lilley 

The velocities after the collision for each particle can be ex- and Macrossan (2003) and Xiaohai (2005). 

pressed as

At this point, we wish to emphasise that despite a 

computational mesh is used, no information is exchanged 

(20)

with neighbouring cells, and hence, the choice of structured or 

unstructured meshes does not pose any higher implementation 

effort. When using unstructured grids, however, the neighbour 

cells need to be determined in order to change the cell ID 



(21)

once a particle passes from one cell to another. Fast neighbour 

Since an elastic collision is assumed and energy is conserved,  search algorithms and implementation guidelines can be found the magnitude of relative and centre of mass velocity has to be  in Löhner (2008). A further in-depth review of the DSMC 

method can be found in Oran et al. (1998). 

conserved, i.e. we have 

where post-

collision values denote with an asterisk. In the HS model, the  Review on hybrid and multiscale direct simula-scattering  occurs  isotropically,  and  therefore,  each  particle’s 

outbound direction is equally likely. We can therefore ran- tion Monte Carlo methods domly select collision directions from an appropriate distribu- The DSMC method thrives for flow condition in the rarefied 
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gas regime. This is encountered at near space altitudes of 

20–100 km (Xu et al. 2009) and hence lends itself for space 

applications. Modelling spacecrafts re-entering the atmosphere 

(28)

requires a more complex treatment as the full Knudsen number 

range is encountered, i.e from free molecular flow 

where the indices  T  and  R refer to the translational and 

 r

rotational temperature. The initial solution was obtained via 

in the outer atmosphere to the full continuum 

the Navier–Stokes equations, and if one of the two continuum 

, while descending towards earth. La Torre et al. (2011)  breakdown parameters exceeded a threshold value, of which showed that at around  K =0.1 the error from a Navier–Stokes 

n

several values were tested, the domain was flagged for the 

solution was twice that of a full DSMC and confirmed that  DSMC solver. They tested their solver against a 2D flow over the continuum description is invalid in this region. Although  a wedge at 25

the DSMC method could be extended into the low Knudsen 

° of inclination and a 3D near-continuum parallel 

orifice jet that expanded into near-vacuum. Good agreement 

number regime, it would be too computational expensive in  between the full and multiscale DSMC results were attested comparison with a continuum-based Navier–Stokes solver.  and further experimental data for the 3D flow case confirmed It is here that a multiscale DSMC solver benefits from the  this. Expanding on this work, Lian et al. (2011) used Eq. 

advantages of both worlds and computational efficiency is  (27) with 

gained. 

ϕ being the pressure. This has the advantage that 

the high-velocity gradient in the boundary layer, which may 

Boyd et al. (1995) introduced the gradient length local  still be in thermal near equilibrium, is not excluded from the Knudsen number as

continuum domain, and hence, a costly DSMC calculation 

is avoided. They applied this to the same 2D, 25°  inclined 

wedge flow at Mach 4 and to a Mach 12 square cylinder flow. 





(27)

The L2 norm of the density and temperature showed that the 

error was decreasing faster and achieved a slightly lower 

where ϕ could be any flow variable of interest. They referred  overall error compared to the breakdown parameter used to Bird (1970) who showed that 

implies a  before without diminishing the overall accuracy of the solver. 

departure from the continuum behaviour. Lofthouse et al. (2007)  Pantazis and Rusche (2014) coupled a DSMC and Navier–

investigated a Knudsen number range of 

Stokes solver in openFOAM for complex, three-dimensional 

for a Mach 10 flow around a cylinder using two independent  and unsteady flows. The authors emphasised that for unsteady solver: one based on the Navier–Stokes equations and the other  flow coupling, numerical constraints become more restrictive on the DSMC method. They calculated the pressure, shear  and may deteriorate the solution and the efficiency of the stresses and heat transfer on the cylinder surface and correlated  multiscale scheme. Numerical noise, for example, may not as the results with the local 

to judge whether the region  easily be reduced if the sampling interval is low and cannot be can be treated as a continuum or not. The shear stresses and  increased due to the time step requirement. The efficiency may heat transfer obtained from the Navier–Stokes solution showed  suffer from a poorly designed parallel implementation. Any considerable differences compared to the DSMC results in the  problems of this sort will build up over time and could cause region. They explained this behaviour to be  the hybrid solver to perform worse than a monoscale approach caused by the inaccurate boundary conditions imposed at the  (longer computational times) and diverge due to self-induced cylinder surface. The pressure was not as adversely affected  numerical instabilities. For geometric flexibility, unstructured and showed a better agreement. For 

the total drag  meshes were supported. They tested their hybrid solver on the 

and peak heating was within 1 % of the predicted DSMC result,  shock tube problem and the unsteady flow through an orifice. 

Their results closely matched those obtained with a pure 

while for 

the error increased to 26.2 and 32.1 %,  DSMC solver. A comparison of the ideal and real speed-up respectively. The study showed the need for hybrid solvers  further revealed good strong scaling capabilities. 

where the fast Navier–Stokes solution should be applied in 

regions of 

and the DSMC method elsewhere. 

So far in our discussion, we have only considered domain 

This study crucially pointed out once more that an inaccurate  decomposition and heterogeneous multiscale methods and boundary condition could cause a departure from the expected  variations of these. These may not always be the best choices. 

results despite the fact that the used method may be applicable  If we consider a channel of height  H that is of the order of away from the boundaries. We have shown results of Holland  the mean free path λ, as is the case in a Knudsen compressor, et al. (2014) in Sect. 2.1 that boundary conditions obtained and  then  either  method  (DD  and  HMM)  would  be  difficult  to sampled from an appropriate molecular or particle approach  implement. Using a continuum mesh and then refine it using can extend the Navier–Stokes equation further into the smaller  the HMM approach, the mesh spacing inside the channel length scales. Thus, multiscale method present a cure where  would be smaller than λ and, therefore, microelements placed the exact boundary conditions are uncertain on the macroscale,  on the nodes would overlap. One possible solution would be but not on the microscale. 

to  make  use  of  the  field-wise  coupling  approach  introduced 

in Sect. 2.1, which is what Docherty et al. (2014) have done. 

Wu et al. (2006) developed a multiscale DSMC solver  They used a hybrid Navier–Stokes DSMC code and considered based on unstructured meshes. The breakdown parameter  the 1D micro-Fourier flow. As has been mentioned by Borg was based on Eq. (27), where ϕ was chosen to be the density,  et al. (2013), the size of the microelement, which consists velocity and temperature so that 

was obtained as  of a sampling and relaxation zone, needs to be appropriately 

and a second breakdown  defined in order to not adversely affect the results. Hence, a parameter was used as

parametric study is needed a priori which has been done by 

the authors and the size of microelements had been adjusted 
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to match a full DSMC simulation. Their approach worked  is  spent  finding  the  initial  solution  with  the  DSMC  method well for the tested case but is currently limited to 1D flows.  which, for small Knudsen numbers, i.e. continuum regions, is Therefore, the reported speed-up was only marginal as a wide  rather time-consuming. Using a continuum solver instead to scale separation could not be achieved. Another possibility is  obtain the initial solution, improved their speed-up to a factor to join all microelements along transversal lines together, to  of 2.6. 

form one single, cross-sectional microelement. This has been 

Sun and Boyd (2005) introduced the sub-relaxation 

done by Patronis et al. (2013). They refer to this method as  technique in which the history of a signal is removed during the internal multiscale method (IMM). They applied their new  averaging once it starts to deteriorate the averaged result. 

technique to a converging–diverging channel driven by an  A relaxation parameter θ  can  be  freely  set  to  influence  the external acceleration, a curved, high aspect ratio channel driven  averaging procedure but may negatively affect the results and by  a  pressure  difference  and  the  developing  flow  confined  so a parametric study is advisable. Schwartzentruber and Boyd by two eccentric cylinders at different rotational velocities.  (2006) used the sub-relaxation technique in a hybrid Navier–

Their approach agreed well against full DSMC simulations.  Stokes DSMC solver and used it for boundary condition The computational speed-up was reported to be 6, 50 and 300  imposition at the interface between DSMC and continuum. 

times faster, respectively. The very high speed-up was due to  They tested their approach on a one-dimensional shock the steady-state continuum solver for the multiscale method,  tube for liquid argon and nitrogen gas. Their technique was whereas the full DSMC solver was fully unsteady. Patronis  able to provide smooth boundary conditions for the hybrid and Lockerby (2014) extended this method to the low-variance  solver which compared well to full DSMC and experimental deviational simulation Monte Carlo (LVDSMC) as introduced  data. A pure Navier–Stokes solution was also tested which by Homolle and Hadjiconstantinou (2007). It is based on the  gave inaccurate results with the reciprocal shock thickness Boltzmann equation but retains the structure of the DSMC  overestimated by almost a factor of 2. This is consistent with algorithm. The key idea is that the velocity distribution can  the observation of Carlson et al. (2004), who computed the be decomposed into an equilibrium part which can be solved  flow inside a shock tube for Mach numbers of 1.55, 5 and 10. 

analytically and a deviational part which is solved for by the  In their multiscale solver, the Navier–Stokes equations were simulated particles. Since the equilibrium is obtained in this  coupled with the DSMC method based on the IP method way, small deviations from equilibrium can be simulated with  (information preserving, Fan and Shen 2001). In this method, higher signal-to-noise ratio and the overall noise decreases. For  each particle is assigned a second, information preserving, the case of the converging-diverging channel, good agreement  velocity. This velocity is solely used to obtain the macroscopic was obtained compared to the DSMC results. 

quantities through particle averages but does not influence the 

Statistical scatter is omnipresent and will remain a  movement of the particles and hence is less prone to statistical challenging problem due to the inherent stochastic treatment  scatter. The IP velocity follows its own set of rules to update of the collisions. Averaged quantities based on the particles  itself, a detailed list of which can be found in Shen (2005). 

contain a high variance and the restriction imposed by current 

The results for the Mach 1.55 case yielded overall good 

and foreseeable future generation of high-performance  agreement amongst the Navier–Stokes, DSMC and multiscale computing facilities means that researcher has to opt for noise  solver. Increasing the Mach number decreased the accuracy reducing method to control the accuracy instead of increasing  of the continuum solution, whereas DSMC and the hybrid the particle count. Burt and Boyd (2008) introduced a low  version matched each other well. The reciprocal shock diffusion variant of the DSMC which replaces the collision by  thickness confirmed a deviation by a factor of about 2 for the a set of explicit deterministically steps. Particles are seeded  Navier–Stokes equations from the experiment, while DSMC 

in cells and not allowed to freely travel from one cell to  and the multiscale solver matched the experiment well. The another, which is enforced by specular walls on the cell. This  speed-up was also mentioned, and despite the multiscale solver removes the necessity to index particles at every time step  being about 1.6 times faster than the pure DSMC version, the but requires to transfer and exchange momentum in-between  Navier–Stokes equations still yielded results 9 times faster than neighbour cells. Furthermore, the cells are not rigid but move  the multiscale solver. Thus, for those cases where the Navier–

with a cell velocity obtained from the mass averaged particle  Stokes equations can be modified to incorporate appropriate velocities. Motivated by the successful application to the 1D  boundary conditions, it is still cheaper while retaining a good shock tube, they coupled the LD variant with a conventional  degree of accuracy. 

DSMC  solver  and  simulated  the  flow  around  a  cylinder  at 

Mach 6 and a nozzle/plume expansion (Burt and Boyd 2009) 

Boyd  (2008)  investigated  the  flow  past  a  cylinder-flare 

as well as the flow around a cylinder at Mach 20 (Burt and  and blunt planetary probe using a hybrid DSMC Navier–

Boyd 2010). The use of the LD-DSMC method to increase  Stokes solver. Different mesh densities and time steps for the computational efficiency was justified by the fact that particle  respective solver were used in order to speed up the calculation. 

trajectories were correctly integrated while moving over cell- The initial solution on which the domain has been separated into based length scales much larger than the mean free path. The  rarefied and continuum regime was obtained by the Navier–

results compared well to the reference solution and the speed- Stokes equations as they have previously proven to provide the up for the Mach 20 cylinder flow was given to be about 2.6  initial solution in a shorter time (Jun et al. 2013). It has been higher compared to a full DSMC simulation. Jun et al. (2013)  mentioned that the mean free path varied over one order of calculated the flow around a cylinder as well, this time at Mach  magnitude for the cylinder-flare case (speed-up 1.4) and over 10. Compared to a full DSMC simulation, their speed-up was  two orders of magnitude for the blunt planetary probe (speed-only about 1.2 using the same method as described above.  up 12.5), where the speed-up in parenthesis are comparing to They argued that a considerably large part of the calculation  full DSMC simulations. This shows that multiscale solvers are 
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becoming more efficient for a wide range of Knudsen number 

separation and it is under these conditions that they thrive. 





(30)

Interim conclusion on hybrid and multiscale 

direct simulation Monte Carlo methods

where τ is the collision time, f  is the density distribution at 

k

Schwartzentruber and Boyd (2015) pointed out that  link   k and   is the corresponding equilibrium distribution. 

experimental studies are vital and needed for the validation of  The collision time is given b0079

current DSMC codes. Currently, most multiscale and hybrid 

DSMC codes are validated against pure DSMC solvers, see 

Scanlon et al. (2010) for a range of 1D, 2D and 3D test cases. 



(31)

They pointed out that MD could be used as a validation tool  where ν is the lattice viscosity and ω is the collision frequency. 

but is computational rather expensive for rarefied gases. 

The full governing equation with the BGK operator is

Another issue that arises when coupling DSMC with 

a second solver is the noise penalty that arises due to the 

stochastic treatment of the collision. A range of approaches 





(32)

have been presented herein (LD-DSMC, LVDSMC, IP, sub- where Eq. (32) can be seen as a simple advection equation relaxation) and have all been able to reduce the noise level. As  with a source term. If we ignore the unsteady term, we see the seen in Ko et al. (2014) (see Sect. 2.1), using spatial or temporal  similarities to the LGCA method, i.e. Eq. (29), where we have regression reduced the noise with little extra computational  streaming on the LHS and collision on the RHS. To solve the effort while being independent of the method and hence could 

prove to be a viable alternative or even be used in conjunction  above equation, we need to define c and 

. The lattice speed cc 

with one of the above-mentioned methods. 

is determined by the speed model. The speed model determines 

The reported computational gains were highest for the  how the distribution function is streamed to its neighbours. 

cases with the highest Knudsen number separations, and hence,  Typically on a 2D structured mesh, there are 9 sites (nodes) applications  may  be  limited  to  these  sorts  of  flow  regimes.  to consider, located at However, space applications have shown to exhibit the free  which includes the site at 

. Therefore, the speed 

molecular to continuum regime and thus rendered themselves  model would be termed D2Q9 (2D, 9 sites) and each site has as prime candidates for multiscale DSMC schemes. 

a corresponding speed c  and weight w . The speeds stream 

k

k

from one site to another and, therefore, take integer values of 

LATTICE BOLTZMANN METHOD

−1,0,1−1,0,1. They are obtained as

The lattice Boltzmann method (LBM) is strictly speaking not a 

direct particle method. It is derived from the lattice gas cellular 

automata (LGCA) which in turn is based on physical particles. 

In the LGCA method, particles reside on so-called sites which 

are connected via links. It is essentially a computational mesh 



(33)

where sites refer to nodes and links to edges. The governing  where

equation simply states that the number of outgoing and residing 

particles at a site is equivalent to the collision occurring at the 

same site, i.e. 



(29)

The corresponding weights are

Several collision models have been introduced, most notably 

the one of Hardy, Pomeau and de Pazzis (HPP model, Hardy 

et al. 1973, 1976) and Frisch, Hasslacher and Pomeau (FHP 

model, Frisch et al. 1986). Due to its binary nature (particles 





(34)

either do or do not exist at sites), the method is free of any 

numerical round-off errors. However, statistical noise is high 

The weights are to some degree arbitrarily set but need 

and averaging over larger regions or several simulations is  to fulfil certain constraints, one of which is that 

. More 

necessary to obtain macroscopic quantities. The model further  information on the weight constraints and how to develop lacks Galilean and rotational invariance. The interest in the  higher-order speed models can be found in Succi (2001). 

method declined once the problems surfaced. In the LBM, the 

The density distribution function at equilibrium is given 

single particles are replaced by a density distribution function  by

which removes some issues encountered in the LGCA. That, 

however, also means that the collision operator cannot be 

treated explicitly and has to be approximated numerically. The 

easiest and still one of the most widely used model is the one 



(35)

of Bhatnagar, Gross and Krook (BGK model, Bhatnagar et 

al. 1954). It is sometimes referred to in short as the LBGK  where we have the macroscopic density ρ(r,t) and velocity u, (Lattice-BGK) model and given by

while the lattice speed of sound is obtained from 
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The macroscopic quantities are then obtained from

of the boundary with respect to the coordinate system and u  ∥

as the velocity component parallel to the boundary. 





(36)

in Eq. (39) and 

in Eqs. (40) and (41) will be positive 

if the normal (pointing outside the domain) on the boundary 

is negative, and negative if the normal is positive. 







(37)

in Eq. (40) and Eq. (41) on the other hand will be positive 

for f  and f , if their direction with respect to the boundary is 

Eq. (32) is now solved in the following way:

+

−

in positive coordinate direction and negative otherwise. The 

•  Initialise domain

velocity component of u  is either prescribed via Dirichlet- 

⊥

or Neumann-type boundary conditions and u  can be set for 

•  Calculate   from Eq. (35)

∥

moving boundary problems. A comprehensive overview of 

•  Calculate Ω from Eq. (30)

various boundary conditions can be found in Latt et al. (2008) 

•  Stream  the  updated  density  distribution  function  to  and Chen et al. (1996). Classical and recent applications of the their neighbour sites

LBM can be found in Chen and Doolen (1998) and Aidun and 

Clausen (2010). 

•  Obtain macroscopic quantities for ρ and u via Eq. (36) 

and Eq. (37)

Review on hybrid and multiscale lattice Boltz-

•  Repeat from step 2 until  t=tmax

mann methods

•  Output results

The LBM has found wide acceptance and applicability 

Due to the nature of the LBM in which macroscopic  among various research discipline, mainly due to its ease of properties are determined via the density distribution function,  implementation, handling of complex geometries and low we  need  to  find  boundary  conditions  for  each  contribution  computational cost along with its local behaviour which of the density distribution function f  on the boundaries. For 

i

makes it a prime candidate for parallelisation. However, the 

the D2Q9 model that we have discussed above, there will  LBM has also been found to work less well for flows involving be 3 components of f  outside the computational domain, 

i

heat transfer, compressibility and high Reynolds numbers. 

3 components on the boundary itself, i.e in-plane and 3  The main reason for the low-to-moderate Reynolds numbers components pointing into the computational domain for which  that can be achieved with the classical LBGK model is due we need to formulate boundary conditions as they cannot  to the instability that arises with low lattice viscosities. One stream from outside the boundary into the domain. There are  possible solution is to decrease the lattice spacing at the cost several  possibilities  to  find  appropriate  formulations  for  the  of increased computational cost. One could also use a multiple inward pointing components of f  and we will briefly describe 

i

relaxation  time  (MRT)  scheme  (D’Humières  et  al.  2002) 

the method of Zou and He (1997) which is one popular choice.  instead of the BGK operator for the collision. The main idea Let us denote the inward facing components of 

of the MRT scheme is that the collisions occur in moment 

is the component normal to the boundary  space rather than velocity space and each moment is relaxed and 

the component to its left and right, respectively.  towards equilibrium at its own rate, while in the BGK model, We first need to evaluate the density, which we can write for a  all moments are relaxed at the same rate  . That allows Cartesian domain in compact form as

for lower viscosities and hence higher Reynolds numbers. 

Karlin et al. (1998) introduced the notion of the entropic 

lattice Boltzmann method (ELBM), where the H-theorem 



(38)

is incorporated into finding the equilibrium distribution 

where  ±u  is the perpendicular velocity component on the  function 

in an attempt to adhere to the second law of 

⊥

boundary and the sign is positive if the normal direction (point- thermodynamic, i.e. positive entropy production. In its limit, ing outside the domain) of the boundary is positively aligned  the ELBM will result in the classical LBM and subsequently with the coordinate system. We differentiate further between  allows lower viscosities as well. Compressible effects are the components of f  which are  inplane, i.e. coincide with the  difficult to model since the small number of discrete velocities i

boundary and  outside, i.e which are outside of the computa- in the speed model allows only small temperature variations. 

tional domain. With these, we can calculate

and   as

Successful applications have been presented, for example, by 

Guangwu et al. (1999), who simulated Sod’s and Lax’s shock 

tube problem. Despite following the trend of the reference 



(39)

solution, spurious oscillation, as well as numerical dispersion, 

was present. Compared to other published data obtained with 

the Navier–Stokes equations using different Riemann solvers 



(40)

and numerical schemes, its L1 norm in density, pressure, 

velocity and energy compared less favourable. Joshi et al. 

(2010) constructed a hybrid LBM in conjunction with a finite 



(41)

volume-based Euler solver where the primitive variables at 

the cell centres were obtained from the Euler equations, while 

We have introduced a function  opp() which returns the  the inter-cell fluxes were approximated by the LBM through component opposite to 

and 

which are the  inplane  a modified equilibrium distribution function to account for component of f  pointing in the positive and negative direction  thermal effects. They applied their scheme to the 1D and 2D 

i
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Sod shock tube problem as done by Guangwu et al. (1999).  applied their method to the flow around a porous burner, where Despite the absence of tabulated data in the work of Joshi  the burner itself (cylindrical shaped) has been resolved with a et al. (2010), their scheme qualitatively exhibited the same  refined grid. The ratio tested was 3 and 6 times finer than the behaviour as the pure LBM, see Guangwu et al. (1999).  far field grid. Since the time step is directly proportional to Compared to two solutions obtained from the pure Euler  the lattice spacing, i.e. 

, a refined grid 

equation making use of the Godunov and Flux Vector Splitting  means that the time step decreases as well. For reactive flows, (FVS) scheme, their solution compared well to the Euler  this becomes important as the timescales for reactions are results with spurious oscillation and numerical dispersion  rather small. Studies were conducted for a range of Reynolds still present. To incorporate heat transfer and to compute  and Damköhler numbers, matching the results of full Navier–

the temperature field, as stated previously, the equilibrium  Stokes solutions. 

distribution function needs to be modified and higher-order 

speed models should be used, i.e those that take their immediate 

Li et al. (2014) simulated the melting and solidification 

neighbours and their neighbours into account. Various models  process in a 2D rectangular domain where the west wall have been introduced to account for the energy and thus for  was above the melting temperature, the east wall below the the temperature (Guangwu et al. 1999; Kataoka and Tsutahara  melting temperature and the north and south wall adiabatic, 2004a, b; Shi et al. 2001) and are reviewed in Kun (2008).  i.e. 

. The velocities were obtained by the LBM, 

Mezrhab et al. (2004) discussed the thermal models available  while the temperature was calculated from the energy equation in the Lattice Boltzmann framework and concluded that these  which  was  solved  by  a  finite  volume-based  SIMPLE  (semi-are still premature and need further development. They opted  implicit method for pressure linked equations, Patankar and for a hybrid approach where the LBM was solved alongside  Spalding 1972) scheme, see also Patankar (1980), Versteeg and an advection–diffusion heat equation to obtain the temperature  Malalasekera (2007) for a detailed description of the SIMPLE 

field. They applied their coupled solver to a range of two- and  scheme and its derivatives. The variables for the finite volume three-dimensional cases and obtained results that compared  solver were stored at the cell centres while the LBM stored well to reference data. The same approach was chosen by Wu  its variables at the vertices. In order to provide face-centred et al. (2012) to simulated forced convection around a cylinder  velocity components for the SIMPLE algorithm, the velocity at various Reynolds numbers. The cylinder was resolved  needed to be interpolated to its required location. The interface by the immersed boundary method (IBM) and its influence  was obtained via the interfacial tracking method. The method introduced into the advection–diffusion heat equation by a  identifies the cells in which the interface currently resides and source term. Since the boundary itself did not coincide with  assumes that the cell temperature is at the melting condition, the computational nodes as in body fitted meshes, evaluating  T . This is, however, only the case if the interface is exactly m

gradients at the boundary was not straight forward. To calculate  at the cell centre and, therefore, a correction was introduced the Nusselt number, which contains the normal temperature  to allow the interface to be off-centre. Simulations were then gradient at the cylinder surface, it was recast using Fourier’s  carried out for various Stefan numbers, where 

law 

to eliminate the gradient and then finding   L is the latent heat, and compared to experimental data. The an appropriate relation for the heat flux  Q. Their results were  bulk of the interface was agreeing well with the experiment. 

compared against two other numerical simulations, and the  At the wall, discrepancies were observed and attested to the discrepancies were at most 5 %. Chen et al. (2013) extended  difficulties to maintain the adiabatic condition in experiments, the advection–diffusion equation approach to handle species  as well as the assumption made in the numerical simulation, transport. Their test cases were species convection and  that the volume change during the phase transition can be diffusion with bulk reactions, species diffusion in a channel  neglected. Brent et al. (1988) developed an enthalpy–porosity with surface reactions and natural convection inside a square  technique  for  melting  and  solidification  processes  in  which cavity. The first two test cases were compared against analytic  the Navier–Stokes equations remain valid throughout the flow solutions and good agreement was attested while the same  for the liquid, transition and solid phase. The energy equation could be said about the third test case compared to the solution  contains an additional source term in which the latent heat of a commercial Navier–Stokes solver. With their methodology  evolution is modelled for 

; otherwise, the source term 

tested and validated, they set out to simulate a more complex  is zero. The momentum equation is equipped with a source example of a wall-coated microreactor to simulate heat  term that mimics the Kozeny–Carman equation. It is zero for transfer, mass transport and chemical reactions. The velocity  the liquid phase and increases in the transition region. For a profiles were compared to a full-scale lattice Boltzmann  fully solidified solution, its value is great enough to force all simulation for which good agreement was obtained. To further  the other terms to vanish, enforcing a zero velocity field. The accelerate the procedure, the grid spacing for the continuum  advantage of this approach is that the interface comes out as domain was increased while keeping the spacing of the lattice  a product of the solution and does not need to be explicitly Boltzmann domain the same. It has been found that at a grid  tracked. Chatterjee and Chakraborty (2006) reported results of spacing ratio of 10:1, results were still good while maximising  a dendrite growth in an undercooled melt making use of the the computational turnaround time. Yet another study has been  enthalpy–porosity  technique.  They  used  a  modified  thermal done by Filippova and Hähnel (2000), using the same approach  LBM from which hydrodynamic variables were computed as chosen by the authors in the previous studies, and extended  and coupled it with an enthalpy density distribution function their approach to variable density flows in order to simulate  from which the thermodynamic variables were derived. Their chemical reacting flows. The LBM was further extended with  results were reported to compare well against reference data adaptive mesh refinement capabilities and boundary fitting to  although  only  qualitative  figures  were  presented.  However, account for the misalignment of the boundaries. They have  their approach coupled the fast, modified (hybrid) LBM with the elegance of the enthalpy–porosity technique and hence 
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lent itself to fast computational times for complex interfaces.  for uniform shear flow the polymer migrated towards the centre Ladd (1994a, b) developed a general framework and solver  of the channel as long as the channel height was large enough. 

(SUSP3D) to simulate suspended particles. Forces are imposed  Decreasing the size increased the influence of the walls, and for on  the  particles  via  fluctuating  stresses  rather  than  applying  small enough channels, the polymer could migrate towards the random forces directly to the particles. They are advected using  walls as observed by previous studies. It is worthwhile to point classical Newtonian dynamics including angular momentum of  out that this study presented an opportunity to study micro- and the particles. The solver has been developed with an emphasis  nanoscale phenomena using a mesoscale approach by simply on good scalability for a large number of particles and hence has  incorporating a suitable polymer model into the solver making been subsequently used by various other researchers. Beetstra  it a hybrid method. Thus, in comparison with a full molecular et al. (2006) made use of Ladd’s solver and investigated the  or multiscale approach, even more computational savings are drag behaviour of various particle formations. They observed  to be expected while extending the capability of the solver to that particles in a cluster formation exhibited a lower average  handle polymeric effects. 

drag force per particle than a single particle. This was 

Ollila et al. (2011) mentioned that for thermal fluctuations 

explained by the increased surface-to-volume ratio as each  to be present, the density needs to fluctuate as well. Using a individual particle, on average, has less surface area to resist  squared speed of sound (as, for example, in Ladd 1994a) the oncoming flow. For a cluster of particles whose formation  will  zero  out  the  viscosity  which  is  relevant  for  fluctuating represented that of a sphere, at the closest packing possible (r/ density  flows.  They  incorporated  their  fluctuations  via  a d=1), the average drag force per particle was only about 20 %  forcing (source) term on the RHS of Eq. (32) and showed that of that of a single particle and only reached the same level of  the  variance  of  the  fluctuation  is  related  to  the  fluctuation–

drag per particle for an inter-particle distance of r/d=7. Hence,  dissipation in the stress tensor. They applied the new thermal the effect of clustering felt by each particle sustained several  fluctuating LBM (TFLBM) in a multiscale approach in Ollila inter-particle distances away. Similar results were observed for  et al. (2013c). Here they showed results, among other particle other shaped clusters. They further investigated how the drag  drag related studies, for MD particle in a cubic box where the behaviour changed by increasing the Reynolds number and  solvent was modelled by their TFLBM. Tracking the mean compared that against a single-particle drag law presented in  square displacement over time of each particle, they were Clift et al. (1978). They showed that for increasing Reynolds  able to calculate the macroscopic diffusion coefficient without numbers, larger deviations from the drag law were observed.  Langevin noise added to the system. Although the diffusion Following their work, Beetstra et al. (2007) investigated mono-  coefficient was observed to be smaller than anticipated, it has and bidispersed particle systems, the latter with diameter  been attributed to the finite size of the simulation domain. Ollila ratios of 1:1.5–1:4. They derived a drag force relation for both  et al. (2013b) further explored the effect of confined polymers cases and showed that failing to include the bidisperse nature  using either the TFLBM or Langevin Dynamics (LD) in 2D 

in  the  drag  law  yielded  significant  differences. Their  results  and 3D. First, they studied the radius of gyration (a measure were able to not only match the trend but also to accurately  of how far the polymer is stretching) and the static structure predict the particle drag for various Reynolds numbers and  factor (a measure of the equilibrium size of the polymer) inter-particle distances. Furthermore, they showed that their  in both planar and perpendicular direction with respect to model and simulation data could differ by as much as 3 times  the  confinement  and  showed  their  different  behaviours  for from current drag laws which, despite their shortcomings,  various  confinement  levels.  They  showed  that  the  TFLBM 

are still widely used. Shah et al. (2013) investigated the drag  was able to capture the decrease in planar diffusion coefficient behaviour of particle clusters using SUSP3D. Their cluster  for increasing confinement levels, while LD was not able to was surrounded by randomly seeded particles and, therefore,  accurately describe the polymers migration due to the absence two voidages, that of the cluster and that of the surrounding  of hydrodynamic interactions. In yet another study, Ollila et cell, was defined. They explored an extensive range of various  al.  (2013a)  investigated  a  microfluidic  T-junction  with  one parameters,  confirming  that  compared  to  the  Ergun  and  inlet at the south and two outlets at the east and west side. 

Wen-Yu drag law, particle clusters exhibit a different drag  They showed that the separating streamline, i.e. the streamline behaviour. Furthermore for a constant cluster voidage of 0.7,  which separates the streamlines going to the outlet to the east they found that a minimum for the drag existed at an overall  or west, can be controlled by adjusting the outlet pressure (cell) voidage of 0.96. Increasing the overall voidage further  at  both  boundaries,  which  thus  influenced  the  influx-to-resulted in the drag to approach that of randomly seeded  outflux ratio (mass per unit time). Being able to control the particles while decreasing the voidage resulted in a similar  separating streamline, they placed two particles in the channel behaviour at a voidage of 0.85, which again demonstrated  downstream of the inlet with different geometrical parameters the importance of cluster formation in particle driven flows,  (initial separation of the two particles, distance of their centre such  as  the  fluidised  bed  reactor.  Usta  et  al.  (2006)  studied  of mass to the separating streamline, radius and channel the migration of polymers in microchannels using SUSP3D,  geometry) and studied which outlet they would choose to exit. 

where polymers were modelled via particles connected by  This has been validated against experimental data. In fact, stiff linear Fraenkel springs. Their work was motivated by the  they showed their findings in a phase diagram which made it discrepancies in the literature where polymers were reported  possible to predict which outlet the particle preferred, based on to either migrate towards the channel centreline (including  their initial state. Their findings can thus be used to construct hydrodynamic interactions) or wall (without hydrodynamic  a microfluidic NOT gate (one particle) or NAND gate (two interactions). From a thermodynamic perspective, no migration  particles). Mackay and Denniston (2013) used the TFLBM to preference in a uniform shear flow is expected. Kinetic theory,  couple it via local forces, conserving momentum and energy, on the other hand, predicts migration towards the centreline for  to MD particles. Here, the mass at the lattice nodes was used uniform shear and Poiseuille flows. Their findings showed that 
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and coupled with the MD particles directly. MD particles were  fact is usually ignored in biological models and cells subjected used to construct spheres so fluid could be captured inside. By  to this pressure filed showed great deformation which could changing the mass of the MD particles, either the mass of the  have a significant impact on biological processes such as gene fluid inside the spheres was much larger or smaller than the  expression, a process in which gene information are used to overall mass of the sphere (combined MD particles). Studying  synthesis a functional gene such as a protein. Despite the focus the velocity autocorrelation function (VACF), they showed  on high scalability, with current limitation imposed by HPC 

that the long-time asymptotic behaviour was independent of  facilities, simulations over the order of 100 cell diameters were the  particles  mass  and  agreed  with  theoretical  findings. The  not possible. However, it was argued that for such length scales particle mass only influenced the short-term behaviour of the  the effect of the particles on the fluid can be modelled and used VACF. Mackay et al. (2013) implemented the TFLBM into  as a mesoscopic model to formulate boundary conditions for the open-source solver LAMMPS and validated their solver  macroscopic simulations, as seen, for example, in Holland et against drag on a single spherical particle, particle motion near  al. (2014), Sect. 2.1. 

a solid wall, hydrodynamic interactions between four particles 

Driven by the same motivation, to construct a highly 

without collision, two particles with collisions (hard sphere  efficient solver for general fluid dynamics applications, Zou et interactions) and a confined colloid undergoing a Couette flow.  al. (2014) combined the efficient velocity, pressure and density They supplemented their validated cases with a scalability  computation of the LBM with the Navier–Stokes equations analysis based on two high-performance computing clusters. 

for the constitutive relations. They validated their solver 

Cui et al. (2012) simulated the cavity formation in a particle  against  a  Poiseuille  flow,  Taylor-Green  vortex  and  sudden covered domain, resembling a pipe leakage that initially was  contraction with a ratio of 4:1 and obtained good agreement. 

covered by soil particles. They used the discrete element meth- Their focus then shifted to the computational efficiency of the od (DEM) for the particle motion, with and without surface  hybrid solver. Comparisons for all three test cases showed energy for particle cohesion, and the LBM for the fluid sur- that the solver coupling lattice Boltzmann and Navier–Stokes rounding the particles. The particle velocity and force were  needed 20–25 % of the time compared to a full Navier–Stokes obtained from the fluid motion which in turn was influenced  solution. The reduction was attributed to the removal of the by the particle motion. They used a rectangular computational  pressure correction loop inside the PISO (pressure implicit domain with an orifice at the bottom wall, located in the middle  with splitting of operator, Issa et al. 1986) algorithm that has from which fluid was injected. The domain above was covered  been employed in the full Navier–Stokes solution. This is in by particles. For relatively low exit velocities, the pore pres- accordance  with  the  findings  of  Premnath  et  al.  (2005)  who sure was found to rise and stabilise over time. Increasing the  commented that the pressure calculation in the Navier–Stokes exit velocity showed the formation of a cavity which was ac- equations usually takes about 80 % of the whole computational companied by a sudden drop in pore pressure. For even higher  time. Salimi et al. (2015) presented a hybrid lattice Boltzmann/

velocities, a blow out failure was observed where the fluid was  Navier–Stokes solver incorporating thermal effects directly flowing in a straight path to the particle surface, rupturing the  into the LBM. Here the thermal LBM was coupled with the layers of particles above. For moderate velocities, the cavity  Navier–Stokes equations and the temperature, and the other reached a stable size and stopped growing. The inter-particle  hydrodynamic variables were exchanged at an interface. One cohesion was found to have no influence on the rate of orifice  of the goals was to elucidate the efficiency of the hybrid LBM 

pressure build up. A greater pressure was, however, required  solver, for which they first validated it against reference data to initiate the cavity formation as the inter-particle attraction  for different Reynolds numbers, porosity levels, solid to fluid forces needed to be overcome. 

thermal conductivity and blockage ratios. They then simulated 

a fixed size domain with a pure LBM, pure Navier–Stokes and 

So far in our discussion, the particles suspended in the  hybrid LBM for one lift cycle. When the time step in the hybrid fluid have been modelled as rigid bodies. Dupin et al. (2007)  and pure Navier–Stokes solver was set to that of the pure LBM, coupled the LBM with deformable particle (DP) dynamics.  they needed 6.14 and 8.48 more computational time compared The advantages of DP are that their membrane deforms as a  to the pure LBM solver. This is to be expected as the LBM 

direct response to the fluid motion. This approach is favourable  itself  performs  less  floating  point  operations  per  time  step. 

in cases where the particle properties need to be resolved 

explicitly  and  influence  the  flow,  however,  that  comes  at  an  At a ratio of approximately 

, the hybrid and 

increased computational cost. Coarse meshes for a single DP  continuum Navier–Stokes solver performed as fast as the pure have been reported to have approximately 500 nodes. Three  LBM solver, taking only 0.92 and 0.84 of its time, respectively. 

types of particles were considered; capsules, spherical in  Pushing the time step ratio further to 

, the 

shape, having a finite thickness and unbreakable membrane;  computational time further decreased and took 0.55 for the vesicles, spherical in shape, having an infinite thickness and  hybrid and 0.33 for Navier–Stokes solver compared to the unbreakable membrane and red blood cells (RBCs), biconcave  full LBM solver. This is not surprising as both methods had to in shape. The motivation for this study was driven by the  perform fewer time steps to advance to the next time level. It fact that studies up to date, using the computationally more  is interesting to note that the pure continuum solver performed expensive membrane potential function, only allowed small  better for larger time steps than the hybrid solver. This indicates domains to be simulated. They validated their approach  that for true macroscopic simulations the Navier–Stokes against several test cases and used their solver to simulate  equations  are  still  computationally  efficient.  In  contrast,  the 200 RBC at low Reynolds numbers in a microchannel. RBC  hybrid solver was able to incorporate multiphysics phenomena were initially placed 1 micron apart in a regular formation and  on smaller scales at only slightly higher computational costs then allowed to reach an equilibrium state. They found that  which may not be easily achieved with a conventional Navier–

the pressure field varies significantly in time and space. This  Stokes approach. 
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Thus far, we have seen applications in which the LBM was 

successfully coupled with particle and continuum domains.  An order parameter was defined as Due to its mesoscopic nature, however, it is a prime candidate  . Here, 

is the angle between an arbitrary fixed vector and 

for coupling with a microscale approach. Dupuis et al. (2007)  the vector from particle  j to  k. For ⟨|ψ6|⟩=1.0,  perfect  order coupled a LBM solver with MD  and applied it for the flow  is achieved in the particle layer. A threshold was defined for past and through a carbon nano tube (CNT). The domain  ⟨|ψ6|⟩=0.6 above which an ordered state was still encountered. 

decomposition technique was used in conjunction with the  Systems with a lower value of ⟨|ψ6|⟩ were consequently Schwartz alternating method. State coupling was employed and  classified as disordered states. Their results showed that ⟨|ψ6|⟩ 

the influence of imposing only velocities from MD to LBM and  dropped rapidly at the start, reaching a steady state shortly velocity gradients from MD to LBM investigated. Compared to  after. The linear shear imposed by the opposite moving walls a full MD solution, the error decreased for about 10 Schwartz  allowed particles close to the wall to move faster on average, iterations after which no considerable gain in accuracy could be  allowing particles in their adjacent layers to jump into the achieved. The velocity gradient imposition was 3 times closer  layer due to the inter-particle forces. This behavior caused a to the full MD solution than the solution in which only the  change of volume fraction in each layer, and it was identified velocities were exchanged. Using this approach, for the flow  as a main cause for a drop in the order parameter. For a greater past and through a CNT, the average error (based on velocity  amount of particle exchanges, the order parameter eventually differences) was 1.3 and 2.1 %, respectively. The speed-up for  dropped below the critical value of 0.6 and disorder started to both cases was reported to be 7 and 2.4 times faster using the  form. Particles close to the wall generally stayed in an ordered multiscale approach. This is due to the reduced computational  formation even though disorder was possible at the channel demand away from the CNT where inter-molecular motions  centre.  Their  findings  have  been  summarized  in  a  phase are adequately resolved by the LBM. Lobaskin and Dünweg  diagram showing the disordered, ordered and the coexistence (2004) used MD to simulate a charged colloidal system. Here  layer for different shear rates and volume fractions. 

the MD particles used the Lennard–Jones potential for the inter-

particle  forces  and  additionally  finitely  extendable  nonlinear  Interim conclusion on hybrid and multiscale elastic (FENE) springs. Two test cases were presented, the first  lattice Boltzmann methods in which the colloid was given an initial horizontal velocity  In our discussion, we have outlined that the thermal LBM 

and  the  second  with  an  initial  angular  velocity.  For  the  first  is still immature and a great amount of hybrid solvers have case, the colloid velocity autocorrelation function exhibited  been developed to use continuum mechanics to solve the the expected long-term asymptotic behaviour in which  temperature field on the mesoscopic scale. This is a valid momentum is transported away by diffusion. The colloid with  approach which, however, is more concerned with overcoming initial rotation showed that its decay of angular velocity agreed  the inherent shortcomings of the LBM rather than increasing well with Debye’s law and again showed the expected long- the computational efficiency. Therefore, most studies term asymptotic behaviour. Results were then presented for a  discussed herein were concerned with hybrid solvers, while charged colloid during a self-diffusion process. Counterions  true multiscale approaches with bespoke flow domains in were placed around the colloid to give a neutral overall charge.  a domain decomposition fashion were less common. In a The velocity autocorrelation function of the centre of mass  similar way, high Reynolds number flows are challenging due velocity showed good agreement with reference data for both  to the inherent numerical instabilities of the LBM. We have neutral and charged colloid. Farahpour et al. (2013) investigate  mentioned the MRT collision operator and the entropic LBM 

the translocation process of a single-stranded DNA (ssDNA)  which currently extend the range of Reynolds number but in which the ssDNA was passing through a pore, driven by an  do not remove the instabilities. For applications, however, in electrical field. The hydrodynamic interactions were captured  which solver efficiency is of importance and the temperature with the LBM and the ssDNA was represented by a monomer  does not need to be computed, LBM enjoys a reputation of through a MD simulation. The Laplace equation has been  being easy to implement for complex geometries and handling solved for the electric potential and counterions were added  multiphysics effects, while it outperforms comparable methods to overall balance the charge of the simulated system. By  at the same resolution in terms of computational time. 

studying the velocity gradient tensor by its eigenvalues and 

eigenvectors, the principle axes of extension and compression 

could be obtained. It was found that the monomer stretched  DISSIPATIVE PARTICLE DYNAMICS METHOD

before approaching the pore, aligning itself with the electric  Dissipative particle dynamics (DPD) is a particle-based method field lines. It then compressed once passed through the pore.  and has high resemblance to MD which can be regarded as Further investigations revealed that replacing the counterions  a coarse-grained version of it. By grouping atoms together by a charged monomer alone produced incorrect approaching  into representative DPD particles, length and timescales are probabilities of the monomer to the pore. If the hydrodynamic  extended into the mesoscopic regime. DPD has evolved as interactions were further neglected, then field gradient effects  an application driven need to simulate molecular systems for were overestimated. Thus, the inclusion of both counterions  which the current limitations in space and time for MD are too and hydrodynamic interactions via a multiscale approach  restrictive. We can use DPD if we are only interested in the was deemed necessary to accurately predict the correct  mesoscopic manifestation of the underlying molecular details. 

translocation behaviour of the ssDNA. Mackay et al. (2014)  The governing equation is similar to that of MD as investigated the effect of shear flow on colloidal particles in a 

microchannel. Particles were initially placed in ordered layers 

into the channel, and each layer had the same volume fraction. 





(42)

where we have assumed DPD particles of same mass m  and 

i
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unity in magnitude. We see the difference to MD in the splitting  detailed treatment of boundary conditions. We have outlined of the force into internal and external forces. External forces  the similarities between DPD and MD and the coarse-grained are those imposed to particles by the system, such as gravi- nature of it. In addition to the conservative force, which tational forces. Internal forces arise due to the inter-particle  essentially replaces the inter-particle potential as seen in MD, interactions. We can further decompose the internal forces into we have a dissipative and random force term. The random force adds heat to the system, while the dissipative force is 




reducing the particle velocities. Their effect together causes 





(43)

the temperature to be approximately constant accompanied by 

where the superscripts C, D and R stand for conservative, dis- small fluctuations. Hence, DPD is an implicitly thermostated sipative and random, respectively. 

coarse-grained MD version. 

An in-depth review of the DPD method and recent 

The conservative force models the particle interactions and is  developments has been given by Liu et al. (2014). 

given by

Review on hybrid and multiscale dissipative 





(44)

particle dynamics methods

Although DPD and the LBM are both mesoscopic in nature, 

where a  is the maximum repulsion force and the weight func-

ij

they have been used for different multiscale applications due 

tion wC(r) is defined as

to their inherent different descriptions. While the LBM is 

Eulerian based, DPD is a true Lagrangian method and due to 

its MD background, but upscaled mesoscopic regime, it has 

(45)

primarily found applications in medical and biological flows. 

Symeonidis et al. (2005) developed a new time integration 

Here, r  is the distance between two particle centre of masses  technique and reported that DPD simulations can be 106 times ij

and   the vector between particle 

faster than conventional MD simulations. In its limit, it adheres 

 i and  j of unit length. 

to both microscopic and macroscopic properties, making it a 

The dissipative force mimics the effect of viscosity at the at- prime candidate for coupling in both directions. 

omistic level and is given by

Natural occurring molecules such as wax, fat and vitamins 

are referred to as lipids, which consist of a head and a tail. In 

water, lipids form bilayered membrane where the hydrophilic 



(46)

lipid heads form the surface of the membrane with their 

hydrophilic tails pointing inwards. Biological membranes 

where v  is the particle velocity, γ a coefficient and again 



ij

are made up of different lipids, proteins and other molecules, 

a weight function. The random force is given by

contributing to the membrane properties. Mercker et al. (2012) 

studied the curvature modulated sorting of lipids in such a 

(47)

membrane. In the absence of chemical interactions, no sorting 

is to be expected, but they showed that sorting of lipids occur 

where σ is a coefficient, ξ  is a random number satisfying a  if one of the macroscopically defined elastic moduli for either ij

Gaussian distribution with a variance of unity, and 

is a  lipid or proteins were different. Surface curvature and properties 

weight function. The coefficient γ and σ of Eqs. (46) and (47)  influenced the membrane’s structure. Increasing the difference are related by

of lipid and protein elastic moduli increased the stability of 

the formed membrane patterns. The membranes themselves 

were simulated by a finite element-based membrane dynamics 

approach. The macroscopic parameters were directly derived 



(48)

from a DPD simulation that was coupled with the FE solver. 

and their weight functions are

They concluded that in the absence of a multiscale approach, 

results could deteriorate and produce incorrect physical 

systems. Thus, an intermediate DPD solver was needed to feed 

the macroscopic solver with micro/mesoscale information in 

order to capture the correct membrane dynamics. A similar 



(49)

approach  was  adopted  by  Ghoufi  and  Malfreyt  (2012)  who 

Different values of 

studied the effect of salt concentration in water on its surface 

 s can lead to different dynamic 

behaviours of the system but for conventional DPD simulations,  tension. They used a method called many-body dissipative s=2 is chosen in general. 

particle dynamics (MDPD) which at its core is essentially the 

DPD method, but the inter-particle force, i.e. Eq. (44), includes 

Much of what has been said about the boundary treatment  not only the inter-particle interactions but also a local particle for MD is applicable to DPD as well. Periodic boundary  density.  This  poses  the  difficulties  that  model  parameters conditions are easily imposed, while open or solid boundaries  are not readily available. Therefore, atomistic Monte Carlo require an appropriate treatment of the conservative, dissipative  simulations were performed for a fixed parameter space for and random force. We refer the reader to Revenga et al. (1999),  which a linear relationship could be established. This relation Mehboudi and Saidi (2014) and references therein for a  was then used in their MDPD simulation to derive the required 
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parameters for which they simulated various salt concentration  similar to DPD but further accounts for a non-central (shear) for two salts ( NaCl and  NaF) and showed that with an  force. This is necessary as an orbiting particle around a central increase in salt concentration, the surface tension increased  particle would not feel any drag, which is eliminated with correspondingly. Their trends were matched by experimental  the non-central force in the FPM and so conserves angular data. The approach is similar to that of Holland et al. (2014),  momentum. As the FPM is slightly more complex, it is best discussed in Sect. 2.1. 

suited for length scales above those of DPD so that FPM 

Fedosov and Karniadakis (2009) introduced their so-called  particles  are  large  enough  to  only  influence  their  immediate triple-decker approach where they coupled MD, DPD and a  neighbours. Similar to Kacar et al. (2010), Dzwinel et al. 

Navier–Stokes solver. This allows a continuous description  (2002) found that the self-assembly of colloidal particles into from microscopic through the mesoscopic regime up to the  hexagonal, worm-like structures depends on its interaction macroscopic layer. Not only is the length scale separation  parameters (here, the Lennard–Jones interaction potentials). 

reduced via an intermediate, mesoscopic layer as seen in  Furthermore, they investigated the cluster growth rate and Sect. 2.1 where the microscale was directly coupled with the  found a power law behaviour where the exponent initially took macroscale, but also this approach benefited from the fact that  values of 1/2, whereas for longer times a transition towards the mesoscopic solver, here using DPD, was particle based  an exponent of unity was observed which was consistent with which made the coupling to the microscopic level simpler. On  theoretical predictions. In the case of the Rayleigh-Taylor the other hand, the increase in time and length scale of the  instability, they showed that cluster fragmentation occurred DPD method also meant that statistical scatter, in comparison  over time where larger clusters separated into smaller ones with its MD counterpart, was reduced which made it easier to  while the average cluster size increased over time, which is couple to a macroscopic solver. In their approach, MD particles  characteristic for a mixing problem. 

were removed and inserted using the USHER algorithm 

Li et al. (2013) used DPD and constructed a multiscale 

(Delgado-Buscalioni and Coveney2003a, b) and DPD particles  approach containing MD and a Monte Carlo-like polymerising randomly inserted near the boundary. MD boundary conditions  model to study the effect of crosslink reactions and diffusion were enforced by specular walls, pressure forces to reduce  on  the  formation  of  carbon  fibre  and  epoxy  resin.  They density fluctuations and shear forces for the tangential velocity  constructed a simple rectangular domain with a carbon surface component. They applied their approach to low Reynolds  at the bottom and periodic boundary conditions on the side. 

number  for  Couette,  Poiseuille  and  lid-driven  cavity  flows  Initially, the hardener and epoxy resin were grouped together, using a domain decomposition approach. Comparison against  away from the carbon surface and separated by a sizing agent. 

a full Navier–Stokes solution showed the applicability of the  The simulation was then carried out at a constant temperature method. From a qualitative point of view, statistical scatter  of 423 K and results presented at 60 min of simulation time. 

was  low  and  profiles  at  the  HSI  were  smooth  for  all  cases.  All three components, hardener, resin and sizing agent diffused Reducing the HSI to zero, i.e. exchanging information directly  into their neighbouring domain and combined into epoxy. The at an interface without overlap, was also investigated for the  hardener was found to be chemically inadequate near the Couette  flow.  They  showed  that  their  multiscale  approach  surface to form epoxy which was accompanied by a drop in started to deviate from the analytical solution and showed a  crosslink density, compared to the bulk matrix density. The maximum discrepancy of about 15 % at the interface which  interface  region,  separated  by  the  matrix  and  carbon  fibres, subsequently reduced towards the channel walls. 

was found to agree with experimental data. DPD presents a 

Reducing the length scales even further, Kacar et al.  valid approach for studying larger atomistic groups but has (2010) also used a three-layer interaction model, here coupling  shown to be inadequate for epoxy as greater molecular details quantum mechanics (QM) with MD and DPD. QM was  were needed, and hence, MD was used in conjunction with a employed to find the atomistic interaction energies which in  polymerising model to adequately represent such components. 

turn were used on the molecular level to obtain the parameters 

A vesicle is a fluid-filled cell constructed from bilayered 

for  the  DPD  solver,  specifically  the  solubility  and  cohesive  lipid membranes as described previously. They are involved energy densities. The results obtained on the mesoscopic level  in metabolism, transport processes or chemical reactions, were then mapped back onto the microscopic level which  which take place inside the vesicle. Sevink et al. (2013) completed one coupling cycle. They investigated styrene-co- used a DPD description to study vesicles with a radius of fluorinated  acrylate  oligomers  and  found  that  an  increase  in  approximately 0.45 nm containing lipids for a duration 

oligomer concentration caused the system to self-assemble  of 

time steps. DPD was used to resolve the membrane 

from spherical micelles to hexagonal cylinder-shaped  structure and lipid interactions, conserving the necessary structures. The use of a multiscale approach made it possible  molecular details. The solvent surrounding the membrane was to reveal structures on the mesoscale that were influenced by  resolved by a combination of Brownian dynamics (BD) and the molecular motion on much smaller scales. Furthermore,  dynamic density functional theory (DDFT) which allowed the the study showed that in certain cases a MD description might  solvent to be purely expressed by a continuous concentration not be enough and information from even smaller scales are  variable. As a proof of concept, they tested their approach needed as quantum effects may have an impact on the solution  by initially placing lipids in a water solution with two lipid at much larger scales, as seen here on the mesoscale. 

volume fractions. Lipids of approximately 5 v% transitioned 

Dzwinel et al. (2002) also investigated the self-assembly  into small aggregates which, due to the low percentage of of micelles into hexagonal structures and further the Rayleigh- lipids, remained at their initial small size. Increasing the Taylor instabilities using a three-way coupling approach. Here,  volume fraction to approximately 23 v%, the results were MD and DPD were used as well as the fluid particle model  substantially different. The lipids formed a discontinuous (FPM) which was introduced by Español (1998). The FPM is  network, i.e. a membrane-like structure, but were prevented 
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to form a fully closed membrane. Finally, they investigated  shear plane, here the  y direction. The diffusivity only increased a fully pre-assembled vesicle and removed a cylindrical  for the  x component, while both  y and  z direction exhibit a portion of lipids at the membrane wall. After equilibration, the  decrease in diffusion. To characterise the degree of network simulation showed that vesicle healing occurred by means of  alignment, they introduced a second-order tensor for which lipid reordering in the membrane to achieve a lower-energy  an isotropic network (no loading) showed each main diagonal state associated with a closed membrane. They concluded that  component  to  equal  1/3  of  the  tensor’s  trace,  while  the  off-the multiscale approach was needed to remove the unnecessary  diagonal components were zero (and nonzero for an anisotropic solvent details, which could be represented by a continuous  network). Normal forces only altered the main diagonal field, in order to simulate realistic dimensions. Driven by the  components while shearing introduced nonzero, off-diagonal same motivation, Berezkin and Kudryavtsev (2013) studied  components. Aligning the main axis of deformation with the reaction–diffusion  flows.  Their  approach  consisted  of  DPD  coordinate system by transformation revealed a quasi-linear which accounted for all the molecular reactions taking place,  master curve onto which all main diagonal components fell. 

as a result of diffusion processes of initially separated particles  Fedosov et al. (2012) considered only loaded networks under or polymers. DPD was used and covered the entirety of the  shear and investigated structural and rheological properties of first  particle/polymer  domain  and  extended  into  the  second  star polymers for various Weissenberg numbers. These consist particle/polymer domain, covering the interface. From there,  of  f identical polymers which all connect to a centre node. The a  simple  finite  element-based  diffusion  equation  was  solved  star polymers were modelled using a simple spring potential, for the concentration in the form of 

where  D is the  and the excluded volume interactions were approximated by 

diffusion coefficient and  c is the concentration field variable.  the shifted Lennard–Jones potential. The coupling occurred The coupling, including an overlap region, was achieved by  through forces in the DPD equations. They considered two matching the continuum concentration field with the number  hybrid approaches: one of which coupled DPD with the density of the DPD particles. They validated their approach for  polymer chains and another using multiparticle collision a single reaction of different particles for which an analytical  dynamics (MCD). We will focus on the DPD results here solution for the concentration/number density can be found.  although both MCD and DPD produced very similar results. 

The  FE  solution  showed  a  smooth  profile  throughout  the  The relative deformation of the star polymer showed to scale domain and overlap region, while the DPD number density  with 

up until 

, after which it reached a saturated state 

was subject to small fluctuations, however, overall matching  and reduced. The alignment with the flow scaled initially with the analytical solution. They then tested their approach on 

and then reduced to 

for  W greater than unity 

reactive coupling of immiscible polymer melts and interfacial 

 i

since these polymers, for high shear rates, were able to align 

polymerisation  of  two  different  monomers.  In  the  first  case,  with the flow. Interestingly, the shear rate only scaled as the number of copolymers per unit area n  at the interface was 

c

until 

after which a weaker scaling was observed, hinting 

observed to increase initially with time as 

and then slowed  that some shear energy at higher rates was transformed. All of 

down to scale with the square root of time as 

. The  the above findings were tested for five different concentration 

fast built up of n  is explained in the reaction process taking 

c

levels and two different number of nodes making up the 

place, while once the reaction had finished, diffusion became  polymer; however, they all fell onto one single master curve. 

dominant and reduced the scaling behaviour. The same trends 

were observed for the second test case, in which monomer 

We saw in Eq. (44) that a maximum repulsion force needs 

conversion into polymers exhibit the same time scaling law,  to be provided in order to calculate the conservative force. This as did the number-averaged and weight-averaged degree of  parameter is a microscopic dependent value and for complex polymerisation. Their simple coupling procedure allowed for  systems best derived directly from MD simulations. This was greater  computational  efficiency  by  removing  unnecessary  done, for example, by Maly et al. (2008) who studied the molecular details in favour of a macroscopic concentration  morphology of self-assembling nanoparticles in copolymer field description which is solely governed by diffusion. 

mixtures, which are made up only of two different monomers. 

When mixing polymers, the energy associated with the mixing 

A network of polymers can exhibit a loaded stage  process is measured by the dimensionless Flory–Huggins when external shear or normal forces act on the system.  interaction parameter χ . For lamellar polymers, that is, layers This behaviour can be observed in tissue engineering, 

AB

of pure polymers stacked on top of each other, and the parameter 

paper manufacturing or biological systems. Masoud and  a  of Eq. (44) can be assumed to be 

, where we have 

Alexeev (2010) investigated such loaded polymer networks  ij

two polymers of types A and B. The solubility parameters δ  

to study the permeation and hindered diffusion using DPD 

i

for both type A and B were obtained from MD simulations. 

where polymer dynamics were obtained by a bond-bending  With that knowledge, the Flory–Huggins parameter could be lattice spring model. They validated their approach against  obtained as 

where V  is the 

experimental data for a non-loaded network for which they 

DPD

volume of one segment of a DPD bead. This led to an empirical 

matched the data for permeability and diffusivity over a range 

of porosity values. For loaded networks, they found that the  equation for a  as 

. We 

AB

permeability and diffusion along the parallel direction to the  refer the reader to Maly et al. (2008) for a detailed derivation on normal forces experienced an increased rate compared to its  how to obtain the Flory–Huggins parameter and briefly discuss non-loaded stage, while the components perpendicular to the  their findings (see also Fermeglia and Pricl 2007) for a general force direction decreased. Under shear, greater permeability  description on how to obtain the Flory–Huggins parameter was observed for the components in the shear plane, i.e. for  from MD simulations). They constructed nanoparticles with a shear force  , the components in  x and  z were increased,  a central, neutral DPD particle covered by 12 DPD particles while  it  had  no  influence  on  the  permeability  normal  to  the  of different combinations of A and B. They showed that the 
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introduction of these nanoparticles initiated their self-assembly  could successfully be projected onto the macroscopic domain. 

into distinct cylindrical shapes for various combinations of  In fact, not in the spirit of multiscale methods, yet important type A and B, covering the central DPD particle. Scocchi et  to our discussion, Feng et al. (2012) investigated arterial al. (2007) investigated polymer–clay nanocomposites (PCNs)  (channel)  flows  with  different  values  of  stenosis  (channel and used a similar multiscale approach by coupling MD to  contraction) using independently a Navier–Stokes-based their DPD solver. PCN is a material that exhibit increased  macroscopic solver and DPD. The transversal velocity profiles mechanical strength, heat resistance and reduced permeability  at different axial locations agreed well and both Navier–

for gases in comparison with a pure polymer matrix while  Stokes and DPD matched experimental data. The authors also having only a fraction of the weight. Using conventional  investigated the recirculation zone just behind the stenosis, macroscopic FE solvers, PCNs are of interest to material  caused by the quasi sudden expansion. Smooth results were engineers but depend on their microscopic interactions,  obtained from the Navier–Stokes solution while DPD suffered which are not fully understood. Critical parameters remain  from larger statistical scatter, although still reproducing uncertain, making mesoscopic solvers a prime candidate  a distinct recirculation zone. The velocity magnitude was for which the critical parameters are derived directly from  integrated in a plane covering the whole recirculation area MD simulations. They studied and compared the structure  for different stenosis values. For a stenosis of up to 40 %, the of a Nylon-6-MMT PCN to published data and found close  vorticity magnitude differed by a factor of two and only at agreement with expected results, paving the way for Toth et  higher values approached each other. The agreement at 75 % 

al. (2009) who studied different PCNs using MD and DPD  stenosis was within a few per cent. The standard deviation, due and further added a macroscale FE solver. Microscopic details  to the statistical scatter, was also higher for the DPD solution were preserved and passed from the lowest scale through the  than  for  the  Navier–Stokes  part.  The  integrated  backflow mesoscale up to the macroscale, and thus, no model constants  for 64 and 75 % stenosis showed a difference by a factor of needed  to  be  defined.  Careful  validation  of  each  stage  4 and 1.5, respectively, which was explained by the fact that showed the applicability of MD and DPD at the micro- and  the density immediately behind the stenosis varied while the mesoscale. Results on the macroscale were then used to derive  incompressible Navier–Stokes solution assumed a constant parameters  of  macroscopic  interest,  here  the  coefficients  of  density flow. Their study showed that DPD was able to capture thermal expansion and electrical conductivity. Four different  the trend of the Navier–Stokes equation while being prone polymer sizes in the PCNs were tested and showed that the  to statistical scatter. Therefore, it can be concluded that DPD 

thermal expansion coefficient decreased for all PCNs over the  possesses the ability to reproduce continuum effects while clay loading, while the rate of decrease was the steepest for  containing a larger level of noise compared to the Navier–

the smallest polymer. The electrical conductivity, however,  Stokes equations. For a smooth solution, a hybrid or multiscale showed an increase over the clay loading, independent of the  method is expected to work best, while details on the mesoscale polymer size. The importance of this study was the elimination  are retained. 

of model constants at the cost of a triple-decker approach. A 

Platelets are small parts which are transported in the 

trade-off in accuracy and computational speed has always to be  blood. They are smaller than red or white blood cells and are found and assessed for each case individually. However, where  responsible to stop bleeding by coagulating (clotting) around accuracy is the sole motivation, this approach presents an  wounds which on a macroscopic scale can be interpreted as excellent coupling procedure that involves all physical scales. 

changing from a liquid to a solid state. This process is referred 

Biological  and  medical  flow  applications  are  often  to as haemostasis, and platelets are said to form a haemostatic dominated by mesoscopic cell transport, such as red blood  plug. Zhang et al. (2014) investigated the platelet dynamics cells and vesicles. Filipovic et al. (2012) simulated different  using DPD to solve for the blood and coarse-grained MD to particle flow scenarios using a multiscale solver consisting of a  study the platelets. The coupling was done by forces. Platelets macroscopic FE, and a DPD or LBM solver at the mesoscale.  needed to get activated before they attached to an opening in Their  influence  was  introduced  at  the  macroscale  through  the endothelium (the inner most layer in the blood vessel) forces at the mesh nodes which were then incorporated into  which was done via the platelet stresses. Therefore, the authors the FE equations. They considered four different test cases: (1)  investigated rigid and deformable platelets and compared one cylinder and (2) two cylinders depositing in a channel, (3)  their shear stress distribution on the surface. The particles four elliptical particle subjected to shear flow and (4) particles  were subjected to a shear flow with moving walls applied to in an arterial geometry of different shapes. For the first case,  both upper and lower wall, equal in magnitude but opposite the drag force exerted on the cylinder agreed well with Oseen’s  in direction. Initially, they compared the angular velocity and approximation for both FE-DPD and FE-LBM. Comparison  angular acceleration for which differences as high as a factor with experimental data of the cylinder displacement showed an  of 2 were observed. The average induced stresses on the initial, undisturbed settlement which was gradually disrupted  membrane surface were 2.5 times higher for the rigid body than by harmonic oscillation due to the vortex street forming at  for the deformable one. Since the rigid body would not yield, higher Reynolds numbers. Results for the second case were  it resisted the flow and hence higher values were possible. The only presented qualitatively. For the shear flow, the FE-DPD  stresses were also faster accumulated on the rigid platelet than results were compared to a pure FE solution and the trends  on the deformable one. Their study showed the importance were  matched,  and  finally,  the  arterial  geometry,  essentially  of accurately describing the platelets as the reduced shear a Y-channel, was qualitatively simulated for cylindrical  stresses on the surfaces not only altered their flow behaviour and elliptical particles. In their proof of concept study, they  subjected to shear flows but also suggested that rigid models, presented  simplified  flow  geometries  (often  at  the  core  of  overestimating the shear stresses, yielded incorrect activation biomedical  flows)  and  showed  that  mesoscopic  quantities  potentials which can have a significant impact on the correct 
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modelling of the haemostasis. Tosenberger et al. (2013)  fidelity  results.  For  systems  of  realistic  real-world  sizes, investigated the mechanism of clot growth (coagulation) as the  however, simulations and high-performance computing (HPC) mechanism is still not fully understood and current theories were  must go hand in hand. For that matter, Grinberg et al. (2011) rendered inaccurate. In a first simulation, they only modelled  investigated blood flow in a brain with an aneurysm (a sack-the platelets in a blood flow where inter-platelet connections  shaped expanded blood vessel). The geometry came from strengthened over time, while platelets already attached for a  an MRI scan, and a coupled DPD/Navier–Stokes solver was sufficient amount of time were not able to attach new ones. In  developed from open-source tools. LAMMPS was used for this model, the essential process of clot growth was reproduced  the DPD simulation, calculating the blood plasma, red blood where a substance known as fibrin is implicitly included as the  cells and platelets, while NekTar (http://www.nektar.info/, connections between platelets were growing over time. Fibrin  see also Cantwell et al. (2015) for NekTar++, its successor), is a protein that forms the haemostatic plug with the platelets.  a spectral element solver, was used on the continuum side for It can be regarded as the glue holding the platelets together.  the blood flow. The mesoscopic side contained 1011 particles They showed that the obstacle formed by the clot disturbed  and the continuum solver 3×109 unknowns. In their study, they the velocity distribution, while for large aggregates, the weak  used up to 2×106 CPU cores on two different clusters, namely forces were not able to resist the drag caused by the platelet  a Blue Gene/P and Cray XT5 cluster. For both systems, the clot and ruptured, leaving a smaller platelet clot of only strong  strong scaling followed a linear trend up to about 106 CPUs. 

connections. In a second investigation, DPD was coupled  Only at 186,624 cores, run on the Cray XT5, the strong scaling with a reaction–diffusion–advection equation which was used  dropped to 68 % efficiency. Their work was important towards to  calculate  the  fibrin  concentration  explicitly.  The  second  efficient code design and coupling. Due to its general nature, it simulation was similar to the first one, in which platelets were  is equally applicable for a broader range of applications and is not able to attach to other platelets in the clot if their fibrin  not limited to medical flows. 

concentration exceeded a threshold value, irrespective of the 

Mukhopadhyay and Abraham (2009) coupled a DPD and 

time they were in the clot. The mechanism of coagulation was  MD solver to study the flow over a square obstacle in a two-essentially the same, while the added level of information  dimensional channel. The geometry was the same as studied available  through  the  fibrin  concentration  field  revealed  a  by Nie et al. (2004). The domain was split in two parts: the constant growing platelet clot. Ruptures of aggregates were  bottom one containing the square obstacle was modelled using still possible, however, a much finer distinction could be made  MD and the bulk flow above using DPD. While their validation between weak and strong connections. Furthermore, it was  showed good agreement to an analytical solution (Poiseuille possible to show whether the platelets were covered by fibrin  flow without obstacle), they revealed further insight into the or not. Kojic et al. (2008) coupled DPD with a finite element  efficiency of multiscale methods (in this case for the Poiseuille representation of the Navier–Stokes equations. Here, DPD  flow). There were essentially two mechanisms that can increase cells were locally introduced in the FE mesh and coincided in  the computational time: coarse graining, i.e. using different a way that the FE mesh edges were the boundary of the DPD  length scales and thus fewer particles (as is the case for DPD 

region, which could span over several FE cells. This approach  particles compared to MD particles) and considering timescale resembled the heterogeneous multiscale approach (HMM)  separation, for which fewer integrations need to be performed as described in Sect. 2.1, where mesoscopic details are only  in order to advance to a given time level. They showed that the locally computed. The FE solver covered the whole domain  speed-up to be expected from only considering length scale and the locally introduced DPD region was coupled to it by 

forces. This allowed for further computational savings by only  separation scales with where the 

considering mesoscopic details where necessary. They applied  ratio of particle masses of each respective simulation is given their approach for two simple benchmark cases: the channel  by 

, and κ is the ratio of the volume of the 

and lid-driven cavity flow. For the channel, the DPD region  DPD and MD region. Further introducing timescale separation was placed inside the centre of the channel, without contact to  yields 

, where τ is the relative 

the wall. Compared to an unsteady channel flow, the multiscale  timescale between DPD and MD. For different time steps of approach matched the results of the analytical solution. For  MD and DPD, i.e. 

, the numerator is growing faster 

the lid-driven cavity, the top right corner (in this case the lid  than the denominator and further computational savings can was moving from the right to the left) was presented by the  be achieved. 

DPD  region  and  velocity  profiles  compared  to  the  pure  FE 

solution showed very good agreement. In fact, DPD provided  Interim conclusion on hybrid and multiscale very  smooth  velocity  profiles  for  both  cases,  while  no  extra 

smoothing apart from averaging was done. It is interesting to  dissipative particle dynamics methods note that the Reynolds numbers were of the order of 101−102  We have shown some examples of hybrid and multiscale for which high statistical noise would be expected. Even spatial  DPD applications. Due to its mesoscale nature, it can provide and temporal regression as discussed in Sect. 2.1 were not able  coarse-grained atomistic details for a macroscopic description to achieve similar level of noise reduction. This approach was  or speed up a microscopic solver by extending the length recommended for use to study platelet dynamics as the clot  scale. DPD is a versatile particle approach that can handle region can effectively be modelled by DPD (and further coupled  molecular details but provides less statistical noise as its MD 

to a microscopic description if needed), while the vast majority  counterpart. We have seen that coupling between DPD to of the blood can be modelled with an inexpensive continuum  either the microscopic or macroscopic level can be achieved solver. In this approach, one would simplify the computations  by exchanging forces between the solvers. Furthermore, while in favour of computational resources. The opposite approach  coupling to the macroscale produced less fluctuations, coupling would be to retain all molecular details in favour of high- to the microscale was easily achieved due to the similarities 
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of DPD and MD. Hence, the triple-decker approach used  A Gaussian kernel may be used but only approaches zero at here by various authors coupled successfully the microscale  infinity. Research has been dedicated to find appropriate kernel with the macroscale, without experimental data input (i.e. the  functions; for example, the B-spline function is defined as interaction parameter a  for the DPD solution) and provided a 

ij

way to couple complex systems. 

SMOOTHED-PARTICLE HYDRODYNAMICS 

METHOD



(53)

Smoothed-particle hydrodynamics (SPH), originally where 

and α depend on the computational di-

depend on the computational di-

introduced and used for astrophysical applications (Gingold 

and Monaghan 1977; Lucy 1977), is a particle-based, meshless  mension with values of 1/ h, for one, two 

approach for the solution of the Navier–Stokes equations. The  and three dimensions, respectively. 

underlying approach is the  integral representation method  Note that in Eq. (52) we follow the SPH convention and used that in steps is approximated to yield the final form of the  the  kernel approximation operator 〈 〉 to indicate that we governing equations of the SPH framework. We will briefly  approximate Eq. (50) with a kernel. We make further use of explain the key equations and concepts, while full derivations  a particle approximation in which we replace the integral by a can be found in Liu and Liu (2003). 

summation over all particles within Ω as

We start with a trivial mathematical expression which is 

the underlying core of SPH. We can recast any function into 

an integral form as

(54)

where  N is the number of particles within  h and a shorthand 

(50)

notation can be introduced as 

. By particle 

where the Dirac delta function is defined as

approximation, we mean that we fill the domain Ω with a suf-

with a suf-

ficient amount of particles and solve Eq. (54) for each one of 

them. The integral 

reduces to the volume of each par-

ticle V  and is replaced by its mass and density in Eq. (54). The 

(51)

j

first derivative is found by differentiating both sides. Applying 

As long as f(x) is continuous in Ω, Eq. (50) is an exact repre-

Eq. (50) is an exact repre- the Gauss theorem and dropping terms which are zero, one ar-sentation. In the SPH framework, the Dirac delta function is  rives at

replaced by a  smoothing function, also referred to as the  kernel, 

which yields



(55)

(52)

We  see  from  Eq.  (55)  that in  order  to  find  the  derivative of 

f(x ), we need to find the derivative of W  which is analytically 

i

ij

Here, 

is the kernel with a support domain  h, which  known and therefore readily available. 

is the region where the kernel is active and can be freely cho-

sen. It needs to fulfil the following requirements:

To this point, we have only approximated Eq. (50) by 

particles which is applicable to a general set of differential 

1. Its integrated value needs to be unity, i.e. 

equations. We apply this methodology now to the Navier–

Stokes equations for which we first write them in Lagrangian 

coordinates. Denoting the spatial coordinates by α and β, we 

have the continuity equation as

2. It needs to be positively defined, i.e. 

(56)

the momentum equation (without external forces) as

3. It needs to have compact support, i.e. 

where κ is a scaling factor



(57)

4. It should approach the Dirac delta function in its limit, i.e. 

and finally the energy equation as

(58)

5. It needs to be sufficiently smooth, be symmetric about its 

origin and decay away with increasing distance. 

The total stress tensor is decomposed into its pressure and vis-

cous contribution as
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particles are advected with their frozen velocity until they 





(59)

reach the end of the  outflow domain and are then deleted. Each 

particle evolves with the equations given above for which 

We now combine Eqs. (56–58) with Eqs. (54) and (55) to ar- standard CFD time stepping procedures can be used. Note rive at the final equations for the SPH method. The full math- that due to its Lagrangian particle nature, SPH represents a ematical derivation is omitted but can be found in Liu and Liu  meshfree method for solving the Navier–Stokes equations and (2003). 

thus particles can easily be refined in regions of interest. This 

The continuity equation becomes

adaptive behaviour is easily done, in contrast to classical CFD 

techniques, where, for example, either structured meshes with 

hanging nodes or tetrahedral elements on unstructured grids 

need to be employed. This requires further solver modification 





(60)

which is not the case in the SPH method. Multi species transport 

for the momentum equation we have

is easily achieved by defining particles of different properties. 

However, it has been found that higher-order kernels may not 

conserve physical quantities as W  may locally have negative 

ij

values. For the approximation of non-negative quantities such 



(61)

as the density, this could yield non-physical results. Stability, 

accuracy and convergence have been mainly tested for simple 

and for the energy equation we obtain

applications with equispaced particles in lower-dimensional 

space  so  that  it  is  difficult  to  fully  assess  the  strength  and 

weaknesses of the method. We refer to Monaghan (2005) for a 

detailed discussion about the advantages and disadvantages as 

well as applications. 



(62)

Boundary conditions are not as easily implemented in the  Review on hybrid and multiscale smoothed-SPH framework as in other particle-based methods. Similar  particle hydrodynamics methods as with MD in which particles interact with their neighbours,  The breakdown of the Navier–Stokes equations and flow SPH particles interact with those in their support domain.  phenomena at either very small length scales or rarefied gas There are no particles outside of the boundaries, and hence,  conditions has fuelled research on particle methods. Inevitably, the kernel will be truncated. The idea is similar to MD to place  some applications can be described using several methods at other particles outside of the boundaries which are also called  comparable accuracy and computational cost. For a range ghost particles in the SPH framework. However, these  ghost  of industrial applications, channel, pipe and flow through particles do not possess a well-defined physical property and  co-axial cylinders are often encountered. Filipovic et al. 

need to be modelled via any reasonable physical assumption  (2009) investigated those applications and compared DPD 

about their nature. Liu and Liu (2003) reviewed and presented  and SPH results independently to elucidate their strength a novel technique by combining existing treatments for solid  and shortcomings in comparison. They investigated two boundaries. They introduced two new sets of  ghost particles,  laminar, low Reynolds number flow cases. The first was a the first of which is residing on the solid boundary itself. These  simple Poiseuille flow and comparison with an analytical particles repel particles within their vicinity back into the  solution showed that there was little difference between the computational domain via a repulsive force. The second set  two methods, both showing accurate results. The second of particles is residing outside of the boundaries and ensures  test case was the flow through a co-axial cylinder for three that the support domain will not be truncated for particles  different conditions. The first set-up saw both cylinders rotate near the solid boundary. They are mirrored particles of the  at the same angular velocity and the second only the outer real particles near the boundary and have the same physical  cylinder, and for the third case, both cylinders were rotating properties except for the velocity component which is opposite  with the same angular velocity but in opposite directions. 

in the boundary normal direction. Keat et al. (2015) reviewed  The agreement with the analytical velocity profile was good various open boundary conditions and showed that there is  for both methods and the tabulated error revealed that DPD, still active research in this field due to the difficult nature of  at best, was marginally more accurate than SPH. The density imposing correct open boundary conditions. Federico et al.  profile, on the other hand, showed variations between the (2012) provided an easy and intuitive approach in which two  cylinder walls for the DPD results which were absent in the new sets of  ghost particles were introduced, resulting in a  SPH solution. They showed, however, that the computational total of four particle sets, i.e.  fluid,  ghost,  inflow and  outflow  time was about two orders of magnitude less for the SPH 

particles. Each of these  inflow and  outflow particles are placed  method which was due to the larger time step permissible as at the open boundaries and have several layers, just as the  ghost  thermal fluctuations were not resolved as in the DPD method. 

particles, to prevent a truncated support domain. The  inflow  Therefore, while maintaining a comparable level of accuracy, particles are assigned with the desired pressure and velocity,  SPH is a fast method and may possess advantages features to while the physical properties for the  outflow particles are  be exploited by multiscale applications. 

frozen. The  inflow particle are advected in the same manner as 

the  fluid particles and change their set from  inflow to  fluid once Unlike the continuous description of the Navier–Stokes 

they cross the open boundary. New particles are inserted into  equations, SPH models the same physical process as a particle the  inflow particle set to conserve mass. Similarly, the  outflow  which makes it easier to couple it to other particle methods. 
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Liu et al. (2002) coupled SPH directly to MD without the  dominant. Increasing the relaxation parameter reduced this need for an HSI. This coupling, compared to direct Navier– behaviour and qualitative agreement with a pure macroscopic Stokes/MD coupling, has several advantages. For instance,  solution showed the expected velocity profile. Yuan et al. (2009) particles do not need to be inserted or deleted, and the initial  investigated several approaches to simulate the deposition SPH particle density can be matched at the interface and then  behaviour of metal particles in low temperature, high-velocity smoothly decrease away from the interface. By further making  air fuel spraying. The surface and impinging particles were SPH particles at the interface interact with MD particles  modelled either continuously with finite elements or particle through an interaction potential, MD particle does not feel a  based with SPH, and thus for surface–particle interaction, the sudden loss of interaction potential at the interface, as on open  following three methods were applied: FE–FE, FE–SPH and boundaries, and hence, no correction needs to be done. Since  SPH–SPH. They found for increasing particle temperature SPH particles have an in-build smoothing ability by averaging  and velocity that the interface temperature and plastic strain over neighbouring particles, thermodynamic properties are  were locally affected by the impinging particles. Due to the constant across the interface. They tested a simple Poiseuille  high particle energy, upon impact, particles deformed and flow for which the wall regions were modelled by 1600 MD  thus heated/strained the surface over time. The effective particles, while the centre part of the domain was covered with  plastic strain was further found to be a function of the impact 600 SPH particles. The results matched the analytical solution,  velocity as particles below a critical velocity remained mostly and indeed, a smooth profile across the contact interface could  intact, while for higher velocities, scattering was observed. 

be observed. Jorn and Voth (2012) argued that MD is a very  Comparison between the different simulation approaches, versatile approach but leads to disparate length scales for  i.e. SPH and FE for particles and surface, showed similar proton exchange membranes (PEM) which are found in fuel  behaviour. Tartakovsky et al. (2008) used the core idea of SPH, cells. Therefore, they developed a hybrid DPD-SPH approach  i.e. Eqs. (54) and (55), and applied that to a reaction–diffusion in which DPD was modelling the water and polymers, while  equation  (RDE),  which  solves  for  a  concentration  field,  to SPH accounted for the proton transport through the membrane.  simulate  flow  through  porous  media.  Two  mixing  solutes A They validated their approach for a simple lamellar test case  and B were used which formed a precipitate product C. It was for which the proton concentration was fixed at both ends, i.e.  assumed that C only accumulates at pores, and thus, a domain high proton concentration at the anode (proton production)  decomposition strategy could be adopted in which one RDE 

and low concentration at the cathode (proton consumption)  was solved at the pore level, while an averaged version of the and showed good agreement with an analytical solution for  RDE was solved on the macroscopic level. Since precipitation both concentration and proton flux profiles. They applied their  growth only occurred at the pores, reactions only needed to be hybrid model to a PEM geometry to study the conductivity  captured with the RDE at the pores, while reactions were absent behaviour with various water contents, which is the number  in the macroscopic counterpart. Different levels of resolutions of water molecules per sulphonate group. Their results  were therefore used to reduce the computational time. The revealed that explicitly accounting for the proton produced  coupling was easily achieved in a non-iterative manner as a linear increasing relationship between conductivity and  both descriptions solved the same underlying equation. Ghost water content, while excluding electrostatic effects yielded  particles were introduced that could accumulate mass over a nonlinear relationship. Furthermore, the conductivity was  time. They were transformed into solid particles if their mass approximately two times greater for the highest water content  exceeded a threshold value, and thus, precipitation growth when including the electrostatic effects, while for the lowest  could occur. They validated the approach against analytical water content, no difference was noticeable which showed  solutions for planar and circular precipitation growth and that  electrostatic  effects  have  an  important  influence  on  the  tested the multiresolution scheme against a single resolution conductivity. Experimental results for the conductivity were  simulation of a passive scalar in porous media. Finally, they approximately a third higher and also showed a linear increase  tested their approach in a porous medium using the hybrid over the water content suggesting that proton exchange needs  scheme which showed that the porosity decreased over time to be included for a correct physical representation. Murashima  due to precipitation accumulation in the pores. They tested and  Taniguchi  (2010)  used  the  modified  smoothed-particle  it against a full-scale simulation which matched their hybrid hydrodynamics (MSPH) method, introduced by Zhang and  approach. The advantage of their study was that the interface Batra (2004), and coupled it to a dumbbell model to obtain the  did not need explicit tracking but rather was a product of the stresses in a dilute polymeric fluid. MSPH is an extension of the  solution. 

conventional SPH method in which ⟨f(x )⟩ and its derivative is 

i

Apart from molecular and particle-based applications, 

obtained via SPH and a set of equations, derived from a Taylor  SPH has also been used to investigate geophysical problems. 

series expansion, are satisfied leading to more accurate results  In rock removal for mines or tunnel excavation, rock blasting in the vicinity of boundaries compared to the classical SPH  has become an important alternative to drilling. Fakhimi and approach. The dumbbell model is a simple evolution equation  Lanari (2014) used a hybrid solver comprising of SPH for of the end-to-end vector of a polymer chain, i.e. the distance  gas dynamics and discrete element method (DEM) to model between the end points of the polymer. The hybrid procedure  rock specimens. Rock particles were represented by circular was as follows: velocity, pressure and the new location of  discs and attached to each other. The domain was circular and particles were calculated via MSPH and the divergence of  housed DEM rock particles in its entire domain except for the velocity then calculated. The dumbbell model was used  the centre, at which SPH particle resided. After a simulated to obtain the stresses and MSPH again to find its derivative.  explosion occurred, SPH particles expanded into the rock This procedure was repeated until tmaxtmax was reached. For  material. Collision via SPH and DEM particles were accounted a simple channel geometry, they showed that if the relaxation  for by conserving momentum through ideal plastic collisions. 

parameter  is  chosen  too  small,  thermal  fluctuations  become 
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Once the contact normal and shear stresses of DEM particles  (2013) followed a different approach for visual applications in were exceeded, bond break ups and microcracks were formed.  which the fluid phase was solved by a fast LBM-based solver. 

By further introducing a plane in a second simulation, located  The emphasis has been on the free surface dynamics, and off-centre and slicing the circular domain into two parts at  hence, the use of LBM removed the problems encountered in which the rock parameters were 1 % of that of the intact rock,  Raveendran et al. (2011). The free surface front was tracked simulations showed that the shockwave was not strong enough  with massless particles where a coupling band existed that to cause further damage beyond the plane. Microcrack growth  separated the fluid from the gas phase. Its centreline coincided drastically  reduced  while  the  waves  that  had  been  reflected  with the free surface and expanded a distance  d into both at the plane caused substantial damage to the rock material.  phases. Particles were inserted into the coupling band and Another geophysical example is that of a breaking dam.  were simulated via SPH. The velocity was imposed onto the Hilton and Cleary (2012) constructed a multiscale method  particles via a weighted interpolation, gradually blending from from SPH and the shallow water (SW) equations. Their initial  a pure LBM velocity to a pure SPH velocity. The purpose of study, to investigate each method on its own and compare it  the added SPH particles was for visual effects only. Particles to experimental data and a multiscale method, was a simple  penetrating into the LBM domain from the coupling band dam break scenario. Here, water was initially held at a height  were rendered as bubbles, while particles inside the coupling h   for a small portion of the domain, whereas the rest of the  band were rendered as foam. Particles escaping the coupling domain was left empty. Downstream of the water box was a  band, outside the fluid domain, were subsequently rendered as pillar that interacted with the water. Velocity measurements  spray. Their hybrid solver produced similar results compared were taking just upstream of the pillar and showed that all  to other visual approaches for various scenarios, while the methods followed the experimental data. The pure SPH  computational speed, owing to the fast LBM solver, was implementation was more computational expensive than the  among the fastest. 

SW method so that the multiscale method was able to reduce 

We now turn our attention to a new, hybrid method that has 

the computational cost. Information exchanged between SPH  emerged in the last decade and has successfully been applied and SW was the velocity and water height which were imposed  to various cases. In the introduction to this section, we have at a single interface. With their multiscale approach validated,  mentioned the work of Filipovic et al. (2009) and showed the they applied it to a realistic scenario based on the Gordon dam  close relation of SPH and DPD. Español and Revenga (2003) in Australia spanning a region of approximately 71 ×× 62 km.  introduced a new method based on both SPH and DPD to They reported results for various intervals and showed that after  harvest their respective advantages and termed it the smoothed a period of 80 min, a secondary lake formed due to flooding  dissipative particle dynamics (SDPD). This hybrid method that spanned over 15 km. For such applications involving large  reproduces the behaviour of the Navier–Stokes equations (SPH 

length and timescales, a multiscale approach is necessary to  part), while thermal fluctuations on the mesoscopic level are capture the small and necessary details to accurately predict  retained (DPD part). Hence, the new method is able to be used the outcome. The use of a multiscale method meant that, for  for a broader range of scale separation, whereas no explicit a particle spacing of 15 m, the number of particles could be  coupling is needed in-between methods. The introduction reduced by two orders of magnitudes (from 2×107 for a full  of SPH into the DPD framework also means that SDPD 

SPH simulation to 1.5−2×105 for the multiscale simulation). 

particles have a physical dimension, unlike the arbitrary size 

SPH has proven itself to be a very robust and fast method  of DPD particles. Vázquez-Quesada et al. (2009) investigated for visual applications and has been used in major movie  the scaling behaviour of the SDPD method for particles and productions (Monaghan 2005). Raveendran et al. (2011)  polymers undergoing Brownian motion in suspension. In the noticed that due to the kernel approximation, sudden changes  case of a single colloidal particle (constant volume) surrounded in pressure are not transferred instantaneously, as only the  by solvent particles that have been tested for different solvent region within the kernel is updated. Hence, pressure changes  particle volumes (by refinement), the thermal fluctuation of the manifest  themselves  as  artificial  acoustic  waves  which  can  colloidal particle has been shown to be scale invariant (over be suppressed by increasing the stiffness or reducing the  the  solvent  particle  volume),  while  the  thermal  fluctuation time step. They introduced a new hybrid approach where a  of solvent particles showed a square root dependency over coarse grid was superimposed onto the SPH domain and the  its volume. This behaviour is to be expected as the thermal pressure was solved via a Poison equation. In this way, the  fluctuation  should  only  depend  on  the  size  of  the  particle pressure could be obtained directly by interpolation, while a  and not on that of the surrounding ones. This mechanism is density correction procedure ensured that a constant density  not observed in DPD as no scale information is available. 

was kept throughout the domain. Their approach required 10  Alternatively, either MD has to be employed to derive accurate and 18 % more computational time for an incompressible and  microscopic parameter that can be imposed on the mesoscopic weakly compressible SPH solver; however, since numerical  level or a trial and error approach with fine tuning parameters artefacts such as the spurious acoustic waves were reduced,  a posteriori. These are two common choices to circumvent this much greater time steps could be employed, overall increasing  shortcoming of the DPD method. 

the  efficiency  of  the  proposed  algorithm. They  applied  their 

Due to the DPD nature of the SDPD method, it can also be 

solver to several different water splashing cases using 105 to  applied to microscale flows. Litvinov et al. (2008) investigated 5×105 particles and showed that their speed-up was 3–4 times  a suspended polymer chain in solution where the solvent and compared to a standard SPH algorithm. Despite the visual  polymer molecules were modelled using SDPD, while polymer effects orientated approach, the inclusion of a Poison solver  beads were bonded by a FENE spring model. First, they tested on a coarser grid represented an elegant way to include the  a two-dimensional polymer with zero imposed velocity and elliptic nature of pressure in the SPH method. Wang et al.  studied the stochastic motion of the polymer. The radius of 
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gyration, which is the trace of the gyration tensor, increased  presented  a  preliminary  multiscale  approach  in  which  finite linearly with the number of beads as expected from the theory.  elements for the macroscopic Navier–Stokes equations were Here, the gyration tensor is a measure of how far the molecules  coupled with SDPD for biomedical applications. Fine scales of the polymer are apart, i.e. 

where  N is  were locally resolved with SDPD, while the majority of the 

the number of beads. In a second simulation, they applied their  domain could be represented by the FE method. Although a method to a polymer in a microchannel and altered the channel  two-way coupling has been implemented, the coarse scale has height to study the behaviour of confinement. Decomposing  been assumed to be steady as the time to reach equilibrium the radius of gyration to take only the x and y components  on the smallest scale was less than the macroscopic time step, of the polymer chain into account, i.e. the radius of gyration  i.e. 

. Their test case was the lid-driven 

parallel and normal to the channel wall, showed anisotropic  cavity, and they showed that the horizontal velocity profile of behaviour for channel heights H<10 where  H was normalised  coarse and coupled velocity matched well. The extension to by the unconfined radius of gyration. For H>10, both parallel  non-Newtonian  fluids  is  necessary  to  study  true  biomedical and normal component collapsed onto one single curve,  applications such as blood flow which has been left for future showing  the  diminishing  effect  of  channel  confinement  and  work. Kulkarni et al. (2013) further investigated the scaling return to isotropic behaviour. In a similar study, Bian et al.  behaviour of the SDPD method and introduced a novel (2012) investigated a single particle in suspension and applied  multiresolution scheme. First, they reported on the equilibrium it to several test cases ranging from typical examples found in  properties of SDPD particles in a three-dimensional box. 

micro- to macroscale flows which included flow through porous  They showed that for different particle resolutions, the density media, a particle with initially imposed velocity (kick started),  stayed constant throughout the domain and the temperature particles under shear, interaction of two approaching spheres  stayed within 2 % of its imposed value. The velocity PDFs and a neutrally buoyant particle under Brownian motion close  of the different particle systems showed that with increasing to  and  sufficiently  far  away  from  a  solid  boundary.  Their  the particle resolution, the Maxwell–Boltzmann distribution test cases agreed well with reference data. In their last test  showed narrower tails and higher peaks, approaching the Dirac case of a particle suspended near the solid surface, they also  delta function in its limit. This, again, showed the correct scaling investigated the anisotropic behaviour of a single particle based  behaviour of SDPD. They devised a multiresolution scheme on its diffusion coefficient. They decomposed it into diffusion  in which particles were able to change their resolution from parallel and normal to the wall, but unlike in Litvinov et al.  one domain to another. For example, if a particle was refined (2008), they changed the position of the particle from the wall,  by a factor of 2, once it entered the refined domain, it would while the second wall on the other side was placed sufficiently  be deleted and two new particles inserted. To conserve mass far away so that only the influence of the closest wall was felt  and momentum, both would need to contain half the mass of by the particle. They observed that the diffusion parallel to  the original particle while sharing the same, original velocity. 

the wall was always greater than normal to it, independent of  One has to note that boundary conditions are sensitive to scale the distance from the wall. When placed directly on the wall,  changes and, for such an approach, need to be considered the normal component was zero, while diffusion parallel to  carefully. They applied the multiresolution approach to an the wall was still permissible. When placed further away, the  equilibrium test case showing that while the particle resolution diffusion coefficient approached each other. Comparison with  was changed smoothly, the density was not adversely affected theoretical results showed that close to the wall (up to a couple  in the refinement region and showed a constant profile across of particle radii), SDPD and theory showed discrepancies of up  the domain. The second test case was the Couette flow for which to 30 % which vanished with increasing distance away from the  a fine resolution was chosen near the stationary, bottom wall, wall. Hence despite the loss in accuracy close to the wall, the  while a coarser representation was chosen at the moving, upper general behaviour of the microscale (anisotropic behaviour)  wall. The resolution was changed at the channel centreline was captured in both approaches. Accuracy close to the wall  in a region of finite thickness. They were able to match the may be increased by using MD for near-wall regions and  analytical solution in this way. The ability to smoothly change SDPD for the rest of the domain. Litvinov et al. (2009) derived  between resolutions, while SDPD is applicable over a range of an analytic expression for the diffusion coefficient to be used  length scales, makes it a powerful and computational efficient in conjunction with SDPD liquids. An accurate knowledge of  method. Petsev et al. (2015) extended the idea of Kulkarni the diffusion coefficient a priori is important for cases where  et al. to a multiscale, multiresolution SDPD-MD algorithm. 

the Schmidt number Sc influences the flow, as, for example,  First, they derived a multiscale approach based on the AdResS 

in the study of non-equilibrium polymer properties. They  scheme of Praprotnik et al. (2005), see Sect. 2.1 for a detailed applied it to a periodic box and showed that flow properties  discussion, in which the pairwise force evaluation was blended were accurately captured. Furthermore, they showed that  between both description for a smooth change. Applied to an no secondary structures were formed during the simulation  equilibrium test case, they showed that the temperature and (crystallisation) by showing the mean square displacement  density profile across the domain differed by 1.8 and 3.2 % 

to monotonically increase without plateauing (indicating  at most, where the domain was divided into MD and SDPD 

solidification,  decrease  in  diffusion).  The  radial  distribution  with a buffer in-between. They applied it to the Couette flow function followed the expected behaviour without secondary  where the moving wall was set along the MD domain in the peaks, which would have indicated particle clustering. 

first set-up and along all three domains (MD, SDPD and buffer 

SDPD in itself can be regarded as a hybrid approach  layer) in the second set-up. For both cases, the correct start-combining SPH and DPD. However, it can be further coupled  up behaviour was observed with minor statistical scatter. In with a microscopic or continuum solver to further enhance  another simulation, they divided the SDPD region into a fine details or gain computational efficiency. Moreno et al. (2013)  and coarse region where the fine region was located near the 
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MD interface to match its resolution. The moving wall was  has achieved to date. It is hoped that the presented studies show only applied to the MD domain, and again a good comparison  an array of different approaches to tackle similar problems and with the analytical solution was observed with minor noise.  that each method has advantages and disadvantages which Although the resolution was successfully changed within the  may dictate the most suited approach for a particular problem. 

SDPD domain, decreasing the computational demand, the same  We have included the lattice Boltzmann and dissipative time step had to be used across all domains which removed  particle dynamics method in our discussion as two mesoscale some of the potential computational savings. A remedy could  representatives. We saw that coupling to other length scales, be the use of multiple timescale integrators which were not  especially DPD to other particle-based methods, was easily investigated. However, the ease of blending between MD  achieved. Molecular dynamics, on the other hand, coupled and SDPD via the AdResS scheme and the multiresolution  directly to the Navier–Stokes equations presented difficulties character of the SDPD method showed great potential of the  due to disparate degrees of freedom arising from the length SDPD method to be accurately used on the smallest scale,  and timescale separation. Furthermore, due to the continuum–

while upscaling showed the results to converge to the Navier– particle nature in multiscale MD simulations, particles need to Stokes equations. 

be restricted or added/removed in the hybrid solution interface 

(HSI) in order to properly model the particle behaviour in the 

Interim conclusion on hybrid and multiscale 

overlap region. This is not a trivial task, and various approaches 

smoothed-particle hydrodynamics methods

have been discussed herein. We have discussed possibilities 

where more than two methods have been combined as seen 

We have briefly discussed the progress in hybrid and multiscale  in the triple-decker approach. MD to Navier–Stokes coupling SPH methods. Its drawback in accuracy has favoured other  may benefit from a mesoscopic middleman to reduce the effort comparable methods; however, its ease of implementation and  to link both descriptions. For example, one could use MD at computational efficiency has led to applications such as visual  the atomistic level and couple it with the SDPD method. The effects. However, SPH remains a pure particle-based method  SDPD method can then be blended from small to large scales that adheres to the Navier–Stokes equations [Eqs. (60–62)]  (as done by Kulkarni et al. 2013) and then be coupled with and hence has shown superior coupling properties to other  the Navier–Stokes equations on the macroscale. Boundary particle-based method, most prominently MD and DPD. The  conditions between MD and SDPD as well as SDPD and recent introduction of SDPD, a combination of the favour-able  Navier–Stokes are easier to impose compared to a direct properties of SPH and DPD, provided new research interest  MD and Navier–Stokes coupling. At the macroscale, SDPD 

into the SPH method, especially for the mesoscopic domain.  particles could easily exchange macroscopic quantities such as It is, however, not limited to this regime as microscopic  velocity, pressure and temperature, while on the smaller scales, details are captured as well, although the inclusion of MD on  they could make use of their particle nature to interact with MD 

the smallest scale has shown to be beneficial. In the study of  particles. This approach presents a simpler coupling between Petsev et al. (2015), using the AdResS scheme, SDPD (and  descriptions, and indeed, a trend towards multiscale schemes therefore SPH) showed that each simulated particle can be  that make use of more than two methods can be seen. The seen as a system carrying a set of equations which govern its  combination of micro, meso and macroscale together into one dynamic behaviour. Changing from the micro- to a meso- or  single approach may prove to yield more accurate and stable macroscale description and vice versa does not mean that the  coupling methods, while physical phenomena are adequately particles need to be destroyed or new particles inserted as in  modelled across all scales. 

a Navier–Stokes-based coupling approach with MD particles. 

Instead, they may smoothly change from one description to 

A different approach was proposed by Asproulis and 

another (changing the equations of motion via blending). This  Drikakis (2013) in which a microscale model was trained by behaviour is truly advantages compared to traditional, grid- using an artificial neural network (ANN). These are networks based Navier–Stokes algorithms, and further research into  aiming to mimic the human’s neural network. When presented particle-based Navier–Stokes methods, such as the SDPD  with training input and knowing the corresponding output, an approach, could prove to simplify current challenges arising at  ANN can be trained to reproduce results for similar data (inside the coupling interface. 

its  confidence  interval).  ANNs  are  usually  used  for  pattern 

recognition tasks, for example transforming handwriting 

into digital text or face recognition. However, Asproulis and 

SUMMARY AND CONCLUSIONS

Drikakis recognised that in MD to Navier–Stokes coupling, 

In the previous five sections, we have looked at different  most of the MD simulations on the small scales are presented hybrid and multiscale methods that were developed and  with similar input from the macroscale (Navier–Stokes used in recent years. Two features are commonly the driving  solution) and thus produce similar outputs. They trained motivation for opting to a multiscale or hybrid description over  an ANN  with  MD  data  for  a  Couette  flow  and  showed  that a monoscale approach, to increase the computational efficiency  it could speed up the computational time by disregarding and to enhance details at smaller scales. We have focused our  computationally similar calculations and using the ANN to attention in this review on the most recent and most cited work  predict the microscopic properties. The benefit of an ANN is so as to give an overview of the current state of research. In  that it can take an arbitrary amount of input data and transform this spirit, we have not limited ourselves to just one single  it into an arbitrary amount of output data. Latino et al. (2007) hybrid/multiscale approach but rather have tried to give a  investigated the accuracy of ANNs for various parameters comprehensive overview in various particle-based methods.  to predict the potential energy surface (PES) by training two This also implies that it is not feasible to consider all published  different network architectures with MD simulations. They literature but rather to give an overview of what each method  found that for a sufficient amount of training data, the error 
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was less than 1 %. Studies in solid mechanics have also been  all  studies  used  liquid  argon  as  their  working  fluid.  This  is presented that made successful use of ANNs, see, for example,  a common choice and fixes the smallest scale, however, the Hambli (2011) for human bone geometry adaptation over time  domain size varied in orders of magnitude. A linear trend (in where long-time intervals prohibit microscale simulations and  the log–log plot) is evident which shows that all presented Unger and Könke (2009) for crack propagation in a reinforced  studies operated at the same order of length scale separations concrete beam. 

of approximately 

. This is also largely true for 

Returning to multiscale simulations, coupling two  the non-dimensional simulations which were not considered descriptions may prove to be a cumbersome task, especially  in Fig. 1. This is explained by the fact that the channel flow deriving  an  efficient  communication  algorithm  that  works  is primarily used which in turn indicates that multiscale across processors. Tang et al. (2015) recently introduced the  methods to date are still under development and primarily multiscale universal interface (MUI), which is a header-only  validated but less frequently applied to complex geometries. 

library that takes most of the programming-related issues  The channel flow offers a well understood example for which off  the  user’s  hands.  A  data  sampler,  derived  from  texture  an analytic formula is available for both the Poiseuille and sampling concepts, is implemented which allows for spatial  Couette flow. Hence, the expected scale separation does not data interpolation between descriptions. This is needed in  change drastically for different particle-based method as the regions where there is a geometric mismatch between the two  underlying geometry is not changing. However, to make the coupled schemes. The library operates in a multiple program,  most use of multiscale simulations that range across scales, new multiple data (MPMD) approach and uses point-to-point, non- methodologies need to be developed to couple the microscopic blocking, asynchronous communication protocols for greater  with the macroscopic world. It should be mentioned at this flexibility and efficiency. Furthermore, the concept of frames  point that only those multiscale methods combining two has been introduced which allows the storage of several time  approaches have been considered. We have addressed various steps. This is needed to preserve time information, especially  studies combining more than two methods, see, for example, in cases where two solvers iterate at a different pace. Time  Fedosov and Karniadakis (2009), Kacar et al. (2010), Petsev et information can be exchanged at different stages during the  al. (2015), and it is expected that by combing more than two execution and the frames can also be used to calculate average  approaches, further length scale separation can be achieved. 

quantities. These  are  sometimes  needed  where  average  flow  In terms of Fig. 1, multiscale approaches ranging over several quantities are imposed in the HSI. They applied it to a simple  length scales would be situated in the upper left part of the Couette flow and coupled two LAMMPS solver (SPH). Less  plot. There is only one example which can be considered a than 100 lines of code were needed to establish the coupling.  true multiscale approach which bridges the microscale The  computational  efficiency  showed  good  strong  scaling  with the macroscale 

. This is the study of Grinberg 

over a range of up to 512 cores. In times where open-source  et  al.  (2011)  who  elaborated  on  the  difficulties  of  parallel fluid  dynamic  tools  are  readily  available,  their  MUI  library  computations that occur at these length scale separation. See may provide a handy tool to couple different solvers at high  Sect. 5.1 for a more detailed description. Another observation efficiency. 

can be made from Fig. 1: if we define the micro- and macroscale 

In Fig. 1, we have summarised the length scale separations  to be approximately of the order of 

, 

that have been achieved by the different particle-based  respectively,  we  can  define  the  mesoscale  to  sit  in-between multiscale methods discussed in the previous sections. Here  these two scales. As seen from the plot, all methods, except for we plot the smallest characteristic length scales against the  molecular dynamics, are located in this area. The DSMC and size of simulation domain. The smallest characteristic length  SPH methods are able to simulated flows on the macroscale scales are: molecular diameter (for MD), mean free path λ (for  as well but also seem to be successful on much smaller scales. 

DSMC), mesh spacing 

(for LBM), particle diameter (for  In fact, the SPH method ranges from 

(here we 

DPD) and average distance between particles (for SPH). These  include the SDPD method which makes it possible to be used characteristic length scales are chosen arbitrarily but have  on such small scales), the DSMC method from been found to be a good indicator for the minimum resolution  and the DPD method from 

. These methods are 

required for each respective method. Since simulations can  valid over a wide range, but their capabilities are not leveraged be done using either dimensional or non-dimensional units,  due to HPC limitations and limited knowledge available only those studies stating the physical length scales explicitly  on coupling approaches for complex geometries. We have were considered. In some cases, the smallest characteristic  summarised the advantages, disadvantages and applications of length scales were approximated based on other geometrical  each presented particle method in Table 3. It may be consulted information. A few observations can be made by studying Fig.  together with Fig. 1 to choose a suitable particle method to 1. All the molecular dynamics-based multiscale simulations  construct a multiscale scheme. 

have the same smallest length scale 

since 
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Table 3: Advantages, disadvantages and applications of the particle methods presented in this review Figure 1: Length scale separations achieved with various particle-based multiscale methods. Only those methods that combine two different approaches are considered

Finally, we would like to mention the work of Martin  4. 

Asproulis N, Drikakis D (2010) Boundary slip 

Karplus, Michael Levitt and Arieh Warshel who in 2013 

dependency on surface stiffness. Phys Rev 81:1–5

received the Noble prize in chemistry for having devised a  5.  Asproulis N, Drikakis D (2011) Wall-mass effects on physical sound manner to communicate information between 

hydrodynamic boundary slip. Phys Rev 84:1–6

quantum and classical mechanics in complex chemical 

systems. Multiscale schemes haven risen over the past  6. 

Asproulis  N,  Drikakis  D  (2013)  An  artificial  neural 

decades and have demonstrated that current problems may 

network-based multiscale method for hybrid atomistic–

be successfully simulated with such an approach. They have 

continuum  simulations.  Microfluid  Nanofluidics 

established themselves, and it is expected that their research 

15(4):559–574

interest will continue to grow, helping to demystify current and  7. 

Asproulis N, Kalweit M, Drikakis D (2012) A hybrid 

future challenges in fluid mechanics and beyond. 

molecular continuum method using point wise coupling. 

Adv Eng Softw 46(1):85–92
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CHAPTER

2 A PURE LAGRANGIAN  

MESHFREE METHOD FOR  

COMPUTATIONAL FLUID  

DYNAMICS

Wade A. Walker

INTRODUCTION

•  Ideal: Described by the ideal gas law, in which the 

internal  energy  of  a  fluid  is  purely  a  function  of  ρ, 

In this paper, we first present background material on CFD 

p, and γ. The constant γ is called the ratio of specific 

and discuss previous CFD methods which have informed this 

heats, and has a value of about 1.4 for air. 

work. Then we motivate RRM and explain its workings in 

depth. Next, we show that RRM gives correct results for many 

•  Single-phase: Consisting entirely of either liquid or 

standard test problems. We also demonstrate that RRM shows 

gas, but not a mixture of the two. This means we need 

steadily decreasing error in its solutions as we increase the 

not model liquid-gas interfaces. We also do not con-

desired accuracy, and that RRM handles many common types 

sider the interaction of solid objects with the fluid. 

of boundary conditions. Finally, we discuss the similarities and 

differences between RRM and other CFD methods. 

•  Inviscid: Having no resistance to deformation. This 

simplifies the equations of fluid motion. 

Background

•  Adiabatic across contacts: Allowing no heat to flow 

CFD is the use of numerical methods to model liquid and gas 

from one side of a contact discontinuity to the other. 

flow. CFD has many practical uses, from the analysis of the 

This means that contact-adjacent regions will not tend 

airflow over vehicles to the design of water turbines. 

towards the same temperature. We compare RRM’s 

results to fluid flows that are adiabatic across contacts 

CFD covers a vast range of fluid compositions and flow 

because of the availability of analytic solutions, but 

types. For simplicity, we only consider a fluid that is:

we show later that RRM is not adiabatic across con-

•  Continuous: Infinitely sub dividable, unlike real flu-

tacts. 

ids which are made of discrete atoms and molecules. 

•  One-dimensional: Having only one spatial dimension. 

