

[image: Image 1]

[image: Image 2]

[image: Image 3]

Argo CD

and

Argo Workflows on

Kubernetes

 GitOps, workflow automation,

 and

 progressive delivery with

 Argo Rollouts

Md Nahidul Kibria

www.bpbonline.com

[image: Image 4]

First Edition 2025

Copyright © BPB Publications, India

ISBN: 978-93-65899-610

 All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any means or stored in a database or retrieval system, without the prior written permission of the publisher with the exception to the program listings which may be entered, stored and executed in a computer system, but they can not be reproduced by the means of publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true to correct and the best of author’s and publisher’s knowledge. The author has made every effort to ensure the accuracy of these publications, but publisher cannot be held responsible for any loss or damage arising from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their respective owners but BPB Publications cannot guarantee the accuracy of this information.

www.bpbonline.com

Dedicated to

 To the brilliant people who dedicate their days

 to

 crafting a better tomorrow

About the Author

Md Nahidul Kibria is currently a Platform Engineer at

HelloFresh. With over a decade of experience in software

development and cloud infrastructure, he specializes in

migrating legacy systems to cloud native environments. He

focuses on improving the synergy between DevOps and

SecOps processes and enhancing infrastructure scalability,

data streaming technologies, and security.

He has worked with companies of various sizes, designing

and developing microservices-based platforms,

implementing service mesh strategies, and leading cloud

migration initiatives. His expertise includes cloud

technologies such as AWS and Kubernetes, infrastructure as

code, data streaming technologies, and application security.

He is also an active member of the global cybersecurity

community, serving as a Red Team member and community

lead, and has presented at prestigious conferences. He

believes that learning is a lifelong journey and enjoys

sharing his insights through writing and public speaking on

topics such as data streaming, application scaling, and

advanced threat hunting.

He holds a Bachelor’s degree in Computer Science and is

passionate about building resilient, scalable, and secure

systems. Outside work, he enjoys exploring emerging

technologies and finding innovative ways to simplify and

enhance complex operations.

About the Reviewer

Osama Mustafa is the first Oracle ACE director in the

Middle East, the first Alibaba MVP Program, the

creator/director of the Jordan Amman Oracle User Group,

the first Group in Jordan related to Oracle technology, and

the author of two technology books. He is one of the leaders

in cloud technology and has worked with different cloud

vendors such as AWS, Google, and Oracle. He has

experience in automation, implemented other projects

worldwide, and has a solid knowledge of different

databases. He has also presented at various conferences

around the world and written more than 100 articles for

different magazines such as IOUG, UKOUG, and OTECH.

Acknowledgement

I would like to express my sincere gratitude to all those who

contributed to the completion of this book.

First and foremost, I extend my heartfelt thanks to my

family for their unwavering support and sacrifices. They

willingly gave up their weekends to allow me to focus on

this project. Their love and encouragement have been a

constant source of motivation.

I would like to express my sincere appreciation to BPB

Publications for their invaluable guidance and expertise,

which were instrumental in bringing this book to publication.

Their help was invaluable in navigating the publishing

process. I'm truly grateful!

I would also like to give a huge shout-out to our amazing

reviewers, technical experts, and editors, who took the time

to provide thoughtful feedback and help shape the

manuscript into its final form. Their input was invaluable,

and thanks to their expertise, we refined the book and made

it an even more valuable resource for readers.

Last but not least, I want to extend our heartfelt thanks to

all the readers who have shown an interest in our book. Your

support and encouragement have been deeply appreciated.

Thank you to everyone who has played a part in making this

book a reality.

Preface

In today’s rapidly evolving software industry and cloud

native infrastructure, having advanced tools that streamline

and enhance deployment workflows is becoming

increasingly essential. This book provides a comprehensive

overview of Argo CD, Argo Rollouts, and other popular Argo

Family projects, demonstrating how they enable smooth,

declarative, and progressive delivery. These are crucial

when the need for immediate code and deployment to live

demand arises.

From the fundamentals of GitOps and Kubernetes

integration to advanced deployment strategies, this book

serves as a comprehensive guide for DevOps practitioners,

developers, and system architects. With chapters dedicated

to installation, architecture, and real-world production

considerations, readers will gain practical insights into

deploying and managing applications using cutting-edge

techniques.

The chapters are thoughtfully structured to build knowledge

progressively, guiding readers from fundamental concepts

to advanced implementations:

Chapter 1: About Argo Project - Introduces the Argo Project family, detailing its evolution from a startup initiative

to a fully-fledged, graduated project under the Cloud Native

Computing Foundation. It highlights the widespread

adoption of Argo across major enterprises. The chapter

explains how the core components of the Argo family, such

as Argo CD, Argo Workflows, Argo Events, and Argo Rollouts,

collaborate to provide a comprehensive solution for cloud native application delivery.

Chapter 2: Understanding Argo CD - Introduces readers to Argo CD, a prominent tool in the Argo Project family. It

explores the fundamental concepts of declarative GitOps

and demonstrates how Argo CD implements these principles

through practical examples. The chapter covers essential

aspects of Argo CD's architecture, detailing its core

components, such as the API server, repository server, and

application controller. Additionally, it includes hands-on

instructions for installing and configuring Argo CD in a

Minikube environment. By the end of this chapter, readers

will be equipped to set up Argo CD and manage

applications, laying the groundwork for more advanced

deployment strategies.

Chapter 3: Running Argo CD in Production - Focuses on the important aspects of running Argo CD in production

environments, specifically for enterprise deployments. It

discusses high availability configurations, best practices for

GitOps, monitoring and alerting strategies, and planning for

disaster recovery. This chapter provides comprehensive

guidance on scaling considerations, particularly for mono-

repository architectures. It also introduces the

ApplicationSet controller, which helps manage deployments

across multiple clusters. Readers will learn how to

implement effective monitoring, manage upgrades, and

ensure business continuity through strong backup and

recovery procedures.

Chapter 4: Argo CD Security Consideration - Focuses on the important security considerations necessary for

deploying Argo CD in enterprise environments. It provides a

thorough overview of user management, authentication

methods, including Single Sign-On integration, and the

configuration of Role-Based Access Control. This chapter

also delves into advanced security topics such as the security implications of ApplicationSets, audit logging, and

the creation of an effective security risk management

strategy. Readers will learn how to implement security best

practices and ensure compliance with enterprise security

standards while taking advantage of Argo CD's powerful

features. Additionally, this chapter highlights the need to

avoid common misconfigurations that can lead to serious

security issues.

Chapter 5: Working with Argo Workflows - Introduces readers to Argo Workflows, a powerful container-native

workflow engine designed for orchestrating parallel jobs on

Kubernetes. This chapter thoroughly covers core concepts,

architecture, and practical implementations of workflow

automation. Readers will learn how to design and execute

complex multi-step workflows, understand different types of

templates, and implement real-world automation scenarios.

Through detailed examples, including secret scanning

workflows and a comparison with Apache Airflow, this

chapter demonstrates how Argo Workflows facilitates the

efficient orchestration of tasks ranging from CI/CD pipelines

to machine learning workflows, making it an essential tool

for modern cloud native environments.

Chapter 6: Argo Workflows in Production - Explores the critical considerations for running Argo Workflows in

production environments. It offers comprehensive guidance

on achieving high availability, planning for scalability, and

implementing cost optimization strategies. This chapter

examines various installation options, outlines security best

practices, including SSO integration and pod security

contexts, and discusses disaster recovery planning. Through

practical examples and a real-world case study, readers will

learn how to implement and maintain secure, scalable, and

cost-effective workflow automation solutions in production

settings.

Chapter 7: Getting Started with Argo Events -

Introduces Argo Events, a Kubernetes-native event-driven

automation system that facilitates sophisticated workflow

orchestration. This chapter explains the platform's core

components, including event sources, sensors, and the

EventBus, and demonstrates how they work together to

enable event-driven automation. Through practical

examples and deployment scenarios, readers will learn how

to integrate Argo Events with other tools, particularly Argo

Workflows, to create powerful automation solutions.

Additionally, the chapter addresses critical production

considerations, including security, high availability, and

monitoring strategies essential for running Argo Events in

enterprise environments.

Chapter 8: Getting Started with Argo Rollouts -

Introduces Argo Rollouts, an advanced deployment

controller that enhances Kubernetes capabilities with

progressive delivery strategies. It comprehensively covers

various deployment methodologies, including blue-green,

canary, and shadow deployments. Using practical examples

and hands-on demonstrations, readers will learn how to

implement controlled rollouts, automated analysis, and

intelligent traffic management. This chapter also explores

integration with service meshes and ingress controllers,

equipping readers with the knowledge to implement

reliable, zero-downtime deployments in production

environments.

Chapter 9: Understanding Argo Rollouts - Delves into advanced concepts and implementations within Argo

Rollouts, focusing on sophisticated deployment strategies

and automated analysis capabilities. This chapter covers

Experiment CRDs, AnalysisTemplates, and integration with

service meshes and monitoring tools like Istio and

Prometheus. Through detailed examples, readers will learn

how to implement automated canary analysis, configure

progressive delivery, and establish robust notification systems. Practical considerations such as workload

migration strategies and autoscaling configurations are also

discussed, providing comprehensive guidance for

enterprise-grade deployment automation.

Chapter 10: Combining Argo Events, Workflows,

Pipelines, CD, and Rollouts - Brings together all

components of the Argo ecosystem, demonstrating how to

create a comprehensive GitOps platform by integrating Argo

CD, Argo Rollouts, and Argo Events. Through practical

examples using a custom tool developed by the author

called miniargo, readers will learn to implement end-to-end

automation pipelines that incorporate GitHub Actions,

container builds, progressive delivery, and security

scanning. This chapter illustrates how these tools can

seamlessly work together to create a robust, secure, and

automated deployment pipeline, from code commit to

production deployment. Readers can experiment quickly

using the custom tool with Minikube, allowing them to

create and destroy environments in a local Kubernetes

setup.

Chapter 11: Choosing Continuous Delivery Strategy -

Addresses the strategic aspects of implementing Argo tools

in enterprise environments, examining various architectural

approaches and migration strategies. This chapter provides

guidance on choosing between centralized and

decentralized implementations, integrating Argo CD with

existing CI/CD pipelines, and planning transitions from

legacy systems. Through a detailed analysis of different

architectural patterns and implementation strategies,

readers will learn how to make informed decisions about

adopting Argo that align with their organization's needs and

constraints.

This book is designed for Platform and DevOps Engineers, regardless of their backgrounds. The only prerequisite is a

basic understanding of Kubernetes and networking

concepts. It serves as a comprehensive resource for

understanding and implementing the Argo family of

projects, complete with practical examples and tools for

experimentation in a local environment.

Additionally, this book aims to equip readers with the

knowledge and skills necessary to fully leverage the Argo

Project family by providing practical examples and real-

world use cases. Whether you are new to GitOps or, an

experienced practitioner seeking to optimize your

deployment workflows, or a platform architect making

strategic decisions, this book will guide you in mastering

cloud native application delivery with Argo.

Code Bundle and Coloured

Images

Please follow the link to download the

 Code Bundle and the Coloured Images of the book:

https://rebrand.ly/52a529

The code bundle for the book is also hosted on GitHub at

https://github.com/bpbpublications/Argo-CD-and-

Argo-Workflows-on-Kubernetes. In case there’s an

update to the code, it will be updated on the existing GitHub

repository.

We have code bundles from our rich catalogue of books and

videos available at https://github.com/bpbpublications.

Check them out!

Errata

We take immense pride in our work at BPB Publications and

follow best practices to ensure the accuracy of our content

to provide with an indulging reading experience to our

subscribers. Our readers are our mirrors, and we use their

inputs to reflect and improve upon human errors, if any, that

may have occurred during the publishing processes

involved. To let us maintain the quality and help us reach

out to any readers who might be having difficulties due to

any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly

appreciated by the BPB Publications’ Family.

Did you know that BPB offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at

www.bpbonline.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical articles, sign up for a range of free newsletters, and receive exclusive discounts and offers on BPB books and eBooks.

Piracy

If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or

website name. Please contact us at business@bpbonline.com with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either

writing or contributing to a book, please visit www.bpbonline.com. We have worked with thousands of developers and tech professionals, just like you, to help them share their insights with the global tech community. You can make a general application, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on the site that you purchased it from? Potential readers can then see and use your unbiased opinion to make purchase decisions. We at BPB

can understand what you think about our products, and our authors can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book’s Discord space

Join the book’s Discord Workspace for Latest updates,

Offers, Tech happenings around the world, New Release and

Sessions with the Authors:

[image: Image 5]

https://discord.bpbonline.com

Table of Contents

1. About Argo Project

Introduction

Structure

Objectives

Overview of Argo Project

History of Argo Projects

Argo Project family and its offering

 Argo CD

 Argo Workflows

 Argo Events

 Argo Rollouts

 Argo CD notifications

Argo Labs projects

Argo Project Family for GitOps

Current status of the Argo project in CNCF

Argo CD adoption in production

Uses of Argo Projects

Conclusion

2. Understanding Argo CD

Introduction

Structure

Objectives

Meeting Argo CD

 Introduction to GitOps

 Common misconceptions about Argo CD

Deploying Argo CD in minikube

 Deploying apps in a different cluster

Using Argo CD CLI

 Creating apps via CLI

 Syncing via CLI

 Adding repo via CLI

Argo CD architecture

 API server

 Repository server

 Application controller

 Argocd server

 Argo CD Dex

 ApplicationSet controller

 Notifications

Argo CD concepts and terminology

 Application

 Application source type

Argo CD declarative setup

 Projects (kind: AppProject)

 Applications (kind: Application)

 Repositories, clusters, or Helm chart repositories

 credentials

Conclusion

3. Running Argo CD in Production

Introduction

Structure

Objectives

Argo CD in the production

 High availability

 Core installation

 Scaling up consideration for argocd-repo-server

GitOps best practices

 Picking appropriate number of deployments config

 repos

 Test manifests locally

 Ensure manifests at git repository are immutable

 Figuring out secret management strategy

 Leaving room for imperativeness or automation

Mono repo scaling considerations

 Enable concurrent processing

 More settings before go productions

 Automation from CI pipelines

 Ingress configuration

Cluster bootstrapping

 App of apps pattern

 SyncWaves

 Argo CD Application health

 ApplicationSet controller

 ApplicationSet controller architecture

 Generators

 Enabling high availability mode in argocd-

 applicationset-controller

Monitoring and Alerting

 Install the Prometheus and Grafana

 Orphaned resources monitoring

 Upgrade management

Disaster recovery and business continuity

 Implementing a DR strategy

Conclusion

4. Argo CD Security Consideration

Introduction

Structure

Objectives

Security best practices checklist

User management in Argo CD

 Initial Security setup

 Disabling admin user

 Rating limit login attempts

 Local user's account management

 Creating new user

Configuring single sign-on

 Dex and Dex connector in ArgoCD

 Configuring Argo CD SSO using GitHub (OAuth2)

 Configure Argo CD for SSO

Making the RBAC configuration right

ApplicationSets security considerations

Auditing and logging

Argo CD security risk management strategy

Conclusion

5. Working with Argo Workflows

Introduction

Structure

Objectives

Understanding Argo Workflows

History of Argo Workflows

Argo Workflows core concepts

Deploying Argo Workflows in minikube

 Run a workflow

 Using the UI

Practical application of Argo Workflows core concepts

 More about the workflow

 Workflow templates

 Detailed explanation of a two-template workflow

 ClusterWorkflowTemplates

 CronWorkflows

Argo Workflow architecture

Debugging Argo Workflows

Argo Workflow use cases

Automating secret scanning in source repositories

 Implementing secret scanning workflow

S3 bucket configures for artifact storage

Argo Workflows vs. Apache Airflow

Conclusion

6. Argo Workflows in Production

Introduction

Structure

Objectives

Argo Workflows in the production

Installation options available in Argo Workflows

Best practices for operating Argo Workflows

Cost optimization in production

 User cost optimizations

 Operator cost optimizations

Argo Workflows security consideration

Single sign-on in Argo Workflows

Workflow pod security context

Workflow Controller security

Database access control in offloading workflows

Case study: Abusing misconfigured Argo Workflows

Conclusion

References

7. Getting Started with Argo Events

Introduction

Structure

Objectives

Features of Argo Events

Argo Events architecture and concepts

Installing Argo Events in the Kubernetes cluster

Understanding Argo Events integration with Argo

Workflows

Security consideration

High availability and disaster recovery

recommendations

Monitoring Argo Events

Conclusion

8. Getting Started with Argo Rollouts

Introduction

Structure

Objectives

Concepts in Argo Rollouts

Progressive delivery

Deployment strategies

 Recreate deployment

 Rolling update

 Blue-green

 Canary deployment

 Shadow deployment

Argo Rollouts architecture

 Argo Rollouts controller

 Rollout resource

 Ingress/service in Argo Rollouts

 AnalysisTemplate and AnalysisRun in Argo Rollouts

 Metric providers in Argo Rollouts

 Argo Rollouts command line interface

 Argo Rollouts user interface

Installing Argo Rollouts in the Kubernetes cluster

Argo Rollouts kubectl plugin installation

Progressive delivery with Argo Rollouts

 Blue-green deployment with Argo Rollouts

Conclusion

9. Understanding Argo Rollouts

Introduction

Objectives

Structure

Canary deployment example

Analysis and progressive delivery with Argo Rollouts

 Analysis delivery

 Progressive delivery

The Argo Rollouts CRDs

 Rollout

 AnalysisTemplate

 ClusterAnalysisTemplate

 AnalysisRun

 Experiment

Experiment CRD

Implementing AnalysisTemplate with Istio and

Prometheus

Migrating to Rollouts

 Convert existing deployment resource to Rollout

 resource

 Referencing a deployment from a Rollout

 Reverting to standard Kubernetes deployments

 Converting Rollout to deployment

 Referencing deployment from Rollout

 Handling horizontal pod autoscaling

 Horizontal pod autoscaling in Blue Green strategy

 Horizontal pod autoscaling in canary ReplicaSet-based

 Rollouts

 Handling vertical pod autoscaling

Notifications in Argo Rollouts

 Installing Notifications Engine

Conclusion

10. Combining Argo Events, Workflows, Pipelines,

CD, and Rollouts

Introduction

Structure

Objectives

Combining all the tools

Introducing miniargo

Creating GitHub repository

Using GitHub Action to build Docker

Setting up Argo CD to deploy an application

Taking advantage of Argo Rollouts

Argo Events vs. Argo CD Notifications

Argo CD Notifications

 Triggers

 Condition bundles

 Avoiding notification flapping

 Templates

 Customizing notification content

 Service-specific fields

 Time zone adjustment and functions

 Subscriptions

 Associating triggers with applications

 User defined context

Cluster bootstrap with Argo CD

 Common bootstrap components

 Argo CD facilitating bootstrapping

Implementing security scanning with Argo Events and

ZAP Proxy

Conclusion

11. Choosing Continuous Delivery Strategy

Introduction

Structure

Objectives

Understanding organization's existing CI/CD

implementation

Choosing Argo CD implementation architecture

 Centralized management and control approach

 Advantages of centralized management and control

 approach

 Disadvantages of centralized management and control

 approach

 Mitigating risks of this centralized management and control

 approach

 Assessing the approach

 Argo CD instance per cluster

 Advantages of the instance per cluster approach

 Disadvantages of the instance per cluster approach

 Assessing the approach

 Instance per rational set

 Advantages of the instance per rational set approach

 Disadvantages of the instance per rational set approach

 Assessing the approach

Combining Argo CD and Argo Workflow

Defining decentralized workflows

 Key benefits of decentralized Workflows

 Implementing decentralized workflows

Migration strategy from current system to Argo CD

Crafting a strategy for progressive delivery

Conclusion

Index

CHAPTER 1

About Argo Project

Introduction

This book is about the Argo Project Families and learning

how to use and integrate them. The Argo project is a

remarkable collection of open-source tools designed to

revolutionize GitOps and cloud-native computing. This book

is your comprehensive guide to understanding and

harnessing the full potential of the Argo project and its

associated tools.

This chapter will discuss the Argo project, its history,

impressive offerings within the Argo Project Family, and why

it stands out as an excellent choice for embracing GitOps, a

transformative approach to managing infrastructure and

applications. We will understand the core components of the

Argo Project Family, Argo CD, Argo Workflows, Argo Events,

and Argo Rollouts, each uniquely simplifying and

streamlining cloud-native development and deployment.

We will also examine the Argo project's current status within

the Cloud Native Computing Foundation (CNCF),

highlighting its significance and growing presence in the

ever-evolving landscape of cloud-native technologies.

By the end of this book, you will be ready to navigate the complex world of cloud-native computing and continuous

delivery, enhancing your strategy.

Structure

In this chapter, we will discuss the following topics:

Overview of Argo Project

History of Argo Projects

Argo Project Family and its offering

Argo Labs projects

Argo Project Family for GitOps

Current status of the Argo project in CNCF

Argo CD adoption in production

Uses of Argo Projects

Objectives

This chapter explores the Argo project, a collection of open-

source tools to transform GitOps and cloud-native

computing practices. We trace the historical evolution of the

project and its adaptability to changing cloud-native needs.

By the end of this chapter, you will get an understanding of

Argo Project's sub-projects, including Argo CD for continuous

delivery, Argo Workflows for orchestrating parallel jobs in

Kubernetes, Argo Events for event-driven architecture, and

Argo Rollouts for application release management. We will

discuss why the Argo Project Family is an excellent choice

for GitOps, emphasizing its robust features, community

support, and alignment with cloud-native best practices. We

will also discuss the project's current status within CNCF.

Overview of Argo Project

The Argo Project is a comprehensive suite of open-source

tools tailored for Kubernetes, all strictly adhering to the

GitOps principles. These tools include:

Argo CD is a declarative, GitOps based continuous

deployment solution for seamless management of

application deployments.

Argo Workflows, a container native workflow engine

for efficiently orchestrating complex tasks within

Kubernetes.

Argo Events, an event based dependency manager.

Argo Rollouts is an additional component that extends

Kubernetes' native deployment capabilities with

advanced features like blue-green and canary

deployments.

These Argo Projects empower users to streamline

Kubernetes workflows, automate operations, and efficiently

maintain infrastructure and application configurations using

Git repositories as the single source of truth. This fosters

collaboration, enhances control, and simplifies the

management of Kubernetes environments, making it a

valuable suite for modern DevOps and infrastructure teams.

History of Argo Projects

The Argo Projects have seen significant development and

growth since their inception. The following is a more

detailed history of each of the four Argo Projects, Argo

Workflows, Argo CD, Argo Rollouts, and Argo Events:

Argo CD:

2018-2019: Argo CD began to take shape as a

declarative and version controlled GitOps tool. It

allowed users to manage Kubernetes clusters

efficiently using Git repositories to declare the

desired state.

2019-present: Argo CD's development accelerated,

gaining widespread adoption within the Kubernetes

community, with notable success stories1 like CERN

(European Organization for Nuclear Research)

using it for large scale data processing.

Argo Workflows:

October 17, 2017: Made the first commit to Argo's

GitHub repository, marking the beginning of the

project.

2017-2019: Argo Workflows was initially developed

at Applatix and later acquired by Intuit. During this period, it served as a framework for designing and

orchestrating

parallel

jobs

using

Kubernetes

CustomResourceDefinitions (CRDs).

2019-present: Argo Workflows continued to evolve,

gaining popularity as a powerful tool for defining

and managing complex workflows in Kubernetes.

Argo Events:

2019: Argo Events emerged as a project building on

the foundation of Argo, providing workflow

automation capabilities.

2020-present: Argo Events found its place in the

ecosystem, enabling event driven architectures and

further extending the capabilities of Argo's suite of

tools.

Argo Rollouts:

2019: Argo Rollouts was introduced as an extension

of Argo CD, focusing on advanced deployment

strategies like canary releases and blue-green

deployments.

2020-present: It continued to evolve, becoming a

popular choice for organizations looking to

implement advanced deployment strategies in their

Kubernetes clusters.

CNCF incubation:

April 7, 2020: After years of development and

growing

community

support,

Argo

made

a

significant move by donating all four of its projects

(Argo Workflows, Argo CD, Argo Rollouts, and Argo

Events) to the CNCF. They were officially welcomed

into CNCF as an incubating project.

Since joining CNCF, the Argo Projects have

benefited from increased visibility, collaboration,

and community contributions. They have continued

to evolve to meet the evolving needs of Kubernetes

users and the broader cloud-native community.

Argo's journey showcases the power of open-source

collaboration and GitOps principles in managing

Kubernetes workloads effectively.

Argo Project family and its offering

The Argo Project Family is a set of advanced tools that are

created to streamline and improve various aspects of

Kubernetes workflows. The Argo family provides a versatile

toolkit for developers and DevOps professionals, enabling

them to automate complex workflows, simplify deployment,

and manage deployment pipelines. With projects such as

Argo Workflows, Argo CD, and Argo Events, users can easily

orchestrate containerized applications, ensure continuous

delivery, and respond to real-time events within the

Kubernetes ecosystem. The Argo Project Family empowers

teams to attain greater agility, scalability, and reliability in their cloud-native environments, whether automating

continuous integration and continuous delivery

(CI/CD) pipelines.

Argo CD

Argo CD is a continuous delivery (CD) tool for Kubernetes applications. It automates the process of deploying and

managing applications in a Kubernetes cluster from a Git

repository. Argo CD monitors the Git repository for changes

and ensures that the application in the cluster matches the

desired state defined in the repository. It provides a web-

based user interface and a command line interface (CLI) for managing the CD process.

The following are the use cases:

Continuous delivery pipelines.

Application deployment and management.

Managing application configurations.

Argo Workflows

Argo Workflows is a workflow engine that allows users to

define, manage, and execute complex multi-step workflows

on Kubernetes. It provides a declarative way to define

workflows using a YAML based syntax and supports features

like parallelism, conditional execution, and data passing

between steps. Argo Workflows also integrates with other

tools and services commonly used in the Kubernetes

ecosystem.

The following are the use cases:

Data processing pipelines.

Extract, transform, and load (ETL) tasks.

Scientific computing and simulations.

Batch processing and job scheduling.

Machine learning model training.

Argo Events

Argo Events is a platform that enables event driven

automation on Kubernetes. It provides users with the ability

to define event sources, such as HTTP endpoints, cron

schedules, external services, and triggers. These triggers

initiate specific actions to take place when certain events

occur. Argo Events can be integrated with other Argo

Projects to execute workflows or synchronize application

deployments based on events.

The following are the use cases:

Automating tasks in response to specific events.

Building custom event driven applications.

Integration with external services and APIs.

Argo Rollouts

Argo Rollouts extends the Kubernetes native deployment

functionality to provide advanced deployment strategies

and rollout management. It allows users to perform canary

deployments, blue-green deployments, and other

deployment strategies, with features like automated metrics

analysis, rollout pausing, and rollback capabilities.

The following are the use cases:

Canary releases and gradual deployments.

A/B testing of application versions.

Reducing the risk of application updates.

Here is other related information on Argo Family projects

Argo CD notifications

Argo CD notifications are a specialized component within

the Argo CD ecosystem, dedicated to monitoring and

notifying users about critical changes in Argo CD-managed

applications. It employs a flexible system of triggers and

templates to allow users to define when notifications should

be dispatched and what their content should include. This

approach simplifies the task of notifying stakeholders when

applications undergo state changes or other significant

events. While there are alternative methods for monitoring

Argo CD applications, Argo CD notifications focuses

specifically on Argo CD use cases, ultimately enhancing the

user experience by providing a streamlined and specialized

solution.

This project was started independently and later merged

with Argo CD. https://github.com/argoproj-labs/argocd-

notifications is the old project links that are archived now,

and the code merged with Argo CD.

Argo Labs projects

Let us discuss a selection of projects from Argo Labs. This is

where projects and ideas take shape, but it is important to

note that these projects are not yet ready for production

use. Nevertheless, you can read further about these projects

to see what is happening.

The following are a few intriguing examples:

Argo CD Autopilot: Argo CD Autopilot is a powerful

tool designed to facilitate the adoption of GitOps

practices with Argo CD. It simplifies the setup and

management of Argo CD by automating its installation

and configuration through GitOps. This ensures that

Argo CD itself is managed as code, enhancing

consistency and traceability. Argo CD Autopilot also

offers a structured approach to manage applications within GitOps repositories, streamlining the process of

adding, updating, and promoting applications across

different environments. Additionally, it improves

disaster recovery capabilities, enabling the effortless

recreation

of

entire

environments,

including

previously installed applications from Git repositories.

Overall, Argo CD Autopilot empowers users to

efficiently implement GitOps and Argo CD efficiently,

making application delivery and management more

robust and reliable.

Argo CD vault plugin: The argocd-vault-plugin is an

Argo CD plugin designed to streamline secret

management within the GitOps and Kubernetes

ecosystem. It provides a convenient solution for

retrieving secrets from various secret management

tools like HashiCorp Vault, IBM Cloud Secrets

Manager, AWS Secrets Manager, and more. With this

plugin, users can easily integrate secrets into

Kubernetes resources without the need for complex

operators or custom resource definitions. It simplifies

the process of managing secrets, as well as other

Kubernetes

resources

like

deployments

and

ConfigMaps, making it a valuable tool for teams

implementing GitOps workflows with Argo CD.

The Argo CD Image Updater: The Argo CD Image

Updater is a tool available on Argo Labs that can

automatically check for and update container images

in Kubernetes workloads. It integrates with Argo CD,

allowing users to specify image updates through

application parameters. It can be used within a

Kubernetes cluster or as a standalone command line

tool. Key features of the Image Updater include

updating images for applications managed by Argo

CD,

support

for

various

update

strategies,

compatibility

with

popular

container

registries

(including private ones), the ability to write changes

back to Git, image filtering based on registry tags, and

support for image specific custom pull keys through

various

methods

such

as

Kubernetes

keys,

environment variables, or external scripts.

Argo Project Family for GitOps

The Argo Project Family is a strong choice for implementing

GitOps in your organization for several compelling reasons

as follows:

Argo Project Family is one of the pioneers of GitOps.

The Argo Project Family, led by Argo CD, was

developed from the ground up with GitOps principles

in mind. This means that it is purpose built for

managing Kubernetes infrastructure and application

deployments using Git as the source of truth. This

native GitOps approach streamlines and simplifies the

deployment process, making it highly efficient.

While Argo Family projects consistently bring

innovation, Argo CD has proven its mettle in real-

world production scenarios. Argo CD has been battle

tested in production environments, particularly at

Intuit, which runs thousands of applications across a

complex infrastructure. Its extensive use in such

environments showcases its reliability, scalability, and

ability to handle mission-critical workloads easily.

The Argo Project Family has gained the trust of

various enterprises in various industry verticals.

Companies like Adobe, Blackrock, Capital One, Google, IBM, and Red Hat have adopted and contributed to the project. This adoption by well-

established enterprises demonstrates its maturity and suitability for large scale operations.

The Argo Project Family offers a rich ecosystem for

DevOps. It is more than just an Argo CD. It comprises

a family of tools, including Argo Workflows, Argo

Rollouts, and Argo Events. These tools integrate

seamlessly with Argo CD and provide additional

functionalities that are crucial for various aspects of

DevOps and continuous delivery, such as workflow

orchestration,

progressive

delivery,

and

event

management.

The Argo Project Family offers a range of tools that

can be used standalone or in combination, providing

flexibility for organizations to choose the components

that best fit their needs. This modularity allows

organizations to tailor their GitOps strategy and

integrate with other existing systems or tools

effectively.

The Argo Project Family is a compelling choice for

implementing GitOps in your organization due to its

native

GitOps

approach,

proven

reliability

in

production environments, trust from enterprises, a

rich ecosystem of DevOps tools, and flexibility for

customization and integration. By choosing the Argo

Project Family, you can simplify your DevOps

processes,

enhance

scalability,

and

streamline

application deployments using GitOps methodologies.

Current status of the Argo project in CNCF

CNCF is a prominent open-source organization that is

focused on advancing the development and adoption of

cloud-native technologies and practices. The CNCF is a part

of the Linux Foundation and serves as a home for various

projects and initiatives related to cloud-native computing.

The CNCF hosts and supports a wide range of open-source

projects, including container orchestration systems like

Kubernetes, container runtimes like containerd and rkt, and

other technologies that are essential for building and

managing modern, scalable, and containerized applications

in cloud environments. The foundation provides a

collaborative and vendor-neutral environment for

developing and maintaining these projects.

CNCF's mission is to make cloud-native computing

ubiquitous and help organizations leverage these

technologies to build and manage resilient, scalable, and

efficient applications. They achieve this by promoting open-

source projects, industry best practices, and community

engagement.

CNCF has graduated and incubated as two different stages

that represent the maturity and status of projects within the

CNCF ecosystem as follows:

Graduated projects:

Graduated projects are those that have reached a

high level of maturity, stability, and adoption within

the CNCF community.

These projects have demonstrated a strong track

record of success and have established themselves

as reliable and widely used components of the

cloud-native ecosystem.

Graduated projects have met certain criteria,

including a diverse and active community of

contributors and users, a well-defined governance

structure, and a commitment to sustainability.

Examples of graduated projects include Kubernetes,

Prometheus, and Envoy.

Incubating projects:

Incubating projects are in the earlier stages of

development and adoption within the CNCF.

These projects are still working towards achieving

the level of maturity and stability expected of

graduated projects.

Incubating projects have shown promise and

potential but may still need to have the same

widespread adoption or maturity level as graduated

projects.

The CNCF provides support and resources to help

incubating projects grow and mature.

Over time, incubating projects can advance to the

graduated stage as they meet the necessary criteria.

Examples of incubating projects include newer or

emerging technologies that are being actively

developed and tested.

Projects that have graduated from incubation are deemed

stable and have a track record of successful usage in

production settings. Argo, for instance, received acceptance

into CNCF on March 26, 2020, at the incubating maturity

level and subsequently advanced to the graduated maturity

level on December 6, 2022.

Argo CD adoption in production

Argo Projects conducted a few surveys.2 Argo CD adoption in production has seen significant growth, with over 93% of

surveyed users reporting using Argo CD in their production

environments. This high adoption rate is a strong indicator

of the project's success in simplifying deployment processes

and enabling organizations to manage and deploy

applications in Kubernetes clusters effectively. Users have

praised Argo CD's user-friendly features, including a resource UI, GitOps approach, ApplicationSets, drift

detection, auto-sync, and easy upgrades. This high

production adoption rate reflects the project's value and

reliability in real-world, mission-critical environments.

The Argo project has released the results of its 2023 user

survey about Argo Workflows and Events3, highlighting key findings for Argo Workflows and Events. The survey included

207 respondents, 58% using Argo Workflows in production

and 42% evaluating the tool. Users praised Argo Workflows

for its versatility, Kubernetes native nature, and integration

with Argo CD and Argo Rollouts. Various engineering

disciplines, including DevOps engineers, software engineers,

architects, and data professionals, use Argo tools, with an

uptick in DevOps engineers.

Use cases for Argo Workflows and Events have diversified,

encompassing ETL, machine learning, and CI/CD. While the

production usage among respondents decreased to 58%,

the scale of Argo Workflow operations increased year-over-

year. Users often combine Argo Workflows with other tools,

especially Argo CD/Rollouts. Notable tools integrated with

Argo include Jupyter Notebooks, Apache Kafka, Airflow, and

Kyverno for managing policies on Kubernetes.

Uses of Argo Projects

The official list of uses for Argo CD is located at

https://github.com/argoproj/argo-

cd/blob/master/USERS.md.

This list shows that Argo is widely used in the software

development and DevOps communities. Argo CD has gained

a significant user base since its inception, and its users

come from various sectors and industries. The project

maintains a list of its users on GitHub in the USERS.md file,

which provides insights into the diverse range of

organizations and teams that benefit from Argo CD. Here,

we will explore who uses Argo CD and why it is so popular.

Some of the groups that adopt Argo CD based on the list are

as follows:

Many large enterprises have adopted Argo CD as a

core

component

of

their

Kubernetes

based

infrastructure.

These

organizations

often

have

complex, multi-cluster Kubernetes environments and

use Argo CD to streamline and automate application

deployments.

Argo

CD

helps

them

maintain

consistency and reliability across their applications.

Argo CD is also embraced by startups and small

businesses looking for a straightforward, cost-effective

solution for managing their Kubernetes deployments.

Its open-source nature makes it accessible to

organizations of all sizes.

DevOps teams across various industries rely on Argo

CD to implement continuous delivery pipelines and

ensure efficient, automated deployments. Argo CD

aligns

with

DevOps

principles,

promoting

collaboration between development and operations

teams.

Argo CD is favored by those enthusiastic about cloud-

native

technologies,

microservices,

and

containerization.

It

integrates

seamlessly

with

Kubernetes, making it an attractive choice for those

invested in cloud-native architectures.

Development agencies and consulting firms often use

Argo CD to simplify their client's Kubernetes

deployments. This streamlines their client projects,

ensuring efficient application delivery while adhering

to best practices.

Open-source projects and communities extensively use

Argo CD to manage and automate their own

deployments. The open-source nature of Argo CD

aligns with their values, and the tool's capabilities

simplify the management of their applications.

Some educational institutions leverage Argo CD to

teach Kubernetes and DevOps principles to students.

Its intuitive interface and ease of use make it a

valuable teaching tool.

R&D teams in artificial intelligence, data science, and

machine learning often use Argo CD to manage their

Kubernetes deployments. This ensures the seamless

deployment of research applications.

In some cases, government agencies have adopted

Argo

CD

to

automate

the

deployment

and

management of their applications in Kubernetes

clusters.

Beyond these specific use cases, anyone working with

Kubernetes can benefit from Argo CD. Its user-friendly

interface and robust feature set make it an excellent

choice

for

managing

Kubernetes

deployments,

regardless of the organization's size or industry.

Argo CD's widespread adoption is attributed to its

user-friendly

interface,

robust

features,

strong

community support, and its open-source nature. This

tool simplifies the complex process of deploying

applications in Kubernetes environments, making it an

essential component for organizations and individuals

seeking efficient, automated application delivery. As

Argo CD continues to evolve, it is likely to attract an

even broader user base, reflecting the growing

importance of Kubernetes in modern software

development and deployment practices.

Conclusion

Argo Projects offers a robust, open-source solution for

simplifying and automating Kubernetes application

deployment and management. Its GitOps approach and

expanding ecosystem of projects make it an attractive

choice for organizations looking to modernize their DevOps

practices and maintain a high level of control and

consistency in their Kubernetes environments. With a

growing community and active development, these tools are

poised to play a pivotal role in the future of application

delivery in Kubernetes.

In the next chapter, we will discuss Argo CD and gradually

become familiar with all the tools in the Argo Project Family.

We will also explore how these tools can be used together to

address complex organizational issues and what makes the

Argo Project Family particularly suitable for GitOps.

1. https://www.cncf.io/reports/argo-project-journey-

report/

2. https://blog.argoproj.io/cncf-argo-cd-rollouts-2023-

user-survey-results-514aa21c21df

3. https://blog.argoproj.io/argo-workflows-events-

2023-user-survey-results-82c53bc30543

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates,

Offers, Tech happenings around the world, New Release and

Sessions with the Authors:

https://discord.bpbonline.com

[image: Image 6]

CHAPTER 2

Understanding Argo CD

Introduction

The emergence of Kubernetes has changed how the industry

looks at the continuous delivery of software. Releasing the

complex software means handling configurations and

environments. Configuration, environment settings, and

source of infrastructure are going to Git as a de facto

standard. Git becomes the source of truth for the software

code and the infrastructure code. GitOps is an operational

framework that takes DevOps best practices and uses Git as

a source of truth. Here comes the Argo CD, a GitOps operator

for Kubernetes.

Based on the official definition, Argo CD is a declarative

 GitOps continuous delivery tool for Kubernetes.

In this landscape, Argo CD emerges as a specialized GitOps

continuous delivery tool built specifically for Kubernetes. By

design, it manages application deployments declaratively,

ensuring that the actual state of your infrastructure

consistently matches the desired state defined in your Git

repositories. Understanding Argo CD's architecture,

components, and operational patterns is crucial for

implementing effective GitOps practices in Kubernetes environments.

Structure

In this chapter, we will discuss the following topics:

Meeting Argo CD

Deploying Argo CD in minikube

Using Argo CD CLI

Argo CD architecture

Argo CD concepts and terminology

Argo CD declarative setup

Objectives

In this chapter, we will discuss the foundational principles of

GitOps and explore how they manifest in Argo CD's

architecture. The journey begins with examining the

philosophical difference between declarative and imperative

paradigms, advancing to the critical role of version control as

a single source of truth in modern infrastructure

management. As the discussion progresses, we dissect Argo

CD's sophisticated architecture, analyzing how its core

components, the API server, repository server, and

application controller, orchestrate a robust GitOps

implementation. We will also examine the essential

supporting infrastructure, including Redis for caching, Dex

for authentication, and the notification system for

operational awareness. The theoretical foundation gives way

to practical implementation as the chapter demonstrates

Argo CD deployment in a minikube environment. This hands-

on exploration encompasses configuration methodologies,

command-line interface mastery, and the intricacies of multi-

cluster deployment orchestration. Through careful

examination of fundamental concepts like applications and projects, readers develop a comprehensive understanding of

state management and application source integrations, from

Helm charts to Kustomize configurations and raw YAML

manifests.

Moreover, this chapter will demonstrate Argo CD's

integration with Kubernetes-native patterns, demonstrating

how infrastructure definition, project configuration, and

credential management align with GitOps principles while

maintaining security and operational efficiency. This

comprehensive exploration will equip readers with

theoretical and practical knowledge of Argo CD's

architectural paradigms and operational patterns,

establishing a robust foundation for implementing GitOps

practices in production environments.

Meeting Argo CD

Argo CD is a tool for Kubernetes, and we can configure

Kubernetes with both imperative and declarative ways to

create Kubernetes resources. Both techniques are helpful

and have their own advantages. Imperative configuration

involves creating Kubernetes resources directly at the

command line to a Kubernetes cluster. Meanwhile, the

declarative configuration defines resources within manifest

files and then applies those definitions to the cluster.

Now, what does declarative mean? Let us examine the

terminology as follows:

Declarative programming is a paradigm describing

WHAT.

Imperative programming is a paradigm describing

HOW.

For example, SQL is a declarative language. When using the

SELECT * FROM users WHERE id <= 500 queries, we

express what we want from the system, the first 500 users registered in the database. The SQL engine's job is to

implement how these rows are retrieved.

HTML is also a declarative way to talk with machines about

what we want.

The following is an example of declarative pod creation in

Kubernetes:

1. cat <<EOF | kubectl apply -f -

2. apiVersion: v1

3. kind: Pod

4. metadata:

5. name: declarative-pod

6. labels:

7. role: myrole

8. spec:

9. containers:

10. - name: declarative-pod

11. image: nginx

12. ports:

13. - name: declarative-pod

14. containerPort: 80

15. protocol: TCP

16. EOF

To create a pod declaratively, we create a manifest file in YAML.

The imperative way of creating a pod will be like:

1. kubectl create deploy imperative-pod --image nginx

The next item to explore is GitOps.

Introduction to GitOps

GitOps is an operational framework that uses Git repositories

as the single source of truth for declarative infrastructure

and application code. It applies Git's version control,

collaboration, and compliance capabilities to infrastructure automation and application deployment.

Argo CD implements GitOps principles by using Git

repositories to define and control the desired application

state. This approach ensures that the entire deployment

process is version controlled, auditable, and reproducible.

Key benefits of GitOps with Argo CD include:

Version control for both application code and

infrastructure

Automated drift detection and reconciliation

Complete audit trail of all changes

Built-in rollback capabilities

Consistent deployment patterns across clusters

To see these principles in action, Argo CD provides a public

demo instance at https://cd.apps.argoproj.io. This live

example demonstrates a self-managed Argo CD installation

and showcases its GitOps capabilities.

Common misconceptions about Argo CD

Before diving deeper, it is important to clarify some common

misconceptions about Argo CD. First and foremost, Argo CD

is not a continuous integration (CI) tool; it would not help you build Dockerfiles or integrate liters. Instead, it is

specifically designed as a continuous delivery tool for

Kubernetes.

Deploying Argo CD in minikube

Let us get hands-on experience with Argo CD by deploying it

in a local Kubernetes cluster using minikube. Before we

begin, make sure the lab environment has those well-

configured prerequisites as follows:

Kubectl: You can find the installation instructions for Kubectl, for the command line tool at this link,

https://kubernetes.io/docs/tasks/tools/.

Docker Desktop: You can find the installation

instructions

for

Docker

Desktop

for

Mac

(https://docs.docker.com/desktop/install/mac-

install/),

Windows

(https://docs.docker.com/desktop/install/windows-

install/),

or

Linux

(https://docs.docker.com/desktop/install/linux-

install/).

Minikube: You can find the installation instructions for

minikube

at

this

link,

https://minikube.sigs.k8s.io/docs/start/.

Before installing the Argo CD, we need to start the

minikube cluster:

Start a Minikube cluster with specific resources for

Argo CD

--memory: Allocate 4GB RAM

--cpus: Use 2 CPU cores

--kubernetes-version: Specify K8s version

--driver: Use Docker as the driver

--profile: Create a named cluster profile

> minikube start --memory=4096 --cpus=2 --kubernetes-

version=1.23.1 --driver=docker --profile argocd-cluster

This command will create the minikube cluster with profile

argocd-cluster and the Kubernetes version specified. We

need multiple Kubernetes clusters to bring some production

readiness topics to this book. Argo CD can deploy into the

same cluster it runs and to other destination clusters. The

operator can choose based on the requirement.

We can easily install Argo CD with the following command for

a quick start:

Create a dedicated namespace for Argo CD

> kubectl create namespace argocd

Install Argo CD components using the official manifest

> kubectl apply -n argocd -f

https://raw.githubusercontent.com/argoproj/argo-

cd/stable/manifests/install.yaml

Argo CD install manifest is in the manifests folder. Core

installation is an essential component without UI, single

sign-on (SSO), and multicluster features. (We will discuss this installation choice in relevant chapters.)

It might appear as follows when deploying the manifest:

1. kubectl get pod -n argocd

2. NAME READY STATUS

RESTARTS

3. argocd-application-controller-0 1/1

Running 1 (4m17s ago)

4. argocd-applicationset-controller-7f466f7cc-kn5rr 1/1

Running 1 (4m17s ago)

5. argocd-dex-server-54cd4596c4-dwtp7 1/1

Running 1 (4m17s ago)

6. argocd-notifications-controller-8445d56d96-9wg2h 1/1

Running 1 (4m17s ago)

7. argocd-redis-65596bf87-4msq9 1/1

Running 1 (4m17s ago)

8. argocd-repo-server-5ccf4bd568-rblwr 1/1

Running 1 (4m17s ago)

9. argocd-server-7dff66c8f8-vgmkf 1/1

Running 1 (4m17s ago)

In the output mentioned previously, we see the following

components, and we will be going to explore them one by

one in Argo CD architecture:

argocd-server

[image: Image 7]

argocd-repo-server

argocd-redis

argocd-notifications-controller

argocd-applicationset-controller

argocd-application-controller

If all the pods are running, we are ready to see the Argo CD

UI by forwarding the service port:

 # Forward the Argo CD API server port to access the Web

 UI

 # 8080: Local port

 # 443: Argo CD server port

> kubectl port-forward svc/argocd-server -n argocd

8080:443

We can now access it using https://localhost:8080. (Figure

 2.1)

 Figure 2.1: Argo CD UI Login Page

Now we need to get the initial password for the admin account, which can be retrieved using kubectl:

Retrieve the auto-generated admin password from

Kubernetes secret

The password is base64 encoded and needs to be decoded

> kubectl -n argocd get secret argocd-initial-admin-secret -o

jsonpath="{.data.password}" | base64 -d; echo

The password we retrieve with the above command is auto-

generated and stored as clear text. The admin password

retrieved by this command is automatically generated during

installation and stored as a Kubernetes secret named

argocd-initial-admin-secret in the argocd namespace.

This default setup is intended for initial access only and

should not be used in production environments.

For production deployments, undertake the following:

Remove the initial admin secret after setting up proper

authentication

Configure integration with enterprise authentication

systems (like LDAP, OIDC, or SSO)

Implement role-based access control (RBAC) for

team members

Follow

security

best

practices

for

credential

management

The security considerations are as follows:

The initial admin password is stored in base64 encoded

format, not encrypted

The secret should be deleted once alternative

authentication is configured

Access to the secret should be strictly controlled

For detailed instructions on implementing secure

authentication and authorization in production environments,

[image: Image 8]

including integration with central authentication systems,

refer to Chapter 3 , Running Argo CD in Production.

Let us login to the Argo CD with the user admin and the

password we just retrieved (refer to Figure 2.2):

 Figure 2.2: Argo CD UI landing page

Now, we can configure the Argo CD to deploy the application,

deploy the application in the same Kubernetes cluster, or

register one or more clusters to Argo CD as destination

clusters.

While the Argo CD UI provides a user-friendly interface for

most operations, the CLI offers additional flexibility,

especially for automation or when working in environments

without browser access. Let us explore how to use the CLI

effectively.

We can read the section Using Argo CD CLI in this book to learn more about Argo CD CLI.

To get started with the CLI, we first need to authenticate

with Argo CD using our admin credentials and set it up as

follows:

Ensure the Argo CD service port is forwarded in a terminal or run it in the background.

kubectl -n argocd port-forward svc/argocd-server 2746:80 &

Store the admin password in an environment variable

ARGOCDPASSWORD=$(kubectl -n argocd get secret

argocd-initial-admin-secret -o jsonpath="{.data.password}" |

base64 -d; echo)

Log into Argo CD using the admin credentials

argocd login 127.0.0.1:2746 --username admin --password

$ARGOCDPASSWORD

Note: In production, The operator can expose the argocd server through an internal or external load balancer. In that case, we do not need the port forwarding.

If the login is successful, we should see the context entry

and selected indication with the asterisk symbol *.

1. argocd context

1. CURRENT NAME SERVER

2. * 127.0.0.1:8080 127.0.0.1:8080

3. 127.0.0.1:2746 127.0.0.1:2746

At this point, we are ready to deploy applications. Let us

create an example guestbook application with the following

command. The Argo CD official repo has an example of the

guestbook application.

 # Create a new application in Argo CD

 # --repo: Source Git repository

 # --path: Path within the repository

 # --dest-server: Target Kubernetes cluster

 # --dest-namespace: Target namespace

1. argocd app create guestbook \

2. --repo https://github.com/argoproj/argocd-example-

apps.git \

3. --path guestbook \

4. --dest-server https://kubernetes.default.svc \

5. --dest-namespace default

Now, look closely at the parameter of this command, line 2

with --repo. We are telling Argo which Git repository we want

to sync. --path guestbook indicates the repository's folder

that we will only sync. In the case of the mono repo, we may

not always want to sync everything. In those cases, we can

specify a folder with a --path parameter. Line 4 --dest-

server https://kubernetes.default.svc This is the other most important thing we are telling argocd, which is the

target cluster it will deploy manifest. In this case, the same

cluster argocd deploys.

At this point, we are already adding an app in argocd. We can see the app list in the argocd with the following simple command:

List configured repositories

1. argocd app list

1. Handling connection for 2746

2. NAME CLUSTER NAMESPACE

PROJECT STATUS HEALTH SYNCPOLICY

CONDITIONS REPO

PATH TARGET

3. guestbook https://kubernetes.default.svc default

default OutOfSync Missing <none> <none>

https://github.com/argoproj/argocd-example-apps.git

guestbook

We can get the details of an app as follows:

1. argocd app get guestbook

1. Name: guestbook

2. Project: default

3. Server: https://kubernetes.default.svc

4. Namespace: default

5. URL:

https://127.0.0.1:2746/applications/guestbook

6. Repo: https://github.com/argoproj/argocd-

example-apps.git

7. Target:

8. Path: guestbook

9. SyncWindow: Sync Allowed

10. Sync Policy: <none>

11. Sync Status: OutOfSync from (53e28ff)

12. Health Status: Missing

13.

14. GROUP KIND NAMESPACE NAME STATUS

HEALTH HOOK MESSAGE

15. Service default guestbook-ui OutOfSync

Missing

16. apps Deployment default guestbook-ui OutOfSync

Missing

 Line 11 shows the Sync Status: OutOfSync and the Status column in the output, and you will probably notice that the

app is in an OutOfSync state. Based on the sync settings,

argocd can sync the app based on Git changes, or we can

sync when necessary. Automatic sync may be useful for the

development cluster, but we should have a gatekeeper in

production. Before syncing, let us see the diff, and then we

can verify what changes argocd will make on the destination

cluster. In case of any anomaly, we can have a chance to fix

it as follows:

1. argocd app diff guestbook

1. ===== /Service default/guestbook-ui ======

2. 0a1,13

3. > apiVersion: v1

4. > kind: Service

5. > metadata:

6. > labels:

7. > app.kubernetes.io/instance: guestbook

8. > name: guestbook-ui

9. > namespace: default

10. > spec:

11. > ports:

12. > - port: 80

13. > targetPort: 80

14. > selector:

15. > app: guestbook-ui

16.

17. ===== apps/Deployment default/guestbook-ui

======

18. 0a1,23

19. > apiVersion: apps/v1

20. > kind: Deployment

21. > metadata:

22. > labels:

23. > app.kubernetes.io/instance: guestbook

24. > name: guestbook-ui

25. > namespace: default

26. > spec:

27. > replicas: 1

28. > revisionHistoryLimit: 3

29. > selector:

30. > matchLabels:

31. > app: guestbook-ui

32. > template:

33. > metadata:

34. > labels:

35. > app: guestbook-ui

36. > spec:

37. > containers:

38. > - image: gcr.io/heptio-images/ks-guestbook-

demo:0.2

39. > name: guestbook-ui

40. > ports:

41. > - containerPort: 80

42.

We are happy with the difference, which we must change in

the destination cluster. Let us sync (deploy) the application

as follows:

1. argocd app sync guestbook

1. TIMESTAMP GROUP KIND

NAMESPACE NAME STATUS HEALTH

2022-09-17T21:02:45+02:00 Service default

guestbook-ui OutOfSync Missing

2. 2022-09-17T21:02:45+02:00 apps Deployment

default guestbook-ui OutOfSync Missing

3. 2022-09-17T21:02:46+02:00 Service default

guestbook-ui OutOfSync Missing service/guestbook-

ui created

4. 2022-09-17T21:02:46+02:00 apps Deployment

default guestbook-ui OutOfSync Missing

deployment.apps/guestbook-ui created

5. 2022-09-17T21:02:46+02:00 Service default

guestbook-ui Synced Healthy service/guestbook-

ui created

6. 2022-09-17T21:02:46+02:00 apps Deployment

default guestbook-ui Synced Progressing

deployment.apps/guestbook-ui created

7.

