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The idea for this project was born during a discussion with Damien Vergnaud. 

Damien had been asked to propose a series of volumes covering the different domains

of modern cryptography for the SCIENCES series. He offered us the opportunity

to take charge of the  Embedded Cryptography  books, which sounded like a great

challenge to take on. In particular, we thought it was perfectly timely as the field

was gaining increasing importance with the growing development of complex mobile

systems and the internet of things. 

The field of embedded cryptography, as a research domain, was born in the

mid-1990s. Until that time, the evaluation of a cryptosystem and the underlying

attacker model were usually agnostic of implementation aspects whether the

cryptosystem was deployed on a computer or on some embedded hardware like a

smart card. Indeed, the attacker was assumed to have no other information than the

final results of a computation and, possibly, the corresponding inputs. In this

black-box context, defining a cryptanalytic attack and evaluating resistance to it

essentially consisted of finding flaws in the abstract definition of the cryptosystem. 

In the 1990s, teams of researchers published the first academic results

highlighting very effective means of attack against embedded systems. These attacks

were based on the observation that a system’s behavior during a computation

strongly depends on the values of the data manipulated (which was previously known

and exploited by intelligence services). Consequently, a device performing

cryptographic computation does not behave like a black box whose inputs and
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outputs are the only known factors. The power consumption of the device, its

electromagnetic radiation and its running time are indeed other sources that provide

the observer with information on the intermediate results of the computation. Teams

of researchers have also shown that it was possible to disrupt a computation using

external energy sources such as lasers or electromagnetic pulses. 

Among these so-called  physical attacks, two main families emerge. The first

gathers the (passive) side-channel attacks, including timing attacks proposed by

Kocher in 1996 and power analysis attacks proposed by Kocher et al. in 1999, as well

as the microarchitectural attacks that have considerably developed after the

publication of the Spectre and Meltdown attacks in 2018. This first family of attacks

focuses on the impact that the data manipulated by the system have on measurable

physical quantities such as time, current consumption or energy dissipation related to

state changes in memories. The second family gathers the (active) fault injection

attacks, whose first principles were introduced by Boneh et al. in 1997. These attacks

aim to put the targeted system into an abnormal state of functioning. They consist, 

for example, of ensuring that certain parts of a code are not executed or that

operations are replaced by others. Using attacks from either of these families, an

adversary might learn sensitive information by exploiting the physical leakage or the

faulted output of the system. 

Since their inception,  side-channel attacks  and  fault injection attacks, along with their countermeasures, have significantly evolved. Initially, the embedded systems

industry and a limited number of academic labs responded with ad-hoc

countermeasures. Given the urgency of responding to the newly published attacks, 

these countermeasures were reasonably adequate at the time. Subsequently, the

invalidation of many of these countermeasures and the increasing sophistication of

attack techniques highlighted the need for a more formalized approach to security in

embedded cryptography. A community was born from this observation in the late

1990s and gathered around a dedicated conference known as  cryptographic hardware

 and embedded systems (CHES). Since then, the growth of this research domain has

been very significant, resulting from the strong stake of the industrial players and the

scientific interest of the open security issues. Nowadays, physical attacks involve

state-of-the-art equipment capable of targeting nanoscale technologies used in the

semiconductor industry. The attackers routinely use advanced statistical analyses or

signal processing, while the defenders designing countermeasures calls on concepts

from algebra, probability theory, or formal methods. More recently, and notably with

the publication of the  Spectre  and  Meltdown  attacks, side-channel attacks have extended to so-called microarchitectural attacks, 

exploiting very common

optimization techniques in modern CPUs such as out-of-order execution or

speculative execution. Twenty-five years after the foundational work, there is now a

large community of academic and industrial scientists dedicated to these problems. 

Embedded cryptography has gradually become a classic topic in cryptography and

computer security, as illustrated by the increasing importance of this field in major
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cryptography and security conferences besides CHES, such as CRYPTO, Eurocrypt, 

Asiacrypt, Usenix Security, IEEE S&P or ACM CCS. 

Pedagogical material

For this work, it seemed important to us to have both scientifically ambitious and

pedagogical content. We indeed wanted this book to appeal not only to researchers in

embedded cryptography but also to Master’s students interested in the subject and

curious to take their first steps. It was also important to us that the concepts and

notions developed in the book be as illustrated as possible and therefore accompanied

by a pedagogical base. In addition to the numerous illustrations proposed in

the chapters, we have made pedagogical material available (attack scripts, 

implementation examples, etc.) to test and deepen the various concepts. These

can be found on the following GitHub organization:

https://github.com/

embeddedcryptobook. 

Content

This book provides a comprehensive exploration of embedded cryptography. It

comprises 40 chapters grouped into nine main parts, and spanning three volumes. 

The book primarily addresses side-channel and fault injection attacks as well as their

countermeasures. Part 1 of Volume 1 is dedicated to  Software Side-Channel Attacks, 

namely, timing attacks and microarchitectural attacks, primarily affecting software; 

whereas Part 2 is dedicated to  Hardware Side-Channel Attacks,  which exploit

hardware physical leakages, 

like power consumption and electromagnetic

emanations. Part 3 focuses on the second crucial family of physical attacks against

embedded systems, namely,  Fault Injection Attacks. 

A full part of the book is dedicated to  Masking  in Part 1 of Volume 2, which is a

widely used countermeasure against side-channel attacks and which has become an

important research topic since their introduction in 1999. This part covers a variety of

masking techniques, their security proofs and their formal verification. Besides

general masking techniques, 

efficient and secure embedded cryptographic

implementations are very dependent on the underlying algorithm. Consequently, 

Part

2,  Cryptographic Implementations, is dedicated to the implementation of

specific cryptographic algorithm families, 

namely, 

AES, RSA, ECC and

post-quantum cryptography. This part also covers hardware acceleration and

constant-time implementations. Secure embedded cryptography needs to rely on

secure hardware and secure randomness generation. In cases where hardware alone is

insufficient for security, we must rely on additional software techniques to protect

cryptographic keys. The latter is known as white-box cryptography. The next three

parts of the book address those aspects. Part 3, Volume 2,  Hardware Security, covers
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invasive attacks, hardware countermeasures and physically unclonable functions

(PUF). 

Part 1 of this volume is dedicated to  White-Box Cryptography: it covers general

concepts, practical attack tools, automatic (gray-box) attacks and countermeasures as

well as code obfuscation, which is often considered as a complementary measure to

white-box cryptography. Part 2 is dedicated to  Randomness and Key Generation  in

embedded cryptography. It covers both true and pseudo randomness generation as

well as randomness generation for specific cryptographic algorithms (prime numbers

for RSA, random nonces for ECC signatures and random errors for post-quantum

schemes). 

Finally, we wanted to include concrete examples of real-world attacks against

embedded cryptosystems. The final part of this series of books contains those

examples of  Real World Applications. While not exhaustive, 

we selected

representative examples illustrating the practical exploitation of the attacks presented

in this book, hence demonstrating the necessity of the science of embedded

cryptography. 
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1.1. Introductory remarks

In 1883, Auguste Kerckhoffs’ article,  La cryptographie militaire, was published

in the  Journal des sciences militaires, in which he stated six design rules for military ciphers. Here they are, translated from French:

1) The system must be practically, if not mathematically, indecipherable. 

2) It should not require secrecy, and it should not be a problem if it falls into enemy

hands. 

3) It must be possible to communicate and remember the key without using written

notes, and correspondents must be able to change or modify it at will. 

4) It must be applicable to telegraph communications. 

5) It must be portable and should not require several persons to handle or operate. 

6) Lastly, given the circumstances in which it is to be used, the system must be

easy to use and should not be stressful to use or require its users to know and comply

with a long list of rules. 

The second rule, now known as Kerckhoffs’s principle, has been completely

taken into account in the modern cryptography concepts. More precisely, it is usually
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assumed, in most security models, that the attacker has a complete knowledge of the

formal specifications of the cryptographic algorithms that are used to secure the

communications or the storage of sensitive data. 

On top of that, to make security possible, we must assume that the legitimate users

(traditionally called Alice and Bob in the two-party scenarios) know a secret data

which gives them an advantage over a potential adversary (usually called Charlie). 

Since this secret  key  has to be involved in the cryptographic computations, and must still remain hidden from the attacker, the classical security model in cryptography

makes the assumption that it is not only the key but also the explicit implementation

of the algorithm (which includes the key) which cannot be accessed by the attacker. 

This is the  black-box  model. 

Nevertheless, cryptographic algorithms are increasingly deployed in various

applications embedded on connected devices, such as smartphones and tablets. In

this environment, the capabilities of the adversary can be greatly enhanced, and we

should consider an adversary who can access the binary code, modify its execution, 

tamper with the memory and use existing reverse engineering tools such as debuggers

to recover the hidden secrets. This  white-box  model is of course more demanding, 

and white-box cryptography aims at providing the same security guarantees as in the

black-box model, despite this huge new advantage given to the adversary. 

In the following sections, we will be able to provide precise security notions that

capture this idea of cryptographic security in a white-box model. However, we give

here some preliminary remarks to highlight the subtleties which can arise when trying

to formalize white-box cryptography. 

As a first tentative goal, let us consider the problem of providing an

implementation of a block cipher algorithm  EK  for which the secret key  K  is computationally difficult to extract from the given implementation. 

If no further constraints are given, it is not difficult to build such a block cipher

algorithm, together with a white-box implementation. Indeed, we can choose  E

defined by:

 EK =  Eh( K)

where  E  is a standard block cipher (for instance, AES) and  h  is a one-way function (for instance,  h  can be built with a standard hash function). It is obviously easy to build an implementation such that  h( K) is easy to recover, but not  K. This shows that the difficulty of extracting the key does not completely capture the intuitive notion we

have for white-box cryptography. 
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Another natural idea follows from this first remark:

Can we make it

computationally difficult, from the implementation of  EK (i.e. the code of the

function  x → EK( x)), to find a decomposition of the form:

 EK( x) =  F ( x, G( K)) , 

for which we can explicitly obtain the code of  F  and the code of  G? Note that in this framework,  G  can contain several elements. For instance, block ciphers typically use a key schedule mechanism such as  G( K) = ( K 1 , . . . , Kr), with  subkeys Ki (1  ≤ i ≤ r), so that we have:

 EK( x) =  F ( x, K 1 , ..., Kr)

A typical example that would not satisfy this definition is a “one-way” key

schedule:

 Ki =  h( K||i) (1  ≤ i ≤ r) , 

where  h  is a one-way function (that can easily be built from a standard hash function). 

In summary, it seems a good definition of white-box cryptography should forbid

the following situation: “the code is independent of  K, except constants which depend on  K  in a deterministic way”. 

At first sight, we could fear all cryptographic implementations would therefore

be forbidden! Fortunately, the possibility remains that  G  has, among its inputs, an external value  r:

 EK( x) =  F ( x, G( K, r))

This construction is reminiscent of the randomness used in side-channel

countermeasures and historically appeared to be a key idea in the seminal proposals

of white-box DES and AES implementations (Chow et al. 2002), where:

 G( K, r) = tables that depend on  K  and  r. 

Note that this also opens the way to a useful application:  traitor tracing. If someone reveals  G( K, r), we can recover  r (in the extreme case, by exhaustive search on  r). 

This relies on the assumption that it is difficult to deduce  G( K, r) from  G( K, r) (and a fortiori  K  from  G( K, r)). 
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We can also remark that such a construction can be done in the context of the RSA

primitive. The fundamental idea is the following: if the encryption function is built

upon  x → y =  xe  mod  n, the decryption function is based on  y → x =  yd  mod  n (where  d  is the inverse of  e  modulo  ϕ( n)) and can be implemented as  y → x =

 yd  mod  n, where  d  is an arbitrary large integer such that  d ≡ d  mod  ϕ( n), namely, d =  d+ rϕ( n). For this construction to make sense, we have to assume that  e  is also a secret exponent (if not, a well-known argument can be used to deduce the factorization

of  n  from  d), so that what we obtain is an example of white-box symmetric algorithm:

⎧

⎪

⎨ K = ( e, d, p, q)

⎪ E

⎩  K( y) =  yd  mod  n

 E− 1

 K ( x) =  xe  mod  n

Here, which instructions are executed (or not) may depend on  K (typically in the

case of  square and multiply: “if  di = 1 then  x :=  x × y  mod  n”). However, the knowledge of these executed instructions is equivalent to the knowledge of  n  and  d, which does not allow us to recover  K = ( e, d, p, q). 

1.2. Basic notions for white-box cryptography

The basic security requirement for a white-box implementation is to resist key

extraction. However, we should expect more from white-box cryptography and

consider various security properties for the white-box implementations; and

hopefully we provide formal definitions and security notions for white-box

cryptography. In particular, Delerablée et al. (2014) defined some concrete white-box

security notions for symmetric encryption schemes. For example,  unbreakability, 

 one-wayness,  incompressibility  and  traceability  are derived from folklore intuitions behind white-box cryptography. 

1.2.1.  Unbreakability

The notion of unbreakability is a very intuitive security notion for white-box

cryptography and has been studied since the seminal paper of Chow et al. (2002). 

Let us describe the game for unbreakability of a white-box compiler  CS

corresponding to a given cryptographic algorithm  S:

– draw at random key  k  in private keyspace  KS; 

– the adversary  A  gets the program  CS( k) from the compiler; 

– the adversary  A  returns a key guess ˆ k  in time, and  τ  knows  CS( k); 

– the adversary  A  succeeds if  k = ˆ k. 
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DEFINITION 1.1.– Let  S  be a cryptographic algorithm,  CS  a white-box compiler for this algorithm  S  and let  A  be any adversary. We define the probability of the adversary A  to succeed in the unbreakability game by:

 SuccA,CS := P[ k ← K;  P =  CS( k) , A( P) = ˆ k;  k = ˆ k]

We say that  CS  is ( τ ,  )-unbreakable if for any adversary  A  running in time  τ , SuccA,C ≤ . 

 S

1.2.2.  Incompressibility

The notion of incompressibility is a stronger security notion, first formally defined

by Delerablée et al. (2014), where the study of this notion is motivated as a software

countermeasure against code-lifting attacks. 

We now describe, for any  σ >  0, the game for incompressibility for a white-box

compiler  CS  corresponding to a given cryptographic algorithm  S:

– draw at random a key  k  in private keyspace  KS; 

– the adversary  A  gets the program  CS( k) from the compiler; 

– the adversary  A  returns a program  P  knowing  CS( k); 

– the adversary  A  succeeds if  P ≈ CS( k) and  size( P)  ≤ σ. 

DEFINITION 1.2.– Let  S  be a cryptographic algorithm,  CS  a white-box compiler for this algorithm  S  and let  A  be any adversary. We define the probability of the adversary A  to succeed in the  σ-incompressibility game by:

 SuccA,CS := P[ k ← K;  P =  A( CS( k)) ;  P ≈ CS( k); ( size( P)  ≤ σ)]

Moreover, we say that  CS  is ( σ,  τ ,  )-incompressible if for any adversary  A, Time( A)+Time( P)  < τ  implies  SuccA,C ≤ . 

 S

REMARK 1.1.– In a more general case, the definition can include a parameter  δ  that

allows the program  P  to agree with the targeted function with probability  δ. 

REMARK 1.2.– Note that if a compiler is incompressible, then it is unbreakable for

reasonable security levels: the key-recovery is indeed an extreme compression of a

white-box implementation. 

The definition of incompressibility we state here is a slightly modified version

from the initial definition of Delerablée et al. (2014). Indeed, the latter does not

constrain the running time of the program  P, which leaves the possibility of a trivial
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way of compressing any white-box algorithm, namely, by using brute force: an

attacker can compute a few (plaintext, ciphertext) pairs and code the brute-force

attack on the primitives that are white-boxed, and then code the computation of the

primitive, including the obtained key. This program can be made with few lines of

code and is functionally equivalent to the initial white-box implementation, but has

an unreasonable running time. The definition above makes use of a new time

constraint: the sum of the running time of the attacker and the produced program

must be less than a constant  τ  representing the whole computation time allowed. 

REMARK 1.3.– The previous modification does not necessarily invalidate all the

proofs found in the literature for incompressibility. Indeed, in some of these proofs, 

the programs produced by the attacker are restrained by a model (for example, Ideal

Group Model), whereas the program we mentioned here does not fit into this kind of

model. 

1.2.3.  One-wayness

Let us describe the game for one-wayness of a white-box compiler  CS

corresponding to a given symmetric encryption algorithm  S:

– draw at random a key  k  in private keyspace  KS; 

– the adversary  A  gets the program  CS( k) from the compiler; 

– the adversary  A  gets the ciphertext  c  corresponding to a randomly selected plaintext  m; 

– the adversary  A  returns a guess ˆ

 m  in time  τ  knowing  CS( k); 

– the adversary  A  succeeds if  m = ˆ

 m. 

DEFINITION 1.3.– Let  S  be a symmetric encryption algorithm,  CS  a white-box compiler for this algorithm  S  and let  A  be any adversary. We define the probability of the adversary  A  to succeed in the one-wayness game by:

 SuccA,CS := P[ k ← K, m ← M;  P =  CS( k) , c =  S( m) , A( P, c) = ˆ

 m;  m = ˆ

 m]

We say that  CS  is ( τ ,  )-one-way if for any adversary  A  running in time  τ , SuccA,C ≤ . 

 S

REMARK 1.4.– This one-wayness has the following consequence: the cryptographic

algorithm can be used as a public-key cryptosystem. It is indeed possible to see the

obtained white-box implementation as a public key, and the key  K  of the algorithm

as the private key. The one-wayness property implies that the public key can only

be used to encrypt messages, whereas the decryption requires the knowledge of the

private key. This illustrates the power of this security notion. 
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1.3. Proposed (and broken) solutions

1.3.1.  Block ciphers

Many attempts have been made to construct white-box implementations for

standard block ciphers in recent years. 

DES obfuscation methods were first proposed by Chow et al. (2002) at the DRM

2002 workshop. The simplest method (“naked DES”) was cryptanalyzed by Chow et

al. (2003) themselves at the SAC 2002 conference; an improved method was also

cryptanalyzed by Jacob et al. (2002) and by Link and Neuman (2004); the strongest

known method (“nonstandard-DES”) was also cryptanalyzed independently by

Wyseur et al. (2007) and by Goubin et al. (2007) at the SAC 2007 conference. 

A specific obfuscation method for AES was proposed by Chow et al. (2002) at

SAC 2002, and later cryptanalyzed by Billet et al. (2004) at SAC 2004 (see also Billet

(2005); PhD Thesis, defended in December 2005). 

Further construction attempts followed, for instance, by Link and Neumann

(2004), Bringer et al. (2006), Xiao and Lai (2009), and by Karroumi (2010), but they

were also shown to be insecure sooner or later, by De Mulder et al. (2010) at

INDOCRYPT, De Mulder et al. (2012) at SAC, Lepoint et al. (2013) at SAC, De

Mulder et al. (2013), and Lepoint and Rivain (2013). The WhibOx 2017 and 2019

contests showed that even with hidden designs, producing unbreakable and one-way

AES implementations in pure software is a difficult open problem. 

This illustrates that reaching the  unbreakability  property – and a fortiori the

 incompressibility  property – are already difficult when implementing standard block ciphers such as 3DES or AES. 

Concerning the  one-wayness  security notion, we already mentioned that it allows

us to tranform a (symmetric) block cipher into a public-key cryptosystem, which gives

a first hint that it is probably even more difficult to obtain than unbreakability. 

More precisely, for usual block ciphers, the one-wayness problem appears to have

a close relationship with the problem of “functional decomposition”. Standard block

ciphers are indeed built from several rounds (for instance, 16 rounds for DES or

10 rounds for AES), which leads to typical implementations as a loop corresponding

to a functional decomposition:

 EK =  fr ◦ . . . ◦ f 1
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Hence, inverting  EK  boils down to inverting each  fi, which is likely to be an easy task. 

REMARK 1.5.– A natural idea would be to compute functional compositions of

the type  fi ◦ fj, such that the “functional decomposition” is computationally hard. 

However, the problem for classical block ciphers is that the algebraic degree of such

compositions grows quickly. This can even be seen as an unavoidable consequence of

the fundamental principle stated by Shannon (1949) paper: breaking a “good” cipher

should require “as much work as solving a system of simultaneous equations in a large

number of unknowns of a complex type”. Therefore, the composition cannot be done

via the representation as polynomial systems, and new strategies seem to be required

here. 

REMARK 1.6.– White-box constructions (with the unbreakability and one-wayness

properties) are possible if we are allowed to choose an (ad hoc) block cipher. This is

reminiscent of public-key cryptography and can easily be illustrated in the context of

multivariate cryptography. In a nutshell, a multivariate algorithm makes use of a

function  A  that can be represented as a system of  n  multivariate polynomials in  n variables and can be easily inverted. In the asymmetric setting, the secret key

comprises two secret invertible linear (of affine) functions  s  and  t, and the corresponding public key is obtained as  t ◦ A ◦ s, one of the security assumptions

being that recovering  A  from this public key in computationally difficult (this is

usually called the “Isomorphism of polynomials with two secrets” problem). 

This construction can be converted into a symmetric block cipher:

⎧

⎪

⎨ K = ( s, t, A)

⎪ E

⎩  K( y) = ( t ◦ A ◦ s)( y) ,  where  t ◦ A ◦ s  is given as a system of polynomials E− 1

 K ( x) =  s− 1  ◦ A− 1  ◦ t− 1( x)

In summary, the idea here is that multivariate cryptography can make  K  difficult

to extract from the implementation of  EK, without having a huge algebraic degree for the “global” (and public) description of  EK. 

1.3.2.  Asymmetric algorithms

While many candidates have been publicly proposed to construct white-box

implementations of block ciphers, almost no white-box implementations for

public-key algorithms have been published up to now, in spite of numerous research

efforts. 

In their works, Feng et al. (2020) and Zhang et al. (2020), claim to achieve

unbreakability for asymmetric cryptosystems. However, their proposals require a
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non-standard verification process, which makes them irrelevant for genuine

public-key applications. 

To the best of our knowledge, the first candidate that does not change the

underlying scheme is due to Barthelemy (2020a, 2020b), who proposed a white-box

implementation of a scheme suggested by Aguilar Melchior et al. (2016) whose

(black-box) security is based on the computational difficulty of the RLWE (ring

learning with errors) problem over the cyclotomic ring  Rq = Z /q Z[ X] /( Xn + 1). 

Lucas Barthelemy’s implementation of the decryption algorithm makes use of

the NTT transformation and RNS representations to reduce the computation to small

look-up tables, which can in turn be transformed using ideas dating back to the SAC

2002 seminal paper of Chow et al. (2020), together with additive of multiplicative

masking based on homomorphic properties of the cryptographic scheme. However, 

a fatal flaw was found (and acknowledged by Lucas Barthelemy in his PhD thesis):

the core part of the white-box implementation consists of trying to prevent the key

extraction for a function of the form  α 2  − α 1  · sk, where ( α 1 , α 2) is the ciphertext we want to decrypt, and  sk  is the secret key. This function is linear in  α 1 and  α 2, and this linear dependence on the elements coming from the ciphertext remains true, even after

applying the NTT transformations and using the representations RNS. It is therefore

very easy for an attacker to find the coefficients of these linear transformations (which

depend on  sk), then  sk  itself. 

The WhibOx 2021 contest showed that for the ECDSA algorithm, even with

hidden design, getting an unbreakable implementation is out of reach: all the

implementations proposed were quickly broken. In-depth analyses of the generic

attacks and problems these implementations suffered were provided by Barbu et al. 

(2022) and Bauer et al. (2022). 

Galissant and Goubin (2022) proposed a concrete white-box implementation for

the well-known hidden field equations (HFE) signature algorithm (a signature

algorithm belonging to the multivariate family of public key algorithms) for a

specific set of internal polynomials, providing the first white-box implementation of

a public key algorithm, together with an extensive security analysis providing strong

arguments for both unbreakability and incompressibility. For a security level 280, the

public key size is approximately 62.5 MB and the white-box implementation of the

signature algorithm has a size of approximately 256 GB. 

This is a promising research direction and some variants are currently being

investigated to improve the size of the white-box implementation and adapt it to

various security levels. 
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1.4. Generic strategies to build white-box implementations

1.4.1.  DCA and countermeasures

In the white-box model, the attacker has access all the details of the

implementation of a (known) cryptographic algorithm, including a given secret key, 

and the goal of the attacker is to recover the secret key. Up to now, most candidate

implementations (of DES, AES, substitution linear-transformation ciphers, etc.) have

been broken. Most of the time, the attacks use various cryptanalytic techniques, 

which require knowledge and understanding of all the implementation principles and

details. 

In the past years,  generic attacks  have emerged that apply to white-box

implementations, irrespective of their (secret) designs and which consist of

translating usual hardware attacks to the white-box setting. In particular, Sanfelix et

al. (2015), Bos et al. (2016) at CHES, described differential computational analysis

(DCA), whose principle is to apply side-channel analysis (SCA) techniques to

so-called  computational traces  composed of all the intermediate results of the

computation (bus transfers, register allocations, memory addresses, etc.). More

precisely, a dynamic binary instrumentation (DBI) framework can be used to build

software traces and then mount an analogue of differential power attack (DPA) on

these software traces. The advantage of this technique is that – as DPA in the case of

smart card implementations – the attacker does not need to know (and to analyze) the

very details of the implementation. The attack can be launched in an automated way

on candidate white-box implementations. 

For instance, Bos et al. (2016) describe several examples illustrating the power of

this DCA: the authors show that their method can break many challenge

implementations, which utilize many of the ideas used up to now to build white-box

implementations. This shows that an already stated principle (namely, a whitebox

implementation must in particular resist all kinds of side-channel attacks) had

probably not been considered seriously enough. 

The lack of random source in a white-box implementation (at run-time) is a reason

for the weakness against DCA, but theoretically this does not rule out the possibility

of resistant white-box implementations. Therefore, a first challenge is to provide a

theoretical explanation of the fact that white-box implementations, based on look-up

tables, can be attacked by SCA, even when they are “hidden” by randomly chosen

bijections (e.g. in DES and AES implementation by Chow et al. (2002)). 

A second challenge consists of elaborating specific countermeasures against this

new kind of attack. 
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REMARK 1.7.– As noted by Jacob et al. (2002), and Sanfelix et al. (2015), differential

fault analysis (DFA) can also be directly applied to the white-box setting, so that

resisting these attacks is also a challenge for future research. 

1.4.2.  Using fully homomorphic encryption (FHE)

When considering DCA, we have to limit the power of the attacker, usually by

bounding the “order” of such attacks. Classical ways of protecting the key are making

use of the  secret sharing  principle, leading to so-called  masking  countermeasures. 

In the white-box setting, such a limit is less relevant. We cannot expect noise to

make the complexity of the attack grow exponentially with the DCA order. Is it

therefore natural to push DCA to its limits, and try to obtain “infinite order” 

countermeasures? 

The intuition can be viewed as follows. DCA-type masking

countermeasures of order  n  are based on the idea that the attacker cannot control

more than  n  values, so that computing the algorithm with a “multiparty

computation”-like implementation can prevent the attack. In the context of delegated

computations, when no limit is assumed about the number of parties controlled by

the attacker, multiparty computation is not sufficient any more, and has to be replaced

by FHE. 

For the more general problem of obfuscation, methods based on hard

computational problems have indeed been derived from fully homomorphic

encryption and the universal oblivious Turing machine. Pippenger and Fischer (1979)

proved that a two-tape oblivious Turing machine can simulate any non-oblivious

Turing machine with only logarithmic slowdown. The idea is then to

homomorphically run the universal oblivious Turing machine, with two inputs:

 P rog =  F HE.Encrypt( P rog) , 

where  P rog  is the program to be computed in an obfuscated way. Of course, the

program does not appear in the form  P rog  but only in the form  P rog, pre-computed during the creation of the obfuscated software. 

 x =  F HE.Encrypt( x) , 

where  x  is the input of  P rog. 

To resist partial evaluation attacks and mixed input attacks, as noticed by Garg et

al. (2013), the final decryption of the result has to be conditional. The condition is

twofold:
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– Check the proof of computation of the universal oblivious Turing machine that

testifies that the program  P rog  was indeed run (in an FHE way) on the input  x, and also that  x =  F HE.Encrypt( x) was correctly computed. 

– Verify a digital signature of  P rog, so as to authentify the executed program. 

This idea can directly be adapted to the white-box context by using FHE to

encrypt only  K  instead of the whole program  P rog. For the conditional decryption, two possibilities arise. Conditional decryption can be executed within a dedicated

tamper-resistant hardware, as illustrated by Bitansky et al. (2011) and Döttling et al. 

(2011). One more challenging direction consists of replacing this hardware part by an

obfuscated (software) program. To achieve this, a line of research – starting from a

paper by Garg et al. (2013) that develops a complex design based on branching

programs and multilinear maps – aims at obtaining generic obfuscation methods

(which here would only use the fact that the conditional decryption can be written as

a NC1 circuit). However, they are still highly non-practical. 

1.4.3.  White-box solutions with the help of a (small) tamper-resistant

 hardware

Alpirez Bock et al. (2020) considered (at ASIACRYPT) an alternative use of such

a tamper-resistant hardware. They build a hardware-bound white-box key derivation

function (WKDF) on top of a standard (black-box) key derivation function (KDF). In

a nutshell, if the adversary uses its hardware access, they are able to evaluate the

WKDF, but if they have no access to the relevant hardware values, for example, in

case of a code-lifting attack, then they learn nothing about the WKDF values. The

design, based on techniques published by Sahai and Waters (2014), requires

puncturable pseudorandom functions (PRFs, which are equivalent to one-way

functions) and indistinguishability obfuscation ( iO ). Although interesting from a

theoretical point of view, the current state of the art of  iO  makes the construction highly impractical. 

In comparison, as described in section 1.4.2, white-box resistance can be achieved

using FHE together with a (relatively small) tamper-resistant hardware that computes

the conditional decryption operation. The performance overhead due to FHE is rather

high, but the solution remains realistic in case we really need a single call to the

hardware at the end of the computation. 

Other ways of using a secure hardware component have been considered in the

context of white-box cryptography (seen as a particular case of software

obfuscation). For instance, Anderson (2008) described the following idea. The

program to be obfuscated can be written on the encrypted memory tape of a Turing

machine. Each time an operation has to be executed, the whole tape is sent to the

hardware component, which decrypts it, executes the next instruction, reencrypts the
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tape and sends it back to the software part. This is of course very time consuming and

requires a huge number of exchanges between the software and the hardware token. 

A more efficient solution was described by Goyal et al. (2010). By building on

techniques from resettably secure computation (due to Goyal and Sahai (2009)), they

gave a general positive result for stateless oblivious reactive functionalities under

standard cryptographic assumption. This result also provides the first general

feasibility result for program obfuscation using stateless tokens. As a side result, they

also propose constructions of non-interactive secure computation for general reactive

functionalities with stateful tokens, which can be adapted to hardware-aided

white-box constructions. 

1.5. Applications of white-box cryptography

Real-world applications of white-box cryptography are numerous. Below are some

typical examples illustrating potential use cases of white-box cryptography, either in

a symmetric model or in a public key setting. 

1.5.1.  EMV payments on NFC-enabled smartphones without secure

 element

In recent years, the payment industry has shown great interest in the extension of

the EMV specifications to mobile transactions via near field communication (NFC). 

In that scenario, the usual contactless smart card is emulated by an NFC-compliant

mobile phone or wearable device such as a smart watch. This is referred to as  host

 card emulation (HCE). Unfortunately, however, mobile platforms do not provide

access to a secure element to third-party applications: the SIM card belongs to the

telecommunication operator and handset manufacturers keep any form of trusted

hardware for their own needs. These emerging applications are therefore facing the

challenge of being as secure as a tamper-resistant hardware, although being totally

based on software. White-box cryptography is currently the only approach to secure

these applications and compensate the security risks inherent to common embedded

operating systems such as Android. By hard-coding the EMV keys into the

application code itself, as suggested in the EMVCo requirements documentation in

2019, white-box cryptography tries to achieve a notion of  tamper-resistant software. 

Similarly, Mastercard Cloud-Based Payments (MCBP) is a secure and scalable

software-based solution developed to digitize card credentials and enable both

contactless and remote payment transactions. In this context, in 2017, Mastercard

specifically recommended the use of white-box implementation for the secure

storage of payment tokens. 
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1.5.2.  Software DRM mechanisms for digital contents

Digital right management (DRM) is a set of techniques whereby subscribers get

access to protected content under a number of conditions (access rights). Video

on-demand and mobile TV are typical examples of DRM-protected services. 

Here again, in the absence of a hardware cryptographic module, a white-box

implementation of the content decryption algorithm under an individual user key

prevents the key from being recovered and re-used by third-parties (piracy based on

key sharing and redistribution). 

1.5.3.  Mobile contract signing

The eIDAS regulation (EU Reg. No. 910/2014) came into force on July 1, 2016 in

the 28 member states of the EU, and introduced the  end of the smart card dogma, in

the sense that the signing capability can now be implemented by purely software

means as long as they fulfill specific requirements through a qualification procedure. 

Electronic signatures also become legal evidence that cannot be denied by sovereign

authorities or in court. By relaxing constraints on the signing utility, the eIDAS

regulation opens the way to software-only solutions for digital signatures. As a result, 

a rapid emergence of mobile contract signing is anticipated in the near future. The

user experience is straightforward: a contract (or any form of document in that

respect) is downloaded on the mobile device, reviewed by the human user, digitally

signed locally and the legally binding signature is returned to a back-end server in the

cloud, where it is validated and archived. Now, the need for the signing application to

be eIDAS-qualified imposes (depending on the qualification level) resisting security

threats pertaining to mobile platforms and most particularly logical attacks where

some form of external control is exerted through malware, typically in an attempt to

steal the signing key(s) stored on the device. White-box cryptography is the only

approach that effectively puts the signing key(s) out of reach of logical attacks on the

operating system. Combined with countermeasures against code lifting, white-box

cryptography is expected to take a major role in the adoption and deployment of

eIDAS-based services in the EU. 

1.5.4.  Cryptocurrencies and blockchain technologies

Most solutions to store cryptocurrencies and perform transactions on the

blockchain are today based on a hardware token (USB stick, smart card) or on a

mobile application. While the former provide adequate security, it is inconvenient for

the wider usage. For the latter case on the other hand, the security often relies on the

operating system of the mobile device and the principle of application sandboxing. 

Given the wide variety of mobile OS versions on the field, strictly relying on the

operating system to protect critical assets (such as money) is very hazardous and
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should always be avoided. This raises a strong need for the design of security

solutions for pure-software cryptocurrency wallet against all kind of threats such as

stealing malwares. In order to protect the cryptographic keys intrinsically involved in

cryptocurrencies and blockchain technologies, white-box cryptography is essential. 

As concerns digital signatures, ECDSA is currently the most used algorithm (for

instance, Bitcoin and Ethereum), but alternatives are considered, either for other

cryptocurrencies or to prepare for the post-quantum era. 

1.6. Notes and further references

From a historical perspective, the term “white-box cryptography” was introduced

by Chow et al. (2002, 2003) in their seminal papers in relation to the following

situation:

“When the attacker has internal information about a cryptographic

implementation, choice of implementation is the sole remaining line of defense” 

(Chow et al. 2003). 

– Section 1.1. Auguste Kerckhoffs published his seminal paper in Kerckhoffs

(1883a). See also Kerckhoffs (1883b), entitled  La cryptographie militaire, ou les

 chiffres usités en temps de guerre, avec un nouveau procédé de déchiffrement

 applicable aux systèmes à double clef. 

– Section 1.2. The paper by Delerablée et al. (2014) about white-box definitions

was published in 2013 in the procedings of the SAC conference. The seminal paper of

Chow et al. (2002) was published in the proceedings of the DRM 2002 workshop; see

also their paper at SAC 2002 (Chow et al. 2003). 

– Section 1.3. DES obfuscation methods, first proposed by Chow et al. (2002), 

were cryptanalyzed by Chow et al. (2003), Jacob et al. (2002), Link and Neumann

(2004), Goubin et al. (2007) and Wyseur et al. (2007). 

The white-box implemention for AES by Chow et al. (2003) was later

cryptanalyzed by Billet et al. (2004) (see also Billet (2005)). Other constructions

were proposed by Link and Neumann (2004), Bringer et al. (2006), Xiao and Lai

(2009) and Karroumi (2011), but were all broken by De Mulder et al. (2010, 2013a, 

2013b), Lepoint and Rivain (2013); Lepoint et al. (2014), Lepoint and Rivain (2013); 

Lepoint et al. (2014). During the WhibOx Organizing Committee (2017) and

WhibOx Organizing Committee (2019) contests, all the AES proposals were

eventually broken. 

In his famous paper “Communication theory of secrecy systems” (Shannon 1949), 

Claude Shannon discussed cryptography from an information theory point of view, 

thus providing foundations of modern cryptography. 

sanet.st
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In the asymmetric context, white-box implementations were claimed by Feng

et al. (2020) and Zhang et al. (2020), but they have to modify the verification process, 

so that the cryptosystem does not fit the original public key framework. Lucas

Barthelemy’s candidate (Barthelemy 2020b) is a white-box implementation of a

public key encryption scheme, a variant of a scheme suggested by Aguilar Melchor

et al. (2016). The white-box implementation uses ideas from Chow et al. (2003), but

flaws were acknowledged by Barthelemy in his PhD thesis (Barthelemy 2020a): the

linear dependences allowing us to recover the secret key can be seen in the equations

in section 4.2. 

During the WhibOx Organizing Committee (2021) contest, all of the proposed

ECDSA white-box implementations were eventually broken. Detailed analyses of the

attacks were given by Barbu et al. (2022) and Bauer et al. (2022). 

The recent proposal by Galissant and Goubin (2022) is a white-box

implementation of a variant of HFE, a signature algorithm belonging to the

multivariate family of public key algorithms. 

– Section 1.4. The idea of differential computational analysis (DCA) was

introduced by Sanfelix et al. (2015) and Bos et al. (2016). Its principle originates in

side-channel analysis (SCA) techniques (see, for instance, Kocher et al. (1999) or

Brier et al. (2004)), applied to computational traces, instead of power (or

electro-magnetic) traces. 

The idea of using differential fault analysis (DFA) in the context of white-box

implementations was mentioned by Jacob et al. (2002) and Sanfelix et al. (2015). 

Basic notions about DFA can be found in the well-known papers of Boneh et al. (1997)

and Biham and Shamir (1997). 

A detailed survey of fully homomorphic encryption can be found in Marcolla

et al. (2022). The property that a two-tape oblivious Turing machine can simulate any

non-oblivious Turing machine with only logarithmic slowdown is due to Pippenger

and Fischer (1979). 

The idea of using a conditional decryption operation to resist partial evaluation

attacks and mixed input attacks was described by Garg et al. (2013) at FOCS. This

operation can in turn be executed either in a tamper-resistant hardware, as illustrated

by Bitansky et al. (2011) and Döttling et al. (2011), or in an obfuscated way, following

a line of research initiated by Garg et al. (2013). 

A construction of a hardware-bound white-box key derivation function (WKDF)

was proposed at ASIACRYPT 2020 by Alpirez Bock et al. (2020). It is based on an

idea of Sahai and Waters (2014), according to which white-box can be obtained from

puncturable pseudorandom functions (PRFs) and indistinguishability obfuscation

( iO ). 
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Other constructions using a secure hardware component to obtain obfuscation

properties were proposed by Anderson (2008) and at TCC 2010 by Goyal et al. (2010). 

The latter is based on techniques from resettably secure computation, due to Goyal and

Sahai (2009) at EUROCRYPT. 

– Section 1.5. The extension of the EMV specifications to mobile transactions via

near field communication (NFC) was specified in EMVCo (2008). In 2019, the

EMVCo requirements documentation (EMVCo 2019) suggested to hard-code

the EMV keys into the application code itself. In the same spirit, Mastercard

Cloud-Based Payments (MCBP) (Mastercard 2014) aims at digitizing card

credentials, and Mastercard has specifically recommended the use of white-box

implementation for the secure storage of payment tokens (Mastercard 2017). 
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2.1. Introduction

Secure white-box implementations of existing symmetric ciphers, such as the

AES block-cipher, is a long-standing open problem in cryptography. The table-based

implementations from seminal works of Chow et al. (2003a, 2003b) and their

variants were broken by a variety of attacks. Recently, it was even noticed that classic

side-channel attacks, such as differential power analysis (DPA) and differential fault

attacks (DFA), can be adapted to easily break most existing white-box designs. What

is special about these attacks is that they are generic and automated; they do not

require a complete understanding of the design behind the implementation being

attacked. This effectively reduces the cost for an attacker, removing or minimizing

the human-driven reverse-engineering step (see Chapter 4 of this volume about code

obfuscation techniques). 

This observation leads to important questions: why are state-of-the-art  white-box

implementations susceptible to  gray-box  attacks? How different is the  white-box setting from the  gray-box  setting with respect to these attacks? Can we apply the

knowledge of protecting implementations against side-channel attacks to the

white-box setting? 
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Since the white-box model gives more power to adversaries, it is natural to further

extend the usual gray-box model arising from the classic side-channel setting. As

outlined above, we are interested in attacks that are sufficiently generic and automatic. 

In this chapter, we will investigate these questions. Our hope is to give the reader

an understanding of the close but complex relationships between the white- and

gray-box models. Compared to Chapter 3 of this volume, this chapter shifts focus

toward theoretical aspects of attacks and countermeasures. In addition, we only

analyze attacks arising specifically in the white-box setting, thus skipping the DCA

(as a reformulation of DPA) and the DFA attacks. We nonetheless emphasize the

strength of these two attack classes against white-box designs. 

–  Designer perspective: to give more concrete feeling to this chapter, we suggest to keep in mind the following AES-based scenario as an example. A white-box designer

selects a random AES-128 master key and creates an implementation performing

single-block AES-128 encryption. The primary goal of the designer is to prevent

the extraction of the master key from this implementation. In this chapter, we will

not consider additional security requirements discussed in Chapter 1 of this volume, 

and we will only consider white-box implementations without external encodings, that

is, implementing unaltered functionality of the cipher. 

–  Adversarial perspective: an adversary obtains the white-box implementation and

attempts to extract the master key. In the general white-box setting, the adversary has

full access to the implementation and is not restricted in methods. In this chapter, 

however, the adversary will be applying (or be limited to) particular attack methods. At

a high level, the adversary will choose arbitrary inputs (plaintexts), record and analyze

 computational traces (see section 2.2), inject faults in the intermediate computations and record and analyze faulty outputs (ciphertexts) (see section 2.3). 

–  Chapter overview:

specifics of the white-box setting are discussed in

section 2.2. Section 2.3 shows how fault injections can be used to simplify white-box

implementations and remove unprotected pseudorandomness, weakening possible

gray-box countermeasures. Section 2.4 describes a simplification of the DPA attack

arising from the absence of measurement noise in the white-box setting. Section 2.5

exhibits a recent cryptanalysis technique based on linear algebra for bypassing linear

masking protections of an arbitrarily large order, and section 2.6 overviews known

countermeasures against the algebraic attack. 

2.2. Specifics of white-box side-channels

Gray-box attacks in the white-box model get more powerful, due to  determinism, 

absence of inherent  measurement noise  and exposition of the  data-dependency graph (DDG). In this section, we will briefly discuss these sources of increased power and
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also define  models of computation,  computational traces  and  sensitive/predictable functions. 

2.2.1.  Determinism

From the attacker’s viewpoint, implementations in the white-box model are fully

 deterministic. Even if some inputs may play the role of randomness (required, for

example, to implement a randomized encryption scheme), the adversary can easily fix

these inputs to arbitrary constants. There are two important consequences of this fact. 

First, all the countermeasures relying on randomness (such as masking and

shuffling) have to derive it solely from the inputs ( pseudorandomly). More

importantly, this derivation has to be itself secure, obscure and robust to faults. In the

spirit of this chapter, it should at least not be susceptible to generic and automated

methods of randomness prediction or removal. 

Second, determinism amplifies the impact of  fault  attacks. The same location in

the code, time and/or memory can be faulted with full precision on multiple inputs. 

This makes fault attacks much easier to mount. In addition, fault injections can be

used to detect randomness, or even to locate and group multiple shares of each value

protected by masking schemes (see section 2.3). 

2.2.2.  Precise measurements

Compared to power analysis attacks, values computed in the white-box setting

can be inspected and recorded precisely, without any measurement noise. This opens

paths to advanced data-analysis attacks, such as the linear decoding analysis/algebraic

attacks (see section 2.5). In addition, faster variants of DPA are possible based on exact

value lookups, rather than on pairwise correlation computations (see section 2.4). 

2.2.3.  Data-dependency graph and attack windows

A white-box implementation gives out a DDG of computed values, which is the

structure of the data flow inside the program. It leaks relations between computed

values. The main purpose of DDG  analysis  is to focus attacks on small cohesive parts of the implementation (called  windows), one at a time. This makes attacks of very

high orders possible. 

EXAMPLE 2.1.– Consider a multiplication gadget of any ISW-like masking scheme

(see Chapter 2 of Volume 2). Let values  x, y  be shared as:

 x =  x 1 +  . . . +  xl  and  y =  y 1 +  . . . +  yl
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respectively. Then, the product  x × y  can be expressed as:

( x 1 +  . . . +  xl)  × ( y 1 +  . . . +  yl) =  x 1 y 1 +  x 1 y 2 +  . . . +  x 1 yl +  . . . +  xlyl. 

The ISW-like masking schemes first  compute  products of all pairs  xiyj  of shares, and then group them into shares of the resulting value  x × y (together with extra

random values). 

Observe that all of the shares of the second operand form a subset of all

multiplicands of each share of the first operand. For example,  y 1 , . . . , yl  are all multiplicands of  x 1, because all products  x 1 y 1 , . . . , x 1 yl  are computed  explicitly. 

This data-dependency information can be used to mount high-order attacks

efficiently by focusing them on sets of multiplicands of single variables or by

performing further analysis on multiple variables. 

DEFINITION 2.1 (Attack Window).–  Attack window  is a (small) attacked part of the

analyzed implementation. The window’s size (in the number of included intermediate

values) is denoted by  n. 

EXAMPLE 2.2.– Consider an implementation computing  N  values and some

hypothetical “heavy” attack taking time  O( n 3) on a window of size  n. Running it on the full implementation would take time  O( N  3). If the implementation is split into N/n  windows of size  n, the complexity becomes  O(  N n 3) =  O( N n 2). The gain is n

tremendous: in an implementation with  N = 106 instructions and an attack requiring

window  n = 100, the time goes from 1018 down to 1010! Although in practice the

windows should overlap significantly in order to cover all possible combinations of

values, multiplying the optimized time by a small factor, the overall improvement is

still very strong and gets better with heavier attacks (e.g. higher order correlation

attacks or higher degree algebraic attacks). 

Data-dependency analysis can be broadly classified by its scale.  Macroscopic

analysis includes automatic or manual (e.g. visual) location of high-level patterns in

the DDG, such as iterative structures (encryption rounds) and clusters/communities

(e.g. S-boxes). This bears similarities to visual inspection of memory access traces

from Chapter 3 of this volume.  Microscopic  analysis covers low-level structures or

patterns in the implementation, for example, identification of masking/obfuscation

gadgets, higher order attacks on node siblings or small subgraphs. 

2.2.4.  Computational model

In order to make the presentation of attacks and countermeasures more concrete

while still general, we need to choose an appropriate model of computations, that is, 

how the implementations are  defined. 
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–  Random-access machine (RAM): the most realistic model is the RAM

computational model, where programs consist of simple instructions such as

arithmetic operations, reading from and writing into memory by constant or

 dynamically  computed addresses. Word sizes can be bounded as in real-world CPUs. 

Specifics of the RAM model are studied in the context of real-world white-box

implementations and code obfuscation in Chapters 3 and 4 of this volume. 

–  Boolean/arithmetic circuits: a much simpler model is given by  computational

 circuits, defined over the binary field F2 =  { 0 ,  1 }  or over any other field or ring (e.g. a prime field F p, an extension field such as the AES field F28, or the ring of integers Z). Usually represented by directed acyclic graphs (DAGs), they also have

an equivalent  static single assignment (SSA) form, which is a program where each

variable is assigned exactly once. The key differences of Boolean circuit-induced SSA

programs from RAM programs are the absence of dynamic addressing of operands

and, more importantly, the absence of control flow structures, such as conditional

jumps and loops. While RAM programs can be simulated by Boolean circuits (up to

a predetermined execution time), the cost of doing so may be non-negligible. 

In this chapter, for the ease of exposition, we will mostly focus on and assume

the Boolean circuits model (i.e. with variables and arithmetic operations over the field

F2). 

However, in most generic attacks/countermeasures, we will use F to denote an

arbitrary field if it does not introduce technical difficulties. 

NOTATION 2.1.– In figures illustrating circuits, we shall use + /−  to denote

addition/subtraction in the field (which are both equal to the  “exclusive or” (XOR)

operation for the binary field F2) and  ×  to denote multiplication in the field. An

example of such a figure is given in Figure 2.1. 

 x 1

 x 2

 x 3

×

×

×

+

 y

Figure 2.1.  Example of a Boolean circuit for computing the 3-bit

 majority function y =  Maj( x 1 , x 2 , x 3) =  x 1 x 2 +  x 1 x 3 +  x 2 x 3
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2.2.5.  Computational traces

One of the key tools used in gray-box attacks on white-box implementations is the

recording of  computational traces. While playing the same role as classic power or

EM radiation traces, computational traces record  exact  values computed in an actual execution. Moreover, computational traces of programs allow easier synchronization

across multiple executions: points of interest can be linked to instructions in the

code, execution time in cycles, memory addresses or any combination of those. In

this chapter, we will abstract from these details and assume that traces are already

synchronized. This simplification is especially natural in Boolean circuit

implementations. For practical details on recording, processing, synchronization and

analysis of computational traces, we refer to Chapter 3 of this volume. 

DEFINITION 2.2 (Computational Traces).– Let  C : F m →  F m  and  IC  be an implementation of  C, computing  n =  |IC|  values in total (including inputs, intermediate values and outputs). Given a list  X

 ∈ (F m

2 ) t  of  t  inputs, the

 computational trace  of  IC  on  X  is a  t × n  matrix  M, where the entry  Mi,j  is equal to the  j th computed value in  IC  on the  i th input from  X. The matrix  M  is denoted by Trace( IC, X). 

EXAMPLE 2.3.– Consider the example circuit given in Figure 2.1. Let us define the

computation order to be  IC( x) = ( x 1 , x 2 , x 3 , x 1 x 2 , x 1 x 3 , x 2 x 3 , x 1 x 2+ x 1 x 3+ x 2 x 3). 

Then, we can write:

⎛

⎞

⎛

⎞

 x 1 = (0 ,  0 ,  0)

0 0 0 0 0 0 0

⎜

⎜ x

⎟

⎜

⎟

2 = (0 ,  0 ,  1)

0 0 1 0 0 0 0

⎜

⎟

⎜

⎟

⎜ x

⎟

⎜

⎟

3 = (0 ,  1 ,  0)

0 1 0 0 0 0 0

⎜

⎟

⎜

⎟

 x

⎟

⎜ 0 1 1 0 0 1 1 ⎟

 X = ⎜ 4 = (0 ,  1 ,  1)

⎜

⎟  ,  Trace( I

⎜

⎟

[2.1]

⎜ x

⎟

 C , X ) = ⎜

⎟

5 = (1 ,  0 ,  0)

1 0 0 0 0 0 0

⎜

⎟

⎜

⎟

⎜ x

⎟

⎜

⎟

6 = (1 ,  0 ,  1)

1 0 1 0 1 0 1

⎝

⎟

⎜

⎟

 x 7 = (1 ,  1 ,  0)⎠

⎝ 1 1 0 1 0 0 1 ⎠

 x 8 = (1 ,  1 ,  1)

1 1 1 1 1 1 1

The  i th row of the trace matrix corresponds to the computational trace on the input xi. The  j th  column  of the trace matrix corresponds to the  j th (out of  n = 7) component of  IC( x) computed on all  m = 8 chosen inputs, including the inputs themselves (the first three columns), the intermediate values (the next three columns) and the outputs

(the last column). Although in this case the set  X  consists of all possible 3-bit inputs, in practice, it is only feasible to consider a relatively small subset of all inputs, chosen at random or according to some criteria. 

2.2.6.  Sensitive/predictable functions

A large number of gray-box attacks on white-box implementations can be

formulated as solving the following problem. 
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PROBLEM 2.1 (Informal).– Given an implementation  IC  of a function  C : F m →

F m, and a function  f : F m →  F, decide whether  IC  computes functions “related” 


to  f . 

This problem is usually instantiated with  f  being a “sensitive function”, which

is a function that, if detected, leaks secret information about the implementation. In

white-box implementations of encryption schemes, a sensitive function is typically

an intermediate value computed in the  reference  implementation and depending on a

small chunk of the secret (sub)key. The classic example is the output of an S-box in the

first round of the AES block cipher. However, this problem can be interpreted more

generally in the context of (cryptographic) obfuscation, where the role of the secret is

played by the whole reference implementation. 

NOTATION 2.2.– The set of  k  candidate sensitive functions to test (as in Problem 2.1) is denoted by  S ∈ (FF m) k, where  m  is the size of the implementation’s input and FF m is the set of all functions mapping F m  to F (i.e.  s : F m →  F for all  s ∈ S). 

Different gray-box attacks in the white-box model solve the problem for different

definitions of the “relation” to  f :

–  Equality: the simplest is to define the relation to be “equality”. That is, the

sensitive function  f  has to be computed in the white-box implementation precisely, 

in a single intermediate value (e.g. in a node in a Boolean circuit). However, this

means that the implementation does not protect  f  at all. This type of attack and

its generalization to implementations protected with low-order Boolean masking are

described in section 2.4. 

–  Correlation: defining the relation to be “high correlation” leads to classic

DPA/DCA attacks. In DPA attacks (the gray-box model), the necessity to use

correlation instead of exact matching stems from inherently noisy measurements. 

In DCA attacks (the white-box model), the advantage of using correlation is that it

allows us to break weak nonlinear encodings, such as 4-bit random encodings in the

classic white-box AES proposal by Chow et al., or, for example, linear encodings

using non-uniform random masks. We refer to Chapter 3 of this volume for more

practical details on the DCA attack. 

–  Algebraic: the relation can be defined to be “algebraic”, requiring existence

of a multi-variate polynomial of low-degree connecting intermediate values in the

implementation and the sensitive function. The respective attack is called LDA (linear

decoding analysis) or simply algebraic attack and is described in section 2.5. 

Finally, we remark that the mix of the two paradigms – correlation and algebraic

– is possible, resulting in LPN-based attacks1, which however were not demonstrated

in practice yet and will not be discussed in this chapter. 

1 Learning parity with noise, the problem of solving noisy (erroneous) linear systems. 
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–  On fake sensitive functions: in principle, a positive answer to Problem 2.1 does

not guarantee that the detected sensitive function performs its genuine role in the

white-box implementation. It may be used as pseudorandomness, be a part of fault

countermeasures, or simply be added to confuse attackers and lead them into wrong

paths. For example, in the case of white-box AES, the implementation may compute

AES encryptions of the input under multiple dummy keys and discard them in the

end, keeping only the real one. The adversary may then be forced to consider

sensitive functions deeper in the implementation, such as S-box outputs after two

rounds of encryption. It is an interesting unstudied question, whether dummy keys

(or, in general, dummy computations of sensitive functions) can provide viable

protection against attacks. In this chapter, we will focus solely on solving

Problem 2.1 and assume absence of dummy sensitive functions. 

The rest of the chapter is dedicated to specific attacks. Section 2.3 focuses on

white-box-specific fault attacks. Section 2.4 presents an exact matching attack, based

on computational traces. Section 2.5 describes a generic and powerful linear algebraic

attack/linear decoding analysis, and section 2.6 overviews existing countermeasures

against the algebraic attack. For protections against faults and the exact matching

attack, we refer to general methods (see Chapters 7 and 12 of Volume 1, Part 1 of

Volume 2, and also relevant is Chapter 8 of Volume 2). 

Section

Type

Attack

2.3.1

Removal of pseudorandomness and dummy values

Fault injection

2.3.2

Location of linear shares

First-order matching (targets unprotected

2.4.1

implementations)

Exact matching

Higher-order matching (targets low-order masked

2.4.2

implementations)

2.5.1

Linear algebraic (targets linear masking)

Algebraic (LDA)

Differential algebraic (targets dummyless shuffling and

2.5.2

linear masking)

Table 2.1.  Summary of attacks described in the chapter

2.3. Fault injections

Fault injection becomes a very powerful tool in the white-box setting. The most

powerful application is the  differential fault attack (DFA). In Chapter 3 of this volume, the reader will learn about existing software tools allowing us to inject faults into

programs. Part 3 of Volume 1 is fully dedicated to fault attacks and includes all relevant

information and examples. The only difference in the white-box setting is that it is

much easier to inject faults in the software setting. Therefore, in this section, we will

ignore the basic DFA and assume that the implementation is not vulnerable to it, that

 Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science Univer , Wiley Online Library on [03/03/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Gray-Box Attacks against White-Box Implementations

31

is, it contains countermeasures preventing direct application of the attack. The focus

thus will be on new applications such as pseudorandomness removal. 

2.3.1.  Locating and removing pseudorandomness and dummy values

A big difficulty for white-box designs is the absence of a reliable source of

randomness. This prevents direct usage of standard countermeasures such as masking

or shuffling. The natural idea is to use  pseudorandomness  generated solely from the input. In order for it to be unpredictable for any adversary, the pseudorandomness

generator (PRG) must involve a secret, embedded at the compilation time. However, 

how should we protect  this  secret? This becomes a chicken-or-egg problem! 

While it may sound desperate, a similar problem was already considered in the

side-channel setting, more precisely, in the  t-probing model. Since a true random

number generator (TRNG) is very costly, a so-called  robust  pseudorandom number

generator can be used, which requires only a negligible amount of true randomness

for seeding. For more details, the reader can refer to Chapters 5 and 6 of this volume. 

Another possible advantage for the white-box designer is the ability to create

non-standard PRGs. Here, the focus would be not on the  secrecy of the design, but

rather on greater  variability  of PRG instances with respect to different (fixed) secret keys. Nonetheless, the problem of a secure embedding of a PRG in a white-box

implementation (even with respect to just extended gray-box attacks) is still a big

open problem. 

Besides the security of the PRG itself, another issue is the  integration  of the PRG

with the main part of the implementation. Here, fault injections become a powerful

tool for detecting and removing randomness. The basic idea is simple:  if modifying

 the same computed entry does not affect the output (on a large set of inputs), this

 entry in the implementation can be replaced by a constant, and operations involving

 it can be further pruned. Such a step, if successful, simplifies the implementation and weakens any present countermeasures. Seemingly simple, it has a variety of options. 

–  Node or wire?  It is important to distinguish  nodes  and  wires  in the implementations. A  node  corresponds to a computed value as a result of an operation. 

Faulting a  node  modifies its value  immediately  after its computation for  all consequent uses. A  wire  corresponds to a single  use  of a computed value and can be faulted separately. 

–  Absolute or relative change?  Another choice is whether the faulted value has

to be set to a fixed value or modified by a fixed offset. This question is meaningful, 

even in Boolean circuits, where the only option might seem to be to flip the value. For

example, a fault setting the value to 0 differs from this option by actually  not  injecting faults into executions where the value is already 0. 
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We shall illustrate the different variants on examples. 

EXAMPLE 2.4.– Consider the following implementation of addition obfuscated with

a dummy value. For a color version of this example, see www.iste.co.uk/prouff/

cryptography3.zip. 

 x

 y

Require:  x, y ∈  F

Ensure:  z =  x +  y





$

$

+

1:  r ←

 −  F

   possibly pseudorandom



2:  x ← x +  r

+

3:  z ← x +  y

4:  z ← z − r

−

5: return  z

  z =  x +  y

 z

This is a simple example of obfuscation of arithmetic expressions. While such

 local  examples can be easily deobfuscated by symbolic expression analysis (see

Chapter 4 of this volume), fault injection is an alternative that can capture complex

and/or non-local cases. For example, assume that  x  and  r  are encrypted and decrypted after the line 2 by a function that is too complex for symbolic analysis, 

before being used in lines 3–5. This would prevent removal of the dummy value  r  by

symbolic analysis. 

On the other hand, any fault injection in  r  on line 1 (node fault) would not affect the output of the implementation, showing that  r  value is a dummy value and operations

using it can be simplified. In the hypothetical case described above (encryption and

decryption between lines 2 and 3), the first step would be to remove line 2 as redundant

(letting  x =  x). The input of the hypothetical encryption however would take the constant value  r = 0, and would produce the same constant in the output to be used in line 4. This constant can be detected statistically or by another fault injection, allowing

us to finally simplify line 4. 

Injecting a fault into any single  wire (lines 2, 4) would modify the output of

the gadget, potentially affecting the output of the implementation, not leading to

simplification. Faulting both  wires  however would show that the two wires only have to be equal and can be set to 0 (i.e. removed). This is particularly useful if  r  is used in other computations (i.e. has other outgoing wires) and cannot be faulted as a node. 

Here, the two wires have to be chosen from the outgoing wires of a single node, 

leading to much smaller combinatorial complexity than in the case, where the wires

are chosen from the full implementation or even from a relatively small window. This

emphasizes the usefulness of the DDG. See section 2.3.2 for an alternative single-wire

fault attack. 
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EXAMPLE 2.5.– Consider a simple refresh gadget of 2-share linear masking. For a

color version of this example, see www.iste.co.uk/prouff/cryptography3.zip. 

 x 1

 x 2

Require:  x 1 , x 2  ∈  F

Ensure:  x 1 , x 2  ∈  F , x 1 +  x 2 =  x 1 +  x 2



$





1:  r ←

 −  F

   possibly pseudorandom

+

$

−

2:  x 1  ← x 1 +  r

3:  x 2  ← x 2  − r

4: return ( x 1 , x 2)

 x′1

 x′2

This example is completely analogous to the previous one. Note that symbolic

analysis is not applicable here, since we first need to detect irrelevance of the values

of  x 1 , x 2 separately and the relevance of the value of  x 1 +  x 2, which cannot be done locally (i.e. solely from this code fragment). 

EXAMPLE 2.6.– Consider the following dummy operation. For a color version of this

example, see www.iste.co.uk/prouff/cryptography3.zip. 

 x

Require:  x ∈  F

 r

 r′

Ensure:  x ∈  F , x =  x





1: generate  r, r ∈  F such that  r · r = 0

2:

  (possibly pseudorandom)

×

+

3:  x ← x +  r · r

4: return  x

 x′

Consider fault injection in  r  when  r = 0 , r = 1. Replacing  r = 0 with  r = 1 will result in  r · r = 1, breaking the invariant  r · r = 0 and corrupting the value  x  from main computations, failing to detect the dummy operation. On the other hand, setting

 r  to 0 never corrupts the value of  x. In addition, replacing  r  with 0 in the circuit would make it obvious that  r · r = 0 can be removed altogether, allowing us to remove the

full dummy operation. 

2.3.2.  Detecting linear shares from output collisions

In this section, we describe an interesting fault injection technique based on

analysis of outputs of the attacked implementation. Indeed, a faulty output may often

provide useful information about the injected fault. The idea is as follows. 

Consider an implementation protected by a linear masking scheme, where some

intermediate value  s ∈  F is represented by a vector ( z 1 , . . . , zl)  ∈  F l  such that: z 1 +  . . . +  zl =  s. 

[2.2]
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Let us also assume, for simplicity, that the implementation detects faults in the

protected value  s  and, when a fault is detected, outputs  H( s||r( x)), where  r( x) is pseudorandomness computed from the implementation’s input  x  and  H  is a

cryptographic hash function. 

Consider additive fault injection in any of the shares, that is, 

 zi ← zi +  c, 

for some integer  i,  1  ≤ i ≤ l  and a constant  c ∈  F , c = 0. By [2.2], the effective value of  s  is changed to  s +  c  and the output of the implementation is equal to  h  given by: h =  H(( s +  c) ||r) . 

Note that it is independent of the share index  i, meaning that the implementation

would always output  h  when the additive fault  c  is injected into a linear share of  s  on the global input  x. 

–  Attack outcome: the main outcome of the attack is the  clusterisation  of

intermediate functions in the implementation (i.e. nodes). Ideally, the resulting

clusters should be small (but not singletones), precisely leaking closely related

intermediate values, such as shares of the same protected value. Small clusters can

further be used for deeper analysis and higher order attacks, including detection of

linear shares, which is the main inspiration for the attack. 

Detecting and removing linear shares can be done in a way similar to 2-wire fault

injections from section 2.3.1. More precisely, let  z 1 , . . . zl  be a discovered cluster. 

Then, inject faults  zi ← zi +  c, zj ← zj − c  for some indexes  i =  j  and  c ∈

F , c = 0. If the output is not faulty (for a sufficiently large number of inputs), then the implementation can be rewritten into  zi ← zi + zj, zj ←  0 (because there is a value of c  equivalent to this rewrite). While a new addition operation is added, the redundancy and pseudorandomness of the implementation decreases. In addition, the replacement

 zj ←  0 would likely lead to simplifications of the consequent operations having  zj  as an operand. Again, repeating the procedure for all pairs in the cluster has potential to

remove the linear masking completely, significantly simplifying the implementation. 

–  False positives: the described attack is not perfect and may produce false

positives – group intermediate values that do not actually play the role of additive

shares of the same protected value. Those may occur for various reasons, including

specifics of the underlying implementation, used countermeasures, etc. False

positives occurring due to “coincidental” equivalences in the underlying data

(especially relevant for small fields F, e.g. F = F2) may be easily detected and

removed by repeating the fault injections on discovered clusters. 
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For example, if the implementation computes  s =  s·s  and outputs  H( s||r), and each of  s, s  are shared as in [2.2], an additive fault injected into a share of  s  leading to s = 0 would produce the same output  h =  H(0 ||r) as a fault injection into a share of s  leading to  s = 0. However, repeating the procedure on various inputs would allow us to exclude this false positive. 

Another source of false positives may be due to low-entropy output (or, more

generally, conditional entropy of the output on the (faulted) intermediate values  s

given the input  x). In particular, a fault-detection countermeasure that returns a fixed output (e.g. all zeros) would group all faults in one bin, not leaking any information

on the internal structure of the implementation. 

–  Countermeasures: one weakness that the attack highlights is that detecting faults

in the underlying masked values may not be enough: shares themselves should be

protected in some way. 

On the other hand, this attack shows that seemingly random faulty output of the

implementation may still convey a lot of information to the attacker. A possible

conclusion could be that  it is best to return a special fixed output (e.g. all zeros) on a fault detection, rather than a corrupted/randomized output. 

For general countermeasures against fault attacks, we refer the reader to

Chapter 12 of Volume 1. 

2.4. Exact matching attack

In this section, we describe a simple yet powerful attack exploiting the absence

of measurement noise in white-box designs, called the  exact matching attack. This

aims to solve the outlined Problem 2.1. While it is applicable in fewer scenarios than

the generic correlation attacks (DPA/DCA), it is much faster in those few cases. In

particular, it is probably the fastest way to break unprotected implementations or

implementations protected by low-order (up to 4) Boolean masking schemes. For

masking schemes of even higher order, better performance is achieved by the linear

algebraic attack (section 2.5). 

2.4.1.  First-order exact matching attack

In classic first-order correlation attacks (DPA/DCA), each point of interest in the

power traces is evaluated against all possible (partial) key candidates, by computing

a correlation over all recorded traces with predicted values of the selected function. 