•  Simple: Completely described by density, velocity, 

This makes illustration and programming simpler. 

and pressure at each point, which we call the “primi-

tive variables”, and write as ρ, u, and p. We do not 

Even  though  our  fluid  is  infinitely  subdividable,  for 

consider other possible fluid properties like chemical  illustration  and  analysis  we  divide  it  into  finite-sized  cells. 

reactivity. We also do not consider the action of non- Figure 1 shows a cell c  with its left edge at x  and its right 1

1

pressure forces like gravity or electromagnetism on  edge at x . The density, velocity, and pressure components are 2

the fluid. 

shown on separate graphs. 

Citation: Walker WA (2012), A Pure Lagrangian Meshfree Meth-
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  (1)

Figure 1: Fluid cell with three separate components. Fluid cell c  has 

1

density, velocity, and pressure components ρ, u, and p. The left and 

right coordinates of the cell are x  and x . 

1

2

When we do not need to show all three components 

separately, we combine them onto one axis for simplicity as 

shown in figure 2, with the understanding that ρ, u, and p may 

have different values even though they are drawn with the 

same line. 

We can describe fluid flow with cells in two main ways. 

The Eulerian description considers the cells to be stationary, 

and  the  fluid  to  flow  across  their  edges  and  through  them. Figure 2: Fluid cell with three superimposed components. Fluid cell c  has density, velocity, and pressure components all superimposed on 

The Lagrangian description considers the cells to move along  1

the same axis. The left and right coordinates of the cell are x  and x . 

with the fluid, so any given bit of fluid is always found in the 

1

2

same cell. We will initially use the Eulerian description since 

The coordinates x  and x  are the left and right edges of 

1

2

it is the most common. We will later switch to the Lagrangian  the cell. The times t  and t  are the starting and ending times 1

2

description when we describe RRM in more detail. 

of a period where fluid is flowing into and out of the cell, and 

Given  the  restrictions  and  cell  definition  above,  we  can  pressure is acting on the cell edges. 

model  fluid  flow  with  a  set  of  equations  called  the  Euler 

This form is called the conservation form because it is 

equations, which can be derived from the local conservation  written in terms of the conserved quantities per unit length. 

of mass, momentum, and energy. The Euler equations take  These conserved quantities are mass per unit length ρ, on different forms depending on whether we write them for  momentum per unit length ρu, and energy per unit length ρe .T

the Eulerian or Lagrangian description of fluid flow. For the 

The specific total energy e  is the energy per unit mass 

Eulerian description, we write the Euler equations in English 

T

due to both macroscopic and microscopic motion. The ideal 

like this:

gas law gives us equations for e  and for the speed of sound a, 

T

•  Conservation of mass: The mass in a cell changes by  which we will use later. 

the amount that flows across its edges. 

  

 

(2)

•  Conservation of momentum: The momentum in a cell 

changes by the amount that flows across its edges, and 

   (3)

by the amount due to the pressure acting on its edges. 

To write the Euler equations in a more compact form we 

•  Conservation of energy: The energy in a cell changes  define a vector of the conserved quantities by the amount that flows across its edges, and by the 

amount due to work done by the pressure acting on 

its edges. 



   (4)

and a vector of the fluxes (plus the pressure and pressure work) 

The Euler equations are typically written as partial  at the edges

differential equations, but we write them here as integral 

equations because it is more natural for our derivative-

free numerical method. Here are the Euler equations for a 





  (5)

cell,  written  for  the  Eulerian  description  of  fluid  flow,  in 

conservation form:

Then the Euler equations can be written as a single vector 

equation
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(6)

For the general initial conditions ρ(x,t ), u(x,t ), and p(x,t ), 

1

1

1

the Euler equations have no known analytical solution. This is 

inconvenient when we wish to check the results of a numerical 

method. So in this paper we restrict ourselves to simple initial 

conditions known as the Riemann problem, where ρ, u, and p 

take on the constant values (ρ , u , p ) and (ρ , u , p ) on the left 

l

l

l

r

r

r

and right sides of an initial discontinuity, as shown in figure 3. 

Figure 3: The Riemann problem. The Riemann problem specifies ini-

tial density, velocity, and pressure values of ρ , u , p on the left side of 

l

l

l

the origin and ρ , u , p  on the right side of the origin. 

r

r

r

Unlike the general initial conditions, the Riemann problem 

has an analytical solution, though this solution contains a 

nonlinear implicit equation and a number of special cases that 

we must treat carefully. In this paper, we use a Riemann solver  Figure 4: Sod’s shock tube problem at t = 0.0 seconds. Sod’s shock due  to Toro  [1]  as  a  standard  to  test  RRM’s  results  against.  tube problem showing initial density, velocity, and pressure values (ρ , l Many  CFD  methods,  beginning  with  Godunov’s  method  in  u , p ) = (1.0, 0.0, 1.0) and (ρ , u , p ) = (0.125, 0.0, 0.1). 

l

l

r

r

r

1959 [2], use an embedded Riemann solver as a part of their 

algorithms, though RRM does not. 

Even for the Riemann problem, accurate numerical 

solutions to the Euler equations are challenging, mainly 

because the solutions can include discontinuities. At these 

discontinuities, the spatial derivatives in the differential form 

of  the  Euler  equations  are  undefined,  which  spoils  many 

simple numerical methods and requires special-case code in 

more advanced methods. 

In the solutions to many other partial differential equations 

such as the heat equation, initial discontinuities will smear 

out and become increasingly smooth over time. But in the 

solutions to the Euler equations, initial discontinuities do not 

always smear out, and indeed new discontinuities may arise 

over time. 

For  example,  consider  Sod’s  shock  tube  problem  [3],  a 

special case of the Riemann problem. A shock tube is a gas-

filled tube with a diaphragm in the center. The diaphragm is 

initially airtight, so the left and right sides of the tube can be 

separately charged to specific pressures and densities as shown 

in figure 4, which sets (ρ , u , p ) = (1.0, 0.0, 1.0) on the left side, 

l

l

l

and (ρ , u ,p ) = (0.125, 0.0, 0.1) on the right side. 

r





r r

At time t = 0.0, we instantly remove the diaphragm and let 

the fluid start flowing from left to right.Figure 5 shows the fluid 

at t = 1.5 seconds. We can see both types of discontinuity that 

are possible in solutions to the Euler equations, as well as the 

“expansion fan” that joins the high-pressure left state to the flat 

area in the center. 

Figure 5: Sod’s shock tube problem at t = 1.5 seconds. Sod’s shock 

tube problem showing density ρ, velocity u, and pressure p after 1.5 

seconds of time evolution. We can see three flow features: an expan-

sion fan, a contact, and a shock. 

[image: Image 179]
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The  first  type  of  discontinuity,  a  contact,  separates  two 

These graphs show how the contact and the shock both 

areas that differ only in density. Contacts travel along with  start at the origin and move to the right, with the shock the fluid, and since velocity is constant across a contact, no  running ahead due to its higher speed. They also show how fluid flows across them. Contacts cannot form spontaneously;  the expansion fan gradually slopes left as more and more fluid they must either be present in the initial conditions as in Sod’s  flows to the right to feed the travelling shock. 

problem, or they must be formed by the intersection of two 

For  subsequent  figures  we  will  mainly  use  2D  graphs, 

shocks. As a real-world example, if stationary hot and cold  since they allow easier comparison of our results with those water masses are carefully placed side by side, they will be  of a Riemann solver. We will use 3D only when the time separated by a contact discontinuity, at least until heat energy  evolution of the flow is of special interest, such as when we flows across the discontinuity and smears it out. 

illustrate boundary conditions. 

The second kind of discontinuity, a shock, can be formed 

by a pressure gradient steep enough to force the fluid to move  Previous Work

faster than the local speed of sound a. Shocks can develop over 

time, and need not be present in the initial conditions. Density,  If you simply use the definition of the derivative to convert velocity, and pressure can all change across a shock. As a real- the Euler equations from differential equations to algebraic world example, if you pilot a boat through the water faster than  equations, you get the finite difference method (FDM). In waves can travel through the water, the boat creates a shock at  conservation form, FDM models a fluid as a set of cells, each its bow. 

of which contains the values of the conserved quantities at a 

point within the cell. The explicit version of FDM calculates 

The 2D graphs of Sod’s shock tube problem above show  those values at the next time step from the values in nearby flow  features  at  specific  times,  but  do  not  show  how  the  cells at the current time step. The set of nearby cells is called fluid flow evolves over time. Figure 6 uses 3D to add a time  the stencil. 

dimension. 

The  finite  volume  method  (FVM)  also  models  a  fluid 

as a set of cells, but it stores cell average values instead of 

point samples in the cells. In its explicit conservation form, 

FVM calculates the values at the next time step by adding 

and subtracting fluxes of the conserved quantities across each 

neighboring cell’s edges during the time step. 

The  finite  element  method  (FEM) was historically used 

for  structural  mechanics  [4],  but  began  to  find  use  in  fluid 

dynamics [5] as the method was generalized and applied to 

time-varying problems. FEM starts by creating a mesh of 

elements (cells in our terminology) which are shaped to fit the 

problem geometry. FEM then solves a system of equations at 

each time step to determine the unknown fluid values in each 

element. Fluid values in FEM are typically stored in piecewise 

polynomial form, as opposed to the point samples of FDM or 

the cell averages of FVM. 

In FDM and FVM, the fluid is usually considered to move 

through stationary cells in a single, global coordinate system. 

This is the Eulerian description of fluid flow mentioned above. 

Figure 7 shows an example with three stationary cells c , 

1

c , and c . The measuring pointsx , x , and x  are at the cell 

2

3

m1

m2

m3

centers. The entire fluid has a rightward velocity u. In panel A 

at time t , we measure cell c ’s ρ and p values at x , and c ’s 

1

1

m1

2

values at x . Cell c  is empty. 

m2

3

Figure 6: Sod’s shock tube problem time evolution from t = 0 to t = 1.5 

seconds. Sod’s shock tube problem showing density ρ, velocity u, and 

pressure p from time t = 0 to time t = 1.5 seconds. We can see three flow 

features: an expansion fan, a contact, and a shock. The contact and 

the shock both start at the origin and move to the right, with the shock 

running ahead due to its higher speed. The expansion fan gradually 

slopes left as more and more fluid flows to the right to feed the shock. 

Figure 7: Eulerian description of fluid flow. In the Eulerian descrip-

tion of fluid flow, the fluid moves through stationary cells. Consider 
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a global coordinate system divided into three cells c , c , and c . The  shows that we will measure the same values at any later time 1

2

3

fluid is traveling rightwards with velocity u. In panel A at time t , a 

1

t , since cell c  and its coordinate system move together. The 

measurement at point x  will show the density ρ and pressure p of 

2

1

m1

same holds true for cell c  in its local coordinate system at its 

cell c . In panel B at a later time t  = (x – x )/u, we measure the same 

2

1

2

m2

m1

own point x . 

density and pressure at point x  because the fluid has moved to the 

m2

m2

right by one cell width. 

Lagrangian methods handle shocks and contacts naturally, 

because  those  flow  features  travel  with  the  fluid  instead  of 

In panel B at a later time t  = (x – x )/u, all the fluid from 

2

m2

m1

smearing out as they cross cell edges. But pure Lagrangian 

c  has moved into c , and all the fluid from c  has moved into 

1

2

2

methods  are  rare,  because  as  the  fluid  flows, the cells can 

c . Now we measure the same ρ and p values at x  that we 

3

m2

become excessively bunched up, stretched out, or deformed, 

previously measured at x , and the same values at x  that we 

m1

m3

which can reduce simulation accuracy and efficiency. 

previously measured at x . The fluid has moved one cell width 

m2

to the right, but the cells themselves have stayed in place. 

The cells of FDM, FVM, and FEM, and the lattice sites of 

LBM, are usually connected in a mesh. Each cell has a well-

Eulerian methods are relatively simple to implement, but  defined shape, and each cell or site has a fixed set of neighbors. 

shocks, contacts and other steep gradients may smear out or  In simple methods, these shapes and sets of neighbors are gain unphysical oscillations as they cross cell edges, depending  constant over the whole course of the simulation. But in on the algorithm used. Researchers have proposed many  Eulerian  methods,  a  fluid  may  have  complex  flow  features refinements over the years to increase accuracy, such as Total  that move around over time, so we may want to create smaller Variation Diminishing (TVD) methods [6], Essentially Non- cells in those complex areas and larger cells in other areas. 

Oscillatory (ENO) methods [7], Monotone Upwind Schemes  Or in Lagrangian methods, some cells may become degenerate for Scalar Conservation Laws (MUSCL) [8], the Piecewise- or singular in a complex flow, so that the method’s equation Parabolic Method (PPM) [9], and many more. 

solver no longer works correctly. 

Another  approach  to  Eulerian  fluid  flow  is  the  lattice 

The process of changing the mesh to alleviate these 

Boltzmann method (LBM) [10]. Instead of a mesh of cells,  problems is called remeshing. Figure 9panel A shows eight LBM uses a lattice of connected sites, each of which can  small fluid cells, and panel B shows those eight cells remeshed 

“stream” fluid to a fixed number of neighboring sites. Each site  into two cells that cover the same area. 

contains a distribution function that represents how much fluid 

is streaming in each direction. After each streaming step, LBM 

executes a “collision” step at each site to alter the distribution 

functions to maintain conservation. LBM has many attractive 

features, including ease of programming and simple handling 

of boundary conditions. 

In contrast to FDM, FVM, and LBM, FEM often uses the 

alternative Lagrangian description of fluid flow, in which the 

cells travel along with the fluid. 

Figure 8 shows an example, with two cells c  and c  moving 

1

2

to the right with a velocity u, similar to the Eulerian example 

above. However, in the Lagrangian description the fluid does  Figure 9: Remeshing. The eight cells in panel A can be remeshed into not move across cell edges. Instead, the cells themselves move,  two cells in panel B that cover the same area and contain the same carrying local coordinate systems along with them. 

mass, momentum, and energy. Some CFD methods require remeshing 

to maintain accuracy or to prevent numerical difficulties. 

To avoid this complication, the so-called meshfree 

methods do away with mesh connectivity entirely. One of the 

first meshfree methods was smoothed-particle hydrodynamics 

(SPH) [11],[12]. SPH is a purely Lagrangian method which 

models a fluid with a set of moving particles, and computes the 

fluid’s properties at any point by summing the contributions of 

nearby particles using a kernel function which smooths out the 

particles’ properties over some “smoothing length”. SPH was 

originally motivated by the study of astrophysical problems 

such as galaxy formation, where the constituents were already 

Figure 8: Lagrangian description of fluid flow. In the Lagrangian de-

discrete particles. SPH was later applied to other problems 

scription of fluid flow, the cells are part of the fluid and move along  where the fluid was presumed to be continuous before being with it. Consider fluid cells c  and c  traveling with their own local  discretized. 

1

2

coordinate systems. The cells and their coordinate systems are both 

The moving-particle semi-implicit method (MPS) [13] 

traveling rightwards at velocity u in the global coordinate system. In  is a meshfree method similar to SPH, which was originally panel A at time t , and in panel B at any later time t , pointsx  and 

1

2

m1

intended  for  simulation  of  incompressible  fluids  with 

x  in the cells’ coordinate systems remain at the same places in those 

m2

cells. No fluid crosses cell edges. 

interacting free surfaces. It also uses a kernel function (called 

a weight function in the MPS literature), but one which is 

Panel A shows us measuring the values at time t  of ρ and  specially designed to repel particles at short distance, thereby 1

p at point x  in the local coordinate system of cell c . Panel B  maintaining approximately constant density in the fluid. MPS 

m1

1
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has been applied to many situations, including simulations of 

coastal waves and dam breaks. 

Much research in meshfree methods has been done in 

recent years, and there is now a great variety of such methods 

with different kernel functions, particle properties, and 

integration techniques. Li and Liu [14] and Huerta et al. [15] 

have both written excellent surveys of the field. 

METHODS

Figure 11: Fluid cells. A fluid divided into three cells c , c , and c . 

1

2

3

Motivation

The dotted line at the right shows that there are periodic boundary 

conditions, so the right side of c  is adjacent to the left side of c . 

RRM was motivated by Chaikin’s corner-cutting algorithm for 

3

1

curve generation, which evolved into the subdivision curves of 

At each cell edge, we send tracer particles left and right 

computational geometry [16], [17]. A curve of this type starts  through the fluid at the local speed of sound a, as shown in as a set of lines joined end to end to form a roughly faceted  figure 12. Each pair of tracer particles defines an expanding curve, shown in figure 10 panel A. First we cut off each of  wavefront of change that originates at the cell edge. For the corners one-quarter of the way along each side, shown in  example, in figure 12 we show w , the wavefront originating 23

panel B. Then we cut the corners off the new corners, shown in  between c  and c , along with its left tracer particle p  and its 2

3

l

panel C, iteratively refining the curve into smaller and smaller  right tracer particle p .r line segments, until a desired level of smoothness is reached 

in panel D. 

Figure 12: Fluid cells showing wavefronts and tracer particles. A 

fluid divided into three cells c , c , and c . The dotted line at the right 

1

2

3

shows that there are periodic boundary conditions. Wavefront w  

23

originates between c  and c , and contains tracer particles p  and p  that 

2

3

l

r

Figure 10: Chaikin’s corner-cutting algorithm. Starting with the tri- travel through the fluid at the local speed of sounda = sqrt(γp/ρ). The angle in panel A, cutting the corners off one-quarter of the way along  constant γ depends on the fluid (it has a value of 1.4 for air). The ρand each side gives us panel B. Panels C and D show the process carried  p values are those of the cell the particle is traveling through. Note out two more times. We can repeat this process until the curve has any  that w  (not labeled) extends into both c  and c  due to the periodic 31

3

1

desired smoothness. 

boundary conditions. 

RRM does the same sort of iterative refinement, but on a 

As each tracer particle travels, it accumulates an error 

moving fluid instead of a stationary curve, and with constraints  metric that tracks how much each of the primitive variable on conservation of mass, momentum and energy rather than  values has changed, and over what distance. Figure 13 shows constraints on surface continuity and smoothness. 

a tracer particle p, the right-hand particle of wavefront w, 

moving through the fluid. The particle’s error metric Δ grows 

Overview

as the particle moves, with the slope of Δ changing when the 

particle crosses each cell edge. 

To begin, we divide a fluid into finite-sized cells. In one 

dimension, each cell is a line segment with an associated 

density, velocity, and pressure, all of which are constant across 

the cell.Figure 11 shows a fluid divided into three cells c , c , 

1

2

and c . For now we use periodic boundary conditions, so the 

3

left side of c  is adjacent to the right side of c . We indicate this 

1

3

with the dotted line on the right of c .3

Figure 13: Error metric growing as a tracer particle travels. A particle 

p traveling right as part of wavefront w. Its error metric Δ increases as 

the particle travels, with the slope of Δ changing at cell edges. 

[image: Image 187]

[image: Image 188]

[image: Image 189]

[image: Image 190]

A Pure Lagrangian Meshfree Method for Computational Fluid Dynamics

43

When this error metric for either of the two tracer particles 

The chop-flatten-create process always results in exactly 

in any wavefront exceeds a preset maximum, we chop the  one new cell, and always shrinks two other cells by chopping wavefront  area  out  of  the  fluid,  flatten  the  chopped-out  cell  parts off of them. But this process can also remove any parts into a single new cell, and insert that new cell into the  number of whole cells if the maximum error metric allows the hole left by the chopping. 

wavefront to grow wide enough. For example, if wavefront 

In areas of the fluid where primitive variable values differ  w  in figure 14 had grown wider, it could have chopped off the 23

greatly  from  cell  to  cell,  tracer  particles’  error  metrics  will  right side of c , entirely removed c , and chopped off the left 1

2

accumulate quickly, so new cells will be chopped out soon  side of c , resulting in no net change in the number of cells. An 3

after wavefront creation. This leads to more, smaller cells in  even wider wavefront which removes two whole cells would areas of the fluid with steep slopes. Conversely, in areas where  reduce the total number of cells in the fluid by one, and so on. 

values are very similar from one cell to the next, error metrics  This is how RRM increases and decreases the total number of will accumulate slowly, so we will chop out fewer, larger cells  cells over time to adapt to changing fluid conditions. 

in areas of the fluid with shallow slopes. 

The last step in the RRM algorithm is to choose the next 

We illustrate this whole process in figure 14. In panel A, we  wavefront whose tracer particles have reached the maximum chop wavefront w  out of the fluid, removing the wavefront’s  error metric and repeat the chop-flatten-create process detailed 23

tracer particles from the fluid at the same time. This leaves us  above. This repetition evolves the fluid simulation forward in with chopped cell parts c  and c , shown in panel B. Panel C  time. 

2c

3c

shows us flattening c  and c  into a new cell c  of the same 

2c

3c

4

mass, momentum and energy. Then in panel D we insert c   Stored Quantities

4

into the fluid and create new wavefronts w  and w  at the cell 

24

43

In each cell, we store three main types of data:

edges. 

•  The size, shape, and position of the cell. In one di-

mension, cells have only width, so we need only store 

the time-varying x coordinate x (t) of the cell’s left 

1

edge, and the cell’s width w. 

•  The cell’s three primitive variable values ρ, u, and p. 

•  Four extra vector quantities which help us ensure 

conservation. 

Below we explain the relationships between these quantities 

and show how to derive other necessary values from them. 

RRM is purely Lagrangian and represents the fluid as finite-

sized cells, so we use the integral Lagrangian form of the Euler 

equations, written in terms of the primitive variables:

   (7)

The values m  and m  are the mass coordinates of the left 

1

2

and right side of the cell. The mass coordinates move with the 

fluid, unlike the fixed spatial coordinates x  and x  that we used 

1

2

in the Eulerian form of these equations in equation set 1. This 

means that the fluid between m and m  stays between m  and 

1

2

1

m , with no fluid flow across the cell edges. We can get the 

2

mass  coordinate  m  at  a  point  in  the  fluid  from  the  Eulerian 

coordinate x at that point by integrating all the mass up to that 

Figure 14:  Chopping,  flattening,  and  new  cell  creation.  Panel  A  point: shows the chopping of wavefront w  out of the fluid, which chops 

23

off the right side of c  and the left side of c . Panel B shows the result-

2

3

ing chopped parts c  and c . Panel C shows the flattening of the two 

    (8)

2c

3c

chopped parts into a new cell c  with the same mass, momentum, and 

4

So the value of the mass coordinate at any point is the sum 

energy. Panel D shows the insertion of the new cell c  into the fluid 

4

and the creation of the new wavefronts w  and w  on its edges. 

of all the mass to the left of that point in the fluid. 

24

43
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Note that the conservation of mass equation does not appear  transferred to new cells during the chopping and flattening process, in equation set 7. That is because the mass between m  and m   and this transfer is what causes the conversion between potential and 1

2

is constant, so that equation would be trivial. Instead we show  kinetic energy and vice versa. 

the conservation of volume equation, which merely says that 

a cell’s volume v changes as its edges move towards or away 

from each other. In the Eulerian form of these equations, it was 

the conservation of volume equation that was trivially equal to 

a constant, so we omitted it from equation set 1. 

   (13)

Note also that the equations for the conservation of 

momentum and energy are simpler in the Lagrangian form 

The first quantity Δt is the time it takes a tracer particle to 

than in the Eulerian form. This is because we do not need the  cross a cell, and also the time it takes for a cell to completely flux terms that describe momentum and energy flowing across  expend its store of pressure momentum and pressure momentum the cell edges, now that the cell edges move with the fluid. 

upon its neighbors. The next four quantities are the terms on the 

right-hand sides of the momentum and energy Euler equations 

As we saw with the Eulerian form, if we define a vector of  from equation set 7. They represent the changes in momentum the conserved quantities

and energy due to pressure work that a cell has the potential to 

cause to its neighbors. We store equal quantities of P  and E  

p

p

in each direction, so for each cell they sum to zero, leaving the 

 

     (9)

overall momentum and energy of the fluid unchanged. 

As the fluid evolves, the total fluid mass, momentum, and 

and a vector of the velocity, pressure and pressure work at the  energy remain strictly constant when these extra P  and E  

cell edges

p

p

vectors are summed along with the cells’ mass, momentum, 

and energy. 

 

     (10)

then the Lagrangian form of the Euler equations can be written 

as a single vector equation

  

(14)

 

(11)

This insures strict conservation of mass, momentum, and 

We  do  not  store  the  cells’  conserved  quantities  directly,  energy over the course of the simulation. 

but we can calculate them by integrating over the primitive 

variables. Since our primitive variables are piecewise constant, Cell Chopping and Flattening the integrals are simply multiplications by w, the width of the  When we chop off one side of a cell, we are removing five cell. 

quantities: mass, momentum and energy, plus part of the 

pressure momentum and pressure energy from the vectors on 

the chopped-off edge of the cell. Figure 16 shows this for a 

single cell c . Panel A shows the quantities remaining in c  after 

1

1

chopping, and panel B shows the quantities that are chopped 

  

(12)

off to form cell part c . 

1c

To allow our flattening process to exchange energy between 

kinetic and potential forms while remaining conservative, we 

store two extra vector quantities on each edge of each cell: 

pressure momentum and pressure energy. 

Figure 15 shows these quantities for a single cell c . We 

1

define them as follows:

Figure 16: Chopping pressure momentum and pressure en-

ergy vectors. Panel A shows a single cell c  with the right side 

1

Figure 15: Pressure momentum and pressure energy vectors. A single  chopped off. Panel B shows the chopped mass, momentum, cell c  showing left and right pressure momentum P  and P , and left  energy, pressure momentum P , and pressure energy E that are 1

pl

pr

and right pressure energy E  and E . Portions of these vectors are 

p

p 

pl

pr
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now contained in the chopped cell part c , which will be flat- of the fluid models the movement of characteristics or 1c

tened into a new cell along with any other cells chopped out  acoustic wavefronts through the fluid. The tracer particles by the same wavefront. The amounts of mass, momentum, and  do not represent real physical particles, they are merely a energy transferred to c  are proportional to the width of c , but  computational device. They do not carry mass, momentum, or 1c

1c

the amounts of pressure momentum and pressure energy trans- energy, they do not interact with each other, and they do not ferred to c  are proportional to the time since the creation of c . affect cells’ properties. They always travel at the local speed of 1c

1

sound a in the cell that contains them. 

Note that we chop off mass, momentum and energy in 

amounts proportional to the width of the chopped part, but 

As  the  tracer  particles  move  through  the  fluid,  we 

we chop off pressure momentum and pressure energy in an  accumulate an error metric that tells us when to stop and chop amount proportional to the time since the chopped cell was  out a new cell. The error metric Δ  is the error accumulated by 1,n

created. This is because mass, momentum and energy are  a tracer particle as it travels from cell 1 to cell n. 

inherent  properties  of  the  fluid  that  must  be  integrated  over 

space, whereas pressure momentum and pressure energy act 

  

(16)

over time to convert energy from potential to kinetic form  where d  is the distance the tracer particle travels in cell i, and i

when there is a gradient in the fluid pressure. We can see this  the metric vector M  for cell i is i

in equation set 7, where the left-side integrals are spatial, and 

the right-side integrals are temporal. In RRM, we treat P  and 

p

E  as acting steadily over time, starting at time t  when a cell is 

p

c





   (17)

created, and ending at time t +Δt, the time at which both of the 

c

When  Δ  for either tracer particle exceeds a user-supplied 

cell’s tracer particles (the left wavefront’s right particle, and 

1,n

Δmax, we chop out a new cell. 

the right wavefront’s left particle) leave the cell. 

This error metric needs a bit of explaining. First, the metric 

When  chopping  out  a  new  cell,  we  first  determine  its  is a vector of all the primitive variables (instead of choosing intersections with existing cells. Then we chop off those  just one or two) so that variation in any of them across the intersections and add up all the mass M, momentum P, and  fluid can trigger the chopping of a new cell. So our maximum energy E the intersections contained. Then, using the width of  error metric Δ  is a vector Δ  = [Δ , Δ , Δ ]T, with the new cell w and the requirement that density, velocity, and 

max

max

max ρ

max u

max p

each value set separately by the user. When we say that 

pressure are constant across it, we can calculate the flattened  Δ exceeds Δ , we mean that some element of Δ  exceeds values of the primitive variables for the new cell. 

1,n

max

1,n

the corresponding element ofΔ . 

max

We take the absolute value of M  – M  so the error metric 

i

i–1

will increase monotonically as the tracer particle travels. If we 

did not, the error metric might go up and down many times 

without exceeding Δ , which could lead to chopping out new 

max

cells that contain more total variation in the primitive variable 

values than we meant to allow. 

  

 

(15)

We multiply the error metric by distance so that the error 

metric grows even as the tracer particles move across cells, 

Negative Pressure Fix

not just as the particles cross cell edges. This prevents us 

Very occasionally, the flattening process will produce a cell  from chopping out unduly large new cells in areas of shallow with negative pressure, either because of rounding or truncation  density, velocity, or pressure gradients. 

error, or because a very small wavefront chops a large amount 

of pressure momentum and pressure energy, which would 

accelerate the newly created small cell more than its store of 

potential energy can support. 

When this happens, we flatten the cell without adding in 

the chopped pressure momentum and pressure energy, which 

turns off pressure-to-momentum conversion for that cell 

and gives us a positive pressure after flattening. The unused 

pressure momentum and pressure energy are added to that 

of the newly created cell, which spreads the pressure-to-

momentum conversion out over a slightly longer time. 

Whitehurst’s  signal  method  [18]  uses  a  similar  fix  for 

negative pressures, but averages over space instead of time. 

When negative pressure occurs in a cell, the signal method 

averages that cell’s mass, momentum and energy with its three 

neighbors, in proportion to their volumes. 

Figure 17: Error metric growing as particles cross cell edges. Panel 

Tracer Particles and Their Error Metric

A shows two particles p  and p  traveling through the fluid as part of 

l

r

The movement of the tracer particles through the cells  wavefront w . Panel B shows the particles’ error metrics Δp  and Δp 23

l

r

growing as the particles travel, and demonstrates how the error metric 
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of each particle in a wavefront is tracked separately. Note how the 

slope of the error metric across each cell is proportional to the differ-

ence in the cells’ density ρ, velocity u, and pressure p at the edge the 

particle crossed to get into the cell. 

There is also a special case in this formula. When i is 

1, M  is the metric vector of the cell on the other side of the 

0

edge from where the tracer particle was created. So the tracer 

particle does not travel through cell 0, but its metric vector 

contributes to the overall error metric. 

Figure 17 panel A shows two tracer particles p  and p  

l

r

traveling  through  a  fluid  as  part  of  wavefront  w . Panel B 

23

shows how the error metrics Δp  and Δp  of the two particles 

l

r

change as the particles travel. 

Note that the slopes of Δp  and Δp  are shallow in the 

l

r

center of the graph, because the density, velocity, and pressure 

of c  and c  are similar. As the particles cross into c  and c , the 

2

3

1

4

Figure 19: The “213 problem”. Panel A shows a fluid divided into 

slopes of Δp  and Δp  increase substantially, which means that  three cells c , c , c  of widths 2, 1, and 3 from left to right (hence the l

r

1

2

3

w  will reach Δ  sooner than it would have with a shallower  name “213 problem”). All three cells were created at time t = 0, and all 23

max

gradient in the fluid. 

three have density ρ = 

1, pressure p = 1, and velocity u = 0. In a simula-

simula-

tion without wavefront unioning, if wavefront w  chopped out a new 

23

Wavefront Unioning

cell at time t = 2.5, that new cell would have a net momentum of −0.5. 

Panel B shows that this is because the rightward momentum P  from 

pr

When we choose a wavefront that we wish to chop the fluid  c  levels off at t = 2.0, while the leftward momentum from c continues 1

3

with, we first must check for overlap with other wavefronts.  to increase until t = 3.0. This demonstrates that wavefront unioning is The final area we chop out will be the union of the first  required to avoid unphysical changes in cell velocity during simula-wavefront with all the wavefronts that overlap it, and all the  tion. 

wavefronts that overlap them, and so on. Figure 18shows an 

Assume  that  all  three  cells  were  created  at  time  t = 0, 

example: if we choose w , we see that it overlaps w , which 

12

23

and that the speed of sound a = 1. Since there is no density or 

overlaps w , so the final area we would have to chop is w

. 

34

union

pressure gradient, chopping out a new cell anywhere in this 

fluid should result in a new cell with ρ = 1, u = 0, and p = 1. 

Let us consider wavefront w  expanding from the right 

23

side of c  and see if this is true. At timet = 2, w  will contain 

2

23

equal and opposite amounts of pressure momentum from c  1

and c , sinceP  = 2 and P  = −2. The pressure momenta P  and 

3

pr1

pl3

pl2

P  from c  will cancel since the whole cell is covered, so the 

pr2

2

overall pressure momentum P  = P +P +P +P  contained in 

p

pr1

pl2

pr2

pl3

w is zero, as shown by the dotted line at t = 2. So far, so good. 

23

At time t = 2.5, the pressure momentum P  from c  is still 

pr1

1

2, since it ran out of pressure momentum to contribute at t = 2. 

But the pressure momentum P  from c  is −2.5, since it will 

Figure 18:  Wavefront unioning. A fluid divided into four cells c , 

pl3

3

1

not  run  out  until  time  t = 3.0.  Figure  19  panel  B  shows  how 

c , c  and c . Wavefront w  overlaps wavefront w , which overlaps 

2

3, 

4

12

23

the wavefront’s left and right pressure momenta P  = P +P  

wavefront w , so we must chop out the union wavefront w

to 

pl

pl2

pl3

34

union

properly account for the effects of each wavefront on the others. 

and P  = P +P  increase as the wavefront expands, withP  

pr

pr1

pr2

pr

leveling off at t = 2 when P  stops increasing. 

pr1

Wavefront unioning was motivated by the observation that 

So if we chop out a new cell at time t = 2.5, it will have an 

once two expanding wavefronts overlap, the fluid in each one  overall pressure momentum P  of −0.5, as shown by the dotted has affected the fluid in the other, so they can no longer be 

p

line at t = 2.5. This will make the new cell move to the left, even 

treated separately. 

though there is no pressure gradient in the fluid! Unioning w  

23

Wavefront unioning turns out to be essential for the  with w  (not shown) fixes this problem. 

12

stability of the simulation. Without wavefront unioning, it is 

The analysis of the 213 problem shows that if we run a 

possible to chop out an area that contains unbalanced pressure  simulation without wavefront unioning, it will show occasional momentum and pressure energy, even in a perfectly “flat” fluid  unphysical glitches. Since mass, momentum, and energy are that has no density or pressure gradient. This imbalance can  all strictly conserved, the glitches sometimes smooth out over cause a newly-created cell’s velocity to be abnormally high,  time, but if a glitch is big enough, it may create a large local which causes a glitch in the simulation where fluid cells pile up  gradient  and  significantly  slow  down  simulation. Wavefront or spread out in an unphysical way. 

unioning avoids this problem. 

Consider figure 19 panel A, which shows three cells c , c , 

1

2

and c  with ρ = 1, u = 0, and p = 1. We call this the “213 problem” 

3

Discrete Event Simulation

because the widths of the cells are 2, 1, and 3 from left to right. RRM uses a discrete event simulation flow. We keep a priority 
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queue of events, sorted in order of increasing event time.  sider a fluid divided into four cells c , c , c  and c . Wavefront w 1

2

3, 

4

23

There are two kinds of events: particle events, where particles  contains particles p  and p . Particle p  intersects cell c  at time t l

r

l

1

intersection 

intersect cells, and wavefront events, where one of the particles  , and reaches the maximum error metric at t

. Particle p  inter-

l

max error l

r

in the wavefront exceeds the maximum error metric. 

sects cell c  at time t

, and reaches the maximum error metric 

4

intersection r

at t

. 

Particle events merely transfer particles from their current 

max error r

cell to the intersected cell, which changes their speed and the 

We enqueue the two tracer particles as events, using the 

rate at which they accumulate error. Wavefront events chop  intersection times as the event times. We also enqueue the new cells out of the fluid. 

wavefront as an event, using the soonest of the max error times 

Figure 20 shows what the event queue might look like for  as the event time. 

the previous example of the 213 problem at time t = 0, if we 

(18)

assume that the wavefront w  would chop out a new cell at 

23

Each time we pull an event off the event queue, we check 

time t = 1.5. For simplicity, we show only the events associated  whether the event is a particle intersecting a cell, or a wavefront with wavefront w . In a real simulation there would be a 

23

whose particle is reaching the maximum error metric. If a 

wavefront between each pair of cells, so the event queue would  particle has intersected a cell, we transfer it into the intersected be much more cluttered. 

cell, recalculate the event time, and requeue the particle. 

If either particle in a wavefront has reached the maximum 

error metric, we union the wavefront with any overlapping 

wavefronts, chop and flatten the area of the union into a new 

cell, and insert the new cell into the fluid. Then we create a 

new wavefront for each edge of the new cell and insert the 

corresponding events into the event queue. Finally, we transfer 

any particles caught in the chopped-out area into the new cell, 

which changes their speeds to the local speed of sound in the 

new cell, recalculates their event times, and requeues them. 

RRM Algorithm Flowchart

Figure 20: Simulation event queue. Queue of events associated with 

wavefront w  in the previous example of the 213 problem. Events  For reference, figure 22 is a flowchart that outlines the entire 23

are ordered by increasing time, and the simulator always executes the  RRM algorithm. 

event at the head of the queue. 

The first event transfers particle p  from c  to c . The second 

l

2

1

event uses wavefront w  to chop a new cell out of the fluid. 

23

The third event is removed at the same time the second event 

is processed, since a wavefront’s tracer particles are removed 

in the chopping process. 

Here is how we determine the event times. When we 

create a wavefront with its pair of tracer particles, we find the 

intersection time t

of each particle with the nearest cell 

intersection

edge in its direction of travel, and the time t

when the 

max error

error metric of each particle will exceed the maximum error 

metric. Figure 21 shows all four of these times for particles p  l

and p  in wavefront w . 

r

23

Figure 22:  RRM  flowchart.  Flowchart  showing  the  outline  of  the 

complete RRM algorithm. 

RESULTS

We tested RRM on nine standard test problems, and plotted 

RRM’s  results  (solid  lines)  against  the  output  of  Toro’s 

Figure 21: Particle intersection time and maximum error time. This  Riemann solver (dashed lines). The two match closely in most figure shows all four possible event times for a single wavefront. Con-cases, with some exceptions discussed below. 
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In the following tests, RRM typically uses a maximum  keeping the contact sharp. We have not tried this yet, so RRM’s of 200 to 400 cells during the simulation, depending on  current behavior is more like a real fluid than a Riemann solver the maximum error metric we set. Most of those cells are  in this respect. 

concentrated in areas of high gradient, with only a few wide 

Shocks in RRM have a finite thickness that manifests as 

cells in flat areas. We set the maximum error metrics to obtain  a thin peak at the shock front. The shock thickness decreases good results in a relatively short time. In the error analysis  as the accuracy is increased. This is because RRM creates new section that follows these test results, we will justify our  cells at the shock front at a rate proportional to the accuracy, and choices of these maximum error metrics and show how the  the more frequently cells are created there, the more quickly quality of the results varies as the maximum error metrics are  the change in density, velocity, and pressure is propagated to varied. 

the area behind the shock. In the limit of infinite accuracy, the 

shock would be infinitely thin as it is in the Riemann solver’s 

Test 1

results. 

Figure  23  shows  test  1,  which  is  Sod’s  problem  [3]  with 

Shocks in a real fluid also have a finite thickness of a few 

the initial conditions (ρ , u , p ) = (1.0,  0.0,  1.0)  and  (ρ , u ,  mean free paths, for a similar reason. It takes fluid atoms or l

l

l

r

r

p ) = (0.125, 0.0, 0.1). The maximum error metrics for ρ, u, and  molecules a few collisions to transition from their state in front r

p are (Δ

, Δ

, Δ

) = (1.0e-5, 1.0e-3, 1.0e-3). The results  of the shock to their state behind the shock. But because real max ρ

max u

max p

are for time t = 1.5. 

fluids are not continuous, the shock thickness at a given set of 

conditions is essentially fixed by the fluid’s physical properties. 

Unlike contacts, shocks in RRM will always be sharply 

defined, because they are formed by the edge of a supersonic 

cell pushing into slower fluid. Our wavefronts always travel at 

the local speed of sound a, so shocks are naturally self-forming 

because nearby wavefronts cannot outrun them. 

Test 2

Figure 24 shows test 2, which is a modified version of Sod’s 

problem due to Laney [19]. This problem has a 100-to-1 

pressure differential instead of the 10-to-1 differential of Sod’s 

problem. The initial conditions are (ρ , u , p ) = (1.0, 0.0, 1.0) 

l

l

l

and (ρ , u , p ) = (0.01, 0.0, 0.01). The maximum error metric is 

r

r

r

(Δ

, Δ

, Δ

) = (1.0e-4, 1.0e-4, 1.0e-3), and the results 

max ρ

max u

max p

are for time t = 1.5. 

Figure 23: Test 1: Sod’s test problem at high accuracy. Sod’s problem 

with initial conditions (ρ , u , p ) = (1.0, 0.0, 1.0) and (ρ , u , p ) = (0.125, 

l

l

l

r

r

r

0.0, 0.1), with maximum error metric (Δ

, Δ

, Δ

) = (1.0e-5, 

max ρ

max u

max p

1.0e-3, 1.0e-3), at time t = 1.5. This test shows typical RRM results: an 

s-shaped contact because RRM is not adiabatic across contacts, and a 

slight peak at the shock due to finite shock thickness. 

These results are typical of RRM, and match the Riemann 

solver’s  results  closely  with  two  exceptions:  the  s-shaped 

contact,  and  the  slight  peak  where  the  shock  shows  a  finite 

thickness. 

The s-shaped contact occurs because unlike a Riemann 

solver, RRM is not adiabatic across contacts, and models heat 

diffusion as a side effect of the algorithm. Wavefronts are 

created at contacts the same as at any other cell edges, so new 

cells are created across contacts, and gradual diffusion is the 

result. 

We could easily make RRM adiabatic across contacts by  Figure 24: Test 2: Modified Sod’s test problem with 100-to-1 pressure adding a rule that when a tracer particle reaches a contact, its  differential. A modified version of Sod’s problem with initial condi-error metric is set to the maximum. This would insure that new  tions are (ρ , u , p ) = (1.0, 0.0, 1.0) and (ρ , u , p ) = (0.01, 0.0, 0.01), with l

l

l

r

r

r

cells are always created on one side of the contact or the other,  maximum error metric (Δ

, Δ

, Δ

) = (1.0e-4, 1.0e-4, 1.0e-3), 

max ρ

max u

max p
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at time t = 1.5. This test shows that RRM still gives good results on a  Test 4

problem that has a 100-to-1 pressure differential instead of the 10-to-1 

differential of Sod’s problem. 

Figure 26 shows test 4, which is test problem 1 from page 225 

of Toro’s book on Riemann solvers and numerical methods [1]. 

This test shows that RRM can handle strongly supersonic  The initial conditions are (ρ , u , p ) = (1.0, 0.75, 1.0) and (ρ ,u , flows. We can see that the contact is s-shaped as usual, and 

l

l

l

r r

p ) = (0.125, 0.0, 0.1). The maximum error metric is (Δ

, Δ

there is just a hint of a u peak at the shock front, but otherwise 

r

max ρ

max 

, Δ

) = (1.0e-5, 1.0e-4, 1.0e-4), and the results are for time 

the results are in agreement with the Riemann solver. The  u max p

t = 0.8. 

velocity at the shock front is higher than in the original Sod’s 

problem, as we expect due to the greater pressure differential. 

Test 3

Figure 25 shows test 3, which is a modified version of Sod’s 

problem where the entire fluid moves right with u = 1.0. The 

initial conditions are (ρ , u , p ) = (1.0,  1.0,  1.0)  and  (ρ , u , 

l

l

l

r

r

p ) = (0.125, 1.0, 0.1). The maximum error metric is (Δ

, Δ

r

max ρ

max 

, Δ

) = (5.0e-5, 1.0e-3, 1.0e-3), and the results are for time 

u

max p

t = 1.5. 

Figure 26: Test 4: Toro test 1. Toro’s test problem 1, with initial con-

ditions (ρ , u , p ) = (1.0, 0.75, 1.0) and (ρ , u , p ) = (0.125, 0.0, 0.1), with 

l

l

l

r

r

r

maximum error metric (Δ

, Δ

, Δ

) = (1.0e-5, 1.0e-4, 1.0e-4), 

max ρ

max u

max p

Figure 25: Test 3: Modified Sod’s test problem with initial u = 1.0. A  at time t = 0.8. This test is similar to Sod’s problem, but the left cell is modified version of Sod’s problem where the entire fluid moves right  initially ramming into the right cell, so the velocity at the shock front with u = 1.0, with initial conditions (ρ , u , p ) = (1.0, 1.0, 1.0) and (ρ , u ,  is somewhat higher. 

l

l

l

r

r

p ) = (0.125, 1.0, 0.1), with maximum error metric (Δ

, Δ

, Δ

r

max ρ

max u

max 

This test is similar to Sod’s problem, but the left cell is 

) = (5.0e-5, 1.0e-3, 1.0e-3), at time t = 1.5. This test shows one of the 

p

initially ramming into the right cell, so the velocity at the shock 

benefits of the fully Lagrangian nature of RRM. Since the cells all  front is somewhat higher. 

move to the right with u = 1.0, the shock front does not have to cross 

cell edges during the simulation, so the shock is just as sharp as in the 

u = 0 case. 

Test 5

This test shows one of the benefits of the fully Lagrangian  Figure 27 shows test 5, which is test problem 2 from Toro’s nature of RRM. Since the cells all move to the right with u = 1.0,  book [1]. The initial conditions are (ρ , u , p ) = (1.0, −2.0, 0.4) l

l

l

the shock front does not have to cross cell edges during the  and (ρ , u , p ) = (1.0, 2.0, 0.4). The maximum error metric is r

r

r

simulation, so the shock is just as sharp as in the u = 0 case. The  (Δ

, Δ

, Δ

) = (1.0e-5, 1.0e-5, 1.0e-5), and the results 

max ρ

max u

max p

u curve is identical to the u = 0 case, but shifted upwards by 1.0. are for time t = 0.6. 
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version of Toro’s test problem 2, with initial conditions (ρ , u , p ) = (1.0, 

l

l

l

3.0, 0.4) and (ρ , u , p ) = (1.0, −3.0, 0.4), with maximum error metric 

r

r

r

(Δ

, Δ

, Δ

) = (5.0e-4, 5.0e-4, 5.0e-4), at time t = 1.1. This is a 

max ρ

max u

max p

test of symmetry and momentum conservation, to make sure that two 

colliding cells will pile up into one stationary mass with sharp edges. 

This is a test of symmetry and momentum conservation, 

to make sure that two colliding cells will pile up into one 

stationary mass with sharp edges. 

Test 7

Figure 29 shows test 7, which is test problem 3 from Toro’s 

book [1]. The initial conditions are (ρ , u , p ) = (1.0, 0.0, 1000.0) 

l

l

l

and (ρ , u , p ) = (1.0, 0.0, 0.01). The maximum error metric is 

r

r

r

(Δ

, Δ

, Δ

) = (1.0e-5, 5.0e-3, 1.0e-2), and the results 

max ρ

max u

max p

are for time t = 0.04. 

Figure 27: Test 5: Toro test 2. Toro’s test problem 2, with initial con-

ditions are (ρ , u , p ) = (1.0, −2.0, 0.4) and (ρ , u , p ) = (1.0, 2.0, 0.4), 

l

l

l

r

r

r

with  maximum  error  metric  (Δ

,  Δ

,  Δ

) = (1.0e-5,  1.0e-5, 

max  ρ

max u

max p

1.0e-5), at time t = 0.6. This test shows that RRM can correctly handle 

the near-vacuum state created in the center. 

This test creates a near-vacuum in the center, which can 

cause problems in the iteration schemes that some Riemann 

solvers use to find p. RRM does not have any special difficulty 

with vacuum areas, either as part of the initial conditions, or 

evolved during the simulation as we see here. 

Note that in this test we set Δ

relatively low. This is to 

max u

resolve the velocity features near the origin that are far from 

the large density and pressure gradients on either side. 

Test 6

Figure 28 shows test 6, which is a modified “converging” 

version  of  test  problem  2  from  Toro’s  book  [1].  The  initial 

conditions are (ρ , u , p ) = (1.0, 3.0, 0.4) and (ρ , u , p ) = (1.0, 

l

l

l

r

r

r

−3.0,  0.4). The  maximum  error  metric  is  (Δ

, Δ

, Δ

max  ρ

max u

max 

) = (5.0e-4, 5.0e-4, 5.0e-4), and the results are for time t = 1.1. 

Figure 29: Test 7: Toro test 3. Toro’s test problem 3, with initial con-

p

ditions (ρ , u , p ) = (1.0, 0.0, 1000.0) and (ρ , u , p ) = (1.0, 0.0, 0.01), 

l

l

l

r

r

r

with  maximum  error  metric  (Δ

,  Δ

,  Δ

) = (1.0e-5,  5.0e-3, 

max  ρ

max u

max p

1.0e-2), at time t = 0.04. This test’s solution contains a strong shock 

very close to a contact. Since RRM is spatially adaptive, it simply 

creates many new cells between the shock and the contact to get the 

required accuracy. 

The solution to this test requires a strong shock to be 

placed very close to a contact. Since RRM is spatially adaptive, 

it simply creates many new cells between the shock and the 

contact to get the required accuracy. 

Test 8

Figure 30 shows test 8, which is test problem 4 from Toro’s book 

[1]. The initial conditions are (ρ , u , p ) = (5.99924,  19.5975, 

l

l

l

460.894) and (ρ , u , p ) = (5.99242,  −6.19633,  46.0950). The 

r

r

r

maximum error metric is (Δ

, Δ

, Δ

) = (5.0e-4, 1.0e-2, 

max ρ

max u

max p

1.0e-2), and the results are for time t = 0.15. 

Figure 28: Test 6: Toro test 2 converging. A modified “converging” 
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Figure 30: Test 8: Toro test 4. Toro’s test problem 4, with initial condi-

tions (ρ , u , p ) = (5.99924, 19.5975, 460.894) and (ρ , u , p ) = (5.99242, Figure 31: Test  9:  Toro  test  5.  Toro’s  test  problem  5,  with  initial l

l

l

r

r

r

−6.19633, 46.0950), with maximum error metric (Δ

, Δ

, Δ

conditions (ρ , u , p ) = (1.0,  −19.59745,  1000.0)  and  (ρ ,u , p ) = (1.0, 

max ρ

max u

max 

l

l

l

r r

r

) = (5.0e-4, 1.0e-2, 1.0e-2), at time t = 0.15. The solution to this test  −19.59745,  0.01),  with  maximum  error  metric  (Δ

,  Δ

,  Δ

p

max  ρ

max u

max 

has two rightward-traveling shocks with a contact between them. As 

) = (1.0e-5, 1.0e-2, 1.0e-2), at time t = 0.03. The initial values of this 

p

usual, the shocks are sharply resolved and the contact is s-shaped due  test were designed to give an almost stationary contact at the origin, to RRM’s modeling of heat diffusion. 

which causes difficulties for some numerical methods. RRM handles 

stationary contacts the same as it does moving contacts, due to the 

The solution to this test has two rightward-traveling  Lagrangian nature of the simulation. 

shocks with a contact between them, which can be smeared 

out by some non-adaptive methods. As usual, the shocks are  Absolute Error Analysis sharply  resolved  and  the  contact  is  s-shaped  due  to  RRM’s 

modeling of heat diffusion. 

To analyze RRM’s error as compared to a Riemann solver, first 

we will show qualitatively how the accuracy of the simulation 

Test 9

decreases as the maximum error metrics are increased. Then 

we will define a quantitative measure of the error between 

Figure 31 shows test 9, which is test problem 5 from Toro’s  RRM’s solution and that of the Riemann solver, and show how book [1]. The initial conditions are (ρ , u , p ) = (1.0, −19.59745, 

l

l

l

it decreases as each of the maximum error metrics is decreased. 

1000.0) and (ρ , u , p ) = (1.0, −19.59745, 0.01). The maximum 

r

r

r

We will also show how the number of cells in the simulation 

error metric is (Δ

, Δ

, Δ

) = (1.0e-5, 1.0e-2, 1.0e-2), 

max ρ

max u

max p

increases as the error is reduced. 

and the results are for time t = 0.03. 

Figure 32 shows test 1 again, at the same accuracy as 

The initial values of this test were designed to give an  before, but this time only drawing one dot per cell (except for almost stationary contact at the origin, which causes difficulties  the edge cells, which have a dot on each side). The results are for some numerical methods. RRM handles stationary contacts  for time t = 1.5. 

the same as it does moving contacts, due to the Lagrangian 

nature of the simulation. 
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Figure 33: Sod’s test problem at medium accuracy. Sod’s problem 

with initial conditions (ρ , u , p ) = (1.0, 0.0, 1.0) and (ρ , u , p ) = (0.125, 

l

l

l

r

r

r

0.0, 0.1), with the accuracy reduced by increasing the maximum er-

ror metric to (Δ

, Δ

, Δ

) = (1.0e-3, 1.0e-2, 1.0e-2) to show 

max ρ

max u

max p

how the simulation begins to degrade, at time t = 1.5. The shock is of 

increased thickness due to the lower accuracy, and is “blown back” 

from the correct location. 

Figure 34 shows test 1 yet again, but with the accuracy 

further reduced by increasing the maximum error metric to 

(Δ

, Δ

, Δ

) = (1.0e-2, 1.0e-2, 1.0e-2) to show a more 

max ρ

max u

max p

extreme failure. The results are for time t = 1.5. 

Figure 32: Sod’s test problem at high accuracy, showing cell density. 

Sod’s problem with initial conditions (ρ , u , p ) = (1.0, 0.0, 1.0) and (ρ , 

l

l

l

r

u , p ) = (0.125, 0.0, 0.1), with maximum error metric (Δ

, Δ

, Δ

r

r

max ρ

max u

max 

) = (1.0e-5, 1.0e-3, 1.0e-3), at time t = 1.5. Each of the approximately 

p800 cells is shown by a single dot, except the two edge cells which 

have two dots apiece. This figure shows that RRM is good at concen-

trating cells (and thereby computational effort) in areas of primitive 

variable gradient. 

We can see that almost all of the approximately 800 cells 

are concentrated along the expansion fan and at the contact, 

with only one or two cells for each flat area. This illustrates 

how well RRM concentrates its computational effort on the 

active areas of the fluid. 

Figure 33 shows test 1 again, but with the accuracy 

reduced by increasing the maximum error metric to (Δ

, Δ

max ρ

max 

, Δ

) = (1.0e-3, 1.0e-2, 1.0e-2) to show how the simulation 

u

max p

begins to degrade. The results are for time t = 1.5. 

At this accuracy, the widths of the fluid cells are directly 

visible in the jagged curve of the expansion fan, and the contact 

is mostly smeared out. As expected, the shock thickness is 

greater due to the decreased accuracy. The shock front is also  Figure 34: Sod’s test problem at low accuracy. Sod’s problem with 

“blown back” so that it trails a constant distance behind the  initial conditions (ρ , u , p ) = (1.0, 0.0, 1.0) and (ρ , u , p ) = (0.125, 0.0, correct location. This is because the shock in RRM is a dynamic 

l

l

l

r

r

r

0.1), with the accuracy further reduced by increasing the maximum 

phenomenon with no special-case code. If the accuracy is not  error metric to (Δ , Δ , Δ ) = (1.0e-2, 1.0e-2, 1.0e-2) to show a maxρ

max u

max p

set  high  enough,  fluid  will  pile  up  at  the  shock  front  where  more extreme failure, at time t = 1.5. The shock is even thicker due to it cannot be redistributed fast enough to maintain the correct  the lower accuracy, and is “blown back” even farther from the correct wave shape. 

location. 
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The jagged expansion fan is even more pronounced here,  Δ

is swept from 1.0e-1 to 1.0e-5, while Δ

and Δ

are held 

max ρ

max u

max p

since the cells are even larger. The contact is completely gone,  constant at 1.0e-1. Simulation was from time t = 0.0 to t = 1.5. This fig-the shock is blown back even further, and the spike at the shock  ure shows that the error decreases logarithmically as the number of front is even higher, since more fluid is piled up there. 

cells (and thus the computational effort) increases logarithmically. 

Of course, we would never run a real simulation at such 

We can see that once Δ

gets smaller than about 1.5e-

max ρ

low  accuracy.  These  figures  are  merely  to  show  how  the  4, the maximum number of cells in the simulation (which is weaknesses of RRM differ from those of other methods. In  a good proxy for the computational effort required) increases particular, though RRM is a conservative method, that alone  rapidly to maintain the approximately logarithmic decrease in is does not guarantee correct shock placement as it does in  maximum integral error norm. This computational effort goes FDM and FVM. But shocks in RRM remain very sharp even  into squaring off the contact, which is inherently diffusive in at very low accuracy, and there are no Gibbs oscillations near  RRM. 

the shocks. This is because our cells are a piecewise-linear 

Since e

is integrated over a width of 10, e

= 0.1 

representation of the primitive variable values of the fluid. 

maxinorm

maxinorm

corresponds to an average absolute density error of 0.01, or 

Now we present a more quantitative analysis. We define. 

about 1%. But the error is not evenly distributed. Most of the 

  

 

(19)

error is around the s-shaped contact, with a lesser amount near 

the shock front due to the transition region. 

to be the vector error between the primitive variable values in 

Figure 36 shows e

and the maximum number of 

RRM’s solution and the primitive variable values in the Rie-

maxinorm

cells n  vs. the maximum velocity error metric Δ

for Sod’s 

mann solver’s solution. Then we define a maximum integral 

max

max u

problem. Δ

is swept from 1.0e-1 to 1.0e-5, while Δ

and 

error norm

max u

max ρ

Δ

are held constant at 1.0e-1. Simulation was from time 

max p

t = 0.0 to t = 1.5. 

     (20)

to represent the maximum value, from the start time to some 

chosen end time, of the spatial integral of the norm of the error 

e(x,t) over the whole fluid. 

Note that we choose the maximum integral error norm instead 

of the simpler maximum error norm. 

     (21)

because the maximum error norm for RRM is typically the 

thin peak right at the shock front, which is of almost constant 

height (though decreasing thickness) as simulation accuracy is 

increased. 

Figure 35 shows e

and the maximum number of 

maxinorm

cells n  vs. the maximum density error metric Δ

for Sod’s 

max

max ρ

problem. Δ

is swept from 1.0e-1 to 1.0e-5, while Δ

and  Figure 36: Integral error norm vs. maximum velocity error metric. 

max ρ

max u

Δ

are held constant at 1.0e-1. Simulation was from time  Maximum integral error norm e

and the maximum number of 

max p

maxinorm

t = 0.0 to t = 1.5. 

cells n  vs. the maximum velocity error metric Δ

for Sod’s prob-

max

max u

lem. Δ

is swept from 1.0e-1 to 1.0e-5, while Δ

and Δ

are 

max u

max ρ

max p

held constant at 1.0e-1. Simulation was from time t = 0.0 to t = 1.5. This 

figure shows that the error cannot be decreased past a certain point 

solely by adjusting Δ

, since there is little velocity gradient across 

max u

the contact (where most of the error is concentrated in this test). 

Note that we get less than a decade of decrease in maximum 

integral error norm as we decrease Δ

, and for values lower 

max u

than about 4.0e-4 we get very little additional benefit, though 

we increase computation effort by a factor of 5. This is because 

the velocity gradient across the contact is small, so decreasing 

Δ

will not cause more cells to be created there. 

max u

Figure 37 shows e

and the maximum number of 

maxinorm

cells n  vs. the maximum pressure error metric Δ

for 

max

max p

Sod’s problem. Δ

is swept from 1.0e-1 to 1.0e-5, while Δ

max p

max 

and Δ

are held constant at 1.0e-1. Simulation was from 

ρ

max u

time t = 0.0 to t = 1.5. 

Figure 35: Integral error norm vs. maximum density error metric. 

Maximum integral error norm e

and maximum number of cells 

maxinorm

n  vs. the maximum density error metric Δ

for Sod’s problem. 

max

max ρ
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This last graph shows that if all three maximum error 

metrics are decreased together, we can get a bit less error than 

if they are decreased separately. This indicates that there is 

some interaction between their effects, though it is small for 

this test case. 

Taken  together,  the  previous  four  figures  demonstrate 

that  for  this  particular  test  case,  RRM’s  error  decreases 

almost logarithmically as Δ

is decreased logarithmically, 

max  ρ

whether by itself or in combination with the other maximum 

error metrics. However, other tests are sensitive to different 

maximum error metrics. For example, test 5 is sensitive to Δmax 

, because its solution has velocity features near the origin that 

uare far from the largest density or pressure gradients. 

The maximum number of cells used by the simulation 

goes up almost logarithmically as the maximum error metrics 

are decreased logarithmically. And since the current RRM 

Figure 37: Integral error norm vs. maximum pressure error metric.  implementation performs O(n) operations per new cell created, Maximum integral error norm e

and the maximum number of  where n is the number of cells in the fluid, this implies that maxinorm

cells n  vs. the maximum pressure error metric Δ

for Sod’s prob-

the computational effort goes up logarithmically as well. This 

max

max p

lem. Δ

is swept from 1.0e-1 to 1.0e-5, while Δ

and Δ

are  restricted our ability to run simulations with more than about 

max p

max ρ

max u

held constant at 1.0e-1. Simulation was from timet = 0.0 to t = 1.5. This  1000 cells in a reasonable time, which we define to be less than figure shows that the error cannot be decreased past a certain point  5 minutes on one core of a 2.4 GHz Intel Core2 Quad CPU. 

solely by adjusting Δ

, since there is little pressure gradient across 

max p

the contact (where most of the error is concentrated in this test). 

Future RRM implementations could perform as few as 

O(log n) or even O(1) operations per new cell created, if they 

We see similar behavior to the Δ

sweep, where we get 

max u

used a more sophisticated data structure for cell intersection. 

about one decade of decrease in the maximum integral error  We have so far avoided improving this data structure, since it norm, with little further improvement as Δ

is reduced 

max p

makes the code much more difficult to maintain and alter for 

further. Again, this is because there is little pressure gradient  research purposes. 

across the contact, so reducing Δ

cannot improve the contact 

max p

A note on the error-reducing efficiency of Δ

, Δ

, and 

shape. 

max ρ

max u

Δ

in RRM is appropriate here. In the sweeps of Δ

and 

Figure 38 shows e

and the maximum number of 

max p

max u

maxinorm

Δ

above, we see that the integral error norm decreases by 

cells n  vs. all three maximum error metrics Δ

, Δ

, and 

max p

max

max ρ

max u

fewer orders of magnitude than the number of cells increases 

Δ

for Sod’s problem. All three maximum error metrics are 

max p

by. This may simply show that decreasing the maximum error 

swept from 1.0e-1 to 1.0e-5 in tandem. Simulation was from  metrics of velocity and pressure does not efficiently reduce an time t = 0.0 to t = 1.5. 

error which is mostly in the density near the contact. Indeed, 

it appears that reducing Δ

reduces the integral error norm 

max ρ

more efficiently, by approximately one order of magnitude as 

the number of cells increases from 100 to 1000. But for fewer 

than 100 cells, the error-reducing efficiency of Δ

is not as 

max ρ

great. Overall, the error-reducing efficiency of the maximum 

error metrics in RRM is not yet fully understood. 

These results indicate that RRM requires some further 

refinement if it is to efficiently produce results at any desired 

precision. If we assume the RRM implementation can be 

improved so that it performs only O(1) operations per cell, 

we would still like to insure that the number of cells always 

increases at a rate slower than the integral error norm decreases. 

One possibility is to adapt RRM to produce results more like 

those of a Riemann solver. As mentioned earlier, it would be 

straightforward to split new cells across contacts to maintain 

their sharpness, which would reduce a major source of error. 

Figure 38: Integral error norm vs. all maximum error metrics. Maxi-

Another possibility is to attempt to develop a new analytical 

mum integral error norm e

and the maximum number of cells 

maxinorm

solution to the Riemann problem that incorporates heat 

n  vs. all three maximum error metrics Δ

, Δ

, and Δ

for 

max

max ρ

max u

max p

diffusion  across  contacts,  and  measure  RRM’s  error  against 

Sod’s problem. All three maximum error metrics are swept from 1.0e-

1 to 1.0e-5 in tandem. Simulation was from time t = 0.0 to t = 1.5. This  that instead. 

figure shows that there is a slight synergistic effect between the three 

maximum error metrics, since the minimum error achieved here is  Conservation Error Analysis slightly lower than when each of the three is set to 1.0e-5 individually. 

Conservation error is the difference between the conserved 

quantities currently present in all cells, and the original 
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conserved quantities at the start of the simulation, assuming 

The  first  detail  to  note  about  this  graph  is  that  the 

any boundary effects are properly accounted for. We define  conservation error is roughly two orders of magnitude larger one conservation error for each conserved quantity:

than the floating-point precision ε , which on our test machine 

fp

is about 2.22e-16 for 64-bit IEEE floating point. 

This is due to our use of the primitive variable form of 

  (22)

the Euler equations in the current RRM implementation. The 

conserved quantities are derived from the primitive variable 

where M (t) is the total fluid mass, P (t) is total fluid momentum,  values of cell width, density, velocity, and pressure in a series f

f

and E (t) is total fluid energy, all functions of time. 

of floating-point operations, each of which may be incorrect 

f

Figure 39 shows the three conservation errors for Sod’s  by roughly ε . It takes only a few multiplicative operations fp

problem  over  the  first  five  seconds  of  flow  time,  at  a  time  for the error to grow to the observed value. Fortunately, since resolution of 0.01 seconds. 

the signs of the individual errors are essentially random, the 

overall error does not tend to grow over time. 

If we instead used the conservation form of the Euler 

equations in the RRM implementation, with a careful treatment 

we could get the error down to a smaller multiple of ε . But 

fp

since the error is already small in an absolute sense and does 

not grow over time, we chose to stay with the primitive variable 

form because it is simpler to code. 

The second detail to note about the conservation error graph 

is the overall trends of the lines. The mass and energy lines 

are  as  expected,  with  floating-point  truncation  error  causing 

random  fluctuation  about  the  horizontal  axis.  However,  the 

momentum line differs, showing instead a fluctuation around 

approximately e

= 0.5e-14. 

momentum

This is due to the initial conditions and time evolution 

of Sod’s problem. At time t = 0, the density and pressure are 

between 0.1 and 1.0, and calculating with these numbers to get 

mass and energy results in some nonzero error. However, the 

initial velocities are exactly zero, so initially e

will also 

momentum

be exactly zero. As the simulation proceeds and cell velocities 

increase, the effective baseline of e

is raised, since the 

momentum

calculations leading to momentum are no longer involve exact 

values of zero. Other test problems show variations on this 

behavior, but no problems tested so far show any time trend in 

conservation error. 

Other Boundary Conditions

So far we have considered only periodic boundary conditions, 

which are simple to implement since they do not affect the 

conserved quantities of the fluid. But RRM can handle many 

other types of boundary conditions by adjusting the conserved 

quantities of each new cell just before it is flattened. We will 

Figure 39: Conservation error vs. time on Sod’s problem over 5 sec-

illustrate three more types of boundary conditions: solid, 

onds. The three conservation errors for Sod’s problem over the first  Dirichlet, and free. 

five seconds of flow time, at a time resolution of 0.01 seconds. This 

Solid boundaries are immovable and impermeable. To 

graph shows that mass, momentum and energy are all conserved to 

within about ±6.0e-14. Total mass in the simulation is 11.25 kg, total  make a solid boundary, we check if each new cell touches or momentum is 0.0 m·s, and total energy is 27.5 J. 

crosses the boundary. If so, we set its momentum to zero, and 

adjust its width so its edge just touches the boundary. Figure 40 

This graph shows that mass, momentum and energy are  shows Sod’s problem with solid boundaries at x = −5 and x = 5, all conserved to within about ±6.0e-14. Total mass in the  from time t = 0 to t = 20. The initial conditions are (ρ , u , p ) = (1.0, l

l

l

simulation is 11.25 kg, total momentum is 0.0 m·s, and total  0.0, 1.0) and (ρ , u , p ) = (0.125, 0.0, 0.1). The maximum error r

r

r

energy is 27.5 J. 

metric is (Δ

, Δ

, Δ ) = (1.0e-4, 1.0e-2, 1.0e-2). 

max ρ

max u

maxp
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Figure 41: Inrush problem with Dirichlet boundaries at x =  −5 and 

x = 5. An inrush problem with Dirichlet boundaries at x = −5 and x = 5, 

from time t = 0 to t = 10. The initial conditions are (ρ , u , p ) = (0.1, 0.0, 

l

l

l

0.2) and (ρ , u , p ) = (0.1, 0.0, 0.2). The boundary values are (ρ , u , 

Figure 40: Sod’s problem with solid boundaries at x =  −5 and x = 5. 

r

r

r

l

l

p ) = (0.3, 0.6, 0.4) and (ρ , u , p ) = (0.6, −0.6, 0.5). The maximum error 

Sod’s problem with solid boundaries at x = −5 and x = 5, from time t = 0 

l

r

r

r

metric  is  (Δ

, Δ

, Δ

) = (1.0e-4,  1.0e-3,  1.0e-3). Two  asym-

to t = 20. The initial conditions are (ρ , u , p ) = (1.0, 0.0, 1.0) and (ρ , u , 

max  ρ

max u

max p

l

l

l

r

r

metrical shocks propagate in from the edges, cross near the center, 

p ) = (0.125, 0.0, 0.1). The maximum error metric is (Δ

, Δ

, Δ

r

max ρ

max u

max 

and continue to the opposite edges, where they are squelched by the 

) = (1.0e-4, 1.0e-2, 1.0e-2). The shock wave hits the right boundary, 

p

boundary conditions. 

reflects off it, and travels back across the fluid until it reflects off the 

left boundary. 

We can see the two asymmetrical shocks propagate in from 

the edges, cross near the center, and continue to the opposite 

We can see the shock wave hit the right boundary, reflect  edges, where they are squelched by the boundary conditions. 

off it, and travel back across the fluid until it reflects off the  If we let the simulation run longer, the continuous fluid inflow left  boundary.  If  we  let  the  simulation  run  indefinitely,  the  fills  the  area  higher  and  higher,  with  velocity  everywhere shock will travel back and forth many times, until numerical  zero, and density and pressure eventually becoming flat due dissipation finally smooths it out. Eventually, the density and  to diffusion. 

pressure will be flat, and the velocity will be everywhere zero. 

Free boundaries let fluid flow in or out of the boundaries, 

Dirichlet boundaries hold the primitive variable values  without creating any disturbance that might propagate back of  the  fluid  constant  at  the  boundaries. To  make  a  Dirichlet  into “interesting” parts of the fluid. To make a free boundary, boundary, we check if each new cell touches or crosses a  we check if each new cell touches or crosses a boundary. If boundary. If so, we set its density, velocity, and pressure to  so, we set its density, velocity, and pressure to those of the some constant boundary values, and adjust its width so its edge  intersected cell nearest the boundary (for inflow) or farthest just touches the boundary. Figure 41 shows an inrush problem  from the boundary (for outflow), and adjust its width so its with Dirichlet boundaries at x = −5 and x = 5, from time t = 0 to  edge just touches the boundary. Figure 42 shows a rightward t = 10. The initial conditions are (ρ , u , p ) = (0.1, 0.0, 0.2) and (ρ , 

l

l

l

r

flow problem with free boundaries at x = −5 and x = 5, from time 

u , p ) = (0.1, 0.0, 0.2). The boundary values are (ρ , u , p ) = (0.3, 

r

r

l

l

l

t = 0 to t = 15. The initial conditions are (ρ , u , p ) = (0.8, 0.8, 0.1) 

0.6, 0.4) and (ρ , u , p ) = (0.6, −0.6, 0.5). The maximum error 

l

l

l

r

r

r

and (ρ , u , p ) = (0.1, 0.7, 0.05). The maximum error metric is 

metric is (Δ

, Δ

, Δ

) = (1.0e-4, 1.0e-3, 1.0e-3). 

r

r

r

max ρ

max u

max p

(Δ

, Δ

, Δ

) = (5.0e-5, 1.0e-4, 1.0e-4). 

max ρ

max u

max p
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Source Terms

Our analysis so far has only treated the Euler equations in the 

homogeneous case, where no mass, momentum, or energy 

are added to or removed from the fluid during the simulation, 

except for a special case at the boundaries. 

In the more general case, we augment the Euler equations 

with source terms thus:

  

(23)

using a new vector of source terms



   (24)

Presenting a scheme to simulate these equations is beyond 

the scope of this paper. However, we can make a few remarks 

about how it might be possible. 

A few cases would be simple. For example, mass or energy 

source terms that are constant in space and time could easily 

be implemented by adding mass or energy to new cells during 

flattening. 

A  few  more  cases  are  somewhat  difficult,  but  feasible 

using splitting schemes similar to those described in chapter 

15 of Toro’s book [1]. For example, momentum source terms 

Figure 42

that are constant in space and time could be implemented by 

: Rightward flow problem with far-field boundaries at x =  

−5 and x = 5. A rightward flow problem with free boundaries at x = −5  changing the cells’ equations of motion from constant-velocity and  x = 5,  from  time  t = 0  to  t = 15.  The  initial  conditions  are  (ρ , u ,  to varying-velocity, at the cost of complicating the intersection l

l

p ) = (0.8, 0.8, 0.1) and (ρ , u , p ) = (0.1, 0.7, 0.05). The maximum error  calculation of particles with cells. 

l

r

r

r

metric is (Δ

, Δ

, Δ

) = (5.0e-5, 1.0e-4, 1.0e-4). Fast-moving 

max ρ

max u

max p

The general case becomes very difficult. If spatially- and 

fluid flows in from the left boundary and pushes the slower fluid in  temporally-varying  source  terms  are  allowed,  cells’  masses front of it, forcing it out of the right boundary. After about t = 14 all of  and energies could change in ways that would require both the fluid is in the left state, since all the right fluid as been pushed out. 

space and time integration to resolve at flattening time. The 

We can see that fast-moving fluid flows in from the left  intersection calculation of particles with cells would also boundary and pushes the slower fluid in front of it, forcing it  require solving ordinary differential equations, rather than out of the right boundary. After about t = 14 all of the fluid is  simple algebraic equations. 

in the left state, since all the right fluid as been pushed out. 

Note that when the shock hits the right boundary at about t = 4, DISCUSSION

we can see a glitch. This is because if a cell is near the edge 

of the fluid, and there is no other cell between it and the edge,  So far we have shown that RRM gives correct results for many we extend it to touch the edge. In this case, it just happens to  standard  test  problems,  that  RRM’s  error  decreases  steadily catch a narrow cell in the transition region and widen it so it  as we increase the desired accuracy, and that RRM handles is visible. 

many common types of boundary conditions. Now we explain 

the similarities and differences between RRM and other CFD 

Finally, we mention two details that apply to all three  methods in detail, list some of RRM’s limitations, and suggest boundary condition types discussed above. First, when  directions for future research. 

producing 3D graphs of RRM simulations, we remove the 

very thin cells that can occur in the transition regions at shock 

fronts. This is simply to make the graphs more legible, since  Comparison with Adaptive Eulerian Methods otherwise  these  very  thin  cells  hide  the  details  of  the  fluid  Simple CFD methods advance time across the whole fluid in behind them. You can see one of these cells at t = 4 on the right  lockstep. But this wastes effort in smooth areas of the fluid, side of the very last graph above. 

and gives suboptimal resolution in steep areas. To solve this 

Second, we note that these adjustments to the conserved  problem, Osher and Sanders proposed locally varying time quantities of new cells require us to change the stored initial  steps [20]. Such methods can make simulation much more conserved  quantities  of  the  entire  fluid  by  a  commensurate  efficient, but they require that special care be taken at the amount, so the simulation will not fail its ongoing per-event  interfaces between areas of differing time resolution. 

conservation checks. This models the mass, momentum, and 

Adaptive mesh refinement (AMR) methods such as the one 

energy that are being added and removed at the boundaries. 

proposed by Berger and Oliger[21] flag points in the fluid with 
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high  estimated  error  for  possible  refinement.  Then  every  so  degenerate, which would prevent further simulation. Rezoning often, the flagged points are clustered together to determine the  is an Eulerian process, since it allows fluid to flow across cell size, shape, and orientation of a new, finer sub-mesh to cover  edges, and it can smear out contacts and shocks unless one is them. Finer sub-meshes are integrated using proportionately  careful when rezoning near them. For this reason, if the fluid shorter time steps, so AMR is adaptive in both space and time.  motion is complex enough, it may be impossible to keep the AMR requires special care when integrating the sub-meshes,  original mesh connectivity without unacceptably degrading to insure that the boundary conditions with the rest of the fluid  accuracy. 

maintain conservation. 

The “free Lagrange” methods such as FLAG [23] and 

RRM  does  not  divide  the  fluid  into  areas  of  different  Whitehurst’s  signal  method  [18]  allow  mesh  points  to  be mesh  fineness  or  time  step  size.  Instead,  each  new  cell  is  dynamically linked and unlinked over the course of the created at its own individually chosen time, which need not  simulation, thereby changing the initial mesh connectivity as bear any relation to the creation times of other cells. This gives  the fluid moves. These methods use a variety of heuristics to us  a  very  fine-grained  spatio-temporal  adaptivity,  with  the  maintain a reasonable mesh, such as trying to keep nearest disadvantage that such a simulation must use an event queue  neighboring points connected, or trying to keep the angles of instead of a simple time-stepping loop. RRM does not require a  mesh triangles as equal as possible. 

clustering algorithm, since new cells are preferentially created 

In RRM, there is no mesh connectivity, so there is no 

in high-gradient areas. But RRM does require the unioning  need to track or alter it over the course of simulation. RRM 

of wavefronts before creating a new cell, which is a similar  constantly creates new cells, which has an effect similar to operation. 

rezoning  in  that  it  allows  fluid  to  flow  across  the  edges  of 

RRM differs from FDM and FVM in that it does not  chopped cells. 

use numerical derivatives in the cell chopping and flattening 

Moving  finite  element  (MFE)  methods  [24]–[27] 

process, only integrals. This means that RRM does not need a  generalize the finite element method to better track moving flux limiter or slope limiter to smooth spurious oscillations that  fluid flow features using moving elements. MFE methods result can be caused by the extremely large gradients near shocks. 

in extremely stiff systems of ordinary differential equations 

(ODEs), and so require sophisticated implicit ODE solvers. 

Comparison with the Lattice Boltzmann Meth-

They also require careful tuning with user-chosen parameters 

od

to keep the elements from becoming too small or bunching up 

RRM differs from LBM firstly in that RRM is meshfree  at shocks. It is also possible to adaptively create and destroy and Lagrangian, where LBM has a mesh (though it is called  nodes in an MFE method, as shown by Kuprat in 1992 [28]. 

a lattice in LBM literature) and is Eulerian (since the fluid 

Since each new RRM cell chops out and replaces what 

flows through fixed lattice sites). A more interesting difference  was underneath it, cells can never bunch up, and there is only between RRM and LBM is that in RRM, cells are free to move  one user-chosen parameter to set, the maximum error metric in any direction, where in LBM, fluid can only move in a  (though this metric does have three components). And since fixed number of directions between adjacent sites. Fluid flows  RRM does not use systems of equations, it does not need in LBM can therefore exhibit anisotropies, depending on the  numerical solvers. 

choice of lattice type and connectivity. 

Cells in 2D and 3D RRM will have angular velocity, Comparison with Previous Meshfree Methods which  will  complicate  the  flattening  process  somewhat,  Of all current CFD methods, the meshfree methods are the where in LBM the collision process is much the same for all  most similar to RRM. Indeed, we categorize RRM itself as a dimensionalities. Since collision takes place only at zero-size  meshfree method, since it shares the characteristics of being lattice sites, angular quantities do not arise, which keeps the  purely Lagrangian and not using a mesh. But as we will programming simpler than RRM. 

see, there are many differences between previous meshfree 

methods and RRM in how cells or particles are formed, how 

Comparison with Adaptive Meshed Lagrangian 

their motion is calculated, and how long they persist during a 

Methods

simulation. 

To adapt to the time-varying features of a fluid, a meshed 

Previous meshfree methods and RRM both discretize 

Lagrangian method can move the mesh relative to the fluid,  a  fluid  into  a  set  of  particles  or  cells  with  no  connectivity change the mesh connectivity, or both. 

between them. In previous meshfree methods like SPH and 

MPS, the particles are acted upon by forces over time, and thus 

The Arbitrary Lagrangian-Eulerian method (ALE) [22]  change their velocities. In contrast, once a cell is created in combines the Eulerian and Lagrangian forms by creating a  RRM, it moves at a constant velocity even as parts of it are third “referential” coordinate system that is independent of  chopped away by the creation of subsequent new cells. This both  the  fixed  world  coordinates  and  the  moving  material  means RRM does not require integration of the equations of coordinates. This allows cells to move independently of both  motion of its cells. 

the fixed coordinate system and the material. 

A major difference between RRM and SPH or MPS lies 

As an ALE simulation progresses in Lagrangian mode,  in how the primitive variable values like density and pressure the cells can be “rezoned” by allowing the mesh to move  are determined at each point in the fluid. SPH and MPS store relative to the fluid, while keeping the same mesh connectivity.  the conserved quantities in moving material particles. These This rezoning helps keep the cells from becoming tangled or  particles have zero extent, but a smoothing function allows 
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us to find the primitive variable values in the spaces between  Limitations

the particles. In contrast, RRM does not store the conserved 

quantities of the fluid directly. Instead, they are the result of  One limitation of RRM is that its data structures are complex integrating the stored primitive variable values over the cell  and difficult to code correctly. Allowing cells to move and be areas. Since the cells have non-zero sizes, and new cells are  chopped up over time is straightforward, but involves extra constantly  being  created  to  fill  any  gaps,  we  do  not  need  a  bookkeeping that many other methods do not require. Extension smoothing function. The tracer particles in RRM are non- to 2D and 3D is possible, but will be even more complex since material particles that do not carry any conserved quantities,  cells must be allowed to rotate as well as translate. 

they simply trace out the expanding acoustic waves in the fluid. 

Another limitation of RRM is its use of event-driven 

A particle-based meshfree method like SPH can be made  simulation. This gives good spatial and temporal adaptivity, but adaptive by allowing the smoothing length to vary inversely  it makes the algorithm more difficult to parallelize, especially with density, as shown by Benz in 1990 [29]. This is refined by  on GPGPUs (General-Purpose Graphics Processing Units) Owen et al. in 1998 [30] to give each particle a time-varying,  such  as  NVIDIA’s  Tesla  where  data-dependent  branching  is anisotropic smoothing length that attempts to keep the number  penalized. 

of neighboring particles the same in each direction. 

A  final  limitation  applies  to  von  Neumann  boundary 

The motion of the tracer particles in RRM gives an effect  conditions. Since RRM does not use spatial derivatives, it is similar to the use of anisotropic smoothing length in adaptive  difficult to hold them constant at the fluid boundaries. RRM 

SPH, since the tracer particles sweep out an area that varies  could implement von Neumann boundary conditions with some with the local speed of sound and the local fluid motion. 

difficulty by creating “ghost cells” just outside the boundaries 

to  give  the  correct  behavior,  but  it  would  not  fit  neatly  into 

SPH can also be made adaptive by splitting and merging  the “adjusting the conserved quantities of new cells” paradigm particles during simulation [31]–[33]. Splitting is done in low- discussed in the above section on boundary conditions. 

density areas, and merging in high-density areas, to insure that 

the number of particles is appropriate to accurately track the  Further Research

fluid motion. 

The previous meshfree method most similar to RRM is the  The obvious future research directions for RRM are extension Finite Mass Method (FMM) [34],[35]. FMM divides the fluid  to 2D and 3D, replacement of the Euler equations with the into  finite-sized  cells  (called  mass  packets  in  FMM  papers)  compressible Navier-Stokes equations, and parallelization. 

with an internal distribution typically described by third-order  A not-so-obvious direction is using RRM to simulate the B-splines. These cells can move, deform, and interact during  behavior of non-fluid fields containing inherent discontinuities simulation. If the cells become too deformed, the simulation is  or intractable nonlinearity. Since RRM does not evaluate stopped, the fluid is remeshed into new, undeformed cells and  numerical derivatives or solve systems of equations, it might the simulation is restarted. 

be applicable to fields whose traditional discretizations are 

numerically ill-behaved or difficult to formulate. 

Cells in RRM do not change shape, except in that parts 

of them are chopped away by the creation of new cells. 

RRM  could  also  benefit  from  further  investigation  into 

Therefore RRM does not need to remesh to fix excessive cell  its rate of convergence. As noted at the end of the section on deformation. RRM constantly creates and destroys cells, so any  absolute error, increases in computational effort do not always excessive bunching or gapping due to cell movement is fixed  result in proportional decreases in the integral error norm. 

incrementally rather than all at once in a remeshing operation. More research into this area would be helpful to insure that RRM can efficiently achieve any desired level of error. 

Realm of Applicability
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CHAPTER

3 COMPUTATIONAL FLUID  

DYNAMICS FOR NEMATIC  

LIQUID CRYSTALS

Alison Ramage and André M. Sonnet

Keywords: Computational fluid dynamics Nematic liquid crystals Alignment tensor Iterative solvers Communicated by Zhong-Zhi Bai. 

INTRODUCTION

Ericksen–Leslie theory for the nematic director, a more general 

description using the second rank alignment tensor is needed 

In recent years, significant advances have been made in the  for problems that involve defects. Different constitutive development of effective preconditioned iterative solvers for  theories for the alignment tensor have been derived  [11, 16–

finite element models in incompressible fluid dynamics, such  18, 25, 26] , and numerical solutions for some special cases as solution of Stokes and Navier–Stokes equations [5]. The  have  been  produced  [6,  7,  28].  The  creation  of  backflow ready availability of these methods in public domain codes  and its influence on the annihilation of defects in two space such as IFISS [3] and TRILINOS [10] has extended the range of  dimensions has been examined in [27, 29]. In this example, possible applications by making it easier for the practitioner to  the reorientation of the alignment is the driving force. Also the apply these fast solvers to specific situations. In particular, the  impact of flow on the orientation has received much attention. 

MATLAB package IFISS, as well as being a useful source of  Possibly the earliest application was given by Leslie: the flow benchmark problems, also provides a convenient starting point  alignment of the director in a simple shear [13]. The behaviour for developing solvers dedicated to a particular application [4,  of the alignment tensor under shear in a monodomain was 

§3.4]. In this paper, we describe one such situation where an  also extensively studied in  [8,  19], and other studies have IFISS-based fast solver is used as part of an algorithm designed  considered lid-driven cavity flow [9, 14, 33]. 

to compute flow in a liquid crystal cell. 

Even  in  a  homogeneous,  simple  shear  flow,  many 

Computing flow in complex fluids such as liquid crystals  different  types  of  behaviour  can  be  found,  such  as  flow and polymers is very challenging because of the altered  aligning, tumbling, and chaos. Furthermore, to obtain a structure of the flow equation: the underlying Navier–Stokes  complete picture, spatially inhomogeneous situations have to problem contains additional terms representing the interaction  be considered. The evolution is determined by two equations: between the flow and the orientation of the molecules within  the flow is governed by a generalised Navier–Stokes equation, the  fluid.  In  liquid  crystal  applications,  the  usual  form  of  in which the divergence of the stress tensor also depends on the stress tensor is very complicated. Our method relies on  the alignment tensor and its time derivative, and the evolution reformulating the time derivative in the stress tensor in a way  of the orientation is governed by a convection-diffusion type which effectively decouples the flow and orientation, with each  equation that contains non-linear terms that stem from a appearing only on the right-hand side of the other equation. In  Landau-DeGennes potential [22]. 

this way, difficulties associated with solving the fully coupled 

problem are circumvented and a stand-alone solver can be used 

In  this  paper  we  consider  a  specific  model  with  three 

for the flow equation. 

viscosity coefficients that allows us to write the contribution of 

the orientation to the viscous stress in the form of an orientation 

The  flow  of  a  nematic  liquid  crystal  can  be  described  dependent force. As an example application, we consider the in various ways. While the most common approach uses the  standard fluid flow test problem of Stokes flow in a lid-driven cavity. We propose a time-discretised strategy for solving the 

flow-orientation problem that involves two alternating steps. 

Citation: Alison Ramage, and André M. Sonnet, Computational fluid  First, for a given flow field, one time step for the orientation dynamics for nematic liquid crystals, DOI: 10.1007/s10543-015-0586-equation is carried out according to the methods described 

5. 

in [20]. Then, the flow field of the Stokes flow is computed 

for  the  given  orientation  field.  This  is  done  using  state-of-
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the-art Krylov subspace and multigrid iteration techniques 

implemented in IFISS [3]. 





(3.1)

GENERAL UNDERLYING EQUATIONS

We consider a nematic liquid crystal whose orientational 

where 

is 

order is described by the second rank alignment tensor  Q.  a Landau-deGennes potential, and a curvature elastic If u denotes a unit vector parallel to the symmetry axis of an  energy with one elastic constant  L   is used. Although other 1

effectively uniaxial molecule,  Q  can be defined as the local  models involving additional elastic constants exist (see, for average

example, [2]), we choose this commonly-used one-constant 

approximation for simplicity in the equations below. For an 





(2.1)

alignment tensor theory to be consistent with Ericksen–Leslie 

theory (in the case of uniaxial alignment with constant scalar 

where II is the identity tensor and 

denotes the symmetric  order parameter), the dissipation function  R needs to contain at traceless part of a tensor. 

least five terms. The choice

Equations  of  motion  for  incompressible  flow  and  alignment 



can conveniently be formulated in terms of a frame-indepen-   (3.2)

dent invariant rate of the alignment tensor [23]. Here we use 

the co-rotational time derivative

with five phenomenological viscosity coefficients 

leads to the stress tensor proposed in [18]. 



(2.2)

Although more general forms for   R  are available (see [24], 

[25, eq. (4.23)]), omitting terms other than those in (3.2) 

where 

is the skew part of the velocity  simply amounts to neglecting higher-order corrections to the gradient, with v satisfying the incompressibility constraint

Ericksen–Leslie viscosity coefficients, so we retain the simpler 

form here. Using (3.1) and (3.2) in (2.4) yields the equation for 



(2.3)

the alignment

and 

is the material time derivative of Q. If the 

free energy connected with the alignment is given as a function  where Φ is the derivative ∂ϕ/∂Q of the Landau-deGennes po-deGennes po-

, the dissipation is specified as a function  tential ϕ. The different contributions to the stress tensor (2.5) that is a quadratic form in  , and the symmetric  then take the following explicit forms: the skew-symmetric part is

part of the velocity gradient is 

, then the 

equations for flow and alignment take the general form [22,25]



(3.3)

and the symmetric traceless part of the viscous stress is



(3.4)



(2.4)

In the one elastic constant approximation used here in (3.1), 

where the stress tensor T is given by

the elastic contribution to the stress is symmetric and given by



(2.5)

(3.5)

This tensor contains an isotropic contribution from the hy-

drostatic pressure   p, a viscous stress with symmetric part  SOLUTION STRATEGY

∂R/∂D and skew part 

, and an elastic stress

We begin by writing the stress tensor in a more convenient 

form, namely, we remove its explicit dependence on the time 

derivative of the alignment tensor. To this end, we observe that 

on a solution

which is analogous to the Ericksen elastic stress in a director 





(4.1)

based description. 

Using this in expression (3.3) for the skew part of the viscous 

SPECIFIC MODEL

stress, we find that

To obtain a specific model, we choose the free energy to be of 

the form



(4.2)
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where the last equality holds because   is simply a polyno- [13]. For values of Tu < 1 some dynamic state such as tumbling mial in Q and hence commutes with Q. Applying the same pro- should prevail. 

cedure to the symmetric part of the viscous stress yields

IMPLEMENTATION AND SOLVER DETAILS

(4.3)

In what follows, we will assume flow at a low Reynolds 

number, that is, we assume that flow inertia can be neglected 

where we have introduced a renormalised isotropic viscosity  so 

. Equation (4.8) is then simply a Stokes equation with 

according to ζ4 := 

. 

a force equal to the divergence of the tensor F in (4.9) that 

depends only on Q and its spatial derivatives. This suggests the 

From now on, we will neglect the last two terms in (4.3),  following iterative solution strategy: that is, we will assume that ζ  = ζ  = 0. In terms of the Leslie 

31

32

viscosities, this amounts to making the assumptions α  = 0 and  Algorithm: Coupled flow-orientation algorithm 1

α  = −α , see [22]. We note that while these assumptions are 

5

6

reasonable for small molecule liquid crystals, they will have 

to be modified for polymeric liquid crystals (see Sect. 7). The 

advantage of making these assumptions is that with ζ  = ζ  = 

31

32

0, the divergence of the stress tensor takes a very convenient 

form, namely, 

Note that, within this framework, any two stand-alone 



(4.4)

solvers (one for the orientation equations and one for the 

Stokes equation) can be used. That is, the algorithm structure 

with

is independent of the discretisation methods used within 

each  solver,  and  specific  details  of  the  underlying  flow  and 



(4.5)

orientation problems (such as shape of the domain and 

boundary conditions). Furthermore, changing the form of the 

We non-dimensionalise by expressing all lengths in terms  elastic energy in (3.1) would change only the right-hand side of of the nematic coherence length 

and all  the flow problem (through F) and would not affect the Stokes 

times in terms of the relaxation time 

. In  iteration matrix (see below). 

addition, we rescale the alignment tensor according to 



For the orientation solver, we note that a symmetric, 

. This leads to the dimensionless Landau-deGennes  traceless second-rank tensor has five independent degrees of potential

freedom. Once Q is expressed in terms of a suitable basis [20,21], 

the orientation equation (4.7) takes the form of five coupled 

(4.6)

non-linear partial differential equations. In the numerical 

where ϑ = 9C/(2B2) A(T ) is a dimensionless temperature pa- experiments which follow, these were discretised in space rameter. In these units, the clearing point T  and the pseudo  using finite differences on a uniform grid and in time using an c

critical temperature T ∗ correspond to ϑ = 1 and ϑ = 0, respec- explicit Euler method. Although stability considerations mean tively [12]. Note that, for convenience, the tildes are dropped  that the size of timestep which can be used is limited with an in all subsequent formulae. 

explicit method, that is not a concern here as small time-steps 

are  already  needed  for  accuracy  in  terms  of  modelling  flow 

The final dimensionless equations then are

evolution. Also, the complexity and computational expense of 

implementing a matrix-based nonlinear iterative solver for the 



(4.7)

system of five coupled equations in (4.7) makes a fully implicit 

approach impractical. 

for the orientation and

As highlighted in the introduction, the Stokes equation 

(4.8) was solved at each time-step using a finite element based 





(4.8)

iterative solver adapted from the public domain MATLAB 

package IFISS [3,4]. The particular finite element discretisation 

with

used was a Q  − Q1 Taylor-Hood mixed approximation (that 

2

is, quadratic elements for velocity and linear elements for 

pressure). The resulting linear equations take the form of a 



(4.9)

saddle point system

for  the  flow,  together  with  the  incompressibility  constraint 

(2.3). Note that here we have introduced two dimensionless pa-

rameters: the backflow parameter, Bf = 4Bζ2/(3Cζ4), measures 

(5.1)

the impact of the orientation on the flow, and the tumbling pa- for the vectors of velocity and pressure unknowns, u and p rameter, Tu = 3Cζ2/(2Bζ1), measures the relative strength of  respectively (see, for example, [5, §3.3] for more details). Here the viscosities ζ2 and ζ1. In a simple shear one can expect flow  (5.1) was solved using one of the state-ofthe-art preconditioned alignment for Tu > 1, where the liquid crystal aligns at an an-an- MINRES solvers from IFISS. Specifically, a block diagonal 

gle of 

to the direction of the flow gradient  preconditioner of the form
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pressure solution, but away from these corners the pressure is 

essentially constant. 





(5.2)

was used (with preconditioned coefficient matrix equivalent to 

M−1A). With this form of preconditioner, choosing P = A and 

S = B A−1BT (the so-called Schur complement of the saddle-

point problem) results in a MINRES solver which converges 

in three iterations [15]. This is clearly not practical for realistic 

problems, because it involves explicitly inverting A and the 

Schur complement several times. However, it suggests that 

choosing P and S to be approximations to A and the Schur 

complement which are cheap to invert will result in an effective 

preconditioner M. 

For P, any good preconditioner for the Laplacian A can be 

used. For the Schur complement approximation, we use S = 

M , where M  is the finite element mass matrix corresponding 

P

P

to the pressure, which is spectrally equivalent to the Schur  Figure 1: Specification of lid-driven cavity problem complement. Note that, although we invert M  explicitly in 

P

the experiments below, if necessary the action of 

can 

be effectively approximated using a small number of steps of 

Chebyshev iteration (see [5, Remark 4.5], [31]). 

In the numerical experiments of §6, we show results 

obtained using three different preconditioners of the form (5.2):

   • 

 Diagonal  preconditioning  (DP):  P  =  diag(A),  S  = 

diag(M ). This basic preconditioner should offer a 

P

modest reduction in iteration counts but is clearly very 

cheap to invert. 

   • 

 Ideal preconditioning (IP): P = A, S = M . This represents 

P

the best possible preconditioner of this form, as A is  Figure 2: In-plane orientation. The initial homogeneous orientation inverted exactly. It can be shown that the eigenvalues of  with fixed boundary conditions is shown on the left. The non-homo-M−1A lie in small intervals that are uniformly bounded  geneous alignment field caused by the moving lid (on the right) shows away from ±∞ and the origin, meaning that MINRES  regions of flow alignment in the lower part of the cavity and a periodic will converge rapidly and in a number of iterations  tumbling alignment close to the lid. There, the scalar order parameter which is independent of the discrete problem size [30].  is reduced significantly, as is visible from the smaller size of the boxes

   • 

 MG preconditioning (MGP):  P = mg(A), S = M . Here 

P

Dirichlet boundary conditions are also used for the 

we apply geometric multigrid (denoted by mg) to the  alignment tensor. The same uniaxial alignment with equilibrium Laplacian component. This involves one Vcycle with  order parameter is prescribed at all boundaries and also as an two  directional  sweeps  (left→right,  bottom→top)  initial condition in the bulk. In this way, without driving flow of line Gauss-Seidel iteration as smoother (see, for  a homogeneous uniaxial orientation, as given by the initial example, [32]). 

condition (see the left of Fig. 2), would result. As mentioned 

Having access to good flow solvers is a key ingredient of  above, alternative problem domains and boundary conditions our approach, as efficient solution of system (5.1) is critical  could  be  implemented  directly  in  the  flow  and  orientation to  the  overall  practicality  of  the  coupled  floworientation  solvers. 

algorithm. 

In-plane orientation

NUMERICAL EXPERIMENTS

For a pure in-plane evolution, we used lid velocity v = 10 and 

To illustrate how the coupled flow-orientation algorithm in  cavity length L = 8. This corresponds to a Reynolds number 

§5 can be applied in practice, in this section we present the  of  Re  =  V  Lρ/ζ   ≈  10−5 for a typical small-molecule liquid 4

results of some numerical experiments on a lid-driven cavity  crystal. The Ericksen number is then Er = ζ V L/L  ≈ 80, and 1

1

problem [1]. The lid-driven cavity is a classic test problem in  we chose Bf = 2/3 and Tu = 1/5. The temperature was chosen fluid dynamics where flow in a square cavity is driven by the  as  ϕ  =  0,  corresponding  to  the  pseudo-critical  temperature lid moving from left to right, see Fig. 1. The flow boundary  T∗. The time-step used in the explicit Euler method (for the conditions are of Dirichlet type everywhere, with the velocity  orientation equations) was ∆t = 0.0001. This ensures stability fixed at some positive rate in the x-direction on the lid and zero  of the method for the range of spatial discretisation parameters along all other cavity walls. Here we use a ‘watertight’ cavity,  used (from h = 1/16 to h = 1/256 for the experiments reported that is, the velocity is fixed to be zero at the top corner points  on below). For orientation boundary conditions, we used on both left and right boundaries. The resulting discontinuous  homeotropic anchoring on the top and bottom of the cavity and horizontal velocity generates a strong singularity in the  planar anchoring on the lateral sides. The initial orientation 
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is shown on the left of Fig. 2. The boxes shown lie parallel  centre of the cavity. The picture in the middle shows the streamlines at to the eigensystem of the alignment tensor, and the lengths  a later time, which are no longer symmetric but, due to the changes in of the edges correspond to the respective eigenvalues, see  the orientation field, are shifted slightly to the right. The right picture 

[20]. The shading of the box shows its degree of biaxiality:  shows a contour plot of the difference between the two flow fields a white box corresponds to uniaxial alignment, where two 

The right picture in Fig. 2 shows a snapshot of the alignment 

eigenvalues are equal (such as in the initial configuration),  field  after  the  flow  has  developed.  The  evolution  displayed and a black box corresponds to perfectly biaxial alignment,  shows two distinct types of orientation. On the one hand, in where one eigenvalue is zero. In general, the level of  the lower part of the cavity, the orientation is dominated by the darkness of a particular box is proportional to the biaxiality  elastic forces and a stationary state of aligned flow is found. 

measure 

used in [12]. Note  On the other hand, close to the lid where the velocity gradient 

that the number of boxes plotted has been chosen for clear  is large, a periodic solution of in-plane tumbling orientation is representation of the solutions, and does not correspond to the  found. Furthermore, because of the fixed boundary conditions, number of degrees of freedom used in the calculations. 

the orientation necessarily shows defects. In the alignment 

tensor description, these defects are characterised by a planar 

uniaxial orientation. They are generated close to the upper right 

corner of the lid and travel towards the centre of the cavity and 

from there to the upper left corner. 

For the given choice of the parameters, the flow field is 

only slightly affected by the orientation (see Fig. 3). Initially, 

with a homogeneous orientation, the stream lines are symmetric 

about a vertical axis through the centre of the cavity. This 

reflects  the  time-reversal  symmetry  of  the  Stokes  equation. 

When the orientation is no longer homogeneous, however, 

this symmetry is broken and the streamlines shift to the right. 

This is an effect similar to that found in isotropic fluids at high 

Reynolds numbers. It is found here in a linear flow equation 

because of the influence of the orientation on the flow. 

To  illustrate  the  efficiency  of  the  flow  solver,  in  Table 

1 we present a summary of the performance of the three 

preconditioners discussed in §5 (as compared to results with 

unpreconditioned MINRES, which are in the column labelled 

’none’). 

For each method, two quantities are tabulated: k is the 

average number of MINRES iterations required at each time-

step  to  compute  the  flow  field  (with  convergence  tolerance 

0.0001), and s is the amount of time associated with this 

computation (in seconds, as calculated using the MATLAB 

commands tic and toc). In both cases, the results have 

been  averaged  over  the  first  200  time-steps,  as  this  initial 

phase  poses  the  greatest  challenge  for  the  flow  solver.  As 

expected, the number of MINRES iterations required with no 

preconditioning grows with the problem size. Although using 

diagonal preconditioning (DP) reduces the iteration count 

slightly, it can be seen by comparing the values of s that the 

expense involved in constructing the preconditioner outweighs 

its  benefits  as  h  decreases.  For  ideal  preconditioning,  we 

see that k is, as predicted by the theory in [30], essentially 

independent of the discretisation parameter h, although the cost 

of explicitly inverting A grows rapidly. When this inversion is 

avoided by replacing the action of A−1 by using one multigrid 

V-cycle based on A, as in MGP, there is a slight growth in 

the number of iterations needed but, crucially, the method is 

still essentially grid-independent, and at a much reduced cost. 

In  this  framework,  MGP  is  clearly  extremely  efficient,  as  is 

necessary  for  the  overall  coupled  flow-orientation  algorithm 

to be practical. 

Figure 3: Flow field during the evolution. The left picture shows the 

streamlines of the flow field for the initial homogeneous configura-

tion: they are symmetric with respect to a vertical axis through the 
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Table 1: A comparison of iteration counts and times for vari- in the in-plane case, defects are created in the upper right corner and ous preconditioners averaged over the first 200 time-steps

eventually annihilate in the upper left corner. The reduction of order 

is considerably less pronounced than for the in-plane case. A close-up 

view as seen from the top right of the cavity is shown on the right

Out-of-plane orientation

To obtain an out-of-plane evolution, both the boundary and 

initial  conditions  were  tilted  by  an  angle  of  15◦  out  of  the 

shear plane. The initial orientation is again homogeneous; with 

respect to the in-plane orientation on the left of Fig. 2, the top 

of the alignment tensor is simply tilted by 15◦ out of the plane 

towards the observer. Here we used v = 15 and L = 16, which 

corresponds to a Reynolds number of 3 × 10−5 and an Ericksen 

number of 240. As before, Bf = 2/3 and ϑ = 0, but this time 

we chose Tu = 4/5 to facilitate the occurrence of out-of-plane 

periodic solutions (see, for example, the phase diagrams for 

monodomains in [8]). The time-step used for the orientation 

solver was t = 0.0001 as before. 

The resulting evolution (as illustrated by the snapshot on 

the left of Fig. 4) again shows in the lower part of the cavity 

a region of flow alignment that here is out of the plane. Close 

to the lid, periodic kayaking is found. A close-up view as 

seen from the top right of the cavity is shown on the right of 

Fig. 4, where this periodic out-of-plane behaviour is clearly 

visible. This is again accompanied by the creation of defects 

in the upper right corner and their annihilation in the upper 

left corner. A notable difference from the in-plane evolution, 

however, is that the reduction of the scalar order parameter 

is far less pronounced. Here, it takes place mostly around the 

defects: the orientation can go out of the plane to avoid the 

frustration induced by the flow gradient. 

When the orientation has components that lie out of the 

plane, the force density div F that is due to the orientation-

related contributions to the stress can have a component that 

lies out of the plane even when both flow field and orientation 

field are assumed to be homogeneous in that direction. This 

out-of-plane component of div F is shown in Fig. 5. It is most 

noticeable at the corners where the pressure is divergent, but it 

is present throughout the cavity. 

Figure 5: Component of the force div F perpendicular to the shear 

plane. This force component is particularly large at the corners where 

the pressure is divergent (left) but it is present throughout the cavity, 

as evidenced by the close-up of the central region (right)

This shows that, for out-of-plane evolutions, truly three-

dimensional  flow  fields  will  arise  and  that  two-dimensional 

computations are therefore only of limited value in this context. 

The relative performance of the various preconditioned Stokes 

solvers discussed in §5 is very similar to that for the in plane 

orientation example of §6.1, so iteration counts and timings 

have not been displayed here. The MGP preconditioner again 

significantly outperformed the other methods. 

Figure 4: Out-of-plane orientation. On the left, in the lower part of  CONCLUSIONS

the cavity the orientation is again one of flow alignment, but here it is  In this paper we have described a highly efficient algorithm out of the plane. Close to the lid, periodic kayaking is found and, as  for the computation of flow and orientation in nematic liquid 
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crystals. Writing the influence of the orientation field on the  8. 

Grosso, M., Maffettone, P.L., Dupret, F.: A closure 

flow in the form of a force density allows us to solve the flow 

approximation for nematic liquid crystals based on the 

equation by using well established fast solvers. This aspect of 

canonical distribution subspace theory. Rheol. Acta 39, 

the modelling dominates the computational time required, so 

301–310 (2000)

that the overhead added to the computational fluid dynamics  9.  Hernández-Ortiz, J.A., Gettelfinger, B.T., Moreno-Razo, by the anisotropic liquid is rather small. We note that, although 

J.,  de  Pablo,  J.J.:  Modeling  flows  of  confined  nematic 

here we have focussed on the use of a fast solver from the 

liquid crystals. J. Chem. Phys. 134 (2011)

IFISS package, other existing software could also be used. 

10.  Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, 

One disadvantage of the method that we have presented 

R.J., Hu, J.J., Kolda, T.G., Lehoucq, R.B., Long, K.R., 

is  that  only  three  viscosity  coefficients  enter  the  viscous 

Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thornquist, 

stress. However, when the co-rotational time derivative that 

H.K., Tuminaro, R.S., Willenbring, J.M., Williams, A., 

we have used here is replaced by a general co-deformational 

Stanley, K.S.: An overview of the trilinos project. ACM 

time derivative the same numerical procedure as before can 

Trans. Math. Softw. 31(3), 397–423 (2005)

be employed. As long as only the terms proportional to ζ , ζ , 

1

2

11.  Hess, S.: Irreversible thermodynamics of nonequilibrium 

and ζ  are considered in the dissipation function, the influence 

3

alignment phenomena in molecular liquids and in liquid 

of the orientation on the flow still takes the form of a force 

crystals. Z. Naturforsch. 30a, 728–738 & 1224–1232 

density This makes the type of algorithm presented in this 

(1975)

paper suitable for a more general class of materials, such as 

polymeric liquid crystals. 