8. Name: guestbook

9. Project: default

10. Server: https://kubernetes.default.svc

11. Namespace: default

12. URL:

https://127.0.0.1:2746/applications/guestbook

13. Repo: https://github.com/argoproj/argocd-

example-apps.git

14. Target:

15. Path: guestbook

16. SyncWindow: Sync Allowed

17. Sync Policy: <none>

18. Sync Status: Synced to (53e28ff)

19. Health Status: Progressing

20.

21. Operation: Sync

22. Sync Revision:

53e28ff20cc530b9ada2173fbbd64d48338583ba

23. Phase: Succeeded

24. Start: 2022-09-17 21:02:45 +0200 CEST

25. Finished: 2022-09-17 21:02:46 +0200 CEST

26. Duration: 1s

27. Message: successfully synced (all tasks run)

28.

29. GROUP KIND NAMESPACE NAME STATUS

HEALTH HOOK MESSAGE

30. Service default guestbook-ui Synced Healthy

service/guestbook-ui created

31. apps Deployment default guestbook-ui Synced

Progressing deployment.apps/guestbook-ui created

The sync is shown in Progressing state, and we can

recheck it any time again:

1. argocd app get guestbook

1. Name: guestbook

2. Project: default

3. Server: https://kubernetes.default.svc

4. Namespace: default

5. URL:

https://127.0.0.1:2746/applications/guestbook

6. Repo: https://github.com/argoproj/argocd-

[image: Image 9]

example-apps.git

7. Target:

8. Path: guestbook

9. SyncWindow: Sync Allowed

10. Sync Policy: <none>

11. Sync Status: Synced to (53e28ff)

12. Health Status: Healthy

13.

14. GROUP KIND NAMESPACE NAME STATUS

HEALTH HOOK MESSAGE

15. Service default guestbook-ui Synced Healthy

service/guestbook-ui created

16. apps Deployment default guestbook-ui Synced

Healthy deployment.apps/guestbook-ui created

We can check the status from UI and can do the same as we

did with CLI, as shown in Figure 2.3:

 Figure 2.3: Argo CD with a deployed app

Deploying apps in a different cluster

We can create another cluster with minikube with--profile apps-cluster. As our goal is that argocd will make changes in this cluster, we need to make sure the API server of this

cluster is accessible from the argocd cluster. So, this

particular argument is required --apiserver-ips=<host

machine ip> when creating the apps-cluster. $(ipconfig getifaddr en0) is a very macOS-specific command that

gives the host machine IP. Please adjust the command based

on the operating system and environment as follows:

1. minikube start --memory=2096 --cpus=2 --kubernetes-

version=1.23.1 --apiserver-ips=$(ipconfig getifaddr en0)

--driver=docker --profile apps-cluster

Now, we have two minikube clusters. Check the kubeconfig

file as follows:

1. cat ~/.kube/config

1. apiVersion: v1

2. clusters:

3. - cluster:

4. certificate-authority:

/Users/<username>/.minikube/ca.crt

5. extensions:

6. - extension:

7. last-update: Sat, 17 Sep 2022 20:46:01 CEST

8. provider: minikube.sigs.k8s.io

9. version: v1.26.1

10. name: cluster_info

11. server: https://127.0.0.1:53981

12. name: apps-cluster

13. - cluster:

14. certificate-authority:

/Users/<username>/.minikube/ca.crt

15. extensions:

16. - extension:

17. last-update: Sat, 17 Sep 2022 20:45:28 CEST

18. provider: minikube.sigs.k8s.io

19. version: v1.26.1

20. name: cluster_info

21. server: https://127.0.0.1:53928

22. name: argocd-cluster

23. snip…

Before adding the apps-cluster to the argocd we need to change line 11(in example case) server server:

https://127.0.0.1:53981 to server: https://<hostip>:53981. You can do it manually by

opening the file ~/.kube/config, or you can do it with the

following script:

1. # mac os spacific

2. LOCALIP=$(ipconfig getifaddr en0)

3. ARGOAPSCLUSTERPORT=$(cat ~/.kube/config | yq

'.clusters[] | select(.name == "apps-cluster") |

.cluster.server'| cut -f 3 -d ':')

4. yq eval '(.clusters[] | select(has("name")) | select(.name

== "apps-cluster")).cluster.server =

"https://'$LOCALIP':'$ARGOAPSCLUSTERPORT'"' -i

~/.kube/config

After modifying the file should look like the below,

192.168.0.4 will be your host IP:

24. apiVersion: v1

25. clusters:

26. - cluster:

27. certificate-authority:

/Users/<username>/.minikube/ca.crt

28. extensions:

29. - extension:

30. last-update: Sat, 17 Sep 2022 20:46:01 CEST

31. provider: minikube.sigs.k8s.io

32. version: v1.26.1

33. name: cluster_info

34. server: https://192.168.0.4:53981

35. name: apps-cluster

36. - cluster:

37. certificate-authority:

/Users/<username>/.minikube/ca.crt

38. extensions:

39. - extension:

40. last-update: Sat, 17 Sep 2022 20:45:28 CEST

41. provider: minikube.sigs.k8s.io

42. version: v1.26.1

43. name: cluster_info

44. server: https://127.0.0.1:53928

45. name: argocd-cluster

46. snip…

Now, we can add the apps-cluster to argocd. Before that, ensure you are in the correct kube context, and argocd is

login properly as we are not dealing with multiple minikube

clusters:

1. kubectl config use-context argocd-cluster

2. ARGOCDPASSWORD=$(kubectl -n argocd get secret

argocd-initial-admin-secret -o jsonpath="

{.data.password}" | base64 -d; echo)

3. argocd login 127.0.0.1:2746 --username admin --

password $ARGOCDPASSWORD

The next exciting step is registering a cluster to deploy apps:

1. argocd cluster add apps-cluster

1. argocd app create guestbook --repo

https://github.com/argoproj/argocd-example-apps.git --

path guestbook --dest-server https://192.168.0.4:53981 -

-dest-namespace default

So far, in the above sections, we have met with argocd and seen simple happy path deployment. Remember, we must

follow a different installation path to deploy in production.

Before moving on to another topic, let us get familiar with

Argo CD CLI and architecture.

Using Argo CD CLI

Argo CD CLI is a powerful tool for interacting with Argo CD.

The best way to learn a CLI is by playing with it and using it

regularly. However, looking at it briefly helps us to see what

it offers. This section is for finding all the commands used in

this book as a reference. So, the reader can come back

anytime and refresh their mind.

Interacting with Argo CD with CLI or via WebUI is possible.

The documentation about the installation of Argo CD CLI for

all supported environments is CLI installation documentation

(https://argo-

cd.readthedocs.io/en/stable/cli_installation/).

In macOS, install the argocd CLI with this simple command:

1. brew install argocd

Argo CD CLI includes the help. We can see the help menu

with -h:

1. argocd -h

2. argocd controls a Argo CD server

3. Usage:

4. argocd [flags]

5. argocd [command]

6.

7. Available Commands:

8. account Manage account settings

9. admin Contains a set of commands useful for Argo

CD administrators and requires direct Kubernetes

access

10. app Manage applications

11. cert Manage repository certificates and SSH

known hosts entries

12. cluster Manage cluster credentials

13. completion output shell completion code for the

specified shell (bash or zsh)

14. context Switch between contexts

15. gpg Manage GPG keys used for signature

verification

16. help Help about any command

17. login Log in to Argo CD

18. logout Log out from Argo CD

19. proj Manage projects

20. relogin Refresh an expired authenticate token

21. repo Manage repository connection parameters

22. repocreds Manage repository connection parameters

23. version Print version information

24. Snipped…

Creating apps via CLI

For example, we can create a guestbook application with

the following command:

1. argocd app create guestbook \

2. --repo https://github.com/argoproj/argocd-example-

apps.git \

3. --path guestbook \

4. --dest-server https://kubernetes.default.svc \

5. --dest-namespace default

Here is a short description of all arguments:

• --repo https://github.com/argoproj/argocd-example-

apps.git:

o

https://github.com/argoproj/argocd-example-

apps.git is the repository we want to pull by the Argo

CD.

• --path guestbook:

o guestbook is the folder of the example repository

only that we want to sync with argocd.

• --dest-server https://kubernetes.default.svc: o The target cluster, the Argo CD, will deploy the

resources.

• --dest-namespace default:

o The namespace of the destination cluster Argo CD

will be going to sync.

Syncing via CLI

In the previous step, we just created the application.

However, it still needs to sync the application. Once the

guestbook application is created, we can now view its

status:

>argocd app get guestbook

1.

Name: guestbook

2.

Project: default

3.

Server: https://kubernetes.default.svc

4.

Namespace: default

5.

URL:

https://127.0.0.1:2746/applications/guestbook

6.

Repo: https://github.com/argoproj/argocd-

example-apps.git

7.

Target:

8.

Path: guestbook

9.

SyncWindow: Sync Allowed

10.

Sync Policy: <none>

11.

Sync Status: OutOfSync from (53e28ff)

12.

Health Status: Missing

13.

14.

GROUP KIND NAMESPACE NAME

STATUS HEALTH HOOK MESSAGE

15.

Service default guestbook-ui OutOfSync

Missing

16.

apps Deployment default guestbook-ui

OutOfSync Missing

After syncing using the following command, actual

deployment will start, and Argo CD will match the diff with

the destination server and do the sync process.

> argocd app sync guestbook

Adding repo via CLI

CLI can also add the repository server. Here is the command

as follows:

> argocd repo add https://github.com/argoproj/argocd-

example-apps.git

It is possible to see the list of the repository servers already

added by using the following command:

> argocd repo list

1. TYPE NAME REPO

INSECURE OCI LFS CREDS STATUS MESSAGE

PROJECT

2. git https://github.com/argoproj/argocd-example-

apps.git false false false false Successful

The repository server secrets can be seen with the following

commands:

> kubectl get secret -n argocd

1.

NAME TYPE

DATA AGE

2.

snip..

3.

cluster-192.168.0.4-3923545899 Opaque

3 17h

4.

default-token-xkzbt

kubernetes.io/service-account-token 3 17h

5.

repo-3973969552 Opaque

2 18m

> kubectl get secret repo-3973969552 -n argocd

1.

NAME TYPE DATA AGE

2.

repo-3973969552 Opaque 2 18m

> kubectl get secret repo-3973969552 -n argocd -o yaml

1.

apiVersion: v1

2.

data:

3.

type: Z2l0

4.

url:

aHR0cHM6Ly9naXRodWIuY29tL2FyZ29wcm9qL2FyZ29

jZC1leGFtcGxlLWFwcHMuZ2l0

5.

kind: Secret

6.

metadata:

7.

annotations:

8.

managed-by: argocd.argoproj.io

9.

creationTimestamp: "2022-09-18T12:03:10Z"

10.

labels:

11.

argocd.argoproj.io/secret-type: repository

12.

name: repo-3973969552

13.

namespace: argocd

14.

resourceVersion: "21213"

15.

uid: cb1f1b60-cd94-431a-bcaf-62fddcb94f10

16.

type: Opaque

17.

echo

aHR0cHM6Ly9naXRodWIuY29tL2FyZ29wcm9qL2FyZ29

jZC1leGFtcGxlLWFwcHMuZ2l0 |base64 -d

18.

https://github.com/argoproj/argocd-example-

apps.git%

Argo CD architecture

[image: Image 10]

To understand the Argo CD architecture, let's first look at a

high-level overview. The Argo CD CLI and UI both interact

with the API server. Certainly, Argo CD needs a component

that will handle the source repo change and another

component to interact with Kubernetes. Now, Imagine a

classic CI/CD flow. The developer gave a pull request (PR) to a Git repository (for example GitHub, GitLab, BitBucket,

whatever the organization has). The CI process begins with

testing, linting, and other necessary checks like credentials

leaks. If all integrated checks are complete, a Docker

container is created and uploaded to a container registry (for

example, Docker Hub, Amazon ECR, GCR, whatever the

organization has.). Kubernetes manifests are generated and

committed into a separate repo managed by Argo CD. Argo

CD detects a change in the target state and deploys a new

infrastructure or application in the preconfigured Kubernetes

cluster.

 Figure 2.4: Argo CD architecture

The high-level architecture diagram shown in Figure 2.4

presents a seemingly straightforward implementation of

Argo CD with its core components. At its most basic level, Argo CD needs to clone Git repositories containing manifests,

detect differences between the desired and actual state, and

apply necessary changes to handle configuration deviations.

However, the real complexity emerges when scaling this

process across multiple teams and clusters (development,

staging, production), requiring sophisticated orchestration

and management.

To handle these challenges effectively, Argo CD's

architecture is divided into several key components:

The API server handles user interactions and

authentication

The repository server manages Git operations and

manifest generation

The application controller oversees state reconciliation

and deployment

Redis provides caching capabilities for improved

performance

The Dex server enables integration with external

identity providers for authentication

The notification controller handles communication with

external systems about deployment status and events

Let us examine these components in detail to understand

how they work together to enable scalable GitOps practices.

API server

The API server is a gRPC/REST server that exposes the API

consumed by the WebUI, CLI, and CI/CD systems. It is

responsible for application management and status

reporting, while it is invoked by external UI or CLI for

application operations (for example, sync, rollback, and user-

defined actions). It is also responsible for generating and

[image: Image 11]

returning the Kubernetes manifests. Moreover, it has the API

for repository and cluster credential management. This

component delegates authentication and authentication to

external identity providers and enforces role-based access

control (RBAC). We can check all the APIs from its Swagger UI (a web-based API documentation interface). Swagger UI

provides an interactive interface to explore and test the Argo

CD APIs.

> kubectl port-forward svc/argocd-server -n argocd

8080:443

Then, visit http://localhost:8080/swagger-ui from the browser. (Figure 2.5)

 Figure 2.5: Argo CD API swagger-ui

One of the API server's most important responsibilities is

listening and forwarding for Git webhook events.

You can clone and run the argocd API server locally to learn more about it:

1. git clone https://github.com/argoproj/argo-cd.git

2. cd argo-cd

3. make build

4. cd dist

5. ./argocd-server -h

1. snip

2. Usage:

3. argocd-server [flags]

4. argocd-server [command]

5.

6. Available Commands:

7. completion Generate the autocompletion script for the

specified shell

8. help Help about any command

9. version Print version information

10.

11. Flags:

12. --app-state-cache-expiration duration Cache

expiration for app state (default 1h0m0s)

13. snip

Repository server

The repository server is one of the components that does the

heavy lifting job. The responsibility of the repository server is

to clone the repository to local storage and produce ready-

to-use Kubernetes manifest YAML files. While cloning the

repository is a trivial job. However, to avoid downloading the

repository repeatedly, the Argo repository server implements

the local storage cache, and the Git fetch feature can

download only recent changes from the remote Git

repository. However, it is the user's responsibility to keep the

repository size in control. The GitOps best practice is to separate application source code and deployment manifests.

The deployment repositories should be small and not require

a lot of disk space.

The next challenge the argocd-repo-server needs to

manage is memory utilization, particularly during manifest

generation. Here are some tuning options opportunities for

the users. The developer prefers to use config management

tools such as Kustomize, Helm, or Jsonnet. These tools allow

developers to introduce changes more effectively while

preventing the duplication of YAML content. So, the

deployment repositories usually do not have plain YAML files.

Argo CD has run the manifest generation on the fly. Argo CD

supports multiple config management tools and allows

configuring other custom config management tools. During

manifest generation, the argocd-repo-server would run the

config management tools to return the generated manifests,

frequently requiring memory and CPU. To handle the memory

usage issues, Argo CD allows users to reduce the number of

parallel manifest generations and increase the number of

argocd-repo-server instances to boost performance. The

operator of the Argo CD needs to tune the number of repo-

server replicas to ensure a quick manifest generation

process based on the requirement.

Application controller

The term controllers refers to a control loop, which is a non-

terminating loop that regulates the state of a system in

robotics and automation. A controller in Kubernetes tracks at

least one Kubernetes resource type. The argocd implements

the Kubernetes controller pattern as the Argo CD runs inside

Kubernetes and handles the deployment on Kubernetes. The

argocd-application-controller component implements the

reconciliation phase.

The controller loads the current state of the Kubernetes cluster and compares it to the expected manifests supplied

by the argocd-repo-server. It also patches resources that

deviate from the expected manifests. The GitOps operator

needs to fetch each resource from the cluster and compare

and accurately update the deviations that need to change,

which is one of the most challenging parts. The controller

uses a lightweight cache to manage each cluster and

updates all the states in the background using the

Kubernetes watch API.

The controller stores that data in the Redis cluster so it can

quickly present to the user. By caching data, the controller

can scale and manage many clusters simultaneously and

execute reconciliation on an application performantly.

In short, the application controller is a Kubernetes controller

that continuously tracks apps running and contrasts the

actual state with the desired target state specified in the

repo. It recognizes the OutOfSync application condition and,

if necessary, initiates corrective action. It is also responsible

for invoking user-defined hooks for lifecycle events (PreSync,

Sync, PostSync). Keep reading the Argo CD concepts and

terminology section to learn more about Argo.

Argocd server

The final key component in Argo CD's architecture is the

argocd-server, which presents reconciliation outcomes to

end users. The argocd-server component handles this job.

The argocd-repo-server and argocd-application-

controller already handled the bulk of the work, but this

final stage has the most resilience requirements. The

information regarding reconciliation outcomes is loaded, and

the web user interface is just a stateless service.

Argo CD Dex

https://github.com/dexidp/dex is an identity service that uses OpenID Connect to drive authentication for other apps

used internally by Argo CD Dex. Knowing which components

are used by argocd is crucial because it will assist the

operator in future troubleshooting.

Argo CD embeds and bundles Dex as a part of its installation

to allow for the delegation of authentication to a third-party

identity service. There is support for many identity provider

types, such as OpenID Connect (OIDC), LDAP, SAML,

GitHub, etc.

Although we cover most of the essentials by understanding

this critical component, we must still be familiar with a few

additional concepts and terms.

ApplicationSet controller

The ApplicationSet controller was not in argocd from the

beginning, and The ApplicationSet controller works alongside

an existing Argo CD. The ApplicationSet controller allows the

use of a single Kubernetes manifest to target multiple

Kubernetes clusters. It is improved support for mono repo. It

also improves the ability of teams to deploy applications

using Argo CD in multi-tenant clusters without the need for

privilege escalation. Chapter 3, Running Argo CD in Production, has a dedicated section about the ApplicationSet

controller.

Notifications

Argo CD Notifications provide a customizable mechanism to

alert users to significant changes in the application state

while continuously monitoring Argo CD applications. We can

set the notice's timing and content using a sophisticated

framework of triggers and templates. Argo CD Notifications

included a list of helpful triggers and templates. As a result,

we can use them directly rather than creating new ones.

Argo CD concepts and terminology

This book assumes that readers are already familiar with the

fundamentals of Git, Docker, Kubernetes, continuous

delivery, and GitOps. Here are a few things readers should

know immediately about Argo CDs.

Application

Application is a Custom Resource Definition (CRD). At the core of Argo CD is the Application CRD. This fundamental

concept defines how Argo CD connects a source Git

repository with a destination Kubernetes cluster. Next is the

destination, which is the Kubernetes server and its target

namespaces. The argocd controller looks for this CRD and

acts based on the information as follows:

1. apiVersion: argoproj.io/v1alpha1

2. kind: Application

3. metadata:

4. name: guestbook

5. namespace: argocd

6. spec:

7. project: default

8. source:

9. repoURL: https://github.com/argoproj/argocd-

example-apps.git

10. targetRevision: HEAD

11. path: guestbook

12. destination:

13. server: https://kubernetes.default.svc

14. namespace: guestbook

Application source type

Argo CD not only supports plain YAML, but it also supports

manifest creation tools like Helm, Kustomize, or Jsonnet. The

tool used for the manifest generation in Argo CD is called the Application source type.

The following are some of the few basic concepts and

terminology we should know in the argocd domain:

Target state: Target state means an application's

desired state, represented by files in a Git repository.

Live state: The live state represents the application's active state, representing pods and other deployed

Kubernetes resources in the target cluster.

Sync status: Whether the intended and live states are

identical. The deployed application should match what

Git claims. Sync status shows the current status that

can be already synced, out of sync, or in progress.

Sync: Sync is the application's method to move to its desired state, for instance, by altering Kubernetes

cluster resources.

Argo CD declarative setup

At this point, the reader should learn the core concepts of

Argo CD. At the beginning of the book, we started the topic

declarative and imperative setup. Until now, we have been

using CLI to deploy in imperative ways.

This section will explore how to define the Argo CD

applications, projects, and settings declaratively using

Kubernetes manifest. After we define those, we can apply

them using kubectl apply or sync those manifests with

another Argo CD! Does it sound like we are going to

introduce the chicken-egg problem? Keep reading.

Argo CD has only a few custom resource definitions. Argo CD

extends the Kubernetes API with a CRD. Using the command

kubectl get crd -n argocd, we can list all the CRD(s) the

Argo CD installation creates on the argocd namespace. The

rest of the settings Argo CD takes from secrets and config maps:

1. kubectl get crd -n argocd

2. NAME CREATED AT

3. applications.argoproj.io 2022-09-17T18:45:31Z

4. applicationsets.argoproj.io 2022-09-17T18:45:32Z

5. appprojects.argoproj.io 2022-09-17T18:45:32Z

Argo CD controller watching on these CRD kind objects is

added, deleted, or modified. Let us start with the project.

Projects (kind: AppProject)

The AppProject CRD is the Kubernetes resource object

introduced in argocd to represent a logical grouping of

applications, as Argo CD design supports many applications

simultaneously. The specifications of an AppProject look as

follows:

1. apiVersion: argoproj.io/v1alpha1

2. kind: AppProject

3. metadata:

4. name: my-project

5. namespace: argocd

6. # Finalizer that ensures that project is not deleted until

 it is not referenced by any application

7. finalizers:

8. - resources-finalizer.argocd.argoproj.io

9. spec:

10. description: Example Project

11. # Allow manifests to deploy from any Git repos

12. sourceRepos:

13. - '*'

14. # Only permit applications to deploy to the guestbook

 namespace in the same cluster

15. destinations:

16. - namespace: guestbook

17. server: https://kubernetes.default.svc

18. # Deny all cluster-scoped resources from being created,

 except for Namespace

19. clusterResourceWhitelist:

20. - group: ''

21. kind: Namespace

22. # Allow all namespaced-scoped resources to be

 created, except for ResourceQuota, LimitRange,

 NetworkPolicy

23. namespaceResourceBlacklist:

24. - group: ''

25. kind: ResourceQuota

26. - group: ''

27. kind: LimitRange

28. - group: ''

29. kind: NetworkPolicy

30. # Deny all namespaced-scoped resources from being

 created, except for Deployment and StatefulSet

31. namespaceResourceWhitelist:

32. - group: 'apps'

33. kind: Deployment

34. - group: 'apps'

35. kind: StatefulSet

36. roles:

37. # A role which provides read-only access to all

 applications in the project

38. - name: read-only

39. description: Read-only privileges to my-project

40. policies:

41. - p, proj:my-project:read-only, applications, get, my-

project/*, allow

42. groups:

43. - my-oidc-group

44. # A role which provides sync privileges to only the

 guestbook-dev application, e.g. to provide

45. # sync privileges to a CI system

46. - name: ci-role

47. description: Sync privileges for guestbook-dev

48. policies:

49. - p, proj:my-project:ci-role, applications, sync, my-

project/guestbook-dev, allow

50. # NOTE: JWT tokens can only be generated by the API

 server and the token is not persisted

51. # anywhere by Argo CD. It can be prematurely

 revoked by removing the entry from this list.

52. jwtTokens:

53. - iat: 1535390316

At a glance, it can be overwhelming. Let us look at the

essential parts.

 Line 12, sourceRepos: A mention of the repo location from which applications in the project can get manifests.

 Line 15, destinations: Destinations the server: field refers to clusters and namespaces into which apps within the

project can deploy.

 Line 36, roles: A list of entities' responsibilities and descriptions of each entity's access to resources within the

project.

Let us move to Applications kind now.

Applications (kind: Application)

The application CRD is very simple. The minimum

information we need to provide is the project name

associated with this application. The repository source

references the intended state in the Git repository that will

be pulled by Argo CD for deployment containing the

Kubernetes manifest or Kustomize, Helm, or Jsonnet.

Destination references the target cluster and namespace. In

addition, repository revision, path, and namespace can be

configured. A details specification is located in this book's

source code path:

../argo/resources/argocd/declarative/application.yaml

Here is a sample application specification:

1. apiVersion: argoproj.io/v1alpha1

2. kind: Application

3. metadata:

4. name: guestbook

5. namespace: argocd

6. spec:

7. project: default

8. source:

9. repoURL: https://github.com/argoproj/argocd-

example-apps.git

10. targetRevision: HEAD

11. path: guestbook

12. destination:

13. server: https://kubernetes.default.svc

14. namespace: guestbook

The rest of the information Argo CD takes from the secret

and configmap:

1. kubectl get secret -n argocd

2. NAME TYPE

3. argocd-application-controller-token-hjdmz

kubernetes.io/service-account-token

4. argocd-applicationset-controller-token-lvf5r

kubernetes.io/service-account-token

5. argocd-dex-server-token-pmkqr

kubernetes.io/service-account-token

6. argocd-initial-admin-secret Opaque

7. argocd-notifications-controller-token-hhq9r

kubernetes.io/service-account-token

8. argocd-notifications-secret Opaque

9. argocd-redis-token-n8sm7

kubernetes.io/service-account-token

10. argocd-repo-server-token-bkb7w

kubernetes.io/service-account-token

11. argocd-secret Opaque

12. argocd-server-token-pjckf

kubernetes.io/service-account-token

13. cluster-172.168.0.4-3923545899 Opaque

14. default-token-xkzbt

kubernetes.io/service-account-token

15. repo-3973969552 Opaque

1. kubectl get configmap -n argocd

2. NAME DATA AGE

3. argocd-cm 0 6d15h

4. argocd-cmd-params-cm 0 6d15h

5. argocd-gpg-keys-cm 0 6d15h

6. argocd-notifications-cm 0 6d15h

7. argocd-rbac-cm 0 6d15h

8. argocd-ssh-known-hosts-cm 1 6d15h

9. argocd-tls-certs-cm 0 6d15h

10. kube-root-ca.crt 1 6d15h

Now you know two major concepts Projects and Applications,

Let us move on and see how they glue together.

Repositories, clusters, or Helm chart

repositories credentials

The information related to repositories/clusters/Helm chart

repositories and the credentials details are stored in secrets.

To configure a repo, create a secret that contains repository

details. The same applies to others. These details are

documented here, https://argo-

cd.readthedocs.io/en/stable/operator-

manual/declarative-setup/#manage-argo-cd-using-

argo-cd. The official documentation also mentions the

legacy behavior or the argocd. Something can be changed

in the future, too. However, the basic concept is that we

must provide the secrets and configuration as Kubernetes

secrets so argocd can interact based on our environment.

From this book, the repository goes inside this path

../argo/resources/argocd/declarative/. Create the project

and application:

1. kubectl apply -f project.yaml

1. kubectl apply -f application.yaml

1. kubectl apply -f argocd-cm.yaml

argocd-cm.yaml is for registering the Kustomize versions in

argocd. The recent changes in argocd support separate

Kustomize versions per application. To know more, here is

the PR request, https://github.com/argoproj/argo-

cd/issues/3342

After applying these configurations, Argo CD will be able to

access and manage your repositories, clusters, and Helm

charts according to the credentials and settings you have

defined. The declarative setup approach shown here allows

you to version control your Argo CD configuration alongside

your application code, following GitOps best practices.

The combination of secrets for sensitive data (like repository

credentials) and ConfigMaps for configuration settings

provides a flexible and secure way to manage Argo CD's

interactions with external resources. As your deployment

needs grow, you can easily add or modify these

configurations using the same Kubernetes-native approach.

Remember that while this section covered the basic setup, Argo CD offers additional configuration options for more

advanced scenarios, such as managing multiple clusters,

using SSH keys for repository access, or configuring custom

certificate authorities for private repositories. These can all

be configured using similar declarative approaches.

With the project, application, and configuration management

basics covered, let us move on to exploring how to

effectively use Argo CD for continuous deployment in

production.

Conclusion

In this chapter, the readers were introduced to Argo CD and

two programming paradigms, imperative and declarative.

Firstly, the readers checked a working live Argo CD running

and a walkthrough of deploying argocd in minikube and

getting familiar with argocd CLI and UI. This chapter also

provides an architectural overview of the Argo CD and its

terms and concepts. Finally, this chapter has a sample

installation walkthrough of the declarative argocd setup.

In the next chapter, we will discuss the topics of production

read argocd installation and some strategies to manage the

deployment with Argo CD.

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers,

Tech happenings around the world, New Release and

Sessions with the Authors:

https://discord.bpbonline.com

[image: Image 12]

CHAPTER 3

Running Argo CD in

Production

 Never before in the history of mankind has the pace of

 innovation and

 technological acceleration been faster than it is today.

 —Yannick Schilly

Introduction

Running Argo CD in production brings the same challenges

and considerations as other applications deployed in

Kubernetes. If we choose the Argo CD as a deployment tool,

its service level objective (SLO) will be naturally high. If

the continuous deployment tools become unavailable, no

one can push their code into production, which will cause a

high-impact incident. However, the platform team would still

be able to deploy manually without Argo CD if it is

unavailable.

In this chapter, we will understand the consideration of going

live with Argo CD, what the Argo CD offers for production

deployments, and the best practices. This chapter aims to

give the readers the necessary information to go live with

Argo CD so they can pick and decide the items they need to consider when operating with Argo CD in production based

on the organization's requirements.

Structure

In this chapter, we will discuss the following topics:

Argo CD in the production

GitOps best practices

Mono repo scaling considerations

Cluster bootstrapping

Monitoring and alerting

Disaster recovery and business continuity

Objectives

By the end of this chapter, we will understand the

considerations needed to go live with Argo CD. The goal is to

give the operator an idea about the installation choice Argo

CD offers, how to make it highly available, what must be

done before going live, and scaling considerations for

individual components of Argo CD.

Argo CD in the production

Running Argo CD in a production environment requires

careful consideration of multiple factors to ensure reliable,

secure, and scalable continuous deployment. The key

considerations include:

1. High availability setup to prevent single points of failure

2. Integration with existing infrastructure and CI/CD

pipelines

3. Enterprise-grade security measures

[image: Image 13]

4. GitOps best practices for repository management

5. Monitoring and alerting

6. Disaster recovery planning

 Figure 3.1 presents a comprehensive mind map of these production considerations. While security aspects are

covered in detail in a dedicated chapter, this chapter focuses

on the remaining critical components needed for a

production-ready Argo CD deployment.

 Figure 3.1: Mind map for the considerations that might come running argocd in production

To begin implementing Argo CD in production, let us first

examine the deployment options it provides, with particular

attention to high-availability configurations. Argo CD offers

several installation methods, each suited to different

production requirements:

High availability

Argo CD provides a variety of deployment options to address

different operational needs in production environments. One

of the standout features is the high availability (HA)

configuration, which is designed for situations where reliability and fault tolerance are critical. This advanced

setup includes redundant API server deployments to ensure

that services remain available continuously, along with

multiple replicas of core components to facilitate seamless

failover protection.

The architecture is capable of supporting multi-tenant

environments, making it especially useful for enterprise

applications. Organizations have the flexibility to implement

the HA configuration either at the cluster level or within

specific namespaces, depending on their administrative

privileges and organizational needs. This capability is

particularly advantageous in shared cluster environments or

when cluster-wide permissions are limited.

By offering a namespace-scoped installation option, Argo CD

enhances security isolation without sacrificing high

availability features. This demonstrates its commitment to

both reliability and security in production deployments.

Core installation

The Core installation allows cluster administrators to run

Argo CD independently without multi-tenancy features. This

lightweight, non-high availability version does not include

the API server and UI.

In production, we can choose the high-availability

namespace-install options if the installation of the Argo CD

does not need to deploy in the same cluster.

Argo CD provides multi-tenants with high availability/non-

high availability and core installation choices. We can also

choose namespace-install, which requires only namespace-

level privileges. You can find the complete high-availability

manifest template at http://bit.ly/3X8PmYL

(Argo CD's high-availability installation manifest in the official GitHub repository).

Note: This book example uses the commit hash

9fac0f6ae6e52d6f4978a1eaaf51fbffb9c0958a

Let us start with creating two nodes minikube cluster:

1. minikube start –nodes=2 --memory=4096 --cpus=2 --

kubernetes-version=1.23.1 --driver=docker --profile

argocd-cluster

When the cluster is ready, create the argocd namespace: 1. kubectl create namespace argocd

The namespaces installation omits the Argo CD CRDs. We

need to install it separately. This book repository has a copy

of it in ../argo/resources/argocd/crds.

From the crd directory, apply this resource with the kubectl

-k command, as the Argo CD manifests are written with

Kustomize (https://kustomize.io/).

1. kubectl apply -k crds

Alternatively, you can apply the CRDs directly from Argo

CD's official Git repository reference (ref). A Git reference, or ref, is a pointer to a specific version in the Git repository, such as a tag, branch, or commit hash. Using the stable

reference ensures you are installing a production-ready

version:

1. kubectl apply -k https://github.com/argoproj/argo-

cd/manifests/crds\?ref\=stable

The next step is applying namespace-install.yaml (find the

.yaml file in resources/argocd/high-availability book repo path):

1. kubectl apply -f namespace-install.yaml -n argocd

1. kubectl get pod -n argocd -w

2. NAME READY STATUS

3. argocd-application-controller-0 1/1

Running

4. argocd-applicationset-controller-79d45cc8c8-zzscb 1/1

Running

5. argocd-dex-server-57cc95c9c4-4p6fx 1/1

Running

6. argocd-notifications-controller-67fcbfc8cf-mkz4f 1/1

Running

7. argocd-redis-ha-haproxy-755db98494-22b7j 1/1

Running

8. argocd-redis-ha-haproxy-755db98494-fcnfj 1/1

Running

9. argocd-redis-ha-haproxy-755db98494-ggk6l 1/1

Running

10. argocd-redis-ha-server-0 3/3

Running

11. argocd-redis-ha-server-1 3/3

Running

12. argocd-redis-ha-server-2 3/3

Running

13. argocd-repo-server-77f76479c9-s4gmp 1/1

Running

14. argocd-repo-server-77f76479c9-x8njl 1/1

Running

15. argocd-server-59596dfcd9-gxklw 1/1

Running

16. argocd-server-59596dfcd9-mt5xs 1/1

Running

The official Argo CD documentation describes other

installation options like with Helm and Kustomize

https://argo-cd.readthedocs.io/en/stable/operator-

manual/installation/.

Most of the components of Argo CD are stateless, and the

data persists as Kubernetes objects in etc. (the distributed

key-value store used by Kubernetes). In the high-

availability (HA) installation, the Redis server also runs in high-availability mode. This means:

Multiple Redis instances run simultaneously

Data is replicated across these instances

Automatic failover is enabled

High availability is maintained even if individual Redis

pods fail

The Redis server acts as a caching layer for Argo CD,

improving performance while maintaining reliability through

its high-availability configuration. The Redis server is a throw

away cache; in case of cache is lost, the Argo CD will rebuild

them all again.

Depending on how much load the Argo CD will be handling,

the following are a few items the operator needs to consider:

Scaling up consideration for argocd-repo-server

The Argo CD documentation (https://argo-

cd.readthedocs.io/en/stable/operator-

manual/high_availability/) explains all the parameter that

needs to be tuned while Argo CD runs in HA mode. One of

the crucial flag is --parallelismlimit. argocd-repo-server

generates the manifests by fork/exec the config

management tools. If the --parallelismlimit is not set

correctly as the manifests generations are running

concurrently, that can cause OOM kills of the running pod.

Find the command section in the Deployment resource of

the argocd-repo-server and modify the value of --

parallelismlimit=<number> based on requirements.

1. # # Repository Server Scaling Configuration

2. # To adjust the parallelism limit for the repository

server, you'll need to modify its Deployment

configuration. The following example shows how to

configure the key parameters that affect scaling

behavior:

3. apiVersion: apps/v1

4. kind: Deployment

5. snip…

6. ………………………..

7. containers:

8. - command:

9. - entrypoint.sh

10. - argocd-repo-server

11. - --redis

12. - argocd-redis-ha-haproxy:6379

13. - --parallelismlimit=2

14. env:

15. - name: ARGOCD_RECONCILIATION_TIMEOUT

According to Kubernetes documentation, Kubernetes Pods

use temporary local storage for scratch space, caching, and

logs. The kubelet can provide scratch space to Pods using

local ephemeral storage through emptyDir volumes. An

emptyDir is a type of Kubernetes volume that:

1. # Example of emptyDir volume configuration

2. apiVersion: v1

3. kind: Pod

4. metadata:

5. name: example-pod

6. spec:

7. containers:

8. - name: container-name

9. volumeMounts:

10. - mountPath: /scratch

11. name: scratch-volume

12. volumes:

13. - name: scratch-volume

14. emptyDir: {} # Creates an empty directory for

temporary storage

Nodes have local ephemeral storage backed by locally

attached writeable devices or, sometimes, by RAM.

Ephemeral means that there is no long-term guarantee of

durability. By default, the argocd-repo-server clones

repositories into the /tmp directory. While this location can

be customized using the TMPDIR environment variable, there

are important considerations:

1. Environment variable configuration:

1. apiVersion: apps/v1

2. kind: Deployment

3. metadata:

4. name: argocd-repo-server

5. spec:

6. template:

7. spec:

8. containers:

9. - name: argocd-repo-server

10. env:

11. - name: TMPDIR

12. value: "/custom/temp/path"

2. Storage considerations:

• Pods might run out of disk space if:

o There are too many repositories

o Repositories contain large numbers of files

o Multiple large manifest generations occur

simultaneously

3. Recommended solution: Instead of relying on

ephemeral storage, mount a persistent volume to ensure

reliable storage:

1. apiVersion: apps/v1

2. kind: Deployment

3. metadata:

4. name: argocd-repo-server

5. spec:

6. template:

7. spec:

8. containers:

9. - name: argocd-repo-server

10. volumeMounts:

11. - name: repository-data

12. mountPath: /custom/temp/path

13. volumes:

14. - name: repository-data

15. persistentVolumeClaim:

16. claimName: argocd-repo-data

Retry mechanism for Git operations

The ARGOCD_GIT_ATTEMPTS_COUNT environment

variable controls how often Argo CD will retry failed Git

operations. This is particularly important for the git ls-

remote command, which resolves references like HEAD,

branch names, or tags.

1. apiVersion: apps/v1

2. kind: Deployment

3. metadata:

4. name: argocd-repo-server

5. spec:

6. template:

7. spec:

8. containers:

9. - name: argocd-repo-server

10. env:

11. - name: ARGOCD_GIT_ATTEMPTS_COUNT

12. value: "3" # Retry failed Git operations up to 3

times

Manifest cache management

Argo CD implements a caching strategy to optimize

performance:

1. Default behavior:

o Manifests are cached for 24 hours

o Changes are typically detected when the repository

changes

o Cache checks occur every 3 minutes

2. Special cases:

o Kustomize remote bases may update without

repository changes

o

Helm

patch

releases

can

modify

manifests

independently

o Some changes might need faster detection

3. Cache duration configuration:

1. apiVersion: apps/v1

2. kind: Deployment

3. metadata:

4. name: argocd-repo-server

5. spec:

6. template:

7. spec:

8. containers:

9. - name: argocd-repo-server

10. args:

11. - --repo-cache-expiration=1h # Reduce cache

duration to 1 hour

Note: While shorter cache durations provide faster updates, they can impact performance. The Argo CD team recommends a 1-hour duration

for low-volume environments.

Execution timeout settings

For large repositories or complex configurations, the default

90-second timeout might be insufficient. Configure the

ARGOCD_EXEC_TIMEOUT environment variable to extend this limit:

1. apiVersion: apps/v1

2. kind: Deployment

3. metadata:

4. name: argocd-repo-server

5. spec:

6. template:

7. spec:

8. containers:

9. - name: argocd-repo-server

10. env:

11. - name: ARGOCD_EXEC_TIMEOUT

12. value: "2m30s" # Extends timeout to 2 minutes and 30 seconds

The timeout value follows Go's duration format:

s: seconds (e.g., "90s")

m: minutes (e.g., "2m")

Combined formats (e.g., "2m30s")

Choose timeout values based on:

Repository size

Complexity of Helm charts or Kustomize configurations

Available system resources

Expected manifest generation time

Here is a quick summary of all Set

ARGOCD_GIT_ATTEMPTS_COUNT environment variable

to retry syncs failed requests by argocd-repo-server git ls-remote. This command resolves ambiguous revisions such

as a HEAD, branch, or tag name.

Argo CD caches generated manifests for 24h by default

because manifests could change only when the repo

changes. However, With Kustomize remote bases, or Helm patch releases, the manifests can change even though the

repo has not changed. By default, argocd-repo-server,

every 3m Argo CD checks for changes to the app manifests.

By reducing the cache time, we can get the changes without

waiting for 24h. Use --repo-cache-expiration duration,

and the Argo CD team suggest in low-volume environments,

try '1h'. However, this will negate the benefit of caching if

set too low.

If we have a big repo or 90 seconds, default settings fail in

forking exec config management tools such as Helm or

Kustomize, which can be increased using the

ARGOCD_EXEC_TIMEOUT env variable. The value should

be in the Go time duration string format, for example,

2m30s.

GitOps best practices

Only installing Argo CD in HA mode is insufficient to have an

excellent continuous deployment solution in an organization.

To make it better, here are some GitOps best practices listed.

Based on the organization's situation, these practices must

be incorporated based on what makes sense.

Split the repository in two, one for the application source

code and another for the deployment manifests.

The typical act for engineers is to start a project by mixing

their source code and the manifests of the deployment script

in the same repository. This mixing leads to the following

consequences:

Every commit to the master branch or PR merge can

trigger the deployment, which is overkill, not a desire

because the CI and CD both trigger are not always

required.

The release needs to be controlled by some privileged groups. This type of release might not be preferred

with open to everyone.

The Argo CD also needs to clone a relatively bigger

repo size, but keeping manifest separately in a

different repo makes the repo very lightweight.

The Git history and logs mix up source code and

deployment changes.

Two repositories, one for application source code and

another for deployments config and manifests, help to

overcome these issues. So, this is considered as GitOps best

practice.

Picking appropriate number of deployments

config repos

After deciding to separate the config repo, the next question

is, should we keep all infrastructure config in one big mono

repo or split that? If split, what is the dividing factor?

There is no hard and fast rule to it. The platform team needs

to decide this based on the company engineering team size

and how big the infrastructure looks at a specific time and

projecting the future. Here are some guidelines for deciding

this matter as follows:

A mono repo makes sense to be in place in a small

company where the whole team is in a trust boundary,

and the company is in the fast-moving and early state.

When the company is in the mid-sized start introducing

much automation, and the projection is growth, a

repository per team will help to separate the concerns

and split the responsibility.

If the company size is large and there is already much

automation in place, and repo per service makes sense.

However, an inventory of the ownership needs to be maintained. Sometimes, the service ownership also

changes over time. By splitting per repo service, any

team that owns that service at a particular time can

maintain it independently.

It is subjective to decide whether a mono repo or a

repository per service is better for a certain period.

Based on the accesses policy, release engineering, and

concisely avoiding bottlenecks should be the deciding

factor.

Test manifests locally

Do not commit the manifests and check in the GitOps agent

to validate whether the changes are valid. It is possible to

avoid lots of issues just by adding some pre-commit hook

and validating, testing in pre-commit and after-commit, and

adding test as gatekeeper CI process in PR request and

merging it after all of them passed.

Ensure manifests at git repository are

immutable

The manifests repository may depend on a third-party

repository, or other company team members can maintain

that. For example, templating tools like Helm or Kustomize

can refer to templates from another repository, but

manifests repository may change their meaning over time.

An upstream Helm repository or Kustomize base will

constantly evolve, and the repository pointing to these can

be broken on significant changes. It is always a good idea to

pin the used version.

For example, consider the following kustomization.yaml:

1. bases:

2. - github.com/argoproj/argo-cd//manifests/cluster-install

In this example, The HEAD revision of the argo-cd repo serves as the remote base for the kustomization. The

manifests for this Kustomize application may unexpectedly

change if this is not a stable target, even if the Git repository

remains unchanged.

A suggested version would be to use a Git tag or commit

SHA. See the following:

1. bases:

2. - github.com/argoproj/argo-cd//manifests/cluster-

install?ref=v0.11.1

Also, it is a good idea always to pin the Helm chart version.

Figuring out secret management strategy

Secret management is a crucial extra work that needs to be

done in GitOps. Many options are available to solve this.

Here are a few options listed:

1. Bitnami Sealed Secrets

Official

documentation:

https://sealed-

secrets.netlify.app/

GitHub repository: https://github.com/bitnami-

labs/sealed-secrets

Provides a way to encrypt secrets that are safe to

store in Git

Includes a Kubernetes controller for managing

encrypted secrets

2. Godaddy Kubernetes External Secrets

Official

documentation:

https://external-

secrets.io/

GitHub repository: https://github.com/external-

secrets/external-secrets

Allows fetching secrets from external APIs and

injecting them into Kubernetes

Supports multiple secret management backends

3. Hashicorp Vault

Official

documentation:

https://www.vaultproject.io/docs

GitHub

repository:

https://github.com/hashicorp/vault

Enterprise-grade secrets management platform

Offers comprehensive secret lifecycle management

4. Helm Secrets

GitHub

repository:

https://github.com/jkroepke/helm-secrets

Documentation:

https://github.com/jkroepke/helm-

secrets/tree/main/docs

Provides secret management for Helm charts

Supports multiple encryption backends

5. Kustomize Secret Generator Plugins

Official

documentation:

https://kubectl.docs.kubernetes.io/guides/exte

nding_kustomize/secretgenerator/

GitHub

repository:

https://github.com/kubernetes-

sigs/kustomize/tree/master/examples/secretGe

neratorPlugin

Enables custom secret generation in Kustomize

Allows integration with various secret sources

Each solution offers different features and trade-offs.

Consider your specific requirements for:

Security requirements

Integration capabilities

Operational complexity

Maintenance overhead

Team expertise

Leaving room for imperativeness or automation

In some cases, it is a good idea not to put everything defined

in Git manifests repository. Here is an example use case, the

Deployment replicas to be managed by Horizontal Pod

 Autoscaler; we do not need to track the replicas in Git. See

the following snippets:

1. apiVersion: apps/v1

2. kind: Deployment

3. metadata:

4. name: nginx-deployment

5. spec:

6. # do not include replicas in the manifests if you want

 replicas to be controlled by HPA

7. # replicas: 1

8. template:

9. spec:

10. containers:

11. - image: nginx:1.7.9

12. name: nginx

13. ports:

14. - containerPort: 80

15. ...

With these best practices, keep reading on to a few more

production-ready considerations.

Mono repo scaling considerations

The Argo CD repo server maintains a single repository clone

locally to create application manifests. If the manifest

generation involves changing a file in the local repository clone, there can only be one concurrent manifest generation

per server instance possible at a time. If the mono repository

has several programs more than fifty, this restriction could

cause Argo CD to run much slower.

Enable concurrent processing

Argo CD evaluates if manifest generation may alter local files

in the local repository clone based on the configuration

management tool and application settings. Requests are

processed in parallel without giving up a performance hit if

the manifest creation has no side effects. The following

cases and workarounds listed are those that are recognized

to slow down a system potentially:

Multiple Helm based applications pointing to the same

directory in one Git repository can cause performance

issues. To avoid that, we need to ensure the Helm chart

should not have any conditional dependencies and

create a file name .argocd-allow-concurrency file in

the chart directory indicating argocd can generate

those charts concurrently.

Multiple custom plugin-based applications also cause

performance issues. To avoid this issue, create

temporary files during manifest generation and create

a

.argocd-allow-concurrency file in the app

directory,

or

use

the

sidecar

plugin

option

(https://argo-cd.readthedocs.io/en/stable/user-

guide/config-management-plugins/#option-2-

configure-plugin-via-sidecar), which processes each application using a temporary copy of the repository.

Avoid multiple Kustomize applications in the same

repository with parameter overrides as there is no

workaround to improve performance at this moment of

writing this book according to Argo CD documentation

(https://argo-

cd.readthedocs.io/en/stable/operator-

manual/high_availability/#monorepo-scaling-

considerations).

More settings before go productions

Running Argo CD in production does not only means scaling

up the Argo CD, monitoring and keep maintaining it,

organizing the application dependency is one of the

important topics also when you have a new cluster you need

to deploy many items. Argo CD itself has a few items like

ingress and secrets that can be self-managed after Argo CD’s

basic setup.

Here are some items most likely you need to configure most

of the environment.

Automation from CI pipelines

Argo CD is for continuous deployment, to there is a bridge

needed with the CI system/tools. To fill this gape Argo CD has

a powerful CLI tools that can be used to trigger the Argo CD

is needed for example trigger a sync when build completed

and a docker image is blessed. The CI is responsible for build

and publish a new container image:

1. docker build -t mycompany/guestbook:v2.0 .

2. docker push mycompany/guestbook:v2.0

Given that the Argo CD uses the GitOps paradigm of

deployment, desired configuration changes are first

published to Git, and the cluster state is subsequently

synced to the desired state from Git.

The Argo CD CLI must be downloaded and configured in the

CI system by pointing to the Argo CD server and with the

proper authentication token. Then the CI can send the

sync/wait and other API calls to the Argo CD as needed.

1. export ARGOCD_SERVER=argocd.mycompany.com

2. export ARGOCD_AUTH_TOKEN=<JWT token generated

from project>

3. curl -sSL -o /usr/local/bin/argocd

https://${ARGOCD_SERVER}/download/argocd-linux-

amd64

4. argocd app sync guestbook

5. argocd app wait guestbook

Argo CD is designed to work seamlessly with all major

continuous integration (CI) platforms, including GitHub

Actions, Jenkins, Bitbucket Pipelines, and TeamCity. This

compatibility means your choice of CI system won't prevent

you from adopting Argo CD in your workflow. For

integrating your CI system with Argo CD through webhooks

and automation triggers, refer to the official Argo CD

documentation

at

https://argo-

cd.readthedocs.io/en/stable/operator-

manual/webhook/.

The

documentation

provides

comprehensive guidance on setting up these integrations

effectively.

Ingress configuration

In a production environment, you will need to expose the

Argo CD API server securely to allow users and CI systems

to interact with it. This typically requires configuring an

Ingress controller along with TLS/SSL encryption. The

choice of Ingress solution often depends on your

infrastructure requirements and where your Kubernetes

cluster is running.

The following are some popular Ingress options, each with

its own strengths:

Ambassador API Gateway

Designed

for

Kubernetes-native

microservices

architectures

Offers advanced traffic management and security features

Particularly useful when building a service mesh

Learn more at, https://www.getambassador.io/

Contour

High-performance ingress controller built on Envoy

Focuses on simplicity and scalability

Well-suited for dynamic environments

Documentation

is

available

at

https://projectcontour.io/

NGINX Ingress Controller

Most widely adopted ingress solution

Extensive configuration options

Battle-tested in production environments

Maintained by the Kubernetes community

Traefik

Modern HTTP reverse proxy and load balancer

Automatic service discovery

Native Kubernetes integration

Details at: https://docs.traefik.io/

For cloud-specific environments, you might consider:

AWS Load Balancer Controller

Native integration with AWS Application Load

Balancers (ALBs)

Supports AWS Network Load Balancers (NLBs)

Optimized for AWS environments

Repository,

https://github.com/kubernetes-

sigs/aws-load-balancer-controller

Google Cloud Load Balancers

Native integration with Google Cloud Platform

Automatic certificate management

Global load balancing capabilities

The Argo CD documentation provides detailed setup

instructions for each of these options, allowing you to choose

the most appropriate solution for your environment. When

selecting an Ingress controller, consider factors such as:

Your existing infrastructure and expertise

Security requirements

Load balancing needs

Monitoring and observability features

Cost implications

For detailed configuration guides for each option, refer to the

Argo CD documentation, https://argo-

cd.readthedocs.io/en/stable/operator-manual/ingress/

Cluster bootstrapping

So, we see that bootstrapping Argo CD also brings some

additional items to integrate with other systems (continuous

integration, cloud provider integration). As Argo CD is like

another application in production, the platform teams need

to define the repository layouts and other deployment

strategies. It also can be self-managed, meaning it can point

to a repo with all other settings like config-maps, ingress-

controller config, and other resource definitions it depends

on.

[image: Image 14]

 Figure 3.2: Self-managed Argo CD

The operator of the Argo CD or the platform team needs to

choose a strategy that helps to bootstrap the Argo CD with

many applications. There is no specific pattern to solve this

problem. However, two approaches are popular in the Argo

CD community. One is the app of apps pattern, and the other

is the evaluation of the app of apps pattern to ApplicationSet

Controller

App of apps pattern

We already understood that the Application CRD object helps

logically group the Kubernetes manifests. The application

object is the atomic unit of work in Argo CD. Argo CD

Application is looking for some Git repo path and placing all

Argo CD Application definition files. Argo CD automatically

creates all applications if the application definition files

change in the Git repo path. With that in mind, it can be

created or managed by any Kubernetes object, even Argo

CD's manifest.

For this, a common layout of a Git repository might be:

1. ├── Chart.yaml

2. ├── templates

3. │ ├── guestbook.yaml

4. │ ├── helm-dependency.yaml

5. │ ├── helm-guestbook.yaml

6. │ └── kustomize-guestbook.yaml

7. └── values.yaml

For each child app, templates contain one file, broadly

defined:

1. apiVersion: argoproj.io/v1alpha1

2. kind: Application

3. metadata:

4. name: guestbook

5. namespace: argocd

6. finalizers:

7. - resources-finalizer.argocd.argoproj.io

8. spec:

9. destination:

10. namespace: argocd

11. server: {{ .Values.spec.destination.server }}

12. project: default

13. source:

14. path: guestbook

15. repoURL: https://github.com/argoproj/argocd-

example-apps

16. targetRevision: HEAD

[image: Image 15]

 Figure 3.3: Argo CD UI view of apps

Argo CD may deploy lots of autonomous applications, as

shown in Figure 3.3. Each application does not know about

another application's status or health but can depend on

each other. A typical example is a database, backend API,

and frontend. Frontend depends on the backend, and the

backend depends on the database. We may want to deploy

the database based on its readiness. The backend API must

deploy after the database is ready, and then the front end.

Instead of deploying three individual Argo CD Applications,

we can deploy one Argo CD Application that deploys the

other three applications. This way, we can bootstrap a

cluster with all applications with a convenient entry point that can be considered a seed application. To achieve this,

we need to learn and implement two concepts SyncWaves

(https://argo-cd.readthedocs.io/en/stable/user-

guide/sync-waves/) and custom health checks

(https://argo-cd.readthedocs.io/en/stable/operator-

manual/health/#custom-health-checks).

SyncWaves

Individual manifests can be applied by Argo CD in a specific

order within an Argo CD Application using SyncWaves and

Synchooks. We can provide the order by annotating the

object with the order in which we want to apply the manifest.