This leads to complexity at least proportional to  nkt (trace size  ×  key size  ×  number of traces). Another way to look at it is to consider two sets containing  n  and  k t-bit
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vectors, respectively. The correlation attacks aim to find a pair of vectors, one from

each set, which have the highest correlation. However, in an unprotected white-box

implementation, predicted vectors from the second set would appear in the first set in

full, without any measurement noise. The problem then reduces to intersecting two

sets of vectors, which can be done much faster using hash tables. The complexity of

this method is  O( nt +  kt). Usually,  k < n  and thus the complexity of the first-order exact matching attack is proportional to  nt, which is  k  times faster than standard DCA. 

The attack procedure is detailed in Algorithm 2.1. 

Algorithm 2.1. First-order exact matching attack

Require: an implementation  IC  of  C : F m →  F m

Require: a list of  k  sensitive function candidates  S ∈ (FF m) k ( s : F m →  F for s ∈ S)

Ensure: ˜

 S ⊆ S - candidate functions computed in  IC

$

1:  X = ( x 1 , . . . , xt)  ←

 − (F m) t

   choose  t  random inputs

2:  D ←  hash-map  {( s( x 1) , . . . , s( xt))   s | s ∈ S}   traces of sensitive functions 3:  T ←  Trace( IC , X)  ∈  F t×n

   record computational traces

4: ˜

 S ← ∅

5: for each column  c  of  T ,  c ∈  F t  do

6:

if  c ∈ D  then

7:

˜

 S ← ˜

 S ∪ {D[ c] }

8:

end if

9: end for

10: return ˜

 S

–  Complexity: step 2 has time complexity  O( kt) evaluations of a sensitive function. Step 3 and the loop on Steps 5–9 both have time complexity  O( nt), which is typically dominating. Again, this provides significant improvement over the DCA

complexity  O( nkt) by a factor of  k. For example, in the case of a classic attack on the first round of AES, the complexity is reduced by a factor of 256 per each S-box

(the number of candidate keys). Furthermore, the DCA attack analyzes each S-box

separately, effectively multiplying the complexity by a factor of 16. In the exact

matching attack, on the other hand, we can put the candidate functions for all

S-boxes in one hash table, increasing only the  O( kt) complexity part by a factor of 16. For typical large white-box implementations, this does not affect the overall

complexity  O( nt). This means that the overall gain of the exact matching attack over the standard DCA on an unprotected implementation is about a factor of 4096 = 212. 

The gain increases further if the attacker considers more sensitive functions, for

example, each of the output bits of the S-boxes, or even their linear combinations. 

The downside of the exact matching attack is that it is less powerful than the DCA

attack, as it essentially requires an unprotected implementation or a serious flaw in

 Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science Univer , Wiley Online Library on [03/03/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Gray-Box Attacks against White-Box Implementations

37

implementation exhibiting a sensitive function in clear. In the following, we will show

that it can be used to also attack masked implementations. 

2.4.2.  Higher order exact matching attack

This method easily generalizes to attack implementations protected with linear

masking. Consider the masking equation:

 x 1 +  x 2 +  . . . +  xl =  s, 

where  s  is a sensitive value. The idea is to rewrite the equation as:

 x 1 +  . . . +  xh =  −( xh+1 +  . . . +  xl) +  s, where  h  can be set, for example, to  l/ 2 . Now, computational traces of candidates for the left-hand side of the equation can be put into a hash table, and computational

traces of candidates for the right-hand side of the equations can be iteratively checked



for a match in the table. This requires enumerating all  n  choices of  h  shares in the h





implementation (window) in the first step, and enumerating all

 n

choices of  l − h

 l−h

shares in the second step. Note that the side to put in the table (the left-hand side

or the right-hand side) can be chosen to minimize the memory complexity, and the

choice does not affect the time complexity. The case of the left-hand side is described

in Algorithm 2.2. 

–  Complexity: we naturally assume  h  n (i.e. the implementation is much larger than the attacked number of shares), so that  n  can be well approximated by  nh

 h

 h! . This

attack is superseded by the LDA attack (section 2.5) for the number of shares  l ≥  5. 

Therefore, for simplicity, we can ignore the factor 1

 h! (note that  h ≤ l ≤  4). The

complexity of the first stage (table generation) is thus  O( nht), and the complexity of the second stage (table lookups) is  O( nl−hkt). In order to minimize the overall complexity,  h  can be set to:





1

 h =

( l + log

 . 

2

 n k)

When the number of sensitive functions is small ( k  n), this leads to the setting

 h =  l/ 2 . The resulting complexities for  l ≤  4 are given in Table 2.2. We recall that the memory complexity is given by the table size, which can be chosen to be the

smallest value of  O( nht) and  O( nl−hkt). 
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Algorithm 2.2. Higher-order exact matching attack

Require: an implementation  IC  of  C : F m →  F m

Require: a list of  k  sensitive function candidates  S ∈ (FF m) k ( s : F m →  F for s ∈ S)

Require: integers  h, l,  0  ≤ h ≤ l

Ensure: ˜

 S ⊆ S - candidate functions computed in  IC

$

1:  X ←

 − (F m) t

   choose  t  random inputs

2:  T ←  Trace( IC , X)  ∈  F t×n

   record computational traces

3:  S ← {( s, ( s( x 1) , . . . , s( xt))))  | s ∈ S}   precompute sensitive function values 4:  D ← ∅

5: for each combination ( c 1 , . . . , ch) of  h  columns of  T ,  ci ∈  F t  do 6:

 D ← D ∪ {( c 1 +  . . . +  ch) }

7: end for

8: ˜

 S ← ∅

9: for each combination ( c 1 , . . . , cl−h) of  l − h  columns of  T ,  ci ∈  F t  do 10:

for each ( s, v)  ∈ S  do

11:

 c ← v +  c 1 +  . . . +  cl−h

12:

if  c ∈ D  then

13:

˜

 S ← ˜

 S ∪ {s}

14:

end if

15:

end for

16: end for

17: return ˜

 S

 l

 h

Time complexity

Memory

Comment

1

1

 O( nt +  kt)

 O( kt)

section 2.4.1

2

1

 O( nkt)

 O( nt)

same time complexity as first-order DCA

3

2

 O( n 2 t +  nkt)

 O( nkt)

feasible for small attack windows

4

2

 O( n 2 kt)

 O( n 2 t)

feasible for small attack windows

Table 2.2.  Time complexities of the exact matching attack for masking order l up to 4

–  Countermeasures: countermeasures against the exact matching attack are not

white-box specific. The attack’s complexity is exponential in the number of shares; 

therefore, linear masking schemes of a sufficiently larger order should ensure security

(see Part 1 of Volume 2 dedicated to masking). It is important however to distinguish

the source of hardness in the two cases: in the side-channel setting, the complexity

arises from the measurement noise, amplified when multiple measurements are

combined; in the white-box exact matching attack, the complexity arises from the

combinatorial explosion of possible locations of shares in the attacked windows. 
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2.5. Linear decoding analysis/algebraic attacks

This section presents  the linear decoding analysis (LDA), also called  the (linear) algebraic attack. It can be seen as a natural continuation of the exact matching attack from section 2.4, as it also exploits the absence of measurement noise in the white-box

model. 

NOTE.– The linear algebraic attack was first used to break the longest surviving

challenge of the WhibOx 2017 competition of white-box AES implementations. The

core part of that implementation was protected using first-order masking. However, 

the surprising power of the algebraic attack is that it is capable of breaking  any  kind of linear masking  of any order, given that all the shares are present in one of the

attacked windows. 

The main idea comes from the observation that the (higher order) exact matching

attack finds a small subset of columns of the matrix of computational traces that sums

to a given candidate vector of values of the target sensitive function. The requirement

on the size of the subset can be lifted by increasing the number of traces (the number

of rows in the matrix), which should decrease the chances of false positive solutions to

stay. Then, the problem is simply about solving a system of linear equations: given the

trace matrix  T ∈  F t×n

2

and a vector  s ∈  F t 2 (a candidate sensitive function computed

on the traced set of inputs), find a vector  z ∈  F n 2 such that:

 T × z =  s. 

The  existence  of a solution is itself a solution of Problem 2.1 in the case of the

sensitive function in the implementation being split into (an arbitrary amount of)

linear shares. Furthermore, a solution  z ∈  F t 2 indicates the  location  of shares in the implementation. 

In section 2.5.1, we will discuss more deeply the basic algebraic attack, possible

optimisations and its improvement by restriction of inputs. Then, in section 2.5.2, 

we will describe how  differential LDA  can efficiently break basic shuffling, even

combined with linear masking. Finally, in section 2.6, we will study how to protect

against the algebraic attack. 

2.5.1.  Basic algebraic attack

The basic LDA attack (solving Problem 2.1) is described by pseudocode in

Algorithm 2.3. 

–  Complexity: since  t ≈ n, the complexity of solving a system of  t  linear equations in  n  variables is given by the matrix multiplication constant  ω, which for practical
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purposes is given by the Strassen’s matrix multiplication algorithm with  ω = 2 .  8. The complexity of the attack is thus  O( nω) =  O( n 2 .  8). 

Algorithm 2.3. First-order LDA / linear algebraic attack

Require: an implementation  IC  of  C : F m →  F m

Require: a sensitive function candidate  s : F m →  F

Ensure: True if the candidate function is detected in  IC (possibly split into linear shares), or False otherwise

1:  t ← n +  ε, for a small integer  ε

$

2:  X ←

 − (F m) t

   choose  t  random inputs

3: ˜

 s ← ( s( x 1) , . . . , s( xt))  ∈  F t

   compute the sensitive function on  X

4:  T ←  Trace( IC , X)  ∈  F t×n

   record computational traces

5: return [the matrix equation  T × v =  s  has a solution in  v]

–  Batch testing candidates: usually, the attacker needs to test multiple candidates

for a sensitive function. The naive approach would be to test each candidate one by

one. This leads to complexity  O( n 2 .  8 k) for testing  k  candidate functions. However, solving the same linear system (defined by  T ) for multiple different target vectors ˜

 s

can be optimized. 

The idea is to compute the parity check matrix  K (i.e. a basis of the left kernel

of  T ):





 K ∈  F ε×t : rowspan  K = ker  T  =  v ∈  F t | v × K = 0  , where  T   is the transpose of  T  and  ε ≥ ε  is the left nullity of  T . Observe that: K × s =  K × T × v = 0

for all  s  having solution  T × v =  s. It follows that a candidate sensitive vector  s  can be checked by a matrix multiplication by  K  from the left. Note that each row  Ki  of K  filters a wrong candidate  s  with probability 1 /| F |. Therefore, testing a candidate  s by each single row of  K  would require on average 1 + 1 /| F | + 1 /| F | 2 +  . . . ≤  2 inner product calculations (i.e.  Ki, s), each having time complexity  O( t) =  O( n). Since the parity check matrix can be computed in time  O( nω), the total time complexity is O( n 2 .  8 +  nk). The optimized batch algorithm is illustrated in Algorithm 2.4. 

2.5.2.  Differential algebraic attack against shuffling

In this section, we will study how the algebraic attack can be tweaked into a

 differential  algebraic attack to break the classic shuffling countermeasure (see

Chapter 7 of Volume 1). 
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Algorithm 2.4. First-order LDA / linear algebraic attack (batched version)

Require: an implementation  IC  of  C : F m →  F m

Require: a list of  k  sensitive function candidates  S ∈ (FF m) k ( s : F m →  F for s ∈ S)

Ensure: ˜

 S ⊆ S - candidate functions computed in  IC

1:  t ← n +  ε, for a small integer  ε

$

2:  X ←

 − (F m) t

   choose  t  random inputs

3: ˜

 s ← ( s( x 1) , . . . , s( xt))  ∈  F t

   compute the sensitive function on  X

4:  T ←  Trace( IC , X)  ∈  F t×n

   record computational traces

5:  K ←  ker  T  ∈  F ε×t

   parity check matrix

6: ˜

 S ← ∅

7: for each  s ∈ S  do

8:

for each row  r  of  K  do

9:

if  r, s = 0 then

10:

break

11:

end if

12:

end for

13:

if no break then

14:

˜

 S ← ˜

 S ∪ {s}

15:

end if

16: end for

17: return ˜

 S

Recall that shuffling permutes a group of identical computations on different

inputs, such as the 16 AES S-boxes in one round. In terms of gray-box attacks in the

white-box model, this countermeasure effectively permutes a subset of entries in

computational traces on each execution. We will not rely on the implementation

details of shuffling and only exploit the described shuffling effect on the

computational traces. 

First, note that shuffling leaks the sum of shuffled values as a linear function of

computed values. Indeed, assume  q  slots are shuffled using a permutation  σ. If the original computed values were:

 x 1 , . . . , xq, 

then a computational trace would contain

 xσ(1) , . . . , xσ( q) . 
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Observe that:

 q



 q



 xσ( i) =

 xi

 i=1

 i=1

is a linear function of the computed values (e.g. memory cells storing shuffled values)

equal to the sum of all  xi, independently of the shuffling permutation  σ. This leakage is independent of the shuffling method and it follows from the shuffling property itself. 

The sum leakage can be exploited efficiently using a  chosen-plaintext attack, 

namely,  differential  LDA. The idea is to encrypt two pairs of plaintexts following a chosen difference, record the two computational traces, subtract them and run LDA

on the resulting differential trace. To do this, an attacker needs to compute the

 difference  of the candidate sensitive function on the two inputs, which can be much simpler to do than to compute the candidate sensitive function on one input. We will

illustrate this method on the case of AES. 

–  Example application to AES: consider AES implemented with shuffled S-boxes

and, possibly, protected with linear masking of an arbitrary order. As noticed above, 

shuffling leaks the sum of shuffled values. In particular, the sum of all S-box outputs in

the first round is leaked by a linear function of the computed values. As this sensitive

function depends on 16 key bytes, a standard LDA attack is not possible. To mount

differential LDA, we encrypt a pair ( p, p) of plaintexts differing in one byte (say, the first byte) and record the respective computational traces  T 1 , T  1  ∈  F n 2. Then, there exists a linear function, defined by (unknown)  α ∈  F n 2, such that:

 α, T 1  =  S( p 1  ⊕ k 1)  ⊕ . . . ⊕ S( p 16  ⊕ k 16) , 

[2.3]

 α, T  1  =  S( p 1  ⊕ k 1)  ⊕ . . . ⊕ S( p 16  ⊕ k 16) , 

[2.4]

where  S  is some chosen output bit of the AES S-box. Since  pi =  pi  for all  i  except i = 1, we have:

 α, T 1  ⊕ α, T  1  =  α, T 1  ⊕ T 1  =  S( p 1  ⊕ k 1)  ⊕ S( p 1  ⊕ k 1) . 

Repeating the pair encryption step for  t  pairs, we obtain computational trace

matrices  T, T  ∈  F t×n

2

such that:

 α × ( T ⊕ T ) =  s, 

[2.5]

where  s ∈  F t 2 is such that:

 si =  S( pi,  1  ⊕ k 1)  ⊕ S( pi,  1  ⊕ k 1) , 
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and  pi,  1 and  pi,  1 are first bytes of the respective plaintexts from the  i th pair. Solving the linear system [2.5] allows us to test a candidate sensitive function, which depends

only on  k 1 (the first key byte). 

This method efficiently breaks a combination of classic shuffling and linear

masking. 

2.6. Countermeasures against the algebraic attack

The LDA attack being powerful against standard gray-box countermeasures, a

natural question arises: How to protect implementations against this class of attacks? 

In this section, we will give a brief look over available methods. 

This section only provides a high-level and not comprehensive overview of existing

countermeasures against the algebraic attacks, which is a recent and ongoing topic in

white-box cryptography research. Yet the section is rather technical. The reader is encouraged to follow the references in the end of the chapter for more details. 

Box 2.1.  Section note

2.6.1.  Security model sketch

The first step is to define a security model. For example, in the side-channel

field, most often the  t-probing model is used: it is assumed that an attacker may

probe (read) at most  t  different wires during a computation. However, in the LDA

attack, the adversary may read  all  wires, but only combine the resulting values using linear combinations (or with functions of degree at most  d, in the case of generalized degree- d  algebraic attacks). The crucial difference is that, in the  t-probing model, the adversary has limited information but is not limited in what they can do with it; in

the security model for algebraic attacks, we cannot limit the information, and thus, 

we have to restrict the range of an adversary’s manipulations on the available data. 

Roughly speaking, an adversary may only collect computational traces and run the

LDA attack on them against sensitive function candidates. 

How could we define sensitive function candidates generally? Intuitively, these

are functions that an adversary may  compute  on any input, aiming to find them in the given obfuscated implementation (in the sense of Problem 2.1). As we should not

limit the adversary’s analysis of a reference implementation and possible choices of

sensitive functions, we cannot answer this question definitively. Instead, we can

formalize the element of  unpredictability  by an attacker: we can allow the use of

 randomness, similarly to how it is done in the side-channel field. This idea is rather fragile in the white-box model, where randomness is under the adversary’s control. 

Hypothetically, the randomness for countermeasures has to be generated as
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pseudorandomness, computed from the input in a secure and obscure way, so that it

cannot be detected and removed. However, this is already beyond the state of the art

in white-box cryptography. Importantly, the introduction of randomness allows us to

define a security model for  encoded computations: assuming a secure input encoding

step and a source of randomness, we can define and construct countermeasures

against the LDA attack. 

A countermeasure in such a model can be formalized as a  scheme. 

DEFINITION 2.3 (Scheme).– Let  f : F m →  F m  be a function. A  scheme  S  computing f  consists of

1) an  encoding function  S .  enc( x, re) : F m ×  F τe →  F me; 2) an  implementation  S .  comp( x, rc) : F me ×  F τc →  F mc; 3) a  decoding function  S .  dec( y) : F mc →  F m. 

It is required that for all  x ∈  F m, re ∈  F τe, rc ∈  F τc

S .  dec(S .  comp(S .  enc( x, re) , rc)) =  f( x) . 

Here, the encoding and decoding functions are assumed to be secure and the

attacker is not allowed to attack them in the model. The critical part is the main

implementation S .  comp, which takes an encoded input and randomness, and computes

an encoded output  securely from algebraic attacks. The security is formalized by the following definition. 

DEFINITION 2.4 (Algebraically secure scheme).– A scheme S is said to be

 algebraically secure  if, for any nonconstant linear combination of intermediate

functions in S .  comp), its composition with S .  enc = S .  enc( x, re) on the first input is nonconstant for any  fixed x ∈  F m:

 ∀f ∈  span (S .  comp) , f  non-constant , ∀x ∈  F m

[2.6]

 g : ( re, rc)  → f(S .  enc( x, re) , rc) is non-constant. 

[2.7]

REMARK.– This simplified definition does not  quantify  security, that is, limit success probability of a linear algebraic attack. Detailed analysis and the generalized case of

higher degree attacks is out of scope of this book. 

The definition requires all possible linear combinations of functions in the main

circuit to depend on randomness (unpredictable to adversaries),  for any fixed main

 input. This prevents linear algebraic attacks as an adversary cannot (reliably) compute any  sensitive function candidate that would be accepted by the attack on any subset of inputs. 
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We are now ready to study concrete countermeasures, namely,  nonlinear masking

and  dummy shuffling. 

2.6.2.  Nonlinear masking

The algebraic/LDA attack exploits the fact that classic masking schemes are linear. 

It is natural therefore to use  nonlinear  masking schemes. We first show how to define a masking-based scheme (as in Definition 2.3). 

DEFINITION 2.5.– Given a masking scheme  M  and an implementation  IC  of  C : F m →  F m,  the algebraic countermeasure scheme S is defined as follows:

1) S .  enc( x, re) uses  M.  enc to encode each element of  x  using an independent chunk of randomness from  re. 

2) S .  comp( x, rc) computes the implementation  IC  on  x  and independent chunks of randomness from  rc  using gadgets from  M (operating on encoding values). 

3) S .  dec( y, re) uses  M.  dec to decode each element of  y. 

The simplest nonlinear masking scheme is based on the decoding function:

( a, b, c)  → ab ⊕ c. 

It is called  minimalist quadratic masking scheme (MQMS). The respective

encoding, decoding and XOR/AND gadget implementations are provided in

Algorithm 2.5. The resulting scheme is algebraically secure; however, security

analysis of this masking scheme is highly non-trivial and is out of scope of this book. 

It is important to mention that  algebraic security  is not directly related to  probing security. Indeed, standard linear masking schemes are probing secure but not

algebraically secure. The MQMS scheme is a counter-example for the other

direction, which should be a simple exercise to the reader. 

EXERCISE 2.1.– Show that the encoding function ( x, ra, rb)  → ( ra, rb, rarb ⊕ x) is not secure against correlation attacks (with  ra, rb  sampled independently and

uniformly at random). 

The decoding formula of the minimalist quadratic masking scheme can be

generalized to the following form:

( x 1 , x 2 , . . . , xd, x 1 , . . . , xt)  → x 1 x 2  . . . xd ⊕ x 1  ⊕ . . . ⊕ xt. 
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Algorithm 2.5. Minimalist Quadratic Masking

1: function  M.  enc( x, ra, rb)

2:

return ( ra, rb, rarb ⊕ x)

3: end function

4: function  M.  dec( a, b, c)

5:

return  ab ⊕ c

6: end function

7: function  M.  gadgetNOT( a, b, c)

8:

return ( a, b, c ⊕  1)

9: end function

10: function  M.  gadgetXOR(( a, b, c) , ( d, e, f ) , ( ra, rb, rc) , ( rd, re, rf )) 11:

( a, b, c)  ←  REFRESH(( a, b, c) , ( ra, rb, rc))

12:

( d, e, f )  ←  REFRESH(( d, e, f ) , ( rd, re, rf ))

13:

 x ← a ⊕ d

14:

 y ← b ⊕ e

15:

 z ← c ⊕ f ⊕ ae ⊕ bd

16:

return ( x, y, z)

17: end function

18: function  M.  gadgetAND(( a, b, c) , ( d, e, f ) , ( ra, rb, rc) , ( rd, re, rf )) 19:

( a, b, c)  ←  REFRESH(( a, b, c) , ( ra, rb, rc))

20:

( d, e, f )  ←  REFRESH(( d, e, f ) , ( rd, re, rf ))

21:

 ma ← bf ⊕ rce

22:

 md ← ce ⊕ rf b

23:

 x ← ae ⊕ rf

24:

 y ← bd ⊕ rc

25:

 z ← ama ⊕ dmd ⊕ rcrf ⊕ cf

26:

return ( x, y, z)

27: end function

28: function REFRESH(( a, b, c) , ( ra, rb, rc))

29:

 ma ← ra · ( b ⊕ rc)

30:

 mb ← rb · ( a ⊕ rc)

31:

 rc ← ma ⊕ mb ⊕ ( ra ⊕ rc)( rb ⊕ rc)  ⊕ rc

32:

 a ← a ⊕ ra

33:

 b ← b ⊕ rb

34:

 c ← c ⊕ rc

35:

return ( a, b, c)

36: end function

This expression can be viewed as a merge of the linear masking scheme (the part

 x 1  ⊕ . . . ⊕ xt) and the nonlinear masking scheme (the part  x 1 x 2  . . . xd). It allows us to
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achieve more efficient gadgets than a simple composition of the two masking schemes

(one applied on top of the other). However, provably secure gadgets for such decoding

functions are known only for  d ≤  3 (providing security against degree-2 algebraic

attacks) and arbitrary  t. We invite the interested reader to follow the references at the end of the chapter. 

2.6.3.  Dummy shuffling

Classic side-channel countermeasures include masking and shuffling. As we have

seen, linear masking is susceptible to the algebraic attack. Shuffling procedure is

highly nonlinear in its nature; therefore, it is a good protection candidate against

LDA. Unfortunately, basic shuffling is leaking  the sum of shuffled values, preventing it being a universal countermeasure. Even the classic combination of linear masking

plus shuffling is not secure, since linear masking is “transparent” to algebraic attacks. 

Furthermore, differential LDA (section 2.5.2) can exploit the sum leakage efficiently. 

Fortunately, shuffling can be “repaired” to provide provable algebraic security. 

The main missing component is the addition of  dummy  slots: shuffling slots that

contain dummy (random) values, freshly generated on each execution. This prevents

the sum leakage as the sum of all slots would be corrupted by the dummy values. 

Another missing component is modification of the circuit being protected, making it

more robust, ensuring that there are no sensitive functions that are predictable with

high probability. This robustness is related to the quantification of algebraic security, 

omitted in Definition 2.4 for simplicity of exposition. 

IMPORTANT.–  Besides enhancing security, dummy slots also enhance applicability. 

 Dummyless shuffling may only protect parallel identical subfunctions. With dummy

 slots, we always have an option of replicating full implementation. 

We begin by defining dummy shuffling in the framework of computational circuits. 

This means that shuffling/unshuffling steps are explicitly performed on data slots, 

avoiding implementation details such as shuffling by time or by memory. 

DEFINITION 2.6 (Dummy shuffling).– Given an implementation  IC  of a function

 C: F m →  F m  and two integers  w main , w dummy,  dummy shuffling  defines an implementation  I : (F m) w main  × $  → (F m) w main consisting of three steps: C

input-shuffling, slots evaluation and output-selection (see Figure 2.2). Here, $ stands

for a randomness source (formally, equivalent to an implementation-dependent

number of extra inputs). 

–  Input-shuffling: the  w main inputs are concatenated with  w dummy values sampled independently and uniformly at random from F. All  w main + w dummy inputs are shuffled randomly. 
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–  Slots evaluation: the implementation  IC  is evaluated on each of  w main +  w dummy shuffled values in parallel. 

–  Output-selection: the outputs are unshuffled (using the information from the

input-shuffling step), and the main outputs are marked as the final outputs; the dummy

outputs are omitted. 

main inputs

dummy inputs

 x 1

 x 2

⋯  xt

$

⋯

$

input-shuffling

$

evaluation slots  C

 C

⋯

 C

 C

⋯

 C

output-selection

×

⋯

×

 y 1

 y 2

⋯

 yt

main outputs

Figure 2.2.  Dummy shuffling. The notation $  stands for a uniform and

 independent source of randomness. For a color version of this

 figure, see www.iste.co.uk/prouff/cryptography3.zip

The state-of-the-art algebraic security model cannot analyze the full dummy

shuffling procedure. However, it can analyze the algebraic security of the slots

evaluation phase. To do this, we need to define the respective scheme (as in

Definition 2.3), which is called the  evaluation-phase model. 

DEFINITION 2.7 (Evaluation-Phase Model).– Let  IC  be an implementation of a

function  C: F m →  F m. Let  w main , w dummy be positive integers,  w =  w main +  w dummy. 

The  evaluation-phase model  analyzes the algebraic security (Definition 2.4) of the

scheme EPM( IC, w main , w dummy) = S, constructed as follows:

S .  enc( x, re) : (F m) w main  ×  F τe → (F m) w S .  comp( x) : (F m) w → (F m ) w

let  v ∈ (F m) w

let  y ∈ (F m ) w

for  i ∈ { 1 , . . . , w main }  do

 v

for  i ∈ { 1 , . . . , w}  do

 i ← xi

 y

end for

 i ← C( xi)

( r

end for

 e, r

 e )  ← re

return  y ← ( y

for  i ∈ {w

1 , . . . , yw)

main + 1 , . . . , w}  do

 v re

 i ←−  F m

S .  dec( y, re) : (F m) w → (F m) w main

end for

 y re

 ←−−  Unshuffle( y 1 , . . . , yw)

return  x re

 ←−−  Shuffle( v 1 , . . . , vw)

return ( y 1 , . . . , yw

)

main
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 r

 r

The notation

 e

 ←− (  e

 ←−) means that  re ( re) is used as randomness to generate the

value (sample uniformly from F m  or shuffle/unshuffle almost-uniformly). 

Now, we can show that the evaluation-phase model is algebraically secure as long

as there is at least one dummy slot. We provide a short insightful proof. 

PROPOSITION 2.1.– Let  IC  be an implementation of a function  C : F m →  F m. Let w main , w dummy be positive integers. Then,  S

=

EPM( IC, w main , w dummy) is

algebraically secure. 

 Proof.–  Let  f ( x) be a non-constant function expressed as a linear combination of functions from S .  comp (which consists of parallel applications of  IC). We omit  rc  as it is not used in dummy shuffling. Without loss of generality, assume that  f  has form g( x 1)  ⊕ h( x 2 , . . . , xw

). In other words, it is a linear combination of some

dummy + w main

functions computed in the  IC  in the first slot ( g) and some functions computed in the other slots ( h). Furthermore,  g  must be a non-constant function. We need to prove that g(S .  enc( x, re)) is non-constant for all  x ∈  F n. Indeed, when the first slot is dummy, its input  x 1 is sampled uniformly at random. Since  g  is non-constant,  g(S .  enc( x, re)) is non-constant for all fixed  x. More precisely, it depends on the part of  re  used for shuffling and also on the part of  re  used for generating dummy inputs. 



We remind the reader that the algebraic security defined in Definition 2.4 is

simplified and does not  quantify  how close to constant functions the reachable

functions can be, which is important to have concrete security guarantees against the

LDA attack. Such a deep analysis is out of scope of this book. 

We will only note that, with a certain preprocessing of the implementation being

protected, dummy shuffling provides provable security against algebraic attacks of

arbitrary predetermined degrees, with strong quantifiable security bounds. 

2.7. Conclusions

Gray-box attacks are applicable in the white-box setting and they even become

more powerful due to specifics of the white-box model: determinism, precise

measurements and data-dependency information. These properties lead to a wide

range of generic automated attacks. Besides classic key recovery attacks, fault

injections may be used for simplification and weakening of the implementation via

removal of pseudorandomness and dummy computations. Noise-free measurements

allow the efficient exact matching attack and the powerful algebraic attack, defeating

linear encodings or any order. DDGs allow us to mount correlation or algebraic

attacks of very high orders. These and many other attacks make advances in

white-box designing techniques very difficult. Although (practical) white-box

cryptography is not yet achieved by the scientific community, the area of white-box
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cryptanalysis and countermeasures has many interesting results, which were not

covered by this chapter. In the following, we provide a list of references, so that an

interested reader may explore particular topics in depth. 

2.8. Notes and further references

Recently, several WhibOx2 competitions were held, where practical white-box

designers and attackers were confronted. A few works related to these competitions

targeting white-box AES implementations are due to Goubin et al. (2020a, 2020b) and

Alpirez Bock and Treff (2020). The latest to date competition WhibOx 2021 targeted

white-box ECDSA implementations and inspired a few reports with attacks and design

ideas: Barbu et al. (2022), Bauer et al. (2022). Another analysis of white-box ECDSA

is given by Dottax et al. (2021). 

Recent doctoral theses on white-box cryptography provide a good overview of

state-of-the-art (see Udovenko (2019); Rasoamiaramanana (2020); Wang (2020)). 

– Section 2.2. The study of gray-box attacks (DCA and DFA) in the white-box

setting includes works by Sanfelix et al. (2015), Ahn and Han (2016), Bos et al. 

(2016), Sasdrich et al. (2016), Banik et al. (2017), Alpirez Bock et al. (2018), Bock

et al. (2019), Rivain and Wang (2019), Ranea and Preneel (2020), Goubin et al. 

(2020b) and Carlet et al. (2021). Several works applied side-channel masking

protections to counter the attacks, including Lee (2017) and Lee and Kim (2020). 

Higher order DCA was analyzed in Bogdanov et al. (2019) and Maghrebi and Alessio

(2020). Affine encodings were analyzed by Lee et al. (2018) and Derbez et al. (2018). 

– Section 2.4. The exact matching attack was analyzed in Biryukov and Udovenko

(2018). 

– Sections 2.5 and 2.6. Algebraic/LDA attacks and countermeasures were

developed in works by Biryukov and Udovenko (2018), Goubin et al. (2020a), 

Biryukov and Udovenko (2021) and Seker et al. (2021). 
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3.1. Introduction

While Chapter 2 covers theoretical aspects of attacks and countermeasures

specific to the white-box setting, this chapter focuses on a few practical tools and

their accessibility without requiring advanced knowledge, including techniques

originating from the hardware side-channel and fault injection domains. 

Until some years ago (circa 2015), the white-box cryptanalysis field was driven

exclusively by academic papers. Industry could still offer white-box implementations

and cope with a moderate threat of advanced attackers able to first reverse-engineer

obfuscated programs, and then apply and adapt the mathematical methods described

in such academic papers to the result of their de-obfuscation efforts. 

Then, the so-called gray-box attacks, from side-channel cryptanalysis techniques

presented in Chapters 5 and 10 of Volume 1, were transposed to the white-box

domain. Theoretically, a white-box implementation – an implementation of a

cryptographic algorithm meant to operate in a white-box attack model – is supposed

to be resistant in such a powerful model (where an attacker can freely observe and

tamper with an execution instance), which supersedes the gray-box model (where the

attacker has much more limited capabilities, merely observing noisy leakages and

injecting vaguely controlled faults). However, gray-box attacks approach the problem
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in a radically different way, working surprisingly well on a variety of white-box

implementations: Gray-box attacks are meant to be usable against hardware chips

without knowledge of their processing and this remains true for their transposition to

the white-box domain, enabling a class of less advanced attackers. Of course, the

tools implementing such attacks are neither magical nor truly universal, but they

are largely sufficient to tackle the “low-hanging fruits” and, with some practical

experience, we can adapt and fine tune them to target more advanced white-box

implementations as well. 

Nowadays, industry has to take into account the existence of these tools when

bringing new white-box designs to the market. It probably goes even further: a number

of recent papers describe new attacks against implementations, without necessarily

providing the corresponding tools. In this context, industry must assess the security of

a white-box design in the event that someone, somewhere, implements these attacks

or even publicly releases a new tool with an implementation of one of these attacks. 

By understanding the existing tools and their requirements and limitations, we can

try to estimate if such a new tool would be easy to use or if it would still require a

high level of expertise and reverse engineering. In short, industry must assess how

an existing design would be impacted by the availability of new tools that implement

already known attacks. 

White-box cryptography can be applied to any cryptographic component, block

cipher, message authentication code, public key scheme, etc. The vast majority of

the currently existing tooling targets the most common white-box implementations –

block ciphers, more specifically AES and DES. To guarantee accessibility, we cover

exclusively tools that are available under open source licenses. For practicing, several

publicly available white-box implementations have been collected in the Deadpool

project, part of the SideChannelMarvels, an open source initiative to provide samples

and tools related to white-box cryptography. The WhibOx competitions are also a

great source of white-box implementations. 

–  Chapter overview: execution traces constitute the main source of side-channel

information in the white-box context. Therefore, section 3.2 introduces various

methods to trace the activity of a program. Section 3.3 illustrates how these traces

can be exploited graphically to learn about the program structure. Section 3.4

explains how to acquire traces suitable for a number of cryptanalysis attacks and

section 3.5 explains how to preprocess them. Sections 3.6 and 3.7 present two

side-channel analyses on such traces. Section 3.8 details how to inject faults in a

program execution and section 3.9 presents cryptanalysis attacks to exploit faulty

results. Finally, section 3.10 discusses how to deal with white-box implementations

protected by external encodings. 

All links to the tools and additional references are available at the end of this

chapter in section 3.12. 
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3.2. Tracing programs

In the gray-box attack model, side-channel information is extracted from a physical

device by observing fluctuations in its power consumption or in its electromagnetic

emanations; and a recording of these observations during a cryptographic operation

is called a trace. The advantage of the white-box attack model is that, by definition, 

everything can be observed. In practice, what can be done to extract information from

a targeted white-box executable, potentially obfuscated, in an automated fashion? We

can record software execution traces: record the input, output and intermediate activity

of the program such as executed instructions, memory reads and writes, as well as the

content of the registers. It is not strictly required to record prior traces before running

some of the attacks described in this chapter, but they provide an appreciable initial

insight. These traces are useful to get a rough picture of the white-box implementation, 

its location in the program, identify some countermeasures and finally provide useful

leakages to mount side-channel attacks, as will be seen in the next sections. 

To acquire such traces, several approaches are possible depending on the nature

of the targeted program. Simple debugger scripts (IDA, Ghidra, GDB, etc.) stepping

through the code and recording data might be sufficient but, most of the time, DBI

( dynamic binary instrumentation) tools are a better choice. These tools can monitor

programs at the instruction level much more efficiently than a debugger. A few

frameworks exist such as Intel PIN, Valgrind, DynamoRIO, Frida and its Stalker

module or the newcomer QBDI. Each of them differs in performance and in

supported operating systems, architectures and features (self-modifying code, 

multithreading, etc.), so we need to check which framework is suitable for a given

target. Emulators providing hooks for instrumentation are also an option: there exist

a number of them based on the open source emulator QEMU such as Qiling and

Rainbow. If the targeted white-box design is not implemented in a native executable

but in some intermediate bytecode (Java, ART, Python, etc.), it will be more valuable

to instrument the bytecode or add instrumentation hooks in the virtual machine

engine in order to record a trace of the bytecode execution rather than blindly tracing

the engine itself. The more information gets recorded, the more storage and the more

analysis time it will take. 

IMPORTANT. Choose the available tracing tool that will offer the closest access

to the important data, without being lost in extra information such as unrelated

functions of the program, system libraries, OS or kernel and execution engine. 

In rare cases, the white-box source code might be available (but obfuscated) like

for the challenges of the WhibOx competitions. In such events, automating the

injection of some printf calls in the code with the command sed and some regular

expressions may fit the tracing needs. 
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When using DBI frameworks, we need to write little pieces of code telling us to

trace each instruction in the desired functions and to record memory operations in

the desired memory range. If instructions and memory ranges are unknown at first, 

we can trace the whole executable, possibly its libraries (but probably not the system

libraries), at some extra cost. It is rarely required to trace the registers themselves, 

which is a quite storage- and time-consuming operation. To simplify the usage of some

DBI frameworks in this context, the TracerPIN and TracerGrind plugins are available

for Intel PIN and Valgrind, in the Tracer project, part of the SideChannelMarvels. 

Tracing a program should be as undetectable as possible for the program, in order

to avoid possible countermeasures, but it is also desirable to have the ability to

reproduce or compare traces in the exact same environment. Some implementations

may even use the environment entropy to add countermeasures such as random

masking. Therefore, it is preferable to strictly control the environment by removing

ASLR ( address space layout randomization) support (see setarch -R under Linux)

and intercepting and freezing sources of entropy such as srand, gettimeofday or

open("/dev/random") (e.g. with the help of LD_PRELOAD under Linux). 

As a first step, a single execution trace comprising instructions and memory

operations should be enough to perform an initial visual inspection, as detailed in

section 3.3. The Deadpool project contains numerous examples on how to install and

use the TracerPIN and TracerGrind tools to get such a trace. 

We choose the RHme3  capture-the-flag  pre-qualification challenge as a typical

white-box implementation example to demonstrate various tools all along this

chapter. It comes with the following description:  here is a binary implementing a

 cryptographic algorithm. You provide an input and it produces the corresponding

 output. Can you extract the key? 

With TracerPIN, tracing it is as easy as the following. 

$ Tracer -o rhme3.txt -- ./whitebox some_plaintext

The tool generates a human-readable file describing each instruction. This small

excerpt from the core of the white-box implementation, slightly edited, illustrates

what a software execution trace may give as information about one given execution. 

Instructions [I] and memory being read [R] and written [W] can be easily observed. 

Columns in this excerpt represent respectively the type of record, the number of the

event being recorded, the instruction address and either the disassembled instruction

or the memory address and value being read or written. 

[R]

42963 0x0000000000463915

0x00000000006650f1 size=1 value=0x02

[I]

42963 0x0000000000463915

movzx edx, byte ptr [rdx]
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[I]

42964 0x0000000000463918

movzx edx, dl

[I]

42965 0x000000000046391b

movsxd rdx, edx

[I]

42966 0x000000000046391e

movsxd rcx, ecx

[I]

42967 0x0000000000463921

shl rcx, 0x4

[I]

42968 0x0000000000463925

add rdx, rcx

[I]

42969 0x0000000000463928

add rdx, 0x6650c0

[R]

42970 0x000000000046392f

0x00000000006650e2 size=1 value=0x00

[I]

42970 0x000000000046392f

movzx edx, byte ptr [rdx]

[I]

42971 0x0000000000463932

movzx edx, dl

[I]

42972 0x0000000000463935

shl edx, 0x4

[I]

42973 0x0000000000463938

or edx, r8d

[I]

42974 0x000000000046393b

mov byte ptr [rax], dl

[W]

42974 0x000000000046393b

0x00007fffffffd930 size=1 value=0x03

With TracerGrind, we must determine the address range of the main executable to

apply an address filter because, by default, Valgrind traces everything, including

system libraries. The desired range is the r.x (read & execute) section of the

executable and can be determined with the command objdump. 

$ objdump -p whitebox |grep -A1 LOAD|grep -B1 "r.x" 

LOAD off

0x00000000 vaddr 0x00400000 paddr 0x00400000 align 2**21

filesz 0x0006432c memsz 0x0006432c flags r-x

The executable section is loaded at 0x400000 and to trace the beginning of the

execution of the RHme3 challenge, TraceGrind can be called with the following filter

option:

$ valgrind --tool=tracergrind --filter=0x400000-0x410000 --output=rhme3.trace \

./whitebox some_plaintext

$ texttrace rhme3.trace rhme3.txt

In any case, there is a far easier way to analyze such a trace with graphical

visualization, as detailed in the following section. 

3.3. Target recognition

Before running actual attacks, it may be worth getting some insight on the

white-box structure and location within the program, especially when the white-box

algorithm is only a small part of a much larger application. This first recognition step

is useful to limit the instruction address range and memory range to the interesting

tidbits. Attacks will run faster and require less memory. 

One way is to visualize a software execution trace with TraceGraph from the

Tracer project mentioned in the previous section. The first step requires recording the

trace in a database. With TracerPIN, this is achieved by adding the option

“--sqlite”. 

[image: Image 2]

[image: Image 3]
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$ Tracer --sqlite -o rhme3.sqlite -- ./whitebox some_plaintext

If TracerGrind is used, the trace is acquired as usual, then post-processed with

“sqlitetrace rhme3.trace rhme3.sqlite”. After that, we can load the trace

in TraceGraph: “tracegraph rhme3.sqlite” and get an overview as shown in

Figure 3.1(a). 

(a)

(b)

Figure 3.1.  RHme3: software execution trace overview (a) and zoom

 on the white-box operations (b). For a color version of this figure, 

 see www.iste.co.uk/prouff/cryptography3.zip

The Y-axis is the events timescale, from top to bottom, while the X-axis is the

memory address space, with executed instructions (in black) starting at 0x400000, 

and some memory region allocated at 0x664000, where data were first written (in

red) and then read (in green). 

Zooming on the second part of the instruction (Figure 3.1(b)), we clearly see the

loops grouped in 9  ×  4 patterns. This is an indication of a possible AES-128 and its nine rounds with a  MixColumns  operation working on each of the four columns. The

tenth round lacks such  MixColumns  operation so the pattern repeats only nine times. 

NOTE. Sometimes, no pattern is visible on the instructions plot, for example, 

on white-box instances where the loops are unrolled, but the stack can still reveal

patterns. 

Zooming further and clicking on individual events in TraceGraph will reveal the

corresponding instruction, address and data value. Observing how a buffer of bytes is

rewritten on the stack can even reveal operations like an AES  ShiftRows, which would be a strong indication of an AES performing an encryption and not a decryption. Other

white-box implementations will result in vastly different representations, but patterns

can emerge and indicate where the white-box core operations are performed, whether
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it is based on static tables, dynamic tables or function stubs, if it is likely an AES-128

(with a 9  ×  4 pattern), AES-192 (11  ×  4), AES-256 (13  ×  4) or DES (16). Sometimes, it is also possible to spot some countermeasures such as dummy rounds, artificial

jittering in an attempt to desynchronize side-channel traces, obfuscation techniques, 

etc. 

3.4. Acquiring traces for side-channel analysis

One of the possible automated attacks on a white-box implementation is the

application of side-channel analysis techniques, well known in the hardware domain, 

to software execution traces. 

The traces acquisition methods are very similar to those described in section 3.2

but with some specific tuning to get better performances. While we needed one single

rich trace for visualization purposes, side-channel analysis requires us to record about

a few dozen to a few thousand traces. To ease the analysis phase, it is worth limiting

the acquisition to a promising scope. Fewer data require less storage and a shorter

analysis time. Typically, we apply filters to instruction ranges or memory address

ranges learned from the visual inspection to target the memory operations of the first

few rounds of an AES algorithm. The data being read or written, but also the (least

significant bytes of the) memory addresses, may be a source of leakage. Tracing the

content of the registers might also be required. 

Contrarily to hardware side-channel acquisitions, there is no need to acquire

hundreds of thousands of traces because in the white-box model, traces are noiseless. 

Even individual bits are accessible, hence there is no need to use models such as the

Hamming weight. It is as if we could probe all the lines of the memory bus and

record them individually with a logic analyzer, rather than listening to the power

supply fluctuations with an oscilloscope. It does not mean that an exploitable leakage

exists in the acquired traces, but if an attack fails with a few thousand traces, it is

highly unlikely that it will succeed with more traces. 

An important point is that we need to also record the block cipher inputs or outputs

 in clear  along the corresponding traces. Some implementations work on  encoded

inputs and outputs and this will be discussed in section 3.10. 

Traces can be acquired for example with the framework provided in the Deadpool

project. In the following example, we tell the framework to acquire 32 traces

with TracerPIN over an instruction address range covering the loops identified in

Figure 3.1. The address range is not a requirement but an optimization. Each

white-box implementation has a different way to expect input and return output, 

therefore small processing functions processinput and processoutput need to be

defined. More complex cases may even require us to instrument the executable with

some hooks to capture input and output directly in memory. 

 Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science Univer , Wiley Online Library on [03/03/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 60

Embedded Cryptography 3

#!/usr/bin/env python

from deadpool_dca import *

def processinput(iblock, blocksize):

return (struct.pack(">QQ", iblock//(2**64), iblock%(2**64)), ["--stdin"]) def processoutput(output, blocksize):

return int(b’’.join(output.strip().split(b’ ’)), 16)

T=TracerPIN(’./whitebox’, processinput, processoutput, ARCH.amd64, 16, 

addr_range="0x462886-0x463D6C")

T.run(32)

The execution shows the acquisition progress, with the randomly generated inputs

and the corresponding outputs. 

$ ./trace_it.py

00000 2227820658040B26AB68DA370FC13820 -> 019A3D131A001711472D433E23AA5ED7

00001 B63E15444B8D17779DB6C74CDEE84A6F -> AB559AD34C10DAD5077CA51BA2405669

00002 659BDA21887A9AA54277AF950E1807A9 -> DF69FB4B1AF97916645507FD8ECFA6D0

... 

By default, the script will produce a set of three files per execution: one record

of the memory reads of one byte (trace_mem_data_rw1_*), one of the lower bytes

of the address of such reads (trace_mem_addr1_rw1_*), useful to monitor some

 lookup tables  inputs, and a last one of the memory writes of one byte on the stack

(trace_stack_w1_*). Which type of data to record under which condition is entirely

configurable. By analogy with the hardware side-channel traces, recorded data within

a trace are called  samples. The following are the files produced by the first three

iterations of the script:

trace_mem_addr1_rw1_2227820658040B26AB68DA370FC13820_019A3D131A001711472D433E23AA5ED7.info

trace_mem_addr1_rw1_0000_2227820658040B26AB68DA370FC13820_019A3D131A001711472D433E23AA5ED7.bin trace_mem_addr1_rw1_0001_B63E15444B8D17779DB6C74CDEE84A6F_AB559AD34C10DAD5077CA51BA2405669.bin trace_mem_addr1_rw1_0002_659BDA21887A9AA54277AF950E1807A9_DF69FB4B1AF97916645507FD8ECFA6D0.bin

... 

trace_mem_data_rw1_2227820658040B26AB68DA370FC13820_019A3D131A001711472D433E23AA5ED7.info

trace_mem_data_rw1_0000_2227820658040B26AB68DA370FC13820_019A3D131A001711472D433E23AA5ED7.bin trace_mem_data_rw1_0001_B63E15444B8D17779DB6C74CDEE84A6F_AB559AD34C10DAD5077CA51BA2405669.bin trace_mem_data_rw1_0002_659BDA21887A9AA54277AF950E1807A9_DF69FB4B1AF97916645507FD8ECFA6D0.bin

... 

trace_stack_w1_2227820658040B26AB68DA370FC13820_019A3D131A001711472D433E23AA5ED7.info

trace_stack_w1_0000_2227820658040B26AB68DA370FC13820_019A3D131A001711472D433E23AA5ED7.bin

trace_stack_w1_0001_B63E15444B8D17779DB6C74CDEE84A6F_AB559AD34C10DAD5077CA51BA2405669.bin

trace_stack_w1_0002_659BDA21887A9AA54277AF950E1807A9_DF69FB4B1AF97916645507FD8ECFA6D0.bin

... 

 Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science Univer , Wiley Online Library on [03/03/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Tools for White-Box Cryptanalysis

61

A .info file is also produced for the first trace of each set to ease the

identification of a possible leakage. For example, if we develop a white-box design

and manages to break it by some side-channel analysis, the developer wants to

identify the source of the leakage. Each line of the .info file details the source of

each sample. Therefore, once the samples responsible for the leakage have been

identified, we can find which instruction and memory address it corresponds to. For

example, if later it appears that an analysis can break the last byte of the key based on

the 21st sample (byte) of the trace_mem_addr1_rw1 set of traces, we can look at

line 21 of trace_mem_addr1_rw1_*.info: "[R] 459 4638A3 6650D7 1 06" 

that indicates the sample is a byte produced by the event 459, which is an instruction

located at address 0x4638A3 reading from address 0x6650D7. 

If the white-box implementation is compiled with debug information, we can even

know which source code line is responsible for the leakage by providing the spotted

instruction address to the command addr2line. 

3.5. Preprocessing traces

We have seen how the Deadpool framework records traces intended for

side-channel analysis. In section 3.6, we will see how Daredevil and Jlsca can

analyze these traces and Deadpool has functions to convert traces to the format

expected by Daredevil and to  trs, a format supported by Jlsca. The exact format used to record traces may vary with other tools and we must be prepared to write little

scripts to convert traces from one format to another, depending on the source and

destination tools. 

The Deadpool conversion functions include the following trick. On real hardware, 

a side-channel trace captures power variations, including effects of each bit being

manipulated at the same time, which translates into using the Hamming weight or the

Hamming distance in the leakage models. However, the software execution traces

are 8-bit integers representing something fundamentally different: the true values

of these manipulated bits, grouped in bytes which are by definition driven by their

most significant bits. The trick is therefore to decompose the recorded bytes into

a succession of individual bits, each bit becoming a new sample. Compared to an

analog trace, samples no longer represent acquisitions at regular intervals, as the trace

contains only data when a specific event – e.g. a memory read instruction – occurred, 

and as one event byte gets decomposed into multiple samples. However, this does

not affect the logic of the attack, as we only need to record traces aligned across

executions. 

To convert the traces of our example in a format suitable for Daredevil, simply

execute the function bin2daredevil. 
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#!/usr/bin/env python

from deadpool_dca import *

bin2daredevil()

It will spread the traced bytes into bits, regroup traces, inputs and outputs in three

files per set and provide a configuration file template for each set. The following is the

mem_addr1_rw1 set of 32 traces of 7976 samples:

mem_addr1_rw1_32_7976.config

mem_addr1_rw1_32_7976.input

mem_addr1_rw1_32_7976.output

mem_addr1_rw1_32_7976.trace

For some white-box instances, traces can become quite large. If we use Jlsca

instead of Daredevil, we can skip the bytes decomposition into bits as Jlsca can

handle white-box traces (stored in trs format) and decompose them on-the-fly, if

instructed with addSamplePass(trs, BitPass()). However, you can do even

better by applying sample reduction techniques supported by Jlsca as well, which

will remove many unneeded samples from the traces. One technique is the  duplicate

 column removal (DCR), which eliminates repeating samples and their inverse. A

second technique is the  conditional sample reduction (CSR), which further

compresses the traces by considering only a varying part of the input used to attack a

part of the key and eliminating samples not affected by the varying input. Required

storage, but also analysis time will be greatly improved as combining both techniques

leaves only the samples relevant for recovering the targeted portion of the key. For a

complete example using Jlsca and sample reduction technique against the RHme3

challenge, see the section, notes and further references. 

3.6. Differential computation analysis

Once software execution traces got collected and preprocessed, it is time to

perform the actual side-channel analysis. The most elementary analysis is to apply

classical DPA ( differential power analysis) or CPA ( correlation power analysis) presented in Chapter 4 of Volume 1, on these preprocessed traces, a technique

referred to as DCA ( differential computation analysis), as it handles computation

traces made of individual bits and not power traces. Technically, Daredevil, 

introduced in section 3.5, performs a CPA, but on such preprocessed traces, no actual

Hamming weight is used and its results are identical to a DPA. 

In our RHme3 example, we will call Daredevil with the three default sets and

configuration files created in section 3.5. 
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$ daredevil -c stack_w1_32_2816.config

$ daredevil -c mem_data_rw1_32_7976.config

$ daredevil -c mem_addr1_rw1_32_7976.config

For this specific white-box design, processing the set of data being read from or

written to memory (mem_data_rw1) and the set of writings on the stack (stack_w1)

will not show any key candidate standing out, even if more traces get recorded. 

However, the set of addresses of the memory operations (mem_addr1_rw1), actually

the lower byte of these addresses, returns a clear key candidate, with the highest

cumulated correlation possible: 16 (one for each key byte). 

Most probable key max(abs):

1: 16: 61316c5f7434623133355f525f6f5235

On other white-box designs, 

our mileage may vary. This white-box

implementation was easy to break with a very low number of traces and a maximal

correlation probably because the intermediate encodings, if any, did not properly

mask the correlation with the output of a clear AES S-box. At least one bit of the

address of data being read from memory correlated perfectly with one of the bits of

the AES S-box output. 

On several white-box implementations where internal encodings are chosen

randomly, it has been observed that on average about 10 of the 16 key bytes could be

recovered by correlating with the S-box output and a few hundred to a few thousand

traces. However, internal encodings can also be carefully chosen to avoid any

correlation with the S-box output. 

Nevertheless, instead of computing correlation against each bit of the AES S-box

output, we can check against all the 255 possible linear combinations of the S-box

output bits in order to cover all possible 1-byte internal affine encodings. In practice, 

this can be achieved with Daredevil by telling in its configuration file to use one of the

extended look-up tables provided with the tool in the LUT directory under the names

AES_AFTER_SBOX_x*. 

As discussed earlier, external sources of entropy can easily be intercepted and

controlled by an attacker in the white-box context. Therefore, some white-box

implementations are using the input itself as a source of randomness to apply various

masking techniques. In the example presented above, the tool proceeded with random

inputs, but in some cases, we may get better results by modifying one single byte of

the input at once, up to a maximum of 256  ×  16 = 4 ,  096 inputs. 

The RHme3 example is an AES-128 encryption and the presented DCA relied

on the inputs in clear and the traces. Like the regular DPA on hardware traces, the
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DCA can also be performed using the outputs in clear and leakages located in the last

rounds, but also on decryption and on AES-192 or AES-256 white-box designs by

attacking two successive round keys. In case the recovered round keys are not the first

round keys, the tool aes_keyschedule from the Stark project will help rewinding

the keyschedule back to the AES key. 

The tutorial mentioned in the previous section notes covers the application of CPA

against the RHme3 challenge using Jlsca as well. 

To close this section, we would like to mention the availability of a new toolchain

shortly before the finalization of this book: Whiteboxgrind, a fast implementation

to obtain execution traces and apply the DCA on them, enabling attacks that were

previously infeasible on large white-box implementations due to memory constraints. 

3.7. Linear decoding analysis also known as algebraic attack

A new side-channel analysis technique presented in Chapter 2 of this volume is the

 Algebraic Attack, also referred to as LDA ( linear decoding analysis), which is specific to computation traces as it takes advantage of the absence of noise, unlike physical

power traces. LDA consists of trying to solve a linear algebra problem  M ×z =  s  with M = [ v 1  . . . vn], where  vi  is the vector of values collected in all traces at the same point  i,  M  is the collection of  n  consecutive points over a window of the traces and  z is a vector indicating locations of samples to recombine to match a predictable value

 s  depending on a small part of the secret key. The attack is successful if the system has a solution only for one single predictable value  s, so one single key hypothesis. To avoid false positives, it needs more traces than the width of the samples window, that

is, the maximum distance between samples to recombine. Therefore, LDA can defeat

linear masking schemes with arbitrary number of shares. 

An implementation of the first-order LDA implemented in SageMath is available

in the White-box Cryptography Design and Analysis kit wboxkit. The trace format

is slightly different as each trace is stored in its own file triplet (samples, input and

output) and it is quite straightforward to convert the traces already made for Daredevil. 

Once done, the LDA can be performed. For illustration purposes, LDA is executed

against the same set of 32 traces mem_addr1_rw1_32_7976 acquired in section 3.4

and converted in a traces directory, with a window of eight samples. Make sure

 ∼/.sage/local/bin is in your path. 

$ sage -pip install wboxkit

$ sage -sh

(sage-sh) $ wboxkit.lda -T 32 -w 8 --masks 1 traces/

MATCH:

sbox #15, 
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lin.mask 0x01, 

key 0x35=’5’, 

negated? False, 

indexes 160...160 (distance 0) [160]

[...]

Key candidates found:

S-Box #0: 0x61(’a’)

S-Box #1: 0x31(’1’)

S-Box #2: 0x6c(’l’)

[...]

Example: 61316c5f7434623133355f525f6f5235

Beyond this toy example, this tool demonstrates its real power on more complex

white-box implementations with linear masking schemes of any high order involving

recombinations over much larger windows. LDA is nicely complementary to DCA

which, on its side, can break weak nonlinear encodings and variants of the seminal

 CEJO  white-box by Chow et al. 

3.8. Injecting faults

Another technique brought from the physical cryptographic attacks is DFA

( differential fault analysis), as presented in Chapter 10 of Volume 1. Its prerequisite is to have access to the output in clear, to be able to replay the same input several

times and to inject faults during the execution of the block cipher. 

There are several strategies to inject a fault during the execution. If the white-box

implementation does not have any integrity protection, the easiest way is to directly

modify a copy of the white-box files statically, in its data or in its code sections. A

visual analysis of a first trace as explained in section 3.3 may help targeting the right

location for a fault injection. 

For the classical  Piret and Quisquater  DFA against AES, the fault model is an

unknown modification of a single byte of the state somewhere between the two last

 MixColumns  operations for each execution. One advantage of this fault model is

that it requires almost no control on the fault itself. It is helpful because white-box

intermediate values are encoded and a modification of the encoded representation will

lead to an unknown modification of the real value of the attacked byte. Moreover, 

faults can be injected blindly at arbitrary positions and the faulted outputs can be

filtered later. Indeed, for a fault to be exploitable with this attack, it needs to be injected before the last  MixColumns, and this is easily detectable by inspecting the output, as such a fault will propagate to exactly four bytes of the output. A fault injected too late

will affect one single byte and a fault injected too soon will affect the whole output. 
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The Daredevil DFA framework implements strategies to automatically inject

faults statically in a program or a data file. The framework starts by faulting large

sections of the data, then it divides and explores sections where faults affect the

output, until it reaches faults limited to individual bytes. It observes the fault patterns

on the output to filter the results and keeps the potentially good faults. By observing

fault patterns, we can even tell if the attacked AES is an encryption or a decryption. 

Of course, the framework must cope with possible crashes and infinite loops caused

by the injected fault, especially when faulting the instructions. For performance

reasons, it is preferable to run the tool from a virtual filesystem in random access

memory ( tmpfs). 

The upper two-thirds of Figure 3.1(a) show the actual tables of the RHme3

example being initialized (in red) from immediate values in the code itself (in black, 

from 0x400000 to 0x45b000), before the execution of the rounds. Therefore, 

targeting the tables used in the one but last round can be achieved by attacking

initialization code instructions around approximately 0x445000 to 0x455000

(corresponding to offsets 0x45000 to 0x55000 in the program file). We may skip

specifying the code range to attack; the process will just become slower. The

following example also includes some other fine-tuning parameters because the

target to fault is a code section. The tool documentation explains their usage. When a

white-box implementation allows it, faulting data section is typically much easier and

faster. 

#!/usr/bin/env python

import deadpool_dfa

import phoenixAES

import struct

def processinput(iblock, blocksize):

return (struct.pack(">QQ", iblock//(2**64), iblock%(2**64)), ["--stdin"]) def processoutput(output, blocksize):

return int(b’’.join(output.strip().split(b’ ’)), 16)

engine=deadpool_dfa.Acquisition(

targetbin=’./whitebox’, targetdata=’./whitebox’, goldendata=’./whitebox.gold’, 

dfa=phoenixAES, processinput=processinput, processoutput=processoutput, verbose=2, 

faults=[(’nop’, lambda x: 0x90)], maxleaf=1, minleaf=1, minleafnail=1, 

minfaultspercol=2, addresses=(0x45000,0x55000))

engine.run()

The tool outputs a line for each execution. The last ones are provided as

illustration, slightly edited. These faulted outputs are to be compared to the reference

output 896D983BEDC6275E0F7BBB18DF4AF219. Columns indicate respectively the

 Level (the tool proceeds in several passes, reducing progressively the area being

faulted), the faulted memory range (on this last pass, it is a single byte), the type of
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fault (here each faulted byte is replaced by a NOP instruction), the result (either an

output, an infinite loop or a crash) and if an output was collected, the last column

indicates if it is faulty, and if the pattern of faulty bytes corresponds to a fault injected somewhere on a column before the last  MixColumns  operation (flagged as

 GoodEncFault). 

... 

Lvl 005 [0x00047934-0x00047935[ nop -> 896D983BEDC6275E0F7BBB18DF4AF219 NoFault

... 

Lvl 005 [0x00047BC8-0x00047BC9[ nop -> Loop

... 

Lvl 005 [0x00047BF3-0x00047BF4[ nop -> 2E9586D19558C9BCA8B14264A8045095 MajorFault

Lvl 005 [0x00047BF4-0x00047BF5[ nop -> Crash

Lvl 005 [0x00047BF5-0x00047BF6[ nop -> Crash

Lvl 005 [0x00047BF6-0x00047BF7[ nop -> AB6D983BEDC627E90F7B9718DFA4F219 GoodEncFault Col:0

Lvl 005 [0x00047BF7-0x00047BF8[ nop -> 896D982FEDC6BA5E0F51BB187B4AF219 GoodEncFault Col:3

Lvl 005 [0x00047BF7-0x00047BF8[ nop -> 896D982FEDC6BA5E0F51BB187B4AF219 GoodEncFault Col:3

Lvl 005 [0x00047BF8-0x00047BF9[ nop -> 896D223BED28275E7D7BBB18DF4AF28D GoodEncFault Col:2

Lvl 005 [0x00047BF8-0x00047BF9[ nop -> 896D223BED28275E7D7BBB18DF4AF28D GoodEncFault Col:2

Saving 9 traces in dfa_enc_9.txt

Two such  GoodEncFault  outputs are collected per faulted column in the saved

file dfa_enc_9.txt, together with the reference output. This file is now ready for

analysis as explained in section 3.9. 

In case of an AES-192 or AES-256, the framework can target the previous round

key once the last round key has been found. 

If the white-box implementation has some integrity protection preventing static

fault injection, or if some tables are uncompressed or decoded in RAM, it will be

necessary to use dynamic fault injection techniques. Contrarily to the software

execution traces, we need only very local binary instrumentation. To achieve that, a

large set of tools is available: DBI frameworks seen in section 3.2 or even debugging

scripts. In case of complex applications, it is interesting to consider execution

snapshots: run the executable up to the few last rounds, make a reference snapshot of

the memory and registers, and run all fault attempts from this snapshot. Depending

on the executable, some anti-debugging routines might need patching as well. 

3.9. Differential fault analysis

Once faulty outputs have been collected according to section 3.8, the next step is

to apply the DFA itself. An implementation, phoenixAES, is available in the JeanGrey

project. 

#!/usr/bin/env python


import phoenixAES

phoenixAES.crack_file("dfa_enc_9.txt")
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It instantaneously returns its result. 

Last round key #N found:

4E44EACD3F54F5B54A4FB15E0710B974

As our example is an AES-128, the last round key is the tenth round key. Using

aes_keyschedule introduced in section 3.6 against the recovered round key allows

us to recover the AES key itself, which is identical to the initial round key. 

$ aes_keyschedule 4E44EACD3F54F5B54A4FB15E0710B974 10

K00: 61316C5F7434623133355F525F6F5235

Some white-box implementations implement countermeasures against this

classical DFA. In such a case, it is interesting to test fault injections one round earlier. 

Faults will propagate to the whole output, as they are diffused by two  MixColumns

operations, but we can preprocess them as if they were affecting only one column

at once, by rewriting each faulty output affecting all 16 bytes as four faulty outputs

affecting only four bytes each. 

This principle can be illustrated by using the logs of the previous DFA example

and pretending it did not find the exploitable outputs flagged as  GoodEncFault. The

idea is to prepare a file based on the reference output and a collection of  MajorFault

outputs, that is, outputs where all bytes are faulty. 

$ echo 896D983BEDC6275E0F7BBB18DF4AF219 > r8faults

$ grep MajorFault dfa_enc.log|cut -d " " -f 8 >> r8faults

Then, use phoenixAES to preprocess the file into a version as if the next round was

targeted and analyze it. 

#!/usr/bin/env python

import phoenixAES

phoenixAES.convert_r8faults_file("r8faults", "r9faults")

phoenixAES.crack_file("r9faults")

Again, the last round key was successfully recovered, but this time from faults

injected one round earlier. 

Last round key #N found:

4E44EACD3F54F5B54A4FB15E0710B974
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There exist many more DFA variants and if the ones presented here do not work, 

it might be interesting to explore other ones. Nevertheless, we must keep in mind the

specificities of white-box fault injection compared to attacking hardware: it is easy to

reproduce faults or to generate more faults once a fault position has been identified, but

it is hard to work with bitflip models as internal encodings are unknown. Therefore, 

it is usually better to favor fast analysis techniques with fewer constraints and to try

many combinations at many locations. 

We only covered AES in this section, but we invite the reader to also have a look

at the WhibOx 2021 contest, which was a showcase of various fault injection attacks

against white-box implementations of ECDSA signature. 

3.10. Coping with external encodings

So far, we have covered tools that did not require much reverse engineering effort

and, in best cases, could be fully automated. However, DCA requires that the input

(or the output) is accessible in clear and DFA requires the output in clear. This sounds

like a reasonable assumption when talking about cryptanalysis of a block-cipher, but

because having access to the input or output in clear facilitates a number of attacks, 

including algebraic analysis methods preceding gray-box attacks, the notion of

 external encodings  emerged very soon in the white-box cryptography field. The idea

is that an extra layer of encodings (typically, a byte-wise random substitution layer)

keeps input and output secret. The application using such white-box design would

need to encode its input prior to sending it to the algorithm and would need to decode

its output. In the case of a local application, reverse engineering could still probably

find the clear data within the application. However, there are some situations where

the external encoding layers are not within reach. For example, a proprietary

client–server system: there is no need to exactly follow the AES standard in their

protocol and the extra encoding/decoding can be handled by the server. Another

example is local storage encryption, where standard AES interoperability is not

required and data at rest could be stored encrypted  and  encoded. 

Fortunately, there exists a variant of the DFA meant to cope with external

encodings and DarkPhoenix is a tool implementing such a technique. It has stronger

requirements than standard DFA as we must provide instrumentation or emulation

able to inject faults in the three last  full  rounds (those with a  MixColumns) for an AES-128. The number of executions and faults is also quite consequent: first, 

running about half a million times the white-box algorithm with random inputs to

find sets able to enumerate each output byte, and then injecting about a million faults

in total. In case we have access to both the white-box encryption and decryption

implementations, the first step’s complexity is drastically reduced as output bytes can

directly be enumerated. 
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If we have reversed or extracted the white-box logic enough to be able to apply

individual rounds on an AES state, it is possible to attempt the so-called BGE attack, 

referring to the authors of the initial version of this powerful algebraic technique:

 Billet,  Gilbert  and  Ech-Chatbi. This attack is implemented in the BlueGalaxyEnergy tool and targets the classic design by Chow et al., which is (at least partially) reused

in most white-box challenges. 