12.  Kaiser, P., Wiese, W., Hess, S.: Stability and instability 

of an uniaxial alignment against biaxial distortions in the 

isotropic and nematic phases of liquid crystals. J. Non-

Equilib. Thermodyn. 17, 153–169 (1992)

Generalisation to high Reynolds numbers is also  13.  Leslie, F.M.: Some constitutive equations for liquid straightforward: it requires the retention of the inertial term 

crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1968)

ρv˙ on the left hand side of (4.8) and solution of the resulting  14.  MathSciNetCrossRefMATH

Navier–Stokes equation with a specified force term. At each  15.  Liu, P.: Simulations of nematic liquid crystals: Shear time-step, the latter leads to a saddle-point system of a form 

flow, driven-cavity and 2-phase (isotropic-nematic) step 

similar to (5.1) but with the diffusion component replaced by 

flow. Ph.D. thesis, Brown University, Providence (2012)

a discrete convection-diffusion operator. Such systems could 

be solved efficiently using advanced preconditioned iterative  16.  Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on techniques for finite element Navier–Stokes approximations, 

preconditioning  for  indefinite  linear  systems.  SIAM  J. 

such as the pressure convection-diffusion and least-squares 

Sci. Comput. 21(6), 1969–1972 (2000)

commutator preconditioners described in [5] and implemented  17.  Olmsted, P.D., Goldbart, P.: Theory of the nonequilibrium in IFISS. 

phase transition for nematic liquid crystals under shear 

flow. Phys. Rev. A 41, 4578–4581 (1990)
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CHAPTER

4 NUMERICAL SIMULATIONS OF 

MAGNETOACOUSTIC–GRAVITY 

WAVES IN THE SOLAR  

ATMOSPHERE

K. Murawski, A. K. Srivastava, J. A. McLaughlin, and R. Oliver

Keywords: Waves Magnetic fields Corona Granulation

INTRODUCTION

the lower solar atmosphere result in large-scale eruptive 

phenomena, including solar flares and coronal mass ejections 

The complicated magnetic-field configuration of the Sun plays  (CMEs) in the outer part of the magnetized solar atmosphere a key role in various types of dynamical plasma processes in  (Srivastava et al.2010; Shibata and Magara2011; Zhang, its atmosphere, including all significant plasma dynamics of  Cheng, and Ding 2012; and references therein). All this makes the lower solar atmosphere. The resulting magnetic structures  the coupling of the complex magnetic field in various layers channel energy from the photosphere into the upper atmosphere  of the Sun, caused by waves and transients, one of the most in the form of magnetohydrodynamic (MHD) waves. These  significant areas of contemporary solar research. 

waves experience mode conversion, resonances, trapping, 

and reflection, which result in the complicated dynamical 

In the quiet-Sun magnetic networks, cavities are important 

processes in the lower solar atmosphere, the details of which  locations where the magnetic fields are sufficiently inclined due depend on the plasma properties as well as on the strength of  to their well-evolved horizontal components. The cavities are the magnetic field. The complex magnetic-field and plasma  formed over the granular cells in the form of field-free regions structuring in the lower solar atmosphere support the excitation  through the transport of plasma at their boundaries, and are of various kinds of MHD waves. Their propagation, reflection,  overlaid by bipolar magnetic canopies. The vertical magnetic and trapping have been extensively studied theoretically and  fields,  however,  reside  mostly  in  the  core  of  these  magnetic observationally (e.g. McAteer et al.2003; Hasan et al.2005;  networks (Schrijver and Title 2003; Centeno et al.2007). 

Srivastavaet al.2008; Fedun, Erdélyi, and Shelyag 2009;  The magnetic cavity–canopy systems are thought to be ideal Srivastava 2010; Murawski, Srivastava, and Zaqarashvili 2011;  resonators of the various MHD waves that can be trapped in Gruszecki et al.2011; and references therein). The evolving  the cavity, and can also leak upward through the core of these magnetic fields of the lower solar atmosphere also lead to  magnetic networks in the form of magnetoacoustic–gravity transient processes across a wide range of spatial–temporal  waves. It is thought that the field-free cavity regions underlying scales in the form of eruption and associated phenomena.  the bipolar canopy can trap the high-frequency acoustic For example, various types of solar jets are formed at short  oscillations, and the low-frequency components may leak into spatial–temporal scales, which play a significant role in mass  the higher atmosphere in the form of magnetoacoustic–gravity and energy transport and also couple the various layers of the  waves (Kuridze et al.2008; Srivastava et al.2008; Srivastava solar atmosphere (Shibata et al.2007; Katsukawa et al.2007;  2010). Therefore, these magnetic structures in the lower solar Srivastava and Murawski 2011; and references therein). In  atmosphere  may  play  an  important  role  in  wave  filtering addition, the magnetic activity and injections of helicity into  (McIntosh and Judge 2001; Krijger et al.2001; McAteer et al.2002; Vecchio et al.2007; Vecchio, Cauzzi, and Reardon 

2009; Srivastava 2010; and references therein). 

In addition to recent high-resolution observations of MHD 

Citation: K. Murawski, A.K. Srivastava, J.A. McLaughlin, and R. Oli-

waves in the lower solar atmosphere, extensive efforts have 

ver, Numerical Simulations of Magnetoacoustic–Gravity Waves in the  been made in the area of analytical and numerical modeling Solar Atmosphere, DOI 10.1007/s11207-012-0202-7. 

of these waves: Fedun, Erdélyi, and Shelyag (2009) have 
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investigated the 3D numerical modeling of the coupled slow  tion, where g=274 m s−2, m is the mean particle mass, and k  B

and fast magnetoacoustic wave propagation in the lower  is Boltzmann’s constant. Throughout this article, we use the solar atmosphere; and recently Fedun et al. (2011) have  Cartesian coordinate system with the vertical axis denoted by reported the first numerical results of the frequency filtering  y and the horizontal axis x. Henceforth, we assume that the of torsional Alfvén waves in the chromosphere. In addition to  medium is invariant along the z-direction with ∂/∂z=0 and set general numerical modeling of the waves in the lower solar  the z-components of plasma velocity and magnetic field equal atmosphere, models have also investigated the acoustic-wave  to zero, i.e.V =0 and B =0. This assumption removes Alfvén z

z

spectrum in the localized magnetic structures of the lower solar  waves from the system but still allows magnetoacoustic–grav-atmosphere, e.g. the magnetic cavity–canopy system (Kuridze  ity waves to propagate freely. 

et al.2008; Srivastava et al.2008; Kuridze et al.2009; and 

references cited therein). 

Equilibrium Configuration

It is also noteworthy that Bogdan et al. (2003), Fedun, 

Erdélyi, and Shelyag (2009), and Fedunet al. (2011), discussed  We assume that the solar atmosphere is static [V =0] at its e

in detail the excitation, propagation, and conversion of  equilibrium, and that it is threaded by a straight magnetic field, magnetoacoustic waves in a realistic 3D MHD simulation. 

However, in these references the waves driven by a periodic 



(5)

driver were discussed, whereas we numerically simulate the  where   is a unit vector that is either vertical, horizontal, or excitation of magnetoacoustic–gravity waves generated by  oblique. We choose B  by requiring that at the reference point pulses in the gas pressure and the vertical velocity component, 

0

(0,10) Mm the Alfvén speed

which mimics an isolated solar granule. We aim to investigate 

and understand this simpler (but still complex enough) system 

before we move on to the more realistic, multiple-granule 

system. Our philosophy is to build up our models incrementally, 





(6)

with a clear focus on the underlying physical processes at each  and sound speed

step. 

We here investigate the excitation of magnetoacoustic–

gravity waves generated from localized pulses in the gas 

pressure as well as in the vertical velocity component by 

(7)

modeling the effect of an isolated solar granule. These pulses 

are initially launched at the top of the solar photosphere, which  satisfy the constraint is permeated by a weak magnetic field. We investigate three  . This constraint reproduces typical conditions in the solar different  configurations  of  the  background  magnetic-field  corona where, typically, c =100  km s−1 and c =1000  km s−1. 

lines: vertical, horizontal, and oblique to the gravitational 

s

A

As a result, the solar corona is magnetically dominated with 

force. We aim to show that small-amplitude perturbations that 

are associated with such a granule are able to trigger large-

. The plasma β, 

amplitude, complicated oscillations in the solar corona, which 

exhibit periodicities within the detected range of three to five 

minutes. 

(8)

The structure of the article is as follows: In Section 2 we 

describe the numerical model. We report the numerical results  in the solar corona attains a value of β(y=10 Mm)=0.012. It in Section 3 and present the discussion and conclusions in  slowly grows with depth within the chromosphere and abruptly Section 4. 

reaches a value of β(y=0 Mm)≈4×105 below y=2 Mm at the 

bottom of the photosphere (Figure 1, bottom). This high value 

NUMERICAL MODEL

of β shows that in these low regions of the solar atmosphere the 

effect of the magnetic field is negligibly small. 

We consider a gravitationally stratified solar atmosphere that is 

described by the ideal two-dimensional (2D) MHD equations:

(1)

(2)





(3)



(4)

Here ϱ is mass density, V is the flow velocity, B is the magnetic 

field, p=k ϱT/m is the gas pressure, T is the temperature, γ=5/3 

B

Figure 1: Equilibrium profile of the solar temperature (top-left), the 

is the adiabatic index, g=(0,−g,0) is the gravitational accelera- mass density (top-right), and the plasma β (bottom). 
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The straight magnetic field of Equation (5) is a simplified  (e.g.Rieutord et al.2002; Kostik, Khomenko, and Shchukina model  of  curved  magnetic-field  lines  that  are  located  in  the  2009; Baran 2011). We separately consider three orientations low regions of the solar atmosphere. However, because the  for our unidirectional equilibrium magnetic field lines: (a) hor-plasma  β  grows  rapidly  below  y=2.5  Mm,  where  it  reaches  izontal, (b) vertical, (c) oblique to the gravitational force. 

high values (see Figure 1, bottom), we in fact model the very 

weakly magnetized low layers of the atmosphere, which do not 

correspond to flux-tubes and sunspots. Therefore, in this first  NUMERICAL RESULTS

approximation, the curved magnetic-field lines can be replaced  Equations (1) – (4) are solved numerically using the FLASH 

by a straight magnetic field, and our models are justified. 

code (Lee and Deane 2009). This code implements a second-

In Equations (6) and (7), ϱ (y) and p (y) denote the  order unsplit Godunov solver with various slope limiters and e

e

equilibrium mass density and gas pressure, respectively. They  Riemann solvers, as well as adaptive mesh refinement (AMR). 

are specified by the hydrostatic constraint, which in the context  The main advantage of using the AMR technique is to refine a of Equation (5) states that the pressure gradient is balanced by  numerical grid at steep spatial profiles while keeping a coarse the gravity force, 

grid at the places where fine spatial resolution is not essential. 

This technique usually introduces interpolation errors at 

different-sized numerical cells. These errors can result in a 





(9)

vertical flow that, albeit initially small, can grow with height 

With the ideal gas law and the y-component of Equation (9),  to an unacceptable magnitude. The remedy we adopted for we arrive at

this inherent phenomenon is to refine the whole region below 

the transition region. We used the Roe solver and minmod 



(10)

flux limiter, and set the simulation box for the horizontal and 

where

vertical equilibrium magnetic field cases in the x-direction to 

be −5≤x≤5 Mm. To trace plasma structures that extend more 

horizontally in the case of the oblique magnetic field, we used 

−2≤x≤8 Mm. Along the y-direction the numerical box was set 

(11)

to −1≤y≤19 Mm in all cases. At all boundaries, we fixed all 

plasma quantities to their equilibrium values, which led only 

is the pressure scale-height, and p  denotes the gas pressure at  to weak numerical reflections of the incident wave signals. 

0

the reference level that we choose in the solar corona at y =10  Additionally, we increased the physical domain size and r

Mm. 

dampened incident waves by adopting a coarse numerical grid 

at the top boundary to avoid the influence of reflections during 

We  adopt  an  equilibrium  temperature  profile  [T (z)] for 

e

the simulation time range. As a result, these reflections do not 

the solar atmosphere that is close to the VAL-C atmospheric  exert any noticeable effect on the dynamics of the system. In all model of Vernazza, Avrett, and Loeser (1981): see Figure 1,  our studies, we used an AMR grid with a minimum/maximum top-left panel.T  attains a value of about 5700 K at the top of 

e

level of refinement set to 3/7. 

the  photosphere,  which  corresponds  toy=0.5  Mm. At  higher 

altitudes, T (y) falls off until it reaches its minimum of 4350 K 

e

at an altitude of y≈0.95 Mm. Higher up, T (y) grows gradually 

e

with height up to the transition region, which is located at 

y≈2.7  Mm.  Here T (y) experiences a sudden increase to the 

e

coronal value of 1.5 MK at y=10 Mm. Then with Equation (10) 

we obtain the corresponding gas pressure and mass-density 

profiles. Both p (y) (not shown) and ϱ (y) (Figure 1, top-right 

e

e

panel) experience a sudden decrease from photospheric to 

coronal values at the transition region. 

 Initial Conditions

At t=0 seconds, we initially perturb the equilibrium impulsive-

ly by simultaneously using localized Gaussian pulses in the gas 

pressure and the vertical-velocity component, viz. 

(12)



(13)

Here A  and A  are the amplitudes of the perturbations, (x ,y ) 

p

v

0 0

Figure 2: Numerical blocks with their boundaries (solid lines) and 

is their initial position, and (w ,w ) denotes their widths along 

x

y

the pulse in velocity of Equation (12) (color maps) at t=0 seconds for 

the x- and y-directions. We set and hold fixed x =0 Mm,y =0.5 

0

0

the vertical and horizontal equilibrium magnetic fields. The maximum 

Mm, w =0.5  Mm,  w =0.5  Mm,  A =0.02p (y ), and A =0.2  velocity (red color) corresponds to 0.2 km s−1. 

x

y

p

e

0

v

km s−1. These magnitudes ofA  and A  lie within the range 

v

p

of  the  detected  flow  and  temperature  in  solar  granulation  The initial system of blocks is shown in Figure 2. For the initial vertical and horizontal magnetic fields, at t=0 seconds 
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the whole simulation region is covered by 2666 blocks, with 

a similar number of blocks for the oblique magnetic field. 

Because every block consists of 8×8 numerical cells, this 

number of blocks corresponds to 170 624 numerical cells. This 

results in the finest (poorest) resolution of Δx=Δy≈19.5  km 

(Δx=Δy≈625 km) in the region below y=3.7 Mm (abovey=9 

Mm) at t=0 seconds (see Figure 2). The refinement strategy is 

based on controlling numerical errors in mass density, which 

results in an excellent resolution of steep spatial profiles and 

greatly reduces numerical diffusion at these locations. The 

duration of a typical numerical run was 1500 seconds. Although 

the numerical simulations were carried out for −5≤x≤5 Mm, 

−1≤y≤19 Mm, only the results in the regions of interest are 

displayed here. 

Vertical Equilibrium Magnetic Field: 

First, we investigate the case of the vertical equilibrium 

magnetic field, which corresponds to 

in Equation (5). 

Here  is a unit vector along the y-direction. The initial pulse 

of Equation (12) triggers magnetoacoustic–gravity waves in 

the solar atmosphere. These waves are compressive, and so 

we can trace their evolution in both temperature and velocity. 

Figure 3illustrates logarithmic temperature profiles (color 

maps) and velocity vectors resulting from the perturbations. 

At t=200 seconds (top-left panel), the excited perturbations in 

the vertical component of velocity have already penetrated the 

solar corona, arriving at the point (0,5.5) Mm. The perturbation 

in the vertical-velocity component propagates by ≈ 5 Mm in  Figure 3: Spatial profiles of the logarithm of the temperature (color the first 200 seconds of its evolution, which gives the speed  maps) and velocity (arrows) profiles att=200 seconds (top-left), t=400 

of  propagation  as  ≈ 25  km s−1. The average sound speed in  seconds  (top-right),  t=800  seconds  (bottom-left),  t=1000  seconds this region is significantly higher. This is also confirmed by  (bottom-right), for the vertical equilibrium magnetic field. Tempera-Fedun, Shelyag, and Erdélyi (2011) (cf. their Figures 4 – 7),  ture is expressed in units of 1 MK. The arrow below each panel repre-who reported that their waves propagated from the transition  sents the length of the velocity vector, expressed in units of 10 km s−1. 

region up to 2 Mm within about 40 seconds of the simulation  The corresponding movie can be found in fig3.avi in the Electronic time. From this comparison we infer that the perturbation we  Supplementary Materials. 

initially imposed triggers flows in the solar atmosphere first, 

Figure 4 illustrates the temporal variation of the vertical 

and thereafter these flows produce magnetoacoustic–gravity  velocity component at the detection point (0,5) Mm for the waves. At this moment in time, the transition region experiences  case of Figure 3. As a result of the rapid mass density decrease a weak perturbation and the signal reflected from the transition  with height, upwardly propagating waves grow in amplitude region  is  represented  by  arrows  around  x=0  Mm,  y=1.5  and  steepen  rapidly  to  form  shocks.  The  arrival  of  the  first Mm. This reflected signal clashes with the slowly upwardly  shock-front  at  the  detection  point  is  clearly  seen  at  t≈290 

propagating wave that is triggered at the launching place,  seconds. The second shock-front reaches the detection point i.e.,x=0 Mm, y=0.5 Mm. As a result of this clash, the leading  at t≈540 seconds, i.e. approximately 250 seconds later. This front is generated. Cold chromospheric plasma lags behind,  secondary shock (and subsequent shocks that arrive after about and at t=400 seconds (Figure 3, top-right panel) it reaches an  160 seconds and 240 seconds) results from the nonlinear wake, altitude of y≈6.5 Mm. The cold material is lifted because of the  which lags behind the leading shock (Sterling and Hollweg pressure gradient, which works against gravity and forces the  1989; Srivastava and Murawski 2011). These times can be chromospheric material to penetrate the solar corona (Sterling  compared with the acoustic cut-off period (Roberts 2006), and Hollweg 1989). At t=800 seconds (Figure 3, bottom-left), 

the transition region experiences well-developed oscillations 

whose central regions reach y≈7 Mm at x=0 Mm, and also off-

(14)

side propagating oscillations. These oscillations are of lower 

amplitudes at t=1000 seconds (Figure 3, bottom-right panel).  which for y=0.5 Mm has a value of P (y)≈180 seconds. This ac

At this time, the central plasma experiences gravitational  value differs by 70 seconds from the time-span between deceleration while the region of cold plasma widens. The jet,  arrivals of neighboring shocks, which is 250 seconds. 

which is associated with the shock, lasts for several hundred  However, the 2D model we discuss here is more complex seconds. Its velocity reaches a maximum of ≈ 60 km s−1. 

than the 1D scenario described by the Klein–Gordon equation 

(Roberts 2006). The wave period we detected is altered by 

the interaction between up-going waves from the launching 

place of the initial pulse and the reflected wave from the 

transition-region signals. Because wave reflections originate at 
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the large temperature gradients, the chromosphere sustains a 

cavity for these waves, which are represented by the oblique  Horizontal Equilibrium Magnetic Field: stripes located at altitudes of 0.7 Mm<y<1.4 Mm (Figure 5).  In this section, we investigate the horizontal equilibrium In the neighborhood of the point (0.4,0.4) Mm we observe the 

formation of vortices (Figure 5, top panel) that experience an  magnetic field, which corresponds to in Equation (5). 

energy cascade into smaller scales. These vortices are present  In this case, the spatial profiles of T drawn at t=250 seconds and until the end of our simulation runs (Figure 5, bottom panel).  t=1000 seconds (Figure 6) reveal small-amplitude oscillations The first vortex is triggered by the initial pulse in V , which  of the transition region without the jet that was observed for the y

is a characteristic feature of velocity perturbations. This first  vertical magnetic field. Comparing this with Figure 3, we see vortex causes convection in the convectively unstable plasma  that the waves resulting from the initial pulses already arrived layers. According  to  Schwarzschild’s  instability  condition,  a  at the solar corona at t=250 seconds (Figure 6, left panel). The medium is convectively unstable if the squared buoyancy (or  magnetic-field lines are horizontal, therefore these waves are Brunt–Väisälä) frequency, 

essentially fast magnetoacoustic–gravity waves in the region 

of low plasma β that occurs for y>2.6 Mm (Figure 1, bottom 

panel). It is interesting that the orientation of the magnetic 

, 



(15)

field plays a very crucial role in determining the amplitude of 

transition-region oscillations. 

is negative (e.g. Roberts 2006). Because this criterion is 

satisfied for y<0.6 Mm, convection sets in there. Such vortices 

were also described by Konkol, Murawski, and Zaqarashvili 

(2011), in a similar context. 

Figure 4: Temporal signature of V  at the point (0,5) Mm for the verti- Figure 6: Spatial profiles of the logarithm of the temperature (color y

cal equilibrium magnetic field. 

maps) and velocity (arrows) at t=250 seconds (top) and t=1000 sec-

onds (bottom) for the horizontal equilibrium magnetic field. Tempera-

ture is in units of 1 MK. The arrow below each panel represents the 

length of the velocity vector, expressed in units of 2 km s−1. The cor-

responding movie can be found in fig6.avi in theElectronic Supple-

mentary Materials. 

Figure 7: Time signature of V  at the point (0,5) Mm for the horizontal 

y

equilibrium magnetic field. 

Similar to the temporal-signatures of Figure 4, V  at the 

y

Figure 5: Total velocity [|V|] (color map) and velocity (arrows) pro-

detection point (0,5) Mm reveals the shocks. However, we 

files at t=400 seconds (top) and t=1000 seconds (bottom) for the verti-

now observe only two shocks for the horizontal magnetic field 

cal equilibrium magnetic field. The velocity vectors are expressed in  (as seen in Figure 7). The first shock arrives at the detection units of 1 km s−1. The corresponding movie can be found in fig5.avi in  point at t=250 seconds and the second shock reaches this point the Electronic Supplementary Materials. 

at t=400 seconds. We note that the time-span of 150 seconds 
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between these events is 100 seconds shorter than for the  Oblique Equilibrium Magnetic Field: vertical magnetic field in Section 3.1. However, it is shorter by 

only 30 seconds than the acoustic cut-off period [P ] resulting  In this section, we discuss the case of the oblique magnetic ac

from Equation (14). The subsequent three oscillations, which  field, for which   in Equation (5) is at an angle of π/4 to the are of smaller amplitude, reveal periods on the order of P . 

horizontal axis. Figure 9 displays temperature profiles at t=400 

ac

The chromosphere exhibits essentially similar features to  seconds (top-left panel), t=600 seconds (top-right panel), t=800 

those seen for the vertical magnetic field in Section 3.1. The  seconds  (bottom-left  panel),  and  t=1000  seconds  (bottom-vortex  motion  at  (x=0.4,y=0.4)  Mm  and  the  trapped  waves  right panel). These profiles are more complex than those for in the solar chromosphere for 0.7 Mm<y<1.4 Mm are again  either the horizontal or the vertical magnetic field of Sections discernible (Figure 8). At t=400 seconds (top panel), the vortex  3.1 and 3.2. At t=400 seconds (Figure 9, top-left), we clearly is clearly developed. It is similar to that of Figure 5 (top panel).  see the rising transition region. At t=1000 seconds (Figure 9, The flow patterns at the line y=1.4 Mm in Figures 5 and 8 differ  bottom-right), we observe surface waves propagating along in some details, though. In the case of the vertical magnetic  the transition region. However, for the oblique equilibrium field, the resulting waves are essentially slow magnetoacoustic– magnetic field, we find that the temporal signatures of V  y gravity waves, while Figure 8 corresponds to the horizontal  reveal shocks, and the periods are about 250 – 300 seconds background magnetic field with much contribution from fast  (Figure 10). The jet, which is associated with the shock, lasts magnetoacoustic–gravity waves. At a later time, turbulence  for several hundred seconds and reaches a velocity maximum results from this vortex, and it differs in some details from  of ≈ 30 km s−1. This is a result of complex interaction of the its analog of Figure 5 (bottom panel). In both the vertical and  waves with the background plasma in the upper regions of the horizontal magnetic fields, the turbulence originates from the  solar atmosphere. This complexity is seen at t=1000 seconds in impulsively triggered perturbations that are initially launched  the velocity profiles of Figure 11, which clearly illustrates the in the convectively unstable atmospheric layers. 

trapped and reflected waves in the solar chromosphere as well 

as clearly developed vortices. 

Figure 9: Spatial profiles of the logarithm of the temperature (color 

maps) and velocity (arrows) profile att=400 seconds (top-left), t=600 

seconds  (top-right),  t=800  seconds  (bottom-left),  t=1000  seconds 

(bottom-right) for the oblique equilibrium magnetic field. The tem-

Figure 8: Total velocity [|V|] (color map) and velocity (arrows) pro-

perature is given in units of 1 MK. The arrow below each panel repre-

files at t=400 seconds (top) and t=1000 seconds (bottom) for the hori-

sents the length of the velocity vector, expressed in units of 4 km s−1. 

zontal equilibrium magnetic field. The velocity vectors are expressed  The corresponding movie can be found in fig9.avi in the Electronic in units of 1 km s

Supplementary Materials. 

−1. The corresponding movie can be found in fig8.avi 

in the Electronic Supplementary Materials. 
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of the solar chromosphere, which launches the cool material 

behind it. 

We found that the excitation of magnetoacoustic–

gravity waves in a non-horizontal equilibrium magnetic-field 

configuration is channeled upwards and able to cause large-

amplitude transition-region oscillations. Meanwhile, the 

horizontal  equilibrium  magnetic  field  configuration  results 

in relatively smaller-amplitude transition-region oscillations 

caused by fast magnetoacoustic–gravity waves. These 

spread  their  energy  across  magnetic-field  lines,  in  contrast 

to slow magnetoacoustic–gravity waves, which in a strongly 

magnetized plasma region are guided along the magnetic-field 

lines. This indicates that the wave energy is transferred into 

the upper atmosphere in larger amounts when the magnetic 

field is more vertical. However, the complexity and therefore 

the  evolution  of  a  horizontal  equilibrium  magnetic  field 

allows the reflection and trapping of the waves in the lower 

solar  atmosphere  and  can  influence  the  localized  dynamics 

and heating of the atmosphere. The reflection of the waves in 

the lower solar atmosphere and its trapping may also cause 

chromospheric cavities. 

By analyzing the temporal-signature of V   at  a  fixed 

y

spatial point, we also found that the oscillation period is 

longer when comparing the vertical magnetic field (here, the 

characteristic oscillation period was ≈ 250 – 300 seconds) with 

the horizontal equilibrium magnetic system (in which the 

characteristic  period  of  oscillation  was  ≈ 150 – 200  seconds). 

For the vertical magnetic-field system in low plasma-β regions, 

Figure 10: Time signature of V  at the points (4.5,5) Mm (top) and 

y

the magnetoacoustic–gravity waves are adequately described 

(3.84,4.98) Mm (bottom) for the oblique equilibrium magnetic field. 

as slow magnetoacoustic–gravity waves (propagating along 

the  magnetic-field  lines  at  approximately  the  sound  speed 

[c (y)], see Equation (7)). For the horizontal magnetic-

s

field  system  in  strongly  magnetized  plasma,  the  oscillations 

transverse to the magnetic field are appropriately described as 

fast magnetoacoustic–gravity waves (propagating across the 

magnetic-field  lines  at  the  fast  speed, 

, see 

Equations (6) and (7)). For y=0.5 Mm we have c ≪c ; the cut-

A

s

off frequencies of the fast and slow magnetoacoustic–gravity 

waves are very close to each other, which results in very close 

values of the cut-off periods. Therefore, we might expect that 

the periods detected for the vertical and horizontal magnetic 

Figure 11: Total velocity [|V|] (color map) and velocity (arrows) pro-

file at t=1000 seconds for the oblique equilibrium magnetic field. The  fields exhibit similar values. However, the cut-off periods are velocity vectors are expressed in units of 1 km s−1. The correspond-derived on the basis of the linear theory, which is valid for 

ing movie can be found in fig11.avi in the Electronic Supplementary  small-amplitude oscillations only. Such small oscillations are Materials. 

present in the case of the horizontal magnetic field, therefore 

the numerical data lie close to the analytical prediction. In 

the  vertical  magnetic  field,  the  upwardly  propagating  waves 

DISCUSSION AND CONCLUSION

interact with the waves that are reflected from the transition 

We have investigated the impulsive excitation of region. This gives rise to larger-amplitude oscillations, which magnetoacoustic–gravity oscillations and compared significantly  alter  the  background  plasma.  The  waves  that and contrasted the resulting propagation under different  propagate  through  this  strongly  modified  medium  exhibit orientations of equilibrium magnetic fields. We performed 2D  modified velocities, and they are reflected from the transition numerical simulation of the velocity and gas-pressure pulses,  region, which is locally strongly curved. This results in periods which mimic a solar granule. These pulses were initially  within the range 250 – 300 seconds, which differ from P . 

ac

launched at the top of the solar photosphere in a stratified solar 

It is known that radiation is an effective mechanism of wave 

atmosphere using the VAL-C temperature profile. We find that  damping in the low photosphere (Mihalas and Toomre 1982). 

in the cases where the background magnetic field possesses a  It might not radically alter the system’s behavior, but radiative non-zero vertical component, the amplitude of the upwardly  damping is at least likely to reduce the amplitude of the waves propagating perturbations rapidly grows with height due to the  that reach the transition region, which leads to shorter jets than rapid decrease in the equilibrium mass density. Therefore, the  those that we see in our models, and also to lower amplitudes perturbation quickly steepens into shocks in the upper regions 
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of the coronal shocks. We did not invoke radiative cooling 

727, 17. 

or thermal conduction in our model atmosphere, because we  6.  Fedun, V., Verth, G., Jess, D.B., Erdélyi, R.: 2011, aimed to model the small-scale atmospheric regions above the 

Astrophys. J. Lett. 740, L46. 

solar photosphere where these effects are not believed to be 

dominant. However, we intend to include these effects in our  7. 

Gruszecki, M., Murawski, K., Kosovichev, A.G., 

future studies. 

Parchevsky, K.V., Zaqarashvili, T.: 2011, Acta Phys. Pol. 

42, 1333. 

The solar atmosphere is structured by convective overshoot,  8.  Hasan, S.S., van Ballegooijen, A.A., Kalkofen, W., which is absent from our model. Instead, we isolated a single 

Steiner, O.: 2005, Astrophys. J. 631, 1270. 

granule-like perturbation with the aim to mimic a magnitude of 

flow and plasma temperature that is associated with the solar  9. 

Katsukawa, Y., Berger, T.E., Ichimoto, K., Lites, B.W., 

granulation (Baran 2011). We considered the complex scenario 

Nagata, S., Shimizu, T., Shine, R.A., Suematsu, Y., 

that results from this simple model to understand the physics of 

Tarbell, T.D., Title, A.M., Tsuneta, S.: 2007, Science 

wave phenomena above such magnetic structures in the solar 

318, 1594. 

atmosphere. We intend to develop more advanced models in  10.  Konkol, P., Murawski, K., Zaqarashvili, T.V.: 2011, our future studies. 

Astron. Astrophys. 537, A96. 

In conclusion, our numerical simulations clearly  11.  Kostik, R., Khomenko, E., Shchukina, N.: 2009, Astron. 

demonstrate that small-amplitude initial pulses in vertical 

Astrophys. 506, 1405. 

velocity and gas pressure are able to trigger a plethora of dynamic  12.  Krijger, J.M., Rutten, R.J., Lites, B.W., Straus, Th., phenomena in the upper regions of the solar atmosphere with 

Shine, R.A., Tarbell, T.D.: 2001, Astron. Astrophys. 379, 

periods in the range 150 – 300 seconds, a value that depends 

1052. 

on the orientation of the background magnetic field. However,  13.  Kuridze, D., Zaqarashvili, T.V., Shergelashvili, B.M., it should be noted that our 2D simulations are idealized in the 

Poedts, S.: 2008, Ann. Geophys. 26, 2983. 

sense that they do not include radiative transfer and thermal 

conduction along field lines. The magnetic-field configuration  14.  Kuridze, D., Zaqarashvili, T.V., Shergelashvili, B.M., and the equilibrium stratification are simple and we modeled 

Poedts, S.: 2009, Astron. Astrophys. 505, 763. 

a single granule only. These limitations require additional  15.  Lee, D., Deane, A.E.: 2009, J. Comput. Phys. 228, 952. 

studies, which we intend to carry out in the near future. 

16.  McAteer, R.T.J., Gallagher, P.T., Williams, D.R., 

Mathioudakis, M., Phillips, K.J.H., Keenan, F.P.: 2002, 
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REVIEW

Figure 2c is an enlarged view of the region that is marked by 

an arrow in Fig. 2b; here, the field lines are responsible for the 

current density accumulation, which initiates the flare. These 

Introduction

field lines are extrapolated using the nonlinear force-free field 

Solar flares are explosive phenomena observed in the atmosphere  (NLFFF) approximation; this is one of the main topics of this of the Sun (the solar corona). These events are observed as  paper. 

sudden bursts of electromagnetic radiation, such as extreme 

ultraviolet radiation (EUV), X-rays, and even white light; some 

examples are shown in Fig.1a–c. The scale is classified as soft 

X-rays, using the 1–8 Å band obtained by the GOES-5 satellite 

(one of the Geostationary Orbiting Environment Satellites), as 

shown in Fig. 1d. The Sun is known to be a magnetized star. 

Figure 2a shows the line-of-sight component of the magnetic 

field, and the positive and negative polarities cover the whole 

sun. Figure  2b  shows the three-dimensional (3D) magnetic 

field lines traced from the positive to the negative polarities; 

these have been extrapolated under the assumption of the 

potential field approximation (this will be discussed below). 

Solar flares often occur above the sunspots corresponding to a 

cross section of strong magnetic flux. In addition, because the 

solar corona satisfies the low- β plasma condition (β= 0.01–

0.1) (Gary 2001) in which the magnetic energy dominates that 

of the coronal plasma, solar flares are widely considered to be 

a manifestation of the conversion of the magnetic energy of the 

solar corona into kinetic and thermal energy, culminating in the  Figure 1: Observations of the solar flare. a–c The solar flares in the release of high-energy particles and electromagnetic radiation.  EUV images for different wavelengths observed on the solar surface or in the solar atmosphere. From left to right, the wavelengths are 1600, 

171, and 94 Å. The flares were observed by SDO/AIA at around 18:00 

UT on 29 March 2014. d Time profile of the X-ray flux measured by 

Citation: Satoshi Inoue, Magnetohydrodynamics modeling of coronal  the GOES 12 satellite on 29 March 2014. The solar X-ray outputs in magnetic field and solar eruptions based on the photospheric mag-the 1–8 Å and 0.5–4.0 Å passbands are plotted

netic field, OI: 10.1186/s40645-016-0084-7. 
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Pneumann (CSHKP) and explains the observations at multiple 

wavelengths (Carmichael 1964;  Hirayama 1974;  Kopp and 

Pneuman 1976; Sturrock 1966). Masuda et al. (1994) confirmed 

the CSHKP model of the solar flare by analyzing the hard X-ray 

signals obtained during a solar flare. In addition, Sterling and 

Hudson (1997) found a characteristic pattern of X-rays that are 

released prior to a flare; this is shown in the upper right panel 

of Fig. 3a. This pattern is a sigmoid (an S- or inverse S-shaped 

structure) that changes into a cusp-shaped loop structure after 

the flare occurs. Su et al. (2007) and McKenzie and Canfield 

(2008)  demonstrated  the  fine  structure  and  topology  of  the 

field  lines  that  were  later  observed  by  an  X-ray  telescope 

(Golub et al. 2007) on board the Hinode satellite (Kosugi et 

al. 2007). In addition, Yokoyama et al. (2001)found evidence 

of  reconnection  inflow  in  extreme  ultraviolet  observations 

of the  Solar and Heliospheric Observatory (SOHO). The 

images of the coronal loop shown in Fig. 3b are reminiscent 

of reconnection. Because these observations were based on 

Figure 2:  Magnetic  fields  of  the  sun. a  Full-disk image of a line- imaging of electromagnetic waves, the data were mapped onto of-sight  component  of  the  solar  magnetic  field  observed  by  SDO/

a 2D plane. Thus, obtaining a 3D reconstruction of these events 

HMI at 15:00 UT on 29 March 2014, which corresponds to 2.5 h  is extremely difficult. 

before an X1.0-class flare. b The magnetic field lines in yellow are 

superimposed on a. The field lines are extrapolated under the approxi-

mated potential field. This figure is courtesy of Dr. D. Shiota (Shiota 

et al. 2012). cThe active region, corresponding to the region marked 

by an arrow in b, is the region in which a sunspot with a strong mag-

netic field is concentrated. The field lines are plotted according to the 

NLFFF approximation, in which they accumulate the strong current 

density

Furthermore, this causes a huge amount of coronal 

gas (a typical mass is 1015  g) with a velocity of 100–2000 

kms −1 to be released into interplanetary space; this is called 

a coronal mass ejection (CME; e.g.,  Forbes (2000)). The 

CMEs  are  sometimes  associated  with  solar  flares;  however, 

the detailed understanding of the relationship between these 

two phenomena remains elusive (Chen 2011; Schmieder et al. 

2015). It is important to understand these phenomena in order 

to better understand the nonlinear plasma dynamics of the  Figure 3: Observations and models of the solar flares. a The solar processes involving the magnetic energy or helicity of the solar  corona observed by soft X-ray from on board the Yohkoh satellite. 

coronal plasma; this includes storage-and-release processes as  The left panel shows 

left panel 

the whole 

shows the 

sun; the upper 

whole sun; the upper and 

and lower right pan-

upper and lower right pan-

upper and lower right 

and lower right 

lower right 

right pan-

well as the forecasting space weather (Tóth et al. 2005; Liu et  els  show the sigmoid and cusp-loop structures, observed before al. 2008; Kataoka et al. 2014). Investigations of solar flares and  and  after  the  flare,  respectively.  This  figure  is  courtesy  of  ISAS/

CMEs are thus important in terms of both the elemental plasma  JAXA. b  The  reconnection  process  in  the  solar  flare  observed physics and the applied science. 

by  SOHO  satellite fromYokoyama et al. (2001). c  3D view of the 

magnetic field during the solar flare inferred from the observations 

Since the discovery of the solar flares by Carrington (1859),  from Shiota et al. (2005). d The loss-of-equilibrium model proposed many studies have been performed (including observational,  by  Forbes  and  Priest  (1995).  The  flux  tube  loses  the  equilibrium theoretical, and numerical studies) for clarifying their dynamics  by changing the boundary conditions; as a result, an eruption oc-

(Benz 2008;  Priest and Forbes 2002;  Shibata and Magara  curs. e The tether-cutting reconnection model proposed by Moore et 2011; Wang and Liu 2015). Many new insights on solar flares  al. (2001). The flux tube is created by the reconnection taking place and related phenomena have been obtained by analyzing the  between the two sheared field lines formed before onset; eventually, data collected by satellites. For instance, the Yohkoh satellite  the flux tube can erupt away from the solar surface. The images in obtained much data on dynamical features of the sun, some of  (b–e) are copyright AAS and reproduced by permission which had not been predicted; this can be seen in Fig. 3a; this 

Based on this observational evidence, there have been 

image, taken by a soft X-ray telescope, shows several important  several attempts to construct the 3D magnetic structure aspects that have helped our understanding of solar flares. For  (e.g., Shibata (1999)). Figure 3c is an image of a 3D magnetic example, Tsuneta et al. (1992) discovered the cusp-shaped  structure inferred from observations during the onset of the structure during the solar flare seen in the lower right panel in  solar eruption depicted in Shiota et al. (2005); the reconnection Fig. 3a. A detailed analysis (Tsuneta 1996) produced evidence  model can be used to explain various observed phenomena, of the reconnection, and this lent support to a theoretical  e.g., the two H- αflare ribbons, and giant arcades. In addition, flare  model  based  on  reconnection;  this  model  is  named  for  various models have been proposed that predict the onset its developers, Carmichael, Surrock, Hirayama, Kopp, and  of  solar  flares  and  CMEs.  For  instance,  Forbes  and  Priest 
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(1995) proposed the catastrophic model shown in Fig. 3d; this  by Nishida et al. (2013), who reported complex reconnections shows that the flux tube in the solar corona does not remain at  and plasmoid motions associated with flux tube eruption. Chen equilibrium when the boundary conditions are changed, and  and Shibata (2000)  numerically  confirmed  that  a  flux  tube this results in a sudden eruption. The tether-cutting model,  eruption is triggered by a small emerging flux that is the result proposed by Moore et al. (2001), is shown in Fig. 3e. They  of the reconnection with magnetic fields lines surrounding the assumed that two sheared field lines existed along the polarity  flux tube, and it can reduce the downward tension force acting inversion line (PIL) prior to the onset of the flare; this is shown  on  the  flux  tube.  Török et al. (2009) extended this into 3D 

in the upper left panel of Fig. 3e. Note that this has a somewhat  space. As shown in Fig. 4d,Török and Kliem (2005) and Fan sigmoidal structure. If there is reconnection between the  (2005)  constructed more realistic MHD models by noting sheared field lines, then long twisted lines are formed, and an  that  the  flux  tube  roots  are  tied  to  the  solar  surface  (Titov eruption may occur. The final state shown in the right bottom  and Démoulin 1999), rather than by assuming infinitely long panel of Fig. 3e is very similar to that shown in Fig. 3c. 

flux tubes as in Inoue and Kusano (2006) and Nishida et al. 

The dramatic increase in computer power allows us to perform  (2013).  Török and Kliem (2005) reported that the eruption 3D magnetohydrodynamics (MHD) simulations and to esti- depends on the decay rate of the external magnetic field, and mate the 3D dynamics of magnetic fields during solar flares.  later, this scenario was explained as torus instability (Kliem Several studies have modeled sunspots to be asymmetric or  and Török 2006). To address this instability, detailed stability as simple dipole fields and have analytically obtained the 3D  and equilibrium analyses of flux tubes in the solar corona were coronal magnetic fields by fitting appropriate boundary condi- performed by Isenberg and Forbes (2007) and Démoulin and tions (e.g., Amari et al. (2000) and 

and Amari et al. (2003a)). Fig-

Amari et al. (2003a)). Fig- Aulanier (2010), and the dynamics were numerically confirmed ure 4a shows the results from Amari et al. (2003b); this shows  by Török and Kliem (2007), Fan (2010), and Aulanier et al. 

the formation of a flux tube, which is initiated by the initial  (2010). Attempts are being made to meet the challenge of potential field, through twisted and converged motion on the  simulating a solar eruption through the emergence of highly photosphere. The twisted motion imposed on a dipole sunspot  twisted flux tube embedded in the convection zone (e.g., An causes the accumulation of sheared field lines, and the motion  and Magara (2013);  Archontis et al. (2014);  Leake et al. 

converging  toward  the  PIL  creates  a  flux  tube  composed  of  (2014)). 

highly twisted field lines due to the flux cancellation. Aulani-

er et al. (2012) and Janvier et al. (2013) constructed similar 

MHD models, and these generated a 3D view that extended 

the well-established 2D CSHKP model. This view produced a 

3D feature that was not seen in the 2D model; their simulations 

produced strong-to-weak sheared post-flare loops, which are 

consistent with observations (Asai et al. 2003). On the other 

hand, Kusano et al. (2012) successfully reproduced an eruption 

in a different way, as shown in Fig. 4b. They created a linear 

force-free field that had shearing field lines as the initial condi-

tion; a small dipole emerging flux was imposed at a local area 

on the PIL. They found that only two types of emerging flux 

can produce a flux tube; this shows that the eruption is due to 

interactions with a pre-existing sheared magnetic field. Later, 

this scenario was confirmed in observations by Toriumi et al. 

(2013) and Bamba et al. (2013). 

Other MHD models have been derived from an initialized 

flux tube. Solar filaments are often observed on the sun; these 

are composed of a denser plasma than that in the solar corona 

(Parenti 2014). It is widely agreed that the highly helical 

twisted lines in the filament sustain the dense plasma in the 

solar corona (Priest and Forbes 2002). Recent observations 

clearly show the helical structure of the magnetic field, i.e., the 

flux tube and the dynamics (e.g., Cheng et al. (2013); Nindos 

et al. (2015);  Vemareddy and Zhang (2014)). In addition to 

this, the flux tube/filaments have often been observed to erupt 

away from the solar surface. Following these observations, Figure 4:  3D  MHD  simulation  of  solar  flares  by  pioneers  in  the extensive MHD modeling, focusing on the flux tube dynamics,  field. a  MHD  modeling  of  the  solar  flare  byAmari et al. (2003a). 

has been performed. Inoue and Kusano (2006) investigated the  The potential field was reconstructed from the given simple dipole dynamics of a flux tube that was initially embedded in the solar  fields,  which  were  imposed  on  the  twisted  and  converged  motion. 

Consequently, the potential field was converted into a non-potential 

corona, as shown in Fig. 4c. This extended the studies of Forbes  field, leading to the eruption. b MHD modeling by Kusano et al. 

(1990)and Forbes and Priest (1995) showing the dynamics in  (2012) shows that the emergence of small flux can destroy the initial a 2D space. This study found that the flux tube eruption was  equilibrium  condition  of  the  linear  force-free  field,  leading  to  the caused by a kink instability in 3D space, rather than by a loss  formation of a large flux tube and an eruption. cInoue and Kusano of equilibrium in 2D space, as discussed by  Forbes (1990).  (2006) investigated the flux tube dynamics associated with the solar Recently, a higher-resolution simulation was performed  flares and causing a CME. The flux tube was assumed to be infinitely 
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long and was driven by kink instability, leading to a CME for a cer-

reconstructed  from  the  measured  photospheric  field.  Finally, 

tain supra-threshold height. dFan (2005) employed a more realistic  we draw some important conclusions. 

flux tube (Titov and Démoulin 1999) with footpoints tied to the solar 

surface. The eruption was first driven by kink instability and later by 

Extrapolation of the coronal magnetic fields

torus instability (Fan 2010). All images are copyright AAS and repro-

Because we can obtain observations of the magnetic 

duced by permission

field  components  only  for  the  photosphere,  it  is  necessary 

Several studies have shown the formation and dynamics of  to extrapolate to obtain information about the 3D coronal a large-scale CME in the range of a few solar radii. Antiochos  magnetic fields in 3D. The solar corona is considered to be in et al. (1999) proposed a breakout model in which a moving  low- β plasma state, where β=P/2B2 is defined to be the ratio magnetic field surrounding the core fields triggers the CME;  of the plasma gas pressure (P) to the magnetic pressure (B2). 

those  dynamics  were  later  confirmed  in  a  high-resolution  From this, we have that the force-free state simulation (e.g.,  Lynch et al. (2008)  and  Karpen et al. 





(1)

(2012)). Shiota et al. (2010)reported that an interaction between 

the core field (modeled as a spheromak) and the ambient field  is a good approximation for describing the state of the coronal is important for determining whether an ejection will occur. 

magnetic field, where   B  is the magnetic field satisfying the 

solenoidal condition, 

However, most of the studies presented above assumed 

hypothetical and ideal situations. Although these studies 





(2)

clarified  many  elementary  physical  processes  related  to  the  and  J is the current density, onset  and  dynamics  of  solar  flares,  they  did  not  incorporate 

the data collected by solar satellites (in particular, they did not 





(3)

incorporate magnetic field data). One of the reasons for this is 

In this section, we introduce a method for extrapolating 

that only the photospheric magnetic field can be measured, and  the solar coronal magnetic field given only the photospheric this implies that the coronal magnetic field cannot be observed  magnetic fields in the force-free approximation. 

directly. Nevertheless, several models have been proposed in 

which the photospheric magnetic field is treated as a boundary 

surface (.e.g., Török et al. (2011); van Driel-Gesztelyi et al.  Potential field

(2014);  Zuccarello et al. (2012)). Challenging simulations  The potential field is the simplest force-free field approximation: considered a wide domain that extended from the Sun to 

the Earth; their major objectives included the initiation of a 





(4)

CME, its propagation in interplanetary space, and ultimately  where the current density vanishes everywhere. In this formu-its interaction with the magnetosphere, which governs the  lation, the magnetic field can be replaced with the scalar func-dynamics of the ionosphere (Manchester et al. 2004; Tóth et  tion ψ, as follows:

al. 2005). 

On the other hand, most of these models employed only 





(5)

the normal components of the magnetic field, neglecting the 

horizontal fields. Horizontal magnetic fields are very important  If we use the solenoidal condition of Eq. (2), then Eq. (5) can for explaining the solar flares because these fields serve as a  be rewritten as

proxy for the extent to which the field lines are twisted and 

sheared, i.e., for determining the free magnetic energy at the 

(6)

solar surface. The MHD modeling of solar eruptions, which 

accounts for the three components of the photospheric magnetic  This corresponds to the Poisson equation, for which a unique field, has only recently been demonstrated, thanks to a state-of- solution is guaranteed for a boundary valueproblem. In this art solar physics satellite. However, several problems remain  way, we can calculate the solar coronal magnetic field, given open; these include the uniqueness of the numerical solution  the normal component of the magnetic field (B ) and its Neu-n

and the mathematical consistency of the MHD equations on a  mann condition, 

specified boundary (these questions will be discussed below). 

In this paper, we present state-of-the-art MHD modeling, 

which  accounts  for  the  photospheric  magnetic  field,  and  we 





(7)

will focus on applying this to solar eruptions. In particular, we 

introduce the modeling of the coronal magnetic field and solar  on each boundary. Although the photospheric magnetic field eruptions, based on the three components of the photospheric  can be considered to be the bottom surface, conditions are re-magnetic field. This area of research has been recently revived,  quired on the other boundaries in order to solve Eq. (6). Sev-beginning with a study by  Jiang et al. (2013), and followed  eral such methods have been proposed, some of which are de-by Inoue et al. (2014a), Amari et al. (2014), and Inoue et al.  scribed below. 

(2015).  The  structure  of  this  article  is  as  follows.  We  first 

One  approach  is  to  use  Green’s  functions  (Sakurai 

introduce a method for 3D reconstruction of the coronal  1982; 1989). In this approach, the potential field is created by magnetic  field,  based  on  the  photospheric  magnetic  field;  monopoles that are located at different points on the bottom this includes a potential field that is easily reconstructed from  boundary (x′,y′,0), at which the magnetic flux B dx′dy′ exists. 

one of the components of these fields and a nonlinear force-

z

The scalar potential ψ is

free  field  that  is  based  on  all  of  the  components.  Next,  we 

describe recent MHD models that use a magnetic field that is 
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doing this. On the other hand, the potential field is a minimum 



(8)

energy state that does not store the free magnetic energy 

released in the solar flares. This implies that the observed field 

where 

. The scalar function is determined auto- lines in the area close to the PIL cannot be captured by the matically by the normal component of the observed magnetic  potential field. To convert the potential field into the dynamic field, whereas  B=0 is assumed as  r approaches ∞. This method  phase of the solar flares, it is necessary to obtain the Poynting can be applied to an isolated active region that is not influenced  flux through the photosphere in order to obtain the free energy by the magnetic fields of other regions. On the other hand, if  (Feynman and Martin 1995; van Ballegooijen and PMartens the magnetic field lines in the active region extend into another  1989). 

active region, the boundary conditions at the sides and top are 

no longer appropriate. 

 Linear force-free field

The Fourier expansion can be used for deriving the  The force-free Eq. (1) can be rewritten as solution of Eqs. (5) and (6). The solution was presented 



(13)

by Priest (2014), as follows:

where  α  is  a  coefficient. After  taking  the  divergence  of  this 

equation, the left-hand side vanishes, and thus, we have



(14)

which implies that the coefficient α is constant along all field 

lines.  If  the  coefficient  α  is  constant  everywhere  (not  only 

along the field lines), Eq. (13) becomes a linear Equation that 

(9)

can be reduced to the Helmholtz equation, 

where the bottom boundary values are expanded into Fourier 

components k  and k . This formulation implies that all of the 

x

y



(15)

components decay exponentially, implying  B=0 at z=∞. How-

ever, the side boundaries automatically obey periodic bound- by taking the curl of Eq. (13). We call this solution the linear ary conditions, so this method is useful only for describing  force-free field (LFFF), and it is also specified with an appro-areas far from the side boundaries. 

priate boundary condition. 

We can easily extend Eq. (6) in spherical coordinates (r, θ, ϕ)  For example, (Chiu and Hilton 1977) found the analytical gen-and thus obtain a solution for the whole sun, as shown in  eral solution by using Green’s functions: Fig. 2b. This overcomes the problem mentioned above regarding the connectivity of the field lines. In spherical coordinates, 

the solution to Eq. (6) can be written using Legendre polyno-

(16)

mials (Altschuler and Newkirk 1969), as follows:

where 

is any finite integrable function (see Chiu and 

Hilton (1977)). 

is defined as

(10)

where 

are Legendre polynomials, and 

and 

are 

coefficients obtained from spherical harmonics analysis. The 

boundary condition is based on the normal component of 

the photospheric magnetic field, and the Neumann condition 

of ψ is the same as that in Eq. (7). Using the above calcula-

7). Using the above calcula-

tions, the potential fields can be expressed as follows:

where 

is

and r=(x−x′)2+(y−y′)2+z2. Using these equations, if we are giv-

(11)

en B  and the force-free α at the photosphere, then the LFFF is 

z

automatically determined. 



(12)

Unlike  the  potential  field,  the  LFFF  can  yield  the  free 

magnetic energy. In general, however, the observed force-

As an example, one result is shown in Fig. 2b, which can  free  α  measured  in  the  photosphere  varies  in  space.  In be used to depict the field lines covering the sun. One advantage  particular,  in  solar  active  regions,  the  coefficient  α  attains of the potential field extrapolation method is that the solution  high values close to the PIL and small values far from the is relatively easily obtained; there are several techniques for 
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PIL. This implies that the LFFF is inappropriate for modeling 

solar active regions. Therefore, we need to obtain the NLFFF 

extrapolation by using the observed force-free α, i.e., we need 



(19)

to obtain not only the normal component of the magnetic field 

but also the horizontal components at the photosphere in order  where c =1 and c =1/2 correspond to points in the volume and i

i

to reproduce the magnetic field of a solar active region. 

at the boundary, respectively,  B  is the measured photospheric 

0

magnetic field, and  Y is a reference function, 

Nonlinear force-free field

To demonstrate suitable magnetic fields in the solar active 

region, we consider solving the force-free Eq. (1) directly. 





(20)

However, because this equation contains nonlinearities that 

cannot be solved analytically, numerical techniques are  where  r′ is a fixed point and λ( r′) is a parameter that depends necessary (i.e., Schrijver et al. (2006) or Metcalf et al. (2008)).  on  r′. The reference function satisfies the Helmholtz equation, Since important information can be obtained from observed 

photospheric magnetic fields, this becomes a boundary 

(21)

value problem. Below, we briefly describe several numerical 

methods that have been developed. 

where δ  is the Dirac delta function. The parameter λ  can be 

i

i

Vertical integration method. The algorithm of the vertical  obtained by solving

integration  method  is  quite  simple.  The  magnetic  fields  are 

integrated upward in the  z  direction, as originally proposed 

byNakagawa (1974) and further extended by Wu et al. (1990). 

(22)

Under the force-free assumption, the current densities of 

the horizontal components along the solar surface can be 

Although it has been pointed out that this technique is 

calculated as follows:

slow (Wiegelmann and Sakurai 2012), recently, the calculation 

speed has been dramatically accelerated by using a GPU 

(Wang et al. 2013). 

(17)

Grad-Rubin method. Sakurai (1981) was the first to use the 

Grad-Rubin method for calculating the magnetic field in solar 

where  B   and  B   are the horizontal components of the  active regions, and this method was later extended, e.g., Amari x0

y0

photospheric magnetic field,  J   andJ   are the horizontal  et al. (2006). This technique follows directly from the force-x0

y0

components  of  the  current  density,  and  α   is the force-free  free field property. First, the potential field is calculated based 0

alpha obtained from J /B . Using Ampere’s law, Eq. (3), and  only  on  the  normal  components  of  the  magnetic  field.  The z0

z0

the solenoidal condition, Eq. (2), the following equations are  force-free  αcan be measured at the bottom surface as  α=J /z obtained for the z-derivatives of the magnetic field:

B , and it can be distributed in 3D according to the following 

z

equation:

(23)

where  k  is the iteration number and  B0  corresponds to the 

potential field. The magnetic field is updated according to



(18)

The integration, in which the information about the 





(24)

photospheric magnetic field is extended upward, is repeated, 

and  the  coronal  magnetic  field  can  be  calculated  in  3D.  and

However the above algorithm is mathematically ill-posed, i.e., 

the calculation is not robust, as has been reported in several 

papers (e.g., Wiegelmann and Sakurai (2012)). For instance, 





(25)

once the nonphysical phenomena due to numerical errors  Since the vector potential  A k satisfying ∇× A k= B k can be written appear  during  the  integration,  the  magnetic  field  increases  as

exponentially. One reason for this is that no restrictions are 

imposed on the top and side boundaries. 

The  Green’s  function  method.  A  similar  mathematical 

(26)

approach that uses the Green’s function was developed by Yan 

(1995) and Yan and Sakurai (2000) but the magnetic field is  the updated  B automatically satisfies the solenoidal condition, and it is then substituted back into Eq. (23). This process 

assumed as follows: 

. They found  is repeated until the magnetic field reaches a steady state. 

the  NLFFF  solution  based  on  Green’s  second  identity,  as  Although the force-free  α  can  be  determined  at  positive follows:

or negative polarity and will satisfy Eq. (23), the single-

polarity information is neglected. Nevertheless, Régnier et al. 

(2002) and Canou and Amari (2010) were able to reconstruct 
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magnetic fields that agree with the observations. Recently, 

the Grad-Rubin method has been improved by Amari et al. 





(32)

(2010); Wheatland and Régnier (2009), and (Wheatland and 

Leka 2011), who have obtained the unique solution by using  where ψ  and  A  are the scalar and vector potentials, respectively. 

p

np

two different solutions derived from different polarities, i.e.,  Taking into account Eq. (5),∇ψ   and  ∇× A   correspond, p

np

by changing the distribution of the force-free α at the bottom  respectively, to the potential and non-potential components of surface. 

the magnetic field. Taking the divergence of Eq. (32), the equal-

32), the equal-

ity ∇·∇× A =∇· B =0 is automatically satisfied. However, it is MHD relaxation method. In the MHD relaxation methods, 

np

np

not guaranteed that ∇·∇ψ =∇· B = 0. If  B  contains a numerical the MHD equations are solved directly (in particular, this is 

p

p

p

error,  we  further  decompose  it  into  Bp′,  which  satisfies  the 

the zero-beta MHD approximation (Mikić et al. 1988)); they  solenoidal condition, and  B , the error, as follows: solved

error





(33)



(27)

where, in general,  B  does not meet the solenoidal condition. 

error

However, taking the divergence of Eq. (33), the equation can 



(28)

be reduced to the Poisson equation, 

and



(34)

(29)

Consequently, this equation can be solved, and the magnetic 

field satisfying the solenoidal condition  B′ can be updated as 

to find the force-free solution while keeping the photospheric  follows:

magnetic field as the boundary condition. Here,  v is the plasma 

velocity, and ν and η are the viscosity and resistivity, respectively. 



(35)

The zero-beta MHD is an extreme approximation of the low-

beta solution. However, since a force-free state can be assumed  This technique has been widely used for eliminating errors in the zero-beta approximation, this method is valid. Several  (Tanaka 1995; Tóth 2000); however, solving the Poisson equa-studies (Mikić and McClymont 1994; McClymont and Mikic  tion is computationally demanding. Therefore, numerical tech-1994; Jiang and Feng 2012; Inoue et al. 2014b) have employed  niques for improving the calculation speed, e.g., a multigrid the potential field as the initial condition; consequently, the  technique, are required (Inoue et al.2014b). 

magnetic twist on the bottom surface is obtained by replacing 

the tangential components of the photospheric magnetic field  Another technique was proposed by Dedner et al. (2002), who above which the magnetic fields relaxes toward the force-free  introduced a modified induction equation, state through the MHD relaxation process. This process is 

called the stress-and-relaxation method (Roumeliotis 1996). In 





(36)

a simpler treatment, known as the magnetofrictional method, 

the equation of motion (27) is replaced with

and a convenient equation for eliminating the errors derived 

from ∇· B, 



(30)

where μ is a coefficient. This technique can also be used to 





(37)

find the force-free solution (Valori et al. 2005), and it has been 

applied to the photospheric magnetic field. 

together with the equation of motion (27) and Ampere’s law 

(29). Using Eq. (36), Eq. (37) can be changed to

Note that if the three components of the photospheric 

magnetic field are fully satisfied at the solar surface and if the 

plasma velocity is zero there, these conditions are not consistent 



(38)

with the induction equation, which requires information about 

the differential value in the normal direction. Consequently,  where  c   and  c   correspond to the advection and diffusion h

p

an error appears in ∇· B. Therefore, the errors arising during  coefficients; this plays a role in propagating and diffusing the the relaxation process should be eliminated, and several  numerical errors of ∇· B. The main advantage of this method methods have been developed for eliminating them (Tóth  is that it can be implemented very easily without significantly 2000; Miyoshi and Kusano 2011). Often, the projection method  changing the numerical code. Another advantage is that this is used, and this removes the errors derived from the potential  method is less computationally demanding than the projection component. We decompose the numerically obtained magnetic  method. These advantages were demonstrated by Inoue et al. 

field  B  into  B  (the potential component) and  B  (the non- (2014b). 

N

p

np

potential component), as follows:

The vector potential is specified to maintain the solenoidal 

(31)

condition. Using the vector potential, the induction equation 

can be written as

In general, a vector field  B can be described as

(39)
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where  E=η J− v× B and Φ is the gage. Several papers have used  free state. In this case, although the horizontal fields were not the NLFFF extrapolation (e.g.,van Ballegooijen et al. (2000)  used, the filament and the sigmoid structure were satisfactorily and Cheung and DeRosa (2012)). In this case, the solution is  reproduced (Bobra et al. 2008;  Su et al. 2009;  Savcheva et sought under the proper boundary conditions and gage. Sim- al. 2012). Rather than using the methods accounting for the ply,  B   and  J   are  fixed  at  the  boundary  (i.e., A   and A   are  photospheric horizontal fields, modeling the filaments in the z

z

x

y

fixed),  then A   is obtained from ∇2 A= J  under the Coulomb  quiet region would be very useful because the values are very z

gage ∇· A=0. A solution obtained by this method will complete- weak and the directions are random, so this might depend on ly satisfy the solenoidal condition. On the other hand, there  the observations. In an attempt to obtain consistent magnetic is no guarantee that the horizontal components at the bottom  fields,  several  studies  have  considered  the  topology  of  the surface, which are obtained by iteration, will match observed  coronal loops obtained from images, in addition to accounting values. 

for  the  photospheric  magnetic  field  (Aschwanden  et  al. 

2014; Malanushenko et al. 2014). 

The constrained transport (CT) method (Brackbill and 

Barnes 1980;  Evans and Hawley 1988) uses a numerical 

Unfortunately, the NLFFF does not allow the full 

differential approach to maintaining the solenoidal condition.  calculation of the coronal magnetic fields. First of all, because, When the magnetic field  B and electric field  E are defined at  in general, the photospheric magnetic field cannot satisfy the the face center and edge centers of each numerical cell, i.e., 

force-free state, there is a contradiction between the bottom 

and  inner  regions;  consequently,  the  3D-reconstructed  field 

also deviates from the force-free state. Furthermore, although 

several methods have been developed for exploring the NLFFF, 

there are no guarantees that there is a unique solution that fits 



(40)

the photospheric magnetic field applied to a given boundary 

condition. In the NLFFF approach, there are several open 

where symmetry is assumed in the z direction, then the sole- problems related to the free magnetic energy or the topologies noidal condition is automatically satisfied:

of the magnetic fields (Schrijver et al. 2008;  De Rosa et al. 

2009). Thus, there is a need for confirmation of the reliability 

of this approach. 



(41)

NLFFF  extrapolation  applied  to  a  reference  field  (Low 

However, the solenoidal condition requires consistent  and Lou 1990)

interaction with the boundary condition, and thus, it might be 

The above methods for the NLFFF reconstruction have 

difficult to use it with the NLFFF calculations, which require  been applied to the photospheric magnetic field observed in the the three components of the photospheric magnetic field. 

solar active region. Most of these methods required knowledge 

Optimization method. Wheatland et al. (2000) proposed an  of the reference magnetic field in order to determine to what optimization method that was later improved by Wiegelmann  extent the reconstructed field approaches the force-free state. 

(2004). This method iteratively minimizes a function L related  One of the widely known solutions is a semi-analytical force-to  J× B  and ∇· B. First, we define a function L as free field that was presented by (Low and Lou 1990). These 

authors found a force-free solution in spherical coordinates, 



(42)

where symmetry was assumed in the ϕ direction:

it is the sum of the Lorentz force and the solenoidal condition, 

and its value is prescribed to be zero in order to satisfy the 

(45)

force-free condition. The time derivative is expressed as

where A and Q are functions of r and θ. The force-free Eq. (1) 

can be rewritten as

(43)

where  F and  G are high-order differential equations in terms (46)

of  B. If the function  F satisfies

where μ=cos(θ) and α=dQ/dA. It can be further rewritten as



(44)

and if the magnetic fields on the surface vanish at infinity, then 

(47)

the L monotonically decreases. The problem is then reduced to  using a separable solution iteratively finding the steady state the time-dependent magnetic 

field  B that satisfies Eq. (44). 

(48)

NLFFF extrapolation using the observed images.  van 

Ballegooijen (2004) modeled a filament by inserting a twisted  and as

magnetic  flux  tube,  whose  axis  was  along  the  observed 

filament, into a potential field, with the magnetofriction (van 

Ballegooijen et al. 2000) driving the system toward the force-



(49)
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These formulas are obtained under the assumption of a van- differs  significantly  from  the  Low  and  Lou  solution.  Next, ishing  magnetic  field  as  r→0,  i.e.,  for  positive  n. Although  the reconstructed horizontal fields at the bottom surface were we can write down the 1D differential equation with respect  replaced by those of the Low and Lou solution, following to  P(μ), shown as Eq. (47), it cannot be solved analytically  which  the  magnetic  fields  in  the  domain  were  iteratively due to its nonlinearity. The solution of this equation, therefore,  relaxed according to the equation of motion (27), the induction is obtained numerically. The boundary condition is that P = 0  Eq. (36), Amperes law (29), and Eq. (37), which was used to at μ = −1 and 1, which was originally set by  Low and Lou  correct the errors in ∇· B. 

(1990), and the solution is called the Low and Lou solution. 

During the iterations, at all boundaries, the vector  B was 

The boundary conditions are that B  and B  vanish along the 

θ

ϕ

fixed to be equal that in the Low and Lou solution, the velocity 

axis, and the differential equation can be solved as a boundary  was set to zero, and the Neumann condition was imposed on ϕ, value problem. One of the solutions is shown in Fig. 5a; here,  i.e.,∂ϕ/∂n=0,  where  n  is the direction perpendicular to the the solution was transformed to Cartesian coordinates, and n =  boundaries. In order to avoid a large discontinuity between the 1 and a2 = 0.425 are assumed (see Low and Lou (1990) for  bottom and the inner domain, the velocity field was adjusted details). The accuracy of the NLFFF was checked using this  as  follows.  We  defined  v∗=| v|/| v |, and if  v∗  became larger solution as the reference magnetic field. 

A

than v , the velocity was modified as follows:

max



(50)

where, v = 1.0. The resistivity was given as follows:

max





(51)

where  η =3.75×10−5  and  η =1.0×10−3  (both are non-

0

1

dimensional). The second term was introduced to accelerate 

the relaxation to the force free field, particularly in a weak-

field  region.  In  this  study, 

were set to 5.0 and 0.1, 

respectively; these values were selected by trial and error and 

depend on the boundary conditions, but it is best if the value 

of c  is first set to account for the CFL condition. The viscosity 

h

was assumed as ν= 1.0×103; the viscosity also plays an impor-

tant role in smoothly connecting the boundaries and nearby 

Figure 5: Semi-analytical Low and Lou solution and the NLFFF so-

inner region, which indirectly helps our MHD calculation. A 

lution. a The magnetic field lines of the Low and Lou solution with  more detailed explanation of this was presented byInoue et al. 

the B  distribution are shown in blue and red. b The potential field  (2014b). 

z

extrapolated from only the normal component of the magnetic field, 

using the Low and Lou solution on all boundaries. c  The NLFFF 

Eventually, the final state obtained by using this method 

solution based on the MHD relaxation method (Inoue et al. 2014b),  almost completely reproduced the Low and Lou solution, as extrapolated from all three components of the magnetic field of the  shown in Fig.  5c. Quantitative results were also presented. 

Low and Lou solution on all boundaries. d Distribution of the force-

The force-free αwas measured at both footpoints of all field 

free  α  from  Inoue  et  al.  2014b, where the  horizontal  andvertical  lines, and this is shown in Fig.  5d. The force-free  αmust be axes  correspond  to  the  force-free  α  measured  at  the  field  lines  constant  along  the  field  lines,  following  Eq.  (14),  and  from footpoints. The green line has a slope of unity (i.e., y=x). The image  Fig. 5d, it can be concluded that this relation is satisfied. In in (d) is copyright AAS and is reproduced by permission

addition, the authors quantitatively evaluated the accuracy by 

Schrijver et al. (2006) estimated the accuracy of the NLFFF  following Schrijver et al. (2006), evaluating as reconstructed by various different methods; this included a 

semi-analytical force-free solution introduced by Low and Lou 

(1990). Their results suggest that the reconstruction accuracy is 

strongly method dependent, i.e., several methods satisfactorily 

captured the Low and Lou solution, although other methods 

failed. On the other hand, during the past decade, many efforts 

have been made to improve the numerical code for the NLFFF 

reconstruction (Amari et al. 2006;  Valori et al. 2007;  He 





(52)

and Wang 2008; Wheatland and Leka 2011; Jiang and Feng 

2012; Inoue et al. 2014b). 

where  B and  b are Low and Lou solution (reference solution) and the extrapolated solution, respectively, C  is the vector 

Below, we review the results based on a recent 

vec

correlation,  C   is the Cauchy-Schwarz inequality,  E   is the 

extrapolation method that was proposed byInoue et al. (2014b) 

cs

M

mean vector error, E  is the normalized vector error, ε is the 

and is based on the MHD relaxation method. The potential field 

N

energy ratio, and N is the number of vectors in the field. Inoue 

was reconstructed, based only on the normal component of the  et al. (2014b) obtained C  = 1.0, C  = 1.0, 1−E  = 0.97, 1−

boundary magnetic field. This result is shown in Fig. 5b and 

vec

cs

N

E  = 0.95,ε = 1.02, and these values were estimated over the 

M

[image: Image 392]

[image: Image 393]

88

Mathematical & Computational Physics

entire region, which was divided into 64 × 64 × 64 grids (see  the above process can help to reduce their effects. In this Inoue et al. 2014b for details). They confirmed that the NLFFF  study,  R =5.0×10−3,  dζ=0.02,  and  v =  0.01.  In  the  MHD 

min

max

can be reconstructed with high accuracy. Most of the recently  equations,  c2hch2  and  c2pcp2  are given as constant values, developed methods allow for the recording of these values.  0.04 and 0.1, respectively, and ν=1.0×10−3. The resistivity is Thus,  it  is  possible  to  achieve  force-free  field  extrapolation  included in Eq. (51), with  η =5.0×10−5  andη =1.0×10−3. For 0

1

if  the  boundary  condition  completely  satisfies  the  force-free  further details, see Inoue et al. (2014b). 

condition. 

Figure 6a shows the photospheric magnetic field 90 min 

before the M6.6-class flare that occurred on 13 February 2011. 

NLFFF extrapolation applied to the solar active  These data were obtained by a helioseismic and magnetic region

imager (HMI;  Scherrer et al. (2012)) onboard the  solar 

dynamics observatory (SDO)  satellite (Pesnell et al. 2012). 

The upper and lower panels in Fig. 6b show enlarged views 

 3D magnetic fields in the solar active region

of the central area in Fig.6a; the arrows derived from the 

In contrast to the NLFFF extrapolation using the Low and  horizontal magnetic fields in the potential field are shown in Lou solution, some problems arise when the bottom boundary  the upper panel, and those derived from the observed one are is applied to the photospheric magnetic field.  Schrijver et  shown in the lower panel. Figure 6c, d shows the magnetic field al. (2008)performed the NLFFF extrapolations by using the  lines in the potential field and in the NLFFF approximation, photospheric magnetic field observed by the Hinode satellite,  respectively, superimposed on Fig. 6a. In particular, the central corresponding to the period of 6 h before the X3.4-class flare  part of the NLFFF, in which strong sheared field lines build that occurred in the solar active region 10930 on 13 December  up  and  the  current  density  is  enhanced  significantly,  differs 2006. Different methods were applied for the NLFFF  from  that  of  the  potential  field.  Figure  6e  shows the 171 Å 

extrapolation. The authors pointed out a method-dependent  EUV images for the time period in Fig.6a; these were acquired accumulation of the free magnetic energy in the NLFFF.  by an atmospheric imaging assembly (AIA;  Lemen et al. 

According to their calculations, a single NLFFF could yield  (2012)) on board SDO. The same field lines as in Fig. 6d were sufficient free magnetic energy to produce an X-class flare. De  superimposed on Fig. 6e. Because it can be clearly seen that Rosa et al. (2009) also performed the NLFFF extrapolation  most of the field lines roughly correspond to these obtained using different methods and for a different another active region  from the EUV image, the NLFFF appears to satisfactory (AR10953). They reported method-dependent configurations  reproduce the field lines in the observed EUV image. 

of the magnetic fields. From these results, it appeared that the 

NLFFF required further development. 

Although the NLFFF remains problematic and does not 

enable the complete reproduction of the coronal magnetic 

field on the basis of photospheric data, several recent studies 

had  roughly  captured  the  field  lines  observed  in  EUV 

images, as well as processes involving stored-and-released 

magnetic energy, helicity, and flares (e.g., Canou and Amari 

(2010); Inoue et al. (2013);Vemareddy et al. (2013); Jiang and 

Feng (2013); Malanushenko et al. (2014); Aschwanden et al. 

(2014); Amari et al. (2014). 

In what follows, we describe NLFFF results based on the 

MHD relaxation method developed byInoue et al. (2014b); 

note that the above equations are identical to those used by Low 

and Lou. The potential field is first reconstructed as the initial 

condition, and the boundary conditions are almost identical to 

those in the previous calculation, except that the potential fields 

are now fixed at the side and top boundaries. The following 

procedure is used to determine the bottom boundary. During 

the iterative process, the transverse components ( B ) at the 

BC

bottom boundary are evaluated according to

(53)

where   B   and   B   are the transverse components of the obs

pot

observational and the potential field, respectively, and ζ is a 

coefficient ranging from 0 to 1. R is introduced as an indication  Figure 6: NLFFF for AR11158 at 16:00 UT on 13 February 2011 before parameter for the force-free state, defined as R=∫|J×B|2dV; when  a M6.6-class flare. a Photospheric magnetic field obtained by SDO/

it drops below a critical value, denoted by R , then ζ increases  HMI,  90  min  before  the  M6.6-class  flare,  with  the  B   distribution z

min

plotted in  red  and  blue. b The two panels  show enlarged views of 

as ζ=ζ+dζ, where d ζ is given as a parameter. As ζ approaches  the central area in a; they show theB  distribution and the horizontal unity,  B   becomes consistent with the observational data. 

z

BC

fields with arrows, with 

arrows, 

the PIL 

with the PIL in 

in black. The 

black. The upper 

upper and lower pan-

and lower pan-

and lower pan-

lower pan-

The vector fields include spurious forces that produce a  els show the horizontal fields of the potential field and the observed sharp jump from the photosphere to the interior domain, and  fields, respectively. c The potential field (in green) is superimposed 
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on the data in a. d The NLFFF based on the MHD relaxation method  et al. (2014a) successfully reproduced a large twisted filament (Inoue et al. 2014b) is plotted as in c, except that the strength of the  and checked its stability. It was reported that the twist did not current density is mapped onto the field line. e EUV images observed  reach the critical value required for kink instability. However, at 171 Å from the SDO/AIA at 16:00 UT on 13 February 2011. f The  note that T  in Eq. (56) is the local twist of an infinitesimal flux field lines, in the same format as in d, are superimposed on (e)

n

tube; this is not the same as the global twist of a macroscopic 

flux rope. In addition, there is no guarantee that the theoretical 

 Stability analysis of the NLFFF

criteria are directly applicable to the NLFFF. In order to more 

Magnetic field stability is an important issue in the studies of  strictly confirm the stability, a numerical stability analysis (Ku-solar eruptions. Unfortunately, the photospheric magnetic field  sano and Nishikawa 1996;  Inoue and Kusano 2006) and an and the EUV or X-ray images do not allow for a quantitative  MHD simulation would be useful. 

stability analysis. On the other hand, the NLFFF might 

allow a quantitative analysis if we are given the 3D space 

information. One of the possible instabilities that can drive an 

eruption under the zero-beta assumption is a current driven, 

and one type current-driven instability is kink instability (Ji 

et al. 2003), which is determined by the magnetic twist of the 

poloidal field generated by the current in the flux tube (Kruskal 

and Kulsrud 1958). The magnetic twist (T ) is related to the 

n

magnetic helicity; that is, the flux tube helicity is described by 

the following equation (Berger and Field 1984):

(54)

where H is the magnetic helicity, Φ is the magnetic flux of the 

flux tube, and W  is the magnetic writhe corresponding to the 

r

helical structure of the field line axis. The magnetic twist T in-

n 

dicates how much of the magnetic helicity is generated by the 

currents parallel to the flux tube (Berger and Prior 2006; Török 

et al. 2010); thus, T  can be written as

Figure 7: NLFFF for AR11158 at 00:00 UT on 15 February 2011 

n

before a X2.2-class flare. a The B  distribution of the photospheric 

z

magnetic field, approximately 2 h before the occurrence of the X2.2-





(55)

class flare observed by SDO/HMI. b Magnetic field lines from the 

NLFFF are superimposed on  a;  the  format  of  the  field  lines  is  the 

where || indicates the component parallel to the field line, and  same as in Fig. 6d. The small inset corresponds to an enlarged view the line integral ∫dl is taken along the magnetic field line of the  of the central area. c The magnetic twist distribution from Inoue et al. 

flux tube. Using J = J· B/| B|, Eq. (55) can be further rewritten as (2014a), where the vertical and horizontal axes are the twist and B , 

||

z

respectively. The dashed line corresponds to T  = 1.0. The image is 

n

copyright AAS and reproduced by permission. d The magnetic field 

(56)

lines are plotted together with the surface corresponding to the critical 

height of the torus instability

If the magnetic fields meet the force-free condition, the mag-

netic twist can be written as

Torus instability (Kliem and Török (2006); tested against 

observations by Liu (2008)) is also important for driving the 

flux  tube  into  the  upper  corona,  e.g.,  for  triggering  a  CME 





(57)

(Isenberg and Forbes 2007; Aulanier et al. 2010; Démoulin and 

Aulanier 2010; Kliem et al. 2014). This instability is induced 

where α is the force-free alpha, and L is the length of the field  by a broken force balanced against the hoop force (Chen 1989), line (Inoue et al. 2011; Inoue et al. 2012a). Inoue et al. (2012b)  due to the flux tube current and the magnetic field suppressing and Inoue et al. (2013) performed a stability analyses on the  the flux tube. The decay index, NLFFFs of AR10930 and AR11158, both of which produced 

X-class flares. Below, we describe the results of one of these 

twist analyses (for AR11158). AR 11158 produced an X2.2-

(58)

class  flare  at  01:50  UT  on  15  February  2011;  it  exhibited  a 

quadruple field, as shown in Fig. 7a. The NLFFF based on the  is a convenient parameter (Kliem and Török 2006) because the MHD relaxation method is shown in Fig. 7b; strong twisted  location where this instability takes place is specified by n=1.5, lines were formed in the central region. The twist  T   was  which was already confirmed by several numerical studies n

calculated for all field lines according to Eq. (56), and the re-

56), and the re- (Török and Kliem 2007; Aulanier et al. 2010; Fan 2010). This 

sult is shown in Fig. 7c. According to this result, most of the  stability analysis can be applied to the NLFFF analysis. For field lines were less than one turn, and none reached the critical  example, Guo et al. (2010) reconstructed the NLFFF using the twist of T =1.75, which is required for kink instability (Török  optimization method (Wiegelmann 2004). In contrast to Inoue n

et al. 2004). Therefore, it was concluded that the twisted lines  et al. (2011), they found strongly twisted lines over the critical prior to the X2.2-class flare produced by AR11158 would be  twist of the kink instability and its writhe motion during the stable with respect to kink instability. In another study, Jiang  flare while a confined eruption was observed. They pointed out 
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that even though the twisted lines in the NLFFF were not stable  the observations, i.e., the boundary condition of the flux tube with respect to the kink instability, they were stable with respect  deviated greatly from the observations. 

to the torus instability, i.e., the flux tube remains within the 

It might be possible to overcome the above problem by 

magnetic field satisfying n≤1.5 during the eruption. Regarding  using MHD simulations with the NLFFF because the NLFFFs the AR11158 studied by (Inoue et al. 2014a), the decay index at  are constructed on the photospheric magnetic field, including the twisted lines formed in the NLFFF cannot reach the critical  the observed horizontal magnetic field on the solar surface. 

value of the torus instability, as shown in Fig. 7d. Thus, the  The motivations for using these simulations rather than the authors pointed out that the NLFFF was stable with respect  previous one are as follows: (i) It is likely that the artificial to both torus instability and kink instability. On the other  energy buildup process is not required by the existence of hand, for a different event, Jiang et al. (2014b) estimated the  twisted motions because it already accounts for the observed temporal evolution of the flux tube height obtained from the  twisting in the NLFFF. Although an additional process is NLFFF in solar active region 11283, focusing on the X2.1- required (discussed below) to create a new state that deviates class flare that occurred at 22:20 UT on 6 September 2011.  from the NLFFF and produces eruptions, compared to the They found that the decay index at the flux rope axis reached  previous simulations, that process does not greatly deform the the critical value for torus instability at the time at which the  initial state. Therefore, MHD simulations can be performed flare was generated, resulting in an instability-driven eruption. under  the  photospheric  magnetic  field  constraint.  (ii) These As seen from these studies, the NLFFF enables us to  simulations allow for the study of complex nonlinear dynamics, quantitatively perform a stability analysis, which would be  which could not be done previously. (iii) The results obtained difficult  to  do  based  only  on  observations.  Recently,  highly  from these simulations can be compared more exactly with accurate  measurements  of  photospheric  magnetic  fields  observations, even indirect ones. Thus, these results contribute became available from two space satellites and ground  to confirming the reliability or to improving the MHD model. 

observations; these have made the NLFFF a very useful tool  This field of study is emerging (Jiang et al. 2013), and only a for  understanding  the  coronal  magnetic  field  as  well  as  for  few papers have yet been published. Below, we briefly discuss speculating on the onset and dynamics of solar flares. 

several of the pioneering studies. 

MHD simulations of the solar eruptions based 

 MHD models of the solar eruptions, combined 

on the observational data

 with the NLFFF

Overview of the recent studies. Jiang et al. (2013) were the first 

 Necessity of MHD simulations combined with 

to perform the MHD simulation using the NLFFF to reproduce 

 the NLFFF

the X2.1-class flare in solar active region 11283. Their NLFFF, 

Numerical modeling of the coronal magnetic field (potential  which was reconstructed by using the MHD relaxation method field, LFFF, and NLFFF) successfully clarified many unknown  constructed in the modern MHD scheme (Feng et al. 2010), issues with 3D magnetic fields that had not been revealed by  successfully captured the sigmoid structure of the magnetic field observation. On the other hand, these models consider only the  observed before the flare and demonstrated that the eruption force-free equilibrium state, and they are thus not able to model  was driven by the torus instability (Fig.  8a). An important dynamic states (in particular, energy-released processes) that  advantage of this study seems to be that the same algorithm occur during flare events, even though the buildup of energy  was used in both the NLFFF and MHD simulations. Kliem et occurs at a rate much slower than the Alfven time scale and  al. (2013) also studied this eruption by setting the NLFFF as the thus can be handled by the NLFFF. MHD simulations can be  initial condition of their MHD simulation (Fig. 8b). The NLFFF 

used to reproduce such dynamic states. 

was reconstructed using the magnetic field observed on 8 April 

2010, using the flux rope insertion and the magnetofrictional 

The  potential  field  does  not  strongly  contribute  to  the  method. The NLFFF of this active region was thoroughly magnetic  field  in  the  solar  active  region  because  there  is  studied bySu et al. (2011). Kliem et al. (2013) found a critical no free energy available to induce dynamic behavior. For  value of the axial flux in the flux rope determined the stability. 

instance, Zuccarello et al. (2012) performed MHD simulations  They reported that the criteria for the onset of a flare is that the of  solar  eruptions,  using  the  potential  field  as  the  initial  axial flux be in the range of 5 × 1020 to 6 × 1020 Mx; in this case, condition.  To  obtain  the  solar  eruption,  the  Poynting  flux  the decay index is in the range of 1.3 to 1.8. For this eruption, through the boundary was determined, and the authors provided  the simulation results were in good agreement with some of the hypothetical shear and the convergence of the plasma on the  the observations, such as those during the initial rising phase solar surface. Consequently, the non-potential field was built  leading to the eruption. Amari et al. (2014) also successfully up, and the sheared and converging motions helped to form  demonstrated a flux tube eruption in their MHD simulations, as the flux tube, resulting in an eruption (Figure 6 and Figure 8 in  shown in Fig. 8c. The flux tube was reconstructed by using the their paper). The hypothetical motions are important factors for  Grad-Rubin type method (Amari and Aly 2010) combined with building up the non-potential field, but these are much different  the photospheric magnetic field observed by the Hinode solar from the observed ones. This means that there is a different  optical telescope (SOT; Tsuneta et al. (2008)) 6 h before the process for the building up of energy, i.e., the magnetic field  X3.4-class flare in AR10930 at 02:40 UT on 13 December just  prior  to  the  onset  of  a  flare  deviates  from  the  observed  2006. The authors found that 6 h before the flare, the NLFFF 

one. In contrast to this process, several studies inserted an  was destabilized with flux cancellation, the gas motion in analytical flux rope with a strong current and non-potentiality  characteristic of a sunspot moat flow or photospheric turbulent in a local area close to the PIL into the reconstructed potential  diffusion, and this resulted in the eruption. On the other hand, field. Unfortunately, these flux tubes did not agree exactly with 
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2 days before the flare, the NLFFF predicted no eruption for  neglected. In such a situation, although the thermodynamics the same situation. The authors pointed out the importance of  during  the  flare  cannot  be  investigated,  the  magnetic  field the formation of a significantly large flux tube and the moving  dynamics can be considered (Inoue et al. 2014a). This is the out from equilibrium. 

case because, during the flare, the magnetic energy converts 

into kinetic energy and thermal energy, which are the main 

factors for the energy store-and-release process in the solar 

corona. Therefore, in the early phase of a solar eruption that 

is not strongly compressible, zero-beta plasma is a good 

approximation, as demonstrated by Inoue and Kusano (2006). 

An advantage of this approximation is that it can neglect the 

sound waves, which often highly influence the rarefied CFL 

condition. As discussed in the previous section, the NLFFF 

reconstructed  2  h  before  the  X2.2-class  flare  shows  a  stable 

equilibrium state, and the dramatic dynamics that appear 

in observations are not evident. Therefore, some additional 

process is required to break the stable equilibrium. Here,Inoue 

et al. (2014a) and Inoue et al. (2015) introduced an anomalous 

resistivity imposed on the strong current region, and the MHD 

relaxation was performed by using the NLFFF as the initial 

condition  where  the  velocity  adjustment  defined  in  Eq.  (50) 

was removed. We would expect the anomalous resistivity to 

induce reconnection in the region of strong current density 

(Yokoyama and Shibata 2001) and to produce long twisted 

lines in the NLFFF. After an additional iteration, since there 

is no guarantee that this new state can remain in equilibrium, 

a newly created flux tube might escape from the solar surface, 

as was shown in Amari et al. (2014). The anomalous resistivity 

Figure 8: 3D MHD simulation based on the photospheric magnet-

was

ic field. a The MHD modeling of the solar eruption from AR11283 

associated with an X2.1-class flare observed on 11 September 2011 

performed by Jiang et al. (2013). The image is copyright AAS and are 

(59)

reproduced by permission. b The MHD modeling of the solar eruption 

from AR11060 associated with a B3.7-class flare observed on 8 April  where η  is the background resistivity and j  is the threshold 0

c

2010, performed by Kliem et al. (2013). The image is copyright AAS  current necessary to excite the second term in Eq. (59) (Yokoyama and reproduced by permission. cThe MHD modeling of the solar erup-and Shibata 1994). In this study,  η =1.0×10−5,  η =1.0×10−4, 

0

2

tion from AR10930 associated with an X3.4-class flare observed on  and  J   =  30.  It  can  initiate  and  enhance  the  reconnection  in 13 December 2006, performed by Amari et al. (2014). The images are 

c

the strong current region when the current is greater than the 

from Nature reprinted by permission from Nature Publishing Group

critical value, J . This value depends on the normalized value 

c

MHD modeling of the solar eruption on 15 February  of the coronal magnetic field defined in each study. 

2011. Inoue et al. (2014a) and Inoue et al. (2015) studied the 

Figure 9a shows two bundles of the twisted lines formed 

magnetic field dynamics during the X2.2-class flare produced  in the NLFFF; a strong current region was formed and by solar active region 11158 on 15 February 2011 (Schrijver et  sandwiched by these bundles. The side view is shown in al. 2011; Janvier et al. 2014; Yang et al. 2014), by using MHD  Fig. 9b. We expect that reconnection takes place between the simulations combined with the NLFFF. Figure 7b shows the  two bundles of the twisted lines, and long, strongly twisted NLFFF structure approximately 2 h before the X2.2-class flare  lines are formed, which might break the equilibrium. After on 15 February 2011; note that strongly sheared magnetic fields  additional iterations with the anomalous resistivity, the single lines are clearly visible at the PIL of the central sunspot. The  long bundle of strongly twisted lines shown in Fig. 9c, d was stability analysis was discussed in a previous section. Based  produced by the reconnection between the twisted lines formed on these results, the NLFFF was quite stable, which implies  in the NLFFF (shown in Fig.9a); which is reminiscent of the that an additional process is required to drive the twisted lines.  tether-cutting reconnection shown in Fig. 3e. The small inset For instance, in a detailed data analysis, (Bamba et al. 2013)  shown in Fig. 9c shows the contour of one twist superimposed observed  an  increase  in  the  small  flux  emerging  at  the  PIL  on the B  map, where the footpoints for the part of the selected z

before the flare, and they suggested that this could destroy the  field lines plotted in Fig. 9c, d are anchored inside this contour. 

stable magnetic field, as in the scenario described by Kusano  Note that there is no guarantee that this new state can remain et al. (2012). 

in  equilibrium  because  a  flux  tube  composed  of  strongly 

The dynamics were investigated in the zero-beta MHD  twisted lines can escape from the solar surface (Amari et al. 

approximation, i.e., the density, pressure, and gravity were  2000;Kusano et al. 2012; Kliem et al. 2013). 
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the number of field lines with less than one turn has been reduced

These simulation results were compared with observations. 

The authors first confirmed that their simulation captures the 

shape of the two-ribbon flares. Following the CSHKP model, 

two-ribbon  flares  are  generally  considered  to  be  due  to  the 

distribution  of  the  footpoints  of  the  reconnected  field  lines. 

Therefore, those could be reproduced to trace the reconnected 

field  lines  during  a  simulation.  To  achieve  this,  the  authors 

traced  the  reconnected  field  lines  by  using  the  following 

equation:

where  t   is the next time step after  t , and   x ( x ,t ) is the n+1

n

1

0 n

location of one footpoint of each field line at time t , which is 

n

traced from another footpoint at  x . Eventually, we calculate

0

Figure 9:  Twisted  lines  in  the  NLFFF  and  magnetic  fields  after 

further MHD relaxation process a The twisted lines in the NLFFF, 

, 



(60)

reconstructed for 00:00 UT on 15 February 2011, together with 

the  B distribution. The  green surface  corresponds to the isosurface 

z

where Δ( x ,t) is a location where the length of a field lines is 

of the current density   J  =  30,  which  is  sandwiched  by  the  twisted 0

changed, meaning that the enhanced region corresponds to one 

lines of the NLFFF. b The side view of a. c Strongly twisted lines are  in which there was a dramatic reconnection in the twisted lines. 

formed after the subsequent MHD relaxation process, which includes  Figure 11a shows a 3D view of the field lines at t = 4.0, when the anomalous resistivity. The small inset shows the contour (yellow) 

of one turn twist superimposed on the B  map. d The side view of (c)

the large flux tube has been formed during the initial launching 

z

phase. We first confirmed that the sheared two-ribbon 

Next, an MHD simulation was executed using this new  profiles observed initially were reproduced in our simulation. 

state, as shown in Fig.  9c; note that at the boundary, all  Figure 11b shows the two-ribbon flares during the X2.2-class components of the velocity are fixed to zero, and the normal  flare, observed by Hinode/SOT, at 01:50 UT, corresponding to component of  B  is fixed, while the horizontal one may vary,  the initial phase of the flare. Figure 11c shows the numerically i.e., it is determined by the induction equation according to the  calculated two-ribbon flares, following Eq. (60), at  t  =  4, dynamics. Consequently, as shown in Fig. 10, the equilibrium  reproduced in this simulation where Δ is chosen from the region was broken, and a larger flux tube was formed and launched  in which T >0.3. The shape of the numerically calculated two-n

into the upper corona. Note that, in this process, the strongly  ribbon flares matches the observed one. 

twisted lines (in orange) that were formed during the initial 

state do not extend directly into the upper corona. Rather, they 

reconnect  with  the  ambient  field  lines  (in  blue)  that  convert 

into the large flux tube. Interestingly, the strongly twisted lines 

in the initial state appear to convert into the post-flare loops 

often observed after a flare. 

Figure 11: Comparison with observations, two-ribbon flares and the 

EUV image. a 3D magnetic field at t= 4.0 in the MHD simulation of 

Inoue et al. (2014a), showing the large flux tube with post-flare loops 

under it. These simulations tried to reproduce the observed sheared 

two-ribbon  flares  by  using  this  initial  launching  phase. b  Two-

ribbon  flares  observed  by  Hinode/FG at 01:51 UT on 15 February 

2011 during an X2.2-class flare from (Inoue et al. 2014a). The gray 

Figure 10: 3D dynamics of the flux tube during an X2.2-class flare.  scale encodes the B  distribution. c Two-ribbon flares reproduced by 3D dynamics of the flux tube during an X2.2-class flare obtained from 

z

the MHD simulation of Inoue et al. (2014a) at t = 4.0 in a, in accor-

our MHD simulation; the field lines with more (less) than one turn  dance with Eq. (60). d 3D magnetic field at t= 15 in the MHD simu-simu-

at t = 0 are depicted in orange (blue). The B  distribution is shown 

z

lation of Inoue et al. (2014a), showing the large ascending flux tube 

in red and blue. The inset at t = 0 shows the top view of the field lines;  with post-flare loops under it. e The EUV image after an X2.2-class 
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flare at 02:29:50 UT on 15 February 2011, at 94 Å, obtained by SDO/

instability, so it is necessary to have a trigger process (here, the 

AIA. f The field lines obtained from the MHD simulation by Inoue et  tether-cutting reconnection) to break the equilibrium. (ii) The al. (2014a) are superimposed on the data in e. Panels b, c, e, and f are  tether-cutting reconnection creates strongly twisted lines in the copyright AAS and reproduced by permission

NLFFF. Consequently, it breaks the equilibrium and reconnects 

These simulation results were further compared with the  with the ambient field lines. The result is that a large flux tube EUV image data obtained fromSDO/AIA. Figure 11d shows  is formed as it ascends. (iii) Eventually, the flux tube will grow the 3D magnetic structure at  t  =  15,  clearly  revealing  the  into a CME if the threshold of the torus instability is exceeded post-flare  loops  above  which  the  large  eruptive  flux  tube  is  or equilibrium is lost. 

ascending. We confirmed that the post-flare loops can capture 

the field lines in the EUV image, using simulation data at t= 15. 

Figures 11eshows the EUV image observed after the flare by 

94 Å of SDO/AIA, and Fig. 11f shows the field lines at t = 10 

superimposed on the EUV image. The field lines observed in 

the EUV image were successfully captured. 

Finally, enhancement of the horizontal magnetic 

field  B   was discussed by  Inoue et al. (2015). As shown in 

t

Fig.  12a,  Wang et al. (2012)  found a rapid enhancement of 

the  horizontal  field  on  the  PIL  in  the  photosphere,  and  they 

suggested that this was due to the reconnection. The simulation 

of  Inoue et al. (2015)  also indicated this enhancement, and 

the result is shown in Fig.12c calculated for the area shown 

in Fig.  12b.  It  was  pointed  out  that  the  post-flare  loops 

can be observed even during an early phase in which the 

horizontal  fields  are  enhanced,  and  the  new  post-flare  loops 

are subsequently produced through the above reconnection. 

Consequently, it was suggested that this enhancement is due 

to  the  accumulation  of  post-flare  loops  suppressing  the  pre-

existing loops. Therefore, this enhancement would be strongly 

related to the reconnection. However, since this simulation was 

performed in the zero-beta MHD, to support this conclusion, 

it is necessary to have a more detailed analysis and discussion 

under more realistic assumptions, including high- β regimes 

corresponding to the chromosphere and the photosphere. 

Figure 13: Summary of the dynamics of the magnetic field during 

an X2.2-class solar flare. Summary of the magnetic field dynamics 

during an X2.2-class solar flare, obtained from Inoue et al. (2014a) 

and Inoue et al. (2015)

CONCLUSIONS

The solar physics satellites  Hinode  and  SDO, together with 

modern ground-based telescopes, provide photospheric 

magnetic field data with unprecedented accuracy. This enables 

us to reconstruct the 3D coronal magnetic field with high 

accuracy, such that it includes the potential field from the 

normal component not only of the photospheric magnetic field 

but also of the NLFFF, which contains both the normal and the 

horizontal magnetic fields. Because the NLFFF is reconstructed 

to include information about the horizontal magnetic fields at 

the photosphere, it can yield a 3D magnetic field close to that 

observed in the active regions instead of the one similar to 

that of the potential field, and it can show the accumulation of 

free magnetic energy and helicity that is required to produce 

Figure 12: Enhancement of  B   during  an  X2.2-class  flare. a  The 

t

a flare. In addition, the force-free α is given as a function of 

observations of B  enhancement in the photosphere during an X2.2-

t

space, and so it is not an LFFF approximation. Therefore, 

class flare, reported by Wang et al. (2012). b The B  distribution for 

z

the NLFFF can yield the magnetic configuration both before 

which the  B   enhancement was measured in the MHD simulation 

t

by Inoue et al. (2015). The  white contour line  corresponds to the  and after the flare, and several papers have reported various PIL. cB  enhancements as observed in the MHD simulation by Inoue  important physical quantities obtained from the NLFFF, t

et al. (2015). All images are copyright AAS and are reproduced by  including the free magnetic energy (Sun et al. 2012; Jiang et permission

al. 2014b), the magnetic helicity (Thalmann et al. 2011; Valori 

et al. 2012;Pevtsov et al. 2014), and the magnetic twist and 

A summary of the dynamics is shown in Fig.  13. (i)  topology (Inoue et al. 2011;  Guo et al. 2013;Inoue et al. 

The NLFFF is quite stable for the current-driven ideal MHD  2013; Zhao et al. 2014). These quantities quantify the NLFFF 
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stability, which cannot be obtained from observations. On  are also being revealed, including the critical value for the the other hand, there is a problem in the NLFFF itself. Using  flux of the flux tube for an eruption (Kliem et al. 2013) or the the same format as in Fig. 5d, Fig. 14 shows the distribution  formation of a large flux tube producing a CME (Inoue et al. 

of the force-free α measured at both footpoints of each field  2014a; 2015). Furthermore, the reliability of these simulations line for the NLFFF in Fig.  7b  and the temporal evolution  can be confirmed because they can be more precisely compared of ∫|∇⋅B|2∫|∇⋅B|2dV during the iteration of the NLFFF. Although  with the observations likely by Inoue et al. (2014a) and Inoue the  value  of  ∫|∇⋅B|2∫|∇⋅B|2dV is reduced to fourth order, the  et al. (2015), in contrast to previous simulations that described distribution of the force-free  α  is  scattered.  Therefore,  an  hypothetical situations. Note that several can be indirectly unexpected physical element, the residual force, remains; this  compared, e.g., the two-ribbon flares discussed in this study. 

is inevitably produced near the boundary in the NLFFF, due to  In  order  to  provide  a  strict  confirmation,  however,  a  direct the contradiction between the boundary and the inner domain.  comparison is required (e.g., (Mikić et al. 2013)). 

In addition, it should be noted that the coronal magnetic fields 

Some problems and questions related to these simulations 

cannot be correctly reproduced only by the NLFFF. Peter et  still remain to be answered. For instance, as discussed above, al. (2015) pointed out several limitations on the free energy  the reconstructed field does not completely achieve a force-and accumulated currents. Furthermore, reconstruction of the  free state, and so the residual force must be treated carefully. 

geometry of bright loops requires methods more advanced  If these residual forces are sufficiently strong, they may affect than the NLFFF (Aschwanden et al. 2014; Malanushenko et al.  the  magnetic  field  dynamics,  and  the  interpretation  of  the 2014). Therefore, a model more advanced than the NLFFF is  dynamics becomes difficult. In addition to this, as  Inoue et required to construct the equilibrium state with high accuracy  al. (2015) pointed out, the magnetic twist accumulated in the and overcome these limitations. 

NLFFF might be gradually reduced throughout the numerical 

diffusion and also on the solar surface because the NLFFF 

returns to a lower energy level without retaining the observed 

horizontal  magnetic  fields.  Furthermore,  it  is  important  to 

account for the observed process that triggers the solar flares in 

order to understand the conversion of the stable magnetic field 

into a dynamic one. Recently, the triggering was observed by 

using state-of-art data (e.g., Green et al. (2011); Bamba et al. 

(2013); Louis et al. (2015)). These data must be incorporated 

into simulations. Although most simulations start from an 

NLFFF that is already composed of twisted and sheared field 

lines, some studies attempted to recover the processes leading 

from the buildup to the release of energy; in this data-driven 

simulation, the coronal magnetic field was driven by the time-

dependent  photospheric  magnetic  field  e.g.,  Cheung  and  De 

Rosa (2012). Work in this direction is currently underway, and 

this will be extended in the future. 

With advanced computational resources now more 

readily available, more-refined 3D numerical MHD models of 

solar eruptions are being developed and improved. Recently, 

techniques combining simulations with highly resolved 

temporal and spatial data from state-of-the-art solar satellites 

have been developed, and these have yielded some preliminary 

results. In the future, it is likely to be necessary to further 

develop  simulations  of  solar  flares  in  order  to  more  closely 

correspond to these observations. 

Figure 14: Force-freeness of the NLFFF. a Distribution of the force-
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CHAPTER

6 FROM ELF TO COMPRESSIBILITY 

IN SOLIDS

Julia Contreras-García, Miriam Marqués, José Manuel Menéndez and 

José Manuel Recio

Keywords: ELF, compressibility, energy models

INTRODUCTION

reformulation of chemical bonding as a quantum condensate 

are some of the formulations that have been recently proposed 

A thorough understanding of many important electronic and  [11]. Another approach that has gained many followers is mechanical properties of a crystalline material does not require  the topological formalism. This approach divides three-the knowledge of the total energy of the solid, but just the  dimensional space into chemically meaningful disjoint regions energetics of its bonding network. Many phenomenological  following the gradient of a scalar function, such as the electron approaches have been developed to illustrate the advantage of  density [12,13] or the electron localization function (ELF) this view [1]. These so-called bond energy models are useful  [14,15]. Since we are interested in valence properties, our for properties prediction and have become rather popular in  function of choice is the latter one. ELF is able to recover the last years as trusty guides for material design. Specifically  Lewis entities, such as bonds and lone pairs and quantify their to the field of materials strength, Gilman’s book [1] collects a  properties (volume, charge, etc.). Due to its direct link with number of valuable correlations between a variety of observable  Lewis theory, we have chosen the model by Borkman and Parr elastic moduli of different type of solids and electronic  [16] as our starting point to merge topology and bond energy densities coming only from the active electrons of the valence  models. 

space. Based on the ideas developed by Gilman [2], Gao et al. 

“initialized a link” between macroscopic observables and first 

Briefly,  our  study  is  based  on  the  success  of  the  bond 

principles calculations with the aim to evaluate the indentation  charge model [16,17,18] in predicting molecular properties, hardness of multicomponent crystals [3]. Li et al. resorted to  and the ability of the electron localization function [14,15] to bond electronegativity in order to evaluate the bond energy  provide the required parameters for its free from empirical data and thus figure out the most stable bond combination for hard  application. The bulk modulus (inverse of the compressibility) materials [4]. In conjunction with evolutionary algorithms [5],  will be the focus of this first principles-like extension of BCM 

Li’s model is theoretically generalized by Lyakhov and Oganov  to the solid state. 

making use of the bond-valence model and graph theory [6]. 

The remainder of the paper is organized as follows. 

Inherent to all these semi-empirical models, there are  Firstly,  the  original  definition  of  the  bond  charge  model  for still elusive concepts to quantum-mechanical formalisms,  homo and heteronuclear binary molecules and covalent solids as ionicity/covalent scales, electronegativities, covalent  will be presented. Secondly, the computational details for the radii, etc. Efforts from the theoretical chemistry community  calculations performed over a broad group of diamond-type have  been  devoted  to  reformulate  these  concepts  from  first  and zinc-blende-type solids from the IV, III–V and II–VI principles. As an example, we can cite recent reformulations  groups are given. In Section 3, the basic parameters of this of electronegativity [7,8,9]. These chemical concepts do not  ab-initio BCM (hereafter, NEWBCM) are derived from first derive directly from wavefunction analysis, but a posteriori  principles. The ability of this model to predict solid state models are needed to extract them. The bondon [10] and the  properties (compressibility) will be tested against experimental data in Section 4. At the end of the section, this new insight into 

macroscopic properties will be used to understand macro-micro 

requirements for superhard materials. The article finishes with 

the main conclusions and guidelines for prospective work. 

Citation: Julia Contreras-García, Miriam Marqués, José Manuel 

Menéndez, and José Manuel Recio, From ELF to Compressibility in 

Solids, Int. J. Mol. Sci. 2015, 16, 8151-8167; doi:10.3390/ijms16048151. 
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THEORETICAL BACKGROUND

The determination of the model parameters, q, δ, r /r  and 

1 2

In this section, the two approaches to be merged are introduced:  R  has become a matter of choice. Probably, the most extended B

the bond charge model and the ELF topological formalism. 

method has been to take into account the electronegativity of 

the atoms as shown by Parr et al. [19,20]. 

The Bond Charge Model: Original Definition

 Homo and Heteronuclear Diatomic Molecules

Within the BCM formalism [16], a homonuclear diatomic 

molecule (A ) can be approximated by two cores holding a 

2

q/2 positive charge each, and a bond charge in between them, 

-q, that moves freely along a bond length R  = νR which is 

B

a fraction (ν≤ 1) of the interatomic distance R (see Figure 1  Figure 1: Bond charge model for homonuclear (left) and heteronu-

(left)). The energy associated to this model at distances close to  clear (right) molecules, A  and AX, respectively. The meaning of the the equilibrium (R ≃ R ) is given in atomic units by:

2

e

main parameters that are needed in each case is shown in the figures: 

q and R  stand for neutral homonuclear molecules as q, δ, r /r  and 

B

1 2



(1)

R  do for heteronuclear ones; B label stands for the bond (see text for 

B

more details). r′1 and r′2 are also shown for clarity. 

where E  represents the core energy (which equals to 2E  for 

0

A

an A  molecule), E  refers to the coulombic attractive interac-

2

1

 Binary Covalent Solids

tions and E  is related to the kinetic energy of the bond elec-

2

trons approximated as particles in a box of length R . The con- The model by Parr and Borkman was extended by Martin [21] 

B 

stants, which are system independent, are then given by (see  to describe the energy of covalent crystals. For simplicity, 

[16] for details):

we consider a zinc-blende-type solid, AX, with a formula 

unit AXB  accounting for the four-fold coordination of the 

4

two elements in the unit cell, B represents the bond entity. 



(2)

According to BCM, the energy of the covalent solid per couple 

of atoms AX is given by

and the parameters q and ν are inferred from empirical mea-

are inferred from empirical mea-

sures of the harmonic force constant, k , and the equilibrium 



(5)

e

distance, R .e

In order to adapt this model to heteronuclear diatomic 



(6)

molecules, AX, or even to homonuclear molecules in an  where M is the Madelung constant for these lattices with asymmetric surrounding, two considerations have to be taken  charges 2q (1 + δ) and 2q (1 − δ) at A and X atomic sites, and into account. On the one hand, the polarity of the bond clearly 

B 

B 

−q at each bond position, as dictated by the multiplicity and 

influences the situation of the bond charge (Figure 1 (right)), 

B 

the charge neutrality condition. We should recall that E  and E

being r  and r  the distances to its position from atoms A and 

A

X 

1

2

account for the energy of the corresponding core electrons not 

X, respectively. On the other hand, the positive charge lying  involved in the bonding, and, in practice, are independent of on each of the two nuclei will be different from 

geometrical parameters. The greatest modification introduced 

[18]. The changes induced by the electronegativity difference,  in the application of BCM to solids is the presence of an infinite 

, in E  are negligible, but the bond charge shift  sum, accounting for all A, X, and B charged species, which 2

gives rise to noticeable changes in the coulombic interactions: is subsumed into the Madelung constant. It also important to highlight that due to the inclusion of the bond charge in the 

summation, this Madelung constant is system dependant since 





(3)

the position of the bond charge will not correspond to a special 

so that the total energy reads as follows:

Wyckoff position (invariable) except for homonuclear solids. 

The Madelung constants have been calculated thanks to the 

environ code [22] and are collected in Table 1. 

(4)
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Table 1.  Parameters of the non-empirical new bond charge 

model (NEWBCM), [q , R ,r /r ], for a broad group of dia-

B

B 1 2

mond-type and zinc-blende-type solids from the IV, III–V and 



(9)

II–VI groups. r (r ) stands for the distance between the charge, 

1 2

Hence, the ground state bond energy at equilibrium is given 

q, and the nucleus 

stands for the part of R  belong-

B

by:

ing to r (r ), i.e., r′ =r −r  and r′ =r −r , where r  is the core size 

1 2

1

1

A

2

2

X

A

of atom A and r  is the core size of atom X. M and E  stand for 

X

B

the Madelung constant and the bonding energy of the crystal, 

(10)

respectively. The cell parameter, a, and the electronegativity 

difference [23], 

, are also shown for reference.  where the negative value reflects the stabilization introduced Lengths are in Å, charges in electrons, energy in hartrees. 

by the chemical bond (see Table 1). This equation, just like in 

the original bond charge model [16,18], is a manifestation of 

the virial theorem. Upon substitution of Equation (9) in Equa-

tion (7), it can be seen that at equilibrium, the electrostatic in-

teraction is twice as big as the kinetic energy term. 

ELF Topology

The Electron Localization Function, ELF, was originally 

designed by Becke and Edgecombe to identify “localized 

electronic groups in atomic and molecular systems” [14]. 

Several interpretations have been given to this function. 