Number-based, with the lowest going first. For example, if we

have our Deployment as 0 and the Service as 1, Argo CD will

apply the Deployment first, wait for it to report back healthy,

and then apply the Service.

We can configure waves by specifying the wave using the

following annotation:

1. metadata:

2. annotations:

3. argocd.argoproj.io/sync-wave: "5"

Notes: The Hooks and resources are assigned to wave by default zero.

The wave can be negative, so we can create a wave that runs before all other resources.

By using SyncWaves, we have the capability to deploy our

dependent application in order; however, we still need to

know the health or the status of the deployed object.

Argo CD Application health

Argo CD includes built-in health checks for several standard

Kubernetes objects. The results of these inspections are then

aggregated to determine the overall application health

status. For instance, a Service and a Deployment will be marked healthy only if both objects are found healthy.

Deployment, ReplicaSet, StatefulSet, DaemonSet, Service,

Ingress, and PersistentVolumeClaim are just a few examples

of built-in health checks. Custom health checks can also be

added. Argo CD supports custom health checks written in

Lua scripts. This can be done by modifying the argocd-cm

ConfigMap and adding resource customization. For

example, a health check for cert-manager.io_Certificate.

1. data:

2. resource.customizations.health.cert-

manager.io_Certificate: |

3. hs = {}

4. if obj.status ~= nil then

5. if obj.status.conditions ~= nil then

6. for i, condition in ipairs(obj.status.conditions) do

7. if condition.type == "Ready" and condition.status

== "False" then

8. hs.status = "Degraded"

9. hs.message = condition.message

10. return hs

11. end

12. if condition.type == "Ready" and

condition.status == "True" then

13. hs.status = "Healthy"

14. hs.message = condition.message

15. return hs

16. end

17. end

18. end

19. end

20.

21. hs.status = "Progressing"

22. hs.message = "Waiting for certificate"

23. return hs

Argo CD is also encouraged to contribute to their health

check bundle.

ApplicationSet controller

The ApplicationSet controller is a Kubernetes controller that

is an evolution of the app of apps deployment pattern. This

controller has ApplicationSet CRD, which enables both

automation and greater flexibility to deal with a wide range

of use cases. It makes it easier to manage Argo CD

Applications across a large number of clusters, and within

the mono repo, it makes self-service usage possible on

multitenant Kubernetes clusters.

The ApplicationSet controller installs with the Argo CD

installation. Initially, The ApplicationSet controller was

developed in a separate repository, now merged with the

Argo CD repo. The ApplicationSet controller supplements

Argo CD by adding additional features in support of cluster-

administrator-focused scenarios. The following are some

highlighted functionalities that come with the ApplicationSet

controller:

It becomes possible to use a single Kubernetes

manifest to target multiple Kubernetes clusters.

The ApplicationSet controller adds the capability to

Argo CD to deploy applications from one or multiple Git

repositories by using a simple Kubernetes manifest.

It also improved the mono repo support.

It improves the ability of cluster administration. Within

multitenant cluster scenarios, cluster tenants can

deploy without requiring the privileged cluster

administrator's permission to deploy applications using

Argo CD in the destination clusters/namespaces.

[image: Image 16]

 Figure 3.4: The ApplicationSet controller automates the deployment of the Argo CD

Application to a given set of clusters based on other

parameters controlled by generators. (Figure 3.4)

The application controller of Argo CD reacts to application

resource changes. Similarly, ApplicationSet is another

controller that watches for ApplicationSet Kubernetes

resources. We can create ApplicationSet resources. When

any ApplicationSet creates, updates, or deletes, the

ApplicationSet controller responds by creating, updating, or

deleting one or more corresponding Argo CD Application

resources. It takes an ApplicationSet and outputs one or

more Argo CD Applications. The ApplicationSets task is

watching the ApplicationSet resources and ensuring that the

Argo CD Application remains consistent with the declared

ApplicationSet resource.

The following is an example:

1. apiVersion: argoproj.io/v1alpha1

2. kind: ApplicationSet

3. metadata:

4. name: guestbook

5. spec:

6. generators:

7. - list:

8. elements:

9. - cluster: engineering-dev

10. url: https://10.2.3.4

11. - cluster: engineering-prod

12. url: https://172.4.6.8

13. - cluster: finance-staging

14. url: https://168.1.7.6

15. template:

16. metadata:

17. name: '{{cluster}}-guestbook'

18. spec:

19. source:

20. repoURL: https://github.com/platform-

team/cluster-deployments.git

21. targetRevision: HEAD

22. path: guestbook/{{cluster}}

23. destination:

24. server: '{{url}}'

25. namespace: guestbook

ApplicationSet controller architecture

Now let us understand how the ApplicationSet controller

interacts with Argo CD. The creation, modification, and

deletion of application resources in the Argo CD namespace

is the primary responsibility of the ApplicationSet controller.

The ApplicationSet controller does not create/modify/delete

Kubernetes resources other than the application's custom

resources. The cluster's connectivity also remains the same away argocd handle, and the ApplicationSet does not

connect to any clusters other than the same Argo CD cluster

it deployed. The same thing goes for the namespace. The

ApplicationSet only interacts with namespaces other than

the one Argo CD is deployed.

The actual deployment of the created child application

resources, including Deployments, Services, and ConfigMaps,

is handled by Argo CD. By accepting an ApplicationSet

resource as input and producing one or more Argo CD

Application resources that match the set's specifications, the

ApplicationSet controller might think like an application

factory. (Figure 3.5)

[image: Image 17]

 Figure 3.5: How the ApplicationSet controller interacts with Argo CD

The whole ApplicationSet idea will be clearer in the

abovementioned figure. In this figure, an ApplicationSet

controller definition pulled from Git and added to Kubernetes

triggers the Kubernetes cluster events. The ApplicationSet

controller then processes the ApplicationSet CRD based on

the definition. It will create/update/deletes the Application

CRDs. Eventually, the Kubernetes events will occur, and the

Argo CD controller will pick up the Application CRD definition

changes. The subsequent processing will be as it is the Argo

CD handle on a regular Application CRD definition change.

Argo CD will be responsible for actually deploying the child

resources. It will generate the application's Kubernetes

resources based on the contents of the Git repository defined

within the Application specification. The ApplicationSets will

directly affect the Applications present in the Argo CD

namespace. Similarly, when using a Cluster generator, the

cluster events like the addition/deletion of Argo CD cluster

secrets or changes in Git (when using Git generator) will be

used as input to the ApplicationSet controller in constructing

Application resources. Argo CD and the ApplicationSet

controller work together to provide a consistent set of

application resources to be deployed across the target

clusters.

Generators

Generators are responsible for generating parameters, which

are then rendered into the template: fields of the

ApplicationSet resource. Generators are primarily based on

the data source that they use to generate the template

parameters. For example, the List generator provides a set of

parameters from a literal list. The Cluster generator uses the

Argo CD cluster list as a source, the Git generator uses

files/directories from a Git repository, and so.

As of the time of writing, the following generators are

available with Argo CD:

List generator:

(https://argocd-

applicationset.readthedocs.io/en/stable/Generators

-List/)

The List generator enables the capability to target Argo

CD Applications to a specific one or many clusters by

using a fixed list of cluster name/URL values. It is the

most straightforward and passes the key/value specified

in the elements section into the template section of the ApplicatonSet manifest.

See the following example:

1. apiVersion: argoproj.io/v1alpha1

2. kind: ApplicationSet

3. metadata:

4. name: guestbook

5. spec:

6. generators:

7. - list:

8. elements:

9. - cluster: engineering-dev

10. url: https://10.2.3.4

11. - cluster: engineering-prod

12. url: https://172.4.6.8

13. - cluster: finance-staging

14. url: https://168.1.7.6

15. template:

16. metadata:

17. name: '{{cluster}}-guestbook'

18. spec:

19. source:

20. repoURL: https://github.com/platform-

team/cluster-deployments.git

21. targetRevision: HEAD

22. path: guestbook/{{cluster}}

23. destination:

24. server: '{{url}}'

25. namespace: guestbook

Here, each iteration of {{cluster}} and {{url}} will be replaced by the elements above. This will produce three

applications. (Figure 3.6):

[image: Image 18]

 Figure 3.6: The application status from the Argo CD UI

Cluster generator:

(https://argocd-

applicationset.readthedocs.io/en/stable/Generators

-Cluster/)

When we usually add a cluster to argocd, it keeps that information a secret. We can list the clusters by looking

at the list of the secrets in the argocd namespace.

>kubectl get secret -n argocd -l

argocd.argoproj.io/secret-type=cluster

1. NAME TYPE DATA AGE

2. cluster-192.168.0.5-3885795443 Opaque 3 21m

3. cluster-192.168.0.5-610074875 Opaque 3 3m39s

Similarly, we can check the list of clusters with Argo CD

CLI. When we use the Argo CD CLI to list these clusters,

the controller reads the secret to get the information.

> argocd cluster list

1. SERVER NAME MESSAGE

PROJECT

2. https://192.168.0.5:52569 staging-cluster

3. https://192.168.0.5:51946 apps-cluster

4. https://kubernetes.default.svc in-cluster 1.23

Successful

Similar

things

happened

for

the

ApplicationSet

controller. It used the secrets and extracted information

to generate parameters in the Kubernetes manifest's

template section. In addition, we can use the label

selectors to target the specific configuration to a specific

cluster. For each cluster registered with Argo CD, the

Cluster generator produces parameters based on the list

of items found within the cluster secret. Rather than a

literal list of clusters that we see in the list generator, the

cluster

generator

automatically

generates

parameters based on the clusters defined within Argo

CD.

The secret information looks like the following:

1. kind: Secret

2. data:

3. # Within Kubernetes these fields are actually

 encoded in Base64; they are decoded here for

 convenience.

4. # (They are likewise decoded when passed as

 parameters by the Cluster generator)

5. config: "{'tlsClientConfig':{'insecure':false}}"

6. name: "in-cluster2"

7. server: "https://kubernetes.default.svc"

8. metadata:

9. labels:

10. argocd.argoproj.io/secret-type: cluster

11. # (...)

In the following example, the Cluster generator will

automatically identify clusters defined with Argo CD

secrets and extract the cluster data as parameters

{{server}} server' field of the secret as follows:

1. apiVersion: argoproj.io/v1alpha1

2. kind: ApplicationSet

3. metadata:

4. name: guestbook

5. spec:

6. generators:

7. - clusters: {} # Automatically use all clusters defined

 within Argo CD

8. template:

9. metadata:

10. name: '{{name}}-guestbook' # 'name' field of the

 Secret

11. spec:

12. project: "default"

13. source:

14. repoURL: https://github.com/argoproj/argocd-

example-apps/

15. targetRevision: HEAD

16. path: guestbook

17. destination:

18. server: '{{server}}' # 'server' field of the secret

19. namespace: guestbook

Git generator:

(https://argocd-

applicationset.readthedocs.io/en/stable/Generators

-Git/)

The Git generator allows the creation of Applications

based on files within a Git repository or the directory

structure of a Git repository. The Git generator takes

how the Git repository is organized to determine how

the application gets deployed. The Git generator has two

sub-generators: directory and file:

Git directory generator: The Git directory

generator creates parameters based on the

directory structure of a given Git repository.

Git file generator: The Git file generator looks

into

the

specific

repository

and

generates

parameters using the contents of JSON/YAML files.

Matrix generator:

(https://argocd-

applicationset.readthedocs.io/en/stable/Generators

-Matrix/)

The Matrix generator gave the excellent capability of

combining two parameters generated by two generators.

It

iterates

through

every

combination

of

each

generator's generated parameters.

The core qualities of both generators can be obtained by

combining the parameters of both generators to create

every possible combination. Some of the numerous

potential use cases, for illustration, are as follows:

SCM provider generator + Cluster generator:

By combining the SCM Provider generator and

Cluster generator, it becomes easy to scan all

repositories

of

a

GitHub

organization

for

application resources and target all resources in

multiple clusters.

Git file generator + List generator: In a Git

repository, a list of application configuration files

can be kept and deployed to a mixed list of clusters.

Git directory generator + Cluster decision

resource generator: Locate the application

resources in a Git repository's folders and deploy

them to a list of clusters that is provided by an

external custom resource.

Moreover, there is more possibility open with the

Matrix generators.

Merge generator:

(https://argocd-

applicationset.readthedocs.io/en/stable/Generators

-Merge/)

The Merge generator is used to merge the generated

parameters of two or more generators. Additional

generators can override the values of the base

generator. It combines parameters produced by the base

generator with matching parameter sets produced by

the following generators.

SCM provider generator:

(https://argocd-

applicationset.readthedocs.io/en/stable/Generators

-SCM-Provider/)

The SCM Provider generator uses the API of a Supply

chain management as service (SCMaaS) provider

such as GitHub and GitLab to discover repositories

within an organization automatically.

Pull request generator:

(https://argocd-

applicationset.readthedocs.io/en/stable/Generators

-Pull-Request/):

Pull Requests are a common working pattern in a team.

The Pull Request generator uses the API of an SCMaaS

provider such as GitHub and GitLab to discover open

pull requests within a repository automatically.

1. apiVersion: argoproj.io/v1alpha1

2. kind: ApplicationSet

3. metadata:

4. name: myapps

5. spec:

6. generators:

7. - pullRequest:

8. # See below for provider specific options.

9. github:

10. # ...

Cluster decision resource generator

(https://argocd-

applicationset.readthedocs.io/en/stable/Generators

-Cluster-Decision-Resource/)

The cluster decision resource generator is used to

interface with Kubernetes custom resources that use

custom resource-specific logic to decide which set of

Argo CD clusters to deploy to. It outsources the logic of

which clusters to place applications on an external

custom resource.

Conceivably, this is the most complex generator but the

most powerful, too. Using it requires writing anyone's

custom controller, defining a CRD, and using the

controller to modify the status field of the CR to indicate

which clusters applications should be deployed to.

Advice to the reader, if anyone is new to generators,

begin with the List and Cluster generators. For more

advanced use cases, see the documentation for the

remaining generators aforementioned.

1. apiVersion: argoproj.io/v1alpha1

2. kind: ApplicationSet

3. metadata:

4. name: guestbook

5. spec:

6. generators:

7. - clusterDecisionResource:

8. # ConfigMap with GVK information for the duck

 type resource

9. configMapRef: my-configmap

10. name: quak # Choose either "name" of the resource or "labelSelector"

11. labelSelector:

12. matchLabels: # OPTIONAL

13. duck: spotted

14. matchExpressions: # OPTIONAL

15. - key: duck

16. operator: In

17. values:

18. - "spotted"

19. - "canvasback"

20. # OPTIONAL: Checks for changes every 60sec

 (default 3min)

21. requeueAfterSeconds: 60

22. template:

23. metadata:

24. name: '{{name}}-guestbook'

25. spec:

26. project: "default"

27. source:

28. repoURL: https://github.com/argoproj/argocd-

example-apps/

29. targetRevision: HEAD

30. path: guestbook

31. destination:

32. server: '{{clusterName}}' # 'server' field of the

 secret

33. namespace: guestbook

After exploring the various generator types and their

capabilities, it is important to consider how to scale and

maintain ApplicationSet controllers in a production

environment. Generators provide powerful templating and

automation capabilities, but their execution needs to be

reliable and performant as your deployment footprint grows.

When running multiple generator types across numerous

applications, you will want to ensure your ApplicationSet

controller can handle the workload efficiently and maintain

consistency even during updates or system interruptions.

This is where high availability configuration becomes crucial for production deployments.

With the fundamental understanding of generators in place,

let us examine how to configure the ApplicationSet controller

for high availability operation, which is essential for

production-grade deployments.

Enabling high availability mode in argocd-

applicationset-controller

You must set the command -enable-leader-election=true

in argocd-applicationset-controller container to enable

high availability and increase the replicas.

Make the following changes in the manifests/install.yaml:

1. spec:

2. containers:

3. - command:

4. - entrypoint.sh

5. - argocd-applicationset-controller

6. - --enable-leader-election=true

Monitoring and Alerting

One of the best ways to foresee issues and identify

bottlenecks in a production setting is to monitor an

application's status continuously. Many open source time

series databases are available today, including Graphite,

InfluxDB, and Cassandra, but none are as well-liked among

Kubernetes users as Prometheus. Prometheus is a system

and service monitoring toolkit originally developed at

SoundCloud. Prometheus joined the CNCF in 2016 as the

second-hosted project after Kubernetes.

Argo CD exposes different sets of Prometheus metrics per

server as follows:

Core Metrics Monitoring

Argo CD exposes different sets of Prometheus metrics per server component. These metrics help operators

understand the following:

Application deployment status and sync states

Controller performance and resource usage

API server response times and request rates

Repository

server

operations

and

cache

effectiveness

Overall system health

Install the Prometheus and Grafana

For a quick experiment, we can install the Prometheus

operator and Grafana in minikube, see the matrix, and

configure a dashboard to see the installed Argo CD status.

Quick install:

1. helm repo add prometheus-community

https: //prometheus-community.github.io/helm-charts

2. helm install prometheus-operator prometheus-

community/kube-prometheus-stack -n argocd

As this example uses Prometheus Operator, the following

ServiceMonitor example manifests can apply:

1. apiVersion: monitoring.coreos.com/v1

2. kind: ServiceMonitor

3. metadata:

4. name: argocd-metrics

5. labels:

6. release: prometheus-operator

7. spec:

8. selector:

9. matchLabels:

10. app.kubernetes.io/name: argocd-metrics

11. endpoints:

12. - port: metrics

13. ---

14. apiVersion: monitoring.coreos.com/v1

15. kind: ServiceMonitor

16. metadata:

17. name: argocd-server-metrics

18. labels:

19. release: prometheus-operator

20. spec:

21. selector:

22. matchLabels:

23. app.kubernetes.io/name: argocd-server-metrics

24. endpoints:

25. - port: metrics

26. ---

27. apiVersion: monitoring.coreos.com/v1

28. kind: ServiceMonitor

29. metadata:

30. name: argocd-repo-server-metrics

31. labels:

32. release: prometheus-operator

33. spec:

34. selector:

35. matchLabels:

36. app.kubernetes.io/name: argocd-repo-server

37. endpoints:

38. - port: metrics

39. ---

40. apiVersion: monitoring.coreos.com/v1

41. kind: ServiceMonitor

42. metadata:

43. name: argocd-applicationset-controller-metrics

44. labels:

45. release: prometheus-operator

46. spec:

[image: Image 19]

47. selector:

48. matchLabels:

49. app.kubernetes.io/name: argocd-applicationset-

controller

50. endpoints:

51. - port: metrics

1. kubectl apply -f servicemonitor.yaml -n argocd

To expose the Prometheus UI using the following command:

1. kubectl port-forward svc/prometheus-operated

9090:9090 -n argocd

And the Grafana can be exposed with the following

command:

1. kubectl port-forward svc/prometheus-operator-grafana

8080:80 -n argocd

Get the Grafana secret with the following command:

1. kubectl get secret prometheus-operator-grafana -o

jsonpath="{.data.admin-password}" -n argocd | base64 --

decode ; echo

 Figure 3.7: Argo CD Graphana dashboard

Argo CD exposes different sets of Prometheus metrics per

server. (Figure 3.7)

Details can be found in the official document https://argo-

cd.readthedocs.io/en/stable/operator-manual/metrics/

Advanced Monitoring capabilities

Beyond basic system metrics, Argo CD provides specialized monitoring features to ensure the integrity and compliance

of your deployments. One critical aspect is tracking

resources that might drift from their desired state or appear

outside of GitOps management.

Orphaned resources monitoring

An important aspect of maintaining a healthy GitOps

deployment is ensuring all resources are properly tracked

and managed. Orphaned resources represent a form of

configuration drift that requires special monitoring attention.

These are Kubernetes resources that exist in your cluster but

aren't managed by any Argo CD Application, which can

indicate:

Manual changes made outside the GitOps workflow

Remnants from debugging sessions

Resources created by other tools or users

Failed or incomplete cleanup operations

Starting from version 1.3.0, Argo CD introduced orphaned

resources monitoring to help identify and track these

unmanaged resources. This feature integrates with Argo CD's

overall monitoring strategy by:

Providing visibility through the Argo CD UI

Generating metrics for Prometheus

Enabling alerts for drift detection

Supporting automated compliance checks

To enable orphaned resource monitoring for a project:

1. kind: AppProject

2. metadata:

3. ...

4. spec:

[image: Image 20]

5. ...

6. orphanedResources:

7. warn: true

8. ...

Each project application with any orphaned resources in its

target namespace will receive a warning once the feature is

enabled. The application details page can be used to find the

orphaned resources, as shown in Figure 3.8:

 Figure 3.8: Orphan resource warnings from Argo CD UI

It is possible that not all resources will be managed by the

Argo CD in a namespace, such as an administrator can deny

some namespaced resources in a project. ServiceAccount

corresponding auto-generated ServiceAccountToken, Service

with the name Kubernetes in the default namespace, and

ConfigMap with the name kube-root-ca.crt in all

namespaces are a few examples that should never be

considered as an orphan resource. To solve this, Argo CD has

a feature to configure or ignore resources by providing a list

of resource groups, kinds, and names.

1. spec:

2. orphanedResources:

3. ignore:

4. - kind: ConfigMap

5. name: orphaned-but-ignored-configmap

Comprehensive monitoring strategy

A complete monitoring strategy for Argo CD should combine:

1. System-level metrics (CPU, memory, network)

2. Application-specific metrics (sync status, health)

3. Orphaned resource detection

4. Custom health checks

5. Alert configurations

This multi-layered approach ensures:

Early detection of potential issues

Compliance with GitOps practices

Resource optimization opportunities

Clear visibility into system health

Quick identification of configuration drift

Upgrade management

Argo CD uses Semantic Versioning (https://semver.org/).

So, all the patch releases do not introduce any breaking

changes. So, there will be no breaking changes on upgrading

from v1.5.1 to v1.5.3 there should be no special instructions

to follow. Argo CD Always has the release notes

(https://github.com/argoproj/argo-cd/releases) and

provides documentation on breaking changes (https://argo-

cd.readthedocs.io/en/stable/operator-

manual/upgrading/overview). The platform teams need to

check all the breaking changes and follow the standard

procedure, like testing the upgrade in dev and staging, and

if all tests pass, the changes should go live.

Read more information about ArgoCD Release Process And

Cadence (https://argo-

cd.readthedocs.io/en/stable/developer-guide/release-

process-and-cadence/).

Disaster recovery and business continuity

After establishing robust monitoring and upgrade

procedures, the final critical component of a production Argo

CD deployment is ensuring business continuity through

proper disaster recovery (DR) planning. While monitoring helps detect issues and upgrade procedures keep your

system current, disaster recovery ensures you can restore

operations when unexpected failures occur.

In any production system, having a robust DR plan is crucial.

Disaster recovery refers to an organization's ability to

respond and recover from events that could disrupt normal

operations, such as:

Hardware failures

Data corruption

Accidental deletions

Cluster-wide outages

Infrastructure problems

Since Argo CD manages your deployment pipelines, having a

solid DR strategy for Argo CD itself is particularly important.

A failure in Argo CD could impact your entire delivery

pipeline. Fortunately, Argo CD provides built-in tools to help

implement an effective disaster recovery plan.

Backup and restore capabilities: Argo CD offers a

straightforward

export-import

mechanism

that

captures all critical settings and configurations. This

includes:

Application definitions

Project configurations

RBAC settings

Repository credentials

Configuration settings

SSO integrations

Creating backups: To export all Argo CD

configurations to a backup file:

docker run -v ~/.kube:/home/argocd/.kube --rm

argoproj/argocd:$VERSION argocd admin export >

backup.yaml

Restoring from backups: To restore the Argo CD

from a previous backup:

docker run -i -v ~/.kube:/home/argocd/.kube --rm

argoproj/argocd:$VERSION argocd admin import - <

backup.yaml

Implementing a DR strategy

For a comprehensive disaster recovery strategy, consider the

following recommendations:

Regular automated backups

Schedule periodic backups using automation tools or

cron jobs

Store backups in a secure, external location

Maintain multiple backup versions with proper

retention policies

Backup validation

Regularly test your backup files by performing test

restores

Verify that all critical configurations are included

Document and test the restoration process

Access management

Ensure your ~/.kube/config has the correct cluster

credentials

Maintain secure access to backup storage

Document who has permission to perform restores

Recovery time objectives

Define acceptable downtime limits

Practice restoration procedures to ensure they meet

your RTO

Consider maintaining a standby Argo CD instance for

critical environments

For detailed information about disaster recovery procedures

and best practices, refer to the official Argo CD

documentation

https://argo-cd.readthedocs.io/en/stable/operator-

manual/disaster_recovery/.

Conclusion

This chapter started with Argo CD HA installation, brought

many production challenges, and discussed the best

practices of GitOps. In the middle of the chapter, apps of

apps pattern and ApplicationSet controller are discussed.

The long list of generators is introduced briefly with use

cases. The chapter also brings ingress, monitoring, orphaned

resources, and how to upgrade the Argo CD, ending with

disaster recovery. At the beginning of the chapter, a mind

map was shown, containing the list of items that should be

considered in production, as this chapter does not cover

everything.

In the next chapter, we will discuss the security

considerations of Argo CD.

[image: Image 21]

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers,

Tech happenings around the world, New Release and

Sessions with the Authors:

https://discord.bpbonline.com

CHAPTER 4

Argo CD Security

Consideration

 Security is not something you buy, it's something you do,

 and

 it takes talented people to do it right.

Introduction

Argo CD prioritizes security in its design and implementation.

The platform has undergone rigorous internal security

reviews and penetration testing to meet Payment Card

Industry (PCI) compliance standards. It has undergone

rigorous internal security reviews and penetration testing.

The Argo team and CNCF conducted a security audit on the

four Argo projects with ADA Logics in early 2022. Several

bugs were reported by ADA Logics and fixed by the Argo

team. An article1 published in the Argo CD blog summarizes the results. Here is the complete report2. Another must-read resource is the official Argo CD security manual3.

As operators of the Argo CD project, we need to do the

checklist before we go live. Security risk management must

be strategic and align with other organizational security

policies. This is also beneficial if anyone could think like an attacker's mind and adjust the plan to avoid consequences.

Let us start with most things to do after installation.

Structure

In this chapter, we will discuss the following topics:

Security best practices checklist

User management in Argo CD

Configuring single sign-on

Making the RBAC configuration right

ApplicationSets security considerations

Auditing and logging

Argo CD security risk management strategy

Objectives

Security risk management is the ongoing process of

identifying security risks and implementing plans to address

them. It is a continuous process to identify security threats at

each stage of the CI/CD pipeline and reduce them through a

multi-stage process. Security management is an extensive

topic and not the scope of this book to discuss. This chapter

will only focus on the related topic around Argo CD.

Security best practices checklist

Before diving into specific configurations, ensure these

fundamental security measures are in place:

Authentication and access

Disable default admin account after initial setup

Implement SSO or local user management

Configure strong password policies

Implement

multi-factor

authentication

where

possible

Authorization and RBAC

Follow the principle of least privilege

Configure role-based access control (RBAC)

Regular audit of permissions

Document and review access patterns

Infrastructure security

Use private Git repositories

Enable SSL/TLS encryption

Implement network policies

Regular security patches

Monitoring and audit

Enable comprehensive logging

Configure audit trails

Set up alerts for suspicious activities

Regular security reviews

User management in Argo CD

Argo CD's default installation includes an admin user with full

system access. For production environments, follow these

security best practices:

Use the admin account only for the initial setup

Create additional users through either, Local user

management or SSO integration

Disable

the

admin

account

once

alternative

authentication is configured

It is highly recommended to use admin users only during

initial configuration before switching to local users or

configuring SSO integration.

Initial Security setup

When first setting up Argo CD in a production environment,

several critical security measures should be implemented

immediately.

Disabling admin user

As soon as additional users are created, it is recommended

to disable the admin user:

1. apiVersion: v1

2. kind: ConfigMap

3. metadata:

4. name: argocd-cm

5. namespace: argocd

6. labels:

7. app.kubernetes.io/name: argocd-cm

8. app.kubernetes.io/part-of: argocd

9. data:

10. admin.enabled: "false"

Rating limit login attempts

To stop password brute forcing, Argo CD blocks login

attempts after an excessive number of failed tries. The

environment variables listed followingly can be used to

regulate the throttle settings:

ARGOCD_SESSION_FAILURE_MAX_FAIL_COUNT:

The maximum number of unsuccessful login attempts

before Argo CD begins to reject login attempts.

Default: 5.

ARGOCD_SESSION_FAILURE_WINDOW_SECONDS

: The duration of the failure window is in seconds.

Default: 300 (5 minutes). If this is set to 0, regardless

of when the failures occurred, the failure window is

disabled, and the login attempts are refused after ten

consecutive logon failures.

ARGOCD_SESSION_MAX_CACHE_SIZE: By default:

1000 Maximum number of cache entries permitted.

ARGOCD_MAX_CONCURRENT_LOGIN_REQUESTS

_COUNT: The maximum number of simultaneous login

requests can be configured with this variable. The limit

is not enabled if set to 0. The default value is 50.

Protect against brute force attacks with these recommended

settings:

1. Snip…

2. env:

3. - name:

ARGOCD_SESSION_FAILURE_MAX_FAIL_COUNT

4. value: "5"

5. - name:

ARGOCD_SESSION_FAILURE_WINDOW_SECONDS

6. value: "300"

7. - name: ARGOCD_SESSION_MAX_CACHE_SIZE

8. value: "1000"

9. - name:

ARGOCD_MAX_CONCURRENT_LOGIN_REQUESTS_CO

UNT

10. value: "50"

Let us now discuss the local user's use cases and the SSO

integration.

Local user's account management

If the organization has a small team where SSO integration

still needs to be present, the local users are an excellent

choice to configure. However, the local users must have

advanced features like user groups and login history.

For programmatic access, the OAuth tokens for Argo CD can

be configured for API accounts with limited permissions.

Such tokens can automatically create applications, projects,

and so on.

The important note on local users is that each local user will

need an additional RBAC setup. Without doing that, the local

user will fall back to the default policy specified by the

policy.default field of the argocd-rbac-cm ConfigMap.

Creating new user

New users can be defined in argocd-cm ConfigMap:

1. apiVersion: v1

2. kind: ConfigMap

3. metadata:

4. name: argocd-cm

5. namespace: argocd

6. labels:

7. app.kubernetes.io/name: argocd-cm

8. app.kubernetes.io/part-of: argocd

9. data:

10. # add an additional local user with apiKey and login

 capabilities

11. # apiKey - allows generating API keys

12. # login - allows to login using UI

13. accounts.alice: apiKey, login

14. # disables user. User is enabled by default

15. accounts.alice.enabled: "false"

In line 13 accounts.alice means each user might have two

capabilities:

apiKey: Allows generating authentication tokens for

API access

login: Allows to login using UI

While local user management works well for small teams,

larger organizations often need more scalable authentication

solutions. This brings us to SSO integration, which provides

centralized user authentication and management

capabilities.

Configuring single sign-on

Argo CD comes with two ways to configure SSO. The Bundled

Dex OIDC provider can be used if anyone in such an

environment does not have the supported provider OIDC (for

example, SAML, LDAP). Dex supports OIDC directly and can

fetch user information from the identity provider when the

groups cannot be included in the IDToken. Existing OIDC

provider may be the choice in most cases, and this can be

used if the environment already has an OIDC provider like

(for example, Okta, OneLogin, Auth0, Microsoft, Keycloak,

 Google (G Suite), where the organization is managing the

users, groups, and memberships.

Dex and Dex connector in ArgoCD

Dex is an identity service that uses OpenID Connect to drive

authentication for other apps.

To allow for the delegation of authentication to a third-party

identity service, Argo CD embeds and bundles Dex as part of

its installation. There is support for many identity provider

types (OIDC, SAML, LDAP, GitHub, and the like). The argocd-

cm ConfigMap must be modified to configure Argo CD for

SSO with Dex connector settings.

[image: Image 22]

Configuring Argo CD SSO using GitHub (OAuth2)

The Argo CD can be configured with GitHub OAuth SSO. The

following are the steps on how to configure:

1. Register the application in the identity provider

In GitHub, register a new application. The callback

address should be the /api/dex/callback endpoint of the

Argo

CD

URL

(for

example,

https://argocd.

<changeit>.com/api/dex/callback).

 Figure 4.1: GitHub Register a new OAuth user interface

After registering the app, The OAuth2 client ID and secret

need to be noted. These values will be used in the Argo CD

ConfigMap. (Figure 4.1).

Configure Argo CD for SSO

Edit the argocd-cm configmap with the following

command:

> kubectl edit configmap argocd-cm -n argocd

1. data:

2. url: https://argocd.changeit.com

3.

4. dex.config: |

5. connectors:

6. # GitHub example

7. - type: github

8. id: github

9. name: GitHub

10. config:

11. clientID: aabbccddeeff00112233

12. clientSecret: $dex.github.clientSecret #

Alternatively

$<some_K8S_secret>:dex.github.clientSecret

13. orgs:

14. - name: your-github-org

15.

16. # GitHub enterprise example

17. - type: github

18. id: acme-github

19. name: Acme GitHub

20. config:

21. hostName: github.acme.com

22. clientID: abcdefghijklmnopqrst

23. clientSecret: $dex.acme.clientSecret #

 Alternatively

 $<some_K8S_secret>:dex.acme.clientSecret

24. orgs:

25. - name: your-github-org

In this example, carefully change in line 2 url: https://argocd.example.com. In the url key, input the base

URL

of

Argo

CD.

In

this

example,

it

is

https://argocd.changeit.com.

Change in line 4 dex.config:. In the dex.config key, add the GitHub connector to the connectors sub field. A minimal

config should populate the clientID, and clientSecret generated in Step 1. See Dex's GitHub connector

documentation for an explanation of the fields.

This is very likely to restrict logins to one or more GitHub

organizations. In the connectors.config.orgs list (line 25), add one or more GitHub organizations. Any organization

member can then log in to Argo CD to perform management

tasks that belong to the list.

Making the RBAC configuration right

Argo CD resources must be restricted with the RBAC as Argo

CD has no user management system and only has one built-

in user admin. The admin user is a superuser with

unrestricted access to the system. After configuring SSO or

local user setups, additional RBAC roles need to be defined.

Then, SSO groups or local users can be mapped to their

roles. Here is an example:

1. apiVersion: v1

2. kind: ConfigMap

3. metadata:

4. name: argocd-rbac-cm

5. namespace: argocd

6. data:

7. policy.default: role:readonly

8. policy.csv: |

9. p, role:org-admin, applications, *, */*, allow

10. p, role:org-admin, clusters, get, *, allow

11. p, role:org-admin, repositories, get, *, allow

12. p, role:org-admin, repositories, create, *, allow 13. p, role:org-admin, repositories, update, *, allow

14. p, role:org-admin, repositories, delete, *, allow

15. p, role:org-admin, logs, get, *, allow

16. p, role:org-admin, exec, create, */*, allow

17.

18. g, your-github-org:your-team, role:org-admin

With proper RBAC controls in place for basic Argo CD

resources, we need to consider security implications for

more advanced features. ApplicationSets, being one of Argo

CD's most powerful features, require particular attention

from a security perspective.

ApplicationSets security considerations

ApplicationSet is a powerful addition to the Argo CD

toolchain, and great power comes with great responsibility.

Thus, it is essential to comprehend its security implications

before employing it.

Make sure only, and only the admins may

create/update/delete ApplicationSets.

ApplicationSets comes with very powerful features like

creating applications under an arbitrary project. Using this,

Argo CD is often configured to manage the resources of

argocd itself, most alarming the RBAC config map.

ApplicationSets

can

instantly

add

any

number

of

applications and remove them just as quickly. Finally,

ApplicationSets can reveal confidential information. The Git

generator, for instance, can read secrets from the Argo CD

namespace and send them as auth headers to any URL. For

instance, the URL specified for the API field. A bad user

could misuse this functionality, designed to approve queries

to SCM providers like GitHub.

Due to these factors, only administrators may be granted

authorization to create, alter, or delete ApplicationSets

through Kubernetes RBAC or other means.

While preventive security measures like RBAC and careful

ApplicationSet management are crucial, the ability to

monitor and audit system activities is equally important.

Understanding what happened, when, and who initiated

actions

is

essential

for

maintaining

security

and

troubleshooting issues.

Auditing and logging

Argo CD is a GitOps deployment tool, and each of the Git

commits’ history represents the changes made to the

application configuration. Each Git commit contains when

the changes are made and by whom. So, the Git history can

be used as an audit log. However, this audit log is not

enough for the related events to the cluster based on the Git

commit. One commit can have multiple application manifest

changes, making it difficult for one-to-one mapping with

cluster events and Git commits. In addition to the Git

revision history, for audit logs, we can use Kubernetes events

of application activity occurring by Argo CD to find the

actors. Refer to the following example:

$ kubectl get events

KIND REASON SOURCE

MESSAGE

Application ResourceCreated argocd-server admin

created application

Application ResourceUpdated argocd-..-controller

Updated sync status: -> OutOfSync

Application ResourceUpdated argocd-..-controller

Updated health status: -> Missing

Application OperationStarted argocd-server admin

initiated sync to HEAD (c827...)

Application OperationCompleted argocd-..-controller

Sync operation to e549... succeeded

Application ResourceUpdated argocd-..-controller

Updated sync status: OutOfSync -> Synced

Application ResourceUpdated argocd-..-controller

Updated health status: Missing -> Progressing

Application ResourceUpdated argocd-..-controller

Updated health status: Progressing -> Healthy

Using additional tools like event exporter or event router,

these events can then be persistent for long periods of time.

Argo CD tagged the security-related logs with a security field

to make the security-related logs simpler to locate, examine,

and make the report. The API logs have most API requests

except requests that are considered sensitive.

It has become handy to investigate an incident, not

necessarily security, using both audits and logs.

Argo CD security risk management strategy

By knowing all the security features the Argo CD offers, we

can also see the Argo CD's previous security audit and

Common Vulnerabilities and Exposures (CVE), and we

may have a view of what can go wrong with Argo CD. The

Argo CD provider needs to set a strategy based on their

context. Here is a small list that might be helpful.

Securing a GitOps repository is a must. First, make the

repository private if a use case to make something public

separates the workflow. Give effort to people onboarding and

make sure the team members are configured to sign the

commits locally using GPG, SSH, or S/MIME. Never go without

enabling branch protection on the main development branch

of the CI pipeline. The main development branch must be

approved by the repo owners or special interest groups on

that repository. Do all this as much as possible, like adding

lint pull requests, labeling the pull request, and other

gatekeepers. In the end, nothing can beat code reviews

before merging branches. There are many resources on the

Security of GitOps. Here

[https://opengitops.dev/blog/sec-gitops/] is a

comprehensive list.

Keep watch on public vulnerability. Argo CD has its own

security advisories listed at https://t.ly/Dq-8. If your

organization has dedicated security management tools, ask

them explicitly to keep watching advisories released on Argo

CD. Most of the case's workarounds and mitigations are

included in the advisories. Go beyond just patching a CVE,

aggregate the Argo-CD audit events and logs to the log

monitoring system, and keep an eye on those.

Continuously recheck all roles and role bindings in the

Kubernetes cluster hosting the Argo CD control plane.

Following the least privilege principle on remote clusters by

giving permissions only needed. A dedicated service account

will reduce exposure and speed recovery processes in the

distant cluster.

Conclusion

Security is a broad topic. This chapter only brings some

must-know features the Argo CD provided and points to

some resources that might help develop a viable strategy for

someone working.

In the next chapter, we will discuss topics like supply chain

security, making a gatekeeper with Argo CD, and overall CD

strategy. Additionally, we will discuss audit and log analysis

that comes along with security and detects any other failure,

which is briefly discussed in this chapter.

1. https://blog.argoproj.io/2022-argo-external-security-

audit-lessons-learned-951f80e0450d

2.

https://github.com/argoproj/argoproj/blob/main/docs/a

rgo_security_audit_2022.pdf

3. https://argo-cd.readthedocs.io/en/stable/operator-

manual/security/

CHAPTER 5

Working with Argo

Workflows

Introduction

Argo Workflows is a powerful tool designed to orchestrate and

automate tasks in a containerized environment, specifically on

Kubernetes. It enables users to manage and coordinate the

execution of multiple jobs in parallel, making the automation

process much simpler and more efficient. Being open source, it

is free and encourages a community of developers and users

to contribute to its improvement and growth. Its compatibility

with Kubernetes makes it a popular choice for organizations

seeking to modernize their workflows and streamline their

processes. It is implemented as a Kubernetes CRD, and anyone

can manage using the familiar kubectl command. Workflow in

Argo is defined as Kubernetes resources, allowing for easy

management and scaling. Argo enables the design of multi-

step workflow as a sequence of tasks or the representation of

task relationships as a directed acyclic graph (DAG) structure.

Due to these capabilities, Argo Workflow is the perfect tool for

natively running CI/CD pipelines on Kubernetes and running

compute-intensive tasks for machine learning or data

processing.

Structure

This chapter will cover the following topics:

• Understanding Argo Workflows

• History of Argo Workflows

• Argo Workflows core concepts

• Practical application of Argo Workflows core concepts

• Argo Workflow architecture

• Debugging Argo Workflows

• Argo Workflow use cases

• Automating secret scanning in source repositories

• Argo Workflows vs. Apache Airflow

Objectives

This chapter aims to provide a comprehensive understanding

of Argo Workflows, covering its history, core concepts, and

practical implementation. Readers will understand how to

deploy Argo Workflows in a minikube environment, use the CLI

and UI, and explore advanced features and template types.

The chapter delves into the architecture of Argo Workflows,

offers debugging strategies, and showcases real-world use

cases. Through a hands-on example of implementing a secret

scanning workflow, readers will gain practical experience. The

chapter will also provide a context within the broader

ecosystem of workflow orchestration tools by comparing Argo

Workflows with Apache Airflow.

By the end of this chapter, readers will have a solid foundation

for designing, implementing, and managing efficient, scalable

workflow solutions in Kubernetes environments, preparing

them for real-world applications across various domains such

as CI/CD, machine learning, and data processing.

Understanding Argo Workflows

Argo Workflows is a powerful, open source, container-native

workflow engine designed specifically for orchestrating parallel

jobs on Kubernetes. It provides a robust solution for

automating complex, multi-step workflows in cloud native

environments. Developed by the Argo team at Intuit and later

accepted into the CNCF, Argo Workflows has become a popular

choice for organizations seeking to streamline their processes

and improve efficiency in containerized environments. The key

features and characteristics of Argo Workflows include:

Argo Workflows offer a range of powerful features that make it

stand out in the world of container-native orchestration. At its

core, it is implemented as a Kubernetes CRD, seamlessly

integrating with Kubernetes clusters and allowing users to

manage workflows using familiar kubectl commands. This

container-centric design makes it ideal for modern,

microservices-based architectures. Workflows can be flexibly

defined either as a sequence of tasks or represented as a

DAG), providing versatility in design and execution. One of

Argo's strengths lies in its ability to excel at orchestrating

parallel job execution, making it particularly suitable for

compute-intensive tasks and complex data processing

pipelines. It natively supports running CI/CD pipelines on

Kubernetes, offering a robust alternative to traditional CI/CD

tools. Argo Workflows also provides built-in support for

managing input and output artifacts, facilitating smooth data

flow between workflow steps. Its extensibility is evident in the

various template types it offers (such as container, script, and

resource) and its support for custom extensions, enabling

diverse workflow scenarios. To round out its feature set, Argo

Workflows includes both a user-friendly web-based UI and a

powerful command line interface, providing comprehensive

tools for managing and monitoring workflows throughout their

lifecycle.

Argo Workflows is particularly well suited for tasks such as:

• Machine learning workflows

• Data processing and ETL pipelines

• Infrastructure automation

• Application deployment pipelines

• Batch processing jobs

By leveraging Kubernetes' scalability and Argo Workflow

orchestration capabilities, organizations can build efficient,

scalable, and maintainable automation solutions for many use

cases in cloud native environments.

History of Argo Workflows

Argo Workflow is a popular open source container-native

workflow engine for orchestrating parallel jobs mainly designed

for Kubernetes. The Argo team developed it at Intuit to provide a simple and flexible way to automate and manage complex

pipelines on Kubernetes.

The first version of Argo Workflow was released in 2017, and it

quickly gained popularity among Kubernetes users due to its

simplicity and ease of use. In 2018, Argo Workflow was

accepted into the CNCF as a sandbox project, and in 2020, it

graduated to become a full-fledged CNCF project.

Since its initial release, Argo Workflow has undergone many

changes and improvements, including error handling, secrets

management, and support for hybrid and multi-cloud

deployments. It has also gained a large and active community

of users and contributors, with over 12.4k GitHub stars and

hundreds of contributors.

Overall, Argo Workflow has become a popular choice for

automating and managing complex pipelines on Kubernetes,

and it is widely used in various industries and contexts.

Argo Workflows core concepts

Argo Workflows is built on several core concepts that are essential for understanding and effectively using the platform,

such as:

• Workflow: The workflow is the most important resource in Argo and serves two crucial functions:

o It defines the workflow to be executed.

o It stores the state of the workflow.

A workflow should be treated as a live object, not just a static

definition but also an instance of that definition.

• Workflow spec: The workflow to be executed is defined in the Workflow.spec field. The core structure of a workflow spec consists of:

o A list of templates

o An entrypoint

• Templates: Templates are reusable components within a workflow, similar to functions. They define individual tasks or

steps and are divided into two categories:

o Template definitions (work to be done):

¡ Container: Schedules a container with a spec identical to the Kubernetes container spec.

¡ Script: A convenience wrapper around a container,

allowing in-place script definition.

¡ Resource: Performs operations on cluster resources

directly (GET, CREATE, APPLY, DELETE, REPLACE, or

PATCH).

¡ Suspend: Suspends execution for a duration or until

manually resumed.

o Template invocators (execution control):

¡ Steps: Defines tasks in a series of steps, allowing sequential and parallel execution.

¡ DAG: Defines tasks as a graph of dependencies,

allowing for complex execution patterns.

• Entrypoint: Specifies which template should be executed first when the workflow starts.

• Artifacts: Files or directories produced by a step that can be passed to subsequent steps or stored for later use.

• Parameters: Allow data to be passed between steps in a workflow or to provide input to a workflow.

• Outputs: Results produced by a step, which can include artifacts or parameter values.

• WorkflowTemplate: A reusable workflow definition that

multiple workflow resources can reference.

• ClusterWorkflowTemplate: Similar to WorkflowTemplate,

but with cluster wide scope.

• CronWorkflow: Allows scheduling workflows to run

periodically, similar to cron jobs.

The following is an example of a simple workflow spec:

1. apiVersion: argoproj.io/v1alpha1

2. kind: Workflow

3. metadata:

4. generateName: hello-world-

5. spec:

6. entrypoint: hello-world

7. templates:

8. - name: hello-world

9. container:

10. image: busybox

11. command: [echo]

12. args: ["hello world"]

Understanding these core concepts is crucial for

designing and implementing effective workflows in Argo.

They provide the building blocks for creating complex,

scalable, and maintainable automation processes in

Kubernetes environments.

Deploying Argo Workflows in minikube

The following steps are required to deploy Argo

Workflows in minikube:

1. Before installing the Argo Workflows, we need to start the minikube cluster as follows:

> minikube start --memory=4096 --cpus=2 --kubernetes-

version=1.23.1 --driver=docker --profile argoworkflow-

cluster

2. Then, apply the install.yaml alone with Argo Workflow

and apply it directly from GitHub as follows:

Apply the Argo Workflows installation manifest

Options:

-n argo: Install in the argo namespace

-f: Specify the configuration file

> kubectl apply -n argo -f

https://github.com/argoproj/argo-

workflows/releases/download/<verssion>/install.yaml

3. However, this book’s resources folder also has a copy of it. Here is how to apply from the root folder:

> kubectl apply -n argo -f resources/argo-

workflows/install.yaml

4. We need to wait for the Argo Server to redeploy:

> kubectl -n argo rollout status --watch --timeout=600s

deployment/argo-server

1. kubectl get pod -n argo

2. NAME READY STATUS

RESTARTS AGE

3. argo-server-5d94554c64-fm4wl 1/1 Running 0

18m

4. workflow-controller-8497bd7547-8xc49 1/1 Running

0 18m

deployment "argo-server" successfully rolled out

5. It is possible to view the user interface by running a port

forward:

> kubectl -n argo port-forward deployment/argo-server

2746:2746

The Argo Server uses client authentication as the default

setting, meaning clients must supply their Kubernetes bearer

[image: Image 23]

token for authentication. For further details, see the Argo

Server Auth Mode documentation at http://bit.ly/3wGtzMK.

We will change the authentication mode to the server to

bypass the UI login. Additionally, Argo Server runs over

HTTPS by default.

If the default HTTP warning also appeared and was manually

processed based on the browser. The following window will

pop up when browsing, https://127.0.0.1:2746/:

 Figure 5.1: Default login window after installing Argo Workflow This patch needs to be applied to set the auth-mode as

follows:

13. kubectl patch deployment \

14. argo-server --namespace argo --type='json' \

15. -p='[{"op": "replace", "path":

"/spec/template/spec/containers/0/args", "value": [

"server", "--auth-mode=server"]}]'

After this patch is installed, we can refresh the browser

(https://127.0.0.1:2746/) as follows:

[image: Image 24]

 Figure 5.2: The Argo Workflow landing page

We already discussed installing the Argo CLI. We will use it in

the following example:

Run a workflow

We can add a HelloWorld workflow as follows:

1. argo submit -n argo --watch

https://raw.githubusercontent.com/argoproj/argo-

workflows/master/examples/hello-world.yaml

1. Name: hello-world-7dnrz

2. Namespace: argo

3. ServiceAccount: unset (will run with the default

ServiceAccount)

4. Status: Succeeded

5. Conditions:

6. PodRunning False

7. Completed True

8. Created: Mon Nov 21 20:19:02 +0100 (33 seconds

ago)

9. Started: Mon Nov 21 20:19:02 +0100 (33 seconds

ago)

10. Finished: Mon Nov 21 20:19:35 +0100 (now)

11. Duration: 33 seconds

12. Progress: 1/1

13. ResourcesDuration: 12s*(1 cpu),12s*(100Mi memory)

We can see the list of workflows from the CLI as follows:

1. argo list -n argo

2. NAME STATUS AGE DURATION PRIORITY

3. hello-world-7dnrz Succeeded 1m 33s 0

The output shows a single workflow named hello-world-

7dnrz that has been successfully completed. It provides information about the workflow's status, age, duration, and

priority. This command is handy for getting a quick overview of all workflows in the specified namespace.

While the CLI provides a quick text-based overview, the Argo

Workflow UI offers a more visual and interactive way to

manage workflows.

The following figure demonstrates how the same information

is presented in the Argo web interface:

[image: Image 25]

 Figure 5.3: The Argo Workflow UI shows the workflow list on the Argo namespace This graphical interface provides a user-friendly way to view, manage, and monitor workflows, offering additional details

and

interactive

features

that

complement

the

CLI

functionality. Users can easily switch between these two

interfaces based on their preferences and specific needs.

Here is what is inside hello-world.yaml, as follows:

1. apiVersion: argoproj.io/v1alpha1

2. kind: Workflow

3. metadata:

4. generateName: hello-world-

5. labels:

6. workflows.argoproj.io/archive-strategy: "false"

7. annotations:

8. workflows.argoproj.io/description: |

9. This is a simple hello world example.

10. You can also run it in Python: https://couler-

proj.github.io/couler/examples/#hello-world

11. spec:

12. entrypoint: whalesay

13. templates:

14. - name: whalesay

15. container:

16. image: docker/whalesay:latest

17. command: [cowsay]

18. args: ["hello world"]

This

simple

workflow

pulls

the

docker

images

docker/whalesay:latest and runs with arguments(args) and

the command we set.

After examining the workflow list, we can dive deeper into the

details of a specific workflow. The Argo UI not only provides an overview of workflows but also allows us to inspect the

output logs of each workflow. This feature is particularly

useful for debugging and monitoring the execution of your

workflows.

Let us look at the output logs for our HelloWorld workflow as

follows:

[image: Image 26]

 Figure 5.4: HelloWorld workflow output logs from UI

This figure showcases the detailed output logs as displayed in

the Argo UI. The log view provides valuable insights into the execution of the HelloWorld workflow, including any

Standard Output (stdout)/ Standard Error (stderr)

output, execution times, and potential errors or warnings. This

level of detail is crucial for understanding the behavior of your

workflows and troubleshooting any issues that may arise

during execution. By leveraging the UI's log viewer, users can

quickly assess the health and performance of their workflows

without needing to access the underlying Kubernetes pod logs

directly.

Using the UI

Open the Argo Server tab, and you should see the user

[image: Image 27]

[image: Image 28]

interface as follows:

 Figure 5.5: Argo Workflow submit new workflow from UI

Let us start a workflow from the user interface.

Click Submit new workflow as follows:

 Figure 5.6: Argo Workflow Submit new workflow slide bar

To use the complete workflow choices, select Edit using full

workflow options, as shown in the following figure:

[image: Image 29]

 Figure 5.7: Argo Workflow Edit using full workflow options, slide bar Paste this YAML into the editor:

1. metadata:

2. generateName: hello-world-

3. namespace: argo

4. spec:

5. entrypoint: main

6. templates:

7. - name: main

8. container:

9. image: docker/whalesay

10. command: ["cowsay"]

When we select Create, a workflow diagram will appear. The

yellow icon indicates the pending status. It will turn blue after

a short while to show that it is running, and then it will turn green once it has finished successfully, as shown in the

[image: Image 30]

following figure:

 Figure 5.8: Argo Workflow Edit using full workflow options, slide bar

Practical application of Argo Workflows core

concepts

Building on the core concepts we have discussed, let us

explore how these elements come together in practical Argo

Workflow implementations:

• DAG in action: DAGs are powerful tools for representing

complex task dependencies. For example, in a data

processing pipeline:

1. dag:

2. tasks:

3. - name: extract-data

4. template: data-extraction

5. - name: transform-data

6. dependencies: [extract-data]

7. template: data-transformation

8. - name: load-data

9. dependencies: [transform-data]

10. template: data-loading

This DAG ensures that data extraction occurs before transformation, which in turn occurs before loading.

• Workflow as a live object: Workflows in Argo are not just

static definitions but dynamic entities. You can interact

with a running workflow:

11. argo suspend <workflow-name> # Pause a running

workflow

12. argo resume <workflow-name> # Resume a

suspended workflow

13. argo retry <workflow-name> # Retry a failed workflow

• Templates in practice: Let us look at how different template types are used:

o Container template:

14. - name: print-message

15. container:

16. image: alpine

17. command: [echo]

18. args: ["{{inputs.parameters.message}}"]

o Script template:

19. - name: generate-random-number

20. script:

21. image: python:alpine3.6

22. command: [python]

23. source: |

24. import random

25. print(random.randint(1,100))

• Artifact handling: Artifacts allow data to be passed between steps:

26. - name: generate-data

27. container:

28. image: data-generator

29. command: [./generate_data.sh]

30. outputs:

31. artifacts:

32. - name: generated-data

33. path: /data/output.csv

34.