3.11. Conclusion

As white-box designs moved from academic propositions to commercial

implementations, it is important that white-box attacks, which were also confined to

papers for quite a number of years, follow a similar path and develop into practical

tools. Tools enable evaluations of these white-box implementations and help raise

awareness for a larger public. Fortunately, the situation is changing with more and

more researchers sharing their tools under open source licenses. Some of these can

run almost fully automatically in the best scenarios, but acquiring more knowledge

on the topic will help choosing and tuning the proper tools. Also, when none of

the easy ways is working, mastering execution trace visualization and binary

instrumentation will help the deobfuscation process and the extraction of features, 

which is a prerequisite of more advanced white-box cryptanalysis techniques. 

3.12. Notes and further references

– Section 3.1. Resources for public white-box implementations and attacks. 

- Deadpool project: https://github.com/SideChannelMarvels/Deadpool. 

- WhibOx competitions: https://whibox.io/contests. 

– Section 3.2. Tools for tracing programs:

- Intel PIN: http://www.intel.com/software/pintool. 

- Valgrind: https://valgrind.org. 

- DynamoRIO: https://dynamorio.org. 

- Frida: https://frida.re/. 

- QBDI: https://qbdi.quarkslab.com. 

- Qiling: https://qiling.io/. 

- Rainbow: https://github.com/Ledger-Donjon/rainbow. 

- TracerPIN and TracerGrind: https://github.com/SideChannelMarvels/Tracer. 

Usage examples against white-boxes are available among others for Rainbow:

https://donjon.ledger.com/ctf-rainbow/; 

QBDI:

https://www.romainthomas. 

fr/post/20-09-r2con-obfuscated-whitebox-part2/

and

https://blog.quarkslab.com/
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introduction-to-whiteboxes-and-collision-based-attacks-with-qbdi.html; 

and

the

SideChannelMarvels tools in general:

https://github.com/SideChannelMarvels/

Deadpool/wiki. 

A copy of the RHme3 challenge is available at:

- https://github.com/SideChannelMarvels/Deadpool/tree/master/wbs_aes_

rhme3_prequal. 

– Section 3.3. Another possible visual aid is to generate a data dependency graph, 

which requires us to trace memory and registers as well (see, for example, Goubin

et al. (2018)). 

– Section 3.5. Tools for preprocessing traces are as follows:

- Daredevil: https://github.com/SideChannelMarvels/Daredevil. 

- Jlsca: https://github.com/Keysight/Jlsca. 

Sample reduction techniques are described in Breunesse et al. (2018). A tutorial

using Deadpool DCA framework for trace acquisition, then Jlsca for trace reduction

and analysis against the RHme3 example is available: https://github.com/ikizhvatov/

jlsca-tutorials/blob/master/rhme2017-qual-wb.ipynb. 

– Section 3.6. 

- Stark: https://github.com/SideChannelMarvels/Stark. 

- Extension of DCA to all 1-byte affine encodings is explained in Klemsa (2016). 

- Whiteboxgrind: https://gitlab.lrz.de/tueisec/whiteboxgrind (as described in Holl et al. (2023)). 

– Section 3.7. wboxkit: https://github.com/hellman/wboxkit containing the LDA tool along with tutorials based on the low-level circuit construction kit circkit

https://github.com/CryptoExperts/circkit, allowing us to experiment with various white-box masking schemes. LAA is described in Biryukov and Udovenko (2018)

and LDA is described in Goubin et al. (2018), together with a Mathematica

proof-of-concept

at

https://github.com/junwei-wang/WhibOx-breaking-adoring-

poitras/tree/master/lda. 

– Section 3.9. JeanGrey: https://github.com/SideChannelMarvels/JeanGrey. 

To better understand DFA, especially in the white-box context, see Alpirez Bock

et al. (2019) and https://blog.quarkslab.com/differential-fault-analysis-on-white-

box-aes-implementations.html. See also Lu (2019), which improves phoenixAES and relaxes the fault requirements. For fault attacks against ECDSA, see Barbu et al. 

(2022) and Bauer et al. (2022). 

– Section 3.10. 

- DarkPhoenix: https://github.com/SideChannelMarvels/Dark Phoenix. 

- BlueGalaxyEnergy: https://github.com/SideChannelMarvels/BlueGalaxy

Energy. See also Derbez et al. (2018), which provides a proof-of-concept at
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https://recovaffeq. github.io/ to attack all variants of the Chow white-box with external encodings, what is called the CEJO framework. 

– Section 3.11. Tools or just proof-of-concepts and datasets are essential for

scientific reproducibility and to demonstrate results. Open source licensing will allow

anyone to contribute and build upon the existing, rather than having to start from

scratch. Therefore, if you are a researcher, do not hesitate to publish your scripts as

well, even if they are less polished than your papers! 
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4.1. Introduction

This chapter deals with practical techniques that try to “obfuscate” code, i.e. to

make the code more difficult to understand for either a human analyst or an

automated framework based on dynamic or static code analysis. Obfuscation has

several application domains that range from intellectual property protection over

code diversity up to hiding secrets like passwords or keys in software. In the chapter, 

we first define the task of obfuscation. Subsequently, we look at various attacker

goals as well as attacker models, which largely restrict the type of software

obfuscation that is applicable in certain application domains. Finally, we give

examples of obfuscation methods, discuss their strength and outline applications. 

4.1.1.  Definition of obfuscation

Informally, code obfuscation tries to convert code – either in the form of source

code or executable code – into code that is unintelligible in some form, either by a

human observer or by an automated analysis tool. The development of code

obfuscation techniques was mainly driven by the desire to hide the specific

implementation of a program. 

Malware authors, who aimed at hiding the malicious purpose of a program, were

one of the main driving forces of the development of obfuscation techniques. 
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Consequently, breaking obfuscations was a prerequisite for malware detection. 

Another important application in the early days of software obfuscation was the

protection of license checks embedded in commercial software. Since then, software

protection has developed more sophisticated obfuscation techniques to hide the

behavior of the code, while analysts have been using increasingly complex code

analysis techniques to defeat obfuscations. The demand from the malware economy

is still one of the major driving forces behind the development of obfuscation

techniques. The other leading application area of code obfuscation is the protection

of commercial software against reverse engineering, which tries to extract some

interesting secrets from a program or binary. This secret may be a cryptographic key, 

an algorithm considered a trade secret, or credentials for a remote service. Practical

software obfuscation, as discussed in this chapter, aims to provide heuristics and

practical solutions that make reverse engineering more difficult. This should be

distinguished from provably secure obfuscation, which originated from the

cryptographic community and aims to provide a solution for the software obfuscation

problem whose security can be proven mathematically. 

4.1.2.  Goals of obfuscation

The precise goals of code obfuscation can vary between different application

domains. In general, obfuscation aims to defend against a human or an automated

analyst, which tries to perform one of the following tasks. 

4.1.3.  Protecting against locating data

In this scenario, an analyst aims to identify the presence of certain pieces of data:

for example, are cryptographic keys, which can be extracted in order to break up some

of the encryption routine, or constants used in cryptographic implementations, which

give a hint to which algorithm was implemented. 

4.1.4.  Protecting against locating code

In this scenario, the analyst tries to identify a particular piece of code in a larger

obfuscated software package. For example, of interest may be the entry point of a

cryptographic software routine, so that it can be analyzed in more detail in a later step

of the attack. More generally, the analyst may ask the question of whether a program

implements a particular functionality (such as a particular cipher) or simply whether

a program is malicious or not. 

4.1.5.  Protecting against extraction of code

Here, the analyst seeks to extract a “meaningful” piece of code from an

obfuscated program. For example, their goal may be to extract the decryption routine
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of a Digital Rights Management system in order to be able to bypass any protections. 

In another application, the analyst seeks to extract fragments of code written by a

commercial competitor. In some use cases, the code does not need to be extracted

from the program and integrated into a separate executable as long as the functional

component within the original executable can be accessed at runtime (called “in-situ

reuse”). For example, instead of writing a dedicated decryption routine, we can

bundle an existing obfuscated program with an attack software, as long as the

decryption routine can be called. 

4.1.6.  Protecting against understanding of code

In this case, a human analyst seeks to “understand” the behavior of a piece of

obfuscated code. This requires that the analyst must be able to “remove” the

obfuscation techniques and gain an understanding of the original, non-obfuscated

program or a nontrivial fragment of it. For example, the analyst may want to uncover

the code of an unknown encryption scheme in use, to find vulnerabilities in existing

programs, to correct flaws in software for which the source code is not available, and

create new programs that are compatible with proprietary software. A major driving

force here can be intellectual property theft. 

4.1.7.  Attacker models

Depending on the capabilities of the adversary, obfuscation methods have a

largely varying strength. For example, a human reverse engineer who tries to

understand a piece of code of a competitor may afford spending time and effort on

highly complex and time-consuming analyses, while an antivirus vendor, who has to

timely analyze hundreds of thousands of different malware samples each day, may be

required to resort to very lightweight and thus limited analysis techniques. We can

roughly distinguish the following different forms of analysis methods in increasing

level of sophistication. 

4.1.8.  Pattern matching

This analysis is the simplest – and fastest – form of code analysis. It is a purely

syntactic analysis on the program binary or byte code. For example, we may search

for suspicious substrings or patterns, for example, encoded as regular expressions. The

main benefit of this analysis technique is that it is very fast. It can however be easily

defeated by stronger obfuscations. 

4.1.9.  Automated static analysis

In this method, code is analyzed without actually executing it. In contrast to

syntactic pattern matching, static analysis reasons the program semantics. Typical
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forms of static analysis include disassemblers that interpret branch targets, or tools

that reconstruct the control flow graph (CFG) of a program. 

4.1.10.  Automated dynamic analysis

This analysis method actually runs a program in a secure environment (e.g. a

specially crafted sandbox) and observes its behavior. This allows it to collect a vast

amount of data: from system calls to accessed memory locations. The advantage of

this method is that it allows it to analyze a program with respect to executed traces. 

The downside is that data gathered from one or several runs of a program do not

necessarily allow it to draw conclusions about the behavior of other runs or the entire

program. 

4.1.11.  Human-assisted analysis

This analysis method is the most complex one. Here, a human analyst performs

a tool-assisted exploration of a piece of code. This process is typically referred to as

reverse-engineering, where the analyst aims to understand the program’s structure and

behavior. 

4.2. Obfuscation methods

Obfuscation techniques can be roughly divided into three categories. 

–  Data obfuscations  are used to modify data contained in software in such a way

that it becomes difficult for an adversary to locate data based on its known structure. 

Thus, data obfuscations are primarily used to prevent simple pattern matching attacks. 

–  Static obfuscations  make the code of software artificially more complex with the

goal of rendering static code analysis – performed by a human analyst or an automated

analysis program – more difficult. Static obfuscations essentially complicate the CFG

of a program and make it harder accessible for analysis. 

–  Dynamic obfuscations  modify code at runtime and are tailored against dynamic

code analysis. Dynamic obfuscation aims to defend against attackers who have

captured execution traces of the software at runtime. 

Based on the protection goal and the security property, useful obfuscation

techniques need to be determined by the obfuscator. 

In the following, important obfuscation techniques of all three groups are

presented and their protection concepts are briefly explained. For more details on

these obfuscations, see Schrittwieser et al. (2016). 
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4.2.1.  Data obfuscation

4.2.1.1.  Data encoding/encryption

Data is converted into another representation using a special encoding or

encryption function. At runtime, an inverse function is used to convert the data back

to its plaintext representation. An advanced variant of this data obfuscation technique

is mixed-Boolean arithmetic (MBA) where a simple expression is converted into a

difficult-to-understand representation by combining arithmetic (e.g. ADD and SUB)

and Boolean operations (e.g. AND, XOR and NOT). For example, the code fragment:

2 * (x & y) + (x ^ y)

is equivalent to

x + y

4.2.1.2.  Converting static data to procedures

Instead of storing data in software (encoded, encrypted or in plaintext), it can also

be calculated at runtime, thus effectively hiding it from static code analysis. White-box

cryptography can be seen as an extreme form of this obfuscation technique, since the

secret cryptographic key is not stored in the software, but is integrated into the program

code as a complex sequence of operations (e.g. table lookups). For example, the stored

constant:

let symbols = "abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; 

can be converted to the following code fragment:

function generate_symbols() {

let symbols = ""; 

for (let i = 0; i < 26; i++) {

symbols += String.fromCharCode(97 + i); 

}

for (let i = 0; i < 26; i++) {

symbols += String.fromCharCode(65 + i); 

}

for (let i = 0; i < 10; i++) {
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symbols += String.fromCharCode(48 + i); 

}

return symbols; 

}

4.2.1.3.  Data transformation

Data transformations do not directly change the appearance of data, but the

sequence or composition in which they are stored. For example, data can be protected

by splitting, merging or reordering in such a way that a simple search for known

structures is prevented. For example, a cryptographic key with a length of 256 bit can

be hidden by splitting it into two partial keys of 128 bits each. A search for a string of

length 256 bit would not directly identify the partial keys:

let keyChunk1 = "01234567"; 

let keyChunk2 = "89abcdef"; 

let keyChunk3 = "01234567"; 

let keyChunk4 = "89abcdef"; 

function decryptData(data) {

let key = keyChunk1 + keyChunk2 + keyChunk3 + keyChunk4; 

// Decrypt data using the key

// ... 

}

4.2.2.  Static obfuscation

4.2.2.1.  Control flow obfuscations

The CFG of a software is tremendously helpful for an adversary performing static

code analysis. Methods for obfuscating the CFG can be divided into two categories. 

Control flow indirections work with program jumps, which are computed at run time

only. Thus, a static reconstruction of the CFG is made more difficult as important

flow information is not available before running the program. A well-known type of

this protection is control flow flattening. In this technique, control flow is directed to a central dispatcher at each branch, which then determines the code block to be executed

next:

function cfg_flattening() {

int flow = 3; 

while(flow != 0) {

switch(flow) {
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case 1:

print "CFG" 

flow = 4; 

break; 

case 2:

print "is" 

flow = 1; 

break; 

case 3:

print "This" 

flow = 2; 

break; 

case 4:

print "flattening!" 

flow = 0; 

break; 

}

}

}

This turns the CFG into a flat but very wide graph, which does not contain

information about the actual flow of a program. In contrast, control flow

transformations change the CFG in such a way that it remains reconstructible by an

adversary, but looks different. 

4.2.2.2.  Junk code insertion

Junk code insertion increases the code size without modifying the effect of the

computation. Two variants of this technique exist: irrelevant and dead code insertion. 

Irrelevant code are sequences of instructions that do not have an effect on the execution

of a program, while dead code describes code blocks that cannot be reached in the

CFG of the software and thus never get executed. Both variants make the analysis of

code more time consuming, since the amount of program code is artificially increased. 

For example, the code sequence:

mov eax, 0

mov ebx, 7

add ebx, eax

can be changed into:

mov eax, 0
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mov ebx, 7

xor eax, eax

add ebx, eax

4.2.2.3.  Opaque predicates

Opaque expressions are expressions whose value is known at obfuscation time, 

but difficult for an attacker to determine using static code analysis. Boolean-valued

opaque predicates are widely used to construct fake branches where only one path

gets actually executed at runtime. The other path can be considered as junk code that

is hard to identify:

mov ebx, 5

xor eax, eax ; clear eax register

xor eax, ebx ; xor eax with ebx, resulting in a non-zero value

jz label

; jump to label if zero flag is set (which it is not)

Opaque predicates are often used in combination with data obfuscation techniques

(such as MBA) in order to make the analysis more difficult. 

4.2.2.4.  Identifier renaming

By substituting expressive names of variables or fuctions with random strings, 

semantic information, which can be important for a human analyst, is removed. 

Identifier renaming is primarily used for source and byte code obfuscation. While

binary code usually does not contain identifier names anymore, byte code (e.g. Java)

typically preserves some of the identifier names. For example:

function convertCurrency(amount, exchangeRate) {

return amount * exchangeRate; 

}

console.log(convertCurrency(100, 0.91)); // Output: 91

can be transformed to:

function _0x1234(_0x4321, _0x9876) {

return _0x4321 * _0x9876; 

}

console.log(_0x1234(100, 0.91)); // Output: 91

4.2.2.5.  Code diversity

Software can be implemented in multiple ways. Thus, instructions or sequences of

instructions can be replaced with syntactically different, yet semantically equivalent, 

code. As a simple example:
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xor eax, eax

can be changed to

xor eax, 0

without altering the semantics of the program. 

4.2.2.6.  Aliasing

Inserting spurious aliases (i.e. pointers to memory locations) can make code

analysis more complex as the number of possible ways for modifying data at a

particular location in memory increases. These pointer references can also be used as

indirections to complicate the reconstruction of the CFG of a program in static

analysis scenarios. Consider the following code fragment:

int opaque(int* x, int* y) {

*x = 1; 

*y = 2

if ((*y - *y) == 0 ) {

// dead code? 

}

}

At first sight, it seems the if-statement could never be true. However, if the function

gets called with variables pointing to the same memory location, that is, 

opaque(&var1, &var1)

the alleged dead code is executed. 

4.2.2.7.  Code reordering

Like data structures, expressions and statements can also be reordered to decrease

locality. This concept can be taken even further to move parts of the code or

functionality into different modules or programs. For example:

mov eax, 2

mov ebx, 3

add eax, ebx
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can be replaced by:

mov ebx, 3

mov eax, 2

add eax, ebx

4.2.2.8.  Loop transformations

This group of obfuscations modify the structure of loops. Loop unrolling, where

the body of a loop is replicated one or multiple times to reduce the number of loop

iterations, can be used to make the code more complex. For example:

for (var i = 1; i <= 10; i++) {

console.log(i); 

}

can be replaced by:

console.log("1"); 

console.log("2"); 

console.log("3"); 

console.log("4"); 

console.log("5"); 

console.log("6"); 

console.log("7"); 

console.log("8"); 

console.log("9"); 

console.log("10"); 

Furthermore, loop tiling breaks up the iteration space of a loop and creates nested

loops. Loop fission splits a loop into two or more loops with the same iteration space

and spreads the loop body over these new loops. 

4.2.2.9.  Function and class transformations

These obfuscations change the structure of functions (binary code) or classes

(byte code) in order to generate more complex code. Important concepts are as

follows:

–  Function cloning  splits the control flow in two or more different paths that look different to the analyst, while they are in fact semantically equivalent. 

–  Function merging  combines the bodies of two or more (preferably unrelated)

functions. The new method has a mixed parameter list of the merged functions and an

extra parameter that selects the function body to be executed. 
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–  Overlapping functions  generate code so that the binary code of one function ends

with bytes that also define the beginning of another function. 

–  Class factoring  artificially splits up classes. 

–  False refactoring  creates a misleading (abstract) parent class for classes that have no common behavior. 

–  Class hierarchy flattening  removes all inheritance relations from object-oriented programs. 

For example, function merging can merge the body of the two unrelated functions:

function printA() {

console.log("A"); 

}

function printB() {

console.log("B"); 

}

into one (more complex) function:

function printAorB(func) {

if (func == "A") {

console.log("A"); 

} else {

console.log("B"); 

}

}

4.2.2.10.  Parallelization

Parallel code tends to be harder to understand than sequential code. Adding

dummy processes to a program or parallelizing sequential code blocks that do not

depend on each other increases the complexity of the analysis. 

4.2.2.11.  Library hiding

Calls to libraries of programming languages (particularly ones with a high level of

abstraction) offer useful information to an analyst, because they are called by their

name and they cannot be obfuscated. By replacing standard libraries with custom

versions, these calls can be removed. Other variants of this obfuscation method are

to link libraries statically into the application or to combine many small libraries into

a few large ones. 
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4.2.3.  Dynamic obfuscation

4.2.3.1.  Virtualization

Virtualization is one of the most advanced techniques for binary obfuscation. The

functionality of a program is converted into byte code for a custom virtual machine

interpreter that is bundled with the program. The virtual machine interpreter and

payload can be different for each instance of the program ( polymorphism). 

4.2.3.2.  Anti-debugging

Anti-debugging techniques actively oppose analysis attempts via disassembly or

debugging. For example, attached debuggers can be detected based on timing and

latency analysis or the identification of code modifications caused by software

breakpoints. Another technique is the execution of undocumented instructions in

order to confuse a code analysis tool or a human analyst. For example, the following

code uses the Windows specific fs segment register to access the TEB (thread

environment block) and check the value of the BeingDebugged flag:

; Check if the program is being debugged

mov eax, fs:[0x30]

movzx eax, byte ptr [eax + 2]

cmp al, 2

jz Debugged

; code to be executed if not debugged

; ... 

jmp End

Debugged:

; code to be executed if debugged

; ... 

End:

4.2.3.3.  Hardware-assisted obfuscations

Hardware can be utilized in code obfuscation in two ways:  hardware tokens  bind

hardware and software by making the execution of the software dependent on a value

provided by a hardware token. Without this token, analysis of the software will fail, 

because important information such as jump targets is not available. 

 Hardware-based isolation mechanisms  for trusted computation – for example, 

Intel SGX – allow an application to prevent other applications and even the operating
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system kernel from accessing certain memory regions. While not primarily designed

for code obfuscation, such mechanisms are well-suited to protect code and data from

runtime inspection and tampering. 

4.2.3.4.  Environmental requirements

This concept makes the correct execution of a program dependent on some

environmental conditions (e.g. MAC address of network interface) and thus binds a

program to a specific runtime environment. 

4.2.3.5.  Packing and encryption

Packing and encryption of program code is widely used by malware authors. The

basic idea is to hide code by encoding or encrypting it as data so that it cannot be

interpreted by static analysis. An unpacking routine turns the packed or encrypted

data back into machine-interpretable code at runtime. By changing the encryption

or encoding keys, packed program code can easily be rewritten upon distribution to

complicate simple pattern matching analysis (polymorphism). 

4.2.3.6.  Dynamic code modification

With this protection, code is modified at runtime right before its execution. For

example, we can correct intentionally erroneous code at runtime. Static analysis

techniques fail to analyze such programs, as their correct functionality is available at

runtime only. 

4.2.3.7.  Server side code execution and code mobility

With  server side code execution, code to be protected is not directly included in a

program, but is executed on a server and only the result of the execution is returned. 

This effectively prevents code analysis and also allows the execution of a program to

be made dependent on additional conditions (e.g. the existence of a valid license). 

In contrast,  code mobility  is a protection technique where pieces of code are

downloaded on-demand from a remote system (e.g. a server) at runtime and then

executed in the context of the program. 

4.3. Attacks against obfuscation

4.3.1.  Principles of program analysis

The security of obfuscation techniques is directly linked to the performance of

program analysis methods. Programs can be analyzed statically or dynamically. Static

analysis looks at the code of a program without actually executing it; for example, 

to extract the CFG. In contrast, dynamic analysis observes the runtime behavior of a

program. In practice, both methods are often used in combination. 
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4.3.1.1.  Static analysis

The foundation of static analysis is always the code of the program. This could

either be source code, byte/intermediate code or binary code. Typical static analysis

methods are disassembling, control flow analysis, data flow analysis, data dependence

analysis, alias analysis, slicing and decompilation. All static analysis methodologies

share the common characteristic that they generate conservative information. This

means that everything that can be read from a static analysis is correct. For example, if

a certain value is assigned to a variable at a given point in the code, it can be assumed

with certainty that this will actually happen at runtime every time that code is executed. 

However, static analysis is incomplete in general and always a trade-off between

precision and analysis efforts. While some static analysis algorithms may collect

imprecise information, but are fast, others may collect more precise information, but

are slow. 

4.3.1.2.  Dynamic analysis

Dynamic analysis observes a program at runtime. This includes its internal state

(e.g. memory and CPU register values) and the program’s interaction with its

environment (e.g. network connections and file system access). Typical dynamic

analysis methods are debugging, profiling, tracing and emulation. The result from

dynamic analysis is always nonconservative information. The existence of observable

behavior (e.g. the assignment of a certain value to a variable) does not allow us to

draw conclusions about the behavior in future program executions. Internal and

external factors can lead to a completely different runtime behavior. 

4.3.2.  Measuring the strength of obfuscations

In contrast to cryptography, it is very difficult to make a precise statement about

the strength of an obfuscation as it depends on a variety of parameters, including the

motivation and creativity of a human analyst. We follow the proposal of Collberg et al. 

(1997) and define the strength of obfuscations in terms of four parameters: potency, 

resilience, cost and stealth. 

4.3.2.1.  Potency

Usually, the goal in software engineering is to make code less complex. In

contrast, a potent obfuscating transformation makes code more complex. Thus, 

potency measures how much more obscure and unreadable an obfuscated

representation of a program is for a human analyst. In practice, potency is often

evaluated with software complexity metrics (e.g. counting textual properties of the

source code and cyclomatic complexity). 
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4.3.2.2.  Resilience

In contrast to potency, resilience measures the strength of a transformation

against an automatic deobfuscator program. Both the programmer’s effort (amount of

time required to construct an automatic deobfuscator for a particular obfuscating

transformation to effectively reduce its potency) and the deobfuscator’s effort

(execution time and space required to run the deobfuscator) are taken into

consideration. Resilience tends to decrease with advances in the area of program

analysis. As a general rule of thumb, static obfuscations can only be expected to be

resilient against static analyses. In case an analyst applies dynamic analysis, static

obfuscations tend to fail and one has to resort to dynamic obfuscations. 

4.3.2.3.  Cost

The application of obfuscations to a program has negative consequences on

performance. Cost or efficiency measures the computational overhead (runtime, 

memory consumption, etc.) of an obfuscating transformation. Quantifying cost

penalties of an obfuscation is easy compared to potency and resilience. However, cost

is directly related to potency and resilience, as typically an increased strength of

obfuscation results in higher costs. 

4.3.2.4.  Stealth

The stealth property indicates the extent to which obfuscated code can be

distinguished from untransformed code. There exist two types of obfuscation stealth:

with local stealth an adversary can not determine a particular instruction as being

affected by an obfuscating transformation. In contrast, with steganographic stealth it

is not possible to determine if a program has been transformed with a certain

transformation or not. 

4.4. Application of code obfuscation

4.4.1.  Digital rights management

One of the first applications of code obfuscation was Digital Rights Management, 

where a content owner wants to retain control of the use of a certain piece of content

distributed to a number of clients. The central idea was to encrypt the content with

a (symmetric) cipher and issue a special license, which included the decryption key, 

to intended recipients. A piece of software at the side of the client was responsible to

enforce the conditions of the license (enforcing the maximum number of views of the

object). Only if the conditions in the license were met, the software would decrypt the

content. 

The obvious threat models in this scenario were attacks that extract the key

embedded in the license so that the content could be decrypted without enforcing the
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conditions of the license. Note that this key has to be present in the player and can be

extracted using code or memory inspection. Thus, code obfuscation was seen as a

viable method to “hide” the key in software. The goal was thus to hide a piece of data

in code. 

A different strategy to generate a pirated player was to extract the decryption

functionality without actually trying to extract the key. In this case, the existing player

software including the key was interfaced with and called by the pirated player. This

attack can be seen as an instance of code extraction. Regarding the security properties, 

we have to assume a human-assisted analysis. 

4.4.2.  Intellectual property protection

A key driver for the construction of obfuscation techniques was the desire to

protect intellectual property (such as novel algorithms or proprietary configurations)

within software. The goal here is twofold: for one, locating the desired piece of code

in a large software package should be made difficult. This will certainly increase the

effort for a human analyst. Second, the defender tries to make understanding of the

code – and thus removing the obfuscations – more difficult. 

Similar to the case of Digital Rights Management, we must assume that a human

analyst is performing the task using special tools. Thus, this application puts high

demands on the obfuscations employed. 

4.4.3.  Malware obfuscation

Virtually all newly discovered malware comes with some form of code

obfuscation. Due to the large number of new malware variants, antivirus vendors

have to timely analyze hundreds of thousands of different malware samples each day. 

Thus, they are required to resort to rather lightweight and thus limited analysis

techniques, such as static or simple dynamic analysis. For this reason, rather

lightweight obfuscations may still be effective. 

4.4.4.  Hardware-software binding

Binding a certain piece of software to an instance of hardware has been proposed

as means to limit the impact of supply chain attacks and overproduction: since one

instance of software runs only on one particular device, software cannot be copied

between two devices. Even if the production of a pirated hardware instance would

be possible, the necessary software will not run on them. Hardware-software binding

thus allows to control the number of devices sold. Hardware-software binding has

also been proposed as a means to enhance software security, as critical portions of the
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software (such as addresses of jump targets) can only be determined when an attacker

has access to the appropriate hardware. 

Methodologically, hardware-assisted obfuscation methods are popular in this

domain. For the attacker model, one typically has to assume a human-assisted

analyst, who has access to one piece of hardware. 

4.4.5.  Software diversity

Software diversity tries to enhance the security of software products by shipping

syntactically different software packages to each client. The hope is that an exploit

generated for one particular software instance will not run on the others and that an

attacker thus has to attack every software instance individually, which hinders

large-scale attacks. Technically, code diversification uses methods of software

obfuscation to generate several syntactically different instances of software that share

the same functionality. 

4.5. Conclusions

In this chapter, practical code obfuscation has been discussed. This type of

software protection intentionally makes code more complicated by adding irrelevant

code, increasing the control flow complexity, encoding data structures, etc. As long

as the exact method of complication (including its configuration such as random

seeds, etc.) is not known to the attacker, it can make analysis significantly more

difficult. However, no well-defined level of security exists here. To some extent, this

can be attributed to the fact that attackers are human and, therefore, hard-to-measure

characteristics such as motivation, creativity and persistence play a crucial role in the

success of an attack. Also obfuscation resilience tends to decrease with advances in

the area of program analysis. Thus, practical code obfuscation remains an arms race

between defenders and attackers. 

4.6. Notes and further references

In their book  Surreptitious Software, Nagra and Collberg (2009) gave a scholarly

introduction and overview of the topic of code obfuscation. Schrittwieser et al. (2016)

classified goals of obfuscation as well as types of code analysis methods and generated

 attack scenarios  by combining them. 

– Section 4.1. The cryptographic obfuscation field originated from the work

of Barak et al. (2001) and led to the development of the theory of

“indistinguishability obfuscation” (e.g. see, Jain et al. (2021) and Garg et al. (2016)). 

However, no practical provably secure obfuscation has been provided so far. 
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– Section 4.2. In the literature, many complex and creative concepts for  code

 diversity  were proposed, such as shellcode, which looks like English prose (Mason

et al. (2009)), functionality implemented through side effects of the processor

(Schrittwieser et al. (2014)), or coding of programs as a sequence of MOV

instructions (Dolan (2013)). Katzenbeisser et al. (2012) analyzed how  physically

 unclonable functions (PUFs) can be used in the context of code obfuscation. Various

advanced packing and encryption concepts have been proposed in the literature, for

example, mimimorphism (Wu et al. 2010), which encodes packed code into a

representation that looks like real program code and thus increases obfuscation

stealth. 

– Section 4.3. Collberg et al. (1997) first proposed the metrics potency, resilience, 

and stealth and conducted an evaluation of the strength of existing obfuscations. 

Ceccato et al. (2017) measured obfuscation potency through observing human

reserve-engineers while they analyzed binary code. 

– Section 4.4. Different concepts for  software diversity  were surveyed by Larsen

et al. (2014). A  hardware-software binding  scheme based on control flow indirections and self-check summing using PUFs was proposed by Xiong et al. (2019). 
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5.1. Introduction

Random numbers are essential in cryptography. They are used as encryption keys, 

padding values, nonces – numbers used once, and recently also as random masks in

countermeasures against side-channel attacks. Random numbers (bits, bytes or other

numerical values or their vectors or streams) aimed at cryptographic applications

should have unpredictable values and good statistical properties, for example, they

should not feature a pattern, and should be uniformly distributed. 

Random numbers are generated by random number generators (RNGs). Their

random behavior can be guaranteed by an unpredictable physical process in so-called

(physical) true random number generators (TRNGs) or by a cryptographic algorithm

that guarantees that it is computationally impossible to determine past or future

generated numbers based on knowledge of the current generator output in the

(deterministic) pseudorandom number generators (PRNGs). 

While the underlying physical random process guarantees truly random behavior

of the generator output, the TRNGs are usually slower and generated numbers are of
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lower statistical quality. On the other hand, PRNGs are much faster and the generated

numbers have perfect statistical parameters; however, despite the fact they are based

on secure cryptographic algorithms, they can be vulnerable to side-channel attacks

and hence predictable. For this reason, RNGs used in practice are mostly hybrid, that

is, a combination of a TRNG and PRNG. 

When the output bit rate is determined by the TRNG, we call it a hybrid TRNG

(H-TRNG), while if the bit rate is determined by the PRNG, we call it a hybrid PRNG

(H-PRNG). Indeed, in H-TRNGs, the output of the TRNG is post-processed by the

PRNG and in H-PRNGs, the PRNG is seeded by the TRNG outputs. 

In this chapter, we present and discuss the design and evaluation of RNGs and

the characteristics of the generated numbers required depending on their applications

in cryptography – as cipher keys in block and stream ciphers, as prime numbers and

asymmetric keys in public key cryptography, as nonces in ECC, and as random errors

in post-quantum schemes. 

5.2. TRNG design

The cryptographic system is basically a deterministic system that implements

algorithmic cryptographic primitives and protocols. Consequently, it is mostly

implemented in logic systems – computers, embedded systems and logic devices. As

one of the basic cryptographic primitives, a TRNG is very often an integral part of

the cryptographic system. Implementing a (physical) TRNG that exploits some

random physical phenomena that are essentially analog in nature, in purely digital

devices, is a serious challenge. The problems are linked not only to the search for

exploitable

stationary

sources

of

randomness, 

but

particularly

to

their

characterization, quantification and the conversion of their random analog quantities

to output random numbers. 

The block diagram of a typical TRNG aimed at cryptographic applications is

presented in Figure 5.1. The randomness harvesting mechanism and digitization

process extract randomness from one (or several) physical sources of randomness

and convert the analog quantities into a stream of random numbers (bits or bit

vectors). If the generated raw binary signal does not have enough entropy, it can be

post-processed using an optional data compression algorithm that increases entropy

at the expense of the bit rate. The security of the generator can be further enhanced

using some cryptographically secure algorithm (usually a one-way function) that

guarantees the unpredictability of the generated numbers when the source of

randomness fails. 

The security of the TRNG is also guaranteed by simple and fast online statistical

tests that continuously or periodically test if the generator is operating correctly. 

[image: Image 4]
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Finally, the security of the generator can be further enhanced by optional real time

monitoring (quantification) of the source of randomness and comparison of measured

values with thresholds obtained using a stochastic model to ensure that the entropy

rate at output of the generator is sufficient and hence to guarantee the unpredictability

of generated numbers. 

Figure 5.1.  Block diagram of a contemporary

 TRNG aimed at cryptographic applications

In the following sections, we discuss the role of the individual TRNG blocks

presented in Figure 5.1 and the design constraints on these blocks determined by data

security requirements. We both theoretically and practically illustrate the workflow

of the TRNG design on a widely spread TRNG principle: generators that exploit the

jitter of multiple free-running oscillators, for example, ring oscillators. 

5.3. Randomness and sources of randomness

Randomness is the quality or state of unpredictability of a system. In

cryptography, designers look for sources of randomness that can be exploited in

cryptographic systems. Two kinds of sources of unpredictability are usually used:

nonphysical and physical sources, although physical sources largely dominate. 

Non-physical sources such as the time between keyboard events, movements of

the mouse, task scheduling and disk-head seek times are commonly used by software

engineers. However, this approach can be risky when it uses computer-controlled

events that can be manipulated by a clever attacker. For this reason, unpredictable

physical phenomena are preferable for the construction of TRNGs for cryptography. 

Physical sources of randomness in electronic devices are mainly linked to

phenomena originating in quantum electronics. The number of physical sources of

randomness available in logic devices is quite small: electric noises, random initial

state of flip-flops, metastable events, the metastability of oscillations, etc. The most

[image: Image 5]
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often used sources of randomness in logic devices are electric noises converted into a

phase noise in free-running oscillators. 

The phase noise of the generated clock signal mostly comes from an ensemble of

electric noises of different origins and characteristics (see Figure 5.2): global noises, 

data-dependent noises, low-frequency noises and thermal noise. 

Figure 5.2.  Noise sources in logic devices

Global noises can be caused by the power supply or electromagnetic emanations. 

They are therefore easy to manipulate, for example, by replacing the noisy power

supply with a battery and/or enclosing the module in a metal shield during an attack

on the generator, which accounts for global noises as sources of randomness. 

Data-dependent noises are unavoidable in cryptographic systems, since they can

come from algorithms executed in the vicinity of the clock generator. Unfortunately, 

they can also be manipulated, for example, by stopping device activities during the

generation of random numbers. Although low-frequency noises, such as flicker noise, 

are random noises, their contribution to the entropy rate is difficult to estimate, 

because they are autocorrelated and their stochastic model is not yet available. The

most convenient source of the phase noise in the clock signals that is suitable for the

generation of random numbers is thermal noise. Although thermal noise is

temperature dependent, it is unavoidable in common temperature ranges, since it

drops to zero only at 0°K. Further, the physical model of thermal noise has been well

studied and its stochastic model based on the Wiener process exists. In general, all

the above mentioned noises are practically unavoidable. 

Unfortunately, the overall contribution of individual noises is not known, since it

depends on the technology applied and on the hardware architecture. Thus, the role

of the designer is to minimize the impact of global and data-dependent noises and to

consider stationary thermal noise as the only contributor to the output entropy rate. 
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5.3.1.  Example: jitter of a clock signal as a source of randomness

The jitter of the clock signals generated in free-running oscillators, namely, ring

oscillators, is one of the most frequently used sources of randomness, because ring

oscillators are very easy to implement in logic devices. A ring oscillator is a set of

odd number of inverters connected in a ring structure. Figure 5.3 (left panel) shows

a three-element ring oscillator and its waveforms. It shows that any time, only one

event (rising or falling edge) is propagated across the ring. The mean period of the

generated clock signal is thus 6 td, where  td  is the mean delay of the inverter. The right panel in Figure 5.3 illustrates the conversion of analog electric noises into timing

instability: the output timing of the inverter depends on the time at which the input

voltage  u 1 crosses the noisy threshold voltage of the input comparator. Differences in the threshold voltages due to electric noises (Δ thr) are thus converted into differences in the time delay at the inverter output (Δ t). Note here that the threshold voltage

includes all the electric noises present in Figure 5.2 and consequently, we can assume

that the resulting clock jitter will have the same composition. 

 

 

 

 

 







 

 

 

 

 



 

 

 

Figure 5.3.  Principle of the ring oscillator (left panel) and transformation of electric noises into timing instability at the output of the inverter (right panel)

5.3.2.  Stochastic model of the phase of the jittered clock signal

In the following, we consider only the contribution of the thermal noise to the

clock jitter. All other noises can contribute to the jitter, but cannot reduce it. 

Consequently, the clock jitter coming from the thermal noise can be considered as the

only contributor that determines the lower entropy bound. 

The output signal  s( t) of a free running oscillator  O  can be modeled by a periodic function of time  t  having the form:

 s( t) =  fα( ω( t +  ξ( t))) , 

[5.1]
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where  fα  is a given real valued one-periodic function such that  fα( x) = 1 for 0  < x < α,  fα( x) = 0 for  α < x <  1, and  fα(0) =  fα( α) = 1 / 2. Here,  α  is the duty cycle of the sampled oscillator. The term  φ( t) =  ω( t +  ξ( t)) is the total phase of the oscillator, where  ω  is its mean frequency and  ξ  accounts for the timing jitter. 

We can model the evolution of the total phase  φ( t) =  ω( t +  ξ( t)) from equation

[5.1], that is, the phase of a ring oscillator subject to a thermal noise, by a stationary

Wiener stochastic process Φ( t) with drift  μ >  0 and volatility  σ 2  >  0. In other words, for any time  t ≥ t 0, the phase Φ( t) conditioned by the value Φ( t 0) =  φ( t 0) follows a Gaussian distribution of mean  φ( t 0) +  μ( t − t 0) and variance  σ 2( t − t 0). Equivalently, in terms of conditional probability density, we have for all  t,  t 0,  x,  x 0: d  P { Φ( t)  ≤ x |  Φ( t 0) =  x 0 }

 dx





1

 −(

= 

exp

 x − x 0  − μ( t − t 0))2  . 

[5.2]

 σ  2 π( t − t 0)

2 σ 2( t − t 0)

When we compare the definition of  μ  with equation [5.1], it is clear that

 μ = 2 π/T . Thus, the parameters needed to model the probabilistic evolution of the phase jitter component caused by the thermal noise in oscillator  O  are as follows:

–  α: the duty cycle of the clock signal generated by the oscillator; 

–  T : its mean period; 

–  σ 2: the volatility of the associated Wiener process expressed in [ s− 1]. 

In the following, we term the triple ( α, T, σ 2) the statistical parameters of

oscillator  O. 

5.4. Randomness extraction and digitization

The role of the randomness extraction and digitization block is to convert analog

source signals into digits. As we saw in the previous section, in the case of

oscillator-based TRNGs, the phase noise of the clock signal represents an analog

source of randomness, which needs to be converted into a raw binary signal. This

conversion can be done in two ways at least: using a sampler or a counter. 

Figure 5.4 presents the principle of converting of a jittered clock signal  clk 1 into a random bit stream in an elementary oscillator-based TRNG (EO-TRNG). The

conversion is based on the accumulation of the clock jitter presented in the left panel

of Figure 5.4:

the clock jitter accumulates during the accumulation period

Δ t =  DT 0, after which the jittered clock signal is sampled in the D flip-flop (DFF). 

Since the standard deviation of the jitter after a sufficiently long accumulation period
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is comparable to (or bigger than) the period of the sampled signal, the DFF output

behaves randomly. 



 

 







  









 

  







 

 

Figure 5.4.  Randomness extraction from a jittered clock signal by a D flip-flop (for sake of simplicity, flip-flop initialization and output validation signals are omitted)

It is important to note that the impact of the global noise sources is reduced if the

differential principle, which is based on the use of two oscillators featuring the same

topology, is applied. The clock signals generated in two such rings are impacted by

the global noises in the same way and the relative jitter between these clocks does not

depend on global noises. Therefore, to avoid possible attacks, the reference clock  clk 0

should never be generated using a quartz oscillator, which generates a clock signal

with a fix frequency. Moreover, when characterizing the jitter, activities in blocks

surrounding the TRNG should be stopped to avoid data-dependent noises. In this way, 

the accumulated clock jitter can be considered stationary with normal distribution

 N (0 , σ 2) and variance  σ 2 =  σ 2 +

, where

=

 th

 σ 2 fl

 σ 2 th

 K 1Δ t  is the variance of the

jitter coming from the thermal noise and  σ 2 =

 f l

 K 2(Δ t)2 is the variance of the jitter

caused by the flicker noise. Constants  K 1 and  K 2 depend on the technology used and on the architecture and the topology of the rings. 

Note that the TRNG entropy rate estimation should only be based on the

contribution of the thermal noise. Unfortunately, as mentioned in the previous

paragraph, the jitter caused by the flicker noise accumulates faster than the jitter

caused by the thermal noise. Therefore, considering the total jitter in entropy

computation using the model leads to significant entropy overestimation. It is

therefore very important to determine the proportion of  σ 2 on

 th

 σ 2 at the end of the

jitter accumulation period. This can be done off-line during the TRNG

characterization procedure. 

Another fact that needs to be taken into account is the presence of the period

jitter (expressed in [ s]) in both  clk 0 and  clk 1. Since we only account for the jitters caused by the thermal noises, which are known to be independent, we can consider

one clock signal to be jitter-free, while the second one will feature jitter with variance

 σ 2 =  T 0

 tot

 σ 2

 T 1 1 +  σ 2

0. 

Figure 5.5 presents two other ways of extracting randomness, both using a counter. 

In the generator presented in the left panel, the counter counts the number of periods
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of the jittered clock  clk 1 during the jitter accumulation time Δ t, whereas the generator in the right panel counts cases, when  clk 1 is equal to one at the rising edges of  clk 0

throughout the accumulation period. 

 

 



 

 







 

 



 





 











   



  

 

 









 

 



 



 

Figure 5.5.  Randomness extraction from a jittered clock signal using a counter that counts the number of clock periods (left) or the number of samples equal to one (right)

Note that for the sake of simplicity, counter initialization and output validation

signals are omitted from Figure 5.5. However, counter initialization is unavoidable

to ensure independence of the generated random values. It is also important to stress

that the three generators presented in Figures 5.4 and 5.5 use the same sources of

randomness (phase noises of  clk 0 and  clk 1), but because of very different ways of randomness extraction, they have very different stochastic models and consequently

different output entropy rates. In the rest of this chapter, we consider the generator

in which the jittered clock signal is sampled on the rising edges of the reference

clock signals (e.g. using the sampling method of randomness extraction presented

in Figure 5.4). 

5.4.1.  Example: oscillator-based TRNGs

As mentioned above, we are studying the design of oscillator-based TRNGs, 

in which the jittered clock signal is sampled periodically at the end of each jitter

accumulation period Δ t =  DT 0. The first generator to consider is the simplest version of this kind of generator – the elementary oscillator-based TRNG (EO-TRNG)

presented in Figure 5.4. Clearly, the entropy at its output depends on the following

parameters:

– clock periods  T 0 and  T 1; 

– duty cycle  α 1; 

– variance  σ 2 =  T 0

 tot

 σ 2

 T 1 1 +  σ 2

0 expressed as period jitter in [ s]; 

– accumulation time Δ t =  DT 0. 

Intuitively, the output bit rate for a given entropy rate will depend on three

parameters: periods  T 0 and  T 1 and division factor  D, which can all be modified by the designer. Note that the duty cycle and jitter variance depend on the frequencies of
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the two clock signals and on the technology used, but also on the architecture and

topology of the rings. 

In this exercise, you can analyze the impact of input parameters of the EO-TRNG on

the generator output. You can launch the application and observe how the duty cycle, the

jitter variance and the accumulation time affect the randomness of the generated numbers. 

Randomness is analyzed by observing the distribution and the auto-correlation of generated

4-bit bit-vectors. 

NOTE.– In the case of an ideal RNG, the distribution and the auto-correlation are in 99.9% of the cases between the red lines. Your goal is to find the smallest  D  for which the EO-TRNG

would not be distinguishable from an ideal RNG. You should repeat the procedure for all

possible  σtot

 T

and  α 1 values. 

1

Further explanations and the Python code are available at the following link:

https://github.com/patrickhaddadteaching/TRNG_ex1. 

Box 5.1.  Impact of input parameters of the EO-TRNG on the generator output

The EO-TRNG is, by its principle, the simplest generator to exploit free-running

oscillators. However, its simplicity is offset by the impossibility to obtain a high

entropy rate at its output. Indeed, the designer has very limited opportunities to

increase it: (a) they can do so by increasing the frequency of the sampled clock to

some extent (note that at high frequencies, the duty cycle tends to differ from the

ideal value (0.5), which increases the output bias and reduces the entropy rate); 

(b) they can alternatively increase the value of the division factor  D  at the cost of the reduced output bit rate. 

 



 

 



































 







 









 



 

 

Figure 5.6.  Multi-oscillator-based TRNG (MO-TRNG)

Another possible way to increase entropy is to use a larger number of sources

of randomness, that is, number of oscillators. Figure 5.6 shows the resulting
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multi-oscillator based TRNG (MO-TRNG), in which outputs of  m  oscillators are

sampled by  m  flip-flops and XOR-ed to obtain one output bit. This kind of generator can be considered as an ensemble of  m  EO-TRNGs. 

In this exercise, we can analyze the impact of input parameters of the MO-TRNG on the

generator output. Further explanations and the Python code are available at the link below. We can launch the application and observe how the number of oscillators, the jitter variance and the accumulation time affect the randomness of the generated numbers. The randomness is

analyzed by observing the distribution and the auto-correlation of generated 4-bit bit-vectors. 

NOTE.– In the case of an ideal RNG, the distribution and the auto-correlation are in 99.9% of the cases between the red lines. Your goal is to find the smallest  D, for which the MO-TRNG

would not be distinguishable from an ideal RNG. We should repeat the procedure for all

possible  σtot

 T

and  N  values. 

1

The exercise is available at the following link:

https://github.com/patrickhaddadteaching/TRNG_ex2. 

Box 5.2.  Impact of input parameters of the MO-TRNG on the generator output

5.5. Post-processing of the raw binary signal

According to the German standard AIS 20/31, the raw binary signal can

be

post-processed

algorithmically

and/or

cryptographically. 

Algorithmic

post-processing should make generated numbers statistically and computationally

indistinguishable from the output of an ideal TRNG. Indeed, in a weak generator, the

generated numbers may be biased (or not uniformly distributed), correlated, they

may feature a pattern, etc. Algorithmic post-processing should remove all of the

statistical weaknesses and (if possible) increase entropy. 

The role of cryptographic post-processing is to guarantee the unpredictability of

the generated numbers between the moment when the source of randomness fails

and the instant when the alarm of the online tests is triggered. The cryptographic

post-processing must be cryptographically secure – robust against cryptanalysis. 

Depending on implementation of the generator, the side-channel attacks should also

be considered. 

5.5.1.  Algorithmic post-processing

The post-processing algorithm is sometimes called entropy conditioner or entropy

extractor. As discussed above, its main objective is to convert the distribution of

generated numbers into a uniform one. Let  X  denote a distribution of generated  l-bit
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numbers and  Ul  denote a uniform distribution over  { 0 ,  1 }l, then its  min-entropy (see later) is  H∞( X) =  l. 

We call the distribution of the  n-bit data set  S  with distribution  X  and min-entropy k, an ( n, k) distribution. The closeness of the distribution of generated numbers  X (bit vectors) to the uniform distribution  Y  can be evaluated using a  statistical distance: Δ( X, Y ) = max  |  Pr[ X ∈ T ]  −  Pr[ Y ∈ T ] |. 

[5.3]

 T ⊂S

We say that  X  and  Y  are  ε-close if Δ( X, Y )  ≤ ε. Then, the deterministic entropy extractor called ( k, ε) -extractor  is defined as follows. 

Extractor Ext:  { 0 ,  1 }n → { 0 ,  1 }m  takes an  n-bit sample from a weak random source as an input and produces an  m-bit output ( n > m) that is statistically  ε-close to the uniform distribution  Um (i.e.  m  is close to  k). In other words, the post-processing algorithm serving as entropy extractor compresses the  n-bit bit-stream into a  k-bit bit-stream, having a distribution that is sufficiently close to a uniform one. Next, we

give two examples of the most frequently used entropy extractors: parity filter and von

Neumann’s corrector. 

The parity filter breaks the input  n-bit stream into  m  blocks of length  r =  n/m and outputs the parity of each block. The filter can dramatically reduce the bias on the

generator output but at the cost of reducing its bit rate  r-times:

Pr[ Y = 1] = 0 .  5  −  2 r− 1 (Pr[ X = 1]  −  0 .  5) r = 0 .  5  − B, 

[5.4]

where  B  is the bias. It is clear that if Pr[ X = 1] differs from 0 or 1, the bias  B

converges toward 0 when  r  tends to infinity. However, we note that equation [5.4] is valid if the generated numbers (bits) are independent. If this is not the case, the parity

filter can still be used, but is less efficient. 

In the von Neumann’s corrector, the biased output bit stream is broken into pairs

of bits and, for each pair, the output bit is equal to 0 if the input pair was 01, to 1 if

the pair was 10, and the pair is skipped if it was 00 or 11. The output bit rate is

thus data dependent. The process will yield an unbiased random bit after

1 /(2 Pr[ X = 1](1  −  Pr[ X = 1])) pairs on average. 

5.6. Stochastic modeling and entropy rate management of the TRNG

Entropy is a measure of the uncertainty contained in an information unit, for

example, a bit or vector of bits. In the context of RNG, it is a measure of guesswork
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and unpredictability. Several entropy definitions exist. The most general is the Rényi

entropy:





1

 n



 Hα( X) =

log

(

1  −

 p

 , 

[5.5]

 α

2

 i) α

 i=1

where  α ≥  0,  α = 1 and  pi =Pr[ X =  xi]. Unfortunately, in practice, the Rényi entropy is difficult to assess. Consequently, two special cases of Rényi entropy are

usually used:  min-entropy  and  Shannon entropy. 

Min-entropy is the most conservative entropy measure that can be obtained from

the Rényi entropy definition for  α → ∞. The min-entropy  H∞( X) is defined as follows:

 H∞( X) = inf ( −  log2( pi)) =  − log2 sup  pi. 

[5.6]

 i=1 ..n

 i=1 ..n

The min-entropy is easy to handle if the generated numbers are not correlated. 

The Shannon entropy is the most commonly used entropy measure in information

theory. It can be obtained from the Rényi entropy definition for  α →  1. The Shannon entropy  H( X) =  H 1( X) is defined as follows:

 n



 H( X) =  H 1( X) =  −

 pi  log2  pi. 

[5.7]

 i=1

The Shannon entropy is particularly useful if the generated numbers are somehow

correlated. It is then computed as a so-called conditional entropy. 

The entropy per bit of a TRNG should be close to 1 (according to AIS 20/31, 

for internal random numbers,  H( X)  >  0 .  997). A high entropy rate guarantees that the preceding or succeeding bits cannot be guessed with a probability different from

0.5. It is important to note that entropy is a property of random variables and not

of observed realizations. Consequently, entropy cannot be measured, only estimated

using the model. 

The role of the stochastic model of a RNG is to determine probability that the

output bit of the generator is equal to one, that is, Pr( X = 1) or the probability of values of an  n-bit vector, Pr( X 1 =  x 1 , X 2 =  x 2 , ..., Xn =  xn) and from these probabilities to estimate entropy or so-called conditional entropy at the output. The

probability expressions should depend on some measurable parameters used as the

inputs of the stochastic model. Ideally, they should be measurable inside the

cryptographic module. Comparison of the obtained values with those computed using

the model can provide a basis for dedicated statistical tests. 
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5.6.1.  Example: a comprehensive stochastic model of the EO-TRNG

The EO-TRNG in Figure 5.4 can be used as an example for the construction of a

comprehensible stochastic model. Baudet et al. (2014) showed that the evolution of

the oscillator phase can be modeled by an ergodic stationary Markov process. The

probability of obtaining a sample  s( t) equal to one at time  t ≥  0 that is conditioned by  ϕ(0) (the oscillator’s phase at time 0) can be expressed as follows:

1

2

Pr[ s( t) = 1 |ϕ(0) =  x]  ≈ −  sin(2

2

 π( μt +  x)) e− 2 π 2 σ 2 t. 

[5.8]

 π

The probability of outputting a vector  b = ( b 1 , ..., bn)  ∈ { 0 ,  1 }n  at sampling times 0 ,  Δ t, ..., ( n −  1)Δ t  is given as:

 p( b) = Pr[ s(0) =  b 1 , ..., s(( n −  1)Δ t) =  bn]  ≈

[5.9]

⎛

⎞

1

8

 n− 1



 ≈

+

⎝

( − 1) bj+ bj+1⎠ cos(2

2

 πν) e− 2 π 2 Q, 

 n

2 nπ 2  j=1

where  Q =  σ 2Δ t =  σ 2 thDT 0

(

is the ratio

 T 1)3

is the quality factor and  ν =  μ Δ t =  DT 0

 T 1

between the frequencies of the sampled and sampling signals. 

Finally, the entropy of an  n-bit output vector  b  is then given as:



 Hn =  −

 p( b) log  p( b)  ≈

[5.10]

 b∈{ 0 ,  1 }n

32(

 ≈

 n −  1)

 n −

cos2(2 πν) e− 4 π 2 Q. 

 π 4 ln(2)

Using this equation, the lower bound of the Shannon entropy rate per bit at the

generator output is given as:

4

4

 − 4 π 2 σ 2

 thDT 0

 H

( T

 min ≈  1  −

1)2 ·T 1

 . 

[5.11]

 π 2 ln(2)  e− 4 π 2 Q = 1  − π 2 ln(2)  e

The lower entropy bound is thus determined by measurable parameters:

1) jitter variance per the sampled clock period (( σth/T 1)2); 

2) ratio between  DT 0 and  T 1 (i.e. sampling period and sampled clock period). 

We observe that the Shannon entropy rate of the EO-TRNG increases with jitter

variance and with accumulation time and decreases with longer periods of the sampled

clock signal. 
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5.6.2.  Example: stochastic model of the MO-TRNG

To ensure an  Hmin ≥  0 .  997 in the EO-TRNG, with  T 1  ≈  1 and  σth ≈

1

 T 0

 T 1

1000 , 

equation [5.11] shows that the division factor  D  should be greater than 133 ,  000. This condition must be fulfilled to ensure security but it drastically reduces the TRNG

bitrate. 

In order to overcome this low-throughput problem at the TRNG output, the

generator can use several rings as multiple independent sources of randomness. This

is the idea behind the multiple (ring) oscillator–based TRNG (MO-TRNG). 

Assuming independence of rings, which can be obtained by their careful placement

and routing, the EO-TRNG model from the previous section can be extended to the

one characterizing MO-TRNG. In this case, the probability of obtaining a sample  s( t) equal to “1” at time  t ≥  0 conditioned by the phase vector  ϕ(0) = ( x 1 , x 2 , . . . , xm) at  t = 0 is given by:

Pr[ s( t) = 1 |ϕ(0) = ( x 1 , x 2 , . . . , xm)] =

1

22 m− 1  m

+ ∞

sin(2

 −

 π( μit +  xi)(2 N + 1))

2

 πm

2 N + 1

 e− 2 π 2 σ 2 it(2 N+1)2 , [5.12]

 i=1  N=0

where:

–  m  is the number of sampled ROs in the MO-TRNG; 

–  σ 2 i  and  μi  are, respectively, the volatility and the drift of the Wiener process modeling the phase of the oscillator  Oi. 

Equation [5.12] is then used to compute an approximate lower bound of entropy

( HLa) for the MO-TRNG after an accumulation time Δ t  and conditioned by

 ϕ(0) = ( x 1 , x 2 , . . . , xm):

 H( s(Δ t) = 1 |ϕ(0) = ( x 1 , x 2 , . . . , xm)) =

23 n− 1

25 m− 23 m− 1

1  −

+ O( e− 12 π 2 Q) , [5.13]

 π 2 n  ln(2)  e− 4 π 2 Q − π 4 m  ln(2)  e− 8 π 2 Q







 HLa



where  Q = Δ t

 m

 i=1  σ 2

 i  is the sum of quality factors of oscillators  Oi. 

Using equation [5.13], it is possible to express the sum of quality factors  Q  as a

function of  HLa. 







 − 1

23 m− 1



 Q =

ln

 π 4 n  ln(2)

 −

+

4

 C( m, H

 , 

[5.14]

 π 2

25 m− 13 m− 1

 π 2 m  ln(2)

 La)
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2

where  C( m, H

23 m− 1

 La) =

 −  425 m− 23 m− 1 ( H

 π 2 m  ln(2)

 π 4 m  ln(2)

 La −  1). Then, for a given

threshold on  HLa (e.g.  HLa ≥  0 .  997)) and volatility  σ 2 i, it is possible to determine how the number  m  of oscillators, the sampling frequency  fs = 1

Δ should be set, 

 t

depending on the model, to ensure the desired security level. 

In this exercise, you can study the impact of input parameters of the MO-TRNG on the

output entropy rate. You can launch the application and observe how the number of oscillators, the jitter variance and the accumulation time affect Shannon entropy and min-entropy rate at the MO-TRNG output. Your goal is to find the smallest  D  for which the generator will produce random bits with a Shannon entropy rate higher than 0.997. You should repeat the procedure

for all possible  σtot

 T

and  N  values. 

1

Further explanations and the Python code are available at the following link:

https://github.com/patrickhaddadteaching/TRNG_ex3. 

Box 5.3.  Impact of input parameters of MO-TRNG on the output entropy rate

5.7. TRNG testing and testing strategies

Statistical tests are mathematical tools to evaluate the statistical quality of

generated numbers. A common strategy in statistical testing is as follows: different

statistical features of an  ideal RNG  are evaluated to then be compared with output

values of a real RNG (= DUT) to check for a so-called  null hypothesis –  H 0. The null hypothesis is a statement of “no difference” between the tested generator and an ideal

RNG. The number of statistical features to be evaluated (more or less complex) is

practically unlimited (usually, up to 16 features are tested). 

Two types of errors can occur in statistical testing: the generator functions

correctly (it behaves as an ideal RNG, i.e. the null hypothesis is true), but the test

rejects the null hypothesis. This type of error, which is called Type 1 error or  false

 reject, is less security critical (see Table 5.1). It appears with probability  α, called the significance level. The second type of error occurs when the null hypothesis is false

(the generator is imperfect), but the test does not reject the null hypothesis. This kind

of error, which is more dangerous, is called Type 2 error or  false accept (see

Table 5.1). It appears with probability  β. Unfortunately, although more security

critical,  β  is more difficult to assess than  α. The results of statistical tests are evaluated depending on the testing strategy: according to the predefined significance

level  α (testing procedures in AIS 20/31) or according to the distribution of  p-values (according to NIST SP 800-22b). 

It should be stressed that the statistical testing of the generator is necessary, but is

not sufficient to guarantee security. Namely, it cannot substitute cryptanalysis in the
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case of DRNGs and analysis of output entropy rate (unpredictability) in the case of

TRNGs. Two testing strategies are applied to evaluate the statistical quality of

generated numbers: online and offline testing. Both generic and dedicated statistical

tests can be used. Dedicated tests are preferable in online testing, since they are

simpler and faster. Generic tests are used in offline testing, since they are more

accurate. 

Null hypothesis

Null hypothesis

Test result

is in fact true

is in fact false

Type 1 error

Test rejects

OK

(with probability  α)

the null hypothesis

(correct decision)

– false reject

Type 2 error

Test does not reject

OK

(with probability  β)

the null hypothesis

(correct decision)

– false accept

Table 5.1.  Overview of types of errors in statistical tests. For a color

 version of this table, see www.iste.co.uk/prouff/cryptography3.zip

5.7.1.  Generic (black-box) statistical tests used in cryptography

The quality of generated random numbers is evaluated using generic statistical

tests defined by security standards. Usually, generic statistical tests require huge

amounts of data and long execution times. They are thus used mostly offline. Several

sets of statistical tests exist. Their objectives vary depending on the application

targeted. In general, the precision of statistical test suites is tightly linked to the

amount of input data they require. 

The  FIPS 140-1 test suite  is the simplest set of tests aimed at testing RNGs in

cryptographic modules. The following four tests included in the FIPS 140-1 test suite

require 20,000 bits as input:

–  Monobit test: it tests the proportion of bits equal to “0” and “1” in the tested bit stream. 

–  Poker test: it tests the probabilities of 16 possible values of groups of four bits. 

–  Runs test: it tests the probabilities of runs of 1, 2, 3, 4, 5 and 6+ identical values. 


–  Long runs test: it searches for runs of length 34 or more (of either zeros or ones). 

In this exercise, we can analyze the impact of the Monobit test parameters on the test

results. We can launch the application and observe how the threshold and the block size affect Type 1 and 2 errors, which are introduced in section 5.6. 

This test triggers an alarm if the number of bits equal to 1 is bigger than

 Number of input bits +

 −

2

 relative threshold  or is smaller than  Number of input bits

2
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 relative threshold. Our goal is to find the lowest  relative threshold  that makes it possible for  α  to be bigger than 10 − 6 and we should note the highest Shannon entropy ( H 1) for which  β  is smaller than 10 − 6. This  H 1 will be the lowest entropy rate at the TRNG

output that will not trigger the alarm. We should repeat the procedure for  Block sizes =

4096 ,  8192 ,  16384 ,  32768. 

Now, can we answer the following question? Which parameter values of the Monobit

test are required by the AIS 20/31 and FIPS 140-1 test suites? Further explanations and the

Python code are available at the following link:

https://github.com/patrickhaddadteaching/TRNG_ex4. 

Box 5.4.  Study of the Monobit test and its threshold setup

The  DIEHARD test suite  was developed by Georges Marsaglia in 1993 to test

PRNGs. The suite contains 15 tests requiring a total of 80 million bits.  Tests NIST

 SP 800-22b  were derived from the DIEHARD test suite. The NIST test suite contains

15 tests requiring 1,000 files of one million bits each. 

Recently, American NIST and German BSI proposed dedicated test suites to test

TRNGs. These are described in NIST SP 800-90B and AIS 20/31 national standards, 

respectively. 

The role of the NIST SP 800-90B test suite is to check that the min entropy rate at

the generator output claimed by the designer corresponds to claims. During testing, the

evaluator has first to check that the generated random numbers are IID (independent

and identically distributed). This is done using 11 statistical tests applied on 10,000

permutations of one million generated numbers and five additional chi-square tests. If

the generated samples are shown to be IID, the min entropy is estimated using the  most

 common value  estimate. If the sample values are not IID, 10 specific estimators are calculated and the minimum of all of the estimates is taken as the entropy assessment

of the entropy source. 

The German AIS 20/31 standard requires testing raw random numbers and

post-processed random numbers in two testing procedures. Procedure A aims to test

internal random numbers (post-processed random numbers). The goal of this

procedure is to check whether the generated numbers behave statistically

inconspicuously. This includes one disjointness test (T0) and five simple statistical

tests repeated 257 times. Four of these tests (T1–T4) correspond to the four FIPS

140-1 tests mentioned previously and test T5 is the autocorrelation test. For an ideal

RNG, the probability that test procedure A finally fails is almost 0. 

Test procedure B of AIS 31, which is composed of tests T6 to T8 (including several

sub-tests), is usually applied to raw random numbers. The goal is to ensure the entropy
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rate is sufficiently high, that is, the Shannon entropy rate per output bit should be

higher than 0.997. A small bias and slight one-step dependencies are permitted, but

no significant longer dependencies are allowed. If these requirements are fulfilled and

the one-step transition probabilities are negligible, Test T8 output value estimates the

Shannon entropy rate at the generator output. 

In this exercise, we can analyze the impact of the MO-TRNG parameters on black-box

statistical tests. We can launch the Python application and observe how the duty cycle, the

variance and the accumulation time affect the results of the five black-box tests included in the AIS 20/31 test suite (four of which are also included in the FIPS 140-1). Our goal is to find the smallest  D  for which the generated data would pass all five black-box tests. We should repeat the procedure for all possible  σtot

 T

and  N  values. 

1

Further explanations and the Python code are available at the following link:

https://github.com/patrickhaddadteaching/TRNG_ex5. 

Box 5.5.  Impact of input parameters of MO-TRNG on generic tests

5.7.2.  Online statistical tests

Online tests are simple statistical tests that continuously (or periodically) evaluate

the performance of the generator while it is operating. Online tests should preferably

evaluate physical quantities, which serve as input parameters for the generator’s

stochastic model and compare the measured values with the thresholds determined

using the model. These dedicated statistical tests, also called the white-box tests, are

usually less expensive, faster and better suited for the detection of weaknesses of the

generator than generic tests and are thus preferable for online TRNG testing. 

While the NIST SP 800-90B standard requires two simple generic tests or their

equivalents to be executed online (the repetition count and adaptive proportion tests), 

according to the AIS 20/31 standard, the designer is free to design online tests that

respect the working principle of the generator. Two kinds of tests are required by

the AIS 20/31 standard: a simple and very rapid test that detects the total failure of

the source of randomness with a very small probability of false rejection and at least

one efficient, and sufficiently rapid online test able to detect generator unacceptable

failures. 