For example, ELF has been generalized and reinterpreted in 

the light of Markovian processes [24,25]. A very intuitive 

interpretation was given by Savin [15], according to which the 

ELF core, χ, can be understood as a local measure of the excess 

of local kinetic energy of electrons due to the Pauli principle, 

t :p

(11)

From Equation (6), the bond energy of a zinc-blende-type  relative to the homogeneous electron gas kinetic energy densi-lattice can be finally expressed within the framework of BCM  ty, 

is calculated as the differ-

as:

ence between the definite positive kinetic energy, t(r⃗ ), and the 

von Weizsäcker kinetic energy functional:



(7)

It is interesting to highlight here that this expression is 



(12)

similar to the classical Madelung energy expression for ionic 

crystals. However, in our case the equation is done in terms of  ELF  values  are  confined  in  the  [0,1]  range  by  a  Lorentzian Lewis entities (cores, bonds) instead of ions. The expression  transformation which facilitates its interpretation: will then hold as long as the orthogonality of these entities 

holds too. In solids such as diamond, where for example, 



(13)

good localized orbitals can be found, Equation (7) will give 

an accurate description of the bonding energy in the crystal. 

ELF maxima appear associated with localized electron 

However, as the localized picture fails (e.g., down the periodic  pairs, such as bonds, lone pairs and atomic shells, thus matching table), we should expect the fits to worsen. This equation will  the Valence Shell Electron Pair Repulsion [26] model. These progressively fail as we go down the periodic table or move  maxima can be used to partition the system into regions towards metallic solids, due to a less obvious separability. 

following the gradient flux (this would be like partitioning a 

If we reasonably assume that (∂E /∂ ) ≃ 0 at equilibrium  set of mountains by the valleys) [12]. This partitioning gives B

R

then

rise to a set of non overlapping regions (or basins), labelled as 

Ωi. Their properties can be determined by integration over the 

region. Most commonly, the volume integration of the density, 





(8)

ρ, assigns a basin population, 

:

where we have assumed that the ratio r /r  remains constant 

1 2

upon compression, not introducing changes in M (see discus-





(14)

sion in last section and Figure 5). It is very important to notice 

that all the parameters have to be evaluated at equilibrium. We 

The properties of these basins have a chemical meaning 

then have for the constant M:

inherited from the partition, so that the integration of the 
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density over a basin associated with a bond maximum, can be  the relative electronegativity of atoms) is determined by the understood as the bond charge. 

local ELF maximum along the same direction. On the other 

hand, the distance between the two closest minima to the bond 

COMPUTATIONAL DETAILS

maximum along the internuclear direction provide the bond 

length, R  (See Figure 2). 

Electronic structure calculations for a number of IV, III–V 

B

and II–VI solids with the diamond and zinc-blende-type 

structures were performed within the density-functional theory 

formalism. These compounds were selected to ensure the 

existence of a basin associated with the bond. 

We have used the all-electron full potential linearised 

augmented-plane wave (FP-LAPW) approach as implemented 

in the ELK (for electrons in k-space) code [27]. The FP-LAPW 

method is among the most precise DFT-based methods for 

crystal structures [28]. It divides space into an interstitial region 

and non-overlapping muffin-tin (MT) spheres centered at the 

atomic sites. In the interstitial region, the basis set is described 

by plane-waves, whereas in the MT spheres, the basis set is 

described by radial solutions of the one particle Schrödinger 

equation and their energy derivatives multiplied by spherical 

harmonics. A high plane-wave cut-off K R  = 9, where R  

max  MT

MT

is the smallest muffin-tin radius of the corresponding atomic 

species and K  is the maximum size of the reciprocal lattice 

max

vectors, guaranteed convergence in all the studied systems. 

Moreover, spherical harmonics within each atomic sphere 

were expanded up to the maximum angular quantum number 

l  = 14, to avoid discontinuities of the electron density and 

max

its  derivatives  at  the  muffin  boundaries.  Lattice  parameters 

were set to the room temperature experimental values of the 

corresponding structures [29]. We have used both, the Perdew-





Wang [30] local density approximation (LDA) and the Perdew-

Burke-Ernzerhof [31] generalized gradient approximation 

(GGA) for the exchange-correlation functional. Brillouin-zone 

integrations were approximated using 8 × 8 × 8 Monkhorst-

Pack grids, and the the self-consistent iteration process was 

repeated until the absolute change in total energy was lower 

than 1 × 10−5 hartrees. 

In a second step, the topology of the ELF functions coming 

from the previous calculations is investigated using CRITIC, a 

code developed by some of the authors [32,33]. CRITIC is able 

not only to find ELF maxima and saddle points but it can also 

construct basins and integrate properties. 

The training set has been chosen to lay in the shared-

electron range. This characteristic is necessary so that there  Figure 2: Definition of length-related bond charge model parameters, 

[R , r /r ], for a homonuclear molecule, N  (left), and a heteronuclear 

is a bond basin linkable to each pair of nearest neighbors in 

B

1 2

2

molecule, BN (right). 

the crystal. In other words, it is possible to assign bonding 

parameters within the ELF framework. 

DEFINING THE PARAMETERS FROM FIRST 

Bond Length: R , r /r

PRINCIPLES

B

1

2

The most common approach in the analysis of a bonding  ELF profiles along the internuclear line were constructed for structure by means of the ELF approach is to use its 3D  each solid [14]. These profiles were then analyzed in order to topology. However, the BCM uses a 1D definition of the  find the position of the local maxima and minima, which enable chemical bond. Thus, we have devised an alternative route  the quantitative determination of ab initio R , r  and r values B

1

2

to obtain the BCM parameters from ELF. We have resorted  according to the previous definition. Results are collected in to the 1D-ELF topology: ELF is analyzed along the straight  Table 1. 

line between pairs of atoms. In some cases, specially as going 

In homonuclear cases the local maximum is located in 

down the periodic table, this line might differ both from the  the center of R  and r /r  = 1.0 by definition (see N  in Figure AIM and ELF bonding lines, but it enables us to stick to the 

B

1 2

2

2(left)).  Instead,  in  heteronuclear  cases,  the  ELF  profile  is 

BCM formalism. On the one hand, the position of the bond  deformed and the maximum of the bond (or attractor) is no charge within this length, r /r , (shifted from the center by 

1 2

longer placed in the middle of R  (see BN in Figure 2 (right)). 

B
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A similar value obtained for R  is obtained in all solids,  the typical BCM charges obtained from fitting, which in many B

with numbers clustering around 1 Å. This means that the size  cases deviate from the expected values [17,18]. Furthermore, of the bond (at least along the interbonding direction) depends  this image of q  correlating to the bond order does not agree B

neither on the lattice parameter of the crystal (which spreads  with  the  definition  of  the  q  parameter in the traditional B

a range of more than 2.5 Å), nor on the two atoms involved in  model. The step forward that ELF provides concerns also the the bond. 

evaluation of the charge transfer (δ). In all cases (see Table 1), 

Secondly, we observe that r /r   ≃ 1 ratios are obtained  δ also shows reasonable values following the expected trends 1 2

for  the  purely  covalent  families  and  those  whose  ∆χ  ≃ 0.  for the IV, III–V, and II–VI crystal families dictated by their There is one remarkable outlier: BN shows r /r  ≃ 1 with ∆χ  electronegativity [23]. Keep in mind that δ is calculated with 1 2

= 1. In order to understand this fact, an extra column has been  respect to valence configurations, so that for example carbon added toTable 1 with the displacement of the attractor within  and silicon, having the same configuration, [34] give rise to δ 

the bond length RB, that is, taking away core contributions:  = 0 in SiC. 

. 

This is an important characteristic of this Non Empirical 

New Bond Charge Model (NEWBCM), parameters are not only 

This means that we now decompose the bond length into  obtained ab initio, but they are closer to chemical expectations 

, so that R=r +r′ +r′ +r . The physical meaning of 

A

1

2

X

and recover/predict values in good agreement with experience 

these quantities is depicted in Figure 1 (right). This quantity  (at difference with the initial BCM parameters). 

enables us to understand that although the charge in BN is 

nearly at the same distance from B and from N, it is displaced  TESTING THE MODEL: RESPONSE TO  

within R , as expected from their electronegativity difference 

B

(see Figure 2 (right)). This decomposition also helps to get rid  PRESSURE

of the core size in the comprehension of the system. Let’s take  Since pressure can introduce significant changes in the the case of BP: since P belongs to the second row and B to the  stability of phases, it is most useful in the synthesis of novel first one, we have r >> r , so that eventhough the center of the  phases and metastable materials. Pressure allows precise X

A

bond is displaced within the bond towards P (r′ >r′ ), once the  tuning of a fundamental parameter, the interatomic distance, 1

2

core radii are taken into account, the distance relationship is  which controls the electronic structure and virtually all the inversed (r  > r ). 

interatomic interactions that determine materials properties 

2

1

[39,40,41]. With pressure tuning, properties can often be more 

Bond Charge: q

rapidly and cleanly optimized than with chemical tuning, 

B

which necessitates the synthesis of a large number of different 

Obtaining the charge associated with ELF entities through  materials and can induce disorder, phase separation, and other the integration over the corresponding basins might be  undesirable effects. Pressure tuning is therefore a useful tool in considered in principle a straightforward and accurate method.  the search for new solid state materials with tailored properties. 

However, for heavy elements, some ill-defined cases appear 

for integration, where the low symmetry of the basins and the 

appearance of spurious critical points at the muffin surfaces  Bulk Modulus

may lead to serious difficulties if we seek a quantitative  Among the description of the responses to pressure, analysis of its topology. 

compressibility (κ) or its inverse, the bulk modulus (B ), 

0

Based on pseudopotential principles, we assume that the  probably constitute the most widely used parameters. The core electronic distributions are practically unaltered by the  inverse relationship between bulk modulus and volume has environment, and thus q  values can be directly obtained by  been widely explored [42,43,44,45], enabling to split the B

mere difference between the total and core number of electrons.  response of solids under pressure into local contributions (see Core values for the elements up to the 4th row involved in  for example [43,46,47,48]). 

the solids under this study have been extracted from the ELF 

Following our BCM model, the valence charge is distributed 

integrations gathered in [34]. Beyond the 4th row, calculations  along the chemical bonds, so that the compressibility of solids were perfomed for the atoms with the PBE functional [31]  can be approximated to a good extent by the compressibility of and the 6-31G* basis set, using the Gaussian 03 program [35].  the bonds, κ , whereas cores are assumed to remain untouched: B

Their core/valence charge, which is very stable to the level of  κ ≃ κ  [43,49]. The bulk modulus of the solid is then given by B

calculation, was calculated with the TopMod program [36].  (see S.I. for the development): This assumption has the added value of providing extremely 

fast calculations. It has also been validated by comparison with 

the charges obtained by the integration over the corresponding 

(15)

3D-basins with the CRITIC code [37]. For instance, integrated  where 

is the bond’s volume within the 

values for q  of 1.952 and 1.948 for C and BN, respectively, 

B

AXB  unit. 

are in good agreement with the corresponding data in Table 

4

1. They are also independent of the exchange-correlation 

Equation (15) for our IV, III–V and II–VI compounds 

functional used. 

is analyzed in Figure 3. It is worth highlighting that a very 

good agreement is obtained for all data. The slope for the bulk 

It has been shown that ELF charges lie very close to  modulus is around 1 (1.14), and the offset is near 9 GPa (8.99 

chemical intuition values [38]. This is further seen in Table  GPa) which departures from zero but it is not too large if we 1. Nearly 2 electrons are recovered in all cases for the bonds,  compare it with the range (up to 500 GPa) displayed by B  

in agreement with their bond order of 1. This is different from 

0

in these compounds. The Pearson regression coefficient R2 is 
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0.9774. A similar agreement was obtained by Gilman et al. [1]  bols) bulk moduli (in GPa) for IV, III–V and II–VI compounds. Bulk in an enlightening analysis from empirical measures where  moduli in GPa, charge in electrons, R in atomic units. 

the relationship was analyzed in terms of valence density 

(i.e., q /V ). The coherency between these two results can be 

B

From Micro- to Macroscopic: Understanding 

perfectly understood from the analysis of Equation (15) if we  Compressibility

take into account that 

and V = a3 for these crystals:

Understanding the inherent relationship between (quantifiable) 

microscopic properties and macroscopic properties is the 

(16)

corner stone of material design. 

In  his  fit,  Gilman  made  use  of  the  cell  volume  and  an 

We have shown that the concepts derived from ELF 

average valence occupation q  /V as would be expected from  can be used to understand the microscopic origin of solids B

Lewis theory (i.e., a default bond occupation q  = 2). Whereas  compressibility. If we analyze the dependencies of Equation B

the bond occupation has been found in our calculations to  (15), we see that the least compressible materials are found be very close to two, the dependence on the cell size can be  within the first period, where smaller interatomic distances, R ∝ 

improved by taking calculated bond lengths into account.  V1/3, and bond lengths, R , are found. While these results were B

Indeed, Equation (16) shows that the dependence on the  already known from experience, the microscopic approach lenght parameters should be B  ∝ (R V)−1 (i.e., B  ∝ (R R3)−1,  can also reveal new information. With this aim in mind, it is 0

B

0

B

exponent nearly –4), whereas Gilman took B   ∝ V−1 alone  interesting to study the evolution of NEWBCM parameters (r , 0

1

(exponent  on  R  =  –3).  Indeed,  a  logarithmic  fit  of  the  B   r , R  and q ) upon compression. 

0

2

B

B

experimental data vs. R gives a slope of 3.8 (±0.1) (regression 

Let’s start with R . Since R  = νR can be expressed as R  

coefficient R2 = 0.9863) which explains the need to increase the 

B

B

B

= R− r − r , and the core radii remain practicably untouched 

length dependence from 

. As far as the bond charge 

A

X

upon compression, a linear relationship necessarily holds 

is concerned, default occupations are very close to the values  for R  (which virtually subsumes all the changes in the cell obtained with ELF, however, the quantitative values provided 

B

parameter) with R for a given material. 

by electronic structure calculations enable us to obtain a better 

linear behavior. This is shown in Figure 4, where experimental 

Furthermore (and less intuitively), the linear relationship 

and NEWBCM values have been included (in order to represent  also holds for r  and r  with R at constant δ. According to Parr’s 1

2

experimental values, the bond length dependence has been  electronegativity approach [20], the electronegativity in the set to R

molecule AX, χ , can be expressed in terms of the radii of the 

4). It is interesting to note that, although calculations 

AX

provide a better linear behavior (R

isolated atoms, r  and r , as: [19]

2(NEWBCM)  =  0.9927, 

A

X

R2(Exptal.) = 0.9830), the use of default or nominal (q  = 2) 

B

values already provides all the physics. 

(17)

but also in terms of their properties in the molecule AX:



(18)

where K is a constant. 

If we combine Equations (17) and (18) and reorganise, we see 

that:

(19)

where K, q, r , r , χ  and χ  are constants which only depend 

Figure 3: Experimental vs. non empirical new bond charge model 

A

X

A

X

on the system, so that α itsef is a constant as long as δremains 

(NEWBCM) bulk modulus (GPa). 

constant. In other words, r  will scale linearly with the 

1

interatomic distance, as long as the charge transfer does not 

change upon pressurization. Of course, similar equations apply 

to r , with r  = βR. 

2

2

In order to check this hypothesis, we have repeated our 

DFT-ELF procedure upon compression of the zero pressure 

reference cell (no optimization needed due to the symmetry 

of the cell). Two prototypical examples of covalent (BAs, ∆  χ

= 0.14) and polar (BN, ∆  = 1) solids were chosen to compare 

χ

their corresonding compression with respect to their bonding 

type. Figure 5 collects the results upon compression for r , r  

1

2

and R . Negligible deviations from linearity are found in both 

B

cases, leading to three main conclusions:

•  R  is the quantity showing the greatest compression 

Figure 4: Experimental (empty symbols) and NEWBCM (full sym-

B
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of the model since it represents the valence size, i.e.  for a given r , the compressibility is minimized when the 1

the chemically sensitive part as pressure is applied  relationship α = β is fulfilled. This condition is equivalent to 

[43,49]. 

locating the bond position in the middle of both atoms (see 

Figure 5 (left)). 

•  α,  β and ν are constant upon compression for the 

various types of bonding considered. Further analysis 

These dependencies enable us to establish new 

shows that α, , βand 

and ν can 



certainly be related to hard-

can certainly be related to hard- relationships for materials with low compressibility, directly ness, since they determine which ion compresses the  derived from microscopic conditions. From Table 1 we see that most. Indeed a look at Figure 5 shows that in the case  there are two cases which deserve our attention as far as their of BN, where the hardness of atoms is more similar, r   r /r  ratio is concerned: diamond and BN represent the two 1 2

1

and r  compress at similar rates, whereas in BAs, the  different ways of achieving α = β (i.e., r  = r ): 1

2

2

compression of As overcomes that of B. 

•  Perfectly covalent case (diamond): in this case A = X 

(or ∆  = 0), so that all lengths are the same. 

•  As a consequence of the previous observation and 

χ

from Equation (19), we can consider that the charge 

•  Polar case (BN): in this case A ≠ X (∆  ≠ 0). However, 

χ

transfer is also constant upon compression for the 

a relationship holds between the core and the bond 

ranges considered. 

location displacement. It is found that the cores dif-

ferential size, ϵ = r − r  for ϵ > 0 is equivalent to the 

X

A

displacement of the bond location from the center to-

ward the smaller atom A, r′ =r′ + ϵ (remember that r  

1

2

1

= r′  + r  and r  = r′  + r ). In BN, a good combination 

1

A

2

2

X

of atomic sizes and polarity compensate to provide r /1

r  = 1.03. 

2

SUMMARY AND CONCLUSIONS

We have introduced the Electron Localization Function as the 

source of the necessary parameters for the analysis of the Bond 

Charge Model in solid state applications, named NEWBCM. 

The availability of charges and bond location has enabled us to 

develop a new BCM-based model in which, parameters are not 

only obtained ab initio, but they are closer to chemical intuition 

and recover good agreement with experience. 

The ability of NEWBCM to describe compressibility 

trends among these crystal families has been exploited in order 

to settle the directions for novel superhard materials design. 

Some of these hints are not related to macroscopic properties 

but to microscopic ones. Thus, quantitative relationships 

between electronic structure and macroscopic properties, such 

as compressibility, can now be proposed. 

The micro-macroscopic properties that guide the quest for 

superhard materials can be summarized as follows: (i) Small 

atoms; (ii) Small bond; (iii) High ν; (iv) Hard atoms; and (v) 

Atoms of similar hardness. Although most of these guidelines 

are related (e.g., (i) and (iv)) and extremely intuitive, some 

of  them,  such  as  (iii)  would  not  be  deduced  at  first  glance, 

and provide useful quantitative insight into the search and 

Figure 5: Evolution of the geometrical parameters, r , r  and R , upon 

1

2

B

prediction of novel superhard materials from microscopic 

compression of the interatomic distance R for BN (left) and BAs  grounds. 

(right). Data relative to the corresponding equilibrium values denoted 

by a 0 superscript. All numbers in Å. 

As an example, it has been shown that the hardest 

compounds within our study set, diamond and BN, both follow 

If we analyze these constants, it is observed that the  these principles, and more specifically, both show an r /r  ratio hardest materials, diamond and BN, not only have the smallest 

1 2

very close to one in spite of belonging to two very different 

R and the smallest R , but also the highest ν = R /R ratio (see 

B 

B 

bonding types (covalent and very polar, respectively). These 

Table 1). 

conditions thus unite their different macroscopic properties 

The size of the parameters r  and r  (or α and β) also  into one relevant microscopic condition for superhardness. 

1

2

plays an important role. Since these parameters are related 

Although this model is only applicable to zinc-blende types 

to the relative hardness of atoms, the smaller α and β are,  of structures, work is in progress to extend it to other structural the less compressible the whole system becomes. What is  types. This would, for example, enable us to understand the most important, both parameters should be similarly small.  driving forces for chemical changes in phase transitions. 

Otherwise, the softest ion will subsume the pressure. Ideally, 
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CHAPTER

7 THREE DIMENSIONAL  

THERMAL-SOLUTE PHASE FIELD 

SIMULATION OF BINARY ALLOY 

SOLIDIFICATION

P.C. Bollada, C.E. Goodyer, P.K. Jimack, A.M.Mullis, and F.W. Yang

Keywords: Phase field, Dendrite, Solidification, Adaptive mesh, Multigrid, Nonlinear PDEs INTRODUCTION

field is coupled. That said, we adopt an interface width that is 

of physically realistic order. 

We here present our computational approach to simulating, 

at the meso-scale, three dimensional, non-isothermal alloy 

solidification from an initial small, spherical seed into a 

mature, dendritic crystal. A feature of a mature dendrite is 

the geometric complexity of its evolving two-dimensional 

surface (see Fig. 1 for a typical snapshot in time). This makes 

tracking of the surface a difficult task in sharp interface 

models. A phase-field model avoids this by making use of a 

phase field, ϕ(x,t)∈[−1,1], to represent, at its two extremes, 

the liquid and solid state respectively and the evolution of the 

phase boundary,ϕ=0, is the surface of interest. This solves one 

problem, but at a cost of introducing another. The computation 

requires an extra variable, the phase, which varies rapidly 

over a small region about the interface. Taking the thickness 

of the interface to be ≈1, we find the size of a mature dendrite 

grows to ∼300, requiring the domain size to be significantly 

greater still (depending on the thermal field this may need to  Figure 1: Snapshot of the solid-liquid interface for a typical dendrite. 

be O(1000), or even more), we see that the interface region  This image was obtained from a simulation with Le = 40, Δ = 0.525 

of interest is very much smaller than the overall domain. Of  and Δx = 0.78. 

major concern in phase field models is the dependence of 

the computed results on the interface width. To address this, 

There are two coupled driving forces for growth: the alloy 

Karma [1], analysed the problem in the thin interface limit to  concentration, governed by a diffusion parameter D  and, c

produce a phase field formulation that is independent of the  secondly, a temperature field governed by a diffusion parameter interface width up to several orders of magnitude larger than a  D . The ratio of these two parameters gives the Lewis number, θ

physically real value, although this is less clear when a thermal  Le=D /D , which for many metallic alloys approaches θ

c

. In two dimensions Lewis numbers of this magnitude have 

been realised by [2]. However, there are no prior results, even 

Citation: P.C. Bollada, C.E. Goodyer, P.K. Jimack, A.M. Mullis, F.W.  for the interface widths permitted by Karma’s model, for even Yang, Three dimensional thermal-solute phase field simulation of bi-very moderate Lewis number in three dimensions. This paper 

nary alloy solidification, Journal of Computational Physics, Volume  seeks to demonstrate that such results are feasible provided the 287, 15 April 2015, Pages 130-150, ISSN 0021-9991, http://dx.doi. 

appropriate numerical techniques are employed. 

org/10.1016/j.jcp.2015.01.040. 
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The numerical solution to this phase field model (described  anisotropy associated to alignment at the molecular scale. In in detail in the following section) requires methods to solve a  two dimensions anisotropy is conveniently formulated using time-dependent, highly nonlinear system of PDEs, of parabolic  a single angle parameter, but in three dimensions we prefer to type, and capable of resolving varying length and time scales.  use a normal given in terms of Cartesian gradients. 

A feature that adds another level of difficulty to this problem 

In addition to the Lewis number, another key parameter 

is that we are particularly interested in the tip radius and speed  in the simulations is the undercooling, Δ, which sets the of growth of the dendrite only when it is fully mature, and  temperature of the liquid›s initial and far boundary condition these two numbers are steady. We select these parameters  below its freezing point. As this parameter becomes larger the because experimental evidence [3]shows that, when scaled by  under-cooling becomes more severe, the solidification more the radius of curvature at the tip, all dendrites are self-similar.  rapid and fractal in appearance: and, also, correspondingly Consequently, fundamental studies of dendritic growth,  more difficult to simulate. 

whether analytical (see e.g.[4] and [5]) or computational, 

have focused on calculating the growth velocity and radius 

The other field, not hitherto discussed, is the solute field. 

of curvature at the tip as a function of undercooling and the  For a binary alloy of initial concentration, c , the concentration 

∞

thermo-physical properties of the melt, these parameters being  of an alloy component at any point is represented by a value sufficient to uniquely describe the growth. 

of c(x,t)∈[0,1]. The requirement for equilibrium at the solid-

liquid interface means that the concentration in the solid and 

In summary, the computational problem is: non-linear,  the concentration in the liquid at the interface will be unequal. 

three-dimensional, stiff, involves multiple length scales to  In a sharp interface model this results in a discontinuous jump capture  small  phase  and  large  temperature  fields,  multi-time  inc at the interface, while in phase field models it results in a scale associated with the Lewis number and, to establish a  steep, but continuous, increase in c across the diffuse interface mature dendrite, requires a long simulation time. 

region, where there is some advantage in reformulating the 

The computational techniques we employ are: use of very  problem to remove this. We show this in the next section. 

fine meshing in the region around the moving boundary where 

phase  field  and  solute  field  resolution  is  critical,  and  coarse  GOVERNING EQUATIONS

meshing away from the boundary where only the slowly 

changing  temperature  field  requires  resolution;  implicit  time  The governing equations for dendritic growth of an under-cooled stepping to allow much larger time steps than would otherwise  binary alloy are here presented in full, in both their variational be possible; nonlinear smoothing in conjunction with a  form and in the (equivalent) form of PDEs for numerical nonlinear multi-grid solver; and parallel processing with up to  implementation. See [8] for a full description of the model 1024 cores as the simulation progresses. The combination of  we employ, derived in turn from [7], which provides analysis all these techniques allows an almost optimal solution process  of the anti-trapping term, which was extended to isothermal to be developed, in which the number of degrees of freedom is  dilute binary alloys in [1]. The origin of the anisotropy on evolved with the dendrite, to maintain the required resolution  the left hand side of Eq. (2a), for example, is discussed in [8] 

as the interface grows, and the solution time at each time step  and is vital to this formulation in eliminating interface kinetic is approximately proportional to the number of degrees of  effects. The non-dimensional equations for the phase field, ϕ, freedom. Furthermore, the use of a parallel implementation  the solute concentration, c and the dimensionless temperature, ensures that sufficient primary memory is available to support  θ, are given via a specification of the free energy. 

a mesh resolution which is fully converged whilst maintaining 

a tractable solution time. 



The  particular  phase  field  model  we  employ  is  an 

(1)

extension of [6], and is based on the three dimensional thermal  and the relations

phase field model of [7] and two dimensional thermal-solutal 

phase field model of [8]. One feature of the physical problem 

is that it is purely dissipative, or entropy increasing, as all 





(2a)

natural relaxational phenomena are. The resulting PDEs are of 

Allen–Cahn [9] and Carn–Hilliard type [10]. That is to say, 





(2b)

the model involves time derivatives of the three fields coupled 

to forms involving variational derivatives of some functional 

– typically the free energy functional. As the dendrite grows 

(2c)

the free energy reduces monotonically with time but never  The solute diffusion parameter is given by achieves equilibrium if the domain boundary is far from the 

dendrite. Although we have listed some of the difficult aspects 

of this model, the relaxational aspect is typically an asset and 

(3)

results in stable numerical schemes: there is no convection, for  The parameter D   is  a  diffusion  constant,  thus  K=0  in  the example (at least in the absence of flow in the melt). 

c

solid (ϕ=1) and K=D  in the liquid (ϕ=−1). Thus, in general, 

c

The variational form of the mathematical model is, of  ϕ∈[−1,1]. D  is the temperature diffusion coefficient (assumed θ

course, identical to the two-dimensional model in form.  constant). The normal to the interface is given by However, on realising the variational derivatives the resulting 

equations are more complex and nonlinear in the higher 

dimension. This is largely because of surface energy related 



(4)
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which is well defined around ϕ=0, and the anisotropy function 

for cubic symmetry (growth is preferred along the normals to 

the faces) is given for three dimensions by[7], 

(14)

(5)

where Δ is the given under-cooli

under

is the given under

ng. 

-cooli

The 

ng. 

equation for 

The equation 

tempera-

for tempera-

where 

and  ture is a standard diffusion equation1 with a heating term,  , 

proportional to the solidification rate (or cooling if melting). 

ϵ≈0.02 governs the amount of anisotropy. The reason for this 

arrangement of constants is to compare with the two dimen- The driving force for the phase equations is given by f(θ,ϕ,U), sional form

consisting of a double well potential having stable minima at 

ϕ=±1 and a maximum at ϕ=0 and a function of θ to create con-

create 

to create con-

ditions for moving the phase boundary. For example a negative 



(6)

value of θ creates conditions favourable for solidification. The 

parameter, λ, is proportional to the interface width, which in 

where the angle, ψ, is given by

turn is chosen as the characteristic length scale. 



(7)

Parameter values

The dimensionless relaxation time function is defined by

For the purposes of this paper we choose a selection of 

parameters to use as default values for the simulations below 

in Table 1. Any deviation from these parameter values is 

(8)

explicitly noted in the text. 

where the Lewis number Le=D /D  and

Table 1: Table of parameter values used for the simulations in this 

θ

c

paper. 

(9)

Here k   is  the  equilibrium  partition  coefficient,  c  is the far 

E

∞

boundary condition forc∈[0,1]. The anti-trapping current j, ap-

pearing in the solute equation, Eq. (2b), is prescribed by





(10)

The  profile  of  c  exhibits  a  spike  at  the  interface,  which  can  Anisotropic calculations present computational difficulties. Following [8], this is large- Note that the phase equation, Eq. (2a), is made considerably ly overcome by rewriting the solute equation using the variable  more complicated by the presence of the anisotropy term, U:

A(n), in the free energy functional. The variational derivative 

of a functional not involving gradients is simply the partial 

derivative of the density with respect to that variable. Thus

(11)

The physical temperature field, T, can be recovered by the 

relationship

(15)

The variational derivative of the pure gradient part of the func-

(12)

tional is given by

where L   and C  are the latent heat of the phase transition 

p

and heat capacity respectively. The slope of the liquidus line is 

given by m=ML/[C (1−κ )] and T  is the melting temperature 

p

E

M

(16)

of the alloy. 

Finally the bulk free energy density is given by

where, in our model, 

(13)





(17)

We solve the system of Eqs. (2a), (2c) and (11) plus initial,  In order to expand Eq. (16) and thus, Eq. (2a), we first intro-typically small, solid seed (see Eq. (40) and Section 3.2) and  duce the notation: 

etc., for Cartesian differentia-

far boundary conditions

tion, and subscripts for differentiation on function space. Thus
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(24)



(18)

or, equivalently 

. In practice we use this expression 

only when |∇ϕ|=0, to machine precision without difficulty. 

This enables us to write

Using the notation tr(g)≡δ g , the rearrangement

ij ij

(25)

which written out in full reads

allows the dominant term to be isolated and has advantage, be-

cause the Laplacian can be discretised to minimise grid induced 

anisotropy. We will also see that the term 

, 

on discretisation with a compact stencil at a discrete node, p, 

only has contributions from the nodes surrounding p. This af-

Note that, g ,  is  a  function  of  only  first  derivatives  of  ϕ  .  fords simplification for the non-linear solver later discussed. 

ij

To avoid expanding the above in terms of the compo-

nents,  ϕ   we  first  introduce  the  substitutions  q≡|∇ϕ|2 and 

,i

System summary

, to write the anisotropy

Writing, 

we summarise the nonlinear PDE 

system that forms our mathematical model as



(19)

For an arbitrary function 

we use the chain rule 



(26)

to write

where τ(c,ϕ) is given by Eq. (8),   is given in Eq. (15), g  in 

ij

Eq. (23), the solute is solved via Eq. (11), 

(20)

(27)

where we have used

and the temperature by Eq. (2c), 



(28)

DISCRETISATION

The approach taken to discretisation is based upon a cell centred 

finite difference scheme, in that the nodes of the domain are 

located at the centre of cubic cells, and thus, we use the term 



(21)

‘node’ and ‘cell centre’ interchangeably. One consequence of 

this is that there are no nodes on the domain boundary, thus 

using, on the last simplification, the identity 

making the use of Dirichlet boundary conditions non-trivial. 

. This allows us to compute

The scheme makes use of the PARAMESH library to support 

mesh adaptivity in parallel [11] and [12]. The meshes obtained 

by this approach take the form of an oct tree of regular 

(22)

blocks, within which the mesh is uniform, and it is the spatial 

discretisation on any one of these blocks that we discuss here. 

and further differentiation gives the concise forms

Subsequently we will discuss adaptive mesh refinement and 

the implicit temporal discretisation scheme that is employed. 

(23)

Spatial discretisation

The above expressions are not only much more concise than  Compact finite difference stencils (3×3×3), are used to the expanded equivalent as a function of ϕ , but are functions  discretise the first and second derivatives. Denoting these 27 

,i

of X  and A   which are of order unity in size and thus minimise  points by Q and defining a generic 27 point Laplacian stencil, i

floating point errors (the expanded equivalent contains tenth  W , around a point p=[i,j,k] by abc

order polynomials of ϕ ). We note also that, in the absence of 

,i

anisotropy, 

, reduces g to δ  so that ϕ g =∇2ϕ. In the situ-

the situ-

ij

ij

,ij ij

ation where g  is ill defined due to |∇ϕ|→0we set. 



(29)

ij
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where Δx is the physical distance between nearest neighbours, 

we can recover the 7 point Laplacian stencil, built from only 

(39)

the centre node, p and the 6 nearest neighbours (a2+b2+c2=1)

Boundary and initial conditions

(30)

We use zero Neumann boundary conditions for all variables. 

This is easily implemented by imposing values to the centre of 

by setting the weights

ghost cells of all blocks adjacent to the Neumman boundary, 

that are equal to the centre of the cell values of those cells 

next to the boundary (see below for more discussion of ghost 

(31)

cells). In the discretisation, this sets all boundary derivatives 

equal to zero. In exploitation of the symmetry in the problem 

However, this stencil is more prone to grid anisotropy than the  this is interpreted as reflective symmetry on the planes x=0, following 27 point Laplacian stencil (see [13]), with weights

y=0,  z=0  and,  provided  the  domain  is  sufficiently  large,  as 

equivalent to Dirichlet conditions on the far boundary for all 

variables. If, during a simulation, the normal derivative of 

any of the dependent variables begins to deviate from zero 





(32)

by more than a prescribed tolerance then we may allow the 

domain to expand so as to ensure we retain a zero normal 

(26), in space it is necessary to approximateϕ g  about the 

,ij ij

derivative on the revised boundary (see below for more details 

point p. Using the above notation we obtain:

of the mesh adaptivity that facilitates this). For a fixed domain, 

it is important that the dimensions are sufficient not only to 



(33)

represent the growing dendrite but also the temperature field 

throughout the simulation, which typically extends well ahead 

where we use the notation, |Q p, to denote that the central node 

−

of the phase interface (especially for large values of the Lewis 

is not used. The discretisation of M  and g  are detailed in Ap-

ij

ij

number). 

pendix A. Consequently, Eq. (33) has the property that only 

∇2ϕ|Q contains a contribution from the central node, ϕp and 

The physical initial conditions for this problem are not 

thus

fully understood. One of the sources of theoretical difficulty 

in modelling these materials is modelling the process of 

nucleation  by  which  crystallites  form  via  fluctuations  [14]. 

(34)

We adopt the approach of using as small an initial seed as 

possible thereby allowing the initial phase profile, temperature 

This is important for the Jacobi linearisation described in the  and concentration field to adjust in the very early stages of the next section. The PDE forϕ is thus approximated by ODEs at  simulation. The temperature field can take longer to adjust to each point, p, by

a profile which is near the melting point of the alloy inside the 

solid if started at a constant field value and, so we anticipate 

this with the condition given below (see Eq. (41)). 



(35)

The initial condition for the phase field with seed radius 

where

given by R is prescribed by



(40)

(36)

where we employ the factor α=0.6, the precise value of which 

is not important as the solver smooths the phase profile if α 

In the above τ(cp,ϕp) is given by Eq. (8) and   is given  is large and conversely sharpen the profile if α   is too small by Eq. (15) using the values for ϕ,U,θ at point p. The Laplacian  within reason. It is not found necessary to normalise this profile 

∇2ϕ|Q is given by Eq. (29) with weights Eq. (32). The indexed  so thatϕ(t=0, x=0)=1. The initial solute condition is U=0 and functions M  are given by Eq. (A.1) and the functions g  are  the temperature profile used is ij

ij

given by Eq. (23), where A,X ,|∇ϕ|2 are all functions of ϕ  

i

,i

approximated by second order differences, Eq. (A.2). The PDE 



(41)

for U, Eq. (11), is approximated by the ODEs

The most significant parameter in the initial conditions, in 



(37)

terms of the sensitivity of the subsequent calculations, is the 

radius of the initial nucleus. It has been shown that the transient 

where

behaviour of the evolving dendrite can be affected by this value 

well into the simulation [15] (though the final geometry and 

velocity of the dendrite tip is much less sensitive). To this end 





(38)

we choose the smallest value of R   such that the dendrite does 

which is expanded in full (shown in Section 3.3) with the same  not melt (melting can occur if there is insufficient solid ϕ=1 in derivative discretisation scheme used for U as ϕ. 

the nucleus due the encroachment of the diffuse interface near 

the nucleus centre). We find the smallest value to be R≈5. 

Finally the θ term is given by
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Temporal discretisation

finite differences in our discretisation, in which a single 

Due to the stiffness of the nonlinear system of ODEs that arises  unknown is associated with the centre of each hexahedral cell following the spatial discretisation we employ the second order  for each of the dependent variables. 

Backward Differentiation Formula (BDF2 [16]) time stepping, 

In order to discuss further the tree structure of the blocks 

so that at a point, p in the grid domain at the centre the 33  we denote any block by its label,i  and its contents/properties, points, Q, the phase field variable system is approximated by

B :i





(42)



(48)

In practice, we introduce another variable

where l∈[1,n] is the level, s∈[1,8] is the sibling number (i.e. 

an index for which child of p the block is), p   is the parent 

index, c ,i∈[1,8] are the 8 child indices, andx=[x,y,z]  is  the 



(43)

i

Cartesian position coordinates of the block origin. Any one of 

and write Eq. (42) as

these properties can be accessed by the block number, i  . Some 

examples: p(i) is the block number of the parent of block i  ; 

x(p(i)) is the position of the parent’s origin; c (p(i))=i is an 

s(i)



(44)

identity. A natural position scheme for the child blocks is

The right hand side,  , is defined by Eq. (36). 

For constant time step, r =2/3,  r =4/3,  r =1/3.  For  a 

1

2

3

growing dendrite it is essential to use a small time step at the 

initial (imposed) state. Thereafter the time step is increased 

(see Section 4.2 for detail) to fully exploit the implicit time 

stepping. The BDF2 for adaptive time stepping is given by





(49)

where Δx is the grid size associated with level i. A complete 



(45)

specification of all the blocks in the oct tree is then specified 

by the list:

where r   is the ratio of the current to previous time step. The 

heat equation is discretised similarly. With 

we 



(50)

write

where B  is the total block number. Moreover, a childless 

N

block, i  , can be indicated by specifying, c(i)=0 and so the 



(46)

oct tree also can be specified by a listing of just the leaf blocks

where





(51)

There is no adaptive meshing within each block, which always 



(47)

contains N×N×N cells and the adaptive strategy is further re-

stricted by only allowing blocks at level n   adjacent to blocks 

The solute equation is more complicated and is given in  of n−1,n and n+1. Thus, even though a block may be flagged Appendix B. 

for coarsening, this (latter) restriction often prevents this hap-

pening. Conversely, blocks flagged for refinement must, if nec-

Adaptive mesh and block tree structure

essary, be accompanied by refinement on neighbouring blocks. 

The domain is first divided into a number of mesh blocks each  Blocks are flagged for refinement if, for any point, p, in the of which contains N×N×N hexahedral cells, where we typically  block, the following criterion is satisfied: choose N=8. We employ a domain of L3=8003, which is large 

enough for Lewis numbers of the order of 100. We divide this 

(52)

domain into 43 blocks, so that when N=8, each cell is of size  where we use, for tolerance, η∼1 and 253 and refer to this as level 1. The adaptive mesh strategy then 

imposes a hierarchical sub-division of some or all these blocks, 

(53)

and their descendants, based upon an oct tree structure. This 

subdivision aims to concentrate cells where gradients of the  etc. Typically the weights, e ,e  and e  are chosen to sum to ϕ U

T

oct tree variables are highest and to ensure neighbour blocks  unity. Sometimes it is convenient to set e  to zero to suppress U

differ by at most one level. The finest grid we work with is at  unnecessary refinement within the solid. Ife<0.1η, the block is level 7, with a corresponding Δx=25/27=0.1953125. We find  flagged for derefinement. 

that the minimum finest level necessary to obtain qualitatively 

Although each block is logically defined to be of dimension 

reasonable results is level 5, corresponding toΔx=0.78125. As  N×N×N the PARAMESH implementation actually allocates a noted previously, throughout this work we exploit cell-centred  block of dimension (N+2G)×(N+2G)×(N+2G), where G   is 
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the number of guard cells (sometimes referred to as ghost 

cells) around each block. When G=1, as used in this paper, the 

(59)

first and last cells in each dimension are guard cells – an update  where 

is found by solving the 3×3 system

function may be called at any time in order to populate these 

guard cells with the corresponding values from the interior of 

each of the neighbouring blocks (with a separate treatment 

(60)

required to impose boundary conditions for blocks at the edge  with the 3×3 Jacobian matrix defined by of the domain, as discussed previously). The application of a 

discrete stencil on any block requires access to neighbouring 

blocks via the guard cell nodes. When the neighbouring block 

(61)

is coarser the guard cell of the coarse block is found by a 

weighted average of the 8 surrounding coarse nodes (some of 

In practice we typically select, ω≈0.9  and  find  that  off 

which are in the parent block). Using a tri-linear function of  diagonal terms of 

are not essential to obtain a convergent 

x,y and z, gives the weightings, in order of nearest neighbours  iteration. 

first

The precise form of the entries of 

may be deduced 





(54)

from the above. However, we illustrate this in detail for one 

of the diagonal terms for the sake of clarity. Denoting the 

The process is known as prolongation. For example, the value  diagonal entries of 

by 

, using 

of ϕ at a fine node is prolonged by

Eqs. (44) and (36), and treating terms not including ϕp as 

constant we find



(55)

The reverse process, of finding a guard cell value for a 

(62)

coarse block when one or more neighbours is refined is known  where we note that the contribution from the central node to as restriction and is the simple average of the eight nearest,  ∇2ϕ is

one  level  finer,  cell  centres.  Both  operations,  restriction  and 

prolongation using Eq. (54), are also required for multigrid as 

detailed in the next section. 

(63)

The new updated solution for ϕ   at time tn+1 at iteration m and 

SOLVER METHOD

point p is given by

The discretisation above produces a system of nonlinear 

algebraic equations for 

and 

at each time step, 

tn+1. In this section we describe the solution algorithm that is 

(64)

used to solve these systems, based upon a nonlinear multigrid 

(Full Approximation Scheme (FAS) [17]) approach. Initially 

The term 

and, though the term 

we describe the nonlinear smoother upon which the multigrid 

has many components, the linearity of   in Up leads 

is built, before exploring how the multigrid solver combines  to straightforward updates for the U  components, noting that this with the hierarchical mesh adaptivity introduced in the  gradients involving U|Q p are treated as constant. 

−

previous section. Finally, in Section 4.3, we explain the key 

The above describes a pointwise non-linear Jacobi 

features of the parallel implementation, including the issues  smoother. The Jacobi approach lends itself to parallel associated with parallel dynamic load-balancing. 

implementation since the computation at each point may 

be completed using neighbouring values from the previous 

Nonlinear smoother

iteration only. Consequently, only one ghost cell update is 

required prior to each sweep through the mesh. This keeps 

The non-linear system of algebraic equations at the end of  inter-processor communication to a minimum. Using the Section 3.3 can be written using the generic vector notation  stencils described above it is possible to complete the updates by

using just one layer of ghost cells. Hence if a block size of 



(56)

8×8×8(say) is used in PARAMESH then a 10×10×10 block 

is actually allocated to accommodate the ghost layer of each 

where

block edge. 

(57)

Having derived the point-wise Jacobi smoother, in the 

following subsection we show how, this may be used as part of 

for each node, p, in the grid. Recall, that the appearance of Q  a non-linear geometric multigrid solver combined with local indicates coupling between points p and neighbouring nodes,  mesh adaptivity. Discussion of the parallel implementation is and the BDF2 notation   in combination with r  are defined in  postponed until Section 4.3. 

1

Section 3.3. Using an iteration method, with 

approximated 

by

, we define the defect

Nonlinear multigrid



(58)

Although the Jacobi smoother described above gives a 

convergent iteration for the system Eq. (56) (for sufficiently 

The pointwise Newton update for this iteration is given by
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small Δt and good initial guess), the convergence is far too  infinity norm of the defect (possibly weighted differently for slow to be of any practical use. Fortunately, however, the  each dependent variable), d  , satisfies d<d , for a user-defined max

iteration also satisfies a smoothing property which means that  stopping parameter d . If this is not satisfied in V  V-cycles max

fail

it damps out the highest frequency components of the error  then Δt   is halved and the step is retaken. If convergence occurs (defect) far more quickly than the rest, see the early chapters of  in V  V-cycles or less then Δt   is increased by 10% however min

[18] for discussion and analysis of this. This makes it ideally  if convergence occurs in more than V  V-cycles then Δt is max

suited for use as part of a nonlinear multigrid scheme. In this  halved for the next step. Fig. 3 shows a typical evolution of the work we make use of the Full Approximation Scheme (FAS)  time step size for three different choices of V , based upon min

of Brandt [17]. We denote the value of variables at point, p,  initial Δt=10−6, d =10−10 and V =10. Note that although the max

max

time tn+1, iteration, m, and level/grid size, h   by 

and  oscillation in Δt  is aesthetically undesirable it has no adverse 

coarser level 

. The restriction operation, 

, is the  effect on the solution quality nor (so long asV <V ) the 

max

fail

assignment to vp  of the simple average of the 8 surrounding  overall efficiency. 

(2h)

nodes, vp . Prolongation, 

, is an assignment to vp  

(h)

(h)

given by applying Eq. (54) to give a weighted average of the 

values at the 8 nearest coarse nodes vp . In solving Eq.(56), 

(2h)

FAS computes a defect from the restricted defect and variables 

to give a modified A(v)=f on these lower levels. See Fig. 2, 

where we detail FAS for our notation. 

Figure 3: An illustration, for Le = 40, Δ = 0.525 of the evolution of 

the time step, Δt  , from 10−6 by V-cycle control. (For interpretation of 

the references to colour in this figure legend, the reader is referred to 

the web version of this article.)

Parallel implementation

Figure 2: The FAS algorithm. 

Our implementation requires communication between blocks 

Note that in our work local mesh adaptivity is an essential  both on the same level (to apply the smoothing steps) and feature. This has been described in Section 3.4, where  between levels (for prolongation and restriction). For parallel PARAMESH block data structures are used as nodes of an oct- processing, clearly, communication between cores needs to be tree. In this work we also use the oct-tree as part of the geometric  kept to a minimum, but an important secondary consideration multigrid solver by developing an implementation of the Multi  is that each core has as near as possible equal load. For a Level Adaptive Technique (MLAT) (see[17]). MLAT allows us  uniform mesh an allocation of each core to an equal volume to use the Jacobi smoother on each block without modification,  of the computational domain results in an obvious fair division provided the prolongation and restriction operators are adapted  of labour. On the other hand, for an adaptive mesh, such an to deal with guard cells of the interface between too differing  approach fails since the loading between cores will differ levels of refinement. Briefly, the smoother is only applied in  enormously. 

the regions of the domain that contain fine level blocks, but the 

Given the label, i, of each block in Eq. (48), we present the 

coarse grid correction takes place on all parts of the domain  Morton ordering,M(i)∈[1,B ], of an adaptive mesh that contain the coarse level blocks (though the modified right 

N

hand side associated with the FAS scheme only contributes to 

those coarse grid regions that have fine grids on them). 

For the results presented in the following sections we 

(65)

are primarily interested in obtaining solutions at large times.  where  ‘leaf  level’  refers  an  unrefined  level  (parent  without Hence we choose a time-stepping strategy with this in mind,  child) and includes the finest level. The blocks may then be put based upon the number of nonlinear V-cycles that are required  into a Morton ordered list: to achieve convergence (for an alternative strategy, which uses 

a local error estimate to control Δt, see [19]). The principle is 

simple: if the nonlinear multigrid converges easily at a give time 



(66)

step then increase Δt, whereas if it converges slowly (or fails to 

converge) then decrease Δt(repeating the time step in the case  We write the form given in the second line of Eq. (66) to of failure). Convergence is deemed to have occurred when the  highlight the difference between Morton ordering and the alternative ordering we adopt below, Eqs. (67) and(68). 
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Load balancing for B  blocks on processors p ,  i=1,2,…,c   subsection considers the numerical performance of the solver. 

N

i

N

follows the same order with approximately B /c  blocks per  In particular it is shown that optimal performance is achieved, N N

core. The resulting ordering is well known to exhibit parallel  whereby the time required to complete a time step grows inefficiency for non-uniform meshes. This is because Morton  almost linearly with the total number of degrees of freedom. 

ordering on adaptive meshes leaves the majority of the top  The capability improvements associated with the distributed level blocks on a small fraction of cores and since multigrid  memory parallel implementation are also discussed. 

advances from the top to bottom level and back sequentially, 

the majority of the cores will be idle at the top level. In three  Mesh convergence dimensions this problem is acute because there is a factor of 8 

between levels. 

In order to gain further confidence in our computational 

approach we have undertaken a number of mesh convergence 

We adopt the following ordering, which may be termed  tests, in which we considered computational simulations in Morton-Level ordering. 

which the maximum level of mesh refinement is systematically 

increased. In order to appreciate the need for very fine grids 

at the phase interface Fig. 4 illustrates a cross section along 

the x-axis of a typical solution. This corresponds to the same 



(67)

parameter values as used to compute the dendrite illustrated 

where the subsets, L (B) on each level, k are defined

in Fig. 1. It is clear that the phase variable, ϕ, changes +1 

k

(bulk  solid)  to  −1  (bulk  melt)  over  a  very  small  distance, 

(68)

similarly the solute concentration varies rapidly both at, and 

immediately ahead of, the interface. The temperature variable, 

In summary, we implement a depth first traversal of the  θ, decays much more smoothly however – though a large blocks and then, using this numbering, divide the work load at  domain is required to ensure that the boundary effect does not each level in turn between all processors. For a uniform mesh  contaminate the solution. In addition to the interface width a this strategy results in a near optimum allocation to cores.  further feature of significant interest is the geometry of the For adaptive meshes the communication on any level is also  dendrite tip. Fig. 5 shows the computed evolution of the tip optimum, but communication between level is compromised. 

radius for three different undercoolings (0.325,0.525 and 0.725) 

at Le=40. The parameter, 

is the (non-dimensional) 

COMPUTATIONAL RESULTS

capillary length as a function of the interface width. Our value 

for  λ=2 gives, d =0.44  indicating  that  the  interface  width  in 

This section provides a selection of computational results 

0

our simulation is of the order of the physical width. We use as 

that are designed to validate and assess our proposed  our characteristic time scale, where  and 

solution algorithm. Since this is the first attempt to produce 

three dimensional results for the solidification of a non-

are the physically dimensioned capillary length and solute 

isothermal alloy using a realistic interface width we have  diffusivity coefficient respectively. Note that the results for no external simulations against which to validate our code.  Fig. 5 were computed using a fine mesh spacing of Δx=0.39. It Hence the approach taken here has been to firstly validate a  is an important question to ask if this is sufficiently fine for the two-dimensional restriction of our implementation against  solution to be insensitive to further mesh refinement. 

our own two-dimensional solver, implemented completely 

independently and described in [19]. These tests show that we 

are indeed able to reproduce results from [2] (e.g. the tip radius 

and velocities are in excellent agreement) even though the two 

code bases are completely independent, e.g. in [2] fourth order 

accurate stencils were used. 

Furthermore, we have also successfully validated two 3-d 

simplifications of our implementation. In [20] we consider a 

thermal-only restriction (i.e. a pure metal, so no concentration 

equation present), where we show quantitative agreement with 

results obtained using the 3-d, explicit, thermal-only approach 

of [21] and [22]. Similarly, in [23]we show quantitative 

agreement between an isothermal version of our solver (i.e. 

no temperature equation present) and another 3-d isothermal 

solidification  code  described  in  [21].  To  validate  the  3-d 

non-isothermal simulations we now rely on having mesh 

convergence and multigrid performance. 

The remainder of this section is divided into two  Figure 4: This plot shows the variables: phase ϕ, solute concentration subsections. The first of these considers the mesh convergence  c, and dimensionless temperature θ. At 

.  Lewis number 

At Lewis 

of 

number  40 and un-

of 40 and un-

of our implementation, showing that large time solutions  der cooling of 0.525 the temperature diffusion zone extends to about obtained on a sequence of finer levels of maximum refinement  300 in a domain size of 8003. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

do indeed appear to converge to particular dendrite geometries,  of this article.)

as tested for a selection of parameter values. The second 
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(76)

We compute the radius of curvature using the direction u by

(77)

where the last term is a correction to compensate for, in gen-

eral, ϕ≠0 at the point[i,2,2]. This is discretised by

Figure 5: Tip radius at dx = 0.39 and Le = 40 for a range of under 

cooling Δ. Even though the radius at Δ = 0.325 takes longer to reach 

steady state, this simulation is faster than the others due to greater 





(78)

stability resulting in fewer, larger time steps. (For interpretation of the 

It is the nature of this approximation that leads to the 

references to colour in this figure legend, the reader is referred to the 

web version of this article.)

oscillatory results that are observed on the least fine simulation 

(Δx=0.78). Nevertheless it is clear that the results for Δx=0.39 

Fig. 6 shows the computed tip radius as a function of time  and Δx=0.195 are almost indistinguishable at the scale used here for three different maximum refinement levels (Δx=0.78,0.39  and so we have a good degree of confidence that a converged and 0.195) for case Le=40 and Δ=0.325. The tip radius involves  solution is obtained by Δx=0.39. Similar computations of the estimating a second derivative of ϕ   in the region where ϕ=0.  large-time  tip  radius,  on  different  levels  of  grid  refinement, This is undertaken by estimating the radius on the x-axis at  have been undertaken for two other cases, as shown in Table ϕ=0 using the phase field:

2. Whilst the convergence is not so mature in every case, the 

evidence that results atΔx=0.39 are of sufficient accuracy to be 

(69)

of quantitative validity is very strong. 

where 

, 

and 

(as will become 

clear shortly, the u direction is more convenient than the y or 

z directions). Expression Eq. (69) comes from the definition

r=1/κ   









(70)

where the curvature, κ, is defined in the normalised direction 

u to be

κ=u⋅∇n⋅u.     (71)

On the x-axis, ignoring the z direction, and with a 

directional derivative in the ydirection, we find, using ϕ   to 

compute the normal n≡∇ϕ/|∇ϕ|, that

Figure 6:  Convergence  test  on  tip  radius  with  grid  sizes  dx  = 

{0.78,0.39,0.195}. The plot shows, for Δ = 0.325, the full transient 

behaviour of the tip radius for all grid resolutions. In this case the 





(72)

results for all three grids are in good agreement. Higher under cooling 

where, by symmetry ϕ | =ϕ | =0 on the axis. Again, by  makes the coarser grid less reliable and even dx = 0.39 becomes less 

,xy y=0

,y y=0

symmetry, this relation holds for any normalised parameter  reliable. (For interpretation of the references to colour in this figure and so

legend, the reader is referred to the web version of this article.)



(73)

Table 2: Table of tip radius results for two under-coolings and two 

Lewis numbers. For this particular selection of parameters there is 

In practice, of course, the value ϕ=0 lies between two  reasonable agreement even on the coarser mesh Δx = 0.78. But the successive nodes on the x-axis,i   and i+1. Furthermore, the  slight discrepancy shown for the higher under-cooling is symptomatic x-axis  lies,  by  definition,  on  y=z=0  where  there  are  no  grid  of the necessity for a finer mesh, Δx > 0.39, in general. 

points. We compute the derivatives only using the points

[i,2,2],[i+1,2,2],[i,3,3],[i+1,3,3]  



(74)

which relate to the physical points

[i,j,k]→[O ,0,0]+Δx[i−3/2,j−3/2,k−3/2] 



(75)

x

Note that the Δx=0.195 results for the other cases shown 

where O  is the x coordinate of the block origin. Thus, we know  in Table 2 were not obtained by undertaking complete runs x

by symmetry, that the values at these points can be equated to  at  this  maximum  refinement  level.  Instead,  the  large-time the image nodes (which we do not use explicitly)

simulation computed using a maximum level of Δx=0.39 was 

restarted with a maximum level of Δx=0.195  and  executed 

until a steady state tip radius was reached. This was tested for 
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the (Le=40, Δ=0.325) case, and shown to give identical results.  test of our solver is whether the computed time to take each The  approach  is  illustrated  for  Le=100,  Δ=0.325 in Fig. 7  time step only grows in proportion to N. Unfortunately this test and Le=40, Δ=0.525 in Fig. 8. Note that there is a change of  is harder to undertake than initially might be imagined since, scaling between these plots and the amplitude of oscillation  as N increases the amount of memory required to compute is in fact identical for a given mesh size, dx  , for both Le=40  a time step also increases (linearly). As described in Section and  Le=100and  is  approximately  proportional  to  Δx. The  4 we deal with this through a distributed memory parallel oscillation itself is an artifact of computing a second derivative  implementation. We start the execution, with a small seed, using a low order approximation scheme at a physical point not  using a modest number of cores (16 or 32 say) and increase coincident with a grid point. 

these as the execution progresses. Furthermore, as discussed 

in the previous subsection, we also wish to consider different 

choices for the maximum level of mesh refinement, which also 

impacts on the number of computational nodes to be used and 

therefore the total memory requirement. 

Fig. 9 shows a selection of timings for a set of computations 

for a single, representative, test case (Le=40, Δ=0.525) using 

different cores. The vertical axis shows the execution time for 

a single implicit time step and the horizontal axis shows the 

number of degrees of freedom (both on log scales). Timings 

are taken just as the dendrite is starting to form (early dendrite 

see Fig. 10), part way through its formation (mid dendrite 

Figure 7: Convergence test on tip radius with grid sizes dx ∈  Fig. 11), and once the dendrite is clearly formed (late dendrite 

[0.39,0.195]. A checkpoint file at dx = 0.39 is used as an initial condi-

Fig. 1). Timings are also taken using different maximum 

tion for a dx = 0.195 to test convergence. The restart recovers from  refinement levels (either 2 or 3 per case). It is very clear from an initial transient before settling to a value very similar to the steady  Fig. 9that multigrid performance is achieved throughout state at the coarser, dx = 0.39 run. (For interpretation of the references  these different stages of the evolution of the dendrite and at to colour in this figure legend, the reader is referred to the web version  different maximum refinement levels. This can be seen from of this article.)

the excellent proximity of the points to the time line of slope 

one (

) on the log–log scale. 

Figure 8: Convergence test on tip radius with grid sizes dx ∈  Figure 9: Multigrid efficiency. A demonstration of the linearity of 

[0.39,0.195]. A checkpoint file at dx = 0.39 is used as an initial condi-

solve time with the number of degrees of freedom. In all 6 cases the 

tion for a dx = 0.195 to test convergence. (For interpretation of the  corresponding points fit well (for a single time step) to the line of references to colour in this figure legend, the reader is referred to the  slope 1. 

web version of this article.)

Numerical performance

Having demonstrated the mesh convergence of our proposed 

technique in the previous subsection, we now consider the 

computational performance of the implementation used. 

The most important feature of any successful multigrid 

implementation is that it should enable solutions of systems of 

algebraic equations to be obtained in a run time that is close to 

O(N) as N→∞ where N   is the number of degrees of freedom. 

In this simulation we begin with a small solid seed at the origin 

and this grows (under that right parameter conditions) in time. 

As  it  grows  the  region  of  maximum  mesh  refinement  gets 

larger and larger, as the isosurface, ϕ=0 has ever increasing  Figure 10: Dendrite image: Le = 40, θ = −0.525, t = 102,  dx area. This causes N to increase in time. Hence, an excellent  = 0.78. This simulation took 12 hours on a 12 core machine. 
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radius is fully converged, the tip velocity is only near steady 

state. We give the companion plot to Fig. 5 for the tip velocities 

for the same parameters in Fig. 13. 

Figure 11: Dendrite image: Le = 40, θ = −0.525, t = 186, Δx = 0.78. 

This simulation is of a dendrite with the coarsest maximum refine-

ment and took about 40 hours to simulate on a 12 core machine. The 

last 10% of the run (a time interval of t = 18) took about 10 hours. 

Figure 13: This is a companion plot to the tip radius plot 5: The tip 

Note that our use of distributed memory parallel computing  velocity at dx = 0.39 and Le = 40 for a range of under cooling Δ = 

throughout this work has been aimed primarily at providing the  {0.325,0.525,0.725}. Though the tip radius has reached steady state capacity to solve large systems (up to and beyond a billion  in each of these cases the tip velocity for the highest undercooling degrees of freedom per implicit time step) in a computationally  cases is still increasing. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

efficient manner. It is clear from Fig. 12 that the strong parallel  article.)

scalability of our implementation is not optimal. Nevertheless 

it is apparent that, as well as providing additional memory 

capacity to allow larger problems to be tackled, out parallel  ACKNOWLEDGEMENTS

implementation also continues to improve the speed of the  This research was funded by EPSRC grant number EP/

execution each time the core count is increased so long as the  H048685. We are also grateful for the use of the HECToR UK 

number of degrees of freedom is sufficiently large. 

National Supercomputing Service. 

APPENDIX

Appendix A. Discretisation of 

We discretise, M  as follows

ij

Figure 12: Plot of the relative wall-clock time to undertake 10 time 

steps at the mid dendrite stage (see Fig. 11), for mesh dx = 0.39, using 

different numbers of cores (64 to 1024). 

(A.1)

CONCLUSIONS

where |Q−p denotes use of some or all the 33 − 1 surrounding 

nodes, p + [1, 0, 0],p + [0, 1, 0],...,p + [1, 1, 1]. The matrix ele-

We have presented, in detail, the mathematical model and  ments, g , are functions of the components of ∇φ only: methods employed to simulate, for the first time, a three 

ij

dimensional, fully coupled thermal-solute-phase field model 

for dendritic growth. This was achieved through the coupling 

of multiple numerical techniques from compact discrete finite 

difference stencils, AMR, MLAT and parallel execution. 



(A.2)

For moderate Lewis numbers we have been able to obtain 

results at sufficient grid resolution, which we have confidence 

can provide quantitative accuracy in 3-d for the first time. This  Appendix B. Discretisation of U

breakthrough into three dimensional fully coupled thermal  Similarly to the treatment of θ and φ we have simulation is of importance, since heat generation at the  , and write

growing two dimensional surface is very much an integral part 

of the natural physical process and two dimensional results 

therefore have little quantitative value. Our next goal is to 

(B.1)

undertake a systematic simulation of the effect of increasing  where

Lewis number. We end with the observation that, though tip 
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(B.2)

The divergence of the anti-trapping current is given by



(B.3)

where

(B.4)

and



(B.5)
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CHAPTER

8 MATHEMATICS IN PAPER - FROM 

FIBER SUSPENSION FLUID  

DYNAMICS TO SOLID STATE 

PAPER MECHANICS

Jari Hämäläinen, Taija Hämäläinen , Teemu Leppänen, Heidi Niskanen 

and Joonas Sorvari

Keywords: Papermaking, multi-phase flow, fiber orientation, fiber flocculation, solid mechanics, fiber network rheology of paper, Computational Fluid Dynamics (CFD), Finite Element Analyses (FEA)

INTRODUCTION

Paper is made from wood fibers with some chemicals and fillers. 

Papermaking starts from wood handling and stock preparation. 

Fibers are mixed in water in a low concentration (order of 

1%) when entering the first unit process of a paper machine, 

that is, the headbox (see Figure 1). Fibers tend to align with 

streamlines of a carrying phase water flow and they form fiber 

flocs in favorable flow conditions. By means of turbulence, 

both fiber orientation and flocculation can be controlled - 

stronger turbulence leads to more random orientation and less 

flocculated fiber suspension flow, which, in turn, influences the 

fibrous structure of the finished paper. The strength properties 

of the paper depend strongly on fiber orientation, which also  Figure 1: Paper machine headbox. 

determines the dimensional stability of the paper. Fiber flocs 

make denser ‘spots’ in a paper sheet, which may cause some 

The paper is organized as follows: The second section 

variation in ink absorption, for example. Therefore, the control  deals with specific features of fiber suspension flows, namely of fluid dynamics in the beginning of the papermaking process  fiber  orientation  and  flocculation  and  how  they  can  be is a key issue in papermaking. Furthermore, the finished paper  modeled. The third section is devoted to the microscopic level with its different end-use purposes can be studied by using  solid mechanics of paper as a fiber network. Finally, the last mathematical modeling based on either fiber-level network  section discusses the rheology of paper and its macroscopical models or on the continuum approach. These aspects are  modeling. 

discussed more detailed in this paper than in essay [1]. 

FLUID DYNAMICS OF FIBER SUSPENSION 

FLOWS

Fiber orientation and flocculation

Both fiber orientation and fiber flocculation are characteristic 

Citation: Jari Hämäläinen, Taija Hämäläinen, Teemu Leppänen, Hei-

fluid dynamical phenomena of fiber suspension flows at low 

di Niskanen and Joonas Sorvari, Mathematics in paper - from fiber  concentrations in the headbox and the forming section. The suspension fluid dynamics to solid state paper mechanics. Journal of  main purpose of a headbox is to create a thin and even jet which Mathematics in Industry 2014, 4:14, 10.1186/2190-5983-4-14. 

then enters the forming section. In the headbox, the suspension 

is mixed in the turbulence generator and then accelerated in the 
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contracting slice channel. After the slice opening, the jet enters 

into free air and hits the moving fabrics called “wires”, where 

the water removal and the formation of the fiber network are 

initiated. Subsequent water removal processes by pressing and 

drying make paper more solid, but the basic fibrous structure 

of paper does not change noticeably. 

The structure of paper can be characterized by numerous 

mechanical properties. Fiber orientation describes how the 

fibers are aligned in the flow and finally in the finished paper as 

a fibrous network. Fibers are mainly aligned with streamlines 

of  the  headbox  fluid  flow;  more  precisely,  the  alignment 

of  fibers  forms  a  varying  distribution  which  depends  on  the  Figure 3: Illustration of fluid flows in a headbox. 

dominating flow conditions. A measured flow field with fibers 

is presented in Figure 2. Many mechanical properties of paper 

are  affected  by  fiber  orientation,  for  example,  the  strength 

properties of paper as it is stronger in the fiber direction than 

in the cross direction. Further, moisture changes cause fibers 

to swell, leading to cockling and curling of the finished paper. 

Therefore, headbox flows need to be controlled precisely so as 

not to cause harmful cross-directional flows in the headbox, 

such as those illustrated in Figure 3 due to a non-even flow rate 

distribution from the tapered header. The second mechanical 

measure of paper is its basis weight defining how many grams 

it weights per square meter. Large-scale weight variations are 

controlled by headbox actuators, but small-scale variations are 

due to fiber flocculation (see Figure 4 for a photo of a paper 

sample in centimeter scale). Flocculation describes the tendency 

of fibers to form aggregates. Fibers used in papermaking tend  Figure 4: Basis weight variation called formation. 

to tangle together even in low concentration suspensions. This 

may affect the local variation of the solid mass distribution of 

paper and thereby causes undesired variance in the properties  Formulation of the fiber orientation probability of the produced paper sheet. Non-uniformity of properties may  distribution model

induce problems in the later stages of papermaking or printing  When multiphase flows are concerned, there are namely two processes, as the unevenly distributed mass contains different  different methods to model the particles in such a flow. The first quantities of water, and thus, expands unequally, or absorbs ink  option is the Lagrangian approach, which models the motion unevenly, deteriorating the quality of printed photos. 

of individual fibers. However, as accurate as it may be, this 

approach is computationally very expensive and thus it is not 

practical to be used in such a large scale flow as takes place in 

the headbox. The other option is the Eulerian approach, which 

takes into account an undefined number of fibers and predicts 

their statistical behavior. The latter one is the basic idea behind 

the fiber orientation probability distribution (FOPD) model. 

The basis of the probability distribution modeling 

approach is the conservation of the probability flux and the use 

of diffusion-convection or the Fokker-Planck equation. This 

approach has been widely used (e.g. [2–5]) in studying the 

development of fiber orientation in contracting channel flows. 

As a result, the fiber orientation distribution may be obtained. 

It is common to simplify the model and to consider only 

the planar orientation in vertical or horizontal planes. However, 

by doing so, one degree of freedom is lost and the results 

may not be as realistic as they would be when the motion of 

Figure 2: Fibers in a flow. 

fiber is described in three-dimensional space as it is in reality. 

Nevertheless, the model is able to illustrate the most probable 

orientation  distribution  in  the  headbox  flow  under  turbulent 

conditions (e.g. [6, 7]) and near walls [8]. The evolution of the 

fiber orientation distribution Ψ can be written as



(1)
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where the notations 

refer to the Laplace and  that the particles execute rotational motion in periodic, closed divergence operators on a unit sphere, respectively.  orbits. Jeffery’s work has been the basis for current modeling Furthermore, v is the velocity of the fluid and w is the rotational  and has been widely applied. 

velocity of the fiber. Coefficients Dt and Dr are the translational 

and rotational diffusion coefficients respectively, describing the 

effects of velocity fluctuations on how the fibers are distracted 

from their state of orientation at a certain moment. It is usual 

to assume that there is no time-dependence, and thus, the first 

term of the equation can be ignored. The rotational velocity of 

the fiber is determined as (see e.g. [9–11])



(2)

where 

) is a parameter related to the fiber 

aspect ratio r=L/d, L and d being the length and the diameter of 

the fiber, respectively, and p gives the orientation of the fiber at 

the surface of a unit sphere. The origin of the vector p, defined 

as

Figure 6: Visualization of the fiber orientation distribution. 

The model given above is based on the assumption that the 

fibers are rigid. However, it can also be used in describing the 

orientation of flexible fibers at least from a statistical point of 



(3)

view as discussed in [5] even though it does not take into account 

the flexibility of the fibers. Some studies have also taken into 

is placed at the center of the fiber. The notation ⟨⋅,⋅⟩ refers to  account the fiber-fluid coupling through an orientation tensor the inner product of the vectors. Furthermore, 

including momentum exchange between the fiber and the fluid 

phases [13]. This type of approach to model the most probable 



(4)

orientation state of the fibers on different flow conditions has 

shown  to  be  rather  convenient  when  studying  the  flows  of 

are the strain rate and vorticity tensors, respectively. Resulting  industrial scales. Naturally, there are some assumptions e.g. 

orientation distributions are illustrated in Figure 5. The figure  about the low enough concentration and rigidity of the fibers shows the development of fiber orientation along a contracting  which does not necessarily meet the conditions in reality. The channel achieved using a planar approximation of the model.  latter assumption is violated in the case of papermaking, where Figure 6 shows the FOPD in three-dimensional surface, that  the wood fibers are long and flexible, thus causing additional is, a 3D solution for a 2D contracting channel and for one  complexity such as possible flocculation for the flow. However, projected angle. 

the commonly taken approach gives practical information 

about  the  real-life  phenomena  present  under  the  flows  of 

papermaking and is of importance in trying to improve the 

papermaking process. 

Modeling of fiber floc dynamics by using a 

population balance approach

Fiber flocculation has not been widely studied due to the 

challenges it creates both for measuring and computational 

methods. The simplest models treat fiber suspension as a 

one phase flow ([14–16]) although the interaction of the two 

fibers should be taken into account, as shown in [17] when 

comparing these results to measurements [18]. More accurate 

models [19,20] use the Eulerian two-phase flow approach and 

are based on the population balance model also taking into 

account the occurrence of flocs of different sizes. 

Figure  5: Fiber orientation distributions along a contracting chan-

Modeling of fiber flocculation inside the headbox requires 

nel.  Modeled  fiber  orientation  distributions.  The  channel  outlet  is  taking  into  account  the  two-phase  nature  of  the  flow  and located at x=0.7 m and assumption of random orientation distribution  the interactions between the carrying phase, water, and the is used at the channel inlet at x=0 m. 

dispersed phase, flocs. Moreover, to describe the real situation 

The earliest studies of non-spherical particles were  in the paper machine headbox and in the forming section, one conducted by Jeffery already in 1922 [12] when he derived  has to model not only flocs of one size, but several sizes. This the equations of motion for a single ellipsoid, non-Brownian  can be done by using the population balance approach particle in Newtonian fluid with simple shearing and showed 
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(5)

where  n(ν,t)  represents the number density of particles of 

size ν at time t and B , D , B  and D  represent the birth rate 

B

B

C

C

due to the break-up of larger particles, the death rate due to 

the break-up into smaller particles, the birth rate due to the 

coalescence of smaller particles, and the death rate due to the 

coalescence with other particles, respectively. The carrying 

phase velocity field is denoted by U. B , D , B  and D  are 

B

B

C

C

defined as

Figure 7: Number densities of ten different floc size groups in the 



(6)

slice channel. 

When  fiber  flocculation  is  modeled  further  in  the  paper 

machine in the forming section, more physical couplings are 



(7)

needed. In the forming section, most of the water included 

in the suspension is removed with different types of suction 





(8)

elements and the fiber concentration is significantly increased. 

This means more fiber-fiber interactions and less freedom for 

fibers to move. In addition, when the water is removed through 



(9)

the moving wires, the fiber network starts building up, further 

increases the resistance of the wires and thus hinders the water 

where  g(ν;s)  and  Q(ν;s)  represent the specific break-up rate  removal. This effect can be taken into account by adding the and the specific coalescence rate, respectively. For the break- solids pressure force [24]

up and coalescence models, the equations developed for 

bubble flows [21, 22] can be used, if the model parameters are 

adequately tuned and verified with measurements. 

(11)

As  the  physical  characteristics  of  wood  fibers  used  to the momentum equation of the dispersed phase. In Eq. 

in  papermaking  may  vary  significantly  depending  on  the  (11) G  and C  are the reference elasticity modulus and the paper grade produced, it is intuitively clear that flocculation 

0

SP

compaction modulus, respectively, and αd and α ,  represent 

phenomena  must  depend  on  fiber  characteristics.  When 

d max

the local volume fraction of the fibrous phase and the maximum 

thinking about a fiber network formed of long, flexible fibers  packing parameter, respectively. Now by selecting suitable or a network of short, stiff fibers, it is easy to see that breaking  value for the coefficient  C , the solids pressure gradient is the network of long fibers requires more force than the short 

SP

only activated in the regions close to the maximum packing. 

fiber case: If the concentrations of these two suspensions are 

the  same,  the  suspension  of  long  fibers  has  more  interfiber 

As  discussed  earlier  in  this  paper,  the  flocculated  state 

connections to be broken. A practical approach to study this  of the suspension is inherited to the variation of the solid characteristic is an old concept - the crowding factor [23]  mass distribution of the paper produced. Taking into account defined as

the phenomena in the forming section, the evolution of the 

fiber floc size can also be connected to the solid mechanical 

modeling of the finished paper sheet [20]. The shear forces and 

the water removal have significant effect on the floc size of the 

(10)

suspension, as illustrated in Figure 8. The figure illustrates the 

where  C   is the volumetric concentration,  L  is the average  computational domain including the contracting channel with ν

fiber length,  d  is the average fiber diameter,  C   is the pulp  some turbulence lamellae causing the wakes in the flow, and m

concentration,  and  ω  is  the  fiber  coarseness.  The  crowding  the free jet from the headbox to the moving wire. 

factor represents the number of fibers within the rotational 

sphere of influence of a single fiber. It was shown in [19] that 

the internal strength of flocs is related to this factor. 

The population balance approach allows the detailed study 

of the development of the floc size distribution, as shown in 

Figure 7. This example demonstrates the dynamics of a floc 

population of ten flow size groups between 1 and 10 mm in a 

headbox contracting channel. It shows that the smaller flocs 

are coalescing and their number density decreases whereas the 

number density of the largest flocs increases. For more detailed 

analyses, we refer to [19]. 

Figure 8: Mean floc size in the free jet. 
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The following sections continue from the paper web  paper physicists that the fracture strength of paper is governed obtained in the forming section and further dewatering in the  by the failure of bonds. Only in highly bonded networks is the papermaking process. 

sheet strength determined by the tensile failure of fibers. 

PAPER AS FIBROUS MATERIAL

Fiber network modeling

It is obviously in the interest of papermakers to gain information 

Paper physics

on the relationship between the mechanical properties of paper 

Stress-strain curves yield important information on materials  and the constituent parts of paper. Extensive efforts have been behavior. For a typical paper grade, such as newsprint, the stress- made to construct realistic fiber networks and to simulate their strain curve is characterized by an initial linear region which is  behavior. Heyden [30] classifies network modeling approaches followed by a non-linear region. The transition from the linear  into uniform strain models, semi-analytical models and to to the non-linear region takes place smoothly. In engineering  computer simulation models. In this paper, we are interested literature, the transition point is known as the proportional limit.  in the latter and especially in simulation models in which the The proportional limit is commonly associated with the yield  finite element method (FEM) is utilized. 

limit which is the point in the stress-strain curve after which 

The first step in the fiber network modeling is to construct 

plastic or permanent strains are developed. In the non-linear  a realistic network, which is a challenging task especially if region gradient of the curve decreases but is still positive. The  3D structures are considered. The generation begins by placing degree of non-linearity depends on humidity conditions. In dry  fibers randomly inside a cell [30] or by depositing fibers on a conditions, the curve is rather linear even after the proportional  rectangular surface one-by-one [31] until the desired network limit. However, in humid conditions clear strain hardening is  density or grammage is attained. Fiber parameters such as observed. In this sense, paper is brittle in dry conditions and  length, orientation and curvature may vary according to a ductile in humid conditions. The stress-strain curve depends  probability distribution. In the network generation, geometric also on the rate of loading. Both the elastic modulus and tensile  intersection or closest point problems are typically addressed strength increase with the strain rate. The viscous nature of  in  order  to  find  possible  inter-fiber  bonding  points.  Free paper can also be observed from a relaxation or creep test. 

fibers or fiber clusters which are not connected to the rest of 

Since  paper  is  a  fibrous  network  in  which  fibers  are  the network are typically removed from the network in order connected by hydrogen bonds, we may ask what is the influence  to  obtain  positive  definite  system  matrix  in  finite  element of fiber and bond properties on the mechanical properties of a  calculations. Network connectedness can be examined with paper sheet. It is intuitively clear that the elastic modulus of  aid of graph search algorithms [30]. The graph nodes are paper must depend on the elastic modulus of fibers. Due to the  the intersection and boundary points and free fiber segments porous structure of paper and random orientation of fibers, the  represent the graph edges. It should be noted that network modulus is less than the corresponding modulus of fibers. In  systems are large. In an area of one square millimeter there a seminal paper by Cox [25] a network theory for the tensile  are roughly 100-200 fibers, and every fiber has approximately behavior of paper was presented. In the network model, long,  10-40 inter-fiber bonds. Furthermore, the number of the fibers straight and non-interacting fibers were considered. In Cox’s  increases quadratically with the area of the network. The size of the network is still the limiting factor when considering 

theory, the elastic modulus of a paper sheet is given by 

industrially important problems. We are still in the millimeter 

, where  E   is  the  elastic  modulus  of  fibers  and  ρ  and  ρf  are 

f

scale when dense three-dimensional networks are considered. 

densities of the sheet and the fibers, respectively. For highly  To increase the size of the networks, efficient algorithms and bonded  networks,  Cox’s  theory  seems  to  be  in  reasonable  coding methods are needed. 

agreement with the experimental observations. However, for 

less dense networks the modulus can be lower than predicted 

Network generation is only one part of the problem. In 

by Cox’s theory [26]. 

order  to  perform  simulations,  a  finite  element  model  of  the 

generated network must be created. Although it is possible 

The non-linear irreversible response of a paper sheet under  to  model  fibers  with  solid  continuum  elements  [32],  beam elongation has been attributed to the progressive disruption  elements are typically used [30, 31] since they reduce the size of  inter-fiber  bonds  and  to  intra-fiber  mechanisms.  Rance  of  the  discrete  finite  element  system.  Fibers  are  commonly 

[27] argued that the breaking of bonds results in increased  assumed to follow the linearly elastic constitutive law [30], deformation due to more localized stress concentrations.  although inelastic models [32] can and should be used if However, according to Alava [28], the inelasticity of paper  extensive deformations are considered. Considering the arises from plastic deformations that take place in the fibers  physical behavior of paper networks, it seems that the proper when microfibrils slide relative each other. 

modeling of  inter-fiber  bonding  is  critical in  order  to  model 

It is also still unclear whether the time-dependence of  paper networks realistically. For small deformations, ideal rigid paper  arises  from  fiber  properties  or  from  the  behavior  of  bonding, as used in Cox’s theory, may be adequate. However, inter-fiber bonds. In an in-depth review by Haslach [29], it was  to model the non-linear response or failure of a paper sheet, concluded that most likely the time-dependency is controlled  deformable bonding models which allow bond failure should by  a  mechanism  which  occurs  within  the  inter-fiber  bonds,  be utilized. In Heyden’s [30] network model, fibers are bonded namely  the  release  of  microcompression  in  the  inter-fiber  together with an elastic spring, the stiffness and strength of bonds. 

which reduces in a stepwise manner until complete failure 

Although there is currently no comprehensive theory of the  occurs. There has been growing interest to take into account inelasticity deformation of paper, there is consensus between  the subsequent sliding of fibers after bond failure has occurred 
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[31, 33]. The inter-fiber frictional sliding may be particularly  [34] of convex objects is utilized. For a non-convex object, important for wet networks since water breaks hydrogen bonds  the same GJK algorithm can be used to detect the collision so that fibers can more easily slide against one another. 

of the convex hulls of the objects. In the contact searching, 

The  resulting  discrete  finite  element  problem  of  fiber  bounding volume hierarchies and hierarchy traversal collision networks is typically very large and non-linear due to possible  testing are used. In a bounding volume hierarchy, a geometric material and geometric non-linearity and frictional sliding.  object is partitioned into a tree structure. The bounding volume Thus, tools of high performance computing must be utilized. 

hierarchy of a fiber is constructed using convex hulls. The root 

node is the convex hull of the fiber. At each node, the fiber part 

A fiber network model

is subdivided into two nearly equal size parts and the convex 

hulls of the parts are stored in the child nodes. This procedure is 

For illustrative purposes we consider here the problem of  continued until we end up in a structure in which the leaf nodes simulating the behavior of a fiber network in an extension test.  contain the convex hull of a single element. The fiber-to-fiber Recently, Lavrykov et al. [32] have presented an alternative  intersection tests are conducted using their bounding volume way to generate fiber networks. In their model, the sheet  hierarchies. In the intersection tests, both hierarchies are structure is obtained by compressing randomly placed fibers  descended  simultaneously  using  a  depth-first  approach  [35]. 

between two rigid plates. The compressing was simulated with  After all contacts have been found, the network connectedness the finite element method. A similar approach is used here. 

is studied using the breadth-first search (BFS) strategy. 

In  our  deposition  model,  fibers  are  initially  modeled 

Figure 10 illustrates the effect of the bonding properties 

as straight rectangular cuboids with a uniform length. The  of  fibers  on  the  stress-strain  behavior  of  a  paper  sheet.  We fibers are randomly placed on a plane and are not to allowed  simulated, using the FEM, an extension test using the same to intersect. At this stage, the fibers are parallel to the plane.  network  but  varied  the  bonding  properties  of  fibers.  The The  in-plane  orientation  of  the  fibers  varies  according  to  a  properties of the network are given in Table 1. If the bonds uniform distribution. After fibers can no longer be placed on a  are rigid, the stress-strain curve is rather linear. The behavior given plane, we proceed to the next plane, and this procedure  is different from the case where the bonds are modeled with is continued until the desired grammage is attained. In other  stiff breakable bonds in which case we see strain hardening words, fibers are placed in a cell plane by plane. After the initial  as bonds deform and break. Figure 11 shows that for several structure has been obtained we proceed to FEM simulation  fibers which are located near the loading edge, many of the where we discretize the fibers with hexahedron elements and  bonds are broken so that the fibers are more free to move with place the structure between two rigid plates. Then, the fibers  the displaced edge. 

are allowed to drop under gravity to the bottom stationary rigid 

plate. The upper rigid plate is moving and compresses the fibers 

so that the prescribed thickness of the network is attained. The 

forming of the sheet structure, i.e. dropping of the fibers and 

compression of the network, is simulated with aid of the FEM. 

In the simulation, fiber-to-fiber contacts are taken into account. 

After we have obtained the initial sheet structure, fiber-to-fiber 

contact points are searched and in the contact points bonds are 

formed. Bonds are modeled as multiaxial springs that can fail if 

a given threshold value is reached. An example of a generated 

network is shown in Figure 9. 

Figure  10: Stress-strain curve of the network.  Effect of bond 

properties on the stress-strain behavior of a paper sheet. 

Figure 9: Example network geometry. Example of a generated fiber 

network. 

The network generation procedure was implemented in 

ABAQUS  finite  element  software  using  Python  scripting. Figure 11: MD displacement fields. Effect of bond properties on the In  this  way,  we  can  combine  finite  element  model  making  MD displacement fields. (a) Rigid bonds. (b) Stiff breakable bonds. 

and simulations with useful numerical tools. In the initial  Red color indicates maximum displacement, blue color minimum dis-intersection testing and in the search for fiber-to-fiber contact  placement. 

Gilbert-Johnson-Keerthi (GJK) collision detection algorithm 
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Table 1: Fiber network properties

include web runnability [43], calendering [44], winding [45] 

and printing nip mechanics [46]. 

Modeling the fracture of paper

As an example of an application of a continuum description, 

we consider modeling the fracture of paper. As the continuum 

description is used, paper is treated as a solid continuum. 

However, material properties are allowed to vary locally. 

To be precise, paper is divided into small volumes each 

having their own principal material directions. In addition, 

every volume has its own directional stress-strain behavior 

PAPER AS CONTINUOUS MATERIAL

depending on, for example, the fiber orientation anisotropy, 

dry solids content and basis weight. More information about 

Continuum description of paper

this method, the locally varying fiber orientation and fiber 

At the macroscopic level, the paper structure can be  orientation anisotropy can be found from reference [47]. As considered as continuous solid material obeying the laws of  an example, Figure 13 shows how the tensile strength depends continuum mechanics. The equilibrium equations together  on fiber orientation anisotropy ξ and dry solids content β in the with constitutive laws form the basis of solid continuum  example presented in this paper. A detailed and sophisticated mechanics. The continuum description of paper is a convenient  presentation of material parameter dependencies is available approach to solve industrially relevant problems. However,  in reference [48]. 

paper is a heterogeneous and anisotropic viscoplastic 

material which makes it challenging to model even when the 

continuum description is used. In modeling applications, some 

simplifications are commonly needed. On a sufficiently large 

scale, paper can be considered to exhibit homogeneous material 

behavior. In addition, the anisotropic behavior of paper is often 

handled by assuming paper to behave orthotropically. An 

orthotropic material has three orthogonal planes of symmetry 

which can be chosen as coordinate planes. In the case of 

machine made paper, the principal material directions coincide 

with MD, CD and the thickness direction (ZD), as illustrated in 

Figure 12. Paper is very orthotropic, being much stiffer in MD 

than in CD or ZD. The value for the ratio between the elastic 

modulus in MD and CD is between 2 and 4 and for MD and 

ZD around 100. 

Figure 13: Tensile strength of paper. Tensile strengths as a function 

of the fiber orientation anisotropy ξ and dry solids content β for the 

main direction (MD). 

The  failure  model  applied  is  a  simplification  and 

generalization  of  Hashin’s  theory  [49,  50].  Hashin’s  theory 

Figure 12: Principal material directions of paper. Principal material  was created for fiber-reinforced materials. It requires that the directions of machine made paper: MD, CD and ZD. 

behavior of undamaged material is linearly elastic. It takes 

into account four different failure modes: fiber tension, fiber 

Although the uniaxial inelasticity of paper has been long  compression, matrix tension, and matrix compression. When recognized [36] and is currently relatively well understood  this theory is used, two different stages of the fracture process 

[29,  37], only very recently have well calibrated multiaxial  should be defined: damage initiation and damage evolution. 

inelastic constitutive models been proposed. Classical plasticity 

models have been proposed by Xia et al. [38], Mäkelä and 

In the case of paper, the linear elasticity requirement in 

Östlund [39] and more recently by Harryson and Ristinmaa  Hashin’s  theory  is  a  substantial  weakness;  the  stress-strain 

[40]. Integral based viscoelastic constitutive models have been  behavior of paper is commonly nonlinear and inelastic, as proposed by Uesaka et al. [41] and Lif [42]. Apparently, we are  stated earlier. From that point of view, the failure model is still missing a model which combines the viscous and plastic  a  generalization  of  Hashin’s  theory  since  no  restrictions  are properties of paper. 

imposed for material behavior. Actually, if fracture simulations 

are considered, the essential issue is the determination of the 

The continuum description of paper is widely used in  tensile strength (and stress-strain behavior) dependencies (see modeling applications. A typical application is FEM modeling  Figure 13). Whereas in Hashin’s theory four different failure related to papermaking or to printing processes. Examples  modes are considered, in the failure model applied only two 

[image: Image 651]

132

Mathematical & Computational Physics

failure modes are considered; the failure of fibers and matrix  the importance of these factors on paper behavior can be are not separated. From that point of view, the present model is  studied. The future work concentrates to the collaboration of a simplification compared to Hashin’s theory. Also the damage  the presented modeling approaches, for example, stress-strain evolution is much simpler in the present model than in Hashin’s  behavior used in continuum mechanical approach could be theory: when the stress level reaches the tensile strength,  obtained by fiber network modeling. 

the stiffness of the material is decreased to a thousandth. 
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INTRODUCTION

[10, 27, 32, 33]. Moreover, as shown in Galanti et al. [34], the 

effect of crowding can result in crossovers between normal and 

Diffusive transport is central in many areas of physics,  anomalous diffusion, leading to different descriptive scenarios chemistry, biology, and soft matter [1–4]. However, while the  which appear to depend on the selected initial conditions and mathematics of diffusive processes in dilute and simple media  on the specific time scale of observation. 

is fairly well developed and understood [1], many interesting 

and relevant diffusive processes take place in strongly non-

Another related issue is that of diffusion-limited reactions 

ideal conditions. These include a wealth of different highly  [35], which are ubiquitous in many domains in biology and dense media, from non-ideal plasmas [5] to biological  chemistry, touching upon problems such as association, folding membranes [6], media with complex topological structures,  and stability of proteins [13, 36] and bimolecular reactions in including porous media [7–9] and living cells [10,  11] and  solution [37–41], including enzyme kinetics [42], but also the strongly confining environments [3,12–16]. 

dynamics of  active agents [43, 44]. Many theoretical studies 

have tackled these and related problems under different 

Crowding and confinement effects on diffusion-influenced  angles [13,  39,  42,  44–47]. Nevertheless, a full theoretical phenomena still pose fundamental yet unanswered questions.  comprehension of transport in non-ideal media remains an Several computational [17] and experimental [18, 19] evidences  elusive task, Fick›s law itself and the very notion of effective exist of anomalous diffusion under dense crowded conditions  diffusion  coefficient  being  questionable  in  a  disordered 

[20]. Anomalous diffusion refers to phenomena that lead to  medium [31]. 

a  nonlinear  growth  of  particles’  mean  square  displacement. 

Deviation from the standard linear behavior arise, for example, 

In this paper we review the subtle link between macroscopic 

when obstacles impede the motion of particles [17,21, 22] or  transport equations, such as the diffusion equation, and when distinguishable species compete for the available spatial  microscopic processes, modeling the stochastic dynamics of resources [10,  23–27]. These conditions are certainly met  some agents. For a classical and comprehensive account on when studying the molecular mobility inside a cell [28, 29].  diffusion in disordered media the reader can refer to Haus and Cells are occupied for over 30% of their volume by membrane  Kehr [48] and references therein [49–56]. 

delimited organelles and different sorts of cytoskeletal 

The purpose of our study is to contribute to the debate 

structures. In this respect, living cells behave much like  with a two-fold approach. One the one hand, we wish to fractal or otherwise disordered systems [30,  31]. However,  understand in greater depth the delicate procedure of obtaining strong evidences also exist in favor of normal (Brownian)  mean-field transport equations from microscopic, agent-based diffusion, crowding, and confinement resulting in this scenario  stochastic models. The idea is that sometimes it may prove in (often nontrivial) modifications of the diffusion coefficient  simpler or more effective to describe a complex transport process (or a simple one occurring in a complex medium) at 

the microscopic level. On the contrary, it is sometimes better 

to deal with macroscopic equations. It is thus important to 

Citation: Galanti M, Fanelli D and Piazza F (2016) Macroscopic Trans-

investigate how the two levels of description interface with 

port Equations in Many-Body Systems, doi: 10.3389/fphy.2016.00033. 

each other. Furthermore, we will elaborate on the reasons why 

considerable information can be eventually lost when passing 

from the microscopic stochastic process to the macroscopic 

mean-field  description,  and  draw  attention  on  the  distinct 
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notions of  point-like and extended crowding, this latter bearing 

potentially interesting applications, only partially explored in 

the relevant literature. 

The paper is organized as follows. In Section 2 we discuss 

the general framework of simple exclusion processes (SEPs), 

which constitute the basic tool of the microscopic description, 

(2)

as  well  as  the  process  of  obtaining  mean-field  equations  where θ(·) stands for the Heaviside step function and where from SEPs in the continuum limit. We show that SEPs in  we are assuming that 

. Note that the 

inhomogeneous media can be constructed in apparently  ordering of appearance of the   in the above expressions is equivalent manners as for the site-dependence of the hopping  arbitrary. Equations (2) entail that 

, where 〈·〉 indicates 

rates. However, different advection-diffusion equations  an average over many values of ξ , for a given configuration can ensue in the continuum limit, rendering this operation a 

 i

{ n }. The above process is fully determined by the fields  , 

rather subtle one in disordered systems [57]. Moreover, we 

 i

specifying the probability of jumping from site  i to site 



show that the effect of crowding, enforced in the microscopic  or to site 

in a time interval Δ t. 

description through an excluded volume effect, is recognizable 

in the continuum limit only if some degree of inhomogeneity 

A (discrete-time) master equation for the above SEP 

is introduced. In Section 3, we move a step forward and  can be obtained by averaging over many Monte Carlo cycles consider microscopic exclusion processes involving agents  performed according to rule (1) characterized by a  finite size, as opposed to standard SEPs. In 

the last section we draw the conclusions and we summarize 

the different extent to which the crowding fine-tunes deviation 

from the classical picture. 

FROM MICROSCOPIC PROCESSES TO MAC-

(3)

ROSCOPIC EQUATIONS

where we have defined the one-body and two-body site 

occupancy probabilities

SEPs are space-discrete, agent-based stochastic processes 

modeling some kind of transport according to specific rules 

(4)

and bound to the constraint that no two agents can ever occupy 

the same site. SEPs occupy a central role in non-equilibrium 

statistical physics [58,  59]. While the first theoretical ideas 

(5)

underlying such processes can be traced back to Boltzmann’s 

Here 〈〈·〉〉 denotes averages over many independent Monte 

works [60], SEPs were introduced and widely studied in the  Carlo cycles performed until time  k Δ t, starting from the same 70s as simplified models of one-dimensional transport for  initial condition. We emphasize that the same equation has been phenomena like hopping conductivity [61] and kinetics of  derived through a slightly different procedure by Richards in biopolymerization [5]. Along the same lines, the asymmetric  1977 [61]. 

exclusion process (ASEP), originally introduced by Spitzer 

[62], has become a paradigm in non-equilibrium statistical 

physics [63–66] and has now found many applications, such  Mean-Field Equations

as the study of molecular motors [67], transport through nano- With the aim of deriving macroscopic transport equations from channels [68] and depolymerization of microtubules [69]. 

the microscopic stochastic process described by Equation (1), 

The most general SEP in one dimension is described by a  it is customary to assume a mean-field (MF) factorization, stochastic jump process on a 1 D lattice with inequivalent sites 

in the presence of a field

(6)

With the help of Equation(6), the master Equation (3) becomes



(1)

Equation (1) is to be regarded as the update rule for a 

Monte Carlo process, where  n ( k) is the occupancy of site  i at i

time  t =  k Δ t, which can be either zero or one. The quantities are variables which have the value 0 or 1 according to a 

(7)

random number ξ  which has a uniform distribution between 

 i

Nonlinear mean-field equations for exclusion process of 

0 and 1. By defining the jump probabilities 

one  this type have been used since the 70s to investigate one-

can formally write:

dimensional transport in solids [70]. In fact, despite mean-

field descriptions for the inhomogeneous ASEP are known 

to provide imperfect descriptions of certain non-equilibrium 

observables in one dimension, e.g., the current-density 

relation and critical exponents [71], continuum descriptions 
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can be employed reliably to track the time-evolution of large-

wavelength density fluctuations [34, 72–78]

Site-Dependent Rates: Three Jump Processes 

(12)

Yield Three Transport Equations

Let  a be the lattice spacing and let us define a  reversal probability ϵ , such that

 i





(13)





(8)

In the first case, Equation (11) (already obtained above), 

The condition (Equation 8) (with ϵ  > 0) amounts to considering 

 i

the rate for a given jump depends on the starting site, while 

a field introducing a bias in the positive  x direction. In order  the second, Equation (12), is the opposite, the rate depends to take the continuum limit 

, we must  on the index of the target site. The third case, Equation (13) 

require

is an intermediate, symmetric situation where jump rates are 

associated with  links rather than with  nodes. In the continuum 



(9)

limit  a, Δ t → 0 one has



(14)



(10)

Equation  (9)  defines  the  position-dependent  diffusion 

(15)

coefficient, while Equation (10) defines the field-induced drift 

velocity. Note that we are assuming that the reversal probability 

vanishes linearly with  a. 



(16)

A pondering pause is required at this point before carrying 

out  the  continuum  limit.  In  fact,  a  moment’s  thought  is  Therefore, recalling Equations (9) and (10), we have from enough to realize that there are different ways one can enforce  Equations (11), (12) and (13), respectively, quenched disorder, corresponding to spatially varying hopping 

rates, in a jump process with the aim of modeling propagation 

in a inhomogenous medium. The master Equation (7) reflects 



(17)

only one of the possible choices. This observation has been 

made and thoroughly discussed in Painter and Sherratt [57]. 

In this paper the authors investigate the movements of cells 

(18)

capable of sensing strategies which depend on environmental 

factors. 

To illustrate this interesting mathematical property, let us 



(19)

consider the jump from site  i to site  i + 1. The probability of an 

agent taking an  i →  i + 1 leap can be equally well taken as (1)  where proportional to  , (2) proportional to 

or (3) proportional 

to 

. All three cases correspond to the same space-

dependent function 



(20)

 D( x) in the continuum limit, as prescribed 

by Equation (9). However, as we shall see in the following, 

depending on whether rule (1), (2), or (3) is chosen, one is 

led to totally different advection-diffusion equations in the 

(21)

continuum limit. 





(22)

 No-Exclusion Processes

In order to illustrate this subtle point, let us start with jump 

We see that the stochastic processes (11) and (12) 

processes in the presence of quenched disorder but with no  correspond to diffusion with drift (or, equivalently, in an external exclusion constraints on the allowed moves. Following the  potential). The drift velocity comprises two contributions: the same reasoning that led us to Equation (7), it is not difficult to  difference between the right-bound and left-bound jump rate realize that the three possible choices (1), (2), and (3) referred  fields and a contribution arising from the spatial variation of above lead to the following master equations

the diffusion coefficient. Interestingly, the latter term has the 

opposite sign depending on whether jumps at the microscopic 

level are controlled by the rates evaluated at the start or target 

sites. This means that in these cases, even a symmetric jump 

process results in diffusion with drift. Conversely, considering 

(11)

symmetrized jump rates does not result in the appearance 
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of such additional term in the drift velocity. Working in this  ity  equations  with  suitably  defined  currents  given  by  Equa-setting one hence recover the standard diffusion equation. 

tions (29), (30) and (31). We note that, as it happens with the 

symmetric exclusion process without quenched disorder, the 

 Enforcing the Excluded-Volume Constraint

microscopic exclusion constraint disappears in taking the con-

tinuum limit of the master Equation (25) in the absence of ex-

We can now come back to our original aim, i.e., taking the  ternal fields, which yields a transport equation, Equation (28), continuum limit of the master Equation (1). It is now clear that,  identical to its counterpart with no exclusion, Equation (19) in if we want to consider an inhomogeneous medium, we must not  the case  v( x) ≡ 0. 

restrict to the prescription leading to Equation (1), but we must 

also consider the other two kinds of processes described above 

Equations (26), (27) and (28) are nonlinear advection-

in the absence of exclusion. Extending the reasoning that led  diffusion equation, appropriate for describing the continuum us to Equation (1) and recalling Equations (12) and (13), the  limit of a microscopic exclusion process occurring on a lattice three master equations with excluded-volume constraints read

of inequivalent sites in the presence of a field. It is interesting 

to note that in the case of equivalent sites, which translates to a 

constant diffusion coefficient, the diffusive parts become linear, 



i.e., the microscopic exclusion rule is  lost in the diffusive part. 



(23)

In the case of zero field, one then simply recovers the ordinary 

diffusion equation for the three jump processes, which, as it is 

widely known, can be derived from a microscopic jump process 

with no exclusion rules. This curious observation has been first 

reported by Huber [70]. If both the diffusion coefficient and 

(24)

the drift velocity are constant, Equations (26), (27) and (28) 

all reduce to



(32)

an equation already obtained recently in Simpson et al. [78]. 





Equations (26), (27) and (28) contain the single-particle 

probability field  P( x, t), which is a number between zero and 

one. The value  P = 1 should correspond to the maximum density 



(25)

ρ  allowed in the system. Thus, more  physical equations can 

 M

be obtained by introducing the agent density

The mean field limit  a, Δ t → 0 of the above master equations is 

readily obtained by introducing as above the Taylor expansions 

of 





(33)

 q( x) and  P( x, t). By doing this, we find

where



(26)



(34)



(27)

is the volume of a  d-dimensional sphere1 of radius  r and ϕ  is 

 M

the maximum packing fraction for systems of  d-dimensional 

hard spheres, 



and 

[79]. With these defi-



(28)

nitions, and using a more general vector notation, Equations 

where

(26), (27) and (28) become



(35)



(29)

(36)



(37)



(30)

with

(31)



We see that even in the case of excluded-volume interactions, 

the mean-field equations can be cast in the form of continu-
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(38)



(41)

The previous equation shows that, at least in one 

dimension, the extended-crowding procedure yields a 

modified diffusion term even in the absence of external fields 

or  spatial  inhomogeneities.  By  defining  a  density-dependent 

diffusion coefficient, which has to be regarded as a collective 





(39)

diffusivity D(ρ)=D /[(1−(L−1)ρ]2, eq. (41) can be reformulated 

0

as a nonlinear transport equation:



(40)



(42)

EXTENDED CROWDING

The nonlinear diffusion Equation (41) has been derived 

In the previous section we described how to derive  through an ingenious but complicate change of variables based macroscopic mean-field equations starting from microscopic  on a quantitative mapping between the L-ASEP and the zero-master equations which account for exclusion effects. In  range process [82]. However, it is interesting to note that it our description we did not take into account size and shape  can be regarded as the local-density approximation (LDA) of the agents by prescribing that each molecule occupies a  of a simple general property of one-dimensional exclusion single lattice site and can not move if the target site is already  processes. As pointed out in 1967 by Lebowitz and Percus [83] 

occupied by another particle. To recover a macroscopic  concerning bulk properties:

continuous description, we performed the limit for vanishing  ”  For many purposes, however, adding a finite diameter does lattice spacing. This strategy amounts to considering agents of   not introduce any new complications; it merely requires the vanishing size in the continuum limit. We term this peculiar   replacement in certain expressions of the actual volume per situation in the macroscopic world  point-like crowding. As we   particle ρ−1  by the reduced volume ρ−1 − σ,  i.e. , ρ → ρ∕(1 − σρ).” 

have shown in the previous section, considerable microscopic 

information is lost in the continuum limit with point-like 

In that sense, the quantity ρ∕[1 − ( L − 1)ρ] is recognized 

agents. The point-like characterization has to be the reason  as an effective density in Ferreira and Alcaraz [84] within why the mean-field approximation loses the memory of the  the  analysis  of  the  velocity  of  finite  sized  particles  which microscopic exclusion constraint and the diffusion equation  occupy   L  units of lattice spacing in one dimension. By is recovered for equivalent sites in the absence of a field.  performing the substitution Starting from these premises, we set to work in the extended 

 crowding framework, where the finite size of the particles is 

explicitly accounted for. Operating within this scenario, the 

exclusion constraint shall be detectable in the mean-field limit  in  Fick’s  law,  one  recovers  (41).  Point-like  crowding  in even for unbiased motion and homogeneous domain. A reason  the mean field approximation corresponds to systems of for employing the  extended crowding philosophy is that in many  fully penetrable spheres, while extended-size crowding biological contexts one has to model the interaction between  yields a transport equation suitable for systems of totally agents displaying complicated shapes, which are not well  impenetrable (hard) objects. We stress that the case of point-represented by spherical particle occupying a single lattice site.  like crowding is recovered for agents of aspect ratio   L  =  1. 

Biological macromolecules diffusing in the cytoplasm, or even  The discussion above which leads to Equation (41) applies proliferating cells, for example, are often elongated and rod- to one dimensional systems. Starting from this setting, one shaped, a property that inspired the derivation of microscopic  can raise the question whether similar arguments might be models using  hard rods as the individual units [80, 81]. This  employed to obtain a modified nonlinear equation accounting is for example the case of the human peritoneal mesothelial  for excluded volume effects in the diffusion of hard spheres in cells modeled in Simpson et al. [80] as hard rods of aspect  two and three dimensions. Unfortunately, the strategy used to ratio equal to four. Moreover, when modeling the interaction  recover Equation (41) in Schönherr and Schütz [82] can not be between multiple species diffusing in the same environment,  employed to provide a description of the extended crowding in the differences in shape and dimension of the agents do have  higher dimensions. Several other models have been proposed an influence on the extent of the collective motion. 

for two and three dimensional domains [76, 80, 85], starting 

from stochastic processes enforced with different microscopic 

The  first  model  for  the  diffusion  of  extended  particles  rules. Depending on the shape of the agents (hard rods or hard with exclusion interactions on a one-dimensional lattice  spheres), on the prescribed hopping rules, on the allowed was described in Schönherr and Schütz [82] for a general  mechanisms for changing the orientation of the agents (rotation process involving symmetric, as well as asymmetric, hopping  or reptation), and on the mean field assumptions made to recover dynamics of the rods (the theory is named L-ASEP). Referring  the macroscopic picture, different equations are derived for the to rods of length  L, where  L has to be interpreted as the aspect  density of extended particles in higher dimensions. All models ratio between the dimensions of the elongated agent, the  yield however the same qualitative behavior at low densities, authors derive a mean-field equation for the one-dimensional  suggesting that the diffusion coefficient should increase exclusion process. In the absence of a field and for equivalent  linearly with the concentration amount. 

sites the equation for the density of particles reads
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CHAPTER

10 MODELING POTENTIAL 

ENERGY SURFACES

Pietro Ballone

Keywords: Atomistic modeling, bond-order potentials, ab initio methods

INTRODUCTION

which represents the so-called potential energy surface (PES) 

of the system. This assumption relies, first of all, on the so-

Most, if not all, of computer simulations using particles require  called Born-Oppenheimer approximation [5], whose validity is the specification of the system potential energy as a function of  loosely attributed to the ∼3–4 orders of magnitude difference particles’ coordinates [1]. The most ab initio methods, such as  in the mass of electrons and atomic nuclei, giving rise to a those discussed in [2], represent systems as made of electrons  clear separation of the characteristic energy and time scales for and atomic nuclei, and Coulomb’s law is sufficient to account  the motion of electrons and atomic nuclei. Then, for any given for every interaction. In all other cases, particlesrepresent  instantaneous  configuration  of  the  atomic  cores,  electrons composite objects, such as atoms or atomic nuclei, dressed  will be able to reach their electronic ground state, justifying by core electrons, possibly embedded into a sea of valence  the single-value assumption for the system potential energy. 

electrons described at some approximate level of a many-body  Experience shows that this “adiabatic assumption” is fairly theory. Then, all the relevant interactions need to be worked  well justified for a wide variety of systems and thermodynamic out on a case by case basis, and the effort required to determine  conditions. To be precise, it turns out that some cases are left inter-particle forces may represent a sizeable fraction of the  out of this picture and often represent systems and phenomena work to be done to investigate condensed matter systems [3]. 

of great interest. Methods suitable to deal with these cases are 

The sections that follow contain an overview of modeling  discussed in [6]. 

approaches and a discussion of their relative merits and 

Computational science and simulation, in particular, 

limitations. Needless to say, the variety of systems and methods,  always have a practical and an algorithmic aspect to them, together with the shear size of the knowledge accumulated over  and a central theme of research is the development of efficient decades, impose strict limits to the scope of this presentation.  ways to approximate and represent PESs. The availability First of all, the focus is on atomistic models, i.e., models in  of simple and computationally-convenient models of inter-which the number and geometry of interaction centers follows  particle interactions, for instance, has been instrumental the distribution of atoms closely. A second major branch of  in the dawning of computer simulation. Since then, the two modeling, concerning coarse graining approaches, is the  complementary stages of determining the relevant interactions subject of a separate contribution (see [4]). 

and of working out their structural, thermodynamic and 

Moreover, again, for limitations of space, the discussion  dynamical consequences have cross fertilized each other, so that follows mainly concerns the most restrictive picture of  much that the terms,modeling and simulation, often appear interatomic interactions, based on the assumption that the  together in the title of books, papers, conferences, workshops potential energy of a system of N atoms can be expressed as a  and funding proposals. 

single-valued function of their 3N coordinates {R ,i = 1, ..., N}, 

i

Nowadays, the general perception of atomistic modeling 

is that of an overwhelmingly important and successful field, 

steadily expanding its reach towards more complex systems, 

Citation: Pietro Ballone, Modeling Potential Energy Surfaces, 16(1),  which in this context means systems combining a wider variety 322-349; doi:10.3390/e16010322. 

of chemical bonds. In this respect, it is clear that much remains 

to be done, for instance, to bring under the cover of simulation 

heterogeneous systems and interfaces at which organic, 

semiconducting and metal phases meet each other or to 
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model systems in which chemical transformations take place.  with appropriate boundary conditions in space and in time. 