35. - name: process-data

36. inputs:

37. artifacts:

38. - name: input-data

39. from: "{{tasks.generate-

data.outputs.artifacts.generated-data}}"

40. container:

41. image: data-processor

42. command: [./process_data.sh]

• Parameterization: Parameters make workflows flexible

and reusable:

43. - name: print-message

44. inputs:

45. parameters:

46. - name: message

47. container:

48. image: alpine

49.

command:

[echo,

"

{{inputs.parameters.message}}"]

This template can be reused with different messages

throughout the workflow.

By understanding these practical applications, you can

leverage Argo Workflows' full potential to create complex,

efficient,

and

maintainable

automation

pipelines

in

Kubernetes environments.

More about the workflow

In the context of Argo, a workflow is a crucial resource that plays a dual role in managing complex processes. It outlines the steps to be taken in a workflow and keeps track of its current state. This means that workflows are not simply static

definitions but dynamic objects that change as the workflow

progresses.

We need to define the workflow that we want to execute in the workflow.spec template. A list describing the entrypoint and

any templates are included in the specification. Users can

think of a template as a function that specifies the commands

they want to carry out. An entrypoint specifies the primary purpose of the workflow or the first template to run.

Workflow templates

In the past, some misunderstandings were caused by the

unfortunate naming conflict between the workflow template

and the template. However, the following brief explanation of

each should clarify their differences:

• A template (lower-case) is a task within a workflow or

(confusingly) a workflow template under the field

templates. Whenever you define a workflow, you must

define at least one (but usually more than one) template to

run. This template can be of type container, script, DAG,

steps, resource, or suspend and can be referenced by an

entrypoint or other DAG and step templates.

• A workflow template defines a workflow that lives in your

cluster. Since it is a definition of a workflow, it also

contains templates. These templates can be referenced

from within the workflow template, other workflows, and

workflow templates on your cluster.

Detailed explanation of a two-template workflow

Let us break down the example workflow that uses two

templates:

50. apiVersion: argoproj.io/v1alpha1

51. kind: Workflow

52. metadata:

53. generateName: steps-

54. spec:

55. entrypoint: hello-workflow

56. templates:

57. - name: hello-workflow

58. steps:

59. - - name: hello

60. template: whalesay

61. arguments:

62. parameters: [{name: message, value: "hello from

workflow"}]

63. - name: whalesay

64. inputs:

65. parameters:

66. - name: message

67. container

68. image: docker/whalesay

69. command: [cowsay]

70. args: ["{{inputs.parameters.message}}"]

This workflow demonstrates the use of two templates: hello-

workflow and whalesay. Let us examine each part in detail:

• Workflow metadata and spec:

o generateName: steps-: This prefix generates a unique

name for each workflow execution.

o entrypoint: hello-workflow: Specifies which template

to run first.

• Template 1: hello-workflow:

o This is a steps template, which defines a sequence of

steps to execute.

o It contains a single step that calls the whalesay

template.

o The step passes an argument message with the value

hello from workflow.

• Template 2: whalesay:

o This is a container template that runs a Docker

container.

o It expects an input parameter named message.

o It uses the docker/whalesay image, which prints

messages using ASCII art.

o The command and args fields specify how to run the container using the input message.

• Template interaction:

o The hello-workflow template calls the whalesay

template, passing a message as an argument.

o The whalesay template receives this message as an

input parameter and uses it in its container execution.

• Workflow execution:

o When this workflow runs, it starts with the hello-

workflow template.

o This template executes a single step, which calls the

whalesay template with the message hello from

workflow.

o The whalesay template then runs a container that

prints this message using the cowsay program.

This example demonstrates key concepts in Argo Workflows:

• Using multiple templates in a single workflow

• Passing data between templates using arguments and

parameters

• Combining different types of templates (steps and

container)

• Parameterizing container executions

By using two templates, this workflow separates the overall

process structure (defined in hello-workflow) from the

specific task execution (defined in whalesay). This modular approach allows for greater flexibility and reusability in

workflow design.

ClusterWorkflowTemplates

ClusterWorkflowTemplates are available in Argo Workflow

version v2.8 and after.

Workflow templates with a cluster scope are called

ClusterWorkflowTemplates.

Like

ClusterRole,

ClusterWorkflowTemplate can be created with a cluster scope and accessible from any namespace within the cluster.

The following is an example of a ClusterWorkflowTemplate:

1. apiVersion: argoproj.io/v1alpha1

2. kind: ClusterWorkflowTemplate

3. metadata:

4. name: cluster-workflow-template-whalesay-template

5. spec:

6. templates:

7. - name: whalesay-template

8. inputs:

9. parameters:

10. - name: message

11. container:

12. image: docker/whalesay

13. command: [cowsay]

14. args: ["{{inputs.parameters.message}}"]

CronWorkflows

Like any other cron job, CronWorkflow schedules a workflow

at a scheduled time. This type of workflow is designed to run

something like Kubernetes CronJob .

The following is an example a CronWorkflow:

1. apiVersion: argoproj.io/v1alpha1

2. kind: CronWorkflow

3. metadata:

4. name: test-cron-wf

5. spec:

6. schedule: "* * * * *"

7. concurrencyPolicy: "Replace"

8. startingDeadlineSeconds: 0

9. workflowSpec:

10. entrypoint: whalesay

11. templates:

12. - name: whalesay

13. container:

14. image: alpine:3.6

15. command: [sh, -c]

16. args: ["date; sleep 90"]

A few other templates and features make Argo Workflow

handier and more robust. For example, the HTTP template

helps execute HTTP requests, and the container set template

enables specifying multiple containers that will run inside a single pod.

The following is an example of an HTTP template:

1. apiVersion: argoproj.io/v1alpha1

2. kind: Workflow

3. metadata:

4. generateName: http-template-example-

5. spec:

6. entrypoint: scrap

7. templates:

8. - name: scrap

9. steps:

10. - - name: get-the-google-homepage

11. template: http

12. arguments:

13. parameters: [{name: url, value:

"https://www.google.com"}]

14. - name: http

15. inputs:

16. parameters:

17. - name: url

18. http:

19. timeoutSeconds: 20 # Default 30

20. url: "{{inputs.parameters.url}}"

21. method: "GET" # Default GET

22. headers:

23. - name: "x-header-name"

24. value: "test-value"

25. # Template will succeed if evaluated to true,

 otherwise will fail

26. # Available variables:

27. # request.body: string, the request body

28. # request.headers: map[string][]string, the request

 headers

29. # response.url: string, the request url

30. # response.method: string, the request method

31. # response.statusCode: int, the response status

 code

32. # response.body: string, the response body

33. # response.headers: map[string][]string, the

 response headers

34. successCondition: "response.body contains

\"google\"" # available since v3.3

35.

body: "test body" # Change request body

36.

The following is an example of a container set template:

1. apiVersion: argoproj.io/v1alpha1

2. kind: Workflow

3. metadata:

4. generateName: container-set-template-

5. spec:

6. entrypoint: main

7. templates:

8. - name: main

9. volumes:

10. - name: workspace

11. emptyDir: { }

12. containerSet:

13. volumeMounts:

14. - mountPath: /workspace

15. name: workspace

16. containers:

17. - name: a

18. image: argoproj/argosay:v2

19. - name: b

20. image: argoproj/argosay:v2

21. - name: main

22. image: argoproj/argosay:v2

23. dependencies:

24. - a

25. - b

26. outputs:

27. parameters:

28. - name: message

29. valueFrom:

30. path: /workspace/message

Argo Workflow version 3.1 introduces data sourcing,

transformations, and inline templates, which are also

introduced in version 3.2. The community and Argo Workflow

maintainers are working hard to add more valuable features.

Before learning about Argo Workflow architecture, we need to

discuss a few more concepts on template definitions as

follows:

• Container: It will schedule a container. This template’s spec is identical to a Kubernetes container spec, allowing

us to define the container the way we usually would in Kubernetes. This template type is probably the most

popular. It is shown in the following example:

1. name: whalesay # Name of the Pod

2.

3.

container: # Defines the container specification within t

 he Pod

4.

image: docker/whalesay # Docker image to be used fo

 r the container

5.

command: [cowsay] # The command to be executed wi

 thin the container

6. args: ["hello world"] # Command-

 line arguments passed to the cowsay command

• Resource: A resource performs operations directly on a cluster resource. This template can be utilized for various

cluster resource requests, including GET, CREATE, APPLY,

PATCH, REPLACE, or DELETE.

• Script: A script is a simplified container representation and works similarly to a container specification. It includes

a source field, which allows the definition of a script within

the specification. The script can also be saved to a file for

execution. The following script produces a result that

automatically exports to an Argo variable:

{{tasks.<NAME>.outputs.result}}

{{steps.<NAME>.outputs.result}}

• Suspend: The suspend feature pauses the execution of a workflow for a set amount of time or indefinitely until it is

manually resumed. Resuming a suspended workflow can

be done through the user interface, API endpoint, or CLI

using the Argo resume command.

Additional templates include template invocaters allowing

invocation and execution control of other templates:

o Steps: Steps allow for the definition of workflow tasks as a series of steps. The template structure consists of

outer lists that execute in sequence and inner lists that

run simultaneously. The execution can be controlled

using a variety of settings.

o DAG: The DAG allows for the definition of workflow

tasks as a graph of dependencies. It lists all the tasks

and outlines the order of completion, considering any

dependencies between tasks. Argo will execute tasks

without dependencies immediately.

Argo Workflow architecture

Argo Workflow is designed to be scalable, flexible, and easy to

use, focusing on simplicity and ease of maintenance.

At a high level, the architecture of Argo Workflow consists of

the following components:

• Workflow controller: This is the core component of Argo

Workflow, which manages the lifecycle of workflow

instances. It watches for new workflow manifests and

creates new workflow instances as needed. It also

monitors the status of ongoing workflow instances and

updates their status based on the status of the underlying

pods. The controller reconciles, while the Argo Server

handles the API.

The workflow controller’s reconciliation code can be in the

file

workflow/controller/controller.go.

Argo

Server

establishes

an

HTTP(S)

listener

in

the

file

server/apiserver/argoserver.go.

The reconciliation process is shown in the following figure.

Based on additions and updates to workflows and

workflow pods, a group of worker goroutines processes

the workflows that have been added to a workflow queue.

Keep in mind that in addition to the displayed informers,

there are also informers for other CRDs used by Argo

Workflows.

This

code

is

located

in

the

workflow/controller/controller.go file.

Note: The controller will only process one workflow at a time.

[image: Image 31]

 Figure 5.9: The reconciliation process in Argo Workflow

Here is more on what is happening in Argo namespaces. The

following figure offers a bit more information. The Argo Server

and the workflow controller are run in the Argo namespace.

While installing the Argo Workflow, we must determine the

cluster, namespace, or managed namespace install1. This figure illustrates either a cluster installation or a managed

namespace installation. Whether Argo Workflows was installed

as a cluster install or a managed namespace Install, the

Workflows and the pods they generate will run in a separate

namespace.

 Figure 5.9 displays a pod's internal workings as follows:

[image: Image 32]

 Figure 5.10: Argo Workflow overview

A pod is generated for each step and each DAG task, each

consisting of three containers as follows:

o The main container executes the image the user

specified, and the configured command is called a sub-

process by the volume-mounted argoexec utility.

o An init container is a well-known concept in the k8s

domain, added with some external links 2; Init containers always run to completion. The main

container receives artifacts and parameters from the

Init container and can use them.

o The wait container carries out tasks required for clean-

up, such as saving off parameters and artifacts, fetching

artifacts and parameters, and making them available to

the main container.

The code for the argoexec utility, which handles the execution of user containers and artifact management

within Argo Workflows, can be found in the cmd/argoexec

directory of the Argo Workflows repository. This includes

the implementation of the main container, init container,

and wait container functionalities discussed earlier.

Specifically, you can find:

o

The

main

entrypoint

for

argoexec

in

cmd/argoexec/main.go

o The implementation of various commands (e.g., init,

wait, run) in separate files within the cmd/argoexec directory

o Supporting utilities and helpers for artifact handling,

template rendering, and other core functionalities

Examining this code provides deeper insights into how Argo

Workflows manages container execution and handles artifacts

at a low level.

Here are the other essential components explained as follows:

• Argo Server: The Argo Server is a server that provides access to both an API and a UI for managing workflows. It

is the backend component of Argo Workflow that exposes a

REST API for managing and executing workflows. The API

allows users to create, update, and delete workflows and

retrieve information about their status and outputs. The

API is built on top of the Kubernetes API server, allowing it

to leverage its built-in features, such as automatic scaling,

self-healing, and resource management.

• CLI and UI: Argo Workflow provides a CLI and a web-based UI for interacting with the workflow controller. The

CLI allows users to submit, list, and delete workflows and

get the status of ongoing workflows. The UI provides a

visual representation of the workflow and status and the

ability to view logs and debug information.

• Persistence layer: Argo Workflow uses an etcd cluster to

store the state of ongoing workflow instances. This allows

the workflow controller to recover from failures and pick up where it left off if it is restarted.

Workflows are kept in Argo as Kubernetes resources (i.e.,

within etcd). As a result, their size is restricted to resources that are at most 1MB. Each resource includes a field called

/status/nodes that stores the status of each node. This may exceed 1 MB. In such a case, Argo attempts to compress and

store the node status in the /status/compressed nodes

directory. We can store the status in an SQL database if it is too big.

To enable the node status offloading feature, you need to set the following in the Argo Workflows configuration:

1. nodeStatusOffload: true

This setting should be placed in the workflow-controller-

configmap, along with the configuration for your chosen

database (Postgres or MySQL). The full configuration would

look something like this:

1. nodeStatusOffload: true

2. persistence:

3. postgresql:

4. host: postgres

5. port: 5432

6. database: argo

7. tableName: node_status

8. userNameSecret:

9. name: argo-postgres-config

10. key: username

11. passwordSecret:

12. name: argo-postgres-config

13. key: password

You can find more detailed information about this

configuration in the official Argo Workflows documentation:

https://argoproj.github.io/argo-workflows/workflow-

controller-configmap/.

[image: Image 33]

 Figure 5.11: Argo Workflow details the interaction between components Overall, Argo Workflow's architecture is designed to be

scalable, flexible, and easy to use, focusing on simplicity and ease of maintenance. It leverages Kubernetes' power and

scalability to provide a robust and reliable platform for

orchestrating parallel jobs.

Debugging Argo Workflows

Debugging Argo Workflows sometimes becomes essential for maintaining and optimizing workflow processes.

The following are some key strategies and tools for effective debugging:

• Workflow logs:

o Use the argo logs command to view logs of specific workflows or steps

o Access logs through the Argo UI for a visual

representation

• Pod inspection:

o Use kubectl get pods, and kubectl describe pod to inspect the status of pods created by workflows

o Use kubectl logs to view pod logs directly

• Workflow status:

o Check workflow status using argo get or through the UI

o Examine the status of individual nodes within the

workflow

• Error messages:

o Pay attention to error messages in workflow status and

logs

o

Common

errors

include

resource

constraints,

permission issues, or template misconfigurations

• Step outputs:

o Examine the outputs of individual steps to identify

where issues occur

o Use argo get with the -o yaml flag to see detailed output information

• Workflow events:

o Use kubectl get events to see Kubernetes events

related to your workflows

o These can provide insights into scheduling or resource

issues

• Resubmit and retry:

o Use argo resubmit to rerun a workflow with

modifications for debugging

o Use argo retry to retry failed steps

• Suspend and resume:

o Use suspend steps in your workflow to pause execution

for inspection

o Resume suspended workflows using argo resume

when ready

• Workflow templates: Debug Workflow templates

separately using argo submit --from workflowtemplate

• Resource utilization:

o Monitor CPU and memory usage of workflow pods

o Use Kubernetes tools like Metrics Server or Prometheus

for detailed resource tracking

• Artifacts: Inspect input and output artifacts to ensure data is being passed correctly between steps.

• Environment variables:

o Check environment variables set in your workflow

steps.

o Ensure secrets and configmaps are properly mounted

and accessible.

By utilizing these debugging techniques, you can effectively

identify and resolve issues in your Argo Workflows, ensuring

smooth and efficient workflow execution.

Argo Workflow use cases

Argo Workflow is a Kubernetes-native workflow engine that

allows users to define and execute complex multi-step

workflows. It is beneficial for automating and orchestrating

processes involving multiple microservices and different

environments.

The following are some everyday use cases for Argo Workflow:

• CI/CD pipelines: Argo Workflow can automate building, testing, and deploying code changes. It can also manage

the release process, including canary, rollbacks, and blue-

green deployments.

• Machine learning workflows: Argo Workflow can

automate the process of training and deploying machine

learning models. It can also manage the process of data

preparation, feature extraction, and model evaluation.

• Data engineering workflows: Argo Workflow can

automate data ingestion, processing, and modeling and

manage data quality control, validation, and export.

• Data science workflows: Argo Workflow can automate

the process of data science projects, such as data

exploration, feature engineering, model selection, and

model evaluation.

• Cloud native workflows: Argo Workflow can automate

the deployment and management of cloud native

applications on Kubernetes. It can also manage application

scaling, monitoring, and self-healing.

• Batch processing workflows: Argo Workflow can

automate batch jobs, such as data analysis, image

processing, and video transcoding.

• Backup and restore workflows: Argo Workflow can

automate backing up and restore data and state.

• Automating IT operations: Argo Workflow can automate

IT operation tasks such as system updates, software

installations, and configuration changes.

Overall, Argo Workflow is flexible and can be used when

automation and orchestration are required.

Automating secret scanning in source

repositories

In every IT company, there is a multitude of repetitive tasks that can benefit from automation. A typical example includes

using SonarQube to scan source code, checking for

information leaks such as secrets in Git commits, ensuring third-party licensing compliance, and regularly scanning the

domain for vulnerabilities. While some scanning tasks are best

integrated into the CI pipeline, it is only sometimes ideal to overload it with numerous tasks. In such cases, having a

parallel pipeline becomes preferable, and responsibility for

this pipeline may lie with teams like SecOps, Compliance, or Security Operations Center (SOC).

To address these needs, the decentralized modern CI pipeline

can be efficiently managed using Argo Workflow, a suitable

solution in various scenarios.

We discussed the minikube setup and how to install the Argo

Workflows. Let us begin by automating the secrets scan in the

source repository. We will select TruffleHog among several available tools for the task without delving into tool

comparisons and approaches. TruffleHog will scan the code

and look for the secrets.

Implementing secret scanning workflow

Let us proceed with creating the Dockerfile for TruffleHog.

Within the Dockerfile, we will install TruffleHog and include the necessary steps to copy an SSH private key from

Bitbucket, enabling us to clone the source code from the

repository.

Note: The exact steps for the Dockerfile would depend on the specific environment and requirements.

The following is a general outline:

> ssh-keygen

Create the private key with the file name truffeHog as follows:

1. # Base image - choose an appropriate base image for

Python

2. FROM python:3.8-buster

3. # Set the working directory

4. WORKDIR /app

5. # Clone the repository

6. RUN git clone https://github.com/dxa4481/truffleHog.git

7. WORKDIR /app/truffleHog

8. # Install from source

9. RUN python setup.py install

10. # Configure ssh

11. RUN mkdir .ssh/

12. COPY truffehog .ssh/

Let us proceed with setting up the workflow as follows:

 1.# YAML definition for a Kubernetes Workflow using Argo Pro

 ject

2. apiVersion: argoproj.io/v1alpha1

3. kind: Workflow

4. metadata:

5. generateName: secret-scanner

6. spec:

7. # Define the entrypoint for the workflow

8. entrypoint: entry

9.

10.

 Set the number of parallel workflow executions (1 in this c

 ase)

11. parallelism: 1

12.

13.

 # Define templates for individual steps or tasks in the wor

 kflow

14. templates:

15. - name: entry

16.

 # Define a Directed Acyclic Graph (DAG) template for t

 his step

17. dag:

18. tasks:

19. # Task 1: Generate artifact for all repositories

20. - name: generate-artifact-all-repo

21. template: getallrepo

22.

23. # Task 2: Scan cloned repositories with Trufflehog

24. - name: scan-cloned-repo

25. template: scan-with-trufflehog

26.

27.

 # Define dependencies for this task, it should run af

 ter Task 1 is completed

28. dependencies: [generate-artifact-all-repo]

29. # Pass arguments to the template

30. arguments:

31. parameters:

32. # Define a parameter 'repo' with the value "

 {{item}}".

33.

 # The "

 {{item}}" will be replaced with actual repository names wh

 en the workflow runs.

34. - name: repo

35. value: "{{item}}"

36.

37.

 # Use the 'withParam' field to iterate over a list of r

 epositories obtained from the output of 'generate-artifact-

 all-repo' task.

38.

 # The list of repositories is accessed using 'tasks.ge

 nerate-artifact-all-repo.outputs.parameters.repos'.

39. withParam: "{{tasks.generate-artifact-allrepo.outputs.parameters.repos}}"

We have two tasks to accomplish. The task scan-cloned-repo

depends

on

generate-artifact-all-repo, meaning that

generate-artifact-all-repo must be executed first. The

output of this task will serve as parameters for scan-cloned-

repo.

Next, let us explore the generate-artifact-all-repo task, which fetches repository information from GitHub:

This task retrieves and processes GitHub repository

information by:

• Fetching repository data from Microsoft's public GitHub

account

• Extracting repository clone URLs

• Creating a structured JSON output

1. - name: getallrepo

2. script:

3. image: dwdraju/alpine-curl-jq

4. command: [sh]

5. source: |

6. # Get Microsoft's first 100 public repositories

7.

GHUSER=microsoft;

curl

"https://api.github.com/users/$GHUSER/repos?

per_page=100" | grep 'clone_url' |cut -f 4 -d '"' | jq -R -s -

c 'split("\n")' >/tmp/allrepos.json

8. outputs:

9. parameters:

10. - name: repos

11. valueFrom:

12. path: /tmp/allrepos.json

How it works:

• Uses GitHub's REST API to fetch repository data

• Processes the response using standard Unix tools:

o grep: Filters for clone URL entries

o cut: Extracts the URL value

o jq: Formats output as JSON array

• Stores results in /tmp/allrepos.json for further

processing

This task lists 100 repositories of Microsoft's public repository

from GitHub. It then greps and extracts the clone URL to make a JSON output file using jq.

The next is scan-cloned-repo, as shown in the following

example:

1. - name: scan-with-trufflehog

2. inputs:

3. parameters:

4. - name: repo

5. script:

6. image: nahidupa/trufflehog:latest

7. command: [sh]

8. source: |

9. REPONAME=$(echo {{inputs.parameters.repo}} | cut -f 5 -

d "/" | cut -f 1 -d ".") ; cd /tmp;git clone

{{inputs.parameters.repo}}

$REPONAME;trufflehog

$REPONAME > /tmp/scan_output.txt

10. outputs:

11. artifacts:

12. - name: scanoutput_{{pod.name}}

13. path: /tmp/scan_output.txt

In these steps, the task runs depending on the parallelism

value we set and clones one by one repo and scans with

truffleHog as follows:

1. parallelism: 1

The output will be preserved as an artifact for future

processing. Altogether, the workflow looks like as follows:

1. apiVersion: argoproj.io/v1alpha1

2. kind: Workflow

3. metadata:

4. generateName: secret-scanner

5. spec:

6. entrypoint: entry

7. parallelism: 1

8. templates:

9. - name: entry

10. dag:

11. tasks:

12. - name: generate-artifact-all-repo

13. template: getallrepo

14.

15. - name: scan-cloned-repo

16. template: scan-with-trufflehog

17. dependencies: [generate-artifact-all-repo]

18. arguments:

19. parameters:

20. - name: repo

21. value: "{{item}}"

22. withParam: "{{tasks.generate-artifact-allrepo.outputs.parameters.repos}}"

23.

24. - name: getallrepo

25. script:

26. image: dwdraju/alpine-curl-jq

27. command: [sh]

28. source: |

29.

GHUSER=microsoft;

curl

"https://api.github.com/users/$GHUSER/repos?

per_page=100" | grep 'clone_url' |cut -f 4 -d '"' | jq -R -s -c

'split("\n")' >/tmp/allrepos.json

30. outputs:

31. parameters:

32. - name: repos

33. valueFrom:

34. path: /tmp/allrepos.json

35.

36. - name: scan-with-trufflehog

37. inputs:

38. parameters:

39. - name: repo

40. script:

41. image: nahidupa/trufflehog:latest

42. command: [sh]

43. source: |

44. REPONAME=$(echo {{inputs.parameters.repo}} |

cut -f 5 -d "/" | cut -f 1 -d ".") ; cd /tmp;git clone

{{inputs.parameters.repo}}

$REPONAME;trufflehog

$REPONAME > /tmp/scan_output.txt

45. outputs:

46. artifacts:

47. - name: scanoutput_{{pod.name}}

48. path: /tmp/scan_output.txt

S3 bucket configures for artifact storage

To configure the S3 bucket to use as artifact output, we need

to create an IAM user in AWS with programmatic access as

follows:

1. {

2. "Version": "2012-10-17",

3. "Statement": [

4. {

5.

"Effect": "Allow", // Specifies that the defined actions a re allowed for the resources

6. "Action": [// Lists the permitted actions

7.

"s3:PutObject", // Allows putting objects into the S3 b

ucket

8.

"s3:GetObject", // Allows retrieving objects from the S

3 bucket

9.

"s3:GetBucketLocation" // Allows getting the location

of the S3 bucket

10.],

11. "Resource": "arn:aws:s3:::changeit-bucket-

name/*" // Specifies the ARN of the S3 bucket and permits access to all objects within the bucket

12. }

13.]

14. }

Then, create a secret in the argo namespace as follows:

1. Kubectl apply -f argo-work-flow-s3-cred.yaml -n argo

1. apiVersion: v1

2. kind: Secret

3. metadata:

4. name: argo-work-flow-s3-cred

5. type: Opaque

6. data:

7. accessKey: <base64>

8. secretKey: <base64>

The following necessary configuration is to tell argo to use this S3 bucket as the default artifact store:

 1.

 # This is a Kubernetes ConfigMap that stores configuration

 data for an S3 bucket used in workflows.

2. apiVersion: v1

3. kind: ConfigMap

4. metadata:

5. # The name of the ConfigMap, change it as needed.

6. name: artifact-repositories

7. annotations:

8.

 # An annotation to specify the default artifact repository

 for workflows.

9.

workflows.argoproj.io/default-artifact-

repository: default-v1

10. data:

11.

 # The key name within the ConfigMap where the S3 confi

 guration is stored.

12. default-v1: |

13. # Configuration for the S3 bucket.

14. s3:

15. # Replace with your S3 bucket name.

16. bucket: argo-work-flow-artifact-eks-sonarqube

17. # The format of the keys within the S3 bucket.

18. keyFormat: prefix/in/bucket

19. # The S3 endpoint URL.

20. endpoint: s3.amazonaws.com

21.

 # Kubernetes Secret containing the access key for S3.

22. accessKeySecret:

23.

 # The name of the Kubernetes Secret where the acces

 s key is stored.

24. name: argo-work-flow-s3-cred

25.

 # The key within the Secret where the access key valu

 e is stored.

26. key: accessKey

27. # Kubernetes Secret containing the secret key for S3.

28. secretKeySecret:

29.

 # The name of the Kubernetes Secret where the secre

 t key is stored.

30. name: argo-work-flow-s3-cred

31.

 # The key within the Secret where the secret key valu

 e is stored.

32. key: secretKey

1. kubectl apply -f artifact-repository.yaml

We can configure multiple S3 buckets and reference them

(abbreviated as Ref) as artifactRepositoryRef in the workflow specification. This allows you to:

1. Set up multiple artifact storage locations

2. Switch between different S3 buckets based on workflow

needs

3. Maintain separate storage for different types of artifacts

Configure and reference multiple S3 buckets as follows:

1. apiVersion: v1

2. kind: ConfigMap

3. metadata:

4. # if you want to use this config map by default - name it

 "artifact-repositories"

5. name: artifact-repositories-testssl

6. annotations:

7. # if you want to use a specific key, put that's key into

 this annotation

8. workflows.argoproj.io/default-artifact-repository:

artifact-repositories-testssl

9. data:

10. artifact-repositories-testssl: |

11. s3:

12. bucket: argo-work-flow-artifact-testssl-eks-sonarqube

13. keyFormat: prefix/in/bucket

14. endpoint: s3.amazonaws.com

15. accessKeySecret:

16. name: argo-work-flow-s3-cred

17. key: accessKey

18. secretKeySecret:

19. name: argo-work-flow-s3-cred

20. key: secretKey

1. spec:

2. entrypoint: entry

3. artifactRepositoryRef:

4. configMap: artifact-repositories-testssl # default is

 "artifact-repositories"

5. key: artifact-repositories-testssl # default can be set by

 the annotation

Argo Workflows vs. Apache Airflow

Argo Workflows and Apache Airflow are open source

platforms for orchestrating and automating workflows. Both

tools are designed to be flexible, scalable, and easy to use, and

they offer a range of features and capabilities that make them

well-suited for different use cases.

One key difference between the two is that Argo is focused on

container-native workflows, while Airflow was designed to be

agnostic to the underlying infrastructure. This means Argo is better suited for environments where containers are a primary

means of deploying applications. At the same time, Airflow is more flexible and can be used in a broader range of

environments.

Another difference is that Argo is designed to be simpler to use and deploy, focusing on providing a user-friendly

experience. On the other hand, Airflow is more feature-rich

and flexible but can be more complex to set up and use.

Argo uses YAML as its workflow definition language, while

Airflow uses Python. In addition, the Argo Workflow is event-driven and dynamic, parallel to Airflow.

On the other hand, Airflow has been expanding its support for

Kubernetes through tools like the KubernetesExecutor,

enabling it to handle containerized workflows more

effectively. Combined with its rich ecosystem of operators for

both cloud and on-prem workflows, Airflow remains a strong

choice for orchestrating complex ETL processes or workflows

that require heavy customization and integration across

diverse systems.

In general, if someone is working in a container-based

environment and is looking for a simple way to automate the workflows, Argo may be a good choice. Airflow may be better

if someone needs more advanced features or works in a more

traditional infrastructure.

Conclusion

This chapter comprehensively discussed Argo Workflows,

covering its deployment, core concepts, architecture, and

practical applications. We examined its history, deployment in

minikube, and fundamental concepts, including various

template types and workflow structures. The architectural

breakdown offered insights into Argo Workflows integration

with Kubernetes for managing complex, container-native

pipelines. Through practical examples like setting up a secret

scanning workflow, readers gained hands-on experience. We

highlighted key use cases demonstrating Argo Workflows'

versatility in areas such as CI/CD, machine learning, and data

engineering. By comparing it with Apache Airflow, readers

gained perspective on tool selection. As container-based and

cloud native architectures become increasingly prevalent, this

chapter equips readers with a solid foundation for

implementing efficient, scalable workflow management

solutions.

In the next chapter, we will build on this knowledge, exploring

Argo Workflows in production environments, including best

practices, scaling considerations, and real-world case studies.

1. https://argo-

workflows.readthedocs.io/en/latest/installation/

2.

https://kubernetes.io/docs/concepts/workloads/pods/init-

containers/

CHAPTER 6

Argo Workflows in

Production

Introduction

When installing Argo Workflows for production use, it is

essential to ensure high availability by deploying it in a

multi-node setup, plan for scalability to handle increased

workloads, secure communication and sensitive information,

implement robust monitoring and logging, and verify version

compatibility. Additionally, users must also develop a

backup and recovery plan, efficiently manage resources,

and plan for regular maintenance activities. These

considerations will help ensure the smooth operation of

Argo Workflows and prevent any unexpected downtime or

issues. By mastering these aspects, readers will gain the

knowledge needed to maintain a resilient, scalable, and

secure Argo Workflows deployment.

This chapter will also explore the available installation

options, offer best practices for running Argo Workflows in

production, and provide insights into cost optimization

strategies. Additionally, we will delve into security

considerations, including SSO, pod security contexts,

workflow controller security, and database access control.

We will conclude with a real-life case study highlighting the

risks of misconfiguring Argo Workflows, emphasizing the

importance of security practices.

Structure

In this chapter, we will discuss the following topics:

Argo Workflows in the production

Installation options available in Argo Workflows

Best practices for operating Argo Workflows

Cost optimization in production

Argo Workflows security consideration

Single sign-on in Argo Workflows

Workflow pod security context

Workflow controller security

Database access control in offloading workflows

Case study: Abusing misconfigured Argo Workflows

Objectives

By the end of this chapter, you will understand the

considerations needed to go live with Argo Workflows. The

goal is to give you an idea of the installation choice, how to

make it highly available, what we must do before going live,

and scaling considerations for individual components of

Argo Workflows.

Argo Workflows in the production

When installing Argo Workflows for production use, there are

several additional considerations to keep in mind beyond

just the basic installation process, these include:

High

availability:

Consider

deploying

Argo

Workflows in a highly available setup with multiple

nodes to ensure continuity of service in case of any

node failure. The HA features are designed to ensure

that the workflow system remains available and

functional despite component failures or other

disruptions. The Argo Workflows system has two main

components: the Workflow Controller and the Argo

Server.

The Workflow Controller is responsible for managing

the execution of workflows. In versions prior to 3.0, only

one instance of the controller could run at once, in case

it failed, Kubernetes would start another pod to replace

it.

However,

starting

with

version

3.0,

it

is

recommended to run two replicas of the controller, with

one kept in a hot standby mode. This is because, for

some users, a brief interruption of the workflow service

may be acceptable, but for others who require high

service guarantees, the time it takes for a new pod to

start and begin running workflows may be too long. By

having a hot standby replica, the workflow controller

can quickly switch over to the backup instance in case

of a failure, minimizing disruption to the system.

However, to avoid both replicas being replaced

simultaneously due to voluntary pod disruptions, a Pod

Disruption Budget can be set to prevent this, and a Pod

Priority can be used to recover faster from an

involuntary pod disruption.

The Argo Server provides an API and webhooks for

managing workflows. To ensure high availability, it is

recommended to run at least two replicas of the server,

with three being a typical number. This is because if

there is only one replica, API and webhook requests

may be dropped if the replica fails. To further enhance availability, multi-AZ deployment using pod anti-affinity

can be considered, which would spread the replicas

across multiple availability zones.

In short, the Argo Workflows system's HA features are

essential for ensuring that the system remains available

and functional in the face of disruptions, failures, or

other issues. By implementing these features, users can

be confident that their workflows will continue to

execute

as

expected,

even

in

challenging

circumstances.

Scalability: There is no option to horizontally scale

the controller, meaning that adding multiple instances

of the controller is not supported. However, it is

possible to scale the controller vertically, which

involves increasing the resources assigned to the

controller, such as memory and CPU.

To increase the controller's capacity, you can increase

the number of workflow workers and workflow Time to

live (TTL) workers using the --workflow-workers and

--workflow-ttl-workers flags. Additionally, you can

increase both the --qps and --burst values. By doing so, the controller will be able to handle more workflows

and process them faster.

Namespace sharding: Another strategic scaling

option is namespace sharding. Argo Workflows

sharding allows you to run multiple instances of

Argo Workflows in separate namespaces, allowing

you to submit workflows and maintain separate

states for each namespace. This can be useful

when you need to isolate workflows from each

other, for example, to ensure that workflows in

one namespace do not interfere with workflows in

another. To set up namespace-based sharding, you

create the namespaces you want to use, install Argo Workflows in each namespace, create a

ConfigMap in each namespace to store the

instance ID and modify the Argo Workflows

deployment in each namespace to reference the

ConfigMap.

Security: Ensure that the communication between

different components of Argo Workflows is secure and

that sensitive information, such as credentials and

secrets, is securely stored and managed. Check

 Chapter 7, How Argo Events Integrates with Argo Workflows, for more details.

Monitoring

and

logging:

Implement

robust

monitoring and logging systems to track the

performance of Argo Workflows and detect and

troubleshoot any issues in real-time. The Argo

Workflows system provides the ability to track the

state of the controller through built-in metrics and

allows users to define their own custom metrics to

provide insight into the state of their workflows.

Custom metrics in Prometheus format can be defined on

both the workflow and template levels, offering various

benefits such as tracking the duration of a workflow,

the number of times a workflow has failed, and

reporting internal metrics such as model training scores

or internal error rates. However, it is crucial to

understand the best practices for defining Prometheus

metrics in Argo Workflows, as not doing so can result in

a phenomenon known as a cardinality explosion. This

refers to a situation where unique metrics become

unmanageable, making it difficult to store, query, and

visualize the data.

In short, Argo Workflows provides the capability to

track both built-in and custom metrics to monitor the

state of workflows, emphasizing an understanding of how to define custom metrics correctly to avoid metric

related issues.

Version

compatibility:

Make

sure

that

all

components of the Argo Workflows installation,

including the API server, controller, and nodes, are

compatible with each other in terms of version and

configuration.

Disaster recovery: It is crucial to develop a backup

and recovery plan to safeguard workflow data and

state in the event of failures or disasters. This is a

crucial component of DR in Argo Workflows,

emphasizing

the

importance

of

data

backup.

According to the documentation, all data in Argo

Workflows is stored in your Kubernetes cluster.

Therefore, regular backups of the cluster are

necessary to guarantee the ability to recover

workflows and other data in the event of a disaster.

Here is an example of exporting data from Argo

Workflows using kubectl. The command kubectl get

wf,cwf,cwft,wftmpl -A -o yaml > backup.yaml

exports data for all workflows, completed workflows,

workflow templates, and cluster workflow templates

and stores it in a YAML file called backup.yaml. This file can then be used to import the data back into the

cluster using kubectl apply -f backup.yaml. However, this backup process shall be added to your backup

schedule. In addition to backing up data in the

Kubernetes cluster, it is also important to back up any

SQL persistence used by Argo Workflows. This includes

any databases that store workflow data, such as the

default PostgreSQL database used by Argo Workflows.

Follow your backup tool and strategy to ensure regular

backups are taken for external SQL persistence

solutions. Implementing a DR strategy that includes regular backups of the Kubernetes cluster and any SQL

persistence used by Argo Workflows can help ensure

that your critical data is protected and can be recovered

in the event of a disaster.

Resource management: Ensure that resources such

as CPU, memory, and storage are efficiently managed

to prevent over-allocation and resource starvation.

Maintenance:

Plan

for

regular

maintenance

activities, such as software updates and security

patches, to keep Argo Workflows running smoothly

and securely.

Installation options available in Argo Workflows

The choice of installation option for Argo Workflows

depends on various factors, such as security requirements,

workflow complexity, and scalability needs. To determine

the most suitable installation option, you should consider

the specific use case, available resources, and the features

and limitations of each option.

The following are the details on each installation option

that will help you determine your base installation option:

Cluster install: In this installation mode, Argo

Workflows can watch and execute workflows across all

namespaces within the Kubernetes cluster, providing a

convenient way to manage workflows across multiple

namespaces. This installation option is the default

when using official release manifests for Argo

Workflows. However, it is crucial to consider security

and compliance requirements when selecting this

option, as it may only be appropriate for some use

cases.

Namespace install: A namespace install is an installation option for Argo Workflows that restricts it

to watching and executing workflows within a specific

Kubernetes namespace. This installation option

provides a higher level of security and isolation than a

cluster install, as workflows defined outside of the

namespace are not visible or actionable by the Argo

Workflows installation. A namespace install is often

used in environments with strict security or

compliance requirements, where it is necessary to

restrict

the

access

of

workflows

to

specific

namespaces. However, this installation option may not

be appropriate for use cases where workflows need to

span multiple namespaces within the same Kubernetes

cluster. In summary, the namespace install provides a

more limited scope for workflow management than a

 cluster install but can offer greater security and control in certain use cases.

Managed namespace install: A managed namespace

install appears to be a specific installation option

available

in

versions

2.5

and

later.

In

this

configuration, Argo Workflows is installed within a

particular namespace in the Kubernetes cluster. It is

set up using both the Workflow Controller and Argo

Server with the --namespace flag. Additionally, if you

want workflows to run in a separate namespace, you

can add the --managed-namespace flag with the

name of the desired namespace.

This installation option provides increased security and

isolation compared to a cluster-scoped installation, as

workflows are only visible and actionable within the

specified namespace (s). However, it requires that both

the Workflow Controller and Argo Server be configured

with the --namespaced flag and that the necessary

CRDs be created at the cluster level by a user with admin privileges.

It is worth mentioning that, as with other installation

options, the choice of a managed namespace install will

depend on the specific needs of the workflow

management

environment,

such

as

security

requirements, workflow complexity, and scalability.

Best practices for operating Argo Workflows

When deploying Argo Workflows in a production

environment, following established best practices is crucial

for ensuring reliability, security, and maintainability. These

practices have been developed through real-world

experience and help prevent common issues that

organizations face during deployment and operation.

A well-planned implementation following these best

practices can help avoid downtime, security vulnerabilities,

and operational complexities while ensuring optimal

performance. These practices cover various aspects of

deployment, from initial installation to ongoing maintenance

and monitoring.

The following are some of the best practices for installing

Argo Workflows in a production environment:

Use official release manifests: Use the official Argo

Workflows release manifests to ensure a stable and

supported installation. Choose the latest full release

for the version you wish to use.

Use Kustomize: To customize configurations and

patch your preferred configurations on top of the base

manifest. However, if you are using GitOps, copying

the manifests into your Git repo is recommended

rather than using Kustomize remote base, which can

be dangerous.

Avoid using the latest version: It is recommended to avoid using the latest (is tip) version of Argo

Workflows as it may not be stable for production use.

Instead, choose a specific release version to ensure

stability and reliability.

Use persistent storage: Use persistent storage for

Argo Workflows metadata to ensure the durability and

scalability of the system.

Secure the installation: Follow security best

practices

for

the

installation,

including

using

Transport Layer Security (TLS) certificates,

disabling unneeded ports and services, and enforcing

secure authentication and authorization.

Monitor the installation: Use monitoring and

logging tools to track the performance and health of

the Argo Workflows installation. Set up alerts to

quickly respond to any issues.

Follow maintenance best practices: Perform

regular

maintenance

tasks,

such

as

updating

dependencies, taking backups, and testing disaster

recovery procedures.

Cost optimization in production

Cost optimization is an important consideration for any

system running in your organization, and Argo Workflows

provides several features that can help you optimize costs

and reduce unnecessary spending.

One of the primary ways to optimize costs in Argo

Workflows is to ensure that workflows are designed to run

efficiently. This includes using the appropriate resources

for each workflow, such as limiting the amount of CPU and

memory used by containers in the workflow and optimizing

the use of parallelism and concurrency to ensure that workflows are completed as quickly as possible.

The following are some suggestions that could help run the

Argo Workflows in a cost-effective way:

User cost optimizations

To optimize the cost of running workflows in Argo, there

are several suggestions for users to consider. Users can set

the resource requests for pods based on the amount of CPU

and memory required, which can indicate the cost. Using a

node selector, users can select cheaper instances, such as

spot instances, to run workflows. Users can also consider

using volume claim templates or volumes instead of

artifacts, which can be costly due to the data transfer and

storage costs. Additionally, limiting the total number of

workflows and pods is crucial in reducing the cost of

running workflows and deleting workflows once they are no

longer needed. Using Active Deadline Seconds, Workflow

TTL Strategy, and Pod GC, workflows can be terminated or

deleted after a specific time. These suggestions can help

users optimize the cost of running workflows in Argo

without compromising performance or efficiency.

Operator cost optimizations

Several suggestions exist for operators who have installed

Argo Workflows to optimize the system's cost. Setting

resource requests and limits for the Workflow Controller and

Argo Server can be a suitable solution, especially if many

instances run on multiple clusters or namespaces. The Argo

Server, being stateless, can have lower limits of 100m CPU

and 64Mi memory. In contrast, the Workflow Controller is

stateful and will scale according to the number of live

workflows so that higher values may be required. They

configured the executor resource requests by setting the executor.resources in the workflow-controller-configmap.yaml file can be helpful in all cases, except for

when large artifacts are involved. The values for these

requests depend on the size of the artifacts that workflows

download, and for artifacts larger than 10GB, memory

usage may be significant. So, try to follow these suggestions

as operators to optimize the cost of running Argo Workflows,

ensuring that resources are used efficiently.

Argo Workflows security consideration

Securing Argo Workflows is critical when operating in

production environments. As a container-native workflow

engine running on Kubernetes, Argo Workflows often

processes sensitive data, runs critical business logic, and

interacts with various infrastructure components. This

makes it an attractive target for potential security

breaches. A comprehensive security strategy must address

multiple aspects, from authentication and authorization to

network security and resource isolation.

When

implementing

security

for

Argo

Workflows,

organizations must consider protection at various levels;

the workflow engine itself, the containers it runs, the data it processes, and the infrastructure it runs on. This multi-layered approach ensures that workflows run securely

while maintaining the required level of access and

functionality.

In terms of security considerations, the following are some

general key points to keep in mind:

Role-based

access

control

(RBAC):

It

is

recommended to use RBAC to control access to Argo

resources. RBAC ensures that only authorized users

can perform actions such as creating, updating, or

deleting workflows. The operator needs to specify the

service account for all pods in a workflow run with the service

account

set

in

workflow.spec.serviceAccountName. The default

service account of the workflow's namespace will be

used in case that is not defined. From a security

perspective, always follow the least privilege. For

example, if your workflow needs to modify a resource,

the workflow's service account will require patch

privileges, giving it only that required. Only giving

access to a workflow depends on what the workflow

needs to do.

Using a different service account (not to use default) in

production is highly recommended. The default is a

shared account. It may have permissions added to it we

may not want. Instead, create a service account only for

each workflow.

Secrets management: Argo Workflows provides a

built-in mechanism for managing secrets within the

workflow. This feature allows you to securely pass

sensitive information to the workflow steps, such as

passwords or API keys. Argo Workflows supports

Kubernetes Pod specs for secrets syntax and

mechanisms, which allows access to secrets as volume

mounts or environment variables. Also, ensure secure

storage of your secrets by using any of your cloud

provider's secrets managers or vault.

Container image security: Using trusted container

images for your workflow steps is essential. Consider

using a container registry that supports image signing

and scanning to ensure that the images are free from

vulnerabilities. Most cloud providers have their own

container registry and have the feature for signing and

scanning. Docker now has a built-in scan command to

show the image's vulnerability. Adding this scan as a

gatekeeper in CI/CD is also a great idea; you should do that, too.

Transport Layer Security: Starting with version 3.0,

Argo Server has switched from listening for HTTP

requests

to

HTTPS

requests.

Argo

Workflows

transport security configuration varies from version to

version. The default v1.2 is set TLS_MIN_VERSION

to be the minimum TLS version. Always check the

latest documentation while configuring these settings.

Always run the CLI with the --secure flag or export

this valuable ARGO_SECURE=true as best practice.

Network isolation: To minimize the attack surface,

deploying Argo Workflows on a dedicated network

segment with limited access is recommended. The

isolation can be team-specific based on your company

structure and size.

Monitoring and logging: It is essential to monitor

and log the activity within your Argo Workflows to

detect and respond to security incidents in a timely

manner. As Argo Workflows runs on Kubernetes,

whatever logging and monitoring you have in place

will work seamlessly with Argo Workflows. The Argo

Workflows exports the Prometheus metrics.

Single sign-on in Argo Workflows

It is possible to use Dex to authenticate in Argo Workflows.

We discussed this in Chapter 4 , Argo CD Security Consideration, while configuring the Argo CD with Dex. A similar applies to Argo Workflows. Having SSO integration is

always tremendous. Argo Workflows supports SSO for

authentication and authorization, which requires setting up

an authentication provider and configuring Argo Workflows

to use it.

The steps for configuring Argo Workflows with SSO include: 1. Choosing an SSO provider that is compatible with Argo

Workflows.

2. Configuring the SSO provider by creating an application

and obtaining client credentials.

3. Configuring Argo Workflows to use the SSO provider

for authentication.

4. Testing the configuration by logging in and verifying

access to resources.

5. Most importantly, running the Argo Server with setting

auth mode , argo server --auth-mode sso --auth-

mode .

The specific steps and configuration options will vary

depending on the SSO provider chosen, and detailed

instructions can be found in the Argo Workflows

documentation.

Workflow pod security context

By default, the workflow pods operate under the root user.

Even with the Docker executor, the privileged: true flag is

required.

However, for alternative workflow executors, you can

enhance the security of your workflow pods by customizing

their security context. This configuration may become

necessary if you have implemented a pod security policy. If

such a policy exists, it is likely that you will be unable to

utilize the Docker executor.

It can be set individually in each pod spec as follows:

1. securityContext:

2. runAsNonRoot: true

3. runAsUser: 8137 # any non-root user

Or it can configure this globally using workflow defaults ConfigMap:

1.apiVersion: v1

2.kind: ConfigMap

3.snip...

4. workflowDefaults: |

5. metadata:

6. annotations:

7. argo: workflows

8. labels:

9. app: foo-bar

10. spec:

11.snip...

12. securityContext:

13. runAsNonRoot: true

14. runAsUser: 8137 # any non-root user

Workflow Controller security

A few more things should be considered during deployment

as follows:

Controller permissions: Double check the controller

permission while installing the Argo Workflows. The

controller gets the permission defined in workflow-

controller-cluster-role.yaml or workflow-controller-

role.yaml. Define and review carefully what

permission you need and want to give the Argo

Workflows controller.

User permissions: It is important to note that users

must have permission to create and read workflows at

a minimum. Once granted, the controller will create

workflow pods, configuration maps, and other

necessary resources on behalf of the user, even if the

user does not have the authority to do so themselves.

If a user has the authorization to create a workflow within a particular namespace, they may also create

pods

and

other

resources

within

that

same

namespace. However, if a user's authorization is

limited to creating workflows only, they may need help

to configure other resources like config maps or

access the results of their workflow. This is

particularly relevant for users who act as services.

It is better to avoid allowing users to create a workflow

in the controller namespace, which is defined Argo

typically during installation. In that case, the user may

modify the controller itself.

Workflow pod permissions: There are two options

for running workflow pods: either with the default

service account or a custom service account specified

in the workflow spec. There is no restriction on which

service account in a namespace may be used. The

service account selected for the pod will typically

require certain permissions to function correctly. If a

workflow pod requires elevated permissions, it is best

to use a separate service account specifically for that

purpose, such as creating other resources. The setting

automountServiceAccountToken determines if a

service account token should be automatically

mounted in pods. If this value is set to false, a

ServiceAccountName must be specified in the

ExecutorConfig.

By default, workflow pods run as root. To increase their

security, the workflow pod security context can be

configured, as mentioned before. Configuring the controller

with the appropriate workflow executor is important to

achieve a suitable balance between scalability and security.

All these settings can be established as defaults using

workflow defaults (default workflow specs).

Database access control in offloading

workflows

In Argo Workflows management, a persistent store can be

configured for two reasons, for archiving or offloading

workflows. Archiving workflows involves storing completed

workflows for long term record keeping and future

reference. On the other hand, offloading workflows involves

moving active workflows to an external database to

overcome the limitation of Kubernetes, etc., which has a

limited resource size that must be under 1MB.

If either archiving or offloading workflows is enabled, both

the Workflow Controller and Argo Server deployments

must have egress network access to an external database.

This is necessary for the persistent store to function

adequately, as it requires communication with the external

database for data storage and retrieval. Egress network

access refers to the ability of a network to send data from a

local host to a remote host or network, in this case, to the

external database.

In short, a persistent store can be configured for archiving

or offloading workflows, and for both features to work

correctly, the Workflow Controller and Argo Server

Deployments must have egress network access to an

external database. Following the database access, security

becomes important in this case.

Case study: Abusing misconfigured Argo

Workflows

In this section, we will discuss a real-life security incident

involving the abuse of Argo Workflows that occurred in July

2021. The incident involved an attacker exploiting a

vulnerability in Argo Workflows to deploy cryptocurrency

mining malware on Kubernetes clusters. The vulnerability in

question was a privilege escalation flaw that allowed attackers to gain administrative access to the Kubernetes

cluster hosting Argo Workflows. The attacker then used this

access to deploy a Docker image containing a Monero

cryptocurrency miner. The miner was configured to mine

cryptocurrency using the processing power of the

compromised cluster nodes.

A security researcher detected the attack and noticed a

sudden spike in CPU usage on one of their Kubernetes

clusters. After investigating, they discovered the mining

container running on the compromised node. The researcher

reported the issue to the Argo Workflows development

team, who released a patch to address the vulnerability.

This incident highlights the importance of ensuring that all

software components in cloud infrastructure are regularly

updated and patched to prevent the exploitation of known

vulnerabilities. It also highlights the importance of

monitoring cloud infrastructure for abnormal behavior,

which can indicate an ongoing security breach.

Conclusion

This chapter comprehensively described the facts you must

consider when running an Argo production workflow. High

availability, scaling, and capacity planning are crucial to

running any production system. However, we always need

to keep the cost also lean.

By the end of this chapter, we understood how to keep the

cost lean. We discussed the best practices for running Argo

Workflows in production. We also discussed security and

monitoring, which will be dealt with in detail in the

subsequent chapters.

In the next chapter, we will discuss Argo Events and how to

get started with this powerful event driven workflow

automation tool. We will discuss the fundamental concepts of Argo Events and understand how it can enhance your

workflow automation capabilities.

References

1.

https://www.bleepingcomputer.com/news/security/att

ackers-deploy-cryptominers-on-kubernetes-clusters-

via-argo-workflows/

2. https://www.zdnet.com/article/researchers-find-

new-attack-vector-against-kubernetes-clusters-via-

misconfigured-argo-workflows-instances/

CHAPTER 7

Getting Started with Argo

Events

Introduction

Argo Events is a Kubernetes native event driven automation

system developed by the Argo Project. It enables developers

to automate workflows based on events from various

sources, such as Kubernetes resources and external APIs.

With Argo Events, workflows can be triggered by events and

can be configured to perform complex multi-step tasks and

automation. The platform provides a flexible and scalable

way to manage event-driven automation, making it a

powerful tool for modern, cloud native applications.

We will examine Argo Events' architecture, focusing on its

event sources, EventBus, and sensors. The EventBus serves

as the central messaging system, processing events from

multiple sources, while sensors and triggers work together to

detect events and initiate automated responses.

Understanding these components is crucial for building

effective event driven automation. The chapter covers

essential integration patterns, particularly with Argo

Workflows, and guides readers through practical deployment

scenarios. Readers will understand both cluster wide and

namespace specific installation methods, along with security configurations and high-availability setups for production

environments.

In this chapter, we will conclude with operational best

practices, including monitoring with Prometheus metrics and

maintaining a reliable deployment. While examples use

minikube for demonstration, the concepts apply to any

Kubernetes cluster, ensuring anyone can implement event

driven automation effectively in other environments.