5.7.3.  Example: dedicated online tests for the MO-TRNG

As detailed above, online tests should preferably be based on the measurement and

evaluation of the input parameters of the stochastic model. We remind the reader that, 

according to the models presented in sections 5.6.1 and 5.6.2, the MO-TRNG output
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entropy rate depends on clock periods  T 0 and  Ti, the total jitter variance  σtot, the jitter accumulation time Δ t =  DT 0 and the number of oscillators. The generator can fail completely for one (or several) reasons:

– the reference clock and/or sampled clock generators stop oscillating; 

– clock generators become interlocked or locked to an external signal; 

– the total clock jitter drops to zero (this is only a hypothetical possibility). 

Note that in all these cases the counter presented in Figure 5.5 would output a

constant value. Counting the number of repetitions of the counter values can thus

serve as a basis to test for total failure. Moreover, the same counter can be used

to implement the online test. For example, we can calculate the Allan variance of

the counter values and compare it with the threshold determined using the stochastic

model of the generator. 

5.8. Conclusion

In this chapter, we have presented a modern approach to generating true random

numbers for cryptographic applications. We have illustrated the design of a secure

TRNG on a particular type of generator – oscillator-based TRNGs. Practical exercises

are included to show how to setup the generator parameters and how to evaluate the

quality of the generated numbers. We recommend applying this new approach to all

future TRNG designs to guarantee their security. 

5.9. Notes and further references

Many oscillator-based TRNG architectures exist. An overview can be found in

Fischer et al. (2016). Several randomness extraction methods including sampling and

counter methods are presented and their efficiency is analyzed in Allini et al. (2018). 

An elementary oscillator-based TRNG and its comprehensible model were published

by Baudet et al. (2011). An advanced version of the oscillator-based TRNG using

multiple oscillators was published by Sunar et al. (2007) and enhanced by Wold and

Tan (2008). The model of the multi-oscillator based TRNG derived from the model of

Baudet et al. (2011) was then proposed by Wu et al. (2019). 

The TRNG security evaluation standards NIST SP 800-90B and AIS 20/31, 

including description of corresponding statistical tests are presented in Killmann and

Schindler (2011) and Turan et al. (2018), respectively. The NIST SP 800-22b generic

statistical test suite is described in Rukhin et al. (2010). The FIPS 140-1 statistical

test suite is described in National Institute of Standards and Technology (NIST)

(1994). 
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6.1. Introduction

In the previous chapter, we have seen that sequences of random numbers can be

produced by extracting entropy from a physical random process, a noise source. When

the noise source is well understood and operates nominally, a lower bound on its

entropy rate is guaranteed, and it can provide an unbounded amount of randomness. 

Regarding cryptographic mechanisms, 

the focus is generally on their

computational security: if no adversary with bounded resources can threaten a

security objective of a given cryptographic mechanism with more than negligible

probability of success, this cryptographic mechanism is deemed to be secure. This

principle can also be applied to the generation of random numbers, which can also be

considered as a cryptographic mechanism. In other words, it is not strictly necessary

to generate numbers that are fully random, as long as a bounded adversary is not able

to distinguish the generator from an ideal source: the difference between the

One-Time-Pad and streamciphers illustrates the same idea. While the One-Time-Pad

adds to the plaintext a keystream of same length generated uniformly at random, 

streamciphers generate this keystream deterministically from a key of fixed size

using a pseudorandom generator. 

Adopting

this

principle

for

randomness

generation

leads

to

defining

cryptographic schemes that will be referred to as  pseudorandom number generator
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(PRNG) or  deterministic random number generator (DRNG). They enable to anchor

the security assurance for random number generation in the assurance provided by

well-studied cryptographic primitives. 

In this chapter, we review the security properties of such schemes. After restating

the classical security model of PRNG, we remark that their stateful nature calls for an

adaptation of the model, and even further, its extension to allow for proper handling

of their security in case of compromise of their internal state. In particular,  forward

 security, that is, the property that a state compromise does not provide any information on past outputs of the generator, is expected. 

These models assume the use of a perfect source of randomness to setup the

PRNG state, and even refresh the PRNG state in the case of  PRNG with inputs  that

have access to a noise source beyond their setup. An ideal noise source may not

be available to PRNG implementations. To fill this gap, extended models have been

developed, in which the PRNG is also able to  extract  seeds close to uniformly random from imperfect noise sources providing a sufficient amount of entropy. We discuss the

difficulties associated with the modelization of extractors and express the  robustness

security property in the case where an underlying cryptographic primitive is idealized. 

Finally, we also succinctly present SP800-90A DRNGs, which constitute the most

widely accepted standard PRNGs with inputs. The proposed constructions predate the

latest developments in the modelization of PRNGs with inputs, and their interfaces

differ slightly from the models described in this chapter. However, the security models

can be adapted to fit the specificities of these PRNGs with inputs, as shown by recently

published works. 

6.2. PRNG with ideal noise source

We shall start by reviewing security properties for PRNGs in the computational

model. In this model a scheme has provable security if its security requirements can

be stated formally in an adversarial model where the capabilities of the adversary, 

modeled as an efficient algorithm, are described with clear assumptions. We use the

code-based game-playing framework of Bellare and Rogaway (2006). 

A security game involves a challenger and an adversary denoted  A. The

adversary is modeled as a probabilistic algorithm. The challenge of the adversary is

to distinguish between two experiments, which are both indexed by a Boolean bit  b. 

Interactions between the challenger and the adversary are modeled with procedures, 

marked proc .  The arguments of the procedures are adversarially chosen. Procedures may output values to the adversary using the directive OUTPUT. The output of the

security game is returned through directive RETURN, before the game terminates. 
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A security game is executed as follows. Firstly, the challenger executes a procedure

initialize, where it generates a random bit  b  and its output are given as input to the adversary  A. Then,  A  executes and its oracle queries are answered by corresponding procedures of the security game. When  A  terminates, the finalize procedure of the

game returns 1 if the output of  A  equals  b, 0 otherwise. The advantage of  A  in the security game is given by:









Adv A = Pr GAME A ⇒  1  −  Pr GAME A ⇒  0   . 

In this section, we start by describing security properties of PRNGs that have

access to an ideal binary noise source, providing uniformly random bitstrings. This

enables us to start describing the security properties that can be achieved by a PRNG, 

and the class of attacks it has to defend against, without going into the difficulties

associated with processing inputs provided by imperfect noise sources. It is natural

to view these PRNGs as cryptographic mechanisms or modes of operation. They are

also practically relevant, since they describe cryptographic mechanisms appropriate

for post-processing the outputs of true random number generators generating random

bitstrings close to uniformly distributed. 

The simplest security notion, referred to as  standard PRNG,  models a PRNG as an

expanding function. This definition allows it to capture the simplest security property

for a PRNG, that its output shall be undistinguishable from random. A second security

notion, referred to as  stateful PRNG, models a PRNG as a stateful algorithm. This is more in line with the lifecycle of PRNG implementations, which are instantiated and

keep providing random inputs during the uptime of a system. This increased exposure

calls for studying their security in the event of a compromise of their inner state. This

definition then allows us to capture advanced properties as forward security. Both

standard and stateful PRNG rely on the use of a unique random seed, which is not

refreshed. Finally, the notion of  PRNG with inputs  is described. This notion models that a PRNG can be refreshed with new inputs during its lifecycle, enabling it to

recover from a compromise of its internal state. 

6.2.1.  Standard PRNG

If a user has access to an ideal noise source, they can use a deterministic

algorithm to expand its output to a longer sequence. We can define a security

property in the computational model for this algorithm: no computationally bounded

adversary who does not know the seed can distinguish an output from an uniformly

randomly generated bitstring. This definition is adapted from Blum and Micali

(1982) and Bellare and Yee (2003). 
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DEFINITION 6.1 (Standard PRNG).– Let  s  and    be integers such that   > s. A ( s, ) -standard PRNG  is a function G :  { 0 ,  1 }s → { 0 ,  1 }  that takes as input a bit string  S  of length  s  and outputs a bit string  R  of length  . 

In this situation, the seed of the generator is the most critical part of it since an

adversary that has access to it can predict future outputs of the generator. Consider

the security game PR described in Figure 6.1. In this security game, the challenger

generates a random secret input  S  and challenges the adversary  A  on its capacity to distinguish the output of the generator from random. 

proc .  initialize proc .  next-ror proc .  finalize( b∗) S $

 ← { 0 ,  1 }s; 

 R 0  ← G( S)

IF  b =  b∗  RETURN 1

 b $

 ← { 0 ,  1 }

$

; 

 R 1  ← { 0 ,  1 }  ELSE RETURN 0

OUTPUT  Rb

Figure 6.1.  Procedures in security game  PR

DEFINITION 6.2 (Security for a standard PRNG).– Let  n  and    be integers such that

  > n. A ( n, )-standard PRNG is ( t, ε) -secure  if for any adversary  A  running in time at most  t, the advantage of  A  in game PR is at most  ε. 

6.2.2.  Stateful PRNG

Bellare and Yee (2003) proposed a notion of  stateful PRNG  where the maximal

number of outputs the PRNG is allowed to produce (named  qn  hereafter) is a

parameter of the generator. This notion is illustrated in Figure 6.2 and formalized in

the following definition. 

key

 S 0

next

 S 1

next

 . . . 

next

 Sqn

 R 1

 Rqn

Figure 6.2.  Stateful pseudorandom number generator

DEFINITION 6.3 (Stateful PRNG).– A  stateful PRNG  is a pair of algorithms

(key ,  next) and an integer  qn, where key is a probabilistic algorithm that takes no input and outputs an initial state  S ∈ { 0 ,  1 }s, next is a deterministic algorithm that, given the current state  S, outputs a pair ( S, R)  ←  next( S) where  S  is the new state and  R ∈ { 0 ,  1 }  is the output and  qn  is the maximal number of outputs the PRNG is allowed to produce. 

Consider the security game SPR described in Figure 6.3. In this security game, the

challenger generates a random initial secret  S  and challenges the adversary  A  on its
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capacity to distinguish the real output of the PRNG from random. The difference with

game PR is that here, successive calls to next-ror will produce different outputs that

should all globally be indistinguishable from random. 

proc .  initialize

proc .  next-ror

proc .  finalize( b∗)

 S $

 ←  key(); 

( S, R 0)  ←  next( S) IF  b =  b∗  RETURN 1

 b $

 ← { 0 ,  1 }

 R $

1  ← { 0 ,  1 }

ELSE RETURN 0

OUTPUT  Rb

Figure 6.3.  Procedures in security game  SPR

DEFINITION 6.4 (Security for a stateful PRNG).– A stateful PRNG G = (key , 

next , qn) is called ( t, qn, ε) -secure, if for any adversary  A  running in time at most  t, making  qn  calls to next-ror, the advantage of  A  in game SPR is at most  ε. 

Bellare and Yee (2003) proposed an extension of the previous model, where a

stateful PRNG should be designed so that it is infeasible to recover any information

on previous states or previous outputs from the compromise of the current state. To

formalize this property, they proposed a dedicated security model where an adversary

 A  chooses dynamically when to compromise the current state  S. After this

compromise, all  future  outputs are compromised, as they all deterministically depend on the compromised state, however, the expected security property is that the  past

outputs are computationally indistinguishable from random. 

Consider the security game FWD described in Figure 6.4. In this security game, the

challenger generates a random initial secret input  S  and challenges the adversary  A  on its capacity to distinguish the real output of the PRNG from random. In addition to the

usual procedures, the adversary  A  is allowed to perform a final query to a get-state oracle that reveals the final value of the internal state  S. 

proc .  initialize proc .  next-ror

proc .  get-state proc .  finalize( b∗)

 S $

 ←  key(); 

( S, R 0)  ←  next( S)  (final query)

IF  b =  b∗  RETURN 1

 b $

 ← { 0 ,  1 }

 R $

1  ← { 0 ,  1 }

OUTPUT  S

ELSE RETURN 0

OUTPUT  Rb

Figure 6.4.  Procedures in security game  FWD

DEFINITION 6.5 (Forward-security for a stateful PRNG).– A stateful PRNG

G = (key ,  next , qn) is called ( t, qn, ε) -forward-secure, if for any adversary  A running in time at most  t, making at most  qn  calls to next-ror, followed by one call to get-state, which is the last call  A  is allowed to make, the advantage of  A  in game FWD is at most  ε. 
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6.2.3.  Stateful pseudorandom generator with inputs

Barak and Halevi (2005) proposed a security model for PRNGs based on an ideal

source of random bitstrings. In addition of being used to seed the generator, the noise

source also provides entropy to  refresh  its state. This allows it to recover from a compromise of the state, that is, even after a state compromise, if the PRNG state

is refreshed, its following outputs are indistinguishable from random by a bounded

adversary. 

DEFINITION 6.6 (PRNG with inputs ( from Barak and Halevi (2005))).– A  PRNG with

 inputs  is a pair of algorithms (refresh ,  next) where refresh is a deterministic algorithm that, given the current state  S ∈ { 0 ,  1 }n  and an input  I ∈ { 0 ,  1 }p, outputs a new state S ←  refresh( S, I) where  S ∈ { 0 ,  1 }n  is the new state and next is a deterministic algorithm that, given the current state  S, outputs a pair ( S, R)  ←  next( S) where S ∈ { 0 ,  1 }n  is the new state and  R ∈ { 0 ,  1 }  is the output of the generator. 

 I

 S

refresh

 S

 S

next

 S

 R

Figure 6.5.  PRNG with inputs (Barak and Halevi 2005)

The security model captures the potential compromise of the internal state  S  and

the inputs used to refresh the internal state. We present a simplified version of this

security model that is based on the assumption that inputs are either controlled by the

adversary (hence modeled by a bad-refresh procedure) or uniform (hence modeled by

a good-refresh procedure). 

Consider the security game described in Figure 6.6. Adversary  A  has access to

the system where the generator is run, and can (a) get the output of the generator, (b)

modify the data that are used to refresh the internal state of the generator and (c) have

access to and can modify the internal state of the generator. The adversary  A  has two choices to refresh the generator, either with an uniform input, or with an input that

 A  totally controls. In the first case,  A  uses procedure good-refresh: the challenger generates a uniform input and applies algorithm refresh with the previously generated

input. In the second case,  A  uses procedure bad-refresh:  A  chooses an input that is directly used with algorithm refresh. Note also that the seeding of the generator is not

performed in procedure initialize, but occurs through a call to good-refresh. 
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proc .  initialize()

proc .  good-refresh() proc .  set-state( S∗) proc .  next-ror S ←  0 n; 

 I $

 ← { 0 ,  1 }n; 

corrupt  ←  true

( S, R 0)  ←  next( S)

corrupt  ←  true; 

 S ←  refresh( S, I); 

 S ← S

IF corrupt = true, 

 b $

 ← { 0 ,  1 }; 

corrupt  ←  false; 

 S ← S∗

OUTPUT  R 0

OUTPUT  S

ELSE

proc . 

$

finalize( b∗)

proc .  bad-refresh( I)

 R 1  ← { 0 ,  1 }

IF  b =  b∗  RETURN 1  S ←  refresh( S, I); 

OUTPUT  Rb

ELSE RETURN 0

Figure 6.6.  Procedures in security game  ROB

As in the original model from Barak and Halevi (2005), this security model uses

a new important Boolean parameter, named corrupt, which is set to true when the

generator is compromised and set to false otherwise. This parameter is part of the

security game and is not a component of the generator. The state can be compromised

through a call to set-state, which extends get-state by returning the current state but

also setting the state to a value chosen by  A. Note that it is possible to obtain the effect of a get-state by calling twice set-state in order to reinject the learnt state in

the generator. 

The next-ror procedure differs from the equivalent procedure in the previous

security models. Here, as the challenger maintains the flag corrupt, a challenge

between the real output and a random one is sent to  A  only if corrupt = false. If

corrupt = true, the adversary can mount an attack on the real output, so  A  will

certainly distinguish it from a random one. 

DEFINITION 6.7 (Robustness for a PRNG with inputs).– A PRNG with inputs

 G : (refresh ,  next) is ( t, qn, qr, ε) -robust  if for any adversary running in time  t, making at most  qr  calls to bad-refresh and  qn  calls to next-ror, the advantage of  A  in game ROB is at most  ε. 

In the original model from Barak and Halevi (2005), the input  I  used in procedure

good-refresh is not uniform but is considered of high entropy, hence this model

assumes that it is possible to  extract  this entropy from the input, before updating the internal state. Next section points challenges related to randomness extraction. 

6.3. PRNG with imperfect noise sources

The assumption that a PRNG with inputs has an ideal noise source at its disposal

may be too strong in some contexts. For example, a true random number generator is

available but the assurance on its entropy rate is either too weak or too low. In other

cases, only weak sources of randomness are available, such as user interface metadata

or timings of interrupts. Their outputs are far from uniform, and the strongest property

we can assume about them is that they provide some unpredictability, quantified
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for example by their min-entropy. In order to reduce these situations to the case

of availability of an ideal source, the randomness contained in the outputs of weak

sources needs to be extracted and accumulated. An additional security objective for

PRNG with inputs in these contexts is that they are able to extract randomness from

weak sources, even in the case where these sources are known or selected by an

adversary. 

6.3.1.  Extractors

A map producing an output close to uniform when applied to the outputs of weak

sources is called a  randomness extractor. Some extractors are commonly used to

improve the quality of the outputs of true random number generators. The “Von

Neumann” extractor is an example of  deterministic extractor. 

DEFINITION 6.8 (Deterministic extractor).– Let  p  and  m  be integers, such that  p ≥ m. 

Let  C  be a class of sources on  { 0 ,  1 }p. An  ε-deterministic extractor for  C  is a function Extract :  { 0 ,  1 }p → { 0 ,  1 }m, such that for every  X ∈ C, Extract( X) and  Um  are ε-close, that is, their statistical distance is smaller than  ε. 

The link between min-entropy and extraction comes directly from the definition, 

as a necessary condition to extract  m  bits of randomness from a distribution  X  is that H ∞( X)  ≥ m. Ideally, we would like to consider only this condition: a PRNG with inputs dealing with imperfect noise sources should use a deterministic extractor to

extract the entropy contained in their outputs, without considering further knowledge

on their distribution. Unfortunately, it can be shown that no mapping can act as a

good extractor for all weak sources. Consider for example an extraction function from

 { 0 ,  1 }p → { 0 ,  1 }. The inverse image of one of its admissible output has size greater than 2 p− 1, and a source having uniform distribution on this set has min-entropy greater than  p −  1 while its image by the extraction function is constant. 

6.3.1.1.  Seeded extractors

In order to overcome this impossibility result, two paths have been studied. The

first one consists in relaxing the notion of extractor by considering randomized

extractors. If we allow it to choose the extraction function  at random, then, with a high probability, it will become possible to extract the randomness from  each

 k-source (a  k-source  X  has H ∞( X)  ≥ k). To choose the extractor at random, we will assume that it belongs to a  family  of functions and we  uniformly  select a random element from this family. The selection process implies choosing a random

parameter called seed

 ∈ { 0 ,  1 }s  and setting the extraction function as

Extractseed = Extract( .,  seed), hence the notion of  seeded extractor. However, this can only improve the situation if the seed and the randomness source are

independent, as illustrated by a straightforward extension of the example given above. 
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Hence, we need to consider further situations where the seed or the environment

may be controlled by an adversary, and situations where a potential correlation

between the randomness source and seed may be exploited to mount an attack

against the scheme. This may occur in a hardware device that extracts from physical

sources of randomness of a computer (e.g. timing of various events). These sources

may be modified by the device and hence this behavior implies correlations between

seed and the randomness sources. In order to implement a convenient entropy

extraction, we need to add additional assumptions, either on the independence

between the source and seed or on the capabilities of the adversary. 

Suppose now that the independence between the source and seed cannot be ensured

and we want to model situations where we need to perform randomness extraction. 

To overcome the impossibility result, we mainly have two options: (a) restrict the

randomness source to a given family of  k-sources (which is a similar strategy as for deterministic extractors) or (b) restrict the adversary  A. 

The first option leads to the notion of  resilient extractor. This notion of extractor is used in the model of Barak and Halevi (2005): a finite family of  k-sources is first chosen, then the random parameter seed is chosen and finally a source is adversarially

chosen (and therefore  without  independence with seed). Then when an input of high

entropy is given to the PRNG, this entropy is first extracted before being used to update

the PRNG’s internal state. 

If we do not want to restrict the class to which the randomness sources belong

(and use potentially illimited sources), we need to use a different notion of extractor

(named  strong extractor). This notion of extractor has an additional parameter seed, which is used as an index to select the extractor from a family. This ensures that once

a random parameter seed is chosen and made public, extraction is processed and the

same parameter can be reused for the next extraction. This notion of extractor is used

in the model of Dodis et al. (2013). 

6.3.1.2.  Idealized extractors

A second path explored to overcome the impossibility of generic extractors is

to consider idealized cryptographic primitives as extractors. For example, a

cryptographic hash function can be modeled as a public random oracle. 

A first difficulty arising from this modelization is that if the source and the ideal

primitive are assumed independent, the ideal primitive can be interpreted as

introducing a large seed, which makes the extraction trivial. Another difficulty is that

giving access to the ideal primitive to the source opens up the possibility of

extractor-fixing attacks, where the source samples a large random value, performs the

extraction and leaks a part of the extracted value. In order to avoid these pitfalls, and

achieve a meaningful modelization, Coretti et al. (2019) proposes to consider an

adapted notion of min-entropy, which is conditioned by a state representing a leakage
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as well as by the list of calls made the adversary to the ideal function. Random

sources are considered to be  legitimate  if they provide a sufficient amount of this conditional min-entropy. It is expected that random sources occurring in

implementations do not obtain their variability from computations of cryptographic

primitives but rather gain it from the difficulty of predicting some information, such

as the lower bits of fine-grained timings of random events. Thus such sources should

satisfy the legitimacy requirement. 

An extractor will the be considered secure if an adversary, generating its input

according to a random procedure having access to the ideal primitive, and forgetting

the details of the generation except some limited leakage and the calls performed to the

ideal primitive, cannot distinguish the output of the extractor from random, provided

that the conditional entropy of the input to the extractor is large enough. 

6.3.2.  Robustness model of Coretti et al. (2019)

In Coretti et al. (2019), a PRNG with inputs is defined by the two algorithms

refresh P  and next P , parameterized by an ideal primitive  P . 

 I

 S

refresh P

 S

 S

next P

 S

 R

Figure 6.7.  PRNG with inputs (Coretti et al. 2019)

DEFINITION 6.9 (PRNG with inputs ( from Coretti et al. (2019))).– A  PRNG with

 inputs  is a pair of algorithms  G = (refresh P ,  next P ) with access to an ideal primitive P . refresh P  is a deterministic algorithm that, given a state  S ∈ { 0 ,  1 }n  and an input I ∈ { 0 ,  1 }p, outputs a new state  S ←  refresh P ( S, I)  ∈ { 0 ,  1 }n  and next is a deterministic algorithm that, given a state  S ∈ { 0 ,  1 }n, outputs a pair ( S, R)  ←

next P ( S) where  S ∈ { 0 ,  1 }n  is the new state and  R ∈ { 0 ,  1 }  is the output. 

The robustness security game uses procedures described in Figure 6.8. It uses

the adv-refresh procedure to refresh the current state  S  using input  I; the next-ror procedure, where it provides  A  with either the real-or-random challenge or the true generator output; the get-state / set-state procedures that provide  A  with the ability to either learn the current state  S, or set it to any value  S∗. 

At the start of the game and after get-state/set-state oracle calls, the adversary

knows the state of the PRNG. Likewise, when the adversary calls get-next while not
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enough entropy has been provided to the PRNG, it can recover the state of the

PRNG. Such events are called entropy drains. An adversary is said to be

 γ∗  legitimate, if it does not perform calls to get-next/next-ror unless the min-entropy of the inputs provided to the PRNG through adv-refresh since to most recent entropy

drain, conditioned by the state of the adversary, the calls it performed to the ideal

primitive  P , and the state of the PRNG at the latest entropy drain, is greater than  γ∗. 

proc .  initialize

proc .  adv-refresh( I) proc .  get-state

proc .  set-state( S∗)

 S ←  0 n; 

 S ←  refresh P ( S, I) OUTPUT  S

 S ← S∗

 b $

 ← { 0 ,  1 }; 

proc .  finalize( b∗)

proc .  next-ror

proc .  get-next

IF  b =  b∗  RETURN 1 ( S, R 0)  ←  next P ( S) ( S, R)  ←  next P ( S) ELSE RETURN 0

 R $

1  ← { 0 ,  1 }

OUTPUT  R

OUTPUT  Rb

Figure 6.8.  Procedures in Security Game  ROB( γ∗)

Informally, a PRNG with inputs is secure if a legitimate adversary has only small

advantage in distinguishing its outputs from random values. 

DEFINITION 6.10 (Robustness for a PRNG with inputs ( from Coretti et al. (2019))).–

A PRNG with inputs  G = (refresh P ,  next P ) is called ( γ∗, q, t, , ε) -robust, if for any γ∗  legitimate adversary  A  performing at most  q  calls to the primitive  P ,    calls to adv-refresh between any entropy drain and the next call to next-ror or get-next and

making at most  t  calls to any oracle of the robustness game other that adv-refresh, the advantage of  A  in game ROB is at most  ε. 

6.4. Standard PRNG with inputs

We have presented in the previous sections the desirable security properties of

a PRNG with inputs. Designing a PRNG with inputs together with providing

an assessment of its robustness is not an easy task. Thus, implementing standard

mechanisms is usually recommended. The current de facto standard for PRNG with

inputs is by Barker and Kelsey (2015), since it is the recommended standard in FIPS

evaluations. This document specifies three designs, Hash-DRBG, HMAC-DRBG

and CTR-DRBG, based, respectively, on a hash function, an HMAC message

authentication code, and a block cipher. 

6.4.1.  General architecture of NIST PRNG with inputs

This standard has known several iterations, but its terminology dates back from

its first publication in 2006. As a result, it does not perfectly align with the latest
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academic works that have been published since. In particular, the specified

mechanisms are called  deterministic random bit generators (DRBG)  and are defined

by four functions:

Instantiate, Reseed, Generate and Uninstantiate. Their

descriptions are implementation oriented and contain much administrative

information and optional arguments that would not appear in a streamlined design

with a focus on security proof. This increases the complexity of their formal analysis. 

From a security point of view, entropy is injected in the internal state of these

PRNG during the Instantiate and Reseed functions, which thus correspond to the

refresh function. In both cases, Barker and Kelsey (2015) assume that the PRNG has

access to a source of randomness, providing a bitstring containing a sufficient amount

of entropy. It does not however assume that this input is (close to) uniformly

distributed, since NIST PRNG with inputs can make use of so-called  derivation

 functions  to extract the entropy of the obtained inputs. 

The random outputs of the PRNG are obtained by calls to the Generate function, 

whose interface also differs slightly from that of the next function. First, Generate can

produce outputs of variable length. Second, Generate offers the possibility to provide

an additional input to the PRNG. This additional input is optional and may be used to

provide additional entropy to the PRNG. The PRNG security guarantees rely however

on the fact that the call to Instantiate and the calls to Reseed perform a full refresh of

the state of the PRNG. 

All in all, the features of the specified mechanisms show that they share a lot of the

security objectives formalized in the latest models of PRNG with inputs. In particular, 

a non-invertible step immediately after the generation process targets forward security. 

Also, inputs are not assumed uniformly random and NIST PRNGs with inputs embed

extraction functions based on cryptographic primitives. 

6.4.2.  Security analysis and good practices

At the time of their publication, NIST PRNG with inputs were not supported by

formal security arguments. Academic publications have tried to address this

shortcoming. A first step, described in the previous sections, has been to define the

security game describing the security of PRNG with inputs. Informally, as soon as

enough entropy has been injected in the PRNG, its outputs and states should

be indistinguishable from random. Then, security proofs need to be developed

specifically for the NIST PRNGs. It happens that their specificities require to make

adaptations in the security models. 

Several papers, such as Woodage and Shumow (2019) and Hoang and Shen (2020), 

have tackled this task. In general, they operate in an idealized model, where the

analysis replaces the underlying cryptographic primitive by an idealized primitive. 
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On the whole, they conclude on the soundness of these standard PRNG with inputs. 

However, these works also raise some concerns and identify some formal issues. We

list here some of theses problems and the recommended measures that enables to

alleviate them. 

–  Long requests: to allow for variable output length, the Generate functions of

all NIST DRBGs have an iterative structure. Every iteration consists of applying

the underlying primitive to compute an output block, and then to update the state

lightly, either by a simple incrementation or by replacing part of the state by the new

output block. In a preliminary step, additional data can be incorporated in the state. 

In a final step, the state is updated more thoroughly through additional calls to the

underlying cryptographic primitives. This leads to a tradeoff between security and

performance. On the one hand, it is more efficient to request a large number of bits

at every call to Generate, since this reduces the performance penalty incurred by the

application of the final update of the state in Generate. The fact that the standard

allows for the generation of up to 219 bits by calls to the Generate function somewhat

makes way for implementations that buffer a large amount of output bits and only

call Generate when the buffer has been consumed. On the other hand, the lightweight

update of the state during the iteration weakens the forward security of the scheme. 

Indeed, the generation of output bits cannot be considered atomic anymore due to the

length of the output bitstring, and we must consider the effect of a state compromise

during this process. We observe that the output block produced by Generate before

the compromise can be recovered, either by undoing invertible state updates or by

reassembling a past state from the compromise and a previous output to recover all

of the intermediate outputs. In order to reduce the impact of a state compromise, it is

important to ensure that the generation of output bits is as atomic as possible, that is

to say not to abuse of long Generate outputs and allow for the final update of the state

in Generate to execute as often as possible. 

–  Forward security in HMAC-DRBG: the optional use of additional inputs is also

the source of concerns, since it leads to introduce notable differences in the schemes. 

A noteworthy example is the case of HMAC-DRBG update function. At the end

of the Generate function, the state is updated thoroughly. When additional inputs

have been provided to the update function, the key part and the message part of

the state are updated twice. Though, when no additional input is provided, they are

only updated once. In this case, it becomes possible to distinguish the last block  V

output by Generate together with the state ( K, V ) obtained by state compromise

from a random bitstring. It suffices to test whether  HM AC( K, V ) =  V . This breaches the forward security property formalized in the robustness security games. 

It is disturbing that the absence of use of an optional parameter changes the status of

the security analysis. This also calls for to systematically use additional inputs when

calling the Generate function of HMAC-DRBG. 
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Figure 6.9.  Update function of HMAC-DRBG. When no

 additional input is provided, the state is only updated once

6.5. Notes and further references

Several modelizations of the security of PRNGs with inputs have been proposed

in the literature. A first model capturing the potential compromise of the internal state

is given in Barak and Halevi (2005). Models trying to capture the imperfect nature

of the noise sources and assessing the security of the extraction operations performed

by PRNGs with inputs have been proposed later based on seeded extractors in Dodis

et al. (2013), or idealized extractors in Coretti et al. (2019). 

The de facto standard for PRNGs with inputs is Barker and Kelsey (2015). Its

security analysis requires adaptations of the previous security models, that have been

performed, for example, in Woodage and Shumow (2019); and Hoang and Shen

(2020). 
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7.1. Introduction

A positive integer  q  is said to be  prime  if  q >  1 and if  q  has no positive divisors except 1 and  q. 

Numerous cryptographic primitives rely on prime numbers, a good representative

being the RSA cryptosystem used for encryption or digital signatures. Let  M  denote

the message space. In its simplest form, the RSA cryptosystem requires two distinct

primes  p  and  q  to form a modulus  N =  pq, an exponent  e  that is co-prime with λ( N ) = lcm( p −  1 , q −  1),1 and an injective (randomized) padding function  μ :  M →

Z N. There is also an exponent  d  satisfying  ed ≡  1 (mod  λ( N)). Modulus  N  and exponent  e  are made public while exponent  d  is kept private. A message  m ∈ M

is encrypted as  C $

 ← μ( m) e  mod  N. The secrecy of primes  p  and  q  is primordial to guarantee the security as they allow recovering  d ← e− 1 mod lcm( p −  1 , q −  1). 

Indeed, from  d, the plaintext message  m  can be recovered in two steps as  m∗ ←

 Cd  mod  N  and  m ← μ− 1( m∗). For digital signatures, the roles of  e  and  d  are exchanged. For a deterministic padding function  μ, the signature  σ  on a message 1 LCM denotes the “lowest common multiple”. In particular, lcm( p −  1 , q −  1) = ( p −  1) ( q −  1) /  gcd( p −  1 , q −  1). 
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 m ∈ M  is given by  σ ← μ( m) d  mod  N . The validity of  σ  is then verified by checking that  σe ≡ μ( m) (mod  N ) using public exponent  e. 

A native way to produce an  n-bit prime consists of generating an odd  n-bit integer and testing it for primality. The process is iterated until a prime is found. The expected

number of trials is asymptotically equal to (ln 2 n) / 2  ≈  0 .  347 n. Generating a random 1 ,  024-bit prime thus requires about 355 trials on average. The naïve prime generator can be made more efficient by selecting  n-bit integers that are already co-prime with small primes, instead of just being co-prime with 2. For example, we can define  Π  as the product of the first 10 primes,  Π = 2  ·  3  · · · · ·  29, and randomly select an  n-bit prime candidate  q  satisfying gcd( q, Π) = 1. The expected number of trials before a prime is found then drops heuristically to (ln 2 n)  ϕ( Π)  ≈  0 .  109 n, where  ϕ  denotes Π

Euler’s totient function. For 1 ,  024-bit primes, this amounts to about 112 trials. The complexity can be further reduced by including more primes in the definition of  Π. 

This methodology however requires an efficient way to generate random  n-bit integers co-prime with  Π. 

The rest of this chapter is devoted to describing efficient methods for producing

random primes in a prescribed interval along those lines:

1) A prime candidate  q ∈ [ q min , q max] is  constructively  generated so as to be co-prime with  Π, a product of many (small) primes. 

2)  q  is tested for primality. If  q  is not prime, then it is updated in a way that its updated value remains co-prime with  Π  and lies within [ q min , q max]. This step is repeated until  q  is found to be prime. 

The output distribution of the primes that are generated also matters. In 2012, two

independent teams of researchers collected RSA public keys from a wide variety of

sources. Quite surprisingly, a non-negligible fraction of the collected RSA moduli

exhibited a common prime factor. Sharing a common factor for non-duplicate RSA

moduli completely compromises the security as calculating their greatest common

divisor (GCD) reveals the secret factors and thus enables computing the private keys. 

These vulnerabilities apparently originated from the use of poor entropy in the

generation of prime numbers  p  and  q  forming an RSA modulus  N =  pq. An important lesson is to generate RSA keys only after a proper initialization of the

source of randomness. In particular, the initial random seed must be fresh and at least

twice longer than the targeted security level. 

The performance of algorithms highly depends on the hardware capabilities and

specifics of the architecture implementing them. The methods developed in this

chapter target embedded platforms allowing for super-fast evaluation of (modular)

additions/subtractions/multiplications over large integers, which renders other types

of computations comparatively prohibitive in the absence of integrated hardware to

support these. Examples include high-end smart cards equipped with an arithmetic
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crypto-coprocessor. In such a setting, algebraic tricks involving (modular) arithmetic

operations on large numbers are largely preferred over glue instructions such as

register switches, loop control, pointer management, etc. 

REMARK.– Cryptographic implementations should resist side-channel attacks as

well as fault attacks. The different algorithms presented in this chapter are given in

pseudocode for the sake of clarity. Actual implementations should however ensure

full security against these attacks, whose specifics are architecture dependent. This

de facto excludes schoolbook GCD algorithms, which leak a lot of information

through the observation of their control flow. This chapter also assumes the

availability of a secure cryptographic random number generator for producing

uniformly random integers in a given range. 

7.2. Primality testing methods

Primality testing has been an active research topic for many years. 

Computationally, two types of outputs are distinguished by nature: true primes and

probable primes. The difference rests in the way these are generated. A  probable

prime (also known as  pseudoprime) is usually obtained through a compositeness test, 

which is typically weaker but faster than a primality test. When such a test declares

that a number is composite, then it is indeed with probability 1. However, if the test

finds it to be prime, it is truly a prime with some probability  <  1. Hence repeatedly running the test gives increasing confidence in the so-generated (probable) prime. 

Typical examples of compositeness tests include Fermat’s test, the Solovay–Strassen

test and the Miller–Rabin test. 

There also exist (actual) primality tests, which tell apart prime numbers from

composite numbers with a strictly null error probability (e.g. Pocklington’s test and

its elliptic curve analogue, and the Jacobi sum test). These tests are generally more

expensive and intricate to implement. 

7.3. Generation of random units

Let Z ∗  denote the set of integers modulo

 Π

 Π  that are co-prime with  Π. The prime

generation algorithms presented in this chapter require the random selection of an

element  k ∈  Z ∗ , that is, of a unit modulo

 Π

 Π. This section provides an algorithm that

efficiently produces such an element with uniform output distribution. The design is

based on the next two propositions, making use of Carmichael’s function  λ. Another

approach based on quadratic residuosity – simpler but not strictly uniform – is also

described. 
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DEFINITION 7.1.– The  Carmichael function λ  of an integer  Π ≥  2,  λ( Π), is defined as the smallest positive integer  t  such that  at ≡  1 (mod  Π) for every integer  a  that is co-prime with  Π. 

In other terms,  λ( Π) denotes the exponent of the multiplicative group Z ∗ . Letting Π



 Π =

 L

 δi  with

 i=1  pi

 pi  prime and  δi ≥  1, it can be shown that:

 λ( Π) = lcm( λ( p δ

 δ

1 1 ) , . . . , λ( p

 L

 L

))

where

2 δi− 2

if  p

 λ( p δi

 i = 2 and  δi >  2

 i

) =

 p δ

 i i− 1( pi −  1)

otherwise

PROPOSITION 7.1.– Let  Π >  1 and let  k  be an integer modulo  Π. Then  k ∈  Z ∗  if Π

and only if  kλ( Π)  ≡  1 (mod  Π). 

 Proof.–  This follows from the definition of Carmichael’s function. If  k ∈  Z ∗ , then Π

 kλ( Π)  ≡  1 (mod  Π) since  λ( Π) is the exponent of Z ∗ . Conversely, if Π

 kλ( Π)  ≡  1

(mod  Π) then, for all primes  pi  dividing  Π, it follows that  kpi− 1  ≡  1 (mod  pi)  ⇐⇒

gcd( k, pi) = 1, and thus gcd( k, Π) = 1  ⇐⇒ k ∈  Z ∗ . 



 Π

PROPOSITION 7.2.– Let  k, r  be integers modulo  Π  and assume that gcd( r, Π) = 1. 

Then, 

[ k +  r(1  − kλ( Π)) mod  Π]  ∈  Z ∗Π. 

[7.1]



 Proof.–  Let

 δi  denote the prime factorization of modulus

 i pi

 Π. Define  ω( k, r)

:= [ k +  r(1  − kλ( Π)) mod  Π]  ∈  Z Π. Let  pi  be a prime factor of  Π. Suppose that pi | k, then  ω( k, r)  ≡ r ≡  0 (mod  pi) since gcd( r, pi) divides gcd( r, Π) = 1. 

Suppose now that  pi   k  then  kλ( Π)  ≡  1 (mod  pi) and so  ω( k, r)  ≡ k ≡  0 (mod  pi). 

Therefore, for all primes  pi | Π, we have  ω( k, r)  ≡  0 (mod  pi) and thus  ω( k, r)  ≡  0

(mod  p δ

 i i ), which, invoking Chinese remaindering, concludes the proof. 



Benefiting from these facts, the unit generation method illustrated in Algorithm 7.1

can be devised. 

As computed, the generation of units is self-correcting in the following sense: as

soon as  k  is co-prime with some factor of  Π, it remains co-prime with this factor after the updating step  k ← k +  r U (mod  Π). This follows from equation [7.1]. Put simply, what happens is that viewing  k  as the vector of its residues  k  mod  p δ

 i i  for all
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 p δ

 i i | Π (i.e. an RNS2 representation of  k  based on  Π ), non-invertible coordinates of  k  are continuously re-randomized until invertibility is reached for all of them. 

This ensures that the output distribution is strictly uniform, provided that the random

number generator outputs uniform integers over [1 , Π). 

Algorithm 7.1. Unit generation algorithm

Input:  Π ≥  2 and  λ( Π)

Output: a uniformly random unit  k ∈  Z ∗Π

1 Select  k $

 ← [1 , Π) uniformly at random

2 Set  U ← (1  − kλ( Π)) mod  Π

3 if ( U = 0) then

4

Select  r $

 ← [1 , Π) uniformly at random

5

Set  k ← k +  r U (mod  Π)

6

Go to Step 2

7 end if

8 return  k

The above algorithm is particularly well suited to devices (e.g. smart cards)

equipped with a coprocessor to efficiently perform multiplications modulo  Π. This

usually requires  Π  to lie within a certain range of supported values. For larger values of  Π, the generation of units can be adapted as follows.  Π  is written as a product of pairwise co-prime integers  Πi ≥  2:

 w



 Π =

 Πi  with gcd( Πi, Πj) = 1 for  i =  j. 

 i=1

Algorithm 7.1 is then run with every couple ( Πi, λ( Πi)) as inputs. This yields a sequence of  M  units ( k 1 , . . . , kw) where  ki ∈  Z ∗ . There is no need to strictly Πi

apply Chinese remaindering to get a unit modulo  Π  from ( k 1 , . . . , kw) as long as the resulting value is invertible modulo  Π. For example, we can compute iteratively:

 K 0 =  k 1





[7.2]

 K

 j

 j =  Πj+1 Kj− 1 +

 i=1  Πi kj+1

for 1  ≤ j ≤ w −  1

and set  k ← Kw− 1 mod  Π. Letting  i :=  Π ∈  Z, it can be verified that the Πi

so-defined  k  satisfies  k ≡ i ki (mod  Πi) and thus ( k  mod  Πi)  ∈  Z ∗  since Π

 

 i

 i, ki ∈

2 RNS stands for “residue number system”. This system represents integers by their values

modulo several pairwise co-prime integers. 
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Z ∗ . It can also be verified that

, again assuming a uniform

 Π

 k  remains uniform over Z ∗

 i

 Π

random number generator. 

Another method used to obtain units is to leverage the properties of quadratic

residuosity. Given an odd prime  pi, an integer  −V  is by definition a quadratic non-residue modulo  pi  if there exists no integer  t  such that  −V ≡ t 2 (mod  pi). This implies that  t 2 +  V  is co-prime with  p

 δ

 i  for every integer  t. Let  Π  =

 i  with

 i pi

 pi  prime,  pi = 2, and  δi ≥  1. With ( Π, V ) precomputed such that  −V  is a quadratic non-residue for every prime  pi | Π, a unit  k ∈  Z ∗Π  can be simply obtained as: k = ( r 2 +  V ) mod  Π  for some random  r $

 ← [0 , Π) . 

Such a unit  k  is not uniform over Z ∗ . For each prime-power

 δi , about half of the

 Π

 pi

units in Z ∗

are covered. Hence, if  Π  is made of  w  prime-power divisors  p δi, about p δ

 i

 i i

a subset of  ϕ( Π) / 2 w  units can be attained instead of the full set of  ϕ( Π) possible units. This can be mitigated by considering a product of  J  independent units, namely, J





 k =

 r  2

$

 j

+  V  mod  Π  where  rj ← [0 , Π) . 

 j=1

In practice, the value of  J  is typically set to 6, which results in a min-entropy loss of at most 0 .  11 bits. 

7.4. Generation of random primes

This section describes a generic sieving algorithm for generating a random

prime  q  in some arbitrary interval [ q min , q max]. The algorithm requires as inputs a smooth integer  Π = 2 δΠ (with  δ ≥  0 and  Π  odd) and a bound  c max  ≥  1 on a counter that indicates the maximum number of re-uses of a fresh unit. Optionally, it

further requires (i) the Carmichael’s value  λ( Π) for generating (uniform) units modulo  Π  and (ii) a pre-computed unit  U ∈  Z ∗  and/or a quadratic non-residue  −

 Π

 V

modulo  Π  for quickly sampling units in Z ∗ . It also assumes some fast

 Π

(pseudo-)primality testing function T ,  which returns 1 when a candidate  q  is found to be prime and 0 otherwise. 

The repeat loop involves the generation of a (uniform) unit modulo  Π  when  c = 0. 

This can, for example, be achieved using Algorithm 7.1. If  c = 0, unit  k ∈  Z ∗  is Π

updated as another unit  k ∈  Z ∗ (the product of two units is a unit). A prime candidate Π

 q  is next formed. Remark that by construction  q  is co-prime with  Π  since  q ≡ k (mod  Π) and  k ∈  Z ∗ . The process is iterated until

 Π

 q ∈ [ q min , q max] is declared prime. 
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Algorithm 7.2. Prime generation algorithm in [ q min , q max]

Input:  Π,  c max [optionally:  λ( Π),  U  and  V ]

Output: A random prime  q ∈ [ q min , q max]





 q

1 Set  c ←  0 and  M ←

max  −q min

 Π

2 repeat

3

if ( c = 0) then

4

Generate  k $

 ←  Z ∗Π

5

else

6

Sample  υ ←  Z ∗Π

7

Update  k  as  k ← k υ  mod  Π

8

end if

9

Increment  c  as  c ← c + 1

10

if ( c ≥ c max) then  c ←  0





11

Set  L ← q min + ( k − q min) mod  Π

12

Draw a random integer  m $

 ← [0 , M] and set  q ← mΠ +  L

13 until ( q ≤ q max)  and (T( q) = 1)

14 return  q

 q min

 q max

 . . . 

 q

 q

 q

 q

 q

min

min

min

min

min

+

+2

+

+(

 Π

 Π

 MΠ

 M

+1

) Π

Figure 7.1.  Output domain

Parameter  c max controls the distribution of the output primes. In the case of

 c max = 1, a fresh unit  k ∈  Z ∗  is generated for each tested prime candidate. If this Π

unit is selected uniformly at random (e.g. with Algorithm 7.1), the prime  q  returned by Algorithm 7.2 is uniformly distributed on the set of primes in [ q min , q max]

(provided that T is correct in identifying  q  as a prime). 

Larger values for  c max enable various trade-offs running-time/uniformity for

having units in Z ∗ . Several methods are available:

 Π

– The simplest way to update  k  consists of predetermining a fixed unit  U ∈  Z ∗Π

and replacing  k  with  k ← k U  mod  Π (i.e.  υ =  U ). 
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– Write  Π = 2 δΠ  with  δ ≥  0 and  Π  odd. A random unit  u  is first sampled in Z ∗Π  as  u ← ( r 2 +  V ) mod  Π  for a random integer  r $ ← [0 , Π). If  δ = 0, then υ =  u. Otherwise,  u ∈  Z ∗

as:

 Π  is extended as a unit  υ  in Z ∗

 Π





 υ ← u + 2 t + 1  −  lsb( u)  Π  for a random integer  t $

 ← [0 ,  2 δ− 1  −  1] . 

It can be checked that  υ ∈  Z ∗  since

 Π

 υ ≡ u (mod  Π) and  u ∈  Z ∗Π,  υ ≡  1

(mod 2), and  υ ∈ [1 , Π). Next, unit  k ∈  Z ∗  is updated as another unit as

 Π

 k ∈  Z ∗Π

 k ← k υ  mod  Π. 

The second method offers the advantage of being probabilistic. The output

distribution for the resulting primes is expected to be statistically closer to the

uniform distribution. Note also that the two methods can be combined. 

7.4.1.  Probable primes

The choice of function T dictates the type of primes that are generated. For

probabilistic tests T, numbers that pass the test are called  probable primes  or

 pseudoprimes  as there is a nonzero probability that a composite number is falsely

classified as prime. An example of such a function T is Fermat’s test: T( q) = 1 if

 aq− 1  ≡  1 (mod  q) for some random base  a >  1. Miller–Rabin is usually preferred as it is more discriminative. The Miller–Rabin test writes (odd) prime candidate  q  as q = 2 Dq + 1 with  q  odd and returns T( q) = 1 if for some random base  a >  1, it holds that

1)  aq ≡  1 (mod  q); 

2)  a 2 dq ≡ − 1 (mod  q) for some 0  ≤ d < D. 

Let  P ( n, t) denote the probability that an  n-bit odd integer is composite if it successfully passes  t  iterations of the Miller–Rabin test. It can be shown that

 √

 P ( n,  1)  ≤ n 2 42 − n  for all  n ≥  2, and  P ( n, t)  ≤  41 −tP ( n,  1) /(1  − P ( n,  1)) for every  n ≥  2,  t ≥  2. Stronger estimates for  P ( n, t) are provided in the next table. 

Hence, by defining function T as the repetition of Miller–Rabin with  t  random

bases  a, an odd composite  n-bit integer  q  will be incorrectly declared prime with probability at most  P ( n, t). From Table 7.1, it turns out that  P ( n, t) is already  <  2 − 80

with  t = 2 Miller–Rabin trials for prime candidates of bit-length  n ≥  600. 

The Miller–Rabin test can also be coupled with the Lucas test. 

7.4.2.  Provable primes

Deterministic tests T guarantee that the tested number is prime. They are however

not truly practical. An alternative is to rely on methods derived from Pocklington’s
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criterion. Unlike the Fermat’s or Miller–Rabin tests, those methods provide sufficient

conditions for primality. This is exemplified by the following proposition. 

 n\t  1

2

3

4

5

6

7

8

9

10

100

5

14 20 25

29

33

36

39

41

44

150

8

20 28 34

39

43

47

51

54

57

200 11 25 34 41

47

52

57

61

65

69

250 14 29 39 47

54

60

65

70

75

79

300 19 33 44 53

60

67

73

78

83

88

350 28 38 48 58

66

73

80

86

91

97

400 37 46 55 63

72

80

87

93

99

105

450 46 54 62 70

78

85

93

100 106 112

500 56 63 70 78

85

92

99

106 113 119

550 65 72 79 86

93

100 107 113 119 126

600 75 82 88 95 102 108 115 121 127 133

Table 7.1.  Lower bounds for −  log2  P ( n, t)

PROPOSITION 7.3.– Let  p >  2 be an odd prime and let  q = 2 rp + 1 for some positive integer  r ≤ p 2 +  p + 1. If there exists an integer  a  such that

(i)  aq− 1  ≡  1 (mod  q) and  a 2 r ≡  1 (mod  q) (ii)  r =  up +  s  for some 1  ≤ s < p  and  u  odd

then  q  is prime. 

 Proof.–  Suppose that  q = 2 rp + 1 is composite. Hence, it must have an odd prime divisor  q 0 and so can be written as  q =  q 0  q 1 where  q 1 =  q/q 0 is odd. Assume that aq− 1  ≡  1 (mod  q) and  a 2 r ≡  1 (mod  q) for some integer  a. Define  b =  a 2 r  mod q 0. From  q 0  | q, this yields  bp ≡  1 (mod  q 0) with  b ≡  1 (mod  q 0). Furthermore, since  q 0 is prime, it also holds that  bq 0 − 1  ≡  1 (mod  q 0). Lagrange’s theorem and the primality of  p  imply that  p < q 0  −  1 and in turn that  p | ( q 0  −  1) (see Exercise 4). 

Therefore, prime  q 0 must be of the form  q 0 = 2 xp + 1 for some integer  x ≥  1. 

As a result, co-factor  q 1 satisfies  q 1 =  q  mod ( q 0  −  1) = (2 rp + 1) mod 2 xp =

2( r  mod  x) p + 1. Letting  y =  r  mod  x, the product  q =  q 0  q 1 then leads to  q =

2(2 xy p +  x +  y) p + 1 and so  r = (2 xy) p + ( x +  y), which contradicts the parity of u := 2 xy. Note that  s :=  x +  y  verifies 1  ≤ s < p  since  x +  y =  x + ( r  mod  x)  < 2 x = ( q 0  −  1) /p  and  q 0  ≤ √q ≤

2( p 2 +  p + 1) p + 1  < p 2 for  p >  2. 



This proposition suggests a constructive method for generating (nonuniform)

provable primes. We start with a prime  p  and – provided that conditions (i) and (ii) are met – obtains a prime  q = 2( up +  s) p + 1 that is about two to three times longer. 

Iterating the process eventually leads to a prime of the desired length. The initial
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prime can be chosen as any integer in the range [2 ,  232) that successfully passes the Miller–Rabin test with the three bases (2 ,  3 ,  61). All of these integers are known to be prime. 

In order to increase the likelihood that  q = 2 rp + 1 with  r =  up +  s  verifies conditions (i) and (ii) and so is actually a prime, it is constructed in a way to be

automatically co-prime with many small primes. Specifically, let  Π ≤ p 2 +  p + 1

be an odd smooth integer, with  p   Π. If  r ≡ k −  1

2

(mod  Π) for some  k $

 ←

 p

Z ∗Π, it follows that  q  mod 2 = 1 and  q ≡  2 pk (mod  Π), and thus gcd( q,  2 Π) =

gcd( q, Π) = 1 since 2 pk ∈  Z ∗Π. 

7.5. RSA key generation

An RSA modulus  N =  pq  is the product of two large prime numbers  p  and  q. If

   denotes the bit-length of  N , then, for some 1  <  0  < ,  p  must lie in the range 2 − 0 −  12  ,  2 − 0 and  q  in the range

2  0 −  12  ,  2  0 , so that 2 − 1  < N =  pq <  2 . 

For security reasons, so-called balanced moduli are generally preferred, which means

  = 2  0. This corresponds to primes  p  and  q  being drawn at random in the interval





[ q min , q max] where  q min = 2  0 −  12 and  q max = 2  0. Furthermore, for an RSA modulus N =  pq, the primes  p  and  q  being generated must verify the condition gcd( p− 1 , e) =

gcd( q −  1 , e) = 1 for a selected public exponent  e. Matching private exponent  d  is given by an integer that is congruent to  e− 1 modulo lcm( p −  1 , q −  1). In practice,  d  is often set to  d ← e− 1 mod ( p −  1)( q −  1). 

NOTE.– A reminiscence of history is the use of so-called safe, strong, or X9.31 RSA

primes. The reason for using such primes was to prevent certain classes of attacks. 

In particular, they were introduced to better resist cycling attacks and the ( p −  1) and ( p + 1) factoring attacks. Cyclic attacks were shown to have a negligible chance of succeeding, whatever the form of the RSA primes. The ( p −  1) and ( p + 1) factoring attacks are now obsolete owing to new factorization algorithms, particularly

the elliptic curve method (ECM). It is therefore recommended to generate random

RSA primes rather than special primes. 

By construction, the prime generation algorithms of section 7.4 output a prime

candidate  q ∈ [ q min , q max] such that  q ≡ k (mod  Π) for some random unit  k ∈  Z ∗ . 

 Π



The product of primes,  Π =

 i pi, is chosen so as to minimize the ratio  ϕ( Π ) /Π

subject to  Π < q max  − q min. Euler’s totient function  ϕ( Π) represents the group order (i.e. the number of elements) of Z ∗ . The minimality of

 Π

 ϕ( Π) /Π  lowers the

expected number of trials before a prime is identified. This is achieved by ensuring

that  Π  contains a maximum number of distinct primes and that these primes are as
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small as possible. For example, for the generation of 1 ,  024-bit RSA primes, we can select  Π = 2  ·  3  ·  5  · · ·  739 as the product of the first 131 primes, namely: Π 1024 = 0x 0590 bff0 e1e4 97d0 1ec5 6374 d841 7ae5

706f dfbe 2424 0db0 fb6a d6fa d3f4 9804

3820 f879 440d fd1f 4e10 1dea eddf f905

f362 1eae a0ca d6ef 2962 d5fa e132 dd23

5ded c15a 2bd2 360e 3593 649b 3164 675b

0ddc 0aaa 31cb 1cac c71d e317 58b8 e996

6b77 6dcb b5c4 f07b a381 9cfb d89f 8e1c

a30d a823 be6c 6d1e 0c35 46c0 23e6 02f2

Companion parameters are Carmichael’s value  λ( Π 1024) and quadratic

non-residue  −V 1024 modulo  Π 1024 / 2. We have  λ( Π 1024) = 0x0009 220e 37a8

2cbb 6007 a9de e07d e852 b1fd 11d7 5946 8826 4f7f 40e7 1355 f33b 7ebf c100. 

Observe that the bit-length of  λ( Π 1024) is much smaller than that of  Π 1024:

 |λ( Π 1024) | 2 = 276 while  |Π 1024 | 2 = 1019. For  V 1024, we can take: V 1024 = 0x 005b fdb1 a66b f64b f262 42fc b803 1844

ca3a 2182 ad42 294e 294d 40d7 61e8 552f

2051 4fae 12e2 e3ae 6e1d e402 4b68 4d98

5548 1fd9 c208 fd89 839c ff93 37a3 f8f9

2c16 6dff d1a7 ce2f 3b14 2ca0 8121 68f2

aaa6 e720 a340 2108 7bb9 71a3 5edc 796d

ed2f ef6d 1651 a9bc 6a23 4693 254b 7b2f

1cd1 2053 c4e6 6755 c506 8c07 479c 3310

The private operation in RSA (i.e. decryption or signature generation) can be sped

up through Chinese remaindering: the private operation is carried out modulo each

prime factor of modulus  N  and these partial results are then recombined. In more

detail, if  N =  pq  and  d  denotes the private exponent, we define:

 dp =  d  mod ( p −  1)  , 

 dq =  d  mod ( q −  1)  , 

 iq =  q− 1 mod  p





and, given  C, computes  Cd  mod  N  as CRT( xp, xq) :=  xq +  q iq( xp − xq) mod  p from  xp ← Cdp  mod  p  and  xq ← Cdq  mod  q. This mode of operation is referred to as  CRT mode  and the private parameters are  {p, q, dp, dq, iq}. Compared to the standard (i.e. non-CRT) mode, the computation time is expected to be quartered. 

It remains to demonstrate (i) how to ensure that primes  p  and  q  verify the additional constraint  e  ( p −  1) and  e  ( q −  1), (ii) how to get private key  d  and
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(iii) how to get CRT parameters ( dp, dq, iq).  The rest of this section assumes that public exponent e is a (small) prime as is usually required in the vast majority

 of embedded implementations.  The most frequently used public exponent is

 e = 216 + 1. Other popular exponents are  e = 3 and  e = 17. 

The conditions  e  ( p −  1) and  e  ( q −  1) when  e  is a small prime translate into p, q ≡  1 (mod  e). As a reminder, prime  p  is constructed in a way of being congruent to some unit  k  modulo  Π, and similarly for prime  q. There are two cases to consider: 1)  e | Π: in this case, the candidate unit  k  is initialized as  k ← k 0 +  er (mod  Π) $

with  k 0  ← [2 , . . . , e −  1] so that  k ≡ k 0  ≡  0 ,  1 (mod  e). In doing so, the output of Algorithm 7.1 is a unit  k ∈  Z ∗  such that

 Π

 k ≡  1 (mod  e). 

2)  e   Π: a verification step has then to be explicitly added on the prime

candidates, namely, are  p, q ≡  1 (mod  e)? When applicable, this verification can be done before or after (pseudo)primality test T is applied. 

Given public exponent  e, corresponding private exponent  d  can be set as any value that is congruent to  e− 1 modulo  λ( N ). In order to avoid computing gcd( p −  1 , q −  1), d  is usually defined as  d =  e− 1 mod  ϕ( N ) where  ϕ( N ) = ( p −  1)( q −  1). Observe that such a  d ≡ e− 1 (mod  λ( N )) since  ϕ( N ) = gcd( p −  1 , q −  1)  · λ( N )  ∝ λ( N ). 

Modular inverses can be obtained via Euclid’s algorithm, which essentially amounts

to compute a GCD. A method better suited to embedded platforms relies on Arazi’s

inversion formula. It enables expressing the inverse of  e  modulo  f  as a function of the inverse of  f  modulo  e. This is stated in the next proposition. 

PROPOSITION 7.4.– Let  e  and  f  be two positive integers. If gcd( e, f ) = 1 then 1 +  f ( −f − 1 mod  e)

 e− 1 mod  f =

 . 

[7.3]

 e

 Proof.–  Define  U =  e( e− 1 mod  f ) +  f ( f − 1 mod  e). Since  U ≡  1 (mod  e) and U ≡  1 (mod  f ), it follows that  U ≡  1 (mod  ef ). Hence, noting that 1  < e +  f ≤



 U <  2 ef , this implies that  U = 1 +  ef  or, equivalently, that  e− 1 mod  f = 1 (1 +







 e

 ef )  − f ( f− 1 mod  e) = 1 1 +  f ( −f − 1 mod  e) , as desired. 



 e

Taking  f := ( p −  1)( q −  1), a valid value for private exponent  d  is therefore given by  d = 1+ f( −fe− 2 mod  e) . Note that this requires  e  being prime. From  d, private e

CRT exponents  dp  and  dq  are then directly obtained as  dp =  d  mod ( p −  1) and dq =  d  mod ( q −  1). Since  p  is prime, CRT parameter  iq  can be computed by an application of Fermat Little theorem as  iq =  qp− 2 mod  p. 
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7.6. Exercises

1) Let  w  pairwise co-prime integers  Π 1 , . . . , Πw  with  Πi ≥  2 and let  Π =

 w

 i=1  Πi. Let also integers  i =  Π/Πi. Given  w  integers  k 1 , . . . , kw  with  ki ∈  Z ∗

 Πi

(viewed as elements in [1 , Πi −  1]), define:

 K 0 =  k 1





 . 

 K

 j

 j =  Πj+1 Kj− 1 +

 i=1  Πi kj+1

for 1  ≤ j ≤ w −  1

Prove that gcd( Kw− 1 , Π) = 1. 

2) Factoring-based constructs typically make use of RSA moduli  N =  pq  with

primes  p  and  q  that are congruent to 3 modulo 4. This is, for example, the case in the Fiat–Shamir identification protocol. Supposing that candidate prime  p (respectively,  q) always remains co-prime with some unit modulo  Π, how to tweak the unit generation

algorithm (Algorithm 7.1) so that the condition  p ≡  3 (mod 4) (respectively,  q ≡  3

(mod 4)) is automatically satisfied? Can this be extended to support Rabin–Williams

moduli, that is, moduli  N =  pq  with  p ≡  3 (mod 8) and  q ≡  7 (mod 8)? 

3) A DSA prime is an  -bit prime  q  of the form  q = 1+ pr  where  p  is also a prime. 

Given  p  and  , the goal is to find an integer  r  such that 1 +  pr  is a prime in [2 ,  2  −  1]. 

Let  Π  denote a product of prime numbers with  p   Π. Remark that if  r ≡ − 1 /p +  k (mod  Π) for some unit  k ∈  Z ∗ , then gcd(1 +

 Π

 pr, Π) = 1. Use this observation to

design an efficient generator for DSA primes. 

4) The order of an element  b ∈  Z ∗q  is the smallest positive integer  n  such that bn ≡  1 (mod  q). The order of a group is the number of its elements. Lagrange’s theorem says that the order of an element always divides the order of its group. Let  q

be a prime and  b ∈  Z ∗q  with  b ≡  1 (mod  q). Prove that  bp ≡  1 (mod  q) for some prime  p  implies that  p | ( q −  1). 

5) Check that for each prime  pi = 2 dividing  Π 1024 (see section 7.5), the

value of  V 1024 is such that  V 1024 mod  pi ∈ { 1 ,  2 ,  5 ,  19 }. Deduce a more compact representation for the pair of parameters ( Π 1024 , V 1024) and apply Exercise 1 for generating units modulo  Π 1024. 

6) Let  N =  pq  be an RSA modulus and let ( e, d) denote the matching pair of public/private RSA exponents. Let also  dp =  d  mod ( p −  1) and  dq =  d  mod ( q −  1). 



 q− 1 −d

Prove that  Cd− 1  ≡ py

 q

 q +  q yp (mod  N ) where  yq =  p( Cp) e− 1

mod  q  and



 p− 1 −d

 y

 p

 p =

 q( Cq) e− 1

mod  p. Use this relation to derive a formula for computing

 Cd  mod  N  from CRT parameters  {p, q, dp, dq} (i.e. without using  iq). Estimate the incurred overhead compared to the usual CRT recombination when the public

exponent is  e = 216 + 1. 
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7) Given an odd integer  D, define the recurrence relation:

 x 0 = 1

 . 

 xn =  xn− 1(2  − Dxn− 1) mod 22 n  for  n ≥  1

Show that  xn =  D− 1 mod 22 n. Explain how this can be used for quickly evaluating the integer division in Arazi’s inversion formula (i.e. the integer division

by  e  in equation [7.3]). 

8) Find a way to reconstruct private exponent  d  from  dp =  d  mod ( p −  1) and dq =  d  mod ( q −  1) without computing gcd( p −  1 , q −  1). 

7.7. Notes and further references

– Section 7.1. An excellent general reference to prime numbers is Crandall and

Pomerance (2005). The RSA cryptosystem (Rivest et al. 1978) is named after its

inventors Rivest, Shamir and Adleman. Widely used RSA padding functions are

OAEP (Bellare and Rogaway 1995) for message encryption and FDH (Bellare and

Rogaway 1993) or PSS (Bellare and Rogaway 1996) for digital signatures. The naïve

prime generator is examined in Brandt and Damgård (1993). Its extension using a set

of a small primes is described in Joye et al. (2000). Studies of RSA keys found in the

wild were conducted in 2012 in two independent works: Heninger et al. (2012); and

Lenstra et al. (2012). Setting the length of the initial seed to twice the security length

associated with the RSA modulus is a NIST recommendation (NIST 2013, 

Appendix B.3.2). Methods for generating numbers from a sequence of random bits

are provided in ISO/IEC (2011). Discussions regarding side-channel attacks can be

found in Aldaya et al. (2019); Bauer et al. (2014); Clavier and Coron (2007); Finke

et al. (2009); Weiser et al. (2018). 

– Section 7.2. ANSI Standard ANSI X9.80-2020 (2020) is a useful reference on

the different (pseudo)primality tests used in public-key cryptography, including for

the RSA cryptosystem. An analysis of their strength under adversarial conditions is

provided in Albrecht et al. (2018). Pocklington’s test appears in Pocklington (1914)

and its elliptic curve variant in Atkin and Morain (1993). The Jacobi sum test is

described in Bosma and van der Hulst (1990). 



– Section 7.3. A CRT sieve for sampling in Z ∗  with

 L

 δi  using the

 Π

 Π =

 i=1  pi

Chinese remainder theorem (CRT) is given in Joye et al. (2000, section 4.1). It

however requires pre-computing and storing a large sequence of constants  {θi} 1 ≤i≤L

where  θ

 δ

 δ

 i ≡  1 (mod  pi i ) and  θi ≡  0 (mod  pj j ) for  j =  i. The generation of units as per Algorithm 7.1 is presented in Joye and Paillier (2006, Figure 2). 

Advantageously, it only takes  Π  and  λ( Π) as pre-computed inputs. The method

 Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science Univer , Wiley Online Library on [03/03/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Prime Number Generation and RSA Keys

145

building units from a quadratic non-residue  −V  modulo  Π  is presented in Hamburg et al. (2021, section 2.3). The pre-computed inputs in this case are  Π  and  V . 

– Section 7.4. The generation of prime numbers is covered in part in several

cryptographic standards, including ISO/IEC 8032:2020 (ISO/IEC 2020) ANSI

X9.80-2020 (ANSI 2020) and IEEE Standard 1363-2000 (IEEE 2000). The general

presentation of Algorithm 7.2 is adapted from Joye and Paillier (2006, Figure 2). The

main difference is the full coverage of the interval [ q min , q max] for prime candidates  q. 