During the last few decades, ab initio simulation methods  Since the Hamiltonian is time independent, let us turn to the have progressively come to play the role of the elephant in the  equivalent version of this same problem, concerned with the (modeling) room. Methods, such as density functional theory  stationary states, Ψ ({r };{R }) of Ĥ . 

k

i

α

0

[7,8] and ab initio molecular dynamics [9], could, in principle, 

replace all other approaches, reducing the variety of modeling 

The  first  important  step  towards  the  definition  of  a 

problems to just one, concerning the effective and accurate  potential energy surface for the atomic nuclei is provided by representation of the energy of valence electrons in the field of  the Born-Oppenheimer approximation (BO), which, under atomic nuclei or ionic cores. 

suitable  and  often  verified  conditions,  opens  the  way  to  a 

separate description of the time evolution of electrons and 

Up to now, this replacement has not been pervasive,  nuclei [5]. The intuitive justification of BO is the observation mainly because of the size and time limitations of ab initio  that the motion of electrons and nuclei takes place over methods running on present day computers and partly  different time scales, since M /m is at least M /m ∼1, 800, because the approximations that make ab initio computations 

α

n

and usually approaches 2Z M /m, where M  is the mass of a 

feasible still somewhat limit their accuracy on the energy 

α

n

n

nucleon (proton or neutron). Moreover, the ratio of vibrational 

scale of thermal motion, especially for molecular systems 

whose properties are determined by weak interactions  and rotational excitations is again 

. Experimental 

among closed shell molecules. Ab initio modeling, however,  data confirm that, indeed, typical electronic excitations are of is progressing and extending its reach. For what concerns  the order of a few eV; vibrational energies reach up to a few atomistic simulation, therefore, empirical and semi-empirical  hundred meV, and even for small molecules, the separation of models might eventually be squeezed out by the combination  rotational levels is of the order of 1 meV. The conclusion is that of ab initio methods and coarse-grained approaches. Simple  the excitation of electrons, because of vibrational or rotational models of atom-atom interactions, however, are likely to retain  motion, is very unlikely. We can therefore represent the their appeal, because of their unique ability to represent and  motion of electrons as taking place in the slowly varying field rationalize the microscopic forces underlying the properties  of the nuclei. Consistently with these qualitative arguments, and behaviors of condensed matter systems. 

the BO approximation breaks down whenever the energy of 

relevant electronic excitations becomes comparable to typical 

vibrational energies (or, much less likely, comparable to 

THE POTENTIAL ENERGY SURFACE (PES) OF 

rotational energies). In those cases, vibrational and electronic 

A MANY-ATOM SYSTEM

excitations need to be considered on the same footing. 

From a physicist point of view, ordinary matter consists of an  The core of the so-called adiabatic approximation can be given assembly of electrons and atomic nuclei, evolving according  a semi-rigorous mathematical formulation in the following to the laws of quantum mechanics. The non-relativistic limit  way [5]. Let us re-write Ĥ  as: 0

is adequate for many of the systems and properties of interest 

for the present discussion, and unless differently specified, we 





(4)

shall restrict ourselves to this case. 

Let us therefore consider a system made of N electrons  where Ĥ  = T̂  + V

+ V

+ V

. The energy term, 

ele

ele

ion−ion

ion−ele

ele−ele

and K nuclei, and let {r , i = 1, ..., N} and {R , α = 1, ..., K}  V

, commutes with all other terms in Ĥ , and its inclusion 

i

α

ion−ion

ele

be the coordinates of electrons and nuclei, respectively. The  in the electronic part is just a matter of convenience. 

corresponding linear momenta are denoted by {p } and {P }. 

i

α

For every choice of the nuclear coordinates, {R , α = 1, ..., K}, 

In the absence of external fields, the system Hamiltonian is:

α

the eigenvalue problem:



(1)



(5)

that, for the sake of simplicity, we re-write as:

is  well  defined  and  provides  a  sequence  of  eigenvalues, 

E ({R }), and eigenfunctions ψ ({r }|{R }). At this stage, nu-

j

α

j

i

α

clei are “clamped”, i.e., they are no longer treated as particles 



(2)

embodied with a mass and a momentum, but only as sources 

with an obvious correspondence between Equations (1) and  of the potential acting on the electrons. The notation, (r  | R ), i

α

(2). The Hamiltonian does not depend on the spin of electrons  means that ψ  is an explicit function of r  and depends para-j

i

and nuclei, since we restrict ourselves to the non-relativistic  metrically on the nuclear coordinates, {R }. 

α

limit, and we do not include any spin-orbit interaction into our  The functions, ψ, are a basis for the Hilbert space spanned by Hamiltonian. Unless differently specified, Hartree atomic units 

j

the electron coordinates, and we can represent Ψ  as follows:

(ℏ = e2 = m = 1) are used in this section. 

k

Let us assume that the system is described by a many-body 

wave function, Ψ(r , ..., r ; R , ..., R ; t), whose time evolution (6)

1

N

1

k

is determined by the time-dependent Schrodinger equation:

where, at this stage, 

is simply the coefficient express-

ing the projection of Ψ  on ψ :



(3)

k

j
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An estimate of the 〈ψ  | T̂  | ψ 〉 terms can be obtained 

m

ion

j

(7)

by perturbation theory, showing that the strength of the non-

diagonal coupling is proportional to:

The equation for Ψ  becomes:

k

(11)

Moreover, the matrix element of the commutator can be 

(8)

shown to depend primarily on the properties of individual 

atoms and to be only moderately dependent on the {R } 

α

Let us now multiply on the left by 

and inte- coordinates. Then, the major factor determining the coupling 

grate over the electron coordinates. One obtains in this way a  strength among different adiabatic surfaces is the energy gap separating different PESs. Whenever (E  − E ) becomes 

set of coupled partial differential equations for the 



m

j

comparable to the typical energies of the atomic motion, the 

functions:

BO decoupling is no longer valid, the electronic and ionic 

motion are intimately intertwined and both need to be treated 

quantum mechanically. The range of quantum mechanical 

(9)

features that become relevant in the non-BO case go beyond 

delocalization and diffraction, but includes the appearance of 

where ℰ  is the eigenvalue of the full, i.e., electrons and ions  geometric (Berry-Pancharatnam) phases [11]. 

k

Hamiltonian Ĥ , and the relation, 〈ψ  | ψ 〉 = δ , has been used. 

0

m

j

mj

Far from being the exception, violations of the BO 

The coupling among the equations is due to the non-diagonal  approximation are pervasive. They occur often, but not part of 〈ψ  | T̂  | ψ 〉:

m

ion

j

exclusively, at the so-called conical intersections [11], playing 

a major role in chemical reactions and, for instance, challenging 

our ability to model catalysis [12]. Apparent non-BO effects 

are routinely highlighted by clever experiments [13,14]. 

(10)

Metals, whose occupied states are immediately contiguous 

whose computation requires the parametric dependence of  in energy to the empty states, may appear as the most obvious χ (R ) on the {R } coordinates to be continuous and differ- candidates for large deviations from the BO picture. In the m

α

α

entiable. 

vicinity of the Fermi surface, however, single particle excitations 

are the only relevant excitations, but the coupling of each of 

Neglecting these non-diagonal terms, the equations for  these excitations to the nuclear motion (through Equation (11)) the electronic and ionic coordinates are decoupled, and the  is vanishingly small. Collective electron excitations, such picture emerging from this manipulation of Equation (6) is that  as plasmons, couple to the atomic motion, but their energies of nuclei evolving on the potential energy surfaces U [{R }] 

j

α

are of the order of several eV and, thus, are comparable to, if 

=E ({R }) + 〈ψ  | T̂  | ψ 〉. This last expression, corresponding 

j

α

j

ion

j

not higher than, those of closed shell atoms and molecules. 

to the so-called Born-Huang approximation [10], represents, in  As a result, vibrational properties of metals are generally well fact, an upper bound for the system’s potential energy. A lower  described by adiabatic dynamics. Exceptions are represented bound, instead, is given by the original BO approximation, i.e.,  by Kohn anomalies, resulting from the nesting of reciprocal U [{R }] = E ({R }). 

j

α

j

α

lattice vectors with the Fermi surface. Metals also provide the 

The nuclear motion in general is quantum mechanical,  setting for a type of BO violation qualitatively different from and, depending on initial conditions, it might occur on any of  those considered until now, represented by superconductors, in theU  potential energy surfaces (PESs). More precisely, since  which the coupling of the electron and nuclear motion changes j

the equations for different j’s are separated, it will take place  the symmetry of the ground state. 

on a single surface of index j, provided the starting point is 

The isolated system picture underlying the BO decoupling 

consistent with this choice. This condition, that we identify  has been generalized in [15–17] to the case of electrons and with adiabatic motion, underlies most of the simulations that  nuclei evolving in an external time-dependent potential. It are routinely carried out in computational-condensed matter  was shown, in particular, that the full wave function can be physics. Moreover, again, in most cases, but with noticeable  factorized exactly into an electronic and a nuclear wave exceptions, the relevant PES corresponds to the electronic  function, again opening the way to the definition of a time-ground state, and the scale of times and energies of interest  dependent PES. The picture is less simple than in the static allows the usage of classical dynamics instead of quantum  case, since it involves the introduction of a Berry vector mechanics [6]. 

potential and of Berry-Pancharatnam geometric phases [18,19] 

The following sections are devoted to the discussion of the  into the problem. This approach has already provided the basis general properties of PESs, and of computationally tractable  for the real-time simulation of molecular systems in strong approaches to approximate them. Before doing that, it might be  (laser) external fields. For completeness, I mention that some interesting to consider briefly when the BO approximation and  details of the formal framework might still need to be worked the conditions for adiabatic motion are no longer valid. 

out for a fully rigorous treatment [20]. 
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PROPERTIES OF POTENTIAL ENERGY 

increasing order. Model computations based on a tight binding 

SURFACES

Hamiltonian [24], however, show that even for simple systems, 

the expansion in Equation (13) is not well behaved and, thus, is 

Basic features of the PES can be anticipated even without an  seldom useful for practical computations. 

explicit solution of the standard electronic problem inEquation 

(5). A surprisingly realistic intuition of what a PES looks 

More fruitful than the systematic expansion of Equation 

like was outlined in elegant Latin prose long before quantum  (13) has been the introduction of the cluster potential idea mechanics [21], based on an atomistic hypothesis and on the  [25,26], loosely and sometimes more closely based on the bond-assumption that the still undiscovered atoms felt each other  order concept introduced by Pauling [27]. In this approach, mainly at short distances. 

a fixed and low number of terms is retained; the expression 

looses its character of a systematic series to become an 

The modern interpretation confirms this picture and adds  asymptotic expansion. Each of the few terms that are retained a wealth of microscopic detail. The direct Coulomb repulsion  describe low-order potentials whose strength depends on the among nuclei, unscreened by electrons at short distances,  local environment. Approaches of this kind have given origin prevents the close contact of atoms and their eventual collapse.  to the most popular family of potentials used to simulate metals The kinetic energy of the electrons tightly bound to the nuclei  and metallic alloys and also to some important approaches to will provide an additional repulsive contribution, resulting from  approximate the PES of semi-conductors, which are discussed the need to preserve the Pauli principle. On the other hand, the  in the following sections. 

formation of chemical bonds gives rise to attractive potentials, 

binding atoms together. Even in the case of inert species, subtle 

quantum mechanical effects give rise to dispersion forces, MANY-BODY INTERACTIONS: METALS AND 

which provide a weak, but pervasive, attraction. 

METAL ALLOYS

Arguably, the simplest and most intuitive picture of atomic  Metals and their alloys posed an early challenge to the pair interactions is provided by pair potential models, in which the  or few-body potential picture, since their basic properties system energy is written as:

manifest essential many-body interactions [28]. 

The successful and physically-motivated incorporation of 

these effects into tractable models in the early eighties of the 



(12)

last century has spawned a vast simulation activity, aiming, 

at  first,  at  reproducing  phase  diagrams,  then  at  analyzing  in 

where the α,  β label on ϕ  indicates that the interaction  detail surfaces and interfaces and further progressing towards α,β

depends on the chemical identity of particles α and β. A  the prediction of mechanical properties through multi-scale spherically symmetric potential has been assumed for the sake  approaches. Physical metallurgy is currently one of the most of simplicity. 

active and productive subfields of atomistic simulation [29,30]. 

Computations and comparison with experiments have 

Many-body interactions in metals were first identified by 

shown that an expression of this kind is suitable for rare gases  the analysis of their elastic properties. For instance, the elastic 

[22] and for simple ionic compounds [23]. Systems and models  constants of cubic materials consisting of atoms interacting via of this kind have been instrumental in establishing computer  spherically symmetric pair potentials have to satisfy the so-simulation as a quantitative research tool in condensed matter  called Cauchy relations, stating, for instance, that C  = C . 

12

44

and in chemical physics. 

The violation of this relation, known in the solid state literature 

Needless to say, the scope of pair potentials is very narrow,  as a Cauchy anomaly, is the rule more than the exception in and limitations of this model were already apparent well before  metals, unambiguously pointing to a deviation from the pair the dawn of computer simulation, based on the results of lattice  potential picture. 

dynamics models in metals and semiconductors. 

These features were first rationalized by considering the 

One could think of the pair potential expression as being  basic representation of a metal, as made of ions embedded into only the lowest order approximation of the PES into an n-body  a sea of valence electrons. Since the major ingredient, i.e., the expansion of the form:

homogeneous electron gas could be solved analytically, and, 

at least for sp metals, the electron-ion interaction is weak, the 

full problem could be attacked by perturbation theory [28,31]. 



(13)

Carried up to the second order, this approach provides an 

For  a  system  made  of  a  finite  and  constant  number  of  expression for the system total energy that consists of a large particles, such an expression can always be written down.  volume (or, equivalently, density) term and a pair potential For instance, one could define V  as the interaction energy of  contribution. The volume term is able to account for the 2

two isolated atoms, V  as the corresponding energy of trimers,  Cauchy anomaly. In simple metals, such as the alkalis, the pair 3

minus the symmetrized combination of V  contributions, etc.  potential is relatively soft at short distances and oscillates at 2

Such an expansion, however, is useful only if it converges  large distances, reflecting Friedel oscillations. These features within a few terms, at least because the cost of evaluating  explain the bccstructure of these systems at normal conditions successive n body terms grows rapidly with increasing n.  and provide a clue to understand more complex structures Moreover, it contributes to the physical understanding of the  adopted by the lighter alkali metals at very low temperature system behavior only when its convergence is absolute, i.e., it  or found in slightly more complex systems, such as alloys, or does not require the cancellation of contributions of alternating  heavier sp metals, such as gallium, indium or tin. Approaches sign, whose amplitude is constant or even increasing with  of this kind are now mainly of historical interest, since most of the cases relevant for applications involve transition metals, 
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and in those systems, the valence electron-ion interaction is by  Equation (15). The time required to carry out a simulation no means weak; the perturbation expansion cannot be limited  based on EAM is expected to be twice that of a pair potential to the second order and becomes rapidly untreatable beyond  model, since a pass on all atom pairs is required to compute that point [32]. Besides these fundamental problems, other  the repulsive potentials and the embedding density, while practical difficulties concern the definition and the zero-order  a second pass is needed to compute forces on atoms arising solution of an electron gas problem suitable for inhomogeneous  from the embedding energy. With suitable lists of neighbors, systems and for alloys. Electron gas perturbative approaches,  and depending on the range of V (R) and of t(R), EAM can 2

therefore, could not solve problems, such as the inward  be used to carry out MDsimulations for systems of 104 atoms relaxation of crystal surfaces, the quantitative description of  over several nanoseconds using laptops or inexpensive PCs. 

stacking faults or the overestimation by pair potentials of the  Supercomputers extend these ranges to several million atoms, vacancy formation energy in metals. 

and μs time scales. 

To overcome these problems, new models have been 

Needless to say, an empirical and approximate approach, 

proposed in [33–35], conforming to the cluster-potential idea  such as EAM, cannot provide the final answer to the problem 

[26], and representing low-order approximations to a bond- of modeling metals, and transition metals, in particular. A order potential. The embedded atom model (EAM) of [33,34],  comprehensive discussion of inaccuracies and limitations loosely based on density functional theory, has the broadest  identified  during  thirty  years  of  applications  is  beyond  the appeal, and for this reason, it is used here as a representative of  scope of this short review, and only two examples are briefly a wider class of models. 

mentioned here. Phonons in transition metal crystals, a property 

According to EAM, each metal ion, i, at position R  gains  routinely measured by inelastic neutron scattering, are not well i

an energy, E[ρ (R )], upon being immersed into the valence  reproduced by EAM. The elastic constants usually enter the e

i

electron distribution at density ρ (R ) and interacts with  fitting of the potential, and thus, the low-frequency acoustic e

i

neighboring ions by a short range repulsive pair potential,  phonons close to the Γ-point  of  the  first  Brillouin  zone  are V (R). The energy of N metal atoms, therefore, is:

usually well reproduced. Higher frequency modes at the zone 

2

boundary, however, turn out to be too soft with respect to the 

experimental data (see Figure 1). Transition metal clusters from 

a few to several thousand atoms are important for catalysis and 



(14)

represent a basic ingredient of nanotechnology. EAM neglects 

The picture is completed by a prescription to compute the  the details of the electronic structure of the atoms, leaving electron density, ρ , at the position, R , of each atomic core.  out quantum mechanical effects, such as Jahn-Teller. Thus, e

i

EAM represents such a density as the sum of contributions  EAM is unable to quantitatively reproduce the structure and from every other atom:

cohesive properties of the very small aggregates as provided by 

density functional computations. Beyond ∼100 atoms, cluster 

properties are expected to evolve more continuously with size, 





(15)

approaching those of bulk phases beyond 104 atoms. EAM has 

where the t (R) are again relatively short-range functions,  been used extensively to investigate clusters across this range, j

mimicking the tail of the electron distribution around an  but a quantitative validation of the model is still lacking and isolated atom. Since it introduces a local embedding density,  difficult to achieve, since more ab initio computations become this prescription overcomes most of the limitations of the free  too expensive to carry out, and experiments find it difficult to electron models, which instead rely on a global definition of  probe this range of cluster sizes. 

the valence electron density. 

Parameters and auxiliary functions, such as t(R), E[ρ ] 

e

and V (R), could be computed from first principles [36], but 

2

this approach has been only moderately successful. Far more 

effective has been the strategy of adopting the EAM potential 

energy expression as a general framework, relying on fitting 

experimental quantities to tune a few parameters distributed 

into the functional form. 

The success of EAM has been due to its ability to overcome 

the limitations of simpler models, easily accounting for the 

Cauchy anomaly, the reduced value of the vacancy formation 

energy, the inward relaxation of compact metal surfaces and 

the reconstruction of more open ones. Its broad acceptance  Figure 1: Phonon frequencies of fccpalladium from experiments (symbols, see [38]) and from the embedded atom model (EAM) mod-relies also on the many and physically appealing properties  el of [33]. 

of the model, discussed in a number of publications, such as 

the ease of extending EAM to alloys or the close relation with 

A step beyond EAM, needed to quantitatively model the 

pair potentials in the case of homogeneous systems at constant  fine details of the structure, thermodynamics and dynamics of volume. 

transition metal systems, requires the introduction of explicit 

From the computational point of view, the efficiency of  angular terms into the potential energy expression. This can EAM is due to the pair potential form of both the repulsive  be achieved through a conceptually simple extension of EAM, contribution, V , and the embedding density expression in  known  as  modified  EAM  (MEAM)  [34],  or  resorting  to  a 2

chemically accurate bond-order potential model, including 
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the directionality of d and f electron orbitals, as well as the  and established a new standard in modeling semiconducting distinction of σ,  π,  δ, ..., bonding, anti-bonding and non- systems. Success, however, has been somewhat less pervasive bonding orbitals [37]. 

than in the case of EAM, for reasons that are relatively easy to 

The MEAM is somewhat more complex to use than EAM,  identify. First of all, interactions in semiconductors are more and probably for this reason, it has been less extensively  complex and propagate at a longer range, since screening is applied. Moreover, its ability to quantitatively overcome the  not as effective as in metals. Moreover, semiconducting alloys limitations of the simpler model is not always so apparent.  and compounds give rise to partially Coulombic interactions, The other approaches, more closely based on the bond order  whose combination with covalent bonding has seldom been approach, appear to be cumbersome to use in simulations, and  modeled, even by bond-order potentials. 

the number of applications based on these models has been 

Furthermore, in this case, the systematic improvement 

limited. 

beyond the semi-empirical Tersoff and Brenner potentials has 

Because of the inclusion of angularly dependent forces,  to rely on the analytical development of chemically accurate the scope of MEAM could, in principle, cover semiconductors.  bond-order models [43]. Work along these lines is underway Successful applications have been published [34], but more  and has shown promising developments, but current models specific  models,  described  in  the  following  section,  have  still appear fairly difficult to implement in molecular dynamics received broader attention in this subfield. 

or Monte Carlo packages. 

An  important  development  of  Brenner’s  scheme  has 

SEMICONDUCTORS AND INSULATORS

been the introduction of reactive force fields, able to describe 

chemical transformations in the system under consideration. 

Semiconductor materials, exemplified by silicon, germanium,  The majority of the parameterizations and applications gallium arsenite, etc., are characterized by fairly open and  published until now concern organic systems, but potentials of complex structures of relatively low coordination, stabilized  this kind are mentioned here for their similarity with models by sizeable angular forces, arising from the directionality of  first  introduced  for  semiconductor  systems.  Prototypical covalent bonds. Apart from elemental systems, most inorganic  examples of a reactive force field are the so-called ReaxFF [44] 

semiconductors are characterized, in fact, by a combination  and the REBOpotential [45]. Both models require a massive of covalent and ionic bonding. Several of these systems, most  parametrization effort, and for this reason, they appear to be notably silicon and germanium, turn into metals upon melting. fairly ad hocand system specific. 

Despite the difficulty of reproducing these properties by 

A different line of attack to modeling semiconducting 

few-body potentials, the urgency of investigating the elements  systems is suggested by the observation that in many cases, and compounds that fueled the electronic revolution stimulated  force fields of the form currently used to model organic systems the first bold attempts. The two- and three-body potential for  and consisting on stretching, bending and torsion might indeed silicon proposed by Stillinger and Weber [39] arguably has  provide a good representation of structural and dynamical been the most representative example of this first generation  properties of semiconductors and of network insulators, such of models. 

as silica. Models of this kind, in fact, were developed well 

Despite their interest, approaches of this kind have  before the age of computer simulation, and extensively used been only moderately successful, and once again, the bond- in lattice dynamics studies of semiconductors and insulators order concept [27] proved more fruitful. Its application to  [46]. The problem of these models is that, mainly because of semiconductors  was  first  discussed  by  Abell  [25]  before  the established tradition, the topology of bonds is kept fixed, being used in a more empirical setting by Tersoff [40,41] and  bonds are harmonic and can neither form nor break. These extended by Brenner [42] to a wider class of systems and  models, therefore, describe only low amplitude oscillations problems. 

around a pre-assigned minimum of the potential energy 

According to these models, the potential energy of an  surface. Removing these inessential constraints by introducing assembly of N atoms of coordinates {R } is written as:

rules to break, form and interchange bonds results in a far more 

i

realistic picture. It was shown, for instance, that such a reactive 

force field model of silica undergoes melting at approximately 



(16)

the right conditions [47] (see Figure 2), and the same model 

has been used to provide an intriguing view of the amorphous 

where R  = | R  − R  |. The first term, representing the short- silica surface at length and time scales unachievable by other ij

i

j

range repulsion, is a genuine pair potential. The second term  methods [48]. 

contains many-body contributions via the dependence of B  on 

ij

Progressively increasing the electronegativity difference 

the local environment around the interacting pair, ij. 

in compound semiconductors enhances the charge transfer 

This form has obvious analogies with the EAM case. The  among atoms, widening the band gap and turning the system difference is that B  not only counts neighbors, as the embedding  into an ionic insulator. In the limit of strongly ionic materials, ij

density does, but takes into account also the angular correlation  of course, pair potentials are adequate, but only a few among their mutual positions. This addition is required to  compounds belong to this class, such as, for instance, alkali-enforce the dominance of tetrahedral sp3 coordination, but  halides or the oxides and chlorides of Group IIA and Group IIB 

also to carve a secondary role for other structures, from the  metals. In between ionic insulators and polar semiconductors, sp2bonding of graphite, to the octahedral coordination of liquid  there is a vast number of systems, including technologically silicon and germanium [40,41]. Parallel to the EAM case  relevant compounds, such as ceramics, transition metal oxides, for metals, potentials of this type replaced previous models  ferroelectric and ferroid materials, minerals and bio-minerals, 
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in particular, for which no current model is fully satisfactory.  molecules is water, whose peculiar properties and special role One of the major issues for these systems is the inclusion of  have motivated an extraordinary modeling effort, which is polarizability into ionic and polar models [49]. Unfortunately,  discussed separately in Section 7. 

simulation approaches using polarizable models require 

A  specialized  subfield  of  modeling  simple  species 

either the minimization at every step of a polarization energy  concerns systems in which a weakly bound molecular fluid functional or the inclusion into the model of charged shells  is physisorbed on an inert solid surface, such as MgO, mica, 

[50]. These last represent electronic degrees of freedom and  graphite and flat or stepped transition metal surfaces. In this react to  electric  fields  on  a  time scale much faster than that  case, the effect of the solid substrate on the molecular fluid of  ionic  vibrations  [51].  Both  methods  are  significantly  at  a  often is represented as an external field. In the case of crystal disadvantage with respect to cases in which the potential  surfaces,  the  in-plane  dependence  of  the  field  strength  can energy is an explicit function of the atomic coordinates, and  be expanded in plane waves, whose wave vectors reflect the the simulation of systems bound by a combination of covalent  periodicity and symmetry of the surface lattice [54]. 

and ionic forces appears to be split between oversimplified pair 

potential models and ab initio approaches. 

Organic Molecular Systems

In many respects, organic molecular systems are not so different 

from any other molecular systems, but the range and impact 

of their applications together with the explosive expansion of 

simulation in bio-physics and bio-chemistry amply justify a 

separate discussion. Systems of interest in this context include 

polymers, hydrocarbons, sugars, cellulose, etc., but also the 

endless variety of biological molecules, from phospholipids to 

proteins and nucleic acids. Other molecular organic systems 

of biological interest include drugs, simple nutrients, signal 

molecules, such as hormones, metabolic species, such as ATP, 

GTP, NADP, coenzymes, including vitamins, and prosthetic 

groups. 

The modeling and simulation of systems of this kind 

arguably is the computational condensed matter activity 

with the largest economic relevance, both directly via the 

commercialization of packages and force fields and indirectly 

through the impact it has on applied research. 

Despite the complexity of the structures they form, the 

Figure 2: Average potential energy per atom 〈U(T)〉/K  of SiO  com- PESs of organic systems turns out to be approximated fairly B

2

puted by the force field of [47]. k  is the Boltzmann constant, intro-

well by simple analytic expressions. First of all, the organic 

B

duced to express energies in temperature units (K). Solid dots: heating  and biological species of interest are made primarily of light a β-cristobalite sample. Solid line: cooling the same sample from high  elements, forming strong covalent bonds through their s and temperature. The potential energy contribution, C , to the constant  p orbitals, giving origin to closed shell molecules. Systems of p

pressure specific heat computed on heating the full model is shown  this kind, therefore, can be thought of as consisting of atoms in the inset. The peak in C  and the anomaly in 〈U(T)〉 are around the 

p

connected by a fixed topology of bonds, with inter-molecular, 

same temperature point to a melting transition at T  ∼ 2150 K. 

M

i.e., non-bonded, interactions consisting of pair-wise Coulomb 

and dispersion forces. Because of their sp character, intra-

FORCE FIELDS FOR MOLECULAR SYSTEMS

molecular angular forces are relatively simple. Whenever 

d electron metals are involved, as in metal centers and in 

Although every material ultimately consists of atoms, many  prosthetic groups, modeling becomes far more challenging. 

systems are more easily understood as being made of molecules. 

In the standard cases, the PES of organic and biological 

Modeling the PES of small and relatively unreactive  systems is written as the sum of contributions from bonded species, such as N ,O , CO, CO , but, also, PF , BF , BH , etc., 

2

2

2

6

4

4

(U ) and non-bonded (U ) interactions:

requires only a slight extension of the pair-potential picture. 

b

nb

Each molecule is represented by a small number of interaction 

(17)

centers, which may or may not coincide with atoms in number 

and position. The intra-molecular configuration is enforced by  The bonded energy, in turn, is given by the sum of two-, three-constraints representing rigid bonds or, less often, by harmonic  and four-body terms from atoms joined by one ({ij}), two springs, while centers on different molecules interact pair- ({ijk}) and three ({ijkl}) consecutive covalent bonds: wise. Because of their simplicity, models for small inorganic 

molecules have been used since the early days of computer 



simulation. Perhaps the most remarkable observation       (18)

concerning these systems is that the quantitative details of 

their PES are still under investigations and require surprisingly 

are suitable force constants; R̄ ,  θ̄ , 

ij

ijk

sophisticated models to be reproduced [52,53]. Conspicuously  ϕ̄  and n reflect the length, bending and dihedral angles of ijkl

absent in the list of small unreactive and supposedly simple  unstrained bonds. The sub-indices, ij, etc., indicate that each of these parameters depends on the chemical identity of the atoms 
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involved. The form for the dihedral contribution in Equation  potential, since an equivalent compensation might not occur (18) is just one of a few different expressions used in popular  when a given organic molecule is transferred into a different force fields, while the choice for stretching and bending terms  environment. 

is more uniform. 

Especially for large biological systems, computational 

Non-bonded interactions are written as. 

cost considerations have motivated approximations and 

shortcuts that might reduce the size of the simulated system. 

One obvious saving is obtained by representing CH  and CH  

2

3



(19)

groups in aliphatic chains by a single particle. This united-

atoms approximation is fairly well justified, since these groups 

where the {q } are atomic charges, Coulomb forces are assumed  are small and and the non-bonded potential arising from them i

to be acting in vacuum and σ  and ∊  are suitable coefficients  is fairly spherical. Moreover, the motion of hydrogen in each ij

ij

for the dispersion interaction. The prime on each sum indicates  of these groups is frozen by quantum effects up to fairly high that pairs of atoms separated by one and two consecutive  temperature. 

bonds are excluded, and the contribution from pairs separated 

A second more drastic approximation concerns systems in 

by three consecutive bonds might be reduced. 

solution. Since, especially in biochemistry, one is interested in 

The remarkable and, to same extent, unique property of  the properties of the solute, implicit solvent models [61] have the PES of organic and biological systems is that the bonds,  been developed to replace the effect of the solvent by suitable whose properties are described in Equation (18), are fairly  modifications  of  the  solute  force  field.  In  many  respects, transferable, meaning that the equilibrium length, stiffness, etc.,  implicit solvent models are a special case of coarse graining of a given organic bond is nearly the same in a large number  and, as such, are left out of our discussion. 

of homologous compounds. Highlighting these similarities and 

In  summary,  the  force  field  modeling  of  organic  and 

exploiting them to endow the model with broad transferability  biological systems is a largely successful enterprise, validated is the most challenging and most rewarding part of modeling  by a vast number of applications and supporting the research organic molecular systems. 

of a large portion of the simulation community. Furthermore, 

The parametrization and, especially, validation of these  in this case, and almost needless to say, the vast simulation potentials may require sizeable computations and are the  activity has highlighted many cases of inaccuracies or outright playground of large collaborations, since it requires the  failures. The general feeling, however, is that the scale of convergence of several types of complementary expertise. Any  most of these simulations is too large to allow, at present, the single system might be analyzed by ab initio computations to  usage of significantly more sophisticated and more expensive derive intra-molecular force constants and atomic charges.  approaches. Polarizability is likely to be the single most These need to be complemented by suitable coefficients for the  relevant missing ingredient, but the available methods to dispersion part, which are usually obtained by fitting measured  include it into simulations are still fairly expensive, and for properties, such as the equilibrium density and enthalpy per  this reason, explicitly polarizable models have been used only molecule or the molecular diffusion constant. 

for a limited number of large-scale studies. 

Generic potentials covering large classes of compounds 

At present, a very active research field is the development 

and widely used by the community include Amber [55],  of force fields for organo-metallic complexes, which represent CHARMM [56], OPLS [57] and Gromos [58]. More specialized  prosthetic groups in proteins or active groups in a variety of parameterizations, tuned on the properties of specific families  organic opto-electronic devices and are important also for of compounds, are too many to be listed. 

homogeneous catalysis. Peculiar difficulties are represented by 

In many respects, the most uncertain part of the  the variety of coordination numbers, sometimes corresponding parametrization  is  the  choice  of  coefficients  for  the  non- to different spin states, thus pointing to multiple PESs fairly bonded  interactions. The  definition  of  atomic  charges  is  not  close in energy. Moreover, the structure of organo-metallic unique, and different methods provide fairly different results.  complexes is characterized by the importance of quantum The most popular approach [59] attributes charges by fitting  mechanical effects, such as Jahn-Teller, or by the so-called trans the electrostatic potential outside gas-phase molecules, as  influence, defined as the “tendency of a ligand to selectively provided by ab initio computations. The method is physically  weaken the bond trans to itself” [62]. Models to include these sound,  but  the  fit  becomes  ill  conditioned  whenever  the  effects in empirical PES models might turn out to be too molecular size exceeds ∼ 15–20 atoms or when the geometry  complex to be used in practice. A more promising alternative is compact, thus reducing the number of multipolar momenta  is provided by QM/MMapproaches, using classical force fields whose modulus is significantly different from zero. Constraints  for most of the system and resorting to ab initiomethods for the and minimum conditions on the size of individual charges  challenging portion around the metal center. 

do  improve  the  fit  [60],  but  the  choice  of  these  parameters 

An intriguing subset of mainly, but not exclusively, organic 

remains fairly uncertain. For each individual system, the error  compounds is represented by the so-called room temperature introduced by the choice of the charge may be compensated  ionic liquids [63], defined as molecular ionic systems whose for by the selection of the dispersion coefficients. In fact, it has  melting temperature is below 100°. Prototypical systems are been observed many times that it was possible to accurately  made by an alkane substituted imidazolium cation, joined to reproduce the target properties of condensed phases such as the  an organic or inorganic anion. Systems of this kind are relevant density or the molecular diffusion even starting from the fairly  here, not only because of the intense simulation activity that different charges provided by different methods. Unfortunately,  concerns them, but mainly because they provide a bridge this cancellation of errors limits the transferability of the  between different classes of bonding and, thus, pose special 
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modeling problems. The bulk of the extensive simulation  vapor critical temperature and the large value of the latent heat work carried out at present relies on Amber-like force fields,  of the liquid water-ice transition. 

with specialized parameterizations (see, for instance, [64,65]). 

To a large extent, these anomalous behaviors are embodied 

Models of this kind are fairly successful, but issues concerning  into the PES of water systems and arise from the strength and polarizability and the attribution of partial charges to atoms  directionality of the hydrogen bond network that provides become particularly important for these systems. Despite  the bulk of water cohesion. In part, however, they are due to these difficulties, a number of simulations have successfully  the light mass of the water molecule, causing non-negligible addressed the properties of very complex systems, consisting  quantum  effects  that  influence  the  properties  of  hydrogen of room temperature ionic liquids in combination with a  bonds. Heavy water, for instance, is already somewhat variety of solvents and neutral organic compounds, including  different from ordinary water, so much that D O is known to bio-molecular species (seeFigure 3). 

2

have peculiar and generally adverse biological effects. This 

duality of potential energy versus quantum mechanical effects 

poses  apparent  and  significant  problems  to  modeling  [68]. 

Potentials tuned on the exact PES of water do not reproduce 

its properties when used in a classical simulation. On the other 

hand, potentials tuned on experimental properties of water do 

not necessarily reflect the details of the exact PES. 

Work to provide a quantitative and comprehensive 

description of water properties is still in progress [69,70]. In 

the meantime, a vast number of simulations in which water is 

the unique or an essential component are being carried out with 

a variety of simple potentials, reflecting the basic atomistic and 

electronic structure of the water molecule. Two major families 

are in use: TIPnP[71–73], with n = 3, 4 and 5, and SPC [74–

77],  both  based  on  fixed  charges  (rigid  ions)  and  centers  of 

short range interactions, joined by rigid or harmonic bonds. 

Models of this kind allow the routine simulation by MD of 

systems of 50 × 103 water molecules solvating whole proteins, 

covering times well in excess of 100 ns. Results are generally 

good, and a large number of successful applications clearly 

validate these models, at least up to the accuracy needed for 

these large-scale applications. However, it is fair to say that no 

Figure 3: Snapshot from a molecular dynamics simulation of a room  single model of the rigid ion type is able to provide a uniformly temperature ionic liquid/water solution at 0.5 M concentration in con-satisfactory account of water properties over a wide range of 

tact with a POPCphospholipid bilayer [66]. Green balls: [Cl]−; gray-

regimes and thermodynamic conditions. Several of these 

silver molecules: [bmim]+. wireframe molecules: POPC. Water has  models, in particular, do not display the experimental density been removed to highlight the incorporation of [bmim]+ cations into  maximum of water or place it at (P, T)conditions far from the phospholipid bilayer. 

the experimental ones [69,70]. The liquid-vapor coexistence 

A few carbon systems, such as fullerenes, carbon nanotubes  curve is also poorly predicted by rigid ion models, unless the and graphene, lie at the boundary between inorganic and  potential parameters are explicitly adjusted for this purpose. In organic species and even blur the distinction between covalent  such a case, however, the accurate description of some other and metal character. Not surprisingly, systems of this kind  quantity might need to be sacrificed. The description of critical have been represented by a variety of models, from Tersoff- properties, that are accurately known from measurements, are Brenner to a molecular force field, such as those described in  only moderately well reproduced [78]. 

this section. 

Water clusters and droplets are another, distinct subfield 

of water research. Thermodynamic and spectroscopic data are 

WATER

available from experiments, but are not sufficiently detailed to 

Because of its fundamental role in life and of its widespread and  provide a full description of structural and dynamical properties. 

generally benign presence in nature, water has always been the  In this case, state-of-the-art quantum chemistry computations object of interest and fascination. In this respect, computational  supplement the experimental information [79]. Once again, it physicists and chemists are no exception, although the reasons  turns out that rigid ion models are only moderately successful for their interest are somewhat different from those of the rest  in predicting their properties and usually fail to reproduce the of humankind. A number of measurements have highlighted a  reduced binding of very small clusters. The oxygen-oxygen wide variety of peculiarities, if not anomalies, in the properties  equilibrium distance in the water dimer, for instance, is greatly of water [67]. These include the surprising expansion of water  underestimated by popular models, and its cohesive energy is upon freezing, the density anomaly observed at 4 °C at ambient  correspondingly overestimated. These discrepancies decrease pressure, and, more in general, the non-monotonic variation  in importance with increasing cluster size, but the convergence of several physics-chemical properties in the vicinity of this  to the bulk cohesive properties, reliably described by current remarkable density maximum. Other peculiar features consist  DFTmodels of water, is fairly slow (See Table 1). In these small in the wide temperature range of super-cooling, the high liquid- systems, the rigid-ion assumption, or, in other terms, the lack 
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of polarizability, again seems to be the major problem. The  through the advent of density functional theory, whose molecular dipole moment of water, for instance, changes from  recognized theoretical and practical foundation is provided by μ = 1.855 D in the gas phase molecule, to nearly μ = 3 D in  the Hohenberg-Kohn (HK) theorem [92] and by the seminal ice and in liquid water, but rigid ion models cannot reproduce  paper by Kohn and Sham (KS) [93]. In a very schematic this change. Moreover, within rigid-ion models, hydrogen  way, density functional theory in the popular Kohn-Sham bonds have only a Coulombic origin, contradicting the results  formulation represents the ground state electron density, ρ(r), of experiments and quantum chemistry computations showing  in terms of an auxiliary set of non-interacting electron orbitals that both Coulomb and covalent contributions are important  {ϕ (r),  i  =  1,  ...,  K},  generally  known  as  the  Kohn-Sham i

[80] and change in slightly different ways upon changing the  orbitals:

aggregation state of water. 

Table 1: Cohesive energy (kJ/mol per water molecule) of (H O) , of 

2

2



(21)

cyclic water clusters (H O) , n = 3, 4, 5, 6, and of the cubic D  form 

2

n

2d

of (H O)  computed by an SPC, rigid ion model (SPC/Fw, [77]). De-

To reproduce the exact density, the (unspecified) potential 

2

8

viations from dispersion-corrected [81] DFT [82] results are given in  acting on the non-interacting electrons has to be different from parentheses. Data are from [83]. 

the one acting on their interacting counterpart. The properties of 

such a potential and, in particular, its local, i.e., multiplicative 

nature are a corollary of the HKtheorem. 

Then, according to KS, the system ground state energy is 

the minimum of the unique and universal functional:



Somewhat surprisingly, the inclusion of polarizability        (22)

into simple models has not resulted yet into the systematic 

improvement of the description of the properties for extended  where U [ρ] is the so-called exchange correlation energy, a XC

water systems [84], while it has been more successful for  functional of the electron density, ρ(r), which also contains a clusters. 

small fraction of the kinetic energy of the interacting electrons. 

All  these  difficulties  have  stimulated  a  large  number  of  Minimization of Equation (22) under the constraint of ortho-new attempts. It might be worth mentioning the representation  normality for the Kohn-Sham orbitals results in a set of coupled of electron polarizability via classical [85] and quantum [86]  partial differential equations for {ϕ }. 

i

Drude oscillators, the application to water [87] of the empirical 

Methods to solve this problem have been developed and 

valence band (EVB) theory [88] and the usage of polarizable  discussed in a vast numbers of papers and textbooks [7,8]. 

Thole models [89]. 

The accuracy of the solution depends on the functional used 

Ab initio modeling, discussed in more detailed below, will  to approximate U [ρ], and on the choice of the basis used XC

eventually provide the method of choice to study water [90].  to represent the orbitals. Popular choices for the exchange-Until now, however, approaches of this kind using standard  correlation energy are generalized gradient corrections, such approximations for the exchange-correlation energy (see next  as PBE [82], or hybrid functionals, such as B3LYP [94]. Basis section) have given rather mixed results [91]. 

sets range from atomic orbitals to wavelets, but plane waves 

[95,96] and Gaussian functions [97] are probably the most 

widely used choice for implementations tuned on molecular 

THE  AB INITIO ROUTE

dynamics applications. 

Over the last twenty years, the art of representing PES as a 

The solution of the standard problem in Equation (5) 

function of atomic coordinates has seen its role increasingly  obtained through Equation (22) is restricted to the ground state challenged by the explosive growth of ab initio simulation  PES. Even within this limited scope, the PES itself can only methods. 

be determined point by point. Nevertheless, the KS energy 

As discussed in Section 2, the exact PES of a system  expression can be used to evolve the atomic positions in time, made by N electrons evolving in the field of K nuclei can be  thus opening the way to MD, provided one can: (i) minimize determined point by point by computing the energy eigenvalues  Equation (22) fast enough; and (ii) evaluate forces on the of the Ĥ  Hamiltonian:

atoms through:

ele

(23)





(20)

Towards this goal, the work of Car and Parrinello [9] has 

For any single choice of the {R } coordinates, a fairly  truly represented the single most important breakthrough, α

extended array of quantum chemistry ab initio methods, such  whose major innovation consisted of the introduction of direct as configuration interaction, Møller-Plesset perturbation theory  minimization approaches for Equation (22), exploiting the or  coupled  clusters,  are  available  to  find  all  or  a  few  of  the  close similarity of the electronic configuration at two successive lowest energy eigenvalues and eigenvectors of this so-called  steps of MD. Evaluation of forces, moreover, was greatly eased standard problem in electronic structure computations. 

by the choice of plane waves as the basis set to represent KS 

For what concerns the direct application of ab initio  orbitals, whose unbiased coverage of the entire space allows methods to simulation, however, progress came primarily  the application of the Hellmann-Feynman theorem in its simplest form to compute gradients of the ground state energy 
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[95,98]. Atoms evolve on the adiabatic PES implicitly defined  the accuracy, reliability and computational efficiency of these by Equation (22) classically or quantum mechanically. The  methods are improving rapidly. 

validity of a classical time evolution for the atoms according 

The major problem in current MD applications of ab 

to Newton’s equations relies on conditions discussed in detail  initio methods arguably is that achieving accurate results in Chapter [6]. Outside these conditions, one could resort to a  for difficultsystems, such as transition metals and oxides or path integral approach, as done, for instance, in [99]. 

molecular systems, still require an extensive preliminary 

The method can be extended to simulate the atomic  calibration  stage  and  system-specific  exchange  correlation dynamics on the single PES of an electronically excited state  approximations [105], effectively spoiling the ab initio 

[100], provided the different symmetry of the ground and  character of these methods. Perhaps more importantly, these excited state allows a meaningful definition of both PESs by  adjustments of the model decrease their reliability for systems density functional methods. As apparent from the discussion of  exhibiting different bonding types, since the improvement on the Born-Oppenheimer approximation, multiple PESs close in  one type might worsen the description of the other type. 

energy make it impossible to disentangle the ionic and electron 

Most of the cost of KS-DFT computations is due to 

dynamics, and in these cases, resorting to semiclassical or  the representation of the density in terms of KS orbitals. 

to more accurate quantum mechanical approaches [6] is  Approaches relying on genuine density functional formalism, mandatory. 

such as a refined Thomas-Fermi method, could enjoy a huge 

Somewhat simplified versions of the density-functional- computational advantage, but no successful scheme has based MD, resorting to localized bases and relying on a  emerged during the years, and only very idealized Gordon-self-consistent tight-binding approach have been developed  Kim approaches [106] have been used with some success. 

[101,102] and provide a cheaper and popular alternative to 

unrestricted DFT methods. The price to be paid is a slight  CONCLUSIONS

limitation in the quality of the solution, as well as occasional 

failures of the method. 

Explicit or implicit expressions of the PES of condensed 

matter systems represent the basis of our ability to simulate 

The amazing success of density-functional-based them, possibly understanding and sometimes predicting their simulation methods is due to the fact that they represent the  properties by purely computational methods. For this reason, the only method endowed with truly predictive power, which can  development of approximations and efficient representations be used for systems of several hundred atoms, with up to a  of PES is the focus of an intense research effort, involving a few thousand valence electrons. ab initio simulation, therefore,  sizable portion of the computational community. 

is the method of choice whenever we cannot guess a suitable 

representation of the PES or when we need an accuracy that 

Such a modeling activity is an art as much as a science. It 

cannot be provided by the empirical models that are available. is a science in the systematic derivation of interatomic forces Ab initio simulation is also strictly required for systems  from more fundamental interactions. It is an art in the invention whose structure is affected by electronic effects, such as  of effective ways to incorporate new ideas in physically Jahn-Teller, and also enjoys a clear advantage in describing  transparent  and  computationally  efficient  mathematical spin-polarization effects or systems undergoing chemical  expressions. Like many other forms of art, it relies on a big deal transformations and non-stoichiometric compounds exhibiting  of craftsmanship, required in the stage of parameterizing force different valence states. 

fields,  validating  them  and  incorporating  them  into  widely 

used computer packages, using sophisticated programming 

Well known drawbacks are represented by the  techniques, tuned on state-of-the-art computational hardware. 

computational cost that limits the size and especially the 

time scale of ab initio simulations, even though the reach 

It should be apparent from the discussion of the previous 

of the method is constantly expanding. At present, large  sections that the last thirty years have seen an amazing computations running on state-of-the-art facilities may involve  enhancement of our ability to model a wide variety of systems at 

∼ 1, 000 atoms and ∼4, 000–5, 000 valence electrons. Early  the atomistic level, fueling the explosive growth of simulation problems with metals have been progressively eased by  studies, while, at the same time, being driven by it. Equally approaches relying on the accurate step-by-step minimization  amazing, however, is the extent of what we are still unable of the KS energy functional. Problems, however, remain with  to model satisfactorily. Interfaces between different materials, transition and, especially, rare-earth metals, for which standard  for  instance,  are  intrinsically  difficult  to  describe  by  simple exchange-correlation approximations give unsatisfactory  approaches. Excluding ab initio, no reliable, general and widely results, and quantum chemistry hybrid methods fail fairly  accepted model is available to simulate water and electrolyte spectacularly [103]. Progress is being achieved with methods  solutions in contact with neutral or charged electrodes, organic incorporating strong correlation at some approximate level,  and biological molecules on solid surfaces or the junction of such as LSD+U [104]. 

metal and semiconducting phases. Even homogeneous phases, 

such as non-stoichiometric oxides, still represent a formidable 

Difficulties remain also in the limit of weakly interacting  challenge for models suitable for simulating 104 atoms over molecular systems. Furthermore, in this case, early methods  100 ns or more. Systems undergoing chemical transformations lacked essential components, such as the dispersion interaction,  are another sore point, even though methods, such as ReaxFF 

which in molecular systems provide a good portion of cohesion.  and REBO, are achieving progress in this direction. 

Dispersion interactions are now increasingly included in ab 

initio simulations [81], especially for molecular systems and 

At this stage, strategic decisions on the directions and 

for water, in particular. Results are encouraging, although not  aims of the modeling effort have to take into account the rapid yet in full quantitative agreement with experiments. However,  growth of ab initio methods, which easily account for the 
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intermixing of different bonding categories, cover electrostatic 

Tavernelli, I. Nonadiabatic molecular dynamics based on 

polarizability, provide information on excited state PES and 

trajectories. Entropy 2014, 16, 62–85. 

may include magnetic interactions and spin effects through  7.  Martin, R.M. Electronic Structure, Basic Theory their approximate description of exchange. 

and Practical Methods; Cambridge University Press: 

The rapid progress of methods and computational 

Cambridge, UK, 2004. 

equipment implies that the foreseeable future spans at most ten  8.  Kaxiras, E. Atomic and Electronic Structure of Solids; to fifteen years from now. Over this time, empirical models of 

Cambridge University Press: Cambridge, UK, 2003. 

PES will continue to play an important and useful role in the  9.  Car, R.; Parrinello, M. Unified approach for molecular atomistic simulation of large systems (N ≃ 104 atoms) over 

dynamics and density-functional theory. Phys. Rev. Lett 

times in excess of 100 ns. Most biochemistry and biophysics 

1985,55, 2471–2474. 

simulations fall into this class. 

10.  Born, M.; Huang, K. Dynamical Theory of Crystal 

On the longer run, however, the general picture of 

Lattices; Oxford University Press: Oxford, UK, 1954. 

modeling might indeed change. First of all, the domain 

proper to atomistic modeling concerns the investigation of the  11.  Yarkony, D.R. Diabolical conical intersections. Rev. 

microscopic details underlying larger-scale phenomena. In this 

Mod. Phys 1996, 68, 985–1013. 

context, the scales of interest rarely exceed ∼ 104 atoms and  12.  Kroes,  G.J.;  Gross,  A.;  Baerends,  E.J.;  Scheffler,  M.; correspondingly short times of less than ∼ 10 ns. Beyond this 

McCormack, D.A. Quantum theory of dissociative 

range, simulation may become the exclusive domain of coarse 

chemisorption on metal surfaces. Acc. Chem. Res 2002, 

graining and multi-scale approaches, provided refined versions 

35, 193–200. 

of these methods are developed over the next few years. 

13.  Bowman, J.M. Beyond born-oppenheimer. Science 

Ab initio methods already represent the method of choice 

2008, 319, 40. 

for systems for which we do not have reliable approximations  14.  White, J.D.; Chen, J.; Matsiev, D.; Auerbach, D.J.; of their PES, for phenomena that can be represented by 100 to 

Wodtke, A.M. Conversion of large-amplitude vibration 

1, 000 atoms and that take place within a 50–100 ps time span. 

to electron excitation at a metal surface. Nature 2005, 

Mixed QM/MM approaches extend this reach and represent 

433, 503–505. 

the most appealing method to treat systems, such as protein  15.  Abedi, A.; Maitra, N.T.; Gross, E.K.U. Exact factorization reaction centers, organometallic catalysts, etc., in which a 

of the time-dependent electron-nuclear wave function. 

small portion of a large system needs to be represented in full 

Phys. Rev. Lett 2010, 105, 123002. 

chemical detail. 

16.  Abedi, A.; Maitra, N.T.; Gross, E.K.U. Correlated 

The parallel development of ab initio and of refined coarse 

electron-nuclear dynamics: Exact factorization of the 

graining and multi-scale methods, therefore, could greatly 

molecular wavefunction. J. Chem. Phys 2012, 137, 

shrink the role of empirical PES approximations in atomistic 

22A530. 

simulation. Even these likely developments, however, might  17.  Hunter, G. Conditional probability amplitudes in wave not mark the end of atomistic potential models, since simple 

mechanics. Int. J. Quantum Chem 1975, 9, 237–242. 

and transparent representations of PES will continue to provide 

the conceptual basis to rationalize the properties of condensed  18.  Berry, M.V. Quantal phase factors accompanying matter systems in terms of atoms, of molecules and of their 

adiabatic changes. Proc. R. Soc. Lond. Ser. A 1984, 392, 

microscopic interactions. 

45–57. 

19.  Pancharatnam, S. Generalized theory of interference, 
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11 COMPUTATIONAL METHODS IN 

MATERIALS SCIENCE

Martin O. Steinhauser and Stefan Hiermaier
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INTRODUCTION

allowing to scrutinize theories, but they can also be used as 

an exploratory research tool under physical conditions not 

Some of the most fascinating problems in all fields of  feasible in real experiments in a laboratory. Computational science involve multiple temporal or spatial scales. Many  methods have thus established a new, interdisciplinary processes occurring at a certain scale govern the behavior of  research approach which is often referred to as “Computational the system across several (usually larger) scales. This notion  Materials Science” or “Computational Physics”. This approach and practice of multiscale modeling can be traced back to  brings together elements from diverse fields of study such as the beginning of modern science, see e.g., the discussions  physics, mathematics, chemistry, biology, engineering and in [1–3]. In many problems of materials science this notion  even medicine and has the potential to handle multiscale and arises quite naturally as a  structure-property paradigm: The  multi-disciplinary simulations in realistic situations. 

basic microscopic constituents of materials are atoms, and 

their interactions at the microscopic level (on the order of 

For example, simulations in material physics are focused 

nanometers and femtoseconds) determine the behavior of the  on the investigation of lattice and defect dynamics at the material at the macroscopic scale (on the order of centimeters  atomic scale using MD and Monte Carlo (MC) methods, often and milliseconds and beyond), with the latter being the scale of  using force-fields (physical potentials) that are derived from interest for technological applications. The idea of performing  solving the non-relativistic Schrödinger equation for a limited material simulations across several characteristic length and  number of atoms [11–13]. In contrast to this, materials-related time scales has therefore obvious appeal as a tool of potentially  simulations  in  the  field  of  mechanical  engineering  typically great effect on technological innovation. 

focus on large-scale problems, often resorting to finite element 

methods (FEM) where the micro structure is homogenized by 

With the increasing availability of very fast computers  using averaging constitutive laws [14–16]. 

and concurrent progress in the development and understanding 

of  efficient  algorithms,  numerical  simulations  have  become 

With powerful computational tools at hand, even 

prevalent  in  virtually  any  field  of  research  [4–10].  Fast  simulations of practical interest in engineering sciences for parallelized computer systems today allow for solving  product design and testing have become feasible. Material complex, non-linear many body problems directly, not  systems of industrial interest are highly heterogeneous and involving any preceding mathematical approximations which  are characterized by a variety of defects, interfaces, and other is the normal case in analytical theory, where all but the very  microstructural features. As an example,  Figure 1  displays simplest problems of practical interest are too complex to be  a Scanning Electron Microscope (SEM) micrograph of the solved by pencil and paper. Computer simulations are not only  granular surface structure and the fracture surface of Aluminum a connecting link between analytic theory and experiment,  Oxide (Al O ) after planar impact load. Inorganic crystalline 2 3

materials have structural features such as grain boundaries 

between crystals which are  mm  to  μm  in  size  (cf.  Figure 

1a), dislocations, and point defects such as vacancies on the 

Citation: Martin O. Steinhauser and Stefan Hiermaier, Computation-

atomic scale. Hence, these structures have to be studied from a 

al Methods in Materials Science, doi:10.3390/e16010322

hierarchical perspective [17]. 
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of inorganic crystalline materials (engineering materials, green) and 

the structural features of self-organizing organic biological materials 

(blue). At the nanoscale, the basic constituents of all condensed matter 

are the atoms bound together in chemical bonds. 

For example, in the analysis of fibrous composites where 

fibers are embedded in a matrix to form an anisotropic sheet or 

lamina (which in turn are bonded together to form a laminate), 

cf. Figure 3, the fibers and matrix are regarded as continuous 

media in the analysis of the single lamina [25,26]; the laminae 

are then regarded as continuous in the analysis of the laminate. 

The stacking sequence of laminae and the orientation of 

fibers  within  them  governs  the  anisotropy  of  the  composite. 

A similar continuum assumption is often used in the analysis 

of particulate composites [27] and of foams [28]. Many 

biopolymers such as collagen show a similar hierarchical 

structure where the amino acids are organized in triple-helical 

fibrous tropocollagen molecules which are about 300 nm long 

and 1.5nm  in diameter and which in turn are organized in 

fibrils and fibers on the micrometer scale [29,30]. Most of the 

Figure 1: (a) Micrograph section of an etched Al O  ceramic surface 

2 3

structural materials used by Nature are polymers or composites 

exhibiting the granular structure on the microscale. (b) SEM photo-

of polymers. Such materials would probably not be the first 

graph of the fracture surface of Al O  after edge-on impact experiment 

2 3

[18] with striking speed of v ≈ 400m/s. (c,d) Microstructural details  choice of an engineer intending to build very stiff and long-of the Al O  surface exhibiting structural hierarchies. Figure by M.O.  lived mechanical structures (see Figure 2). The engineer selects 2 3

Steinhauser, Fraunhofer EMI. 

materials to fabricate a part according to an exact design. In 

contrast, Nature goes the opposite direction and grows both the 

Recently, polycrystalline materials have been synthesized  material and the whole organism, e.g., a plant or an animal, with a distribution of grain sizes less than 1 micron [19–23]  using the principles of biologically controlled self-assembly. 

(nanocrystalline materials). The small grain size, hence  Additionally, biological structures are able to grow, remodel large interface area, gives rise to desirable properties such  and adapt to changing environmental conditions during their as superplasticity (in which large irreversible deformation  whole lifetime, which even allows for self-repair [31]. 

can occur without fracture) [24], and improved strength 

and toughness. Small grain size also implies short diffusion 

distances, so that processes which depend on diffusion, such as 

sintering, are facilitated and can occur at lower temperatures 

than would otherwise be possible. Predicting the properties 

and performance of such materials under load is central for 

modern materials research and for product design in industry. 

However, due to the complexity of structural hierarchies 

in condensed matter on different scales, there is no single 

computational model or physical theory which can predict and 

explain all material behavior in one unified and all-embracing  Figure 3: (a) Light microscopic view of a glass fiber reinforced sheet approach. Hence, the explicit micro structure of different  moulding compound (SMC) which is used in car industry as light-weight material. (b) CT-microscopic reconstruction of a section of 

important classes of materials such as metals, ceramics, or  the laminar glass fiber structure in the material. (c) Scanning Acoustic materials pertaining to soft matter (glasses or polymers) has  microscopic view of a tensile-test SMC specimen exhibiting the glass to be incorporated in different models with delimited validity,  fiber  bundles  within  the  compound.  Figure  by  M.O.  Steinhauser, cf. Figure 2. 

Fraunhofer EMI. 

The typical hierarchical structural features of materials 

have to be taken into account when developing mathematical 

and numerical models which describe their behavior. With 

this respect, usually one of two possible strategies is pursued: 

In a “sequential modeling approach” one attempts to piece 

together a hierarchy of computational approaches in which 

large-scale models use the coarse-grained representations 

with information obtained from more detailed, smaller-

scale models (“bottom-up”  vs.  “top-down” approach). This 

sequential modeling technique has proven effective in systems 

in which the different scales are  weakly coupled. The vast 

majority of multiscale simulations that are actually in use 

is sequential. Examples of such approaches are abundant in 

Figure 2:  Schematic hierarchical view of structural properties of  literature, including practically all MD simulations whose important classes of materials contrasting typical structural features  underlying potentials are derived from ab initio calculations 

[image: Image 747]

Computational Methods in Materials Science

165

[32]. The second strategy pursued in multiscale simulations is 

the “concurrent” or “parallel approach”. Here, one attempts to 

link methods appropriate at each scale together in a combined 

model, where the different scales of the system are considered 

concurrently and often communicate with some type of hand-

shaking procedure [33–35]. This approach is necessary for 

systems, whose behavior at each scale inherently depends 

strongly on what happens at the other scales, for example 

dislocations, grain boundary structure, or dynamic crack 

propagation in polycrystalline materials. 

This review is organized as follows: In the next section 

we first discuss the relevance of physical model building for 

computer simulation. Then, in Section 3., a survey of typical 

simulation techniques for numerical simulation of condensed 

matter systems on different length and time scales is provided 

before we focus in a tutorial-like fashion on the MD method in 

Section 4. Here, typical numerical optimization techniques for  Figure 4: Schematic comparing the relevant length scales in materials the search for particle interactions are first reviewed, followed  science according to [3]. In the field of nano- and microtechnology by general considerations on the efficiency and the run time  one usually tries to approach the molecular level from larger scales, of algorithms used for MD applications. We then review  miniaturizing technical devices, whereas nature itself always seems recent MD applications in shock wave physics in Section 5.  to follow a bottom-up approach, assembling and self-organizing its and of polymer physics using coarse-grained particle models  complex (soft) structures from the atomic scale to complex cellular in Section 6. Here, we focus on some aspects of computer  organisms. The typical scopes of important experimental methods using microscopes is displayed as well. The validity of classical physics 

simulations of macromolecules which are of relevance for  is limited to length scales down to approximately the size of atoms biopolymers such as DNA, polypeptides, or cell membranes.  which, in classical numerical schemes, are often treated as point par-Finally,  in  Section  7,  we  briefly  explore  as  a  promising  ticles or spheres with a certain eigenvolume. 

emerging  interdisciplinary  research  field  the  application  of 

concepts of polymer and shock wave physics to biological 

Unfortunately, there is no simple “hierarchy” that is 

systems which may contribute to an improved understanding  connected with a length scale according to which the great of medical applications such as non-invasive extracorporeal  diversity of simulation methods could be sorted out. For shock wave lithotripsy or tumor treatment. Our review ends  example, Monte Carlo lattice methods can be applied at the with concluding remarks in Section 8. 

femtoscale of Quantumchromodynamics (10−15 m) [36], at the 

Ångstrøm scale (10−10  m) of solid state crystal lattices [37], 

PHYSICAL AND NUMERICAL MODELING

or at the micrometer scale (10−6 m), simulating grain growth 

processes of polycrystal solid states [38]. Thus, before getting 

The span of length scales commonly pertaining to materials  started with computer simulations, as always in research, it is science comprises roughly 10 to 12 orders of magnitude and  important to establish first, which phenomena and properties classical physics is sufficient to describe most of the occurring  one is primarily interested in and which questions one is going phenomena, cf. Figure 4. Yet, classical MD or MC methods are  to ask. 

only valid down to length scales comparable to the typical size 

In many practical cases, the basic question which model 

of atoms (≈ 10−10m) and typically treat atoms as point particles  shall be used for answering a specific question is the main or spheres with eigenvolume. In principle, the relativistic  problem. The next step for rendering the model accessible time-dependent Schrödinger equation describes the properties  to an algorithmic description, is the discretization of the of molecular systems with high accuracy, but anything more  time variable (for dynamic problems) and of the spatial complex than the equilibrium state of a few atoms cannot be  domain in which the constitutive equations of the problem handled at this ab initio level. Quantum theory as a model for  are to be solved. Then appropriate algorithms for solving the describing materials behavior is valid also on the macroscopic  equations of the mathematical model have to be chosen and scale, but the application of the (non-relativistic) Schrödinger  implemented. Before trusting the output of a newly written equation  to many particle systems of macroscopic size is  computer program and before applying it to new problems, completely in vain due to the non-tractable complexity of the  the code should always be tested to the effect whether it involved calculations. Hence, approximations are necessary;  reproduces known analytic or experimental results. This is a the larger the complexity of a system and the longer the  necessity as the correctness and plausibility of the outcome involved time span of the investigated processes are, the more  of an algorithm (usually dimensionless numbers) cannot be severe the required approximations are. For example, at some  predicted by simply looking at the source code. The success point, the ab initio approach has to be abandoned completely  of a computer experiment in essence depends on the creation and replaced by empirical parameterizations of the used model.  of a model which is sufficiently detailed such that the crucial Therefore, depending on the kind of question that one asks  physical effects are reproduced and yet is sufficiently simple and depending on the desired accuracy with which specific  (of small complexity) for the simulation still to be feasible. 

structural features of the considered system are resolved, one 

has the choice between many different models which often 

Once a decision is made, a physical model is expressed 

can be usefully employed on a whole span of length and time  as mathematical equations which are solved in a systematic scales. 

fashion,  i.e.,  in  a  way  that  can  be  formulated  as  a  finite 
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stochastic or deterministic algorithm and be implemented as a  prediction and an experimental interpretation is frequently computer program. The numerical solutions of the governing  questioned because of the simplifying approximations with equations associated with the physical and mathematical  which the theoretical solution was obtained or because of the model are then interpreted and provide answers to the specific  uncertainty of the experimental interpretation. For example, real system which was transformed into the model system. A  even the relatively “simple” laws of Newtonian mechanics comparison of the answers for a specific problem obtained by  become analytically unsolvable, as soon as there are more than mathematically  exploiting  a  specific  model,  finally  provides  two interacting bodies involved [39,40]. Most of materials some ideas about its general validity and quality as well as  science however deals with many (N ∼ 1023) particles, atoms, of the derivations and theoretical concepts associated with it.  molecules or abstract constituents of a system. 

This principal procedure in physical and numerical modeling 

Computer simulations, or computer experiments, are much 

is illustrated schematically in the flowchart of Figure 5. 

less impaired by many degrees of freedom, lack of symmetries, 

or non-linearity of equations than analytical approaches. As a 

result, computer simulations establish their greatest value for 

those systems where the gap between theoretical prediction 

and laboratory measurements is large. 

The principal design of practically all computer simulation 

programs  for  scientific  purposes  is  displayed  in  Figure  6: 

Usually, during a  pre-processing phase  some administrative 

tasks are done (system setup, defining initial system structure, 

reading in simulation parameters, initializing internal variables, 

etc.) before the actual simulation run is started. 

Figure 5:  Physical, mathematical and numerical modeling scheme 

illustrated as flow chart. Starting from the experimental evidence one 

constructs physical theories for which a mathematical formulation 

usually leads to differential equations, integral equations, or master 

(rate) equations for the dynamic (i.e., time dependent) development of 

certain state variables within the system’s abstract state space. Analyt-

ic solutions of these equations are very rarely possible, except when 

introducing simplifications usually involving symmetries. Thus, ef-

ficient  algorithms  for  the  treated  problem  have  to  be  found  and 

implemented as a computer program. Execution of the code yields 

approximate numerical solutions to the mathematical model which 

describes the dynamics of the physical “real” system. Comparison of 

the obtained numerical results with experimental data allows for a 

validation of the used model and subsequent iterative improvement of 

the model and of theory. 

Computer Simulations as a Research Tool

Figure 6: Principal design of a computer simulation. Usually, some 

Computer simulation is adding a new dimension to scientific  pre-processing as preparation for the main simulation is done with investigation and has been established as an investigative  a pre-processor. This piece of computer code might be integrated in research tool which is as important as the traditional approaches  the main source code or – in particular in commercial codes –is written as an extra piece of code, compiled and run separately from the 

of experiment and theory. The experimentalist is concerned  main simulation code. During pre-processing, many administration with obtaining factual information concerning physical states  tasks can be done which are not related to the actual simulation run. In and dynamic processes. The theorist, challenged by the need  large-scale simulations, data are stored during execution for later anal-to explain measured physical phenomena, invents idealized  ysis. This analysis and visualization is done during post-processing. 

models which are subsequently translated in a mathematical  The advantage of separating pre- and post-processing from the actual formulation. As is common in theory, most mathematical  simulation code is that the code design remains clearly arranged and analysis of the basic laws of nature as we know them, is  the important issue of optimization for speed only has to be done for too complex to be done in full generality and thus one is  the relevant pieces of the main simulation code. However, in large-compelled to make certain model simplifications in order to  scale simulations, involving billions of particles, even the task of data analysis can become a major problem that needs optimization and fast 

make predictions. Hence, a comparison between a theoretical  parallelized algorithms [41]. 
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Analyzing data “on-the-fly” during the simulation phase is  Table 1:  Customary  classification  of  length  scales.  Displayed  are usually too expensive; therefore, data snapshots of the system  also typical scopes of different simulation methods and some typical are stored during certain preset time intervals which can later  applications pertaining to the respective scale. 

be analyzed and visualized during the post-processing phase. 

Very often, the pre- and post-processing code is separated 

from the main simulation code and since the mid 1990s, 

Graphical User Interfaces (GUIs) are commonly used for these 

tasks. In UNIX environments, TCL/TK is a classical script 

language used to program GUIs. Since the mid 1990s, a C++ 

based graphical library—Qt—is available for Open Source 

developments under the GNU General Public Licence. 

The starting point for a computer simulation is the 

invention of an idealized adequate model of the considered 

physical process. This model is written in the language of 

mathematics and determined by physical laws, state variables, 

initial and boundary conditions. The question as to when a 

model is “adequate” to a physical problem is not easy to answer. 

There are sometimes many concurrent modeling strategies and 

it is a difficult question which aspects are essential and which 

ones are actually unimportant or peripheral. 

SIMULATION METHODS FOR DIFFERENT 

LENGTH AND TIME SCALES

The first scientific simulation methods ever developed and 

implemented on working electronic computers were MC and 

MD methods, fully rooted in classical physics [42–49]. Many 

problems of classical MD techniques lie in the restriction to 

small (atomistic and microscopic) length and time scales. 

In atomistic MD simulations of hard matter,  i.e., crystalline  Electronic/Atomistic Scale systems which are mostly governed by their available energy  The sub-atomic electronic structure of a material yields states, the upper limit on today’s hardware is typically a cube  information on molecular geometry, magnetic properties, with an edge length of a few hundred nanometers simulated  (NMR, IR, or UV) spectroscopic data, quantum mechanical for a few nanoseconds. With coarse-grained models, where the  ground and excited states and on the chemistry of materials. 

individual MD particles represent complete clusters of atoms,  Modeling materials on this scale needs to take into account molecules or other constituents of the system, this limit can  the degrees of freedom of the electrons explicitly. Some basic be extended to microseconds or even seconds. In this respect,  simulation methods, so called ab initio methods were developed soft matter systems such as polymers, which are very long  which solve the Schrödinger equation approximately, usually macromolecules, constitute a very interesting class of materials  based on the Born-Oppenheimer approximation. With  ab due to their intrinsic universal scaling features [50,51] which  initio methods, the only information that has to be provided are a consequence of their fractal properties [52]. Macroscopic  are the number of atoms and the positions of the atoms within physical properties of materials can be distinguished in:

the system. In contrast to this, semi-empirical or empirical 

•  static equilibrium properties, e.g., the radial distribu- approaches require a model of the interactions between the tion function of a liquid, the potential energy of a sys- atoms to be supplied. The idea of “inventing” and designing tem averaged over many timesteps, the static struc- new materials on demand just by entering the into a computer ture function of a complex molecule, or the binding  the elements one wants to use and the specific properties one energy of an enzyme attached to a biological lipid  wants to optimize is an ideal which is currently still far from membrane. 

reach, even with ab initio methods [95–97]. 

•  dynamic or non-equilibrium properties, such as dif-  The Born-Oppenheimer Approximation

fusion processes in biomembranes, the viscosity of a 

liquid, or the dynamics of the propagation of cracks  Quantum mechanical computer simulation methods based on and defects in crystalline materials. 

Density Functional Theory (DFT) [12,55,56] were developed 

which calculate the ground state energy of many particle 

Many different properties of materials are determined by struc- systems. Other ab initio methods combine DFT with classical tural  hierarchies  and  processes  on  multiscales.  An  efficient  MD in a way that the degrees of freedom of the electrons can modeling of the system under investigation therefore requires  be treated explicitly in contrast to using classical “effective special simulation techniques which are adopted to the respec- potentials” between atoms which neglect the electronic tive problems. Table 1 provides a general overview of different  movements. The basic idea of  ab initio  MD methods is to simulation techniques used on various length scales in materials  approximately solve the electronic Schrödinger equation in science along with some typical applications. This division is  each timestep, thereby determining the potential hypersurface primarily based on a spatial, rather than a physical classification. for the actual nuclear coordinates, i.e., the effective potential 
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energy of the nuclei. The approximate solution is obtained  determined by the force [101]

either by solving the Hartree-Fock [53] or the Kohn-Sham [12] 

equations. Then one computes the forces on the nuclei and 

moves them according to Newton’s equation of motion which 

(4)

yields these forces. This simulation strategy forms the basis of  Only considering the ground state   associated with the ground the Car-Parinello method [13,98]. Due to the large difference  state energy E  the electronic Hamilton operator HeHefulfills in mass between electrons and the atom cores (m /m  ≫ 103), 

0

c

e

the eigenvalue equation

the electrons are able to follow almost instantaneously the 

only slowly occurring change in the core positions. Thus, 

the electrons are assumed to always be in the ground state 

associated to the actual position of the nuclei. This is the reason 

(5)

why the degrees of freedom of the atom cores and the electrons 

can be separated (Born-Oppenheimer Approximation) [99]. 

The forces 

act on the nuclei and their positions 

can be calculated according to the laws of classical mechanics. 

In quantum mechanics, the Schrödinger equation replaces 

Newton’s  equations  of  motion.  However,  the  Schrödinger 

equation is so complex that it only can be solved analytically   Car-Parinello MD

for very few simple cases; the direct numerical solution using  In the mid 1980s a revolution occurred in the field of atomistic computers is also limited to very simple systems and very  computer simulation with the introduction of “Car-Parinello” 

few numbers of atoms because of the high-dimensional phase  (CP) techniques [13]. The basic idea of this technique is based space in which the Schrödinger equation is formulated. The  on calculating the interactions on the particles during the time  dependent  quantum  mechanical  state  function  Ψ  of  a  simulation run directly from the electronic structure instead system consisting of N nuclei and K electrons can be written as of using previously parameterized potentials (“force fields”, a term that is more common in the context of biological systems). 



(1)

Furthermore, multi-body contributions and polarization effects 

are included automatically. Successful realizations of this idea 

where 

denote positions of the ith nucleus and the ith  combine MD with density functional theory for electrons in the electron, respectively. The variable t denotes the time. Using  Kohn-Sham formulation [12,56]. The first ab initio simulation using this method was published in 1993 [102] considering 

the  abbreviations 

, re- water, more than twenty years after the groundbreaking 

spectively, one can write the probability density to find the sys- work by Rahman and Stillinger [103]. In contrast to the latter tem under consideration at time t in the volume element dV , 

1

work however, the essential empirical input parameter of 

..., dV  of configuration space centered at the point 

as: the simulation is only the volume of the periodic simulation 

N+K

cell, with which the then simulated 32 oxygen and 64 

hydrogen atoms yield the experimentally known density of 



(2)

1kg/l. Everything else follows from theory. The CP method 

The movement of the nuclei during the adaptation of the elec- introduces a fictitious dynamic movement of the electronic tron movement is negligibly small in the sense of classical dy- degrees of freedom in terms of pseudo-Newtonian equations namics, thus one sets

of motion in the form

(6)



(3)

with fictitious masses μ  of the orbitals {Ψ }. When He is di-

i

i

agonalized in each timestep ( He Ψ  = ε  Ψ  with ε  = Λ ) the 

i.e., one separates the full wave function 

into a 

i

i

i

i

ij

classical forces acting on the nuclei can be calculated and inte-

simple product form, where χ  is the nuclear wave function, and 

n

grated according to the Newtonian equations of motion for the 

where the electronic wave function 

does not depend on  degrees of freedom of the nuclei:

time anymore but only on the nuclear coordinates  . Using a 

Taylor expansion of the stationary Schrödinger equation and 

several approximations that rely on the difference in masses 



(7)

between electrons and nuclei, see for example Chapter 8 in 

[100], the stationary Schrödinger equation can be separated  where the total wave function Ψ is given as Slater-determinant into two equations, the electronic Schrödinger equation and  of the occupied orbitals {Ψ }. Thus, CP generates a classical i

an equation for the nuclei. The first equation describes how  dynamics of the nuclei in phase space while the dynamics the electrons behave when the position of the nuclei is fixed.  of the electrons is purely fictitious (only the solution of the Its solution leads to an effective potential that appears in the  time dependent Schrödinger equation generates the correct equation for the nuclei and describes the effect of the electrons  electronic motion). The self-consistent solution of the on the interaction between the nuclei. Thus, the cores move  electronic problem is avoided and substituted in each MD 

within an energy landscape of the surrounding, fast moving  timestep by a dynamic propagation of the orbitals, which are electrons. After restriction to the ground stateφ   and further  considered as classical fields with constraints. We note that 0

approximations (neglecting all coupling terms) [101], one  the CP method in the limit of zero orbital masses μ  yields the i

obtains a classical-mechanical model for the core movements  Born Oppenheimer result, so it is a controlled approximation 
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for Born Oppenheimer dynamics. 

package “MD-Cube” at EMI. A kernel takes care of administrative 

There are many well-known software packages used in  tasks. Force modules can be added via defined interfaces as well as materials science and quantum chemistry that are available  modules for the demands of different physical applications. 

to academic and industrial users directly and free of cost 

(e.g., ACESII, AMPAC, CPMD, GAMESS, QUANTUM  Microscopic/Mesoscopic Scale

ESPRESSO, SIESTA) or through commercial vendors (e.g.,  Many real material systems have structures much larger than VASP, CASTEP, GAUSSIAN, Molpro). Many of these codes  can be studied based on the atomistic/microscopic scale. 

are based on Density Functional Theory (DFT) but some also  For example, the properties of block-copolymer materials implement Hartree-Fock based models and were developed by  are strongly influenced by the molecular segregation into different scientific teams during the past 20 years. The results of  mesoscale domains with typical time scales raging from quantum mechanical calculations are often used in the design  10−8 s to 10−4 s. This is the typical domain of soft matter and of classical molecular force fields, providing a connection to  biological systems, e.g., polymers, amphiphiles or colloidal the next scale. 

systems. It is the scale on which self-organization of matter 

in biological systems, e.g., cells or membranes, occurs. These 

Atomistic/Microscopic Scale

systems are driven by an interplay between their energy and 

Simulations performed at the atomistic or microscopic scale  entropy, as there are many configurations and packing densities of molecules are much more diverse than those typical of  available to these systems. 

quantum chemistry and a wide range of properties from 

In solid states, dislocation dynamics, crystallizations 

thermodynamics to bulk transport properties of solids and fluids  and phase transformations typically occur on this scale and can be calculated. As a result of this diversity, researchers in a  in polycrystalline systems nucleation and grain growth play broad array of disciplines (e.g., physics, chemistry, chemical  a fundamental role. Particle-based methods on this length engineering, molecular biology, biochemistry or even  and time scale include many variations of MD and MC 

geochemistry) contribute to the development and enhancement  methods using effective interaction potentials or coarse-of methods on this length scale with typical associated time  grained methods such as Dissipative Particle Dynamics scales ranging roughly from 10−12 s to 10−6 s for the longest  (DPD) [69] or the Discrete Element Method (DEM) [83]. 

runs on the largest supercomputers. 

With these methods the individual particles do not represent 

For computer simulations using semi-empirical or classical  “elementary” particles,  i.e., atoms, but complete clusters of force  fields,  there  are  several  academic  software  packages  atoms or molecules that are treated as classical particles. Such freely available (e.g., CHARMM, DL POLY, GROMACS,  coarse-grained models are used when one needs to study the NAMD, IMD, XMD) or through commercial licenses (e.g.,  behavior of a system containing very many molecules for a GROMOS). Systems considered on the microscopic scale are  long time. For example, colloidal suspensions are dispersions still mainly determined in their behavior by their energy, albeit  of mesoscopic solid particles. These particles themselves the motion of the electrons can be neglected. Thus, individual  consist of millions or billions of atoms. Furthermore, the atoms or clusters of atoms can be described with methods based  number of solvent molecules per colloid is comparable or even on classical interaction potentials. The two oldest used methods  larger. Clearly, a MD simulation that follows the behavior are classical MD and MC. Additional interaction potentials for  of several thousand colloids over an experimentally relevant modeling covalent bonds, Coulomb interactions, torsion and  time interval (milliseconds to seconds) would be prohibitively bending in molecules are only  effectiveinteractions on this  expensive. The DPD method lumps together the forces due scale, as the quantum mechanical electronic contributions  to individual solvent molecules to yield an effective friction are neglected. Due to its simplicity and numerical efficiency,  and a fluctuating force between moving fluid elements. While the Lennard-Jones potential is an often used generic model  this approach does not provide a correct atomistic description potential. For example, at the Ernst-Mach-Institute (EMI) in  of the molecular motion, it has the advantage that it does Freiburg, an efficient implementation of a code (“MD-Cube”)  reproduce the correct hydrodynamic behavior on long length providing modules for multiscale simulations is realized,  and time scales. However, at present, there exists no rigorous cf. Figure 7, where new multi-physics modules can be added  demonstration that this is true for an arbitrary DPD fluid, albeit to the software tool using well-defined interfaces, and a kernel  all existing numerical studies suggest that, in the limit where takes care of many administration tasks of the simulation. 

the integration time step

0, the large-scale behavior of 

the DPD fluid is described by the Navier-Stokes equation. The 

kinetic theory for the transport properties of DPD fluids [104] 

supports this conclusion. One interesting limit of the DPD 

model is the “dissipative ideal gas”, i.e., a DPD fluid without 

the conservative forces. The static properties of this fluid are 

those of an ideal gas. However, its transport behavior is that 

of a viscous fluid. The advantage of DPD over conventional 

(atomistic) MD is that it involves a coarse-grained model. This 

makes the technique useful when studying the mesoscopic 

properties of complex fluids. However, if one is only interested 

in static properties, one can use the standard MD or MC 

techniques on a model with the same conservative forces, but 

without dissipation. The coarse-grained “bead-spring model” 

Figure 7: Design schematic of the particle-based multiscale simulation  of  macromolecular  chains  connects  the  particles  by  flexible, 
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entropic springs and is widely used in polymer physics on  Hrennikov [109] and R. Courant [14]. The development of the this scale. The Lattice-Boltzmann Method [78] is a simulation  FEM method has been restricted to engineering application for technique  which  solves  the  Navier-Stokes  equation  of  fluid  a long time until in the 1970s this method was standardized flow on a lattice, and which considers a typical volume element  as a theory by mathematicians apt for the treatment of of of a fluid to be composed of a collection of particles that are  partial differential equations in the formulation as variation represented by a particle velocity distribution function for  problems. The salient feature of FEM is the discretization of each  fluid  component  at  each  grid  point,  i.e.,  it  is  a  hybrid  the continuum into discrete elements. The individual elements particle/mesh method. Cellular Automata are discrete – are connected together by a topological map which is called that is lattice-based – dynamical systems that are typically  a mesh. The finite element interpolation functions are then used as sampling schemes for nucleation and crystallization  build upon the mesh, which ensures the compatibility of simulations in engineering applications. Phase Field models,  the interpolation. However, this procedure is not always e.g., of Ginzburg-Landau type, are used to calculate diffusion  advantageous, because the numerical compatibility condition and phase transitions on this scale. The mesoscopic scale is  is not the same as the physical compatibility condition of a also the regime where methods, based on continuum theory  continuum. For instance, in a Lagrangian type of computations, are used. For engineering applications, mesh-based methods,  one may experience mesh distortion, which can either end the e.g., FEM are used almost exclusively for the calculation of  computation altogether or result in drastic deterioration of fluid flows, solid mechanics and coupled fluid/solid systems.  accuracy. In addition, FEM often requires a very fine mesh in These methods are also used for classical fracture mechanics,  problems with high gradients or a distinct local character, which albeit particle based methods in recent years have been proved  can be computationally expensive. For this reason, adaptive to be as viable as mesh-based methods in this respect, see  remeshing procedures have become a necessity in FEM. Other e.g., [33,105–107]. A modern continuum method, which is  numerical applications that are not linked to a specific kind of based on the conservation equations of continuum theory but  discretization such as hydrocodes or wave propagation codes avoids many mesh distortion problems of FEM approaches,  which decouple the stress tensor in a deviatoric and hydrostatic is the method of Smooth Particle Hydrodynamics (SPH)  component, are typically used for the simulation of crash and 

[8,76]. The idea of SPH is somewhat contrary to the concepts  impact situations of materials [76,77,110–112]. All codes of conventional discretization methods, which discretize a  on this level of resolution are usually based on a solution of continuum system into a discrete algebraic system. SPH is  the continuum conservation equations of energy, mass and a particle-based mesh-free approach which is attractive in  momentum and use explicit formulations of equations of state many applications especially in hydrodynamic simulations  as well as of material response to external loading, so-called in which the density is field variable in the system equations.  constitutive equations. In technical applications, one usually The computational frames in SPH are neither grid cells as in  aims at a direct connection to macroscopically measured finite difference methods, nor mesh elements as in the FEM  parameters without introducing any microscopic or molecular methods, but the moving particles in space. The basic idea is  quantities. 

to  replace  the  equations  of  fluid  dynamics  by  equations  for 

particles. In effect, one replaces the continuum equations by a  THE KEY INGREDIENTS OF MOLECULAR DY-set of particle equations that approximate the continuum and, NAMICS SIMULATIONS

at the same time, provide a rigorous model of the underlying, 

and more fundamental, molecular system. There is no need for  In this section we focus in a tutorial-like fashion on some key any predefined connectivity between these particles. All one  issues of MD simulations including common optimization needs is an initial particle distribution. SPH approximates the  techniques, often found scattered in specialized conference particles in the current domain by introducing kernel functions  proceedings or other publications and we include a short which can serve as an interpolation field [108]. If one wishes  discussion of the efficiency of the algorithms typically used in to interpret the physical meaning of the kernel function as  MD applications. 

the probability of a particle’s position, one is dealing with a 

One timestep in a MD simulation is typically of the order 

probabilistic method, otherwise, it is just a smoothing technique  of femtoseconds (∼ 10−15 s). With several million timesteps carried out in the continuum. Thus, the essence of the method  that are usually simulated in a MD run, the largest available is to choose a smoothing function 

with particle position  length- and timescales for atomic systems are typically limited and smoothing length h, the influence domain of a particle,  to the order of a few hundred nanometers simulated for a and to use it to localize the strong form of a partial differential  few hundred nanoseconds [113,114]. With larger computer equation through a convoluted integration. 

systems, one will be able to simulate even larger systems; 

however, the available time scale does not necessarily grow 

Mesoscopic/Macroscopic Scale

with the number of available processors, as the time domain 

cannot be decomposed distributed over many CPUs as it is 

When averaging over many degrees of freedom one finally  done when decomposing the spatial domain. 

arrives at the phenomenological macroscopic scale. Here, 

continuum models are used which describe the (visco-)elastic 

The largest hitherto reported atomistic simulation run 

behavior of solids and the properties of fluids based on the  was performed with more than 1.9 × 1010  particles [113], Navier-Stokes Equation. Mostly, mesh-based methods such as  opening the route to investigations of physical structure-FEM, and other procedures of computational fluid dynamics  property phenomena on the micrometer scale, which overlaps for the solution of partial differential equations are used, which  with typical computational methods based on continuum are typically closely connected to applications in engineering  theory.  Figure 8  exhibits the necessary computer hardware sciences. The FEM method is generally attributed to A.  necessary in modern computational science along with a 
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photograph  of  the  first  electronic  computer,  the  ENIAC, 

•  The atomic details of structure and motion obtained 

developed at the Los Alamos Laboratories and which started 

in molecular simulations, is often not relevant for 

to operate in 1946. 

macroscopic properties. This opens the route for sim-

plifications in the description of interactions and av-

eraging over irrelevant details. Statistical mechanics 

provides the theoretical framework for such simpli-

fications. 

For the generation of a representative equilibrium ensemble 

two methods are available: MC and MD simulations. While 

MC methods are much simpler than MD as they do not require 

the calculation of molecular forces, they do not yield signifi-

cantly better statistics than MD in a given amount of comput-

ing time. For the generation of non-equilibrium ensembles and 

for the analysis of dynamics events, only MD is the appropriate 

and more universal technique. The model assumptions on the 

physical behavior of a many particle system investigated in 

MD simulations is put into the interaction potentials F, respec-

tively the force fields – ∇Φ. MD simulations in their simplest 

form consist in the step-by-step numerical solution of the 

classical Newtonian equations of motion, which for N particles 

of mass m  and position vectors   may be written as

i

(8)

Limitations of MD

After an initial equilibration phase, the system will usually 

reach an equilibrium state. By averaging over an equilibrium 

trajectory (coordinates over a function of time) many 

macroscopic properties can be extracted from the output. 

Common approximations (and therefore  limitations) of MD 

simulations are:

•  Artificial boundary conditions

The system size that can be simulated with MD is very 

small compared to real molecular systems. Hence, a 

Figure 8:  (a) The ENIAC (Electronic Numerical Integrator And 

system of particles will have many unwanted artificial 

Computer), one of the first electronic computers that started to oper-

boundaries (surfaces). In order to avoid real boundar-

ate in 1946. (The very first working electronic computer was the Z3 

ies one introduces periodic boundary conditions (see 

developed by Konrad Zuse in the 1930s in Germany). The ENIAC 

Section 4.3.) which can introduce artificial spatial cor-

weight 30 tons used more than 18.000 vacuum tubes that can be seen 

relations in too small systems. Therefore, one should 

in the picture and had a basic clock speed of 105 cycles per second. It 

was programmed by plugging cables and wires and setting switches 

always check the influence of system size on results. 

using a huge plugboard that was distributed over the entire machine. 

•  Cut off of long-range interactions

US Army Photo. (b) Illustration of the available system size (edge 

length of a simulated cube of classical particles or atoms) and the 

Usually, all non-bonded interactions are cut-off at 

necessary computer hardware for modern large-scale MD. 

a certain distance in order to keep the cost of force 

Molecular Dynamics (MD) simulations are carried out in 

computation (and the search effort for interacting 

an attempt to analyze the properties of a N-particle system, i.e., 

particles) as small as possible. Due to the minimum 

an assembly of atoms, molecules, or particles, in terms of 

image convention (see Section 4.4.) the cutoff range 

their molecular structural properties. Macroscopic properties 

may not exceed half the box size. While this is large 

always arise as ensemble averages over a representative 

enough for most systems in practice, problems are 

statistical ensemble (either equilibrium or non-equilibrium) 

only to be expected with systems containing charged 

of molecular systems. For molecular modeling, this has two 

particles. Here, simulations can go wrong badly and, 

important consequences:

e.g., lead to an accumulation of the charged particles 

in one corner of the box. Here, one has to use special 

•  The knowledge of  one  single structure, even if it 

is the structure of the global energy minimum, is 

algorithms such as the particle-mesh Ewald method 

not  sufficient.  It  is  always  necessary  to  generate  a 

[115,116]. 

representative ensemble at a given temperature, in 

•  The simulations are classical

order to compute macroscopic properties. 
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Using  Newton’s  equations  of  motion  implies  the 

ic interaction between charges is not reduced (as it 

use of classical mechanics for the description of the 

should be) and thus overestimated in simulations. 

atomic motion. All those material properties connect-

ed with the fast electronic degrees of freedom are not 

Classics in MD that helped to develop the method are for 

correctly described. For example, atomic oscillations  example Alder and Wainwright [45,47] (1958, 1961), Rahman (e.g., covalent C-C-bond oscillations in polyethyl- [103] (1964), Verlet [122,123] (1967, 1968), Weeks, Chandler ene molecules, or hydrogen-bonded motion in bio- and Andersen [124] (1979), Rahman and Stillinger [125] 

polymers such as DNA, proteins or biomembranes)  (1971), Parinello and Rahman [98,126] (1981, 1982), van are typically of the order 1014 Hz. The specific heat  Gunsteren and Berendsen [117] (1982), Hoover [127] (1986) is another example which is not correctly described  and Allen and Tildesley [7] (1991). 

in a classical model as here, at room temperature, all 

degrees of freedom are excited, whereas quantum  Molecular Interactions

mechanically, the high-frequency bonding oscillations  All macroscopic properties of materials, be it in the solid, are not excited, thus leading to a smaller (correct)  fluid or gaseous state, are determined by the intermolecular value of the specific heat than in the classical picture.  forces acting between the constituents of matter. Important A general solution to this problem is to treat the  sources of measuring and understanding intermolecular bond distances and bond angles as constraints in the  forces are scattering experiments, IR- or Raman spectroscopy, equations of motion. Thus, the highest frequencies in  thermophysical data (virial coefficients, specific heats) or the molecular motion are removed and one can use a  NMR data. In general, one cannot measure intermolecular much higher timestep in the integration [117]. 

forces directly just with one type of experiment but it is 

•  The electrons are in the ground state

rather an interplay between the physical models used for the 

interpretation of data and the derivation of a functional form 

Using conservative force fields in MD implies that the  of the sought-after intermolecular potential. The analytical potential is a function of the atomic positions only. No  form of the potential which is derived from theory is then electronic motions are considered, thus the electrons  consistently adjusted to the experimental findings [128,129]. 

remain in their ground state and are considered to 

Classical MD simulations are used in Polymer Physics 

follow the core movements instantaneously. This  to investigate the structure (e.g., form factors, pair correlation means that electronically excited states, electronic  functions), the  dynamics  (e.g.,  transport  coefficients, transfer processes and chemical reactions cannot be  correlations) and the  thermodynamics  (e.g., phase diagrams treated. 

and ensemble averages of observables of interest) of polymer 

•  Approximative force fields

molecules and complexes which are described as  N-particle 

systems. In polymers the atoms are covalently bound in a fixed 

Force fields are not really an integral part of the simu- topological arrangement; thus one distinguishes  non-bonded lation method but are determined from experiments  interactionsacting between all atoms of a system and bonded or from a parameterization using ab initio methods.  interactions which are only effective between atoms in each Also, most often, force fields are pair-additive (except  particular polymer chain or complex macromolecule. 

for the long-range Coulomb force) and hence cannot 

incorporate polarizabilities of molecules. However,  Non-bonded Interactions

such force fields exist and there is continuous effort 

to  generate  such  kind  of  force  fields  [118,119]. In  Various physical properties are determined by different regions most practical applications however, e.g., for bio- of the potential hypersurface of interacting particles. Thus, macromolecules in aqueous solution, pair potentials  for a complete determination of potential curves, widespread are quite accurate mostly because of error cancel- experiments are necessary. For a  N–body system the total lation. This does not always work, for example  ab  energy Φ , i.e., the potential hypersurface of the non-bonded nb

initio predictions of small proteins still yields mixed  interactions can be written as [7]

results and when the proteins fail to fold, it is often 

unclear whether the failure is due to a deficiency in the 

underlying force fields or simply a lack of sufficient 



simulation time [120,121]. 

(9)

•  Force fields are pair additive

where 

are the interaction contributions due 

to external fields (e.g., the effect of container walls) and 

All  non-bonded  forces result from the sum of  due to pair, triple and higher order interactions of particles. 

non-bonded pair interactions. Non pair-additive  In classical MD one often simplifies the potential by the interactions such as the polarizability of molecules  hypotheses that all interactions can be described by pairwise and atoms, are represented by averaged effective pair  additive potentials. Despite this reduction of complexity, the potentials. Hence, the pair interactions are not valid  efficiency of a MD algorithm taking into account only pair for situations that differ considerably from the test  interactions of particles is rather low (of order 

) and 

systems on which the models were parameterized.  several optimization techniques are needed in order to improve The omission of polarizability in the potential implies  the runtime behavior to 

. The simplest general Ansatz for 

that the electrons do not provide a dielectric constant  a non-bonded potential for spherically symmetric systems, i.e., with the consequence that the long-range electrostat-
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molecule to induce dipoles is the polarizability  α  which  is 

with 

is a potential of the following  given by

form:





(14)



(10)

For the potential energy E  of a dipole which is induced 

Parameters  C   and  C   are parameters of the attractive and 

p

1

2

repulsive interaction and the electrostatic energy Φ

(r) be- by an electric field   one obtains by elementary integration:

Coulomb

tween the particles with position vectors 

is given by:





(15)

Thus, the characteristic interaction energy of two mutual 



(11)

induced electric dipoles is proportional to 1/r6 and consequently 

rather weak. The polarizability of water molecules gives rise to 

The constant k = 1 is in the cgs-system of units and ε is  another, directed interaction which is called  hydrogen bond. 

the dielectric constant of the medium, for example ε  = 1 for  Hydrogen bonds are not only found in fluid and solid water air

air, ε = 4 for proteins or ε 0 = 82 for water. The z  denote the  but also in complex biopolymers and macromolecules, for prot

H2

i

charge of individual monomers in the macromolecule and e is  example in proteins, where hydrogen bonds are responsible for the electric charge of an electron. 

the genesis of tertiary structures such as α-helices or β-sheets. 

The electrostatic interaction originates the dipolar character  Despite the directed nature of the hydrogen bond one often of water which is the basic requirement for the existence of  assumes a spherically symmetric analytic form of the type life. Water is a dipole because of the higher electronegativity  (A·r−12  –  B·r−6), but also a more precise form taking into of oxygen which gives rise to a partial negative charge at  account the non-linearity of the hydrogen bond by angle  θ 

the oxygen atom and partial positive charges at the H-atoms  between N-H-O have been proposed [131]: in the  H O-molecule. If the electronegativity of one atom 

2

is large enough, it can attract the whole electron from the 

bonding partner. This is the case for example with NaCl where 



the initially electric neutral  Cl  atom becomes a  Cl

(16)

−-ion 

and  Na  turns into  Na+  accordingly. Chemical bonds which 

Here, parameters A, B, C, D are constants depending on 

emerge from Coulomb attraction of ions are called ionic bonds.  the considered atom pairs. 

This type of chemical bond plays an important role for the 

formation of structures of biomolecules. For example, charged 

With decreasing distance of two dipoles the electronic 

sidegroups may bind to receptors within the cell membrane or  repulsion of the atomic shells starts to dominate. The minimum protein structures are be stabilized when a positively charged,  of the non-bonded interaction is reached when the attraction protonated ammonium group (

just cancels repulsion. This distance is called Van-der-Waals 

+NH ) and a negatively charged 

4

carboxyl group (COOH

radius σ . 

−) form an ionic bonding. 

0

The  electric  dipole  moment  is  defined  as 

The probably most commonly used form of the potential 

of two neutral atoms which are only bound by Van-der-Waals 

where q is the total charge of the dipole and   is  interactions, is the Lennard-Jones (LJ), or (a-b) potential which the distance vector between the two charges. The electric field  has the form [132]

of a dipole 

is given by [130]

(17)





(12)

where

where   is a unit vector pointing from the origin r = 0 into 

the direction of   Thus the potential energy of a dipole in an 

(18)

electric field   is given by

The most often used LJ-(6-12) potential for the interaction 



(13)

between two particles with a distance 

then reads 

(cf. Equation (10)):

Inserting Equation (12) in (13) one yields a characteristic 

leading 1/r3 term in the potential energy between two dipoles 

with moments 

. 





(19)

Electric neutral molecules may also interact with each 

Parameter  ε  determines  the  energy  scale  and  σ   the 

other due to thermal (Brownian) motion which may induce a 

0

length scale. In simulations one uses dimensionless  reduced 

mutual dipole moment in the molecules. These induced dipoles  units which tend to avoid numerical errors when processing create an attractive interaction which is called Van-der-Waals  very small numbers, arising e.g., from physical constants interaction. The quantity that measures the ability of a neutral  such as the Boltzmann constant k  = 1.38·10−23J/K. In these B
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reduced (simulation) units, one MD time step is measured  the depth of the attractive part. Instead of varying the solvent in units of τϕ = (mσ2/ε)1/2, where m is the mass of a particle  quality in the simulation by changing temperature T directly and ε and σ  are often simply set to σ  = ε = k T = 1. Applied to  (and having to equilibrate the particle velocities accordingly), 0

0

B

real molecules, for example to Argon with m = 6.63 × 10−23kg,  one can achieve a phase transition in polymer behavior by σ  ≈ 3.4 × 10−10m and ε/k  ≈120K one obtains a typical MD  changing  λ  accordingly,  cf.  Figure 9. Using coarse-grained 0

B

time step 

. 

models in the context of lipids and proteins, where each amino 

Using an exponential function instead of the repulsive r−12 term,  acid of the protein is represented by two coarse-grained beads, one obtains the Buckingham potential [133]:

it has become possible to simulate lipoprotein assemblies and 

protein-lipid complexes for several microseconds [134]. 

The assumption of a short ranged interaction is usually 





(20)

fulfilled  very  well  for  all  (uncharged)  polymeric  fluids. 

However, as soon as charged systems are involved this 

This potential however has the disadvantage of using  assumption breaks down and the calculation of the Coulomb a numerically very expensive exponential function and it  force requires special numerical treatment due to its infinite is known to be unrealistic for many substances at small  range. 

distances r and has to be modified accordingly. 

For  reasons  of  efficiency,  a  classical  MD  potential 

should be short-ranged in order to keep the number of force 

calculations between interacting particles at a minimum. 

Therefore, instead of using the original form of the potential 

in Equation (19), which approaches 0 at infinity, it is common 

to use a modified form, where the potential is simply cut off at 

its minimum value 

and shifted to positive values 

by ε such that it is purely repulsive and smooth at 

:

Figure 9:  Graph of the total unbounded potential of  Equation 

(25)  which allows for modeling the effects of different solvent 

qualities. 



(21)

Another extension of the potential in  Equation (21)  is  Bonded Interactions

proposed in [51] where a smooth attractive part is introduced 

again, in order to allow for including different solvent qualities  Using the notion of intermolecular potentials acting between of the solvent surrounding the polymer:

the particles of a system one cannot only model fluids made of 

simple spherically symmetric particles but also more complex 

molecules with internal degrees of freedom (due to their 

specific monomer connectivity). If one intends to incorporate 

(22)

all aspects of the chemical bond in complex molecules one has 

to treat the system with quantum chemical methods, cf. Section 

This additional term adds an attractive part to the potential  3.1. Usually, one considers the inner degrees of freedom of of  Equation (21)  and at the same time – by appropriately  polymers and biomacromolecules by using generic potentials choosing  parameters  α,  β  and  γ  –  keeps  the  potential  cutoff  that describe bond lengths l , bond angles θ and torsion angles φ. 

i

at  r   smooth.  The  parameters  α,  β  and  γ  are  determined  When neglecting the fast electronic degrees of freedom, often cut

analytically  such  that  the  potential  tail  of  Φ   has zero  bond angles and bond lengths can be assumed to be constants. 

cos

derivative at r = 21/6 and at r = r , while it is zero at r = r  and  In this case, the potential includes lengths l  and angles θ , φ  at cut

cut

0

0

0

has value γ at r = 21/6, where γ is the depth of the attractive part.  equilibrium about which the molecules are allowed to oscillate, Further details can be found in [51]. When setting r  = 1.5 one  and restoring forces which ensure that the system attains these cut

sets γ = −1 and obtains α and β as solutions of the linear set of  equilibrium values on average. Hence the bonded interactions equations

Φ

for polymeric macromolecular systems with internal 

bonded

degrees of freedom can be treated by using some or all parts of 

the following potential term:



(23)





(24)

(26)

The total unbounded potential can then be written as:

Here, the summation indices sum up the number of 

bonds i at positions  , the number of bond angles k between 

consecutive monomers along a macromolecular chain and 

the number of torsion angles  m  along the polymer chain. 



(25)

A  typical  value  of  κ  =  5000  ensures  that  the  fluctuations  of 

bond angles are very small (below 1%). The terms l , θ  and 

where λ is a new parameter of the potential which determines 

0

0

are the equilibrium distance, bond angle and torsion angle, 
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respectively.  In particular in polymer physics, very often  The cubic box is used almost exclusively in simulations with a Finitely Extensible Non-linear Elastic (FENE) potential  periodic boundaries, mainly due to its simplicity, however also is used which, in contrast to a harmonic potential, restricts  spherical boundary conditions have been investigated were the the  maximum  bond  length  of  a  polymer  bond  to  a  prefixed  three-dimensional surface of the sphere induces a non-Euclide-value R  [51]:

an metric. The use of periodic boundary conditions allows for a 

0

simulation of bulk properties of systems with a relatively small 

number of particles. 

(27)

Minimum Image Convention

The FENE potential can be used instead of the first term 

on the right hand side of the bonded potential in Equation (26). The question whether the measured properties with a Figure 10 illustrates the different parameters which are used in  small, periodically extended system are to be regarded the description of bonded interactions in Equation (26). Further  as representative for the modeled system depends on the details on the use of potentials in macromolecular biology and  specific observable that is investigated and on the range of polymer physics may be found in [3,135–137]. 

the intermolecular potential. For a LJ potential with cut-off as 

in Equation (21) no particle can interact with one of its images 

and thus be exposed to the artificial periodic box structure 

which is imposed upon the system. For long range forces, 

also interaction of far away particles have to be included, thus 

for such systems the periodic box structure is superimposed 

although they are actually isotropic. Therefore, one only takes 

into account those contributions to the energy of each one of 

the particles which is contributed by a particles that lies within 

a cut-off radius that is at the most 1/2L  with box length L . 

B

B

This procedure is called minimum image convention. Using 

Figure 10: Illustration of the potential parameters used for modeling 

bonded interactions. 

the minimum image convention, each particle interacts with 

at the most (N – 1) particles. Particularly for ionic systems a 

cut-off has to be chosen such that the electro-neutrality is not 

Periodic Boundary Conditions

violated. Otherwise, particles would start interacting with their 

In a MD simulation only a very small number of particles can  periodic images which would render all calculations of forces be considered. To avoid the (usually) undesired artificial effects  and energies erroneous. 

of surface particles which are not surrounded by neighboring 

particles in all directions and thus are exerted to non-isotropic  Force Calculation forces, one introduces  periodic boundary conditions. Using  The most crucial part of a MD simulation is the force this technique, one measures the “bulk” properties of the  calculation. At least 95% of a MD code is spent with the system, due to particles which are located far away from  force calculation routine which uses a search algorithm that surfaces. As a rule, one uses a cubic simulation box were the  determines interacting particle pairs. Therefore this is the task particles are located. This cubic box is periodically repeated in  of a MD program which has to be optimized first and foremost. 

all directions. If, during a simulation run, a particle leaves the  We will review a few techniques that have become standard in central simulation box, then one of its image particles enters  MD simulations which enhance the speed of force calculations the central box from the opposite direction. Each of the image 

particles in the neighboring boxes moves in exactly the same  considerably and speed up the algorithm from run time to 

way, cf. Figure 11 for a two dimensional visualization. 

run time. Starting from the original LJ potential between 

two particles i and j with distance 

ofEquation (17), 

one obtains the potential function for N interacting particles as 

the following double sum over all particles:

(28)

The corresponding force   exerted on particle i by particle j is 

given by the gradient with respect to   as:

(29)

Figure 11: Two-dimensional schematic of periodic boundary  where 

is the direction vector between 

conditions. The particle trajectories in the central simulation 

box are copied in every direction. 

particles i and j at positions 

, and r= 

. Hence, 

in general, the force   on particle i is the sum over all forces 

between particle i and all other particles j:
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larger than the interaction range r  of particles, cf. Figure 12b. 

cut

The particles are then sorted into these cells using the linked-

(30)

cell algorithm (LCA). The LCA owes its name to the way in 

which the particle data are arranged in computer memory, 

The least favorable method of looking for interacting pairs  namely as linked list for each cell. For the calculation of the of particles and for calculating the double sum in Equations  interactions it is then sufficient to calculate the distances (28) and (29) is the “brute force” method that simply involves  between particles in neighboring cells only, since cells which taking a double loop over all particles in the (usually) cubic  are further than one cell apart are by construction beyond the simulation box, thus calculating 

interactions with  interaction range. Thus, the number of distance calculations 

a N2 efficiency. This algorithm becomes extremely inefficient  is restricted to those particle pairs of neighboring cells only for systems of more than a few thousand particles, cf. Figure  which means that the sums in  Equation (30)  are now split 12a. 

into partial sums corresponding to the decomposition of the 

simulation domain into cells. For the force   on particle i in 

cell number n one obtains a sum of the form



(32)

where  Ω(n)  denotes  cell  n  itself together with all cells that 

are direct neighbors of cell n. The linked-cell algorithm is a 

simple loop over all cells of the simulation box. For each cell 

there is a linked list which contains a root pointer that points to 

Figure 12:  MD Optimization schemes for the search of  the first particle in the respective cell which then points to the potentially  interacting  particles.  (a)  The  least  efficient  all  next particle within this particular cell, until the last particle is particle “brute force” approach with run time 

(b) The  reached which points to zero, indicating that all particles in this 

linked-cell algorithm which reduces the search effort to 

cell have been considered. Then the algorithm switches to the 

. (c) The linked-cell algorithm combined with neighbor lists  root pointer of the next cell and the procedure is repeated until which further reduces the search effort by using a list of po- all interacting cells have been considered, cf. Figure 12. 

tentially interacting neighbor particles which can be used for 

Assuming the average particle density in the simulation 

several timesteps before it has to be updated. In this 2D rep- box as 〈ρ〉 then the number of particles in each one of the resentation, the radius of the larger circle is r  + r  and the 

cut

skin

inner circle, which contains actually interacting particles, has  subcells is 

. The total number of subcells is 

and 

radius r . 

the total number of neighbor cells of each subcell is 26 in a 

cut

cubic lattice in three dimensions (3D). Due to Newton’s third 

law only half of the neighbors actually need to be considered. 