Structure

In this chapter, we will discuss the following topics:

Features of Argo Events

Argo Events architecture and concepts

Installing Argo Events in the Kubernetes cluster

Understanding Argo Events integration with Argo

Workflows

Security consideration

High

availability

and

disaster

recovery

recommendations

Monitoring Argo Events

Objectives

This chapter will cover the basic concepts of Argo Events,

including event sources, sensors, and triggers, and

demonstrate how to use them to automate workflows in a

Kubernetes environment. Although this book uses the

minikube to demonstrate the installation and other

capabilities of Argo Events, the same can apply to any

Kubernetes cluster. Sometimes, it only differs in external

traffic management.

By the end of the chapter, readers will understand the key features of Argo Events and be able to apply this knowledge

to their projects.

Features of Argo Events

The key features of Argo Events include the ability to receive

events from over 20 different sources, providing flexibility

and versatility for workflow automation. Users can also

customize constraint logic at the business level to tailor

workflows to their specific needs. These features empower

organizations to build sophisticated event driven

architectures.

Argo Events can handle various event types, from simple

linear events in real time to complex multi-source events,

providing users with a comprehensive event management

solution. The tool supports a range of triggers, including

Kubernetes objects, Argo Workflow, AWS Lambda, and

serverless, enabling users to leverage various event sources

to automate their workflows.

Argo Events is also CloudEvents compliant, ensuring

seamless interoperability and compatibility with other cloud

native tools and platforms.

Argo Events offers a wide range of triggers to automate

workflows, including:

Argo Workflows

Standard Kubernetes objects

HTTP requests or serverless workloads through

platforms like OpenFaaS, Kubeless, and Knative

AWS Lambda functions

NATS messages

Kafka messages

Slack notifications

Azure event hub messages

Argo rollouts

Apache OpenWhisk

Log triggers, enabling workflows to be triggered by log

events

Custom triggers allow users to build their own triggers

to suit their specific needs

These triggers provide a diverse set of options for event-

driven automation, allowing users to leverage a variety of

event sources and customize their workflows to fit their

unique requirements.

To effectively utilize these powerful features, we need to

understand how Argo Events is architected and how its

components work together. Let us examine the core

components and concepts that enable this flexible event-

driven automation system. We will start by exploring the

main architectural components that form the foundation of

Argo Events.

Argo Events architecture and concepts

We must know the Argo Events concepts and architecture

before installing and playing with it. This allows us to explore

the Argo Events more effectively. We have already explored

Argo CD and Argo Workflow. What do you think? Is there

anything else you need that you are looking to solve for your

daily automation? What is missing? Yes, a glue that collects

all the events in your echo system and provides a framework

to integrate all components. Argo Events helps you collect

events from various sources like messaging queues, S3,

schedules, webhooks, GCP pub-sub, SNS, SQS, Kubernetes

resource changes, and so on.

Let us explore the main components of Argo Events as follows:

Event source: Event sources are responsible for

generating events. These can be anything from a

webhook or a cron job to a Kubernetes event or a

custom event source. Each event source has its own

unique configuration and credentials that allow it to

interact with the system. An EventSource defines the

configurations required to consume events from

external sources like AWS SNS, SQS, GCP Pub/Sub,

Webhooks, etc. It transforms the events into cloud

events and dispatches them to the EventBus.

Sensor: Sensors act as a middle layer between event sources and event controllers and are responsible for

receiving, filtering, and normalizing events into a

standard format that event controllers can consume.

When an event source generates an event, it is sent to

the sensor that is configured to receive it. The sensor

then applies filters to the event, such as matching on

certain properties or metadata, and generates a

normalized event payload that the event controllers can

consume. The normalized event payload includes

information such as the event type, the event source,

and any additional metadata that was included with the

event.

Sensors are configured with YAML manifests that define

the event sources to listen to, the filters to apply, and

the normalized event payload output format. The YAML

manifests also specify which event controllers should be

triggered when the sensor receives a matching event.

This allows for easy integration of multiple event sources

and event controllers and provides a way to automate

complex workflows based on event driven triggers.

EventBus: An EventBus is a messaging infrastructure responsible for receiving, storing, and routing events

between different system components. It allows Argo

Events to decouple event sources, sensors, and

controllers and provides a way to distribute events

between them asynchronously.

The EventBus can be implemented using various

messaging technologies like Apache Kafka, NATS, or

AWS SNS/SQS. EventBuses allow for high scalability

and fault tolerance, as events can be distributed across

multiple nodes and persisted to storage for later

consumption.

Argo Events provides a pluggable architecture for

EventBuses, which allows users to choose the messaging

technology that best fits their needs. EventBuse can be

configured with YAML manifests, which define the

messaging infrastructure to use and any credentials or

other settings required to connect to it.

Currently, the EventBus in Argo Events is backed by

 NATS (https://docs.nats.io/), which provides a reliable and scalable messaging platform for event distribution.

The NATS implementation supports both their NATS

Streaming service and their newer JetStream service. In

the future, Argo Events plans to expand support for

other messaging technologies as well.

An EventBus is namespaced in Kubernetes, meaning

that an EventBus object is required in a namespace for

event sources and event sensors to work. The

recommended practice is to create an EventBus named

default in the namespace. However, you may want to use

a different name or have multiple EventBuses in one

namespace. In that case, you can specify the EventBus

name in the spec of the event source and event sensor

correspondingly. This allows them to find the right

EventBus for event distribution.

Trigger: A trigger is a Kubernetes custom resource that can start a workflow based on a specific event or

set of events. Triggers automate the execution of

workflows based on changes to data or events in the

system and allow for the creation of event driven

workflows.

A trigger comprises two main components: a template

and a set of event dependencies. The template defines

the workflow that should be executed when the trigger

is activated and includes the workflow specification and

any input parameters that should be passed to the

workflow. The event dependencies specify the set of

events that must occur before the trigger can be

activated.

Several types of event dependencies can be used in a

trigger, including Kubernetes events, Argo Events, and

webhook events. Kubernetes events can trigger

workflows based on resource changes in the Kubernetes

cluster, such as creating or deleting a pod. Argo Events

can be used to trigger workflows based on events

generated by Argo Workflow or Argo Events, such as the

completion of a workflow or the receipt of a custom

event. Webhook events can be used to trigger workflows

based on HTTP requests, such as a POST request to an

API endpoint.

In short, triggers provide a powerful mechanism for

automating workflows based on events in the system.

They allow the creation of event driven workflows that

can be triggered automatically based on changes to data

or events. They also provide a way to simplify complex

workflows and reduce the need for manual intervention.

The platform can be visualized from the following

architecture diagram, which comprises several key

components, including event sources, sensors, buses, and

controllers, as shown:

[image: Image 34]

 Figure 7.1: Argo Events architecture

Event sources generate events in the system and can

include various sources, such as Kubernetes events,

webhook events, or custom events generated by other

systems. Event sensors detect and filter events from event

sources and can include various sensors, such as Cron

sensors, HTTP sensors, or AWS CloudWatch sensors.

EventBuses provides a messaging infrastructure for

distributing events between components, allowing for

reliable and scalable event distribution across the entire

system. Event controllers are responsible for triggering

workflows based on system events. They can include built-in

controllers, such as the Workflow Controller, and custom

controllers defined by users.

Installing Argo Events in the Kubernetes cluster

Before installing Argo Events, we must prepare a Kubernetes

environment with sufficient resources and components. This

setup will serve as our foundation for working with Argo

Events and exploring its capabilities. We will use minikube as our local Kubernetes cluster, which provides a lightweight

and easy-to-use development environment. Additionally, we

will enable the Ingress addon and install Argo Workflows, as

we will be using these components later for event-driven

automation as follows:

Environment setup

The following steps are involved in the environment

setup:

1. Start the minikube cluster as follows:

> minikube start --memory=2096 --cpus=2 --

kubernetes-version=1.23.1 --driver=docker --profile

Argo Events-cluster

> minikube addons enable ingress --profile Argo

Events-cluster

2. We are enabling the Ingress. So, we will trigger an

Argo Workflow with Argo Events, so we need to

install the Argo Workflow in the same cluster as

follows:

> kubectl apply -n argo -f resources/argo-

workflows/install.yaml

This setup provides a foundation for working with

Argo Events and ensures all necessary components

are in place for the examples and exercises that

follow in the chapter.

Argo Events cluster wide installation: The cluster wide installation allows Argo Events to be deployed

across multiple namespaces in a Kubernetes cluster,

making it easier to manage and scale. This installation

method

also

enables

cross

namespace

event

communication and sharing of event sources and

sensors.

The following steps and instructions are required to

install Argo Events cluster wide:

1. Create a namespace named Argo Events with the

following command:

> kubectl create namespace Argo Events

2. To deploy Argo Events with a validating admission

controller, use the following command from the root

folder of this book’s source code:

> kubectl apply -f resources/Argo Events/install.yaml

This

command

will

set

up

the

necessary

ServiceAccounts, ClusterRoles, and Controllers for

the Sensor, EventBus, and EventSource components

of Argo Events.

3. Deploy the EventBus as follows:

> kubectl apply -n Argo Events -f resources/argo-

events/native.yaml

In production, you should focus on a few things to

adjust

based

on

the

requirements,

like

containerTemplate, CPU and memory, persistence,

and antiAffinity.

Here is what the native yaml file looks like:

1. apiVersion: argoproj.io/v1alpha1

2. kind: EventBus

3. metadata:

4. name: default

5. spec:

6. nats:

7. native:

8. # Optional, defaults to 3. If it is < 3, set it to 3,

that is the minimal requirement.

9. replicas: 3

10. # Optional, authen strategy, "none" or

"token", defaults to "none"

11. auth: token

12. # containerTemplate:

13. # resources:

14. # requests:

15. # cpu: "10m"

16. # metricsContainerTemplate:

17. # resources:

18. # requests:

19. # cpu: "10m"

20. # antiAffinity: false

21. # persistence:

22. # storageClassName: standard

23. # accessMode: ReadWriteOnce

24. # volumeSize: 10Gi

4. Deploy sensor-rbac as follows:

> kubectl apply -n Argo Events -f resources/Argo

Events/sensor-rbac.yaml

5. In the sensor-rbac.yaml file, the most important

glue is the ServiceAccount metadata name as

follows:

1. apiVersion: v1

2. kind: ServiceAccount

3. metadata:

4. name: manage-workflow-sa

5. snip…

6. Deploy the workflow-rbac as follows:

> kubectl apply -n Argo Events -f resources/Argo

Events/workflow-rbac.yaml

7. The next item is to deploy the webhook as follows:

> kubectl apply -n Argo Events -f resources/Argo

Events/webhook-eventsource.yaml

8. Deploy sensor as follows:

> kubectl apply -n Argo Events -f resources/Argo

Events/sensor.yaml

A

few

items

are

most

important

here.

serviceAccountName: manage-workflow-sa must match with the serviceAccountName we defined in

sensor-rbac.yaml as follows:

1. apiVersion: argoproj.io/v1alpha1

2. kind: Sensor

3. metadata:

4. name: webhook

5. spec:

6. template:

7. serviceAccountName: manage-workflow-sa #

Attention 1

8. dependencies:

9. - name: workflow-depends-on-this-trigger #

Attention 2

10. eventSourceName: webhook

11. eventName: webhookevent # Attention 3

12. triggers:

13. - template:

14. name: webhook-workflow-trigger

15. k8s:

16. snip…

17. parameters:

18. - src:

19. dependencyName: workflow-depends-

on-this-trigger # Attention 2

20. dataKey: body

21. dest:

spec.arguments.parameters.0.value

9. Finally, deploy the webhook-eventsource.yaml as

follows:

> kubectl apply -n Argo Events -f resources/Argo

Events/webhook-eventsource.yaml

In this file, closely look at the webhookevent. Here,

you need to specify the port, endpoint, etc. as follows:

1. apiVersion: argoproj.io/v1alpha1

2. kind: EventSource

3. snip…

4. webhook:

5. webhookevent:# Attention 3

6. snip…

After deploying everything, you can port forward

and use curl to POST a message to the webhook as follows:

> kubectl -n Argo Events port-forward $(kubectl -n

Argo Events get pod -l eventsource-name=webhook -o

name) 13000:13000

> curl -d '{"message":"this is my first webhook"}' -H

"Content-Type: application/json" -X POST

http://localhost:13000/argoeventswebhook

While the cluster-wide installation provides broad access to

Argo Events' capabilities across your entire cluster, you may

want more granular control by limiting the installation to

specific namespaces.

Argo Events namespace installation: For scenarios

requiring stricter resource isolation or multi-tenant

environments, namespace installation offers a more

controlled approach to deploying Argo Events within a

specific namespace in a Kubernetes environment. This

approach involves setting up a service account, Argo

Events-sa, with a normal role assigned to it rather than

a cluster role.

To enable namespace installation, the controller

manager deployment must be executed with the

namespaced flag. Additionally, if the controller is to be

watching a separate namespace, the managed-

namespace flag must be added to the deployment

command, along with the name of the namespace.

For instance, by running the controller manager deployment

with

the

arguments

namespaced

managed-namespace default, the Argo Events

controller will be deployed in the default namespace and

will only monitor events occurring within that

namespace.

This namespace installation method is available in Argo

Events version 1.7 and higher and gives users greater

control over where and how the tool is deployed in their

Kubernetes environment.

Install with validating admission controller: A

validating admission webhook is a feature in

Kubernetes that allows users to validate and modify

requests to the Kubernetes API server before they

persist in the etcd datastore. The validating webhook

intercepts requests sent to the API server validates

them based on pre-configured rules, and either accepts

or rejects them.

The primary benefit of using a validating admission

webhook is that it enables the enforcement of custom

business rules or policies for Kubernetes objects

dynamically and flexibly. Some specific benefits of using

a validating admission webhook are as follows:

Error notification: When a webhook is configured

to validate incoming requests, it can detect and

reject any errors or misconfigurations in the

request. This can help avoid incorrect data being

saved to the Kubernetes API, which can cause

issues later.

Immutable field validation: Sometimes, we may

want to prevent users from modifying certain fields

in a Kubernetes object. By using a validating

webhook, we can validate incoming requests and

reject any requests that try to modify immutable

fields.

Version compatibility: Validating webhooks can

be used to ensure that incoming requests are

compatible with a specific version of the

Kubernetes API. This can help prevent issues

caused by requests submitted using an older or

incompatible API version.

Consistency and standardization: By using a

validating webhook, we can enforce consistent

standards for Kubernetes objects across our

organization, which can help maintain consistency

and standardization across our infrastructure.

A validating admission webhook can help ensure the

security, stability, and reliability of our Kubernetes

environment by enforcing custom policies and

validating incoming requests.

To install Argo Events with the validating admission

webhook functionality, use the following command,

which applies a pre-configured installation manifest:

> kubectl apply -f resources/Argo Events/install-

validating-webhook.yaml

The install-validating-webhook.yaml file contains

all the necessary configurations and resources

required to set up the validating admission webhook,

including:

The webhook configuration

Required RBAC permissions

Service definitions

TLS certificate settings

This installation method ensures proper validation of

Argo Events resources before they persist in the cluster,

helping

prevent

misconfigurations

and

ensure

compliance with defined policies.

Once you have successfully installed Argo Events, the next step is to make it work with other systems to create

meaningful automation workflows. One of the most powerful

integrations is with Argo Workflows.

Understanding Argo Events integration with

Argo Workflows

Argo Events integrate with Argo Workflows through

triggers, allowing events that Argo Events detect to initiate

Argo Workflows. When Argo Events detects an event, it can

trigger a workflow in Argo Workflows, enabling users to

automate their workflows in response to various events.

To set up this integration, users can configure Argo Events

to use Argo Workflows as triggers. When Argo Events

detects an event, they can initiate a specific workflow in

Argo Workflows, passing any relevant data and parameters

from the event as inputs to the workflow.

Argo Events alone may not be very beneficial. To derive

value from them, they need to be integrated with a platform

capable of doing or executing other processes, such as

workflow steps. To accomplish this, Argo Workflows can be

combined

with

Argo

Events,

orchestrating

parallel

Kubernetes tasks.

This integration enables users to build more sophisticated

workflows triggered by various events, allowing greater

flexibility and automation in their Kubernetes environments.

It also enables users to leverage the power and functionality

of both Argo Events and Argo Workflows, allowing them to

build more complex and powerful automation solutions.

With the basic integration in place, it is crucial to ensure your Argo Events deployment is properly secured before

moving to production use.

Security consideration

Given the extensive integration capabilities and automation features we have discussed, Security should be a top priority

when implementing Argo Events in a production

environment, as it involves handling various event sources,

triggers, and potentially sensitive workflow data. A

comprehensive security strategy must address multiple

aspects, from authentication and network security to secrets

management and monitoring. Since Argo Events integrates

with numerous external services and can trigger automated

workflows, any security vulnerability could potentially impact

not just the event system but the entire application

ecosystem. Therefore, implementing robust security

measures is crucial for maintaining the integrity and safety

of your event-driven automation infrastructure.

Operators must consider several security factors to ensure a

secure deployment and management of Argo Events as

follows:

Focus carefully on the authentication and authorization

mechanisms. Fine tune and review the RBAC to ensure

that only authorized personnel can access and modify

the system.

Network security is paramount. Use TLS encryption on

webhooks. Review all events sources. At this moment,

Argo Event supports events from 20+ event sources.

Evaluate the all-event source network boundary and

secure protocol that makes sense to each item.

Do not ignore the image security like any other

component you are deploying in Kubernetes. Use only

signed images from trusted sources, scan images for

vulnerabilities, and configure pod security policies.

As a best practice, secrets management is essential.

Secure storage and access control measures should be

in place, including limiting access to secrets on a need-

to-know basis.

Logging and monitoring can detect and track security incidents, including audit logging for Kubernetes,

monitoring network traffic, and setting up alerts for

unusual or suspicious behavior. As Argo Events makes

the system event driven, tracking the consequences of

triggers with audit logs is essential.

By considering these security considerations, operators can

ensure a secure deployment of Argo Events and protect

sensitive data. Be aligned with the security posture you have

in your organization.

High availability and disaster recovery

recommendations

The following are the recommendations:

Use a minimum of three replicas of the EventBus:

To ensure that the EventBus is always available, it is

recommended to deploy at least three replicas. This

helps to provide redundancy and ensures that the

EventBus can continue functioning even if one or two

replicas become unavailable.

Use persistent volumes for EventBus: Even though

the EventBus PODs already have a data sync

mechanism, persistent volumes are still recommended

to avoid any event data loss when the PODs crash. An

EventBus with persistent volumes could be configured

with the storageClassName, accessMode, and

volumeSize.

Avoid scheduling multiple replicas on the same

node: Running the EventBus PODs with anti-affinity

could prevent the situation where all PODs are gone

when a disaster happens. Based on the use case, an

EventBus with best effort node anti-affinity or hard

requirement node anti-affinity could be configured.

Use PodDisruptionBudget (PDB): PDB is a Kubernetes feature that helps ensure a certain number

of deployment pods are available. The EventBus service

is essential to EventSource and Sensor Pods; hence, it

would be better to have a PDB to prevent Pod

disruptions. The PDB in Kubernetes states that

maxUnavailable is suitable for a three replica

EventBus thing.

Use multiple replicas of EventSources and

Sensors: To ensure that EventSources and Sensors are

always available, the operator must deploy multiple

replicas. This helps to provide redundancy and ensures

that the EventSources and Sensors can continue

functioning even if one or two replicas become

unavailable.

While having a highly available setup is crucial, it is equally

important to ensure you can effectively monitor your Argo

Events deployment to maintain its reliability and

performance.

Monitoring Argo Events

The Argo Events exports the Prometheus metrics. This

means Argo Events provides built-in support for exporting

metrics to Prometheus, enabling comprehensive monitoring

of your event-driven system. While this monitoring feature

was in alpha state at the time of writing (indicating it was

still under development and subject to changes), it already

implements monitoring for the four golden signals of

observability, which are the key metrics that provide

essential insights into system health and performance.

The four golden signals are a set of key performance

indicators (KPIs) used in site reliability engineering (SRE) to monitor and analyze the performance of a system.

The four golden signals are:

Latency: This measures the time it takes for a system to respond to a request. High latency can indicate that

the system is experiencing performance issues. The

following are the relevant metrics:

argo_events_event_processing_duration_milli

seconds

argo_events_action_duration_milliseconds

Traffic: This measures the amount of traffic or

requests a system receives. Monitoring traffic can help

identify issues with load balancing and scaling. The

following are the relevant metrics:

argo_events_events_sent_total

argo_events_action_triggered_total

Errors: This measures the error rate that occurs in the

system. A high error rate can indicate bugs or issues

with the system's code. The following are the relevant

metrics:

argo_events_events_processing_failed_total

argo_events_events_sent_failed_total

argo_events_action_failed_total

Saturation: This measures the system's resource

usage level, such as CPU or memory. Saturation can

indicate that the system is running out of resources

and may need to be scaled up. The following is the

relevant metric:

argo_events_service_running_total

All other vital metrics like user metrics, EventSource, Sensor,

EventBus, and controller metrics are exported.

Note: Follow the latest documentation to grab the metrics name, as this is a high velocity project. The metrics can be changed or added more in

various versions.

With proper monitoring in place using these metrics, you will

have comprehensive visibility into your event-driven

system's health and performance. This completes our

exploration of Argo Events' core capabilities and operational

considerations.

Conclusion

Throughout this chapter, we have examined how Argo

Events serves as a powerful tool that enables event-driven

architecture and automation for cloud native applications.

From its fundamental architecture to monitoring capabilities,

we have seen how each aspect contributes to creating

robust automated workflows. It provides a flexible and

scalable solution to streamline the execution of complex

workflows in a distributed system. The key features of Argo

Events, including its event sources, sensors, and workflows,

make it easy to manage and monitor complex event-driven

architectures.

This chapter explored the basics of Argo Events and

demonstrated how to create event-driven architectures using

this powerful tool. We also discussed HA and DR for Argo

Events, which can help platform engineers build robust and

reliable systems. Argo Events is an excellent choice for

developers looking for a powerful, easy-to-use, scalable,

event-driven architecture tool for their cloud native

applications.

In the next chapter, we will discuss Argo Rollouts, which adds

advanced deployment capabilities to Kubernetes. We will

cover progressive delivery strategies like blue-green and

canary deployments, along with integration with service

meshes and ingress controllers for advanced traffic routing.

Readers will understand how to use Argo Rollouts to

implement sophisticated deployment strategies that

minimize risk and maximize reliability when releasing new versions of your applications.

CHAPTER 8

Getting Started with Argo

Rollouts

 Programmers do not burn out on hard work; they burn out on

 change-with-the-wind directives and not shipping.

 -Mark Berry

Introduction

Deploying updates while maintaining a seamless user

experience can pose challenges. Although Kubernetes

provides a built-in rollout feature for deployments, it lacks

certain capabilities like blue-green deployments, canary

deployments, and integration with service meshes and

ingress controllers for advanced traffic routing to facilitate

progressive delivery. Progressive delivery involves a

controlled release of product updates based on metric

analysis. To address these limitations, Argo Rollouts offer a

Kubernetes controller and a set of CRDs that enhance

deployment capabilities, including blue-green, canary,

canary analysis, experimentation, and progressive delivery

features.

This chapter aims to introduce progressive delivery, provide practical instructions for local deployment of Argo Rollouts,

and cover advanced topics like fine-grained, weighted traffic

shifting, automated rollbacks and promotions, and

integration with service meshes like Istio using Argo Rollouts.

To help you navigate through these concepts effectively, let

us first look at how this chapter is organized and what you

can expect to learn in each section.

Structure

We will progress through the following topics in a logical

sequence, building your understanding from fundamentals to

advanced implementations:

• Concepts in Argo Rollouts

• Progressive delivery

• Deployment strategies

• Argo Rollouts architecture

• Installing Argo Rollouts in the Kubernetes cluster

• Argo Rollouts kubectl plugin installation

• Progressive delivery with Argo Rollouts

Objectives

With this structure in mind, let us clearly define what you will

achieve by the end of this chapter. This chapter will provide

an overview of Argo Rollouts, including its key concepts and

deployment strategies. We will explore the architecture of

Argo Rollouts and the process of installing it in a Kubernetes

cluster. Additionally, we will discuss the installation of the

Argo Rollouts kubectl plugin and its usage. Finally, we will

discuss progressive delivery with Argo Rollouts, highlighting

the benefits it offers and the best practices for implementing

it.

By the end of this chapter, readers will have a solid understanding of Argo Rollouts and be equipped with the

knowledge needed to deploy and manage applications using

progressive delivery techniques effectively.

Concepts in Argo Rollouts

A Rollout is a process of deploying a new version of an

application or service to an environment. The primary goal of

a rollout is to minimize the risk of downtime or other issues

that could impact users. To achieve this goal, Rollouts often

involve deploying the new version of the application to a

subset of the production environment, such as a small group

of users or a few servers. This approach allows teams to

monitor the performance and stability of the new version in a

controlled environment and to detect and address any issues

before they affect a more significant number of users.

Rollouts can be performed using various deployment

strategies, each with its own benefits and trade-offs. For

example, blue-green deployments involve deploying the new

version of the application to a separate, identical

environment and then switching traffic to the new

environment once it has been tested and validated. Canary

releases involve deploying the new version to a small

percentage of users and then gradually increasing the

percentage of users over time. Rolling updates involve

deploying the new version to a subset of servers and then

gradually updating the rest of the servers.

Rollouts are a critical component nowadays. They allow

teams to deploy changes quickly and safely to production

environments and deliver new features and improvements to

users while minimizing the risk of disruption.

Kubernetes provides built-in support for Rollouts through its

deployment resource, enabling teams to manage the

deployment of their applications declaratively. Argo Rollouts

is a Kubernetes controller and set of CRDs that provides advanced deployment capabilities such as canary releases,

blue-green deployments, and other deployment strategies.

Argo Rollouts extends the functionality of Kubernetes built-in

deployment resources by adding additional features to

automate the deployment process and reduce the risk of

production issues.

Argo Rollouts is progressive delivery, which is a process that

enables teams to safely deploy new versions of applications

to production by gradually rolling out new changes to a

subset of users or servers before making them available to

everyone. This approach allows developers to test new

features in production while minimizing the risk of disrupting

the entire system.

Argo Rollouts also integrates with other Kubernetes tools,

such as Istio, and Prometheus, NGINX ingress controllers, making it easy to use with existing Kubernetes workflows.

Further, it provides a rich set of metrics and analytics that

can be used to monitor and optimize the deployment

process.

In short, Argo Rollouts provides advanced deployment

capabilities that extend the functionality of Kubernetes' built-

in deployment resource, enabling teams to manage the

deployment of their applications safely and effectively.

Progressive delivery is a crucial feature of Argo Rollouts,

which allows developers to test new features in production

while minimizing the risk of disruptions.

Progressive delivery

Progressive delivery is a software delivery approach that

enables teams to introduce new features and changes safely

and incrementally to a production environment. Progressive

delivery is based on the idea of gradually rolling out new

changes to a subset of users or servers and monitoring their

impact and performance before making them available to everyone.

The progressive delivery approach is designed to minimize

the risk of downtime or other issues that could impact users

while still enabling teams to deliver new features and

improvements quickly. By gradually rolling out changes,

teams can detect and address any issues before they affect

a more significant number of users. This approach also

enables teams to test new features in a production

environment, which can provide more accurate feedback on

how users interact with the changes.

Progressive delivery can be implemented using various

deployment strategies, such as canary releases, blue-green

deployments, and rolling updates. These strategies enable

teams to introduce changes gradually to production while

maintaining a high level of control over the deployment

process.

One of the critical benefits of progressive delivery is that it

enables teams to deliver new features and improvements to

users more quickly and with greater confidence. By gradually

rolling out changes, teams can ensure that new features are

stable and performant before making them available to a

larger audience. This approach can also help teams reduce

the risk of downtime or other issues impacting users,

improving their application's overall reliability and

availability.

Argo Rollouts is a Kubernetes controller that enables teams

to safely introduce new features and changes to a production

environment by gradually rolling them out to a subset of

users or servers. This ensures that the impact and

performance of these changes can be monitored before they

are made available to everyone. Argo Rollouts comes with a

set of CRDs that make it easier to manage and deploy these

changes effectively.

[image: Image 35]

Argo Rollouts supports a variety of progressive delivery

strategies, such as canary releases, blue-green deployments,

and rolling updates. Canary releases, for example, involve

deploying a new version of an application to a small

percentage of users or servers and then gradually increasing

the percentage over time. This approach allows teams to test

new features in production while minimizing the risk of

disruptions or downtime. Argo Rollouts also provides rich

features and tools to support progressive delivery, such as

automated analysis and promotion, automated rollbacks,

and customizable metrics and analytics. Teams can use

these features to automate the deployment process and

reduce the risk of production issues while still delivering new

features and improvements quickly and with greater

confidence. The following figure illustrates the progressive

delivery:

 Figure 8.1: Progressive delivery

In summary, by using progressive delivery with Argo

Rollouts, teams can deliver new features and improvements

quickly and with greater confidence while still maintaining a

high level of control over the deployment process.

To implement progressive delivery effectively, teams need to

understand and choose the right deployment strategies for

their specific needs. Let us explore the various deployment

strategies available in Argo Rollouts and how each one serves different use cases.

Deployment strategies

Deployment strategies are crucial in orchestrating the rollout

and scaling applications within a cluster. The available

strategies for deploying applications on Kubernetes are

numerous, and their implementation may vary depending on

the application's particular requirements. The

implementations of these strategies differ across tooling. To

clarify how the Argo Rollouts will behave, here are the

descriptions of the various deployment strategies and

implementations offered by the Argo Rollouts.

Recreate deployment

The Recreate deployment strategy involves the destruction

of the current pods of an application, followed by the

creation of new ones utilizing an updated image. Downtime

will be obvious during this process as the old pods are

terminated and new ones are spawned.

With Recreate deployment, the new version of the

application replaces the old one entirely, without any gradual

transition or rolling update between the two versions. While

this strategy may simplify the deployment process by

eliminating compatibility concerns between old and new

versions, the downtime may be more extended.

Recreate deployment may be a suitable option for

applications that can tolerate downtimes, such as internal

tools or batch jobs, or for situations where an application

overhaul is necessary. However, this strategy is generally

only recommended for some critical applications or those

requiring high availability, as any downtime may result in

service disruption and revenue loss.

Rolling update

A rolling update is a deployment strategy utilized in

Kubernetes that gradually replaces the old version of an

application with the new version. This process involves

scaling down the old version while simultaneously scaling up

the new version, thereby maintaining the overall application

count. During a rolling update, a specific number of pods will

be replaced at a time, allowing for a gradual transition

between the old and new versions. This helps to minimize

any potential service disruption, allowing for a smoother

transition between versions.

The rolling update strategy is the default deployment

strategy for the Kubernetes Deployment object. This can be

used for applications that require high availability and cannot

tolerate significant downtime during deployment.

Blue-green

This strategy involves deploying a completely new version of

the application alongside the existing version and then

switching traffic over to the new version once it has been

tested and verified to be working correctly. If any issues are

found, traffic can be switched back to the old version until

they are resolved.

Blue-green deployment is not always feasible or practical for

some organizations and applications. Some of the common

difficulties encountered include cost constraints due to

maintaining two identical production environments,

challenges in ensuring database synchronization between

blue and green environments, difficulties in managing

session persistence during switching, and issues with

transferring large datasets between the two environments.

Blue-green deployments are not recommended in certain

scenarios. For example, a scenario when schema changes

are too complex to decouple from code changes and sharing

of data stores is not feasible. This requires data changes to be synchronized, adding complexity and risk to the

deployment. Another scenario is when the application must

be deployment aware, which introduces additional

complexity and risk. Finally, using blue-green deployments

with commercial off-the-shelf applications with a predefined

update process that is not blue-green deployment friendly

may also introduce unnecessary risk.

These difficulties require careful planning and evaluation

before implementing blue-green deployment as a

deployment strategy. The following figure illustrates blue-

green deployment:

[image: Image 36]

 Figure 8.2: Blue-green deployment

Canary deployment

Canary deployment is a software deployment strategy that

involves rolling out new code changes to a small subset of

users or servers while keeping most users or servers on the

previous version. This approach allows for the gradual

testing of new features or changes, reducing the impact of

potential bugs or issues on a large scale.

Canary deployment typically involves setting up a separate environment, such as testing or staging (or in production

cluster two subsets) environment, where the new changes

are deployed first. Once the changes are deployed to the

canary environment, a small percentage of users or servers

are redirected to this environment. In contrast, most users or

servers remain on the previous version.

The system is closely monitored for any issues or errors

during this initial testing phase. If no significant issues are

detected, the percentage of users or servers redirected to

the canary environment can be gradually increased.

Conversely, if issues are detected, the changes can be rolled

back before they impact most users or servers. Canary

deployment can be used to test a wide range of changes,

including new features, bug fixes, and infrastructure

updates. It is beneficial for changes that may significantly

impact system performance, stability, or security.

One key advantage of canary deployment is that it allows for

fast and targeted testing of new changes. Rather than

deploying changes to the entire system simultaneously,

canary deployment enables developers to test changes in a

controlled environment, minimizing the risk of negative

impacts on users or the overall system. In addition, canary

deployment can also help improve a system's overall

reliability and stability. By catching potential issues early on,

developers can address them before they impact most users

or servers. This approach can lead to a more stable and

reliable system overall.

However, the canary deployment also has some potential

drawbacks. Setting up a separate testing environment and

monitoring system performance can require additional time

and resources. Additionally, there is always a risk that issues

may be missed during testing, leading to negative impacts

on users or the whole system.

[image: Image 37]

For minimizing production risk, canary deployment is a

valuable strategy for gradually testing new changes while

minimizing user and system risk. It can help improve an

application’s reliability and stability while enabling

developers to test new features and changes quickly and

effectively. The following figure illustrates canary

deployment:

 Figure 8.3: Canary deployment

A canary release strategy consists of two stages, wherein 10% and 33% of incoming traffic are directed towards the

new version. With Argo Rollouts, it is possible to define the

exact number of stages and percentages of traffic according

to the use case.

Shadow deployment

Shadow deployment is a technique used in Kubernetes to

test new versions of an application without impacting

production traffic. It involves deploying the new version of

the application alongside the existing version but routing the

traffic to the existing version while the new version runs in

the background.

In shadow deployment, the traffic is duplicated between the

old and new versions of the application, with having same

traffic sent to the old version and the same traffic sent to the

new version. The traffic to the new version is as same as the

current version can give the full confidence of the new

environment and can also handle live traffic.

The main benefit of shadow deployment is that it allows for

testing new versions of an application in a real-world

scenario without impacting production traffic and user

experience. It can also help to identify potential issues or

performance bottlenecks in the new version before it is fully

deployed.

A shadow deployment can be implemented using Kubernetes

features such as service mesh or Istio, which allow for more

fine-grained control over traffic routing and can facilitate the

gradual transition from the old version to the new version. It

is a valuable technique for organizations that value the

ability to safely test and validate new versions of an

application before deploying them to production.

To understand how Argo Rollouts enables these various

deployment strategies, we need to examine its architectural

[image: Image 38]

components. While powerful, the architecture of Argo

Rollouts is straightforward.

Argo Rollouts architecture

The architecture of the Argo Rollouts is not complex. The

Argo Rollouts controller works by creating CRDs that

encapsulate the various stages of deployment. These CRDs

can be used to define complex rollout strategies that involve

multiple steps, each with its own set of conditions and

constraints.

The following figure shows the architecture of Argo Rollouts:

 Figure 8.4: Argo Rollouts architecture

Argo Rollouts controller

Argo Rollouts is a Kubernetes controller responsible for

monitoring the cluster for any changes in the rollout resource

type. When a rollout resource is modified, the controller

reads the details of the rollout definition and ensures that

the cluster state matches the desired state as defined in the

rollout specification. The controller updates the underlying

Kubernetes objects, such as ReplicaSets and Services, to

bring the cluster to the desired state.

It is important to note that Argo Rollouts is designed to only respond to changes in the rollout resource and will not

interfere with or react to any changes made to normal

deployment resources. This allows Argo Rollouts to

seamlessly integrate into a Kubernetes cluster that may

deploy applications using alternative methods.

The Argo Rollouts controller is composed of several

components. The main controller monitors the cluster for

events and reacts whenever a resource of type rollout is

changed. It reads all the rollout details and brings the cluster

to the same state described in the rollout definition.

The rollout controller is responsible for handling the rollout

process itself. It creates and manages the rollout objects and

their associated child resources, such as ReplicaSets and

pods. It also manages the traffic routing between the

different versions of the application.

Argo Rollouts also includes several other components that

support the rollout process. The analysis controller is

responsible for analyzing the success or failure of a rollout

based on user defined metrics and thresholds. The

experiment controller is responsible for executing

experiments, such as load testing, for validating a rollout's

success. The metrics server collects and aggregates metrics

about the rollout, and the webhook server handles webhooks

for automating the rollout process.

Rollout resource

The rollout resource is a custom resource introduced by Argo

Rollouts for Kubernetes that is primarily compatible with the

native Kubernetes Deployment resource but with additional

fields that allow for advanced deployment methods such as

canary and blue-green deployments. It enables you to

manage the deployment of your applications with fine-

grained control. It allows you to define different stages,

thresholds, and methods for deploying new versions of your application to production.

The rollout resource is managed by the Argo Rollouts

controller, which responds only to changes made to rollout

sources and performs no action on normal deployment

resources. To use Argo Rollouts to manage your

deployments, you need to migrate your deployments to

Rollouts. The full specification of the rollout resource can be

found in the Argo Rollouts documentation.

Ingress/service in Argo Rollouts

Argo Rollouts utilizes the standard Kubernetes service

resource with additional metadata required for management

to direct incoming traffic from live users to the appropriate

version within the cluster.

Argo Rollouts provides flexibility in terms of networking

options. During a rollout, it is possible to have different

services that are designed to route traffic only to the new

version, only to the old version, or both. Specifically, Argo

Rollouts offers support for various service mesh and ingress

solutions for canary deployments, allowing for traffic splitting

based on specific percentages rather than simply balancing

based on pod counts. Further, using multiple routing

providers simultaneously in Argo Rollouts is also possible.

AnalysisTemplate and AnalysisRun in Argo

Rollouts

AnalysisTemplate and AnalysisRun are used to automate

the process of verifying the health of a new deployment.

An AnalysisTemplate is a Kubernetes CRD that defines how

to perform analysis on a new version of a deployment. It

contains a set of metrics that are evaluated during an

AnalysisRun to determine whether the deployment is

healthy. These metrics can be anything from Kubernetes probes to custom scripts.

An AnalysisRun is an instance of an AnalysisTemplate

that is run during a rollout. It is created by the controller and

runs automatically after the new version of the deployment

is fully rolled out. During an AnalysisRun, the controller

collects metrics from the running pods and evaluates them

against the metrics defined in the corresponding

AnalysisTemplate. Based on the result of this evaluation,

the controller decides whether the deployment's new version

is healthy.

The controller proceeds with the rollout process if the new

version is deemed healthy. If the new version is unhealthy,

the controller can roll back to the previous version or stop

the rollout altogether. This automated analysis and decision

making process helps ensure that only healthy deployments

are promoted to production, reducing the risk of downtime or

service disruptions.

Metric providers in Argo Rollouts

Metric providers are responsible for collecting and

aggregating metrics to analyze a rollout's success or failure.

Several metric providers are available, each with its features

and capabilities.

One commonly used metric provider is Prometheus, an open

source monitoring system that collects and stores time

series data. Prometheus can monitor various systems and

services, including Kubernetes clusters and individual pods.

In Argo Rollouts, Prometheus is often used to collect metrics

related to service performance, such as response times,

error rates, and request volumes.

Another popular metric provider is Datadog, a cloud based

monitoring and analytics platform. Datadog can collect

metrics from various sources, including Kubernetes clusters,

cloud infrastructure, and custom applications. In Argo Rollouts, Datadog is often used to monitor application

performance, such as request latency, database queries, and

user behavior.

In addition to Prometheus and Datadog, Argo Rollouts

support other metric providers such as CloudWatch, New

Relic, Stackdriver, Kayenta, Graphite, InfluxDB, and

Wavefront. Each provider has its own set of configuration

options and settings, which can be customized to meet the

specific needs of a deployment. One could leverage

Kubernetes Job to execute an analysis in addition to other

use cases. The analysis process can involve an HTTP request

to an external service to obtain the measurement.

Metric providers play a crucial role in the success of a rollout

by providing real-time insights into application performance

and user behavior. By using a variety of metrics providers,

Argo Rollouts users can gain a comprehensive view of their

application's health and make data driven decisions about

when to promote new versions and roll back faulty ones.

Argo Rollouts command line interface

Argo Rollouts provide a kubectl plugin that augments the

experience of working with Rollouts, experiments, and

analysis resources from the command line. This plugin allows

for a graphical representation of Argo Rollouts resources. It

enables users to carry out routine operations such as

promoting or retrying on these resources directly from the

command line.

The kubectl plugins are an extension mechanism for the

kubectl command line tool that enhances its capabilities with

additional functionalities. Typically, these plugins are

employed to automate repeatable workflows and expand

kubectl's functionality when interacting with a Kubernetes

cluster.

[image: Image 39]

Argo Rollouts user interface

Complementing the CLI capabilities we just discussed, Argo

Rollouts provides an intuitive user interface for those who

prefer a visual approach to monitoring and managing

rollouts. With the Argo Rollouts kubectl plugin we just

installed, getting a local UI dashboard to visualize the

Rollouts is straightforward.

To initiate the dashboard, execute the command kubectl

argo rollouts dashboard within the namespace that stores

the Rollouts. Once launched, navigate to

http://localhost:3100 to access the user interface and visualize the rollouts.

The list view is illustrated in the following figure:

 Figure 8.5: Argo Rollouts list view

The individual rollout view is shown in the following figure:

[image: Image 40]

 Figure 8.6: Argo Rollouts details view

Installing Argo Rollouts in the Kubernetes

cluster

Now that we understand the theoretical foundations of Argo

Rollouts, let us put this knowledge into practice. We will start

with installation and work our way through increasingly

complex deployment scenarios. By following these hands-on

examples, you will gain practical experience with each

concept we have discussed.

First, let us set up Argo Rollouts in our environment. The

installation process is straightforward and consists of several

key steps.

To determine the name of the installation namespace,

typically argo-rollouts, and after creating the namespace.

You can download the http://bit.ly/3ZBaQyI, the latest manifest from Argo Rollouts GitHub release pages.

Let us begin by setting up our development environment. We

will need a Kubernetes cluster to work with, so we will start

by creating a minikube instance with sufficient resources to

run our examples. The following command creates a new

minikube cluster with the necessary specifications:

> minikube start --memory=2096 --cpus=2 --kubernetes-

version=1.23.1 --driver=docker --profile argo-rollouts-

cluster

Create a namespace for Argo Rollouts by running the

following command:

> kubectl create namespace argo-rollouts

Install the Argo Rollouts in the argo-rollouts namespace by running the following command (a resource file is copied for

this book in book source code resources/argo-

rollouts/install.yaml location):

> kubectl apply -n argo-rollouts -f resources/argo-

rollouts/install.yaml

Argo Rollouts kubectl plugin installation

Although it is optional, the kubectl plugin can be useful in

managing and visualizing rollouts directly from the command

line. Execute the following code on CLI:

1. brew install argoproj/tap/kubectl-argo-rollouts

Verify kubectl plugin installation using the following code:

> kubectl argo rollouts version

kubectl-argo-rollouts: v1.3.2+f780534

BuildDate: 2022-12-15T16:06:35Z

GitCommit:

f780534ebd66a4047c813ddd7841be93b122c3e6

GitTreeState: clean

GoVersion: go1.18.9

Compiler: gc

Platform: darwin/amd64

This plugin will be used in upcoming sections, so readers

must install it. With Argo Rollouts and its kubectl plugin

successfully installed, we are now ready to put our

knowledge into practice. In the following sections, we will

walk through practical examples of implementing

progressive delivery using Argo Rollouts, starting with a

basic blue-green deployment scenario and gradually moving

to more advanced configurations. Before that we need to

familiar with one more tool kustomize.

Progressive delivery with Argo Rollouts

Once Argo Rollouts is installed, we can use it to deploy our

application with progressive delivery capabilities. In the

following example, we will use kustomize

(https://kustomize.io/) for simplicity. Readers can quickly install it using the following command:

1. brew install kustomize

In case of other environments, please follow the instructions

as

given

in

the

kustomize

(https://kubectl.docs.kubernetes.io/installation/kusto

mize/) documentation.

Kustomize is a Kubernetes tool that facilitates the

customization, management, and deployment of application

configurations across diverse environments. Its primary

objective is to provide a declarative approach to managing

Kubernetes manifests, simplifying the management of

complex applications with various components and

configurations.

Kustomize enables users to specify a fundamental

configuration, after which they can override or append

configuration

alternatives

depending

on

different

environments or deployments. This strategy ensures that the

configuration

remains

well

organized

and

straightforward to manage while offering flexibility to adapt

to diverse deployment scenarios.

Kustomize

employs

a

straightforward

YAML

based

configuration language to define and handle Kubernetes

objects. It features several functionalities, such as variable substitution, patching, and resource reuse, that streamline

the customization and management of complex application

configurations.

As an open source project maintained by the Kubernetes

community, Kustomize is compatible with Linux, macOS,

and Windows platforms. It is typically used with other

Kubernetes tools, such as Helm and Kubernetes operators,

to

provide

a

comprehensive

end-to-end

application

management solution.

Now that we have our tooling in place, let us implement our

first progressive delivery strategy: a blue-green deployment.

This hands-on example will demonstrate how to safely

update an application while maintaining zero downtime. We

will follow a modified version of the official Argo demo that is

been adapted to work well with minikube and recent NGINX

changes.

Blue-green deployment with Argo Rollouts

To demonstrate blue-green deployment with Argo Rollouts,

we can follow the official Argo demo, which can be found

here (http://bit.ly/3kK927U). However, while writing this book, some adjustments were needed in a few resources to

make it work with minikube and recent ngnix changes that make the Argo demo a bit outdated.

You will find code resources of this book in the

resources/argo-rollouts/example directory.

Let us see what we have in the blue-green directory:

• bluegreen-ingress.yaml

• bluegreen-preview-ingress.yaml

• bluegreen-preview-service.yaml

• bluegreen-rollout.yaml

• bluegreen-service.yaml

• kustomization.yaml

bluegreen-ingress.yaml and bluegreen-preview-

ingress.yaml are Kubernetes YAML manifest file that create

an Ingress resource for an application called argo-rollouts-bluegreen-demo, here is bluegreen-ingress.yaml file

content as shown in the following code:

1. apiVersion: networking.k8s.io/v1

2. kind: Ingress

3. metadata:

4. name: argo-rollouts-bluegreen-demo

5. annotations:

6. ingress.kubernetes.io/proxy-body-size: 100M

7. kubernetes.io/ingress.class: nginx

8. ingress.kubernetes.io/app-root: /

9. spec:

10. rules:

11. - host: blue-green.dev.argobook.local

12. http:

13. paths:

14. - path: /

15. pathType: Prefix

16. backend:

17. service:

18. name: argo-rollouts-bluegreen-demo

19. port:

20. number: 80

The bluegreen-preview-ingress.yaml content is shown in the following code:

1. apiVersion: networking.k8s.io/v1

2. kind: Ingress

3. metadata:

4. name: argo-rollouts-bluegreen-demo-preview

5. annotations:

6. ingress.kubernetes.io/proxy-body-size: 100M

7. kubernetes.io/ingress.class: nginx

8. ingress.kubernetes.io/app-root: /

9. spec:

10. rules:

11. - host: blue-green-preview.dev.argobook.local

12. http:

13. paths:

14. - path: /

15. pathType: Prefix

16. backend:

17. service:

18. name: argo-rollouts-bluegreen-demo-preview

19. port:

20. number: 80

The dissimilarity between the two files is in the 11th line,

which is the host, and the 18th line, the service name. The

secondary preview ingress facilitates the upcoming release

candidate, so anyone can check and test the service after

deployment. Specifically, it is recommended to exclusively

expose the initial ingress to the actual client, designated as

blue-green.dev.argobook.local URL.

As we are going to deploy and test this demo in minikube,

we need to add these DNS entries in the /etc/hosts file to

navigate through the browser or we can add a host header if

we use the curl command. So, you need to add the following

two entries in the /etc/hosts line 9 and 10. Take a look at the following code:

1. ##

2. # Host Database

3. #

4. # localhost is used to configure the loopback interface

5. # when the system is booting. Do not change this entry.

6. ##

7. 127.0.0.1 localhost

8. # book

9. 127.0.0.1 blue-green.dev.argobook.local

10. 127.0.0.1 blue-green-preview.dev.argobook.local

Now, examine the bluegreen-preview-service.yaml file,

this file has nothing special related to Argo Rollouts. A typical

Kubernetes Service kind file most importantly has a selector,

in this case, app: argo-rollouts-bluegreen-demo. We

have another similar file bluegreen-service.yaml. Now,

Take a look at the following code:

1. apiVersion: v1

2. kind: Service

3. metadata:

4. name: argo-rollouts-bluegreen-demo-preview

5. labels:

6. app: argo-rollouts-bluegreen-demo

7. spec:

8. ports:

9. - port: 80

10. targetPort: http

11. protocol: TCP

12. name: http

13. selector:

14. app: argo-rollouts-bluegreen-demo

The most interesting file is bluegreen-rollout.yaml. The number of desired pods is defined in line 8 replicas: 3 . In line 9 revisionHistoryLimit: 1 is the number of old

ReplicaSets to retain the default value is 10. In line 13

template describes the pods that will be created. Same as

Kubernetes deployment. The blue-green update strategy is

defined in line 30. activeService is a reference to a service that the rollout modifies as the active service, and

previewService is the name of the service that the rollout

modifies as the preview service.

The full specification of rollout kind can be found at

https://argo-

rollouts.readthedocs.io/en/stable/features/specificatio

n/ as shown in the following code:

1. apiVersion: argoproj.io/v1alpha1

2. kind: Rollout

3. metadata:

4. name: argo-rollouts-bluegreen-demo

5. labels:

6. app: argo-rollouts-bluegreen-demo

7. spec:

8. replicas: 3

9. revisionHistoryLimit: 1

10. selector:

11. matchLabels:

12. app: argo-rollouts-bluegreen-demo

13. template:

14. metadata:

15. labels:

16. app: argo-rollouts-bluegreen-demo

17. spec:

18. containers:

19. - name: argo-rollouts-bluegreen-demo

20. image: argoproj/rollouts-demo:green

21. imagePullPolicy: Always

22. ports:

23. - name: http

24. containerPort: 8080

25. protocol: TCP

26. resources:

27. requests:

28. memory: 32Mi

29. cpu: 5m

30. strategy:

31. blueGreen:

32. autoPromotionEnabled: false

33. activeService: argo-rollouts-bluegreen-demo

34. previewService: argo-rollouts-bluegreen-demo-

preview

Another noticeable thing here is that there is no deployment

file. It is possible to use a deployment file by refer is with

WorkloadRef, which holds references to a workload that

provides a pod template. For more details, we will discuss

this in the migration to Argo Rollouts section.

We need to enable the minikube NGINX Ingress controller

add-on to make the NGINX work in the minikube

environment. minikube made it easy with the following

command:

> minikube addons enable ingress --profile argo-rollouts-

cluster

It is time to apply to minikube. We can apply each file one

by one or use kustomize to apply them all with one

command:

> cd resources/argo-rollouts/example

> kustomize build blue-green | kubectl apply -f -

service/argo-rollouts-bluegreen-demo created

service/argo-rollouts-bluegreen-demo-preview created rollout.argoproj.io/argo-rollouts-bluegreen-demo created

ingress.networking.k8s.io/argo-rollouts-bluegreen-demo

created

ingress.networking.k8s.io/argo-rollouts-bluegreen-demo-

preview created

We can monitor the status using the command line. Here is

an example code snippet:

> kubectl argo rollouts get rollout argo-rollouts-

bluegreen-demo --watch

Name: argo-rollouts-bluegreen-demo

Namespace: default

Status: P Healthy

Strategy: BlueGreen

Images: argoproj/rollouts-demo:green (stable, active)

Replicas:

Desired: 3

Current: 3

Updated: 3

Ready: 3

Available: 3

NAME KIND STATUS

AGE INFO

⟳ argo-rollouts-bluegreen-demo Rollout

P Healthy 2m50s

└── # revision:1

└── argo-rollouts-bluegreen-demo-65985b8b49

ReplicaSet P Healthy 2m50s stable,active

├──□ argo-rollouts-bluegreen-demo-65985b8b49-476hw

Pod P Running 2m50s ready:1/1

├──□ argo-rollouts-bluegreen-demo-65985b8b49-fcglk

Pod P Running 2m50s ready:1/1

[image: Image 41]

└──□ argo-rollouts-bluegreen-demo-65985b8b49-mxjhh Pod

P Running 2m50s ready:1/1

We can use the Argo Rollouts UI to access it by running the

following command:

> kubectl argo rollouts dashboard

INFO[0000] Argo Rollouts Dashboard is now available at

http://localhost:3100/rollouts

Navigate to http://localhost:3100/rollouts by clicking on

the link from previous command output or entering the URL

in the browser address bar. The resulting page will look like

the image below:

 Figure 8.7: Web UI view of argo-rollouts-bluegreen-demo

By clicking on the argo-rollouts-bluegreen-demo panel

you can see the details view of it as shown in the following

figure:

[image: Image 42]

 Figure 8.8: Detail view of argo-rollouts-bluegreen-demo

Currently, the image argoproj/rollouts-demo:green

tagged is deployed, which is our active service. We can

check the service output by navigating. However, there is

one more thing to do if you are using Docker desktop in

macOS to run minikube. We need to keep running the

following command in a terminal to port forwarding work:

> minikube tunnel --cleanup --profile argo-rollouts-cluster

The Argo demo service is very interactive, it has features like

latency injection and error injection. Before talking about

that feature let us deploy the green image now. The UI is

shown in the following figure:

[image: Image 43]

 Figure 8.9: Interactive demo UI

Now, we can update the rollout, by deploying blue images.

The Argo Rollouts demo application provides several tagged

versions (green, blue, and red) that simulate different

implementations of the same service. Each version has

distinct visual and behavioral characteristics:

• The green version (argoproj/rollouts-demo:green)

represents our initial deployment, displaying a green

user interface and baseline functionality

•

The

blue

version

(argoproj/rollouts-demo:blue)

represents an updated version with a blue interface and

additional features:

o Enhanced UI elements

o Built-in latency simulation controls

o Error rate adjustment capabilities

o Real-time metrics visualization

These different versions allow us to clearly demonstrate the

deployment process, as the color change provides an

immediate visual indication of which version is serving

traffic. In a real-world scenario, these would represent different versions of your application with actual feature

changes or improvements.