Rejection sampling is applied in the case  q > q max. As presented, Algorithm 7.2 also encompasses the prime generation algorithm given in Hamburg et al. (2021, 

Algorithm 5). See also Fouque and Tibouchi (2014) for a discussion on the output

distribution. The failure probability of the Miller–Rabin test Rabin (1980) is

discussed in Beauchemin et al. (1988); and Landrock (1999). Explicit functions that

bound  P ( n, t) are provided in Damgård et al. (1993). Table 7.1 is reproduced from Damgård et al. (1993, Table 2). The Lucas test is presented in Baillie and Wagstaff

(1980). The main proposition in section 7.4.2 is a slight adaptation from (Landrock

1999, Theorem 1). It simplifies a special case of (Brillhart et al. 2002, Theorem 11, 

section III.B.2) used in Clavier et al. (2012) that requires an extra GCD computation. 

The corresponding prime generation methods reduce the number of iterations

compared to earlier algorithms based on Pocklington’s criterion Maurer (1995); 

Mihailescu (1994) (see also Brandt et al. 1993, section 3). Choices of Miller–Rabin

bases that are necessary for proving primality up to a certain bound are given

in Jaeschk (1993, section 5). 

– Section 7.5. Good sources of practical information regarding the generation of

RSA parameters are Joye and Paillier (2006); Joye et al. (2000). Arguments against the

use of special RSA primes are clarified in Rivest and Silverman (2001). Lattice-based

attacks against RSA keys using random primes with too few entropy are reported

in Nemec et al. (2017). A frequency analysis of a large collection of public RSA

exponents appears in Lenstra et al. (2012). Insider attacks against RSA key generation

and mitigation measures are surveyed in Young (2004). Arazi’s formula is named

after Arazi who was the first to implement fast modular inversions of RSA exponents

on a crypto-coprocessor. Its application to (small) prime exponents  e  is described

in Fischer and Seifert (2002). Generalizations to arbitrary exponents  e  and various implementation tricks are detailed in Joye and Paillier (2003). 

– Section 7.6:



1) Constructing a unit modulo  Π =

 Πi  for pairwise co-prime moduli  Πi  can

be done easily from units modulo each  Πi  using the CRT. The improved method that

do not require pre-computing CRT constants is described in Hamburg et al. (2021, 

Algorithm 3). 

2) This is an easy adaptation of Algorithm 7.1. The trick is to include 4 as a factor

of  Π. Variable  k  is initialized with  k ←  3 + 4 r  for some  r $

 ← [0 , Π/ 4). Note that
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 k ∈ [1 , Π) and  k ≡  3 (mod 4). Rabin–Williams moduli are supported analogously by including 8 as a factor of  Π  and initializing  k  accordingly. 

3) An algorithm for generating DSA primes from units modulo  Π  is presented in

Joye et al. (2000, section 7.1). Algorithms for the generation of safe, strong, and X9.31

RSA primes are also presented therein (see also Joye and Paillier 2006, section 4.2). 

4) For a prime  q, the order of Z ∗q  is  q −  1. Let  n  denote the order of  b ∈  Z ∗q, b ≡  1 (mod  q). Lagrange’s theorem implies that  n | ( q −  1) and  n | p  since  bn ≡  1

(mod  q). As  n  cannot be 1, it follows that  n =  p  and thereby  p | ( q −  1). 

5) Various compact representations for  V (including CRT-based representations)

are discussed in Hamburg et al. (2021, Appendix B). 

6) The inversion-free CRT technique is demonstrated in Hamburg et al. (2021, 

section 3). As presented, it further includes a randomness step to blind the input:

 C ← Cr  mod  N  with  r $

 ←  Z ∗  and

 N

 Cd  mod  N =  C( pyq +  qyp) mod  N  where



 q− 1 −d



 p− 1 −d

 y ←

 q

 ←

 p

 q

 pr( Cp) e− 1

mod  q  and  yp

 qr( Cq) e− 1

mod  p. 

7) The algorithm for computing  D− 1 mod 22 n  is presented in Joye and Paillier (2003, Figure 1) (note however that there is a typo: the modulus should read 22 i ). 

Another algorithm can be found in Dussé and Kaliski (1991, section 3.2). As an

application to equation [7.3] for an odd integer  e, since  d :=  e− 1 mod  f <  22 F

where  F :=   log2 log2  f,  d  can equivalently be obtained as  d ← M · e− 1 mod 22 F

with  M = (1 +  f ( −f − 1 mod  e)) mod 22 F . 

8) Let ˆ

 d :=  −( edp− 1)( edq− 1)+1 . It is easily verified that  e  ˆ

 d ≡  1 (mod ( p −  1))

 e

and  e  ˆ

 d ≡  1 (mod ( q −  1)). Hence, ˆ

 d  mod ( p −  1)( q −  1) is a valid value for private

exponent  d  in standard mode. 
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8.1. Introduction

Discrete logarithm-based signature schemes, such as Schnorr signatures and

elliptic curve digital signature algorithm (ECDSA) (Figure 8.1), are commonly used

in today’s real-world systems along with RSA. The signature generation algorithms

in these schemes crucially rely on some ephemeral randomness, sometimes referred

to as the  nonce. 

Clearly, the one-time randomness  k  in Figure 8.1 must not be reused, as

otherwise, two signatures generated from the same nonce immediately leak a secret

signing key. For example, given two Schnorr signatures ( h 1 , z 1) and ( h 2 , z 2) on distinct

messages, 

the

secret

 x  can be easily found by computing

( z 1  − z 2)  · ( h 1  − h 2) − 1 mod  q. The reader may check that the same observation holds for ECDSA too. Nonce reuse has been a common vulnerability in practical

implementations of discrete logarithm-based schemes: some high-profile attack

examples include the extraction of leading technology company’s ECDSA secret key

for signing gaming software, or the stealth of Bitcoins associated with wallets that

signed multiple transactions with repeated randomness. 

1 Work partially done while Akira Takahashi was affiliated with University of Edinburgh. 
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Algorithm 8.1. EC Schnorr signing

Algorithm 8.2. ECDSA signing

Require:  x ∈  Z q, msg  ∈ { 0 ,  1 }∗

Require:  x ∈  Z q, msg  ∈ { 0 ,  1 }∗

Ensure: ( h, z)

Ensure: ( r, s)

1:  k $

 ←  Z q

1:  k $

 ←  Z q

2:  R := [ k] G

2: ( rx, ry) := [ k] G


3:  h := H(msg , R)

3:  r :=  rx  mod  q

4:  z :=  k +  h · x  mod  q

4:  s := (H(msg) +  r · x)  · k− 1 mod  q

5: return ( h, z)

5: return ( r, s)

Figure 8.1.  Comparison of two elliptic curve-based signature generation algorithms. In both schemes, x ∈  Z q is a secret key,  msg  ∈ { 0 ,  1 }∗ is a message to be signed, G is a base point generating a subgroup of order q, and  H :  { 0 ,  1 }∗ →  Z q is a cryptographic hash function

However, 

despite what their name may suggest, 

“nonces” in discrete

logarithm-based signatures are much more sensitive than what is expected of a

number only used once. If the randomness  k  fails to follow the uniform distribution in Z q, or if it is partially leaked, an attacker can completely bypass the discrete

logarithm problem and recover the secret signing key by sufficiently collecting many

signatures with this additional information. 

Such randomness failures can occur in many different ways in real life. The

majority of vulnerabilities pointed out in academic papers lurk in  nonconstant time

implementations of whatever operations involving  k, such as scalar multiplication

[ k] G  or field inversion  k− 1 mod  q  in case of ECDSA. More advanced  physical fault analysis  may also allow an attacker to artificially inject a fault into the base point  G, such that scalar multiplication happens on a much smaller subgroup: for example, if

a faulty base point ˜

 G  has order 2   q, the fault attacker can learn the    least

significant bits of  k  by checking the value of [ k] ˜

 G. Randomness bias has also been

caused by simple  implementation mistakes, including but not limited to a number

of Bitcoin wallets producing secp256k1 ECDSA signatures using only 64-bit

randomness Breitner and Heninger (2019), or the DSA implementation of the

wolfSSL library fixing two consecutive bits of  k  to “11” for unknown reasons2. 

The goal of this chapter is to introduce practical attack methods exploiting

randomness failures of Schnorr and ECDSA. It turns out that a small amount of

leakage or bias of the one-time randomness  k  in both schemes allows an attacker to

translate the key recovery problem to the so-called  hidden number problem (HNP). 

2 CVE-2019-14317 discovered by Jàn Jančàr. The vulnerability was fixed in v4.2.0. See also

https://github.com/wolfSSL/wolfssl/releases/tag/v4.2.0-stable. 

[image: Image 6]

[image: Image 7]

[image: Image 8]

[image: Image 9]

[image: Image 10]

[image: Image 11]

Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science Univer , Wiley Online Library on [03/03/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Nonce Generation for Discrete Logarithm-Based Signatures

153

In essense, the class of attacks described in this chapter follows the blueprint

depicted in Figure 8.2. In section 8.2, we describe how to translate signatures with

leaky or biased nonces to an instance of the HNP. We then go over two distinct

approaches to solve the HNP:  lattice attack (section 8.3) and  Fourier transform

 attack (section 8.4). Finally, section 8.5 briefly discusses how to protect practical implementations from these devastating attacks. 

Side-channel leakage

Lattice attack (section 8.3)

Hidden number problem (section 8.2)

Biased randomness

Fourier transform (section 8.4)

Figure 8.2.  Overview of key recovery attacks against Schnorr and ECDSA

8.2. The hidden number problem and randomness failures

Let us first introduce the problem closely related to a key recovery of Schnorr and

ECDSA. 

DEFINITION 8.1.– (Hidden Number Problem (HNP q,,n)).– Let  q  be a prime and

 x ∈  Z q  be a secret. Given uniformly random  hi ∈  Z q  and an approximation  zi  of hi · x  such that  |hi · x − zi|q < q/ 2   for  i = 1 , . . . , n, find  x. Here,  |a|q  denotes the unique integer in  { 0 ,  1 , . . . , q −  1 }  such that  a ≡ |a|q  mod  q. 

8.2.1.  From Schnorr to HNP

The reader may notice the similarity between Schnorr and the above formulation

of HNP. In fact, it is rather straightforward to translate Schnorr with bad randomness

to an instance of HNP. Assume for simplicity that the modulus  q  is close to a power of two 2 m (which is usually the case in elliptic curve-based instantiations). Then, in a secure implementation of Schnorr, the randomness  k  should be an (almost) uniform

 m-bit integer. Suppose that, instead, the top    bits of  k  are fixed to a sequence of zeros. 

Due to the definition of  z  in Schnorr (Algorithm 8.1, Line 4), we have  z − h · x ≡

 k  mod  q, and hence  |z − h · x|q =  k <  2 m− ≈ q/ 2 . This expresses ( −h, −z) as a sample for the HNP q,  problem associated with the secret  x. A collection of  n Schorr signatures sampled with nonces that have their top    bits set to zero can thus be converted to an instance of HNP q,,n  with the signing key as the secret (and solving the HNP therefore breaks the scheme). 
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Schnorr signatures with randomness  leakage  can also be turned into HNP samples

with a simple modification. Suppose we have a signature ( h, z) with side-channel

information 0  ≤ k

 < 

leak

2   representing the    most significant bits (MSBs) of the

nonce  k. In other words,  k =  k leak  ·  2 m− +  k  for some  k <  2 m−. Then, we have: z − k leak  ·  2 m− − h · x ≡ k  mod  q





and thus ( z − k

 < 

leak  ·  2 m−)  − h · x q

2 m− ≈ q/ 2 . Hence, ( −h, −z +  k leak  ·  2 m−)

can be seen as an HNP sample. 

If  k leak represents the    least significant bits (LSBs) of  k  instead of the MSBs, then we can “shift” the cleared bit position to the top and obtain a similar result as follows. 

Since it holds that ( z − k leak)  ·  2 − =  k + 2 − · h · x  mod  q, we can now treat ( − 2 − · h  mod  q, ( −z +  k leak)  ·  2 −  mod  q) as an HNP sample as well. 

If the leakage information is on the middle bits of  k, the conversion to an HNP

instance is a bit more involved, but still possible. We refer the reader to further

references at the end of this chapter for details. 

8.2.2.  From ECDSA to HNP

Although an ECDSA signature pair ( r, s) satisfies a slightly more complex

equation, we can essentially turn it into a “Schnorr form” with additional

preprocessing. By rearranging the equation of Algorithm 8.2 (Line 4), we get:

 k = H(msg)  · s− 1 +  r · s− 1  · x  mod  q. 

[8.1]

Then redefining  h :=  −r · s− 1 and  z := H(msg)  · s− 1 we obtain the equation equivalent to Algorithm 8.1 (Line 4) of Schnorr and we can therefore recast ECDSA

with leaky/biased  k  as an HNP sample just as above. Although the distribution of

 −r · s− 1 is not perfectly uniform in Z q, this will not impact the efficacy of the attacks that we will review in the following. 

8.3. Lattice attacks

The best known attack on the hidden number problem (and by the

transformations described in the previous sections, on discrete logarithm-based

signatures with randomness failures) is most likely based on lattice reduction: it

expresses the HNP as a so-called bounded distance decoding problem in a lattice. It

was originally devised by Howgrave-Graham and Smart, and refined, improved and

generalized in a number of papers afterwards. This section gives an overview of this

attack, as well as some references to more recent work on this topic. 
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8.3.1.  Lattice basics

For the purposes of this chapter, a  lattice  will be defined as a subgroup of the

additive group Z n  for some  n ≥  0, endowed with the standard Euclidean norm



  ( x 1 , . . . , xn)   =

 x 21 +  · · · +  x 2 n. For any family of linearly independent vectors b1 , . . . , b m  of Z n, the set:





 m



 L(b1 , . . . , b m) =

 cib i :  ci ∈  Z

 i=1

is a lattice, and conversely, any lattice  L ⊂  Z n  can be put in that form for some vectors b1 , . . . , b m. In that case, the family (b1 , . . . , b m) is called a  basis  of  L. We can then represent the lattice  L  by the  m × n  matrix B whose rows are formed by the vectors b i  and write  L =  L(B). 

A given lattice  L  can infinitely have many distinct bases, but they all have the

same cardinality  m ≤ n, called the  rank  of  L. In this chapter, we will only consider full-rank  lattices, whose rank  m  is equal to  n, the dimension of the ambient space. For a full-rank lattice  L  with basis matrix B, we define the volume of  L  as the quantity vol( L) =  |  det(B) |, which does not depend on the choice of B. 

The smallest Euclidean norm of a nonzero vector in  L  is called the first minimum

of  L  and denoted by  λ 1( L). For a “random”  n-dimensional lattice (for a natural distribution on lattices that is not important for our purposes), Ajtai proved that with

high probability:

 n

 λ 1( L)  ≈

2 πe  vol( L)1 /n. 

[8.2]

It is common to analyze lattice problems by heuristically assuming that the

approximation above holds for a given lattice  L, even if that lattice is not random. 

This is a consequence of the more general  Gaussian heuristic. 

There are many computational problems related to lattices. The best-known one is

the shortest vector problem (SVP for short): given a lattice  L, find a vector v  ∈ L

such that   v   =  λ 1( L). Using lattice reduction algorithms like BKZ, it can typically be solved exactly in practice for lattices of relatively small dimension  n (say up to about  n = 100), and approximately within good approximation factors for  n  below a few hundreds. 

The lattice problem with the closest relationship to the HNP is  bounded distance

 decoding (BDD): given a lattice  L  and a target vector v in the ambient space and a distance bound  β, find a lattice point u  ∈ L  such that   u  − v   ≤ β. When β < λ 1( L) / 2, the triangular inequality shows that the solution u is unique if it exists. 
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If  β  is small compared to  λ 1( L), the problem is tractable in practice for lattice dimensions similar to SVP (e.g. applying Kannan’s embedding technique sketched at

the end of the next section). 

8.3.2.  Expressing the HNP as a lattice problem

Consider an instance of HNP q,,n, given by  n  pairs ( hi, zi) such that  |hi · x −

 zi|q < q/ 2   for some secret  x ∈  Z q. For each  i, let  bi =  |hi · x − zi|q. Since hi · x − zi ≡ bi  mod  q, there exists an integer  ci  such that  hi · x − zi +  ci · q =  bi. In particular, given the bound on  bi, we can write:

0  ≤ hi · x − zi +  ci · q < q/ 2 

 −q/ 2 +1  ≤ hi · x − zi − q/ 2 +1 +  ci · q < q/ 2 +1

 −q ≤  2 +1  · ( hi · x +  ci · q)  −  2 +1  · zi − q < q. 

Write  ui = 2 +1( hi · x +  ci · q) and  vi = 2 +1  · zi +  q, so that  |ui − vi| ≤ q  for all  i  by the above. Then, consider the lattice  L  generated by the rows of the following ( n + 1)  × ( n + 1) integer matrix:

⎡

⎤

2 +1  · q

0

 · · ·

0

0

⎢

⎢

0

2 +1  · q

0

0⎥

⎥

B

⎢

⎥

= ⎢

.. 

. . 

..  . 

⎢

. 

. 

. ⎥

[8.3]

⎣

⎥

0

0

2 +1  · q  0⎦

2 +1  · h 1 2 +1  · h 2  · · ·  2 +1  · hn  1

Then the so-called  hidden vector u = ( c 1 , . . . , cn, x)  · B = ( u 1 , . . . , un, x) belongs to the lattice  L. Moreover, it is  close  to the known vector v = ( v 1 , . . . , vn,  0), in the sense that the Euclidean norm   u  − v    satisfies:





 √

  u  − v   =  |u 1  − v 1 | 2 +  · · · +  |un − vn| 2 +  x 2  ≤ ( n + 1) q 2 =  q n + 1 . 

We can be more precise: in the HNP, each difference  ui − vi  is essentially uniform

in [ −q, q) (and  x  uniform in [0 , q)), so that the expectation of   u  − v   2 becomes

 ≈ ( n+1) ·q 2 / 3, and standard results on concentration show that   u −v   2 concentrates rapidly around that value as  n  grows. 

As a result, recovering the hidden vector u (which reveals  x  and solves the HNP) from the known vector v becomes a BDD problem with radius  ≈ q ( n + 1) / 3. This is expected to be solvable with lattice reduction when this radius is small compared to

the shortest vector  λ 1( L). Assuming the Gaussian heuristic, as equation [8.2] holds, we have:





 n

 n





 λ

+ 1

+ 1

 n/( n+1)

1( L)  ≈

 |  det(B) | 1 /( n+1) =

 ·  2 +1  · q

 . 

2 πe

2 πe
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Thus, the condition for solvability is as follows:





 n

 n

 q

+ 1  

+ 1

3

2 πe (2 +1  · q) n/( n+1)



 q  2 πe  (2 +1  · q) n/( n+1)

3



 n+1

 qn+1

2 πe

  (2 +1) n · qn

3



 n+1

 q

2 πe

  (2 +1) n

3





 n

 q  2 πe 

3

2 +1

3

2 πe

2 πe







log2  q + log2

 n ·  −  log

 πe/ 6

3

2



 n  log2  q + log2 2 πe/ 3



 . 

  −  log2  πe/ 6

Ignoring the constants in the numerator and denominator, we see that the problem

is expected to be solvable roughly when  n  (log2  q) /, consistent with the intuition that each HNP samples reveals    bits of information about the secret  x, so that (log2  q) /  in total is needed to recover the whole secret. 

To solve the BDD problem concretely, a simple approach is to use Kannan’s

embedding technique: extend the lattice  L  to a new lattice 

 L  one dimension larger, 

with an abnormally short vector corresponding to the difference u  − v. We can, for example, consider the lattice 

 L  generated by the rows of the following matrix:

⎡

⎤

2 +1  · q

0

 · · ·

0

0 0

⎢

⎢

⎥

⎢

⎥

0

2 +1  · q

0

0 0

⎢

⎥

⎢

⎥

. 

. 

. 

⎥



. 

⎢

⎥

B

. 

. 

. 

. 

=

. 

. 

. 

. 

⎢

⎢

⎥

⎢

⎥

0

0

2 +1  · q  0 0

⎢

⎥

⎢

⎥

⎢

⎥

2 +1  · h 1 2 +1  · h 2  · · ·  2 +1  · hn  1 0

⎣

⎥

⎦

 −v 1

 −v 2

 · · ·

 −vn

0  κq

for some constant  κ. Note that the highlighted block corresponds to the basis B

(equation [8.3]) of  L. This lattices contains the vector ( c 1 , . . . , cn, x,  1)  · 

B =



( u 1  − v 1 , . . . , un − vn, x, κq) of norm  ≈ q ( n + 1) / 3 +  κ. If this norm is
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significantly smaller than the estimate for  λ 1( 

 L) given by the Gaussian heuristic, 

then this vector should be the shortest vector with high probability, and if the

dimension is small enough, an algorithm like LLL or BKZ should recover it as the

first vector of a reduced basis for 

 L. 

8.3.3.  Some recent developments

The framework described above has been used essentially as-is in many physical

attacks and randomness failure attacks in the literature. However, some refinements

and generalizations have sometimes been necessary. Here, we give a short overview

of some of these developments. 

8.3.3.1.  Dealing with varying, not perfectly known leakage sizes

One of the most common settings in which this attack applies is the case of

non-constant time scalar multiplication on elliptic curves, where timing information

reveals (albeit imperfectly) the bit length of the nonce  k, and hence the number of

contiguous zero MSBs. This is, for example, the type of side-channel information

that the TPM–FAIL dataset provides. This setting deviates from the HNP model in

two ways: first, not all samples have the same number of known bits of information

(in other words,    varies from one signature to the next); second, since the data are noisy,    is not known with perfect accuracy either (we get, for each signature, some real number ˆ

   essentially given by   +  ν  for some noise distribution  ν). 

There are ways to deal with these differences without modifying the attack. For

example, we can discard most of the samples and keep only those for which ˆ

   is large

enough that we are confident that    is at least 5 (depending on the standard deviation of the noise, this could mean keeping the signatures with ˆ

  ≥  7, and thus only keeping

one signature in 27). 

This approach is somewhat wasteful, however, and may be impractical depending

on how difficult it is to obtain signature samples. Thus, several papers in the literature

have strived to make the best possible use of a dataset like the above, by leveraging

MSB leakages of different bit lengths, and proposing algorithms to best guess the

actual number of zero MSBs from the noisy leakage. The state of the art along these

lines is Minerva by Jančàr et al. (2020). 

8.3.3.2.  Dealing with different rings

Belgarric et al. (2016) considered the application of this lattice attack in

side-channel attacks against Koblitz elliptic curves over fields of characteristic two. 

In that setting, the scalar multiplication is carried out using a so-called  τ -adic

representation for the nonce  k, where  τ  is a certain element in the ring of integers of an imaginary quadratic field (representing the action of the Frobenius endomorphism
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on the Koblitz curve). As a result, the leakage is on the bits of the  τ -adic expansion of  k. 

This setting is still amenable to a lattice attacks very similar to the one above, 

but the lattice construction has to take into account the structure of the ring in which

computations are carried out. 

While Belgarric et al. (2016) focused on Koblitz curves in particular, a unified

treatment of such extensions of the HNP to different rings can be proposed. A

systematic discussion is, for example, provided in Shani’s PhD thesis (Shani 2017). 

8.3.3.3.  Leveraging the knowledge of the public verification key

For the HNP itself, the uniqueness of the solution  x  is not guaranteed if there are not sufficiently many samples. As alluded to above, there is an information-theoretic

lower bound of (log2  q) /  samples to ensure uniqueness, since each sample provides only    bits of information on the secret. With fewer samples than that, we cannot hope to solve the problem. 

Moreover, the analysis we gave of the lattice attack suggests that there is a hard

limit to how small of a bias is tractable using the approach of this section. Indeed, the

solvability condition was given as:



 n >  log2  q + log2

2 πe/ 3



 . 

  −  log2  πe/ 6



This is impossible to achieve if    is smaller than log2

 πe/ 6  ≈  0 .  255 bits (note

that our definition of the HNP still makes complete sense for    an arbitrary positive real number). 

Albrecht and Heninger recently showed how to overcome these theoretical

limitations, at least in principle, in the case of attacks on signature schemes. The

basic observation is that, for discrete logarithm-based signature schemes, there is

 always  a unique, well-defined solution  x  regardless of the number of samples, because the attacker knows the public verification key  gx  associated with  x. 

Moreover, this knowledge can be used within lattice reduction, particularly in

conjunction with lattice sieving. A lattice sieving algorithm will construct many

small vectors in the lattice, and we can use the knowledge of the verification key to

select, among those many candidates, the one that corresponds to the correct  x. This approach turns out to also yield concrete efficiency improvements when applying the

lattice attack to relatively small leakage sizes  . 

In a different direction, Sun et al. (2022) observed that if some bits of the secret

 x  are known, we can easily adjust the lattice construction to take advantage of that
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knowledge and improve the attack. When we can check the validity of a solution using

the public key, this gives rise to an interesting data–time trade-off for the lattice attack: guess some bits of  x  and use them to recover the remaining ones using a smaller

lattice (and hence less data). An interesting feature of this approach is that this reduces

the attack to solving many BDD instances with varying target vectors in the  same

lattice, making it possible to rely on various batch-CVP or CVP-with-preprocessing

techniques to solve them. For example, carrying out an initial lattice reduction on

the original BDD lattice, and then solving all of the BDD instances using Kannan’s

embedding technique, is typically much faster than without the original reduction. 

8.4. Fourier transform attack

Independently of the lattice attack, a completely different approach to the HNP

was proposed by Bleichenbacher in 2000. Bleichenbacher’s method is known to work

more effectively against HNP instances with smaller nonce leakages, such as 1-3-bit

or even  less than  1-bit, meaning that the most significant bit of nonces is known to the attacker with some probability 1  −  . Albeit with much larger input data complexity

compared to the lattice attack, Bleichenbacher’s method has been used in the literature

to break ECDSA, Schnorr and variants with small nonce leakages that seemed hard

to exploit with the Howgrave-Graham–Smart method. This section serves as brief

introduction to Bleichenbacher’s framework, as summarized in Algorithm 8.3. 

Im

Im

Re

Re

(a)  ki’s are uniform in [0 , q)

(b)  ki’s are uniform in [0 , q/ 4)

Figure 8.3.  Behavior of the bias function outputs. Gray arrows indicate input

 vectors. Green arrows are the normalized sum of input vectors. For a color

 version of this figure, see www.iste.co.uk/prouff/cryptography3.zip

8.4.1.  Quantifying bias using discrete Fourier transform

At the heart of Bleichenbacher’s framework lies the so-called  bias function. To get

intuition about how the attack proceeds, assume for a moment the existence of some
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convenient function  f : Z nq → [0 ,  1]  ∩  R, which takes a set of nonces  {ki}ni=1 as input and tells us how much these nonces are biased modulo  q, by returning some real value between 0 and 1. If each  ki  is distributed uniformly and independently in Z q, we have  f ( k 1 , . . . , kn)  ≈  0, and  f( k 1 , . . . , kn)  ≈  1 otherwise. Then we can immediately come up with the following simple “attack” on the HNP: given a set of HNP samples

 {( hi, zi) }ni=1, for each candidate HNP solution  w ∈  Z q, compute the corresponding set of nonces  Kw :=  {ki,w =  zi − hi · w  mod  q}ni=1 and the bias function  f( Kw). 

Return the value of  w  that maximizes the output of bias function as a solution to the HNP. Why does this work? If a candidate  w  does not match the actual solution  x, that is, there exists some Δ  = 0 such that  w =  x + Δ, then the bias function should output a value close to 0: as  hi  samples are uniformly distributed in Z q, we obtain “wrong” 

nonces  ki,w =  zi − hi · ( x + Δ) =  ki − hi ·  Δ mod  q  that are uniform in Z q  no matter how the actual nonces  ki  are biased. By contrast, if  w =  x, then the function f  on input  Kx  should output a value close to 1, assuming that the input nonces are somewhat biased in Z q. Therefore, by observing the  peak  of the bias function, an attacker can distinguish whether their guess of the HNP solution is correct or not. 

Of course, this naïve method is far from practical since it has to exhaustively check

every possible candidate in Z q. But before dealing with this issue, let us first discuss how to instantiate the bias function. The essential idea of Bleichencher’s approach

is to quantify the modular bias of nonce  k  in the form of (inverse) discrete Fourier transform (DFT). 

DEFINITION 8.2.– Let  K  be a random variable over Z q. The  modular bias Bq( K) is defined as:





 Bq( K) = E  e(2 πK/q)i



where E  ·  represents the mean and i is the imaginary unit. Likewise, the  sampled bias  of a set of points  K =  {ki}ni=1 in Z q  is defined by:

 n



 B

1

 q( K) =

 e(2 πki/q)i . 

 n i=1

Note that the sampled bias above outputs a complex number. Thanks to the factor

1 /n, the norm of its output is normalized to 0–1 range. The convenient function

considered above thus can be instantiated as  f ( K) :=  |Bq( K) |. In practice, the sampled biases for  q  different sets  K 1 , . . . , Kq  can be efficiently computed using the fast Fourier transform (FFT), which only takes  O( q  log  q) operations instead of  O( q 2) as required by a naïve way. 

To see why DFT tells us “how much the input nonces are biased”, it is instructive

to look at the output values mapped on the unit circle of complex plane, depicted in

Figure 8.3. If the inputs are uniform in Z q  each “vector”  e(2 πki/q)i contributing to the
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sum has a uniformly random angle, so the summed vector should have relatively small

length. This is not the case anymore once these vectors have biased angles, leading to

the norm close to 1 when summed together. 

It is in fact possible to estimate the norm of the summed vectors depending on how

many of most significant bits are fixed. Suppose    MSBs of every  ki  are fixed to some constant. Then, it is known that the norm of bias  |Bq( K) |  converges to 2 · sin( π/ 2 ) /π

for sufficiently large modulus  q  and number of samples  n. For example, if the first MSB of each  ki  is fixed to a constant bit as in Figure 8.3(b), then the bias is estimated

 √

as  |Bq( K) | ≈  2 2 /π ≈  0 .  9. Moreover, if the  ki’s follow the uniform distribution

 √

over Z q, then the mean of the norm of sampled bias is estimated as 1 / n. This can be easily verified by computing the expected norm of a sum of  n  two-dimensional

vectors with uniformly random angles. 

8.4.2.  Stretching the peak width

8.4.2.1.  Upper-bounding hi values

To avoid performing an exhaustive search in the entire Z q, it would be ideal if we

could stretch the peak width, so that  Bq( Kw) with candidate  w =  x + Δ still shows a distinguishable value for sufficiently small Δ. Recall that for each candidate HNP

secret  w =  x+Δ the corresponding nonce can be denoted as  ki,w =  ki−hi· Δ mod  q, where  ki  is the actual nonce used for generating the  i th signature. Intuitively, if Δ and every  hi  are sufficiently small we can expect  ki,w ≈ ki  and thus  Bq( Kw)  ≈ Bq( Kx) with  Kw =  {ki,w}ni=1. Therefore, by upper-bounding the value of  hi, we may be able to detect the peak of bias even if  w  does not match  x  exactly. 

To see how much the peak width gets stretched let us take a look at how each

vector gets “rotated” due to an error. The sampled bias value for a candidate  w  is: n



 B

1

 q( Kw) =

 e(2 πki/q)i  · e( − 2 πhi Δ /q)i . 

 n

[8.4]

 i=1

Of course, if Δ = 0 ,  the above coincides with the actual bias value  Bq( Kx). 

Recall that multiplication by  e i θ  can be seen as a rotation on the complex plane by an angle  θ. If Δ  = 0, then each vector contributing toward the sum gets rotated by the angle 2 πhi Δ /q  on the circle. Hence, if  hi < L  q  and perturbation from the secret is  | Δ | < q/(4 L), we can observe that the rotation is at most  |θ| < π/ 2. 

Assuming  e(2 πki/q)i have almost the same angles, it holds that the rotated vectors are still concentrated on the half of the circle, implying their sum still shows a value close

to the peak. On the other hand, if the angle exceeds  π/ 2, there will be vectors going toward opposite directions and thus they start canceling out. Therefore, by computing

the bias for every  q/(2 L)th secret candidate in [0 , q −  1), we should be able to observe the peak value. In practice, we can experimentally show checking every  q/L th value

[image: Image 23]

[image: Image 24]

[image: Image 25]

Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science Univer , Wiley Online Library on [03/03/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Nonce Generation for Discrete Logarithm-Based Signatures

163

is sufficient to find the peak, that is, for  j = 1 , . . . , L, let  wj =  j · q/L. Then the corresponding bias is:

 n



 B

1

 q( Kw ) =

 e(2 πzi/q)i  · e( − 2 πhiwj/q)i

[8.5]

 j

 n i=1⎛

⎞

 L− 1





=

⎝ 1

 e(2 πzi/q)i⎠  ·e( − 2 πtwj/q)i

 n

[8.6]

 t=0

 {i :  hi= t}







 Zt

 L− 1



=

 Zt · e( − 2 πtj/L)i

[8.7]

 t=0

which is exactly the form of inverse DFT. Now a sequence of bias values

 Bq( Kw ) , . . . , B

) can be computed via FFT in time  O( L ·  log  L) and  O( L) 0

 q( KwL− 1

space. Then  wj  leading to the maximum bias value should share its top log  L  bits with the secret  x  since  wj  is within  q/L  distance of  x. Figure 8.4 displays the effect of bounding  hi. 

(a)  hi ≤ q

(b)  hi ≤ q/ 210

Figure 8.4.  Plotted sampled bias |Bq( Kw) | for q ≈  215  and for w ∈ [0 , q) . With a sufficiently small upper bound for hi, we can observe the peak width gets stretched. 

 For a color version of this figure, see www.iste.co.uk/prouff/cryptography3.zip

8.4.2.2.  Small and sparse linear combinations

In practice, the upper-bound  L  should be determined such that computation of FFT

is tractable, for example,  L ≤  238 in the literature. However, HNP samples constructed from actual signatures usually have a significantly larger initial bound on  hi. For

instance, since a secure implementation of Schnorr derives challenge  hi  through a hash function with sufficiently long output, such as SHA-256, just collecting signatures

with  hi <  238 is not a viable option. How can we  reduce  the range of  hi  while
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preserving the peak of nonce bias? The  range reduction  phase is a crucial preliminary step in Bleichenbacher’s framework. This step takes  linear combinations  of input

samples  {( hi, zi) }ni=1 to obtain new samples  {( hi, zi) }n i=1 such that  hi < L  q. 

In this way, we can “stretch” the peak width to  q/L  as observed above. But this

comes at a cost: the peak height decays as we take linear combinations of more

samples. To see why, suppose we take the sum of two samples ( h 1 , z 1) and ( h 2 , z 2), where the corresponding nonces  ki =  zi − hi · x  mod  q  are 2-bit biased, i.e.  ki ∈

[0 , q/ 4). Then the sum ( h, z) = ( h 1 +  h 2 , z 1 +  z 2) satisfies an HNP equation k :=  k 1 +  k 2 =  z − h · x  mod  q. Since  k  may be within [0 , q/ 2), we end up with a new HNP sample with smaller bias. The prior analysis in fact indicates the value of

bias peak decays exponentially: assuming all coefficients in the linear combinations

are restricted to  {− 1 ,  0 ,  1 }, we have  |Bq( K) | ≈ |Bq( K) | Ω, where  K =  {ki}n i=1 is

a set of new nonces constructed via linear combinations of  K =  {ki}ni=1 and Ω is the maximum  L 1-norm of the coefficient vector. Since the noise floor for  n  samples

 √

is approximated by 1 / n, for the decayed peak not to get lost in the noise we must

 √

keep Ω sufficiently small such that 1 / n  |Bq( K) | Ω. All in all, the major technical challenge of Bleichenbacher’s attack is to efficiently find many  small  and  sparse  linear combinations of input samples. 

Algorithm 8.3. Bleichenbacher’s attack framework

Require:

 {( hi, zi) }ni=1 - HNP samples over Z q. 

 n - Number of linear combinations to be found. 

 L - FFT table size. 

Ensure: Most significant bits of the HNP secret  x

1: Range reduction





2: Generate  n  samples  {( hj, zj) }n

 j=1, where ( hj, zj ) = (

 i ωi,j hi, 

 i ωi,j zi) is a

pair of linear combinations with the coefficients  ωi,j ∈ {− 1 ,  0 ,  1 }, such that for j ∈ [1 , n]

1)  Small: 0  ≤ hj < L  and  √



2)  Sparse:  |Bq( K) | Ω j   1 / n  for all  j ∈ [1 , n], where Ω j :=

 i |ωi,j|. 

3: Bias Computation

4:  Z := ( Z 0 , . . . , ZL− 1)  ← (0 , . . . ,  0)

5: for  j = 1 to  n  do

 /q)i

6:

 Zh ← Zh +  e(2 πzj

 j

 j

7: end for



 L− 1

8:

 Bq( Kw )

 ←  FFT( Z), where  w

 j

 j=0

 j =  j · q/L. 





9: Find the value  j  such that  B



 q( Kw ) is maximal. 

 j

10: return most significant log  L  bits of  wj. 
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8.4.2.3.  Recovering the remaining bits

Unlike the lattice attack Bleichenbacher’s method does not recover the entire secret

in one go. However, once the top  β =   log  L  bits of the secret  x  recovering the remaining  α − β  bits is straightforward, where  α =   log  q. Suppose we have found x

 < 

Hi

2 β  such that  x =  x Hi  ·  2 α−β +  x Lo after running Algorithm 8.3, where x < 

Lo

2 α−β  is an unknown lower bit string. Then by rewriting the input HNP samples

as:

 ki =  zi − hi · x =  zi − hi · x Hi  ·  2 α−β





 −hi · x Lo

[8.8]

=˜ zi

we obtain new HNP samples  {( hi, ˜

 zi) }ni=1. Thus, we can repeat essentially the same

procedures to recover the top bits of  x Lo. Note that the search space in the second run is much smaller, because one only needs to check  L  candidate values of secret  x Lo in [0 ,  2 α−β). This means that the range reduction phase from the second run onwards can be carried out much faster since it only needs to find linear combinations with

 hi < L 2. 

8.4.3.  Range reduction algorithms

8.4.3.1.  The sort-and-difference method

To illustrate the effect of range reduction, 

we introduce a simple

sort-and-difference algorithm. Let  S =  {( hi, zi) }ni=1 be a set of input samples with  hi < q. The sort-and-difference with parameter  γ  proceeds as follows: 1) Sort  S =  {( hi, zi) }ni=1 by  hi. Initialize an empty set  S. 

2) For  i = 2 , . . . , n, let ( hi, zi) = ( hi − hi− 1 , zi − zi− 1). If  hi <  2log  q− log  n+ γ, push ( hi, zi) to  S. 

3) Output  S. 

An analysis from order statistics suggests that the above algorithm outputs a

reduced set of samples with  |S| ≈ (1  − e− 2 γ ) n  assuming the input  hi  are uniformly distributed. For instance, by setting  γ = 2, we can expect 98% of the successive

differences to be below the threshold value. We provide an example attack using this

simple method against the parameters in supplementary material. 

8.4.3.2.  More advanced algorithms

Note that the number of samples after running sort-and-difference is bounded by

the number of input signatures  n. Hence, we can only clear at most log  n  bits of  hi per each iteration to keep the number of samples close to  n (which is crucial for

suppressing the noise floor). As this highly impacts a  input data complexity  for a

large modulus  q, a natural question would be how to clear more bits while
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maintaining the sparsity of linear combinations. One approach would be to use lattice

reduction as in the previous section. However, linear combinations constructed via

lattice reduction are not guaranteed to be sparse, and as such, the approach is not

ideal once the available bias is so small that the sparsity condition is more stringent. 

A better approach in that case is to employ variants of the knapsack problem solver. 

An interested reader is encouraged to look at the supplementary Jupyter notebook

to try running more advanced range reduction algorithms. These more involved

algorithms have advantages in that (1) they can clear approximately 3  ·  log  n  bits by composing linear combinations of 4 per each iteration, and (2) they offer much more

flexible time–space-data complexity tradeoffs. The latter in particular favors practical

side-channel attack scenarios because we could minimize the number of input

signatures (that is, data complexity) depending on the computational budgets (that is, 

time and space complexities) available for Bleichenbacher’s attack. We refer the

reader to Aranha et al. (2020a) for detailed tradeoff studies. 

8.5. Preventing randomness failures

As mentioned above, the ephemeral randomness of discrete log signatures is

subject to full key recovery attacks once it slightly deviates from the uniform

distribution. It is therefore paramount to correctly implement a random number

generator (RNG) as discussed in previous Chapter 5 and 6. An alternative solution

would be to entirely avoid the use of RNG: a signer can  deterministically  derive

randomness by hashing the secrete key  x  and msg to an element in [0 , q) as: k := H( x,  msg) . 

[8.9]

The assumption here is that (1) an output of the hash function H nearly follows

the uniform distribution (the so-called  indifferentiability  property) and (2) an attacker cannot predict the value of  x. The deterministic randomness derivation has been

widely adopted in practical systems due to its simplicity. Have we finished? Not yet

if we care about the risk of fault attacks (e.g. see, Volume 1 Part 3). Notice that a

deterministic signer reuses  k  and thus  R := [ k] G  if the same msg is signed. 

A fault attacker  A  can abuse this determinism to reproduce the randomness reuse

attack we looked at in the beginning of the chapter.  A  first obtains a legitimate

signature ( h, z) on msg. Then  A  asks the signer to sign msg once again, but this time A  injects a random fault during the computation of second hash H( R,  msg), causing a signer to output a faulty signature ( h, z) satisfying  z =  k +  h · x  mod  q. 

Since both ( h, z) and ( h, z) rely on the same randomness  k, the attacker can immediately recover the secret  x. 
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To counter such a devastating attack at low cost, let us introduce some noise  ρ  in the hash input to avoid complete determinism, that is, the randomness is now computed

as:

 k := H( x,  msg , ρ) . 

[8.10]

This approach is called  hedged  or  nonce-based  randomness derivation. On the one hand, it hedges randomness failures if, for example,  ρ  is sampled using a poor

RNG: the signature scheme retains its security even if  ρ  is not completely uniform. 

On the other hand, its fault resilience essentially relies on  ρ  being nonce:  k  is derived uniformly and independently per every signing attempt as long as  ρ  does not repeat. 

Since the noise  ρ  cheaply mitigates the risk of simple fault attacks while it is much less sensitive than  k  directly generated via RNG, it is advisable to generate the signature randomness as in equation [8.10] in practical implementations. 

8.6. Notes and further references

– Section 8.1. The broken random number generator used in leading technology

company’s ECDSA implementation was discovered by the fail0verflow (2010) team. 

The team successfully recovered the secret key after discovering gaming software

had been signed under a fixed nonce  k. A number of nonconstant time operations

involving  k  have been discovered in the literature. For the most recent vulnerabilities found in deployed ECDSA/Schnorr implementations, (see for example, Ryan (2018); 

Dall et al. (2018); Jančàr et al. (2020); Aldaya et al. (2019); Ul Hassan et al. (2020); 

Moghimi et al. (2020); Aranha et al. (2020a); Weiser et al. (2020)). Takahashi et al. 

(2018) combined invalid curve attacks and physical fault injection to artificially cause

randomness leakages in a variant of Schnorr. Breitner and Heninger (2019) discovered

how many cryptocurrency wallets and SSH hosts are generating ECDSA signatures

from significantly biased randomness and thus are subject to the lattice attack. 

– Section 8.2. The hidden number problem (HNP) was originally defined by

Boneh and Venkatesan (1998) in the context of Diffie–Hellman key exchange. 

Merget et al. (2021) recently found the first real-world implementations of

Diffie–Hellman key exchange susceptible to an attack on the HNP, exploiting

a timing side channel leakage rooted in the TLS 1.2 specification. Following the

works drawing a connection to the problem of recovering secret signing keys

(Bleichenbacher (2000); Howgrave-Graham and Smart (2001); Nguyen (2001); 

Nguyen and Shparlinski (2002, 2003)), the attacks on the HNP have been extensively

used to exploit vulnerabilities of (EC)DSA and Schnorr under various leakage

models. De Micheli and Heninger (2020) explain how to construct an instance of the

HNP from side-channel information about the middle bits of the nonce. 
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– Section 8.3. Howgrave-Graham and Smart (2001) first proposed the lattice attack

against DSA. Their analysis was later refined and extended to ECDSA by Nguyen

and Shparlinski (2002, 2003). It was generalized further to binary Koblitz curves by

Belgarric et al. (2016), and put in a very general framework by Galbraith and Shani

(2015); and Shani (2017). The TPM–FAIL vulnerability described by Moghimi et al. 

(2020) is a typical example of a real-world timing leakage on ECDSA, and the lattice

analysis deals with varying and noisy leakage sizes. This was further improved in the

Minerva paper by Jančàr et al. (2020). Albrecht and Heninger (2021) recently showed

how to overcome the theoretical limits of lattice attacks on HNP in the signature

setting using the knowledge of the public verification key, and obtained substantial

improvements on concrete parameter settings as well. Sun et al. (2022) introduced the

idea of guessing some bits of the secret key in those lattice attacks and analyzed the

resulting tradeoffs and efficiency improvements. 

– Section 8.4. The idea of exploiting Fourier transform was first discovered

by Bleichenbacher. His presentation slides at IEEE P1363 working group

meeting Bleichenbacher (2000) describe all of the essential ideas. In his study, 

Bleichenbacher used the method to point out insecurity of the DSA implementation

specified in FIPS 186: it suggested uniformly sampling  k  from [0 ,  2160) even though the modulus  q  is  not  close to 2160. De Mulder et al. (2014) revisited his idea and analyzed behaviors of the bias function in detail. The formal analysis of the

sort-and-difference algorithm was carried out by Aranha et al. (2014, Proposition 1), 

who successfully mounted a key recovery attack on 160-bit ECDSA with 1-bit nonce

bias. De Mulder et al. (2014) addressed the data complexity issue by making use of

lattice reduction to attack 384-bit HNP with 5-bit bias using only 4000 signatures, 

whereas they estimated about 230 signatures would be required with the

sort-and-difference method. The original presentations by Bleichenbacher (2000, 

2005) already suggested the Schroeppel–Shamir knapsack algorithm Schroeppel and

Shamir (1981) as a plausible approach to range reduction and the idea has been

refined in recent works (Takahashi et al. (2018); Aranha et al. (2020a)) using more

modern variants of Schroeppel–Shamir, such as Wagner (2002); Howgrave-Graham

and Joux (2010); and Dinur (2019). 

– Section 8.5. The deterministic randomness derivation has been a popular

solution to preventing randomness failures, as adopted in EdDSA (Bernstein et al. 

2012) and deterministic ECDSA (Pornin 2013). A number of recent works

introduced fault-injection attacks on deterministic schemes and experimentally

demonstrated the feasibility of full key recovery (Barenghi and Pelosi 2016; 

Romailler and Pelissier 2017; Ambrose et al. 2018; Poddebniak et al. 2018; Samwel

and Batina 2018; Bruinderink and Pessl 2018; Ravi et al. 2019). XEdDSA (Perrin

2016) is a hedged version of EdDSA used in the signal messaging protocol. Aranha

et al. (2020b) and Fischlin and Günther (2020) concurrently analyzed the fault

resilience of hedged signatures using the methodology of provable security. At the
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time of writing the IETF draft, advocating hedged EdDSA and ECDSA (Mattsson et

al. (2022)) is going through a call for adoption. 
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Random Error Distributions in

Post-Quantum Schemes

Thomas PREST

 PQShield, Paris, France

9.1. Introduction

Post-quantum cryptography is an umbrella term that covers cryptographic

schemes conjectured to be secure in the presence of large-scale quantum computers. 

Post-quantum cryptography can be based on mathematical assumptions related to

hash functions, (error-correcting) codes, lattices, isogenies, multivariate equations, 

etc. 

Many code-based and lattice-based schemes require the ability to sample from

distributions with specific shapes (see Figure 9.1) that are seldom encountered in

classical RSA-based or curve-based cryptography. Since these samples are typically

required to be small in some geometric sense, the terms “random errors”, “random

 noise” or “errors” are often used when referring to them. 

This chapter answers the following questions:

– Where do random errors arise in post-quantum cryptography? 

– Why do we need them? What are the most appropriate error distributions? 

– What sampling methods do we use, and how do we implement them securely? 
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Figure 9.1.  Plan of this chapter. For a color version of this

 figure, see www.iste.co.uk/prouff/cryptography3.zip

This chapter is organized as follows, and as summarized by Figure 9.1:

– In section 9.2, we illustrate the need for random errors by presenting two

constructions for post-quantum encryption and signatures and explaining where and

why they need random errors. 

– In section 9.3, we describe in more detail the five main families of distributions

which random errors are sampled from and highlight some of their key properties. 

– In section 9.4, we discuss the five main algorithmic approaches that are used to

sample the aforementioned distributions. For each of them, we point out their strengths

and weaknesses in terms of efficiency, security, etc. 

– In section 9.5, we provide pointers to additional references. 

9.2. Why post-quantum schemes need random errors

The study of post-quantum cryptographic schemes could span an entire book. 

In this section, we only consider them through the prism of the random errors they

require. We do so by selecting two classes of schemes that exemplify the issues
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that random errors solve and the ones that they raise:  noisy ElGamal  encryption

(section 9.2.1) and hash-then-sign signature schemes (section 9.2.2). 

9.2.1.  Example 1: noisy ElGamal

RELEVANT SCHEMES.– Kyber (Schwabe et al. 2022), Saber (Schwabe et al. 2022), 

FrodoKEM (Naehrig et al. 2020), HQC (Aguilar Melchor et al. 2020), NewHope

(Pöppelmann et al. 2019), NTRU Prime (Bernstein et al. 2020) (NTRU LPRime

variant), BIKE (Aragon et al. 2019) (BIKE-2 variant). 

The “noisy ElGamal” abstraction captures several post-quantum schemes. As

implied by its name, at a high level it is similar to the classical ElGamal scheme: the

generator group element  g  becomes a generator matrix A, and the exponentiation action ( g, x)  → gx  becomes a different action (A , (S , E))  → A  · S + E. A more formal description is given in Figure 9.2. 

The future standard Kyber, selected by NIST in July 2022, follows this framework. 

Algorithm 9.1. KEYGEN()

Ensure: An encryption keypair (ek ,  dk)

1: Sample a public generator A

2: Sample random errors S , E

3: B := A  · S + E

4: return ek := (A , B) ,  dk := S

Algorithm 9.2. ENCRYPT(ek ,  msg)

Algorithm 9.3. DECRYPT(dk ,  ct)

Require: An encryption key ek, 

Require: A decryption key dk, 

a message msg

a ciphertext ct

Ensure: A ciphertext ct

Ensure: A message msg

1: Sample random errors R , E , E 

1: M := V  − U  · S

2: U := R  · A + E 

2: return msg := DECODE(M)

3: V := R ·B+E  +ENCODE(msg)

4: return ct := (U , V)

Figure 9.2.  Noisy ElGamal encryption
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ERRORS AND CORRECTNESS.– Let us study the correctness of Figure 9.2. Observe

that:

M = V  − U  · S

= R  · (A  · S + E) + E  + ENCODE(msg)  − (R  · A + E )  · S

= ENCODE(msg) + (R  · E + E  − E  · S)

[9.1]

If we denote  E := R  · E + E  − E  · S, correctness holds as long as, for any msg: DECODE(ENCODE(msg) +  E) = msg

[9.2]

At this point, a few specificities are apparent. In lattice-based schemes, by

encoding msg in the most significant bits of V, the decoding operation can recover

msg as long as the L2 norm of  E  is not too high. For code-based schemes, encoding

msg as a codeword allows us to recover it if the Hamming weight of  E  is small

enough. 

ERRORS AND SECURITY.– We now briefly discuss the security of Figure 9.2. If we

set all coefficients of E , E , E   to zero, then the error term in equation [9.1] becomes zero and decryption is always successful. However, this also makes the scheme in

Figure 9.2 insecure, since the decryption key S can then be recovered by inverting

the overdetermined linear system B = A  · S. The simple act of adding an error term E turns this linear system into a noisy linear system B = A  · S + E. When correctly parameterized, solving this linear system become an intractable problem

with currently known techniques, even assuming large-scale quantum computers. 

BALANCING CORRECTNESS AND SECURITY.– We can see by now two antagonistic

constraints: error distributions with larger supports and entropy are helpful for

security, whereas errors that are “short” are helpful for correctness. This explains the

choice of distributions used in real-life instantiations of Figure 9.2: fixed-weight

(section 9.3.2) for code-based schemes, and small-norm distributions – such as

uniform (section 9.3.1), binomial (section 9.3.3), fixed-weight and Gaussians

(section 9.3.4) – for lattice-based schemes. 

9.2.2.  Example 2: hash-then-sign

RELEVANT SCHEMES.– Falcon (Prest et al. 2022), Wave (Debris-Alazard et al. 2019). 

In Figure 9.3, we describe a generic framework for post-quantum signatures that

follows the “hash-then-sign” paradigm. Falcon, selected by NIST for standardisation

in July 2022, follows this framework. For Falcon, Lines 2 to 4 require us to sample

several times from Gaussian distributions (section 9.3.4) as a subroutine, and it is

important for security that this operation is performed precisely and in constant time. 
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Similarly, in Wave, an operation called rejection sampling (section 9.3.5) is performed

as part of Lines 2 to 4, and it also needs to be precise and constant time. 

Algorithm 9.4. KEYGEN()

Ensure: A signature keypair (vk ,  sk)

1: Generate jointly a public matrix A and its trapdoor Trap

2: return vk := A ,  sk := Trap

Algorithm 9.5. SIGN(sk ,  msg)

Algorithm 9.6. VERIFY(vk ,  msg ,  sig)

Require: A signing key sk = Trap, 

Require: A verification key vk, a

a message msg

message msg, a signature sig

Ensure: A signature sig

Ensure: accept or reject

1: Compute an image c :=  H(msg)

1: Accept if and only if:

2: Using Trap, compute s such that:

2:

A  · s = c, and

3:

A  · s = c, and

3:

CheckCondition(s) = True

4:

CheckCondition(s) = True

5: return sig := s

In Algorithms 9.5 and 9.6, CheckCondition checks a geometric constraint. 

Figure 9.3.  Post-quantum signatures in the “hash-then-sign” paradigm

9.2.3.  Example 3: Fiat–Shamir with aborts

RELEVANT SCHEMES.– Dilithium (Lyubashevsky et al. 2022), qTESLA (Bindel et al. 

2019), BLISS (Ducas et al. 2013). 

In Figure 9.4, we describe the “Fiat-Shamir with aborts” paradigm. It can be

interpreted as a transposition to the lattice setting of discrete logarithm-based Schnorr

signatures. 

A notable instantiation of this paradigm is Dilithium, selected for standardisation

by NIST in July 2022. This paradigm requires sampling random errors during the key

generation (Algorithm 9.7, Line 2) and signing (Algorithm 9.8, Line 1) procedures. 

In addition, it contains a rejection sampling subroutine (Algorithm 9.8, Line 6) that

filters signatures before outputting them. 

All these subroutines must be implemented in a way that prevents an adversary

with side-channel capabilities from inferring information about their outcomes. 
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Algorithm 9.7. KEYGEN()

Ensure: A signature keypair (vk ,  sk)

1: Generate a uniformly random matrix A

2: Compute t := A  · s + e, where (e , s) are random errors 3: return vk := (A , t) ,  sk := (e , s)

Algorithm 9.8. SIGN(sk ,  msg)

Algorithm 9.9. VERIFY(vk ,  msg ,  sig)

Require: A signing key sk = (e , s), 

Require: A verification key vk, a

a message msg

message msg, a signature sig

Ensure: A signature sig

Ensure: accept or reject

1: Sample random errors r , e 

1: Accept if and only if:

2: Compute w :=  A  · r + e 

2:

z is short

3:  c :=  H(w ,  msg ,  vk)

3:

 H( A  · z  − c · t ,  msg ,  vk) =  c 4: z :=  c · s + r

5: y := A  · z  − c · t

6: if CheckCondition(z , y) = False then

7:

Restart

8: return sig := ( c, z)

In Algorithm 9.8, CheckCondition is a  rejection sampling  step (section 9.3.5). 

Figure 9.4.  Post-quantum signatures in the “Fiat-Shamir with Aborts” paradigm

9.3. Distributions for random errors

We now review the main random error distributions used in practice: variants of

uniform (section 9.3.1), fixed weight (section 9.3.2), binomial (section 9.3.3) and

Gaussian (section 9.3.4) distributions. We conclude with randomized rejection

sampling (section 9.3.5), which can either be interpreted as a special type of

distribution or as a sampling method, and therefore allows us to segue into the

section on sampling methods (section 9.4). A summary of all these distributions is

given in Figure 9.5. Throughout the section, we assume access to a perfect source of

uniformly random bits. 

NOTATION 9.1.– We use the notation  x ← X  to express that  x  is sampled from the distribution  X, and we denote  X( x 0) = P[ x =  x 0 |x ← X]. The notation  x ∼

 X (respectively,  x ∼s X) means  x  is distributed exactly according to (respectively, statistically close to)  X. For  a, b ∈  Z,  {a, . . . , b}  denotes the set [ a, b]  ∩  Z. Finally, given  S  a subset of the support of  X, we denote by  X( S) the restriction of  X  to  S. 
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Figure 9.5.  The main distributions for random errors. Distributions add up to 1. 

 For a color version of this figure, see www.iste.co.uk/prouff/cryptography3.zip

9.3.1.  Uniform distributions

USED IN.– Dilithium (Lyubashevsky et al. 2020), Saber (D’Anvers et al. 2020), 

qTESLA (Bindel et al. 2019), Picnic (Zaverucha et al. 2020). 

DEFINITION 9.1.– Given a finite set  X , we denote by  U ( X ) the uniform distribution of support  X . We may also use the notation  x ← X  as a shorthand for  x ← U ( X ). 

Uniform distributions are used mainly in lattice-based schemes. Compared to

classical schemes (e.g. El Gamal encryption of ECDSA signatures), uniform

distributions in lattice-based cryptography seldom use the underlying ring (e.g. Z q) as support. Rather, the support  X  will be a very narrow subset of Z q. For example, in Dilithium, the underlying ring is Z q  with  q = 213(210  −  1) + 1, whereas  X  may be equal to  {− 2 , . . . ,  2 } (during key generation) or  {− 217 , . . . ,  217 } (during signing). 

This has little impact if we simply need to implement a constant-time

implementation, but it raises some delicate questions in the more complex context of

masking (section 9.4.6). 

9.3.2.  Fixed weight distributions

USED IN.– BIKE (Aragon et al. 2020), Classic McEliece (Albrecht et al. 2020), 

HQC

(Aguilar

Melchor

et

al. 

2020), 

NTRU

(Chen

et

al. 

2020), 

NTRU Prime (Bernstein et al. 2020). 
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DEFINITION 9.2.– Let us denote by  Wn,w  the subset of  { 0 ,  1 }n  of vectors containing exactly  w  ones and ( n − w) zeroes. We call fixed-weight distribution of dimension  n and weight  w, and denote by  Fn,w  the uniform distribution over  Wn,w. 

Fixed-weight distributions are a natural fit for code-based cryptography. Indeed, 

error-correcting codes are precisely designed to be able to decode errors, which are in

 Wn,w (as long as  w  is small enough), so it is unsurprising that such errors are used in code-based schemes such as BIKE, Classic McEliece or HQC. 

A few lattice-based schemes (such as NTRU and NTRU Prime) use variants of

these distributions, where  − 1 coefficients are allowed as well. Errors from these

 √

distributions have a Euclidean norm

 w, which in the context of Figure 9.2 allows

 √

equation [9.2] to hold as long as

 w  is small enough. 

9.3.3.  Variants of the binomial distribution

USED IN.– NewHope (Pöppelmann et al. 2019), Saber (D’Anvers et al. 2020), 

Kyber (Schwabe et al. 2022). 

Binomial distributions for lattice-based cryptography were introduced by the

NewHope scheme. They are essentially as easy to sample as uniform distributions

(section 9.3.1) – if not more in a masked setting – while in terms of entropy versus

variance trade-off, they are more similar to Gaussians (section 9.3.4). This means

they provide an excellent compromise between both distributions when supported by

the application. 

DEFINITION 9.3.–

The  binary binomial distribution Bn  of parameter  n  is the

 n

distribution of the sum

 i=1  bi, where each  bi  is a uniformly random bit:

 bi ← { 0 ,  1 }. This is a special case of the binomial distribution  Bn,p, in which each bit  bi  is 1 with a fixed probability  p ∈ [0 ,  1], whereas  p = 12 in the case of the binary binomial distribution. 

A related distribution is the  centered binomial distribution  CBD n, which is defined in an algorithmic way. Sampling  x ←  CBD n  is done in three simple steps: (i)  y ← Bn, (ii)  z ← Bn  and (iii)  x :=  y − z. 

A CONVOLUTION PROPERTY.– We can see that given a (secure, efficient) sampling

algorithm for  Bn, it is easy to obtain a (secure, efficient) sampling algorithm for

CBD n. The binomial distribution has plenty of interesting properties that provide other reductions between the two families of distributions. In particular, it follows from

Definition 9.3 that the sum of two binomial distributions is a binomial distribution:

 Bm +  Bn ∼ Bm+ n

[9.3]
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EXERCISE 9.1.– Show that sampling  x ←  CBD n  can equivalently be done as

follows:  w ← B 2 n;  x :=  w − n. 

SOLUTION 9.1.–  Bn  is symmetric around its mean  n/ 2, so that (ii) is equivalent to computing  z ← Bn;  z :=  n−z. Therefore, we may rewrite  x =  y + z −n. It follows from equation [9.3] that the sum  w =  y +  z  of two samples of  Bn  is distributed as a sample of  B 2 n, from which the result follows. 

9.3.4.  Discrete and rounded Gaussians

USED IN.– BLISS (Ducas et al. 2013), Falcon (Prest et al. 2020), FrodoKEM (Naehrig

et al. 2020), qTESLA (Bindel et al. 2019) (key generation). 

DEFINITION 9.4.– We call Gaussian function of center  μ  and deviation  σ  the function ρσ,μ  defined over R as  ρσ,μ( x) = exp  − ( x−μ)2

2 σ 2

, and also denote  ρσ( x) :=  ρσ,  0( x). 

The discrete Gaussian distribution  D Z ,σ,μ  and the rounded Gaussian distribution ΨZ ,σ

are both defined over Z by their probability functions:

 D Z ,σ,μ( z) =

 ρσ,μ( z)



 k∈ Z  ρσ,μ( k)

[9.4]



Ψ

 {x|x= z} ρσ( x) dx

Z ,σ( z) =



[9.5]

 x∈ R  ρσ( x) dx

We can see that discretized and rounded Gaussians are similar; the only difference

is how the discretization process is done (point discretization versus rounding). In the

rest of this section, we focus on discrete Gaussians, but most of our comments also

apply to a large extent to rounded Gaussians. 

ON THE NEED FOR GAUSSIANS.– We may note that both equations [9.4] and [9.5] are

unwieldy, and indeed Gaussians are challenging to implement securely. The historical

context in which they emerged provides a useful perspective. At least part of the

inception of lattice-based cryptography can be traced back to works in mathematics

and theoretical computer science, in which Gaussians played a key role as an analytic

tool for studying lattices. This explains the prevalence of Gaussian distributions in

several early works proposing lattice-based schemes, and raises a natural question:

Do we really need Gaussian errors in lattice-based cryptographic schemes? 

As of today, the answer really depends on the type of scheme:

1) For encryption schemes, for example, the one in Figure 9.2, switching from

Gaussians to simpler distributions incurs no degradation in concrete security, while

providing a huge boost in computational efficiency. 
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2) For signatures schemes based on the Fiat–Shamir paradigm, moving away from

Gaussians incurs a mild degradation of the parameters. For example, if signatures are

short vectors in Z nq, then using Gaussians (as in BLISS) increase the modulus  q  by a

 √

factor  O(  n), whereas uniform distributions (as in Dilithium) increases it by  O( n). 

This is one reason why  q  is larger in Dilithium than in BLISS, and is offset by the fact that the distributions in Dilithium are much simpler to sample securely. 

3) Lattice-based signatures employing the hash-then-sign paradigm (see

Figure 9.3), as well as advanced constructions such as blind signatures or

identity-based encryption, rely on an algorithmic tool called  trapdoor sampling. 

Trapdoor sampling relies on Gaussian distributions as subroutines, and it is not known

how to replace these with simpler distributions without a significant degradation of the

parameters. 

A CONVOLUTION PROPERTY.– An extremely useful property of Gaussians states that



for appropriately chosen parameters, the integer linear combination  y =

 i ziyi  of

a finite number of discrete Gaussian samples  yi ∼ D Z ,σ

is statistically close to a

 i,μi

discrete Gaussian sample:





 y ∼s D Z ,σ,μ, 

where

 σ =

 z 2 iσ 2 i  and  μ =

 ziμi

[9.6]

 i

 i

9.3.5.  Randomized rejection sampling

USED IN.– BLISS (Ducas et al. 2013), Falcon (Prest et al. 2020) (subroutine). 

Rejection sampling can be interpreted in two ways: (i) a technique for sampling

distributions and (ii) a specific distribution that itself requires the leveraging of other

techniques to be sampled from. 

Suppose we wish to sample from a distribution  P , and we have Oracle access to a

related distribution  Q  and a constant  M  such that max  M·P ( x) x Q( x)  ≤  1, which implies

that the support of  P  is included in the support of  Q. Algorithm 9.10 describes a way to sample from  P : (i) sample  x ← Q, (ii) a  rejection step  accepts  x  with probability M·P ( x)

 Q( x)

and (iii) otherwise it restarts. At each trial,  x  is sampled with probability

 Q( x)  · M·P ( x) =

 Q( x)

 M · P ( x). 

Algorithm 9.10. GENERICREJECTIONSAMPLER()

Require: Oracle access to a distribution  Q, a constant  M  such that max  M·P ( x) x Q( x)  ≤  1

Ensure: A sample from a distribution  P

1: while True do

2:

 x ← Q

3:

With probability  M·P ( x)

 Q( x) , return  x
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MOTIVATING THE SETTING.– Why assume access to  Q  and not  P ? The goal is to

address situations where  Q  is the natural outcome of a construction, whereas  P  is the desired outcome. This is the case in lattice-based Fiat–Shamir signatures

(section 9.2.3). If there was no rejection sampling, signatures would follow a “toxic” 

distribution  Q  that leaks information about the signing key sk. Performing rejection sampling during the signing process (Algorithm 9.8, Line 6) allows us to filter this

dependency on sk out of the distribution and obtain a “clean” distribution  P  that no longer depends on sk. 

DETERMINISTIC VERSUS RANDOMIZED.– Rejection sampling can be of two types. 

In the  deterministic  setting,  P =  Q( S) is simply the restriction of  Q  to a subset  S

of its support, and the rejection step in Line 3 simply checks that  x ∈ S. This is the case in Dilithium and qTESLA. In the more general  randomized  setting,  P  can be any distribution, thus the rejection step becomes a probabilistic process. This is the case in

BLISS. In the rest of this chapter, we focus on the  randomized  setting. 

EXAMPLE WITH THE EXPONENTIAL DISTRIBUTION.– We illustrate (randomized)

rejection sampling for the exponential distribution Exp (of density function

exp( −x)) restricted to the set [0 ,  1], which we denote by Exp([0 ,  1]). This is done in Algorithm 9.11, which is a specific instantiation of Algorithm 9.10 for  Q =  U ([0 ,  1]) and  P = Exp([0 ,  1]). 

 y

Algorithm 9.11. EXPFROMUNIF()

1

Require: Oracle acccess to  U ([0 ,  1])

Ensure:  x ∼  Exp([0 ,  1])

1: while True do

2:

 x ← [0 ,  1]

3:

 y ← [0 ,  1]

4:

if exp( −x)  > y  then

0

 x

5:

return  x

0

1

Figure 9.6.  On the left, an algorithm for sampling from  Exp([0 ,  1]) . On the right, a visual interpretation: ( x, y)  is sampled uniformly in [0 ,  1]2  (interior of

 ), and x is accepted

 if and only if ( x, y)  is inside the hypograph (

 ) of the function x →  exp( −x))  (

 ). 