Linked-Cell Algorithm

Hence, the order to which the linked-cell algorithm reduces the 

In general, in molecular systems, the potential as well as the  search effort is given by: corresponding force decays very fast with the distance rbetween 

the particles. Thus, for reasons of efficiency, in molecular 

simulations one often uses the modified LJ potential ofEquation 





(33)

(21) which introduces a cutoff r  for the potential. The idea 

cut

For this method to function, the size of the simulation 

here is to neglect all contributions in the sums inEquations  box has to be at least 3r , cf. Figure 12. For simulations of (28)  and  (29)  that are smaller than the threshold  r   which 

cut

cut

dense melts with many particles, this requirement is usually 

characterizes the range of the interaction. Thus, in this case the  met. Consequently, by this method, the search-loop effort is force   on particle i is approximated by

reduced to 

, but with a pre-factor that still can be very large, 

depending on the density of particles 〈ρ〉 and the interaction 

range r . 

cut

(31)

Linked-Cell Algorithm With Neighbor-Lists

Contributions to the force on particle  i  that stem from  If one compares the interaction sphere around one particular particles j with r ≤ r  are neglected. This introduces a small 

cut

particle to the volume that is actually scanned around it by 

error in the computation of the forces and the total energy 

of the system, but it reduces the overall computational effort  this algorithm, one finds that only a fraction of the 

particles really interact, cf.  Figure 12c  for a 2D picture. To 

from 

. For systems with short-ranged or rapidly  avoid these wasted calculations one should approximate the decaying potentials, a very efficient algorithm for the search  interaction sphere more closely. One way to do it would be to of potentially interacting particles, i.e., those particles that are  make the cells smaller and simultaneously increase the number within the cutoff distance r  of a particle i, has been developed 

cut

of neighbor cells (next nearest, etc.) which one has to scan. 

[4]. In MD this algorithm can be implemented most efficiently  This method has the severe drawback of increasing the loop by geometrically dividing the volume of the (usually cubic)  iterations dramatically, while most of the cells will be empty. 

simulation box into small cubic cells whose sizes are slightly  Thus, in a naive implementation the cost of the loop overhead 
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will eventually overwhelm the benefit of the saved distance  Ghostparticles

calculations. However, there is a different method available: 

Along with the cell subdivision a neighbor list of potentially  In a MD simulation one can only investigate the properties of a interacting particle pairs is constructed. Here, only particles  relatively small number of particles compared to a real system. 

within the inner sphere of radius  r   surrounding a specific  Therefore one introduces the periodic boundary conditions as cut

particle  i  actually interact with each this particle, cf.  Figure  described in Section 4.3. The periodic boundary conditions 12c. In order to speed up the search algorithm for identifying  are realized by performing distance calculations taking into interacting particles, the volume between the outer sphere of  account the minimum image convention according to which radius (r  + r ) and the smaller one is additionally covered  the real distance between any two particles is given by the cut

skin

by the neighbor list for particle  i. Thus, this list contains  shortest distance of any of their images. Once a particle has not only actually interacting particles at some specific point  crossed the boundaries it is periodically back-folded into the in time, but it also contains all particles that might enter the  simulation box of volume V = L  × L  × L .. This periodic wrap-x

y

z

interaction range of the inner sphere within the next few  around is done in the innermost loop of the force calculation timesteps. This greatly speeds up the simulation, because the  and therefore is extremely expensive in terms of simulation list of potentially interacting particles will be valid for several  time. 

timesteps, in the order of 5–15, before it has to be rebuilt. The 

Consequently, another method of gaining speed in a MD 

interval, at which list-reconstruction has to be done, depends  simulation is to remove any mentioning of periodic boundaries upon r , the particle density ρ and the skin radius r . Once a  in the force calculations. This can be done by using the concept cut

skin

particle has moved a distance larger than 

, the update  of ghost particles, see e.g., [3]. 

is due. The accumulated distance that each particle moved can 

The idea with ghost particles is the following: All particles 

be readily monitored during the distance calculation. Tests of  that are in cells which are on the surface of the simulation this method with the bonded potential of Equation (25) and the  box are being duplicated right away into the extra ghost cells FENE potential of Equation (27) for flexible macromolecules  surrounding the whole box. These ghost particles are now used with r  = 1.5σ and ρ = 0.85σ show that a radius of r  ≈ 0.35σ to  for distance calculations instead of the original coordinates. As cut

skin

0.40σ is the optimal choice [3,51]. The d  length of the cells in  a result, the periodic back-folding only has to be done for a i

each direction is given by 

with L  being the  relatively small number of surface particles in the outermost 

i

cells, but not anymore for the many particles in the innermost 

box size in each direction and 

being the largest cutoff of  force loop. 

all potentials that are used. The cells are numbered, beginning 

with the one in the lower left corner of the simulation box 

As a result of Newton’s third axiom, one actually needs to 

where the origin of the coordinate system is located. Each  consider only half of the ghost cells surrounding the original time when an update of the neighbor list is due, the particles  box. The schematic in Figure 13 displays how the individual are periodically back-folded into the simulation box and then  ghost layers in each direction are set up: The number of sorted into the different cells according to their coordinates.  adjacent neighbor cells now depends upon the location of the Subsequently, only the distances of particles of neighbor cells  considered cell. In a cube there are 18 different cases and again are calculated, with each cell having 26 neighbors in three  due to Newton’  s  third  axiom  only  half  of  them  need  to  be dimensions. Again, due to Newton’s third axiom only half of  considered. The sub-routine that contains the search algorithm them have to be considered. 

which examines adjacent cells has to make provision for all 9 

different cases. The number of adjacent cells for these different 

cases is fixed and can be written in a static array. 

Figure 13: Schematic of the sequential construction of different ghost cell layers. An individual cell of the simulation box can be identified by the three integers (i , i , i ). The original box in this example has n  = n  = 5 and n  = 4 cells in each direction, i.e., there is i.e., there  no need for the simula-is no need for the simula-
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tion box to have cubic shape. (a) In a first step, all particles of cells with indices (i  = 1; i  = 1, ..., n ; i  = 1, ..., n ) are copied into the first layer x

y

y

z

z

of ghostparticles. The second layer of ghostparticles then contains all particles pertaining to cells (i  = 1, ..., n ; i  = 1; i  = 1, ..., n ) including x

x

y

z

z

the ghostparticles of the ghostcells from the first ghostlayer. Finally, the third layer of ghostcells is constructed by copying the particles of the cells with (i  = 1, ..., n ; i  = 1, ..., n ; i  = 1) as indicated in the figure. 
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The additional advantage of using ghost cells lies in the  choose c = 3. Then 3N2 + 4N ≤ 3N2 for all N > 5. Thus, the fact, that the effort of setting up the cells and the effort of book- previous relation is true for e.g., N  = 6. 

0

keeping decreases with system size, as the share of cells in the 

In Table 2 we review five different algorithms A –A  with 

outermost layers of the simulation box decrease. For example, 

1

5

corresponding run times  N, N2, N3,  2N,  N!,  where  N  is the 

in a system with N = 103 particles, on average ≈ 73% of all  considered system size, e.g., the number of atoms, particles, particles are ghosts, whereas this number has decreased to an  nodes or finite elements in some simulation program. We again average value of ≈ 13% for a system with the same density,  assume that one elementary step takes 10−9 seconds on a real but N = 2 × 105. Using this technique for larger system can  computer. 

result in a overall speed-up of up to a factor of 2. 

Table 2: Overview of typical run times of algorithms occurring in 

Efficiency of the MD Method

materials science applications. Depicted are the number of ES and 

the corresponding real times for the different algorithms under the 

The computing time of an algorithm is measured by the  assumption that one ES takes 10−9 seconds. 

number of  elementary steps  (ES) that this algorithm needs 

until it stops,  i.e., until the problem is solved. Examples of 

elementary steps are:

•  Testing an if-condition, 

•  Assigning a value,  i.e., changing the contents of a 

memory, 

•  Executing  one  of  the  elementary  operations  (+,  −, 

×, DIV, MOD), 

•  Initializing a loop variable. 

As an example. we consider the following piece of pseudocode 

The division of algorithms according to their run time 

which gets as input an array a[1, . . . , n] and sorts this array  in  Table 2  allows  for  classifying  algorithms  into  efficient according to the size of its elements. 

and inefficient ones. It is obvious that exponential run times 

(algorithms  A   and  A ) are not acceptable for all practical 

4

5

purposes. For these algorithms, even with very small system 

sizes  N  one reaches run times which are larger than the 

estimated age of the universe (1010 years). Algorithm A  could, 

5

for example, be a solution of the traveling salesman problem. If 

the first point out of N has been visited, there are (N – 1) choices 

The kernel of the two loops in this algorithm consists of one if- for the second one. This finally results in an exponential run condition (1 ES) and – if the condition is true – three assign- time of at the least N! steps. A runtime 2N as in A  is typical for ments (3 ES) which switch a[i] with a[j]. Each i- and j-loop 

4

problems where the solution space of the problem consists of a 

counts 1 ES. Thus, one can directly calculate the number of  subset of a given set of N objects; There are 2N possible subsets ES:

of this basis set. The “efficient” algorithms A , A , A  with run 

1

2

3

times of at the most N3 are the most commonly used ones in 

computational materials science. 



(34)

Table 3 shows why algorithms A , A  and A  are considered 

1

2

3

to be efficient: Assuming that the available computer systems—

due to a technology jump—will be 10 or 100 times faster than 

(35)

today, then the efficiency of algorithms A , A  and A  will be 

1

2

3

shifted by a factor, whereas for the exponential algorithms A , 

(36)

4

A  the efficiency will be shifted only by an additive constant. 

5

Assuming that one ES on an average computer takes  Table 3: Speedup of the runtime of different algorithms assuming 10−9 seconds, one can sort arrays containing 2 × 105 elements  a hardware speedup factor of 10 and 100. The runtime of efficient within one second. Often however, one is only interested in  polynomially bounded (class P) algorithms will be shifted by a fac-how the run time of an algorithm depends on the number of  tor while exponential (class NP) algorithms are only improved by an input elements  N, only considering the leading term in the  additive constant. 

computation time. In the example above one would speak of 

a “quadratic”, or “order N2” runtime and write symbolically 

. The meaning of this symbolic  -notation is the 






following:

A function  g(N) is of order 



if there are constants c and N  such that for all N ≥ N : g(N) 

0

0

≤ c × f (N). For example, the function 3N2 + 4N is of order N2, 

or in symbolic notation:

, as one can 
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Algorithms  A , A   and  A   have polynomial run times.  only. If this assumption breaks down and has to abandoned in a 1

2

3

An  algorithm  is  said  to  be  efficient  if  its  runtime—which  simulation model, contributions of more complex non-additive depends on some input N—has a polynomial upper bound. For  interactions to the total potential have to be considered. For example, the runtime function 

has a  example, a suitable form of three-body interactions was 

polynomial upper bound (for large N), e.g., N5. In  -notation  introduced  for  the  first  time  by  Axilrod  and  Teller  [139]. 

this is expressed as 

with  k  being the degree of the  Such a potential depends on the position of at least three polynomial. Algorithms  A   and  A   on the other hand have  different particles. Solving the Schrödinger equation in  ab 4

5

no  polynomial  upper  limit. Thus,  they  are  called  inefficient.  initiosimulations also leads to a N3 or even higher polynomial In computer science, the class of problems that can be solved  dependency of the run time. This is the main reason why ab with efficient algorithms (i.e., algorithms that are polynomially  initiomethods are restricted to very small system sizes. 

bounded) are denoted with the letter P, cf. Figure 14a. As the 

Solving the classical Newtonian equations of motion with 

set of polynomials is closed under addition, multiplication and  a “brute-force” strategy (cf. Figure 12a) leads to a run 

composition, P is a very robust class of problems: Combining  time as 1/2 × N × (N – 1) particle distances have to be calculated. 

several polynomial algorithms results into an algorithm which  This is also generally true in finite element codes where special again exhibits a polynomial runtime. 

care has to be taken when elements start to penetrate each other. 

Usually one uses so-called  contact-algorithms  which use a 

simple spring model between penetrating elements. The spring 

forces try to separate the penetrating elements again and the 

core of the contact algorithm is a lookup-table of element knots 

which is used to decide whether two elements penetrate each 

other or not. This algorithm in its plain form has an efficiency 

of 

. As an 

efficiency of an algorithm still restricts 

the system size to very small systems of a few thousand 

particles one uses several methods to speed-up the efficiency 

of algorithms in computer simulations. Usually, this is done by 

Figure 14:  (a) Venn diagram of the class  P  (efficiently  solvable  using sorted search tables which can then be processed linearly problems), class NP(non-deterministic polynomial, i.e., inefficiently  (and thus reaching an efficiency of 

. Hence, when 

solvable problems), and undecidable problems (orange box) for which  it comes to the efficiency of algorithms in materials science, no algorithms are known. Today, it is generally assumed that all prob-one will always try to minimize the effort to 

. 

lems in P are contained in the class NP, cf. Figure 14. So far, no proof that decides whether P = NP or P ≠ NP is known. (b) An inefficient algorithm (dashed line) can – for some small values N up to an input  Amdahl’s Law number N  – be more efficient than a polynomially bounded algorithm 

0

In principle, one can achieve a further speedup in the execution 

(solid line). (c) A real algorithm (dotted line) will always have a run  of a MD program by parallelizing it. Here, the upper limit time behavior somewhat in between the worst-case (dashed line) and  of  a  possible  optimization  is  given  by Amdahl’s  law  [140]: best-case (solid line) run time. 

Let T  the execution time for a sequential program. If a fraction f 

1

Due to the robustness of the definition of the class P of  of this program can be parallelized using M processors, then efficient  algorithms,  an  inefficient  algorithm  can  have  a  the theoretical execution time is determined by the sum of the shorter runtime than its efficient counterpart, up to a certain  time T  = (1 – f)T  which is needed for the serial part and the s

1

system size  N . For example, an algorithm with a runtime  time T  = (f·T )/M needed for the parallelized program part. 

0

p

1

1000 × N1000falls into the class P whereas an algorithm with a  The maximum speedup S (f, M) of a parallelized code is thus runtime 1.1N is exponential and thus inefficient. However, the  given by:

exponential algorithm only exhibits longer runtime than the 

efficient one for system sizes up to N ∼ 123, 000, cf. Figure 

14b. 



In the example of the sort algorithm above, the “worst-case”    (37)

run time is considered assuming that the if-condition within the  which  is  called  Amdahl’s  law.  Analyzing  this  equation loop of the algorithm is true and thus, three elementary steps  for different pairs of values (f, M) shows that the actual are always executed. In the “best-case”—e.g., if the array has  speedup of a parallelized program is always smaller than the been sorted – this if-condition is not true and there are only  theoretical value as the parallelization itself is expensive. Also, (N  – 1) +  N(N  –  1)  =  N2  –  1  ES.  For  a  randomly  shuffled  for fixed f, the speedup does not grow linearly with M but array one can show that the expectation value for the number  approaches a limiting value. This is particularly important for of elementary steps is 

[138]. Thus,  massive-parallel program implementations with thousands of 

with a randomly sorted array the total number of ES in this  processors. 

example is roughly N2 + 3N ln N. Hence, the actual runtime of 

an algorithm lies somewhere between the worst-case and the  APPLICATION: SIMULATING THE EFFECT OF 

average-case runtime behavior, cf. Figure 14c. 

SHOCK WAVES IN POLYCRYSTALLINE SOLID 

In particle based simulations with assumed pairwise  STATES

additive interactions the total force on the particles (or atoms) 

in a system depends on the current position of two particles  In this section we review recent numerical applications in the 
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field of shock wave physics based on the numerical methods  experiment cut into half. (b) Hydrocode simulation of the impact that have been introduced and discussed in the previous  and related shock propagation leading to the formation of spallation sections. We start our discussion with a succinct introduction  planes. 

into shock wave physics and then focus on modeling 

At locations where several release waves are super-

polycrystalline solids such as high-performance ceramics.  imposed, a tensile pressure state is established which can lead Results of simulating shock wave propagation in such materials  to instantaneous failure, called spallation. 

using both, FEM, and a concurrent multiscale particle-based 

model are presented. 

Until the early 1940s, investigations of shock wave 

formation and propagation were restricted almost completely to 

Nowadays, shock wave processes and their numerical  gaseous media. Nevertheless, the achievements in gas dynamics simulation cover a spectrum that ranges from gas-dynamics  set the basis for fundamental work on shock waves in solids. 

of super-sonic objects, over air-blast-waves originating from  During the course of his studies on finite-amplitude waves in detonations including their interaction with deformable  solids, Riemann [141] invented the method of characteristics structures, to the effects of shocks in structures, e.g., induced  which became the tool of choice for the investigation of wave by projectiles or meteorites. Shock waves in soft matter have  propagation, until almost a century later von Neumann and increasingly attracted interest in the field of medical treatment  Richtmyer [142] introduced the idea of artificial viscosity (AV) of inflammations or of nephroliths. 

which refers to the transformation of kinetic energy into heat 

The  specific  characteristics  distinguishing  shock  waves  through the narrow shock transition zone. Although AV was from ordinary acoustic waves are the extremely short rise  introduced for numerical reasons, it is an elective addition in times (in the range of nanoseconds, in contrast to microseconds  hydrocodes used to modify a physical process so that it can with acoustic waves) and their dissipative nature. Reason  be more easily computed. If the AV is too small, velocity for the formation of a shock wave is either the super-sonic  oscillations about the correct mean value are observed to motion of an object and the related wave-superposition or  develop behind a shock. The proper formulation and magnitude the pressure-dependency of sound speed which again leads  needed for an AV has undergone many refinements over the to wave superposition and steepening of the wave front. An  years and culminated in the method pioneered by Godunov example of the tremendous effect shock waves may have in  in 1959 [143], in which a local elementary wave solution is solids is exhibited in Figure 15. Here, a solid aluminum block  used to capture the existence and propagation characteristics was impacted by a 10mm diameter aluminum projectile at an  of shock and rarefaction waves. 

impact velocity of 7km/s. In the vicinity of the impact location 

Rankine [144] and Hugoniot [145,146] set the basics 

the high pressure amplitudes lead to the formation of crater lips  for the thermodynamics of shock waves. Treating a one-under hydrodynamic pressure conditions. As a result, no phase  dimensional shock wave as a distortion moving at a shock transition of the material occurs, but rather only the high- velocity υ  one can relate the conditions ahead and behind the pressure shock waves are responsible for the lip formation. 

S

shock to each other via the conservation equations for mass, 

As the initiated shock travels further into the material, it is  momentum and energy. With the thermodynamic conditions reflected at the free surfaces shaping release waves. 

described by the mass density ρ, the pressure p and the specific 

internal energy e, and using index 0 for the initial and 1 for the 

shocked state, respectively, the  Rankine-Hugoniot  equations 

describe the jump conditions to be:

(38)

(39)



(40)

where the material ahead of the shock is assumed to be at 

rest. A fourth equation is needed to find a solution for the 

Riemann problem described by Equations (38–40). If known, 

the material specific Equation of State (EOS) p(ρ, e) can be 

utilized for that purpose. On the other hand, a relation between 

any other pair of the involved variables can be employed to 

identify the EOS. The latter method has become the classic 

approach for deriving high pressure EOS’s for solid materials. 

It involves an experiment, e.g., the flyer-plate test, where a 

planar shock in an arbitrary material is investigated to measure 

its shock velocity υ  along with the particle velocity υ . Thus, 

S

1

the measured relation between shock velocity and particle 

velocity

Figure 15: Spallation failure in a semi-infinite aluminium target after 



(41)

impact by a 10mmaluminum sphere at 7km/s. (a) Target after impact 
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allows for a derivation of the governing EOS and represents  simultaneous need for characterization and ever more realistic an application of the Riemann problem in solid state physics,  representations of micro structures. On the length scale of a originally formulated in the field of gas dynamics. For most  few microns to a few hundred microns, many materials exhibit crystalline  materials,  specifically  for  metals,  relation  (41)  is  a polyhedral granular structure which is known to crucially linear. Porosity of materials however, leads to significant non- influence their macroscopic mechanical properties. Today, one linearities in the shock-particle velocity relation. Experimental  is compelled to search for the optimal micro structure for a investigations of highly porous and inhomogeneous materials  specific application by intricate and expensive experimental face  specific  complexity  concerning  a  precise  representative  “trial-and-error” studies. In order to overcome this situation velocity measurement. Therefore, meso-mechanical simula- by numerical simulations, a detailed and realistic modeling of tion of the shock propagation in composite materials on the  the available experimental structures is a basic requirement. 

basis of known component EOS data have become a useful  With numerical investigations taking explicitly into account characterization tool (see for example [92]). 

the micro structural details, one can expect to achieve a 

considerably enhanced understanding of the structure-property 

So far, the outlined approach describes one specific curve  relationships of such materials [151,152]. With ceramics, the in (p, ρ, e)-space. Performing a shock experiment leads to the  specific shape and size of these polycrystalline grain structures so called principal Hugoniot curve representing all possible  is formed during a sintering process where atomic diffusion thermodynamic states available to a material when loaded  on the nanometer scale plays a dominant role. Usually, the by  shock  waves  of  various  amplitudes.  In  order  to  find  a  sintering process results in a dense micro structure with grain mathematical description of high pressure states in its vicinity,  sizes of up to several hundred micrometers. Using a nano-sized the Hugoniot curve is utilized as reference curve. A typical  fine-grained granulate as a green body along with an adequate EOS formulation of that kind is for example modeled by an  process control it is possible to minimize both, the porosity (< equation of Mie-Grüneisen type. 

0.05% in volume), as well as the generated average grain size 

(< 1 μm). It is known that both leads to a dramatic increase in 

(42)

hardness which outperforms most metal alloys at considerably 

lower weight. Producing very small grain sizes in the making 

where p  is given by the Hugoniot curve and the Grüneisen  of HPCs below 100nm  results again in decreasing hardness ref

coefficient is 

. 

[153]. Hence, there is no simple connection between grain size 

and (macroscopic) hardness of a polycrystalline material. 

The predictive capability of numerical simulation of shock 

The micro structure of densely sintered ceramics can be 

processes such as high- and hypervelocity impact scenarios  considered in very good approximation as a tessellation of strongly depends on the quality of the employed EOS. A wide 

with convex polyhedra, i.e., as a polyhedral cell complex, 

spectrum of materials has been characterized experimentally in  cf. Figure 16a. A direct, primitive discretization of the micro-terms of their high-pressure EOS over the last decades. Shock  photograph into equal-spaced squares in a 2D mesh can be used compression experiments [147,148] as well as, more recently,  for a direct simulation of material properties, cf. Figure 16b. 

isentropic compression tests [149] are well established for the  However, with this modeling approach, the grain boundaries on identification of reference curves. 

the micrometer scale have to be modeled explicitly with very 

A fundamental requirement for the shock wave initiation  small elements of finite thickness. Thus, the influence of the and its stable propagation is the convexity of the related EOS.  area of the interface is unrealistically overestimated in light of Bethe [150] formulated the following two conditions for the  the known fact that grain boundaries, which constitute an area existence of shock waves:

of local disorder, often exhibit only a thickness of a few layers 

of atoms [154]. Moreover, a photomicrograph is just one 2D 

sample of the real micro structure in 3D, hence the value of 



(43)

its explicit rendering is very questionable. Finally, with this 

approach there is no 3D information available at all. While 

experimentally measured micro structures in 3D are generally 

(44)

not available for ceramic materials, only recently first reports 

about measured micro structures of steel have been published 

along with the criterion for stable propagation:

[155,156]. Nevertheless, these experiments are expensive and 

their resolution as well as the number of measured grains still 

seem to be poor [156]. 



(45)

Modeling Polycrystalline Solids Using Power 

Diagrams

Understanding the micro-structural features of polycrystalline 

materials such as high-performance ceramics (HPCs) or 

metals is a prerequisite for the design of new materials 

with desired superior properties, such as high toughness or 

strength. Thus, for enhancing simulation models used for the 

prediction of material properties on multiscales, there exists a  Figure 16: (a) Micrograph of a HPC (Al O ) exhibiting the mi-2 3
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cro structure with an average grain size of 0.7 μm. (b) 2D FEM  of generator points   ⊂  d the Voronoi diagram maps each p ∈

simulation of a primitive model of this micro structure with a 

onto its Voronoi region R(p) consisting of all x ∈ d that are 

shock impulse traveling through the material from left to right.  closer to p than to any other point in  . (b) Delaunay triangula-The plane of the micrograph has been sectioned into 601 ×  tion for the sites in (a). 

442 equal-spaced squares which are used as finite elements. 

The nodes of the upper and lower edge have been assigned 

Voronoi tessellations in   have been used in many fields 

as boundary condition, whereas the leftmost element  of materials science, e. g. for the description of biological nodes of the sample are given an initial speed of v  = 500 m/s.  tissues or polymer foams [161]. Ghosh  et al.  [162] utilized x

The color code exhibits the pressure profile. 

Voronoi cells to obtain stereologic information for the 

different morphologies of grains in ceramics and Espinoza et 

A different way of generating micro structures, is based on  al. [163] used random Voronoi tessellations for the study of classical Voronoi diagrams in d-dimensional Euclidean space  wave propagation models that describe various mechanisms of and their duals—the Delaunay triangulations—which both  dynamic material failure at the micro scale. However, these constitute important models in stochastic geometry and have  models have major drawbacks such as limitations to two been  used  in  various  scientific  fields  for  describing  space- dimensions and a generic nature of the structures as they are filling, mosaic-like structures resulting from growth processes.  usually not validated with actual experimental data. Besides Voronoi diagrams are geometric structures that deal with  its applications in other fields of science, the Voronoi diagram proximity of a set of points (or more general objects). Often  and its dual can be used for solving numerous, and surprisingly one wants to know details about proximity: Who is closest to  different, geometric problems. Moreover, these structures are whom? who is furthest and so on. The origin of this concept  very appealing, and a lot of research has been devoted to dates back to the 17th century. In his book on the principles  their study (about one in every 16 papers in computational of philosophy [157], R. Descartes claims that the solar system  geometry), ever since Shamos and Hoey [164] introduced consists of vortices. His illustrations show a decomposition of  them to this field. The reader interested in a complete overview space into convex regions, each consisting of matter revolving  over the existing literature should consult the book by Okabe et round one of the fixed stars. Even though Descartes has not  al. [165] who list more than 600 papers, and the survey by explicitly defined the extension of these regions, the underlying  Aurenhammer [166]. 

idea seems to be the following: Let a space   and a set S of 

sites p in   be given, together with the notion of the influence a 

site pexerts on a point x of  . Then the region of p consists of 

all points x for which the influence of p is the strongest, over 

all t ∈ . This concept has independently emerged, and proven 

useful, in various fields of science. Different names particular 

to  the  respective  field  have  been  used,  such  as  medial  axis 

transform  in biology or physiology,  Wiegner-Seitz zones  in 

chemistry and physics, domains of action in crystallography, 

and  Thiessen polygons  in meteorology. The mathematicians 

Dirichlet (1850) [158], and Voronoi (1908) [159] were the first 

to formally introduce this concept. They used it for the study 

of quadratic forms; here the sites are integer lattice points, and 

influence is measured by the Euclidean distance. The resulting 

structure has been called  Dirichlet tesselation  or  Voronoi 

diagram, cf. Figure 17a, which has become its standard name 

today. Voronoi was the first to consider the dual of this structure, 

where any two point sites are connected whose regions have a 

boundary in common, cf. Figure 17b. Later, Delauney [160] 

obtained the same by defining that two point sites are connected 

if (and only if) they lie on a circle whose interior contains no 

point of  . After him, the dual of the Voronoi diagram has been 

denoted Delaunay tesselation or Delaunay triangulation. 

Figure 18: 5 different Al O  micrographs (a) and their corresponding 

2 3

grain  statistics  with  respect  to  the  grains’  perimeter  (b).  The  right 

picture at the bottom of (a) and (b) exhibits a corresponding 2D virtual 

cut through the 3D PD, i.e., a Voronoi diagram, and its corresponding 

histogram. Clearly, the histograms both show no Gaussian distribu-

Figure 17: (a) Voronoi diagram of N=20 sites. For a finite set  tion as was claimed, e.g., by Zhang et al. [167]. 
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In a recent approach to micro structural modeling of 

polycrystalline solids it was suggested to use power diagrams 

(PDs) along with a new optimization scheme for the generation 

of realistic 3D structures [169]. PDs are a well studied 



(46)

generalization of Voronoi diagrams for arbitrary dimensions 

The figure of merit m in Equation (46) is first calculated 

[165] and have some major advantages over Voronoi  from the initial PD generated by a Poisson distribution of diagrams as outlined in [168]. The suggested optimization  generator points. Using a reverse Monte-Carlo scheme, one is based on the statistical characterization of the grains in  generator  point  is  chosen  at  random,  its  position  modified terms of the distribution of the grain areas A  and the grain  and m is checked again. If m has decreased, the MC move is perimeters P obtained from cross-section micro-photographs,  accepted, otherwise it is rejected. The modification of generator cf. Figure 18. An important result obtained using this method is  points is continued until  m  has reached a given threshold, that neither the experimental area nor the perimeter distribution  typically 10−1. If m = 0 is reached, the first k central moments obey a Gaussian statistics which is contrary to what was  of the experimental distributions agree completely with the claimed e.g., by Zhang et al. [167,168]. 

model. In Figure 20 we present the resulting histogram of an 

The optimization scheme for the generation of realistic  optimized PD for Al O   and show the time development of 2 3

polycrystalline 3D structures is based on comparing all  the figure of merit m for this sample, following the proposed polyhedral cells (typically at least 10.000) inside a cube  optimization scheme described above. 

of a given PD in 3D with the 2D experimental data. This 

comparison is performed for each coordinate axis by generating 

a set of parallel, equidistant 2D slices (typically 500 slices for 

each of the three coordinate directions) through the cube and 

perpendicular to the respective axis, see Figure 19. For each 

2D slice the grain sizes A are calculated and combined into 

one histogram. The same is done for the perimeter  P. Then, 

the calculated histograms are compared with the experimental 

histograms  A exp  and  P exp  by  calculating  the  first  k  central 

i

i

moments of the area and perimeter distributions  A   and  P , 

i

i

respectively.  A  figure  of  merit  m  of  conformity  is  defined 

according to which the PDs are optimized [168]:

Figure 20:  (a) Area (top) and perimeter (bottom) distribution of 

one of the Al O micrographs of  Figure 18  before (black) and after 

2 3

(red) optimization. The bar graphs show the respective histograms 

of  experimental  data.  (b)  Time  development  of  the  figure  of 

merit  m  during the optimization for the structure of (a). After 

358000 and 512000 optimization steps, the maximum step size 

of the reverse MC algorithm (changing the position of a generator 

point)  was  increased,  which  shows  a  direct  influence  on  the  speed 

of optimization. After 1.5 million steps the deviation between the 

model and experiment has dropped below 1.3 × 10−4. The inset shows 

the corresponding time development of m of the perimeter (red) and 

(area) distribution of the third central moment. 

Figure 19: Optimization scheme as suggested in [168]. (a) 2D ex-

168]. (a) 2D ex-

Having  an  efficient  means  to  generate  realistic 

perimental photomicrograph (top) and an SEM picture of the 3D  polycrystalline structures, they can be meshed and be used crystalline surface structure of Al O   (bottom). (b) 2D virtual slice 

2 3

of a power diagram (top) and the corresponding 3D surface structure  for a numerical FEM analysis, cf. Figure 22. For simulations obtained from this model. (c) Comparison between 2D experimental  of macroscopic material behavior, techniques based on a data of (a) and the 3D model of (b). 

continuum approximation, such as FEM or SPH are almost 
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exclusively used. Figure 21 shows a 3D tile of a meshed PD. 

Figure 22 illustrates the disadvantages and the multiscale 

In a continuum approach the considered grain structure of the  problem associated with FEM simulations in which micro material is typically subdivided into smaller (finite) elements,  structural details are included. On the left, a high-speed camera e.g., triangles (in 2D) or tetrahedra in 3D. Tetrahedral elements  snapshot of an edge-on impact experiment 11.7 μs after impact at the surface can either be cut, thus obtaining a smooth surface,  is shown, where a macroscopic steel sphere impacts the edge of or they can represent (a more realistic) surface coarseness. Also  an Aluminum Oxinitride (AlON) ceramic tile of dimension (10 

displayed is an enlarged section of the 3D tetrahedral mesh at  × 10 × 0.2) cm. The enlargements in the middle and on the right the surface of the virtual specimen. Upon failure, the elements  show the small size of the region that is actually accessible to are  separated  according  to  some  predefined  failure  modes,  FEM analysis in a concurrent multiscale simulation approach. 

often including a heuristic Weibull distribution [170,171]  With FEM only a very small part of a macroscopic system can which is artificially imposed upon the system. 

actually be simulated due to the necessary large number of 

elements. This is why in FEM simulations of polycrystalline 

materials, in order to be able to simulate a sufficient number 

of grains, often only two dimensions are considered in the 

first  place.  For  most  codes,  an  element  number  exceeding  a 

few dozen millions is the upper limit which is still feasible in 

FEM simulations on the largest super computer systems. More 

severe, the constitutive equations for the material description 

which are needed in a phenomenological description, are 

derived from experiments with idealized load conditions. This 

often leads to many fit parameters in models, which diminishes 

their physical value. In addition, FEM generally has many 

computational problems (numerical instabilities) when it 

Figure 21: 3D structures of a meshed PD. In (a) the granular surface  comes to very large element distortions in the vicinity of the structure, its mesh and a detailed augmented section of the mesh at  impact region where the stresses, strain rates, and deformations the surface are displayed. (b) A different realization of a 3D structure  are very large. The time scale of a multiscale FEM simulation displaying the possibility of either leaving a (more realistic) rough  does  not  a  priori  fit  to  the  timescale  of  the  experiment; surface micro structure, or smoothing the surface and thus obtaining a  thus, parameter adaptations of the included damage model model body with even surface [168]. 

are necessary (but are often unphysical). Also, the contact 

algorithms implemented in common engineering codes such as 

“pamcrash” or “lsdyna3D” which ensure that elements cannot 

penetrate each other in impact situations, where high strain 

rates occur, are often unphysical, very inefficient, and thus not 

well suited for parallelized applications. 

The multiscale problem associated with FEM simulations 

described in  Figure 22  is further worsened by the fact that 

the results of FEM analyses of highly dynamic processes 

are  often  strongly  influenced  by  mesh  resolution  and  mesh 

quality [173,174], which, from a physical point of view, is not 

acceptable, since the physical properties of a system should 

be invariant to the arbitrarily chosen spatial resolution of the 

problem. This common feature of FEM and related methods 

(such as SPH) is illustrated in  Figure 23, where the same 

geometry is simulated as in Figure 22, illustrating the strong 

dependence of FEM and SPH on mesh resolution. 

Figure 23: Snapshots of simulations of the edge-on impact system 

of  Figure 22  using a primitive discretization of the geometry of 

the system in terms of hexahedral elements. (a) FEM with mesh 

resolution of 0.5mm. (b) FEM with mesh resolution of 1.0mm. (c) 

SPH with mesh resolution of 0.5mm. All computational results are 

Figure 22:  Illustration of the multiscale problem. With concurrent  obtained using a commercial code (Autodyn-3D) and are different in FEM methods which include micro structural details, only a very  terms of the damage pattern of the cracks propagating through the small part of a real system can actually be simulated due to the  material 3 μs after impact. 

necessary large number of elements. Figure taken from [172]. 
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A Particle Model for Simulating Shock Wave 

Failure in Solids

Investigations of materials which involve multiple structure 

levels, such as nano- and polycrystalline solids, require large 

ensembles of atoms to accurately reflect the structures on the 

atomic and microscopic levels. For systems of reasonable size, 

atomistic simulations are still limited to following the dynam-

ics of the considered systems only on time scales of nanosec-

onds. Such scales are much shorter than what is needed to 

follow many dynamic phenomena that are of experimental 

interest [80,175]. 

Whether a material under load displays a ductile, metal-

like behavior or ultimately breaks irreversibly, depends on the 

atomic crystal structure and on the propagation of defects in 

the material. Broken atomic bonds (cracks) and dislocations 

are the two major defects determining mechanical properties 

on the atomic scale. Molecular dynamics investigations of 

this type using generic models of the solid state have lead to 

a basic understanding of the processes that govern failure and 

crack behavior, such as the instability of crack propagation 

[24,176–181], the dynamics of dislocations [33,80,182,183], 

the limiting speed of crack propagation [35,184,185], the 

brittle-to-ductile transition [35,154,186,187], or the universal 

features of energy dissipation in fracture [188]. 

Most metals are crystalline in nature, i.e., they are solids  Figure 24: (a) Schematic of a crystal placed under shock loading. 

composed of atoms arranged in a regularly ordered repeating  Initially it will compress uniaxially and then relax plastically through pattern. When crystals form, they may solidify into either a  defects on the nanoscale, a process known as the one-dimensional polycrystalline solid or a single crystal. In a single crystal,  to three-dimensional transition. The material may also undergo a all atoms are arranged into one lattice or a crystal structure.  structural transformation, represented here as a cubic to hexagonal The structure of single crystals makes them ideal for studies  change. The transformation occurs over a characteristic time scale. 

of material response to shock loading. When a highly ordered  The new phase may be polycrystalline solid or melt. Once pressure material, such as a metal crystal, is put under a planar shock,  is released, the microvoids that formed may grow, leading to the crystal is compressed along the direction of the shock  macroscopic damage that causes the solid to fail. (b) This micrograph shows the voids that occur when a polycrystalline aluminium alloy is 

propagation, see Figure 24a. This uniaxial response can remain  shocked and recovered. As the shock wave releases, the voids grow elastic so that, once the disturbance is removed, the lattice will  and may coalesce, resulting in material failure. 

relax back to its original configuration. However, under high-

stress conditions, the configuration of atoms in the lattice may 

In the following we discuss a recently proposed concurrent 

be changed irreversibly. Irreversible changes in phase and the  multiscale approach for the simulation of failure and cracks development of defects at the atomic level lead to macroscopic  in brittle materials which is based on mesoscopic particle changes, such as plasticity, melting, or solid-to-solid phase  dynamics, the Discrete Element Method (DEM), but which transformations. When the dynamic compression is removed,  allows for simulating macroscopic properties of solids by the  shock-modified  micro  structure  may  influence  the  fitting only a few model parameters [195]. 

formation and growth of voids, cracks, and other processes that 

Instead of trying to reproduce the geometrical shape of 

may cause the material to fail, see Figure 24b. These atomistic  grains on the microscale as seen in two-dimensional (2D) changes can dramatically affect a materials behavior, such as  micrographs, in the proposed approach one models the its thermodynamic state, strength, and fracture toughness. Few  macroscopic solid state with soft particles, which, in the data are available on the phase transformations that occur under  initial  configuration,  are  allowed  to  overlap,  cf.  Figure  25a. 

highly dynamic stress conditions or on the defects and voids  The  overall  system  configuration,  see  Figure  25b,  can  be that may form and grow as a result. MD methods for typical  visualized as a network of links that connect the centers of engineering applications on dislocation dynamics, ductility  overlapping particles, cf.  Figure 25c. The degree of particle and plasticity, failure, cracks and fracture under shock loading  overlap in the model is a measure of the force that is needed to in solids were extended to large-scale simulations of more than  detach particles from each other. The force is imposed on the 108 particles during the late 1990s by Abraham and Coworkers  particles by elastic springs. This simple model can easily be 

[33,34], Holian and Lomdahl [189], Zhou [175] and others  extended to incorporate irreversible changes of state such as 

[190,191]. Today, many-particle MD simulations taking into  plastic flow in metals on the macro scale. However, for brittle account the degrees of freedom of several billion particles have  materials, where catastrophic failure occurs after a short elastic been simulated in atomistic shock wave and brittle to ductile  strain,  in  general,  plastic  flow  behavior  can  be  completely failure simulations [192–194]. 

neglected. Additionally, a failure threshold is introduced for 

both, extension and compression of the springs that connect 

the initial particle network. By adjusting only two model 
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parameters for the strain part of the potential, the correct stress- prefactor  R 3  ensures the correct scaling behavior of the 0

strain relationship of a specific brittle material as observed in  calculated  total  stress  ∑ σij  =  ∑ Fij/A  which, as a result, ij

ij

(macroscopic) experiments can be obtained. The model is  is independent of  N.  Figure 26  shows that systems with all then applied to other types of external loading, e.g., shear and  parameters kept constant, but only N varied, lead to the same high-speed impact, with no further model adjustments, and the  slope (Young’s modulus) in a stress-strain diagram. In Equa-Equa-

results are compared with experiments performed at EMI. 

tion (47)R  is the constant radius of the particles, dij = dij (t) is 

0

the instantaneous mutual distance of each interacting pairs {ij} 

of particles, and d ij = dij (t = 0) is the initial separation which 

0

the pair {ij}  had  in  the  starting  configuration.  Every  single 

pair {ij} of overlapping particles is associated with a differ-

ent initial separation d ij and hence with a different force. The 

0

minimum of each individual particle pair {ij} is chosen such 

that the body is force-free at the start of the simulation. 

When the material is put under a low tension the small 

deviations of particle positions from equilibrium will vanish as 

soon as the external force is released. Each individual pair of 

overlapping particles can thus be visualized as being connected 

by a spring, the equilibrium length of which equals the initial 

distance d ij. This property is expressed in the cohesive potential 

0

by the following equation:



(48)

In this equation, λ (which has dimension [energy/length]) 

determines the strength of the potential and prefactor R  again 

0

ensures a proper intrinsic scaling behavior of the material 

response. The total potential is the following sum:





(49)

The repulsive part of Φ  acts only on particle pairs that are 

tot

closer together than their mutual initial distance d ij, whereas the 

0

harmonic potential Φ  either acts repulsively or cohesively, 

coh

depending on the actual distance dij. Failure is included in the 

model by introducing two breaking thresholds for the springs 

with respect to compressive and to tensile failure, respectively. 

Figure 25: The particle Model as suggested in [195]. (a) Overlap-

195]. (a) Overlap-

ping particles with radii  R   and the initial (randomly generated)  If either of these thresholds is exceeded, the respective spring 0

degree of overlap indicated by d ij. Here, only two particles are dis-

is considered to be broken and is removed from the system. A 

0

played. In the model the number of overlapping particles is unlimited  tensile failure criterium is reached when the overlap between and each individual particle pair contributes to the overall pressure  two particles vanishes, i.e., when: and tensile strength of the solid. (b) Sample initial configuration of 

overlapping particles (N= 2500) with the color code displaying the 

coordination number: red (8), yellow (6), and green (4). (c) The same 

(50)

system displayed as an unordered network. 

Failure under pressure load occurs when the actual mutual 

particle distance is less by a factor α (with α ∈ (0, 1)) than the 

Model Potentials

initial mutual particle distance, i.e., when

The main features of a coarse-grained model in the spirit of 

Occam’s  razor  with  only  few  parameters,  are  the  repulsive 



(51)

forces which determine the materials resistance against 

Particle pairs without a spring after pressure or tensile 

pressure and the cohesive forces that keep the material  failure still interact via the repulsive potential and cannot move together. A material resistance against pressure load is  through each other. 

introduced by a simple Lennard Jones type repulsive potential 

An appealing feature of this model, as opposed to many 

which acts on every pair of particles {ij} once the degree  other material models used for the description of brittle of overlap dij decreases compared to the initial overlap d ij:

materials, see e.g., [83,196–201], is its simplicity. The 

0

proposed  model  has  a  total  of  only  three  free  parameters:  γ 

and  λ  for  the  interaction  potentials  and  α  for  failure.  These 

model parameters can be adjusted to mimic the behavior of 



specific materials. The initial particle structure of the system 

(47)

is generated in a warmup process before the actual simulation, 

Parameter  γ  scales  the  energy  density  of  the  potential  and  during which the simulation box is filled with particles which 
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are allowed to grow for an expansion time τ, until the desired 

particle radii  R   and  overall  particle  density  Ω  are  reached. 

0

From the initial particle pair distance distribution 〈d ij〉 one can 

0

derive a maximal expectation value for σ  [195]:

max



(52)

The maximum tensile strength does not appear as a 

parameter in the model; it follows from the initial particle 

configuration  and  the  resulting  initial  density  Ω,  see  Figure 

27. The closer 〈d ij〉 is to 2R , the less is the maximum tensile 

0

0

strength. The random distribution of initial particle distances 

ultimately determines the system’s stability upon load, as well 

as its failure behavior and the initiation of cracks. 

Figure 27:  Sample  configurations  of  systems  with  N  =  10000 

particles and different particle densities Ω. The color code displays 

the coordination numbers: blue (0), green (4), yellow (6), red (8). (a) 

Ω = 0.7. (b) Ω = 0.9 (c) Ω = 1.3 (d) Ω = 1.7 (e) Breaking strength σ  for 

b

different system sizes  N  (filled  symbols)  as  a  function  of  particle 

density Ω, compared with the theoretical breaking strength σ  (open 

max

symbols). The inset shows the stress-strain (σ – ε) relation for systems 

with three different initial expansion times τ. In essence, the larger 

the expansion time for the generation of the random initial overlap of 

particles, the larger is the material strength σ . 

max

Strain, Shear and Impact Load

In the following, some simulation snapshots of applications 

of the proposed multiscale model adapted from [195] are 

displayed. Here, the model is applied to simulate a virtual 

material specimen of macroscopic dimensions under tensile, 

shear and impact load. First, the model parameters have been 

fitted so as to reproduce Young’s modulus and the strength of 

a typical ceramic (Al O ) in a quasistatic uniaxial tensile load 

2 3

simulation. Then, without any further fitting of parameters, 

the system is sheared and an impact experiment, as described 

in Figures 22 and 23 is performed. 

In quasi-static load experiments, the involved physical 

Figure 26:  (a) Schematic of the intrinsic scaling property of the  processes occur on time scales small enough so that the system proposed material model. Here, only the 2D case is shown for  under investigation is always very close to equilibrium. The simplicity. The original system (Model M ) with edge length L  and  material is strained instantaneously on two opposite sides a

0

particle radii  R   is downscaled by a factor of 1/a 

/a into the subsys-

into the subsys-

into the subsys-

the subsys-

and then allowed to relax by means of a MD integration 

0

tem Q  of M  (shaded area) with edge length L, while the particle 

A

A

scheme with timestep 

in reduced simulation 

radii are upscaled by factor a. As a result, model M  of size aL = L  is 

B

0

units. During relaxation the particles may move and bonds 

obtained containing much fewer particles, but representing the same  may break. Equilibrium is reached per definition as soon as macroscopic solid, since the stress-strain relation (and hence, Young’s 

modulus E) upon uni-axial tensile load is the same in both models. (b)  no bonds break during 1000 consecutive timesteps. After Young’s modulus E of systems with different number of particles N in  reaching equilibrium, the external strain is increased again and a  stress-strain  (σ–ε) diagram. In essence,  E  is indeed independent  the whole procedure is iterated until ultimate failure occurs. 

of N. 

For the actual simulation adapted to Al O , Ω = 1.1, ρ = 3.96 

2 3

and κ = 350 are chosen; these values corresponding to a typical 
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experimental  situation  of  99%  volume  density,  ρ  =  3.96  g/

cm3 and E = 370GPa. Results of the simulations are displayed 

in the picture series of  Figure 28, which shows 4 snapshots 

of the fracture process, in which the main features of crack 

instability, as pointed out by Sharon and Fineberg [184] (onset 

of branching at crack tips, followed by crack branching and 

fragmentation) are well captured. At first, many micro-cracks 

are initiated all over the material by failing particle pair bonds. Figure 29: Snapshots of a 2D FEM simulation of the fracture process These micro-cracks lead to local accumulations of stresses  of a PMMA (poly-methyl methacrylate) plate which is subject to in the material until crack tips occur where local tensions  an initial uniform strain rate in vertical direction. Here, there is no accumulate to form a macroscopic crack. This crack ultimately  statistical variability of the microstructure modeled with more than leads to a macroscopic, catastrophic failure of the model solid,  50 × 106 elements. Thus, the model solid has to be artificially pre-which corresponds very well to the fracture pattern of a brittle  notched and it still exhibits a strong dependence on the mesh size and material. Similar FEM simulations, see Figure 29, using about  the number of elements. Adapted from [202]. 

50 million elements, still exhibit a strong dependence of the 

The results of uni-axial shear simulations are presented 

number of elements and of element size [202]. One advantage  in  Figure 30. Only the color-coded network of particles is of the proposed particle model in contrast to FEM models is,  shown: stressfree (green), tension (red) and pressure (blue). 

that many systems with the same set of parameters (and hence  Starting from the initially unloaded state, the top and bottom the same macroscopic properties) but statistically varying  layer  of  particles  is  shifted  in  opposite  directions.  At  first, micro-structure (i.e., initial arrangement of particles) can be  in Figure 30a, the tension increases over the whole system. 

simulated, which is very awkward to attain using FEM. By  Then, as can be seen from Figure 30b and c, shear bands form way of performing many simulations a good statistics for  and stresses accumulate, until failure due to a series of broken corresponding observables can be achieved. 

bonds occurs. 

Figure 30: Quasi-static shear loading of a virtual material specimen 

Figure 28: Crack initiation and propagation in the virtual macroscopic  with N = 2500. The color code is the same as in Figure 28 except material sample upon uni-axial tensile load using N = 104 particles.  for particle bonds under pressure which are coded in blue. (a) Onset The color code is: Force-free bonds (green); Bonds under tensile  of shear tensile bands and (orthogonal) shear pressure bands in load (red). (a) Initiation of local tensions. (b) Initiation of a crack  the corners of the specimen. (b) Shear bands traversing the whole tip with local tensions concentrated around this crack tip. (c) Crack  specimen. (c) Ultimate failure. 

propagation including crack instability. (d) Failure. (e) Averaged 

stress-strain (σ-ε) relation. For N = 2500 (green curve) 10 different 

Finally, in  Figure 31  non-equilibrium MD simulation 

systems were averaged, and for  N  =  10000  (red  curve)  the  stress-

(NEMD) results for systems with varying shock impact 

strain relations of 5 different initial particle configurations obtained in  velocities are presented and compared with high-speed impact uni-axial load simulations were averaged. 

experiments performed at EMI with different ceramic materials 
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(Al O and SiC). These oxide and non-oxide ceramics represent  ometry of the experiment can be simulated while still including a mi-2 3

two major classes of ceramics that have many important  croscopic resolution of the system. The impactor is not modeled ex-applications. The impactor hits the target at the left edge. This  plicitly, but rather its energy is transformed into kinetic energy of the leads to a local compression of the particles in the impact area.  particle bonds at the impact site. (a) Top row: A pressure wave propa-The top series of snapshots in Figure 31a shows the propagation  gates through the material and is reflected at the free end as a tensile of a shock wave through the material. The shape of the shock  wave (not shown). Middle row: The actual EOI experiment with a SiC specimen. The time interval between the high-speed photographs 

front and also the distance traveled by it correspond very well to  is comparable with the simulation snapshots above. The red arrows the high-speed photographs in the middle ofFigure 31a. These  indicate the propagating shock wave front. Bottom row: The same snapshots were taken at comparable times after the impact had  simulation run but this time only the occurring damage in the material occurred in the experiment and in the simulation, respectively.  with respect to the number of broken bonds is shown. (b) Number In the experiments which are used for comparison, specimens of  of broken bonds displayed for different system sizes N, showing the dimensions (100 × 100 × 10)mmwere impacted by a cylindrical  convergence of the numerical scheme. Simulation parameters (α, γ, blunt steel projectile of length 23mm, mass m = 126 g and a  λ) ) are chosen such that are chosen such 

the correct stress-strain relations of 

that the correct stress-strain relations of two dif-

dif-

diameter of 29.96mm [18]. After a reflection of the pressure  ferent materials (Al O  and SiC) are recovered in the simulation of 2 3

wave at the free end of the material sample, and its propagation  uniaxial tensile load. The insets show high-speed photographs of SiC 

and Al O , respectively, 4 μs after impact. 

back into the material, the energy stored in the shock wave 

2 3

front finally disperses in the material. One can study in great 

The impactor is not modeled explicitly, but rather its 

detail the physics of shock waves traversing the material and  total kinetic energy is transformed into kinetic energy of the easily identify strained or compressed regions by plotting the  particles in the impact region. Irreversible deformations of the potential energies of the individual pair bonds. Also failure in  particles such as plasticity or heat are not considered in the the material can conveniently be visualized by plotting only  model, i.e., energy is only removed from the system by broken the failed bonds as a function of time, cf. the bottom series  bonds. Therefore, the development of damage in the material of snapshots in Figure 31a. A simple measure of the degree  is generally overestimated. 

of damage is the number of broken bonds with respect to the 

In summary, the discussed concurrent multiscale particle 

their total initial number. This quantity is calculated from  model reproduces the macroscopic physics of shock wave impact simulations of Al O and SiC, after previously adjusting 

2 3

propagation in brittle materials very well while at the same time 

the  simulation  parameters  γ,  λ  and  α  accordingly.  Figure  allowing for a resolution of the material on the micro scale and 31b exhibits the results of this analysis. For all impact speeds  avoiding typical problems (large element distortions, element-the damage in the SiC-model is consistently larger than in the  size dependent results) of FEM. The observed failure and crack one for Al O  which is also seen in the experiments. 

2 3

pattern in dynamic impact simulations can be attributed to the 

random initial distribution of particle overlaps which generates 

differences in the local strength of the material. By generating 

many realizations of systems with different random initial 

overlap distribution of particles, the average values obtained 

from these many simulations lead to the fairly accurate results 

when compared with experimental studies. 

COARSE-GRAINED MD SIMULATIONS OF 

SOFT MATTER: POLYMERS AND BIOMACRO-

MOLECULES

The field of simulation of polymers and of biological 

macromolecular structures has seen an exciting development 

over the past 30 years, mostly due to the emergence of 

physical approaches in the biological sciences, which lead to 

the investigation of soft biomaterials, structures and diseases 

as well as to the development of new medical treatments and 

diagnostic methods [203,204]. The challenge faced by material 

scientists, namely that structure and dynamics of materials are 

characterized by extremely broad spectra of length and time 

scales, is particularly apparent with polymeric materials. 

Due to their length, polymers can attain a large number of 

conformations which contribute to the total free energy of a 

macromolecular system [205]. The structure of macromolecules 

is thus determined by an interplay between energetic and 

entropic contributions. The hydrodynamic interactions of 

polymers with solvent molecules, covalent interactions, intra- 

and intermolecular interactions and – particularly in biological 

macromolecules – the Coulomb interactions between charged 

monomers along with hydrogen bonds add up with the 

Figure 31:  Results of a simulation of the edge-on-impact (EOI)  entropic forces to build a very complex system of interacting geometry, cf. Figure 23, except this time, the whole macroscopic ge-Figure 23, except this time, the whole macroscopic ge-
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constituents. The enormous range of characteristic time and  lipoprotein assemblies and protein-lipid complexes for several length scales accounts for their widespread use in technological  microseconds [134]. 

applications and furthermore the most important biomolecular 

structures are polymers. It is clear that the treatment of such  Scaling of Linear, Branched and Semiflexible systems calls for hierarchical multiscale modeling approaches  Macromolecules

which can efficiently sample the complex potential energy 

hypersurface of polymeric materials, ensuring equilibration  As for bulk condensed matter in general, analysis of the over the relevant length and time scales. Here, we provide a few  microscopic structure of polymer systems is mostly carried examples of a very powerful MD method that is widely used  out by scattering experiments. Depending on the system in polymer physics for extending the available time and length  under study and the desired resolution, photons in the X-ray scales in simulations, namely  coarse-grained MD. With this  and light scattering range, or neutrons are used. The general method, the explicit chemical structure of the macromolecules  set up of a scattering experiment is very simple and indicated is neglected by summarizing many atoms within one monomer  schematically in Figure 33 [206]: One uses an incident beam in the simulation. With this approach, a focus is put on the  of  monochromatic  radiation  with  wavelength  λ  and  initial structure due to the specific connectivity of the monomers and  intensity I . This beam becomes scattered by a sample and the 0

on general universal scaling laws. 

intensity I of the scattered waves is registered by a detector (D) 

at a distance d, under variation of the direction of observation. 

Coarse-Grained Polymers

The scattering vector q⃗ q→ is defined as

With polymer systems, many properties can be successfully 

simulated by only taking into account the basic and essential 

features of the chains, thus neglecting the detailed chemical 

structure of the molecules. Such  coarse grained models, 

cf.  Figure 32, are used because atomistic models of long 

polymer chains are usually intractable for time scales beyond 

nanoseconds, but which are important for many physical 

phenomena and for comparison with real experiments. Also, 

the fractal properties of polymers render this type of model 

very useful for the investigation of scaling properties. Fractality  Figure 33: General set up of a scattering experiment according to means, that some property X of a system (with polymers, e.g.,  [206]. Details are described in the main text. 

the radius of gyration R ) obeys a relation X ∝ Nk, where N 

g

∈ ℕ is the size of the system, and k ∈ ℚ is the fractal dimension 

which is of the form k = p/q with p ≠ = q, q ∈ ℕ and p ε ℕ. The 



(53)

basic properties that are sufficient to extract many structural  where 

denote wave vectors of the incident and the 

static and dynamic features of polymers are:

scattered plan waves. The result of a scattering experiment is 

usually expressed by giving the intensity distribution 

-space, cf. Figure 33. In the majority of scattering experiments 

on polymers the radiation frequency remains practically un-

changed, thus one has

(54)

where  is related to the Bragg scattering angle θ  by

B

(55)

Figure 32: A coarse-grained model of a polymer chain where some  If the scattering can be treated as being due to just one class of groups of the detailed atomic structure (yellow beads) is lumped  materials, the scattering properties can be described by the in-into one coarse-grained particle (red). The individual particles are  terference function 

, also called scattering function or 

or struc-

struc-

connected by springs (bead-spring model). 

ture function., which is defined as:

•  The connectivity of monomers in a chain. 

•  The topological constraints, e.g., the impenetrability of 



(56)

chain bonds. 

•  The Flexibility or stiffness of monomer segments. 

Here  N   represents the total number of particles (or 

m

monomers in the case of macromolecules) in the sample 

Using coarse-grained models in the context of lipids and  and  I   is the scattering intensity produced by one particle, proteins, where each amino acid of the protein is represented by 

m

if placed in the same incident beam. The scattering function 

two coarse-grained beads, it has become possible to simulate  expresses the ration between the actual intensity which would 
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be measured and the intensity which would be measured, if all  is the repulsive part of the potential energy at shorter distances. 

particles in the sample were to scatter incoherently. Scattering  In this case the chains tend to swell and the size  R  of the diagrams generally emerge from the superposition and  polymer (e.g., the end-to-end distance R  in the case of linear e

interference of the scattered waves emanating from all particles  chains or the radius of gyration R ) scale with an exponent ν = 

g

in the sample. The total scattering amplitude measured at the  3/5. In the opposite case of a poor solvent, polymers tend to detector is then given by

shrink and R scales with ν = 1/3. The point were the repulsive 

and attractive interactions just cancel each other defines the θ–

point and 



θ–temperature, 

and θ–tem

–tem

respectively

perature, 

. 

respectively Here, the 

Here, 

chain 

the 

confi

chain 



configu-

configu-

ration is that of a Gaussian random coil with an exponent ν = 





(57)

1/2. There are still three-body and higher order interactions 

present in a θ–solvent, but their contribution to the free energy 

Simple geometric considerations [206] show that the phases 

is negligibly small [52]. For the description of the distance of 

are determined by the particle position   and the scattering  temperature T from the 

from 

θ–temper

the 

ature, 

θ–temper

–temper

a 

ature,  dimensionless param-

dimensionless 

ature, a dimensionless param-

ivector   only, being given by

eter is used, the reduced temperature ζ which is defined as:



(58)



(63)

Thus, the scattering amplitude produced by a set of particles  A crossover scaling function f serves for the description of at locations   may be formulated as a  dependent function  the scaling behavior of polymer chains in different solvent in the form

conditions [52]. The argument of f is given by 

At θ–tem-

–tem-

perature, 

(59)

It is a well-known fact from electrodynamics that the scattering 



(64)

intensity is proportional to the squared total scattering ampli- At T < T , 

tude, i.e., 

θ

(65)





(60)

At T > Tθ, 

The brackets indicate an ensemble average which involves, 

as always in statistical treatments of physical systems, all 

microscopic states of the sample. For ergodic systems the 



(66)

time average carried out by the detector equals the theoretical 

In  experiments,  it  is  rather  difficult  to  obtain  complete 

ensemble average. As the normalization of the amplitudes of  and conclusive results in the study of the collapse transition the single scattered waves is already implied in the definition  of chains, because one is often restricted to the three distinct of the structure function, Equation (56), Equation (60) can be  limiting cases of polymer solutions, the extreme dilute regime, written as

theθ-point, and the regime of very high polymer concentrations 

[207]. 





(61)

At the θ –temperature the chains behave as 〈R 2〉 ∝ 〈R 2〉 

g

e

∝ (N – 1)2ν  with ν  = 0.5 besides logarithmic corrections in 

which is a basic equation of general validity that may serve as 

θ

θ

3D. Therefore, one expects that a plot of 〈R2〉 / (N – 1) vs. 

starting point for the derivation of other forms of scattering,  T for different values of N shows a common intersection point e.g., for isotropic systems, where 

with 

,  at T = T where the curvature changes: for T > T  the larger N, 

θ

θ

cf. Equation (68). Inserting Equation (59) into (61) one obtains the larger the ratio 〈R2〉 / (N – 1), while for T < T  the larger N, θ

thesmaller the ratio 〈R2〉 / (N – 1). Using the model potential 

of  Equation (25)  – instead of varying temperature (which 

involves rescaling of the particle velocities), different solvent 



(62)

qualities  are  obtained  by  tuning  the  interaction  parameter  λ. 

The corresponding transition curves are displayed in  Figure 

Equation (62)  can be calculated directly in molecular  34 which show a clear intersection point at roughly λ = λ  ≈ 

computer simulations as the positions  of all scattering 

θ

0.65. Moreover it can be seen that the transition becomes 

particles  N are exactly known at all times (within the 

m

sharper with increasing chain length N. The different curves 

boundaries  of  numerical  errors  when  using  floats  in  double  do not intersect exactly at one single point, but there is an precision as a representation of real numbers). 

extended region in which the chains behave in a Gaussian 

Polymers usually do not exist in vacuum but in solution. A sol- manner. The size of this region is ∝ N−1/2 [52]. There is a very vent is referred to as  good  when the prevailing form of the  slight drift of the intersection point toward a smaller value of λ 

effective interaction between polymer segments in this solvent  with increasing chain length N. 
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(67)

An important property of individual chains is the structure fac-

tor S(q) the spherical average of which is defined as [3]:





(68)

with subscript   denoting the average over all scatter vectors 

of the same magnitude 

being the position vector to 

the ith monomer and N denoting the total number of monomers 

(scatter centers). For different ranges of the scatter vectors the 

following scaling relations hold [52]:



(69)

where l  is the (constant) bondlength of the monomers (often 

b

Figure 34:  Coil-to-globule transition from good to bad solvent  also called segment length). The importance of S(q) lies in the behavior of a polymer chain. Plot of 〈R 2〉 / (N – 1)2ν vs. interaction  fact that it is  directly  measurable in scattering experiments. 

g

parameter λ for linear chains. The points represent the simulated data  For  ideal  linear chains the function  S(q) can be explicitly and the dotted lines are guides to the eye. ν = ν  = 0.5. Also displayed  calculated and is given by the monotonously decreasing Debye θ

are simulation snapshots of linear chains for the three cases of a  function. 

good,θ-, and a bad solvent. 

Therefore, to obtain a more precise estimate of the  θ–





(70)

temperature in the limit of (N → ∞), one has to chose a different 

graph that allows an appropriate extrapolation. If one draws  where the quantity x is given by with index 0 

straight horizontal lines in  Figure 34  the intersection points  denoting θ –conditions. For small values of x, corresponding of these lines with the curves are points at which the scaling  to large distances between scattering units, the Debye func-function 

of Equation (65) is constant. Plotting different  tion S(x) also provides a good description of a linear chain intersection points over N−1/2 therefore yields different straight  in a  goodsolvent with the scaling variable  x  describing the lines that intersect each other exactly at  T  =  T   and  λ  =  λ

θ

θ 

expansion of the chain. For very small scattering vectors q one 

respectively. This extrapolation (N → ∞) is displayed in Figure  obtains theGuinier approximation [51] by an expansion of S(q), 35. The different lines do not intersect exactly at  N−1/2  =  0  which is used in experiments to calculate the radius of gyration which is due to the finite length of the chains. As a result of  〈R 2〉. In the intermediate regime of scattering vectors, S(q) these plots one yields the value of λ for which the repulsive and 

g

obeys a scaling law which, in a double-logarithmic plot, should 

attractive interactions in the used model just cancel each other: yield a slope of −1/ν. For large q-values finally, S(q) is expected to behave as 1/N. The overall expected behavior of S(q) 

is summarized in Equation (69). 

In the vicinity of the  θ–region, the scaling exponent 

equals  ν  =  ν   =  0.5.  Therefore  q2S(q), plotted against wave 

θ

vector  q, which is called a  Kratky plot  should approach a 

constant value. Figure 36 displays this behavior for different 

chain lengths with high resolution in terms of λ. The respective 

dotted horizontal line is a guide to the eye. The larger the chains 

are, the smaller is the λ-range at which the chains display ideal 

(Gaussian) random–walk behavior. For large values of λ the 

chains are collapsed and form compact globules the local 

structure of which is also reflected in the structure function by 

several distinct peaks for larger q-values. These peaks become 

the  more  pronounced  the  longer  the  chains  are,  reflecting 

Figure 35:  Interaction  parameter  λ  of  Equation (25)  vs.  N−1/2  for  the fact that the transition curves become ever sharper with different values of the scaling function. Data points are based on the  increasing chain length. Hence, longer chains are already in radius of gyration of linear chains [51]. 

the collapsed regime for values of λ at which the smaller chains 

still exhibit Gaussian behavior. The structure function of the 
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largest system in Figure 36 for λ = 1.0 already resembles very  This result is consistent with lattice-MC simulations on a fcc-much the scattering pattern of a sphere. 

lattice [209]. More details on finite-size scaling can be found 

in [50,51]. 

The  fundamentals  of  the  dynamics  of  fully  flexible 

polymers in solution or in the melt were worked out in 

the pioneering works of Rouse [210] and Zimm [211], 

as well as of Doi and Edwards [212] and de Gennes 

[52].  In  contrast  to  fully  flexible  polymers,  the  modeling 

of semiflexible and stiff macromolecules has received recent 

attention, because such models can be successfully applied to 

biopolymers such as proteins, DNA, actin filaments or rodlike 

viruses [213,214]. Biopolymers are wormlike chains with 

persistence lengths l  (or Kuhn segment lengths l ) comparable 

p

K

to or larger than their contour lengthL and their rigidity and 

relaxation behavior are essential for their biological functions. 

Figure 36.  Kratky plot of S(q) of linear chains (N = 2000) for different 

values of the interaction parameter λ. 

Using the second term of the bonded potential 

of  Equation (26), a bending rigidity Φ (θ) can be 

In Figure 37 the scaling of 〈R 2〉 for different star polymers 

bend

g

introduced. Rewriting this term by introducing the unit vector 

as a function of  N  and for different functionalities  f  is 

displayed. Functionality f = 2 corresponds to linear chains, f = 

along the macromolecule, 

3 corresponds three-arm star polymers and so on. The star  cf. Figure 10, one obtains: polymers were generated with the MD simulation package 

“MD-Cube” developed by Steinhauser [51,63] which is 

capable of handling a very large array of branched polymer 

topologies, from star polymers to dendrimers, H-polymers, 

(71)

comb-polymers or randomly hyperbranched polymers. Details 

of the set-up of chains which works the same way for linear  where  θ   is the angle between 

. The crossover 

i

and branched polymer topologies can be found in [208]. Figure  scaling from coil-like, flexible structures on large length scales 37a shows a double-logarithmic plot from which one obtains  to stretched conformations at smaller scales can be seen in the the scaling exponents of R  for stars with different numbers of  scaling of  S(q) when performing simulations with different g

arms. The results for linear chains are displayed as well, for  values of  k   [208]. Results for linear chains of length  N  =  

θ

which chain lengths of up to N = 5000 were simulated. Within  700 are displayed in Figure 38a. The chains show a scaling the errors of the simulation, the exponents do not depend on  according to qν. The stiffest chains exhibit a q−1–scaling which the number of arms, as expected from theory. The obtained  is characteristic for stiff rods. Thus, by varying parameter k , θ

scaling exponents are summarized in  Table 4  and exhibit a  the whole range of bending stiffness of chains from fully reasonable agreement with theory. 

flexible chains to stiff rods can be covered. The range of q–

vectors for which the crossover from flexible to semiflexible 

and stiff occurs shifts to smaller scatter vectors with increasing 

stiffnessk  of the chains. The scaling plot in Figure 38b shows 

θ

that the transition occurs for q ≈ 1/l , i.e., on a length scale of 

K

the order of the statistical Kuhn length. In essence, only the 

fully flexible chains (red data points) exhibit a deviation from 

the master curve on large length scales (i.e., small q–values), 

which corresponds to their different global structure compared 

with semi-flexible macromolecules. Examples for snapshots of 

stiff and semiflexible chains are finally displayed in Figure 39. 

Figure 37:  (a) Log-Log plot of 〈R 2〉  vs.  N  of star polymers with 

g

different arm numbers f. For comparison, data for linear chains (f = 2) 

are displayed as well. (b) Scaling plot of the corrections to scaling of 

〈R 2〉 (f) plotted vs. N−1 in good solvent. For clarity, the smallest data 

g

point of the linear chains (f = 2, N = 50) is not displayed. 

Table 4: Obtained scaling exponents ν for star polymers in simulations 

with different arm numbers f. 

Figure 38: (a) S(q) of single linear chains with N = 700 and varying 

stiffness k . The scaling regimes (fully flexible and stiff rod) are in-

θ

In Figure 37b it is exhibited, that the corrections to scaling  dicated by a straight and dashed line, respectively. (b) Scaling plot of S(q)/l  versus q · l  using the statistical segment lengthl  adapted 

due  to  the  finite  size  of  the  chains  are  ∝  N−1. A plot with 

K

K

K

from [208]. 

exponents −2 or −1/2 leads to worse correlation coefficients. 
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which are constrained to a small region in space [223]. The 

properties are investigated as a function of chain length N and 

interaction strength ξ. Starting with Equation (10) and using 

k  =  1  (cgs-system  of  units)  the  dimensionless  interaction 

parameter

(72)

Figure 39: Simulation snapshots of (a) flexible chains (k  = 0), (b) 

θ

semiflexible chains (k  = 20), (c) stiff, rod-like chains (k  = 50). 

θ

θ

can be introduced, where the Bjerrum length ξ  is given by:

B

Polyelectrolytes

(73)

A large variety of synthetic and biological macromolecules are 

polyelectrolytes [215]. The most well-known polyelectrolyte  where k  is the Boltzmann constant, T is temperature, epsilon is B

biopolymers, proteins, DNA and RNA, are responsible in  the energy scale from the Lennard-Jones potential ofEquation living systems for functions which are incomparably more  21, σ defines the length scale (size of one monomer) and e is the complex and diverse than the functions usually discussed  electronic charge. The interaction parameter for the presented for synthetic polymers present in the chemical industry.  study is chosen in the range of ξ = 0, ..., 100 which covers For example, polyacrylic acid is the main ingredient for  electrically neutral chains (ξ = 0) in good solvent as well as diapers and dispersions of copolymers of acrylamide or  highly charged chain systems (ξ = 100). The monomers in the methacrylamide and methacrylic acid are fundamental for  chains are connected by harmonic bonds using the first term of cleaning water [216]. In retrospect, during the past 30 years,  the bonded potential of Equation (26). The interaction with the despite the tremendous interest in polyelectrolytes, unlike  solvent is taken into account by a stochastic force and a 

neutral polymers [52,217], the general understanding of the  friction force with a damping constant χ, acting on each mass behavior of electrically charged macromolecules is still rather  point. The equations of motion of the system are thus given by poor. The contrast between our understanding of neutral and  the Langevin equations

charged polymers results form the long range nature of the 

electrostatic interactions which introduce new length and time 

(74)

scales that render an analytical treatment beyond the Debye-

H¨ckel approximation very complicated [218,219]. Here, the 

The force   comprises the force due to the sum of potentials 

traditional separation of scales, which allows one to understand  of Equation 21 with cutoff r  = 1.5, Equation 11 with k = 1 

cut

properties in terms of simple scaling arguments, does not work  and z  = ±1, and the first term on the right-hand side of the i/j

in many cases. Experimentally, often a direct test of theoretical  bonded potential in Equation 26 with κ = 5000ε/σ and bond concepts is not possible due to idealizing assumptions in the  length l = σ  = 1.0. The stochastic force   is assumed to be theory, but also because of a lack of detailed control over the 

0

0

stationary, random, and Gaussian (white noise). The electrically 

experimental system, e.g., in terms of the molecular weight.  neutral system is placed in a cubic simulation box and periodic Quite recently, there has been increased interest in hydrophobic  boundary conditions are applied for the intermolecular polyelectrolytes which are water soluble, covalently bonded  Lennard-Jones interaction according to Equation (21), thereby sequences of polar (ionizable) groups and hydrophobic groups  keeping the density ρ = N/V = 2.1 × 10−7/σ3 constant when which are not [220]. Many solution properties are known to be  changing the chain length N. The number of monomers N per due to a complex interplay between short-ranged hydrophobic  chain was chosen as N = 10, 20, 40, 80 and 160 so as to cover attraction, long-range Coulomb effects, and the entropic  at least one order of magnitude. For the Coulomb interaction degrees of freedom. Hence, such polymers can be considered  a cutoff that is half the box length r  = 1/2L  was chosen. 

as highly simplified models of biologically important 

cut

B

This can be done as the eventually collapsed polyelectolyte 

molecules, e.g., proteins or lipid bilayers in cell membranes. In  complexes which are analyzed are confined to a small region this context, computer simulations are a very important tool for  in space which is much smaller than r . In the following we the detailed investigation of charged macromolecular systems. 

cut

discuss exemplarily some scaling properties of charged linear 

A comprehensive review of recent advances which have been  macromolecules in the collapsed state. The simulations are achieved in the theoretical description and understanding of  started with two well separated and equilibrated chains in the polyelectrolyte solutions can be found in [221]. 

simulation box. After turning on the Coulomb interactions 

The investigation of aggregates between oppositely  with opposite charges z  = ±1 in the monomers of both chains, i/j

charged macromolecules plays an important role in technical  the chains start to attract each other. In a first step during the applications and in in particular biological systems. For  aggregation process the chains start to twist around each other example, DNA is associated with histone proteins to form  and form helical like structures as presented in Figure 40. In the chromatin. Aggregated of DNA with cationic polymers  a second step, the chains start to form a compact globular or dendrimers are discussed in the context of their possible  structure because of the attractive interactions between dipoles application as DNA vectors in gene therapies [224,225]. Here,  formed by oppositely charged monomers, see the snapshots we present MD simulations of two flexible, oppositely charged  in Figure 41a. 

polymer chains and illustrate the universal scaling properties 

Figure 41a  exhibits the universal scaling regime 

of the formed polyelectrolyte complexes that are formed when  of  R   obtained  for  intermediate  interaction  strengths  ξ  and the chains collapse and build compact, cluster-like structures 

g

scaled by (N – 1)2/3. Here, the data of various chain lengths 
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fall nicely on top of each other. This scaling corresponds to  possibility to develop a formal description of biology using the scaling behavior of flexible chains in a bad solvent and is  the quantitative methods of physics. Simulation studies of also in accordance with what was reported by Shrivastava and  biological materials now range from electronic structure Muthukumar [226]. The change of R  is connected with a change  calculations of DNA, molecular simulations of proteins, g

of  the  density  ρ  of  the  polyelectrolyte  aggregate.  However,  biomembranes and biomacromolecules like actin to continuum in Figure 41b, which presents an example of ρ for ξ = 4, only a  theories of collagenous tissues. Several collagen-related slight dependence of the density on the chain length N can be  diseases occur in humans, with osteoporosis and tendinitis observed. ρmeasures the radial monomer density with respect  being complex examples. Both are linked to the mechanical to the center of mass of the total system. For longer chains,  properties of collagen and its higher order, structurally related there is a plateau while for short chains there is a pronounced  form: collagen fibrils and fibers, as well as macroscopic maximum of the density for small distances from the center  tissues, tendon, and bone, cf. Figure 42. 

of mass. While this maximum vanished with decreasing ξ it 

appears also at higher interaction strengths for longer chains. 

Monomers on the outer part of the polyelectrolyte complex 

experience a stronger attraction by the inner part of the cluster 

than the monomers inside of it, and for smaller ξ, chains of 

different lengths are deformed to different degrees which leads 

to a chain length dependence of the density profile. 

Figure 42:  (a) Hierarchical features of collagen which determines 

the mechanical properties of cells, tissues, bones and many other 

biological systems, from atomistic to microscale. Three polypeptide 

strands arrange to form a triple helical tropocollagen molecule. 

Figure 40:  Twisted, DNA-like polyelectrolyte complexes  Tropocollagen (TP) molecules assemble into collagen fibrils which mineralize by formation of hydroxipatite (HA) crystals in the gap 

formed by electrostatic attraction of two oppositely charged  regions which exist due to a staggered array of molecules. (b) Stress-linear macromolecules with N = 40 at 

(a), 

(b),  strain  response  of  a  mineralized  collagen  fibril  exhibiting  larger 

(c) and   = 120000 (d), where  is given in Len- strength  than  a  non-mineralized,  pure  collagen  fibril.  Both  figures adapted from [227] with permission. 

nard-Jones units. The interaction strength is ξ = 8 [222,223]. 

Soft biological matter is the constituent element of life, 

and therefore, the integration of concepts from different 

disciplines to develop a quantitative understanding of 

matter in living systems has become an exciting new area of 

research. Characterization of soft biological materials within 

a physical approach is focused towards the elucidation of 

the fundamental principles of self-assembly, deformation 

and fracture. Deformation and fracture in turn are closely 

linked to the atomic micro structure of a material. While in 

hard matter like polycrystalline solids mechanisms such as 

dislocation propagation, random distribution of cracks or crack 

extension occur, biomacromolecules exhibit molecular folding 

or unfolding, rupture of hydrogen or other chemical bonds, 

Figure 41:  (a) Radii of gyration as a function of the interaction  intermolecular entanglements or cross-links. The role of strength ξ for various chain lengths according to [223]. The radius  mechanics is even more decisive on the cellular level, because of gyration R 2 is scaled by (N – 1)2/3, where (N –1) is the number of  on this level, several basic questions can be addressed: How is g

bonds of a single chain. Also displayed are sample snapshots of the  cell stress and energy transmitted to the environment; what are collapsed globules with N = 40 and interaction strengths ξ = 0.4, 4, 40.  the forces and interactions that give rise to cell deformations or (b) Radial density of monomers with respect to the center of mass of a  cell rupture; What exactly is the role of hydrogen bonds when globule and interaction strength ξ = 4 for different chain lengths, N =  it comes to the stability of cell membranes? While standard 20 (blue), N = 40 (red), N = 80 (green) and N = 160 (brown). 

biology answers these questions in an empirical, merely 

descriptive manner, a physical approach tries to establish a 

EMERGING COMPUTATIONAL APPLICA-

framework for a quantitative description [228,229]. At larger 

TIONS IN BIOPHYSICS AND MEDICAL TU-

length scales the interaction of molecules with cells or different 

MOR TREATMENT

types of tissue become dominant and play a major role in the 

mechanical material behavior. 

Biology is becoming one the most fascinating interdisciplinary 

Here, the application of shock waves is of particular interest 

field where physics, chemistry, mathematics and materials  for medical applications. Since the introduction of shock wave science meet. The insight that was gained at the cellular  therapy for the treatment of gall- and kidneystones as a new and subcellular scales during the last few decades offer a  non-invasive technique to disintegrate concrements,  i.e., 
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extracorporeal shock wave lithotripsy (ESWL), in the 1980s  damage is expected is also superimposed onto this image. Adapted 

[232], a multitude of new indications for ESWL have arisen.  from [230] with permission. (c) Schematic of a magnetic resonance Apart from physical disintegration of calculi as an approved  guided HIFU equipment for the possible treatment of tumor tissue. 

standard therapy in humans, enthesopathies like tennis elbow  Figure adapted from [231] with permission. 

or bone pathologies (pseudoarthroses and delayed unions) 

MR-guided HIFU is able to disintegrate kidney stones and 

represent classical indications for ESWL, see e.g., [233] and the  to cure non-unions and certain soft tissue disorders. The effect references therein. The antibacterial effects of extracorporeal  of the shock wave in urology and orthopaedic applications shock waves could offer new applications in some difficult- seems to be different. Currently, at least two different to-treat infections [234]. At the beginning of ESWL a major  mechanisms of shock waves are noted. On the one hand, the problem was that kidney or gall stones were destroyed by  positive pressure is responsible for a direct shock wave effect, waves only, when the stone was exactly on target. Thus, it  and on the other hand, tensile waves cause cavitation, which became necessary to locate the stones in 3D. Initially this was  is called  indirect  shock wave effect [236], cf.  Figure 44. 

considered a major technological problem and was solved  Reflections  at  interfaces  and  damping  in  the  material  leads with several independent X-rays; today, on uses magnetic  to energy loss of the wave. The disintegrating effect of the resonance (MR) imaging which allows live monitoring of  shock wave however very strongly depends on the plasticity ESWL treatments. Despite the therapeutic success of ESWL  of  the  material;  for  example,  a  wave  with  sufficient  energy as therapeutic modality without the need of surgical risks and  to disintegrate a kidney stone has minimal effect on an intact surgical pain, the exact mechanisms of shock wave therapy,  bone [235]. Many questions in the medical application of e.g., effects on tissue damage, rupture or damage of cell  shock waves, e.g., the possibility for the successful treatment membranes, remain widely unknown. Albeit the term “shock  of tumor cells using ESWL and MR-guided HIFU are still waves” is commonly used in the context of medical treatments,  unanswered,  opening  a  wide  research  field  which  requires usually the waves that are generated by an underwater high- the application of sophisticated experimental and numerical voltage spark discharge and subsequently focused using an  techniques not only on multi-scales but also on multi-fields of elliptical  reflector,  cf.  Figure  43,  are  merely  high-pressure  research. 

ultrasound waves (highly focused ultrasound, HIFU) which do 

not attain the physical characteristics and short rise times of 

real shock waves. Thus, up to now, the full potential of shock 

waves for medical treatments remains to be fully explored. 

Figure 44: Scheme of the disintegration of a kidney stone as a result 

of direct and indirect shock wave effects. Figure adapted from [235] 

with permission. 

CONCLUDING REMARKS

In summary we have attempted to provide a survey of 

numerical methods used on different time and length scales. 

We discussed first the importance of physical modeling in 

computational physics and then focused on the MD method 

which is the most used simulation technique on the molecular 

scale. As typical applications we presented methods for the 

generation of realistic microstructures of polycrystalline solids 

in 3D which can be used for FEM analysis on the macroscale 

including micro structural details. Results of MD and NEMD 

shock impact simulations employing a multiscale model based 

onmicroscopic soft particles were presented and the potential 

of the model for the description of macroscopic properties of 

brittle materials was demonstrated. Also, MD applications in 

polymer physics were presented which build the framework 

for modeling biological macromolecules and for modeling 

Figure 43:  (a) Schematic of the principle of ESWL. (b) Image of  more complex systems such as the application of shock waves human  body  with  symptomatic  fibroids.  Sonication  pathway  is  in cellular structures and biological tissue. Eventually we superimposed on the image and the spot where irreversible thermal  discussed new exciting emerging applications of shock wave 
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and polymer physics in medical research where many physical  6. 
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In  Anisotropy, Texture, Dislocations, Multiscale 

progress in understanding hierarchical biological materials 

Modeling in Finite Plasticity and Viscoplasticity and 

will facilitate to develop new materials technologies through 

Metal Forming; Khan, A, Kohei, S, Amir, R, Eds.; Neat 

the use of multiple hierarchies in an efficient and controlled 

Press: Fulton, Maryland, USA, 2006; pp. 634–636. 

manner, that is, lead to a structural design of materials on many  11.  Finnis, M; Sinclair, J. A Simple Empirical N-Body scales concurrently, instead of trial-and-error approaches. 

Potential for Transition Metals. Phil. Mag. A 1984, 50, 

Since there is tremendous continuing progress in 

45. 

multiscale computational techniques, this review is by no  12.  Kohn, W; Sham, L. Self-Consistent Equations Including means exhaustive. We hope that by presenting several recent 

Exchange and Correlation Effects. Phys. Rev 1965, 140, 

research examples from shock wave and polymer physics, 

1133–1138. 

which is triggered by our own research interests, and by  13.  Car,  R;  Parinello,  M.  Unified Approach  for  Molecular highlighting emerging applications of these established 

Dynamics and Density-Functional Theory.  Phys. Rev. 

computational approaches in medical engineering, we have 

Lett 1985,55, 2471. 

conveyed the message that multiscale modeling is an enterprise  14.  Courant, R. Variational Methods for the Solution of of truly multidisciplinary nature which combines the skills of 

Problems of Equilibrium and Vibrations.  Bull. Amer. 

physicists, materials scientists, chemists, mechanical, chemical 

Math. Soc1943, 49, 1–23. 

and medical engineers, applied mathematicians and computer 

scientists. The breaking down of traditional barriers between  15.  Bishop, J; Hill, R. A Theoretical Derivation of the different scientific disciplines represents the actual power and 

Plastic Properties of a Polycrystalline Face-Centered 

the great promise of computational multiscale approaches for 

Material. Philos. Mag 1951, 42, 414–427. 

enhancing our understanding, and our ability to controlling  16.  Markenscoff, X, Gupta, A, Eds.; Collected Works of J.D. 

complex physical phenomena, even in the field of life sciences, 

Eshelby; Springer: New York, NY, USA, 2006. 

biology and medicine. 

17.  Smith, C.  Structural Hierarchy in Inorganic Systems; 

American Elsevier: New York, NY, USA, 1969. 
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CHAPTER

12 INTRAMOLECULAR  

INTERACTIONS

Robert Penfold, and Peter J. Wilde

Keywords: Computer simulation, Molecular modelling, Graph theory

INTRODUCTION

The implementation of computer code for realistically 

simulating the configurations and motion of molecular 

objects requires modelling of many-body through-bond 

interactions. In turn, it is necessary to identify the participating 



(1)

atoms in each interaction. This paper presents a novel and  where the sums range over suitable n-body potentials U  that n

exhaustive enumeration procedure exploiting the line graph  depend on the spatial configuration  {r }  of the constituent s

transformation of the graph that encodes the molecular  atoms. Similar expansions are developed for non-bonded structure. In principle, by virtue of the recursive nature of the  forces too, and may also include 1-body coupling to an external algorithm, straightforward extension to arbitrarily high order  field, but the indiscriminate character of these through-interactions is possible. 

space interactions usually means that the identification of 

Application of graph theoretic methods to the general  participating atoms is determined by a simple range parameter. 

study of molecular structure, and to equilibrium statistical  For intramolecular interactions, however, the enumeration mechanics  in  particular,  are  not  new.  Significant  examples  and indexing of atoms involving in each sum of (1) is subject include the development of molecular branching rules [1],  to the constraints of molecular topology. Indeed, the 2-body the enumeration of isomers and the definition of topological  bond interactions  U  define the molecular framework, while 2 

indexes [2], as well as the analysis of discrete lattice models [3]  the higher order terms in  (1) serve to model the more or and Mayer’s cluster decomposition of the 2-body configuration  less restricted molecular flexibility associated with bond integral [4]. Modelling and theory distinguish between simple  hybridization or electronic delocalisation (e.g., aromaticity materials, comprised of weakly interacting elementary units,  and resonance structures). The selection of these higher order and complex materials including objects with internal structure  potentials is often based on chemical intuition and are typically characterized by relatively strong coupling and typically  supplied to simulation software as user defined input. Mature mimicking the covalent architecture of molecular species [5].  and widely used simulation packages (e.g., GROMACS, Furthermore, intramolecular interactions can be treated either  LAMMPS, NAMD, etc.) invariably support highly optimized quantum mechanically (Car–Parrinello method [6] with density  force fields (e.g., CHARMM, AMBER, OPLS, MMFF, etc.) functional theory of electronic structure [7]) or by a classical  that faithfully represent detailed atomistic structures. An effective potential obtained through some more or less ad hoc  alternative approach is to input only the molecular topology, coarse-graining procedure [8,  9]. In molecular dynamics or  then systematically generate all possible many-body index equilibrium Monte Carlo simulations, for example, the total  lists from this information and invite the user to select non-intramolecular potential energy is typically decomposed as  zero force constants and appropriate functional forms for 

[10]

the required potentials. This paradigm is more natural for 

the implementation of coarse-grained models derived by 

thermodynamic considerations (e.g., MARTINI [11]). To 

facilitate this semi-automatic procedure, a graph theoretic 

Citation: Robert Penfold and Peter J. Wilde, Intramolecular Interac-

construction is developed here to exhaustively enumerate and 

tions, DOI 10.1007/s10910-015-0510-x. 

index arbitrary  n-body intramolecular interactions starting 

from the description of 2-body adjacency. 

The central idea in this work observes the correspondence 

between the hierarchy of  n-body intramolecular interactions 
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and iteration of the line graph [12] transformation L(G) on a  thermore, the associated Kirchhoff matrix K(G) = D(G) − A(G) connected “molecular” graph G. 

(also called the Laplacian of G) satisfies a similar relationship

GRAPH THEORY

A simple, connected and undirected graph  and the positive semidefinite signless Laplace matrix of G is is composed of a finite nonempty vertex  [16]

set 

of 

vertices   v   and a finite 

 i

edge set 

comprising 

distinct 

unordered pairs 

of distinct vertices such that 

each element from   V(G)  appears at least once [13]. The  The spectrum of K(G) provides a useful consistency check number of vertices  p=|V(G)| and edges  q=|E(G)| are called  since the algebraic multiplicity of the zero eigenvalue is equal the order and size of G, respectively. By restricting edges to  to the number of connected components in G [16]. Hence, for ensure bond uniqueness (any vertex pair is joined by at most  a physically sensible molecular graph G, the rank of K(G) must one edge) and forbid loops (each edge must join distinct  be p − 1. 

vertices), molecular structures are naturally represented by  We recall the following definitions and terminology. A cycle such graphs  G. Each vertex 

has a nonempty  graph C  comprises p = r vertices, all of degree 2, connected in 

neighbor set 

that lists its 

r

a closed chain by q = r edges. Removing a single edge produces 

adjacent vertices 

, and 

is  a path graph P  (of order p = r and size q = r − 1) with two termi-

r

called the degree of  . The p×p square, symmetric and binary  nal vertices of degree 1. The complete graph K  on p = r verti-r

vertex adjacency matrix A(G) of a graph G, defined by

ces is maximally connected with 

edges such that 

for all distinct 

. A graph 

G = V(G), E(G)  is k-partite if the vertices can be partitioned 

into k disjoint sets, so that 

where 

. The complete bipartite graph (k = 2) is 

is in one-to-one correspondence with the molecular structure 

and is arguably the most natural algebraic representation of  denoted K  with 

and size 

m,n

topological connectivity. An elementary inductive argument  p = m + n such that 

and 

[14] establishes that 

is the total number of  m length  We will also have occasion to consider directed graphs G 

walks (a sequence of vertices joined consecutively by edges)  =  V(G), A(G)    where  edges  are  replaced  by  arrows  speci-between vertices  v  and  v . In particular, the degree of vertex 

 i

 j

fied  by  ordered  pairs 

and oriented 

 v  corresponding to the valency of atom i in the molecular 

 i

with the tail at vertex  v  pointing towards the head at ver-

structure is

 i

tex   v .  Associated with each vertex  v   ∈ V(G) are two dis-

 j

 i

joint neighbor sets 

and 

where 

. At 

most one of   or   may be empty. The indegree of vertex 

so that the p × p diagonal degree matrix becomes

and the outde-

gree is 

. If 

so that 



then vertex  v  is called a source and, similarly, if 

so that 

 i

where the e  are natural basis vectors in the coordinate vector 

i

then vertex  v  is called a sink. 

space  . Another useful representation of graph connectivity 

 i

is the p × q binary vertex-edge incidence matrix Z(G) defined 

by

INTRAMOLECULAR INTERACTIONS

In a molecular structure, covalently bonded atom pairs are 

considered to be adjacent. Similarly, a pair of adjacent bonds 

sharing a common “hinge” atom form a more or less flexible 

bend. The corresponding 3-body interaction is often described 

For each graph G there is an associated line graph L(G)(also  by an effective potential in terms of the external bond called the “derivative” graph [15]) such that V L(G)  is in bi- angle θ supplementary to the angle subtended at the hinge atom jective correspondence with E(G) and

[17]. A 4-body dihedral interaction is associated with a pair of 

adjacent bends that share a common bond. Two situations are 





(2)

possible [18] (see Fig. 1): “proper” torsions arise when both 

hinge atoms are distinct, so that one bend is rotated about the 

where I  is the q × q identity matrix. In other words, each edge 

q

other through a dihedral angle ϕ; while “improper” dihedral 

of G is mapped to a vertex of L(G), while two vertices of the  interactions link two bends through a common hinge atom, line graph are adjacent if and only if their corresponding edges  and are defined by a wag angle ω. Proper torsions typically are incident in G (that is, they share a common endpoint). Fur- account for geometric restrictions conferred by implicit 
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substituents (usually protons) or lone electron pairs and may be  graph L(G) encodes the adjacency of bonds (i.e., bends) in G; alternatively characterized by a bond lying along the dihedral  the graph  L(L(G))=L2(G) encodes the adjacency of bends (i.e., axis. Conversely, the dihedral axis of an improper torsion does  dihedrals) in G; and so on. Generally, the graph Lν−2(G) encodes not contain a bond and these interactions are used to constrain  the adjacency of ν-body interactions in G. It has been shown planar groups (like rings) or to hinder interconversion of  [19] that the sequence of graphs Ln(G) with n=0, 1, 2, … has stereocenters. 

only four possible outcomes as n→∞:

•  if 

(a cycle graph on  r  vertices), then 

for all 

(cycle graphs are the only 

connected graphs for which L(G) is isomorphic to G); 

•  if 

(the complete bipartite “claw” graph), then 

(a triangle) for all 

; 

•  if 

(a path graph on  r  vertices), then 

so each subsequent graph is a 

shorter path until eventually the sequence terminates at 

the trivial null graph; 

•  otherwise, G is a “prolific” graph [20] so that the sizes 

of the graphs in the sequence eventually increase 

without bound, 

Ghebleh and Khatirinejad [21] have proved an interesting 

and chemically relevant result concerning the smallest non-

negative integer m such that Lm(G) is nonplanar: the so-called 

line  index  m=ξ(G)  of  a  graph  G.  In  particular,  if  G  is  not 

prolific it is easy to see that  Ln(G)is planar for all  n≥0, but 

for G prolific then 0≤ξ(G)≤4 and a complete characterization 

of these graphs is possible [21]. 

Enumeration

Given a molecular graph G, the total number of intramolecular 

interactions N (G) involving  n∈N connected atoms (vertices 

n

on G) is generally given by

Here, N (G) simply counts the number of 1-body interactions 

1

in the presence of an external field. Elementary combinatorial 

arguments also establish the handshaking lemma [22]: the 

number of bonds is just half the total number of incident edges 

over all vertices so that

Figure 1: Generic structures of  4-body interactions represented 

on the directed acyclic graph  Hν(G) are compared with the physi-

cal formation from the combination of two bends with atomic in-

dexes ijk and lmn respectively. a Construction of the typical proper 

dihedral index sequence ijjjkkkn comprising two triplet repeats arising 

from the distinct hinge atoms j and k that form the shared bond. A  where 

is a pp-vector of ones. By summing the 

similar sequence iijjjkkk arises for the degenerate 33-cycle structure  number of possible bond pairs over each vertex, the total bend as shown in (c), but where the “flap” atoms are also identified to close  count is obtained the ring. b The typical improper dihedral index sequence ijjjjkkn with 

only a single hinge atom j

In graph theoretical terms, this hierarchical organization 

of interactions is precisely captured by iterated application of 

the line graph construction inductively defined by

(3)

Similarly reckoning the combinations of bond triplets over all 

vertices yields the number of improper dihedral interactions

A graph G establishes adjacency of vertices (i.e., bonds); the 
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Algorithm 1: Generate ν-body atom index list

Other possible arrangements of three contiguous bonds are just 

the proper dihedrals and triangular 3-cycles. In total, these ar-

rangements can be enumerated as follows: for each bond, cal-

culate the product of the number of free edges otherwise inci-

dent on each of the two vertices; then sum over all edges to get

where we have observed the identity 

. The number of 3-cycles, however, can be obtained directly 

from the adjacency matrix as

The total 4-body interaction number N  includes torsions of 

4

both types as well as any 3-cycles present

For  concreteness,  specify  a  maximum  order  ν  for  the 

multibody interactions of interest so that  n-body terms with 

n=1,  2,  …,  ν  are  considered.  Most  commonly  in  molecular 

applications  ν=4. A convenient representation of the recursive 

structure defined by (3) is itself a weakly connected ν-partite 

but over-counts the improper dihedrals and triangles by distin- directed  acyclic  graph  (DAG)  denoted  Hν(G)  on  the  union guishing the three rotational permutations of labels. 

of disjoint vertex sets 

where  V (G)=V(Ln−1(G)). 

n

Combining these results gives the useful consistency check- For  clarity,  define  the  vertex  set  V(H (G))  of  H (G)  with ν

ν

sums

elements  v ∈V (G). The edge directions induce a partial 

jn

n

order relation on the vertices so that  v ≤ v  only if  m<n where im

 jn

and 

. Sources of  H (G)  with 

ν

indegree 0 are just the atomic indexes of the molecular graph G. 

All other vertices on 

have indegree 2 as a consequence 

of  the  defining  property  of  an  edge  in 

. Similarly, 

the sinks of  H (G)  with outdegree  0  are just the vertices of 

ν

that involve only the molecular graph G. 

. At each level 

all other 

vertices 

on 

have outdegrees given by 

. Moreover, the hierarchy of line graphs provides 

INDEXING

a natural topological order on 

. Further, the adjacency 

matrix takes the block tridiagonal form

By  definition  of  the  line  graph  transformation, 

for  A (Ln(G))=1,  the  indexes  i=α  and  j=β  point  to  the 

ij

edges 

that share a common vertex 

. In turn, these edges 

and 

are associated with the adjacency matrix 

of the previous graph in the recursive hierarchy so that 

. Successively back-

By virtue of this DAG structure, each vertex 

tracking to the source graph G yields, for each order n, a se-

is associated with a unique sequence of 2n−1 

quence of atomic indexes that participate in an n-body interac- atomic indexes    that  define  each  n-body  interaction.  For tion. A formal pseudo-code implementation of this procedure  the trivial cases n = 1 and n = 2, these sequences correspond is set out in Algorithm 1. Details of each sequence structure  respectively with the individual atom list V(G) and the atom completely characterizes the interaction form. 

pairs  E(G)  defining  the  molecular  bonds.  Bends  (n  =  3)  are 

signified by a pattern of 22 = 4 atoms with a single repeated 
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index identifying the common hinge atom. An 8-atom sequence  directed acyclic graph (DAG) generated by the line graph hi-classifies a 4-body interaction and distinguishes between three  erarchy is given where the vertices at each level n are denoted types as illustrated in Fig. 1. A pair of triply repeated atom  by the inherited sequence of atomic labels from G as indicated indexes identifies the distinct hinge atoms of a proper torsion,  by the directed edges. Inspection of G confirms the 4-body in-provided the remaining two indexes are different (Fig. 1a).  teractions identified by the DAG sinks and comprise of: two Otherwise, a common pair of “flap” atoms signals a degenerate  proper torsions (denoted “p”) with distinct hinge atoms 2-3 and 3-cycle where only three atom indexes appear (Fig. 1c). Each  2-4, respectively; a single improper dihedral (denoted “i”) with triangle generates 

such sequences by the arbitrary  common hinge 2; and a single 3-cycle (denoted “c”) of atoms choice of a single common bond. The single common hinge of  2, 3 and 4

an improper dihedral corresponds to a fourfold repeated index 

among four distinct labels (Fig. 1b). Again, three sequences are 

For added clarity, the edge index associated with each 

generated for each improper dihedral by arbitrary assignment  adjacent vertex pair is indicated by the superscript. From these of the shared bond. 

matrices, the DAG obtained that represents the line graph 

hierarchy is shown in Fig. 2. The atomic index sequences 

automatically generated on the DAG, particularly at the 

EXAMPLES

4-body  level  (n  =  4),  confirm  the  informal  analysis  of  the 

molecular graph. It is easy to show that the complete graph on 

A toy model: methylcyclopropane

five vertices K5 is a minor of L3(G), whence it follows from the 

The molecular graph G indicated in Fig. 2 presents amongst other  theorem of Wagner [23] that L3(G) is nonplanar. All of G, L(G) possibilities a plausible lumped model for methylcyclopropane  and L2(G) are manifestly planar (see Fig. 2) so the line index where hydrogen atoms are absorbed onto the carbon backbone  ξ(G) = 3 in accord with the result of Ghebleh and Khatirinejad in the usual way. Direct inspection of G immediately establishes  [21]. 

four 1-body interactions in the presence of an external field 

(that is, the number of “atoms” N  = 4) and also four 2-body 

1

bonds N  = 4. Atom 2 is the hinge for three distinct 3-body 

2

bends with a further two hinged at atoms 3 and 4 respectively, 

to give N  = 5. Among the 4-body interactions there are two 

3

proper torsions N  = 2 with distinct hinge atoms 2-3 and 2-4, 

prop

respectively, as well as a single improper dihedral N   =  1 

impr

with common hinge atom 2. A single 3-cycle is present N  = 

3cyc

1 so that N  = 2 + 3 × (1 + 1) = 8. Adjacency matrices for the 

4

iterated line graphs necessary for describing interactions up to 

the 4-body level are given by 

Figure 3: Effective coarse grained bile salt model of Vila Verde and 

Frenkel [24]. The molecular graph G is shown along with the iterated 

line graphs L(G) and L2(G). Vertices and edges are labelled

Figure 4: Effective coarse grained bile salt model of Vila Verde and 

Figure 2: A plausible effective model of methylcyclopropane  Frenkel [24]. The molecular line graph L3(G). To simplify the dia-is represented by the graph G. The iterated line graphs Ln−1(G)  gram, subgraphs corresponding to complete graphs K  on q vertices q

are also shown for n = 2, 3, 4. Vertices v  ∈ V (G) = V Lm−1(G)   ( q-cliques of L3(G)) have been rendered as pentagons (q = 5) and im

m

hexagons (q = 6)

and edges 

are labelled. The corresponding 
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Table 1: Vertex sequences associated with the directed acyclic graph (DAG) description of the line graph hierarchy for the effective bile salt model of Vila Verde and Frenkel [24]

Bile salt: taurocholate

so the line index ξ(G) = 2 in accord with the result of Ghebleh 

and Khatirinejad [21]. 

A chemically relevant example, central to the hydrolysis and 

solubilisation of lipid associated with food digestion in the 

human lower gastrointestinal tract, are the bile salt and bile  CONCLUSION

acid surfactants. Vila Verde and Frenkel [24] have proposed  The line graph transformation provides a practical and an effective coarse-grained model of trihydroxy bile salts  elegant theoretical tool for exhaustively enumerating and (taurocholate) for a molecular dynamics study of micelle  indexing many-body intramolecular interactions. Given a formation that is related to the rate and extent of nutrient  suitable graphical representation of a molecular structure, absorption by intestinal cells. The authors proposed a “three- an explicit pseudo-code implementation of the recursive to-one” mapping scheme, that groups three carbon or nitrogen  line graph algorithm is given for automatically generating atoms into a single bead, to arrive at the molecular graph G  complete canonical lists of atomic indexes associated shown in Fig. 3. Iterated line graphs up to L3(G) are collected  with each interaction order. No attempt has been made to in Figs. 3 and 4. Table 1 lists the vertices for the corresponding  computationally optimize this algorithm or the associated DAG description of the hierarchy as sequences of bead indexes. data structures. Instead, clarity of exposition is the main Overall, the counts of bonds, bends, proper torsions and  objective here. We anticipate the main application will involve improper dihedrals are obtained as follows, 

embedding the algorithm within a Monte Carlo or Molecular 

Dynamics simulation code where other implementation details 

will determine the most efficient realization. In accord with 

common practice, intramolecular interactions up to order 4 

where N4 = 22 + 3 × 4 = 34. Clearly, there are no 3-cycles in  have been considered (bonds, bends and dihedrals), but the this example so N  = 0. It is easy to verify that L2(G) admits  method can be extended to arbitrarily many atomic centers. 

cyc

the minor K  and hence, by Wagner’s theorem [23], it follows  Higher order interactions will involve increasingly many 5

that L2(G) is nonplanar. Both G and L(G) are manifestly planar  sub-type variations and polycyclic structures. Two specific examples are discussed: a toy model of methylcyclopropane 
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and a published effective potential model of taurocholate bile 

 Synthetic Polymers to Proteins, ed. by N. Attig, K. 

salt [24] that is relevant for the study of digestive processes in 

Binder, H. Grubmüller, K. Kremer (John von Neumann 

the human lower gastrointestinal tract. 

Institute for Computing, Jülich, 2004), p. 1

11.  S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, 
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INTRODUCTION

quantum mechanics methods can and should be used, which 

describe molecules using either wave functions or electron 

Mathematical, computational and physical methods have been  densities, although computational costs in time and resources applied in biology and medicine to study phenomena at a  may be prohibitive, so hybrid classical-quantum methods are wide range of size scales, from the global human population  often more appropriate. Quantum methods can be particularly all the way down to the level of individual atoms within a  valuable in the study of enzymes and enzymatic reactions. 

biomolecule. Concomitant with this range of sizes between 

global to atomistic, the relevant modeling methods span time 

scales varying between years and picoseconds, depending on  MAXIMUM ENTROPY IN BIOLOGY AND 

the area of interest (from evolutionary to atomistic effects) and  DRUG DISCOVERY

relevance. This review will cover some of the most common  Two reasoning methods, deduction and inductive inference, and useful mathematical and computational methods. Firstly,  have been utilized in the development of theories to interpret we outline the maximum entropy principle as an inference  phenomena we observe in nature, and to make predictions tool for the study of phenomena at different scales, from  about complex systems. Deduction allows us to draw gene evolution and gene networks to protein-drug molecular  conclusions when sufficient information is available, and is interactions, followed with a survey of the methods used for  contrasted with inductive inference (also known as inductive large scale systems—populations, organisms, and cells—and  logic or probable inference). Inductive inference provides a then zooming down to the methods used to study individual  least biased way to reason when the available information is biomolecules—proteins and drugs. To study the large systems,  insufficient for deduction. It is called “inference” when we the most common and reliable mathematical technique is to  make estimates of quantities for which we do not have enough develop systems of differential equations. At the molecular  information to use deductive reasoning, and “induction” when scale, molecular dynamics is often used to model biomolecules  we are generalizing from special cases [1]. 

as a system of moving Newtonian particles with interactions 

When we deal with complex systems, for example either 

defined by a force field, with various methods employed to  many-body interactions at the microscopic level, complicated handle the challenge of solvent effects. In some cases, pure  regulatory protein-protein networks at the mesoscopic level, or population genetics at the macroscopic level, we never 

have enough knowledge to completely understand the system. 

Citation: Tuszynski et al., Mathematical and computational modeling  Therefore, we normally rely on inductive inference based on in biology at multiple scales. Theoretical Biology and Medical Modelling 2014 11:52, doi:10.1186/1742-4682-11-52. 

the available information to infer the most preferred solution to 

problems related to these systems. Particularly, we are interested 

in a mathematical tool for inductive inference based on the 

Bayesian interpretation of probability, the rules of probability 
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theory, and the concept of entropy. Bayesian interpretation  occurrence of  k-mers in a DNA sequence characterizes that treats probability as a degree of our knowledge about a system  sequence. Based on this definition, information in sequences of interest, rather than the frequency of appearance of an  can  be  quantified  with  Shannon  information.  Furthermore, event. Cox demonstrated that this type of probability can be  Chang et al. [4] introduced the concept of reduced Shannon manipulated by the rules of standard probability theory [2].  information,  which  is  defined  as  the  ratio  of  the  Shannon This forms the building blocks of inductive inference, termed  information of the genome to the Shannon information Bayesian inference. Moreover, Caticha and Giffin have shown  of random sequences, so as to quantify to what extent the that Bayesian inference is a special case of entropy-based  information contained in the genome is different from the inference [3]. Therefore, our discussion in this section will be  information in a random DNA sequence. Note that this concept founded on entropy-based inference. 

is similar to the concept of relative entropy, which is discussed 

First,  we  briefly  address  the  basics  of  entropy-based  in the next section. Based on reduced Shannon information (or inference, which includes using entropy as an information  relative entropy), a universal feature across three taxonomic measure and a tool for inductive inference, then we provide  domains was observed; namely, the effective root-sequence examples  in  the  fields  of  biology  and  drug  discovery  to  length of a genome, which is defined as the ratio of genome demonstrate  that  these  fields  benefit  from  the  application  of  length and reduced Shannon information, linearly depended inductive inference. Regarding using entropy as an information  on k, and was a genome-independent constant. Furthermore, measure, we consider two examples. The first example provides  this study revealed a possible genome growth mechanism: a clue to investigate genomic evolution through appropriate  at an early stage of evolution, a genome is likely to utilize genomic sequence analysis [4]. The second one discusses  random segmental duplication, which would maximize robustness of biological networks from information point  reduced Shannon information. These insights not only provide of view [5]. Regarding using entropy as a tool for inductive  a clue to the origin of evolution but also may shed light on inference,  we  consider  another  two  examples.  The  first  one  further questions, such as which genes are responsible for drug demonstrates the benefit of introducing this inference in virtual  resistance. 

screening for drug discovery [6]. The second one then shows 

an application of this scheme in fragment-based drug design   Robustness of biological networks

[7]. These examples also illustrate in a straightforward way  The development of high throughput screening techniques, how to extract information and unveil the global characteristics  such as microarray technology, has generated numerous of the biological systems. They show that there exists a  protein-protein interaction data to map out biological networks, universal reasoning platform to solve any problem of interest  and has revealed regulatory mechanisms of the biological that is independent of the specifics of a given type of problem.  entities involved in the networks. Many studies have suggested The key in this platform lies in the answer to the question,  that the robustness of biological networks may be the key for 

“What are the constraints in the system?” Once the constraints  identifying systems that can tolerate external perturbations and are determined, the maximum entropy principle provides a  uncertainty triggered by external forces [9,10]. It has further robust, universal and least biased prescription for information  been shown that the robustness of biological networks shares a processing. Furthermore, it helps us to analyze problems and  global feature; these networks are scale-free networks, which gain insights into the functioning of the underlying complex  means that one can observe a power-law degree distribution in systems. 

these networks. 