Let us update our deployment from green to blue. To do this,

modify the bluegreen-rollout.yaml file line 20 as shown in the

following code snippet:

20. image: argoproj/rollouts-demo:blue

And apply the resource again as shown in the following code

snippet:

> kustomize build blue-green | kubectl apply -f -

service/argo-rollouts-bluegreen-demo unchanged

service/argo-rollouts-bluegreen-demo-preview unchanged

rollout.argoproj.io/argo-rollouts-bluegreen-demo configured

ingress.networking.k8s.io/argo-rollouts-bluegreen-demo

unchanged

ingress.networking.k8s.io/argo-rollouts-bluegreen-demo-

preview unchanged

This change will trigger a blue-green deployment, allowing

us to test the blue version before directing production traffic

to it. The visual change from green to blue makes it easy to

verify which version is currently active and whether our

rollout is proceeding as expected.

When we later test rollback scenarios, we'll introduce the red

version (argoproj/rollouts-demo:red), which simulates a

problematic deployment that we might need to roll back

from. This version includes:

• Intentional performance degradation

• Higher error rates

• Visual indicators showing it is the problematic version

Understanding these version differences helps us better

appreciate how Argo Rollouts manages the deployment

process and handles both successful updates and rollbacks.

[image: Image 44]

We can watch the status with command line using the

following code snippet:

> kubectl argo rollouts get rollout argo-rollouts-

bluegreen-demo --watch

Name: argo-rollouts-bluegreen-demo

Namespace: default

Status: Paused

Message: BlueGreenPause

Strategy: BlueGreen

Images: argoproj/rollouts-demo:blue (preview)

argoproj/rollouts-demo:green (stable, active)

Replicas:

Desired: 3

Current: 6

Updated: 3

Ready: 3

Available: 3

NAME KIND STATUS

AGE INFO

⟳ argo-rollouts-bluegreen-demo Rollout

P Paused 44m

├── # revision:2

│ └── argo-rollouts-bluegreen-demo-5d74664754

ReplicaSet P Healthy 24s preview

│ ├──□ argo-rollouts-bluegreen-demo-5d74664754-5tx7b

Pod P Running 24s ready:1/1

│ ├──□ argo-rollouts-bluegreen-demo-5d74664754-gkdf4

Pod P Running 24s ready:1/1

│ └──□ argo-rollouts-bluegreen-demo-5d74664754-kfcr5

Pod P Running 24s ready:1/1

└── # revision:1

└── argo-rollouts-bluegreen-demo-65985b8b49

[image: Image 45]

ReplicaSet P Healthy 44m stable,active

├──□ argo-rollouts-bluegreen-demo-65985b8b49-476hw

Pod P Running 44m ready:1/1

├──□ argo-rollouts-bluegreen-demo-65985b8b49-fcglk

Pod P Running 44m ready:1/1

└──□ argo-rollouts-bluegreen-demo-65985b8b49-mxjhh Pod

P Running 44m ready:1/1

argo-rollouts-bluegreen-demo from UI is shown in the

following figure:

 Figure 8.10: argo-rollouts-bluegreen-demo from Web UI

At this point the green is still active and serving the traffic,

we verify the newly deployed green service by using direct

browsing http://blue-green-preview.dev.argobook.local.

So, this is our test preview version, in real life the user of this

service still has green. Quality assurance can test it or our

automatic end to end test can run against it and verify, if all

the tests are passed, we are ready to promote it. We can do

it from command line as shown in the following code snippet:

> kubectl argo rollouts promote argo-rollouts-bluegreen-

demo

rollout 'argo-rollouts-bluegreen-demo' promoted

Name: argo-rollouts-bluegreen-demo

Namespace: default

Status: P Healthy

Strategy: BlueGreen

Images: argoproj/rollouts-demo:blue (stable, active)

Replicas:

Desired: 3

Current: 3

Updated: 3

Ready: 3

Available: 3

NAME KIND STATUS

AGE INFO

⟳ argo-rollouts-bluegreen-demo Rollout

P Healthy 49m

├── # revision:2

│ └── argo-rollouts-bluegreen-demo-5d74664754

ReplicaSet P Healthy 6m stable,active

│ ├──□ argo-rollouts-bluegreen-demo-5d74664754-5tx7b

Pod P Running 6m ready:1/1

│ ├──□ argo-rollouts-bluegreen-demo-5d74664754-gkdf4

Pod P Running 6m ready:1/1

│ └──□ argo-rollouts-bluegreen-demo-5d74664754-kfcr5

Pod P Running 6m ready:1/1

└── # revision:1

└── argo-rollouts-bluegreen-demo-65985b8b49 ReplicaSet •

ScaledDown 49m

We can now browse http://blue-

green.dev.argobook.local. The screen appears as shown in the following figure:

[image: Image 46]

[image: Image 47]

 Figure 8.11: Blue is appearing in Web UI

From the Argo Rollouts UI we can do the same by clicking on

Promote as shown in the following figure:

 Figure 8.12: Promote from Web UI by clicking Promote button

[image: Image 48]

Now, let us understand about aborting a rollout. We will

simulate a problematic deployment by updating to the red

version. The red version of our demo application

intentionally includes performance issues and higher error

rates, making it a perfect candidate to demonstrate Argo

Rollouts' rollback capabilities.

The following section delves into the manual termination of a

rollout during an update. To initiate the process, one must

initially deploy a new container version, labeled as red, by

utilizing the set image command. Subsequently, it is

necessary to await the attainment of the paused step in the

rollout process. We will deploy this "problematic" version

using the set image command:

> kubectl argo rollouts set image argo-rollouts-bluegreen-

demo argo-rollouts-bluegreen-demo=argoproj/rollouts-

demo:red

Once deployed, you will notice:

• The preview environment shows the red interface

• The built-in metrics indicate degraded performance

• Error rates are higher than the previous (blue) version

This situation mirrors a real-world scenario where a new

deployment introduces unexpected issues that weren't

caught in testing. We will use this opportunity to

demonstrate how Argo Rollouts helps us quickly recover from

such situations through its rollback capabilities.

Watch the status of rollouts using the following code snippet:

> kubectl argo rollouts get rollout argo-rollouts-

bluegreen-demo --watch

Name: argo-rollouts-bluegreen-demo

Namespace: default

Status: Paused

Message: BlueGreenPause

Strategy: BlueGreen

[image: Image 49]

Images: argoproj/rollouts-demo:blue (stable, active)

argoproj/rollouts-demo:red (preview)

Replicas:

Desired: 3

Current: 6

Updated: 3

Ready: 3

Available: 3

NAME KIND STATUS

AGE INFO

⟳ argo-rollouts-bluegreen-demo Rollout

Paused 30m

├── # revision:2

│ └── argo-rollouts-bluegreen-demo-5847f9949c

ReplicaSet P Healthy 47s preview

│ ├──□ argo-rollouts-bluegreen-demo-5847f9949c-6nxhf

Pod P Running 47s ready:1/1

│ ├──□ argo-rollouts-bluegreen-demo-5847f9949c-b7nhm

Pod P Running 47s ready:1/1

│ └──□ argo-rollouts-bluegreen-demo-5847f9949c-jrc95

Pod P Running 47s ready:1/1

└── # revision:1

└── argo-rollouts-bluegreen-demo-5d74664754

ReplicaSet P Healthy 30m stable,active

├──□ argo-rollouts-bluegreen-demo-5d74664754-6w2gc

Pod P Running 30m ready:1/1

├──□ argo-rollouts-bluegreen-demo-5d74664754-wrhk8

Pod P Running 30m ready:1/1

└──□ argo-rollouts-bluegreen-demo-5d74664754-xp6z2 Pod

P Running 30m ready:1/

Here, the focus shifts to abandoning the update, leading to a

fallback to the stable version rather than promoting the

rollout to the subsequent stage. The plugin, in this regard,

offers an abort command to enable the manual termination of a rollout at any point during the update process. Look at

the following code:

> kubectl argo rollouts abort argo-rollouts-bluegreen-demo

rollout 'argo-rollouts-bluegreen-demo' aborted

Upon termination of a rollout, the ReplicaSet's stable version

(represented by the yellow docker image in this case) is

scaled up, while any other versions are simultaneously

scaled down. Despite the stable ReplicaSet version being

operational and deemed healthy, the overall state of the

rollout remains compromised, as the desired version (that is,

the red Docker image) is not in operation. This renders the

rollout as Degraded.

Watch the status of rollouts using the following command:

> kubectl argo rollouts get rollout argo-rollouts-bluegreen-

demo --watch

Name: argo-rollouts-bluegreen-demo

Namespace: default

Status: ✕ Degraded

Message: RolloutAborted: Rollout aborted update to

revision 2

Strategy: BlueGreen

Images: argoproj/rollouts-demo:blue (stable, active)

Replicas:

Desired: 3

Current: 3

Updated: 0

Ready: 3

Available: 3

NAME KIND STATUS

AGE INFO

⟳ argo-rollouts-bluegreen-demo Rollout

✕ Degraded 40m

├── # revision:2

│ └── argo-rollouts-bluegreen-demo-5847f9949c

ReplicaSet • ScaledDown 10m preview,delay:passed

│ ├──□ argo-rollouts-bluegreen-demo-5847f9949c-6nxhf

Pod ◌ Terminating 10m ready:1/1

│ ├──□ argo-rollouts-bluegreen-demo-5847f9949c-b7nhm

Pod ◌ Terminating 10m ready:1/1

│ └──□ argo-rollouts-bluegreen-demo-5847f9949c-jrc95

Pod ◌ Terminating 10m ready:1/1

└── # revision:1

└── argo-rollouts-bluegreen-demo-5d74664754

ReplicaSet P Healthy 40m stable,active

├──□ argo-rollouts-bluegreen-demo-5d74664754-6w2gc

Pod P Running 40m ready:1/1

├──□ argo-rollouts-bluegreen-demo-5d74664754-wrhk8

Pod P Running 40m ready:1/1

└──□ argo-rollouts-bluegreen-demo-5d74664754-xp6z2

Pod P Running 40m ready:1/1

To restore the Rollout to a state of optimal functionality and

eliminate its Degraded status, it is imperative to revert to

the prior stable version of the system. This is typically

achieved through executing the kubectl apply command on

the previous Rollout specification. In the present scenario, a

simple solution involves re-executing the set image

command, with the prior blue image. Execute the following

code:

> kubectl argo rollouts set image argo-rollouts-bluegreen-

demo argo-rollouts-bluegreen-demo=argoproj/rollouts-

demo:blue

rollout "argo-rollouts-bluegreen-demo" image updated

Upon executing the preceding command, one would observe

that the rollout transitions to a state of optimal functioning,

with no new ReplicaSets being generated.

Watch the status of rollouts using the following command:

> kubectl argo rollouts get rollout argo-rollouts-bluegreen-demo --watch

Name: argo-rollouts-bluegreen-demo

Namespace: default

Status: P Healthy

Strategy: BlueGreen

Images: argoproj/rollouts-demo:blue (stable, active)

Replicas:

Desired: 3

Current: 3

Updated: 3

Ready: 3

Available: 3

NAME KIND STATUS

AGE INFO

⟳ argo-rollouts-bluegreen-demo Rollout

P Healthy 52m

├── # revision:3

│ └── argo-rollouts-bluegreen-demo-5d74664754

ReplicaSet P Healthy 52m stable,active

│ ├──□ argo-rollouts-bluegreen-demo-5d74664754-6w2gc

Pod P Running 52m ready:1/1

│ ├──□ argo-rollouts-bluegreen-demo-5d74664754-wrhk8

Pod P Running 52m ready:1/1

│ └──□ argo-rollouts-bluegreen-demo-5d74664754-xp6z2

Pod P Running 52m ready:1/1

└── # revision:2

└── argo-rollouts-bluegreen-demo-5847f9949c ReplicaSet •

ScaledDown 23m delay:passed

In this extensive guide, we have thoroughly covered various

essential elements of Argo rollouts, including the process of

deploying a rollout, conducting a canary update, and

performing manual promotion or abortion of updates.

However, this serves as a foundational introduction to Argo

Rollouts. If you continue reading, you will find the next chapter which delves into more intricate and captivating

examples, showcasing advanced applications of Argo

Rollouts.

Conclusion

This

chapter

offered

an

extensive

manual

for

comprehending and executing progressive delivery using

Argo Rollouts within Kubernetes clusters. We commenced

by examining the fundamental concepts and strategies of

Argo Rollouts, encompassing blue-green, canary, and

Rollout

strategies.

Additionally,

we

explored

the

architecture of Argo Rollouts, its installation process, and

the installation of the kubectl plugin. Lastly, we discussed

the practical implementation of progressive delivery using

Argo Rollouts.

By the end of this chapter, readers have acquired a

profound comprehension of how to harness Argo Rollouts to

achieve more dependable and efficient deployments,

thereby mitigating the risks and downtimes associated with

conventional deployment strategies.

In the next chapter, we will discuss additional examples and

advanced applications of Argo Rollouts.

CHAPTER 9

Understanding Argo

Rollouts

 Programmers don’t burn out on hard work; they burn out on

 change-with-the-wind directives and not shipping

 -Mark Berry

Introduction

In this chapter, we will discuss more advanced concepts and

features of Argo Rollouts. Argo Rollouts provides the

Experiment CRD, a powerful feature enabling automated

deployment experimentation. The CRD allows users to define

experiments that can be run on a deployment to validate its

performance and reliability. This allows for more confidence

in the deployment process and reduces the risk of

introducing bugs or errors into the application. The Analysis

Template, on the other hand, provides for creating reusable

templates for different types of analysis. These templates

can be used to define the analysis strategy and rules that

are applied during an experiment. This allows for consistent

and repeatable analysis of deployments, which is crucial for

maintaining the reliability and performance of the

application. Together, the Experiment CRD and Analysis Template provide a powerful toolset for experimentation and

analysis in Argo Rollouts, enabling users to make informed

decisions about the deployment process and improve their

applications' overall reliability and performance. Users can

use these tools to ensure their deployments are thoroughly

tested and validated before being rolled out to production.

This results in a more stable and reliable application for end

users.

Objectives

By the end of this chapter, readers will gain hands-on

experience with implementing progressive delivery

strategies using Argo Rollouts. They will learn how to set up

and manage canary deployments, configure Argo Rollouts for

custom analysis using Experiment CRDs, and integrate tools

like Istio for service mesh functionality and Prometheus for

monitoring and observability.

The chapter will also cover how to seamlessly migrate from

standard Kubernetes deployments to Argo Rollouts and back,

providing flexibility and control over deployment strategies.

Additionally, readers will acquire the skills to manage

Horizontal and Vertical Pod Autoscaling, configure

notifications within Argo Rollouts, and understand how to

optimize deployment processes for scalability. The practical

knowledge gained will enable readers to improve their

deployment workflows and effectively manage scalable

Kubernetes environments, ensuring minimal downtime and

optimal performance during rollouts.

Structure

In this chapter, we will discuss the following topics:

Canary deployment example

Analysis and progressive delivery with Argo Rollouts The Argo Rollouts CRD

Experiment CRD

Implementing

AnalysisTemplate

with

Istio

and

Prometheus

Migrating to Rollouts

Notifications in Argo Rollouts

Canary deployment example

In the previous chapter, we saw an example of blue-green

deployment with Argo Rollouts. In this chapter, we will be

exploring more advanced demos. Let us start with the

canary example.

You will find resources in the resources/argo-

rollouts/example/canary directory of this book code

repository.

Let us see what we have in the canary directory:

- canary-rollout.yaml

- canary-service.yaml

- canary-ingress.yaml

- canary-preview-service.yaml

- canary-preview-ingress.yaml

If we compare all YAML files with the previous blue-green

demo, the main difference here is we choose the strategy

canary.

strategy:

canary:

Let us apply it to the Kubernetes cluster and watch the

rollouts:

> cd resources/argo-rollouts/example

kustomize build canary | kubectl apply -f -

We can watch the status with the command line:

> kubectl argo rollouts get rollout argo-rollouts-canary-

demo --watch

Now we have decided to rollouts a yellow image:

> kubectl argo rollouts set image argo-rollouts-canary-demo

argo-rollouts-canary-demo=argoproj/rollouts-demo:yellow

As we will deploy and test this demo in minikube, we need

to add these DNS entries in the /etc/hosts file to navigate

through the browser, or we can add a host header if we use

the curl command. So, you need to add the following two

entries in the /etc/hosts lines 9 and 10:

 1. # localhost is used to configure the loopback interface 2. # when the system is booting. Do not change this entry.

 3. ##

4. 127.0.0.1 localhost

 5. # book canary

6. 127.0.0.1 canary.dev.argobookdemo.com

7. 127.0.0.1 canary-preview.dev.argobookdemo.com

We can verify the yellow service by navigating canary-

preview.dev.argobookdemo.com before rollouts to end

users with a canary strategy.

If all tests are passed, we are ready to promote it. We can do

this from the command line as follows:

> kubectl argo rollouts promote argo-rollouts-canary-demo

rollout 'argo-rollouts-canary-demo' promoted

We

can

verify

the

service

by

navigating

canary.dev.argobookdemo.com. If you look closely, you

can see all the blue boxes in the UI slowly turn to yellow. In

the following bar, you can see a vertical bar representing

the percent of service requests at a certain time, coming

from yellow, and slowly, the yellow bar is increased.

1. strategy:

2. canary:

3. canaryService: argo-rollouts-canary-demo-preview

4. steps:

5. - setWeight: 20

6. # Step 1: Set weight to 20%

7. - pause: {}

8. # Step 2: Pause for observation

9. - setWeight: 40

10. # Step 3: Set weight to 40%

11. - pause: {duration: 10}

12. # Step 4: Pause for 10 seconds

13. - setWeight: 60

14. # Step 5: Set weight to 60%

15. - pause: {duration: 10}

16. # Step 6: Pause for 10 seconds

17. - setWeight: 80

18. # Step 7: Set weight to 80%

19. - pause: {duration: 10}

20. # Step 8: Pause for 10 seconds

The Argo Rollouts follow the steps we define in strategy, and

at the very beginning, it sends traffic 20% to yellow and

waits, then moves on to 40%, and so on.

This is illustrated in the following figures:1

[image: Image 50]

[image: Image 51]

 Figure 9.1: The beginning of rollout results of navigating

 URL: http://canary.dev.argobookdemo.com

 Figure 9.2: The almost ending state of rollouts result of navigating

 URL: http://canary.dev.argobookdemo.com

During the demonstration, we observed the seamless

implementation of canary deployment facilitated by Argo

Rollouts, enabling a gradual shift in traffic. Before the

deployment, we manually tested the URL canary-

preview.dev.argobookdemo.com to determine whether to

promote the code. However, there is room for improvement.

What if we could automatically gather metrics from

monitoring systems to make informed decisions? This is

precisely what Argo Rollouts' analysis and experiment features offer, allowing for progressive delivery.

To understand the previously mentioned features and their

applicability comprehensively, we must delve deeper into

the concepts of analysis and experiment within the context

of Argo rollouts. Subsequently, we shall explore an example

of analysis and experiment in the upcoming section,

brimming with exciting insights.

Analysis and progressive delivery with Argo

Rollouts

Analysis and progressive delivery are two key features of

Argo Rollouts, designed to help you deploy applications more

safely and efficiently. These features enable teams to

implement advanced deployment strategies that minimize

risk and maximize reliability. Analysis allows for real-time

monitoring and evaluation of deployments, ensuring that

new versions meet performance and stability criteria before

full rollout. On the other hand, progressive delivery facilitates

the gradual introduction of changes, allowing for controlled

testing in production environments. Together, these

capabilities empower DevOps teams to manage complex

deployments confidently, catch potential issues early, and

deliver high-quality software updates with minimal disruption

to end users.

Analysis delivery

It refers to the ability to monitor and analyze the

performance of your application during the deployment

process. Argo Rollouts provides several built-in analysis

strategies, such as canary analysis, blue-green analysis, and

custom analysis , that you can use to monitor your

application's performance and ensure that it meets your

quality and performance standards before promoting it to production.

Progressive delivery

It refers to gradually deploying new versions of your

application and testing them at each stage to ensure they

meet your quality and performance standards before

promoting them to the next stage. In the previous chapter,

we discussed the concepts of progressive delivery in detail.

Argo Rollouts provides several built-in progressive delivery

strategies, such as blue-green deployment, canary

deployment, and traffic shifting, that you can use to

gradually deploy new versions of your application and test

them at each stage to ensure they perform as expected.

Combining analysis and progressive delivery allows you to

deploy your applications more confidently and reduce the

risk of downtime or customer impact. You can use analytics

of your application's performance by monitoring and

ensuring that it meets your quality and performance

standards. You can use progressive delivery to gradually

deploy new versions of your application and test them at

each stage to ensure they perform as expected. These

features help you deploy applications more safely and

efficiently and reduce the risk of downtime or customer

impact.

Argo Rollouts offers multiple methods for performing analysis

to support the practice of progressive delivery. Now, let us

explore the Argo Rollouts’ approach to achieve progressive

delivery by varying the timing, frequency, and occurrence of

the analysis.

The Argo Rollouts CRDs

The Argo Rollouts CRDs are Kubernetes resources that are

created to expand the Kubernetes API to support advanced

deployment strategies that go beyond its native capabilities.

These CRDs allow for the implementation of progressive

delivery techniques such as canary deployments, Blue-Green

deployments, and more by providing detailed control over

the rollout process and the ability to analyze application

performance. The following are the CRDs introduced by Argo

Rollouts to facilitate analysis and progressive delivery.

Rollout

The Rollout is an enhanced version of the deployment

resource, offering additional features such as blue-green and

canary update strategies. These strategies are designed to

generate AnalysisRuns and Experiments during the update

process, aiming to either advance or suspend the update.

AnalysisRuns represent the execution of an analysis as part

of a rollout or experiment. It tracks the progress of an

analysis based on the template and reports the results,

helping to decide whether the deployment should proceed or

be paused/rolled back. The Experiment CRD allows for the

simultaneous running of multiple variations of an application

in different environments. The Experiment CRD is helpful for

testing and comparing different configurations or versions of

an application to determine the best option before moving

forward with a broader rollout.

AnalysisTemplate

An AnalysisTemplate is a specification outlining the steps

necessary to execute a canary analysis. This includes

defining the metrics that need to be measured, the

frequency of the analysis, and the criteria that determine

successful or failed execution. Moreover,

AnalysisTemplates can be parameterized by incorporating

input values that enable customization of the analysis. The

following is an example, AnalysisTemplate was created to

monitor and evaluate the success rate of requests to a

specific service within a Kubernetes cluster while using Istio and Prometheus. Its primary objective is to measure service

health by analyzing the ratio of successful (non-5xx)

requests, ensuring the service performs as expected during

deployments. The template runs analysis every 30 seconds

and uses a success condition threshold of 0.10 to determine

if the service is underperforming. If the success rate falls

below this threshold, it triggers alerts or corrective actions,

helping maintain service stability and allowing Argo Rollouts

to respond to potential issues effectively.

Let us examine the following example of an

AnalysisTemplate that monitors the success rate of

requests to a service using istio and prometheus:

1. apiVersion: argoproj.io/v1alpha1

2. kind: AnalysisTemplate

3. metadata:

4. name: istio-success-rate

5. spec:

6. # This analysis template requires a service name and

 namespace to be supplied to the query

7. args:

8. # Argument for the service name

9. - name: service

10. # Argument for the namespace

11. - name: namespace

12. metrics:

13. # Metric name: success-rate

14. - name: success-rate

15. # Initial delay of 120 seconds before starting the

 analysis

16. initialDelay: 120s

17. # Interval of 30 seconds between analysis runs

18. interval: 30s

19. # Success condition: if the result list is empty or the

 first result is greater than 0.10

20. successCondition: len(result) == 0 || result[0] > 0.10

21. provider:

22. prometheus:

23. # Prometheus address for querying

24. address: http://prometheus.istio-system:9090

25. # Prometheus query for calculating the success rate

26. query: >+

27. sum(irate(istio_requests_total{

28. reporter="source",

29. destination_service=~"{{args.service}}.

{{args.namespace}}.svc.cluster.local",

30. response_code!~"5.*"}[40s])

31.)

32. /

33. sum(irate(istio_requests_total{

34. reporter="source",

35. destination_service=~"{{args.service}}.

{{args.namespace}}.svc.cluster.local"}[40s])

36.)

ClusterAnalysisTemplate

A ClusterAnalysisTemplate is comparable to an

AnalysisTemplate in terms of functionality, with the key

distinction being that it is not restricted to a specific

namespace. This allows any Rollout in the cluster to leverage

the same template for canary analysis. An example is given

as follows, the ClusterAnalysisTemplate is intended to

evaluate the success rate of requests for service across the

entire cluster, utilizing Prometheus for monitoring. It aims to

ensure that the service's success rate meets or exceeds a

threshold of 0.95, indicating high performance and reliability.

The template defines arguments for the service name and

Prometheus port, performs the analysis using Prometheus

queries, and runs every 5 minutes. Comparing the ratio of successful requests to total requests helps identify

performance issues at a cluster wide level, thus supporting

effective monitoring and ensuring service stability.

Let us examine the following example of a

ClusterAnalysisTemplate that evaluates the success rate

of requests for service across the entire cluster:

1. apiVersion: argoproj.io/v1alpha1

2. kind: ClusterAnalysisTemplate

3. metadata:

4. name: success-rate

5. spec:

6. args:

7. # Argument for the service name

8. - name: the-service-name

9. # Argument for the Prometheus port

10. - name: prometheus-port

11. # Value set to port 9090

12. value: 9090

13. metrics:

14. # Metric name: success-rate

15. - name: success-rate

16. # Success condition: if the result list is empty or the

 first result is greater than or equal to 0.95

17. successCondition: len(result) == 0 || result[0] >=

0.95

18. provider:

19. prometheus:

20. # Prometheus address with port specified

21. address: "http://prometheus.local:

{{args.prometheus-port}}"

22. # Prometheus query for calculating the success

 rate

23. query: |

24. sum(irate(

25.

istio_requests_total{reporter="source",destination_servi

ce=~"{{args.service-name}}",response_code!~"5.*"}[5m]

26.)) /

27. sum(irate(

28.

istio_requests_total{reporter="source",destination_servi

ce=~"{{args.service-name}}"}[5m]

29.))

AnalysisRun

An AnalysisRun is essentially a specific instance of an

AnalysisTemplate. Similar to jobs, AnalysisRuns

ultimately conclude at some point in time. In conclusion,

these runs are categorized as successful, failed, or

inconclusive. Depending on the outcome, the execution of a

Rollout's update may either proceed, be aborted, or be

paused accordingly.

Let us examine an example of an AnalysisRun generated

from multiple templates:

1. # NOTE: Generated AnalysisRun from the multiple

 templates

2.

3. apiVersion: argoproj.io/v1alpha1

4. kind: AnalysisRun

5. metadata:

6. name: book-CurrentPodHash-multiple-templates

7. spec:

8. args:

9. # Argument for the service name

10. - name: service-name

11. # Value for the service name

12. value: book-svc.default.svc.cluster.local

13. metrics:

14. # Metric name: success-rate

15. - name: success-rate

16. # Interval of 5 minutes between analysis runs

17. interval: 5m

18. # Success condition: if the result list is empty or the

 first result is greater than or equal to 0.95

19. successCondition: len(result) == 0 || result[0] >=

0.95

20. # Allow up to 5 failures before marking as failed

21. failureLimit: 5

22. provider:

23. prometheus:

24. # Prometheus address for querying

25. address: http://prometheus.local:9090

26. # Prometheus query for calculating the success

 rate

27. query: |

28. sum(irate(

29.

istio_requests_total{reporter="source",destination_servi

ce=~"{{args.service-name}}",response_code!~"5.*"}[5m]

30.)) /

31. sum(irate(

32.

istio_requests_total{reporter="source",destination_servi

ce=~"{{args.service-name}}"}[5m]

33.))

34. # Metric name: error-rate

35. - name: error-rate

36. # Interval of 5 minutes between analysis runs

37. interval: 5m

38. # Success condition: if the first result is less than or equal to 0.95

39. successCondition: result[0] <= 0.95

40. # Allow up to 3 failures before marking as failed

41. failureLimit: 3

42. provider:

43. prometheus:

44. # Prometheus address for querying

45. address: http://prometheus.local:9090

46. # Prometheus query for calculating the error rate

47. query: |

48. sum(irate(

49.

istio_requests_total{reporter="source",destination_servi

ce=~"{{args.service-name}}",response_code=~"5.*"}

[5m]

50.)) /

51. sum(irate(

52.

istio_requests_total{reporter="source",destination_servi

ce=~"{{args.service-name}}"}[5m]

53.))

Experiment

An Experiment refers to a temporary execution of one or

multiple ReplicaSets with the sole objective of conducting

analysis. Typically, Experiment have a predefined duration,

but they may continue indefinitely until manually stopped.

Experiments can incorporate an AnalysisTemplate that can

be executed either during or after the experiment. The

primary use case for an Experiment is to concurrently

initiate baseline and canary deployments, followed by

comparing the resulting metrics from both deployments to

ensure parity.

Let us examine the following example of an Experiment resource that demonstrates how to set up a canary-experiment with blue and green versions:

1. apiVersion: argoproj.io/v1alpha1

2. kind: Experiment

3. metadata:

4. name: argo-roolout-experiment-example

5. spec:

6. duration: 10m

7. progressDeadlineSeconds: 30

8. templates:

9. - name: blue

10. replicas: 1

11. service:

12. name: service-name

13. selector:

14. matchLabels:

15. app: canary-experiment

16. color: blue

17. template:

18. metadata:

19. labels:

20. app: canary-experiment

21. color: blue

22. spec:

23. containers:

24. - name: rollouts-demo

25. image: argoproj/rollouts-demo:blue

26. imagePullPolicy: Always

27. ports:

28. - name: http

29. containerPort: 8081

30. protocol: TCP

31. - name: green

32. replicas: 1

33. minReadySeconds: 10

34. selector:

35. matchLabels:

36. app: canary-experiment

37. color: green

38. template:

39. metadata:

40. labels:

41. app: canary-experiment

42. color: green

43. spec:

44. containers:

45. - name: rollouts-demo

46. image: argoproj/rollouts-demo:green

47. imagePullPolicy: Always

48. ports:

49. - name: http

50. containerPort: 8081

51. protocol: TCP

52. analyses:

53. - name: blue

54. templateName: http-benchmark

55. args:

56. - name: host

57. value: blue

58. - name: orange

59. templateName: http-benchmark

60. args:

61. - name: host

62. value: orange

63. - name: compare-results

64. templateName: compare

65. requiredForCompletion: true

66. args:

67. - name: host

68. value: purple

Experiment CRD

The Experiment CRD is a feature in Argo Rollouts. It allows

you to define a set of tests or experiments to validate a new

deployment before promoting it to production. It works by

creating a new set of resources that represent the desired

state of the experiment. You can specify the number of

replicas, the rollout duration, the success conditions, and the

analysis method for each experiment.

During an experiment, Argo Rollouts creates a separate set

of replicas that receives a portion of the live traffic, as

specified in the experiment configuration. The analysis

method monitors the metrics and logs of the experiment

replicas and determines whether the experiment is

successful based on the conditions of success. If the

experiment is successful, Argo Rollouts can automatically

promote the new deployment to production. Argo Rollouts

can automatically roll back the deployment to the previous

version if the experiment fails.

The Experiment CRD in Argo Rollouts provides a powerful

tool for testing and validating deployments, allowing you to

reduce the risk of introducing bugs or performance issues in

your production environment. Here are some common use

cases for it:

Running two versions of an application for a

specific duration to facilitate a Kayenta style

(https://github.com/spinnaker/kayenta) analysis: This use case is helpful for users who want to compare

the performance of two versions of an application and

use the results to make data-driven decisions about

which version to promote to production. The

Experiment CRD creates two ReplicaSets (a baseline

and a canary) and waits for both to become healthy.

After the specified duration, the Experiment scales

down the ReplicaSets, enabling users to initiate the

Kayenta analysis run.

Kayenta is an open source canary analysis tool

commonly used in conjunction with Argo Rollouts to

evaluate the performance of new releases before

promoting them to production. Kayenta style analysis

refers to the analysis that Kayenta performs, a statistical

analysis that compares the performance of two different

environments (baseline and canary) to determine if the

new release is performing better or worse than the

previous version.

Kayenta style analysis typically involves setting up a

canary deployment, where a small percentage of the

production traffic is routed to the new release (canary

environment). In contrast, most of the traffic is routed to

the existing stable release (baseline environment).

During the canary phase, Kayenta collects metrics and

logs from both the baseline and canary environments

and performs statistical analysis to determine if the

canary environment is performing as expected.

If the canary environment performs well, meaning there

are no significant differences between the baseline and

canary environments, then the new release can be safely

promoted to production. However, suppose the canary

environment is performing poorly, meaning that there

are significant differences between the baseline and

canary environments. In that case, the canary

deployment can be automatically rolled back to the

previous stable release to avoid impacting production

traffic.

The Kayenta style analysis is a powerful technique for

evaluating the performance of new releases before

promoting them to production, allowing you to catch

issues early and reduce the risk of downtime or customer impact.

Facilitating A/B/C testing through the initiation of

numerous experiments involving varying versions

of an application:

Primary use case: The Experiment CRD enables

concurrent testing of multiple application versions

through A/B/C testing. This powerful capability

allows teams to run multiple application versions

simultaneously

within

the

same

environment.

Through systematic comparison of outcomes, teams

can identify the most effective version while

maintaining

complete

isolation

between

experiments.

How it works: Each experiment uses a distinct

PodSpec template that defines a specific application

version.

These

templates

contain

unique

configuration parameters and independent runtime

characteristics that separate each version. The

Experiment CRD maintains a clear separation

between

tests

by

creating

isolated

testing

environments and managing concurrent experiments

independently, all while preserving the self-

contained nature of each test.

Testing new application versions: For testing new

iterations of existing applications, the Experiment

CRD offers a specialized approach. The process

begins with version creation, where new versions are

created with different labels to prevent interference

with existing Kubernetes services. This labeling

strategy ensures the application remains isolated

from production traffic during testing.

In the testing process, teams can run comprehensive

tests on the new version without impacting the

production environment. All validation happens

before promotion to Rollout, ensuring thorough

verification of both performance and functionality.

This methodical validation ensures that only

thoroughly tested versions proceed to production.

This structured approach provides a safe and

controlled method for testing new application

versions while maintaining the stability of the

production environment. Teams can confidently

experiment with new versions, knowing that their

tests won't affect live services.

The Experiment CRD thus serves as a crucial tool for

managing the complexity of testing multiple application

versions, providing the necessary isolation and control to

ensure reliable deployments.

Implementing AnalysisTemplate with Istio and

Prometheus

It is beneficial to observe these concepts in action to gain a

clearer understanding. Let us begin with a practical

example: a canary deployment utilizing a service mesh with

Istio.

If you are unfamiliar with Istio , here is a brief introduction.

Istio is an open source service mesh. A service mesh is a dedicated infrastructure layer for handling service-to-service communication in a microservices architecture. It

provides a unified control plane for managing microservices

in a distributed system. Google, IBM, and Lyft first introduced Istio in 2017 and have since become a popular

tool for managing communication between microservices.

In a microservices architecture, services are broken down

into small, independently deployable components. These

components need to communicate with each other to

perform the overall business logic of the system. However,

managing communication between these components can be challenging, especially when dealing with service

discovery, rate limiting, load balancing, and security issues.

Istio addresses these challenges by providing a set of

features that enable service-to-service communication to be

more reliable, secure, and observable. These features

include traffic management, security, telemetry, and policy

enforcement. Istio is also designed to work with multiple

languages, frameworks, and platforms, making it a flexible

tool for managing microservices in various environments.

You

will

find

this

book

code

resource

in

the

resources/argo-rollouts/example/istio directory.

The Canary Directory contains several important

configuration files as follows:

analysis.yaml: This file defines the AnalysisTemplate

for evaluating the success of the canary deployment. It

specifies the metrics and conditions for assessing

deployment performance.

gateway.yaml: This file contains the configuration for

the gateway resource, which manages the entry points

for HTTP traffic and routes it to the appropriate

services within the service mesh. Istio gateway is a

component that manages external traffic to a cluster

and enables ingress traffic for Istio-enabled services. It

acts as an entry point for external traffic and enables

service-to-service communication.

namespace.yaml: This file establishes the Kubernetes

namespace for the deployment, isolating resources and

ensuring that the canary deployment occurs within a

dedicated environment.

rollout.yaml: This file defines the Rollout resource,

which manages the canary deployment strategy. It

specifies how the new version of the application should

be gradually rolled out and how traffic should be shifted.

services.yaml: This file describes the Kubernetes

services that will be utilized by the canary deployment,

detailing how they are exposed and accessed within the

cluster.

virtualservice.yaml:

This

file

configures

the

VirtualService resource, which manages routing rules

and traffic splitting between different versions of the

application. Istio VirtualService is a component that allows for advanced traffic management and routing in

Istio. It enables developers to specify rules for routing

traffic to different services based on various conditions

like URL paths or headers. This allows for more fine-

grained control over traffic management in a

microservices architecture.

kustomization.yaml: This file is used by Kustomize to

manage and customize the deployment configurations,

allowing for efficient handling of overlays and

variations in the deployment setup.

For this demo, we must install Istio in the cluster. Using the

code (resources/argo-rollouts/example/istio) from this

book’s GitHub, the Istio installation can be done using the

following steps:

1. To set up Istio, navigate to the resources/istio-1.17.1/

directory where the Istio binaries are located. Next, add

the Istio binaries to your system's PATH environment

variable

with

the

command

export

PATH=$PWD/bin:$PATH. This ensures that you can

run Istio commands from anywhere. Finally, install Istio

using the command istioctl install --set profile=demo

-y, which installs Istio with a demo profile, setting up a

basic configuration suitable for testing and development

as follows:

> cd resources/istio-1.17.1/

> # export the istio bin path

> export PATH=$PWD/bin:$PATH

> istioctl install --set profile=demo -y

2. We will install Prometheus by undertaking the following

instructions:

> cd resources/istio-1.17.1/

>

kubectl

apply

-f

samples/addons/prometheus.yaml

> serviceaccount/prometheus created

> configmap/prometheus created

> clusterrole.rbac.authorization.k8s.io/prometheus

created

>

clusterrolebinding.rbac.authorization.k8s.io/prome

theus created

> service/prometheus created

> deployment.apps/prometheus created

3. Istio exports the istio_requests_total metrics. Based on

response_code, we can determine our deployment

success as follows:

1. # Analysis template configuration for calculating

 success rate using Prometheus

2. apiVersion: argoproj.io/v1alpha1

3. kind: AnalysisTemplate

4. metadata:

5. # Name of the AnalysisTemplate

6. name: istio-success-rate

7.

8. # Specification section

9. spec:

10. # Arguments required for the analysis template

11. args:

12. # Argument for the service name

13. - name: service

14. # Argument for the namespace

15. - name: namespace

16. # Metrics section

17. metrics:

18. # Metric name: success-rate

19. - name: success-rate

20. # Initial delay of 60 seconds before starting the

 analysis

21. initialDelay: 60s

22. # Interval of 20 seconds between analysis runs

23. interval: 20s

24. # Success condition: if the result list is empty or

 the first result is greater than 0.95

25. successCondition: len(result) == 0 || result[0] >

0.95

26. provider:

27. prometheus:

28. # Prometheus address for querying

29. address: http://prometheus.istio-system:9090

30. # Prometheus query for calculating the

 success rate

31. query: >+

32. sum(irate(istio_requests_total{

33. reporter="source",

34. destination_service=~"{{args.service}}.

{{args.namespace}}.svc.cluster.local",

35. response_code!~"5.*"}[40s])

36.)

37. /

38. sum(irate(istio_requests_total{

39. reporter="source",

40. destination_service=~"{{args.service}}.

{{args.namespace}}.svc.cluster.local"}[40s])

41.)

4. Let us deploy the demo to start with changing the

directory to an example:

> cd resources/argo-rollouts/example

5. The following command applies the resource to the

minikube Kubernetes cluster:

> kustomize build istio | kubectl apply -f -

namespace/rollouts-demo-istio created

service/istio-rollout-canary created

service/istio-rollout-stable created

analysistemplate.argoproj.io/istio-success-rate created

rollout.argoproj.io/istio-rollout created

gateway.networking.istio.io/istio-rollout-gateway

created

virtualservice.networking.istio.io/istio-rollout-vsvc

created

6. The status can be monitored using the following

command line:

Watch the rollout status in real-time

> kubectl argo rollouts get rollout \

istio-rollout \

-n rollouts-demo-istio \

--watch

Name: istio-rollout

Namespace: rollouts-demo-istio

Status: P Healthy

Strategy: Canary

Step: 18/18

SetWeight: 100

ActualWeight: 100

Images: argoproj/rollouts-demo:blue (stable)

Replicas:

 Desired: 1

Current: 1

Updated: 1

Ready: 1

Available: 1

NAME KIND STATUS

AGE INFO

⟳ istio-rollout Rollout P Healthy 45s

└── # revision:1

└── istio-rollout-7f96d86486 ReplicaSet P

Healthy 25s stable

└──□ istio-rollout-7f96d86486-zvzmx Pod P Running 24s

ready:2/2

7. The minikube tunnel is started to make the ingress

available from the host machine using the following

command:

> minikube tunnel --cleanup --profile argo-rollouts-

cluster

8. Make sure you modify the /etc/hosts as follows:

1. # localhost is used to configure the loopback interface

2. # when the system is booting. Do not change this

 entry.

3. ##

4. 127.0.0.1 localhost

5. # book canary

6. 127.0.0.1 istio-rollout.local

9. The deployment can be viewed by navigating to

http://istio-rollout.local/ in a web browser, as shown in the following figure:

[image: Image 52]

[image: Image 53]

 Figure 9.3: Browser view of http://istio-rollout.local/

10. Update the rollout by modifying the image and await its

transition into the paused state:

> kubectl argo rollouts set image istio-rollout istio-

rollout=argoproj/rollouts-demo:yellow -n rollouts-demo-

istio

rollout "istio-rollout" image updated

11. Get the status of the rollouts:

> kubectl argo rollouts get rollout istio-rollout -n

rollouts-demo-istio

1. Name: istio-rollout

2. Namespace: rollouts-demo-istio

3. Status: Paused

4. Message: CanaryPauseStep

5. Strategy: Canary

6. Step: 1/18

7. SetWeight: 10

8. ActualWeight: 10

9. Images: argoproj/rollouts-demo:blue (stable)

10. argoproj/rollouts-demo:yellow (canary)

11. Replicas:

12. Desired: 1

13. Current: 2

14. Updated: 1

15. Ready: 2

[image: Image 54]

[image: Image 55]

16. Available: 2

17.

18. NAME KIND STATUS

AGE INFO

19. ⟳ istio-rollout Rollout Paused

7m32s

20. ├── # revision:2

21. │ ├── istio-rollout-5fcf5864c4 ReplicaSet P

Healthy 18s canary

22. │ │ └──□ istio-rollout-5fcf5864c4-4jjpl Pod P

Running 18s ready:2/2

23. │ └──α istio-rollout-5fcf5864c4-2 AnalysisRun ◌

Running 12s

24. └── # revision:1

25. └── istio-rollout-7f96d86486 ReplicaSet P

Healthy 7m12s stable

26. └──□ istio-rollout-7f96d86486-zvzmx Pod P Running

7m11s ready:2/2

You might notice the AnalysisRun in line 23 and the rollouts that are in paused status in line.

12. In case of any failure to an AnalysisRun, you cannot promote the new build.

13. The build can be promoted using the following

command:

> kubectl argo rollouts promote istio-rollout -n rollouts-

demo-istio

Command output:

✓ Rollout 'istio-rollout' promoted

Status details:

Name: istio-rollout

Namespace: rollouts-demo-istio

Status: Paused

...

This is shown in the following figure:

[image: Image 56]

[image: Image 57]

 Figure 9.4: The yellow images are promoted, browser view of http://istio-

 rollout.local/

14. Watching from the command line:

To monitor the rollout's progress in real time, we can

use the kubectl argo rollouts get rollout command

with the watch flag. This allows us to observe the

changes as they happen.

Let us execute the following command:

> kubectl argo rollouts get rollout istio-rollout -n

rollouts-demo-istio -w

Name: istio-rollout

Namespace: rollouts-demo-istio

Status: Paused

Message: CanaryPauseStep

Strategy: Canary

Step: 13/18

SetWeight: 70

ActualWeight: 70

Images: argoproj/rollouts-demo:blue (stable)

argoproj/rollouts-demo:yellow (canary)

Replicas:

Desired: 1

Current: 2

Updated: 1

Ready: 2

[image: Image 58]

Available: 2

NAME KIND STATUS

AGE INFO

⟳ istio-rollout Rollout Paused 18m

├── # revision:2

│ ├── istio-rollout-5fcf5864c4 ReplicaSet P

Healthy 11m canary

│ │ └──□ istio-rollout-5fcf5864c4-4jjpl Pod P

Running 11m ready:2/2

│ └──α istio-rollout-5fcf5864c4-2 AnalysisRun ◌

Running 11m P 31

└── # revision:1

└── istio-rollout-7f96d86486 ReplicaSet P

Healthy 18m stable

└──□ istio-rollout-7f96d86486-zvzmx Pod P

Running 18m ready:2/2

15. After finishing, it will look as follows:

Name: istio-rollout

Namespace: rollouts-demo-istio

Status: ✔ Healthy

Strategy: Canary

Step: 18/18

SetWeight: 100

ActualWeight: 100

Images: argoproj/rollouts-demo:yellow (stable)

Replicas:

Desired: 1

Current: 1

Updated: 1

Ready: 1

Available: 1

NAME KIND STATUS

AGE INFO

⟳ istio-rollout Rollout ✔ Healthy

21m

├── # revision:2

│ ├── istio-rollout-5fcf5864c4 ReplicaSet ✔

Healthy 14m stable

│ │ └──□ istio-rollout-5fcf5864c4-4jjpl Pod ✔

Running 14m ready:2/2

│ └──α istio-rollout-5fcf5864c4-2 AnalysisRun ✔

Successful 14m ✔ 33

└── # revision:1

└── istio-rollout-7f96d86486 ReplicaSet • ScaledDown

21m

To demonstrate a failure scenario, a bad-red image will be

deployed, which intentionally returns numerous 500

response codes as follows:

> kubectl argo rollouts set image istio-rollout istio-

rollout=argoproj/rollouts-demo:bad-red -n rollouts-demo-

istio

rollout "istio-rollout" image updated

Keep watching the status as follows:

kubectl argo rollouts get rollout istio-rollout -n rollouts-

demo-istio -w

Name: istio-rollout

Namespace: rollouts-demo-istio

Status: ✖ Degraded

Message: RolloutAborted: Rollout aborted update to

revision 3: Metric "success-rate" assessed Failed due to

failed (1) > failureLimit (0)

Strategy: Canary

Step: 0/18

SetWeight: 0

ActualWeight: 0

Images: argoproj/rollouts-demo:yellow (stable) Replicas:

Desired: 1

Current: 1

Updated: 0

Ready: 1

Available: 1

NAME KIND STATUS AGE

INFO

⟳ istio-rollout Rollout ✖ Degraded

7m44s

├── # revision:3

│ ├── istio-rollout-5796645dff ReplicaSet •

ScaledDown 2m35s canary,delay:passed

│ └──α istio-rollout-5796645dff-3 AnalysisRun ✖

Failed 2m31s ✖ 1

├── # revision:2

│ ├── istio-rollout-5fcf5864c4 ReplicaSet ✔ Healthy

7m20s stable

│ │ └──□ istio-rollout-5fcf5864c4-db7b8 Pod ✔

Running 7m19s ready:2/2

│ └──α istio-rollout-5fcf5864c4-2 AnalysisRun ✔

Successful 7m16s ✔ 6

└── # revision:1

└── istio-rollout-7f96d86486 ReplicaSet • ScaledDown

7m44s

The browser should remain open throughout the process to

generate traffic, allowing Prometheus to populate the correct

metrics. Otherwise, you may end up with an unsuccessful

deployment, as this demo works based on the success

condition successCondition: len(result) == 0 || result[0]

> 0.95.

 Figure 9.5 illustrates the outcome of this process, showing

[image: Image 59]

the browser view of http://istio-rollout.local/ after the deployment of the bad-red image:2

 Figure 9.5: The red images are promoted however degraded, browser view of

 http://istio-rollout.local/

The query can be checked directly in Prometheus for

debugging purposes to examine its output as follows:

sum(irate(istio_requests_total{

reporter="source",

destination_service=~"istio-rollout-canary.rollouts-demo-

istio.svc.cluster.local", response_code!~"5.*"}[40s])

) / sum(irate(istio_requests_total{

reporter="source", destination_service=~"istio-rollout-canary.rollouts-demo-istio.svc.cluster.local"}[40s]))

Watching the Argo rollouts pod logs also gives lots of

instinctual information as follows:

kubectl logs -f argo-rollouts-<> -n argo-rollouts

Migrating to Rollouts

Let us explore migrating from a typical Kubernetes

deployment to a Rollout. This is likely because you are

working on a project or company that does not use Argo

Rollouts and decided to use them from now on. In this case,

you need to take a safe path to migrate.

Kubernetes deployments are a powerful tool for managing and scaling containerized applications. However, they lack

important features critical for advanced deployment

scenarios, such as canary and blue-green deployments. On

the other hand, rollouts provide more advanced deployment

strategies and traffic management features, making it easier

to deploy updates to your applications with confidence and

minimizing downtime.

Migrating from a Kubernetes deployment to a Rollout can

be done in two ways:

Converting an existing deployment resource to a

Rollout resource.

Referencing an existing deployment from a Rollout

using the workloadRef field.

In the following sections, we will explore both approaches in

detail.

Convert existing deployment resource to

Rollout resource

When converting a deployment to a Rollout, you need to

change the following fields:

Replace

the

apiVersion

from

apps/v1

to

argoproj.io/v1alpha1.

Replace the kind from deployment to Rollout.

Replace the deployment strategy with a Blue-Green or

canary strategy.

When migrating a deployment serving live production traffic,

the Rollout must be run alongside the deployment before

deleting or scaling it down. This is to avoid downtime and to

allow for testing of the Rollout before deleting the original

deployment.

Referencing a deployment from a Rollout

Alternatively, you can reference an existing deployment from

a Rollout using the workloadRef field. This allows you to create a Rollout resource and reference an existing

deployment without removing the deployment.

Here is an example of a Rollout resource referencing a

deployment:

1. # Configuration for a Rollout resource referencing a

 Deployment

2.

3. apiVersion: argoproj.io/v1alpha1

4. kind: Rollout

5. metadata:

6. # Name of the Rollout

7. name: rollouts-ref-deployment

8. # Specification section

9. spec:

10. # Number of desired replicas

11. replicas: 4

12. # Selector for matching labels

13. selector:

14. matchLabels:

15. # Match label for the app

16. app: rollouts-ref-deployment

17. # Workload reference section

18. workloadRef:

19. # API version of the workload

20. apiVersion: apps/v1

21. # Kind of the workload

22. kind: Deployment

23. # Name of the referenced Deployment

24. name: rollouts-ref-deployment

25. # Rollout strategy

26. strategy:

27. # Canary strategy

28. canary:

29. # Steps within the canary strategy

30. steps:

31. # Set weight for the canary

32. - setWeight: 30

33. # Pause for 20 seconds

34. - pause: {duration: 20s}

35.

36. ---

37. # Separator between different YAML resources

38. # Configuration for a Deployment resource

39.

40. apiVersion: apps/v1

41. kind: Deployment

42. # Metadata for the Deployment

43. metadata:

44. labels:

45. # Labels for the app instance

46. app.kubernetes.io/instance: rollout-canary

47. # Name of the Deployment

48. name: rollout-ref-deployment

49. # Specification section for the Deployment

50. spec:

51. # Number of desired replicas

52. replicas: 0

53. # Selector for matching labels

54. selector:

55. matchLabels:

56. # Match label for the app

57. app: rollouts-ref-deployment

58. # Pod template specification

59. template:

60. # Metadata for the template

61. labels:

62. # Labels for the app

63. app: rollouts-ref-deployment

64. # Specification for the Pod template

65. spec:

66. # Containers within the Pod

67. containers:

68. # Container name

69. - name: rollouts-demo

70. # Image for the container

71. image: argoproj/rollouts-demo:blue

72. # Image pull policy

73. imagePullPolicy: Always

74. # Ports for the container

75. ports:

76. # Container port

77. - containerPort: 8080

When deploying an application in a production environment,

it is essential to ensure the process does not cause

interruption or downtime. In this regard, Rollout and

deployment features of Kubernetes can be used side-by-side

to update and manage the application's Pods.

Upon creation, Rollout spins up the necessary Pods alongside

the deployment Pods. However, Rollout does not manage

existing deployment Pods. Therefore, updating and adding

Rollout to the production environment can be done safely

without interference. However, it is important to note that

running twice the number of Pods during migration is

required.

Workload Generation Management

The Argo Rollouts controller manages deployment

generations through annotations. Specifically, it uses the

following annotation to patch the rollout object's

specification:

1. rollout.argoproj.io/workload-generation

This annotation serves an important purpose: it tracks and

corresponds to the generation of the referenced deployment.

For verification purposes, users can confirm that a rollout

aligns with the desired deployment generation by examining

the workloadObservedGeneration field in the rollout's status.

This field provides a straightforward way to ensure

synchronization between the rollout and its associated

deployment.

For example, to check the workload generation:

1. # View the rollout status including

workloadObservedGeneration

2. kubectl get rollout <rollout-name> -o

jsonpath='{.status.workloadObservedGeneration}'

This verification step helps ensure that the rollout is

operating on the correct version of the deployment,

preventing potential version mismatches during the

deployment process.

In addition to its update functionality, Rollout offers traffic

management features that manage routing rules and flow

traffic to different versions of an application. For instance,

the Blue-Green deployment strategy can be employed by

manipulating the Kubernetes Service selector to only direct

production traffic to green instances.

Rollout switches production traffic to Pods, which it manages

when using the traffic management feature. This switch only

happens when the required number of Pods is running and

healthy, making it a safe option for use in a production

environment. However, creating a temporal Service or

Ingress object is advisable to validate Rollout behavior for extra caution. After testing, the temporal Service/Ingress

should be deleted, and the rollout switched to the production

one.

Reverting to standard Kubernetes deployments

Before moving back to deployments, you should do enough

research before migration. However, having a path to roll

back the whole plan is also crucial as a backup plan. No one

wants to choose a path that has no return. If users need to

revert to deployment types from rollouts, two scenarios align

with migrating to Rollouts:

Convert a Rollout resource to a deployment resource.

Reference an existing deployment from a Rollout using

the workloadRef field.

Converting Rollout to deployment

Converting a Rollout to a deployment may be necessary in

certain scenarios, such as when an organization decides to

simplify its deployment process, reduce overhead, or align

with different operational requirements. This conversion

allows you to revert to the standard Kubernetes deployment

object while retaining your application's configuration. The

process involves modifying three key fields in your resource

definition:

Converting a rollout to a deployment involves changing

three fields:

Change the apiVersion from argoproj.io/v1alpha1 to apps/v1 .