 The probability of restart is given by the area of (

 ). For a color version of this figure, 

 see www.iste.co.uk/prouff/cryptography3.zip

PRECISION AND SIDE-CHANNEL LEAKAGE.– Note that Algorithm 9.10 does not

completely solve the problem of sampling from  P . Rather, it reduces it to Line 3, 

which can be seen as sampling a bit  b  from the Bernoulli distribution Ber f( x) with f ( x) =  M·P ( x)

 Q( x) . Algorithm 9.11 inherits this caveat, and it performs an on-the-fly

computation of  f ( x) = exp( −x), a transcendental function which we cannot expect to have rational outputs for random values of  x. This raises a first, two-stage question:
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– How does the number of bits of precision  k  bias the distribution of sampling

algorithms, and in turn, how does this bias impact the security of schemes that rely on

these sampling algorithms? 

A second natural concern is whether the computation of Line 3 in Algorithm 9.10

produces any side-channel leakage. This raises a second question:

– How do we implement rejection sampling in such a way that side-channel

information does not leak anything about  x (and possibly  P  or  Q)? 

9.4. Sampling algorithms

In this section, we present the main five algorithmic approaches that are

used to sample random errors in post-quantum cryptography. These are based on

probability tables (section 9.4.1), random permutations (section 9.4.2), convolution

of distributions (section 9.4.3), polynomial approximations (section 9.4.4) and

rejection-based methods (section 9.4.5), respectively. Finally, we revisit each approach

in section 9.4.6 by discussing their compatibility with masking. Throughout the

section, we will evaluate each approach using three metrics:

– EFFICIENCY.– Methods with low computational and storage requirements are in

general better suited for adoption across a wide range of devices. 

– PRECISION.– Given an error distribution, some algorithms may sample it

exactly, while others may sample a related distribution that is close to it. The closeness

can be rigorously quantified, for example, via the statistical distance or the Rényi

divergence. 

– SIDE-CHANNEL SECURITY.– Approaches may have different levels of resilience

against side-channel attacks. These may vary from simple timing attacks to more

advanced attacks such as cache-based timing, electromagnetic or power-analysis

attacks. 

Interestingly, many methods discussed here offer a three-dimensional trade-off

between efficiency, precision and side-channel security, which allows some flexibility

in their instantiations. 

9.4.1.  Table-based algorithms

USED FOR.– Virtually any distribution. 

NOTATION 9.2.– Given a finite distribution  P  of support  S =  { 0 , . . . , n −  1 }, we call the cumulative distribution table of  P  the table CDT P ∈ [0 ,  1] n  defined for   ∈ S



as CDT P [ ] =

 i≤ P ( i), and also add the convention CDT P [ − 1] = 0. Note that CDT P [ n −  1] = 1 by definition. We also denote by SECCMP( x, y) an idealized
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comparison algorithm that takes as inputs ( x, y)  ∈ [0 ,  1]2 and outputs 1 if  x > y, otherwise 0. We assume that SECCMP leaks no side-channel information about ( x, y). 

Table-based sampling is one of the most generic and versatile approaches for

sampling distributions. Indeed, any distribution  P  of finite support is characterized by its cumulative distribution table CDT P  as defined in Notation 9.2 (assuming, without loss of generality, that its support is  S =  { 0 , . . . , n −  1 }). This observation provides a generic way to sample from  P  given CDT P , which is described in Figure 9.7. 

Algorithm 9.12. TABLESAMPLER()

Algorithm 9.13. TABLESAMPLERSEC()

1:   := 0

1:   := 0

2:  x ← [0 ,  1]

2:  x ← [0 ,  1]

3: while  x >  CDT P [ ] do

3: for  i = 1 , . . . , n  do

4:

  :=   + 1

4:

  :=   + SECCMP( x,  CDT P [ i])

5: return  

5: return  

Figure 9.7.  Two table-based sampling algorithms:  TABLESAMPLER  (not

 constant-time) and  TABLESAMPLERSEC  (constant-time). Both algorithms

 assume access to uniform randomness in [0 ,  1]  and knowledge of  CDT P

EXERCISE 9.2.– Show that both Algorithms 9.12 and 9.13 output    such that   ∼ P . 

SOLUTION 9.2.– We first study Algorithm 9.12. Since CDT P [ n −  1] = 1, the while loop will have at most  n −  1 iterations and therefore the output    is in  { 0 , . . . , n −  1 }. 

Inside the while loop,    is incremented until CDT P [ − 1]  < x ≤  CDT P [ ]. Therefore, any viable output    is output with probability CDT P [ ]  −  CDT P [  −  1] =  P ( ). 

In the for loop of Algorithm 9.13,    is incremented only for the values  i  such that x >  CDT P [ i]. Thus, we can reuse the analysis of Algorithm 9.12 and derive the same conclusion. 

SIDE-CHANNEL SECURITY.– Although Algorithms 9.12 and 9.13 are functionally

identical, the former is not suited for environments where side-channels are a concern. 

Indeed, the number of iterations in the while loop is exactly the value of the output  : Algorithm 9.12 is therefore not constant-time and can be vulnerable to timing attacks. 

In contrast, Algorithm 9.13 reads all entries of CDT P . This alone does not

protect against timing attacks, since the comparison operator ( x > y) may not be

leakage free. For example, the memcmp() function in the string library in C is not

constant-time. This is why Line 3 of Algorithm 9.13 uses the secure function

SECCMP (see Notation 9.2). 

PRECISION AND BIAS.– In Example 2, we considered an idealized model where  x

and the entries of CDT P  are known with arbitrarily large precision. In practice, we
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need to fix the precision  k, since the storage costs of Algorithms 9.12 and 9.13, as well as the running time of Algorithm 9.13, will be at least linear in  k. 

On the other hand, storing CDT P  with a finite precision discards some

information about  P  and  biases  the output distribution, the same way a .jpeg image file loses information when compressed to a lower resolution. Striking a balance

between minimizing  k (thus maximizing the efficiency of Algorithms 9.12 and 9.13)

and preserving meaningful security guarantees is a delicate exercise. However, a

good rule of thumb is that if a table is used  N  times in a scheme that needs to

preserve  λ  bits of security, then if suffices to set  k = Ω( λ), or even  k = Ω(log  N ) in some cases. 

9.4.2.  Random permutations

USED FOR.– Fixed weight distributions (section 9.3.2). 

Random permutations provide a simple and elegant way to sample fixed-weight

distributions and their variants. Indeed, to sample t  ∈ { 0 ,  1 }n  from  Fn,w, it suffices to first set t := (1 , . . . ,  1 ,  0 , . . . ,  0) with  w  ones and ( n − w) zeroes and shuffle (i.e. 

randomly permute) its entries. 

A FIRST ATTEMPT.– We apply this idea with the Fisher–Yates shuffle

(Algorithm 9.14); it runs in time  O( n), and we can show that it perfectly permutes the entries of t. Unfortunately, it is not secure against side-channel attacks, as

discussed below. 

Algorithm 9.14. FISHERYATES(t)

Require: A table t =  {t[1] , . . . , t[ n] }

Ensure: Apply a random permutation  σ  to the entries of t

1: for  i ∈ { 1 , . . . , n −  1 }  do

2:

 j ← {i, . . . , n}

3:

Exchange t[ i] and t[ j]

CACHE ATTACKS.– Cache attacks allow attackers to infer information about the

position of data accessed during the execution of the algorithm. If there exists a

dependency between this access pattern and some secret information, then the cache

attack may expose some of this secret information. A more comprehensive overview

of cache attacks is proposed in this book (see Volume 1, Part 1, Chapter 2:

“Microarchitectural Attacks”). 

Let us see how cache attacks may impact Algorithm 9.14. If t is initialized to

(1 , . . . ,  1 ,  0 , . . . ,  0) and the adversary infers via a cache attack that t[ n] was not accessed during an execution of the algorithm, which happens with probability
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 n− 1

 i=1

1  −  1

= 1

 i+1

 n , then it is known that t[ n] retained its initial value: t[ n] = 0. 

Depending on the context, this may have devastating consequences. For example, the

output of Algorithm 9.14 may be used to add noise to a linear system, which is

typical in code-based schemes. Knowing that the noise in the last equation is

t[ n] = 0 may be exploited by the adversary to derive a noiseless linear system and recover some secret information. 

OBLIVIOUS ALGORITHMS AND DATA STRUCTURES.– An algorithm  A  operating on

a data structure t is said to be oblivious if its access pattern (i.e. the sequence of entries of t that were accessed) is independent of some sensitive information (e.g. the contents of t or the output of  A). 

Oblivious algorithms are an elegant answer to cache attacks. If an algorithm

applying a random permutation  σ  to t is oblivious with respect to the actual value of σ, then learning its access pattern provides the adversary with no information about σ. While Algorithm 9.14 is not oblivious, we will discuss two classes of algorithms

that provide oblivious random permutations: sorting and switching networks. 

 Random permutations via sorting

HIGH-LEVEL IDEA.– We extend each entry t[ i] of t with a random value  ti ←

[0 ,  1], then sort the entries of t according to the  ti s. This provides a perfectly random permutation  σ. This is illustrated in Figure 9.8. 

PRECISION AND BIAS.– In practice, the  ti s are sampled with finite precision, say

in the range  { 0 ,  1 , . . . ,  2 k −  1 }. This can slightly bias the distribution of  σ. The relationship between  k  and this bias has been seldom studied in cryptography. 

1

1

0

0

0

0

0

Sort w.r.t. bottom row

0

0

1

0

0

1

0

= ⇒

85 173 97 221 83 145 64

64 83 85 97 145 173 221

Figure 9.8.  Applying the sorting strategy to sample t  ← F 7 ,  2  (with k = 8 ) (NON-)OBLIVIOUS SORTING ALGORITHMS.– To guarantee security against cache

attacks, the sorting algorithm must be oblivious, which is not always true. 

Figure 9.9 illustrates this. MERGESORT has a runtime  O( n  log  n) but is non-oblivious since its access pattern (bold red) depends on the input, whereas

BUBBLESORT has a slower runtime  O( n 2) but is oblivious. The state of the art in oblivious sorting algorithms are the bitonic sort, with a runtime  O( n  log2  n), and the bucket oblivious sort, with a runtime  O( n  log  n) and an exponentially small but non-zero error probability. 
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 Sorting networks  are a subclass of oblivious sorting algorithms. A sorting network

is a layered circuit composed of two types of components: (i) wires and (ii) comparator

modules, which take ( x, y) as input and output (min( x, y) ,  max( x, y)). A secure comparator module is easily constructed from SECCMP (Notation 9.2). Most oblivious

sorting algorithms (including BUBBLESORT and the bitonic sort) can be interpreted

as sorting networks, and this abstraction is also useful in the context of masking. 

MERGESORT ((1, 2, 3), (4, 5, 6))

BUBBLESORT (1, 2, 3, 4)

1 2 3 4 5 6

1 2 3 4

1 2 3 4 5 6

1 2 3 4

1 2 3 4 5 6

1 2 3 4

1 2 3 4 5 6

1 2 3 4

1 2 3 4 5 6

1 2 3 4

1 2 3 4 5 6

1 2 3 4

1 2 3 4

MERGESORT ((1, 3, 5), (2, 4, 6))

BUBBLESORT (4, 3, 2, 1)

1 3 5 2 4 6

4 3 2 1

1 3 5 2 4 6

3 4 2 1

1 3 5 2 4 6

3 2 4 1

1 3 5 2 4 6

3 2 1 4

1 3 5 2 4 6

2 3 1 4

1 3 5 2 4 6

2 1 3 4

1 2 3 4

Figure 9.9.  Two sorting algorithms:  MERGESORT  (non-oblivious) and

BUBBLESORT  (oblivious). For a color version of this figure, 

 see www.iste.co.uk/prouff/cryptography3.zip

 Random permutations via switching networks

A switching network is a layered circuit composed of two types of components:

(i) wires and (ii) random switches, which permute their input ( x, y) with

probability 12. Figure 9.10 illustrates this idea by presenting a switching network

called Beneš network, as well as an algorithmic description of a random switch

(Algorithm 9.15). 

An important property of a switching network is its mixing time, that is, the

number of times it must be applied to an initial set of inputs before they can be

considered to be (statistically) shuffled. 

COMPARISON WITH SORTING.– Switching networks is a more direct approach than

sorting (networks) to construct random permutations. At an algorithmic level, the main

difference is that comparator modules are replaced with random switches. 

OBLIVIOUSNESS AND BIAS.– Obliviousness is easily argued from their definition, 

since the position of each random switch is fixed in advance. The ability of a switching
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network to produce permutation  σ  that is (statistically) random depends on its mixing time, a property which is well studied for most common switching networks. 

Algorithm 9.15. RANDOMSWITCH( x, y)

1:  b ← { 0 ,  1 }

2:  x =  b · x + (1  − b)  · y

3:  y =  b · y + (1  − b)  · x

4: return ( x, y)

Figure 9.10.  On the left, a Beneš network with n = 24  inputs,  2 log  n layers and n(2 log  n −  1)  random switches (mint green nodes; see Algorithm 9.15 on the right). 

 For a color version of this figure, see www.iste.co.uk/prouff/cryptography3.zip

 Summary

Random permutations provide an elegant way to sample from fixed-weight

distributions (section 9.3.2). Multiple approaches for generating them exist, such as

sorting networks (e.g. BUBBLESORT and bitonic sort), switching networks (e.g. 

Thorp shuffle and Beneš networks), sorting algorithms (e.g. the non-oblivious

MERGESORT) or more direct approaches (e.g. the non-oblivious Fisher–Yates

shuffle). 

Switching

networks

Sorting

Random


networks

permutations

Sorting

algorithms

Figure 9.11.  Relationships between classes of algorithms for sampling random

 permutations. Classes that are always oblivious are drawn with thick boxes. For

 a color version of this figure, see www.iste.co.uk/prouff/cryptography3.zip

9.4.3.  Convolution-based algorithms

USED FOR.– Binomial (section 9.3.3) and discrete Gaussian (section 9.3.4)

distributions. 

This is a very simple approach, which takes advantage of the convolution

properties that are specific to some distributions:

equation [9.3] for binomial

distributions and variations of equation [9.6] for discrete Gaussians. We explain the
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idea for binomials. To sample from CBD n, we need to sample 2 n  uniformly random bits  bi  and then apply either the formula from Definition 9.3 or Exercise 9.1. For

Gaussians, the execution is slightly more complicated but still feasible. 

BIAS.– When using convolution to sample binomial distributions, this approach is

perfectly correct. When applied with discrete Gaussians, the bias can be made

arbitrarily small by setting the parameters adequately. 

SIDE-CHANNEL RESILIENCE.– This approach displays excellent resilience to

side-channel attacks. Indeed, it simply consists of performing addition (and

multiplications in the case of Gaussians), which can be easily implemented securely. 

This comes with the caveat that sampling from the base distribution ( U ( { 0 ,  1 }) in the case of binomials) needs to be implemented securely as well. 

9.4.4.  Polynomial approximation

USED

FOR.–

Randomised

rejection

sampling

(section

9.3.5), 

Gaussians

(section 9.3.4), etc. 

Polynomial approximation provides a simple and generic solution for sampling

distributions that entail dealing with functions that are expensive to compute. To

showcase its potential, let us revisit the example of Figure 9.6. In Line 4 of

Algorithm 9.11, we need to compute  f ( x) = exp( −x) for  x ∈ [0 ,  1]. A simple way to do that with arbitrary precision is to truncate at a given degree  d  the Taylor series of exp( x):

 ∞



exp(

 xn

 x) =

 n! 

[9.7]

 n=0

PRECISON AND BIAS.– The precision of the approximation is an increasing function

of two elements: the degree  d  of the truncated Taylor series of  f , and the number of bits of precision  k  in the (fixed- or floating-point) computation. This depends on the use case; however, for some concrete example (e.g. Falcon), it seems sufficient to take

 d = 10 and  k = 53. 

SIDE-CHANNEL RESILIENCE.– Since evaluating a polynomial consists only of

additions and multiplications, this approach has good side-channel resilience

properties if we assume that both operations can be performed in constant-time.1

1 In some constrained environments, even integer multiplication may not be constant-time; 

see: https://www.bearssl.org/ctmul.html. 
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9.4.5.  Rejection methods

USED FOR.– Gaussians (section 9.3.4), randomised rejection sampling (section 9.3.5), 

etc. 

This class of methods derives from a work by von Neumann, which presented an

elegant way to sample  exactly  from Exp given Oracle access to  U ([0 ,  1]), using only simple operations such as comparisons. It was subsequently refined in several papers, 

but in Algorithm 9.16, we describe a simplified version that samples from Exp([0 ,  1]). 

Algorithm 9.16. EXPFROMUNIFTWO()

Require: Oracle access to  U ([0 ,  1])

Ensure:  x ∼  Exp([0 ,  1])

1:   := 0

2:  x :=  u 0  ← [0 ,  1]

3: do

4:

  :=   + 1

5:

 u ← [0 ,  1]

6: while  u > u− 1

7: if    is odd then

8:

goto Line 1

9: return  x

While both Algorithms 9.11 and 9.16 output  x ∼  Exp([0 ,  1]), they could not be more different. It might even seem surprising that Algorithm 9.16 is correct; however, 

we show in Exercise 9.3 that it is indeed true, and the proof leverages equation [9.7]

in an unexpected way. 

EXERCISE 9.3.– The goal of this exercise is to prove the correctness of

Algorithm 9.16. 

1) For a given  x, show that, the probability  p( x) that the loop in Lines 3 to 6, terminates at a given value    is equal to  x− 1

( − 1)!  − x

 ! . 

2) Deduce from Item 1 that the output distribution of Algorithm 9.16 has support

[0 ,  1] and probability density function  p( x) = exp( −x)

1 − exp( − 1) . 

SOLUTION 9.3.– We prove both items successively. 

1) We first observe that:

Pr[

Pr[

 x >  max1 ≤i≤{ui}]

 x > u 1  > · · · > u] =

=  x

 ! 

 ! 

[9.8]
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The left equality in [9.8] stems from the fact that Pr[ u 1  > · · · > u] = 1 !. This is true since there are  ! permutations of the ( ui)1 ≤i≤, only one of which corresponds to a strictly decreasing sequence. Thus, the probability  p  is given by:

 p( x) = Pr[ x > u 1  > · · · > u− 1  < u]

[9.9]

= Pr[ x > u 1  > · · · > u− 1]  −  Pr[ x > u 1  > · · · > u− 1  > u] [9.10]

=  x− 1  − x

(  −  1)! 

 ! 

[9.11]

2) The support of the output distribution is obvious from Line 2. We now study

the density function  p. Given  x  sampled at Line 2, then depending on the parity of

 , it will be “accepted” or “rejected” (restarting the algorithm). More precisely,  x  is accepted if and only if    is odd, which happens with probability:







 x− 1

 p( x) =

 − x = exp( −

(

 x)

[9.12]

  −  1)! 

 ! 

   odd

   odd

We can see the Taylor series of exp equation [9.7] appear magically in



equation [9.12]. Note that

exp(

[0 ,  1]

 −x) dx = 1  −  exp( − 1), meaning that for each

iteration of Lines 1 to 6, the algorithm will restart with probability exp( − 1). 

PRECISON AND BIAS.– The beauty of Algorithm 9.16 is that it samples Exp([0 ,  1])

exactly, and similar remarks also apply for most algorithms based on the same idea. 

The only caveat is that sampling  u  with finite precision  k  will bias the output; this can be circumvented by lazily increasing  k  when the condition ( u > u− 1) is undetermined. 

SIDE-CHANNEL RESILIENCE.– The major flaw of this approach is that it suffers from

poor side-channel resilience. For example, the number of iterations of the while loop is

correlated to the output  x, and several attacks have leveraged this kind of observation. 

It is possible to make the number of iterations constant, but this results in an algorithm

that is more complex and costlier in bits of entropy than other methods. 

9.4.6.  Masking the various algorithmic approaches

We assume familiarity with masking. For an introduction, see the corresponding

part (Volume 2, Part 1: “Masking”). We denote by  d  the masking order and  k  the bit-precision or number of bits per word. Recall that B2A conversion of  k-bit values requires  O( d 2 k) arithmetic operations in Z2 k, but 1-bit values require only  O( d 2) operations to convert, even if the result is in Z2 k. We now revisit the five main

algorithmic approaches previously described, and ask the following question:
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How amenable is each approach to masking? 

TABLE-BASED ALGORITHMS.– Compatibility is average. The main bottleneck is the

secure comparison operator SECCMP( x, y) between two words in  { 0 , . . . ,  2 k −  1 }. In a masked setting, it requires a B2A conversion, which costs  O( d 2 k) word operations.2

RANDOM PERMUTATIONS.– Similarly to table-based algorithms, sorting networks

suffer from an overhead  O( d 2 k) due to masked comparison. In contrast, switching networks use random switches as an atomic operation, and these are easy to mask

with an overhead of  O( d 2), for example, by masking Algorithm 9.15. 

All other things being equal, switching networks are therefore more amenable to

masking than their sorting counterparts for generating random permutations. 

CONVOLUTION-BASED ALGORITHMS.– Since they only use additions, convolution

methods show great compatibility to masking as long as sampling from the base

distribution can be easily masked. 

POLYNOMIAL

APPROXIMATION.–

This

method

only

uses

additions

and

multiplications, and can therefore be masked with overhead  O( d 2) if we assume that the polynomial operate on integer values. 

REJECTION METHODS.– There are no works on this topic. However, making these

methods constant-time is already a challenging task, so we can expect masking to be

highly non-trivial. 

9.5. Notes and further references

The main application of the techniques described in this chapter is the secure

implementation of post-quantum schemes. The most relevant ones are the first NIST

PQC standards: Kyber (Schwabe et al. 2022), Dilithium (Lyubashevsky et al. 2022)

and Falcon (Prest et al. 2022). Other relevant schemes are NIST candidates such as the

code-based schemes Classic McEliece (Albrecht et al. 2020) and BIKE (Aragon et al. 

2020), as well as the lattice-based schemes Saber (Schwabe et al. 2020), FrodoKEM

(Naehrig et al. 2020), NewHope (Pöppelmann et al. 2019), NTRU (Chen et al. 2020)

and NTRU Prime (Bernstein et al. 2020). 

– Section 9.2. Due to space constraints, we did not mention some lattice- and

code-based constructions which do not fall into the frameworks of section 9.2.1 and

section 9.2.2 but still necessitate random errors. This is the case for (i) the code-based

McEliece scheme (McEliece 1978) and its descendents such as Classic McEliece and

2 B2A conversion with complexity  O( d 2 log  k) exist, but with large constants. 
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BIKE, and (ii) the original NTRU encryption scheme (Hoffstein et al. 1998) and its

descendents such as NTRU and NTRU Prime (in its StreamlineNTRU Prime variant). 

– Section 9.2.1. The “noisy ElGamal” framework is inspired from the classical

ElGamal scheme (Elgamal 1985). Early formalizations of what we call the noisy

ElGamal framework were done in the context of lattice-based cryptography by

Lyubashevsky et al. (2010); Lindner and Peikert (2011). Current instantiations of this

framework include the lattice-based schemes Kyber, Saber, FrodoKEM (Naehrig

et al. 2020), NewHope and NTRU Prime (in its NTRU LPRime variant), as well as

the code-based schemes HQC and BIKE (in its BIKE-2 variant). 

– Section 9.2.2. Modern lattice-based hash-then-sign schemes are descendents

from the milestone work of Gentry et al. (2008). This includes Falcon as well as a few

other schemes (Bert et al. 2018; Chen et al. 2019). The first code-based instantiation

came was Wave (Debris-Alazard et al. 2019). 

All concrete lattice-based instantiations use Gaussians. Works by Lyubashevsky

and Wichs (2015) and Plançon and Prest (2021) explore the possibility of using other

distributions, at the cost of degraded parameters. 

– Section 9.2.3. Notable instantiation of the  Fiat–Shamir with aborts  framework is

(Lyubashevsky 2009) and its descendents (Güneysu et al. 2012; Lyubashevsky 2012; 

Ducas et al. 2013; Bai and Galbraith 2014; Pöppelmann et al. 2014; Bindel et al. 2019; 

Lyubashevsky et al. 2020), including the standard Dilithium. 

– Section 9.3.1. The first lattice-based signature (Lyubashevsky 2009) based on

the  Fiat–Shamir with aborts  framework used uniform distributions, and this is also

the case of one of its most recent incarnations, Dilithium (Lyubashevsky et al. 2020). 

Uniform distributions can also be used in lattice-based encryption schemes; see

the uSaber variant of Saber. 

– Section 9.3.2. Fixed-weight distributions have been a staple of code-based

cryptography for decades. The very first code-based cryptographic scheme

(McEliece 1978) used these distributions. More recent code-based incarnations

include the NIST (alternate) finalists BIKE, Classic McEliece and HQC. It has also

been used in lattice-based NIST finalist NTRU and alternate finalist NTRU Prime. 

– Section 9.3.3. The first occurrence of centered binomial distributions in

lattice-based cryptography is due to Alkim et al. (2016), and motivated by the

efficiency gain and ease of use that these distributions provide, compared to

Gaussians. Notable uses include NewHope and the NIST finalists Saber and Kyber. 

– Section 9.3.4. In mathematics and theoretical computer science, there is a rich

and still ongoing history of using Gaussian distributions to study lattices (see, for

example, Regev (2003); Micciancio and Regev (2004); Stephens-Davidowitz (2017)). 
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Gaussian distributions are also used in several cryptographic constructions, 

notably Falcon and FrodoKEM. In the case of FrodoKEM, Gaussians are sampled via

a constant-time table lookup (section 9.4.1). In the case of Falcon, this table-based

approach is combined with polynomial-based (section 9.4.4) rejection sampling. 

– Section 9.3.5. Rejection sampling is an ubiquitous method in computer science; 

see (von Neumann 1950) for an early application. In the context of lattice-based

cryptography, it was first proposed in the  Fiat–Shamir with aborts  framework

(Lyubashevsky 2009) to prevent signing key leakage. In this context, rejection

sampling has been applied both in deterministic (Lyubashevsky 2009; Lyubashevsky

et al. 2020) and randomized (Ducas et al. 2013; Pöppelmann et al. 2014) form. 

Rejection sampling has also been used as a subroutine to sample from other

distributions, for example, Gaussians in Falcon. 

– Section 9.4. Several sampling methods not discussed in this chapter have adapted

samples from discrete Gaussians, for example, Knuth-Yao trees (Dwarakanath et al. 

2014; Karmakar et al. 2019) or the Ziggurat method (Buchmann et al. 2014). 

– Section 9.4.1. Using a table to sample random errors for post-quantum schemes is

a natural idea, as mentioned, for example, in Peikert (2010). Initially, a perceived need

for high precision hampered the storage and computational efficiency of this approach. 

In recent years, its efficiency has been largely improved by borrowing algorithmic and

information-theoretic tools from other fields, which allowed us to reduce both the

number of elements and precision of tables. This is, for example, done via the use of

guide tables and the Kullback–Leibler divergence (Pöppelmann et al. 2014), via the

Rényi divergence (Bai et al. 2015; Prest 2017; Howe et al. 2020), and via the use of

so-called conditional density tables (Prest 2017). Presently, the Falcon, FrodoKEM

and Wave schemes use table-based sampling. 

The FLUSH+RELOAD cache attack (Yarom and Falkner 2014) is applied in

Bruinderink et al. (2016) to table-based sampling methods (notably the use of guide

tables) used in BLISS. This attack worked in a somewhat idealized setting, a

limitation lifted in subsequent work (Pessl et al. 2017). 

– Section 9.4.2. There is a long history of oblivious sorting algorithms (including

sorting networks) and switching networks that goes far beyond their cryptographic

applications. 

Sorting networks were first proposed by Batcher (1968), which also introduced

the bitonic sort with its complexity  O( n  log2  n). Sorting networks with complexity O( n  log  n) were proposed, but they have extremely large concrete  O( ·) constants due to their use of expander graphs: the AKS sort (Ajtai et al. 1983) and the Zig-Zag

sort (Goodrich 2014). Recently, Asharov et al. (2020) proposed oblivious sorting and

random permutation algorithms with complexity  O( n  log  n) and small  O( ·) constants, with the caveat of an (exponentially) small failure probability. 
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A close but distinct notion is switching networks. This formalism encompasses

the Thorp shuffle (Thorp 1973) and Benes networks (Gelman and Ta-Shma 2014). 

The “quality” of random permutations produced by switching networks is quantified

by their  mixing  properties. Mixing properties of the Thorp shuffle and Benes networks have been studied in Morris (2008); Morris et al. (2009) and Gelman and Ta-Shma

(2014), respectively. Using switching networks to sample random permutations has

been studied in Czumaj (2015). See also (Bernstein 2020) for a focus on the formal

verification of permutation networks, and (Bernstein 2017) for divergence bounds of

sorting networks. 

– Section 9.4.3. In lattice-based cryptography, sampling one-dimensional

Gaussians by convolution was first done by Pöppelmann et al. (2014). This approach

was then studied more in-depth by Micciancio and Walter (2017) and Zhao et al. 

(2020), making it both more generic and more efficient. Both Falcon (Prest et al. 

2020) and qTESLA (Bindel et al. 2019) combine convolution with table-based

sampling to sample Gaussians more efficiently during key generation. 

– Section 9.4.4. Polynomial-based approximation was first proposed in the context

of lattice-based cryptography by Aguilar Melchor et al. (2017) and Prest (2017), then

adopted in a subroutine of Falcon. The idea was refined in subsequent works. Notably, 

Barthe et al. (2019) and Zhao et al. (2020) discuss tools for optimizing the search

for polynomials that are “optimal” in the sense that for a given degree  d, using a

polynomial  p  of degree  d  instead of a transcendental function  f  would miminize the bias between some associated distributions  Dp  and  Df . 

– Section 9.4.5. Rejection methods to sample exponential-style distributions were

pioneered by von Neumann (1950). Influential follow-up works include Forsythe

(1972) and Ahrens and Dieter (1973). These methods were first applied in a

cryptographic context by Ducas et al. (2013). Follow-up works are of Karney (2016)

and Xie et al. (2021). It is notoriously difficult to make constant time. 

Several side-channel attacks against rejection-based algorithms were proposed. 

For example, Espitau et al. (2017) propose such attacks either in the context of simple

power analysis and an electromagnetic attack. 

– Section 9.4.6. It has been shown in Schneider et al. (2019) and Coron et al. 

(2021) that B2A conversion for 1-bit values can be done using only  O( d 2) operations. 

As an application, Schneider et al. (2019) show how to sample masked binomials with

an overhead  O( d 2). 

 Other attacks: a timing attack against a sampler in BLISS (Ducas et al. 2013) is

proposed in Barthe et al. (2019). The attack exploits the fact that the running time of

the sampler depends on the private signing key. Similarly, Tibouchi and Wallet (2021)

put forward an attack exploiting non-constant-time bit-flips during noise generation. 
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Finally, Prest (2023) proposes a key-recovery attack against a variant of Falcon called

Mitaka (Espitau et al. 2022). 
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ROCA and Minerva

Vulnerabilities

Jan JANCAR, Petr SVENDA and Marek SYS

 Masaryk University, Brno, Czechia

ROCA and Minerva are two examples of real-world practically exploitable

vulnerabilities found in cryptographic smartcards certified to high security levels

under the Common Criteria certification scheme. Both vulnerabilities allow the

extraction of the corresponding private key – RSA primes for The Return of

Coppersmith’s Attack (ROCA) and private scalar for ECDSA in the case of Minerva. 

The exploitation utilizes a lattice-reduction-based algorithm in both cases. 

The Minerva vulnerability is caused by an  implementation weakness  providing an

attacker with the knowledge of one or more most significant bits of an ECDSA nonce

via timing side-channel leakage. The attack requires active monitoring of the

computation of several thousand ECDSA signatures measured by a regular PC-based

timer, or several hundred if precise power or EM analysis is available, followed by a

cheap key extraction computation. The vulnerability affects Athena IDProtect

smartcards that were certified to EAL4+ level and several types of tokens based on

the AT90 security chip with the Atmel Toolbox cryptographic library. The same kind

of weakness affected five other open-source cryptographic libraries. 

On the contrary, the ROCA vulnerability is caused by a  design weakness  of a

specific format of the used RSA primes. These primes are generated faster than if

chosen completely randomly, but also taken from a smaller subset of all potential

primes. While the internal entropy degradation was known, it was believed not to be

exploitable. The attack only requires knowledge of an RSA public key, followed by a
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somewhat expensive (several thousand dollars for 2048b RSA) but practical key

extraction computation. The vulnerability affects a large range of chips produced by

Infineon manufacturer and certified up to CC EAL 6+ level, manufactured between

2006 (at the latest) and 2017 in large quantities (estimated to 1–2 billion units) and

deployed in a variety of scenarios, including electronic IDs, Trusted Platform

Modules, full disk encryption, authentication tokens and protection of certification

authorities signing keys. 

As the impacted chips were certified under the Common Criteria scheme, the

certification artifacts provide a trove of otherwise non-public information, which can

help analyze the root cause of the vulnerabilities and identify other potentially

vulnerable products and reasons for failed internal vulnerability notifications before

the public disclosure. 

10.1. The Return of Coppersmith’s Attack

The ROCA vulnerability was discovered using large datasets of RSA keys

generated by various smartcards and cryptographic libraries and used to identify the

origin of RSA keys. In theory, properly generated RSA private keys are fully random

primes; hence keys and also their sources are indistinguishable. 

However, in practice, several choices are made by developers to simplify or speed

up the key generation process, for example, if RSA keys ( N ) are generated to be of

an exact size (2 n  bits) with the corresponding primes  P, Q  of half size ( n  bits). 

Generation of a random RSA key is not as simple as generating two random primes

of  n  bits because the product of two  n− bit integers can produce a modulus with 2 n −  1 or 2 n  bits. However, we can simplify the generation of primes by fixing their most significant bits (e.g.  P = 11  · · ·  12). Such implementation choice creates an observable pattern in public keys (RSA modulus). This surprising fact was found by

investigation of millions of RSA keys generated by range of smartcards and

cryptographic libraries. As a result, we can identify a source of a given public

modulus with high probability using only 8 bits (seven most and one second least

significant). The bias of these bits also leaks some information about the private key

(primes), but the leak is small and not sufficient for a successful attack. 

Further analysis showed significantly different results from other sources for one

specific card – Infineon JTOP 80K smart card. Specifically, the values of both primes

 P, Q  and the corresponding modulus  N =  P.Q  modulo some small primes  pi  are not distributed uniformly. For example,  P  mod 11  ∈ { 1 ,  10 }  and  P  mod 37  ∈

 { 1 ,  10 ,  26 }  represent an entropy loss and leak information on the private key. Such an intriguing leak motivated further investigation, leading to the discovery of the structure

of the primes and, finally, to the ROCA factorization vulnerability. 
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As the Infineon-generated RSA primes fall into two residue classes instead of 10

for  pi = 11, the entropy of primes is decreased by 2.3 bits (2 .  3 =  −log 22 / 10). 

Similarly, primes lose additional 3.1 bits w.r.t  pi = 37 as the remainders for 11 and 37 are independent. We can estimate the entropy loss by analyzing the distribution of

RSA primes  P, Q  modulo products of small primes  pi. Analysis showed that although the distribution of RSA primes is uniform (covers  Z∗

 p − { 0 }) for some of the primes

 i

(e.g.  pi = 7), they increase entropy loss even more when they are combined with

others  pj. For example, RSA primes fall into six (two for  pi = 11 times three for  pj =

37) residue classes  P  mod 11 ∗ 37  ∈ { 1 ,  10 ,  100 ,  186 ,  232 ,  285 }  but for 7 ∗ 11 ∗ 37, the number of classes remains six ( P  mod 7  ∗  11  ∗  37  ∈ { 1 ,  10 ,  100 ,  285 ,  1000 ,  1453 }). 

Moreover, for some, moduli remainders form a multiplicative subgroup that is cyclic

(generated by one element). This property was verified for modulus (maximal one)

equal to product of all primes (up to some bound). Lastly, the smallest generator 65537

of the subgroup was found; hence, RSA primes generated by the vulnerable Infineon

RSALib library have the following form:

 P =  k ∗ M + (65537 a  mod  M )

[10.1]



for  k, a ∈ N and product of small primes  M =

 pi<B pi. The upper bound for value

 a  is determined only by  M  which is fixed for range of key sizes. The upper bound for k  is given by prime size and the size of  M , that is, size of  k  is complement of size  M

w.r.t size of prime. The formula in equation [10.1] was a guarded secret until 2017. 

10.1.1.  Fingerprinting

The format of the RSA primes given by equation [10.1] is a specific fingerprint of

the primes but also of the corresponding public modulus as shown by equation [10.2]:

 P

 Q











 N = ( k ∗ M + 65537 a  mod  M )  ∗ ( l ∗ M + 65537 b  mod  M ) , 

[10.2]

for  a, b, k, l ∈  N . 

This specific form of modulus is equivalent to the existence of a corresponding

discrete logarithm (DL)  x  for the base 65537 in  Z∗M . Concretely,  N  is of the form (equation [10.2]) if and only if  N ≡  65537 x  mod  M  for some integer  x. Hence, vulnerable keys can be easily identified by computing the DL of the public modulus

 N . DL  x  can be computed efficiently using the Pohlig–Hellman algorithm. The Pohlig–Hellman algorithm is applicable in situations where the order of a group (or a

generator) is smooth (has small prime divisors), which is exactly the case for ROCA

keys. Here, we benefit from the fact that  M  is smooth, which implies that the
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order  ordM (65537) of the generator 65537 in  Z∗M  is also smooth. The algorithm can correctly test a key for a vulnerability in milliseconds on a standard CPU. 

The

probability

of

false

positives

is

equal

to

the

inverse

of

 r =  |Z∗M |/|G| =  φ( M) /ord 65537( M) and it is negligible (less than 2 − 154). The ratio shows how small the set  G  of the remainders library can generate compared to

set  Z∗

 M  covered by correctly generated keys. The ratio  r  can be interpreted directly as entropy loss (at least 154 bits) of the primes. This huge entropy loss can be used to

perform a practical factorization attack. 

10.1.2.  Factorization attack

The attack takes  N  as input and looks for its prime divisor  P (or  Q). For a given key size, the value of  M  is fixed and the primes differ only in their values  a, k (see equation [10.1]). The values of  M  were computed by the authors of the attack. The

values of  M  for selected keys sizes can be found in Nemec et al. (2017); Table 10.1. 

Entropy loss

Initial attack cost

Optimized cost

Key size (to random prime) (energy-only price) (for 90% of keys)

512b

157.1b (61.4 %)

$0.002

$0.0007

1024b

340.2b (66.4%)

$1.78

$0.63

2048b

715.2b (69.8%)

$944

$336

3072b*

715.2b (46.6%)

$1 .  90  ∗  1026

$6 .  76  ∗  1025

4096b* 1527.5b (74.6%)

$8 .  58  ∗  109

~$3 billion

Table 10.1.  An estimation of entropy loss and factorization cost for different key lengths. As the attack is perfectly parallelizable, its run-time can be arbitrarily shortened using more CPUs in parallel. The energy cost is estimated for a standard Intel

 E5-2650v3@3GHz CPU with $0.2/kWh electricity price

A high-level description of the attack is as follows: the attack looks for  a, k  as their cumulative bit-size (e.g. 99 = 37 + 62 for 512b RSA keys) is much smaller than the

bit-size of  P (256 for 512b RSA). The attack iterates over a set of exponents  a, utilizes Coppersmith’s method (CM) to compute  k  and tests whether the corresponding  P  is a divisor of  N . This naive approach is infeasible since a number of different  a  is large (see red line in Figure 10.1 representing  ordM (65537)). However, the approach could be optimized as the CM is able to compute  k  of larger sizes (up to half of

the size of the RSA prime). The main idea of the optimization was that  M  can be

replaced by any of its divisors  M  ( M  | M ) in (equation [10.1]) and the values (primes and modulus) will still be of the same form. This observation allowed us to

decrease  M   and the number ( ordM(65537)) of guesses for an alternative exponent a. The dominant factor of the attack complexity:

 T ime =  ordM(65537)  ∗ T ( M, m, t)

[image: Image 35]
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is the order of the generator but when the size of  k  is close to the limits (half of the prime bits), the running time  T ( M , m, t) of CM plays an important role too. The values  m, t  defines dimension  m +  t  of the matrix processed by LLL – celebrated lattice reduction algorithm used by CM. Order  ordM(65537) can be computed

easily as  ordM(65537) =  lcm( ordp , ord , · · · ) based on orders  ord (65537) of 1

 p 2

 pi

all primes divisors  pi | M.  The running time  T ( M, m, t) can be computed only empirically since it depends on chosen parameters  m, t,  and implementation of LLL. 

Figure 10.1.  Complexity of ROCA attack with respect to key length. The difficulty generally increases with a key length, but decreases significantly when parameter M

 is changed. Unfortunately, different M is used just before the practically important key lengths like 1,024 or 2,048 bits (Nemec et al. 2017). For a color version of this figure, see www.iste.co.uk/prouff/cryptography3.zip

CM was proposed to find small root  r 0 of polynomial  f( x) modulo some number b, that is,  f ( x)  ≡  0 mod  b  for some  b. For the ROCA modulus,  N  and alternative guess  a, it means that we look for the small root  k  modulo  P  of the linear polynomial f ( x) =  x + ( M − 1  ∗  65537 a  mod  N ). The idea of CM is to get rid of unknown modulus  P  and transform this modular equation to an equation over the integers

solvable using standard algorithms. CM uses the LLL algorithm to find polynomial

 g( x) with the same roots over  Z  as has  f ( x) modulo  b. Polynomial  g( x) is constructed as a linear combination of polynomials  fi( x) for 0  ≤ i < m +  t.  The polynomials fi  are of the following forms:  fi( x) =  Nifm−i( x) for 0  ≤ i < m  and  fi+ m( x) =

 xif m( x) for 0  ≤ i < t  and all share the same root  k  modulo  P m.  CM constructs
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polynomial  g( x) such that  g( k)  < P m,  which imply that  k  is root of  g( x) also over Z. CM applies LLL to  m +  t × m +  t  matrix  B  whose rows  Bi  encode polynomials fi( xX) .  The integer  X  creates a connection between the norms of the vectors  Bi  and upper bounds on  g( k) for  k < X. Polynomial  g( xX) (which provides  g( x) directly) is found as a short (typically shortest) vector in a reduced matrix  B  obtained from  B

by LLL. 

Heuristic search on  M , m, t  aiming at 100% success rate to optimize the attack

speed was performed using a combination of greedy heuristic and local brute force. 

Authors of the ROCA attack did not iterate directly over  M  (as divisors of  M ) but over  ordM(65537) (divisors of  ordM (65537)), and then easily computed the corresponding maximal  M . Although this significantly reduced the search space, it

was still infeasible to test all suitable candidates for  M . The authors that discovered the attack, guarantee optimal values of the parameters only for small key sizes. 

Within a few days after the publication of the ROCA-detection tool, researchers

Bernstein and Lange revealed the format of primes given by equation [10.1], 

re-discovered the attack and improved its efficiency by roughly 20–25% using a

chaining method (one of the well-known strategies to speed up Coppersmith’s

method). A month later, Jannis Harder published in his blog an attack that is eight

times faster than the original. However, it works only for small keys (demonstrated

for 512b keys) where two-thirds (instead of half) of prime bits are known. The attack

is a simplification of Coppersmith’s attack – it looks directly for  k, l  as a small solution of  c 1 =  c 2  ∗ x +  c 3  ∗ y  mod  M  with  ci  determined by  a. 

In 2019, Bruno Produit and Arnis Parsovs published another type of optimization. 

They analyzed the entropy of  a, k  for one million generated keys and found that there are four fixed bits (1 MSB of  a  and 3 MSB of  k). This brought the worst-case time for the attack down from 140.8 CPU years to 35.2 CPU years for 90% of 2,048-bit keys. 

The remaining 10% keys require 70.4 CPU years. 

10.1.3.  Practical impact and disclosure

The ROCA factorization attack is a practical one – Masaryk University researchers

factorized randomly selected 512b and 1024b keys. Estonian RIA later factorized a

public key used in the real world, which turned out to be an “average” difficulty 2048b

RSA key for “several thousand euros” in claimed energy cost. The resulting impact of

the ROCA vulnerability is significant due to a combination of several factors: (1) the

widely used key lengths, including 1024b and 2048b are practically factorable; (2)

the weakness is on a design level; hence, it is not limited just to a particular range

of physical devices; (3) the chip vendor is one of the top three secure integrated

circuit (IC) producers with a large number of certified devices; and (4) the vulnerable

algorithm for prime generation was used for a long time – introduced in the year 2006

[image: Image 36]
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at the latest (RSALib v1.02.013) and replaced only after vulnerability disclosure in

2017. 

Vulnerable devices can be detected using two principal options:  (1) official device

 specification: finding mentions of the ROCA-vulnerable library in its specification or certification documents;  (2) key fingerprint: identifying the ROCA-specific bias in a modulus of a device-produced public key. 

The Google-powered search of the Common Criteria portal of certified products

for the string “RSA2048/4096 v1.02.013” (identifying the vulnerable library) returns

181 documents. An additional search of certificate references using the

https://sec-certs.org project returns almost 300 potentially vulnerable certified products with direct or indirect references to vulnerable ones. Figure 10.2 shows the

visualization of certificates relevant to a search based on the vulnerable library. The

colors correspond to different certificate-issuing countries. The impacted domains

naturally correlate with the utilization of cryptographic hardware and the usage of the

RSA algorithm specifically. Still, assessing the real-world impact is difficult as a

selection of a particular hardware vendor or an implementation used may not be

public knowledge. 

Figure 10.2.  The number of certified items under Common Criteria framework over

 the years as approved under different certificate issuing countries and mentioning

 the vulnerable library RSALib v1.02.013. For a color version of this figure, see

 www.iste.co.uk/prouff/cryptography3.zip

Although the RSALib is neither mandatory to use nor automatically shipped with

every chip, the developers are motivated to deploy it in order to benefit from

ready-to-use higher level functions (such as the  RsaKeyGen()  method in question)

and to get an implementation designed with protections against side-channel and

fault injection attacks in mind. 
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Fortunately, the very fast detection algorithm can quickly test millions of keys

using only the key’s modulus with negligible false negative and false positive rates. 

The fast and accurate detection is beneficial both for an attacker as well as for a

defender. While an attacker can broadly search for vulnerable keys and identify the

vulnerable ones before attempting its costly factorization attempt, a defender can

assess all the keys used and prevent the usage of vulnerable ones by revocation, update

and filtering. 

10.1.3.1.  Electronic identity documents

Overall, the electronic identity documents (eIDs) domain was significantly

affected as eIDs represent a large area for the application of cryptographic

smartcards, such as biometric passports (ePassport, ICAO Doc 9303), eDriver

licenses (ISO/IEC 18013) and country-specific identity documents. The card-based

RSA keypair is typically utilized for holder authentication, the establishment of a

secure channel (EAC-PACE) and the decryption of messages (OpenPGP, S/MIME). 

The use of the  RSALib  is referenced in multiple certification documents of electronic passports of several countries. While authentication and digital signing attacks are

generally mitigated by the key revocation, the decryption of past eavesdropped

messages remains an issue, unless perfect forward secrecy is guaranteed. Decryption

attack is also getting progressively cheaper with the attack’s factorization algorithmic

improvements and overall speedup in computation. 

Due to the general difficulty of obtaining relevant datasets with public keys from

passports or eIDs, only two countries (Slovakia and Estonia) were initially reported

as issuing documents with vulnerable keys. After public disclosure, other countries

were found to use a vulnerable chip to various extend. Notably, Spain revoked around

18 million citizen certificates. 

For Slovakia, only a small fraction of about 8% of citizens was issued with

electronic ID, but all of them were vulnerable. Slovakia kept using the RSA

algorithm on vulnerable chips but migrated to 3,072 bits keys (which are currently

not practically factorable and are supported by their chip) and only revoked existing

2,048 bits keys. 

The public lookup service of Estonia allowed for a random sampling of the public

keys of citizens and revealed that more than half of the eIDs of regular citizens and all

e-residents were vulnerable, counting roughly 750,000 certificates. Estonia migrated

away from vulnerable RSA implementation to an ECC algorithm with 384 bits key

length available on the same chip – a step that required an on-card update of the

eID application (JavaCard applet). The update was performed remotely or at official

kiosks for hundreds of thousands of cards. During the embargo period, the more

important affected parties (which the Estonia government certainly is) were supposed

to be notified before the full public disclosure, either directly by its local eID provider

or via non-public memos distributed among the parties involved in EU-wide eIDAS
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directive for cross-board trust services. However, the vulnerability information was not

propagated and received properly by the Estonian government until the beginning of

September 2017 – again by ROCA’s original researchers who coincidentally analyzed

Estonian’s repository of public keys and spotted freshly issued certificates still with

vulnerable keys seven months after the initial private disclosure. As the Estonian

national elections with widely used electronic voting via vulnerable  EstEID  cards were imminent, government officials were not only deciding how to technically fix issued

 EstEID  cards but also how (and if) to carry online elections with votes being signed by (possibly) insecure private keys. The estimation of the factorization cost played a

role; several thousand euros estimated to forge a single vote was deemed prohibitively

expensive to carry meaningful voting fraud. 

10.1.3.2.  Authentication tokens and code signing

The use of two-factor authentication tokens and commit signing is recommended

and on the rise, yet these approaches are still adopted only by a minority of

developers – but usually for more significant projects. In some cases, application

signing is mandatory and enforced by the platform (e.g. Android, iOS and OS

drivers); 

elsewhere, 

voluntarily adopted by the developers. Hundreds of

ROCA-fingerprinted keys for GitHub developers were found, more than half with a

practically factorizable key length of 2,048 bits. Including keys with access to very

popular repositories with up to 2,000 stars (users bookmarking the project) for

user-owned repositories and more than 50,000 stars for organization-owned

repositories. The impact is increased by the fact that some relevant repositories are

libraries used in other projects and are essentially trusted by third-party developers. 

The large majority of vulnerable cases seemed to be caused by usage of a popular

Yubico Yubikey 4 token (with vulnerable Infineon chip inside). Yubico updated

vulnerable key generation on its own and offered a token replacement. 

Public key

Usage domain

Misuse (examples)

availability

TLS/HTTPS

Easy

MitM, eavesdropping (SCADA)

Message security

Easy

Message eavesdropping, forgery (PGP, Yubikey)

Trusted boot (TPM)

Limited

Decrypt/unseal data, forged attestation (IFX, BitLocker)

Electronic IDs

Limited

E-gov document forgery/cloning (EE, SK, ES, BE)

Payment cards (EMV)*

Limited

Clone card, fraudulent transaction (none)

Certification authorities

Easy

Forged certificates (ChamberSign, D-TRUST, DATEV)

Auth. tokens (FIDO2)

Limited

Unauthorized access or operation (Yubikey)

Software signing

Easy

Malicious application update (GitHub, Maven)

Programmable smartcard

Varies

Depends on usage

Table 10.2.  The summary of the impact of key factorization in the different

 usage domains. The ROCA-fingerprinted keys were found within all

 listed domains with exceptions marked with an asterisk (*)
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A similar analysis of packages and applications available via the Maven

repository revealed only five keys (all with 4,096-bit moduli not considered

practically factorizable by the method) and none for Android Playstore. 

10.1.3.3.  Trusted Platform Modules and smartcards

Trusted Platform Modules (TPMs) provide a secure hardware anchor for a trusted

boot and key storage. The “sealed storage” is utilized by Microsoft BitLocker full

disk encryption software to protect the volume master encryption key. The possibility

to factorize TPM’s 2,048-bit root storage key (SRK) directly leads to decryption of

an unwrapping key necessary to decrypt the volume master key, thus bypassing the

need for TPM to validate the correctness of a PIN. As a result, an attacker can

decrypt a disk from a stolen laptop with a vulnerable TPM if encrypted by BitLocker

in TPM-only or TPM+PIN mode. As mitigation, Microsoft deployed detection of

vulnerable TPM-generated wrapping RSA key and migrated it under a new, 

non-vulnerable one. 

The ROCA CVE vulnerability record lists four platform configurations (CPE)

for vulnerable TPM firmware (v4.31, 4.32, 6.40, and 133.32) found in 130 different

notebook and laptop platforms. Fortunately, the TPM firmware can be updated, and

the corresponding patch was released. 

Not all smartcards based on the Infineon hardware are vulnerable as many vendors

use only the base hardware and libraries (e.g. SLE78 chip with RSA co-processor

performing modular exponentiation) and choose not to deploy or use the vulnerable

key generation. In contrast to TPM chips, an operating system and base libraries are

typically stored in a card’s read-only memory and cannot be updated later to remove

the vulnerability, once a card is deployed. Vulnerable cards will be available for a

prolonged time before eventually being sold or phased out, especially when dealing

with low-volume markets. The vulnerable cards are still available for sale five years

after the disclosure. The total number of chips produced with the vulnerable library is

estimated to be 1–2 billion. 

The chip-based payment cards used worldwide are backed by a set of protocols

specified under the EMV standard and maintained by the EMVCo consortium. The

 RSALib  was approved for use in EMV cards by EMVCo and is referenced in related

certification reports, but no public database is available. Out of a small sample of RSA

keys extracted from 13 payment cards issued by different banks in four European

countries, six cards reported chips produced by Infineon, but none of them contained

the ROCA fingerprint. Meaning that the vulnerable key generation method was not

used in either one, possibly due to a key being generated outside the EMV card and

imported later during a personalization phase. However, if used, the potential impact

of factorizable keys would be particularly damaging to contactless payments due to

the generally short RSA key lengths used, ranging between 768 and 1,280 bits only. 
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10.1.3.4.  Email, web and SCADA security

The keys used for digital signatures and email encryption are easy to download

from public PGP keyservers. Almost 3,000 fingerprinted keys with slightly less than

1,000 practically factorizable ones were found. The  Yubikey 4  token seems to be the origin for the majority of these keys, as hundreds even contain Yubikey-identifying

strings in the keyholder information and the date of generation correlates with the

release date of this token. 

Despite analysis of more than 100 million certificates coming from whole IPv4

address space scans and Certificate Transparency logs, only a negligible number of

15 vulnerable keys was found in the TLS/HTTPS domain initially. However, all of

the keys were tied to different pages with SCADA-related topics, which may point to

a single provider of a SCADA remote connection platform. Following the public

disclosure, a large number of certificates with vulnerable keys for SCADA-related

domains like scada.emsglobal.net, alarms.realtimeautomation.net, and Belarusian

Kapsch devices *.kapsch.by were revoked. 

10.1.3.5.  Certification authorities

The presence of vulnerable keys belonging to certification authorities would

magnify the impact due to the possibility of key certificate forgery. Neither the

browser-trusted certificates nor electronic passport signing certificates (ICAO)

contained ROCA-fingerprinted keys among the 10,000 root and intermediate active

authorities. However, retrospective analysis shows that several root certification

authorities like ChamberSign Qualified CA and D-TRUST Qualified CA, CA

DATEV ZSM had their certificates revoked and keys updated during (or shortly after)

the embargo period. ENISA’s annual report on trust services for the year 2017

showed that one-third of all notified breaches were due to the ROCA vulnerability, 

with 60% on the highest “disastrous” level. The currently largest certification

authority for TLS/HTTPS certificates, Let’s Encrypt refuses to certify any submitted

certificate signing request (CSR). 

10.1.4.  Notes and further references

– Section 10.1. The ROCA (Nemec et al. 2017) vulnerability affects a range of

certified devices by Infineon. The vulnerability was found using an already existing

dataset of keys collected for the paper Svenda et al. 2016, doing origin library

attribution based on the public key. 

– Section 10.1.1. The details of the Pohlig–Hellman algorithm are provided in

Pohlig and Hellman (2022). An open-source detection tool for vulnerable keys is

available (Klinec and Svenda 2017) to study key patterns. 

– Section 10.1.2. The blog describing rediscovery of an attack by Bernstein and

Lange is described in Bernstein and Lange (2017). Another approach is described in
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Harder (2017). The ROCA vulnerability is categorized under record CVE-2017-15361

in NIST National Vulnerability Database (NVD 2017). The ROCA attack was roughly

4x improved in Produit (2019), bringing overall energy cost down to several hundred

dollars for a 2,048 bits key. 

– Section 10.1.3.1 The European directive for trust services enables recognition

of signatures between different EU countries and mandates disclosure of relevant

vulnerabilities among the involved countries (EU 2014). ENISA issues an annual

report with the summary for the issues which occurred in a given year (ENISA 2018). 

– Section 10.1.3.3. Details of architecture and data format for Microsoft Bitlocker

fulldisk encryption software are provided in Kumar and Kumar (2008); Kornblum

(2009) and Microsoft (2013). EMVCo consortium is responsible for checking

compatibility as well as security of the components like cards and terminals

compatible under the EMV standard. The approved cards are issued a certificate

under this scheme, which can be checked for presence of RSALib vulnerable library

(EMVCo 2017a, 2017b). 

– Section 10.1.3.5. The detection of the ROCA fingerprint was added to monitoring

of issued certificates via Certificate Transparency, allowing for tracking of the revoked

certificate https://misissued.com/batch/28/. 

10.2. Minerva

The Minerva group of vulnerabilities was discovered in 2019. It affects a

Common Criteria–certified smartcard and is used to affect five popular open-source

cryptographic libraries. All of the affected implementations leak information on the

most-significant bits (usually the bit-length) of the random nonce used in ECDSA

signatures via a timing side-channel. This information collected over many

signatures can be utilized to form an instance of the Hidden Number Problem (HNP), 

the solving of which recovers the private key used. This problem is usually solved by

transforming it to the Closest Vector Problem (CVP) or the Shortest Vector Problem

(SVP), two well-known problems on lattices, which have practical solutions for the

cases encountered here via lattice-reduction algorithms. For more background on

issues of ECDSA nonce leakage as well as the HNP, see Chapter 8 of this volume. 

Concurrently with the discovery of the Minerva vulnerability, a different group

of researchers found the same type of leakage in two TPMs, including a Common

Criteria EAL4+ certified one, and dubbed it the TPM-Fail vulnerability. 

10.2.1.  Discovery and leakage

The discovery of the first vulnerable implementation, the Athena IDProtect

smartcard, was made using ECTester, a tool for testing black-box elliptic curve
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cryptography implementations. A large-scale analysis of ECC operations from

JavaCard-based smartcards and selected software cryptographic libraries, including

the ECDSA signatures along with timing information, detected the leakage caused by

a linear relationship between the bit-length of the ECDSA nonce and the duration of

the signing operation, as visualized in Figure 10.3. Three other implementations

exhibited the same linear bit-length leakage (libgcrypt, MatrixSSL and SunEC), with

MatrixSSL also leaking the Hamming weight of the nonce via a similar linear

relationship with the signing duration. Further, two implementations tested (wolfSSL

and Crypto++) exhibited similar leakage but with a more complex dependency due to

more complex scalar-multiplication algorithms used in these implementations. 

Figure 10.3.  The visible leakage of nonce’s bit-length on signature times of the

 Athena IDProtect smartcard (on the secp256r1 curve) as measured by the host

 machine (Jancar et al. 2020). For a color version of this figure, see www.iste.co.uk/

 prouff/cryptography3.zip

10.2.2.  Cause

The exact cause of the vulnerability of each affected implementation differs

slightly, as does the leakage itself, but the main issue is the same. The scalar

multiplication implementation used in ECDSA is not constant time with respect to

the bit-length of the scalar, as required by the constant-time criterion discussed in

Chapter 7 of Volume 2. Implementing scalar multiplication that does not have this

leak, yet uses incomplete addition formulas (that cannot correctly compute  ∞ +  Q  or 2 ∞  in a side-channel indistinguishable way from  P +  Q  and 2 P ), is very tricky. 

Even using a well-known constant-time algorithm for scalar multiplication, such as

the Montgomery ladder (see Chapter 10 of Volume 2 for more background) can fail

in this way when used with incomplete formulas. Using incomplete formulas, the two

ladder variables are initialized either as  R 0 =  ∞,  R 1 =  G (as in Algorithm 10.1) or as  R 0 =  G,  R 1 = 2 G (as in Algorithm 10.2). In the first case, the computation can start at a fixed loop bound  l, and thus it might seem that the bit-length will not be
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leaked through timing. However, all of the iterations processing the leading zero bits

of  k  will input the point at infinity to incomplete formulas. As the formulas cannot handle this case, they need to be protected by detecting the input and short-circuiting, 

which obviously leaks via timing, as was the case in the libgcrypt implementation. 

Algorithm 10.1. Montgomery ladder (complete)

function LADDER( G, k = ( kl, . . . , k 0)2)

 R 0 =  ∞;  R 1 =  G

for  i =  l  downto 0 do

 R¬k =  R

= 2 R

 i

0 +  R 1;  Rki

 ki

return  R 0

In the second case, as in Algorithm 10.2, the incomplete formulas never

encounter the point at infinity. However, the bit-length of  k  needs to be found, and the loop must start one bit past this length, thereby leaking the bit-length via timing

even more directly. This (or a similar) approach was likely employed in the Atmel

Toolbox cryptographic library, which was used in the Athena IDProtect smartcard as

a collection of powertraces in Figure 10.4 shows. 

Algorithm 10.2. Montgomery ladder (incomplete)

function LADDER( G, k = ( kl, . . . , k 0)2)

 R 0 =  G;  R 1 = 2 G

for  i =  |k| −  1 downto 0 do

 R¬k =  R

= 2 R

 i

0 +  R 1;  Rki

 ki

return  R 0

10.2.3.  Attack

As described in Chapter 8 of this volume, the knowledge of the most-significant

bits of (EC)DSA can be used to mount a key recovery attack by first turning the

knowledge into an instance of a Hidden Number Problem (HNP), then to an instance

of the CVP and optionally the SVP. Hence, in this section, we will discuss the details

specific to the Minerva vulnerability. Overall, the attack works as follows:

1) Collect  N  signatures ( ri, si) on messages  mi, while measuring the duration  ti. 

2) Sort the signatures by  ti  in ascending order and take  d  of the fastest. 

3) Estimate the leading zero bits  li  of nonces of the fastest  d  out of  N  signatures. 

4) Use the HNP to form a CVP instance based on  li, ri, si  of the  d  signatures. 

5) (Optionally) Transform the CVP instance into a SVP instance. 

[image: Image 38]

Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science Univer , Wiley Online Library on [03/03/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License ROCA and Minerva Vulnerabilities

219

6) Solve the problem via lattice reduction methods (e.g. LLL and BKZ). 

7) Extract and verify the correctness of the private key. 

Figure 10.4.  The leakage of nonce bit-length on a power consumption trace of the

 Athena IDProtect smartcard as captured by an ordinary oscilloscope. The zoomed

 region displays the difference at the end of the scalar multiplication with nonces having 0, 1, and 5 leading zero bits. The pattern corresponding to a single iteration, and thus bit, is clearly discernible (Jancar et al. 2020). For a color version of this figure, see

 www.iste.co.uk/prouff/cryptography3.zip

The first step of the attack is trivial. The only notable thing to mention is that the

messages  mi  only need to be distinct if deterministic nonce generation is used (see Chapter 8 of this volume); otherwise, they just need to be known to the attacker. This

is because deterministic nonce generation would lead to the same nonce used for all

of the signatures on the same message, and the leakage would not be useful. 

In the second step, due to the nature of the linear relationship between nonce

bit-length and signing duration, the attacker is sorting the signatures by the descending

amount of leading zero bits  li. The first (and fastest) signatures thus have the largest amount of leading zero bits in their nonces and thus usable information leaked to the

attacker. 

The third step computes the estimated leading zero bits  li  of unknown nonces  ki used in the fastest  d  out of  N  signatures by using the fact that nonces are generated uniformly at random modulo the curve order  n. We can thus expect that the number

of leading zero bits follows a sort of truncated geometric distribution with one-half of

the nonces having  li = 0, one-quarter having  li = 1, etc. Then, taking into account the linear relationship between bit-length and signing duration  ti  we obtain a clear method of estimating the  li: sort them by duration and apply the above distribution. 

The slowest half of signatures would likely have nonces with full bit-length (thus

 li = 0), etc. 
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In the fourth step, the attacker needs to make a claim about the values of the

most-significant bits of the nonces in order to form HNP inequalities and then the

CVP lattice and target vectors. The attacker has a choice here; they can claim the most

significant  li  bits to be zero, or they can include the ( li + 1)-th bit and claim it is set to one. The latter clearly carries more information but also increases the probability

of an error, as the former simply claims the  i th nonce has at least  li  leading zero bits while the latter claims exactly  li  zero bits. 

As steps 5 through 7 are not specific to the vulnerability, we refer the reader to

Chapter 8 of this volume for more information. 

10.2.3.1.  Improvements

As presented above, the attack above is similar to one presented in 2011 against

bit-length leakage in ECDSA in OpenSSL, discovered by Brumley and Tuveri. 

However, their attack did not compute the leading zero bit estimates  li  as above but simply put a constant bound  l  for all  d  signatures, which was not as effective. Their attack also introduced a method for handling errors in the claimed values of the

most-significant bits, which often leads to a failure in extracting the correct private

key. They proposed a change in step two of the attack by constructing random subsets

of  d  signatures out of  d +  e  fastest (for some small values of  e ∼  14 d) and repeating the attack, they could stumble upon an error-free subset and obtain the private key. 

The Minerva authors discussed several possible attack improvements in their

paper, including the above random subsets one, solving the CVP via transformation

into SVP, as well as what they called a CVP +  u-bitflips approach for solving errors. 

Albrecht and Heninger (2021) focused on modifying steps 5 through 7 of the attack

to not use lattice reduction techniques as a black-box but to incorporate the specifics of

the attack in their internals. Concretely, they introduced a variant of the above lattice

problems  with a predicate, where the attacker has a way of verifying whether a private key guess is correct (by using the public key). They then gave efficient algorithms for

these problems, either using lattice enumeration or sieving. 

Sun et al. (2022) modified step four of the attack using an approach similar to CVP

+  u-bitflips but not with the goal of fixing errors; instead, guessing more bits of the secret material and thus obtaining the private key with a larger probability. They also

investigated the properties of the transformation from CVP to SVP and its optimal

parameterization. 

10.2.4.  Impacted domains and disclosure

The Minerva group of timing attack vulnerabilities in ECDSA signing coincided

with (and exploited) the same type of leakage as TPM-Fail but targeted a different set

 Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science Univer , Wiley Online Library on [03/03/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License ROCA and Minerva Vulnerabilities

221

of implementations, including smartcard certified under both CC and FIPS 140-2, 

the  Athena IDProtect. Table 10.3 shows the list of analyzed libraries with scalar

multiplication implementation used. 