Entropy as an information measure

Therefore, there have been many endeavors to provide 

more insights into the origin of these power-law distributions. 

Shannon’s pioneering work on the quantification of information  Bak et al. [8] proposed the mechanism of self-organized loss during communication established a new viewpoint on  criticality, which leads to a scale-free structure in complicated entropy, which was until then only known as a measure of  systems. An entropy-based interpretation described by Dover randomness in thermodynamics [8]. Since then, using entropy  [5] suggested a promising and intuitive way to understand the as an information measure has attracted much attention not  emergence of power-law distributions in complicated networks. 

only in signal processing, but also in the field of biology. 

According to Dover’s studies on a toy model, the emergence 

of the power-law distributions is merely a consequence of the 

 Information in genomic evolution

maximum entropy principle when the internal order of sub-

networks  of  a  complicated  large  network  remained  fixed. 

With the advance of genomic sequencing technology there is  Note that the internal order was defined as the mean of the more and more genomic sequence data available for species  Boltzmann entropy over all sub-networks. In the framework across the three domains: Bacteria, Archaea, and Eukaryota.  of entropy-based inference, the power-law distributions of The question is, how do we compare complete genomes and  biological networks simply represent the most preferred choice extract useful information from the sequencing data? 

that maintains the fixed internal order of the sub-networks. 

To address the question of genome comparison, Chang 

et al. [4] proposed an entropy-based scheme for complete  Entropic scheme for inductive inference genome comparison. The foundation of their approach is to 

define the probability distribution that represents our current  In addition to the use of entropy as an information measure, state of knowledge regarding the occurrence of different  the concept of entropy also plays a role in inductive inference. 

combinations of the four bases in DNA sequences. Chang et  The inductive inference addressed here refers to two processes. 

al. [4] specified that k-mer nucleotides in the sequence encode  The first process is the determination of the most likely state of genetic information, where  k  is an arbitrary number. The  knowledge about a system of interest based on the information 
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in hand. The second process is the determination of the most  slowed the progress of discovering specific aptamers for likely updated state of knowledge when we acquire new  various applications [18]. With the help of entropy-based information regarding the system. The foundation of inductive  inductive inference, a fragment-based approach has been inference is the maximum entropy principle and relative  developed to design aptamers given the structure of the target entropy. The least biased inference one can make based on  of interest [18]. 

the information in hand is the one that maximizes the relative 

The concept of the fragment-based approach to aptamer 

entropy of all possible new and old beliefs. For more details,  design is to ask the question “Given the structural information the reader is referred to Caticha [1]. 

about the target, what is the preferred probability distribution 

of having an aptamer that is most likely to interact with the 

 Entropy in molecular docking

target?” The solution was found using entropy-based inductive 

Our first example of applying entropy for inductive inference  inference [7]. This approach initially determines the preferred is  in silico  drug discovery. Virtual screening has attracted  probability  distribution  of  first  single  nucleotide  that  likely much attention in the pharmaceutical industry [12,  13]. It  interacts with the target. Subsequently, the approach iteratively provides a more economical way to screen diverse chemicals  updates the probability distribution as more nucleotides are as drug candidates compared with a wet-lab approach.  added to the growing aptamer. The maximum entropy principle Basically, it consists of the creation of a chemical library,  allows us to determine to what extent this update is sufficient, followed by searching optimal ligand-receptor binding modes  and what is the sequence of nucleotides that is most likely through docking algorithms, and finally the evaluation of  to bind to the target. This method has been applied to design binding affinities. There are three criteria that are required  aptamers  to  bind  specifically  to  targets  such  as  thrombin, to successfully identify drug candidates. First, the chemical  phosphatidylserine [19] and galectin-3 (under experimental library needs to be large and contain diverse chemical  confirmation). 

structures. Second, conformational search algorithms need to 

The maximum entropy principle and inductive inference 

be able to search possible binding modes within a reasonable  just provide one reasoning platform to make the most preferable time. Third, an appropriate scoring function needs to be utilized  inference based on all kinds of information for understanding to correctly evaluate the binding affinity of the chemical  biological systems at different scales. In the next section, a structures. In the framework of information theory, the first  variety of mathematical and computational models addressing and third criteria are the fundamental information required  other aspects that have been developed for biological and in virtual screening process. The second criterion then can be  medical problems are surveyed. 

treated as an information processing guideline. The efficiency 

and accuracy of this step will depend on the methods of  MATHEMATICAL AND COMPUTATIONAL 

information processing. 

MODELS FOR BIOLOGICAL SYSTEMS

Genetic algorithms, which borrow from the concept 

of genomic evolution processes to search conformations  In recent years, mathematical biology has emerged as a of complex targets and chemical structures, are commonly  prominent area of interdisciplinary scientific research. It is not used in docking protocols, such as AutoDock [14]. Chang et  a new area of research, but with recent advances in medical and al. have offered a better alternative, MEDock [6]. Although  computational methods, it has grown extensively, being applied MEDock did not completely exploit entropic-based inductive  to solve many health related problems across a spectrum of inference for searching, it does utilize the maximum entropy  life sciences. Areas of mathematical biology where modeling principle as a guideline to make decisions during this process.  has made contributions to biology and medicine include The fundamental question asked in MEDock is “What is the  epidemiology, cell physiology, cancer modeling, genetics, probability of  finding  the deepest energy  valley in  a  ligand- cellular biology, and biochemistry. Because there is such a target interaction energy landscape?” Maximum entropy  broad range of topics and methods that can be discussed, we provides a direction to update the initial guess of binding  limit ourselves to a discussion of how differential equations modes (described by an almost uniform distribution) to the  have been used to solve important biological problems in optimal mode (a localized distribution around the global  epidemiology, cell physiology, and cancer modeling, and energy minimum). 

briefly discuss some of the clinical advances that have arisen 

from such efforts. For a more extensive review on mathematical 

modeling for each of these branches of science, we refer the 

 Entropy in aptamer design

reader to recent books on these topics [20–23]. For the reader 

The second example of entropy for inductive inference is  who is interested in learning more about mathematical biology aptamer design. Aptamers are short nucleic acid sequences  from  a  beginner’s  perspective,  books  by  Edelstein-Keshet that are traditionally identified through an experimental  [24], Murray [25, 26], and Britton [27] are also recommended. 

technique, the Systematic Evolution of Ligands by Exponential 

Here, we highlight only a few of the models that have 

Enrichment (SELEX) [15, 16]. Aptamers can bind to specific  been developed to study epidemiological, physiological, and molecular targets including small molecules, proteins, nucleic  cancer problems. The reader is encouraged to look more acids, and phospholipids, and can also be targeted to complex  extensively into the literature regarding other models that have structures such as cells, tissues, bacteria, and other organisms.  been developed and successfully applied to improve present Because of their strong and specific binding through molecular  medical treatments. 

recognition, aptamers are promising tools in molecular biology 

and have both therapeutic and diagnostic clinical applications 

[15–18]. Unfortunately, some limitations of SELEX have 
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Mathematical models in epidemiology

A disadvantage of ODE-based modeling is that it assumes 

Epidemiology describes the study of patterns, cause and effect,  the well mixing of large populations of individuals. Also, and treatment of disease within a given population [28]. Here,  such models are deterministic, meaning that the outcome is we provide a brief introduction to epidemiological models  determined solely on the initial conditions and the parameters used for studying the spread of various types of disease, many  that govern the dynamics. For some populations, where of which are outlined in [25, 27]. One of the first models to  contacts and transmission rates between individuals may describe the dynamics of a disease caused by a viral infection  vary, agent based [34, 35] stochastic [36] or network type [36] 

is the so-called SIR model, an ordinary differential equation  models may be more useful. Also, age-structured models [37] 

(ODE) model developed by Kermack and Mckendrick in 1927  may be more appropriate for diseases that depend on age, such 

[29]. 

as AIDS. 

Another disadvantage of ODE-based modeling is that it 





(1)

does not describe the movement of individuals through space. 

This information is extremely important because a disease may 

(2)

not just spread within a single population, but may spread from 

one location to another. Examples of models that incorporate 





(3)

spatial dynamics include partial differential equations (PDEs). 

These models have been used to study the outbreak of rabies 

This model, given by equations (1), (2), and (3) (for all  in continental Europe in the early 1940s [38], as well as to differential equation models we omit initial and boundary  study the more recent outbreak of the West Nile Virus in conditions for ease in reading), describes the rate of change  1999 in New York State [39]. Other models used to study the of the number of susceptible (S), infected (I), and recovered  spatial spread of disease include patch models [40]. In the (R) individuals in a population over time, where β describes  patch model of Lloyd and May [40] the authors consider an the rate of transmission of disease, and μ describes the rate of  SEIR modeling approach. Here, the total population is broken removal of infected individuals (those that have recovered). An  up into subpopulations (patches), where  S ,  E ,  I , and  R

i

i

i

i 

important feature of this model is that it incorporates recovered  denote the number of susceptible, exposed (latent), infected, patients, meaning that an individual can acquire immunity,  and recovered individuals, in each patch i, respectively. The as  is  often  the  case  for  viral-type  infections  like  influenza  dynamics of each patch are governed by their own similar set and measles. This model, although quite basic, provides  of differential equations, 

important information to health care professionals interested 

in understanding how severe an outbreak is. For example, from 



(5)

these equations, the basic reproduction number given by

(6)

(4)

describes the average number of secondary infections produced 



(7)

by one infected individual introduced into a completely 

susceptible environment. High values of R , corresponding to 



(8)

0

high numbers of initially susceptible individuals S(0), and/or 

high disease transmission rates β, result in the high probability  In each patch, all model parameters are the same, except the of an outbreak. In particular, if R  is less than 1, the infection  infection rate σ , which depends on each connection between i

0

will not persist (and will eventually die out), whereas if R  is  patches. Here, σ  is called the force of infection, and is given by i

0

greater than 1, the infection will grow (and there will be an  the mass action expression epidemic). 

One key assumption of this model is that the total 

(9)

population  N  (N  =  S  +  I  +  R) is constant and that there is 

no death or birth. Many models have since been developed  where n is the total patch number and β  is the rate of infection ij

to  include  such  population  demographics  [30–32],  the  first  between patches i and j. 

being completed by Soper [31] in an attempt to understand the  Mathematical models have influenced protocol in disease con-dynamics of measles. 

trol and management. Now, such modeling is part of epidemi-

A number of extensions have been made to describe  ology policy decision making in many countries [41]. Some a wider class of infections. For example, the SIRS and SIS  important modeling contributions include the design and anal-models allow for the movement of individuals back into a  ysis of epidemiology surveys, determining data that should be susceptible class S, meaning there may be no immunity to re- collected, identifying trends and forecasting outbreaks, as well infection [30]. Such models are useful in studying bacterial- as estimating the uncertainty in these outbreaks. 

type infections like tuberculosis and gonorrhea. Other models, 

referred to as SEIR and SEIRS models, where “E” stands 

Physiological models at the cellular level: enzyme 

for a latent class of individuals (exposed but not showing  kinetics, ion channels, and cell excitability symptoms), can be used to describe a disease where a delayed 

The  field  of  physiology  is  arguably  the  number  one 

time of infection may exist [33]. For example, this is often the  biological field where mathematics has had the greatest impact. 

case with individuals suffering from malaria. 

Two broad areas of physiology where mathematics has made a 

profound impact are cell physiology and systems physiology. 
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Here, we focus on cell physiology, and restrict ourselves to the  This is particularly true in the area of parameter estimation topics of enzyme kinetics, ion channels, and cell excitability.  where several algorithms have been shown to be useful to For an excellent review on systems physiology, the reader is  enzyme kinetics. The availability of increasingly sophisticated referred to Keener and Sneyd [22]. 

and standardized modeling and simulation software will 

The rate of change of a simple chemical reaction can be  undoubtedly benefit enzyme kinetics [48]. 

described by the law of mass action, a law that describes the 

Biochemical networks are sets of reactions that are 

behavior of solutions in dynamic equilibrium [42]. That is, for  linked by common substrates and products. The dynamics a simple reaction given by

of biochemical networks are frequently described as sets 

of coupled ODEs, similar to those given by equations (13) 

(10)

through (16), that represent the rate of change of concentrations 

where k  is the reaction rate constant, the rate of the production  of the chemical species involved in the network [48]. The 

+

of product molecules is given by

right-hand side in these ODEs is typically the algebraic sum 

of the rate laws of the reactions that produce or consume 

the chemical species (positive when it is produced, negative 





(11)

when consumed). There is formally no difference between a 

where [X] is the concentration of each species X = A, B, C.  biochemical network and an enzyme reaction mechanism, as Equation (11) is commonly referred to as the law of mass ac- both conform to this description. For systems biology studies, tion. The above formulation can only be used for the simplest  it is sufficient to represent each enzyme-catalyzed reaction as a of reactions involving a single step and only two reactants,  single step and associate it with an appropriate integrated rate although extensions are fairly straight-forward and have been  law [49]. The systems biologist should be cautioned, though, developed over the past century to describe more complicated  that mechanistic details may indeed affect the dynamics, as is reactions [43]. One example is the model of Michaelis and  the case with competitive versus uncompetitive inhibitor drugs Menten [44], used to describe reactions catalyzed by enzymes.  [50–52]. 

Given the reaction scheme

The Systems Biology Markup Language (SBML) [53] is a 

standard format to encode the information required to express 

(12)

a biochemical network model including its kinetics. SBML is 

based on the Extended Markup Language (XML), which is 

where  S  is the substrate,  E  the enzyme,  P  the product  itself a standard widely adopted on the Internet. After a series concentration, and k , k , and k  are the reaction rate constants,  of progressive developments, there are now several compatible 1

-1

2

Michaelis and Menten describe this reaction by the following  software packages available to model biochemical networks. 

four ODEs, 

Some are generic and provide many algorithms, while others 

are more specialized. This includes not only simulators [54], 





(13)

but also packages for graphical depiction and analysis of 

networks [43, 55, 56], and databases of reactions and kinetic 

parameters [57], to name but a few examples. In some cases 

(14)

these packages can even work in an integrated way, such as in 

the Systems Biology Workbench (SBW) suite [58]. 

(15)

Another area of cell physiology where mathematical 

modeling has been used to describe complex molecular-scale 



(16)

dynamics is the study of ion channels. Molecules (both large 

Assuming that the substrate is at equilibrium (ds/dt  =   and small) move back and forth across a cell membrane, to 0),  one  can  simplify  this  system  and  find  explicit  solutions.  ensure that conditions for homeostasis are met [42]. Some Also, without solving these equations, one can gain useful  molecules are small enough (and soluble to lipids) to diffuse information about the process. For example, the velocity of the  across the membrane, while others require energy, working reaction (the rate at which the products are formed) is

against electrochemical gradients between the outside and 

the inside of the cell [42]. For example, differences in ionic 





(17)

potential across a cell membrane can drive ionic current. The 

Nernst equation, 

where V  = k e  and K  = k /k  (K  is called the equilibrium 

max

2 o

s

-1

1

s

constant). Equation (17) is often referred to as the Michaelis–





(18)

Menten equation. Also, the steady-state approximation 

simplifies the above system of equations so that we can find  describes the potential difference V across a cell membrane, explicit solutions [45]. This approximation requires that  where c  and c  are the external and internal ionic concentration e

i

the rates of formation and breakdown of the complex  c  are  (of a particular ion) respectively,  R  is the universal gas essentially always equal (dc/dt = 0). Further extensions of this  constant, Tis the absolute temperature, F is Faraday’s constant, model have been developed to describe other types of enzyme  and z is the ion’s charge. To determine the ionic current across activity, such as cooperativity [46] and enzyme inhibition [47],  a membrane, one can write the total potential drop across the and have had similar success. 

cell membrane, V , as the addition of the Nernst potential V to 

T

the potential drop due to an electrical current rI  (where r is the 

Computational systems biology has been creating a series 

c

resistance), so that V  = V + rI . Solving for the ionic current 

of tools that are useful for application to enzyme kinetics. 

T

c

we arrive at
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(19)

cure for CF, new directions for treatment protocols are being 

developed [67]. 

where g = 1/r is the membrane conductance. Ions only travel 

Models of cancer growth and spread: avascular tumor 

through small pores, referred to as ion channels, and the control  growth, tumor-induced angiogenesis, and tumor invasion of such ionic current is vital for proper cellular function. 

The primary mathematical modeling techniques used in 

A second model for determining the ionic flow across a cell  the area of cancer modeling, include the study of avascular membrane is given by the Goldman–Hodgkin–Katz equation, 

tumor growth, angiogenesis, and vascular tumor growth 

(tumor invasion), and so in what follows we limit ourselves to 

these topics. 





(20)

Growth and development of a solid tumor occurs in two 

stages: avascular growth and vascular growth (leading to tumor 

where  P  is the permeability of the membrane to the ion  invasion), and has been studied extensively in a biological 

[59]. Such an equation is derived under the assumption of a  framework [68]. The modeling of avascular tumor growth constant electric field. The use of either the linear equation  is one of the earliest approaches taken by mathematicians to (19) or nonlinear equation (20) in defining ionic current is  study cancers [69]. The simplest type of model that can be used often debated and depends on the underlying properties of the  to describe how cancer cells of a solid tumor change over time particular cell studied. 

is the exponential growth law, given by equation (23). 

Using the fact that we can model the cell membrane as a 

capacitor (since it separates charge), and knowing that there is 

(23)

no net build-up of charge on either side of the membrane, the 

sum of the capacitive and ionic currents across a membrane  Such an equation is limited in its application, since it suggests should add up to zero, 

that tumors grow (with growth rate r) to a tumor of unbounded 

size. Other models, such as the logistic growth equation (24)



(21)

Here,  C   is the capacitance,  I   is the ionic current, 

(24)

m

ion

and  V  =  V  -  V .  In 1952, through a series of pioneering 

i

e

have been used to describe tumor size saturation (a type of vol-

papers, Hodgkin and Huxley presented experimental data  ume constraint). In particular, equation (24) describes the rate and  a  comprehensive  theoretical  model  that  fit  experimental  of change of cancer cells N in a tumor, where r is the growth findings, to describe the action potential across the giant axon  rate and k is the carrying capacity (the maximum number of of a squid [60–64]. The model given by equation (22) (and  cancer cells within the tumor). 

based on equation (21)), was awarded the Nobel Prize in 

Physiology and Medicine in 1963, and is possibly one of the  A limiting case of the logistic equation is the Gompertz model, greatest mathematical results in physiology to date:

given by equation (25). 



(22)

(25)

In equation (22), g , g , and g  describe the sodium, potassium, 

Na

K

L

and leakage conductance (other ionic contributions, including 

This model is one of the most commonly used tumor 

the chloride current, that are small), respectively,  V ,  V ,  growth models to date, and was first used by Casey to fit real Na

K

and V  are their respective resting potentials, and I  is a small  tumor growth in 1934 [70]. Such ODE-based models are useful L

app

applied current. Hodgkin and Huxley were able to measure  because they can be easily analyzed. Also, these models have the individual ionic currents, and to use this information to  the advantage that they can be expanded to incorporate other determine the functional forms for each of the conductances. 

cell types (such as proliferating, quiescent, and dead cells) 

by the inclusion of more ODEs, one for each cell type. Since 

Much of the work completed on ion channels and cell  these models are similar to the compartmental SIR model excitability has been used to study diseases that are associated  described in the section concerning epidemiology, they have with malfunction of ion channels. As a result, such channels  similar limitations, one being a lack of spatial information have become new targets for drug discovery [47]. One example  (such as the location of each cell type within a tumor). Some of a disease caused by the disruption of the action potential  models for solid tumor growth have included such information of cardiac myocytes is cardiac arrhythmia. Certain drugs  by incorporation of reaction-diffusion type equations, like used in the treatment of arrhythmias, such as lidocaine and  equation (26). This latter model, studied by Murray [26], flecainide, are sodium channel blockers, and so interfere with  was developed to describe the spatio-temporal invasion of open sodium channels. Although these drugs have been used in  gliomas. Equation (26) is read as follows: cancer cells C grow treatment for cardiac arrhythmias, their exact mode of action  exponentially with rate ρ, and diffuse at a rate that depends on is not well understood. Current computational models are  whether cells are moving in white brain matter or gray brain being developed to understand the function of these, as well as  matter (diffusion given by D(x)). 

other anti-arrhythmia drugs [65]. Another example of a disease 

caused by the disruption of ion channels is cystic fibrosis (CF), 





(26)

which has been found to be associated with malfunctions in 

chloride channel operation [66]. Although there is still no 

Other models by Cruywagen et al.[71] and Tracqui et al. 
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[72] have used a more realistic logistic growth term for cancer  (diffusion)  D  of a cell population  u, while the second term cell growth. However, the survival times calculated for these  corresponds to chemotaxis of the cells u towards a GF. The models are only slightly different from those calculated using  chemotactic effect is given by χ and υ is the concentration of model (26), and so using either logistic growth or exponential  the GF. The dynamics of the growth factor is typically modeled growth is appropriate in this modelling framework. One  by reaction-diffusion equations similar to that given above in limitation of the Cruywagen et al. [71] and Tracqui et al. [72]  equation (27). 

is that they are constructed under the assumption of constant 

Many other models, typically PDE-type models, have 

diffusion, thus neglecting to distinguish between grey and  extensions similar to those described above, incorporating not white matter in the brain. Simulation of models similar  only the key interactions of the endothelial cells with angiogenic to (26), such as those completed by Swanson  et al.[73],  factors, but also the macromolecules of the extracellular matrix show that incorporation of a spatially dependent diffusion  [79, 80]. For an excellent review on mathematical approaches coefficient D(x) produces images that are in good agreement  to studying tumor-induced angiogenesis we refer the reader to with real images of gliomas produced by magnetic resonance  Mantzaris, Webb, and Othmer [81]. 

imaging (MRI). 

After a tumor has progressed to the stage of angiogenesis, 

Other spatial models, like that of equation (27), describe the  by successfully recruiting blood vessels, the tumor eventually movement of certain chemical signals, such as growth factors  becomes vascular, thus connecting itself to the circulatory (GFs), which dictate directions for tumor growth [74, 75]. 

system [68]. Once this happens, tumor cells have the ability to 

enter the circulatory system, depositing themselves at secondary 





(27)

locations within the body and possibly promoting the growth 

of a secondary tumor, a process referred to as metastasis [68]. 

In  equation  (27),  the  first  term  on  the  right-hand  side  As soon as this occurs the cancer has progressed to the point describes the diffusion of the concentration of GFs denoted  where it is nearly impossible to cure the patient. One of the by C, while the second term describes the degradation of C with  key steps in the progression to metastasis is the degradation of rate γ. The third term describes production of C at a rate σ by  the extracellular matrix (ECM) by matrix-degrading proteins a source S( r). The source is a function of the tumor radius  r.  deposited by cancer cells, and the movement of cancer cells Some models incorporate integro-differential equations that  through the ECM. Newer mathematical approaches, using describe the radius of tumors over time [75], providing a type  integro-PDEs, have been able to capture the qualitative of spatial information for each cell type within the tumor. For  movement of such cells through the ECM [82–84]. One such example, the nutrient concentration often dictates where each  model was proposed by Hillen [82]. 

type of cell is most likely located within the tumor. Thus, in 

a radially-symmetric cell, there are typically zero nutrients 

located at the center of the tumor, and so cells there are 

(29)

dead, defining a necrotic core, whereas the outermost layer is 

Here, p( x,  t,  v) describes the density of tumor cells 

generally nutrient rich, and so it is composed of proliferating  at location  x, time t > 0, and velocity v in V = [v , v ]. 

cells. Other models, such as those incorporating systems of 

min

max

The advection term on the left-hand side of equation (29) 

PDEs, are used to describe the spatial movement over time of  describes  directed  movement  of  cells  along  collagen  fibers proliferating and quiescent cancer cells in the presence of GFs  in the ECM with speed  v. The right-hand side describes 

[76]. 

changes  in  the  cell’s  velocity  due  to  changes  in  the  matrix 

Typically, solid tumors initially grow to about 2 mm in  orientation  q( x,  t,  v),  where  w  is an appropriate weighting size. To grow larger, tumors require nutrients. Such nutrients  function. This matrix can change over time due to cuts made are additionally acquired through the process of angiogenesis,  by matrix degrading proteins. For ease in reading we do not the formation of blood vessels that connect the tumor to the  give the evolution equation for the matrix distribution q. 

circulatory system [68]. The switch to this angiogenic stage 

Many different cancer treatment modalities are available, 

can occur due to multiple factors, many of which are outlined  including the administration of chemotherapeutic drugs and in Semenza [77]. Tumor-induced angiogenesis, caused by the  their combinations [85] and radiation treatment [86]. Also, release of GFs or tumor angiogenic factors (TAFs) from the  as is often the case with avascular tumors, the solid tumor tumor, promotes the growth of endothelial cells (EC), which  may be surgically removed, if discovered early enough. 

make up the linings of capillaries and other vessels. ECs then  With the advancement in imaging techniques, much work migrate towards the TAF source by chemotaxis. In other words,  has been done to extend earlier modelling of glioma to better blood vessels grow towards the tumor. 

model tumor growth as it applies to treatment (removal 

The  first  model  (given  by  equation  (28))  to  describe  and radiation). In particular, better models for predicting chemotaxis in a biological system using PDEs was developed  survival rates have been developed [87], as well as models by Keller and Segel [78]. Such an equation was initially  that  predict  efficacy  of  radiotherapy  for  individual  patients developed to describe the chemotactic movement of slime  [88]. Typically, MRI is used to detect tumors, and provides molds towards an attracting source called cyclic adenosine  the imaging information needed for validating mathematical monophosphate (cAMP):

models. Other imaging techniques, such as Diffusion Tensor 

Imaging (DTI) (a technique which measures the anisotropic 

(28)

diffusion of water molecules in a tissue), have been used to 

better establish diffusion parameters required for models to 

In  the  context  of  cancer  cells,  the  first  term  on  the  predict the appropriate boundary of a tumor. Such information right-hand side of equation (28) describes random motion  can be used to describe the appropriate boundary required 
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for either surgical removal of a tumor or radiation treatment  atoms and evolving a system through time and space. Changes 

[89,  90]. Even though many treatment protocols exist, the  in atomic positions and velocities over time, usually ranging probability of individuals surviving advanced stages of cancer  from nano- to milliseconds, result in a trajectory. In simple is very low. As a result, many questions still remain as to  cases with few atoms, analytic solutions to Newton’s EOM can how chemotherapeutic drugs work at a molecular level (e.g.,  be obtained, giving a trajectory that is a continuous function of which proteins they target by design and which by accident),  time (Figure 1). However, in a computer simulation with many and how radiation treatments should be delivered in order to  atoms, the EOM are solved numerically. Forces are evaluated maximize the death of cancer cells, while minimizing the harm  for discrete intervals, or time steps (Δt, Figure 1) on the order to normal healthy tissue. Mathematical and computational  of femtoseconds, where the forces are considered constant over modeling plays an important role in understanding radiation  a given time step. The goal is to follow the continuous function treatment protocols. For example, many models have been  of time as closely as possible, which requires small time steps developed  to  define  a  tumor  control  probability  (TCP)  [91],  to ensure the motions of all atoms are resolved. 

where  TCP  is  defined  as  the  probability  that  no  clonogenic 

cells survive radiation treatment [92]. TCP models have been 

incorporated into existing cancer models that describe cancer 

growth without treatment, such as those described above, to 

better understand the effects of radiation treatment on normal 

tumor dynamics [93]. 

The models discussed above describe the spatial and 

temporal changes of certain quantities that are of interest 

in various biological systems. In particular, the differential 

equations described above give temporally dependent 

solutions (and spatially dependent solutions in the case of the 

PDEs described) for various quantities, including the total 

populations of individuals, the total number/density of cells, 

or the total molecular concentration of a certain compound. 

Many of the successes and limitations of a differential equation  Figure 1: The evolution of a trajectory, showing the continuous, true modeling approach are highlighted above. One limitation, not  trajectory (red), being closely followed by the MD trajectory (black). 

highlighted in the above sections, is that such methods (those that 

use only a handful of differential equations) are not appropriate 

The forces on each atom are derived from the potential 

for describing the smaller scale movements of molecules. The  energy of the system, which can be described with quantum or movement and structure of an individual molecule is based on  classical mechanics. Since quantal descriptions are generally the many complex interactions between the individual atoms  limited to small systems, classical descriptions are commonly within a molecule, as well as its interactions with surrounding  used when studying biological systems and will be discussed molecules. In order to follow the motions of every atom and  in this section. It is worth noting that MD is a deterministic molecule over extremely small timescales, computational  approach for exploring the potential energy surface of a system, methods such as molecular dynamic simulations (designed  while a stochastic approach can be obtained using Monte Carlo to solve extremely large systems of differential equations  methods. 

over very small timescales) can be applied. This technique is 

MD trajectories are analyzed to obtain information about 

described in the following section. 

the system, including structural changes as measured by 

atomic root-mean-square deviation (RMSD), non-covalent 

MOLECULAR DYNAMICS

interactions, binding free energies [94], structural stability, 

The sophistication of the model used to study a given system  short-lived reaction intermediates [95], conformational depends on the property of interest. Often, a 3D model of a  changes,  flexibility,  ligand  binding  modes  [96],  as  well  as molecule or complex that shows the spatial relationships  ionic conductivity and mobility [97]. Numerous and diverse between atoms is the best way to understand a system. Such  applications include the investigation of clinically important computational models provide a means of observing the  proteins such as HIV-1 gp120 [98], protein binding sites [99], structure and motion of individual atoms within complex  drug resistance mechanisms of HIV-1 protease [100], protein biomolecular systems. Although a physical model of a small  folding [101, 102] and the role of crystal water molecules in molecule with less than 20 atoms can be easily made from  ligand-protein binding [103]. 

plastic or wire in a few minutes, a similar model of a protein 

or an enzyme involves hundreds or thousands of atoms. Over  Force fields for protein simulations the last decade improvements in a combination of computer  Newton’s  second  law, 

, establishes the relation 

graphics programs, and molecular modeling techniques and  between mass (m) and acceleration ( ), as well as force (- ∇V), hardware have resulted in an unprecedented power to create  which is the negative of the gradient of the potential energy and manipulate 3D models of molecules. 

function (V). During an MD simulation, the forces acting on 

Molecular dynamics (MD) simulations follow the motions  each atom of the system are calculated and atoms are moved of atoms and molecules, and provide a means of investigating  according to those forces. In a classical MD simulation, the biological problems at a molecular level. This is achieved by  potential is calculated with a force field. The potential terms in a solving Newton’s equations of motion (EOM) for interacting  force field are a sum of contributions due to covalently-bonded interactions (V , V , V

) and non-bonded interactions. 

bond

angle

torsion
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Non-bonded interactions are calculated pairwise between two  is the angle obtained from the structure of interest. The third atoms, denoted i and j, and commonly include van der Waals  term, representing the potential from dihedral angles, involves (V

) and electrostatic (V

) contributions. 

parameters K , (barrier for rotation), n (number of maxima) 

ij, vdW

ij,electrostatic

ϕ

and φ  (angular offset), as well as the variable φ, obtained from 

0

(30)

dihedral angles in the structure. The final two terms in Equation 

(31) represent non-bonded interactions between atoms i and j, 

Due to the pairwise calculation of non-bonded interactions,  which are summed over  N  atoms of the system. In this such force fields scale as N2, whereN is the number of atoms  potential function, the van der Waals term is represented by in the system. Each potential term contains parameters, where  the Lennard-Jones potential, where A  and B  are atom specific fitting to experiment is required to calculate these interactions 

ij

ij

parameters related to atom size, and r  is a variable representing 

[104]. Parameter fitting is done to reproduce the behavior of 

ij

the distance between atoms i and j. The electrostatic term in 

real molecules. This includes determining the van der Waals’  Equation (31) is calculated by a Coulomb potential, where radii, partial charges on atoms, bond lengths, bond angles and  parameters  q   and  q   are  (fixed)  charges  on  atoms  i  and  j, force constants. These parameters, along with the functional 

i

j

respectively, and the constant  ϵ   is the permittivity of free 

form of each potential term, collectively define a force field. 

0

space. The force constants are obtained by empirical methods 

Today,  several  types  of  force  fields  are  available:  (a)  all- or by quantum mechanics calculations, depending on the force atoms force fields (parameters are considered for every atom),  field. Here we present a summary of the most commonly used (b)  united-atoms  force  fields  (aliphatic  hydrogen  atoms  are  force fields in MD simulations, namely Amber, CHARMM, represented  implicitly)  and  (c)  coarse-grained  force  fields  OPLS, GROMOS and MARTINI. 

(groups of atoms are treated as super atoms). For a list of all 

force fields discussed, see Table 1. 

Table 1: List of force fields

Figure 2: An illustration of the variables involved in a basic all-atom 

force field, corresponding to Equation ( 31). 

Amber force fields

The functional form from which most of the Amber (Assisted 

Model Building with Energy Refinement) force fields come 

uses Equation (31) and was developed by Cornell and co-

workers (denoted ff94) [104]. However, various revisions 

have since been developed that vary in their parameterization, 

with the goal of improving results. One notable revision of 

Amber for proteins and nucleic acids is ff99SB [106], which 

was developed at Stony Brook University as a modification 

of the old ff99 force field [107] and improves on ff99 in its 

description  of  the  φ  and  ψ  dihedral  angles  of  the  protein 

backbone, resulting in a better balance between secondary 

structures, and improved treatment of glycine [108, 109]. The 

ff12SB revision [110] reparameterizes backbone torsion angles, 

side chain torsions in select amino acids, and incorporates 

improved backbone torsions in DNA and RNA, with recent 

studies finding ff12SB performs better than ff99SB [111]. The 

Most  all-atom  force  fields  for  proteins  use  relatively  current and most recent version, ff14SB, is recommended by simple functions for modeling the potential energy surface  Amber developers and minimizes dependencies of protein side 

[105], which correspond to the terms in Equation (30):

chain conformations on backbone conformations by including 

side-chain corrections, and improves upon dihedrals in DNA 

and RNA, particularly  χ. Another extensively-used Amber 

force field is ff03 [112,  113] (the latest version is ff03.r1), 

(31)

which improves upon the charges calculated by ff99 by using 

charges derived from quantum calculations with a continuum 

The  variables  are  indicated  in  Figure  2.  The  first  term  dielectric to simulate the solvent polarization. A united-atom includes the stretching of bonds, where the potential is calculated  version of ff03, ff03ua, is also available [114]. Expanding using parameters K  (related to force constant) and b  (related 

b

0

the utility of the Amber force fields beyond peptides and 

to equilibrium bond length), as well as the variable, b, which is  nucleotides is the general Amber force field (GAFF) [115], the distance between bonded atoms. Similarly, the second term  which includes a complete set of parameters for a large number includes angle bending, where parameters K  and α , represent 

α

0

of small molecules while still remaining fully compatible with 

force constants and equilibrium angles, and the variable (α)  the other versions of the Amber force fields discussed above. 
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This allows for Amber and GAFF to be combined to examine  later years for this set of force fields [122, 124], including for protein-ligand complexes, as well as modified proteins, DNA  simulations of phospholipid molecules [125]. 

or RNA. 

 GROMOS force fields

 CHARMM force fields

The GROMOS (Groningen Molecular Simulation) force 

The CHARMM (Chemistry at Harvard Macromolecular  fields are united-atom force fields that that were developed in Mechanics) force fields are also a prominent set of force  conjunction with the software package of the same name to fields for studying biological systems. The functional form of  facilitate research efforts in the field of biomolecular simulation the force field used by CHARMM is based on Equation (31),  in a university environment [125]. Its functional form varies but also includes additional terms to treat improper torsions  from Equation (31) in the dihedral term, and differs from other and atoms separated by two bonds (Urey-Bradley term)  force fields in its goal of reproducing enthalpies of hydration 

[116]. The CHARMM force fields use classical (empirical  and solvation. The initial GROMOS force field (A-version) or semi-empirical) and quantum mechanical (semi-empirical  was developed for applications to aqueous or apolar solutions or ab initio) energy functions for different types of molecular  of proteins, nucleotides and sugars. However, a gas phase systems. They include parameters for proteins, nucleic acids,  version (B-version) for the simulation of isolated molecules is lipids and carbohydrates, allowing simulations on many  also available [125]. Important versions of the GROMOS force common biomolecules. The initial version of the CHARMM  fields include GROMOS 43A1 [126] (improved treatment force field was developed in the early 1980s, and used an  of lipid bilayers), GROMOS 45A3 [127] (relevant to lipid atom force field with no explicit hydrogens [117]. However,  membranes and micelles) and GROMOS 53A5 and 53A6 

in 1985, CHARMM19 parameters were developed in which  [128] (recommended for the simulation of biomolecules in hydrogen atoms bonded to nitrogen and oxygen were explicitly  explicit water). Recent releases such as GROMOS 54A7 and represented; hydrogens bonded to carbon or sulfur were still  54B7 involve modifications to φ and ψ protein dihedral angles, treated as extended atoms [118]. CHARMM19 parameters  new lipid atoms types, new ion parameters and additional aimed to provide a balanced interaction between solute- improper dihedral types, while GROMOS 54A8 accurately water and water-water energies. Although this force field was  models the structural of lipid bilayers, proteins and electrolyte tested primarily on gas-phase simulations, it is now used for  solutions [129, 130]. 

peptide and protein simulation with implicit solvent models. 

Newer versions of CHARMM, such as CHARMM22, include   MARTINI force fields

atomic partial charges that are derived from quantum chemical 

calculations of the interactions between model compounds  The semi-empirical MARTINI force field is the most and water [119]. Although CHARMM22 is parameterized  commonly used coarse-grained force field for biomolecular for the TIP3P explicit water model, it is frequently used with  system simulations; it was originally developed for lipid implicit solvents. CHARMM27 parameters were developed  simulations [131]. In this potential energy surface, four heavy for nucleic acids (RNA, DNA) and lipid simulations [116].  atoms in a molecule are considered as a single interaction Since both CHARMM27 and CHARMM22 are compatible,  site, and only four types of interaction have been considered, it is recommended CHARMM27 be used for DNA, RNA  namely polar, non polar, apolar and charged; moreover, and lipids, while CHARMM22 should be applied to protein  each particle has different subtypes for taking in account components [116]. A more recent, dihedral-corrected version of  the underlying atomic structure; a special particle types has CHARMM22 was developed, denoted CHARMM22/CMAP,  been introduced for the ring conformations, as the four-to-one which improves the parameters describing the φ and ψ dihedral  mapping is not appropriate to represent small ring molecules. 

angles of the protein backbone [120]. A general version of the  Initially developed for lipid simulations, this force field CHARMM force field (CGenFF) also exists which allows to  includes now extensions for the parameterization of proteins the treatment of drug-like while maintaining compatibility  [132], carbohydrates [133] and more recently glycolipids with other the CHARMM force fields [121]. 

[134]. With the approximations introduced by the coarse grain 

approach it is possible to increase both the timescale and the 

 OPLS force fields

size of systems compared with all-atoms or united-atoms 

force field simulations. The list of fields where MARTINI was 

For the OPLS (Optimized Potentials for Liquid Simulations)  employed includes characterization of lipid membranes [135], family of force fields the form of the potential energy function  protein-protein interactions [136], self assembly of peptides differs from Equation (28) in the dihedral term, and was  and proteins [137] and interactions between nanoparticles parameterized by Jorgensen and co-workers [117]. OPLS force  and biological molecules, as for example the study of the fields were parameterized simulate the properties of the liquid  mechanism by which fullerene can penetrate the cellular lipid states of water and organic liquids [118]. For proteins, a united- membrane performed by Wong-Ekkabut et al. [138] and other atom version was first developed (OPLS-UA), followed by  applications [139]. However, MARTINI cannot be used for an all-atoms version (OPLS-AA) [122]. Charges and van der  protein-folding studies [139], as the secondary structure is a Waals terms were extracted from liquid simulations. The OPLS- required input parameter. 

AA force field uses the same parameters as the Amber force 

fields for bond stretching and angles. The torsional parameters  Calculation of solvation free energies were obtained by using data from ab initio molecular orbital 

calculations for 50 organic molecules and ions [123]. Several  The calculation of solvation free energies is a challenging improvements and re-parameterizations were proposed in  problems in MD simulations. Determining solvation free energy is especially difficult in aqueous bio-systems due to 
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the size of the system [140]. Solvation free energy, ΔG , is 

solv

 Poisson–Boltzmann model

a thermodynamic property defined as the net energy change 

upon transferring a molecule from the gas phase into a solvent  Solving  Poisson’s  equation,  which  is  valid  under  conditions with which it equilibrates [141]. Solvation effects can change  where ions are absent, gives a second order differential equation the physical and chemical properties of biomolecules including  describing the electrostatic environment that is modeled with a charge distribution, geometry, vibrational frequencies,  dielectric continuum model [145], electronic transition energies, NMR constants and chemical 



(32)

reactivity [142]. 

where φ(r) is the electrostatic potential, ϵ(r) is the dielectric 

Several methods have been developed for modeling  constant and ρ(r) is the charge density. 

solvation and one can select the most advantageous choice 

among them based on the required accuracy and computational 

Poisson’s equation cannot be solved analytically for most 

cost. To simulate effects of solvent on biomolecules, one can  systems, and must be solved using computers and adopting use explicit or implicit solvent models. While explicit solvent  numerical methods. The Boltzmann contribution, along with models include solvent molecules in the system, implicit  the assumptions of the Debye–Hückel theory, describes the models use a mean field approach [143, 144]. Although explicit  charge density due to ions in solution. This results in the (non-solvent simulations are computationally expensive because of  linearized) Poisson–Boltzmann (PB) equation [146]: the enormous numbers of atoms involved, they provide a more 



(33)

realistic  picture  of  solute-solvent  interactions,  reflecting  the 

molecular complexity of the biomolecule and its environment.  where  κ  denotes  the  Debye–Hückel  parameter,  ϵ   is the s

In comparison, implicit solvent models increase the speed of  solvent dielectric constant, S(r) is a “masking” function with the simulation since the Newtonian equations of motion are  value 1 in the region accessible to the ions in the solvent and not solved for additional solvent molecules. Table 2 lists the  value 0 elsewhere; e is the protonic charge; k is Boltzmann’s solvation models discussed. 

constant;  T  is the absolute temperature. Here, the charge 

density on the right represents the partial charges in the cavity. 

Table 2: List of solvation models

When the ionic strength of the solution or the potential is low, 

Equation (33) can be linearized by expanding the second term 

on the left into a Taylor series and retaining only the first term:





(34)

The  non-electrostatic  contribution  (ΔG ) to the 

nonel

solvation free energy is calculated by empirical methods 

and is proportional to the solvent accessible surface area. 

This is added to the electrostatic part to yield the solvation 

free energy. Although the PB approach is mathematically 

rigorous, it is computationally expensive to calculate without 

approximations [141, 147, 148]. The generalized Born model 

provides  a  more  efficient  means  of  including  solvent  in 

biomolecular simulations. 

Implicit Water Models

The simplest approach to solvation is to treat the effects (e.g.  Generalized born model

electrostatic interactions, cavitation, dispersion attraction and  The generalized Born (GB) model is based on the Born exchange repulsion) of solvent on the solute with an implicit  approximation of point charges, modeling solute atoms as model. These methods represent the solvent as a continuum  charged spheres with an internal dielectric (generally equal environment, where the quality of the results is most affected  to 1) that differs from the solvent (external) dielectric. The by the electrostatic and cavitation (the size and shape of a  polarization effects of the solvent are represented by a dielectric cavity that the solute occupies) contributions. The solvation  continuum represents the polarization effects of the solvent. 

free  energy  of  a  molecule,  ΔG , can be divided into two  Numerical methods are used to determine the charges on the solv

parts: electrostatic (ΔG ) and non-electrostatic (ΔG ). The  solute spheres that result in the same electrostatic potential on el

nonel

electrostatic energy is defined as the free energy required  the cavity surface that mimics that of the solute in a vacuum. 

to remove all the charges in vacuum and add them back to 

By making approximations to the linear Poisson-Boltzmann 

the solute in the presence of continuum solvent [140,  141].  equation (Equation 31), the electrostatic contribution of the The origin of the non-electrostatic energy is a combination  generalized Born model is obtained: of favorable solute-solvent van der Waals interactions and 

the unfavorable disruption of the water structure by solute 

molecules (cavitation), and corresponds to solvating the neutral 



(35)

solute. There are several different implicit solvent models 

discussed below: the Poisson–Boltzmann model and the  where α  is effective Born radius of particle i, r  is the distance i

ij

generalized Born model, which differ in how ΔG  is obtained. between atoms  i  and  j,  ϵ   and  ϵ   the internal and external el

int

ext

dielectric constants, respectively, and q  is the electrostatic charge 

i

on particle i. Like the PB method, ΔG  is calculated from the 

nonel

solvent-accessible surface area [140, 141, 147, 149–151]. 
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 Reference interaction site model

[168]. In this model the non-polar component of the hydration 

Another type of solvation model is a probabilistic method  free energy obtained from 3D-RISM-KH is corrected using a known as the 3D reference interaction site model (3D-RISM)  modified Ng bridge function [169]. Calibration of this model 

[140, 152–158]. This molecular theory of solvation simulates  is based on the experimental hydration free energy values of a the solvent distributions rather than the individual solvent  set of organic molecules. 

molecules. However, the solvation structure and the associated 

Lastly, work has been done to improve the performance of 

thermodynamics are obtained from the first principles of  3D-RISM calculations by running them on graphical processing statistical mechanics. 

units (GPUs). To overcome memory issues, a modification of 

In this method, the 3D site density distributions of the  the Anderson Method [170] that accelerates convergence was solvent are obtained, which accounts for different chemical  introduced [171]. This method was reported to be eight times properties of the solvent and solute. These properties  faster on an NVIDIA Tesla C2070 GPU as compared to the include hydrogen bonding, hydrophobic forces and solvation  time taken on an eight-core Intel Xeon machine running at 3.33 

thermodynamics, such as the partial molar compressibility and  GHz. 

volume. In addition, the solvation free energy potential and 

Although 3D-RISM calculations are more computationally 

its energetic and entropic components can be calculated. The  expensive than GB and PB based solvation methods [172], solvation free energy is calculated from the RISM equation as  they overcome some of the inherent shortcomings of these well as the closure relation [159–163]. 

empirical methods [173]. 

Several additional advances have been made in formulating 

improved versions of the 3D-RISM theory including the   Explicit water models

hypernetted chain (HNC) closure approximation [152,  153].  Explicit solvation is characterized by modeling individual Another derivation came from the molecular Ornstein–Zernike  water molecules around a solute. Several explicit water integral equation [163] for the solute-solvent correlation  models are available in the Amber, NAMD and Gromacs MD 

functions [155, 156, 164]. Sometimes the calculated solvation  simulation packages. These include simple explicit solvent free energy for ionic and polar macromolecules involves large  models (SPC [174], SPC/E [174]), polarizable models (such as errors due to the loss of long-range asymptotics of the correlation  POL3 [175]), and fixed-charge explicit solvent models (TIP3P 

functions. Work has been done to account for the analytical  [176], TIP3P/F [177], TIP4P [176, 178], TIP4P/Ew [179] and corrections of the electrostatic long-range asymptotics for  TIP5P [180]). 

the 3D site direct correlation functions as well as the total 

Examples of explicit water models are the simple point 

correlation functions [157,  158,  164]. Other developments  charge (SPC) model and the extended simple point charge include the closure approximation, 3D-RISM-KH closure, for  (SPC/E) model [174]. In both of these models the water solid-liquid interfaces, fluid systems near structural and phase  molecules are rigid. A derivative of SPC with flexible water transitions, as well as poly-ionic macromolecules [156, 164]. 

molecules has been developed [181]. Another simple explicit 

Two methods have been developed to couple 3D-RISM  model is the POL3 water model, which is a polarizable model with MD. The first method makes use of a multiple time step  [175]. 

(MTS) algorithm [165, 166] wherein the 3D-RISM equations 

More complex explicit water models include the 

are solved for a snapshot of the solute conformation, then  transferable intermolecular potential n point (TIPnP), where solved again after a few MD steps. This method is limited  n represents the number of interaction sites on each model. 

by the requirement to re-solve the 3D-RISM equations every  These are the most common classes of explicit solvent models few MD steps, which is computationally expensive for large  in use [147]. In the case of TIP3P, the most simple TIPnP 

biomolecular systems. The second of these methods involves  model, the interaction sites includes the oxygen and two the contraction of the solvent degrees of freedom and the  hydrogen atoms [176]. A re-parameterized model of TIP3P 

extrapolation of the solvent-induced forces. These methods  is the TIP3P-PME/LRC, also referred to as TIP3P/F [177], are aimed at speeding up the calculations, which is useful for  which calculates electrostatic contributions by particle mesh larger systems [149]. 

Ewald (PME) summation and includes a long-range van der 

Other work has involved the development of the multi- Waals correction (LRC). TIP4P [176, 178] introduced a fourth scale method of multiple time steps molecular dynamics (MTS- dummy atom bonded to the oxygen to improve the electron MD) in a method referred to as MTS-MD/OIN/ASFE/3D- distribution in the water molecule. This model has been reRISM-KH  [149].  Specifically,  this  method  converges  the  parameterized for use with Ewald sums: TIP4P/Ew [176, 178]. 

3D-RISM-KH equations at large outer time steps and uses  The five interaction points in the TIP5P [180] model include advanced solvation force extrapolation to calculate the  two dummy atoms near oxygen, which further improves the effective solvation forces acting on the biomolecule at inner  charge distribution around the water molecule. 

time steps. The integration between the inner and outer time 

steps is stabilized by the optimized isokinetic Nosé–Hoover  Molecular dynamics methods chain (OIN) ensemble, which enables an increase of the outer 

time step. Furthermore, effort was expended on MTS-MD  Examining the dynamics of a system at an atomic scale requires aimed at converging the 3D-RISM-KH integral once every few  beginning with a model having atomic-level resolution. 

OIN outer time steps, and the solvation forces in between were  For biological macromolecules, this may be experimentally obtained by using solvation force-coordinate extrapolation  obtained from nuclear magnetic resonance (NMR) (SFCE) in the subspace of previous 3D-RISM-KH solutions  spectroscopy or X-ray crystallographic data. Although electron 

[167]. Another developed model is the 3D-RISM-KH-NgB  microscopy data does not provide structures with atomic 
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resolution, this data can be combined with structural data from  Replica-exchange molecular dynamics (REMD) has also been NMR or crystallography to obtain a high-resolution structure.  preferred over standard MD to enhance sampling by allowing NMR, crystallographic and electron microscopy structures of  systems of similar potential energies to sample conformations bio-macromolecules can be downloaded from the Protein Data  at different temperatures [193, 194]. This overcomes the energy Bank (http://www.pdb.org). In the absence of experimental  barriers on potential energy surfaces and helps explore more data, homology modeling may be used to generate the 3D  conformational space. REMD can effectively sample energy structure of a protein (the target) using its amino acid sequence  landscapes, including both high- and low-energy structures, and an experimentally-available 3D structure of a homologous  which is especially important in the case of protein folding and protein (the template). Homology modeling can produce high- unfolding processes [195]. 

quality structures of a target protein if the sequence identity of 

In addition to obtaining structural information about 

the target and template is sufficiently high (typically > 40%). 

a system, molecular dynamics provides information about 

As with any computational modeling, performing  energetics, particularly binding. Given the inherent flexibility MD simulations requires a balance between accuracy and  of the these biomolecules over time, and throughout an MD 

efficiency.  Ideally,  a  system  should  be  allowed  to  evolve  in  simulation, properties such as the free energy are calculated as time indefinitely so that all states of a system may be sampled.  the time-average of an ensemble of snapshots obtained from MD 

However, this is not possible in practice. Several techniques  trajectories [196–198]. Binding calculations have applications have been developed so improve simulation efficiency, while  in drug design, protein-protein interactions and DNA stability. 

still maintaining accuracy. During a simulation, costly force  For example, the binding free energy of a ligand to a protein is calculations are performed in discrete time increments, known  calculated as the difference in free energy between the complex, as time steps, typically on the order of femtoseconds. Although  and the receptor and ligand (ΔG  =G

- G

- G

) 

bind

complex

receptor

ligand

it is necessary to have small time steps to properly resolve  [199]. The free energy is calculated as a sum of the energy the motion of atoms, this results in many force calculations  contributions  from  the  force  field,  free  energy  of  solvation and therefore large computational costs. To address this, one  and entropy (G = E  + G  + T ΔS). Commonly in MD, the MM

sol

can restrain the fastest vibrations, which involve hydrogen,  solvation free energy is obtained from an implicit solvent giving the SHAKE algorithm [182]. This allows a larger time  model (Poisson-Boltzmann, generalized Born) and the solvent step to be used during simulations [183]. Additionally, the  accessible surface area (denoted MM-PBSA and MM-GBSA, number of time-consuming non-bonded potentials calculated  respectively) [199]. Decomposition of the binding free energies can be limited by using a cut-off based method [184]. Here,  provides a means of obtaining information about the residues interactions are calculated between pairs of atoms within the  that significantly contribute to the binding affinity of a ligand. 

cutoff distance, but neglected for atom pairs that are far apart.  Pairwise decomposition may also provide insight into changes Although this is generally appropriate for the short-range  in binding that result from mutations, especially single point nature of van der Waals interactions, using cutoffs to calculate  mutations [200]. 

long-range Coulomb interactions leads to instabilities [185]. 

Molecular dynamics is increasingly being used to 

Alternatively, the particle mesh Ewald (PME) approach  solve a host of problems [201–207]. The simulation of bio-

[185–188] can be used to calculate electrostatic potentials,  macromolecules, especially in conjunction with solvent, is very which involves the calculation of the short range electrostatic  computationally demanding. This demand is being met by the component in real space and the long-range electrostatic  increasing power and speed of modern computers, including component in Fourier space. 

special purpose computers such as Graphical Processing Units 

The simplest way to enhance sampling during an MD  (GPUs) [208]. Novel methods have been developed to enhance simulation is to increase the time duration of a simulation,  the exploration of conformational space. The accuracy of force which is usually on the order of nano- to milli-seconds.  fields  continues  to  improve  with  recent  reparameterizations. 

Researchers may also conduct multiple simulations that  A variety of solvation models exist, which can also be used begin with the same initial structures [189], providing denser  to calculate binding free energies, which are immensely sampling of the conformational space by utilizing multiple  important in drug discovery applications, identifying enzyme trajectories. Advanced techniques also exist to increase  inhibitors or compounds that block protein-protein interactions. 

the number of states of a system that are sampled during  Although classical MD simulations have been proven useful in an MD run [190]. Enhanced sampling can be achieved by  studying a variety of biomolecular systems, they are limited metadynamics [191], which allows for the high-energy regions  in their application to stable structures. The examination of between minima to be explored. This helps the system to  systems involving chemical reactions or quantum phenomena escape local free energy minima and explore metastable states  requires treatment using quantum mechanics methods, or the separated by large free energy barriers [192]. Metadynamics,  combination of quantum mechanics and molecular mechanics which is used to calculate static properties, can also be used  methods (denoted QM/MM). The application of quantum to calculate dynamic properties by introducing a history- methods to biomolecules is discussed in the next section. 

dependent biasing potential as a function of a few collective 

variables. Selection of collective variables is an essential  QUANTUM MECHANICS IN BIOPHYSICAL 

part of a metadynamics run as these variables help sample  MODELING

different energy basins. The use of metadynamics, which is 

a combination of ideas involving coarse-grained dynamics in  Quantum mechanics (QM) calculations, being highly accurate space and the introduction of a history-dependent bias, can  and rigorous, are an essential tool in computational chemistry overcome the problem of limited time scale exploration by  studies. Unfortunately, the prohibitive size of many biological existing sampling algorithms and computational resources.  systems has limited theoretical and computational studies of 
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them to the realm of classical mechanics, largely utilizing non- (excited states and charge-transfer, for example). Although polarizable force fields in MD simulations. This has necessarily  hybrid quantum mechanics/molecular mechanics (QM/MM) reduced the scope of studies to conformational or structural  approaches have increased accuracy, recent improvements in aspects of these bio-systems, rather than more complex  software, hardware and theory have allowed for full quantum problems such as chemical reactions or quantum phenomena  mechanical studies of biochemical systems. The QM methods and functionals discussed are listed in Table 3. 

Table 3: List of QM methods and functionals

QUANTUM MECHANICS METHODS

theEncyclopedia of Computational Chemistry[209]. 

The wavefunction, which contains all the information describing 

An alternative approach to including electron correlation 

a quantum system, is obtained by solving the Schrödinger  is using semi-empirical quantum methods, where expensive equation, usually in its time-independent, non-relativistic  two-electron integrals in the HF method are eliminated form, invoking the Born–Oppenheimer approximation. 

and the method is supplemented with parameters derived 

from experimental data. Although these methods are 

(36)

computationally very efficient, their applicability is generally 

limited to systems similar to the parameterization set. Many 

This wavefunction, ψ, is a function of N electronic coordinates  variants of semi-empirical methods exist, with applicability to and depends parametrically on M  nuclear coordinates. The  biological systems [210–212], including MNDO, AM1, PM3, coordinates of an electron are denoted ζ  = (x , y , z , σ ), 

N

N

N

N

N

PM6, and the OMx methods. 

where x ,  y ,  z   are the spatial coordinates of electron  N, 

N

N

N

and σ  is the spin of this electron. The spatial coordinates of 

The electron density, a physical observable, also 

N

determines all properties of a system, and it is this fact that is 

nucleus M are indicated by   . 

utilized in the density functional theory (DFT) [213]. 

The Hartree–Fock (HF) method is the simplest ab initio QM 

method for obtaining the wavefunction, where the N-electron 



(37)

wavefunction is approximated as a product of N one-electron 

Since DFT methods scale as K3, they are more efficient 

wavefunctions, expressed in a Slater determinant. However,  than the HF method while also containing electron correlation. 

the HF theory is insufficient in describing electron correlation.  Therefore, DFT has been successful in the study of a variety of Electron correlation is included in post-Hartree–Fock  ab  biological systems [214]. Many functionals exist (for example, initio  methods such as the Møller–Plesset perturbation  B3LYP, PBE and TPSS [214]), which vary based on the form theory (MP2) or coupled-cluster (CC) calculations, although  of the exchange-correlation functional, and the performance at increased computational cost. While HF scales formally  of each functional is highly dependent on the system and asK4, where K is the number of basis functions, MP2 scales  properties of interest [213]. Even with the formal inclusion of as K5, and the gold-standard CCSD(T) scales as K7. A detailed  electron correlation, many DFT functionals are inadequate in description of these methods, and many others, is available in  modeling dispersion forces, a dominant source of stabilization 
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in bio-macromolecules. A common approach for improving  macromolecular system and perform QM calculations on each the performance of DFT functionals is to add a dispersion  fragment to obtain their wavefunctions and properties, which correction, which can be derived either empirically or from  are then combined to arrive at properties of the macromolecular high-level ab initio calculations [215–217]. For example, the  system as a whole. Fragmentation methods also benefit from DFT-D2 and DFT-D3 methods are popular [215,  218]. It is  their ability to be massively parallelized. A comprehensive worth noting that the dispersion terms have also been applied  summary of the many fragmentation methods available, with to improve semi-empirical methods [210, 212, 217,219]. 

many applications to biological systems, can be found in a 

The electronic structure methods mentioned above,  recent review [239]. 

particularly the ab initio methods, have been largely limited 

Of the electronic structure software available, the GAMESS 

to studying small molecules or truncated systems of biological  program includes the greatest variety of fragmentation methods and medicinal/pharmaceutical interest. For example, extensive  [239,  240], which include the effective fragment potential benchmarking studies have examined non-covalent interactions  (EFP) methods [241–243], the fragment molecular orbital to  identify  efficient  methods  of  comparable  accuracy  to  (FMO) method [244], the elongation (ELG) method [245], and CCSD(T)/CBS [220]. QM methods are also routinely used to  divide and conquer (DC) approaches [246]. Although the EFP 

develop  MD  force  field  parameters  and  charges  using  small  methods utilize intermolecular potentials, these are distinct models, as well as to parameterize docking scoring functions  from  those  in  force  fields  since  they  are  rigorously  derived 

[219]. Additionally, ligand strain may be evaluated with QM  from ab initio calculations rather than empirical parameters. Of methods [219]. Quantitative structure–activity relationship  these fragmentation methods, the FMO approach is arguably (QSAR) models also utilize QM methods to calculate the  the most robust and has been widely applied to biological predictor variables such as electrostatic potentials, orbital  systems [239, 240, 247–249], which include drug discovery, energies, charges, and dipoles in small molecules [219,221].  protein-ligand binding, protein-protein interactions, enzymatic The  QM  methods,  specifically  the  semi-empirical  and  DFT  catalysis, and DNA. 

approaches, were combined with truncated protein models 

Application of quantum mechanics/molecular mechanics 

to examine protein-ligand interactions [211]. Nevertheless,  to computational enzymology the use of QM methods to study very large systems remains 

limited. In order for the extensive applications of QM methods 

Enzymology investigates, among other topics, enzyme 

to macromolecular systems of biological and medicinal interest  kinetics and mechanisms of inhibition in steady-state turnover. 

to be feasible, significant advances in software, hardware, and  Advances in technology and methods have led to more detailed theory must be achieved [222]. 

information about enzyme structures and mechanisms. With an 

explosion in the number of novel and uncharacterized enzymes 

identified from the vast number of genome sequences, it has 

Acceleration of quantum mechanics with 

become evident that the structural and functional properties 

graphical processing units

of these enzymes need to be elucidated to establish precisely 

Graphics processing units (GPUs) have led to substantial  their  mechanisms  of  action  and  how  the  enzymes  fit  into accelerations in high-performance computing, with significant  the complex webs of metabolic reactions found in even the advancements for costly QM calculations. GPU-accelerated  simplest of organisms [250]. 

code has been developed for the HF method [223], correlated ab 

Vast changes have occurred in the science of enzymology 

initio methods [223–225], semi-empirical methods [226, 227],  since molecular simulations and modeling were first developed. 

and DFT [228]. In fact, GPU acceleration is now implemented  Calculations can provide detailed, atomic-level insights in many quantum chemistry programs. NVIDIA reports  into the fundamental mechanisms of biological catalysis. 

the following programs as having GPU support: ABINIT,  Computational enzymology was launched in the 1970s [251]. 

BigDFT, CP2K, GAMESS-US, GAMESS-UK, GPAW,  The pioneering studies of Warshel are particularly notable LATTE, MOLCAS, MOPAC2012, NWChem, OCtopus,  [252, 253]. By the early 1990s the number of computational PEtot, Q-Chem, QMCPACK, Quantum Espresso, TeraChem,  mechanistic studies of enzymes was still relatively small and VASP [208]. However, the most extensive use of GPUs  [254,  255], but recently there have been a great number of in a QM code [229–234] has been implemented in TeraChem,  computational studies of enzymatic reaction mechanisms an electronic-structure package specifically designed for use  published [253,  256–258]. Currently, computational with GPUs. This has enabled a QM description of a protein  enzymology is a rapidly developing area, focused on testing to examine charge-transfer and polarization in a solvated  theories of catalysis, challenging “textbook” mechanisms, and environment [235], full QM optimizations of protein structures  identifying novel catalytic mechanisms [259]. 

[233], and the examination of excitations in the green 

The choice of an appropriate method for the particular 

fluorescent protein (GFP) chromophore [236]. 

enzyme being modeled is vital. Quantitative predictions 

of reaction rates or the effects of mutations remain very 

Fragment-based quantum mechanics methods

challenging, but with appropriate methods, useful predictions 

One approach to making QM methods more tractable to  can  be  made  with  some  confidence.  Careful  testing  and biological and medicinal applications is the modification  experimental validation are important. For example, a of methods so that they scale linearly with system size  comparison of calculated barriers for a series of alternative 

[237,  238]. One such approach is based on fragmentation  substrates with experimentally determined activation energies methods, which have been developed to facilitate the  demonstrated good correlation validating mechanistic application of wavefunction and density functional methods  calculations [260, 261]. Some enzymes have become important to macromolecular structures. These methods partition a  model systems in the development and testing of computational 

[image: Image 1123]
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methods and protocols; these include chorismate mutase  model should contain molecules representing the substrate(s), 

[259, 262–266], citrate synthase [267–269], P450 [257, 259],  any cofactors, and enzyme residues involved in the chemical para-hydroxybenzoate hydroxylase [257,  260,  265] and  reaction or in binding substrates. Important functional groups triosephosphate isomerase [255, 270, 271]. 

are represented by small molecules (e.g., acetate can represent 

an aspartate side chain). The initial positions of these groups 

Modeling enzyme-catalyzed reactions

are usually coordinates taken from a crystal structure, or from 

an MD simulation of an enzyme complex. 

The usual starting point for modeling an enzyme-catalyzed 

reaction is an enzyme structure from X-ray crystallography. 

Quantum chemical methods can give excellent results 

When this is not available, sometimes a model may be  for reactions of small molecules. Semi-empirical techniques, constructed based on homology to other structures that have  such as AM1 and PM3, can model larger systems that contain been solved [272], though such models should be treated with  hundreds of atoms. However, semi-empirical methods must be much more caution. The first step in studying an enzyme- applied with caution due to their sensitivity to parameterization, catalyzed reaction is to establish its chemical mechanism. Its  because typical errors may be over 10 kcal/mol for barriers goal is to determine the functions of catalytic residues, which  and reaction energies [285,  286]. DFT methods are are often not obvious. Even the identities of many important  considerably more accurate, while also allowing calculations groups may not be certain. Any specific interactions that  on relatively large systems (e.g., active site models on the stabilize transition states or reactive intermediates should also  order of 100 atoms), larger than is feasible with correlated ab be identified and analyzed. 

initio  calculations. Many DFT methods, however, do not 

properly account for dispersion forces, which are important in 

Enzymes, representing usually large molecules, need  the binding of ligands to proteins and can also be important in sophisticated modeling steps as the reactions that they  the calculation of energy barriers [287]. Dispersion corrections catalyze are complex. This can be complicated further by  may be required in such cases [215–217]. Calculations on the need to include a part of a particular enzyme’s molecular  active site models can provide models of transition states environment, such as the surrounding solvent, cofactors, other  and intermediates, which has proved particularly useful for proteins, a lipid membrane, or DNA. There are many practical  studying metalloenzymes using DFT methods [288, 289]. 

considerations in simulating such complex systems, such as 

the proper interpretation of crystal structures and the choice of 

protonation states for ionizable amino acids [273]. Here, we   Combined quantum mechanics/molecular me-

illustrate these challenges with recent examples of modeling   chanics methods

enzyme-catalyzed reactions. 

Combined quantum mechanics/molecular mechanics (QM/

MM) methods are widely applied to accurately model enzymes. 

 The empirical valence bond method

This has been made possible by increased computer power, 

The empirical valence bond (EVB) is considered to be one  and improved software packages. QM/MM approaches treat of the main methods used for modeling enzyme-catalyzed  a small part of the system quantum mechanically (describing reactions [274]. In the EVB method, a few resonance  the electronic structure of molecules) and the rest of the system structures are chosen to represent the reaction. The energy of  with a molecular mechanics (MM) method (using a classical each resonance form is given by a simple empirical force field,  potential energy function [290]). The QM treatment accounts with the potential energy given by solving the related secular  for the electronic rearrangements involved in bond breaking equation. The EVB Hamiltonian can be calibrated to reproduce  and bond making, while the MM treatment allows to include experimental data for a reaction in solution, orab initio results  the effects of the environment on the reaction energetics. 

can be used [275]. The surrounding protein and solvent are 

There are two general types of QM/MM methods. The 

modeled by an empirical force field, using proper long-range  first is additive, 

electrostatics. The free energy of activation is calculated from 

free energy perturbation simulations [276]. The free energy 

(38)

surfaces can be calibrated by comparison with experimental 

data for reactions in solution. The EVB method allows the  where E (QM) is the energy of the QM region according to QM

use of a non-geometrical reaction coordinate, which helps to  the QM method, E (MM) is the energy of the MM region ac-MM

evaluate non-equilibrium solvation effects [274]. A mapping  cording to the MM method, and E

is the interaction 

QM-MM,interaction

procedure gradually moves the system from the reactants to  energy between the two regions. 

products. The simplicity of the EVB potential function allows  The second type of QM/MM method is subtractive, extensive molecular dynamics (MD) simulations, giving 

good sampling [277]. The EVB method has been widely used 

for studying reactions in condensed phases, particularly in 



(39)

enzymes [278–284]. 

where E  is the energy of the total system as calculated by 

MM

 Quantum chemical methods

the MM method, E (QM) is the energy of the QM region as 

QM

calculated by the QM method, and E (QM) is the energy of 

MM

Another approach to the modeling of enzyme-catalyzed  the QM region as calculated by the MM method. This is used, reactions is to study only the active site using quantum  for example, in the ONIOM method [291]. 

chemical methods. This methodology is usually named the 

In the subtractive approach, the active site region is 

cluster approach or the supermolecule approach. The active site  modeled at the MM level, and the choice of suitable MM 
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parameters (e.g., atomic charges) for all states of the reaction  molecules are often not suitable for large systems, storage and is an important and delicate consideration. Until recently,  manipulation of Hessian matrices become extremely difficult. 

calculations using the subtractive approach typically used the  A basic means of modeling approximate reaction paths is the more approximate “mechanical embedding” scheme, whereas  “adiabatic mapping” or “coordinate driving” approach. The currently most implementations of both approaches allow  energy of the system is found by minimizing the energy at a 

“electrostatic embedding” [291] which takes into account the  series of fixed (or restrained) values of a reaction coordinate, electrostatic influence of the MM region on the QM region,  e.g., the distance between two atoms. This approach has been i.e., polarization of the QM region by the atomic charges of the  successfully applied to many enzymes [257], but it is only MM region. Five general aspects are important in a QM/MM  valid if one conformation of the protein can represent the state calculation on an enzyme:

of the system at a particular value of the reaction coordinate. 

•  Choice of the QM method. 

Calculations of a potential energy surface may not 

•  Choice  of  the  MM  force  field  (including  the  MM  consider  significant  conformational  fluctuations  of  the parameters for the QM region). 

enzyme. Conformational changes, even on a small scale, may 

•  Partitioning  of  the  system  into  QM  and  MM  regions  cause significant chemical changes. Conformational changes with due attention paid to any chemical bonds that  of the active site can greatly affect the energy barrier. To take straddle the two regions. 

the fatty acid amide hydrolase as an example, conformational 

fluctuations  do  not  affect  the  general  shape  of  the  potential 

•  Type  of  simulation  (e.g.,  an  MD  simulation,  or  energy surfaces, but consistency between experimental and calculation  of  potential  energy  profiles);  whether  calculated barriers is observed only with a specific infrequent extensive conformational sampling will be performed. 

arrangement of the enzyme-substrate complex [298]. These 

•  Construction  (and  testing)  of  an  accurate  molecular  findings  indicate  that  investigation  of  different  protein model of the enzyme complex. 

conformations is essential for a meaningful determination 

The  MM  force  field  employed  in  a  QM/MM  study  of the energetics of enzymatic reactions for calculations of should be chosen to describe the part of the system outside  potential energy profiles or surfaces. 

the QM region and its interactions with the QM region. For 

proteins, standard all-atom force fields such as CHARMM27, Calculating free energy profiles for enzyme-AMBER ff99 or ff99SB, and OPLS-AA are commonly used. catalyzed reactions

Apart from selecting suitable QM and MM methods and a 

QM/MM approach, modeling an enzyme reaction with a  According to transition state theory, the rate constant of a QM/MM method requires other important choices, such as  reaction is related to the free energy barrier. The techniques deciding which atoms to include in the QM region and how to  described previously calculate potential energy barriers treat covalent bonds that cross the QM/MM boundary [292].  for a particular conformation. Techniques that illustrate Another important choice is determining the protonation states  configurations along a reaction coordinate give a more of residues, and how (long-range) electrostatic interactions are  sophisticated and extensive description by taking account of treated. The  influence  of  such  choices  on  the  results  should  multiple conformations and estimating entropic effects, and be tested [267, 293–296] in order to be able to draw reliable  can be essential for modeling enzyme reactions. Simulations conclusions. Recent improvements allow relocating the QM- of this type provide estimates of the free energy profile along MM boundary on-the-fly (adaptive partitioning) [297]. 

a specific reaction coordinate, which is often referred to as the 

potential of mean force. MD and Monte Carlo methods allow 

Modeling enzyme reactions by calculating po-

such illustration, but do not provide a sufficiently detailed 

view of high energy regions, such as those in the vicinity of 

tential energy surfaces

transition states. Conformational illustration of processes of 

With QM or QM/MM methods, potential energy surfaces  chemical change requires specialized techniques, e.g., to bias of enzyme reaction mechanisms can be explored accurately  the simulation to sample the transition state region. Umbrella enough to enable discrimination between different mechanisms,  sampling, which is widely used in MD simulations, when e.g., if the barrier for a proposed mechanism is significantly  combined with QM/MM techniques, can be used to model larger than that derived from experiment (using transition state  enzymatic reactions [262]. QM/MM umbrella sampling theory), within the limits of accuracy of the computational  simulations are possible with semi-empirical molecular orbital method and experimental error, then that mechanism can be  methods (e.g., AM1 or PM3). Often, such methods are highly considered to be unlikely. A mechanism with a calculated  inaccurate for reaction barriers and energies but their accuracy barrier comparable to the apparent experimental barrier (for  can be improved significantly by re-parameterization for a that step, or failing that for the overall reaction) is more likely.  specific reaction. 

However, to calculate rate constants also requires reliable 

estimates of enthalpies, internal energies, and free energies  CONCLUSIONS

of a given reaction and activation, given the potential energy  This review paper has aimed to provide a comprehensive guide surface. Traditional approaches to modeling reactions rely  to a plethora of mathematical and computational methods on the identification of stationary points (reactants, products,  developed in the past few decades to tackle key quantitative intermediates, transition states) via geometry optimization,  problems in the life sciences. Our critical overview covers followed by the computation of second derivatives to enable  methods used across the life sciences, starting from macroscopic relatively simplistic evaluation of zero-point corrections,  systems such as those in evolutionary biology, and ending with thermal and entropy terms. Algorithms developed for small  atomic level descriptions of biomolecules including quantum 
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mechanical or hybrid classical/quantum approaches. Particular 

Belew RK, Goodsell DS, Olson AJ: AutoDock4 and 

attention was given to large-scale computational methods, 

AutoDockTools4: Automated docking with selective 

such as molecular dynamics, which play pivotal roles in the 

receptor  flexibility.  J  Comput  Chem.  2009,  30:  2785-

development of our understanding of molecular mechanisms 

2791. 

at the level of molecular, structural, and cell biology. Important  15.  Nimjee SM, Rusconi CP, Sullenger BA: Aptamers: an applications in medicine and pharmaceutical sciences have 

emerging class of therapeutics. Annu Rev Med. 2005, 

been discussed, in particular in the context of extracting crucial 

56: 555-583. 

conclusions about complex system behavior with information 

limitations. We hope the reader will be encouraged to explore  16.  James W: Aptamer. Encycl Anal Chem. 2000, Hoboken, particular topics at a deeper level using the information and 

N.J.: Wiley & Sons Inc, 4848-4871. 

references provided in this review. 

17.  Hamula CLA, Guthrie JW, Zhang H, Li X-F, Le XC: 

Selection and analytical applications of aptamers. 
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CHAPTER

14 PHYSICS-BASED RNA 

STRUCTURE PREDICTION

Xiaojun Xu, and Shi-Jie Chen

Keywords: RNAVfold2D structure prediction,3D structure prediction, Tertiary motif INTRODUCTION

it can undergo. Understanding RNA function requires the 

understanding of the full energy landscape. 

The increasing discoveries of noncoding RNAs demand more 

than ever the information about RNA structure (Bachellerie 

Statistical mechanics-based modeling has led to significant 

et al. 2002; Kertesz et al. 2007; He et al. 2008; Bartel 2009;  success in RNA structure prediction, folding stabilities, Gong and Maquat 2011; Wang et al. 2013). For example, the  and folding kinetics for structures with different structural 3D structure of a microRNA–target complex is crucial for  complexities (Liu et al.  2006; Chen  2008). For example, understanding  microRNA’s  binding  affinity  and  efficacy  in  a recently developed statistical mechanics-based RNA gene regulation (Kertesz et al. 2007; Bartel 2009). However,  folding model, “Vfold” model, has provided a wide range the time-consuming, laborious, expensive experimental  of quantitative predictions and novel insights for a variety determination, such as X-ray crystallographic and NMR  of experiments and RNA functions, such as the pseudoknot-spectroscopic measurements, alone cannot catch up the pace  involved conformational switch between bistable secondary with the rapidly increasing number of biologically significant  structures (Xu and Chen  2012), microRNA gene regulation RNAs such as noncoding regulatory RNAs. This problem  through microRNA/mRNA-binding interactions (Cao and highlights the need for computational prediction of RNA  Chen  2012), and RNA/RNA dimerization critical for viral folding. 

replication (Cao and Chen 2011; Cao et al. 2014). However, 

despite the success of this approach, several key issues 

The structure of an RNA is determined by the complex  remain. Estimation of the entropies for RNA tertiary folds and pattern of base–base interactions, including base-paired  extraction of the energy parameters for noncanonical tertiary secondary structures and long-range tertiary interactions.  interactions from thermodynamic data or known structures Existing RNA folding theories mainly focus on the secondary  present major challenges hampering the structural modeling structures. However, knowing the secondary structure  for large and complex RNAs. The primary focus of this article information alone is not sufficient to determine the 3D structure,  is on the statistical mechanics-based methods for predicting because a 3D structure often involves long-range tertiary  RNA 3D structures and folding energy landscapes, and the interactions such as kissing interactions between the different  related quantitative insights into RNA functions. 

loops. Therefore, for a physics-based approach, accurate 

evaluation of the energetic parameters for tertiary interactions 

is critical for 3D structure prediction. Moreover, RNA function  AN OVERVIEW OF COMPUTATIONAL METHis correlated not only to the minimum free energy state of an  ODS FOR RNA FOLDING

RNA, but also to the potentially large conformational changes  RNA folding process is believed to be partly hierarchical, whereby secondary structural motifs fold first followed by 

the tertiary contacts formation. The secondary structure is a 

set of helices containing canonical base pairs (A–U, G–C, and 

Citation: Xiaojun Xu and Shi-Jie Chen, Physics-based RNA structure  G–U) and contributes to the major part of the free energy of prediction, DOI 10.1007/s41048-015-0001-4. 

an RNA system. Canonical base pairing and base stacking 

within helices are generally stronger than the non-canonical 

interactions in loop parts of an RNA system. Therefore, many 

computational models dissect the RNA folding problem into 
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two steps: from sequence to two-dimensional (2D) structure  pairs can be predicted. and all pseudoknots in well-folded and from 2D structure to three-dimensional (3D) structure,  RNAs can be identified (Hajdin et al. 2013). 

where a 2D structure is defined by base pairs including tertiary 

cross-linked base pairs such as kissing base pairs. With the 2D  Tertiary motifs: free energy models structure as constraint, the accuracy of 3D structure prediction 

can be significantly improved. 

Unlike the entropy (free-energy) parameters for simple 

loops (hairpin, bulge, and internal loops), which have been 

2D structure predictions

determined from thermodynamic experiments (Turner and 

Mathews2010). Quantitative understanding of many other 

Computational models for RNA 2D structure prediction  interactions remains very limited. Moreover, because of fall into two general categories: free energy minimization  the possible conformational coupling between the different (Ding and Lawrence  2003; Hofacker  2003; Zuker  2003;  loops and between loops and helices, the loop entropies are Xayaphoummine et al.  2005; Mathews and Turner  2006;  not additive for tertiary motifs such as loop–loop kissing Parisien and Major  2008; Bellaousov et al.  2013; Xu et  contacts (Fig. 1). Previous studies on the kissing complexes al.  2014), and sequence comparison (Gutell et al.  2002;  and other RNA folding systems such as pseudoknots suggested Hofacker et al. 2002; Mathews and Turner 2002; Havgaard et  that a reliable estimation for the entropy is indispensable for al. 2005; Bindewald and Shapiro 2006; Bernhart et al. 2008;  folding predictions (Cao and Chen  2006,  2009; Andronescu Sato et al.  2009). Most free energy minimization methods  et al. 2010a, b). Accurate treatment for the entropy and free employ the empirical thermodynamic parameters [the Turner  energy for tertiary structure formation is a bottleneck. 

parameters (Turner and Mathews  2010)] for the different 

secondary structural elements. Other models, such as MC-

Fold (Parisien and Major 2008), use knowledge-based energy 

functions extracted from the known PDB structures. However, 

not all the interactions (such as long-range tertiary contacts) 

can be captured by these parameters. As a result, the accuracy 

of prediction falls off rapidly with the length of the sequence, 

because larger RNAs are more prone to the formation of 

long-range tertiary contacts. The accuracy of computational 

predictions is usually better for methods that consider “fold 

recognition”: structure is usually more conserved than 

sequence, and the functional core regions are usually more 

conserved at all levels. In general, sequence comparison-

based methods can give more improved predictions than free-

energy-based predictions if the homologous sequences are 

available. However, these methods depend strongly on the 

availability of the sequence database. To overcome the above 

limitations, several hybrid algorithms that combine free energy 

minimization and sequence comparison have been developed  Figure  1:  A A  schematic  figure  for  the  microRNA–target-binding (Mathews and Turner 2002; Havgaard et al. 2005; Bernhart et  complex. The entropic change upon the binding between microRNA al. 2008). For example, Dynalign (Mathews and Turner 2002)  and  the  mRNA  ΔS(l ,  S) depends on the length of the binding eff

combines free energy minimization and comparative sequence  site S and the effect loop length l . B A schematic diagram and all-eff

analysis  to  find  a  low  free  energy  structure  common  to  two  atom structure of the hairpin–hairpin kissing complex sequences without requiring any sequence identity. On 

Dirks  and  Pierce  (2003)  introduced  a  simplified  energy 

average, Dynalign predicted 86.1  % of known base-pairs in  model for H-type pseudoknots: the tRNAs, compared to 59.7 % by free energy minimization 

alone. For the 5S rRNAs, the average accuracy improves from 

47.8 to 86.4 %. 

where β  is the penalty for introducing a pseudoknot, Bp is the 

1

Another way to improve the accuracy of structure  number of base pairs that border the interior of the pseudoknot, prediction is to incorporate experimental data to the secondary  and Up is the number of unpaired bases inside the pseudoknot. 

structure prediction modeling (Mathews et al. 2004; Deigan et  Later, this energy model was extended (Sperschneider et al. 2009; Low and Weeks 2010; Kladwang et al. 2011; Hajdin et  al.  2011) to parameterize hairpin–hairpin kissing motifs, al. 2013; Leonard et al. 2013). Selective 2′-hydroxyl acylation  as shown in Fig.  1. In essence, by decoupling the interplay analyzed by primer extension (SHAPE) probing data has  between helices and loops in the tertiary motifs, this energy proved useful for RNA secondary structure modeling (Deigan  model approximates the non-additive energy with an additive et al. 2009; Low and Weeks 2010; Kladwang et al.2011; Hajdin  model. 

et al.  2013; Leonard et al.  2013). The SHAPE information 

Based on the polymer physics theory (de Cloizeaux 1974; 

provides  refinements  for  the  experimental  determined  Grosberg and Khokhlov 1994), Aalberts et al. (2013) proposed thermodynamic parameters (Turner and Mathews  2010) for  the following expressions (Meng and Aalberts 2013) for the RNA folding. Benchmark test for a set of 21 RNAs of size  free energy cost of stretching mRNA hairpin loops upon small from 34 to 530 nt shows that 93 % on average of known base  RNA binding (Fig. 1):
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Table 1: A partial list for the computational models for RNA tertiary 

structure prediction and interactive manipulation

where  N  is the number of single-stranded backbone 

segments (of length  a  =  6.2  Å),  and  M  is the number of 

helix crossing segments (of length  b  =  15  Å).  The  Flory 

radius 

represents the characteristic end-

to-end separation of a self-avoiding chain (Aalberts and 

Hodas 2010). β = k T and the constant C  can be set on the basis 

B

0

of experiment. The parameter z is the end-to-end separation of 

a helix, which can be calculated as

for an A-form RNA helix of (s + 1) base pairs, with h = 2.7 Å 

and r = 9.9 Å. We note that the freely jointed chain (FJC) model 

used to derive the above free energy upon small RNA binding 

to mRNA hairpin loops does not consider the excluded volume 

effect between the A-form helix and the single-stranded chain; 

moreover, the FJC model can only provide an estimation for 

long chains. 

To compute entropy of hairpin, bulge/internal and 

multibranch loops of long length (up to 50 nt), with an efficient 

sampling method based on the sequential Monte Carlo   Coarse-grained approaches

principle, Zhang et al. (2008) developed optimized discrete  Coarse-grained representation can largely reduce the degrees k-state models based on RNA backbone conformations in  of freedom and thus enhance the conformational sampling. 

known RNA structures. The method is general and can be  YAMMP/YUP (Wang et al. 1999; Tan et al. 2006) and NAST 

applied to calculating entropy of loops with high complexity. 

(Jonikas et al. 2009) represent RNA with just one pseudo-atom 

per  nucleotide  residue:  P  and  C3′,  respectively.  iFoldRNA 

3D structure predictions

(Sharma et al. 2008) and Vfold (Cao and Chen 2005; Shi et 

RNA 3D structure prediction is still at its early stage (Shapiro  al. 2014) represent RNA by three pseudo-atoms per residue. 

et al. 2007; Andersen 2010; Laing and Schlick 2011; Rother et  Ren (Xia et al.  2010,  2013) uses 5-bead to represent each al. 2011; Sim et al. 2012). Current RNA folding algorithms are  nucleotide, and HiRE-RNA (Pasquali and Derreumaux 2010) generally limited to simple (short) structures, hampered by the  uses six or seven pseudo-atoms for purine and pyrimidine challenges including adequate treatment of the conformational  residues, respectively. Coarse-grained systems are usually sampling and the evaluation of the energies for the tertiary  modeled with knowledge-based potentials that are derived contacts. Table 1 describes some of the most recently developed  from known structures. Combined with discrete molecular algorithms, ranging from coarse-grained modeling to various  dynamics (DMD) (Ding et al. 2008) or other similar methods, structure–assembly, and other conformational sampling  this approach has the potential to predict structures and folding approaches. 

mechanism for large RNAs. For example, a recently developed 

3-bead model (Shi et al. 2014) can achieve 3.5 Å RMSD on 

average for 46 small RNAs including pseudoknots. Combined 

with Monte Carlo-simulated annealing algorithm and a coarse-

grained force field with implicit salt, the model may provide 

reliable predictions for the stability and salt effect with the 

mean deviation ∼1.0  °C of melting temperatures, compared 

with the extensive experimental data for 30 RNA hairpins. 

Another coarse-grained approach is the graph theory-

based tool (RAG) (Izzo et al.  2011; Kim et al.  2014) for 

sampling RNA global helical topologies. RAG represents 

RNA 2D structure as planar tree or dual graphs to assist the 
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cataloging, analyzing, and designing of RNA structures. With  often remain close to the initial starting model (Sim et the knowledge-based potential for internal loop orientations,  al. 2012). The molecular system is trapped in its local energy such as bending and torsion of internal loops, the combination  minima for the most part of the computational time, and the of graph theory and Monte Carlo-simulated annealing sampling  barriers between local minima on the energy landscape hinder shows great promise for assembling global features of RNA  transitions between different low-energy states. To overcome architecture: graph RMSDs range from 2.52 to 28.24 Å for  this difficulty requires the use of special simulation techniques RNAs of the size 25–158 nucleotides. 

(Li and Scheraga  1987; Rahman and Tully  2002; Minary et 

al.  2004; Curuksu and Zacharias  2009) to achieve effective 

 Structure–assembly approaches

sampling of conformational space. 

Based on the assumption that the 3D fold is more conserved 

A probabilistic model, called BARNACLE (Frellsen et 

and can be recognized by the alignment of sequences and  al. 2009), allows for efficient sampling of RNA conformations secondary structure patterns, the template-based modeling  in continuous space and with related probabilities. Using (Das and Baker 2007; Parisien and Major 2008; Das et al. 2010;  coarse-grained base-pairing information, BARNACLE 

Cao and Chen 2011; Zhao et al.2012) has shown promising  generates reasonable RNA-like structures for small RNAs achievements in RNA 3D structure predictions. In structure- (<50 nt). However, the method is mostly limited to short RNAs assembly approaches, RNA 3D structures are built based on  because of the rapid increase in complexity of the probabilistic the known structures modules ranging from fragments of 1–3  model. 

nucleotides to 2D structural motifs. 

FARNA/FARFAR (Das and Baker 2007; Das et al. 2010)   Interactive manipulation

models RNA 3D structures by assembling of short fragments  Many RNA structure design algorithms, such as RNA2D3D 

(1–3 nucleotides) from a single crystal structure via a Monte  (Martinez et al.  2008) and Assemble (Jossinet et al.  2010), Carlo procedure guided by a knowledge-based energy function  are quite efficient. This interactive graphical tools are useful that encodes base-stacking and base-pairing potentials. It  to analyze and build RNA architectures, but have less ability can reach atomic resolution (<3.0 Å) for most short RNAs  for RNA structure predictions, since they rely on manual (<30 nt). MC-Sym (Parisien and Major 2008) builds all-atom  application of expert knowledge. 

structures using the 3D version of the nucleotide cyclic motif 

(NCM) fragments. The 3D NCM library was built from a list  VFOLD: FROM SEQUENCE TO 3D ALL-ATOM 

of 531 known RNA 3D structures. Due to the limited NCM  STRUCTURES

fragments for large, complex NCM motifs, such as 6-way 

junctions and kissing loops, current MC-Sym is limited  Vfold (web server (Xu et al. 2014): http://rna.physics.missouri. 

to short RNAs requiring 2D structures as input. 3dRNA  edu) is a model used to predict RNA 2D and 3D structures (Zhao et al. 2012) builds the whole RNA structure from the  and the folding stability from the sequence. The model smallest secondary elements (SSEs) by a two-step assembling  distinguishes itself from other models by two unique features: procedure. The SSEs are defined as base-pair hairpin, internal/ physics-based modeling of conformational entropy for 2D 

bulge loop, pseudoknot loop and junction, which are extracted  structure prediction, and template-based multiscale modeling from known structures. 

for 3D structure prediction. 

One of the common limitations to the structure–assembly 

approaches is the degree of divergence of the fragment library.  Entropy parameters for tertiary motifs

Given the limited number of known RNA structures, structural  Using  the  P-C4′  and  C4′-P  virtual  bonds  to  represent motif templates with the required high sequence identity  the backbone conformations, the Vfold model (Cao and are  difficult  to  attain.  The  lack  of  reliable  structural  motifs  Chen 2005) samples loops/junction conformations in the 3D 

for loops and junctions greatly hampers accurate 3D RNA  space through conformational enumeration (Xu et al. 2014). 

structure prediction. Moreover, the template-based structure  By calculating the probability of loop formation, the model prediction models cannot predict structures with “new” motifs. estimates the conformational entropy parameters for the As for the coarse-grained models, incorporating  formation of the different types of loops such as pseudoknot experimental data can dramatically improve the accuracy for  loops and hairpin–hairpin kissing motifs. The model has the the structure–assembly approaches. For instance, constraints  advantage of accounting for chain connectivity, excluded using structural inference of native RNAs by high throughput  volume, and the completeness of conformational ensemble. 

contact mapping, such as the multiplexed hydroxyl radical  Studies by us and other groups show that an accurate entropy (–OH)  cleavage  analysis  (MOHCA),  improve  the  FARNA’s  parameter improves the prediction of RNA secondary structures prediction (Das et al.  2008). For the 158-nt P4–P6 domain  and thermodynamic stabilities (Andronescu et al. 2010). Here, of the group I intron, MOHCA leads to an improvement of  we use the hairpin–hairpin kissing motif to illustrate the Vfold RMSD from 35 Å with FARNA to 13 Å. 

calculation for the entropy of an RNA/RNA kissing complex. 

The hairpin–hairpin kissing complex, shown in 

 Sampling algorithms

Fig.  1B, consists of three stems and four loops. We assume 

One of the challenges for current RNA structure prediction is  loop  l   and  l   are  short,  with  ≤1  nucleotide,  which  favors 2

4

the problem of conformational sampling. Even for the DMD  the formation of coaxial stacking interaction between with knowledge-based energy functions at different coarse- stem H  and H  and between H  and H . Therefore, the entropic 1

2

2

3

grained levels, a major issue is that sampled conformations  cost upon the formation of loop–loop kissing  S(H ,  l ,  l ) 2

1

3
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depends on the length of the stem H and the single-stranded 

overlapping virtual bonds when the loop conformations 

2 

loops of l  and l . The computation involves three steps:

are generated in the virtual bond diamond lattice. 

1

3

•  Due to the nature of the coaxial stacking between stems 

Assuming the interactions in the loops are weaker 

of H , H , and H , the relative orientation between stems 

than the base stacking interactions that stabilize a 2D 

1

2

3

of H  and H  is determined by the length of stem H . The 

structure, we can estimate the loop entropy parameter 

1

3

2

as the logarithm of the conformational count. 

coordinates of the 8 nt 

, shown in Fig. 1B) are adopted from the known NMR 

The Vfold-predicted loop entropies (Table  2) enable 

structure as the template. The final coordinates of the 8  folding free energy calculations for RNA/RNA complex such nt for different length of H  are generated according to  as for microRNA–target-binding (Cao and Chen  2012) and 2

the A-formed H  and the template. 

hairpin–hairpin kissing complex systems (Cao and Chen 2011; 

2

Cao et al. 2014). For example, for the kissing complex shown 

•  For each helix orientation, with well-defined (a , a ) of 

i

j

in Fig. 2, the free energy is computed as

the starting and ending nucleotides for the loop l  and 

1

(b ,  b ) of the starting and ending nucleotides for 

i

j

the loop  l , we model loop conformations as self-

3

avoiding walks of the virtual bonds on diamond lattice 

(Cao and Chen  2005) to sample loops/junctions 3D 

conformations. The connection between the A-form 

helix and the discrete loop conformations is realized  where  S  is the number of base pairs in the kissing stem, through an iterative optimized algorithm (Ferro and  and l , l , l , l  are the length of loops 1, 2, 3, and 4, respectively. 

1 2 3 4

Hermans 1971). 

The entropic energy of kissing loop is estimated by 

•  A key issue in the conformational count is the excluded  , with  lnω6,2,2 is read from Table 1, and volume interaction between loop and helix and  (l is the chain length of loop l  or l ) from the polymer physics between the different loops. In the Vfold model, this 

1

3

theory. 

can be explicitly taken into account by disallowing 

Table 2: The Vfold-derived conformational entropies 

for the kissing complex for the different stem lengths and different 

loop lengths

The unit of the entropies is kB

[image: Image 1137]
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equal to the sum of the number of unpaired nucleotides and 

the number of stem-loop substructures. This approximation 

ignores the (weak) excluded volume interference between the 

stem-loop substructure and the loop, thus enabling us to treat 

general kissing motifs. 

Template-based RNA 3D structure prediction

Predicting RNA 3D structure is not a solved problem (Shapiro 

et al. 2007; Andersen 2010; Laing and Schlick 2011; Rother et 

al. 2011; Sim et al. 2012). Extensive efforts have been made to 

enhance the conformational sampling (Das and Baker 2007; 

Frellsen et al. 2009) and to establish accurate scoring functions 

for the ranking of the different structures (Ding et al. 2008; 

Parisien and Major  2008). The Vfold model can predict the 

2D structures of RNA/RNA kissing complex including inter- 

Figure 2: The evaluation of the free energy for a hairpin–hairpin kiss-

and intramolecular base pairings. In general, a 2D structure 

ing complex using the loop entropy parameters in Table 1 in Cao and  can correspond to a large number of 3D structures due to Chen (2011) and the Turner parameters (Turner and Mathews 2010)

the multiplicity of flexible loop conformations. The Vfold 

To treat more complicated (general) loop–loop kissing  model-predicted virtual bond structure provides a scaffold for complexes, as shown in the Fig. 2 of Cao et al. (2014), the stem- the construction of all-atom models of the 3D structure. The loop  substructure’s  impact  on  loop  entropy  is  approximated  prediction of the all-atom 3D structures from a given sequence by replacing the terminal base pairs (of the stems) by single  and 2D structure (base pairs) involves the following three steps nucleotides. Then, the effective loop lengths of l , l , l , and l  are  (see Fig. 3): 1 2 3

4

Figure 3: A The 2D structure of the BWYV pseudoknot. Vfold identifies it as a motif of “PK(5-2-1-7-3)”. B The virtual-bond (low-resolution) structure built from the motif-based template library. C The all-atom 3D structure refined by Amber energy minimization

•  To  build  the  3D  virtual  bond  structure.  Helices  are 

by adding atoms according to the templates for base 

modeled as A-form virtual-bonded helix structures. 

configurations, by aligning the C1′, N9, C4, and C8 for 

The loop/junction structures are built from the virtual 

purine (A or G) or C1′, N1, C2, and C6 for pyrimidine 

bond fragments of the template structures. To identify 

(C or U) with those of a nucleotide in a helix. This step 

the optimal template structure for the loops/junctions, 

results in an “atomistic version” of the Vfold structure. 

the model screens the pretabulated template library 

Using three atoms instead of one atom per base, the 

according  to  the  loop  size  (first)  and  the  sequence 

current Vfold can better capture the base orientation 

(second) matches. If necessary, this step may involve 

from templates and also can easily replace base type 

sequence replacement in order to match the (same size) 

accordingly. 

sequences in the template library. The model assembles    •  Energy minimization of the whole atomistic structure the helix and loop 3D virtual-bonded structures to 

using AMBER molecular dynamics simulations. The 

construct the 3D scaffold of the whole RNA. 

above  pre-refinement  structure  may  contain  atoms/

•  To  add  all  atoms  to  the  virtual-bonded  structure.  For 

groups that clash sterically with each other. Such 

nucleotides in each helix, atoms are added according 

steric clashes can be readily resolved by the all-atom 

to the A-form helix atomic structure. The 3D 

molecular dynamics simulations. With the above pre-

conformation of the nucleotides in loops are generated 

refinement  structure  as  the  initial  state,  the AMBER 

energy minimization (Case et al.2005) yields reliable 

[image: Image 1139]
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predictions for all-atom 3D structures. In the energy  determine the relative population of each dimer at the different minimization, the negative charges on phosphates are  temperature. Also, it would be biologically important to neutralized by Na+ cations added to the solution. The  understand if the kissing-loop dimer is a kinetic intermediate nonbonded interactions are truncated at 12 Å. Water  or a thermodynamic stable state at room temperature. Vfold molecules are treated by the standard TIP3P model  model provides a useful tool to quantitatively predict the included in AMBER software. For the most predicted  thermodynamic stabilities for the different dimes by computing structures, we found that the minimization causes only  the free energy landscape of the two-stranded system (Cao small change in the RMSD of the structure. The main  and Chen 2011, 2012; Cao et al. 2014). Recently developed advantage of the multiscale approach in the Vfold  RNA structure prediction models are good at predicting some model is that the virtual-bonded tertiary structures as  structures at high-accuracy resolution. For example, de novo the initial state may already lie in the free energy basin,  predictive models can accurately predict the simple and short so  the  structure  refinement  can  avoid  large  structural  hairpin and internal loop structures (Das and Baker 2007; Ding rearrangements and can thus lead to the native structure  et al. 2008; Parisien and Major 2008). However, the models effectively. 

cannot predict the kissing complex. The Vfold model enables 

The Vfold model predicts the 3D structure for a 2D  the prediction of kissing complexes (Cao and Chen 2011). 

structure based on the structural templates. To construct the 

Quantitative prediction of HIV-1 DIS complex requires 

template library, the model classifies the structure into different  modeling of the folding energy landscape and the structures motifs, such as helices, hairpin loops, internal/bulge loops,  of dimers. The partition function for the two-stranded system pseudoknots, and N-way junctions (N ≥ 3). The motif-based 

template library was built from 2621 PDB structures. With the 

⋅Q12  is the sum over the 

increasing number of known RNA structures, the larger and  unbound and bound systems. Here,Q ,  Q , and  Q   are the 1

2

12

more divergent pools of the known loop/junction structures  partition functions of the (unbound) strand 1 RNA, of the with the different types and different lengths would lead to  (unbound) strand 2 RNA and of the kissing (bound) system, better predictions of the 3D structure. 

respectively. ΔG

is dependent on the RNA concentration 

associate

.  We  choose  ΔG   to be 

As shown in Fig.  3, the above strategy gives reliable 

init

4.1 kcal/mol according to the experimental result (Serra and 

predictions for the all-atom 3D structures for simple tertiary  Turner 1995; Zuker 2003). The calculation of Q  and Q  for folds, such as pseudoknots and hairpin–hairpin kissing 

1

2

single-stranded RNA can be achieved by many RNA secondary 

complexes. The predicted structures as a 3D scaffold will  structure prediction models; however, the computation provide highly needed guidance for experiments. For example,  of Q  requires a statistical mechanical model such as the Vfold the sequential resonance assignments from the Nuclear 

12

model. 

Overhauser Effect (NOE) data may become efficient and more 

accurate if the information on the nucleotide spatial proximity 

The predicted free energy landscape for HIV-1 Mal shows 

from the predicted (low-resolution) structure is combined with  two free energy minima, indicating two coexisting structures for the NMR structural determination of RNA. 

at room temperature, shown in Fig. 4A. The structural (base-

pairing probability) calculations show that the free energy 

minima correspond to the kissing-loop dimer and the extended-

QUANTITATIVE PREDICTION FOR THE FOLD- duplex dimer, respectively. The extended-duplex dimer is ING OF HIV-1 DIS COMPLEX

slightly more stable than the kissing-loop dimer, with the free 

Intermolecular loop–loop base pairing is a widespread and  energy difference ΔG < 1.0 kcal/mol. The result suggests that functionally important tertiary structure motif in RNA.  the two modes of dimerization of HIV-1 Mal can coexist in Loop–loop interactions often facilitate dimerization reactions  thermodynamic equilibrium and can possibly interconvert between RNA molecules. For example, in HIV-1 virus, the  with the change of the temperature and solution condition. 

loop–loop kissing interaction is critical for one form of HIV-1 

dimerization (Laughrea and Jette 1994; Muriaux et al. 1996; 

Paillart et al.  2004). In bacteria, loop–loop interaction can 

regulate gene expression and affect replication and translation 

of the bacteria (Schmidt et al. 1995; Argaman and Altuvia 2000; 

Repoila et al.  2003; Bossi and Figueroa-Bossi  2007; Vogel 

and Wagner  2007). A well-documented case is OxyS RNA 

repression of fhlA translation in Escherichia Coli through the 

formation of a stable loop-kissing interaction (Argaman and 

Altuvia 2000). 

The dimerization process is essential for the HIV-1 

replication. Muriaux et al. proposed a two-step dimerization 

process (Muriaux et al.  1996a,  b). The kissing loop–loop  Figure  4:  A  The free energy landscape for the HIV-1 Mal dimer complex is formed followed by a conversion to form the  at T = 20 °C. The Vfold model predicts two coexisting structure (I, II), extended-duplex dimer due to temperature increase or protein  corresponding to the extended-duplex and kissing-loop dimers; re-binding. Both the kissing-loop dimer and the extended-duplex  spectively. In the energy landscape, N and NN are the numbers of the have been found in the structural measurement (Ennifar  native and non-native base pairs, respectively. B The Vfold predicts et al.  1999,  2001). Due to the lack of the thermodynamic  3D structures (inorange) for orange) for the kissing-loop and 

the kissing-loop 

extended-duplex di-

and extended-duplex di-

parameters for the kissing-loop dimer, it has been difficult to  mers for HIV-1 Mal dimer. The all-atom RMSDs are 3.1 and 2.9 Å 

250

Mathematical & Computational Physics

with respect to the experimental structures (in gray) with PDB IDs  2. 

Andersen ES (2010) Prediction and design of DNA and 

1xpe and 462d, respectively

RNA structures. New Biotechnol 27:184–192

Moreover,  based  on  the  Vfold  study,  we  find  that  the  3. 

Andronescu MS, Pop C, Condon A (2010a) Improved 

kissing-loop dimer of HIV-1 Mal is stabilized by the coaxial 

free energy parameters for RNA pseudoknotted 

stacking. We built the 3D structure of the kissing-loop dimer 

secondary structure prediction. RNA 16:26–42

according to the above multiscale strategy. The all-atom RMSD  4. 

Andronescu MS, Condon A, Hoos HH, Mathews DH, 

between predicted structure and the experiment solved NMR 

Murphy KP (2010b) Computational approaches for RNA 

structure (PDB id: 1xpe) is 3.1 Å, as shown in Fig. 4B. For the 

energy parameter estimation. RNA 16:2304–2318

extended-duplex dimer (structure I on the energy landscape),  5.  Argaman L, Altuvia S (2000) fhlA repression by OxyS 

Vfold predicts the 3D structure with an RMSD of 2.9 Å (PDB 

RNA: kissing complex formation at two sites results 

id: 462d). 

in a stable antisense-target RNA complex. J Mol Biol 

300:1101–1112

CONCLUSIONS

6. 

Bachellerie JP, Cavaille J, Huttenhofer A (2002) The 

The bottleneck for RNA tertiary structure prediction is the 

expanding snoRNA world. Biochimie 84:774–790

inability to treat the free energy, especially the entropy, for  7.  Bartel DP (2009) MicroRNAs: target recognition and structures with long-range tertiary interactions. The virtual-regulatory functions. Cell 136:215–233

bond based low-resolution conformational model (Vfold)  8.  Bellaousov S, Reuter JS, Seetin MG, Methews DH 

allows us to estimate the entropy and the full free energy 

(2013) RNAstructure: web servers for RNA secondary 

landscape for RNA tertiary global folds. The predicted 2D 

structure prediction and analysis. Nucleic Acids Res 

structures provide scaffolds for the construction of all-atom 3D 

41:W471–W474

models through molecular dynamics calculations. Validation 

by the experimental data for the RNA 2D and 3D structures  9. 

Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler 

and the folding thermodynamics as well as kinetics suggests 

PF (2008) RNAalifold: improved consensus structure 

that the statistical mechanics-based approaches can be quite 

prediction for RNA alignments. BMC Bioinformatics 

reliable. 

11:474

By considering the non-canonical interactions at both  10.  Bindewald E, Shapiro BA (2006) RNA secondary secondary structure and tertiary structure levels, Vfold 

structure prediction from sequence alignments using a 

model improves the accuracy of the secondary structure 

network of k-nearest neighbor classifiers. RNA 12:342–

prediction and introduces more detailed constraints, besides 

352

the canonical base-pairing information, to the 3D structure  11.  Bossi L, Figueroa-Bossi N (2007) A small RNA modeling. However, a fast sampling algorithm balancing the 

downregulates LamB maltoporin in  Salmonella. Mol 

completeness of the conformational space including non-

Microbiol 65:799–810

canonical base-pairing information and the computational time  12.  Cao S, Chen S-J (2005) Predicting RNA folding is needed to treat large RNAs. Moreover, further development 

thermodynamics with a reduced chain representation 

of the model should go beyond the simple hairpin–hairpin 

model. RNA 11:1884–1897

kissing complexes by estimating the entropic parameters for  13.  Cao S, Chen S-J (2006) Predicting RNA pseudoknot global folds with more complicate tertiary interactions, such as 

folding thermodynamics. Nucleic Acids Res 34:2634–

the SAM riboswitch. 

2652

With the rapidly growing size of the database of the  14.  Cao S, Chen S-J (2009) Predicting structures and experimentally measured RNA structures, motif template-stabilities for H-type pseudoknots with interhelix loops. 

based methods shows increasingly promising results, especially 

RNA 15:696–706

when the homologous conformations can be identified from the 

known structures. However, a backup plan is always needed  15.  Cao S, Chen S-J (2011a) Structure and stability of for a good model if no known homologous conformations can 

RNA/RNA kissing complex: with application of HIV 

be found in the PDB database. For instance, there is only a few 

dimerization initiation signal. RNA 17:2130–2143

of hairpin–hairpin kissing motifs in the current motif library.  16.  Cao S, Chen S-J (2011b) Physics-based de novo Further development of the model should address the motifs 

prediction of RNA 3D structures. J Phys Chem B 

involving tertiary interactions with the ability of de novo 

115:4216–4226

construction. 

17.  Cao S, Chen S-J (2012a) Predicting kissing interactions 

in microRNA-target complex and assessment of 
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CHAPTER

15 RANDOM MATRIX 

THEORY

Feng Luo, Yunfeng Yang, Jianxin Zhong, Haichun Gao, Latifur Khan, 

Dorothea K Thompson, and Jizhong Zhou

BACKGROUND

constrained by the dimensionality problem, namely, number 

of genes is far greater than the number of experiments in 

The cellular system, similar to engineering systems, is modular  microarray data. 