Change the kind from Rollout to deployment.

Remove the rollout strategy in spec.strategy.canary

or spec.strategy.blueGreen.

By making these changes, you effectively transform your Argo Rollouts resource into a standard Kubernetes

deployment, allowing you to manage your application using

native Kubernetes tools and processes. Let us examine each

of these modifications in detail.

Note: It is recommended, when migrating a Rollout already serving live production traffic, running a deployment, next to the Rollout before deleting or scaling down the rollout. Failure to follow this approach may result in downtime. This also allows the deployment to be tested before deleting the original Rollout.

Referencing deployment from Rollout

When transitioning from Argo Rollouts back to standard

Kubernetes deployments, there may be scenarios where a

Rollout is currently referencing an existing deployment. This

situation typically occurs when you have been using the

workloadRef field in your Rollout to manage an existing

deployment resource. In such cases, it is crucial to handle

the transition carefully to ensure continuity of service and

prevent any downtime. The process involves two key steps

to safely shift control back to the referenced deployment:

1. Scale down the existing Rollout: Gradually reduce

the number of replicas managed by the Rollout to zero.

This step ensures that the Rollout controller stops

managing any pods.

2. Scale up the referenced deployment: Increase the

number of replicas in the existing deployment to the

desired count. This action transfers pod management

back to the standard Kubernetes deployment controller.

Handling horizontal pod autoscaling

The number of pods in a Kubernetes resource is

automatically scaled based on observed CPU utilization or

user-defined metrics achieved through horizontal pod

autoscaling (HPA). For this behavior to occur, the scale

endpoint must be enabled for resources, and certain required fields must be present. This allows the HPA to understand

the current state of a resource and adjust the scaling

accordingly. In its 0.3.0 release, Argo Rollouts added support

for the scale endpoint. However, since the strategies

employed by Rollouts vary greatly, the Argo Rollouts

controller handles the scale endpoint differently for each

strategy. The following outlines the behavior for each

strategy:

Horizontal pod autoscaling in Blue Green strategy

When employing the Blue Green strategy, Argo Rollouts

utilizes the HPA feature to automatically adjust the number

of pods based on CPU usage or user-defined metrics. For the

HPA to function, the scale endpoint must be enabled, and a

few required fields must be present. Upon modifying the

resource, the HPA communicates the change to the Argo

Rollouts controller, which is responsible for reconciling the

change in replicas. The controller's behavior varies

depending on the strategy employed in the Rollout.

In the case of the Blue Green strategy, the HPA scales the

replicas using metrics from the ReplicaSet, which is currently

receiving traffic from the active service. When the HPA

modifies the replica count, the Argo Rollouts controller scales

up the ReplicaSet, which receives traffic from the active

service, before scaling up the ReplicaSet, which receives

traffic from the preview service. This ensures that the

ReplicaSet, receiving traffic from the preview service, is

prepared when the rollout switches from preview to active.

When no ReplicaSets receive traffic from the active service,

the controller scales events based on all pods that match the

base selector. In such cases, the controller scales up the

latest ReplicaSet to the new count and scales down the older

ReplicaSets.

Horizontal pod autoscaling in canary ReplicaSet-based

Rollouts

When using the canary strategy in Argo Rollouts, the HPA is

responsible for scaling the rollout based on the metrics of all

ReplicaSets within the rollout. The HPA automatically

monitors each pod's CPU and memory utilization and adjusts

the number of replicas accordingly. It is important to note

that, due to the Argo Rollouts controller not having control

over the service responsible for directing traffic to the

ReplicaSets, it operates under the assumption that all

ReplicaSets participating in the rollout are actively receiving

traffic.

In other words, the HPA scales the canary deployment based

on the metrics of all the ReplicaSets, rather than just the

active or preview ReplicaSets. This allows for more accurate

scaling and ensures the rollout is stable and performant even

when multiple ReplicaSets are involved. Additionally, it

simplifies the configuration process since there is no need to

specify which ReplicaSets are receiving traffic.

An instance of HPA that scales a Rollout based on CPU

metrics is illustrated as follows:

1. # Defining Horizontal Pod Autoscaler settings

2. apiVersion: autoscaling/v2beta2

3. kind: HorizontalPodAutoscaler

4. metadata:

5. name: hpa-rollout-custom

6. spec:

7. maxReplicas: 6 # Maximum number of replicas

 during scaling

8. minReplicas: 2 # Minimum number of replicas during

 scaling

9. scaleTargetRef:

10. apiVersion: argoproj.io/v1alpha1

11. kind: Rollout

12. name: example-rollout # Referencing the specific rollout

13. metrics:

14. - type: Resource

15. resource:

16. name: cpu

17. target:

18. type: Utilization

19. averageUtilization: 80 # Target average CPU utilization

 percentage

The metrics field is added in this example, and the

targetCPUUtilizationPercentage field is replaced with a

more flexible and configurable metric system. The example

now scales based on CPU utilization but can be easily

modified to scale based on other metrics, such as memory

usage or custom metrics.

Handling vertical pod autoscaling

Vertical pod autoscaling (VPA) is a feature in Kubernetes that automatically adjusts resource requests and limits for a

pod based on its actual usage patterns. VPA adjusts the

resource requests and limits by analyzing the historical

resource usage data of the pod and suggesting resource

requests and limits based on that data. This differs from HPA,

which scales the number of replicas of a pod based on

observed CPU or memory utilization.

With VPA, Kubernetes can optimize the allocation of

resources to pods and ensure that they have enough

resources to operate efficiently without overprovisioning,

which can lead to resource waste. VPA can be used to

optimize the resources of stateful and stateless applications,

making them more resilient to changes in workload patterns.

VPA can be used with several Kubernetes resources,

including deployments, StatefulSets, and DaemonSets. VPA

has two modes of operation:

Admission control mode, where VPA suggests resource

requests and limits for new pods based on the resource

usage of similar pods.

Updating mode, where VPA suggests resource requests

and limits for existing pods based on their historical

resource usage data.

VPA is an optional feature in Kubernetes and needs to be

installed separately.

Based on documentation3, the VPA has four different modes of operation:

Auto: In this mode, VPA assigns resource requests to

pods during creation and updates them on existing

pods using the preferred update mechanism. This mode

currently behaves like Recreate mode, which evicts and

restarts the pod if the new resource requests differ

significantly from the old ones. Once the restart-free

update of pod requests is available, it may be used as

the preferred update mechanism by the Auto mode.

However, this feature is experimental and may cause

downtime for applications.

Recreate: In this mode, the VPA allocates resource

requests to pods during their creation phase. For

existing pods, VPA updates resource requests by

removing them when substantial discrepancies arise

between the new recommendations and the existing

settings. This update process involves evicting pods

while respecting any defined Pod Disruption Budget. It

is advisable to employ this mode sparingly, typically

only when ensuring that the pods are restarted upon

alterations in resource requests. For most scenarios,

the Auto mode is recommended, as it strives for

updates that do not necessitate restarts once they

become feasible. However, it is essential to note that this particular feature is experimental and might lead

to application downtime.

Initial: In this mode, VPA only assigns resource

requests to pods during creation and never changes

them later.

Off: In this state, the VPA refrains from autonomously

modifying the pods’ resource demands. Although

recommendations are still computed, they remain

static and can be inspected in the VPA object.

You can find some examples here: https://argo-

rollouts.readthedocs.io/en/stable/features/vpa-

support/

Notifications in Argo Rollouts

Notifications Engine is a service that manages notifications

for Argo Projects. It handles the setup and delivery of

notifications for various events, such as when an application

is successfully deployed or an error occurs. Notifications,

such as email, Slack, and webhooks, can be sent in various

ways. The Notifications Engine is designed to be extensible,

allowing users to create their custom notifications and

integrate them within their applications.

The Notifications Engine developed by the Argoproj

community is designed to provide notifications functionality

for all Argo Projects and beyond. It acts as a single point of

control for sending notifications to different integrations and

notification channels based on the events and triggers

defined by users. It supports customization and extensibility,

allowing users to define custom notification templates and

channels.

The Notifications Engine enables the notifications in Argo

Rollouts. Controller administrators can configure notifications

based on end-user requirements using a flexible system of triggers and templates. End users can subscribe to the

configured triggers by annotating the Rollout objects.

Installing Notifications Engine

The following commands can be used to install the

 Notifications engine for Argo Rollouts. These commands will

apply the necessary Kubernetes manifests to set up the

Notifications Engine in your cluster as follows:

> Kubetl apply -f https://github.com/argoproj/argo-

rollouts/releases/latest/download/install.yaml

> Kubetl apply -f https://github.com/argoproj/argo-

rollouts/releases/latest/download/notifications-install.yaml

Argo Rollouts comes with a set of pre-configured notification

triggers that cover key events in the rollout lifecycle. These

triggers help users stay informed about important stages

and changes during deployment. To customize these

notifications, users can modify both triggers and templates

within a special Kubernetes resource called a ConfigMap,

specifically the argo-rollouts-notification-configmap.

For those looking to get started quickly, Argo Rollouts

provides pre-configured notification templates. These

templates offer a convenient way to set up common

notification scenarios without having to write them from

scratch. You can access these templates by referencing the

notifications-install.yaml file, which is included in the

Argo Rollouts installation package.

Users can easily set up a robust notification system tailored

to their specific deployment monitoring needs by leveraging

these pre-configured triggers and templates. This approach

streamlines the setup process, allowing teams to focus on

their deployment strategies rather than spending time on

notification configuration, as follows:

1. sniped...

2. kind: ConfigMap

3. metadata:

4. name: argo-rollouts-notification-configmap

After installing the notification for Argo Rollouts, the operator

must configure a connection to the relevant notifications

service, such as Slack.

As an illustration, the following example showcases Slack

integration:

1. # Configuration for a ConfigMap used for notifications in

 Argo Rollouts

2. apiVersion: v1

3. kind: ConfigMap

4. metadata:

5. # Name of the ConfigMap

6. name: argo-rollouts-notification-configmap

7. # Data section for holding configuration values

8. data:

9. # Configuration for Slack service

10. service.slack: |

11. # Placeholder for the Slack token

12. token: $slack-token

13. ---

14. # Separator between different YAML resources

15. # Configuration for a Secret holding sensitive data

16. apiVersion: v1

17. kind: Secret

18. metadata:

19. # Name of the Secret

20. name: argo-rollouts-notification-secret

21. # StringData section for holding sensitive strings as data

22. stringData:

23. # Placeholder for adding your actual Slack token 24. slack-token: <add-your-slack-token>

Argo Rollouts comes with default trigger templates that cater

to various built-in triggers. Presently, the following triggers

have built-in templates:

on-rollout-completed: This trigger fires when a

rollout has completed all its defined steps and is

finished.

on-rollout-step-completed: This trigger fires when

an individual step within a rollout definition has been

completed.

on-rollout-updated: This trigger fires when a rollout

definition undergoes any changes.

on-scaling-replica-set: This trigger fires when the

number of replicas in a rollout is altered.

End users can initiate notifications via the

notifications.argoproj.io/subscribe.<trigger>.

<service>: <recipient> annotation. As an illustration, consider the following example annotation, which subscribes

define-a-channel;more-channel.

Slack channels to canary rollout step completion notifications

as follows:

25. # Configuration for a Rollout with annotations for

 notifications

26. apiVersion: argoproj.io/v1alpha1

27. kind: Rollout

28. metadata:

29. # Name of the Rollout resource

30. name: rollout-blue-green

31. # Annotations for additional metadata

32. annotations:

33. # Annotation for subscribing to notifications on rollout step completion using Slack channels

34. notifications.argoproj.io/subscribe.on-rollout-step-

completed.slack: define-a-channel;more-channel

Monitoring the notification is possible through Prometheus.

When notifications are enabled in Argo Rollouts, several

Prometheus metrics are generated. These metrics include

notification_send_success, a counter that tracks the

number of times a notification is successfully sent. In

addition, notification_send_error is another counter that

tracks how many times a notification failed to send. Finally,

the notification_send histogram is used to measure the performance of the notification sending process.

Conclusion

This chapter explored advanced features of Argo Rollouts,

moving beyond basic concepts to practical implementations.

We covered canary deployments, analysis and progressive

Delivery features, and the powerful Experiment CRD for

sophisticated deployment testing. The integration with istio

and prometheus demonstrated how Argo Rollouts can

leverage service mesh and monitoring capabilities for

enhanced deployment control.

We also addressed practical considerations, including

migration paths to and from Argo Rollouts, handling of pod

autoscaling, and implementing the notifications engine for

deployment visibility. These tools and features combine to

create a robust platform for managing complex, production-

grade deployments with confidence.

In the next chapter, we will understand how to combine Argo

Events, Workflows and Pipelines, CD, and Rollouts. It will tie

together various components of the Argo ecosystem,

demonstrating how these tools can work in concert to create

powerful, automated, and sophisticated deployment

pipelines. It will also provide a holistic view of how Argo's suite of tools can be leveraged to build a comprehensive

GitOps infrastructure.

1. Note to readers: The figures in this chapter show deployment status using different colors (blue, yellow,

red, etc.). While these figures appear in grayscale in

the printed book, you can see the actual colors by

running these examples on your own system. The color

changes are particularly important for visualizing the

progression of deployments and understanding the

status changes in real time. (The link for the colored

images is mentioned at the beginning of the book).

When running the examples, you will be able to

observe:

The transition from blue to yellow containers

in the canary deployment

The red containers indicate failed deployments

The gradual color shifts that represent traffic

distribution during rollouts

2. Note to readers: While this figure appears in grayscale in the printed book, when running this

example on your system, you will see the deployment

in its actual red color, which visually indicates the

failed deployment state. The color change from yellow

to red is particularly important for quickly identifying

the deployment's degraded state. (The link for the

colored images is mentioned at the beginning of the

book.)

3. http://bit.ly/4006QI9

Join our book’s Discord space

[image: Image 60]

Join the book's Discord Workspace for Latest updates, Offers,

Tech happenings around the world, New Release and

Sessions with the Authors:

https://discord.bpbonline.com

CHAPTER 10

Combining Argo Events,

Workflows, Pipelines, CD,

and Rollouts

Introduction

In the preceding chapters of this book, we discussed the

various facets of the Argo ecosystem. We also understood

the power of Argo Events, Workflows and Pipelines' agility,

and CD and Rollouts' reliability.

In this chapter, we will explore how to leverage the

collective power of these tools to our advantage.

Additionally, we will explore how to harness the full

potential of the Argo Project family, a suite of cutting-edge tools designed to streamline your operations, elevate your

productivity, and supercharge your development processes.

Structure

In this chapter, we will discuss the following topics:

• Combining all the tools

• Introducing miniargo

• Creating GitHub repository

• Using GitHub Action to build Docker

• Setting up Argo CD to deploy an application

• Taking advantage of Argo Rollouts

• Argo Events vs. Argo CD

• Argo CD Notifications

• Cluster bootstrap with Argo CD

• Implementing security scanning with Argo Events and

ZAP Proxy

Objectives

This chapter demonstrates the power of integration across

the Argo family of projects and how they work together to

solve complex organizational challenges. To simplify your

learning journey, we will introduce a convenient shell script

tool that helps set up and manage Argo projects in a local minikube environment. Through this, we will explore how to

implement a modern, streamlined development pipeline

using cutting-edge tools and methodologies.

Our journey will unfold in several key steps:

1. First, we will establish a Git repository as our single

source of truth, housing our code, Dockerfiles, and

Kubernetes manifests.

2. Next, we will leverage Argo CD to automate

deployments to our Kubernetes cluster, ensuring

consistent and reliable application delivery.

3. We will then configure Argo Events to orchestrate

workflows based on predefined triggers, incorporating

security scanning through the integration of Argo

Workflow and OWASP ZAP (Open Web Application

Security Project's Zed Attack Proxy).

4. Finally, we will showcase how to integrate external

services like Slack to enable real-time communication

and collaboration across tea ms.

By the end of this chapter, you will have the knowledge and

practical experience needed to build an efficient, automated

development pipeline that enhances both the reliability and

security of your applications. This comprehensive approach

will help you leverage the full potential of the Argo

ecosystem in your development workflow.

Combining all the tools

In the Argo family projects realm, a treasure trove of tools awaits, each with its unique capabilities. However, it is

essential to grasp that you need not embrace or wield every

tool at your disposal. The art lies in selecting and deploying

one or more tools as per your specific requirements. At

times, the true magic emerges when you ingeniously

combine a handful of these tools to unravel even the most

intricate of challenges.

The Argo Projects have undergone a transformative journey,

giving rise to a scenario where some tools exhibit

overlapping features. For instance, you can harness the

power of both Argo Events and Argo CD to implement

notifications. Yet, it is worth noting that each tool has its distinct focus. Argo CD is a seamless conduit for integrating

with systems like Slack and Opsgenie. At the same time,

Argo Events is meticulously crafted to excel in orchestrating

event-driven workflows within the dynamic confines of a

Kubernetes environment.

In this ever-evolving landscape, the choice between these

tools ultimately hinges on the nature of your project and the

precise demands it places upon you. So, whether you decide

to dance to the rhythm of Argo CD or sway to the beat of Argo Events, rest assured that the Argo family has your

back, offering flexibility and power tailored to your needs.

• Prerequisites: Before starting this chapter, ensure you

have the following:

o System requirements:

¡ CPU: Minimum four cores recommended

¡ RAM: Minimum 8GB free memory

¡ Disk: At least 20GB free space

¡ Network: Stable internet connection

o Required tools and versions:

Before proceeding, please ensure you have the

following tools installed on your system with the

specified minimum versions:

1. # Required command line tools:

2.

3. kubectl v1.23 or later # Kubernetes command-

line tool

4. minikube v1.23 or later # Local Kubernetes

cluster manager

5. docker v20.10 or later # Container runtime

and build tool

6. git v2.0 or later # Version control system

7.

8. # Verify your installed versions with these

commands:

9. kubectl version --client

10. minikube version

11. docker version

12. git version

Introducing miniargo

What is miniargo? miniargo is a custom CLI tool we have

developed specifically for this chapter to simplify the setup and management of Argo Projects. It abstracts complex

commands into simple, repeatable operations.

Before diving into our implementations, we will first set up a

helpful tool that streamlines our work with multiple Kubernetes clusters. Since we will be creating several

clusters and executing repeated commands throughout this

chapter, we have developed miniargo using bashly to

automate these tasks. This automation will let us focus on

understanding the Argo ecosystem rather than getting

caught up in repetitive command execution.

Bashly is a powerful tool and framework specifically

designed to simplify the creation and management of

command line interfaces (CLIs) in bash scripts. It offers developers an easy way to define, organize, and generate

bash-based CLI applications with minimal effort. You can

use it by running bashly Docker images via an alias or by

installing it directly.

For

more

information,

please

visit

https://bashly.dannyb.co/.

To create a convenient alias for running the bashly Docker

container, use the following command:

> alias bashly='docker run --platform "linux/amd64" --rm -it

--user

$(id

-u):$(id

-g)

--volume

"$PWD:/app"

dannyben/bashly'

This alias allows you to run bashly commands directly as if

the tool was installed locally while executing it within a

Docker container.

Every aspect of a bashly configuration is consolidated within

a singular file called bashly.yml. Firstly, it initiates the creation of an executable Bash script.

It generates a set of files in the src directory, which are meant for customization purposes.

Finally, you must edit the files in the src directory. Each command in your script corresponds to a specific file. Once

you have made your changes, run the bashly generate

command again. This will merge the modified content from your functions back into the main script.

After making changes to your source files, generate the final

script by running the following command:

> bashly generate

This command will combine your modifications from the src

directory into the main executable script.

You will find the final src/bashly.yml in the book Git repository. The final command is named miniargo.

Miniargo architecture

The

miniargo tool follows a carefully structured

organization that separates concerns and promotes

maintainability:

miniargo/

├── src/ # Source code directory

│ ├── commands/ # Command implementations

│ │ ├── install/ # Installation commands

│ │ ├── cluster/ # Cluster management

│ │ └── config/ # Configuration utilities

│ ├── lib/ # Shared libraries and functions

│ │ ├── validators/ # Input validation

│ │ └── helpers/ # Common utilities

│ └── bashly.yml # CLI definition and structure

├── resources/ # Resource templates and

configurations

│ ├── argocd/ # Argo CD configurations

│ ├── workflows/ # Workflow templates

│ └── events/ # Event definitions

└── README.md # Documentation and usage guides

First, let us install *, which we use to create our * tool:

13. # Create alias for bashly

14. alias bashly='docker run --platform "linux/amd64" --rm

-it \

15. --user $(id -u):$(id -g) \

16. --volume "$PWD:/app" \

17. dannyben/bashly'

18. # Verify installation

19. bashly version

Here is the help menu of the command this book source

provides, as follows:

1. miniargo - Mini Argo is a command line helper script to

deploy Argo Projects quickly.

2.

3. Usage:

4. miniargo COMMAND

5. miniargo [COMMAND] --help | -h

6. miniargo --version | -v

7.

8. Commands:

9. argocd-quick-start Argo CD

10. argorollouts-quick-start Argo Rollouts

11. argoworkflow-quick-start Argo Workflow

12. argoevents-quick-start Argo Events

13. add-cluster-to-argocd Add cluster to Argo CD

14. install Install the given items in miniqube

15. configure Configure Argo CD Notifications

16. start Start a Cluster

17. delete Delete a Cluster

18. expose Expose a service

19. create-apps-from-gitrepo Create Apps from git repo

20. delete-minikube-profile delete-minikube-profile

21. get-argocd-user-password get-argocd-user-password

22. setup-github-repository setup github repository

23. chapter-10 Setup Chapter 10 all command

setup

This command will help you quickly deploy a minikube cluster and install the necessary components.

Let us start by creating a GitHub repository.

Creating GitHub repository

We are going to build a CI/CD pipeline with Argo CD. To

leverage the concept of infrastructure as code, we need to

create a Git repository to push the code. Creating a

repository in GitHub can also be automated.

Prerequisites

Before setting up GitHub repositories, ensure you have the

following environment variables configured:

1. # Required environment variables

2. export GITHUB_TOKEN="your-github-token" #

GitHub personal access token

3. export

ECHO_SERVICE_DOCKERHUB_IMAGE="org/image-

name" # Docker image path

4. export DOCKERHUB_USERNAME="your-username"

DockerHub username

5. export DOCKERHUB_TOKEN="your-token" #

DockerHub access token

A simple Terraform script explaining the steps to create a

GitHub repository is as follows:

1. Terraform to configuration for GitHub integration:

In this Terraform configuration, we will create and

configure resources in GitHub using Terraform. This

configuration defines various GitHub-related resources,

including repositories, actions, and secrets, and uses

external data to access sensitive information securely.

2. Configure the Terraform providers: We start by

specifying the required provider for this Terraform

configuration: the GitHub provider. Terraform providers

are responsible for managing and interacting with specific APIs or services. In this case, we use the GitHub

provider, which allows us to manage GitHub resources.

The following block tells Terraform to use the GitHub

provider with version 5.18.3 from the specified source:

1. terraform {

2. required_providers {

3. github = {

4. source = "integrations/github" # GitHub

provider source

5. version = "~> 5.18.3" # Version

constraint for the provider

6. }

7. }

8. }

3. Define an external data source: Next, we define an

external data source called env that executes a shell

script named env.sh. External data sources fetch data from external processes or scripts that Terraform does

not manage. The following data source will execute the

env.sh script and retrieve data from it, which will be used later for authentication:

1. data "external" "env" {

2. program = ["${path.module}/env.sh"] # Execute

the "env.sh" script

3. }

4. GitHub provider configuration: Now, we configure

the GitHub provider with authentication using a token

obtained from the env.sh script. The token attribute is set to the GitHub token fetched from the external data source, ensuring that Terraform has the necessary

credentials to interact with GitHub:

1. provider "github" {

2. token =

data.external.env.result["GITHUB_TOKEN"] #

GitHub token from "env.sh"

3. }

5. GitHub repositories: We define two public GitHub

repositories, echo-service and echo-service-manifest,

using the github_repository resource block. These

resource blocks create GitHub repositories with

specified name and description, setting their visibility to the public:

1. resource "github_repository" "echo-service" {

2. name = "echo-service"

3. description = "Argo CD example echo-service

codebase"

4. visibility = "public"

5. }

6.

7. resource "github_repository" "echo-service-manifest"

{

8. name = "echo-service-manifest"

9. description = "Argo CD example echo-service-

manifest codebase"

10. visibility = "public"

11. }

6. Defining outputs: We define two outputs to retrieve

information from the created repositories. These outputs

expose the HTTP clone URLs of the echo-service and

echo-service-manifest repositories:

1. output "http_clone_url" {

2. value = github_repository.echo-

service.http_clone_url

3. }

4.

5. output "echo_service_manifest_http_clone_url" {

6. value = github_repository.echo-service-

manifest.http_clone_url

7. }

These outputs allow us to easily access and use the

repository

URLs

in

the

subsequent

Terraform

configurations or scripts.

7. GitHub Actions resources: Lastly, we create GitHub

Actions resources, specifically environment variables

and secrets, for the echo-service repository. These

resources are essential for configuring GitHub Actions

workflows as follows:

resource "github_actions_variable"

"docker_image_tag_variable" {

1. repository = github_repository.echo-

service.name

2. variable_name =

"ECHO_SERVICE_DOCKERHUB_IMAGE"

3. value =

data.external.env.result["ECHO_SERVICE_DOCKER

HUB_IMAGE"]

4. }

5. resource "github_actions_secret"

"dockerhub_username_secret" {

6. repository = github_repository.echo-

service.name

7. secret_name = "DOCKERHUB_USERNAME"

8. plaintext_value =

data.external.env.result["DOCKERHUB_USERNAME

"]

9. }

10.

11. resource "github_actions_secret"

"dockerhub_token_secret" {

12. repository = github_repository.echo-

service.name

13. secret_name = "DOCKERHUB_TOKEN"

14. plaintext_value =

data.external.env.result["DOCKERHUB_TOKEN"]

15. }

These resource blocks define environment variables and

secrets for the echo-service GitHub repository, which can be used within GitHub Actions workflows. These resources

allow for secure configuration and automation of CI/CD

processes.

Now let us apply terraform as follows:

16. export

ECHO_SERVICE_DOCKERHUB_IMAGE="nahidupa/echo

-service"

17. cd resources/git-automation

18. terraform init

19. terraform apply

20. GIT_CLONE_URL=$(terraform output -raw

http_clone_url)

21. MANIFEST_GIT_CLONE_URL=$(terraform output -

raw echo_service_manifest_http_clone_url)

22. cd -

1. cd github-repositories/echo-service-manifest

1. rm -rf .git

2. git init

3. git add .

4. git commit -a -m "add source"

5. git remote add origin $MANIFEST_GIT_CLONE_URL

6. git push -u origin main

7. cd - || exit

With the miniargo, simply use the following command:

> ./miniargo setup-github-repository

In summary, this Terraform configuration automates the creation

and

configuration

of

GitHub

resources,

repositories, and GitHub Actions settings, making it easier

to manage and deploy code and workflows on the GitHub

platform. The external data source env.sh ensures the

secure handling of sensitive information, such as tokens and

secrets.

Using GitHub Action to build Docker

We created the echo-service repository. In this section, we

will explore how to automate the publication of Docker

images using Terraform and GitHub Actions. Automating

the image publication process is essential in modern

software

development

workflows,

ensuring

your

application's Docker images are consistently built and

available to your team or the broader community. We will

streamline this critical aspect of software development by

leveraging the power of Terraform, GitHub Actions, and

Docker.

In this book source code repository, the file structure is like

below:

1. echo-service/ # Repository root

2. ├── .github/ # GitHub specific directory

3. │ └── workflows/ # Workflows directory

4. │ └── build-and-push.yaml # Our Docker build

workflow

In our quest to automate Docker image publication, we will

first create a GitHub Actions workflow. GitHub Actions is a

powerful platform for automating tasks and workflows

directly within your GitHub repository. Here, we define a

workflow that triggers when a release is published, as follows:

name: Publish Docker image

on:

release:

types: [published]

In this snippet, we specify the name of our workflow as

Publish Docker image and configure it to trigger when a

release is published. This means that every time you create a new release in your GitHub repository, this

workflow will be activated to build and publish Docker

images.

Let us examine the steps required to build and publish

Docker images within our GitHub Actions workflow as

follows:

jobs:

docker:

runs-on: ubuntu-latest

steps:

We define a job named docker as one that runs on the latest

version of Ubuntu. This job will encapsulate the entire

process of building and publishing our Docker image as

follows:

1. Checkout code: In this step, we use the

actions/checkout action to fetch the latest version of

our code from the repository. This ensures that we have

the most up-to-date codebase to build our Docker image

as follows:

-

name: Checkout

uses: actions/checkout@v3

2. Set up QEMU: QEMU is an essential tool for

emulating different CPU architectures. We set up

QEMU here to enable multi-architecture support in our

Docker image-building process. This is crucial if you

want your Docker image to run on various platforms.

-

 name: Set up QEMU

uses: docker/setup-qemu-action@v2

3. Set up Docker Buildx: Docker Buildx is a powerful tool

for

building

multi-platform

Docker

images

efficiently. We configure buildx within our workflow to enable building images for different CPU architectures.

-

name: Set up Docker Buildx

uses: docker/setup-buildx-action@v2

4. Log in to Docker Hub: In this step, we log in to Docker Hub using GitHub secrets. We provide the

Docker Hub username and a token (password) as secrets to authenticate and gain access to push Docker

images to our Docker Hub repository securely.

-

name: Login to Docker Hub

uses: docker/login-action@v2

with:

username: ${{ secrets.DOCKERHUB_USERNAME

}}

password: ${{ secrets.DOCKERHUB_TOKEN }}

5. Build and push Docker image: This is the heart of

our workflow. We utilize the docker/build-push-action

action to build and push our Docker image.

-

name: Build and push

uses: docker/build-push-action@v4

with:

context: .

push: true

platforms: linux/amd64,linux/arm64

tags:

"${{

vars.ECHO_SERVICE_DOCKERHUB_IMAGE }}:latest"

provenance: false

Let us break down the parameters as follows:

• context: We set the build context to the current directory (.) where our Dockerfile resides.

• push: We set this to true to ensure the built image is pushed to the Docker Hub repository.

• platforms: We specify the platforms we want to build

the image for. In this example, we target both

linux/amd64 and linux/arm64 platforms.

•

tags:

Here,

we

use

a

variable

${{

vars.ECHO_SERVICE_DOCKERHUB_IMAGE

}}:latest for the image tags. This allows for flexibility in image naming and versioning.

• provenance: We set this to false to disable image provenance tracking, which can be useful in certain

scenarios.

Following these steps, our GitHub Actions workflow

automates the entire process of building and publishing

Docker images whenever a release is published. This

streamlined automation ensures that your Docker images

are consistently built, making it easier for your team or

community to access and use your application's latest

versions.

Now that we have our Docker images automatically buil t

and publish ed to Docker Hub through GitHub Actions, let

us set up Argo CD to deploy these images to our Kubernetes

clusters. By connecting our automated builds with Argo CD,

we will create a seamless continuous delivery pipeline that

can handle deployments across multiple environments.

Setting up Argo CD to deploy an application

As we are familiar with the bashly script and miniargo. Let us start quickly by creating a few clusters for an

experiment.

You will see all the steps you need to follow by running the following command:

Note: You can always see the detailed commands in the src folder.

1. ./miniargo chapter-10

2. miniargo chapter-10 - Setup Chapter 10 all command

setup

3.

4. Usage:

5. miniargo chapter-10 COMMAND

6. miniargo chapter-10 [COMMAND] --help | -h

7.

8. Commands:

9. step-01-setup-github-repository Setup

github repository

10. step-02-start-argocd-cluster Start Argo

CD Cluster

11. step-03-install-argocd Install Argo CD

12. step-04-start-dev-cluster Start dev

Cluster

13. step-05-configure-argocd-with-dev-cluster

Configure argocd with dev cluster

14. step-06-configure-argorollout-in-dev-cluster

Configure argorollouts in dev cluster

15. step-07-deploy-echo-service-with-argo-rollouts

Deploy echo service with argo rollouts

16. step-08-commit-and-push-echo-service-manifest

Commit and push echo service manifest

The following are the command details:

Starting argocd cluster with the following command:

> ./miniargo chapter-10 step-02-start-argocd-cluster

We need to install the argocd in the minikube cluster just created. The following command is installed argocd in

argocd-cluster:

[image: Image 61]

> ./miniargo chapter-10 step-03-install-argocd

Now, we will start another minikube Kubernetes cluster,

starting the argocd apps cluster:

> ./miniargo chapter-10 step-04-start-dev-cluster

Configure the dev-cluster command, make the necessary

changes, open the argocd in a browser, and skip the

security warning. Keep the command running:

> ./miniargo chapter-10 step-05-configure-argocd-with-dev-

cluster

 Figure 10.01: Argo CD login page

Open a new shell and use the following to get the username

and password to log in to the argocd:

> ./miniargo get-argocd-user-password

You will land something as follows:

[image: Image 62]

 Figure 10.02: Argo CD UI showing the successful deployment of the echo service

With our basic deployment pipeline established through

Argo CD, we can now enhance our deployment strategy with

more sophisticated release patterns. Argo Rollouts extends

our deployment capabilities by enabling progressive

delivery techniques like canary releases and blue-green

deployments, giving us fine-grained control over how we roll

out changes to our applications. This will allow us to

implement more sophisticated deployment patterns like

canary releases and blue-green deployments. Let us explore

how to take advantage of Argo Rollouts to manage these

advanced deployment scenarios.

Now that we have our basic deployment pipeline established

with Argo CD, we can enhance our deployment strategy

with more sophisticated release patterns. Progressive

delivery allows us to roll out changes gradually and safely, reducing the risk of deployment-related incidents.

Taking advantage of Argo Rollouts

Now that we have successfully deployed our application

through Argo CD, let us enhance our deployment

capabilities by implementing progressive delivery patterns.

The next step in our deployment pipeline is to configure

[image: Image 63]

Argo Rollouts, which will allow us to perform controlled,

gradual deployments with features like canary releases and

blue-green deployments.

In the new shell, you can use to install another service that

utilizes the Argo Rollouts:

> ./miniargo chapter-10 step-07-deploy-echo-service-with-

argo-rollouts

The following command will commit the changed manifest

files:

> ./miniargo chapter-10 step-08-commit-and-push-echo-

service-manifest

After sync, you shall see the Argo CD will deploy the apps in

the dev-cluster as follows:

 Figure 10.3: Deploying application with the Argo Rollouts

With our deployment and rollout strategies in place, the

next crucial aspect is keeping teams informed about

deployment progress and status. The Argo ecosystem offers

multiple approaches to notifications, each with its own

strengths and use cases. Understanding these options helps

us choose the right notification strategy for our needs.

Argo Events vs. Argo CD Notifications

While automated deployments streamline our release

process, teams need visibility into deployment status and

progress. The Argo ecosystem provides multiple approaches

to notifications, each with its own strengths. Understanding

these options helps us choose the right notification strategy

for our needs.

The Argo Projects have gone through some changes over

time. A few years ago, when Argo CD notification did not

exist, Argo Events was the alternative option to implement

notification and other event driven workflow automation. At

first glance, it may seem like we can achieve notifications

with Argo Events. However, Argo Events mainly focuses on

events from various sources such as webhooks, S3,

schedules, messaging queues, GCP Pub/Sub, SNS, SQS, etc.

Although the notification engine only focuses on sending

notifications, it was initially started as a separate project and later merged with Argo CD. Nowadays, it comes with

Argo CD itself without separately deploying it.

Argo CD Notifications

Argo CD offers a versatile notification system that supports

various service types, enabling seamless integration with

different communication and monitoring platforms. Users

can configure notifications for email, allowing for

straightforward communication through electronic mail. For

collaborative development workflows, GitHub notifications

enable real-time updates and status tracking within the

GitHub ecosystem. Slack and Mattermost services provide

comprehensive notification capabilities for team messaging

and collaboration. Opsgenie ensures that critical incidents

are promptly addressed through alerting and incident

management. Grafana integration allows users to stay

informed about application health and performance metrics.

[image: Image 64]

The webhook service type facilitates communication with

custom

endpoints,

providing

flexibility

for

tailored

integration. Additionally, Argo CD supports Telegram and

Teams services, allowing notifications through popular

messaging applications. This diverse range of supported

service types empowers Argo CD users to customize their

notification strategies to meet the specific needs of their

development and operational workflows.

Installing Argo CD Notification is very straight forward. You

can apply the manifest file to the Argo CD cluster:

>

kubectl

apply

-n

argocd

-f

https://raw.githubusercontent.com/argoproj/argo-

cd/stable/notifications_catalog/install.yaml

In this example, we are adding a slack and Telegram

example to the book.

• Create Slack apps from https://api.slack.com/apps, as follows:

 Figure 10.4: Creating Slack application

• Follow the app-creating steps and collect the OAuth

[image: Image 65]

token from the app settings. Slack is evolving and make

sure you follow their latest documentation. You also

need to install the app in your workplace and give other

necessary permission to the apps so that it can post a

message to a channel that you want.

 Figure 10.5: Setting the OAuth & permission settings for the Slack application

• Collect a Telegram API token using @Botfather

(https://t.me/Botfather).

• Export both tokens, SLACK_TOKEN and

TELEGRAM_TOKEN, respectively, environment

variables and create secrets in Kubernetes:

1. apiVersion: v1

2. kind: Secret

3. metadata:

4. name: argocd-notifications-secret

5. stringData:

6. slack-token: ${SLACK_TOKEN}

7. telegram-token: ${TELEGRAM_TOKEN}

To configure Argo CD Notifications, we must further explore

a few key concepts: triggers, templates, and subscriptions.

Triggers

Triggers in Argo CD define conditions that prompt the

system to send notifications. They contain a name,

condition, and references to notification templates.

Configured

within

the

argocd-notifications-cm

ConfigMap, triggers are expressed in YAML, specifying

conditions based on application states, statuses, or other

criteria.

1. trigger.on-sync-status-unknown:

2. - when: app.status.sync.status == 'Unknown'

3. send: [app-sync-status, github-commit-status]

Condition bundles

Triggers can bundle multiple conditions with distinct sets of

templates, simplifying administration. This streamlines user

subscriptions, allowing for diverse notifications based on

different stages of application synchronization, as follows:

5. trigger.sync-operation-change:

6. - when: app.status.operationState.phase in

['Succeeded']

7. send: [github-commit-status]

8. - when: app.status.operationState.phase in ['Running']

9. send: [github-commit-status]

10. - when: app.status.operationState.phase in ['Error',

'Failed']

11. send: [app-sync-failed, github-commit-status]

Avoiding notification flapping

To prevent excessive notifications caused by rapidly

changing states (also known as flapping, where a condition

repeatedly switches between states), the oncePer field

ensures notifications are sent only when specific application

field values change.

For example:

1. trigger.on-deployed:

2. when: app.status.operationState.phase in ['Succeeded']

and app.status.health.status == 'Healthy'

3. oncePer: app.status.sync.revision

4. send: [app-sync-succeeded]

Templates

Templates in Argo CD are reusable notification patterns

that define how notification messages should be formatted

and structured. Think of them as blueprints for your

notifications, allowing you to maintain consistent messaging

across different notification triggers and channels.

Customizing notification content

Templates provide extensive options for customizing how

your notifications appear across different platforms.

Notification templates, defined in the same ConfigMap,

leverage the html/template Golang package to generate

customized notification content. Templates are reusable and

may be referenced by multiple triggers. They have access to

application details, user-defined context, service type, and

recipient information, as shown:

1. template.my-custom-template-slack-template:

2. message: |

3. Application {{.app.metadata.name}} sync is

{{.app.status.sync.status}}.

4. Application details:

{{.context.argocdUrl}}/applications/{{.app.metadata.nam

e}}.

Service-specific fields

Templates can incorporate service-specific fields for

creating

complex

notifications

tailored

to

different

notification services, such as Slack, email, or webhook. This

ensures that notifications are optimized for each platform.

Time zone adjustment and functions

Templates allow adjustments to the time zone and offer a

set of built-in functions for additional customization. These

include time-related and repository-related functions, which

provide

detailed

commit

metadata

and

repository

information.

Subscriptions

Subscriptions in Argo Notification are the mechanisms that

connect notification triggers with notification destinations.

They define which applications should send what types of

notifications to which destinations. Think of subscriptions as

the routing rules for your notifications; they determine who

gets notified, what, and when.

Associating triggers with applications

Subscriptions

associate

triggers

with

applications,

determining which events trigger notifications and where

they are sent. Annotations within the application metadata

define these associations.

1. annotations:

2. notifications.argoproj.io/subscribe.on-sync-

succeeded.slack: my-channel

Default subscriptions and global configurations

Default subscriptions can be configured globally in the

argocd-notifications-cm ConfigMap. Default triggers and

conditions apply to all applications unless explicitly

overridden by application-specific annotations.

1. defaultTriggers:

2. - on-sync-status-unknown

User defined context

Users can define shared context values at the top level of

the ConfigMap, fostering consistency across multiple

notification templates as follows:

1. context:

2. region: east

3. environmentName: staging

Integrating triggers, templates, and subscriptions in Argo

CD Notifications provides a flexible and extensible

framework. Users can precisely define when notifications

are triggered, how they are formatted, and where they are

sent, ensuring effective communication and monitoring in

Kubernetes application deployment and management.

All these settings are configured in argocd-notifications-

cm-default-subscription.yaml file, so all we need to do is

apply these configurations. You can do it, as follows:

> ./miniargo chapter-10 step-09-configure-argo-notifications

With a successful execution, you shall get a notification in both Slack and Telegram as follows:

[image: Image 66]

 Figure 10.6: A notification example in the Slack

With our notification system in place to keep teams

informed of deployment status, let us turn our attention to

scaling our infrastructure. As organizations grow, they often

need to manage multiple Kubernetes clusters across

different environments, regions, or teams. This is where

Argo CD's cluster bootstrapping capabilities become

essential. By automating the initial setup and configuration

of new clusters, we can ensure consistent infrastructure and

application deployment across our entire organization.

Cluster bootstrap with Argo CD

As our application deployment needs grow, managing

multiple clusters efficiently becomes crucial. Cluster

bootstrapping with Argo CD provides a declarative way to

automatically configure new clusters with all necessary

components, ensuring consistency across our entire

infrastructure. Cluster bootstrapping is a crucial concept in

Kubernetes cluster management that involves automatically

configuring a new cluster with essential components and

resources. When using Argo CD for cluster bootstrapping,

we can declaratively define and automatically deploy all the

fundamental components that a cluster needs to function

properly.

Common bootstrap components

Before deploying applications, a Kubernetes cluster

typically needs the following foundational components:

• Ingress controllers for handling external traffic

• Monitoring tools like Prometheus and Grafana

• Cluster autoscalers such as Karpenter

• Security components and policies

• Storage classes and operators

• Logging infrastructure

Argo CD facilitating bootstrapping

Argo CD manages cluster bootstrapping through the

following:

• ApplicationSets: Define patterns for automatically

creating Argo CD applications

• App of apps pattern: Manage multiple applications as

a single unit

• Sync waves: Control the order of resource deployment

• Health checks: Ensure components are properly

initialized

We have already discussed these concepts. Now that we

understand

the

concept

let

us

implement

cluster

bootstrapping with Argo CD using a monitoring stack as an

example. We will use ApplicationSets to deploy Prometheus

and related monitoring tools across multiple clusters

automatically.

Consider the utilization of cluster bootstrapping with Argo

CD. Before deploying any application, your Kubernetes

cluster

may

need

other

components

like

ingress,

Prometheus, Grafana, or a cluster or scalar like Karpenter.

For simplicity let us start with deploying a monitoring stack

with ApplicationSet.

• Let us quickly start the argocd cluster using miniargo: 1. # start the argocd cluster

2. ./miniargo start argocd-cluster

• In the cluster, we need to install the argocd with the following command:

1. # Install argocd

2. ./miniargo install argocd

• Now let us create a cluster called dev cluster and add

the cluster to the argocd:

1. # start the dev cluster

2. ./miniargo start dev-cluster

3.

4. # port forward argocd-server

5. ./miniargo expose argocd-server

6.

7. # add dev cluster to argocd

8. ./miniargo add-cluster-to-argocd dev-cluster

• The next attempt is to create an applicationset

manifest, as follows:

1. # cluster bootstrap

2. kubectl config use-context argocd-cluster

3. kubectl apply -f github-repositories/cluster-

bootstrap-manifest/applicationset-cluster-

bootstrap.yaml -n argocd

• Now let us open the argocd UI:

>open https://localhost:2746/

• Collect the argocd user/password using the following

command and login:

1. ./miniargo get-argocd-user-password

2. # this file is located in

'src/get_argocd_user_password_command.sh'

3. # code for 'miniargo get-argocd-user-password' goes

here

4. # you can edit it freely and regenerate (it will not be

overwritten)

[image: Image 67]

5. args: none

6. Here is the argocd user: admin

7. Here is the argocd password: <password>

• In UI, we can observe that the ApplicationSet installs the

kube-prometheus-stack:

 Figure 10.7: Cluster bootstrapping with Argo CD

• Let us add one more cluster in the argocd:

1. # start the staging cluster

2. ./miniargo start staging-cluster

3.

4. # add staging cluster to argocd

5. ./miniargo add-cluster-to-argocd staging-cluster

6.

7. # simple applicationset for argocd

8. kubectl apply -f github-repositories/echo-service-

manifest/cluster-bootstrap/applicationset-echo-

service.yaml -n argocd

• Keep observing the argocd UI; you will see the moment

[image: Image 68]

the staging cluster is registered to argocd, it

immediately installs the kube-prometheus-stack in the

staging cluster, too:

 Figure 10.8: Cluster bootstrapping with Argo CD adding staging cluster

• Now, we can try the same for application installation in

the same way:

1. # simple applicationset for argocd

2. kubectl apply -f github-repositories/echo-service-

manifest/cluster-bootstrap/applicationset-echo-

service.yaml -n argocd

It is shown in the following figure:

[image: Image 69]

 Figure 10.9: Adding echo-service with ApplicationSet

• Similarly, now we can add more clusters, like adding a

production cluster:

1. # start the prod cluster

2. ./miniargo start prod-cluster

3.

4. # add prod cluster to argocd

5. ./miniargo add-cluster-to-argocd prod-cluster

While automated deployments and notifications streamline

our delivery process, we must also ensure the security of

our applications. By integrating automated security

scanning into our workflow, we can identify and address

vulnerabilities before they reach production environments.

Let us explore how to combine Argo Events and OWASP

ZAP to create an automated security scanning pipeline.

Implementing security scanning with Argo

Events and ZAP Proxy

With our deployment pipeline, notification system, and

cluster bootstrapping in place, we can now strengthen our

application's security posture. By integrating automated

security scanning into our workflow using Argo Events and

OWASP ZAP, we can ensure that each deployment meets

our security requirements before reaching production.

In this example, we will create an event driven security

scanning workflow that triggers OWASP ZAP vulnerability scans whenever a new deployment occurs. This integration

combines Argo Events, Argo Workflows, and the OWASP

ZAP security testing tool.

The Architecture overview is as follows:

• Argo Events will listen for webhook triggers from

GitHub Actions

• When triggered, it will initiate an Argo Workflow

• The workflow will run OWASP ZAP to scan the newly

deployed service for vulnerabilities

The following are the implementation steps:

Let us add an event sensor that can be triggered from a

GitHub Action using a webhook after deploying a service.

We can then check for security vulnerabilities with OWASP

ZAP Proxy. For more information about ZAP Proxy, please

visit https://www.zaproxy.org/docs/docker/about/.

• Before installing Argo Workflow in the ArgoCD cluster,

switch to the ArgoCD cluster context:

1. kubectl config use-context dev-cluster

• Install the Argo Workflow:

2. ./miniargo install argo-workflow

• Update the deployment to enable easy login for a quick

start:

1. kubectl patch deployment \

2. argo-server --namespace argo --type='json' \

3. -p='[{"op": "replace", "path":

"/spec/template/spec/containers/0/args", "value": [

"server", "--auth-mode=server"]}]'

• Let us expose the Argo Workflow UI to access it through

our browser. Use the following command:

1. ./miniargo expose argo-workflow-ui

This command sets up port forwarding to make the Argo

Workflow web interface accessible locally. You will be able to monitor and manage your workflows through this

UI after the command is completed.

• First, let us install Argo Events in our argocd-cluster and enable the ingress addon for routing external

traffic:

1. # Install Argo Events components

2. ./miniargo install argo-events

3. # Enable ingress controller in the dev-cluster for

handling incoming webhook requests

4. minikube addons enable ingress --profile dev-cluster

• Now, let us set up a webhook endpoint that will receive

security scan triggers. Deploy the event source

configuration that defines how Argo Events will listen

for ZAP Proxy scan requests:

1. # Deploy the webhook event source configuration

2. kubectl apply -n argo-events -f resources/argo-

events/webhook-eventsource-zap-proxy.yaml

This Kubernetes YAML file defines an EventSource

object belonging to the argoproj.io/v1alpha1 API

group. Named webhook-zap-proxy, it configures a

service to listen on port 14000, specifying that

incoming traffic should be directed to the same port.

Within the spec section, a webhook is defined with an

endpoint /argoeventswebhook to which it listens for

HTTP POST requests exclusively. The following setup

allows the EventSource to capture events from external

sources via HTTP requests:

1. apiVersion: argoproj.io/v1alpha1

2. kind: EventSource

3. metadata:

4. name: webhook-zap-proxy

5. spec:

6. service:

7. ports:

8. - port: 14000

9. targetPort: 14000

10. webhook:

11. # event-source can run multiple HTTP servers.

Simply define a unique port to start a new HTTP

server

12. webhookevent:

13. # port to run HTTP server on

14. port: "14000"

15. # endpoint to listen to

16. endpoint: /argoeventswebhook

17. # HTTP request method to allow. In this case,

only POST requests are accepted

18. method: POST

• Next, we need to deploy the sensor:

1. kubectl -n argo-events create -f resources/argo-

events/zap-proxy-sensor.yaml

• In the sensors file, we initiate a workflow by passing the

target_url as a parameter to the ZAP proxy using the -t

target flag:

1. apiVersion: argoproj.io/v1alpha1

2. kind: Sensor

3. ..snipped…

4. arguments:

5. parameters:

6. - name: target_url

7. # the value will get overridden by

event payload from workflow-depends-on-this-trigger

8. value: http://example.com

9. templates:

10. - name: zap-scan

11. inputs:

12. parameters:

13. - name: target_url

14. container:

15. image: ghcr.io/zaproxy/zaproxy:stable

16. command: [zap-baseline.py]

17. args: ["-t", "

{{inputs.parameters.target_url}}"]

18. parameters:

19. - src:

20. dependencyName: workflow-depends-on-

this-trigger

21. dataKey: body.target_url

22. dest: spec.arguments.parameters.0.value

• Now we can port forward argo-events webhook in

production implementation.

This needs to be exposed through a load balancer and

remember to add authentication. This URL can be

triggered from GitHub Action or any other event source

that makes sense:

1. kubectl -n argo-events port-forward $(kubectl -n

argo-events get pod -l eventsource-name=webhook-

zap-proxy -o name) 14000:14000

• Now submit a scan using webhook as follows:

2. curl -d '{"target_url":"http://echo-service.echo-

service.svc.local"}' -H "Content-Type:

application/json" -X POST

http://localhost:14000/argoeventswebhook

This is an example of how you can combine the power of

Argo CD, Argo Workflow, and Argo Events. By utilizing all

these tools, many complex scenarios can be solved easily.

For example, you can run end-to-end automated tests on the

staging environment to ensure that the new version of the

application is working as expected. These tests, like

vulnerability scanning, may take a long time to complete, and you do not want to block the entire pipeline while

they're running.

Conclusion

This chapter provided a detailed exploration of how the

different components of the Argo Project can be used

together to improve operational efficiency and streamline

development processes. We understood how Argo Events,

Workflows and Pipelines, CD, and Rollouts can be

integrated to solve complex organizational challenges. By

automating deployment with Argo CD and establishing a Git

repository to achieve GitOps, we ensured consistency and

reliability in the development pipeline across multiple

clusters. Additionally, using Argo Events for workflow

triggering, vulnerability scanning with OWASP ZAP Proxy,

and integration with external services like Slack enhanced

security measures and facilitated real-time communication

and collaboration. With this knowledge, readers can set up

efficient and automated development pipelines. It reduces

errors and downtime while maximizing productivity and the

reliability of their applications.

This chapter served as a practical guide to harnessing the

full potential of the Argo Project family. It empowered

readers to improve their development practices and

embrace the future of DevOps.

In the next chapter, we will understand how to choose the

right continuous delivery strategy for your organization. We

will also discuss different Argo CD implementation

architectures, from centralized management to per-cluster

instances, and understand their advantages and trade-offs.

Moreover, we will discuss the strategies for migrating from

existing systems to Argo CD, combining Argo CD with Argo

Workflows

for

decentralized

deployments,

and

[image: Image 70]

implementing progressive delivery patterns. This will help

you make informed decisions about your deployment

architecture and successfully adopt Argo CD in your

organization.

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers,

Tech happenings around the world, New Release and

Sessions with the Authors:

https://discord.bpbonline.com

CHAPTER 11

Choosing Continuous

Delivery Strategy

Introduction

Selecting a continuous delivery strategy is a critical decision

that depends on various factors.

This chapter will provide valuable insights to simplify your

decision-making process. We will explore various

implementation architectures and strategies, focusing on

how to integrate Argo CD effectively into your existing

infrastructure. Whether you are part of a new team starting

fresh or an established organization looking to migrate from

existing systems, this chapter will help you understand the

key considerations and best practices.

The assumption here is that you have already gone through

an evolution process and chosen an Argo CD or another tool

within the Argo family to proceed with. However, if you

struggle to decide where to start or how to migrate from an

existing in-place system to Argo CD, this chapter will guide

you.

Structure

In this chapter, we will discuss the following topics: Understanding the current CI/CD implementation

Choosing Argo CD implementation architecture

Centralized management and control approach

Argo CD instance per cluster

Instance per rational set

Combining Argo CD and Argo Workflow

Defining decentralized workflows

Key benefits of decentralized workflows

Implementing decentralized workflows

Migration strategy from the current system to Argo CD

Crafting a strategy for progressive delivery

Objectives

In this chapter, we aim to give readers a comprehensive

understanding of different implementation approaches using

Argo CD for continuous integration/continuous delivery

(CI/CD). We will discuss various architecture choices and management strategies. Additionally, we will explore the

integration of Argo CD and Argo Workflow, which offers a

decentralized workflow for continuous deployment. This

hybrid approach can provide flexibility and efficiency, and we

will discuss how it can be effectively implemented. Finally,

we will guide you in creating a concrete plan for migrating to

or introducing Argo CD within your CI/CD pipeline.