Type

Name

Version/Model

Scalar multiplier Leakage

OpenSSL

1.1.1d

Montgomery ladder1

no

BouncyCasle

1.58

Comb method2

no

Window-NAF

no

SunEC

JDK 7 - JDK 12

Lopez-Dahab ladder

yes

WolfSSL

4.0.0

Sliding window

yes3

BoringSSL

974f4dddf

Window method

no

libtomcrypt

v1.18.2

Sliding window

no

libgcrypt

1.8.4

Double-and-add

yes

Botan

2.11.0

Window method4

no

Library

Microsoft CNG

10.0.17134.0

Window method

no

mbedTLS

2.16.0

Comb method

no

MatrixSSL

4.2.1

Sliding window

yes

Intel PP Crypto

2020

Window-NAF

no

Crypto++

8.2

Unknown

yes

IAIK ECCelerate

6.0.1

Unknown

no

Athena IDProtect

010b.0352.0005

Unknown

yes

NXP JCOP3

J2A081, J2D081, J3H145

Unknown

no

Infineon JTOP

52GLA080AL, SLE78

Unknown

no

Card

G+D SmartCafe

v6, v7

Unknown

no

1 Applies the fixed bit-length mitigation. 

2 Uses many scalar multiplication algorithms. 

3 Likely not exploitable, due to a small amount of leakage. 

4 Uses additive scalar blinding. 

Table 10.3.  Libraries and devices analyzed in Jancar et al. (2020). For a

 color version of this table, see www.iste.co.uk/prouff/cryptography3.zip

A manual analysis of the certificate reports and security targets from CC and

FIPS 140-2 certificates about the vulnerable chip was used to report on the affected

certified products. A single vulnerable CC certificate for the  Athena IDProtect

smartcard with ID https://sec-certs.org/cc/fca98ecd003e1b82/ was identified using CPLC (Card Production Life Cycle) data, which was also included in the certification

report. However, the root cause of the vulnerability stemmed from another certified

item, 

the

 Atmel

 Cryptographic

 Toolbox

 00.03.11.05

with

certificate

ID

https://sec-certs. org/cc/49b4531177e9c3af/. Its security target describes two sets of functions for performing elliptic curve cryptography operations,  secure  and  fast, with the fast functions not offering any SPA/DPA protection. It is likely that the vulnerable

Athena IDProtect smartcard mistakenly decided to use the fast functions. 
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While the actual private key extraction demands non-trivial methods, the leakage

itself is relatively easy to detect, showing surprising deficiencies in the testing of

security devices and cryptographic libraries. The leakage can be detected using a

computer timer only, with no need for power trace acquisition or similar SCA

methods. 

The vulnerabilities were responsibly disclosed to the affected vendors upon

discovery, including assistance and patches fixing the vulnerability to several of

them. All of the vulnerabilities in the software-only libraries are fixed in their newer

versions. The state of the vulnerable chip AT90SC is unknown, as it is currently

offered by the WiseKey company, which did not confirm or deny our findings

regarding the chip. The Athena IDProtect card is no longer in production, and likely

no new products are based on the vulnerable code after acquisition by NXP. 

10.2.5.  Notes and further references

– Section 10.2. The Minerva vulnerability presented in Jancar et al. (2020) was

first found on the Athena IDProtect-certified smartcard ANSSI (2012) with

cryptographic library. The authors provide a contentful web page for their attack at

https://minerva.crocs.fi.muni.cz. The TPM-Fail vulnerability discovered by Moghimi et al. (2020) presented the same kind of leakage as Minerva in two separate TPMs. 

– Section 10.2.1. ECTester, a tool by Jancar and Svenda (2018), was used to

discover the vulnerability and collect data by the authors. 

– Section 10.2.3.1. Brumley and Tuveri (2011) were the first to present the overall

attack process on similar bit-length leakage, but targeting OpenSSL. Sun et al. (2022)

presented the idea of guessing more bits of the secret and also investigated the CVP

to SVP conversion step and its performance with different parameterization. Albrecht

and Heninger (2021) introduced the bounded distance decoding with a predicate

problem and gave efficient algorithms for solving it. 
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11.1. Introduction

The vast automotive ecosystem has an inherently large attack surface arising from

its complexity and connectedness (Checkoway et al. 2011; Miller and Valasek 2014). 

In the automotive context, embedded attacks can be standalone, but often enable the

discovery of a more scalable attack that can be more widely deployed. 

For example, security vulnerabilities arising from the long-range wireless

connectivity of vehicles are often the most severe. Such vulnerabilities can result in a

large-scale remote attack, potentially affecting the safety of the vehicle’s user and

nearby road users. In their seminal work, Checkoway et al. (2011) presented the first

publicly documented remote vehicle compromise. They demonstrated a remote

vehicle compromise through its long-range cellular interface by calling the car’s

Telematics Control Unit (TCU) and playing a prerecorded audio file containing the

exploit code. As a proof-of-concept their payload would force the car to reach out to

an Internet Relay Chat (IRC) server, allowing the researchers to send commands to

compromised vehicles. This command and control interface allowed to inject

arbitrary packets on the compromised vehicle’s internal controller area network

(CAN). 

The role of embedded attacks in such remote attacks should not be

underestimated. Attackers often leverage physical access to a similar target vehicle or

subsystem (e.g. an Electronic Control Unit (ECU)) to obtain secret information or to
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accelerate the discovery of a scalable attack. In other words, attacks targeting the

hardware components can allow us to obtain an initial foothold into the system or to

extract the software being executed on the device. Obtaining this information

accelerates vulnerability research. 

This book covers a wide range of techniques that can be used to analyze and/or

defeat the security of some embedded devices. It is not always clear how relevant these

techniques are in real-world scenarios where the attacker may not have the same level

of control as what is assumed in many research papers. Nevertheless, the applicability

of these techniques in the real-world cannot be underestimated. The automotive sector

is one of many sectors where such embedded attacks are relevant. In this chapter, we

cover some attacks with real-world impact that target automotive systems. We will

specifically focus on those works that use some of the techniques discussed in this

book. 

11.2. The embedded automotive attacker

Embedded automotive attackers apply the methods and techniques from

embedded attacks to target automotive systems. The term “attacker” often has a

negative connotation associated with it, which does not always reflect their goals. 

The motives to attack automotive systems can vary widely and are often without

malicious intent. 

The most widely imagined automotive attacker is someone who wants to steal

cars, remotely harm a target or compromise a user’s privacy. However, in practice it

is likely that these are not the most common goals. Instead, embedded attackers may

want to reverse engineer an ECU or other automotive components for various reasons. 

They may want to repair (or preserve older) vehicles for which the manufacturer is

not offering spare parts or service manuals, or they may want to create a compatible

(open-source) product or ECU with additional features. Legitimate owners may want

to unlock software-locked features in their own vehicles. Researchers may want to

demonstrate a technique, warn manufacturers of a security issue or simply want a fun

challenge; all without malicious intent. 

In some cases, an original equipment manufacturer (OEM) or car manufacturer

may resort to the same offensive techniques to reverse engineer products of their

competitors, often with the aim of so-called competitive analysis. Several companies

offer competitive analysis as a service. These same techniques can be used by an

OEM to steal intellectual property and to save time and money on the development

of a competing product. Law enforcement agencies may want to retrieve forensic data

from car systems or they may want to (briefly) gain access to a car. 

The same techniques can thus be used for a broad range of end goals with different

underlying incentives. Similarly, the same techniques are employed by a wide range

 Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science Univer , Wiley Online Library on [03/03/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Security of Automotive Systems

227

of parties ranging from individual researchers to law enforcement agencies, each of

which we can assume to have varying resources. 

11.3. An overview of automotive attacks

This section provides a high-level overview of several types of attacks that target

automotive systems. Here, we distinguish attacks that require physical proximity to

the target vehicle, attacks that can be carried out remotely and attacks that do not

target the vehicle directly. 

11.3.1.  Proximity vehicle attacks

A malicious attacker who is able to physically access a target vehicle has many

tools at their disposal and can have multiple goals. The goal can be as simple as

physically removing components from the vehicle. Tires, wheels, air bags and

catalytic converters are among the most commonly stolen components. Alternatively, 

a car thief may try to use off-the-shelf locksmith and automotive repair tools to steal

a vehicle, or items contained within. Similarly, some adversaries may attempt to gain

access to the vehicle’s interior with the goal to install privacy and/or safety

compromising devices. 

In some cases, car thieves remove a component (e.g. a radar module, headlight or

mirror) to access the vehicle’s CAN-bus wiring. By injecting specific CAN frames, 

it may then be possible to unlock the doors and to bypass the immobilizer (Hoppe

et al. 2008). Tindell and Tabor (2023) reverse engineered a commercially available

CAN injection tool disguised as a Bluetooth speaker that is being actively used to

steal cars (Clatworthy 2023). 

Furthermore, it may be possible to exploit vulnerabilities in diagnostic protocols to

overwrite ECU firmware or to pair a new key fob to the car (Van den Herrewegen and

Garcia 2018; Wouters et al. 2021). This same intimate knowledge of the CAN frames

or the diagnostic authentication protocols for a specific vehicle can also be used to

repair or modify vehicles. 

Other attack vectors that can require some form of proximity include attacks that

target tire pressure monitoring systems (Rouf et al. 2010), global navigation satellite

system jamming and spoofing attacks (Tippenhauer et al. 2011; Zeng et al. 2017), 

machine learning systems (Song et al. 2018; Eykholt et al. 2018), and other relatively

short range wireless interfaces such as Bluetooth and WiFi (Weinmann and Schmotzle

2020; Nie et al. 2017). Keyless entry systems are among the most widely researched

automotive subsystems that use a short range wireless interface. 
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11.3.1.1.  Keyless entry and immobilizer attacks

For almost 20 years, researchers have investigated the security of automotive

keyless entry and immobiliser systems, yet many vulnerable systems remain and are

still being deployed in brand new vehicles. For example, back in 2005 Bono et al. 

(2005) reverse engineered a cryptographically enabled transponder that used a

proprietary 40-bit cipher named DST40. Almost 14 years later, Wouters et al. (2019)

found that the same cipher was still being deployed in brand new vehicles. Similarly, 

Courtois et al. (2009) demonstrated the first cryptanalytic attacks targeting the

HITAG2 stream cipher back in 2009. Multiple works improved upon those initial

results and presented more practical attacks (Sun et al. 2011; Stembera and Novotný

2011; Verdult et al. 2012). Nevertheless, HITAG2 is still being used for remote

keyless entry in recent vehicles (Garcia et al. 2016; Benadjila et al. 2017; Verstegen

et al. 2018), meaning that vulnerable cars are likely to remain fielded for many years

to come. Another example is the widely deployed KeeLoq block cipher, a proprietary

block cipher owned by Microchip. The first cryptanalytic attacks targeting the

KeeLoq block cipher were published in 2007 and 2008 (Bogdanov 2007a, 2007b; 

Courtois et al. 2008; Indesteege et al. 2008). These cryptanalytic attacks were

followed by physical side-channel attacks that allowed us to recover the

manufacturer key (Eisenbarth et al. 2008; Kasper et al. 2009). While KeeLoq does

not appear to be widely deployed in newer vehicles these days, there are still many

garage door openers and similar remote control systems that rely on KeeLoq. 

Many car manufacturers and OEMs are adopting new products (e.g. DSTAES, 

HITAG-AES and KeeLoq-AES) that do implement standardized cryptographic

primitives. Instead of opting for components specifically aimed at keyless entry

systems, some manufacturers use certified secure elements. Unfortunately, a secure

cipher (even in a secure implementation) is, by itself, not sufficient to guarantee

practical security. Over the years, several weak key diversification schemes have been

exposed in keyless entry systems (Kasper et al. 2009; Verdult et al. 2013; Garcia

et al. 2016; Müllner et al. 2017; Wouters et al. 2020). In most cases, these key

diversification issues allowed us to clone a key fob after recording only a small

number of radio frequency (RF) transmissions. 

Even in the absence of weak proprietary ciphers and key diversification issues, 

many of these systems remain vulnerable to protocol level attacks, including relay

attacks (Desmedt et al. 1988; Hancke et al. 2009; Francis et al. 2010; Francillon et al. 

2011; Yingtao Zeng and Li 2017) and jamming-and-eavesdropping attacks (Kasper

et al. 2009; Kamkar 2015; Csikor et al. 2022). According to the Allgemeiner

Deutscher Automobil-Club (ADAC) in January 2023, only 29 out of 567 evaluated

car models were not vulnerable to a straightforward relay attack (ADAC 2023). 

Relay attack defenses are being adopted in the newest vehicles, most of these rely on

the use of ultra-wideband (Gezici et al. 2005) and/or distance-bounding

protocols (Brands and Chaum 1994; Abidin et al. 2021). 
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Recently some manufacturers have started adopting bluetooth low energy (BLE)

as a communication standard for their keyless entry systems. Presumably this move to

BLE is motivated by the introduction of smartphone applications that implement the

same functionality as the key fob. This increased functionality and complexity results

in a larger attack surface. Wouters et al. (2021) attacked the Tesla Model X keyless

entry system by first compromising the BLE microcontroller in the key fob using

a malicious firmware update. This allowed them to use the BLE interface to query

the secure element in the key fob for a valid token that could be used to unlock the

target vehicle. This case study will be covered in more detail in section 11.5. Similar

to more classical implementations, these newer BLE keyless entry systems have also

been shown vulnerable to protocol level attacks such as relay attacks (Jasek 2016; 

Herfurt 2022; Khan 2022). 

Note that the weaknesses exposed in these systems are not only used with

malicious intent: they can also be used to create compatible products or to repair

vehicles (Wilson 2017). For example, weaknesses in immobilizer implementations

are used to create aftermarket remote start devices. A vulnerability in a key fob

pairing protocol can also be used by legitimate garage owners (who may not be able

to access official manufacturer tools) to help customers who have lost their key fobs. 

11.3.2.  Remote vehicle attacks

Attacks targeting vehicles that do not require physical proximity are remote

attacks. These can be the most devastating type of attack as they can typically scale

more easily. Checkoway et al. (2011) presented the first publicly documented remote

vehicle compromise in 2011. They demonstrated a remote vehicle compromise

through its long-range cellular interface by calling the car’s TCU and playing a

prerecorded audio file containing the exploit code. As a proof-of-concept, their

payload would force the car to reach out to an IRC server, allowing the researchers to

send commands to compromised vehicles. This command and control interface

allowed them to inject arbitrary packets on the compromised vehicle’s internal CAN. 

In 2015, Miller and Valasek demonstrated a remote attack that allowed them to

remotely compromise Jeep’s in-vehicle infotainment (IVI) systems over the cellular

network. Having compromised the IVI, they managed to upload malicious firmware

to

a

Renesas

V850

microcontroller, 

allowing

to

inject

arbitrary

CAN

messages (Miller and Valasek 2015). Researchers from the Keen Security Lab at

Tencent have performed several practical security evaluations of modern

vehicles (Nie et al. 2017; Keen Security Lab 2018; Cai et al. 2019; Keen Security

Lab 2021). Notably they identified remotely exploitable vulnerabilities in Tesla and

BMW vehicles (Nie et al. 2017; Cai et al. 2019). 

Broadcastable radio transmissions can be a potentially disastrous attack vector. 

Specifically, digital audio broadcasting (DAB), and to a lesser extent, the radio data
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system (RDS) are of interest. These systems allow us to transmit text, pictures and

other data that are handled by the receiving vehicle. We are aware of attempts to use

DAB and RDS as an attack vector, but not of any successful remote exploits (Davis

2015; Keen Security Lab 2021). However, there has been one report of Mazda IVI

systems getting bricked due to an unintentionally malformed radio station

broadcast (Gitlin 2022). 

Modern vehicles often come with companion applications that allow for remote

monitoring and control by the owner. These applications often interact with the

vehicle through web application-based cloud services. Such applications publicly

expose an intrinsically large attack surface. This attack surface has been explored by

several researchers. Notably, Hunt (2016) revealed several vulnerabilities in the

Nissan LEAF application programming interface (API) that was used by the

companion mobile application. This research demonstrated that remote vehicle

commands could be issued unauthenticated and only required the (enumerable) VIN

of the target vehicle. In 2023, a team of web application security researchers

identified several critical vulnerabilities in the web infrastructure of several car

manufacturers such as Kia, Nissan, Mercedes-Benz, Hyundai, Ferrari, Porsche, 

Toyota, Land Rover and others (Curry et al. 2023). The vulnerabilities identified

included account takeover, remote vehicle unlock and start, disclosure of personal

data, access to administrator interfaces and remote code execution on production

servers. 

11.3.3.  Infrastructure attacks

While we mainly cover direct vehicle attacks, it should be noted that an adversary

can also opt to indirectly target vehicles through the attack surface of a related

infrastructure. Such attacks could involve the automotive and general electronics

supply chains or the critical infrastructure we rely on to safely navigate public roads. 

For example, researchers have demonstrated flaws in traffic light controllers

(Ghena et al. 2014) and traffic light emergency preemption systems (Williams 2017). 

Vehicle-to-everything (V2X) communication infrastructure also received substantial

research attention, and Yoshizawa et al. (2023) provide a comprehensive review of

the existing research in this field. 

The increasing number of electric vehicles results in a rapid deployment of

electric vehicle charging infrastructure. Johnson et al. (2022) provide an extensive

overview of both the offensive and defensive electric vehicle charging research. For

example, Baker and Martinovic (2019) demonstrated electromagnetic side-channel

attacks that allowed us to eavesdrop on the power-line communication system used in

the combined charging system. Besides academic research interest, the zero day

initiative (ZDI) announced the inclusion of multiple electric vehicle chargers for their
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2023 PWN2OWN competition, awarding up to $60,000 for vulnerabilities reported

and demonstrated during the competition (Gorenc 2023). 

11.4. Application of physical attacks in automotive security

All physical attacks that target a (micro-)processor or other electronic component

are likely to be relevant for the automotive sector. Unfortunately, it is impossible for

us to cover all such physical attacks in this section. Instead, we highlight research that

includes physical attacks directly applied in the automotive context. 

11.4.1.  Side-channel analysis

In an offensive context, we consider as a passive, and typically a noninvasive

analysis technique that can allow us to recover secret information from a device

through the analysis of a physical observable (e.g. time, power consumption and

electromagnetic emissions). In most cases, the attacker attempts to recover a secret

cryptographic key from a device. 

In the context of automotive applications, side-channel analysis typically requires

physical access to the target device. Such physical side-channel attacks can scale when

an attack performed on a single devices reveals secret information that allows them

to easily compromise other devices. For example, researchers have shown that it is

possible to retrieve the manufacturer key from a KeeLoq remote keyless entry receiver

using side-channel analysis (Eisenbarth et al. 2008; Kasper et al. 2009). Recovery of

this manufacturer key made it straightforward to recover the unique cryptographic key

for any key fob made by the same manufacturer. Numerous similar key diversification

issues have been identified over the years (Verdult et al. 2013; Garcia et al. 2016; 

Wouters et al. 2020), hence, it is likely that many of these can be exploited using

side-channel analysis. 

Researchers have also explored the application of side-channel analysis in

scenarios where the attacker may be able to obtain physical access to the target

device for a limited amount of time (i.e. an evil maid or evil valet type of scenario). 

For example, Eisenbarth et al. (2008) demonstrated KeeLoq key recovery by

targeting the ICs used in key fobs, requiring as little as six power side-channel traces

or as little as 10 EM traces. Oswald and Paar (2011) demonstrated practical

side-channel attacks on Mifare DESFire RFID access cards, including a template

attack that targets a key transfer. Wouters et al. (2010) performed side-channel

attacks on DST80 key fob transponder ICs. Their profiled attack also targets a key

transfer scenario and additionally considers the profiling of multiple devices to help

overcome the portability problem. 

Additionally, researchers have shown that side-channel analysis can be applied to

recover the structure and weights of trained machine learning models (Wei et al. 2018; 
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Batina et al. 2019). It is possible that such attacks will become more prevalent in the

automotive sector to extract the machine learning models used for autonomous driving

capabilities. This could be done for competitive analysis purposes, or with the goal of

IP theft. 

Similar side-channel analysis techniques can also be applied for defensive

purposes. For example, physical layer fingerprinting has been used to establish the

authenticity of network nodes (Brik et al. 2008). Both physical layer fingerprinting


and side-channel analysis are similar in that they apply statistical (time-series)

analysis techniques to retrieve information from a physical observable. Researchers

have applied these ideas in the automotive context in the form of intrusion detection

systems (IDS) that can detect when a malicious ECU is present on the vehicle’s

internal networks (Cho and Shin 2016; Choi et al. 2018). 

11.4.2.  Fault injection

Fault injection can be performed using multiple techniques: in this chapter, we

assume an adversary with physical access to the target device, hence we will limit the

discussion to physical fault-injection techniques that do not require code execution. 

In practice, fault injection appears to be the most commonly applied physical

attack. In many cases, fault injection allows us to retrieve the same or more

information from the device under attack when compared to side-channel analysis. 

Additionally, a fault injection attack targeting a specific microcontroller can be

developed once and applied to many different products using that same

microcontroller regardless of the product specific firmware. For example, extracting a

cryptographic key stored in flash memory may be achieved by performing a

side-channel attack that targets the implementation of a cryptographic cipher. 

However, in practice it may be easier to circumvent debug security features using

fault injection. In many cases, this would allow us to read all flash memory, including

the cryptographic key. This is also reflected by commercially available device

programmers that include the capability to bypass debug security features for some

microcontrollers. 

Many fault injection techniques exist (Bar-El et al. 2006), but voltage fault

injection

(Kömmerling

and

Kuhn

1999)

and

electromagnetic

fault

injection (Dehbaoui et al. 2012) are currently among the most widely applied in

the automotive context. Researchers have demonstrated debug security feature

bypasses

using

various

fault

injection

techniques

on

a

wide

range

of

microcontrollers (Skorobogatov 2005; Bozzato et al. 2019; Van den Herrewegen

et al. 2021). Similar techniques have proven useful in the automotive context. For

example, voltage fault injection was used to extract firmware from a Renesas 78K0

microcontroller used in a body control module (Wouters et al. 2020). This allowed us
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to recover the proprietary DST80 cipher and revealed weak key derivation

implementations used in immobilizer systems. O’Flynn (2020) demonstrated how the

debug security features of the widely used MPC55xx and MPC56xx series PowerPC

microcontrollers could be bypassed using EMFI, and this without modification of the

target device. Wouters et al. (2022) used voltage fault injection to extract firmware

from Texas Instruments SimpleLink microcontrollers to obtain key fob firmware. 

Some automotive microcontrollers adhere to the automotive safety integrity level

(ASIL) specification as defined in the ISO 26262 standard (ISO 2018). These

microcontrollers have safety and fault-tolerance features that can help to mitigate

certain fault injection attacks. Nevertheless, these safety focused features are by

themselves not sufficient to stop a determined attacker (Wiersma and Pareja 2017; 

Melching 2022). For example, Melching successfully performed a voltage fault

injection attack on a ASIL-D (the highest ASIL level) Renesas RH850

microcontroller used in an electronic power steering module. This allowed them to

extract the firmware stored in the RH850 microcontroller and to claim a community

bounty through the openpilot project (Melching 2022; COMMA 2021). 

Instead of targeting a microcontroller’s debug security features, it is also possible

to target an application protocol stack instead. For example, Pareja and Cordoba

demonstrated firmware extraction by bypassing the authentication mechanism

implemented in the unified diagnostic services (UDS) (Pareja and Cordoba 2018). 

Buhren et al. (2021) performed voltage fault injection attacks targeting AMD’s

secure processor by sending carefully timed commands to the processor’s voltage

regulators over a bus interface. This technique was later applied by Werling et al. 

(2023) to load custom car configuration data, allowing them to enable certain

software-locked features in Tesla vehicles. 

Fault injection techniques can also be used during the development of automotive

electronics, specifically when evaluating the safety of automotive components. 

O’Flynn (2021) demonstrated that electromagnetic fault injection can be used to

evaluate the resilience of automotive components to naturally occurring faults in the

context of the ISO 26262 standard ISO (2018). 

11.5. Case study: Tesla Model X keyless entry system

This section provides a high-level overview of the Tesla Model X remote keyless

entry system security evaluation performed in Wouters et al. (2021). In contrast to

many other keyless entry system, this system employs secure symmetric-key and

public-key cryptographic primitives implemented on a Common Criteria–certified

secure element. 
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11.5.1.  The key fob

Figure 11.1 shows a disassembled Tesla Model X key fob. This key fob is capable

of receiving messages over a low frequency (22 kHz) channel as well as establish a

BLE connection with the car. Additionally, this key fob uses a secure element for all

cryptographic operations. For example, when the unlock button is pressed on the key

fob, the secure element will use an AES key stored within to generate a one-time

unlock token. Secure elements can contain vulnerabilities, but they are rarely the

easiest way to compromise a system. In this key fob design, it is clear that the Texas

Instruments CC2541 BLE SoC has a much larger attack surface. Furthermore, in

this case a compromised CC2541 will allow an adversary to interact with the secure

element and request an unlock token. 

Figure 11.1.  The Model X key fob PCB (top side). The main components are

 (1) Texas Instruments CC2541 BLE SoC, (2) TI CC2590 BLE range extender, 

 (3) Maxim integrated MAX2153E 22 kHz transponder, (4) analog devices ADXL362

 MEMS accelerometer and (5) Infineon SLM97CFX1M00PE secure element. The

 red circle indicates the test point for the Secure Element’s IO interface. This figure

 was taken from Wouters et al. (2021). For a color version of this figure, see

 www.iste.co.uk/prouff/cryptography3.zip

During our security evaluation, we determined that the key fob exposes several

security critical BLE characteristics. Notably, we found that it was possible to send

certain allow-listed commands to the secure element through the BLE interface, 

however the commands required for an attack were not allowed. Additionally, we

found that the BLE interface allowed for over-the-air firmware updates. However, 

this implementation did not properly verify the authenticity of a received firmware
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update. This vulnerability allowed us to wirelessly perform a firmware update of the

BLE SoC in the key fob and this update allowed us to send arbitrary commands to

the secure element. In other words, the malicious firmware update allowed us to

request a valid unlock token from the secure element: this token could then be used

to unlock the target vehicle. Starting the car using this same method was not as easy

in practice, as a challenge response authentication protocol is performed between the

car and the key fob. 

The body control module (BCM) played a critical role in our ability to push a

malicious firmware update to the key fob, as we used a modified BCM to force the

key fob to wake-up and start advertising as a BLE peripheral. 

11.5.2.  The body control module

In normal operating conditions, the BCM in the Tesla Model X is responsible

for unlocking the doors, controlling interior lightning and setting off the alarm siren

among other things. Additionally, the BCM is also the component inside the car that

communicates with the key fob and that allows us to pair additional key fobs to the

car through its diagnostic interface. 

As discussed in section 11.5.1, we were able to wirelessly compromise a key fob

and then request a valid unlock token that could be used to gain access to the car’s

interior. But we could not easily use that same technique to start the car. To that end, 

we reverse-engineered the process of pairing a key fob to the car. 

To reverse-engineer the key fob pairing and provisioning processes, we created

a bench setup that allowed us to interact with a BCM over CAN as well as sniff

relevant signals (e.g. communication with the secure element) using a logic analyzer. 

Additionally, we reverse-engineered parts of a proprietary tool used by Tesla for

diagnostics and servicing. The overall reverse-engineering process is explained in

more detail in Wouters et al. (2021). 

Our analysis of the reverse-engineered pairing and provisioning protocols revealed

that an adversary could pair an illegitimate key fob to the car without requiring access

to Tesla’s proprietary software tools. Someone who is able to gain physical access to

the vehicle’s interior can reach the diagnostic connector and can thus pair any key fob

to the car. While this weakness in the pairing protocol can be abused by malicious

actors, it can also be a valuable tool for independent repair shops that want to service

these vehicles. 

11.5.3.  Putting it all together

The vulnerabilities we identified in the Tesla Model X key fob and the key fob

pairing protocols can be combined to achieve a practical attack. To demonstrate this, 
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we built a proof-of-concept (PoC) device, as shown in Figure 11.2, that allowed us to

carry out the full attack within minutes. 

Figure 11.2.  The PoC device consists of a battery and a DC-DC converter that is used to power the Raspberry Pi Model 3b+ with a two-channel CAN-BUS shield and the

 modified BCM. This figure was taken from Wouters et al. (2021). For a color version of

 this figure, see www.iste.co.uk/prouff/cryptography3.zip

To summarize, as an attacker we could walk up to a target Tesla Model X and

read its vehicle identification number (VIN) from the windshield. This VIN number, 

in combination with our modified BCM, could then be used to wirelessly wake up

the target’s key fob. Next, a malicious firmware update was pushed to the key fob, 

enabling us to retrieve a one-time unlock token. We could then go back to the target

car and unlock it using this token, allowing us to access the vehicle’s interior without

setting off the alarm. Afterwards, we could connect our PoC device to the diagnostic

connector. We used a Raspberry Pi combined with a CAN-shield to orchestrate the

pairing process between the car’s BCM and our modified key fob. With a paired key
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fob at our disposal, it was then possible to drive off with the car or to return to the car

at any other point in time to access it. 

As a mitigation strategy, Tesla pushed software updates to the affected key fobs, 

fixing the vulnerability in the firmware update process. However, as far as we know

the vulnerability in the pairing protocol was not fixed. On the one hand, this means

that a vulnerability remained unresolved in this system; on the other hand, this issue

has been used by others to service vehicles. 

11.6. Conclusion

This chapter provided an overview of automotive sub-systems that are often

targeted by automotive attackers, the incentives that may exist to attack these

sub-systems and the techniques that are used to do so. 

The automotive ecosystem suffers from a large attack surface that is likely to

become even larger in the foreseeable future due to the introduction of new

technologies, more connected features and self-driving capabilities. The increasing

connectedness of these vehicles also results in this attack surface being more widely

exposed and reachable. It is thus not unlikely that flaws identified in companion apps

will be (or have already been) exploited with malicious intent. 

Vehicle owners often have a desire and should have the right to repair their own

vehicles or to have their vehicle repaired by an independent technician. This often

opposes the desire of manufacturers to protect their intellectual property and their

desire for control over after-sales services. It could be interesting for the research

community to help design methods and techniques that enable both repairability and

IP protection. 

As mentioned in section 11.3.2, we are not aware of any remote attacks that

exploit broadcast radio systems such as DAB. This could indicate that this is an

under-explored research direction. Similarly, we have not observed any remote

side-channel attacks on automotive systems. Some key fobs may be vulnerable to

screaming side channels (Camurati et al. 2018, 2020), but we are not aware of such

attacks being demonstrated. 

11.7. References

Abidin, A., El Soussi, M., Romme, J., Boer, P., Singelée, D., Bachmann, C. (2021). Secure, 

accurate, and practical narrow-band ranging system. IACR TCHES, 2021(2), 106–135. 

ADAC (2023). Autos und Motorräder mit Keyless Schlßssel, die der ADAC illegal

öffnen und wegfahren konnte [Online]. Available at: https://assets.adac.de/image/upload/

v1674556739/ADAC-eV/KOR/Text/PDF/Keyless_Liste_2023_560_Autos_jeiyj6.pdf. 

 Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science Univer , Wiley Online Library on [03/03/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 238

Embedded Cryptography 3

Baker, R. and Martinovic, I. (2019). Losing the car keys: Wireless PHY-layer insecurity

in EV charging. In  USENIX Security 2019, Heninger, N. and Traynor, P. (eds). USENIX

Association, Berkeley. 

Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C. (2006). The

sorcerer’s apprentice guide to fault attacks.  Proc. IEEE, 94(2), 370–382. doi: 10.1109/

JPROC.2005.862424. 

Batina, L., Bhasin, S., Jap, D., Picek, S. (2019). CSI NN: Reverse engineering of neural network architectures through electromagnetic side channel. In  USENIX Security 2019, Heninger, N. 

and Traynor, P. (eds). USENIX Association, Berkeley. 

Benadjila, R., Renard, M., Lopes-Esteves, J., Kasmi, C. (2017). One car, two frames:

Attacks on Hitag-2 remote keyless entry systems revisited. In  11th USENIX Workshop

 on Offensive Technologies, WOOT 2017, 14–15 August. USENIX Association, Berkeley

[Online]. Available at:

https://www.usenix.org/conference/woot17/workshop-program/

presentation/benadjila. 

Bogdanov, A. (2007a). Cryptanalysis of the keeloq block cipher. Report 2007/055, Cryptology

ePrint Archive. [Online]. Available at: https://eprint.iacr.org/2007/055. 

Bogdanov, A. (2007b). Linear slide attacks on the keeloq block cipher.  Information Security and Cryptology, Third SKLOIS Conference, Inscrypt 2007, 31 August–5 September. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-540-79499-8_7. 

Bono, S., Green, M., Stubblefield, A., Juels, A., Rubin, A.D., Szydlo, M. (2005). 

Security analysis of a cryptographically-enabled RFID device. In  USENIX Security 2005, McDaniel, P.D. (ed.). USENIX Association, Berkeley. 

Bozzato, C., Focardi, R., Palmarini, F. (2019). Shaping the glitch: Optimizing voltage fault injection attacks.  IACR TCHES, 2019(2), 199–224. 

Brands, S. and Chaum, D. (1994). Distance-bounding protocols. In  EUROCRYPT’93, 

Helleseth, T. (ed.). Springer, Berlin, Heidelberg. 

Brik, V., Banerjee, S., Gruteser, M., Oh, S. (2008). Wireless device identification with

radiometric signatures. In  Proceedings of the 14th Annual International Conference on

 Mobile Computing and Networking, MOBICOM, 14–19 September. ACM Press, New York. 

doi: 10.1145/1409944.1409959. 

Buhren, R., Jacob, H.N., Krachenfels, T., Seifert, J. (2021). One glitch to rule them all: Fault injection attacks against AMD’s secure encrypted virtualization. In  CCS ’21: 2021 ACM

 SIGSAC Conference on Computer and Communications Security, 15–19 November. ACM

Press, New York. doi: 10.1145/3460120.3484779. 

Cai, Z., Wang, A., Zhang, W., Gruffke, M., Schweppe, H. (2019). 0-days & mitigations:

Roadways to exploit and secure connected BMW cars. Black Hat USA [Online]. Available at:

https://i.blackhat.com/USA-19/Thursday/us-19-Cai-0-Days-And-Mitigations-Roadways-To-

Exploit-And-Secure-Connected-BMW-Cars-wp.pdf. 

Camurati, G., Poeplau, S., Muench, M., Hayes, T., Francillon, A. (2018). Screaming channels: When electromagnetic side channels meet radio transceivers. In  ACM CCS 2018, Lie, D., Mannan, M., Backes, M., Wang, X. (eds). ACM Press, New York. 

 Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science Univer , Wiley Online Library on [03/03/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Security of Automotive Systems

239

Camurati, G., Francillon, A., Standaert, F.-X. (2020). Understanding screaming channels: From a detailed analysis to improved attacks.  IACR TCHES, 2020(3), 358–401. 

Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S., Koscher, K., 

Czeskis, A., Roesner, F., Kohno, T. (2011). Comprehensive experimental analyses of

automotive attack surfaces. In  USENIX Security 2011. USENIX Association, Berkeley. 

Cho, K.-T. and Shin, K.G. (2016). Fingerprinting electronic control units for vehicle intrusion detection. In  USENIX Security 2016, Holz, T. and Savage, S. (eds). USENIX Association, Berkeley. 

Choi, W., Jo, H.J., Woo, S., Chun, J.Y., Park, J., Lee, D.H. (2018). Identifying ECUs using

inimitable characteristics of signals in controller area networks.  IEEE Trans. Veh. Technol. , 67(6), 4757–4770. doi: 10.1109/TVT.2018.2810232. 

Clatworthy, B. (2023). Luxury cars are gone in 90 seconds with thief kit.  The

 Times [Online]. Available at: https://www.thetimes.co.uk/article/luxury-cars-are-gone-in-

90-seconds- with-thief-kit-z300g0njf. 

COMMA (2021). openpilot/etc. on Toyota/Lexus/Subaru with TSK/ECU SECURITY

KEY/SecOC

[Online]. 

Available

at:

https://web.archive.org/web/20230918084549/

https://github.com/commaai/openpilot/discussions/19932. 

Courtois, N., Bard, G.V., Wagner, D. (2008). Algebraic and slide attacks on KeeLoq. In  FSE

 2008, Nyberg, K. (ed.). Springer, Berlin, Heidelberg. 

Courtois, N., O’Neil, S., Quisquater, J.-J. (2009). Practical algebraic attacks on the Hitag2

stream cipher. In  ISC 2009, Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds). 

Springer, Berlin, Heidelberg. 

Csikor, L., Lim, H.W., Wong, J.W., Ramesh, S., Parameswarath, R.P., Chan, M.C. (2022). 

Rollback: A new time-agnostic replay attack against the automotive remote keyless entry

systems.  arXiv:2210.11923v1 [Online]. Available at: https://arxiv.org/abs/2210.11923. 

Curry, S., Rivera, N., Buerhaus, B., Robert, M., Carroll, I., Rhinehart, J., Shah, S. 

(2023). Web hackers vs. the auto industry: Critical vulnerabilities in Ferrari, BMW, 

Rolls Royce, Porsche, and more [Online]. Available at: https://web.archive.org/web/ ∼

20230919115348/https://samcurry.net/web-hackers-vs-the-auto-industry/. 

Davis, A. (2015). Broadcasting your attack: Security testing DAB radio in cars [Online]. 

Available

at:

https://troopers.de/media/filerpublic/18/4f/184fa903-3610-4647-9cb0-

bb7644d3f295/broadcastingyourattacksecuritytestingdabradioincars.pdf. 

Dehbaoui, A., Dutertre, J., Robisson, B., Tria, A. (2012). Electromagnetic transient faults

injection on a hardware and a software implementations of AES. In  2012 Workshop

 on Fault Diagnosis and Tolerance in Cryptography, 9 September. IEEE, Leuven. doi:

10.1109/FDTC.2012.15. 

Desmedt, Y., Goutier, C., Bengio, S. (1988). Special uses and abuses of the Fiat-Shamir passport protocol. In  CRYPTO’87, Pomerance, C. (ed.). Springer, Berlin, Heidelberg. 

Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani, M.T.M. (2008). 

On the power of power analysis in the real world: A complete break of the KeeLoqCode

hopping scheme. In  CRYPTO 2008, Wagner, D. (ed.). Springer, Berlin, Heidelberg. 

 Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science Univer , Wiley Online Library on [03/03/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 240

Embedded Cryptography 3

Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash, A., 

Kohno, T., Song, D. (2018). Robust physical-world attacks on deep learning visual

classification. In  2018 IEEE Conference on Computer Vision and Pattern Recognition, 

 CVPR 2018, 18–22 June, Salt Lake City [Online]. Available at: http://openaccess.thecvf. 

com/content_cvpr_2018/html/Eykholt_Robust_Physical-World_Attacks_CVPR_2018_

paper.html. 

Francillon, A., Danev, B., Capkun, S. (2011). Relay attacks on passive keyless entry and start systems in modern cars. In  NDSS 2011. The Internet Society, Reston. 

Francis, L., Hancke, G.P., Mayes, K., Markantonakis, K. (2010). Practical NFC peer-to-peer

relay attack using mobile phones. In  Radio Frequency Identification: Security and Privacy Issues – 6th International Workshop, RFIDSec 2010, 8–9 June. Springer, Berlin, Heidelberg. 

doi: 10.1007/978-3-642-16822-2_4. 

Garcia, F.D., Oswald, D., Kasper, T., Pavlidès, P. (2016). Lock it and still lose it – On the (in)security of automotive remote keyless entry systems. In  USENIX Security 2016, Holz, T. 

and Savage, S. (eds). USENIX Association, Berkeley. 

Gezici, S., Tian, Z., Giannakis, G.B., Kobayashi, H., Molisch, A.F., Poor, H.V., 

Sahinoglu, Z. (2005). Localization via ultra-wideband radios: A look at positioning aspects

for future sensor networks.  IEEE Signal Process. Mag. , 22(4), 70–84. doi: 10.1109/

MSP.2005.1458289. 

Ghena, B., Beyer, W., Hillaker, A., Pevarnek, J., Halderman, J.A. (2014). Green lights forever: Analyzing the security of traffic infrastructure. In  8th USENIX Workshop on Offensive

 Technologies, WOOT ’14, 19 August. USENIX Association, Berkeley [Online]. Available

at: https://www.usenix.org/conference/woot14/workshop-program/presentation/ghena. 

Gitlin, J.M. (2022). Radio station snafu in seattle bricks some Mazda infotainment systems

[Online]. Available at: https://web.archive.org/web/20230919145412/ https://arstechnica. 

com/cars/2022/02/radio-station-snafu-in-seattle-bricks-some-mazda-infotainment-systems/. 

Gorenc, B. (2023). Revealing the targets and rules for the first PWN2OWN automotive [Online]. 

Available at: https://web.archive.org/web/20230919075401/ https://www.zerodayinitiative. 

com/blog/2023/8/28/revealing-the-targets-and-rules-for-the-first-pwn2own-automotive. 

Hancke, G.P., Mayes, K., Markantonakis, K. (2009). Confidence in smart token proximity:

Relay attacks revisited.  Comput. Secur. , 28(7), 615–627. doi: 10.1016/j.cose.2009.06.001. 

Herfurt, M. (2022). Project TEMPA [Online]. Available at:

https://trifinite.org/stuff/

projecttempa/. 

Hoppe, T., Kiltz, S., Dittmann, J. (2008). Security threats to automotive CAN networks –

Practical examples and selected short-term countermeasures. In  Computer Safety, Reliability, and Security, 27th International Conference, SAFECOMP 2008, 22–25 September. Springer, Berlin, Heidelberg. doi: 10.1007/ 978-3-540-87698-4_21. 

Hunt, T. (2016). Controlling vehicle features of Nissan LEAFs across the globe via

vulnerable APIs [Online]. Available at:

https://www.troyhunt.com/controlling-vehicle-

features-of-nissan/. 

Indesteege, S., Keller, N., Dunkelman, O., Biham, E., Preneel, B. (2008). A practical attack on KeeLoq. In  EUROCRYPT 2008, Smart, N.P. (ed.). Springer, Berlin, Heidelberg. 

 Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science Univer , Wiley Online Library on [03/03/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Security of Automotive Systems

241

ISO (2018). ISO 26262 – Road vehicles functional safety package – (Parts 1 to 12). Standard, International Organization for Standardization. 

Jasek, S. (2016). GATTacking Bluetooth smart devices – Introducing a new BLE proxy

tool. Document, Securing [Online]. Available at: https://www.blackhat.com/docs/us-16/

materials/us-16-Jasek-GATTacking-Bluetooth-Smart-Devices-Introducing-a-New-BLE-

Proxy-Tool-wp.pdf. 

Johnson, J., Berg, T., Anderson, B., Wright, B. (2022). Review of electric vehicle charger

cybersecurity vulnerabilities, potential impacts, and defenses. Energies, 15(11), 3931. doi: 10.3390/en15113931. 

Kamkar, S. (2015). Drive it like you hacked it. In DEF CON 23 [Online]. Available at:

https://samy.pl/defcon2015/. 

Kasper, M., Kasper, T., Moradi, A., Paar, C. (2009). Breaking KeeLoq in a flash: On

extracting keys at lightning speed. In AFRICACRYPT 09, Preneel, B. (ed.). Springer, Berlin, 

Heidelberg. 

Keen Security Lab (2018). Experimental security assessment of BMW cars: A summary report. 

Report, Keen Security Lab, Shenzhen [Online]. Available at: https://keenlab.tencent.com/

en/whitepapers/ExperimentalSecurityAssessmentofBMWCarsbyKeenLab.pdf. 

Keen Security Lab (2021). Mercedes-Benz MBUX security research report. Report, 

Keen Security Lab, Shenzhen [Online]. Available at: https://keenlab.tencent.com/en/

whitepapers/MercedesBenzSecurityResearchReportFinal.pdf. 

Khan, S.Q. (2022). Popping locks, stealing cars, and breaking a billion other

things: Bluetooth LE link layer relay attacks. Hardwear.io [Online]. Available at:

https://hardwear.io/netherlands-2022/speakers/sultan-khan.php. 

Kömmerling, O. and Kuhn, M.G. (1999). Design principles for tamper-resistant smartcard

processors. In Proceedings of the 1st Workshop on Smartcard Technology, Smartcard

1999, 10–11 May. USENIX Association, Berkeley [Online]. Available at: https://www. 

usenix.org/conference/usenix-workshop-smartcard-technology/design-principles-tamper-

resistant-smartcard. 

Melching, W. (2022). Bypassing the Renesas RH850/P1M-E read protection using

fault injection. I CAN Hack [Online]. Available at: https://blog.willemmelching.nl/

carhacking/2022/11/08/rh850-glitch/. 

Miller, 

C. and Valasek, 

C. (2014). A survey of remote automotive attack

surfaces. Technical White Paper, 

IOActive, 

Seattle [Online]. Available at:

https://ioactive.com/pdfs/IOActive_Remote_Attack_Surfaces.pdf. 

Miller, C. and Valasek, C. (2015). Remote exploitation of an unaltered passenger vehicle. 

Technical White Paper, IOActive, Seattle [Online]. Available at: https://ioactive.com/pdfs/

IOActive_Remote_Car_Hacking.pdf. 

Müllner, M., Kammerstetter, M., Kudera, C., Burian, D. (2017). Uncovering

vulnerabilities in Hoermann BiSecur:

An AES encrypted radio system. Chaos

Communication Club [Online]. Available at:

https://media.ccc.de/v/34c3-9029-

uncoveringvulnerabilitiesinhoermannbisecur. 

 Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science Univer , Wiley Online Library on [03/03/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 242

Embedded Cryptography 3

Nie, S., Liu, L., Du, Y. (2017). Free-Fall: Hacking Tesla from wireless to CAN bus. Black

Hat Briefing, Keen Security Lab, Shenzhen [Online]. Available at: https://www.blackhat. 

com/docs/us-17/thursday/us-17-Nie-Free-Fall-Hacking-Tesla-From-Wireless-To-CAN-Bus-

wp.pdf. 

O’Flynn, C. (2020). BAM BAM!! 

On reliability of EMFI for in-situ automotive ECU

attacks. Report 2020/937, Cryptology ePrint Archive [Online]. Available at: https://eprint. 

iacr.org/2020/937. 

O’Flynn, C. (2021). EMFI for safety-critical testing of automotive systems. Report 2021/1217, Cryptology ePrint Archive [Online]. Available at: https://eprint.iacr.org/2021/1217. 

Oswald, D. and Paar, C. (2011). Breaking Mifare DESFire MF3ICD40: Power analysis and

templates in the real world. In  CHES 2011, Preneel, B. and Takagi, T. (eds). Springer, Berlin, Heidelberg. 

Pareja, R. and Cordoba, S. (2018). Fault injection on automotive diagnostic protocols:

Bypassing the security of protected UDS implementations. White Paper, Riscure, 

Delft [Online]. Available at: https://riscureprodstorage.blob.core.windows.net/production/

2018/06/RiscureWhitepaper Faultinjectiononautomotivediagnosticprotocols.pdf. 

Rouf, I., Miller, R.D., Mustafa, H.A., Taylor, T., Oh, S., Xu, W., Gruteser, M., Trappe, W., Seskar, I. (2010). Security and privacy vulnerabilities of in-car wireless networks: A tire

pressure monitoring system case study. In  USENIX Security 2010. USENIX Association, 

Berkeley. 

Skorobogatov, S.P. (2005). Semi-invasive attacks: A new approach to hardware security

analysis. PhD Thesis, University of Cambridge, Cambridge [Online]. Available at:

https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614760. 

Song, D., Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Tramèr, F., Prakash, A., Kohno, T. (2018). Physical adversarial examples for object detectors. In  12th USENIX

 Workshop on Offensive Technologies, WOOT 2018, 13–14 August. USENIX Association, 

Berkeley. Available at: https://www.usenix.org/conference/woot18/presentation/eykholt. 

Stembera, P. and Novotný, M. (2011). Breaking Hitag2 with reconfigurable hardware. In  14th Euromicro Conference on Digital System Design, Architectures, Methods and Tools, DSD

 2011, 31 August–2 September. IEEE, Oulu. doi: 10.1109/DSD.2011.77. 

Sun, S., Hu, L., Xie, Y., Zeng, X. (2011). Cube cryptanalysis of Hitag2 stream cipher. In

 CANS 11, Lin, D., Tsudik, G., Wang, X. (eds). Springer, Berlin, Heidelberg. 

Tindell, K. and Tabor, I. (2023). CAN Injection: Keyless car theft.  CANIS Automotive Labs

[Online]. Available at: https://kentindell.github.io/2023/04/03/can-injection/. 

Tippenhauer, N.O., Pöpper, C., Rasmussen, K.B., Capkun, S. (2011). On the requirements for

successful GPS spoofing attacks. In  ACM CCS 2011, Chen, Y., Danezis, G., Shmatikov, V. 

(eds). ACM Press, New York. 

Van den Herrewegen, J. and Garcia, F.D. (2018). Beneath the bonnet: A breakdown of

diagnostic security. In  ESORICS 2018. Springer, Heidelberg. 

Van den Herrewegen, J., Oswald, D., Garcia, F.D., Temeiza, Q. (2021). Fill your boots:

Enhanced embedded bootloader exploits via fault injection and binary analysis.  IACR

 TCHES, 2021(1), 56–81. 

 Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science Univer , Wiley Online Library on [03/03/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Security of Automotive Systems

243

Verdult, R., Garcia, F.D., Balasch, J. (2012). Gone in 360 seconds: Hijacking with Hitag2. In USENIX Security 2012, Kohno, T. (ed.). USENIX Association, Berkeley. 

Verdult, R., Garcia, F.D., Ege, B. (2013). Dismantling megamos crypto: Wirelessly lockpicking a vehicle immobilizer.  USENIX Security 2013, King, S.T. (ed.). USENIX Association, 

Berkeley. 

Verstegen, A., Verdult, R., Bokslag, W. (2018). Hitag 2 hell – Brutally optimizing

guess-and-determine attacks. In  12th USENIX Workshop on Offensive Technologies, 

 WOOT 2018, 13–14 August. USENIX Association, Berkeley [Online]. Available at:

https://www.usenix.org/conference/woot18/presentation/verstegen. 

Wei, L., Luo, B., Li, Y., Liu, Y., Xu, Q. (2018). I know what you see: Power side-channel attack on convolutional neural network accelerators. In  Proceedings of the 34th Annual Computer Security Applications Conference, ACSAC 2018, 3–7 December. ACM Press, New York. doi: 10.1145/3274694.3274696. 

Weinmann, R.-P. and Schmotzle, B. (2020). TBONE – A zero-click exploit for Tesla

MCUs. Document, Comsecuris, Duisburg [Online]. Available at: https://kunnamon.io/

tbone/tbone-v1.0-redacted.pdf. 

Werling, C., Kßhnapfel, N., Jacob, H.N., Drokin, O. (2023). Jailbreaking an electric

vehicle in 2023 or what it means to hotwire Tesla’s x86-based seat heater. Black

Hat Briefings [Online]. Available at: http://i.blackhat.com/BH-US-23/Presentations/US-23-

Werling-Jailbreaking-Teslas.pdf. 

Wiersma, N. and Pareja, R. (2017). Safety != security: On the resilience of ASIL-D

certified microcontrollers against fault injection attacks. In  2017 Workshop on Fault

 Diagnosis and Tolerance in Cryptography, FDTC 2017, 25 September. IEEE, Taipei. doi: 10.1109/FDTC.2017.15. 

Williams, E. (2017). Mike Ossmann And Dominic Spill: IR, Pirates!  Hackaday [Online]. 

Available at: https://hackaday.com/2017/11/29/mike-ossmann-and-dominic-spill-ir-pirates/. 

Wilson, B.L. (2017). Saving my 97 chevy by hacking it.  International Journal of PoC||GTFO, 0x16 [Online]. Available at: https://www.alchemistowl.org/pocorgtfo/. 

Wouters, L., Marin, E., Ashur, T., Gierlichs, B., Preneel, B. (2019). Fast, furious and insecure: Passive keyless entry and start systems in modern supercars.  IACR TCHES, 2019(3), 66–85. 

Wouters, L., Van den Herrewegen, J., Garcia, F.D., Oswald, D., Gierlichs, B., Preneel, B. 

(2020). Dismantling DST80-based immobiliser systems.  IACR TCHES, 2020(2), 99–127. 

Wouters, L., Gierlichs, B., Preneel, B. (2021). My other car is your car: Compromising the

Tesla Model X keyless entry system.  IACR TCHES, 2021(4), 149–172. 

Wouters, L., Gierlichs, B., Preneel, B. (2022). On the susceptibility of Texas Instruments

SimpleLink platform microcontrollers to non-invasive physical attacks. In  Constructive

 Side-Channel Analysis and Secure Design – 13th International Workshop, COSADE 2022, 

11–12 April. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-030-99766-3_7. 

Yingtao Zeng, Q.Y. and Li, J. (2017). Chasing cars: Keyless entry system attacks.  HITB Security Conference. Hack In The Box, Kuala Lumpur [Online]. Available at: https://conference. 

hitb.org/hitbsecconf2017ams/sessions/chasing-cars- keyless-entry-system-attacks/. 

 Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science Univer , Wiley Online Library on [03/03/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 244

Embedded Cryptography 3

Yoshizawa, T., Singelée, D., Mühlberg, J.T., Delbruel, S., Taherkordi, A., Hughes, D., 

Preneel, B. (2023). A survey of security and privacy issues in V2X communication systems. 

 ACM Comput. Surv. , 55(9), 185:1–185:36. doi: 10.1145/3558052. 

Zeng, K.C., Shu, Y., Liu, S., Dou, Y., Yang, Y. (2017). A practical GPS location spoofing attack in road navigation scenario. In  Proceedings of the 18th International Workshop on Mobile Computing Systems and Applications, HotMobile 2017, 21–22 February. ACM Press, New

York. doi: 10.1145/3032970.3032983. 

 Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science Univer , Wiley Online Library on [03/03/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 12

Practical Full Key Recovery on

a Google Titan Security Key

Laurent IMBERT1, Victor LOMNE2, Camille MUTCHLER1,2

and Thomas ROCHE2

 1LIRMM, CNRS, Université de Montpellier, France

 2NinjaLab, Montpellier, France

12.1. Introduction

This chapter presents a practical case study of side-channel analysis. It is based

on the work entitled  A Side Journey to Titan  published at USENIX Security 2021. 

The original work studies the security of the  Google Titan Security Key  1 (a hardware security token for two-factor authentication) and shows that its secure element, the NXP

A700x chip, is susceptible to a side-channel attack (through the observation of its local

electromagnetic (EM) activity). Given physical access to a  Google Titan Security Key

for around 10 hours, this allows us to retrieve a user-specific secret key (there is one

key for each remote account) and therefore to clone the security device. 

The vulnerability was acknowledged by Google and the chip manufacturer NXP

(CVE-2021-3011 was assigned). It is present in other security keys and various NXP

JavaCards products2 (all based on similar secure elements). 

1 Google (2021). Google titan key. Software [Online]. Available at: https://cloud.google.com/

titan-securitykey/. 

2 The full list of identified products is here: https://ninjalab.io/a-side-journey-to-titan/. 
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In this chapter, we go back over this work with a focus on the exploitation of the

side-channel vulnerability. We expose the vulnerability without detailing the whole

discovery path (the interested reader can find all of the details from Roche et al. 

(2021)) and show how a small, sensitive leakage can result in a catastrophic

key-recovery attack. 

12.2. Preliminaries

12.2.1.  Product description

The  Google Titan Security Key  is a hardware FIDO U2F (universal second factor)

device. It provides a complement to the login/password authentication mechanism, 

in order to sign into a Google account, or any other web applications supporting the

FIDO U2F protocol. The  Google Titan Security Key  is available in three versions:

(1) micro-USB, NFC and BLE; (2) USB type A and NFC; and (3) USB type C. The

USB type C and type A (opened) versions are depicted in Figure 12.1. 

Figure 12.1.  Left: Google Titan Security Key USB type C version. Right: Google Titan Security Key PCB (USB type A version), with annotated main parts. For a color

 version of this figure, see www.iste.co.uk/prouff/cryptography3.zip

The FIDO U2F protocol, when used with a hardware FIDO U2F device like the

 Google Titan Security Key, works in two steps:  registration  and  authentication. Three parties are involved: the  relying party (e.g. the Google server), the  client (e.g. a web browser) and the  U2F device. 

The registration phase consists of the creation of a new ECDSA3 keypair by the

 U2F device  and the sending of the public key to the  relying party. 

During the authentication phase, the  relying party  sends a challenge to the  U2F

 device, which uses it to perform an ECDSA signature and send it back to the

3 ECDSA is defined over the NIST P-256 elliptic curve (NIST 2001) in FIDO standard. 
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 relying party. Thanks to the corresponding public key obtained during the registration phase, the  relying party  can verify the correctness of the ECDSA signature. 

In this work, we expose a side-channel vulnerability in the ECDSA signature

implementation and its exploitation in an evil maid attack scenario. Given physical

access to a legitimate U2F device during a small amount of time (about 10 hours), an

attacker can extract some side-channel information before giving the device back to

the legitimate user. This critical information (side-channel traces) is then processed

offline by the attacker in order to recover the ECDSA secret key. 

12.2.2. Google Titan Security Key  Teardown

Once plugged into a computer’s USB port, lsusb outputs Bus 001 Device

018: ID 096e:0858 Feitian Technologies, Inc.. As a matter of fact, the

company who designed the  Google Titan Security Key  is Feitian4. Indeed, Feitian

proposes generic FIDO U2F security keys, with customization for casing, packaging

and related services. 

After removing the plastic casing with a hot air gun and a scalpel, we obtained the

PCB depicted in Figure 12.1. The integrated circuit (IC) package markings allow us

to guess the IC references; and our target is the secure authentication microcontroller

from NXP (in red in Figure 12.1), the A7005a from the A700x family5. It acts as

the secure element, generating and storing ECDSA key-pairs and performing the

signatures. 

Opening the NXP A7005a epoxy package necessitated a wet chemical attack. We

protected the PCB with some aluminum tape and dropped hot fuming nitric acid on

the NXP A7005a package until the die was revealed (see Beck (1998), Chapter 2 for a

survey on IC package opening techniques). 

12.2.3.  Matching the Google Titan Security Key  with other NXP products

The FIDO U2F protocol does not allow us to extract the ECDSA secret key of a

given application account from a U2F device. With no control whatsoever on the secret

key, understanding the details of a highly secured implementation (let alone attacking)

can prove cumbersome. We had to find a workaround to study the implementation in

a more convenient setting. 

4 Feitian (2021). Feitian website. Software [Online]. Available at: https://www.ftsafe.com. 

5 MOUSER (2013). NXP A700x datasheet, secure authentication microcontroller. Datasheet

[Online]. Available at: https://www.mouser.fr/datasheet/2/302/a700x_fam_sds-1187735.pdf. 
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The NXP A700x public datasheet6 provides interesting information: JCOP 2.4.2

JavaCard Operating System, JavaCard version 3.0.1 and GlobalPlatform version

2.1.1, technological node of 140 nm, CPU Secure_MX51, 3-DES and AES hardware

co-processors as well as NXP FameXE public-key cryptographic co-processor with

RSA and ECC available up to 2,048 and 320 bits, respectively. 

These characteristics match with those of the NXP P5x secure microcontroller

family. This is the first generation of NXP secure elements, also called SmartMX

family7. Furthermore, the NXP P5x family is Common Criteria (CC) and EMVCo

certified (last CC certification found in 2015). 

Thanks to BSI and NLNCSA CC public certification reports8, we were able to

compile a (non-exhaustive) list of NXP JavaCard smartcards based on P5x chips. We

selected the product NXP J3D081 (CC certification report BSI-DSZ-CC-0860-2013)

since its characteristics were the closest to those of NXP A700x (JCOP 2.4.2 R2, 

JavaCard 3.0.1 and GlobalPlatform 2.2.1). We named it  Rhea, in reference to the

second largest moon of Saturn, right after  Titan. 

We developed and loaded a custom JavaCard applet allowing us to freely control

the JavaCard ECDSA signature engine on  Rhea. At this point, we were able to upload

the long-term ECDSA secret keys of our choice, perform ECDSA signatures and

verifications. 

12.2.4.  Side-channel observations

In order to perform EM side-channel measurements, we used a side-channel

analysis hardware setup with a global cost of about US $12,000, made of a 500  μ m

diameter EM probe, a manual micro-manipulator and an oscilloscope with a

500 MHz frequency bandwidth and a sampling rate up to 5 GSa/s. 

Figure 12.2 depicts the spatial position of the EM probe above the die of the

 Google Titan Security Key  NXP A7005a and the die of  Rhea. In Figure 12.3, we give the EM activities observed during the processing of the APDU command launching

the ECDSA signature available in the JavaCard cryptographic API of  Rhea. 

The similarities between EM activities on  Titan  and  Rhea  confirm our hypothesis that the implementations are very similar. Note that the spatial probe positioning

is sensitive to get a clear signal with sharp peaks, but the picture taken for  Rhea

(Figure 12.2, left) proved sufficient to replay the probe positioning on  Titan. 

6 See MOUSER (2013). 

7 NXP (2014). NXP SmartMX family brochure. Brochure [Online]. Available at:

https://www.nxp.com/ docs/en/brochure/75017515.pdf. 

8 See: https://www.bsi.bund.de/EN/Topics/Certification/certified_products/Archiv_reports.html. 
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Figure 12.2.  EM probe positions on Titan (left) and Rhea (right). For a

 color version of this figure, see www.iste.co.uk/prouff/cryptography3.zip

12.3. Reverse-engineering and vulnerability of the ECDSA algorithm

12.3.1.  Reverse engineering the ECDSA signature algorithm

Let us recall that we work on the elliptic curve P-256 defined over the finite field

F p (as standardized by NIST in NIST (2001)). 

We denote by  G  the base-point of the curve and by  q  its order. The ECDSA

signature algorithm (Johnson et al. 2001) takes as inputs the hash of the message

 m  to be signed  h =  H( m) and a secret key  d. 

It outputs a pair ( r, s) computed as follows:

1) randomly pick a nonce  k  in  { 0 , . . . , q −  1 }; 

2) scalar multiplication9  Q = [ k] G; 

3) compute  s =  k− 1( h +  rd) mod  q, where  r  denotes the  x-coordinate of  Q. 

The different steps of the ECDSA algorithm are identified in Figure 12.3 over an

EM trace. The scalar multiplication algorithm will be the target of our analysis, and we

first need to understand its implementation and countermeasures. 

The side-channel-based reverse engineering of the scalar multiplication algorithm

is described in detail in Roche et al. (2021); we solely give here the final algorithm as

well as the crucial information that led to this successful reverse. 

9 In a secure implementation, this is usually done on randomized projective coordinates:

 G =  G( x,y)  → G( xz  mod  p,yz  mod  p,z) with  z  a fresh random from F p (see, e.g. Coron 1999). 
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Figure 12.3.  Rhea EM Trace - ECDSA Signature (P-256, SHA-256). For a

 color version of this figure, see www.iste.co.uk/prouff/cryptography3.zip

 Rhea  allows us to choose the secret key of the ECDSA signature but also to execute

the ECDSA signature verification algorithm. The verification algorithm includes two scalar

multiplications but does not involve any secret. The developers then decided to remove the

side-channel countermeasures. The unsecure scalar multiplication algorithm was then easily

reversed and helped understand the countermeasures of the secure algorithm. 

The secure scalar multiplication algorithm is a double-and-add always version

of a  width-2 comb method (see Lim and Lee 1994) plus tricks. The algorithms is

presented in Algorithm 12.1, where  G 0 =  G 1 =  G (the elliptic curve base point), G 2 = [2129] G 1,  G 3 =  G 1 +  G 2 and  G 4 = [2128] G 1 are all pre-computed and stored on the device. In the  with-2 comb method, the scalar  k = ( k 1 , · · · , k 258) is encoded as ˜

 k = (˜ k 1 , . . . , ˜ k 129), with:

˜ ki = 2  × ki +  ki+129 , ∀i ∈ { 1 , · · · ,  129 }. 

It is easy to see that the scalar multiplication algorithm is constant time. It also

involves a randomization of the dummy operation, and since  G 0 =  G 1 =  G, we can check that the  Dummy ← S +  Grand  addition is operated on  G 1 half the time and on  G 2 or  G 3 the rest of the time. We would like to emphasize that this algorithm is only our interpretation of the real algorithm implemented on  Rhea, which might differ slightly. 

Details of the real implementation are not our concern here, and a high-level

understanding of the countermeasures is good enough. 
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Algorithm 12.1. Secure Scalar Multiplication Algorithm

Input :  {˜ k 1 , · · · , ˜ ki, · · · , ˜ k 129 }: The encoded scalar Input :  G 0 , G 1 , G 2 , G 3 , G 4: The pre-computed points Output [ k] G: The scalar multiplication of scalar  k  by point  G:

:

// Init Register  S  to the point  G(=  G 1)

 S ← G 1

for  i ←  2 to  lk/ 2 do

 S ← [2] S

 rand ←  random element from  { 0 ,  1 ,  2 ,  3 }

if ˜

 ki >  0 then

 S ← S +  G˜ ki

else

 Dummy ← S +  Grand

if ˜

 k 1 = 0 then

 S ← S − G 4

else

 Dummy ← S − G 4

Return:  S

12.3.2.  A sensitive leakage

The research of sensitive leakage is a tedious task where many interdependent

parameters have strong influence and should be set correctly for success. Many details

of this study are provided in Roche et al. (2021), and we simply provide the important

results here. The acquisition parameters are provided in Table 12.1. 

Inputs

rand. inputs, const. key

# operations

4000

Length

100 ms

Sampling rate

5G Sa/s

# Samples/trace

500 M

EM probe

ICR HH 500-6 Langer (2019) position as in Figure 12.2

Channel conf. 

DC 50 ohms,  ± 50 mV

File size

2 TB

Acq. time

 ≈  4 hours

Table 12.1.  SCA acquisition parameters for Rhea

The scalar multiplication contains a sequence of 128 double-and-add operations. 

The second argument of the add operation is  Gv  where  v  takes its value from

[image: Image 46]

Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science Univer , Wiley Online Library on [03/03/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 252

Embedded Cryptography 3

 { 0 ,  1 ,  2 ,  3 }  depending on the current values of ˜ ki  and  rand (see Algorithm 12.1). 

Inside the EM traces of the double-and-add operation (orange rectangle in

Figure 12.4), we found a set of samples whose amplitude correlates with the choice

of  v ∈ { 0 ,  1 ,  2 ,  3 }. More precisely, the amplitude of the samples allows us to distinguish three cases among the four: the case  v = 0 is not distinguishable from the case  v = 1. 

Double

Add

Figure 12.4.  Rhea EM Trace - ECDSA Signature (P-256, SHA-256) -

 Sensitive Leakage Area. For a color version of this figure, 

 see www.iste.co.uk/prouff/cryptography3.zip

In Algorithm 12.1, let us assume that  G 0 =  G 1 , G 2 , G 3 are stored at three different register (or memory) addresses. Our leakage captures the address value when one of the three Gv  is read. 

Finally, the leakage shows that the sensitive value  v  leaks its two bits separately: v  takes four possible values and then can be written as two bits. These two bits leak at different time samples and the most significant bit is leaking more often than the

least significant bit. We therefore capture a more accurate information about it. In

the following, we will then only consider the most significant bit of  v (i.e. limiting ourselves to distinguish  v ∈ { 0 ,  1 }  from  v ∈ { 2 ,  3 }). 

12.4. A key-recovery attack

In this section, we detail the process that resulted in the full recovering of the

private keys embedded into the NXP’s secure components of both  Rhea  and  Titan. 

Our attack consists of two main steps: we first exploit the vulnerability observed in

Algorithm 12.1 to recover some zero bits of the nonces with a very high confidence

level. Then, from this partial knowledge on the nonces, we apply a lattice-based
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attack by reducing our problem to an instance of the extended hidden number problem

(EHNP). 