[1]. Hartwell et al. defined a module in biological system as “a 

discrete unit whose function is separable from those of other 

Because of its computational simplicity and the nature 

modules” and suggested that the functional modules are a  of microarray data (typically noisy, highly dimensional and 

“critical level of biological organization” [1]. One of important  significantly  under-sampled)  [16],  co-expression  network characteristics of modular system is collectivity. Namely, the  methods are most commonly used for identifying cellular similarities of behaviour or properties between elements in  networks [14,  15,  17–19]. As the expressions of genes in the same module are significantly higher than similarities  the same function modules generally are highly correlated, between elements from different modules. Moreover, the cell  gene functional modules can be revealed from gene co-is a complex system with many functionally diverse elements,  expression network as network modules. The co-expression including proteins, DNA, RNA and small molecules. Cellular  network methods first construct a correlation matrix of gene functionalities involve groups of molecules interacting to each  expressions, in which the Pearson correlation and the mutual other. Modelling cellular systems as networks with connected  information are often used. Then, the co-expression network elements allows us to understand the properties of cellular  methods assign a link to a pair of genes when the correlation systems [2,  3]. Thus, a module in a biological network can  between their expressions exceeds a threshold [14,  15,  17–

be defined as a sub-network that structurally has more insider  19]. Consequently, the network structure and topology, e.g. 

links than outsider links and functionally is enriched with  the number, size, content and connections of modules, are genes (proteins) in the same functional module. 

subjective, depending on the thresholds chosen. Thus, it is 

critical  to  appropriately  define  the  threshold  of  correlation. 

The microarray technology, which enables massive  Currently, thresholds are usually determined by either known parallel measurement of expressions of thousands of genes  biological information [17–19], or by statistical comparison simultaneously, has opened up great opportunities for the  to randomized expression data [20, 21]. New approaches are systems-level understanding and elucidating of gene networks  urgently needed to determine gene networks in an automatic 

[4–6]. Various methods have been developed for inferring gene  and objective fashion [3]. To tackle this, we developed a novel networks, such as differential equation-based network methods  random matrix theory (RMT)-based approach to determine the 

[7–10], Bayesian network methods [11,  12] and relevance/ threshold in this report. 

co-expression network methods [13–15]. Nevertheless, the 

inference of genome-wide gene networks currently is still 

Initially proposed by Wigner and Dyson in the 1960s 

for studying the spectrum of complex nuclei [22], RMT is 

a powerful approach for identifying and modelling phase 

transitions associated with disorder and noise in statistical 

Citation: Feng Luo, Yunfeng Yang, Jianxin Zhong, Haichun Gao, Lati-

physics and materials science. It has been successfully used 

fur Khan, Dorothea K Thompson, and Jizhong Zhou, Random Matrix  for studying the behaviour of complex systems, such as spectra Theory, 8:299 doi:10.1186/1471-2105-8-299. 

of large atoms [23], metal insulator transitions in disorder 

systems [24, 25], spectra of quasiperiodic systems [23, 26, 27], 

chaotic systems [28], brain response [29] and the stock market 
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[30]. However, its suitability for biological systems remains 

largely unexplored. 

RMT makes two universal predictions for real symmetric 

matrices: the nearest neighbour spacing distribution (NNSD) 

of eigenvalues (i.e., the distribution of the difference of two 

nearest neighbour eigenvalues) follows Gaussian orthogonal 

ensemble (GOE) statistics if there exists correlation between 

nearest-neighbour eigenvalues, while it follows Poisson 

statistics if there is no correlation [23]. Deviations from GOE 

universal prediction can be used to distinguish system-specific, 

non-random properties of complex systems from random 

noise [30]. It has been well recognized that only a portion of 

genes change their expressions under different experimental  Figure 1:  In silico evaluation of RMT approach. An  in silico modular conditions. Thus, the correlation matrix of gene expressions is  system was constructed at cutoff of 0.7 to simulated a simplified gene the combination of the high correlation part Mc, which signifies  co-expression network. (A) The normalized NNSDs of correlation matrices of the system at cutoff 0.69 (cyan) and 0.7 (pink) were 

the  correlation  of  gene  expressions  specified  to  changes  in  compared to the curves of Wigner surmise (green) and Poisson biological systems, and the weak correlation part Mr or so- distribution (red). The x-axis is the level spacing s and the y-axis is called noise, which signifies random relations between gene  probability of NNSDs. (B) Chi-Square Test at different cutoff values. 

expressions:  M  =  Mc  +  Mr.  The  modularity  of  the  cellular  The red line in the inset indicates the critical value of Chi-Square test systems indicates that Mc is non-random and will emerge  of  p = 0.001. X and Y axes represent the cutoff and the chi-square test collectivity property. Based on RMT, we hypothesized that the  values, respectively. 

two universal predictions are applicable to biological systems. 

The NNSD of M will follow GOE and the NNSD of Mc will   Sharp transitions of NNSD from GOE to Pois-

follow Poisson distribution. The transition of NNSD between 

GOE and Poisson distributions can serve as a reference point   son distributions in correlation matrices from 

to  distinguish  system-specific,  non-random  relationship   yeast microarray data

embedded in correlation matrix of gene microarray data from  We then proceeded to apply RMT-based approach to real random noise. This reference point is mathematically defined  biological data. Yeast cell cycling microarray data [31] was and can be used as a threshold to identify gene co-expression  selected because it has been extensively studied, making it easy networks in an automatic and objective fashion. 

to evaluate whether the results from RMT-based method are 

In this report, we describe the development and application  consistent with existing biological knowledge. A total of 5,293 

of an RMT-based approach to determine the correlation  genes with 70 time points available in the dataset were used. 

threshold for identifying co-expression networks based on the  A correlation matrix based on pair-wise Pearson correlation microarray data from such simple-to-complex organisms as  S.  coefficient in the range of (-1, 1) was calculated (See Methods oneidensis,  E. coli, yeast,  A. thaliana,  Drosophila, mouse and  for details). To simplify the analysis, the absolute cutoff human. Moreover, the resulting co-expression networks are  values were set to be the same for both positive and negative useful for predicting the function of unknown genes, which  correlations, though different cutoffs for positive and negative is supported by existing information and our experimental  correlations were tested separately and similar results were verification. 

obtained (data not shown). 

A clear sharp transition of NNSD from GOE to Poisson 

RESULTS

distribution  was  observed  (Fig.  2A).  Based  on  χ2  test ( p  =  

 In silico evaluation of RMT approach to determine correlation  0.001), NNSD started to deviate from GOE at the correlation threshold

coefficient r = 0.62 and completely transformed into Poisson 

l

distribution at the correlation coefficient r  = 0.77. Similarly, 

To test the effectiveness of the RMT based criterion to 

h

after the missing values is estimated using the nearest 

determine correlation threshold for constructing co-expression  neighbour based method [32], sharp transition (see additional network, we constructed an   in silico  model to simulate a  file 1, Figure 1) also observed and the threshold remains the simplified  gene  co-expression  network. A  correlation  matrix  same, which was possible due to the small number of missing of 2,000 genes with a designated correlation threshold of 0.7  values allowed in our study (only 7 missing values allowed was constructed (See Methods and Materials for details). The  in total 77 experiments). Furthermore, sharp transition from NNSD of the  in silico correlation matrix showed a dramatic  GOE to Poisson was also observed in correlation matrix using transition at the designated threshold (Fig. 1). NNSD followed  mutual information (data not shown). In addition, we applied Poisson distribution at the cutoff 0.7, whereas it obeyed GOE  this method to another yeast microarray dataset generated from at  cutoff  0.69.  The  RMT  approach  reliably  identified  the  environmental stress responses of yeast [33]. A clear transition designated threshold. 

from GOE to Poisson distributions was observed likewise (r = 

0.60–0.89) (data not shown). 
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Triplicates of  B4742 and the YLR190W mutant were grown in YPD 

or YPD containing nocodazole (NZ) at 30°C with constant agitation 

for 30 hrs. 

Comparison of threshold obtained by RMT to 

that obtained by randomization

To evaluate the effectiveness of the threshold determined by 

RMT method, we compared it to the widely used method of 

determining the threshold by randomizing gene expression 

profiles [14,  34], using the yeast cell cycle data [31] and 

environmental stress responses data [33]. Gene Ontology 

Slim category from  Saccharomyces Genome Database (SGD) 

database [35] was used to classify links. To simplify the 

comparison, a link connecting two genes in the some Gene 

Ontology Slim category is deemed to be true. As summarized 

in Table 1, more than half of links in all networks obtained 

by RMT method are true links. However, for randomized 

method, the networks constructed from yeast environmental 

stress responses data contain very low percentage of true 

links. This comparison indicates that randomization is poor 

for certain microarrays and RMT method has an advantage 

over randomization in identifying system-specific information 

embedded inside microarray profiles. 

Table 1: Comparison of thresholds obtained by RMT approach and 

randomization method and their corresponding co-expression net-

works. The thresholds determined by RMT approach and randomiza-

tion method on two yeast microarray expression profiles and their cor-

responding co-expression networks are compared. Abbreviations: MI 

– mutual information, and Pearson – Pearson correlation coefficient. 

Figure 2: Transition of nearest neighbour spacing distribution and 

gene co-expression network from yeast cell cycle microarray pro-

files. (A) The normalized NNSDs of correlation matrices of yeast cell 

cycle gene expressions at different cutoff values. They were plotted 

against the curves of Wigner surmise (navy) and Poisson distribution 

(red). The x-axis is the level spacing s and the y-axis is the prob-

ability  of  NNSDs.  (B)  Fifteen  significant  gene  co-expression  sub-

networks (modules) of the yeast cell cycling dataset were revealed at 

cutoff 0.77. All modules that have more than 4 genes are shown. For 

modules that have 3 genes, only those modules that form a cycle are 

shown, because only these kinds of modules are statistically signifi-

cant [61]. Each node represents a gene and the width of line represents 

the Pearson correlation coefficient of two linked genes. Blue and gray 

lines indicate positive and negative correlation coefficients, respec-

tively. Colors were assigned to nodes according to their functional 

categories: Red represents the major functional category of each mod-

ule while purple, yellow and tan represent other functional categories, 

which are often clustered into sub-modules. Genes in lavender par-

ticipate in processes closely related to genes in red. White nodes are 

unknown genes while black nodes are genes whose functional links 

to other genes are not currently understood. Green nodes are genes 

in  metabolic  processes,  which  are  influenced  by  many  biological 

processes. LightCyan nodes in Module 15 are genes involved in cell 

cycling regulation and related processes. Text in the map indicates 

the major functional category of each module, as represented by red. 

Dashed circles separate modules into sub-modules, which form inde-

pendent modules at higher cutoffs. Deletion mutants and the wild-type 

strain  B4742 were grown in YPD overnight to saturation. Then cells 

were diluted 1:10 and 1:100 in water prior to spotting onto YPD or 

YPD containing 1 μg/ml cycloheximide plates. Images were obtained 

after incubation at 30°C for 4 or 7 days, respectively. (D) Growth 

curves of deletion mutant  YLR190W and the parental strain  B4742. 
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Gene co-expression network based on yeast 

Gal3p is a regulatory protein exerting tight transcriptional 

cell cycle microarray data

control over the galactose metabolism pathway. These genes 

are co-regulated at expression level but might not interact with 

From correlation matrix of yeast cell cycle microarray data, we  each  other  directly  [36].  Similarly,  all  five  known  genes  in have constructed a co-expression network at the cutoff value  Module 7 participate in gluconeogenesis, despite the lack of r  = 0.77, where NNSD is completely transformed into Poisson 

h

physical interaction between their protein counterparts. 

distribution. The resulting network contains a total of 804 

genes that are partitioned into 15 sub-networks (modules). Both 

It has been noted that genes with similar functions do 

positive and negative correlations are present in the network,  not  always  have  similar  expression  profiles  [17].  Although as depicted in Figure 2B. To achieve an accurate evaluation  two genes are not strongly correlated in gene expression, based on current biological knowledge, we manually analyzed  they could both be strongly correlated with the same set of the biological coherence of modules according to gene  other genes, a characteristic named as “transitivity”. All of annotations from the  Saccharomyces Genome Database (SGD)  these transitive genes should be grouped together in the same and Munich Information centre for protein sequences (MIPS).  modules. However, major clustering algorithms fail to do so Remarkably, all modules contain functionally coherent set of  [17]. In contrast, the co-expression network method is able genes (Fig. 2B), demonstrating that RMT analysis faithfully  to detect transitively co-regulated genes, as best exemplified reveals biologically meaningful networks in yeast. Indeed,  by genes encoding ribosome proteins. The pairwise Pearson among links of known genes, 85.4% of the links are between  correlation  coefficients  between  expressions  of  three  genes genes in the same or related functional pathways, whereas the  encoding ribosome proteins, RPL19B, RPL26B and RPL1A, rest 14.6% links are not supported by current experimental  are less than 0.3 and hence unlikely to be grouped by results, which might reflect the existence of systematic errors  clustering, whereas RMT analysis correctly links them within in microarray data or alternatively, the insufficiency of current  Module 15. Similarly, both Smc1p and Bim1p are involved in biological knowledge of yeast. 

spindle formation or chromosome segregation during mitosis. 

Although the correlation between their expressions is as low 

Many large modules can be visually divided into smaller  as 0.2, they are grouped together by their linkages to other cell sub-modules, as indicated by the dashed circle in Figure 2B.  cycle regulators such as RAD53 and KCC4. 

For instance, Module 15 can be divided into four sub-modules: 

(1) ribosome proteins; (2) genes involved in ribosomal 

We also constructed the gene co-expression network 

biogenesis; (3) mitochondrion proteins and (4) genes involved  from the yeast cell cycle microarray profiles with the missing in protein degradation, while Module 9 contains distinct  values estimated [32]. As shown in Table 5, the two gene co-sub-modules of Y›-cluster genes, cell cycle regulators and  expression networks obtained from yeast cell cycle microarray histones. These have suggested the co-regulation at the gene  profiles with or without missing value estimation are almost expression level between different sub-modules, which often  the same with 95.5% genes and 93.8% links overlapped. 

display evident functional association. For example, in Module 

15, genes involved in ribosomal biogenesis are surely related  Functional predictions of unknown genes and to ribosome proteins, while a large portion of sub-module of  experimental validation mitochondrion proteins are indeed mitochondrion ribosome  The fact that functionally related genes are connected together proteins. These results signify the presence of modular  in the co-expression networks sheds the light for predicting the hierarchy in the network. Furthermore, sub-modules can be  cellular roles of hypothetical genes by “guilt-by-association” 

separated from each other by raising the cutoff. For instance,  [37]. Although confidence level of the predictions has not been sub-modules of Module 15 are separated at cutoff of 0.79  quantified at this moment, it can be inferred by functional (Additional File 1, Figure 2). Likewise, submodules of Module  uniformity among the associated genes. We have tentatively 9 are separated at cutoff of 0.79 and 0.81 (Additional File 1,  predicted the functions of 136 genes based on yeast cell Figure 2). Therefore, different levels of modularity of the yeast  cycling datasets. A few selected examples are listed in Table 2. 

co-expression networks can be identified by further raising the  For example, yeast YCR072C is associated with many genes cutoff values above the mathematically defined threshold. 

of ribosomal biogenesis and protein synthesis in Module 15. 

Different types of modules are observed in the yeast  Accordingly, the protein product of this gene has been reported co-expression network. Many (sub) modules are mainly  recently to participate in several complexes involved in protein comprised of components of protein complexes. Remarkable  synthesis and RNA turnover metabolism [38]. It was also co-examples include the ribosomal protein sub-module in Module  purified with the 60S ribosomal subunit [39]. Notably, several 15, in which about 90% of the known genes encode ribosomal  predictions were consistent with experimental results but were or ribosome-associated proteins. Also, out of 10 genes of  not made by other network identification methods (Table 2). 

histone sub-module of Module 9, eight are histone subunits. 

To experimentally evaluate the predictive 

In the case of mitochondrion, genes encoding proteins located  power of co-expression network, we examined to this small subcellular organelle are clustered into a sub- the functional association of six unknown proteins module of Module 15. In contrast, other modules cannot be  ( YJL122W,  YML074C,  YMR269W,  YNL050C,  YOR154W, classified by co-presence in protein complexes or subcellular  and   YCR016W) predicted to be involved in ribosomal organelles; instead, they are comprised of components  biogenesis. While   YJL122W and   YCR016W  were suggested in the same cellular processes. For instance, module 3 is  to be involved in ribosomal biogenesis by other methods composed  of  five  genes  participating  in  galactose  metabolic  (Table2), the other genes were not previously predicted to be pathway:   GAL1,  2,  3,  7  and   10. Gal1p, Gal2p, Gap7p and  associated with this functional process. Since we hypothesized Gal10p function in consecutive steps of glycolysis, whereas 
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that these genes participate in ribosomal biogenesis, we  RMT-based approach is applicable to microar-predicted that their deletion mutants might have defective  ray data of other tested organisms ribosomes and deficiency in protein synthesis. Consequently, 

they should be sensitive to the protein synthesis inhibitor,  The yeast co-expression network above was validated using cycloheximide. Indeed, a deletion mutant of   CGR1, which  existing gene annotations and experiments with deletion mutants is known to be involved in ribosomal biogenesis, failed to  for genes of unknown function. However, it is more desirable grow on YPD plates containing cycloheximide (Fig.  2D).  to apply the RMT-based method to determine correlation Similarly, the deletion mutants of these six unknown genes,  threshold for constructing gene co-expression networks from but not their parental strain   B4742, failed to grow on YPD  microarray data of little understood organisms. Since not plates containing cycloheximide, indicating that protein  much existing biological knowledge of these organisms could synthesis in these mutants is defective. A possible function  be employed to determine the threshold, it is appealing to of ribosomal biogenesis of these unknown genes is also  use an automatic method to defined confident threshold. To supported  by  recent  high-throughput  findings  [40,  41].  For  test whether the NNSD transitions are present in correlation example,  YML074C and  YMR269W localize to the nucleolus  matrices of gene expression data from other organisms, the 

[40], the cellular organelle for ribosome biogenesis. 

RMT method has been used to analyze correlation matrices of 

microarray data from a variety of organisms, e.g.  Shewanella 

We also examined another unknown gene,  YLR190W, for   oneidensis  [42],  Escherichia coli  [43],  Arabidopsis its role in cytokinesis. The deletion mutant and its parental   thaliana [44],  Drosophila[45], mouse [46] and human [47]. A strain   B4742  grew similarly in YPD medium. However, the  clear NNSD transition from GOE to Poisson distribution has mutant showed a severe growth defect compared to  B4742 in  been observed in the range of 0.73–0.9 for the little understood the presence of the cytokinesis inhibitor nocodazole (Fig. 2E).  bacterium  S. oneidensis (Fig. 3A). Likewise, transitions have This has suggested that  YLR190W is involved in cytokinesis.  been revealed in other organisms:  E. coli (r = 0.72–0.86),  A. 

In conclusion, our experiments demonstrated the prediction   thaliana (r = 0.86–0.94),  Drosophila (r = 0.76–0.93), mouse power of the co-expression networks. 

(r = 0.67–0.89) and human (r = 0.67–0.87) (data not shown). 

These results have demonstrated that RMT is applicable to 

gene expression data from all of the tested organisms. 

Figure 3: Transition of nearest neighbour spacing distribution and gene co-expression network from S. oneidensis microarray profiles. (A) The normalized NNSDs of correlation matrices of  S. oneidensis heat/cold shock gene expressions at different cutoff values. They were plotted against the curves of Wigner surmise (navy) and Poisson distribution (red). The x-axis is the level spacing s and the y-axis is the probability of NNSDs. (B) A node representing a hypothetic protein SO2017 is interconnected to many heat shock proteins, suggesting a possible role in heat shock. The heat shock proteins are grpE, lon, SO3681, dnaJ, dnaK, groES, groEL, prlC and hslV. (C) Growth curves of SO2017 deletion mutant and its parental strain DSP10. Both strains were initially grown in LB media and shifted to 42°C when OD  reached 0.69 and 0.62, 600

respectively. In an independent experiment, the viability of the ΔSO2017 strain was reduced by 46% at 10 min after exposure to 42°C (data not shown). 
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The power of RMT method for determining the correlation 

threshold has been further evaluated in details based on 

genome-wide expression data from  S. oneidensis and  E. coli. 

A co-expression network of 7 modules was constructed for  S. 

 oneidensis  heat/cold shock microarray data at cutoff of 0.90 

(Additional File  1, Figure 3), and a co-expression network 

containing  30  modules  was  identified  in   E. coli  dataset at a 

cutoff of 0.86 (Additional File 1, Figure 4). Similar to yeast 

data, functional modules was identified in the networks [62]. 

For example, modules of energy transport (#1, 2 and 4) were 

isolated in  S. oneidensis co-expression network, while the big 

module #25 in  E. coli dataset was dedicated to display sugar 

to the outer structure of bacterial surface. Taken together, the 

RMT-approach is useful to determine the correlation threshold  Figure 4: Structural properties of gene co-expression network from for identifying gene co-expression networks in different  yeast cell cycling data at threshold of 0.77. (A) The dependence of the species. 

clustering coefficient on the node’s degree  C( K). (B) The connectivity distribution  P( K). 

Table 2: Representative functional predictions of hypothetical proteins with high confidence. 

[image: Image 1149]

[image: Image 1150]

[image: Image 1151]

Random Matrix Theory

261

Table 3: Effect of different  Ct value on sampling to recover 99% of “true” links for a system of 2000 genes From the co-expression networks, we predicted functions  Computational evaluations of RMT approach of 32 unknown genes for   E. coli  and 47 unknown genes  To determine the sensitivity of RMT-based approach to for   S. oneidensis  . Some representative examples are listed  determine correlation threshold for identifying gene co-in Table  2. For example,  E. coli  gene   yaeC  is predicted to  expression networks, we randomly have rewired a small function in metabolite transport. This prediction is supported  percentage of the links in the network from the yeast cell cycling by a recent report that  yaeC is a component of the methionine  data. As low as 0.4% random rewiring is able to make the uptake system [48], though this information is missing in the  NNSD deviating from Poisson distribution (Fig. 5). Therefore, annotation database from the institute for genomic research  the RMT approach is sensitive to detect even small topological (TIGR). The predictive power of co-expression network  changes in the networks. In addition, since microarray data was further experimentally tested on a hypothetical protein  typically contain high inherent variability, we have examined SO2107 from  S. oneidensis. It formed a compact sub-network  whether the networks are stable when additional noise is added. 









with other known heat shock proteins, indicating a role of this  Different levels (1–50%) of Gaussian noise have been added gene in heat shock response (Fig. 2B). An in-frame deletion  to the entire dataset; new correlation thresholds have been mutant was generated, and it was indeed sensitive to heat shock  determined for the perturbed data and corresponding networks (Fig. 3C). In addition, an RpoH (σ32) binding site was identified  have been constructed. When 30% noise has been added, 79.4% 

in the upstream region of SO2017 [42]. These results clearly  of the original links and 86.5% of the original genes are still supported the reliability of the gene function predictions made  preserved (Fig. 6), indicating that the RMT approach is robust using co-expression network. 

in tolerating noises. Together, these statistical evaluations have 

indicated that the RMT approach is sensitive and robust to 

 Topological properties of gene co-expression 

noise for determining correlation threshold. 

 networks

Biological networks are considered to be small world, modular, 

hierarchical and scale-free [3,49]. To determine whether the 

obtained co-expression networks are consistent with general 

network theory, the topological properties of the co-expression 

network from yeast cell cycle microarray data have been 

examined. The average path length of this network is 7.81, 

which is quite small compared to the size of the network 

(804 genes). This result suggests that the network is a small 

world. The average clustering coefficient of this network is 

0.323, implying a high degree of modularity. Also, the average 

clustering coefficient (C(k)) of all genes with k links follows the 

scaling law: C(k) ~ k-0.37 as shown in Figure 4A. This signifies 

high hierarchical modularity although the scaling exponent  Figure 5: Sensitivity of RMT approach. (A) Wigner surmise (green) of 0.37 differs from the values obtained from metabolic  and Poisson distribution (red) were compared to the normalized NNS-modular networks [50]. Analysis of connectivity properties of  Ds of the yeast dataset at cutoff 0.77 and its derived correlation ma-this network revealed a power-law distribution with a degree  trices in which 1% (cyan), 2% (blue), 3% (navy) links were rewired. 

exponent of 1.5 (Fig.  4B), which is in accordance with the  (B) Chi-Square test. Poisson distribution is plotted against NNSDs of previous results on microarray expression profiles [51]. Taken  correlation matrix of yeast cell cycling dataset at cutoff 0.77 and its together, the properties of RMT networks are consistent with  derived correlation matrices in which 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, general network theory. 

0.6%, 0.7%, 0.8%, 0.9%, 1%, 2%, 3%, 4%, 5% links are rewired. The 

red line indicates the critical value of Chi-Square test of  p = 0.001. 
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(red), and over total links in original modules (green) at different lev-

els of noise. (B) Percentage of preserved Genes over total genes in 

the modules perturbed by noise (red), and over total genes in original 

modules (green) at different levels of noise. (C) Increased noise de-

creases the cutoff to separate modules. 

 In silico evaluation of the effect of sampling 

 complexity on RMT approach

The microarray data is under-sampled, that is, the number of 

experiments is fewer than the number of genes. To evaluate the 

effect of under-sampling to RMT based method, we developed 

an  in silico modular gene system (see Methods and Materials 

for details), in which correlations between expressions of 

genes inside modules (“true” links) have been designed to 

be a value   Ct(0 <  Ct  < 1); and other expression correlations 

have been designed to be zero. Then, RMT based method 

has applied to construct gene co-expression network from 

sampled expression data of the modular system. First, effect of 

different  Ct value on the number of samplings to recover 99% of 

“true” links is tested. As shown in Table 3, when the  Ct value is 

decreased (from 0.7 to 0.3), the number of expressions needed 

to separate the “true” links from random is increased (from 

50 to 600). However, the number of experiments is still very 

small comparing to the total genes in the system. In addition, 

the effect of the size of system on the number of samplings 

needed is limited (Table 4). We also examined the percentage 

of «true» links over total links in the network. For  Ct = 0.7 

Figure 6: Analysis of RMT approach for robustness to noise. Increas-

and a system size of 2000 genes, the percentage of “true” links 

ing levels of Gaussian noise are added to the yeast cell cycling micro-

over total links is 98.4% for only 20 expressions sampled 

array expression profiles. The mean of noise is zero and its standard 

deviation (σ

) is set to 1, 2, 5, 10, 20, 30, 40, and 50% of the av-

(data not shown). In summary, even with the under-sampled 

Noise

erage of absolute expression value of whole dataset. (A) Percentage  expressions, the RMT approach is still able to recover the of preserved links over total links in the modules perturbed by noise  original co-expression networks in the designed model. 

Table 4: Effect of the size of gene systems on sampling to recover 99% of “true” links for certain  Ct= 0.7. 

Table 5: Comparison of gene co-expression networks obtained from yeast cell cycle microarray profiles with and without missing values estimation. The gene co-expression network obtained from original yeast cell cycle data is compared with the gene co-expression network obtained from a derived yeast cell cycle microarray data with missing value of original file is estimated by nearest neighbour method [32]. 

DISCUSSION

be particularly suitable for microarray data, which usually 

have high inherent variations. Based on yeast gene annotation, 

RMT has been used in characterizing the non-random  85% of the functionally known genes are correctly linked. 

phenomena in physical, material and social systems,  In addition, we demonstrated that the structure of network including heavy nuclei, metal insulator transitions and the  obtained from original microarray profiles differs from the stock markets. It has been well recognized in these systems  networks obtained from randomized expression data [52]. 

that RMT analyses are efficient for distinguishing system- Furthermore, computational analysis showed that all modules specific, nonrandom properties from random noise. In this  and links in an  in silico network were correctly identified at the study, our observations with the microarray data from various  expected cutoff value. Together, these results suggest that the organisms support our central hypothesis that the two universal  RMT-based approach can reliably identify gene co-expression predictions are applicable to biological systems. RMT might  networks. 
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Previously, we have applied the random matrix theory  matrix used in the report actually even is not a normal semi-to study the properties of microarray data [50] and biological  positively  defined  correlation  matrix  as  there  are  missing networks [54]. In our Physics Letters A paper [54], we have  values in the data set and we have only used the experiments demonstrated that the NNSDs of the adjacent matrix of protein  both genes having values to calculate the correlation. However, interaction network and metabolic network follow universal  the same NNSD transitions have also been observed on normal predictions of RMT. The current manuscript is a follow-on study  semi-positively  defined  correlation  matrices  that  calculated of our Physical Review E paper [50]. The Physical Review E  from same microarray data after estimating the missing value paper has just shown that NNSDs of correlation matrices from  [32]. 

microarray data follow the universal description in random 

The  co-expression  networks  identified  based  on  RMT 

matrix theory. However, it did not provide a solid and complete  criterion can serve as a useful tool for predicting functions of algorithm for inferring gene co-expression networks from  hypothetical proteins. Genome sequencing projects indicate microarray data. Moreover, no rigorous biological tests of the  that substantial portions of open reading frames in a variety of predicted networks were performed. In the current manuscript,  organisms are functionally unknown. Defining the functions of we systematically proposed a method for inferring gene co- such genes is a formidable task [53]. In this study, the cellular expression network by utilizing the transition of NNSDs of  roles of 215 functionally unknown genes from yeast,  S. 

correlation matrices from microarray data. And we provided   oneidensis and  E. coli were predicted, many of which were computational analyses to show that this approach is reliable,  supported by existing information and our experiments. Such sensitive and robust to noise. Furthermore, we demonstrated  predictions will provide directions and guidance for future that the resulting co-expression networks are biologically  experimental  design  and  verification,  and  hence  facilitate meaningful. We provided evidences that the gene grouped in  the studies of functionally poorly characterized genes. In the network participate in the same biological pathway; the  addition, the co-expression networks appear to be fairly function of unknown genes can be accurately predicted, as  sensitive in identifying functional modules, as shown by our shown by the experimentally validation; and the network are  computational analyses and comparison to relevance network. 

hierarchical, modular, small-world and scale-free, which are  Indeed,  the  functions  of  several  unknown  genes  identified typical properties of biological networks. Together, the current  and experimentally verified in this report were not reported manuscript is dedicated to a more practical method for inferring  before by other commonly used methods including relevance biological meaningful gene networks from microarray data,  network. 

which is certainly not tackled at all in the previous publication. 

The current manuscript is a necessary follow-on study and also 

We selected the threshold at which the NNSD finished the 

the  first  manuscript  to  provide  a  useful  RMT  based  method  transformation into Poisson distribution from GOE distribution for systems biology to identify biological pathways that are  with the probability of  p = 0.001. Based on the microarray data regulated by the given condition, to annotate function of  examined, it appears that the sharpest changes of χ2 values were unknown genes, and to dissect the global network properties. 

observed when NNSD is changed to a Poisson distribution at 

the probability level of  p = 0.001. Thus  p = 0.001 appears to be 

There are two kinds of properties of eigenvalues of a real  a good choice. However, due to the nature of microarray data symmetric matrix: global properties and local properties. For  (e.g. high noise), insufficient datasets to resolve the interactive example, eigenvalue distribution that changes based on large  relationships among different genes and/or the complexity of scale of eigenvalues is a global property of eigenvalues [23]. On  biological processes, complete removal of noises is unlikely. 

the other hand, NNSD is a local property of eigenvalues. The  It is expected that some false links could still exist above the global and local properties usually are unrelated. Numerical  threshold. To further remove false links, one could select the experiments showed that local properties of eigenvalues of a  threshold at other correlation values at which the NNSD is real symmetric matrix become independent of the probability  changed into a Poisson distribution with different probabilities distribution of matrix elements and the global properties of  such as   p  =  0.01,  0.05,  or  0.1,  which  correspond  to  higher matrix when N → ∞ [23]. The local properties, like NNSD,  threshold correlation values. This should enable the isolation only dependent on over-all symmetries of the system, like real  of  network  connections  with  higher  confidence  and  further symmetric, or Hermitian. 

division of larger modules into smaller modules. 

As a matter of fact, the correlation matrices of microarray 

Our results have indicated that a transition zone can be 

data are not general matrices with random elements, or even  defined based on the two critical points (r and r ). A transition normal correlation matrices in statistic due to the number of 

l

h

zone of r = 0.62–0.77 has been identified for yeast cell cycling 

microarray experiments is much less than the number of genes  data. In order to achieve high confidence on the co-expression analyzed. Hence, current predictions of RMT about the global  network, we have chosen the upper bound of the NNSD 

properties, such as eigenvalue distribution, may be invalid for  transition as the threshold, with trade-off of possible loss of these correlation matrices from microarray data. Additional  some correct information. For instance, at the threshold value File 1, Figure 5 has showed that the distribution of elements in  of r = 0.77, a module involved in galactose metabolism has correlation matrix of yeast cell cycle microarray data follows  been identified (Module 3). But a key regulatory protein in this the Gaussian distribution and Additional File 1, Figure 6 has  pathway, Gal80, is missing. This protein has been identified showed that the eigenvalue distribution of this matrix follows  after lowering threshold value to 0.70 (data not shown). 

Cauchy distribution. However, the overall symmetry of these  Therefore, lowering the threshold in the transition zone can correlation matrices is still a real symmetry. The independent  enable us to identify additional correct links. However, this character of NNSD makes it possible to compare the NNSD  could also lead to much more false links (data not shown). One of  correlation  matrices  from  microarray  profiles  with  the  solution to solve this problem is called soft thresholding [15]. 

theoretical predictions of RMT. Noted that the correlation  A further study that combines RMT based criterion with soft 
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threshold to identify more true links in the transition zone will  system-specific, nonrandom properties embedded in gene be worthy of investigation in the future. 

expression data from random noise. Thus, we used the r  at which 

h

When Mc can not be easily distinguished from Mr in  NNSD is completely transformed into Poisson distribution at correlation matrix, the RMT approach could not be able  the significance level of  p = 0.001 as the threshold to define to generate a meaningful threshold. The examples include  gene co-expression networks. From the correlation matrix, we occasions that the experiment points are very limited and  can easily construct a co-expression network, in which each similarities between expressions of all genes are high; or very  gene is a node and there is a link between two genes if the messy microarrays that have been poorly carried out. 

correlation measure between their expressions is greater than 

the threshold. All co-expression networks with cutoff beyond 

CONCLUSION

threshold will also provide system-specific relationship. 

However, the co-expression network at the threshold will 

Although high throughput genomics technologies such as  provide the most relationship. 

microarray are powerful tools for studying gene functions 

and global regulations, identifying cellular networks in an  Construction of an  in silico model automatic and objective fashion from genome-wide gene 

expression data remains challenging [6,  19,  54]. The RMT- An  in silico gene co-expression network of 2,000 genes with based approach has been presented here provides a reliable,  10 modules of the size ranging from 5 to 200 genes (200, sensitive and robust method for determining correlation  100, 50, 50, 20, 20, 10, 10, 5, and 5 genes) was constructed threshold; and then dissecting gene co-expression networks.  using the threshold value of r   =  0.7.  The  corresponding   in h

The automatic and objective fashion of RMT-based approach   silico correlation matrix was constructed as following: First, makes it more advantageous in studying little understood  for each module whose size is greater than 5, we assigned organisms. The RMT-based approach could also be applied  the correlation coefficient of a random value in the range of to other high throughput data for proteomes and metabolomes  +/-(0.7, 1.0) to each pair of element inside the module with or combinations of these datasets. Similar characteristics  a probability of 0.35. This probability is chosen to make the have been also observed with the matrices from yeast protein  modules have the similar number of “true” links as the real interaction and metabolic pathway data [55]. Moreover, we  gene co-expression modules. Second, for two modules with expect that RMT is applicable to complex biological systems  a size of 5, we linked the 5 elements to form some topology such as communities, and ecosystems. Further exploration of  structure similar in real gene co-expression networks by this method should provide valuable insights into the modular  assigning certain correlation coefficient with a random value networks across different levels of biological organization. 

in the range of +/-(0.7, 1.0). Finally, we assigned the rest 

correlation coefficient in the correlation matrix of these 2000 

METHODS

elements to a random value in the range of (-0.695, 0.695). The 

links with weight between 0.7 and 1.0 correspond to the “true” 

correlation inside modules and the links with weight between 

Determining correlation threshold by RMT 

0.0 and 0.7 are noise. The RMT method was applied to this 

based approach

system as described above. 

First, a gene expression correlation matrix M, whose elements 

are Pair-wise Pearson correlation coefficients (r) in the range  Sampling expressions of an in silico modular of (-1.0, 1.0), was constructed. If there are missing values  gene system

in the expression files, only the experiments that both genes  A modular gene system has been developed to examine the have values are used to calculate Pearson correlation. Then, a  effect of under-sampling on RMT based method. In this gene series of correlation matrices were constructed using different  system (with size > 1000), there are 1000 genes divided into cutoff values. If the absolute value of an element in the original  ten modules with equal size. Correlations between expressions correlation matrix is less than the selected cutoff, it is set to 0.  of genes inside modules (“true” links) have been designed Eigenvalues of each correlation matrix were obtained by direct  to a value  Ct (0 <  Ct < 1); and other expression correlations diagonalization of the matrix. Standard spectral unfolding  have been designed to be zero. Expressions of genes are techniques [26] were applied to have a constant density of  sampled from Gaussian distribution to make their correlation eigenvalues and subsequently the nearest neighbour spacing  matrix following previous designed pattern. Note that the real distribution P(s), which is employed to describe the fluctuation  correlations from the sampled expression will fluctuate around of eigenvalues of the correlation matrix. We used the Chi square  the original designed values. Then, RMT based method was test to determine two critical threshold values, r  at which P(s) 

l

applied to sampled expressions to construct gene co-expression 

start to deviate from GOE at a confidence level of  p= 0.001,  network. Multiple sampling experiments have been conducted. 

and r   at which P(s) follows the Poisson distribution at a 

h

First, for a system of 2000 genes and different  Ct value (0.3, 

confidence level of  p = 0.001. The critical point r  is chosen to 

h

0.5, and 0.7), we started from sampling 20 expressions, and 

be the threshold used for constructing the gene co-expression  then sampled 10 more expressions every next time until 99% 

network. Same procedure is used for analyzing the correlation  of “true” links recovered. Second, for certain  Ct value (0.7) and matrix based on mutual information to determine the threshold. different sizes of system (2000, 3000, 5000, 7000), we started from sampling 20 expressions, and then 10 more expressions 

Constructing gene co-expression network

every next time until 99% of “true” links recovered. 

Based on RMT, the complete transition from GOE to Poisson 

distributions can serve as a reference point to distinguish 
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Evaluations of RMT-based network identifica-
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INTRODUCTION

just beneath the cellular membrane and crosslinked into a 

relatively rigid cortex. Motor proteins such as myosin II bind 

Coupled bulk–surface problems arise in many areas of  to actin filaments in the cortex, crosslinking and contracting engineering and the applied and natural sciences. Examples  them, causing cortical tension and mechanical resistance, include crystal growth  [29], interfacial fluid flows using  which together are key determinants of cells› overall behaviour. 

soluble and insoluble surfactants  [7],  [27], proton diffusion  New actin polymerisation occurs between the cortex and the along biological membranes [34] and cell signalling [47]. 

membrane, giving rise to a pressure pushing the cell membrane 

Our motivation for the development of a method for  outward at the pseudopod; in other regions, cortical tension coupled problems on evolving domains comes from the study  pulls along the remainder of the cell body. Together these of eukaryotic cell migration and chemotaxis. Chemotaxis,  processes lead to cell movement. 

in particular, is essential during embryonic development,  In [40] we developed a preliminary model of cell migration immune cell function, and cancer metastasis. Eukaryotic cells  and chemotaxis where we only considered processes taking typically crawl by protruding pseudopods, which are dynamic  place on or close to the cell membrane. The model was based structures based on actin fibres, at the front of the cell [26].  on a system of three reaction–diffusion equations posed on Actin is a globular protein which spontaneously polymerises  an evolving curve in two dimensions. An evolving surface into linear filaments that make up a large fraction of the cell›s  finite element method was used to approximate the solution cytoskeleton. The key step limiting actin polymerisation is the  of the PDEs and a level set method was used to move the cell slow initiation of new filaments. Actin assembly can therefore  boundary. The method was later made more robust and more be stimulated by “nucleating factors” which generate new  efficient by replacing the level set method by a parameterised actin filaments. In most cells, actin filaments are concentrated  finite element approach [39]. The model was shown to predict many aspects of real cell behaviour such as cell polarisation, 

persistent random walk migration in the absence of external 

Citation: Feng Luo, Yunfeng Yang, Jianxin Zhong, Haichun Gao, Lati-

signals and directed migration in the presence of a gradient in 

fur Khan, Dorothea K Thompson, and Jizhong Zhou, Random Matrix  an external chemotactic field [41]. 

Theory, 8:299 doi:10.1186/1471-2105-8-299. 
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The modelling of a number of important biological  mesh movements which are not necessarily Lagrangian. This processes however also requires the ability to solve model  may help the robustness, accuracy and efficiency of the method equations in the extracellular and intracellular domains which  with fewer instances of remeshing being required. 

are then coupled to equations posed on the cell membrane. It 

Crucial to the success of the front-tracking approach used 

is also well appreciated that migrating cells have the ability  here is the robust generation of cell body-fitted meshes. For to  shape  external  chemotactic  fields  through  the  use  of  this purpose we use an adaptive moving mesh procedure based membrane-bound enzymes that degrade the ligand field and by  on the solution of a moving mesh partial differential equations the self-secretion of chemoattractants that allow signal relay  (MMPDEs)  [9],  [19],  [4],  [8],  [23]. Although adaptive to neighbouring cells [50]. The modelling of these important  moving meshes have been used successfully to solve a range effects require the computational ability of solve partial  of physical problems  [5],  [51],  [6], to our knowledge they differential equations on evolving bulk–surface domains. 

have not been applied to the generation of meshes for curves 

Some previous computational studies looking at  evolving according to a geometric evolution law. An important biological signalling have been carried out assuming fixed cell  contribution of this paper therefore is the development of an boundaries [36], [30], [42]. Methods have also been proposed  MMPDE method for the tangential motion of grid nodes along to treat the deforming cell shape; for a recent review see [18].  a  curve  which  is  moving  with  a  specified  normal  velocity. 

For example, a phase-field approach has been used to model  The proposed method is motivated by the approach of Pan the combined effect of intracellular actin-flow, cell adhesions  and Wetton [45], who devised a finite difference scheme for and  morphology  on  cell  motility  [48].  Normally  phase-field  the generation of meshes which equidistribute the arc-length methods use isotropic stationary meshes which makes their  between grid nodes. The new method allows a degree of implementation relatively straightforward. However, as the  control over the generation of the surface mesh which is then phase-field  is  smoothed  over  a  small  width  of  size  ε, the  used as known boundary conditions for the generation of the computational  mesh  needs  to  be  fine  enough  to  resolve  this  bulk mesh. The additional control of the boundary mesh also spatial scale which can make the method computationally  adds considerable robustness to the grid generation algorithm expensive unless some form of local mesh adaptation is used.  leading to far fewer instances for the need of global remeshing Another well known embedding method is the level set method  due to poor mesh quality. 

(LSM) [44]. This approach uses an evolution equation to move 

The layout of this paper is as follows. In the next section 

a signed distance function; the zero level set of this function  we introduce the necessary notation for the description of is  then  identified  as  the  moving  cell  boundary.  LSMs  have  coupled bulk–surface conservation laws on evolving domains been used successfully in cell motility models [49],[54]. The  which are then reformulated using a conservative weak ALE 

disadvantage of LSMs is the requirement to maintain a high  formulation. In section 3 we present a moving finite element quality  signed  distance  function  which  can  become  difficult  discretisation of the coupled equation system. We then if the evolving cell morphology becomes complicated. Bulk– describe the generation of computational meshes covering the surface reaction–diffusion systems on stationary domains  evolving bulk and surface domains in section 4. The complete have also been addressed using a simple point cloud method  algorithm is presented in section 5 and applied in section 6 to in [31]. An analysis of a finite element method for a steady  the simulation of cell migration in a chemotactic field. Finally, state bulk–surface problem is presented in [13]. Analysis and  we draw some conclusions and directions for further research computations of the diffusion-driven instability properties of  in section 7. 

coupled bulk–surface reaction–diffusion systems on stationary 

domains is presented in [32], [33]. 

MODEL SYSTEM EQUATIONS

To approximate the solution of bulk–surface systems 

of equations we will use an Arbitrary Lagrangian–Eulerian  The physical layout for the cell migration simulations (ALE) approach. Traditionally, ALE methods have been used  considered later is shown in  Fig. 1. The cell membrane to solve problems on moving domains using a reformulation  will be denoted by the evolving curve Γ(t). The cell will be of the original problem with respect to an alternative reference  assumed to be moving through fixed lab frame of reference frame rather than the standard fixed Eulerian frame. For fluid  Λ.  To  improve  computational  efficiency,  the  governing dynamics problems one could decide to use a Lagrangian  equations for the extracellular region will only be computed transformation to follow the fluid flow. More generally however,  over the time-dependent two-dimensional domain Ω(t), which there may be no obvious or preferred reference frame, and if  is centred on the centroid of the cell. We will assume that a the domain moves in time one may simply be satisfied with  material particle P   located at X (t) on Γ(t) has velocity 

. 

p

a transformation from a fixed stationary domain Ωc onto the  Therefore, we assume that there exists a velocity field  u   so that physically evolving domain Ω(t). The ALE formulation was  points on Γ(t) evolve with a velocity field introduced for this purpose and it has been used successfully to  . Let   n=(n ,n )  denote  the  unit  outward  normal  toΓ(t)  and 1 2

tackle a number of physical applications such as fluid–structure  let  N(t)  be any open subset of  R2  containing  Γ(t).  For  any interaction systems (see [24], [11]). In this paper we will use a  function  ζ      which  is  differentiable  in  N(t),  we  define  the conservative finite element ALE scheme. An advantage of the  tangential gradient on Γ(t) by ∇ ζ=∇ζ−(∇ζ⋅ n) n, where ⋅ denotes Γ

finite element framework is it allows the natural incorporation  the usual scalar product and ∇ζ   denotes the usual gradient of flux boundary conditions linking the solution components  on  R2. For a vector function   ζ=(ζ ,ζ )∈R2, the tangential 1 2

in the bulk and surface domains. Another potential advantage  divergence is defined by of the ALE approach is the ability to accommodate arbitrary 
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The Laplace–Beltrami operator on Γ(t) is defined as the tan- ALE reformulation

gential divergence of the tangential gradient Δ ζ=∇ ⋅(∇ ζ). 

Γ

Γ

Γ

For the reasons mentioned earlier, when the domain is moving 

a common frame of reference adopted for computational 

purposes is the Arbitrary Lagrangian Eulerian (ALE) 

frame. Let  A   be a family of bijective mappings, which at 

t

each  t∈I=[0,T],  map  points  in  a  reference  or  computational 

configuration  Ω   with coordinates   ξ=(ξ,η),  to  points  in  the 

c

current physical configuration Ω(t) with coordinates  x=(x,y), 

so that

(5)

The  computational  configuration  could  simply  be  the 

initial physical configuration Ω(0). We leave the discussion on 

how to construct the mapping A  to section 4. 

Figure 1: We consider the simulation of a motile cell through a fixed 

t

lab frame of reference Λ. The cell membrane is denoted by Γ(t) and 

For an arbitrary function  g:Q →R,  defined  on  the  fixed 

T

the extracellular region close to the cell is denoted by Ω(t). After a  Eulerian frame, its temporal derivative in the ALE frame is time interval of size Δt, the material point located at  X p(t) on the cell  defined as membrane Γ(t) evolves to the new location  X p(t + Δt). 

Reaction–diffusion systems of the type studied in 



(6)

pattern formation generally exclude cross-diffusion and are  where 

is the corresponding function in the 

only coupled by the reaction kinetics terms. Therefore, we  ALE frame; that is 

. Taking 

consider the behaviour of a single chemical species with  the time derivative of the ALE mapping defines the ALE 

a straightforward generalisation to a system of interacting  velocity  w as chemicals. Let us define

(7)





(1)

Application of Reynolds transport theorem to the equation 

It is important to note that the ALE velocity  w on Γ(t) will, 

for mass conservation for a chemical C, which diffuses with  in general, be different from the material velocity   u  . 

constant D  , undergoing reaction at a rate f(c), gives

When  w= u the ALE transformation will be purely Lagrangian in nature. To relate the time derivatives with respect to the 

ALE transformation to the material derivative, a standard 



(2)

application of the chain rule gives

where c( x,t) is the concentration at position  x∈Ω(t) at time t. 

We also consider the evolution of a chemical species C , that 



(8)

s

resides on the boundary Γ(t).  The  bulk  species  C      will be  The reformulation of (2) in terms of the ALE reference frame coupled to C  through the generally nonlinear flux boundary  therefore takes the form s

condition



(9)

Similarly, on the boundary the ALE formulation of (4) takes 

(3) 

the form

where  c ( x,t)  denotes the concentration of  C   at the 

s

s

point   x∈Γ(t)  and   n      is  the  outward  unit  normal  to  Γ(t). At the front of a motile cell ( u⋅ n)>0, leading to an advective flux        (10) onto Γ(t), and at the back of the cell ( u⋅ n)<0 leading to a flux off  ofΓ(t).  This  so-called  windshield  effect  can  potentially  The ALE reformulated equations (9) and (10) remain coupled have a bearing on the ability of highly motile cells to chemotax  through the flux boundary condition (3). 

efficiently in shallow gradients unless some additional mecha-

nisms are employed by the cell such as surface ligand degrada-

tion or receptor internalisation [16]. 

A conservative weak ALE formulation

To construct a weak formulation of (9), we consider a space 

In an analogous manner to the equation for the bulk species,  of admissible test functions defined on the reference domain we will assume that the boundary species evolves such that

made of functions 

. The ALE mapping then defines 

a set H(Ω(t)) of test functions on the domain Ω(t), as follows:

(4) 

where D  is the boundary diffusion coefficient, h(c ) is a sur-

s

s

face reaction term. 

A weak formulation of  (9)  can be obtained using Reynolds 
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transport formula which states that if ψ( x,t) is a function de- location of the mesh nodes, the ALE mapping will be interpo-fined on Ω(t), and V ⊆Ω(t) such that V =A (V ) with V ⊆Ω ,  lated using piecewise linear elements giving rise to a discrete t

t

t

c

c

c

then

mappingA ∈L1(Ω )2 of the form

h,t

c,h



(11)





(17)

As functions 

do not depend on time, then for  where  x (t)=A ( ξ ) denotes the position of node i at time t  , i

h,t

i

any v∈H(Ω(t)) we can establish from (11) that

and   is the associated nodal basis function in L1(Ω ). The 

c,h

discretised ALE velocity therefore takes the form



(12)

and

Let T  be the image of the reference triangulation T  under 

h,t

h,c

(13)

the discrete ALE mapping A . Since the mapping is linear, 

h,t

each K  which is the image of a triangleK∈T , is also a triangle 

t

h,c

Multiplying  (9)  by a test function  v∈H(Ω(t)),  integrating  with straight edges. Using the ALE mapping, the finite element over Ω(t) and the use of(3), (12) and (13) gives the conservative  test space on Ω (t) is therefore defined as h

weak form: find c such that

The  finite  element  spatial  discretisation  of  the  conser-

vative ALE formulation  (14)therefore takes the form: 

(14)

find c (t)∈H (Ω (t)) such that

h

h

h

Similarly, on the boundary we have the conservative weak for-

mulation: find c  such that

s



(18)

(15)

Similarly, on the boundary, we have the weak formulation: 

find c ∈H (Γ (t))such that

s,h

s,h

h

where

is the space of test function on Γ(t). 



(19)

MOVING FINITE ELEMENT DISCRETISATION

The finite element approximation of the bulk and surface spe-

cies can be expressed as

Spatial semi-discretisation

We will assume that, for each  t∈[0,T], the physical and 

reference domains Ω(t) and Ω  are approximated by polygonal 

c

domains Ω (t) and Ω , respectively. We will assume that Ω  is 

h

c,h

c,h

covered by a fixed triangulation  T   with straight edges, 

h,c

where 

and 

are the time-dependent 

so  thatΩ =∪

K. The approximation of the boundary 

c,h

K∈Th,c

bulk and surface nodal basis functions. If 

and 

domain  Γ (t)  is  chosen  to  be  simply  the  boundary  of  Ω (t). 

h

h

The total number of elements of T  will be denoted by N  . 

, we can express (18) as the system of ordinary 

h,c

The total number of vertices of T  will be denoted by N and  differential equations

h,c

the number of vertices on the boundary as N . We define the 

s

Lagrangian finite element spaces on T  as



h,c

(20)

(16)

where

where 

is the space of linear polynomials on K. 

In section  4  we will describe a procedure for evolving the 

nodal positions of the triangulation covering Ω (t). Given the 

h
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is the (time-dependent) mass matrix, while

and the load vector

Note that the vector  D will be sparse as only those values of i corresponding to boundary vertices will be non-zero. The spatial discretisation of the boundary equation(19) results in a system of ODEs



(21)

where

and  D  are the appropriately reordered non-zero elements of  D. 

s

Temporal integration

To obtain a temporal discretisation of  (20)  and  (21)  we subdivide  [0,T]  into  N   equal  time  intervals  of  size Δt=T/N   and t

t

denote tn=nΔt, n=0,1,…,N . We will discretise the ALE mapping using linear interpolation between time levels. That is we will t

define

(22)

where A  is the piecewise linear map at time t. The mesh velocity is therefore piecewise constant in time and is given by h,t

( 

23)

The temporal discretisation of the coupled systems (20) and (21) is obtained using a modified Crank–Nicolson semi-implicit approach. We first predict the boundary solution

using a semi-implicit backward Euler method, where the linear diffusion and 

mesh movement terms are treated implicitly, and the nonlinear reaction and coupling terms are treated explicitly. The predicted boundary solution therefore satisfies the linear system



(24)
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The bulk approximation is then updated using a Crank–Nicolson step



(25)

The nonlinear system (25) is solved using Newton iteration. Finally, to ensure that the boundary solution is second-order in time, we perform a Crank–Nicolson correction step



(26)

Note that this correction step only requires the solution of  The following exact solution has been used to test the conver-a linear system of equations even if the reaction terms on the  gence of the finite element discretisation: surface, g and h are nonlinear. The linear systems arising above 

are solved using the iterative method BiCGSTAB [52] and an 

incomplete LU (ILU) factorisation as a preconditioner. 

and

For the cell migration application considered later, we 

note that the diffusive time scales in the extracellular region 

are often much shorter than the time scale associated with 

cell migration. As the time integration scheme above is fully 

implicit in the diffusive terms it is therefore robust to the  where  J   is  the  first-order  Bessel  function  of  the  first  kind 1

choice of the time step for these applications. 

and k=1.177706027. 

Fig. 2  shows the computed approximate solutions in 

A model bulk–surface problem on a stationary 

the bulk domain and on the domain boundary using an 

domain

isotropic mesh with maximal cell diameter h=0.1 and a time 

To get an indication of the spatial and temporal convergence  stepΔt=2×10−4. We can see that the method performs well rate of the coupled bulk–surface finite element discretisation,  for these values of the discretisation parameters. To test the we apply it to the solution of the following model problem:

spatial rate of convergence of the algorithm, simulations were 

performed  on  a  sequence  of  increasingly  refined  isotropic 

meshes. To ensure that the error was dominated by its spatial 





(27)

component,  a  sufficiently  small  time  step  of  Δt=10−3  was 

used. Fig. 3(a) shows the maximum error over all grid nodes 

for both the bulk and surface numerical solutions and we 



(28)

can see that both converge at the rate of O(h2), as expected. 

To investigate the temporal rate of converge, simulations 

were performed using a fine mesh with N=150,000 elements 





(29)

and various time steps. We can see from  Fig. 3(b), that the 

three-step solution procedure  (24),  (25)  and  (26)furnishes 

where Ω is the unit circle. 

approximations which are second-order accurate in time. Note 

This problem can be tackled analytically using polar coordi- that if the surface solution correction step (26) were omitted nates 

so that

then, as expected, the resulting approximations were only 

temporally first-order accurate. 

and

Similar to Novak et al. [43], we look for a solution in the form Figure 2: Numerical solution of coupled model problem (27), (28) and (29) on a stationary unit circle. (a) Approximate 

bulk solution ch( x) at t = 1. (b) Approximate solution cs h(θ) on the 

, 

boundary compared to the exact solution. 

and
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Figure 3: Second-order convergence of the maximum nodal error as (a) h → 0 and (b) Δt → 0 for a coupled model problem on a unit circle. 

PRACTICAL EVALUATION OF ALE MAPPING

For the ALE mapping to be useful, it must satisfy a number of 

(31)

properties. First, it must be inexpensive to construct, relative to 

the cost of solving the physical problem. Second, the resulting  Here,  τ>0  is  a  user-specified  temporal  smoothing  parameter meshes covering Ω(t) must be of good quality in the sense that  which affects the temporal scale over which the mesh adapts mesh elements are adapted to salient features such at steep  and  P     is a positive function of  ( x,t), chosen such that the boundary or interior layers in the physical solution. Finally, the  mesh movement has a spatially uniform time scale [19]. The meshes must evolve smoothly in time to avoid the need to use  gradient flow structure of (31) ensures that the mesh evolves small time steps to maintain numerical stability. 

smoothly in time and improves robustness in the choice of the 

initial mesh. 

Bulk domain mesh generation

The selection of an appropriate monitor matrix is crucial to 

To avoid potential mesh crossings or foldings, we derive a  the success of mesh adaptation. In this paper, we will consider suitable evolution equation for the inverse ALE mapping  the monitor matrix proposed by Winslow [53]

rather than A ( ξ)= x( ξ,t) (see, for example, the t

discussion in [12]). As shown in Fig. 4, a mesh T  on Ω (t) can 



(32)

h,t

h

then be generated as the preimage of a fixed mesh T  on Ω . As 

h,c

c,h

where  M( x,t)  is a positive weight function called a  monitor 

introduced in [22], we choose the mapping  ξ( x) corresponding  function. A suitable monitor function is essential to the success to a fixed value of t in order to minimise the functional

of adaptive moving mesh methods. The monitor function should 

be taylored to the type of PDE being solved and the numerical 

method being used. Monitor functions based on interpolation 

(30)

estimates, a posteriori error estimates and adaptation to 

solution features have all been proposed  [3],[8]  and  [23]. If 

where G   is a 2×2 symmetric positive definite matrix referred  no such estimate exists then the monitor function could be any to as a monitor matrix and ∇ is the gradient operator with  smooth function designed to adapt the mesh towards important respect to  x. It can be shown that the functional(30) is coercive  solution features such moving interfaces or boundaries (see for and uniformly convex and hence has a unique minimiser [23]. example [5]). 

In practice, we interchange the roles of the dependent and 

independent variables in  (31), since it›s the location of the 

physical mesh points 

that defines the ALE map. With 

a Winslow-type monitor matrix (32) the resulting MMPDEs 

take the form



(33)

Figure 4:  A  moving  mesh  covering  Ω(t)  is  the  image  of  a  fixed  where mesh  on  a  reference  domain  Ωc  through a time-dependent ALE 

mapping A ( ξ)= x( ξ,t). 

t

Rather than directly attempt to minimise (30), a more robust 

procedure is to evolve the mapping according to the modified 

gradient flow equations
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and  J=x y −x y   is the Jacobian of the ALE mapping. To  identify  S1  with the interval  [0,1]. The unit arc-length ξ η

η ξ

complete  the  specification  of  the  coordinate  transformation,  parameterisation will be denoted by s   and it can be shown the MMPDE must be supplemented by initial and boundary  that   x = t  and x =κ n. The arc-length of the curve from the s

ss

conditions. In all the applications described later, the  point  x(σ ) to  x(σ) is given by 0

computational  domainΩ =Ω (0), and the initial mesh over 

c,h

h

the physical domain is obtained using the Matlab toolbox 

Distmesh [46]. To allow the mesh points to move along the 

boundaryΓ (t), they are obtained using a one-dimensional mov-

h

ing mesh approach outlined in section 4.2. Once the boundary 

nodes have been evolved over one time step, they then become  where ‖⋅‖ denotes the l -norm. Using the chain rule 2

Dirichlet conditions completing the specification for (33). 

The numerical solution of  (33)  requires spatial and 



(37)

temporal discretisation. In space, we discretise using standard 

linear Galerkin finite elements. In the time direction, we use  and differentiation of (37) leads to the relation a backward Euler integration scheme to update the solution 

at t=tn+1, and to avoid solving nonlinear algebraic systems, we 



(38)

evaluate the coefficients a,c,…,e at the timet=tn. We therefore 

seek 

such that

Multiplying through (38) by  n, we get an expression for κ and 

hence in terms of the parameterisation σ, we can express the 

normal velocity as



(39)

(34)

Control of the mesh spacing in the tangential direction can be 

for all 

. The resulting linear systems are again  achieved by ensuring that a weighted arc-length between grid solved using the iterative method BiCGSTAB and an incom- nodes is constant. That is, if M( x,t)>0 is a positive monitor plete LU (ILU) factorisation as a preconditioner. An analysis  function, then we set

of the performance of this iterative solver for the discretised 

MMPDE equations can be found in [4]. 

Boundary mesh generation

and hence

We consider the class of boundary movements given by the 

following evolution law for the normal velocity

(40)





(35)

The differential-algebraic system  (39)  and  (40)  could, 

in  theory,  be  used  to  evolve  the  boundary  Γ(t);  the 

where κ is the curvature. Within the context of biological cell  case α=1, β=0 and M=1, which aims to construct a uniform arc-applications,  the  functionsα  and  β  could  model  the  physical  length parameterisation, is exactly the equation system used by forces exerted on the membrane by cortical tension, and  Pan and Wetton [45]. In [39] we used the parameterised finite protrusions caused by actin polymerisation, respectively. 

element method (PFEM) [2] to evolve the approximation of 

We consider the solution of  (35)  using a Lagrangian  a curve describing an evolving cell membrane. This method approach, where the main idea is to represent the flow of curves  introduces an intrinsic tangential velocity B such that the arc-by the position vector  x which is the solution of the geometric  length between grid nodes is equidistributed. When using the evolution equation

PFEM to generate boundary node displacements, which are 

then used as boundary data for meshes covering bulk regions, 

we have found that the lack of control of the PFEM intrinsic 

(36)

tangential velocity can lead to poor quality bulk meshes which 

where  n and  t   are unit normal and tangent vectors, respectively.  require frequent remeshing. Experience with the generation of Note that the presence of the tangential velocity B has no effect  adaptive moving meshes suggests however that the introduction on the shape of the evolving curve but it is well known that  of an evolution equation for the tangential velocity, driven by the incorporation of a suitably chosen non-zero value of B can  the  mesh  equidistribution  condition  (40),  can  significantly avoid the major drawback of the Lagrangian approach which  improve stability and robustness [21], [20] and [3]. Therefore, is the possibility that grid points merge, resulting in a loss of  we consider the tangential velocity equation stability and accuracy [2], [1] and [37]. 

An  embedded  regular  plane  curve  Γ  can  be 

parameterised by the smooth function 

, i.e. 





(41)

. Taking into account the  where, as before, τ and P are a temporal smoothing parameter periodic  boundary  conditions  at  σ=0,1,  we  shall  hereafter  and spatial balancing operator, respectively. The proposed 
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procedure therefore involves the simultaneous solution  , 

and 

. We use a uniform discretisation of 

of (39) and (41). 

the parameterisation intervalσ∈[0,1] with step size Δσ=1/N . 

s

For simplicity, we discretise  (39)  and  (41)  using a  We  use  central  finite  differences  to  approximate  the  spatial finite  difference  method.  The  evolving  curve  at  time  tn  is  derivatives in  (39)  and  a  first-order  fully  implicit  temporal represented by the discrete plane points  ,  i=1,…,N . The  discretisation. This leads to a nonlinear system which is solved s

linear approximation of the curve is therefore given by the  using Picard iteration. Let   x[n,m]  denote the approximation of  x   at time level tn and iteration level m, then for the normal 

polygon with vertices  ,  i=1,…,N . Due to the periodicity 

s

velocity equations we have the linear system

conditions, we also use the additional values 

(42)

for i=1,…,N , where 

. We approximate the unit tangent vector

s

and hence we set 

. Using a similar discretisation of the tangential velocity equation (41) we have



(43)

for i=1,…,N , where 

. The coupled set of 2N  equations (42)and (43) are solved for  x[n+1,m+1] and the s

s

Picard iteration is stopped when

The last iteration is then used as the approximation  x n+1. 

Example

step  Δt=10−3.  The  coefficient  of  the  normal  velocity  of  the 

evolving  curve  is  α=0.75,  and  the  temporal  smoothing 

To demonstrate the capability of the proposed adaptive grid  parameters in the moving mesh PDEs are both τ=10−4. The generation procedures, we consider the evolution of an ellipse  computed meshes at four representative times are shown in Fig. 

under mean curvature flow where V=−ακ, and simultaneously  5. We can see that the initial mesh is adapted towards the wave we require the bulk and surface meshes evolve to resolve the  front which is centred to the right of the ellipse atx=0.7. Initially travelling wave profile

the boundary mesh points are distributed to equidistribute the 

arc-length  as  the  monitor  function  M≈1  along  the  ellipse. 

At t=0.02 and t=0.04, we can see that the bulk meshes have 

There are many possible choices for the monitor function but  moved to follow the wave front; the boundary meshes have also for illustrative purposes we will set

adapted correctly in the tangential direction and evolved in the 

normal direction according to the curvature of the boundary. 

Finally,  at  t=0.05,  the  wave  front  has  passed  by  the  inner 

curve and the boundary mesh relaxes back to equidistribute 

the arc-length between mesh points. Fig. 6 shows the adapted 

The monitor function takes its maximum value at the  boundary meshes; for clarity, at the two times when the wave centre of the travelling wave and decreases smoothly to a non- front intersects the boundary, we have indicated its location zero constant value far from the front. The resulting adapted  by a vertical dashed line. We can see that at these times the mesh should therefore be clustered around the wave but almost  boundary mesh has adapted well to the wave front and at uniform in the flat regions. The initial physical domain consists  the other two times the mesh equidistributes the arc-length of the region exterior to the ellipse4x2+16y2=1  and  interior  of the evolving curve. To test the accuracy of the computed to a unit circular far-field boundary; the fixed computational  moving boundary, Fig. 7 shows the evolution of the exact and domain  Ω   is chosen to be the initial physical domain. The 

c

approximate area enclosed by the closed curve; the exact area 

computational mesh is obtained using the Matlab toolbox  for mean curvature flow takes the form A(t)=A(0)−2παt. We Distmesh  [46]  and  has  N=9832  elements  andN =98  vertices 

s

can see that the approximate area decreases linearly in time, 

on the boundary of the ellipse. The simulations are performed  and at the times indicated it agrees well with the exact area. 

over the time interval  t∈[0,7×10−2]  using a constant time 
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meshes. At time t=tn we assume we have a meshT n and the 

h,t

finite element approximations   and   of the bulk and surface 

species, respectively. The following steps are then carried out 

to advance the mesh and the finite element approximations. 

1. Update the physical mesh

(a) Using 

, calculate the normal velocity of Γ given by (35). 

(b) Update the location of the manifold 

by solving the 

simultaneous systems(42) and (43). 

(c) Using the bulk approximation  , determine the mesh adap-

tation monitor function M. 

(d) Using the updated boundary points as fixed Dirichlet data, 

update the interior mesh points by solving (34). 

Figure 5: Adaptive bulk meshes for a time-dependent domain where  (e) Test for mesh quality. If the mesh is fine then goto 2. If not the inner boundary evolves by mean curvature flow. The meshes are  then re-grid and interpolate the solutions onto the new mesh adapted to a travelling wave profile moving across the domain from  and re-do the time step. 

right to left. 

2. Update the finite element solutions in the bulk and the sur-

face

(a) Use the meshes T n+1 and T n to define the discrete ALE 

h,t

h,t

velocity  w .h

(b) Update the solutions 

and 

by 

solving (24), (25) and (26). 

To determine the quality of the bulk meshes we measure 

the minimum angle over all of the triangles and decide 

to remesh when this is below a given tolerance. The new 

mesh covering the physical domain is then used as the fixed 

computational mesh. The bulk and boundary solutions are then 

Figure 6: Computed meshes for a curve evolving in the normal di-

linearly interpolated onto the new mesh to allow further time 

rection by mean curvature flow; the meshes are also adapted in the  integration. 

tangential  direction  to  a  travelling  wave  profile  moving  across  the 

domain from right to left. Meshes are shown at  t  =  0,  0.02,  0.04 

and t = 0.05. The dashed vertical lines correspond to the location of  CELL MIGRATION AND CHEMOTAXIS

the wave front at the times indicated. 

We now consider the application of the developed algorithm 

to the computational modelling of eukaryotic cell migration 

and chemotaxis. In [40] and [41] we developed a “pseudopod-

centered” [25] model based on a system of reaction–diffusion 

equations that gives rise to a suitable spatiotemporal activator 

profile that can be used for the generation of pseudopods 

without the need for a driving external signal. The following 

set of equations was derived from a well-established discrete 

model developed by Meinhardt[35]  (M model). The model 

describes the dynamic interaction between a membrane-

bound local autocatalytic activator  a, a rapidly distributed 

global inhibitor b and a local inhibitor c  . Assuming that the 

cell boundary Γ(t) moves with velocity  u  , then for x∈Γ(t) the equations take the form



(44)

Figure 7: Comparison of the evolution of the exact and computed 

area enclosed by a closed curve under mean curvature flow at t = 0, 

0.02, 0.04, 0.05 and t = 0.055. 



(45)

THE COMPLETE ALGORITHM





(46)

We now describe the complete algorithm implementing the 

ALE–FEM scheme and the generation of the surface and bulk 

[image: Image 1291]

[image: Image 1292]

[image: Image 1293]

[image: Image 1294]

[image: Image 1295]

[image: Image 1296]

[image: Image 1297]

[image: Image 1298]

[image: Image 1299]

[image: Image 1300]

[image: Image 1301]

[image: Image 1302]

[image: Image 1303]

[image: Image 1304]

[image: Image 1305]

[image: Image 1306]

A Computational Method for the Coupled Solution of Reaction–Diffusion Equations on Evolving... 

279

Here, r ,r  and r  denote decay rates of the local activator, global  chemotactic field. In the extracellular region, Ω(t), we assume a b

c

inhibitor and local inhibitor, respectively. The corresponding  that the concentration of ligand molecules evolves according diffusion coefficients are D ,D  and D . In the nonlinear reaction  to  a  linear  diffusion  equation.  At  the  cell  membrane,  Γ(t), a

b

c

term in the activator equation, s  is a saturation coefficient, s is  we assume that a chemoattractant ligand  L  binds reversibly a

c

a Michaelis–Menten constant and  b   is a basal production  to a receptor R to form a receptor–ligand complex LR. The a

rate of the activator. The constant  b   determines the growth  coupled bulk–surface system for the evolution of the ligand c

of the local inhibitor c in the presence of the activator a. The  concentration, l  , and the concentration of bound receptors, l , s

effect of any external chemotactic field is incorporated in the  therefore takes the form signal term s. All of the variables appearing in this model are 

assumed to be non-dimensional. The activators and inhibitors 

in this model are not intended to represent molecular species. 



(49)

Although some molecular-based models have been successful 

in describing individual processes, the global morphology of 

(50)

real cells has proven too complex for such a description at 

present. We therefore have used a top-down approach, where  Here, D   and D  are the diffusion coefficients for the ligand s

each parameter can represent several molecular species.  and receptor–ligand complex, respectively. We assume that the The pseudopod activator could read out at the level of actin  total concentration of bound and unbound receptors is constant nucleation, for example, through SCAR/WAVE proteins. 

and takes the value R tot. The constant k  is the rate of ligand 

1

association and k  the rate of disassociation. The normal flux 

We assume that actin polymerisation creates a protrusive 

−1

boundary condition between the extracellular region and the 

pressure that pushes the cell membrane outward in the  cell membrane takes the form

normal direction. Recent detailed investigation of pseudopod 

formation suggests that this assumption is valid for cells 

migrating in the absence of external cues and in the presence 

(51)

of chemotactic gradients [5] and [4]. We will assume that the 

rate of polymerisation is proportional to the concentration of  Determining the concentration of bound receptors, l  allows the the local activator. At rest, the cell experiences pressure from 

s

estimation of the local fractional receptor occupancy

cortical tension, which maintains the spherical shape of the 

cell. Using a cortical shell-liquid drop model [7], the pressure 

generated by the cortical tension is assumed to act normally on 

the cell membrane and depends on the local surface curvature. 

The cell boundary is therefore assumed to evolve with the 

It has been observed that some cells move randomly in the 

normal velocity

absence of any external cues. We have therefore included an 

intrinsic noise component to our system that is independent of 



(47)

the external chemotactic signal. For this purpose we will assume 

that  the  intrinsic  noise  ηt  satisfies  a  stochastic  differential 

To  control  the  area  enclosed  by  Γ(t),  we  have  used  equation of mean reverting type[40]. The combined effect of a spatially constant but time dependent cortical tension  the response to the external signal and random intrinsic noise factor λ(t). Larger values of λ will increase the cortical tension,  is modelled by the term which will eventually result in a decrease in the cell area. 

Conversely, by decreasing λ the cortical tension is weakened, 

leading to an increase in cell area. There are many possible 

forms that a dynamic equation for λ could take, but we have  which feeds in multiplicatively to the autocatalytic activator found through numerical experimentation that the following  equation (44). 

works well:

Migration in a linear gradient





(48)

The following numerical experiments were performed using 

the parameters found inTable 1 and a uniform time step Δt=0.1. 

Here, λ  and β   are positive parameters and A  is the initial 

0

0

We first simulate a cell moving in a linear gradient of the 

prescribed area of the cell. Equation (48) is solved numerically  chemoattractant field given initially by using an explicit Euler method. 

The simulations of cell chemotaxis presented 





(52)

in  [40]  and  [41]  were obtained using an approximation 

of the local fractional receptor occupancy, i.e. the ratio 

With the receptor–ligand disassociation constant K =k /

d

−1

of the local number of ligand-bound receptors to the total  k =30,  the  receptor  occupancy  initially  at  the  back  of  the 1

number of receptors. The receptor occupancy was estimated  cell 

, and at the front of the cell 

. To 

using a ligand–receptor binding model which assumed the  improve  computational  efficiency  when  there  is  significant extracellular ligand field was unaffected by the binding process  cell movement, the diffusion equation is solved over a time-and the fact that the cell is moving and constantly changing  dependent  annular  region  Ω(t),  where  the  internal  boundary morphology. While the predictions in [40] and [41] displayed  represents the cell membrane, and the outer far-field boundary many attributes of real cell chemotaxis, we now consider a  is a circle centred on the moving cell. The radius of the far-field model to account for the interaction of the cell on the external  boundary r =3r , where the initial radius of the cell r =0.1. At the f

0

0
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far-field boundary the ligand concentration is given by (52). The 

initial mesh has N=6250 elements and is adapted isotropically 

towards  the  cell  membrane;  this  mesh  is  then  kept  fixed  as 

the initial computational mesh covering Ω . Fig. 8 shows four 

c

snap-shots of a simulated cell moving in the correct direction 

to the right. The cell migrates by the generation and splitting 

of pseudopods at the front of the cell while retracting the back. 

The generated mesh at one particular time is shown in  Fig. 

9. We can see that the bulk and boundary meshes are of high 

quality and follow the changing morphology of the migrating 

cell. Of the5×105 time steps used in this simulation, only 42 

remeshing steps were required demonstrating the robustness of  Figure 8: Simulation of single-cell chemotaxis. Although the cell’s the grid generation algorithms. The computational method has  morphology is constantly changing by pseudopod extension and re-been implemented in MATLAB to make use of the Distmesh  traction, the cell’s pathway exhibits a strong degree of directional per-algorithm for the generation of the initial mesh and meshes  sistence up the chemoattractant gradient to the right. 

when re-gridding is needed. The simulations in this section 

took approximately 3 hours of computing time on a desktop 

machine using an Intel i7 2600 quad core processor running at 

3.4 GHz. In this time the simulated cell had migrated a distance 

of approximately 10 cell diameters. No major attempt was 

made to optimise the code; it can be expected that run times 

would be reduced dramatically by computing in an appropriate 

low-level language. 

Table 1: Non-dimensional default parameter values for cell migra-

tion simulations. Parameters for the pseudopod-centred cell migration 

model are taken from [40]. 

Figure 9: Global and close up view of a typical mesh used for the 

simulation of cell chemotaxis. The mesh follows faithfully the migrat-

ing cell and is of good quality close to the cell membrane. 

Migration in an initially homogeneous field

We now consider the possibility of a cell to shape an initially 

homogeneous ligand field and investigate the feedback of 

this interaction on the cell’s migratory pattern. The biological 

interest in this problem comes from recent experimental 

observations that some migrating cells locally self-generate 

chemotactic gradients thus leading to increased persistence of 

migration or sustained directed migration [10] and [38]. Fig. 

10shows a simulation of a typical cell, where the initial ligand 

concentration is constant throughout the extracellular domain. 

We can see that movement of the cell, and changes to the cell 

morphology affect the ligand field (a). In particular, when a 

new pseudopod is created (b), the cell pushes out its membrane 

and this results in the local dilution of the concentration 

of the receptor–ligand complex (c). As the total receptor 

[image: Image 1310]
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concentration is assumed constant, this means that additional  has been shown to work well when applied to model problems unbound receptors become available to bind ligand molecules  with known analytical solutions. The method has also been at the cell membrane (d). The bulk concentration at the cell  applied to a model of cell migration and chemotaxis and shown surface is then depleted resulting in a local gradient in the  to predict a possible novel mechanism for cells to increase bulk ligand field towards the cell (e). Conversely, in areas  their persistence and polarity by generating their own local where the cell membrane is retracted such as the back of the  gradients of chemoattractants. The numerical algorithm has cell and at retracting pseudopods, the local concentration of  proved to be very robust and requires few global remeshing receptor–ligand complex increases slightly and this creates a  steps even though the simulated cell morphology is constantly gradient in the bulk ligand field away from the cell surface  changing while it is migrating. The methodology is simple to which drives ligand molecules away from the cell surface in  implement using standard finite element procedures and freely these areas. The overall effect of these interactions between  available routines for initial grid generation. 

the extracellular ligand field and the surface receptor binding 

In future, we aim to use the developed computational 

kinetics is to enhance the polarity and the persistence of the  framework to tackle intracellular cell processes. The main migrating cell even though the unperturbed background field is  issue there will be the proper description of the deformation homogeneous. Additional reactions such as the degradation of  of material points within the moving cell. This is of course ligand molecules by membrane bound enzymes and receptor  a highly non-trivial issue although there have been attempts internalisation could also play a major role in the generation  to model the cell mechanics as an active viscoelastic of self-generated gradients and we intend to consider these  medium[28] and [17]. 

possibilities in the future. 

The computational approach presented here has been 

applied to a model of single cell migration and chemotaxis. It 

is of course of great interest how populations of cells migrate 

and interact with their micro-environment and each other. To 

apply the approach used here would be a major challenge if 

many  cells  were  to  be  simulated  given  the  fitted  nature  of 

the bulk mesh covering the highly dynamic extracellular 

region. We think the approach presented here is best suited to 

obtaining detailed information from simulations of single cells 

or the interaction of a small number of cells. This information 

can then be used to properly inform population models based 

on partial differential equations for the density of cells using 

upscaling techniques. 

Ultimately, we would like to extend our approach to 

model cell migration and chemotaxis in three dimensions. 

Using a suitable variational formulation, the adaptive moving 

mesh method used here to evolve grid nodes in the tangential 

direction should extend to two-dimensional surfaces. This 

equation system could then be coupled to a geometric 

evolution law for the surface normal velocity. The MMPDE 

approach could then be used to generate evolving meshes 

for  three-dimensional  bulk  domains. The ALE  surface  finite 

Figure 10: Simulation of cell migration in an initially homogeneous  element method has already been utilised for solving PDEs on chemotactic field. (a) Cell outlines and ligand field at equal time in-evolving surfaces[14] and [15] and the bulk ALE–FEM method 

tervals; (b) Close-up showing the generation of a pseudopod pushing 

outwards (blue arrow) and a retracting older pseudopod (red arrow);  proposed here also extends naturally to three dimensions. The (c) Receptor occupancy on the cell membrane; (d) Proportion of the  main challenge in three dimensions however is not likely to be total number of receptors that are unoccupied and (e) the external li-the development of efficient computational techniques but the 

gand field at the cell membrane. (For interpretation of the references  increased complexity of modelling the interaction of migrating to colour in this figure legend, the reader is referred to the web version  cells with their extracellular environment. The insights gained of this article.)

from modelling attempts in two dimensions would therefore be 

an essential first step in this direction. 

CONCLUSIONS AND FURTHER WORK
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CHAPTER

17 STABILITY ANALYSIS AND  

SIMULATIONS OF COUPLED 

BULK-SURFACE  

REACTION–DIFFUSION SYSTEMS

Anotida Madzvamuse, Andy H. W. Chung, and 

Chandrasekhar Venkataraman

Keywords: Bulk-surface reaction–diffusion equations, bulk-surface finite-elements, Turingdiffu-sively driveninstability, linear stability, pattern formation, Robin-type boundary conditions INTRODUCTION

Recently, there has been a surge in studies on models 

that couple bulk dynamics to surface dynamics. For example, 

In many fluid dynamics applications and biological processes,  Rätz & Röger [6] study symmetry breaking in a bulk-surface coupled bulk-surface partial differential equations naturally  reaction–diffusion model for signalling networks. In this arise in (2D+3D) [1–3]. In most of these applications and  work, a single diffusion partial differential equation (the heat processes, morphological instabilities occur through symmetry  equation) is formulated inside the bulk of a cell, whereas on breaking resulting in the formation of heterogeneous  the cell surface, a system of two membrane reaction–diffusion distributions of chemical substances [4]. In developmental  equations is formulated. The bulk and cell-surface membrane biology, it is essential for the emergence and maintenance of  are coupled through Robin-type boundary conditions and a polarized states in the form of heterogeneous distributions of  flux term for the membrane system [6]. Elliott & Ranner [10] 

chemical substances such as proteins and lipids. Examples of  study a finite-element approach to a sample elliptic problem: such processes include (but are not limited to) the formation  a single elliptic partial differential equation is posed in the of buds in yeast cells, and cell polarization in biological cells  bulk, and another is posed on the surface. These are then owing to responses to external signals through the outer  coupled through Robin-type boundary conditions. Novak et cell membrane [5,6]. In the context of reaction–diffusion  al.[11] present an algorithm for solving a diffusion equation processes, such symmetry breaking arises when a uniform  on a curved surface coupled to a diffusion model in the steady state, stable in the absence of diffusion, is driven  volume. Chechkin et al. [12] study bulk-mediated diffusion unstable when diffusion is present thereby giving rise to the  on planar surfaces. Again, diffusion models are posed in the formation of spatially inhomogeneous solutions in a process  bulk and on the surface coupling them through boundary now well known as the Turing diffusion-driven instability  conditions. In the area of tissue engineering and regenerative 

[7]. Classical Turing theory requires that one of the chemical  medicine, electrospun membrane are useful in applications species, typically the inhibitor, diffuses much faster than the  such as filtration systems and sensors for chemical detection. 

other, theactivator resulting in what is known as the long-range  Understanding of the fibres’ surface, bulk and architectural inhibition and short-range activation [8,9]. 

properties is crucial to the successful development of integrative 

technology. Nisbet  et al.  [13] present a detailed review on 

surface and bulk characterization of electrospun membranes 

of porous and fibrous polymer materials. To explain the long-

range proton translocation along biological mombranes, 

Citation:  Anotida  Madzvamuse,  Andy H. W.  Chung,  and Chan-

Medvedev & Stuchebrukhov [14] propose a model that takes 

drasekhar Venkataraman, Stability analysis and simulations of coupled  into account coupled bulk diffusion that accompanies the bulk-surface reaction–diffusion systems, http://dx.doi.org/10.1098/

migration of protons on the surface. More recently, Rozadaet 

rspa.2014.0546. 
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al. [15] present singular perturbation theory for the stability of  COUPLED BULK-SURFACE REACTION–DIFFU-localized spot patterns for the Brusselator model on the sphere. SION SYSTEMS ON STATIONARY VOLUMES

In most of the work above, either elliptic or diffusion  Here, we present a coupled system of BSRDEs posed in a models in the bulk have been coupled to surface-elliptic or  three-dimensional volume as well as on the boundary surface surface-diffusion or surface-reaction–diffusion models posed  enclosing the volume. We impose Robin-type boundary on the surface through Robin-type boundary conditions  conditions on the bulk reaction–diffusion system, whereas 

[5,6,11–14,16]. Here, our focus is to couple systems of  no boundary conditions are imposed on the surface reaction–

reaction–diffusion equations posed both in the bulk and on the  diffusion system since the surface is closed. 

surface, setting a mathematical and computational framework 

to study more complex interactions such as those observed in 

cell biology, tissue engineering and regenerative medicine,  (a) A coupled system of bulk-surface reaction–

developmental biology and biopharmaceuticals [5,6,11–  diffusion equations

14,16,17]. We employ the bulk-surface finite-element method  Let Ω be a stationary volume (whose interior is denoted the as introduced by Elliott & Ranner in [10] to numerically  bulk) enclosed by a compact hypersurface Γ:=∂Ω which is C2. 

solve the coupled system of bulk-surface reaction–diffusion  In addition, let I=[0,T](T>0) be some time interval. Moreover, equations (BSRDEs).  Details  of  the  surface-finite-element  let  ν denote the unit outer normal to Γ, and let U be any open can be found in reference [18]. The bulk and surface reaction–

diffusion systems are coupled through Robin-type boundary  subset of 

containing Γ, then for any function u which is 

conditions. Details of the coupled bulk-surface finite-element  differentiable in U, we define the tangential gradient on Γ by, method can be found in [19]; the finite element algorithm is  ∇Γu=∇u−(∇u· ν)  ν, where · denotes the regular dot product and implemented in deall II [20]. 

∇ denotes the regular gradient in 

. The tangential gradient 

is the projection of the regular gradient onto the tangent 

The key contributions of our work to the theory of pattern  plane, thus ∇Γu· ν=0. The Laplace–Beltrami operator on the formation are:

surface  Γ  is  then  defined  to  be  the  tangential  divergence  of 

•  we derive and prove Turing diffusion-driven instability  the tangential gradient 

. For a vector function 

conditions for a coupled system of BSRDEs; 

, the tangential divergence 

•  using  the  bulk-surface  finite-element  method,  we  is defined by

approximate the solution to the model system within 

the bulk and on the boundary surface of a sphere of 

radius one; 

•  our results show that if the surface-reaction–diffusion 

system has the  long-range inhibition, short-range 

activation form and the bulk-reaction–diffusion system  To proceed, we denote by 

has  equal  diffusion  coefficients,  then  the  surface-



two chemical 

reaction–diffusion system can induce patterns in the  concentrations  (species)  that  react  and  diffuse  in  Ω  and bulk close to the surface and no patterns form in the 

be two chemical species 

interior, far away from the surface; 

residing only on the surface Γ which react and diffuse on the 

•  on  the  other  hand,  if  the  bulk-reaction–diffusion  surface. In the absence of cross-diffusion and assuming that system has the  long-range inhibition, short-range  coupling is only through the reaction kinetics, we propose to activation  form and the surface-reaction–diffusion  study the following non-dimensionalized coupled system of system has equal diffusion coefficients, then the bulk- BSRDEs

reaction–diffusion system can induce pattern formation 

on the surface; 

•  furthermore,  we  prove  that  if  the  bulk  and  surface 

reaction–diffusion systems have equal diffusion 

coefficients, no patterns form; and

•  these theoretical predictions are supported by numerical 

simulations. 

(2.1)

Hence, this article is outlined as follows. In §2, we  with coupling boundary conditions present the coupled bulk-surface reaction–diffusion system 

on stationary volumes with appropriate boundary conditions 

coupling the bulk and surface partial differential equations. 

The main results of this article are presented in §2b where 

we derive Turing diffusion-driven instability conditions for 

the coupled system of BSRDEs. To validate our theoretical 



(2.2)

findings,  we  present  bulk-surface  finite-element  numerical 

solutions in §3. In §4, we conclude and discuss the implications 

In the above, 

represents 

of our findings. 

the Laplacian operator.  dΩ  and  dΓ  are a positive diffusion 

coefficients  in  the  bulk  and  on  the  surface,  respectively, 

representing the ratio between  u  and  v, and  r  and  s, 

respectively. γΩ and γΓ represent the length-scale parameters 
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in the bulk and on the surface, respectively. In this formulation,  (2.2)–(2.4). 

we assume that f(·,·) and g(·,·) are nonlinear reaction kinetics 

in the bulk and on the surface.  h (u,v,r,s) and  h (u,v,r,s) are  Proposition 2.2 (Existence and uniqueness of the uniform 1

2

reactions representing the coupling of the internal dynamics  steady state). 

in the bulk Ω to the surface dynamics on the surface Γ. As a  The coupled system of BSRDEs (2.6) with boundary condi-

(2.6) with boundary condi-

2.6) with boundary condi-

first attempt, we consider a more generalized form of linear  tions (2.2) admits a unique steady state given by coupling of the following nature [21]





(2.3)

(2.11)

and

provided the following compatibility condition on the coeffi-

cients of the coupling is satisfied

(2.4)

where α , α , β , β , κ  and κ  are constant non-dimensionalized 





(2.12)

1

2

1

2

1

2

parameters. Initial conditions are given by the positive-

bounded functions u ( x), v ( x), r ( x) and s ( x). 

Proof. 

0

0

0

0

(i) Activator-depleted reaction kinetics: an illustrative example The proof follows immediately from the definition of the uniform steady state satisfying reaction kinetics (2.7)–(2.10). It 

From now onwards, we restrict our analysis and simulations  must be noted that in deriving this unique uniform steady state to the well-known activator-depletedsubstrate reaction model  the compatibility condition (2.12) coupling bulk and surface 

[8, 22–25] also known as the Brusselator given by

dynamics must be satisfied. 

Remark 2.3: The constraint condition (2.12) on the pa-

(2.5)

rameter values  α ,  β   and  κ ,  i=1,2  is  a  general  case  of 

i

i

i

the  specific  parameter  values  given  in  reference  [21] 

where a and b are positive parameters. For analytical simplicity,  where the following parameter values were selected we postulate the model system (2.1) in a more compact form 

given by

. 

Remark 2.4: Note that there exists an infinite number of solu-

tions to problem (2.12). 

(i) Linear stability analysis in the absence of diffusion

Next, we study Turing diffusion-driven instability for the cou-

pled system of BSRDEs (2.1)–(2.4) with reaction kinetics (2.5). 

To proceed, we first consider the linear stability of the spatially 

(2.6)

uniform steady state. For the sake of convenience, let us de-

note by  w=(u,v,r,s)T, the vector of the species u, v, r and s. Fur

and

-

s. Fur

s. Fur

with coupling boundary conditions (2.2)–(2.4). In the above,  thermore, defining the vector  ξ such that |ξi|<1 for all i=1,2,3 

we have defined appropriately

and 4, it follows that writing  w= w*+ ξ, the linearized system of coupled BSRDEs can be posed as



(2.7)





(2.13)





(2.8)

where  J  represents the Jacobian matrix representing the first 

 F

linear terms of the linearization process. Its entries are defined 

by

(2.9)

and



(2.10)

 (b) Linear stability analysis of the coupled system of BSRDEs

Definition 2.1 (Uniform steady state). 

A point (u*,v*,r*,s*) is a uniform steady state of the coupled 

system of BSRDEs (2.6) with reaction kinetics (2.5) if it solves 

the nonlinear algebraic system given by fi(u*,v*,r*,s*)=0, for 

(2.14)

alli=1,2,3,4,  and  satisfies  the  boundary  conditions  given  by 
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where by definition 

represents a partial derivative 

(2.24)

of f (u,v) with respect to u. We are looking for solutions to the 

1

system of linear ordinary differential equations (2.13) which 



are of the form  ξ∝eλt. Substituting into (2.13), results in the        (2.25) following classical eigenvalue problem

and



(2.15)

where  I is the identity matrix. Making appropriate substitutions 



(2.26)

and carrying out standard calculations, we obtain the following 

dispersion relation for λ

Proof. 

The proof enforces that  p (λ)  is  a  Hurwitz  polynomial  and 

4

therefore  satisfies  the  Routh–Hurwitz  criterion  in  order  for 

Re(λ)<0. The  first  condition  to  be  satisfied  is  that  a ≠0  oth-

4

erwise λ=0 is a trivial root, thereby reducing the fourth-order 

polynomial to a cubic polynomial. The first four conditions are 

a result of requiring that each coefficient a with i=1,2,3 and 4 

i 

of the polynomialp (λ) are all positive. The rest of the condi-

4

tions are derived as shown below. 

where

We require that the determinant of the matrix





(2.16)



(2.17)

Substituting a , a  and a  appropriately, we obtain

1

2

3



(2.18)

and

(2.27)

Exploiting the fact that



(19)

For the sake of convenience, let us denote by

it then follows that

(2.20)

the submatrices of   J   corresponding to the bulk reaction  if and only if

 F

kinetics and the surface reaction kinetics, respectively. We can 

now define

Multiplying throughout by 2, we obtain condition (2.25) in 

theorem 2.5. 

The last condition results from imposing the condition that

 Theorem 2.5 Necessary and sufficient condi-

 tions for Re(λ) < 0). 

(The necessary and sufficient conditions such that the zeros of 

the polynomial p (λ) have Re(λ)<0 are given by the following 

4

conditions

It can be shown that



(2.21)



(2.22)



(2.28)

(2.23)
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On the other hand, 

(2.29)

Hence, combining (2.28) and (2.29) and simplifying conveniently, we have

resulting in condition (2.26).  ▪

Remark 2.6

The characteristic polynomial, 

can also be written more compactly in the form of

thereby coupling the bulk and surface dispersion relations in the absence of spatial variations. 

(ii) Linear stability analysis in the presence of diffusion

Next, we introduce spatial variations and study under what conditions the uniform steady state is linearly unstable. We linearize around the uniform steady state by taking small spatially varying perturbations of the form (2.30)

Substituting (2.30) into the coupled system of BSRDEs (2.1)–(2.4) with reaction kinetics (2.5), we obtain a linearized system of partial differential equations



(2.31)



(2.32)





(2.33)

and

(2.34)

with linearized boundary conditions



(2.35)

and



(2.36)

In the above, we have used the original reaction kinetics for the purpose of clarity. 

In order to proceed, we restrict our analysis to circular and spherical domains where we can transform the cartesian coordinates into polar coordinates and be able to exploit the method of separation of variables. Without loss of generality, we write the following eigenvalue problem in the bulk



(2.37)
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where each ψk satisfies the boundary conditions (2.35) and (2.36). On the surface, the eigenvalue problem is posed as (2.38)

Remark 2.7

For the case of circular and spherical domains, if 

. 

Taking 

, then writing in polar coordinates 

we can define, for all 

, the fol-

lowing power-series solutions [5, 6]





(39)

and

(2.40)

On the surface, substituting the power series solutions (2.40) into (2.33) and (2.34), we have (2.41)

and

(2.42)

Similarly, substituting the power-series solutions (2.39) into the bulk equations (2.31) and (2.32), we obtain the following system of ordinary differential equations



(2.43)

and

(2.44)

Equations (2.43) and (2.44) are supplemented with boundary conditions



(2.45)

and



(2.46)

where 

. Writing

and substituting into the system of ordinary differential equations (2.41)–(2.44), we obtain the following eigenvalue problem (2.47)
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where

and

Note that the boundary conditions (2.45) and (2.46) have been applied appropriately to the surface-linearized reaction–diffusion equations. Because

it follows that the coefficient matrix must be singular, hence we require that

Straightforward calculations show that the eigenvalue λl m solves the following dispersion relation written in compact form as

, 





(2.48)

where we have defined conveniently

The above holds true if and only if either



(2.49)

or



(2.50)

In the presence of diffusion, we require the emergence of spatial growth. In order for the uniform steady state  w* to be unstable, we require that either

Solving (2.49) (and similarly (2.50)), we obtain the eigenvalues



(2.51)

It follows then that 

if and only if the following conditions hold
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and

(2.52)

or

(2.53)

and

Similarly, on the surface, 

if and only the following conditions hold

and





(2.54)

or



(2.55)

and

We are in a position to state the theorem 2.8. 

 Theorem 2.8

Assuming that



(2.56)

then the necessary conditions for 

are given by



(2.57)

Similarly, assuming that





(2.58)

then the necessary conditions for 

are given by



(2.59)

Proof. 

The proof is a direct consequence of conditions (2.52)–(2.55). Assuming that conditions (2.56) and (2.58) hold, then one of the conditions in (2.52) and (2.54) is violated, which implies that 

and similarly 

. This entails that the system can no longer exhibit spatially inhomogeneous solutions. 

The only two conditions left to hold true are (2.53) and (2.55). This case corresponds to the classical standard two-component 
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reaction–diffusion system which requires that (for details, see  and

for example [9])



Then, it follows that condition (2.25) given by

(2.60)

and similarly



is violated. 

(2.61)

•  – Next, we consider the case when

This completes the proof  ▪

Remark 2.9

and

Assuming that conditions (2.56) and (2.58) both hold, then 

conditions (2.57) and (2.59) imply that dΩ≠1 and dΓ≠1. 

It follows then that none of the conditions (2.21)–(2.26) are 

Remark 2.10

violated. However, condition (2.52) does not hold. 

If  condition  (2.56)  or  (2.58)  holds  only,  then  either  dΩ≠1 

or dΓ≠1 but not necessarily both. 

•  – Similarly, the case when

Remark 2.11

If conditions (2.56) and (2.58) are both violated, then diffusion- and

driven instability cannot occur. 

Remark 2.12

This implies that none of the conditions (2.21)–(2.26) are vio-

Similar to classical reaction–diffusion systems, conditions  lated, while condition (2.54) fails to hold. 

(2.57) and (2.59) imply the existence of critical diffusion 

coefficients in the bulk and on the surface whereby the uniform 

•  – Finally, the cases when

states lose stability. In order for diffusion-driven instability 

to occur, the bulk and surface diffusion coefficients must be 

greater than the values of the critical diffusion coefficients. 

Next, we investigate under what assumptions on the reaction-



kinetics do conditions (2.52) and (2.54) hold true. 

(2.62)

– First, let us consider the case when

and

and



(2.63)

Then, 

which violates condition  result in remark 2.10. 

(2.21). 

– Similarly, the case when

The above cases clearly eliminate conditions (2.52) and (2.54) 

as necessary for uniform steady state to be driven unstable in 

the presence of diffusion. We are now in a position to state our 

main result. 

and



 Theorem 2.13 (Necessary conditions for diffusion-driven in-

violates condition (2.21). 

 stability)

– Let us consider the case when

The necessary conditions for diffusion-driven instability The 

necessary conditions for diffusion-driven instability for the 

coupled system of BSRDEs (2.1)–(2.4) are given by
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NUMERICAL SIMULATIONS OF THE COU-



(2.64)

PLED SYSTEM OF BULK-SURFACE REACTION–

DIFFUSION EQUATIONS



(2.65)

Here,  we  present  bulk-surface  finite-element  numerical  so-



(2.66)

lutions corresponding to the coupled system of BSRDEs 

(2.1)–(2.5). Here, we omit the details of the bulk-surface fi-

nite-element method as these are given elsewhere (see [19] 



(2.67)

for details). Our method is inspired by the work of Elliott & 

Ranner [10]. We  use  the  bulk-surface  finite-element  method 



to discretize in space with piecewise bilinear elements and an 

(2.68)

implicit second-order fractional-step θ-scheme to discretize in 

time using the Newton›s method for the linerization [19, 26]. 

For details on the convergence and stability of the fully im-

(2.69)

plicit time-stepping fractional-step  θ-scheme, the reader is 

referred to Madzvamuse  et al.  [19, 26]. In all our numerical 

and

experiments, we fix the kinetic model parameter values a=0.1 

and b=0.9 since these satisfy the Turing diffusion-driven in-

(2.70)

stability conditions (2.64)–(2.71). For these model parameter 

values, the equilibrium values are (u*,v*,r*,s*)=(1,0.9,1,0.9). 

or/and

Initial conditions are prescribed as small random perturbations 

around the equilibrium values. For illustrative purposes, let us 



(2.71)

take the parameter values describing the boundary conditions 

(iii) Theoretical predictions

as shown in table 1; these are selected such that they satisfy the 

compatibility condition (2.12). 

From the analytical results, we state the following theoretical 

predictions to be validated through the use of numerical simu- Table 1: Model parameter values for the coupled system of BSRDEs lations. 

(2.1)–(2.4). 

1.  The  bulk  and  surface  diffusion  coeffi-

cients d  and d  must be greater than one in order for 

Ω

Γ

diffusion-driven instability to occur. Taking d =d =1 

Ω

Γ

results in a contradiction between conditions (2.64), 

(2.70) and (2.71). As a result, the BSRDEs does not   (a) A note on the bulk-surface triangulation

give rise to the formation of spatial structure. For this  We briefly outline how the bulk-surface triangulation is case, the uniform steady state is the only stable solu- generated. For further specific details, please see reference tion for the coupled system of BSRDEs (2.1)–(2.4). 

[19]. Let Ω  be a triangulation of the bulk geometry Ω with 

h

2.  The above imply that taking d >1 and dΓ=1, the bulk- vertices  x i, i=1,…,N , where N  is the number of vertices in h

h

Ω

reaction–diffusion system has the potential to induce  the  triangulation.  From  Ω , we then construct  Γ   to be the h

h

patterning in the bulk for appropriate diffusion-driven  triangulation of the surface geometry Γ by defining Γ =Ω | Ω , h

h ∂ h

instability parameter values, whereas the surface-re- i.e. the vertices of Γ are the same as those lying on the surface h 

action–diffusion system is not able to generate pat- of Ω . In particular, then, we have ∂Ω =Γ . An example mesh is h

h

h

terns. Here, all the conditions (2.64)–(2.70) hold ex- shown in figure 1. The bulk triangulation induces the surface cept (2.71). 

triangulation as illustrated. 

3.  Alternatively, taking  d =1  and  d >1, the bulk-reac-

Ω

Γ

tion–diffusion system fails to induce patterning in 

the bulk while the surface-reaction–diffusion system 

has the potential to induce patterning on the surface. 

Similarly, all the conditions (2.64)–(2.71) hold except 

(2.70). 

4.  On the other hand, taking  d >1 and  d >1 appropri-

Ω

Γ

ately, then the coupled system of BSRDEs exhibits 

patterning both in the bulk and on the surface. All the 

conditions (2.64)–(2.71) hold both in the bulk and on 

the surface. 

Figure 1: Example meshes for the bulk (a) and surface system 

(b). Part of the domain has been cut away and shown on the 
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right to reveal some internal mesh structure. (Online version 

in colour.)

 (b) Numerical experiments

Here, we will present only four cases to validate our 

theoretical predictions outlined in §2b(iii). In most of our 

simulations, parameter values are fixed as shown in table 1, Figure 3: Numerical solutions corresponding to the coupled system except for d  and d whose values are varied to demonstrate  of BSRDEs (2.1)–(2.5) with d =1 in the bulk and d =20 on the sur-Ω

Γ

Ω

Γ

face. Columns 1 and 2: solutions in the bulk representing u. Columns 

the patterning mechanism of the coupled system of BSRDEs.  3 and 4: solutions on the surface representing r. Second and fourth We present patterns corresponding only to the chemical  columns represent cross sections of the bulk and the surface, respec-species u and r in the bulk and on the surface, respectively.  tively. Spot patterns form on the surface, whereas small balls form in Those corresponding to v and s are 180 degrees out of phase  the vicinity of the surface inside the bulk. (Online version in colour.) to those of u and r and are therefore omitted. It must be noted 

however that this is not always the case in general, Robin-type  (iii) Simulations of the coupled system of BSRDEs with boundary conditions may alter the structure of the solution  (d ,d )=(20,1)

Ω Γ

profiles depending on the model parameter values and the  To generate patterns in the bulk, we take coupling compatibility boundary parameters. 

and d =1 on the surface. Figure 4 exhibits 

(i) Simulations of the coupled system of BSRDEs with 

Γ

stripe, circular and spot patterns in the bulk as illustrated by the 

(dΩ,dΓ)=(1,1)

cross sections. On the surface, small amplitude patterns occur 

The bulk-surface finite-element numerical simulations of  consistent with theoretical predictions. Although the patterns the coupled system of BSRDEs with d =1 in the bulk, d =1 on  for the u species (columns one and two) appear uniform on Ω

Γ

the surface are shown in figure 2. We observe that no patterns  the surface this is simply owing to the colour scale, with the form in complete agreement with theoretical predictions.  amplitude of the patterns in the bulk larger than those on the Similar to classical reaction–diffusion systems, diffusion  surface. This difference in the amplitude of the pattern of coefficients  must  be  greater  than  one.  In  particular,  the  the bulk solution in the bulk and on the surface is due to the diffusion coefficients must be greater than their corresponding  Robin-type boundary conditions. Unlike zero-flux (also known respective critical diffusion coefficients in the bulk and on the  as homogeneous Neumann), boundary conditions for standard surface. An example is shown next. 

reaction–diffusion systems which imply that no species enter 

or leave the domain, here, there is deposition or removal of 

chemical  species  through  the  flux  on  the  surface,  resulting 

in differences in amplitude between the bulk and surface 

solutions. 

Figure 2: Numerical solutions corresponding to the coupled system 

of BSRDEs (2.1)–(2.5) with d =1 in the bulk and d =1 on the surface. 

Ω

Γ

The uniform steady-state solutions are converged to and no patterns 

form. Columns 1 and 2: solutions in the bulk representing u. Columns 

3 and 4: solutions on the surface representing r. Second and fourth 

columns represent cross sections of the bulk and the surface, respec-

Figure 4: Numerical solutions corresponding to the coupled system 

tively. (Online version in colour.)

of BSRDEs (2.1)–(2.5) with d =20 in the bulk and d =1 on the sur-

Ω

Γ

face. Columns 1 and 2: solutions in the bulk representing u. Columns 

(ii) Simulations of the coupled system of BSRDEs with  3 and 4: solutions on the surface representing r. Second and fourth (d ,d )=(1,20)

columns represent cross sections of the bulk and the surface, respec-

Ω Γ

tively. Spectacular patterning occurs in the bulk exhibiting spots, 

For illustrative purposes, let us take  d =1  in  the  bulk, 

Ω

stripes and circular patterns. The surface dynamics produce uniform 

on the surface. Figure  3  illustrates pattern  patterning. (Online version in colour.) formation on the surface as well as within a small region in the 

vicinity of the surface membrane. Spots are observed to form  (iv) Simulations of the coupled system of BSRDEs with on the surface, whereas in the bulk, small balls form inside. Far  (d ,d )=(20,20)

Ω Γ

away from the surface, no patterns form, because the necessary  In this example, we illustrate how both bulk and surface conditions for diffusion-driven instability are not fulfilled in  dynamics induce patterning by taking d =20 in the bulk, d =20 

the bulk. These results confirm our theoretical predictions. We 

Ω

Γ

on the surface. Figure 5 shows pattern formation in the bulk 

note that this particular example describes realistically pattern  and on the surface. In the bulk, we observe the formation of formation in biological systems. We expect skin patterning to  balls (which can be seen as spots through cross sections) and manifest in the epidermis layer as well as on the surface. 

these translate to spots on the surface. The surface dynamics 

themselves induce spot pattern formation. 
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pled bulk-surface model and this forms part of our 

current studies. 

We have presented a framework that couples bulk 

dynamics (three-dimension) to surface dynamics (two-

dimension) with the potential of numerous applications in 

cell motility, developmental biology, tissue engineering and 

Figure 5: Numerical solutions corresponding to the coupled system  regenerative medicine and biopharmaceutical where reaction–

of BSRDEs (2.1)–(2.5) with d =20 in the bulk and d =20 on the sur-

Ω

Γ

diffusion-type models are routinely used [5, 6, 11–14, 16, 17]. 

face. Columns 1 and 2: solutions in the bulk representing u. Columns 

3 and 4: solutions on the surface representing r. Second and fourth 

We have restricted our studies to stationary volumes. 

columns represent cross sections of the bulk and the surface, respec-

In most cases, biological surfaces are known to evolve 

tively. We observe spot pattern formation both in the bulk and on the  continuously with time. This introduces extra complexities to surface. (Online version in colour.)

the modelling, analysis and simulation of coupled systems of 

BSRDEs. In order to consider evolving bulk-surface partial 

CONCLUSION, DISCUSSION AND FUTURE 

differential equations, evolution laws (geometrical) should be 

formulated describing how the bulk and surface evolve. Here, 

RESEARCH CHALLENGES

it is important to consider specific experimental settings that 

We have presented a coupled system of BSRDEs whereby  allow for detailed knowledge of properties (biomechanical) and the bulk and surface reaction–diffusion systems are coupled  processes (biochemical) involved in the bulk-surface evolution. 

through Robin-type boundary conditions. Nonlinear reaction- Such a framework will allows us to study three-dimensional kinetics are considered in the bulk and on the surface and for  cell migration in the area of cell motility [16, 27–29]. In future illustrative purposes, the activator-depleted model was selected  studies, we propose to develop a three-dimensional integrative because it has a unique positive steady state. By using linear  model that couples bulk and surface dynamics during growth stability theory close to the bifurcation point, we state and  development or movement. 

prove a generalization of the necessary conditions for Turing 

diffusion-driven instability for the coupled system of BSRDEs. DATA ACCESSIBILITY

Our most revealing result is that the bulk reaction–diffusion 

system has the capability of inducing patterning (under  This manuscript does not contain primary data and as a appropriate model and compatibility parameter values) for  result has no supporting material associated with the results the surface reaction–diffusion model. On the other hand, the  presented. 

surface reaction–diffusion is not capable of inducing patterning 

everywhere in the bulk; patterns can be induced in only regions  FUNDING STATEMENT

close to the surface membrane. For skin pattern formation, this  This work (A.M. and C.V.) is supported by the Engineering and example is consistent with the observation that patterns will  Physical Sciences Research Council grant: (EP/J016780/1). 

form on the surface as well as within the epidermis layer close  A.M. and C.V. acknowledge support from the Leverhulme to the surface. We do not expect patterning to form everywhere  Trust Research Project Grant (RPG-2014-149). A.H.C. was in the body of the animals. 

supported partly by the University of Sussex and partly by the 

Our studies reveal the following observations and research  Medical Research Council. 

questions still to be addressed:

•  – our numerical experiments reveal that the Robin- ACKNOWLEDGEMENTS

type boundary conditions seem to introduce a bound- The authors thank anonymous reviewers for their constructive ary layer coupling the bulk and surface dynamics.  comments. 
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