This chapter aims to provide a thorough guide for selecting

the most suitable implementation and migration strategy.

Understanding organization's existing CI/CD

implementation

The initial and crucial step is gaining a deep understanding of your organization's current status. Are you part of a newly

formed team starting from scratch, or do you belong to an

established team with an existing setup that has been

functioning effectively for a while, but you are now

encountering pain points and contemplating a reevaluation?

If your team is operating within an existing setup, it is

essential to consider the potential impact. Can your team

handle the entire migration independently, or will you

require assistance from other teams to transition their setups

from their current state to align with your envisioned new

strategy?

Furthermore, selecting a strategy that harmonizes with your

Kubernetes cluster setup is imperative. It would help if you

decided how many clusters you plan to manage or already

have in place. Are these clusters organized into distinct

logical groups, geolocation-based segments, or any other

criteria? Additionally, it is crucial to consider your current

security requirements and configurations. Furthermore, you

should assess your organization's future load projections and

its long-term vision.

All these factors can significantly impact the choice of

implementing Argo CD.

Choosing Argo CD implementation architecture

While implementing Argo CD and adopting GitOps practices

may appear straightforward, choosing the right architectural

approach is crucial for long-term success and scalability.

Organizations must carefully evaluate their requirements

against three established implementation patterns, each

offering distinct advantages and trade-offs for different

operational contexts.

To help organizations select the most suitable

implementation strategy, this section provides a

comprehensive analysis of Argo CD architecture options.

Three key architectural patterns have emerged as industry

standards:

Single-instance model (Centralized approach)

Per-cluster instances (Distributed approach)

Rational set instances (Hybrid approach)

Each pattern offers distinct advantages and challenges,

significantly impacting scalability, maintenance, security,

and operational efficiency. By examining these architectures

in detail, teams can better evaluate which approach aligns

with their organizational requirements, infrastructure

constraints, and long-term growth plans.

The analysis that follows breaks down each architecture

through several critical lenses:

Operational complexity and maintenance overhead

Security considerations and risk management

Scalability and performance characteristics

Resource utilization and cost implications

Team collaboration and workflow impacts

Centralized management and control approach

This approach involves using a single instance of Argo CD to

manage deployments across multiple Kubernetes clusters.

We will explore this approach's advantages, disadvantages,

and considerations. This is a very simple approach and easy

to implement. Having one centralized management Argo CD

deployment that will manage all the clusters you have. If you

have a small team or you are learning the Argo CD, you can

start with this approach.

Let us discuss some of the advantages and disadvantages of

this approach.

[image: Image 71]

The following figure illustrates the centralized management

and control approach for Argo CD setup, where a single Argo

CD instance manages multiple Kubernetes clusters:

 Figure 11.1: Centralized management and control approach Argo CD setup

Advantages of centralized management and control

approach

One of the primary benefits of this approach is that it

provides a single view of deployment activities across all

clusters. This unified view is valuable for consistently

monitoring, auditing, and managing applications. Developers

and operators can easily track the status of their applications

across different environments. The centralized management

and control approach simplifies Argo CD's installation, configuration, and maintenance. You only need to set up and

manage one instance of Argo CD, reducing operational

complexity. This can save time and effort compared to

maintaining multiple independent instances.

Having a single server URL with a single control plane for

accessing Argo CD simplifies the user experience, as users

and automation scripts need to connect to only one

endpoint. It streamlines the use of the Argo CD CLI and API

integrations, making it more user-friendly.

The single Argo CD cluster approach allows you to create

boundaries using RBAC policies and Argo CD's AppProjects

feature. AppProjects define what can be deployed where,

and RBAC policies define who can access specific projects.

This fine-grained control enables you to enforce security and

access controls based on the environment, application, or

team.

Disadvantages of centralized management and

control approach

A single point of failure is perhaps the most significant

drawback of the centralized management and control

approach. All deployments across the managed clusters

can be impacted if the management cluster or the Argo

CD instance becomes unavailable or experiences

issues. This can be particularly concerning for

production environments.

Another serious issue is security concerns. Centralizing

admin credentials (such as kubeconfig files) for all clusters on the management cluster poses security

risks. If an attacker compromises the management

cluster or the Argo CD instance, they potentially gain

access to all the managed clusters, which can have

catastrophic consequences.

A

dedicated

centralized

management

approach

requires setting up and maintaining a dedicated

Kubernetes management cluster. Depending on your

organization's security policies and requirements, you

might need to expose this cluster, which can raise

security concerns publicly. Managing the management

cluster can be complex.

Significant network traffic can occur between the

management cluster and the managed clusters,

especially if they are in different regions or cloud

providers. This can result in increased network costs

and potential performance issues. Organizations need

to consider these factors when planning their

architecture.

As your organization grows and the number of clusters,

applications, and repositories increases, scaling the

single Argo CD instance can become challenging.

Tuning individual components like the repo server,

application

controller,

and

api-server

may

be

necessary. Managing application controller shards can

be complex and may require manual effort.

Mitigating risks of this centralized management and

control approach

Organizations should consider implementing the following

strategies to mitigate the risks associated with the

management cluster approach:

Develop robust disaster recovery plans to ensure

minimal downtime in case of the management cluster's

failure. Regular backups and redundancy measures can

be critical. Implement strict security measures, such as

access controls, encryption, and monitoring, to protect

the management cluster and its admin credentials.

Regular security audits are advisable.

Continuously

monitoring

and

optimizing

the

performance of the Argo CD instance will be necessary,

especially if you experience increased traffic or scaling

challenges. Implementing auto scaling and load

balancing can help.

Assessing the approach

Ultimately, the decision to adopt the centralized

management and control cluster approach in Argo CD should

be based on your organization's specific needs, security

requirements, and operational capabilities. It is essential to

thoroughly assess your architecture and consider alternative

approaches, such as using multiple independent Argo CD

instances, to determine if they better align with your goals

and constraints.

While this approach offers many advantages in centralized

management and control, it also presents significant risks

that must be carefully managed. Organizations must weigh

these advantages and disadvantages and implement robust

security and scalability measures to ensure the success of

this approach in managing multiple Kubernetes clusters with

Argo CD.

Argo CD instance per cluster

Argo CD instance per cluster architecture is based on the

Separation of Concern principle. This involves deploying a

separate instance of Argo CD in each Kubernetes cluster,

typically used when each environment corresponds to a

single Kubernetes cluster. This approach has its own set of

advantages and disadvantages, which we will discuss in

detail.

The following figure depicts the Argo CD instance per cluster

approach, where each Kubernetes cluster has its own

dedicated Argo CD instance:

[image: Image 72]

 Figure 11.2: Argo CD instance per cluster

Advantages of the instance per cluster approach

With an Argo CD instance in each cluster, the load is

distributed across clusters. This can be beneficial when

you have clusters of varying sizes and resource

capabilities, allowing each environment to scale

independently.

Since each Argo CD instance runs within its cluster,

there's no external access required. there's no need to

expose the cluster's API server to an external control

plane. This improves security by reducing external

exposure.

Unlike the centralized management and control

approach, where there is significant network traffic

between clusters, this architecture minimizes traffic

leaving the cluster. This reduction in external network

traffic can lead to cost savings, especially in cloud

environments where egress traffic costs are a concern.

An outage in one cluster, whether due to high load or

other issues, would not affect the operation of Argo CD

instances in other clusters. This isolation improves

fault tolerance and availability.

Admin credentials and other sensitive information are

scoped to each cluster's Argo CD instance. This

minimizes the risk associated with centralizing

credentials, as seen in the management cluster

approach.

Disadvantages of the instance per cluster approach

Managing multiple Argo CD instances can be

challenging and bring maintenance overhead. It

requires duplicating configuration across instances and

maintaining them separately. Any changes or updates

need to be replicated in each instance.

You still need to think about scaling and tuning. While

this approach improves scaling compared to a single

central instance, each Argo CD instance may still

require tuning as it scales with the number of

applications and repositories. This can be complex and

resource-intensive at a certain scale.

Integrating multiple Argo CD instances can be more

complex for API and CLI users. They need to specify

which instance they want to interact with, potentially

leading to cognitive overhead.

Developers may find this architecture less user-friendly

due to the need to remember which control plane to

connect to when using the Argo CD CLI or web

interface. Consistency in naming and server URLs can

mitigate this challenge.

Operators must manage multiple Argo CD instances,

each with its login location, RBAC policies, and API

keys. Maintaining consistency across instances is

critical

to

avoid

configuration

drift.

Lower

environments should closely resemble production

environments for consistency.

Assessing the approach

The decision to adopt the instance per cluster approach or

another architecture should be based on your organization's

specific needs and constraints. Consider factors such as

security requirements, scalability, maintenance capabilities,

and the complexity of your multi-cluster environment.

[image: Image 73]

The instance per cluster approach in Argo CD offers

advantages in load distribution, security, and isolation of

outages. However, it comes with the challenges of increased

maintenance complexity and potential impacts on the

developer and operator experience. Careful planning,

naming conventions, and consistency are crucial for

successful implementation in a multi-cluster environment.

Instance per rational set

The instance per rational set architecture strikes a balance

between the centralized management and control approach

cluster, and the instance per cluster approaches in Argo CD.

In this approach, you deploy one Argo CD instance per

rational set of clusters, which teams, regions, or

environments could organize.

The following diagram illustrates the instance per rational

set approach for Argo CD setup, where Argo CD instances

are deployed for logical groups of Kubernetes clusters:

 Figure 11.3: Instance per rational set Argo CD setup

Let us delve into the advantages and disadvantages of this

architecture.

Advantages of the instance per rational set approach

Like

the

instance

per

cluster

approach,

this

architecture distributes the load per rational set of

clusters. Each Argo CD instance focuses on managing a

specific set of clusters, which can help optimize

resource utilization. An outage in one rational set's

Argo CD instance would not impact other groups. This

isolation enhances fault tolerance and availability,

making containing issues within a specific rational set

easier.

Admin credentials and sensitive information are scoped

to each rational set's Argo CD instance. This minimizes

the

security

risk

associated

with

centralizing

credentials, as seen in the management cluster

approach. You still have a single view of deployment

activities within each rational set. This provides a

centralized perspective for managing applications

within that group, improving visibility and control.

Configuration duplication is reduced compared to the

instance per cluster approach because the clusters

within a rational set often share similar RBAC policies,

AppProjects, and other configurations. This reduces

the maintenance overhead.

Specifying the correct Argo CD instance for API and

CLI users is more straightforward than choosing from

multiple instances. This simplifies the integration

experience.

Rationally, grouping clusters often means similar

configurations within each group. This simplifies

RBAC,

AppProject,

and

other

configuration

management, enhancing consistency and reducing

drift.

This will help control the blast radius. The rational set limits the potential impact of Argo CD issues to specific

groups of clusters, enhancing security and reliability.

Ultimately, it will improve the developer experience.

Developers benefit from a more predictable experience

since they follow a convention for connecting to the

correct Argo CD instance, reducing cognitive load.

Disadvantages of the instance per rational set

approach

This approach brings maintenance overhead. While this

approach reduces maintenance compared to the

instance per cluster approach, it still requires

managing multiple Argo CD instances. Maintenance

tasks such as updates and configuration changes must

be coordinated across these instances.

Scaling and tuning are always required. At a certain

scale, each Argo CD instance may require tuning of its

components to handle the load efficiently. While the

grouping helps distribute the burden, larger clusters

within a group may still necessitate tuning.

Argo CD API and CLI users must specify the correct

instance corresponding to their rational set. While this

is more straightforward than managing individual

clusters, it still introduces some complexity.

To maintain this architecture, you still need a separate

management cluster where the Argo CD instances are

deployed. This cluster should be robust and well-

maintained to avoid becoming a single point of failure.

Assessing the approach

Selecting the instance per rational set approach depends on

your organization's needs and constraints. Consider factors

like security requirements, scalability, maintenance

capabilities, and the structure of your clusters and applications.

The instance per rational set architecture in Argo CD offers a

balanced approach to managing multiple clusters. It

optimizes resource distribution, enhances security, and

simplifies management, making it a practical choice for

many multi-cluster environments. Careful planning and

grouping by logical criteria are key to its success.

Having explored each implementation approach in detail, a

side-by-side comparison can help highlight the key

differences and trade-offs between these architectures.

The following comparison matrix provides a comprehensive

overview of how each approach performs across critical

operational, technical, and management dimensions:

Rational

Centralized

Per-Cluster

Implementation Aspect

Set

Management

Instance

Instance

Operational

Characteristics

Maintenance Complexity

Low

High

Medium

Security Isolation

Limited

High

Medium

Resource Efficiency

High

Low

Medium

Scalability

Limited

High

Medium

Operational Overhead

Low

High

Medium

Technical Considerations

Network Traffic

High

Low

Medium

Configuration Management Simple

Complex

Moderate

Developer Experience

Simple

Complex

Moderate

Rational

Centralized

Per-Cluster

Implementation Aspect

Set

Management

Instance

Instance

Disaster Recovery

Complex

Simple

Moderate

Cost Efficiency

High

Low

Medium

Management Aspects

Infrastructure

High

Low

Medium

Requirements

Monitoring Complexity

Low

High

Medium

Update Management

Simple

Complex

Moderate

Team Autonomy

Limited

High

Medium

Access Control Complexity

Simple

Complex

Moderate

Combining Argo CD and Argo Workflow

As organizations scale their deployment processes, the

limitations of traditional centralized workflows become

increasingly apparent. Complex testing requirements,

security validations, and quality assurance processes can

create bottlenecks that slow down delivery. This challenge

has led to the emergence of decentralized workflows, which

offer a more flexible and scalable approach to continuous

deployment. While some components must run

synchronously, others can operate independently. Traditional

workflows typically rely on a central authority to dictate task

flow, but this centralized approach often leads to

bottlenecks. Decentralized workflows represent a paradigm

gaining momentum among organizations seeking to

empower teams and distribute decision-making authority.

This concept can be illustrated through a practical scenario

involving API security testing through fuzzing. In this testing

technique, automated tools send unexpected, malformed, or random data to API endpoints to uncover potential

vulnerabilities. When APIs are deployed in staging

environments, comprehensive security tests, including API

fuzzing, are typically required. A fuzzing tool might

automatically test an API endpoint by sending:

Invalid input data formats

Extremely large payloads

Special characters and edge cases

Unexpected parameter combinations

This thorough security testing helps identify potential

vulnerabilities before production deployment, but running

these comprehensive tests synchronously in the deployment

pipeline can significantly slow down the release process.

In parallel, security teams often require automated API

scans, while QA teams may need to run extensive end-to-

end tests. These tests do not necessarily need to halt the

production process and can be executed asynchronously

after deployment in the staging environment.

Test cases involving large datasets present additional

considerations. The combined capabilities of Argo Workflow

and Argo CD enable the establishment of a decentralized

workflow for continuous deployment. This approach allows

teams to manage their respective testing and validation

tasks independently, streamlining the deployment process

while maintaining efficiency and responsiveness.

Defining decentralized workflows

Decentralized workflows, as the name suggests, distribute

decision making and task ownership across different teams

or individuals within an organization. Instead of relying on a

single central authority to coordinate and manage all

processes, decentralized workflows empower teams to make decisions and execute tasks autonomously. This approach

aligns with the principles of agility and flexibility that are

essential in today's complex business environment.

Key benefits of decentralized Workflows

Decentralized workflows enable teams to respond

independently to changing circumstances based on

requirements. When decision making authority is

distributed, teams can adapt and make decisions

without waiting for approval from a central authority.

This enhanced the collaboration. Decentralization

fosters collaboration among teams and departments.

With each team responsible for specific tasks, they can

work more closely together, breaking down silos and

promoting cross-functional cooperation.

Centralized workflows often lead to bottlenecks as

tasks wait for approval from a limited number of

decision makers. Decentralization eliminates these

bottlenecks by allowing teams to move forward

independently.

When teams are responsible for their own tasks, they

take ownership of the outcomes. This accountability

leads to better performance and a higher level of

commitment to achieving goals.

Decentralized

workflows

are

highly

scalable.

Organizations can easily add new teams and expand

their

decentralized

structure

to

accommodate

increased workloads as they grow.

Implementing decentralized workflows

To implement decentralized workflows effectively,

organizations need the right tools and technologies. Here are

some steps to get started:

Invest in workflow automation tools like Argo

Workflows, designed to orchestrate parallel jobs on

Kubernetes. These tools can help teams create and

manage their own workflows independently.

Establish

clear

guidelines

and

standards

for

decentralized

workflows.

Define

the

roles

and

responsibilities of each team or individual and set

expectations for decision making.

Implement monitoring and reporting mechanisms to

track the progress and performance of decentralized

workflows. This helps identify areas for improvement

and ensures alignment with organizational goals.

In the Argo Workflow chapter, we explain some of the

working examples as a strategy. You can leverage this Argo

Workflow, Argo CD and Argo Event together to achieve

decentralized continuous deployments workflows.

Migration strategy from current system to Argo

CD

Evangelize Argo CD to developers: The first step in this

process is to evangelize Argo CD within your organization.

This involves introducing the tool to your designated teams

through various channels. Begin by organizing knowledge

sharing sessions or company-wide conferences to educate

your teams about the benefits and features of Argo CD. Use

these sessions to showcase how Argo CD can streamline the

deployment process, increase reliability, and enhance

collaboration among development, operations, and security

teams.

Additionally, providing a playground environment is a

practical approach to familiarize users with Argo CD. Set up

Argo CD on a test environment and allow users to

experiment with it. Encourage them to oversee test

deployments using Argo CD, giving them hands-on

experience with the tool. This approach not only demystifies

the Argo CD user interface but also instills confidence in your

teams when transitioning their services to the production

environment. It is a safe space for them to learn and make

mistakes without affecting critical systems. Once your team

is familiar with Argo CD, consider the following steps to

ensure a smooth migration process:

Give effort on automating the whole migration:

Automation is a key aspect of a successful Argo CD

migration. Invest time and effort in automating the

entire migration process. This includes setting up

automated pipelines, integrating with your version

control system, and defining GitOps workflows. Find

out a way. Convert or autogenerate the manifest based

on your existing system. The more you can automate,

the smoother and more reliable your CD pipeline will

become.

Do more than just simple POCs; migrate complex real-

life projects: Do not limit your migration efforts to

simple proof of concept (POC) projects. To gain full confidence in Argo CD, consider migrating complex,

real-life projects. This will provide a more accurate

assessment of the tool's capabilities and challenges. It

will also help you identify any specific requirements or

modifications needed for a successful migration.

Always

start

with

dogfooding:

Begin

by

implementing dogfooding as the initial step. Approach

a select few teams before rolling it out to the entire

organization. When you are prepared to transition,

ensure you provide comprehensive documentation and

follow all the required procedures within a subset of

teams, allowing you to gather valuable insights. This

process will enable you to identify any missing steps in

the documentation and other potential improvements.

Pay close attention to feedback from these teams and

be ready to adjust your plan accordingly.

Read lessons learned from other people: Learn

from the experiences of others who have already

implemented Argo CD. Reading about their lessons

learned, best practices, and pitfalls to avoid can

provide valuable insights for your own migration.

Engage with the Argo CD community, join forums, and

attend webinars or conferences to stay updated with

the latest trends and developments in the field.

Have a fail-safe plan: Ensure you always have a fail-

safe plan in place. It is essential to have a fail-safe plan

prepared to address any potential issues during the

migration process. This will help minimize downtime

and executing the migration progressively whenever

possible is preferable.

Crafting a strategy for progressive delivery

After adopting the Argo CD, you might want to combine the

power of Argo Rollouts and achieve progressive delivery.

Crafting a strategy for progressive delivery using Argo

Rollouts involves a structured approach to ensure that

software updates are deployed safely, effectively, and with

minimal disruption. Here is more detail on how to craft such

a strategy:

Define your objectives and success criteria: Clearly

articulate the specific goals of your progressive

delivery strategy. For example, are you aiming to

reduce downtime, minimize the impact of issues on

users, or gather user feedback? Define what success

looks like for each objective. For instance, success for a

canary deployment might mean a low error rate and

stable performance.

Versioning your application: Ensure your application is properly versioned. Use a versioning scheme that

suits your project, such as semantic versioning (e.g.,

MAJOR.MINOR. PATCH) or a custom scheme. Each

new version should be uniquely identifiable to manage

different application versions effectively.

Create Rollout manifests: Write Argo Rollouts

manifests for your application. Define the Rollout,

Rollout Spec, and any additional objects needed, such

as services and ingress controllers. These manifests

should include information about the application

version, strategy (e.g., Blue-Green or canary), and

traffic routing rules.

Configure analysis: Set up analysis configurations

that specify how Argo Rollouts should monitor your

application's performance. Define metrics, success

conditions, and failure thresholds. Analysis is critical

for ensuring the health and quality of your rollouts.

Start with a canary release: For a safe and

controlled deployment, begin with a canary release.

Direct a small portion of your traffic to the new version

of your application and monitor its performance.

Gradually increase the traffic as you gain confidence in

the new release.

Gather user feedback: Leverage feature flags,

telemetry, and user monitoring tools to collect user

feedback and application performance data. Analyze

user behavior, error rates, and any other relevant

metrics.

Promote or rollback: Based on the results of your

analysis and user feedback, make informed decisions

about the rollout as follows:

Promotion: If the new version passes the defined

success conditions and user feedback is positive, traffic to the new version or switch entirely will

gradually increase.

Rollback: If issues are detected, such as

increased error rates or user complaints, trigger a

rollback to the previous version. Argo Rollouts

provides automated rollback capabilities for both

Blue-Green and canary deployments.

Monitor and iterate: Continuous monitoring is

essential for ensuring the long-term success of your

progressive delivery strategy. Collect and analyze data

on an ongoing basis and use these insights to make

incremental improvements to your rollout process.

Argo

Rollouts

provides

a

robust

framework

for

implementing

progressive

delivery

strategies

within

Kubernetes. You can ensure a smooth and reliable

deployment process by defining clear objectives, creating

detailed rollout manifests, configuring analysis, and

following best practices. Remember that progressive

delivery is an iterative process that requires constant

monitoring and adaptation, so be prepared to iterate and

refine your strategy over time. With Argo Rollouts, you can

achieve safe and controlled application updates while

minimizing disruptions and gaining valuable insights from

user feedback.

Conclusion

Understanding

and

selecting

the

right

Argo

CD

implementation strategy is fundamental to successful

GitOps

adoption.

The

approaches

discussed,

from

centralized management to rational set architectures, each

offer unique advantages that can be aligned with specific

organizational needs. By carefully considering these

patterns alongside the practical guidance for migration and

[image: Image 74]

progressive delivery, organizations can chart a clear path

toward modernizing their deployment processes. Each

organization's Argo CD journey is unique. However, the real

value lies in adapting these principles to your organization's

needs.

We discussed the basics of advanced strategies, providing

best practices and potential pitfalls. Adapt this knowledge

to your needs. Remember, DevOps and GitOps evolve

constantly, with Argo CD leading the way.

Whether you are just starting or looking to optimize your

existing setup, the principles and practices we have

discussed will guide you toward more efficient, reliable, and

scalable deployments.

As you close this book, consider it not an end but a

beginning, the start of your journey to mastering Argo CD

and revolutionizing your continuous delivery processes.

Embrace the challenges, celebrate the successes, and

continue to learn and adapt. The future of your deployments

is in your hands, and with Argo CD, it is brighter than ever.

Join our book’s Discord space

Join the book's Discord Workspace for Latest updates, Offers,

Tech happenings around the world, New Release and

Sessions with the Authors:

https://discord.bpbonline.com

Index

A

Analysis Delivery 188

AnalysisRun 163

AnalysisTemplate 163

Apache Airflow/Argo Workflows, comparing 126

ApplicationSet 88, 89

ApplicationSet Controller 62

ApplicationSet Controller, architecture 64, 65

ApplicationSet Controller, functionalities 62, 63

Argo CD 4, 14

Argo CD Adoption 9, 10

Argo CD, architecture 31, 32

Argo CD, challenges 32

Argo CD CLI 27

Argo CD CLI App, creating 28, 29

Argo CD CLI, installing 27, 28

Argo CD CLI, repo 30

Argo CD CLI, syncing 29

Argo CD, components

API Server 32, 33

Argocd Server 35

Repository Server 34, 35

Argo CD, concepts

Live State 37

Sync 37

Sync Status 37

Target State 37

Argo CD, considering steps 49

Argo CD, misconceptions 16

Argo CD Notifications 6, 233

Argo CD Notifications, concepts

Subscriptions 237

Templates 236

Triggers 235

Argo CD Notifications, steps 234, 235

Argo CD, prerequisites

Decker Desktop 16

Kubectl 16

Minikube 16

Argo CD, requirements

argocde-repo-server, scaling up 47, 48

core installation 46, 47

High Availability 45

Argo CD Secure, authenticating 19-24

Argo CD Security, auditing 89

Argo CD Security, best practices

admin user, disabling 83

initial security, setup 83

local user account, managing 84

login attempts, rating 84

new user, creating 85

Argocd Server, services

ApplicationSet Controller 35

Argo CD Dex 35

CD Notifications 36

Argo CD, setup

application, optimizing 39-41

Helm Chart, configuring 41, 42

projects, visualizing 37, 39

Argo CD Strategy, implementing 50, 51

Argo CD, use cases 5

Argo CD, uses 10, 11

Argo Events 5, 140

Argo Events/CD, comparing 233

Argo Events, components

EventBus 142

Event Source 141

Sensors 142

Trigger 143

Argo Events, fundamentals 144-146

Argo Events, integrating 149

Argo Events Security, factors 150

Argo Events, triggers 140, 141

Argo Events, use cases 5

Argo Labs 6

Argo Labs, projects

Autopilot 6

Image Updater 7

Vault Plugin 7

Argo Project 2, 3

Argo Project Family 4

Argo Project Family, aspects

Argo CD 4

Argo CD Notifications 6

Argo Events 5

Argo Rollouts 5

Argo Workflows 5

Argo Project Family GitOps, reasons 7, 8

Argo Project, history 3

Argo Project, tools

Argo CD 3

Argo Events 3

Argo Rollouts 4

Argo Workflows 3

CNCF Incubation 4

Argo Rollouts 5, 155

Argo Rollouts, advantages 232, 233

Argo Rollouts, architecture

Command Line Interface (CLI) 164

Ingress/Service 162

Kubernetes Controller 161, 162

Metric Providers, configuring 163, 164

Rollout Resource 162

Template/Run, analyzing 163

User Interface (UI) 164, 165

Argo Rollouts, use cases 6

Argo Workflows 5, 92, 93

Argo Workflows, architecture 111-116

Argo Workflows, best practices 132

Argo Workflows, case study 137, 138

Argo Workflows, core concepts

Artifacts 94

ClusterWorkflowTemplate 95

CronWorkflow 95

Entrypoint 94

Outputs 94

Parameters 94

Templates 94

Workflow 94

Workflow Spec 94

WorkflowTemplate 95

Argo Workflows, elements

Container 110

Resources 111

Scripts 111

Suspend 111

Argo Workflows, fundamentals

artifact, handling 104

DAG 103

Live Object 103

parameterization 104

Templates 104

Argo Workflows, history 93

Argo Workflows, interface 101, 102

Argo Workflows, key strategies 116, 117

Argo Workflows, preventing 97-100

Argo Workflows, process

Disaster, recovery 130

high availability 128, 129

maintenance 130

monitor, logging 129

resource, managing 130

scalability 129

security 129

version, compatibility 130

Argo Workflows, resources

cluster 131

Kubernetes, managing 131

Namespace 131

Argo Workflows, tasks 93

Argo Workflows, templates

ClusterWorkflowTemplates 107

CronWorkflows 108-110

Argo Workflows, use cases

Backup/Restore 118

Batch, processing 118

CI/CD Pipelines 117

Cloud Native 118

Data Engineering 117

Data Science 117

IT Operations, automating 118

ML 117

Argo Workflows With Minikube, deploying 95-97

B

Bashly 222

Blue-Green 157, 158

Blue-Green, characteristics 174

Blue-Green, versions 175

Blue-Green With Argo Rollouts, optimizing 168-173

C

Canary Deployment 159

Canary Deployment, advantages 159

Canary Deployment, architecture 184-187

Centralized Management 249

Centralized Management, advantages 250

Centralized Management, approach 252

Centralized Management, disadvantages 251

Centralized Management, strategies 251, 252

CI/CD, implementing 248

Cluster Bootstrap 59

Cluster Bootstrap App, pattern 59-61

Cluster Bootstrap, components 238

Cluster Bootstrap, facilitating 238-242

Cluster Bootstrap Health, optimizing 61

CNCF 8

CNCF, stages

graduate project 8

incubate project 9

Configure SSO 85

Configure SSO, points

Argo CD, configuring 87

Dex/Dex Connector 86

GitHub OAuth, configuring 86

Cost Optimization 132, 133

Cost Optimization, ways

Operator 133

User 133

CRDs, key points

AnalysisRun 191

AnalysisTemplate 189

ClusterAnalysisTemplate 190

Experiment 193

Rollout 188, 189

Custom Resource Definitions (CRDs) 36

D

Decentralized Workflows 257

Decentralized Workflows, benefits 258

Decentralized Workflows, steps 258

Deployment Strategies 157

Deployment Strategies, categories

Blue-Green 157, 158

Canary Deployment 159

Recreate Deployment 157

Rolling Update 157

Shadow Deployment 160, 161

Disaster Recovery (DR) 77

DR, fundamentals 77, 78

DR, recommendations 150, 151

DR Strategy, implementing 78, 79

E

Experiment CRD 195

Experiment CRD, use cases 195-197

G

Generators 66

Generators, types

Cluster 67, 68

Cluster Decision Resource 70-72

Git 69

List 66, 67

Matrix 69

Merge 70

Pull Request 70

SCM Provider 70

GitHub Action, configuring 227, 228

GitHub Action, parameters

context 229

platforms 229

provenance 229

push 229

tags 229

GitHub Action, process

checkout code 228

Docker Buildx 228

Docker Hub 229

Docker Image, building 229

QEMU, setup 228

GitHub Repository, steps 224-227

GitOps 15, 16

GitOps, best practices

appropriate number, picking 52

automation/imperativeness 55

git repository, ensuring 53

secret management, figuring 54, 55

test manifests 53

GitOps, consequences 52

GitOps, key benefits 16

H

Horizontal Pod Autoscaling (HPA) 212

HPA With Blue-Green, implementing 212

HPA With ReplicaSet, configuring 212, 213

I

Instance Per Cluster 252

Instance Per Cluster, advantages 252, 253

Instance Per Cluster, approach 253

Instance Per Cluster, disadvantages 253

Instance Per Rational Set 254

Instance Per Rational Set, advantages 254, 255

Instance Per Rational Set, approach 255, 256

Instance Per Rational Set, disadvantages 255

Istio 197

Istio, challenges 197

Istio, files 197, 198

Istio, steps 198-204

K

KPIs, signals

Errors 152

Latency 151

Saturation 152

Traffic 151

kubectl plugin, installing 166, 167

Kubernetes Cluster, installing 166

Kubernetes Deployments 207

Kubernetes Deployments, sections

Kubernetes, referencing 211

research, reverting 211

Rollout, referencing 208, 210

Rollout Resources, converting 207

scenarios, deploying 211

Kubernetes Deployments, ways 207

Kustomize 167

M

Migration 259

Migration, steps 259, 260

miniargo 221

miniargo, architecture 222-224

Minikube Cluster, deploying 25-27

Minikube, installing 16-18

Minikube Security, considering 19

Mono Repo, aspects

CI Pipelines, automation 56, 57

concurrent, processing 56

ingress, configuring 57, 58

productions, setting up 56

N

Notifications Engine 215

Notifications Engine, installing 215, 216

Notifications Engine, templates 216

O

Orphaned Resources, monitoring 75, 76

OWASP ZAP 242

OWASP ZAP, architecture 242

OWASP ZAP, implementing steps 242-245

P

PD, architecture 156

PD, benefits 156

PD, strategy 260, 261

PD With Argo Rollouts, preventing 167

Progressive Delivery 188

Progressive Delivery (PD) 155

Prometheus, installing 73-75

R

RBAC, configuring 88

Rollout 154

Rollout, components 155

S

S3 bucket, configuring 123-125

Security Consideration 133, 134

Security Consideration, key points

container image, security 134

monitor, logging 135

network, isolation 135

RBAC 134

secrets, managing 134

transport layer, security 134

Security Operations Center (SOC) 118

Shadow Deployment 160, 161

Single Sign-On (SSO) 135

SOC, implementing 118-121

SSO, steps 135

T

Triggers, criteria

condition, bundles 235

notification, flapping 236

V

Vertical Pod Autoscaling (VPA) 213

VirtualService 198

VPA, modes 214

VPA, operations

Auto 214

Initial 214

Off 214

Recreate 214

W

Workflow Controller, things

Controller Permissions 136

User Permissions 136

Workflow Pod Permission 136

Workflow Pod, configuring 135

Document Outline

	Cover

	Title Page

	Copyright Page

	Dedication Page

	About the Author

	About the Reviewer

	Acknowledgement

	Preface

	Table of Contents

	1. About Argo Project

	Introduction

	Structure

	Objectives

	Overview of Argo Project

	History of Argo Projects

	Argo Project family and its offering

	Argo CD

	Argo Workflows

	Argo Events

	Argo Rollouts

	Argo CD notifications

	Argo Labs projects

	Argo Project Family for GitOps

	Current status of the Argo project in CNCF

	Argo CD adoption in production

	Uses of Argo Projects

	Conclusion

	2. Understanding Argo CD

	Introduction

	Structure

	Objectives

	Meeting Argo CD

	Introduction to GitOps

	Common misconceptions about Argo CD

	Deploying Argo CD in minikube

	Deploying apps in a different cluster

	Using Argo CD CLI

	Creating apps via CLI

	Syncing via CLI

	Adding repo via CLI

	Argo CD architecture

	API server

	Repository server

	Application controller

	Argocd server

	Argo CD Dex

	ApplicationSet controller

	Notifications

	Argo CD concepts and terminology

	Application

	Application source type

	Argo CD declarative setup

	Projects (kind: AppProject)

	Applications (kind: Application)

	Repositories, clusters, or Helm chart repositories credentials

	Conclusion

	3. Running Argo CD in Production

	Introduction

	Structure

	Objectives

	Argo CD in the production

	High availability

	Core installation

	Scaling up consideration for argocd-repo-server

	GitOps best practices

	Picking appropriate number of deployments config repos

	Test manifests locally

	Ensure manifests at git repository are immutable

	Figuring out secret management strategy

	Leaving room for imperativeness or automation

	Mono repo scaling considerations

	Enable concurrent processing

	More settings before go productions

	Automation from CI pipelines

	Ingress configuration

	Cluster bootstrapping

	App of apps pattern

	SyncWaves

	Argo CD Application health

	ApplicationSet controller

	ApplicationSet controller architecture

	Generators

	Enabling high availability mode in argocd-applicationset-controller

	Monitoring and Alerting

	Install the Prometheus and Grafana

	Orphaned resources monitoring

	Upgrade management

	Disaster recovery and business continuity

	Implementing a DR strategy

	Conclusion

	4. Argo CD Security Consideration

	Introduction

	Structure

	Objectives

	Security best practices checklist

	User management in Argo CD

	Initial Security setup

	Disabling admin user

	Rating limit login attempts

	Local user's account management

	Creating new user

	Configuring single sign-on

	Dex and Dex connector in ArgoCD

	Configuring Argo CD SSO using GitHub (OAuth2)

	Configure Argo CD for SSO

	Making the RBAC configuration right

	ApplicationSets security considerations

	Auditing and logging

	Argo CD security risk management strategy

	Conclusion

	5. Working with Argo Workflows

	Introduction

	Structure

	Objectives

	Understanding Argo Workflows

	History of Argo Workflows

	Argo Workflows core concepts

	Deploying Argo Workflows in minikube

	Run a workflow

	Using the UI

	Practical application of Argo Workflows core concepts

	More about the workflow

	Workflow templates

	Detailed explanation of a two-template workflow

	ClusterWorkflowTemplates

	CronWorkflows

	Argo Workflow architecture

	Debugging Argo Workflows

	Argo Workflow use cases

	Automating secret scanning in source repositories

	Implementing secret scanning workflow

	S3 bucket configures for artifact storage

	Argo Workflows vs. Apache Airflow

	Conclusion

	6. Argo Workflows in Production

	Introduction

	Structure

	Objectives

	Argo Workflows in the production

	Installation options available in Argo Workflows

	Best practices for operating Argo Workflows

	Cost optimization in production

	User cost optimizations

	Operator cost optimizations

	Argo Workflows security consideration

	Single sign-on in Argo Workflows

	Workflow pod security context

	Workflow Controller security

	Database access control in offloading workflows

	Case study: Abusing misconfigured Argo Workflows

	Conclusion

	References

	7. Getting Started with Argo Events

	Introduction

	Structure

	Objectives

	Features of Argo Events

	Argo Events architecture and concepts

	Installing Argo Events in the Kubernetes cluster

	Understanding Argo Events integration with Argo Workflows

	Security consideration

	High availability and disaster recovery recommendations

	Monitoring Argo Events

	Conclusion

	8. Getting Started with Argo Rollouts

	Introduction

	Structure

	Objectives

	Concepts in Argo Rollouts

	Progressive delivery

	Deployment strategies

	Recreate deployment

	Rolling update

	Blue-green

	Canary deployment

	Shadow deployment

	Argo Rollouts architecture

	Argo Rollouts controller

	Rollout resource

	Ingress/service in Argo Rollouts

	AnalysisTemplate and AnalysisRun in Argo Rollouts

	Metric providers in Argo Rollouts

	Argo Rollouts command line interface

	Argo Rollouts user interface

	Installing Argo Rollouts in the Kubernetes cluster

	Argo Rollouts kubectl plugin installation

	Progressive delivery with Argo Rollouts

	Blue-green deployment with Argo Rollouts

	Conclusion

	9. Understanding Argo Rollouts

	Introduction

	Objectives

	Structure

	Canary deployment example

	Analysis and progressive delivery with Argo Rollouts

	Analysis delivery

	Progressive delivery

	The Argo Rollouts CRDs

	Rollout

	AnalysisTemplate

	ClusterAnalysisTemplate

	AnalysisRun

	Experiment

	Experiment CRD

	Implementing AnalysisTemplate with Istio and Prometheus

	Migrating to Rollouts

	Convert existing deployment resource to Rollout resource

	Referencing a deployment from a Rollout

	Reverting to standard Kubernetes deployments

	Converting Rollout to deployment

	Referencing deployment from Rollout

	Handling horizontal pod autoscaling

	Horizontal pod autoscaling in Blue Green strategy

	Horizontal pod autoscaling in canary ReplicaSet-based Rollouts

	Handling vertical pod autoscaling

	Notifications in Argo Rollouts

	Installing Notifications Engine

	Conclusion

	10. Combining Argo Events, Workflows, Pipelines, CD, and Rollouts

	Introduction

	Structure

	Objectives

	Combining all the tools

	Introducing miniargo

	Creating GitHub repository

	Using GitHub Action to build Docker

	Setting up Argo CD to deploy an application

	Taking advantage of Argo Rollouts

	Argo Events vs. Argo CD Notifications

	Argo CD Notifications

	Triggers

	Condition bundles

	Avoiding notification flapping

	Templates

	Customizing notification content

	Service-specific fields

	Time zone adjustment and functions

	Subscriptions

	Associating triggers with applications

	User defined context

	Cluster bootstrap with Argo CD

	Common bootstrap components

	Argo CD facilitating bootstrapping

	Implementing security scanning with Argo Events and ZAP Proxy

	Conclusion

	11. Choosing Continuous Delivery Strategy

	Introduction

	Structure

	Objectives

	Understanding organization's existing CI/CD implementation

	Choosing Argo CD implementation architecture

	Centralized management and control approach

	Advantages of centralized management and control approach

	Disadvantages of centralized management and control approach

	Mitigating risks of this centralized management and control approach

	Assessing the approach

	Argo CD instance per cluster

	Advantages of the instance per cluster approach

	Disadvantages of the instance per cluster approach

	Assessing the approach

	Instance per rational set

	Advantages of the instance per rational set approach

	Disadvantages of the instance per rational set approach

	Assessing the approach

	Combining Argo CD and Argo Workflow

	Defining decentralized workflows

	Key benefits of decentralized Workflows

	Implementing decentralized workflows

	Migration strategy from current system to Argo CD

	Crafting a strategy for progressive delivery

	Conclusion

	Index

index-381_1.png

index-375_1.png
Aowbeatens

CDCTDELD - e D (=)

[pU— R —— o
S Sy Oospc O et e O @om
Ui OSSO 12656) G OO 1272 w0

e
s s
e SumOOSOsRea

RS ssp——

-] Lagou

St rame < e e 10+

P — o
o
Sr Omommosmes

[Reappewss e a—

index-390_1.jpg
CCCCCCCC

iu,., .

index-386_1.jpg
Cluster 1
Cluster 2

juswabeuew pazijenuad

Cluster n

index-172_1.png
Wodous | a0 | hekoworskasn WORKFLOW DETAILS.

Yol @@ §oilose

m & &

index-404_1.png

index-171_1.png
2unonre) (S

-
e
=y
<

- none: message
vatues hello argo
entrypoints argosay
temlates:
nones argosay
input
paraneters:
- none: nessage

Values " (fvorktiov.paraneters.messagel)

‘nane: main

rocproj/argosayii2”

- argosay
ars
- *(Cinputs.paraseters. essagel)
wwistrateay:
secondsftercomletion: 3
strategys vodcampletion

METADATA

@ Biasic completion for YAML. Switchfo JSON for ul auto-campltion. Leam how o get auto-completon i you IDE

You can find manifests in the examples or templates in Workliow Template Catalog.

index-392_1.jpg
ArgoCD Control Panel for Group n

kubernetes cluster

index-185_1.png
Argo Ll

agro namespace

workflow

controller

User Namespace

w1
step

step
pod

wfi wi2 w2
step DAG DAG
pod pod pod

Init
container

main container

index-184_1.png
POD Informer

Create wF POD

0000

WorkFlow COR Informer

index-233_1.png
ep,

o,

Event Source Controller

Various
Events(SNS,S
QS,PubSub,

Webhooks)

index-188_1.jpg
9 g @

O Provider Workflow Archivele MySQL) ArtfactStre(e£.53)

Kubernetes Cluster

Ao System namespace

o o

nxArgo Server T Workfiow Controler
Ao Seversenice Prometheus Collcor
Usernamespace b system namespace

1.0 Workfow pod

Netwrk Lood Balancer

APicient WePBro

ubegtcul

e

index-257_1.jpg
1 Initial version

S

2New version deployed

C ') Losd
cgl_ i _.Q—_
=

3 Switch Traffic

Eo')_m —— ===

4Finish

Eg) — Live Trafic

index-253_1.png
Updaetoverson2 _{ sy W H A ——

k—No —‘ Success? }-—{ Analyze Metrics

i~ YES —f

RollBack

cover_image.jpg
@
Argo CD and

r» Argo Workflows
on Kubernetes:

GitOps,
workflow

index-170_1.png
WORKFLOWS.

Q

-

e No workflows

2 . o crotea i workio, st buton ave

olB You can i maniosts i th oxampis or it in Wokfo Tompiae Gt

"
L4
>

&
]
0 pendng
Running
) Suesooded
Falod

Emor

index-169_1.png
Logs

& A

hello-vorld-7dnrz
hello-world-7dnz:

hello-world-7dnrz:
hello-world-7dnrz:

hello-world-rdnez:
hello-world-7dnez:
hello-world-7dnrz:

hello-world-7dnsz:

hello-world-7dnz:

hello-world-Tdnrz:
hello-world-7dnsz:
hello-world-7dnrz:
hello-world-7dnez:

hello-world-7dnrz:

hello-world-7dns:

< hello world >

"
s
#rae #e

s

tine="2022-11-21719

Logs do not appear for pods that are deleted.

6.2682" Leveleinfo mag=

Y [Filtr (regexp)..

ub-process exited” argc

index-170_2.png
Submit new workflow
Either:

Solocta workflow template.
or

Editusing l worktow optons»

index-324_1.png
3 ARGO ROLLOUTS DEMO.

s u=m =
- B

index-360_1.png
Let's get stuff deployed!

00

index-342_1.png

index-134_1.png

index-362_1.png
ago

index-361_1.png
Apphcations. APPLICATIONS TILES

D EEZD D - - YT

Applicatio Sort:name » tems per page: 10

@ argo

© cchoservice

index-141_1.png

index-365_1.png
Settings

Basic Information
Collaborators
Socket Mode

Install App

Manage Distribution

Features

App Home
Org Level Apps
Incoming Webhooks
Interactivity & Shortcuts
Slash Commands
Workflow Steps

OAuth & Perm

ons
Event Subscriptions
User ID Translation
App Manifest new

Beta Features

index-136_1.png
Spplcatons testorphanedesoure APPLICATION DETAILS

2 Healthy @ Synced synchronization® 1 Warnings

SHOW ORPHANED

- P J—

4 $94f798c
@v;ﬂ v e By s R - :

=) = =

T ——

index-364_1.png
Your Apps

@ If your app s (or will be) listed in the Slack App Directory, please review our Slack App
Directory Agreement. These terms are in addition to the existing Developer Policy, API
TOS, and Brand Guidelines.

By keeping your app in the Apo Directory or review process, you're confirming your
agreement to the Slack App Directory Agreement and to providing additional
information for security review, if requested. If you don't agree with this Agreement,
please send an email to feedback@slack.com, and we'll remove your app from the App

Directory or Lhe review process.

index-164_1.png
©O Login

It may not be necessary to be logged n to use Argo Workflows, it depends on how itis configured.

Lear more.

If your organisation has configured single.
sign-on:

If your organisation has configured client
‘authentication, get your token following
this instructions from here and paste in this.
box

BLOGIN

Something wrong? Try logging out and
logging back in:

index-373_1.png
Applications

+NEWAPP | 2 SYNCAPPS]| C'REFRESH APPS Q Search applications.

Wil dev-cluster-cluster-bootstrap w
Project: default

Labels

Status: @ Missing © OutofSync © Sync failed
Repository: hitps://prometheus-community.github.io/h.
TorgetRe.. 45200

Chart kube-prometheus stack

Destinati. dev-cluster

Namespa.. monitoring

Created At 05/04/202411:14:32 (7 minutes ago)
Last Sync: 05/04/2024 11:21:14 (a few seconds ago)

index-149_1.png
Register a new OAuth application

Application name *
Argo CD
‘Something users will recognize and trust
Homepage URL *
http://<changeit> example.com
The full URL to your application homepage.
Application description

Book
‘Thisis displayed to al users of your application.

Authorization callback URL *

httpsjfargocd.<changeit> com/apildex/callback

(JEnable Device Flow

Alow this OAuth App to authorize users via the Device Flow.
Read the Device Flow documentation for more information.

Register application [JRSaue]

Your appiication's callback URL. Read our OAuth documentation for more information.

index-370_1.png
¥ Application echo-service is now running new version of deployments manifests.

echo-service

Sync Status Repository

Synced https://github.com/nahidupa/echo-service-
manifest.git

Revision

6bcac90914ad5164654091F1d6bf1054fc9
c684c

index-167_1.png
$ommn

L4
&
&
=

-+ suau e

WORKFLOY
cron
Pending
Running
0 Succee,
0 Fated

[Eror

e (CRZI weisao

»resune

ostor

'WORKFLOWS

oremre [

index-165_1.png
Q

n27.0.01

Tell us what you want to use Argo for - x
we'll tell you how to do it.

Machine Data Stream
Learning Processing Processing

Infrastructure
Automation

*»0Q

index-374_1.png
Applications

+NEWAPP | & SYNCAPPS C REFRESH APPS Q_ Search applications... @ @

Wi dev-cluster-cluster-bootstrap Pxd Wil staging-cluster-cluster-bootstrap Pxd
Project: default Project: default

Labels: Labels:

Status: @ Missing © Out0fsync @ Sync failed status @ Missing © OutfSync O Syncing
Repository: https://prometheus-community.github.io/h. Repository: https:/prometheus-community.github.io/h.
TargetRe.. 45200 TargetRe.. 45200

Chart: kube-prometheus-stack Chart: kube-prometheus-stack

Destinati dev-cluster Destinati. https://192.168.2.43:52719

Namespa.. monitoring Namespa.. monitoring

Created At 05/04/2024 11:14:32 (10 minutes ago) Created At 05/04/2024 11:24:14 (a few seconds ago)
Last Sync: 05/04/2024 11:21:14 (3 minutes ago) Last Sync: 05/04/2024 11:24:18 (a few seconds ago)

T CE DCC

index-118_1.jpg
prometheus-operator

index-114_1.png
apps
.o

appication

©

appication

©

appication

©

appication

helm-guestbook

kustomize-guestbook

syncwaves

helm-guestbook
ou

helm-hooks
ou

kustomize-guestbook

ou

sync-waves

ou

H
!

index-124_1.png
Q engineering-dev-guestbook

Project: default
Labels:

Status: Missing © outofsync

Repository: Y - . 2 ionset git
Target Re. wa-user-guide 84

Path examples/lst-generator/guestbook/enginee.
Destination: [

Namespa questbook

Q engineering-prod-guestbook

Project: default
Labels:

Status: Missing © outofsync

Repository: Y <o tionset git
Target Re. wa-user-guide 84

Path examples/lst-generator/guestbook/enginee.

Destination: NENEE;>

Namespa questbook

D OCT

index-121_1.png
Cluster Events.

_/_J‘ ApplicationSet Controller l— %

Application CRD

Create,
Update,
Delete

Application CRD

Argo CD handles the creation of
Kubernetes

resources within the target
namespace

Deployments

()

Kubernees lusterts

index-296_1.png
[ARGO ROLLOUTS 0cHC E

D00000
[O
(/]
[|
[
[
000000
[
[
mOC000
]
[

0 I I I
O00O00OB00ORCOO0ECDO0O0ROORCO00OOSROROERODOO00

index-286_1.jpg

index-318_1.png
? ARGO ROLLOUTS DEHO

s = Em =
.

index-296_2.png
ARGO ROLLOUTS DEHO

e

[

index-319_1.jpg

index-72_1.png
Argo CD.

Web hook event I

Dev Cluster

Deploy .g

Staging Cluster

Production Cluster

nmmﬁ-

PRmerge

Q wa
@

ERPC/REST

index-318_2.jpg

index-63_1.png
sopteacns | Qgusmok

@Healty © Synced

¥
Qosmes 2
Ooowosm o
Owheomy 4
[aEL—
Qvomoss o
Dosupnsd o
Oomsios 0
Qousmom o

Toweso ez

@ =

© sync 0K

L

- ¥ :

index-320_1.png
2 ARGO ROLLOUTS DEHO]

w (1] - | [=
o -
HEE Rl Ee R EE BRSNS RS RS Ao EE EEEEEE o
o0 I 5 T A
Bt 0 5
EEEO

DOOEOOOECO []
EOOECEEEECOOEEEECO0OEORCE0ECEEEEE0E

index-88_1.png

index-319_2.jpg

index-74_1.png
Q search.

AccountService

ApplcatonSenvico

CorticateSenvce.

CusterSenvice

GPGKeyService

Projectsenvice

RepoCredsSenvce

RopositoryService

SessionSenvice

Consolidate Services (version not set)

Download OpenAPI specification: | Download

Descripton of all APl

AccountService

ListAccounts returns the list of accounts

Responses

> 200 A successful response.

> dofault An unoxpected erro response

index-112_1.png
-7 -0

Self-managed

index-321_1.jpg

index-320_2.jpg

index-91_1.png
High Availabilty
MuliTenant
Deployment

Disaster Recovery.
Cluster Bootstrapping.
Upgrading Argo CO

e e

Disaster Recovery.

Orphanedresources

Incdent

observabity

- Best practces

Tracing

Logging Log search
——
-
Wontoring <
S
—
S
an o
sogasnan
P— e

index-285_1.jpg

index-266_1.png
argo-rollouts-bluegreen-demo ceo

Strategy
argo-rollouts-bluegreen-demo- gFevision
659850849 1

index-277_1.png
argo-rollouts-bluegreen-demo ceo

argo-rollouts-bluegreen-demo- Revision

6598508b49 °,

index-267_1.png
canary-demo ()

Summary

Strategy
step
Set Weight

Actual Weight

Revisions

Revision 9

argoprojroiouts-demorgreen
canary-domo-66106454b6 ©

Revision 8

argoprojiroliouts-demo:yellow

2 restant X @ ReTRY

Containers

39 canary

canary-demo

s

argoproj/roliouts-demorgreen

Steps.

@ et Weight: 20%

O Pause

@ Set Weight: 40%

O Pause: 105

@ Set Weight: 60%

index-279_1.png
2 ARG ROLLOUTS 040 =
r

o B B o] |
L
| I B0 I [I
| I |l 00 I il 00) o
NN I [| I I |
|l I Il i I
| I 0) ol
| Il i \I I][
| I 11 RN Il |

I
0 1

index-278_1.png
Summary Containers 4

Revisions

Revision 1 @

rgoprojiroliouts-< e
argoprojiroliouts-demo:green | [

argo-rollouts-bluegreen-demo-6598508549 @

index-282_1.png
agorolouts buegreon-semo O

pr—"

Coninars

Roviions

[E—— o Famw

T e——

index-281_1.jpg

index-284_2.png
Summary Containers 4

Strategy argo-rollouts-bluegreen-demo | argoprojrol.

Revisions

Revision 1 ®

argoprojfrollouts-demo:green |

argo-rollouts-bluegreen-demo-65985b8b49 @

index-284_1.png
F ARGO ROLLOUTS DEHO. S

an = | o
s
NN AN AN NN]
I L L]
R 01 I

N R I \I I
1 I \I 1 \I (=

P

\ \ I\ I I\ [I\ I I i
| II\ I\ 00 NN
Il I\ III\ I\ || [I\ 0 NN
| 10 [
| I RN R (NN
} 0000 IR [
|

I

I 11
I Jl Jl \I I

index-261_1.png
§ rotout convalier

[JanalysisTemplate

S e

. E 2 Prometheous

Canary Replicaset

wavefront

Stable Replicaset

index-259_1.jpg
SR>
SR>

3 New version used by 31% of users

e

4Finish

SR>

index-1_1.jpg
Argo CD and

Argo wOrkrows

Kubernetes

GitOps, ion, and p ive delivery
with Argo Rollouts

Md Nahidul Kibria 15

index-3_1.jpg

index-2_1.jpg
Argo CD and

Argo wOrkrows

Kubernetes

GitOps, ion, and p ive delivery
with Argo Rollouts

Md Nahidul Kibria 15

index-18_1.png

index-5_1.png
To View Complete
BPB Publications Catalogue

Scan the QR Code:

index-54_1.png
Let's get stuff deployed!

00

SIGN IN

index-46_1.png

index-56_1.png
Applications APPLICATIONS TILES

leo!

Q_Search applications. ()