12.4.1.  Recovering scalar bits from the observed leakage

As seen in section 12.3, Algorithm 12.1 leaks critical information whenever

˜ ki = 2 ki +  k 129+ i  iz zero because the  G-operand of the dummy addition is not chosen uniformly. If ˆ

 ki ∈ { 1 ,  2 ,  3 }  denotes the digit recovered from the observed leakage on ˜

 ki  in a noise-free scenario, the implementation choices lead to

 P (ˆ ki = 1) = 3 / 8, whereas  P (ˆ ki = 2) =  P (ˆ ki = 3) = 5 / 16. The case ˆ ki = 1 (i.e. 

msb(ˆ ki) = 0) is of particular interest since it implies  ki = msb(˜ ki) = 0. This observation led us to focus our analysis on the signal peaks resulting from the

leakage on msb(˜ ki). We used a T-test together with an unsupervised clustering

algorithm to classify our set of EM traces into two distinct subsets that correspond to

the cases msb(ˆ ki) = 0 and msb(ˆ ki) = 1, respectively. At this stage, we were rather optimistic about the correctness of our clustering process since the respective sizes of

the two output clusters did match the expected ratios (3 / 8 ,  5 / 8). Moreover, preliminary experiments on  Rhea  allowed us to fine-tune some parameters (T-test

threshold value, confidence level). 

For the  Titan  attack, we acquired the side-channel execution traces of 6000

ECDSA signatures. After re-alignment, samples selection, signal processing, 

unsupervised clustering, pruning and nonces selection, we ended up with 156 nonces, 

each of which containing with very high probability a block of at least five

consecutive zero bits at a known position10. 

12.4.2.  Lattice-based attack with partial knowledge of the nonces

The second phase of the attack consists of recovering the unknown part of each

nonce in order to deduce the secret key  d. Following Howgrave-Graham and Smart

(2001), this can be done using lattice reduction algorithms. The attack works as

follows:

1) Run  N  ECDSA signatures and record the inputs  h( i) =  h( m( i)), the outputs ( r( i) , s( i)) and the known information ˆ k( i) on the nonces  k( i). We denote by  u( i) the unknown part of  k( i) so that  k( i) = ˆ k( i) +  u( i) for  i = 1 , . . . , N . 

2) Rewrite the ECDSA equations  s( i) =  k( i) − 1( h( i) +  r( i) d) mod  q  as linear equations of the form  A( i) u( i) +  B( i) d ≡ C( i) (mod  q). 

3) Build a lattice  L  that contains the vector u = ( u(1) , u(2) , . . . , u( N)). 

10 For each of the 156 nonces, there exists a bit position  t  such that  ∀i ∈ {t, t + 1 , · · · , t + 4 }, msb(ˆ ki) = 0 and then  ki = 0. 
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4) If ˆ

 k( i) is large enough, then the norm of u is small and we can expect to obtain the vector u by solving an instance of the shortest vector problem (SVP) in  L. 

The literature mostly considers the case where the known part consists of some of

the most significant bits of each nonce. In this case, the above attack amounts to

finding a solution to the so-called  hidden number problem (HNP) introduced

in Boneh and Venkatesan (1996). We refer the reader to Chapter 8 for a very good

introduction to HNP. A more general setting referred to as the  extended hidden

 number problem (EHNP) allows the known part to be a sequence of several blocks of

consecutive known bits scattered all over the nonce. In this case, the unknown  u( i) is a vector whose elements are the unknown sections of each nonce. We note

(

(

 u( i) = ( u i)

 i)

1  , u 2  , . . . ). This more general setting did not draw much attention

(important papers are Howgrave-Graham and Smart (2001); Nguyen and Shparlinski

(2002); Hlavác and Rosa (2007); Goudarzi et al. (2016)) but led to practical attacks

nonetheless, mainly in the specific case of  w-NAF implementations of the scalar

multiplication (Fan et al. 2016; De Micheli et al. 2020). Our attack also relies on this

extended version of the HNP. 

The ECDSA equations  s( i) =  k( i) − 1( h( i)+ dr( i)) mod  q  can be rewritten as  k( i) =

 A( i) d − B( i) mod  q, with  A( i) =  s( i) − 1 r( i) and  B( i) =  −s( i) − 1 h( i). If  k( i) is small, then we can build a lattice  L  such that the closest vector to v = ( B 1 , . . . , BN ,  0) in  L  reveals the nonces  k(1) , . . . , k( N), hence the private key  d. In this setting, the solution is obtained by solving an instance of the closest vector problem (CVP). A

common variant makes it possible to reduce the problem to an instance of the SVP

in  L. In general, this so-called embedding technique (Kannan 1987) provides a better probability of success. 

In our case, the known part of each nonce  k  does not correspond to its most



significant bits. Instead, we have  k = ˆ k +

 

 j=1  uj  2 λj , where the bits that form

the known part ˆ

 k  split the nonce  k  into    unknown parts  uj. Note that the positions  λj and number of chunks    differ for each nonce. 

After a few experiments on  Rhea, we filtered out the 6,000 recorded signatures in

order to keep only those for which the known part of ˆ

 k  consisted of a single block of

five consecutive zero bits surrounded by two unknown parts  u 1 , u 2. 

We then reduced our problem to an instance to EHNP as sketched above. We

applied several optimizations to increase both the efficiency and probability of success

of the attack. In particular, we removed the secret key  d  from the equations and we used the already mentioned embedding technique. The details of our optimizations

and lattice construction are given in Roche et al. (2021). To complete the attack, we

ran our EHNP solver (using LLL) on random subsets of size 80 taken among the 156

selected nonces. The attack was successful after only a few tens of attempts. 
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Once the attacker gets hold of the  Titan  device, it should take less than 10 hours to replay the side-channel acquisition: two hours for preparing the device, one hour for

preparing the side-channel acquisition setup, six hours for the side-channel acquisition

and one hour for repackaging the device. After returning the device to the victim, the

key recovery can then be performed offline in less than one day. 

12.5. Take-home message

Some cryptographic primitive implementations require robustness against strong

side-channel attackers (e.g. the so-called  secure elements). Their security is ensured by building up layers of countermeasures such as de-synchronization techniques

(jittering at the hardware level and/or shuffling and random delays at the software

level) and masking/blinding mechanisms (at the algorithmic level). Often, one layer

of countermeasure is the secrecy of the implementation (to our knowledge, and at the

time of writing this chapter, there are still no secure chips with publicly disclosed

cryptographic implementations). 

While we are able to assess the strength of a known countermeasure (e.g. as it is

done in CC evaluations), it is quite difficult to assess the level of security provided

by the secrecy of the implementation. Smartcard CC evaluations do not assess the

difficulty to reverse engineer a given implementation. It is however obvious, and the

 Titan  case is a good illustration of it, that reverse engineering is greatly helped by some bad implementation choices: from the downgrading of countermeasures for public

primitives (like the scalar multiplication in NXP ECDSA verification operation) to

the creation of unbalanced behavior (e.g. by setting  G 0 =  G 1 in the NXP scalar multiplication algorithm). 

Not assessing the reverse-engineer effort leads, in some cases, to overestimating

the added security of secrecy. The safest place would be, of course, to finally get

rid of this misleading security layer and open to public scrutiny the  real  layers of countermeasures. 
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13.1. IEMI: history and definition

Part of the research in the field of electromagnetic compatibility (EMC) is

dedicated to the understanding of the effects on electric or electronic devices, which

are caused by electromagnetic (EM) interaction with their environment. The EMC of

equipment is qualified through the characterization of their emission level

(the impact of their activity on the EM environment) and their susceptibility level

(the impact of the EM environment on their activity). The need for test procedures

for the management of EM interference (EMI) has been in the scope of several

standards committees since the early 1930s (Hoad 2007). At this time, sources of

interference were unintentional, both natural (e.g. lightning and electrostatic

discharge) and artificial (e.g. radio transceivers). 

However, the potential offensive exploitation of such effects has gained interest, 

especially since the observations of collateral damage during Operation Starfish, a

high altitude nuclear test in 1962 (Wikipedia 2023), which created a high-altitude

nuclear EM pulse. Effects on electric and electronic devices were reported, such as

input circuit troubles in radio receivers and street light failures, on the Hawaiian island

of Oahu, at merely 14.00 km from the detonation (Vittitoe 1989). The evolution of
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technology used for radars and their proliferation also introduced new sources of EMI, 

with potentially critical impacts as in the U.S.S. Forrestal case. A landing airplane was

illuminated by a radar and an EMI triggered the accidental release of ammunition, 

according to a report from NASA (Leach and Alexander 1995). In order to evaluate

equipment immunity against such EM environments, research was driven to build

simulators focusing on the reproduction of these categories of waveforms. 

In 1999, the URSI (Union de Radio Science Internationale) issued a resolution

on criminal activities using EM tools, raising awareness about the offensive use of

EMI and the need of scientific investment on protection and test methods (URSI

1999). In the same year, the IEC SC 77C subcommittee had added this topic in its

standardization program (Lopes Esteves et al. 2021). 

Intentional EMI (IEMI) was officially defined in 2005 as the following (ISO/IEC

2005):

Intentional malicious generation of EM energy introducing noise or

signals into electric and electronic systems, thus disrupting, confusing or

damaging these systems for terrorist or criminal purposes. 

The terms  intentional malicious  explicitly introduce an attacker, which is quite

uncommon and surprising in a set of standards concerning the  compatibility  of

equipment. The terms  disrupting, confusing or damaging  refer to functional safety

and reliability issues. Together with the concept of an attacker, they also refer to

information security issues, mostly on the availability of the information processed

by the target system. 

Furthermore, the definition encompasses the use of jammers, which are designed

to overload antenna receiver circuits (ISO/IEC 2020). As a result, this new EMC

field intersects with other technical fields such as electronic warfare, wireless

communication, functional safety, information security and risk management. 

This historical introduction to IEMI and the standard definition uncovers slightly

the diversity and the complexity of the physical interactions, the targeted systems or

the attack scenarios that can be considered in this field. 

IEMI interaction can be modeled as shown in Figure 13.1, which provides a

simplified version of the EM interaction model in Giri et al. (2020) and the EM pulse

interaction models from Giri and Taylor (1994) and Lee (1986). 

The attacker is in possession of a  source  which is able to generate EM energy

destined to the target electric or electronic system. This EM energy, to reach the target, 

is subject to a  propagation  that can be radiated or conducted. It refers to the movement of currents, charges and/or electric and magnetic fields. Then the physical interaction

[image: Image 47]
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with the conductive parts of the target, referred to as a  coupling, occurs. The coupling produces physical effects, parasitic currents or voltages which, by reaching systems

or components, can introduce physical or logical impacts. 

Figure 13.1.  Interaction model for IEMI (adapted from Lee (1986)). For a

 color version of this figure, see www.iste.co.uk/prouff/cryptography3.zip

Depending on the complexity of the target topology, cascaded interactions may be

considered, introducing other coupling, penetration and propagation steps (Giri and

Taylor 1994). 

13.2. Information

security

threats

related

to

electromagnetic

susceptibility

The physical or logical impacts on the target resulting from interaction with the

electromagnetic environment can be interesting for an attacker. Several threat models

can be considered and categorized according to the security criterion they impact as

in Figure 13.2. 

Figure 13.2.  Threats exploiting the electromagnetic susceptibility of a

 target electronic device and the impacted security criterion. For a color

 version of this figure, see www.iste.co.uk/prouff/cryptography3.zip

In what follows, each threat model will be discussed and illustrated by exploitation

examples from the literature. A special focus will be made on IEMI-covert channels

and electromagnetic watermarking for which practical experiments are detailed. 
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13.3. Electromagnetic fault injection

Electromagnetic fault injection (EMFI) is a cybersecurity discipline dedicated to

the investigation of attacks and defenses on integrated circuits (ICs), which is

extensively covered in Chapter 9 of Volume 1. 

While EMFI fits in the interaction model provided in Figure 13.1, some

specificities regarding the attack goals and practical interactions with the target

distinguish IEMI from EMFI. 

The attacker is assumed to have a physical access to the target, enabling a

preparation of the target’s functional environment (e.g. printed circuit board (PCB)), 

physical measurements and a precise synchronization to the target’s activity. The EM

interactions are near-field over a localized area of the target, or conducted through the

interfaces (pins) of the IC. Attack waveforms are mostly pulses, which are believed

to target digital parts, and continuous waves (CW), for targeting analog functions. 

The study of IEMI is an EMC-related field and it arises from EMC methodology. 

The attacker is considered as being at a variable distance from the target, potentially

meters or even kilometers away. This implies a wide variety of potential sources and

EM environments that increases the complexity of the dimensioning of the EMC

problem. A consequence of this complexity is visible in the tailored test level

derivation guidance (ISO/IEC 2020), which requires the determination of the EM

environment from the operational deployment context (i.e. the practical conditions in

which the target will evolve). The failure criteria can be measured for currents, 

voltages or EM fields on the target or effects, impacting the availability of the main

function of the target. This makes the standard susceptibility assessment unfit for

security analysis. 

However, recently, in the context of sensor security, new attacks involving IEMI

were proposed, with an attacker which can be closer to the target and use sources with

less power. While detection is considered in EMC standards as a protective measure

involving external devices, sensor security researchers proposed detection techniques

included in the target. 

The possibility of obtaining EMFI impacts on an IC through IEMI has been

envisioned in Hayashi et al. (2011). A common mode conducted injection of 4–5 .  5 V

170 MHz sine waves on the power interface of a SASEBO-G board (3 .  3 V, 24 MHz

clock frequency) implementing an AES encryption in FPGA resulted in the

generation of faulty ciphertexts allowing a physical cryptanalysis. The possibility

of obtaining similar results with a radiated injection was discussed but not

demonstrated. 

 Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science Univer , Wiley Online Library on [03/03/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License An Introduction to Intentional Electromagnetic Interference Exploitation

261

13.4. Destruction, denial of service

Several studies were dedicated to the determination of breakdown, burnout, 

destruction

thresholds

for

different

types

and

generations

of

electronic

components (Backstrom and Lovstrand 2004; Giri et al. 2020; Hoad 2007; 

NASA/ADS 1978; Sabath and Nietsch 2006). In Mejecaze (2019), switch mode

power supplies were tested against conducted high power (> 12 kW) signals in order

to determine the destruction sequence of the components, showing that most

impacted components were the fuses, the diodes, the pulse width modulation (PWM)

controller and the MOSFET. 

In Palisek and Suchy (2011), the functional performance of several network

equipment was tested against high power (> 200 kW) radiated IEMI. Ethernet routers

with different cables and WiFi routers showed impacts resulting mostly in a

degradation or an interruption of the network traffic. 

In Adami et al. (2014), electronic passport readers for automated border controls

were tested against 1 μs pulsed signals with 1 kHz repetition rate at 150–3425 MHz

and 13 .  56 MHz. Interference type effects reported included impacts on the image

reading (no picture, 

failure in image recognition, 

failure in reading the

machine-readable zone of the passport). Upset type effects included communication

interruption on USB and RFID. 

13.5. Denial of service on radio front-ends

A phase-locked loop (PLL) was studied in Dubois (2011) and the impact of its

susceptibility when used as an oscillator in a quadrature phase shift keying (QPSK)

radio receiver was assessed. Effects on the PLL were impacting the output signal

frequency, phase and amplitude, resulting in demodulation errors. In case of a

CW IEMI, impacts were significant when the CW frequency was close to the PLL

output frequency (in this case, 3 GHz). In case of amplitude modulated (AM) CW, 

longer pulses and higher pulse repetition frequencies gave better results. 

A 2 .  4 GHz radio front-end was studied in Payet et al. (2017), with a focus on

effects impacting the low noise amplifier (LNA) and the power amplifier. It was

illuminated by a 3 kV  ·  m − 1 60 GHz pulsed CW with a pulse repetition rate of several kHz. The observed effect was a reduction of the amplitude or an extinction of

the output signal during the pulses. 

In Van de Beek (2016), CW IEMI effects on a TETRA receiver were studied, 

leading to a saturation of the front-end and a decrease of the receivers sensitivity, 

and showing that nonlinear interaction (harmonic distortion, cross modulation and

intermodulation) with the LNA and desensitization due to a high power interferer

could decrease the signal-to-noise ratio and degrade the demodulation efficiency. 
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The signals reradiated by radio frequency (RF) front-ends when illuminated with

IEMI were also investigated in Martorell (2018). It was observed that the targets

reemitted signals containing nonlinear distortion (harmonic and intermodulation

products) when illuminated by mono-tone or two-tone CW signals. It was suggested

to use nonlinear radar (H2 and IM3) signals to detect RF front end characteristics

such as operating frequency and bandwidth. 

13.6. Signal injection in communication interfaces

Signal injection in wired baseband communication cables was investigated

in Dayanıklı et al. (2022a), targeting UART and I2C. Signals with a 65 MHz

fundamental frequency were introduced by near field coupling using a signal

generator, a 20 W amplifier and a small Vivaldi antenna at 10 cm. It was shown that

an attacker was able to perform bit sets and bit resets in the serial communication

frames if a prior synchronization was possible (e.g. by exploiting the EM emission of

the serial communication) and cables were not twisted. A similar work was proposed

in Jang et al. (2023), where the susceptibility of serial communication buses

(I2C and SPI) between sensors and a system on chip (SoC) has been investigated, 

resulting in a random alteration of the transmitted data frames. 

Signal injection in wired RF communication was also investigated. In Köhler et al. 

(2022b) and Nateghi et al. (2021), the possibility to disrupt power line communication

(PLC) remotely with IEMI was shown. In Gardiner and Poore (2022), J2497, an

in-vehicle UART over PLC communication protocol operating from 100–400 kHz

was studied, and the possibility of remotely introduce frames into truck cables was

demonstrated, using a software defined radio transmitter and a loop antenna to replay

frames, needing 10 W at 45 cm. 

13.7. Signal injection attacks on sensors and actuators

Both analog and digital sensors have been scrutinized under IEMI environments. 

Despite not being restricted to EM interactions, a very complete survey on signal

injection into sensors is given in Giechaskiel and Rasmussen (2019). Most studies do

not precisely identify if the observed effects are due to parasitic activity into the

communication interfaces (post-transducer attack (Köhle et al. 2022a)) or into the

sensing unit (pre-transducer attack (Köhle et al. 2022a)). However, a very thorough

analysis of the different threats from IEMI against analog sensors is given in Kune

et al. (2013). In particular, in order to introduce a parasitic signal with the

characteristics of a target legitimate signal, a baseband IEMI or a modulated IEMI

can be used. 

The modulated IEMI can be demodulated in the target by nonlinear behavior of

components, filters or distortion caused by analog digital converters (ADCs). As a
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result, the modulator signal gets interpreted by the digital logic reading the sensor

values. With a modulated signal, the carrier frequency can be chosen so as to maximize

the coupling efficiency. Several sensors are then targeted in practice, such as an analog

microphone in a webcam that was targeted by an AM IEMI with a carrier around

825 MHz and an audio modulator signal (an actual song). Analog microphones have

also been attacked with IEMI with scenarios exploiting smartphone voice assistants

in Dai et al. (2022); Kasmi and Lopes Esteves (2015); Lopes Esteves and Kasmi

(2018); Xu et al. (2021). 

Optical sensors are studied in Köhle et al. (2022a), demonstrating the possibility

to introduce an arbitrary image, with some quality limitations (e.g. colors), by a

post-transducer interaction via a 190 MHz 100 mW AM IEMI. However, frame

injection required a synchronization to the sensor activity. An exploitation without

synchronization was also proposed by introducing enough noise to degrade an

automated barcode recognition on the optical stream. 

Interaction with smartphone capacitive touchscreens was also investigated, 

showing the possibility of injecting arbitrary touch events with varying

precision (Jiang et al. 2022; Maruyama et al. 2019; Shan et al. 2022; Wang et al. 

2022). In Jiang et al. (2022), a conducted CW IEMI introduced through the

USB charging cables of target smartphones is used at a frequency close or related to

the internal touchscreen excitation signal and with amplitudes of nearly 100 V

(e.g. 300 kHz and 99 V on a Google Nexus 7). Again, a synchronization is necessary

to inject arbitrary touch events, which precision depend on the exact moment and

duration of the injection, and the exploitation of EM emission is proposed to this end. 

Without synchronization, random-touch events or a disruption of the touch-event

detection are still achieved. 

In Dayanıklı et al. (2022b), the possibility of injecting a signal into a PWM link

between a SoC and an actuator (servomotor) is investigated. It is shown that an

AM IEMI with a modulator signal corresponding to the intended PWM signal

resulted in a good interpretation of the modulator signal by the actuator. A full

control of the rotation of the actuator was achieved without the need of a

synchronization, in contrary of previous work (e.g. Selvaraj 2018). A radiated test on

a custom target setup mounted on a Cessna 150 unmanned aerial vehicle (UAV)

showed a successful IEMI at 25 cm distance with a custom antenna, a 20 W amplifier

and a 62 MHz carrier frequency, with a modulator of a few kHz. 

13.8. IEMI-covert channel

This section focuses on a specific threat model aiming at the establishment of

a covert communication channel by exploiting the electromagnetic susceptibility of

the target. An extended version of this work is available in Lopes Esteves (2023). A
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practical application on a desktop computer is proposed, allowing for bridging an air

gap1. A brief introduction to the air gap and some bypass techniques is first proposed, 

followed by an insight on the identification and the characterization of a covert channel

with IEMI. 

13.8.1.  The air gap

Most critical infrastructures, organizations and companies have to compose with

several information systems with different levels of trust. Good information system

security practices (ANSSI 2020; Ross et al. 2022) involve a partitioning into security

domains and the enforcement of security policies between security domains based on

how data and information must be protected. This partitioning of security domains can

include considerations of classification of the information and is the root of multi-level

security (Anderson 2020). The permeability between security domains introduces

security risks and several practices can be applied in order to mitigate this attack

vector, such as firewalls, diodes, virtualization or air gaps. 

The air gap is a security measure that consists of isolating physically a sensitive

security domain from the other ones. The physical isolation usually involves a

complete dedication of all information technology resources in order to avoid sharing

hardware or software with other security domains and a suppression of

communication interfaces with other security domains. A very common example

involves a sensitive security domain dedicated to internal activities and internet

connected resources dedicated to external interaction (e.g. emails). 

13.8.2.  Bridging air gaps

As the air gap consists of a physical and logical segregation of security domains, 

circumventing an air gap implies the introduction of a communication channel

between computers belonging to two security domains. As the communication

channel used for bridging an air gap is neither intentional nor legitimate, it is called a

covert channel (Lampson 1973). With covert channels, entities on both sides of the

communication are willing to communicate, to exploit the covert channel and are

therefore usually considered as attacker-controlled. In other words, computers from

each security domain are running a software implant, interacting with a covert exploit

implementing the covert communication interface. Another possible scenario that

could be considered is of an attacker using a dedicated device to communicate with a

software implant (as it will be the case for IEMI-covert channels). 

1 The IEMI-covert channel on a desktop computer was a joint work with Dr. Chaouki KASMI, 

Dr. Valentin HOUCHOUAS and Mr. Philippe VALEMBOIS. 
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In this framework, several techniques can lead to an air gap bridging. In case the

targets possess wireless communication interfaces, they may be diverted by a covert

exploit to send or receive information over the air. Techniques involving polyglot

signals, hidden modulations (Bratus et al. 2016) and second-order soft-Tempest profit

from an existing legitimate radio frequency communication (Lopes Esteves et al. 2017, 

2018). Cross-technology communication can allow us to use a front end dedicated to

a certain legitimate protocol (e.g. Zigbee) in order to send packets compatible with

another protocol (e.g. Bluetooth low energy), as demonstrated in Cayre et al. (2021). 

It can also be that both computers share simultaneously or alternatively

peripherals. For example, there may be a need for exchanging data between A and B

and a USB mass-storage peripheral could be used. Another common example is the

temptation to share human interface devices, such as displays, keyboards and mice. 

However, peripherals are embedded systems that enclose persistent storage

capabilities in order to store firmware or configuration data. When these storage

capabilities can be read or written by the host, they can provide a covert storage

channel. 

Hardware implants can also be introduced into the targets to bridge the air gap. 

Several examples of such tooling were documented, such as the COTTONMOUTH

implant family in the NSA offensive tooling catalog (EFF 2014) or red-team

professional tooling (O.MG n.d.; USBNinja n.d.). 

Last but not least, out-of-band covert channels, also referred to as physical covert

channels, can also lead to a bypass of an air gap. Out-of-band covert channels are

air gap covert channels that are enabled by semi-invasive and noninvasive covert

exploits and have been extensively studied in Carrara (2016). In this category, the

covert exploits provide an interface to a shared physical characteristic that can be

modulated by the sender and measured by the receiver. 

In other words, the practicality of attacks based on out-of-band covert channels is

conditioned by the presence of resources on the sender side enabling the modulation

(called the modulator) and by the presence of sensing resources on the receiver side

enabling reception and demodulation (called the demodulator). Several studies were

dedicated to out-of-band covert channels using acoustic signals (Guri 2021; Guri

et al. 2020; Hanspach and Goetz 2013; Lee et al. 2016), light (Hasan et al. 2013; 

Loughry and Umphress 2002; Nassi et al. 2017), temperature (Guri et al. 2015) or

radio-frequency signals (e.g. Kuhn and Anderson 1998). Most out-of-band covert

channels were studied as an exfiltration threat, aiming at establishing an outgoing

communication from an isolated target. 
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13.8.3.  Threat model

When considering IEMI-covert channels, the attacker tries establishing an

incoming covert communication channel by exploiting the electromagnetic

susceptibility of a target isolated computer. On the target, a covert exploit implements

the receiver side of the covert channel to provide a software implant with the capacity

of receiving messages from the attacker. This threat model is illustrated in

Figure 13.3. 

Figure 13.3.  IEMI-covert channel threat model. For a color version

 of this figure, see www.iste.co.uk/prouff/cryptography3.zip

13.8.4.  Practical IEMI-covert channel on a PC

13.8.4.1.  The target

The target is a desktop computer equipped with a QDI Platinix 2-A motherboard, 

an Intel Pentium-IV CPU and a Winbond W83627HF-AW SuperIO controller. 

According to the documentation, the CPU encloses an on-die thermal diode (Intel

2004), which signal is routed toward the SuperIO chip and digitized with an 8-bit

analog digital converter (ADC) (Winbond 2002). 

The electromagnetic susceptibility of this electronic sub-circuit will show to be

exploitable for an IEMI-covert channel. 

13.8.4.2.  Experimental setup

The target desktop computer was placed on a table inside a FARADAY cage, 

initialized in a nominal configuration with its keyboard, mouse and VGA display. 

It has been connected to a monitoring computer located outside of the FARADAY

cage with an ethernet link transiting through ethernet-optical transducers in order to

forward the temperature readings in real time during susceptibility testing. 

The full experimental setup is depicted in Figure 13.4. 
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13.8.4.3.  Susceptibility of the temperature sensor

For an arbitrarily fixed carrier frequency of 2 GHz that has shown to produce

effects on the temperature reading without side-effects, an analysis of the impact

electric-field magnitude on the effect intensity has been done. An electric-field probe, 

placed inside the target computer chassis, was used to measure the electric-field

magnitude. Figure 13.5 shows that the temperature offset is monotonically increasing

with the electric-field magnitude. This observation confirms the possibility of

performing an amplitude modulation of the temperature reading values by

modulating the electric-field magnitude. 

Figure 13.4.  IEMI-covert channel characterization setup. For a color

 version of this figure, see www.iste.co.uk/prouff/cryptography3.zip

Figure 13.5.  Relationship between electric-field magnitude and temperature reading offset. For a color version of this figure, see www.iste.co.uk/prouff/cryptography3.zip

13.8.4.4.  Covert exploit design

Based on the possibility of inducing reading errors on the temperature sensor, a

proof-of-concept receiver is first developed. In order to set-up a mono-directional

communication link between the computer under test and the IEMI source, a covert

exploit was implemented that monitors the temperature level and seeks for a known
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pattern. The covert exploit is in charge of high rate temperature readings, 

demodulation and decoding of the covert communication. Several modulation and

coding schemes were tested, from simple on-off keying (OOK) to 4-level amplitude

shift keying (4-ASK), leading to different theoretical communication rates. 

Figure 13.6 shows a received 4-ASK frame along with the symbols sent, carrying

the message “hello scientists!”, at a bit rate of 10 bits per second. 

Figure 13.6.  An example 4-ASK frame as received by the covert exploit (top)

 and corresponding symbols coded before modulation by the sender (bottom). 

 For a color version of this figure, see www.iste.co.uk/prouff/cryptography3.zip

13.8.4.5.  Covert channel capacity

Two proof of concept covert exploits were designed providing different

communication channel characteristics. From an information security viewpoint, the

maximum transmission rate is an interesting characteristic as it would allow us to

determine the criticality of the presence of the covert channel. This theoretical upper

bound for the transmission rate is called the channel capacity. 

In Lopes Esteves (2023), an approach for applying the Shannon (1948) capacity

formulation is proposed. Several approximations, resulting in an overestimation of the

attacker profile, are made:

– the channel is considered a noiseless discrete channel; 

– the maximum symbol rate is measured on the demodulator side; 

– the maximum number of symbols is directly derived from the ADC specification. 

The covert exploit was adapted to maximize the sampling rate of the temperature

readings and a maximum symbol rate of  Rsym = 10 samples per second was
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obtained. The maximum number of symbols has been derived from the maximum

number of values sampled by the ADC, which is an 8-bit ADC according to the

specification of the SuperIO chip (Winbond 2002). Therefore, the maximum number

of representable symbols is  N = 28. These considerations yield a worst case channel

capacity  C =  Rsym ·  log2  N = 40 bits per second 2. 

This covert channel capacity is an overestimation of the actual channel capacity

because of the approximations made, implying that considerations related to the

IEMI source, the signal propagation, coupling and the quantization noise are

discarded. However, this information can still be relevant for risk analysis. 

13.9. Electromagnetic watermarking

This section is an introduction to electromagnetic watermarking (EMW), a threat

model for IEMI first described more extensively in Lopes Esteves (2019). EMV is

first be defined and explained. A practical application providing forensic-tracking

capabilities on a civilian UAV is then detailed. 

13.9.1.  Threat model

EMV can be defined as the process of exploiting effects of IEMI that have

persistent impacts on the target in order to remotely introduce (to store) a piece of

information (the  watermark) into a non-cooperating electronic target. Conceptually, 

this can be modeled as the combination of an IEMI-based covert communication

channel and a storage channel (Figure 13.7). 

In this framework, in can be viewed as a covert communication channel for which

the covert exploit is not a software implant but, instead, a persistence mechanism

intrinsic to the target. The  watermark  can then be detected and extracted later during a second phase in order to at least determine that the target has been in contact with

an EMW environment. 

13.9.2.  EMW for forensic tracking

While traditional digital forensics aims at extracting evidence of criminal activities

from electronic devices, forensic tracking consists in investigating the activity of a

target in order to determine if it was at a specific location at a specific time (Al-Kuwari

and Wolthusen 2011). 

2 More details about the determination of the maximum symbol rate and the application of the Shannon capacity formulation are given in Lopes Esteves (2023). 
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Figure 13.7.  Modeling of EMW as the combination of an IEMI-covert

 channel and a storage channel. For a color version of this figure, 

 see www.iste.co.uk/prouff/cryptography3.zip

Forensic tracking can be performed by extracting location traces inside the target

such as a list of GPS coordinates (Sack et al. 2013) or by identifying traces of the target

left on other devices (e.g. a network of CCTV cameras (Al-Kuwari and Wolthusen

2011)). In Zheng et al. (2017), a method of forensic tracking of audio recordings is

proposed relying on the analysis of the variations of the electrical network frequency, 

which are consistent at different places of the same electrical power grid. 

Forensic tracking using digital watermarking is widespread in digital cinema

(Lee et al. 2009; van der Veen et al. 2007) determining the location in time and space

of the recording of pirate copies of movies captured with a digital camera during the

in-theater projection of the movie. In this case, the host signal is the motion picture

and the watermark is an identifier of the theater and a timestamp. The embedding is

performed in real time by the play back device. The processing channel would

include the capture by the digital camera, the compression and format conversions

that may have occurred between the capture and the share of a copy. The detection

step will consist of searching for the watermark presence in a version of the motion

picture and extracting the theater identifier and the timestamp, which will allow for

further investigating on the piracy act. 

As EMW allows us to introduce information into a target, it may be considered

to be a potential embedding technique for forensic tracking. Similarly to DNA sprays

used in some shops to mark people’s body and clothes in case of robbery, EMW could

allow for a digital marking of a target showing it has been colocated in time and

space with the watermarking system. The main difference with the previous example

is the control of the host signal in which the watermark is embedded. With EMW, the

target is remote and non-cooperative and the host signal is not under the control of the

watermarking entity. 
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13.9.3.  Practical EMW on a UAV

During the last decade, UAVs have been spreading in both civilian and military

contexts. The problem of their neutralization, called counter unmanned aerial systems

(C-UAS), has become of high interest for security aware organizations. Among the

proposed solutions, electromagnetic directed energy devices are also considered and

commercial products already exist (HPEM 2019). In such context, EMW can be a

relevant solution for forensic tracking of UAVs involved in unauthorized flights nearby

critical infrastructures. The main principle would be to perform EMW in complement

or as an alternative to a neutralization process. 

13.9.3.1.  The target

The targeted UAV is a common off the shelf quadcopter which is marketed as a

photo and video acquisition device. The air segment is composed of the quadcopter

aircraft equipped with a digital camera payload. The remote controller hosts a 2 .  4 GHz Wi-Fi access point and relays packets between all the components. A proprietary radio

protocol is used for sending line of sight flight control commands from the remote

controller to the aircraft. 

The aircraft encloses a system on chip running  OpenWRT (Brown 2016). Besides, 

other ICs are in charge of the avionics functions and real-time interactions with the

sensors and the motors. Communicating with the main over an asynchronous serial

link with a proprietary protocol means that both send telemetry data from the sensors

and receive commands. The main microcontroller then forwards some of those packets

through the Wi-Fi link to the remote controller and the mobile application. 

13.9.3.2.  Experimental setup

A susceptibility testing campaign was performed on the target in order to identify

logical effects that were suitable for EMW. The target was placed on a table in a

FARADAY cage together with the remote controller and a smartphone running the

mobile application (Figure 13.8). The aircraft had its propellers removed in order to

avoid difficulties due to flying or falling. The remote controller was started and the

aircraft and the smartphone attached on the Wi-Fi network. A Raspberry Pi was also

added and attached to the remote controller Wi-Fi network and configured to act as a

Wi-Fi to ethernet bridge. All incoming packets on the Wi-Fi interface were

forwarded to a monitoring computer outside the cage through a pair of ethernet to

optical transducers. The source allowed generating pulsed CW signals in the

100–2 .  000 MHz range with pulse repetition frequencies between 1 kHz and 20 kHz

with a maximum amplification of 50 W. 

13.9.3.3.  Storage channel and watermark extraction

After identifying effects from the right categories along with the IEMI waveforms

that cause them, the determination of storage mechanisms for the selected effects had
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to be performed. For this, UAVs provide a genuine built-in feature that makes this

kind of target suitable for EMW: the flight logs. On the target, the maximum logging

frequency is 250 Hz, which means there is a new log entry every 4 ms. Each log entry

contains a set of raw sensor values that have their own update rate. However, 250 Hz

is the fastest sampling rate we can expect when reading the values from the flight logs. 

After each test, the flight logs were extracted from the internal storage of the target

and analyzed. 

Figure 13.8.  Experimental setup for EMW on a UAV. For a color

 version of this figure, see www.iste.co.uk/prouff/cryptography3.zip

13.9.3.4.  An EMW channel on the gimbal

An IEMI effect on the gimbal has been observed with 282 MHz carrier frequency, 

8 kHz repetition rate pulses. It had an impact on a value called “accel:z” in the flight

logs, which is interpreted as the vertical acceleration in  g. This value is sampled in the flight logs at a frequency of nearly 250 Hz. 

It is a relevant example to document as the effect impacts several sensor values

simultaneously, which might be a way to improve the watermark detection and

extraction reliability. 

This effect results in the appearance of a 15 Hz sinusoidal offset on the actual

vertical acceleration value, as shown in Figure 13.9. 

A proof of concept transmission based on an OOK modulation and a non-return

to zero (NRZ) coding has been realized. Considering that one period of the 15 Hz
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signal is necessary to encode a symbol, a bit rate of 15 bps can be reached. Thus, 

considering a target flying at 60 km  ·  h − 1, during the writing of a byte, the target will have moved approximately 8 m. Therefore, depending on the source power and the

operational context, it will be possible to write one or several bytes in the target logs

during illumination. 

Figure 13.9.  Example EMW channel on the vertical acceleration, the

 effect occurs when the EMW source is on. For a color version

 of this figure, see www.iste.co.uk/prouff/cryptography3.zip

Simultaneously, the roll and pitch angle values are also affected and the 15 Hz

component is also present. Those effects appear as soon as the signal source is

switched on. 

The presence of the carrier signal in several observable values may allow for a

robust detection and extraction of the embedded information. For example, when the

effect was detected on the vertical acceleration curve, it could be confirmed by the

switch of the slope sign of the pitch and roll curves to increase the probability of

detection and reduce the false positive probability. 

13.10. Conclusion

This chapter is dedicated to introducing intentional electromagnetic interference

with an information security perspective. Among the techniques exploiting the

electromagnetic susceptibility of electronic devices, IEMI was historically explored

by the EMC scientific community. Methods for studying and modeling

electromagnetic

and

electrical

phenomena, 

evaluating

and

measuring

the

susceptibility of devices and designing protective measures were known for decades

regarding unintentional EMI. Even the first intentional offensive uses of EMI were

considering as well-defined EMI signals, with a focus on electronic warfare threat

models tending to maximize distance to and damage on the target. 

However, with IEMI, the range of threat models increased, from legacy long-range

scenarios to very short-range scenarios considered in EMFI. The diversity of potential
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offensive signals considered also increased and the threat is nowadays qualified as

proteiform. The introduction of the intentionality of IEMI raised the complexity of

the problem, which can no longer be solely studied as an EMC problem, but also as

an information security problem. With electromagnetic fault injection, threat and fault

models, evaluation methods and countermeasures exist in the scope of component

security. 

But between historical EMI scenarios and EMFI, there is still room for

exploration of mid-range mid-power threats as seen in recent studies on sensor

security. In this research area between EMC, EMFI and sensor security, several open

problems emerge concerning offensive and defensive aspects around threats

exploiting the electromagnetic susceptibility of the targets for the quantification of

the attacker profile and the attack rating, the security evaluation of products, the

design of countermeasures, the approaches for detection and forensic analysis. 
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14.1. Introduction

The Internet of Things (IoT) is a term given to the wide variety of connected

devices, which now are inescapable in our daily lives. Examples of common IoT

devices found in many homes and businesses include light bulbs, smart speakers, door

locks and cameras. A key feature of these devices is that they have some ability to

interconnect and interact. A user can talk to their smart speaker, which can lock the

door and set all the exterior lights on for one hour. 

Such devices typically have ad hoc networking capabilities, which allow them

to communicate directly to each other. This “secondary” communication interface is

rarely managed directly by the user, which means the user may be unaware of its

capabilities. This also means there must be a high degree of trust in the implementation

of any security on this secondary interface. 

There are numerous attack vectors that IoT devices may be subject to, many of

which depend on the capabilities and interfaces the device exposes. A device with a

microphone or camera, for example, may be vulnerable to an attacker remotely turning

on those features. The most fundamental vector is one, which allows an attacker to

rewrite the software (firmware) running on the IoT device. Attacking the firmware
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update is particularly powerful, as it provides an attacker with unlimited capability to

rewrite the functionality of the device. 

This firmware update capability is the main topic of this chapter, and in particular, 

it will be shown how an IoT device using AES-CCM to provide both encryption and

authentication of a firmware image can be attacked with side-channel power analysis. 

The particular IoT device will be the Philips Hue smart bulbs. 

This chapter is based on work by Ronen et al. (2017) presented in the paper  IoT

 Goes Nuclear: Creating a ZigBee Chain Reaction. In addition, later work by Itkin

(2020) is also discussed, which demonstrated attacks on the bridge device. 

The attacks discussed in this chapter were reported to Phillips in 2016 and have

been patched in various forms. Statements about the security features in place made

in this chapter refer to the state of the devices in 2016. 

The chapter will begin with an introduction to the specific IoT device and

architecture, along with a discussion of the threat model and the bootloader and

encryption used for firmware updates on this device. A side-channel attack on the

bootloader will then be presented, allowing us to send firmware, which will be

accepted by the device. A brief summary of the required work to form a complete

attack is also presented, but the focus of this chapter is the demonstration of how

knowledge about the attacks and AES implementation learned in earlier chapters is

applied in “real life”. 

14.2. Preliminaries

A short overview of the general IoT specification used by these light bulbs will

be presented, along with some specific details of the Philips Hue firmware update

mechanism. 

14.2.1.  ZLL (ZigBee Light Link) and smart light systems

As seen in Figure 14.1, smart lamp systems enable users to control their lamps

either from a remote control or from a smartphone application using a gateway. The

gateway is used to bridge the IP world to the ZLL world, which is an industry standard

developed and supported by most of the major home lighting manufacturers such as

Philips, GE and OSRAM. 

The Philips Hue lamps use hardware which is based on SoC (system on chip) that

includes a microcontroller, flash memory for bootloader and code, SRAM memory

for program data, AES hardware acceleration, 802.15.4 radio transceiver and various

code protection mechanisms. We attacked a hardware version that uses the Atmel’s

ATmega2564RFR2 SoC. 
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Figure 14.1.  The ZLL architecture. For a color version of

 this figure, see www.iste.co.uk/prouff/cryptography3.zip

14.2.2.  Lamp hardware

There are multiple versions of the lamp hardware, with different main

microcontrollers. The original bulbs used a TI CC2530 (8-bit 8051) with an example

of this board shown in Figure 14.2; 

later versions used a Microchip

ATmega2564RFR2 (8-bit RISC) and then moved to a Microchip SAM based design

(32-bit Arm). 

Figure 14.2.  The MegaRF-based bulb. For a color version of

 this figure, see www.iste.co.uk/prouff/cryptography3.zip

14.2.3.  Firmware updates

In order to securely update the firmware of both the bridge and lamp, firmware

updates are downloaded from a Philips Hue server. This allows protection of the

transfer using standard web security infrastructure. In order to update the bulbs, an

additional mechanism is required, which sends the firmware over the ZLL protocol. 

For the bulb firmware update, the encrypted and signed firmware files that were

downloaded from the Philips server are sent in small chunks to the lamps. The lamps

write each small chunk to an external SPI flash until all chunks are received. Finally, 

the bulb can verify the integrity of the firmware file and mark the file as ready for the

bootloader to update. 
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As the bootloader is in a very limited memory space, the bootloader has no ability

to use wireless features. It can only reprogram the firmware present in the SPI flash. If

on boot, the bootloader detects a flag indicating the firmware should be programmed

from SPI flash, the bootloader will first cryptographically verify the integrity and

authenticity of the file. Once the bootloader starts the erase, the device will no longer

function, so it is important that the bootloader does not attempt to program invalid

firmware. 

If the file passes the verification steps, the bootloader will then erase the

application firmware and reprogram it from the SPI flash. The update file is

decrypted on-the-fly, with each chunk decrypted as it is programmed. Once fully

programmed, the authentication tag is checked, and if it passes, the bootloader now

boots the new application firmware. 

Critically, the authentication tag is part of the AES-CCM encryption used for the

firmware update file. This means there is no separate PKI used to verify the bootloader, 

and the verification is entirely based on symmetric encryption. 

14.2.4.  Hue Bridge hardware

The Hue Bridge 2.0 uses a Qualcomm QCA4531, which is a MIPS 24Kc SoC. The

bridge hardware runs a Linux kernel and has both ZigBee and Ethernet interfaces as

previously mentioned. Attacks on this device will not be discussed in this chapter, but

this brief overview is included for completeness. An attacker with access to the bridge

can bypass the root password protection to install arbitrary code or otherwise modify

the device. Having low-level hardware access to the device is often not protected

against, since it is assumed such an attacker could easily install hardware bugs. 

However, two other interesting attacks would be against the Internet infrastructure

and the ZigBee interface. Eyal Itkin has presented research on the binary process

running on the bridge (see the References section of this chapter). This resulted in

an attack which happens from the ZigBee side and allows access to the Ethernet side. 

This will not be discussed further in this chapter, but highlights the multiple interfaces

and vulnerabilities these IoT devices may contain. 

14.3. Hardware AES and AES-CTR attacks

As the light bulbs under consideration have an Atmel ATMega2564RFR2 device, 

the first part of the attack is to explore the use of the hardware AES accelerator. We had

previously demonstrated an attack against the AES accelerator in the closely related

ATMega128RFA1 device, which is described in this section. See the Notes and further

references section for a reference to this complete work and for more details of the

attack on the hardware AES accelerator. 
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The first published attack of an Atmel product with hardware AES acceleration

was the XMEGA attack by Kizhvatov (2009). Kizhvatov determined that for a CPA

attack on the XMEGA device, a vulnerable sensitive value was the Hamming

distance between successive S-box input values. These input values are the XOR of

the plaintext with the secret key that occurs during the first AddRoundKey. This

suggests a single S-box is implemented in hardware, with successive applications of

the input values to the S-box. 

The following notation considers  Pj  and  Kj  to be a byte of the plaintext and encryption key, respectively, where 0  ≤ j ≤  15. To determine an unknown byte  Kj, we first assume we know a priori the value of  Pj,  Pj− 1 and  Kj− 1. The determination of  Kj− 1 is presented later, but we can assume for now that byte  Kj− 1 is known. 

This allows us to perform a standard CPA attack, where the sensitive value is given

by the Hamming weight of equation [14.1]. That is to say the leakage for unknown

encryption key byte  j  is:  lj =  HW ( bj). Provided  K 0 is known, this attack can proceed as a standard CPA attack, with only 28 guesses required to determine each

byte. 

 bj = ( Pj− 1  ⊕ Kj− 1)  ⊕ ( Pj ⊕ Kj)  ,  1  ≤ j ≤  15

[14.1]

If  K 0 is unknown in practice, an attacker can simply proceed with an attack for all 28 possibilities of  K 0. The attacker may then test each of the resulting 256 candidate keys to determine the correct value of  K 0. This would entail a total of 28  × (28  ×  15) guesses. 

For the specific case of  K 0, a more straightforward approach exists. Kizhvatov

(2009) later determined that  K 0 can be determined directly by using a leakage

assumption based on the Hamming distance from the fixed value 0x00. This leakage

function is shown in equation [14.2]:

 l 0 =  HW ( b 0) =  HW ( P 0  ⊕ K 0)

[14.2]

This allows the entire encryption key to be attacked with a total of 16 × 28 guesses. 

14.3.1.  Application to ATMega128RFA1

The initial work was done on a development board for the ATMega128RFA1, the

Dresden Elektronik radio board model number RCB128RFA1 V6.3.1. Power

measurements were taken by inserting a resistor between the  V CCcore  power pin

and decoupling capacitor. A differential probe was used to measure the voltage
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across this resistor. To sample the power measurements, the ChipWhisperer platform

is used at 64 MS/s (which is 4  ×  the device clock of 16 MHz). 

Examples of the correlation output versus sample point are shown in Figure 14.3, 

which shows the peaks at the output of the correlation function on the CPA attack

for the “correct” key guess. The sign of the peak is not important – the sign will flip

depending on probe polarity – but note that the correct key guess results in a larger

magnitude correlation than the incorrect guess at certain points. These points are when

the physical hardware is performing the operation in equation [14.1]. 

The majority of key bytes are recovered in under 10,000 traces on this setup, which

suggests that the attack is viable in practical scenarios. 

Location of Correlation Peaks for Bytes 1 and 2

Byte  1 - Correct

Byte  1 - Incorrect

0.1

Byte  2 - Correct

Byte  2 - Incorrect
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onsumption (unitless) -0.04

er C -0.06

wPo -0.08
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Sample Number

Figure 14.3.  Correlation peaks for byte j = 1  and j = 2 . The “incorrect guess” means the  28  −  1  guesses that are not the value of Kj. The sample number refers to the sample points since the start of the encryption operation, again sampling at 64 MS/s. 

 For a color version of this figure, see www.iste.co.uk/prouff/cryptography3.zip

14.3.1.1.  Guessing of Kj− 1

This attack used the leakage equation [14.2] of the first byte  j = 0 to bootstrap

the key recovery. Once we know this byte, we can use equation [14.1] to recover

successive bytes. 

Practically, we may have a situation where  j −  1 is not recoverable. Previous work

assumed either some additional correlation peak allowing us to determine  j −  1, or the
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use of a brute-force search across all possibilities of the byte  j −  1. We can improve on this with a more efficient search algorithm, described next. 

The leakage function equation [14.1] could be rewritten to show more clearly that

the leaked value depends not on the byte values, but on the XOR between the two

successive bytes, as in equation [14.3]. 

 bj = ( Kj− 1  ⊕ Kj)  ⊕ ( Pj− 1  ⊕ Pj)  ,  1  ≤ j ≤  15

[14.3]

The side-channel attack can be performed with the unknown byte  Kj− 1 set to

0x00, and the remaining bytes are recovered by the CPA attack described previously. 

These recovered bytes are not the correct value, but instead provide the value that has

to be XOR’d with the previous byte to generate the correct byte. 

The 256 candidate keys can then be generated with almost no computational

work by iterating through each possibility for the unknown byte  Kj− 1 and using the

XOR values recovered from the CPA attack to generate the remaining byte values

 Kj, kj+1 , · · · , kJ. 

This assumes we are able to directly test those candidate keys to determine which

is the correct value. As is described in the next section, we can instead use a CPA

attack on the next-round key to determine the correct value of  Kj− 1. 

14.3.2.  Later-round attacks

Although previous work has been concerned with determining the first-round

encryption key, information on later-round keys may also be required for a complete

attack. For later rounds, the leakage assumption of equations [14.1] and [14.2] still

holds, where the unknown byte  Kj  is a byte of the round key, and the known

plaintext byte  Pj  is the output of the previous round. We can extend our notation

such that the leakage from round  r  becomes  lrj =  HW ( brj), where each byte of the round key is  krj, and the input data to that round is  prj. 

As described in section 14.3.1.1, we can perform the CPA attack on byte  Kj  where

 Kj− 1 is unknown by determining not the value of the byte, but the XOR of each

successive byte with the previous key. This means performing the attack first, where

 Kj− 1 is assumed to be 0x00. 

By then enumerating all 28 possibilities for  Kj− 1, we can quickly generate 28

candidate keys to test. However, if we are unable to test those keys, we need another

way of validating the most likely value of  Kj− 1. 

If we know the initial (first-round) key, we can determine the input to the second

round, and thus perform a CPA attack on the second-round key. In this case, we do not
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know the first-round key, but we have 256 candidates for the first round ( r = 1), and want to determine which of those keys is correct. 

To determine which of the keys is correct, we can perform a CPA attack on the

first byte of the second round,  K 20, repeating the CPA attack 256 times, once for each candidate first-round key. The correlation output of the CPA attack will be low for all

guesses of  K 20 where  

 K 1 is wrong, and only for the correct guess of  K 20 and  

 K 1 will

there be a peak. This allows us to use a CPA attack on the second round to determine

which of the first-round keys is correct, without requiring us to have an oracle to verify

the encryption key. 

This can be useful in situations where we do not have both plaintext and ciphertext, 

or for attacking AES-ECB blocks that are used within parts of other AES modes. 

So far, this attack is limited to the AES accelerator used in AES-ECB mode, so we

can now apply this to the bootloader itself. We will first look at how the bootloader

works, before looking at the exploitable leakage. 

14.4. AES-CCM bootloader attack

This section will detail the bootloader attack, which relies on both CPA attacks and

DPA attacks. A custom leakage model is used, and some form of leakage detection

is used as part of the reverse engineering process. These are topics that were covered

by earlier chapters of this book. In this section, we will first introduce the physical

setup of the attack hardware, before discussing how the attack is used to recover the

encryption key used by the bootloader. 

The physical setup used for the power analysis work is shown in Figure 14.4. Note

that a custom board was designed for the ChipWhisperer system, for the purpose of the

attack the target chip was desoldered from the Hue Bulb, and soldered to the custom

board. This provided a very low-noise and reliable method of performing the power

analysis. 

When the device boots, it can be forced to load an (encrypted) firmware image

from SPI flash. The SPI flash data lines provide an excellent trigger source for this

purpose. In addition, a SPI flash programmer is present in Figure 14.4. This is used to

change the encrypted file to provide ciphertext control, which is used for work such

as leakage detection, where specific controlled ciphertext input is required. 

14.4.1.  Understanding Philips OTA image cryptographic primitives

Our initial assumption was that Philips used the CCM encryption mode for the

OTA image. This enables them to reuse the CCM code from the Zigbee encryption, 

[image: Image 58]

Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science Univer , Wiley Online Library on [03/03/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Attacking IoT Light Bulbs

287

which was also used in an old TI cryptographic bootloader implementation, which

could have been used as a reference to their implementation in the older TI-based

models. A summary of the AES-CCM mode is given in Figure 14.5. 

Figure 14.4.  Power analysis on the ATMega2564RFR2 from a Philips Hue bulb was

 done using a ChipWhisperer-Lite (top left) connected to a custom PCB with the

 ATMega2564RFR2 mounted (middle blue PCB) and using a Bus Pirate (bottom small

 PCB) to reprogram a SPI flash chip with various byte sequences. For a color version

 of this figure, see www.iste.co.uk/prouff/cryptography3.zip

When we started this work, 

the newer bulbs based on the Atmel

ATMega2564RFR2 did not have an OTA update released. Instead, we used an image

for the CC2530 bulbs as a reference. To perform the bootload process, the new

(encrypted) image is programmed in the SPI flash. On boot, the bulb will first check a

flag to indicate if an OTA update is pending; if so, it reads the entire image to verify

the signature. Then, it reads the image a second time to actually perform the flash

programming. We determined this based on (1) modifying the image – which would

invalidate the signature – causes the bulb to perform only the first read; and (2) the

second read-through contain gaps where no SPI activity is occurring. These gaps

align with the internal flash memory page-erase process required before performing a

flash write. 

As we knew the leakage mode for the ATMega2564RFR2 AES hardware engine, 

we targeted the newer hardware. The CC2530 OTA upgrade file was modified by

changing the hardware type and image file size to fit the requirements of the bootloader

on the new hardware, so the bootloader on the ATMega2564RFR2 would attempt the
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verification process. The actual verification will  fail  as this was not a valid OTA image for this platform, meaning we were able to perform this attack without having access

to a valid firmware image. 

Figure 14.5.  CCM encryption mode. For a color version of

 this figure, see www.iste.co.uk/prouff/cryptography3.zip

The hardware AES engine on the ATMega2564RFR2 has a unique signature, 

which makes detecting the location of AES straightforward. Looking at the power

traces of the verification process, we could notice two AES operations for each 16

byte block, which supported the CCM assumption, as shown in the top portion of

Figure 14.6. 

In addition, we performed a DPA attack where the leakage assumption is simply

the input data itself being loaded. This shows locations where the input data are

manipulated (this will also track linear changes to the data, such as an XOR operation). 

We note that the input data are manipulated after the first AES operation and before

the second AES operation, as in the lower part of Figure 14.6. 

This would be consistent with the first AES operation being CTR mode, the output

of CTR mode being a pad which is XORd with the input data to decrypt the block. The

decrypted data are then fed into the CBC block. Note the XORs of the input data still

generate the high difference spikes, as the input data are effectively being XORd with

constants (either the AES-CTR output with the same CTR input, or the CBC output). 
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Figure 14.6.  Power analysis of processing a single 16-byte block by the cryptographic bootloader. HW-AES locations are marked based on comparison to a reference

 platform performing hardware AES encryptions. For a color version of this figure, see

 www.iste.co.uk/prouff/cryptography3.zip

14.4.2.  CPA attack against the CCM CBC MAC verification

Under the CCM assumption, we had to find a way to break the mode of operation

under the following limitations:

1) We have no knowledge of the key. 

2) We have no knowledge of the encryption nonce. 

3) We have no knowledge of the signature IV or associated data. 

4) We have no sample of a valid encrypted message. 

5) Our target will not accept messages larger than around 214 encryption blocks. 

14.4.2.1.  Previous work on AES-CTR and AES-CCM

Performing power analysis on AES-CTR mode is made more complicated as the

majority of the bytes are constant (the nonce), and only the counter bytes vary. A

standard first-order CPA attack is only able to recover the key-bytes where the

associated input bytes vary, meaning that at most, two bytes of the counter are

recovered. A solution to this was presented by Jaffe (2007), where Jaffe performs the

attack over multiple AES rounds. 

Jaffe’s technique of performing the attack over multiple rounds allows recovery of

a combination of the AES Round-Key XORd with either the constant plaintext or the

output of the previous round. This allows us to ignore the unknown constant values, 

as they will eventually be removed. A similar technique was used in our description

of the ATMega128RFA1 attack from section 14.3. 
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The AES-CTR attack requires 216 encryptions to ensure power traces are recorded

for all values of all 16 bits of the counter. While Jaffe (2007) reports that the attack

may succeed with a smaller subset of these 216 traces, the subset will include traces

from throughout the set, such that even if a set of 214 traces pulled from the larger set

was sufficient, capturing only 214  consecutive  traces will not provide enough data. 

The leakage observed by the hardware AES peripheral in section 14.3 is such that

leakage occurs before the S-box operation, and it is not possible to reliably perform the

attack using the output of the S-box. Had the output of the S-box leaked, it would have

been possible to recover higher order bits of the key for which there is no associated

toggling of higher order bits of input data due to the nonlinear property of the S-box. 

A solution to the general problem of unknown counter inputs is also given by

Hanley et al. (2009), where a template attack can be performed even with completely

unknown input to the AES block. This attack has the downside of worse performance

(in terms of number of traces required) compared to a known plaintext (or ciphertext)

attack. 

As our target only accepted about 214 16-byte blocks, we had limited ability to

use the existing AES-CTR attacks. We were also unaware of the nonce format – if we

had a known mapping of some input data field to AES-CTR nonce, additional attacks

from the previous work could be used. 

14.4.2.2.  Unknown plaintext with chosen differentials CPA attack against AES

For our attack, we introduce a method of efficiently converting the most chosen

plaintext CPA attack against ECB mode in the case of unknown plaintext with chosen

differentials. Our attack works under the following assumptions:

1) We have a black-box chosen plaintext CPA attack that can break the first round

of an ECB mode encryption implementation. 

2) We do not know the input to our ECB mode encryption, but we can measure

repeated encryptions with the same unknown input XORed to any chosen differential. 

3) For each differential, we can measure the power trace of at least the first and

second AES round. 

As in previous works, we use the notion of a “modified key”. We will use the

following notation:

–  Pi  is the  i th byte of the unknown plaintext input to the AES encryption. 

–  Di  is the  i th byte of the chosen differential. 

–  Kj,i  is the  i th byte of the jth round key of AES. 

 Downloaded from https://onlinelibrary.wiley.com/doi/ by ibrahim ragab - Oregon Health & Science Univer , Wiley Online Library on [03/03/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Attacking IoT Light Bulbs

291

In the general case of first round of AES encryption, the key and plaintext bytes

are used in calculation of the output of the S-box. The output of the S-box on byte

i can be written as  Ouputi =  S( Pi ⊕ K 1 ,i). Any chosen plaintext CPA attack on the first round will be able to retrieve all of the bytes of  K 1 by measuring traces of different inputs P. In our case,  Pi  is constant and we can choose  Di, and we get Ouputi =  S( Di⊕Pi⊕K 1 ,i). We will denote our “modified key” as  K 1 ,i =  Pi⊕K 1 ,i, rewriting  Ouputi =  S( Di ⊕ Ki). 

We can now use our black-box CPA attack to retrieve all of the bytes of  K 1. Using

 D  and  K 1, we can now calculate the input to the second AES round. As the first and second round of AES are identical, we can use the same black-box CPA attack against

the second round with known inputs, and retrieve the real second round key. 

In most CPA attacks, we can choose our inputs at random and use the same power

traces we used for the first round attack. If real chosen plaintext is needed, we can use

the invertible structure of the AES round and calculate the required differentials in the

first round. 

After getting the real second round key  K 2, we can use the invertible AES key

expansion algorithm to find  K 1 and then all bytes of  Pi. In the normal case where only random plaintext is needed for the CPA attack, we can break our ECB mode with

unknown plaintext and chosen differentials in the same number of traces required to

break ECB with chosen plaintext. 

14.4.2.3.  Breaking AES-CCM

For efficiently breaking the CCM mode, we attack the CBC MAC state calculation

on two consecutive blocks. We will first summarize some notation for AES-CCM. 

If we consider the AES-ECB function using key  k  as  Ek( x), we can write the CTR

and CBC portions of the CCM mode as follows. The input will be in 16-byte blocks, 

where block  m  is the index. CTR mode requires some IV and counter which is input

to an AES-ECB block, and we assume our input is  {IV ||m}, where  IV  is a 14-byte constant that is concatenated to the block number  m. Counter mode first generates a

“stream” based on the counter and IV:

 CT Rm =  Ek( {IV ||m})

This stream is XORd with plaintext/ciphertext for encryption/decryption, 

respectively. Thus, decrypting block  P Tm  would be:

 P Tm =  CTm ⊕ CT Rm
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In addition to decryption, CCM provides the authentication tag, which is the output

of a CBC mode encryption across all  P Tm (and possibly other) blocks. The internal

state of this CBC mode after block  m  will be  CBCm, which can be written as: CBCm =  Ek( P Tm ⊕ CBCm− 1)

=  Ek( CTm ⊕ CT Rm ⊕ CBCm− 1)

If we target a given block  m,  CT Rm  and  CBCm− 1 will be constant.  CTm  is the ciphertext we input to the block (e.g. by the firmware file we sent the device), allowing

us to control the value of  CTm. We consider our unknown plaintext to be  CT Rm ⊕

 CBCm− 1 and using the ciphertext as the chosen differential, and then we can use our CPA attack to recover the CBC MAC key  k, and the value of  CT Rm ⊕ CBCm− 1. 

As the CCM mode reuses the key between encryption and verification, we also get the

key used for encryption. We now repeat our attack for the first round of block  m + 1. 

From our attack on block  m, we can calculate  CBCm, and from our attack on block m + 1, we can retrieve  CT Rm+1  ⊕ CBCi  and from that  CT Rm+1. We can now find the nonce used by decrypting  CT Rm+1 with the key we found. 

14.4.2.4.  AES-CTR DPA recovery optimization

Our attack on CCM requires twice the traces of ECB mode, since we must attack

two blocks: both  CBCm  and  CBCm+1 in order to retrieve the CTR output. We can optimize our attack by using a bitwise difference-of-means DPA attack to recover the

output of the AES-CTR encryption directly for block  m. The DPA attack is attacking

 CT Rm ⊕ CTm  operation. An example of this on the actual bootloader power

measurement is shown in Figure 14.7, where a single byte is being recovered. 

Note that there may be multiple locations where a strong “difference” output is

seen. These locations come about as any linear operations on the  CTm  data will

present such spikes (for example, not only the XOR we are targeting, but also the

data loading, and when the AES-CTR output is used in the AES-CBC input). In

addition, there will be both positive and negative spikes as the internal bus switches

from precharge, to final state, back to precharge. 

We found about 10 locations with such strong differences across the entire trace, 

giving us 10 possible guesses for the output of the AES-CTR on the first block on the

same traces under the CPA attack. Using the key retrieved from the CPA attack, we

tried decrypting the guesses, and simply chose the one that decrypted to the correct

counter value in the last bytes. 

The correct guess occurred in the window where the AES-CTR XOR operation

was expected to occur (around sample point 6950 in Figure 14.6), meaning the

additional guessing may not be required in most cases. 

[image: Image 61]
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Figure 14.7.  Bitwise DPA attack on AES-CTR “pad”, where all 8 bits are recovered. 

 For a color version of this figure, see www.iste.co.uk/prouff/cryptography3.zip

14.4.2.5.  Extending the CCM attack to other block ciphers

By combining the CPA attack and DPA optimization, we can break any SPN

(substitution–permutation network)-based cipher block algorithm regardless of the

key expansion algorithm under the following assumptions:

1) We have a CPA attack that can break any round using chosen plaintext. 

2) We can measure the power traces for all rounds. 

3) The DPA attack provides a small number of possible guesses for the output of

the CTR. 

We use the CPA attack against block  m  to retrieve the CBC MAC state  CBCm. By using the DPA attack, we can retrieve the possible guess to the CTR output  CT Rm+1. 

As the CBC MAC encryption in block  m + 1 is  Ek( CTm+1  ⊕ CT Rm+1  ⊕ CBCm), we can now do a chosen plaintext attack against block  m + 1 to retrieve all of the

round keys, including the first round. 

14.5. Application of attack

The previous sections in this chapter demonstrated how material in this book can

be used to first break the AES hardware peripheral, and then the AES bootloader. 

The result of this attack is the AES bootloader key used to both encrypt and sign the
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firmware update. More effort is required to form a complete attack, which will be

discussed here. 

Finding the AES key for the bootloader is a critical step, as it allows signing of

firmware images that will be accepted by the lamp. For a lamp to receive a firmware

image, however, it must be associated with an attacker-controlled network. This means

either the attacker first loads malicious firmware, or the attacker creates a malicious

network. 

Without any further vulnerabilities, this means bulbs could be reflashed without

an external sign of tampering. This could be used in a supply-chain attack, where

bulbs with malicious firmware have a permanent secondary function or backdoor. A

backdoor would be limited to being accessed only from the 802.15.4 (ZigBee) radio

link; the bulbs do not directly have access to the Internet. 

A much more interesting vulnerability was disclosed by Ronen et al. (2017), where

it is discovered that it is also possible to force a bulb to reassociate with a new

attacker-controlled network. This immediately opens up a much more powerful attack:

an IoT worm that spreads via the ZLL radio link, and will not be detected from the

network side. Each bulb can easily force other nearby bulbs to join a new malicious

network, and thus continue to spread the updated malicious firmware. 

Practically, this also requires building firmware for the lightbulb. The firmware

update in this case is not just a part of the firmware, but a complete replacement of

the application. This means any desired functionality (including processing of ZLL

packets) must be implemented. This also means the attacker has complete control of

the hardware, including the choice of accepting future firmware updates. 

Itkin (2020) demonstrated that a vulnerability in the Huge Bridge could allow

access from the ZLL radio network to the user Ethernet network. This opens up new

vulnerabilities, including allowing an “out-of-band” network to be formed between

two networks that both have Philips Hue bridge interfaces on them. This shows that

attacks on IoT devices have a long lifespan, as attacking the hardware opens up a wide

range of possible attacks. 

NOTE. The vulnerability allowing the worm to spread, the forced long-range

re-association, has been fixed in a firmware patch distributed by Philips. 

14.6. Notes and further references

This chapter work is based on the work published in Ronen et al. (2017) and

O’Flynn and Chen (2016). 
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– Section 14.2. Some of the information about these networks is publically

available, including the ZigBee Light Link (ZLL) specification and the datasheets of

the various microcontrollers used in the products. 

– Section 14.3. The leakage model for the hardware AES model was disclosed in

Kizhvatov (2009). This was applied to the ATMega128RFA1 device in O’Flynn and

Chen (2016), which is almost identical to the device used by the Philips Hue bulb. The

specific attack is based on the AES-CTR attack presented in Jaffe (2007). 

– Section 14.4. Attacking the bootloader uses the references from the previous

section, especially previous work on AES-CTR in Jaffe (2007). Another solution to

the problem is given in Hanley et al. (2009), which is not directly applicable here, but

may be in other versions of the bootloader. 

– Section 14.5. The full application of this attack is detailed in Ronen et al. (2017). 

Some additional details of the engineering work (including building the firmware for

the bulb) are given in O’Flynn and Ronen (2017). A demonstration that it is possible

to attack the local area network interface of the Huge bridge from the ZigBee interface

is given in Itkin (2020). 
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